1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/smp_lock.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "ref-cache.h" 52 #include "compression.h" 53 #include "locking.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 static struct inode_operations btrfs_dir_inode_operations; 61 static struct inode_operations btrfs_symlink_inode_operations; 62 static struct inode_operations btrfs_dir_ro_inode_operations; 63 static struct inode_operations btrfs_special_inode_operations; 64 static struct inode_operations btrfs_file_inode_operations; 65 static struct address_space_operations btrfs_aops; 66 static struct address_space_operations btrfs_symlink_aops; 67 static struct file_operations btrfs_dir_file_operations; 68 static struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_transaction_cachep; 73 struct kmem_cache *btrfs_bit_radix_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 76 #define S_SHIFT 12 77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static void btrfs_truncate(struct inode *inode); 88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 89 static noinline int cow_file_range(struct inode *inode, 90 struct page *locked_page, 91 u64 start, u64 end, int *page_started, 92 unsigned long *nr_written, int unlock); 93 94 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir) 95 { 96 int err; 97 98 err = btrfs_init_acl(inode, dir); 99 if (!err) 100 err = btrfs_xattr_security_init(inode, dir); 101 return err; 102 } 103 104 /* 105 * this does all the hard work for inserting an inline extent into 106 * the btree. The caller should have done a btrfs_drop_extents so that 107 * no overlapping inline items exist in the btree 108 */ 109 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 110 struct btrfs_root *root, struct inode *inode, 111 u64 start, size_t size, size_t compressed_size, 112 struct page **compressed_pages) 113 { 114 struct btrfs_key key; 115 struct btrfs_path *path; 116 struct extent_buffer *leaf; 117 struct page *page = NULL; 118 char *kaddr; 119 unsigned long ptr; 120 struct btrfs_file_extent_item *ei; 121 int err = 0; 122 int ret; 123 size_t cur_size = size; 124 size_t datasize; 125 unsigned long offset; 126 int use_compress = 0; 127 128 if (compressed_size && compressed_pages) { 129 use_compress = 1; 130 cur_size = compressed_size; 131 } 132 133 path = btrfs_alloc_path(); 134 if (!path) 135 return -ENOMEM; 136 137 path->leave_spinning = 1; 138 btrfs_set_trans_block_group(trans, inode); 139 140 key.objectid = inode->i_ino; 141 key.offset = start; 142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 143 datasize = btrfs_file_extent_calc_inline_size(cur_size); 144 145 inode_add_bytes(inode, size); 146 ret = btrfs_insert_empty_item(trans, root, path, &key, 147 datasize); 148 BUG_ON(ret); 149 if (ret) { 150 err = ret; 151 goto fail; 152 } 153 leaf = path->nodes[0]; 154 ei = btrfs_item_ptr(leaf, path->slots[0], 155 struct btrfs_file_extent_item); 156 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 158 btrfs_set_file_extent_encryption(leaf, ei, 0); 159 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 160 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 161 ptr = btrfs_file_extent_inline_start(ei); 162 163 if (use_compress) { 164 struct page *cpage; 165 int i = 0; 166 while (compressed_size > 0) { 167 cpage = compressed_pages[i]; 168 cur_size = min_t(unsigned long, compressed_size, 169 PAGE_CACHE_SIZE); 170 171 kaddr = kmap_atomic(cpage, KM_USER0); 172 write_extent_buffer(leaf, kaddr, ptr, cur_size); 173 kunmap_atomic(kaddr, KM_USER0); 174 175 i++; 176 ptr += cur_size; 177 compressed_size -= cur_size; 178 } 179 btrfs_set_file_extent_compression(leaf, ei, 180 BTRFS_COMPRESS_ZLIB); 181 } else { 182 page = find_get_page(inode->i_mapping, 183 start >> PAGE_CACHE_SHIFT); 184 btrfs_set_file_extent_compression(leaf, ei, 0); 185 kaddr = kmap_atomic(page, KM_USER0); 186 offset = start & (PAGE_CACHE_SIZE - 1); 187 write_extent_buffer(leaf, kaddr + offset, ptr, size); 188 kunmap_atomic(kaddr, KM_USER0); 189 page_cache_release(page); 190 } 191 btrfs_mark_buffer_dirty(leaf); 192 btrfs_free_path(path); 193 194 BTRFS_I(inode)->disk_i_size = inode->i_size; 195 btrfs_update_inode(trans, root, inode); 196 return 0; 197 fail: 198 btrfs_free_path(path); 199 return err; 200 } 201 202 203 /* 204 * conditionally insert an inline extent into the file. This 205 * does the checks required to make sure the data is small enough 206 * to fit as an inline extent. 207 */ 208 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 209 struct btrfs_root *root, 210 struct inode *inode, u64 start, u64 end, 211 size_t compressed_size, 212 struct page **compressed_pages) 213 { 214 u64 isize = i_size_read(inode); 215 u64 actual_end = min(end + 1, isize); 216 u64 inline_len = actual_end - start; 217 u64 aligned_end = (end + root->sectorsize - 1) & 218 ~((u64)root->sectorsize - 1); 219 u64 hint_byte; 220 u64 data_len = inline_len; 221 int ret; 222 223 if (compressed_size) 224 data_len = compressed_size; 225 226 if (start > 0 || 227 actual_end >= PAGE_CACHE_SIZE || 228 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 229 (!compressed_size && 230 (actual_end & (root->sectorsize - 1)) == 0) || 231 end + 1 < isize || 232 data_len > root->fs_info->max_inline) { 233 return 1; 234 } 235 236 ret = btrfs_drop_extents(trans, root, inode, start, 237 aligned_end, start, &hint_byte); 238 BUG_ON(ret); 239 240 if (isize > actual_end) 241 inline_len = min_t(u64, isize, actual_end); 242 ret = insert_inline_extent(trans, root, inode, start, 243 inline_len, compressed_size, 244 compressed_pages); 245 BUG_ON(ret); 246 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 247 return 0; 248 } 249 250 struct async_extent { 251 u64 start; 252 u64 ram_size; 253 u64 compressed_size; 254 struct page **pages; 255 unsigned long nr_pages; 256 struct list_head list; 257 }; 258 259 struct async_cow { 260 struct inode *inode; 261 struct btrfs_root *root; 262 struct page *locked_page; 263 u64 start; 264 u64 end; 265 struct list_head extents; 266 struct btrfs_work work; 267 }; 268 269 static noinline int add_async_extent(struct async_cow *cow, 270 u64 start, u64 ram_size, 271 u64 compressed_size, 272 struct page **pages, 273 unsigned long nr_pages) 274 { 275 struct async_extent *async_extent; 276 277 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 278 async_extent->start = start; 279 async_extent->ram_size = ram_size; 280 async_extent->compressed_size = compressed_size; 281 async_extent->pages = pages; 282 async_extent->nr_pages = nr_pages; 283 list_add_tail(&async_extent->list, &cow->extents); 284 return 0; 285 } 286 287 /* 288 * we create compressed extents in two phases. The first 289 * phase compresses a range of pages that have already been 290 * locked (both pages and state bits are locked). 291 * 292 * This is done inside an ordered work queue, and the compression 293 * is spread across many cpus. The actual IO submission is step 294 * two, and the ordered work queue takes care of making sure that 295 * happens in the same order things were put onto the queue by 296 * writepages and friends. 297 * 298 * If this code finds it can't get good compression, it puts an 299 * entry onto the work queue to write the uncompressed bytes. This 300 * makes sure that both compressed inodes and uncompressed inodes 301 * are written in the same order that pdflush sent them down. 302 */ 303 static noinline int compress_file_range(struct inode *inode, 304 struct page *locked_page, 305 u64 start, u64 end, 306 struct async_cow *async_cow, 307 int *num_added) 308 { 309 struct btrfs_root *root = BTRFS_I(inode)->root; 310 struct btrfs_trans_handle *trans; 311 u64 num_bytes; 312 u64 orig_start; 313 u64 disk_num_bytes; 314 u64 blocksize = root->sectorsize; 315 u64 actual_end; 316 u64 isize = i_size_read(inode); 317 int ret = 0; 318 struct page **pages = NULL; 319 unsigned long nr_pages; 320 unsigned long nr_pages_ret = 0; 321 unsigned long total_compressed = 0; 322 unsigned long total_in = 0; 323 unsigned long max_compressed = 128 * 1024; 324 unsigned long max_uncompressed = 128 * 1024; 325 int i; 326 int will_compress; 327 328 orig_start = start; 329 330 actual_end = min_t(u64, isize, end + 1); 331 again: 332 will_compress = 0; 333 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 334 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 335 336 /* 337 * we don't want to send crud past the end of i_size through 338 * compression, that's just a waste of CPU time. So, if the 339 * end of the file is before the start of our current 340 * requested range of bytes, we bail out to the uncompressed 341 * cleanup code that can deal with all of this. 342 * 343 * It isn't really the fastest way to fix things, but this is a 344 * very uncommon corner. 345 */ 346 if (actual_end <= start) 347 goto cleanup_and_bail_uncompressed; 348 349 total_compressed = actual_end - start; 350 351 /* we want to make sure that amount of ram required to uncompress 352 * an extent is reasonable, so we limit the total size in ram 353 * of a compressed extent to 128k. This is a crucial number 354 * because it also controls how easily we can spread reads across 355 * cpus for decompression. 356 * 357 * We also want to make sure the amount of IO required to do 358 * a random read is reasonably small, so we limit the size of 359 * a compressed extent to 128k. 360 */ 361 total_compressed = min(total_compressed, max_uncompressed); 362 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 363 num_bytes = max(blocksize, num_bytes); 364 disk_num_bytes = num_bytes; 365 total_in = 0; 366 ret = 0; 367 368 /* 369 * we do compression for mount -o compress and when the 370 * inode has not been flagged as nocompress. This flag can 371 * change at any time if we discover bad compression ratios. 372 */ 373 if (!btrfs_test_flag(inode, NOCOMPRESS) && 374 btrfs_test_opt(root, COMPRESS)) { 375 WARN_ON(pages); 376 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 377 378 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 379 total_compressed, pages, 380 nr_pages, &nr_pages_ret, 381 &total_in, 382 &total_compressed, 383 max_compressed); 384 385 if (!ret) { 386 unsigned long offset = total_compressed & 387 (PAGE_CACHE_SIZE - 1); 388 struct page *page = pages[nr_pages_ret - 1]; 389 char *kaddr; 390 391 /* zero the tail end of the last page, we might be 392 * sending it down to disk 393 */ 394 if (offset) { 395 kaddr = kmap_atomic(page, KM_USER0); 396 memset(kaddr + offset, 0, 397 PAGE_CACHE_SIZE - offset); 398 kunmap_atomic(kaddr, KM_USER0); 399 } 400 will_compress = 1; 401 } 402 } 403 if (start == 0) { 404 trans = btrfs_join_transaction(root, 1); 405 BUG_ON(!trans); 406 btrfs_set_trans_block_group(trans, inode); 407 408 /* lets try to make an inline extent */ 409 if (ret || total_in < (actual_end - start)) { 410 /* we didn't compress the entire range, try 411 * to make an uncompressed inline extent. 412 */ 413 ret = cow_file_range_inline(trans, root, inode, 414 start, end, 0, NULL); 415 } else { 416 /* try making a compressed inline extent */ 417 ret = cow_file_range_inline(trans, root, inode, 418 start, end, 419 total_compressed, pages); 420 } 421 btrfs_end_transaction(trans, root); 422 if (ret == 0) { 423 /* 424 * inline extent creation worked, we don't need 425 * to create any more async work items. Unlock 426 * and free up our temp pages. 427 */ 428 extent_clear_unlock_delalloc(inode, 429 &BTRFS_I(inode)->io_tree, 430 start, end, NULL, 1, 0, 431 0, 1, 1, 1); 432 ret = 0; 433 goto free_pages_out; 434 } 435 } 436 437 if (will_compress) { 438 /* 439 * we aren't doing an inline extent round the compressed size 440 * up to a block size boundary so the allocator does sane 441 * things 442 */ 443 total_compressed = (total_compressed + blocksize - 1) & 444 ~(blocksize - 1); 445 446 /* 447 * one last check to make sure the compression is really a 448 * win, compare the page count read with the blocks on disk 449 */ 450 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 451 ~(PAGE_CACHE_SIZE - 1); 452 if (total_compressed >= total_in) { 453 will_compress = 0; 454 } else { 455 disk_num_bytes = total_compressed; 456 num_bytes = total_in; 457 } 458 } 459 if (!will_compress && pages) { 460 /* 461 * the compression code ran but failed to make things smaller, 462 * free any pages it allocated and our page pointer array 463 */ 464 for (i = 0; i < nr_pages_ret; i++) { 465 WARN_ON(pages[i]->mapping); 466 page_cache_release(pages[i]); 467 } 468 kfree(pages); 469 pages = NULL; 470 total_compressed = 0; 471 nr_pages_ret = 0; 472 473 /* flag the file so we don't compress in the future */ 474 btrfs_set_flag(inode, NOCOMPRESS); 475 } 476 if (will_compress) { 477 *num_added += 1; 478 479 /* the async work queues will take care of doing actual 480 * allocation on disk for these compressed pages, 481 * and will submit them to the elevator. 482 */ 483 add_async_extent(async_cow, start, num_bytes, 484 total_compressed, pages, nr_pages_ret); 485 486 if (start + num_bytes < end && start + num_bytes < actual_end) { 487 start += num_bytes; 488 pages = NULL; 489 cond_resched(); 490 goto again; 491 } 492 } else { 493 cleanup_and_bail_uncompressed: 494 /* 495 * No compression, but we still need to write the pages in 496 * the file we've been given so far. redirty the locked 497 * page if it corresponds to our extent and set things up 498 * for the async work queue to run cow_file_range to do 499 * the normal delalloc dance 500 */ 501 if (page_offset(locked_page) >= start && 502 page_offset(locked_page) <= end) { 503 __set_page_dirty_nobuffers(locked_page); 504 /* unlocked later on in the async handlers */ 505 } 506 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 507 *num_added += 1; 508 } 509 510 out: 511 return 0; 512 513 free_pages_out: 514 for (i = 0; i < nr_pages_ret; i++) { 515 WARN_ON(pages[i]->mapping); 516 page_cache_release(pages[i]); 517 } 518 kfree(pages); 519 520 goto out; 521 } 522 523 /* 524 * phase two of compressed writeback. This is the ordered portion 525 * of the code, which only gets called in the order the work was 526 * queued. We walk all the async extents created by compress_file_range 527 * and send them down to the disk. 528 */ 529 static noinline int submit_compressed_extents(struct inode *inode, 530 struct async_cow *async_cow) 531 { 532 struct async_extent *async_extent; 533 u64 alloc_hint = 0; 534 struct btrfs_trans_handle *trans; 535 struct btrfs_key ins; 536 struct extent_map *em; 537 struct btrfs_root *root = BTRFS_I(inode)->root; 538 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 539 struct extent_io_tree *io_tree; 540 int ret; 541 542 if (list_empty(&async_cow->extents)) 543 return 0; 544 545 trans = btrfs_join_transaction(root, 1); 546 547 while (!list_empty(&async_cow->extents)) { 548 async_extent = list_entry(async_cow->extents.next, 549 struct async_extent, list); 550 list_del(&async_extent->list); 551 552 io_tree = &BTRFS_I(inode)->io_tree; 553 554 /* did the compression code fall back to uncompressed IO? */ 555 if (!async_extent->pages) { 556 int page_started = 0; 557 unsigned long nr_written = 0; 558 559 lock_extent(io_tree, async_extent->start, 560 async_extent->start + 561 async_extent->ram_size - 1, GFP_NOFS); 562 563 /* allocate blocks */ 564 cow_file_range(inode, async_cow->locked_page, 565 async_extent->start, 566 async_extent->start + 567 async_extent->ram_size - 1, 568 &page_started, &nr_written, 0); 569 570 /* 571 * if page_started, cow_file_range inserted an 572 * inline extent and took care of all the unlocking 573 * and IO for us. Otherwise, we need to submit 574 * all those pages down to the drive. 575 */ 576 if (!page_started) 577 extent_write_locked_range(io_tree, 578 inode, async_extent->start, 579 async_extent->start + 580 async_extent->ram_size - 1, 581 btrfs_get_extent, 582 WB_SYNC_ALL); 583 kfree(async_extent); 584 cond_resched(); 585 continue; 586 } 587 588 lock_extent(io_tree, async_extent->start, 589 async_extent->start + async_extent->ram_size - 1, 590 GFP_NOFS); 591 /* 592 * here we're doing allocation and writeback of the 593 * compressed pages 594 */ 595 btrfs_drop_extent_cache(inode, async_extent->start, 596 async_extent->start + 597 async_extent->ram_size - 1, 0); 598 599 ret = btrfs_reserve_extent(trans, root, 600 async_extent->compressed_size, 601 async_extent->compressed_size, 602 0, alloc_hint, 603 (u64)-1, &ins, 1); 604 BUG_ON(ret); 605 em = alloc_extent_map(GFP_NOFS); 606 em->start = async_extent->start; 607 em->len = async_extent->ram_size; 608 em->orig_start = em->start; 609 610 em->block_start = ins.objectid; 611 em->block_len = ins.offset; 612 em->bdev = root->fs_info->fs_devices->latest_bdev; 613 set_bit(EXTENT_FLAG_PINNED, &em->flags); 614 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 615 616 while (1) { 617 spin_lock(&em_tree->lock); 618 ret = add_extent_mapping(em_tree, em); 619 spin_unlock(&em_tree->lock); 620 if (ret != -EEXIST) { 621 free_extent_map(em); 622 break; 623 } 624 btrfs_drop_extent_cache(inode, async_extent->start, 625 async_extent->start + 626 async_extent->ram_size - 1, 0); 627 } 628 629 ret = btrfs_add_ordered_extent(inode, async_extent->start, 630 ins.objectid, 631 async_extent->ram_size, 632 ins.offset, 633 BTRFS_ORDERED_COMPRESSED); 634 BUG_ON(ret); 635 636 btrfs_end_transaction(trans, root); 637 638 /* 639 * clear dirty, set writeback and unlock the pages. 640 */ 641 extent_clear_unlock_delalloc(inode, 642 &BTRFS_I(inode)->io_tree, 643 async_extent->start, 644 async_extent->start + 645 async_extent->ram_size - 1, 646 NULL, 1, 1, 0, 1, 1, 0); 647 648 ret = btrfs_submit_compressed_write(inode, 649 async_extent->start, 650 async_extent->ram_size, 651 ins.objectid, 652 ins.offset, async_extent->pages, 653 async_extent->nr_pages); 654 655 BUG_ON(ret); 656 trans = btrfs_join_transaction(root, 1); 657 alloc_hint = ins.objectid + ins.offset; 658 kfree(async_extent); 659 cond_resched(); 660 } 661 662 btrfs_end_transaction(trans, root); 663 return 0; 664 } 665 666 /* 667 * when extent_io.c finds a delayed allocation range in the file, 668 * the call backs end up in this code. The basic idea is to 669 * allocate extents on disk for the range, and create ordered data structs 670 * in ram to track those extents. 671 * 672 * locked_page is the page that writepage had locked already. We use 673 * it to make sure we don't do extra locks or unlocks. 674 * 675 * *page_started is set to one if we unlock locked_page and do everything 676 * required to start IO on it. It may be clean and already done with 677 * IO when we return. 678 */ 679 static noinline int cow_file_range(struct inode *inode, 680 struct page *locked_page, 681 u64 start, u64 end, int *page_started, 682 unsigned long *nr_written, 683 int unlock) 684 { 685 struct btrfs_root *root = BTRFS_I(inode)->root; 686 struct btrfs_trans_handle *trans; 687 u64 alloc_hint = 0; 688 u64 num_bytes; 689 unsigned long ram_size; 690 u64 disk_num_bytes; 691 u64 cur_alloc_size; 692 u64 blocksize = root->sectorsize; 693 u64 actual_end; 694 u64 isize = i_size_read(inode); 695 struct btrfs_key ins; 696 struct extent_map *em; 697 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 698 int ret = 0; 699 700 trans = btrfs_join_transaction(root, 1); 701 BUG_ON(!trans); 702 btrfs_set_trans_block_group(trans, inode); 703 704 actual_end = min_t(u64, isize, end + 1); 705 706 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 707 num_bytes = max(blocksize, num_bytes); 708 disk_num_bytes = num_bytes; 709 ret = 0; 710 711 if (start == 0) { 712 /* lets try to make an inline extent */ 713 ret = cow_file_range_inline(trans, root, inode, 714 start, end, 0, NULL); 715 if (ret == 0) { 716 extent_clear_unlock_delalloc(inode, 717 &BTRFS_I(inode)->io_tree, 718 start, end, NULL, 1, 1, 719 1, 1, 1, 1); 720 *nr_written = *nr_written + 721 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 722 *page_started = 1; 723 ret = 0; 724 goto out; 725 } 726 } 727 728 BUG_ON(disk_num_bytes > 729 btrfs_super_total_bytes(&root->fs_info->super_copy)); 730 731 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 732 733 while (disk_num_bytes > 0) { 734 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 735 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 736 root->sectorsize, 0, alloc_hint, 737 (u64)-1, &ins, 1); 738 BUG_ON(ret); 739 740 em = alloc_extent_map(GFP_NOFS); 741 em->start = start; 742 em->orig_start = em->start; 743 744 ram_size = ins.offset; 745 em->len = ins.offset; 746 747 em->block_start = ins.objectid; 748 em->block_len = ins.offset; 749 em->bdev = root->fs_info->fs_devices->latest_bdev; 750 set_bit(EXTENT_FLAG_PINNED, &em->flags); 751 752 while (1) { 753 spin_lock(&em_tree->lock); 754 ret = add_extent_mapping(em_tree, em); 755 spin_unlock(&em_tree->lock); 756 if (ret != -EEXIST) { 757 free_extent_map(em); 758 break; 759 } 760 btrfs_drop_extent_cache(inode, start, 761 start + ram_size - 1, 0); 762 } 763 764 cur_alloc_size = ins.offset; 765 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 766 ram_size, cur_alloc_size, 0); 767 BUG_ON(ret); 768 769 if (root->root_key.objectid == 770 BTRFS_DATA_RELOC_TREE_OBJECTID) { 771 ret = btrfs_reloc_clone_csums(inode, start, 772 cur_alloc_size); 773 BUG_ON(ret); 774 } 775 776 if (disk_num_bytes < cur_alloc_size) 777 break; 778 779 /* we're not doing compressed IO, don't unlock the first 780 * page (which the caller expects to stay locked), don't 781 * clear any dirty bits and don't set any writeback bits 782 */ 783 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 784 start, start + ram_size - 1, 785 locked_page, unlock, 1, 786 1, 0, 0, 0); 787 disk_num_bytes -= cur_alloc_size; 788 num_bytes -= cur_alloc_size; 789 alloc_hint = ins.objectid + ins.offset; 790 start += cur_alloc_size; 791 } 792 out: 793 ret = 0; 794 btrfs_end_transaction(trans, root); 795 796 return ret; 797 } 798 799 /* 800 * work queue call back to started compression on a file and pages 801 */ 802 static noinline void async_cow_start(struct btrfs_work *work) 803 { 804 struct async_cow *async_cow; 805 int num_added = 0; 806 async_cow = container_of(work, struct async_cow, work); 807 808 compress_file_range(async_cow->inode, async_cow->locked_page, 809 async_cow->start, async_cow->end, async_cow, 810 &num_added); 811 if (num_added == 0) 812 async_cow->inode = NULL; 813 } 814 815 /* 816 * work queue call back to submit previously compressed pages 817 */ 818 static noinline void async_cow_submit(struct btrfs_work *work) 819 { 820 struct async_cow *async_cow; 821 struct btrfs_root *root; 822 unsigned long nr_pages; 823 824 async_cow = container_of(work, struct async_cow, work); 825 826 root = async_cow->root; 827 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 828 PAGE_CACHE_SHIFT; 829 830 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 831 832 if (atomic_read(&root->fs_info->async_delalloc_pages) < 833 5 * 1042 * 1024 && 834 waitqueue_active(&root->fs_info->async_submit_wait)) 835 wake_up(&root->fs_info->async_submit_wait); 836 837 if (async_cow->inode) 838 submit_compressed_extents(async_cow->inode, async_cow); 839 } 840 841 static noinline void async_cow_free(struct btrfs_work *work) 842 { 843 struct async_cow *async_cow; 844 async_cow = container_of(work, struct async_cow, work); 845 kfree(async_cow); 846 } 847 848 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 849 u64 start, u64 end, int *page_started, 850 unsigned long *nr_written) 851 { 852 struct async_cow *async_cow; 853 struct btrfs_root *root = BTRFS_I(inode)->root; 854 unsigned long nr_pages; 855 u64 cur_end; 856 int limit = 10 * 1024 * 1042; 857 858 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 859 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 860 while (start < end) { 861 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 862 async_cow->inode = inode; 863 async_cow->root = root; 864 async_cow->locked_page = locked_page; 865 async_cow->start = start; 866 867 if (btrfs_test_flag(inode, NOCOMPRESS)) 868 cur_end = end; 869 else 870 cur_end = min(end, start + 512 * 1024 - 1); 871 872 async_cow->end = cur_end; 873 INIT_LIST_HEAD(&async_cow->extents); 874 875 async_cow->work.func = async_cow_start; 876 async_cow->work.ordered_func = async_cow_submit; 877 async_cow->work.ordered_free = async_cow_free; 878 async_cow->work.flags = 0; 879 880 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 881 PAGE_CACHE_SHIFT; 882 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 883 884 btrfs_queue_worker(&root->fs_info->delalloc_workers, 885 &async_cow->work); 886 887 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 888 wait_event(root->fs_info->async_submit_wait, 889 (atomic_read(&root->fs_info->async_delalloc_pages) < 890 limit)); 891 } 892 893 while (atomic_read(&root->fs_info->async_submit_draining) && 894 atomic_read(&root->fs_info->async_delalloc_pages)) { 895 wait_event(root->fs_info->async_submit_wait, 896 (atomic_read(&root->fs_info->async_delalloc_pages) == 897 0)); 898 } 899 900 *nr_written += nr_pages; 901 start = cur_end + 1; 902 } 903 *page_started = 1; 904 return 0; 905 } 906 907 static noinline int csum_exist_in_range(struct btrfs_root *root, 908 u64 bytenr, u64 num_bytes) 909 { 910 int ret; 911 struct btrfs_ordered_sum *sums; 912 LIST_HEAD(list); 913 914 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 915 bytenr + num_bytes - 1, &list); 916 if (ret == 0 && list_empty(&list)) 917 return 0; 918 919 while (!list_empty(&list)) { 920 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 921 list_del(&sums->list); 922 kfree(sums); 923 } 924 return 1; 925 } 926 927 /* 928 * when nowcow writeback call back. This checks for snapshots or COW copies 929 * of the extents that exist in the file, and COWs the file as required. 930 * 931 * If no cow copies or snapshots exist, we write directly to the existing 932 * blocks on disk 933 */ 934 static noinline int run_delalloc_nocow(struct inode *inode, 935 struct page *locked_page, 936 u64 start, u64 end, int *page_started, int force, 937 unsigned long *nr_written) 938 { 939 struct btrfs_root *root = BTRFS_I(inode)->root; 940 struct btrfs_trans_handle *trans; 941 struct extent_buffer *leaf; 942 struct btrfs_path *path; 943 struct btrfs_file_extent_item *fi; 944 struct btrfs_key found_key; 945 u64 cow_start; 946 u64 cur_offset; 947 u64 extent_end; 948 u64 disk_bytenr; 949 u64 num_bytes; 950 int extent_type; 951 int ret; 952 int type; 953 int nocow; 954 int check_prev = 1; 955 956 path = btrfs_alloc_path(); 957 BUG_ON(!path); 958 trans = btrfs_join_transaction(root, 1); 959 BUG_ON(!trans); 960 961 cow_start = (u64)-1; 962 cur_offset = start; 963 while (1) { 964 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 965 cur_offset, 0); 966 BUG_ON(ret < 0); 967 if (ret > 0 && path->slots[0] > 0 && check_prev) { 968 leaf = path->nodes[0]; 969 btrfs_item_key_to_cpu(leaf, &found_key, 970 path->slots[0] - 1); 971 if (found_key.objectid == inode->i_ino && 972 found_key.type == BTRFS_EXTENT_DATA_KEY) 973 path->slots[0]--; 974 } 975 check_prev = 0; 976 next_slot: 977 leaf = path->nodes[0]; 978 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 979 ret = btrfs_next_leaf(root, path); 980 if (ret < 0) 981 BUG_ON(1); 982 if (ret > 0) 983 break; 984 leaf = path->nodes[0]; 985 } 986 987 nocow = 0; 988 disk_bytenr = 0; 989 num_bytes = 0; 990 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 991 992 if (found_key.objectid > inode->i_ino || 993 found_key.type > BTRFS_EXTENT_DATA_KEY || 994 found_key.offset > end) 995 break; 996 997 if (found_key.offset > cur_offset) { 998 extent_end = found_key.offset; 999 goto out_check; 1000 } 1001 1002 fi = btrfs_item_ptr(leaf, path->slots[0], 1003 struct btrfs_file_extent_item); 1004 extent_type = btrfs_file_extent_type(leaf, fi); 1005 1006 if (extent_type == BTRFS_FILE_EXTENT_REG || 1007 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1008 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1009 extent_end = found_key.offset + 1010 btrfs_file_extent_num_bytes(leaf, fi); 1011 if (extent_end <= start) { 1012 path->slots[0]++; 1013 goto next_slot; 1014 } 1015 if (disk_bytenr == 0) 1016 goto out_check; 1017 if (btrfs_file_extent_compression(leaf, fi) || 1018 btrfs_file_extent_encryption(leaf, fi) || 1019 btrfs_file_extent_other_encoding(leaf, fi)) 1020 goto out_check; 1021 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1022 goto out_check; 1023 if (btrfs_extent_readonly(root, disk_bytenr)) 1024 goto out_check; 1025 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1026 disk_bytenr)) 1027 goto out_check; 1028 disk_bytenr += btrfs_file_extent_offset(leaf, fi); 1029 disk_bytenr += cur_offset - found_key.offset; 1030 num_bytes = min(end + 1, extent_end) - cur_offset; 1031 /* 1032 * force cow if csum exists in the range. 1033 * this ensure that csum for a given extent are 1034 * either valid or do not exist. 1035 */ 1036 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1037 goto out_check; 1038 nocow = 1; 1039 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1040 extent_end = found_key.offset + 1041 btrfs_file_extent_inline_len(leaf, fi); 1042 extent_end = ALIGN(extent_end, root->sectorsize); 1043 } else { 1044 BUG_ON(1); 1045 } 1046 out_check: 1047 if (extent_end <= start) { 1048 path->slots[0]++; 1049 goto next_slot; 1050 } 1051 if (!nocow) { 1052 if (cow_start == (u64)-1) 1053 cow_start = cur_offset; 1054 cur_offset = extent_end; 1055 if (cur_offset > end) 1056 break; 1057 path->slots[0]++; 1058 goto next_slot; 1059 } 1060 1061 btrfs_release_path(root, path); 1062 if (cow_start != (u64)-1) { 1063 ret = cow_file_range(inode, locked_page, cow_start, 1064 found_key.offset - 1, page_started, 1065 nr_written, 1); 1066 BUG_ON(ret); 1067 cow_start = (u64)-1; 1068 } 1069 1070 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1071 struct extent_map *em; 1072 struct extent_map_tree *em_tree; 1073 em_tree = &BTRFS_I(inode)->extent_tree; 1074 em = alloc_extent_map(GFP_NOFS); 1075 em->start = cur_offset; 1076 em->orig_start = em->start; 1077 em->len = num_bytes; 1078 em->block_len = num_bytes; 1079 em->block_start = disk_bytenr; 1080 em->bdev = root->fs_info->fs_devices->latest_bdev; 1081 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1082 while (1) { 1083 spin_lock(&em_tree->lock); 1084 ret = add_extent_mapping(em_tree, em); 1085 spin_unlock(&em_tree->lock); 1086 if (ret != -EEXIST) { 1087 free_extent_map(em); 1088 break; 1089 } 1090 btrfs_drop_extent_cache(inode, em->start, 1091 em->start + em->len - 1, 0); 1092 } 1093 type = BTRFS_ORDERED_PREALLOC; 1094 } else { 1095 type = BTRFS_ORDERED_NOCOW; 1096 } 1097 1098 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1099 num_bytes, num_bytes, type); 1100 BUG_ON(ret); 1101 1102 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1103 cur_offset, cur_offset + num_bytes - 1, 1104 locked_page, 1, 1, 1, 0, 0, 0); 1105 cur_offset = extent_end; 1106 if (cur_offset > end) 1107 break; 1108 } 1109 btrfs_release_path(root, path); 1110 1111 if (cur_offset <= end && cow_start == (u64)-1) 1112 cow_start = cur_offset; 1113 if (cow_start != (u64)-1) { 1114 ret = cow_file_range(inode, locked_page, cow_start, end, 1115 page_started, nr_written, 1); 1116 BUG_ON(ret); 1117 } 1118 1119 ret = btrfs_end_transaction(trans, root); 1120 BUG_ON(ret); 1121 btrfs_free_path(path); 1122 return 0; 1123 } 1124 1125 /* 1126 * extent_io.c call back to do delayed allocation processing 1127 */ 1128 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1129 u64 start, u64 end, int *page_started, 1130 unsigned long *nr_written) 1131 { 1132 int ret; 1133 struct btrfs_root *root = BTRFS_I(inode)->root; 1134 1135 if (btrfs_test_flag(inode, NODATACOW)) 1136 ret = run_delalloc_nocow(inode, locked_page, start, end, 1137 page_started, 1, nr_written); 1138 else if (btrfs_test_flag(inode, PREALLOC)) 1139 ret = run_delalloc_nocow(inode, locked_page, start, end, 1140 page_started, 0, nr_written); 1141 else if (!btrfs_test_opt(root, COMPRESS)) 1142 ret = cow_file_range(inode, locked_page, start, end, 1143 page_started, nr_written, 1); 1144 else 1145 ret = cow_file_range_async(inode, locked_page, start, end, 1146 page_started, nr_written); 1147 return ret; 1148 } 1149 1150 /* 1151 * extent_io.c set_bit_hook, used to track delayed allocation 1152 * bytes in this file, and to maintain the list of inodes that 1153 * have pending delalloc work to be done. 1154 */ 1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1156 unsigned long old, unsigned long bits) 1157 { 1158 /* 1159 * set_bit and clear bit hooks normally require _irqsave/restore 1160 * but in this case, we are only testeing for the DELALLOC 1161 * bit, which is only set or cleared with irqs on 1162 */ 1163 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1164 struct btrfs_root *root = BTRFS_I(inode)->root; 1165 btrfs_delalloc_reserve_space(root, inode, end - start + 1); 1166 spin_lock(&root->fs_info->delalloc_lock); 1167 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1168 root->fs_info->delalloc_bytes += end - start + 1; 1169 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1170 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1171 &root->fs_info->delalloc_inodes); 1172 } 1173 spin_unlock(&root->fs_info->delalloc_lock); 1174 } 1175 return 0; 1176 } 1177 1178 /* 1179 * extent_io.c clear_bit_hook, see set_bit_hook for why 1180 */ 1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1182 unsigned long old, unsigned long bits) 1183 { 1184 /* 1185 * set_bit and clear bit hooks normally require _irqsave/restore 1186 * but in this case, we are only testeing for the DELALLOC 1187 * bit, which is only set or cleared with irqs on 1188 */ 1189 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1190 struct btrfs_root *root = BTRFS_I(inode)->root; 1191 1192 spin_lock(&root->fs_info->delalloc_lock); 1193 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1194 printk(KERN_INFO "btrfs warning: delalloc account " 1195 "%llu %llu\n", 1196 (unsigned long long)end - start + 1, 1197 (unsigned long long) 1198 root->fs_info->delalloc_bytes); 1199 btrfs_delalloc_free_space(root, inode, (u64)-1); 1200 root->fs_info->delalloc_bytes = 0; 1201 BTRFS_I(inode)->delalloc_bytes = 0; 1202 } else { 1203 btrfs_delalloc_free_space(root, inode, 1204 end - start + 1); 1205 root->fs_info->delalloc_bytes -= end - start + 1; 1206 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1207 } 1208 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1209 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1210 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1211 } 1212 spin_unlock(&root->fs_info->delalloc_lock); 1213 } 1214 return 0; 1215 } 1216 1217 /* 1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1219 * we don't create bios that span stripes or chunks 1220 */ 1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1222 size_t size, struct bio *bio, 1223 unsigned long bio_flags) 1224 { 1225 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1226 struct btrfs_mapping_tree *map_tree; 1227 u64 logical = (u64)bio->bi_sector << 9; 1228 u64 length = 0; 1229 u64 map_length; 1230 int ret; 1231 1232 if (bio_flags & EXTENT_BIO_COMPRESSED) 1233 return 0; 1234 1235 length = bio->bi_size; 1236 map_tree = &root->fs_info->mapping_tree; 1237 map_length = length; 1238 ret = btrfs_map_block(map_tree, READ, logical, 1239 &map_length, NULL, 0); 1240 1241 if (map_length < length + size) 1242 return 1; 1243 return 0; 1244 } 1245 1246 /* 1247 * in order to insert checksums into the metadata in large chunks, 1248 * we wait until bio submission time. All the pages in the bio are 1249 * checksummed and sums are attached onto the ordered extent record. 1250 * 1251 * At IO completion time the cums attached on the ordered extent record 1252 * are inserted into the btree 1253 */ 1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1255 struct bio *bio, int mirror_num, 1256 unsigned long bio_flags) 1257 { 1258 struct btrfs_root *root = BTRFS_I(inode)->root; 1259 int ret = 0; 1260 1261 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1262 BUG_ON(ret); 1263 return 0; 1264 } 1265 1266 /* 1267 * in order to insert checksums into the metadata in large chunks, 1268 * we wait until bio submission time. All the pages in the bio are 1269 * checksummed and sums are attached onto the ordered extent record. 1270 * 1271 * At IO completion time the cums attached on the ordered extent record 1272 * are inserted into the btree 1273 */ 1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1275 int mirror_num, unsigned long bio_flags) 1276 { 1277 struct btrfs_root *root = BTRFS_I(inode)->root; 1278 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1279 } 1280 1281 /* 1282 * extent_io.c submission hook. This does the right thing for csum calculation 1283 * on write, or reading the csums from the tree before a read 1284 */ 1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1286 int mirror_num, unsigned long bio_flags) 1287 { 1288 struct btrfs_root *root = BTRFS_I(inode)->root; 1289 int ret = 0; 1290 int skip_sum; 1291 1292 skip_sum = btrfs_test_flag(inode, NODATASUM); 1293 1294 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1295 BUG_ON(ret); 1296 1297 if (!(rw & (1 << BIO_RW))) { 1298 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1299 return btrfs_submit_compressed_read(inode, bio, 1300 mirror_num, bio_flags); 1301 } else if (!skip_sum) 1302 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1303 goto mapit; 1304 } else if (!skip_sum) { 1305 /* csum items have already been cloned */ 1306 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1307 goto mapit; 1308 /* we're doing a write, do the async checksumming */ 1309 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1310 inode, rw, bio, mirror_num, 1311 bio_flags, __btrfs_submit_bio_start, 1312 __btrfs_submit_bio_done); 1313 } 1314 1315 mapit: 1316 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1317 } 1318 1319 /* 1320 * given a list of ordered sums record them in the inode. This happens 1321 * at IO completion time based on sums calculated at bio submission time. 1322 */ 1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1324 struct inode *inode, u64 file_offset, 1325 struct list_head *list) 1326 { 1327 struct btrfs_ordered_sum *sum; 1328 1329 btrfs_set_trans_block_group(trans, inode); 1330 1331 list_for_each_entry(sum, list, list) { 1332 btrfs_csum_file_blocks(trans, 1333 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1334 } 1335 return 0; 1336 } 1337 1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1339 { 1340 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1341 WARN_ON(1); 1342 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1343 GFP_NOFS); 1344 } 1345 1346 /* see btrfs_writepage_start_hook for details on why this is required */ 1347 struct btrfs_writepage_fixup { 1348 struct page *page; 1349 struct btrfs_work work; 1350 }; 1351 1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1353 { 1354 struct btrfs_writepage_fixup *fixup; 1355 struct btrfs_ordered_extent *ordered; 1356 struct page *page; 1357 struct inode *inode; 1358 u64 page_start; 1359 u64 page_end; 1360 1361 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1362 page = fixup->page; 1363 again: 1364 lock_page(page); 1365 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1366 ClearPageChecked(page); 1367 goto out_page; 1368 } 1369 1370 inode = page->mapping->host; 1371 page_start = page_offset(page); 1372 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1373 1374 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1375 1376 /* already ordered? We're done */ 1377 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1378 EXTENT_ORDERED, 0)) { 1379 goto out; 1380 } 1381 1382 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1383 if (ordered) { 1384 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1385 page_end, GFP_NOFS); 1386 unlock_page(page); 1387 btrfs_start_ordered_extent(inode, ordered, 1); 1388 goto again; 1389 } 1390 1391 btrfs_set_extent_delalloc(inode, page_start, page_end); 1392 ClearPageChecked(page); 1393 out: 1394 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1395 out_page: 1396 unlock_page(page); 1397 page_cache_release(page); 1398 } 1399 1400 /* 1401 * There are a few paths in the higher layers of the kernel that directly 1402 * set the page dirty bit without asking the filesystem if it is a 1403 * good idea. This causes problems because we want to make sure COW 1404 * properly happens and the data=ordered rules are followed. 1405 * 1406 * In our case any range that doesn't have the ORDERED bit set 1407 * hasn't been properly setup for IO. We kick off an async process 1408 * to fix it up. The async helper will wait for ordered extents, set 1409 * the delalloc bit and make it safe to write the page. 1410 */ 1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1412 { 1413 struct inode *inode = page->mapping->host; 1414 struct btrfs_writepage_fixup *fixup; 1415 struct btrfs_root *root = BTRFS_I(inode)->root; 1416 int ret; 1417 1418 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1419 EXTENT_ORDERED, 0); 1420 if (ret) 1421 return 0; 1422 1423 if (PageChecked(page)) 1424 return -EAGAIN; 1425 1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1427 if (!fixup) 1428 return -EAGAIN; 1429 1430 SetPageChecked(page); 1431 page_cache_get(page); 1432 fixup->work.func = btrfs_writepage_fixup_worker; 1433 fixup->page = page; 1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1435 return -EAGAIN; 1436 } 1437 1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1439 struct inode *inode, u64 file_pos, 1440 u64 disk_bytenr, u64 disk_num_bytes, 1441 u64 num_bytes, u64 ram_bytes, 1442 u8 compression, u8 encryption, 1443 u16 other_encoding, int extent_type) 1444 { 1445 struct btrfs_root *root = BTRFS_I(inode)->root; 1446 struct btrfs_file_extent_item *fi; 1447 struct btrfs_path *path; 1448 struct extent_buffer *leaf; 1449 struct btrfs_key ins; 1450 u64 hint; 1451 int ret; 1452 1453 path = btrfs_alloc_path(); 1454 BUG_ON(!path); 1455 1456 path->leave_spinning = 1; 1457 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1458 file_pos + num_bytes, file_pos, &hint); 1459 BUG_ON(ret); 1460 1461 ins.objectid = inode->i_ino; 1462 ins.offset = file_pos; 1463 ins.type = BTRFS_EXTENT_DATA_KEY; 1464 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1465 BUG_ON(ret); 1466 leaf = path->nodes[0]; 1467 fi = btrfs_item_ptr(leaf, path->slots[0], 1468 struct btrfs_file_extent_item); 1469 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1470 btrfs_set_file_extent_type(leaf, fi, extent_type); 1471 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1472 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1473 btrfs_set_file_extent_offset(leaf, fi, 0); 1474 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1475 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1476 btrfs_set_file_extent_compression(leaf, fi, compression); 1477 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1478 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1479 1480 btrfs_unlock_up_safe(path, 1); 1481 btrfs_set_lock_blocking(leaf); 1482 1483 btrfs_mark_buffer_dirty(leaf); 1484 1485 inode_add_bytes(inode, num_bytes); 1486 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1487 1488 ins.objectid = disk_bytenr; 1489 ins.offset = disk_num_bytes; 1490 ins.type = BTRFS_EXTENT_ITEM_KEY; 1491 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start, 1492 root->root_key.objectid, 1493 trans->transid, inode->i_ino, &ins); 1494 BUG_ON(ret); 1495 btrfs_free_path(path); 1496 1497 return 0; 1498 } 1499 1500 /* 1501 * helper function for btrfs_finish_ordered_io, this 1502 * just reads in some of the csum leaves to prime them into ram 1503 * before we start the transaction. It limits the amount of btree 1504 * reads required while inside the transaction. 1505 */ 1506 static noinline void reada_csum(struct btrfs_root *root, 1507 struct btrfs_path *path, 1508 struct btrfs_ordered_extent *ordered_extent) 1509 { 1510 struct btrfs_ordered_sum *sum; 1511 u64 bytenr; 1512 1513 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum, 1514 list); 1515 bytenr = sum->sums[0].bytenr; 1516 1517 /* 1518 * we don't care about the results, the point of this search is 1519 * just to get the btree leaves into ram 1520 */ 1521 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0); 1522 } 1523 1524 /* as ordered data IO finishes, this gets called so we can finish 1525 * an ordered extent if the range of bytes in the file it covers are 1526 * fully written. 1527 */ 1528 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1529 { 1530 struct btrfs_root *root = BTRFS_I(inode)->root; 1531 struct btrfs_trans_handle *trans; 1532 struct btrfs_ordered_extent *ordered_extent = NULL; 1533 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1534 struct btrfs_path *path; 1535 int compressed = 0; 1536 int ret; 1537 1538 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1539 if (!ret) 1540 return 0; 1541 1542 /* 1543 * before we join the transaction, try to do some of our IO. 1544 * This will limit the amount of IO that we have to do with 1545 * the transaction running. We're unlikely to need to do any 1546 * IO if the file extents are new, the disk_i_size checks 1547 * covers the most common case. 1548 */ 1549 if (start < BTRFS_I(inode)->disk_i_size) { 1550 path = btrfs_alloc_path(); 1551 if (path) { 1552 ret = btrfs_lookup_file_extent(NULL, root, path, 1553 inode->i_ino, 1554 start, 0); 1555 ordered_extent = btrfs_lookup_ordered_extent(inode, 1556 start); 1557 if (!list_empty(&ordered_extent->list)) { 1558 btrfs_release_path(root, path); 1559 reada_csum(root, path, ordered_extent); 1560 } 1561 btrfs_free_path(path); 1562 } 1563 } 1564 1565 trans = btrfs_join_transaction(root, 1); 1566 1567 if (!ordered_extent) 1568 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1569 BUG_ON(!ordered_extent); 1570 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1571 goto nocow; 1572 1573 lock_extent(io_tree, ordered_extent->file_offset, 1574 ordered_extent->file_offset + ordered_extent->len - 1, 1575 GFP_NOFS); 1576 1577 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1578 compressed = 1; 1579 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1580 BUG_ON(compressed); 1581 ret = btrfs_mark_extent_written(trans, root, inode, 1582 ordered_extent->file_offset, 1583 ordered_extent->file_offset + 1584 ordered_extent->len); 1585 BUG_ON(ret); 1586 } else { 1587 ret = insert_reserved_file_extent(trans, inode, 1588 ordered_extent->file_offset, 1589 ordered_extent->start, 1590 ordered_extent->disk_len, 1591 ordered_extent->len, 1592 ordered_extent->len, 1593 compressed, 0, 0, 1594 BTRFS_FILE_EXTENT_REG); 1595 BUG_ON(ret); 1596 } 1597 unlock_extent(io_tree, ordered_extent->file_offset, 1598 ordered_extent->file_offset + ordered_extent->len - 1, 1599 GFP_NOFS); 1600 nocow: 1601 add_pending_csums(trans, inode, ordered_extent->file_offset, 1602 &ordered_extent->list); 1603 1604 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1605 btrfs_ordered_update_i_size(inode, ordered_extent); 1606 btrfs_update_inode(trans, root, inode); 1607 btrfs_remove_ordered_extent(inode, ordered_extent); 1608 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1609 1610 /* once for us */ 1611 btrfs_put_ordered_extent(ordered_extent); 1612 /* once for the tree */ 1613 btrfs_put_ordered_extent(ordered_extent); 1614 1615 btrfs_end_transaction(trans, root); 1616 return 0; 1617 } 1618 1619 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1620 struct extent_state *state, int uptodate) 1621 { 1622 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1623 } 1624 1625 /* 1626 * When IO fails, either with EIO or csum verification fails, we 1627 * try other mirrors that might have a good copy of the data. This 1628 * io_failure_record is used to record state as we go through all the 1629 * mirrors. If another mirror has good data, the page is set up to date 1630 * and things continue. If a good mirror can't be found, the original 1631 * bio end_io callback is called to indicate things have failed. 1632 */ 1633 struct io_failure_record { 1634 struct page *page; 1635 u64 start; 1636 u64 len; 1637 u64 logical; 1638 unsigned long bio_flags; 1639 int last_mirror; 1640 }; 1641 1642 static int btrfs_io_failed_hook(struct bio *failed_bio, 1643 struct page *page, u64 start, u64 end, 1644 struct extent_state *state) 1645 { 1646 struct io_failure_record *failrec = NULL; 1647 u64 private; 1648 struct extent_map *em; 1649 struct inode *inode = page->mapping->host; 1650 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1651 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1652 struct bio *bio; 1653 int num_copies; 1654 int ret; 1655 int rw; 1656 u64 logical; 1657 1658 ret = get_state_private(failure_tree, start, &private); 1659 if (ret) { 1660 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1661 if (!failrec) 1662 return -ENOMEM; 1663 failrec->start = start; 1664 failrec->len = end - start + 1; 1665 failrec->last_mirror = 0; 1666 failrec->bio_flags = 0; 1667 1668 spin_lock(&em_tree->lock); 1669 em = lookup_extent_mapping(em_tree, start, failrec->len); 1670 if (em->start > start || em->start + em->len < start) { 1671 free_extent_map(em); 1672 em = NULL; 1673 } 1674 spin_unlock(&em_tree->lock); 1675 1676 if (!em || IS_ERR(em)) { 1677 kfree(failrec); 1678 return -EIO; 1679 } 1680 logical = start - em->start; 1681 logical = em->block_start + logical; 1682 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1683 logical = em->block_start; 1684 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1685 } 1686 failrec->logical = logical; 1687 free_extent_map(em); 1688 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1689 EXTENT_DIRTY, GFP_NOFS); 1690 set_state_private(failure_tree, start, 1691 (u64)(unsigned long)failrec); 1692 } else { 1693 failrec = (struct io_failure_record *)(unsigned long)private; 1694 } 1695 num_copies = btrfs_num_copies( 1696 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1697 failrec->logical, failrec->len); 1698 failrec->last_mirror++; 1699 if (!state) { 1700 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1701 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1702 failrec->start, 1703 EXTENT_LOCKED); 1704 if (state && state->start != failrec->start) 1705 state = NULL; 1706 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1707 } 1708 if (!state || failrec->last_mirror > num_copies) { 1709 set_state_private(failure_tree, failrec->start, 0); 1710 clear_extent_bits(failure_tree, failrec->start, 1711 failrec->start + failrec->len - 1, 1712 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1713 kfree(failrec); 1714 return -EIO; 1715 } 1716 bio = bio_alloc(GFP_NOFS, 1); 1717 bio->bi_private = state; 1718 bio->bi_end_io = failed_bio->bi_end_io; 1719 bio->bi_sector = failrec->logical >> 9; 1720 bio->bi_bdev = failed_bio->bi_bdev; 1721 bio->bi_size = 0; 1722 1723 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1724 if (failed_bio->bi_rw & (1 << BIO_RW)) 1725 rw = WRITE; 1726 else 1727 rw = READ; 1728 1729 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1730 failrec->last_mirror, 1731 failrec->bio_flags); 1732 return 0; 1733 } 1734 1735 /* 1736 * each time an IO finishes, we do a fast check in the IO failure tree 1737 * to see if we need to process or clean up an io_failure_record 1738 */ 1739 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1740 { 1741 u64 private; 1742 u64 private_failure; 1743 struct io_failure_record *failure; 1744 int ret; 1745 1746 private = 0; 1747 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1748 (u64)-1, 1, EXTENT_DIRTY)) { 1749 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1750 start, &private_failure); 1751 if (ret == 0) { 1752 failure = (struct io_failure_record *)(unsigned long) 1753 private_failure; 1754 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1755 failure->start, 0); 1756 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1757 failure->start, 1758 failure->start + failure->len - 1, 1759 EXTENT_DIRTY | EXTENT_LOCKED, 1760 GFP_NOFS); 1761 kfree(failure); 1762 } 1763 } 1764 return 0; 1765 } 1766 1767 /* 1768 * when reads are done, we need to check csums to verify the data is correct 1769 * if there's a match, we allow the bio to finish. If not, we go through 1770 * the io_failure_record routines to find good copies 1771 */ 1772 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1773 struct extent_state *state) 1774 { 1775 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1776 struct inode *inode = page->mapping->host; 1777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1778 char *kaddr; 1779 u64 private = ~(u32)0; 1780 int ret; 1781 struct btrfs_root *root = BTRFS_I(inode)->root; 1782 u32 csum = ~(u32)0; 1783 1784 if (PageChecked(page)) { 1785 ClearPageChecked(page); 1786 goto good; 1787 } 1788 if (btrfs_test_flag(inode, NODATASUM)) 1789 return 0; 1790 1791 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1792 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1793 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1794 GFP_NOFS); 1795 return 0; 1796 } 1797 1798 if (state && state->start == start) { 1799 private = state->private; 1800 ret = 0; 1801 } else { 1802 ret = get_state_private(io_tree, start, &private); 1803 } 1804 kaddr = kmap_atomic(page, KM_USER0); 1805 if (ret) 1806 goto zeroit; 1807 1808 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1809 btrfs_csum_final(csum, (char *)&csum); 1810 if (csum != private) 1811 goto zeroit; 1812 1813 kunmap_atomic(kaddr, KM_USER0); 1814 good: 1815 /* if the io failure tree for this inode is non-empty, 1816 * check to see if we've recovered from a failed IO 1817 */ 1818 btrfs_clean_io_failures(inode, start); 1819 return 0; 1820 1821 zeroit: 1822 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1823 "private %llu\n", page->mapping->host->i_ino, 1824 (unsigned long long)start, csum, 1825 (unsigned long long)private); 1826 memset(kaddr + offset, 1, end - start + 1); 1827 flush_dcache_page(page); 1828 kunmap_atomic(kaddr, KM_USER0); 1829 if (private == 0) 1830 return 0; 1831 return -EIO; 1832 } 1833 1834 /* 1835 * This creates an orphan entry for the given inode in case something goes 1836 * wrong in the middle of an unlink/truncate. 1837 */ 1838 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1839 { 1840 struct btrfs_root *root = BTRFS_I(inode)->root; 1841 int ret = 0; 1842 1843 spin_lock(&root->list_lock); 1844 1845 /* already on the orphan list, we're good */ 1846 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1847 spin_unlock(&root->list_lock); 1848 return 0; 1849 } 1850 1851 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1852 1853 spin_unlock(&root->list_lock); 1854 1855 /* 1856 * insert an orphan item to track this unlinked/truncated file 1857 */ 1858 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1859 1860 return ret; 1861 } 1862 1863 /* 1864 * We have done the truncate/delete so we can go ahead and remove the orphan 1865 * item for this particular inode. 1866 */ 1867 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1868 { 1869 struct btrfs_root *root = BTRFS_I(inode)->root; 1870 int ret = 0; 1871 1872 spin_lock(&root->list_lock); 1873 1874 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1875 spin_unlock(&root->list_lock); 1876 return 0; 1877 } 1878 1879 list_del_init(&BTRFS_I(inode)->i_orphan); 1880 if (!trans) { 1881 spin_unlock(&root->list_lock); 1882 return 0; 1883 } 1884 1885 spin_unlock(&root->list_lock); 1886 1887 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1888 1889 return ret; 1890 } 1891 1892 /* 1893 * this cleans up any orphans that may be left on the list from the last use 1894 * of this root. 1895 */ 1896 void btrfs_orphan_cleanup(struct btrfs_root *root) 1897 { 1898 struct btrfs_path *path; 1899 struct extent_buffer *leaf; 1900 struct btrfs_item *item; 1901 struct btrfs_key key, found_key; 1902 struct btrfs_trans_handle *trans; 1903 struct inode *inode; 1904 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1905 1906 path = btrfs_alloc_path(); 1907 if (!path) 1908 return; 1909 path->reada = -1; 1910 1911 key.objectid = BTRFS_ORPHAN_OBJECTID; 1912 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1913 key.offset = (u64)-1; 1914 1915 1916 while (1) { 1917 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1918 if (ret < 0) { 1919 printk(KERN_ERR "Error searching slot for orphan: %d" 1920 "\n", ret); 1921 break; 1922 } 1923 1924 /* 1925 * if ret == 0 means we found what we were searching for, which 1926 * is weird, but possible, so only screw with path if we didnt 1927 * find the key and see if we have stuff that matches 1928 */ 1929 if (ret > 0) { 1930 if (path->slots[0] == 0) 1931 break; 1932 path->slots[0]--; 1933 } 1934 1935 /* pull out the item */ 1936 leaf = path->nodes[0]; 1937 item = btrfs_item_nr(leaf, path->slots[0]); 1938 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1939 1940 /* make sure the item matches what we want */ 1941 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1942 break; 1943 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1944 break; 1945 1946 /* release the path since we're done with it */ 1947 btrfs_release_path(root, path); 1948 1949 /* 1950 * this is where we are basically btrfs_lookup, without the 1951 * crossing root thing. we store the inode number in the 1952 * offset of the orphan item. 1953 */ 1954 inode = btrfs_iget_locked(root->fs_info->sb, 1955 found_key.offset, root); 1956 if (!inode) 1957 break; 1958 1959 if (inode->i_state & I_NEW) { 1960 BTRFS_I(inode)->root = root; 1961 1962 /* have to set the location manually */ 1963 BTRFS_I(inode)->location.objectid = inode->i_ino; 1964 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 1965 BTRFS_I(inode)->location.offset = 0; 1966 1967 btrfs_read_locked_inode(inode); 1968 unlock_new_inode(inode); 1969 } 1970 1971 /* 1972 * add this inode to the orphan list so btrfs_orphan_del does 1973 * the proper thing when we hit it 1974 */ 1975 spin_lock(&root->list_lock); 1976 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1977 spin_unlock(&root->list_lock); 1978 1979 /* 1980 * if this is a bad inode, means we actually succeeded in 1981 * removing the inode, but not the orphan record, which means 1982 * we need to manually delete the orphan since iput will just 1983 * do a destroy_inode 1984 */ 1985 if (is_bad_inode(inode)) { 1986 trans = btrfs_start_transaction(root, 1); 1987 btrfs_orphan_del(trans, inode); 1988 btrfs_end_transaction(trans, root); 1989 iput(inode); 1990 continue; 1991 } 1992 1993 /* if we have links, this was a truncate, lets do that */ 1994 if (inode->i_nlink) { 1995 nr_truncate++; 1996 btrfs_truncate(inode); 1997 } else { 1998 nr_unlink++; 1999 } 2000 2001 /* this will do delete_inode and everything for us */ 2002 iput(inode); 2003 } 2004 2005 if (nr_unlink) 2006 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2007 if (nr_truncate) 2008 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2009 2010 btrfs_free_path(path); 2011 } 2012 2013 /* 2014 * read an inode from the btree into the in-memory inode 2015 */ 2016 void btrfs_read_locked_inode(struct inode *inode) 2017 { 2018 struct btrfs_path *path; 2019 struct extent_buffer *leaf; 2020 struct btrfs_inode_item *inode_item; 2021 struct btrfs_timespec *tspec; 2022 struct btrfs_root *root = BTRFS_I(inode)->root; 2023 struct btrfs_key location; 2024 u64 alloc_group_block; 2025 u32 rdev; 2026 int ret; 2027 2028 path = btrfs_alloc_path(); 2029 BUG_ON(!path); 2030 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2031 2032 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2033 if (ret) 2034 goto make_bad; 2035 2036 leaf = path->nodes[0]; 2037 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2038 struct btrfs_inode_item); 2039 2040 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2041 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2042 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2043 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2044 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2045 2046 tspec = btrfs_inode_atime(inode_item); 2047 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2048 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2049 2050 tspec = btrfs_inode_mtime(inode_item); 2051 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2052 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2053 2054 tspec = btrfs_inode_ctime(inode_item); 2055 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2056 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2057 2058 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2059 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2060 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2061 inode->i_generation = BTRFS_I(inode)->generation; 2062 inode->i_rdev = 0; 2063 rdev = btrfs_inode_rdev(leaf, inode_item); 2064 2065 BTRFS_I(inode)->index_cnt = (u64)-1; 2066 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2067 2068 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2069 2070 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2071 alloc_group_block, 0); 2072 btrfs_free_path(path); 2073 inode_item = NULL; 2074 2075 switch (inode->i_mode & S_IFMT) { 2076 case S_IFREG: 2077 inode->i_mapping->a_ops = &btrfs_aops; 2078 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2079 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2080 inode->i_fop = &btrfs_file_operations; 2081 inode->i_op = &btrfs_file_inode_operations; 2082 break; 2083 case S_IFDIR: 2084 inode->i_fop = &btrfs_dir_file_operations; 2085 if (root == root->fs_info->tree_root) 2086 inode->i_op = &btrfs_dir_ro_inode_operations; 2087 else 2088 inode->i_op = &btrfs_dir_inode_operations; 2089 break; 2090 case S_IFLNK: 2091 inode->i_op = &btrfs_symlink_inode_operations; 2092 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2093 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2094 break; 2095 default: 2096 inode->i_op = &btrfs_special_inode_operations; 2097 init_special_inode(inode, inode->i_mode, rdev); 2098 break; 2099 } 2100 return; 2101 2102 make_bad: 2103 btrfs_free_path(path); 2104 make_bad_inode(inode); 2105 } 2106 2107 /* 2108 * given a leaf and an inode, copy the inode fields into the leaf 2109 */ 2110 static void fill_inode_item(struct btrfs_trans_handle *trans, 2111 struct extent_buffer *leaf, 2112 struct btrfs_inode_item *item, 2113 struct inode *inode) 2114 { 2115 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2116 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2117 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2118 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2119 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2120 2121 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2122 inode->i_atime.tv_sec); 2123 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2124 inode->i_atime.tv_nsec); 2125 2126 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2127 inode->i_mtime.tv_sec); 2128 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2129 inode->i_mtime.tv_nsec); 2130 2131 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2132 inode->i_ctime.tv_sec); 2133 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2134 inode->i_ctime.tv_nsec); 2135 2136 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2137 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2138 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2139 btrfs_set_inode_transid(leaf, item, trans->transid); 2140 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2141 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2142 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2143 } 2144 2145 /* 2146 * copy everything in the in-memory inode into the btree. 2147 */ 2148 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2149 struct btrfs_root *root, struct inode *inode) 2150 { 2151 struct btrfs_inode_item *inode_item; 2152 struct btrfs_path *path; 2153 struct extent_buffer *leaf; 2154 int ret; 2155 2156 path = btrfs_alloc_path(); 2157 BUG_ON(!path); 2158 path->leave_spinning = 1; 2159 ret = btrfs_lookup_inode(trans, root, path, 2160 &BTRFS_I(inode)->location, 1); 2161 if (ret) { 2162 if (ret > 0) 2163 ret = -ENOENT; 2164 goto failed; 2165 } 2166 2167 btrfs_unlock_up_safe(path, 1); 2168 leaf = path->nodes[0]; 2169 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2170 struct btrfs_inode_item); 2171 2172 fill_inode_item(trans, leaf, inode_item, inode); 2173 btrfs_mark_buffer_dirty(leaf); 2174 btrfs_set_inode_last_trans(trans, inode); 2175 ret = 0; 2176 failed: 2177 btrfs_free_path(path); 2178 return ret; 2179 } 2180 2181 2182 /* 2183 * unlink helper that gets used here in inode.c and in the tree logging 2184 * recovery code. It remove a link in a directory with a given name, and 2185 * also drops the back refs in the inode to the directory 2186 */ 2187 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2188 struct btrfs_root *root, 2189 struct inode *dir, struct inode *inode, 2190 const char *name, int name_len) 2191 { 2192 struct btrfs_path *path; 2193 int ret = 0; 2194 struct extent_buffer *leaf; 2195 struct btrfs_dir_item *di; 2196 struct btrfs_key key; 2197 u64 index; 2198 2199 path = btrfs_alloc_path(); 2200 if (!path) { 2201 ret = -ENOMEM; 2202 goto err; 2203 } 2204 2205 path->leave_spinning = 1; 2206 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2207 name, name_len, -1); 2208 if (IS_ERR(di)) { 2209 ret = PTR_ERR(di); 2210 goto err; 2211 } 2212 if (!di) { 2213 ret = -ENOENT; 2214 goto err; 2215 } 2216 leaf = path->nodes[0]; 2217 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2218 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2219 if (ret) 2220 goto err; 2221 btrfs_release_path(root, path); 2222 2223 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2224 inode->i_ino, 2225 dir->i_ino, &index); 2226 if (ret) { 2227 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2228 "inode %lu parent %lu\n", name_len, name, 2229 inode->i_ino, dir->i_ino); 2230 goto err; 2231 } 2232 2233 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2234 index, name, name_len, -1); 2235 if (IS_ERR(di)) { 2236 ret = PTR_ERR(di); 2237 goto err; 2238 } 2239 if (!di) { 2240 ret = -ENOENT; 2241 goto err; 2242 } 2243 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2244 btrfs_release_path(root, path); 2245 2246 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2247 inode, dir->i_ino); 2248 BUG_ON(ret != 0 && ret != -ENOENT); 2249 2250 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2251 dir, index); 2252 BUG_ON(ret); 2253 err: 2254 btrfs_free_path(path); 2255 if (ret) 2256 goto out; 2257 2258 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2259 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2260 btrfs_update_inode(trans, root, dir); 2261 btrfs_drop_nlink(inode); 2262 ret = btrfs_update_inode(trans, root, inode); 2263 dir->i_sb->s_dirt = 1; 2264 out: 2265 return ret; 2266 } 2267 2268 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2269 { 2270 struct btrfs_root *root; 2271 struct btrfs_trans_handle *trans; 2272 struct inode *inode = dentry->d_inode; 2273 int ret; 2274 unsigned long nr = 0; 2275 2276 root = BTRFS_I(dir)->root; 2277 2278 trans = btrfs_start_transaction(root, 1); 2279 2280 btrfs_set_trans_block_group(trans, dir); 2281 2282 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2283 2284 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2285 dentry->d_name.name, dentry->d_name.len); 2286 2287 if (inode->i_nlink == 0) 2288 ret = btrfs_orphan_add(trans, inode); 2289 2290 nr = trans->blocks_used; 2291 2292 btrfs_end_transaction_throttle(trans, root); 2293 btrfs_btree_balance_dirty(root, nr); 2294 return ret; 2295 } 2296 2297 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2298 { 2299 struct inode *inode = dentry->d_inode; 2300 int err = 0; 2301 int ret; 2302 struct btrfs_root *root = BTRFS_I(dir)->root; 2303 struct btrfs_trans_handle *trans; 2304 unsigned long nr = 0; 2305 2306 /* 2307 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2308 * the root of a subvolume or snapshot 2309 */ 2310 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2311 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2312 return -ENOTEMPTY; 2313 } 2314 2315 trans = btrfs_start_transaction(root, 1); 2316 btrfs_set_trans_block_group(trans, dir); 2317 2318 err = btrfs_orphan_add(trans, inode); 2319 if (err) 2320 goto fail_trans; 2321 2322 /* now the directory is empty */ 2323 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2324 dentry->d_name.name, dentry->d_name.len); 2325 if (!err) 2326 btrfs_i_size_write(inode, 0); 2327 2328 fail_trans: 2329 nr = trans->blocks_used; 2330 ret = btrfs_end_transaction_throttle(trans, root); 2331 btrfs_btree_balance_dirty(root, nr); 2332 2333 if (ret && !err) 2334 err = ret; 2335 return err; 2336 } 2337 2338 #if 0 2339 /* 2340 * when truncating bytes in a file, it is possible to avoid reading 2341 * the leaves that contain only checksum items. This can be the 2342 * majority of the IO required to delete a large file, but it must 2343 * be done carefully. 2344 * 2345 * The keys in the level just above the leaves are checked to make sure 2346 * the lowest key in a given leaf is a csum key, and starts at an offset 2347 * after the new size. 2348 * 2349 * Then the key for the next leaf is checked to make sure it also has 2350 * a checksum item for the same file. If it does, we know our target leaf 2351 * contains only checksum items, and it can be safely freed without reading 2352 * it. 2353 * 2354 * This is just an optimization targeted at large files. It may do 2355 * nothing. It will return 0 unless things went badly. 2356 */ 2357 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2358 struct btrfs_root *root, 2359 struct btrfs_path *path, 2360 struct inode *inode, u64 new_size) 2361 { 2362 struct btrfs_key key; 2363 int ret; 2364 int nritems; 2365 struct btrfs_key found_key; 2366 struct btrfs_key other_key; 2367 struct btrfs_leaf_ref *ref; 2368 u64 leaf_gen; 2369 u64 leaf_start; 2370 2371 path->lowest_level = 1; 2372 key.objectid = inode->i_ino; 2373 key.type = BTRFS_CSUM_ITEM_KEY; 2374 key.offset = new_size; 2375 again: 2376 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2377 if (ret < 0) 2378 goto out; 2379 2380 if (path->nodes[1] == NULL) { 2381 ret = 0; 2382 goto out; 2383 } 2384 ret = 0; 2385 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2386 nritems = btrfs_header_nritems(path->nodes[1]); 2387 2388 if (!nritems) 2389 goto out; 2390 2391 if (path->slots[1] >= nritems) 2392 goto next_node; 2393 2394 /* did we find a key greater than anything we want to delete? */ 2395 if (found_key.objectid > inode->i_ino || 2396 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2397 goto out; 2398 2399 /* we check the next key in the node to make sure the leave contains 2400 * only checksum items. This comparison doesn't work if our 2401 * leaf is the last one in the node 2402 */ 2403 if (path->slots[1] + 1 >= nritems) { 2404 next_node: 2405 /* search forward from the last key in the node, this 2406 * will bring us into the next node in the tree 2407 */ 2408 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2409 2410 /* unlikely, but we inc below, so check to be safe */ 2411 if (found_key.offset == (u64)-1) 2412 goto out; 2413 2414 /* search_forward needs a path with locks held, do the 2415 * search again for the original key. It is possible 2416 * this will race with a balance and return a path that 2417 * we could modify, but this drop is just an optimization 2418 * and is allowed to miss some leaves. 2419 */ 2420 btrfs_release_path(root, path); 2421 found_key.offset++; 2422 2423 /* setup a max key for search_forward */ 2424 other_key.offset = (u64)-1; 2425 other_key.type = key.type; 2426 other_key.objectid = key.objectid; 2427 2428 path->keep_locks = 1; 2429 ret = btrfs_search_forward(root, &found_key, &other_key, 2430 path, 0, 0); 2431 path->keep_locks = 0; 2432 if (ret || found_key.objectid != key.objectid || 2433 found_key.type != key.type) { 2434 ret = 0; 2435 goto out; 2436 } 2437 2438 key.offset = found_key.offset; 2439 btrfs_release_path(root, path); 2440 cond_resched(); 2441 goto again; 2442 } 2443 2444 /* we know there's one more slot after us in the tree, 2445 * read that key so we can verify it is also a checksum item 2446 */ 2447 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2448 2449 if (found_key.objectid < inode->i_ino) 2450 goto next_key; 2451 2452 if (found_key.type != key.type || found_key.offset < new_size) 2453 goto next_key; 2454 2455 /* 2456 * if the key for the next leaf isn't a csum key from this objectid, 2457 * we can't be sure there aren't good items inside this leaf. 2458 * Bail out 2459 */ 2460 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2461 goto out; 2462 2463 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2464 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2465 /* 2466 * it is safe to delete this leaf, it contains only 2467 * csum items from this inode at an offset >= new_size 2468 */ 2469 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2470 BUG_ON(ret); 2471 2472 if (root->ref_cows && leaf_gen < trans->transid) { 2473 ref = btrfs_alloc_leaf_ref(root, 0); 2474 if (ref) { 2475 ref->root_gen = root->root_key.offset; 2476 ref->bytenr = leaf_start; 2477 ref->owner = 0; 2478 ref->generation = leaf_gen; 2479 ref->nritems = 0; 2480 2481 btrfs_sort_leaf_ref(ref); 2482 2483 ret = btrfs_add_leaf_ref(root, ref, 0); 2484 WARN_ON(ret); 2485 btrfs_free_leaf_ref(root, ref); 2486 } else { 2487 WARN_ON(1); 2488 } 2489 } 2490 next_key: 2491 btrfs_release_path(root, path); 2492 2493 if (other_key.objectid == inode->i_ino && 2494 other_key.type == key.type && other_key.offset > key.offset) { 2495 key.offset = other_key.offset; 2496 cond_resched(); 2497 goto again; 2498 } 2499 ret = 0; 2500 out: 2501 /* fixup any changes we've made to the path */ 2502 path->lowest_level = 0; 2503 path->keep_locks = 0; 2504 btrfs_release_path(root, path); 2505 return ret; 2506 } 2507 2508 #endif 2509 2510 /* 2511 * this can truncate away extent items, csum items and directory items. 2512 * It starts at a high offset and removes keys until it can't find 2513 * any higher than new_size 2514 * 2515 * csum items that cross the new i_size are truncated to the new size 2516 * as well. 2517 * 2518 * min_type is the minimum key type to truncate down to. If set to 0, this 2519 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2520 */ 2521 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2522 struct btrfs_root *root, 2523 struct inode *inode, 2524 u64 new_size, u32 min_type) 2525 { 2526 int ret; 2527 struct btrfs_path *path; 2528 struct btrfs_key key; 2529 struct btrfs_key found_key; 2530 u32 found_type = (u8)-1; 2531 struct extent_buffer *leaf; 2532 struct btrfs_file_extent_item *fi; 2533 u64 extent_start = 0; 2534 u64 extent_num_bytes = 0; 2535 u64 item_end = 0; 2536 u64 root_gen = 0; 2537 u64 root_owner = 0; 2538 int found_extent; 2539 int del_item; 2540 int pending_del_nr = 0; 2541 int pending_del_slot = 0; 2542 int extent_type = -1; 2543 int encoding; 2544 u64 mask = root->sectorsize - 1; 2545 2546 if (root->ref_cows) 2547 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2548 path = btrfs_alloc_path(); 2549 path->reada = -1; 2550 BUG_ON(!path); 2551 2552 /* FIXME, add redo link to tree so we don't leak on crash */ 2553 key.objectid = inode->i_ino; 2554 key.offset = (u64)-1; 2555 key.type = (u8)-1; 2556 2557 search_again: 2558 path->leave_spinning = 1; 2559 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2560 if (ret < 0) 2561 goto error; 2562 2563 if (ret > 0) { 2564 /* there are no items in the tree for us to truncate, we're 2565 * done 2566 */ 2567 if (path->slots[0] == 0) { 2568 ret = 0; 2569 goto error; 2570 } 2571 path->slots[0]--; 2572 } 2573 2574 while (1) { 2575 fi = NULL; 2576 leaf = path->nodes[0]; 2577 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2578 found_type = btrfs_key_type(&found_key); 2579 encoding = 0; 2580 2581 if (found_key.objectid != inode->i_ino) 2582 break; 2583 2584 if (found_type < min_type) 2585 break; 2586 2587 item_end = found_key.offset; 2588 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2589 fi = btrfs_item_ptr(leaf, path->slots[0], 2590 struct btrfs_file_extent_item); 2591 extent_type = btrfs_file_extent_type(leaf, fi); 2592 encoding = btrfs_file_extent_compression(leaf, fi); 2593 encoding |= btrfs_file_extent_encryption(leaf, fi); 2594 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2595 2596 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2597 item_end += 2598 btrfs_file_extent_num_bytes(leaf, fi); 2599 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2600 item_end += btrfs_file_extent_inline_len(leaf, 2601 fi); 2602 } 2603 item_end--; 2604 } 2605 if (item_end < new_size) { 2606 if (found_type == BTRFS_DIR_ITEM_KEY) 2607 found_type = BTRFS_INODE_ITEM_KEY; 2608 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2609 found_type = BTRFS_EXTENT_DATA_KEY; 2610 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2611 found_type = BTRFS_XATTR_ITEM_KEY; 2612 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2613 found_type = BTRFS_INODE_REF_KEY; 2614 else if (found_type) 2615 found_type--; 2616 else 2617 break; 2618 btrfs_set_key_type(&key, found_type); 2619 goto next; 2620 } 2621 if (found_key.offset >= new_size) 2622 del_item = 1; 2623 else 2624 del_item = 0; 2625 found_extent = 0; 2626 2627 /* FIXME, shrink the extent if the ref count is only 1 */ 2628 if (found_type != BTRFS_EXTENT_DATA_KEY) 2629 goto delete; 2630 2631 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2632 u64 num_dec; 2633 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2634 if (!del_item && !encoding) { 2635 u64 orig_num_bytes = 2636 btrfs_file_extent_num_bytes(leaf, fi); 2637 extent_num_bytes = new_size - 2638 found_key.offset + root->sectorsize - 1; 2639 extent_num_bytes = extent_num_bytes & 2640 ~((u64)root->sectorsize - 1); 2641 btrfs_set_file_extent_num_bytes(leaf, fi, 2642 extent_num_bytes); 2643 num_dec = (orig_num_bytes - 2644 extent_num_bytes); 2645 if (root->ref_cows && extent_start != 0) 2646 inode_sub_bytes(inode, num_dec); 2647 btrfs_mark_buffer_dirty(leaf); 2648 } else { 2649 extent_num_bytes = 2650 btrfs_file_extent_disk_num_bytes(leaf, 2651 fi); 2652 /* FIXME blocksize != 4096 */ 2653 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2654 if (extent_start != 0) { 2655 found_extent = 1; 2656 if (root->ref_cows) 2657 inode_sub_bytes(inode, num_dec); 2658 } 2659 root_gen = btrfs_header_generation(leaf); 2660 root_owner = btrfs_header_owner(leaf); 2661 } 2662 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2663 /* 2664 * we can't truncate inline items that have had 2665 * special encodings 2666 */ 2667 if (!del_item && 2668 btrfs_file_extent_compression(leaf, fi) == 0 && 2669 btrfs_file_extent_encryption(leaf, fi) == 0 && 2670 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2671 u32 size = new_size - found_key.offset; 2672 2673 if (root->ref_cows) { 2674 inode_sub_bytes(inode, item_end + 1 - 2675 new_size); 2676 } 2677 size = 2678 btrfs_file_extent_calc_inline_size(size); 2679 ret = btrfs_truncate_item(trans, root, path, 2680 size, 1); 2681 BUG_ON(ret); 2682 } else if (root->ref_cows) { 2683 inode_sub_bytes(inode, item_end + 1 - 2684 found_key.offset); 2685 } 2686 } 2687 delete: 2688 if (del_item) { 2689 if (!pending_del_nr) { 2690 /* no pending yet, add ourselves */ 2691 pending_del_slot = path->slots[0]; 2692 pending_del_nr = 1; 2693 } else if (pending_del_nr && 2694 path->slots[0] + 1 == pending_del_slot) { 2695 /* hop on the pending chunk */ 2696 pending_del_nr++; 2697 pending_del_slot = path->slots[0]; 2698 } else { 2699 BUG(); 2700 } 2701 } else { 2702 break; 2703 } 2704 if (found_extent) { 2705 btrfs_set_path_blocking(path); 2706 ret = btrfs_free_extent(trans, root, extent_start, 2707 extent_num_bytes, 2708 leaf->start, root_owner, 2709 root_gen, inode->i_ino, 0); 2710 BUG_ON(ret); 2711 } 2712 next: 2713 if (path->slots[0] == 0) { 2714 if (pending_del_nr) 2715 goto del_pending; 2716 btrfs_release_path(root, path); 2717 if (found_type == BTRFS_INODE_ITEM_KEY) 2718 break; 2719 goto search_again; 2720 } 2721 2722 path->slots[0]--; 2723 if (pending_del_nr && 2724 path->slots[0] + 1 != pending_del_slot) { 2725 struct btrfs_key debug; 2726 del_pending: 2727 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2728 pending_del_slot); 2729 ret = btrfs_del_items(trans, root, path, 2730 pending_del_slot, 2731 pending_del_nr); 2732 BUG_ON(ret); 2733 pending_del_nr = 0; 2734 btrfs_release_path(root, path); 2735 if (found_type == BTRFS_INODE_ITEM_KEY) 2736 break; 2737 goto search_again; 2738 } 2739 } 2740 ret = 0; 2741 error: 2742 if (pending_del_nr) { 2743 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2744 pending_del_nr); 2745 } 2746 btrfs_free_path(path); 2747 inode->i_sb->s_dirt = 1; 2748 return ret; 2749 } 2750 2751 /* 2752 * taken from block_truncate_page, but does cow as it zeros out 2753 * any bytes left in the last page in the file. 2754 */ 2755 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2756 { 2757 struct inode *inode = mapping->host; 2758 struct btrfs_root *root = BTRFS_I(inode)->root; 2759 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2760 struct btrfs_ordered_extent *ordered; 2761 char *kaddr; 2762 u32 blocksize = root->sectorsize; 2763 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2764 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2765 struct page *page; 2766 int ret = 0; 2767 u64 page_start; 2768 u64 page_end; 2769 2770 if ((offset & (blocksize - 1)) == 0) 2771 goto out; 2772 2773 ret = -ENOMEM; 2774 again: 2775 page = grab_cache_page(mapping, index); 2776 if (!page) 2777 goto out; 2778 2779 page_start = page_offset(page); 2780 page_end = page_start + PAGE_CACHE_SIZE - 1; 2781 2782 if (!PageUptodate(page)) { 2783 ret = btrfs_readpage(NULL, page); 2784 lock_page(page); 2785 if (page->mapping != mapping) { 2786 unlock_page(page); 2787 page_cache_release(page); 2788 goto again; 2789 } 2790 if (!PageUptodate(page)) { 2791 ret = -EIO; 2792 goto out_unlock; 2793 } 2794 } 2795 wait_on_page_writeback(page); 2796 2797 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2798 set_page_extent_mapped(page); 2799 2800 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2801 if (ordered) { 2802 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2803 unlock_page(page); 2804 page_cache_release(page); 2805 btrfs_start_ordered_extent(inode, ordered, 1); 2806 btrfs_put_ordered_extent(ordered); 2807 goto again; 2808 } 2809 2810 btrfs_set_extent_delalloc(inode, page_start, page_end); 2811 ret = 0; 2812 if (offset != PAGE_CACHE_SIZE) { 2813 kaddr = kmap(page); 2814 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2815 flush_dcache_page(page); 2816 kunmap(page); 2817 } 2818 ClearPageChecked(page); 2819 set_page_dirty(page); 2820 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2821 2822 out_unlock: 2823 unlock_page(page); 2824 page_cache_release(page); 2825 out: 2826 return ret; 2827 } 2828 2829 int btrfs_cont_expand(struct inode *inode, loff_t size) 2830 { 2831 struct btrfs_trans_handle *trans; 2832 struct btrfs_root *root = BTRFS_I(inode)->root; 2833 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2834 struct extent_map *em; 2835 u64 mask = root->sectorsize - 1; 2836 u64 hole_start = (inode->i_size + mask) & ~mask; 2837 u64 block_end = (size + mask) & ~mask; 2838 u64 last_byte; 2839 u64 cur_offset; 2840 u64 hole_size; 2841 int err; 2842 2843 if (size <= hole_start) 2844 return 0; 2845 2846 err = btrfs_check_metadata_free_space(root); 2847 if (err) 2848 return err; 2849 2850 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2851 2852 while (1) { 2853 struct btrfs_ordered_extent *ordered; 2854 btrfs_wait_ordered_range(inode, hole_start, 2855 block_end - hole_start); 2856 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2857 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2858 if (!ordered) 2859 break; 2860 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2861 btrfs_put_ordered_extent(ordered); 2862 } 2863 2864 trans = btrfs_start_transaction(root, 1); 2865 btrfs_set_trans_block_group(trans, inode); 2866 2867 cur_offset = hole_start; 2868 while (1) { 2869 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2870 block_end - cur_offset, 0); 2871 BUG_ON(IS_ERR(em) || !em); 2872 last_byte = min(extent_map_end(em), block_end); 2873 last_byte = (last_byte + mask) & ~mask; 2874 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2875 u64 hint_byte = 0; 2876 hole_size = last_byte - cur_offset; 2877 err = btrfs_drop_extents(trans, root, inode, 2878 cur_offset, 2879 cur_offset + hole_size, 2880 cur_offset, &hint_byte); 2881 if (err) 2882 break; 2883 err = btrfs_insert_file_extent(trans, root, 2884 inode->i_ino, cur_offset, 0, 2885 0, hole_size, 0, hole_size, 2886 0, 0, 0); 2887 btrfs_drop_extent_cache(inode, hole_start, 2888 last_byte - 1, 0); 2889 } 2890 free_extent_map(em); 2891 cur_offset = last_byte; 2892 if (err || cur_offset >= block_end) 2893 break; 2894 } 2895 2896 btrfs_end_transaction(trans, root); 2897 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2898 return err; 2899 } 2900 2901 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2902 { 2903 struct inode *inode = dentry->d_inode; 2904 int err; 2905 2906 err = inode_change_ok(inode, attr); 2907 if (err) 2908 return err; 2909 2910 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 2911 if (attr->ia_size > inode->i_size) { 2912 err = btrfs_cont_expand(inode, attr->ia_size); 2913 if (err) 2914 return err; 2915 } else if (inode->i_size > 0 && 2916 attr->ia_size == 0) { 2917 2918 /* we're truncating a file that used to have good 2919 * data down to zero. Make sure it gets into 2920 * the ordered flush list so that any new writes 2921 * get down to disk quickly. 2922 */ 2923 BTRFS_I(inode)->ordered_data_close = 1; 2924 } 2925 } 2926 2927 err = inode_setattr(inode, attr); 2928 2929 if (!err && ((attr->ia_valid & ATTR_MODE))) 2930 err = btrfs_acl_chmod(inode); 2931 return err; 2932 } 2933 2934 void btrfs_delete_inode(struct inode *inode) 2935 { 2936 struct btrfs_trans_handle *trans; 2937 struct btrfs_root *root = BTRFS_I(inode)->root; 2938 unsigned long nr; 2939 int ret; 2940 2941 truncate_inode_pages(&inode->i_data, 0); 2942 if (is_bad_inode(inode)) { 2943 btrfs_orphan_del(NULL, inode); 2944 goto no_delete; 2945 } 2946 btrfs_wait_ordered_range(inode, 0, (u64)-1); 2947 2948 btrfs_i_size_write(inode, 0); 2949 trans = btrfs_join_transaction(root, 1); 2950 2951 btrfs_set_trans_block_group(trans, inode); 2952 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 2953 if (ret) { 2954 btrfs_orphan_del(NULL, inode); 2955 goto no_delete_lock; 2956 } 2957 2958 btrfs_orphan_del(trans, inode); 2959 2960 nr = trans->blocks_used; 2961 clear_inode(inode); 2962 2963 btrfs_end_transaction(trans, root); 2964 btrfs_btree_balance_dirty(root, nr); 2965 return; 2966 2967 no_delete_lock: 2968 nr = trans->blocks_used; 2969 btrfs_end_transaction(trans, root); 2970 btrfs_btree_balance_dirty(root, nr); 2971 no_delete: 2972 clear_inode(inode); 2973 } 2974 2975 /* 2976 * this returns the key found in the dir entry in the location pointer. 2977 * If no dir entries were found, location->objectid is 0. 2978 */ 2979 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 2980 struct btrfs_key *location) 2981 { 2982 const char *name = dentry->d_name.name; 2983 int namelen = dentry->d_name.len; 2984 struct btrfs_dir_item *di; 2985 struct btrfs_path *path; 2986 struct btrfs_root *root = BTRFS_I(dir)->root; 2987 int ret = 0; 2988 2989 path = btrfs_alloc_path(); 2990 BUG_ON(!path); 2991 2992 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 2993 namelen, 0); 2994 if (IS_ERR(di)) 2995 ret = PTR_ERR(di); 2996 2997 if (!di || IS_ERR(di)) 2998 goto out_err; 2999 3000 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3001 out: 3002 btrfs_free_path(path); 3003 return ret; 3004 out_err: 3005 location->objectid = 0; 3006 goto out; 3007 } 3008 3009 /* 3010 * when we hit a tree root in a directory, the btrfs part of the inode 3011 * needs to be changed to reflect the root directory of the tree root. This 3012 * is kind of like crossing a mount point. 3013 */ 3014 static int fixup_tree_root_location(struct btrfs_root *root, 3015 struct btrfs_key *location, 3016 struct btrfs_root **sub_root, 3017 struct dentry *dentry) 3018 { 3019 struct btrfs_root_item *ri; 3020 3021 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 3022 return 0; 3023 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 3024 return 0; 3025 3026 *sub_root = btrfs_read_fs_root(root->fs_info, location, 3027 dentry->d_name.name, 3028 dentry->d_name.len); 3029 if (IS_ERR(*sub_root)) 3030 return PTR_ERR(*sub_root); 3031 3032 ri = &(*sub_root)->root_item; 3033 location->objectid = btrfs_root_dirid(ri); 3034 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3035 location->offset = 0; 3036 3037 return 0; 3038 } 3039 3040 static noinline void init_btrfs_i(struct inode *inode) 3041 { 3042 struct btrfs_inode *bi = BTRFS_I(inode); 3043 3044 bi->i_acl = NULL; 3045 bi->i_default_acl = NULL; 3046 3047 bi->generation = 0; 3048 bi->sequence = 0; 3049 bi->last_trans = 0; 3050 bi->logged_trans = 0; 3051 bi->delalloc_bytes = 0; 3052 bi->reserved_bytes = 0; 3053 bi->disk_i_size = 0; 3054 bi->flags = 0; 3055 bi->index_cnt = (u64)-1; 3056 bi->last_unlink_trans = 0; 3057 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 3058 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 3059 inode->i_mapping, GFP_NOFS); 3060 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3061 inode->i_mapping, GFP_NOFS); 3062 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3063 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations); 3064 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3065 mutex_init(&BTRFS_I(inode)->extent_mutex); 3066 mutex_init(&BTRFS_I(inode)->log_mutex); 3067 } 3068 3069 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3070 { 3071 struct btrfs_iget_args *args = p; 3072 inode->i_ino = args->ino; 3073 init_btrfs_i(inode); 3074 BTRFS_I(inode)->root = args->root; 3075 btrfs_set_inode_space_info(args->root, inode); 3076 return 0; 3077 } 3078 3079 static int btrfs_find_actor(struct inode *inode, void *opaque) 3080 { 3081 struct btrfs_iget_args *args = opaque; 3082 return args->ino == inode->i_ino && 3083 args->root == BTRFS_I(inode)->root; 3084 } 3085 3086 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, 3087 struct btrfs_root *root, int wait) 3088 { 3089 struct inode *inode; 3090 struct btrfs_iget_args args; 3091 args.ino = objectid; 3092 args.root = root; 3093 3094 if (wait) { 3095 inode = ilookup5(s, objectid, btrfs_find_actor, 3096 (void *)&args); 3097 } else { 3098 inode = ilookup5_nowait(s, objectid, btrfs_find_actor, 3099 (void *)&args); 3100 } 3101 return inode; 3102 } 3103 3104 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, 3105 struct btrfs_root *root) 3106 { 3107 struct inode *inode; 3108 struct btrfs_iget_args args; 3109 args.ino = objectid; 3110 args.root = root; 3111 3112 inode = iget5_locked(s, objectid, btrfs_find_actor, 3113 btrfs_init_locked_inode, 3114 (void *)&args); 3115 return inode; 3116 } 3117 3118 /* Get an inode object given its location and corresponding root. 3119 * Returns in *is_new if the inode was read from disk 3120 */ 3121 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3122 struct btrfs_root *root, int *is_new) 3123 { 3124 struct inode *inode; 3125 3126 inode = btrfs_iget_locked(s, location->objectid, root); 3127 if (!inode) 3128 return ERR_PTR(-EACCES); 3129 3130 if (inode->i_state & I_NEW) { 3131 BTRFS_I(inode)->root = root; 3132 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3133 btrfs_read_locked_inode(inode); 3134 unlock_new_inode(inode); 3135 if (is_new) 3136 *is_new = 1; 3137 } else { 3138 if (is_new) 3139 *is_new = 0; 3140 } 3141 3142 return inode; 3143 } 3144 3145 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3146 { 3147 struct inode *inode; 3148 struct btrfs_inode *bi = BTRFS_I(dir); 3149 struct btrfs_root *root = bi->root; 3150 struct btrfs_root *sub_root = root; 3151 struct btrfs_key location; 3152 int ret, new; 3153 3154 if (dentry->d_name.len > BTRFS_NAME_LEN) 3155 return ERR_PTR(-ENAMETOOLONG); 3156 3157 ret = btrfs_inode_by_name(dir, dentry, &location); 3158 3159 if (ret < 0) 3160 return ERR_PTR(ret); 3161 3162 inode = NULL; 3163 if (location.objectid) { 3164 ret = fixup_tree_root_location(root, &location, &sub_root, 3165 dentry); 3166 if (ret < 0) 3167 return ERR_PTR(ret); 3168 if (ret > 0) 3169 return ERR_PTR(-ENOENT); 3170 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new); 3171 if (IS_ERR(inode)) 3172 return ERR_CAST(inode); 3173 } 3174 return inode; 3175 } 3176 3177 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3178 struct nameidata *nd) 3179 { 3180 struct inode *inode; 3181 3182 if (dentry->d_name.len > BTRFS_NAME_LEN) 3183 return ERR_PTR(-ENAMETOOLONG); 3184 3185 inode = btrfs_lookup_dentry(dir, dentry); 3186 if (IS_ERR(inode)) 3187 return ERR_CAST(inode); 3188 3189 return d_splice_alias(inode, dentry); 3190 } 3191 3192 static unsigned char btrfs_filetype_table[] = { 3193 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3194 }; 3195 3196 static int btrfs_real_readdir(struct file *filp, void *dirent, 3197 filldir_t filldir) 3198 { 3199 struct inode *inode = filp->f_dentry->d_inode; 3200 struct btrfs_root *root = BTRFS_I(inode)->root; 3201 struct btrfs_item *item; 3202 struct btrfs_dir_item *di; 3203 struct btrfs_key key; 3204 struct btrfs_key found_key; 3205 struct btrfs_path *path; 3206 int ret; 3207 u32 nritems; 3208 struct extent_buffer *leaf; 3209 int slot; 3210 int advance; 3211 unsigned char d_type; 3212 int over = 0; 3213 u32 di_cur; 3214 u32 di_total; 3215 u32 di_len; 3216 int key_type = BTRFS_DIR_INDEX_KEY; 3217 char tmp_name[32]; 3218 char *name_ptr; 3219 int name_len; 3220 3221 /* FIXME, use a real flag for deciding about the key type */ 3222 if (root->fs_info->tree_root == root) 3223 key_type = BTRFS_DIR_ITEM_KEY; 3224 3225 /* special case for "." */ 3226 if (filp->f_pos == 0) { 3227 over = filldir(dirent, ".", 1, 3228 1, inode->i_ino, 3229 DT_DIR); 3230 if (over) 3231 return 0; 3232 filp->f_pos = 1; 3233 } 3234 /* special case for .., just use the back ref */ 3235 if (filp->f_pos == 1) { 3236 u64 pino = parent_ino(filp->f_path.dentry); 3237 over = filldir(dirent, "..", 2, 3238 2, pino, DT_DIR); 3239 if (over) 3240 return 0; 3241 filp->f_pos = 2; 3242 } 3243 path = btrfs_alloc_path(); 3244 path->reada = 2; 3245 3246 btrfs_set_key_type(&key, key_type); 3247 key.offset = filp->f_pos; 3248 key.objectid = inode->i_ino; 3249 3250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3251 if (ret < 0) 3252 goto err; 3253 advance = 0; 3254 3255 while (1) { 3256 leaf = path->nodes[0]; 3257 nritems = btrfs_header_nritems(leaf); 3258 slot = path->slots[0]; 3259 if (advance || slot >= nritems) { 3260 if (slot >= nritems - 1) { 3261 ret = btrfs_next_leaf(root, path); 3262 if (ret) 3263 break; 3264 leaf = path->nodes[0]; 3265 nritems = btrfs_header_nritems(leaf); 3266 slot = path->slots[0]; 3267 } else { 3268 slot++; 3269 path->slots[0]++; 3270 } 3271 } 3272 3273 advance = 1; 3274 item = btrfs_item_nr(leaf, slot); 3275 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3276 3277 if (found_key.objectid != key.objectid) 3278 break; 3279 if (btrfs_key_type(&found_key) != key_type) 3280 break; 3281 if (found_key.offset < filp->f_pos) 3282 continue; 3283 3284 filp->f_pos = found_key.offset; 3285 3286 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3287 di_cur = 0; 3288 di_total = btrfs_item_size(leaf, item); 3289 3290 while (di_cur < di_total) { 3291 struct btrfs_key location; 3292 3293 name_len = btrfs_dir_name_len(leaf, di); 3294 if (name_len <= sizeof(tmp_name)) { 3295 name_ptr = tmp_name; 3296 } else { 3297 name_ptr = kmalloc(name_len, GFP_NOFS); 3298 if (!name_ptr) { 3299 ret = -ENOMEM; 3300 goto err; 3301 } 3302 } 3303 read_extent_buffer(leaf, name_ptr, 3304 (unsigned long)(di + 1), name_len); 3305 3306 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3307 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3308 3309 /* is this a reference to our own snapshot? If so 3310 * skip it 3311 */ 3312 if (location.type == BTRFS_ROOT_ITEM_KEY && 3313 location.objectid == root->root_key.objectid) { 3314 over = 0; 3315 goto skip; 3316 } 3317 over = filldir(dirent, name_ptr, name_len, 3318 found_key.offset, location.objectid, 3319 d_type); 3320 3321 skip: 3322 if (name_ptr != tmp_name) 3323 kfree(name_ptr); 3324 3325 if (over) 3326 goto nopos; 3327 di_len = btrfs_dir_name_len(leaf, di) + 3328 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3329 di_cur += di_len; 3330 di = (struct btrfs_dir_item *)((char *)di + di_len); 3331 } 3332 } 3333 3334 /* Reached end of directory/root. Bump pos past the last item. */ 3335 if (key_type == BTRFS_DIR_INDEX_KEY) 3336 filp->f_pos = INT_LIMIT(off_t); 3337 else 3338 filp->f_pos++; 3339 nopos: 3340 ret = 0; 3341 err: 3342 btrfs_free_path(path); 3343 return ret; 3344 } 3345 3346 int btrfs_write_inode(struct inode *inode, int wait) 3347 { 3348 struct btrfs_root *root = BTRFS_I(inode)->root; 3349 struct btrfs_trans_handle *trans; 3350 int ret = 0; 3351 3352 if (root->fs_info->btree_inode == inode) 3353 return 0; 3354 3355 if (wait) { 3356 trans = btrfs_join_transaction(root, 1); 3357 btrfs_set_trans_block_group(trans, inode); 3358 ret = btrfs_commit_transaction(trans, root); 3359 } 3360 return ret; 3361 } 3362 3363 /* 3364 * This is somewhat expensive, updating the tree every time the 3365 * inode changes. But, it is most likely to find the inode in cache. 3366 * FIXME, needs more benchmarking...there are no reasons other than performance 3367 * to keep or drop this code. 3368 */ 3369 void btrfs_dirty_inode(struct inode *inode) 3370 { 3371 struct btrfs_root *root = BTRFS_I(inode)->root; 3372 struct btrfs_trans_handle *trans; 3373 3374 trans = btrfs_join_transaction(root, 1); 3375 btrfs_set_trans_block_group(trans, inode); 3376 btrfs_update_inode(trans, root, inode); 3377 btrfs_end_transaction(trans, root); 3378 } 3379 3380 /* 3381 * find the highest existing sequence number in a directory 3382 * and then set the in-memory index_cnt variable to reflect 3383 * free sequence numbers 3384 */ 3385 static int btrfs_set_inode_index_count(struct inode *inode) 3386 { 3387 struct btrfs_root *root = BTRFS_I(inode)->root; 3388 struct btrfs_key key, found_key; 3389 struct btrfs_path *path; 3390 struct extent_buffer *leaf; 3391 int ret; 3392 3393 key.objectid = inode->i_ino; 3394 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3395 key.offset = (u64)-1; 3396 3397 path = btrfs_alloc_path(); 3398 if (!path) 3399 return -ENOMEM; 3400 3401 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3402 if (ret < 0) 3403 goto out; 3404 /* FIXME: we should be able to handle this */ 3405 if (ret == 0) 3406 goto out; 3407 ret = 0; 3408 3409 /* 3410 * MAGIC NUMBER EXPLANATION: 3411 * since we search a directory based on f_pos we have to start at 2 3412 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3413 * else has to start at 2 3414 */ 3415 if (path->slots[0] == 0) { 3416 BTRFS_I(inode)->index_cnt = 2; 3417 goto out; 3418 } 3419 3420 path->slots[0]--; 3421 3422 leaf = path->nodes[0]; 3423 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3424 3425 if (found_key.objectid != inode->i_ino || 3426 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3427 BTRFS_I(inode)->index_cnt = 2; 3428 goto out; 3429 } 3430 3431 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3432 out: 3433 btrfs_free_path(path); 3434 return ret; 3435 } 3436 3437 /* 3438 * helper to find a free sequence number in a given directory. This current 3439 * code is very simple, later versions will do smarter things in the btree 3440 */ 3441 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3442 { 3443 int ret = 0; 3444 3445 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3446 ret = btrfs_set_inode_index_count(dir); 3447 if (ret) 3448 return ret; 3449 } 3450 3451 *index = BTRFS_I(dir)->index_cnt; 3452 BTRFS_I(dir)->index_cnt++; 3453 3454 return ret; 3455 } 3456 3457 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3458 struct btrfs_root *root, 3459 struct inode *dir, 3460 const char *name, int name_len, 3461 u64 ref_objectid, u64 objectid, 3462 u64 alloc_hint, int mode, u64 *index) 3463 { 3464 struct inode *inode; 3465 struct btrfs_inode_item *inode_item; 3466 struct btrfs_key *location; 3467 struct btrfs_path *path; 3468 struct btrfs_inode_ref *ref; 3469 struct btrfs_key key[2]; 3470 u32 sizes[2]; 3471 unsigned long ptr; 3472 int ret; 3473 int owner; 3474 3475 path = btrfs_alloc_path(); 3476 BUG_ON(!path); 3477 3478 inode = new_inode(root->fs_info->sb); 3479 if (!inode) 3480 return ERR_PTR(-ENOMEM); 3481 3482 if (dir) { 3483 ret = btrfs_set_inode_index(dir, index); 3484 if (ret) { 3485 iput(inode); 3486 return ERR_PTR(ret); 3487 } 3488 } 3489 /* 3490 * index_cnt is ignored for everything but a dir, 3491 * btrfs_get_inode_index_count has an explanation for the magic 3492 * number 3493 */ 3494 init_btrfs_i(inode); 3495 BTRFS_I(inode)->index_cnt = 2; 3496 BTRFS_I(inode)->root = root; 3497 BTRFS_I(inode)->generation = trans->transid; 3498 btrfs_set_inode_space_info(root, inode); 3499 3500 if (mode & S_IFDIR) 3501 owner = 0; 3502 else 3503 owner = 1; 3504 BTRFS_I(inode)->block_group = 3505 btrfs_find_block_group(root, 0, alloc_hint, owner); 3506 if ((mode & S_IFREG)) { 3507 if (btrfs_test_opt(root, NODATASUM)) 3508 btrfs_set_flag(inode, NODATASUM); 3509 if (btrfs_test_opt(root, NODATACOW)) 3510 btrfs_set_flag(inode, NODATACOW); 3511 } 3512 3513 key[0].objectid = objectid; 3514 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3515 key[0].offset = 0; 3516 3517 key[1].objectid = objectid; 3518 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3519 key[1].offset = ref_objectid; 3520 3521 sizes[0] = sizeof(struct btrfs_inode_item); 3522 sizes[1] = name_len + sizeof(*ref); 3523 3524 path->leave_spinning = 1; 3525 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3526 if (ret != 0) 3527 goto fail; 3528 3529 if (objectid > root->highest_inode) 3530 root->highest_inode = objectid; 3531 3532 inode->i_uid = current_fsuid(); 3533 3534 if (dir && (dir->i_mode & S_ISGID)) { 3535 inode->i_gid = dir->i_gid; 3536 if (S_ISDIR(mode)) 3537 mode |= S_ISGID; 3538 } else 3539 inode->i_gid = current_fsgid(); 3540 3541 inode->i_mode = mode; 3542 inode->i_ino = objectid; 3543 inode_set_bytes(inode, 0); 3544 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3545 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3546 struct btrfs_inode_item); 3547 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3548 3549 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3550 struct btrfs_inode_ref); 3551 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3552 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3553 ptr = (unsigned long)(ref + 1); 3554 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3555 3556 btrfs_mark_buffer_dirty(path->nodes[0]); 3557 btrfs_free_path(path); 3558 3559 location = &BTRFS_I(inode)->location; 3560 location->objectid = objectid; 3561 location->offset = 0; 3562 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3563 3564 insert_inode_hash(inode); 3565 return inode; 3566 fail: 3567 if (dir) 3568 BTRFS_I(dir)->index_cnt--; 3569 btrfs_free_path(path); 3570 iput(inode); 3571 return ERR_PTR(ret); 3572 } 3573 3574 static inline u8 btrfs_inode_type(struct inode *inode) 3575 { 3576 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3577 } 3578 3579 /* 3580 * utility function to add 'inode' into 'parent_inode' with 3581 * a give name and a given sequence number. 3582 * if 'add_backref' is true, also insert a backref from the 3583 * inode to the parent directory. 3584 */ 3585 int btrfs_add_link(struct btrfs_trans_handle *trans, 3586 struct inode *parent_inode, struct inode *inode, 3587 const char *name, int name_len, int add_backref, u64 index) 3588 { 3589 int ret; 3590 struct btrfs_key key; 3591 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3592 3593 key.objectid = inode->i_ino; 3594 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3595 key.offset = 0; 3596 3597 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3598 parent_inode->i_ino, 3599 &key, btrfs_inode_type(inode), 3600 index); 3601 if (ret == 0) { 3602 if (add_backref) { 3603 ret = btrfs_insert_inode_ref(trans, root, 3604 name, name_len, 3605 inode->i_ino, 3606 parent_inode->i_ino, 3607 index); 3608 } 3609 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3610 name_len * 2); 3611 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3612 ret = btrfs_update_inode(trans, root, parent_inode); 3613 } 3614 return ret; 3615 } 3616 3617 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3618 struct dentry *dentry, struct inode *inode, 3619 int backref, u64 index) 3620 { 3621 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3622 inode, dentry->d_name.name, 3623 dentry->d_name.len, backref, index); 3624 if (!err) { 3625 d_instantiate(dentry, inode); 3626 return 0; 3627 } 3628 if (err > 0) 3629 err = -EEXIST; 3630 return err; 3631 } 3632 3633 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3634 int mode, dev_t rdev) 3635 { 3636 struct btrfs_trans_handle *trans; 3637 struct btrfs_root *root = BTRFS_I(dir)->root; 3638 struct inode *inode = NULL; 3639 int err; 3640 int drop_inode = 0; 3641 u64 objectid; 3642 unsigned long nr = 0; 3643 u64 index = 0; 3644 3645 if (!new_valid_dev(rdev)) 3646 return -EINVAL; 3647 3648 err = btrfs_check_metadata_free_space(root); 3649 if (err) 3650 goto fail; 3651 3652 trans = btrfs_start_transaction(root, 1); 3653 btrfs_set_trans_block_group(trans, dir); 3654 3655 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3656 if (err) { 3657 err = -ENOSPC; 3658 goto out_unlock; 3659 } 3660 3661 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3662 dentry->d_name.len, 3663 dentry->d_parent->d_inode->i_ino, objectid, 3664 BTRFS_I(dir)->block_group, mode, &index); 3665 err = PTR_ERR(inode); 3666 if (IS_ERR(inode)) 3667 goto out_unlock; 3668 3669 err = btrfs_init_inode_security(inode, dir); 3670 if (err) { 3671 drop_inode = 1; 3672 goto out_unlock; 3673 } 3674 3675 btrfs_set_trans_block_group(trans, inode); 3676 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3677 if (err) 3678 drop_inode = 1; 3679 else { 3680 inode->i_op = &btrfs_special_inode_operations; 3681 init_special_inode(inode, inode->i_mode, rdev); 3682 btrfs_update_inode(trans, root, inode); 3683 } 3684 dir->i_sb->s_dirt = 1; 3685 btrfs_update_inode_block_group(trans, inode); 3686 btrfs_update_inode_block_group(trans, dir); 3687 out_unlock: 3688 nr = trans->blocks_used; 3689 btrfs_end_transaction_throttle(trans, root); 3690 fail: 3691 if (drop_inode) { 3692 inode_dec_link_count(inode); 3693 iput(inode); 3694 } 3695 btrfs_btree_balance_dirty(root, nr); 3696 return err; 3697 } 3698 3699 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3700 int mode, struct nameidata *nd) 3701 { 3702 struct btrfs_trans_handle *trans; 3703 struct btrfs_root *root = BTRFS_I(dir)->root; 3704 struct inode *inode = NULL; 3705 int err; 3706 int drop_inode = 0; 3707 unsigned long nr = 0; 3708 u64 objectid; 3709 u64 index = 0; 3710 3711 err = btrfs_check_metadata_free_space(root); 3712 if (err) 3713 goto fail; 3714 trans = btrfs_start_transaction(root, 1); 3715 btrfs_set_trans_block_group(trans, dir); 3716 3717 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3718 if (err) { 3719 err = -ENOSPC; 3720 goto out_unlock; 3721 } 3722 3723 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3724 dentry->d_name.len, 3725 dentry->d_parent->d_inode->i_ino, 3726 objectid, BTRFS_I(dir)->block_group, mode, 3727 &index); 3728 err = PTR_ERR(inode); 3729 if (IS_ERR(inode)) 3730 goto out_unlock; 3731 3732 err = btrfs_init_inode_security(inode, dir); 3733 if (err) { 3734 drop_inode = 1; 3735 goto out_unlock; 3736 } 3737 3738 btrfs_set_trans_block_group(trans, inode); 3739 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3740 if (err) 3741 drop_inode = 1; 3742 else { 3743 inode->i_mapping->a_ops = &btrfs_aops; 3744 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3745 inode->i_fop = &btrfs_file_operations; 3746 inode->i_op = &btrfs_file_inode_operations; 3747 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3748 } 3749 dir->i_sb->s_dirt = 1; 3750 btrfs_update_inode_block_group(trans, inode); 3751 btrfs_update_inode_block_group(trans, dir); 3752 out_unlock: 3753 nr = trans->blocks_used; 3754 btrfs_end_transaction_throttle(trans, root); 3755 fail: 3756 if (drop_inode) { 3757 inode_dec_link_count(inode); 3758 iput(inode); 3759 } 3760 btrfs_btree_balance_dirty(root, nr); 3761 return err; 3762 } 3763 3764 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3765 struct dentry *dentry) 3766 { 3767 struct btrfs_trans_handle *trans; 3768 struct btrfs_root *root = BTRFS_I(dir)->root; 3769 struct inode *inode = old_dentry->d_inode; 3770 u64 index; 3771 unsigned long nr = 0; 3772 int err; 3773 int drop_inode = 0; 3774 3775 if (inode->i_nlink == 0) 3776 return -ENOENT; 3777 3778 btrfs_inc_nlink(inode); 3779 err = btrfs_check_metadata_free_space(root); 3780 if (err) 3781 goto fail; 3782 err = btrfs_set_inode_index(dir, &index); 3783 if (err) 3784 goto fail; 3785 3786 trans = btrfs_start_transaction(root, 1); 3787 3788 btrfs_set_trans_block_group(trans, dir); 3789 atomic_inc(&inode->i_count); 3790 3791 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3792 3793 if (err) 3794 drop_inode = 1; 3795 3796 dir->i_sb->s_dirt = 1; 3797 btrfs_update_inode_block_group(trans, dir); 3798 err = btrfs_update_inode(trans, root, inode); 3799 3800 if (err) 3801 drop_inode = 1; 3802 3803 nr = trans->blocks_used; 3804 3805 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent); 3806 btrfs_end_transaction_throttle(trans, root); 3807 fail: 3808 if (drop_inode) { 3809 inode_dec_link_count(inode); 3810 iput(inode); 3811 } 3812 btrfs_btree_balance_dirty(root, nr); 3813 return err; 3814 } 3815 3816 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3817 { 3818 struct inode *inode = NULL; 3819 struct btrfs_trans_handle *trans; 3820 struct btrfs_root *root = BTRFS_I(dir)->root; 3821 int err = 0; 3822 int drop_on_err = 0; 3823 u64 objectid = 0; 3824 u64 index = 0; 3825 unsigned long nr = 1; 3826 3827 err = btrfs_check_metadata_free_space(root); 3828 if (err) 3829 goto out_unlock; 3830 3831 trans = btrfs_start_transaction(root, 1); 3832 btrfs_set_trans_block_group(trans, dir); 3833 3834 if (IS_ERR(trans)) { 3835 err = PTR_ERR(trans); 3836 goto out_unlock; 3837 } 3838 3839 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3840 if (err) { 3841 err = -ENOSPC; 3842 goto out_unlock; 3843 } 3844 3845 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3846 dentry->d_name.len, 3847 dentry->d_parent->d_inode->i_ino, objectid, 3848 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3849 &index); 3850 if (IS_ERR(inode)) { 3851 err = PTR_ERR(inode); 3852 goto out_fail; 3853 } 3854 3855 drop_on_err = 1; 3856 3857 err = btrfs_init_inode_security(inode, dir); 3858 if (err) 3859 goto out_fail; 3860 3861 inode->i_op = &btrfs_dir_inode_operations; 3862 inode->i_fop = &btrfs_dir_file_operations; 3863 btrfs_set_trans_block_group(trans, inode); 3864 3865 btrfs_i_size_write(inode, 0); 3866 err = btrfs_update_inode(trans, root, inode); 3867 if (err) 3868 goto out_fail; 3869 3870 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3871 inode, dentry->d_name.name, 3872 dentry->d_name.len, 0, index); 3873 if (err) 3874 goto out_fail; 3875 3876 d_instantiate(dentry, inode); 3877 drop_on_err = 0; 3878 dir->i_sb->s_dirt = 1; 3879 btrfs_update_inode_block_group(trans, inode); 3880 btrfs_update_inode_block_group(trans, dir); 3881 3882 out_fail: 3883 nr = trans->blocks_used; 3884 btrfs_end_transaction_throttle(trans, root); 3885 3886 out_unlock: 3887 if (drop_on_err) 3888 iput(inode); 3889 btrfs_btree_balance_dirty(root, nr); 3890 return err; 3891 } 3892 3893 /* helper for btfs_get_extent. Given an existing extent in the tree, 3894 * and an extent that you want to insert, deal with overlap and insert 3895 * the new extent into the tree. 3896 */ 3897 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3898 struct extent_map *existing, 3899 struct extent_map *em, 3900 u64 map_start, u64 map_len) 3901 { 3902 u64 start_diff; 3903 3904 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3905 start_diff = map_start - em->start; 3906 em->start = map_start; 3907 em->len = map_len; 3908 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3909 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3910 em->block_start += start_diff; 3911 em->block_len -= start_diff; 3912 } 3913 return add_extent_mapping(em_tree, em); 3914 } 3915 3916 static noinline int uncompress_inline(struct btrfs_path *path, 3917 struct inode *inode, struct page *page, 3918 size_t pg_offset, u64 extent_offset, 3919 struct btrfs_file_extent_item *item) 3920 { 3921 int ret; 3922 struct extent_buffer *leaf = path->nodes[0]; 3923 char *tmp; 3924 size_t max_size; 3925 unsigned long inline_size; 3926 unsigned long ptr; 3927 3928 WARN_ON(pg_offset != 0); 3929 max_size = btrfs_file_extent_ram_bytes(leaf, item); 3930 inline_size = btrfs_file_extent_inline_item_len(leaf, 3931 btrfs_item_nr(leaf, path->slots[0])); 3932 tmp = kmalloc(inline_size, GFP_NOFS); 3933 ptr = btrfs_file_extent_inline_start(item); 3934 3935 read_extent_buffer(leaf, tmp, ptr, inline_size); 3936 3937 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 3938 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 3939 inline_size, max_size); 3940 if (ret) { 3941 char *kaddr = kmap_atomic(page, KM_USER0); 3942 unsigned long copy_size = min_t(u64, 3943 PAGE_CACHE_SIZE - pg_offset, 3944 max_size - extent_offset); 3945 memset(kaddr + pg_offset, 0, copy_size); 3946 kunmap_atomic(kaddr, KM_USER0); 3947 } 3948 kfree(tmp); 3949 return 0; 3950 } 3951 3952 /* 3953 * a bit scary, this does extent mapping from logical file offset to the disk. 3954 * the ugly parts come from merging extents from the disk with the in-ram 3955 * representation. This gets more complex because of the data=ordered code, 3956 * where the in-ram extents might be locked pending data=ordered completion. 3957 * 3958 * This also copies inline extents directly into the page. 3959 */ 3960 3961 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3962 size_t pg_offset, u64 start, u64 len, 3963 int create) 3964 { 3965 int ret; 3966 int err = 0; 3967 u64 bytenr; 3968 u64 extent_start = 0; 3969 u64 extent_end = 0; 3970 u64 objectid = inode->i_ino; 3971 u32 found_type; 3972 struct btrfs_path *path = NULL; 3973 struct btrfs_root *root = BTRFS_I(inode)->root; 3974 struct btrfs_file_extent_item *item; 3975 struct extent_buffer *leaf; 3976 struct btrfs_key found_key; 3977 struct extent_map *em = NULL; 3978 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3979 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3980 struct btrfs_trans_handle *trans = NULL; 3981 int compressed; 3982 3983 again: 3984 spin_lock(&em_tree->lock); 3985 em = lookup_extent_mapping(em_tree, start, len); 3986 if (em) 3987 em->bdev = root->fs_info->fs_devices->latest_bdev; 3988 spin_unlock(&em_tree->lock); 3989 3990 if (em) { 3991 if (em->start > start || em->start + em->len <= start) 3992 free_extent_map(em); 3993 else if (em->block_start == EXTENT_MAP_INLINE && page) 3994 free_extent_map(em); 3995 else 3996 goto out; 3997 } 3998 em = alloc_extent_map(GFP_NOFS); 3999 if (!em) { 4000 err = -ENOMEM; 4001 goto out; 4002 } 4003 em->bdev = root->fs_info->fs_devices->latest_bdev; 4004 em->start = EXTENT_MAP_HOLE; 4005 em->orig_start = EXTENT_MAP_HOLE; 4006 em->len = (u64)-1; 4007 em->block_len = (u64)-1; 4008 4009 if (!path) { 4010 path = btrfs_alloc_path(); 4011 BUG_ON(!path); 4012 } 4013 4014 ret = btrfs_lookup_file_extent(trans, root, path, 4015 objectid, start, trans != NULL); 4016 if (ret < 0) { 4017 err = ret; 4018 goto out; 4019 } 4020 4021 if (ret != 0) { 4022 if (path->slots[0] == 0) 4023 goto not_found; 4024 path->slots[0]--; 4025 } 4026 4027 leaf = path->nodes[0]; 4028 item = btrfs_item_ptr(leaf, path->slots[0], 4029 struct btrfs_file_extent_item); 4030 /* are we inside the extent that was found? */ 4031 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4032 found_type = btrfs_key_type(&found_key); 4033 if (found_key.objectid != objectid || 4034 found_type != BTRFS_EXTENT_DATA_KEY) { 4035 goto not_found; 4036 } 4037 4038 found_type = btrfs_file_extent_type(leaf, item); 4039 extent_start = found_key.offset; 4040 compressed = btrfs_file_extent_compression(leaf, item); 4041 if (found_type == BTRFS_FILE_EXTENT_REG || 4042 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4043 extent_end = extent_start + 4044 btrfs_file_extent_num_bytes(leaf, item); 4045 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4046 size_t size; 4047 size = btrfs_file_extent_inline_len(leaf, item); 4048 extent_end = (extent_start + size + root->sectorsize - 1) & 4049 ~((u64)root->sectorsize - 1); 4050 } 4051 4052 if (start >= extent_end) { 4053 path->slots[0]++; 4054 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4055 ret = btrfs_next_leaf(root, path); 4056 if (ret < 0) { 4057 err = ret; 4058 goto out; 4059 } 4060 if (ret > 0) 4061 goto not_found; 4062 leaf = path->nodes[0]; 4063 } 4064 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4065 if (found_key.objectid != objectid || 4066 found_key.type != BTRFS_EXTENT_DATA_KEY) 4067 goto not_found; 4068 if (start + len <= found_key.offset) 4069 goto not_found; 4070 em->start = start; 4071 em->len = found_key.offset - start; 4072 goto not_found_em; 4073 } 4074 4075 if (found_type == BTRFS_FILE_EXTENT_REG || 4076 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4077 em->start = extent_start; 4078 em->len = extent_end - extent_start; 4079 em->orig_start = extent_start - 4080 btrfs_file_extent_offset(leaf, item); 4081 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4082 if (bytenr == 0) { 4083 em->block_start = EXTENT_MAP_HOLE; 4084 goto insert; 4085 } 4086 if (compressed) { 4087 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4088 em->block_start = bytenr; 4089 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4090 item); 4091 } else { 4092 bytenr += btrfs_file_extent_offset(leaf, item); 4093 em->block_start = bytenr; 4094 em->block_len = em->len; 4095 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4096 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4097 } 4098 goto insert; 4099 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4100 unsigned long ptr; 4101 char *map; 4102 size_t size; 4103 size_t extent_offset; 4104 size_t copy_size; 4105 4106 em->block_start = EXTENT_MAP_INLINE; 4107 if (!page || create) { 4108 em->start = extent_start; 4109 em->len = extent_end - extent_start; 4110 goto out; 4111 } 4112 4113 size = btrfs_file_extent_inline_len(leaf, item); 4114 extent_offset = page_offset(page) + pg_offset - extent_start; 4115 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4116 size - extent_offset); 4117 em->start = extent_start + extent_offset; 4118 em->len = (copy_size + root->sectorsize - 1) & 4119 ~((u64)root->sectorsize - 1); 4120 em->orig_start = EXTENT_MAP_INLINE; 4121 if (compressed) 4122 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4123 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4124 if (create == 0 && !PageUptodate(page)) { 4125 if (btrfs_file_extent_compression(leaf, item) == 4126 BTRFS_COMPRESS_ZLIB) { 4127 ret = uncompress_inline(path, inode, page, 4128 pg_offset, 4129 extent_offset, item); 4130 BUG_ON(ret); 4131 } else { 4132 map = kmap(page); 4133 read_extent_buffer(leaf, map + pg_offset, ptr, 4134 copy_size); 4135 kunmap(page); 4136 } 4137 flush_dcache_page(page); 4138 } else if (create && PageUptodate(page)) { 4139 if (!trans) { 4140 kunmap(page); 4141 free_extent_map(em); 4142 em = NULL; 4143 btrfs_release_path(root, path); 4144 trans = btrfs_join_transaction(root, 1); 4145 goto again; 4146 } 4147 map = kmap(page); 4148 write_extent_buffer(leaf, map + pg_offset, ptr, 4149 copy_size); 4150 kunmap(page); 4151 btrfs_mark_buffer_dirty(leaf); 4152 } 4153 set_extent_uptodate(io_tree, em->start, 4154 extent_map_end(em) - 1, GFP_NOFS); 4155 goto insert; 4156 } else { 4157 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4158 WARN_ON(1); 4159 } 4160 not_found: 4161 em->start = start; 4162 em->len = len; 4163 not_found_em: 4164 em->block_start = EXTENT_MAP_HOLE; 4165 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4166 insert: 4167 btrfs_release_path(root, path); 4168 if (em->start > start || extent_map_end(em) <= start) { 4169 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4170 "[%llu %llu]\n", (unsigned long long)em->start, 4171 (unsigned long long)em->len, 4172 (unsigned long long)start, 4173 (unsigned long long)len); 4174 err = -EIO; 4175 goto out; 4176 } 4177 4178 err = 0; 4179 spin_lock(&em_tree->lock); 4180 ret = add_extent_mapping(em_tree, em); 4181 /* it is possible that someone inserted the extent into the tree 4182 * while we had the lock dropped. It is also possible that 4183 * an overlapping map exists in the tree 4184 */ 4185 if (ret == -EEXIST) { 4186 struct extent_map *existing; 4187 4188 ret = 0; 4189 4190 existing = lookup_extent_mapping(em_tree, start, len); 4191 if (existing && (existing->start > start || 4192 existing->start + existing->len <= start)) { 4193 free_extent_map(existing); 4194 existing = NULL; 4195 } 4196 if (!existing) { 4197 existing = lookup_extent_mapping(em_tree, em->start, 4198 em->len); 4199 if (existing) { 4200 err = merge_extent_mapping(em_tree, existing, 4201 em, start, 4202 root->sectorsize); 4203 free_extent_map(existing); 4204 if (err) { 4205 free_extent_map(em); 4206 em = NULL; 4207 } 4208 } else { 4209 err = -EIO; 4210 free_extent_map(em); 4211 em = NULL; 4212 } 4213 } else { 4214 free_extent_map(em); 4215 em = existing; 4216 err = 0; 4217 } 4218 } 4219 spin_unlock(&em_tree->lock); 4220 out: 4221 if (path) 4222 btrfs_free_path(path); 4223 if (trans) { 4224 ret = btrfs_end_transaction(trans, root); 4225 if (!err) 4226 err = ret; 4227 } 4228 if (err) { 4229 free_extent_map(em); 4230 WARN_ON(1); 4231 return ERR_PTR(err); 4232 } 4233 return em; 4234 } 4235 4236 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4237 const struct iovec *iov, loff_t offset, 4238 unsigned long nr_segs) 4239 { 4240 return -EINVAL; 4241 } 4242 4243 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4244 __u64 start, __u64 len) 4245 { 4246 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4247 } 4248 4249 int btrfs_readpage(struct file *file, struct page *page) 4250 { 4251 struct extent_io_tree *tree; 4252 tree = &BTRFS_I(page->mapping->host)->io_tree; 4253 return extent_read_full_page(tree, page, btrfs_get_extent); 4254 } 4255 4256 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4257 { 4258 struct extent_io_tree *tree; 4259 4260 4261 if (current->flags & PF_MEMALLOC) { 4262 redirty_page_for_writepage(wbc, page); 4263 unlock_page(page); 4264 return 0; 4265 } 4266 tree = &BTRFS_I(page->mapping->host)->io_tree; 4267 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4268 } 4269 4270 int btrfs_writepages(struct address_space *mapping, 4271 struct writeback_control *wbc) 4272 { 4273 struct extent_io_tree *tree; 4274 4275 tree = &BTRFS_I(mapping->host)->io_tree; 4276 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4277 } 4278 4279 static int 4280 btrfs_readpages(struct file *file, struct address_space *mapping, 4281 struct list_head *pages, unsigned nr_pages) 4282 { 4283 struct extent_io_tree *tree; 4284 tree = &BTRFS_I(mapping->host)->io_tree; 4285 return extent_readpages(tree, mapping, pages, nr_pages, 4286 btrfs_get_extent); 4287 } 4288 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4289 { 4290 struct extent_io_tree *tree; 4291 struct extent_map_tree *map; 4292 int ret; 4293 4294 tree = &BTRFS_I(page->mapping->host)->io_tree; 4295 map = &BTRFS_I(page->mapping->host)->extent_tree; 4296 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4297 if (ret == 1) { 4298 ClearPagePrivate(page); 4299 set_page_private(page, 0); 4300 page_cache_release(page); 4301 } 4302 return ret; 4303 } 4304 4305 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4306 { 4307 if (PageWriteback(page) || PageDirty(page)) 4308 return 0; 4309 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 4310 } 4311 4312 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4313 { 4314 struct extent_io_tree *tree; 4315 struct btrfs_ordered_extent *ordered; 4316 u64 page_start = page_offset(page); 4317 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4318 4319 wait_on_page_writeback(page); 4320 tree = &BTRFS_I(page->mapping->host)->io_tree; 4321 if (offset) { 4322 btrfs_releasepage(page, GFP_NOFS); 4323 return; 4324 } 4325 4326 lock_extent(tree, page_start, page_end, GFP_NOFS); 4327 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4328 page_offset(page)); 4329 if (ordered) { 4330 /* 4331 * IO on this page will never be started, so we need 4332 * to account for any ordered extents now 4333 */ 4334 clear_extent_bit(tree, page_start, page_end, 4335 EXTENT_DIRTY | EXTENT_DELALLOC | 4336 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4337 btrfs_finish_ordered_io(page->mapping->host, 4338 page_start, page_end); 4339 btrfs_put_ordered_extent(ordered); 4340 lock_extent(tree, page_start, page_end, GFP_NOFS); 4341 } 4342 clear_extent_bit(tree, page_start, page_end, 4343 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4344 EXTENT_ORDERED, 4345 1, 1, GFP_NOFS); 4346 __btrfs_releasepage(page, GFP_NOFS); 4347 4348 ClearPageChecked(page); 4349 if (PagePrivate(page)) { 4350 ClearPagePrivate(page); 4351 set_page_private(page, 0); 4352 page_cache_release(page); 4353 } 4354 } 4355 4356 /* 4357 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4358 * called from a page fault handler when a page is first dirtied. Hence we must 4359 * be careful to check for EOF conditions here. We set the page up correctly 4360 * for a written page which means we get ENOSPC checking when writing into 4361 * holes and correct delalloc and unwritten extent mapping on filesystems that 4362 * support these features. 4363 * 4364 * We are not allowed to take the i_mutex here so we have to play games to 4365 * protect against truncate races as the page could now be beyond EOF. Because 4366 * vmtruncate() writes the inode size before removing pages, once we have the 4367 * page lock we can determine safely if the page is beyond EOF. If it is not 4368 * beyond EOF, then the page is guaranteed safe against truncation until we 4369 * unlock the page. 4370 */ 4371 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4372 { 4373 struct page *page = vmf->page; 4374 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4375 struct btrfs_root *root = BTRFS_I(inode)->root; 4376 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4377 struct btrfs_ordered_extent *ordered; 4378 char *kaddr; 4379 unsigned long zero_start; 4380 loff_t size; 4381 int ret; 4382 u64 page_start; 4383 u64 page_end; 4384 4385 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 4386 if (ret) { 4387 if (ret == -ENOMEM) 4388 ret = VM_FAULT_OOM; 4389 else /* -ENOSPC, -EIO, etc */ 4390 ret = VM_FAULT_SIGBUS; 4391 goto out; 4392 } 4393 4394 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 4395 again: 4396 lock_page(page); 4397 size = i_size_read(inode); 4398 page_start = page_offset(page); 4399 page_end = page_start + PAGE_CACHE_SIZE - 1; 4400 4401 if ((page->mapping != inode->i_mapping) || 4402 (page_start >= size)) { 4403 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 4404 /* page got truncated out from underneath us */ 4405 goto out_unlock; 4406 } 4407 wait_on_page_writeback(page); 4408 4409 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4410 set_page_extent_mapped(page); 4411 4412 /* 4413 * we can't set the delalloc bits if there are pending ordered 4414 * extents. Drop our locks and wait for them to finish 4415 */ 4416 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4417 if (ordered) { 4418 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4419 unlock_page(page); 4420 btrfs_start_ordered_extent(inode, ordered, 1); 4421 btrfs_put_ordered_extent(ordered); 4422 goto again; 4423 } 4424 4425 btrfs_set_extent_delalloc(inode, page_start, page_end); 4426 ret = 0; 4427 4428 /* page is wholly or partially inside EOF */ 4429 if (page_start + PAGE_CACHE_SIZE > size) 4430 zero_start = size & ~PAGE_CACHE_MASK; 4431 else 4432 zero_start = PAGE_CACHE_SIZE; 4433 4434 if (zero_start != PAGE_CACHE_SIZE) { 4435 kaddr = kmap(page); 4436 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4437 flush_dcache_page(page); 4438 kunmap(page); 4439 } 4440 ClearPageChecked(page); 4441 set_page_dirty(page); 4442 4443 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 4444 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4445 4446 out_unlock: 4447 unlock_page(page); 4448 out: 4449 return ret; 4450 } 4451 4452 static void btrfs_truncate(struct inode *inode) 4453 { 4454 struct btrfs_root *root = BTRFS_I(inode)->root; 4455 int ret; 4456 struct btrfs_trans_handle *trans; 4457 unsigned long nr; 4458 u64 mask = root->sectorsize - 1; 4459 4460 if (!S_ISREG(inode->i_mode)) 4461 return; 4462 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4463 return; 4464 4465 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4466 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4467 4468 trans = btrfs_start_transaction(root, 1); 4469 4470 /* 4471 * setattr is responsible for setting the ordered_data_close flag, 4472 * but that is only tested during the last file release. That 4473 * could happen well after the next commit, leaving a great big 4474 * window where new writes may get lost if someone chooses to write 4475 * to this file after truncating to zero 4476 * 4477 * The inode doesn't have any dirty data here, and so if we commit 4478 * this is a noop. If someone immediately starts writing to the inode 4479 * it is very likely we'll catch some of their writes in this 4480 * transaction, and the commit will find this file on the ordered 4481 * data list with good things to send down. 4482 * 4483 * This is a best effort solution, there is still a window where 4484 * using truncate to replace the contents of the file will 4485 * end up with a zero length file after a crash. 4486 */ 4487 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 4488 btrfs_add_ordered_operation(trans, root, inode); 4489 4490 btrfs_set_trans_block_group(trans, inode); 4491 btrfs_i_size_write(inode, inode->i_size); 4492 4493 ret = btrfs_orphan_add(trans, inode); 4494 if (ret) 4495 goto out; 4496 /* FIXME, add redo link to tree so we don't leak on crash */ 4497 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4498 BTRFS_EXTENT_DATA_KEY); 4499 btrfs_update_inode(trans, root, inode); 4500 4501 ret = btrfs_orphan_del(trans, inode); 4502 BUG_ON(ret); 4503 4504 out: 4505 nr = trans->blocks_used; 4506 ret = btrfs_end_transaction_throttle(trans, root); 4507 BUG_ON(ret); 4508 btrfs_btree_balance_dirty(root, nr); 4509 } 4510 4511 /* 4512 * create a new subvolume directory/inode (helper for the ioctl). 4513 */ 4514 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4515 struct btrfs_root *new_root, struct dentry *dentry, 4516 u64 new_dirid, u64 alloc_hint) 4517 { 4518 struct inode *inode; 4519 int error; 4520 u64 index = 0; 4521 4522 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4523 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4524 if (IS_ERR(inode)) 4525 return PTR_ERR(inode); 4526 inode->i_op = &btrfs_dir_inode_operations; 4527 inode->i_fop = &btrfs_dir_file_operations; 4528 4529 inode->i_nlink = 1; 4530 btrfs_i_size_write(inode, 0); 4531 4532 error = btrfs_update_inode(trans, new_root, inode); 4533 if (error) 4534 return error; 4535 4536 d_instantiate(dentry, inode); 4537 return 0; 4538 } 4539 4540 /* helper function for file defrag and space balancing. This 4541 * forces readahead on a given range of bytes in an inode 4542 */ 4543 unsigned long btrfs_force_ra(struct address_space *mapping, 4544 struct file_ra_state *ra, struct file *file, 4545 pgoff_t offset, pgoff_t last_index) 4546 { 4547 pgoff_t req_size = last_index - offset + 1; 4548 4549 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4550 return offset + req_size; 4551 } 4552 4553 struct inode *btrfs_alloc_inode(struct super_block *sb) 4554 { 4555 struct btrfs_inode *ei; 4556 4557 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4558 if (!ei) 4559 return NULL; 4560 ei->last_trans = 0; 4561 ei->logged_trans = 0; 4562 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4563 ei->i_acl = BTRFS_ACL_NOT_CACHED; 4564 ei->i_default_acl = BTRFS_ACL_NOT_CACHED; 4565 INIT_LIST_HEAD(&ei->i_orphan); 4566 INIT_LIST_HEAD(&ei->ordered_operations); 4567 return &ei->vfs_inode; 4568 } 4569 4570 void btrfs_destroy_inode(struct inode *inode) 4571 { 4572 struct btrfs_ordered_extent *ordered; 4573 struct btrfs_root *root = BTRFS_I(inode)->root; 4574 4575 WARN_ON(!list_empty(&inode->i_dentry)); 4576 WARN_ON(inode->i_data.nrpages); 4577 4578 if (BTRFS_I(inode)->i_acl && 4579 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) 4580 posix_acl_release(BTRFS_I(inode)->i_acl); 4581 if (BTRFS_I(inode)->i_default_acl && 4582 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) 4583 posix_acl_release(BTRFS_I(inode)->i_default_acl); 4584 4585 /* 4586 * Make sure we're properly removed from the ordered operation 4587 * lists. 4588 */ 4589 smp_mb(); 4590 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 4591 spin_lock(&root->fs_info->ordered_extent_lock); 4592 list_del_init(&BTRFS_I(inode)->ordered_operations); 4593 spin_unlock(&root->fs_info->ordered_extent_lock); 4594 } 4595 4596 spin_lock(&root->list_lock); 4597 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4598 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4599 " list\n", inode->i_ino); 4600 dump_stack(); 4601 } 4602 spin_unlock(&root->list_lock); 4603 4604 while (1) { 4605 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4606 if (!ordered) 4607 break; 4608 else { 4609 printk(KERN_ERR "btrfs found ordered " 4610 "extent %llu %llu on inode cleanup\n", 4611 (unsigned long long)ordered->file_offset, 4612 (unsigned long long)ordered->len); 4613 btrfs_remove_ordered_extent(inode, ordered); 4614 btrfs_put_ordered_extent(ordered); 4615 btrfs_put_ordered_extent(ordered); 4616 } 4617 } 4618 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4619 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4620 } 4621 4622 static void init_once(void *foo) 4623 { 4624 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4625 4626 inode_init_once(&ei->vfs_inode); 4627 } 4628 4629 void btrfs_destroy_cachep(void) 4630 { 4631 if (btrfs_inode_cachep) 4632 kmem_cache_destroy(btrfs_inode_cachep); 4633 if (btrfs_trans_handle_cachep) 4634 kmem_cache_destroy(btrfs_trans_handle_cachep); 4635 if (btrfs_transaction_cachep) 4636 kmem_cache_destroy(btrfs_transaction_cachep); 4637 if (btrfs_bit_radix_cachep) 4638 kmem_cache_destroy(btrfs_bit_radix_cachep); 4639 if (btrfs_path_cachep) 4640 kmem_cache_destroy(btrfs_path_cachep); 4641 } 4642 4643 struct kmem_cache *btrfs_cache_create(const char *name, size_t size, 4644 unsigned long extra_flags, 4645 void (*ctor)(void *)) 4646 { 4647 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | 4648 SLAB_MEM_SPREAD | extra_flags), ctor); 4649 } 4650 4651 int btrfs_init_cachep(void) 4652 { 4653 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache", 4654 sizeof(struct btrfs_inode), 4655 0, init_once); 4656 if (!btrfs_inode_cachep) 4657 goto fail; 4658 btrfs_trans_handle_cachep = 4659 btrfs_cache_create("btrfs_trans_handle_cache", 4660 sizeof(struct btrfs_trans_handle), 4661 0, NULL); 4662 if (!btrfs_trans_handle_cachep) 4663 goto fail; 4664 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache", 4665 sizeof(struct btrfs_transaction), 4666 0, NULL); 4667 if (!btrfs_transaction_cachep) 4668 goto fail; 4669 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache", 4670 sizeof(struct btrfs_path), 4671 0, NULL); 4672 if (!btrfs_path_cachep) 4673 goto fail; 4674 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256, 4675 SLAB_DESTROY_BY_RCU, NULL); 4676 if (!btrfs_bit_radix_cachep) 4677 goto fail; 4678 return 0; 4679 fail: 4680 btrfs_destroy_cachep(); 4681 return -ENOMEM; 4682 } 4683 4684 static int btrfs_getattr(struct vfsmount *mnt, 4685 struct dentry *dentry, struct kstat *stat) 4686 { 4687 struct inode *inode = dentry->d_inode; 4688 generic_fillattr(inode, stat); 4689 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4690 stat->blksize = PAGE_CACHE_SIZE; 4691 stat->blocks = (inode_get_bytes(inode) + 4692 BTRFS_I(inode)->delalloc_bytes) >> 9; 4693 return 0; 4694 } 4695 4696 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4697 struct inode *new_dir, struct dentry *new_dentry) 4698 { 4699 struct btrfs_trans_handle *trans; 4700 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4701 struct inode *new_inode = new_dentry->d_inode; 4702 struct inode *old_inode = old_dentry->d_inode; 4703 struct timespec ctime = CURRENT_TIME; 4704 u64 index = 0; 4705 int ret; 4706 4707 /* we're not allowed to rename between subvolumes */ 4708 if (BTRFS_I(old_inode)->root->root_key.objectid != 4709 BTRFS_I(new_dir)->root->root_key.objectid) 4710 return -EXDEV; 4711 4712 if (S_ISDIR(old_inode->i_mode) && new_inode && 4713 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4714 return -ENOTEMPTY; 4715 } 4716 4717 /* to rename a snapshot or subvolume, we need to juggle the 4718 * backrefs. This isn't coded yet 4719 */ 4720 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4721 return -EXDEV; 4722 4723 ret = btrfs_check_metadata_free_space(root); 4724 if (ret) 4725 goto out_unlock; 4726 4727 /* 4728 * we're using rename to replace one file with another. 4729 * and the replacement file is large. Start IO on it now so 4730 * we don't add too much work to the end of the transaction 4731 */ 4732 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) && 4733 new_inode->i_size && 4734 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 4735 filemap_flush(old_inode->i_mapping); 4736 4737 trans = btrfs_start_transaction(root, 1); 4738 4739 /* 4740 * make sure the inode gets flushed if it is replacing 4741 * something. 4742 */ 4743 if (new_inode && new_inode->i_size && 4744 old_inode && S_ISREG(old_inode->i_mode)) { 4745 btrfs_add_ordered_operation(trans, root, old_inode); 4746 } 4747 4748 /* 4749 * this is an ugly little race, but the rename is required to make 4750 * sure that if we crash, the inode is either at the old name 4751 * or the new one. pinning the log transaction lets us make sure 4752 * we don't allow a log commit to come in after we unlink the 4753 * name but before we add the new name back in. 4754 */ 4755 btrfs_pin_log_trans(root); 4756 4757 btrfs_set_trans_block_group(trans, new_dir); 4758 4759 btrfs_inc_nlink(old_dentry->d_inode); 4760 old_dir->i_ctime = old_dir->i_mtime = ctime; 4761 new_dir->i_ctime = new_dir->i_mtime = ctime; 4762 old_inode->i_ctime = ctime; 4763 4764 if (old_dentry->d_parent != new_dentry->d_parent) 4765 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 4766 4767 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4768 old_dentry->d_name.name, 4769 old_dentry->d_name.len); 4770 if (ret) 4771 goto out_fail; 4772 4773 if (new_inode) { 4774 new_inode->i_ctime = CURRENT_TIME; 4775 ret = btrfs_unlink_inode(trans, root, new_dir, 4776 new_dentry->d_inode, 4777 new_dentry->d_name.name, 4778 new_dentry->d_name.len); 4779 if (ret) 4780 goto out_fail; 4781 if (new_inode->i_nlink == 0) { 4782 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4783 if (ret) 4784 goto out_fail; 4785 } 4786 4787 } 4788 ret = btrfs_set_inode_index(new_dir, &index); 4789 if (ret) 4790 goto out_fail; 4791 4792 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4793 old_inode, new_dentry->d_name.name, 4794 new_dentry->d_name.len, 1, index); 4795 if (ret) 4796 goto out_fail; 4797 4798 btrfs_log_new_name(trans, old_inode, old_dir, 4799 new_dentry->d_parent); 4800 out_fail: 4801 4802 /* this btrfs_end_log_trans just allows the current 4803 * log-sub transaction to complete 4804 */ 4805 btrfs_end_log_trans(root); 4806 btrfs_end_transaction_throttle(trans, root); 4807 out_unlock: 4808 return ret; 4809 } 4810 4811 /* 4812 * some fairly slow code that needs optimization. This walks the list 4813 * of all the inodes with pending delalloc and forces them to disk. 4814 */ 4815 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4816 { 4817 struct list_head *head = &root->fs_info->delalloc_inodes; 4818 struct btrfs_inode *binode; 4819 struct inode *inode; 4820 4821 if (root->fs_info->sb->s_flags & MS_RDONLY) 4822 return -EROFS; 4823 4824 spin_lock(&root->fs_info->delalloc_lock); 4825 while (!list_empty(head)) { 4826 binode = list_entry(head->next, struct btrfs_inode, 4827 delalloc_inodes); 4828 inode = igrab(&binode->vfs_inode); 4829 if (!inode) 4830 list_del_init(&binode->delalloc_inodes); 4831 spin_unlock(&root->fs_info->delalloc_lock); 4832 if (inode) { 4833 filemap_flush(inode->i_mapping); 4834 iput(inode); 4835 } 4836 cond_resched(); 4837 spin_lock(&root->fs_info->delalloc_lock); 4838 } 4839 spin_unlock(&root->fs_info->delalloc_lock); 4840 4841 /* the filemap_flush will queue IO into the worker threads, but 4842 * we have to make sure the IO is actually started and that 4843 * ordered extents get created before we return 4844 */ 4845 atomic_inc(&root->fs_info->async_submit_draining); 4846 while (atomic_read(&root->fs_info->nr_async_submits) || 4847 atomic_read(&root->fs_info->async_delalloc_pages)) { 4848 wait_event(root->fs_info->async_submit_wait, 4849 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4850 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4851 } 4852 atomic_dec(&root->fs_info->async_submit_draining); 4853 return 0; 4854 } 4855 4856 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4857 const char *symname) 4858 { 4859 struct btrfs_trans_handle *trans; 4860 struct btrfs_root *root = BTRFS_I(dir)->root; 4861 struct btrfs_path *path; 4862 struct btrfs_key key; 4863 struct inode *inode = NULL; 4864 int err; 4865 int drop_inode = 0; 4866 u64 objectid; 4867 u64 index = 0 ; 4868 int name_len; 4869 int datasize; 4870 unsigned long ptr; 4871 struct btrfs_file_extent_item *ei; 4872 struct extent_buffer *leaf; 4873 unsigned long nr = 0; 4874 4875 name_len = strlen(symname) + 1; 4876 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4877 return -ENAMETOOLONG; 4878 4879 err = btrfs_check_metadata_free_space(root); 4880 if (err) 4881 goto out_fail; 4882 4883 trans = btrfs_start_transaction(root, 1); 4884 btrfs_set_trans_block_group(trans, dir); 4885 4886 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4887 if (err) { 4888 err = -ENOSPC; 4889 goto out_unlock; 4890 } 4891 4892 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4893 dentry->d_name.len, 4894 dentry->d_parent->d_inode->i_ino, objectid, 4895 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4896 &index); 4897 err = PTR_ERR(inode); 4898 if (IS_ERR(inode)) 4899 goto out_unlock; 4900 4901 err = btrfs_init_inode_security(inode, dir); 4902 if (err) { 4903 drop_inode = 1; 4904 goto out_unlock; 4905 } 4906 4907 btrfs_set_trans_block_group(trans, inode); 4908 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4909 if (err) 4910 drop_inode = 1; 4911 else { 4912 inode->i_mapping->a_ops = &btrfs_aops; 4913 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4914 inode->i_fop = &btrfs_file_operations; 4915 inode->i_op = &btrfs_file_inode_operations; 4916 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4917 } 4918 dir->i_sb->s_dirt = 1; 4919 btrfs_update_inode_block_group(trans, inode); 4920 btrfs_update_inode_block_group(trans, dir); 4921 if (drop_inode) 4922 goto out_unlock; 4923 4924 path = btrfs_alloc_path(); 4925 BUG_ON(!path); 4926 key.objectid = inode->i_ino; 4927 key.offset = 0; 4928 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4929 datasize = btrfs_file_extent_calc_inline_size(name_len); 4930 err = btrfs_insert_empty_item(trans, root, path, &key, 4931 datasize); 4932 if (err) { 4933 drop_inode = 1; 4934 goto out_unlock; 4935 } 4936 leaf = path->nodes[0]; 4937 ei = btrfs_item_ptr(leaf, path->slots[0], 4938 struct btrfs_file_extent_item); 4939 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 4940 btrfs_set_file_extent_type(leaf, ei, 4941 BTRFS_FILE_EXTENT_INLINE); 4942 btrfs_set_file_extent_encryption(leaf, ei, 0); 4943 btrfs_set_file_extent_compression(leaf, ei, 0); 4944 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 4945 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 4946 4947 ptr = btrfs_file_extent_inline_start(ei); 4948 write_extent_buffer(leaf, symname, ptr, name_len); 4949 btrfs_mark_buffer_dirty(leaf); 4950 btrfs_free_path(path); 4951 4952 inode->i_op = &btrfs_symlink_inode_operations; 4953 inode->i_mapping->a_ops = &btrfs_symlink_aops; 4954 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4955 inode_set_bytes(inode, name_len); 4956 btrfs_i_size_write(inode, name_len - 1); 4957 err = btrfs_update_inode(trans, root, inode); 4958 if (err) 4959 drop_inode = 1; 4960 4961 out_unlock: 4962 nr = trans->blocks_used; 4963 btrfs_end_transaction_throttle(trans, root); 4964 out_fail: 4965 if (drop_inode) { 4966 inode_dec_link_count(inode); 4967 iput(inode); 4968 } 4969 btrfs_btree_balance_dirty(root, nr); 4970 return err; 4971 } 4972 4973 static int prealloc_file_range(struct inode *inode, u64 start, u64 end, 4974 u64 alloc_hint, int mode) 4975 { 4976 struct btrfs_trans_handle *trans; 4977 struct btrfs_root *root = BTRFS_I(inode)->root; 4978 struct btrfs_key ins; 4979 u64 alloc_size; 4980 u64 cur_offset = start; 4981 u64 num_bytes = end - start; 4982 int ret = 0; 4983 4984 trans = btrfs_join_transaction(root, 1); 4985 BUG_ON(!trans); 4986 btrfs_set_trans_block_group(trans, inode); 4987 4988 while (num_bytes > 0) { 4989 alloc_size = min(num_bytes, root->fs_info->max_extent); 4990 ret = btrfs_reserve_extent(trans, root, alloc_size, 4991 root->sectorsize, 0, alloc_hint, 4992 (u64)-1, &ins, 1); 4993 if (ret) { 4994 WARN_ON(1); 4995 goto out; 4996 } 4997 ret = insert_reserved_file_extent(trans, inode, 4998 cur_offset, ins.objectid, 4999 ins.offset, ins.offset, 5000 ins.offset, 0, 0, 0, 5001 BTRFS_FILE_EXTENT_PREALLOC); 5002 BUG_ON(ret); 5003 num_bytes -= ins.offset; 5004 cur_offset += ins.offset; 5005 alloc_hint = ins.objectid + ins.offset; 5006 } 5007 out: 5008 if (cur_offset > start) { 5009 inode->i_ctime = CURRENT_TIME; 5010 btrfs_set_flag(inode, PREALLOC); 5011 if (!(mode & FALLOC_FL_KEEP_SIZE) && 5012 cur_offset > i_size_read(inode)) 5013 btrfs_i_size_write(inode, cur_offset); 5014 ret = btrfs_update_inode(trans, root, inode); 5015 BUG_ON(ret); 5016 } 5017 5018 btrfs_end_transaction(trans, root); 5019 return ret; 5020 } 5021 5022 static long btrfs_fallocate(struct inode *inode, int mode, 5023 loff_t offset, loff_t len) 5024 { 5025 u64 cur_offset; 5026 u64 last_byte; 5027 u64 alloc_start; 5028 u64 alloc_end; 5029 u64 alloc_hint = 0; 5030 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 5031 struct extent_map *em; 5032 int ret; 5033 5034 alloc_start = offset & ~mask; 5035 alloc_end = (offset + len + mask) & ~mask; 5036 5037 mutex_lock(&inode->i_mutex); 5038 if (alloc_start > inode->i_size) { 5039 ret = btrfs_cont_expand(inode, alloc_start); 5040 if (ret) 5041 goto out; 5042 } 5043 5044 while (1) { 5045 struct btrfs_ordered_extent *ordered; 5046 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, 5047 alloc_end - 1, GFP_NOFS); 5048 ordered = btrfs_lookup_first_ordered_extent(inode, 5049 alloc_end - 1); 5050 if (ordered && 5051 ordered->file_offset + ordered->len > alloc_start && 5052 ordered->file_offset < alloc_end) { 5053 btrfs_put_ordered_extent(ordered); 5054 unlock_extent(&BTRFS_I(inode)->io_tree, 5055 alloc_start, alloc_end - 1, GFP_NOFS); 5056 btrfs_wait_ordered_range(inode, alloc_start, 5057 alloc_end - alloc_start); 5058 } else { 5059 if (ordered) 5060 btrfs_put_ordered_extent(ordered); 5061 break; 5062 } 5063 } 5064 5065 cur_offset = alloc_start; 5066 while (1) { 5067 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5068 alloc_end - cur_offset, 0); 5069 BUG_ON(IS_ERR(em) || !em); 5070 last_byte = min(extent_map_end(em), alloc_end); 5071 last_byte = (last_byte + mask) & ~mask; 5072 if (em->block_start == EXTENT_MAP_HOLE) { 5073 ret = prealloc_file_range(inode, cur_offset, 5074 last_byte, alloc_hint, mode); 5075 if (ret < 0) { 5076 free_extent_map(em); 5077 break; 5078 } 5079 } 5080 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 5081 alloc_hint = em->block_start; 5082 free_extent_map(em); 5083 5084 cur_offset = last_byte; 5085 if (cur_offset >= alloc_end) { 5086 ret = 0; 5087 break; 5088 } 5089 } 5090 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1, 5091 GFP_NOFS); 5092 out: 5093 mutex_unlock(&inode->i_mutex); 5094 return ret; 5095 } 5096 5097 static int btrfs_set_page_dirty(struct page *page) 5098 { 5099 return __set_page_dirty_nobuffers(page); 5100 } 5101 5102 static int btrfs_permission(struct inode *inode, int mask) 5103 { 5104 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) 5105 return -EACCES; 5106 return generic_permission(inode, mask, btrfs_check_acl); 5107 } 5108 5109 static struct inode_operations btrfs_dir_inode_operations = { 5110 .getattr = btrfs_getattr, 5111 .lookup = btrfs_lookup, 5112 .create = btrfs_create, 5113 .unlink = btrfs_unlink, 5114 .link = btrfs_link, 5115 .mkdir = btrfs_mkdir, 5116 .rmdir = btrfs_rmdir, 5117 .rename = btrfs_rename, 5118 .symlink = btrfs_symlink, 5119 .setattr = btrfs_setattr, 5120 .mknod = btrfs_mknod, 5121 .setxattr = btrfs_setxattr, 5122 .getxattr = btrfs_getxattr, 5123 .listxattr = btrfs_listxattr, 5124 .removexattr = btrfs_removexattr, 5125 .permission = btrfs_permission, 5126 }; 5127 static struct inode_operations btrfs_dir_ro_inode_operations = { 5128 .lookup = btrfs_lookup, 5129 .permission = btrfs_permission, 5130 }; 5131 static struct file_operations btrfs_dir_file_operations = { 5132 .llseek = generic_file_llseek, 5133 .read = generic_read_dir, 5134 .readdir = btrfs_real_readdir, 5135 .unlocked_ioctl = btrfs_ioctl, 5136 #ifdef CONFIG_COMPAT 5137 .compat_ioctl = btrfs_ioctl, 5138 #endif 5139 .release = btrfs_release_file, 5140 .fsync = btrfs_sync_file, 5141 }; 5142 5143 static struct extent_io_ops btrfs_extent_io_ops = { 5144 .fill_delalloc = run_delalloc_range, 5145 .submit_bio_hook = btrfs_submit_bio_hook, 5146 .merge_bio_hook = btrfs_merge_bio_hook, 5147 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 5148 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 5149 .writepage_start_hook = btrfs_writepage_start_hook, 5150 .readpage_io_failed_hook = btrfs_io_failed_hook, 5151 .set_bit_hook = btrfs_set_bit_hook, 5152 .clear_bit_hook = btrfs_clear_bit_hook, 5153 }; 5154 5155 /* 5156 * btrfs doesn't support the bmap operation because swapfiles 5157 * use bmap to make a mapping of extents in the file. They assume 5158 * these extents won't change over the life of the file and they 5159 * use the bmap result to do IO directly to the drive. 5160 * 5161 * the btrfs bmap call would return logical addresses that aren't 5162 * suitable for IO and they also will change frequently as COW 5163 * operations happen. So, swapfile + btrfs == corruption. 5164 * 5165 * For now we're avoiding this by dropping bmap. 5166 */ 5167 static struct address_space_operations btrfs_aops = { 5168 .readpage = btrfs_readpage, 5169 .writepage = btrfs_writepage, 5170 .writepages = btrfs_writepages, 5171 .readpages = btrfs_readpages, 5172 .sync_page = block_sync_page, 5173 .direct_IO = btrfs_direct_IO, 5174 .invalidatepage = btrfs_invalidatepage, 5175 .releasepage = btrfs_releasepage, 5176 .set_page_dirty = btrfs_set_page_dirty, 5177 }; 5178 5179 static struct address_space_operations btrfs_symlink_aops = { 5180 .readpage = btrfs_readpage, 5181 .writepage = btrfs_writepage, 5182 .invalidatepage = btrfs_invalidatepage, 5183 .releasepage = btrfs_releasepage, 5184 }; 5185 5186 static struct inode_operations btrfs_file_inode_operations = { 5187 .truncate = btrfs_truncate, 5188 .getattr = btrfs_getattr, 5189 .setattr = btrfs_setattr, 5190 .setxattr = btrfs_setxattr, 5191 .getxattr = btrfs_getxattr, 5192 .listxattr = btrfs_listxattr, 5193 .removexattr = btrfs_removexattr, 5194 .permission = btrfs_permission, 5195 .fallocate = btrfs_fallocate, 5196 .fiemap = btrfs_fiemap, 5197 }; 5198 static struct inode_operations btrfs_special_inode_operations = { 5199 .getattr = btrfs_getattr, 5200 .setattr = btrfs_setattr, 5201 .permission = btrfs_permission, 5202 .setxattr = btrfs_setxattr, 5203 .getxattr = btrfs_getxattr, 5204 .listxattr = btrfs_listxattr, 5205 .removexattr = btrfs_removexattr, 5206 }; 5207 static struct inode_operations btrfs_symlink_inode_operations = { 5208 .readlink = generic_readlink, 5209 .follow_link = page_follow_link_light, 5210 .put_link = page_put_link, 5211 .permission = btrfs_permission, 5212 .setxattr = btrfs_setxattr, 5213 .getxattr = btrfs_getxattr, 5214 .listxattr = btrfs_listxattr, 5215 .removexattr = btrfs_removexattr, 5216 }; 5217