xref: /openbmc/linux/fs/btrfs/inode.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 
54 struct btrfs_iget_args {
55 	u64 ino;
56 	struct btrfs_root *root;
57 };
58 
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68 
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
77 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
78 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
79 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
80 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
81 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
82 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
83 };
84 
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 				   struct page *locked_page,
89 				   u64 start, u64 end, int *page_started,
90 				   unsigned long *nr_written, int unlock);
91 
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 				     struct inode *inode,  struct inode *dir)
94 {
95 	int err;
96 
97 	err = btrfs_init_acl(trans, inode, dir);
98 	if (!err)
99 		err = btrfs_xattr_security_init(trans, inode, dir);
100 	return err;
101 }
102 
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 				struct btrfs_root *root, struct inode *inode,
110 				u64 start, size_t size, size_t compressed_size,
111 				struct page **compressed_pages)
112 {
113 	struct btrfs_key key;
114 	struct btrfs_path *path;
115 	struct extent_buffer *leaf;
116 	struct page *page = NULL;
117 	char *kaddr;
118 	unsigned long ptr;
119 	struct btrfs_file_extent_item *ei;
120 	int err = 0;
121 	int ret;
122 	size_t cur_size = size;
123 	size_t datasize;
124 	unsigned long offset;
125 	int use_compress = 0;
126 
127 	if (compressed_size && compressed_pages) {
128 		use_compress = 1;
129 		cur_size = compressed_size;
130 	}
131 
132 	path = btrfs_alloc_path();
133 	if (!path)
134 		return -ENOMEM;
135 
136 	path->leave_spinning = 1;
137 	btrfs_set_trans_block_group(trans, inode);
138 
139 	key.objectid = inode->i_ino;
140 	key.offset = start;
141 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
143 
144 	inode_add_bytes(inode, size);
145 	ret = btrfs_insert_empty_item(trans, root, path, &key,
146 				      datasize);
147 	BUG_ON(ret);
148 	if (ret) {
149 		err = ret;
150 		goto fail;
151 	}
152 	leaf = path->nodes[0];
153 	ei = btrfs_item_ptr(leaf, path->slots[0],
154 			    struct btrfs_file_extent_item);
155 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 	btrfs_set_file_extent_encryption(leaf, ei, 0);
158 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 	ptr = btrfs_file_extent_inline_start(ei);
161 
162 	if (use_compress) {
163 		struct page *cpage;
164 		int i = 0;
165 		while (compressed_size > 0) {
166 			cpage = compressed_pages[i];
167 			cur_size = min_t(unsigned long, compressed_size,
168 				       PAGE_CACHE_SIZE);
169 
170 			kaddr = kmap_atomic(cpage, KM_USER0);
171 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 			kunmap_atomic(kaddr, KM_USER0);
173 
174 			i++;
175 			ptr += cur_size;
176 			compressed_size -= cur_size;
177 		}
178 		btrfs_set_file_extent_compression(leaf, ei,
179 						  BTRFS_COMPRESS_ZLIB);
180 	} else {
181 		page = find_get_page(inode->i_mapping,
182 				     start >> PAGE_CACHE_SHIFT);
183 		btrfs_set_file_extent_compression(leaf, ei, 0);
184 		kaddr = kmap_atomic(page, KM_USER0);
185 		offset = start & (PAGE_CACHE_SIZE - 1);
186 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 		kunmap_atomic(kaddr, KM_USER0);
188 		page_cache_release(page);
189 	}
190 	btrfs_mark_buffer_dirty(leaf);
191 	btrfs_free_path(path);
192 
193 	/*
194 	 * we're an inline extent, so nobody can
195 	 * extend the file past i_size without locking
196 	 * a page we already have locked.
197 	 *
198 	 * We must do any isize and inode updates
199 	 * before we unlock the pages.  Otherwise we
200 	 * could end up racing with unlink.
201 	 */
202 	BTRFS_I(inode)->disk_i_size = inode->i_size;
203 	btrfs_update_inode(trans, root, inode);
204 
205 	return 0;
206 fail:
207 	btrfs_free_path(path);
208 	return err;
209 }
210 
211 
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 				 struct btrfs_root *root,
219 				 struct inode *inode, u64 start, u64 end,
220 				 size_t compressed_size,
221 				 struct page **compressed_pages)
222 {
223 	u64 isize = i_size_read(inode);
224 	u64 actual_end = min(end + 1, isize);
225 	u64 inline_len = actual_end - start;
226 	u64 aligned_end = (end + root->sectorsize - 1) &
227 			~((u64)root->sectorsize - 1);
228 	u64 hint_byte;
229 	u64 data_len = inline_len;
230 	int ret;
231 
232 	if (compressed_size)
233 		data_len = compressed_size;
234 
235 	if (start > 0 ||
236 	    actual_end >= PAGE_CACHE_SIZE ||
237 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 	    (!compressed_size &&
239 	    (actual_end & (root->sectorsize - 1)) == 0) ||
240 	    end + 1 < isize ||
241 	    data_len > root->fs_info->max_inline) {
242 		return 1;
243 	}
244 
245 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 				 &hint_byte, 1);
247 	BUG_ON(ret);
248 
249 	if (isize > actual_end)
250 		inline_len = min_t(u64, isize, actual_end);
251 	ret = insert_inline_extent(trans, root, inode, start,
252 				   inline_len, compressed_size,
253 				   compressed_pages);
254 	BUG_ON(ret);
255 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 	return 0;
258 }
259 
260 struct async_extent {
261 	u64 start;
262 	u64 ram_size;
263 	u64 compressed_size;
264 	struct page **pages;
265 	unsigned long nr_pages;
266 	struct list_head list;
267 };
268 
269 struct async_cow {
270 	struct inode *inode;
271 	struct btrfs_root *root;
272 	struct page *locked_page;
273 	u64 start;
274 	u64 end;
275 	struct list_head extents;
276 	struct btrfs_work work;
277 };
278 
279 static noinline int add_async_extent(struct async_cow *cow,
280 				     u64 start, u64 ram_size,
281 				     u64 compressed_size,
282 				     struct page **pages,
283 				     unsigned long nr_pages)
284 {
285 	struct async_extent *async_extent;
286 
287 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 	async_extent->start = start;
289 	async_extent->ram_size = ram_size;
290 	async_extent->compressed_size = compressed_size;
291 	async_extent->pages = pages;
292 	async_extent->nr_pages = nr_pages;
293 	list_add_tail(&async_extent->list, &cow->extents);
294 	return 0;
295 }
296 
297 /*
298  * we create compressed extents in two phases.  The first
299  * phase compresses a range of pages that have already been
300  * locked (both pages and state bits are locked).
301  *
302  * This is done inside an ordered work queue, and the compression
303  * is spread across many cpus.  The actual IO submission is step
304  * two, and the ordered work queue takes care of making sure that
305  * happens in the same order things were put onto the queue by
306  * writepages and friends.
307  *
308  * If this code finds it can't get good compression, it puts an
309  * entry onto the work queue to write the uncompressed bytes.  This
310  * makes sure that both compressed inodes and uncompressed inodes
311  * are written in the same order that pdflush sent them down.
312  */
313 static noinline int compress_file_range(struct inode *inode,
314 					struct page *locked_page,
315 					u64 start, u64 end,
316 					struct async_cow *async_cow,
317 					int *num_added)
318 {
319 	struct btrfs_root *root = BTRFS_I(inode)->root;
320 	struct btrfs_trans_handle *trans;
321 	u64 num_bytes;
322 	u64 blocksize = root->sectorsize;
323 	u64 actual_end;
324 	u64 isize = i_size_read(inode);
325 	int ret = 0;
326 	struct page **pages = NULL;
327 	unsigned long nr_pages;
328 	unsigned long nr_pages_ret = 0;
329 	unsigned long total_compressed = 0;
330 	unsigned long total_in = 0;
331 	unsigned long max_compressed = 128 * 1024;
332 	unsigned long max_uncompressed = 128 * 1024;
333 	int i;
334 	int will_compress;
335 
336 	actual_end = min_t(u64, isize, end + 1);
337 again:
338 	will_compress = 0;
339 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
340 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
341 
342 	/*
343 	 * we don't want to send crud past the end of i_size through
344 	 * compression, that's just a waste of CPU time.  So, if the
345 	 * end of the file is before the start of our current
346 	 * requested range of bytes, we bail out to the uncompressed
347 	 * cleanup code that can deal with all of this.
348 	 *
349 	 * It isn't really the fastest way to fix things, but this is a
350 	 * very uncommon corner.
351 	 */
352 	if (actual_end <= start)
353 		goto cleanup_and_bail_uncompressed;
354 
355 	total_compressed = actual_end - start;
356 
357 	/* we want to make sure that amount of ram required to uncompress
358 	 * an extent is reasonable, so we limit the total size in ram
359 	 * of a compressed extent to 128k.  This is a crucial number
360 	 * because it also controls how easily we can spread reads across
361 	 * cpus for decompression.
362 	 *
363 	 * We also want to make sure the amount of IO required to do
364 	 * a random read is reasonably small, so we limit the size of
365 	 * a compressed extent to 128k.
366 	 */
367 	total_compressed = min(total_compressed, max_uncompressed);
368 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
369 	num_bytes = max(blocksize,  num_bytes);
370 	total_in = 0;
371 	ret = 0;
372 
373 	/*
374 	 * we do compression for mount -o compress and when the
375 	 * inode has not been flagged as nocompress.  This flag can
376 	 * change at any time if we discover bad compression ratios.
377 	 */
378 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
379 	    (btrfs_test_opt(root, COMPRESS) ||
380 	     (BTRFS_I(inode)->force_compress))) {
381 		WARN_ON(pages);
382 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
383 
384 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
385 						total_compressed, pages,
386 						nr_pages, &nr_pages_ret,
387 						&total_in,
388 						&total_compressed,
389 						max_compressed);
390 
391 		if (!ret) {
392 			unsigned long offset = total_compressed &
393 				(PAGE_CACHE_SIZE - 1);
394 			struct page *page = pages[nr_pages_ret - 1];
395 			char *kaddr;
396 
397 			/* zero the tail end of the last page, we might be
398 			 * sending it down to disk
399 			 */
400 			if (offset) {
401 				kaddr = kmap_atomic(page, KM_USER0);
402 				memset(kaddr + offset, 0,
403 				       PAGE_CACHE_SIZE - offset);
404 				kunmap_atomic(kaddr, KM_USER0);
405 			}
406 			will_compress = 1;
407 		}
408 	}
409 	if (start == 0) {
410 		trans = btrfs_join_transaction(root, 1);
411 		BUG_ON(!trans);
412 		btrfs_set_trans_block_group(trans, inode);
413 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
414 
415 		/* lets try to make an inline extent */
416 		if (ret || total_in < (actual_end - start)) {
417 			/* we didn't compress the entire range, try
418 			 * to make an uncompressed inline extent.
419 			 */
420 			ret = cow_file_range_inline(trans, root, inode,
421 						    start, end, 0, NULL);
422 		} else {
423 			/* try making a compressed inline extent */
424 			ret = cow_file_range_inline(trans, root, inode,
425 						    start, end,
426 						    total_compressed, pages);
427 		}
428 		if (ret == 0) {
429 			/*
430 			 * inline extent creation worked, we don't need
431 			 * to create any more async work items.  Unlock
432 			 * and free up our temp pages.
433 			 */
434 			extent_clear_unlock_delalloc(inode,
435 			     &BTRFS_I(inode)->io_tree,
436 			     start, end, NULL,
437 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
438 			     EXTENT_CLEAR_DELALLOC |
439 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
440 
441 			btrfs_end_transaction(trans, root);
442 			goto free_pages_out;
443 		}
444 		btrfs_end_transaction(trans, root);
445 	}
446 
447 	if (will_compress) {
448 		/*
449 		 * we aren't doing an inline extent round the compressed size
450 		 * up to a block size boundary so the allocator does sane
451 		 * things
452 		 */
453 		total_compressed = (total_compressed + blocksize - 1) &
454 			~(blocksize - 1);
455 
456 		/*
457 		 * one last check to make sure the compression is really a
458 		 * win, compare the page count read with the blocks on disk
459 		 */
460 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
461 			~(PAGE_CACHE_SIZE - 1);
462 		if (total_compressed >= total_in) {
463 			will_compress = 0;
464 		} else {
465 			num_bytes = total_in;
466 		}
467 	}
468 	if (!will_compress && pages) {
469 		/*
470 		 * the compression code ran but failed to make things smaller,
471 		 * free any pages it allocated and our page pointer array
472 		 */
473 		for (i = 0; i < nr_pages_ret; i++) {
474 			WARN_ON(pages[i]->mapping);
475 			page_cache_release(pages[i]);
476 		}
477 		kfree(pages);
478 		pages = NULL;
479 		total_compressed = 0;
480 		nr_pages_ret = 0;
481 
482 		/* flag the file so we don't compress in the future */
483 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
484 		    !(BTRFS_I(inode)->force_compress)) {
485 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
486 		}
487 	}
488 	if (will_compress) {
489 		*num_added += 1;
490 
491 		/* the async work queues will take care of doing actual
492 		 * allocation on disk for these compressed pages,
493 		 * and will submit them to the elevator.
494 		 */
495 		add_async_extent(async_cow, start, num_bytes,
496 				 total_compressed, pages, nr_pages_ret);
497 
498 		if (start + num_bytes < end) {
499 			start += num_bytes;
500 			pages = NULL;
501 			cond_resched();
502 			goto again;
503 		}
504 	} else {
505 cleanup_and_bail_uncompressed:
506 		/*
507 		 * No compression, but we still need to write the pages in
508 		 * the file we've been given so far.  redirty the locked
509 		 * page if it corresponds to our extent and set things up
510 		 * for the async work queue to run cow_file_range to do
511 		 * the normal delalloc dance
512 		 */
513 		if (page_offset(locked_page) >= start &&
514 		    page_offset(locked_page) <= end) {
515 			__set_page_dirty_nobuffers(locked_page);
516 			/* unlocked later on in the async handlers */
517 		}
518 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
519 		*num_added += 1;
520 	}
521 
522 out:
523 	return 0;
524 
525 free_pages_out:
526 	for (i = 0; i < nr_pages_ret; i++) {
527 		WARN_ON(pages[i]->mapping);
528 		page_cache_release(pages[i]);
529 	}
530 	kfree(pages);
531 
532 	goto out;
533 }
534 
535 /*
536  * phase two of compressed writeback.  This is the ordered portion
537  * of the code, which only gets called in the order the work was
538  * queued.  We walk all the async extents created by compress_file_range
539  * and send them down to the disk.
540  */
541 static noinline int submit_compressed_extents(struct inode *inode,
542 					      struct async_cow *async_cow)
543 {
544 	struct async_extent *async_extent;
545 	u64 alloc_hint = 0;
546 	struct btrfs_trans_handle *trans;
547 	struct btrfs_key ins;
548 	struct extent_map *em;
549 	struct btrfs_root *root = BTRFS_I(inode)->root;
550 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
551 	struct extent_io_tree *io_tree;
552 	int ret = 0;
553 
554 	if (list_empty(&async_cow->extents))
555 		return 0;
556 
557 
558 	while (!list_empty(&async_cow->extents)) {
559 		async_extent = list_entry(async_cow->extents.next,
560 					  struct async_extent, list);
561 		list_del(&async_extent->list);
562 
563 		io_tree = &BTRFS_I(inode)->io_tree;
564 
565 retry:
566 		/* did the compression code fall back to uncompressed IO? */
567 		if (!async_extent->pages) {
568 			int page_started = 0;
569 			unsigned long nr_written = 0;
570 
571 			lock_extent(io_tree, async_extent->start,
572 					 async_extent->start +
573 					 async_extent->ram_size - 1, GFP_NOFS);
574 
575 			/* allocate blocks */
576 			ret = cow_file_range(inode, async_cow->locked_page,
577 					     async_extent->start,
578 					     async_extent->start +
579 					     async_extent->ram_size - 1,
580 					     &page_started, &nr_written, 0);
581 
582 			/*
583 			 * if page_started, cow_file_range inserted an
584 			 * inline extent and took care of all the unlocking
585 			 * and IO for us.  Otherwise, we need to submit
586 			 * all those pages down to the drive.
587 			 */
588 			if (!page_started && !ret)
589 				extent_write_locked_range(io_tree,
590 						  inode, async_extent->start,
591 						  async_extent->start +
592 						  async_extent->ram_size - 1,
593 						  btrfs_get_extent,
594 						  WB_SYNC_ALL);
595 			kfree(async_extent);
596 			cond_resched();
597 			continue;
598 		}
599 
600 		lock_extent(io_tree, async_extent->start,
601 			    async_extent->start + async_extent->ram_size - 1,
602 			    GFP_NOFS);
603 
604 		trans = btrfs_join_transaction(root, 1);
605 		ret = btrfs_reserve_extent(trans, root,
606 					   async_extent->compressed_size,
607 					   async_extent->compressed_size,
608 					   0, alloc_hint,
609 					   (u64)-1, &ins, 1);
610 		btrfs_end_transaction(trans, root);
611 
612 		if (ret) {
613 			int i;
614 			for (i = 0; i < async_extent->nr_pages; i++) {
615 				WARN_ON(async_extent->pages[i]->mapping);
616 				page_cache_release(async_extent->pages[i]);
617 			}
618 			kfree(async_extent->pages);
619 			async_extent->nr_pages = 0;
620 			async_extent->pages = NULL;
621 			unlock_extent(io_tree, async_extent->start,
622 				      async_extent->start +
623 				      async_extent->ram_size - 1, GFP_NOFS);
624 			goto retry;
625 		}
626 
627 		/*
628 		 * here we're doing allocation and writeback of the
629 		 * compressed pages
630 		 */
631 		btrfs_drop_extent_cache(inode, async_extent->start,
632 					async_extent->start +
633 					async_extent->ram_size - 1, 0);
634 
635 		em = alloc_extent_map(GFP_NOFS);
636 		em->start = async_extent->start;
637 		em->len = async_extent->ram_size;
638 		em->orig_start = em->start;
639 
640 		em->block_start = ins.objectid;
641 		em->block_len = ins.offset;
642 		em->bdev = root->fs_info->fs_devices->latest_bdev;
643 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
644 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
645 
646 		while (1) {
647 			write_lock(&em_tree->lock);
648 			ret = add_extent_mapping(em_tree, em);
649 			write_unlock(&em_tree->lock);
650 			if (ret != -EEXIST) {
651 				free_extent_map(em);
652 				break;
653 			}
654 			btrfs_drop_extent_cache(inode, async_extent->start,
655 						async_extent->start +
656 						async_extent->ram_size - 1, 0);
657 		}
658 
659 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
660 					       ins.objectid,
661 					       async_extent->ram_size,
662 					       ins.offset,
663 					       BTRFS_ORDERED_COMPRESSED);
664 		BUG_ON(ret);
665 
666 		/*
667 		 * clear dirty, set writeback and unlock the pages.
668 		 */
669 		extent_clear_unlock_delalloc(inode,
670 				&BTRFS_I(inode)->io_tree,
671 				async_extent->start,
672 				async_extent->start +
673 				async_extent->ram_size - 1,
674 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
675 				EXTENT_CLEAR_UNLOCK |
676 				EXTENT_CLEAR_DELALLOC |
677 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
678 
679 		ret = btrfs_submit_compressed_write(inode,
680 				    async_extent->start,
681 				    async_extent->ram_size,
682 				    ins.objectid,
683 				    ins.offset, async_extent->pages,
684 				    async_extent->nr_pages);
685 
686 		BUG_ON(ret);
687 		alloc_hint = ins.objectid + ins.offset;
688 		kfree(async_extent);
689 		cond_resched();
690 	}
691 
692 	return 0;
693 }
694 
695 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
696 				      u64 num_bytes)
697 {
698 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
699 	struct extent_map *em;
700 	u64 alloc_hint = 0;
701 
702 	read_lock(&em_tree->lock);
703 	em = search_extent_mapping(em_tree, start, num_bytes);
704 	if (em) {
705 		/*
706 		 * if block start isn't an actual block number then find the
707 		 * first block in this inode and use that as a hint.  If that
708 		 * block is also bogus then just don't worry about it.
709 		 */
710 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
711 			free_extent_map(em);
712 			em = search_extent_mapping(em_tree, 0, 0);
713 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
714 				alloc_hint = em->block_start;
715 			if (em)
716 				free_extent_map(em);
717 		} else {
718 			alloc_hint = em->block_start;
719 			free_extent_map(em);
720 		}
721 	}
722 	read_unlock(&em_tree->lock);
723 
724 	return alloc_hint;
725 }
726 
727 /*
728  * when extent_io.c finds a delayed allocation range in the file,
729  * the call backs end up in this code.  The basic idea is to
730  * allocate extents on disk for the range, and create ordered data structs
731  * in ram to track those extents.
732  *
733  * locked_page is the page that writepage had locked already.  We use
734  * it to make sure we don't do extra locks or unlocks.
735  *
736  * *page_started is set to one if we unlock locked_page and do everything
737  * required to start IO on it.  It may be clean and already done with
738  * IO when we return.
739  */
740 static noinline int cow_file_range(struct inode *inode,
741 				   struct page *locked_page,
742 				   u64 start, u64 end, int *page_started,
743 				   unsigned long *nr_written,
744 				   int unlock)
745 {
746 	struct btrfs_root *root = BTRFS_I(inode)->root;
747 	struct btrfs_trans_handle *trans;
748 	u64 alloc_hint = 0;
749 	u64 num_bytes;
750 	unsigned long ram_size;
751 	u64 disk_num_bytes;
752 	u64 cur_alloc_size;
753 	u64 blocksize = root->sectorsize;
754 	struct btrfs_key ins;
755 	struct extent_map *em;
756 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
757 	int ret = 0;
758 
759 	BUG_ON(root == root->fs_info->tree_root);
760 	trans = btrfs_join_transaction(root, 1);
761 	BUG_ON(!trans);
762 	btrfs_set_trans_block_group(trans, inode);
763 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
764 
765 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
766 	num_bytes = max(blocksize,  num_bytes);
767 	disk_num_bytes = num_bytes;
768 	ret = 0;
769 
770 	if (start == 0) {
771 		/* lets try to make an inline extent */
772 		ret = cow_file_range_inline(trans, root, inode,
773 					    start, end, 0, NULL);
774 		if (ret == 0) {
775 			extent_clear_unlock_delalloc(inode,
776 				     &BTRFS_I(inode)->io_tree,
777 				     start, end, NULL,
778 				     EXTENT_CLEAR_UNLOCK_PAGE |
779 				     EXTENT_CLEAR_UNLOCK |
780 				     EXTENT_CLEAR_DELALLOC |
781 				     EXTENT_CLEAR_DIRTY |
782 				     EXTENT_SET_WRITEBACK |
783 				     EXTENT_END_WRITEBACK);
784 
785 			*nr_written = *nr_written +
786 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
787 			*page_started = 1;
788 			ret = 0;
789 			goto out;
790 		}
791 	}
792 
793 	BUG_ON(disk_num_bytes >
794 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
795 
796 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
797 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
798 
799 	while (disk_num_bytes > 0) {
800 		unsigned long op;
801 
802 		cur_alloc_size = disk_num_bytes;
803 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
804 					   root->sectorsize, 0, alloc_hint,
805 					   (u64)-1, &ins, 1);
806 		BUG_ON(ret);
807 
808 		em = alloc_extent_map(GFP_NOFS);
809 		em->start = start;
810 		em->orig_start = em->start;
811 		ram_size = ins.offset;
812 		em->len = ins.offset;
813 
814 		em->block_start = ins.objectid;
815 		em->block_len = ins.offset;
816 		em->bdev = root->fs_info->fs_devices->latest_bdev;
817 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
818 
819 		while (1) {
820 			write_lock(&em_tree->lock);
821 			ret = add_extent_mapping(em_tree, em);
822 			write_unlock(&em_tree->lock);
823 			if (ret != -EEXIST) {
824 				free_extent_map(em);
825 				break;
826 			}
827 			btrfs_drop_extent_cache(inode, start,
828 						start + ram_size - 1, 0);
829 		}
830 
831 		cur_alloc_size = ins.offset;
832 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
833 					       ram_size, cur_alloc_size, 0);
834 		BUG_ON(ret);
835 
836 		if (root->root_key.objectid ==
837 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
838 			ret = btrfs_reloc_clone_csums(inode, start,
839 						      cur_alloc_size);
840 			BUG_ON(ret);
841 		}
842 
843 		if (disk_num_bytes < cur_alloc_size)
844 			break;
845 
846 		/* we're not doing compressed IO, don't unlock the first
847 		 * page (which the caller expects to stay locked), don't
848 		 * clear any dirty bits and don't set any writeback bits
849 		 *
850 		 * Do set the Private2 bit so we know this page was properly
851 		 * setup for writepage
852 		 */
853 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
854 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
855 			EXTENT_SET_PRIVATE2;
856 
857 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
858 					     start, start + ram_size - 1,
859 					     locked_page, op);
860 		disk_num_bytes -= cur_alloc_size;
861 		num_bytes -= cur_alloc_size;
862 		alloc_hint = ins.objectid + ins.offset;
863 		start += cur_alloc_size;
864 	}
865 out:
866 	ret = 0;
867 	btrfs_end_transaction(trans, root);
868 
869 	return ret;
870 }
871 
872 /*
873  * work queue call back to started compression on a file and pages
874  */
875 static noinline void async_cow_start(struct btrfs_work *work)
876 {
877 	struct async_cow *async_cow;
878 	int num_added = 0;
879 	async_cow = container_of(work, struct async_cow, work);
880 
881 	compress_file_range(async_cow->inode, async_cow->locked_page,
882 			    async_cow->start, async_cow->end, async_cow,
883 			    &num_added);
884 	if (num_added == 0)
885 		async_cow->inode = NULL;
886 }
887 
888 /*
889  * work queue call back to submit previously compressed pages
890  */
891 static noinline void async_cow_submit(struct btrfs_work *work)
892 {
893 	struct async_cow *async_cow;
894 	struct btrfs_root *root;
895 	unsigned long nr_pages;
896 
897 	async_cow = container_of(work, struct async_cow, work);
898 
899 	root = async_cow->root;
900 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
901 		PAGE_CACHE_SHIFT;
902 
903 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
904 
905 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
906 	    5 * 1042 * 1024 &&
907 	    waitqueue_active(&root->fs_info->async_submit_wait))
908 		wake_up(&root->fs_info->async_submit_wait);
909 
910 	if (async_cow->inode)
911 		submit_compressed_extents(async_cow->inode, async_cow);
912 }
913 
914 static noinline void async_cow_free(struct btrfs_work *work)
915 {
916 	struct async_cow *async_cow;
917 	async_cow = container_of(work, struct async_cow, work);
918 	kfree(async_cow);
919 }
920 
921 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
922 				u64 start, u64 end, int *page_started,
923 				unsigned long *nr_written)
924 {
925 	struct async_cow *async_cow;
926 	struct btrfs_root *root = BTRFS_I(inode)->root;
927 	unsigned long nr_pages;
928 	u64 cur_end;
929 	int limit = 10 * 1024 * 1042;
930 
931 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
932 			 1, 0, NULL, GFP_NOFS);
933 	while (start < end) {
934 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
935 		async_cow->inode = inode;
936 		async_cow->root = root;
937 		async_cow->locked_page = locked_page;
938 		async_cow->start = start;
939 
940 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
941 			cur_end = end;
942 		else
943 			cur_end = min(end, start + 512 * 1024 - 1);
944 
945 		async_cow->end = cur_end;
946 		INIT_LIST_HEAD(&async_cow->extents);
947 
948 		async_cow->work.func = async_cow_start;
949 		async_cow->work.ordered_func = async_cow_submit;
950 		async_cow->work.ordered_free = async_cow_free;
951 		async_cow->work.flags = 0;
952 
953 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
954 			PAGE_CACHE_SHIFT;
955 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
956 
957 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
958 				   &async_cow->work);
959 
960 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
961 			wait_event(root->fs_info->async_submit_wait,
962 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
963 			    limit));
964 		}
965 
966 		while (atomic_read(&root->fs_info->async_submit_draining) &&
967 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
968 			wait_event(root->fs_info->async_submit_wait,
969 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
970 			   0));
971 		}
972 
973 		*nr_written += nr_pages;
974 		start = cur_end + 1;
975 	}
976 	*page_started = 1;
977 	return 0;
978 }
979 
980 static noinline int csum_exist_in_range(struct btrfs_root *root,
981 					u64 bytenr, u64 num_bytes)
982 {
983 	int ret;
984 	struct btrfs_ordered_sum *sums;
985 	LIST_HEAD(list);
986 
987 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
988 				       bytenr + num_bytes - 1, &list);
989 	if (ret == 0 && list_empty(&list))
990 		return 0;
991 
992 	while (!list_empty(&list)) {
993 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
994 		list_del(&sums->list);
995 		kfree(sums);
996 	}
997 	return 1;
998 }
999 
1000 /*
1001  * when nowcow writeback call back.  This checks for snapshots or COW copies
1002  * of the extents that exist in the file, and COWs the file as required.
1003  *
1004  * If no cow copies or snapshots exist, we write directly to the existing
1005  * blocks on disk
1006  */
1007 static noinline int run_delalloc_nocow(struct inode *inode,
1008 				       struct page *locked_page,
1009 			      u64 start, u64 end, int *page_started, int force,
1010 			      unsigned long *nr_written)
1011 {
1012 	struct btrfs_root *root = BTRFS_I(inode)->root;
1013 	struct btrfs_trans_handle *trans;
1014 	struct extent_buffer *leaf;
1015 	struct btrfs_path *path;
1016 	struct btrfs_file_extent_item *fi;
1017 	struct btrfs_key found_key;
1018 	u64 cow_start;
1019 	u64 cur_offset;
1020 	u64 extent_end;
1021 	u64 extent_offset;
1022 	u64 disk_bytenr;
1023 	u64 num_bytes;
1024 	int extent_type;
1025 	int ret;
1026 	int type;
1027 	int nocow;
1028 	int check_prev = 1;
1029 	bool nolock = false;
1030 
1031 	path = btrfs_alloc_path();
1032 	BUG_ON(!path);
1033 	if (root == root->fs_info->tree_root) {
1034 		nolock = true;
1035 		trans = btrfs_join_transaction_nolock(root, 1);
1036 	} else {
1037 		trans = btrfs_join_transaction(root, 1);
1038 	}
1039 	BUG_ON(!trans);
1040 
1041 	cow_start = (u64)-1;
1042 	cur_offset = start;
1043 	while (1) {
1044 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1045 					       cur_offset, 0);
1046 		BUG_ON(ret < 0);
1047 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1048 			leaf = path->nodes[0];
1049 			btrfs_item_key_to_cpu(leaf, &found_key,
1050 					      path->slots[0] - 1);
1051 			if (found_key.objectid == inode->i_ino &&
1052 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1053 				path->slots[0]--;
1054 		}
1055 		check_prev = 0;
1056 next_slot:
1057 		leaf = path->nodes[0];
1058 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1059 			ret = btrfs_next_leaf(root, path);
1060 			if (ret < 0)
1061 				BUG_ON(1);
1062 			if (ret > 0)
1063 				break;
1064 			leaf = path->nodes[0];
1065 		}
1066 
1067 		nocow = 0;
1068 		disk_bytenr = 0;
1069 		num_bytes = 0;
1070 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1071 
1072 		if (found_key.objectid > inode->i_ino ||
1073 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1074 		    found_key.offset > end)
1075 			break;
1076 
1077 		if (found_key.offset > cur_offset) {
1078 			extent_end = found_key.offset;
1079 			extent_type = 0;
1080 			goto out_check;
1081 		}
1082 
1083 		fi = btrfs_item_ptr(leaf, path->slots[0],
1084 				    struct btrfs_file_extent_item);
1085 		extent_type = btrfs_file_extent_type(leaf, fi);
1086 
1087 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1088 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1089 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1090 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1091 			extent_end = found_key.offset +
1092 				btrfs_file_extent_num_bytes(leaf, fi);
1093 			if (extent_end <= start) {
1094 				path->slots[0]++;
1095 				goto next_slot;
1096 			}
1097 			if (disk_bytenr == 0)
1098 				goto out_check;
1099 			if (btrfs_file_extent_compression(leaf, fi) ||
1100 			    btrfs_file_extent_encryption(leaf, fi) ||
1101 			    btrfs_file_extent_other_encoding(leaf, fi))
1102 				goto out_check;
1103 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1104 				goto out_check;
1105 			if (btrfs_extent_readonly(root, disk_bytenr))
1106 				goto out_check;
1107 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1108 						  found_key.offset -
1109 						  extent_offset, disk_bytenr))
1110 				goto out_check;
1111 			disk_bytenr += extent_offset;
1112 			disk_bytenr += cur_offset - found_key.offset;
1113 			num_bytes = min(end + 1, extent_end) - cur_offset;
1114 			/*
1115 			 * force cow if csum exists in the range.
1116 			 * this ensure that csum for a given extent are
1117 			 * either valid or do not exist.
1118 			 */
1119 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1120 				goto out_check;
1121 			nocow = 1;
1122 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1123 			extent_end = found_key.offset +
1124 				btrfs_file_extent_inline_len(leaf, fi);
1125 			extent_end = ALIGN(extent_end, root->sectorsize);
1126 		} else {
1127 			BUG_ON(1);
1128 		}
1129 out_check:
1130 		if (extent_end <= start) {
1131 			path->slots[0]++;
1132 			goto next_slot;
1133 		}
1134 		if (!nocow) {
1135 			if (cow_start == (u64)-1)
1136 				cow_start = cur_offset;
1137 			cur_offset = extent_end;
1138 			if (cur_offset > end)
1139 				break;
1140 			path->slots[0]++;
1141 			goto next_slot;
1142 		}
1143 
1144 		btrfs_release_path(root, path);
1145 		if (cow_start != (u64)-1) {
1146 			ret = cow_file_range(inode, locked_page, cow_start,
1147 					found_key.offset - 1, page_started,
1148 					nr_written, 1);
1149 			BUG_ON(ret);
1150 			cow_start = (u64)-1;
1151 		}
1152 
1153 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1154 			struct extent_map *em;
1155 			struct extent_map_tree *em_tree;
1156 			em_tree = &BTRFS_I(inode)->extent_tree;
1157 			em = alloc_extent_map(GFP_NOFS);
1158 			em->start = cur_offset;
1159 			em->orig_start = em->start;
1160 			em->len = num_bytes;
1161 			em->block_len = num_bytes;
1162 			em->block_start = disk_bytenr;
1163 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1164 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1165 			while (1) {
1166 				write_lock(&em_tree->lock);
1167 				ret = add_extent_mapping(em_tree, em);
1168 				write_unlock(&em_tree->lock);
1169 				if (ret != -EEXIST) {
1170 					free_extent_map(em);
1171 					break;
1172 				}
1173 				btrfs_drop_extent_cache(inode, em->start,
1174 						em->start + em->len - 1, 0);
1175 			}
1176 			type = BTRFS_ORDERED_PREALLOC;
1177 		} else {
1178 			type = BTRFS_ORDERED_NOCOW;
1179 		}
1180 
1181 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1182 					       num_bytes, num_bytes, type);
1183 		BUG_ON(ret);
1184 
1185 		if (root->root_key.objectid ==
1186 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1187 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1188 						      num_bytes);
1189 			BUG_ON(ret);
1190 		}
1191 
1192 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1193 				cur_offset, cur_offset + num_bytes - 1,
1194 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1195 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1196 				EXTENT_SET_PRIVATE2);
1197 		cur_offset = extent_end;
1198 		if (cur_offset > end)
1199 			break;
1200 	}
1201 	btrfs_release_path(root, path);
1202 
1203 	if (cur_offset <= end && cow_start == (u64)-1)
1204 		cow_start = cur_offset;
1205 	if (cow_start != (u64)-1) {
1206 		ret = cow_file_range(inode, locked_page, cow_start, end,
1207 				     page_started, nr_written, 1);
1208 		BUG_ON(ret);
1209 	}
1210 
1211 	if (nolock) {
1212 		ret = btrfs_end_transaction_nolock(trans, root);
1213 		BUG_ON(ret);
1214 	} else {
1215 		ret = btrfs_end_transaction(trans, root);
1216 		BUG_ON(ret);
1217 	}
1218 	btrfs_free_path(path);
1219 	return 0;
1220 }
1221 
1222 /*
1223  * extent_io.c call back to do delayed allocation processing
1224  */
1225 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1226 			      u64 start, u64 end, int *page_started,
1227 			      unsigned long *nr_written)
1228 {
1229 	int ret;
1230 	struct btrfs_root *root = BTRFS_I(inode)->root;
1231 
1232 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1233 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1234 					 page_started, 1, nr_written);
1235 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1236 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1237 					 page_started, 0, nr_written);
1238 	else if (!btrfs_test_opt(root, COMPRESS) &&
1239 		 !(BTRFS_I(inode)->force_compress))
1240 		ret = cow_file_range(inode, locked_page, start, end,
1241 				      page_started, nr_written, 1);
1242 	else
1243 		ret = cow_file_range_async(inode, locked_page, start, end,
1244 					   page_started, nr_written);
1245 	return ret;
1246 }
1247 
1248 static int btrfs_split_extent_hook(struct inode *inode,
1249 				   struct extent_state *orig, u64 split)
1250 {
1251 	/* not delalloc, ignore it */
1252 	if (!(orig->state & EXTENT_DELALLOC))
1253 		return 0;
1254 
1255 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1256 	return 0;
1257 }
1258 
1259 /*
1260  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1261  * extents so we can keep track of new extents that are just merged onto old
1262  * extents, such as when we are doing sequential writes, so we can properly
1263  * account for the metadata space we'll need.
1264  */
1265 static int btrfs_merge_extent_hook(struct inode *inode,
1266 				   struct extent_state *new,
1267 				   struct extent_state *other)
1268 {
1269 	/* not delalloc, ignore it */
1270 	if (!(other->state & EXTENT_DELALLOC))
1271 		return 0;
1272 
1273 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1274 	return 0;
1275 }
1276 
1277 /*
1278  * extent_io.c set_bit_hook, used to track delayed allocation
1279  * bytes in this file, and to maintain the list of inodes that
1280  * have pending delalloc work to be done.
1281  */
1282 static int btrfs_set_bit_hook(struct inode *inode,
1283 			      struct extent_state *state, int *bits)
1284 {
1285 
1286 	/*
1287 	 * set_bit and clear bit hooks normally require _irqsave/restore
1288 	 * but in this case, we are only testeing for the DELALLOC
1289 	 * bit, which is only set or cleared with irqs on
1290 	 */
1291 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1292 		struct btrfs_root *root = BTRFS_I(inode)->root;
1293 		u64 len = state->end + 1 - state->start;
1294 		int do_list = (root->root_key.objectid !=
1295 			       BTRFS_ROOT_TREE_OBJECTID);
1296 
1297 		if (*bits & EXTENT_FIRST_DELALLOC)
1298 			*bits &= ~EXTENT_FIRST_DELALLOC;
1299 		else
1300 			atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1301 
1302 		spin_lock(&root->fs_info->delalloc_lock);
1303 		BTRFS_I(inode)->delalloc_bytes += len;
1304 		root->fs_info->delalloc_bytes += len;
1305 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1306 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1307 				      &root->fs_info->delalloc_inodes);
1308 		}
1309 		spin_unlock(&root->fs_info->delalloc_lock);
1310 	}
1311 	return 0;
1312 }
1313 
1314 /*
1315  * extent_io.c clear_bit_hook, see set_bit_hook for why
1316  */
1317 static int btrfs_clear_bit_hook(struct inode *inode,
1318 				struct extent_state *state, int *bits)
1319 {
1320 	/*
1321 	 * set_bit and clear bit hooks normally require _irqsave/restore
1322 	 * but in this case, we are only testeing for the DELALLOC
1323 	 * bit, which is only set or cleared with irqs on
1324 	 */
1325 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1326 		struct btrfs_root *root = BTRFS_I(inode)->root;
1327 		u64 len = state->end + 1 - state->start;
1328 		int do_list = (root->root_key.objectid !=
1329 			       BTRFS_ROOT_TREE_OBJECTID);
1330 
1331 		if (*bits & EXTENT_FIRST_DELALLOC)
1332 			*bits &= ~EXTENT_FIRST_DELALLOC;
1333 		else if (!(*bits & EXTENT_DO_ACCOUNTING))
1334 			atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1335 
1336 		if (*bits & EXTENT_DO_ACCOUNTING)
1337 			btrfs_delalloc_release_metadata(inode, len);
1338 
1339 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1340 		    && do_list)
1341 			btrfs_free_reserved_data_space(inode, len);
1342 
1343 		spin_lock(&root->fs_info->delalloc_lock);
1344 		root->fs_info->delalloc_bytes -= len;
1345 		BTRFS_I(inode)->delalloc_bytes -= len;
1346 
1347 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1348 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1349 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1350 		}
1351 		spin_unlock(&root->fs_info->delalloc_lock);
1352 	}
1353 	return 0;
1354 }
1355 
1356 /*
1357  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1358  * we don't create bios that span stripes or chunks
1359  */
1360 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1361 			 size_t size, struct bio *bio,
1362 			 unsigned long bio_flags)
1363 {
1364 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1365 	struct btrfs_mapping_tree *map_tree;
1366 	u64 logical = (u64)bio->bi_sector << 9;
1367 	u64 length = 0;
1368 	u64 map_length;
1369 	int ret;
1370 
1371 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1372 		return 0;
1373 
1374 	length = bio->bi_size;
1375 	map_tree = &root->fs_info->mapping_tree;
1376 	map_length = length;
1377 	ret = btrfs_map_block(map_tree, READ, logical,
1378 			      &map_length, NULL, 0);
1379 
1380 	if (map_length < length + size)
1381 		return 1;
1382 	return ret;
1383 }
1384 
1385 /*
1386  * in order to insert checksums into the metadata in large chunks,
1387  * we wait until bio submission time.   All the pages in the bio are
1388  * checksummed and sums are attached onto the ordered extent record.
1389  *
1390  * At IO completion time the cums attached on the ordered extent record
1391  * are inserted into the btree
1392  */
1393 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1394 				    struct bio *bio, int mirror_num,
1395 				    unsigned long bio_flags,
1396 				    u64 bio_offset)
1397 {
1398 	struct btrfs_root *root = BTRFS_I(inode)->root;
1399 	int ret = 0;
1400 
1401 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1402 	BUG_ON(ret);
1403 	return 0;
1404 }
1405 
1406 /*
1407  * in order to insert checksums into the metadata in large chunks,
1408  * we wait until bio submission time.   All the pages in the bio are
1409  * checksummed and sums are attached onto the ordered extent record.
1410  *
1411  * At IO completion time the cums attached on the ordered extent record
1412  * are inserted into the btree
1413  */
1414 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1415 			  int mirror_num, unsigned long bio_flags,
1416 			  u64 bio_offset)
1417 {
1418 	struct btrfs_root *root = BTRFS_I(inode)->root;
1419 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1420 }
1421 
1422 /*
1423  * extent_io.c submission hook. This does the right thing for csum calculation
1424  * on write, or reading the csums from the tree before a read
1425  */
1426 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1427 			  int mirror_num, unsigned long bio_flags,
1428 			  u64 bio_offset)
1429 {
1430 	struct btrfs_root *root = BTRFS_I(inode)->root;
1431 	int ret = 0;
1432 	int skip_sum;
1433 
1434 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1435 
1436 	if (root == root->fs_info->tree_root)
1437 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1438 	else
1439 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1440 	BUG_ON(ret);
1441 
1442 	if (!(rw & REQ_WRITE)) {
1443 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1444 			return btrfs_submit_compressed_read(inode, bio,
1445 						    mirror_num, bio_flags);
1446 		} else if (!skip_sum)
1447 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1448 		goto mapit;
1449 	} else if (!skip_sum) {
1450 		/* csum items have already been cloned */
1451 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1452 			goto mapit;
1453 		/* we're doing a write, do the async checksumming */
1454 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1455 				   inode, rw, bio, mirror_num,
1456 				   bio_flags, bio_offset,
1457 				   __btrfs_submit_bio_start,
1458 				   __btrfs_submit_bio_done);
1459 	}
1460 
1461 mapit:
1462 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1463 }
1464 
1465 /*
1466  * given a list of ordered sums record them in the inode.  This happens
1467  * at IO completion time based on sums calculated at bio submission time.
1468  */
1469 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1470 			     struct inode *inode, u64 file_offset,
1471 			     struct list_head *list)
1472 {
1473 	struct btrfs_ordered_sum *sum;
1474 
1475 	btrfs_set_trans_block_group(trans, inode);
1476 
1477 	list_for_each_entry(sum, list, list) {
1478 		btrfs_csum_file_blocks(trans,
1479 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1480 	}
1481 	return 0;
1482 }
1483 
1484 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1485 			      struct extent_state **cached_state)
1486 {
1487 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1488 		WARN_ON(1);
1489 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1490 				   cached_state, GFP_NOFS);
1491 }
1492 
1493 /* see btrfs_writepage_start_hook for details on why this is required */
1494 struct btrfs_writepage_fixup {
1495 	struct page *page;
1496 	struct btrfs_work work;
1497 };
1498 
1499 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1500 {
1501 	struct btrfs_writepage_fixup *fixup;
1502 	struct btrfs_ordered_extent *ordered;
1503 	struct extent_state *cached_state = NULL;
1504 	struct page *page;
1505 	struct inode *inode;
1506 	u64 page_start;
1507 	u64 page_end;
1508 
1509 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1510 	page = fixup->page;
1511 again:
1512 	lock_page(page);
1513 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1514 		ClearPageChecked(page);
1515 		goto out_page;
1516 	}
1517 
1518 	inode = page->mapping->host;
1519 	page_start = page_offset(page);
1520 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1521 
1522 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1523 			 &cached_state, GFP_NOFS);
1524 
1525 	/* already ordered? We're done */
1526 	if (PagePrivate2(page))
1527 		goto out;
1528 
1529 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1530 	if (ordered) {
1531 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1532 				     page_end, &cached_state, GFP_NOFS);
1533 		unlock_page(page);
1534 		btrfs_start_ordered_extent(inode, ordered, 1);
1535 		goto again;
1536 	}
1537 
1538 	BUG();
1539 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1540 	ClearPageChecked(page);
1541 out:
1542 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1543 			     &cached_state, GFP_NOFS);
1544 out_page:
1545 	unlock_page(page);
1546 	page_cache_release(page);
1547 }
1548 
1549 /*
1550  * There are a few paths in the higher layers of the kernel that directly
1551  * set the page dirty bit without asking the filesystem if it is a
1552  * good idea.  This causes problems because we want to make sure COW
1553  * properly happens and the data=ordered rules are followed.
1554  *
1555  * In our case any range that doesn't have the ORDERED bit set
1556  * hasn't been properly setup for IO.  We kick off an async process
1557  * to fix it up.  The async helper will wait for ordered extents, set
1558  * the delalloc bit and make it safe to write the page.
1559  */
1560 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1561 {
1562 	struct inode *inode = page->mapping->host;
1563 	struct btrfs_writepage_fixup *fixup;
1564 	struct btrfs_root *root = BTRFS_I(inode)->root;
1565 
1566 	/* this page is properly in the ordered list */
1567 	if (TestClearPagePrivate2(page))
1568 		return 0;
1569 
1570 	if (PageChecked(page))
1571 		return -EAGAIN;
1572 
1573 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1574 	if (!fixup)
1575 		return -EAGAIN;
1576 
1577 	SetPageChecked(page);
1578 	page_cache_get(page);
1579 	fixup->work.func = btrfs_writepage_fixup_worker;
1580 	fixup->page = page;
1581 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1582 	return -EAGAIN;
1583 }
1584 
1585 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1586 				       struct inode *inode, u64 file_pos,
1587 				       u64 disk_bytenr, u64 disk_num_bytes,
1588 				       u64 num_bytes, u64 ram_bytes,
1589 				       u8 compression, u8 encryption,
1590 				       u16 other_encoding, int extent_type)
1591 {
1592 	struct btrfs_root *root = BTRFS_I(inode)->root;
1593 	struct btrfs_file_extent_item *fi;
1594 	struct btrfs_path *path;
1595 	struct extent_buffer *leaf;
1596 	struct btrfs_key ins;
1597 	u64 hint;
1598 	int ret;
1599 
1600 	path = btrfs_alloc_path();
1601 	BUG_ON(!path);
1602 
1603 	path->leave_spinning = 1;
1604 
1605 	/*
1606 	 * we may be replacing one extent in the tree with another.
1607 	 * The new extent is pinned in the extent map, and we don't want
1608 	 * to drop it from the cache until it is completely in the btree.
1609 	 *
1610 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1611 	 * the caller is expected to unpin it and allow it to be merged
1612 	 * with the others.
1613 	 */
1614 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1615 				 &hint, 0);
1616 	BUG_ON(ret);
1617 
1618 	ins.objectid = inode->i_ino;
1619 	ins.offset = file_pos;
1620 	ins.type = BTRFS_EXTENT_DATA_KEY;
1621 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1622 	BUG_ON(ret);
1623 	leaf = path->nodes[0];
1624 	fi = btrfs_item_ptr(leaf, path->slots[0],
1625 			    struct btrfs_file_extent_item);
1626 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1627 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1628 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1629 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1630 	btrfs_set_file_extent_offset(leaf, fi, 0);
1631 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1632 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1633 	btrfs_set_file_extent_compression(leaf, fi, compression);
1634 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1635 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1636 
1637 	btrfs_unlock_up_safe(path, 1);
1638 	btrfs_set_lock_blocking(leaf);
1639 
1640 	btrfs_mark_buffer_dirty(leaf);
1641 
1642 	inode_add_bytes(inode, num_bytes);
1643 
1644 	ins.objectid = disk_bytenr;
1645 	ins.offset = disk_num_bytes;
1646 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1647 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1648 					root->root_key.objectid,
1649 					inode->i_ino, file_pos, &ins);
1650 	BUG_ON(ret);
1651 	btrfs_free_path(path);
1652 
1653 	return 0;
1654 }
1655 
1656 /*
1657  * helper function for btrfs_finish_ordered_io, this
1658  * just reads in some of the csum leaves to prime them into ram
1659  * before we start the transaction.  It limits the amount of btree
1660  * reads required while inside the transaction.
1661  */
1662 /* as ordered data IO finishes, this gets called so we can finish
1663  * an ordered extent if the range of bytes in the file it covers are
1664  * fully written.
1665  */
1666 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1667 {
1668 	struct btrfs_root *root = BTRFS_I(inode)->root;
1669 	struct btrfs_trans_handle *trans = NULL;
1670 	struct btrfs_ordered_extent *ordered_extent = NULL;
1671 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1672 	struct extent_state *cached_state = NULL;
1673 	int compressed = 0;
1674 	int ret;
1675 	bool nolock = false;
1676 
1677 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1678 					     end - start + 1);
1679 	if (!ret)
1680 		return 0;
1681 	BUG_ON(!ordered_extent);
1682 
1683 	nolock = (root == root->fs_info->tree_root);
1684 
1685 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1686 		BUG_ON(!list_empty(&ordered_extent->list));
1687 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1688 		if (!ret) {
1689 			if (nolock)
1690 				trans = btrfs_join_transaction_nolock(root, 1);
1691 			else
1692 				trans = btrfs_join_transaction(root, 1);
1693 			BUG_ON(!trans);
1694 			btrfs_set_trans_block_group(trans, inode);
1695 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1696 			ret = btrfs_update_inode(trans, root, inode);
1697 			BUG_ON(ret);
1698 		}
1699 		goto out;
1700 	}
1701 
1702 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1703 			 ordered_extent->file_offset + ordered_extent->len - 1,
1704 			 0, &cached_state, GFP_NOFS);
1705 
1706 	if (nolock)
1707 		trans = btrfs_join_transaction_nolock(root, 1);
1708 	else
1709 		trans = btrfs_join_transaction(root, 1);
1710 	btrfs_set_trans_block_group(trans, inode);
1711 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1712 
1713 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1714 		compressed = 1;
1715 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1716 		BUG_ON(compressed);
1717 		ret = btrfs_mark_extent_written(trans, inode,
1718 						ordered_extent->file_offset,
1719 						ordered_extent->file_offset +
1720 						ordered_extent->len);
1721 		BUG_ON(ret);
1722 	} else {
1723 		BUG_ON(root == root->fs_info->tree_root);
1724 		ret = insert_reserved_file_extent(trans, inode,
1725 						ordered_extent->file_offset,
1726 						ordered_extent->start,
1727 						ordered_extent->disk_len,
1728 						ordered_extent->len,
1729 						ordered_extent->len,
1730 						compressed, 0, 0,
1731 						BTRFS_FILE_EXTENT_REG);
1732 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1733 				   ordered_extent->file_offset,
1734 				   ordered_extent->len);
1735 		BUG_ON(ret);
1736 	}
1737 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1738 			     ordered_extent->file_offset +
1739 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1740 
1741 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1742 			  &ordered_extent->list);
1743 
1744 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1745 	ret = btrfs_update_inode(trans, root, inode);
1746 	BUG_ON(ret);
1747 out:
1748 	if (nolock) {
1749 		if (trans)
1750 			btrfs_end_transaction_nolock(trans, root);
1751 	} else {
1752 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1753 		if (trans)
1754 			btrfs_end_transaction(trans, root);
1755 	}
1756 
1757 	/* once for us */
1758 	btrfs_put_ordered_extent(ordered_extent);
1759 	/* once for the tree */
1760 	btrfs_put_ordered_extent(ordered_extent);
1761 
1762 	return 0;
1763 }
1764 
1765 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1766 				struct extent_state *state, int uptodate)
1767 {
1768 	ClearPagePrivate2(page);
1769 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1770 }
1771 
1772 /*
1773  * When IO fails, either with EIO or csum verification fails, we
1774  * try other mirrors that might have a good copy of the data.  This
1775  * io_failure_record is used to record state as we go through all the
1776  * mirrors.  If another mirror has good data, the page is set up to date
1777  * and things continue.  If a good mirror can't be found, the original
1778  * bio end_io callback is called to indicate things have failed.
1779  */
1780 struct io_failure_record {
1781 	struct page *page;
1782 	u64 start;
1783 	u64 len;
1784 	u64 logical;
1785 	unsigned long bio_flags;
1786 	int last_mirror;
1787 };
1788 
1789 static int btrfs_io_failed_hook(struct bio *failed_bio,
1790 			 struct page *page, u64 start, u64 end,
1791 			 struct extent_state *state)
1792 {
1793 	struct io_failure_record *failrec = NULL;
1794 	u64 private;
1795 	struct extent_map *em;
1796 	struct inode *inode = page->mapping->host;
1797 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1798 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1799 	struct bio *bio;
1800 	int num_copies;
1801 	int ret;
1802 	int rw;
1803 	u64 logical;
1804 
1805 	ret = get_state_private(failure_tree, start, &private);
1806 	if (ret) {
1807 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1808 		if (!failrec)
1809 			return -ENOMEM;
1810 		failrec->start = start;
1811 		failrec->len = end - start + 1;
1812 		failrec->last_mirror = 0;
1813 		failrec->bio_flags = 0;
1814 
1815 		read_lock(&em_tree->lock);
1816 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1817 		if (em->start > start || em->start + em->len < start) {
1818 			free_extent_map(em);
1819 			em = NULL;
1820 		}
1821 		read_unlock(&em_tree->lock);
1822 
1823 		if (!em || IS_ERR(em)) {
1824 			kfree(failrec);
1825 			return -EIO;
1826 		}
1827 		logical = start - em->start;
1828 		logical = em->block_start + logical;
1829 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1830 			logical = em->block_start;
1831 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1832 		}
1833 		failrec->logical = logical;
1834 		free_extent_map(em);
1835 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1836 				EXTENT_DIRTY, GFP_NOFS);
1837 		set_state_private(failure_tree, start,
1838 				 (u64)(unsigned long)failrec);
1839 	} else {
1840 		failrec = (struct io_failure_record *)(unsigned long)private;
1841 	}
1842 	num_copies = btrfs_num_copies(
1843 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1844 			      failrec->logical, failrec->len);
1845 	failrec->last_mirror++;
1846 	if (!state) {
1847 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1848 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1849 						    failrec->start,
1850 						    EXTENT_LOCKED);
1851 		if (state && state->start != failrec->start)
1852 			state = NULL;
1853 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1854 	}
1855 	if (!state || failrec->last_mirror > num_copies) {
1856 		set_state_private(failure_tree, failrec->start, 0);
1857 		clear_extent_bits(failure_tree, failrec->start,
1858 				  failrec->start + failrec->len - 1,
1859 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1860 		kfree(failrec);
1861 		return -EIO;
1862 	}
1863 	bio = bio_alloc(GFP_NOFS, 1);
1864 	bio->bi_private = state;
1865 	bio->bi_end_io = failed_bio->bi_end_io;
1866 	bio->bi_sector = failrec->logical >> 9;
1867 	bio->bi_bdev = failed_bio->bi_bdev;
1868 	bio->bi_size = 0;
1869 
1870 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1871 	if (failed_bio->bi_rw & REQ_WRITE)
1872 		rw = WRITE;
1873 	else
1874 		rw = READ;
1875 
1876 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1877 						      failrec->last_mirror,
1878 						      failrec->bio_flags, 0);
1879 	return 0;
1880 }
1881 
1882 /*
1883  * each time an IO finishes, we do a fast check in the IO failure tree
1884  * to see if we need to process or clean up an io_failure_record
1885  */
1886 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1887 {
1888 	u64 private;
1889 	u64 private_failure;
1890 	struct io_failure_record *failure;
1891 	int ret;
1892 
1893 	private = 0;
1894 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1895 			     (u64)-1, 1, EXTENT_DIRTY)) {
1896 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1897 					start, &private_failure);
1898 		if (ret == 0) {
1899 			failure = (struct io_failure_record *)(unsigned long)
1900 				   private_failure;
1901 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1902 					  failure->start, 0);
1903 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1904 					  failure->start,
1905 					  failure->start + failure->len - 1,
1906 					  EXTENT_DIRTY | EXTENT_LOCKED,
1907 					  GFP_NOFS);
1908 			kfree(failure);
1909 		}
1910 	}
1911 	return 0;
1912 }
1913 
1914 /*
1915  * when reads are done, we need to check csums to verify the data is correct
1916  * if there's a match, we allow the bio to finish.  If not, we go through
1917  * the io_failure_record routines to find good copies
1918  */
1919 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1920 			       struct extent_state *state)
1921 {
1922 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1923 	struct inode *inode = page->mapping->host;
1924 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1925 	char *kaddr;
1926 	u64 private = ~(u32)0;
1927 	int ret;
1928 	struct btrfs_root *root = BTRFS_I(inode)->root;
1929 	u32 csum = ~(u32)0;
1930 
1931 	if (PageChecked(page)) {
1932 		ClearPageChecked(page);
1933 		goto good;
1934 	}
1935 
1936 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1937 		return 0;
1938 
1939 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1940 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1941 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1942 				  GFP_NOFS);
1943 		return 0;
1944 	}
1945 
1946 	if (state && state->start == start) {
1947 		private = state->private;
1948 		ret = 0;
1949 	} else {
1950 		ret = get_state_private(io_tree, start, &private);
1951 	}
1952 	kaddr = kmap_atomic(page, KM_USER0);
1953 	if (ret)
1954 		goto zeroit;
1955 
1956 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1957 	btrfs_csum_final(csum, (char *)&csum);
1958 	if (csum != private)
1959 		goto zeroit;
1960 
1961 	kunmap_atomic(kaddr, KM_USER0);
1962 good:
1963 	/* if the io failure tree for this inode is non-empty,
1964 	 * check to see if we've recovered from a failed IO
1965 	 */
1966 	btrfs_clean_io_failures(inode, start);
1967 	return 0;
1968 
1969 zeroit:
1970 	if (printk_ratelimit()) {
1971 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1972 		       "private %llu\n", page->mapping->host->i_ino,
1973 		       (unsigned long long)start, csum,
1974 		       (unsigned long long)private);
1975 	}
1976 	memset(kaddr + offset, 1, end - start + 1);
1977 	flush_dcache_page(page);
1978 	kunmap_atomic(kaddr, KM_USER0);
1979 	if (private == 0)
1980 		return 0;
1981 	return -EIO;
1982 }
1983 
1984 struct delayed_iput {
1985 	struct list_head list;
1986 	struct inode *inode;
1987 };
1988 
1989 void btrfs_add_delayed_iput(struct inode *inode)
1990 {
1991 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1992 	struct delayed_iput *delayed;
1993 
1994 	if (atomic_add_unless(&inode->i_count, -1, 1))
1995 		return;
1996 
1997 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1998 	delayed->inode = inode;
1999 
2000 	spin_lock(&fs_info->delayed_iput_lock);
2001 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2002 	spin_unlock(&fs_info->delayed_iput_lock);
2003 }
2004 
2005 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2006 {
2007 	LIST_HEAD(list);
2008 	struct btrfs_fs_info *fs_info = root->fs_info;
2009 	struct delayed_iput *delayed;
2010 	int empty;
2011 
2012 	spin_lock(&fs_info->delayed_iput_lock);
2013 	empty = list_empty(&fs_info->delayed_iputs);
2014 	spin_unlock(&fs_info->delayed_iput_lock);
2015 	if (empty)
2016 		return;
2017 
2018 	down_read(&root->fs_info->cleanup_work_sem);
2019 	spin_lock(&fs_info->delayed_iput_lock);
2020 	list_splice_init(&fs_info->delayed_iputs, &list);
2021 	spin_unlock(&fs_info->delayed_iput_lock);
2022 
2023 	while (!list_empty(&list)) {
2024 		delayed = list_entry(list.next, struct delayed_iput, list);
2025 		list_del(&delayed->list);
2026 		iput(delayed->inode);
2027 		kfree(delayed);
2028 	}
2029 	up_read(&root->fs_info->cleanup_work_sem);
2030 }
2031 
2032 /*
2033  * calculate extra metadata reservation when snapshotting a subvolume
2034  * contains orphan files.
2035  */
2036 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2037 				struct btrfs_pending_snapshot *pending,
2038 				u64 *bytes_to_reserve)
2039 {
2040 	struct btrfs_root *root;
2041 	struct btrfs_block_rsv *block_rsv;
2042 	u64 num_bytes;
2043 	int index;
2044 
2045 	root = pending->root;
2046 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2047 		return;
2048 
2049 	block_rsv = root->orphan_block_rsv;
2050 
2051 	/* orphan block reservation for the snapshot */
2052 	num_bytes = block_rsv->size;
2053 
2054 	/*
2055 	 * after the snapshot is created, COWing tree blocks may use more
2056 	 * space than it frees. So we should make sure there is enough
2057 	 * reserved space.
2058 	 */
2059 	index = trans->transid & 0x1;
2060 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2061 		num_bytes += block_rsv->size -
2062 			     (block_rsv->reserved + block_rsv->freed[index]);
2063 	}
2064 
2065 	*bytes_to_reserve += num_bytes;
2066 }
2067 
2068 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2069 				struct btrfs_pending_snapshot *pending)
2070 {
2071 	struct btrfs_root *root = pending->root;
2072 	struct btrfs_root *snap = pending->snap;
2073 	struct btrfs_block_rsv *block_rsv;
2074 	u64 num_bytes;
2075 	int index;
2076 	int ret;
2077 
2078 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079 		return;
2080 
2081 	/* refill source subvolume's orphan block reservation */
2082 	block_rsv = root->orphan_block_rsv;
2083 	index = trans->transid & 0x1;
2084 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2085 		num_bytes = block_rsv->size -
2086 			    (block_rsv->reserved + block_rsv->freed[index]);
2087 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2088 					      root->orphan_block_rsv,
2089 					      num_bytes);
2090 		BUG_ON(ret);
2091 	}
2092 
2093 	/* setup orphan block reservation for the snapshot */
2094 	block_rsv = btrfs_alloc_block_rsv(snap);
2095 	BUG_ON(!block_rsv);
2096 
2097 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2098 	snap->orphan_block_rsv = block_rsv;
2099 
2100 	num_bytes = root->orphan_block_rsv->size;
2101 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2102 				      block_rsv, num_bytes);
2103 	BUG_ON(ret);
2104 
2105 #if 0
2106 	/* insert orphan item for the snapshot */
2107 	WARN_ON(!root->orphan_item_inserted);
2108 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2109 				       snap->root_key.objectid);
2110 	BUG_ON(ret);
2111 	snap->orphan_item_inserted = 1;
2112 #endif
2113 }
2114 
2115 enum btrfs_orphan_cleanup_state {
2116 	ORPHAN_CLEANUP_STARTED	= 1,
2117 	ORPHAN_CLEANUP_DONE	= 2,
2118 };
2119 
2120 /*
2121  * This is called in transaction commmit time. If there are no orphan
2122  * files in the subvolume, it removes orphan item and frees block_rsv
2123  * structure.
2124  */
2125 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2126 			      struct btrfs_root *root)
2127 {
2128 	int ret;
2129 
2130 	if (!list_empty(&root->orphan_list) ||
2131 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2132 		return;
2133 
2134 	if (root->orphan_item_inserted &&
2135 	    btrfs_root_refs(&root->root_item) > 0) {
2136 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2137 					    root->root_key.objectid);
2138 		BUG_ON(ret);
2139 		root->orphan_item_inserted = 0;
2140 	}
2141 
2142 	if (root->orphan_block_rsv) {
2143 		WARN_ON(root->orphan_block_rsv->size > 0);
2144 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2145 		root->orphan_block_rsv = NULL;
2146 	}
2147 }
2148 
2149 /*
2150  * This creates an orphan entry for the given inode in case something goes
2151  * wrong in the middle of an unlink/truncate.
2152  *
2153  * NOTE: caller of this function should reserve 5 units of metadata for
2154  *	 this function.
2155  */
2156 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2157 {
2158 	struct btrfs_root *root = BTRFS_I(inode)->root;
2159 	struct btrfs_block_rsv *block_rsv = NULL;
2160 	int reserve = 0;
2161 	int insert = 0;
2162 	int ret;
2163 
2164 	if (!root->orphan_block_rsv) {
2165 		block_rsv = btrfs_alloc_block_rsv(root);
2166 		BUG_ON(!block_rsv);
2167 	}
2168 
2169 	spin_lock(&root->orphan_lock);
2170 	if (!root->orphan_block_rsv) {
2171 		root->orphan_block_rsv = block_rsv;
2172 	} else if (block_rsv) {
2173 		btrfs_free_block_rsv(root, block_rsv);
2174 		block_rsv = NULL;
2175 	}
2176 
2177 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2178 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2179 #if 0
2180 		/*
2181 		 * For proper ENOSPC handling, we should do orphan
2182 		 * cleanup when mounting. But this introduces backward
2183 		 * compatibility issue.
2184 		 */
2185 		if (!xchg(&root->orphan_item_inserted, 1))
2186 			insert = 2;
2187 		else
2188 			insert = 1;
2189 #endif
2190 		insert = 1;
2191 	} else {
2192 		WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2193 	}
2194 
2195 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2196 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2197 		reserve = 1;
2198 	}
2199 	spin_unlock(&root->orphan_lock);
2200 
2201 	if (block_rsv)
2202 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2203 
2204 	/* grab metadata reservation from transaction handle */
2205 	if (reserve) {
2206 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2207 		BUG_ON(ret);
2208 	}
2209 
2210 	/* insert an orphan item to track this unlinked/truncated file */
2211 	if (insert >= 1) {
2212 		ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2213 		BUG_ON(ret);
2214 	}
2215 
2216 	/* insert an orphan item to track subvolume contains orphan files */
2217 	if (insert >= 2) {
2218 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2219 					       root->root_key.objectid);
2220 		BUG_ON(ret);
2221 	}
2222 	return 0;
2223 }
2224 
2225 /*
2226  * We have done the truncate/delete so we can go ahead and remove the orphan
2227  * item for this particular inode.
2228  */
2229 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2230 {
2231 	struct btrfs_root *root = BTRFS_I(inode)->root;
2232 	int delete_item = 0;
2233 	int release_rsv = 0;
2234 	int ret = 0;
2235 
2236 	spin_lock(&root->orphan_lock);
2237 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2238 		list_del_init(&BTRFS_I(inode)->i_orphan);
2239 		delete_item = 1;
2240 	}
2241 
2242 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2243 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2244 		release_rsv = 1;
2245 	}
2246 	spin_unlock(&root->orphan_lock);
2247 
2248 	if (trans && delete_item) {
2249 		ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2250 		BUG_ON(ret);
2251 	}
2252 
2253 	if (release_rsv)
2254 		btrfs_orphan_release_metadata(inode);
2255 
2256 	return 0;
2257 }
2258 
2259 /*
2260  * this cleans up any orphans that may be left on the list from the last use
2261  * of this root.
2262  */
2263 void btrfs_orphan_cleanup(struct btrfs_root *root)
2264 {
2265 	struct btrfs_path *path;
2266 	struct extent_buffer *leaf;
2267 	struct btrfs_key key, found_key;
2268 	struct btrfs_trans_handle *trans;
2269 	struct inode *inode;
2270 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2271 
2272 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2273 		return;
2274 
2275 	path = btrfs_alloc_path();
2276 	BUG_ON(!path);
2277 	path->reada = -1;
2278 
2279 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2280 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2281 	key.offset = (u64)-1;
2282 
2283 	while (1) {
2284 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2285 		if (ret < 0) {
2286 			printk(KERN_ERR "Error searching slot for orphan: %d"
2287 			       "\n", ret);
2288 			break;
2289 		}
2290 
2291 		/*
2292 		 * if ret == 0 means we found what we were searching for, which
2293 		 * is weird, but possible, so only screw with path if we didnt
2294 		 * find the key and see if we have stuff that matches
2295 		 */
2296 		if (ret > 0) {
2297 			if (path->slots[0] == 0)
2298 				break;
2299 			path->slots[0]--;
2300 		}
2301 
2302 		/* pull out the item */
2303 		leaf = path->nodes[0];
2304 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2305 
2306 		/* make sure the item matches what we want */
2307 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2308 			break;
2309 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2310 			break;
2311 
2312 		/* release the path since we're done with it */
2313 		btrfs_release_path(root, path);
2314 
2315 		/*
2316 		 * this is where we are basically btrfs_lookup, without the
2317 		 * crossing root thing.  we store the inode number in the
2318 		 * offset of the orphan item.
2319 		 */
2320 		found_key.objectid = found_key.offset;
2321 		found_key.type = BTRFS_INODE_ITEM_KEY;
2322 		found_key.offset = 0;
2323 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2324 		BUG_ON(IS_ERR(inode));
2325 
2326 		/*
2327 		 * add this inode to the orphan list so btrfs_orphan_del does
2328 		 * the proper thing when we hit it
2329 		 */
2330 		spin_lock(&root->orphan_lock);
2331 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2332 		spin_unlock(&root->orphan_lock);
2333 
2334 		/*
2335 		 * if this is a bad inode, means we actually succeeded in
2336 		 * removing the inode, but not the orphan record, which means
2337 		 * we need to manually delete the orphan since iput will just
2338 		 * do a destroy_inode
2339 		 */
2340 		if (is_bad_inode(inode)) {
2341 			trans = btrfs_start_transaction(root, 0);
2342 			btrfs_orphan_del(trans, inode);
2343 			btrfs_end_transaction(trans, root);
2344 			iput(inode);
2345 			continue;
2346 		}
2347 
2348 		/* if we have links, this was a truncate, lets do that */
2349 		if (inode->i_nlink) {
2350 			nr_truncate++;
2351 			btrfs_truncate(inode);
2352 		} else {
2353 			nr_unlink++;
2354 		}
2355 
2356 		/* this will do delete_inode and everything for us */
2357 		iput(inode);
2358 	}
2359 	btrfs_free_path(path);
2360 
2361 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2362 
2363 	if (root->orphan_block_rsv)
2364 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2365 					(u64)-1);
2366 
2367 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2368 		trans = btrfs_join_transaction(root, 1);
2369 		btrfs_end_transaction(trans, root);
2370 	}
2371 
2372 	if (nr_unlink)
2373 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2374 	if (nr_truncate)
2375 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2376 }
2377 
2378 /*
2379  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2380  * don't find any xattrs, we know there can't be any acls.
2381  *
2382  * slot is the slot the inode is in, objectid is the objectid of the inode
2383  */
2384 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2385 					  int slot, u64 objectid)
2386 {
2387 	u32 nritems = btrfs_header_nritems(leaf);
2388 	struct btrfs_key found_key;
2389 	int scanned = 0;
2390 
2391 	slot++;
2392 	while (slot < nritems) {
2393 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2394 
2395 		/* we found a different objectid, there must not be acls */
2396 		if (found_key.objectid != objectid)
2397 			return 0;
2398 
2399 		/* we found an xattr, assume we've got an acl */
2400 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2401 			return 1;
2402 
2403 		/*
2404 		 * we found a key greater than an xattr key, there can't
2405 		 * be any acls later on
2406 		 */
2407 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2408 			return 0;
2409 
2410 		slot++;
2411 		scanned++;
2412 
2413 		/*
2414 		 * it goes inode, inode backrefs, xattrs, extents,
2415 		 * so if there are a ton of hard links to an inode there can
2416 		 * be a lot of backrefs.  Don't waste time searching too hard,
2417 		 * this is just an optimization
2418 		 */
2419 		if (scanned >= 8)
2420 			break;
2421 	}
2422 	/* we hit the end of the leaf before we found an xattr or
2423 	 * something larger than an xattr.  We have to assume the inode
2424 	 * has acls
2425 	 */
2426 	return 1;
2427 }
2428 
2429 /*
2430  * read an inode from the btree into the in-memory inode
2431  */
2432 static void btrfs_read_locked_inode(struct inode *inode)
2433 {
2434 	struct btrfs_path *path;
2435 	struct extent_buffer *leaf;
2436 	struct btrfs_inode_item *inode_item;
2437 	struct btrfs_timespec *tspec;
2438 	struct btrfs_root *root = BTRFS_I(inode)->root;
2439 	struct btrfs_key location;
2440 	int maybe_acls;
2441 	u64 alloc_group_block;
2442 	u32 rdev;
2443 	int ret;
2444 
2445 	path = btrfs_alloc_path();
2446 	BUG_ON(!path);
2447 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2448 
2449 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2450 	if (ret)
2451 		goto make_bad;
2452 
2453 	leaf = path->nodes[0];
2454 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2455 				    struct btrfs_inode_item);
2456 
2457 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2458 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2459 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2460 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2461 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2462 
2463 	tspec = btrfs_inode_atime(inode_item);
2464 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2465 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2466 
2467 	tspec = btrfs_inode_mtime(inode_item);
2468 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2469 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2470 
2471 	tspec = btrfs_inode_ctime(inode_item);
2472 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2473 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2474 
2475 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2476 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2477 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2478 	inode->i_generation = BTRFS_I(inode)->generation;
2479 	inode->i_rdev = 0;
2480 	rdev = btrfs_inode_rdev(leaf, inode_item);
2481 
2482 	BTRFS_I(inode)->index_cnt = (u64)-1;
2483 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2484 
2485 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2486 
2487 	/*
2488 	 * try to precache a NULL acl entry for files that don't have
2489 	 * any xattrs or acls
2490 	 */
2491 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2492 	if (!maybe_acls)
2493 		cache_no_acl(inode);
2494 
2495 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2496 						alloc_group_block, 0);
2497 	btrfs_free_path(path);
2498 	inode_item = NULL;
2499 
2500 	switch (inode->i_mode & S_IFMT) {
2501 	case S_IFREG:
2502 		inode->i_mapping->a_ops = &btrfs_aops;
2503 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2504 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2505 		inode->i_fop = &btrfs_file_operations;
2506 		inode->i_op = &btrfs_file_inode_operations;
2507 		break;
2508 	case S_IFDIR:
2509 		inode->i_fop = &btrfs_dir_file_operations;
2510 		if (root == root->fs_info->tree_root)
2511 			inode->i_op = &btrfs_dir_ro_inode_operations;
2512 		else
2513 			inode->i_op = &btrfs_dir_inode_operations;
2514 		break;
2515 	case S_IFLNK:
2516 		inode->i_op = &btrfs_symlink_inode_operations;
2517 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2518 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2519 		break;
2520 	default:
2521 		inode->i_op = &btrfs_special_inode_operations;
2522 		init_special_inode(inode, inode->i_mode, rdev);
2523 		break;
2524 	}
2525 
2526 	btrfs_update_iflags(inode);
2527 	return;
2528 
2529 make_bad:
2530 	btrfs_free_path(path);
2531 	make_bad_inode(inode);
2532 }
2533 
2534 /*
2535  * given a leaf and an inode, copy the inode fields into the leaf
2536  */
2537 static void fill_inode_item(struct btrfs_trans_handle *trans,
2538 			    struct extent_buffer *leaf,
2539 			    struct btrfs_inode_item *item,
2540 			    struct inode *inode)
2541 {
2542 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2543 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2544 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2545 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2546 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2547 
2548 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2549 			       inode->i_atime.tv_sec);
2550 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2551 				inode->i_atime.tv_nsec);
2552 
2553 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2554 			       inode->i_mtime.tv_sec);
2555 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2556 				inode->i_mtime.tv_nsec);
2557 
2558 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2559 			       inode->i_ctime.tv_sec);
2560 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2561 				inode->i_ctime.tv_nsec);
2562 
2563 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2564 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2565 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2566 	btrfs_set_inode_transid(leaf, item, trans->transid);
2567 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2568 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2569 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2570 }
2571 
2572 /*
2573  * copy everything in the in-memory inode into the btree.
2574  */
2575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2576 				struct btrfs_root *root, struct inode *inode)
2577 {
2578 	struct btrfs_inode_item *inode_item;
2579 	struct btrfs_path *path;
2580 	struct extent_buffer *leaf;
2581 	int ret;
2582 
2583 	path = btrfs_alloc_path();
2584 	BUG_ON(!path);
2585 	path->leave_spinning = 1;
2586 	ret = btrfs_lookup_inode(trans, root, path,
2587 				 &BTRFS_I(inode)->location, 1);
2588 	if (ret) {
2589 		if (ret > 0)
2590 			ret = -ENOENT;
2591 		goto failed;
2592 	}
2593 
2594 	btrfs_unlock_up_safe(path, 1);
2595 	leaf = path->nodes[0];
2596 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2597 				  struct btrfs_inode_item);
2598 
2599 	fill_inode_item(trans, leaf, inode_item, inode);
2600 	btrfs_mark_buffer_dirty(leaf);
2601 	btrfs_set_inode_last_trans(trans, inode);
2602 	ret = 0;
2603 failed:
2604 	btrfs_free_path(path);
2605 	return ret;
2606 }
2607 
2608 
2609 /*
2610  * unlink helper that gets used here in inode.c and in the tree logging
2611  * recovery code.  It remove a link in a directory with a given name, and
2612  * also drops the back refs in the inode to the directory
2613  */
2614 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2615 		       struct btrfs_root *root,
2616 		       struct inode *dir, struct inode *inode,
2617 		       const char *name, int name_len)
2618 {
2619 	struct btrfs_path *path;
2620 	int ret = 0;
2621 	struct extent_buffer *leaf;
2622 	struct btrfs_dir_item *di;
2623 	struct btrfs_key key;
2624 	u64 index;
2625 
2626 	path = btrfs_alloc_path();
2627 	if (!path) {
2628 		ret = -ENOMEM;
2629 		goto err;
2630 	}
2631 
2632 	path->leave_spinning = 1;
2633 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2634 				    name, name_len, -1);
2635 	if (IS_ERR(di)) {
2636 		ret = PTR_ERR(di);
2637 		goto err;
2638 	}
2639 	if (!di) {
2640 		ret = -ENOENT;
2641 		goto err;
2642 	}
2643 	leaf = path->nodes[0];
2644 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2645 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2646 	if (ret)
2647 		goto err;
2648 	btrfs_release_path(root, path);
2649 
2650 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2651 				  inode->i_ino,
2652 				  dir->i_ino, &index);
2653 	if (ret) {
2654 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2655 		       "inode %lu parent %lu\n", name_len, name,
2656 		       inode->i_ino, dir->i_ino);
2657 		goto err;
2658 	}
2659 
2660 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2661 					 index, name, name_len, -1);
2662 	if (IS_ERR(di)) {
2663 		ret = PTR_ERR(di);
2664 		goto err;
2665 	}
2666 	if (!di) {
2667 		ret = -ENOENT;
2668 		goto err;
2669 	}
2670 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2671 	btrfs_release_path(root, path);
2672 
2673 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2674 					 inode, dir->i_ino);
2675 	BUG_ON(ret != 0 && ret != -ENOENT);
2676 
2677 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2678 					   dir, index);
2679 	if (ret == -ENOENT)
2680 		ret = 0;
2681 err:
2682 	btrfs_free_path(path);
2683 	if (ret)
2684 		goto out;
2685 
2686 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2687 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2688 	btrfs_update_inode(trans, root, dir);
2689 	btrfs_drop_nlink(inode);
2690 	ret = btrfs_update_inode(trans, root, inode);
2691 out:
2692 	return ret;
2693 }
2694 
2695 /* helper to check if there is any shared block in the path */
2696 static int check_path_shared(struct btrfs_root *root,
2697 			     struct btrfs_path *path)
2698 {
2699 	struct extent_buffer *eb;
2700 	int level;
2701 	u64 refs = 1;
2702 	int uninitialized_var(ret);
2703 
2704 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2705 		if (!path->nodes[level])
2706 			break;
2707 		eb = path->nodes[level];
2708 		if (!btrfs_block_can_be_shared(root, eb))
2709 			continue;
2710 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2711 					       &refs, NULL);
2712 		if (refs > 1)
2713 			return 1;
2714 	}
2715 	return ret; /* XXX callers? */
2716 }
2717 
2718 /*
2719  * helper to start transaction for unlink and rmdir.
2720  *
2721  * unlink and rmdir are special in btrfs, they do not always free space.
2722  * so in enospc case, we should make sure they will free space before
2723  * allowing them to use the global metadata reservation.
2724  */
2725 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2726 						       struct dentry *dentry)
2727 {
2728 	struct btrfs_trans_handle *trans;
2729 	struct btrfs_root *root = BTRFS_I(dir)->root;
2730 	struct btrfs_path *path;
2731 	struct btrfs_inode_ref *ref;
2732 	struct btrfs_dir_item *di;
2733 	struct inode *inode = dentry->d_inode;
2734 	u64 index;
2735 	int check_link = 1;
2736 	int err = -ENOSPC;
2737 	int ret;
2738 
2739 	trans = btrfs_start_transaction(root, 10);
2740 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2741 		return trans;
2742 
2743 	if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2744 		return ERR_PTR(-ENOSPC);
2745 
2746 	/* check if there is someone else holds reference */
2747 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2748 		return ERR_PTR(-ENOSPC);
2749 
2750 	if (atomic_read(&inode->i_count) > 2)
2751 		return ERR_PTR(-ENOSPC);
2752 
2753 	if (xchg(&root->fs_info->enospc_unlink, 1))
2754 		return ERR_PTR(-ENOSPC);
2755 
2756 	path = btrfs_alloc_path();
2757 	if (!path) {
2758 		root->fs_info->enospc_unlink = 0;
2759 		return ERR_PTR(-ENOMEM);
2760 	}
2761 
2762 	trans = btrfs_start_transaction(root, 0);
2763 	if (IS_ERR(trans)) {
2764 		btrfs_free_path(path);
2765 		root->fs_info->enospc_unlink = 0;
2766 		return trans;
2767 	}
2768 
2769 	path->skip_locking = 1;
2770 	path->search_commit_root = 1;
2771 
2772 	ret = btrfs_lookup_inode(trans, root, path,
2773 				&BTRFS_I(dir)->location, 0);
2774 	if (ret < 0) {
2775 		err = ret;
2776 		goto out;
2777 	}
2778 	if (ret == 0) {
2779 		if (check_path_shared(root, path))
2780 			goto out;
2781 	} else {
2782 		check_link = 0;
2783 	}
2784 	btrfs_release_path(root, path);
2785 
2786 	ret = btrfs_lookup_inode(trans, root, path,
2787 				&BTRFS_I(inode)->location, 0);
2788 	if (ret < 0) {
2789 		err = ret;
2790 		goto out;
2791 	}
2792 	if (ret == 0) {
2793 		if (check_path_shared(root, path))
2794 			goto out;
2795 	} else {
2796 		check_link = 0;
2797 	}
2798 	btrfs_release_path(root, path);
2799 
2800 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2801 		ret = btrfs_lookup_file_extent(trans, root, path,
2802 					       inode->i_ino, (u64)-1, 0);
2803 		if (ret < 0) {
2804 			err = ret;
2805 			goto out;
2806 		}
2807 		BUG_ON(ret == 0);
2808 		if (check_path_shared(root, path))
2809 			goto out;
2810 		btrfs_release_path(root, path);
2811 	}
2812 
2813 	if (!check_link) {
2814 		err = 0;
2815 		goto out;
2816 	}
2817 
2818 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2819 				dentry->d_name.name, dentry->d_name.len, 0);
2820 	if (IS_ERR(di)) {
2821 		err = PTR_ERR(di);
2822 		goto out;
2823 	}
2824 	if (di) {
2825 		if (check_path_shared(root, path))
2826 			goto out;
2827 	} else {
2828 		err = 0;
2829 		goto out;
2830 	}
2831 	btrfs_release_path(root, path);
2832 
2833 	ref = btrfs_lookup_inode_ref(trans, root, path,
2834 				dentry->d_name.name, dentry->d_name.len,
2835 				inode->i_ino, dir->i_ino, 0);
2836 	if (IS_ERR(ref)) {
2837 		err = PTR_ERR(ref);
2838 		goto out;
2839 	}
2840 	BUG_ON(!ref);
2841 	if (check_path_shared(root, path))
2842 		goto out;
2843 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2844 	btrfs_release_path(root, path);
2845 
2846 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2847 				dentry->d_name.name, dentry->d_name.len, 0);
2848 	if (IS_ERR(di)) {
2849 		err = PTR_ERR(di);
2850 		goto out;
2851 	}
2852 	BUG_ON(ret == -ENOENT);
2853 	if (check_path_shared(root, path))
2854 		goto out;
2855 
2856 	err = 0;
2857 out:
2858 	btrfs_free_path(path);
2859 	if (err) {
2860 		btrfs_end_transaction(trans, root);
2861 		root->fs_info->enospc_unlink = 0;
2862 		return ERR_PTR(err);
2863 	}
2864 
2865 	trans->block_rsv = &root->fs_info->global_block_rsv;
2866 	return trans;
2867 }
2868 
2869 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2870 			       struct btrfs_root *root)
2871 {
2872 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2873 		BUG_ON(!root->fs_info->enospc_unlink);
2874 		root->fs_info->enospc_unlink = 0;
2875 	}
2876 	btrfs_end_transaction_throttle(trans, root);
2877 }
2878 
2879 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2880 {
2881 	struct btrfs_root *root = BTRFS_I(dir)->root;
2882 	struct btrfs_trans_handle *trans;
2883 	struct inode *inode = dentry->d_inode;
2884 	int ret;
2885 	unsigned long nr = 0;
2886 
2887 	trans = __unlink_start_trans(dir, dentry);
2888 	if (IS_ERR(trans))
2889 		return PTR_ERR(trans);
2890 
2891 	btrfs_set_trans_block_group(trans, dir);
2892 
2893 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2894 
2895 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2896 				 dentry->d_name.name, dentry->d_name.len);
2897 	BUG_ON(ret);
2898 
2899 	if (inode->i_nlink == 0) {
2900 		ret = btrfs_orphan_add(trans, inode);
2901 		BUG_ON(ret);
2902 	}
2903 
2904 	nr = trans->blocks_used;
2905 	__unlink_end_trans(trans, root);
2906 	btrfs_btree_balance_dirty(root, nr);
2907 	return ret;
2908 }
2909 
2910 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2911 			struct btrfs_root *root,
2912 			struct inode *dir, u64 objectid,
2913 			const char *name, int name_len)
2914 {
2915 	struct btrfs_path *path;
2916 	struct extent_buffer *leaf;
2917 	struct btrfs_dir_item *di;
2918 	struct btrfs_key key;
2919 	u64 index;
2920 	int ret;
2921 
2922 	path = btrfs_alloc_path();
2923 	if (!path)
2924 		return -ENOMEM;
2925 
2926 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2927 				   name, name_len, -1);
2928 	BUG_ON(!di || IS_ERR(di));
2929 
2930 	leaf = path->nodes[0];
2931 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2932 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2933 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2934 	BUG_ON(ret);
2935 	btrfs_release_path(root, path);
2936 
2937 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2938 				 objectid, root->root_key.objectid,
2939 				 dir->i_ino, &index, name, name_len);
2940 	if (ret < 0) {
2941 		BUG_ON(ret != -ENOENT);
2942 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2943 						 name, name_len);
2944 		BUG_ON(!di || IS_ERR(di));
2945 
2946 		leaf = path->nodes[0];
2947 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2948 		btrfs_release_path(root, path);
2949 		index = key.offset;
2950 	}
2951 
2952 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2953 					 index, name, name_len, -1);
2954 	BUG_ON(!di || IS_ERR(di));
2955 
2956 	leaf = path->nodes[0];
2957 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2958 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2959 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2960 	BUG_ON(ret);
2961 	btrfs_release_path(root, path);
2962 
2963 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2964 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2965 	ret = btrfs_update_inode(trans, root, dir);
2966 	BUG_ON(ret);
2967 
2968 	btrfs_free_path(path);
2969 	return 0;
2970 }
2971 
2972 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2973 {
2974 	struct inode *inode = dentry->d_inode;
2975 	int err = 0;
2976 	struct btrfs_root *root = BTRFS_I(dir)->root;
2977 	struct btrfs_trans_handle *trans;
2978 	unsigned long nr = 0;
2979 
2980 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2981 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2982 		return -ENOTEMPTY;
2983 
2984 	trans = __unlink_start_trans(dir, dentry);
2985 	if (IS_ERR(trans))
2986 		return PTR_ERR(trans);
2987 
2988 	btrfs_set_trans_block_group(trans, dir);
2989 
2990 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2991 		err = btrfs_unlink_subvol(trans, root, dir,
2992 					  BTRFS_I(inode)->location.objectid,
2993 					  dentry->d_name.name,
2994 					  dentry->d_name.len);
2995 		goto out;
2996 	}
2997 
2998 	err = btrfs_orphan_add(trans, inode);
2999 	if (err)
3000 		goto out;
3001 
3002 	/* now the directory is empty */
3003 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3004 				 dentry->d_name.name, dentry->d_name.len);
3005 	if (!err)
3006 		btrfs_i_size_write(inode, 0);
3007 out:
3008 	nr = trans->blocks_used;
3009 	__unlink_end_trans(trans, root);
3010 	btrfs_btree_balance_dirty(root, nr);
3011 
3012 	return err;
3013 }
3014 
3015 #if 0
3016 /*
3017  * when truncating bytes in a file, it is possible to avoid reading
3018  * the leaves that contain only checksum items.  This can be the
3019  * majority of the IO required to delete a large file, but it must
3020  * be done carefully.
3021  *
3022  * The keys in the level just above the leaves are checked to make sure
3023  * the lowest key in a given leaf is a csum key, and starts at an offset
3024  * after the new  size.
3025  *
3026  * Then the key for the next leaf is checked to make sure it also has
3027  * a checksum item for the same file.  If it does, we know our target leaf
3028  * contains only checksum items, and it can be safely freed without reading
3029  * it.
3030  *
3031  * This is just an optimization targeted at large files.  It may do
3032  * nothing.  It will return 0 unless things went badly.
3033  */
3034 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3035 				     struct btrfs_root *root,
3036 				     struct btrfs_path *path,
3037 				     struct inode *inode, u64 new_size)
3038 {
3039 	struct btrfs_key key;
3040 	int ret;
3041 	int nritems;
3042 	struct btrfs_key found_key;
3043 	struct btrfs_key other_key;
3044 	struct btrfs_leaf_ref *ref;
3045 	u64 leaf_gen;
3046 	u64 leaf_start;
3047 
3048 	path->lowest_level = 1;
3049 	key.objectid = inode->i_ino;
3050 	key.type = BTRFS_CSUM_ITEM_KEY;
3051 	key.offset = new_size;
3052 again:
3053 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3054 	if (ret < 0)
3055 		goto out;
3056 
3057 	if (path->nodes[1] == NULL) {
3058 		ret = 0;
3059 		goto out;
3060 	}
3061 	ret = 0;
3062 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3063 	nritems = btrfs_header_nritems(path->nodes[1]);
3064 
3065 	if (!nritems)
3066 		goto out;
3067 
3068 	if (path->slots[1] >= nritems)
3069 		goto next_node;
3070 
3071 	/* did we find a key greater than anything we want to delete? */
3072 	if (found_key.objectid > inode->i_ino ||
3073 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
3074 		goto out;
3075 
3076 	/* we check the next key in the node to make sure the leave contains
3077 	 * only checksum items.  This comparison doesn't work if our
3078 	 * leaf is the last one in the node
3079 	 */
3080 	if (path->slots[1] + 1 >= nritems) {
3081 next_node:
3082 		/* search forward from the last key in the node, this
3083 		 * will bring us into the next node in the tree
3084 		 */
3085 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3086 
3087 		/* unlikely, but we inc below, so check to be safe */
3088 		if (found_key.offset == (u64)-1)
3089 			goto out;
3090 
3091 		/* search_forward needs a path with locks held, do the
3092 		 * search again for the original key.  It is possible
3093 		 * this will race with a balance and return a path that
3094 		 * we could modify, but this drop is just an optimization
3095 		 * and is allowed to miss some leaves.
3096 		 */
3097 		btrfs_release_path(root, path);
3098 		found_key.offset++;
3099 
3100 		/* setup a max key for search_forward */
3101 		other_key.offset = (u64)-1;
3102 		other_key.type = key.type;
3103 		other_key.objectid = key.objectid;
3104 
3105 		path->keep_locks = 1;
3106 		ret = btrfs_search_forward(root, &found_key, &other_key,
3107 					   path, 0, 0);
3108 		path->keep_locks = 0;
3109 		if (ret || found_key.objectid != key.objectid ||
3110 		    found_key.type != key.type) {
3111 			ret = 0;
3112 			goto out;
3113 		}
3114 
3115 		key.offset = found_key.offset;
3116 		btrfs_release_path(root, path);
3117 		cond_resched();
3118 		goto again;
3119 	}
3120 
3121 	/* we know there's one more slot after us in the tree,
3122 	 * read that key so we can verify it is also a checksum item
3123 	 */
3124 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3125 
3126 	if (found_key.objectid < inode->i_ino)
3127 		goto next_key;
3128 
3129 	if (found_key.type != key.type || found_key.offset < new_size)
3130 		goto next_key;
3131 
3132 	/*
3133 	 * if the key for the next leaf isn't a csum key from this objectid,
3134 	 * we can't be sure there aren't good items inside this leaf.
3135 	 * Bail out
3136 	 */
3137 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3138 		goto out;
3139 
3140 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3141 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3142 	/*
3143 	 * it is safe to delete this leaf, it contains only
3144 	 * csum items from this inode at an offset >= new_size
3145 	 */
3146 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
3147 	BUG_ON(ret);
3148 
3149 	if (root->ref_cows && leaf_gen < trans->transid) {
3150 		ref = btrfs_alloc_leaf_ref(root, 0);
3151 		if (ref) {
3152 			ref->root_gen = root->root_key.offset;
3153 			ref->bytenr = leaf_start;
3154 			ref->owner = 0;
3155 			ref->generation = leaf_gen;
3156 			ref->nritems = 0;
3157 
3158 			btrfs_sort_leaf_ref(ref);
3159 
3160 			ret = btrfs_add_leaf_ref(root, ref, 0);
3161 			WARN_ON(ret);
3162 			btrfs_free_leaf_ref(root, ref);
3163 		} else {
3164 			WARN_ON(1);
3165 		}
3166 	}
3167 next_key:
3168 	btrfs_release_path(root, path);
3169 
3170 	if (other_key.objectid == inode->i_ino &&
3171 	    other_key.type == key.type && other_key.offset > key.offset) {
3172 		key.offset = other_key.offset;
3173 		cond_resched();
3174 		goto again;
3175 	}
3176 	ret = 0;
3177 out:
3178 	/* fixup any changes we've made to the path */
3179 	path->lowest_level = 0;
3180 	path->keep_locks = 0;
3181 	btrfs_release_path(root, path);
3182 	return ret;
3183 }
3184 
3185 #endif
3186 
3187 /*
3188  * this can truncate away extent items, csum items and directory items.
3189  * It starts at a high offset and removes keys until it can't find
3190  * any higher than new_size
3191  *
3192  * csum items that cross the new i_size are truncated to the new size
3193  * as well.
3194  *
3195  * min_type is the minimum key type to truncate down to.  If set to 0, this
3196  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3197  */
3198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3199 			       struct btrfs_root *root,
3200 			       struct inode *inode,
3201 			       u64 new_size, u32 min_type)
3202 {
3203 	struct btrfs_path *path;
3204 	struct extent_buffer *leaf;
3205 	struct btrfs_file_extent_item *fi;
3206 	struct btrfs_key key;
3207 	struct btrfs_key found_key;
3208 	u64 extent_start = 0;
3209 	u64 extent_num_bytes = 0;
3210 	u64 extent_offset = 0;
3211 	u64 item_end = 0;
3212 	u64 mask = root->sectorsize - 1;
3213 	u32 found_type = (u8)-1;
3214 	int found_extent;
3215 	int del_item;
3216 	int pending_del_nr = 0;
3217 	int pending_del_slot = 0;
3218 	int extent_type = -1;
3219 	int encoding;
3220 	int ret;
3221 	int err = 0;
3222 
3223 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3224 
3225 	if (root->ref_cows || root == root->fs_info->tree_root)
3226 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3227 
3228 	path = btrfs_alloc_path();
3229 	BUG_ON(!path);
3230 	path->reada = -1;
3231 
3232 	key.objectid = inode->i_ino;
3233 	key.offset = (u64)-1;
3234 	key.type = (u8)-1;
3235 
3236 search_again:
3237 	path->leave_spinning = 1;
3238 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3239 	if (ret < 0) {
3240 		err = ret;
3241 		goto out;
3242 	}
3243 
3244 	if (ret > 0) {
3245 		/* there are no items in the tree for us to truncate, we're
3246 		 * done
3247 		 */
3248 		if (path->slots[0] == 0)
3249 			goto out;
3250 		path->slots[0]--;
3251 	}
3252 
3253 	while (1) {
3254 		fi = NULL;
3255 		leaf = path->nodes[0];
3256 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3257 		found_type = btrfs_key_type(&found_key);
3258 		encoding = 0;
3259 
3260 		if (found_key.objectid != inode->i_ino)
3261 			break;
3262 
3263 		if (found_type < min_type)
3264 			break;
3265 
3266 		item_end = found_key.offset;
3267 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3268 			fi = btrfs_item_ptr(leaf, path->slots[0],
3269 					    struct btrfs_file_extent_item);
3270 			extent_type = btrfs_file_extent_type(leaf, fi);
3271 			encoding = btrfs_file_extent_compression(leaf, fi);
3272 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3273 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3274 
3275 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3276 				item_end +=
3277 				    btrfs_file_extent_num_bytes(leaf, fi);
3278 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3279 				item_end += btrfs_file_extent_inline_len(leaf,
3280 									 fi);
3281 			}
3282 			item_end--;
3283 		}
3284 		if (found_type > min_type) {
3285 			del_item = 1;
3286 		} else {
3287 			if (item_end < new_size)
3288 				break;
3289 			if (found_key.offset >= new_size)
3290 				del_item = 1;
3291 			else
3292 				del_item = 0;
3293 		}
3294 		found_extent = 0;
3295 		/* FIXME, shrink the extent if the ref count is only 1 */
3296 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3297 			goto delete;
3298 
3299 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3300 			u64 num_dec;
3301 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3302 			if (!del_item && !encoding) {
3303 				u64 orig_num_bytes =
3304 					btrfs_file_extent_num_bytes(leaf, fi);
3305 				extent_num_bytes = new_size -
3306 					found_key.offset + root->sectorsize - 1;
3307 				extent_num_bytes = extent_num_bytes &
3308 					~((u64)root->sectorsize - 1);
3309 				btrfs_set_file_extent_num_bytes(leaf, fi,
3310 							 extent_num_bytes);
3311 				num_dec = (orig_num_bytes -
3312 					   extent_num_bytes);
3313 				if (root->ref_cows && extent_start != 0)
3314 					inode_sub_bytes(inode, num_dec);
3315 				btrfs_mark_buffer_dirty(leaf);
3316 			} else {
3317 				extent_num_bytes =
3318 					btrfs_file_extent_disk_num_bytes(leaf,
3319 									 fi);
3320 				extent_offset = found_key.offset -
3321 					btrfs_file_extent_offset(leaf, fi);
3322 
3323 				/* FIXME blocksize != 4096 */
3324 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3325 				if (extent_start != 0) {
3326 					found_extent = 1;
3327 					if (root->ref_cows)
3328 						inode_sub_bytes(inode, num_dec);
3329 				}
3330 			}
3331 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3332 			/*
3333 			 * we can't truncate inline items that have had
3334 			 * special encodings
3335 			 */
3336 			if (!del_item &&
3337 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3338 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3339 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3340 				u32 size = new_size - found_key.offset;
3341 
3342 				if (root->ref_cows) {
3343 					inode_sub_bytes(inode, item_end + 1 -
3344 							new_size);
3345 				}
3346 				size =
3347 				    btrfs_file_extent_calc_inline_size(size);
3348 				ret = btrfs_truncate_item(trans, root, path,
3349 							  size, 1);
3350 				BUG_ON(ret);
3351 			} else if (root->ref_cows) {
3352 				inode_sub_bytes(inode, item_end + 1 -
3353 						found_key.offset);
3354 			}
3355 		}
3356 delete:
3357 		if (del_item) {
3358 			if (!pending_del_nr) {
3359 				/* no pending yet, add ourselves */
3360 				pending_del_slot = path->slots[0];
3361 				pending_del_nr = 1;
3362 			} else if (pending_del_nr &&
3363 				   path->slots[0] + 1 == pending_del_slot) {
3364 				/* hop on the pending chunk */
3365 				pending_del_nr++;
3366 				pending_del_slot = path->slots[0];
3367 			} else {
3368 				BUG();
3369 			}
3370 		} else {
3371 			break;
3372 		}
3373 		if (found_extent && (root->ref_cows ||
3374 				     root == root->fs_info->tree_root)) {
3375 			btrfs_set_path_blocking(path);
3376 			ret = btrfs_free_extent(trans, root, extent_start,
3377 						extent_num_bytes, 0,
3378 						btrfs_header_owner(leaf),
3379 						inode->i_ino, extent_offset);
3380 			BUG_ON(ret);
3381 		}
3382 
3383 		if (found_type == BTRFS_INODE_ITEM_KEY)
3384 			break;
3385 
3386 		if (path->slots[0] == 0 ||
3387 		    path->slots[0] != pending_del_slot) {
3388 			if (root->ref_cows) {
3389 				err = -EAGAIN;
3390 				goto out;
3391 			}
3392 			if (pending_del_nr) {
3393 				ret = btrfs_del_items(trans, root, path,
3394 						pending_del_slot,
3395 						pending_del_nr);
3396 				BUG_ON(ret);
3397 				pending_del_nr = 0;
3398 			}
3399 			btrfs_release_path(root, path);
3400 			goto search_again;
3401 		} else {
3402 			path->slots[0]--;
3403 		}
3404 	}
3405 out:
3406 	if (pending_del_nr) {
3407 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3408 				      pending_del_nr);
3409 		BUG_ON(ret);
3410 	}
3411 	btrfs_free_path(path);
3412 	return err;
3413 }
3414 
3415 /*
3416  * taken from block_truncate_page, but does cow as it zeros out
3417  * any bytes left in the last page in the file.
3418  */
3419 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3420 {
3421 	struct inode *inode = mapping->host;
3422 	struct btrfs_root *root = BTRFS_I(inode)->root;
3423 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3424 	struct btrfs_ordered_extent *ordered;
3425 	struct extent_state *cached_state = NULL;
3426 	char *kaddr;
3427 	u32 blocksize = root->sectorsize;
3428 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3429 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3430 	struct page *page;
3431 	int ret = 0;
3432 	u64 page_start;
3433 	u64 page_end;
3434 
3435 	if ((offset & (blocksize - 1)) == 0)
3436 		goto out;
3437 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3438 	if (ret)
3439 		goto out;
3440 
3441 	ret = -ENOMEM;
3442 again:
3443 	page = grab_cache_page(mapping, index);
3444 	if (!page) {
3445 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3446 		goto out;
3447 	}
3448 
3449 	page_start = page_offset(page);
3450 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3451 
3452 	if (!PageUptodate(page)) {
3453 		ret = btrfs_readpage(NULL, page);
3454 		lock_page(page);
3455 		if (page->mapping != mapping) {
3456 			unlock_page(page);
3457 			page_cache_release(page);
3458 			goto again;
3459 		}
3460 		if (!PageUptodate(page)) {
3461 			ret = -EIO;
3462 			goto out_unlock;
3463 		}
3464 	}
3465 	wait_on_page_writeback(page);
3466 
3467 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3468 			 GFP_NOFS);
3469 	set_page_extent_mapped(page);
3470 
3471 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3472 	if (ordered) {
3473 		unlock_extent_cached(io_tree, page_start, page_end,
3474 				     &cached_state, GFP_NOFS);
3475 		unlock_page(page);
3476 		page_cache_release(page);
3477 		btrfs_start_ordered_extent(inode, ordered, 1);
3478 		btrfs_put_ordered_extent(ordered);
3479 		goto again;
3480 	}
3481 
3482 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3483 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3484 			  0, 0, &cached_state, GFP_NOFS);
3485 
3486 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3487 					&cached_state);
3488 	if (ret) {
3489 		unlock_extent_cached(io_tree, page_start, page_end,
3490 				     &cached_state, GFP_NOFS);
3491 		goto out_unlock;
3492 	}
3493 
3494 	ret = 0;
3495 	if (offset != PAGE_CACHE_SIZE) {
3496 		kaddr = kmap(page);
3497 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3498 		flush_dcache_page(page);
3499 		kunmap(page);
3500 	}
3501 	ClearPageChecked(page);
3502 	set_page_dirty(page);
3503 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3504 			     GFP_NOFS);
3505 
3506 out_unlock:
3507 	if (ret)
3508 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3509 	unlock_page(page);
3510 	page_cache_release(page);
3511 out:
3512 	return ret;
3513 }
3514 
3515 int btrfs_cont_expand(struct inode *inode, loff_t size)
3516 {
3517 	struct btrfs_trans_handle *trans;
3518 	struct btrfs_root *root = BTRFS_I(inode)->root;
3519 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3520 	struct extent_map *em = NULL;
3521 	struct extent_state *cached_state = NULL;
3522 	u64 mask = root->sectorsize - 1;
3523 	u64 hole_start = (inode->i_size + mask) & ~mask;
3524 	u64 block_end = (size + mask) & ~mask;
3525 	u64 last_byte;
3526 	u64 cur_offset;
3527 	u64 hole_size;
3528 	int err = 0;
3529 
3530 	if (size <= hole_start)
3531 		return 0;
3532 
3533 	while (1) {
3534 		struct btrfs_ordered_extent *ordered;
3535 		btrfs_wait_ordered_range(inode, hole_start,
3536 					 block_end - hole_start);
3537 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3538 				 &cached_state, GFP_NOFS);
3539 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3540 		if (!ordered)
3541 			break;
3542 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3543 				     &cached_state, GFP_NOFS);
3544 		btrfs_put_ordered_extent(ordered);
3545 	}
3546 
3547 	cur_offset = hole_start;
3548 	while (1) {
3549 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3550 				block_end - cur_offset, 0);
3551 		BUG_ON(IS_ERR(em) || !em);
3552 		last_byte = min(extent_map_end(em), block_end);
3553 		last_byte = (last_byte + mask) & ~mask;
3554 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3555 			u64 hint_byte = 0;
3556 			hole_size = last_byte - cur_offset;
3557 
3558 			trans = btrfs_start_transaction(root, 2);
3559 			if (IS_ERR(trans)) {
3560 				err = PTR_ERR(trans);
3561 				break;
3562 			}
3563 			btrfs_set_trans_block_group(trans, inode);
3564 
3565 			err = btrfs_drop_extents(trans, inode, cur_offset,
3566 						 cur_offset + hole_size,
3567 						 &hint_byte, 1);
3568 			BUG_ON(err);
3569 
3570 			err = btrfs_insert_file_extent(trans, root,
3571 					inode->i_ino, cur_offset, 0,
3572 					0, hole_size, 0, hole_size,
3573 					0, 0, 0);
3574 			BUG_ON(err);
3575 
3576 			btrfs_drop_extent_cache(inode, hole_start,
3577 					last_byte - 1, 0);
3578 
3579 			btrfs_end_transaction(trans, root);
3580 		}
3581 		free_extent_map(em);
3582 		em = NULL;
3583 		cur_offset = last_byte;
3584 		if (cur_offset >= block_end)
3585 			break;
3586 	}
3587 
3588 	free_extent_map(em);
3589 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3590 			     GFP_NOFS);
3591 	return err;
3592 }
3593 
3594 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3595 {
3596 	struct btrfs_root *root = BTRFS_I(inode)->root;
3597 	struct btrfs_trans_handle *trans;
3598 	unsigned long nr;
3599 	int ret;
3600 
3601 	if (attr->ia_size == inode->i_size)
3602 		return 0;
3603 
3604 	if (attr->ia_size > inode->i_size) {
3605 		unsigned long limit;
3606 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3607 		if (attr->ia_size > inode->i_sb->s_maxbytes)
3608 			return -EFBIG;
3609 		if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3610 			send_sig(SIGXFSZ, current, 0);
3611 			return -EFBIG;
3612 		}
3613 	}
3614 
3615 	trans = btrfs_start_transaction(root, 5);
3616 	if (IS_ERR(trans))
3617 		return PTR_ERR(trans);
3618 
3619 	btrfs_set_trans_block_group(trans, inode);
3620 
3621 	ret = btrfs_orphan_add(trans, inode);
3622 	BUG_ON(ret);
3623 
3624 	nr = trans->blocks_used;
3625 	btrfs_end_transaction(trans, root);
3626 	btrfs_btree_balance_dirty(root, nr);
3627 
3628 	if (attr->ia_size > inode->i_size) {
3629 		ret = btrfs_cont_expand(inode, attr->ia_size);
3630 		if (ret) {
3631 			btrfs_truncate(inode);
3632 			return ret;
3633 		}
3634 
3635 		i_size_write(inode, attr->ia_size);
3636 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3637 
3638 		trans = btrfs_start_transaction(root, 0);
3639 		BUG_ON(IS_ERR(trans));
3640 		btrfs_set_trans_block_group(trans, inode);
3641 		trans->block_rsv = root->orphan_block_rsv;
3642 		BUG_ON(!trans->block_rsv);
3643 
3644 		ret = btrfs_update_inode(trans, root, inode);
3645 		BUG_ON(ret);
3646 		if (inode->i_nlink > 0) {
3647 			ret = btrfs_orphan_del(trans, inode);
3648 			BUG_ON(ret);
3649 		}
3650 		nr = trans->blocks_used;
3651 		btrfs_end_transaction(trans, root);
3652 		btrfs_btree_balance_dirty(root, nr);
3653 		return 0;
3654 	}
3655 
3656 	/*
3657 	 * We're truncating a file that used to have good data down to
3658 	 * zero. Make sure it gets into the ordered flush list so that
3659 	 * any new writes get down to disk quickly.
3660 	 */
3661 	if (attr->ia_size == 0)
3662 		BTRFS_I(inode)->ordered_data_close = 1;
3663 
3664 	/* we don't support swapfiles, so vmtruncate shouldn't fail */
3665 	ret = vmtruncate(inode, attr->ia_size);
3666 	BUG_ON(ret);
3667 
3668 	return 0;
3669 }
3670 
3671 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3672 {
3673 	struct inode *inode = dentry->d_inode;
3674 	int err;
3675 
3676 	err = inode_change_ok(inode, attr);
3677 	if (err)
3678 		return err;
3679 
3680 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3681 		err = btrfs_setattr_size(inode, attr);
3682 		if (err)
3683 			return err;
3684 	}
3685 
3686 	if (attr->ia_valid) {
3687 		setattr_copy(inode, attr);
3688 		mark_inode_dirty(inode);
3689 
3690 		if (attr->ia_valid & ATTR_MODE)
3691 			err = btrfs_acl_chmod(inode);
3692 	}
3693 
3694 	return err;
3695 }
3696 
3697 void btrfs_evict_inode(struct inode *inode)
3698 {
3699 	struct btrfs_trans_handle *trans;
3700 	struct btrfs_root *root = BTRFS_I(inode)->root;
3701 	unsigned long nr;
3702 	int ret;
3703 
3704 	truncate_inode_pages(&inode->i_data, 0);
3705 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3706 			       root == root->fs_info->tree_root))
3707 		goto no_delete;
3708 
3709 	if (is_bad_inode(inode)) {
3710 		btrfs_orphan_del(NULL, inode);
3711 		goto no_delete;
3712 	}
3713 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3714 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3715 
3716 	if (root->fs_info->log_root_recovering) {
3717 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3718 		goto no_delete;
3719 	}
3720 
3721 	if (inode->i_nlink > 0) {
3722 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3723 		goto no_delete;
3724 	}
3725 
3726 	btrfs_i_size_write(inode, 0);
3727 
3728 	while (1) {
3729 		trans = btrfs_start_transaction(root, 0);
3730 		BUG_ON(IS_ERR(trans));
3731 		btrfs_set_trans_block_group(trans, inode);
3732 		trans->block_rsv = root->orphan_block_rsv;
3733 
3734 		ret = btrfs_block_rsv_check(trans, root,
3735 					    root->orphan_block_rsv, 0, 5);
3736 		if (ret) {
3737 			BUG_ON(ret != -EAGAIN);
3738 			ret = btrfs_commit_transaction(trans, root);
3739 			BUG_ON(ret);
3740 			continue;
3741 		}
3742 
3743 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3744 		if (ret != -EAGAIN)
3745 			break;
3746 
3747 		nr = trans->blocks_used;
3748 		btrfs_end_transaction(trans, root);
3749 		trans = NULL;
3750 		btrfs_btree_balance_dirty(root, nr);
3751 
3752 	}
3753 
3754 	if (ret == 0) {
3755 		ret = btrfs_orphan_del(trans, inode);
3756 		BUG_ON(ret);
3757 	}
3758 
3759 	nr = trans->blocks_used;
3760 	btrfs_end_transaction(trans, root);
3761 	btrfs_btree_balance_dirty(root, nr);
3762 no_delete:
3763 	end_writeback(inode);
3764 	return;
3765 }
3766 
3767 /*
3768  * this returns the key found in the dir entry in the location pointer.
3769  * If no dir entries were found, location->objectid is 0.
3770  */
3771 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3772 			       struct btrfs_key *location)
3773 {
3774 	const char *name = dentry->d_name.name;
3775 	int namelen = dentry->d_name.len;
3776 	struct btrfs_dir_item *di;
3777 	struct btrfs_path *path;
3778 	struct btrfs_root *root = BTRFS_I(dir)->root;
3779 	int ret = 0;
3780 
3781 	path = btrfs_alloc_path();
3782 	BUG_ON(!path);
3783 
3784 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3785 				    namelen, 0);
3786 	if (IS_ERR(di))
3787 		ret = PTR_ERR(di);
3788 
3789 	if (!di || IS_ERR(di))
3790 		goto out_err;
3791 
3792 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3793 out:
3794 	btrfs_free_path(path);
3795 	return ret;
3796 out_err:
3797 	location->objectid = 0;
3798 	goto out;
3799 }
3800 
3801 /*
3802  * when we hit a tree root in a directory, the btrfs part of the inode
3803  * needs to be changed to reflect the root directory of the tree root.  This
3804  * is kind of like crossing a mount point.
3805  */
3806 static int fixup_tree_root_location(struct btrfs_root *root,
3807 				    struct inode *dir,
3808 				    struct dentry *dentry,
3809 				    struct btrfs_key *location,
3810 				    struct btrfs_root **sub_root)
3811 {
3812 	struct btrfs_path *path;
3813 	struct btrfs_root *new_root;
3814 	struct btrfs_root_ref *ref;
3815 	struct extent_buffer *leaf;
3816 	int ret;
3817 	int err = 0;
3818 
3819 	path = btrfs_alloc_path();
3820 	if (!path) {
3821 		err = -ENOMEM;
3822 		goto out;
3823 	}
3824 
3825 	err = -ENOENT;
3826 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3827 				  BTRFS_I(dir)->root->root_key.objectid,
3828 				  location->objectid);
3829 	if (ret) {
3830 		if (ret < 0)
3831 			err = ret;
3832 		goto out;
3833 	}
3834 
3835 	leaf = path->nodes[0];
3836 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3837 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3838 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3839 		goto out;
3840 
3841 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3842 				   (unsigned long)(ref + 1),
3843 				   dentry->d_name.len);
3844 	if (ret)
3845 		goto out;
3846 
3847 	btrfs_release_path(root->fs_info->tree_root, path);
3848 
3849 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3850 	if (IS_ERR(new_root)) {
3851 		err = PTR_ERR(new_root);
3852 		goto out;
3853 	}
3854 
3855 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3856 		err = -ENOENT;
3857 		goto out;
3858 	}
3859 
3860 	*sub_root = new_root;
3861 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3862 	location->type = BTRFS_INODE_ITEM_KEY;
3863 	location->offset = 0;
3864 	err = 0;
3865 out:
3866 	btrfs_free_path(path);
3867 	return err;
3868 }
3869 
3870 static void inode_tree_add(struct inode *inode)
3871 {
3872 	struct btrfs_root *root = BTRFS_I(inode)->root;
3873 	struct btrfs_inode *entry;
3874 	struct rb_node **p;
3875 	struct rb_node *parent;
3876 again:
3877 	p = &root->inode_tree.rb_node;
3878 	parent = NULL;
3879 
3880 	if (inode_unhashed(inode))
3881 		return;
3882 
3883 	spin_lock(&root->inode_lock);
3884 	while (*p) {
3885 		parent = *p;
3886 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3887 
3888 		if (inode->i_ino < entry->vfs_inode.i_ino)
3889 			p = &parent->rb_left;
3890 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3891 			p = &parent->rb_right;
3892 		else {
3893 			WARN_ON(!(entry->vfs_inode.i_state &
3894 				  (I_WILL_FREE | I_FREEING)));
3895 			rb_erase(parent, &root->inode_tree);
3896 			RB_CLEAR_NODE(parent);
3897 			spin_unlock(&root->inode_lock);
3898 			goto again;
3899 		}
3900 	}
3901 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3902 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3903 	spin_unlock(&root->inode_lock);
3904 }
3905 
3906 static void inode_tree_del(struct inode *inode)
3907 {
3908 	struct btrfs_root *root = BTRFS_I(inode)->root;
3909 	int empty = 0;
3910 
3911 	spin_lock(&root->inode_lock);
3912 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3913 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3914 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3915 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3916 	}
3917 	spin_unlock(&root->inode_lock);
3918 
3919 	/*
3920 	 * Free space cache has inodes in the tree root, but the tree root has a
3921 	 * root_refs of 0, so this could end up dropping the tree root as a
3922 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3923 	 * make sure we don't drop it.
3924 	 */
3925 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3926 	    root != root->fs_info->tree_root) {
3927 		synchronize_srcu(&root->fs_info->subvol_srcu);
3928 		spin_lock(&root->inode_lock);
3929 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3930 		spin_unlock(&root->inode_lock);
3931 		if (empty)
3932 			btrfs_add_dead_root(root);
3933 	}
3934 }
3935 
3936 int btrfs_invalidate_inodes(struct btrfs_root *root)
3937 {
3938 	struct rb_node *node;
3939 	struct rb_node *prev;
3940 	struct btrfs_inode *entry;
3941 	struct inode *inode;
3942 	u64 objectid = 0;
3943 
3944 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3945 
3946 	spin_lock(&root->inode_lock);
3947 again:
3948 	node = root->inode_tree.rb_node;
3949 	prev = NULL;
3950 	while (node) {
3951 		prev = node;
3952 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3953 
3954 		if (objectid < entry->vfs_inode.i_ino)
3955 			node = node->rb_left;
3956 		else if (objectid > entry->vfs_inode.i_ino)
3957 			node = node->rb_right;
3958 		else
3959 			break;
3960 	}
3961 	if (!node) {
3962 		while (prev) {
3963 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3964 			if (objectid <= entry->vfs_inode.i_ino) {
3965 				node = prev;
3966 				break;
3967 			}
3968 			prev = rb_next(prev);
3969 		}
3970 	}
3971 	while (node) {
3972 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3973 		objectid = entry->vfs_inode.i_ino + 1;
3974 		inode = igrab(&entry->vfs_inode);
3975 		if (inode) {
3976 			spin_unlock(&root->inode_lock);
3977 			if (atomic_read(&inode->i_count) > 1)
3978 				d_prune_aliases(inode);
3979 			/*
3980 			 * btrfs_drop_inode will have it removed from
3981 			 * the inode cache when its usage count
3982 			 * hits zero.
3983 			 */
3984 			iput(inode);
3985 			cond_resched();
3986 			spin_lock(&root->inode_lock);
3987 			goto again;
3988 		}
3989 
3990 		if (cond_resched_lock(&root->inode_lock))
3991 			goto again;
3992 
3993 		node = rb_next(node);
3994 	}
3995 	spin_unlock(&root->inode_lock);
3996 	return 0;
3997 }
3998 
3999 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4000 {
4001 	struct btrfs_iget_args *args = p;
4002 	inode->i_ino = args->ino;
4003 	BTRFS_I(inode)->root = args->root;
4004 	btrfs_set_inode_space_info(args->root, inode);
4005 	return 0;
4006 }
4007 
4008 static int btrfs_find_actor(struct inode *inode, void *opaque)
4009 {
4010 	struct btrfs_iget_args *args = opaque;
4011 	return args->ino == inode->i_ino &&
4012 		args->root == BTRFS_I(inode)->root;
4013 }
4014 
4015 static struct inode *btrfs_iget_locked(struct super_block *s,
4016 				       u64 objectid,
4017 				       struct btrfs_root *root)
4018 {
4019 	struct inode *inode;
4020 	struct btrfs_iget_args args;
4021 	args.ino = objectid;
4022 	args.root = root;
4023 
4024 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4025 			     btrfs_init_locked_inode,
4026 			     (void *)&args);
4027 	return inode;
4028 }
4029 
4030 /* Get an inode object given its location and corresponding root.
4031  * Returns in *is_new if the inode was read from disk
4032  */
4033 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4034 			 struct btrfs_root *root, int *new)
4035 {
4036 	struct inode *inode;
4037 
4038 	inode = btrfs_iget_locked(s, location->objectid, root);
4039 	if (!inode)
4040 		return ERR_PTR(-ENOMEM);
4041 
4042 	if (inode->i_state & I_NEW) {
4043 		BTRFS_I(inode)->root = root;
4044 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4045 		btrfs_read_locked_inode(inode);
4046 
4047 		inode_tree_add(inode);
4048 		unlock_new_inode(inode);
4049 		if (new)
4050 			*new = 1;
4051 	}
4052 
4053 	return inode;
4054 }
4055 
4056 static struct inode *new_simple_dir(struct super_block *s,
4057 				    struct btrfs_key *key,
4058 				    struct btrfs_root *root)
4059 {
4060 	struct inode *inode = new_inode(s);
4061 
4062 	if (!inode)
4063 		return ERR_PTR(-ENOMEM);
4064 
4065 	BTRFS_I(inode)->root = root;
4066 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4067 	BTRFS_I(inode)->dummy_inode = 1;
4068 
4069 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4070 	inode->i_op = &simple_dir_inode_operations;
4071 	inode->i_fop = &simple_dir_operations;
4072 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4073 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4074 
4075 	return inode;
4076 }
4077 
4078 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4079 {
4080 	struct inode *inode;
4081 	struct btrfs_root *root = BTRFS_I(dir)->root;
4082 	struct btrfs_root *sub_root = root;
4083 	struct btrfs_key location;
4084 	int index;
4085 	int ret;
4086 
4087 	dentry->d_op = &btrfs_dentry_operations;
4088 
4089 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4090 		return ERR_PTR(-ENAMETOOLONG);
4091 
4092 	ret = btrfs_inode_by_name(dir, dentry, &location);
4093 
4094 	if (ret < 0)
4095 		return ERR_PTR(ret);
4096 
4097 	if (location.objectid == 0)
4098 		return NULL;
4099 
4100 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4101 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4102 		return inode;
4103 	}
4104 
4105 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4106 
4107 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4108 	ret = fixup_tree_root_location(root, dir, dentry,
4109 				       &location, &sub_root);
4110 	if (ret < 0) {
4111 		if (ret != -ENOENT)
4112 			inode = ERR_PTR(ret);
4113 		else
4114 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4115 	} else {
4116 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4117 	}
4118 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4119 
4120 	if (root != sub_root) {
4121 		down_read(&root->fs_info->cleanup_work_sem);
4122 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4123 			btrfs_orphan_cleanup(sub_root);
4124 		up_read(&root->fs_info->cleanup_work_sem);
4125 	}
4126 
4127 	return inode;
4128 }
4129 
4130 static int btrfs_dentry_delete(struct dentry *dentry)
4131 {
4132 	struct btrfs_root *root;
4133 
4134 	if (!dentry->d_inode && !IS_ROOT(dentry))
4135 		dentry = dentry->d_parent;
4136 
4137 	if (dentry->d_inode) {
4138 		root = BTRFS_I(dentry->d_inode)->root;
4139 		if (btrfs_root_refs(&root->root_item) == 0)
4140 			return 1;
4141 	}
4142 	return 0;
4143 }
4144 
4145 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4146 				   struct nameidata *nd)
4147 {
4148 	struct inode *inode;
4149 
4150 	inode = btrfs_lookup_dentry(dir, dentry);
4151 	if (IS_ERR(inode))
4152 		return ERR_CAST(inode);
4153 
4154 	return d_splice_alias(inode, dentry);
4155 }
4156 
4157 static unsigned char btrfs_filetype_table[] = {
4158 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4159 };
4160 
4161 static int btrfs_real_readdir(struct file *filp, void *dirent,
4162 			      filldir_t filldir)
4163 {
4164 	struct inode *inode = filp->f_dentry->d_inode;
4165 	struct btrfs_root *root = BTRFS_I(inode)->root;
4166 	struct btrfs_item *item;
4167 	struct btrfs_dir_item *di;
4168 	struct btrfs_key key;
4169 	struct btrfs_key found_key;
4170 	struct btrfs_path *path;
4171 	int ret;
4172 	u32 nritems;
4173 	struct extent_buffer *leaf;
4174 	int slot;
4175 	int advance;
4176 	unsigned char d_type;
4177 	int over = 0;
4178 	u32 di_cur;
4179 	u32 di_total;
4180 	u32 di_len;
4181 	int key_type = BTRFS_DIR_INDEX_KEY;
4182 	char tmp_name[32];
4183 	char *name_ptr;
4184 	int name_len;
4185 
4186 	/* FIXME, use a real flag for deciding about the key type */
4187 	if (root->fs_info->tree_root == root)
4188 		key_type = BTRFS_DIR_ITEM_KEY;
4189 
4190 	/* special case for "." */
4191 	if (filp->f_pos == 0) {
4192 		over = filldir(dirent, ".", 1,
4193 			       1, inode->i_ino,
4194 			       DT_DIR);
4195 		if (over)
4196 			return 0;
4197 		filp->f_pos = 1;
4198 	}
4199 	/* special case for .., just use the back ref */
4200 	if (filp->f_pos == 1) {
4201 		u64 pino = parent_ino(filp->f_path.dentry);
4202 		over = filldir(dirent, "..", 2,
4203 			       2, pino, DT_DIR);
4204 		if (over)
4205 			return 0;
4206 		filp->f_pos = 2;
4207 	}
4208 	path = btrfs_alloc_path();
4209 	path->reada = 2;
4210 
4211 	btrfs_set_key_type(&key, key_type);
4212 	key.offset = filp->f_pos;
4213 	key.objectid = inode->i_ino;
4214 
4215 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4216 	if (ret < 0)
4217 		goto err;
4218 	advance = 0;
4219 
4220 	while (1) {
4221 		leaf = path->nodes[0];
4222 		nritems = btrfs_header_nritems(leaf);
4223 		slot = path->slots[0];
4224 		if (advance || slot >= nritems) {
4225 			if (slot >= nritems - 1) {
4226 				ret = btrfs_next_leaf(root, path);
4227 				if (ret)
4228 					break;
4229 				leaf = path->nodes[0];
4230 				nritems = btrfs_header_nritems(leaf);
4231 				slot = path->slots[0];
4232 			} else {
4233 				slot++;
4234 				path->slots[0]++;
4235 			}
4236 		}
4237 
4238 		advance = 1;
4239 		item = btrfs_item_nr(leaf, slot);
4240 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4241 
4242 		if (found_key.objectid != key.objectid)
4243 			break;
4244 		if (btrfs_key_type(&found_key) != key_type)
4245 			break;
4246 		if (found_key.offset < filp->f_pos)
4247 			continue;
4248 
4249 		filp->f_pos = found_key.offset;
4250 
4251 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4252 		di_cur = 0;
4253 		di_total = btrfs_item_size(leaf, item);
4254 
4255 		while (di_cur < di_total) {
4256 			struct btrfs_key location;
4257 
4258 			name_len = btrfs_dir_name_len(leaf, di);
4259 			if (name_len <= sizeof(tmp_name)) {
4260 				name_ptr = tmp_name;
4261 			} else {
4262 				name_ptr = kmalloc(name_len, GFP_NOFS);
4263 				if (!name_ptr) {
4264 					ret = -ENOMEM;
4265 					goto err;
4266 				}
4267 			}
4268 			read_extent_buffer(leaf, name_ptr,
4269 					   (unsigned long)(di + 1), name_len);
4270 
4271 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4272 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4273 
4274 			/* is this a reference to our own snapshot? If so
4275 			 * skip it
4276 			 */
4277 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4278 			    location.objectid == root->root_key.objectid) {
4279 				over = 0;
4280 				goto skip;
4281 			}
4282 			over = filldir(dirent, name_ptr, name_len,
4283 				       found_key.offset, location.objectid,
4284 				       d_type);
4285 
4286 skip:
4287 			if (name_ptr != tmp_name)
4288 				kfree(name_ptr);
4289 
4290 			if (over)
4291 				goto nopos;
4292 			di_len = btrfs_dir_name_len(leaf, di) +
4293 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4294 			di_cur += di_len;
4295 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4296 		}
4297 	}
4298 
4299 	/* Reached end of directory/root. Bump pos past the last item. */
4300 	if (key_type == BTRFS_DIR_INDEX_KEY)
4301 		/*
4302 		 * 32-bit glibc will use getdents64, but then strtol -
4303 		 * so the last number we can serve is this.
4304 		 */
4305 		filp->f_pos = 0x7fffffff;
4306 	else
4307 		filp->f_pos++;
4308 nopos:
4309 	ret = 0;
4310 err:
4311 	btrfs_free_path(path);
4312 	return ret;
4313 }
4314 
4315 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4316 {
4317 	struct btrfs_root *root = BTRFS_I(inode)->root;
4318 	struct btrfs_trans_handle *trans;
4319 	int ret = 0;
4320 	bool nolock = false;
4321 
4322 	if (BTRFS_I(inode)->dummy_inode)
4323 		return 0;
4324 
4325 	smp_mb();
4326 	nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4327 
4328 	if (wbc->sync_mode == WB_SYNC_ALL) {
4329 		if (nolock)
4330 			trans = btrfs_join_transaction_nolock(root, 1);
4331 		else
4332 			trans = btrfs_join_transaction(root, 1);
4333 		btrfs_set_trans_block_group(trans, inode);
4334 		if (nolock)
4335 			ret = btrfs_end_transaction_nolock(trans, root);
4336 		else
4337 			ret = btrfs_commit_transaction(trans, root);
4338 	}
4339 	return ret;
4340 }
4341 
4342 /*
4343  * This is somewhat expensive, updating the tree every time the
4344  * inode changes.  But, it is most likely to find the inode in cache.
4345  * FIXME, needs more benchmarking...there are no reasons other than performance
4346  * to keep or drop this code.
4347  */
4348 void btrfs_dirty_inode(struct inode *inode)
4349 {
4350 	struct btrfs_root *root = BTRFS_I(inode)->root;
4351 	struct btrfs_trans_handle *trans;
4352 	int ret;
4353 
4354 	if (BTRFS_I(inode)->dummy_inode)
4355 		return;
4356 
4357 	trans = btrfs_join_transaction(root, 1);
4358 	btrfs_set_trans_block_group(trans, inode);
4359 
4360 	ret = btrfs_update_inode(trans, root, inode);
4361 	if (ret && ret == -ENOSPC) {
4362 		/* whoops, lets try again with the full transaction */
4363 		btrfs_end_transaction(trans, root);
4364 		trans = btrfs_start_transaction(root, 1);
4365 		if (IS_ERR(trans)) {
4366 			if (printk_ratelimit()) {
4367 				printk(KERN_ERR "btrfs: fail to "
4368 				       "dirty  inode %lu error %ld\n",
4369 				       inode->i_ino, PTR_ERR(trans));
4370 			}
4371 			return;
4372 		}
4373 		btrfs_set_trans_block_group(trans, inode);
4374 
4375 		ret = btrfs_update_inode(trans, root, inode);
4376 		if (ret) {
4377 			if (printk_ratelimit()) {
4378 				printk(KERN_ERR "btrfs: fail to "
4379 				       "dirty  inode %lu error %d\n",
4380 				       inode->i_ino, ret);
4381 			}
4382 		}
4383 	}
4384 	btrfs_end_transaction(trans, root);
4385 }
4386 
4387 /*
4388  * find the highest existing sequence number in a directory
4389  * and then set the in-memory index_cnt variable to reflect
4390  * free sequence numbers
4391  */
4392 static int btrfs_set_inode_index_count(struct inode *inode)
4393 {
4394 	struct btrfs_root *root = BTRFS_I(inode)->root;
4395 	struct btrfs_key key, found_key;
4396 	struct btrfs_path *path;
4397 	struct extent_buffer *leaf;
4398 	int ret;
4399 
4400 	key.objectid = inode->i_ino;
4401 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4402 	key.offset = (u64)-1;
4403 
4404 	path = btrfs_alloc_path();
4405 	if (!path)
4406 		return -ENOMEM;
4407 
4408 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4409 	if (ret < 0)
4410 		goto out;
4411 	/* FIXME: we should be able to handle this */
4412 	if (ret == 0)
4413 		goto out;
4414 	ret = 0;
4415 
4416 	/*
4417 	 * MAGIC NUMBER EXPLANATION:
4418 	 * since we search a directory based on f_pos we have to start at 2
4419 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4420 	 * else has to start at 2
4421 	 */
4422 	if (path->slots[0] == 0) {
4423 		BTRFS_I(inode)->index_cnt = 2;
4424 		goto out;
4425 	}
4426 
4427 	path->slots[0]--;
4428 
4429 	leaf = path->nodes[0];
4430 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4431 
4432 	if (found_key.objectid != inode->i_ino ||
4433 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4434 		BTRFS_I(inode)->index_cnt = 2;
4435 		goto out;
4436 	}
4437 
4438 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4439 out:
4440 	btrfs_free_path(path);
4441 	return ret;
4442 }
4443 
4444 /*
4445  * helper to find a free sequence number in a given directory.  This current
4446  * code is very simple, later versions will do smarter things in the btree
4447  */
4448 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4449 {
4450 	int ret = 0;
4451 
4452 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4453 		ret = btrfs_set_inode_index_count(dir);
4454 		if (ret)
4455 			return ret;
4456 	}
4457 
4458 	*index = BTRFS_I(dir)->index_cnt;
4459 	BTRFS_I(dir)->index_cnt++;
4460 
4461 	return ret;
4462 }
4463 
4464 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4465 				     struct btrfs_root *root,
4466 				     struct inode *dir,
4467 				     const char *name, int name_len,
4468 				     u64 ref_objectid, u64 objectid,
4469 				     u64 alloc_hint, int mode, u64 *index)
4470 {
4471 	struct inode *inode;
4472 	struct btrfs_inode_item *inode_item;
4473 	struct btrfs_key *location;
4474 	struct btrfs_path *path;
4475 	struct btrfs_inode_ref *ref;
4476 	struct btrfs_key key[2];
4477 	u32 sizes[2];
4478 	unsigned long ptr;
4479 	int ret;
4480 	int owner;
4481 
4482 	path = btrfs_alloc_path();
4483 	BUG_ON(!path);
4484 
4485 	inode = new_inode(root->fs_info->sb);
4486 	if (!inode)
4487 		return ERR_PTR(-ENOMEM);
4488 
4489 	if (dir) {
4490 		ret = btrfs_set_inode_index(dir, index);
4491 		if (ret) {
4492 			iput(inode);
4493 			return ERR_PTR(ret);
4494 		}
4495 	}
4496 	/*
4497 	 * index_cnt is ignored for everything but a dir,
4498 	 * btrfs_get_inode_index_count has an explanation for the magic
4499 	 * number
4500 	 */
4501 	BTRFS_I(inode)->index_cnt = 2;
4502 	BTRFS_I(inode)->root = root;
4503 	BTRFS_I(inode)->generation = trans->transid;
4504 	inode->i_generation = BTRFS_I(inode)->generation;
4505 	btrfs_set_inode_space_info(root, inode);
4506 
4507 	if (mode & S_IFDIR)
4508 		owner = 0;
4509 	else
4510 		owner = 1;
4511 	BTRFS_I(inode)->block_group =
4512 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4513 
4514 	key[0].objectid = objectid;
4515 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4516 	key[0].offset = 0;
4517 
4518 	key[1].objectid = objectid;
4519 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4520 	key[1].offset = ref_objectid;
4521 
4522 	sizes[0] = sizeof(struct btrfs_inode_item);
4523 	sizes[1] = name_len + sizeof(*ref);
4524 
4525 	path->leave_spinning = 1;
4526 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4527 	if (ret != 0)
4528 		goto fail;
4529 
4530 	inode_init_owner(inode, dir, mode);
4531 	inode->i_ino = objectid;
4532 	inode_set_bytes(inode, 0);
4533 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4534 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4535 				  struct btrfs_inode_item);
4536 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4537 
4538 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4539 			     struct btrfs_inode_ref);
4540 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4541 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4542 	ptr = (unsigned long)(ref + 1);
4543 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4544 
4545 	btrfs_mark_buffer_dirty(path->nodes[0]);
4546 	btrfs_free_path(path);
4547 
4548 	location = &BTRFS_I(inode)->location;
4549 	location->objectid = objectid;
4550 	location->offset = 0;
4551 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4552 
4553 	btrfs_inherit_iflags(inode, dir);
4554 
4555 	if ((mode & S_IFREG)) {
4556 		if (btrfs_test_opt(root, NODATASUM))
4557 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4558 		if (btrfs_test_opt(root, NODATACOW))
4559 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4560 	}
4561 
4562 	insert_inode_hash(inode);
4563 	inode_tree_add(inode);
4564 	return inode;
4565 fail:
4566 	if (dir)
4567 		BTRFS_I(dir)->index_cnt--;
4568 	btrfs_free_path(path);
4569 	iput(inode);
4570 	return ERR_PTR(ret);
4571 }
4572 
4573 static inline u8 btrfs_inode_type(struct inode *inode)
4574 {
4575 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4576 }
4577 
4578 /*
4579  * utility function to add 'inode' into 'parent_inode' with
4580  * a give name and a given sequence number.
4581  * if 'add_backref' is true, also insert a backref from the
4582  * inode to the parent directory.
4583  */
4584 int btrfs_add_link(struct btrfs_trans_handle *trans,
4585 		   struct inode *parent_inode, struct inode *inode,
4586 		   const char *name, int name_len, int add_backref, u64 index)
4587 {
4588 	int ret = 0;
4589 	struct btrfs_key key;
4590 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4591 
4592 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4593 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4594 	} else {
4595 		key.objectid = inode->i_ino;
4596 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4597 		key.offset = 0;
4598 	}
4599 
4600 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4601 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4602 					 key.objectid, root->root_key.objectid,
4603 					 parent_inode->i_ino,
4604 					 index, name, name_len);
4605 	} else if (add_backref) {
4606 		ret = btrfs_insert_inode_ref(trans, root,
4607 					     name, name_len, inode->i_ino,
4608 					     parent_inode->i_ino, index);
4609 	}
4610 
4611 	if (ret == 0) {
4612 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4613 					    parent_inode->i_ino, &key,
4614 					    btrfs_inode_type(inode), index);
4615 		BUG_ON(ret);
4616 
4617 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4618 				   name_len * 2);
4619 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4620 		ret = btrfs_update_inode(trans, root, parent_inode);
4621 	}
4622 	return ret;
4623 }
4624 
4625 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4626 			    struct inode *dir, struct dentry *dentry,
4627 			    struct inode *inode, int backref, u64 index)
4628 {
4629 	int err = btrfs_add_link(trans, dir, inode,
4630 				 dentry->d_name.name, dentry->d_name.len,
4631 				 backref, index);
4632 	if (!err) {
4633 		d_instantiate(dentry, inode);
4634 		return 0;
4635 	}
4636 	if (err > 0)
4637 		err = -EEXIST;
4638 	return err;
4639 }
4640 
4641 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4642 			int mode, dev_t rdev)
4643 {
4644 	struct btrfs_trans_handle *trans;
4645 	struct btrfs_root *root = BTRFS_I(dir)->root;
4646 	struct inode *inode = NULL;
4647 	int err;
4648 	int drop_inode = 0;
4649 	u64 objectid;
4650 	unsigned long nr = 0;
4651 	u64 index = 0;
4652 
4653 	if (!new_valid_dev(rdev))
4654 		return -EINVAL;
4655 
4656 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4657 	if (err)
4658 		return err;
4659 
4660 	/*
4661 	 * 2 for inode item and ref
4662 	 * 2 for dir items
4663 	 * 1 for xattr if selinux is on
4664 	 */
4665 	trans = btrfs_start_transaction(root, 5);
4666 	if (IS_ERR(trans))
4667 		return PTR_ERR(trans);
4668 
4669 	btrfs_set_trans_block_group(trans, dir);
4670 
4671 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4672 				dentry->d_name.len, dir->i_ino, objectid,
4673 				BTRFS_I(dir)->block_group, mode, &index);
4674 	err = PTR_ERR(inode);
4675 	if (IS_ERR(inode))
4676 		goto out_unlock;
4677 
4678 	err = btrfs_init_inode_security(trans, inode, dir);
4679 	if (err) {
4680 		drop_inode = 1;
4681 		goto out_unlock;
4682 	}
4683 
4684 	btrfs_set_trans_block_group(trans, inode);
4685 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4686 	if (err)
4687 		drop_inode = 1;
4688 	else {
4689 		inode->i_op = &btrfs_special_inode_operations;
4690 		init_special_inode(inode, inode->i_mode, rdev);
4691 		btrfs_update_inode(trans, root, inode);
4692 	}
4693 	btrfs_update_inode_block_group(trans, inode);
4694 	btrfs_update_inode_block_group(trans, dir);
4695 out_unlock:
4696 	nr = trans->blocks_used;
4697 	btrfs_end_transaction_throttle(trans, root);
4698 	btrfs_btree_balance_dirty(root, nr);
4699 	if (drop_inode) {
4700 		inode_dec_link_count(inode);
4701 		iput(inode);
4702 	}
4703 	return err;
4704 }
4705 
4706 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4707 			int mode, struct nameidata *nd)
4708 {
4709 	struct btrfs_trans_handle *trans;
4710 	struct btrfs_root *root = BTRFS_I(dir)->root;
4711 	struct inode *inode = NULL;
4712 	int drop_inode = 0;
4713 	int err;
4714 	unsigned long nr = 0;
4715 	u64 objectid;
4716 	u64 index = 0;
4717 
4718 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4719 	if (err)
4720 		return err;
4721 	/*
4722 	 * 2 for inode item and ref
4723 	 * 2 for dir items
4724 	 * 1 for xattr if selinux is on
4725 	 */
4726 	trans = btrfs_start_transaction(root, 5);
4727 	if (IS_ERR(trans))
4728 		return PTR_ERR(trans);
4729 
4730 	btrfs_set_trans_block_group(trans, dir);
4731 
4732 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4733 				dentry->d_name.len, dir->i_ino, objectid,
4734 				BTRFS_I(dir)->block_group, mode, &index);
4735 	err = PTR_ERR(inode);
4736 	if (IS_ERR(inode))
4737 		goto out_unlock;
4738 
4739 	err = btrfs_init_inode_security(trans, inode, dir);
4740 	if (err) {
4741 		drop_inode = 1;
4742 		goto out_unlock;
4743 	}
4744 
4745 	btrfs_set_trans_block_group(trans, inode);
4746 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4747 	if (err)
4748 		drop_inode = 1;
4749 	else {
4750 		inode->i_mapping->a_ops = &btrfs_aops;
4751 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4752 		inode->i_fop = &btrfs_file_operations;
4753 		inode->i_op = &btrfs_file_inode_operations;
4754 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4755 	}
4756 	btrfs_update_inode_block_group(trans, inode);
4757 	btrfs_update_inode_block_group(trans, dir);
4758 out_unlock:
4759 	nr = trans->blocks_used;
4760 	btrfs_end_transaction_throttle(trans, root);
4761 	if (drop_inode) {
4762 		inode_dec_link_count(inode);
4763 		iput(inode);
4764 	}
4765 	btrfs_btree_balance_dirty(root, nr);
4766 	return err;
4767 }
4768 
4769 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4770 		      struct dentry *dentry)
4771 {
4772 	struct btrfs_trans_handle *trans;
4773 	struct btrfs_root *root = BTRFS_I(dir)->root;
4774 	struct inode *inode = old_dentry->d_inode;
4775 	u64 index;
4776 	unsigned long nr = 0;
4777 	int err;
4778 	int drop_inode = 0;
4779 
4780 	if (inode->i_nlink == 0)
4781 		return -ENOENT;
4782 
4783 	/* do not allow sys_link's with other subvols of the same device */
4784 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4785 		return -EPERM;
4786 
4787 	btrfs_inc_nlink(inode);
4788 	inode->i_ctime = CURRENT_TIME;
4789 
4790 	err = btrfs_set_inode_index(dir, &index);
4791 	if (err)
4792 		goto fail;
4793 
4794 	/*
4795 	 * 1 item for inode ref
4796 	 * 2 items for dir items
4797 	 */
4798 	trans = btrfs_start_transaction(root, 3);
4799 	if (IS_ERR(trans)) {
4800 		err = PTR_ERR(trans);
4801 		goto fail;
4802 	}
4803 
4804 	btrfs_set_trans_block_group(trans, dir);
4805 	ihold(inode);
4806 
4807 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4808 
4809 	if (err) {
4810 		drop_inode = 1;
4811 	} else {
4812 		struct dentry *parent = dget_parent(dentry);
4813 		btrfs_update_inode_block_group(trans, dir);
4814 		err = btrfs_update_inode(trans, root, inode);
4815 		BUG_ON(err);
4816 		btrfs_log_new_name(trans, inode, NULL, parent);
4817 		dput(parent);
4818 	}
4819 
4820 	nr = trans->blocks_used;
4821 	btrfs_end_transaction_throttle(trans, root);
4822 fail:
4823 	if (drop_inode) {
4824 		inode_dec_link_count(inode);
4825 		iput(inode);
4826 	}
4827 	btrfs_btree_balance_dirty(root, nr);
4828 	return err;
4829 }
4830 
4831 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4832 {
4833 	struct inode *inode = NULL;
4834 	struct btrfs_trans_handle *trans;
4835 	struct btrfs_root *root = BTRFS_I(dir)->root;
4836 	int err = 0;
4837 	int drop_on_err = 0;
4838 	u64 objectid = 0;
4839 	u64 index = 0;
4840 	unsigned long nr = 1;
4841 
4842 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4843 	if (err)
4844 		return err;
4845 
4846 	/*
4847 	 * 2 items for inode and ref
4848 	 * 2 items for dir items
4849 	 * 1 for xattr if selinux is on
4850 	 */
4851 	trans = btrfs_start_transaction(root, 5);
4852 	if (IS_ERR(trans))
4853 		return PTR_ERR(trans);
4854 	btrfs_set_trans_block_group(trans, dir);
4855 
4856 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4857 				dentry->d_name.len, dir->i_ino, objectid,
4858 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4859 				&index);
4860 	if (IS_ERR(inode)) {
4861 		err = PTR_ERR(inode);
4862 		goto out_fail;
4863 	}
4864 
4865 	drop_on_err = 1;
4866 
4867 	err = btrfs_init_inode_security(trans, inode, dir);
4868 	if (err)
4869 		goto out_fail;
4870 
4871 	inode->i_op = &btrfs_dir_inode_operations;
4872 	inode->i_fop = &btrfs_dir_file_operations;
4873 	btrfs_set_trans_block_group(trans, inode);
4874 
4875 	btrfs_i_size_write(inode, 0);
4876 	err = btrfs_update_inode(trans, root, inode);
4877 	if (err)
4878 		goto out_fail;
4879 
4880 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4881 			     dentry->d_name.len, 0, index);
4882 	if (err)
4883 		goto out_fail;
4884 
4885 	d_instantiate(dentry, inode);
4886 	drop_on_err = 0;
4887 	btrfs_update_inode_block_group(trans, inode);
4888 	btrfs_update_inode_block_group(trans, dir);
4889 
4890 out_fail:
4891 	nr = trans->blocks_used;
4892 	btrfs_end_transaction_throttle(trans, root);
4893 	if (drop_on_err)
4894 		iput(inode);
4895 	btrfs_btree_balance_dirty(root, nr);
4896 	return err;
4897 }
4898 
4899 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4900  * and an extent that you want to insert, deal with overlap and insert
4901  * the new extent into the tree.
4902  */
4903 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4904 				struct extent_map *existing,
4905 				struct extent_map *em,
4906 				u64 map_start, u64 map_len)
4907 {
4908 	u64 start_diff;
4909 
4910 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4911 	start_diff = map_start - em->start;
4912 	em->start = map_start;
4913 	em->len = map_len;
4914 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4915 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4916 		em->block_start += start_diff;
4917 		em->block_len -= start_diff;
4918 	}
4919 	return add_extent_mapping(em_tree, em);
4920 }
4921 
4922 static noinline int uncompress_inline(struct btrfs_path *path,
4923 				      struct inode *inode, struct page *page,
4924 				      size_t pg_offset, u64 extent_offset,
4925 				      struct btrfs_file_extent_item *item)
4926 {
4927 	int ret;
4928 	struct extent_buffer *leaf = path->nodes[0];
4929 	char *tmp;
4930 	size_t max_size;
4931 	unsigned long inline_size;
4932 	unsigned long ptr;
4933 
4934 	WARN_ON(pg_offset != 0);
4935 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4936 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4937 					btrfs_item_nr(leaf, path->slots[0]));
4938 	tmp = kmalloc(inline_size, GFP_NOFS);
4939 	ptr = btrfs_file_extent_inline_start(item);
4940 
4941 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4942 
4943 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4944 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4945 				    inline_size, max_size);
4946 	if (ret) {
4947 		char *kaddr = kmap_atomic(page, KM_USER0);
4948 		unsigned long copy_size = min_t(u64,
4949 				  PAGE_CACHE_SIZE - pg_offset,
4950 				  max_size - extent_offset);
4951 		memset(kaddr + pg_offset, 0, copy_size);
4952 		kunmap_atomic(kaddr, KM_USER0);
4953 	}
4954 	kfree(tmp);
4955 	return 0;
4956 }
4957 
4958 /*
4959  * a bit scary, this does extent mapping from logical file offset to the disk.
4960  * the ugly parts come from merging extents from the disk with the in-ram
4961  * representation.  This gets more complex because of the data=ordered code,
4962  * where the in-ram extents might be locked pending data=ordered completion.
4963  *
4964  * This also copies inline extents directly into the page.
4965  */
4966 
4967 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4968 				    size_t pg_offset, u64 start, u64 len,
4969 				    int create)
4970 {
4971 	int ret;
4972 	int err = 0;
4973 	u64 bytenr;
4974 	u64 extent_start = 0;
4975 	u64 extent_end = 0;
4976 	u64 objectid = inode->i_ino;
4977 	u32 found_type;
4978 	struct btrfs_path *path = NULL;
4979 	struct btrfs_root *root = BTRFS_I(inode)->root;
4980 	struct btrfs_file_extent_item *item;
4981 	struct extent_buffer *leaf;
4982 	struct btrfs_key found_key;
4983 	struct extent_map *em = NULL;
4984 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4985 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4986 	struct btrfs_trans_handle *trans = NULL;
4987 	int compressed;
4988 
4989 again:
4990 	read_lock(&em_tree->lock);
4991 	em = lookup_extent_mapping(em_tree, start, len);
4992 	if (em)
4993 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4994 	read_unlock(&em_tree->lock);
4995 
4996 	if (em) {
4997 		if (em->start > start || em->start + em->len <= start)
4998 			free_extent_map(em);
4999 		else if (em->block_start == EXTENT_MAP_INLINE && page)
5000 			free_extent_map(em);
5001 		else
5002 			goto out;
5003 	}
5004 	em = alloc_extent_map(GFP_NOFS);
5005 	if (!em) {
5006 		err = -ENOMEM;
5007 		goto out;
5008 	}
5009 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5010 	em->start = EXTENT_MAP_HOLE;
5011 	em->orig_start = EXTENT_MAP_HOLE;
5012 	em->len = (u64)-1;
5013 	em->block_len = (u64)-1;
5014 
5015 	if (!path) {
5016 		path = btrfs_alloc_path();
5017 		BUG_ON(!path);
5018 	}
5019 
5020 	ret = btrfs_lookup_file_extent(trans, root, path,
5021 				       objectid, start, trans != NULL);
5022 	if (ret < 0) {
5023 		err = ret;
5024 		goto out;
5025 	}
5026 
5027 	if (ret != 0) {
5028 		if (path->slots[0] == 0)
5029 			goto not_found;
5030 		path->slots[0]--;
5031 	}
5032 
5033 	leaf = path->nodes[0];
5034 	item = btrfs_item_ptr(leaf, path->slots[0],
5035 			      struct btrfs_file_extent_item);
5036 	/* are we inside the extent that was found? */
5037 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5038 	found_type = btrfs_key_type(&found_key);
5039 	if (found_key.objectid != objectid ||
5040 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5041 		goto not_found;
5042 	}
5043 
5044 	found_type = btrfs_file_extent_type(leaf, item);
5045 	extent_start = found_key.offset;
5046 	compressed = btrfs_file_extent_compression(leaf, item);
5047 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5048 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5049 		extent_end = extent_start +
5050 		       btrfs_file_extent_num_bytes(leaf, item);
5051 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5052 		size_t size;
5053 		size = btrfs_file_extent_inline_len(leaf, item);
5054 		extent_end = (extent_start + size + root->sectorsize - 1) &
5055 			~((u64)root->sectorsize - 1);
5056 	}
5057 
5058 	if (start >= extent_end) {
5059 		path->slots[0]++;
5060 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5061 			ret = btrfs_next_leaf(root, path);
5062 			if (ret < 0) {
5063 				err = ret;
5064 				goto out;
5065 			}
5066 			if (ret > 0)
5067 				goto not_found;
5068 			leaf = path->nodes[0];
5069 		}
5070 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5071 		if (found_key.objectid != objectid ||
5072 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5073 			goto not_found;
5074 		if (start + len <= found_key.offset)
5075 			goto not_found;
5076 		em->start = start;
5077 		em->len = found_key.offset - start;
5078 		goto not_found_em;
5079 	}
5080 
5081 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5082 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5083 		em->start = extent_start;
5084 		em->len = extent_end - extent_start;
5085 		em->orig_start = extent_start -
5086 				 btrfs_file_extent_offset(leaf, item);
5087 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5088 		if (bytenr == 0) {
5089 			em->block_start = EXTENT_MAP_HOLE;
5090 			goto insert;
5091 		}
5092 		if (compressed) {
5093 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5094 			em->block_start = bytenr;
5095 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5096 									 item);
5097 		} else {
5098 			bytenr += btrfs_file_extent_offset(leaf, item);
5099 			em->block_start = bytenr;
5100 			em->block_len = em->len;
5101 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5102 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5103 		}
5104 		goto insert;
5105 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5106 		unsigned long ptr;
5107 		char *map;
5108 		size_t size;
5109 		size_t extent_offset;
5110 		size_t copy_size;
5111 
5112 		em->block_start = EXTENT_MAP_INLINE;
5113 		if (!page || create) {
5114 			em->start = extent_start;
5115 			em->len = extent_end - extent_start;
5116 			goto out;
5117 		}
5118 
5119 		size = btrfs_file_extent_inline_len(leaf, item);
5120 		extent_offset = page_offset(page) + pg_offset - extent_start;
5121 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5122 				size - extent_offset);
5123 		em->start = extent_start + extent_offset;
5124 		em->len = (copy_size + root->sectorsize - 1) &
5125 			~((u64)root->sectorsize - 1);
5126 		em->orig_start = EXTENT_MAP_INLINE;
5127 		if (compressed)
5128 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5129 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5130 		if (create == 0 && !PageUptodate(page)) {
5131 			if (btrfs_file_extent_compression(leaf, item) ==
5132 			    BTRFS_COMPRESS_ZLIB) {
5133 				ret = uncompress_inline(path, inode, page,
5134 							pg_offset,
5135 							extent_offset, item);
5136 				BUG_ON(ret);
5137 			} else {
5138 				map = kmap(page);
5139 				read_extent_buffer(leaf, map + pg_offset, ptr,
5140 						   copy_size);
5141 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5142 					memset(map + pg_offset + copy_size, 0,
5143 					       PAGE_CACHE_SIZE - pg_offset -
5144 					       copy_size);
5145 				}
5146 				kunmap(page);
5147 			}
5148 			flush_dcache_page(page);
5149 		} else if (create && PageUptodate(page)) {
5150 			WARN_ON(1);
5151 			if (!trans) {
5152 				kunmap(page);
5153 				free_extent_map(em);
5154 				em = NULL;
5155 				btrfs_release_path(root, path);
5156 				trans = btrfs_join_transaction(root, 1);
5157 				goto again;
5158 			}
5159 			map = kmap(page);
5160 			write_extent_buffer(leaf, map + pg_offset, ptr,
5161 					    copy_size);
5162 			kunmap(page);
5163 			btrfs_mark_buffer_dirty(leaf);
5164 		}
5165 		set_extent_uptodate(io_tree, em->start,
5166 				    extent_map_end(em) - 1, GFP_NOFS);
5167 		goto insert;
5168 	} else {
5169 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5170 		WARN_ON(1);
5171 	}
5172 not_found:
5173 	em->start = start;
5174 	em->len = len;
5175 not_found_em:
5176 	em->block_start = EXTENT_MAP_HOLE;
5177 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5178 insert:
5179 	btrfs_release_path(root, path);
5180 	if (em->start > start || extent_map_end(em) <= start) {
5181 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5182 		       "[%llu %llu]\n", (unsigned long long)em->start,
5183 		       (unsigned long long)em->len,
5184 		       (unsigned long long)start,
5185 		       (unsigned long long)len);
5186 		err = -EIO;
5187 		goto out;
5188 	}
5189 
5190 	err = 0;
5191 	write_lock(&em_tree->lock);
5192 	ret = add_extent_mapping(em_tree, em);
5193 	/* it is possible that someone inserted the extent into the tree
5194 	 * while we had the lock dropped.  It is also possible that
5195 	 * an overlapping map exists in the tree
5196 	 */
5197 	if (ret == -EEXIST) {
5198 		struct extent_map *existing;
5199 
5200 		ret = 0;
5201 
5202 		existing = lookup_extent_mapping(em_tree, start, len);
5203 		if (existing && (existing->start > start ||
5204 		    existing->start + existing->len <= start)) {
5205 			free_extent_map(existing);
5206 			existing = NULL;
5207 		}
5208 		if (!existing) {
5209 			existing = lookup_extent_mapping(em_tree, em->start,
5210 							 em->len);
5211 			if (existing) {
5212 				err = merge_extent_mapping(em_tree, existing,
5213 							   em, start,
5214 							   root->sectorsize);
5215 				free_extent_map(existing);
5216 				if (err) {
5217 					free_extent_map(em);
5218 					em = NULL;
5219 				}
5220 			} else {
5221 				err = -EIO;
5222 				free_extent_map(em);
5223 				em = NULL;
5224 			}
5225 		} else {
5226 			free_extent_map(em);
5227 			em = existing;
5228 			err = 0;
5229 		}
5230 	}
5231 	write_unlock(&em_tree->lock);
5232 out:
5233 	if (path)
5234 		btrfs_free_path(path);
5235 	if (trans) {
5236 		ret = btrfs_end_transaction(trans, root);
5237 		if (!err)
5238 			err = ret;
5239 	}
5240 	if (err) {
5241 		free_extent_map(em);
5242 		return ERR_PTR(err);
5243 	}
5244 	return em;
5245 }
5246 
5247 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5248 						  u64 start, u64 len)
5249 {
5250 	struct btrfs_root *root = BTRFS_I(inode)->root;
5251 	struct btrfs_trans_handle *trans;
5252 	struct extent_map *em;
5253 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5254 	struct btrfs_key ins;
5255 	u64 alloc_hint;
5256 	int ret;
5257 
5258 	btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5259 
5260 	trans = btrfs_join_transaction(root, 0);
5261 	if (!trans)
5262 		return ERR_PTR(-ENOMEM);
5263 
5264 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5265 
5266 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5267 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5268 				   alloc_hint, (u64)-1, &ins, 1);
5269 	if (ret) {
5270 		em = ERR_PTR(ret);
5271 		goto out;
5272 	}
5273 
5274 	em = alloc_extent_map(GFP_NOFS);
5275 	if (!em) {
5276 		em = ERR_PTR(-ENOMEM);
5277 		goto out;
5278 	}
5279 
5280 	em->start = start;
5281 	em->orig_start = em->start;
5282 	em->len = ins.offset;
5283 
5284 	em->block_start = ins.objectid;
5285 	em->block_len = ins.offset;
5286 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5287 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5288 
5289 	while (1) {
5290 		write_lock(&em_tree->lock);
5291 		ret = add_extent_mapping(em_tree, em);
5292 		write_unlock(&em_tree->lock);
5293 		if (ret != -EEXIST)
5294 			break;
5295 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5296 	}
5297 
5298 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5299 					   ins.offset, ins.offset, 0);
5300 	if (ret) {
5301 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5302 		em = ERR_PTR(ret);
5303 	}
5304 out:
5305 	btrfs_end_transaction(trans, root);
5306 	return em;
5307 }
5308 
5309 /*
5310  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5311  * block must be cow'd
5312  */
5313 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5314 				      struct inode *inode, u64 offset, u64 len)
5315 {
5316 	struct btrfs_path *path;
5317 	int ret;
5318 	struct extent_buffer *leaf;
5319 	struct btrfs_root *root = BTRFS_I(inode)->root;
5320 	struct btrfs_file_extent_item *fi;
5321 	struct btrfs_key key;
5322 	u64 disk_bytenr;
5323 	u64 backref_offset;
5324 	u64 extent_end;
5325 	u64 num_bytes;
5326 	int slot;
5327 	int found_type;
5328 
5329 	path = btrfs_alloc_path();
5330 	if (!path)
5331 		return -ENOMEM;
5332 
5333 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5334 				       offset, 0);
5335 	if (ret < 0)
5336 		goto out;
5337 
5338 	slot = path->slots[0];
5339 	if (ret == 1) {
5340 		if (slot == 0) {
5341 			/* can't find the item, must cow */
5342 			ret = 0;
5343 			goto out;
5344 		}
5345 		slot--;
5346 	}
5347 	ret = 0;
5348 	leaf = path->nodes[0];
5349 	btrfs_item_key_to_cpu(leaf, &key, slot);
5350 	if (key.objectid != inode->i_ino ||
5351 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5352 		/* not our file or wrong item type, must cow */
5353 		goto out;
5354 	}
5355 
5356 	if (key.offset > offset) {
5357 		/* Wrong offset, must cow */
5358 		goto out;
5359 	}
5360 
5361 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5362 	found_type = btrfs_file_extent_type(leaf, fi);
5363 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5364 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5365 		/* not a regular extent, must cow */
5366 		goto out;
5367 	}
5368 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5369 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5370 
5371 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5372 	if (extent_end < offset + len) {
5373 		/* extent doesn't include our full range, must cow */
5374 		goto out;
5375 	}
5376 
5377 	if (btrfs_extent_readonly(root, disk_bytenr))
5378 		goto out;
5379 
5380 	/*
5381 	 * look for other files referencing this extent, if we
5382 	 * find any we must cow
5383 	 */
5384 	if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5385 				  key.offset - backref_offset, disk_bytenr))
5386 		goto out;
5387 
5388 	/*
5389 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5390 	 * in this extent we are about to write.  If there
5391 	 * are any csums in that range we have to cow in order
5392 	 * to keep the csums correct
5393 	 */
5394 	disk_bytenr += backref_offset;
5395 	disk_bytenr += offset - key.offset;
5396 	num_bytes = min(offset + len, extent_end) - offset;
5397 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5398 				goto out;
5399 	/*
5400 	 * all of the above have passed, it is safe to overwrite this extent
5401 	 * without cow
5402 	 */
5403 	ret = 1;
5404 out:
5405 	btrfs_free_path(path);
5406 	return ret;
5407 }
5408 
5409 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5410 				   struct buffer_head *bh_result, int create)
5411 {
5412 	struct extent_map *em;
5413 	struct btrfs_root *root = BTRFS_I(inode)->root;
5414 	u64 start = iblock << inode->i_blkbits;
5415 	u64 len = bh_result->b_size;
5416 	struct btrfs_trans_handle *trans;
5417 
5418 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5419 	if (IS_ERR(em))
5420 		return PTR_ERR(em);
5421 
5422 	/*
5423 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5424 	 * io.  INLINE is special, and we could probably kludge it in here, but
5425 	 * it's still buffered so for safety lets just fall back to the generic
5426 	 * buffered path.
5427 	 *
5428 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5429 	 * decompress it, so there will be buffering required no matter what we
5430 	 * do, so go ahead and fallback to buffered.
5431 	 *
5432 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5433 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5434 	 * the generic code.
5435 	 */
5436 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5437 	    em->block_start == EXTENT_MAP_INLINE) {
5438 		free_extent_map(em);
5439 		return -ENOTBLK;
5440 	}
5441 
5442 	/* Just a good old fashioned hole, return */
5443 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5444 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5445 		free_extent_map(em);
5446 		/* DIO will do one hole at a time, so just unlock a sector */
5447 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5448 			      start + root->sectorsize - 1, GFP_NOFS);
5449 		return 0;
5450 	}
5451 
5452 	/*
5453 	 * We don't allocate a new extent in the following cases
5454 	 *
5455 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5456 	 * existing extent.
5457 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5458 	 * just use the extent.
5459 	 *
5460 	 */
5461 	if (!create) {
5462 		len = em->len - (start - em->start);
5463 		goto map;
5464 	}
5465 
5466 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5467 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5468 	     em->block_start != EXTENT_MAP_HOLE)) {
5469 		int type;
5470 		int ret;
5471 		u64 block_start;
5472 
5473 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5474 			type = BTRFS_ORDERED_PREALLOC;
5475 		else
5476 			type = BTRFS_ORDERED_NOCOW;
5477 		len = min(len, em->len - (start - em->start));
5478 		block_start = em->block_start + (start - em->start);
5479 
5480 		/*
5481 		 * we're not going to log anything, but we do need
5482 		 * to make sure the current transaction stays open
5483 		 * while we look for nocow cross refs
5484 		 */
5485 		trans = btrfs_join_transaction(root, 0);
5486 		if (!trans)
5487 			goto must_cow;
5488 
5489 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5490 			ret = btrfs_add_ordered_extent_dio(inode, start,
5491 					   block_start, len, len, type);
5492 			btrfs_end_transaction(trans, root);
5493 			if (ret) {
5494 				free_extent_map(em);
5495 				return ret;
5496 			}
5497 			goto unlock;
5498 		}
5499 		btrfs_end_transaction(trans, root);
5500 	}
5501 must_cow:
5502 	/*
5503 	 * this will cow the extent, reset the len in case we changed
5504 	 * it above
5505 	 */
5506 	len = bh_result->b_size;
5507 	free_extent_map(em);
5508 	em = btrfs_new_extent_direct(inode, start, len);
5509 	if (IS_ERR(em))
5510 		return PTR_ERR(em);
5511 	len = min(len, em->len - (start - em->start));
5512 unlock:
5513 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5514 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5515 			  0, NULL, GFP_NOFS);
5516 map:
5517 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5518 		inode->i_blkbits;
5519 	bh_result->b_size = len;
5520 	bh_result->b_bdev = em->bdev;
5521 	set_buffer_mapped(bh_result);
5522 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5523 		set_buffer_new(bh_result);
5524 
5525 	free_extent_map(em);
5526 
5527 	return 0;
5528 }
5529 
5530 struct btrfs_dio_private {
5531 	struct inode *inode;
5532 	u64 logical_offset;
5533 	u64 disk_bytenr;
5534 	u64 bytes;
5535 	u32 *csums;
5536 	void *private;
5537 
5538 	/* number of bios pending for this dio */
5539 	atomic_t pending_bios;
5540 
5541 	/* IO errors */
5542 	int errors;
5543 
5544 	struct bio *orig_bio;
5545 };
5546 
5547 static void btrfs_endio_direct_read(struct bio *bio, int err)
5548 {
5549 	struct btrfs_dio_private *dip = bio->bi_private;
5550 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5551 	struct bio_vec *bvec = bio->bi_io_vec;
5552 	struct inode *inode = dip->inode;
5553 	struct btrfs_root *root = BTRFS_I(inode)->root;
5554 	u64 start;
5555 	u32 *private = dip->csums;
5556 
5557 	start = dip->logical_offset;
5558 	do {
5559 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5560 			struct page *page = bvec->bv_page;
5561 			char *kaddr;
5562 			u32 csum = ~(u32)0;
5563 			unsigned long flags;
5564 
5565 			local_irq_save(flags);
5566 			kaddr = kmap_atomic(page, KM_IRQ0);
5567 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5568 					       csum, bvec->bv_len);
5569 			btrfs_csum_final(csum, (char *)&csum);
5570 			kunmap_atomic(kaddr, KM_IRQ0);
5571 			local_irq_restore(flags);
5572 
5573 			flush_dcache_page(bvec->bv_page);
5574 			if (csum != *private) {
5575 				printk(KERN_ERR "btrfs csum failed ino %lu off"
5576 				      " %llu csum %u private %u\n",
5577 				      inode->i_ino, (unsigned long long)start,
5578 				      csum, *private);
5579 				err = -EIO;
5580 			}
5581 		}
5582 
5583 		start += bvec->bv_len;
5584 		private++;
5585 		bvec++;
5586 	} while (bvec <= bvec_end);
5587 
5588 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5589 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5590 	bio->bi_private = dip->private;
5591 
5592 	kfree(dip->csums);
5593 	kfree(dip);
5594 	dio_end_io(bio, err);
5595 }
5596 
5597 static void btrfs_endio_direct_write(struct bio *bio, int err)
5598 {
5599 	struct btrfs_dio_private *dip = bio->bi_private;
5600 	struct inode *inode = dip->inode;
5601 	struct btrfs_root *root = BTRFS_I(inode)->root;
5602 	struct btrfs_trans_handle *trans;
5603 	struct btrfs_ordered_extent *ordered = NULL;
5604 	struct extent_state *cached_state = NULL;
5605 	u64 ordered_offset = dip->logical_offset;
5606 	u64 ordered_bytes = dip->bytes;
5607 	int ret;
5608 
5609 	if (err)
5610 		goto out_done;
5611 again:
5612 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5613 						   &ordered_offset,
5614 						   ordered_bytes);
5615 	if (!ret)
5616 		goto out_test;
5617 
5618 	BUG_ON(!ordered);
5619 
5620 	trans = btrfs_join_transaction(root, 1);
5621 	if (!trans) {
5622 		err = -ENOMEM;
5623 		goto out;
5624 	}
5625 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5626 
5627 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5628 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5629 		if (!ret)
5630 			ret = btrfs_update_inode(trans, root, inode);
5631 		err = ret;
5632 		goto out;
5633 	}
5634 
5635 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5636 			 ordered->file_offset + ordered->len - 1, 0,
5637 			 &cached_state, GFP_NOFS);
5638 
5639 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5640 		ret = btrfs_mark_extent_written(trans, inode,
5641 						ordered->file_offset,
5642 						ordered->file_offset +
5643 						ordered->len);
5644 		if (ret) {
5645 			err = ret;
5646 			goto out_unlock;
5647 		}
5648 	} else {
5649 		ret = insert_reserved_file_extent(trans, inode,
5650 						  ordered->file_offset,
5651 						  ordered->start,
5652 						  ordered->disk_len,
5653 						  ordered->len,
5654 						  ordered->len,
5655 						  0, 0, 0,
5656 						  BTRFS_FILE_EXTENT_REG);
5657 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5658 				   ordered->file_offset, ordered->len);
5659 		if (ret) {
5660 			err = ret;
5661 			WARN_ON(1);
5662 			goto out_unlock;
5663 		}
5664 	}
5665 
5666 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5667 	btrfs_ordered_update_i_size(inode, 0, ordered);
5668 	btrfs_update_inode(trans, root, inode);
5669 out_unlock:
5670 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5671 			     ordered->file_offset + ordered->len - 1,
5672 			     &cached_state, GFP_NOFS);
5673 out:
5674 	btrfs_delalloc_release_metadata(inode, ordered->len);
5675 	btrfs_end_transaction(trans, root);
5676 	ordered_offset = ordered->file_offset + ordered->len;
5677 	btrfs_put_ordered_extent(ordered);
5678 	btrfs_put_ordered_extent(ordered);
5679 
5680 out_test:
5681 	/*
5682 	 * our bio might span multiple ordered extents.  If we haven't
5683 	 * completed the accounting for the whole dio, go back and try again
5684 	 */
5685 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5686 		ordered_bytes = dip->logical_offset + dip->bytes -
5687 			ordered_offset;
5688 		goto again;
5689 	}
5690 out_done:
5691 	bio->bi_private = dip->private;
5692 
5693 	kfree(dip->csums);
5694 	kfree(dip);
5695 	dio_end_io(bio, err);
5696 }
5697 
5698 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5699 				    struct bio *bio, int mirror_num,
5700 				    unsigned long bio_flags, u64 offset)
5701 {
5702 	int ret;
5703 	struct btrfs_root *root = BTRFS_I(inode)->root;
5704 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5705 	BUG_ON(ret);
5706 	return 0;
5707 }
5708 
5709 static void btrfs_end_dio_bio(struct bio *bio, int err)
5710 {
5711 	struct btrfs_dio_private *dip = bio->bi_private;
5712 
5713 	if (err) {
5714 		printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5715 		      "sector %#Lx len %u err no %d\n",
5716 		      dip->inode->i_ino, bio->bi_rw,
5717 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5718 		dip->errors = 1;
5719 
5720 		/*
5721 		 * before atomic variable goto zero, we must make sure
5722 		 * dip->errors is perceived to be set.
5723 		 */
5724 		smp_mb__before_atomic_dec();
5725 	}
5726 
5727 	/* if there are more bios still pending for this dio, just exit */
5728 	if (!atomic_dec_and_test(&dip->pending_bios))
5729 		goto out;
5730 
5731 	if (dip->errors)
5732 		bio_io_error(dip->orig_bio);
5733 	else {
5734 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5735 		bio_endio(dip->orig_bio, 0);
5736 	}
5737 out:
5738 	bio_put(bio);
5739 }
5740 
5741 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5742 				       u64 first_sector, gfp_t gfp_flags)
5743 {
5744 	int nr_vecs = bio_get_nr_vecs(bdev);
5745 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5746 }
5747 
5748 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5749 					 int rw, u64 file_offset, int skip_sum,
5750 					 u32 *csums)
5751 {
5752 	int write = rw & REQ_WRITE;
5753 	struct btrfs_root *root = BTRFS_I(inode)->root;
5754 	int ret;
5755 
5756 	bio_get(bio);
5757 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5758 	if (ret)
5759 		goto err;
5760 
5761 	if (write && !skip_sum) {
5762 		ret = btrfs_wq_submit_bio(root->fs_info,
5763 				   inode, rw, bio, 0, 0,
5764 				   file_offset,
5765 				   __btrfs_submit_bio_start_direct_io,
5766 				   __btrfs_submit_bio_done);
5767 		goto err;
5768 	} else if (!skip_sum)
5769 		btrfs_lookup_bio_sums_dio(root, inode, bio,
5770 					  file_offset, csums);
5771 
5772 	ret = btrfs_map_bio(root, rw, bio, 0, 1);
5773 err:
5774 	bio_put(bio);
5775 	return ret;
5776 }
5777 
5778 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5779 				    int skip_sum)
5780 {
5781 	struct inode *inode = dip->inode;
5782 	struct btrfs_root *root = BTRFS_I(inode)->root;
5783 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5784 	struct bio *bio;
5785 	struct bio *orig_bio = dip->orig_bio;
5786 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5787 	u64 start_sector = orig_bio->bi_sector;
5788 	u64 file_offset = dip->logical_offset;
5789 	u64 submit_len = 0;
5790 	u64 map_length;
5791 	int nr_pages = 0;
5792 	u32 *csums = dip->csums;
5793 	int ret = 0;
5794 
5795 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5796 	if (!bio)
5797 		return -ENOMEM;
5798 	bio->bi_private = dip;
5799 	bio->bi_end_io = btrfs_end_dio_bio;
5800 	atomic_inc(&dip->pending_bios);
5801 
5802 	map_length = orig_bio->bi_size;
5803 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5804 			      &map_length, NULL, 0);
5805 	if (ret) {
5806 		bio_put(bio);
5807 		return -EIO;
5808 	}
5809 
5810 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5811 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5812 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5813 				 bvec->bv_offset) < bvec->bv_len)) {
5814 			/*
5815 			 * inc the count before we submit the bio so
5816 			 * we know the end IO handler won't happen before
5817 			 * we inc the count. Otherwise, the dip might get freed
5818 			 * before we're done setting it up
5819 			 */
5820 			atomic_inc(&dip->pending_bios);
5821 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5822 						     file_offset, skip_sum,
5823 						     csums);
5824 			if (ret) {
5825 				bio_put(bio);
5826 				atomic_dec(&dip->pending_bios);
5827 				goto out_err;
5828 			}
5829 
5830 			if (!skip_sum)
5831 				csums = csums + nr_pages;
5832 			start_sector += submit_len >> 9;
5833 			file_offset += submit_len;
5834 
5835 			submit_len = 0;
5836 			nr_pages = 0;
5837 
5838 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5839 						  start_sector, GFP_NOFS);
5840 			if (!bio)
5841 				goto out_err;
5842 			bio->bi_private = dip;
5843 			bio->bi_end_io = btrfs_end_dio_bio;
5844 
5845 			map_length = orig_bio->bi_size;
5846 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5847 					      &map_length, NULL, 0);
5848 			if (ret) {
5849 				bio_put(bio);
5850 				goto out_err;
5851 			}
5852 		} else {
5853 			submit_len += bvec->bv_len;
5854 			nr_pages ++;
5855 			bvec++;
5856 		}
5857 	}
5858 
5859 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5860 				     csums);
5861 	if (!ret)
5862 		return 0;
5863 
5864 	bio_put(bio);
5865 out_err:
5866 	dip->errors = 1;
5867 	/*
5868 	 * before atomic variable goto zero, we must
5869 	 * make sure dip->errors is perceived to be set.
5870 	 */
5871 	smp_mb__before_atomic_dec();
5872 	if (atomic_dec_and_test(&dip->pending_bios))
5873 		bio_io_error(dip->orig_bio);
5874 
5875 	/* bio_end_io() will handle error, so we needn't return it */
5876 	return 0;
5877 }
5878 
5879 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5880 				loff_t file_offset)
5881 {
5882 	struct btrfs_root *root = BTRFS_I(inode)->root;
5883 	struct btrfs_dio_private *dip;
5884 	struct bio_vec *bvec = bio->bi_io_vec;
5885 	int skip_sum;
5886 	int write = rw & REQ_WRITE;
5887 	int ret = 0;
5888 
5889 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5890 
5891 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
5892 	if (!dip) {
5893 		ret = -ENOMEM;
5894 		goto free_ordered;
5895 	}
5896 	dip->csums = NULL;
5897 
5898 	if (!skip_sum) {
5899 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5900 		if (!dip->csums) {
5901 			ret = -ENOMEM;
5902 			goto free_ordered;
5903 		}
5904 	}
5905 
5906 	dip->private = bio->bi_private;
5907 	dip->inode = inode;
5908 	dip->logical_offset = file_offset;
5909 
5910 	dip->bytes = 0;
5911 	do {
5912 		dip->bytes += bvec->bv_len;
5913 		bvec++;
5914 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5915 
5916 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
5917 	bio->bi_private = dip;
5918 	dip->errors = 0;
5919 	dip->orig_bio = bio;
5920 	atomic_set(&dip->pending_bios, 0);
5921 
5922 	if (write)
5923 		bio->bi_end_io = btrfs_endio_direct_write;
5924 	else
5925 		bio->bi_end_io = btrfs_endio_direct_read;
5926 
5927 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5928 	if (!ret)
5929 		return;
5930 free_ordered:
5931 	/*
5932 	 * If this is a write, we need to clean up the reserved space and kill
5933 	 * the ordered extent.
5934 	 */
5935 	if (write) {
5936 		struct btrfs_ordered_extent *ordered;
5937 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5938 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5939 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5940 			btrfs_free_reserved_extent(root, ordered->start,
5941 						   ordered->disk_len);
5942 		btrfs_put_ordered_extent(ordered);
5943 		btrfs_put_ordered_extent(ordered);
5944 	}
5945 	bio_endio(bio, ret);
5946 }
5947 
5948 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5949 			const struct iovec *iov, loff_t offset,
5950 			unsigned long nr_segs)
5951 {
5952 	int seg;
5953 	size_t size;
5954 	unsigned long addr;
5955 	unsigned blocksize_mask = root->sectorsize - 1;
5956 	ssize_t retval = -EINVAL;
5957 	loff_t end = offset;
5958 
5959 	if (offset & blocksize_mask)
5960 		goto out;
5961 
5962 	/* Check the memory alignment.  Blocks cannot straddle pages */
5963 	for (seg = 0; seg < nr_segs; seg++) {
5964 		addr = (unsigned long)iov[seg].iov_base;
5965 		size = iov[seg].iov_len;
5966 		end += size;
5967 		if ((addr & blocksize_mask) || (size & blocksize_mask))
5968 			goto out;
5969 	}
5970 	retval = 0;
5971 out:
5972 	return retval;
5973 }
5974 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5975 			const struct iovec *iov, loff_t offset,
5976 			unsigned long nr_segs)
5977 {
5978 	struct file *file = iocb->ki_filp;
5979 	struct inode *inode = file->f_mapping->host;
5980 	struct btrfs_ordered_extent *ordered;
5981 	struct extent_state *cached_state = NULL;
5982 	u64 lockstart, lockend;
5983 	ssize_t ret;
5984 	int writing = rw & WRITE;
5985 	int write_bits = 0;
5986 	size_t count = iov_length(iov, nr_segs);
5987 
5988 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5989 			    offset, nr_segs)) {
5990 		return 0;
5991 	}
5992 
5993 	lockstart = offset;
5994 	lockend = offset + count - 1;
5995 
5996 	if (writing) {
5997 		ret = btrfs_delalloc_reserve_space(inode, count);
5998 		if (ret)
5999 			goto out;
6000 	}
6001 
6002 	while (1) {
6003 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6004 				 0, &cached_state, GFP_NOFS);
6005 		/*
6006 		 * We're concerned with the entire range that we're going to be
6007 		 * doing DIO to, so we need to make sure theres no ordered
6008 		 * extents in this range.
6009 		 */
6010 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6011 						     lockend - lockstart + 1);
6012 		if (!ordered)
6013 			break;
6014 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6015 				     &cached_state, GFP_NOFS);
6016 		btrfs_start_ordered_extent(inode, ordered, 1);
6017 		btrfs_put_ordered_extent(ordered);
6018 		cond_resched();
6019 	}
6020 
6021 	/*
6022 	 * we don't use btrfs_set_extent_delalloc because we don't want
6023 	 * the dirty or uptodate bits
6024 	 */
6025 	if (writing) {
6026 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6027 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6028 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6029 				     GFP_NOFS);
6030 		if (ret) {
6031 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6032 					 lockend, EXTENT_LOCKED | write_bits,
6033 					 1, 0, &cached_state, GFP_NOFS);
6034 			goto out;
6035 		}
6036 	}
6037 
6038 	free_extent_state(cached_state);
6039 	cached_state = NULL;
6040 
6041 	ret = __blockdev_direct_IO(rw, iocb, inode,
6042 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6043 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6044 		   btrfs_submit_direct, 0);
6045 
6046 	if (ret < 0 && ret != -EIOCBQUEUED) {
6047 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6048 			      offset + iov_length(iov, nr_segs) - 1,
6049 			      EXTENT_LOCKED | write_bits, 1, 0,
6050 			      &cached_state, GFP_NOFS);
6051 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6052 		/*
6053 		 * We're falling back to buffered, unlock the section we didn't
6054 		 * do IO on.
6055 		 */
6056 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6057 			      offset + iov_length(iov, nr_segs) - 1,
6058 			      EXTENT_LOCKED | write_bits, 1, 0,
6059 			      &cached_state, GFP_NOFS);
6060 	}
6061 out:
6062 	free_extent_state(cached_state);
6063 	return ret;
6064 }
6065 
6066 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6067 		__u64 start, __u64 len)
6068 {
6069 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6070 }
6071 
6072 int btrfs_readpage(struct file *file, struct page *page)
6073 {
6074 	struct extent_io_tree *tree;
6075 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6076 	return extent_read_full_page(tree, page, btrfs_get_extent);
6077 }
6078 
6079 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6080 {
6081 	struct extent_io_tree *tree;
6082 
6083 
6084 	if (current->flags & PF_MEMALLOC) {
6085 		redirty_page_for_writepage(wbc, page);
6086 		unlock_page(page);
6087 		return 0;
6088 	}
6089 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6090 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6091 }
6092 
6093 int btrfs_writepages(struct address_space *mapping,
6094 		     struct writeback_control *wbc)
6095 {
6096 	struct extent_io_tree *tree;
6097 
6098 	tree = &BTRFS_I(mapping->host)->io_tree;
6099 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6100 }
6101 
6102 static int
6103 btrfs_readpages(struct file *file, struct address_space *mapping,
6104 		struct list_head *pages, unsigned nr_pages)
6105 {
6106 	struct extent_io_tree *tree;
6107 	tree = &BTRFS_I(mapping->host)->io_tree;
6108 	return extent_readpages(tree, mapping, pages, nr_pages,
6109 				btrfs_get_extent);
6110 }
6111 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6112 {
6113 	struct extent_io_tree *tree;
6114 	struct extent_map_tree *map;
6115 	int ret;
6116 
6117 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6118 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6119 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6120 	if (ret == 1) {
6121 		ClearPagePrivate(page);
6122 		set_page_private(page, 0);
6123 		page_cache_release(page);
6124 	}
6125 	return ret;
6126 }
6127 
6128 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6129 {
6130 	if (PageWriteback(page) || PageDirty(page))
6131 		return 0;
6132 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6133 }
6134 
6135 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6136 {
6137 	struct extent_io_tree *tree;
6138 	struct btrfs_ordered_extent *ordered;
6139 	struct extent_state *cached_state = NULL;
6140 	u64 page_start = page_offset(page);
6141 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6142 
6143 
6144 	/*
6145 	 * we have the page locked, so new writeback can't start,
6146 	 * and the dirty bit won't be cleared while we are here.
6147 	 *
6148 	 * Wait for IO on this page so that we can safely clear
6149 	 * the PagePrivate2 bit and do ordered accounting
6150 	 */
6151 	wait_on_page_writeback(page);
6152 
6153 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6154 	if (offset) {
6155 		btrfs_releasepage(page, GFP_NOFS);
6156 		return;
6157 	}
6158 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6159 			 GFP_NOFS);
6160 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6161 					   page_offset(page));
6162 	if (ordered) {
6163 		/*
6164 		 * IO on this page will never be started, so we need
6165 		 * to account for any ordered extents now
6166 		 */
6167 		clear_extent_bit(tree, page_start, page_end,
6168 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6169 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6170 				 &cached_state, GFP_NOFS);
6171 		/*
6172 		 * whoever cleared the private bit is responsible
6173 		 * for the finish_ordered_io
6174 		 */
6175 		if (TestClearPagePrivate2(page)) {
6176 			btrfs_finish_ordered_io(page->mapping->host,
6177 						page_start, page_end);
6178 		}
6179 		btrfs_put_ordered_extent(ordered);
6180 		cached_state = NULL;
6181 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6182 				 GFP_NOFS);
6183 	}
6184 	clear_extent_bit(tree, page_start, page_end,
6185 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6186 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6187 	__btrfs_releasepage(page, GFP_NOFS);
6188 
6189 	ClearPageChecked(page);
6190 	if (PagePrivate(page)) {
6191 		ClearPagePrivate(page);
6192 		set_page_private(page, 0);
6193 		page_cache_release(page);
6194 	}
6195 }
6196 
6197 /*
6198  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6199  * called from a page fault handler when a page is first dirtied. Hence we must
6200  * be careful to check for EOF conditions here. We set the page up correctly
6201  * for a written page which means we get ENOSPC checking when writing into
6202  * holes and correct delalloc and unwritten extent mapping on filesystems that
6203  * support these features.
6204  *
6205  * We are not allowed to take the i_mutex here so we have to play games to
6206  * protect against truncate races as the page could now be beyond EOF.  Because
6207  * vmtruncate() writes the inode size before removing pages, once we have the
6208  * page lock we can determine safely if the page is beyond EOF. If it is not
6209  * beyond EOF, then the page is guaranteed safe against truncation until we
6210  * unlock the page.
6211  */
6212 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6213 {
6214 	struct page *page = vmf->page;
6215 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6216 	struct btrfs_root *root = BTRFS_I(inode)->root;
6217 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6218 	struct btrfs_ordered_extent *ordered;
6219 	struct extent_state *cached_state = NULL;
6220 	char *kaddr;
6221 	unsigned long zero_start;
6222 	loff_t size;
6223 	int ret;
6224 	u64 page_start;
6225 	u64 page_end;
6226 
6227 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6228 	if (ret) {
6229 		if (ret == -ENOMEM)
6230 			ret = VM_FAULT_OOM;
6231 		else /* -ENOSPC, -EIO, etc */
6232 			ret = VM_FAULT_SIGBUS;
6233 		goto out;
6234 	}
6235 
6236 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6237 again:
6238 	lock_page(page);
6239 	size = i_size_read(inode);
6240 	page_start = page_offset(page);
6241 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6242 
6243 	if ((page->mapping != inode->i_mapping) ||
6244 	    (page_start >= size)) {
6245 		/* page got truncated out from underneath us */
6246 		goto out_unlock;
6247 	}
6248 	wait_on_page_writeback(page);
6249 
6250 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6251 			 GFP_NOFS);
6252 	set_page_extent_mapped(page);
6253 
6254 	/*
6255 	 * we can't set the delalloc bits if there are pending ordered
6256 	 * extents.  Drop our locks and wait for them to finish
6257 	 */
6258 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6259 	if (ordered) {
6260 		unlock_extent_cached(io_tree, page_start, page_end,
6261 				     &cached_state, GFP_NOFS);
6262 		unlock_page(page);
6263 		btrfs_start_ordered_extent(inode, ordered, 1);
6264 		btrfs_put_ordered_extent(ordered);
6265 		goto again;
6266 	}
6267 
6268 	/*
6269 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6270 	 * if it was already dirty, so for space accounting reasons we need to
6271 	 * clear any delalloc bits for the range we are fixing to save.  There
6272 	 * is probably a better way to do this, but for now keep consistent with
6273 	 * prepare_pages in the normal write path.
6274 	 */
6275 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6276 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6277 			  0, 0, &cached_state, GFP_NOFS);
6278 
6279 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6280 					&cached_state);
6281 	if (ret) {
6282 		unlock_extent_cached(io_tree, page_start, page_end,
6283 				     &cached_state, GFP_NOFS);
6284 		ret = VM_FAULT_SIGBUS;
6285 		goto out_unlock;
6286 	}
6287 	ret = 0;
6288 
6289 	/* page is wholly or partially inside EOF */
6290 	if (page_start + PAGE_CACHE_SIZE > size)
6291 		zero_start = size & ~PAGE_CACHE_MASK;
6292 	else
6293 		zero_start = PAGE_CACHE_SIZE;
6294 
6295 	if (zero_start != PAGE_CACHE_SIZE) {
6296 		kaddr = kmap(page);
6297 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6298 		flush_dcache_page(page);
6299 		kunmap(page);
6300 	}
6301 	ClearPageChecked(page);
6302 	set_page_dirty(page);
6303 	SetPageUptodate(page);
6304 
6305 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6306 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6307 
6308 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6309 
6310 out_unlock:
6311 	if (!ret)
6312 		return VM_FAULT_LOCKED;
6313 	unlock_page(page);
6314 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6315 out:
6316 	return ret;
6317 }
6318 
6319 static void btrfs_truncate(struct inode *inode)
6320 {
6321 	struct btrfs_root *root = BTRFS_I(inode)->root;
6322 	int ret;
6323 	struct btrfs_trans_handle *trans;
6324 	unsigned long nr;
6325 	u64 mask = root->sectorsize - 1;
6326 
6327 	if (!S_ISREG(inode->i_mode)) {
6328 		WARN_ON(1);
6329 		return;
6330 	}
6331 
6332 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6333 	if (ret)
6334 		return;
6335 
6336 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6337 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6338 
6339 	trans = btrfs_start_transaction(root, 0);
6340 	BUG_ON(IS_ERR(trans));
6341 	btrfs_set_trans_block_group(trans, inode);
6342 	trans->block_rsv = root->orphan_block_rsv;
6343 
6344 	/*
6345 	 * setattr is responsible for setting the ordered_data_close flag,
6346 	 * but that is only tested during the last file release.  That
6347 	 * could happen well after the next commit, leaving a great big
6348 	 * window where new writes may get lost if someone chooses to write
6349 	 * to this file after truncating to zero
6350 	 *
6351 	 * The inode doesn't have any dirty data here, and so if we commit
6352 	 * this is a noop.  If someone immediately starts writing to the inode
6353 	 * it is very likely we'll catch some of their writes in this
6354 	 * transaction, and the commit will find this file on the ordered
6355 	 * data list with good things to send down.
6356 	 *
6357 	 * This is a best effort solution, there is still a window where
6358 	 * using truncate to replace the contents of the file will
6359 	 * end up with a zero length file after a crash.
6360 	 */
6361 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6362 		btrfs_add_ordered_operation(trans, root, inode);
6363 
6364 	while (1) {
6365 		if (!trans) {
6366 			trans = btrfs_start_transaction(root, 0);
6367 			BUG_ON(IS_ERR(trans));
6368 			btrfs_set_trans_block_group(trans, inode);
6369 			trans->block_rsv = root->orphan_block_rsv;
6370 		}
6371 
6372 		ret = btrfs_block_rsv_check(trans, root,
6373 					    root->orphan_block_rsv, 0, 5);
6374 		if (ret) {
6375 			BUG_ON(ret != -EAGAIN);
6376 			ret = btrfs_commit_transaction(trans, root);
6377 			BUG_ON(ret);
6378 			trans = NULL;
6379 			continue;
6380 		}
6381 
6382 		ret = btrfs_truncate_inode_items(trans, root, inode,
6383 						 inode->i_size,
6384 						 BTRFS_EXTENT_DATA_KEY);
6385 		if (ret != -EAGAIN)
6386 			break;
6387 
6388 		ret = btrfs_update_inode(trans, root, inode);
6389 		BUG_ON(ret);
6390 
6391 		nr = trans->blocks_used;
6392 		btrfs_end_transaction(trans, root);
6393 		trans = NULL;
6394 		btrfs_btree_balance_dirty(root, nr);
6395 	}
6396 
6397 	if (ret == 0 && inode->i_nlink > 0) {
6398 		ret = btrfs_orphan_del(trans, inode);
6399 		BUG_ON(ret);
6400 	}
6401 
6402 	ret = btrfs_update_inode(trans, root, inode);
6403 	BUG_ON(ret);
6404 
6405 	nr = trans->blocks_used;
6406 	ret = btrfs_end_transaction_throttle(trans, root);
6407 	BUG_ON(ret);
6408 	btrfs_btree_balance_dirty(root, nr);
6409 }
6410 
6411 /*
6412  * create a new subvolume directory/inode (helper for the ioctl).
6413  */
6414 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6415 			     struct btrfs_root *new_root,
6416 			     u64 new_dirid, u64 alloc_hint)
6417 {
6418 	struct inode *inode;
6419 	int err;
6420 	u64 index = 0;
6421 
6422 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6423 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6424 	if (IS_ERR(inode))
6425 		return PTR_ERR(inode);
6426 	inode->i_op = &btrfs_dir_inode_operations;
6427 	inode->i_fop = &btrfs_dir_file_operations;
6428 
6429 	inode->i_nlink = 1;
6430 	btrfs_i_size_write(inode, 0);
6431 
6432 	err = btrfs_update_inode(trans, new_root, inode);
6433 	BUG_ON(err);
6434 
6435 	iput(inode);
6436 	return 0;
6437 }
6438 
6439 /* helper function for file defrag and space balancing.  This
6440  * forces readahead on a given range of bytes in an inode
6441  */
6442 unsigned long btrfs_force_ra(struct address_space *mapping,
6443 			      struct file_ra_state *ra, struct file *file,
6444 			      pgoff_t offset, pgoff_t last_index)
6445 {
6446 	pgoff_t req_size = last_index - offset + 1;
6447 
6448 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6449 	return offset + req_size;
6450 }
6451 
6452 struct inode *btrfs_alloc_inode(struct super_block *sb)
6453 {
6454 	struct btrfs_inode *ei;
6455 	struct inode *inode;
6456 
6457 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6458 	if (!ei)
6459 		return NULL;
6460 
6461 	ei->root = NULL;
6462 	ei->space_info = NULL;
6463 	ei->generation = 0;
6464 	ei->sequence = 0;
6465 	ei->last_trans = 0;
6466 	ei->last_sub_trans = 0;
6467 	ei->logged_trans = 0;
6468 	ei->delalloc_bytes = 0;
6469 	ei->reserved_bytes = 0;
6470 	ei->disk_i_size = 0;
6471 	ei->flags = 0;
6472 	ei->index_cnt = (u64)-1;
6473 	ei->last_unlink_trans = 0;
6474 
6475 	spin_lock_init(&ei->accounting_lock);
6476 	atomic_set(&ei->outstanding_extents, 0);
6477 	ei->reserved_extents = 0;
6478 
6479 	ei->ordered_data_close = 0;
6480 	ei->orphan_meta_reserved = 0;
6481 	ei->dummy_inode = 0;
6482 	ei->force_compress = 0;
6483 
6484 	inode = &ei->vfs_inode;
6485 	extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6486 	extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6487 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6488 	mutex_init(&ei->log_mutex);
6489 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6490 	INIT_LIST_HEAD(&ei->i_orphan);
6491 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6492 	INIT_LIST_HEAD(&ei->ordered_operations);
6493 	RB_CLEAR_NODE(&ei->rb_node);
6494 
6495 	return inode;
6496 }
6497 
6498 void btrfs_destroy_inode(struct inode *inode)
6499 {
6500 	struct btrfs_ordered_extent *ordered;
6501 	struct btrfs_root *root = BTRFS_I(inode)->root;
6502 
6503 	WARN_ON(!list_empty(&inode->i_dentry));
6504 	WARN_ON(inode->i_data.nrpages);
6505 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6506 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6507 
6508 	/*
6509 	 * This can happen where we create an inode, but somebody else also
6510 	 * created the same inode and we need to destroy the one we already
6511 	 * created.
6512 	 */
6513 	if (!root)
6514 		goto free;
6515 
6516 	/*
6517 	 * Make sure we're properly removed from the ordered operation
6518 	 * lists.
6519 	 */
6520 	smp_mb();
6521 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6522 		spin_lock(&root->fs_info->ordered_extent_lock);
6523 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6524 		spin_unlock(&root->fs_info->ordered_extent_lock);
6525 	}
6526 
6527 	if (root == root->fs_info->tree_root) {
6528 		struct btrfs_block_group_cache *block_group;
6529 
6530 		block_group = btrfs_lookup_block_group(root->fs_info,
6531 						BTRFS_I(inode)->block_group);
6532 		if (block_group && block_group->inode == inode) {
6533 			spin_lock(&block_group->lock);
6534 			block_group->inode = NULL;
6535 			spin_unlock(&block_group->lock);
6536 			btrfs_put_block_group(block_group);
6537 		} else if (block_group) {
6538 			btrfs_put_block_group(block_group);
6539 		}
6540 	}
6541 
6542 	spin_lock(&root->orphan_lock);
6543 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6544 		printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6545 		       inode->i_ino);
6546 		list_del_init(&BTRFS_I(inode)->i_orphan);
6547 	}
6548 	spin_unlock(&root->orphan_lock);
6549 
6550 	while (1) {
6551 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6552 		if (!ordered)
6553 			break;
6554 		else {
6555 			printk(KERN_ERR "btrfs found ordered "
6556 			       "extent %llu %llu on inode cleanup\n",
6557 			       (unsigned long long)ordered->file_offset,
6558 			       (unsigned long long)ordered->len);
6559 			btrfs_remove_ordered_extent(inode, ordered);
6560 			btrfs_put_ordered_extent(ordered);
6561 			btrfs_put_ordered_extent(ordered);
6562 		}
6563 	}
6564 	inode_tree_del(inode);
6565 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6566 free:
6567 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6568 }
6569 
6570 int btrfs_drop_inode(struct inode *inode)
6571 {
6572 	struct btrfs_root *root = BTRFS_I(inode)->root;
6573 
6574 	if (btrfs_root_refs(&root->root_item) == 0 &&
6575 	    root != root->fs_info->tree_root)
6576 		return 1;
6577 	else
6578 		return generic_drop_inode(inode);
6579 }
6580 
6581 static void init_once(void *foo)
6582 {
6583 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6584 
6585 	inode_init_once(&ei->vfs_inode);
6586 }
6587 
6588 void btrfs_destroy_cachep(void)
6589 {
6590 	if (btrfs_inode_cachep)
6591 		kmem_cache_destroy(btrfs_inode_cachep);
6592 	if (btrfs_trans_handle_cachep)
6593 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6594 	if (btrfs_transaction_cachep)
6595 		kmem_cache_destroy(btrfs_transaction_cachep);
6596 	if (btrfs_path_cachep)
6597 		kmem_cache_destroy(btrfs_path_cachep);
6598 }
6599 
6600 int btrfs_init_cachep(void)
6601 {
6602 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6603 			sizeof(struct btrfs_inode), 0,
6604 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6605 	if (!btrfs_inode_cachep)
6606 		goto fail;
6607 
6608 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6609 			sizeof(struct btrfs_trans_handle), 0,
6610 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6611 	if (!btrfs_trans_handle_cachep)
6612 		goto fail;
6613 
6614 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6615 			sizeof(struct btrfs_transaction), 0,
6616 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6617 	if (!btrfs_transaction_cachep)
6618 		goto fail;
6619 
6620 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6621 			sizeof(struct btrfs_path), 0,
6622 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6623 	if (!btrfs_path_cachep)
6624 		goto fail;
6625 
6626 	return 0;
6627 fail:
6628 	btrfs_destroy_cachep();
6629 	return -ENOMEM;
6630 }
6631 
6632 static int btrfs_getattr(struct vfsmount *mnt,
6633 			 struct dentry *dentry, struct kstat *stat)
6634 {
6635 	struct inode *inode = dentry->d_inode;
6636 	generic_fillattr(inode, stat);
6637 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6638 	stat->blksize = PAGE_CACHE_SIZE;
6639 	stat->blocks = (inode_get_bytes(inode) +
6640 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6641 	return 0;
6642 }
6643 
6644 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6645 			   struct inode *new_dir, struct dentry *new_dentry)
6646 {
6647 	struct btrfs_trans_handle *trans;
6648 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6649 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6650 	struct inode *new_inode = new_dentry->d_inode;
6651 	struct inode *old_inode = old_dentry->d_inode;
6652 	struct timespec ctime = CURRENT_TIME;
6653 	u64 index = 0;
6654 	u64 root_objectid;
6655 	int ret;
6656 
6657 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6658 		return -EPERM;
6659 
6660 	/* we only allow rename subvolume link between subvolumes */
6661 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6662 		return -EXDEV;
6663 
6664 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6665 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6666 		return -ENOTEMPTY;
6667 
6668 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6669 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6670 		return -ENOTEMPTY;
6671 	/*
6672 	 * we're using rename to replace one file with another.
6673 	 * and the replacement file is large.  Start IO on it now so
6674 	 * we don't add too much work to the end of the transaction
6675 	 */
6676 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6677 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6678 		filemap_flush(old_inode->i_mapping);
6679 
6680 	/* close the racy window with snapshot create/destroy ioctl */
6681 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6682 		down_read(&root->fs_info->subvol_sem);
6683 	/*
6684 	 * We want to reserve the absolute worst case amount of items.  So if
6685 	 * both inodes are subvols and we need to unlink them then that would
6686 	 * require 4 item modifications, but if they are both normal inodes it
6687 	 * would require 5 item modifications, so we'll assume their normal
6688 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6689 	 * should cover the worst case number of items we'll modify.
6690 	 */
6691 	trans = btrfs_start_transaction(root, 20);
6692 	if (IS_ERR(trans))
6693 		return PTR_ERR(trans);
6694 
6695 	btrfs_set_trans_block_group(trans, new_dir);
6696 
6697 	if (dest != root)
6698 		btrfs_record_root_in_trans(trans, dest);
6699 
6700 	ret = btrfs_set_inode_index(new_dir, &index);
6701 	if (ret)
6702 		goto out_fail;
6703 
6704 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6705 		/* force full log commit if subvolume involved. */
6706 		root->fs_info->last_trans_log_full_commit = trans->transid;
6707 	} else {
6708 		ret = btrfs_insert_inode_ref(trans, dest,
6709 					     new_dentry->d_name.name,
6710 					     new_dentry->d_name.len,
6711 					     old_inode->i_ino,
6712 					     new_dir->i_ino, index);
6713 		if (ret)
6714 			goto out_fail;
6715 		/*
6716 		 * this is an ugly little race, but the rename is required
6717 		 * to make sure that if we crash, the inode is either at the
6718 		 * old name or the new one.  pinning the log transaction lets
6719 		 * us make sure we don't allow a log commit to come in after
6720 		 * we unlink the name but before we add the new name back in.
6721 		 */
6722 		btrfs_pin_log_trans(root);
6723 	}
6724 	/*
6725 	 * make sure the inode gets flushed if it is replacing
6726 	 * something.
6727 	 */
6728 	if (new_inode && new_inode->i_size &&
6729 	    old_inode && S_ISREG(old_inode->i_mode)) {
6730 		btrfs_add_ordered_operation(trans, root, old_inode);
6731 	}
6732 
6733 	old_dir->i_ctime = old_dir->i_mtime = ctime;
6734 	new_dir->i_ctime = new_dir->i_mtime = ctime;
6735 	old_inode->i_ctime = ctime;
6736 
6737 	if (old_dentry->d_parent != new_dentry->d_parent)
6738 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6739 
6740 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6741 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6742 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6743 					old_dentry->d_name.name,
6744 					old_dentry->d_name.len);
6745 	} else {
6746 		btrfs_inc_nlink(old_dentry->d_inode);
6747 		ret = btrfs_unlink_inode(trans, root, old_dir,
6748 					 old_dentry->d_inode,
6749 					 old_dentry->d_name.name,
6750 					 old_dentry->d_name.len);
6751 	}
6752 	BUG_ON(ret);
6753 
6754 	if (new_inode) {
6755 		new_inode->i_ctime = CURRENT_TIME;
6756 		if (unlikely(new_inode->i_ino ==
6757 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6758 			root_objectid = BTRFS_I(new_inode)->location.objectid;
6759 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
6760 						root_objectid,
6761 						new_dentry->d_name.name,
6762 						new_dentry->d_name.len);
6763 			BUG_ON(new_inode->i_nlink == 0);
6764 		} else {
6765 			ret = btrfs_unlink_inode(trans, dest, new_dir,
6766 						 new_dentry->d_inode,
6767 						 new_dentry->d_name.name,
6768 						 new_dentry->d_name.len);
6769 		}
6770 		BUG_ON(ret);
6771 		if (new_inode->i_nlink == 0) {
6772 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6773 			BUG_ON(ret);
6774 		}
6775 	}
6776 
6777 	ret = btrfs_add_link(trans, new_dir, old_inode,
6778 			     new_dentry->d_name.name,
6779 			     new_dentry->d_name.len, 0, index);
6780 	BUG_ON(ret);
6781 
6782 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6783 		struct dentry *parent = dget_parent(new_dentry);
6784 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
6785 		dput(parent);
6786 		btrfs_end_log_trans(root);
6787 	}
6788 out_fail:
6789 	btrfs_end_transaction_throttle(trans, root);
6790 
6791 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6792 		up_read(&root->fs_info->subvol_sem);
6793 
6794 	return ret;
6795 }
6796 
6797 /*
6798  * some fairly slow code that needs optimization. This walks the list
6799  * of all the inodes with pending delalloc and forces them to disk.
6800  */
6801 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6802 {
6803 	struct list_head *head = &root->fs_info->delalloc_inodes;
6804 	struct btrfs_inode *binode;
6805 	struct inode *inode;
6806 
6807 	if (root->fs_info->sb->s_flags & MS_RDONLY)
6808 		return -EROFS;
6809 
6810 	spin_lock(&root->fs_info->delalloc_lock);
6811 	while (!list_empty(head)) {
6812 		binode = list_entry(head->next, struct btrfs_inode,
6813 				    delalloc_inodes);
6814 		inode = igrab(&binode->vfs_inode);
6815 		if (!inode)
6816 			list_del_init(&binode->delalloc_inodes);
6817 		spin_unlock(&root->fs_info->delalloc_lock);
6818 		if (inode) {
6819 			filemap_flush(inode->i_mapping);
6820 			if (delay_iput)
6821 				btrfs_add_delayed_iput(inode);
6822 			else
6823 				iput(inode);
6824 		}
6825 		cond_resched();
6826 		spin_lock(&root->fs_info->delalloc_lock);
6827 	}
6828 	spin_unlock(&root->fs_info->delalloc_lock);
6829 
6830 	/* the filemap_flush will queue IO into the worker threads, but
6831 	 * we have to make sure the IO is actually started and that
6832 	 * ordered extents get created before we return
6833 	 */
6834 	atomic_inc(&root->fs_info->async_submit_draining);
6835 	while (atomic_read(&root->fs_info->nr_async_submits) ||
6836 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
6837 		wait_event(root->fs_info->async_submit_wait,
6838 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6839 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6840 	}
6841 	atomic_dec(&root->fs_info->async_submit_draining);
6842 	return 0;
6843 }
6844 
6845 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6846 				   int sync)
6847 {
6848 	struct btrfs_inode *binode;
6849 	struct inode *inode = NULL;
6850 
6851 	spin_lock(&root->fs_info->delalloc_lock);
6852 	while (!list_empty(&root->fs_info->delalloc_inodes)) {
6853 		binode = list_entry(root->fs_info->delalloc_inodes.next,
6854 				    struct btrfs_inode, delalloc_inodes);
6855 		inode = igrab(&binode->vfs_inode);
6856 		if (inode) {
6857 			list_move_tail(&binode->delalloc_inodes,
6858 				       &root->fs_info->delalloc_inodes);
6859 			break;
6860 		}
6861 
6862 		list_del_init(&binode->delalloc_inodes);
6863 		cond_resched_lock(&root->fs_info->delalloc_lock);
6864 	}
6865 	spin_unlock(&root->fs_info->delalloc_lock);
6866 
6867 	if (inode) {
6868 		if (sync) {
6869 			filemap_write_and_wait(inode->i_mapping);
6870 			/*
6871 			 * We have to do this because compression doesn't
6872 			 * actually set PG_writeback until it submits the pages
6873 			 * for IO, which happens in an async thread, so we could
6874 			 * race and not actually wait for any writeback pages
6875 			 * because they've not been submitted yet.  Technically
6876 			 * this could still be the case for the ordered stuff
6877 			 * since the async thread may not have started to do its
6878 			 * work yet.  If this becomes the case then we need to
6879 			 * figure out a way to make sure that in writepage we
6880 			 * wait for any async pages to be submitted before
6881 			 * returning so that fdatawait does what its supposed to
6882 			 * do.
6883 			 */
6884 			btrfs_wait_ordered_range(inode, 0, (u64)-1);
6885 		} else {
6886 			filemap_flush(inode->i_mapping);
6887 		}
6888 		if (delay_iput)
6889 			btrfs_add_delayed_iput(inode);
6890 		else
6891 			iput(inode);
6892 		return 1;
6893 	}
6894 	return 0;
6895 }
6896 
6897 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6898 			 const char *symname)
6899 {
6900 	struct btrfs_trans_handle *trans;
6901 	struct btrfs_root *root = BTRFS_I(dir)->root;
6902 	struct btrfs_path *path;
6903 	struct btrfs_key key;
6904 	struct inode *inode = NULL;
6905 	int err;
6906 	int drop_inode = 0;
6907 	u64 objectid;
6908 	u64 index = 0 ;
6909 	int name_len;
6910 	int datasize;
6911 	unsigned long ptr;
6912 	struct btrfs_file_extent_item *ei;
6913 	struct extent_buffer *leaf;
6914 	unsigned long nr = 0;
6915 
6916 	name_len = strlen(symname) + 1;
6917 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6918 		return -ENAMETOOLONG;
6919 
6920 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6921 	if (err)
6922 		return err;
6923 	/*
6924 	 * 2 items for inode item and ref
6925 	 * 2 items for dir items
6926 	 * 1 item for xattr if selinux is on
6927 	 */
6928 	trans = btrfs_start_transaction(root, 5);
6929 	if (IS_ERR(trans))
6930 		return PTR_ERR(trans);
6931 
6932 	btrfs_set_trans_block_group(trans, dir);
6933 
6934 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6935 				dentry->d_name.len, dir->i_ino, objectid,
6936 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6937 				&index);
6938 	err = PTR_ERR(inode);
6939 	if (IS_ERR(inode))
6940 		goto out_unlock;
6941 
6942 	err = btrfs_init_inode_security(trans, inode, dir);
6943 	if (err) {
6944 		drop_inode = 1;
6945 		goto out_unlock;
6946 	}
6947 
6948 	btrfs_set_trans_block_group(trans, inode);
6949 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6950 	if (err)
6951 		drop_inode = 1;
6952 	else {
6953 		inode->i_mapping->a_ops = &btrfs_aops;
6954 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6955 		inode->i_fop = &btrfs_file_operations;
6956 		inode->i_op = &btrfs_file_inode_operations;
6957 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6958 	}
6959 	btrfs_update_inode_block_group(trans, inode);
6960 	btrfs_update_inode_block_group(trans, dir);
6961 	if (drop_inode)
6962 		goto out_unlock;
6963 
6964 	path = btrfs_alloc_path();
6965 	BUG_ON(!path);
6966 	key.objectid = inode->i_ino;
6967 	key.offset = 0;
6968 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6969 	datasize = btrfs_file_extent_calc_inline_size(name_len);
6970 	err = btrfs_insert_empty_item(trans, root, path, &key,
6971 				      datasize);
6972 	if (err) {
6973 		drop_inode = 1;
6974 		goto out_unlock;
6975 	}
6976 	leaf = path->nodes[0];
6977 	ei = btrfs_item_ptr(leaf, path->slots[0],
6978 			    struct btrfs_file_extent_item);
6979 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6980 	btrfs_set_file_extent_type(leaf, ei,
6981 				   BTRFS_FILE_EXTENT_INLINE);
6982 	btrfs_set_file_extent_encryption(leaf, ei, 0);
6983 	btrfs_set_file_extent_compression(leaf, ei, 0);
6984 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6985 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6986 
6987 	ptr = btrfs_file_extent_inline_start(ei);
6988 	write_extent_buffer(leaf, symname, ptr, name_len);
6989 	btrfs_mark_buffer_dirty(leaf);
6990 	btrfs_free_path(path);
6991 
6992 	inode->i_op = &btrfs_symlink_inode_operations;
6993 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
6994 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6995 	inode_set_bytes(inode, name_len);
6996 	btrfs_i_size_write(inode, name_len - 1);
6997 	err = btrfs_update_inode(trans, root, inode);
6998 	if (err)
6999 		drop_inode = 1;
7000 
7001 out_unlock:
7002 	nr = trans->blocks_used;
7003 	btrfs_end_transaction_throttle(trans, root);
7004 	if (drop_inode) {
7005 		inode_dec_link_count(inode);
7006 		iput(inode);
7007 	}
7008 	btrfs_btree_balance_dirty(root, nr);
7009 	return err;
7010 }
7011 
7012 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7013 				       u64 start, u64 num_bytes, u64 min_size,
7014 				       loff_t actual_len, u64 *alloc_hint,
7015 				       struct btrfs_trans_handle *trans)
7016 {
7017 	struct btrfs_root *root = BTRFS_I(inode)->root;
7018 	struct btrfs_key ins;
7019 	u64 cur_offset = start;
7020 	u64 i_size;
7021 	int ret = 0;
7022 	bool own_trans = true;
7023 
7024 	if (trans)
7025 		own_trans = false;
7026 	while (num_bytes > 0) {
7027 		if (own_trans) {
7028 			trans = btrfs_start_transaction(root, 3);
7029 			if (IS_ERR(trans)) {
7030 				ret = PTR_ERR(trans);
7031 				break;
7032 			}
7033 		}
7034 
7035 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7036 					   0, *alloc_hint, (u64)-1, &ins, 1);
7037 		if (ret) {
7038 			if (own_trans)
7039 				btrfs_end_transaction(trans, root);
7040 			break;
7041 		}
7042 
7043 		ret = insert_reserved_file_extent(trans, inode,
7044 						  cur_offset, ins.objectid,
7045 						  ins.offset, ins.offset,
7046 						  ins.offset, 0, 0, 0,
7047 						  BTRFS_FILE_EXTENT_PREALLOC);
7048 		BUG_ON(ret);
7049 		btrfs_drop_extent_cache(inode, cur_offset,
7050 					cur_offset + ins.offset -1, 0);
7051 
7052 		num_bytes -= ins.offset;
7053 		cur_offset += ins.offset;
7054 		*alloc_hint = ins.objectid + ins.offset;
7055 
7056 		inode->i_ctime = CURRENT_TIME;
7057 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7058 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7059 		    (actual_len > inode->i_size) &&
7060 		    (cur_offset > inode->i_size)) {
7061 			if (cur_offset > actual_len)
7062 				i_size = actual_len;
7063 			else
7064 				i_size = cur_offset;
7065 			i_size_write(inode, i_size);
7066 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7067 		}
7068 
7069 		ret = btrfs_update_inode(trans, root, inode);
7070 		BUG_ON(ret);
7071 
7072 		if (own_trans)
7073 			btrfs_end_transaction(trans, root);
7074 	}
7075 	return ret;
7076 }
7077 
7078 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7079 			      u64 start, u64 num_bytes, u64 min_size,
7080 			      loff_t actual_len, u64 *alloc_hint)
7081 {
7082 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7083 					   min_size, actual_len, alloc_hint,
7084 					   NULL);
7085 }
7086 
7087 int btrfs_prealloc_file_range_trans(struct inode *inode,
7088 				    struct btrfs_trans_handle *trans, int mode,
7089 				    u64 start, u64 num_bytes, u64 min_size,
7090 				    loff_t actual_len, u64 *alloc_hint)
7091 {
7092 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7093 					   min_size, actual_len, alloc_hint, trans);
7094 }
7095 
7096 static long btrfs_fallocate(struct inode *inode, int mode,
7097 			    loff_t offset, loff_t len)
7098 {
7099 	struct extent_state *cached_state = NULL;
7100 	u64 cur_offset;
7101 	u64 last_byte;
7102 	u64 alloc_start;
7103 	u64 alloc_end;
7104 	u64 alloc_hint = 0;
7105 	u64 locked_end;
7106 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
7107 	struct extent_map *em;
7108 	int ret;
7109 
7110 	alloc_start = offset & ~mask;
7111 	alloc_end =  (offset + len + mask) & ~mask;
7112 
7113 	/*
7114 	 * wait for ordered IO before we have any locks.  We'll loop again
7115 	 * below with the locks held.
7116 	 */
7117 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
7118 
7119 	mutex_lock(&inode->i_mutex);
7120 	ret = inode_newsize_ok(inode, alloc_end);
7121 	if (ret)
7122 		goto out;
7123 
7124 	if (alloc_start > inode->i_size) {
7125 		ret = btrfs_cont_expand(inode, alloc_start);
7126 		if (ret)
7127 			goto out;
7128 	}
7129 
7130 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
7131 	if (ret)
7132 		goto out;
7133 
7134 	locked_end = alloc_end - 1;
7135 	while (1) {
7136 		struct btrfs_ordered_extent *ordered;
7137 
7138 		/* the extent lock is ordered inside the running
7139 		 * transaction
7140 		 */
7141 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
7142 				 locked_end, 0, &cached_state, GFP_NOFS);
7143 		ordered = btrfs_lookup_first_ordered_extent(inode,
7144 							    alloc_end - 1);
7145 		if (ordered &&
7146 		    ordered->file_offset + ordered->len > alloc_start &&
7147 		    ordered->file_offset < alloc_end) {
7148 			btrfs_put_ordered_extent(ordered);
7149 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7150 					     alloc_start, locked_end,
7151 					     &cached_state, GFP_NOFS);
7152 			/*
7153 			 * we can't wait on the range with the transaction
7154 			 * running or with the extent lock held
7155 			 */
7156 			btrfs_wait_ordered_range(inode, alloc_start,
7157 						 alloc_end - alloc_start);
7158 		} else {
7159 			if (ordered)
7160 				btrfs_put_ordered_extent(ordered);
7161 			break;
7162 		}
7163 	}
7164 
7165 	cur_offset = alloc_start;
7166 	while (1) {
7167 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
7168 				      alloc_end - cur_offset, 0);
7169 		BUG_ON(IS_ERR(em) || !em);
7170 		last_byte = min(extent_map_end(em), alloc_end);
7171 		last_byte = (last_byte + mask) & ~mask;
7172 		if (em->block_start == EXTENT_MAP_HOLE ||
7173 		    (cur_offset >= inode->i_size &&
7174 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7175 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
7176 							last_byte - cur_offset,
7177 							1 << inode->i_blkbits,
7178 							offset + len,
7179 							&alloc_hint);
7180 			if (ret < 0) {
7181 				free_extent_map(em);
7182 				break;
7183 			}
7184 		}
7185 		free_extent_map(em);
7186 
7187 		cur_offset = last_byte;
7188 		if (cur_offset >= alloc_end) {
7189 			ret = 0;
7190 			break;
7191 		}
7192 	}
7193 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
7194 			     &cached_state, GFP_NOFS);
7195 
7196 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
7197 out:
7198 	mutex_unlock(&inode->i_mutex);
7199 	return ret;
7200 }
7201 
7202 static int btrfs_set_page_dirty(struct page *page)
7203 {
7204 	return __set_page_dirty_nobuffers(page);
7205 }
7206 
7207 static int btrfs_permission(struct inode *inode, int mask)
7208 {
7209 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7210 		return -EACCES;
7211 	return generic_permission(inode, mask, btrfs_check_acl);
7212 }
7213 
7214 static const struct inode_operations btrfs_dir_inode_operations = {
7215 	.getattr	= btrfs_getattr,
7216 	.lookup		= btrfs_lookup,
7217 	.create		= btrfs_create,
7218 	.unlink		= btrfs_unlink,
7219 	.link		= btrfs_link,
7220 	.mkdir		= btrfs_mkdir,
7221 	.rmdir		= btrfs_rmdir,
7222 	.rename		= btrfs_rename,
7223 	.symlink	= btrfs_symlink,
7224 	.setattr	= btrfs_setattr,
7225 	.mknod		= btrfs_mknod,
7226 	.setxattr	= btrfs_setxattr,
7227 	.getxattr	= btrfs_getxattr,
7228 	.listxattr	= btrfs_listxattr,
7229 	.removexattr	= btrfs_removexattr,
7230 	.permission	= btrfs_permission,
7231 };
7232 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7233 	.lookup		= btrfs_lookup,
7234 	.permission	= btrfs_permission,
7235 };
7236 
7237 static const struct file_operations btrfs_dir_file_operations = {
7238 	.llseek		= generic_file_llseek,
7239 	.read		= generic_read_dir,
7240 	.readdir	= btrfs_real_readdir,
7241 	.unlocked_ioctl	= btrfs_ioctl,
7242 #ifdef CONFIG_COMPAT
7243 	.compat_ioctl	= btrfs_ioctl,
7244 #endif
7245 	.release        = btrfs_release_file,
7246 	.fsync		= btrfs_sync_file,
7247 };
7248 
7249 static struct extent_io_ops btrfs_extent_io_ops = {
7250 	.fill_delalloc = run_delalloc_range,
7251 	.submit_bio_hook = btrfs_submit_bio_hook,
7252 	.merge_bio_hook = btrfs_merge_bio_hook,
7253 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7254 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7255 	.writepage_start_hook = btrfs_writepage_start_hook,
7256 	.readpage_io_failed_hook = btrfs_io_failed_hook,
7257 	.set_bit_hook = btrfs_set_bit_hook,
7258 	.clear_bit_hook = btrfs_clear_bit_hook,
7259 	.merge_extent_hook = btrfs_merge_extent_hook,
7260 	.split_extent_hook = btrfs_split_extent_hook,
7261 };
7262 
7263 /*
7264  * btrfs doesn't support the bmap operation because swapfiles
7265  * use bmap to make a mapping of extents in the file.  They assume
7266  * these extents won't change over the life of the file and they
7267  * use the bmap result to do IO directly to the drive.
7268  *
7269  * the btrfs bmap call would return logical addresses that aren't
7270  * suitable for IO and they also will change frequently as COW
7271  * operations happen.  So, swapfile + btrfs == corruption.
7272  *
7273  * For now we're avoiding this by dropping bmap.
7274  */
7275 static const struct address_space_operations btrfs_aops = {
7276 	.readpage	= btrfs_readpage,
7277 	.writepage	= btrfs_writepage,
7278 	.writepages	= btrfs_writepages,
7279 	.readpages	= btrfs_readpages,
7280 	.sync_page	= block_sync_page,
7281 	.direct_IO	= btrfs_direct_IO,
7282 	.invalidatepage = btrfs_invalidatepage,
7283 	.releasepage	= btrfs_releasepage,
7284 	.set_page_dirty	= btrfs_set_page_dirty,
7285 	.error_remove_page = generic_error_remove_page,
7286 };
7287 
7288 static const struct address_space_operations btrfs_symlink_aops = {
7289 	.readpage	= btrfs_readpage,
7290 	.writepage	= btrfs_writepage,
7291 	.invalidatepage = btrfs_invalidatepage,
7292 	.releasepage	= btrfs_releasepage,
7293 };
7294 
7295 static const struct inode_operations btrfs_file_inode_operations = {
7296 	.truncate	= btrfs_truncate,
7297 	.getattr	= btrfs_getattr,
7298 	.setattr	= btrfs_setattr,
7299 	.setxattr	= btrfs_setxattr,
7300 	.getxattr	= btrfs_getxattr,
7301 	.listxattr      = btrfs_listxattr,
7302 	.removexattr	= btrfs_removexattr,
7303 	.permission	= btrfs_permission,
7304 	.fallocate	= btrfs_fallocate,
7305 	.fiemap		= btrfs_fiemap,
7306 };
7307 static const struct inode_operations btrfs_special_inode_operations = {
7308 	.getattr	= btrfs_getattr,
7309 	.setattr	= btrfs_setattr,
7310 	.permission	= btrfs_permission,
7311 	.setxattr	= btrfs_setxattr,
7312 	.getxattr	= btrfs_getxattr,
7313 	.listxattr	= btrfs_listxattr,
7314 	.removexattr	= btrfs_removexattr,
7315 };
7316 static const struct inode_operations btrfs_symlink_inode_operations = {
7317 	.readlink	= generic_readlink,
7318 	.follow_link	= page_follow_link_light,
7319 	.put_link	= page_put_link,
7320 	.getattr	= btrfs_getattr,
7321 	.permission	= btrfs_permission,
7322 	.setxattr	= btrfs_setxattr,
7323 	.getxattr	= btrfs_getxattr,
7324 	.listxattr	= btrfs_listxattr,
7325 	.removexattr	= btrfs_removexattr,
7326 };
7327 
7328 const struct dentry_operations btrfs_dentry_operations = {
7329 	.d_delete	= btrfs_dentry_delete,
7330 };
7331