1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include "compat.h" 43 #include "ctree.h" 44 #include "disk-io.h" 45 #include "transaction.h" 46 #include "btrfs_inode.h" 47 #include "ioctl.h" 48 #include "print-tree.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "volumes.h" 53 #include "compression.h" 54 #include "locking.h" 55 #include "free-space-cache.h" 56 #include "inode-map.h" 57 58 struct btrfs_iget_args { 59 u64 ino; 60 struct btrfs_root *root; 61 }; 62 63 static const struct inode_operations btrfs_dir_inode_operations; 64 static const struct inode_operations btrfs_symlink_inode_operations; 65 static const struct inode_operations btrfs_dir_ro_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct address_space_operations btrfs_symlink_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 static struct kmem_cache *btrfs_delalloc_work_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_transaction_cachep; 77 struct kmem_cache *btrfs_path_cachep; 78 struct kmem_cache *btrfs_free_space_cachep; 79 80 #define S_SHIFT 12 81 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 89 }; 90 91 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 92 static int btrfs_truncate(struct inode *inode); 93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 94 static noinline int cow_file_range(struct inode *inode, 95 struct page *locked_page, 96 u64 start, u64 end, int *page_started, 97 unsigned long *nr_written, int unlock); 98 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 99 u64 len, u64 orig_start, 100 u64 block_start, u64 block_len, 101 u64 orig_block_len, int type); 102 103 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 104 struct inode *inode, struct inode *dir, 105 const struct qstr *qstr) 106 { 107 int err; 108 109 err = btrfs_init_acl(trans, inode, dir); 110 if (!err) 111 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 112 return err; 113 } 114 115 /* 116 * this does all the hard work for inserting an inline extent into 117 * the btree. The caller should have done a btrfs_drop_extents so that 118 * no overlapping inline items exist in the btree 119 */ 120 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 121 struct btrfs_root *root, struct inode *inode, 122 u64 start, size_t size, size_t compressed_size, 123 int compress_type, 124 struct page **compressed_pages) 125 { 126 struct btrfs_key key; 127 struct btrfs_path *path; 128 struct extent_buffer *leaf; 129 struct page *page = NULL; 130 char *kaddr; 131 unsigned long ptr; 132 struct btrfs_file_extent_item *ei; 133 int err = 0; 134 int ret; 135 size_t cur_size = size; 136 size_t datasize; 137 unsigned long offset; 138 139 if (compressed_size && compressed_pages) 140 cur_size = compressed_size; 141 142 path = btrfs_alloc_path(); 143 if (!path) 144 return -ENOMEM; 145 146 path->leave_spinning = 1; 147 148 key.objectid = btrfs_ino(inode); 149 key.offset = start; 150 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 151 datasize = btrfs_file_extent_calc_inline_size(cur_size); 152 153 inode_add_bytes(inode, size); 154 ret = btrfs_insert_empty_item(trans, root, path, &key, 155 datasize); 156 if (ret) { 157 err = ret; 158 goto fail; 159 } 160 leaf = path->nodes[0]; 161 ei = btrfs_item_ptr(leaf, path->slots[0], 162 struct btrfs_file_extent_item); 163 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 164 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 165 btrfs_set_file_extent_encryption(leaf, ei, 0); 166 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 167 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 168 ptr = btrfs_file_extent_inline_start(ei); 169 170 if (compress_type != BTRFS_COMPRESS_NONE) { 171 struct page *cpage; 172 int i = 0; 173 while (compressed_size > 0) { 174 cpage = compressed_pages[i]; 175 cur_size = min_t(unsigned long, compressed_size, 176 PAGE_CACHE_SIZE); 177 178 kaddr = kmap_atomic(cpage); 179 write_extent_buffer(leaf, kaddr, ptr, cur_size); 180 kunmap_atomic(kaddr); 181 182 i++; 183 ptr += cur_size; 184 compressed_size -= cur_size; 185 } 186 btrfs_set_file_extent_compression(leaf, ei, 187 compress_type); 188 } else { 189 page = find_get_page(inode->i_mapping, 190 start >> PAGE_CACHE_SHIFT); 191 btrfs_set_file_extent_compression(leaf, ei, 0); 192 kaddr = kmap_atomic(page); 193 offset = start & (PAGE_CACHE_SIZE - 1); 194 write_extent_buffer(leaf, kaddr + offset, ptr, size); 195 kunmap_atomic(kaddr); 196 page_cache_release(page); 197 } 198 btrfs_mark_buffer_dirty(leaf); 199 btrfs_free_path(path); 200 201 /* 202 * we're an inline extent, so nobody can 203 * extend the file past i_size without locking 204 * a page we already have locked. 205 * 206 * We must do any isize and inode updates 207 * before we unlock the pages. Otherwise we 208 * could end up racing with unlink. 209 */ 210 BTRFS_I(inode)->disk_i_size = inode->i_size; 211 ret = btrfs_update_inode(trans, root, inode); 212 213 return ret; 214 fail: 215 btrfs_free_path(path); 216 return err; 217 } 218 219 220 /* 221 * conditionally insert an inline extent into the file. This 222 * does the checks required to make sure the data is small enough 223 * to fit as an inline extent. 224 */ 225 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 226 struct btrfs_root *root, 227 struct inode *inode, u64 start, u64 end, 228 size_t compressed_size, int compress_type, 229 struct page **compressed_pages) 230 { 231 u64 isize = i_size_read(inode); 232 u64 actual_end = min(end + 1, isize); 233 u64 inline_len = actual_end - start; 234 u64 aligned_end = (end + root->sectorsize - 1) & 235 ~((u64)root->sectorsize - 1); 236 u64 data_len = inline_len; 237 int ret; 238 239 if (compressed_size) 240 data_len = compressed_size; 241 242 if (start > 0 || 243 actual_end >= PAGE_CACHE_SIZE || 244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 245 (!compressed_size && 246 (actual_end & (root->sectorsize - 1)) == 0) || 247 end + 1 < isize || 248 data_len > root->fs_info->max_inline) { 249 return 1; 250 } 251 252 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 253 if (ret) 254 return ret; 255 256 if (isize > actual_end) 257 inline_len = min_t(u64, isize, actual_end); 258 ret = insert_inline_extent(trans, root, inode, start, 259 inline_len, compressed_size, 260 compress_type, compressed_pages); 261 if (ret && ret != -ENOSPC) { 262 btrfs_abort_transaction(trans, root, ret); 263 return ret; 264 } else if (ret == -ENOSPC) { 265 return 1; 266 } 267 268 btrfs_delalloc_release_metadata(inode, end + 1 - start); 269 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 270 return 0; 271 } 272 273 struct async_extent { 274 u64 start; 275 u64 ram_size; 276 u64 compressed_size; 277 struct page **pages; 278 unsigned long nr_pages; 279 int compress_type; 280 struct list_head list; 281 }; 282 283 struct async_cow { 284 struct inode *inode; 285 struct btrfs_root *root; 286 struct page *locked_page; 287 u64 start; 288 u64 end; 289 struct list_head extents; 290 struct btrfs_work work; 291 }; 292 293 static noinline int add_async_extent(struct async_cow *cow, 294 u64 start, u64 ram_size, 295 u64 compressed_size, 296 struct page **pages, 297 unsigned long nr_pages, 298 int compress_type) 299 { 300 struct async_extent *async_extent; 301 302 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 303 BUG_ON(!async_extent); /* -ENOMEM */ 304 async_extent->start = start; 305 async_extent->ram_size = ram_size; 306 async_extent->compressed_size = compressed_size; 307 async_extent->pages = pages; 308 async_extent->nr_pages = nr_pages; 309 async_extent->compress_type = compress_type; 310 list_add_tail(&async_extent->list, &cow->extents); 311 return 0; 312 } 313 314 /* 315 * we create compressed extents in two phases. The first 316 * phase compresses a range of pages that have already been 317 * locked (both pages and state bits are locked). 318 * 319 * This is done inside an ordered work queue, and the compression 320 * is spread across many cpus. The actual IO submission is step 321 * two, and the ordered work queue takes care of making sure that 322 * happens in the same order things were put onto the queue by 323 * writepages and friends. 324 * 325 * If this code finds it can't get good compression, it puts an 326 * entry onto the work queue to write the uncompressed bytes. This 327 * makes sure that both compressed inodes and uncompressed inodes 328 * are written in the same order that the flusher thread sent them 329 * down. 330 */ 331 static noinline int compress_file_range(struct inode *inode, 332 struct page *locked_page, 333 u64 start, u64 end, 334 struct async_cow *async_cow, 335 int *num_added) 336 { 337 struct btrfs_root *root = BTRFS_I(inode)->root; 338 struct btrfs_trans_handle *trans; 339 u64 num_bytes; 340 u64 blocksize = root->sectorsize; 341 u64 actual_end; 342 u64 isize = i_size_read(inode); 343 int ret = 0; 344 struct page **pages = NULL; 345 unsigned long nr_pages; 346 unsigned long nr_pages_ret = 0; 347 unsigned long total_compressed = 0; 348 unsigned long total_in = 0; 349 unsigned long max_compressed = 128 * 1024; 350 unsigned long max_uncompressed = 128 * 1024; 351 int i; 352 int will_compress; 353 int compress_type = root->fs_info->compress_type; 354 355 /* if this is a small write inside eof, kick off a defrag */ 356 if ((end - start + 1) < 16 * 1024 && 357 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 358 btrfs_add_inode_defrag(NULL, inode); 359 360 actual_end = min_t(u64, isize, end + 1); 361 again: 362 will_compress = 0; 363 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 364 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 365 366 /* 367 * we don't want to send crud past the end of i_size through 368 * compression, that's just a waste of CPU time. So, if the 369 * end of the file is before the start of our current 370 * requested range of bytes, we bail out to the uncompressed 371 * cleanup code that can deal with all of this. 372 * 373 * It isn't really the fastest way to fix things, but this is a 374 * very uncommon corner. 375 */ 376 if (actual_end <= start) 377 goto cleanup_and_bail_uncompressed; 378 379 total_compressed = actual_end - start; 380 381 /* we want to make sure that amount of ram required to uncompress 382 * an extent is reasonable, so we limit the total size in ram 383 * of a compressed extent to 128k. This is a crucial number 384 * because it also controls how easily we can spread reads across 385 * cpus for decompression. 386 * 387 * We also want to make sure the amount of IO required to do 388 * a random read is reasonably small, so we limit the size of 389 * a compressed extent to 128k. 390 */ 391 total_compressed = min(total_compressed, max_uncompressed); 392 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 393 num_bytes = max(blocksize, num_bytes); 394 total_in = 0; 395 ret = 0; 396 397 /* 398 * we do compression for mount -o compress and when the 399 * inode has not been flagged as nocompress. This flag can 400 * change at any time if we discover bad compression ratios. 401 */ 402 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 403 (btrfs_test_opt(root, COMPRESS) || 404 (BTRFS_I(inode)->force_compress) || 405 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 406 WARN_ON(pages); 407 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 408 if (!pages) { 409 /* just bail out to the uncompressed code */ 410 goto cont; 411 } 412 413 if (BTRFS_I(inode)->force_compress) 414 compress_type = BTRFS_I(inode)->force_compress; 415 416 ret = btrfs_compress_pages(compress_type, 417 inode->i_mapping, start, 418 total_compressed, pages, 419 nr_pages, &nr_pages_ret, 420 &total_in, 421 &total_compressed, 422 max_compressed); 423 424 if (!ret) { 425 unsigned long offset = total_compressed & 426 (PAGE_CACHE_SIZE - 1); 427 struct page *page = pages[nr_pages_ret - 1]; 428 char *kaddr; 429 430 /* zero the tail end of the last page, we might be 431 * sending it down to disk 432 */ 433 if (offset) { 434 kaddr = kmap_atomic(page); 435 memset(kaddr + offset, 0, 436 PAGE_CACHE_SIZE - offset); 437 kunmap_atomic(kaddr); 438 } 439 will_compress = 1; 440 } 441 } 442 cont: 443 if (start == 0) { 444 trans = btrfs_join_transaction(root); 445 if (IS_ERR(trans)) { 446 ret = PTR_ERR(trans); 447 trans = NULL; 448 goto cleanup_and_out; 449 } 450 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 451 452 /* lets try to make an inline extent */ 453 if (ret || total_in < (actual_end - start)) { 454 /* we didn't compress the entire range, try 455 * to make an uncompressed inline extent. 456 */ 457 ret = cow_file_range_inline(trans, root, inode, 458 start, end, 0, 0, NULL); 459 } else { 460 /* try making a compressed inline extent */ 461 ret = cow_file_range_inline(trans, root, inode, 462 start, end, 463 total_compressed, 464 compress_type, pages); 465 } 466 if (ret <= 0) { 467 /* 468 * inline extent creation worked or returned error, 469 * we don't need to create any more async work items. 470 * Unlock and free up our temp pages. 471 */ 472 extent_clear_unlock_delalloc(inode, 473 &BTRFS_I(inode)->io_tree, 474 start, end, NULL, 475 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 476 EXTENT_CLEAR_DELALLOC | 477 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 478 479 btrfs_end_transaction(trans, root); 480 goto free_pages_out; 481 } 482 btrfs_end_transaction(trans, root); 483 } 484 485 if (will_compress) { 486 /* 487 * we aren't doing an inline extent round the compressed size 488 * up to a block size boundary so the allocator does sane 489 * things 490 */ 491 total_compressed = (total_compressed + blocksize - 1) & 492 ~(blocksize - 1); 493 494 /* 495 * one last check to make sure the compression is really a 496 * win, compare the page count read with the blocks on disk 497 */ 498 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 499 ~(PAGE_CACHE_SIZE - 1); 500 if (total_compressed >= total_in) { 501 will_compress = 0; 502 } else { 503 num_bytes = total_in; 504 } 505 } 506 if (!will_compress && pages) { 507 /* 508 * the compression code ran but failed to make things smaller, 509 * free any pages it allocated and our page pointer array 510 */ 511 for (i = 0; i < nr_pages_ret; i++) { 512 WARN_ON(pages[i]->mapping); 513 page_cache_release(pages[i]); 514 } 515 kfree(pages); 516 pages = NULL; 517 total_compressed = 0; 518 nr_pages_ret = 0; 519 520 /* flag the file so we don't compress in the future */ 521 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 522 !(BTRFS_I(inode)->force_compress)) { 523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 524 } 525 } 526 if (will_compress) { 527 *num_added += 1; 528 529 /* the async work queues will take care of doing actual 530 * allocation on disk for these compressed pages, 531 * and will submit them to the elevator. 532 */ 533 add_async_extent(async_cow, start, num_bytes, 534 total_compressed, pages, nr_pages_ret, 535 compress_type); 536 537 if (start + num_bytes < end) { 538 start += num_bytes; 539 pages = NULL; 540 cond_resched(); 541 goto again; 542 } 543 } else { 544 cleanup_and_bail_uncompressed: 545 /* 546 * No compression, but we still need to write the pages in 547 * the file we've been given so far. redirty the locked 548 * page if it corresponds to our extent and set things up 549 * for the async work queue to run cow_file_range to do 550 * the normal delalloc dance 551 */ 552 if (page_offset(locked_page) >= start && 553 page_offset(locked_page) <= end) { 554 __set_page_dirty_nobuffers(locked_page); 555 /* unlocked later on in the async handlers */ 556 } 557 add_async_extent(async_cow, start, end - start + 1, 558 0, NULL, 0, BTRFS_COMPRESS_NONE); 559 *num_added += 1; 560 } 561 562 out: 563 return ret; 564 565 free_pages_out: 566 for (i = 0; i < nr_pages_ret; i++) { 567 WARN_ON(pages[i]->mapping); 568 page_cache_release(pages[i]); 569 } 570 kfree(pages); 571 572 goto out; 573 574 cleanup_and_out: 575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 576 start, end, NULL, 577 EXTENT_CLEAR_UNLOCK_PAGE | 578 EXTENT_CLEAR_DIRTY | 579 EXTENT_CLEAR_DELALLOC | 580 EXTENT_SET_WRITEBACK | 581 EXTENT_END_WRITEBACK); 582 if (!trans || IS_ERR(trans)) 583 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 584 else 585 btrfs_abort_transaction(trans, root, ret); 586 goto free_pages_out; 587 } 588 589 /* 590 * phase two of compressed writeback. This is the ordered portion 591 * of the code, which only gets called in the order the work was 592 * queued. We walk all the async extents created by compress_file_range 593 * and send them down to the disk. 594 */ 595 static noinline int submit_compressed_extents(struct inode *inode, 596 struct async_cow *async_cow) 597 { 598 struct async_extent *async_extent; 599 u64 alloc_hint = 0; 600 struct btrfs_trans_handle *trans; 601 struct btrfs_key ins; 602 struct extent_map *em; 603 struct btrfs_root *root = BTRFS_I(inode)->root; 604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 605 struct extent_io_tree *io_tree; 606 int ret = 0; 607 608 if (list_empty(&async_cow->extents)) 609 return 0; 610 611 612 while (!list_empty(&async_cow->extents)) { 613 async_extent = list_entry(async_cow->extents.next, 614 struct async_extent, list); 615 list_del(&async_extent->list); 616 617 io_tree = &BTRFS_I(inode)->io_tree; 618 619 retry: 620 /* did the compression code fall back to uncompressed IO? */ 621 if (!async_extent->pages) { 622 int page_started = 0; 623 unsigned long nr_written = 0; 624 625 lock_extent(io_tree, async_extent->start, 626 async_extent->start + 627 async_extent->ram_size - 1); 628 629 /* allocate blocks */ 630 ret = cow_file_range(inode, async_cow->locked_page, 631 async_extent->start, 632 async_extent->start + 633 async_extent->ram_size - 1, 634 &page_started, &nr_written, 0); 635 636 /* JDM XXX */ 637 638 /* 639 * if page_started, cow_file_range inserted an 640 * inline extent and took care of all the unlocking 641 * and IO for us. Otherwise, we need to submit 642 * all those pages down to the drive. 643 */ 644 if (!page_started && !ret) 645 extent_write_locked_range(io_tree, 646 inode, async_extent->start, 647 async_extent->start + 648 async_extent->ram_size - 1, 649 btrfs_get_extent, 650 WB_SYNC_ALL); 651 kfree(async_extent); 652 cond_resched(); 653 continue; 654 } 655 656 lock_extent(io_tree, async_extent->start, 657 async_extent->start + async_extent->ram_size - 1); 658 659 trans = btrfs_join_transaction(root); 660 if (IS_ERR(trans)) { 661 ret = PTR_ERR(trans); 662 } else { 663 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 664 ret = btrfs_reserve_extent(trans, root, 665 async_extent->compressed_size, 666 async_extent->compressed_size, 667 0, alloc_hint, &ins, 1); 668 if (ret && ret != -ENOSPC) 669 btrfs_abort_transaction(trans, root, ret); 670 btrfs_end_transaction(trans, root); 671 } 672 673 if (ret) { 674 int i; 675 for (i = 0; i < async_extent->nr_pages; i++) { 676 WARN_ON(async_extent->pages[i]->mapping); 677 page_cache_release(async_extent->pages[i]); 678 } 679 kfree(async_extent->pages); 680 async_extent->nr_pages = 0; 681 async_extent->pages = NULL; 682 unlock_extent(io_tree, async_extent->start, 683 async_extent->start + 684 async_extent->ram_size - 1); 685 if (ret == -ENOSPC) 686 goto retry; 687 goto out_free; /* JDM: Requeue? */ 688 } 689 690 /* 691 * here we're doing allocation and writeback of the 692 * compressed pages 693 */ 694 btrfs_drop_extent_cache(inode, async_extent->start, 695 async_extent->start + 696 async_extent->ram_size - 1, 0); 697 698 em = alloc_extent_map(); 699 BUG_ON(!em); /* -ENOMEM */ 700 em->start = async_extent->start; 701 em->len = async_extent->ram_size; 702 em->orig_start = em->start; 703 704 em->block_start = ins.objectid; 705 em->block_len = ins.offset; 706 em->orig_block_len = ins.offset; 707 em->bdev = root->fs_info->fs_devices->latest_bdev; 708 em->compress_type = async_extent->compress_type; 709 set_bit(EXTENT_FLAG_PINNED, &em->flags); 710 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 711 em->generation = -1; 712 713 while (1) { 714 write_lock(&em_tree->lock); 715 ret = add_extent_mapping(em_tree, em); 716 if (!ret) 717 list_move(&em->list, 718 &em_tree->modified_extents); 719 write_unlock(&em_tree->lock); 720 if (ret != -EEXIST) { 721 free_extent_map(em); 722 break; 723 } 724 btrfs_drop_extent_cache(inode, async_extent->start, 725 async_extent->start + 726 async_extent->ram_size - 1, 0); 727 } 728 729 ret = btrfs_add_ordered_extent_compress(inode, 730 async_extent->start, 731 ins.objectid, 732 async_extent->ram_size, 733 ins.offset, 734 BTRFS_ORDERED_COMPRESSED, 735 async_extent->compress_type); 736 BUG_ON(ret); /* -ENOMEM */ 737 738 /* 739 * clear dirty, set writeback and unlock the pages. 740 */ 741 extent_clear_unlock_delalloc(inode, 742 &BTRFS_I(inode)->io_tree, 743 async_extent->start, 744 async_extent->start + 745 async_extent->ram_size - 1, 746 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 747 EXTENT_CLEAR_UNLOCK | 748 EXTENT_CLEAR_DELALLOC | 749 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 750 751 ret = btrfs_submit_compressed_write(inode, 752 async_extent->start, 753 async_extent->ram_size, 754 ins.objectid, 755 ins.offset, async_extent->pages, 756 async_extent->nr_pages); 757 758 BUG_ON(ret); /* -ENOMEM */ 759 alloc_hint = ins.objectid + ins.offset; 760 kfree(async_extent); 761 cond_resched(); 762 } 763 ret = 0; 764 out: 765 return ret; 766 out_free: 767 kfree(async_extent); 768 goto out; 769 } 770 771 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 772 u64 num_bytes) 773 { 774 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 775 struct extent_map *em; 776 u64 alloc_hint = 0; 777 778 read_lock(&em_tree->lock); 779 em = search_extent_mapping(em_tree, start, num_bytes); 780 if (em) { 781 /* 782 * if block start isn't an actual block number then find the 783 * first block in this inode and use that as a hint. If that 784 * block is also bogus then just don't worry about it. 785 */ 786 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 787 free_extent_map(em); 788 em = search_extent_mapping(em_tree, 0, 0); 789 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 790 alloc_hint = em->block_start; 791 if (em) 792 free_extent_map(em); 793 } else { 794 alloc_hint = em->block_start; 795 free_extent_map(em); 796 } 797 } 798 read_unlock(&em_tree->lock); 799 800 return alloc_hint; 801 } 802 803 /* 804 * when extent_io.c finds a delayed allocation range in the file, 805 * the call backs end up in this code. The basic idea is to 806 * allocate extents on disk for the range, and create ordered data structs 807 * in ram to track those extents. 808 * 809 * locked_page is the page that writepage had locked already. We use 810 * it to make sure we don't do extra locks or unlocks. 811 * 812 * *page_started is set to one if we unlock locked_page and do everything 813 * required to start IO on it. It may be clean and already done with 814 * IO when we return. 815 */ 816 static noinline int __cow_file_range(struct btrfs_trans_handle *trans, 817 struct inode *inode, 818 struct btrfs_root *root, 819 struct page *locked_page, 820 u64 start, u64 end, int *page_started, 821 unsigned long *nr_written, 822 int unlock) 823 { 824 u64 alloc_hint = 0; 825 u64 num_bytes; 826 unsigned long ram_size; 827 u64 disk_num_bytes; 828 u64 cur_alloc_size; 829 u64 blocksize = root->sectorsize; 830 struct btrfs_key ins; 831 struct extent_map *em; 832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 833 int ret = 0; 834 835 BUG_ON(btrfs_is_free_space_inode(inode)); 836 837 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 838 num_bytes = max(blocksize, num_bytes); 839 disk_num_bytes = num_bytes; 840 841 /* if this is a small write inside eof, kick off defrag */ 842 if (num_bytes < 64 * 1024 && 843 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 844 btrfs_add_inode_defrag(trans, inode); 845 846 if (start == 0) { 847 /* lets try to make an inline extent */ 848 ret = cow_file_range_inline(trans, root, inode, 849 start, end, 0, 0, NULL); 850 if (ret == 0) { 851 extent_clear_unlock_delalloc(inode, 852 &BTRFS_I(inode)->io_tree, 853 start, end, NULL, 854 EXTENT_CLEAR_UNLOCK_PAGE | 855 EXTENT_CLEAR_UNLOCK | 856 EXTENT_CLEAR_DELALLOC | 857 EXTENT_CLEAR_DIRTY | 858 EXTENT_SET_WRITEBACK | 859 EXTENT_END_WRITEBACK); 860 861 *nr_written = *nr_written + 862 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 863 *page_started = 1; 864 goto out; 865 } else if (ret < 0) { 866 btrfs_abort_transaction(trans, root, ret); 867 goto out_unlock; 868 } 869 } 870 871 BUG_ON(disk_num_bytes > 872 btrfs_super_total_bytes(root->fs_info->super_copy)); 873 874 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 875 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 876 877 while (disk_num_bytes > 0) { 878 unsigned long op; 879 880 cur_alloc_size = disk_num_bytes; 881 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 882 root->sectorsize, 0, alloc_hint, 883 &ins, 1); 884 if (ret < 0) { 885 btrfs_abort_transaction(trans, root, ret); 886 goto out_unlock; 887 } 888 889 em = alloc_extent_map(); 890 BUG_ON(!em); /* -ENOMEM */ 891 em->start = start; 892 em->orig_start = em->start; 893 ram_size = ins.offset; 894 em->len = ins.offset; 895 896 em->block_start = ins.objectid; 897 em->block_len = ins.offset; 898 em->orig_block_len = ins.offset; 899 em->bdev = root->fs_info->fs_devices->latest_bdev; 900 set_bit(EXTENT_FLAG_PINNED, &em->flags); 901 em->generation = -1; 902 903 while (1) { 904 write_lock(&em_tree->lock); 905 ret = add_extent_mapping(em_tree, em); 906 if (!ret) 907 list_move(&em->list, 908 &em_tree->modified_extents); 909 write_unlock(&em_tree->lock); 910 if (ret != -EEXIST) { 911 free_extent_map(em); 912 break; 913 } 914 btrfs_drop_extent_cache(inode, start, 915 start + ram_size - 1, 0); 916 } 917 918 cur_alloc_size = ins.offset; 919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 920 ram_size, cur_alloc_size, 0); 921 BUG_ON(ret); /* -ENOMEM */ 922 923 if (root->root_key.objectid == 924 BTRFS_DATA_RELOC_TREE_OBJECTID) { 925 ret = btrfs_reloc_clone_csums(inode, start, 926 cur_alloc_size); 927 if (ret) { 928 btrfs_abort_transaction(trans, root, ret); 929 goto out_unlock; 930 } 931 } 932 933 if (disk_num_bytes < cur_alloc_size) 934 break; 935 936 /* we're not doing compressed IO, don't unlock the first 937 * page (which the caller expects to stay locked), don't 938 * clear any dirty bits and don't set any writeback bits 939 * 940 * Do set the Private2 bit so we know this page was properly 941 * setup for writepage 942 */ 943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 945 EXTENT_SET_PRIVATE2; 946 947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 948 start, start + ram_size - 1, 949 locked_page, op); 950 disk_num_bytes -= cur_alloc_size; 951 num_bytes -= cur_alloc_size; 952 alloc_hint = ins.objectid + ins.offset; 953 start += cur_alloc_size; 954 } 955 out: 956 return ret; 957 958 out_unlock: 959 extent_clear_unlock_delalloc(inode, 960 &BTRFS_I(inode)->io_tree, 961 start, end, locked_page, 962 EXTENT_CLEAR_UNLOCK_PAGE | 963 EXTENT_CLEAR_UNLOCK | 964 EXTENT_CLEAR_DELALLOC | 965 EXTENT_CLEAR_DIRTY | 966 EXTENT_SET_WRITEBACK | 967 EXTENT_END_WRITEBACK); 968 969 goto out; 970 } 971 972 static noinline int cow_file_range(struct inode *inode, 973 struct page *locked_page, 974 u64 start, u64 end, int *page_started, 975 unsigned long *nr_written, 976 int unlock) 977 { 978 struct btrfs_trans_handle *trans; 979 struct btrfs_root *root = BTRFS_I(inode)->root; 980 int ret; 981 982 trans = btrfs_join_transaction(root); 983 if (IS_ERR(trans)) { 984 extent_clear_unlock_delalloc(inode, 985 &BTRFS_I(inode)->io_tree, 986 start, end, locked_page, 987 EXTENT_CLEAR_UNLOCK_PAGE | 988 EXTENT_CLEAR_UNLOCK | 989 EXTENT_CLEAR_DELALLOC | 990 EXTENT_CLEAR_DIRTY | 991 EXTENT_SET_WRITEBACK | 992 EXTENT_END_WRITEBACK); 993 return PTR_ERR(trans); 994 } 995 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 996 997 ret = __cow_file_range(trans, inode, root, locked_page, start, end, 998 page_started, nr_written, unlock); 999 1000 btrfs_end_transaction(trans, root); 1001 1002 return ret; 1003 } 1004 1005 /* 1006 * work queue call back to started compression on a file and pages 1007 */ 1008 static noinline void async_cow_start(struct btrfs_work *work) 1009 { 1010 struct async_cow *async_cow; 1011 int num_added = 0; 1012 async_cow = container_of(work, struct async_cow, work); 1013 1014 compress_file_range(async_cow->inode, async_cow->locked_page, 1015 async_cow->start, async_cow->end, async_cow, 1016 &num_added); 1017 if (num_added == 0) { 1018 btrfs_add_delayed_iput(async_cow->inode); 1019 async_cow->inode = NULL; 1020 } 1021 } 1022 1023 /* 1024 * work queue call back to submit previously compressed pages 1025 */ 1026 static noinline void async_cow_submit(struct btrfs_work *work) 1027 { 1028 struct async_cow *async_cow; 1029 struct btrfs_root *root; 1030 unsigned long nr_pages; 1031 1032 async_cow = container_of(work, struct async_cow, work); 1033 1034 root = async_cow->root; 1035 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1036 PAGE_CACHE_SHIFT; 1037 1038 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1039 5 * 1024 * 1024 && 1040 waitqueue_active(&root->fs_info->async_submit_wait)) 1041 wake_up(&root->fs_info->async_submit_wait); 1042 1043 if (async_cow->inode) 1044 submit_compressed_extents(async_cow->inode, async_cow); 1045 } 1046 1047 static noinline void async_cow_free(struct btrfs_work *work) 1048 { 1049 struct async_cow *async_cow; 1050 async_cow = container_of(work, struct async_cow, work); 1051 if (async_cow->inode) 1052 btrfs_add_delayed_iput(async_cow->inode); 1053 kfree(async_cow); 1054 } 1055 1056 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1057 u64 start, u64 end, int *page_started, 1058 unsigned long *nr_written) 1059 { 1060 struct async_cow *async_cow; 1061 struct btrfs_root *root = BTRFS_I(inode)->root; 1062 unsigned long nr_pages; 1063 u64 cur_end; 1064 int limit = 10 * 1024 * 1024; 1065 1066 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1067 1, 0, NULL, GFP_NOFS); 1068 while (start < end) { 1069 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1070 BUG_ON(!async_cow); /* -ENOMEM */ 1071 async_cow->inode = igrab(inode); 1072 async_cow->root = root; 1073 async_cow->locked_page = locked_page; 1074 async_cow->start = start; 1075 1076 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1077 cur_end = end; 1078 else 1079 cur_end = min(end, start + 512 * 1024 - 1); 1080 1081 async_cow->end = cur_end; 1082 INIT_LIST_HEAD(&async_cow->extents); 1083 1084 async_cow->work.func = async_cow_start; 1085 async_cow->work.ordered_func = async_cow_submit; 1086 async_cow->work.ordered_free = async_cow_free; 1087 async_cow->work.flags = 0; 1088 1089 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1090 PAGE_CACHE_SHIFT; 1091 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1092 1093 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1094 &async_cow->work); 1095 1096 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1097 wait_event(root->fs_info->async_submit_wait, 1098 (atomic_read(&root->fs_info->async_delalloc_pages) < 1099 limit)); 1100 } 1101 1102 while (atomic_read(&root->fs_info->async_submit_draining) && 1103 atomic_read(&root->fs_info->async_delalloc_pages)) { 1104 wait_event(root->fs_info->async_submit_wait, 1105 (atomic_read(&root->fs_info->async_delalloc_pages) == 1106 0)); 1107 } 1108 1109 *nr_written += nr_pages; 1110 start = cur_end + 1; 1111 } 1112 *page_started = 1; 1113 return 0; 1114 } 1115 1116 static noinline int csum_exist_in_range(struct btrfs_root *root, 1117 u64 bytenr, u64 num_bytes) 1118 { 1119 int ret; 1120 struct btrfs_ordered_sum *sums; 1121 LIST_HEAD(list); 1122 1123 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1124 bytenr + num_bytes - 1, &list, 0); 1125 if (ret == 0 && list_empty(&list)) 1126 return 0; 1127 1128 while (!list_empty(&list)) { 1129 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1130 list_del(&sums->list); 1131 kfree(sums); 1132 } 1133 return 1; 1134 } 1135 1136 /* 1137 * when nowcow writeback call back. This checks for snapshots or COW copies 1138 * of the extents that exist in the file, and COWs the file as required. 1139 * 1140 * If no cow copies or snapshots exist, we write directly to the existing 1141 * blocks on disk 1142 */ 1143 static noinline int run_delalloc_nocow(struct inode *inode, 1144 struct page *locked_page, 1145 u64 start, u64 end, int *page_started, int force, 1146 unsigned long *nr_written) 1147 { 1148 struct btrfs_root *root = BTRFS_I(inode)->root; 1149 struct btrfs_trans_handle *trans; 1150 struct extent_buffer *leaf; 1151 struct btrfs_path *path; 1152 struct btrfs_file_extent_item *fi; 1153 struct btrfs_key found_key; 1154 u64 cow_start; 1155 u64 cur_offset; 1156 u64 extent_end; 1157 u64 extent_offset; 1158 u64 disk_bytenr; 1159 u64 num_bytes; 1160 u64 disk_num_bytes; 1161 int extent_type; 1162 int ret, err; 1163 int type; 1164 int nocow; 1165 int check_prev = 1; 1166 bool nolock; 1167 u64 ino = btrfs_ino(inode); 1168 1169 path = btrfs_alloc_path(); 1170 if (!path) { 1171 extent_clear_unlock_delalloc(inode, 1172 &BTRFS_I(inode)->io_tree, 1173 start, end, locked_page, 1174 EXTENT_CLEAR_UNLOCK_PAGE | 1175 EXTENT_CLEAR_UNLOCK | 1176 EXTENT_CLEAR_DELALLOC | 1177 EXTENT_CLEAR_DIRTY | 1178 EXTENT_SET_WRITEBACK | 1179 EXTENT_END_WRITEBACK); 1180 return -ENOMEM; 1181 } 1182 1183 nolock = btrfs_is_free_space_inode(inode); 1184 1185 if (nolock) 1186 trans = btrfs_join_transaction_nolock(root); 1187 else 1188 trans = btrfs_join_transaction(root); 1189 1190 if (IS_ERR(trans)) { 1191 extent_clear_unlock_delalloc(inode, 1192 &BTRFS_I(inode)->io_tree, 1193 start, end, locked_page, 1194 EXTENT_CLEAR_UNLOCK_PAGE | 1195 EXTENT_CLEAR_UNLOCK | 1196 EXTENT_CLEAR_DELALLOC | 1197 EXTENT_CLEAR_DIRTY | 1198 EXTENT_SET_WRITEBACK | 1199 EXTENT_END_WRITEBACK); 1200 btrfs_free_path(path); 1201 return PTR_ERR(trans); 1202 } 1203 1204 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1205 1206 cow_start = (u64)-1; 1207 cur_offset = start; 1208 while (1) { 1209 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1210 cur_offset, 0); 1211 if (ret < 0) { 1212 btrfs_abort_transaction(trans, root, ret); 1213 goto error; 1214 } 1215 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1216 leaf = path->nodes[0]; 1217 btrfs_item_key_to_cpu(leaf, &found_key, 1218 path->slots[0] - 1); 1219 if (found_key.objectid == ino && 1220 found_key.type == BTRFS_EXTENT_DATA_KEY) 1221 path->slots[0]--; 1222 } 1223 check_prev = 0; 1224 next_slot: 1225 leaf = path->nodes[0]; 1226 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1227 ret = btrfs_next_leaf(root, path); 1228 if (ret < 0) { 1229 btrfs_abort_transaction(trans, root, ret); 1230 goto error; 1231 } 1232 if (ret > 0) 1233 break; 1234 leaf = path->nodes[0]; 1235 } 1236 1237 nocow = 0; 1238 disk_bytenr = 0; 1239 num_bytes = 0; 1240 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1241 1242 if (found_key.objectid > ino || 1243 found_key.type > BTRFS_EXTENT_DATA_KEY || 1244 found_key.offset > end) 1245 break; 1246 1247 if (found_key.offset > cur_offset) { 1248 extent_end = found_key.offset; 1249 extent_type = 0; 1250 goto out_check; 1251 } 1252 1253 fi = btrfs_item_ptr(leaf, path->slots[0], 1254 struct btrfs_file_extent_item); 1255 extent_type = btrfs_file_extent_type(leaf, fi); 1256 1257 if (extent_type == BTRFS_FILE_EXTENT_REG || 1258 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1259 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1260 extent_offset = btrfs_file_extent_offset(leaf, fi); 1261 extent_end = found_key.offset + 1262 btrfs_file_extent_num_bytes(leaf, fi); 1263 disk_num_bytes = 1264 btrfs_file_extent_disk_num_bytes(leaf, fi); 1265 if (extent_end <= start) { 1266 path->slots[0]++; 1267 goto next_slot; 1268 } 1269 if (disk_bytenr == 0) 1270 goto out_check; 1271 if (btrfs_file_extent_compression(leaf, fi) || 1272 btrfs_file_extent_encryption(leaf, fi) || 1273 btrfs_file_extent_other_encoding(leaf, fi)) 1274 goto out_check; 1275 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1276 goto out_check; 1277 if (btrfs_extent_readonly(root, disk_bytenr)) 1278 goto out_check; 1279 if (btrfs_cross_ref_exist(trans, root, ino, 1280 found_key.offset - 1281 extent_offset, disk_bytenr)) 1282 goto out_check; 1283 disk_bytenr += extent_offset; 1284 disk_bytenr += cur_offset - found_key.offset; 1285 num_bytes = min(end + 1, extent_end) - cur_offset; 1286 /* 1287 * force cow if csum exists in the range. 1288 * this ensure that csum for a given extent are 1289 * either valid or do not exist. 1290 */ 1291 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1292 goto out_check; 1293 nocow = 1; 1294 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1295 extent_end = found_key.offset + 1296 btrfs_file_extent_inline_len(leaf, fi); 1297 extent_end = ALIGN(extent_end, root->sectorsize); 1298 } else { 1299 BUG_ON(1); 1300 } 1301 out_check: 1302 if (extent_end <= start) { 1303 path->slots[0]++; 1304 goto next_slot; 1305 } 1306 if (!nocow) { 1307 if (cow_start == (u64)-1) 1308 cow_start = cur_offset; 1309 cur_offset = extent_end; 1310 if (cur_offset > end) 1311 break; 1312 path->slots[0]++; 1313 goto next_slot; 1314 } 1315 1316 btrfs_release_path(path); 1317 if (cow_start != (u64)-1) { 1318 ret = __cow_file_range(trans, inode, root, locked_page, 1319 cow_start, found_key.offset - 1, 1320 page_started, nr_written, 1); 1321 if (ret) { 1322 btrfs_abort_transaction(trans, root, ret); 1323 goto error; 1324 } 1325 cow_start = (u64)-1; 1326 } 1327 1328 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1329 struct extent_map *em; 1330 struct extent_map_tree *em_tree; 1331 em_tree = &BTRFS_I(inode)->extent_tree; 1332 em = alloc_extent_map(); 1333 BUG_ON(!em); /* -ENOMEM */ 1334 em->start = cur_offset; 1335 em->orig_start = found_key.offset - extent_offset; 1336 em->len = num_bytes; 1337 em->block_len = num_bytes; 1338 em->block_start = disk_bytenr; 1339 em->orig_block_len = disk_num_bytes; 1340 em->bdev = root->fs_info->fs_devices->latest_bdev; 1341 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1342 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1343 em->generation = -1; 1344 while (1) { 1345 write_lock(&em_tree->lock); 1346 ret = add_extent_mapping(em_tree, em); 1347 if (!ret) 1348 list_move(&em->list, 1349 &em_tree->modified_extents); 1350 write_unlock(&em_tree->lock); 1351 if (ret != -EEXIST) { 1352 free_extent_map(em); 1353 break; 1354 } 1355 btrfs_drop_extent_cache(inode, em->start, 1356 em->start + em->len - 1, 0); 1357 } 1358 type = BTRFS_ORDERED_PREALLOC; 1359 } else { 1360 type = BTRFS_ORDERED_NOCOW; 1361 } 1362 1363 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1364 num_bytes, num_bytes, type); 1365 BUG_ON(ret); /* -ENOMEM */ 1366 1367 if (root->root_key.objectid == 1368 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1369 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1370 num_bytes); 1371 if (ret) { 1372 btrfs_abort_transaction(trans, root, ret); 1373 goto error; 1374 } 1375 } 1376 1377 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1378 cur_offset, cur_offset + num_bytes - 1, 1379 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1380 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1381 EXTENT_SET_PRIVATE2); 1382 cur_offset = extent_end; 1383 if (cur_offset > end) 1384 break; 1385 } 1386 btrfs_release_path(path); 1387 1388 if (cur_offset <= end && cow_start == (u64)-1) { 1389 cow_start = cur_offset; 1390 cur_offset = end; 1391 } 1392 1393 if (cow_start != (u64)-1) { 1394 ret = __cow_file_range(trans, inode, root, locked_page, 1395 cow_start, end, 1396 page_started, nr_written, 1); 1397 if (ret) { 1398 btrfs_abort_transaction(trans, root, ret); 1399 goto error; 1400 } 1401 } 1402 1403 error: 1404 err = btrfs_end_transaction(trans, root); 1405 if (!ret) 1406 ret = err; 1407 1408 if (ret && cur_offset < end) 1409 extent_clear_unlock_delalloc(inode, 1410 &BTRFS_I(inode)->io_tree, 1411 cur_offset, end, locked_page, 1412 EXTENT_CLEAR_UNLOCK_PAGE | 1413 EXTENT_CLEAR_UNLOCK | 1414 EXTENT_CLEAR_DELALLOC | 1415 EXTENT_CLEAR_DIRTY | 1416 EXTENT_SET_WRITEBACK | 1417 EXTENT_END_WRITEBACK); 1418 1419 btrfs_free_path(path); 1420 return ret; 1421 } 1422 1423 /* 1424 * extent_io.c call back to do delayed allocation processing 1425 */ 1426 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1427 u64 start, u64 end, int *page_started, 1428 unsigned long *nr_written) 1429 { 1430 int ret; 1431 struct btrfs_root *root = BTRFS_I(inode)->root; 1432 1433 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1434 ret = run_delalloc_nocow(inode, locked_page, start, end, 1435 page_started, 1, nr_written); 1436 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1437 ret = run_delalloc_nocow(inode, locked_page, start, end, 1438 page_started, 0, nr_written); 1439 } else if (!btrfs_test_opt(root, COMPRESS) && 1440 !(BTRFS_I(inode)->force_compress) && 1441 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1442 ret = cow_file_range(inode, locked_page, start, end, 1443 page_started, nr_written, 1); 1444 } else { 1445 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1446 &BTRFS_I(inode)->runtime_flags); 1447 ret = cow_file_range_async(inode, locked_page, start, end, 1448 page_started, nr_written); 1449 } 1450 return ret; 1451 } 1452 1453 static void btrfs_split_extent_hook(struct inode *inode, 1454 struct extent_state *orig, u64 split) 1455 { 1456 /* not delalloc, ignore it */ 1457 if (!(orig->state & EXTENT_DELALLOC)) 1458 return; 1459 1460 spin_lock(&BTRFS_I(inode)->lock); 1461 BTRFS_I(inode)->outstanding_extents++; 1462 spin_unlock(&BTRFS_I(inode)->lock); 1463 } 1464 1465 /* 1466 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1467 * extents so we can keep track of new extents that are just merged onto old 1468 * extents, such as when we are doing sequential writes, so we can properly 1469 * account for the metadata space we'll need. 1470 */ 1471 static void btrfs_merge_extent_hook(struct inode *inode, 1472 struct extent_state *new, 1473 struct extent_state *other) 1474 { 1475 /* not delalloc, ignore it */ 1476 if (!(other->state & EXTENT_DELALLOC)) 1477 return; 1478 1479 spin_lock(&BTRFS_I(inode)->lock); 1480 BTRFS_I(inode)->outstanding_extents--; 1481 spin_unlock(&BTRFS_I(inode)->lock); 1482 } 1483 1484 /* 1485 * extent_io.c set_bit_hook, used to track delayed allocation 1486 * bytes in this file, and to maintain the list of inodes that 1487 * have pending delalloc work to be done. 1488 */ 1489 static void btrfs_set_bit_hook(struct inode *inode, 1490 struct extent_state *state, int *bits) 1491 { 1492 1493 /* 1494 * set_bit and clear bit hooks normally require _irqsave/restore 1495 * but in this case, we are only testing for the DELALLOC 1496 * bit, which is only set or cleared with irqs on 1497 */ 1498 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1499 struct btrfs_root *root = BTRFS_I(inode)->root; 1500 u64 len = state->end + 1 - state->start; 1501 bool do_list = !btrfs_is_free_space_inode(inode); 1502 1503 if (*bits & EXTENT_FIRST_DELALLOC) { 1504 *bits &= ~EXTENT_FIRST_DELALLOC; 1505 } else { 1506 spin_lock(&BTRFS_I(inode)->lock); 1507 BTRFS_I(inode)->outstanding_extents++; 1508 spin_unlock(&BTRFS_I(inode)->lock); 1509 } 1510 1511 spin_lock(&root->fs_info->delalloc_lock); 1512 BTRFS_I(inode)->delalloc_bytes += len; 1513 root->fs_info->delalloc_bytes += len; 1514 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1515 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1516 &root->fs_info->delalloc_inodes); 1517 } 1518 spin_unlock(&root->fs_info->delalloc_lock); 1519 } 1520 } 1521 1522 /* 1523 * extent_io.c clear_bit_hook, see set_bit_hook for why 1524 */ 1525 static void btrfs_clear_bit_hook(struct inode *inode, 1526 struct extent_state *state, int *bits) 1527 { 1528 /* 1529 * set_bit and clear bit hooks normally require _irqsave/restore 1530 * but in this case, we are only testing for the DELALLOC 1531 * bit, which is only set or cleared with irqs on 1532 */ 1533 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1534 struct btrfs_root *root = BTRFS_I(inode)->root; 1535 u64 len = state->end + 1 - state->start; 1536 bool do_list = !btrfs_is_free_space_inode(inode); 1537 1538 if (*bits & EXTENT_FIRST_DELALLOC) { 1539 *bits &= ~EXTENT_FIRST_DELALLOC; 1540 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1541 spin_lock(&BTRFS_I(inode)->lock); 1542 BTRFS_I(inode)->outstanding_extents--; 1543 spin_unlock(&BTRFS_I(inode)->lock); 1544 } 1545 1546 if (*bits & EXTENT_DO_ACCOUNTING) 1547 btrfs_delalloc_release_metadata(inode, len); 1548 1549 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1550 && do_list) 1551 btrfs_free_reserved_data_space(inode, len); 1552 1553 spin_lock(&root->fs_info->delalloc_lock); 1554 root->fs_info->delalloc_bytes -= len; 1555 BTRFS_I(inode)->delalloc_bytes -= len; 1556 1557 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1558 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1559 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1560 } 1561 spin_unlock(&root->fs_info->delalloc_lock); 1562 } 1563 } 1564 1565 /* 1566 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1567 * we don't create bios that span stripes or chunks 1568 */ 1569 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1570 size_t size, struct bio *bio, 1571 unsigned long bio_flags) 1572 { 1573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1574 u64 logical = (u64)bio->bi_sector << 9; 1575 u64 length = 0; 1576 u64 map_length; 1577 int ret; 1578 1579 if (bio_flags & EXTENT_BIO_COMPRESSED) 1580 return 0; 1581 1582 length = bio->bi_size; 1583 map_length = length; 1584 ret = btrfs_map_block(root->fs_info, READ, logical, 1585 &map_length, NULL, 0); 1586 /* Will always return 0 with map_multi == NULL */ 1587 BUG_ON(ret < 0); 1588 if (map_length < length + size) 1589 return 1; 1590 return 0; 1591 } 1592 1593 /* 1594 * in order to insert checksums into the metadata in large chunks, 1595 * we wait until bio submission time. All the pages in the bio are 1596 * checksummed and sums are attached onto the ordered extent record. 1597 * 1598 * At IO completion time the cums attached on the ordered extent record 1599 * are inserted into the btree 1600 */ 1601 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1602 struct bio *bio, int mirror_num, 1603 unsigned long bio_flags, 1604 u64 bio_offset) 1605 { 1606 struct btrfs_root *root = BTRFS_I(inode)->root; 1607 int ret = 0; 1608 1609 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1610 BUG_ON(ret); /* -ENOMEM */ 1611 return 0; 1612 } 1613 1614 /* 1615 * in order to insert checksums into the metadata in large chunks, 1616 * we wait until bio submission time. All the pages in the bio are 1617 * checksummed and sums are attached onto the ordered extent record. 1618 * 1619 * At IO completion time the cums attached on the ordered extent record 1620 * are inserted into the btree 1621 */ 1622 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1623 int mirror_num, unsigned long bio_flags, 1624 u64 bio_offset) 1625 { 1626 struct btrfs_root *root = BTRFS_I(inode)->root; 1627 int ret; 1628 1629 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1630 if (ret) 1631 bio_endio(bio, ret); 1632 return ret; 1633 } 1634 1635 /* 1636 * extent_io.c submission hook. This does the right thing for csum calculation 1637 * on write, or reading the csums from the tree before a read 1638 */ 1639 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1640 int mirror_num, unsigned long bio_flags, 1641 u64 bio_offset) 1642 { 1643 struct btrfs_root *root = BTRFS_I(inode)->root; 1644 int ret = 0; 1645 int skip_sum; 1646 int metadata = 0; 1647 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1648 1649 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1650 1651 if (btrfs_is_free_space_inode(inode)) 1652 metadata = 2; 1653 1654 if (!(rw & REQ_WRITE)) { 1655 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1656 if (ret) 1657 goto out; 1658 1659 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1660 ret = btrfs_submit_compressed_read(inode, bio, 1661 mirror_num, 1662 bio_flags); 1663 goto out; 1664 } else if (!skip_sum) { 1665 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1666 if (ret) 1667 goto out; 1668 } 1669 goto mapit; 1670 } else if (async && !skip_sum) { 1671 /* csum items have already been cloned */ 1672 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1673 goto mapit; 1674 /* we're doing a write, do the async checksumming */ 1675 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1676 inode, rw, bio, mirror_num, 1677 bio_flags, bio_offset, 1678 __btrfs_submit_bio_start, 1679 __btrfs_submit_bio_done); 1680 goto out; 1681 } else if (!skip_sum) { 1682 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1683 if (ret) 1684 goto out; 1685 } 1686 1687 mapit: 1688 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1689 1690 out: 1691 if (ret < 0) 1692 bio_endio(bio, ret); 1693 return ret; 1694 } 1695 1696 /* 1697 * given a list of ordered sums record them in the inode. This happens 1698 * at IO completion time based on sums calculated at bio submission time. 1699 */ 1700 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1701 struct inode *inode, u64 file_offset, 1702 struct list_head *list) 1703 { 1704 struct btrfs_ordered_sum *sum; 1705 1706 list_for_each_entry(sum, list, list) { 1707 btrfs_csum_file_blocks(trans, 1708 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1709 } 1710 return 0; 1711 } 1712 1713 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1714 struct extent_state **cached_state) 1715 { 1716 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1717 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1718 cached_state, GFP_NOFS); 1719 } 1720 1721 /* see btrfs_writepage_start_hook for details on why this is required */ 1722 struct btrfs_writepage_fixup { 1723 struct page *page; 1724 struct btrfs_work work; 1725 }; 1726 1727 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1728 { 1729 struct btrfs_writepage_fixup *fixup; 1730 struct btrfs_ordered_extent *ordered; 1731 struct extent_state *cached_state = NULL; 1732 struct page *page; 1733 struct inode *inode; 1734 u64 page_start; 1735 u64 page_end; 1736 int ret; 1737 1738 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1739 page = fixup->page; 1740 again: 1741 lock_page(page); 1742 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1743 ClearPageChecked(page); 1744 goto out_page; 1745 } 1746 1747 inode = page->mapping->host; 1748 page_start = page_offset(page); 1749 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1750 1751 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1752 &cached_state); 1753 1754 /* already ordered? We're done */ 1755 if (PagePrivate2(page)) 1756 goto out; 1757 1758 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1759 if (ordered) { 1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1761 page_end, &cached_state, GFP_NOFS); 1762 unlock_page(page); 1763 btrfs_start_ordered_extent(inode, ordered, 1); 1764 btrfs_put_ordered_extent(ordered); 1765 goto again; 1766 } 1767 1768 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1769 if (ret) { 1770 mapping_set_error(page->mapping, ret); 1771 end_extent_writepage(page, ret, page_start, page_end); 1772 ClearPageChecked(page); 1773 goto out; 1774 } 1775 1776 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1777 ClearPageChecked(page); 1778 set_page_dirty(page); 1779 out: 1780 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1781 &cached_state, GFP_NOFS); 1782 out_page: 1783 unlock_page(page); 1784 page_cache_release(page); 1785 kfree(fixup); 1786 } 1787 1788 /* 1789 * There are a few paths in the higher layers of the kernel that directly 1790 * set the page dirty bit without asking the filesystem if it is a 1791 * good idea. This causes problems because we want to make sure COW 1792 * properly happens and the data=ordered rules are followed. 1793 * 1794 * In our case any range that doesn't have the ORDERED bit set 1795 * hasn't been properly setup for IO. We kick off an async process 1796 * to fix it up. The async helper will wait for ordered extents, set 1797 * the delalloc bit and make it safe to write the page. 1798 */ 1799 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1800 { 1801 struct inode *inode = page->mapping->host; 1802 struct btrfs_writepage_fixup *fixup; 1803 struct btrfs_root *root = BTRFS_I(inode)->root; 1804 1805 /* this page is properly in the ordered list */ 1806 if (TestClearPagePrivate2(page)) 1807 return 0; 1808 1809 if (PageChecked(page)) 1810 return -EAGAIN; 1811 1812 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1813 if (!fixup) 1814 return -EAGAIN; 1815 1816 SetPageChecked(page); 1817 page_cache_get(page); 1818 fixup->work.func = btrfs_writepage_fixup_worker; 1819 fixup->page = page; 1820 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1821 return -EBUSY; 1822 } 1823 1824 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1825 struct inode *inode, u64 file_pos, 1826 u64 disk_bytenr, u64 disk_num_bytes, 1827 u64 num_bytes, u64 ram_bytes, 1828 u8 compression, u8 encryption, 1829 u16 other_encoding, int extent_type) 1830 { 1831 struct btrfs_root *root = BTRFS_I(inode)->root; 1832 struct btrfs_file_extent_item *fi; 1833 struct btrfs_path *path; 1834 struct extent_buffer *leaf; 1835 struct btrfs_key ins; 1836 int ret; 1837 1838 path = btrfs_alloc_path(); 1839 if (!path) 1840 return -ENOMEM; 1841 1842 path->leave_spinning = 1; 1843 1844 /* 1845 * we may be replacing one extent in the tree with another. 1846 * The new extent is pinned in the extent map, and we don't want 1847 * to drop it from the cache until it is completely in the btree. 1848 * 1849 * So, tell btrfs_drop_extents to leave this extent in the cache. 1850 * the caller is expected to unpin it and allow it to be merged 1851 * with the others. 1852 */ 1853 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1854 file_pos + num_bytes, 0); 1855 if (ret) 1856 goto out; 1857 1858 ins.objectid = btrfs_ino(inode); 1859 ins.offset = file_pos; 1860 ins.type = BTRFS_EXTENT_DATA_KEY; 1861 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1862 if (ret) 1863 goto out; 1864 leaf = path->nodes[0]; 1865 fi = btrfs_item_ptr(leaf, path->slots[0], 1866 struct btrfs_file_extent_item); 1867 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1868 btrfs_set_file_extent_type(leaf, fi, extent_type); 1869 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1870 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1871 btrfs_set_file_extent_offset(leaf, fi, 0); 1872 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1873 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1874 btrfs_set_file_extent_compression(leaf, fi, compression); 1875 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1876 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1877 1878 btrfs_mark_buffer_dirty(leaf); 1879 btrfs_release_path(path); 1880 1881 inode_add_bytes(inode, num_bytes); 1882 1883 ins.objectid = disk_bytenr; 1884 ins.offset = disk_num_bytes; 1885 ins.type = BTRFS_EXTENT_ITEM_KEY; 1886 ret = btrfs_alloc_reserved_file_extent(trans, root, 1887 root->root_key.objectid, 1888 btrfs_ino(inode), file_pos, &ins); 1889 out: 1890 btrfs_free_path(path); 1891 1892 return ret; 1893 } 1894 1895 /* 1896 * helper function for btrfs_finish_ordered_io, this 1897 * just reads in some of the csum leaves to prime them into ram 1898 * before we start the transaction. It limits the amount of btree 1899 * reads required while inside the transaction. 1900 */ 1901 /* as ordered data IO finishes, this gets called so we can finish 1902 * an ordered extent if the range of bytes in the file it covers are 1903 * fully written. 1904 */ 1905 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 1906 { 1907 struct inode *inode = ordered_extent->inode; 1908 struct btrfs_root *root = BTRFS_I(inode)->root; 1909 struct btrfs_trans_handle *trans = NULL; 1910 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1911 struct extent_state *cached_state = NULL; 1912 int compress_type = 0; 1913 int ret; 1914 bool nolock; 1915 1916 nolock = btrfs_is_free_space_inode(inode); 1917 1918 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 1919 ret = -EIO; 1920 goto out; 1921 } 1922 1923 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1924 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 1925 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1926 if (nolock) 1927 trans = btrfs_join_transaction_nolock(root); 1928 else 1929 trans = btrfs_join_transaction(root); 1930 if (IS_ERR(trans)) { 1931 ret = PTR_ERR(trans); 1932 trans = NULL; 1933 goto out; 1934 } 1935 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1936 ret = btrfs_update_inode_fallback(trans, root, inode); 1937 if (ret) /* -ENOMEM or corruption */ 1938 btrfs_abort_transaction(trans, root, ret); 1939 goto out; 1940 } 1941 1942 lock_extent_bits(io_tree, ordered_extent->file_offset, 1943 ordered_extent->file_offset + ordered_extent->len - 1, 1944 0, &cached_state); 1945 1946 if (nolock) 1947 trans = btrfs_join_transaction_nolock(root); 1948 else 1949 trans = btrfs_join_transaction(root); 1950 if (IS_ERR(trans)) { 1951 ret = PTR_ERR(trans); 1952 trans = NULL; 1953 goto out_unlock; 1954 } 1955 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1956 1957 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1958 compress_type = ordered_extent->compress_type; 1959 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1960 BUG_ON(compress_type); 1961 ret = btrfs_mark_extent_written(trans, inode, 1962 ordered_extent->file_offset, 1963 ordered_extent->file_offset + 1964 ordered_extent->len); 1965 } else { 1966 BUG_ON(root == root->fs_info->tree_root); 1967 ret = insert_reserved_file_extent(trans, inode, 1968 ordered_extent->file_offset, 1969 ordered_extent->start, 1970 ordered_extent->disk_len, 1971 ordered_extent->len, 1972 ordered_extent->len, 1973 compress_type, 0, 0, 1974 BTRFS_FILE_EXTENT_REG); 1975 } 1976 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1977 ordered_extent->file_offset, ordered_extent->len, 1978 trans->transid); 1979 if (ret < 0) { 1980 btrfs_abort_transaction(trans, root, ret); 1981 goto out_unlock; 1982 } 1983 1984 add_pending_csums(trans, inode, ordered_extent->file_offset, 1985 &ordered_extent->list); 1986 1987 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1988 ret = btrfs_update_inode_fallback(trans, root, inode); 1989 if (ret) { /* -ENOMEM or corruption */ 1990 btrfs_abort_transaction(trans, root, ret); 1991 goto out_unlock; 1992 } 1993 ret = 0; 1994 out_unlock: 1995 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1996 ordered_extent->file_offset + 1997 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1998 out: 1999 if (root != root->fs_info->tree_root) 2000 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2001 if (trans) 2002 btrfs_end_transaction(trans, root); 2003 2004 if (ret) 2005 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2006 ordered_extent->file_offset + 2007 ordered_extent->len - 1, NULL, GFP_NOFS); 2008 2009 /* 2010 * This needs to be done to make sure anybody waiting knows we are done 2011 * updating everything for this ordered extent. 2012 */ 2013 btrfs_remove_ordered_extent(inode, ordered_extent); 2014 2015 /* once for us */ 2016 btrfs_put_ordered_extent(ordered_extent); 2017 /* once for the tree */ 2018 btrfs_put_ordered_extent(ordered_extent); 2019 2020 return ret; 2021 } 2022 2023 static void finish_ordered_fn(struct btrfs_work *work) 2024 { 2025 struct btrfs_ordered_extent *ordered_extent; 2026 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2027 btrfs_finish_ordered_io(ordered_extent); 2028 } 2029 2030 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2031 struct extent_state *state, int uptodate) 2032 { 2033 struct inode *inode = page->mapping->host; 2034 struct btrfs_root *root = BTRFS_I(inode)->root; 2035 struct btrfs_ordered_extent *ordered_extent = NULL; 2036 struct btrfs_workers *workers; 2037 2038 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2039 2040 ClearPagePrivate2(page); 2041 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2042 end - start + 1, uptodate)) 2043 return 0; 2044 2045 ordered_extent->work.func = finish_ordered_fn; 2046 ordered_extent->work.flags = 0; 2047 2048 if (btrfs_is_free_space_inode(inode)) 2049 workers = &root->fs_info->endio_freespace_worker; 2050 else 2051 workers = &root->fs_info->endio_write_workers; 2052 btrfs_queue_worker(workers, &ordered_extent->work); 2053 2054 return 0; 2055 } 2056 2057 /* 2058 * when reads are done, we need to check csums to verify the data is correct 2059 * if there's a match, we allow the bio to finish. If not, the code in 2060 * extent_io.c will try to find good copies for us. 2061 */ 2062 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2063 struct extent_state *state, int mirror) 2064 { 2065 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 2066 struct inode *inode = page->mapping->host; 2067 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2068 char *kaddr; 2069 u64 private = ~(u32)0; 2070 int ret; 2071 struct btrfs_root *root = BTRFS_I(inode)->root; 2072 u32 csum = ~(u32)0; 2073 2074 if (PageChecked(page)) { 2075 ClearPageChecked(page); 2076 goto good; 2077 } 2078 2079 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2080 goto good; 2081 2082 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2083 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2084 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2085 GFP_NOFS); 2086 return 0; 2087 } 2088 2089 if (state && state->start == start) { 2090 private = state->private; 2091 ret = 0; 2092 } else { 2093 ret = get_state_private(io_tree, start, &private); 2094 } 2095 kaddr = kmap_atomic(page); 2096 if (ret) 2097 goto zeroit; 2098 2099 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2100 btrfs_csum_final(csum, (char *)&csum); 2101 if (csum != private) 2102 goto zeroit; 2103 2104 kunmap_atomic(kaddr); 2105 good: 2106 return 0; 2107 2108 zeroit: 2109 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2110 "private %llu\n", 2111 (unsigned long long)btrfs_ino(page->mapping->host), 2112 (unsigned long long)start, csum, 2113 (unsigned long long)private); 2114 memset(kaddr + offset, 1, end - start + 1); 2115 flush_dcache_page(page); 2116 kunmap_atomic(kaddr); 2117 if (private == 0) 2118 return 0; 2119 return -EIO; 2120 } 2121 2122 struct delayed_iput { 2123 struct list_head list; 2124 struct inode *inode; 2125 }; 2126 2127 /* JDM: If this is fs-wide, why can't we add a pointer to 2128 * btrfs_inode instead and avoid the allocation? */ 2129 void btrfs_add_delayed_iput(struct inode *inode) 2130 { 2131 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2132 struct delayed_iput *delayed; 2133 2134 if (atomic_add_unless(&inode->i_count, -1, 1)) 2135 return; 2136 2137 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2138 delayed->inode = inode; 2139 2140 spin_lock(&fs_info->delayed_iput_lock); 2141 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2142 spin_unlock(&fs_info->delayed_iput_lock); 2143 } 2144 2145 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2146 { 2147 LIST_HEAD(list); 2148 struct btrfs_fs_info *fs_info = root->fs_info; 2149 struct delayed_iput *delayed; 2150 int empty; 2151 2152 spin_lock(&fs_info->delayed_iput_lock); 2153 empty = list_empty(&fs_info->delayed_iputs); 2154 spin_unlock(&fs_info->delayed_iput_lock); 2155 if (empty) 2156 return; 2157 2158 spin_lock(&fs_info->delayed_iput_lock); 2159 list_splice_init(&fs_info->delayed_iputs, &list); 2160 spin_unlock(&fs_info->delayed_iput_lock); 2161 2162 while (!list_empty(&list)) { 2163 delayed = list_entry(list.next, struct delayed_iput, list); 2164 list_del(&delayed->list); 2165 iput(delayed->inode); 2166 kfree(delayed); 2167 } 2168 } 2169 2170 enum btrfs_orphan_cleanup_state { 2171 ORPHAN_CLEANUP_STARTED = 1, 2172 ORPHAN_CLEANUP_DONE = 2, 2173 }; 2174 2175 /* 2176 * This is called in transaction commit time. If there are no orphan 2177 * files in the subvolume, it removes orphan item and frees block_rsv 2178 * structure. 2179 */ 2180 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2181 struct btrfs_root *root) 2182 { 2183 struct btrfs_block_rsv *block_rsv; 2184 int ret; 2185 2186 if (atomic_read(&root->orphan_inodes) || 2187 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2188 return; 2189 2190 spin_lock(&root->orphan_lock); 2191 if (atomic_read(&root->orphan_inodes)) { 2192 spin_unlock(&root->orphan_lock); 2193 return; 2194 } 2195 2196 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2197 spin_unlock(&root->orphan_lock); 2198 return; 2199 } 2200 2201 block_rsv = root->orphan_block_rsv; 2202 root->orphan_block_rsv = NULL; 2203 spin_unlock(&root->orphan_lock); 2204 2205 if (root->orphan_item_inserted && 2206 btrfs_root_refs(&root->root_item) > 0) { 2207 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2208 root->root_key.objectid); 2209 BUG_ON(ret); 2210 root->orphan_item_inserted = 0; 2211 } 2212 2213 if (block_rsv) { 2214 WARN_ON(block_rsv->size > 0); 2215 btrfs_free_block_rsv(root, block_rsv); 2216 } 2217 } 2218 2219 /* 2220 * This creates an orphan entry for the given inode in case something goes 2221 * wrong in the middle of an unlink/truncate. 2222 * 2223 * NOTE: caller of this function should reserve 5 units of metadata for 2224 * this function. 2225 */ 2226 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2227 { 2228 struct btrfs_root *root = BTRFS_I(inode)->root; 2229 struct btrfs_block_rsv *block_rsv = NULL; 2230 int reserve = 0; 2231 int insert = 0; 2232 int ret; 2233 2234 if (!root->orphan_block_rsv) { 2235 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2236 if (!block_rsv) 2237 return -ENOMEM; 2238 } 2239 2240 spin_lock(&root->orphan_lock); 2241 if (!root->orphan_block_rsv) { 2242 root->orphan_block_rsv = block_rsv; 2243 } else if (block_rsv) { 2244 btrfs_free_block_rsv(root, block_rsv); 2245 block_rsv = NULL; 2246 } 2247 2248 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2249 &BTRFS_I(inode)->runtime_flags)) { 2250 #if 0 2251 /* 2252 * For proper ENOSPC handling, we should do orphan 2253 * cleanup when mounting. But this introduces backward 2254 * compatibility issue. 2255 */ 2256 if (!xchg(&root->orphan_item_inserted, 1)) 2257 insert = 2; 2258 else 2259 insert = 1; 2260 #endif 2261 insert = 1; 2262 atomic_inc(&root->orphan_inodes); 2263 } 2264 2265 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2266 &BTRFS_I(inode)->runtime_flags)) 2267 reserve = 1; 2268 spin_unlock(&root->orphan_lock); 2269 2270 /* grab metadata reservation from transaction handle */ 2271 if (reserve) { 2272 ret = btrfs_orphan_reserve_metadata(trans, inode); 2273 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2274 } 2275 2276 /* insert an orphan item to track this unlinked/truncated file */ 2277 if (insert >= 1) { 2278 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2279 if (ret && ret != -EEXIST) { 2280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2281 &BTRFS_I(inode)->runtime_flags); 2282 btrfs_abort_transaction(trans, root, ret); 2283 return ret; 2284 } 2285 ret = 0; 2286 } 2287 2288 /* insert an orphan item to track subvolume contains orphan files */ 2289 if (insert >= 2) { 2290 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2291 root->root_key.objectid); 2292 if (ret && ret != -EEXIST) { 2293 btrfs_abort_transaction(trans, root, ret); 2294 return ret; 2295 } 2296 } 2297 return 0; 2298 } 2299 2300 /* 2301 * We have done the truncate/delete so we can go ahead and remove the orphan 2302 * item for this particular inode. 2303 */ 2304 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2305 { 2306 struct btrfs_root *root = BTRFS_I(inode)->root; 2307 int delete_item = 0; 2308 int release_rsv = 0; 2309 int ret = 0; 2310 2311 spin_lock(&root->orphan_lock); 2312 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2313 &BTRFS_I(inode)->runtime_flags)) 2314 delete_item = 1; 2315 2316 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2317 &BTRFS_I(inode)->runtime_flags)) 2318 release_rsv = 1; 2319 spin_unlock(&root->orphan_lock); 2320 2321 if (trans && delete_item) { 2322 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2323 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 2324 } 2325 2326 if (release_rsv) { 2327 btrfs_orphan_release_metadata(inode); 2328 atomic_dec(&root->orphan_inodes); 2329 } 2330 2331 return 0; 2332 } 2333 2334 /* 2335 * this cleans up any orphans that may be left on the list from the last use 2336 * of this root. 2337 */ 2338 int btrfs_orphan_cleanup(struct btrfs_root *root) 2339 { 2340 struct btrfs_path *path; 2341 struct extent_buffer *leaf; 2342 struct btrfs_key key, found_key; 2343 struct btrfs_trans_handle *trans; 2344 struct inode *inode; 2345 u64 last_objectid = 0; 2346 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2347 2348 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2349 return 0; 2350 2351 path = btrfs_alloc_path(); 2352 if (!path) { 2353 ret = -ENOMEM; 2354 goto out; 2355 } 2356 path->reada = -1; 2357 2358 key.objectid = BTRFS_ORPHAN_OBJECTID; 2359 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2360 key.offset = (u64)-1; 2361 2362 while (1) { 2363 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2364 if (ret < 0) 2365 goto out; 2366 2367 /* 2368 * if ret == 0 means we found what we were searching for, which 2369 * is weird, but possible, so only screw with path if we didn't 2370 * find the key and see if we have stuff that matches 2371 */ 2372 if (ret > 0) { 2373 ret = 0; 2374 if (path->slots[0] == 0) 2375 break; 2376 path->slots[0]--; 2377 } 2378 2379 /* pull out the item */ 2380 leaf = path->nodes[0]; 2381 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2382 2383 /* make sure the item matches what we want */ 2384 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2385 break; 2386 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2387 break; 2388 2389 /* release the path since we're done with it */ 2390 btrfs_release_path(path); 2391 2392 /* 2393 * this is where we are basically btrfs_lookup, without the 2394 * crossing root thing. we store the inode number in the 2395 * offset of the orphan item. 2396 */ 2397 2398 if (found_key.offset == last_objectid) { 2399 printk(KERN_ERR "btrfs: Error removing orphan entry, " 2400 "stopping orphan cleanup\n"); 2401 ret = -EINVAL; 2402 goto out; 2403 } 2404 2405 last_objectid = found_key.offset; 2406 2407 found_key.objectid = found_key.offset; 2408 found_key.type = BTRFS_INODE_ITEM_KEY; 2409 found_key.offset = 0; 2410 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2411 ret = PTR_RET(inode); 2412 if (ret && ret != -ESTALE) 2413 goto out; 2414 2415 if (ret == -ESTALE && root == root->fs_info->tree_root) { 2416 struct btrfs_root *dead_root; 2417 struct btrfs_fs_info *fs_info = root->fs_info; 2418 int is_dead_root = 0; 2419 2420 /* 2421 * this is an orphan in the tree root. Currently these 2422 * could come from 2 sources: 2423 * a) a snapshot deletion in progress 2424 * b) a free space cache inode 2425 * We need to distinguish those two, as the snapshot 2426 * orphan must not get deleted. 2427 * find_dead_roots already ran before us, so if this 2428 * is a snapshot deletion, we should find the root 2429 * in the dead_roots list 2430 */ 2431 spin_lock(&fs_info->trans_lock); 2432 list_for_each_entry(dead_root, &fs_info->dead_roots, 2433 root_list) { 2434 if (dead_root->root_key.objectid == 2435 found_key.objectid) { 2436 is_dead_root = 1; 2437 break; 2438 } 2439 } 2440 spin_unlock(&fs_info->trans_lock); 2441 if (is_dead_root) { 2442 /* prevent this orphan from being found again */ 2443 key.offset = found_key.objectid - 1; 2444 continue; 2445 } 2446 } 2447 /* 2448 * Inode is already gone but the orphan item is still there, 2449 * kill the orphan item. 2450 */ 2451 if (ret == -ESTALE) { 2452 trans = btrfs_start_transaction(root, 1); 2453 if (IS_ERR(trans)) { 2454 ret = PTR_ERR(trans); 2455 goto out; 2456 } 2457 printk(KERN_ERR "auto deleting %Lu\n", 2458 found_key.objectid); 2459 ret = btrfs_del_orphan_item(trans, root, 2460 found_key.objectid); 2461 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 2462 btrfs_end_transaction(trans, root); 2463 continue; 2464 } 2465 2466 /* 2467 * add this inode to the orphan list so btrfs_orphan_del does 2468 * the proper thing when we hit it 2469 */ 2470 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2471 &BTRFS_I(inode)->runtime_flags); 2472 2473 /* if we have links, this was a truncate, lets do that */ 2474 if (inode->i_nlink) { 2475 if (!S_ISREG(inode->i_mode)) { 2476 WARN_ON(1); 2477 iput(inode); 2478 continue; 2479 } 2480 nr_truncate++; 2481 2482 /* 1 for the orphan item deletion. */ 2483 trans = btrfs_start_transaction(root, 1); 2484 if (IS_ERR(trans)) { 2485 ret = PTR_ERR(trans); 2486 goto out; 2487 } 2488 ret = btrfs_orphan_add(trans, inode); 2489 btrfs_end_transaction(trans, root); 2490 if (ret) 2491 goto out; 2492 2493 ret = btrfs_truncate(inode); 2494 } else { 2495 nr_unlink++; 2496 } 2497 2498 /* this will do delete_inode and everything for us */ 2499 iput(inode); 2500 if (ret) 2501 goto out; 2502 } 2503 /* release the path since we're done with it */ 2504 btrfs_release_path(path); 2505 2506 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2507 2508 if (root->orphan_block_rsv) 2509 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2510 (u64)-1); 2511 2512 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2513 trans = btrfs_join_transaction(root); 2514 if (!IS_ERR(trans)) 2515 btrfs_end_transaction(trans, root); 2516 } 2517 2518 if (nr_unlink) 2519 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2520 if (nr_truncate) 2521 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2522 2523 out: 2524 if (ret) 2525 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2526 btrfs_free_path(path); 2527 return ret; 2528 } 2529 2530 /* 2531 * very simple check to peek ahead in the leaf looking for xattrs. If we 2532 * don't find any xattrs, we know there can't be any acls. 2533 * 2534 * slot is the slot the inode is in, objectid is the objectid of the inode 2535 */ 2536 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2537 int slot, u64 objectid) 2538 { 2539 u32 nritems = btrfs_header_nritems(leaf); 2540 struct btrfs_key found_key; 2541 int scanned = 0; 2542 2543 slot++; 2544 while (slot < nritems) { 2545 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2546 2547 /* we found a different objectid, there must not be acls */ 2548 if (found_key.objectid != objectid) 2549 return 0; 2550 2551 /* we found an xattr, assume we've got an acl */ 2552 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2553 return 1; 2554 2555 /* 2556 * we found a key greater than an xattr key, there can't 2557 * be any acls later on 2558 */ 2559 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2560 return 0; 2561 2562 slot++; 2563 scanned++; 2564 2565 /* 2566 * it goes inode, inode backrefs, xattrs, extents, 2567 * so if there are a ton of hard links to an inode there can 2568 * be a lot of backrefs. Don't waste time searching too hard, 2569 * this is just an optimization 2570 */ 2571 if (scanned >= 8) 2572 break; 2573 } 2574 /* we hit the end of the leaf before we found an xattr or 2575 * something larger than an xattr. We have to assume the inode 2576 * has acls 2577 */ 2578 return 1; 2579 } 2580 2581 /* 2582 * read an inode from the btree into the in-memory inode 2583 */ 2584 static void btrfs_read_locked_inode(struct inode *inode) 2585 { 2586 struct btrfs_path *path; 2587 struct extent_buffer *leaf; 2588 struct btrfs_inode_item *inode_item; 2589 struct btrfs_timespec *tspec; 2590 struct btrfs_root *root = BTRFS_I(inode)->root; 2591 struct btrfs_key location; 2592 int maybe_acls; 2593 u32 rdev; 2594 int ret; 2595 bool filled = false; 2596 2597 ret = btrfs_fill_inode(inode, &rdev); 2598 if (!ret) 2599 filled = true; 2600 2601 path = btrfs_alloc_path(); 2602 if (!path) 2603 goto make_bad; 2604 2605 path->leave_spinning = 1; 2606 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2607 2608 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2609 if (ret) 2610 goto make_bad; 2611 2612 leaf = path->nodes[0]; 2613 2614 if (filled) 2615 goto cache_acl; 2616 2617 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2618 struct btrfs_inode_item); 2619 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2620 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 2621 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 2622 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 2623 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2624 2625 tspec = btrfs_inode_atime(inode_item); 2626 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2627 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2628 2629 tspec = btrfs_inode_mtime(inode_item); 2630 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2631 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2632 2633 tspec = btrfs_inode_ctime(inode_item); 2634 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2635 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2636 2637 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2638 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2639 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 2640 2641 /* 2642 * If we were modified in the current generation and evicted from memory 2643 * and then re-read we need to do a full sync since we don't have any 2644 * idea about which extents were modified before we were evicted from 2645 * cache. 2646 */ 2647 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 2648 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2649 &BTRFS_I(inode)->runtime_flags); 2650 2651 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 2652 inode->i_generation = BTRFS_I(inode)->generation; 2653 inode->i_rdev = 0; 2654 rdev = btrfs_inode_rdev(leaf, inode_item); 2655 2656 BTRFS_I(inode)->index_cnt = (u64)-1; 2657 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2658 cache_acl: 2659 /* 2660 * try to precache a NULL acl entry for files that don't have 2661 * any xattrs or acls 2662 */ 2663 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2664 btrfs_ino(inode)); 2665 if (!maybe_acls) 2666 cache_no_acl(inode); 2667 2668 btrfs_free_path(path); 2669 2670 switch (inode->i_mode & S_IFMT) { 2671 case S_IFREG: 2672 inode->i_mapping->a_ops = &btrfs_aops; 2673 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2674 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2675 inode->i_fop = &btrfs_file_operations; 2676 inode->i_op = &btrfs_file_inode_operations; 2677 break; 2678 case S_IFDIR: 2679 inode->i_fop = &btrfs_dir_file_operations; 2680 if (root == root->fs_info->tree_root) 2681 inode->i_op = &btrfs_dir_ro_inode_operations; 2682 else 2683 inode->i_op = &btrfs_dir_inode_operations; 2684 break; 2685 case S_IFLNK: 2686 inode->i_op = &btrfs_symlink_inode_operations; 2687 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2688 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2689 break; 2690 default: 2691 inode->i_op = &btrfs_special_inode_operations; 2692 init_special_inode(inode, inode->i_mode, rdev); 2693 break; 2694 } 2695 2696 btrfs_update_iflags(inode); 2697 return; 2698 2699 make_bad: 2700 btrfs_free_path(path); 2701 make_bad_inode(inode); 2702 } 2703 2704 /* 2705 * given a leaf and an inode, copy the inode fields into the leaf 2706 */ 2707 static void fill_inode_item(struct btrfs_trans_handle *trans, 2708 struct extent_buffer *leaf, 2709 struct btrfs_inode_item *item, 2710 struct inode *inode) 2711 { 2712 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 2713 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 2714 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2715 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2716 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2717 2718 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2719 inode->i_atime.tv_sec); 2720 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2721 inode->i_atime.tv_nsec); 2722 2723 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2724 inode->i_mtime.tv_sec); 2725 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2726 inode->i_mtime.tv_nsec); 2727 2728 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2729 inode->i_ctime.tv_sec); 2730 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2731 inode->i_ctime.tv_nsec); 2732 2733 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2734 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2735 btrfs_set_inode_sequence(leaf, item, inode->i_version); 2736 btrfs_set_inode_transid(leaf, item, trans->transid); 2737 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2738 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2739 btrfs_set_inode_block_group(leaf, item, 0); 2740 } 2741 2742 /* 2743 * copy everything in the in-memory inode into the btree. 2744 */ 2745 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 2746 struct btrfs_root *root, struct inode *inode) 2747 { 2748 struct btrfs_inode_item *inode_item; 2749 struct btrfs_path *path; 2750 struct extent_buffer *leaf; 2751 int ret; 2752 2753 path = btrfs_alloc_path(); 2754 if (!path) 2755 return -ENOMEM; 2756 2757 path->leave_spinning = 1; 2758 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2759 1); 2760 if (ret) { 2761 if (ret > 0) 2762 ret = -ENOENT; 2763 goto failed; 2764 } 2765 2766 btrfs_unlock_up_safe(path, 1); 2767 leaf = path->nodes[0]; 2768 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2769 struct btrfs_inode_item); 2770 2771 fill_inode_item(trans, leaf, inode_item, inode); 2772 btrfs_mark_buffer_dirty(leaf); 2773 btrfs_set_inode_last_trans(trans, inode); 2774 ret = 0; 2775 failed: 2776 btrfs_free_path(path); 2777 return ret; 2778 } 2779 2780 /* 2781 * copy everything in the in-memory inode into the btree. 2782 */ 2783 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2784 struct btrfs_root *root, struct inode *inode) 2785 { 2786 int ret; 2787 2788 /* 2789 * If the inode is a free space inode, we can deadlock during commit 2790 * if we put it into the delayed code. 2791 * 2792 * The data relocation inode should also be directly updated 2793 * without delay 2794 */ 2795 if (!btrfs_is_free_space_inode(inode) 2796 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2797 btrfs_update_root_times(trans, root); 2798 2799 ret = btrfs_delayed_update_inode(trans, root, inode); 2800 if (!ret) 2801 btrfs_set_inode_last_trans(trans, inode); 2802 return ret; 2803 } 2804 2805 return btrfs_update_inode_item(trans, root, inode); 2806 } 2807 2808 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 2809 struct btrfs_root *root, 2810 struct inode *inode) 2811 { 2812 int ret; 2813 2814 ret = btrfs_update_inode(trans, root, inode); 2815 if (ret == -ENOSPC) 2816 return btrfs_update_inode_item(trans, root, inode); 2817 return ret; 2818 } 2819 2820 /* 2821 * unlink helper that gets used here in inode.c and in the tree logging 2822 * recovery code. It remove a link in a directory with a given name, and 2823 * also drops the back refs in the inode to the directory 2824 */ 2825 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2826 struct btrfs_root *root, 2827 struct inode *dir, struct inode *inode, 2828 const char *name, int name_len) 2829 { 2830 struct btrfs_path *path; 2831 int ret = 0; 2832 struct extent_buffer *leaf; 2833 struct btrfs_dir_item *di; 2834 struct btrfs_key key; 2835 u64 index; 2836 u64 ino = btrfs_ino(inode); 2837 u64 dir_ino = btrfs_ino(dir); 2838 2839 path = btrfs_alloc_path(); 2840 if (!path) { 2841 ret = -ENOMEM; 2842 goto out; 2843 } 2844 2845 path->leave_spinning = 1; 2846 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2847 name, name_len, -1); 2848 if (IS_ERR(di)) { 2849 ret = PTR_ERR(di); 2850 goto err; 2851 } 2852 if (!di) { 2853 ret = -ENOENT; 2854 goto err; 2855 } 2856 leaf = path->nodes[0]; 2857 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2858 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2859 if (ret) 2860 goto err; 2861 btrfs_release_path(path); 2862 2863 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2864 dir_ino, &index); 2865 if (ret) { 2866 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2867 "inode %llu parent %llu\n", name_len, name, 2868 (unsigned long long)ino, (unsigned long long)dir_ino); 2869 btrfs_abort_transaction(trans, root, ret); 2870 goto err; 2871 } 2872 2873 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2874 if (ret) { 2875 btrfs_abort_transaction(trans, root, ret); 2876 goto err; 2877 } 2878 2879 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2880 inode, dir_ino); 2881 if (ret != 0 && ret != -ENOENT) { 2882 btrfs_abort_transaction(trans, root, ret); 2883 goto err; 2884 } 2885 2886 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2887 dir, index); 2888 if (ret == -ENOENT) 2889 ret = 0; 2890 err: 2891 btrfs_free_path(path); 2892 if (ret) 2893 goto out; 2894 2895 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2896 inode_inc_iversion(inode); 2897 inode_inc_iversion(dir); 2898 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2899 ret = btrfs_update_inode(trans, root, dir); 2900 out: 2901 return ret; 2902 } 2903 2904 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2905 struct btrfs_root *root, 2906 struct inode *dir, struct inode *inode, 2907 const char *name, int name_len) 2908 { 2909 int ret; 2910 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2911 if (!ret) { 2912 btrfs_drop_nlink(inode); 2913 ret = btrfs_update_inode(trans, root, inode); 2914 } 2915 return ret; 2916 } 2917 2918 2919 /* helper to check if there is any shared block in the path */ 2920 static int check_path_shared(struct btrfs_root *root, 2921 struct btrfs_path *path) 2922 { 2923 struct extent_buffer *eb; 2924 int level; 2925 u64 refs = 1; 2926 2927 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2928 int ret; 2929 2930 if (!path->nodes[level]) 2931 break; 2932 eb = path->nodes[level]; 2933 if (!btrfs_block_can_be_shared(root, eb)) 2934 continue; 2935 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2936 &refs, NULL); 2937 if (refs > 1) 2938 return 1; 2939 } 2940 return 0; 2941 } 2942 2943 /* 2944 * helper to start transaction for unlink and rmdir. 2945 * 2946 * unlink and rmdir are special in btrfs, they do not always free space. 2947 * so in enospc case, we should make sure they will free space before 2948 * allowing them to use the global metadata reservation. 2949 */ 2950 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2951 struct dentry *dentry) 2952 { 2953 struct btrfs_trans_handle *trans; 2954 struct btrfs_root *root = BTRFS_I(dir)->root; 2955 struct btrfs_path *path; 2956 struct btrfs_dir_item *di; 2957 struct inode *inode = dentry->d_inode; 2958 u64 index; 2959 int check_link = 1; 2960 int err = -ENOSPC; 2961 int ret; 2962 u64 ino = btrfs_ino(inode); 2963 u64 dir_ino = btrfs_ino(dir); 2964 2965 /* 2966 * 1 for the possible orphan item 2967 * 1 for the dir item 2968 * 1 for the dir index 2969 * 1 for the inode ref 2970 * 1 for the inode ref in the tree log 2971 * 2 for the dir entries in the log 2972 * 1 for the inode 2973 */ 2974 trans = btrfs_start_transaction(root, 8); 2975 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2976 return trans; 2977 2978 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2979 return ERR_PTR(-ENOSPC); 2980 2981 /* check if there is someone else holds reference */ 2982 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2983 return ERR_PTR(-ENOSPC); 2984 2985 if (atomic_read(&inode->i_count) > 2) 2986 return ERR_PTR(-ENOSPC); 2987 2988 if (xchg(&root->fs_info->enospc_unlink, 1)) 2989 return ERR_PTR(-ENOSPC); 2990 2991 path = btrfs_alloc_path(); 2992 if (!path) { 2993 root->fs_info->enospc_unlink = 0; 2994 return ERR_PTR(-ENOMEM); 2995 } 2996 2997 /* 1 for the orphan item */ 2998 trans = btrfs_start_transaction(root, 1); 2999 if (IS_ERR(trans)) { 3000 btrfs_free_path(path); 3001 root->fs_info->enospc_unlink = 0; 3002 return trans; 3003 } 3004 3005 path->skip_locking = 1; 3006 path->search_commit_root = 1; 3007 3008 ret = btrfs_lookup_inode(trans, root, path, 3009 &BTRFS_I(dir)->location, 0); 3010 if (ret < 0) { 3011 err = ret; 3012 goto out; 3013 } 3014 if (ret == 0) { 3015 if (check_path_shared(root, path)) 3016 goto out; 3017 } else { 3018 check_link = 0; 3019 } 3020 btrfs_release_path(path); 3021 3022 ret = btrfs_lookup_inode(trans, root, path, 3023 &BTRFS_I(inode)->location, 0); 3024 if (ret < 0) { 3025 err = ret; 3026 goto out; 3027 } 3028 if (ret == 0) { 3029 if (check_path_shared(root, path)) 3030 goto out; 3031 } else { 3032 check_link = 0; 3033 } 3034 btrfs_release_path(path); 3035 3036 if (ret == 0 && S_ISREG(inode->i_mode)) { 3037 ret = btrfs_lookup_file_extent(trans, root, path, 3038 ino, (u64)-1, 0); 3039 if (ret < 0) { 3040 err = ret; 3041 goto out; 3042 } 3043 BUG_ON(ret == 0); /* Corruption */ 3044 if (check_path_shared(root, path)) 3045 goto out; 3046 btrfs_release_path(path); 3047 } 3048 3049 if (!check_link) { 3050 err = 0; 3051 goto out; 3052 } 3053 3054 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3055 dentry->d_name.name, dentry->d_name.len, 0); 3056 if (IS_ERR(di)) { 3057 err = PTR_ERR(di); 3058 goto out; 3059 } 3060 if (di) { 3061 if (check_path_shared(root, path)) 3062 goto out; 3063 } else { 3064 err = 0; 3065 goto out; 3066 } 3067 btrfs_release_path(path); 3068 3069 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name, 3070 dentry->d_name.len, ino, dir_ino, 0, 3071 &index); 3072 if (ret) { 3073 err = ret; 3074 goto out; 3075 } 3076 3077 if (check_path_shared(root, path)) 3078 goto out; 3079 3080 btrfs_release_path(path); 3081 3082 /* 3083 * This is a commit root search, if we can lookup inode item and other 3084 * relative items in the commit root, it means the transaction of 3085 * dir/file creation has been committed, and the dir index item that we 3086 * delay to insert has also been inserted into the commit root. So 3087 * we needn't worry about the delayed insertion of the dir index item 3088 * here. 3089 */ 3090 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 3091 dentry->d_name.name, dentry->d_name.len, 0); 3092 if (IS_ERR(di)) { 3093 err = PTR_ERR(di); 3094 goto out; 3095 } 3096 BUG_ON(ret == -ENOENT); 3097 if (check_path_shared(root, path)) 3098 goto out; 3099 3100 err = 0; 3101 out: 3102 btrfs_free_path(path); 3103 /* Migrate the orphan reservation over */ 3104 if (!err) 3105 err = btrfs_block_rsv_migrate(trans->block_rsv, 3106 &root->fs_info->global_block_rsv, 3107 trans->bytes_reserved); 3108 3109 if (err) { 3110 btrfs_end_transaction(trans, root); 3111 root->fs_info->enospc_unlink = 0; 3112 return ERR_PTR(err); 3113 } 3114 3115 trans->block_rsv = &root->fs_info->global_block_rsv; 3116 return trans; 3117 } 3118 3119 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 3120 struct btrfs_root *root) 3121 { 3122 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) { 3123 btrfs_block_rsv_release(root, trans->block_rsv, 3124 trans->bytes_reserved); 3125 trans->block_rsv = &root->fs_info->trans_block_rsv; 3126 BUG_ON(!root->fs_info->enospc_unlink); 3127 root->fs_info->enospc_unlink = 0; 3128 } 3129 btrfs_end_transaction(trans, root); 3130 } 3131 3132 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3133 { 3134 struct btrfs_root *root = BTRFS_I(dir)->root; 3135 struct btrfs_trans_handle *trans; 3136 struct inode *inode = dentry->d_inode; 3137 int ret; 3138 3139 trans = __unlink_start_trans(dir, dentry); 3140 if (IS_ERR(trans)) 3141 return PTR_ERR(trans); 3142 3143 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3144 3145 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3146 dentry->d_name.name, dentry->d_name.len); 3147 if (ret) 3148 goto out; 3149 3150 if (inode->i_nlink == 0) { 3151 ret = btrfs_orphan_add(trans, inode); 3152 if (ret) 3153 goto out; 3154 } 3155 3156 out: 3157 __unlink_end_trans(trans, root); 3158 btrfs_btree_balance_dirty(root); 3159 return ret; 3160 } 3161 3162 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3163 struct btrfs_root *root, 3164 struct inode *dir, u64 objectid, 3165 const char *name, int name_len) 3166 { 3167 struct btrfs_path *path; 3168 struct extent_buffer *leaf; 3169 struct btrfs_dir_item *di; 3170 struct btrfs_key key; 3171 u64 index; 3172 int ret; 3173 u64 dir_ino = btrfs_ino(dir); 3174 3175 path = btrfs_alloc_path(); 3176 if (!path) 3177 return -ENOMEM; 3178 3179 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3180 name, name_len, -1); 3181 if (IS_ERR_OR_NULL(di)) { 3182 if (!di) 3183 ret = -ENOENT; 3184 else 3185 ret = PTR_ERR(di); 3186 goto out; 3187 } 3188 3189 leaf = path->nodes[0]; 3190 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3191 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3192 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3193 if (ret) { 3194 btrfs_abort_transaction(trans, root, ret); 3195 goto out; 3196 } 3197 btrfs_release_path(path); 3198 3199 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3200 objectid, root->root_key.objectid, 3201 dir_ino, &index, name, name_len); 3202 if (ret < 0) { 3203 if (ret != -ENOENT) { 3204 btrfs_abort_transaction(trans, root, ret); 3205 goto out; 3206 } 3207 di = btrfs_search_dir_index_item(root, path, dir_ino, 3208 name, name_len); 3209 if (IS_ERR_OR_NULL(di)) { 3210 if (!di) 3211 ret = -ENOENT; 3212 else 3213 ret = PTR_ERR(di); 3214 btrfs_abort_transaction(trans, root, ret); 3215 goto out; 3216 } 3217 3218 leaf = path->nodes[0]; 3219 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3220 btrfs_release_path(path); 3221 index = key.offset; 3222 } 3223 btrfs_release_path(path); 3224 3225 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3226 if (ret) { 3227 btrfs_abort_transaction(trans, root, ret); 3228 goto out; 3229 } 3230 3231 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3232 inode_inc_iversion(dir); 3233 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3234 ret = btrfs_update_inode_fallback(trans, root, dir); 3235 if (ret) 3236 btrfs_abort_transaction(trans, root, ret); 3237 out: 3238 btrfs_free_path(path); 3239 return ret; 3240 } 3241 3242 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3243 { 3244 struct inode *inode = dentry->d_inode; 3245 int err = 0; 3246 struct btrfs_root *root = BTRFS_I(dir)->root; 3247 struct btrfs_trans_handle *trans; 3248 3249 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3250 return -ENOTEMPTY; 3251 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3252 return -EPERM; 3253 3254 trans = __unlink_start_trans(dir, dentry); 3255 if (IS_ERR(trans)) 3256 return PTR_ERR(trans); 3257 3258 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3259 err = btrfs_unlink_subvol(trans, root, dir, 3260 BTRFS_I(inode)->location.objectid, 3261 dentry->d_name.name, 3262 dentry->d_name.len); 3263 goto out; 3264 } 3265 3266 err = btrfs_orphan_add(trans, inode); 3267 if (err) 3268 goto out; 3269 3270 /* now the directory is empty */ 3271 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3272 dentry->d_name.name, dentry->d_name.len); 3273 if (!err) 3274 btrfs_i_size_write(inode, 0); 3275 out: 3276 __unlink_end_trans(trans, root); 3277 btrfs_btree_balance_dirty(root); 3278 3279 return err; 3280 } 3281 3282 /* 3283 * this can truncate away extent items, csum items and directory items. 3284 * It starts at a high offset and removes keys until it can't find 3285 * any higher than new_size 3286 * 3287 * csum items that cross the new i_size are truncated to the new size 3288 * as well. 3289 * 3290 * min_type is the minimum key type to truncate down to. If set to 0, this 3291 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3292 */ 3293 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3294 struct btrfs_root *root, 3295 struct inode *inode, 3296 u64 new_size, u32 min_type) 3297 { 3298 struct btrfs_path *path; 3299 struct extent_buffer *leaf; 3300 struct btrfs_file_extent_item *fi; 3301 struct btrfs_key key; 3302 struct btrfs_key found_key; 3303 u64 extent_start = 0; 3304 u64 extent_num_bytes = 0; 3305 u64 extent_offset = 0; 3306 u64 item_end = 0; 3307 u64 mask = root->sectorsize - 1; 3308 u32 found_type = (u8)-1; 3309 int found_extent; 3310 int del_item; 3311 int pending_del_nr = 0; 3312 int pending_del_slot = 0; 3313 int extent_type = -1; 3314 int ret; 3315 int err = 0; 3316 u64 ino = btrfs_ino(inode); 3317 3318 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3319 3320 path = btrfs_alloc_path(); 3321 if (!path) 3322 return -ENOMEM; 3323 path->reada = -1; 3324 3325 /* 3326 * We want to drop from the next block forward in case this new size is 3327 * not block aligned since we will be keeping the last block of the 3328 * extent just the way it is. 3329 */ 3330 if (root->ref_cows || root == root->fs_info->tree_root) 3331 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0); 3332 3333 /* 3334 * This function is also used to drop the items in the log tree before 3335 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3336 * it is used to drop the loged items. So we shouldn't kill the delayed 3337 * items. 3338 */ 3339 if (min_type == 0 && root == BTRFS_I(inode)->root) 3340 btrfs_kill_delayed_inode_items(inode); 3341 3342 key.objectid = ino; 3343 key.offset = (u64)-1; 3344 key.type = (u8)-1; 3345 3346 search_again: 3347 path->leave_spinning = 1; 3348 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3349 if (ret < 0) { 3350 err = ret; 3351 goto out; 3352 } 3353 3354 if (ret > 0) { 3355 /* there are no items in the tree for us to truncate, we're 3356 * done 3357 */ 3358 if (path->slots[0] == 0) 3359 goto out; 3360 path->slots[0]--; 3361 } 3362 3363 while (1) { 3364 fi = NULL; 3365 leaf = path->nodes[0]; 3366 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3367 found_type = btrfs_key_type(&found_key); 3368 3369 if (found_key.objectid != ino) 3370 break; 3371 3372 if (found_type < min_type) 3373 break; 3374 3375 item_end = found_key.offset; 3376 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3377 fi = btrfs_item_ptr(leaf, path->slots[0], 3378 struct btrfs_file_extent_item); 3379 extent_type = btrfs_file_extent_type(leaf, fi); 3380 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3381 item_end += 3382 btrfs_file_extent_num_bytes(leaf, fi); 3383 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3384 item_end += btrfs_file_extent_inline_len(leaf, 3385 fi); 3386 } 3387 item_end--; 3388 } 3389 if (found_type > min_type) { 3390 del_item = 1; 3391 } else { 3392 if (item_end < new_size) 3393 break; 3394 if (found_key.offset >= new_size) 3395 del_item = 1; 3396 else 3397 del_item = 0; 3398 } 3399 found_extent = 0; 3400 /* FIXME, shrink the extent if the ref count is only 1 */ 3401 if (found_type != BTRFS_EXTENT_DATA_KEY) 3402 goto delete; 3403 3404 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3405 u64 num_dec; 3406 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3407 if (!del_item) { 3408 u64 orig_num_bytes = 3409 btrfs_file_extent_num_bytes(leaf, fi); 3410 extent_num_bytes = new_size - 3411 found_key.offset + root->sectorsize - 1; 3412 extent_num_bytes = extent_num_bytes & 3413 ~((u64)root->sectorsize - 1); 3414 btrfs_set_file_extent_num_bytes(leaf, fi, 3415 extent_num_bytes); 3416 num_dec = (orig_num_bytes - 3417 extent_num_bytes); 3418 if (root->ref_cows && extent_start != 0) 3419 inode_sub_bytes(inode, num_dec); 3420 btrfs_mark_buffer_dirty(leaf); 3421 } else { 3422 extent_num_bytes = 3423 btrfs_file_extent_disk_num_bytes(leaf, 3424 fi); 3425 extent_offset = found_key.offset - 3426 btrfs_file_extent_offset(leaf, fi); 3427 3428 /* FIXME blocksize != 4096 */ 3429 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3430 if (extent_start != 0) { 3431 found_extent = 1; 3432 if (root->ref_cows) 3433 inode_sub_bytes(inode, num_dec); 3434 } 3435 } 3436 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3437 /* 3438 * we can't truncate inline items that have had 3439 * special encodings 3440 */ 3441 if (!del_item && 3442 btrfs_file_extent_compression(leaf, fi) == 0 && 3443 btrfs_file_extent_encryption(leaf, fi) == 0 && 3444 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3445 u32 size = new_size - found_key.offset; 3446 3447 if (root->ref_cows) { 3448 inode_sub_bytes(inode, item_end + 1 - 3449 new_size); 3450 } 3451 size = 3452 btrfs_file_extent_calc_inline_size(size); 3453 btrfs_truncate_item(trans, root, path, 3454 size, 1); 3455 } else if (root->ref_cows) { 3456 inode_sub_bytes(inode, item_end + 1 - 3457 found_key.offset); 3458 } 3459 } 3460 delete: 3461 if (del_item) { 3462 if (!pending_del_nr) { 3463 /* no pending yet, add ourselves */ 3464 pending_del_slot = path->slots[0]; 3465 pending_del_nr = 1; 3466 } else if (pending_del_nr && 3467 path->slots[0] + 1 == pending_del_slot) { 3468 /* hop on the pending chunk */ 3469 pending_del_nr++; 3470 pending_del_slot = path->slots[0]; 3471 } else { 3472 BUG(); 3473 } 3474 } else { 3475 break; 3476 } 3477 if (found_extent && (root->ref_cows || 3478 root == root->fs_info->tree_root)) { 3479 btrfs_set_path_blocking(path); 3480 ret = btrfs_free_extent(trans, root, extent_start, 3481 extent_num_bytes, 0, 3482 btrfs_header_owner(leaf), 3483 ino, extent_offset, 0); 3484 BUG_ON(ret); 3485 } 3486 3487 if (found_type == BTRFS_INODE_ITEM_KEY) 3488 break; 3489 3490 if (path->slots[0] == 0 || 3491 path->slots[0] != pending_del_slot) { 3492 if (pending_del_nr) { 3493 ret = btrfs_del_items(trans, root, path, 3494 pending_del_slot, 3495 pending_del_nr); 3496 if (ret) { 3497 btrfs_abort_transaction(trans, 3498 root, ret); 3499 goto error; 3500 } 3501 pending_del_nr = 0; 3502 } 3503 btrfs_release_path(path); 3504 goto search_again; 3505 } else { 3506 path->slots[0]--; 3507 } 3508 } 3509 out: 3510 if (pending_del_nr) { 3511 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3512 pending_del_nr); 3513 if (ret) 3514 btrfs_abort_transaction(trans, root, ret); 3515 } 3516 error: 3517 btrfs_free_path(path); 3518 return err; 3519 } 3520 3521 /* 3522 * btrfs_truncate_page - read, zero a chunk and write a page 3523 * @inode - inode that we're zeroing 3524 * @from - the offset to start zeroing 3525 * @len - the length to zero, 0 to zero the entire range respective to the 3526 * offset 3527 * @front - zero up to the offset instead of from the offset on 3528 * 3529 * This will find the page for the "from" offset and cow the page and zero the 3530 * part we want to zero. This is used with truncate and hole punching. 3531 */ 3532 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 3533 int front) 3534 { 3535 struct address_space *mapping = inode->i_mapping; 3536 struct btrfs_root *root = BTRFS_I(inode)->root; 3537 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3538 struct btrfs_ordered_extent *ordered; 3539 struct extent_state *cached_state = NULL; 3540 char *kaddr; 3541 u32 blocksize = root->sectorsize; 3542 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3543 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3544 struct page *page; 3545 gfp_t mask = btrfs_alloc_write_mask(mapping); 3546 int ret = 0; 3547 u64 page_start; 3548 u64 page_end; 3549 3550 if ((offset & (blocksize - 1)) == 0 && 3551 (!len || ((len & (blocksize - 1)) == 0))) 3552 goto out; 3553 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3554 if (ret) 3555 goto out; 3556 3557 again: 3558 page = find_or_create_page(mapping, index, mask); 3559 if (!page) { 3560 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3561 ret = -ENOMEM; 3562 goto out; 3563 } 3564 3565 page_start = page_offset(page); 3566 page_end = page_start + PAGE_CACHE_SIZE - 1; 3567 3568 if (!PageUptodate(page)) { 3569 ret = btrfs_readpage(NULL, page); 3570 lock_page(page); 3571 if (page->mapping != mapping) { 3572 unlock_page(page); 3573 page_cache_release(page); 3574 goto again; 3575 } 3576 if (!PageUptodate(page)) { 3577 ret = -EIO; 3578 goto out_unlock; 3579 } 3580 } 3581 wait_on_page_writeback(page); 3582 3583 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 3584 set_page_extent_mapped(page); 3585 3586 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3587 if (ordered) { 3588 unlock_extent_cached(io_tree, page_start, page_end, 3589 &cached_state, GFP_NOFS); 3590 unlock_page(page); 3591 page_cache_release(page); 3592 btrfs_start_ordered_extent(inode, ordered, 1); 3593 btrfs_put_ordered_extent(ordered); 3594 goto again; 3595 } 3596 3597 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3598 EXTENT_DIRTY | EXTENT_DELALLOC | 3599 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 3600 0, 0, &cached_state, GFP_NOFS); 3601 3602 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3603 &cached_state); 3604 if (ret) { 3605 unlock_extent_cached(io_tree, page_start, page_end, 3606 &cached_state, GFP_NOFS); 3607 goto out_unlock; 3608 } 3609 3610 if (offset != PAGE_CACHE_SIZE) { 3611 if (!len) 3612 len = PAGE_CACHE_SIZE - offset; 3613 kaddr = kmap(page); 3614 if (front) 3615 memset(kaddr, 0, offset); 3616 else 3617 memset(kaddr + offset, 0, len); 3618 flush_dcache_page(page); 3619 kunmap(page); 3620 } 3621 ClearPageChecked(page); 3622 set_page_dirty(page); 3623 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3624 GFP_NOFS); 3625 3626 out_unlock: 3627 if (ret) 3628 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3629 unlock_page(page); 3630 page_cache_release(page); 3631 out: 3632 return ret; 3633 } 3634 3635 /* 3636 * This function puts in dummy file extents for the area we're creating a hole 3637 * for. So if we are truncating this file to a larger size we need to insert 3638 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3639 * the range between oldsize and size 3640 */ 3641 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3642 { 3643 struct btrfs_trans_handle *trans; 3644 struct btrfs_root *root = BTRFS_I(inode)->root; 3645 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3646 struct extent_map *em = NULL; 3647 struct extent_state *cached_state = NULL; 3648 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3649 u64 mask = root->sectorsize - 1; 3650 u64 hole_start = (oldsize + mask) & ~mask; 3651 u64 block_end = (size + mask) & ~mask; 3652 u64 last_byte; 3653 u64 cur_offset; 3654 u64 hole_size; 3655 int err = 0; 3656 3657 if (size <= hole_start) 3658 return 0; 3659 3660 while (1) { 3661 struct btrfs_ordered_extent *ordered; 3662 btrfs_wait_ordered_range(inode, hole_start, 3663 block_end - hole_start); 3664 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3665 &cached_state); 3666 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3667 if (!ordered) 3668 break; 3669 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3670 &cached_state, GFP_NOFS); 3671 btrfs_put_ordered_extent(ordered); 3672 } 3673 3674 cur_offset = hole_start; 3675 while (1) { 3676 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3677 block_end - cur_offset, 0); 3678 if (IS_ERR(em)) { 3679 err = PTR_ERR(em); 3680 em = NULL; 3681 break; 3682 } 3683 last_byte = min(extent_map_end(em), block_end); 3684 last_byte = (last_byte + mask) & ~mask; 3685 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3686 struct extent_map *hole_em; 3687 hole_size = last_byte - cur_offset; 3688 3689 trans = btrfs_start_transaction(root, 3); 3690 if (IS_ERR(trans)) { 3691 err = PTR_ERR(trans); 3692 break; 3693 } 3694 3695 err = btrfs_drop_extents(trans, root, inode, 3696 cur_offset, 3697 cur_offset + hole_size, 1); 3698 if (err) { 3699 btrfs_abort_transaction(trans, root, err); 3700 btrfs_end_transaction(trans, root); 3701 break; 3702 } 3703 3704 err = btrfs_insert_file_extent(trans, root, 3705 btrfs_ino(inode), cur_offset, 0, 3706 0, hole_size, 0, hole_size, 3707 0, 0, 0); 3708 if (err) { 3709 btrfs_abort_transaction(trans, root, err); 3710 btrfs_end_transaction(trans, root); 3711 break; 3712 } 3713 3714 btrfs_drop_extent_cache(inode, cur_offset, 3715 cur_offset + hole_size - 1, 0); 3716 hole_em = alloc_extent_map(); 3717 if (!hole_em) { 3718 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3719 &BTRFS_I(inode)->runtime_flags); 3720 goto next; 3721 } 3722 hole_em->start = cur_offset; 3723 hole_em->len = hole_size; 3724 hole_em->orig_start = cur_offset; 3725 3726 hole_em->block_start = EXTENT_MAP_HOLE; 3727 hole_em->block_len = 0; 3728 hole_em->orig_block_len = 0; 3729 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 3730 hole_em->compress_type = BTRFS_COMPRESS_NONE; 3731 hole_em->generation = trans->transid; 3732 3733 while (1) { 3734 write_lock(&em_tree->lock); 3735 err = add_extent_mapping(em_tree, hole_em); 3736 if (!err) 3737 list_move(&hole_em->list, 3738 &em_tree->modified_extents); 3739 write_unlock(&em_tree->lock); 3740 if (err != -EEXIST) 3741 break; 3742 btrfs_drop_extent_cache(inode, cur_offset, 3743 cur_offset + 3744 hole_size - 1, 0); 3745 } 3746 free_extent_map(hole_em); 3747 next: 3748 btrfs_update_inode(trans, root, inode); 3749 btrfs_end_transaction(trans, root); 3750 } 3751 free_extent_map(em); 3752 em = NULL; 3753 cur_offset = last_byte; 3754 if (cur_offset >= block_end) 3755 break; 3756 } 3757 3758 free_extent_map(em); 3759 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3760 GFP_NOFS); 3761 return err; 3762 } 3763 3764 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 3765 { 3766 struct btrfs_root *root = BTRFS_I(inode)->root; 3767 struct btrfs_trans_handle *trans; 3768 loff_t oldsize = i_size_read(inode); 3769 loff_t newsize = attr->ia_size; 3770 int mask = attr->ia_valid; 3771 int ret; 3772 3773 if (newsize == oldsize) 3774 return 0; 3775 3776 /* 3777 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 3778 * special case where we need to update the times despite not having 3779 * these flags set. For all other operations the VFS set these flags 3780 * explicitly if it wants a timestamp update. 3781 */ 3782 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 3783 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 3784 3785 if (newsize > oldsize) { 3786 truncate_pagecache(inode, oldsize, newsize); 3787 ret = btrfs_cont_expand(inode, oldsize, newsize); 3788 if (ret) 3789 return ret; 3790 3791 trans = btrfs_start_transaction(root, 1); 3792 if (IS_ERR(trans)) 3793 return PTR_ERR(trans); 3794 3795 i_size_write(inode, newsize); 3796 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3797 ret = btrfs_update_inode(trans, root, inode); 3798 btrfs_end_transaction(trans, root); 3799 } else { 3800 3801 /* 3802 * We're truncating a file that used to have good data down to 3803 * zero. Make sure it gets into the ordered flush list so that 3804 * any new writes get down to disk quickly. 3805 */ 3806 if (newsize == 0) 3807 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 3808 &BTRFS_I(inode)->runtime_flags); 3809 3810 /* 3811 * 1 for the orphan item we're going to add 3812 * 1 for the orphan item deletion. 3813 */ 3814 trans = btrfs_start_transaction(root, 2); 3815 if (IS_ERR(trans)) 3816 return PTR_ERR(trans); 3817 3818 /* 3819 * We need to do this in case we fail at _any_ point during the 3820 * actual truncate. Once we do the truncate_setsize we could 3821 * invalidate pages which forces any outstanding ordered io to 3822 * be instantly completed which will give us extents that need 3823 * to be truncated. If we fail to get an orphan inode down we 3824 * could have left over extents that were never meant to live, 3825 * so we need to garuntee from this point on that everything 3826 * will be consistent. 3827 */ 3828 ret = btrfs_orphan_add(trans, inode); 3829 btrfs_end_transaction(trans, root); 3830 if (ret) 3831 return ret; 3832 3833 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3834 truncate_setsize(inode, newsize); 3835 ret = btrfs_truncate(inode); 3836 if (ret && inode->i_nlink) 3837 btrfs_orphan_del(NULL, inode); 3838 } 3839 3840 return ret; 3841 } 3842 3843 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3844 { 3845 struct inode *inode = dentry->d_inode; 3846 struct btrfs_root *root = BTRFS_I(inode)->root; 3847 int err; 3848 3849 if (btrfs_root_readonly(root)) 3850 return -EROFS; 3851 3852 err = inode_change_ok(inode, attr); 3853 if (err) 3854 return err; 3855 3856 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3857 err = btrfs_setsize(inode, attr); 3858 if (err) 3859 return err; 3860 } 3861 3862 if (attr->ia_valid) { 3863 setattr_copy(inode, attr); 3864 inode_inc_iversion(inode); 3865 err = btrfs_dirty_inode(inode); 3866 3867 if (!err && attr->ia_valid & ATTR_MODE) 3868 err = btrfs_acl_chmod(inode); 3869 } 3870 3871 return err; 3872 } 3873 3874 void btrfs_evict_inode(struct inode *inode) 3875 { 3876 struct btrfs_trans_handle *trans; 3877 struct btrfs_root *root = BTRFS_I(inode)->root; 3878 struct btrfs_block_rsv *rsv, *global_rsv; 3879 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 3880 int ret; 3881 3882 trace_btrfs_inode_evict(inode); 3883 3884 truncate_inode_pages(&inode->i_data, 0); 3885 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3886 btrfs_is_free_space_inode(inode))) 3887 goto no_delete; 3888 3889 if (is_bad_inode(inode)) { 3890 btrfs_orphan_del(NULL, inode); 3891 goto no_delete; 3892 } 3893 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3894 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3895 3896 if (root->fs_info->log_root_recovering) { 3897 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3898 &BTRFS_I(inode)->runtime_flags)); 3899 goto no_delete; 3900 } 3901 3902 if (inode->i_nlink > 0) { 3903 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3904 goto no_delete; 3905 } 3906 3907 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3908 if (!rsv) { 3909 btrfs_orphan_del(NULL, inode); 3910 goto no_delete; 3911 } 3912 rsv->size = min_size; 3913 rsv->failfast = 1; 3914 global_rsv = &root->fs_info->global_block_rsv; 3915 3916 btrfs_i_size_write(inode, 0); 3917 3918 /* 3919 * This is a bit simpler than btrfs_truncate since we've already 3920 * reserved our space for our orphan item in the unlink, so we just 3921 * need to reserve some slack space in case we add bytes and update 3922 * inode item when doing the truncate. 3923 */ 3924 while (1) { 3925 ret = btrfs_block_rsv_refill(root, rsv, min_size, 3926 BTRFS_RESERVE_FLUSH_LIMIT); 3927 3928 /* 3929 * Try and steal from the global reserve since we will 3930 * likely not use this space anyway, we want to try as 3931 * hard as possible to get this to work. 3932 */ 3933 if (ret) 3934 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 3935 3936 if (ret) { 3937 printk(KERN_WARNING "Could not get space for a " 3938 "delete, will truncate on mount %d\n", ret); 3939 btrfs_orphan_del(NULL, inode); 3940 btrfs_free_block_rsv(root, rsv); 3941 goto no_delete; 3942 } 3943 3944 trans = btrfs_start_transaction_lflush(root, 1); 3945 if (IS_ERR(trans)) { 3946 btrfs_orphan_del(NULL, inode); 3947 btrfs_free_block_rsv(root, rsv); 3948 goto no_delete; 3949 } 3950 3951 trans->block_rsv = rsv; 3952 3953 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3954 if (ret != -ENOSPC) 3955 break; 3956 3957 trans->block_rsv = &root->fs_info->trans_block_rsv; 3958 ret = btrfs_update_inode(trans, root, inode); 3959 BUG_ON(ret); 3960 3961 btrfs_end_transaction(trans, root); 3962 trans = NULL; 3963 btrfs_btree_balance_dirty(root); 3964 } 3965 3966 btrfs_free_block_rsv(root, rsv); 3967 3968 if (ret == 0) { 3969 trans->block_rsv = root->orphan_block_rsv; 3970 ret = btrfs_orphan_del(trans, inode); 3971 BUG_ON(ret); 3972 } 3973 3974 trans->block_rsv = &root->fs_info->trans_block_rsv; 3975 if (!(root == root->fs_info->tree_root || 3976 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3977 btrfs_return_ino(root, btrfs_ino(inode)); 3978 3979 btrfs_end_transaction(trans, root); 3980 btrfs_btree_balance_dirty(root); 3981 no_delete: 3982 clear_inode(inode); 3983 return; 3984 } 3985 3986 /* 3987 * this returns the key found in the dir entry in the location pointer. 3988 * If no dir entries were found, location->objectid is 0. 3989 */ 3990 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3991 struct btrfs_key *location) 3992 { 3993 const char *name = dentry->d_name.name; 3994 int namelen = dentry->d_name.len; 3995 struct btrfs_dir_item *di; 3996 struct btrfs_path *path; 3997 struct btrfs_root *root = BTRFS_I(dir)->root; 3998 int ret = 0; 3999 4000 path = btrfs_alloc_path(); 4001 if (!path) 4002 return -ENOMEM; 4003 4004 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4005 namelen, 0); 4006 if (IS_ERR(di)) 4007 ret = PTR_ERR(di); 4008 4009 if (IS_ERR_OR_NULL(di)) 4010 goto out_err; 4011 4012 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4013 out: 4014 btrfs_free_path(path); 4015 return ret; 4016 out_err: 4017 location->objectid = 0; 4018 goto out; 4019 } 4020 4021 /* 4022 * when we hit a tree root in a directory, the btrfs part of the inode 4023 * needs to be changed to reflect the root directory of the tree root. This 4024 * is kind of like crossing a mount point. 4025 */ 4026 static int fixup_tree_root_location(struct btrfs_root *root, 4027 struct inode *dir, 4028 struct dentry *dentry, 4029 struct btrfs_key *location, 4030 struct btrfs_root **sub_root) 4031 { 4032 struct btrfs_path *path; 4033 struct btrfs_root *new_root; 4034 struct btrfs_root_ref *ref; 4035 struct extent_buffer *leaf; 4036 int ret; 4037 int err = 0; 4038 4039 path = btrfs_alloc_path(); 4040 if (!path) { 4041 err = -ENOMEM; 4042 goto out; 4043 } 4044 4045 err = -ENOENT; 4046 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4047 BTRFS_I(dir)->root->root_key.objectid, 4048 location->objectid); 4049 if (ret) { 4050 if (ret < 0) 4051 err = ret; 4052 goto out; 4053 } 4054 4055 leaf = path->nodes[0]; 4056 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4057 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4058 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4059 goto out; 4060 4061 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4062 (unsigned long)(ref + 1), 4063 dentry->d_name.len); 4064 if (ret) 4065 goto out; 4066 4067 btrfs_release_path(path); 4068 4069 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4070 if (IS_ERR(new_root)) { 4071 err = PTR_ERR(new_root); 4072 goto out; 4073 } 4074 4075 if (btrfs_root_refs(&new_root->root_item) == 0) { 4076 err = -ENOENT; 4077 goto out; 4078 } 4079 4080 *sub_root = new_root; 4081 location->objectid = btrfs_root_dirid(&new_root->root_item); 4082 location->type = BTRFS_INODE_ITEM_KEY; 4083 location->offset = 0; 4084 err = 0; 4085 out: 4086 btrfs_free_path(path); 4087 return err; 4088 } 4089 4090 static void inode_tree_add(struct inode *inode) 4091 { 4092 struct btrfs_root *root = BTRFS_I(inode)->root; 4093 struct btrfs_inode *entry; 4094 struct rb_node **p; 4095 struct rb_node *parent; 4096 u64 ino = btrfs_ino(inode); 4097 again: 4098 p = &root->inode_tree.rb_node; 4099 parent = NULL; 4100 4101 if (inode_unhashed(inode)) 4102 return; 4103 4104 spin_lock(&root->inode_lock); 4105 while (*p) { 4106 parent = *p; 4107 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4108 4109 if (ino < btrfs_ino(&entry->vfs_inode)) 4110 p = &parent->rb_left; 4111 else if (ino > btrfs_ino(&entry->vfs_inode)) 4112 p = &parent->rb_right; 4113 else { 4114 WARN_ON(!(entry->vfs_inode.i_state & 4115 (I_WILL_FREE | I_FREEING))); 4116 rb_erase(parent, &root->inode_tree); 4117 RB_CLEAR_NODE(parent); 4118 spin_unlock(&root->inode_lock); 4119 goto again; 4120 } 4121 } 4122 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4123 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4124 spin_unlock(&root->inode_lock); 4125 } 4126 4127 static void inode_tree_del(struct inode *inode) 4128 { 4129 struct btrfs_root *root = BTRFS_I(inode)->root; 4130 int empty = 0; 4131 4132 spin_lock(&root->inode_lock); 4133 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4134 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4135 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4136 empty = RB_EMPTY_ROOT(&root->inode_tree); 4137 } 4138 spin_unlock(&root->inode_lock); 4139 4140 /* 4141 * Free space cache has inodes in the tree root, but the tree root has a 4142 * root_refs of 0, so this could end up dropping the tree root as a 4143 * snapshot, so we need the extra !root->fs_info->tree_root check to 4144 * make sure we don't drop it. 4145 */ 4146 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4147 root != root->fs_info->tree_root) { 4148 synchronize_srcu(&root->fs_info->subvol_srcu); 4149 spin_lock(&root->inode_lock); 4150 empty = RB_EMPTY_ROOT(&root->inode_tree); 4151 spin_unlock(&root->inode_lock); 4152 if (empty) 4153 btrfs_add_dead_root(root); 4154 } 4155 } 4156 4157 void btrfs_invalidate_inodes(struct btrfs_root *root) 4158 { 4159 struct rb_node *node; 4160 struct rb_node *prev; 4161 struct btrfs_inode *entry; 4162 struct inode *inode; 4163 u64 objectid = 0; 4164 4165 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4166 4167 spin_lock(&root->inode_lock); 4168 again: 4169 node = root->inode_tree.rb_node; 4170 prev = NULL; 4171 while (node) { 4172 prev = node; 4173 entry = rb_entry(node, struct btrfs_inode, rb_node); 4174 4175 if (objectid < btrfs_ino(&entry->vfs_inode)) 4176 node = node->rb_left; 4177 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4178 node = node->rb_right; 4179 else 4180 break; 4181 } 4182 if (!node) { 4183 while (prev) { 4184 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4185 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4186 node = prev; 4187 break; 4188 } 4189 prev = rb_next(prev); 4190 } 4191 } 4192 while (node) { 4193 entry = rb_entry(node, struct btrfs_inode, rb_node); 4194 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4195 inode = igrab(&entry->vfs_inode); 4196 if (inode) { 4197 spin_unlock(&root->inode_lock); 4198 if (atomic_read(&inode->i_count) > 1) 4199 d_prune_aliases(inode); 4200 /* 4201 * btrfs_drop_inode will have it removed from 4202 * the inode cache when its usage count 4203 * hits zero. 4204 */ 4205 iput(inode); 4206 cond_resched(); 4207 spin_lock(&root->inode_lock); 4208 goto again; 4209 } 4210 4211 if (cond_resched_lock(&root->inode_lock)) 4212 goto again; 4213 4214 node = rb_next(node); 4215 } 4216 spin_unlock(&root->inode_lock); 4217 } 4218 4219 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4220 { 4221 struct btrfs_iget_args *args = p; 4222 inode->i_ino = args->ino; 4223 BTRFS_I(inode)->root = args->root; 4224 return 0; 4225 } 4226 4227 static int btrfs_find_actor(struct inode *inode, void *opaque) 4228 { 4229 struct btrfs_iget_args *args = opaque; 4230 return args->ino == btrfs_ino(inode) && 4231 args->root == BTRFS_I(inode)->root; 4232 } 4233 4234 static struct inode *btrfs_iget_locked(struct super_block *s, 4235 u64 objectid, 4236 struct btrfs_root *root) 4237 { 4238 struct inode *inode; 4239 struct btrfs_iget_args args; 4240 args.ino = objectid; 4241 args.root = root; 4242 4243 inode = iget5_locked(s, objectid, btrfs_find_actor, 4244 btrfs_init_locked_inode, 4245 (void *)&args); 4246 return inode; 4247 } 4248 4249 /* Get an inode object given its location and corresponding root. 4250 * Returns in *is_new if the inode was read from disk 4251 */ 4252 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4253 struct btrfs_root *root, int *new) 4254 { 4255 struct inode *inode; 4256 4257 inode = btrfs_iget_locked(s, location->objectid, root); 4258 if (!inode) 4259 return ERR_PTR(-ENOMEM); 4260 4261 if (inode->i_state & I_NEW) { 4262 BTRFS_I(inode)->root = root; 4263 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4264 btrfs_read_locked_inode(inode); 4265 if (!is_bad_inode(inode)) { 4266 inode_tree_add(inode); 4267 unlock_new_inode(inode); 4268 if (new) 4269 *new = 1; 4270 } else { 4271 unlock_new_inode(inode); 4272 iput(inode); 4273 inode = ERR_PTR(-ESTALE); 4274 } 4275 } 4276 4277 return inode; 4278 } 4279 4280 static struct inode *new_simple_dir(struct super_block *s, 4281 struct btrfs_key *key, 4282 struct btrfs_root *root) 4283 { 4284 struct inode *inode = new_inode(s); 4285 4286 if (!inode) 4287 return ERR_PTR(-ENOMEM); 4288 4289 BTRFS_I(inode)->root = root; 4290 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4291 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 4292 4293 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4294 inode->i_op = &btrfs_dir_ro_inode_operations; 4295 inode->i_fop = &simple_dir_operations; 4296 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4297 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4298 4299 return inode; 4300 } 4301 4302 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4303 { 4304 struct inode *inode; 4305 struct btrfs_root *root = BTRFS_I(dir)->root; 4306 struct btrfs_root *sub_root = root; 4307 struct btrfs_key location; 4308 int index; 4309 int ret = 0; 4310 4311 if (dentry->d_name.len > BTRFS_NAME_LEN) 4312 return ERR_PTR(-ENAMETOOLONG); 4313 4314 ret = btrfs_inode_by_name(dir, dentry, &location); 4315 if (ret < 0) 4316 return ERR_PTR(ret); 4317 4318 if (location.objectid == 0) 4319 return NULL; 4320 4321 if (location.type == BTRFS_INODE_ITEM_KEY) { 4322 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4323 return inode; 4324 } 4325 4326 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4327 4328 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4329 ret = fixup_tree_root_location(root, dir, dentry, 4330 &location, &sub_root); 4331 if (ret < 0) { 4332 if (ret != -ENOENT) 4333 inode = ERR_PTR(ret); 4334 else 4335 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4336 } else { 4337 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4338 } 4339 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4340 4341 if (!IS_ERR(inode) && root != sub_root) { 4342 down_read(&root->fs_info->cleanup_work_sem); 4343 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4344 ret = btrfs_orphan_cleanup(sub_root); 4345 up_read(&root->fs_info->cleanup_work_sem); 4346 if (ret) 4347 inode = ERR_PTR(ret); 4348 } 4349 4350 return inode; 4351 } 4352 4353 static int btrfs_dentry_delete(const struct dentry *dentry) 4354 { 4355 struct btrfs_root *root; 4356 struct inode *inode = dentry->d_inode; 4357 4358 if (!inode && !IS_ROOT(dentry)) 4359 inode = dentry->d_parent->d_inode; 4360 4361 if (inode) { 4362 root = BTRFS_I(inode)->root; 4363 if (btrfs_root_refs(&root->root_item) == 0) 4364 return 1; 4365 4366 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 4367 return 1; 4368 } 4369 return 0; 4370 } 4371 4372 static void btrfs_dentry_release(struct dentry *dentry) 4373 { 4374 if (dentry->d_fsdata) 4375 kfree(dentry->d_fsdata); 4376 } 4377 4378 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4379 unsigned int flags) 4380 { 4381 struct dentry *ret; 4382 4383 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4384 return ret; 4385 } 4386 4387 unsigned char btrfs_filetype_table[] = { 4388 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4389 }; 4390 4391 static int btrfs_real_readdir(struct file *filp, void *dirent, 4392 filldir_t filldir) 4393 { 4394 struct inode *inode = filp->f_dentry->d_inode; 4395 struct btrfs_root *root = BTRFS_I(inode)->root; 4396 struct btrfs_item *item; 4397 struct btrfs_dir_item *di; 4398 struct btrfs_key key; 4399 struct btrfs_key found_key; 4400 struct btrfs_path *path; 4401 struct list_head ins_list; 4402 struct list_head del_list; 4403 int ret; 4404 struct extent_buffer *leaf; 4405 int slot; 4406 unsigned char d_type; 4407 int over = 0; 4408 u32 di_cur; 4409 u32 di_total; 4410 u32 di_len; 4411 int key_type = BTRFS_DIR_INDEX_KEY; 4412 char tmp_name[32]; 4413 char *name_ptr; 4414 int name_len; 4415 int is_curr = 0; /* filp->f_pos points to the current index? */ 4416 4417 /* FIXME, use a real flag for deciding about the key type */ 4418 if (root->fs_info->tree_root == root) 4419 key_type = BTRFS_DIR_ITEM_KEY; 4420 4421 /* special case for "." */ 4422 if (filp->f_pos == 0) { 4423 over = filldir(dirent, ".", 1, 4424 filp->f_pos, btrfs_ino(inode), DT_DIR); 4425 if (over) 4426 return 0; 4427 filp->f_pos = 1; 4428 } 4429 /* special case for .., just use the back ref */ 4430 if (filp->f_pos == 1) { 4431 u64 pino = parent_ino(filp->f_path.dentry); 4432 over = filldir(dirent, "..", 2, 4433 filp->f_pos, pino, DT_DIR); 4434 if (over) 4435 return 0; 4436 filp->f_pos = 2; 4437 } 4438 path = btrfs_alloc_path(); 4439 if (!path) 4440 return -ENOMEM; 4441 4442 path->reada = 1; 4443 4444 if (key_type == BTRFS_DIR_INDEX_KEY) { 4445 INIT_LIST_HEAD(&ins_list); 4446 INIT_LIST_HEAD(&del_list); 4447 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4448 } 4449 4450 btrfs_set_key_type(&key, key_type); 4451 key.offset = filp->f_pos; 4452 key.objectid = btrfs_ino(inode); 4453 4454 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4455 if (ret < 0) 4456 goto err; 4457 4458 while (1) { 4459 leaf = path->nodes[0]; 4460 slot = path->slots[0]; 4461 if (slot >= btrfs_header_nritems(leaf)) { 4462 ret = btrfs_next_leaf(root, path); 4463 if (ret < 0) 4464 goto err; 4465 else if (ret > 0) 4466 break; 4467 continue; 4468 } 4469 4470 item = btrfs_item_nr(leaf, slot); 4471 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4472 4473 if (found_key.objectid != key.objectid) 4474 break; 4475 if (btrfs_key_type(&found_key) != key_type) 4476 break; 4477 if (found_key.offset < filp->f_pos) 4478 goto next; 4479 if (key_type == BTRFS_DIR_INDEX_KEY && 4480 btrfs_should_delete_dir_index(&del_list, 4481 found_key.offset)) 4482 goto next; 4483 4484 filp->f_pos = found_key.offset; 4485 is_curr = 1; 4486 4487 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4488 di_cur = 0; 4489 di_total = btrfs_item_size(leaf, item); 4490 4491 while (di_cur < di_total) { 4492 struct btrfs_key location; 4493 4494 if (verify_dir_item(root, leaf, di)) 4495 break; 4496 4497 name_len = btrfs_dir_name_len(leaf, di); 4498 if (name_len <= sizeof(tmp_name)) { 4499 name_ptr = tmp_name; 4500 } else { 4501 name_ptr = kmalloc(name_len, GFP_NOFS); 4502 if (!name_ptr) { 4503 ret = -ENOMEM; 4504 goto err; 4505 } 4506 } 4507 read_extent_buffer(leaf, name_ptr, 4508 (unsigned long)(di + 1), name_len); 4509 4510 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4511 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4512 4513 4514 /* is this a reference to our own snapshot? If so 4515 * skip it. 4516 * 4517 * In contrast to old kernels, we insert the snapshot's 4518 * dir item and dir index after it has been created, so 4519 * we won't find a reference to our own snapshot. We 4520 * still keep the following code for backward 4521 * compatibility. 4522 */ 4523 if (location.type == BTRFS_ROOT_ITEM_KEY && 4524 location.objectid == root->root_key.objectid) { 4525 over = 0; 4526 goto skip; 4527 } 4528 over = filldir(dirent, name_ptr, name_len, 4529 found_key.offset, location.objectid, 4530 d_type); 4531 4532 skip: 4533 if (name_ptr != tmp_name) 4534 kfree(name_ptr); 4535 4536 if (over) 4537 goto nopos; 4538 di_len = btrfs_dir_name_len(leaf, di) + 4539 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4540 di_cur += di_len; 4541 di = (struct btrfs_dir_item *)((char *)di + di_len); 4542 } 4543 next: 4544 path->slots[0]++; 4545 } 4546 4547 if (key_type == BTRFS_DIR_INDEX_KEY) { 4548 if (is_curr) 4549 filp->f_pos++; 4550 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4551 &ins_list); 4552 if (ret) 4553 goto nopos; 4554 } 4555 4556 /* Reached end of directory/root. Bump pos past the last item. */ 4557 if (key_type == BTRFS_DIR_INDEX_KEY) 4558 /* 4559 * 32-bit glibc will use getdents64, but then strtol - 4560 * so the last number we can serve is this. 4561 */ 4562 filp->f_pos = 0x7fffffff; 4563 else 4564 filp->f_pos++; 4565 nopos: 4566 ret = 0; 4567 err: 4568 if (key_type == BTRFS_DIR_INDEX_KEY) 4569 btrfs_put_delayed_items(&ins_list, &del_list); 4570 btrfs_free_path(path); 4571 return ret; 4572 } 4573 4574 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4575 { 4576 struct btrfs_root *root = BTRFS_I(inode)->root; 4577 struct btrfs_trans_handle *trans; 4578 int ret = 0; 4579 bool nolock = false; 4580 4581 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 4582 return 0; 4583 4584 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 4585 nolock = true; 4586 4587 if (wbc->sync_mode == WB_SYNC_ALL) { 4588 if (nolock) 4589 trans = btrfs_join_transaction_nolock(root); 4590 else 4591 trans = btrfs_join_transaction(root); 4592 if (IS_ERR(trans)) 4593 return PTR_ERR(trans); 4594 ret = btrfs_commit_transaction(trans, root); 4595 } 4596 return ret; 4597 } 4598 4599 /* 4600 * This is somewhat expensive, updating the tree every time the 4601 * inode changes. But, it is most likely to find the inode in cache. 4602 * FIXME, needs more benchmarking...there are no reasons other than performance 4603 * to keep or drop this code. 4604 */ 4605 int btrfs_dirty_inode(struct inode *inode) 4606 { 4607 struct btrfs_root *root = BTRFS_I(inode)->root; 4608 struct btrfs_trans_handle *trans; 4609 int ret; 4610 4611 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 4612 return 0; 4613 4614 trans = btrfs_join_transaction(root); 4615 if (IS_ERR(trans)) 4616 return PTR_ERR(trans); 4617 4618 ret = btrfs_update_inode(trans, root, inode); 4619 if (ret && ret == -ENOSPC) { 4620 /* whoops, lets try again with the full transaction */ 4621 btrfs_end_transaction(trans, root); 4622 trans = btrfs_start_transaction(root, 1); 4623 if (IS_ERR(trans)) 4624 return PTR_ERR(trans); 4625 4626 ret = btrfs_update_inode(trans, root, inode); 4627 } 4628 btrfs_end_transaction(trans, root); 4629 if (BTRFS_I(inode)->delayed_node) 4630 btrfs_balance_delayed_items(root); 4631 4632 return ret; 4633 } 4634 4635 /* 4636 * This is a copy of file_update_time. We need this so we can return error on 4637 * ENOSPC for updating the inode in the case of file write and mmap writes. 4638 */ 4639 static int btrfs_update_time(struct inode *inode, struct timespec *now, 4640 int flags) 4641 { 4642 struct btrfs_root *root = BTRFS_I(inode)->root; 4643 4644 if (btrfs_root_readonly(root)) 4645 return -EROFS; 4646 4647 if (flags & S_VERSION) 4648 inode_inc_iversion(inode); 4649 if (flags & S_CTIME) 4650 inode->i_ctime = *now; 4651 if (flags & S_MTIME) 4652 inode->i_mtime = *now; 4653 if (flags & S_ATIME) 4654 inode->i_atime = *now; 4655 return btrfs_dirty_inode(inode); 4656 } 4657 4658 /* 4659 * find the highest existing sequence number in a directory 4660 * and then set the in-memory index_cnt variable to reflect 4661 * free sequence numbers 4662 */ 4663 static int btrfs_set_inode_index_count(struct inode *inode) 4664 { 4665 struct btrfs_root *root = BTRFS_I(inode)->root; 4666 struct btrfs_key key, found_key; 4667 struct btrfs_path *path; 4668 struct extent_buffer *leaf; 4669 int ret; 4670 4671 key.objectid = btrfs_ino(inode); 4672 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4673 key.offset = (u64)-1; 4674 4675 path = btrfs_alloc_path(); 4676 if (!path) 4677 return -ENOMEM; 4678 4679 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4680 if (ret < 0) 4681 goto out; 4682 /* FIXME: we should be able to handle this */ 4683 if (ret == 0) 4684 goto out; 4685 ret = 0; 4686 4687 /* 4688 * MAGIC NUMBER EXPLANATION: 4689 * since we search a directory based on f_pos we have to start at 2 4690 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4691 * else has to start at 2 4692 */ 4693 if (path->slots[0] == 0) { 4694 BTRFS_I(inode)->index_cnt = 2; 4695 goto out; 4696 } 4697 4698 path->slots[0]--; 4699 4700 leaf = path->nodes[0]; 4701 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4702 4703 if (found_key.objectid != btrfs_ino(inode) || 4704 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4705 BTRFS_I(inode)->index_cnt = 2; 4706 goto out; 4707 } 4708 4709 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4710 out: 4711 btrfs_free_path(path); 4712 return ret; 4713 } 4714 4715 /* 4716 * helper to find a free sequence number in a given directory. This current 4717 * code is very simple, later versions will do smarter things in the btree 4718 */ 4719 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4720 { 4721 int ret = 0; 4722 4723 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4724 ret = btrfs_inode_delayed_dir_index_count(dir); 4725 if (ret) { 4726 ret = btrfs_set_inode_index_count(dir); 4727 if (ret) 4728 return ret; 4729 } 4730 } 4731 4732 *index = BTRFS_I(dir)->index_cnt; 4733 BTRFS_I(dir)->index_cnt++; 4734 4735 return ret; 4736 } 4737 4738 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4739 struct btrfs_root *root, 4740 struct inode *dir, 4741 const char *name, int name_len, 4742 u64 ref_objectid, u64 objectid, 4743 umode_t mode, u64 *index) 4744 { 4745 struct inode *inode; 4746 struct btrfs_inode_item *inode_item; 4747 struct btrfs_key *location; 4748 struct btrfs_path *path; 4749 struct btrfs_inode_ref *ref; 4750 struct btrfs_key key[2]; 4751 u32 sizes[2]; 4752 unsigned long ptr; 4753 int ret; 4754 int owner; 4755 4756 path = btrfs_alloc_path(); 4757 if (!path) 4758 return ERR_PTR(-ENOMEM); 4759 4760 inode = new_inode(root->fs_info->sb); 4761 if (!inode) { 4762 btrfs_free_path(path); 4763 return ERR_PTR(-ENOMEM); 4764 } 4765 4766 /* 4767 * we have to initialize this early, so we can reclaim the inode 4768 * number if we fail afterwards in this function. 4769 */ 4770 inode->i_ino = objectid; 4771 4772 if (dir) { 4773 trace_btrfs_inode_request(dir); 4774 4775 ret = btrfs_set_inode_index(dir, index); 4776 if (ret) { 4777 btrfs_free_path(path); 4778 iput(inode); 4779 return ERR_PTR(ret); 4780 } 4781 } 4782 /* 4783 * index_cnt is ignored for everything but a dir, 4784 * btrfs_get_inode_index_count has an explanation for the magic 4785 * number 4786 */ 4787 BTRFS_I(inode)->index_cnt = 2; 4788 BTRFS_I(inode)->root = root; 4789 BTRFS_I(inode)->generation = trans->transid; 4790 inode->i_generation = BTRFS_I(inode)->generation; 4791 4792 /* 4793 * We could have gotten an inode number from somebody who was fsynced 4794 * and then removed in this same transaction, so let's just set full 4795 * sync since it will be a full sync anyway and this will blow away the 4796 * old info in the log. 4797 */ 4798 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 4799 4800 if (S_ISDIR(mode)) 4801 owner = 0; 4802 else 4803 owner = 1; 4804 4805 key[0].objectid = objectid; 4806 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4807 key[0].offset = 0; 4808 4809 /* 4810 * Start new inodes with an inode_ref. This is slightly more 4811 * efficient for small numbers of hard links since they will 4812 * be packed into one item. Extended refs will kick in if we 4813 * add more hard links than can fit in the ref item. 4814 */ 4815 key[1].objectid = objectid; 4816 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4817 key[1].offset = ref_objectid; 4818 4819 sizes[0] = sizeof(struct btrfs_inode_item); 4820 sizes[1] = name_len + sizeof(*ref); 4821 4822 path->leave_spinning = 1; 4823 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4824 if (ret != 0) 4825 goto fail; 4826 4827 inode_init_owner(inode, dir, mode); 4828 inode_set_bytes(inode, 0); 4829 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4830 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4831 struct btrfs_inode_item); 4832 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 4833 sizeof(*inode_item)); 4834 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4835 4836 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4837 struct btrfs_inode_ref); 4838 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4839 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4840 ptr = (unsigned long)(ref + 1); 4841 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4842 4843 btrfs_mark_buffer_dirty(path->nodes[0]); 4844 btrfs_free_path(path); 4845 4846 location = &BTRFS_I(inode)->location; 4847 location->objectid = objectid; 4848 location->offset = 0; 4849 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4850 4851 btrfs_inherit_iflags(inode, dir); 4852 4853 if (S_ISREG(mode)) { 4854 if (btrfs_test_opt(root, NODATASUM)) 4855 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4856 if (btrfs_test_opt(root, NODATACOW)) 4857 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4858 } 4859 4860 insert_inode_hash(inode); 4861 inode_tree_add(inode); 4862 4863 trace_btrfs_inode_new(inode); 4864 btrfs_set_inode_last_trans(trans, inode); 4865 4866 btrfs_update_root_times(trans, root); 4867 4868 return inode; 4869 fail: 4870 if (dir) 4871 BTRFS_I(dir)->index_cnt--; 4872 btrfs_free_path(path); 4873 iput(inode); 4874 return ERR_PTR(ret); 4875 } 4876 4877 static inline u8 btrfs_inode_type(struct inode *inode) 4878 { 4879 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4880 } 4881 4882 /* 4883 * utility function to add 'inode' into 'parent_inode' with 4884 * a give name and a given sequence number. 4885 * if 'add_backref' is true, also insert a backref from the 4886 * inode to the parent directory. 4887 */ 4888 int btrfs_add_link(struct btrfs_trans_handle *trans, 4889 struct inode *parent_inode, struct inode *inode, 4890 const char *name, int name_len, int add_backref, u64 index) 4891 { 4892 int ret = 0; 4893 struct btrfs_key key; 4894 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4895 u64 ino = btrfs_ino(inode); 4896 u64 parent_ino = btrfs_ino(parent_inode); 4897 4898 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4899 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4900 } else { 4901 key.objectid = ino; 4902 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4903 key.offset = 0; 4904 } 4905 4906 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4907 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4908 key.objectid, root->root_key.objectid, 4909 parent_ino, index, name, name_len); 4910 } else if (add_backref) { 4911 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4912 parent_ino, index); 4913 } 4914 4915 /* Nothing to clean up yet */ 4916 if (ret) 4917 return ret; 4918 4919 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4920 parent_inode, &key, 4921 btrfs_inode_type(inode), index); 4922 if (ret == -EEXIST || ret == -EOVERFLOW) 4923 goto fail_dir_item; 4924 else if (ret) { 4925 btrfs_abort_transaction(trans, root, ret); 4926 return ret; 4927 } 4928 4929 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4930 name_len * 2); 4931 inode_inc_iversion(parent_inode); 4932 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4933 ret = btrfs_update_inode(trans, root, parent_inode); 4934 if (ret) 4935 btrfs_abort_transaction(trans, root, ret); 4936 return ret; 4937 4938 fail_dir_item: 4939 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4940 u64 local_index; 4941 int err; 4942 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4943 key.objectid, root->root_key.objectid, 4944 parent_ino, &local_index, name, name_len); 4945 4946 } else if (add_backref) { 4947 u64 local_index; 4948 int err; 4949 4950 err = btrfs_del_inode_ref(trans, root, name, name_len, 4951 ino, parent_ino, &local_index); 4952 } 4953 return ret; 4954 } 4955 4956 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4957 struct inode *dir, struct dentry *dentry, 4958 struct inode *inode, int backref, u64 index) 4959 { 4960 int err = btrfs_add_link(trans, dir, inode, 4961 dentry->d_name.name, dentry->d_name.len, 4962 backref, index); 4963 if (err > 0) 4964 err = -EEXIST; 4965 return err; 4966 } 4967 4968 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4969 umode_t mode, dev_t rdev) 4970 { 4971 struct btrfs_trans_handle *trans; 4972 struct btrfs_root *root = BTRFS_I(dir)->root; 4973 struct inode *inode = NULL; 4974 int err; 4975 int drop_inode = 0; 4976 u64 objectid; 4977 u64 index = 0; 4978 4979 if (!new_valid_dev(rdev)) 4980 return -EINVAL; 4981 4982 /* 4983 * 2 for inode item and ref 4984 * 2 for dir items 4985 * 1 for xattr if selinux is on 4986 */ 4987 trans = btrfs_start_transaction(root, 5); 4988 if (IS_ERR(trans)) 4989 return PTR_ERR(trans); 4990 4991 err = btrfs_find_free_ino(root, &objectid); 4992 if (err) 4993 goto out_unlock; 4994 4995 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4996 dentry->d_name.len, btrfs_ino(dir), objectid, 4997 mode, &index); 4998 if (IS_ERR(inode)) { 4999 err = PTR_ERR(inode); 5000 goto out_unlock; 5001 } 5002 5003 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5004 if (err) { 5005 drop_inode = 1; 5006 goto out_unlock; 5007 } 5008 5009 err = btrfs_update_inode(trans, root, inode); 5010 if (err) { 5011 drop_inode = 1; 5012 goto out_unlock; 5013 } 5014 5015 /* 5016 * If the active LSM wants to access the inode during 5017 * d_instantiate it needs these. Smack checks to see 5018 * if the filesystem supports xattrs by looking at the 5019 * ops vector. 5020 */ 5021 5022 inode->i_op = &btrfs_special_inode_operations; 5023 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5024 if (err) 5025 drop_inode = 1; 5026 else { 5027 init_special_inode(inode, inode->i_mode, rdev); 5028 btrfs_update_inode(trans, root, inode); 5029 d_instantiate(dentry, inode); 5030 } 5031 out_unlock: 5032 btrfs_end_transaction(trans, root); 5033 btrfs_btree_balance_dirty(root); 5034 if (drop_inode) { 5035 inode_dec_link_count(inode); 5036 iput(inode); 5037 } 5038 return err; 5039 } 5040 5041 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5042 umode_t mode, bool excl) 5043 { 5044 struct btrfs_trans_handle *trans; 5045 struct btrfs_root *root = BTRFS_I(dir)->root; 5046 struct inode *inode = NULL; 5047 int drop_inode_on_err = 0; 5048 int err; 5049 u64 objectid; 5050 u64 index = 0; 5051 5052 /* 5053 * 2 for inode item and ref 5054 * 2 for dir items 5055 * 1 for xattr if selinux is on 5056 */ 5057 trans = btrfs_start_transaction(root, 5); 5058 if (IS_ERR(trans)) 5059 return PTR_ERR(trans); 5060 5061 err = btrfs_find_free_ino(root, &objectid); 5062 if (err) 5063 goto out_unlock; 5064 5065 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5066 dentry->d_name.len, btrfs_ino(dir), objectid, 5067 mode, &index); 5068 if (IS_ERR(inode)) { 5069 err = PTR_ERR(inode); 5070 goto out_unlock; 5071 } 5072 drop_inode_on_err = 1; 5073 5074 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5075 if (err) 5076 goto out_unlock; 5077 5078 err = btrfs_update_inode(trans, root, inode); 5079 if (err) 5080 goto out_unlock; 5081 5082 /* 5083 * If the active LSM wants to access the inode during 5084 * d_instantiate it needs these. Smack checks to see 5085 * if the filesystem supports xattrs by looking at the 5086 * ops vector. 5087 */ 5088 inode->i_fop = &btrfs_file_operations; 5089 inode->i_op = &btrfs_file_inode_operations; 5090 5091 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5092 if (err) 5093 goto out_unlock; 5094 5095 inode->i_mapping->a_ops = &btrfs_aops; 5096 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5097 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5098 d_instantiate(dentry, inode); 5099 5100 out_unlock: 5101 btrfs_end_transaction(trans, root); 5102 if (err && drop_inode_on_err) { 5103 inode_dec_link_count(inode); 5104 iput(inode); 5105 } 5106 btrfs_btree_balance_dirty(root); 5107 return err; 5108 } 5109 5110 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5111 struct dentry *dentry) 5112 { 5113 struct btrfs_trans_handle *trans; 5114 struct btrfs_root *root = BTRFS_I(dir)->root; 5115 struct inode *inode = old_dentry->d_inode; 5116 u64 index; 5117 int err; 5118 int drop_inode = 0; 5119 5120 /* do not allow sys_link's with other subvols of the same device */ 5121 if (root->objectid != BTRFS_I(inode)->root->objectid) 5122 return -EXDEV; 5123 5124 if (inode->i_nlink >= BTRFS_LINK_MAX) 5125 return -EMLINK; 5126 5127 err = btrfs_set_inode_index(dir, &index); 5128 if (err) 5129 goto fail; 5130 5131 /* 5132 * 2 items for inode and inode ref 5133 * 2 items for dir items 5134 * 1 item for parent inode 5135 */ 5136 trans = btrfs_start_transaction(root, 5); 5137 if (IS_ERR(trans)) { 5138 err = PTR_ERR(trans); 5139 goto fail; 5140 } 5141 5142 btrfs_inc_nlink(inode); 5143 inode_inc_iversion(inode); 5144 inode->i_ctime = CURRENT_TIME; 5145 ihold(inode); 5146 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5147 5148 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5149 5150 if (err) { 5151 drop_inode = 1; 5152 } else { 5153 struct dentry *parent = dentry->d_parent; 5154 err = btrfs_update_inode(trans, root, inode); 5155 if (err) 5156 goto fail; 5157 d_instantiate(dentry, inode); 5158 btrfs_log_new_name(trans, inode, NULL, parent); 5159 } 5160 5161 btrfs_end_transaction(trans, root); 5162 fail: 5163 if (drop_inode) { 5164 inode_dec_link_count(inode); 5165 iput(inode); 5166 } 5167 btrfs_btree_balance_dirty(root); 5168 return err; 5169 } 5170 5171 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5172 { 5173 struct inode *inode = NULL; 5174 struct btrfs_trans_handle *trans; 5175 struct btrfs_root *root = BTRFS_I(dir)->root; 5176 int err = 0; 5177 int drop_on_err = 0; 5178 u64 objectid = 0; 5179 u64 index = 0; 5180 5181 /* 5182 * 2 items for inode and ref 5183 * 2 items for dir items 5184 * 1 for xattr if selinux is on 5185 */ 5186 trans = btrfs_start_transaction(root, 5); 5187 if (IS_ERR(trans)) 5188 return PTR_ERR(trans); 5189 5190 err = btrfs_find_free_ino(root, &objectid); 5191 if (err) 5192 goto out_fail; 5193 5194 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5195 dentry->d_name.len, btrfs_ino(dir), objectid, 5196 S_IFDIR | mode, &index); 5197 if (IS_ERR(inode)) { 5198 err = PTR_ERR(inode); 5199 goto out_fail; 5200 } 5201 5202 drop_on_err = 1; 5203 5204 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5205 if (err) 5206 goto out_fail; 5207 5208 inode->i_op = &btrfs_dir_inode_operations; 5209 inode->i_fop = &btrfs_dir_file_operations; 5210 5211 btrfs_i_size_write(inode, 0); 5212 err = btrfs_update_inode(trans, root, inode); 5213 if (err) 5214 goto out_fail; 5215 5216 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5217 dentry->d_name.len, 0, index); 5218 if (err) 5219 goto out_fail; 5220 5221 d_instantiate(dentry, inode); 5222 drop_on_err = 0; 5223 5224 out_fail: 5225 btrfs_end_transaction(trans, root); 5226 if (drop_on_err) 5227 iput(inode); 5228 btrfs_btree_balance_dirty(root); 5229 return err; 5230 } 5231 5232 /* helper for btfs_get_extent. Given an existing extent in the tree, 5233 * and an extent that you want to insert, deal with overlap and insert 5234 * the new extent into the tree. 5235 */ 5236 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5237 struct extent_map *existing, 5238 struct extent_map *em, 5239 u64 map_start, u64 map_len) 5240 { 5241 u64 start_diff; 5242 5243 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5244 start_diff = map_start - em->start; 5245 em->start = map_start; 5246 em->len = map_len; 5247 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5248 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5249 em->block_start += start_diff; 5250 em->block_len -= start_diff; 5251 } 5252 return add_extent_mapping(em_tree, em); 5253 } 5254 5255 static noinline int uncompress_inline(struct btrfs_path *path, 5256 struct inode *inode, struct page *page, 5257 size_t pg_offset, u64 extent_offset, 5258 struct btrfs_file_extent_item *item) 5259 { 5260 int ret; 5261 struct extent_buffer *leaf = path->nodes[0]; 5262 char *tmp; 5263 size_t max_size; 5264 unsigned long inline_size; 5265 unsigned long ptr; 5266 int compress_type; 5267 5268 WARN_ON(pg_offset != 0); 5269 compress_type = btrfs_file_extent_compression(leaf, item); 5270 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5271 inline_size = btrfs_file_extent_inline_item_len(leaf, 5272 btrfs_item_nr(leaf, path->slots[0])); 5273 tmp = kmalloc(inline_size, GFP_NOFS); 5274 if (!tmp) 5275 return -ENOMEM; 5276 ptr = btrfs_file_extent_inline_start(item); 5277 5278 read_extent_buffer(leaf, tmp, ptr, inline_size); 5279 5280 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5281 ret = btrfs_decompress(compress_type, tmp, page, 5282 extent_offset, inline_size, max_size); 5283 if (ret) { 5284 char *kaddr = kmap_atomic(page); 5285 unsigned long copy_size = min_t(u64, 5286 PAGE_CACHE_SIZE - pg_offset, 5287 max_size - extent_offset); 5288 memset(kaddr + pg_offset, 0, copy_size); 5289 kunmap_atomic(kaddr); 5290 } 5291 kfree(tmp); 5292 return 0; 5293 } 5294 5295 /* 5296 * a bit scary, this does extent mapping from logical file offset to the disk. 5297 * the ugly parts come from merging extents from the disk with the in-ram 5298 * representation. This gets more complex because of the data=ordered code, 5299 * where the in-ram extents might be locked pending data=ordered completion. 5300 * 5301 * This also copies inline extents directly into the page. 5302 */ 5303 5304 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5305 size_t pg_offset, u64 start, u64 len, 5306 int create) 5307 { 5308 int ret; 5309 int err = 0; 5310 u64 bytenr; 5311 u64 extent_start = 0; 5312 u64 extent_end = 0; 5313 u64 objectid = btrfs_ino(inode); 5314 u32 found_type; 5315 struct btrfs_path *path = NULL; 5316 struct btrfs_root *root = BTRFS_I(inode)->root; 5317 struct btrfs_file_extent_item *item; 5318 struct extent_buffer *leaf; 5319 struct btrfs_key found_key; 5320 struct extent_map *em = NULL; 5321 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5322 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5323 struct btrfs_trans_handle *trans = NULL; 5324 int compress_type; 5325 5326 again: 5327 read_lock(&em_tree->lock); 5328 em = lookup_extent_mapping(em_tree, start, len); 5329 if (em) 5330 em->bdev = root->fs_info->fs_devices->latest_bdev; 5331 read_unlock(&em_tree->lock); 5332 5333 if (em) { 5334 if (em->start > start || em->start + em->len <= start) 5335 free_extent_map(em); 5336 else if (em->block_start == EXTENT_MAP_INLINE && page) 5337 free_extent_map(em); 5338 else 5339 goto out; 5340 } 5341 em = alloc_extent_map(); 5342 if (!em) { 5343 err = -ENOMEM; 5344 goto out; 5345 } 5346 em->bdev = root->fs_info->fs_devices->latest_bdev; 5347 em->start = EXTENT_MAP_HOLE; 5348 em->orig_start = EXTENT_MAP_HOLE; 5349 em->len = (u64)-1; 5350 em->block_len = (u64)-1; 5351 5352 if (!path) { 5353 path = btrfs_alloc_path(); 5354 if (!path) { 5355 err = -ENOMEM; 5356 goto out; 5357 } 5358 /* 5359 * Chances are we'll be called again, so go ahead and do 5360 * readahead 5361 */ 5362 path->reada = 1; 5363 } 5364 5365 ret = btrfs_lookup_file_extent(trans, root, path, 5366 objectid, start, trans != NULL); 5367 if (ret < 0) { 5368 err = ret; 5369 goto out; 5370 } 5371 5372 if (ret != 0) { 5373 if (path->slots[0] == 0) 5374 goto not_found; 5375 path->slots[0]--; 5376 } 5377 5378 leaf = path->nodes[0]; 5379 item = btrfs_item_ptr(leaf, path->slots[0], 5380 struct btrfs_file_extent_item); 5381 /* are we inside the extent that was found? */ 5382 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5383 found_type = btrfs_key_type(&found_key); 5384 if (found_key.objectid != objectid || 5385 found_type != BTRFS_EXTENT_DATA_KEY) { 5386 goto not_found; 5387 } 5388 5389 found_type = btrfs_file_extent_type(leaf, item); 5390 extent_start = found_key.offset; 5391 compress_type = btrfs_file_extent_compression(leaf, item); 5392 if (found_type == BTRFS_FILE_EXTENT_REG || 5393 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5394 extent_end = extent_start + 5395 btrfs_file_extent_num_bytes(leaf, item); 5396 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5397 size_t size; 5398 size = btrfs_file_extent_inline_len(leaf, item); 5399 extent_end = (extent_start + size + root->sectorsize - 1) & 5400 ~((u64)root->sectorsize - 1); 5401 } 5402 5403 if (start >= extent_end) { 5404 path->slots[0]++; 5405 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5406 ret = btrfs_next_leaf(root, path); 5407 if (ret < 0) { 5408 err = ret; 5409 goto out; 5410 } 5411 if (ret > 0) 5412 goto not_found; 5413 leaf = path->nodes[0]; 5414 } 5415 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5416 if (found_key.objectid != objectid || 5417 found_key.type != BTRFS_EXTENT_DATA_KEY) 5418 goto not_found; 5419 if (start + len <= found_key.offset) 5420 goto not_found; 5421 em->start = start; 5422 em->orig_start = start; 5423 em->len = found_key.offset - start; 5424 goto not_found_em; 5425 } 5426 5427 if (found_type == BTRFS_FILE_EXTENT_REG || 5428 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5429 em->start = extent_start; 5430 em->len = extent_end - extent_start; 5431 em->orig_start = extent_start - 5432 btrfs_file_extent_offset(leaf, item); 5433 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 5434 item); 5435 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5436 if (bytenr == 0) { 5437 em->block_start = EXTENT_MAP_HOLE; 5438 goto insert; 5439 } 5440 if (compress_type != BTRFS_COMPRESS_NONE) { 5441 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5442 em->compress_type = compress_type; 5443 em->block_start = bytenr; 5444 em->block_len = em->orig_block_len; 5445 } else { 5446 bytenr += btrfs_file_extent_offset(leaf, item); 5447 em->block_start = bytenr; 5448 em->block_len = em->len; 5449 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5450 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5451 } 5452 goto insert; 5453 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5454 unsigned long ptr; 5455 char *map; 5456 size_t size; 5457 size_t extent_offset; 5458 size_t copy_size; 5459 5460 em->block_start = EXTENT_MAP_INLINE; 5461 if (!page || create) { 5462 em->start = extent_start; 5463 em->len = extent_end - extent_start; 5464 goto out; 5465 } 5466 5467 size = btrfs_file_extent_inline_len(leaf, item); 5468 extent_offset = page_offset(page) + pg_offset - extent_start; 5469 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5470 size - extent_offset); 5471 em->start = extent_start + extent_offset; 5472 em->len = (copy_size + root->sectorsize - 1) & 5473 ~((u64)root->sectorsize - 1); 5474 em->orig_block_len = em->len; 5475 em->orig_start = em->start; 5476 if (compress_type) { 5477 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5478 em->compress_type = compress_type; 5479 } 5480 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5481 if (create == 0 && !PageUptodate(page)) { 5482 if (btrfs_file_extent_compression(leaf, item) != 5483 BTRFS_COMPRESS_NONE) { 5484 ret = uncompress_inline(path, inode, page, 5485 pg_offset, 5486 extent_offset, item); 5487 BUG_ON(ret); /* -ENOMEM */ 5488 } else { 5489 map = kmap(page); 5490 read_extent_buffer(leaf, map + pg_offset, ptr, 5491 copy_size); 5492 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5493 memset(map + pg_offset + copy_size, 0, 5494 PAGE_CACHE_SIZE - pg_offset - 5495 copy_size); 5496 } 5497 kunmap(page); 5498 } 5499 flush_dcache_page(page); 5500 } else if (create && PageUptodate(page)) { 5501 BUG(); 5502 if (!trans) { 5503 kunmap(page); 5504 free_extent_map(em); 5505 em = NULL; 5506 5507 btrfs_release_path(path); 5508 trans = btrfs_join_transaction(root); 5509 5510 if (IS_ERR(trans)) 5511 return ERR_CAST(trans); 5512 goto again; 5513 } 5514 map = kmap(page); 5515 write_extent_buffer(leaf, map + pg_offset, ptr, 5516 copy_size); 5517 kunmap(page); 5518 btrfs_mark_buffer_dirty(leaf); 5519 } 5520 set_extent_uptodate(io_tree, em->start, 5521 extent_map_end(em) - 1, NULL, GFP_NOFS); 5522 goto insert; 5523 } else { 5524 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 5525 } 5526 not_found: 5527 em->start = start; 5528 em->orig_start = start; 5529 em->len = len; 5530 not_found_em: 5531 em->block_start = EXTENT_MAP_HOLE; 5532 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5533 insert: 5534 btrfs_release_path(path); 5535 if (em->start > start || extent_map_end(em) <= start) { 5536 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5537 "[%llu %llu]\n", (unsigned long long)em->start, 5538 (unsigned long long)em->len, 5539 (unsigned long long)start, 5540 (unsigned long long)len); 5541 err = -EIO; 5542 goto out; 5543 } 5544 5545 err = 0; 5546 write_lock(&em_tree->lock); 5547 ret = add_extent_mapping(em_tree, em); 5548 /* it is possible that someone inserted the extent into the tree 5549 * while we had the lock dropped. It is also possible that 5550 * an overlapping map exists in the tree 5551 */ 5552 if (ret == -EEXIST) { 5553 struct extent_map *existing; 5554 5555 ret = 0; 5556 5557 existing = lookup_extent_mapping(em_tree, start, len); 5558 if (existing && (existing->start > start || 5559 existing->start + existing->len <= start)) { 5560 free_extent_map(existing); 5561 existing = NULL; 5562 } 5563 if (!existing) { 5564 existing = lookup_extent_mapping(em_tree, em->start, 5565 em->len); 5566 if (existing) { 5567 err = merge_extent_mapping(em_tree, existing, 5568 em, start, 5569 root->sectorsize); 5570 free_extent_map(existing); 5571 if (err) { 5572 free_extent_map(em); 5573 em = NULL; 5574 } 5575 } else { 5576 err = -EIO; 5577 free_extent_map(em); 5578 em = NULL; 5579 } 5580 } else { 5581 free_extent_map(em); 5582 em = existing; 5583 err = 0; 5584 } 5585 } 5586 write_unlock(&em_tree->lock); 5587 out: 5588 5589 if (em) 5590 trace_btrfs_get_extent(root, em); 5591 5592 if (path) 5593 btrfs_free_path(path); 5594 if (trans) { 5595 ret = btrfs_end_transaction(trans, root); 5596 if (!err) 5597 err = ret; 5598 } 5599 if (err) { 5600 free_extent_map(em); 5601 return ERR_PTR(err); 5602 } 5603 BUG_ON(!em); /* Error is always set */ 5604 return em; 5605 } 5606 5607 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5608 size_t pg_offset, u64 start, u64 len, 5609 int create) 5610 { 5611 struct extent_map *em; 5612 struct extent_map *hole_em = NULL; 5613 u64 range_start = start; 5614 u64 end; 5615 u64 found; 5616 u64 found_end; 5617 int err = 0; 5618 5619 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5620 if (IS_ERR(em)) 5621 return em; 5622 if (em) { 5623 /* 5624 * if our em maps to 5625 * - a hole or 5626 * - a pre-alloc extent, 5627 * there might actually be delalloc bytes behind it. 5628 */ 5629 if (em->block_start != EXTENT_MAP_HOLE && 5630 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5631 return em; 5632 else 5633 hole_em = em; 5634 } 5635 5636 /* check to see if we've wrapped (len == -1 or similar) */ 5637 end = start + len; 5638 if (end < start) 5639 end = (u64)-1; 5640 else 5641 end -= 1; 5642 5643 em = NULL; 5644 5645 /* ok, we didn't find anything, lets look for delalloc */ 5646 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5647 end, len, EXTENT_DELALLOC, 1); 5648 found_end = range_start + found; 5649 if (found_end < range_start) 5650 found_end = (u64)-1; 5651 5652 /* 5653 * we didn't find anything useful, return 5654 * the original results from get_extent() 5655 */ 5656 if (range_start > end || found_end <= start) { 5657 em = hole_em; 5658 hole_em = NULL; 5659 goto out; 5660 } 5661 5662 /* adjust the range_start to make sure it doesn't 5663 * go backwards from the start they passed in 5664 */ 5665 range_start = max(start,range_start); 5666 found = found_end - range_start; 5667 5668 if (found > 0) { 5669 u64 hole_start = start; 5670 u64 hole_len = len; 5671 5672 em = alloc_extent_map(); 5673 if (!em) { 5674 err = -ENOMEM; 5675 goto out; 5676 } 5677 /* 5678 * when btrfs_get_extent can't find anything it 5679 * returns one huge hole 5680 * 5681 * make sure what it found really fits our range, and 5682 * adjust to make sure it is based on the start from 5683 * the caller 5684 */ 5685 if (hole_em) { 5686 u64 calc_end = extent_map_end(hole_em); 5687 5688 if (calc_end <= start || (hole_em->start > end)) { 5689 free_extent_map(hole_em); 5690 hole_em = NULL; 5691 } else { 5692 hole_start = max(hole_em->start, start); 5693 hole_len = calc_end - hole_start; 5694 } 5695 } 5696 em->bdev = NULL; 5697 if (hole_em && range_start > hole_start) { 5698 /* our hole starts before our delalloc, so we 5699 * have to return just the parts of the hole 5700 * that go until the delalloc starts 5701 */ 5702 em->len = min(hole_len, 5703 range_start - hole_start); 5704 em->start = hole_start; 5705 em->orig_start = hole_start; 5706 /* 5707 * don't adjust block start at all, 5708 * it is fixed at EXTENT_MAP_HOLE 5709 */ 5710 em->block_start = hole_em->block_start; 5711 em->block_len = hole_len; 5712 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 5713 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5714 } else { 5715 em->start = range_start; 5716 em->len = found; 5717 em->orig_start = range_start; 5718 em->block_start = EXTENT_MAP_DELALLOC; 5719 em->block_len = found; 5720 } 5721 } else if (hole_em) { 5722 return hole_em; 5723 } 5724 out: 5725 5726 free_extent_map(hole_em); 5727 if (err) { 5728 free_extent_map(em); 5729 return ERR_PTR(err); 5730 } 5731 return em; 5732 } 5733 5734 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5735 u64 start, u64 len) 5736 { 5737 struct btrfs_root *root = BTRFS_I(inode)->root; 5738 struct btrfs_trans_handle *trans; 5739 struct extent_map *em; 5740 struct btrfs_key ins; 5741 u64 alloc_hint; 5742 int ret; 5743 5744 trans = btrfs_join_transaction(root); 5745 if (IS_ERR(trans)) 5746 return ERR_CAST(trans); 5747 5748 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5749 5750 alloc_hint = get_extent_allocation_hint(inode, start, len); 5751 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5752 alloc_hint, &ins, 1); 5753 if (ret) { 5754 em = ERR_PTR(ret); 5755 goto out; 5756 } 5757 5758 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 5759 ins.offset, ins.offset, 0); 5760 if (IS_ERR(em)) 5761 goto out; 5762 5763 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5764 ins.offset, ins.offset, 0); 5765 if (ret) { 5766 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5767 em = ERR_PTR(ret); 5768 } 5769 out: 5770 btrfs_end_transaction(trans, root); 5771 return em; 5772 } 5773 5774 /* 5775 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5776 * block must be cow'd 5777 */ 5778 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5779 struct inode *inode, u64 offset, u64 len) 5780 { 5781 struct btrfs_path *path; 5782 int ret; 5783 struct extent_buffer *leaf; 5784 struct btrfs_root *root = BTRFS_I(inode)->root; 5785 struct btrfs_file_extent_item *fi; 5786 struct btrfs_key key; 5787 u64 disk_bytenr; 5788 u64 backref_offset; 5789 u64 extent_end; 5790 u64 num_bytes; 5791 int slot; 5792 int found_type; 5793 5794 path = btrfs_alloc_path(); 5795 if (!path) 5796 return -ENOMEM; 5797 5798 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5799 offset, 0); 5800 if (ret < 0) 5801 goto out; 5802 5803 slot = path->slots[0]; 5804 if (ret == 1) { 5805 if (slot == 0) { 5806 /* can't find the item, must cow */ 5807 ret = 0; 5808 goto out; 5809 } 5810 slot--; 5811 } 5812 ret = 0; 5813 leaf = path->nodes[0]; 5814 btrfs_item_key_to_cpu(leaf, &key, slot); 5815 if (key.objectid != btrfs_ino(inode) || 5816 key.type != BTRFS_EXTENT_DATA_KEY) { 5817 /* not our file or wrong item type, must cow */ 5818 goto out; 5819 } 5820 5821 if (key.offset > offset) { 5822 /* Wrong offset, must cow */ 5823 goto out; 5824 } 5825 5826 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5827 found_type = btrfs_file_extent_type(leaf, fi); 5828 if (found_type != BTRFS_FILE_EXTENT_REG && 5829 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5830 /* not a regular extent, must cow */ 5831 goto out; 5832 } 5833 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5834 backref_offset = btrfs_file_extent_offset(leaf, fi); 5835 5836 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5837 if (extent_end < offset + len) { 5838 /* extent doesn't include our full range, must cow */ 5839 goto out; 5840 } 5841 5842 if (btrfs_extent_readonly(root, disk_bytenr)) 5843 goto out; 5844 5845 /* 5846 * look for other files referencing this extent, if we 5847 * find any we must cow 5848 */ 5849 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5850 key.offset - backref_offset, disk_bytenr)) 5851 goto out; 5852 5853 /* 5854 * adjust disk_bytenr and num_bytes to cover just the bytes 5855 * in this extent we are about to write. If there 5856 * are any csums in that range we have to cow in order 5857 * to keep the csums correct 5858 */ 5859 disk_bytenr += backref_offset; 5860 disk_bytenr += offset - key.offset; 5861 num_bytes = min(offset + len, extent_end) - offset; 5862 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5863 goto out; 5864 /* 5865 * all of the above have passed, it is safe to overwrite this extent 5866 * without cow 5867 */ 5868 ret = 1; 5869 out: 5870 btrfs_free_path(path); 5871 return ret; 5872 } 5873 5874 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 5875 struct extent_state **cached_state, int writing) 5876 { 5877 struct btrfs_ordered_extent *ordered; 5878 int ret = 0; 5879 5880 while (1) { 5881 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5882 0, cached_state); 5883 /* 5884 * We're concerned with the entire range that we're going to be 5885 * doing DIO to, so we need to make sure theres no ordered 5886 * extents in this range. 5887 */ 5888 ordered = btrfs_lookup_ordered_range(inode, lockstart, 5889 lockend - lockstart + 1); 5890 5891 /* 5892 * We need to make sure there are no buffered pages in this 5893 * range either, we could have raced between the invalidate in 5894 * generic_file_direct_write and locking the extent. The 5895 * invalidate needs to happen so that reads after a write do not 5896 * get stale data. 5897 */ 5898 if (!ordered && (!writing || 5899 !test_range_bit(&BTRFS_I(inode)->io_tree, 5900 lockstart, lockend, EXTENT_UPTODATE, 0, 5901 *cached_state))) 5902 break; 5903 5904 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5905 cached_state, GFP_NOFS); 5906 5907 if (ordered) { 5908 btrfs_start_ordered_extent(inode, ordered, 1); 5909 btrfs_put_ordered_extent(ordered); 5910 } else { 5911 /* Screw you mmap */ 5912 ret = filemap_write_and_wait_range(inode->i_mapping, 5913 lockstart, 5914 lockend); 5915 if (ret) 5916 break; 5917 5918 /* 5919 * If we found a page that couldn't be invalidated just 5920 * fall back to buffered. 5921 */ 5922 ret = invalidate_inode_pages2_range(inode->i_mapping, 5923 lockstart >> PAGE_CACHE_SHIFT, 5924 lockend >> PAGE_CACHE_SHIFT); 5925 if (ret) 5926 break; 5927 } 5928 5929 cond_resched(); 5930 } 5931 5932 return ret; 5933 } 5934 5935 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 5936 u64 len, u64 orig_start, 5937 u64 block_start, u64 block_len, 5938 u64 orig_block_len, int type) 5939 { 5940 struct extent_map_tree *em_tree; 5941 struct extent_map *em; 5942 struct btrfs_root *root = BTRFS_I(inode)->root; 5943 int ret; 5944 5945 em_tree = &BTRFS_I(inode)->extent_tree; 5946 em = alloc_extent_map(); 5947 if (!em) 5948 return ERR_PTR(-ENOMEM); 5949 5950 em->start = start; 5951 em->orig_start = orig_start; 5952 em->len = len; 5953 em->block_len = block_len; 5954 em->block_start = block_start; 5955 em->bdev = root->fs_info->fs_devices->latest_bdev; 5956 em->orig_block_len = orig_block_len; 5957 em->generation = -1; 5958 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5959 if (type == BTRFS_ORDERED_PREALLOC) 5960 set_bit(EXTENT_FLAG_FILLING, &em->flags); 5961 5962 do { 5963 btrfs_drop_extent_cache(inode, em->start, 5964 em->start + em->len - 1, 0); 5965 write_lock(&em_tree->lock); 5966 ret = add_extent_mapping(em_tree, em); 5967 if (!ret) 5968 list_move(&em->list, 5969 &em_tree->modified_extents); 5970 write_unlock(&em_tree->lock); 5971 } while (ret == -EEXIST); 5972 5973 if (ret) { 5974 free_extent_map(em); 5975 return ERR_PTR(ret); 5976 } 5977 5978 return em; 5979 } 5980 5981 5982 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5983 struct buffer_head *bh_result, int create) 5984 { 5985 struct extent_map *em; 5986 struct btrfs_root *root = BTRFS_I(inode)->root; 5987 struct extent_state *cached_state = NULL; 5988 u64 start = iblock << inode->i_blkbits; 5989 u64 lockstart, lockend; 5990 u64 len = bh_result->b_size; 5991 struct btrfs_trans_handle *trans; 5992 int unlock_bits = EXTENT_LOCKED; 5993 int ret; 5994 5995 if (create) { 5996 ret = btrfs_delalloc_reserve_space(inode, len); 5997 if (ret) 5998 return ret; 5999 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6000 } else { 6001 len = min_t(u64, len, root->sectorsize); 6002 } 6003 6004 lockstart = start; 6005 lockend = start + len - 1; 6006 6007 /* 6008 * If this errors out it's because we couldn't invalidate pagecache for 6009 * this range and we need to fallback to buffered. 6010 */ 6011 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6012 return -ENOTBLK; 6013 6014 if (create) { 6015 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6016 lockend, EXTENT_DELALLOC, NULL, 6017 &cached_state, GFP_NOFS); 6018 if (ret) 6019 goto unlock_err; 6020 } 6021 6022 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6023 if (IS_ERR(em)) { 6024 ret = PTR_ERR(em); 6025 goto unlock_err; 6026 } 6027 6028 /* 6029 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6030 * io. INLINE is special, and we could probably kludge it in here, but 6031 * it's still buffered so for safety lets just fall back to the generic 6032 * buffered path. 6033 * 6034 * For COMPRESSED we _have_ to read the entire extent in so we can 6035 * decompress it, so there will be buffering required no matter what we 6036 * do, so go ahead and fallback to buffered. 6037 * 6038 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6039 * to buffered IO. Don't blame me, this is the price we pay for using 6040 * the generic code. 6041 */ 6042 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6043 em->block_start == EXTENT_MAP_INLINE) { 6044 free_extent_map(em); 6045 ret = -ENOTBLK; 6046 goto unlock_err; 6047 } 6048 6049 /* Just a good old fashioned hole, return */ 6050 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6051 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6052 free_extent_map(em); 6053 ret = 0; 6054 goto unlock_err; 6055 } 6056 6057 /* 6058 * We don't allocate a new extent in the following cases 6059 * 6060 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6061 * existing extent. 6062 * 2) The extent is marked as PREALLOC. We're good to go here and can 6063 * just use the extent. 6064 * 6065 */ 6066 if (!create) { 6067 len = min(len, em->len - (start - em->start)); 6068 lockstart = start + len; 6069 goto unlock; 6070 } 6071 6072 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6073 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6074 em->block_start != EXTENT_MAP_HOLE)) { 6075 int type; 6076 int ret; 6077 u64 block_start; 6078 6079 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6080 type = BTRFS_ORDERED_PREALLOC; 6081 else 6082 type = BTRFS_ORDERED_NOCOW; 6083 len = min(len, em->len - (start - em->start)); 6084 block_start = em->block_start + (start - em->start); 6085 6086 /* 6087 * we're not going to log anything, but we do need 6088 * to make sure the current transaction stays open 6089 * while we look for nocow cross refs 6090 */ 6091 trans = btrfs_join_transaction(root); 6092 if (IS_ERR(trans)) 6093 goto must_cow; 6094 6095 if (can_nocow_odirect(trans, inode, start, len) == 1) { 6096 u64 orig_start = em->orig_start; 6097 u64 orig_block_len = em->orig_block_len; 6098 6099 if (type == BTRFS_ORDERED_PREALLOC) { 6100 free_extent_map(em); 6101 em = create_pinned_em(inode, start, len, 6102 orig_start, 6103 block_start, len, 6104 orig_block_len, type); 6105 if (IS_ERR(em)) { 6106 btrfs_end_transaction(trans, root); 6107 goto unlock_err; 6108 } 6109 } 6110 6111 ret = btrfs_add_ordered_extent_dio(inode, start, 6112 block_start, len, len, type); 6113 btrfs_end_transaction(trans, root); 6114 if (ret) { 6115 free_extent_map(em); 6116 goto unlock_err; 6117 } 6118 goto unlock; 6119 } 6120 btrfs_end_transaction(trans, root); 6121 } 6122 must_cow: 6123 /* 6124 * this will cow the extent, reset the len in case we changed 6125 * it above 6126 */ 6127 len = bh_result->b_size; 6128 free_extent_map(em); 6129 em = btrfs_new_extent_direct(inode, start, len); 6130 if (IS_ERR(em)) { 6131 ret = PTR_ERR(em); 6132 goto unlock_err; 6133 } 6134 len = min(len, em->len - (start - em->start)); 6135 unlock: 6136 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6137 inode->i_blkbits; 6138 bh_result->b_size = len; 6139 bh_result->b_bdev = em->bdev; 6140 set_buffer_mapped(bh_result); 6141 if (create) { 6142 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6143 set_buffer_new(bh_result); 6144 6145 /* 6146 * Need to update the i_size under the extent lock so buffered 6147 * readers will get the updated i_size when we unlock. 6148 */ 6149 if (start + len > i_size_read(inode)) 6150 i_size_write(inode, start + len); 6151 } 6152 6153 /* 6154 * In the case of write we need to clear and unlock the entire range, 6155 * in the case of read we need to unlock only the end area that we 6156 * aren't using if there is any left over space. 6157 */ 6158 if (lockstart < lockend) { 6159 if (create && len < lockend - lockstart) { 6160 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6161 lockstart + len - 1, 6162 unlock_bits | EXTENT_DEFRAG, 1, 0, 6163 &cached_state, GFP_NOFS); 6164 /* 6165 * Beside unlock, we also need to cleanup reserved space 6166 * for the left range by attaching EXTENT_DO_ACCOUNTING. 6167 */ 6168 clear_extent_bit(&BTRFS_I(inode)->io_tree, 6169 lockstart + len, lockend, 6170 unlock_bits | EXTENT_DO_ACCOUNTING | 6171 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS); 6172 } else { 6173 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6174 lockend, unlock_bits, 1, 0, 6175 &cached_state, GFP_NOFS); 6176 } 6177 } else { 6178 free_extent_state(cached_state); 6179 } 6180 6181 free_extent_map(em); 6182 6183 return 0; 6184 6185 unlock_err: 6186 if (create) 6187 unlock_bits |= EXTENT_DO_ACCOUNTING; 6188 6189 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6190 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6191 return ret; 6192 } 6193 6194 struct btrfs_dio_private { 6195 struct inode *inode; 6196 u64 logical_offset; 6197 u64 disk_bytenr; 6198 u64 bytes; 6199 void *private; 6200 6201 /* number of bios pending for this dio */ 6202 atomic_t pending_bios; 6203 6204 /* IO errors */ 6205 int errors; 6206 6207 struct bio *orig_bio; 6208 }; 6209 6210 static void btrfs_endio_direct_read(struct bio *bio, int err) 6211 { 6212 struct btrfs_dio_private *dip = bio->bi_private; 6213 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6214 struct bio_vec *bvec = bio->bi_io_vec; 6215 struct inode *inode = dip->inode; 6216 struct btrfs_root *root = BTRFS_I(inode)->root; 6217 u64 start; 6218 6219 start = dip->logical_offset; 6220 do { 6221 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6222 struct page *page = bvec->bv_page; 6223 char *kaddr; 6224 u32 csum = ~(u32)0; 6225 u64 private = ~(u32)0; 6226 unsigned long flags; 6227 6228 if (get_state_private(&BTRFS_I(inode)->io_tree, 6229 start, &private)) 6230 goto failed; 6231 local_irq_save(flags); 6232 kaddr = kmap_atomic(page); 6233 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 6234 csum, bvec->bv_len); 6235 btrfs_csum_final(csum, (char *)&csum); 6236 kunmap_atomic(kaddr); 6237 local_irq_restore(flags); 6238 6239 flush_dcache_page(bvec->bv_page); 6240 if (csum != private) { 6241 failed: 6242 printk(KERN_ERR "btrfs csum failed ino %llu off" 6243 " %llu csum %u private %u\n", 6244 (unsigned long long)btrfs_ino(inode), 6245 (unsigned long long)start, 6246 csum, (unsigned)private); 6247 err = -EIO; 6248 } 6249 } 6250 6251 start += bvec->bv_len; 6252 bvec++; 6253 } while (bvec <= bvec_end); 6254 6255 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6256 dip->logical_offset + dip->bytes - 1); 6257 bio->bi_private = dip->private; 6258 6259 kfree(dip); 6260 6261 /* If we had a csum failure make sure to clear the uptodate flag */ 6262 if (err) 6263 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6264 dio_end_io(bio, err); 6265 } 6266 6267 static void btrfs_endio_direct_write(struct bio *bio, int err) 6268 { 6269 struct btrfs_dio_private *dip = bio->bi_private; 6270 struct inode *inode = dip->inode; 6271 struct btrfs_root *root = BTRFS_I(inode)->root; 6272 struct btrfs_ordered_extent *ordered = NULL; 6273 u64 ordered_offset = dip->logical_offset; 6274 u64 ordered_bytes = dip->bytes; 6275 int ret; 6276 6277 if (err) 6278 goto out_done; 6279 again: 6280 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6281 &ordered_offset, 6282 ordered_bytes, !err); 6283 if (!ret) 6284 goto out_test; 6285 6286 ordered->work.func = finish_ordered_fn; 6287 ordered->work.flags = 0; 6288 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6289 &ordered->work); 6290 out_test: 6291 /* 6292 * our bio might span multiple ordered extents. If we haven't 6293 * completed the accounting for the whole dio, go back and try again 6294 */ 6295 if (ordered_offset < dip->logical_offset + dip->bytes) { 6296 ordered_bytes = dip->logical_offset + dip->bytes - 6297 ordered_offset; 6298 ordered = NULL; 6299 goto again; 6300 } 6301 out_done: 6302 bio->bi_private = dip->private; 6303 6304 kfree(dip); 6305 6306 /* If we had an error make sure to clear the uptodate flag */ 6307 if (err) 6308 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6309 dio_end_io(bio, err); 6310 } 6311 6312 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 6313 struct bio *bio, int mirror_num, 6314 unsigned long bio_flags, u64 offset) 6315 { 6316 int ret; 6317 struct btrfs_root *root = BTRFS_I(inode)->root; 6318 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 6319 BUG_ON(ret); /* -ENOMEM */ 6320 return 0; 6321 } 6322 6323 static void btrfs_end_dio_bio(struct bio *bio, int err) 6324 { 6325 struct btrfs_dio_private *dip = bio->bi_private; 6326 6327 if (err) { 6328 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 6329 "sector %#Lx len %u err no %d\n", 6330 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 6331 (unsigned long long)bio->bi_sector, bio->bi_size, err); 6332 dip->errors = 1; 6333 6334 /* 6335 * before atomic variable goto zero, we must make sure 6336 * dip->errors is perceived to be set. 6337 */ 6338 smp_mb__before_atomic_dec(); 6339 } 6340 6341 /* if there are more bios still pending for this dio, just exit */ 6342 if (!atomic_dec_and_test(&dip->pending_bios)) 6343 goto out; 6344 6345 if (dip->errors) 6346 bio_io_error(dip->orig_bio); 6347 else { 6348 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 6349 bio_endio(dip->orig_bio, 0); 6350 } 6351 out: 6352 bio_put(bio); 6353 } 6354 6355 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 6356 u64 first_sector, gfp_t gfp_flags) 6357 { 6358 int nr_vecs = bio_get_nr_vecs(bdev); 6359 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 6360 } 6361 6362 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 6363 int rw, u64 file_offset, int skip_sum, 6364 int async_submit) 6365 { 6366 int write = rw & REQ_WRITE; 6367 struct btrfs_root *root = BTRFS_I(inode)->root; 6368 int ret; 6369 6370 if (async_submit) 6371 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 6372 6373 bio_get(bio); 6374 6375 if (!write) { 6376 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 6377 if (ret) 6378 goto err; 6379 } 6380 6381 if (skip_sum) 6382 goto map; 6383 6384 if (write && async_submit) { 6385 ret = btrfs_wq_submit_bio(root->fs_info, 6386 inode, rw, bio, 0, 0, 6387 file_offset, 6388 __btrfs_submit_bio_start_direct_io, 6389 __btrfs_submit_bio_done); 6390 goto err; 6391 } else if (write) { 6392 /* 6393 * If we aren't doing async submit, calculate the csum of the 6394 * bio now. 6395 */ 6396 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 6397 if (ret) 6398 goto err; 6399 } else if (!skip_sum) { 6400 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset); 6401 if (ret) 6402 goto err; 6403 } 6404 6405 map: 6406 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 6407 err: 6408 bio_put(bio); 6409 return ret; 6410 } 6411 6412 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 6413 int skip_sum) 6414 { 6415 struct inode *inode = dip->inode; 6416 struct btrfs_root *root = BTRFS_I(inode)->root; 6417 struct bio *bio; 6418 struct bio *orig_bio = dip->orig_bio; 6419 struct bio_vec *bvec = orig_bio->bi_io_vec; 6420 u64 start_sector = orig_bio->bi_sector; 6421 u64 file_offset = dip->logical_offset; 6422 u64 submit_len = 0; 6423 u64 map_length; 6424 int nr_pages = 0; 6425 int ret = 0; 6426 int async_submit = 0; 6427 6428 map_length = orig_bio->bi_size; 6429 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9, 6430 &map_length, NULL, 0); 6431 if (ret) { 6432 bio_put(orig_bio); 6433 return -EIO; 6434 } 6435 6436 if (map_length >= orig_bio->bi_size) { 6437 bio = orig_bio; 6438 goto submit; 6439 } 6440 6441 async_submit = 1; 6442 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 6443 if (!bio) 6444 return -ENOMEM; 6445 bio->bi_private = dip; 6446 bio->bi_end_io = btrfs_end_dio_bio; 6447 atomic_inc(&dip->pending_bios); 6448 6449 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 6450 if (unlikely(map_length < submit_len + bvec->bv_len || 6451 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 6452 bvec->bv_offset) < bvec->bv_len)) { 6453 /* 6454 * inc the count before we submit the bio so 6455 * we know the end IO handler won't happen before 6456 * we inc the count. Otherwise, the dip might get freed 6457 * before we're done setting it up 6458 */ 6459 atomic_inc(&dip->pending_bios); 6460 ret = __btrfs_submit_dio_bio(bio, inode, rw, 6461 file_offset, skip_sum, 6462 async_submit); 6463 if (ret) { 6464 bio_put(bio); 6465 atomic_dec(&dip->pending_bios); 6466 goto out_err; 6467 } 6468 6469 start_sector += submit_len >> 9; 6470 file_offset += submit_len; 6471 6472 submit_len = 0; 6473 nr_pages = 0; 6474 6475 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6476 start_sector, GFP_NOFS); 6477 if (!bio) 6478 goto out_err; 6479 bio->bi_private = dip; 6480 bio->bi_end_io = btrfs_end_dio_bio; 6481 6482 map_length = orig_bio->bi_size; 6483 ret = btrfs_map_block(root->fs_info, READ, 6484 start_sector << 9, 6485 &map_length, NULL, 0); 6486 if (ret) { 6487 bio_put(bio); 6488 goto out_err; 6489 } 6490 } else { 6491 submit_len += bvec->bv_len; 6492 nr_pages ++; 6493 bvec++; 6494 } 6495 } 6496 6497 submit: 6498 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6499 async_submit); 6500 if (!ret) 6501 return 0; 6502 6503 bio_put(bio); 6504 out_err: 6505 dip->errors = 1; 6506 /* 6507 * before atomic variable goto zero, we must 6508 * make sure dip->errors is perceived to be set. 6509 */ 6510 smp_mb__before_atomic_dec(); 6511 if (atomic_dec_and_test(&dip->pending_bios)) 6512 bio_io_error(dip->orig_bio); 6513 6514 /* bio_end_io() will handle error, so we needn't return it */ 6515 return 0; 6516 } 6517 6518 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6519 loff_t file_offset) 6520 { 6521 struct btrfs_root *root = BTRFS_I(inode)->root; 6522 struct btrfs_dio_private *dip; 6523 struct bio_vec *bvec = bio->bi_io_vec; 6524 int skip_sum; 6525 int write = rw & REQ_WRITE; 6526 int ret = 0; 6527 6528 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6529 6530 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6531 if (!dip) { 6532 ret = -ENOMEM; 6533 goto free_ordered; 6534 } 6535 6536 dip->private = bio->bi_private; 6537 dip->inode = inode; 6538 dip->logical_offset = file_offset; 6539 6540 dip->bytes = 0; 6541 do { 6542 dip->bytes += bvec->bv_len; 6543 bvec++; 6544 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6545 6546 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6547 bio->bi_private = dip; 6548 dip->errors = 0; 6549 dip->orig_bio = bio; 6550 atomic_set(&dip->pending_bios, 0); 6551 6552 if (write) 6553 bio->bi_end_io = btrfs_endio_direct_write; 6554 else 6555 bio->bi_end_io = btrfs_endio_direct_read; 6556 6557 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6558 if (!ret) 6559 return; 6560 free_ordered: 6561 /* 6562 * If this is a write, we need to clean up the reserved space and kill 6563 * the ordered extent. 6564 */ 6565 if (write) { 6566 struct btrfs_ordered_extent *ordered; 6567 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6568 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6569 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6570 btrfs_free_reserved_extent(root, ordered->start, 6571 ordered->disk_len); 6572 btrfs_put_ordered_extent(ordered); 6573 btrfs_put_ordered_extent(ordered); 6574 } 6575 bio_endio(bio, ret); 6576 } 6577 6578 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6579 const struct iovec *iov, loff_t offset, 6580 unsigned long nr_segs) 6581 { 6582 int seg; 6583 int i; 6584 size_t size; 6585 unsigned long addr; 6586 unsigned blocksize_mask = root->sectorsize - 1; 6587 ssize_t retval = -EINVAL; 6588 loff_t end = offset; 6589 6590 if (offset & blocksize_mask) 6591 goto out; 6592 6593 /* Check the memory alignment. Blocks cannot straddle pages */ 6594 for (seg = 0; seg < nr_segs; seg++) { 6595 addr = (unsigned long)iov[seg].iov_base; 6596 size = iov[seg].iov_len; 6597 end += size; 6598 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6599 goto out; 6600 6601 /* If this is a write we don't need to check anymore */ 6602 if (rw & WRITE) 6603 continue; 6604 6605 /* 6606 * Check to make sure we don't have duplicate iov_base's in this 6607 * iovec, if so return EINVAL, otherwise we'll get csum errors 6608 * when reading back. 6609 */ 6610 for (i = seg + 1; i < nr_segs; i++) { 6611 if (iov[seg].iov_base == iov[i].iov_base) 6612 goto out; 6613 } 6614 } 6615 retval = 0; 6616 out: 6617 return retval; 6618 } 6619 6620 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6621 const struct iovec *iov, loff_t offset, 6622 unsigned long nr_segs) 6623 { 6624 struct file *file = iocb->ki_filp; 6625 struct inode *inode = file->f_mapping->host; 6626 6627 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6628 offset, nr_segs)) 6629 return 0; 6630 6631 return __blockdev_direct_IO(rw, iocb, inode, 6632 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6633 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6634 btrfs_submit_direct, 0); 6635 } 6636 6637 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 6638 6639 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6640 __u64 start, __u64 len) 6641 { 6642 int ret; 6643 6644 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 6645 if (ret) 6646 return ret; 6647 6648 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6649 } 6650 6651 int btrfs_readpage(struct file *file, struct page *page) 6652 { 6653 struct extent_io_tree *tree; 6654 tree = &BTRFS_I(page->mapping->host)->io_tree; 6655 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 6656 } 6657 6658 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6659 { 6660 struct extent_io_tree *tree; 6661 6662 6663 if (current->flags & PF_MEMALLOC) { 6664 redirty_page_for_writepage(wbc, page); 6665 unlock_page(page); 6666 return 0; 6667 } 6668 tree = &BTRFS_I(page->mapping->host)->io_tree; 6669 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6670 } 6671 6672 int btrfs_writepages(struct address_space *mapping, 6673 struct writeback_control *wbc) 6674 { 6675 struct extent_io_tree *tree; 6676 6677 tree = &BTRFS_I(mapping->host)->io_tree; 6678 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6679 } 6680 6681 static int 6682 btrfs_readpages(struct file *file, struct address_space *mapping, 6683 struct list_head *pages, unsigned nr_pages) 6684 { 6685 struct extent_io_tree *tree; 6686 tree = &BTRFS_I(mapping->host)->io_tree; 6687 return extent_readpages(tree, mapping, pages, nr_pages, 6688 btrfs_get_extent); 6689 } 6690 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6691 { 6692 struct extent_io_tree *tree; 6693 struct extent_map_tree *map; 6694 int ret; 6695 6696 tree = &BTRFS_I(page->mapping->host)->io_tree; 6697 map = &BTRFS_I(page->mapping->host)->extent_tree; 6698 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6699 if (ret == 1) { 6700 ClearPagePrivate(page); 6701 set_page_private(page, 0); 6702 page_cache_release(page); 6703 } 6704 return ret; 6705 } 6706 6707 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6708 { 6709 if (PageWriteback(page) || PageDirty(page)) 6710 return 0; 6711 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6712 } 6713 6714 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6715 { 6716 struct inode *inode = page->mapping->host; 6717 struct extent_io_tree *tree; 6718 struct btrfs_ordered_extent *ordered; 6719 struct extent_state *cached_state = NULL; 6720 u64 page_start = page_offset(page); 6721 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6722 6723 /* 6724 * we have the page locked, so new writeback can't start, 6725 * and the dirty bit won't be cleared while we are here. 6726 * 6727 * Wait for IO on this page so that we can safely clear 6728 * the PagePrivate2 bit and do ordered accounting 6729 */ 6730 wait_on_page_writeback(page); 6731 6732 tree = &BTRFS_I(inode)->io_tree; 6733 if (offset) { 6734 btrfs_releasepage(page, GFP_NOFS); 6735 return; 6736 } 6737 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 6738 ordered = btrfs_lookup_ordered_extent(inode, 6739 page_offset(page)); 6740 if (ordered) { 6741 /* 6742 * IO on this page will never be started, so we need 6743 * to account for any ordered extents now 6744 */ 6745 clear_extent_bit(tree, page_start, page_end, 6746 EXTENT_DIRTY | EXTENT_DELALLOC | 6747 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 6748 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 6749 /* 6750 * whoever cleared the private bit is responsible 6751 * for the finish_ordered_io 6752 */ 6753 if (TestClearPagePrivate2(page) && 6754 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 6755 PAGE_CACHE_SIZE, 1)) { 6756 btrfs_finish_ordered_io(ordered); 6757 } 6758 btrfs_put_ordered_extent(ordered); 6759 cached_state = NULL; 6760 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 6761 } 6762 clear_extent_bit(tree, page_start, page_end, 6763 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6764 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 6765 &cached_state, GFP_NOFS); 6766 __btrfs_releasepage(page, GFP_NOFS); 6767 6768 ClearPageChecked(page); 6769 if (PagePrivate(page)) { 6770 ClearPagePrivate(page); 6771 set_page_private(page, 0); 6772 page_cache_release(page); 6773 } 6774 } 6775 6776 /* 6777 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6778 * called from a page fault handler when a page is first dirtied. Hence we must 6779 * be careful to check for EOF conditions here. We set the page up correctly 6780 * for a written page which means we get ENOSPC checking when writing into 6781 * holes and correct delalloc and unwritten extent mapping on filesystems that 6782 * support these features. 6783 * 6784 * We are not allowed to take the i_mutex here so we have to play games to 6785 * protect against truncate races as the page could now be beyond EOF. Because 6786 * vmtruncate() writes the inode size before removing pages, once we have the 6787 * page lock we can determine safely if the page is beyond EOF. If it is not 6788 * beyond EOF, then the page is guaranteed safe against truncation until we 6789 * unlock the page. 6790 */ 6791 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6792 { 6793 struct page *page = vmf->page; 6794 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6795 struct btrfs_root *root = BTRFS_I(inode)->root; 6796 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6797 struct btrfs_ordered_extent *ordered; 6798 struct extent_state *cached_state = NULL; 6799 char *kaddr; 6800 unsigned long zero_start; 6801 loff_t size; 6802 int ret; 6803 int reserved = 0; 6804 u64 page_start; 6805 u64 page_end; 6806 6807 sb_start_pagefault(inode->i_sb); 6808 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6809 if (!ret) { 6810 ret = file_update_time(vma->vm_file); 6811 reserved = 1; 6812 } 6813 if (ret) { 6814 if (ret == -ENOMEM) 6815 ret = VM_FAULT_OOM; 6816 else /* -ENOSPC, -EIO, etc */ 6817 ret = VM_FAULT_SIGBUS; 6818 if (reserved) 6819 goto out; 6820 goto out_noreserve; 6821 } 6822 6823 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6824 again: 6825 lock_page(page); 6826 size = i_size_read(inode); 6827 page_start = page_offset(page); 6828 page_end = page_start + PAGE_CACHE_SIZE - 1; 6829 6830 if ((page->mapping != inode->i_mapping) || 6831 (page_start >= size)) { 6832 /* page got truncated out from underneath us */ 6833 goto out_unlock; 6834 } 6835 wait_on_page_writeback(page); 6836 6837 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 6838 set_page_extent_mapped(page); 6839 6840 /* 6841 * we can't set the delalloc bits if there are pending ordered 6842 * extents. Drop our locks and wait for them to finish 6843 */ 6844 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6845 if (ordered) { 6846 unlock_extent_cached(io_tree, page_start, page_end, 6847 &cached_state, GFP_NOFS); 6848 unlock_page(page); 6849 btrfs_start_ordered_extent(inode, ordered, 1); 6850 btrfs_put_ordered_extent(ordered); 6851 goto again; 6852 } 6853 6854 /* 6855 * XXX - page_mkwrite gets called every time the page is dirtied, even 6856 * if it was already dirty, so for space accounting reasons we need to 6857 * clear any delalloc bits for the range we are fixing to save. There 6858 * is probably a better way to do this, but for now keep consistent with 6859 * prepare_pages in the normal write path. 6860 */ 6861 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6862 EXTENT_DIRTY | EXTENT_DELALLOC | 6863 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 6864 0, 0, &cached_state, GFP_NOFS); 6865 6866 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6867 &cached_state); 6868 if (ret) { 6869 unlock_extent_cached(io_tree, page_start, page_end, 6870 &cached_state, GFP_NOFS); 6871 ret = VM_FAULT_SIGBUS; 6872 goto out_unlock; 6873 } 6874 ret = 0; 6875 6876 /* page is wholly or partially inside EOF */ 6877 if (page_start + PAGE_CACHE_SIZE > size) 6878 zero_start = size & ~PAGE_CACHE_MASK; 6879 else 6880 zero_start = PAGE_CACHE_SIZE; 6881 6882 if (zero_start != PAGE_CACHE_SIZE) { 6883 kaddr = kmap(page); 6884 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6885 flush_dcache_page(page); 6886 kunmap(page); 6887 } 6888 ClearPageChecked(page); 6889 set_page_dirty(page); 6890 SetPageUptodate(page); 6891 6892 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6893 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6894 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 6895 6896 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6897 6898 out_unlock: 6899 if (!ret) { 6900 sb_end_pagefault(inode->i_sb); 6901 return VM_FAULT_LOCKED; 6902 } 6903 unlock_page(page); 6904 out: 6905 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6906 out_noreserve: 6907 sb_end_pagefault(inode->i_sb); 6908 return ret; 6909 } 6910 6911 static int btrfs_truncate(struct inode *inode) 6912 { 6913 struct btrfs_root *root = BTRFS_I(inode)->root; 6914 struct btrfs_block_rsv *rsv; 6915 int ret; 6916 int err = 0; 6917 struct btrfs_trans_handle *trans; 6918 u64 mask = root->sectorsize - 1; 6919 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 6920 6921 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 6922 if (ret) 6923 return ret; 6924 6925 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6926 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6927 6928 /* 6929 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6930 * 3 things going on here 6931 * 6932 * 1) We need to reserve space for our orphan item and the space to 6933 * delete our orphan item. Lord knows we don't want to have a dangling 6934 * orphan item because we didn't reserve space to remove it. 6935 * 6936 * 2) We need to reserve space to update our inode. 6937 * 6938 * 3) We need to have something to cache all the space that is going to 6939 * be free'd up by the truncate operation, but also have some slack 6940 * space reserved in case it uses space during the truncate (thank you 6941 * very much snapshotting). 6942 * 6943 * And we need these to all be seperate. The fact is we can use alot of 6944 * space doing the truncate, and we have no earthly idea how much space 6945 * we will use, so we need the truncate reservation to be seperate so it 6946 * doesn't end up using space reserved for updating the inode or 6947 * removing the orphan item. We also need to be able to stop the 6948 * transaction and start a new one, which means we need to be able to 6949 * update the inode several times, and we have no idea of knowing how 6950 * many times that will be, so we can't just reserve 1 item for the 6951 * entirety of the opration, so that has to be done seperately as well. 6952 * Then there is the orphan item, which does indeed need to be held on 6953 * to for the whole operation, and we need nobody to touch this reserved 6954 * space except the orphan code. 6955 * 6956 * So that leaves us with 6957 * 6958 * 1) root->orphan_block_rsv - for the orphan deletion. 6959 * 2) rsv - for the truncate reservation, which we will steal from the 6960 * transaction reservation. 6961 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6962 * updating the inode. 6963 */ 6964 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 6965 if (!rsv) 6966 return -ENOMEM; 6967 rsv->size = min_size; 6968 rsv->failfast = 1; 6969 6970 /* 6971 * 1 for the truncate slack space 6972 * 1 for updating the inode. 6973 */ 6974 trans = btrfs_start_transaction(root, 2); 6975 if (IS_ERR(trans)) { 6976 err = PTR_ERR(trans); 6977 goto out; 6978 } 6979 6980 /* Migrate the slack space for the truncate to our reserve */ 6981 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 6982 min_size); 6983 BUG_ON(ret); 6984 6985 /* 6986 * setattr is responsible for setting the ordered_data_close flag, 6987 * but that is only tested during the last file release. That 6988 * could happen well after the next commit, leaving a great big 6989 * window where new writes may get lost if someone chooses to write 6990 * to this file after truncating to zero 6991 * 6992 * The inode doesn't have any dirty data here, and so if we commit 6993 * this is a noop. If someone immediately starts writing to the inode 6994 * it is very likely we'll catch some of their writes in this 6995 * transaction, and the commit will find this file on the ordered 6996 * data list with good things to send down. 6997 * 6998 * This is a best effort solution, there is still a window where 6999 * using truncate to replace the contents of the file will 7000 * end up with a zero length file after a crash. 7001 */ 7002 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7003 &BTRFS_I(inode)->runtime_flags)) 7004 btrfs_add_ordered_operation(trans, root, inode); 7005 7006 /* 7007 * So if we truncate and then write and fsync we normally would just 7008 * write the extents that changed, which is a problem if we need to 7009 * first truncate that entire inode. So set this flag so we write out 7010 * all of the extents in the inode to the sync log so we're completely 7011 * safe. 7012 */ 7013 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7014 trans->block_rsv = rsv; 7015 7016 while (1) { 7017 ret = btrfs_truncate_inode_items(trans, root, inode, 7018 inode->i_size, 7019 BTRFS_EXTENT_DATA_KEY); 7020 if (ret != -ENOSPC) { 7021 err = ret; 7022 break; 7023 } 7024 7025 trans->block_rsv = &root->fs_info->trans_block_rsv; 7026 ret = btrfs_update_inode(trans, root, inode); 7027 if (ret) { 7028 err = ret; 7029 break; 7030 } 7031 7032 btrfs_end_transaction(trans, root); 7033 btrfs_btree_balance_dirty(root); 7034 7035 trans = btrfs_start_transaction(root, 2); 7036 if (IS_ERR(trans)) { 7037 ret = err = PTR_ERR(trans); 7038 trans = NULL; 7039 break; 7040 } 7041 7042 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7043 rsv, min_size); 7044 BUG_ON(ret); /* shouldn't happen */ 7045 trans->block_rsv = rsv; 7046 } 7047 7048 if (ret == 0 && inode->i_nlink > 0) { 7049 trans->block_rsv = root->orphan_block_rsv; 7050 ret = btrfs_orphan_del(trans, inode); 7051 if (ret) 7052 err = ret; 7053 } 7054 7055 if (trans) { 7056 trans->block_rsv = &root->fs_info->trans_block_rsv; 7057 ret = btrfs_update_inode(trans, root, inode); 7058 if (ret && !err) 7059 err = ret; 7060 7061 ret = btrfs_end_transaction(trans, root); 7062 btrfs_btree_balance_dirty(root); 7063 } 7064 7065 out: 7066 btrfs_free_block_rsv(root, rsv); 7067 7068 if (ret && !err) 7069 err = ret; 7070 7071 return err; 7072 } 7073 7074 /* 7075 * create a new subvolume directory/inode (helper for the ioctl). 7076 */ 7077 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7078 struct btrfs_root *new_root, u64 new_dirid) 7079 { 7080 struct inode *inode; 7081 int err; 7082 u64 index = 0; 7083 7084 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7085 new_dirid, new_dirid, 7086 S_IFDIR | (~current_umask() & S_IRWXUGO), 7087 &index); 7088 if (IS_ERR(inode)) 7089 return PTR_ERR(inode); 7090 inode->i_op = &btrfs_dir_inode_operations; 7091 inode->i_fop = &btrfs_dir_file_operations; 7092 7093 set_nlink(inode, 1); 7094 btrfs_i_size_write(inode, 0); 7095 7096 err = btrfs_update_inode(trans, new_root, inode); 7097 7098 iput(inode); 7099 return err; 7100 } 7101 7102 struct inode *btrfs_alloc_inode(struct super_block *sb) 7103 { 7104 struct btrfs_inode *ei; 7105 struct inode *inode; 7106 7107 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7108 if (!ei) 7109 return NULL; 7110 7111 ei->root = NULL; 7112 ei->generation = 0; 7113 ei->last_trans = 0; 7114 ei->last_sub_trans = 0; 7115 ei->logged_trans = 0; 7116 ei->delalloc_bytes = 0; 7117 ei->disk_i_size = 0; 7118 ei->flags = 0; 7119 ei->csum_bytes = 0; 7120 ei->index_cnt = (u64)-1; 7121 ei->last_unlink_trans = 0; 7122 ei->last_log_commit = 0; 7123 7124 spin_lock_init(&ei->lock); 7125 ei->outstanding_extents = 0; 7126 ei->reserved_extents = 0; 7127 7128 ei->runtime_flags = 0; 7129 ei->force_compress = BTRFS_COMPRESS_NONE; 7130 7131 ei->delayed_node = NULL; 7132 7133 inode = &ei->vfs_inode; 7134 extent_map_tree_init(&ei->extent_tree); 7135 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7136 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7137 ei->io_tree.track_uptodate = 1; 7138 ei->io_failure_tree.track_uptodate = 1; 7139 atomic_set(&ei->sync_writers, 0); 7140 mutex_init(&ei->log_mutex); 7141 mutex_init(&ei->delalloc_mutex); 7142 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7143 INIT_LIST_HEAD(&ei->delalloc_inodes); 7144 INIT_LIST_HEAD(&ei->ordered_operations); 7145 RB_CLEAR_NODE(&ei->rb_node); 7146 7147 return inode; 7148 } 7149 7150 static void btrfs_i_callback(struct rcu_head *head) 7151 { 7152 struct inode *inode = container_of(head, struct inode, i_rcu); 7153 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7154 } 7155 7156 void btrfs_destroy_inode(struct inode *inode) 7157 { 7158 struct btrfs_ordered_extent *ordered; 7159 struct btrfs_root *root = BTRFS_I(inode)->root; 7160 7161 WARN_ON(!hlist_empty(&inode->i_dentry)); 7162 WARN_ON(inode->i_data.nrpages); 7163 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7164 WARN_ON(BTRFS_I(inode)->reserved_extents); 7165 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7166 WARN_ON(BTRFS_I(inode)->csum_bytes); 7167 7168 /* 7169 * This can happen where we create an inode, but somebody else also 7170 * created the same inode and we need to destroy the one we already 7171 * created. 7172 */ 7173 if (!root) 7174 goto free; 7175 7176 /* 7177 * Make sure we're properly removed from the ordered operation 7178 * lists. 7179 */ 7180 smp_mb(); 7181 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7182 spin_lock(&root->fs_info->ordered_extent_lock); 7183 list_del_init(&BTRFS_I(inode)->ordered_operations); 7184 spin_unlock(&root->fs_info->ordered_extent_lock); 7185 } 7186 7187 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7188 &BTRFS_I(inode)->runtime_flags)) { 7189 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 7190 (unsigned long long)btrfs_ino(inode)); 7191 atomic_dec(&root->orphan_inodes); 7192 } 7193 7194 while (1) { 7195 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7196 if (!ordered) 7197 break; 7198 else { 7199 printk(KERN_ERR "btrfs found ordered " 7200 "extent %llu %llu on inode cleanup\n", 7201 (unsigned long long)ordered->file_offset, 7202 (unsigned long long)ordered->len); 7203 btrfs_remove_ordered_extent(inode, ordered); 7204 btrfs_put_ordered_extent(ordered); 7205 btrfs_put_ordered_extent(ordered); 7206 } 7207 } 7208 inode_tree_del(inode); 7209 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7210 free: 7211 btrfs_remove_delayed_node(inode); 7212 call_rcu(&inode->i_rcu, btrfs_i_callback); 7213 } 7214 7215 int btrfs_drop_inode(struct inode *inode) 7216 { 7217 struct btrfs_root *root = BTRFS_I(inode)->root; 7218 7219 if (btrfs_root_refs(&root->root_item) == 0 && 7220 !btrfs_is_free_space_inode(inode)) 7221 return 1; 7222 else 7223 return generic_drop_inode(inode); 7224 } 7225 7226 static void init_once(void *foo) 7227 { 7228 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7229 7230 inode_init_once(&ei->vfs_inode); 7231 } 7232 7233 void btrfs_destroy_cachep(void) 7234 { 7235 /* 7236 * Make sure all delayed rcu free inodes are flushed before we 7237 * destroy cache. 7238 */ 7239 rcu_barrier(); 7240 if (btrfs_inode_cachep) 7241 kmem_cache_destroy(btrfs_inode_cachep); 7242 if (btrfs_trans_handle_cachep) 7243 kmem_cache_destroy(btrfs_trans_handle_cachep); 7244 if (btrfs_transaction_cachep) 7245 kmem_cache_destroy(btrfs_transaction_cachep); 7246 if (btrfs_path_cachep) 7247 kmem_cache_destroy(btrfs_path_cachep); 7248 if (btrfs_free_space_cachep) 7249 kmem_cache_destroy(btrfs_free_space_cachep); 7250 if (btrfs_delalloc_work_cachep) 7251 kmem_cache_destroy(btrfs_delalloc_work_cachep); 7252 } 7253 7254 int btrfs_init_cachep(void) 7255 { 7256 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7257 sizeof(struct btrfs_inode), 0, 7258 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7259 if (!btrfs_inode_cachep) 7260 goto fail; 7261 7262 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 7263 sizeof(struct btrfs_trans_handle), 0, 7264 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7265 if (!btrfs_trans_handle_cachep) 7266 goto fail; 7267 7268 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 7269 sizeof(struct btrfs_transaction), 0, 7270 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7271 if (!btrfs_transaction_cachep) 7272 goto fail; 7273 7274 btrfs_path_cachep = kmem_cache_create("btrfs_path", 7275 sizeof(struct btrfs_path), 0, 7276 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7277 if (!btrfs_path_cachep) 7278 goto fail; 7279 7280 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 7281 sizeof(struct btrfs_free_space), 0, 7282 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7283 if (!btrfs_free_space_cachep) 7284 goto fail; 7285 7286 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 7287 sizeof(struct btrfs_delalloc_work), 0, 7288 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 7289 NULL); 7290 if (!btrfs_delalloc_work_cachep) 7291 goto fail; 7292 7293 return 0; 7294 fail: 7295 btrfs_destroy_cachep(); 7296 return -ENOMEM; 7297 } 7298 7299 static int btrfs_getattr(struct vfsmount *mnt, 7300 struct dentry *dentry, struct kstat *stat) 7301 { 7302 struct inode *inode = dentry->d_inode; 7303 u32 blocksize = inode->i_sb->s_blocksize; 7304 7305 generic_fillattr(inode, stat); 7306 stat->dev = BTRFS_I(inode)->root->anon_dev; 7307 stat->blksize = PAGE_CACHE_SIZE; 7308 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 7309 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9; 7310 return 0; 7311 } 7312 7313 /* 7314 * If a file is moved, it will inherit the cow and compression flags of the new 7315 * directory. 7316 */ 7317 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 7318 { 7319 struct btrfs_inode *b_dir = BTRFS_I(dir); 7320 struct btrfs_inode *b_inode = BTRFS_I(inode); 7321 7322 if (b_dir->flags & BTRFS_INODE_NODATACOW) 7323 b_inode->flags |= BTRFS_INODE_NODATACOW; 7324 else 7325 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 7326 7327 if (b_dir->flags & BTRFS_INODE_COMPRESS) { 7328 b_inode->flags |= BTRFS_INODE_COMPRESS; 7329 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 7330 } else { 7331 b_inode->flags &= ~(BTRFS_INODE_COMPRESS | 7332 BTRFS_INODE_NOCOMPRESS); 7333 } 7334 } 7335 7336 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 7337 struct inode *new_dir, struct dentry *new_dentry) 7338 { 7339 struct btrfs_trans_handle *trans; 7340 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7341 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7342 struct inode *new_inode = new_dentry->d_inode; 7343 struct inode *old_inode = old_dentry->d_inode; 7344 struct timespec ctime = CURRENT_TIME; 7345 u64 index = 0; 7346 u64 root_objectid; 7347 int ret; 7348 u64 old_ino = btrfs_ino(old_inode); 7349 7350 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 7351 return -EPERM; 7352 7353 /* we only allow rename subvolume link between subvolumes */ 7354 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 7355 return -EXDEV; 7356 7357 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 7358 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 7359 return -ENOTEMPTY; 7360 7361 if (S_ISDIR(old_inode->i_mode) && new_inode && 7362 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 7363 return -ENOTEMPTY; 7364 7365 7366 /* check for collisions, even if the name isn't there */ 7367 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 7368 new_dentry->d_name.name, 7369 new_dentry->d_name.len); 7370 7371 if (ret) { 7372 if (ret == -EEXIST) { 7373 /* we shouldn't get 7374 * eexist without a new_inode */ 7375 if (!new_inode) { 7376 WARN_ON(1); 7377 return ret; 7378 } 7379 } else { 7380 /* maybe -EOVERFLOW */ 7381 return ret; 7382 } 7383 } 7384 ret = 0; 7385 7386 /* 7387 * we're using rename to replace one file with another. 7388 * and the replacement file is large. Start IO on it now so 7389 * we don't add too much work to the end of the transaction 7390 */ 7391 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 7392 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 7393 filemap_flush(old_inode->i_mapping); 7394 7395 /* close the racy window with snapshot create/destroy ioctl */ 7396 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7397 down_read(&root->fs_info->subvol_sem); 7398 /* 7399 * We want to reserve the absolute worst case amount of items. So if 7400 * both inodes are subvols and we need to unlink them then that would 7401 * require 4 item modifications, but if they are both normal inodes it 7402 * would require 5 item modifications, so we'll assume their normal 7403 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 7404 * should cover the worst case number of items we'll modify. 7405 */ 7406 trans = btrfs_start_transaction(root, 20); 7407 if (IS_ERR(trans)) { 7408 ret = PTR_ERR(trans); 7409 goto out_notrans; 7410 } 7411 7412 if (dest != root) 7413 btrfs_record_root_in_trans(trans, dest); 7414 7415 ret = btrfs_set_inode_index(new_dir, &index); 7416 if (ret) 7417 goto out_fail; 7418 7419 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7420 /* force full log commit if subvolume involved. */ 7421 root->fs_info->last_trans_log_full_commit = trans->transid; 7422 } else { 7423 ret = btrfs_insert_inode_ref(trans, dest, 7424 new_dentry->d_name.name, 7425 new_dentry->d_name.len, 7426 old_ino, 7427 btrfs_ino(new_dir), index); 7428 if (ret) 7429 goto out_fail; 7430 /* 7431 * this is an ugly little race, but the rename is required 7432 * to make sure that if we crash, the inode is either at the 7433 * old name or the new one. pinning the log transaction lets 7434 * us make sure we don't allow a log commit to come in after 7435 * we unlink the name but before we add the new name back in. 7436 */ 7437 btrfs_pin_log_trans(root); 7438 } 7439 /* 7440 * make sure the inode gets flushed if it is replacing 7441 * something. 7442 */ 7443 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7444 btrfs_add_ordered_operation(trans, root, old_inode); 7445 7446 inode_inc_iversion(old_dir); 7447 inode_inc_iversion(new_dir); 7448 inode_inc_iversion(old_inode); 7449 old_dir->i_ctime = old_dir->i_mtime = ctime; 7450 new_dir->i_ctime = new_dir->i_mtime = ctime; 7451 old_inode->i_ctime = ctime; 7452 7453 if (old_dentry->d_parent != new_dentry->d_parent) 7454 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7455 7456 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7457 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7458 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7459 old_dentry->d_name.name, 7460 old_dentry->d_name.len); 7461 } else { 7462 ret = __btrfs_unlink_inode(trans, root, old_dir, 7463 old_dentry->d_inode, 7464 old_dentry->d_name.name, 7465 old_dentry->d_name.len); 7466 if (!ret) 7467 ret = btrfs_update_inode(trans, root, old_inode); 7468 } 7469 if (ret) { 7470 btrfs_abort_transaction(trans, root, ret); 7471 goto out_fail; 7472 } 7473 7474 if (new_inode) { 7475 inode_inc_iversion(new_inode); 7476 new_inode->i_ctime = CURRENT_TIME; 7477 if (unlikely(btrfs_ino(new_inode) == 7478 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7479 root_objectid = BTRFS_I(new_inode)->location.objectid; 7480 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7481 root_objectid, 7482 new_dentry->d_name.name, 7483 new_dentry->d_name.len); 7484 BUG_ON(new_inode->i_nlink == 0); 7485 } else { 7486 ret = btrfs_unlink_inode(trans, dest, new_dir, 7487 new_dentry->d_inode, 7488 new_dentry->d_name.name, 7489 new_dentry->d_name.len); 7490 } 7491 if (!ret && new_inode->i_nlink == 0) { 7492 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7493 BUG_ON(ret); 7494 } 7495 if (ret) { 7496 btrfs_abort_transaction(trans, root, ret); 7497 goto out_fail; 7498 } 7499 } 7500 7501 fixup_inode_flags(new_dir, old_inode); 7502 7503 ret = btrfs_add_link(trans, new_dir, old_inode, 7504 new_dentry->d_name.name, 7505 new_dentry->d_name.len, 0, index); 7506 if (ret) { 7507 btrfs_abort_transaction(trans, root, ret); 7508 goto out_fail; 7509 } 7510 7511 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7512 struct dentry *parent = new_dentry->d_parent; 7513 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7514 btrfs_end_log_trans(root); 7515 } 7516 out_fail: 7517 btrfs_end_transaction(trans, root); 7518 out_notrans: 7519 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7520 up_read(&root->fs_info->subvol_sem); 7521 7522 return ret; 7523 } 7524 7525 static void btrfs_run_delalloc_work(struct btrfs_work *work) 7526 { 7527 struct btrfs_delalloc_work *delalloc_work; 7528 7529 delalloc_work = container_of(work, struct btrfs_delalloc_work, 7530 work); 7531 if (delalloc_work->wait) 7532 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 7533 else 7534 filemap_flush(delalloc_work->inode->i_mapping); 7535 7536 if (delalloc_work->delay_iput) 7537 btrfs_add_delayed_iput(delalloc_work->inode); 7538 else 7539 iput(delalloc_work->inode); 7540 complete(&delalloc_work->completion); 7541 } 7542 7543 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 7544 int wait, int delay_iput) 7545 { 7546 struct btrfs_delalloc_work *work; 7547 7548 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 7549 if (!work) 7550 return NULL; 7551 7552 init_completion(&work->completion); 7553 INIT_LIST_HEAD(&work->list); 7554 work->inode = inode; 7555 work->wait = wait; 7556 work->delay_iput = delay_iput; 7557 work->work.func = btrfs_run_delalloc_work; 7558 7559 return work; 7560 } 7561 7562 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 7563 { 7564 wait_for_completion(&work->completion); 7565 kmem_cache_free(btrfs_delalloc_work_cachep, work); 7566 } 7567 7568 /* 7569 * some fairly slow code that needs optimization. This walks the list 7570 * of all the inodes with pending delalloc and forces them to disk. 7571 */ 7572 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7573 { 7574 struct btrfs_inode *binode; 7575 struct inode *inode; 7576 struct btrfs_delalloc_work *work, *next; 7577 struct list_head works; 7578 struct list_head splice; 7579 int ret = 0; 7580 7581 if (root->fs_info->sb->s_flags & MS_RDONLY) 7582 return -EROFS; 7583 7584 INIT_LIST_HEAD(&works); 7585 INIT_LIST_HEAD(&splice); 7586 again: 7587 spin_lock(&root->fs_info->delalloc_lock); 7588 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 7589 while (!list_empty(&splice)) { 7590 binode = list_entry(splice.next, struct btrfs_inode, 7591 delalloc_inodes); 7592 7593 list_del_init(&binode->delalloc_inodes); 7594 7595 inode = igrab(&binode->vfs_inode); 7596 if (!inode) 7597 continue; 7598 7599 list_add_tail(&binode->delalloc_inodes, 7600 &root->fs_info->delalloc_inodes); 7601 spin_unlock(&root->fs_info->delalloc_lock); 7602 7603 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 7604 if (unlikely(!work)) { 7605 ret = -ENOMEM; 7606 goto out; 7607 } 7608 list_add_tail(&work->list, &works); 7609 btrfs_queue_worker(&root->fs_info->flush_workers, 7610 &work->work); 7611 7612 cond_resched(); 7613 spin_lock(&root->fs_info->delalloc_lock); 7614 } 7615 spin_unlock(&root->fs_info->delalloc_lock); 7616 7617 list_for_each_entry_safe(work, next, &works, list) { 7618 list_del_init(&work->list); 7619 btrfs_wait_and_free_delalloc_work(work); 7620 } 7621 7622 spin_lock(&root->fs_info->delalloc_lock); 7623 if (!list_empty(&root->fs_info->delalloc_inodes)) { 7624 spin_unlock(&root->fs_info->delalloc_lock); 7625 goto again; 7626 } 7627 spin_unlock(&root->fs_info->delalloc_lock); 7628 7629 /* the filemap_flush will queue IO into the worker threads, but 7630 * we have to make sure the IO is actually started and that 7631 * ordered extents get created before we return 7632 */ 7633 atomic_inc(&root->fs_info->async_submit_draining); 7634 while (atomic_read(&root->fs_info->nr_async_submits) || 7635 atomic_read(&root->fs_info->async_delalloc_pages)) { 7636 wait_event(root->fs_info->async_submit_wait, 7637 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7638 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7639 } 7640 atomic_dec(&root->fs_info->async_submit_draining); 7641 return 0; 7642 out: 7643 list_for_each_entry_safe(work, next, &works, list) { 7644 list_del_init(&work->list); 7645 btrfs_wait_and_free_delalloc_work(work); 7646 } 7647 7648 if (!list_empty_careful(&splice)) { 7649 spin_lock(&root->fs_info->delalloc_lock); 7650 list_splice_tail(&splice, &root->fs_info->delalloc_inodes); 7651 spin_unlock(&root->fs_info->delalloc_lock); 7652 } 7653 return ret; 7654 } 7655 7656 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7657 const char *symname) 7658 { 7659 struct btrfs_trans_handle *trans; 7660 struct btrfs_root *root = BTRFS_I(dir)->root; 7661 struct btrfs_path *path; 7662 struct btrfs_key key; 7663 struct inode *inode = NULL; 7664 int err; 7665 int drop_inode = 0; 7666 u64 objectid; 7667 u64 index = 0 ; 7668 int name_len; 7669 int datasize; 7670 unsigned long ptr; 7671 struct btrfs_file_extent_item *ei; 7672 struct extent_buffer *leaf; 7673 7674 name_len = strlen(symname) + 1; 7675 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7676 return -ENAMETOOLONG; 7677 7678 /* 7679 * 2 items for inode item and ref 7680 * 2 items for dir items 7681 * 1 item for xattr if selinux is on 7682 */ 7683 trans = btrfs_start_transaction(root, 5); 7684 if (IS_ERR(trans)) 7685 return PTR_ERR(trans); 7686 7687 err = btrfs_find_free_ino(root, &objectid); 7688 if (err) 7689 goto out_unlock; 7690 7691 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7692 dentry->d_name.len, btrfs_ino(dir), objectid, 7693 S_IFLNK|S_IRWXUGO, &index); 7694 if (IS_ERR(inode)) { 7695 err = PTR_ERR(inode); 7696 goto out_unlock; 7697 } 7698 7699 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7700 if (err) { 7701 drop_inode = 1; 7702 goto out_unlock; 7703 } 7704 7705 /* 7706 * If the active LSM wants to access the inode during 7707 * d_instantiate it needs these. Smack checks to see 7708 * if the filesystem supports xattrs by looking at the 7709 * ops vector. 7710 */ 7711 inode->i_fop = &btrfs_file_operations; 7712 inode->i_op = &btrfs_file_inode_operations; 7713 7714 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7715 if (err) 7716 drop_inode = 1; 7717 else { 7718 inode->i_mapping->a_ops = &btrfs_aops; 7719 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7720 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7721 } 7722 if (drop_inode) 7723 goto out_unlock; 7724 7725 path = btrfs_alloc_path(); 7726 if (!path) { 7727 err = -ENOMEM; 7728 drop_inode = 1; 7729 goto out_unlock; 7730 } 7731 key.objectid = btrfs_ino(inode); 7732 key.offset = 0; 7733 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7734 datasize = btrfs_file_extent_calc_inline_size(name_len); 7735 err = btrfs_insert_empty_item(trans, root, path, &key, 7736 datasize); 7737 if (err) { 7738 drop_inode = 1; 7739 btrfs_free_path(path); 7740 goto out_unlock; 7741 } 7742 leaf = path->nodes[0]; 7743 ei = btrfs_item_ptr(leaf, path->slots[0], 7744 struct btrfs_file_extent_item); 7745 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7746 btrfs_set_file_extent_type(leaf, ei, 7747 BTRFS_FILE_EXTENT_INLINE); 7748 btrfs_set_file_extent_encryption(leaf, ei, 0); 7749 btrfs_set_file_extent_compression(leaf, ei, 0); 7750 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7751 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7752 7753 ptr = btrfs_file_extent_inline_start(ei); 7754 write_extent_buffer(leaf, symname, ptr, name_len); 7755 btrfs_mark_buffer_dirty(leaf); 7756 btrfs_free_path(path); 7757 7758 inode->i_op = &btrfs_symlink_inode_operations; 7759 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7760 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7761 inode_set_bytes(inode, name_len); 7762 btrfs_i_size_write(inode, name_len - 1); 7763 err = btrfs_update_inode(trans, root, inode); 7764 if (err) 7765 drop_inode = 1; 7766 7767 out_unlock: 7768 if (!err) 7769 d_instantiate(dentry, inode); 7770 btrfs_end_transaction(trans, root); 7771 if (drop_inode) { 7772 inode_dec_link_count(inode); 7773 iput(inode); 7774 } 7775 btrfs_btree_balance_dirty(root); 7776 return err; 7777 } 7778 7779 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7780 u64 start, u64 num_bytes, u64 min_size, 7781 loff_t actual_len, u64 *alloc_hint, 7782 struct btrfs_trans_handle *trans) 7783 { 7784 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 7785 struct extent_map *em; 7786 struct btrfs_root *root = BTRFS_I(inode)->root; 7787 struct btrfs_key ins; 7788 u64 cur_offset = start; 7789 u64 i_size; 7790 int ret = 0; 7791 bool own_trans = true; 7792 7793 if (trans) 7794 own_trans = false; 7795 while (num_bytes > 0) { 7796 if (own_trans) { 7797 trans = btrfs_start_transaction(root, 3); 7798 if (IS_ERR(trans)) { 7799 ret = PTR_ERR(trans); 7800 break; 7801 } 7802 } 7803 7804 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7805 0, *alloc_hint, &ins, 1); 7806 if (ret) { 7807 if (own_trans) 7808 btrfs_end_transaction(trans, root); 7809 break; 7810 } 7811 7812 ret = insert_reserved_file_extent(trans, inode, 7813 cur_offset, ins.objectid, 7814 ins.offset, ins.offset, 7815 ins.offset, 0, 0, 0, 7816 BTRFS_FILE_EXTENT_PREALLOC); 7817 if (ret) { 7818 btrfs_abort_transaction(trans, root, ret); 7819 if (own_trans) 7820 btrfs_end_transaction(trans, root); 7821 break; 7822 } 7823 btrfs_drop_extent_cache(inode, cur_offset, 7824 cur_offset + ins.offset -1, 0); 7825 7826 em = alloc_extent_map(); 7827 if (!em) { 7828 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 7829 &BTRFS_I(inode)->runtime_flags); 7830 goto next; 7831 } 7832 7833 em->start = cur_offset; 7834 em->orig_start = cur_offset; 7835 em->len = ins.offset; 7836 em->block_start = ins.objectid; 7837 em->block_len = ins.offset; 7838 em->orig_block_len = ins.offset; 7839 em->bdev = root->fs_info->fs_devices->latest_bdev; 7840 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7841 em->generation = trans->transid; 7842 7843 while (1) { 7844 write_lock(&em_tree->lock); 7845 ret = add_extent_mapping(em_tree, em); 7846 if (!ret) 7847 list_move(&em->list, 7848 &em_tree->modified_extents); 7849 write_unlock(&em_tree->lock); 7850 if (ret != -EEXIST) 7851 break; 7852 btrfs_drop_extent_cache(inode, cur_offset, 7853 cur_offset + ins.offset - 1, 7854 0); 7855 } 7856 free_extent_map(em); 7857 next: 7858 num_bytes -= ins.offset; 7859 cur_offset += ins.offset; 7860 *alloc_hint = ins.objectid + ins.offset; 7861 7862 inode_inc_iversion(inode); 7863 inode->i_ctime = CURRENT_TIME; 7864 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7865 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7866 (actual_len > inode->i_size) && 7867 (cur_offset > inode->i_size)) { 7868 if (cur_offset > actual_len) 7869 i_size = actual_len; 7870 else 7871 i_size = cur_offset; 7872 i_size_write(inode, i_size); 7873 btrfs_ordered_update_i_size(inode, i_size, NULL); 7874 } 7875 7876 ret = btrfs_update_inode(trans, root, inode); 7877 7878 if (ret) { 7879 btrfs_abort_transaction(trans, root, ret); 7880 if (own_trans) 7881 btrfs_end_transaction(trans, root); 7882 break; 7883 } 7884 7885 if (own_trans) 7886 btrfs_end_transaction(trans, root); 7887 } 7888 return ret; 7889 } 7890 7891 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7892 u64 start, u64 num_bytes, u64 min_size, 7893 loff_t actual_len, u64 *alloc_hint) 7894 { 7895 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7896 min_size, actual_len, alloc_hint, 7897 NULL); 7898 } 7899 7900 int btrfs_prealloc_file_range_trans(struct inode *inode, 7901 struct btrfs_trans_handle *trans, int mode, 7902 u64 start, u64 num_bytes, u64 min_size, 7903 loff_t actual_len, u64 *alloc_hint) 7904 { 7905 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7906 min_size, actual_len, alloc_hint, trans); 7907 } 7908 7909 static int btrfs_set_page_dirty(struct page *page) 7910 { 7911 return __set_page_dirty_nobuffers(page); 7912 } 7913 7914 static int btrfs_permission(struct inode *inode, int mask) 7915 { 7916 struct btrfs_root *root = BTRFS_I(inode)->root; 7917 umode_t mode = inode->i_mode; 7918 7919 if (mask & MAY_WRITE && 7920 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7921 if (btrfs_root_readonly(root)) 7922 return -EROFS; 7923 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7924 return -EACCES; 7925 } 7926 return generic_permission(inode, mask); 7927 } 7928 7929 static const struct inode_operations btrfs_dir_inode_operations = { 7930 .getattr = btrfs_getattr, 7931 .lookup = btrfs_lookup, 7932 .create = btrfs_create, 7933 .unlink = btrfs_unlink, 7934 .link = btrfs_link, 7935 .mkdir = btrfs_mkdir, 7936 .rmdir = btrfs_rmdir, 7937 .rename = btrfs_rename, 7938 .symlink = btrfs_symlink, 7939 .setattr = btrfs_setattr, 7940 .mknod = btrfs_mknod, 7941 .setxattr = btrfs_setxattr, 7942 .getxattr = btrfs_getxattr, 7943 .listxattr = btrfs_listxattr, 7944 .removexattr = btrfs_removexattr, 7945 .permission = btrfs_permission, 7946 .get_acl = btrfs_get_acl, 7947 }; 7948 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7949 .lookup = btrfs_lookup, 7950 .permission = btrfs_permission, 7951 .get_acl = btrfs_get_acl, 7952 }; 7953 7954 static const struct file_operations btrfs_dir_file_operations = { 7955 .llseek = generic_file_llseek, 7956 .read = generic_read_dir, 7957 .readdir = btrfs_real_readdir, 7958 .unlocked_ioctl = btrfs_ioctl, 7959 #ifdef CONFIG_COMPAT 7960 .compat_ioctl = btrfs_ioctl, 7961 #endif 7962 .release = btrfs_release_file, 7963 .fsync = btrfs_sync_file, 7964 }; 7965 7966 static struct extent_io_ops btrfs_extent_io_ops = { 7967 .fill_delalloc = run_delalloc_range, 7968 .submit_bio_hook = btrfs_submit_bio_hook, 7969 .merge_bio_hook = btrfs_merge_bio_hook, 7970 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7971 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7972 .writepage_start_hook = btrfs_writepage_start_hook, 7973 .set_bit_hook = btrfs_set_bit_hook, 7974 .clear_bit_hook = btrfs_clear_bit_hook, 7975 .merge_extent_hook = btrfs_merge_extent_hook, 7976 .split_extent_hook = btrfs_split_extent_hook, 7977 }; 7978 7979 /* 7980 * btrfs doesn't support the bmap operation because swapfiles 7981 * use bmap to make a mapping of extents in the file. They assume 7982 * these extents won't change over the life of the file and they 7983 * use the bmap result to do IO directly to the drive. 7984 * 7985 * the btrfs bmap call would return logical addresses that aren't 7986 * suitable for IO and they also will change frequently as COW 7987 * operations happen. So, swapfile + btrfs == corruption. 7988 * 7989 * For now we're avoiding this by dropping bmap. 7990 */ 7991 static const struct address_space_operations btrfs_aops = { 7992 .readpage = btrfs_readpage, 7993 .writepage = btrfs_writepage, 7994 .writepages = btrfs_writepages, 7995 .readpages = btrfs_readpages, 7996 .direct_IO = btrfs_direct_IO, 7997 .invalidatepage = btrfs_invalidatepage, 7998 .releasepage = btrfs_releasepage, 7999 .set_page_dirty = btrfs_set_page_dirty, 8000 .error_remove_page = generic_error_remove_page, 8001 }; 8002 8003 static const struct address_space_operations btrfs_symlink_aops = { 8004 .readpage = btrfs_readpage, 8005 .writepage = btrfs_writepage, 8006 .invalidatepage = btrfs_invalidatepage, 8007 .releasepage = btrfs_releasepage, 8008 }; 8009 8010 static const struct inode_operations btrfs_file_inode_operations = { 8011 .getattr = btrfs_getattr, 8012 .setattr = btrfs_setattr, 8013 .setxattr = btrfs_setxattr, 8014 .getxattr = btrfs_getxattr, 8015 .listxattr = btrfs_listxattr, 8016 .removexattr = btrfs_removexattr, 8017 .permission = btrfs_permission, 8018 .fiemap = btrfs_fiemap, 8019 .get_acl = btrfs_get_acl, 8020 .update_time = btrfs_update_time, 8021 }; 8022 static const struct inode_operations btrfs_special_inode_operations = { 8023 .getattr = btrfs_getattr, 8024 .setattr = btrfs_setattr, 8025 .permission = btrfs_permission, 8026 .setxattr = btrfs_setxattr, 8027 .getxattr = btrfs_getxattr, 8028 .listxattr = btrfs_listxattr, 8029 .removexattr = btrfs_removexattr, 8030 .get_acl = btrfs_get_acl, 8031 .update_time = btrfs_update_time, 8032 }; 8033 static const struct inode_operations btrfs_symlink_inode_operations = { 8034 .readlink = generic_readlink, 8035 .follow_link = page_follow_link_light, 8036 .put_link = page_put_link, 8037 .getattr = btrfs_getattr, 8038 .setattr = btrfs_setattr, 8039 .permission = btrfs_permission, 8040 .setxattr = btrfs_setxattr, 8041 .getxattr = btrfs_getxattr, 8042 .listxattr = btrfs_listxattr, 8043 .removexattr = btrfs_removexattr, 8044 .get_acl = btrfs_get_acl, 8045 .update_time = btrfs_update_time, 8046 }; 8047 8048 const struct dentry_operations btrfs_dentry_operations = { 8049 .d_delete = btrfs_dentry_delete, 8050 .d_release = btrfs_dentry_release, 8051 }; 8052