1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "compression.h" 52 #include "locking.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 static const struct inode_operations btrfs_dir_inode_operations; 60 static const struct inode_operations btrfs_symlink_inode_operations; 61 static const struct inode_operations btrfs_dir_ro_inode_operations; 62 static const struct inode_operations btrfs_special_inode_operations; 63 static const struct inode_operations btrfs_file_inode_operations; 64 static const struct address_space_operations btrfs_aops; 65 static const struct address_space_operations btrfs_symlink_aops; 66 static const struct file_operations btrfs_dir_file_operations; 67 static struct extent_io_ops btrfs_extent_io_ops; 68 69 static struct kmem_cache *btrfs_inode_cachep; 70 struct kmem_cache *btrfs_trans_handle_cachep; 71 struct kmem_cache *btrfs_transaction_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 74 #define S_SHIFT 12 75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 83 }; 84 85 static void btrfs_truncate(struct inode *inode); 86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 87 static noinline int cow_file_range(struct inode *inode, 88 struct page *locked_page, 89 u64 start, u64 end, int *page_started, 90 unsigned long *nr_written, int unlock); 91 92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 93 struct inode *inode, struct inode *dir) 94 { 95 int err; 96 97 err = btrfs_init_acl(trans, inode, dir); 98 if (!err) 99 err = btrfs_xattr_security_init(trans, inode, dir); 100 return err; 101 } 102 103 /* 104 * this does all the hard work for inserting an inline extent into 105 * the btree. The caller should have done a btrfs_drop_extents so that 106 * no overlapping inline items exist in the btree 107 */ 108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, struct inode *inode, 110 u64 start, size_t size, size_t compressed_size, 111 struct page **compressed_pages) 112 { 113 struct btrfs_key key; 114 struct btrfs_path *path; 115 struct extent_buffer *leaf; 116 struct page *page = NULL; 117 char *kaddr; 118 unsigned long ptr; 119 struct btrfs_file_extent_item *ei; 120 int err = 0; 121 int ret; 122 size_t cur_size = size; 123 size_t datasize; 124 unsigned long offset; 125 int use_compress = 0; 126 127 if (compressed_size && compressed_pages) { 128 use_compress = 1; 129 cur_size = compressed_size; 130 } 131 132 path = btrfs_alloc_path(); 133 if (!path) 134 return -ENOMEM; 135 136 path->leave_spinning = 1; 137 btrfs_set_trans_block_group(trans, inode); 138 139 key.objectid = inode->i_ino; 140 key.offset = start; 141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 142 datasize = btrfs_file_extent_calc_inline_size(cur_size); 143 144 inode_add_bytes(inode, size); 145 ret = btrfs_insert_empty_item(trans, root, path, &key, 146 datasize); 147 BUG_ON(ret); 148 if (ret) { 149 err = ret; 150 goto fail; 151 } 152 leaf = path->nodes[0]; 153 ei = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_file_extent_item); 155 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 157 btrfs_set_file_extent_encryption(leaf, ei, 0); 158 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 159 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 160 ptr = btrfs_file_extent_inline_start(ei); 161 162 if (use_compress) { 163 struct page *cpage; 164 int i = 0; 165 while (compressed_size > 0) { 166 cpage = compressed_pages[i]; 167 cur_size = min_t(unsigned long, compressed_size, 168 PAGE_CACHE_SIZE); 169 170 kaddr = kmap_atomic(cpage, KM_USER0); 171 write_extent_buffer(leaf, kaddr, ptr, cur_size); 172 kunmap_atomic(kaddr, KM_USER0); 173 174 i++; 175 ptr += cur_size; 176 compressed_size -= cur_size; 177 } 178 btrfs_set_file_extent_compression(leaf, ei, 179 BTRFS_COMPRESS_ZLIB); 180 } else { 181 page = find_get_page(inode->i_mapping, 182 start >> PAGE_CACHE_SHIFT); 183 btrfs_set_file_extent_compression(leaf, ei, 0); 184 kaddr = kmap_atomic(page, KM_USER0); 185 offset = start & (PAGE_CACHE_SIZE - 1); 186 write_extent_buffer(leaf, kaddr + offset, ptr, size); 187 kunmap_atomic(kaddr, KM_USER0); 188 page_cache_release(page); 189 } 190 btrfs_mark_buffer_dirty(leaf); 191 btrfs_free_path(path); 192 193 /* 194 * we're an inline extent, so nobody can 195 * extend the file past i_size without locking 196 * a page we already have locked. 197 * 198 * We must do any isize and inode updates 199 * before we unlock the pages. Otherwise we 200 * could end up racing with unlink. 201 */ 202 BTRFS_I(inode)->disk_i_size = inode->i_size; 203 btrfs_update_inode(trans, root, inode); 204 205 return 0; 206 fail: 207 btrfs_free_path(path); 208 return err; 209 } 210 211 212 /* 213 * conditionally insert an inline extent into the file. This 214 * does the checks required to make sure the data is small enough 215 * to fit as an inline extent. 216 */ 217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 218 struct btrfs_root *root, 219 struct inode *inode, u64 start, u64 end, 220 size_t compressed_size, 221 struct page **compressed_pages) 222 { 223 u64 isize = i_size_read(inode); 224 u64 actual_end = min(end + 1, isize); 225 u64 inline_len = actual_end - start; 226 u64 aligned_end = (end + root->sectorsize - 1) & 227 ~((u64)root->sectorsize - 1); 228 u64 hint_byte; 229 u64 data_len = inline_len; 230 int ret; 231 232 if (compressed_size) 233 data_len = compressed_size; 234 235 if (start > 0 || 236 actual_end >= PAGE_CACHE_SIZE || 237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 238 (!compressed_size && 239 (actual_end & (root->sectorsize - 1)) == 0) || 240 end + 1 < isize || 241 data_len > root->fs_info->max_inline) { 242 return 1; 243 } 244 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 246 &hint_byte, 1); 247 BUG_ON(ret); 248 249 if (isize > actual_end) 250 inline_len = min_t(u64, isize, actual_end); 251 ret = insert_inline_extent(trans, root, inode, start, 252 inline_len, compressed_size, 253 compressed_pages); 254 BUG_ON(ret); 255 btrfs_delalloc_release_metadata(inode, end + 1 - start); 256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 257 return 0; 258 } 259 260 struct async_extent { 261 u64 start; 262 u64 ram_size; 263 u64 compressed_size; 264 struct page **pages; 265 unsigned long nr_pages; 266 struct list_head list; 267 }; 268 269 struct async_cow { 270 struct inode *inode; 271 struct btrfs_root *root; 272 struct page *locked_page; 273 u64 start; 274 u64 end; 275 struct list_head extents; 276 struct btrfs_work work; 277 }; 278 279 static noinline int add_async_extent(struct async_cow *cow, 280 u64 start, u64 ram_size, 281 u64 compressed_size, 282 struct page **pages, 283 unsigned long nr_pages) 284 { 285 struct async_extent *async_extent; 286 287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 288 async_extent->start = start; 289 async_extent->ram_size = ram_size; 290 async_extent->compressed_size = compressed_size; 291 async_extent->pages = pages; 292 async_extent->nr_pages = nr_pages; 293 list_add_tail(&async_extent->list, &cow->extents); 294 return 0; 295 } 296 297 /* 298 * we create compressed extents in two phases. The first 299 * phase compresses a range of pages that have already been 300 * locked (both pages and state bits are locked). 301 * 302 * This is done inside an ordered work queue, and the compression 303 * is spread across many cpus. The actual IO submission is step 304 * two, and the ordered work queue takes care of making sure that 305 * happens in the same order things were put onto the queue by 306 * writepages and friends. 307 * 308 * If this code finds it can't get good compression, it puts an 309 * entry onto the work queue to write the uncompressed bytes. This 310 * makes sure that both compressed inodes and uncompressed inodes 311 * are written in the same order that pdflush sent them down. 312 */ 313 static noinline int compress_file_range(struct inode *inode, 314 struct page *locked_page, 315 u64 start, u64 end, 316 struct async_cow *async_cow, 317 int *num_added) 318 { 319 struct btrfs_root *root = BTRFS_I(inode)->root; 320 struct btrfs_trans_handle *trans; 321 u64 num_bytes; 322 u64 blocksize = root->sectorsize; 323 u64 actual_end; 324 u64 isize = i_size_read(inode); 325 int ret = 0; 326 struct page **pages = NULL; 327 unsigned long nr_pages; 328 unsigned long nr_pages_ret = 0; 329 unsigned long total_compressed = 0; 330 unsigned long total_in = 0; 331 unsigned long max_compressed = 128 * 1024; 332 unsigned long max_uncompressed = 128 * 1024; 333 int i; 334 int will_compress; 335 336 actual_end = min_t(u64, isize, end + 1); 337 again: 338 will_compress = 0; 339 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 340 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 341 342 /* 343 * we don't want to send crud past the end of i_size through 344 * compression, that's just a waste of CPU time. So, if the 345 * end of the file is before the start of our current 346 * requested range of bytes, we bail out to the uncompressed 347 * cleanup code that can deal with all of this. 348 * 349 * It isn't really the fastest way to fix things, but this is a 350 * very uncommon corner. 351 */ 352 if (actual_end <= start) 353 goto cleanup_and_bail_uncompressed; 354 355 total_compressed = actual_end - start; 356 357 /* we want to make sure that amount of ram required to uncompress 358 * an extent is reasonable, so we limit the total size in ram 359 * of a compressed extent to 128k. This is a crucial number 360 * because it also controls how easily we can spread reads across 361 * cpus for decompression. 362 * 363 * We also want to make sure the amount of IO required to do 364 * a random read is reasonably small, so we limit the size of 365 * a compressed extent to 128k. 366 */ 367 total_compressed = min(total_compressed, max_uncompressed); 368 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 369 num_bytes = max(blocksize, num_bytes); 370 total_in = 0; 371 ret = 0; 372 373 /* 374 * we do compression for mount -o compress and when the 375 * inode has not been flagged as nocompress. This flag can 376 * change at any time if we discover bad compression ratios. 377 */ 378 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 379 (btrfs_test_opt(root, COMPRESS) || 380 (BTRFS_I(inode)->force_compress))) { 381 WARN_ON(pages); 382 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 383 384 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 385 total_compressed, pages, 386 nr_pages, &nr_pages_ret, 387 &total_in, 388 &total_compressed, 389 max_compressed); 390 391 if (!ret) { 392 unsigned long offset = total_compressed & 393 (PAGE_CACHE_SIZE - 1); 394 struct page *page = pages[nr_pages_ret - 1]; 395 char *kaddr; 396 397 /* zero the tail end of the last page, we might be 398 * sending it down to disk 399 */ 400 if (offset) { 401 kaddr = kmap_atomic(page, KM_USER0); 402 memset(kaddr + offset, 0, 403 PAGE_CACHE_SIZE - offset); 404 kunmap_atomic(kaddr, KM_USER0); 405 } 406 will_compress = 1; 407 } 408 } 409 if (start == 0) { 410 trans = btrfs_join_transaction(root, 1); 411 BUG_ON(!trans); 412 btrfs_set_trans_block_group(trans, inode); 413 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 414 415 /* lets try to make an inline extent */ 416 if (ret || total_in < (actual_end - start)) { 417 /* we didn't compress the entire range, try 418 * to make an uncompressed inline extent. 419 */ 420 ret = cow_file_range_inline(trans, root, inode, 421 start, end, 0, NULL); 422 } else { 423 /* try making a compressed inline extent */ 424 ret = cow_file_range_inline(trans, root, inode, 425 start, end, 426 total_compressed, pages); 427 } 428 if (ret == 0) { 429 /* 430 * inline extent creation worked, we don't need 431 * to create any more async work items. Unlock 432 * and free up our temp pages. 433 */ 434 extent_clear_unlock_delalloc(inode, 435 &BTRFS_I(inode)->io_tree, 436 start, end, NULL, 437 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 438 EXTENT_CLEAR_DELALLOC | 439 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 440 441 btrfs_end_transaction(trans, root); 442 goto free_pages_out; 443 } 444 btrfs_end_transaction(trans, root); 445 } 446 447 if (will_compress) { 448 /* 449 * we aren't doing an inline extent round the compressed size 450 * up to a block size boundary so the allocator does sane 451 * things 452 */ 453 total_compressed = (total_compressed + blocksize - 1) & 454 ~(blocksize - 1); 455 456 /* 457 * one last check to make sure the compression is really a 458 * win, compare the page count read with the blocks on disk 459 */ 460 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 461 ~(PAGE_CACHE_SIZE - 1); 462 if (total_compressed >= total_in) { 463 will_compress = 0; 464 } else { 465 num_bytes = total_in; 466 } 467 } 468 if (!will_compress && pages) { 469 /* 470 * the compression code ran but failed to make things smaller, 471 * free any pages it allocated and our page pointer array 472 */ 473 for (i = 0; i < nr_pages_ret; i++) { 474 WARN_ON(pages[i]->mapping); 475 page_cache_release(pages[i]); 476 } 477 kfree(pages); 478 pages = NULL; 479 total_compressed = 0; 480 nr_pages_ret = 0; 481 482 /* flag the file so we don't compress in the future */ 483 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 484 !(BTRFS_I(inode)->force_compress)) { 485 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 486 } 487 } 488 if (will_compress) { 489 *num_added += 1; 490 491 /* the async work queues will take care of doing actual 492 * allocation on disk for these compressed pages, 493 * and will submit them to the elevator. 494 */ 495 add_async_extent(async_cow, start, num_bytes, 496 total_compressed, pages, nr_pages_ret); 497 498 if (start + num_bytes < end) { 499 start += num_bytes; 500 pages = NULL; 501 cond_resched(); 502 goto again; 503 } 504 } else { 505 cleanup_and_bail_uncompressed: 506 /* 507 * No compression, but we still need to write the pages in 508 * the file we've been given so far. redirty the locked 509 * page if it corresponds to our extent and set things up 510 * for the async work queue to run cow_file_range to do 511 * the normal delalloc dance 512 */ 513 if (page_offset(locked_page) >= start && 514 page_offset(locked_page) <= end) { 515 __set_page_dirty_nobuffers(locked_page); 516 /* unlocked later on in the async handlers */ 517 } 518 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 519 *num_added += 1; 520 } 521 522 out: 523 return 0; 524 525 free_pages_out: 526 for (i = 0; i < nr_pages_ret; i++) { 527 WARN_ON(pages[i]->mapping); 528 page_cache_release(pages[i]); 529 } 530 kfree(pages); 531 532 goto out; 533 } 534 535 /* 536 * phase two of compressed writeback. This is the ordered portion 537 * of the code, which only gets called in the order the work was 538 * queued. We walk all the async extents created by compress_file_range 539 * and send them down to the disk. 540 */ 541 static noinline int submit_compressed_extents(struct inode *inode, 542 struct async_cow *async_cow) 543 { 544 struct async_extent *async_extent; 545 u64 alloc_hint = 0; 546 struct btrfs_trans_handle *trans; 547 struct btrfs_key ins; 548 struct extent_map *em; 549 struct btrfs_root *root = BTRFS_I(inode)->root; 550 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 551 struct extent_io_tree *io_tree; 552 int ret = 0; 553 554 if (list_empty(&async_cow->extents)) 555 return 0; 556 557 558 while (!list_empty(&async_cow->extents)) { 559 async_extent = list_entry(async_cow->extents.next, 560 struct async_extent, list); 561 list_del(&async_extent->list); 562 563 io_tree = &BTRFS_I(inode)->io_tree; 564 565 retry: 566 /* did the compression code fall back to uncompressed IO? */ 567 if (!async_extent->pages) { 568 int page_started = 0; 569 unsigned long nr_written = 0; 570 571 lock_extent(io_tree, async_extent->start, 572 async_extent->start + 573 async_extent->ram_size - 1, GFP_NOFS); 574 575 /* allocate blocks */ 576 ret = cow_file_range(inode, async_cow->locked_page, 577 async_extent->start, 578 async_extent->start + 579 async_extent->ram_size - 1, 580 &page_started, &nr_written, 0); 581 582 /* 583 * if page_started, cow_file_range inserted an 584 * inline extent and took care of all the unlocking 585 * and IO for us. Otherwise, we need to submit 586 * all those pages down to the drive. 587 */ 588 if (!page_started && !ret) 589 extent_write_locked_range(io_tree, 590 inode, async_extent->start, 591 async_extent->start + 592 async_extent->ram_size - 1, 593 btrfs_get_extent, 594 WB_SYNC_ALL); 595 kfree(async_extent); 596 cond_resched(); 597 continue; 598 } 599 600 lock_extent(io_tree, async_extent->start, 601 async_extent->start + async_extent->ram_size - 1, 602 GFP_NOFS); 603 604 trans = btrfs_join_transaction(root, 1); 605 ret = btrfs_reserve_extent(trans, root, 606 async_extent->compressed_size, 607 async_extent->compressed_size, 608 0, alloc_hint, 609 (u64)-1, &ins, 1); 610 btrfs_end_transaction(trans, root); 611 612 if (ret) { 613 int i; 614 for (i = 0; i < async_extent->nr_pages; i++) { 615 WARN_ON(async_extent->pages[i]->mapping); 616 page_cache_release(async_extent->pages[i]); 617 } 618 kfree(async_extent->pages); 619 async_extent->nr_pages = 0; 620 async_extent->pages = NULL; 621 unlock_extent(io_tree, async_extent->start, 622 async_extent->start + 623 async_extent->ram_size - 1, GFP_NOFS); 624 goto retry; 625 } 626 627 /* 628 * here we're doing allocation and writeback of the 629 * compressed pages 630 */ 631 btrfs_drop_extent_cache(inode, async_extent->start, 632 async_extent->start + 633 async_extent->ram_size - 1, 0); 634 635 em = alloc_extent_map(GFP_NOFS); 636 em->start = async_extent->start; 637 em->len = async_extent->ram_size; 638 em->orig_start = em->start; 639 640 em->block_start = ins.objectid; 641 em->block_len = ins.offset; 642 em->bdev = root->fs_info->fs_devices->latest_bdev; 643 set_bit(EXTENT_FLAG_PINNED, &em->flags); 644 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 645 646 while (1) { 647 write_lock(&em_tree->lock); 648 ret = add_extent_mapping(em_tree, em); 649 write_unlock(&em_tree->lock); 650 if (ret != -EEXIST) { 651 free_extent_map(em); 652 break; 653 } 654 btrfs_drop_extent_cache(inode, async_extent->start, 655 async_extent->start + 656 async_extent->ram_size - 1, 0); 657 } 658 659 ret = btrfs_add_ordered_extent(inode, async_extent->start, 660 ins.objectid, 661 async_extent->ram_size, 662 ins.offset, 663 BTRFS_ORDERED_COMPRESSED); 664 BUG_ON(ret); 665 666 /* 667 * clear dirty, set writeback and unlock the pages. 668 */ 669 extent_clear_unlock_delalloc(inode, 670 &BTRFS_I(inode)->io_tree, 671 async_extent->start, 672 async_extent->start + 673 async_extent->ram_size - 1, 674 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 675 EXTENT_CLEAR_UNLOCK | 676 EXTENT_CLEAR_DELALLOC | 677 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 678 679 ret = btrfs_submit_compressed_write(inode, 680 async_extent->start, 681 async_extent->ram_size, 682 ins.objectid, 683 ins.offset, async_extent->pages, 684 async_extent->nr_pages); 685 686 BUG_ON(ret); 687 alloc_hint = ins.objectid + ins.offset; 688 kfree(async_extent); 689 cond_resched(); 690 } 691 692 return 0; 693 } 694 695 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 696 u64 num_bytes) 697 { 698 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 699 struct extent_map *em; 700 u64 alloc_hint = 0; 701 702 read_lock(&em_tree->lock); 703 em = search_extent_mapping(em_tree, start, num_bytes); 704 if (em) { 705 /* 706 * if block start isn't an actual block number then find the 707 * first block in this inode and use that as a hint. If that 708 * block is also bogus then just don't worry about it. 709 */ 710 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 711 free_extent_map(em); 712 em = search_extent_mapping(em_tree, 0, 0); 713 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 714 alloc_hint = em->block_start; 715 if (em) 716 free_extent_map(em); 717 } else { 718 alloc_hint = em->block_start; 719 free_extent_map(em); 720 } 721 } 722 read_unlock(&em_tree->lock); 723 724 return alloc_hint; 725 } 726 727 /* 728 * when extent_io.c finds a delayed allocation range in the file, 729 * the call backs end up in this code. The basic idea is to 730 * allocate extents on disk for the range, and create ordered data structs 731 * in ram to track those extents. 732 * 733 * locked_page is the page that writepage had locked already. We use 734 * it to make sure we don't do extra locks or unlocks. 735 * 736 * *page_started is set to one if we unlock locked_page and do everything 737 * required to start IO on it. It may be clean and already done with 738 * IO when we return. 739 */ 740 static noinline int cow_file_range(struct inode *inode, 741 struct page *locked_page, 742 u64 start, u64 end, int *page_started, 743 unsigned long *nr_written, 744 int unlock) 745 { 746 struct btrfs_root *root = BTRFS_I(inode)->root; 747 struct btrfs_trans_handle *trans; 748 u64 alloc_hint = 0; 749 u64 num_bytes; 750 unsigned long ram_size; 751 u64 disk_num_bytes; 752 u64 cur_alloc_size; 753 u64 blocksize = root->sectorsize; 754 struct btrfs_key ins; 755 struct extent_map *em; 756 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 757 int ret = 0; 758 759 BUG_ON(root == root->fs_info->tree_root); 760 trans = btrfs_join_transaction(root, 1); 761 BUG_ON(!trans); 762 btrfs_set_trans_block_group(trans, inode); 763 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 764 765 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 766 num_bytes = max(blocksize, num_bytes); 767 disk_num_bytes = num_bytes; 768 ret = 0; 769 770 if (start == 0) { 771 /* lets try to make an inline extent */ 772 ret = cow_file_range_inline(trans, root, inode, 773 start, end, 0, NULL); 774 if (ret == 0) { 775 extent_clear_unlock_delalloc(inode, 776 &BTRFS_I(inode)->io_tree, 777 start, end, NULL, 778 EXTENT_CLEAR_UNLOCK_PAGE | 779 EXTENT_CLEAR_UNLOCK | 780 EXTENT_CLEAR_DELALLOC | 781 EXTENT_CLEAR_DIRTY | 782 EXTENT_SET_WRITEBACK | 783 EXTENT_END_WRITEBACK); 784 785 *nr_written = *nr_written + 786 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 787 *page_started = 1; 788 ret = 0; 789 goto out; 790 } 791 } 792 793 BUG_ON(disk_num_bytes > 794 btrfs_super_total_bytes(&root->fs_info->super_copy)); 795 796 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 797 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 798 799 while (disk_num_bytes > 0) { 800 unsigned long op; 801 802 cur_alloc_size = disk_num_bytes; 803 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 804 root->sectorsize, 0, alloc_hint, 805 (u64)-1, &ins, 1); 806 BUG_ON(ret); 807 808 em = alloc_extent_map(GFP_NOFS); 809 em->start = start; 810 em->orig_start = em->start; 811 ram_size = ins.offset; 812 em->len = ins.offset; 813 814 em->block_start = ins.objectid; 815 em->block_len = ins.offset; 816 em->bdev = root->fs_info->fs_devices->latest_bdev; 817 set_bit(EXTENT_FLAG_PINNED, &em->flags); 818 819 while (1) { 820 write_lock(&em_tree->lock); 821 ret = add_extent_mapping(em_tree, em); 822 write_unlock(&em_tree->lock); 823 if (ret != -EEXIST) { 824 free_extent_map(em); 825 break; 826 } 827 btrfs_drop_extent_cache(inode, start, 828 start + ram_size - 1, 0); 829 } 830 831 cur_alloc_size = ins.offset; 832 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 833 ram_size, cur_alloc_size, 0); 834 BUG_ON(ret); 835 836 if (root->root_key.objectid == 837 BTRFS_DATA_RELOC_TREE_OBJECTID) { 838 ret = btrfs_reloc_clone_csums(inode, start, 839 cur_alloc_size); 840 BUG_ON(ret); 841 } 842 843 if (disk_num_bytes < cur_alloc_size) 844 break; 845 846 /* we're not doing compressed IO, don't unlock the first 847 * page (which the caller expects to stay locked), don't 848 * clear any dirty bits and don't set any writeback bits 849 * 850 * Do set the Private2 bit so we know this page was properly 851 * setup for writepage 852 */ 853 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 854 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 855 EXTENT_SET_PRIVATE2; 856 857 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 858 start, start + ram_size - 1, 859 locked_page, op); 860 disk_num_bytes -= cur_alloc_size; 861 num_bytes -= cur_alloc_size; 862 alloc_hint = ins.objectid + ins.offset; 863 start += cur_alloc_size; 864 } 865 out: 866 ret = 0; 867 btrfs_end_transaction(trans, root); 868 869 return ret; 870 } 871 872 /* 873 * work queue call back to started compression on a file and pages 874 */ 875 static noinline void async_cow_start(struct btrfs_work *work) 876 { 877 struct async_cow *async_cow; 878 int num_added = 0; 879 async_cow = container_of(work, struct async_cow, work); 880 881 compress_file_range(async_cow->inode, async_cow->locked_page, 882 async_cow->start, async_cow->end, async_cow, 883 &num_added); 884 if (num_added == 0) 885 async_cow->inode = NULL; 886 } 887 888 /* 889 * work queue call back to submit previously compressed pages 890 */ 891 static noinline void async_cow_submit(struct btrfs_work *work) 892 { 893 struct async_cow *async_cow; 894 struct btrfs_root *root; 895 unsigned long nr_pages; 896 897 async_cow = container_of(work, struct async_cow, work); 898 899 root = async_cow->root; 900 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 901 PAGE_CACHE_SHIFT; 902 903 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 904 905 if (atomic_read(&root->fs_info->async_delalloc_pages) < 906 5 * 1042 * 1024 && 907 waitqueue_active(&root->fs_info->async_submit_wait)) 908 wake_up(&root->fs_info->async_submit_wait); 909 910 if (async_cow->inode) 911 submit_compressed_extents(async_cow->inode, async_cow); 912 } 913 914 static noinline void async_cow_free(struct btrfs_work *work) 915 { 916 struct async_cow *async_cow; 917 async_cow = container_of(work, struct async_cow, work); 918 kfree(async_cow); 919 } 920 921 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 922 u64 start, u64 end, int *page_started, 923 unsigned long *nr_written) 924 { 925 struct async_cow *async_cow; 926 struct btrfs_root *root = BTRFS_I(inode)->root; 927 unsigned long nr_pages; 928 u64 cur_end; 929 int limit = 10 * 1024 * 1042; 930 931 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 932 1, 0, NULL, GFP_NOFS); 933 while (start < end) { 934 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 935 async_cow->inode = inode; 936 async_cow->root = root; 937 async_cow->locked_page = locked_page; 938 async_cow->start = start; 939 940 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 941 cur_end = end; 942 else 943 cur_end = min(end, start + 512 * 1024 - 1); 944 945 async_cow->end = cur_end; 946 INIT_LIST_HEAD(&async_cow->extents); 947 948 async_cow->work.func = async_cow_start; 949 async_cow->work.ordered_func = async_cow_submit; 950 async_cow->work.ordered_free = async_cow_free; 951 async_cow->work.flags = 0; 952 953 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 954 PAGE_CACHE_SHIFT; 955 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 956 957 btrfs_queue_worker(&root->fs_info->delalloc_workers, 958 &async_cow->work); 959 960 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 961 wait_event(root->fs_info->async_submit_wait, 962 (atomic_read(&root->fs_info->async_delalloc_pages) < 963 limit)); 964 } 965 966 while (atomic_read(&root->fs_info->async_submit_draining) && 967 atomic_read(&root->fs_info->async_delalloc_pages)) { 968 wait_event(root->fs_info->async_submit_wait, 969 (atomic_read(&root->fs_info->async_delalloc_pages) == 970 0)); 971 } 972 973 *nr_written += nr_pages; 974 start = cur_end + 1; 975 } 976 *page_started = 1; 977 return 0; 978 } 979 980 static noinline int csum_exist_in_range(struct btrfs_root *root, 981 u64 bytenr, u64 num_bytes) 982 { 983 int ret; 984 struct btrfs_ordered_sum *sums; 985 LIST_HEAD(list); 986 987 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 988 bytenr + num_bytes - 1, &list); 989 if (ret == 0 && list_empty(&list)) 990 return 0; 991 992 while (!list_empty(&list)) { 993 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 994 list_del(&sums->list); 995 kfree(sums); 996 } 997 return 1; 998 } 999 1000 /* 1001 * when nowcow writeback call back. This checks for snapshots or COW copies 1002 * of the extents that exist in the file, and COWs the file as required. 1003 * 1004 * If no cow copies or snapshots exist, we write directly to the existing 1005 * blocks on disk 1006 */ 1007 static noinline int run_delalloc_nocow(struct inode *inode, 1008 struct page *locked_page, 1009 u64 start, u64 end, int *page_started, int force, 1010 unsigned long *nr_written) 1011 { 1012 struct btrfs_root *root = BTRFS_I(inode)->root; 1013 struct btrfs_trans_handle *trans; 1014 struct extent_buffer *leaf; 1015 struct btrfs_path *path; 1016 struct btrfs_file_extent_item *fi; 1017 struct btrfs_key found_key; 1018 u64 cow_start; 1019 u64 cur_offset; 1020 u64 extent_end; 1021 u64 extent_offset; 1022 u64 disk_bytenr; 1023 u64 num_bytes; 1024 int extent_type; 1025 int ret; 1026 int type; 1027 int nocow; 1028 int check_prev = 1; 1029 bool nolock = false; 1030 1031 path = btrfs_alloc_path(); 1032 BUG_ON(!path); 1033 if (root == root->fs_info->tree_root) { 1034 nolock = true; 1035 trans = btrfs_join_transaction_nolock(root, 1); 1036 } else { 1037 trans = btrfs_join_transaction(root, 1); 1038 } 1039 BUG_ON(!trans); 1040 1041 cow_start = (u64)-1; 1042 cur_offset = start; 1043 while (1) { 1044 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 1045 cur_offset, 0); 1046 BUG_ON(ret < 0); 1047 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1048 leaf = path->nodes[0]; 1049 btrfs_item_key_to_cpu(leaf, &found_key, 1050 path->slots[0] - 1); 1051 if (found_key.objectid == inode->i_ino && 1052 found_key.type == BTRFS_EXTENT_DATA_KEY) 1053 path->slots[0]--; 1054 } 1055 check_prev = 0; 1056 next_slot: 1057 leaf = path->nodes[0]; 1058 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1059 ret = btrfs_next_leaf(root, path); 1060 if (ret < 0) 1061 BUG_ON(1); 1062 if (ret > 0) 1063 break; 1064 leaf = path->nodes[0]; 1065 } 1066 1067 nocow = 0; 1068 disk_bytenr = 0; 1069 num_bytes = 0; 1070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1071 1072 if (found_key.objectid > inode->i_ino || 1073 found_key.type > BTRFS_EXTENT_DATA_KEY || 1074 found_key.offset > end) 1075 break; 1076 1077 if (found_key.offset > cur_offset) { 1078 extent_end = found_key.offset; 1079 extent_type = 0; 1080 goto out_check; 1081 } 1082 1083 fi = btrfs_item_ptr(leaf, path->slots[0], 1084 struct btrfs_file_extent_item); 1085 extent_type = btrfs_file_extent_type(leaf, fi); 1086 1087 if (extent_type == BTRFS_FILE_EXTENT_REG || 1088 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1089 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1090 extent_offset = btrfs_file_extent_offset(leaf, fi); 1091 extent_end = found_key.offset + 1092 btrfs_file_extent_num_bytes(leaf, fi); 1093 if (extent_end <= start) { 1094 path->slots[0]++; 1095 goto next_slot; 1096 } 1097 if (disk_bytenr == 0) 1098 goto out_check; 1099 if (btrfs_file_extent_compression(leaf, fi) || 1100 btrfs_file_extent_encryption(leaf, fi) || 1101 btrfs_file_extent_other_encoding(leaf, fi)) 1102 goto out_check; 1103 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1104 goto out_check; 1105 if (btrfs_extent_readonly(root, disk_bytenr)) 1106 goto out_check; 1107 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1108 found_key.offset - 1109 extent_offset, disk_bytenr)) 1110 goto out_check; 1111 disk_bytenr += extent_offset; 1112 disk_bytenr += cur_offset - found_key.offset; 1113 num_bytes = min(end + 1, extent_end) - cur_offset; 1114 /* 1115 * force cow if csum exists in the range. 1116 * this ensure that csum for a given extent are 1117 * either valid or do not exist. 1118 */ 1119 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1120 goto out_check; 1121 nocow = 1; 1122 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1123 extent_end = found_key.offset + 1124 btrfs_file_extent_inline_len(leaf, fi); 1125 extent_end = ALIGN(extent_end, root->sectorsize); 1126 } else { 1127 BUG_ON(1); 1128 } 1129 out_check: 1130 if (extent_end <= start) { 1131 path->slots[0]++; 1132 goto next_slot; 1133 } 1134 if (!nocow) { 1135 if (cow_start == (u64)-1) 1136 cow_start = cur_offset; 1137 cur_offset = extent_end; 1138 if (cur_offset > end) 1139 break; 1140 path->slots[0]++; 1141 goto next_slot; 1142 } 1143 1144 btrfs_release_path(root, path); 1145 if (cow_start != (u64)-1) { 1146 ret = cow_file_range(inode, locked_page, cow_start, 1147 found_key.offset - 1, page_started, 1148 nr_written, 1); 1149 BUG_ON(ret); 1150 cow_start = (u64)-1; 1151 } 1152 1153 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1154 struct extent_map *em; 1155 struct extent_map_tree *em_tree; 1156 em_tree = &BTRFS_I(inode)->extent_tree; 1157 em = alloc_extent_map(GFP_NOFS); 1158 em->start = cur_offset; 1159 em->orig_start = em->start; 1160 em->len = num_bytes; 1161 em->block_len = num_bytes; 1162 em->block_start = disk_bytenr; 1163 em->bdev = root->fs_info->fs_devices->latest_bdev; 1164 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1165 while (1) { 1166 write_lock(&em_tree->lock); 1167 ret = add_extent_mapping(em_tree, em); 1168 write_unlock(&em_tree->lock); 1169 if (ret != -EEXIST) { 1170 free_extent_map(em); 1171 break; 1172 } 1173 btrfs_drop_extent_cache(inode, em->start, 1174 em->start + em->len - 1, 0); 1175 } 1176 type = BTRFS_ORDERED_PREALLOC; 1177 } else { 1178 type = BTRFS_ORDERED_NOCOW; 1179 } 1180 1181 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1182 num_bytes, num_bytes, type); 1183 BUG_ON(ret); 1184 1185 if (root->root_key.objectid == 1186 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1187 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1188 num_bytes); 1189 BUG_ON(ret); 1190 } 1191 1192 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1193 cur_offset, cur_offset + num_bytes - 1, 1194 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1195 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1196 EXTENT_SET_PRIVATE2); 1197 cur_offset = extent_end; 1198 if (cur_offset > end) 1199 break; 1200 } 1201 btrfs_release_path(root, path); 1202 1203 if (cur_offset <= end && cow_start == (u64)-1) 1204 cow_start = cur_offset; 1205 if (cow_start != (u64)-1) { 1206 ret = cow_file_range(inode, locked_page, cow_start, end, 1207 page_started, nr_written, 1); 1208 BUG_ON(ret); 1209 } 1210 1211 if (nolock) { 1212 ret = btrfs_end_transaction_nolock(trans, root); 1213 BUG_ON(ret); 1214 } else { 1215 ret = btrfs_end_transaction(trans, root); 1216 BUG_ON(ret); 1217 } 1218 btrfs_free_path(path); 1219 return 0; 1220 } 1221 1222 /* 1223 * extent_io.c call back to do delayed allocation processing 1224 */ 1225 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1226 u64 start, u64 end, int *page_started, 1227 unsigned long *nr_written) 1228 { 1229 int ret; 1230 struct btrfs_root *root = BTRFS_I(inode)->root; 1231 1232 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1233 ret = run_delalloc_nocow(inode, locked_page, start, end, 1234 page_started, 1, nr_written); 1235 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1236 ret = run_delalloc_nocow(inode, locked_page, start, end, 1237 page_started, 0, nr_written); 1238 else if (!btrfs_test_opt(root, COMPRESS) && 1239 !(BTRFS_I(inode)->force_compress)) 1240 ret = cow_file_range(inode, locked_page, start, end, 1241 page_started, nr_written, 1); 1242 else 1243 ret = cow_file_range_async(inode, locked_page, start, end, 1244 page_started, nr_written); 1245 return ret; 1246 } 1247 1248 static int btrfs_split_extent_hook(struct inode *inode, 1249 struct extent_state *orig, u64 split) 1250 { 1251 /* not delalloc, ignore it */ 1252 if (!(orig->state & EXTENT_DELALLOC)) 1253 return 0; 1254 1255 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1256 return 0; 1257 } 1258 1259 /* 1260 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1261 * extents so we can keep track of new extents that are just merged onto old 1262 * extents, such as when we are doing sequential writes, so we can properly 1263 * account for the metadata space we'll need. 1264 */ 1265 static int btrfs_merge_extent_hook(struct inode *inode, 1266 struct extent_state *new, 1267 struct extent_state *other) 1268 { 1269 /* not delalloc, ignore it */ 1270 if (!(other->state & EXTENT_DELALLOC)) 1271 return 0; 1272 1273 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1274 return 0; 1275 } 1276 1277 /* 1278 * extent_io.c set_bit_hook, used to track delayed allocation 1279 * bytes in this file, and to maintain the list of inodes that 1280 * have pending delalloc work to be done. 1281 */ 1282 static int btrfs_set_bit_hook(struct inode *inode, 1283 struct extent_state *state, int *bits) 1284 { 1285 1286 /* 1287 * set_bit and clear bit hooks normally require _irqsave/restore 1288 * but in this case, we are only testeing for the DELALLOC 1289 * bit, which is only set or cleared with irqs on 1290 */ 1291 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1292 struct btrfs_root *root = BTRFS_I(inode)->root; 1293 u64 len = state->end + 1 - state->start; 1294 int do_list = (root->root_key.objectid != 1295 BTRFS_ROOT_TREE_OBJECTID); 1296 1297 if (*bits & EXTENT_FIRST_DELALLOC) 1298 *bits &= ~EXTENT_FIRST_DELALLOC; 1299 else 1300 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1301 1302 spin_lock(&root->fs_info->delalloc_lock); 1303 BTRFS_I(inode)->delalloc_bytes += len; 1304 root->fs_info->delalloc_bytes += len; 1305 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1306 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1307 &root->fs_info->delalloc_inodes); 1308 } 1309 spin_unlock(&root->fs_info->delalloc_lock); 1310 } 1311 return 0; 1312 } 1313 1314 /* 1315 * extent_io.c clear_bit_hook, see set_bit_hook for why 1316 */ 1317 static int btrfs_clear_bit_hook(struct inode *inode, 1318 struct extent_state *state, int *bits) 1319 { 1320 /* 1321 * set_bit and clear bit hooks normally require _irqsave/restore 1322 * but in this case, we are only testeing for the DELALLOC 1323 * bit, which is only set or cleared with irqs on 1324 */ 1325 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1326 struct btrfs_root *root = BTRFS_I(inode)->root; 1327 u64 len = state->end + 1 - state->start; 1328 int do_list = (root->root_key.objectid != 1329 BTRFS_ROOT_TREE_OBJECTID); 1330 1331 if (*bits & EXTENT_FIRST_DELALLOC) 1332 *bits &= ~EXTENT_FIRST_DELALLOC; 1333 else if (!(*bits & EXTENT_DO_ACCOUNTING)) 1334 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1335 1336 if (*bits & EXTENT_DO_ACCOUNTING) 1337 btrfs_delalloc_release_metadata(inode, len); 1338 1339 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1340 && do_list) 1341 btrfs_free_reserved_data_space(inode, len); 1342 1343 spin_lock(&root->fs_info->delalloc_lock); 1344 root->fs_info->delalloc_bytes -= len; 1345 BTRFS_I(inode)->delalloc_bytes -= len; 1346 1347 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1348 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1349 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1350 } 1351 spin_unlock(&root->fs_info->delalloc_lock); 1352 } 1353 return 0; 1354 } 1355 1356 /* 1357 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1358 * we don't create bios that span stripes or chunks 1359 */ 1360 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1361 size_t size, struct bio *bio, 1362 unsigned long bio_flags) 1363 { 1364 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1365 struct btrfs_mapping_tree *map_tree; 1366 u64 logical = (u64)bio->bi_sector << 9; 1367 u64 length = 0; 1368 u64 map_length; 1369 int ret; 1370 1371 if (bio_flags & EXTENT_BIO_COMPRESSED) 1372 return 0; 1373 1374 length = bio->bi_size; 1375 map_tree = &root->fs_info->mapping_tree; 1376 map_length = length; 1377 ret = btrfs_map_block(map_tree, READ, logical, 1378 &map_length, NULL, 0); 1379 1380 if (map_length < length + size) 1381 return 1; 1382 return ret; 1383 } 1384 1385 /* 1386 * in order to insert checksums into the metadata in large chunks, 1387 * we wait until bio submission time. All the pages in the bio are 1388 * checksummed and sums are attached onto the ordered extent record. 1389 * 1390 * At IO completion time the cums attached on the ordered extent record 1391 * are inserted into the btree 1392 */ 1393 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1394 struct bio *bio, int mirror_num, 1395 unsigned long bio_flags, 1396 u64 bio_offset) 1397 { 1398 struct btrfs_root *root = BTRFS_I(inode)->root; 1399 int ret = 0; 1400 1401 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1402 BUG_ON(ret); 1403 return 0; 1404 } 1405 1406 /* 1407 * in order to insert checksums into the metadata in large chunks, 1408 * we wait until bio submission time. All the pages in the bio are 1409 * checksummed and sums are attached onto the ordered extent record. 1410 * 1411 * At IO completion time the cums attached on the ordered extent record 1412 * are inserted into the btree 1413 */ 1414 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1415 int mirror_num, unsigned long bio_flags, 1416 u64 bio_offset) 1417 { 1418 struct btrfs_root *root = BTRFS_I(inode)->root; 1419 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1420 } 1421 1422 /* 1423 * extent_io.c submission hook. This does the right thing for csum calculation 1424 * on write, or reading the csums from the tree before a read 1425 */ 1426 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1427 int mirror_num, unsigned long bio_flags, 1428 u64 bio_offset) 1429 { 1430 struct btrfs_root *root = BTRFS_I(inode)->root; 1431 int ret = 0; 1432 int skip_sum; 1433 1434 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1435 1436 if (root == root->fs_info->tree_root) 1437 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1438 else 1439 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1440 BUG_ON(ret); 1441 1442 if (!(rw & REQ_WRITE)) { 1443 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1444 return btrfs_submit_compressed_read(inode, bio, 1445 mirror_num, bio_flags); 1446 } else if (!skip_sum) 1447 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1448 goto mapit; 1449 } else if (!skip_sum) { 1450 /* csum items have already been cloned */ 1451 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1452 goto mapit; 1453 /* we're doing a write, do the async checksumming */ 1454 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1455 inode, rw, bio, mirror_num, 1456 bio_flags, bio_offset, 1457 __btrfs_submit_bio_start, 1458 __btrfs_submit_bio_done); 1459 } 1460 1461 mapit: 1462 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1463 } 1464 1465 /* 1466 * given a list of ordered sums record them in the inode. This happens 1467 * at IO completion time based on sums calculated at bio submission time. 1468 */ 1469 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1470 struct inode *inode, u64 file_offset, 1471 struct list_head *list) 1472 { 1473 struct btrfs_ordered_sum *sum; 1474 1475 btrfs_set_trans_block_group(trans, inode); 1476 1477 list_for_each_entry(sum, list, list) { 1478 btrfs_csum_file_blocks(trans, 1479 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1480 } 1481 return 0; 1482 } 1483 1484 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1485 struct extent_state **cached_state) 1486 { 1487 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1488 WARN_ON(1); 1489 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1490 cached_state, GFP_NOFS); 1491 } 1492 1493 /* see btrfs_writepage_start_hook for details on why this is required */ 1494 struct btrfs_writepage_fixup { 1495 struct page *page; 1496 struct btrfs_work work; 1497 }; 1498 1499 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1500 { 1501 struct btrfs_writepage_fixup *fixup; 1502 struct btrfs_ordered_extent *ordered; 1503 struct extent_state *cached_state = NULL; 1504 struct page *page; 1505 struct inode *inode; 1506 u64 page_start; 1507 u64 page_end; 1508 1509 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1510 page = fixup->page; 1511 again: 1512 lock_page(page); 1513 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1514 ClearPageChecked(page); 1515 goto out_page; 1516 } 1517 1518 inode = page->mapping->host; 1519 page_start = page_offset(page); 1520 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1521 1522 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1523 &cached_state, GFP_NOFS); 1524 1525 /* already ordered? We're done */ 1526 if (PagePrivate2(page)) 1527 goto out; 1528 1529 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1530 if (ordered) { 1531 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1532 page_end, &cached_state, GFP_NOFS); 1533 unlock_page(page); 1534 btrfs_start_ordered_extent(inode, ordered, 1); 1535 goto again; 1536 } 1537 1538 BUG(); 1539 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1540 ClearPageChecked(page); 1541 out: 1542 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1543 &cached_state, GFP_NOFS); 1544 out_page: 1545 unlock_page(page); 1546 page_cache_release(page); 1547 } 1548 1549 /* 1550 * There are a few paths in the higher layers of the kernel that directly 1551 * set the page dirty bit without asking the filesystem if it is a 1552 * good idea. This causes problems because we want to make sure COW 1553 * properly happens and the data=ordered rules are followed. 1554 * 1555 * In our case any range that doesn't have the ORDERED bit set 1556 * hasn't been properly setup for IO. We kick off an async process 1557 * to fix it up. The async helper will wait for ordered extents, set 1558 * the delalloc bit and make it safe to write the page. 1559 */ 1560 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1561 { 1562 struct inode *inode = page->mapping->host; 1563 struct btrfs_writepage_fixup *fixup; 1564 struct btrfs_root *root = BTRFS_I(inode)->root; 1565 1566 /* this page is properly in the ordered list */ 1567 if (TestClearPagePrivate2(page)) 1568 return 0; 1569 1570 if (PageChecked(page)) 1571 return -EAGAIN; 1572 1573 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1574 if (!fixup) 1575 return -EAGAIN; 1576 1577 SetPageChecked(page); 1578 page_cache_get(page); 1579 fixup->work.func = btrfs_writepage_fixup_worker; 1580 fixup->page = page; 1581 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1582 return -EAGAIN; 1583 } 1584 1585 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1586 struct inode *inode, u64 file_pos, 1587 u64 disk_bytenr, u64 disk_num_bytes, 1588 u64 num_bytes, u64 ram_bytes, 1589 u8 compression, u8 encryption, 1590 u16 other_encoding, int extent_type) 1591 { 1592 struct btrfs_root *root = BTRFS_I(inode)->root; 1593 struct btrfs_file_extent_item *fi; 1594 struct btrfs_path *path; 1595 struct extent_buffer *leaf; 1596 struct btrfs_key ins; 1597 u64 hint; 1598 int ret; 1599 1600 path = btrfs_alloc_path(); 1601 BUG_ON(!path); 1602 1603 path->leave_spinning = 1; 1604 1605 /* 1606 * we may be replacing one extent in the tree with another. 1607 * The new extent is pinned in the extent map, and we don't want 1608 * to drop it from the cache until it is completely in the btree. 1609 * 1610 * So, tell btrfs_drop_extents to leave this extent in the cache. 1611 * the caller is expected to unpin it and allow it to be merged 1612 * with the others. 1613 */ 1614 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1615 &hint, 0); 1616 BUG_ON(ret); 1617 1618 ins.objectid = inode->i_ino; 1619 ins.offset = file_pos; 1620 ins.type = BTRFS_EXTENT_DATA_KEY; 1621 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1622 BUG_ON(ret); 1623 leaf = path->nodes[0]; 1624 fi = btrfs_item_ptr(leaf, path->slots[0], 1625 struct btrfs_file_extent_item); 1626 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1627 btrfs_set_file_extent_type(leaf, fi, extent_type); 1628 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1629 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1630 btrfs_set_file_extent_offset(leaf, fi, 0); 1631 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1632 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1633 btrfs_set_file_extent_compression(leaf, fi, compression); 1634 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1635 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1636 1637 btrfs_unlock_up_safe(path, 1); 1638 btrfs_set_lock_blocking(leaf); 1639 1640 btrfs_mark_buffer_dirty(leaf); 1641 1642 inode_add_bytes(inode, num_bytes); 1643 1644 ins.objectid = disk_bytenr; 1645 ins.offset = disk_num_bytes; 1646 ins.type = BTRFS_EXTENT_ITEM_KEY; 1647 ret = btrfs_alloc_reserved_file_extent(trans, root, 1648 root->root_key.objectid, 1649 inode->i_ino, file_pos, &ins); 1650 BUG_ON(ret); 1651 btrfs_free_path(path); 1652 1653 return 0; 1654 } 1655 1656 /* 1657 * helper function for btrfs_finish_ordered_io, this 1658 * just reads in some of the csum leaves to prime them into ram 1659 * before we start the transaction. It limits the amount of btree 1660 * reads required while inside the transaction. 1661 */ 1662 /* as ordered data IO finishes, this gets called so we can finish 1663 * an ordered extent if the range of bytes in the file it covers are 1664 * fully written. 1665 */ 1666 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1667 { 1668 struct btrfs_root *root = BTRFS_I(inode)->root; 1669 struct btrfs_trans_handle *trans = NULL; 1670 struct btrfs_ordered_extent *ordered_extent = NULL; 1671 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1672 struct extent_state *cached_state = NULL; 1673 int compressed = 0; 1674 int ret; 1675 bool nolock = false; 1676 1677 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1678 end - start + 1); 1679 if (!ret) 1680 return 0; 1681 BUG_ON(!ordered_extent); 1682 1683 nolock = (root == root->fs_info->tree_root); 1684 1685 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1686 BUG_ON(!list_empty(&ordered_extent->list)); 1687 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1688 if (!ret) { 1689 if (nolock) 1690 trans = btrfs_join_transaction_nolock(root, 1); 1691 else 1692 trans = btrfs_join_transaction(root, 1); 1693 BUG_ON(!trans); 1694 btrfs_set_trans_block_group(trans, inode); 1695 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1696 ret = btrfs_update_inode(trans, root, inode); 1697 BUG_ON(ret); 1698 } 1699 goto out; 1700 } 1701 1702 lock_extent_bits(io_tree, ordered_extent->file_offset, 1703 ordered_extent->file_offset + ordered_extent->len - 1, 1704 0, &cached_state, GFP_NOFS); 1705 1706 if (nolock) 1707 trans = btrfs_join_transaction_nolock(root, 1); 1708 else 1709 trans = btrfs_join_transaction(root, 1); 1710 btrfs_set_trans_block_group(trans, inode); 1711 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1712 1713 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1714 compressed = 1; 1715 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1716 BUG_ON(compressed); 1717 ret = btrfs_mark_extent_written(trans, inode, 1718 ordered_extent->file_offset, 1719 ordered_extent->file_offset + 1720 ordered_extent->len); 1721 BUG_ON(ret); 1722 } else { 1723 BUG_ON(root == root->fs_info->tree_root); 1724 ret = insert_reserved_file_extent(trans, inode, 1725 ordered_extent->file_offset, 1726 ordered_extent->start, 1727 ordered_extent->disk_len, 1728 ordered_extent->len, 1729 ordered_extent->len, 1730 compressed, 0, 0, 1731 BTRFS_FILE_EXTENT_REG); 1732 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1733 ordered_extent->file_offset, 1734 ordered_extent->len); 1735 BUG_ON(ret); 1736 } 1737 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1738 ordered_extent->file_offset + 1739 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1740 1741 add_pending_csums(trans, inode, ordered_extent->file_offset, 1742 &ordered_extent->list); 1743 1744 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1745 ret = btrfs_update_inode(trans, root, inode); 1746 BUG_ON(ret); 1747 out: 1748 if (nolock) { 1749 if (trans) 1750 btrfs_end_transaction_nolock(trans, root); 1751 } else { 1752 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1753 if (trans) 1754 btrfs_end_transaction(trans, root); 1755 } 1756 1757 /* once for us */ 1758 btrfs_put_ordered_extent(ordered_extent); 1759 /* once for the tree */ 1760 btrfs_put_ordered_extent(ordered_extent); 1761 1762 return 0; 1763 } 1764 1765 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1766 struct extent_state *state, int uptodate) 1767 { 1768 ClearPagePrivate2(page); 1769 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1770 } 1771 1772 /* 1773 * When IO fails, either with EIO or csum verification fails, we 1774 * try other mirrors that might have a good copy of the data. This 1775 * io_failure_record is used to record state as we go through all the 1776 * mirrors. If another mirror has good data, the page is set up to date 1777 * and things continue. If a good mirror can't be found, the original 1778 * bio end_io callback is called to indicate things have failed. 1779 */ 1780 struct io_failure_record { 1781 struct page *page; 1782 u64 start; 1783 u64 len; 1784 u64 logical; 1785 unsigned long bio_flags; 1786 int last_mirror; 1787 }; 1788 1789 static int btrfs_io_failed_hook(struct bio *failed_bio, 1790 struct page *page, u64 start, u64 end, 1791 struct extent_state *state) 1792 { 1793 struct io_failure_record *failrec = NULL; 1794 u64 private; 1795 struct extent_map *em; 1796 struct inode *inode = page->mapping->host; 1797 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1798 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1799 struct bio *bio; 1800 int num_copies; 1801 int ret; 1802 int rw; 1803 u64 logical; 1804 1805 ret = get_state_private(failure_tree, start, &private); 1806 if (ret) { 1807 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1808 if (!failrec) 1809 return -ENOMEM; 1810 failrec->start = start; 1811 failrec->len = end - start + 1; 1812 failrec->last_mirror = 0; 1813 failrec->bio_flags = 0; 1814 1815 read_lock(&em_tree->lock); 1816 em = lookup_extent_mapping(em_tree, start, failrec->len); 1817 if (em->start > start || em->start + em->len < start) { 1818 free_extent_map(em); 1819 em = NULL; 1820 } 1821 read_unlock(&em_tree->lock); 1822 1823 if (!em || IS_ERR(em)) { 1824 kfree(failrec); 1825 return -EIO; 1826 } 1827 logical = start - em->start; 1828 logical = em->block_start + logical; 1829 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1830 logical = em->block_start; 1831 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1832 } 1833 failrec->logical = logical; 1834 free_extent_map(em); 1835 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1836 EXTENT_DIRTY, GFP_NOFS); 1837 set_state_private(failure_tree, start, 1838 (u64)(unsigned long)failrec); 1839 } else { 1840 failrec = (struct io_failure_record *)(unsigned long)private; 1841 } 1842 num_copies = btrfs_num_copies( 1843 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1844 failrec->logical, failrec->len); 1845 failrec->last_mirror++; 1846 if (!state) { 1847 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1848 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1849 failrec->start, 1850 EXTENT_LOCKED); 1851 if (state && state->start != failrec->start) 1852 state = NULL; 1853 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1854 } 1855 if (!state || failrec->last_mirror > num_copies) { 1856 set_state_private(failure_tree, failrec->start, 0); 1857 clear_extent_bits(failure_tree, failrec->start, 1858 failrec->start + failrec->len - 1, 1859 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1860 kfree(failrec); 1861 return -EIO; 1862 } 1863 bio = bio_alloc(GFP_NOFS, 1); 1864 bio->bi_private = state; 1865 bio->bi_end_io = failed_bio->bi_end_io; 1866 bio->bi_sector = failrec->logical >> 9; 1867 bio->bi_bdev = failed_bio->bi_bdev; 1868 bio->bi_size = 0; 1869 1870 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1871 if (failed_bio->bi_rw & REQ_WRITE) 1872 rw = WRITE; 1873 else 1874 rw = READ; 1875 1876 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1877 failrec->last_mirror, 1878 failrec->bio_flags, 0); 1879 return 0; 1880 } 1881 1882 /* 1883 * each time an IO finishes, we do a fast check in the IO failure tree 1884 * to see if we need to process or clean up an io_failure_record 1885 */ 1886 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1887 { 1888 u64 private; 1889 u64 private_failure; 1890 struct io_failure_record *failure; 1891 int ret; 1892 1893 private = 0; 1894 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1895 (u64)-1, 1, EXTENT_DIRTY)) { 1896 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1897 start, &private_failure); 1898 if (ret == 0) { 1899 failure = (struct io_failure_record *)(unsigned long) 1900 private_failure; 1901 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1902 failure->start, 0); 1903 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1904 failure->start, 1905 failure->start + failure->len - 1, 1906 EXTENT_DIRTY | EXTENT_LOCKED, 1907 GFP_NOFS); 1908 kfree(failure); 1909 } 1910 } 1911 return 0; 1912 } 1913 1914 /* 1915 * when reads are done, we need to check csums to verify the data is correct 1916 * if there's a match, we allow the bio to finish. If not, we go through 1917 * the io_failure_record routines to find good copies 1918 */ 1919 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1920 struct extent_state *state) 1921 { 1922 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1923 struct inode *inode = page->mapping->host; 1924 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1925 char *kaddr; 1926 u64 private = ~(u32)0; 1927 int ret; 1928 struct btrfs_root *root = BTRFS_I(inode)->root; 1929 u32 csum = ~(u32)0; 1930 1931 if (PageChecked(page)) { 1932 ClearPageChecked(page); 1933 goto good; 1934 } 1935 1936 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1937 return 0; 1938 1939 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1940 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1941 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1942 GFP_NOFS); 1943 return 0; 1944 } 1945 1946 if (state && state->start == start) { 1947 private = state->private; 1948 ret = 0; 1949 } else { 1950 ret = get_state_private(io_tree, start, &private); 1951 } 1952 kaddr = kmap_atomic(page, KM_USER0); 1953 if (ret) 1954 goto zeroit; 1955 1956 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1957 btrfs_csum_final(csum, (char *)&csum); 1958 if (csum != private) 1959 goto zeroit; 1960 1961 kunmap_atomic(kaddr, KM_USER0); 1962 good: 1963 /* if the io failure tree for this inode is non-empty, 1964 * check to see if we've recovered from a failed IO 1965 */ 1966 btrfs_clean_io_failures(inode, start); 1967 return 0; 1968 1969 zeroit: 1970 if (printk_ratelimit()) { 1971 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1972 "private %llu\n", page->mapping->host->i_ino, 1973 (unsigned long long)start, csum, 1974 (unsigned long long)private); 1975 } 1976 memset(kaddr + offset, 1, end - start + 1); 1977 flush_dcache_page(page); 1978 kunmap_atomic(kaddr, KM_USER0); 1979 if (private == 0) 1980 return 0; 1981 return -EIO; 1982 } 1983 1984 struct delayed_iput { 1985 struct list_head list; 1986 struct inode *inode; 1987 }; 1988 1989 void btrfs_add_delayed_iput(struct inode *inode) 1990 { 1991 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1992 struct delayed_iput *delayed; 1993 1994 if (atomic_add_unless(&inode->i_count, -1, 1)) 1995 return; 1996 1997 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 1998 delayed->inode = inode; 1999 2000 spin_lock(&fs_info->delayed_iput_lock); 2001 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2002 spin_unlock(&fs_info->delayed_iput_lock); 2003 } 2004 2005 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2006 { 2007 LIST_HEAD(list); 2008 struct btrfs_fs_info *fs_info = root->fs_info; 2009 struct delayed_iput *delayed; 2010 int empty; 2011 2012 spin_lock(&fs_info->delayed_iput_lock); 2013 empty = list_empty(&fs_info->delayed_iputs); 2014 spin_unlock(&fs_info->delayed_iput_lock); 2015 if (empty) 2016 return; 2017 2018 down_read(&root->fs_info->cleanup_work_sem); 2019 spin_lock(&fs_info->delayed_iput_lock); 2020 list_splice_init(&fs_info->delayed_iputs, &list); 2021 spin_unlock(&fs_info->delayed_iput_lock); 2022 2023 while (!list_empty(&list)) { 2024 delayed = list_entry(list.next, struct delayed_iput, list); 2025 list_del(&delayed->list); 2026 iput(delayed->inode); 2027 kfree(delayed); 2028 } 2029 up_read(&root->fs_info->cleanup_work_sem); 2030 } 2031 2032 /* 2033 * calculate extra metadata reservation when snapshotting a subvolume 2034 * contains orphan files. 2035 */ 2036 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2037 struct btrfs_pending_snapshot *pending, 2038 u64 *bytes_to_reserve) 2039 { 2040 struct btrfs_root *root; 2041 struct btrfs_block_rsv *block_rsv; 2042 u64 num_bytes; 2043 int index; 2044 2045 root = pending->root; 2046 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2047 return; 2048 2049 block_rsv = root->orphan_block_rsv; 2050 2051 /* orphan block reservation for the snapshot */ 2052 num_bytes = block_rsv->size; 2053 2054 /* 2055 * after the snapshot is created, COWing tree blocks may use more 2056 * space than it frees. So we should make sure there is enough 2057 * reserved space. 2058 */ 2059 index = trans->transid & 0x1; 2060 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2061 num_bytes += block_rsv->size - 2062 (block_rsv->reserved + block_rsv->freed[index]); 2063 } 2064 2065 *bytes_to_reserve += num_bytes; 2066 } 2067 2068 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2069 struct btrfs_pending_snapshot *pending) 2070 { 2071 struct btrfs_root *root = pending->root; 2072 struct btrfs_root *snap = pending->snap; 2073 struct btrfs_block_rsv *block_rsv; 2074 u64 num_bytes; 2075 int index; 2076 int ret; 2077 2078 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2079 return; 2080 2081 /* refill source subvolume's orphan block reservation */ 2082 block_rsv = root->orphan_block_rsv; 2083 index = trans->transid & 0x1; 2084 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2085 num_bytes = block_rsv->size - 2086 (block_rsv->reserved + block_rsv->freed[index]); 2087 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2088 root->orphan_block_rsv, 2089 num_bytes); 2090 BUG_ON(ret); 2091 } 2092 2093 /* setup orphan block reservation for the snapshot */ 2094 block_rsv = btrfs_alloc_block_rsv(snap); 2095 BUG_ON(!block_rsv); 2096 2097 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2098 snap->orphan_block_rsv = block_rsv; 2099 2100 num_bytes = root->orphan_block_rsv->size; 2101 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2102 block_rsv, num_bytes); 2103 BUG_ON(ret); 2104 2105 #if 0 2106 /* insert orphan item for the snapshot */ 2107 WARN_ON(!root->orphan_item_inserted); 2108 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2109 snap->root_key.objectid); 2110 BUG_ON(ret); 2111 snap->orphan_item_inserted = 1; 2112 #endif 2113 } 2114 2115 enum btrfs_orphan_cleanup_state { 2116 ORPHAN_CLEANUP_STARTED = 1, 2117 ORPHAN_CLEANUP_DONE = 2, 2118 }; 2119 2120 /* 2121 * This is called in transaction commmit time. If there are no orphan 2122 * files in the subvolume, it removes orphan item and frees block_rsv 2123 * structure. 2124 */ 2125 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2126 struct btrfs_root *root) 2127 { 2128 int ret; 2129 2130 if (!list_empty(&root->orphan_list) || 2131 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2132 return; 2133 2134 if (root->orphan_item_inserted && 2135 btrfs_root_refs(&root->root_item) > 0) { 2136 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2137 root->root_key.objectid); 2138 BUG_ON(ret); 2139 root->orphan_item_inserted = 0; 2140 } 2141 2142 if (root->orphan_block_rsv) { 2143 WARN_ON(root->orphan_block_rsv->size > 0); 2144 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2145 root->orphan_block_rsv = NULL; 2146 } 2147 } 2148 2149 /* 2150 * This creates an orphan entry for the given inode in case something goes 2151 * wrong in the middle of an unlink/truncate. 2152 * 2153 * NOTE: caller of this function should reserve 5 units of metadata for 2154 * this function. 2155 */ 2156 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2157 { 2158 struct btrfs_root *root = BTRFS_I(inode)->root; 2159 struct btrfs_block_rsv *block_rsv = NULL; 2160 int reserve = 0; 2161 int insert = 0; 2162 int ret; 2163 2164 if (!root->orphan_block_rsv) { 2165 block_rsv = btrfs_alloc_block_rsv(root); 2166 BUG_ON(!block_rsv); 2167 } 2168 2169 spin_lock(&root->orphan_lock); 2170 if (!root->orphan_block_rsv) { 2171 root->orphan_block_rsv = block_rsv; 2172 } else if (block_rsv) { 2173 btrfs_free_block_rsv(root, block_rsv); 2174 block_rsv = NULL; 2175 } 2176 2177 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2178 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2179 #if 0 2180 /* 2181 * For proper ENOSPC handling, we should do orphan 2182 * cleanup when mounting. But this introduces backward 2183 * compatibility issue. 2184 */ 2185 if (!xchg(&root->orphan_item_inserted, 1)) 2186 insert = 2; 2187 else 2188 insert = 1; 2189 #endif 2190 insert = 1; 2191 } else { 2192 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved); 2193 } 2194 2195 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2196 BTRFS_I(inode)->orphan_meta_reserved = 1; 2197 reserve = 1; 2198 } 2199 spin_unlock(&root->orphan_lock); 2200 2201 if (block_rsv) 2202 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2203 2204 /* grab metadata reservation from transaction handle */ 2205 if (reserve) { 2206 ret = btrfs_orphan_reserve_metadata(trans, inode); 2207 BUG_ON(ret); 2208 } 2209 2210 /* insert an orphan item to track this unlinked/truncated file */ 2211 if (insert >= 1) { 2212 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 2213 BUG_ON(ret); 2214 } 2215 2216 /* insert an orphan item to track subvolume contains orphan files */ 2217 if (insert >= 2) { 2218 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2219 root->root_key.objectid); 2220 BUG_ON(ret); 2221 } 2222 return 0; 2223 } 2224 2225 /* 2226 * We have done the truncate/delete so we can go ahead and remove the orphan 2227 * item for this particular inode. 2228 */ 2229 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2230 { 2231 struct btrfs_root *root = BTRFS_I(inode)->root; 2232 int delete_item = 0; 2233 int release_rsv = 0; 2234 int ret = 0; 2235 2236 spin_lock(&root->orphan_lock); 2237 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2238 list_del_init(&BTRFS_I(inode)->i_orphan); 2239 delete_item = 1; 2240 } 2241 2242 if (BTRFS_I(inode)->orphan_meta_reserved) { 2243 BTRFS_I(inode)->orphan_meta_reserved = 0; 2244 release_rsv = 1; 2245 } 2246 spin_unlock(&root->orphan_lock); 2247 2248 if (trans && delete_item) { 2249 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 2250 BUG_ON(ret); 2251 } 2252 2253 if (release_rsv) 2254 btrfs_orphan_release_metadata(inode); 2255 2256 return 0; 2257 } 2258 2259 /* 2260 * this cleans up any orphans that may be left on the list from the last use 2261 * of this root. 2262 */ 2263 void btrfs_orphan_cleanup(struct btrfs_root *root) 2264 { 2265 struct btrfs_path *path; 2266 struct extent_buffer *leaf; 2267 struct btrfs_key key, found_key; 2268 struct btrfs_trans_handle *trans; 2269 struct inode *inode; 2270 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2271 2272 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2273 return; 2274 2275 path = btrfs_alloc_path(); 2276 BUG_ON(!path); 2277 path->reada = -1; 2278 2279 key.objectid = BTRFS_ORPHAN_OBJECTID; 2280 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2281 key.offset = (u64)-1; 2282 2283 while (1) { 2284 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2285 if (ret < 0) { 2286 printk(KERN_ERR "Error searching slot for orphan: %d" 2287 "\n", ret); 2288 break; 2289 } 2290 2291 /* 2292 * if ret == 0 means we found what we were searching for, which 2293 * is weird, but possible, so only screw with path if we didnt 2294 * find the key and see if we have stuff that matches 2295 */ 2296 if (ret > 0) { 2297 if (path->slots[0] == 0) 2298 break; 2299 path->slots[0]--; 2300 } 2301 2302 /* pull out the item */ 2303 leaf = path->nodes[0]; 2304 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2305 2306 /* make sure the item matches what we want */ 2307 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2308 break; 2309 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2310 break; 2311 2312 /* release the path since we're done with it */ 2313 btrfs_release_path(root, path); 2314 2315 /* 2316 * this is where we are basically btrfs_lookup, without the 2317 * crossing root thing. we store the inode number in the 2318 * offset of the orphan item. 2319 */ 2320 found_key.objectid = found_key.offset; 2321 found_key.type = BTRFS_INODE_ITEM_KEY; 2322 found_key.offset = 0; 2323 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2324 BUG_ON(IS_ERR(inode)); 2325 2326 /* 2327 * add this inode to the orphan list so btrfs_orphan_del does 2328 * the proper thing when we hit it 2329 */ 2330 spin_lock(&root->orphan_lock); 2331 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2332 spin_unlock(&root->orphan_lock); 2333 2334 /* 2335 * if this is a bad inode, means we actually succeeded in 2336 * removing the inode, but not the orphan record, which means 2337 * we need to manually delete the orphan since iput will just 2338 * do a destroy_inode 2339 */ 2340 if (is_bad_inode(inode)) { 2341 trans = btrfs_start_transaction(root, 0); 2342 btrfs_orphan_del(trans, inode); 2343 btrfs_end_transaction(trans, root); 2344 iput(inode); 2345 continue; 2346 } 2347 2348 /* if we have links, this was a truncate, lets do that */ 2349 if (inode->i_nlink) { 2350 nr_truncate++; 2351 btrfs_truncate(inode); 2352 } else { 2353 nr_unlink++; 2354 } 2355 2356 /* this will do delete_inode and everything for us */ 2357 iput(inode); 2358 } 2359 btrfs_free_path(path); 2360 2361 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2362 2363 if (root->orphan_block_rsv) 2364 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2365 (u64)-1); 2366 2367 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2368 trans = btrfs_join_transaction(root, 1); 2369 btrfs_end_transaction(trans, root); 2370 } 2371 2372 if (nr_unlink) 2373 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2374 if (nr_truncate) 2375 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2376 } 2377 2378 /* 2379 * very simple check to peek ahead in the leaf looking for xattrs. If we 2380 * don't find any xattrs, we know there can't be any acls. 2381 * 2382 * slot is the slot the inode is in, objectid is the objectid of the inode 2383 */ 2384 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2385 int slot, u64 objectid) 2386 { 2387 u32 nritems = btrfs_header_nritems(leaf); 2388 struct btrfs_key found_key; 2389 int scanned = 0; 2390 2391 slot++; 2392 while (slot < nritems) { 2393 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2394 2395 /* we found a different objectid, there must not be acls */ 2396 if (found_key.objectid != objectid) 2397 return 0; 2398 2399 /* we found an xattr, assume we've got an acl */ 2400 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2401 return 1; 2402 2403 /* 2404 * we found a key greater than an xattr key, there can't 2405 * be any acls later on 2406 */ 2407 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2408 return 0; 2409 2410 slot++; 2411 scanned++; 2412 2413 /* 2414 * it goes inode, inode backrefs, xattrs, extents, 2415 * so if there are a ton of hard links to an inode there can 2416 * be a lot of backrefs. Don't waste time searching too hard, 2417 * this is just an optimization 2418 */ 2419 if (scanned >= 8) 2420 break; 2421 } 2422 /* we hit the end of the leaf before we found an xattr or 2423 * something larger than an xattr. We have to assume the inode 2424 * has acls 2425 */ 2426 return 1; 2427 } 2428 2429 /* 2430 * read an inode from the btree into the in-memory inode 2431 */ 2432 static void btrfs_read_locked_inode(struct inode *inode) 2433 { 2434 struct btrfs_path *path; 2435 struct extent_buffer *leaf; 2436 struct btrfs_inode_item *inode_item; 2437 struct btrfs_timespec *tspec; 2438 struct btrfs_root *root = BTRFS_I(inode)->root; 2439 struct btrfs_key location; 2440 int maybe_acls; 2441 u64 alloc_group_block; 2442 u32 rdev; 2443 int ret; 2444 2445 path = btrfs_alloc_path(); 2446 BUG_ON(!path); 2447 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2448 2449 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2450 if (ret) 2451 goto make_bad; 2452 2453 leaf = path->nodes[0]; 2454 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2455 struct btrfs_inode_item); 2456 2457 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2458 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2459 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2460 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2461 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2462 2463 tspec = btrfs_inode_atime(inode_item); 2464 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2465 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2466 2467 tspec = btrfs_inode_mtime(inode_item); 2468 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2469 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2470 2471 tspec = btrfs_inode_ctime(inode_item); 2472 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2473 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2474 2475 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2476 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2477 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2478 inode->i_generation = BTRFS_I(inode)->generation; 2479 inode->i_rdev = 0; 2480 rdev = btrfs_inode_rdev(leaf, inode_item); 2481 2482 BTRFS_I(inode)->index_cnt = (u64)-1; 2483 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2484 2485 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2486 2487 /* 2488 * try to precache a NULL acl entry for files that don't have 2489 * any xattrs or acls 2490 */ 2491 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2492 if (!maybe_acls) 2493 cache_no_acl(inode); 2494 2495 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2496 alloc_group_block, 0); 2497 btrfs_free_path(path); 2498 inode_item = NULL; 2499 2500 switch (inode->i_mode & S_IFMT) { 2501 case S_IFREG: 2502 inode->i_mapping->a_ops = &btrfs_aops; 2503 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2504 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2505 inode->i_fop = &btrfs_file_operations; 2506 inode->i_op = &btrfs_file_inode_operations; 2507 break; 2508 case S_IFDIR: 2509 inode->i_fop = &btrfs_dir_file_operations; 2510 if (root == root->fs_info->tree_root) 2511 inode->i_op = &btrfs_dir_ro_inode_operations; 2512 else 2513 inode->i_op = &btrfs_dir_inode_operations; 2514 break; 2515 case S_IFLNK: 2516 inode->i_op = &btrfs_symlink_inode_operations; 2517 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2518 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2519 break; 2520 default: 2521 inode->i_op = &btrfs_special_inode_operations; 2522 init_special_inode(inode, inode->i_mode, rdev); 2523 break; 2524 } 2525 2526 btrfs_update_iflags(inode); 2527 return; 2528 2529 make_bad: 2530 btrfs_free_path(path); 2531 make_bad_inode(inode); 2532 } 2533 2534 /* 2535 * given a leaf and an inode, copy the inode fields into the leaf 2536 */ 2537 static void fill_inode_item(struct btrfs_trans_handle *trans, 2538 struct extent_buffer *leaf, 2539 struct btrfs_inode_item *item, 2540 struct inode *inode) 2541 { 2542 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2543 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2544 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2545 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2546 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2547 2548 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2549 inode->i_atime.tv_sec); 2550 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2551 inode->i_atime.tv_nsec); 2552 2553 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2554 inode->i_mtime.tv_sec); 2555 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2556 inode->i_mtime.tv_nsec); 2557 2558 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2559 inode->i_ctime.tv_sec); 2560 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2561 inode->i_ctime.tv_nsec); 2562 2563 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2564 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2565 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2566 btrfs_set_inode_transid(leaf, item, trans->transid); 2567 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2568 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2569 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2570 } 2571 2572 /* 2573 * copy everything in the in-memory inode into the btree. 2574 */ 2575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2576 struct btrfs_root *root, struct inode *inode) 2577 { 2578 struct btrfs_inode_item *inode_item; 2579 struct btrfs_path *path; 2580 struct extent_buffer *leaf; 2581 int ret; 2582 2583 path = btrfs_alloc_path(); 2584 BUG_ON(!path); 2585 path->leave_spinning = 1; 2586 ret = btrfs_lookup_inode(trans, root, path, 2587 &BTRFS_I(inode)->location, 1); 2588 if (ret) { 2589 if (ret > 0) 2590 ret = -ENOENT; 2591 goto failed; 2592 } 2593 2594 btrfs_unlock_up_safe(path, 1); 2595 leaf = path->nodes[0]; 2596 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2597 struct btrfs_inode_item); 2598 2599 fill_inode_item(trans, leaf, inode_item, inode); 2600 btrfs_mark_buffer_dirty(leaf); 2601 btrfs_set_inode_last_trans(trans, inode); 2602 ret = 0; 2603 failed: 2604 btrfs_free_path(path); 2605 return ret; 2606 } 2607 2608 2609 /* 2610 * unlink helper that gets used here in inode.c and in the tree logging 2611 * recovery code. It remove a link in a directory with a given name, and 2612 * also drops the back refs in the inode to the directory 2613 */ 2614 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2615 struct btrfs_root *root, 2616 struct inode *dir, struct inode *inode, 2617 const char *name, int name_len) 2618 { 2619 struct btrfs_path *path; 2620 int ret = 0; 2621 struct extent_buffer *leaf; 2622 struct btrfs_dir_item *di; 2623 struct btrfs_key key; 2624 u64 index; 2625 2626 path = btrfs_alloc_path(); 2627 if (!path) { 2628 ret = -ENOMEM; 2629 goto err; 2630 } 2631 2632 path->leave_spinning = 1; 2633 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2634 name, name_len, -1); 2635 if (IS_ERR(di)) { 2636 ret = PTR_ERR(di); 2637 goto err; 2638 } 2639 if (!di) { 2640 ret = -ENOENT; 2641 goto err; 2642 } 2643 leaf = path->nodes[0]; 2644 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2645 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2646 if (ret) 2647 goto err; 2648 btrfs_release_path(root, path); 2649 2650 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2651 inode->i_ino, 2652 dir->i_ino, &index); 2653 if (ret) { 2654 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2655 "inode %lu parent %lu\n", name_len, name, 2656 inode->i_ino, dir->i_ino); 2657 goto err; 2658 } 2659 2660 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2661 index, name, name_len, -1); 2662 if (IS_ERR(di)) { 2663 ret = PTR_ERR(di); 2664 goto err; 2665 } 2666 if (!di) { 2667 ret = -ENOENT; 2668 goto err; 2669 } 2670 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2671 btrfs_release_path(root, path); 2672 2673 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2674 inode, dir->i_ino); 2675 BUG_ON(ret != 0 && ret != -ENOENT); 2676 2677 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2678 dir, index); 2679 if (ret == -ENOENT) 2680 ret = 0; 2681 err: 2682 btrfs_free_path(path); 2683 if (ret) 2684 goto out; 2685 2686 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2687 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2688 btrfs_update_inode(trans, root, dir); 2689 btrfs_drop_nlink(inode); 2690 ret = btrfs_update_inode(trans, root, inode); 2691 out: 2692 return ret; 2693 } 2694 2695 /* helper to check if there is any shared block in the path */ 2696 static int check_path_shared(struct btrfs_root *root, 2697 struct btrfs_path *path) 2698 { 2699 struct extent_buffer *eb; 2700 int level; 2701 u64 refs = 1; 2702 int uninitialized_var(ret); 2703 2704 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2705 if (!path->nodes[level]) 2706 break; 2707 eb = path->nodes[level]; 2708 if (!btrfs_block_can_be_shared(root, eb)) 2709 continue; 2710 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2711 &refs, NULL); 2712 if (refs > 1) 2713 return 1; 2714 } 2715 return ret; /* XXX callers? */ 2716 } 2717 2718 /* 2719 * helper to start transaction for unlink and rmdir. 2720 * 2721 * unlink and rmdir are special in btrfs, they do not always free space. 2722 * so in enospc case, we should make sure they will free space before 2723 * allowing them to use the global metadata reservation. 2724 */ 2725 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2726 struct dentry *dentry) 2727 { 2728 struct btrfs_trans_handle *trans; 2729 struct btrfs_root *root = BTRFS_I(dir)->root; 2730 struct btrfs_path *path; 2731 struct btrfs_inode_ref *ref; 2732 struct btrfs_dir_item *di; 2733 struct inode *inode = dentry->d_inode; 2734 u64 index; 2735 int check_link = 1; 2736 int err = -ENOSPC; 2737 int ret; 2738 2739 trans = btrfs_start_transaction(root, 10); 2740 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2741 return trans; 2742 2743 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2744 return ERR_PTR(-ENOSPC); 2745 2746 /* check if there is someone else holds reference */ 2747 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2748 return ERR_PTR(-ENOSPC); 2749 2750 if (atomic_read(&inode->i_count) > 2) 2751 return ERR_PTR(-ENOSPC); 2752 2753 if (xchg(&root->fs_info->enospc_unlink, 1)) 2754 return ERR_PTR(-ENOSPC); 2755 2756 path = btrfs_alloc_path(); 2757 if (!path) { 2758 root->fs_info->enospc_unlink = 0; 2759 return ERR_PTR(-ENOMEM); 2760 } 2761 2762 trans = btrfs_start_transaction(root, 0); 2763 if (IS_ERR(trans)) { 2764 btrfs_free_path(path); 2765 root->fs_info->enospc_unlink = 0; 2766 return trans; 2767 } 2768 2769 path->skip_locking = 1; 2770 path->search_commit_root = 1; 2771 2772 ret = btrfs_lookup_inode(trans, root, path, 2773 &BTRFS_I(dir)->location, 0); 2774 if (ret < 0) { 2775 err = ret; 2776 goto out; 2777 } 2778 if (ret == 0) { 2779 if (check_path_shared(root, path)) 2780 goto out; 2781 } else { 2782 check_link = 0; 2783 } 2784 btrfs_release_path(root, path); 2785 2786 ret = btrfs_lookup_inode(trans, root, path, 2787 &BTRFS_I(inode)->location, 0); 2788 if (ret < 0) { 2789 err = ret; 2790 goto out; 2791 } 2792 if (ret == 0) { 2793 if (check_path_shared(root, path)) 2794 goto out; 2795 } else { 2796 check_link = 0; 2797 } 2798 btrfs_release_path(root, path); 2799 2800 if (ret == 0 && S_ISREG(inode->i_mode)) { 2801 ret = btrfs_lookup_file_extent(trans, root, path, 2802 inode->i_ino, (u64)-1, 0); 2803 if (ret < 0) { 2804 err = ret; 2805 goto out; 2806 } 2807 BUG_ON(ret == 0); 2808 if (check_path_shared(root, path)) 2809 goto out; 2810 btrfs_release_path(root, path); 2811 } 2812 2813 if (!check_link) { 2814 err = 0; 2815 goto out; 2816 } 2817 2818 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2819 dentry->d_name.name, dentry->d_name.len, 0); 2820 if (IS_ERR(di)) { 2821 err = PTR_ERR(di); 2822 goto out; 2823 } 2824 if (di) { 2825 if (check_path_shared(root, path)) 2826 goto out; 2827 } else { 2828 err = 0; 2829 goto out; 2830 } 2831 btrfs_release_path(root, path); 2832 2833 ref = btrfs_lookup_inode_ref(trans, root, path, 2834 dentry->d_name.name, dentry->d_name.len, 2835 inode->i_ino, dir->i_ino, 0); 2836 if (IS_ERR(ref)) { 2837 err = PTR_ERR(ref); 2838 goto out; 2839 } 2840 BUG_ON(!ref); 2841 if (check_path_shared(root, path)) 2842 goto out; 2843 index = btrfs_inode_ref_index(path->nodes[0], ref); 2844 btrfs_release_path(root, path); 2845 2846 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index, 2847 dentry->d_name.name, dentry->d_name.len, 0); 2848 if (IS_ERR(di)) { 2849 err = PTR_ERR(di); 2850 goto out; 2851 } 2852 BUG_ON(ret == -ENOENT); 2853 if (check_path_shared(root, path)) 2854 goto out; 2855 2856 err = 0; 2857 out: 2858 btrfs_free_path(path); 2859 if (err) { 2860 btrfs_end_transaction(trans, root); 2861 root->fs_info->enospc_unlink = 0; 2862 return ERR_PTR(err); 2863 } 2864 2865 trans->block_rsv = &root->fs_info->global_block_rsv; 2866 return trans; 2867 } 2868 2869 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2870 struct btrfs_root *root) 2871 { 2872 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2873 BUG_ON(!root->fs_info->enospc_unlink); 2874 root->fs_info->enospc_unlink = 0; 2875 } 2876 btrfs_end_transaction_throttle(trans, root); 2877 } 2878 2879 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2880 { 2881 struct btrfs_root *root = BTRFS_I(dir)->root; 2882 struct btrfs_trans_handle *trans; 2883 struct inode *inode = dentry->d_inode; 2884 int ret; 2885 unsigned long nr = 0; 2886 2887 trans = __unlink_start_trans(dir, dentry); 2888 if (IS_ERR(trans)) 2889 return PTR_ERR(trans); 2890 2891 btrfs_set_trans_block_group(trans, dir); 2892 2893 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2894 2895 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2896 dentry->d_name.name, dentry->d_name.len); 2897 BUG_ON(ret); 2898 2899 if (inode->i_nlink == 0) { 2900 ret = btrfs_orphan_add(trans, inode); 2901 BUG_ON(ret); 2902 } 2903 2904 nr = trans->blocks_used; 2905 __unlink_end_trans(trans, root); 2906 btrfs_btree_balance_dirty(root, nr); 2907 return ret; 2908 } 2909 2910 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2911 struct btrfs_root *root, 2912 struct inode *dir, u64 objectid, 2913 const char *name, int name_len) 2914 { 2915 struct btrfs_path *path; 2916 struct extent_buffer *leaf; 2917 struct btrfs_dir_item *di; 2918 struct btrfs_key key; 2919 u64 index; 2920 int ret; 2921 2922 path = btrfs_alloc_path(); 2923 if (!path) 2924 return -ENOMEM; 2925 2926 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2927 name, name_len, -1); 2928 BUG_ON(!di || IS_ERR(di)); 2929 2930 leaf = path->nodes[0]; 2931 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2932 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2933 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2934 BUG_ON(ret); 2935 btrfs_release_path(root, path); 2936 2937 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2938 objectid, root->root_key.objectid, 2939 dir->i_ino, &index, name, name_len); 2940 if (ret < 0) { 2941 BUG_ON(ret != -ENOENT); 2942 di = btrfs_search_dir_index_item(root, path, dir->i_ino, 2943 name, name_len); 2944 BUG_ON(!di || IS_ERR(di)); 2945 2946 leaf = path->nodes[0]; 2947 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2948 btrfs_release_path(root, path); 2949 index = key.offset; 2950 } 2951 2952 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2953 index, name, name_len, -1); 2954 BUG_ON(!di || IS_ERR(di)); 2955 2956 leaf = path->nodes[0]; 2957 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2958 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2959 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2960 BUG_ON(ret); 2961 btrfs_release_path(root, path); 2962 2963 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2964 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2965 ret = btrfs_update_inode(trans, root, dir); 2966 BUG_ON(ret); 2967 2968 btrfs_free_path(path); 2969 return 0; 2970 } 2971 2972 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2973 { 2974 struct inode *inode = dentry->d_inode; 2975 int err = 0; 2976 struct btrfs_root *root = BTRFS_I(dir)->root; 2977 struct btrfs_trans_handle *trans; 2978 unsigned long nr = 0; 2979 2980 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2981 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 2982 return -ENOTEMPTY; 2983 2984 trans = __unlink_start_trans(dir, dentry); 2985 if (IS_ERR(trans)) 2986 return PTR_ERR(trans); 2987 2988 btrfs_set_trans_block_group(trans, dir); 2989 2990 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2991 err = btrfs_unlink_subvol(trans, root, dir, 2992 BTRFS_I(inode)->location.objectid, 2993 dentry->d_name.name, 2994 dentry->d_name.len); 2995 goto out; 2996 } 2997 2998 err = btrfs_orphan_add(trans, inode); 2999 if (err) 3000 goto out; 3001 3002 /* now the directory is empty */ 3003 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3004 dentry->d_name.name, dentry->d_name.len); 3005 if (!err) 3006 btrfs_i_size_write(inode, 0); 3007 out: 3008 nr = trans->blocks_used; 3009 __unlink_end_trans(trans, root); 3010 btrfs_btree_balance_dirty(root, nr); 3011 3012 return err; 3013 } 3014 3015 #if 0 3016 /* 3017 * when truncating bytes in a file, it is possible to avoid reading 3018 * the leaves that contain only checksum items. This can be the 3019 * majority of the IO required to delete a large file, but it must 3020 * be done carefully. 3021 * 3022 * The keys in the level just above the leaves are checked to make sure 3023 * the lowest key in a given leaf is a csum key, and starts at an offset 3024 * after the new size. 3025 * 3026 * Then the key for the next leaf is checked to make sure it also has 3027 * a checksum item for the same file. If it does, we know our target leaf 3028 * contains only checksum items, and it can be safely freed without reading 3029 * it. 3030 * 3031 * This is just an optimization targeted at large files. It may do 3032 * nothing. It will return 0 unless things went badly. 3033 */ 3034 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 3035 struct btrfs_root *root, 3036 struct btrfs_path *path, 3037 struct inode *inode, u64 new_size) 3038 { 3039 struct btrfs_key key; 3040 int ret; 3041 int nritems; 3042 struct btrfs_key found_key; 3043 struct btrfs_key other_key; 3044 struct btrfs_leaf_ref *ref; 3045 u64 leaf_gen; 3046 u64 leaf_start; 3047 3048 path->lowest_level = 1; 3049 key.objectid = inode->i_ino; 3050 key.type = BTRFS_CSUM_ITEM_KEY; 3051 key.offset = new_size; 3052 again: 3053 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3054 if (ret < 0) 3055 goto out; 3056 3057 if (path->nodes[1] == NULL) { 3058 ret = 0; 3059 goto out; 3060 } 3061 ret = 0; 3062 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 3063 nritems = btrfs_header_nritems(path->nodes[1]); 3064 3065 if (!nritems) 3066 goto out; 3067 3068 if (path->slots[1] >= nritems) 3069 goto next_node; 3070 3071 /* did we find a key greater than anything we want to delete? */ 3072 if (found_key.objectid > inode->i_ino || 3073 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 3074 goto out; 3075 3076 /* we check the next key in the node to make sure the leave contains 3077 * only checksum items. This comparison doesn't work if our 3078 * leaf is the last one in the node 3079 */ 3080 if (path->slots[1] + 1 >= nritems) { 3081 next_node: 3082 /* search forward from the last key in the node, this 3083 * will bring us into the next node in the tree 3084 */ 3085 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 3086 3087 /* unlikely, but we inc below, so check to be safe */ 3088 if (found_key.offset == (u64)-1) 3089 goto out; 3090 3091 /* search_forward needs a path with locks held, do the 3092 * search again for the original key. It is possible 3093 * this will race with a balance and return a path that 3094 * we could modify, but this drop is just an optimization 3095 * and is allowed to miss some leaves. 3096 */ 3097 btrfs_release_path(root, path); 3098 found_key.offset++; 3099 3100 /* setup a max key for search_forward */ 3101 other_key.offset = (u64)-1; 3102 other_key.type = key.type; 3103 other_key.objectid = key.objectid; 3104 3105 path->keep_locks = 1; 3106 ret = btrfs_search_forward(root, &found_key, &other_key, 3107 path, 0, 0); 3108 path->keep_locks = 0; 3109 if (ret || found_key.objectid != key.objectid || 3110 found_key.type != key.type) { 3111 ret = 0; 3112 goto out; 3113 } 3114 3115 key.offset = found_key.offset; 3116 btrfs_release_path(root, path); 3117 cond_resched(); 3118 goto again; 3119 } 3120 3121 /* we know there's one more slot after us in the tree, 3122 * read that key so we can verify it is also a checksum item 3123 */ 3124 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 3125 3126 if (found_key.objectid < inode->i_ino) 3127 goto next_key; 3128 3129 if (found_key.type != key.type || found_key.offset < new_size) 3130 goto next_key; 3131 3132 /* 3133 * if the key for the next leaf isn't a csum key from this objectid, 3134 * we can't be sure there aren't good items inside this leaf. 3135 * Bail out 3136 */ 3137 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 3138 goto out; 3139 3140 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 3141 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 3142 /* 3143 * it is safe to delete this leaf, it contains only 3144 * csum items from this inode at an offset >= new_size 3145 */ 3146 ret = btrfs_del_leaf(trans, root, path, leaf_start); 3147 BUG_ON(ret); 3148 3149 if (root->ref_cows && leaf_gen < trans->transid) { 3150 ref = btrfs_alloc_leaf_ref(root, 0); 3151 if (ref) { 3152 ref->root_gen = root->root_key.offset; 3153 ref->bytenr = leaf_start; 3154 ref->owner = 0; 3155 ref->generation = leaf_gen; 3156 ref->nritems = 0; 3157 3158 btrfs_sort_leaf_ref(ref); 3159 3160 ret = btrfs_add_leaf_ref(root, ref, 0); 3161 WARN_ON(ret); 3162 btrfs_free_leaf_ref(root, ref); 3163 } else { 3164 WARN_ON(1); 3165 } 3166 } 3167 next_key: 3168 btrfs_release_path(root, path); 3169 3170 if (other_key.objectid == inode->i_ino && 3171 other_key.type == key.type && other_key.offset > key.offset) { 3172 key.offset = other_key.offset; 3173 cond_resched(); 3174 goto again; 3175 } 3176 ret = 0; 3177 out: 3178 /* fixup any changes we've made to the path */ 3179 path->lowest_level = 0; 3180 path->keep_locks = 0; 3181 btrfs_release_path(root, path); 3182 return ret; 3183 } 3184 3185 #endif 3186 3187 /* 3188 * this can truncate away extent items, csum items and directory items. 3189 * It starts at a high offset and removes keys until it can't find 3190 * any higher than new_size 3191 * 3192 * csum items that cross the new i_size are truncated to the new size 3193 * as well. 3194 * 3195 * min_type is the minimum key type to truncate down to. If set to 0, this 3196 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3197 */ 3198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3199 struct btrfs_root *root, 3200 struct inode *inode, 3201 u64 new_size, u32 min_type) 3202 { 3203 struct btrfs_path *path; 3204 struct extent_buffer *leaf; 3205 struct btrfs_file_extent_item *fi; 3206 struct btrfs_key key; 3207 struct btrfs_key found_key; 3208 u64 extent_start = 0; 3209 u64 extent_num_bytes = 0; 3210 u64 extent_offset = 0; 3211 u64 item_end = 0; 3212 u64 mask = root->sectorsize - 1; 3213 u32 found_type = (u8)-1; 3214 int found_extent; 3215 int del_item; 3216 int pending_del_nr = 0; 3217 int pending_del_slot = 0; 3218 int extent_type = -1; 3219 int encoding; 3220 int ret; 3221 int err = 0; 3222 3223 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3224 3225 if (root->ref_cows || root == root->fs_info->tree_root) 3226 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3227 3228 path = btrfs_alloc_path(); 3229 BUG_ON(!path); 3230 path->reada = -1; 3231 3232 key.objectid = inode->i_ino; 3233 key.offset = (u64)-1; 3234 key.type = (u8)-1; 3235 3236 search_again: 3237 path->leave_spinning = 1; 3238 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3239 if (ret < 0) { 3240 err = ret; 3241 goto out; 3242 } 3243 3244 if (ret > 0) { 3245 /* there are no items in the tree for us to truncate, we're 3246 * done 3247 */ 3248 if (path->slots[0] == 0) 3249 goto out; 3250 path->slots[0]--; 3251 } 3252 3253 while (1) { 3254 fi = NULL; 3255 leaf = path->nodes[0]; 3256 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3257 found_type = btrfs_key_type(&found_key); 3258 encoding = 0; 3259 3260 if (found_key.objectid != inode->i_ino) 3261 break; 3262 3263 if (found_type < min_type) 3264 break; 3265 3266 item_end = found_key.offset; 3267 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3268 fi = btrfs_item_ptr(leaf, path->slots[0], 3269 struct btrfs_file_extent_item); 3270 extent_type = btrfs_file_extent_type(leaf, fi); 3271 encoding = btrfs_file_extent_compression(leaf, fi); 3272 encoding |= btrfs_file_extent_encryption(leaf, fi); 3273 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3274 3275 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3276 item_end += 3277 btrfs_file_extent_num_bytes(leaf, fi); 3278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3279 item_end += btrfs_file_extent_inline_len(leaf, 3280 fi); 3281 } 3282 item_end--; 3283 } 3284 if (found_type > min_type) { 3285 del_item = 1; 3286 } else { 3287 if (item_end < new_size) 3288 break; 3289 if (found_key.offset >= new_size) 3290 del_item = 1; 3291 else 3292 del_item = 0; 3293 } 3294 found_extent = 0; 3295 /* FIXME, shrink the extent if the ref count is only 1 */ 3296 if (found_type != BTRFS_EXTENT_DATA_KEY) 3297 goto delete; 3298 3299 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3300 u64 num_dec; 3301 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3302 if (!del_item && !encoding) { 3303 u64 orig_num_bytes = 3304 btrfs_file_extent_num_bytes(leaf, fi); 3305 extent_num_bytes = new_size - 3306 found_key.offset + root->sectorsize - 1; 3307 extent_num_bytes = extent_num_bytes & 3308 ~((u64)root->sectorsize - 1); 3309 btrfs_set_file_extent_num_bytes(leaf, fi, 3310 extent_num_bytes); 3311 num_dec = (orig_num_bytes - 3312 extent_num_bytes); 3313 if (root->ref_cows && extent_start != 0) 3314 inode_sub_bytes(inode, num_dec); 3315 btrfs_mark_buffer_dirty(leaf); 3316 } else { 3317 extent_num_bytes = 3318 btrfs_file_extent_disk_num_bytes(leaf, 3319 fi); 3320 extent_offset = found_key.offset - 3321 btrfs_file_extent_offset(leaf, fi); 3322 3323 /* FIXME blocksize != 4096 */ 3324 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3325 if (extent_start != 0) { 3326 found_extent = 1; 3327 if (root->ref_cows) 3328 inode_sub_bytes(inode, num_dec); 3329 } 3330 } 3331 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3332 /* 3333 * we can't truncate inline items that have had 3334 * special encodings 3335 */ 3336 if (!del_item && 3337 btrfs_file_extent_compression(leaf, fi) == 0 && 3338 btrfs_file_extent_encryption(leaf, fi) == 0 && 3339 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3340 u32 size = new_size - found_key.offset; 3341 3342 if (root->ref_cows) { 3343 inode_sub_bytes(inode, item_end + 1 - 3344 new_size); 3345 } 3346 size = 3347 btrfs_file_extent_calc_inline_size(size); 3348 ret = btrfs_truncate_item(trans, root, path, 3349 size, 1); 3350 BUG_ON(ret); 3351 } else if (root->ref_cows) { 3352 inode_sub_bytes(inode, item_end + 1 - 3353 found_key.offset); 3354 } 3355 } 3356 delete: 3357 if (del_item) { 3358 if (!pending_del_nr) { 3359 /* no pending yet, add ourselves */ 3360 pending_del_slot = path->slots[0]; 3361 pending_del_nr = 1; 3362 } else if (pending_del_nr && 3363 path->slots[0] + 1 == pending_del_slot) { 3364 /* hop on the pending chunk */ 3365 pending_del_nr++; 3366 pending_del_slot = path->slots[0]; 3367 } else { 3368 BUG(); 3369 } 3370 } else { 3371 break; 3372 } 3373 if (found_extent && (root->ref_cows || 3374 root == root->fs_info->tree_root)) { 3375 btrfs_set_path_blocking(path); 3376 ret = btrfs_free_extent(trans, root, extent_start, 3377 extent_num_bytes, 0, 3378 btrfs_header_owner(leaf), 3379 inode->i_ino, extent_offset); 3380 BUG_ON(ret); 3381 } 3382 3383 if (found_type == BTRFS_INODE_ITEM_KEY) 3384 break; 3385 3386 if (path->slots[0] == 0 || 3387 path->slots[0] != pending_del_slot) { 3388 if (root->ref_cows) { 3389 err = -EAGAIN; 3390 goto out; 3391 } 3392 if (pending_del_nr) { 3393 ret = btrfs_del_items(trans, root, path, 3394 pending_del_slot, 3395 pending_del_nr); 3396 BUG_ON(ret); 3397 pending_del_nr = 0; 3398 } 3399 btrfs_release_path(root, path); 3400 goto search_again; 3401 } else { 3402 path->slots[0]--; 3403 } 3404 } 3405 out: 3406 if (pending_del_nr) { 3407 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3408 pending_del_nr); 3409 BUG_ON(ret); 3410 } 3411 btrfs_free_path(path); 3412 return err; 3413 } 3414 3415 /* 3416 * taken from block_truncate_page, but does cow as it zeros out 3417 * any bytes left in the last page in the file. 3418 */ 3419 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3420 { 3421 struct inode *inode = mapping->host; 3422 struct btrfs_root *root = BTRFS_I(inode)->root; 3423 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3424 struct btrfs_ordered_extent *ordered; 3425 struct extent_state *cached_state = NULL; 3426 char *kaddr; 3427 u32 blocksize = root->sectorsize; 3428 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3429 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3430 struct page *page; 3431 int ret = 0; 3432 u64 page_start; 3433 u64 page_end; 3434 3435 if ((offset & (blocksize - 1)) == 0) 3436 goto out; 3437 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3438 if (ret) 3439 goto out; 3440 3441 ret = -ENOMEM; 3442 again: 3443 page = grab_cache_page(mapping, index); 3444 if (!page) { 3445 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3446 goto out; 3447 } 3448 3449 page_start = page_offset(page); 3450 page_end = page_start + PAGE_CACHE_SIZE - 1; 3451 3452 if (!PageUptodate(page)) { 3453 ret = btrfs_readpage(NULL, page); 3454 lock_page(page); 3455 if (page->mapping != mapping) { 3456 unlock_page(page); 3457 page_cache_release(page); 3458 goto again; 3459 } 3460 if (!PageUptodate(page)) { 3461 ret = -EIO; 3462 goto out_unlock; 3463 } 3464 } 3465 wait_on_page_writeback(page); 3466 3467 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3468 GFP_NOFS); 3469 set_page_extent_mapped(page); 3470 3471 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3472 if (ordered) { 3473 unlock_extent_cached(io_tree, page_start, page_end, 3474 &cached_state, GFP_NOFS); 3475 unlock_page(page); 3476 page_cache_release(page); 3477 btrfs_start_ordered_extent(inode, ordered, 1); 3478 btrfs_put_ordered_extent(ordered); 3479 goto again; 3480 } 3481 3482 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3483 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3484 0, 0, &cached_state, GFP_NOFS); 3485 3486 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3487 &cached_state); 3488 if (ret) { 3489 unlock_extent_cached(io_tree, page_start, page_end, 3490 &cached_state, GFP_NOFS); 3491 goto out_unlock; 3492 } 3493 3494 ret = 0; 3495 if (offset != PAGE_CACHE_SIZE) { 3496 kaddr = kmap(page); 3497 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3498 flush_dcache_page(page); 3499 kunmap(page); 3500 } 3501 ClearPageChecked(page); 3502 set_page_dirty(page); 3503 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3504 GFP_NOFS); 3505 3506 out_unlock: 3507 if (ret) 3508 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3509 unlock_page(page); 3510 page_cache_release(page); 3511 out: 3512 return ret; 3513 } 3514 3515 int btrfs_cont_expand(struct inode *inode, loff_t size) 3516 { 3517 struct btrfs_trans_handle *trans; 3518 struct btrfs_root *root = BTRFS_I(inode)->root; 3519 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3520 struct extent_map *em = NULL; 3521 struct extent_state *cached_state = NULL; 3522 u64 mask = root->sectorsize - 1; 3523 u64 hole_start = (inode->i_size + mask) & ~mask; 3524 u64 block_end = (size + mask) & ~mask; 3525 u64 last_byte; 3526 u64 cur_offset; 3527 u64 hole_size; 3528 int err = 0; 3529 3530 if (size <= hole_start) 3531 return 0; 3532 3533 while (1) { 3534 struct btrfs_ordered_extent *ordered; 3535 btrfs_wait_ordered_range(inode, hole_start, 3536 block_end - hole_start); 3537 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3538 &cached_state, GFP_NOFS); 3539 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3540 if (!ordered) 3541 break; 3542 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3543 &cached_state, GFP_NOFS); 3544 btrfs_put_ordered_extent(ordered); 3545 } 3546 3547 cur_offset = hole_start; 3548 while (1) { 3549 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3550 block_end - cur_offset, 0); 3551 BUG_ON(IS_ERR(em) || !em); 3552 last_byte = min(extent_map_end(em), block_end); 3553 last_byte = (last_byte + mask) & ~mask; 3554 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3555 u64 hint_byte = 0; 3556 hole_size = last_byte - cur_offset; 3557 3558 trans = btrfs_start_transaction(root, 2); 3559 if (IS_ERR(trans)) { 3560 err = PTR_ERR(trans); 3561 break; 3562 } 3563 btrfs_set_trans_block_group(trans, inode); 3564 3565 err = btrfs_drop_extents(trans, inode, cur_offset, 3566 cur_offset + hole_size, 3567 &hint_byte, 1); 3568 BUG_ON(err); 3569 3570 err = btrfs_insert_file_extent(trans, root, 3571 inode->i_ino, cur_offset, 0, 3572 0, hole_size, 0, hole_size, 3573 0, 0, 0); 3574 BUG_ON(err); 3575 3576 btrfs_drop_extent_cache(inode, hole_start, 3577 last_byte - 1, 0); 3578 3579 btrfs_end_transaction(trans, root); 3580 } 3581 free_extent_map(em); 3582 em = NULL; 3583 cur_offset = last_byte; 3584 if (cur_offset >= block_end) 3585 break; 3586 } 3587 3588 free_extent_map(em); 3589 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3590 GFP_NOFS); 3591 return err; 3592 } 3593 3594 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr) 3595 { 3596 struct btrfs_root *root = BTRFS_I(inode)->root; 3597 struct btrfs_trans_handle *trans; 3598 unsigned long nr; 3599 int ret; 3600 3601 if (attr->ia_size == inode->i_size) 3602 return 0; 3603 3604 if (attr->ia_size > inode->i_size) { 3605 unsigned long limit; 3606 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 3607 if (attr->ia_size > inode->i_sb->s_maxbytes) 3608 return -EFBIG; 3609 if (limit != RLIM_INFINITY && attr->ia_size > limit) { 3610 send_sig(SIGXFSZ, current, 0); 3611 return -EFBIG; 3612 } 3613 } 3614 3615 trans = btrfs_start_transaction(root, 5); 3616 if (IS_ERR(trans)) 3617 return PTR_ERR(trans); 3618 3619 btrfs_set_trans_block_group(trans, inode); 3620 3621 ret = btrfs_orphan_add(trans, inode); 3622 BUG_ON(ret); 3623 3624 nr = trans->blocks_used; 3625 btrfs_end_transaction(trans, root); 3626 btrfs_btree_balance_dirty(root, nr); 3627 3628 if (attr->ia_size > inode->i_size) { 3629 ret = btrfs_cont_expand(inode, attr->ia_size); 3630 if (ret) { 3631 btrfs_truncate(inode); 3632 return ret; 3633 } 3634 3635 i_size_write(inode, attr->ia_size); 3636 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 3637 3638 trans = btrfs_start_transaction(root, 0); 3639 BUG_ON(IS_ERR(trans)); 3640 btrfs_set_trans_block_group(trans, inode); 3641 trans->block_rsv = root->orphan_block_rsv; 3642 BUG_ON(!trans->block_rsv); 3643 3644 ret = btrfs_update_inode(trans, root, inode); 3645 BUG_ON(ret); 3646 if (inode->i_nlink > 0) { 3647 ret = btrfs_orphan_del(trans, inode); 3648 BUG_ON(ret); 3649 } 3650 nr = trans->blocks_used; 3651 btrfs_end_transaction(trans, root); 3652 btrfs_btree_balance_dirty(root, nr); 3653 return 0; 3654 } 3655 3656 /* 3657 * We're truncating a file that used to have good data down to 3658 * zero. Make sure it gets into the ordered flush list so that 3659 * any new writes get down to disk quickly. 3660 */ 3661 if (attr->ia_size == 0) 3662 BTRFS_I(inode)->ordered_data_close = 1; 3663 3664 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3665 ret = vmtruncate(inode, attr->ia_size); 3666 BUG_ON(ret); 3667 3668 return 0; 3669 } 3670 3671 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3672 { 3673 struct inode *inode = dentry->d_inode; 3674 int err; 3675 3676 err = inode_change_ok(inode, attr); 3677 if (err) 3678 return err; 3679 3680 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3681 err = btrfs_setattr_size(inode, attr); 3682 if (err) 3683 return err; 3684 } 3685 3686 if (attr->ia_valid) { 3687 setattr_copy(inode, attr); 3688 mark_inode_dirty(inode); 3689 3690 if (attr->ia_valid & ATTR_MODE) 3691 err = btrfs_acl_chmod(inode); 3692 } 3693 3694 return err; 3695 } 3696 3697 void btrfs_evict_inode(struct inode *inode) 3698 { 3699 struct btrfs_trans_handle *trans; 3700 struct btrfs_root *root = BTRFS_I(inode)->root; 3701 unsigned long nr; 3702 int ret; 3703 3704 truncate_inode_pages(&inode->i_data, 0); 3705 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3706 root == root->fs_info->tree_root)) 3707 goto no_delete; 3708 3709 if (is_bad_inode(inode)) { 3710 btrfs_orphan_del(NULL, inode); 3711 goto no_delete; 3712 } 3713 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3714 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3715 3716 if (root->fs_info->log_root_recovering) { 3717 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3718 goto no_delete; 3719 } 3720 3721 if (inode->i_nlink > 0) { 3722 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3723 goto no_delete; 3724 } 3725 3726 btrfs_i_size_write(inode, 0); 3727 3728 while (1) { 3729 trans = btrfs_start_transaction(root, 0); 3730 BUG_ON(IS_ERR(trans)); 3731 btrfs_set_trans_block_group(trans, inode); 3732 trans->block_rsv = root->orphan_block_rsv; 3733 3734 ret = btrfs_block_rsv_check(trans, root, 3735 root->orphan_block_rsv, 0, 5); 3736 if (ret) { 3737 BUG_ON(ret != -EAGAIN); 3738 ret = btrfs_commit_transaction(trans, root); 3739 BUG_ON(ret); 3740 continue; 3741 } 3742 3743 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3744 if (ret != -EAGAIN) 3745 break; 3746 3747 nr = trans->blocks_used; 3748 btrfs_end_transaction(trans, root); 3749 trans = NULL; 3750 btrfs_btree_balance_dirty(root, nr); 3751 3752 } 3753 3754 if (ret == 0) { 3755 ret = btrfs_orphan_del(trans, inode); 3756 BUG_ON(ret); 3757 } 3758 3759 nr = trans->blocks_used; 3760 btrfs_end_transaction(trans, root); 3761 btrfs_btree_balance_dirty(root, nr); 3762 no_delete: 3763 end_writeback(inode); 3764 return; 3765 } 3766 3767 /* 3768 * this returns the key found in the dir entry in the location pointer. 3769 * If no dir entries were found, location->objectid is 0. 3770 */ 3771 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3772 struct btrfs_key *location) 3773 { 3774 const char *name = dentry->d_name.name; 3775 int namelen = dentry->d_name.len; 3776 struct btrfs_dir_item *di; 3777 struct btrfs_path *path; 3778 struct btrfs_root *root = BTRFS_I(dir)->root; 3779 int ret = 0; 3780 3781 path = btrfs_alloc_path(); 3782 BUG_ON(!path); 3783 3784 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3785 namelen, 0); 3786 if (IS_ERR(di)) 3787 ret = PTR_ERR(di); 3788 3789 if (!di || IS_ERR(di)) 3790 goto out_err; 3791 3792 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3793 out: 3794 btrfs_free_path(path); 3795 return ret; 3796 out_err: 3797 location->objectid = 0; 3798 goto out; 3799 } 3800 3801 /* 3802 * when we hit a tree root in a directory, the btrfs part of the inode 3803 * needs to be changed to reflect the root directory of the tree root. This 3804 * is kind of like crossing a mount point. 3805 */ 3806 static int fixup_tree_root_location(struct btrfs_root *root, 3807 struct inode *dir, 3808 struct dentry *dentry, 3809 struct btrfs_key *location, 3810 struct btrfs_root **sub_root) 3811 { 3812 struct btrfs_path *path; 3813 struct btrfs_root *new_root; 3814 struct btrfs_root_ref *ref; 3815 struct extent_buffer *leaf; 3816 int ret; 3817 int err = 0; 3818 3819 path = btrfs_alloc_path(); 3820 if (!path) { 3821 err = -ENOMEM; 3822 goto out; 3823 } 3824 3825 err = -ENOENT; 3826 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3827 BTRFS_I(dir)->root->root_key.objectid, 3828 location->objectid); 3829 if (ret) { 3830 if (ret < 0) 3831 err = ret; 3832 goto out; 3833 } 3834 3835 leaf = path->nodes[0]; 3836 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3837 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino || 3838 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3839 goto out; 3840 3841 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3842 (unsigned long)(ref + 1), 3843 dentry->d_name.len); 3844 if (ret) 3845 goto out; 3846 3847 btrfs_release_path(root->fs_info->tree_root, path); 3848 3849 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3850 if (IS_ERR(new_root)) { 3851 err = PTR_ERR(new_root); 3852 goto out; 3853 } 3854 3855 if (btrfs_root_refs(&new_root->root_item) == 0) { 3856 err = -ENOENT; 3857 goto out; 3858 } 3859 3860 *sub_root = new_root; 3861 location->objectid = btrfs_root_dirid(&new_root->root_item); 3862 location->type = BTRFS_INODE_ITEM_KEY; 3863 location->offset = 0; 3864 err = 0; 3865 out: 3866 btrfs_free_path(path); 3867 return err; 3868 } 3869 3870 static void inode_tree_add(struct inode *inode) 3871 { 3872 struct btrfs_root *root = BTRFS_I(inode)->root; 3873 struct btrfs_inode *entry; 3874 struct rb_node **p; 3875 struct rb_node *parent; 3876 again: 3877 p = &root->inode_tree.rb_node; 3878 parent = NULL; 3879 3880 if (inode_unhashed(inode)) 3881 return; 3882 3883 spin_lock(&root->inode_lock); 3884 while (*p) { 3885 parent = *p; 3886 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3887 3888 if (inode->i_ino < entry->vfs_inode.i_ino) 3889 p = &parent->rb_left; 3890 else if (inode->i_ino > entry->vfs_inode.i_ino) 3891 p = &parent->rb_right; 3892 else { 3893 WARN_ON(!(entry->vfs_inode.i_state & 3894 (I_WILL_FREE | I_FREEING))); 3895 rb_erase(parent, &root->inode_tree); 3896 RB_CLEAR_NODE(parent); 3897 spin_unlock(&root->inode_lock); 3898 goto again; 3899 } 3900 } 3901 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3902 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3903 spin_unlock(&root->inode_lock); 3904 } 3905 3906 static void inode_tree_del(struct inode *inode) 3907 { 3908 struct btrfs_root *root = BTRFS_I(inode)->root; 3909 int empty = 0; 3910 3911 spin_lock(&root->inode_lock); 3912 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3913 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3914 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3915 empty = RB_EMPTY_ROOT(&root->inode_tree); 3916 } 3917 spin_unlock(&root->inode_lock); 3918 3919 /* 3920 * Free space cache has inodes in the tree root, but the tree root has a 3921 * root_refs of 0, so this could end up dropping the tree root as a 3922 * snapshot, so we need the extra !root->fs_info->tree_root check to 3923 * make sure we don't drop it. 3924 */ 3925 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3926 root != root->fs_info->tree_root) { 3927 synchronize_srcu(&root->fs_info->subvol_srcu); 3928 spin_lock(&root->inode_lock); 3929 empty = RB_EMPTY_ROOT(&root->inode_tree); 3930 spin_unlock(&root->inode_lock); 3931 if (empty) 3932 btrfs_add_dead_root(root); 3933 } 3934 } 3935 3936 int btrfs_invalidate_inodes(struct btrfs_root *root) 3937 { 3938 struct rb_node *node; 3939 struct rb_node *prev; 3940 struct btrfs_inode *entry; 3941 struct inode *inode; 3942 u64 objectid = 0; 3943 3944 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3945 3946 spin_lock(&root->inode_lock); 3947 again: 3948 node = root->inode_tree.rb_node; 3949 prev = NULL; 3950 while (node) { 3951 prev = node; 3952 entry = rb_entry(node, struct btrfs_inode, rb_node); 3953 3954 if (objectid < entry->vfs_inode.i_ino) 3955 node = node->rb_left; 3956 else if (objectid > entry->vfs_inode.i_ino) 3957 node = node->rb_right; 3958 else 3959 break; 3960 } 3961 if (!node) { 3962 while (prev) { 3963 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3964 if (objectid <= entry->vfs_inode.i_ino) { 3965 node = prev; 3966 break; 3967 } 3968 prev = rb_next(prev); 3969 } 3970 } 3971 while (node) { 3972 entry = rb_entry(node, struct btrfs_inode, rb_node); 3973 objectid = entry->vfs_inode.i_ino + 1; 3974 inode = igrab(&entry->vfs_inode); 3975 if (inode) { 3976 spin_unlock(&root->inode_lock); 3977 if (atomic_read(&inode->i_count) > 1) 3978 d_prune_aliases(inode); 3979 /* 3980 * btrfs_drop_inode will have it removed from 3981 * the inode cache when its usage count 3982 * hits zero. 3983 */ 3984 iput(inode); 3985 cond_resched(); 3986 spin_lock(&root->inode_lock); 3987 goto again; 3988 } 3989 3990 if (cond_resched_lock(&root->inode_lock)) 3991 goto again; 3992 3993 node = rb_next(node); 3994 } 3995 spin_unlock(&root->inode_lock); 3996 return 0; 3997 } 3998 3999 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4000 { 4001 struct btrfs_iget_args *args = p; 4002 inode->i_ino = args->ino; 4003 BTRFS_I(inode)->root = args->root; 4004 btrfs_set_inode_space_info(args->root, inode); 4005 return 0; 4006 } 4007 4008 static int btrfs_find_actor(struct inode *inode, void *opaque) 4009 { 4010 struct btrfs_iget_args *args = opaque; 4011 return args->ino == inode->i_ino && 4012 args->root == BTRFS_I(inode)->root; 4013 } 4014 4015 static struct inode *btrfs_iget_locked(struct super_block *s, 4016 u64 objectid, 4017 struct btrfs_root *root) 4018 { 4019 struct inode *inode; 4020 struct btrfs_iget_args args; 4021 args.ino = objectid; 4022 args.root = root; 4023 4024 inode = iget5_locked(s, objectid, btrfs_find_actor, 4025 btrfs_init_locked_inode, 4026 (void *)&args); 4027 return inode; 4028 } 4029 4030 /* Get an inode object given its location and corresponding root. 4031 * Returns in *is_new if the inode was read from disk 4032 */ 4033 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4034 struct btrfs_root *root, int *new) 4035 { 4036 struct inode *inode; 4037 4038 inode = btrfs_iget_locked(s, location->objectid, root); 4039 if (!inode) 4040 return ERR_PTR(-ENOMEM); 4041 4042 if (inode->i_state & I_NEW) { 4043 BTRFS_I(inode)->root = root; 4044 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4045 btrfs_read_locked_inode(inode); 4046 4047 inode_tree_add(inode); 4048 unlock_new_inode(inode); 4049 if (new) 4050 *new = 1; 4051 } 4052 4053 return inode; 4054 } 4055 4056 static struct inode *new_simple_dir(struct super_block *s, 4057 struct btrfs_key *key, 4058 struct btrfs_root *root) 4059 { 4060 struct inode *inode = new_inode(s); 4061 4062 if (!inode) 4063 return ERR_PTR(-ENOMEM); 4064 4065 BTRFS_I(inode)->root = root; 4066 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4067 BTRFS_I(inode)->dummy_inode = 1; 4068 4069 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4070 inode->i_op = &simple_dir_inode_operations; 4071 inode->i_fop = &simple_dir_operations; 4072 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4073 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4074 4075 return inode; 4076 } 4077 4078 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4079 { 4080 struct inode *inode; 4081 struct btrfs_root *root = BTRFS_I(dir)->root; 4082 struct btrfs_root *sub_root = root; 4083 struct btrfs_key location; 4084 int index; 4085 int ret; 4086 4087 dentry->d_op = &btrfs_dentry_operations; 4088 4089 if (dentry->d_name.len > BTRFS_NAME_LEN) 4090 return ERR_PTR(-ENAMETOOLONG); 4091 4092 ret = btrfs_inode_by_name(dir, dentry, &location); 4093 4094 if (ret < 0) 4095 return ERR_PTR(ret); 4096 4097 if (location.objectid == 0) 4098 return NULL; 4099 4100 if (location.type == BTRFS_INODE_ITEM_KEY) { 4101 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4102 return inode; 4103 } 4104 4105 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4106 4107 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4108 ret = fixup_tree_root_location(root, dir, dentry, 4109 &location, &sub_root); 4110 if (ret < 0) { 4111 if (ret != -ENOENT) 4112 inode = ERR_PTR(ret); 4113 else 4114 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4115 } else { 4116 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4117 } 4118 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4119 4120 if (root != sub_root) { 4121 down_read(&root->fs_info->cleanup_work_sem); 4122 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4123 btrfs_orphan_cleanup(sub_root); 4124 up_read(&root->fs_info->cleanup_work_sem); 4125 } 4126 4127 return inode; 4128 } 4129 4130 static int btrfs_dentry_delete(struct dentry *dentry) 4131 { 4132 struct btrfs_root *root; 4133 4134 if (!dentry->d_inode && !IS_ROOT(dentry)) 4135 dentry = dentry->d_parent; 4136 4137 if (dentry->d_inode) { 4138 root = BTRFS_I(dentry->d_inode)->root; 4139 if (btrfs_root_refs(&root->root_item) == 0) 4140 return 1; 4141 } 4142 return 0; 4143 } 4144 4145 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4146 struct nameidata *nd) 4147 { 4148 struct inode *inode; 4149 4150 inode = btrfs_lookup_dentry(dir, dentry); 4151 if (IS_ERR(inode)) 4152 return ERR_CAST(inode); 4153 4154 return d_splice_alias(inode, dentry); 4155 } 4156 4157 static unsigned char btrfs_filetype_table[] = { 4158 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4159 }; 4160 4161 static int btrfs_real_readdir(struct file *filp, void *dirent, 4162 filldir_t filldir) 4163 { 4164 struct inode *inode = filp->f_dentry->d_inode; 4165 struct btrfs_root *root = BTRFS_I(inode)->root; 4166 struct btrfs_item *item; 4167 struct btrfs_dir_item *di; 4168 struct btrfs_key key; 4169 struct btrfs_key found_key; 4170 struct btrfs_path *path; 4171 int ret; 4172 u32 nritems; 4173 struct extent_buffer *leaf; 4174 int slot; 4175 int advance; 4176 unsigned char d_type; 4177 int over = 0; 4178 u32 di_cur; 4179 u32 di_total; 4180 u32 di_len; 4181 int key_type = BTRFS_DIR_INDEX_KEY; 4182 char tmp_name[32]; 4183 char *name_ptr; 4184 int name_len; 4185 4186 /* FIXME, use a real flag for deciding about the key type */ 4187 if (root->fs_info->tree_root == root) 4188 key_type = BTRFS_DIR_ITEM_KEY; 4189 4190 /* special case for "." */ 4191 if (filp->f_pos == 0) { 4192 over = filldir(dirent, ".", 1, 4193 1, inode->i_ino, 4194 DT_DIR); 4195 if (over) 4196 return 0; 4197 filp->f_pos = 1; 4198 } 4199 /* special case for .., just use the back ref */ 4200 if (filp->f_pos == 1) { 4201 u64 pino = parent_ino(filp->f_path.dentry); 4202 over = filldir(dirent, "..", 2, 4203 2, pino, DT_DIR); 4204 if (over) 4205 return 0; 4206 filp->f_pos = 2; 4207 } 4208 path = btrfs_alloc_path(); 4209 path->reada = 2; 4210 4211 btrfs_set_key_type(&key, key_type); 4212 key.offset = filp->f_pos; 4213 key.objectid = inode->i_ino; 4214 4215 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4216 if (ret < 0) 4217 goto err; 4218 advance = 0; 4219 4220 while (1) { 4221 leaf = path->nodes[0]; 4222 nritems = btrfs_header_nritems(leaf); 4223 slot = path->slots[0]; 4224 if (advance || slot >= nritems) { 4225 if (slot >= nritems - 1) { 4226 ret = btrfs_next_leaf(root, path); 4227 if (ret) 4228 break; 4229 leaf = path->nodes[0]; 4230 nritems = btrfs_header_nritems(leaf); 4231 slot = path->slots[0]; 4232 } else { 4233 slot++; 4234 path->slots[0]++; 4235 } 4236 } 4237 4238 advance = 1; 4239 item = btrfs_item_nr(leaf, slot); 4240 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4241 4242 if (found_key.objectid != key.objectid) 4243 break; 4244 if (btrfs_key_type(&found_key) != key_type) 4245 break; 4246 if (found_key.offset < filp->f_pos) 4247 continue; 4248 4249 filp->f_pos = found_key.offset; 4250 4251 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4252 di_cur = 0; 4253 di_total = btrfs_item_size(leaf, item); 4254 4255 while (di_cur < di_total) { 4256 struct btrfs_key location; 4257 4258 name_len = btrfs_dir_name_len(leaf, di); 4259 if (name_len <= sizeof(tmp_name)) { 4260 name_ptr = tmp_name; 4261 } else { 4262 name_ptr = kmalloc(name_len, GFP_NOFS); 4263 if (!name_ptr) { 4264 ret = -ENOMEM; 4265 goto err; 4266 } 4267 } 4268 read_extent_buffer(leaf, name_ptr, 4269 (unsigned long)(di + 1), name_len); 4270 4271 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4272 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4273 4274 /* is this a reference to our own snapshot? If so 4275 * skip it 4276 */ 4277 if (location.type == BTRFS_ROOT_ITEM_KEY && 4278 location.objectid == root->root_key.objectid) { 4279 over = 0; 4280 goto skip; 4281 } 4282 over = filldir(dirent, name_ptr, name_len, 4283 found_key.offset, location.objectid, 4284 d_type); 4285 4286 skip: 4287 if (name_ptr != tmp_name) 4288 kfree(name_ptr); 4289 4290 if (over) 4291 goto nopos; 4292 di_len = btrfs_dir_name_len(leaf, di) + 4293 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4294 di_cur += di_len; 4295 di = (struct btrfs_dir_item *)((char *)di + di_len); 4296 } 4297 } 4298 4299 /* Reached end of directory/root. Bump pos past the last item. */ 4300 if (key_type == BTRFS_DIR_INDEX_KEY) 4301 /* 4302 * 32-bit glibc will use getdents64, but then strtol - 4303 * so the last number we can serve is this. 4304 */ 4305 filp->f_pos = 0x7fffffff; 4306 else 4307 filp->f_pos++; 4308 nopos: 4309 ret = 0; 4310 err: 4311 btrfs_free_path(path); 4312 return ret; 4313 } 4314 4315 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4316 { 4317 struct btrfs_root *root = BTRFS_I(inode)->root; 4318 struct btrfs_trans_handle *trans; 4319 int ret = 0; 4320 bool nolock = false; 4321 4322 if (BTRFS_I(inode)->dummy_inode) 4323 return 0; 4324 4325 smp_mb(); 4326 nolock = (root->fs_info->closing && root == root->fs_info->tree_root); 4327 4328 if (wbc->sync_mode == WB_SYNC_ALL) { 4329 if (nolock) 4330 trans = btrfs_join_transaction_nolock(root, 1); 4331 else 4332 trans = btrfs_join_transaction(root, 1); 4333 btrfs_set_trans_block_group(trans, inode); 4334 if (nolock) 4335 ret = btrfs_end_transaction_nolock(trans, root); 4336 else 4337 ret = btrfs_commit_transaction(trans, root); 4338 } 4339 return ret; 4340 } 4341 4342 /* 4343 * This is somewhat expensive, updating the tree every time the 4344 * inode changes. But, it is most likely to find the inode in cache. 4345 * FIXME, needs more benchmarking...there are no reasons other than performance 4346 * to keep or drop this code. 4347 */ 4348 void btrfs_dirty_inode(struct inode *inode) 4349 { 4350 struct btrfs_root *root = BTRFS_I(inode)->root; 4351 struct btrfs_trans_handle *trans; 4352 int ret; 4353 4354 if (BTRFS_I(inode)->dummy_inode) 4355 return; 4356 4357 trans = btrfs_join_transaction(root, 1); 4358 btrfs_set_trans_block_group(trans, inode); 4359 4360 ret = btrfs_update_inode(trans, root, inode); 4361 if (ret && ret == -ENOSPC) { 4362 /* whoops, lets try again with the full transaction */ 4363 btrfs_end_transaction(trans, root); 4364 trans = btrfs_start_transaction(root, 1); 4365 if (IS_ERR(trans)) { 4366 if (printk_ratelimit()) { 4367 printk(KERN_ERR "btrfs: fail to " 4368 "dirty inode %lu error %ld\n", 4369 inode->i_ino, PTR_ERR(trans)); 4370 } 4371 return; 4372 } 4373 btrfs_set_trans_block_group(trans, inode); 4374 4375 ret = btrfs_update_inode(trans, root, inode); 4376 if (ret) { 4377 if (printk_ratelimit()) { 4378 printk(KERN_ERR "btrfs: fail to " 4379 "dirty inode %lu error %d\n", 4380 inode->i_ino, ret); 4381 } 4382 } 4383 } 4384 btrfs_end_transaction(trans, root); 4385 } 4386 4387 /* 4388 * find the highest existing sequence number in a directory 4389 * and then set the in-memory index_cnt variable to reflect 4390 * free sequence numbers 4391 */ 4392 static int btrfs_set_inode_index_count(struct inode *inode) 4393 { 4394 struct btrfs_root *root = BTRFS_I(inode)->root; 4395 struct btrfs_key key, found_key; 4396 struct btrfs_path *path; 4397 struct extent_buffer *leaf; 4398 int ret; 4399 4400 key.objectid = inode->i_ino; 4401 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4402 key.offset = (u64)-1; 4403 4404 path = btrfs_alloc_path(); 4405 if (!path) 4406 return -ENOMEM; 4407 4408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4409 if (ret < 0) 4410 goto out; 4411 /* FIXME: we should be able to handle this */ 4412 if (ret == 0) 4413 goto out; 4414 ret = 0; 4415 4416 /* 4417 * MAGIC NUMBER EXPLANATION: 4418 * since we search a directory based on f_pos we have to start at 2 4419 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4420 * else has to start at 2 4421 */ 4422 if (path->slots[0] == 0) { 4423 BTRFS_I(inode)->index_cnt = 2; 4424 goto out; 4425 } 4426 4427 path->slots[0]--; 4428 4429 leaf = path->nodes[0]; 4430 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4431 4432 if (found_key.objectid != inode->i_ino || 4433 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4434 BTRFS_I(inode)->index_cnt = 2; 4435 goto out; 4436 } 4437 4438 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4439 out: 4440 btrfs_free_path(path); 4441 return ret; 4442 } 4443 4444 /* 4445 * helper to find a free sequence number in a given directory. This current 4446 * code is very simple, later versions will do smarter things in the btree 4447 */ 4448 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4449 { 4450 int ret = 0; 4451 4452 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4453 ret = btrfs_set_inode_index_count(dir); 4454 if (ret) 4455 return ret; 4456 } 4457 4458 *index = BTRFS_I(dir)->index_cnt; 4459 BTRFS_I(dir)->index_cnt++; 4460 4461 return ret; 4462 } 4463 4464 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4465 struct btrfs_root *root, 4466 struct inode *dir, 4467 const char *name, int name_len, 4468 u64 ref_objectid, u64 objectid, 4469 u64 alloc_hint, int mode, u64 *index) 4470 { 4471 struct inode *inode; 4472 struct btrfs_inode_item *inode_item; 4473 struct btrfs_key *location; 4474 struct btrfs_path *path; 4475 struct btrfs_inode_ref *ref; 4476 struct btrfs_key key[2]; 4477 u32 sizes[2]; 4478 unsigned long ptr; 4479 int ret; 4480 int owner; 4481 4482 path = btrfs_alloc_path(); 4483 BUG_ON(!path); 4484 4485 inode = new_inode(root->fs_info->sb); 4486 if (!inode) 4487 return ERR_PTR(-ENOMEM); 4488 4489 if (dir) { 4490 ret = btrfs_set_inode_index(dir, index); 4491 if (ret) { 4492 iput(inode); 4493 return ERR_PTR(ret); 4494 } 4495 } 4496 /* 4497 * index_cnt is ignored for everything but a dir, 4498 * btrfs_get_inode_index_count has an explanation for the magic 4499 * number 4500 */ 4501 BTRFS_I(inode)->index_cnt = 2; 4502 BTRFS_I(inode)->root = root; 4503 BTRFS_I(inode)->generation = trans->transid; 4504 inode->i_generation = BTRFS_I(inode)->generation; 4505 btrfs_set_inode_space_info(root, inode); 4506 4507 if (mode & S_IFDIR) 4508 owner = 0; 4509 else 4510 owner = 1; 4511 BTRFS_I(inode)->block_group = 4512 btrfs_find_block_group(root, 0, alloc_hint, owner); 4513 4514 key[0].objectid = objectid; 4515 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4516 key[0].offset = 0; 4517 4518 key[1].objectid = objectid; 4519 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4520 key[1].offset = ref_objectid; 4521 4522 sizes[0] = sizeof(struct btrfs_inode_item); 4523 sizes[1] = name_len + sizeof(*ref); 4524 4525 path->leave_spinning = 1; 4526 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4527 if (ret != 0) 4528 goto fail; 4529 4530 inode_init_owner(inode, dir, mode); 4531 inode->i_ino = objectid; 4532 inode_set_bytes(inode, 0); 4533 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4534 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4535 struct btrfs_inode_item); 4536 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4537 4538 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4539 struct btrfs_inode_ref); 4540 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4541 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4542 ptr = (unsigned long)(ref + 1); 4543 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4544 4545 btrfs_mark_buffer_dirty(path->nodes[0]); 4546 btrfs_free_path(path); 4547 4548 location = &BTRFS_I(inode)->location; 4549 location->objectid = objectid; 4550 location->offset = 0; 4551 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4552 4553 btrfs_inherit_iflags(inode, dir); 4554 4555 if ((mode & S_IFREG)) { 4556 if (btrfs_test_opt(root, NODATASUM)) 4557 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4558 if (btrfs_test_opt(root, NODATACOW)) 4559 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4560 } 4561 4562 insert_inode_hash(inode); 4563 inode_tree_add(inode); 4564 return inode; 4565 fail: 4566 if (dir) 4567 BTRFS_I(dir)->index_cnt--; 4568 btrfs_free_path(path); 4569 iput(inode); 4570 return ERR_PTR(ret); 4571 } 4572 4573 static inline u8 btrfs_inode_type(struct inode *inode) 4574 { 4575 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4576 } 4577 4578 /* 4579 * utility function to add 'inode' into 'parent_inode' with 4580 * a give name and a given sequence number. 4581 * if 'add_backref' is true, also insert a backref from the 4582 * inode to the parent directory. 4583 */ 4584 int btrfs_add_link(struct btrfs_trans_handle *trans, 4585 struct inode *parent_inode, struct inode *inode, 4586 const char *name, int name_len, int add_backref, u64 index) 4587 { 4588 int ret = 0; 4589 struct btrfs_key key; 4590 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4591 4592 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4593 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4594 } else { 4595 key.objectid = inode->i_ino; 4596 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4597 key.offset = 0; 4598 } 4599 4600 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4601 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4602 key.objectid, root->root_key.objectid, 4603 parent_inode->i_ino, 4604 index, name, name_len); 4605 } else if (add_backref) { 4606 ret = btrfs_insert_inode_ref(trans, root, 4607 name, name_len, inode->i_ino, 4608 parent_inode->i_ino, index); 4609 } 4610 4611 if (ret == 0) { 4612 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4613 parent_inode->i_ino, &key, 4614 btrfs_inode_type(inode), index); 4615 BUG_ON(ret); 4616 4617 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4618 name_len * 2); 4619 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4620 ret = btrfs_update_inode(trans, root, parent_inode); 4621 } 4622 return ret; 4623 } 4624 4625 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4626 struct inode *dir, struct dentry *dentry, 4627 struct inode *inode, int backref, u64 index) 4628 { 4629 int err = btrfs_add_link(trans, dir, inode, 4630 dentry->d_name.name, dentry->d_name.len, 4631 backref, index); 4632 if (!err) { 4633 d_instantiate(dentry, inode); 4634 return 0; 4635 } 4636 if (err > 0) 4637 err = -EEXIST; 4638 return err; 4639 } 4640 4641 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4642 int mode, dev_t rdev) 4643 { 4644 struct btrfs_trans_handle *trans; 4645 struct btrfs_root *root = BTRFS_I(dir)->root; 4646 struct inode *inode = NULL; 4647 int err; 4648 int drop_inode = 0; 4649 u64 objectid; 4650 unsigned long nr = 0; 4651 u64 index = 0; 4652 4653 if (!new_valid_dev(rdev)) 4654 return -EINVAL; 4655 4656 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4657 if (err) 4658 return err; 4659 4660 /* 4661 * 2 for inode item and ref 4662 * 2 for dir items 4663 * 1 for xattr if selinux is on 4664 */ 4665 trans = btrfs_start_transaction(root, 5); 4666 if (IS_ERR(trans)) 4667 return PTR_ERR(trans); 4668 4669 btrfs_set_trans_block_group(trans, dir); 4670 4671 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4672 dentry->d_name.len, dir->i_ino, objectid, 4673 BTRFS_I(dir)->block_group, mode, &index); 4674 err = PTR_ERR(inode); 4675 if (IS_ERR(inode)) 4676 goto out_unlock; 4677 4678 err = btrfs_init_inode_security(trans, inode, dir); 4679 if (err) { 4680 drop_inode = 1; 4681 goto out_unlock; 4682 } 4683 4684 btrfs_set_trans_block_group(trans, inode); 4685 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4686 if (err) 4687 drop_inode = 1; 4688 else { 4689 inode->i_op = &btrfs_special_inode_operations; 4690 init_special_inode(inode, inode->i_mode, rdev); 4691 btrfs_update_inode(trans, root, inode); 4692 } 4693 btrfs_update_inode_block_group(trans, inode); 4694 btrfs_update_inode_block_group(trans, dir); 4695 out_unlock: 4696 nr = trans->blocks_used; 4697 btrfs_end_transaction_throttle(trans, root); 4698 btrfs_btree_balance_dirty(root, nr); 4699 if (drop_inode) { 4700 inode_dec_link_count(inode); 4701 iput(inode); 4702 } 4703 return err; 4704 } 4705 4706 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4707 int mode, struct nameidata *nd) 4708 { 4709 struct btrfs_trans_handle *trans; 4710 struct btrfs_root *root = BTRFS_I(dir)->root; 4711 struct inode *inode = NULL; 4712 int drop_inode = 0; 4713 int err; 4714 unsigned long nr = 0; 4715 u64 objectid; 4716 u64 index = 0; 4717 4718 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4719 if (err) 4720 return err; 4721 /* 4722 * 2 for inode item and ref 4723 * 2 for dir items 4724 * 1 for xattr if selinux is on 4725 */ 4726 trans = btrfs_start_transaction(root, 5); 4727 if (IS_ERR(trans)) 4728 return PTR_ERR(trans); 4729 4730 btrfs_set_trans_block_group(trans, dir); 4731 4732 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4733 dentry->d_name.len, dir->i_ino, objectid, 4734 BTRFS_I(dir)->block_group, mode, &index); 4735 err = PTR_ERR(inode); 4736 if (IS_ERR(inode)) 4737 goto out_unlock; 4738 4739 err = btrfs_init_inode_security(trans, inode, dir); 4740 if (err) { 4741 drop_inode = 1; 4742 goto out_unlock; 4743 } 4744 4745 btrfs_set_trans_block_group(trans, inode); 4746 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4747 if (err) 4748 drop_inode = 1; 4749 else { 4750 inode->i_mapping->a_ops = &btrfs_aops; 4751 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4752 inode->i_fop = &btrfs_file_operations; 4753 inode->i_op = &btrfs_file_inode_operations; 4754 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4755 } 4756 btrfs_update_inode_block_group(trans, inode); 4757 btrfs_update_inode_block_group(trans, dir); 4758 out_unlock: 4759 nr = trans->blocks_used; 4760 btrfs_end_transaction_throttle(trans, root); 4761 if (drop_inode) { 4762 inode_dec_link_count(inode); 4763 iput(inode); 4764 } 4765 btrfs_btree_balance_dirty(root, nr); 4766 return err; 4767 } 4768 4769 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4770 struct dentry *dentry) 4771 { 4772 struct btrfs_trans_handle *trans; 4773 struct btrfs_root *root = BTRFS_I(dir)->root; 4774 struct inode *inode = old_dentry->d_inode; 4775 u64 index; 4776 unsigned long nr = 0; 4777 int err; 4778 int drop_inode = 0; 4779 4780 if (inode->i_nlink == 0) 4781 return -ENOENT; 4782 4783 /* do not allow sys_link's with other subvols of the same device */ 4784 if (root->objectid != BTRFS_I(inode)->root->objectid) 4785 return -EPERM; 4786 4787 btrfs_inc_nlink(inode); 4788 inode->i_ctime = CURRENT_TIME; 4789 4790 err = btrfs_set_inode_index(dir, &index); 4791 if (err) 4792 goto fail; 4793 4794 /* 4795 * 1 item for inode ref 4796 * 2 items for dir items 4797 */ 4798 trans = btrfs_start_transaction(root, 3); 4799 if (IS_ERR(trans)) { 4800 err = PTR_ERR(trans); 4801 goto fail; 4802 } 4803 4804 btrfs_set_trans_block_group(trans, dir); 4805 ihold(inode); 4806 4807 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4808 4809 if (err) { 4810 drop_inode = 1; 4811 } else { 4812 struct dentry *parent = dget_parent(dentry); 4813 btrfs_update_inode_block_group(trans, dir); 4814 err = btrfs_update_inode(trans, root, inode); 4815 BUG_ON(err); 4816 btrfs_log_new_name(trans, inode, NULL, parent); 4817 dput(parent); 4818 } 4819 4820 nr = trans->blocks_used; 4821 btrfs_end_transaction_throttle(trans, root); 4822 fail: 4823 if (drop_inode) { 4824 inode_dec_link_count(inode); 4825 iput(inode); 4826 } 4827 btrfs_btree_balance_dirty(root, nr); 4828 return err; 4829 } 4830 4831 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4832 { 4833 struct inode *inode = NULL; 4834 struct btrfs_trans_handle *trans; 4835 struct btrfs_root *root = BTRFS_I(dir)->root; 4836 int err = 0; 4837 int drop_on_err = 0; 4838 u64 objectid = 0; 4839 u64 index = 0; 4840 unsigned long nr = 1; 4841 4842 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4843 if (err) 4844 return err; 4845 4846 /* 4847 * 2 items for inode and ref 4848 * 2 items for dir items 4849 * 1 for xattr if selinux is on 4850 */ 4851 trans = btrfs_start_transaction(root, 5); 4852 if (IS_ERR(trans)) 4853 return PTR_ERR(trans); 4854 btrfs_set_trans_block_group(trans, dir); 4855 4856 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4857 dentry->d_name.len, dir->i_ino, objectid, 4858 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4859 &index); 4860 if (IS_ERR(inode)) { 4861 err = PTR_ERR(inode); 4862 goto out_fail; 4863 } 4864 4865 drop_on_err = 1; 4866 4867 err = btrfs_init_inode_security(trans, inode, dir); 4868 if (err) 4869 goto out_fail; 4870 4871 inode->i_op = &btrfs_dir_inode_operations; 4872 inode->i_fop = &btrfs_dir_file_operations; 4873 btrfs_set_trans_block_group(trans, inode); 4874 4875 btrfs_i_size_write(inode, 0); 4876 err = btrfs_update_inode(trans, root, inode); 4877 if (err) 4878 goto out_fail; 4879 4880 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4881 dentry->d_name.len, 0, index); 4882 if (err) 4883 goto out_fail; 4884 4885 d_instantiate(dentry, inode); 4886 drop_on_err = 0; 4887 btrfs_update_inode_block_group(trans, inode); 4888 btrfs_update_inode_block_group(trans, dir); 4889 4890 out_fail: 4891 nr = trans->blocks_used; 4892 btrfs_end_transaction_throttle(trans, root); 4893 if (drop_on_err) 4894 iput(inode); 4895 btrfs_btree_balance_dirty(root, nr); 4896 return err; 4897 } 4898 4899 /* helper for btfs_get_extent. Given an existing extent in the tree, 4900 * and an extent that you want to insert, deal with overlap and insert 4901 * the new extent into the tree. 4902 */ 4903 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4904 struct extent_map *existing, 4905 struct extent_map *em, 4906 u64 map_start, u64 map_len) 4907 { 4908 u64 start_diff; 4909 4910 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4911 start_diff = map_start - em->start; 4912 em->start = map_start; 4913 em->len = map_len; 4914 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4915 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4916 em->block_start += start_diff; 4917 em->block_len -= start_diff; 4918 } 4919 return add_extent_mapping(em_tree, em); 4920 } 4921 4922 static noinline int uncompress_inline(struct btrfs_path *path, 4923 struct inode *inode, struct page *page, 4924 size_t pg_offset, u64 extent_offset, 4925 struct btrfs_file_extent_item *item) 4926 { 4927 int ret; 4928 struct extent_buffer *leaf = path->nodes[0]; 4929 char *tmp; 4930 size_t max_size; 4931 unsigned long inline_size; 4932 unsigned long ptr; 4933 4934 WARN_ON(pg_offset != 0); 4935 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4936 inline_size = btrfs_file_extent_inline_item_len(leaf, 4937 btrfs_item_nr(leaf, path->slots[0])); 4938 tmp = kmalloc(inline_size, GFP_NOFS); 4939 ptr = btrfs_file_extent_inline_start(item); 4940 4941 read_extent_buffer(leaf, tmp, ptr, inline_size); 4942 4943 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4944 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4945 inline_size, max_size); 4946 if (ret) { 4947 char *kaddr = kmap_atomic(page, KM_USER0); 4948 unsigned long copy_size = min_t(u64, 4949 PAGE_CACHE_SIZE - pg_offset, 4950 max_size - extent_offset); 4951 memset(kaddr + pg_offset, 0, copy_size); 4952 kunmap_atomic(kaddr, KM_USER0); 4953 } 4954 kfree(tmp); 4955 return 0; 4956 } 4957 4958 /* 4959 * a bit scary, this does extent mapping from logical file offset to the disk. 4960 * the ugly parts come from merging extents from the disk with the in-ram 4961 * representation. This gets more complex because of the data=ordered code, 4962 * where the in-ram extents might be locked pending data=ordered completion. 4963 * 4964 * This also copies inline extents directly into the page. 4965 */ 4966 4967 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4968 size_t pg_offset, u64 start, u64 len, 4969 int create) 4970 { 4971 int ret; 4972 int err = 0; 4973 u64 bytenr; 4974 u64 extent_start = 0; 4975 u64 extent_end = 0; 4976 u64 objectid = inode->i_ino; 4977 u32 found_type; 4978 struct btrfs_path *path = NULL; 4979 struct btrfs_root *root = BTRFS_I(inode)->root; 4980 struct btrfs_file_extent_item *item; 4981 struct extent_buffer *leaf; 4982 struct btrfs_key found_key; 4983 struct extent_map *em = NULL; 4984 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4985 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4986 struct btrfs_trans_handle *trans = NULL; 4987 int compressed; 4988 4989 again: 4990 read_lock(&em_tree->lock); 4991 em = lookup_extent_mapping(em_tree, start, len); 4992 if (em) 4993 em->bdev = root->fs_info->fs_devices->latest_bdev; 4994 read_unlock(&em_tree->lock); 4995 4996 if (em) { 4997 if (em->start > start || em->start + em->len <= start) 4998 free_extent_map(em); 4999 else if (em->block_start == EXTENT_MAP_INLINE && page) 5000 free_extent_map(em); 5001 else 5002 goto out; 5003 } 5004 em = alloc_extent_map(GFP_NOFS); 5005 if (!em) { 5006 err = -ENOMEM; 5007 goto out; 5008 } 5009 em->bdev = root->fs_info->fs_devices->latest_bdev; 5010 em->start = EXTENT_MAP_HOLE; 5011 em->orig_start = EXTENT_MAP_HOLE; 5012 em->len = (u64)-1; 5013 em->block_len = (u64)-1; 5014 5015 if (!path) { 5016 path = btrfs_alloc_path(); 5017 BUG_ON(!path); 5018 } 5019 5020 ret = btrfs_lookup_file_extent(trans, root, path, 5021 objectid, start, trans != NULL); 5022 if (ret < 0) { 5023 err = ret; 5024 goto out; 5025 } 5026 5027 if (ret != 0) { 5028 if (path->slots[0] == 0) 5029 goto not_found; 5030 path->slots[0]--; 5031 } 5032 5033 leaf = path->nodes[0]; 5034 item = btrfs_item_ptr(leaf, path->slots[0], 5035 struct btrfs_file_extent_item); 5036 /* are we inside the extent that was found? */ 5037 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5038 found_type = btrfs_key_type(&found_key); 5039 if (found_key.objectid != objectid || 5040 found_type != BTRFS_EXTENT_DATA_KEY) { 5041 goto not_found; 5042 } 5043 5044 found_type = btrfs_file_extent_type(leaf, item); 5045 extent_start = found_key.offset; 5046 compressed = btrfs_file_extent_compression(leaf, item); 5047 if (found_type == BTRFS_FILE_EXTENT_REG || 5048 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5049 extent_end = extent_start + 5050 btrfs_file_extent_num_bytes(leaf, item); 5051 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5052 size_t size; 5053 size = btrfs_file_extent_inline_len(leaf, item); 5054 extent_end = (extent_start + size + root->sectorsize - 1) & 5055 ~((u64)root->sectorsize - 1); 5056 } 5057 5058 if (start >= extent_end) { 5059 path->slots[0]++; 5060 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5061 ret = btrfs_next_leaf(root, path); 5062 if (ret < 0) { 5063 err = ret; 5064 goto out; 5065 } 5066 if (ret > 0) 5067 goto not_found; 5068 leaf = path->nodes[0]; 5069 } 5070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5071 if (found_key.objectid != objectid || 5072 found_key.type != BTRFS_EXTENT_DATA_KEY) 5073 goto not_found; 5074 if (start + len <= found_key.offset) 5075 goto not_found; 5076 em->start = start; 5077 em->len = found_key.offset - start; 5078 goto not_found_em; 5079 } 5080 5081 if (found_type == BTRFS_FILE_EXTENT_REG || 5082 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5083 em->start = extent_start; 5084 em->len = extent_end - extent_start; 5085 em->orig_start = extent_start - 5086 btrfs_file_extent_offset(leaf, item); 5087 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5088 if (bytenr == 0) { 5089 em->block_start = EXTENT_MAP_HOLE; 5090 goto insert; 5091 } 5092 if (compressed) { 5093 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5094 em->block_start = bytenr; 5095 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5096 item); 5097 } else { 5098 bytenr += btrfs_file_extent_offset(leaf, item); 5099 em->block_start = bytenr; 5100 em->block_len = em->len; 5101 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5102 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5103 } 5104 goto insert; 5105 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5106 unsigned long ptr; 5107 char *map; 5108 size_t size; 5109 size_t extent_offset; 5110 size_t copy_size; 5111 5112 em->block_start = EXTENT_MAP_INLINE; 5113 if (!page || create) { 5114 em->start = extent_start; 5115 em->len = extent_end - extent_start; 5116 goto out; 5117 } 5118 5119 size = btrfs_file_extent_inline_len(leaf, item); 5120 extent_offset = page_offset(page) + pg_offset - extent_start; 5121 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5122 size - extent_offset); 5123 em->start = extent_start + extent_offset; 5124 em->len = (copy_size + root->sectorsize - 1) & 5125 ~((u64)root->sectorsize - 1); 5126 em->orig_start = EXTENT_MAP_INLINE; 5127 if (compressed) 5128 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5129 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5130 if (create == 0 && !PageUptodate(page)) { 5131 if (btrfs_file_extent_compression(leaf, item) == 5132 BTRFS_COMPRESS_ZLIB) { 5133 ret = uncompress_inline(path, inode, page, 5134 pg_offset, 5135 extent_offset, item); 5136 BUG_ON(ret); 5137 } else { 5138 map = kmap(page); 5139 read_extent_buffer(leaf, map + pg_offset, ptr, 5140 copy_size); 5141 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5142 memset(map + pg_offset + copy_size, 0, 5143 PAGE_CACHE_SIZE - pg_offset - 5144 copy_size); 5145 } 5146 kunmap(page); 5147 } 5148 flush_dcache_page(page); 5149 } else if (create && PageUptodate(page)) { 5150 WARN_ON(1); 5151 if (!trans) { 5152 kunmap(page); 5153 free_extent_map(em); 5154 em = NULL; 5155 btrfs_release_path(root, path); 5156 trans = btrfs_join_transaction(root, 1); 5157 goto again; 5158 } 5159 map = kmap(page); 5160 write_extent_buffer(leaf, map + pg_offset, ptr, 5161 copy_size); 5162 kunmap(page); 5163 btrfs_mark_buffer_dirty(leaf); 5164 } 5165 set_extent_uptodate(io_tree, em->start, 5166 extent_map_end(em) - 1, GFP_NOFS); 5167 goto insert; 5168 } else { 5169 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5170 WARN_ON(1); 5171 } 5172 not_found: 5173 em->start = start; 5174 em->len = len; 5175 not_found_em: 5176 em->block_start = EXTENT_MAP_HOLE; 5177 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5178 insert: 5179 btrfs_release_path(root, path); 5180 if (em->start > start || extent_map_end(em) <= start) { 5181 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5182 "[%llu %llu]\n", (unsigned long long)em->start, 5183 (unsigned long long)em->len, 5184 (unsigned long long)start, 5185 (unsigned long long)len); 5186 err = -EIO; 5187 goto out; 5188 } 5189 5190 err = 0; 5191 write_lock(&em_tree->lock); 5192 ret = add_extent_mapping(em_tree, em); 5193 /* it is possible that someone inserted the extent into the tree 5194 * while we had the lock dropped. It is also possible that 5195 * an overlapping map exists in the tree 5196 */ 5197 if (ret == -EEXIST) { 5198 struct extent_map *existing; 5199 5200 ret = 0; 5201 5202 existing = lookup_extent_mapping(em_tree, start, len); 5203 if (existing && (existing->start > start || 5204 existing->start + existing->len <= start)) { 5205 free_extent_map(existing); 5206 existing = NULL; 5207 } 5208 if (!existing) { 5209 existing = lookup_extent_mapping(em_tree, em->start, 5210 em->len); 5211 if (existing) { 5212 err = merge_extent_mapping(em_tree, existing, 5213 em, start, 5214 root->sectorsize); 5215 free_extent_map(existing); 5216 if (err) { 5217 free_extent_map(em); 5218 em = NULL; 5219 } 5220 } else { 5221 err = -EIO; 5222 free_extent_map(em); 5223 em = NULL; 5224 } 5225 } else { 5226 free_extent_map(em); 5227 em = existing; 5228 err = 0; 5229 } 5230 } 5231 write_unlock(&em_tree->lock); 5232 out: 5233 if (path) 5234 btrfs_free_path(path); 5235 if (trans) { 5236 ret = btrfs_end_transaction(trans, root); 5237 if (!err) 5238 err = ret; 5239 } 5240 if (err) { 5241 free_extent_map(em); 5242 return ERR_PTR(err); 5243 } 5244 return em; 5245 } 5246 5247 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5248 u64 start, u64 len) 5249 { 5250 struct btrfs_root *root = BTRFS_I(inode)->root; 5251 struct btrfs_trans_handle *trans; 5252 struct extent_map *em; 5253 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5254 struct btrfs_key ins; 5255 u64 alloc_hint; 5256 int ret; 5257 5258 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5259 5260 trans = btrfs_join_transaction(root, 0); 5261 if (!trans) 5262 return ERR_PTR(-ENOMEM); 5263 5264 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5265 5266 alloc_hint = get_extent_allocation_hint(inode, start, len); 5267 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5268 alloc_hint, (u64)-1, &ins, 1); 5269 if (ret) { 5270 em = ERR_PTR(ret); 5271 goto out; 5272 } 5273 5274 em = alloc_extent_map(GFP_NOFS); 5275 if (!em) { 5276 em = ERR_PTR(-ENOMEM); 5277 goto out; 5278 } 5279 5280 em->start = start; 5281 em->orig_start = em->start; 5282 em->len = ins.offset; 5283 5284 em->block_start = ins.objectid; 5285 em->block_len = ins.offset; 5286 em->bdev = root->fs_info->fs_devices->latest_bdev; 5287 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5288 5289 while (1) { 5290 write_lock(&em_tree->lock); 5291 ret = add_extent_mapping(em_tree, em); 5292 write_unlock(&em_tree->lock); 5293 if (ret != -EEXIST) 5294 break; 5295 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5296 } 5297 5298 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5299 ins.offset, ins.offset, 0); 5300 if (ret) { 5301 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5302 em = ERR_PTR(ret); 5303 } 5304 out: 5305 btrfs_end_transaction(trans, root); 5306 return em; 5307 } 5308 5309 /* 5310 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5311 * block must be cow'd 5312 */ 5313 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5314 struct inode *inode, u64 offset, u64 len) 5315 { 5316 struct btrfs_path *path; 5317 int ret; 5318 struct extent_buffer *leaf; 5319 struct btrfs_root *root = BTRFS_I(inode)->root; 5320 struct btrfs_file_extent_item *fi; 5321 struct btrfs_key key; 5322 u64 disk_bytenr; 5323 u64 backref_offset; 5324 u64 extent_end; 5325 u64 num_bytes; 5326 int slot; 5327 int found_type; 5328 5329 path = btrfs_alloc_path(); 5330 if (!path) 5331 return -ENOMEM; 5332 5333 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 5334 offset, 0); 5335 if (ret < 0) 5336 goto out; 5337 5338 slot = path->slots[0]; 5339 if (ret == 1) { 5340 if (slot == 0) { 5341 /* can't find the item, must cow */ 5342 ret = 0; 5343 goto out; 5344 } 5345 slot--; 5346 } 5347 ret = 0; 5348 leaf = path->nodes[0]; 5349 btrfs_item_key_to_cpu(leaf, &key, slot); 5350 if (key.objectid != inode->i_ino || 5351 key.type != BTRFS_EXTENT_DATA_KEY) { 5352 /* not our file or wrong item type, must cow */ 5353 goto out; 5354 } 5355 5356 if (key.offset > offset) { 5357 /* Wrong offset, must cow */ 5358 goto out; 5359 } 5360 5361 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5362 found_type = btrfs_file_extent_type(leaf, fi); 5363 if (found_type != BTRFS_FILE_EXTENT_REG && 5364 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5365 /* not a regular extent, must cow */ 5366 goto out; 5367 } 5368 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5369 backref_offset = btrfs_file_extent_offset(leaf, fi); 5370 5371 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5372 if (extent_end < offset + len) { 5373 /* extent doesn't include our full range, must cow */ 5374 goto out; 5375 } 5376 5377 if (btrfs_extent_readonly(root, disk_bytenr)) 5378 goto out; 5379 5380 /* 5381 * look for other files referencing this extent, if we 5382 * find any we must cow 5383 */ 5384 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 5385 key.offset - backref_offset, disk_bytenr)) 5386 goto out; 5387 5388 /* 5389 * adjust disk_bytenr and num_bytes to cover just the bytes 5390 * in this extent we are about to write. If there 5391 * are any csums in that range we have to cow in order 5392 * to keep the csums correct 5393 */ 5394 disk_bytenr += backref_offset; 5395 disk_bytenr += offset - key.offset; 5396 num_bytes = min(offset + len, extent_end) - offset; 5397 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5398 goto out; 5399 /* 5400 * all of the above have passed, it is safe to overwrite this extent 5401 * without cow 5402 */ 5403 ret = 1; 5404 out: 5405 btrfs_free_path(path); 5406 return ret; 5407 } 5408 5409 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5410 struct buffer_head *bh_result, int create) 5411 { 5412 struct extent_map *em; 5413 struct btrfs_root *root = BTRFS_I(inode)->root; 5414 u64 start = iblock << inode->i_blkbits; 5415 u64 len = bh_result->b_size; 5416 struct btrfs_trans_handle *trans; 5417 5418 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5419 if (IS_ERR(em)) 5420 return PTR_ERR(em); 5421 5422 /* 5423 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5424 * io. INLINE is special, and we could probably kludge it in here, but 5425 * it's still buffered so for safety lets just fall back to the generic 5426 * buffered path. 5427 * 5428 * For COMPRESSED we _have_ to read the entire extent in so we can 5429 * decompress it, so there will be buffering required no matter what we 5430 * do, so go ahead and fallback to buffered. 5431 * 5432 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5433 * to buffered IO. Don't blame me, this is the price we pay for using 5434 * the generic code. 5435 */ 5436 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5437 em->block_start == EXTENT_MAP_INLINE) { 5438 free_extent_map(em); 5439 return -ENOTBLK; 5440 } 5441 5442 /* Just a good old fashioned hole, return */ 5443 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5444 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5445 free_extent_map(em); 5446 /* DIO will do one hole at a time, so just unlock a sector */ 5447 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5448 start + root->sectorsize - 1, GFP_NOFS); 5449 return 0; 5450 } 5451 5452 /* 5453 * We don't allocate a new extent in the following cases 5454 * 5455 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5456 * existing extent. 5457 * 2) The extent is marked as PREALLOC. We're good to go here and can 5458 * just use the extent. 5459 * 5460 */ 5461 if (!create) { 5462 len = em->len - (start - em->start); 5463 goto map; 5464 } 5465 5466 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5467 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5468 em->block_start != EXTENT_MAP_HOLE)) { 5469 int type; 5470 int ret; 5471 u64 block_start; 5472 5473 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5474 type = BTRFS_ORDERED_PREALLOC; 5475 else 5476 type = BTRFS_ORDERED_NOCOW; 5477 len = min(len, em->len - (start - em->start)); 5478 block_start = em->block_start + (start - em->start); 5479 5480 /* 5481 * we're not going to log anything, but we do need 5482 * to make sure the current transaction stays open 5483 * while we look for nocow cross refs 5484 */ 5485 trans = btrfs_join_transaction(root, 0); 5486 if (!trans) 5487 goto must_cow; 5488 5489 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5490 ret = btrfs_add_ordered_extent_dio(inode, start, 5491 block_start, len, len, type); 5492 btrfs_end_transaction(trans, root); 5493 if (ret) { 5494 free_extent_map(em); 5495 return ret; 5496 } 5497 goto unlock; 5498 } 5499 btrfs_end_transaction(trans, root); 5500 } 5501 must_cow: 5502 /* 5503 * this will cow the extent, reset the len in case we changed 5504 * it above 5505 */ 5506 len = bh_result->b_size; 5507 free_extent_map(em); 5508 em = btrfs_new_extent_direct(inode, start, len); 5509 if (IS_ERR(em)) 5510 return PTR_ERR(em); 5511 len = min(len, em->len - (start - em->start)); 5512 unlock: 5513 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5514 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5515 0, NULL, GFP_NOFS); 5516 map: 5517 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5518 inode->i_blkbits; 5519 bh_result->b_size = len; 5520 bh_result->b_bdev = em->bdev; 5521 set_buffer_mapped(bh_result); 5522 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5523 set_buffer_new(bh_result); 5524 5525 free_extent_map(em); 5526 5527 return 0; 5528 } 5529 5530 struct btrfs_dio_private { 5531 struct inode *inode; 5532 u64 logical_offset; 5533 u64 disk_bytenr; 5534 u64 bytes; 5535 u32 *csums; 5536 void *private; 5537 5538 /* number of bios pending for this dio */ 5539 atomic_t pending_bios; 5540 5541 /* IO errors */ 5542 int errors; 5543 5544 struct bio *orig_bio; 5545 }; 5546 5547 static void btrfs_endio_direct_read(struct bio *bio, int err) 5548 { 5549 struct btrfs_dio_private *dip = bio->bi_private; 5550 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5551 struct bio_vec *bvec = bio->bi_io_vec; 5552 struct inode *inode = dip->inode; 5553 struct btrfs_root *root = BTRFS_I(inode)->root; 5554 u64 start; 5555 u32 *private = dip->csums; 5556 5557 start = dip->logical_offset; 5558 do { 5559 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5560 struct page *page = bvec->bv_page; 5561 char *kaddr; 5562 u32 csum = ~(u32)0; 5563 unsigned long flags; 5564 5565 local_irq_save(flags); 5566 kaddr = kmap_atomic(page, KM_IRQ0); 5567 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5568 csum, bvec->bv_len); 5569 btrfs_csum_final(csum, (char *)&csum); 5570 kunmap_atomic(kaddr, KM_IRQ0); 5571 local_irq_restore(flags); 5572 5573 flush_dcache_page(bvec->bv_page); 5574 if (csum != *private) { 5575 printk(KERN_ERR "btrfs csum failed ino %lu off" 5576 " %llu csum %u private %u\n", 5577 inode->i_ino, (unsigned long long)start, 5578 csum, *private); 5579 err = -EIO; 5580 } 5581 } 5582 5583 start += bvec->bv_len; 5584 private++; 5585 bvec++; 5586 } while (bvec <= bvec_end); 5587 5588 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5589 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5590 bio->bi_private = dip->private; 5591 5592 kfree(dip->csums); 5593 kfree(dip); 5594 dio_end_io(bio, err); 5595 } 5596 5597 static void btrfs_endio_direct_write(struct bio *bio, int err) 5598 { 5599 struct btrfs_dio_private *dip = bio->bi_private; 5600 struct inode *inode = dip->inode; 5601 struct btrfs_root *root = BTRFS_I(inode)->root; 5602 struct btrfs_trans_handle *trans; 5603 struct btrfs_ordered_extent *ordered = NULL; 5604 struct extent_state *cached_state = NULL; 5605 u64 ordered_offset = dip->logical_offset; 5606 u64 ordered_bytes = dip->bytes; 5607 int ret; 5608 5609 if (err) 5610 goto out_done; 5611 again: 5612 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5613 &ordered_offset, 5614 ordered_bytes); 5615 if (!ret) 5616 goto out_test; 5617 5618 BUG_ON(!ordered); 5619 5620 trans = btrfs_join_transaction(root, 1); 5621 if (!trans) { 5622 err = -ENOMEM; 5623 goto out; 5624 } 5625 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5626 5627 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5628 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5629 if (!ret) 5630 ret = btrfs_update_inode(trans, root, inode); 5631 err = ret; 5632 goto out; 5633 } 5634 5635 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5636 ordered->file_offset + ordered->len - 1, 0, 5637 &cached_state, GFP_NOFS); 5638 5639 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5640 ret = btrfs_mark_extent_written(trans, inode, 5641 ordered->file_offset, 5642 ordered->file_offset + 5643 ordered->len); 5644 if (ret) { 5645 err = ret; 5646 goto out_unlock; 5647 } 5648 } else { 5649 ret = insert_reserved_file_extent(trans, inode, 5650 ordered->file_offset, 5651 ordered->start, 5652 ordered->disk_len, 5653 ordered->len, 5654 ordered->len, 5655 0, 0, 0, 5656 BTRFS_FILE_EXTENT_REG); 5657 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5658 ordered->file_offset, ordered->len); 5659 if (ret) { 5660 err = ret; 5661 WARN_ON(1); 5662 goto out_unlock; 5663 } 5664 } 5665 5666 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5667 btrfs_ordered_update_i_size(inode, 0, ordered); 5668 btrfs_update_inode(trans, root, inode); 5669 out_unlock: 5670 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5671 ordered->file_offset + ordered->len - 1, 5672 &cached_state, GFP_NOFS); 5673 out: 5674 btrfs_delalloc_release_metadata(inode, ordered->len); 5675 btrfs_end_transaction(trans, root); 5676 ordered_offset = ordered->file_offset + ordered->len; 5677 btrfs_put_ordered_extent(ordered); 5678 btrfs_put_ordered_extent(ordered); 5679 5680 out_test: 5681 /* 5682 * our bio might span multiple ordered extents. If we haven't 5683 * completed the accounting for the whole dio, go back and try again 5684 */ 5685 if (ordered_offset < dip->logical_offset + dip->bytes) { 5686 ordered_bytes = dip->logical_offset + dip->bytes - 5687 ordered_offset; 5688 goto again; 5689 } 5690 out_done: 5691 bio->bi_private = dip->private; 5692 5693 kfree(dip->csums); 5694 kfree(dip); 5695 dio_end_io(bio, err); 5696 } 5697 5698 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5699 struct bio *bio, int mirror_num, 5700 unsigned long bio_flags, u64 offset) 5701 { 5702 int ret; 5703 struct btrfs_root *root = BTRFS_I(inode)->root; 5704 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5705 BUG_ON(ret); 5706 return 0; 5707 } 5708 5709 static void btrfs_end_dio_bio(struct bio *bio, int err) 5710 { 5711 struct btrfs_dio_private *dip = bio->bi_private; 5712 5713 if (err) { 5714 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu " 5715 "sector %#Lx len %u err no %d\n", 5716 dip->inode->i_ino, bio->bi_rw, 5717 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5718 dip->errors = 1; 5719 5720 /* 5721 * before atomic variable goto zero, we must make sure 5722 * dip->errors is perceived to be set. 5723 */ 5724 smp_mb__before_atomic_dec(); 5725 } 5726 5727 /* if there are more bios still pending for this dio, just exit */ 5728 if (!atomic_dec_and_test(&dip->pending_bios)) 5729 goto out; 5730 5731 if (dip->errors) 5732 bio_io_error(dip->orig_bio); 5733 else { 5734 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5735 bio_endio(dip->orig_bio, 0); 5736 } 5737 out: 5738 bio_put(bio); 5739 } 5740 5741 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5742 u64 first_sector, gfp_t gfp_flags) 5743 { 5744 int nr_vecs = bio_get_nr_vecs(bdev); 5745 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5746 } 5747 5748 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5749 int rw, u64 file_offset, int skip_sum, 5750 u32 *csums) 5751 { 5752 int write = rw & REQ_WRITE; 5753 struct btrfs_root *root = BTRFS_I(inode)->root; 5754 int ret; 5755 5756 bio_get(bio); 5757 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5758 if (ret) 5759 goto err; 5760 5761 if (write && !skip_sum) { 5762 ret = btrfs_wq_submit_bio(root->fs_info, 5763 inode, rw, bio, 0, 0, 5764 file_offset, 5765 __btrfs_submit_bio_start_direct_io, 5766 __btrfs_submit_bio_done); 5767 goto err; 5768 } else if (!skip_sum) 5769 btrfs_lookup_bio_sums_dio(root, inode, bio, 5770 file_offset, csums); 5771 5772 ret = btrfs_map_bio(root, rw, bio, 0, 1); 5773 err: 5774 bio_put(bio); 5775 return ret; 5776 } 5777 5778 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5779 int skip_sum) 5780 { 5781 struct inode *inode = dip->inode; 5782 struct btrfs_root *root = BTRFS_I(inode)->root; 5783 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5784 struct bio *bio; 5785 struct bio *orig_bio = dip->orig_bio; 5786 struct bio_vec *bvec = orig_bio->bi_io_vec; 5787 u64 start_sector = orig_bio->bi_sector; 5788 u64 file_offset = dip->logical_offset; 5789 u64 submit_len = 0; 5790 u64 map_length; 5791 int nr_pages = 0; 5792 u32 *csums = dip->csums; 5793 int ret = 0; 5794 5795 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5796 if (!bio) 5797 return -ENOMEM; 5798 bio->bi_private = dip; 5799 bio->bi_end_io = btrfs_end_dio_bio; 5800 atomic_inc(&dip->pending_bios); 5801 5802 map_length = orig_bio->bi_size; 5803 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5804 &map_length, NULL, 0); 5805 if (ret) { 5806 bio_put(bio); 5807 return -EIO; 5808 } 5809 5810 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5811 if (unlikely(map_length < submit_len + bvec->bv_len || 5812 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5813 bvec->bv_offset) < bvec->bv_len)) { 5814 /* 5815 * inc the count before we submit the bio so 5816 * we know the end IO handler won't happen before 5817 * we inc the count. Otherwise, the dip might get freed 5818 * before we're done setting it up 5819 */ 5820 atomic_inc(&dip->pending_bios); 5821 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5822 file_offset, skip_sum, 5823 csums); 5824 if (ret) { 5825 bio_put(bio); 5826 atomic_dec(&dip->pending_bios); 5827 goto out_err; 5828 } 5829 5830 if (!skip_sum) 5831 csums = csums + nr_pages; 5832 start_sector += submit_len >> 9; 5833 file_offset += submit_len; 5834 5835 submit_len = 0; 5836 nr_pages = 0; 5837 5838 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 5839 start_sector, GFP_NOFS); 5840 if (!bio) 5841 goto out_err; 5842 bio->bi_private = dip; 5843 bio->bi_end_io = btrfs_end_dio_bio; 5844 5845 map_length = orig_bio->bi_size; 5846 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5847 &map_length, NULL, 0); 5848 if (ret) { 5849 bio_put(bio); 5850 goto out_err; 5851 } 5852 } else { 5853 submit_len += bvec->bv_len; 5854 nr_pages ++; 5855 bvec++; 5856 } 5857 } 5858 5859 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 5860 csums); 5861 if (!ret) 5862 return 0; 5863 5864 bio_put(bio); 5865 out_err: 5866 dip->errors = 1; 5867 /* 5868 * before atomic variable goto zero, we must 5869 * make sure dip->errors is perceived to be set. 5870 */ 5871 smp_mb__before_atomic_dec(); 5872 if (atomic_dec_and_test(&dip->pending_bios)) 5873 bio_io_error(dip->orig_bio); 5874 5875 /* bio_end_io() will handle error, so we needn't return it */ 5876 return 0; 5877 } 5878 5879 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 5880 loff_t file_offset) 5881 { 5882 struct btrfs_root *root = BTRFS_I(inode)->root; 5883 struct btrfs_dio_private *dip; 5884 struct bio_vec *bvec = bio->bi_io_vec; 5885 int skip_sum; 5886 int write = rw & REQ_WRITE; 5887 int ret = 0; 5888 5889 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 5890 5891 dip = kmalloc(sizeof(*dip), GFP_NOFS); 5892 if (!dip) { 5893 ret = -ENOMEM; 5894 goto free_ordered; 5895 } 5896 dip->csums = NULL; 5897 5898 if (!skip_sum) { 5899 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 5900 if (!dip->csums) { 5901 ret = -ENOMEM; 5902 goto free_ordered; 5903 } 5904 } 5905 5906 dip->private = bio->bi_private; 5907 dip->inode = inode; 5908 dip->logical_offset = file_offset; 5909 5910 dip->bytes = 0; 5911 do { 5912 dip->bytes += bvec->bv_len; 5913 bvec++; 5914 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 5915 5916 dip->disk_bytenr = (u64)bio->bi_sector << 9; 5917 bio->bi_private = dip; 5918 dip->errors = 0; 5919 dip->orig_bio = bio; 5920 atomic_set(&dip->pending_bios, 0); 5921 5922 if (write) 5923 bio->bi_end_io = btrfs_endio_direct_write; 5924 else 5925 bio->bi_end_io = btrfs_endio_direct_read; 5926 5927 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 5928 if (!ret) 5929 return; 5930 free_ordered: 5931 /* 5932 * If this is a write, we need to clean up the reserved space and kill 5933 * the ordered extent. 5934 */ 5935 if (write) { 5936 struct btrfs_ordered_extent *ordered; 5937 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 5938 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 5939 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 5940 btrfs_free_reserved_extent(root, ordered->start, 5941 ordered->disk_len); 5942 btrfs_put_ordered_extent(ordered); 5943 btrfs_put_ordered_extent(ordered); 5944 } 5945 bio_endio(bio, ret); 5946 } 5947 5948 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 5949 const struct iovec *iov, loff_t offset, 5950 unsigned long nr_segs) 5951 { 5952 int seg; 5953 size_t size; 5954 unsigned long addr; 5955 unsigned blocksize_mask = root->sectorsize - 1; 5956 ssize_t retval = -EINVAL; 5957 loff_t end = offset; 5958 5959 if (offset & blocksize_mask) 5960 goto out; 5961 5962 /* Check the memory alignment. Blocks cannot straddle pages */ 5963 for (seg = 0; seg < nr_segs; seg++) { 5964 addr = (unsigned long)iov[seg].iov_base; 5965 size = iov[seg].iov_len; 5966 end += size; 5967 if ((addr & blocksize_mask) || (size & blocksize_mask)) 5968 goto out; 5969 } 5970 retval = 0; 5971 out: 5972 return retval; 5973 } 5974 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 5975 const struct iovec *iov, loff_t offset, 5976 unsigned long nr_segs) 5977 { 5978 struct file *file = iocb->ki_filp; 5979 struct inode *inode = file->f_mapping->host; 5980 struct btrfs_ordered_extent *ordered; 5981 struct extent_state *cached_state = NULL; 5982 u64 lockstart, lockend; 5983 ssize_t ret; 5984 int writing = rw & WRITE; 5985 int write_bits = 0; 5986 size_t count = iov_length(iov, nr_segs); 5987 5988 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 5989 offset, nr_segs)) { 5990 return 0; 5991 } 5992 5993 lockstart = offset; 5994 lockend = offset + count - 1; 5995 5996 if (writing) { 5997 ret = btrfs_delalloc_reserve_space(inode, count); 5998 if (ret) 5999 goto out; 6000 } 6001 6002 while (1) { 6003 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6004 0, &cached_state, GFP_NOFS); 6005 /* 6006 * We're concerned with the entire range that we're going to be 6007 * doing DIO to, so we need to make sure theres no ordered 6008 * extents in this range. 6009 */ 6010 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6011 lockend - lockstart + 1); 6012 if (!ordered) 6013 break; 6014 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6015 &cached_state, GFP_NOFS); 6016 btrfs_start_ordered_extent(inode, ordered, 1); 6017 btrfs_put_ordered_extent(ordered); 6018 cond_resched(); 6019 } 6020 6021 /* 6022 * we don't use btrfs_set_extent_delalloc because we don't want 6023 * the dirty or uptodate bits 6024 */ 6025 if (writing) { 6026 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6027 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6028 EXTENT_DELALLOC, 0, NULL, &cached_state, 6029 GFP_NOFS); 6030 if (ret) { 6031 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6032 lockend, EXTENT_LOCKED | write_bits, 6033 1, 0, &cached_state, GFP_NOFS); 6034 goto out; 6035 } 6036 } 6037 6038 free_extent_state(cached_state); 6039 cached_state = NULL; 6040 6041 ret = __blockdev_direct_IO(rw, iocb, inode, 6042 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6043 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6044 btrfs_submit_direct, 0); 6045 6046 if (ret < 0 && ret != -EIOCBQUEUED) { 6047 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6048 offset + iov_length(iov, nr_segs) - 1, 6049 EXTENT_LOCKED | write_bits, 1, 0, 6050 &cached_state, GFP_NOFS); 6051 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6052 /* 6053 * We're falling back to buffered, unlock the section we didn't 6054 * do IO on. 6055 */ 6056 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6057 offset + iov_length(iov, nr_segs) - 1, 6058 EXTENT_LOCKED | write_bits, 1, 0, 6059 &cached_state, GFP_NOFS); 6060 } 6061 out: 6062 free_extent_state(cached_state); 6063 return ret; 6064 } 6065 6066 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6067 __u64 start, __u64 len) 6068 { 6069 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 6070 } 6071 6072 int btrfs_readpage(struct file *file, struct page *page) 6073 { 6074 struct extent_io_tree *tree; 6075 tree = &BTRFS_I(page->mapping->host)->io_tree; 6076 return extent_read_full_page(tree, page, btrfs_get_extent); 6077 } 6078 6079 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6080 { 6081 struct extent_io_tree *tree; 6082 6083 6084 if (current->flags & PF_MEMALLOC) { 6085 redirty_page_for_writepage(wbc, page); 6086 unlock_page(page); 6087 return 0; 6088 } 6089 tree = &BTRFS_I(page->mapping->host)->io_tree; 6090 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6091 } 6092 6093 int btrfs_writepages(struct address_space *mapping, 6094 struct writeback_control *wbc) 6095 { 6096 struct extent_io_tree *tree; 6097 6098 tree = &BTRFS_I(mapping->host)->io_tree; 6099 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6100 } 6101 6102 static int 6103 btrfs_readpages(struct file *file, struct address_space *mapping, 6104 struct list_head *pages, unsigned nr_pages) 6105 { 6106 struct extent_io_tree *tree; 6107 tree = &BTRFS_I(mapping->host)->io_tree; 6108 return extent_readpages(tree, mapping, pages, nr_pages, 6109 btrfs_get_extent); 6110 } 6111 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6112 { 6113 struct extent_io_tree *tree; 6114 struct extent_map_tree *map; 6115 int ret; 6116 6117 tree = &BTRFS_I(page->mapping->host)->io_tree; 6118 map = &BTRFS_I(page->mapping->host)->extent_tree; 6119 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6120 if (ret == 1) { 6121 ClearPagePrivate(page); 6122 set_page_private(page, 0); 6123 page_cache_release(page); 6124 } 6125 return ret; 6126 } 6127 6128 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6129 { 6130 if (PageWriteback(page) || PageDirty(page)) 6131 return 0; 6132 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6133 } 6134 6135 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6136 { 6137 struct extent_io_tree *tree; 6138 struct btrfs_ordered_extent *ordered; 6139 struct extent_state *cached_state = NULL; 6140 u64 page_start = page_offset(page); 6141 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6142 6143 6144 /* 6145 * we have the page locked, so new writeback can't start, 6146 * and the dirty bit won't be cleared while we are here. 6147 * 6148 * Wait for IO on this page so that we can safely clear 6149 * the PagePrivate2 bit and do ordered accounting 6150 */ 6151 wait_on_page_writeback(page); 6152 6153 tree = &BTRFS_I(page->mapping->host)->io_tree; 6154 if (offset) { 6155 btrfs_releasepage(page, GFP_NOFS); 6156 return; 6157 } 6158 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6159 GFP_NOFS); 6160 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6161 page_offset(page)); 6162 if (ordered) { 6163 /* 6164 * IO on this page will never be started, so we need 6165 * to account for any ordered extents now 6166 */ 6167 clear_extent_bit(tree, page_start, page_end, 6168 EXTENT_DIRTY | EXTENT_DELALLOC | 6169 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6170 &cached_state, GFP_NOFS); 6171 /* 6172 * whoever cleared the private bit is responsible 6173 * for the finish_ordered_io 6174 */ 6175 if (TestClearPagePrivate2(page)) { 6176 btrfs_finish_ordered_io(page->mapping->host, 6177 page_start, page_end); 6178 } 6179 btrfs_put_ordered_extent(ordered); 6180 cached_state = NULL; 6181 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6182 GFP_NOFS); 6183 } 6184 clear_extent_bit(tree, page_start, page_end, 6185 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6186 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6187 __btrfs_releasepage(page, GFP_NOFS); 6188 6189 ClearPageChecked(page); 6190 if (PagePrivate(page)) { 6191 ClearPagePrivate(page); 6192 set_page_private(page, 0); 6193 page_cache_release(page); 6194 } 6195 } 6196 6197 /* 6198 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6199 * called from a page fault handler when a page is first dirtied. Hence we must 6200 * be careful to check for EOF conditions here. We set the page up correctly 6201 * for a written page which means we get ENOSPC checking when writing into 6202 * holes and correct delalloc and unwritten extent mapping on filesystems that 6203 * support these features. 6204 * 6205 * We are not allowed to take the i_mutex here so we have to play games to 6206 * protect against truncate races as the page could now be beyond EOF. Because 6207 * vmtruncate() writes the inode size before removing pages, once we have the 6208 * page lock we can determine safely if the page is beyond EOF. If it is not 6209 * beyond EOF, then the page is guaranteed safe against truncation until we 6210 * unlock the page. 6211 */ 6212 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6213 { 6214 struct page *page = vmf->page; 6215 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6216 struct btrfs_root *root = BTRFS_I(inode)->root; 6217 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6218 struct btrfs_ordered_extent *ordered; 6219 struct extent_state *cached_state = NULL; 6220 char *kaddr; 6221 unsigned long zero_start; 6222 loff_t size; 6223 int ret; 6224 u64 page_start; 6225 u64 page_end; 6226 6227 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6228 if (ret) { 6229 if (ret == -ENOMEM) 6230 ret = VM_FAULT_OOM; 6231 else /* -ENOSPC, -EIO, etc */ 6232 ret = VM_FAULT_SIGBUS; 6233 goto out; 6234 } 6235 6236 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6237 again: 6238 lock_page(page); 6239 size = i_size_read(inode); 6240 page_start = page_offset(page); 6241 page_end = page_start + PAGE_CACHE_SIZE - 1; 6242 6243 if ((page->mapping != inode->i_mapping) || 6244 (page_start >= size)) { 6245 /* page got truncated out from underneath us */ 6246 goto out_unlock; 6247 } 6248 wait_on_page_writeback(page); 6249 6250 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6251 GFP_NOFS); 6252 set_page_extent_mapped(page); 6253 6254 /* 6255 * we can't set the delalloc bits if there are pending ordered 6256 * extents. Drop our locks and wait for them to finish 6257 */ 6258 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6259 if (ordered) { 6260 unlock_extent_cached(io_tree, page_start, page_end, 6261 &cached_state, GFP_NOFS); 6262 unlock_page(page); 6263 btrfs_start_ordered_extent(inode, ordered, 1); 6264 btrfs_put_ordered_extent(ordered); 6265 goto again; 6266 } 6267 6268 /* 6269 * XXX - page_mkwrite gets called every time the page is dirtied, even 6270 * if it was already dirty, so for space accounting reasons we need to 6271 * clear any delalloc bits for the range we are fixing to save. There 6272 * is probably a better way to do this, but for now keep consistent with 6273 * prepare_pages in the normal write path. 6274 */ 6275 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6276 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6277 0, 0, &cached_state, GFP_NOFS); 6278 6279 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6280 &cached_state); 6281 if (ret) { 6282 unlock_extent_cached(io_tree, page_start, page_end, 6283 &cached_state, GFP_NOFS); 6284 ret = VM_FAULT_SIGBUS; 6285 goto out_unlock; 6286 } 6287 ret = 0; 6288 6289 /* page is wholly or partially inside EOF */ 6290 if (page_start + PAGE_CACHE_SIZE > size) 6291 zero_start = size & ~PAGE_CACHE_MASK; 6292 else 6293 zero_start = PAGE_CACHE_SIZE; 6294 6295 if (zero_start != PAGE_CACHE_SIZE) { 6296 kaddr = kmap(page); 6297 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6298 flush_dcache_page(page); 6299 kunmap(page); 6300 } 6301 ClearPageChecked(page); 6302 set_page_dirty(page); 6303 SetPageUptodate(page); 6304 6305 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6306 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6307 6308 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6309 6310 out_unlock: 6311 if (!ret) 6312 return VM_FAULT_LOCKED; 6313 unlock_page(page); 6314 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6315 out: 6316 return ret; 6317 } 6318 6319 static void btrfs_truncate(struct inode *inode) 6320 { 6321 struct btrfs_root *root = BTRFS_I(inode)->root; 6322 int ret; 6323 struct btrfs_trans_handle *trans; 6324 unsigned long nr; 6325 u64 mask = root->sectorsize - 1; 6326 6327 if (!S_ISREG(inode->i_mode)) { 6328 WARN_ON(1); 6329 return; 6330 } 6331 6332 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6333 if (ret) 6334 return; 6335 6336 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6337 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6338 6339 trans = btrfs_start_transaction(root, 0); 6340 BUG_ON(IS_ERR(trans)); 6341 btrfs_set_trans_block_group(trans, inode); 6342 trans->block_rsv = root->orphan_block_rsv; 6343 6344 /* 6345 * setattr is responsible for setting the ordered_data_close flag, 6346 * but that is only tested during the last file release. That 6347 * could happen well after the next commit, leaving a great big 6348 * window where new writes may get lost if someone chooses to write 6349 * to this file after truncating to zero 6350 * 6351 * The inode doesn't have any dirty data here, and so if we commit 6352 * this is a noop. If someone immediately starts writing to the inode 6353 * it is very likely we'll catch some of their writes in this 6354 * transaction, and the commit will find this file on the ordered 6355 * data list with good things to send down. 6356 * 6357 * This is a best effort solution, there is still a window where 6358 * using truncate to replace the contents of the file will 6359 * end up with a zero length file after a crash. 6360 */ 6361 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6362 btrfs_add_ordered_operation(trans, root, inode); 6363 6364 while (1) { 6365 if (!trans) { 6366 trans = btrfs_start_transaction(root, 0); 6367 BUG_ON(IS_ERR(trans)); 6368 btrfs_set_trans_block_group(trans, inode); 6369 trans->block_rsv = root->orphan_block_rsv; 6370 } 6371 6372 ret = btrfs_block_rsv_check(trans, root, 6373 root->orphan_block_rsv, 0, 5); 6374 if (ret) { 6375 BUG_ON(ret != -EAGAIN); 6376 ret = btrfs_commit_transaction(trans, root); 6377 BUG_ON(ret); 6378 trans = NULL; 6379 continue; 6380 } 6381 6382 ret = btrfs_truncate_inode_items(trans, root, inode, 6383 inode->i_size, 6384 BTRFS_EXTENT_DATA_KEY); 6385 if (ret != -EAGAIN) 6386 break; 6387 6388 ret = btrfs_update_inode(trans, root, inode); 6389 BUG_ON(ret); 6390 6391 nr = trans->blocks_used; 6392 btrfs_end_transaction(trans, root); 6393 trans = NULL; 6394 btrfs_btree_balance_dirty(root, nr); 6395 } 6396 6397 if (ret == 0 && inode->i_nlink > 0) { 6398 ret = btrfs_orphan_del(trans, inode); 6399 BUG_ON(ret); 6400 } 6401 6402 ret = btrfs_update_inode(trans, root, inode); 6403 BUG_ON(ret); 6404 6405 nr = trans->blocks_used; 6406 ret = btrfs_end_transaction_throttle(trans, root); 6407 BUG_ON(ret); 6408 btrfs_btree_balance_dirty(root, nr); 6409 } 6410 6411 /* 6412 * create a new subvolume directory/inode (helper for the ioctl). 6413 */ 6414 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6415 struct btrfs_root *new_root, 6416 u64 new_dirid, u64 alloc_hint) 6417 { 6418 struct inode *inode; 6419 int err; 6420 u64 index = 0; 6421 6422 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6423 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 6424 if (IS_ERR(inode)) 6425 return PTR_ERR(inode); 6426 inode->i_op = &btrfs_dir_inode_operations; 6427 inode->i_fop = &btrfs_dir_file_operations; 6428 6429 inode->i_nlink = 1; 6430 btrfs_i_size_write(inode, 0); 6431 6432 err = btrfs_update_inode(trans, new_root, inode); 6433 BUG_ON(err); 6434 6435 iput(inode); 6436 return 0; 6437 } 6438 6439 /* helper function for file defrag and space balancing. This 6440 * forces readahead on a given range of bytes in an inode 6441 */ 6442 unsigned long btrfs_force_ra(struct address_space *mapping, 6443 struct file_ra_state *ra, struct file *file, 6444 pgoff_t offset, pgoff_t last_index) 6445 { 6446 pgoff_t req_size = last_index - offset + 1; 6447 6448 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 6449 return offset + req_size; 6450 } 6451 6452 struct inode *btrfs_alloc_inode(struct super_block *sb) 6453 { 6454 struct btrfs_inode *ei; 6455 struct inode *inode; 6456 6457 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6458 if (!ei) 6459 return NULL; 6460 6461 ei->root = NULL; 6462 ei->space_info = NULL; 6463 ei->generation = 0; 6464 ei->sequence = 0; 6465 ei->last_trans = 0; 6466 ei->last_sub_trans = 0; 6467 ei->logged_trans = 0; 6468 ei->delalloc_bytes = 0; 6469 ei->reserved_bytes = 0; 6470 ei->disk_i_size = 0; 6471 ei->flags = 0; 6472 ei->index_cnt = (u64)-1; 6473 ei->last_unlink_trans = 0; 6474 6475 spin_lock_init(&ei->accounting_lock); 6476 atomic_set(&ei->outstanding_extents, 0); 6477 ei->reserved_extents = 0; 6478 6479 ei->ordered_data_close = 0; 6480 ei->orphan_meta_reserved = 0; 6481 ei->dummy_inode = 0; 6482 ei->force_compress = 0; 6483 6484 inode = &ei->vfs_inode; 6485 extent_map_tree_init(&ei->extent_tree, GFP_NOFS); 6486 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS); 6487 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS); 6488 mutex_init(&ei->log_mutex); 6489 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6490 INIT_LIST_HEAD(&ei->i_orphan); 6491 INIT_LIST_HEAD(&ei->delalloc_inodes); 6492 INIT_LIST_HEAD(&ei->ordered_operations); 6493 RB_CLEAR_NODE(&ei->rb_node); 6494 6495 return inode; 6496 } 6497 6498 void btrfs_destroy_inode(struct inode *inode) 6499 { 6500 struct btrfs_ordered_extent *ordered; 6501 struct btrfs_root *root = BTRFS_I(inode)->root; 6502 6503 WARN_ON(!list_empty(&inode->i_dentry)); 6504 WARN_ON(inode->i_data.nrpages); 6505 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents)); 6506 WARN_ON(BTRFS_I(inode)->reserved_extents); 6507 6508 /* 6509 * This can happen where we create an inode, but somebody else also 6510 * created the same inode and we need to destroy the one we already 6511 * created. 6512 */ 6513 if (!root) 6514 goto free; 6515 6516 /* 6517 * Make sure we're properly removed from the ordered operation 6518 * lists. 6519 */ 6520 smp_mb(); 6521 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6522 spin_lock(&root->fs_info->ordered_extent_lock); 6523 list_del_init(&BTRFS_I(inode)->ordered_operations); 6524 spin_unlock(&root->fs_info->ordered_extent_lock); 6525 } 6526 6527 if (root == root->fs_info->tree_root) { 6528 struct btrfs_block_group_cache *block_group; 6529 6530 block_group = btrfs_lookup_block_group(root->fs_info, 6531 BTRFS_I(inode)->block_group); 6532 if (block_group && block_group->inode == inode) { 6533 spin_lock(&block_group->lock); 6534 block_group->inode = NULL; 6535 spin_unlock(&block_group->lock); 6536 btrfs_put_block_group(block_group); 6537 } else if (block_group) { 6538 btrfs_put_block_group(block_group); 6539 } 6540 } 6541 6542 spin_lock(&root->orphan_lock); 6543 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6544 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n", 6545 inode->i_ino); 6546 list_del_init(&BTRFS_I(inode)->i_orphan); 6547 } 6548 spin_unlock(&root->orphan_lock); 6549 6550 while (1) { 6551 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6552 if (!ordered) 6553 break; 6554 else { 6555 printk(KERN_ERR "btrfs found ordered " 6556 "extent %llu %llu on inode cleanup\n", 6557 (unsigned long long)ordered->file_offset, 6558 (unsigned long long)ordered->len); 6559 btrfs_remove_ordered_extent(inode, ordered); 6560 btrfs_put_ordered_extent(ordered); 6561 btrfs_put_ordered_extent(ordered); 6562 } 6563 } 6564 inode_tree_del(inode); 6565 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6566 free: 6567 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6568 } 6569 6570 int btrfs_drop_inode(struct inode *inode) 6571 { 6572 struct btrfs_root *root = BTRFS_I(inode)->root; 6573 6574 if (btrfs_root_refs(&root->root_item) == 0 && 6575 root != root->fs_info->tree_root) 6576 return 1; 6577 else 6578 return generic_drop_inode(inode); 6579 } 6580 6581 static void init_once(void *foo) 6582 { 6583 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6584 6585 inode_init_once(&ei->vfs_inode); 6586 } 6587 6588 void btrfs_destroy_cachep(void) 6589 { 6590 if (btrfs_inode_cachep) 6591 kmem_cache_destroy(btrfs_inode_cachep); 6592 if (btrfs_trans_handle_cachep) 6593 kmem_cache_destroy(btrfs_trans_handle_cachep); 6594 if (btrfs_transaction_cachep) 6595 kmem_cache_destroy(btrfs_transaction_cachep); 6596 if (btrfs_path_cachep) 6597 kmem_cache_destroy(btrfs_path_cachep); 6598 } 6599 6600 int btrfs_init_cachep(void) 6601 { 6602 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6603 sizeof(struct btrfs_inode), 0, 6604 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6605 if (!btrfs_inode_cachep) 6606 goto fail; 6607 6608 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6609 sizeof(struct btrfs_trans_handle), 0, 6610 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6611 if (!btrfs_trans_handle_cachep) 6612 goto fail; 6613 6614 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6615 sizeof(struct btrfs_transaction), 0, 6616 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6617 if (!btrfs_transaction_cachep) 6618 goto fail; 6619 6620 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6621 sizeof(struct btrfs_path), 0, 6622 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6623 if (!btrfs_path_cachep) 6624 goto fail; 6625 6626 return 0; 6627 fail: 6628 btrfs_destroy_cachep(); 6629 return -ENOMEM; 6630 } 6631 6632 static int btrfs_getattr(struct vfsmount *mnt, 6633 struct dentry *dentry, struct kstat *stat) 6634 { 6635 struct inode *inode = dentry->d_inode; 6636 generic_fillattr(inode, stat); 6637 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 6638 stat->blksize = PAGE_CACHE_SIZE; 6639 stat->blocks = (inode_get_bytes(inode) + 6640 BTRFS_I(inode)->delalloc_bytes) >> 9; 6641 return 0; 6642 } 6643 6644 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6645 struct inode *new_dir, struct dentry *new_dentry) 6646 { 6647 struct btrfs_trans_handle *trans; 6648 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6649 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6650 struct inode *new_inode = new_dentry->d_inode; 6651 struct inode *old_inode = old_dentry->d_inode; 6652 struct timespec ctime = CURRENT_TIME; 6653 u64 index = 0; 6654 u64 root_objectid; 6655 int ret; 6656 6657 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6658 return -EPERM; 6659 6660 /* we only allow rename subvolume link between subvolumes */ 6661 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6662 return -EXDEV; 6663 6664 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6665 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) 6666 return -ENOTEMPTY; 6667 6668 if (S_ISDIR(old_inode->i_mode) && new_inode && 6669 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6670 return -ENOTEMPTY; 6671 /* 6672 * we're using rename to replace one file with another. 6673 * and the replacement file is large. Start IO on it now so 6674 * we don't add too much work to the end of the transaction 6675 */ 6676 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6677 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6678 filemap_flush(old_inode->i_mapping); 6679 6680 /* close the racy window with snapshot create/destroy ioctl */ 6681 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6682 down_read(&root->fs_info->subvol_sem); 6683 /* 6684 * We want to reserve the absolute worst case amount of items. So if 6685 * both inodes are subvols and we need to unlink them then that would 6686 * require 4 item modifications, but if they are both normal inodes it 6687 * would require 5 item modifications, so we'll assume their normal 6688 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6689 * should cover the worst case number of items we'll modify. 6690 */ 6691 trans = btrfs_start_transaction(root, 20); 6692 if (IS_ERR(trans)) 6693 return PTR_ERR(trans); 6694 6695 btrfs_set_trans_block_group(trans, new_dir); 6696 6697 if (dest != root) 6698 btrfs_record_root_in_trans(trans, dest); 6699 6700 ret = btrfs_set_inode_index(new_dir, &index); 6701 if (ret) 6702 goto out_fail; 6703 6704 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6705 /* force full log commit if subvolume involved. */ 6706 root->fs_info->last_trans_log_full_commit = trans->transid; 6707 } else { 6708 ret = btrfs_insert_inode_ref(trans, dest, 6709 new_dentry->d_name.name, 6710 new_dentry->d_name.len, 6711 old_inode->i_ino, 6712 new_dir->i_ino, index); 6713 if (ret) 6714 goto out_fail; 6715 /* 6716 * this is an ugly little race, but the rename is required 6717 * to make sure that if we crash, the inode is either at the 6718 * old name or the new one. pinning the log transaction lets 6719 * us make sure we don't allow a log commit to come in after 6720 * we unlink the name but before we add the new name back in. 6721 */ 6722 btrfs_pin_log_trans(root); 6723 } 6724 /* 6725 * make sure the inode gets flushed if it is replacing 6726 * something. 6727 */ 6728 if (new_inode && new_inode->i_size && 6729 old_inode && S_ISREG(old_inode->i_mode)) { 6730 btrfs_add_ordered_operation(trans, root, old_inode); 6731 } 6732 6733 old_dir->i_ctime = old_dir->i_mtime = ctime; 6734 new_dir->i_ctime = new_dir->i_mtime = ctime; 6735 old_inode->i_ctime = ctime; 6736 6737 if (old_dentry->d_parent != new_dentry->d_parent) 6738 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 6739 6740 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6741 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 6742 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 6743 old_dentry->d_name.name, 6744 old_dentry->d_name.len); 6745 } else { 6746 btrfs_inc_nlink(old_dentry->d_inode); 6747 ret = btrfs_unlink_inode(trans, root, old_dir, 6748 old_dentry->d_inode, 6749 old_dentry->d_name.name, 6750 old_dentry->d_name.len); 6751 } 6752 BUG_ON(ret); 6753 6754 if (new_inode) { 6755 new_inode->i_ctime = CURRENT_TIME; 6756 if (unlikely(new_inode->i_ino == 6757 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 6758 root_objectid = BTRFS_I(new_inode)->location.objectid; 6759 ret = btrfs_unlink_subvol(trans, dest, new_dir, 6760 root_objectid, 6761 new_dentry->d_name.name, 6762 new_dentry->d_name.len); 6763 BUG_ON(new_inode->i_nlink == 0); 6764 } else { 6765 ret = btrfs_unlink_inode(trans, dest, new_dir, 6766 new_dentry->d_inode, 6767 new_dentry->d_name.name, 6768 new_dentry->d_name.len); 6769 } 6770 BUG_ON(ret); 6771 if (new_inode->i_nlink == 0) { 6772 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 6773 BUG_ON(ret); 6774 } 6775 } 6776 6777 ret = btrfs_add_link(trans, new_dir, old_inode, 6778 new_dentry->d_name.name, 6779 new_dentry->d_name.len, 0, index); 6780 BUG_ON(ret); 6781 6782 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 6783 struct dentry *parent = dget_parent(new_dentry); 6784 btrfs_log_new_name(trans, old_inode, old_dir, parent); 6785 dput(parent); 6786 btrfs_end_log_trans(root); 6787 } 6788 out_fail: 6789 btrfs_end_transaction_throttle(trans, root); 6790 6791 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6792 up_read(&root->fs_info->subvol_sem); 6793 6794 return ret; 6795 } 6796 6797 /* 6798 * some fairly slow code that needs optimization. This walks the list 6799 * of all the inodes with pending delalloc and forces them to disk. 6800 */ 6801 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 6802 { 6803 struct list_head *head = &root->fs_info->delalloc_inodes; 6804 struct btrfs_inode *binode; 6805 struct inode *inode; 6806 6807 if (root->fs_info->sb->s_flags & MS_RDONLY) 6808 return -EROFS; 6809 6810 spin_lock(&root->fs_info->delalloc_lock); 6811 while (!list_empty(head)) { 6812 binode = list_entry(head->next, struct btrfs_inode, 6813 delalloc_inodes); 6814 inode = igrab(&binode->vfs_inode); 6815 if (!inode) 6816 list_del_init(&binode->delalloc_inodes); 6817 spin_unlock(&root->fs_info->delalloc_lock); 6818 if (inode) { 6819 filemap_flush(inode->i_mapping); 6820 if (delay_iput) 6821 btrfs_add_delayed_iput(inode); 6822 else 6823 iput(inode); 6824 } 6825 cond_resched(); 6826 spin_lock(&root->fs_info->delalloc_lock); 6827 } 6828 spin_unlock(&root->fs_info->delalloc_lock); 6829 6830 /* the filemap_flush will queue IO into the worker threads, but 6831 * we have to make sure the IO is actually started and that 6832 * ordered extents get created before we return 6833 */ 6834 atomic_inc(&root->fs_info->async_submit_draining); 6835 while (atomic_read(&root->fs_info->nr_async_submits) || 6836 atomic_read(&root->fs_info->async_delalloc_pages)) { 6837 wait_event(root->fs_info->async_submit_wait, 6838 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 6839 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 6840 } 6841 atomic_dec(&root->fs_info->async_submit_draining); 6842 return 0; 6843 } 6844 6845 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput, 6846 int sync) 6847 { 6848 struct btrfs_inode *binode; 6849 struct inode *inode = NULL; 6850 6851 spin_lock(&root->fs_info->delalloc_lock); 6852 while (!list_empty(&root->fs_info->delalloc_inodes)) { 6853 binode = list_entry(root->fs_info->delalloc_inodes.next, 6854 struct btrfs_inode, delalloc_inodes); 6855 inode = igrab(&binode->vfs_inode); 6856 if (inode) { 6857 list_move_tail(&binode->delalloc_inodes, 6858 &root->fs_info->delalloc_inodes); 6859 break; 6860 } 6861 6862 list_del_init(&binode->delalloc_inodes); 6863 cond_resched_lock(&root->fs_info->delalloc_lock); 6864 } 6865 spin_unlock(&root->fs_info->delalloc_lock); 6866 6867 if (inode) { 6868 if (sync) { 6869 filemap_write_and_wait(inode->i_mapping); 6870 /* 6871 * We have to do this because compression doesn't 6872 * actually set PG_writeback until it submits the pages 6873 * for IO, which happens in an async thread, so we could 6874 * race and not actually wait for any writeback pages 6875 * because they've not been submitted yet. Technically 6876 * this could still be the case for the ordered stuff 6877 * since the async thread may not have started to do its 6878 * work yet. If this becomes the case then we need to 6879 * figure out a way to make sure that in writepage we 6880 * wait for any async pages to be submitted before 6881 * returning so that fdatawait does what its supposed to 6882 * do. 6883 */ 6884 btrfs_wait_ordered_range(inode, 0, (u64)-1); 6885 } else { 6886 filemap_flush(inode->i_mapping); 6887 } 6888 if (delay_iput) 6889 btrfs_add_delayed_iput(inode); 6890 else 6891 iput(inode); 6892 return 1; 6893 } 6894 return 0; 6895 } 6896 6897 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 6898 const char *symname) 6899 { 6900 struct btrfs_trans_handle *trans; 6901 struct btrfs_root *root = BTRFS_I(dir)->root; 6902 struct btrfs_path *path; 6903 struct btrfs_key key; 6904 struct inode *inode = NULL; 6905 int err; 6906 int drop_inode = 0; 6907 u64 objectid; 6908 u64 index = 0 ; 6909 int name_len; 6910 int datasize; 6911 unsigned long ptr; 6912 struct btrfs_file_extent_item *ei; 6913 struct extent_buffer *leaf; 6914 unsigned long nr = 0; 6915 6916 name_len = strlen(symname) + 1; 6917 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 6918 return -ENAMETOOLONG; 6919 6920 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 6921 if (err) 6922 return err; 6923 /* 6924 * 2 items for inode item and ref 6925 * 2 items for dir items 6926 * 1 item for xattr if selinux is on 6927 */ 6928 trans = btrfs_start_transaction(root, 5); 6929 if (IS_ERR(trans)) 6930 return PTR_ERR(trans); 6931 6932 btrfs_set_trans_block_group(trans, dir); 6933 6934 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6935 dentry->d_name.len, dir->i_ino, objectid, 6936 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 6937 &index); 6938 err = PTR_ERR(inode); 6939 if (IS_ERR(inode)) 6940 goto out_unlock; 6941 6942 err = btrfs_init_inode_security(trans, inode, dir); 6943 if (err) { 6944 drop_inode = 1; 6945 goto out_unlock; 6946 } 6947 6948 btrfs_set_trans_block_group(trans, inode); 6949 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6950 if (err) 6951 drop_inode = 1; 6952 else { 6953 inode->i_mapping->a_ops = &btrfs_aops; 6954 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 6955 inode->i_fop = &btrfs_file_operations; 6956 inode->i_op = &btrfs_file_inode_operations; 6957 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6958 } 6959 btrfs_update_inode_block_group(trans, inode); 6960 btrfs_update_inode_block_group(trans, dir); 6961 if (drop_inode) 6962 goto out_unlock; 6963 6964 path = btrfs_alloc_path(); 6965 BUG_ON(!path); 6966 key.objectid = inode->i_ino; 6967 key.offset = 0; 6968 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 6969 datasize = btrfs_file_extent_calc_inline_size(name_len); 6970 err = btrfs_insert_empty_item(trans, root, path, &key, 6971 datasize); 6972 if (err) { 6973 drop_inode = 1; 6974 goto out_unlock; 6975 } 6976 leaf = path->nodes[0]; 6977 ei = btrfs_item_ptr(leaf, path->slots[0], 6978 struct btrfs_file_extent_item); 6979 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 6980 btrfs_set_file_extent_type(leaf, ei, 6981 BTRFS_FILE_EXTENT_INLINE); 6982 btrfs_set_file_extent_encryption(leaf, ei, 0); 6983 btrfs_set_file_extent_compression(leaf, ei, 0); 6984 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 6985 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 6986 6987 ptr = btrfs_file_extent_inline_start(ei); 6988 write_extent_buffer(leaf, symname, ptr, name_len); 6989 btrfs_mark_buffer_dirty(leaf); 6990 btrfs_free_path(path); 6991 6992 inode->i_op = &btrfs_symlink_inode_operations; 6993 inode->i_mapping->a_ops = &btrfs_symlink_aops; 6994 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 6995 inode_set_bytes(inode, name_len); 6996 btrfs_i_size_write(inode, name_len - 1); 6997 err = btrfs_update_inode(trans, root, inode); 6998 if (err) 6999 drop_inode = 1; 7000 7001 out_unlock: 7002 nr = trans->blocks_used; 7003 btrfs_end_transaction_throttle(trans, root); 7004 if (drop_inode) { 7005 inode_dec_link_count(inode); 7006 iput(inode); 7007 } 7008 btrfs_btree_balance_dirty(root, nr); 7009 return err; 7010 } 7011 7012 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7013 u64 start, u64 num_bytes, u64 min_size, 7014 loff_t actual_len, u64 *alloc_hint, 7015 struct btrfs_trans_handle *trans) 7016 { 7017 struct btrfs_root *root = BTRFS_I(inode)->root; 7018 struct btrfs_key ins; 7019 u64 cur_offset = start; 7020 u64 i_size; 7021 int ret = 0; 7022 bool own_trans = true; 7023 7024 if (trans) 7025 own_trans = false; 7026 while (num_bytes > 0) { 7027 if (own_trans) { 7028 trans = btrfs_start_transaction(root, 3); 7029 if (IS_ERR(trans)) { 7030 ret = PTR_ERR(trans); 7031 break; 7032 } 7033 } 7034 7035 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7036 0, *alloc_hint, (u64)-1, &ins, 1); 7037 if (ret) { 7038 if (own_trans) 7039 btrfs_end_transaction(trans, root); 7040 break; 7041 } 7042 7043 ret = insert_reserved_file_extent(trans, inode, 7044 cur_offset, ins.objectid, 7045 ins.offset, ins.offset, 7046 ins.offset, 0, 0, 0, 7047 BTRFS_FILE_EXTENT_PREALLOC); 7048 BUG_ON(ret); 7049 btrfs_drop_extent_cache(inode, cur_offset, 7050 cur_offset + ins.offset -1, 0); 7051 7052 num_bytes -= ins.offset; 7053 cur_offset += ins.offset; 7054 *alloc_hint = ins.objectid + ins.offset; 7055 7056 inode->i_ctime = CURRENT_TIME; 7057 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7058 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7059 (actual_len > inode->i_size) && 7060 (cur_offset > inode->i_size)) { 7061 if (cur_offset > actual_len) 7062 i_size = actual_len; 7063 else 7064 i_size = cur_offset; 7065 i_size_write(inode, i_size); 7066 btrfs_ordered_update_i_size(inode, i_size, NULL); 7067 } 7068 7069 ret = btrfs_update_inode(trans, root, inode); 7070 BUG_ON(ret); 7071 7072 if (own_trans) 7073 btrfs_end_transaction(trans, root); 7074 } 7075 return ret; 7076 } 7077 7078 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7079 u64 start, u64 num_bytes, u64 min_size, 7080 loff_t actual_len, u64 *alloc_hint) 7081 { 7082 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7083 min_size, actual_len, alloc_hint, 7084 NULL); 7085 } 7086 7087 int btrfs_prealloc_file_range_trans(struct inode *inode, 7088 struct btrfs_trans_handle *trans, int mode, 7089 u64 start, u64 num_bytes, u64 min_size, 7090 loff_t actual_len, u64 *alloc_hint) 7091 { 7092 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7093 min_size, actual_len, alloc_hint, trans); 7094 } 7095 7096 static long btrfs_fallocate(struct inode *inode, int mode, 7097 loff_t offset, loff_t len) 7098 { 7099 struct extent_state *cached_state = NULL; 7100 u64 cur_offset; 7101 u64 last_byte; 7102 u64 alloc_start; 7103 u64 alloc_end; 7104 u64 alloc_hint = 0; 7105 u64 locked_end; 7106 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 7107 struct extent_map *em; 7108 int ret; 7109 7110 alloc_start = offset & ~mask; 7111 alloc_end = (offset + len + mask) & ~mask; 7112 7113 /* 7114 * wait for ordered IO before we have any locks. We'll loop again 7115 * below with the locks held. 7116 */ 7117 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 7118 7119 mutex_lock(&inode->i_mutex); 7120 ret = inode_newsize_ok(inode, alloc_end); 7121 if (ret) 7122 goto out; 7123 7124 if (alloc_start > inode->i_size) { 7125 ret = btrfs_cont_expand(inode, alloc_start); 7126 if (ret) 7127 goto out; 7128 } 7129 7130 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 7131 if (ret) 7132 goto out; 7133 7134 locked_end = alloc_end - 1; 7135 while (1) { 7136 struct btrfs_ordered_extent *ordered; 7137 7138 /* the extent lock is ordered inside the running 7139 * transaction 7140 */ 7141 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 7142 locked_end, 0, &cached_state, GFP_NOFS); 7143 ordered = btrfs_lookup_first_ordered_extent(inode, 7144 alloc_end - 1); 7145 if (ordered && 7146 ordered->file_offset + ordered->len > alloc_start && 7147 ordered->file_offset < alloc_end) { 7148 btrfs_put_ordered_extent(ordered); 7149 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7150 alloc_start, locked_end, 7151 &cached_state, GFP_NOFS); 7152 /* 7153 * we can't wait on the range with the transaction 7154 * running or with the extent lock held 7155 */ 7156 btrfs_wait_ordered_range(inode, alloc_start, 7157 alloc_end - alloc_start); 7158 } else { 7159 if (ordered) 7160 btrfs_put_ordered_extent(ordered); 7161 break; 7162 } 7163 } 7164 7165 cur_offset = alloc_start; 7166 while (1) { 7167 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 7168 alloc_end - cur_offset, 0); 7169 BUG_ON(IS_ERR(em) || !em); 7170 last_byte = min(extent_map_end(em), alloc_end); 7171 last_byte = (last_byte + mask) & ~mask; 7172 if (em->block_start == EXTENT_MAP_HOLE || 7173 (cur_offset >= inode->i_size && 7174 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7175 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 7176 last_byte - cur_offset, 7177 1 << inode->i_blkbits, 7178 offset + len, 7179 &alloc_hint); 7180 if (ret < 0) { 7181 free_extent_map(em); 7182 break; 7183 } 7184 } 7185 free_extent_map(em); 7186 7187 cur_offset = last_byte; 7188 if (cur_offset >= alloc_end) { 7189 ret = 0; 7190 break; 7191 } 7192 } 7193 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 7194 &cached_state, GFP_NOFS); 7195 7196 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 7197 out: 7198 mutex_unlock(&inode->i_mutex); 7199 return ret; 7200 } 7201 7202 static int btrfs_set_page_dirty(struct page *page) 7203 { 7204 return __set_page_dirty_nobuffers(page); 7205 } 7206 7207 static int btrfs_permission(struct inode *inode, int mask) 7208 { 7209 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 7210 return -EACCES; 7211 return generic_permission(inode, mask, btrfs_check_acl); 7212 } 7213 7214 static const struct inode_operations btrfs_dir_inode_operations = { 7215 .getattr = btrfs_getattr, 7216 .lookup = btrfs_lookup, 7217 .create = btrfs_create, 7218 .unlink = btrfs_unlink, 7219 .link = btrfs_link, 7220 .mkdir = btrfs_mkdir, 7221 .rmdir = btrfs_rmdir, 7222 .rename = btrfs_rename, 7223 .symlink = btrfs_symlink, 7224 .setattr = btrfs_setattr, 7225 .mknod = btrfs_mknod, 7226 .setxattr = btrfs_setxattr, 7227 .getxattr = btrfs_getxattr, 7228 .listxattr = btrfs_listxattr, 7229 .removexattr = btrfs_removexattr, 7230 .permission = btrfs_permission, 7231 }; 7232 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7233 .lookup = btrfs_lookup, 7234 .permission = btrfs_permission, 7235 }; 7236 7237 static const struct file_operations btrfs_dir_file_operations = { 7238 .llseek = generic_file_llseek, 7239 .read = generic_read_dir, 7240 .readdir = btrfs_real_readdir, 7241 .unlocked_ioctl = btrfs_ioctl, 7242 #ifdef CONFIG_COMPAT 7243 .compat_ioctl = btrfs_ioctl, 7244 #endif 7245 .release = btrfs_release_file, 7246 .fsync = btrfs_sync_file, 7247 }; 7248 7249 static struct extent_io_ops btrfs_extent_io_ops = { 7250 .fill_delalloc = run_delalloc_range, 7251 .submit_bio_hook = btrfs_submit_bio_hook, 7252 .merge_bio_hook = btrfs_merge_bio_hook, 7253 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7254 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7255 .writepage_start_hook = btrfs_writepage_start_hook, 7256 .readpage_io_failed_hook = btrfs_io_failed_hook, 7257 .set_bit_hook = btrfs_set_bit_hook, 7258 .clear_bit_hook = btrfs_clear_bit_hook, 7259 .merge_extent_hook = btrfs_merge_extent_hook, 7260 .split_extent_hook = btrfs_split_extent_hook, 7261 }; 7262 7263 /* 7264 * btrfs doesn't support the bmap operation because swapfiles 7265 * use bmap to make a mapping of extents in the file. They assume 7266 * these extents won't change over the life of the file and they 7267 * use the bmap result to do IO directly to the drive. 7268 * 7269 * the btrfs bmap call would return logical addresses that aren't 7270 * suitable for IO and they also will change frequently as COW 7271 * operations happen. So, swapfile + btrfs == corruption. 7272 * 7273 * For now we're avoiding this by dropping bmap. 7274 */ 7275 static const struct address_space_operations btrfs_aops = { 7276 .readpage = btrfs_readpage, 7277 .writepage = btrfs_writepage, 7278 .writepages = btrfs_writepages, 7279 .readpages = btrfs_readpages, 7280 .sync_page = block_sync_page, 7281 .direct_IO = btrfs_direct_IO, 7282 .invalidatepage = btrfs_invalidatepage, 7283 .releasepage = btrfs_releasepage, 7284 .set_page_dirty = btrfs_set_page_dirty, 7285 .error_remove_page = generic_error_remove_page, 7286 }; 7287 7288 static const struct address_space_operations btrfs_symlink_aops = { 7289 .readpage = btrfs_readpage, 7290 .writepage = btrfs_writepage, 7291 .invalidatepage = btrfs_invalidatepage, 7292 .releasepage = btrfs_releasepage, 7293 }; 7294 7295 static const struct inode_operations btrfs_file_inode_operations = { 7296 .truncate = btrfs_truncate, 7297 .getattr = btrfs_getattr, 7298 .setattr = btrfs_setattr, 7299 .setxattr = btrfs_setxattr, 7300 .getxattr = btrfs_getxattr, 7301 .listxattr = btrfs_listxattr, 7302 .removexattr = btrfs_removexattr, 7303 .permission = btrfs_permission, 7304 .fallocate = btrfs_fallocate, 7305 .fiemap = btrfs_fiemap, 7306 }; 7307 static const struct inode_operations btrfs_special_inode_operations = { 7308 .getattr = btrfs_getattr, 7309 .setattr = btrfs_setattr, 7310 .permission = btrfs_permission, 7311 .setxattr = btrfs_setxattr, 7312 .getxattr = btrfs_getxattr, 7313 .listxattr = btrfs_listxattr, 7314 .removexattr = btrfs_removexattr, 7315 }; 7316 static const struct inode_operations btrfs_symlink_inode_operations = { 7317 .readlink = generic_readlink, 7318 .follow_link = page_follow_link_light, 7319 .put_link = page_put_link, 7320 .getattr = btrfs_getattr, 7321 .permission = btrfs_permission, 7322 .setxattr = btrfs_setxattr, 7323 .getxattr = btrfs_getxattr, 7324 .listxattr = btrfs_listxattr, 7325 .removexattr = btrfs_removexattr, 7326 }; 7327 7328 const struct dentry_operations btrfs_dentry_operations = { 7329 .d_delete = btrfs_dentry_delete, 7330 }; 7331