xref: /openbmc/linux/fs/btrfs/inode.c (revision b627b4ed)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69 
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 				   struct page *locked_page,
91 				   u64 start, u64 end, int *page_started,
92 				   unsigned long *nr_written, int unlock);
93 
94 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
95 {
96 	int err;
97 
98 	err = btrfs_init_acl(inode, dir);
99 	if (!err)
100 		err = btrfs_xattr_security_init(inode, dir);
101 	return err;
102 }
103 
104 /*
105  * this does all the hard work for inserting an inline extent into
106  * the btree.  The caller should have done a btrfs_drop_extents so that
107  * no overlapping inline items exist in the btree
108  */
109 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
110 				struct btrfs_root *root, struct inode *inode,
111 				u64 start, size_t size, size_t compressed_size,
112 				struct page **compressed_pages)
113 {
114 	struct btrfs_key key;
115 	struct btrfs_path *path;
116 	struct extent_buffer *leaf;
117 	struct page *page = NULL;
118 	char *kaddr;
119 	unsigned long ptr;
120 	struct btrfs_file_extent_item *ei;
121 	int err = 0;
122 	int ret;
123 	size_t cur_size = size;
124 	size_t datasize;
125 	unsigned long offset;
126 	int use_compress = 0;
127 
128 	if (compressed_size && compressed_pages) {
129 		use_compress = 1;
130 		cur_size = compressed_size;
131 	}
132 
133 	path = btrfs_alloc_path();
134 	if (!path)
135 		return -ENOMEM;
136 
137 	path->leave_spinning = 1;
138 	btrfs_set_trans_block_group(trans, inode);
139 
140 	key.objectid = inode->i_ino;
141 	key.offset = start;
142 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
144 
145 	inode_add_bytes(inode, size);
146 	ret = btrfs_insert_empty_item(trans, root, path, &key,
147 				      datasize);
148 	BUG_ON(ret);
149 	if (ret) {
150 		err = ret;
151 		goto fail;
152 	}
153 	leaf = path->nodes[0];
154 	ei = btrfs_item_ptr(leaf, path->slots[0],
155 			    struct btrfs_file_extent_item);
156 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 	btrfs_set_file_extent_encryption(leaf, ei, 0);
159 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 	ptr = btrfs_file_extent_inline_start(ei);
162 
163 	if (use_compress) {
164 		struct page *cpage;
165 		int i = 0;
166 		while (compressed_size > 0) {
167 			cpage = compressed_pages[i];
168 			cur_size = min_t(unsigned long, compressed_size,
169 				       PAGE_CACHE_SIZE);
170 
171 			kaddr = kmap_atomic(cpage, KM_USER0);
172 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
173 			kunmap_atomic(kaddr, KM_USER0);
174 
175 			i++;
176 			ptr += cur_size;
177 			compressed_size -= cur_size;
178 		}
179 		btrfs_set_file_extent_compression(leaf, ei,
180 						  BTRFS_COMPRESS_ZLIB);
181 	} else {
182 		page = find_get_page(inode->i_mapping,
183 				     start >> PAGE_CACHE_SHIFT);
184 		btrfs_set_file_extent_compression(leaf, ei, 0);
185 		kaddr = kmap_atomic(page, KM_USER0);
186 		offset = start & (PAGE_CACHE_SIZE - 1);
187 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 		kunmap_atomic(kaddr, KM_USER0);
189 		page_cache_release(page);
190 	}
191 	btrfs_mark_buffer_dirty(leaf);
192 	btrfs_free_path(path);
193 
194 	BTRFS_I(inode)->disk_i_size = inode->i_size;
195 	btrfs_update_inode(trans, root, inode);
196 	return 0;
197 fail:
198 	btrfs_free_path(path);
199 	return err;
200 }
201 
202 
203 /*
204  * conditionally insert an inline extent into the file.  This
205  * does the checks required to make sure the data is small enough
206  * to fit as an inline extent.
207  */
208 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
209 				 struct btrfs_root *root,
210 				 struct inode *inode, u64 start, u64 end,
211 				 size_t compressed_size,
212 				 struct page **compressed_pages)
213 {
214 	u64 isize = i_size_read(inode);
215 	u64 actual_end = min(end + 1, isize);
216 	u64 inline_len = actual_end - start;
217 	u64 aligned_end = (end + root->sectorsize - 1) &
218 			~((u64)root->sectorsize - 1);
219 	u64 hint_byte;
220 	u64 data_len = inline_len;
221 	int ret;
222 
223 	if (compressed_size)
224 		data_len = compressed_size;
225 
226 	if (start > 0 ||
227 	    actual_end >= PAGE_CACHE_SIZE ||
228 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
229 	    (!compressed_size &&
230 	    (actual_end & (root->sectorsize - 1)) == 0) ||
231 	    end + 1 < isize ||
232 	    data_len > root->fs_info->max_inline) {
233 		return 1;
234 	}
235 
236 	ret = btrfs_drop_extents(trans, root, inode, start,
237 				 aligned_end, start, &hint_byte);
238 	BUG_ON(ret);
239 
240 	if (isize > actual_end)
241 		inline_len = min_t(u64, isize, actual_end);
242 	ret = insert_inline_extent(trans, root, inode, start,
243 				   inline_len, compressed_size,
244 				   compressed_pages);
245 	BUG_ON(ret);
246 	btrfs_drop_extent_cache(inode, start, aligned_end, 0);
247 	return 0;
248 }
249 
250 struct async_extent {
251 	u64 start;
252 	u64 ram_size;
253 	u64 compressed_size;
254 	struct page **pages;
255 	unsigned long nr_pages;
256 	struct list_head list;
257 };
258 
259 struct async_cow {
260 	struct inode *inode;
261 	struct btrfs_root *root;
262 	struct page *locked_page;
263 	u64 start;
264 	u64 end;
265 	struct list_head extents;
266 	struct btrfs_work work;
267 };
268 
269 static noinline int add_async_extent(struct async_cow *cow,
270 				     u64 start, u64 ram_size,
271 				     u64 compressed_size,
272 				     struct page **pages,
273 				     unsigned long nr_pages)
274 {
275 	struct async_extent *async_extent;
276 
277 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
278 	async_extent->start = start;
279 	async_extent->ram_size = ram_size;
280 	async_extent->compressed_size = compressed_size;
281 	async_extent->pages = pages;
282 	async_extent->nr_pages = nr_pages;
283 	list_add_tail(&async_extent->list, &cow->extents);
284 	return 0;
285 }
286 
287 /*
288  * we create compressed extents in two phases.  The first
289  * phase compresses a range of pages that have already been
290  * locked (both pages and state bits are locked).
291  *
292  * This is done inside an ordered work queue, and the compression
293  * is spread across many cpus.  The actual IO submission is step
294  * two, and the ordered work queue takes care of making sure that
295  * happens in the same order things were put onto the queue by
296  * writepages and friends.
297  *
298  * If this code finds it can't get good compression, it puts an
299  * entry onto the work queue to write the uncompressed bytes.  This
300  * makes sure that both compressed inodes and uncompressed inodes
301  * are written in the same order that pdflush sent them down.
302  */
303 static noinline int compress_file_range(struct inode *inode,
304 					struct page *locked_page,
305 					u64 start, u64 end,
306 					struct async_cow *async_cow,
307 					int *num_added)
308 {
309 	struct btrfs_root *root = BTRFS_I(inode)->root;
310 	struct btrfs_trans_handle *trans;
311 	u64 num_bytes;
312 	u64 orig_start;
313 	u64 disk_num_bytes;
314 	u64 blocksize = root->sectorsize;
315 	u64 actual_end;
316 	u64 isize = i_size_read(inode);
317 	int ret = 0;
318 	struct page **pages = NULL;
319 	unsigned long nr_pages;
320 	unsigned long nr_pages_ret = 0;
321 	unsigned long total_compressed = 0;
322 	unsigned long total_in = 0;
323 	unsigned long max_compressed = 128 * 1024;
324 	unsigned long max_uncompressed = 128 * 1024;
325 	int i;
326 	int will_compress;
327 
328 	orig_start = start;
329 
330 	actual_end = min_t(u64, isize, end + 1);
331 again:
332 	will_compress = 0;
333 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
334 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
335 
336 	/*
337 	 * we don't want to send crud past the end of i_size through
338 	 * compression, that's just a waste of CPU time.  So, if the
339 	 * end of the file is before the start of our current
340 	 * requested range of bytes, we bail out to the uncompressed
341 	 * cleanup code that can deal with all of this.
342 	 *
343 	 * It isn't really the fastest way to fix things, but this is a
344 	 * very uncommon corner.
345 	 */
346 	if (actual_end <= start)
347 		goto cleanup_and_bail_uncompressed;
348 
349 	total_compressed = actual_end - start;
350 
351 	/* we want to make sure that amount of ram required to uncompress
352 	 * an extent is reasonable, so we limit the total size in ram
353 	 * of a compressed extent to 128k.  This is a crucial number
354 	 * because it also controls how easily we can spread reads across
355 	 * cpus for decompression.
356 	 *
357 	 * We also want to make sure the amount of IO required to do
358 	 * a random read is reasonably small, so we limit the size of
359 	 * a compressed extent to 128k.
360 	 */
361 	total_compressed = min(total_compressed, max_uncompressed);
362 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
363 	num_bytes = max(blocksize,  num_bytes);
364 	disk_num_bytes = num_bytes;
365 	total_in = 0;
366 	ret = 0;
367 
368 	/*
369 	 * we do compression for mount -o compress and when the
370 	 * inode has not been flagged as nocompress.  This flag can
371 	 * change at any time if we discover bad compression ratios.
372 	 */
373 	if (!btrfs_test_flag(inode, NOCOMPRESS) &&
374 	    btrfs_test_opt(root, COMPRESS)) {
375 		WARN_ON(pages);
376 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
377 
378 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
379 						total_compressed, pages,
380 						nr_pages, &nr_pages_ret,
381 						&total_in,
382 						&total_compressed,
383 						max_compressed);
384 
385 		if (!ret) {
386 			unsigned long offset = total_compressed &
387 				(PAGE_CACHE_SIZE - 1);
388 			struct page *page = pages[nr_pages_ret - 1];
389 			char *kaddr;
390 
391 			/* zero the tail end of the last page, we might be
392 			 * sending it down to disk
393 			 */
394 			if (offset) {
395 				kaddr = kmap_atomic(page, KM_USER0);
396 				memset(kaddr + offset, 0,
397 				       PAGE_CACHE_SIZE - offset);
398 				kunmap_atomic(kaddr, KM_USER0);
399 			}
400 			will_compress = 1;
401 		}
402 	}
403 	if (start == 0) {
404 		trans = btrfs_join_transaction(root, 1);
405 		BUG_ON(!trans);
406 		btrfs_set_trans_block_group(trans, inode);
407 
408 		/* lets try to make an inline extent */
409 		if (ret || total_in < (actual_end - start)) {
410 			/* we didn't compress the entire range, try
411 			 * to make an uncompressed inline extent.
412 			 */
413 			ret = cow_file_range_inline(trans, root, inode,
414 						    start, end, 0, NULL);
415 		} else {
416 			/* try making a compressed inline extent */
417 			ret = cow_file_range_inline(trans, root, inode,
418 						    start, end,
419 						    total_compressed, pages);
420 		}
421 		btrfs_end_transaction(trans, root);
422 		if (ret == 0) {
423 			/*
424 			 * inline extent creation worked, we don't need
425 			 * to create any more async work items.  Unlock
426 			 * and free up our temp pages.
427 			 */
428 			extent_clear_unlock_delalloc(inode,
429 						     &BTRFS_I(inode)->io_tree,
430 						     start, end, NULL, 1, 0,
431 						     0, 1, 1, 1);
432 			ret = 0;
433 			goto free_pages_out;
434 		}
435 	}
436 
437 	if (will_compress) {
438 		/*
439 		 * we aren't doing an inline extent round the compressed size
440 		 * up to a block size boundary so the allocator does sane
441 		 * things
442 		 */
443 		total_compressed = (total_compressed + blocksize - 1) &
444 			~(blocksize - 1);
445 
446 		/*
447 		 * one last check to make sure the compression is really a
448 		 * win, compare the page count read with the blocks on disk
449 		 */
450 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
451 			~(PAGE_CACHE_SIZE - 1);
452 		if (total_compressed >= total_in) {
453 			will_compress = 0;
454 		} else {
455 			disk_num_bytes = total_compressed;
456 			num_bytes = total_in;
457 		}
458 	}
459 	if (!will_compress && pages) {
460 		/*
461 		 * the compression code ran but failed to make things smaller,
462 		 * free any pages it allocated and our page pointer array
463 		 */
464 		for (i = 0; i < nr_pages_ret; i++) {
465 			WARN_ON(pages[i]->mapping);
466 			page_cache_release(pages[i]);
467 		}
468 		kfree(pages);
469 		pages = NULL;
470 		total_compressed = 0;
471 		nr_pages_ret = 0;
472 
473 		/* flag the file so we don't compress in the future */
474 		btrfs_set_flag(inode, NOCOMPRESS);
475 	}
476 	if (will_compress) {
477 		*num_added += 1;
478 
479 		/* the async work queues will take care of doing actual
480 		 * allocation on disk for these compressed pages,
481 		 * and will submit them to the elevator.
482 		 */
483 		add_async_extent(async_cow, start, num_bytes,
484 				 total_compressed, pages, nr_pages_ret);
485 
486 		if (start + num_bytes < end && start + num_bytes < actual_end) {
487 			start += num_bytes;
488 			pages = NULL;
489 			cond_resched();
490 			goto again;
491 		}
492 	} else {
493 cleanup_and_bail_uncompressed:
494 		/*
495 		 * No compression, but we still need to write the pages in
496 		 * the file we've been given so far.  redirty the locked
497 		 * page if it corresponds to our extent and set things up
498 		 * for the async work queue to run cow_file_range to do
499 		 * the normal delalloc dance
500 		 */
501 		if (page_offset(locked_page) >= start &&
502 		    page_offset(locked_page) <= end) {
503 			__set_page_dirty_nobuffers(locked_page);
504 			/* unlocked later on in the async handlers */
505 		}
506 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
507 		*num_added += 1;
508 	}
509 
510 out:
511 	return 0;
512 
513 free_pages_out:
514 	for (i = 0; i < nr_pages_ret; i++) {
515 		WARN_ON(pages[i]->mapping);
516 		page_cache_release(pages[i]);
517 	}
518 	kfree(pages);
519 
520 	goto out;
521 }
522 
523 /*
524  * phase two of compressed writeback.  This is the ordered portion
525  * of the code, which only gets called in the order the work was
526  * queued.  We walk all the async extents created by compress_file_range
527  * and send them down to the disk.
528  */
529 static noinline int submit_compressed_extents(struct inode *inode,
530 					      struct async_cow *async_cow)
531 {
532 	struct async_extent *async_extent;
533 	u64 alloc_hint = 0;
534 	struct btrfs_trans_handle *trans;
535 	struct btrfs_key ins;
536 	struct extent_map *em;
537 	struct btrfs_root *root = BTRFS_I(inode)->root;
538 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
539 	struct extent_io_tree *io_tree;
540 	int ret;
541 
542 	if (list_empty(&async_cow->extents))
543 		return 0;
544 
545 	trans = btrfs_join_transaction(root, 1);
546 
547 	while (!list_empty(&async_cow->extents)) {
548 		async_extent = list_entry(async_cow->extents.next,
549 					  struct async_extent, list);
550 		list_del(&async_extent->list);
551 
552 		io_tree = &BTRFS_I(inode)->io_tree;
553 
554 		/* did the compression code fall back to uncompressed IO? */
555 		if (!async_extent->pages) {
556 			int page_started = 0;
557 			unsigned long nr_written = 0;
558 
559 			lock_extent(io_tree, async_extent->start,
560 				    async_extent->start +
561 				    async_extent->ram_size - 1, GFP_NOFS);
562 
563 			/* allocate blocks */
564 			cow_file_range(inode, async_cow->locked_page,
565 				       async_extent->start,
566 				       async_extent->start +
567 				       async_extent->ram_size - 1,
568 				       &page_started, &nr_written, 0);
569 
570 			/*
571 			 * if page_started, cow_file_range inserted an
572 			 * inline extent and took care of all the unlocking
573 			 * and IO for us.  Otherwise, we need to submit
574 			 * all those pages down to the drive.
575 			 */
576 			if (!page_started)
577 				extent_write_locked_range(io_tree,
578 						  inode, async_extent->start,
579 						  async_extent->start +
580 						  async_extent->ram_size - 1,
581 						  btrfs_get_extent,
582 						  WB_SYNC_ALL);
583 			kfree(async_extent);
584 			cond_resched();
585 			continue;
586 		}
587 
588 		lock_extent(io_tree, async_extent->start,
589 			    async_extent->start + async_extent->ram_size - 1,
590 			    GFP_NOFS);
591 		/*
592 		 * here we're doing allocation and writeback of the
593 		 * compressed pages
594 		 */
595 		btrfs_drop_extent_cache(inode, async_extent->start,
596 					async_extent->start +
597 					async_extent->ram_size - 1, 0);
598 
599 		ret = btrfs_reserve_extent(trans, root,
600 					   async_extent->compressed_size,
601 					   async_extent->compressed_size,
602 					   0, alloc_hint,
603 					   (u64)-1, &ins, 1);
604 		BUG_ON(ret);
605 		em = alloc_extent_map(GFP_NOFS);
606 		em->start = async_extent->start;
607 		em->len = async_extent->ram_size;
608 		em->orig_start = em->start;
609 
610 		em->block_start = ins.objectid;
611 		em->block_len = ins.offset;
612 		em->bdev = root->fs_info->fs_devices->latest_bdev;
613 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
614 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
615 
616 		while (1) {
617 			spin_lock(&em_tree->lock);
618 			ret = add_extent_mapping(em_tree, em);
619 			spin_unlock(&em_tree->lock);
620 			if (ret != -EEXIST) {
621 				free_extent_map(em);
622 				break;
623 			}
624 			btrfs_drop_extent_cache(inode, async_extent->start,
625 						async_extent->start +
626 						async_extent->ram_size - 1, 0);
627 		}
628 
629 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
630 					       ins.objectid,
631 					       async_extent->ram_size,
632 					       ins.offset,
633 					       BTRFS_ORDERED_COMPRESSED);
634 		BUG_ON(ret);
635 
636 		btrfs_end_transaction(trans, root);
637 
638 		/*
639 		 * clear dirty, set writeback and unlock the pages.
640 		 */
641 		extent_clear_unlock_delalloc(inode,
642 					     &BTRFS_I(inode)->io_tree,
643 					     async_extent->start,
644 					     async_extent->start +
645 					     async_extent->ram_size - 1,
646 					     NULL, 1, 1, 0, 1, 1, 0);
647 
648 		ret = btrfs_submit_compressed_write(inode,
649 				    async_extent->start,
650 				    async_extent->ram_size,
651 				    ins.objectid,
652 				    ins.offset, async_extent->pages,
653 				    async_extent->nr_pages);
654 
655 		BUG_ON(ret);
656 		trans = btrfs_join_transaction(root, 1);
657 		alloc_hint = ins.objectid + ins.offset;
658 		kfree(async_extent);
659 		cond_resched();
660 	}
661 
662 	btrfs_end_transaction(trans, root);
663 	return 0;
664 }
665 
666 /*
667  * when extent_io.c finds a delayed allocation range in the file,
668  * the call backs end up in this code.  The basic idea is to
669  * allocate extents on disk for the range, and create ordered data structs
670  * in ram to track those extents.
671  *
672  * locked_page is the page that writepage had locked already.  We use
673  * it to make sure we don't do extra locks or unlocks.
674  *
675  * *page_started is set to one if we unlock locked_page and do everything
676  * required to start IO on it.  It may be clean and already done with
677  * IO when we return.
678  */
679 static noinline int cow_file_range(struct inode *inode,
680 				   struct page *locked_page,
681 				   u64 start, u64 end, int *page_started,
682 				   unsigned long *nr_written,
683 				   int unlock)
684 {
685 	struct btrfs_root *root = BTRFS_I(inode)->root;
686 	struct btrfs_trans_handle *trans;
687 	u64 alloc_hint = 0;
688 	u64 num_bytes;
689 	unsigned long ram_size;
690 	u64 disk_num_bytes;
691 	u64 cur_alloc_size;
692 	u64 blocksize = root->sectorsize;
693 	u64 actual_end;
694 	u64 isize = i_size_read(inode);
695 	struct btrfs_key ins;
696 	struct extent_map *em;
697 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
698 	int ret = 0;
699 
700 	trans = btrfs_join_transaction(root, 1);
701 	BUG_ON(!trans);
702 	btrfs_set_trans_block_group(trans, inode);
703 
704 	actual_end = min_t(u64, isize, end + 1);
705 
706 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
707 	num_bytes = max(blocksize,  num_bytes);
708 	disk_num_bytes = num_bytes;
709 	ret = 0;
710 
711 	if (start == 0) {
712 		/* lets try to make an inline extent */
713 		ret = cow_file_range_inline(trans, root, inode,
714 					    start, end, 0, NULL);
715 		if (ret == 0) {
716 			extent_clear_unlock_delalloc(inode,
717 						     &BTRFS_I(inode)->io_tree,
718 						     start, end, NULL, 1, 1,
719 						     1, 1, 1, 1);
720 			*nr_written = *nr_written +
721 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
722 			*page_started = 1;
723 			ret = 0;
724 			goto out;
725 		}
726 	}
727 
728 	BUG_ON(disk_num_bytes >
729 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
730 
731 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
732 
733 	while (disk_num_bytes > 0) {
734 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
735 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
736 					   root->sectorsize, 0, alloc_hint,
737 					   (u64)-1, &ins, 1);
738 		BUG_ON(ret);
739 
740 		em = alloc_extent_map(GFP_NOFS);
741 		em->start = start;
742 		em->orig_start = em->start;
743 
744 		ram_size = ins.offset;
745 		em->len = ins.offset;
746 
747 		em->block_start = ins.objectid;
748 		em->block_len = ins.offset;
749 		em->bdev = root->fs_info->fs_devices->latest_bdev;
750 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
751 
752 		while (1) {
753 			spin_lock(&em_tree->lock);
754 			ret = add_extent_mapping(em_tree, em);
755 			spin_unlock(&em_tree->lock);
756 			if (ret != -EEXIST) {
757 				free_extent_map(em);
758 				break;
759 			}
760 			btrfs_drop_extent_cache(inode, start,
761 						start + ram_size - 1, 0);
762 		}
763 
764 		cur_alloc_size = ins.offset;
765 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
766 					       ram_size, cur_alloc_size, 0);
767 		BUG_ON(ret);
768 
769 		if (root->root_key.objectid ==
770 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
771 			ret = btrfs_reloc_clone_csums(inode, start,
772 						      cur_alloc_size);
773 			BUG_ON(ret);
774 		}
775 
776 		if (disk_num_bytes < cur_alloc_size)
777 			break;
778 
779 		/* we're not doing compressed IO, don't unlock the first
780 		 * page (which the caller expects to stay locked), don't
781 		 * clear any dirty bits and don't set any writeback bits
782 		 */
783 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784 					     start, start + ram_size - 1,
785 					     locked_page, unlock, 1,
786 					     1, 0, 0, 0);
787 		disk_num_bytes -= cur_alloc_size;
788 		num_bytes -= cur_alloc_size;
789 		alloc_hint = ins.objectid + ins.offset;
790 		start += cur_alloc_size;
791 	}
792 out:
793 	ret = 0;
794 	btrfs_end_transaction(trans, root);
795 
796 	return ret;
797 }
798 
799 /*
800  * work queue call back to started compression on a file and pages
801  */
802 static noinline void async_cow_start(struct btrfs_work *work)
803 {
804 	struct async_cow *async_cow;
805 	int num_added = 0;
806 	async_cow = container_of(work, struct async_cow, work);
807 
808 	compress_file_range(async_cow->inode, async_cow->locked_page,
809 			    async_cow->start, async_cow->end, async_cow,
810 			    &num_added);
811 	if (num_added == 0)
812 		async_cow->inode = NULL;
813 }
814 
815 /*
816  * work queue call back to submit previously compressed pages
817  */
818 static noinline void async_cow_submit(struct btrfs_work *work)
819 {
820 	struct async_cow *async_cow;
821 	struct btrfs_root *root;
822 	unsigned long nr_pages;
823 
824 	async_cow = container_of(work, struct async_cow, work);
825 
826 	root = async_cow->root;
827 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828 		PAGE_CACHE_SHIFT;
829 
830 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831 
832 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
833 	    5 * 1042 * 1024 &&
834 	    waitqueue_active(&root->fs_info->async_submit_wait))
835 		wake_up(&root->fs_info->async_submit_wait);
836 
837 	if (async_cow->inode)
838 		submit_compressed_extents(async_cow->inode, async_cow);
839 }
840 
841 static noinline void async_cow_free(struct btrfs_work *work)
842 {
843 	struct async_cow *async_cow;
844 	async_cow = container_of(work, struct async_cow, work);
845 	kfree(async_cow);
846 }
847 
848 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
849 				u64 start, u64 end, int *page_started,
850 				unsigned long *nr_written)
851 {
852 	struct async_cow *async_cow;
853 	struct btrfs_root *root = BTRFS_I(inode)->root;
854 	unsigned long nr_pages;
855 	u64 cur_end;
856 	int limit = 10 * 1024 * 1042;
857 
858 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
859 			 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
860 	while (start < end) {
861 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
862 		async_cow->inode = inode;
863 		async_cow->root = root;
864 		async_cow->locked_page = locked_page;
865 		async_cow->start = start;
866 
867 		if (btrfs_test_flag(inode, NOCOMPRESS))
868 			cur_end = end;
869 		else
870 			cur_end = min(end, start + 512 * 1024 - 1);
871 
872 		async_cow->end = cur_end;
873 		INIT_LIST_HEAD(&async_cow->extents);
874 
875 		async_cow->work.func = async_cow_start;
876 		async_cow->work.ordered_func = async_cow_submit;
877 		async_cow->work.ordered_free = async_cow_free;
878 		async_cow->work.flags = 0;
879 
880 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
881 			PAGE_CACHE_SHIFT;
882 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
883 
884 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
885 				   &async_cow->work);
886 
887 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
888 			wait_event(root->fs_info->async_submit_wait,
889 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
890 			    limit));
891 		}
892 
893 		while (atomic_read(&root->fs_info->async_submit_draining) &&
894 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
895 			wait_event(root->fs_info->async_submit_wait,
896 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
897 			   0));
898 		}
899 
900 		*nr_written += nr_pages;
901 		start = cur_end + 1;
902 	}
903 	*page_started = 1;
904 	return 0;
905 }
906 
907 static noinline int csum_exist_in_range(struct btrfs_root *root,
908 					u64 bytenr, u64 num_bytes)
909 {
910 	int ret;
911 	struct btrfs_ordered_sum *sums;
912 	LIST_HEAD(list);
913 
914 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
915 				       bytenr + num_bytes - 1, &list);
916 	if (ret == 0 && list_empty(&list))
917 		return 0;
918 
919 	while (!list_empty(&list)) {
920 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
921 		list_del(&sums->list);
922 		kfree(sums);
923 	}
924 	return 1;
925 }
926 
927 /*
928  * when nowcow writeback call back.  This checks for snapshots or COW copies
929  * of the extents that exist in the file, and COWs the file as required.
930  *
931  * If no cow copies or snapshots exist, we write directly to the existing
932  * blocks on disk
933  */
934 static noinline int run_delalloc_nocow(struct inode *inode,
935 				       struct page *locked_page,
936 			      u64 start, u64 end, int *page_started, int force,
937 			      unsigned long *nr_written)
938 {
939 	struct btrfs_root *root = BTRFS_I(inode)->root;
940 	struct btrfs_trans_handle *trans;
941 	struct extent_buffer *leaf;
942 	struct btrfs_path *path;
943 	struct btrfs_file_extent_item *fi;
944 	struct btrfs_key found_key;
945 	u64 cow_start;
946 	u64 cur_offset;
947 	u64 extent_end;
948 	u64 disk_bytenr;
949 	u64 num_bytes;
950 	int extent_type;
951 	int ret;
952 	int type;
953 	int nocow;
954 	int check_prev = 1;
955 
956 	path = btrfs_alloc_path();
957 	BUG_ON(!path);
958 	trans = btrfs_join_transaction(root, 1);
959 	BUG_ON(!trans);
960 
961 	cow_start = (u64)-1;
962 	cur_offset = start;
963 	while (1) {
964 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
965 					       cur_offset, 0);
966 		BUG_ON(ret < 0);
967 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
968 			leaf = path->nodes[0];
969 			btrfs_item_key_to_cpu(leaf, &found_key,
970 					      path->slots[0] - 1);
971 			if (found_key.objectid == inode->i_ino &&
972 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
973 				path->slots[0]--;
974 		}
975 		check_prev = 0;
976 next_slot:
977 		leaf = path->nodes[0];
978 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
979 			ret = btrfs_next_leaf(root, path);
980 			if (ret < 0)
981 				BUG_ON(1);
982 			if (ret > 0)
983 				break;
984 			leaf = path->nodes[0];
985 		}
986 
987 		nocow = 0;
988 		disk_bytenr = 0;
989 		num_bytes = 0;
990 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
991 
992 		if (found_key.objectid > inode->i_ino ||
993 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
994 		    found_key.offset > end)
995 			break;
996 
997 		if (found_key.offset > cur_offset) {
998 			extent_end = found_key.offset;
999 			goto out_check;
1000 		}
1001 
1002 		fi = btrfs_item_ptr(leaf, path->slots[0],
1003 				    struct btrfs_file_extent_item);
1004 		extent_type = btrfs_file_extent_type(leaf, fi);
1005 
1006 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1007 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1008 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1009 			extent_end = found_key.offset +
1010 				btrfs_file_extent_num_bytes(leaf, fi);
1011 			if (extent_end <= start) {
1012 				path->slots[0]++;
1013 				goto next_slot;
1014 			}
1015 			if (disk_bytenr == 0)
1016 				goto out_check;
1017 			if (btrfs_file_extent_compression(leaf, fi) ||
1018 			    btrfs_file_extent_encryption(leaf, fi) ||
1019 			    btrfs_file_extent_other_encoding(leaf, fi))
1020 				goto out_check;
1021 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022 				goto out_check;
1023 			if (btrfs_extent_readonly(root, disk_bytenr))
1024 				goto out_check;
1025 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1026 						  disk_bytenr))
1027 				goto out_check;
1028 			disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1029 			disk_bytenr += cur_offset - found_key.offset;
1030 			num_bytes = min(end + 1, extent_end) - cur_offset;
1031 			/*
1032 			 * force cow if csum exists in the range.
1033 			 * this ensure that csum for a given extent are
1034 			 * either valid or do not exist.
1035 			 */
1036 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1037 				goto out_check;
1038 			nocow = 1;
1039 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1040 			extent_end = found_key.offset +
1041 				btrfs_file_extent_inline_len(leaf, fi);
1042 			extent_end = ALIGN(extent_end, root->sectorsize);
1043 		} else {
1044 			BUG_ON(1);
1045 		}
1046 out_check:
1047 		if (extent_end <= start) {
1048 			path->slots[0]++;
1049 			goto next_slot;
1050 		}
1051 		if (!nocow) {
1052 			if (cow_start == (u64)-1)
1053 				cow_start = cur_offset;
1054 			cur_offset = extent_end;
1055 			if (cur_offset > end)
1056 				break;
1057 			path->slots[0]++;
1058 			goto next_slot;
1059 		}
1060 
1061 		btrfs_release_path(root, path);
1062 		if (cow_start != (u64)-1) {
1063 			ret = cow_file_range(inode, locked_page, cow_start,
1064 					found_key.offset - 1, page_started,
1065 					nr_written, 1);
1066 			BUG_ON(ret);
1067 			cow_start = (u64)-1;
1068 		}
1069 
1070 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1071 			struct extent_map *em;
1072 			struct extent_map_tree *em_tree;
1073 			em_tree = &BTRFS_I(inode)->extent_tree;
1074 			em = alloc_extent_map(GFP_NOFS);
1075 			em->start = cur_offset;
1076 			em->orig_start = em->start;
1077 			em->len = num_bytes;
1078 			em->block_len = num_bytes;
1079 			em->block_start = disk_bytenr;
1080 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1081 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1082 			while (1) {
1083 				spin_lock(&em_tree->lock);
1084 				ret = add_extent_mapping(em_tree, em);
1085 				spin_unlock(&em_tree->lock);
1086 				if (ret != -EEXIST) {
1087 					free_extent_map(em);
1088 					break;
1089 				}
1090 				btrfs_drop_extent_cache(inode, em->start,
1091 						em->start + em->len - 1, 0);
1092 			}
1093 			type = BTRFS_ORDERED_PREALLOC;
1094 		} else {
1095 			type = BTRFS_ORDERED_NOCOW;
1096 		}
1097 
1098 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1099 					       num_bytes, num_bytes, type);
1100 		BUG_ON(ret);
1101 
1102 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1103 					cur_offset, cur_offset + num_bytes - 1,
1104 					locked_page, 1, 1, 1, 0, 0, 0);
1105 		cur_offset = extent_end;
1106 		if (cur_offset > end)
1107 			break;
1108 	}
1109 	btrfs_release_path(root, path);
1110 
1111 	if (cur_offset <= end && cow_start == (u64)-1)
1112 		cow_start = cur_offset;
1113 	if (cow_start != (u64)-1) {
1114 		ret = cow_file_range(inode, locked_page, cow_start, end,
1115 				     page_started, nr_written, 1);
1116 		BUG_ON(ret);
1117 	}
1118 
1119 	ret = btrfs_end_transaction(trans, root);
1120 	BUG_ON(ret);
1121 	btrfs_free_path(path);
1122 	return 0;
1123 }
1124 
1125 /*
1126  * extent_io.c call back to do delayed allocation processing
1127  */
1128 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1129 			      u64 start, u64 end, int *page_started,
1130 			      unsigned long *nr_written)
1131 {
1132 	int ret;
1133 	struct btrfs_root *root = BTRFS_I(inode)->root;
1134 
1135 	if (btrfs_test_flag(inode, NODATACOW))
1136 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1137 					 page_started, 1, nr_written);
1138 	else if (btrfs_test_flag(inode, PREALLOC))
1139 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1140 					 page_started, 0, nr_written);
1141 	else if (!btrfs_test_opt(root, COMPRESS))
1142 		ret = cow_file_range(inode, locked_page, start, end,
1143 				      page_started, nr_written, 1);
1144 	else
1145 		ret = cow_file_range_async(inode, locked_page, start, end,
1146 					   page_started, nr_written);
1147 	return ret;
1148 }
1149 
1150 /*
1151  * extent_io.c set_bit_hook, used to track delayed allocation
1152  * bytes in this file, and to maintain the list of inodes that
1153  * have pending delalloc work to be done.
1154  */
1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1156 		       unsigned long old, unsigned long bits)
1157 {
1158 	/*
1159 	 * set_bit and clear bit hooks normally require _irqsave/restore
1160 	 * but in this case, we are only testeing for the DELALLOC
1161 	 * bit, which is only set or cleared with irqs on
1162 	 */
1163 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1164 		struct btrfs_root *root = BTRFS_I(inode)->root;
1165 		btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1166 		spin_lock(&root->fs_info->delalloc_lock);
1167 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1168 		root->fs_info->delalloc_bytes += end - start + 1;
1169 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171 				      &root->fs_info->delalloc_inodes);
1172 		}
1173 		spin_unlock(&root->fs_info->delalloc_lock);
1174 	}
1175 	return 0;
1176 }
1177 
1178 /*
1179  * extent_io.c clear_bit_hook, see set_bit_hook for why
1180  */
1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1182 			 unsigned long old, unsigned long bits)
1183 {
1184 	/*
1185 	 * set_bit and clear bit hooks normally require _irqsave/restore
1186 	 * but in this case, we are only testeing for the DELALLOC
1187 	 * bit, which is only set or cleared with irqs on
1188 	 */
1189 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1190 		struct btrfs_root *root = BTRFS_I(inode)->root;
1191 
1192 		spin_lock(&root->fs_info->delalloc_lock);
1193 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1194 			printk(KERN_INFO "btrfs warning: delalloc account "
1195 			       "%llu %llu\n",
1196 			       (unsigned long long)end - start + 1,
1197 			       (unsigned long long)
1198 			       root->fs_info->delalloc_bytes);
1199 			btrfs_delalloc_free_space(root, inode, (u64)-1);
1200 			root->fs_info->delalloc_bytes = 0;
1201 			BTRFS_I(inode)->delalloc_bytes = 0;
1202 		} else {
1203 			btrfs_delalloc_free_space(root, inode,
1204 						  end - start + 1);
1205 			root->fs_info->delalloc_bytes -= end - start + 1;
1206 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207 		}
1208 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 		}
1212 		spin_unlock(&root->fs_info->delalloc_lock);
1213 	}
1214 	return 0;
1215 }
1216 
1217 /*
1218  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219  * we don't create bios that span stripes or chunks
1220  */
1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222 			 size_t size, struct bio *bio,
1223 			 unsigned long bio_flags)
1224 {
1225 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226 	struct btrfs_mapping_tree *map_tree;
1227 	u64 logical = (u64)bio->bi_sector << 9;
1228 	u64 length = 0;
1229 	u64 map_length;
1230 	int ret;
1231 
1232 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1233 		return 0;
1234 
1235 	length = bio->bi_size;
1236 	map_tree = &root->fs_info->mapping_tree;
1237 	map_length = length;
1238 	ret = btrfs_map_block(map_tree, READ, logical,
1239 			      &map_length, NULL, 0);
1240 
1241 	if (map_length < length + size)
1242 		return 1;
1243 	return 0;
1244 }
1245 
1246 /*
1247  * in order to insert checksums into the metadata in large chunks,
1248  * we wait until bio submission time.   All the pages in the bio are
1249  * checksummed and sums are attached onto the ordered extent record.
1250  *
1251  * At IO completion time the cums attached on the ordered extent record
1252  * are inserted into the btree
1253  */
1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255 				    struct bio *bio, int mirror_num,
1256 				    unsigned long bio_flags)
1257 {
1258 	struct btrfs_root *root = BTRFS_I(inode)->root;
1259 	int ret = 0;
1260 
1261 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1262 	BUG_ON(ret);
1263 	return 0;
1264 }
1265 
1266 /*
1267  * in order to insert checksums into the metadata in large chunks,
1268  * we wait until bio submission time.   All the pages in the bio are
1269  * checksummed and sums are attached onto the ordered extent record.
1270  *
1271  * At IO completion time the cums attached on the ordered extent record
1272  * are inserted into the btree
1273  */
1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275 			  int mirror_num, unsigned long bio_flags)
1276 {
1277 	struct btrfs_root *root = BTRFS_I(inode)->root;
1278 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1279 }
1280 
1281 /*
1282  * extent_io.c submission hook. This does the right thing for csum calculation
1283  * on write, or reading the csums from the tree before a read
1284  */
1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286 			  int mirror_num, unsigned long bio_flags)
1287 {
1288 	struct btrfs_root *root = BTRFS_I(inode)->root;
1289 	int ret = 0;
1290 	int skip_sum;
1291 
1292 	skip_sum = btrfs_test_flag(inode, NODATASUM);
1293 
1294 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295 	BUG_ON(ret);
1296 
1297 	if (!(rw & (1 << BIO_RW))) {
1298 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299 			return btrfs_submit_compressed_read(inode, bio,
1300 						    mirror_num, bio_flags);
1301 		} else if (!skip_sum)
1302 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303 		goto mapit;
1304 	} else if (!skip_sum) {
1305 		/* csum items have already been cloned */
1306 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 			goto mapit;
1308 		/* we're doing a write, do the async checksumming */
1309 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310 				   inode, rw, bio, mirror_num,
1311 				   bio_flags, __btrfs_submit_bio_start,
1312 				   __btrfs_submit_bio_done);
1313 	}
1314 
1315 mapit:
1316 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1317 }
1318 
1319 /*
1320  * given a list of ordered sums record them in the inode.  This happens
1321  * at IO completion time based on sums calculated at bio submission time.
1322  */
1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324 			     struct inode *inode, u64 file_offset,
1325 			     struct list_head *list)
1326 {
1327 	struct btrfs_ordered_sum *sum;
1328 
1329 	btrfs_set_trans_block_group(trans, inode);
1330 
1331 	list_for_each_entry(sum, list, list) {
1332 		btrfs_csum_file_blocks(trans,
1333 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1334 	}
1335 	return 0;
1336 }
1337 
1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339 {
1340 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341 		WARN_ON(1);
1342 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343 				   GFP_NOFS);
1344 }
1345 
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1348 	struct page *page;
1349 	struct btrfs_work work;
1350 };
1351 
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1353 {
1354 	struct btrfs_writepage_fixup *fixup;
1355 	struct btrfs_ordered_extent *ordered;
1356 	struct page *page;
1357 	struct inode *inode;
1358 	u64 page_start;
1359 	u64 page_end;
1360 
1361 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362 	page = fixup->page;
1363 again:
1364 	lock_page(page);
1365 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366 		ClearPageChecked(page);
1367 		goto out_page;
1368 	}
1369 
1370 	inode = page->mapping->host;
1371 	page_start = page_offset(page);
1372 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373 
1374 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1375 
1376 	/* already ordered? We're done */
1377 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378 			     EXTENT_ORDERED, 0)) {
1379 		goto out;
1380 	}
1381 
1382 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 	if (ordered) {
1384 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385 			      page_end, GFP_NOFS);
1386 		unlock_page(page);
1387 		btrfs_start_ordered_extent(inode, ordered, 1);
1388 		goto again;
1389 	}
1390 
1391 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1392 	ClearPageChecked(page);
1393 out:
1394 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395 out_page:
1396 	unlock_page(page);
1397 	page_cache_release(page);
1398 }
1399 
1400 /*
1401  * There are a few paths in the higher layers of the kernel that directly
1402  * set the page dirty bit without asking the filesystem if it is a
1403  * good idea.  This causes problems because we want to make sure COW
1404  * properly happens and the data=ordered rules are followed.
1405  *
1406  * In our case any range that doesn't have the ORDERED bit set
1407  * hasn't been properly setup for IO.  We kick off an async process
1408  * to fix it up.  The async helper will wait for ordered extents, set
1409  * the delalloc bit and make it safe to write the page.
1410  */
1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1412 {
1413 	struct inode *inode = page->mapping->host;
1414 	struct btrfs_writepage_fixup *fixup;
1415 	struct btrfs_root *root = BTRFS_I(inode)->root;
1416 	int ret;
1417 
1418 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419 			     EXTENT_ORDERED, 0);
1420 	if (ret)
1421 		return 0;
1422 
1423 	if (PageChecked(page))
1424 		return -EAGAIN;
1425 
1426 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 	if (!fixup)
1428 		return -EAGAIN;
1429 
1430 	SetPageChecked(page);
1431 	page_cache_get(page);
1432 	fixup->work.func = btrfs_writepage_fixup_worker;
1433 	fixup->page = page;
1434 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 	return -EAGAIN;
1436 }
1437 
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 				       struct inode *inode, u64 file_pos,
1440 				       u64 disk_bytenr, u64 disk_num_bytes,
1441 				       u64 num_bytes, u64 ram_bytes,
1442 				       u8 compression, u8 encryption,
1443 				       u16 other_encoding, int extent_type)
1444 {
1445 	struct btrfs_root *root = BTRFS_I(inode)->root;
1446 	struct btrfs_file_extent_item *fi;
1447 	struct btrfs_path *path;
1448 	struct extent_buffer *leaf;
1449 	struct btrfs_key ins;
1450 	u64 hint;
1451 	int ret;
1452 
1453 	path = btrfs_alloc_path();
1454 	BUG_ON(!path);
1455 
1456 	path->leave_spinning = 1;
1457 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1458 				 file_pos + num_bytes, file_pos, &hint);
1459 	BUG_ON(ret);
1460 
1461 	ins.objectid = inode->i_ino;
1462 	ins.offset = file_pos;
1463 	ins.type = BTRFS_EXTENT_DATA_KEY;
1464 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1465 	BUG_ON(ret);
1466 	leaf = path->nodes[0];
1467 	fi = btrfs_item_ptr(leaf, path->slots[0],
1468 			    struct btrfs_file_extent_item);
1469 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1470 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1471 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1472 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1473 	btrfs_set_file_extent_offset(leaf, fi, 0);
1474 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1475 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1476 	btrfs_set_file_extent_compression(leaf, fi, compression);
1477 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1478 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1479 
1480 	btrfs_unlock_up_safe(path, 1);
1481 	btrfs_set_lock_blocking(leaf);
1482 
1483 	btrfs_mark_buffer_dirty(leaf);
1484 
1485 	inode_add_bytes(inode, num_bytes);
1486 	btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1487 
1488 	ins.objectid = disk_bytenr;
1489 	ins.offset = disk_num_bytes;
1490 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1491 	ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1492 					  root->root_key.objectid,
1493 					  trans->transid, inode->i_ino, &ins);
1494 	BUG_ON(ret);
1495 	btrfs_free_path(path);
1496 
1497 	return 0;
1498 }
1499 
1500 /*
1501  * helper function for btrfs_finish_ordered_io, this
1502  * just reads in some of the csum leaves to prime them into ram
1503  * before we start the transaction.  It limits the amount of btree
1504  * reads required while inside the transaction.
1505  */
1506 static noinline void reada_csum(struct btrfs_root *root,
1507 				struct btrfs_path *path,
1508 				struct btrfs_ordered_extent *ordered_extent)
1509 {
1510 	struct btrfs_ordered_sum *sum;
1511 	u64 bytenr;
1512 
1513 	sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1514 			 list);
1515 	bytenr = sum->sums[0].bytenr;
1516 
1517 	/*
1518 	 * we don't care about the results, the point of this search is
1519 	 * just to get the btree leaves into ram
1520 	 */
1521 	btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1522 }
1523 
1524 /* as ordered data IO finishes, this gets called so we can finish
1525  * an ordered extent if the range of bytes in the file it covers are
1526  * fully written.
1527  */
1528 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1529 {
1530 	struct btrfs_root *root = BTRFS_I(inode)->root;
1531 	struct btrfs_trans_handle *trans;
1532 	struct btrfs_ordered_extent *ordered_extent = NULL;
1533 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1534 	struct btrfs_path *path;
1535 	int compressed = 0;
1536 	int ret;
1537 
1538 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1539 	if (!ret)
1540 		return 0;
1541 
1542 	/*
1543 	 * before we join the transaction, try to do some of our IO.
1544 	 * This will limit the amount of IO that we have to do with
1545 	 * the transaction running.  We're unlikely to need to do any
1546 	 * IO if the file extents are new, the disk_i_size checks
1547 	 * covers the most common case.
1548 	 */
1549 	if (start < BTRFS_I(inode)->disk_i_size) {
1550 		path = btrfs_alloc_path();
1551 		if (path) {
1552 			ret = btrfs_lookup_file_extent(NULL, root, path,
1553 						       inode->i_ino,
1554 						       start, 0);
1555 			ordered_extent = btrfs_lookup_ordered_extent(inode,
1556 								     start);
1557 			if (!list_empty(&ordered_extent->list)) {
1558 				btrfs_release_path(root, path);
1559 				reada_csum(root, path, ordered_extent);
1560 			}
1561 			btrfs_free_path(path);
1562 		}
1563 	}
1564 
1565 	trans = btrfs_join_transaction(root, 1);
1566 
1567 	if (!ordered_extent)
1568 		ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1569 	BUG_ON(!ordered_extent);
1570 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1571 		goto nocow;
1572 
1573 	lock_extent(io_tree, ordered_extent->file_offset,
1574 		    ordered_extent->file_offset + ordered_extent->len - 1,
1575 		    GFP_NOFS);
1576 
1577 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1578 		compressed = 1;
1579 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1580 		BUG_ON(compressed);
1581 		ret = btrfs_mark_extent_written(trans, root, inode,
1582 						ordered_extent->file_offset,
1583 						ordered_extent->file_offset +
1584 						ordered_extent->len);
1585 		BUG_ON(ret);
1586 	} else {
1587 		ret = insert_reserved_file_extent(trans, inode,
1588 						ordered_extent->file_offset,
1589 						ordered_extent->start,
1590 						ordered_extent->disk_len,
1591 						ordered_extent->len,
1592 						ordered_extent->len,
1593 						compressed, 0, 0,
1594 						BTRFS_FILE_EXTENT_REG);
1595 		BUG_ON(ret);
1596 	}
1597 	unlock_extent(io_tree, ordered_extent->file_offset,
1598 		    ordered_extent->file_offset + ordered_extent->len - 1,
1599 		    GFP_NOFS);
1600 nocow:
1601 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1602 			  &ordered_extent->list);
1603 
1604 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1605 	btrfs_ordered_update_i_size(inode, ordered_extent);
1606 	btrfs_update_inode(trans, root, inode);
1607 	btrfs_remove_ordered_extent(inode, ordered_extent);
1608 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1609 
1610 	/* once for us */
1611 	btrfs_put_ordered_extent(ordered_extent);
1612 	/* once for the tree */
1613 	btrfs_put_ordered_extent(ordered_extent);
1614 
1615 	btrfs_end_transaction(trans, root);
1616 	return 0;
1617 }
1618 
1619 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1620 				struct extent_state *state, int uptodate)
1621 {
1622 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1623 }
1624 
1625 /*
1626  * When IO fails, either with EIO or csum verification fails, we
1627  * try other mirrors that might have a good copy of the data.  This
1628  * io_failure_record is used to record state as we go through all the
1629  * mirrors.  If another mirror has good data, the page is set up to date
1630  * and things continue.  If a good mirror can't be found, the original
1631  * bio end_io callback is called to indicate things have failed.
1632  */
1633 struct io_failure_record {
1634 	struct page *page;
1635 	u64 start;
1636 	u64 len;
1637 	u64 logical;
1638 	unsigned long bio_flags;
1639 	int last_mirror;
1640 };
1641 
1642 static int btrfs_io_failed_hook(struct bio *failed_bio,
1643 			 struct page *page, u64 start, u64 end,
1644 			 struct extent_state *state)
1645 {
1646 	struct io_failure_record *failrec = NULL;
1647 	u64 private;
1648 	struct extent_map *em;
1649 	struct inode *inode = page->mapping->host;
1650 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1651 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1652 	struct bio *bio;
1653 	int num_copies;
1654 	int ret;
1655 	int rw;
1656 	u64 logical;
1657 
1658 	ret = get_state_private(failure_tree, start, &private);
1659 	if (ret) {
1660 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1661 		if (!failrec)
1662 			return -ENOMEM;
1663 		failrec->start = start;
1664 		failrec->len = end - start + 1;
1665 		failrec->last_mirror = 0;
1666 		failrec->bio_flags = 0;
1667 
1668 		spin_lock(&em_tree->lock);
1669 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1670 		if (em->start > start || em->start + em->len < start) {
1671 			free_extent_map(em);
1672 			em = NULL;
1673 		}
1674 		spin_unlock(&em_tree->lock);
1675 
1676 		if (!em || IS_ERR(em)) {
1677 			kfree(failrec);
1678 			return -EIO;
1679 		}
1680 		logical = start - em->start;
1681 		logical = em->block_start + logical;
1682 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1683 			logical = em->block_start;
1684 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1685 		}
1686 		failrec->logical = logical;
1687 		free_extent_map(em);
1688 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1689 				EXTENT_DIRTY, GFP_NOFS);
1690 		set_state_private(failure_tree, start,
1691 				 (u64)(unsigned long)failrec);
1692 	} else {
1693 		failrec = (struct io_failure_record *)(unsigned long)private;
1694 	}
1695 	num_copies = btrfs_num_copies(
1696 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1697 			      failrec->logical, failrec->len);
1698 	failrec->last_mirror++;
1699 	if (!state) {
1700 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1701 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1702 						    failrec->start,
1703 						    EXTENT_LOCKED);
1704 		if (state && state->start != failrec->start)
1705 			state = NULL;
1706 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1707 	}
1708 	if (!state || failrec->last_mirror > num_copies) {
1709 		set_state_private(failure_tree, failrec->start, 0);
1710 		clear_extent_bits(failure_tree, failrec->start,
1711 				  failrec->start + failrec->len - 1,
1712 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1713 		kfree(failrec);
1714 		return -EIO;
1715 	}
1716 	bio = bio_alloc(GFP_NOFS, 1);
1717 	bio->bi_private = state;
1718 	bio->bi_end_io = failed_bio->bi_end_io;
1719 	bio->bi_sector = failrec->logical >> 9;
1720 	bio->bi_bdev = failed_bio->bi_bdev;
1721 	bio->bi_size = 0;
1722 
1723 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1724 	if (failed_bio->bi_rw & (1 << BIO_RW))
1725 		rw = WRITE;
1726 	else
1727 		rw = READ;
1728 
1729 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1730 						      failrec->last_mirror,
1731 						      failrec->bio_flags);
1732 	return 0;
1733 }
1734 
1735 /*
1736  * each time an IO finishes, we do a fast check in the IO failure tree
1737  * to see if we need to process or clean up an io_failure_record
1738  */
1739 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1740 {
1741 	u64 private;
1742 	u64 private_failure;
1743 	struct io_failure_record *failure;
1744 	int ret;
1745 
1746 	private = 0;
1747 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1748 			     (u64)-1, 1, EXTENT_DIRTY)) {
1749 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1750 					start, &private_failure);
1751 		if (ret == 0) {
1752 			failure = (struct io_failure_record *)(unsigned long)
1753 				   private_failure;
1754 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1755 					  failure->start, 0);
1756 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1757 					  failure->start,
1758 					  failure->start + failure->len - 1,
1759 					  EXTENT_DIRTY | EXTENT_LOCKED,
1760 					  GFP_NOFS);
1761 			kfree(failure);
1762 		}
1763 	}
1764 	return 0;
1765 }
1766 
1767 /*
1768  * when reads are done, we need to check csums to verify the data is correct
1769  * if there's a match, we allow the bio to finish.  If not, we go through
1770  * the io_failure_record routines to find good copies
1771  */
1772 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1773 			       struct extent_state *state)
1774 {
1775 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1776 	struct inode *inode = page->mapping->host;
1777 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1778 	char *kaddr;
1779 	u64 private = ~(u32)0;
1780 	int ret;
1781 	struct btrfs_root *root = BTRFS_I(inode)->root;
1782 	u32 csum = ~(u32)0;
1783 
1784 	if (PageChecked(page)) {
1785 		ClearPageChecked(page);
1786 		goto good;
1787 	}
1788 	if (btrfs_test_flag(inode, NODATASUM))
1789 		return 0;
1790 
1791 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1792 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1793 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1794 				  GFP_NOFS);
1795 		return 0;
1796 	}
1797 
1798 	if (state && state->start == start) {
1799 		private = state->private;
1800 		ret = 0;
1801 	} else {
1802 		ret = get_state_private(io_tree, start, &private);
1803 	}
1804 	kaddr = kmap_atomic(page, KM_USER0);
1805 	if (ret)
1806 		goto zeroit;
1807 
1808 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1809 	btrfs_csum_final(csum, (char *)&csum);
1810 	if (csum != private)
1811 		goto zeroit;
1812 
1813 	kunmap_atomic(kaddr, KM_USER0);
1814 good:
1815 	/* if the io failure tree for this inode is non-empty,
1816 	 * check to see if we've recovered from a failed IO
1817 	 */
1818 	btrfs_clean_io_failures(inode, start);
1819 	return 0;
1820 
1821 zeroit:
1822 	printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1823 	       "private %llu\n", page->mapping->host->i_ino,
1824 	       (unsigned long long)start, csum,
1825 	       (unsigned long long)private);
1826 	memset(kaddr + offset, 1, end - start + 1);
1827 	flush_dcache_page(page);
1828 	kunmap_atomic(kaddr, KM_USER0);
1829 	if (private == 0)
1830 		return 0;
1831 	return -EIO;
1832 }
1833 
1834 /*
1835  * This creates an orphan entry for the given inode in case something goes
1836  * wrong in the middle of an unlink/truncate.
1837  */
1838 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1839 {
1840 	struct btrfs_root *root = BTRFS_I(inode)->root;
1841 	int ret = 0;
1842 
1843 	spin_lock(&root->list_lock);
1844 
1845 	/* already on the orphan list, we're good */
1846 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1847 		spin_unlock(&root->list_lock);
1848 		return 0;
1849 	}
1850 
1851 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1852 
1853 	spin_unlock(&root->list_lock);
1854 
1855 	/*
1856 	 * insert an orphan item to track this unlinked/truncated file
1857 	 */
1858 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1859 
1860 	return ret;
1861 }
1862 
1863 /*
1864  * We have done the truncate/delete so we can go ahead and remove the orphan
1865  * item for this particular inode.
1866  */
1867 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1868 {
1869 	struct btrfs_root *root = BTRFS_I(inode)->root;
1870 	int ret = 0;
1871 
1872 	spin_lock(&root->list_lock);
1873 
1874 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1875 		spin_unlock(&root->list_lock);
1876 		return 0;
1877 	}
1878 
1879 	list_del_init(&BTRFS_I(inode)->i_orphan);
1880 	if (!trans) {
1881 		spin_unlock(&root->list_lock);
1882 		return 0;
1883 	}
1884 
1885 	spin_unlock(&root->list_lock);
1886 
1887 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1888 
1889 	return ret;
1890 }
1891 
1892 /*
1893  * this cleans up any orphans that may be left on the list from the last use
1894  * of this root.
1895  */
1896 void btrfs_orphan_cleanup(struct btrfs_root *root)
1897 {
1898 	struct btrfs_path *path;
1899 	struct extent_buffer *leaf;
1900 	struct btrfs_item *item;
1901 	struct btrfs_key key, found_key;
1902 	struct btrfs_trans_handle *trans;
1903 	struct inode *inode;
1904 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1905 
1906 	path = btrfs_alloc_path();
1907 	if (!path)
1908 		return;
1909 	path->reada = -1;
1910 
1911 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1912 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1913 	key.offset = (u64)-1;
1914 
1915 
1916 	while (1) {
1917 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1918 		if (ret < 0) {
1919 			printk(KERN_ERR "Error searching slot for orphan: %d"
1920 			       "\n", ret);
1921 			break;
1922 		}
1923 
1924 		/*
1925 		 * if ret == 0 means we found what we were searching for, which
1926 		 * is weird, but possible, so only screw with path if we didnt
1927 		 * find the key and see if we have stuff that matches
1928 		 */
1929 		if (ret > 0) {
1930 			if (path->slots[0] == 0)
1931 				break;
1932 			path->slots[0]--;
1933 		}
1934 
1935 		/* pull out the item */
1936 		leaf = path->nodes[0];
1937 		item = btrfs_item_nr(leaf, path->slots[0]);
1938 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1939 
1940 		/* make sure the item matches what we want */
1941 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1942 			break;
1943 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1944 			break;
1945 
1946 		/* release the path since we're done with it */
1947 		btrfs_release_path(root, path);
1948 
1949 		/*
1950 		 * this is where we are basically btrfs_lookup, without the
1951 		 * crossing root thing.  we store the inode number in the
1952 		 * offset of the orphan item.
1953 		 */
1954 		inode = btrfs_iget_locked(root->fs_info->sb,
1955 					  found_key.offset, root);
1956 		if (!inode)
1957 			break;
1958 
1959 		if (inode->i_state & I_NEW) {
1960 			BTRFS_I(inode)->root = root;
1961 
1962 			/* have to set the location manually */
1963 			BTRFS_I(inode)->location.objectid = inode->i_ino;
1964 			BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1965 			BTRFS_I(inode)->location.offset = 0;
1966 
1967 			btrfs_read_locked_inode(inode);
1968 			unlock_new_inode(inode);
1969 		}
1970 
1971 		/*
1972 		 * add this inode to the orphan list so btrfs_orphan_del does
1973 		 * the proper thing when we hit it
1974 		 */
1975 		spin_lock(&root->list_lock);
1976 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1977 		spin_unlock(&root->list_lock);
1978 
1979 		/*
1980 		 * if this is a bad inode, means we actually succeeded in
1981 		 * removing the inode, but not the orphan record, which means
1982 		 * we need to manually delete the orphan since iput will just
1983 		 * do a destroy_inode
1984 		 */
1985 		if (is_bad_inode(inode)) {
1986 			trans = btrfs_start_transaction(root, 1);
1987 			btrfs_orphan_del(trans, inode);
1988 			btrfs_end_transaction(trans, root);
1989 			iput(inode);
1990 			continue;
1991 		}
1992 
1993 		/* if we have links, this was a truncate, lets do that */
1994 		if (inode->i_nlink) {
1995 			nr_truncate++;
1996 			btrfs_truncate(inode);
1997 		} else {
1998 			nr_unlink++;
1999 		}
2000 
2001 		/* this will do delete_inode and everything for us */
2002 		iput(inode);
2003 	}
2004 
2005 	if (nr_unlink)
2006 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2007 	if (nr_truncate)
2008 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2009 
2010 	btrfs_free_path(path);
2011 }
2012 
2013 /*
2014  * read an inode from the btree into the in-memory inode
2015  */
2016 void btrfs_read_locked_inode(struct inode *inode)
2017 {
2018 	struct btrfs_path *path;
2019 	struct extent_buffer *leaf;
2020 	struct btrfs_inode_item *inode_item;
2021 	struct btrfs_timespec *tspec;
2022 	struct btrfs_root *root = BTRFS_I(inode)->root;
2023 	struct btrfs_key location;
2024 	u64 alloc_group_block;
2025 	u32 rdev;
2026 	int ret;
2027 
2028 	path = btrfs_alloc_path();
2029 	BUG_ON(!path);
2030 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2031 
2032 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2033 	if (ret)
2034 		goto make_bad;
2035 
2036 	leaf = path->nodes[0];
2037 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2038 				    struct btrfs_inode_item);
2039 
2040 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2041 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2042 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2043 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2044 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2045 
2046 	tspec = btrfs_inode_atime(inode_item);
2047 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2048 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2049 
2050 	tspec = btrfs_inode_mtime(inode_item);
2051 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2052 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2053 
2054 	tspec = btrfs_inode_ctime(inode_item);
2055 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2056 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2057 
2058 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2059 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2060 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2061 	inode->i_generation = BTRFS_I(inode)->generation;
2062 	inode->i_rdev = 0;
2063 	rdev = btrfs_inode_rdev(leaf, inode_item);
2064 
2065 	BTRFS_I(inode)->index_cnt = (u64)-1;
2066 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2067 
2068 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2069 
2070 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2071 						alloc_group_block, 0);
2072 	btrfs_free_path(path);
2073 	inode_item = NULL;
2074 
2075 	switch (inode->i_mode & S_IFMT) {
2076 	case S_IFREG:
2077 		inode->i_mapping->a_ops = &btrfs_aops;
2078 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2079 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2080 		inode->i_fop = &btrfs_file_operations;
2081 		inode->i_op = &btrfs_file_inode_operations;
2082 		break;
2083 	case S_IFDIR:
2084 		inode->i_fop = &btrfs_dir_file_operations;
2085 		if (root == root->fs_info->tree_root)
2086 			inode->i_op = &btrfs_dir_ro_inode_operations;
2087 		else
2088 			inode->i_op = &btrfs_dir_inode_operations;
2089 		break;
2090 	case S_IFLNK:
2091 		inode->i_op = &btrfs_symlink_inode_operations;
2092 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2093 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2094 		break;
2095 	default:
2096 		inode->i_op = &btrfs_special_inode_operations;
2097 		init_special_inode(inode, inode->i_mode, rdev);
2098 		break;
2099 	}
2100 	return;
2101 
2102 make_bad:
2103 	btrfs_free_path(path);
2104 	make_bad_inode(inode);
2105 }
2106 
2107 /*
2108  * given a leaf and an inode, copy the inode fields into the leaf
2109  */
2110 static void fill_inode_item(struct btrfs_trans_handle *trans,
2111 			    struct extent_buffer *leaf,
2112 			    struct btrfs_inode_item *item,
2113 			    struct inode *inode)
2114 {
2115 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2116 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2117 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2118 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2119 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2120 
2121 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2122 			       inode->i_atime.tv_sec);
2123 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2124 				inode->i_atime.tv_nsec);
2125 
2126 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2127 			       inode->i_mtime.tv_sec);
2128 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2129 				inode->i_mtime.tv_nsec);
2130 
2131 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2132 			       inode->i_ctime.tv_sec);
2133 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2134 				inode->i_ctime.tv_nsec);
2135 
2136 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2137 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2138 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2139 	btrfs_set_inode_transid(leaf, item, trans->transid);
2140 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2141 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2142 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2143 }
2144 
2145 /*
2146  * copy everything in the in-memory inode into the btree.
2147  */
2148 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2149 				struct btrfs_root *root, struct inode *inode)
2150 {
2151 	struct btrfs_inode_item *inode_item;
2152 	struct btrfs_path *path;
2153 	struct extent_buffer *leaf;
2154 	int ret;
2155 
2156 	path = btrfs_alloc_path();
2157 	BUG_ON(!path);
2158 	path->leave_spinning = 1;
2159 	ret = btrfs_lookup_inode(trans, root, path,
2160 				 &BTRFS_I(inode)->location, 1);
2161 	if (ret) {
2162 		if (ret > 0)
2163 			ret = -ENOENT;
2164 		goto failed;
2165 	}
2166 
2167 	btrfs_unlock_up_safe(path, 1);
2168 	leaf = path->nodes[0];
2169 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2170 				  struct btrfs_inode_item);
2171 
2172 	fill_inode_item(trans, leaf, inode_item, inode);
2173 	btrfs_mark_buffer_dirty(leaf);
2174 	btrfs_set_inode_last_trans(trans, inode);
2175 	ret = 0;
2176 failed:
2177 	btrfs_free_path(path);
2178 	return ret;
2179 }
2180 
2181 
2182 /*
2183  * unlink helper that gets used here in inode.c and in the tree logging
2184  * recovery code.  It remove a link in a directory with a given name, and
2185  * also drops the back refs in the inode to the directory
2186  */
2187 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2188 		       struct btrfs_root *root,
2189 		       struct inode *dir, struct inode *inode,
2190 		       const char *name, int name_len)
2191 {
2192 	struct btrfs_path *path;
2193 	int ret = 0;
2194 	struct extent_buffer *leaf;
2195 	struct btrfs_dir_item *di;
2196 	struct btrfs_key key;
2197 	u64 index;
2198 
2199 	path = btrfs_alloc_path();
2200 	if (!path) {
2201 		ret = -ENOMEM;
2202 		goto err;
2203 	}
2204 
2205 	path->leave_spinning = 1;
2206 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2207 				    name, name_len, -1);
2208 	if (IS_ERR(di)) {
2209 		ret = PTR_ERR(di);
2210 		goto err;
2211 	}
2212 	if (!di) {
2213 		ret = -ENOENT;
2214 		goto err;
2215 	}
2216 	leaf = path->nodes[0];
2217 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2218 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2219 	if (ret)
2220 		goto err;
2221 	btrfs_release_path(root, path);
2222 
2223 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2224 				  inode->i_ino,
2225 				  dir->i_ino, &index);
2226 	if (ret) {
2227 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2228 		       "inode %lu parent %lu\n", name_len, name,
2229 		       inode->i_ino, dir->i_ino);
2230 		goto err;
2231 	}
2232 
2233 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2234 					 index, name, name_len, -1);
2235 	if (IS_ERR(di)) {
2236 		ret = PTR_ERR(di);
2237 		goto err;
2238 	}
2239 	if (!di) {
2240 		ret = -ENOENT;
2241 		goto err;
2242 	}
2243 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2244 	btrfs_release_path(root, path);
2245 
2246 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2247 					 inode, dir->i_ino);
2248 	BUG_ON(ret != 0 && ret != -ENOENT);
2249 
2250 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2251 					   dir, index);
2252 	BUG_ON(ret);
2253 err:
2254 	btrfs_free_path(path);
2255 	if (ret)
2256 		goto out;
2257 
2258 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2259 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2260 	btrfs_update_inode(trans, root, dir);
2261 	btrfs_drop_nlink(inode);
2262 	ret = btrfs_update_inode(trans, root, inode);
2263 	dir->i_sb->s_dirt = 1;
2264 out:
2265 	return ret;
2266 }
2267 
2268 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2269 {
2270 	struct btrfs_root *root;
2271 	struct btrfs_trans_handle *trans;
2272 	struct inode *inode = dentry->d_inode;
2273 	int ret;
2274 	unsigned long nr = 0;
2275 
2276 	root = BTRFS_I(dir)->root;
2277 
2278 	trans = btrfs_start_transaction(root, 1);
2279 
2280 	btrfs_set_trans_block_group(trans, dir);
2281 
2282 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2283 
2284 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2285 				 dentry->d_name.name, dentry->d_name.len);
2286 
2287 	if (inode->i_nlink == 0)
2288 		ret = btrfs_orphan_add(trans, inode);
2289 
2290 	nr = trans->blocks_used;
2291 
2292 	btrfs_end_transaction_throttle(trans, root);
2293 	btrfs_btree_balance_dirty(root, nr);
2294 	return ret;
2295 }
2296 
2297 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2298 {
2299 	struct inode *inode = dentry->d_inode;
2300 	int err = 0;
2301 	int ret;
2302 	struct btrfs_root *root = BTRFS_I(dir)->root;
2303 	struct btrfs_trans_handle *trans;
2304 	unsigned long nr = 0;
2305 
2306 	/*
2307 	 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2308 	 * the root of a subvolume or snapshot
2309 	 */
2310 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2311 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2312 		return -ENOTEMPTY;
2313 	}
2314 
2315 	trans = btrfs_start_transaction(root, 1);
2316 	btrfs_set_trans_block_group(trans, dir);
2317 
2318 	err = btrfs_orphan_add(trans, inode);
2319 	if (err)
2320 		goto fail_trans;
2321 
2322 	/* now the directory is empty */
2323 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2324 				 dentry->d_name.name, dentry->d_name.len);
2325 	if (!err)
2326 		btrfs_i_size_write(inode, 0);
2327 
2328 fail_trans:
2329 	nr = trans->blocks_used;
2330 	ret = btrfs_end_transaction_throttle(trans, root);
2331 	btrfs_btree_balance_dirty(root, nr);
2332 
2333 	if (ret && !err)
2334 		err = ret;
2335 	return err;
2336 }
2337 
2338 #if 0
2339 /*
2340  * when truncating bytes in a file, it is possible to avoid reading
2341  * the leaves that contain only checksum items.  This can be the
2342  * majority of the IO required to delete a large file, but it must
2343  * be done carefully.
2344  *
2345  * The keys in the level just above the leaves are checked to make sure
2346  * the lowest key in a given leaf is a csum key, and starts at an offset
2347  * after the new  size.
2348  *
2349  * Then the key for the next leaf is checked to make sure it also has
2350  * a checksum item for the same file.  If it does, we know our target leaf
2351  * contains only checksum items, and it can be safely freed without reading
2352  * it.
2353  *
2354  * This is just an optimization targeted at large files.  It may do
2355  * nothing.  It will return 0 unless things went badly.
2356  */
2357 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2358 				     struct btrfs_root *root,
2359 				     struct btrfs_path *path,
2360 				     struct inode *inode, u64 new_size)
2361 {
2362 	struct btrfs_key key;
2363 	int ret;
2364 	int nritems;
2365 	struct btrfs_key found_key;
2366 	struct btrfs_key other_key;
2367 	struct btrfs_leaf_ref *ref;
2368 	u64 leaf_gen;
2369 	u64 leaf_start;
2370 
2371 	path->lowest_level = 1;
2372 	key.objectid = inode->i_ino;
2373 	key.type = BTRFS_CSUM_ITEM_KEY;
2374 	key.offset = new_size;
2375 again:
2376 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2377 	if (ret < 0)
2378 		goto out;
2379 
2380 	if (path->nodes[1] == NULL) {
2381 		ret = 0;
2382 		goto out;
2383 	}
2384 	ret = 0;
2385 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2386 	nritems = btrfs_header_nritems(path->nodes[1]);
2387 
2388 	if (!nritems)
2389 		goto out;
2390 
2391 	if (path->slots[1] >= nritems)
2392 		goto next_node;
2393 
2394 	/* did we find a key greater than anything we want to delete? */
2395 	if (found_key.objectid > inode->i_ino ||
2396 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2397 		goto out;
2398 
2399 	/* we check the next key in the node to make sure the leave contains
2400 	 * only checksum items.  This comparison doesn't work if our
2401 	 * leaf is the last one in the node
2402 	 */
2403 	if (path->slots[1] + 1 >= nritems) {
2404 next_node:
2405 		/* search forward from the last key in the node, this
2406 		 * will bring us into the next node in the tree
2407 		 */
2408 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2409 
2410 		/* unlikely, but we inc below, so check to be safe */
2411 		if (found_key.offset == (u64)-1)
2412 			goto out;
2413 
2414 		/* search_forward needs a path with locks held, do the
2415 		 * search again for the original key.  It is possible
2416 		 * this will race with a balance and return a path that
2417 		 * we could modify, but this drop is just an optimization
2418 		 * and is allowed to miss some leaves.
2419 		 */
2420 		btrfs_release_path(root, path);
2421 		found_key.offset++;
2422 
2423 		/* setup a max key for search_forward */
2424 		other_key.offset = (u64)-1;
2425 		other_key.type = key.type;
2426 		other_key.objectid = key.objectid;
2427 
2428 		path->keep_locks = 1;
2429 		ret = btrfs_search_forward(root, &found_key, &other_key,
2430 					   path, 0, 0);
2431 		path->keep_locks = 0;
2432 		if (ret || found_key.objectid != key.objectid ||
2433 		    found_key.type != key.type) {
2434 			ret = 0;
2435 			goto out;
2436 		}
2437 
2438 		key.offset = found_key.offset;
2439 		btrfs_release_path(root, path);
2440 		cond_resched();
2441 		goto again;
2442 	}
2443 
2444 	/* we know there's one more slot after us in the tree,
2445 	 * read that key so we can verify it is also a checksum item
2446 	 */
2447 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2448 
2449 	if (found_key.objectid < inode->i_ino)
2450 		goto next_key;
2451 
2452 	if (found_key.type != key.type || found_key.offset < new_size)
2453 		goto next_key;
2454 
2455 	/*
2456 	 * if the key for the next leaf isn't a csum key from this objectid,
2457 	 * we can't be sure there aren't good items inside this leaf.
2458 	 * Bail out
2459 	 */
2460 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2461 		goto out;
2462 
2463 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2464 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2465 	/*
2466 	 * it is safe to delete this leaf, it contains only
2467 	 * csum items from this inode at an offset >= new_size
2468 	 */
2469 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2470 	BUG_ON(ret);
2471 
2472 	if (root->ref_cows && leaf_gen < trans->transid) {
2473 		ref = btrfs_alloc_leaf_ref(root, 0);
2474 		if (ref) {
2475 			ref->root_gen = root->root_key.offset;
2476 			ref->bytenr = leaf_start;
2477 			ref->owner = 0;
2478 			ref->generation = leaf_gen;
2479 			ref->nritems = 0;
2480 
2481 			btrfs_sort_leaf_ref(ref);
2482 
2483 			ret = btrfs_add_leaf_ref(root, ref, 0);
2484 			WARN_ON(ret);
2485 			btrfs_free_leaf_ref(root, ref);
2486 		} else {
2487 			WARN_ON(1);
2488 		}
2489 	}
2490 next_key:
2491 	btrfs_release_path(root, path);
2492 
2493 	if (other_key.objectid == inode->i_ino &&
2494 	    other_key.type == key.type && other_key.offset > key.offset) {
2495 		key.offset = other_key.offset;
2496 		cond_resched();
2497 		goto again;
2498 	}
2499 	ret = 0;
2500 out:
2501 	/* fixup any changes we've made to the path */
2502 	path->lowest_level = 0;
2503 	path->keep_locks = 0;
2504 	btrfs_release_path(root, path);
2505 	return ret;
2506 }
2507 
2508 #endif
2509 
2510 /*
2511  * this can truncate away extent items, csum items and directory items.
2512  * It starts at a high offset and removes keys until it can't find
2513  * any higher than new_size
2514  *
2515  * csum items that cross the new i_size are truncated to the new size
2516  * as well.
2517  *
2518  * min_type is the minimum key type to truncate down to.  If set to 0, this
2519  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2520  */
2521 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2522 					struct btrfs_root *root,
2523 					struct inode *inode,
2524 					u64 new_size, u32 min_type)
2525 {
2526 	int ret;
2527 	struct btrfs_path *path;
2528 	struct btrfs_key key;
2529 	struct btrfs_key found_key;
2530 	u32 found_type = (u8)-1;
2531 	struct extent_buffer *leaf;
2532 	struct btrfs_file_extent_item *fi;
2533 	u64 extent_start = 0;
2534 	u64 extent_num_bytes = 0;
2535 	u64 item_end = 0;
2536 	u64 root_gen = 0;
2537 	u64 root_owner = 0;
2538 	int found_extent;
2539 	int del_item;
2540 	int pending_del_nr = 0;
2541 	int pending_del_slot = 0;
2542 	int extent_type = -1;
2543 	int encoding;
2544 	u64 mask = root->sectorsize - 1;
2545 
2546 	if (root->ref_cows)
2547 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2548 	path = btrfs_alloc_path();
2549 	path->reada = -1;
2550 	BUG_ON(!path);
2551 
2552 	/* FIXME, add redo link to tree so we don't leak on crash */
2553 	key.objectid = inode->i_ino;
2554 	key.offset = (u64)-1;
2555 	key.type = (u8)-1;
2556 
2557 search_again:
2558 	path->leave_spinning = 1;
2559 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2560 	if (ret < 0)
2561 		goto error;
2562 
2563 	if (ret > 0) {
2564 		/* there are no items in the tree for us to truncate, we're
2565 		 * done
2566 		 */
2567 		if (path->slots[0] == 0) {
2568 			ret = 0;
2569 			goto error;
2570 		}
2571 		path->slots[0]--;
2572 	}
2573 
2574 	while (1) {
2575 		fi = NULL;
2576 		leaf = path->nodes[0];
2577 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2578 		found_type = btrfs_key_type(&found_key);
2579 		encoding = 0;
2580 
2581 		if (found_key.objectid != inode->i_ino)
2582 			break;
2583 
2584 		if (found_type < min_type)
2585 			break;
2586 
2587 		item_end = found_key.offset;
2588 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2589 			fi = btrfs_item_ptr(leaf, path->slots[0],
2590 					    struct btrfs_file_extent_item);
2591 			extent_type = btrfs_file_extent_type(leaf, fi);
2592 			encoding = btrfs_file_extent_compression(leaf, fi);
2593 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2594 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2595 
2596 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2597 				item_end +=
2598 				    btrfs_file_extent_num_bytes(leaf, fi);
2599 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2600 				item_end += btrfs_file_extent_inline_len(leaf,
2601 									 fi);
2602 			}
2603 			item_end--;
2604 		}
2605 		if (item_end < new_size) {
2606 			if (found_type == BTRFS_DIR_ITEM_KEY)
2607 				found_type = BTRFS_INODE_ITEM_KEY;
2608 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2609 				found_type = BTRFS_EXTENT_DATA_KEY;
2610 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2611 				found_type = BTRFS_XATTR_ITEM_KEY;
2612 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2613 				found_type = BTRFS_INODE_REF_KEY;
2614 			else if (found_type)
2615 				found_type--;
2616 			else
2617 				break;
2618 			btrfs_set_key_type(&key, found_type);
2619 			goto next;
2620 		}
2621 		if (found_key.offset >= new_size)
2622 			del_item = 1;
2623 		else
2624 			del_item = 0;
2625 		found_extent = 0;
2626 
2627 		/* FIXME, shrink the extent if the ref count is only 1 */
2628 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2629 			goto delete;
2630 
2631 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2632 			u64 num_dec;
2633 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2634 			if (!del_item && !encoding) {
2635 				u64 orig_num_bytes =
2636 					btrfs_file_extent_num_bytes(leaf, fi);
2637 				extent_num_bytes = new_size -
2638 					found_key.offset + root->sectorsize - 1;
2639 				extent_num_bytes = extent_num_bytes &
2640 					~((u64)root->sectorsize - 1);
2641 				btrfs_set_file_extent_num_bytes(leaf, fi,
2642 							 extent_num_bytes);
2643 				num_dec = (orig_num_bytes -
2644 					   extent_num_bytes);
2645 				if (root->ref_cows && extent_start != 0)
2646 					inode_sub_bytes(inode, num_dec);
2647 				btrfs_mark_buffer_dirty(leaf);
2648 			} else {
2649 				extent_num_bytes =
2650 					btrfs_file_extent_disk_num_bytes(leaf,
2651 									 fi);
2652 				/* FIXME blocksize != 4096 */
2653 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2654 				if (extent_start != 0) {
2655 					found_extent = 1;
2656 					if (root->ref_cows)
2657 						inode_sub_bytes(inode, num_dec);
2658 				}
2659 				root_gen = btrfs_header_generation(leaf);
2660 				root_owner = btrfs_header_owner(leaf);
2661 			}
2662 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2663 			/*
2664 			 * we can't truncate inline items that have had
2665 			 * special encodings
2666 			 */
2667 			if (!del_item &&
2668 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2669 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2670 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2671 				u32 size = new_size - found_key.offset;
2672 
2673 				if (root->ref_cows) {
2674 					inode_sub_bytes(inode, item_end + 1 -
2675 							new_size);
2676 				}
2677 				size =
2678 				    btrfs_file_extent_calc_inline_size(size);
2679 				ret = btrfs_truncate_item(trans, root, path,
2680 							  size, 1);
2681 				BUG_ON(ret);
2682 			} else if (root->ref_cows) {
2683 				inode_sub_bytes(inode, item_end + 1 -
2684 						found_key.offset);
2685 			}
2686 		}
2687 delete:
2688 		if (del_item) {
2689 			if (!pending_del_nr) {
2690 				/* no pending yet, add ourselves */
2691 				pending_del_slot = path->slots[0];
2692 				pending_del_nr = 1;
2693 			} else if (pending_del_nr &&
2694 				   path->slots[0] + 1 == pending_del_slot) {
2695 				/* hop on the pending chunk */
2696 				pending_del_nr++;
2697 				pending_del_slot = path->slots[0];
2698 			} else {
2699 				BUG();
2700 			}
2701 		} else {
2702 			break;
2703 		}
2704 		if (found_extent) {
2705 			btrfs_set_path_blocking(path);
2706 			ret = btrfs_free_extent(trans, root, extent_start,
2707 						extent_num_bytes,
2708 						leaf->start, root_owner,
2709 						root_gen, inode->i_ino, 0);
2710 			BUG_ON(ret);
2711 		}
2712 next:
2713 		if (path->slots[0] == 0) {
2714 			if (pending_del_nr)
2715 				goto del_pending;
2716 			btrfs_release_path(root, path);
2717 			if (found_type == BTRFS_INODE_ITEM_KEY)
2718 				break;
2719 			goto search_again;
2720 		}
2721 
2722 		path->slots[0]--;
2723 		if (pending_del_nr &&
2724 		    path->slots[0] + 1 != pending_del_slot) {
2725 			struct btrfs_key debug;
2726 del_pending:
2727 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2728 					      pending_del_slot);
2729 			ret = btrfs_del_items(trans, root, path,
2730 					      pending_del_slot,
2731 					      pending_del_nr);
2732 			BUG_ON(ret);
2733 			pending_del_nr = 0;
2734 			btrfs_release_path(root, path);
2735 			if (found_type == BTRFS_INODE_ITEM_KEY)
2736 				break;
2737 			goto search_again;
2738 		}
2739 	}
2740 	ret = 0;
2741 error:
2742 	if (pending_del_nr) {
2743 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2744 				      pending_del_nr);
2745 	}
2746 	btrfs_free_path(path);
2747 	inode->i_sb->s_dirt = 1;
2748 	return ret;
2749 }
2750 
2751 /*
2752  * taken from block_truncate_page, but does cow as it zeros out
2753  * any bytes left in the last page in the file.
2754  */
2755 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2756 {
2757 	struct inode *inode = mapping->host;
2758 	struct btrfs_root *root = BTRFS_I(inode)->root;
2759 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2760 	struct btrfs_ordered_extent *ordered;
2761 	char *kaddr;
2762 	u32 blocksize = root->sectorsize;
2763 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2764 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2765 	struct page *page;
2766 	int ret = 0;
2767 	u64 page_start;
2768 	u64 page_end;
2769 
2770 	if ((offset & (blocksize - 1)) == 0)
2771 		goto out;
2772 
2773 	ret = -ENOMEM;
2774 again:
2775 	page = grab_cache_page(mapping, index);
2776 	if (!page)
2777 		goto out;
2778 
2779 	page_start = page_offset(page);
2780 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2781 
2782 	if (!PageUptodate(page)) {
2783 		ret = btrfs_readpage(NULL, page);
2784 		lock_page(page);
2785 		if (page->mapping != mapping) {
2786 			unlock_page(page);
2787 			page_cache_release(page);
2788 			goto again;
2789 		}
2790 		if (!PageUptodate(page)) {
2791 			ret = -EIO;
2792 			goto out_unlock;
2793 		}
2794 	}
2795 	wait_on_page_writeback(page);
2796 
2797 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2798 	set_page_extent_mapped(page);
2799 
2800 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2801 	if (ordered) {
2802 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2803 		unlock_page(page);
2804 		page_cache_release(page);
2805 		btrfs_start_ordered_extent(inode, ordered, 1);
2806 		btrfs_put_ordered_extent(ordered);
2807 		goto again;
2808 	}
2809 
2810 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2811 	ret = 0;
2812 	if (offset != PAGE_CACHE_SIZE) {
2813 		kaddr = kmap(page);
2814 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2815 		flush_dcache_page(page);
2816 		kunmap(page);
2817 	}
2818 	ClearPageChecked(page);
2819 	set_page_dirty(page);
2820 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2821 
2822 out_unlock:
2823 	unlock_page(page);
2824 	page_cache_release(page);
2825 out:
2826 	return ret;
2827 }
2828 
2829 int btrfs_cont_expand(struct inode *inode, loff_t size)
2830 {
2831 	struct btrfs_trans_handle *trans;
2832 	struct btrfs_root *root = BTRFS_I(inode)->root;
2833 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2834 	struct extent_map *em;
2835 	u64 mask = root->sectorsize - 1;
2836 	u64 hole_start = (inode->i_size + mask) & ~mask;
2837 	u64 block_end = (size + mask) & ~mask;
2838 	u64 last_byte;
2839 	u64 cur_offset;
2840 	u64 hole_size;
2841 	int err;
2842 
2843 	if (size <= hole_start)
2844 		return 0;
2845 
2846 	err = btrfs_check_metadata_free_space(root);
2847 	if (err)
2848 		return err;
2849 
2850 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2851 
2852 	while (1) {
2853 		struct btrfs_ordered_extent *ordered;
2854 		btrfs_wait_ordered_range(inode, hole_start,
2855 					 block_end - hole_start);
2856 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2857 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2858 		if (!ordered)
2859 			break;
2860 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2861 		btrfs_put_ordered_extent(ordered);
2862 	}
2863 
2864 	trans = btrfs_start_transaction(root, 1);
2865 	btrfs_set_trans_block_group(trans, inode);
2866 
2867 	cur_offset = hole_start;
2868 	while (1) {
2869 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2870 				block_end - cur_offset, 0);
2871 		BUG_ON(IS_ERR(em) || !em);
2872 		last_byte = min(extent_map_end(em), block_end);
2873 		last_byte = (last_byte + mask) & ~mask;
2874 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2875 			u64 hint_byte = 0;
2876 			hole_size = last_byte - cur_offset;
2877 			err = btrfs_drop_extents(trans, root, inode,
2878 						 cur_offset,
2879 						 cur_offset + hole_size,
2880 						 cur_offset, &hint_byte);
2881 			if (err)
2882 				break;
2883 			err = btrfs_insert_file_extent(trans, root,
2884 					inode->i_ino, cur_offset, 0,
2885 					0, hole_size, 0, hole_size,
2886 					0, 0, 0);
2887 			btrfs_drop_extent_cache(inode, hole_start,
2888 					last_byte - 1, 0);
2889 		}
2890 		free_extent_map(em);
2891 		cur_offset = last_byte;
2892 		if (err || cur_offset >= block_end)
2893 			break;
2894 	}
2895 
2896 	btrfs_end_transaction(trans, root);
2897 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2898 	return err;
2899 }
2900 
2901 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2902 {
2903 	struct inode *inode = dentry->d_inode;
2904 	int err;
2905 
2906 	err = inode_change_ok(inode, attr);
2907 	if (err)
2908 		return err;
2909 
2910 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2911 		if (attr->ia_size > inode->i_size) {
2912 			err = btrfs_cont_expand(inode, attr->ia_size);
2913 			if (err)
2914 				return err;
2915 		} else if (inode->i_size > 0 &&
2916 			   attr->ia_size == 0) {
2917 
2918 			/* we're truncating a file that used to have good
2919 			 * data down to zero.  Make sure it gets into
2920 			 * the ordered flush list so that any new writes
2921 			 * get down to disk quickly.
2922 			 */
2923 			BTRFS_I(inode)->ordered_data_close = 1;
2924 		}
2925 	}
2926 
2927 	err = inode_setattr(inode, attr);
2928 
2929 	if (!err && ((attr->ia_valid & ATTR_MODE)))
2930 		err = btrfs_acl_chmod(inode);
2931 	return err;
2932 }
2933 
2934 void btrfs_delete_inode(struct inode *inode)
2935 {
2936 	struct btrfs_trans_handle *trans;
2937 	struct btrfs_root *root = BTRFS_I(inode)->root;
2938 	unsigned long nr;
2939 	int ret;
2940 
2941 	truncate_inode_pages(&inode->i_data, 0);
2942 	if (is_bad_inode(inode)) {
2943 		btrfs_orphan_del(NULL, inode);
2944 		goto no_delete;
2945 	}
2946 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
2947 
2948 	btrfs_i_size_write(inode, 0);
2949 	trans = btrfs_join_transaction(root, 1);
2950 
2951 	btrfs_set_trans_block_group(trans, inode);
2952 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2953 	if (ret) {
2954 		btrfs_orphan_del(NULL, inode);
2955 		goto no_delete_lock;
2956 	}
2957 
2958 	btrfs_orphan_del(trans, inode);
2959 
2960 	nr = trans->blocks_used;
2961 	clear_inode(inode);
2962 
2963 	btrfs_end_transaction(trans, root);
2964 	btrfs_btree_balance_dirty(root, nr);
2965 	return;
2966 
2967 no_delete_lock:
2968 	nr = trans->blocks_used;
2969 	btrfs_end_transaction(trans, root);
2970 	btrfs_btree_balance_dirty(root, nr);
2971 no_delete:
2972 	clear_inode(inode);
2973 }
2974 
2975 /*
2976  * this returns the key found in the dir entry in the location pointer.
2977  * If no dir entries were found, location->objectid is 0.
2978  */
2979 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2980 			       struct btrfs_key *location)
2981 {
2982 	const char *name = dentry->d_name.name;
2983 	int namelen = dentry->d_name.len;
2984 	struct btrfs_dir_item *di;
2985 	struct btrfs_path *path;
2986 	struct btrfs_root *root = BTRFS_I(dir)->root;
2987 	int ret = 0;
2988 
2989 	path = btrfs_alloc_path();
2990 	BUG_ON(!path);
2991 
2992 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2993 				    namelen, 0);
2994 	if (IS_ERR(di))
2995 		ret = PTR_ERR(di);
2996 
2997 	if (!di || IS_ERR(di))
2998 		goto out_err;
2999 
3000 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3001 out:
3002 	btrfs_free_path(path);
3003 	return ret;
3004 out_err:
3005 	location->objectid = 0;
3006 	goto out;
3007 }
3008 
3009 /*
3010  * when we hit a tree root in a directory, the btrfs part of the inode
3011  * needs to be changed to reflect the root directory of the tree root.  This
3012  * is kind of like crossing a mount point.
3013  */
3014 static int fixup_tree_root_location(struct btrfs_root *root,
3015 			     struct btrfs_key *location,
3016 			     struct btrfs_root **sub_root,
3017 			     struct dentry *dentry)
3018 {
3019 	struct btrfs_root_item *ri;
3020 
3021 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3022 		return 0;
3023 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3024 		return 0;
3025 
3026 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
3027 					dentry->d_name.name,
3028 					dentry->d_name.len);
3029 	if (IS_ERR(*sub_root))
3030 		return PTR_ERR(*sub_root);
3031 
3032 	ri = &(*sub_root)->root_item;
3033 	location->objectid = btrfs_root_dirid(ri);
3034 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3035 	location->offset = 0;
3036 
3037 	return 0;
3038 }
3039 
3040 static noinline void init_btrfs_i(struct inode *inode)
3041 {
3042 	struct btrfs_inode *bi = BTRFS_I(inode);
3043 
3044 	bi->i_acl = NULL;
3045 	bi->i_default_acl = NULL;
3046 
3047 	bi->generation = 0;
3048 	bi->sequence = 0;
3049 	bi->last_trans = 0;
3050 	bi->logged_trans = 0;
3051 	bi->delalloc_bytes = 0;
3052 	bi->reserved_bytes = 0;
3053 	bi->disk_i_size = 0;
3054 	bi->flags = 0;
3055 	bi->index_cnt = (u64)-1;
3056 	bi->last_unlink_trans = 0;
3057 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3058 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3059 			     inode->i_mapping, GFP_NOFS);
3060 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3061 			     inode->i_mapping, GFP_NOFS);
3062 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3063 	INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3064 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3065 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3066 	mutex_init(&BTRFS_I(inode)->log_mutex);
3067 }
3068 
3069 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3070 {
3071 	struct btrfs_iget_args *args = p;
3072 	inode->i_ino = args->ino;
3073 	init_btrfs_i(inode);
3074 	BTRFS_I(inode)->root = args->root;
3075 	btrfs_set_inode_space_info(args->root, inode);
3076 	return 0;
3077 }
3078 
3079 static int btrfs_find_actor(struct inode *inode, void *opaque)
3080 {
3081 	struct btrfs_iget_args *args = opaque;
3082 	return args->ino == inode->i_ino &&
3083 		args->root == BTRFS_I(inode)->root;
3084 }
3085 
3086 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3087 			    struct btrfs_root *root, int wait)
3088 {
3089 	struct inode *inode;
3090 	struct btrfs_iget_args args;
3091 	args.ino = objectid;
3092 	args.root = root;
3093 
3094 	if (wait) {
3095 		inode = ilookup5(s, objectid, btrfs_find_actor,
3096 				 (void *)&args);
3097 	} else {
3098 		inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3099 					(void *)&args);
3100 	}
3101 	return inode;
3102 }
3103 
3104 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3105 				struct btrfs_root *root)
3106 {
3107 	struct inode *inode;
3108 	struct btrfs_iget_args args;
3109 	args.ino = objectid;
3110 	args.root = root;
3111 
3112 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3113 			     btrfs_init_locked_inode,
3114 			     (void *)&args);
3115 	return inode;
3116 }
3117 
3118 /* Get an inode object given its location and corresponding root.
3119  * Returns in *is_new if the inode was read from disk
3120  */
3121 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3122 			 struct btrfs_root *root, int *is_new)
3123 {
3124 	struct inode *inode;
3125 
3126 	inode = btrfs_iget_locked(s, location->objectid, root);
3127 	if (!inode)
3128 		return ERR_PTR(-EACCES);
3129 
3130 	if (inode->i_state & I_NEW) {
3131 		BTRFS_I(inode)->root = root;
3132 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3133 		btrfs_read_locked_inode(inode);
3134 		unlock_new_inode(inode);
3135 		if (is_new)
3136 			*is_new = 1;
3137 	} else {
3138 		if (is_new)
3139 			*is_new = 0;
3140 	}
3141 
3142 	return inode;
3143 }
3144 
3145 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3146 {
3147 	struct inode *inode;
3148 	struct btrfs_inode *bi = BTRFS_I(dir);
3149 	struct btrfs_root *root = bi->root;
3150 	struct btrfs_root *sub_root = root;
3151 	struct btrfs_key location;
3152 	int ret, new;
3153 
3154 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3155 		return ERR_PTR(-ENAMETOOLONG);
3156 
3157 	ret = btrfs_inode_by_name(dir, dentry, &location);
3158 
3159 	if (ret < 0)
3160 		return ERR_PTR(ret);
3161 
3162 	inode = NULL;
3163 	if (location.objectid) {
3164 		ret = fixup_tree_root_location(root, &location, &sub_root,
3165 						dentry);
3166 		if (ret < 0)
3167 			return ERR_PTR(ret);
3168 		if (ret > 0)
3169 			return ERR_PTR(-ENOENT);
3170 		inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3171 		if (IS_ERR(inode))
3172 			return ERR_CAST(inode);
3173 	}
3174 	return inode;
3175 }
3176 
3177 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3178 				   struct nameidata *nd)
3179 {
3180 	struct inode *inode;
3181 
3182 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3183 		return ERR_PTR(-ENAMETOOLONG);
3184 
3185 	inode = btrfs_lookup_dentry(dir, dentry);
3186 	if (IS_ERR(inode))
3187 		return ERR_CAST(inode);
3188 
3189 	return d_splice_alias(inode, dentry);
3190 }
3191 
3192 static unsigned char btrfs_filetype_table[] = {
3193 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3194 };
3195 
3196 static int btrfs_real_readdir(struct file *filp, void *dirent,
3197 			      filldir_t filldir)
3198 {
3199 	struct inode *inode = filp->f_dentry->d_inode;
3200 	struct btrfs_root *root = BTRFS_I(inode)->root;
3201 	struct btrfs_item *item;
3202 	struct btrfs_dir_item *di;
3203 	struct btrfs_key key;
3204 	struct btrfs_key found_key;
3205 	struct btrfs_path *path;
3206 	int ret;
3207 	u32 nritems;
3208 	struct extent_buffer *leaf;
3209 	int slot;
3210 	int advance;
3211 	unsigned char d_type;
3212 	int over = 0;
3213 	u32 di_cur;
3214 	u32 di_total;
3215 	u32 di_len;
3216 	int key_type = BTRFS_DIR_INDEX_KEY;
3217 	char tmp_name[32];
3218 	char *name_ptr;
3219 	int name_len;
3220 
3221 	/* FIXME, use a real flag for deciding about the key type */
3222 	if (root->fs_info->tree_root == root)
3223 		key_type = BTRFS_DIR_ITEM_KEY;
3224 
3225 	/* special case for "." */
3226 	if (filp->f_pos == 0) {
3227 		over = filldir(dirent, ".", 1,
3228 			       1, inode->i_ino,
3229 			       DT_DIR);
3230 		if (over)
3231 			return 0;
3232 		filp->f_pos = 1;
3233 	}
3234 	/* special case for .., just use the back ref */
3235 	if (filp->f_pos == 1) {
3236 		u64 pino = parent_ino(filp->f_path.dentry);
3237 		over = filldir(dirent, "..", 2,
3238 			       2, pino, DT_DIR);
3239 		if (over)
3240 			return 0;
3241 		filp->f_pos = 2;
3242 	}
3243 	path = btrfs_alloc_path();
3244 	path->reada = 2;
3245 
3246 	btrfs_set_key_type(&key, key_type);
3247 	key.offset = filp->f_pos;
3248 	key.objectid = inode->i_ino;
3249 
3250 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3251 	if (ret < 0)
3252 		goto err;
3253 	advance = 0;
3254 
3255 	while (1) {
3256 		leaf = path->nodes[0];
3257 		nritems = btrfs_header_nritems(leaf);
3258 		slot = path->slots[0];
3259 		if (advance || slot >= nritems) {
3260 			if (slot >= nritems - 1) {
3261 				ret = btrfs_next_leaf(root, path);
3262 				if (ret)
3263 					break;
3264 				leaf = path->nodes[0];
3265 				nritems = btrfs_header_nritems(leaf);
3266 				slot = path->slots[0];
3267 			} else {
3268 				slot++;
3269 				path->slots[0]++;
3270 			}
3271 		}
3272 
3273 		advance = 1;
3274 		item = btrfs_item_nr(leaf, slot);
3275 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3276 
3277 		if (found_key.objectid != key.objectid)
3278 			break;
3279 		if (btrfs_key_type(&found_key) != key_type)
3280 			break;
3281 		if (found_key.offset < filp->f_pos)
3282 			continue;
3283 
3284 		filp->f_pos = found_key.offset;
3285 
3286 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3287 		di_cur = 0;
3288 		di_total = btrfs_item_size(leaf, item);
3289 
3290 		while (di_cur < di_total) {
3291 			struct btrfs_key location;
3292 
3293 			name_len = btrfs_dir_name_len(leaf, di);
3294 			if (name_len <= sizeof(tmp_name)) {
3295 				name_ptr = tmp_name;
3296 			} else {
3297 				name_ptr = kmalloc(name_len, GFP_NOFS);
3298 				if (!name_ptr) {
3299 					ret = -ENOMEM;
3300 					goto err;
3301 				}
3302 			}
3303 			read_extent_buffer(leaf, name_ptr,
3304 					   (unsigned long)(di + 1), name_len);
3305 
3306 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3307 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3308 
3309 			/* is this a reference to our own snapshot? If so
3310 			 * skip it
3311 			 */
3312 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3313 			    location.objectid == root->root_key.objectid) {
3314 				over = 0;
3315 				goto skip;
3316 			}
3317 			over = filldir(dirent, name_ptr, name_len,
3318 				       found_key.offset, location.objectid,
3319 				       d_type);
3320 
3321 skip:
3322 			if (name_ptr != tmp_name)
3323 				kfree(name_ptr);
3324 
3325 			if (over)
3326 				goto nopos;
3327 			di_len = btrfs_dir_name_len(leaf, di) +
3328 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3329 			di_cur += di_len;
3330 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3331 		}
3332 	}
3333 
3334 	/* Reached end of directory/root. Bump pos past the last item. */
3335 	if (key_type == BTRFS_DIR_INDEX_KEY)
3336 		filp->f_pos = INT_LIMIT(off_t);
3337 	else
3338 		filp->f_pos++;
3339 nopos:
3340 	ret = 0;
3341 err:
3342 	btrfs_free_path(path);
3343 	return ret;
3344 }
3345 
3346 int btrfs_write_inode(struct inode *inode, int wait)
3347 {
3348 	struct btrfs_root *root = BTRFS_I(inode)->root;
3349 	struct btrfs_trans_handle *trans;
3350 	int ret = 0;
3351 
3352 	if (root->fs_info->btree_inode == inode)
3353 		return 0;
3354 
3355 	if (wait) {
3356 		trans = btrfs_join_transaction(root, 1);
3357 		btrfs_set_trans_block_group(trans, inode);
3358 		ret = btrfs_commit_transaction(trans, root);
3359 	}
3360 	return ret;
3361 }
3362 
3363 /*
3364  * This is somewhat expensive, updating the tree every time the
3365  * inode changes.  But, it is most likely to find the inode in cache.
3366  * FIXME, needs more benchmarking...there are no reasons other than performance
3367  * to keep or drop this code.
3368  */
3369 void btrfs_dirty_inode(struct inode *inode)
3370 {
3371 	struct btrfs_root *root = BTRFS_I(inode)->root;
3372 	struct btrfs_trans_handle *trans;
3373 
3374 	trans = btrfs_join_transaction(root, 1);
3375 	btrfs_set_trans_block_group(trans, inode);
3376 	btrfs_update_inode(trans, root, inode);
3377 	btrfs_end_transaction(trans, root);
3378 }
3379 
3380 /*
3381  * find the highest existing sequence number in a directory
3382  * and then set the in-memory index_cnt variable to reflect
3383  * free sequence numbers
3384  */
3385 static int btrfs_set_inode_index_count(struct inode *inode)
3386 {
3387 	struct btrfs_root *root = BTRFS_I(inode)->root;
3388 	struct btrfs_key key, found_key;
3389 	struct btrfs_path *path;
3390 	struct extent_buffer *leaf;
3391 	int ret;
3392 
3393 	key.objectid = inode->i_ino;
3394 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3395 	key.offset = (u64)-1;
3396 
3397 	path = btrfs_alloc_path();
3398 	if (!path)
3399 		return -ENOMEM;
3400 
3401 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3402 	if (ret < 0)
3403 		goto out;
3404 	/* FIXME: we should be able to handle this */
3405 	if (ret == 0)
3406 		goto out;
3407 	ret = 0;
3408 
3409 	/*
3410 	 * MAGIC NUMBER EXPLANATION:
3411 	 * since we search a directory based on f_pos we have to start at 2
3412 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3413 	 * else has to start at 2
3414 	 */
3415 	if (path->slots[0] == 0) {
3416 		BTRFS_I(inode)->index_cnt = 2;
3417 		goto out;
3418 	}
3419 
3420 	path->slots[0]--;
3421 
3422 	leaf = path->nodes[0];
3423 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3424 
3425 	if (found_key.objectid != inode->i_ino ||
3426 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3427 		BTRFS_I(inode)->index_cnt = 2;
3428 		goto out;
3429 	}
3430 
3431 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3432 out:
3433 	btrfs_free_path(path);
3434 	return ret;
3435 }
3436 
3437 /*
3438  * helper to find a free sequence number in a given directory.  This current
3439  * code is very simple, later versions will do smarter things in the btree
3440  */
3441 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3442 {
3443 	int ret = 0;
3444 
3445 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3446 		ret = btrfs_set_inode_index_count(dir);
3447 		if (ret)
3448 			return ret;
3449 	}
3450 
3451 	*index = BTRFS_I(dir)->index_cnt;
3452 	BTRFS_I(dir)->index_cnt++;
3453 
3454 	return ret;
3455 }
3456 
3457 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3458 				     struct btrfs_root *root,
3459 				     struct inode *dir,
3460 				     const char *name, int name_len,
3461 				     u64 ref_objectid, u64 objectid,
3462 				     u64 alloc_hint, int mode, u64 *index)
3463 {
3464 	struct inode *inode;
3465 	struct btrfs_inode_item *inode_item;
3466 	struct btrfs_key *location;
3467 	struct btrfs_path *path;
3468 	struct btrfs_inode_ref *ref;
3469 	struct btrfs_key key[2];
3470 	u32 sizes[2];
3471 	unsigned long ptr;
3472 	int ret;
3473 	int owner;
3474 
3475 	path = btrfs_alloc_path();
3476 	BUG_ON(!path);
3477 
3478 	inode = new_inode(root->fs_info->sb);
3479 	if (!inode)
3480 		return ERR_PTR(-ENOMEM);
3481 
3482 	if (dir) {
3483 		ret = btrfs_set_inode_index(dir, index);
3484 		if (ret) {
3485 			iput(inode);
3486 			return ERR_PTR(ret);
3487 		}
3488 	}
3489 	/*
3490 	 * index_cnt is ignored for everything but a dir,
3491 	 * btrfs_get_inode_index_count has an explanation for the magic
3492 	 * number
3493 	 */
3494 	init_btrfs_i(inode);
3495 	BTRFS_I(inode)->index_cnt = 2;
3496 	BTRFS_I(inode)->root = root;
3497 	BTRFS_I(inode)->generation = trans->transid;
3498 	btrfs_set_inode_space_info(root, inode);
3499 
3500 	if (mode & S_IFDIR)
3501 		owner = 0;
3502 	else
3503 		owner = 1;
3504 	BTRFS_I(inode)->block_group =
3505 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3506 	if ((mode & S_IFREG)) {
3507 		if (btrfs_test_opt(root, NODATASUM))
3508 			btrfs_set_flag(inode, NODATASUM);
3509 		if (btrfs_test_opt(root, NODATACOW))
3510 			btrfs_set_flag(inode, NODATACOW);
3511 	}
3512 
3513 	key[0].objectid = objectid;
3514 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3515 	key[0].offset = 0;
3516 
3517 	key[1].objectid = objectid;
3518 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3519 	key[1].offset = ref_objectid;
3520 
3521 	sizes[0] = sizeof(struct btrfs_inode_item);
3522 	sizes[1] = name_len + sizeof(*ref);
3523 
3524 	path->leave_spinning = 1;
3525 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3526 	if (ret != 0)
3527 		goto fail;
3528 
3529 	if (objectid > root->highest_inode)
3530 		root->highest_inode = objectid;
3531 
3532 	inode->i_uid = current_fsuid();
3533 
3534 	if (dir && (dir->i_mode & S_ISGID)) {
3535 		inode->i_gid = dir->i_gid;
3536 		if (S_ISDIR(mode))
3537 			mode |= S_ISGID;
3538 	} else
3539 		inode->i_gid = current_fsgid();
3540 
3541 	inode->i_mode = mode;
3542 	inode->i_ino = objectid;
3543 	inode_set_bytes(inode, 0);
3544 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3545 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3546 				  struct btrfs_inode_item);
3547 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3548 
3549 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3550 			     struct btrfs_inode_ref);
3551 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3552 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3553 	ptr = (unsigned long)(ref + 1);
3554 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3555 
3556 	btrfs_mark_buffer_dirty(path->nodes[0]);
3557 	btrfs_free_path(path);
3558 
3559 	location = &BTRFS_I(inode)->location;
3560 	location->objectid = objectid;
3561 	location->offset = 0;
3562 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3563 
3564 	insert_inode_hash(inode);
3565 	return inode;
3566 fail:
3567 	if (dir)
3568 		BTRFS_I(dir)->index_cnt--;
3569 	btrfs_free_path(path);
3570 	iput(inode);
3571 	return ERR_PTR(ret);
3572 }
3573 
3574 static inline u8 btrfs_inode_type(struct inode *inode)
3575 {
3576 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3577 }
3578 
3579 /*
3580  * utility function to add 'inode' into 'parent_inode' with
3581  * a give name and a given sequence number.
3582  * if 'add_backref' is true, also insert a backref from the
3583  * inode to the parent directory.
3584  */
3585 int btrfs_add_link(struct btrfs_trans_handle *trans,
3586 		   struct inode *parent_inode, struct inode *inode,
3587 		   const char *name, int name_len, int add_backref, u64 index)
3588 {
3589 	int ret;
3590 	struct btrfs_key key;
3591 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3592 
3593 	key.objectid = inode->i_ino;
3594 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3595 	key.offset = 0;
3596 
3597 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
3598 				    parent_inode->i_ino,
3599 				    &key, btrfs_inode_type(inode),
3600 				    index);
3601 	if (ret == 0) {
3602 		if (add_backref) {
3603 			ret = btrfs_insert_inode_ref(trans, root,
3604 						     name, name_len,
3605 						     inode->i_ino,
3606 						     parent_inode->i_ino,
3607 						     index);
3608 		}
3609 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3610 				   name_len * 2);
3611 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3612 		ret = btrfs_update_inode(trans, root, parent_inode);
3613 	}
3614 	return ret;
3615 }
3616 
3617 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3618 			    struct dentry *dentry, struct inode *inode,
3619 			    int backref, u64 index)
3620 {
3621 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3622 				 inode, dentry->d_name.name,
3623 				 dentry->d_name.len, backref, index);
3624 	if (!err) {
3625 		d_instantiate(dentry, inode);
3626 		return 0;
3627 	}
3628 	if (err > 0)
3629 		err = -EEXIST;
3630 	return err;
3631 }
3632 
3633 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3634 			int mode, dev_t rdev)
3635 {
3636 	struct btrfs_trans_handle *trans;
3637 	struct btrfs_root *root = BTRFS_I(dir)->root;
3638 	struct inode *inode = NULL;
3639 	int err;
3640 	int drop_inode = 0;
3641 	u64 objectid;
3642 	unsigned long nr = 0;
3643 	u64 index = 0;
3644 
3645 	if (!new_valid_dev(rdev))
3646 		return -EINVAL;
3647 
3648 	err = btrfs_check_metadata_free_space(root);
3649 	if (err)
3650 		goto fail;
3651 
3652 	trans = btrfs_start_transaction(root, 1);
3653 	btrfs_set_trans_block_group(trans, dir);
3654 
3655 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3656 	if (err) {
3657 		err = -ENOSPC;
3658 		goto out_unlock;
3659 	}
3660 
3661 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3662 				dentry->d_name.len,
3663 				dentry->d_parent->d_inode->i_ino, objectid,
3664 				BTRFS_I(dir)->block_group, mode, &index);
3665 	err = PTR_ERR(inode);
3666 	if (IS_ERR(inode))
3667 		goto out_unlock;
3668 
3669 	err = btrfs_init_inode_security(inode, dir);
3670 	if (err) {
3671 		drop_inode = 1;
3672 		goto out_unlock;
3673 	}
3674 
3675 	btrfs_set_trans_block_group(trans, inode);
3676 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3677 	if (err)
3678 		drop_inode = 1;
3679 	else {
3680 		inode->i_op = &btrfs_special_inode_operations;
3681 		init_special_inode(inode, inode->i_mode, rdev);
3682 		btrfs_update_inode(trans, root, inode);
3683 	}
3684 	dir->i_sb->s_dirt = 1;
3685 	btrfs_update_inode_block_group(trans, inode);
3686 	btrfs_update_inode_block_group(trans, dir);
3687 out_unlock:
3688 	nr = trans->blocks_used;
3689 	btrfs_end_transaction_throttle(trans, root);
3690 fail:
3691 	if (drop_inode) {
3692 		inode_dec_link_count(inode);
3693 		iput(inode);
3694 	}
3695 	btrfs_btree_balance_dirty(root, nr);
3696 	return err;
3697 }
3698 
3699 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3700 			int mode, struct nameidata *nd)
3701 {
3702 	struct btrfs_trans_handle *trans;
3703 	struct btrfs_root *root = BTRFS_I(dir)->root;
3704 	struct inode *inode = NULL;
3705 	int err;
3706 	int drop_inode = 0;
3707 	unsigned long nr = 0;
3708 	u64 objectid;
3709 	u64 index = 0;
3710 
3711 	err = btrfs_check_metadata_free_space(root);
3712 	if (err)
3713 		goto fail;
3714 	trans = btrfs_start_transaction(root, 1);
3715 	btrfs_set_trans_block_group(trans, dir);
3716 
3717 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3718 	if (err) {
3719 		err = -ENOSPC;
3720 		goto out_unlock;
3721 	}
3722 
3723 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3724 				dentry->d_name.len,
3725 				dentry->d_parent->d_inode->i_ino,
3726 				objectid, BTRFS_I(dir)->block_group, mode,
3727 				&index);
3728 	err = PTR_ERR(inode);
3729 	if (IS_ERR(inode))
3730 		goto out_unlock;
3731 
3732 	err = btrfs_init_inode_security(inode, dir);
3733 	if (err) {
3734 		drop_inode = 1;
3735 		goto out_unlock;
3736 	}
3737 
3738 	btrfs_set_trans_block_group(trans, inode);
3739 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3740 	if (err)
3741 		drop_inode = 1;
3742 	else {
3743 		inode->i_mapping->a_ops = &btrfs_aops;
3744 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3745 		inode->i_fop = &btrfs_file_operations;
3746 		inode->i_op = &btrfs_file_inode_operations;
3747 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3748 	}
3749 	dir->i_sb->s_dirt = 1;
3750 	btrfs_update_inode_block_group(trans, inode);
3751 	btrfs_update_inode_block_group(trans, dir);
3752 out_unlock:
3753 	nr = trans->blocks_used;
3754 	btrfs_end_transaction_throttle(trans, root);
3755 fail:
3756 	if (drop_inode) {
3757 		inode_dec_link_count(inode);
3758 		iput(inode);
3759 	}
3760 	btrfs_btree_balance_dirty(root, nr);
3761 	return err;
3762 }
3763 
3764 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3765 		      struct dentry *dentry)
3766 {
3767 	struct btrfs_trans_handle *trans;
3768 	struct btrfs_root *root = BTRFS_I(dir)->root;
3769 	struct inode *inode = old_dentry->d_inode;
3770 	u64 index;
3771 	unsigned long nr = 0;
3772 	int err;
3773 	int drop_inode = 0;
3774 
3775 	if (inode->i_nlink == 0)
3776 		return -ENOENT;
3777 
3778 	btrfs_inc_nlink(inode);
3779 	err = btrfs_check_metadata_free_space(root);
3780 	if (err)
3781 		goto fail;
3782 	err = btrfs_set_inode_index(dir, &index);
3783 	if (err)
3784 		goto fail;
3785 
3786 	trans = btrfs_start_transaction(root, 1);
3787 
3788 	btrfs_set_trans_block_group(trans, dir);
3789 	atomic_inc(&inode->i_count);
3790 
3791 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3792 
3793 	if (err)
3794 		drop_inode = 1;
3795 
3796 	dir->i_sb->s_dirt = 1;
3797 	btrfs_update_inode_block_group(trans, dir);
3798 	err = btrfs_update_inode(trans, root, inode);
3799 
3800 	if (err)
3801 		drop_inode = 1;
3802 
3803 	nr = trans->blocks_used;
3804 
3805 	btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3806 	btrfs_end_transaction_throttle(trans, root);
3807 fail:
3808 	if (drop_inode) {
3809 		inode_dec_link_count(inode);
3810 		iput(inode);
3811 	}
3812 	btrfs_btree_balance_dirty(root, nr);
3813 	return err;
3814 }
3815 
3816 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3817 {
3818 	struct inode *inode = NULL;
3819 	struct btrfs_trans_handle *trans;
3820 	struct btrfs_root *root = BTRFS_I(dir)->root;
3821 	int err = 0;
3822 	int drop_on_err = 0;
3823 	u64 objectid = 0;
3824 	u64 index = 0;
3825 	unsigned long nr = 1;
3826 
3827 	err = btrfs_check_metadata_free_space(root);
3828 	if (err)
3829 		goto out_unlock;
3830 
3831 	trans = btrfs_start_transaction(root, 1);
3832 	btrfs_set_trans_block_group(trans, dir);
3833 
3834 	if (IS_ERR(trans)) {
3835 		err = PTR_ERR(trans);
3836 		goto out_unlock;
3837 	}
3838 
3839 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3840 	if (err) {
3841 		err = -ENOSPC;
3842 		goto out_unlock;
3843 	}
3844 
3845 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3846 				dentry->d_name.len,
3847 				dentry->d_parent->d_inode->i_ino, objectid,
3848 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
3849 				&index);
3850 	if (IS_ERR(inode)) {
3851 		err = PTR_ERR(inode);
3852 		goto out_fail;
3853 	}
3854 
3855 	drop_on_err = 1;
3856 
3857 	err = btrfs_init_inode_security(inode, dir);
3858 	if (err)
3859 		goto out_fail;
3860 
3861 	inode->i_op = &btrfs_dir_inode_operations;
3862 	inode->i_fop = &btrfs_dir_file_operations;
3863 	btrfs_set_trans_block_group(trans, inode);
3864 
3865 	btrfs_i_size_write(inode, 0);
3866 	err = btrfs_update_inode(trans, root, inode);
3867 	if (err)
3868 		goto out_fail;
3869 
3870 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3871 				 inode, dentry->d_name.name,
3872 				 dentry->d_name.len, 0, index);
3873 	if (err)
3874 		goto out_fail;
3875 
3876 	d_instantiate(dentry, inode);
3877 	drop_on_err = 0;
3878 	dir->i_sb->s_dirt = 1;
3879 	btrfs_update_inode_block_group(trans, inode);
3880 	btrfs_update_inode_block_group(trans, dir);
3881 
3882 out_fail:
3883 	nr = trans->blocks_used;
3884 	btrfs_end_transaction_throttle(trans, root);
3885 
3886 out_unlock:
3887 	if (drop_on_err)
3888 		iput(inode);
3889 	btrfs_btree_balance_dirty(root, nr);
3890 	return err;
3891 }
3892 
3893 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3894  * and an extent that you want to insert, deal with overlap and insert
3895  * the new extent into the tree.
3896  */
3897 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3898 				struct extent_map *existing,
3899 				struct extent_map *em,
3900 				u64 map_start, u64 map_len)
3901 {
3902 	u64 start_diff;
3903 
3904 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3905 	start_diff = map_start - em->start;
3906 	em->start = map_start;
3907 	em->len = map_len;
3908 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3909 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3910 		em->block_start += start_diff;
3911 		em->block_len -= start_diff;
3912 	}
3913 	return add_extent_mapping(em_tree, em);
3914 }
3915 
3916 static noinline int uncompress_inline(struct btrfs_path *path,
3917 				      struct inode *inode, struct page *page,
3918 				      size_t pg_offset, u64 extent_offset,
3919 				      struct btrfs_file_extent_item *item)
3920 {
3921 	int ret;
3922 	struct extent_buffer *leaf = path->nodes[0];
3923 	char *tmp;
3924 	size_t max_size;
3925 	unsigned long inline_size;
3926 	unsigned long ptr;
3927 
3928 	WARN_ON(pg_offset != 0);
3929 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
3930 	inline_size = btrfs_file_extent_inline_item_len(leaf,
3931 					btrfs_item_nr(leaf, path->slots[0]));
3932 	tmp = kmalloc(inline_size, GFP_NOFS);
3933 	ptr = btrfs_file_extent_inline_start(item);
3934 
3935 	read_extent_buffer(leaf, tmp, ptr, inline_size);
3936 
3937 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3938 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3939 				    inline_size, max_size);
3940 	if (ret) {
3941 		char *kaddr = kmap_atomic(page, KM_USER0);
3942 		unsigned long copy_size = min_t(u64,
3943 				  PAGE_CACHE_SIZE - pg_offset,
3944 				  max_size - extent_offset);
3945 		memset(kaddr + pg_offset, 0, copy_size);
3946 		kunmap_atomic(kaddr, KM_USER0);
3947 	}
3948 	kfree(tmp);
3949 	return 0;
3950 }
3951 
3952 /*
3953  * a bit scary, this does extent mapping from logical file offset to the disk.
3954  * the ugly parts come from merging extents from the disk with the in-ram
3955  * representation.  This gets more complex because of the data=ordered code,
3956  * where the in-ram extents might be locked pending data=ordered completion.
3957  *
3958  * This also copies inline extents directly into the page.
3959  */
3960 
3961 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3962 				    size_t pg_offset, u64 start, u64 len,
3963 				    int create)
3964 {
3965 	int ret;
3966 	int err = 0;
3967 	u64 bytenr;
3968 	u64 extent_start = 0;
3969 	u64 extent_end = 0;
3970 	u64 objectid = inode->i_ino;
3971 	u32 found_type;
3972 	struct btrfs_path *path = NULL;
3973 	struct btrfs_root *root = BTRFS_I(inode)->root;
3974 	struct btrfs_file_extent_item *item;
3975 	struct extent_buffer *leaf;
3976 	struct btrfs_key found_key;
3977 	struct extent_map *em = NULL;
3978 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3979 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3980 	struct btrfs_trans_handle *trans = NULL;
3981 	int compressed;
3982 
3983 again:
3984 	spin_lock(&em_tree->lock);
3985 	em = lookup_extent_mapping(em_tree, start, len);
3986 	if (em)
3987 		em->bdev = root->fs_info->fs_devices->latest_bdev;
3988 	spin_unlock(&em_tree->lock);
3989 
3990 	if (em) {
3991 		if (em->start > start || em->start + em->len <= start)
3992 			free_extent_map(em);
3993 		else if (em->block_start == EXTENT_MAP_INLINE && page)
3994 			free_extent_map(em);
3995 		else
3996 			goto out;
3997 	}
3998 	em = alloc_extent_map(GFP_NOFS);
3999 	if (!em) {
4000 		err = -ENOMEM;
4001 		goto out;
4002 	}
4003 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4004 	em->start = EXTENT_MAP_HOLE;
4005 	em->orig_start = EXTENT_MAP_HOLE;
4006 	em->len = (u64)-1;
4007 	em->block_len = (u64)-1;
4008 
4009 	if (!path) {
4010 		path = btrfs_alloc_path();
4011 		BUG_ON(!path);
4012 	}
4013 
4014 	ret = btrfs_lookup_file_extent(trans, root, path,
4015 				       objectid, start, trans != NULL);
4016 	if (ret < 0) {
4017 		err = ret;
4018 		goto out;
4019 	}
4020 
4021 	if (ret != 0) {
4022 		if (path->slots[0] == 0)
4023 			goto not_found;
4024 		path->slots[0]--;
4025 	}
4026 
4027 	leaf = path->nodes[0];
4028 	item = btrfs_item_ptr(leaf, path->slots[0],
4029 			      struct btrfs_file_extent_item);
4030 	/* are we inside the extent that was found? */
4031 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4032 	found_type = btrfs_key_type(&found_key);
4033 	if (found_key.objectid != objectid ||
4034 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4035 		goto not_found;
4036 	}
4037 
4038 	found_type = btrfs_file_extent_type(leaf, item);
4039 	extent_start = found_key.offset;
4040 	compressed = btrfs_file_extent_compression(leaf, item);
4041 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4042 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4043 		extent_end = extent_start +
4044 		       btrfs_file_extent_num_bytes(leaf, item);
4045 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4046 		size_t size;
4047 		size = btrfs_file_extent_inline_len(leaf, item);
4048 		extent_end = (extent_start + size + root->sectorsize - 1) &
4049 			~((u64)root->sectorsize - 1);
4050 	}
4051 
4052 	if (start >= extent_end) {
4053 		path->slots[0]++;
4054 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4055 			ret = btrfs_next_leaf(root, path);
4056 			if (ret < 0) {
4057 				err = ret;
4058 				goto out;
4059 			}
4060 			if (ret > 0)
4061 				goto not_found;
4062 			leaf = path->nodes[0];
4063 		}
4064 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4065 		if (found_key.objectid != objectid ||
4066 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4067 			goto not_found;
4068 		if (start + len <= found_key.offset)
4069 			goto not_found;
4070 		em->start = start;
4071 		em->len = found_key.offset - start;
4072 		goto not_found_em;
4073 	}
4074 
4075 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4076 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4077 		em->start = extent_start;
4078 		em->len = extent_end - extent_start;
4079 		em->orig_start = extent_start -
4080 				 btrfs_file_extent_offset(leaf, item);
4081 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4082 		if (bytenr == 0) {
4083 			em->block_start = EXTENT_MAP_HOLE;
4084 			goto insert;
4085 		}
4086 		if (compressed) {
4087 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4088 			em->block_start = bytenr;
4089 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4090 									 item);
4091 		} else {
4092 			bytenr += btrfs_file_extent_offset(leaf, item);
4093 			em->block_start = bytenr;
4094 			em->block_len = em->len;
4095 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4096 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4097 		}
4098 		goto insert;
4099 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4100 		unsigned long ptr;
4101 		char *map;
4102 		size_t size;
4103 		size_t extent_offset;
4104 		size_t copy_size;
4105 
4106 		em->block_start = EXTENT_MAP_INLINE;
4107 		if (!page || create) {
4108 			em->start = extent_start;
4109 			em->len = extent_end - extent_start;
4110 			goto out;
4111 		}
4112 
4113 		size = btrfs_file_extent_inline_len(leaf, item);
4114 		extent_offset = page_offset(page) + pg_offset - extent_start;
4115 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4116 				size - extent_offset);
4117 		em->start = extent_start + extent_offset;
4118 		em->len = (copy_size + root->sectorsize - 1) &
4119 			~((u64)root->sectorsize - 1);
4120 		em->orig_start = EXTENT_MAP_INLINE;
4121 		if (compressed)
4122 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4123 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4124 		if (create == 0 && !PageUptodate(page)) {
4125 			if (btrfs_file_extent_compression(leaf, item) ==
4126 			    BTRFS_COMPRESS_ZLIB) {
4127 				ret = uncompress_inline(path, inode, page,
4128 							pg_offset,
4129 							extent_offset, item);
4130 				BUG_ON(ret);
4131 			} else {
4132 				map = kmap(page);
4133 				read_extent_buffer(leaf, map + pg_offset, ptr,
4134 						   copy_size);
4135 				kunmap(page);
4136 			}
4137 			flush_dcache_page(page);
4138 		} else if (create && PageUptodate(page)) {
4139 			if (!trans) {
4140 				kunmap(page);
4141 				free_extent_map(em);
4142 				em = NULL;
4143 				btrfs_release_path(root, path);
4144 				trans = btrfs_join_transaction(root, 1);
4145 				goto again;
4146 			}
4147 			map = kmap(page);
4148 			write_extent_buffer(leaf, map + pg_offset, ptr,
4149 					    copy_size);
4150 			kunmap(page);
4151 			btrfs_mark_buffer_dirty(leaf);
4152 		}
4153 		set_extent_uptodate(io_tree, em->start,
4154 				    extent_map_end(em) - 1, GFP_NOFS);
4155 		goto insert;
4156 	} else {
4157 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4158 		WARN_ON(1);
4159 	}
4160 not_found:
4161 	em->start = start;
4162 	em->len = len;
4163 not_found_em:
4164 	em->block_start = EXTENT_MAP_HOLE;
4165 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4166 insert:
4167 	btrfs_release_path(root, path);
4168 	if (em->start > start || extent_map_end(em) <= start) {
4169 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4170 		       "[%llu %llu]\n", (unsigned long long)em->start,
4171 		       (unsigned long long)em->len,
4172 		       (unsigned long long)start,
4173 		       (unsigned long long)len);
4174 		err = -EIO;
4175 		goto out;
4176 	}
4177 
4178 	err = 0;
4179 	spin_lock(&em_tree->lock);
4180 	ret = add_extent_mapping(em_tree, em);
4181 	/* it is possible that someone inserted the extent into the tree
4182 	 * while we had the lock dropped.  It is also possible that
4183 	 * an overlapping map exists in the tree
4184 	 */
4185 	if (ret == -EEXIST) {
4186 		struct extent_map *existing;
4187 
4188 		ret = 0;
4189 
4190 		existing = lookup_extent_mapping(em_tree, start, len);
4191 		if (existing && (existing->start > start ||
4192 		    existing->start + existing->len <= start)) {
4193 			free_extent_map(existing);
4194 			existing = NULL;
4195 		}
4196 		if (!existing) {
4197 			existing = lookup_extent_mapping(em_tree, em->start,
4198 							 em->len);
4199 			if (existing) {
4200 				err = merge_extent_mapping(em_tree, existing,
4201 							   em, start,
4202 							   root->sectorsize);
4203 				free_extent_map(existing);
4204 				if (err) {
4205 					free_extent_map(em);
4206 					em = NULL;
4207 				}
4208 			} else {
4209 				err = -EIO;
4210 				free_extent_map(em);
4211 				em = NULL;
4212 			}
4213 		} else {
4214 			free_extent_map(em);
4215 			em = existing;
4216 			err = 0;
4217 		}
4218 	}
4219 	spin_unlock(&em_tree->lock);
4220 out:
4221 	if (path)
4222 		btrfs_free_path(path);
4223 	if (trans) {
4224 		ret = btrfs_end_transaction(trans, root);
4225 		if (!err)
4226 			err = ret;
4227 	}
4228 	if (err) {
4229 		free_extent_map(em);
4230 		WARN_ON(1);
4231 		return ERR_PTR(err);
4232 	}
4233 	return em;
4234 }
4235 
4236 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4237 			const struct iovec *iov, loff_t offset,
4238 			unsigned long nr_segs)
4239 {
4240 	return -EINVAL;
4241 }
4242 
4243 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4244 		__u64 start, __u64 len)
4245 {
4246 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4247 }
4248 
4249 int btrfs_readpage(struct file *file, struct page *page)
4250 {
4251 	struct extent_io_tree *tree;
4252 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4253 	return extent_read_full_page(tree, page, btrfs_get_extent);
4254 }
4255 
4256 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4257 {
4258 	struct extent_io_tree *tree;
4259 
4260 
4261 	if (current->flags & PF_MEMALLOC) {
4262 		redirty_page_for_writepage(wbc, page);
4263 		unlock_page(page);
4264 		return 0;
4265 	}
4266 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4267 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4268 }
4269 
4270 int btrfs_writepages(struct address_space *mapping,
4271 		     struct writeback_control *wbc)
4272 {
4273 	struct extent_io_tree *tree;
4274 
4275 	tree = &BTRFS_I(mapping->host)->io_tree;
4276 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4277 }
4278 
4279 static int
4280 btrfs_readpages(struct file *file, struct address_space *mapping,
4281 		struct list_head *pages, unsigned nr_pages)
4282 {
4283 	struct extent_io_tree *tree;
4284 	tree = &BTRFS_I(mapping->host)->io_tree;
4285 	return extent_readpages(tree, mapping, pages, nr_pages,
4286 				btrfs_get_extent);
4287 }
4288 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4289 {
4290 	struct extent_io_tree *tree;
4291 	struct extent_map_tree *map;
4292 	int ret;
4293 
4294 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4295 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4296 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4297 	if (ret == 1) {
4298 		ClearPagePrivate(page);
4299 		set_page_private(page, 0);
4300 		page_cache_release(page);
4301 	}
4302 	return ret;
4303 }
4304 
4305 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4306 {
4307 	if (PageWriteback(page) || PageDirty(page))
4308 		return 0;
4309 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4310 }
4311 
4312 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4313 {
4314 	struct extent_io_tree *tree;
4315 	struct btrfs_ordered_extent *ordered;
4316 	u64 page_start = page_offset(page);
4317 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4318 
4319 	wait_on_page_writeback(page);
4320 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4321 	if (offset) {
4322 		btrfs_releasepage(page, GFP_NOFS);
4323 		return;
4324 	}
4325 
4326 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4327 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4328 					   page_offset(page));
4329 	if (ordered) {
4330 		/*
4331 		 * IO on this page will never be started, so we need
4332 		 * to account for any ordered extents now
4333 		 */
4334 		clear_extent_bit(tree, page_start, page_end,
4335 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4336 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4337 		btrfs_finish_ordered_io(page->mapping->host,
4338 					page_start, page_end);
4339 		btrfs_put_ordered_extent(ordered);
4340 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4341 	}
4342 	clear_extent_bit(tree, page_start, page_end,
4343 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4344 		 EXTENT_ORDERED,
4345 		 1, 1, GFP_NOFS);
4346 	__btrfs_releasepage(page, GFP_NOFS);
4347 
4348 	ClearPageChecked(page);
4349 	if (PagePrivate(page)) {
4350 		ClearPagePrivate(page);
4351 		set_page_private(page, 0);
4352 		page_cache_release(page);
4353 	}
4354 }
4355 
4356 /*
4357  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4358  * called from a page fault handler when a page is first dirtied. Hence we must
4359  * be careful to check for EOF conditions here. We set the page up correctly
4360  * for a written page which means we get ENOSPC checking when writing into
4361  * holes and correct delalloc and unwritten extent mapping on filesystems that
4362  * support these features.
4363  *
4364  * We are not allowed to take the i_mutex here so we have to play games to
4365  * protect against truncate races as the page could now be beyond EOF.  Because
4366  * vmtruncate() writes the inode size before removing pages, once we have the
4367  * page lock we can determine safely if the page is beyond EOF. If it is not
4368  * beyond EOF, then the page is guaranteed safe against truncation until we
4369  * unlock the page.
4370  */
4371 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4372 {
4373 	struct page *page = vmf->page;
4374 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4375 	struct btrfs_root *root = BTRFS_I(inode)->root;
4376 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4377 	struct btrfs_ordered_extent *ordered;
4378 	char *kaddr;
4379 	unsigned long zero_start;
4380 	loff_t size;
4381 	int ret;
4382 	u64 page_start;
4383 	u64 page_end;
4384 
4385 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4386 	if (ret) {
4387 		if (ret == -ENOMEM)
4388 			ret = VM_FAULT_OOM;
4389 		else /* -ENOSPC, -EIO, etc */
4390 			ret = VM_FAULT_SIGBUS;
4391 		goto out;
4392 	}
4393 
4394 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4395 again:
4396 	lock_page(page);
4397 	size = i_size_read(inode);
4398 	page_start = page_offset(page);
4399 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4400 
4401 	if ((page->mapping != inode->i_mapping) ||
4402 	    (page_start >= size)) {
4403 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4404 		/* page got truncated out from underneath us */
4405 		goto out_unlock;
4406 	}
4407 	wait_on_page_writeback(page);
4408 
4409 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4410 	set_page_extent_mapped(page);
4411 
4412 	/*
4413 	 * we can't set the delalloc bits if there are pending ordered
4414 	 * extents.  Drop our locks and wait for them to finish
4415 	 */
4416 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4417 	if (ordered) {
4418 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4419 		unlock_page(page);
4420 		btrfs_start_ordered_extent(inode, ordered, 1);
4421 		btrfs_put_ordered_extent(ordered);
4422 		goto again;
4423 	}
4424 
4425 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4426 	ret = 0;
4427 
4428 	/* page is wholly or partially inside EOF */
4429 	if (page_start + PAGE_CACHE_SIZE > size)
4430 		zero_start = size & ~PAGE_CACHE_MASK;
4431 	else
4432 		zero_start = PAGE_CACHE_SIZE;
4433 
4434 	if (zero_start != PAGE_CACHE_SIZE) {
4435 		kaddr = kmap(page);
4436 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4437 		flush_dcache_page(page);
4438 		kunmap(page);
4439 	}
4440 	ClearPageChecked(page);
4441 	set_page_dirty(page);
4442 
4443 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4444 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4445 
4446 out_unlock:
4447 	unlock_page(page);
4448 out:
4449 	return ret;
4450 }
4451 
4452 static void btrfs_truncate(struct inode *inode)
4453 {
4454 	struct btrfs_root *root = BTRFS_I(inode)->root;
4455 	int ret;
4456 	struct btrfs_trans_handle *trans;
4457 	unsigned long nr;
4458 	u64 mask = root->sectorsize - 1;
4459 
4460 	if (!S_ISREG(inode->i_mode))
4461 		return;
4462 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4463 		return;
4464 
4465 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4466 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4467 
4468 	trans = btrfs_start_transaction(root, 1);
4469 
4470 	/*
4471 	 * setattr is responsible for setting the ordered_data_close flag,
4472 	 * but that is only tested during the last file release.  That
4473 	 * could happen well after the next commit, leaving a great big
4474 	 * window where new writes may get lost if someone chooses to write
4475 	 * to this file after truncating to zero
4476 	 *
4477 	 * The inode doesn't have any dirty data here, and so if we commit
4478 	 * this is a noop.  If someone immediately starts writing to the inode
4479 	 * it is very likely we'll catch some of their writes in this
4480 	 * transaction, and the commit will find this file on the ordered
4481 	 * data list with good things to send down.
4482 	 *
4483 	 * This is a best effort solution, there is still a window where
4484 	 * using truncate to replace the contents of the file will
4485 	 * end up with a zero length file after a crash.
4486 	 */
4487 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4488 		btrfs_add_ordered_operation(trans, root, inode);
4489 
4490 	btrfs_set_trans_block_group(trans, inode);
4491 	btrfs_i_size_write(inode, inode->i_size);
4492 
4493 	ret = btrfs_orphan_add(trans, inode);
4494 	if (ret)
4495 		goto out;
4496 	/* FIXME, add redo link to tree so we don't leak on crash */
4497 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4498 				      BTRFS_EXTENT_DATA_KEY);
4499 	btrfs_update_inode(trans, root, inode);
4500 
4501 	ret = btrfs_orphan_del(trans, inode);
4502 	BUG_ON(ret);
4503 
4504 out:
4505 	nr = trans->blocks_used;
4506 	ret = btrfs_end_transaction_throttle(trans, root);
4507 	BUG_ON(ret);
4508 	btrfs_btree_balance_dirty(root, nr);
4509 }
4510 
4511 /*
4512  * create a new subvolume directory/inode (helper for the ioctl).
4513  */
4514 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4515 			     struct btrfs_root *new_root, struct dentry *dentry,
4516 			     u64 new_dirid, u64 alloc_hint)
4517 {
4518 	struct inode *inode;
4519 	int error;
4520 	u64 index = 0;
4521 
4522 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4523 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4524 	if (IS_ERR(inode))
4525 		return PTR_ERR(inode);
4526 	inode->i_op = &btrfs_dir_inode_operations;
4527 	inode->i_fop = &btrfs_dir_file_operations;
4528 
4529 	inode->i_nlink = 1;
4530 	btrfs_i_size_write(inode, 0);
4531 
4532 	error = btrfs_update_inode(trans, new_root, inode);
4533 	if (error)
4534 		return error;
4535 
4536 	d_instantiate(dentry, inode);
4537 	return 0;
4538 }
4539 
4540 /* helper function for file defrag and space balancing.  This
4541  * forces readahead on a given range of bytes in an inode
4542  */
4543 unsigned long btrfs_force_ra(struct address_space *mapping,
4544 			      struct file_ra_state *ra, struct file *file,
4545 			      pgoff_t offset, pgoff_t last_index)
4546 {
4547 	pgoff_t req_size = last_index - offset + 1;
4548 
4549 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4550 	return offset + req_size;
4551 }
4552 
4553 struct inode *btrfs_alloc_inode(struct super_block *sb)
4554 {
4555 	struct btrfs_inode *ei;
4556 
4557 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4558 	if (!ei)
4559 		return NULL;
4560 	ei->last_trans = 0;
4561 	ei->logged_trans = 0;
4562 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4563 	ei->i_acl = BTRFS_ACL_NOT_CACHED;
4564 	ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4565 	INIT_LIST_HEAD(&ei->i_orphan);
4566 	INIT_LIST_HEAD(&ei->ordered_operations);
4567 	return &ei->vfs_inode;
4568 }
4569 
4570 void btrfs_destroy_inode(struct inode *inode)
4571 {
4572 	struct btrfs_ordered_extent *ordered;
4573 	struct btrfs_root *root = BTRFS_I(inode)->root;
4574 
4575 	WARN_ON(!list_empty(&inode->i_dentry));
4576 	WARN_ON(inode->i_data.nrpages);
4577 
4578 	if (BTRFS_I(inode)->i_acl &&
4579 	    BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4580 		posix_acl_release(BTRFS_I(inode)->i_acl);
4581 	if (BTRFS_I(inode)->i_default_acl &&
4582 	    BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4583 		posix_acl_release(BTRFS_I(inode)->i_default_acl);
4584 
4585 	/*
4586 	 * Make sure we're properly removed from the ordered operation
4587 	 * lists.
4588 	 */
4589 	smp_mb();
4590 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4591 		spin_lock(&root->fs_info->ordered_extent_lock);
4592 		list_del_init(&BTRFS_I(inode)->ordered_operations);
4593 		spin_unlock(&root->fs_info->ordered_extent_lock);
4594 	}
4595 
4596 	spin_lock(&root->list_lock);
4597 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4598 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4599 		       " list\n", inode->i_ino);
4600 		dump_stack();
4601 	}
4602 	spin_unlock(&root->list_lock);
4603 
4604 	while (1) {
4605 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4606 		if (!ordered)
4607 			break;
4608 		else {
4609 			printk(KERN_ERR "btrfs found ordered "
4610 			       "extent %llu %llu on inode cleanup\n",
4611 			       (unsigned long long)ordered->file_offset,
4612 			       (unsigned long long)ordered->len);
4613 			btrfs_remove_ordered_extent(inode, ordered);
4614 			btrfs_put_ordered_extent(ordered);
4615 			btrfs_put_ordered_extent(ordered);
4616 		}
4617 	}
4618 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4619 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4620 }
4621 
4622 static void init_once(void *foo)
4623 {
4624 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4625 
4626 	inode_init_once(&ei->vfs_inode);
4627 }
4628 
4629 void btrfs_destroy_cachep(void)
4630 {
4631 	if (btrfs_inode_cachep)
4632 		kmem_cache_destroy(btrfs_inode_cachep);
4633 	if (btrfs_trans_handle_cachep)
4634 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4635 	if (btrfs_transaction_cachep)
4636 		kmem_cache_destroy(btrfs_transaction_cachep);
4637 	if (btrfs_bit_radix_cachep)
4638 		kmem_cache_destroy(btrfs_bit_radix_cachep);
4639 	if (btrfs_path_cachep)
4640 		kmem_cache_destroy(btrfs_path_cachep);
4641 }
4642 
4643 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4644 				       unsigned long extra_flags,
4645 				       void (*ctor)(void *))
4646 {
4647 	return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4648 				 SLAB_MEM_SPREAD | extra_flags), ctor);
4649 }
4650 
4651 int btrfs_init_cachep(void)
4652 {
4653 	btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4654 					  sizeof(struct btrfs_inode),
4655 					  0, init_once);
4656 	if (!btrfs_inode_cachep)
4657 		goto fail;
4658 	btrfs_trans_handle_cachep =
4659 			btrfs_cache_create("btrfs_trans_handle_cache",
4660 					   sizeof(struct btrfs_trans_handle),
4661 					   0, NULL);
4662 	if (!btrfs_trans_handle_cachep)
4663 		goto fail;
4664 	btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4665 					     sizeof(struct btrfs_transaction),
4666 					     0, NULL);
4667 	if (!btrfs_transaction_cachep)
4668 		goto fail;
4669 	btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4670 					 sizeof(struct btrfs_path),
4671 					 0, NULL);
4672 	if (!btrfs_path_cachep)
4673 		goto fail;
4674 	btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4675 					      SLAB_DESTROY_BY_RCU, NULL);
4676 	if (!btrfs_bit_radix_cachep)
4677 		goto fail;
4678 	return 0;
4679 fail:
4680 	btrfs_destroy_cachep();
4681 	return -ENOMEM;
4682 }
4683 
4684 static int btrfs_getattr(struct vfsmount *mnt,
4685 			 struct dentry *dentry, struct kstat *stat)
4686 {
4687 	struct inode *inode = dentry->d_inode;
4688 	generic_fillattr(inode, stat);
4689 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4690 	stat->blksize = PAGE_CACHE_SIZE;
4691 	stat->blocks = (inode_get_bytes(inode) +
4692 			BTRFS_I(inode)->delalloc_bytes) >> 9;
4693 	return 0;
4694 }
4695 
4696 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4697 			   struct inode *new_dir, struct dentry *new_dentry)
4698 {
4699 	struct btrfs_trans_handle *trans;
4700 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
4701 	struct inode *new_inode = new_dentry->d_inode;
4702 	struct inode *old_inode = old_dentry->d_inode;
4703 	struct timespec ctime = CURRENT_TIME;
4704 	u64 index = 0;
4705 	int ret;
4706 
4707 	/* we're not allowed to rename between subvolumes */
4708 	if (BTRFS_I(old_inode)->root->root_key.objectid !=
4709 	    BTRFS_I(new_dir)->root->root_key.objectid)
4710 		return -EXDEV;
4711 
4712 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
4713 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4714 		return -ENOTEMPTY;
4715 	}
4716 
4717 	/* to rename a snapshot or subvolume, we need to juggle the
4718 	 * backrefs.  This isn't coded yet
4719 	 */
4720 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4721 		return -EXDEV;
4722 
4723 	ret = btrfs_check_metadata_free_space(root);
4724 	if (ret)
4725 		goto out_unlock;
4726 
4727 	/*
4728 	 * we're using rename to replace one file with another.
4729 	 * and the replacement file is large.  Start IO on it now so
4730 	 * we don't add too much work to the end of the transaction
4731 	 */
4732 	if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
4733 	    new_inode->i_size &&
4734 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4735 		filemap_flush(old_inode->i_mapping);
4736 
4737 	trans = btrfs_start_transaction(root, 1);
4738 
4739 	/*
4740 	 * make sure the inode gets flushed if it is replacing
4741 	 * something.
4742 	 */
4743 	if (new_inode && new_inode->i_size &&
4744 	    old_inode && S_ISREG(old_inode->i_mode)) {
4745 		btrfs_add_ordered_operation(trans, root, old_inode);
4746 	}
4747 
4748 	/*
4749 	 * this is an ugly little race, but the rename is required to make
4750 	 * sure that if we crash, the inode is either at the old name
4751 	 * or the new one.  pinning the log transaction lets us make sure
4752 	 * we don't allow a log commit to come in after we unlink the
4753 	 * name but before we add the new name back in.
4754 	 */
4755 	btrfs_pin_log_trans(root);
4756 
4757 	btrfs_set_trans_block_group(trans, new_dir);
4758 
4759 	btrfs_inc_nlink(old_dentry->d_inode);
4760 	old_dir->i_ctime = old_dir->i_mtime = ctime;
4761 	new_dir->i_ctime = new_dir->i_mtime = ctime;
4762 	old_inode->i_ctime = ctime;
4763 
4764 	if (old_dentry->d_parent != new_dentry->d_parent)
4765 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4766 
4767 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4768 				 old_dentry->d_name.name,
4769 				 old_dentry->d_name.len);
4770 	if (ret)
4771 		goto out_fail;
4772 
4773 	if (new_inode) {
4774 		new_inode->i_ctime = CURRENT_TIME;
4775 		ret = btrfs_unlink_inode(trans, root, new_dir,
4776 					 new_dentry->d_inode,
4777 					 new_dentry->d_name.name,
4778 					 new_dentry->d_name.len);
4779 		if (ret)
4780 			goto out_fail;
4781 		if (new_inode->i_nlink == 0) {
4782 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4783 			if (ret)
4784 				goto out_fail;
4785 		}
4786 
4787 	}
4788 	ret = btrfs_set_inode_index(new_dir, &index);
4789 	if (ret)
4790 		goto out_fail;
4791 
4792 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4793 			     old_inode, new_dentry->d_name.name,
4794 			     new_dentry->d_name.len, 1, index);
4795 	if (ret)
4796 		goto out_fail;
4797 
4798 	btrfs_log_new_name(trans, old_inode, old_dir,
4799 				       new_dentry->d_parent);
4800 out_fail:
4801 
4802 	/* this btrfs_end_log_trans just allows the current
4803 	 * log-sub transaction to complete
4804 	 */
4805 	btrfs_end_log_trans(root);
4806 	btrfs_end_transaction_throttle(trans, root);
4807 out_unlock:
4808 	return ret;
4809 }
4810 
4811 /*
4812  * some fairly slow code that needs optimization. This walks the list
4813  * of all the inodes with pending delalloc and forces them to disk.
4814  */
4815 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4816 {
4817 	struct list_head *head = &root->fs_info->delalloc_inodes;
4818 	struct btrfs_inode *binode;
4819 	struct inode *inode;
4820 
4821 	if (root->fs_info->sb->s_flags & MS_RDONLY)
4822 		return -EROFS;
4823 
4824 	spin_lock(&root->fs_info->delalloc_lock);
4825 	while (!list_empty(head)) {
4826 		binode = list_entry(head->next, struct btrfs_inode,
4827 				    delalloc_inodes);
4828 		inode = igrab(&binode->vfs_inode);
4829 		if (!inode)
4830 			list_del_init(&binode->delalloc_inodes);
4831 		spin_unlock(&root->fs_info->delalloc_lock);
4832 		if (inode) {
4833 			filemap_flush(inode->i_mapping);
4834 			iput(inode);
4835 		}
4836 		cond_resched();
4837 		spin_lock(&root->fs_info->delalloc_lock);
4838 	}
4839 	spin_unlock(&root->fs_info->delalloc_lock);
4840 
4841 	/* the filemap_flush will queue IO into the worker threads, but
4842 	 * we have to make sure the IO is actually started and that
4843 	 * ordered extents get created before we return
4844 	 */
4845 	atomic_inc(&root->fs_info->async_submit_draining);
4846 	while (atomic_read(&root->fs_info->nr_async_submits) ||
4847 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
4848 		wait_event(root->fs_info->async_submit_wait,
4849 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4850 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4851 	}
4852 	atomic_dec(&root->fs_info->async_submit_draining);
4853 	return 0;
4854 }
4855 
4856 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4857 			 const char *symname)
4858 {
4859 	struct btrfs_trans_handle *trans;
4860 	struct btrfs_root *root = BTRFS_I(dir)->root;
4861 	struct btrfs_path *path;
4862 	struct btrfs_key key;
4863 	struct inode *inode = NULL;
4864 	int err;
4865 	int drop_inode = 0;
4866 	u64 objectid;
4867 	u64 index = 0 ;
4868 	int name_len;
4869 	int datasize;
4870 	unsigned long ptr;
4871 	struct btrfs_file_extent_item *ei;
4872 	struct extent_buffer *leaf;
4873 	unsigned long nr = 0;
4874 
4875 	name_len = strlen(symname) + 1;
4876 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4877 		return -ENAMETOOLONG;
4878 
4879 	err = btrfs_check_metadata_free_space(root);
4880 	if (err)
4881 		goto out_fail;
4882 
4883 	trans = btrfs_start_transaction(root, 1);
4884 	btrfs_set_trans_block_group(trans, dir);
4885 
4886 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4887 	if (err) {
4888 		err = -ENOSPC;
4889 		goto out_unlock;
4890 	}
4891 
4892 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4893 				dentry->d_name.len,
4894 				dentry->d_parent->d_inode->i_ino, objectid,
4895 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4896 				&index);
4897 	err = PTR_ERR(inode);
4898 	if (IS_ERR(inode))
4899 		goto out_unlock;
4900 
4901 	err = btrfs_init_inode_security(inode, dir);
4902 	if (err) {
4903 		drop_inode = 1;
4904 		goto out_unlock;
4905 	}
4906 
4907 	btrfs_set_trans_block_group(trans, inode);
4908 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4909 	if (err)
4910 		drop_inode = 1;
4911 	else {
4912 		inode->i_mapping->a_ops = &btrfs_aops;
4913 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4914 		inode->i_fop = &btrfs_file_operations;
4915 		inode->i_op = &btrfs_file_inode_operations;
4916 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4917 	}
4918 	dir->i_sb->s_dirt = 1;
4919 	btrfs_update_inode_block_group(trans, inode);
4920 	btrfs_update_inode_block_group(trans, dir);
4921 	if (drop_inode)
4922 		goto out_unlock;
4923 
4924 	path = btrfs_alloc_path();
4925 	BUG_ON(!path);
4926 	key.objectid = inode->i_ino;
4927 	key.offset = 0;
4928 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4929 	datasize = btrfs_file_extent_calc_inline_size(name_len);
4930 	err = btrfs_insert_empty_item(trans, root, path, &key,
4931 				      datasize);
4932 	if (err) {
4933 		drop_inode = 1;
4934 		goto out_unlock;
4935 	}
4936 	leaf = path->nodes[0];
4937 	ei = btrfs_item_ptr(leaf, path->slots[0],
4938 			    struct btrfs_file_extent_item);
4939 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4940 	btrfs_set_file_extent_type(leaf, ei,
4941 				   BTRFS_FILE_EXTENT_INLINE);
4942 	btrfs_set_file_extent_encryption(leaf, ei, 0);
4943 	btrfs_set_file_extent_compression(leaf, ei, 0);
4944 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4945 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4946 
4947 	ptr = btrfs_file_extent_inline_start(ei);
4948 	write_extent_buffer(leaf, symname, ptr, name_len);
4949 	btrfs_mark_buffer_dirty(leaf);
4950 	btrfs_free_path(path);
4951 
4952 	inode->i_op = &btrfs_symlink_inode_operations;
4953 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
4954 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4955 	inode_set_bytes(inode, name_len);
4956 	btrfs_i_size_write(inode, name_len - 1);
4957 	err = btrfs_update_inode(trans, root, inode);
4958 	if (err)
4959 		drop_inode = 1;
4960 
4961 out_unlock:
4962 	nr = trans->blocks_used;
4963 	btrfs_end_transaction_throttle(trans, root);
4964 out_fail:
4965 	if (drop_inode) {
4966 		inode_dec_link_count(inode);
4967 		iput(inode);
4968 	}
4969 	btrfs_btree_balance_dirty(root, nr);
4970 	return err;
4971 }
4972 
4973 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4974 			       u64 alloc_hint, int mode)
4975 {
4976 	struct btrfs_trans_handle *trans;
4977 	struct btrfs_root *root = BTRFS_I(inode)->root;
4978 	struct btrfs_key ins;
4979 	u64 alloc_size;
4980 	u64 cur_offset = start;
4981 	u64 num_bytes = end - start;
4982 	int ret = 0;
4983 
4984 	trans = btrfs_join_transaction(root, 1);
4985 	BUG_ON(!trans);
4986 	btrfs_set_trans_block_group(trans, inode);
4987 
4988 	while (num_bytes > 0) {
4989 		alloc_size = min(num_bytes, root->fs_info->max_extent);
4990 		ret = btrfs_reserve_extent(trans, root, alloc_size,
4991 					   root->sectorsize, 0, alloc_hint,
4992 					   (u64)-1, &ins, 1);
4993 		if (ret) {
4994 			WARN_ON(1);
4995 			goto out;
4996 		}
4997 		ret = insert_reserved_file_extent(trans, inode,
4998 						  cur_offset, ins.objectid,
4999 						  ins.offset, ins.offset,
5000 						  ins.offset, 0, 0, 0,
5001 						  BTRFS_FILE_EXTENT_PREALLOC);
5002 		BUG_ON(ret);
5003 		num_bytes -= ins.offset;
5004 		cur_offset += ins.offset;
5005 		alloc_hint = ins.objectid + ins.offset;
5006 	}
5007 out:
5008 	if (cur_offset > start) {
5009 		inode->i_ctime = CURRENT_TIME;
5010 		btrfs_set_flag(inode, PREALLOC);
5011 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5012 		    cur_offset > i_size_read(inode))
5013 			btrfs_i_size_write(inode, cur_offset);
5014 		ret = btrfs_update_inode(trans, root, inode);
5015 		BUG_ON(ret);
5016 	}
5017 
5018 	btrfs_end_transaction(trans, root);
5019 	return ret;
5020 }
5021 
5022 static long btrfs_fallocate(struct inode *inode, int mode,
5023 			    loff_t offset, loff_t len)
5024 {
5025 	u64 cur_offset;
5026 	u64 last_byte;
5027 	u64 alloc_start;
5028 	u64 alloc_end;
5029 	u64 alloc_hint = 0;
5030 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5031 	struct extent_map *em;
5032 	int ret;
5033 
5034 	alloc_start = offset & ~mask;
5035 	alloc_end =  (offset + len + mask) & ~mask;
5036 
5037 	mutex_lock(&inode->i_mutex);
5038 	if (alloc_start > inode->i_size) {
5039 		ret = btrfs_cont_expand(inode, alloc_start);
5040 		if (ret)
5041 			goto out;
5042 	}
5043 
5044 	while (1) {
5045 		struct btrfs_ordered_extent *ordered;
5046 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
5047 			    alloc_end - 1, GFP_NOFS);
5048 		ordered = btrfs_lookup_first_ordered_extent(inode,
5049 							    alloc_end - 1);
5050 		if (ordered &&
5051 		    ordered->file_offset + ordered->len > alloc_start &&
5052 		    ordered->file_offset < alloc_end) {
5053 			btrfs_put_ordered_extent(ordered);
5054 			unlock_extent(&BTRFS_I(inode)->io_tree,
5055 				      alloc_start, alloc_end - 1, GFP_NOFS);
5056 			btrfs_wait_ordered_range(inode, alloc_start,
5057 						 alloc_end - alloc_start);
5058 		} else {
5059 			if (ordered)
5060 				btrfs_put_ordered_extent(ordered);
5061 			break;
5062 		}
5063 	}
5064 
5065 	cur_offset = alloc_start;
5066 	while (1) {
5067 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5068 				      alloc_end - cur_offset, 0);
5069 		BUG_ON(IS_ERR(em) || !em);
5070 		last_byte = min(extent_map_end(em), alloc_end);
5071 		last_byte = (last_byte + mask) & ~mask;
5072 		if (em->block_start == EXTENT_MAP_HOLE) {
5073 			ret = prealloc_file_range(inode, cur_offset,
5074 					last_byte, alloc_hint, mode);
5075 			if (ret < 0) {
5076 				free_extent_map(em);
5077 				break;
5078 			}
5079 		}
5080 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5081 			alloc_hint = em->block_start;
5082 		free_extent_map(em);
5083 
5084 		cur_offset = last_byte;
5085 		if (cur_offset >= alloc_end) {
5086 			ret = 0;
5087 			break;
5088 		}
5089 	}
5090 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
5091 		      GFP_NOFS);
5092 out:
5093 	mutex_unlock(&inode->i_mutex);
5094 	return ret;
5095 }
5096 
5097 static int btrfs_set_page_dirty(struct page *page)
5098 {
5099 	return __set_page_dirty_nobuffers(page);
5100 }
5101 
5102 static int btrfs_permission(struct inode *inode, int mask)
5103 {
5104 	if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
5105 		return -EACCES;
5106 	return generic_permission(inode, mask, btrfs_check_acl);
5107 }
5108 
5109 static struct inode_operations btrfs_dir_inode_operations = {
5110 	.getattr	= btrfs_getattr,
5111 	.lookup		= btrfs_lookup,
5112 	.create		= btrfs_create,
5113 	.unlink		= btrfs_unlink,
5114 	.link		= btrfs_link,
5115 	.mkdir		= btrfs_mkdir,
5116 	.rmdir		= btrfs_rmdir,
5117 	.rename		= btrfs_rename,
5118 	.symlink	= btrfs_symlink,
5119 	.setattr	= btrfs_setattr,
5120 	.mknod		= btrfs_mknod,
5121 	.setxattr	= btrfs_setxattr,
5122 	.getxattr	= btrfs_getxattr,
5123 	.listxattr	= btrfs_listxattr,
5124 	.removexattr	= btrfs_removexattr,
5125 	.permission	= btrfs_permission,
5126 };
5127 static struct inode_operations btrfs_dir_ro_inode_operations = {
5128 	.lookup		= btrfs_lookup,
5129 	.permission	= btrfs_permission,
5130 };
5131 static struct file_operations btrfs_dir_file_operations = {
5132 	.llseek		= generic_file_llseek,
5133 	.read		= generic_read_dir,
5134 	.readdir	= btrfs_real_readdir,
5135 	.unlocked_ioctl	= btrfs_ioctl,
5136 #ifdef CONFIG_COMPAT
5137 	.compat_ioctl	= btrfs_ioctl,
5138 #endif
5139 	.release        = btrfs_release_file,
5140 	.fsync		= btrfs_sync_file,
5141 };
5142 
5143 static struct extent_io_ops btrfs_extent_io_ops = {
5144 	.fill_delalloc = run_delalloc_range,
5145 	.submit_bio_hook = btrfs_submit_bio_hook,
5146 	.merge_bio_hook = btrfs_merge_bio_hook,
5147 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
5148 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
5149 	.writepage_start_hook = btrfs_writepage_start_hook,
5150 	.readpage_io_failed_hook = btrfs_io_failed_hook,
5151 	.set_bit_hook = btrfs_set_bit_hook,
5152 	.clear_bit_hook = btrfs_clear_bit_hook,
5153 };
5154 
5155 /*
5156  * btrfs doesn't support the bmap operation because swapfiles
5157  * use bmap to make a mapping of extents in the file.  They assume
5158  * these extents won't change over the life of the file and they
5159  * use the bmap result to do IO directly to the drive.
5160  *
5161  * the btrfs bmap call would return logical addresses that aren't
5162  * suitable for IO and they also will change frequently as COW
5163  * operations happen.  So, swapfile + btrfs == corruption.
5164  *
5165  * For now we're avoiding this by dropping bmap.
5166  */
5167 static struct address_space_operations btrfs_aops = {
5168 	.readpage	= btrfs_readpage,
5169 	.writepage	= btrfs_writepage,
5170 	.writepages	= btrfs_writepages,
5171 	.readpages	= btrfs_readpages,
5172 	.sync_page	= block_sync_page,
5173 	.direct_IO	= btrfs_direct_IO,
5174 	.invalidatepage = btrfs_invalidatepage,
5175 	.releasepage	= btrfs_releasepage,
5176 	.set_page_dirty	= btrfs_set_page_dirty,
5177 };
5178 
5179 static struct address_space_operations btrfs_symlink_aops = {
5180 	.readpage	= btrfs_readpage,
5181 	.writepage	= btrfs_writepage,
5182 	.invalidatepage = btrfs_invalidatepage,
5183 	.releasepage	= btrfs_releasepage,
5184 };
5185 
5186 static struct inode_operations btrfs_file_inode_operations = {
5187 	.truncate	= btrfs_truncate,
5188 	.getattr	= btrfs_getattr,
5189 	.setattr	= btrfs_setattr,
5190 	.setxattr	= btrfs_setxattr,
5191 	.getxattr	= btrfs_getxattr,
5192 	.listxattr      = btrfs_listxattr,
5193 	.removexattr	= btrfs_removexattr,
5194 	.permission	= btrfs_permission,
5195 	.fallocate	= btrfs_fallocate,
5196 	.fiemap		= btrfs_fiemap,
5197 };
5198 static struct inode_operations btrfs_special_inode_operations = {
5199 	.getattr	= btrfs_getattr,
5200 	.setattr	= btrfs_setattr,
5201 	.permission	= btrfs_permission,
5202 	.setxattr	= btrfs_setxattr,
5203 	.getxattr	= btrfs_getxattr,
5204 	.listxattr	= btrfs_listxattr,
5205 	.removexattr	= btrfs_removexattr,
5206 };
5207 static struct inode_operations btrfs_symlink_inode_operations = {
5208 	.readlink	= generic_readlink,
5209 	.follow_link	= page_follow_link_light,
5210 	.put_link	= page_put_link,
5211 	.permission	= btrfs_permission,
5212 	.setxattr	= btrfs_setxattr,
5213 	.getxattr	= btrfs_getxattr,
5214 	.listxattr	= btrfs_listxattr,
5215 	.removexattr	= btrfs_removexattr,
5216 };
5217