xref: /openbmc/linux/fs/btrfs/inode.c (revision b35565bb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
51 #include "xattr.h"
52 #include "tree-log.h"
53 #include "volumes.h"
54 #include "compression.h"
55 #include "locking.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
58 #include "backref.h"
59 #include "hash.h"
60 #include "props.h"
61 #include "qgroup.h"
62 #include "dedupe.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 	int overwrite;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, u64 delalloc_end,
109 				   int *page_started, unsigned long *nr_written,
110 				   int unlock, struct btrfs_dedupe_hash *hash);
111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 				       u64 orig_start, u64 block_start,
113 				       u64 block_len, u64 orig_block_len,
114 				       u64 ram_bytes, int compress_type,
115 				       int type);
116 
117 static void __endio_write_update_ordered(struct inode *inode,
118 					 const u64 offset, const u64 bytes,
119 					 const bool uptodate);
120 
121 /*
122  * Cleanup all submitted ordered extents in specified range to handle errors
123  * from the fill_dellaloc() callback.
124  *
125  * NOTE: caller must ensure that when an error happens, it can not call
126  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128  * to be released, which we want to happen only when finishing the ordered
129  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130  * fill_delalloc() callback already does proper cleanup for the first page of
131  * the range, that is, it invokes the callback writepage_end_io_hook() for the
132  * range of the first page.
133  */
134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 						 const u64 offset,
136 						 const u64 bytes)
137 {
138 	unsigned long index = offset >> PAGE_SHIFT;
139 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 	struct page *page;
141 
142 	while (index <= end_index) {
143 		page = find_get_page(inode->i_mapping, index);
144 		index++;
145 		if (!page)
146 			continue;
147 		ClearPagePrivate2(page);
148 		put_page(page);
149 	}
150 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 					    bytes - PAGE_SIZE, false);
152 }
153 
154 static int btrfs_dirty_inode(struct inode *inode);
155 
156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157 void btrfs_test_inode_set_ops(struct inode *inode)
158 {
159 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160 }
161 #endif
162 
163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
164 				     struct inode *inode,  struct inode *dir,
165 				     const struct qstr *qstr)
166 {
167 	int err;
168 
169 	err = btrfs_init_acl(trans, inode, dir);
170 	if (!err)
171 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
172 	return err;
173 }
174 
175 /*
176  * this does all the hard work for inserting an inline extent into
177  * the btree.  The caller should have done a btrfs_drop_extents so that
178  * no overlapping inline items exist in the btree
179  */
180 static int insert_inline_extent(struct btrfs_trans_handle *trans,
181 				struct btrfs_path *path, int extent_inserted,
182 				struct btrfs_root *root, struct inode *inode,
183 				u64 start, size_t size, size_t compressed_size,
184 				int compress_type,
185 				struct page **compressed_pages)
186 {
187 	struct extent_buffer *leaf;
188 	struct page *page = NULL;
189 	char *kaddr;
190 	unsigned long ptr;
191 	struct btrfs_file_extent_item *ei;
192 	int ret;
193 	size_t cur_size = size;
194 	unsigned long offset;
195 
196 	if (compressed_size && compressed_pages)
197 		cur_size = compressed_size;
198 
199 	inode_add_bytes(inode, size);
200 
201 	if (!extent_inserted) {
202 		struct btrfs_key key;
203 		size_t datasize;
204 
205 		key.objectid = btrfs_ino(BTRFS_I(inode));
206 		key.offset = start;
207 		key.type = BTRFS_EXTENT_DATA_KEY;
208 
209 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 		path->leave_spinning = 1;
211 		ret = btrfs_insert_empty_item(trans, root, path, &key,
212 					      datasize);
213 		if (ret)
214 			goto fail;
215 	}
216 	leaf = path->nodes[0];
217 	ei = btrfs_item_ptr(leaf, path->slots[0],
218 			    struct btrfs_file_extent_item);
219 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 	btrfs_set_file_extent_encryption(leaf, ei, 0);
222 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 	ptr = btrfs_file_extent_inline_start(ei);
225 
226 	if (compress_type != BTRFS_COMPRESS_NONE) {
227 		struct page *cpage;
228 		int i = 0;
229 		while (compressed_size > 0) {
230 			cpage = compressed_pages[i];
231 			cur_size = min_t(unsigned long, compressed_size,
232 				       PAGE_SIZE);
233 
234 			kaddr = kmap_atomic(cpage);
235 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
236 			kunmap_atomic(kaddr);
237 
238 			i++;
239 			ptr += cur_size;
240 			compressed_size -= cur_size;
241 		}
242 		btrfs_set_file_extent_compression(leaf, ei,
243 						  compress_type);
244 	} else {
245 		page = find_get_page(inode->i_mapping,
246 				     start >> PAGE_SHIFT);
247 		btrfs_set_file_extent_compression(leaf, ei, 0);
248 		kaddr = kmap_atomic(page);
249 		offset = start & (PAGE_SIZE - 1);
250 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
251 		kunmap_atomic(kaddr);
252 		put_page(page);
253 	}
254 	btrfs_mark_buffer_dirty(leaf);
255 	btrfs_release_path(path);
256 
257 	/*
258 	 * we're an inline extent, so nobody can
259 	 * extend the file past i_size without locking
260 	 * a page we already have locked.
261 	 *
262 	 * We must do any isize and inode updates
263 	 * before we unlock the pages.  Otherwise we
264 	 * could end up racing with unlink.
265 	 */
266 	BTRFS_I(inode)->disk_i_size = inode->i_size;
267 	ret = btrfs_update_inode(trans, root, inode);
268 
269 fail:
270 	return ret;
271 }
272 
273 
274 /*
275  * conditionally insert an inline extent into the file.  This
276  * does the checks required to make sure the data is small enough
277  * to fit as an inline extent.
278  */
279 static noinline int cow_file_range_inline(struct btrfs_root *root,
280 					  struct inode *inode, u64 start,
281 					  u64 end, size_t compressed_size,
282 					  int compress_type,
283 					  struct page **compressed_pages)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 	struct btrfs_trans_handle *trans;
287 	u64 isize = i_size_read(inode);
288 	u64 actual_end = min(end + 1, isize);
289 	u64 inline_len = actual_end - start;
290 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
291 	u64 data_len = inline_len;
292 	int ret;
293 	struct btrfs_path *path;
294 	int extent_inserted = 0;
295 	u32 extent_item_size;
296 
297 	if (compressed_size)
298 		data_len = compressed_size;
299 
300 	if (start > 0 ||
301 	    actual_end > fs_info->sectorsize ||
302 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
303 	    (!compressed_size &&
304 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
305 	    end + 1 < isize ||
306 	    data_len > fs_info->max_inline) {
307 		return 1;
308 	}
309 
310 	path = btrfs_alloc_path();
311 	if (!path)
312 		return -ENOMEM;
313 
314 	trans = btrfs_join_transaction(root);
315 	if (IS_ERR(trans)) {
316 		btrfs_free_path(path);
317 		return PTR_ERR(trans);
318 	}
319 	trans->block_rsv = &fs_info->delalloc_block_rsv;
320 
321 	if (compressed_size && compressed_pages)
322 		extent_item_size = btrfs_file_extent_calc_inline_size(
323 		   compressed_size);
324 	else
325 		extent_item_size = btrfs_file_extent_calc_inline_size(
326 		    inline_len);
327 
328 	ret = __btrfs_drop_extents(trans, root, inode, path,
329 				   start, aligned_end, NULL,
330 				   1, 1, extent_item_size, &extent_inserted);
331 	if (ret) {
332 		btrfs_abort_transaction(trans, ret);
333 		goto out;
334 	}
335 
336 	if (isize > actual_end)
337 		inline_len = min_t(u64, isize, actual_end);
338 	ret = insert_inline_extent(trans, path, extent_inserted,
339 				   root, inode, start,
340 				   inline_len, compressed_size,
341 				   compress_type, compressed_pages);
342 	if (ret && ret != -ENOSPC) {
343 		btrfs_abort_transaction(trans, ret);
344 		goto out;
345 	} else if (ret == -ENOSPC) {
346 		ret = 1;
347 		goto out;
348 	}
349 
350 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
351 	btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
352 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
353 out:
354 	/*
355 	 * Don't forget to free the reserved space, as for inlined extent
356 	 * it won't count as data extent, free them directly here.
357 	 * And at reserve time, it's always aligned to page size, so
358 	 * just free one page here.
359 	 */
360 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
361 	btrfs_free_path(path);
362 	btrfs_end_transaction(trans);
363 	return ret;
364 }
365 
366 struct async_extent {
367 	u64 start;
368 	u64 ram_size;
369 	u64 compressed_size;
370 	struct page **pages;
371 	unsigned long nr_pages;
372 	int compress_type;
373 	struct list_head list;
374 };
375 
376 struct async_cow {
377 	struct inode *inode;
378 	struct btrfs_root *root;
379 	struct page *locked_page;
380 	u64 start;
381 	u64 end;
382 	struct list_head extents;
383 	struct btrfs_work work;
384 };
385 
386 static noinline int add_async_extent(struct async_cow *cow,
387 				     u64 start, u64 ram_size,
388 				     u64 compressed_size,
389 				     struct page **pages,
390 				     unsigned long nr_pages,
391 				     int compress_type)
392 {
393 	struct async_extent *async_extent;
394 
395 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
396 	BUG_ON(!async_extent); /* -ENOMEM */
397 	async_extent->start = start;
398 	async_extent->ram_size = ram_size;
399 	async_extent->compressed_size = compressed_size;
400 	async_extent->pages = pages;
401 	async_extent->nr_pages = nr_pages;
402 	async_extent->compress_type = compress_type;
403 	list_add_tail(&async_extent->list, &cow->extents);
404 	return 0;
405 }
406 
407 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
408 {
409 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
410 
411 	/* force compress */
412 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
413 		return 1;
414 	/* defrag ioctl */
415 	if (BTRFS_I(inode)->defrag_compress)
416 		return 1;
417 	/* bad compression ratios */
418 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
419 		return 0;
420 	if (btrfs_test_opt(fs_info, COMPRESS) ||
421 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
422 	    BTRFS_I(inode)->prop_compress)
423 		return btrfs_compress_heuristic(inode, start, end);
424 	return 0;
425 }
426 
427 static inline void inode_should_defrag(struct btrfs_inode *inode,
428 		u64 start, u64 end, u64 num_bytes, u64 small_write)
429 {
430 	/* If this is a small write inside eof, kick off a defrag */
431 	if (num_bytes < small_write &&
432 	    (start > 0 || end + 1 < inode->disk_i_size))
433 		btrfs_add_inode_defrag(NULL, inode);
434 }
435 
436 /*
437  * we create compressed extents in two phases.  The first
438  * phase compresses a range of pages that have already been
439  * locked (both pages and state bits are locked).
440  *
441  * This is done inside an ordered work queue, and the compression
442  * is spread across many cpus.  The actual IO submission is step
443  * two, and the ordered work queue takes care of making sure that
444  * happens in the same order things were put onto the queue by
445  * writepages and friends.
446  *
447  * If this code finds it can't get good compression, it puts an
448  * entry onto the work queue to write the uncompressed bytes.  This
449  * makes sure that both compressed inodes and uncompressed inodes
450  * are written in the same order that the flusher thread sent them
451  * down.
452  */
453 static noinline void compress_file_range(struct inode *inode,
454 					struct page *locked_page,
455 					u64 start, u64 end,
456 					struct async_cow *async_cow,
457 					int *num_added)
458 {
459 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
460 	struct btrfs_root *root = BTRFS_I(inode)->root;
461 	u64 num_bytes;
462 	u64 blocksize = fs_info->sectorsize;
463 	u64 actual_end;
464 	u64 isize = i_size_read(inode);
465 	int ret = 0;
466 	struct page **pages = NULL;
467 	unsigned long nr_pages;
468 	unsigned long total_compressed = 0;
469 	unsigned long total_in = 0;
470 	int i;
471 	int will_compress;
472 	int compress_type = fs_info->compress_type;
473 	int redirty = 0;
474 
475 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
476 			SZ_16K);
477 
478 	actual_end = min_t(u64, isize, end + 1);
479 again:
480 	will_compress = 0;
481 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
482 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
483 	nr_pages = min_t(unsigned long, nr_pages,
484 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
485 
486 	/*
487 	 * we don't want to send crud past the end of i_size through
488 	 * compression, that's just a waste of CPU time.  So, if the
489 	 * end of the file is before the start of our current
490 	 * requested range of bytes, we bail out to the uncompressed
491 	 * cleanup code that can deal with all of this.
492 	 *
493 	 * It isn't really the fastest way to fix things, but this is a
494 	 * very uncommon corner.
495 	 */
496 	if (actual_end <= start)
497 		goto cleanup_and_bail_uncompressed;
498 
499 	total_compressed = actual_end - start;
500 
501 	/*
502 	 * skip compression for a small file range(<=blocksize) that
503 	 * isn't an inline extent, since it doesn't save disk space at all.
504 	 */
505 	if (total_compressed <= blocksize &&
506 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
507 		goto cleanup_and_bail_uncompressed;
508 
509 	total_compressed = min_t(unsigned long, total_compressed,
510 			BTRFS_MAX_UNCOMPRESSED);
511 	num_bytes = ALIGN(end - start + 1, blocksize);
512 	num_bytes = max(blocksize,  num_bytes);
513 	total_in = 0;
514 	ret = 0;
515 
516 	/*
517 	 * we do compression for mount -o compress and when the
518 	 * inode has not been flagged as nocompress.  This flag can
519 	 * change at any time if we discover bad compression ratios.
520 	 */
521 	if (inode_need_compress(inode, start, end)) {
522 		WARN_ON(pages);
523 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
524 		if (!pages) {
525 			/* just bail out to the uncompressed code */
526 			goto cont;
527 		}
528 
529 		if (BTRFS_I(inode)->defrag_compress)
530 			compress_type = BTRFS_I(inode)->defrag_compress;
531 		else if (BTRFS_I(inode)->prop_compress)
532 			compress_type = BTRFS_I(inode)->prop_compress;
533 
534 		/*
535 		 * we need to call clear_page_dirty_for_io on each
536 		 * page in the range.  Otherwise applications with the file
537 		 * mmap'd can wander in and change the page contents while
538 		 * we are compressing them.
539 		 *
540 		 * If the compression fails for any reason, we set the pages
541 		 * dirty again later on.
542 		 */
543 		extent_range_clear_dirty_for_io(inode, start, end);
544 		redirty = 1;
545 		ret = btrfs_compress_pages(compress_type,
546 					   inode->i_mapping, start,
547 					   pages,
548 					   &nr_pages,
549 					   &total_in,
550 					   &total_compressed);
551 
552 		if (!ret) {
553 			unsigned long offset = total_compressed &
554 				(PAGE_SIZE - 1);
555 			struct page *page = pages[nr_pages - 1];
556 			char *kaddr;
557 
558 			/* zero the tail end of the last page, we might be
559 			 * sending it down to disk
560 			 */
561 			if (offset) {
562 				kaddr = kmap_atomic(page);
563 				memset(kaddr + offset, 0,
564 				       PAGE_SIZE - offset);
565 				kunmap_atomic(kaddr);
566 			}
567 			will_compress = 1;
568 		}
569 	}
570 cont:
571 	if (start == 0) {
572 		/* lets try to make an inline extent */
573 		if (ret || total_in < (actual_end - start)) {
574 			/* we didn't compress the entire range, try
575 			 * to make an uncompressed inline extent.
576 			 */
577 			ret = cow_file_range_inline(root, inode, start, end,
578 					    0, BTRFS_COMPRESS_NONE, NULL);
579 		} else {
580 			/* try making a compressed inline extent */
581 			ret = cow_file_range_inline(root, inode, start, end,
582 						    total_compressed,
583 						    compress_type, pages);
584 		}
585 		if (ret <= 0) {
586 			unsigned long clear_flags = EXTENT_DELALLOC |
587 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
588 			unsigned long page_error_op;
589 
590 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
591 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
592 
593 			/*
594 			 * inline extent creation worked or returned error,
595 			 * we don't need to create any more async work items.
596 			 * Unlock and free up our temp pages.
597 			 */
598 			extent_clear_unlock_delalloc(inode, start, end, end,
599 						     NULL, clear_flags,
600 						     PAGE_UNLOCK |
601 						     PAGE_CLEAR_DIRTY |
602 						     PAGE_SET_WRITEBACK |
603 						     page_error_op |
604 						     PAGE_END_WRITEBACK);
605 			if (ret == 0)
606 				btrfs_free_reserved_data_space_noquota(inode,
607 							       start,
608 							       end - start + 1);
609 			goto free_pages_out;
610 		}
611 	}
612 
613 	if (will_compress) {
614 		/*
615 		 * we aren't doing an inline extent round the compressed size
616 		 * up to a block size boundary so the allocator does sane
617 		 * things
618 		 */
619 		total_compressed = ALIGN(total_compressed, blocksize);
620 
621 		/*
622 		 * one last check to make sure the compression is really a
623 		 * win, compare the page count read with the blocks on disk,
624 		 * compression must free at least one sector size
625 		 */
626 		total_in = ALIGN(total_in, PAGE_SIZE);
627 		if (total_compressed + blocksize <= total_in) {
628 			num_bytes = total_in;
629 			*num_added += 1;
630 
631 			/*
632 			 * The async work queues will take care of doing actual
633 			 * allocation on disk for these compressed pages, and
634 			 * will submit them to the elevator.
635 			 */
636 			add_async_extent(async_cow, start, num_bytes,
637 					total_compressed, pages, nr_pages,
638 					compress_type);
639 
640 			if (start + num_bytes < end) {
641 				start += num_bytes;
642 				pages = NULL;
643 				cond_resched();
644 				goto again;
645 			}
646 			return;
647 		}
648 	}
649 	if (pages) {
650 		/*
651 		 * the compression code ran but failed to make things smaller,
652 		 * free any pages it allocated and our page pointer array
653 		 */
654 		for (i = 0; i < nr_pages; i++) {
655 			WARN_ON(pages[i]->mapping);
656 			put_page(pages[i]);
657 		}
658 		kfree(pages);
659 		pages = NULL;
660 		total_compressed = 0;
661 		nr_pages = 0;
662 
663 		/* flag the file so we don't compress in the future */
664 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
665 		    !(BTRFS_I(inode)->prop_compress)) {
666 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
667 		}
668 	}
669 cleanup_and_bail_uncompressed:
670 	/*
671 	 * No compression, but we still need to write the pages in the file
672 	 * we've been given so far.  redirty the locked page if it corresponds
673 	 * to our extent and set things up for the async work queue to run
674 	 * cow_file_range to do the normal delalloc dance.
675 	 */
676 	if (page_offset(locked_page) >= start &&
677 	    page_offset(locked_page) <= end)
678 		__set_page_dirty_nobuffers(locked_page);
679 		/* unlocked later on in the async handlers */
680 
681 	if (redirty)
682 		extent_range_redirty_for_io(inode, start, end);
683 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
684 			 BTRFS_COMPRESS_NONE);
685 	*num_added += 1;
686 
687 	return;
688 
689 free_pages_out:
690 	for (i = 0; i < nr_pages; i++) {
691 		WARN_ON(pages[i]->mapping);
692 		put_page(pages[i]);
693 	}
694 	kfree(pages);
695 }
696 
697 static void free_async_extent_pages(struct async_extent *async_extent)
698 {
699 	int i;
700 
701 	if (!async_extent->pages)
702 		return;
703 
704 	for (i = 0; i < async_extent->nr_pages; i++) {
705 		WARN_ON(async_extent->pages[i]->mapping);
706 		put_page(async_extent->pages[i]);
707 	}
708 	kfree(async_extent->pages);
709 	async_extent->nr_pages = 0;
710 	async_extent->pages = NULL;
711 }
712 
713 /*
714  * phase two of compressed writeback.  This is the ordered portion
715  * of the code, which only gets called in the order the work was
716  * queued.  We walk all the async extents created by compress_file_range
717  * and send them down to the disk.
718  */
719 static noinline void submit_compressed_extents(struct inode *inode,
720 					      struct async_cow *async_cow)
721 {
722 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
723 	struct async_extent *async_extent;
724 	u64 alloc_hint = 0;
725 	struct btrfs_key ins;
726 	struct extent_map *em;
727 	struct btrfs_root *root = BTRFS_I(inode)->root;
728 	struct extent_io_tree *io_tree;
729 	int ret = 0;
730 
731 again:
732 	while (!list_empty(&async_cow->extents)) {
733 		async_extent = list_entry(async_cow->extents.next,
734 					  struct async_extent, list);
735 		list_del(&async_extent->list);
736 
737 		io_tree = &BTRFS_I(inode)->io_tree;
738 
739 retry:
740 		/* did the compression code fall back to uncompressed IO? */
741 		if (!async_extent->pages) {
742 			int page_started = 0;
743 			unsigned long nr_written = 0;
744 
745 			lock_extent(io_tree, async_extent->start,
746 					 async_extent->start +
747 					 async_extent->ram_size - 1);
748 
749 			/* allocate blocks */
750 			ret = cow_file_range(inode, async_cow->locked_page,
751 					     async_extent->start,
752 					     async_extent->start +
753 					     async_extent->ram_size - 1,
754 					     async_extent->start +
755 					     async_extent->ram_size - 1,
756 					     &page_started, &nr_written, 0,
757 					     NULL);
758 
759 			/* JDM XXX */
760 
761 			/*
762 			 * if page_started, cow_file_range inserted an
763 			 * inline extent and took care of all the unlocking
764 			 * and IO for us.  Otherwise, we need to submit
765 			 * all those pages down to the drive.
766 			 */
767 			if (!page_started && !ret)
768 				extent_write_locked_range(io_tree,
769 						  inode, async_extent->start,
770 						  async_extent->start +
771 						  async_extent->ram_size - 1,
772 						  btrfs_get_extent,
773 						  WB_SYNC_ALL);
774 			else if (ret)
775 				unlock_page(async_cow->locked_page);
776 			kfree(async_extent);
777 			cond_resched();
778 			continue;
779 		}
780 
781 		lock_extent(io_tree, async_extent->start,
782 			    async_extent->start + async_extent->ram_size - 1);
783 
784 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
785 					   async_extent->compressed_size,
786 					   async_extent->compressed_size,
787 					   0, alloc_hint, &ins, 1, 1);
788 		if (ret) {
789 			free_async_extent_pages(async_extent);
790 
791 			if (ret == -ENOSPC) {
792 				unlock_extent(io_tree, async_extent->start,
793 					      async_extent->start +
794 					      async_extent->ram_size - 1);
795 
796 				/*
797 				 * we need to redirty the pages if we decide to
798 				 * fallback to uncompressed IO, otherwise we
799 				 * will not submit these pages down to lower
800 				 * layers.
801 				 */
802 				extent_range_redirty_for_io(inode,
803 						async_extent->start,
804 						async_extent->start +
805 						async_extent->ram_size - 1);
806 
807 				goto retry;
808 			}
809 			goto out_free;
810 		}
811 		/*
812 		 * here we're doing allocation and writeback of the
813 		 * compressed pages
814 		 */
815 		em = create_io_em(inode, async_extent->start,
816 				  async_extent->ram_size, /* len */
817 				  async_extent->start, /* orig_start */
818 				  ins.objectid, /* block_start */
819 				  ins.offset, /* block_len */
820 				  ins.offset, /* orig_block_len */
821 				  async_extent->ram_size, /* ram_bytes */
822 				  async_extent->compress_type,
823 				  BTRFS_ORDERED_COMPRESSED);
824 		if (IS_ERR(em))
825 			/* ret value is not necessary due to void function */
826 			goto out_free_reserve;
827 		free_extent_map(em);
828 
829 		ret = btrfs_add_ordered_extent_compress(inode,
830 						async_extent->start,
831 						ins.objectid,
832 						async_extent->ram_size,
833 						ins.offset,
834 						BTRFS_ORDERED_COMPRESSED,
835 						async_extent->compress_type);
836 		if (ret) {
837 			btrfs_drop_extent_cache(BTRFS_I(inode),
838 						async_extent->start,
839 						async_extent->start +
840 						async_extent->ram_size - 1, 0);
841 			goto out_free_reserve;
842 		}
843 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
844 
845 		/*
846 		 * clear dirty, set writeback and unlock the pages.
847 		 */
848 		extent_clear_unlock_delalloc(inode, async_extent->start,
849 				async_extent->start +
850 				async_extent->ram_size - 1,
851 				async_extent->start +
852 				async_extent->ram_size - 1,
853 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
854 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
855 				PAGE_SET_WRITEBACK);
856 		if (btrfs_submit_compressed_write(inode,
857 				    async_extent->start,
858 				    async_extent->ram_size,
859 				    ins.objectid,
860 				    ins.offset, async_extent->pages,
861 				    async_extent->nr_pages)) {
862 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
863 			struct page *p = async_extent->pages[0];
864 			const u64 start = async_extent->start;
865 			const u64 end = start + async_extent->ram_size - 1;
866 
867 			p->mapping = inode->i_mapping;
868 			tree->ops->writepage_end_io_hook(p, start, end,
869 							 NULL, 0);
870 			p->mapping = NULL;
871 			extent_clear_unlock_delalloc(inode, start, end, end,
872 						     NULL, 0,
873 						     PAGE_END_WRITEBACK |
874 						     PAGE_SET_ERROR);
875 			free_async_extent_pages(async_extent);
876 		}
877 		alloc_hint = ins.objectid + ins.offset;
878 		kfree(async_extent);
879 		cond_resched();
880 	}
881 	return;
882 out_free_reserve:
883 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
884 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
885 out_free:
886 	extent_clear_unlock_delalloc(inode, async_extent->start,
887 				     async_extent->start +
888 				     async_extent->ram_size - 1,
889 				     async_extent->start +
890 				     async_extent->ram_size - 1,
891 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
892 				     EXTENT_DELALLOC_NEW |
893 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
894 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
895 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
896 				     PAGE_SET_ERROR);
897 	free_async_extent_pages(async_extent);
898 	kfree(async_extent);
899 	goto again;
900 }
901 
902 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
903 				      u64 num_bytes)
904 {
905 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
906 	struct extent_map *em;
907 	u64 alloc_hint = 0;
908 
909 	read_lock(&em_tree->lock);
910 	em = search_extent_mapping(em_tree, start, num_bytes);
911 	if (em) {
912 		/*
913 		 * if block start isn't an actual block number then find the
914 		 * first block in this inode and use that as a hint.  If that
915 		 * block is also bogus then just don't worry about it.
916 		 */
917 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
918 			free_extent_map(em);
919 			em = search_extent_mapping(em_tree, 0, 0);
920 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
921 				alloc_hint = em->block_start;
922 			if (em)
923 				free_extent_map(em);
924 		} else {
925 			alloc_hint = em->block_start;
926 			free_extent_map(em);
927 		}
928 	}
929 	read_unlock(&em_tree->lock);
930 
931 	return alloc_hint;
932 }
933 
934 /*
935  * when extent_io.c finds a delayed allocation range in the file,
936  * the call backs end up in this code.  The basic idea is to
937  * allocate extents on disk for the range, and create ordered data structs
938  * in ram to track those extents.
939  *
940  * locked_page is the page that writepage had locked already.  We use
941  * it to make sure we don't do extra locks or unlocks.
942  *
943  * *page_started is set to one if we unlock locked_page and do everything
944  * required to start IO on it.  It may be clean and already done with
945  * IO when we return.
946  */
947 static noinline int cow_file_range(struct inode *inode,
948 				   struct page *locked_page,
949 				   u64 start, u64 end, u64 delalloc_end,
950 				   int *page_started, unsigned long *nr_written,
951 				   int unlock, struct btrfs_dedupe_hash *hash)
952 {
953 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
954 	struct btrfs_root *root = BTRFS_I(inode)->root;
955 	u64 alloc_hint = 0;
956 	u64 num_bytes;
957 	unsigned long ram_size;
958 	u64 disk_num_bytes;
959 	u64 cur_alloc_size = 0;
960 	u64 blocksize = fs_info->sectorsize;
961 	struct btrfs_key ins;
962 	struct extent_map *em;
963 	unsigned clear_bits;
964 	unsigned long page_ops;
965 	bool extent_reserved = false;
966 	int ret = 0;
967 
968 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
969 		WARN_ON_ONCE(1);
970 		ret = -EINVAL;
971 		goto out_unlock;
972 	}
973 
974 	num_bytes = ALIGN(end - start + 1, blocksize);
975 	num_bytes = max(blocksize,  num_bytes);
976 	disk_num_bytes = num_bytes;
977 
978 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
979 
980 	if (start == 0) {
981 		/* lets try to make an inline extent */
982 		ret = cow_file_range_inline(root, inode, start, end, 0,
983 					BTRFS_COMPRESS_NONE, NULL);
984 		if (ret == 0) {
985 			extent_clear_unlock_delalloc(inode, start, end,
986 				     delalloc_end, NULL,
987 				     EXTENT_LOCKED | EXTENT_DELALLOC |
988 				     EXTENT_DELALLOC_NEW |
989 				     EXTENT_DEFRAG, PAGE_UNLOCK |
990 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
991 				     PAGE_END_WRITEBACK);
992 			btrfs_free_reserved_data_space_noquota(inode, start,
993 						end - start + 1);
994 			*nr_written = *nr_written +
995 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
996 			*page_started = 1;
997 			goto out;
998 		} else if (ret < 0) {
999 			goto out_unlock;
1000 		}
1001 	}
1002 
1003 	BUG_ON(disk_num_bytes >
1004 	       btrfs_super_total_bytes(fs_info->super_copy));
1005 
1006 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1007 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1008 			start + num_bytes - 1, 0);
1009 
1010 	while (disk_num_bytes > 0) {
1011 		cur_alloc_size = disk_num_bytes;
1012 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1013 					   fs_info->sectorsize, 0, alloc_hint,
1014 					   &ins, 1, 1);
1015 		if (ret < 0)
1016 			goto out_unlock;
1017 		cur_alloc_size = ins.offset;
1018 		extent_reserved = true;
1019 
1020 		ram_size = ins.offset;
1021 		em = create_io_em(inode, start, ins.offset, /* len */
1022 				  start, /* orig_start */
1023 				  ins.objectid, /* block_start */
1024 				  ins.offset, /* block_len */
1025 				  ins.offset, /* orig_block_len */
1026 				  ram_size, /* ram_bytes */
1027 				  BTRFS_COMPRESS_NONE, /* compress_type */
1028 				  BTRFS_ORDERED_REGULAR /* type */);
1029 		if (IS_ERR(em))
1030 			goto out_reserve;
1031 		free_extent_map(em);
1032 
1033 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1034 					       ram_size, cur_alloc_size, 0);
1035 		if (ret)
1036 			goto out_drop_extent_cache;
1037 
1038 		if (root->root_key.objectid ==
1039 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1040 			ret = btrfs_reloc_clone_csums(inode, start,
1041 						      cur_alloc_size);
1042 			/*
1043 			 * Only drop cache here, and process as normal.
1044 			 *
1045 			 * We must not allow extent_clear_unlock_delalloc()
1046 			 * at out_unlock label to free meta of this ordered
1047 			 * extent, as its meta should be freed by
1048 			 * btrfs_finish_ordered_io().
1049 			 *
1050 			 * So we must continue until @start is increased to
1051 			 * skip current ordered extent.
1052 			 */
1053 			if (ret)
1054 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1055 						start + ram_size - 1, 0);
1056 		}
1057 
1058 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1059 
1060 		/* we're not doing compressed IO, don't unlock the first
1061 		 * page (which the caller expects to stay locked), don't
1062 		 * clear any dirty bits and don't set any writeback bits
1063 		 *
1064 		 * Do set the Private2 bit so we know this page was properly
1065 		 * setup for writepage
1066 		 */
1067 		page_ops = unlock ? PAGE_UNLOCK : 0;
1068 		page_ops |= PAGE_SET_PRIVATE2;
1069 
1070 		extent_clear_unlock_delalloc(inode, start,
1071 					     start + ram_size - 1,
1072 					     delalloc_end, locked_page,
1073 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1074 					     page_ops);
1075 		if (disk_num_bytes < cur_alloc_size)
1076 			disk_num_bytes = 0;
1077 		else
1078 			disk_num_bytes -= cur_alloc_size;
1079 		num_bytes -= cur_alloc_size;
1080 		alloc_hint = ins.objectid + ins.offset;
1081 		start += cur_alloc_size;
1082 		extent_reserved = false;
1083 
1084 		/*
1085 		 * btrfs_reloc_clone_csums() error, since start is increased
1086 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1087 		 * free metadata of current ordered extent, we're OK to exit.
1088 		 */
1089 		if (ret)
1090 			goto out_unlock;
1091 	}
1092 out:
1093 	return ret;
1094 
1095 out_drop_extent_cache:
1096 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1097 out_reserve:
1098 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1099 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1100 out_unlock:
1101 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1102 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1103 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1104 		PAGE_END_WRITEBACK;
1105 	/*
1106 	 * If we reserved an extent for our delalloc range (or a subrange) and
1107 	 * failed to create the respective ordered extent, then it means that
1108 	 * when we reserved the extent we decremented the extent's size from
1109 	 * the data space_info's bytes_may_use counter and incremented the
1110 	 * space_info's bytes_reserved counter by the same amount. We must make
1111 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1112 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1113 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1114 	 */
1115 	if (extent_reserved) {
1116 		extent_clear_unlock_delalloc(inode, start,
1117 					     start + cur_alloc_size,
1118 					     start + cur_alloc_size,
1119 					     locked_page,
1120 					     clear_bits,
1121 					     page_ops);
1122 		start += cur_alloc_size;
1123 		if (start >= end)
1124 			goto out;
1125 	}
1126 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1127 				     locked_page,
1128 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1129 				     page_ops);
1130 	goto out;
1131 }
1132 
1133 /*
1134  * work queue call back to started compression on a file and pages
1135  */
1136 static noinline void async_cow_start(struct btrfs_work *work)
1137 {
1138 	struct async_cow *async_cow;
1139 	int num_added = 0;
1140 	async_cow = container_of(work, struct async_cow, work);
1141 
1142 	compress_file_range(async_cow->inode, async_cow->locked_page,
1143 			    async_cow->start, async_cow->end, async_cow,
1144 			    &num_added);
1145 	if (num_added == 0) {
1146 		btrfs_add_delayed_iput(async_cow->inode);
1147 		async_cow->inode = NULL;
1148 	}
1149 }
1150 
1151 /*
1152  * work queue call back to submit previously compressed pages
1153  */
1154 static noinline void async_cow_submit(struct btrfs_work *work)
1155 {
1156 	struct btrfs_fs_info *fs_info;
1157 	struct async_cow *async_cow;
1158 	struct btrfs_root *root;
1159 	unsigned long nr_pages;
1160 
1161 	async_cow = container_of(work, struct async_cow, work);
1162 
1163 	root = async_cow->root;
1164 	fs_info = root->fs_info;
1165 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1166 		PAGE_SHIFT;
1167 
1168 	/*
1169 	 * atomic_sub_return implies a barrier for waitqueue_active
1170 	 */
1171 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1172 	    5 * SZ_1M &&
1173 	    waitqueue_active(&fs_info->async_submit_wait))
1174 		wake_up(&fs_info->async_submit_wait);
1175 
1176 	if (async_cow->inode)
1177 		submit_compressed_extents(async_cow->inode, async_cow);
1178 }
1179 
1180 static noinline void async_cow_free(struct btrfs_work *work)
1181 {
1182 	struct async_cow *async_cow;
1183 	async_cow = container_of(work, struct async_cow, work);
1184 	if (async_cow->inode)
1185 		btrfs_add_delayed_iput(async_cow->inode);
1186 	kfree(async_cow);
1187 }
1188 
1189 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1190 				u64 start, u64 end, int *page_started,
1191 				unsigned long *nr_written)
1192 {
1193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1194 	struct async_cow *async_cow;
1195 	struct btrfs_root *root = BTRFS_I(inode)->root;
1196 	unsigned long nr_pages;
1197 	u64 cur_end;
1198 
1199 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1200 			 1, 0, NULL, GFP_NOFS);
1201 	while (start < end) {
1202 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1203 		BUG_ON(!async_cow); /* -ENOMEM */
1204 		async_cow->inode = igrab(inode);
1205 		async_cow->root = root;
1206 		async_cow->locked_page = locked_page;
1207 		async_cow->start = start;
1208 
1209 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1210 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1211 			cur_end = end;
1212 		else
1213 			cur_end = min(end, start + SZ_512K - 1);
1214 
1215 		async_cow->end = cur_end;
1216 		INIT_LIST_HEAD(&async_cow->extents);
1217 
1218 		btrfs_init_work(&async_cow->work,
1219 				btrfs_delalloc_helper,
1220 				async_cow_start, async_cow_submit,
1221 				async_cow_free);
1222 
1223 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1224 			PAGE_SHIFT;
1225 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1226 
1227 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1228 
1229 		while (atomic_read(&fs_info->async_submit_draining) &&
1230 		       atomic_read(&fs_info->async_delalloc_pages)) {
1231 			wait_event(fs_info->async_submit_wait,
1232 				   (atomic_read(&fs_info->async_delalloc_pages) ==
1233 				    0));
1234 		}
1235 
1236 		*nr_written += nr_pages;
1237 		start = cur_end + 1;
1238 	}
1239 	*page_started = 1;
1240 	return 0;
1241 }
1242 
1243 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1244 					u64 bytenr, u64 num_bytes)
1245 {
1246 	int ret;
1247 	struct btrfs_ordered_sum *sums;
1248 	LIST_HEAD(list);
1249 
1250 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1251 				       bytenr + num_bytes - 1, &list, 0);
1252 	if (ret == 0 && list_empty(&list))
1253 		return 0;
1254 
1255 	while (!list_empty(&list)) {
1256 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1257 		list_del(&sums->list);
1258 		kfree(sums);
1259 	}
1260 	return 1;
1261 }
1262 
1263 /*
1264  * when nowcow writeback call back.  This checks for snapshots or COW copies
1265  * of the extents that exist in the file, and COWs the file as required.
1266  *
1267  * If no cow copies or snapshots exist, we write directly to the existing
1268  * blocks on disk
1269  */
1270 static noinline int run_delalloc_nocow(struct inode *inode,
1271 				       struct page *locked_page,
1272 			      u64 start, u64 end, int *page_started, int force,
1273 			      unsigned long *nr_written)
1274 {
1275 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1276 	struct btrfs_root *root = BTRFS_I(inode)->root;
1277 	struct extent_buffer *leaf;
1278 	struct btrfs_path *path;
1279 	struct btrfs_file_extent_item *fi;
1280 	struct btrfs_key found_key;
1281 	struct extent_map *em;
1282 	u64 cow_start;
1283 	u64 cur_offset;
1284 	u64 extent_end;
1285 	u64 extent_offset;
1286 	u64 disk_bytenr;
1287 	u64 num_bytes;
1288 	u64 disk_num_bytes;
1289 	u64 ram_bytes;
1290 	int extent_type;
1291 	int ret, err;
1292 	int type;
1293 	int nocow;
1294 	int check_prev = 1;
1295 	bool nolock;
1296 	u64 ino = btrfs_ino(BTRFS_I(inode));
1297 
1298 	path = btrfs_alloc_path();
1299 	if (!path) {
1300 		extent_clear_unlock_delalloc(inode, start, end, end,
1301 					     locked_page,
1302 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1303 					     EXTENT_DO_ACCOUNTING |
1304 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1305 					     PAGE_CLEAR_DIRTY |
1306 					     PAGE_SET_WRITEBACK |
1307 					     PAGE_END_WRITEBACK);
1308 		return -ENOMEM;
1309 	}
1310 
1311 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1312 
1313 	cow_start = (u64)-1;
1314 	cur_offset = start;
1315 	while (1) {
1316 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1317 					       cur_offset, 0);
1318 		if (ret < 0)
1319 			goto error;
1320 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1321 			leaf = path->nodes[0];
1322 			btrfs_item_key_to_cpu(leaf, &found_key,
1323 					      path->slots[0] - 1);
1324 			if (found_key.objectid == ino &&
1325 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1326 				path->slots[0]--;
1327 		}
1328 		check_prev = 0;
1329 next_slot:
1330 		leaf = path->nodes[0];
1331 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 			ret = btrfs_next_leaf(root, path);
1333 			if (ret < 0)
1334 				goto error;
1335 			if (ret > 0)
1336 				break;
1337 			leaf = path->nodes[0];
1338 		}
1339 
1340 		nocow = 0;
1341 		disk_bytenr = 0;
1342 		num_bytes = 0;
1343 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1344 
1345 		if (found_key.objectid > ino)
1346 			break;
1347 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1348 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1349 			path->slots[0]++;
1350 			goto next_slot;
1351 		}
1352 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1353 		    found_key.offset > end)
1354 			break;
1355 
1356 		if (found_key.offset > cur_offset) {
1357 			extent_end = found_key.offset;
1358 			extent_type = 0;
1359 			goto out_check;
1360 		}
1361 
1362 		fi = btrfs_item_ptr(leaf, path->slots[0],
1363 				    struct btrfs_file_extent_item);
1364 		extent_type = btrfs_file_extent_type(leaf, fi);
1365 
1366 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1367 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1368 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1369 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1370 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1371 			extent_end = found_key.offset +
1372 				btrfs_file_extent_num_bytes(leaf, fi);
1373 			disk_num_bytes =
1374 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1375 			if (extent_end <= start) {
1376 				path->slots[0]++;
1377 				goto next_slot;
1378 			}
1379 			if (disk_bytenr == 0)
1380 				goto out_check;
1381 			if (btrfs_file_extent_compression(leaf, fi) ||
1382 			    btrfs_file_extent_encryption(leaf, fi) ||
1383 			    btrfs_file_extent_other_encoding(leaf, fi))
1384 				goto out_check;
1385 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1386 				goto out_check;
1387 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1388 				goto out_check;
1389 			if (btrfs_cross_ref_exist(root, ino,
1390 						  found_key.offset -
1391 						  extent_offset, disk_bytenr))
1392 				goto out_check;
1393 			disk_bytenr += extent_offset;
1394 			disk_bytenr += cur_offset - found_key.offset;
1395 			num_bytes = min(end + 1, extent_end) - cur_offset;
1396 			/*
1397 			 * if there are pending snapshots for this root,
1398 			 * we fall into common COW way.
1399 			 */
1400 			if (!nolock) {
1401 				err = btrfs_start_write_no_snapshotting(root);
1402 				if (!err)
1403 					goto out_check;
1404 			}
1405 			/*
1406 			 * force cow if csum exists in the range.
1407 			 * this ensure that csum for a given extent are
1408 			 * either valid or do not exist.
1409 			 */
1410 			if (csum_exist_in_range(fs_info, disk_bytenr,
1411 						num_bytes)) {
1412 				if (!nolock)
1413 					btrfs_end_write_no_snapshotting(root);
1414 				goto out_check;
1415 			}
1416 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1417 				if (!nolock)
1418 					btrfs_end_write_no_snapshotting(root);
1419 				goto out_check;
1420 			}
1421 			nocow = 1;
1422 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1423 			extent_end = found_key.offset +
1424 				btrfs_file_extent_inline_len(leaf,
1425 						     path->slots[0], fi);
1426 			extent_end = ALIGN(extent_end,
1427 					   fs_info->sectorsize);
1428 		} else {
1429 			BUG_ON(1);
1430 		}
1431 out_check:
1432 		if (extent_end <= start) {
1433 			path->slots[0]++;
1434 			if (!nolock && nocow)
1435 				btrfs_end_write_no_snapshotting(root);
1436 			if (nocow)
1437 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1438 			goto next_slot;
1439 		}
1440 		if (!nocow) {
1441 			if (cow_start == (u64)-1)
1442 				cow_start = cur_offset;
1443 			cur_offset = extent_end;
1444 			if (cur_offset > end)
1445 				break;
1446 			path->slots[0]++;
1447 			goto next_slot;
1448 		}
1449 
1450 		btrfs_release_path(path);
1451 		if (cow_start != (u64)-1) {
1452 			ret = cow_file_range(inode, locked_page,
1453 					     cow_start, found_key.offset - 1,
1454 					     end, page_started, nr_written, 1,
1455 					     NULL);
1456 			if (ret) {
1457 				if (!nolock && nocow)
1458 					btrfs_end_write_no_snapshotting(root);
1459 				if (nocow)
1460 					btrfs_dec_nocow_writers(fs_info,
1461 								disk_bytenr);
1462 				goto error;
1463 			}
1464 			cow_start = (u64)-1;
1465 		}
1466 
1467 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1468 			u64 orig_start = found_key.offset - extent_offset;
1469 
1470 			em = create_io_em(inode, cur_offset, num_bytes,
1471 					  orig_start,
1472 					  disk_bytenr, /* block_start */
1473 					  num_bytes, /* block_len */
1474 					  disk_num_bytes, /* orig_block_len */
1475 					  ram_bytes, BTRFS_COMPRESS_NONE,
1476 					  BTRFS_ORDERED_PREALLOC);
1477 			if (IS_ERR(em)) {
1478 				if (!nolock && nocow)
1479 					btrfs_end_write_no_snapshotting(root);
1480 				if (nocow)
1481 					btrfs_dec_nocow_writers(fs_info,
1482 								disk_bytenr);
1483 				ret = PTR_ERR(em);
1484 				goto error;
1485 			}
1486 			free_extent_map(em);
1487 		}
1488 
1489 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1490 			type = BTRFS_ORDERED_PREALLOC;
1491 		} else {
1492 			type = BTRFS_ORDERED_NOCOW;
1493 		}
1494 
1495 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1496 					       num_bytes, num_bytes, type);
1497 		if (nocow)
1498 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1499 		BUG_ON(ret); /* -ENOMEM */
1500 
1501 		if (root->root_key.objectid ==
1502 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1503 			/*
1504 			 * Error handled later, as we must prevent
1505 			 * extent_clear_unlock_delalloc() in error handler
1506 			 * from freeing metadata of created ordered extent.
1507 			 */
1508 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1509 						      num_bytes);
1510 
1511 		extent_clear_unlock_delalloc(inode, cur_offset,
1512 					     cur_offset + num_bytes - 1, end,
1513 					     locked_page, EXTENT_LOCKED |
1514 					     EXTENT_DELALLOC |
1515 					     EXTENT_CLEAR_DATA_RESV,
1516 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1517 
1518 		if (!nolock && nocow)
1519 			btrfs_end_write_no_snapshotting(root);
1520 		cur_offset = extent_end;
1521 
1522 		/*
1523 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 		 * handler, as metadata for created ordered extent will only
1525 		 * be freed by btrfs_finish_ordered_io().
1526 		 */
1527 		if (ret)
1528 			goto error;
1529 		if (cur_offset > end)
1530 			break;
1531 	}
1532 	btrfs_release_path(path);
1533 
1534 	if (cur_offset <= end && cow_start == (u64)-1) {
1535 		cow_start = cur_offset;
1536 		cur_offset = end;
1537 	}
1538 
1539 	if (cow_start != (u64)-1) {
1540 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 				     page_started, nr_written, 1, NULL);
1542 		if (ret)
1543 			goto error;
1544 	}
1545 
1546 error:
1547 	if (ret && cur_offset < end)
1548 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1549 					     locked_page, EXTENT_LOCKED |
1550 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 					     PAGE_CLEAR_DIRTY |
1553 					     PAGE_SET_WRITEBACK |
1554 					     PAGE_END_WRITEBACK);
1555 	btrfs_free_path(path);
1556 	return ret;
1557 }
1558 
1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1560 {
1561 
1562 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1564 		return 0;
1565 
1566 	/*
1567 	 * @defrag_bytes is a hint value, no spinlock held here,
1568 	 * if is not zero, it means the file is defragging.
1569 	 * Force cow if given extent needs to be defragged.
1570 	 */
1571 	if (BTRFS_I(inode)->defrag_bytes &&
1572 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 			   EXTENT_DEFRAG, 0, NULL))
1574 		return 1;
1575 
1576 	return 0;
1577 }
1578 
1579 /*
1580  * extent_io.c call back to do delayed allocation processing
1581  */
1582 static int run_delalloc_range(void *private_data, struct page *locked_page,
1583 			      u64 start, u64 end, int *page_started,
1584 			      unsigned long *nr_written)
1585 {
1586 	struct inode *inode = private_data;
1587 	int ret;
1588 	int force_cow = need_force_cow(inode, start, end);
1589 
1590 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1591 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1592 					 page_started, 1, nr_written);
1593 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1594 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1595 					 page_started, 0, nr_written);
1596 	} else if (!inode_need_compress(inode, start, end)) {
1597 		ret = cow_file_range(inode, locked_page, start, end, end,
1598 				      page_started, nr_written, 1, NULL);
1599 	} else {
1600 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1601 			&BTRFS_I(inode)->runtime_flags);
1602 		ret = cow_file_range_async(inode, locked_page, start, end,
1603 					   page_started, nr_written);
1604 	}
1605 	if (ret)
1606 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1607 	return ret;
1608 }
1609 
1610 static void btrfs_split_extent_hook(void *private_data,
1611 				    struct extent_state *orig, u64 split)
1612 {
1613 	struct inode *inode = private_data;
1614 	u64 size;
1615 
1616 	/* not delalloc, ignore it */
1617 	if (!(orig->state & EXTENT_DELALLOC))
1618 		return;
1619 
1620 	size = orig->end - orig->start + 1;
1621 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1622 		u32 num_extents;
1623 		u64 new_size;
1624 
1625 		/*
1626 		 * See the explanation in btrfs_merge_extent_hook, the same
1627 		 * applies here, just in reverse.
1628 		 */
1629 		new_size = orig->end - split + 1;
1630 		num_extents = count_max_extents(new_size);
1631 		new_size = split - orig->start;
1632 		num_extents += count_max_extents(new_size);
1633 		if (count_max_extents(size) >= num_extents)
1634 			return;
1635 	}
1636 
1637 	spin_lock(&BTRFS_I(inode)->lock);
1638 	BTRFS_I(inode)->outstanding_extents++;
1639 	spin_unlock(&BTRFS_I(inode)->lock);
1640 }
1641 
1642 /*
1643  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1644  * extents so we can keep track of new extents that are just merged onto old
1645  * extents, such as when we are doing sequential writes, so we can properly
1646  * account for the metadata space we'll need.
1647  */
1648 static void btrfs_merge_extent_hook(void *private_data,
1649 				    struct extent_state *new,
1650 				    struct extent_state *other)
1651 {
1652 	struct inode *inode = private_data;
1653 	u64 new_size, old_size;
1654 	u32 num_extents;
1655 
1656 	/* not delalloc, ignore it */
1657 	if (!(other->state & EXTENT_DELALLOC))
1658 		return;
1659 
1660 	if (new->start > other->start)
1661 		new_size = new->end - other->start + 1;
1662 	else
1663 		new_size = other->end - new->start + 1;
1664 
1665 	/* we're not bigger than the max, unreserve the space and go */
1666 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1667 		spin_lock(&BTRFS_I(inode)->lock);
1668 		BTRFS_I(inode)->outstanding_extents--;
1669 		spin_unlock(&BTRFS_I(inode)->lock);
1670 		return;
1671 	}
1672 
1673 	/*
1674 	 * We have to add up either side to figure out how many extents were
1675 	 * accounted for before we merged into one big extent.  If the number of
1676 	 * extents we accounted for is <= the amount we need for the new range
1677 	 * then we can return, otherwise drop.  Think of it like this
1678 	 *
1679 	 * [ 4k][MAX_SIZE]
1680 	 *
1681 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1682 	 * need 2 outstanding extents, on one side we have 1 and the other side
1683 	 * we have 1 so they are == and we can return.  But in this case
1684 	 *
1685 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1686 	 *
1687 	 * Each range on their own accounts for 2 extents, but merged together
1688 	 * they are only 3 extents worth of accounting, so we need to drop in
1689 	 * this case.
1690 	 */
1691 	old_size = other->end - other->start + 1;
1692 	num_extents = count_max_extents(old_size);
1693 	old_size = new->end - new->start + 1;
1694 	num_extents += count_max_extents(old_size);
1695 	if (count_max_extents(new_size) >= num_extents)
1696 		return;
1697 
1698 	spin_lock(&BTRFS_I(inode)->lock);
1699 	BTRFS_I(inode)->outstanding_extents--;
1700 	spin_unlock(&BTRFS_I(inode)->lock);
1701 }
1702 
1703 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1704 				      struct inode *inode)
1705 {
1706 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1707 
1708 	spin_lock(&root->delalloc_lock);
1709 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1710 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1711 			      &root->delalloc_inodes);
1712 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1713 			&BTRFS_I(inode)->runtime_flags);
1714 		root->nr_delalloc_inodes++;
1715 		if (root->nr_delalloc_inodes == 1) {
1716 			spin_lock(&fs_info->delalloc_root_lock);
1717 			BUG_ON(!list_empty(&root->delalloc_root));
1718 			list_add_tail(&root->delalloc_root,
1719 				      &fs_info->delalloc_roots);
1720 			spin_unlock(&fs_info->delalloc_root_lock);
1721 		}
1722 	}
1723 	spin_unlock(&root->delalloc_lock);
1724 }
1725 
1726 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1727 				     struct btrfs_inode *inode)
1728 {
1729 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1730 
1731 	spin_lock(&root->delalloc_lock);
1732 	if (!list_empty(&inode->delalloc_inodes)) {
1733 		list_del_init(&inode->delalloc_inodes);
1734 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1735 			  &inode->runtime_flags);
1736 		root->nr_delalloc_inodes--;
1737 		if (!root->nr_delalloc_inodes) {
1738 			spin_lock(&fs_info->delalloc_root_lock);
1739 			BUG_ON(list_empty(&root->delalloc_root));
1740 			list_del_init(&root->delalloc_root);
1741 			spin_unlock(&fs_info->delalloc_root_lock);
1742 		}
1743 	}
1744 	spin_unlock(&root->delalloc_lock);
1745 }
1746 
1747 /*
1748  * extent_io.c set_bit_hook, used to track delayed allocation
1749  * bytes in this file, and to maintain the list of inodes that
1750  * have pending delalloc work to be done.
1751  */
1752 static void btrfs_set_bit_hook(void *private_data,
1753 			       struct extent_state *state, unsigned *bits)
1754 {
1755 	struct inode *inode = private_data;
1756 
1757 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1758 
1759 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1760 		WARN_ON(1);
1761 	/*
1762 	 * set_bit and clear bit hooks normally require _irqsave/restore
1763 	 * but in this case, we are only testing for the DELALLOC
1764 	 * bit, which is only set or cleared with irqs on
1765 	 */
1766 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1767 		struct btrfs_root *root = BTRFS_I(inode)->root;
1768 		u64 len = state->end + 1 - state->start;
1769 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1770 
1771 		if (*bits & EXTENT_FIRST_DELALLOC) {
1772 			*bits &= ~EXTENT_FIRST_DELALLOC;
1773 		} else {
1774 			spin_lock(&BTRFS_I(inode)->lock);
1775 			BTRFS_I(inode)->outstanding_extents++;
1776 			spin_unlock(&BTRFS_I(inode)->lock);
1777 		}
1778 
1779 		/* For sanity tests */
1780 		if (btrfs_is_testing(fs_info))
1781 			return;
1782 
1783 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1784 					 fs_info->delalloc_batch);
1785 		spin_lock(&BTRFS_I(inode)->lock);
1786 		BTRFS_I(inode)->delalloc_bytes += len;
1787 		if (*bits & EXTENT_DEFRAG)
1788 			BTRFS_I(inode)->defrag_bytes += len;
1789 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1790 					 &BTRFS_I(inode)->runtime_flags))
1791 			btrfs_add_delalloc_inodes(root, inode);
1792 		spin_unlock(&BTRFS_I(inode)->lock);
1793 	}
1794 
1795 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1796 	    (*bits & EXTENT_DELALLOC_NEW)) {
1797 		spin_lock(&BTRFS_I(inode)->lock);
1798 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1799 			state->start;
1800 		spin_unlock(&BTRFS_I(inode)->lock);
1801 	}
1802 }
1803 
1804 /*
1805  * extent_io.c clear_bit_hook, see set_bit_hook for why
1806  */
1807 static void btrfs_clear_bit_hook(void *private_data,
1808 				 struct extent_state *state,
1809 				 unsigned *bits)
1810 {
1811 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1812 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1813 	u64 len = state->end + 1 - state->start;
1814 	u32 num_extents = count_max_extents(len);
1815 
1816 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1817 		spin_lock(&inode->lock);
1818 		inode->defrag_bytes -= len;
1819 		spin_unlock(&inode->lock);
1820 	}
1821 
1822 	/*
1823 	 * set_bit and clear bit hooks normally require _irqsave/restore
1824 	 * but in this case, we are only testing for the DELALLOC
1825 	 * bit, which is only set or cleared with irqs on
1826 	 */
1827 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1828 		struct btrfs_root *root = inode->root;
1829 		bool do_list = !btrfs_is_free_space_inode(inode);
1830 
1831 		if (*bits & EXTENT_FIRST_DELALLOC) {
1832 			*bits &= ~EXTENT_FIRST_DELALLOC;
1833 		} else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1834 			spin_lock(&inode->lock);
1835 			inode->outstanding_extents -= num_extents;
1836 			spin_unlock(&inode->lock);
1837 		}
1838 
1839 		/*
1840 		 * We don't reserve metadata space for space cache inodes so we
1841 		 * don't need to call dellalloc_release_metadata if there is an
1842 		 * error.
1843 		 */
1844 		if (*bits & EXTENT_CLEAR_META_RESV &&
1845 		    root != fs_info->tree_root)
1846 			btrfs_delalloc_release_metadata(inode, len);
1847 
1848 		/* For sanity tests. */
1849 		if (btrfs_is_testing(fs_info))
1850 			return;
1851 
1852 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1853 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1854 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1855 			btrfs_free_reserved_data_space_noquota(
1856 					&inode->vfs_inode,
1857 					state->start, len);
1858 
1859 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1860 					 fs_info->delalloc_batch);
1861 		spin_lock(&inode->lock);
1862 		inode->delalloc_bytes -= len;
1863 		if (do_list && inode->delalloc_bytes == 0 &&
1864 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1865 					&inode->runtime_flags))
1866 			btrfs_del_delalloc_inode(root, inode);
1867 		spin_unlock(&inode->lock);
1868 	}
1869 
1870 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1871 	    (*bits & EXTENT_DELALLOC_NEW)) {
1872 		spin_lock(&inode->lock);
1873 		ASSERT(inode->new_delalloc_bytes >= len);
1874 		inode->new_delalloc_bytes -= len;
1875 		spin_unlock(&inode->lock);
1876 	}
1877 }
1878 
1879 /*
1880  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1881  * we don't create bios that span stripes or chunks
1882  *
1883  * return 1 if page cannot be merged to bio
1884  * return 0 if page can be merged to bio
1885  * return error otherwise
1886  */
1887 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1888 			 size_t size, struct bio *bio,
1889 			 unsigned long bio_flags)
1890 {
1891 	struct inode *inode = page->mapping->host;
1892 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1893 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1894 	u64 length = 0;
1895 	u64 map_length;
1896 	int ret;
1897 
1898 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1899 		return 0;
1900 
1901 	length = bio->bi_iter.bi_size;
1902 	map_length = length;
1903 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1904 			      NULL, 0);
1905 	if (ret < 0)
1906 		return ret;
1907 	if (map_length < length + size)
1908 		return 1;
1909 	return 0;
1910 }
1911 
1912 /*
1913  * in order to insert checksums into the metadata in large chunks,
1914  * we wait until bio submission time.   All the pages in the bio are
1915  * checksummed and sums are attached onto the ordered extent record.
1916  *
1917  * At IO completion time the cums attached on the ordered extent record
1918  * are inserted into the btree
1919  */
1920 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1921 				    int mirror_num, unsigned long bio_flags,
1922 				    u64 bio_offset)
1923 {
1924 	struct inode *inode = private_data;
1925 	blk_status_t ret = 0;
1926 
1927 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1928 	BUG_ON(ret); /* -ENOMEM */
1929 	return 0;
1930 }
1931 
1932 /*
1933  * in order to insert checksums into the metadata in large chunks,
1934  * we wait until bio submission time.   All the pages in the bio are
1935  * checksummed and sums are attached onto the ordered extent record.
1936  *
1937  * At IO completion time the cums attached on the ordered extent record
1938  * are inserted into the btree
1939  */
1940 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1941 			  int mirror_num, unsigned long bio_flags,
1942 			  u64 bio_offset)
1943 {
1944 	struct inode *inode = private_data;
1945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1946 	blk_status_t ret;
1947 
1948 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1949 	if (ret) {
1950 		bio->bi_status = ret;
1951 		bio_endio(bio);
1952 	}
1953 	return ret;
1954 }
1955 
1956 /*
1957  * extent_io.c submission hook. This does the right thing for csum calculation
1958  * on write, or reading the csums from the tree before a read
1959  */
1960 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1961 				 int mirror_num, unsigned long bio_flags,
1962 				 u64 bio_offset)
1963 {
1964 	struct inode *inode = private_data;
1965 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1966 	struct btrfs_root *root = BTRFS_I(inode)->root;
1967 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1968 	blk_status_t ret = 0;
1969 	int skip_sum;
1970 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1971 
1972 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1973 
1974 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1975 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1976 
1977 	if (bio_op(bio) != REQ_OP_WRITE) {
1978 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1979 		if (ret)
1980 			goto out;
1981 
1982 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1983 			ret = btrfs_submit_compressed_read(inode, bio,
1984 							   mirror_num,
1985 							   bio_flags);
1986 			goto out;
1987 		} else if (!skip_sum) {
1988 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1989 			if (ret)
1990 				goto out;
1991 		}
1992 		goto mapit;
1993 	} else if (async && !skip_sum) {
1994 		/* csum items have already been cloned */
1995 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1996 			goto mapit;
1997 		/* we're doing a write, do the async checksumming */
1998 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1999 					  bio_offset, inode,
2000 					  __btrfs_submit_bio_start,
2001 					  __btrfs_submit_bio_done);
2002 		goto out;
2003 	} else if (!skip_sum) {
2004 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2005 		if (ret)
2006 			goto out;
2007 	}
2008 
2009 mapit:
2010 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2011 
2012 out:
2013 	if (ret) {
2014 		bio->bi_status = ret;
2015 		bio_endio(bio);
2016 	}
2017 	return ret;
2018 }
2019 
2020 /*
2021  * given a list of ordered sums record them in the inode.  This happens
2022  * at IO completion time based on sums calculated at bio submission time.
2023  */
2024 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2025 			     struct inode *inode, struct list_head *list)
2026 {
2027 	struct btrfs_ordered_sum *sum;
2028 
2029 	list_for_each_entry(sum, list, list) {
2030 		trans->adding_csums = 1;
2031 		btrfs_csum_file_blocks(trans,
2032 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2033 		trans->adding_csums = 0;
2034 	}
2035 	return 0;
2036 }
2037 
2038 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2039 			      struct extent_state **cached_state, int dedupe)
2040 {
2041 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2042 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2043 				   cached_state);
2044 }
2045 
2046 /* see btrfs_writepage_start_hook for details on why this is required */
2047 struct btrfs_writepage_fixup {
2048 	struct page *page;
2049 	struct btrfs_work work;
2050 };
2051 
2052 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2053 {
2054 	struct btrfs_writepage_fixup *fixup;
2055 	struct btrfs_ordered_extent *ordered;
2056 	struct extent_state *cached_state = NULL;
2057 	struct extent_changeset *data_reserved = NULL;
2058 	struct page *page;
2059 	struct inode *inode;
2060 	u64 page_start;
2061 	u64 page_end;
2062 	int ret;
2063 
2064 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2065 	page = fixup->page;
2066 again:
2067 	lock_page(page);
2068 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2069 		ClearPageChecked(page);
2070 		goto out_page;
2071 	}
2072 
2073 	inode = page->mapping->host;
2074 	page_start = page_offset(page);
2075 	page_end = page_offset(page) + PAGE_SIZE - 1;
2076 
2077 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2078 			 &cached_state);
2079 
2080 	/* already ordered? We're done */
2081 	if (PagePrivate2(page))
2082 		goto out;
2083 
2084 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2085 					PAGE_SIZE);
2086 	if (ordered) {
2087 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2088 				     page_end, &cached_state, GFP_NOFS);
2089 		unlock_page(page);
2090 		btrfs_start_ordered_extent(inode, ordered, 1);
2091 		btrfs_put_ordered_extent(ordered);
2092 		goto again;
2093 	}
2094 
2095 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2096 					   PAGE_SIZE);
2097 	if (ret) {
2098 		mapping_set_error(page->mapping, ret);
2099 		end_extent_writepage(page, ret, page_start, page_end);
2100 		ClearPageChecked(page);
2101 		goto out;
2102 	 }
2103 
2104 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2105 				  0);
2106 	ClearPageChecked(page);
2107 	set_page_dirty(page);
2108 out:
2109 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2110 			     &cached_state, GFP_NOFS);
2111 out_page:
2112 	unlock_page(page);
2113 	put_page(page);
2114 	kfree(fixup);
2115 	extent_changeset_free(data_reserved);
2116 }
2117 
2118 /*
2119  * There are a few paths in the higher layers of the kernel that directly
2120  * set the page dirty bit without asking the filesystem if it is a
2121  * good idea.  This causes problems because we want to make sure COW
2122  * properly happens and the data=ordered rules are followed.
2123  *
2124  * In our case any range that doesn't have the ORDERED bit set
2125  * hasn't been properly setup for IO.  We kick off an async process
2126  * to fix it up.  The async helper will wait for ordered extents, set
2127  * the delalloc bit and make it safe to write the page.
2128  */
2129 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2130 {
2131 	struct inode *inode = page->mapping->host;
2132 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2133 	struct btrfs_writepage_fixup *fixup;
2134 
2135 	/* this page is properly in the ordered list */
2136 	if (TestClearPagePrivate2(page))
2137 		return 0;
2138 
2139 	if (PageChecked(page))
2140 		return -EAGAIN;
2141 
2142 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2143 	if (!fixup)
2144 		return -EAGAIN;
2145 
2146 	SetPageChecked(page);
2147 	get_page(page);
2148 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2149 			btrfs_writepage_fixup_worker, NULL, NULL);
2150 	fixup->page = page;
2151 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2152 	return -EBUSY;
2153 }
2154 
2155 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2156 				       struct inode *inode, u64 file_pos,
2157 				       u64 disk_bytenr, u64 disk_num_bytes,
2158 				       u64 num_bytes, u64 ram_bytes,
2159 				       u8 compression, u8 encryption,
2160 				       u16 other_encoding, int extent_type)
2161 {
2162 	struct btrfs_root *root = BTRFS_I(inode)->root;
2163 	struct btrfs_file_extent_item *fi;
2164 	struct btrfs_path *path;
2165 	struct extent_buffer *leaf;
2166 	struct btrfs_key ins;
2167 	u64 qg_released;
2168 	int extent_inserted = 0;
2169 	int ret;
2170 
2171 	path = btrfs_alloc_path();
2172 	if (!path)
2173 		return -ENOMEM;
2174 
2175 	/*
2176 	 * we may be replacing one extent in the tree with another.
2177 	 * The new extent is pinned in the extent map, and we don't want
2178 	 * to drop it from the cache until it is completely in the btree.
2179 	 *
2180 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2181 	 * the caller is expected to unpin it and allow it to be merged
2182 	 * with the others.
2183 	 */
2184 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2185 				   file_pos + num_bytes, NULL, 0,
2186 				   1, sizeof(*fi), &extent_inserted);
2187 	if (ret)
2188 		goto out;
2189 
2190 	if (!extent_inserted) {
2191 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2192 		ins.offset = file_pos;
2193 		ins.type = BTRFS_EXTENT_DATA_KEY;
2194 
2195 		path->leave_spinning = 1;
2196 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2197 					      sizeof(*fi));
2198 		if (ret)
2199 			goto out;
2200 	}
2201 	leaf = path->nodes[0];
2202 	fi = btrfs_item_ptr(leaf, path->slots[0],
2203 			    struct btrfs_file_extent_item);
2204 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2205 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2206 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2207 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2208 	btrfs_set_file_extent_offset(leaf, fi, 0);
2209 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2210 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2211 	btrfs_set_file_extent_compression(leaf, fi, compression);
2212 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2213 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2214 
2215 	btrfs_mark_buffer_dirty(leaf);
2216 	btrfs_release_path(path);
2217 
2218 	inode_add_bytes(inode, num_bytes);
2219 
2220 	ins.objectid = disk_bytenr;
2221 	ins.offset = disk_num_bytes;
2222 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2223 
2224 	/*
2225 	 * Release the reserved range from inode dirty range map, as it is
2226 	 * already moved into delayed_ref_head
2227 	 */
2228 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2229 	if (ret < 0)
2230 		goto out;
2231 	qg_released = ret;
2232 	ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2233 			btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
2234 out:
2235 	btrfs_free_path(path);
2236 
2237 	return ret;
2238 }
2239 
2240 /* snapshot-aware defrag */
2241 struct sa_defrag_extent_backref {
2242 	struct rb_node node;
2243 	struct old_sa_defrag_extent *old;
2244 	u64 root_id;
2245 	u64 inum;
2246 	u64 file_pos;
2247 	u64 extent_offset;
2248 	u64 num_bytes;
2249 	u64 generation;
2250 };
2251 
2252 struct old_sa_defrag_extent {
2253 	struct list_head list;
2254 	struct new_sa_defrag_extent *new;
2255 
2256 	u64 extent_offset;
2257 	u64 bytenr;
2258 	u64 offset;
2259 	u64 len;
2260 	int count;
2261 };
2262 
2263 struct new_sa_defrag_extent {
2264 	struct rb_root root;
2265 	struct list_head head;
2266 	struct btrfs_path *path;
2267 	struct inode *inode;
2268 	u64 file_pos;
2269 	u64 len;
2270 	u64 bytenr;
2271 	u64 disk_len;
2272 	u8 compress_type;
2273 };
2274 
2275 static int backref_comp(struct sa_defrag_extent_backref *b1,
2276 			struct sa_defrag_extent_backref *b2)
2277 {
2278 	if (b1->root_id < b2->root_id)
2279 		return -1;
2280 	else if (b1->root_id > b2->root_id)
2281 		return 1;
2282 
2283 	if (b1->inum < b2->inum)
2284 		return -1;
2285 	else if (b1->inum > b2->inum)
2286 		return 1;
2287 
2288 	if (b1->file_pos < b2->file_pos)
2289 		return -1;
2290 	else if (b1->file_pos > b2->file_pos)
2291 		return 1;
2292 
2293 	/*
2294 	 * [------------------------------] ===> (a range of space)
2295 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2296 	 * |<---------------------------->| ===> (fs/file tree B)
2297 	 *
2298 	 * A range of space can refer to two file extents in one tree while
2299 	 * refer to only one file extent in another tree.
2300 	 *
2301 	 * So we may process a disk offset more than one time(two extents in A)
2302 	 * and locate at the same extent(one extent in B), then insert two same
2303 	 * backrefs(both refer to the extent in B).
2304 	 */
2305 	return 0;
2306 }
2307 
2308 static void backref_insert(struct rb_root *root,
2309 			   struct sa_defrag_extent_backref *backref)
2310 {
2311 	struct rb_node **p = &root->rb_node;
2312 	struct rb_node *parent = NULL;
2313 	struct sa_defrag_extent_backref *entry;
2314 	int ret;
2315 
2316 	while (*p) {
2317 		parent = *p;
2318 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2319 
2320 		ret = backref_comp(backref, entry);
2321 		if (ret < 0)
2322 			p = &(*p)->rb_left;
2323 		else
2324 			p = &(*p)->rb_right;
2325 	}
2326 
2327 	rb_link_node(&backref->node, parent, p);
2328 	rb_insert_color(&backref->node, root);
2329 }
2330 
2331 /*
2332  * Note the backref might has changed, and in this case we just return 0.
2333  */
2334 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2335 				       void *ctx)
2336 {
2337 	struct btrfs_file_extent_item *extent;
2338 	struct old_sa_defrag_extent *old = ctx;
2339 	struct new_sa_defrag_extent *new = old->new;
2340 	struct btrfs_path *path = new->path;
2341 	struct btrfs_key key;
2342 	struct btrfs_root *root;
2343 	struct sa_defrag_extent_backref *backref;
2344 	struct extent_buffer *leaf;
2345 	struct inode *inode = new->inode;
2346 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2347 	int slot;
2348 	int ret;
2349 	u64 extent_offset;
2350 	u64 num_bytes;
2351 
2352 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2353 	    inum == btrfs_ino(BTRFS_I(inode)))
2354 		return 0;
2355 
2356 	key.objectid = root_id;
2357 	key.type = BTRFS_ROOT_ITEM_KEY;
2358 	key.offset = (u64)-1;
2359 
2360 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2361 	if (IS_ERR(root)) {
2362 		if (PTR_ERR(root) == -ENOENT)
2363 			return 0;
2364 		WARN_ON(1);
2365 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2366 			 inum, offset, root_id);
2367 		return PTR_ERR(root);
2368 	}
2369 
2370 	key.objectid = inum;
2371 	key.type = BTRFS_EXTENT_DATA_KEY;
2372 	if (offset > (u64)-1 << 32)
2373 		key.offset = 0;
2374 	else
2375 		key.offset = offset;
2376 
2377 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2378 	if (WARN_ON(ret < 0))
2379 		return ret;
2380 	ret = 0;
2381 
2382 	while (1) {
2383 		cond_resched();
2384 
2385 		leaf = path->nodes[0];
2386 		slot = path->slots[0];
2387 
2388 		if (slot >= btrfs_header_nritems(leaf)) {
2389 			ret = btrfs_next_leaf(root, path);
2390 			if (ret < 0) {
2391 				goto out;
2392 			} else if (ret > 0) {
2393 				ret = 0;
2394 				goto out;
2395 			}
2396 			continue;
2397 		}
2398 
2399 		path->slots[0]++;
2400 
2401 		btrfs_item_key_to_cpu(leaf, &key, slot);
2402 
2403 		if (key.objectid > inum)
2404 			goto out;
2405 
2406 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2407 			continue;
2408 
2409 		extent = btrfs_item_ptr(leaf, slot,
2410 					struct btrfs_file_extent_item);
2411 
2412 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2413 			continue;
2414 
2415 		/*
2416 		 * 'offset' refers to the exact key.offset,
2417 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2418 		 * (key.offset - extent_offset).
2419 		 */
2420 		if (key.offset != offset)
2421 			continue;
2422 
2423 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2424 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2425 
2426 		if (extent_offset >= old->extent_offset + old->offset +
2427 		    old->len || extent_offset + num_bytes <=
2428 		    old->extent_offset + old->offset)
2429 			continue;
2430 		break;
2431 	}
2432 
2433 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2434 	if (!backref) {
2435 		ret = -ENOENT;
2436 		goto out;
2437 	}
2438 
2439 	backref->root_id = root_id;
2440 	backref->inum = inum;
2441 	backref->file_pos = offset;
2442 	backref->num_bytes = num_bytes;
2443 	backref->extent_offset = extent_offset;
2444 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2445 	backref->old = old;
2446 	backref_insert(&new->root, backref);
2447 	old->count++;
2448 out:
2449 	btrfs_release_path(path);
2450 	WARN_ON(ret);
2451 	return ret;
2452 }
2453 
2454 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2455 				   struct new_sa_defrag_extent *new)
2456 {
2457 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2458 	struct old_sa_defrag_extent *old, *tmp;
2459 	int ret;
2460 
2461 	new->path = path;
2462 
2463 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2464 		ret = iterate_inodes_from_logical(old->bytenr +
2465 						  old->extent_offset, fs_info,
2466 						  path, record_one_backref,
2467 						  old);
2468 		if (ret < 0 && ret != -ENOENT)
2469 			return false;
2470 
2471 		/* no backref to be processed for this extent */
2472 		if (!old->count) {
2473 			list_del(&old->list);
2474 			kfree(old);
2475 		}
2476 	}
2477 
2478 	if (list_empty(&new->head))
2479 		return false;
2480 
2481 	return true;
2482 }
2483 
2484 static int relink_is_mergable(struct extent_buffer *leaf,
2485 			      struct btrfs_file_extent_item *fi,
2486 			      struct new_sa_defrag_extent *new)
2487 {
2488 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2489 		return 0;
2490 
2491 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2492 		return 0;
2493 
2494 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2495 		return 0;
2496 
2497 	if (btrfs_file_extent_encryption(leaf, fi) ||
2498 	    btrfs_file_extent_other_encoding(leaf, fi))
2499 		return 0;
2500 
2501 	return 1;
2502 }
2503 
2504 /*
2505  * Note the backref might has changed, and in this case we just return 0.
2506  */
2507 static noinline int relink_extent_backref(struct btrfs_path *path,
2508 				 struct sa_defrag_extent_backref *prev,
2509 				 struct sa_defrag_extent_backref *backref)
2510 {
2511 	struct btrfs_file_extent_item *extent;
2512 	struct btrfs_file_extent_item *item;
2513 	struct btrfs_ordered_extent *ordered;
2514 	struct btrfs_trans_handle *trans;
2515 	struct btrfs_root *root;
2516 	struct btrfs_key key;
2517 	struct extent_buffer *leaf;
2518 	struct old_sa_defrag_extent *old = backref->old;
2519 	struct new_sa_defrag_extent *new = old->new;
2520 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2521 	struct inode *inode;
2522 	struct extent_state *cached = NULL;
2523 	int ret = 0;
2524 	u64 start;
2525 	u64 len;
2526 	u64 lock_start;
2527 	u64 lock_end;
2528 	bool merge = false;
2529 	int index;
2530 
2531 	if (prev && prev->root_id == backref->root_id &&
2532 	    prev->inum == backref->inum &&
2533 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2534 		merge = true;
2535 
2536 	/* step 1: get root */
2537 	key.objectid = backref->root_id;
2538 	key.type = BTRFS_ROOT_ITEM_KEY;
2539 	key.offset = (u64)-1;
2540 
2541 	index = srcu_read_lock(&fs_info->subvol_srcu);
2542 
2543 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2544 	if (IS_ERR(root)) {
2545 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2546 		if (PTR_ERR(root) == -ENOENT)
2547 			return 0;
2548 		return PTR_ERR(root);
2549 	}
2550 
2551 	if (btrfs_root_readonly(root)) {
2552 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2553 		return 0;
2554 	}
2555 
2556 	/* step 2: get inode */
2557 	key.objectid = backref->inum;
2558 	key.type = BTRFS_INODE_ITEM_KEY;
2559 	key.offset = 0;
2560 
2561 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2562 	if (IS_ERR(inode)) {
2563 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2564 		return 0;
2565 	}
2566 
2567 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2568 
2569 	/* step 3: relink backref */
2570 	lock_start = backref->file_pos;
2571 	lock_end = backref->file_pos + backref->num_bytes - 1;
2572 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2573 			 &cached);
2574 
2575 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2576 	if (ordered) {
2577 		btrfs_put_ordered_extent(ordered);
2578 		goto out_unlock;
2579 	}
2580 
2581 	trans = btrfs_join_transaction(root);
2582 	if (IS_ERR(trans)) {
2583 		ret = PTR_ERR(trans);
2584 		goto out_unlock;
2585 	}
2586 
2587 	key.objectid = backref->inum;
2588 	key.type = BTRFS_EXTENT_DATA_KEY;
2589 	key.offset = backref->file_pos;
2590 
2591 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2592 	if (ret < 0) {
2593 		goto out_free_path;
2594 	} else if (ret > 0) {
2595 		ret = 0;
2596 		goto out_free_path;
2597 	}
2598 
2599 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2600 				struct btrfs_file_extent_item);
2601 
2602 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2603 	    backref->generation)
2604 		goto out_free_path;
2605 
2606 	btrfs_release_path(path);
2607 
2608 	start = backref->file_pos;
2609 	if (backref->extent_offset < old->extent_offset + old->offset)
2610 		start += old->extent_offset + old->offset -
2611 			 backref->extent_offset;
2612 
2613 	len = min(backref->extent_offset + backref->num_bytes,
2614 		  old->extent_offset + old->offset + old->len);
2615 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2616 
2617 	ret = btrfs_drop_extents(trans, root, inode, start,
2618 				 start + len, 1);
2619 	if (ret)
2620 		goto out_free_path;
2621 again:
2622 	key.objectid = btrfs_ino(BTRFS_I(inode));
2623 	key.type = BTRFS_EXTENT_DATA_KEY;
2624 	key.offset = start;
2625 
2626 	path->leave_spinning = 1;
2627 	if (merge) {
2628 		struct btrfs_file_extent_item *fi;
2629 		u64 extent_len;
2630 		struct btrfs_key found_key;
2631 
2632 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2633 		if (ret < 0)
2634 			goto out_free_path;
2635 
2636 		path->slots[0]--;
2637 		leaf = path->nodes[0];
2638 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2639 
2640 		fi = btrfs_item_ptr(leaf, path->slots[0],
2641 				    struct btrfs_file_extent_item);
2642 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2643 
2644 		if (extent_len + found_key.offset == start &&
2645 		    relink_is_mergable(leaf, fi, new)) {
2646 			btrfs_set_file_extent_num_bytes(leaf, fi,
2647 							extent_len + len);
2648 			btrfs_mark_buffer_dirty(leaf);
2649 			inode_add_bytes(inode, len);
2650 
2651 			ret = 1;
2652 			goto out_free_path;
2653 		} else {
2654 			merge = false;
2655 			btrfs_release_path(path);
2656 			goto again;
2657 		}
2658 	}
2659 
2660 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2661 					sizeof(*extent));
2662 	if (ret) {
2663 		btrfs_abort_transaction(trans, ret);
2664 		goto out_free_path;
2665 	}
2666 
2667 	leaf = path->nodes[0];
2668 	item = btrfs_item_ptr(leaf, path->slots[0],
2669 				struct btrfs_file_extent_item);
2670 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2671 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2672 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2673 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2674 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2675 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2676 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2677 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2678 	btrfs_set_file_extent_encryption(leaf, item, 0);
2679 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2680 
2681 	btrfs_mark_buffer_dirty(leaf);
2682 	inode_add_bytes(inode, len);
2683 	btrfs_release_path(path);
2684 
2685 	ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2686 			new->disk_len, 0,
2687 			backref->root_id, backref->inum,
2688 			new->file_pos);	/* start - extent_offset */
2689 	if (ret) {
2690 		btrfs_abort_transaction(trans, ret);
2691 		goto out_free_path;
2692 	}
2693 
2694 	ret = 1;
2695 out_free_path:
2696 	btrfs_release_path(path);
2697 	path->leave_spinning = 0;
2698 	btrfs_end_transaction(trans);
2699 out_unlock:
2700 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2701 			     &cached, GFP_NOFS);
2702 	iput(inode);
2703 	return ret;
2704 }
2705 
2706 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2707 {
2708 	struct old_sa_defrag_extent *old, *tmp;
2709 
2710 	if (!new)
2711 		return;
2712 
2713 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2714 		kfree(old);
2715 	}
2716 	kfree(new);
2717 }
2718 
2719 static void relink_file_extents(struct new_sa_defrag_extent *new)
2720 {
2721 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2722 	struct btrfs_path *path;
2723 	struct sa_defrag_extent_backref *backref;
2724 	struct sa_defrag_extent_backref *prev = NULL;
2725 	struct inode *inode;
2726 	struct btrfs_root *root;
2727 	struct rb_node *node;
2728 	int ret;
2729 
2730 	inode = new->inode;
2731 	root = BTRFS_I(inode)->root;
2732 
2733 	path = btrfs_alloc_path();
2734 	if (!path)
2735 		return;
2736 
2737 	if (!record_extent_backrefs(path, new)) {
2738 		btrfs_free_path(path);
2739 		goto out;
2740 	}
2741 	btrfs_release_path(path);
2742 
2743 	while (1) {
2744 		node = rb_first(&new->root);
2745 		if (!node)
2746 			break;
2747 		rb_erase(node, &new->root);
2748 
2749 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2750 
2751 		ret = relink_extent_backref(path, prev, backref);
2752 		WARN_ON(ret < 0);
2753 
2754 		kfree(prev);
2755 
2756 		if (ret == 1)
2757 			prev = backref;
2758 		else
2759 			prev = NULL;
2760 		cond_resched();
2761 	}
2762 	kfree(prev);
2763 
2764 	btrfs_free_path(path);
2765 out:
2766 	free_sa_defrag_extent(new);
2767 
2768 	atomic_dec(&fs_info->defrag_running);
2769 	wake_up(&fs_info->transaction_wait);
2770 }
2771 
2772 static struct new_sa_defrag_extent *
2773 record_old_file_extents(struct inode *inode,
2774 			struct btrfs_ordered_extent *ordered)
2775 {
2776 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2777 	struct btrfs_root *root = BTRFS_I(inode)->root;
2778 	struct btrfs_path *path;
2779 	struct btrfs_key key;
2780 	struct old_sa_defrag_extent *old;
2781 	struct new_sa_defrag_extent *new;
2782 	int ret;
2783 
2784 	new = kmalloc(sizeof(*new), GFP_NOFS);
2785 	if (!new)
2786 		return NULL;
2787 
2788 	new->inode = inode;
2789 	new->file_pos = ordered->file_offset;
2790 	new->len = ordered->len;
2791 	new->bytenr = ordered->start;
2792 	new->disk_len = ordered->disk_len;
2793 	new->compress_type = ordered->compress_type;
2794 	new->root = RB_ROOT;
2795 	INIT_LIST_HEAD(&new->head);
2796 
2797 	path = btrfs_alloc_path();
2798 	if (!path)
2799 		goto out_kfree;
2800 
2801 	key.objectid = btrfs_ino(BTRFS_I(inode));
2802 	key.type = BTRFS_EXTENT_DATA_KEY;
2803 	key.offset = new->file_pos;
2804 
2805 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2806 	if (ret < 0)
2807 		goto out_free_path;
2808 	if (ret > 0 && path->slots[0] > 0)
2809 		path->slots[0]--;
2810 
2811 	/* find out all the old extents for the file range */
2812 	while (1) {
2813 		struct btrfs_file_extent_item *extent;
2814 		struct extent_buffer *l;
2815 		int slot;
2816 		u64 num_bytes;
2817 		u64 offset;
2818 		u64 end;
2819 		u64 disk_bytenr;
2820 		u64 extent_offset;
2821 
2822 		l = path->nodes[0];
2823 		slot = path->slots[0];
2824 
2825 		if (slot >= btrfs_header_nritems(l)) {
2826 			ret = btrfs_next_leaf(root, path);
2827 			if (ret < 0)
2828 				goto out_free_path;
2829 			else if (ret > 0)
2830 				break;
2831 			continue;
2832 		}
2833 
2834 		btrfs_item_key_to_cpu(l, &key, slot);
2835 
2836 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2837 			break;
2838 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2839 			break;
2840 		if (key.offset >= new->file_pos + new->len)
2841 			break;
2842 
2843 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2844 
2845 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2846 		if (key.offset + num_bytes < new->file_pos)
2847 			goto next;
2848 
2849 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2850 		if (!disk_bytenr)
2851 			goto next;
2852 
2853 		extent_offset = btrfs_file_extent_offset(l, extent);
2854 
2855 		old = kmalloc(sizeof(*old), GFP_NOFS);
2856 		if (!old)
2857 			goto out_free_path;
2858 
2859 		offset = max(new->file_pos, key.offset);
2860 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2861 
2862 		old->bytenr = disk_bytenr;
2863 		old->extent_offset = extent_offset;
2864 		old->offset = offset - key.offset;
2865 		old->len = end - offset;
2866 		old->new = new;
2867 		old->count = 0;
2868 		list_add_tail(&old->list, &new->head);
2869 next:
2870 		path->slots[0]++;
2871 		cond_resched();
2872 	}
2873 
2874 	btrfs_free_path(path);
2875 	atomic_inc(&fs_info->defrag_running);
2876 
2877 	return new;
2878 
2879 out_free_path:
2880 	btrfs_free_path(path);
2881 out_kfree:
2882 	free_sa_defrag_extent(new);
2883 	return NULL;
2884 }
2885 
2886 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2887 					 u64 start, u64 len)
2888 {
2889 	struct btrfs_block_group_cache *cache;
2890 
2891 	cache = btrfs_lookup_block_group(fs_info, start);
2892 	ASSERT(cache);
2893 
2894 	spin_lock(&cache->lock);
2895 	cache->delalloc_bytes -= len;
2896 	spin_unlock(&cache->lock);
2897 
2898 	btrfs_put_block_group(cache);
2899 }
2900 
2901 /* as ordered data IO finishes, this gets called so we can finish
2902  * an ordered extent if the range of bytes in the file it covers are
2903  * fully written.
2904  */
2905 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2906 {
2907 	struct inode *inode = ordered_extent->inode;
2908 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2909 	struct btrfs_root *root = BTRFS_I(inode)->root;
2910 	struct btrfs_trans_handle *trans = NULL;
2911 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2912 	struct extent_state *cached_state = NULL;
2913 	struct new_sa_defrag_extent *new = NULL;
2914 	int compress_type = 0;
2915 	int ret = 0;
2916 	u64 logical_len = ordered_extent->len;
2917 	bool nolock;
2918 	bool truncated = false;
2919 	bool range_locked = false;
2920 	bool clear_new_delalloc_bytes = false;
2921 
2922 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2923 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2924 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2925 		clear_new_delalloc_bytes = true;
2926 
2927 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2928 
2929 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2930 		ret = -EIO;
2931 		goto out;
2932 	}
2933 
2934 	btrfs_free_io_failure_record(BTRFS_I(inode),
2935 			ordered_extent->file_offset,
2936 			ordered_extent->file_offset +
2937 			ordered_extent->len - 1);
2938 
2939 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2940 		truncated = true;
2941 		logical_len = ordered_extent->truncated_len;
2942 		/* Truncated the entire extent, don't bother adding */
2943 		if (!logical_len)
2944 			goto out;
2945 	}
2946 
2947 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2948 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2949 
2950 		/*
2951 		 * For mwrite(mmap + memset to write) case, we still reserve
2952 		 * space for NOCOW range.
2953 		 * As NOCOW won't cause a new delayed ref, just free the space
2954 		 */
2955 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2956 				       ordered_extent->len);
2957 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2958 		if (nolock)
2959 			trans = btrfs_join_transaction_nolock(root);
2960 		else
2961 			trans = btrfs_join_transaction(root);
2962 		if (IS_ERR(trans)) {
2963 			ret = PTR_ERR(trans);
2964 			trans = NULL;
2965 			goto out;
2966 		}
2967 		trans->block_rsv = &fs_info->delalloc_block_rsv;
2968 		ret = btrfs_update_inode_fallback(trans, root, inode);
2969 		if (ret) /* -ENOMEM or corruption */
2970 			btrfs_abort_transaction(trans, ret);
2971 		goto out;
2972 	}
2973 
2974 	range_locked = true;
2975 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2976 			 ordered_extent->file_offset + ordered_extent->len - 1,
2977 			 &cached_state);
2978 
2979 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2980 			ordered_extent->file_offset + ordered_extent->len - 1,
2981 			EXTENT_DEFRAG, 0, cached_state);
2982 	if (ret) {
2983 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2984 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2985 			/* the inode is shared */
2986 			new = record_old_file_extents(inode, ordered_extent);
2987 
2988 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2989 			ordered_extent->file_offset + ordered_extent->len - 1,
2990 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2991 	}
2992 
2993 	if (nolock)
2994 		trans = btrfs_join_transaction_nolock(root);
2995 	else
2996 		trans = btrfs_join_transaction(root);
2997 	if (IS_ERR(trans)) {
2998 		ret = PTR_ERR(trans);
2999 		trans = NULL;
3000 		goto out;
3001 	}
3002 
3003 	trans->block_rsv = &fs_info->delalloc_block_rsv;
3004 
3005 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3006 		compress_type = ordered_extent->compress_type;
3007 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3008 		BUG_ON(compress_type);
3009 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3010 						ordered_extent->file_offset,
3011 						ordered_extent->file_offset +
3012 						logical_len);
3013 	} else {
3014 		BUG_ON(root == fs_info->tree_root);
3015 		ret = insert_reserved_file_extent(trans, inode,
3016 						ordered_extent->file_offset,
3017 						ordered_extent->start,
3018 						ordered_extent->disk_len,
3019 						logical_len, logical_len,
3020 						compress_type, 0, 0,
3021 						BTRFS_FILE_EXTENT_REG);
3022 		if (!ret)
3023 			btrfs_release_delalloc_bytes(fs_info,
3024 						     ordered_extent->start,
3025 						     ordered_extent->disk_len);
3026 	}
3027 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3028 			   ordered_extent->file_offset, ordered_extent->len,
3029 			   trans->transid);
3030 	if (ret < 0) {
3031 		btrfs_abort_transaction(trans, ret);
3032 		goto out;
3033 	}
3034 
3035 	add_pending_csums(trans, inode, &ordered_extent->list);
3036 
3037 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3038 	ret = btrfs_update_inode_fallback(trans, root, inode);
3039 	if (ret) { /* -ENOMEM or corruption */
3040 		btrfs_abort_transaction(trans, ret);
3041 		goto out;
3042 	}
3043 	ret = 0;
3044 out:
3045 	if (range_locked || clear_new_delalloc_bytes) {
3046 		unsigned int clear_bits = 0;
3047 
3048 		if (range_locked)
3049 			clear_bits |= EXTENT_LOCKED;
3050 		if (clear_new_delalloc_bytes)
3051 			clear_bits |= EXTENT_DELALLOC_NEW;
3052 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3053 				 ordered_extent->file_offset,
3054 				 ordered_extent->file_offset +
3055 				 ordered_extent->len - 1,
3056 				 clear_bits,
3057 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3058 				 0, &cached_state, GFP_NOFS);
3059 	}
3060 
3061 	if (root != fs_info->tree_root)
3062 		btrfs_delalloc_release_metadata(BTRFS_I(inode),
3063 				ordered_extent->len);
3064 	if (trans)
3065 		btrfs_end_transaction(trans);
3066 
3067 	if (ret || truncated) {
3068 		u64 start, end;
3069 
3070 		if (truncated)
3071 			start = ordered_extent->file_offset + logical_len;
3072 		else
3073 			start = ordered_extent->file_offset;
3074 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3075 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3076 
3077 		/* Drop the cache for the part of the extent we didn't write. */
3078 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3079 
3080 		/*
3081 		 * If the ordered extent had an IOERR or something else went
3082 		 * wrong we need to return the space for this ordered extent
3083 		 * back to the allocator.  We only free the extent in the
3084 		 * truncated case if we didn't write out the extent at all.
3085 		 */
3086 		if ((ret || !logical_len) &&
3087 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3088 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3089 			btrfs_free_reserved_extent(fs_info,
3090 						   ordered_extent->start,
3091 						   ordered_extent->disk_len, 1);
3092 	}
3093 
3094 
3095 	/*
3096 	 * This needs to be done to make sure anybody waiting knows we are done
3097 	 * updating everything for this ordered extent.
3098 	 */
3099 	btrfs_remove_ordered_extent(inode, ordered_extent);
3100 
3101 	/* for snapshot-aware defrag */
3102 	if (new) {
3103 		if (ret) {
3104 			free_sa_defrag_extent(new);
3105 			atomic_dec(&fs_info->defrag_running);
3106 		} else {
3107 			relink_file_extents(new);
3108 		}
3109 	}
3110 
3111 	/* once for us */
3112 	btrfs_put_ordered_extent(ordered_extent);
3113 	/* once for the tree */
3114 	btrfs_put_ordered_extent(ordered_extent);
3115 
3116 	return ret;
3117 }
3118 
3119 static void finish_ordered_fn(struct btrfs_work *work)
3120 {
3121 	struct btrfs_ordered_extent *ordered_extent;
3122 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3123 	btrfs_finish_ordered_io(ordered_extent);
3124 }
3125 
3126 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3127 				struct extent_state *state, int uptodate)
3128 {
3129 	struct inode *inode = page->mapping->host;
3130 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3131 	struct btrfs_ordered_extent *ordered_extent = NULL;
3132 	struct btrfs_workqueue *wq;
3133 	btrfs_work_func_t func;
3134 
3135 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3136 
3137 	ClearPagePrivate2(page);
3138 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3139 					    end - start + 1, uptodate))
3140 		return;
3141 
3142 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3143 		wq = fs_info->endio_freespace_worker;
3144 		func = btrfs_freespace_write_helper;
3145 	} else {
3146 		wq = fs_info->endio_write_workers;
3147 		func = btrfs_endio_write_helper;
3148 	}
3149 
3150 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3151 			NULL);
3152 	btrfs_queue_work(wq, &ordered_extent->work);
3153 }
3154 
3155 static int __readpage_endio_check(struct inode *inode,
3156 				  struct btrfs_io_bio *io_bio,
3157 				  int icsum, struct page *page,
3158 				  int pgoff, u64 start, size_t len)
3159 {
3160 	char *kaddr;
3161 	u32 csum_expected;
3162 	u32 csum = ~(u32)0;
3163 
3164 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3165 
3166 	kaddr = kmap_atomic(page);
3167 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3168 	btrfs_csum_final(csum, (u8 *)&csum);
3169 	if (csum != csum_expected)
3170 		goto zeroit;
3171 
3172 	kunmap_atomic(kaddr);
3173 	return 0;
3174 zeroit:
3175 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3176 				    io_bio->mirror_num);
3177 	memset(kaddr + pgoff, 1, len);
3178 	flush_dcache_page(page);
3179 	kunmap_atomic(kaddr);
3180 	return -EIO;
3181 }
3182 
3183 /*
3184  * when reads are done, we need to check csums to verify the data is correct
3185  * if there's a match, we allow the bio to finish.  If not, the code in
3186  * extent_io.c will try to find good copies for us.
3187  */
3188 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3189 				      u64 phy_offset, struct page *page,
3190 				      u64 start, u64 end, int mirror)
3191 {
3192 	size_t offset = start - page_offset(page);
3193 	struct inode *inode = page->mapping->host;
3194 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3195 	struct btrfs_root *root = BTRFS_I(inode)->root;
3196 
3197 	if (PageChecked(page)) {
3198 		ClearPageChecked(page);
3199 		return 0;
3200 	}
3201 
3202 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3203 		return 0;
3204 
3205 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3206 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3207 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3208 		return 0;
3209 	}
3210 
3211 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3212 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3213 				      start, (size_t)(end - start + 1));
3214 }
3215 
3216 void btrfs_add_delayed_iput(struct inode *inode)
3217 {
3218 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3219 	struct btrfs_inode *binode = BTRFS_I(inode);
3220 
3221 	if (atomic_add_unless(&inode->i_count, -1, 1))
3222 		return;
3223 
3224 	spin_lock(&fs_info->delayed_iput_lock);
3225 	if (binode->delayed_iput_count == 0) {
3226 		ASSERT(list_empty(&binode->delayed_iput));
3227 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3228 	} else {
3229 		binode->delayed_iput_count++;
3230 	}
3231 	spin_unlock(&fs_info->delayed_iput_lock);
3232 }
3233 
3234 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3235 {
3236 
3237 	spin_lock(&fs_info->delayed_iput_lock);
3238 	while (!list_empty(&fs_info->delayed_iputs)) {
3239 		struct btrfs_inode *inode;
3240 
3241 		inode = list_first_entry(&fs_info->delayed_iputs,
3242 				struct btrfs_inode, delayed_iput);
3243 		if (inode->delayed_iput_count) {
3244 			inode->delayed_iput_count--;
3245 			list_move_tail(&inode->delayed_iput,
3246 					&fs_info->delayed_iputs);
3247 		} else {
3248 			list_del_init(&inode->delayed_iput);
3249 		}
3250 		spin_unlock(&fs_info->delayed_iput_lock);
3251 		iput(&inode->vfs_inode);
3252 		spin_lock(&fs_info->delayed_iput_lock);
3253 	}
3254 	spin_unlock(&fs_info->delayed_iput_lock);
3255 }
3256 
3257 /*
3258  * This is called in transaction commit time. If there are no orphan
3259  * files in the subvolume, it removes orphan item and frees block_rsv
3260  * structure.
3261  */
3262 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3263 			      struct btrfs_root *root)
3264 {
3265 	struct btrfs_fs_info *fs_info = root->fs_info;
3266 	struct btrfs_block_rsv *block_rsv;
3267 	int ret;
3268 
3269 	if (atomic_read(&root->orphan_inodes) ||
3270 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3271 		return;
3272 
3273 	spin_lock(&root->orphan_lock);
3274 	if (atomic_read(&root->orphan_inodes)) {
3275 		spin_unlock(&root->orphan_lock);
3276 		return;
3277 	}
3278 
3279 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3280 		spin_unlock(&root->orphan_lock);
3281 		return;
3282 	}
3283 
3284 	block_rsv = root->orphan_block_rsv;
3285 	root->orphan_block_rsv = NULL;
3286 	spin_unlock(&root->orphan_lock);
3287 
3288 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3289 	    btrfs_root_refs(&root->root_item) > 0) {
3290 		ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3291 					    root->root_key.objectid);
3292 		if (ret)
3293 			btrfs_abort_transaction(trans, ret);
3294 		else
3295 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3296 				  &root->state);
3297 	}
3298 
3299 	if (block_rsv) {
3300 		WARN_ON(block_rsv->size > 0);
3301 		btrfs_free_block_rsv(fs_info, block_rsv);
3302 	}
3303 }
3304 
3305 /*
3306  * This creates an orphan entry for the given inode in case something goes
3307  * wrong in the middle of an unlink/truncate.
3308  *
3309  * NOTE: caller of this function should reserve 5 units of metadata for
3310  *	 this function.
3311  */
3312 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3313 		struct btrfs_inode *inode)
3314 {
3315 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3316 	struct btrfs_root *root = inode->root;
3317 	struct btrfs_block_rsv *block_rsv = NULL;
3318 	int reserve = 0;
3319 	int insert = 0;
3320 	int ret;
3321 
3322 	if (!root->orphan_block_rsv) {
3323 		block_rsv = btrfs_alloc_block_rsv(fs_info,
3324 						  BTRFS_BLOCK_RSV_TEMP);
3325 		if (!block_rsv)
3326 			return -ENOMEM;
3327 	}
3328 
3329 	spin_lock(&root->orphan_lock);
3330 	if (!root->orphan_block_rsv) {
3331 		root->orphan_block_rsv = block_rsv;
3332 	} else if (block_rsv) {
3333 		btrfs_free_block_rsv(fs_info, block_rsv);
3334 		block_rsv = NULL;
3335 	}
3336 
3337 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3338 			      &inode->runtime_flags)) {
3339 #if 0
3340 		/*
3341 		 * For proper ENOSPC handling, we should do orphan
3342 		 * cleanup when mounting. But this introduces backward
3343 		 * compatibility issue.
3344 		 */
3345 		if (!xchg(&root->orphan_item_inserted, 1))
3346 			insert = 2;
3347 		else
3348 			insert = 1;
3349 #endif
3350 		insert = 1;
3351 		atomic_inc(&root->orphan_inodes);
3352 	}
3353 
3354 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3355 			      &inode->runtime_flags))
3356 		reserve = 1;
3357 	spin_unlock(&root->orphan_lock);
3358 
3359 	/* grab metadata reservation from transaction handle */
3360 	if (reserve) {
3361 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3362 		ASSERT(!ret);
3363 		if (ret) {
3364 			atomic_dec(&root->orphan_inodes);
3365 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3366 				  &inode->runtime_flags);
3367 			if (insert)
3368 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3369 					  &inode->runtime_flags);
3370 			return ret;
3371 		}
3372 	}
3373 
3374 	/* insert an orphan item to track this unlinked/truncated file */
3375 	if (insert >= 1) {
3376 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3377 		if (ret) {
3378 			atomic_dec(&root->orphan_inodes);
3379 			if (reserve) {
3380 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3381 					  &inode->runtime_flags);
3382 				btrfs_orphan_release_metadata(inode);
3383 			}
3384 			if (ret != -EEXIST) {
3385 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3386 					  &inode->runtime_flags);
3387 				btrfs_abort_transaction(trans, ret);
3388 				return ret;
3389 			}
3390 		}
3391 		ret = 0;
3392 	}
3393 
3394 	/* insert an orphan item to track subvolume contains orphan files */
3395 	if (insert >= 2) {
3396 		ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3397 					       root->root_key.objectid);
3398 		if (ret && ret != -EEXIST) {
3399 			btrfs_abort_transaction(trans, ret);
3400 			return ret;
3401 		}
3402 	}
3403 	return 0;
3404 }
3405 
3406 /*
3407  * We have done the truncate/delete so we can go ahead and remove the orphan
3408  * item for this particular inode.
3409  */
3410 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3411 			    struct btrfs_inode *inode)
3412 {
3413 	struct btrfs_root *root = inode->root;
3414 	int delete_item = 0;
3415 	int release_rsv = 0;
3416 	int ret = 0;
3417 
3418 	spin_lock(&root->orphan_lock);
3419 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3420 			       &inode->runtime_flags))
3421 		delete_item = 1;
3422 
3423 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3424 			       &inode->runtime_flags))
3425 		release_rsv = 1;
3426 	spin_unlock(&root->orphan_lock);
3427 
3428 	if (delete_item) {
3429 		atomic_dec(&root->orphan_inodes);
3430 		if (trans)
3431 			ret = btrfs_del_orphan_item(trans, root,
3432 						    btrfs_ino(inode));
3433 	}
3434 
3435 	if (release_rsv)
3436 		btrfs_orphan_release_metadata(inode);
3437 
3438 	return ret;
3439 }
3440 
3441 /*
3442  * this cleans up any orphans that may be left on the list from the last use
3443  * of this root.
3444  */
3445 int btrfs_orphan_cleanup(struct btrfs_root *root)
3446 {
3447 	struct btrfs_fs_info *fs_info = root->fs_info;
3448 	struct btrfs_path *path;
3449 	struct extent_buffer *leaf;
3450 	struct btrfs_key key, found_key;
3451 	struct btrfs_trans_handle *trans;
3452 	struct inode *inode;
3453 	u64 last_objectid = 0;
3454 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3455 
3456 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3457 		return 0;
3458 
3459 	path = btrfs_alloc_path();
3460 	if (!path) {
3461 		ret = -ENOMEM;
3462 		goto out;
3463 	}
3464 	path->reada = READA_BACK;
3465 
3466 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3467 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3468 	key.offset = (u64)-1;
3469 
3470 	while (1) {
3471 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3472 		if (ret < 0)
3473 			goto out;
3474 
3475 		/*
3476 		 * if ret == 0 means we found what we were searching for, which
3477 		 * is weird, but possible, so only screw with path if we didn't
3478 		 * find the key and see if we have stuff that matches
3479 		 */
3480 		if (ret > 0) {
3481 			ret = 0;
3482 			if (path->slots[0] == 0)
3483 				break;
3484 			path->slots[0]--;
3485 		}
3486 
3487 		/* pull out the item */
3488 		leaf = path->nodes[0];
3489 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3490 
3491 		/* make sure the item matches what we want */
3492 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3493 			break;
3494 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3495 			break;
3496 
3497 		/* release the path since we're done with it */
3498 		btrfs_release_path(path);
3499 
3500 		/*
3501 		 * this is where we are basically btrfs_lookup, without the
3502 		 * crossing root thing.  we store the inode number in the
3503 		 * offset of the orphan item.
3504 		 */
3505 
3506 		if (found_key.offset == last_objectid) {
3507 			btrfs_err(fs_info,
3508 				  "Error removing orphan entry, stopping orphan cleanup");
3509 			ret = -EINVAL;
3510 			goto out;
3511 		}
3512 
3513 		last_objectid = found_key.offset;
3514 
3515 		found_key.objectid = found_key.offset;
3516 		found_key.type = BTRFS_INODE_ITEM_KEY;
3517 		found_key.offset = 0;
3518 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3519 		ret = PTR_ERR_OR_ZERO(inode);
3520 		if (ret && ret != -ENOENT)
3521 			goto out;
3522 
3523 		if (ret == -ENOENT && root == fs_info->tree_root) {
3524 			struct btrfs_root *dead_root;
3525 			struct btrfs_fs_info *fs_info = root->fs_info;
3526 			int is_dead_root = 0;
3527 
3528 			/*
3529 			 * this is an orphan in the tree root. Currently these
3530 			 * could come from 2 sources:
3531 			 *  a) a snapshot deletion in progress
3532 			 *  b) a free space cache inode
3533 			 * We need to distinguish those two, as the snapshot
3534 			 * orphan must not get deleted.
3535 			 * find_dead_roots already ran before us, so if this
3536 			 * is a snapshot deletion, we should find the root
3537 			 * in the dead_roots list
3538 			 */
3539 			spin_lock(&fs_info->trans_lock);
3540 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3541 					    root_list) {
3542 				if (dead_root->root_key.objectid ==
3543 				    found_key.objectid) {
3544 					is_dead_root = 1;
3545 					break;
3546 				}
3547 			}
3548 			spin_unlock(&fs_info->trans_lock);
3549 			if (is_dead_root) {
3550 				/* prevent this orphan from being found again */
3551 				key.offset = found_key.objectid - 1;
3552 				continue;
3553 			}
3554 		}
3555 		/*
3556 		 * Inode is already gone but the orphan item is still there,
3557 		 * kill the orphan item.
3558 		 */
3559 		if (ret == -ENOENT) {
3560 			trans = btrfs_start_transaction(root, 1);
3561 			if (IS_ERR(trans)) {
3562 				ret = PTR_ERR(trans);
3563 				goto out;
3564 			}
3565 			btrfs_debug(fs_info, "auto deleting %Lu",
3566 				    found_key.objectid);
3567 			ret = btrfs_del_orphan_item(trans, root,
3568 						    found_key.objectid);
3569 			btrfs_end_transaction(trans);
3570 			if (ret)
3571 				goto out;
3572 			continue;
3573 		}
3574 
3575 		/*
3576 		 * add this inode to the orphan list so btrfs_orphan_del does
3577 		 * the proper thing when we hit it
3578 		 */
3579 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3580 			&BTRFS_I(inode)->runtime_flags);
3581 		atomic_inc(&root->orphan_inodes);
3582 
3583 		/* if we have links, this was a truncate, lets do that */
3584 		if (inode->i_nlink) {
3585 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3586 				iput(inode);
3587 				continue;
3588 			}
3589 			nr_truncate++;
3590 
3591 			/* 1 for the orphan item deletion. */
3592 			trans = btrfs_start_transaction(root, 1);
3593 			if (IS_ERR(trans)) {
3594 				iput(inode);
3595 				ret = PTR_ERR(trans);
3596 				goto out;
3597 			}
3598 			ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3599 			btrfs_end_transaction(trans);
3600 			if (ret) {
3601 				iput(inode);
3602 				goto out;
3603 			}
3604 
3605 			ret = btrfs_truncate(inode);
3606 			if (ret)
3607 				btrfs_orphan_del(NULL, BTRFS_I(inode));
3608 		} else {
3609 			nr_unlink++;
3610 		}
3611 
3612 		/* this will do delete_inode and everything for us */
3613 		iput(inode);
3614 		if (ret)
3615 			goto out;
3616 	}
3617 	/* release the path since we're done with it */
3618 	btrfs_release_path(path);
3619 
3620 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3621 
3622 	if (root->orphan_block_rsv)
3623 		btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3624 					(u64)-1);
3625 
3626 	if (root->orphan_block_rsv ||
3627 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3628 		trans = btrfs_join_transaction(root);
3629 		if (!IS_ERR(trans))
3630 			btrfs_end_transaction(trans);
3631 	}
3632 
3633 	if (nr_unlink)
3634 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3635 	if (nr_truncate)
3636 		btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3637 
3638 out:
3639 	if (ret)
3640 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3641 	btrfs_free_path(path);
3642 	return ret;
3643 }
3644 
3645 /*
3646  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3647  * don't find any xattrs, we know there can't be any acls.
3648  *
3649  * slot is the slot the inode is in, objectid is the objectid of the inode
3650  */
3651 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3652 					  int slot, u64 objectid,
3653 					  int *first_xattr_slot)
3654 {
3655 	u32 nritems = btrfs_header_nritems(leaf);
3656 	struct btrfs_key found_key;
3657 	static u64 xattr_access = 0;
3658 	static u64 xattr_default = 0;
3659 	int scanned = 0;
3660 
3661 	if (!xattr_access) {
3662 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3663 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3664 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3665 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3666 	}
3667 
3668 	slot++;
3669 	*first_xattr_slot = -1;
3670 	while (slot < nritems) {
3671 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3672 
3673 		/* we found a different objectid, there must not be acls */
3674 		if (found_key.objectid != objectid)
3675 			return 0;
3676 
3677 		/* we found an xattr, assume we've got an acl */
3678 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3679 			if (*first_xattr_slot == -1)
3680 				*first_xattr_slot = slot;
3681 			if (found_key.offset == xattr_access ||
3682 			    found_key.offset == xattr_default)
3683 				return 1;
3684 		}
3685 
3686 		/*
3687 		 * we found a key greater than an xattr key, there can't
3688 		 * be any acls later on
3689 		 */
3690 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3691 			return 0;
3692 
3693 		slot++;
3694 		scanned++;
3695 
3696 		/*
3697 		 * it goes inode, inode backrefs, xattrs, extents,
3698 		 * so if there are a ton of hard links to an inode there can
3699 		 * be a lot of backrefs.  Don't waste time searching too hard,
3700 		 * this is just an optimization
3701 		 */
3702 		if (scanned >= 8)
3703 			break;
3704 	}
3705 	/* we hit the end of the leaf before we found an xattr or
3706 	 * something larger than an xattr.  We have to assume the inode
3707 	 * has acls
3708 	 */
3709 	if (*first_xattr_slot == -1)
3710 		*first_xattr_slot = slot;
3711 	return 1;
3712 }
3713 
3714 /*
3715  * read an inode from the btree into the in-memory inode
3716  */
3717 static int btrfs_read_locked_inode(struct inode *inode)
3718 {
3719 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3720 	struct btrfs_path *path;
3721 	struct extent_buffer *leaf;
3722 	struct btrfs_inode_item *inode_item;
3723 	struct btrfs_root *root = BTRFS_I(inode)->root;
3724 	struct btrfs_key location;
3725 	unsigned long ptr;
3726 	int maybe_acls;
3727 	u32 rdev;
3728 	int ret;
3729 	bool filled = false;
3730 	int first_xattr_slot;
3731 
3732 	ret = btrfs_fill_inode(inode, &rdev);
3733 	if (!ret)
3734 		filled = true;
3735 
3736 	path = btrfs_alloc_path();
3737 	if (!path) {
3738 		ret = -ENOMEM;
3739 		goto make_bad;
3740 	}
3741 
3742 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3743 
3744 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3745 	if (ret) {
3746 		if (ret > 0)
3747 			ret = -ENOENT;
3748 		goto make_bad;
3749 	}
3750 
3751 	leaf = path->nodes[0];
3752 
3753 	if (filled)
3754 		goto cache_index;
3755 
3756 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3757 				    struct btrfs_inode_item);
3758 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3759 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3760 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3761 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3762 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3763 
3764 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3765 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3766 
3767 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3768 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3769 
3770 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3771 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3772 
3773 	BTRFS_I(inode)->i_otime.tv_sec =
3774 		btrfs_timespec_sec(leaf, &inode_item->otime);
3775 	BTRFS_I(inode)->i_otime.tv_nsec =
3776 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3777 
3778 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3779 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3780 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3781 
3782 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3783 	inode->i_generation = BTRFS_I(inode)->generation;
3784 	inode->i_rdev = 0;
3785 	rdev = btrfs_inode_rdev(leaf, inode_item);
3786 
3787 	BTRFS_I(inode)->index_cnt = (u64)-1;
3788 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3789 
3790 cache_index:
3791 	/*
3792 	 * If we were modified in the current generation and evicted from memory
3793 	 * and then re-read we need to do a full sync since we don't have any
3794 	 * idea about which extents were modified before we were evicted from
3795 	 * cache.
3796 	 *
3797 	 * This is required for both inode re-read from disk and delayed inode
3798 	 * in delayed_nodes_tree.
3799 	 */
3800 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3801 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3802 			&BTRFS_I(inode)->runtime_flags);
3803 
3804 	/*
3805 	 * We don't persist the id of the transaction where an unlink operation
3806 	 * against the inode was last made. So here we assume the inode might
3807 	 * have been evicted, and therefore the exact value of last_unlink_trans
3808 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3809 	 * between the inode and its parent if the inode is fsync'ed and the log
3810 	 * replayed. For example, in the scenario:
3811 	 *
3812 	 * touch mydir/foo
3813 	 * ln mydir/foo mydir/bar
3814 	 * sync
3815 	 * unlink mydir/bar
3816 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3817 	 * xfs_io -c fsync mydir/foo
3818 	 * <power failure>
3819 	 * mount fs, triggers fsync log replay
3820 	 *
3821 	 * We must make sure that when we fsync our inode foo we also log its
3822 	 * parent inode, otherwise after log replay the parent still has the
3823 	 * dentry with the "bar" name but our inode foo has a link count of 1
3824 	 * and doesn't have an inode ref with the name "bar" anymore.
3825 	 *
3826 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3827 	 * but it guarantees correctness at the expense of occasional full
3828 	 * transaction commits on fsync if our inode is a directory, or if our
3829 	 * inode is not a directory, logging its parent unnecessarily.
3830 	 */
3831 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3832 
3833 	path->slots[0]++;
3834 	if (inode->i_nlink != 1 ||
3835 	    path->slots[0] >= btrfs_header_nritems(leaf))
3836 		goto cache_acl;
3837 
3838 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3839 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3840 		goto cache_acl;
3841 
3842 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3843 	if (location.type == BTRFS_INODE_REF_KEY) {
3844 		struct btrfs_inode_ref *ref;
3845 
3846 		ref = (struct btrfs_inode_ref *)ptr;
3847 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3848 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3849 		struct btrfs_inode_extref *extref;
3850 
3851 		extref = (struct btrfs_inode_extref *)ptr;
3852 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3853 								     extref);
3854 	}
3855 cache_acl:
3856 	/*
3857 	 * try to precache a NULL acl entry for files that don't have
3858 	 * any xattrs or acls
3859 	 */
3860 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3861 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3862 	if (first_xattr_slot != -1) {
3863 		path->slots[0] = first_xattr_slot;
3864 		ret = btrfs_load_inode_props(inode, path);
3865 		if (ret)
3866 			btrfs_err(fs_info,
3867 				  "error loading props for ino %llu (root %llu): %d",
3868 				  btrfs_ino(BTRFS_I(inode)),
3869 				  root->root_key.objectid, ret);
3870 	}
3871 	btrfs_free_path(path);
3872 
3873 	if (!maybe_acls)
3874 		cache_no_acl(inode);
3875 
3876 	switch (inode->i_mode & S_IFMT) {
3877 	case S_IFREG:
3878 		inode->i_mapping->a_ops = &btrfs_aops;
3879 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3880 		inode->i_fop = &btrfs_file_operations;
3881 		inode->i_op = &btrfs_file_inode_operations;
3882 		break;
3883 	case S_IFDIR:
3884 		inode->i_fop = &btrfs_dir_file_operations;
3885 		inode->i_op = &btrfs_dir_inode_operations;
3886 		break;
3887 	case S_IFLNK:
3888 		inode->i_op = &btrfs_symlink_inode_operations;
3889 		inode_nohighmem(inode);
3890 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3891 		break;
3892 	default:
3893 		inode->i_op = &btrfs_special_inode_operations;
3894 		init_special_inode(inode, inode->i_mode, rdev);
3895 		break;
3896 	}
3897 
3898 	btrfs_update_iflags(inode);
3899 	return 0;
3900 
3901 make_bad:
3902 	btrfs_free_path(path);
3903 	make_bad_inode(inode);
3904 	return ret;
3905 }
3906 
3907 /*
3908  * given a leaf and an inode, copy the inode fields into the leaf
3909  */
3910 static void fill_inode_item(struct btrfs_trans_handle *trans,
3911 			    struct extent_buffer *leaf,
3912 			    struct btrfs_inode_item *item,
3913 			    struct inode *inode)
3914 {
3915 	struct btrfs_map_token token;
3916 
3917 	btrfs_init_map_token(&token);
3918 
3919 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3920 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3921 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3922 				   &token);
3923 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3924 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3925 
3926 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3927 				     inode->i_atime.tv_sec, &token);
3928 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3929 				      inode->i_atime.tv_nsec, &token);
3930 
3931 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3932 				     inode->i_mtime.tv_sec, &token);
3933 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3934 				      inode->i_mtime.tv_nsec, &token);
3935 
3936 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3937 				     inode->i_ctime.tv_sec, &token);
3938 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3939 				      inode->i_ctime.tv_nsec, &token);
3940 
3941 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3942 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3943 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3944 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3945 
3946 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3947 				     &token);
3948 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3949 					 &token);
3950 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3951 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3952 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3953 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3954 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3955 }
3956 
3957 /*
3958  * copy everything in the in-memory inode into the btree.
3959  */
3960 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3961 				struct btrfs_root *root, struct inode *inode)
3962 {
3963 	struct btrfs_inode_item *inode_item;
3964 	struct btrfs_path *path;
3965 	struct extent_buffer *leaf;
3966 	int ret;
3967 
3968 	path = btrfs_alloc_path();
3969 	if (!path)
3970 		return -ENOMEM;
3971 
3972 	path->leave_spinning = 1;
3973 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3974 				 1);
3975 	if (ret) {
3976 		if (ret > 0)
3977 			ret = -ENOENT;
3978 		goto failed;
3979 	}
3980 
3981 	leaf = path->nodes[0];
3982 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3983 				    struct btrfs_inode_item);
3984 
3985 	fill_inode_item(trans, leaf, inode_item, inode);
3986 	btrfs_mark_buffer_dirty(leaf);
3987 	btrfs_set_inode_last_trans(trans, inode);
3988 	ret = 0;
3989 failed:
3990 	btrfs_free_path(path);
3991 	return ret;
3992 }
3993 
3994 /*
3995  * copy everything in the in-memory inode into the btree.
3996  */
3997 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3998 				struct btrfs_root *root, struct inode *inode)
3999 {
4000 	struct btrfs_fs_info *fs_info = root->fs_info;
4001 	int ret;
4002 
4003 	/*
4004 	 * If the inode is a free space inode, we can deadlock during commit
4005 	 * if we put it into the delayed code.
4006 	 *
4007 	 * The data relocation inode should also be directly updated
4008 	 * without delay
4009 	 */
4010 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4011 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4012 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4013 		btrfs_update_root_times(trans, root);
4014 
4015 		ret = btrfs_delayed_update_inode(trans, root, inode);
4016 		if (!ret)
4017 			btrfs_set_inode_last_trans(trans, inode);
4018 		return ret;
4019 	}
4020 
4021 	return btrfs_update_inode_item(trans, root, inode);
4022 }
4023 
4024 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4025 					 struct btrfs_root *root,
4026 					 struct inode *inode)
4027 {
4028 	int ret;
4029 
4030 	ret = btrfs_update_inode(trans, root, inode);
4031 	if (ret == -ENOSPC)
4032 		return btrfs_update_inode_item(trans, root, inode);
4033 	return ret;
4034 }
4035 
4036 /*
4037  * unlink helper that gets used here in inode.c and in the tree logging
4038  * recovery code.  It remove a link in a directory with a given name, and
4039  * also drops the back refs in the inode to the directory
4040  */
4041 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4042 				struct btrfs_root *root,
4043 				struct btrfs_inode *dir,
4044 				struct btrfs_inode *inode,
4045 				const char *name, int name_len)
4046 {
4047 	struct btrfs_fs_info *fs_info = root->fs_info;
4048 	struct btrfs_path *path;
4049 	int ret = 0;
4050 	struct extent_buffer *leaf;
4051 	struct btrfs_dir_item *di;
4052 	struct btrfs_key key;
4053 	u64 index;
4054 	u64 ino = btrfs_ino(inode);
4055 	u64 dir_ino = btrfs_ino(dir);
4056 
4057 	path = btrfs_alloc_path();
4058 	if (!path) {
4059 		ret = -ENOMEM;
4060 		goto out;
4061 	}
4062 
4063 	path->leave_spinning = 1;
4064 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4065 				    name, name_len, -1);
4066 	if (IS_ERR(di)) {
4067 		ret = PTR_ERR(di);
4068 		goto err;
4069 	}
4070 	if (!di) {
4071 		ret = -ENOENT;
4072 		goto err;
4073 	}
4074 	leaf = path->nodes[0];
4075 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4076 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4077 	if (ret)
4078 		goto err;
4079 	btrfs_release_path(path);
4080 
4081 	/*
4082 	 * If we don't have dir index, we have to get it by looking up
4083 	 * the inode ref, since we get the inode ref, remove it directly,
4084 	 * it is unnecessary to do delayed deletion.
4085 	 *
4086 	 * But if we have dir index, needn't search inode ref to get it.
4087 	 * Since the inode ref is close to the inode item, it is better
4088 	 * that we delay to delete it, and just do this deletion when
4089 	 * we update the inode item.
4090 	 */
4091 	if (inode->dir_index) {
4092 		ret = btrfs_delayed_delete_inode_ref(inode);
4093 		if (!ret) {
4094 			index = inode->dir_index;
4095 			goto skip_backref;
4096 		}
4097 	}
4098 
4099 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4100 				  dir_ino, &index);
4101 	if (ret) {
4102 		btrfs_info(fs_info,
4103 			"failed to delete reference to %.*s, inode %llu parent %llu",
4104 			name_len, name, ino, dir_ino);
4105 		btrfs_abort_transaction(trans, ret);
4106 		goto err;
4107 	}
4108 skip_backref:
4109 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4110 	if (ret) {
4111 		btrfs_abort_transaction(trans, ret);
4112 		goto err;
4113 	}
4114 
4115 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4116 			dir_ino);
4117 	if (ret != 0 && ret != -ENOENT) {
4118 		btrfs_abort_transaction(trans, ret);
4119 		goto err;
4120 	}
4121 
4122 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4123 			index);
4124 	if (ret == -ENOENT)
4125 		ret = 0;
4126 	else if (ret)
4127 		btrfs_abort_transaction(trans, ret);
4128 err:
4129 	btrfs_free_path(path);
4130 	if (ret)
4131 		goto out;
4132 
4133 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4134 	inode_inc_iversion(&inode->vfs_inode);
4135 	inode_inc_iversion(&dir->vfs_inode);
4136 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4137 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4138 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4139 out:
4140 	return ret;
4141 }
4142 
4143 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4144 		       struct btrfs_root *root,
4145 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4146 		       const char *name, int name_len)
4147 {
4148 	int ret;
4149 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4150 	if (!ret) {
4151 		drop_nlink(&inode->vfs_inode);
4152 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4153 	}
4154 	return ret;
4155 }
4156 
4157 /*
4158  * helper to start transaction for unlink and rmdir.
4159  *
4160  * unlink and rmdir are special in btrfs, they do not always free space, so
4161  * if we cannot make our reservations the normal way try and see if there is
4162  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4163  * allow the unlink to occur.
4164  */
4165 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4166 {
4167 	struct btrfs_root *root = BTRFS_I(dir)->root;
4168 
4169 	/*
4170 	 * 1 for the possible orphan item
4171 	 * 1 for the dir item
4172 	 * 1 for the dir index
4173 	 * 1 for the inode ref
4174 	 * 1 for the inode
4175 	 */
4176 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4177 }
4178 
4179 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4180 {
4181 	struct btrfs_root *root = BTRFS_I(dir)->root;
4182 	struct btrfs_trans_handle *trans;
4183 	struct inode *inode = d_inode(dentry);
4184 	int ret;
4185 
4186 	trans = __unlink_start_trans(dir);
4187 	if (IS_ERR(trans))
4188 		return PTR_ERR(trans);
4189 
4190 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4191 			0);
4192 
4193 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4194 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4195 			dentry->d_name.len);
4196 	if (ret)
4197 		goto out;
4198 
4199 	if (inode->i_nlink == 0) {
4200 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4201 		if (ret)
4202 			goto out;
4203 	}
4204 
4205 out:
4206 	btrfs_end_transaction(trans);
4207 	btrfs_btree_balance_dirty(root->fs_info);
4208 	return ret;
4209 }
4210 
4211 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4212 			struct btrfs_root *root,
4213 			struct inode *dir, u64 objectid,
4214 			const char *name, int name_len)
4215 {
4216 	struct btrfs_fs_info *fs_info = root->fs_info;
4217 	struct btrfs_path *path;
4218 	struct extent_buffer *leaf;
4219 	struct btrfs_dir_item *di;
4220 	struct btrfs_key key;
4221 	u64 index;
4222 	int ret;
4223 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4224 
4225 	path = btrfs_alloc_path();
4226 	if (!path)
4227 		return -ENOMEM;
4228 
4229 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4230 				   name, name_len, -1);
4231 	if (IS_ERR_OR_NULL(di)) {
4232 		if (!di)
4233 			ret = -ENOENT;
4234 		else
4235 			ret = PTR_ERR(di);
4236 		goto out;
4237 	}
4238 
4239 	leaf = path->nodes[0];
4240 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4241 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4242 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4243 	if (ret) {
4244 		btrfs_abort_transaction(trans, ret);
4245 		goto out;
4246 	}
4247 	btrfs_release_path(path);
4248 
4249 	ret = btrfs_del_root_ref(trans, fs_info, objectid,
4250 				 root->root_key.objectid, dir_ino,
4251 				 &index, name, name_len);
4252 	if (ret < 0) {
4253 		if (ret != -ENOENT) {
4254 			btrfs_abort_transaction(trans, ret);
4255 			goto out;
4256 		}
4257 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4258 						 name, name_len);
4259 		if (IS_ERR_OR_NULL(di)) {
4260 			if (!di)
4261 				ret = -ENOENT;
4262 			else
4263 				ret = PTR_ERR(di);
4264 			btrfs_abort_transaction(trans, ret);
4265 			goto out;
4266 		}
4267 
4268 		leaf = path->nodes[0];
4269 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4270 		btrfs_release_path(path);
4271 		index = key.offset;
4272 	}
4273 	btrfs_release_path(path);
4274 
4275 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4276 	if (ret) {
4277 		btrfs_abort_transaction(trans, ret);
4278 		goto out;
4279 	}
4280 
4281 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4282 	inode_inc_iversion(dir);
4283 	dir->i_mtime = dir->i_ctime = current_time(dir);
4284 	ret = btrfs_update_inode_fallback(trans, root, dir);
4285 	if (ret)
4286 		btrfs_abort_transaction(trans, ret);
4287 out:
4288 	btrfs_free_path(path);
4289 	return ret;
4290 }
4291 
4292 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4293 {
4294 	struct inode *inode = d_inode(dentry);
4295 	int err = 0;
4296 	struct btrfs_root *root = BTRFS_I(dir)->root;
4297 	struct btrfs_trans_handle *trans;
4298 	u64 last_unlink_trans;
4299 
4300 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4301 		return -ENOTEMPTY;
4302 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4303 		return -EPERM;
4304 
4305 	trans = __unlink_start_trans(dir);
4306 	if (IS_ERR(trans))
4307 		return PTR_ERR(trans);
4308 
4309 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4310 		err = btrfs_unlink_subvol(trans, root, dir,
4311 					  BTRFS_I(inode)->location.objectid,
4312 					  dentry->d_name.name,
4313 					  dentry->d_name.len);
4314 		goto out;
4315 	}
4316 
4317 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4318 	if (err)
4319 		goto out;
4320 
4321 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4322 
4323 	/* now the directory is empty */
4324 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4325 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4326 			dentry->d_name.len);
4327 	if (!err) {
4328 		btrfs_i_size_write(BTRFS_I(inode), 0);
4329 		/*
4330 		 * Propagate the last_unlink_trans value of the deleted dir to
4331 		 * its parent directory. This is to prevent an unrecoverable
4332 		 * log tree in the case we do something like this:
4333 		 * 1) create dir foo
4334 		 * 2) create snapshot under dir foo
4335 		 * 3) delete the snapshot
4336 		 * 4) rmdir foo
4337 		 * 5) mkdir foo
4338 		 * 6) fsync foo or some file inside foo
4339 		 */
4340 		if (last_unlink_trans >= trans->transid)
4341 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4342 	}
4343 out:
4344 	btrfs_end_transaction(trans);
4345 	btrfs_btree_balance_dirty(root->fs_info);
4346 
4347 	return err;
4348 }
4349 
4350 static int truncate_space_check(struct btrfs_trans_handle *trans,
4351 				struct btrfs_root *root,
4352 				u64 bytes_deleted)
4353 {
4354 	struct btrfs_fs_info *fs_info = root->fs_info;
4355 	int ret;
4356 
4357 	/*
4358 	 * This is only used to apply pressure to the enospc system, we don't
4359 	 * intend to use this reservation at all.
4360 	 */
4361 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4362 	bytes_deleted *= fs_info->nodesize;
4363 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4364 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4365 	if (!ret) {
4366 		trace_btrfs_space_reservation(fs_info, "transaction",
4367 					      trans->transid,
4368 					      bytes_deleted, 1);
4369 		trans->bytes_reserved += bytes_deleted;
4370 	}
4371 	return ret;
4372 
4373 }
4374 
4375 static int truncate_inline_extent(struct inode *inode,
4376 				  struct btrfs_path *path,
4377 				  struct btrfs_key *found_key,
4378 				  const u64 item_end,
4379 				  const u64 new_size)
4380 {
4381 	struct extent_buffer *leaf = path->nodes[0];
4382 	int slot = path->slots[0];
4383 	struct btrfs_file_extent_item *fi;
4384 	u32 size = (u32)(new_size - found_key->offset);
4385 	struct btrfs_root *root = BTRFS_I(inode)->root;
4386 
4387 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4388 
4389 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4390 		loff_t offset = new_size;
4391 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4392 
4393 		/*
4394 		 * Zero out the remaining of the last page of our inline extent,
4395 		 * instead of directly truncating our inline extent here - that
4396 		 * would be much more complex (decompressing all the data, then
4397 		 * compressing the truncated data, which might be bigger than
4398 		 * the size of the inline extent, resize the extent, etc).
4399 		 * We release the path because to get the page we might need to
4400 		 * read the extent item from disk (data not in the page cache).
4401 		 */
4402 		btrfs_release_path(path);
4403 		return btrfs_truncate_block(inode, offset, page_end - offset,
4404 					0);
4405 	}
4406 
4407 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4408 	size = btrfs_file_extent_calc_inline_size(size);
4409 	btrfs_truncate_item(root->fs_info, path, size, 1);
4410 
4411 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4412 		inode_sub_bytes(inode, item_end + 1 - new_size);
4413 
4414 	return 0;
4415 }
4416 
4417 /*
4418  * this can truncate away extent items, csum items and directory items.
4419  * It starts at a high offset and removes keys until it can't find
4420  * any higher than new_size
4421  *
4422  * csum items that cross the new i_size are truncated to the new size
4423  * as well.
4424  *
4425  * min_type is the minimum key type to truncate down to.  If set to 0, this
4426  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4427  */
4428 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4429 			       struct btrfs_root *root,
4430 			       struct inode *inode,
4431 			       u64 new_size, u32 min_type)
4432 {
4433 	struct btrfs_fs_info *fs_info = root->fs_info;
4434 	struct btrfs_path *path;
4435 	struct extent_buffer *leaf;
4436 	struct btrfs_file_extent_item *fi;
4437 	struct btrfs_key key;
4438 	struct btrfs_key found_key;
4439 	u64 extent_start = 0;
4440 	u64 extent_num_bytes = 0;
4441 	u64 extent_offset = 0;
4442 	u64 item_end = 0;
4443 	u64 last_size = new_size;
4444 	u32 found_type = (u8)-1;
4445 	int found_extent;
4446 	int del_item;
4447 	int pending_del_nr = 0;
4448 	int pending_del_slot = 0;
4449 	int extent_type = -1;
4450 	int ret;
4451 	int err = 0;
4452 	u64 ino = btrfs_ino(BTRFS_I(inode));
4453 	u64 bytes_deleted = 0;
4454 	bool be_nice = 0;
4455 	bool should_throttle = 0;
4456 	bool should_end = 0;
4457 
4458 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4459 
4460 	/*
4461 	 * for non-free space inodes and ref cows, we want to back off from
4462 	 * time to time
4463 	 */
4464 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4465 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4466 		be_nice = 1;
4467 
4468 	path = btrfs_alloc_path();
4469 	if (!path)
4470 		return -ENOMEM;
4471 	path->reada = READA_BACK;
4472 
4473 	/*
4474 	 * We want to drop from the next block forward in case this new size is
4475 	 * not block aligned since we will be keeping the last block of the
4476 	 * extent just the way it is.
4477 	 */
4478 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4479 	    root == fs_info->tree_root)
4480 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4481 					fs_info->sectorsize),
4482 					(u64)-1, 0);
4483 
4484 	/*
4485 	 * This function is also used to drop the items in the log tree before
4486 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4487 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4488 	 * items.
4489 	 */
4490 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4491 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4492 
4493 	key.objectid = ino;
4494 	key.offset = (u64)-1;
4495 	key.type = (u8)-1;
4496 
4497 search_again:
4498 	/*
4499 	 * with a 16K leaf size and 128MB extents, you can actually queue
4500 	 * up a huge file in a single leaf.  Most of the time that
4501 	 * bytes_deleted is > 0, it will be huge by the time we get here
4502 	 */
4503 	if (be_nice && bytes_deleted > SZ_32M) {
4504 		if (btrfs_should_end_transaction(trans)) {
4505 			err = -EAGAIN;
4506 			goto error;
4507 		}
4508 	}
4509 
4510 
4511 	path->leave_spinning = 1;
4512 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4513 	if (ret < 0) {
4514 		err = ret;
4515 		goto out;
4516 	}
4517 
4518 	if (ret > 0) {
4519 		/* there are no items in the tree for us to truncate, we're
4520 		 * done
4521 		 */
4522 		if (path->slots[0] == 0)
4523 			goto out;
4524 		path->slots[0]--;
4525 	}
4526 
4527 	while (1) {
4528 		fi = NULL;
4529 		leaf = path->nodes[0];
4530 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4531 		found_type = found_key.type;
4532 
4533 		if (found_key.objectid != ino)
4534 			break;
4535 
4536 		if (found_type < min_type)
4537 			break;
4538 
4539 		item_end = found_key.offset;
4540 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4541 			fi = btrfs_item_ptr(leaf, path->slots[0],
4542 					    struct btrfs_file_extent_item);
4543 			extent_type = btrfs_file_extent_type(leaf, fi);
4544 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4545 				item_end +=
4546 				    btrfs_file_extent_num_bytes(leaf, fi);
4547 
4548 				trace_btrfs_truncate_show_fi_regular(
4549 					BTRFS_I(inode), leaf, fi,
4550 					found_key.offset);
4551 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4552 				item_end += btrfs_file_extent_inline_len(leaf,
4553 							 path->slots[0], fi);
4554 
4555 				trace_btrfs_truncate_show_fi_inline(
4556 					BTRFS_I(inode), leaf, fi, path->slots[0],
4557 					found_key.offset);
4558 			}
4559 			item_end--;
4560 		}
4561 		if (found_type > min_type) {
4562 			del_item = 1;
4563 		} else {
4564 			if (item_end < new_size)
4565 				break;
4566 			if (found_key.offset >= new_size)
4567 				del_item = 1;
4568 			else
4569 				del_item = 0;
4570 		}
4571 		found_extent = 0;
4572 		/* FIXME, shrink the extent if the ref count is only 1 */
4573 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4574 			goto delete;
4575 
4576 		if (del_item)
4577 			last_size = found_key.offset;
4578 		else
4579 			last_size = new_size;
4580 
4581 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4582 			u64 num_dec;
4583 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4584 			if (!del_item) {
4585 				u64 orig_num_bytes =
4586 					btrfs_file_extent_num_bytes(leaf, fi);
4587 				extent_num_bytes = ALIGN(new_size -
4588 						found_key.offset,
4589 						fs_info->sectorsize);
4590 				btrfs_set_file_extent_num_bytes(leaf, fi,
4591 							 extent_num_bytes);
4592 				num_dec = (orig_num_bytes -
4593 					   extent_num_bytes);
4594 				if (test_bit(BTRFS_ROOT_REF_COWS,
4595 					     &root->state) &&
4596 				    extent_start != 0)
4597 					inode_sub_bytes(inode, num_dec);
4598 				btrfs_mark_buffer_dirty(leaf);
4599 			} else {
4600 				extent_num_bytes =
4601 					btrfs_file_extent_disk_num_bytes(leaf,
4602 									 fi);
4603 				extent_offset = found_key.offset -
4604 					btrfs_file_extent_offset(leaf, fi);
4605 
4606 				/* FIXME blocksize != 4096 */
4607 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4608 				if (extent_start != 0) {
4609 					found_extent = 1;
4610 					if (test_bit(BTRFS_ROOT_REF_COWS,
4611 						     &root->state))
4612 						inode_sub_bytes(inode, num_dec);
4613 				}
4614 			}
4615 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4616 			/*
4617 			 * we can't truncate inline items that have had
4618 			 * special encodings
4619 			 */
4620 			if (!del_item &&
4621 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4622 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4623 
4624 				/*
4625 				 * Need to release path in order to truncate a
4626 				 * compressed extent. So delete any accumulated
4627 				 * extent items so far.
4628 				 */
4629 				if (btrfs_file_extent_compression(leaf, fi) !=
4630 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4631 					err = btrfs_del_items(trans, root, path,
4632 							      pending_del_slot,
4633 							      pending_del_nr);
4634 					if (err) {
4635 						btrfs_abort_transaction(trans,
4636 									err);
4637 						goto error;
4638 					}
4639 					pending_del_nr = 0;
4640 				}
4641 
4642 				err = truncate_inline_extent(inode, path,
4643 							     &found_key,
4644 							     item_end,
4645 							     new_size);
4646 				if (err) {
4647 					btrfs_abort_transaction(trans, err);
4648 					goto error;
4649 				}
4650 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4651 					    &root->state)) {
4652 				inode_sub_bytes(inode, item_end + 1 - new_size);
4653 			}
4654 		}
4655 delete:
4656 		if (del_item) {
4657 			if (!pending_del_nr) {
4658 				/* no pending yet, add ourselves */
4659 				pending_del_slot = path->slots[0];
4660 				pending_del_nr = 1;
4661 			} else if (pending_del_nr &&
4662 				   path->slots[0] + 1 == pending_del_slot) {
4663 				/* hop on the pending chunk */
4664 				pending_del_nr++;
4665 				pending_del_slot = path->slots[0];
4666 			} else {
4667 				BUG();
4668 			}
4669 		} else {
4670 			break;
4671 		}
4672 		should_throttle = 0;
4673 
4674 		if (found_extent &&
4675 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4676 		     root == fs_info->tree_root)) {
4677 			btrfs_set_path_blocking(path);
4678 			bytes_deleted += extent_num_bytes;
4679 			ret = btrfs_free_extent(trans, fs_info, extent_start,
4680 						extent_num_bytes, 0,
4681 						btrfs_header_owner(leaf),
4682 						ino, extent_offset);
4683 			BUG_ON(ret);
4684 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4685 				btrfs_async_run_delayed_refs(fs_info,
4686 					trans->delayed_ref_updates * 2,
4687 					trans->transid, 0);
4688 			if (be_nice) {
4689 				if (truncate_space_check(trans, root,
4690 							 extent_num_bytes)) {
4691 					should_end = 1;
4692 				}
4693 				if (btrfs_should_throttle_delayed_refs(trans,
4694 								       fs_info))
4695 					should_throttle = 1;
4696 			}
4697 		}
4698 
4699 		if (found_type == BTRFS_INODE_ITEM_KEY)
4700 			break;
4701 
4702 		if (path->slots[0] == 0 ||
4703 		    path->slots[0] != pending_del_slot ||
4704 		    should_throttle || should_end) {
4705 			if (pending_del_nr) {
4706 				ret = btrfs_del_items(trans, root, path,
4707 						pending_del_slot,
4708 						pending_del_nr);
4709 				if (ret) {
4710 					btrfs_abort_transaction(trans, ret);
4711 					goto error;
4712 				}
4713 				pending_del_nr = 0;
4714 			}
4715 			btrfs_release_path(path);
4716 			if (should_throttle) {
4717 				unsigned long updates = trans->delayed_ref_updates;
4718 				if (updates) {
4719 					trans->delayed_ref_updates = 0;
4720 					ret = btrfs_run_delayed_refs(trans,
4721 								   fs_info,
4722 								   updates * 2);
4723 					if (ret && !err)
4724 						err = ret;
4725 				}
4726 			}
4727 			/*
4728 			 * if we failed to refill our space rsv, bail out
4729 			 * and let the transaction restart
4730 			 */
4731 			if (should_end) {
4732 				err = -EAGAIN;
4733 				goto error;
4734 			}
4735 			goto search_again;
4736 		} else {
4737 			path->slots[0]--;
4738 		}
4739 	}
4740 out:
4741 	if (pending_del_nr) {
4742 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4743 				      pending_del_nr);
4744 		if (ret)
4745 			btrfs_abort_transaction(trans, ret);
4746 	}
4747 error:
4748 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4749 		ASSERT(last_size >= new_size);
4750 		if (!err && last_size > new_size)
4751 			last_size = new_size;
4752 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4753 	}
4754 
4755 	btrfs_free_path(path);
4756 
4757 	if (be_nice && bytes_deleted > SZ_32M) {
4758 		unsigned long updates = trans->delayed_ref_updates;
4759 		if (updates) {
4760 			trans->delayed_ref_updates = 0;
4761 			ret = btrfs_run_delayed_refs(trans, fs_info,
4762 						     updates * 2);
4763 			if (ret && !err)
4764 				err = ret;
4765 		}
4766 	}
4767 	return err;
4768 }
4769 
4770 /*
4771  * btrfs_truncate_block - read, zero a chunk and write a block
4772  * @inode - inode that we're zeroing
4773  * @from - the offset to start zeroing
4774  * @len - the length to zero, 0 to zero the entire range respective to the
4775  *	offset
4776  * @front - zero up to the offset instead of from the offset on
4777  *
4778  * This will find the block for the "from" offset and cow the block and zero the
4779  * part we want to zero.  This is used with truncate and hole punching.
4780  */
4781 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4782 			int front)
4783 {
4784 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4785 	struct address_space *mapping = inode->i_mapping;
4786 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4787 	struct btrfs_ordered_extent *ordered;
4788 	struct extent_state *cached_state = NULL;
4789 	struct extent_changeset *data_reserved = NULL;
4790 	char *kaddr;
4791 	u32 blocksize = fs_info->sectorsize;
4792 	pgoff_t index = from >> PAGE_SHIFT;
4793 	unsigned offset = from & (blocksize - 1);
4794 	struct page *page;
4795 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4796 	int ret = 0;
4797 	u64 block_start;
4798 	u64 block_end;
4799 
4800 	if ((offset & (blocksize - 1)) == 0 &&
4801 	    (!len || ((len & (blocksize - 1)) == 0)))
4802 		goto out;
4803 
4804 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4805 			round_down(from, blocksize), blocksize);
4806 	if (ret)
4807 		goto out;
4808 
4809 again:
4810 	page = find_or_create_page(mapping, index, mask);
4811 	if (!page) {
4812 		btrfs_delalloc_release_space(inode, data_reserved,
4813 				round_down(from, blocksize),
4814 				blocksize);
4815 		ret = -ENOMEM;
4816 		goto out;
4817 	}
4818 
4819 	block_start = round_down(from, blocksize);
4820 	block_end = block_start + blocksize - 1;
4821 
4822 	if (!PageUptodate(page)) {
4823 		ret = btrfs_readpage(NULL, page);
4824 		lock_page(page);
4825 		if (page->mapping != mapping) {
4826 			unlock_page(page);
4827 			put_page(page);
4828 			goto again;
4829 		}
4830 		if (!PageUptodate(page)) {
4831 			ret = -EIO;
4832 			goto out_unlock;
4833 		}
4834 	}
4835 	wait_on_page_writeback(page);
4836 
4837 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4838 	set_page_extent_mapped(page);
4839 
4840 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4841 	if (ordered) {
4842 		unlock_extent_cached(io_tree, block_start, block_end,
4843 				     &cached_state, GFP_NOFS);
4844 		unlock_page(page);
4845 		put_page(page);
4846 		btrfs_start_ordered_extent(inode, ordered, 1);
4847 		btrfs_put_ordered_extent(ordered);
4848 		goto again;
4849 	}
4850 
4851 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4852 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4853 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4854 			  0, 0, &cached_state, GFP_NOFS);
4855 
4856 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4857 					&cached_state, 0);
4858 	if (ret) {
4859 		unlock_extent_cached(io_tree, block_start, block_end,
4860 				     &cached_state, GFP_NOFS);
4861 		goto out_unlock;
4862 	}
4863 
4864 	if (offset != blocksize) {
4865 		if (!len)
4866 			len = blocksize - offset;
4867 		kaddr = kmap(page);
4868 		if (front)
4869 			memset(kaddr + (block_start - page_offset(page)),
4870 				0, offset);
4871 		else
4872 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4873 				0, len);
4874 		flush_dcache_page(page);
4875 		kunmap(page);
4876 	}
4877 	ClearPageChecked(page);
4878 	set_page_dirty(page);
4879 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4880 			     GFP_NOFS);
4881 
4882 out_unlock:
4883 	if (ret)
4884 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4885 					     blocksize);
4886 	unlock_page(page);
4887 	put_page(page);
4888 out:
4889 	extent_changeset_free(data_reserved);
4890 	return ret;
4891 }
4892 
4893 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4894 			     u64 offset, u64 len)
4895 {
4896 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4897 	struct btrfs_trans_handle *trans;
4898 	int ret;
4899 
4900 	/*
4901 	 * Still need to make sure the inode looks like it's been updated so
4902 	 * that any holes get logged if we fsync.
4903 	 */
4904 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4905 		BTRFS_I(inode)->last_trans = fs_info->generation;
4906 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4907 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4908 		return 0;
4909 	}
4910 
4911 	/*
4912 	 * 1 - for the one we're dropping
4913 	 * 1 - for the one we're adding
4914 	 * 1 - for updating the inode.
4915 	 */
4916 	trans = btrfs_start_transaction(root, 3);
4917 	if (IS_ERR(trans))
4918 		return PTR_ERR(trans);
4919 
4920 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4921 	if (ret) {
4922 		btrfs_abort_transaction(trans, ret);
4923 		btrfs_end_transaction(trans);
4924 		return ret;
4925 	}
4926 
4927 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4928 			offset, 0, 0, len, 0, len, 0, 0, 0);
4929 	if (ret)
4930 		btrfs_abort_transaction(trans, ret);
4931 	else
4932 		btrfs_update_inode(trans, root, inode);
4933 	btrfs_end_transaction(trans);
4934 	return ret;
4935 }
4936 
4937 /*
4938  * This function puts in dummy file extents for the area we're creating a hole
4939  * for.  So if we are truncating this file to a larger size we need to insert
4940  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4941  * the range between oldsize and size
4942  */
4943 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4944 {
4945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4946 	struct btrfs_root *root = BTRFS_I(inode)->root;
4947 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4948 	struct extent_map *em = NULL;
4949 	struct extent_state *cached_state = NULL;
4950 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4951 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4952 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4953 	u64 last_byte;
4954 	u64 cur_offset;
4955 	u64 hole_size;
4956 	int err = 0;
4957 
4958 	/*
4959 	 * If our size started in the middle of a block we need to zero out the
4960 	 * rest of the block before we expand the i_size, otherwise we could
4961 	 * expose stale data.
4962 	 */
4963 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4964 	if (err)
4965 		return err;
4966 
4967 	if (size <= hole_start)
4968 		return 0;
4969 
4970 	while (1) {
4971 		struct btrfs_ordered_extent *ordered;
4972 
4973 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4974 				 &cached_state);
4975 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4976 						     block_end - hole_start);
4977 		if (!ordered)
4978 			break;
4979 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4980 				     &cached_state, GFP_NOFS);
4981 		btrfs_start_ordered_extent(inode, ordered, 1);
4982 		btrfs_put_ordered_extent(ordered);
4983 	}
4984 
4985 	cur_offset = hole_start;
4986 	while (1) {
4987 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4988 				block_end - cur_offset, 0);
4989 		if (IS_ERR(em)) {
4990 			err = PTR_ERR(em);
4991 			em = NULL;
4992 			break;
4993 		}
4994 		last_byte = min(extent_map_end(em), block_end);
4995 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4996 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4997 			struct extent_map *hole_em;
4998 			hole_size = last_byte - cur_offset;
4999 
5000 			err = maybe_insert_hole(root, inode, cur_offset,
5001 						hole_size);
5002 			if (err)
5003 				break;
5004 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5005 						cur_offset + hole_size - 1, 0);
5006 			hole_em = alloc_extent_map();
5007 			if (!hole_em) {
5008 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5009 					&BTRFS_I(inode)->runtime_flags);
5010 				goto next;
5011 			}
5012 			hole_em->start = cur_offset;
5013 			hole_em->len = hole_size;
5014 			hole_em->orig_start = cur_offset;
5015 
5016 			hole_em->block_start = EXTENT_MAP_HOLE;
5017 			hole_em->block_len = 0;
5018 			hole_em->orig_block_len = 0;
5019 			hole_em->ram_bytes = hole_size;
5020 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5021 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5022 			hole_em->generation = fs_info->generation;
5023 
5024 			while (1) {
5025 				write_lock(&em_tree->lock);
5026 				err = add_extent_mapping(em_tree, hole_em, 1);
5027 				write_unlock(&em_tree->lock);
5028 				if (err != -EEXIST)
5029 					break;
5030 				btrfs_drop_extent_cache(BTRFS_I(inode),
5031 							cur_offset,
5032 							cur_offset +
5033 							hole_size - 1, 0);
5034 			}
5035 			free_extent_map(hole_em);
5036 		}
5037 next:
5038 		free_extent_map(em);
5039 		em = NULL;
5040 		cur_offset = last_byte;
5041 		if (cur_offset >= block_end)
5042 			break;
5043 	}
5044 	free_extent_map(em);
5045 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5046 			     GFP_NOFS);
5047 	return err;
5048 }
5049 
5050 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5051 {
5052 	struct btrfs_root *root = BTRFS_I(inode)->root;
5053 	struct btrfs_trans_handle *trans;
5054 	loff_t oldsize = i_size_read(inode);
5055 	loff_t newsize = attr->ia_size;
5056 	int mask = attr->ia_valid;
5057 	int ret;
5058 
5059 	/*
5060 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5061 	 * special case where we need to update the times despite not having
5062 	 * these flags set.  For all other operations the VFS set these flags
5063 	 * explicitly if it wants a timestamp update.
5064 	 */
5065 	if (newsize != oldsize) {
5066 		inode_inc_iversion(inode);
5067 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5068 			inode->i_ctime = inode->i_mtime =
5069 				current_time(inode);
5070 	}
5071 
5072 	if (newsize > oldsize) {
5073 		/*
5074 		 * Don't do an expanding truncate while snapshotting is ongoing.
5075 		 * This is to ensure the snapshot captures a fully consistent
5076 		 * state of this file - if the snapshot captures this expanding
5077 		 * truncation, it must capture all writes that happened before
5078 		 * this truncation.
5079 		 */
5080 		btrfs_wait_for_snapshot_creation(root);
5081 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5082 		if (ret) {
5083 			btrfs_end_write_no_snapshotting(root);
5084 			return ret;
5085 		}
5086 
5087 		trans = btrfs_start_transaction(root, 1);
5088 		if (IS_ERR(trans)) {
5089 			btrfs_end_write_no_snapshotting(root);
5090 			return PTR_ERR(trans);
5091 		}
5092 
5093 		i_size_write(inode, newsize);
5094 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5095 		pagecache_isize_extended(inode, oldsize, newsize);
5096 		ret = btrfs_update_inode(trans, root, inode);
5097 		btrfs_end_write_no_snapshotting(root);
5098 		btrfs_end_transaction(trans);
5099 	} else {
5100 
5101 		/*
5102 		 * We're truncating a file that used to have good data down to
5103 		 * zero. Make sure it gets into the ordered flush list so that
5104 		 * any new writes get down to disk quickly.
5105 		 */
5106 		if (newsize == 0)
5107 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5108 				&BTRFS_I(inode)->runtime_flags);
5109 
5110 		/*
5111 		 * 1 for the orphan item we're going to add
5112 		 * 1 for the orphan item deletion.
5113 		 */
5114 		trans = btrfs_start_transaction(root, 2);
5115 		if (IS_ERR(trans))
5116 			return PTR_ERR(trans);
5117 
5118 		/*
5119 		 * We need to do this in case we fail at _any_ point during the
5120 		 * actual truncate.  Once we do the truncate_setsize we could
5121 		 * invalidate pages which forces any outstanding ordered io to
5122 		 * be instantly completed which will give us extents that need
5123 		 * to be truncated.  If we fail to get an orphan inode down we
5124 		 * could have left over extents that were never meant to live,
5125 		 * so we need to guarantee from this point on that everything
5126 		 * will be consistent.
5127 		 */
5128 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5129 		btrfs_end_transaction(trans);
5130 		if (ret)
5131 			return ret;
5132 
5133 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5134 		truncate_setsize(inode, newsize);
5135 
5136 		/* Disable nonlocked read DIO to avoid the end less truncate */
5137 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5138 		inode_dio_wait(inode);
5139 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5140 
5141 		ret = btrfs_truncate(inode);
5142 		if (ret && inode->i_nlink) {
5143 			int err;
5144 
5145 			/* To get a stable disk_i_size */
5146 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5147 			if (err) {
5148 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5149 				return err;
5150 			}
5151 
5152 			/*
5153 			 * failed to truncate, disk_i_size is only adjusted down
5154 			 * as we remove extents, so it should represent the true
5155 			 * size of the inode, so reset the in memory size and
5156 			 * delete our orphan entry.
5157 			 */
5158 			trans = btrfs_join_transaction(root);
5159 			if (IS_ERR(trans)) {
5160 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5161 				return ret;
5162 			}
5163 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5164 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
5165 			if (err)
5166 				btrfs_abort_transaction(trans, err);
5167 			btrfs_end_transaction(trans);
5168 		}
5169 	}
5170 
5171 	return ret;
5172 }
5173 
5174 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5175 {
5176 	struct inode *inode = d_inode(dentry);
5177 	struct btrfs_root *root = BTRFS_I(inode)->root;
5178 	int err;
5179 
5180 	if (btrfs_root_readonly(root))
5181 		return -EROFS;
5182 
5183 	err = setattr_prepare(dentry, attr);
5184 	if (err)
5185 		return err;
5186 
5187 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5188 		err = btrfs_setsize(inode, attr);
5189 		if (err)
5190 			return err;
5191 	}
5192 
5193 	if (attr->ia_valid) {
5194 		setattr_copy(inode, attr);
5195 		inode_inc_iversion(inode);
5196 		err = btrfs_dirty_inode(inode);
5197 
5198 		if (!err && attr->ia_valid & ATTR_MODE)
5199 			err = posix_acl_chmod(inode, inode->i_mode);
5200 	}
5201 
5202 	return err;
5203 }
5204 
5205 /*
5206  * While truncating the inode pages during eviction, we get the VFS calling
5207  * btrfs_invalidatepage() against each page of the inode. This is slow because
5208  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5209  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5210  * extent_state structures over and over, wasting lots of time.
5211  *
5212  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5213  * those expensive operations on a per page basis and do only the ordered io
5214  * finishing, while we release here the extent_map and extent_state structures,
5215  * without the excessive merging and splitting.
5216  */
5217 static void evict_inode_truncate_pages(struct inode *inode)
5218 {
5219 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5220 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5221 	struct rb_node *node;
5222 
5223 	ASSERT(inode->i_state & I_FREEING);
5224 	truncate_inode_pages_final(&inode->i_data);
5225 
5226 	write_lock(&map_tree->lock);
5227 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5228 		struct extent_map *em;
5229 
5230 		node = rb_first(&map_tree->map);
5231 		em = rb_entry(node, struct extent_map, rb_node);
5232 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5233 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5234 		remove_extent_mapping(map_tree, em);
5235 		free_extent_map(em);
5236 		if (need_resched()) {
5237 			write_unlock(&map_tree->lock);
5238 			cond_resched();
5239 			write_lock(&map_tree->lock);
5240 		}
5241 	}
5242 	write_unlock(&map_tree->lock);
5243 
5244 	/*
5245 	 * Keep looping until we have no more ranges in the io tree.
5246 	 * We can have ongoing bios started by readpages (called from readahead)
5247 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5248 	 * still in progress (unlocked the pages in the bio but did not yet
5249 	 * unlocked the ranges in the io tree). Therefore this means some
5250 	 * ranges can still be locked and eviction started because before
5251 	 * submitting those bios, which are executed by a separate task (work
5252 	 * queue kthread), inode references (inode->i_count) were not taken
5253 	 * (which would be dropped in the end io callback of each bio).
5254 	 * Therefore here we effectively end up waiting for those bios and
5255 	 * anyone else holding locked ranges without having bumped the inode's
5256 	 * reference count - if we don't do it, when they access the inode's
5257 	 * io_tree to unlock a range it may be too late, leading to an
5258 	 * use-after-free issue.
5259 	 */
5260 	spin_lock(&io_tree->lock);
5261 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5262 		struct extent_state *state;
5263 		struct extent_state *cached_state = NULL;
5264 		u64 start;
5265 		u64 end;
5266 
5267 		node = rb_first(&io_tree->state);
5268 		state = rb_entry(node, struct extent_state, rb_node);
5269 		start = state->start;
5270 		end = state->end;
5271 		spin_unlock(&io_tree->lock);
5272 
5273 		lock_extent_bits(io_tree, start, end, &cached_state);
5274 
5275 		/*
5276 		 * If still has DELALLOC flag, the extent didn't reach disk,
5277 		 * and its reserved space won't be freed by delayed_ref.
5278 		 * So we need to free its reserved space here.
5279 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5280 		 *
5281 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5282 		 */
5283 		if (state->state & EXTENT_DELALLOC)
5284 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5285 
5286 		clear_extent_bit(io_tree, start, end,
5287 				 EXTENT_LOCKED | EXTENT_DIRTY |
5288 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5289 				 EXTENT_DEFRAG, 1, 1,
5290 				 &cached_state, GFP_NOFS);
5291 
5292 		cond_resched();
5293 		spin_lock(&io_tree->lock);
5294 	}
5295 	spin_unlock(&io_tree->lock);
5296 }
5297 
5298 void btrfs_evict_inode(struct inode *inode)
5299 {
5300 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5301 	struct btrfs_trans_handle *trans;
5302 	struct btrfs_root *root = BTRFS_I(inode)->root;
5303 	struct btrfs_block_rsv *rsv, *global_rsv;
5304 	int steal_from_global = 0;
5305 	u64 min_size;
5306 	int ret;
5307 
5308 	trace_btrfs_inode_evict(inode);
5309 
5310 	if (!root) {
5311 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5312 		return;
5313 	}
5314 
5315 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5316 
5317 	evict_inode_truncate_pages(inode);
5318 
5319 	if (inode->i_nlink &&
5320 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5321 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5322 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5323 		goto no_delete;
5324 
5325 	if (is_bad_inode(inode)) {
5326 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5327 		goto no_delete;
5328 	}
5329 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5330 	if (!special_file(inode->i_mode))
5331 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5332 
5333 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5334 
5335 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5336 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5337 				 &BTRFS_I(inode)->runtime_flags));
5338 		goto no_delete;
5339 	}
5340 
5341 	if (inode->i_nlink > 0) {
5342 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5343 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5344 		goto no_delete;
5345 	}
5346 
5347 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5348 	if (ret) {
5349 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5350 		goto no_delete;
5351 	}
5352 
5353 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5354 	if (!rsv) {
5355 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5356 		goto no_delete;
5357 	}
5358 	rsv->size = min_size;
5359 	rsv->failfast = 1;
5360 	global_rsv = &fs_info->global_block_rsv;
5361 
5362 	btrfs_i_size_write(BTRFS_I(inode), 0);
5363 
5364 	/*
5365 	 * This is a bit simpler than btrfs_truncate since we've already
5366 	 * reserved our space for our orphan item in the unlink, so we just
5367 	 * need to reserve some slack space in case we add bytes and update
5368 	 * inode item when doing the truncate.
5369 	 */
5370 	while (1) {
5371 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5372 					     BTRFS_RESERVE_FLUSH_LIMIT);
5373 
5374 		/*
5375 		 * Try and steal from the global reserve since we will
5376 		 * likely not use this space anyway, we want to try as
5377 		 * hard as possible to get this to work.
5378 		 */
5379 		if (ret)
5380 			steal_from_global++;
5381 		else
5382 			steal_from_global = 0;
5383 		ret = 0;
5384 
5385 		/*
5386 		 * steal_from_global == 0: we reserved stuff, hooray!
5387 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5388 		 * steal_from_global == 2: we've committed, still not a lot of
5389 		 * room but maybe we'll have room in the global reserve this
5390 		 * time.
5391 		 * steal_from_global == 3: abandon all hope!
5392 		 */
5393 		if (steal_from_global > 2) {
5394 			btrfs_warn(fs_info,
5395 				   "Could not get space for a delete, will truncate on mount %d",
5396 				   ret);
5397 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5398 			btrfs_free_block_rsv(fs_info, rsv);
5399 			goto no_delete;
5400 		}
5401 
5402 		trans = btrfs_join_transaction(root);
5403 		if (IS_ERR(trans)) {
5404 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5405 			btrfs_free_block_rsv(fs_info, rsv);
5406 			goto no_delete;
5407 		}
5408 
5409 		/*
5410 		 * We can't just steal from the global reserve, we need to make
5411 		 * sure there is room to do it, if not we need to commit and try
5412 		 * again.
5413 		 */
5414 		if (steal_from_global) {
5415 			if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5416 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5417 							      min_size, 0);
5418 			else
5419 				ret = -ENOSPC;
5420 		}
5421 
5422 		/*
5423 		 * Couldn't steal from the global reserve, we have too much
5424 		 * pending stuff built up, commit the transaction and try it
5425 		 * again.
5426 		 */
5427 		if (ret) {
5428 			ret = btrfs_commit_transaction(trans);
5429 			if (ret) {
5430 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5431 				btrfs_free_block_rsv(fs_info, rsv);
5432 				goto no_delete;
5433 			}
5434 			continue;
5435 		} else {
5436 			steal_from_global = 0;
5437 		}
5438 
5439 		trans->block_rsv = rsv;
5440 
5441 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5442 		if (ret != -ENOSPC && ret != -EAGAIN)
5443 			break;
5444 
5445 		trans->block_rsv = &fs_info->trans_block_rsv;
5446 		btrfs_end_transaction(trans);
5447 		trans = NULL;
5448 		btrfs_btree_balance_dirty(fs_info);
5449 	}
5450 
5451 	btrfs_free_block_rsv(fs_info, rsv);
5452 
5453 	/*
5454 	 * Errors here aren't a big deal, it just means we leave orphan items
5455 	 * in the tree.  They will be cleaned up on the next mount.
5456 	 */
5457 	if (ret == 0) {
5458 		trans->block_rsv = root->orphan_block_rsv;
5459 		btrfs_orphan_del(trans, BTRFS_I(inode));
5460 	} else {
5461 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5462 	}
5463 
5464 	trans->block_rsv = &fs_info->trans_block_rsv;
5465 	if (!(root == fs_info->tree_root ||
5466 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5467 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5468 
5469 	btrfs_end_transaction(trans);
5470 	btrfs_btree_balance_dirty(fs_info);
5471 no_delete:
5472 	btrfs_remove_delayed_node(BTRFS_I(inode));
5473 	clear_inode(inode);
5474 }
5475 
5476 /*
5477  * this returns the key found in the dir entry in the location pointer.
5478  * If no dir entries were found, location->objectid is 0.
5479  */
5480 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5481 			       struct btrfs_key *location)
5482 {
5483 	const char *name = dentry->d_name.name;
5484 	int namelen = dentry->d_name.len;
5485 	struct btrfs_dir_item *di;
5486 	struct btrfs_path *path;
5487 	struct btrfs_root *root = BTRFS_I(dir)->root;
5488 	int ret = 0;
5489 
5490 	path = btrfs_alloc_path();
5491 	if (!path)
5492 		return -ENOMEM;
5493 
5494 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5495 			name, namelen, 0);
5496 	if (IS_ERR(di))
5497 		ret = PTR_ERR(di);
5498 
5499 	if (IS_ERR_OR_NULL(di))
5500 		goto out_err;
5501 
5502 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5503 out:
5504 	btrfs_free_path(path);
5505 	return ret;
5506 out_err:
5507 	location->objectid = 0;
5508 	goto out;
5509 }
5510 
5511 /*
5512  * when we hit a tree root in a directory, the btrfs part of the inode
5513  * needs to be changed to reflect the root directory of the tree root.  This
5514  * is kind of like crossing a mount point.
5515  */
5516 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5517 				    struct inode *dir,
5518 				    struct dentry *dentry,
5519 				    struct btrfs_key *location,
5520 				    struct btrfs_root **sub_root)
5521 {
5522 	struct btrfs_path *path;
5523 	struct btrfs_root *new_root;
5524 	struct btrfs_root_ref *ref;
5525 	struct extent_buffer *leaf;
5526 	struct btrfs_key key;
5527 	int ret;
5528 	int err = 0;
5529 
5530 	path = btrfs_alloc_path();
5531 	if (!path) {
5532 		err = -ENOMEM;
5533 		goto out;
5534 	}
5535 
5536 	err = -ENOENT;
5537 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5538 	key.type = BTRFS_ROOT_REF_KEY;
5539 	key.offset = location->objectid;
5540 
5541 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5542 	if (ret) {
5543 		if (ret < 0)
5544 			err = ret;
5545 		goto out;
5546 	}
5547 
5548 	leaf = path->nodes[0];
5549 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5550 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5551 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5552 		goto out;
5553 
5554 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5555 				   (unsigned long)(ref + 1),
5556 				   dentry->d_name.len);
5557 	if (ret)
5558 		goto out;
5559 
5560 	btrfs_release_path(path);
5561 
5562 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5563 	if (IS_ERR(new_root)) {
5564 		err = PTR_ERR(new_root);
5565 		goto out;
5566 	}
5567 
5568 	*sub_root = new_root;
5569 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5570 	location->type = BTRFS_INODE_ITEM_KEY;
5571 	location->offset = 0;
5572 	err = 0;
5573 out:
5574 	btrfs_free_path(path);
5575 	return err;
5576 }
5577 
5578 static void inode_tree_add(struct inode *inode)
5579 {
5580 	struct btrfs_root *root = BTRFS_I(inode)->root;
5581 	struct btrfs_inode *entry;
5582 	struct rb_node **p;
5583 	struct rb_node *parent;
5584 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5585 	u64 ino = btrfs_ino(BTRFS_I(inode));
5586 
5587 	if (inode_unhashed(inode))
5588 		return;
5589 	parent = NULL;
5590 	spin_lock(&root->inode_lock);
5591 	p = &root->inode_tree.rb_node;
5592 	while (*p) {
5593 		parent = *p;
5594 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5595 
5596 		if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5597 			p = &parent->rb_left;
5598 		else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5599 			p = &parent->rb_right;
5600 		else {
5601 			WARN_ON(!(entry->vfs_inode.i_state &
5602 				  (I_WILL_FREE | I_FREEING)));
5603 			rb_replace_node(parent, new, &root->inode_tree);
5604 			RB_CLEAR_NODE(parent);
5605 			spin_unlock(&root->inode_lock);
5606 			return;
5607 		}
5608 	}
5609 	rb_link_node(new, parent, p);
5610 	rb_insert_color(new, &root->inode_tree);
5611 	spin_unlock(&root->inode_lock);
5612 }
5613 
5614 static void inode_tree_del(struct inode *inode)
5615 {
5616 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5617 	struct btrfs_root *root = BTRFS_I(inode)->root;
5618 	int empty = 0;
5619 
5620 	spin_lock(&root->inode_lock);
5621 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5622 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5623 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5624 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5625 	}
5626 	spin_unlock(&root->inode_lock);
5627 
5628 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5629 		synchronize_srcu(&fs_info->subvol_srcu);
5630 		spin_lock(&root->inode_lock);
5631 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5632 		spin_unlock(&root->inode_lock);
5633 		if (empty)
5634 			btrfs_add_dead_root(root);
5635 	}
5636 }
5637 
5638 void btrfs_invalidate_inodes(struct btrfs_root *root)
5639 {
5640 	struct btrfs_fs_info *fs_info = root->fs_info;
5641 	struct rb_node *node;
5642 	struct rb_node *prev;
5643 	struct btrfs_inode *entry;
5644 	struct inode *inode;
5645 	u64 objectid = 0;
5646 
5647 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5648 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5649 
5650 	spin_lock(&root->inode_lock);
5651 again:
5652 	node = root->inode_tree.rb_node;
5653 	prev = NULL;
5654 	while (node) {
5655 		prev = node;
5656 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5657 
5658 		if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5659 			node = node->rb_left;
5660 		else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5661 			node = node->rb_right;
5662 		else
5663 			break;
5664 	}
5665 	if (!node) {
5666 		while (prev) {
5667 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5668 			if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5669 				node = prev;
5670 				break;
5671 			}
5672 			prev = rb_next(prev);
5673 		}
5674 	}
5675 	while (node) {
5676 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5677 		objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5678 		inode = igrab(&entry->vfs_inode);
5679 		if (inode) {
5680 			spin_unlock(&root->inode_lock);
5681 			if (atomic_read(&inode->i_count) > 1)
5682 				d_prune_aliases(inode);
5683 			/*
5684 			 * btrfs_drop_inode will have it removed from
5685 			 * the inode cache when its usage count
5686 			 * hits zero.
5687 			 */
5688 			iput(inode);
5689 			cond_resched();
5690 			spin_lock(&root->inode_lock);
5691 			goto again;
5692 		}
5693 
5694 		if (cond_resched_lock(&root->inode_lock))
5695 			goto again;
5696 
5697 		node = rb_next(node);
5698 	}
5699 	spin_unlock(&root->inode_lock);
5700 }
5701 
5702 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5703 {
5704 	struct btrfs_iget_args *args = p;
5705 	inode->i_ino = args->location->objectid;
5706 	memcpy(&BTRFS_I(inode)->location, args->location,
5707 	       sizeof(*args->location));
5708 	BTRFS_I(inode)->root = args->root;
5709 	return 0;
5710 }
5711 
5712 static int btrfs_find_actor(struct inode *inode, void *opaque)
5713 {
5714 	struct btrfs_iget_args *args = opaque;
5715 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5716 		args->root == BTRFS_I(inode)->root;
5717 }
5718 
5719 static struct inode *btrfs_iget_locked(struct super_block *s,
5720 				       struct btrfs_key *location,
5721 				       struct btrfs_root *root)
5722 {
5723 	struct inode *inode;
5724 	struct btrfs_iget_args args;
5725 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5726 
5727 	args.location = location;
5728 	args.root = root;
5729 
5730 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5731 			     btrfs_init_locked_inode,
5732 			     (void *)&args);
5733 	return inode;
5734 }
5735 
5736 /* Get an inode object given its location and corresponding root.
5737  * Returns in *is_new if the inode was read from disk
5738  */
5739 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5740 			 struct btrfs_root *root, int *new)
5741 {
5742 	struct inode *inode;
5743 
5744 	inode = btrfs_iget_locked(s, location, root);
5745 	if (!inode)
5746 		return ERR_PTR(-ENOMEM);
5747 
5748 	if (inode->i_state & I_NEW) {
5749 		int ret;
5750 
5751 		ret = btrfs_read_locked_inode(inode);
5752 		if (!is_bad_inode(inode)) {
5753 			inode_tree_add(inode);
5754 			unlock_new_inode(inode);
5755 			if (new)
5756 				*new = 1;
5757 		} else {
5758 			unlock_new_inode(inode);
5759 			iput(inode);
5760 			ASSERT(ret < 0);
5761 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5762 		}
5763 	}
5764 
5765 	return inode;
5766 }
5767 
5768 static struct inode *new_simple_dir(struct super_block *s,
5769 				    struct btrfs_key *key,
5770 				    struct btrfs_root *root)
5771 {
5772 	struct inode *inode = new_inode(s);
5773 
5774 	if (!inode)
5775 		return ERR_PTR(-ENOMEM);
5776 
5777 	BTRFS_I(inode)->root = root;
5778 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5779 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5780 
5781 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5782 	inode->i_op = &btrfs_dir_ro_inode_operations;
5783 	inode->i_opflags &= ~IOP_XATTR;
5784 	inode->i_fop = &simple_dir_operations;
5785 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5786 	inode->i_mtime = current_time(inode);
5787 	inode->i_atime = inode->i_mtime;
5788 	inode->i_ctime = inode->i_mtime;
5789 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5790 
5791 	return inode;
5792 }
5793 
5794 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5795 {
5796 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5797 	struct inode *inode;
5798 	struct btrfs_root *root = BTRFS_I(dir)->root;
5799 	struct btrfs_root *sub_root = root;
5800 	struct btrfs_key location;
5801 	int index;
5802 	int ret = 0;
5803 
5804 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5805 		return ERR_PTR(-ENAMETOOLONG);
5806 
5807 	ret = btrfs_inode_by_name(dir, dentry, &location);
5808 	if (ret < 0)
5809 		return ERR_PTR(ret);
5810 
5811 	if (location.objectid == 0)
5812 		return ERR_PTR(-ENOENT);
5813 
5814 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5815 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5816 		return inode;
5817 	}
5818 
5819 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5820 
5821 	index = srcu_read_lock(&fs_info->subvol_srcu);
5822 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5823 				       &location, &sub_root);
5824 	if (ret < 0) {
5825 		if (ret != -ENOENT)
5826 			inode = ERR_PTR(ret);
5827 		else
5828 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5829 	} else {
5830 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5831 	}
5832 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5833 
5834 	if (!IS_ERR(inode) && root != sub_root) {
5835 		down_read(&fs_info->cleanup_work_sem);
5836 		if (!sb_rdonly(inode->i_sb))
5837 			ret = btrfs_orphan_cleanup(sub_root);
5838 		up_read(&fs_info->cleanup_work_sem);
5839 		if (ret) {
5840 			iput(inode);
5841 			inode = ERR_PTR(ret);
5842 		}
5843 	}
5844 
5845 	return inode;
5846 }
5847 
5848 static int btrfs_dentry_delete(const struct dentry *dentry)
5849 {
5850 	struct btrfs_root *root;
5851 	struct inode *inode = d_inode(dentry);
5852 
5853 	if (!inode && !IS_ROOT(dentry))
5854 		inode = d_inode(dentry->d_parent);
5855 
5856 	if (inode) {
5857 		root = BTRFS_I(inode)->root;
5858 		if (btrfs_root_refs(&root->root_item) == 0)
5859 			return 1;
5860 
5861 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5862 			return 1;
5863 	}
5864 	return 0;
5865 }
5866 
5867 static void btrfs_dentry_release(struct dentry *dentry)
5868 {
5869 	kfree(dentry->d_fsdata);
5870 }
5871 
5872 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5873 				   unsigned int flags)
5874 {
5875 	struct inode *inode;
5876 
5877 	inode = btrfs_lookup_dentry(dir, dentry);
5878 	if (IS_ERR(inode)) {
5879 		if (PTR_ERR(inode) == -ENOENT)
5880 			inode = NULL;
5881 		else
5882 			return ERR_CAST(inode);
5883 	}
5884 
5885 	return d_splice_alias(inode, dentry);
5886 }
5887 
5888 unsigned char btrfs_filetype_table[] = {
5889 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5890 };
5891 
5892 /*
5893  * All this infrastructure exists because dir_emit can fault, and we are holding
5894  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5895  * our information into that, and then dir_emit from the buffer.  This is
5896  * similar to what NFS does, only we don't keep the buffer around in pagecache
5897  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5898  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5899  * tree lock.
5900  */
5901 static int btrfs_opendir(struct inode *inode, struct file *file)
5902 {
5903 	struct btrfs_file_private *private;
5904 
5905 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5906 	if (!private)
5907 		return -ENOMEM;
5908 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5909 	if (!private->filldir_buf) {
5910 		kfree(private);
5911 		return -ENOMEM;
5912 	}
5913 	file->private_data = private;
5914 	return 0;
5915 }
5916 
5917 struct dir_entry {
5918 	u64 ino;
5919 	u64 offset;
5920 	unsigned type;
5921 	int name_len;
5922 };
5923 
5924 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5925 {
5926 	while (entries--) {
5927 		struct dir_entry *entry = addr;
5928 		char *name = (char *)(entry + 1);
5929 
5930 		ctx->pos = entry->offset;
5931 		if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5932 			      entry->type))
5933 			return 1;
5934 		addr += sizeof(struct dir_entry) + entry->name_len;
5935 		ctx->pos++;
5936 	}
5937 	return 0;
5938 }
5939 
5940 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5941 {
5942 	struct inode *inode = file_inode(file);
5943 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5944 	struct btrfs_root *root = BTRFS_I(inode)->root;
5945 	struct btrfs_file_private *private = file->private_data;
5946 	struct btrfs_dir_item *di;
5947 	struct btrfs_key key;
5948 	struct btrfs_key found_key;
5949 	struct btrfs_path *path;
5950 	void *addr;
5951 	struct list_head ins_list;
5952 	struct list_head del_list;
5953 	int ret;
5954 	struct extent_buffer *leaf;
5955 	int slot;
5956 	char *name_ptr;
5957 	int name_len;
5958 	int entries = 0;
5959 	int total_len = 0;
5960 	bool put = false;
5961 	struct btrfs_key location;
5962 
5963 	if (!dir_emit_dots(file, ctx))
5964 		return 0;
5965 
5966 	path = btrfs_alloc_path();
5967 	if (!path)
5968 		return -ENOMEM;
5969 
5970 	addr = private->filldir_buf;
5971 	path->reada = READA_FORWARD;
5972 
5973 	INIT_LIST_HEAD(&ins_list);
5974 	INIT_LIST_HEAD(&del_list);
5975 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5976 
5977 again:
5978 	key.type = BTRFS_DIR_INDEX_KEY;
5979 	key.offset = ctx->pos;
5980 	key.objectid = btrfs_ino(BTRFS_I(inode));
5981 
5982 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5983 	if (ret < 0)
5984 		goto err;
5985 
5986 	while (1) {
5987 		struct dir_entry *entry;
5988 
5989 		leaf = path->nodes[0];
5990 		slot = path->slots[0];
5991 		if (slot >= btrfs_header_nritems(leaf)) {
5992 			ret = btrfs_next_leaf(root, path);
5993 			if (ret < 0)
5994 				goto err;
5995 			else if (ret > 0)
5996 				break;
5997 			continue;
5998 		}
5999 
6000 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6001 
6002 		if (found_key.objectid != key.objectid)
6003 			break;
6004 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6005 			break;
6006 		if (found_key.offset < ctx->pos)
6007 			goto next;
6008 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6009 			goto next;
6010 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6011 		if (verify_dir_item(fs_info, leaf, slot, di))
6012 			goto next;
6013 
6014 		name_len = btrfs_dir_name_len(leaf, di);
6015 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6016 		    PAGE_SIZE) {
6017 			btrfs_release_path(path);
6018 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6019 			if (ret)
6020 				goto nopos;
6021 			addr = private->filldir_buf;
6022 			entries = 0;
6023 			total_len = 0;
6024 			goto again;
6025 		}
6026 
6027 		entry = addr;
6028 		entry->name_len = name_len;
6029 		name_ptr = (char *)(entry + 1);
6030 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6031 				   name_len);
6032 		entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
6033 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6034 		entry->ino = location.objectid;
6035 		entry->offset = found_key.offset;
6036 		entries++;
6037 		addr += sizeof(struct dir_entry) + name_len;
6038 		total_len += sizeof(struct dir_entry) + name_len;
6039 next:
6040 		path->slots[0]++;
6041 	}
6042 	btrfs_release_path(path);
6043 
6044 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6045 	if (ret)
6046 		goto nopos;
6047 
6048 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6049 	if (ret)
6050 		goto nopos;
6051 
6052 	/*
6053 	 * Stop new entries from being returned after we return the last
6054 	 * entry.
6055 	 *
6056 	 * New directory entries are assigned a strictly increasing
6057 	 * offset.  This means that new entries created during readdir
6058 	 * are *guaranteed* to be seen in the future by that readdir.
6059 	 * This has broken buggy programs which operate on names as
6060 	 * they're returned by readdir.  Until we re-use freed offsets
6061 	 * we have this hack to stop new entries from being returned
6062 	 * under the assumption that they'll never reach this huge
6063 	 * offset.
6064 	 *
6065 	 * This is being careful not to overflow 32bit loff_t unless the
6066 	 * last entry requires it because doing so has broken 32bit apps
6067 	 * in the past.
6068 	 */
6069 	if (ctx->pos >= INT_MAX)
6070 		ctx->pos = LLONG_MAX;
6071 	else
6072 		ctx->pos = INT_MAX;
6073 nopos:
6074 	ret = 0;
6075 err:
6076 	if (put)
6077 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6078 	btrfs_free_path(path);
6079 	return ret;
6080 }
6081 
6082 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6083 {
6084 	struct btrfs_root *root = BTRFS_I(inode)->root;
6085 	struct btrfs_trans_handle *trans;
6086 	int ret = 0;
6087 	bool nolock = false;
6088 
6089 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6090 		return 0;
6091 
6092 	if (btrfs_fs_closing(root->fs_info) &&
6093 			btrfs_is_free_space_inode(BTRFS_I(inode)))
6094 		nolock = true;
6095 
6096 	if (wbc->sync_mode == WB_SYNC_ALL) {
6097 		if (nolock)
6098 			trans = btrfs_join_transaction_nolock(root);
6099 		else
6100 			trans = btrfs_join_transaction(root);
6101 		if (IS_ERR(trans))
6102 			return PTR_ERR(trans);
6103 		ret = btrfs_commit_transaction(trans);
6104 	}
6105 	return ret;
6106 }
6107 
6108 /*
6109  * This is somewhat expensive, updating the tree every time the
6110  * inode changes.  But, it is most likely to find the inode in cache.
6111  * FIXME, needs more benchmarking...there are no reasons other than performance
6112  * to keep or drop this code.
6113  */
6114 static int btrfs_dirty_inode(struct inode *inode)
6115 {
6116 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6117 	struct btrfs_root *root = BTRFS_I(inode)->root;
6118 	struct btrfs_trans_handle *trans;
6119 	int ret;
6120 
6121 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6122 		return 0;
6123 
6124 	trans = btrfs_join_transaction(root);
6125 	if (IS_ERR(trans))
6126 		return PTR_ERR(trans);
6127 
6128 	ret = btrfs_update_inode(trans, root, inode);
6129 	if (ret && ret == -ENOSPC) {
6130 		/* whoops, lets try again with the full transaction */
6131 		btrfs_end_transaction(trans);
6132 		trans = btrfs_start_transaction(root, 1);
6133 		if (IS_ERR(trans))
6134 			return PTR_ERR(trans);
6135 
6136 		ret = btrfs_update_inode(trans, root, inode);
6137 	}
6138 	btrfs_end_transaction(trans);
6139 	if (BTRFS_I(inode)->delayed_node)
6140 		btrfs_balance_delayed_items(fs_info);
6141 
6142 	return ret;
6143 }
6144 
6145 /*
6146  * This is a copy of file_update_time.  We need this so we can return error on
6147  * ENOSPC for updating the inode in the case of file write and mmap writes.
6148  */
6149 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6150 			     int flags)
6151 {
6152 	struct btrfs_root *root = BTRFS_I(inode)->root;
6153 
6154 	if (btrfs_root_readonly(root))
6155 		return -EROFS;
6156 
6157 	if (flags & S_VERSION)
6158 		inode_inc_iversion(inode);
6159 	if (flags & S_CTIME)
6160 		inode->i_ctime = *now;
6161 	if (flags & S_MTIME)
6162 		inode->i_mtime = *now;
6163 	if (flags & S_ATIME)
6164 		inode->i_atime = *now;
6165 	return btrfs_dirty_inode(inode);
6166 }
6167 
6168 /*
6169  * find the highest existing sequence number in a directory
6170  * and then set the in-memory index_cnt variable to reflect
6171  * free sequence numbers
6172  */
6173 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6174 {
6175 	struct btrfs_root *root = inode->root;
6176 	struct btrfs_key key, found_key;
6177 	struct btrfs_path *path;
6178 	struct extent_buffer *leaf;
6179 	int ret;
6180 
6181 	key.objectid = btrfs_ino(inode);
6182 	key.type = BTRFS_DIR_INDEX_KEY;
6183 	key.offset = (u64)-1;
6184 
6185 	path = btrfs_alloc_path();
6186 	if (!path)
6187 		return -ENOMEM;
6188 
6189 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6190 	if (ret < 0)
6191 		goto out;
6192 	/* FIXME: we should be able to handle this */
6193 	if (ret == 0)
6194 		goto out;
6195 	ret = 0;
6196 
6197 	/*
6198 	 * MAGIC NUMBER EXPLANATION:
6199 	 * since we search a directory based on f_pos we have to start at 2
6200 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6201 	 * else has to start at 2
6202 	 */
6203 	if (path->slots[0] == 0) {
6204 		inode->index_cnt = 2;
6205 		goto out;
6206 	}
6207 
6208 	path->slots[0]--;
6209 
6210 	leaf = path->nodes[0];
6211 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6212 
6213 	if (found_key.objectid != btrfs_ino(inode) ||
6214 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6215 		inode->index_cnt = 2;
6216 		goto out;
6217 	}
6218 
6219 	inode->index_cnt = found_key.offset + 1;
6220 out:
6221 	btrfs_free_path(path);
6222 	return ret;
6223 }
6224 
6225 /*
6226  * helper to find a free sequence number in a given directory.  This current
6227  * code is very simple, later versions will do smarter things in the btree
6228  */
6229 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6230 {
6231 	int ret = 0;
6232 
6233 	if (dir->index_cnt == (u64)-1) {
6234 		ret = btrfs_inode_delayed_dir_index_count(dir);
6235 		if (ret) {
6236 			ret = btrfs_set_inode_index_count(dir);
6237 			if (ret)
6238 				return ret;
6239 		}
6240 	}
6241 
6242 	*index = dir->index_cnt;
6243 	dir->index_cnt++;
6244 
6245 	return ret;
6246 }
6247 
6248 static int btrfs_insert_inode_locked(struct inode *inode)
6249 {
6250 	struct btrfs_iget_args args;
6251 	args.location = &BTRFS_I(inode)->location;
6252 	args.root = BTRFS_I(inode)->root;
6253 
6254 	return insert_inode_locked4(inode,
6255 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6256 		   btrfs_find_actor, &args);
6257 }
6258 
6259 /*
6260  * Inherit flags from the parent inode.
6261  *
6262  * Currently only the compression flags and the cow flags are inherited.
6263  */
6264 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6265 {
6266 	unsigned int flags;
6267 
6268 	if (!dir)
6269 		return;
6270 
6271 	flags = BTRFS_I(dir)->flags;
6272 
6273 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6274 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6275 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6276 	} else if (flags & BTRFS_INODE_COMPRESS) {
6277 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6278 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6279 	}
6280 
6281 	if (flags & BTRFS_INODE_NODATACOW) {
6282 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6283 		if (S_ISREG(inode->i_mode))
6284 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6285 	}
6286 
6287 	btrfs_update_iflags(inode);
6288 }
6289 
6290 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6291 				     struct btrfs_root *root,
6292 				     struct inode *dir,
6293 				     const char *name, int name_len,
6294 				     u64 ref_objectid, u64 objectid,
6295 				     umode_t mode, u64 *index)
6296 {
6297 	struct btrfs_fs_info *fs_info = root->fs_info;
6298 	struct inode *inode;
6299 	struct btrfs_inode_item *inode_item;
6300 	struct btrfs_key *location;
6301 	struct btrfs_path *path;
6302 	struct btrfs_inode_ref *ref;
6303 	struct btrfs_key key[2];
6304 	u32 sizes[2];
6305 	int nitems = name ? 2 : 1;
6306 	unsigned long ptr;
6307 	int ret;
6308 
6309 	path = btrfs_alloc_path();
6310 	if (!path)
6311 		return ERR_PTR(-ENOMEM);
6312 
6313 	inode = new_inode(fs_info->sb);
6314 	if (!inode) {
6315 		btrfs_free_path(path);
6316 		return ERR_PTR(-ENOMEM);
6317 	}
6318 
6319 	/*
6320 	 * O_TMPFILE, set link count to 0, so that after this point,
6321 	 * we fill in an inode item with the correct link count.
6322 	 */
6323 	if (!name)
6324 		set_nlink(inode, 0);
6325 
6326 	/*
6327 	 * we have to initialize this early, so we can reclaim the inode
6328 	 * number if we fail afterwards in this function.
6329 	 */
6330 	inode->i_ino = objectid;
6331 
6332 	if (dir && name) {
6333 		trace_btrfs_inode_request(dir);
6334 
6335 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6336 		if (ret) {
6337 			btrfs_free_path(path);
6338 			iput(inode);
6339 			return ERR_PTR(ret);
6340 		}
6341 	} else if (dir) {
6342 		*index = 0;
6343 	}
6344 	/*
6345 	 * index_cnt is ignored for everything but a dir,
6346 	 * btrfs_get_inode_index_count has an explanation for the magic
6347 	 * number
6348 	 */
6349 	BTRFS_I(inode)->index_cnt = 2;
6350 	BTRFS_I(inode)->dir_index = *index;
6351 	BTRFS_I(inode)->root = root;
6352 	BTRFS_I(inode)->generation = trans->transid;
6353 	inode->i_generation = BTRFS_I(inode)->generation;
6354 
6355 	/*
6356 	 * We could have gotten an inode number from somebody who was fsynced
6357 	 * and then removed in this same transaction, so let's just set full
6358 	 * sync since it will be a full sync anyway and this will blow away the
6359 	 * old info in the log.
6360 	 */
6361 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6362 
6363 	key[0].objectid = objectid;
6364 	key[0].type = BTRFS_INODE_ITEM_KEY;
6365 	key[0].offset = 0;
6366 
6367 	sizes[0] = sizeof(struct btrfs_inode_item);
6368 
6369 	if (name) {
6370 		/*
6371 		 * Start new inodes with an inode_ref. This is slightly more
6372 		 * efficient for small numbers of hard links since they will
6373 		 * be packed into one item. Extended refs will kick in if we
6374 		 * add more hard links than can fit in the ref item.
6375 		 */
6376 		key[1].objectid = objectid;
6377 		key[1].type = BTRFS_INODE_REF_KEY;
6378 		key[1].offset = ref_objectid;
6379 
6380 		sizes[1] = name_len + sizeof(*ref);
6381 	}
6382 
6383 	location = &BTRFS_I(inode)->location;
6384 	location->objectid = objectid;
6385 	location->offset = 0;
6386 	location->type = BTRFS_INODE_ITEM_KEY;
6387 
6388 	ret = btrfs_insert_inode_locked(inode);
6389 	if (ret < 0)
6390 		goto fail;
6391 
6392 	path->leave_spinning = 1;
6393 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6394 	if (ret != 0)
6395 		goto fail_unlock;
6396 
6397 	inode_init_owner(inode, dir, mode);
6398 	inode_set_bytes(inode, 0);
6399 
6400 	inode->i_mtime = current_time(inode);
6401 	inode->i_atime = inode->i_mtime;
6402 	inode->i_ctime = inode->i_mtime;
6403 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6404 
6405 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6406 				  struct btrfs_inode_item);
6407 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6408 			     sizeof(*inode_item));
6409 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6410 
6411 	if (name) {
6412 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6413 				     struct btrfs_inode_ref);
6414 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6415 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6416 		ptr = (unsigned long)(ref + 1);
6417 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6418 	}
6419 
6420 	btrfs_mark_buffer_dirty(path->nodes[0]);
6421 	btrfs_free_path(path);
6422 
6423 	btrfs_inherit_iflags(inode, dir);
6424 
6425 	if (S_ISREG(mode)) {
6426 		if (btrfs_test_opt(fs_info, NODATASUM))
6427 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6428 		if (btrfs_test_opt(fs_info, NODATACOW))
6429 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6430 				BTRFS_INODE_NODATASUM;
6431 	}
6432 
6433 	inode_tree_add(inode);
6434 
6435 	trace_btrfs_inode_new(inode);
6436 	btrfs_set_inode_last_trans(trans, inode);
6437 
6438 	btrfs_update_root_times(trans, root);
6439 
6440 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6441 	if (ret)
6442 		btrfs_err(fs_info,
6443 			  "error inheriting props for ino %llu (root %llu): %d",
6444 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6445 
6446 	return inode;
6447 
6448 fail_unlock:
6449 	unlock_new_inode(inode);
6450 fail:
6451 	if (dir && name)
6452 		BTRFS_I(dir)->index_cnt--;
6453 	btrfs_free_path(path);
6454 	iput(inode);
6455 	return ERR_PTR(ret);
6456 }
6457 
6458 static inline u8 btrfs_inode_type(struct inode *inode)
6459 {
6460 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6461 }
6462 
6463 /*
6464  * utility function to add 'inode' into 'parent_inode' with
6465  * a give name and a given sequence number.
6466  * if 'add_backref' is true, also insert a backref from the
6467  * inode to the parent directory.
6468  */
6469 int btrfs_add_link(struct btrfs_trans_handle *trans,
6470 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6471 		   const char *name, int name_len, int add_backref, u64 index)
6472 {
6473 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6474 	int ret = 0;
6475 	struct btrfs_key key;
6476 	struct btrfs_root *root = parent_inode->root;
6477 	u64 ino = btrfs_ino(inode);
6478 	u64 parent_ino = btrfs_ino(parent_inode);
6479 
6480 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6481 		memcpy(&key, &inode->root->root_key, sizeof(key));
6482 	} else {
6483 		key.objectid = ino;
6484 		key.type = BTRFS_INODE_ITEM_KEY;
6485 		key.offset = 0;
6486 	}
6487 
6488 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6489 		ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6490 					 root->root_key.objectid, parent_ino,
6491 					 index, name, name_len);
6492 	} else if (add_backref) {
6493 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6494 					     parent_ino, index);
6495 	}
6496 
6497 	/* Nothing to clean up yet */
6498 	if (ret)
6499 		return ret;
6500 
6501 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6502 				    parent_inode, &key,
6503 				    btrfs_inode_type(&inode->vfs_inode), index);
6504 	if (ret == -EEXIST || ret == -EOVERFLOW)
6505 		goto fail_dir_item;
6506 	else if (ret) {
6507 		btrfs_abort_transaction(trans, ret);
6508 		return ret;
6509 	}
6510 
6511 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6512 			   name_len * 2);
6513 	inode_inc_iversion(&parent_inode->vfs_inode);
6514 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6515 		current_time(&parent_inode->vfs_inode);
6516 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6517 	if (ret)
6518 		btrfs_abort_transaction(trans, ret);
6519 	return ret;
6520 
6521 fail_dir_item:
6522 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6523 		u64 local_index;
6524 		int err;
6525 		err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6526 					 root->root_key.objectid, parent_ino,
6527 					 &local_index, name, name_len);
6528 
6529 	} else if (add_backref) {
6530 		u64 local_index;
6531 		int err;
6532 
6533 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6534 					  ino, parent_ino, &local_index);
6535 	}
6536 	return ret;
6537 }
6538 
6539 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6540 			    struct btrfs_inode *dir, struct dentry *dentry,
6541 			    struct btrfs_inode *inode, int backref, u64 index)
6542 {
6543 	int err = btrfs_add_link(trans, dir, inode,
6544 				 dentry->d_name.name, dentry->d_name.len,
6545 				 backref, index);
6546 	if (err > 0)
6547 		err = -EEXIST;
6548 	return err;
6549 }
6550 
6551 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6552 			umode_t mode, dev_t rdev)
6553 {
6554 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6555 	struct btrfs_trans_handle *trans;
6556 	struct btrfs_root *root = BTRFS_I(dir)->root;
6557 	struct inode *inode = NULL;
6558 	int err;
6559 	int drop_inode = 0;
6560 	u64 objectid;
6561 	u64 index = 0;
6562 
6563 	/*
6564 	 * 2 for inode item and ref
6565 	 * 2 for dir items
6566 	 * 1 for xattr if selinux is on
6567 	 */
6568 	trans = btrfs_start_transaction(root, 5);
6569 	if (IS_ERR(trans))
6570 		return PTR_ERR(trans);
6571 
6572 	err = btrfs_find_free_ino(root, &objectid);
6573 	if (err)
6574 		goto out_unlock;
6575 
6576 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6577 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6578 			mode, &index);
6579 	if (IS_ERR(inode)) {
6580 		err = PTR_ERR(inode);
6581 		goto out_unlock;
6582 	}
6583 
6584 	/*
6585 	* If the active LSM wants to access the inode during
6586 	* d_instantiate it needs these. Smack checks to see
6587 	* if the filesystem supports xattrs by looking at the
6588 	* ops vector.
6589 	*/
6590 	inode->i_op = &btrfs_special_inode_operations;
6591 	init_special_inode(inode, inode->i_mode, rdev);
6592 
6593 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6594 	if (err)
6595 		goto out_unlock_inode;
6596 
6597 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6598 			0, index);
6599 	if (err) {
6600 		goto out_unlock_inode;
6601 	} else {
6602 		btrfs_update_inode(trans, root, inode);
6603 		unlock_new_inode(inode);
6604 		d_instantiate(dentry, inode);
6605 	}
6606 
6607 out_unlock:
6608 	btrfs_end_transaction(trans);
6609 	btrfs_balance_delayed_items(fs_info);
6610 	btrfs_btree_balance_dirty(fs_info);
6611 	if (drop_inode) {
6612 		inode_dec_link_count(inode);
6613 		iput(inode);
6614 	}
6615 	return err;
6616 
6617 out_unlock_inode:
6618 	drop_inode = 1;
6619 	unlock_new_inode(inode);
6620 	goto out_unlock;
6621 
6622 }
6623 
6624 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6625 			umode_t mode, bool excl)
6626 {
6627 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6628 	struct btrfs_trans_handle *trans;
6629 	struct btrfs_root *root = BTRFS_I(dir)->root;
6630 	struct inode *inode = NULL;
6631 	int drop_inode_on_err = 0;
6632 	int err;
6633 	u64 objectid;
6634 	u64 index = 0;
6635 
6636 	/*
6637 	 * 2 for inode item and ref
6638 	 * 2 for dir items
6639 	 * 1 for xattr if selinux is on
6640 	 */
6641 	trans = btrfs_start_transaction(root, 5);
6642 	if (IS_ERR(trans))
6643 		return PTR_ERR(trans);
6644 
6645 	err = btrfs_find_free_ino(root, &objectid);
6646 	if (err)
6647 		goto out_unlock;
6648 
6649 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6650 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6651 			mode, &index);
6652 	if (IS_ERR(inode)) {
6653 		err = PTR_ERR(inode);
6654 		goto out_unlock;
6655 	}
6656 	drop_inode_on_err = 1;
6657 	/*
6658 	* If the active LSM wants to access the inode during
6659 	* d_instantiate it needs these. Smack checks to see
6660 	* if the filesystem supports xattrs by looking at the
6661 	* ops vector.
6662 	*/
6663 	inode->i_fop = &btrfs_file_operations;
6664 	inode->i_op = &btrfs_file_inode_operations;
6665 	inode->i_mapping->a_ops = &btrfs_aops;
6666 
6667 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6668 	if (err)
6669 		goto out_unlock_inode;
6670 
6671 	err = btrfs_update_inode(trans, root, inode);
6672 	if (err)
6673 		goto out_unlock_inode;
6674 
6675 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6676 			0, index);
6677 	if (err)
6678 		goto out_unlock_inode;
6679 
6680 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6681 	unlock_new_inode(inode);
6682 	d_instantiate(dentry, inode);
6683 
6684 out_unlock:
6685 	btrfs_end_transaction(trans);
6686 	if (err && drop_inode_on_err) {
6687 		inode_dec_link_count(inode);
6688 		iput(inode);
6689 	}
6690 	btrfs_balance_delayed_items(fs_info);
6691 	btrfs_btree_balance_dirty(fs_info);
6692 	return err;
6693 
6694 out_unlock_inode:
6695 	unlock_new_inode(inode);
6696 	goto out_unlock;
6697 
6698 }
6699 
6700 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6701 		      struct dentry *dentry)
6702 {
6703 	struct btrfs_trans_handle *trans = NULL;
6704 	struct btrfs_root *root = BTRFS_I(dir)->root;
6705 	struct inode *inode = d_inode(old_dentry);
6706 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6707 	u64 index;
6708 	int err;
6709 	int drop_inode = 0;
6710 
6711 	/* do not allow sys_link's with other subvols of the same device */
6712 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6713 		return -EXDEV;
6714 
6715 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6716 		return -EMLINK;
6717 
6718 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6719 	if (err)
6720 		goto fail;
6721 
6722 	/*
6723 	 * 2 items for inode and inode ref
6724 	 * 2 items for dir items
6725 	 * 1 item for parent inode
6726 	 */
6727 	trans = btrfs_start_transaction(root, 5);
6728 	if (IS_ERR(trans)) {
6729 		err = PTR_ERR(trans);
6730 		trans = NULL;
6731 		goto fail;
6732 	}
6733 
6734 	/* There are several dir indexes for this inode, clear the cache. */
6735 	BTRFS_I(inode)->dir_index = 0ULL;
6736 	inc_nlink(inode);
6737 	inode_inc_iversion(inode);
6738 	inode->i_ctime = current_time(inode);
6739 	ihold(inode);
6740 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6741 
6742 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6743 			1, index);
6744 
6745 	if (err) {
6746 		drop_inode = 1;
6747 	} else {
6748 		struct dentry *parent = dentry->d_parent;
6749 		err = btrfs_update_inode(trans, root, inode);
6750 		if (err)
6751 			goto fail;
6752 		if (inode->i_nlink == 1) {
6753 			/*
6754 			 * If new hard link count is 1, it's a file created
6755 			 * with open(2) O_TMPFILE flag.
6756 			 */
6757 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6758 			if (err)
6759 				goto fail;
6760 		}
6761 		d_instantiate(dentry, inode);
6762 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6763 	}
6764 
6765 	btrfs_balance_delayed_items(fs_info);
6766 fail:
6767 	if (trans)
6768 		btrfs_end_transaction(trans);
6769 	if (drop_inode) {
6770 		inode_dec_link_count(inode);
6771 		iput(inode);
6772 	}
6773 	btrfs_btree_balance_dirty(fs_info);
6774 	return err;
6775 }
6776 
6777 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6778 {
6779 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6780 	struct inode *inode = NULL;
6781 	struct btrfs_trans_handle *trans;
6782 	struct btrfs_root *root = BTRFS_I(dir)->root;
6783 	int err = 0;
6784 	int drop_on_err = 0;
6785 	u64 objectid = 0;
6786 	u64 index = 0;
6787 
6788 	/*
6789 	 * 2 items for inode and ref
6790 	 * 2 items for dir items
6791 	 * 1 for xattr if selinux is on
6792 	 */
6793 	trans = btrfs_start_transaction(root, 5);
6794 	if (IS_ERR(trans))
6795 		return PTR_ERR(trans);
6796 
6797 	err = btrfs_find_free_ino(root, &objectid);
6798 	if (err)
6799 		goto out_fail;
6800 
6801 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6802 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6803 			S_IFDIR | mode, &index);
6804 	if (IS_ERR(inode)) {
6805 		err = PTR_ERR(inode);
6806 		goto out_fail;
6807 	}
6808 
6809 	drop_on_err = 1;
6810 	/* these must be set before we unlock the inode */
6811 	inode->i_op = &btrfs_dir_inode_operations;
6812 	inode->i_fop = &btrfs_dir_file_operations;
6813 
6814 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6815 	if (err)
6816 		goto out_fail_inode;
6817 
6818 	btrfs_i_size_write(BTRFS_I(inode), 0);
6819 	err = btrfs_update_inode(trans, root, inode);
6820 	if (err)
6821 		goto out_fail_inode;
6822 
6823 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6824 			dentry->d_name.name,
6825 			dentry->d_name.len, 0, index);
6826 	if (err)
6827 		goto out_fail_inode;
6828 
6829 	d_instantiate(dentry, inode);
6830 	/*
6831 	 * mkdir is special.  We're unlocking after we call d_instantiate
6832 	 * to avoid a race with nfsd calling d_instantiate.
6833 	 */
6834 	unlock_new_inode(inode);
6835 	drop_on_err = 0;
6836 
6837 out_fail:
6838 	btrfs_end_transaction(trans);
6839 	if (drop_on_err) {
6840 		inode_dec_link_count(inode);
6841 		iput(inode);
6842 	}
6843 	btrfs_balance_delayed_items(fs_info);
6844 	btrfs_btree_balance_dirty(fs_info);
6845 	return err;
6846 
6847 out_fail_inode:
6848 	unlock_new_inode(inode);
6849 	goto out_fail;
6850 }
6851 
6852 /* Find next extent map of a given extent map, caller needs to ensure locks */
6853 static struct extent_map *next_extent_map(struct extent_map *em)
6854 {
6855 	struct rb_node *next;
6856 
6857 	next = rb_next(&em->rb_node);
6858 	if (!next)
6859 		return NULL;
6860 	return container_of(next, struct extent_map, rb_node);
6861 }
6862 
6863 static struct extent_map *prev_extent_map(struct extent_map *em)
6864 {
6865 	struct rb_node *prev;
6866 
6867 	prev = rb_prev(&em->rb_node);
6868 	if (!prev)
6869 		return NULL;
6870 	return container_of(prev, struct extent_map, rb_node);
6871 }
6872 
6873 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6874  * the existing extent is the nearest extent to map_start,
6875  * and an extent that you want to insert, deal with overlap and insert
6876  * the best fitted new extent into the tree.
6877  */
6878 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6879 				struct extent_map *existing,
6880 				struct extent_map *em,
6881 				u64 map_start)
6882 {
6883 	struct extent_map *prev;
6884 	struct extent_map *next;
6885 	u64 start;
6886 	u64 end;
6887 	u64 start_diff;
6888 
6889 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6890 
6891 	if (existing->start > map_start) {
6892 		next = existing;
6893 		prev = prev_extent_map(next);
6894 	} else {
6895 		prev = existing;
6896 		next = next_extent_map(prev);
6897 	}
6898 
6899 	start = prev ? extent_map_end(prev) : em->start;
6900 	start = max_t(u64, start, em->start);
6901 	end = next ? next->start : extent_map_end(em);
6902 	end = min_t(u64, end, extent_map_end(em));
6903 	start_diff = start - em->start;
6904 	em->start = start;
6905 	em->len = end - start;
6906 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6907 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6908 		em->block_start += start_diff;
6909 		em->block_len -= start_diff;
6910 	}
6911 	return add_extent_mapping(em_tree, em, 0);
6912 }
6913 
6914 static noinline int uncompress_inline(struct btrfs_path *path,
6915 				      struct page *page,
6916 				      size_t pg_offset, u64 extent_offset,
6917 				      struct btrfs_file_extent_item *item)
6918 {
6919 	int ret;
6920 	struct extent_buffer *leaf = path->nodes[0];
6921 	char *tmp;
6922 	size_t max_size;
6923 	unsigned long inline_size;
6924 	unsigned long ptr;
6925 	int compress_type;
6926 
6927 	WARN_ON(pg_offset != 0);
6928 	compress_type = btrfs_file_extent_compression(leaf, item);
6929 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6930 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6931 					btrfs_item_nr(path->slots[0]));
6932 	tmp = kmalloc(inline_size, GFP_NOFS);
6933 	if (!tmp)
6934 		return -ENOMEM;
6935 	ptr = btrfs_file_extent_inline_start(item);
6936 
6937 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6938 
6939 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6940 	ret = btrfs_decompress(compress_type, tmp, page,
6941 			       extent_offset, inline_size, max_size);
6942 
6943 	/*
6944 	 * decompression code contains a memset to fill in any space between the end
6945 	 * of the uncompressed data and the end of max_size in case the decompressed
6946 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6947 	 * the end of an inline extent and the beginning of the next block, so we
6948 	 * cover that region here.
6949 	 */
6950 
6951 	if (max_size + pg_offset < PAGE_SIZE) {
6952 		char *map = kmap(page);
6953 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6954 		kunmap(page);
6955 	}
6956 	kfree(tmp);
6957 	return ret;
6958 }
6959 
6960 /*
6961  * a bit scary, this does extent mapping from logical file offset to the disk.
6962  * the ugly parts come from merging extents from the disk with the in-ram
6963  * representation.  This gets more complex because of the data=ordered code,
6964  * where the in-ram extents might be locked pending data=ordered completion.
6965  *
6966  * This also copies inline extents directly into the page.
6967  */
6968 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6969 		struct page *page,
6970 	    size_t pg_offset, u64 start, u64 len,
6971 		int create)
6972 {
6973 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6974 	int ret;
6975 	int err = 0;
6976 	u64 extent_start = 0;
6977 	u64 extent_end = 0;
6978 	u64 objectid = btrfs_ino(inode);
6979 	u32 found_type;
6980 	struct btrfs_path *path = NULL;
6981 	struct btrfs_root *root = inode->root;
6982 	struct btrfs_file_extent_item *item;
6983 	struct extent_buffer *leaf;
6984 	struct btrfs_key found_key;
6985 	struct extent_map *em = NULL;
6986 	struct extent_map_tree *em_tree = &inode->extent_tree;
6987 	struct extent_io_tree *io_tree = &inode->io_tree;
6988 	struct btrfs_trans_handle *trans = NULL;
6989 	const bool new_inline = !page || create;
6990 
6991 again:
6992 	read_lock(&em_tree->lock);
6993 	em = lookup_extent_mapping(em_tree, start, len);
6994 	if (em)
6995 		em->bdev = fs_info->fs_devices->latest_bdev;
6996 	read_unlock(&em_tree->lock);
6997 
6998 	if (em) {
6999 		if (em->start > start || em->start + em->len <= start)
7000 			free_extent_map(em);
7001 		else if (em->block_start == EXTENT_MAP_INLINE && page)
7002 			free_extent_map(em);
7003 		else
7004 			goto out;
7005 	}
7006 	em = alloc_extent_map();
7007 	if (!em) {
7008 		err = -ENOMEM;
7009 		goto out;
7010 	}
7011 	em->bdev = fs_info->fs_devices->latest_bdev;
7012 	em->start = EXTENT_MAP_HOLE;
7013 	em->orig_start = EXTENT_MAP_HOLE;
7014 	em->len = (u64)-1;
7015 	em->block_len = (u64)-1;
7016 
7017 	if (!path) {
7018 		path = btrfs_alloc_path();
7019 		if (!path) {
7020 			err = -ENOMEM;
7021 			goto out;
7022 		}
7023 		/*
7024 		 * Chances are we'll be called again, so go ahead and do
7025 		 * readahead
7026 		 */
7027 		path->reada = READA_FORWARD;
7028 	}
7029 
7030 	ret = btrfs_lookup_file_extent(trans, root, path,
7031 				       objectid, start, trans != NULL);
7032 	if (ret < 0) {
7033 		err = ret;
7034 		goto out;
7035 	}
7036 
7037 	if (ret != 0) {
7038 		if (path->slots[0] == 0)
7039 			goto not_found;
7040 		path->slots[0]--;
7041 	}
7042 
7043 	leaf = path->nodes[0];
7044 	item = btrfs_item_ptr(leaf, path->slots[0],
7045 			      struct btrfs_file_extent_item);
7046 	/* are we inside the extent that was found? */
7047 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7048 	found_type = found_key.type;
7049 	if (found_key.objectid != objectid ||
7050 	    found_type != BTRFS_EXTENT_DATA_KEY) {
7051 		/*
7052 		 * If we backup past the first extent we want to move forward
7053 		 * and see if there is an extent in front of us, otherwise we'll
7054 		 * say there is a hole for our whole search range which can
7055 		 * cause problems.
7056 		 */
7057 		extent_end = start;
7058 		goto next;
7059 	}
7060 
7061 	found_type = btrfs_file_extent_type(leaf, item);
7062 	extent_start = found_key.offset;
7063 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7064 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7065 		extent_end = extent_start +
7066 		       btrfs_file_extent_num_bytes(leaf, item);
7067 
7068 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7069 						       extent_start);
7070 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7071 		size_t size;
7072 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7073 		extent_end = ALIGN(extent_start + size,
7074 				   fs_info->sectorsize);
7075 
7076 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7077 						      path->slots[0],
7078 						      extent_start);
7079 	}
7080 next:
7081 	if (start >= extent_end) {
7082 		path->slots[0]++;
7083 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7084 			ret = btrfs_next_leaf(root, path);
7085 			if (ret < 0) {
7086 				err = ret;
7087 				goto out;
7088 			}
7089 			if (ret > 0)
7090 				goto not_found;
7091 			leaf = path->nodes[0];
7092 		}
7093 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7094 		if (found_key.objectid != objectid ||
7095 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7096 			goto not_found;
7097 		if (start + len <= found_key.offset)
7098 			goto not_found;
7099 		if (start > found_key.offset)
7100 			goto next;
7101 		em->start = start;
7102 		em->orig_start = start;
7103 		em->len = found_key.offset - start;
7104 		goto not_found_em;
7105 	}
7106 
7107 	btrfs_extent_item_to_extent_map(inode, path, item,
7108 			new_inline, em);
7109 
7110 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7111 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7112 		goto insert;
7113 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7114 		unsigned long ptr;
7115 		char *map;
7116 		size_t size;
7117 		size_t extent_offset;
7118 		size_t copy_size;
7119 
7120 		if (new_inline)
7121 			goto out;
7122 
7123 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7124 		extent_offset = page_offset(page) + pg_offset - extent_start;
7125 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7126 				  size - extent_offset);
7127 		em->start = extent_start + extent_offset;
7128 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7129 		em->orig_block_len = em->len;
7130 		em->orig_start = em->start;
7131 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7132 		if (create == 0 && !PageUptodate(page)) {
7133 			if (btrfs_file_extent_compression(leaf, item) !=
7134 			    BTRFS_COMPRESS_NONE) {
7135 				ret = uncompress_inline(path, page, pg_offset,
7136 							extent_offset, item);
7137 				if (ret) {
7138 					err = ret;
7139 					goto out;
7140 				}
7141 			} else {
7142 				map = kmap(page);
7143 				read_extent_buffer(leaf, map + pg_offset, ptr,
7144 						   copy_size);
7145 				if (pg_offset + copy_size < PAGE_SIZE) {
7146 					memset(map + pg_offset + copy_size, 0,
7147 					       PAGE_SIZE - pg_offset -
7148 					       copy_size);
7149 				}
7150 				kunmap(page);
7151 			}
7152 			flush_dcache_page(page);
7153 		} else if (create && PageUptodate(page)) {
7154 			BUG();
7155 			if (!trans) {
7156 				kunmap(page);
7157 				free_extent_map(em);
7158 				em = NULL;
7159 
7160 				btrfs_release_path(path);
7161 				trans = btrfs_join_transaction(root);
7162 
7163 				if (IS_ERR(trans))
7164 					return ERR_CAST(trans);
7165 				goto again;
7166 			}
7167 			map = kmap(page);
7168 			write_extent_buffer(leaf, map + pg_offset, ptr,
7169 					    copy_size);
7170 			kunmap(page);
7171 			btrfs_mark_buffer_dirty(leaf);
7172 		}
7173 		set_extent_uptodate(io_tree, em->start,
7174 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7175 		goto insert;
7176 	}
7177 not_found:
7178 	em->start = start;
7179 	em->orig_start = start;
7180 	em->len = len;
7181 not_found_em:
7182 	em->block_start = EXTENT_MAP_HOLE;
7183 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7184 insert:
7185 	btrfs_release_path(path);
7186 	if (em->start > start || extent_map_end(em) <= start) {
7187 		btrfs_err(fs_info,
7188 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7189 			  em->start, em->len, start, len);
7190 		err = -EIO;
7191 		goto out;
7192 	}
7193 
7194 	err = 0;
7195 	write_lock(&em_tree->lock);
7196 	ret = add_extent_mapping(em_tree, em, 0);
7197 	/* it is possible that someone inserted the extent into the tree
7198 	 * while we had the lock dropped.  It is also possible that
7199 	 * an overlapping map exists in the tree
7200 	 */
7201 	if (ret == -EEXIST) {
7202 		struct extent_map *existing;
7203 
7204 		ret = 0;
7205 
7206 		existing = search_extent_mapping(em_tree, start, len);
7207 		/*
7208 		 * existing will always be non-NULL, since there must be
7209 		 * extent causing the -EEXIST.
7210 		 */
7211 		if (existing->start == em->start &&
7212 		    extent_map_end(existing) >= extent_map_end(em) &&
7213 		    em->block_start == existing->block_start) {
7214 			/*
7215 			 * The existing extent map already encompasses the
7216 			 * entire extent map we tried to add.
7217 			 */
7218 			free_extent_map(em);
7219 			em = existing;
7220 			err = 0;
7221 
7222 		} else if (start >= extent_map_end(existing) ||
7223 		    start <= existing->start) {
7224 			/*
7225 			 * The existing extent map is the one nearest to
7226 			 * the [start, start + len) range which overlaps
7227 			 */
7228 			err = merge_extent_mapping(em_tree, existing,
7229 						   em, start);
7230 			free_extent_map(existing);
7231 			if (err) {
7232 				free_extent_map(em);
7233 				em = NULL;
7234 			}
7235 		} else {
7236 			free_extent_map(em);
7237 			em = existing;
7238 			err = 0;
7239 		}
7240 	}
7241 	write_unlock(&em_tree->lock);
7242 out:
7243 
7244 	trace_btrfs_get_extent(root, inode, em);
7245 
7246 	btrfs_free_path(path);
7247 	if (trans) {
7248 		ret = btrfs_end_transaction(trans);
7249 		if (!err)
7250 			err = ret;
7251 	}
7252 	if (err) {
7253 		free_extent_map(em);
7254 		return ERR_PTR(err);
7255 	}
7256 	BUG_ON(!em); /* Error is always set */
7257 	return em;
7258 }
7259 
7260 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7261 		struct page *page,
7262 		size_t pg_offset, u64 start, u64 len,
7263 		int create)
7264 {
7265 	struct extent_map *em;
7266 	struct extent_map *hole_em = NULL;
7267 	u64 range_start = start;
7268 	u64 end;
7269 	u64 found;
7270 	u64 found_end;
7271 	int err = 0;
7272 
7273 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7274 	if (IS_ERR(em))
7275 		return em;
7276 	/*
7277 	 * If our em maps to:
7278 	 * - a hole or
7279 	 * - a pre-alloc extent,
7280 	 * there might actually be delalloc bytes behind it.
7281 	 */
7282 	if (em->block_start != EXTENT_MAP_HOLE &&
7283 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7284 		return em;
7285 	else
7286 		hole_em = em;
7287 
7288 	/* check to see if we've wrapped (len == -1 or similar) */
7289 	end = start + len;
7290 	if (end < start)
7291 		end = (u64)-1;
7292 	else
7293 		end -= 1;
7294 
7295 	em = NULL;
7296 
7297 	/* ok, we didn't find anything, lets look for delalloc */
7298 	found = count_range_bits(&inode->io_tree, &range_start,
7299 				 end, len, EXTENT_DELALLOC, 1);
7300 	found_end = range_start + found;
7301 	if (found_end < range_start)
7302 		found_end = (u64)-1;
7303 
7304 	/*
7305 	 * we didn't find anything useful, return
7306 	 * the original results from get_extent()
7307 	 */
7308 	if (range_start > end || found_end <= start) {
7309 		em = hole_em;
7310 		hole_em = NULL;
7311 		goto out;
7312 	}
7313 
7314 	/* adjust the range_start to make sure it doesn't
7315 	 * go backwards from the start they passed in
7316 	 */
7317 	range_start = max(start, range_start);
7318 	found = found_end - range_start;
7319 
7320 	if (found > 0) {
7321 		u64 hole_start = start;
7322 		u64 hole_len = len;
7323 
7324 		em = alloc_extent_map();
7325 		if (!em) {
7326 			err = -ENOMEM;
7327 			goto out;
7328 		}
7329 		/*
7330 		 * when btrfs_get_extent can't find anything it
7331 		 * returns one huge hole
7332 		 *
7333 		 * make sure what it found really fits our range, and
7334 		 * adjust to make sure it is based on the start from
7335 		 * the caller
7336 		 */
7337 		if (hole_em) {
7338 			u64 calc_end = extent_map_end(hole_em);
7339 
7340 			if (calc_end <= start || (hole_em->start > end)) {
7341 				free_extent_map(hole_em);
7342 				hole_em = NULL;
7343 			} else {
7344 				hole_start = max(hole_em->start, start);
7345 				hole_len = calc_end - hole_start;
7346 			}
7347 		}
7348 		em->bdev = NULL;
7349 		if (hole_em && range_start > hole_start) {
7350 			/* our hole starts before our delalloc, so we
7351 			 * have to return just the parts of the hole
7352 			 * that go until  the delalloc starts
7353 			 */
7354 			em->len = min(hole_len,
7355 				      range_start - hole_start);
7356 			em->start = hole_start;
7357 			em->orig_start = hole_start;
7358 			/*
7359 			 * don't adjust block start at all,
7360 			 * it is fixed at EXTENT_MAP_HOLE
7361 			 */
7362 			em->block_start = hole_em->block_start;
7363 			em->block_len = hole_len;
7364 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7365 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7366 		} else {
7367 			em->start = range_start;
7368 			em->len = found;
7369 			em->orig_start = range_start;
7370 			em->block_start = EXTENT_MAP_DELALLOC;
7371 			em->block_len = found;
7372 		}
7373 	} else if (hole_em) {
7374 		return hole_em;
7375 	}
7376 out:
7377 
7378 	free_extent_map(hole_em);
7379 	if (err) {
7380 		free_extent_map(em);
7381 		return ERR_PTR(err);
7382 	}
7383 	return em;
7384 }
7385 
7386 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7387 						  const u64 start,
7388 						  const u64 len,
7389 						  const u64 orig_start,
7390 						  const u64 block_start,
7391 						  const u64 block_len,
7392 						  const u64 orig_block_len,
7393 						  const u64 ram_bytes,
7394 						  const int type)
7395 {
7396 	struct extent_map *em = NULL;
7397 	int ret;
7398 
7399 	if (type != BTRFS_ORDERED_NOCOW) {
7400 		em = create_io_em(inode, start, len, orig_start,
7401 				  block_start, block_len, orig_block_len,
7402 				  ram_bytes,
7403 				  BTRFS_COMPRESS_NONE, /* compress_type */
7404 				  type);
7405 		if (IS_ERR(em))
7406 			goto out;
7407 	}
7408 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7409 					   len, block_len, type);
7410 	if (ret) {
7411 		if (em) {
7412 			free_extent_map(em);
7413 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7414 						start + len - 1, 0);
7415 		}
7416 		em = ERR_PTR(ret);
7417 	}
7418  out:
7419 
7420 	return em;
7421 }
7422 
7423 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7424 						  u64 start, u64 len)
7425 {
7426 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7427 	struct btrfs_root *root = BTRFS_I(inode)->root;
7428 	struct extent_map *em;
7429 	struct btrfs_key ins;
7430 	u64 alloc_hint;
7431 	int ret;
7432 
7433 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7434 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7435 				   0, alloc_hint, &ins, 1, 1);
7436 	if (ret)
7437 		return ERR_PTR(ret);
7438 
7439 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7440 				     ins.objectid, ins.offset, ins.offset,
7441 				     ins.offset, BTRFS_ORDERED_REGULAR);
7442 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7443 	if (IS_ERR(em))
7444 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7445 					   ins.offset, 1);
7446 
7447 	return em;
7448 }
7449 
7450 /*
7451  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7452  * block must be cow'd
7453  */
7454 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7455 			      u64 *orig_start, u64 *orig_block_len,
7456 			      u64 *ram_bytes)
7457 {
7458 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7459 	struct btrfs_path *path;
7460 	int ret;
7461 	struct extent_buffer *leaf;
7462 	struct btrfs_root *root = BTRFS_I(inode)->root;
7463 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7464 	struct btrfs_file_extent_item *fi;
7465 	struct btrfs_key key;
7466 	u64 disk_bytenr;
7467 	u64 backref_offset;
7468 	u64 extent_end;
7469 	u64 num_bytes;
7470 	int slot;
7471 	int found_type;
7472 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7473 
7474 	path = btrfs_alloc_path();
7475 	if (!path)
7476 		return -ENOMEM;
7477 
7478 	ret = btrfs_lookup_file_extent(NULL, root, path,
7479 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7480 	if (ret < 0)
7481 		goto out;
7482 
7483 	slot = path->slots[0];
7484 	if (ret == 1) {
7485 		if (slot == 0) {
7486 			/* can't find the item, must cow */
7487 			ret = 0;
7488 			goto out;
7489 		}
7490 		slot--;
7491 	}
7492 	ret = 0;
7493 	leaf = path->nodes[0];
7494 	btrfs_item_key_to_cpu(leaf, &key, slot);
7495 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7496 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7497 		/* not our file or wrong item type, must cow */
7498 		goto out;
7499 	}
7500 
7501 	if (key.offset > offset) {
7502 		/* Wrong offset, must cow */
7503 		goto out;
7504 	}
7505 
7506 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7507 	found_type = btrfs_file_extent_type(leaf, fi);
7508 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7509 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7510 		/* not a regular extent, must cow */
7511 		goto out;
7512 	}
7513 
7514 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7515 		goto out;
7516 
7517 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7518 	if (extent_end <= offset)
7519 		goto out;
7520 
7521 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7522 	if (disk_bytenr == 0)
7523 		goto out;
7524 
7525 	if (btrfs_file_extent_compression(leaf, fi) ||
7526 	    btrfs_file_extent_encryption(leaf, fi) ||
7527 	    btrfs_file_extent_other_encoding(leaf, fi))
7528 		goto out;
7529 
7530 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7531 
7532 	if (orig_start) {
7533 		*orig_start = key.offset - backref_offset;
7534 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7535 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7536 	}
7537 
7538 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7539 		goto out;
7540 
7541 	num_bytes = min(offset + *len, extent_end) - offset;
7542 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7543 		u64 range_end;
7544 
7545 		range_end = round_up(offset + num_bytes,
7546 				     root->fs_info->sectorsize) - 1;
7547 		ret = test_range_bit(io_tree, offset, range_end,
7548 				     EXTENT_DELALLOC, 0, NULL);
7549 		if (ret) {
7550 			ret = -EAGAIN;
7551 			goto out;
7552 		}
7553 	}
7554 
7555 	btrfs_release_path(path);
7556 
7557 	/*
7558 	 * look for other files referencing this extent, if we
7559 	 * find any we must cow
7560 	 */
7561 
7562 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7563 				    key.offset - backref_offset, disk_bytenr);
7564 	if (ret) {
7565 		ret = 0;
7566 		goto out;
7567 	}
7568 
7569 	/*
7570 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7571 	 * in this extent we are about to write.  If there
7572 	 * are any csums in that range we have to cow in order
7573 	 * to keep the csums correct
7574 	 */
7575 	disk_bytenr += backref_offset;
7576 	disk_bytenr += offset - key.offset;
7577 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7578 		goto out;
7579 	/*
7580 	 * all of the above have passed, it is safe to overwrite this extent
7581 	 * without cow
7582 	 */
7583 	*len = num_bytes;
7584 	ret = 1;
7585 out:
7586 	btrfs_free_path(path);
7587 	return ret;
7588 }
7589 
7590 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7591 {
7592 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7593 	bool found = false;
7594 	void **pagep = NULL;
7595 	struct page *page = NULL;
7596 	unsigned long start_idx;
7597 	unsigned long end_idx;
7598 
7599 	start_idx = start >> PAGE_SHIFT;
7600 
7601 	/*
7602 	 * end is the last byte in the last page.  end == start is legal
7603 	 */
7604 	end_idx = end >> PAGE_SHIFT;
7605 
7606 	rcu_read_lock();
7607 
7608 	/* Most of the code in this while loop is lifted from
7609 	 * find_get_page.  It's been modified to begin searching from a
7610 	 * page and return just the first page found in that range.  If the
7611 	 * found idx is less than or equal to the end idx then we know that
7612 	 * a page exists.  If no pages are found or if those pages are
7613 	 * outside of the range then we're fine (yay!) */
7614 	while (page == NULL &&
7615 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7616 		page = radix_tree_deref_slot(pagep);
7617 		if (unlikely(!page))
7618 			break;
7619 
7620 		if (radix_tree_exception(page)) {
7621 			if (radix_tree_deref_retry(page)) {
7622 				page = NULL;
7623 				continue;
7624 			}
7625 			/*
7626 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7627 			 * here as an exceptional entry: so return it without
7628 			 * attempting to raise page count.
7629 			 */
7630 			page = NULL;
7631 			break; /* TODO: Is this relevant for this use case? */
7632 		}
7633 
7634 		if (!page_cache_get_speculative(page)) {
7635 			page = NULL;
7636 			continue;
7637 		}
7638 
7639 		/*
7640 		 * Has the page moved?
7641 		 * This is part of the lockless pagecache protocol. See
7642 		 * include/linux/pagemap.h for details.
7643 		 */
7644 		if (unlikely(page != *pagep)) {
7645 			put_page(page);
7646 			page = NULL;
7647 		}
7648 	}
7649 
7650 	if (page) {
7651 		if (page->index <= end_idx)
7652 			found = true;
7653 		put_page(page);
7654 	}
7655 
7656 	rcu_read_unlock();
7657 	return found;
7658 }
7659 
7660 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7661 			      struct extent_state **cached_state, int writing)
7662 {
7663 	struct btrfs_ordered_extent *ordered;
7664 	int ret = 0;
7665 
7666 	while (1) {
7667 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7668 				 cached_state);
7669 		/*
7670 		 * We're concerned with the entire range that we're going to be
7671 		 * doing DIO to, so we need to make sure there's no ordered
7672 		 * extents in this range.
7673 		 */
7674 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7675 						     lockend - lockstart + 1);
7676 
7677 		/*
7678 		 * We need to make sure there are no buffered pages in this
7679 		 * range either, we could have raced between the invalidate in
7680 		 * generic_file_direct_write and locking the extent.  The
7681 		 * invalidate needs to happen so that reads after a write do not
7682 		 * get stale data.
7683 		 */
7684 		if (!ordered &&
7685 		    (!writing ||
7686 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7687 			break;
7688 
7689 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7690 				     cached_state, GFP_NOFS);
7691 
7692 		if (ordered) {
7693 			/*
7694 			 * If we are doing a DIO read and the ordered extent we
7695 			 * found is for a buffered write, we can not wait for it
7696 			 * to complete and retry, because if we do so we can
7697 			 * deadlock with concurrent buffered writes on page
7698 			 * locks. This happens only if our DIO read covers more
7699 			 * than one extent map, if at this point has already
7700 			 * created an ordered extent for a previous extent map
7701 			 * and locked its range in the inode's io tree, and a
7702 			 * concurrent write against that previous extent map's
7703 			 * range and this range started (we unlock the ranges
7704 			 * in the io tree only when the bios complete and
7705 			 * buffered writes always lock pages before attempting
7706 			 * to lock range in the io tree).
7707 			 */
7708 			if (writing ||
7709 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7710 				btrfs_start_ordered_extent(inode, ordered, 1);
7711 			else
7712 				ret = -ENOTBLK;
7713 			btrfs_put_ordered_extent(ordered);
7714 		} else {
7715 			/*
7716 			 * We could trigger writeback for this range (and wait
7717 			 * for it to complete) and then invalidate the pages for
7718 			 * this range (through invalidate_inode_pages2_range()),
7719 			 * but that can lead us to a deadlock with a concurrent
7720 			 * call to readpages() (a buffered read or a defrag call
7721 			 * triggered a readahead) on a page lock due to an
7722 			 * ordered dio extent we created before but did not have
7723 			 * yet a corresponding bio submitted (whence it can not
7724 			 * complete), which makes readpages() wait for that
7725 			 * ordered extent to complete while holding a lock on
7726 			 * that page.
7727 			 */
7728 			ret = -ENOTBLK;
7729 		}
7730 
7731 		if (ret)
7732 			break;
7733 
7734 		cond_resched();
7735 	}
7736 
7737 	return ret;
7738 }
7739 
7740 /* The callers of this must take lock_extent() */
7741 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7742 				       u64 orig_start, u64 block_start,
7743 				       u64 block_len, u64 orig_block_len,
7744 				       u64 ram_bytes, int compress_type,
7745 				       int type)
7746 {
7747 	struct extent_map_tree *em_tree;
7748 	struct extent_map *em;
7749 	struct btrfs_root *root = BTRFS_I(inode)->root;
7750 	int ret;
7751 
7752 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7753 	       type == BTRFS_ORDERED_COMPRESSED ||
7754 	       type == BTRFS_ORDERED_NOCOW ||
7755 	       type == BTRFS_ORDERED_REGULAR);
7756 
7757 	em_tree = &BTRFS_I(inode)->extent_tree;
7758 	em = alloc_extent_map();
7759 	if (!em)
7760 		return ERR_PTR(-ENOMEM);
7761 
7762 	em->start = start;
7763 	em->orig_start = orig_start;
7764 	em->len = len;
7765 	em->block_len = block_len;
7766 	em->block_start = block_start;
7767 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7768 	em->orig_block_len = orig_block_len;
7769 	em->ram_bytes = ram_bytes;
7770 	em->generation = -1;
7771 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7772 	if (type == BTRFS_ORDERED_PREALLOC) {
7773 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7774 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7775 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7776 		em->compress_type = compress_type;
7777 	}
7778 
7779 	do {
7780 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7781 				em->start + em->len - 1, 0);
7782 		write_lock(&em_tree->lock);
7783 		ret = add_extent_mapping(em_tree, em, 1);
7784 		write_unlock(&em_tree->lock);
7785 		/*
7786 		 * The caller has taken lock_extent(), who could race with us
7787 		 * to add em?
7788 		 */
7789 	} while (ret == -EEXIST);
7790 
7791 	if (ret) {
7792 		free_extent_map(em);
7793 		return ERR_PTR(ret);
7794 	}
7795 
7796 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7797 	return em;
7798 }
7799 
7800 static void adjust_dio_outstanding_extents(struct inode *inode,
7801 					   struct btrfs_dio_data *dio_data,
7802 					   const u64 len)
7803 {
7804 	unsigned num_extents = count_max_extents(len);
7805 
7806 	/*
7807 	 * If we have an outstanding_extents count still set then we're
7808 	 * within our reservation, otherwise we need to adjust our inode
7809 	 * counter appropriately.
7810 	 */
7811 	if (dio_data->outstanding_extents >= num_extents) {
7812 		dio_data->outstanding_extents -= num_extents;
7813 	} else {
7814 		/*
7815 		 * If dio write length has been split due to no large enough
7816 		 * contiguous space, we need to compensate our inode counter
7817 		 * appropriately.
7818 		 */
7819 		u64 num_needed = num_extents - dio_data->outstanding_extents;
7820 
7821 		spin_lock(&BTRFS_I(inode)->lock);
7822 		BTRFS_I(inode)->outstanding_extents += num_needed;
7823 		spin_unlock(&BTRFS_I(inode)->lock);
7824 	}
7825 }
7826 
7827 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7828 				   struct buffer_head *bh_result, int create)
7829 {
7830 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7831 	struct extent_map *em;
7832 	struct extent_state *cached_state = NULL;
7833 	struct btrfs_dio_data *dio_data = NULL;
7834 	u64 start = iblock << inode->i_blkbits;
7835 	u64 lockstart, lockend;
7836 	u64 len = bh_result->b_size;
7837 	int unlock_bits = EXTENT_LOCKED;
7838 	int ret = 0;
7839 
7840 	if (create)
7841 		unlock_bits |= EXTENT_DIRTY;
7842 	else
7843 		len = min_t(u64, len, fs_info->sectorsize);
7844 
7845 	lockstart = start;
7846 	lockend = start + len - 1;
7847 
7848 	if (current->journal_info) {
7849 		/*
7850 		 * Need to pull our outstanding extents and set journal_info to NULL so
7851 		 * that anything that needs to check if there's a transaction doesn't get
7852 		 * confused.
7853 		 */
7854 		dio_data = current->journal_info;
7855 		current->journal_info = NULL;
7856 	}
7857 
7858 	/*
7859 	 * If this errors out it's because we couldn't invalidate pagecache for
7860 	 * this range and we need to fallback to buffered.
7861 	 */
7862 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7863 			       create)) {
7864 		ret = -ENOTBLK;
7865 		goto err;
7866 	}
7867 
7868 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7869 	if (IS_ERR(em)) {
7870 		ret = PTR_ERR(em);
7871 		goto unlock_err;
7872 	}
7873 
7874 	/*
7875 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7876 	 * io.  INLINE is special, and we could probably kludge it in here, but
7877 	 * it's still buffered so for safety lets just fall back to the generic
7878 	 * buffered path.
7879 	 *
7880 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7881 	 * decompress it, so there will be buffering required no matter what we
7882 	 * do, so go ahead and fallback to buffered.
7883 	 *
7884 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7885 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7886 	 * the generic code.
7887 	 */
7888 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7889 	    em->block_start == EXTENT_MAP_INLINE) {
7890 		free_extent_map(em);
7891 		ret = -ENOTBLK;
7892 		goto unlock_err;
7893 	}
7894 
7895 	/* Just a good old fashioned hole, return */
7896 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7897 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7898 		free_extent_map(em);
7899 		goto unlock_err;
7900 	}
7901 
7902 	/*
7903 	 * We don't allocate a new extent in the following cases
7904 	 *
7905 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7906 	 * existing extent.
7907 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7908 	 * just use the extent.
7909 	 *
7910 	 */
7911 	if (!create) {
7912 		len = min(len, em->len - (start - em->start));
7913 		lockstart = start + len;
7914 		goto unlock;
7915 	}
7916 
7917 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7918 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7919 	     em->block_start != EXTENT_MAP_HOLE)) {
7920 		int type;
7921 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7922 
7923 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7924 			type = BTRFS_ORDERED_PREALLOC;
7925 		else
7926 			type = BTRFS_ORDERED_NOCOW;
7927 		len = min(len, em->len - (start - em->start));
7928 		block_start = em->block_start + (start - em->start);
7929 
7930 		if (can_nocow_extent(inode, start, &len, &orig_start,
7931 				     &orig_block_len, &ram_bytes) == 1 &&
7932 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7933 			struct extent_map *em2;
7934 
7935 			em2 = btrfs_create_dio_extent(inode, start, len,
7936 						      orig_start, block_start,
7937 						      len, orig_block_len,
7938 						      ram_bytes, type);
7939 			btrfs_dec_nocow_writers(fs_info, block_start);
7940 			if (type == BTRFS_ORDERED_PREALLOC) {
7941 				free_extent_map(em);
7942 				em = em2;
7943 			}
7944 			if (em2 && IS_ERR(em2)) {
7945 				ret = PTR_ERR(em2);
7946 				goto unlock_err;
7947 			}
7948 			/*
7949 			 * For inode marked NODATACOW or extent marked PREALLOC,
7950 			 * use the existing or preallocated extent, so does not
7951 			 * need to adjust btrfs_space_info's bytes_may_use.
7952 			 */
7953 			btrfs_free_reserved_data_space_noquota(inode,
7954 					start, len);
7955 			goto unlock;
7956 		}
7957 	}
7958 
7959 	/*
7960 	 * this will cow the extent, reset the len in case we changed
7961 	 * it above
7962 	 */
7963 	len = bh_result->b_size;
7964 	free_extent_map(em);
7965 	em = btrfs_new_extent_direct(inode, start, len);
7966 	if (IS_ERR(em)) {
7967 		ret = PTR_ERR(em);
7968 		goto unlock_err;
7969 	}
7970 	len = min(len, em->len - (start - em->start));
7971 unlock:
7972 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7973 		inode->i_blkbits;
7974 	bh_result->b_size = len;
7975 	bh_result->b_bdev = em->bdev;
7976 	set_buffer_mapped(bh_result);
7977 	if (create) {
7978 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7979 			set_buffer_new(bh_result);
7980 
7981 		/*
7982 		 * Need to update the i_size under the extent lock so buffered
7983 		 * readers will get the updated i_size when we unlock.
7984 		 */
7985 		if (!dio_data->overwrite && start + len > i_size_read(inode))
7986 			i_size_write(inode, start + len);
7987 
7988 		adjust_dio_outstanding_extents(inode, dio_data, len);
7989 		WARN_ON(dio_data->reserve < len);
7990 		dio_data->reserve -= len;
7991 		dio_data->unsubmitted_oe_range_end = start + len;
7992 		current->journal_info = dio_data;
7993 	}
7994 
7995 	/*
7996 	 * In the case of write we need to clear and unlock the entire range,
7997 	 * in the case of read we need to unlock only the end area that we
7998 	 * aren't using if there is any left over space.
7999 	 */
8000 	if (lockstart < lockend) {
8001 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
8002 				 lockend, unlock_bits, 1, 0,
8003 				 &cached_state, GFP_NOFS);
8004 	} else {
8005 		free_extent_state(cached_state);
8006 	}
8007 
8008 	free_extent_map(em);
8009 
8010 	return 0;
8011 
8012 unlock_err:
8013 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
8014 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
8015 err:
8016 	if (dio_data)
8017 		current->journal_info = dio_data;
8018 	/*
8019 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
8020 	 * write less data then expected, so that we don't underflow our inode's
8021 	 * outstanding extents counter.
8022 	 */
8023 	if (create && dio_data)
8024 		adjust_dio_outstanding_extents(inode, dio_data, len);
8025 
8026 	return ret;
8027 }
8028 
8029 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
8030 						 struct bio *bio,
8031 						 int mirror_num)
8032 {
8033 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8034 	blk_status_t ret;
8035 
8036 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8037 
8038 	bio_get(bio);
8039 
8040 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8041 	if (ret)
8042 		goto err;
8043 
8044 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8045 err:
8046 	bio_put(bio);
8047 	return ret;
8048 }
8049 
8050 static int btrfs_check_dio_repairable(struct inode *inode,
8051 				      struct bio *failed_bio,
8052 				      struct io_failure_record *failrec,
8053 				      int failed_mirror)
8054 {
8055 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8056 	int num_copies;
8057 
8058 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8059 	if (num_copies == 1) {
8060 		/*
8061 		 * we only have a single copy of the data, so don't bother with
8062 		 * all the retry and error correction code that follows. no
8063 		 * matter what the error is, it is very likely to persist.
8064 		 */
8065 		btrfs_debug(fs_info,
8066 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
8067 			num_copies, failrec->this_mirror, failed_mirror);
8068 		return 0;
8069 	}
8070 
8071 	failrec->failed_mirror = failed_mirror;
8072 	failrec->this_mirror++;
8073 	if (failrec->this_mirror == failed_mirror)
8074 		failrec->this_mirror++;
8075 
8076 	if (failrec->this_mirror > num_copies) {
8077 		btrfs_debug(fs_info,
8078 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8079 			num_copies, failrec->this_mirror, failed_mirror);
8080 		return 0;
8081 	}
8082 
8083 	return 1;
8084 }
8085 
8086 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8087 				   struct page *page, unsigned int pgoff,
8088 				   u64 start, u64 end, int failed_mirror,
8089 				   bio_end_io_t *repair_endio, void *repair_arg)
8090 {
8091 	struct io_failure_record *failrec;
8092 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8093 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8094 	struct bio *bio;
8095 	int isector;
8096 	unsigned int read_mode = 0;
8097 	int segs;
8098 	int ret;
8099 	blk_status_t status;
8100 
8101 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8102 
8103 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8104 	if (ret)
8105 		return errno_to_blk_status(ret);
8106 
8107 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8108 					 failed_mirror);
8109 	if (!ret) {
8110 		free_io_failure(failure_tree, io_tree, failrec);
8111 		return BLK_STS_IOERR;
8112 	}
8113 
8114 	segs = bio_segments(failed_bio);
8115 	if (segs > 1 ||
8116 	    (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
8117 		read_mode |= REQ_FAILFAST_DEV;
8118 
8119 	isector = start - btrfs_io_bio(failed_bio)->logical;
8120 	isector >>= inode->i_sb->s_blocksize_bits;
8121 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8122 				pgoff, isector, repair_endio, repair_arg);
8123 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8124 
8125 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
8126 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8127 		    read_mode, failrec->this_mirror, failrec->in_validation);
8128 
8129 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8130 	if (status) {
8131 		free_io_failure(failure_tree, io_tree, failrec);
8132 		bio_put(bio);
8133 	}
8134 
8135 	return status;
8136 }
8137 
8138 struct btrfs_retry_complete {
8139 	struct completion done;
8140 	struct inode *inode;
8141 	u64 start;
8142 	int uptodate;
8143 };
8144 
8145 static void btrfs_retry_endio_nocsum(struct bio *bio)
8146 {
8147 	struct btrfs_retry_complete *done = bio->bi_private;
8148 	struct inode *inode = done->inode;
8149 	struct bio_vec *bvec;
8150 	struct extent_io_tree *io_tree, *failure_tree;
8151 	int i;
8152 
8153 	if (bio->bi_status)
8154 		goto end;
8155 
8156 	ASSERT(bio->bi_vcnt == 1);
8157 	io_tree = &BTRFS_I(inode)->io_tree;
8158 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8159 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
8160 
8161 	done->uptodate = 1;
8162 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8163 	bio_for_each_segment_all(bvec, bio, i)
8164 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8165 				 io_tree, done->start, bvec->bv_page,
8166 				 btrfs_ino(BTRFS_I(inode)), 0);
8167 end:
8168 	complete(&done->done);
8169 	bio_put(bio);
8170 }
8171 
8172 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8173 						struct btrfs_io_bio *io_bio)
8174 {
8175 	struct btrfs_fs_info *fs_info;
8176 	struct bio_vec bvec;
8177 	struct bvec_iter iter;
8178 	struct btrfs_retry_complete done;
8179 	u64 start;
8180 	unsigned int pgoff;
8181 	u32 sectorsize;
8182 	int nr_sectors;
8183 	blk_status_t ret;
8184 	blk_status_t err = BLK_STS_OK;
8185 
8186 	fs_info = BTRFS_I(inode)->root->fs_info;
8187 	sectorsize = fs_info->sectorsize;
8188 
8189 	start = io_bio->logical;
8190 	done.inode = inode;
8191 	io_bio->bio.bi_iter = io_bio->iter;
8192 
8193 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8194 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8195 		pgoff = bvec.bv_offset;
8196 
8197 next_block_or_try_again:
8198 		done.uptodate = 0;
8199 		done.start = start;
8200 		init_completion(&done.done);
8201 
8202 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8203 				pgoff, start, start + sectorsize - 1,
8204 				io_bio->mirror_num,
8205 				btrfs_retry_endio_nocsum, &done);
8206 		if (ret) {
8207 			err = ret;
8208 			goto next;
8209 		}
8210 
8211 		wait_for_completion_io(&done.done);
8212 
8213 		if (!done.uptodate) {
8214 			/* We might have another mirror, so try again */
8215 			goto next_block_or_try_again;
8216 		}
8217 
8218 next:
8219 		start += sectorsize;
8220 
8221 		nr_sectors--;
8222 		if (nr_sectors) {
8223 			pgoff += sectorsize;
8224 			ASSERT(pgoff < PAGE_SIZE);
8225 			goto next_block_or_try_again;
8226 		}
8227 	}
8228 
8229 	return err;
8230 }
8231 
8232 static void btrfs_retry_endio(struct bio *bio)
8233 {
8234 	struct btrfs_retry_complete *done = bio->bi_private;
8235 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8236 	struct extent_io_tree *io_tree, *failure_tree;
8237 	struct inode *inode = done->inode;
8238 	struct bio_vec *bvec;
8239 	int uptodate;
8240 	int ret;
8241 	int i;
8242 
8243 	if (bio->bi_status)
8244 		goto end;
8245 
8246 	uptodate = 1;
8247 
8248 	ASSERT(bio->bi_vcnt == 1);
8249 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8250 
8251 	io_tree = &BTRFS_I(inode)->io_tree;
8252 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8253 
8254 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8255 	bio_for_each_segment_all(bvec, bio, i) {
8256 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8257 					     bvec->bv_offset, done->start,
8258 					     bvec->bv_len);
8259 		if (!ret)
8260 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8261 					 failure_tree, io_tree, done->start,
8262 					 bvec->bv_page,
8263 					 btrfs_ino(BTRFS_I(inode)),
8264 					 bvec->bv_offset);
8265 		else
8266 			uptodate = 0;
8267 	}
8268 
8269 	done->uptodate = uptodate;
8270 end:
8271 	complete(&done->done);
8272 	bio_put(bio);
8273 }
8274 
8275 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8276 		struct btrfs_io_bio *io_bio, blk_status_t err)
8277 {
8278 	struct btrfs_fs_info *fs_info;
8279 	struct bio_vec bvec;
8280 	struct bvec_iter iter;
8281 	struct btrfs_retry_complete done;
8282 	u64 start;
8283 	u64 offset = 0;
8284 	u32 sectorsize;
8285 	int nr_sectors;
8286 	unsigned int pgoff;
8287 	int csum_pos;
8288 	bool uptodate = (err == 0);
8289 	int ret;
8290 	blk_status_t status;
8291 
8292 	fs_info = BTRFS_I(inode)->root->fs_info;
8293 	sectorsize = fs_info->sectorsize;
8294 
8295 	err = BLK_STS_OK;
8296 	start = io_bio->logical;
8297 	done.inode = inode;
8298 	io_bio->bio.bi_iter = io_bio->iter;
8299 
8300 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8301 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8302 
8303 		pgoff = bvec.bv_offset;
8304 next_block:
8305 		if (uptodate) {
8306 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8307 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8308 					bvec.bv_page, pgoff, start, sectorsize);
8309 			if (likely(!ret))
8310 				goto next;
8311 		}
8312 try_again:
8313 		done.uptodate = 0;
8314 		done.start = start;
8315 		init_completion(&done.done);
8316 
8317 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8318 					pgoff, start, start + sectorsize - 1,
8319 					io_bio->mirror_num, btrfs_retry_endio,
8320 					&done);
8321 		if (status) {
8322 			err = status;
8323 			goto next;
8324 		}
8325 
8326 		wait_for_completion_io(&done.done);
8327 
8328 		if (!done.uptodate) {
8329 			/* We might have another mirror, so try again */
8330 			goto try_again;
8331 		}
8332 next:
8333 		offset += sectorsize;
8334 		start += sectorsize;
8335 
8336 		ASSERT(nr_sectors);
8337 
8338 		nr_sectors--;
8339 		if (nr_sectors) {
8340 			pgoff += sectorsize;
8341 			ASSERT(pgoff < PAGE_SIZE);
8342 			goto next_block;
8343 		}
8344 	}
8345 
8346 	return err;
8347 }
8348 
8349 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8350 		struct btrfs_io_bio *io_bio, blk_status_t err)
8351 {
8352 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8353 
8354 	if (skip_csum) {
8355 		if (unlikely(err))
8356 			return __btrfs_correct_data_nocsum(inode, io_bio);
8357 		else
8358 			return BLK_STS_OK;
8359 	} else {
8360 		return __btrfs_subio_endio_read(inode, io_bio, err);
8361 	}
8362 }
8363 
8364 static void btrfs_endio_direct_read(struct bio *bio)
8365 {
8366 	struct btrfs_dio_private *dip = bio->bi_private;
8367 	struct inode *inode = dip->inode;
8368 	struct bio *dio_bio;
8369 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8370 	blk_status_t err = bio->bi_status;
8371 
8372 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8373 		err = btrfs_subio_endio_read(inode, io_bio, err);
8374 
8375 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8376 		      dip->logical_offset + dip->bytes - 1);
8377 	dio_bio = dip->dio_bio;
8378 
8379 	kfree(dip);
8380 
8381 	dio_bio->bi_status = err;
8382 	dio_end_io(dio_bio);
8383 
8384 	if (io_bio->end_io)
8385 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8386 	bio_put(bio);
8387 }
8388 
8389 static void __endio_write_update_ordered(struct inode *inode,
8390 					 const u64 offset, const u64 bytes,
8391 					 const bool uptodate)
8392 {
8393 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8394 	struct btrfs_ordered_extent *ordered = NULL;
8395 	struct btrfs_workqueue *wq;
8396 	btrfs_work_func_t func;
8397 	u64 ordered_offset = offset;
8398 	u64 ordered_bytes = bytes;
8399 	u64 last_offset;
8400 	int ret;
8401 
8402 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8403 		wq = fs_info->endio_freespace_worker;
8404 		func = btrfs_freespace_write_helper;
8405 	} else {
8406 		wq = fs_info->endio_write_workers;
8407 		func = btrfs_endio_write_helper;
8408 	}
8409 
8410 again:
8411 	last_offset = ordered_offset;
8412 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8413 						   &ordered_offset,
8414 						   ordered_bytes,
8415 						   uptodate);
8416 	if (!ret)
8417 		goto out_test;
8418 
8419 	btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8420 	btrfs_queue_work(wq, &ordered->work);
8421 out_test:
8422 	/*
8423 	 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8424 	 * in the range, we can exit.
8425 	 */
8426 	if (ordered_offset == last_offset)
8427 		return;
8428 	/*
8429 	 * our bio might span multiple ordered extents.  If we haven't
8430 	 * completed the accounting for the whole dio, go back and try again
8431 	 */
8432 	if (ordered_offset < offset + bytes) {
8433 		ordered_bytes = offset + bytes - ordered_offset;
8434 		ordered = NULL;
8435 		goto again;
8436 	}
8437 }
8438 
8439 static void btrfs_endio_direct_write(struct bio *bio)
8440 {
8441 	struct btrfs_dio_private *dip = bio->bi_private;
8442 	struct bio *dio_bio = dip->dio_bio;
8443 
8444 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8445 				     dip->bytes, !bio->bi_status);
8446 
8447 	kfree(dip);
8448 
8449 	dio_bio->bi_status = bio->bi_status;
8450 	dio_end_io(dio_bio);
8451 	bio_put(bio);
8452 }
8453 
8454 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
8455 				    struct bio *bio, int mirror_num,
8456 				    unsigned long bio_flags, u64 offset)
8457 {
8458 	struct inode *inode = private_data;
8459 	blk_status_t ret;
8460 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8461 	BUG_ON(ret); /* -ENOMEM */
8462 	return 0;
8463 }
8464 
8465 static void btrfs_end_dio_bio(struct bio *bio)
8466 {
8467 	struct btrfs_dio_private *dip = bio->bi_private;
8468 	blk_status_t err = bio->bi_status;
8469 
8470 	if (err)
8471 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8472 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8473 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8474 			   bio->bi_opf,
8475 			   (unsigned long long)bio->bi_iter.bi_sector,
8476 			   bio->bi_iter.bi_size, err);
8477 
8478 	if (dip->subio_endio)
8479 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8480 
8481 	if (err) {
8482 		dip->errors = 1;
8483 
8484 		/*
8485 		 * before atomic variable goto zero, we must make sure
8486 		 * dip->errors is perceived to be set.
8487 		 */
8488 		smp_mb__before_atomic();
8489 	}
8490 
8491 	/* if there are more bios still pending for this dio, just exit */
8492 	if (!atomic_dec_and_test(&dip->pending_bios))
8493 		goto out;
8494 
8495 	if (dip->errors) {
8496 		bio_io_error(dip->orig_bio);
8497 	} else {
8498 		dip->dio_bio->bi_status = 0;
8499 		bio_endio(dip->orig_bio);
8500 	}
8501 out:
8502 	bio_put(bio);
8503 }
8504 
8505 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8506 						 struct btrfs_dio_private *dip,
8507 						 struct bio *bio,
8508 						 u64 file_offset)
8509 {
8510 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8511 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8512 	blk_status_t ret;
8513 
8514 	/*
8515 	 * We load all the csum data we need when we submit
8516 	 * the first bio to reduce the csum tree search and
8517 	 * contention.
8518 	 */
8519 	if (dip->logical_offset == file_offset) {
8520 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8521 						file_offset);
8522 		if (ret)
8523 			return ret;
8524 	}
8525 
8526 	if (bio == dip->orig_bio)
8527 		return 0;
8528 
8529 	file_offset -= dip->logical_offset;
8530 	file_offset >>= inode->i_sb->s_blocksize_bits;
8531 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8532 
8533 	return 0;
8534 }
8535 
8536 static inline blk_status_t
8537 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
8538 		       int async_submit)
8539 {
8540 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8541 	struct btrfs_dio_private *dip = bio->bi_private;
8542 	bool write = bio_op(bio) == REQ_OP_WRITE;
8543 	blk_status_t ret;
8544 
8545 	if (async_submit)
8546 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8547 
8548 	bio_get(bio);
8549 
8550 	if (!write) {
8551 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8552 		if (ret)
8553 			goto err;
8554 	}
8555 
8556 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8557 		goto map;
8558 
8559 	if (write && async_submit) {
8560 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8561 					  file_offset, inode,
8562 					  __btrfs_submit_bio_start_direct_io,
8563 					  __btrfs_submit_bio_done);
8564 		goto err;
8565 	} else if (write) {
8566 		/*
8567 		 * If we aren't doing async submit, calculate the csum of the
8568 		 * bio now.
8569 		 */
8570 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8571 		if (ret)
8572 			goto err;
8573 	} else {
8574 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8575 						     file_offset);
8576 		if (ret)
8577 			goto err;
8578 	}
8579 map:
8580 	ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8581 err:
8582 	bio_put(bio);
8583 	return ret;
8584 }
8585 
8586 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8587 {
8588 	struct inode *inode = dip->inode;
8589 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8590 	struct bio *bio;
8591 	struct bio *orig_bio = dip->orig_bio;
8592 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8593 	u64 file_offset = dip->logical_offset;
8594 	u64 map_length;
8595 	int async_submit = 0;
8596 	u64 submit_len;
8597 	int clone_offset = 0;
8598 	int clone_len;
8599 	int ret;
8600 	blk_status_t status;
8601 
8602 	map_length = orig_bio->bi_iter.bi_size;
8603 	submit_len = map_length;
8604 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8605 			      &map_length, NULL, 0);
8606 	if (ret)
8607 		return -EIO;
8608 
8609 	if (map_length >= submit_len) {
8610 		bio = orig_bio;
8611 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8612 		goto submit;
8613 	}
8614 
8615 	/* async crcs make it difficult to collect full stripe writes. */
8616 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8617 		async_submit = 0;
8618 	else
8619 		async_submit = 1;
8620 
8621 	/* bio split */
8622 	ASSERT(map_length <= INT_MAX);
8623 	atomic_inc(&dip->pending_bios);
8624 	do {
8625 		clone_len = min_t(int, submit_len, map_length);
8626 
8627 		/*
8628 		 * This will never fail as it's passing GPF_NOFS and
8629 		 * the allocation is backed by btrfs_bioset.
8630 		 */
8631 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8632 					      clone_len);
8633 		bio->bi_private = dip;
8634 		bio->bi_end_io = btrfs_end_dio_bio;
8635 		btrfs_io_bio(bio)->logical = file_offset;
8636 
8637 		ASSERT(submit_len >= clone_len);
8638 		submit_len -= clone_len;
8639 		if (submit_len == 0)
8640 			break;
8641 
8642 		/*
8643 		 * Increase the count before we submit the bio so we know
8644 		 * the end IO handler won't happen before we increase the
8645 		 * count. Otherwise, the dip might get freed before we're
8646 		 * done setting it up.
8647 		 */
8648 		atomic_inc(&dip->pending_bios);
8649 
8650 		status = __btrfs_submit_dio_bio(bio, inode, file_offset,
8651 						async_submit);
8652 		if (status) {
8653 			bio_put(bio);
8654 			atomic_dec(&dip->pending_bios);
8655 			goto out_err;
8656 		}
8657 
8658 		clone_offset += clone_len;
8659 		start_sector += clone_len >> 9;
8660 		file_offset += clone_len;
8661 
8662 		map_length = submit_len;
8663 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8664 				      start_sector << 9, &map_length, NULL, 0);
8665 		if (ret)
8666 			goto out_err;
8667 	} while (submit_len > 0);
8668 
8669 submit:
8670 	status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8671 	if (!status)
8672 		return 0;
8673 
8674 	bio_put(bio);
8675 out_err:
8676 	dip->errors = 1;
8677 	/*
8678 	 * before atomic variable goto zero, we must
8679 	 * make sure dip->errors is perceived to be set.
8680 	 */
8681 	smp_mb__before_atomic();
8682 	if (atomic_dec_and_test(&dip->pending_bios))
8683 		bio_io_error(dip->orig_bio);
8684 
8685 	/* bio_end_io() will handle error, so we needn't return it */
8686 	return 0;
8687 }
8688 
8689 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8690 				loff_t file_offset)
8691 {
8692 	struct btrfs_dio_private *dip = NULL;
8693 	struct bio *bio = NULL;
8694 	struct btrfs_io_bio *io_bio;
8695 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8696 	int ret = 0;
8697 
8698 	bio = btrfs_bio_clone(dio_bio);
8699 
8700 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8701 	if (!dip) {
8702 		ret = -ENOMEM;
8703 		goto free_ordered;
8704 	}
8705 
8706 	dip->private = dio_bio->bi_private;
8707 	dip->inode = inode;
8708 	dip->logical_offset = file_offset;
8709 	dip->bytes = dio_bio->bi_iter.bi_size;
8710 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8711 	bio->bi_private = dip;
8712 	dip->orig_bio = bio;
8713 	dip->dio_bio = dio_bio;
8714 	atomic_set(&dip->pending_bios, 0);
8715 	io_bio = btrfs_io_bio(bio);
8716 	io_bio->logical = file_offset;
8717 
8718 	if (write) {
8719 		bio->bi_end_io = btrfs_endio_direct_write;
8720 	} else {
8721 		bio->bi_end_io = btrfs_endio_direct_read;
8722 		dip->subio_endio = btrfs_subio_endio_read;
8723 	}
8724 
8725 	/*
8726 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8727 	 * even if we fail to submit a bio, because in such case we do the
8728 	 * corresponding error handling below and it must not be done a second
8729 	 * time by btrfs_direct_IO().
8730 	 */
8731 	if (write) {
8732 		struct btrfs_dio_data *dio_data = current->journal_info;
8733 
8734 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8735 			dip->bytes;
8736 		dio_data->unsubmitted_oe_range_start =
8737 			dio_data->unsubmitted_oe_range_end;
8738 	}
8739 
8740 	ret = btrfs_submit_direct_hook(dip);
8741 	if (!ret)
8742 		return;
8743 
8744 	if (io_bio->end_io)
8745 		io_bio->end_io(io_bio, ret);
8746 
8747 free_ordered:
8748 	/*
8749 	 * If we arrived here it means either we failed to submit the dip
8750 	 * or we either failed to clone the dio_bio or failed to allocate the
8751 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8752 	 * call bio_endio against our io_bio so that we get proper resource
8753 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8754 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8755 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8756 	 */
8757 	if (bio && dip) {
8758 		bio_io_error(bio);
8759 		/*
8760 		 * The end io callbacks free our dip, do the final put on bio
8761 		 * and all the cleanup and final put for dio_bio (through
8762 		 * dio_end_io()).
8763 		 */
8764 		dip = NULL;
8765 		bio = NULL;
8766 	} else {
8767 		if (write)
8768 			__endio_write_update_ordered(inode,
8769 						file_offset,
8770 						dio_bio->bi_iter.bi_size,
8771 						false);
8772 		else
8773 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8774 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8775 
8776 		dio_bio->bi_status = BLK_STS_IOERR;
8777 		/*
8778 		 * Releases and cleans up our dio_bio, no need to bio_put()
8779 		 * nor bio_endio()/bio_io_error() against dio_bio.
8780 		 */
8781 		dio_end_io(dio_bio);
8782 	}
8783 	if (bio)
8784 		bio_put(bio);
8785 	kfree(dip);
8786 }
8787 
8788 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8789 			       struct kiocb *iocb,
8790 			       const struct iov_iter *iter, loff_t offset)
8791 {
8792 	int seg;
8793 	int i;
8794 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8795 	ssize_t retval = -EINVAL;
8796 
8797 	if (offset & blocksize_mask)
8798 		goto out;
8799 
8800 	if (iov_iter_alignment(iter) & blocksize_mask)
8801 		goto out;
8802 
8803 	/* If this is a write we don't need to check anymore */
8804 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8805 		return 0;
8806 	/*
8807 	 * Check to make sure we don't have duplicate iov_base's in this
8808 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8809 	 * when reading back.
8810 	 */
8811 	for (seg = 0; seg < iter->nr_segs; seg++) {
8812 		for (i = seg + 1; i < iter->nr_segs; i++) {
8813 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8814 				goto out;
8815 		}
8816 	}
8817 	retval = 0;
8818 out:
8819 	return retval;
8820 }
8821 
8822 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8823 {
8824 	struct file *file = iocb->ki_filp;
8825 	struct inode *inode = file->f_mapping->host;
8826 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8827 	struct btrfs_dio_data dio_data = { 0 };
8828 	struct extent_changeset *data_reserved = NULL;
8829 	loff_t offset = iocb->ki_pos;
8830 	size_t count = 0;
8831 	int flags = 0;
8832 	bool wakeup = true;
8833 	bool relock = false;
8834 	ssize_t ret;
8835 
8836 	if (check_direct_IO(fs_info, iocb, iter, offset))
8837 		return 0;
8838 
8839 	inode_dio_begin(inode);
8840 
8841 	/*
8842 	 * The generic stuff only does filemap_write_and_wait_range, which
8843 	 * isn't enough if we've written compressed pages to this area, so
8844 	 * we need to flush the dirty pages again to make absolutely sure
8845 	 * that any outstanding dirty pages are on disk.
8846 	 */
8847 	count = iov_iter_count(iter);
8848 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8849 		     &BTRFS_I(inode)->runtime_flags))
8850 		filemap_fdatawrite_range(inode->i_mapping, offset,
8851 					 offset + count - 1);
8852 
8853 	if (iov_iter_rw(iter) == WRITE) {
8854 		/*
8855 		 * If the write DIO is beyond the EOF, we need update
8856 		 * the isize, but it is protected by i_mutex. So we can
8857 		 * not unlock the i_mutex at this case.
8858 		 */
8859 		if (offset + count <= inode->i_size) {
8860 			dio_data.overwrite = 1;
8861 			inode_unlock(inode);
8862 			relock = true;
8863 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8864 			ret = -EAGAIN;
8865 			goto out;
8866 		}
8867 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8868 						   offset, count);
8869 		if (ret)
8870 			goto out;
8871 		dio_data.outstanding_extents = count_max_extents(count);
8872 
8873 		/*
8874 		 * We need to know how many extents we reserved so that we can
8875 		 * do the accounting properly if we go over the number we
8876 		 * originally calculated.  Abuse current->journal_info for this.
8877 		 */
8878 		dio_data.reserve = round_up(count,
8879 					    fs_info->sectorsize);
8880 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8881 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8882 		current->journal_info = &dio_data;
8883 		down_read(&BTRFS_I(inode)->dio_sem);
8884 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8885 				     &BTRFS_I(inode)->runtime_flags)) {
8886 		inode_dio_end(inode);
8887 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8888 		wakeup = false;
8889 	}
8890 
8891 	ret = __blockdev_direct_IO(iocb, inode,
8892 				   fs_info->fs_devices->latest_bdev,
8893 				   iter, btrfs_get_blocks_direct, NULL,
8894 				   btrfs_submit_direct, flags);
8895 	if (iov_iter_rw(iter) == WRITE) {
8896 		up_read(&BTRFS_I(inode)->dio_sem);
8897 		current->journal_info = NULL;
8898 		if (ret < 0 && ret != -EIOCBQUEUED) {
8899 			if (dio_data.reserve)
8900 				btrfs_delalloc_release_space(inode, data_reserved,
8901 					offset, dio_data.reserve);
8902 			/*
8903 			 * On error we might have left some ordered extents
8904 			 * without submitting corresponding bios for them, so
8905 			 * cleanup them up to avoid other tasks getting them
8906 			 * and waiting for them to complete forever.
8907 			 */
8908 			if (dio_data.unsubmitted_oe_range_start <
8909 			    dio_data.unsubmitted_oe_range_end)
8910 				__endio_write_update_ordered(inode,
8911 					dio_data.unsubmitted_oe_range_start,
8912 					dio_data.unsubmitted_oe_range_end -
8913 					dio_data.unsubmitted_oe_range_start,
8914 					false);
8915 		} else if (ret >= 0 && (size_t)ret < count)
8916 			btrfs_delalloc_release_space(inode, data_reserved,
8917 					offset, count - (size_t)ret);
8918 	}
8919 out:
8920 	if (wakeup)
8921 		inode_dio_end(inode);
8922 	if (relock)
8923 		inode_lock(inode);
8924 
8925 	extent_changeset_free(data_reserved);
8926 	return ret;
8927 }
8928 
8929 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8930 
8931 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8932 		__u64 start, __u64 len)
8933 {
8934 	int	ret;
8935 
8936 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8937 	if (ret)
8938 		return ret;
8939 
8940 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8941 }
8942 
8943 int btrfs_readpage(struct file *file, struct page *page)
8944 {
8945 	struct extent_io_tree *tree;
8946 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8947 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8948 }
8949 
8950 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8951 {
8952 	struct extent_io_tree *tree;
8953 	struct inode *inode = page->mapping->host;
8954 	int ret;
8955 
8956 	if (current->flags & PF_MEMALLOC) {
8957 		redirty_page_for_writepage(wbc, page);
8958 		unlock_page(page);
8959 		return 0;
8960 	}
8961 
8962 	/*
8963 	 * If we are under memory pressure we will call this directly from the
8964 	 * VM, we need to make sure we have the inode referenced for the ordered
8965 	 * extent.  If not just return like we didn't do anything.
8966 	 */
8967 	if (!igrab(inode)) {
8968 		redirty_page_for_writepage(wbc, page);
8969 		return AOP_WRITEPAGE_ACTIVATE;
8970 	}
8971 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8972 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8973 	btrfs_add_delayed_iput(inode);
8974 	return ret;
8975 }
8976 
8977 static int btrfs_writepages(struct address_space *mapping,
8978 			    struct writeback_control *wbc)
8979 {
8980 	struct extent_io_tree *tree;
8981 
8982 	tree = &BTRFS_I(mapping->host)->io_tree;
8983 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8984 }
8985 
8986 static int
8987 btrfs_readpages(struct file *file, struct address_space *mapping,
8988 		struct list_head *pages, unsigned nr_pages)
8989 {
8990 	struct extent_io_tree *tree;
8991 	tree = &BTRFS_I(mapping->host)->io_tree;
8992 	return extent_readpages(tree, mapping, pages, nr_pages,
8993 				btrfs_get_extent);
8994 }
8995 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8996 {
8997 	struct extent_io_tree *tree;
8998 	struct extent_map_tree *map;
8999 	int ret;
9000 
9001 	tree = &BTRFS_I(page->mapping->host)->io_tree;
9002 	map = &BTRFS_I(page->mapping->host)->extent_tree;
9003 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
9004 	if (ret == 1) {
9005 		ClearPagePrivate(page);
9006 		set_page_private(page, 0);
9007 		put_page(page);
9008 	}
9009 	return ret;
9010 }
9011 
9012 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9013 {
9014 	if (PageWriteback(page) || PageDirty(page))
9015 		return 0;
9016 	return __btrfs_releasepage(page, gfp_flags);
9017 }
9018 
9019 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
9020 				 unsigned int length)
9021 {
9022 	struct inode *inode = page->mapping->host;
9023 	struct extent_io_tree *tree;
9024 	struct btrfs_ordered_extent *ordered;
9025 	struct extent_state *cached_state = NULL;
9026 	u64 page_start = page_offset(page);
9027 	u64 page_end = page_start + PAGE_SIZE - 1;
9028 	u64 start;
9029 	u64 end;
9030 	int inode_evicting = inode->i_state & I_FREEING;
9031 
9032 	/*
9033 	 * we have the page locked, so new writeback can't start,
9034 	 * and the dirty bit won't be cleared while we are here.
9035 	 *
9036 	 * Wait for IO on this page so that we can safely clear
9037 	 * the PagePrivate2 bit and do ordered accounting
9038 	 */
9039 	wait_on_page_writeback(page);
9040 
9041 	tree = &BTRFS_I(inode)->io_tree;
9042 	if (offset) {
9043 		btrfs_releasepage(page, GFP_NOFS);
9044 		return;
9045 	}
9046 
9047 	if (!inode_evicting)
9048 		lock_extent_bits(tree, page_start, page_end, &cached_state);
9049 again:
9050 	start = page_start;
9051 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9052 					page_end - start + 1);
9053 	if (ordered) {
9054 		end = min(page_end, ordered->file_offset + ordered->len - 1);
9055 		/*
9056 		 * IO on this page will never be started, so we need
9057 		 * to account for any ordered extents now
9058 		 */
9059 		if (!inode_evicting)
9060 			clear_extent_bit(tree, start, end,
9061 					 EXTENT_DIRTY | EXTENT_DELALLOC |
9062 					 EXTENT_DELALLOC_NEW |
9063 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
9064 					 EXTENT_DEFRAG, 1, 0, &cached_state,
9065 					 GFP_NOFS);
9066 		/*
9067 		 * whoever cleared the private bit is responsible
9068 		 * for the finish_ordered_io
9069 		 */
9070 		if (TestClearPagePrivate2(page)) {
9071 			struct btrfs_ordered_inode_tree *tree;
9072 			u64 new_len;
9073 
9074 			tree = &BTRFS_I(inode)->ordered_tree;
9075 
9076 			spin_lock_irq(&tree->lock);
9077 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
9078 			new_len = start - ordered->file_offset;
9079 			if (new_len < ordered->truncated_len)
9080 				ordered->truncated_len = new_len;
9081 			spin_unlock_irq(&tree->lock);
9082 
9083 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
9084 							   start,
9085 							   end - start + 1, 1))
9086 				btrfs_finish_ordered_io(ordered);
9087 		}
9088 		btrfs_put_ordered_extent(ordered);
9089 		if (!inode_evicting) {
9090 			cached_state = NULL;
9091 			lock_extent_bits(tree, start, end,
9092 					 &cached_state);
9093 		}
9094 
9095 		start = end + 1;
9096 		if (start < page_end)
9097 			goto again;
9098 	}
9099 
9100 	/*
9101 	 * Qgroup reserved space handler
9102 	 * Page here will be either
9103 	 * 1) Already written to disk
9104 	 *    In this case, its reserved space is released from data rsv map
9105 	 *    and will be freed by delayed_ref handler finally.
9106 	 *    So even we call qgroup_free_data(), it won't decrease reserved
9107 	 *    space.
9108 	 * 2) Not written to disk
9109 	 *    This means the reserved space should be freed here. However,
9110 	 *    if a truncate invalidates the page (by clearing PageDirty)
9111 	 *    and the page is accounted for while allocating extent
9112 	 *    in btrfs_check_data_free_space() we let delayed_ref to
9113 	 *    free the entire extent.
9114 	 */
9115 	if (PageDirty(page))
9116 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
9117 	if (!inode_evicting) {
9118 		clear_extent_bit(tree, page_start, page_end,
9119 				 EXTENT_LOCKED | EXTENT_DIRTY |
9120 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9121 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9122 				 &cached_state, GFP_NOFS);
9123 
9124 		__btrfs_releasepage(page, GFP_NOFS);
9125 	}
9126 
9127 	ClearPageChecked(page);
9128 	if (PagePrivate(page)) {
9129 		ClearPagePrivate(page);
9130 		set_page_private(page, 0);
9131 		put_page(page);
9132 	}
9133 }
9134 
9135 /*
9136  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9137  * called from a page fault handler when a page is first dirtied. Hence we must
9138  * be careful to check for EOF conditions here. We set the page up correctly
9139  * for a written page which means we get ENOSPC checking when writing into
9140  * holes and correct delalloc and unwritten extent mapping on filesystems that
9141  * support these features.
9142  *
9143  * We are not allowed to take the i_mutex here so we have to play games to
9144  * protect against truncate races as the page could now be beyond EOF.  Because
9145  * vmtruncate() writes the inode size before removing pages, once we have the
9146  * page lock we can determine safely if the page is beyond EOF. If it is not
9147  * beyond EOF, then the page is guaranteed safe against truncation until we
9148  * unlock the page.
9149  */
9150 int btrfs_page_mkwrite(struct vm_fault *vmf)
9151 {
9152 	struct page *page = vmf->page;
9153 	struct inode *inode = file_inode(vmf->vma->vm_file);
9154 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9155 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9156 	struct btrfs_ordered_extent *ordered;
9157 	struct extent_state *cached_state = NULL;
9158 	struct extent_changeset *data_reserved = NULL;
9159 	char *kaddr;
9160 	unsigned long zero_start;
9161 	loff_t size;
9162 	int ret;
9163 	int reserved = 0;
9164 	u64 reserved_space;
9165 	u64 page_start;
9166 	u64 page_end;
9167 	u64 end;
9168 
9169 	reserved_space = PAGE_SIZE;
9170 
9171 	sb_start_pagefault(inode->i_sb);
9172 	page_start = page_offset(page);
9173 	page_end = page_start + PAGE_SIZE - 1;
9174 	end = page_end;
9175 
9176 	/*
9177 	 * Reserving delalloc space after obtaining the page lock can lead to
9178 	 * deadlock. For example, if a dirty page is locked by this function
9179 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9180 	 * dirty page write out, then the btrfs_writepage() function could
9181 	 * end up waiting indefinitely to get a lock on the page currently
9182 	 * being processed by btrfs_page_mkwrite() function.
9183 	 */
9184 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9185 					   reserved_space);
9186 	if (!ret) {
9187 		ret = file_update_time(vmf->vma->vm_file);
9188 		reserved = 1;
9189 	}
9190 	if (ret) {
9191 		if (ret == -ENOMEM)
9192 			ret = VM_FAULT_OOM;
9193 		else /* -ENOSPC, -EIO, etc */
9194 			ret = VM_FAULT_SIGBUS;
9195 		if (reserved)
9196 			goto out;
9197 		goto out_noreserve;
9198 	}
9199 
9200 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9201 again:
9202 	lock_page(page);
9203 	size = i_size_read(inode);
9204 
9205 	if ((page->mapping != inode->i_mapping) ||
9206 	    (page_start >= size)) {
9207 		/* page got truncated out from underneath us */
9208 		goto out_unlock;
9209 	}
9210 	wait_on_page_writeback(page);
9211 
9212 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9213 	set_page_extent_mapped(page);
9214 
9215 	/*
9216 	 * we can't set the delalloc bits if there are pending ordered
9217 	 * extents.  Drop our locks and wait for them to finish
9218 	 */
9219 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9220 			PAGE_SIZE);
9221 	if (ordered) {
9222 		unlock_extent_cached(io_tree, page_start, page_end,
9223 				     &cached_state, GFP_NOFS);
9224 		unlock_page(page);
9225 		btrfs_start_ordered_extent(inode, ordered, 1);
9226 		btrfs_put_ordered_extent(ordered);
9227 		goto again;
9228 	}
9229 
9230 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9231 		reserved_space = round_up(size - page_start,
9232 					  fs_info->sectorsize);
9233 		if (reserved_space < PAGE_SIZE) {
9234 			end = page_start + reserved_space - 1;
9235 			spin_lock(&BTRFS_I(inode)->lock);
9236 			BTRFS_I(inode)->outstanding_extents++;
9237 			spin_unlock(&BTRFS_I(inode)->lock);
9238 			btrfs_delalloc_release_space(inode, data_reserved,
9239 					page_start, PAGE_SIZE - reserved_space);
9240 		}
9241 	}
9242 
9243 	/*
9244 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9245 	 * faulted in, but write(2) could also dirty a page and set delalloc
9246 	 * bits, thus in this case for space account reason, we still need to
9247 	 * clear any delalloc bits within this page range since we have to
9248 	 * reserve data&meta space before lock_page() (see above comments).
9249 	 */
9250 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9251 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9252 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9253 			  0, 0, &cached_state, GFP_NOFS);
9254 
9255 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9256 					&cached_state, 0);
9257 	if (ret) {
9258 		unlock_extent_cached(io_tree, page_start, page_end,
9259 				     &cached_state, GFP_NOFS);
9260 		ret = VM_FAULT_SIGBUS;
9261 		goto out_unlock;
9262 	}
9263 	ret = 0;
9264 
9265 	/* page is wholly or partially inside EOF */
9266 	if (page_start + PAGE_SIZE > size)
9267 		zero_start = size & ~PAGE_MASK;
9268 	else
9269 		zero_start = PAGE_SIZE;
9270 
9271 	if (zero_start != PAGE_SIZE) {
9272 		kaddr = kmap(page);
9273 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9274 		flush_dcache_page(page);
9275 		kunmap(page);
9276 	}
9277 	ClearPageChecked(page);
9278 	set_page_dirty(page);
9279 	SetPageUptodate(page);
9280 
9281 	BTRFS_I(inode)->last_trans = fs_info->generation;
9282 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9283 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9284 
9285 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9286 
9287 out_unlock:
9288 	if (!ret) {
9289 		sb_end_pagefault(inode->i_sb);
9290 		extent_changeset_free(data_reserved);
9291 		return VM_FAULT_LOCKED;
9292 	}
9293 	unlock_page(page);
9294 out:
9295 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9296 				     reserved_space);
9297 out_noreserve:
9298 	sb_end_pagefault(inode->i_sb);
9299 	extent_changeset_free(data_reserved);
9300 	return ret;
9301 }
9302 
9303 static int btrfs_truncate(struct inode *inode)
9304 {
9305 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9306 	struct btrfs_root *root = BTRFS_I(inode)->root;
9307 	struct btrfs_block_rsv *rsv;
9308 	int ret = 0;
9309 	int err = 0;
9310 	struct btrfs_trans_handle *trans;
9311 	u64 mask = fs_info->sectorsize - 1;
9312 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9313 
9314 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9315 				       (u64)-1);
9316 	if (ret)
9317 		return ret;
9318 
9319 	/*
9320 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9321 	 * 3 things going on here
9322 	 *
9323 	 * 1) We need to reserve space for our orphan item and the space to
9324 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9325 	 * orphan item because we didn't reserve space to remove it.
9326 	 *
9327 	 * 2) We need to reserve space to update our inode.
9328 	 *
9329 	 * 3) We need to have something to cache all the space that is going to
9330 	 * be free'd up by the truncate operation, but also have some slack
9331 	 * space reserved in case it uses space during the truncate (thank you
9332 	 * very much snapshotting).
9333 	 *
9334 	 * And we need these to all be separate.  The fact is we can use a lot of
9335 	 * space doing the truncate, and we have no earthly idea how much space
9336 	 * we will use, so we need the truncate reservation to be separate so it
9337 	 * doesn't end up using space reserved for updating the inode or
9338 	 * removing the orphan item.  We also need to be able to stop the
9339 	 * transaction and start a new one, which means we need to be able to
9340 	 * update the inode several times, and we have no idea of knowing how
9341 	 * many times that will be, so we can't just reserve 1 item for the
9342 	 * entirety of the operation, so that has to be done separately as well.
9343 	 * Then there is the orphan item, which does indeed need to be held on
9344 	 * to for the whole operation, and we need nobody to touch this reserved
9345 	 * space except the orphan code.
9346 	 *
9347 	 * So that leaves us with
9348 	 *
9349 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9350 	 * 2) rsv - for the truncate reservation, which we will steal from the
9351 	 * transaction reservation.
9352 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9353 	 * updating the inode.
9354 	 */
9355 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9356 	if (!rsv)
9357 		return -ENOMEM;
9358 	rsv->size = min_size;
9359 	rsv->failfast = 1;
9360 
9361 	/*
9362 	 * 1 for the truncate slack space
9363 	 * 1 for updating the inode.
9364 	 */
9365 	trans = btrfs_start_transaction(root, 2);
9366 	if (IS_ERR(trans)) {
9367 		err = PTR_ERR(trans);
9368 		goto out;
9369 	}
9370 
9371 	/* Migrate the slack space for the truncate to our reserve */
9372 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9373 				      min_size, 0);
9374 	BUG_ON(ret);
9375 
9376 	/*
9377 	 * So if we truncate and then write and fsync we normally would just
9378 	 * write the extents that changed, which is a problem if we need to
9379 	 * first truncate that entire inode.  So set this flag so we write out
9380 	 * all of the extents in the inode to the sync log so we're completely
9381 	 * safe.
9382 	 */
9383 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9384 	trans->block_rsv = rsv;
9385 
9386 	while (1) {
9387 		ret = btrfs_truncate_inode_items(trans, root, inode,
9388 						 inode->i_size,
9389 						 BTRFS_EXTENT_DATA_KEY);
9390 		if (ret != -ENOSPC && ret != -EAGAIN) {
9391 			err = ret;
9392 			break;
9393 		}
9394 
9395 		trans->block_rsv = &fs_info->trans_block_rsv;
9396 		ret = btrfs_update_inode(trans, root, inode);
9397 		if (ret) {
9398 			err = ret;
9399 			break;
9400 		}
9401 
9402 		btrfs_end_transaction(trans);
9403 		btrfs_btree_balance_dirty(fs_info);
9404 
9405 		trans = btrfs_start_transaction(root, 2);
9406 		if (IS_ERR(trans)) {
9407 			ret = err = PTR_ERR(trans);
9408 			trans = NULL;
9409 			break;
9410 		}
9411 
9412 		btrfs_block_rsv_release(fs_info, rsv, -1);
9413 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9414 					      rsv, min_size, 0);
9415 		BUG_ON(ret);	/* shouldn't happen */
9416 		trans->block_rsv = rsv;
9417 	}
9418 
9419 	if (ret == 0 && inode->i_nlink > 0) {
9420 		trans->block_rsv = root->orphan_block_rsv;
9421 		ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9422 		if (ret)
9423 			err = ret;
9424 	}
9425 
9426 	if (trans) {
9427 		trans->block_rsv = &fs_info->trans_block_rsv;
9428 		ret = btrfs_update_inode(trans, root, inode);
9429 		if (ret && !err)
9430 			err = ret;
9431 
9432 		ret = btrfs_end_transaction(trans);
9433 		btrfs_btree_balance_dirty(fs_info);
9434 	}
9435 out:
9436 	btrfs_free_block_rsv(fs_info, rsv);
9437 
9438 	if (ret && !err)
9439 		err = ret;
9440 
9441 	return err;
9442 }
9443 
9444 /*
9445  * create a new subvolume directory/inode (helper for the ioctl).
9446  */
9447 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9448 			     struct btrfs_root *new_root,
9449 			     struct btrfs_root *parent_root,
9450 			     u64 new_dirid)
9451 {
9452 	struct inode *inode;
9453 	int err;
9454 	u64 index = 0;
9455 
9456 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9457 				new_dirid, new_dirid,
9458 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9459 				&index);
9460 	if (IS_ERR(inode))
9461 		return PTR_ERR(inode);
9462 	inode->i_op = &btrfs_dir_inode_operations;
9463 	inode->i_fop = &btrfs_dir_file_operations;
9464 
9465 	set_nlink(inode, 1);
9466 	btrfs_i_size_write(BTRFS_I(inode), 0);
9467 	unlock_new_inode(inode);
9468 
9469 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9470 	if (err)
9471 		btrfs_err(new_root->fs_info,
9472 			  "error inheriting subvolume %llu properties: %d",
9473 			  new_root->root_key.objectid, err);
9474 
9475 	err = btrfs_update_inode(trans, new_root, inode);
9476 
9477 	iput(inode);
9478 	return err;
9479 }
9480 
9481 struct inode *btrfs_alloc_inode(struct super_block *sb)
9482 {
9483 	struct btrfs_inode *ei;
9484 	struct inode *inode;
9485 
9486 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9487 	if (!ei)
9488 		return NULL;
9489 
9490 	ei->root = NULL;
9491 	ei->generation = 0;
9492 	ei->last_trans = 0;
9493 	ei->last_sub_trans = 0;
9494 	ei->logged_trans = 0;
9495 	ei->delalloc_bytes = 0;
9496 	ei->new_delalloc_bytes = 0;
9497 	ei->defrag_bytes = 0;
9498 	ei->disk_i_size = 0;
9499 	ei->flags = 0;
9500 	ei->csum_bytes = 0;
9501 	ei->index_cnt = (u64)-1;
9502 	ei->dir_index = 0;
9503 	ei->last_unlink_trans = 0;
9504 	ei->last_log_commit = 0;
9505 	ei->delayed_iput_count = 0;
9506 
9507 	spin_lock_init(&ei->lock);
9508 	ei->outstanding_extents = 0;
9509 	ei->reserved_extents = 0;
9510 
9511 	ei->runtime_flags = 0;
9512 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9513 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9514 
9515 	ei->delayed_node = NULL;
9516 
9517 	ei->i_otime.tv_sec = 0;
9518 	ei->i_otime.tv_nsec = 0;
9519 
9520 	inode = &ei->vfs_inode;
9521 	extent_map_tree_init(&ei->extent_tree);
9522 	extent_io_tree_init(&ei->io_tree, inode);
9523 	extent_io_tree_init(&ei->io_failure_tree, inode);
9524 	ei->io_tree.track_uptodate = 1;
9525 	ei->io_failure_tree.track_uptodate = 1;
9526 	atomic_set(&ei->sync_writers, 0);
9527 	mutex_init(&ei->log_mutex);
9528 	mutex_init(&ei->delalloc_mutex);
9529 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9530 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9531 	INIT_LIST_HEAD(&ei->delayed_iput);
9532 	RB_CLEAR_NODE(&ei->rb_node);
9533 	init_rwsem(&ei->dio_sem);
9534 
9535 	return inode;
9536 }
9537 
9538 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9539 void btrfs_test_destroy_inode(struct inode *inode)
9540 {
9541 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9542 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9543 }
9544 #endif
9545 
9546 static void btrfs_i_callback(struct rcu_head *head)
9547 {
9548 	struct inode *inode = container_of(head, struct inode, i_rcu);
9549 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9550 }
9551 
9552 void btrfs_destroy_inode(struct inode *inode)
9553 {
9554 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9555 	struct btrfs_ordered_extent *ordered;
9556 	struct btrfs_root *root = BTRFS_I(inode)->root;
9557 
9558 	WARN_ON(!hlist_empty(&inode->i_dentry));
9559 	WARN_ON(inode->i_data.nrpages);
9560 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9561 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9562 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9563 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9564 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9565 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9566 
9567 	/*
9568 	 * This can happen where we create an inode, but somebody else also
9569 	 * created the same inode and we need to destroy the one we already
9570 	 * created.
9571 	 */
9572 	if (!root)
9573 		goto free;
9574 
9575 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9576 		     &BTRFS_I(inode)->runtime_flags)) {
9577 		btrfs_info(fs_info, "inode %llu still on the orphan list",
9578 			   btrfs_ino(BTRFS_I(inode)));
9579 		atomic_dec(&root->orphan_inodes);
9580 	}
9581 
9582 	while (1) {
9583 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9584 		if (!ordered)
9585 			break;
9586 		else {
9587 			btrfs_err(fs_info,
9588 				  "found ordered extent %llu %llu on inode cleanup",
9589 				  ordered->file_offset, ordered->len);
9590 			btrfs_remove_ordered_extent(inode, ordered);
9591 			btrfs_put_ordered_extent(ordered);
9592 			btrfs_put_ordered_extent(ordered);
9593 		}
9594 	}
9595 	btrfs_qgroup_check_reserved_leak(inode);
9596 	inode_tree_del(inode);
9597 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9598 free:
9599 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9600 }
9601 
9602 int btrfs_drop_inode(struct inode *inode)
9603 {
9604 	struct btrfs_root *root = BTRFS_I(inode)->root;
9605 
9606 	if (root == NULL)
9607 		return 1;
9608 
9609 	/* the snap/subvol tree is on deleting */
9610 	if (btrfs_root_refs(&root->root_item) == 0)
9611 		return 1;
9612 	else
9613 		return generic_drop_inode(inode);
9614 }
9615 
9616 static void init_once(void *foo)
9617 {
9618 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9619 
9620 	inode_init_once(&ei->vfs_inode);
9621 }
9622 
9623 void btrfs_destroy_cachep(void)
9624 {
9625 	/*
9626 	 * Make sure all delayed rcu free inodes are flushed before we
9627 	 * destroy cache.
9628 	 */
9629 	rcu_barrier();
9630 	kmem_cache_destroy(btrfs_inode_cachep);
9631 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9632 	kmem_cache_destroy(btrfs_path_cachep);
9633 	kmem_cache_destroy(btrfs_free_space_cachep);
9634 }
9635 
9636 int btrfs_init_cachep(void)
9637 {
9638 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9639 			sizeof(struct btrfs_inode), 0,
9640 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9641 			init_once);
9642 	if (!btrfs_inode_cachep)
9643 		goto fail;
9644 
9645 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9646 			sizeof(struct btrfs_trans_handle), 0,
9647 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9648 	if (!btrfs_trans_handle_cachep)
9649 		goto fail;
9650 
9651 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9652 			sizeof(struct btrfs_path), 0,
9653 			SLAB_MEM_SPREAD, NULL);
9654 	if (!btrfs_path_cachep)
9655 		goto fail;
9656 
9657 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9658 			sizeof(struct btrfs_free_space), 0,
9659 			SLAB_MEM_SPREAD, NULL);
9660 	if (!btrfs_free_space_cachep)
9661 		goto fail;
9662 
9663 	return 0;
9664 fail:
9665 	btrfs_destroy_cachep();
9666 	return -ENOMEM;
9667 }
9668 
9669 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9670 			 u32 request_mask, unsigned int flags)
9671 {
9672 	u64 delalloc_bytes;
9673 	struct inode *inode = d_inode(path->dentry);
9674 	u32 blocksize = inode->i_sb->s_blocksize;
9675 	u32 bi_flags = BTRFS_I(inode)->flags;
9676 
9677 	stat->result_mask |= STATX_BTIME;
9678 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9679 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9680 	if (bi_flags & BTRFS_INODE_APPEND)
9681 		stat->attributes |= STATX_ATTR_APPEND;
9682 	if (bi_flags & BTRFS_INODE_COMPRESS)
9683 		stat->attributes |= STATX_ATTR_COMPRESSED;
9684 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9685 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9686 	if (bi_flags & BTRFS_INODE_NODUMP)
9687 		stat->attributes |= STATX_ATTR_NODUMP;
9688 
9689 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9690 				  STATX_ATTR_COMPRESSED |
9691 				  STATX_ATTR_IMMUTABLE |
9692 				  STATX_ATTR_NODUMP);
9693 
9694 	generic_fillattr(inode, stat);
9695 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9696 
9697 	spin_lock(&BTRFS_I(inode)->lock);
9698 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9699 	spin_unlock(&BTRFS_I(inode)->lock);
9700 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9701 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9702 	return 0;
9703 }
9704 
9705 static int btrfs_rename_exchange(struct inode *old_dir,
9706 			      struct dentry *old_dentry,
9707 			      struct inode *new_dir,
9708 			      struct dentry *new_dentry)
9709 {
9710 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9711 	struct btrfs_trans_handle *trans;
9712 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9713 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9714 	struct inode *new_inode = new_dentry->d_inode;
9715 	struct inode *old_inode = old_dentry->d_inode;
9716 	struct timespec ctime = current_time(old_inode);
9717 	struct dentry *parent;
9718 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9719 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9720 	u64 old_idx = 0;
9721 	u64 new_idx = 0;
9722 	u64 root_objectid;
9723 	int ret;
9724 	bool root_log_pinned = false;
9725 	bool dest_log_pinned = false;
9726 
9727 	/* we only allow rename subvolume link between subvolumes */
9728 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9729 		return -EXDEV;
9730 
9731 	/* close the race window with snapshot create/destroy ioctl */
9732 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9733 		down_read(&fs_info->subvol_sem);
9734 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9735 		down_read(&fs_info->subvol_sem);
9736 
9737 	/*
9738 	 * We want to reserve the absolute worst case amount of items.  So if
9739 	 * both inodes are subvols and we need to unlink them then that would
9740 	 * require 4 item modifications, but if they are both normal inodes it
9741 	 * would require 5 item modifications, so we'll assume their normal
9742 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9743 	 * should cover the worst case number of items we'll modify.
9744 	 */
9745 	trans = btrfs_start_transaction(root, 12);
9746 	if (IS_ERR(trans)) {
9747 		ret = PTR_ERR(trans);
9748 		goto out_notrans;
9749 	}
9750 
9751 	/*
9752 	 * We need to find a free sequence number both in the source and
9753 	 * in the destination directory for the exchange.
9754 	 */
9755 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9756 	if (ret)
9757 		goto out_fail;
9758 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9759 	if (ret)
9760 		goto out_fail;
9761 
9762 	BTRFS_I(old_inode)->dir_index = 0ULL;
9763 	BTRFS_I(new_inode)->dir_index = 0ULL;
9764 
9765 	/* Reference for the source. */
9766 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9767 		/* force full log commit if subvolume involved. */
9768 		btrfs_set_log_full_commit(fs_info, trans);
9769 	} else {
9770 		btrfs_pin_log_trans(root);
9771 		root_log_pinned = true;
9772 		ret = btrfs_insert_inode_ref(trans, dest,
9773 					     new_dentry->d_name.name,
9774 					     new_dentry->d_name.len,
9775 					     old_ino,
9776 					     btrfs_ino(BTRFS_I(new_dir)),
9777 					     old_idx);
9778 		if (ret)
9779 			goto out_fail;
9780 	}
9781 
9782 	/* And now for the dest. */
9783 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9784 		/* force full log commit if subvolume involved. */
9785 		btrfs_set_log_full_commit(fs_info, trans);
9786 	} else {
9787 		btrfs_pin_log_trans(dest);
9788 		dest_log_pinned = true;
9789 		ret = btrfs_insert_inode_ref(trans, root,
9790 					     old_dentry->d_name.name,
9791 					     old_dentry->d_name.len,
9792 					     new_ino,
9793 					     btrfs_ino(BTRFS_I(old_dir)),
9794 					     new_idx);
9795 		if (ret)
9796 			goto out_fail;
9797 	}
9798 
9799 	/* Update inode version and ctime/mtime. */
9800 	inode_inc_iversion(old_dir);
9801 	inode_inc_iversion(new_dir);
9802 	inode_inc_iversion(old_inode);
9803 	inode_inc_iversion(new_inode);
9804 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9805 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9806 	old_inode->i_ctime = ctime;
9807 	new_inode->i_ctime = ctime;
9808 
9809 	if (old_dentry->d_parent != new_dentry->d_parent) {
9810 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9811 				BTRFS_I(old_inode), 1);
9812 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9813 				BTRFS_I(new_inode), 1);
9814 	}
9815 
9816 	/* src is a subvolume */
9817 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9818 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9819 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9820 					  root_objectid,
9821 					  old_dentry->d_name.name,
9822 					  old_dentry->d_name.len);
9823 	} else { /* src is an inode */
9824 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9825 					   BTRFS_I(old_dentry->d_inode),
9826 					   old_dentry->d_name.name,
9827 					   old_dentry->d_name.len);
9828 		if (!ret)
9829 			ret = btrfs_update_inode(trans, root, old_inode);
9830 	}
9831 	if (ret) {
9832 		btrfs_abort_transaction(trans, ret);
9833 		goto out_fail;
9834 	}
9835 
9836 	/* dest is a subvolume */
9837 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9838 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9839 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9840 					  root_objectid,
9841 					  new_dentry->d_name.name,
9842 					  new_dentry->d_name.len);
9843 	} else { /* dest is an inode */
9844 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9845 					   BTRFS_I(new_dentry->d_inode),
9846 					   new_dentry->d_name.name,
9847 					   new_dentry->d_name.len);
9848 		if (!ret)
9849 			ret = btrfs_update_inode(trans, dest, new_inode);
9850 	}
9851 	if (ret) {
9852 		btrfs_abort_transaction(trans, ret);
9853 		goto out_fail;
9854 	}
9855 
9856 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9857 			     new_dentry->d_name.name,
9858 			     new_dentry->d_name.len, 0, old_idx);
9859 	if (ret) {
9860 		btrfs_abort_transaction(trans, ret);
9861 		goto out_fail;
9862 	}
9863 
9864 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9865 			     old_dentry->d_name.name,
9866 			     old_dentry->d_name.len, 0, new_idx);
9867 	if (ret) {
9868 		btrfs_abort_transaction(trans, ret);
9869 		goto out_fail;
9870 	}
9871 
9872 	if (old_inode->i_nlink == 1)
9873 		BTRFS_I(old_inode)->dir_index = old_idx;
9874 	if (new_inode->i_nlink == 1)
9875 		BTRFS_I(new_inode)->dir_index = new_idx;
9876 
9877 	if (root_log_pinned) {
9878 		parent = new_dentry->d_parent;
9879 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9880 				parent);
9881 		btrfs_end_log_trans(root);
9882 		root_log_pinned = false;
9883 	}
9884 	if (dest_log_pinned) {
9885 		parent = old_dentry->d_parent;
9886 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9887 				parent);
9888 		btrfs_end_log_trans(dest);
9889 		dest_log_pinned = false;
9890 	}
9891 out_fail:
9892 	/*
9893 	 * If we have pinned a log and an error happened, we unpin tasks
9894 	 * trying to sync the log and force them to fallback to a transaction
9895 	 * commit if the log currently contains any of the inodes involved in
9896 	 * this rename operation (to ensure we do not persist a log with an
9897 	 * inconsistent state for any of these inodes or leading to any
9898 	 * inconsistencies when replayed). If the transaction was aborted, the
9899 	 * abortion reason is propagated to userspace when attempting to commit
9900 	 * the transaction. If the log does not contain any of these inodes, we
9901 	 * allow the tasks to sync it.
9902 	 */
9903 	if (ret && (root_log_pinned || dest_log_pinned)) {
9904 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9905 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9906 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9907 		    (new_inode &&
9908 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9909 			btrfs_set_log_full_commit(fs_info, trans);
9910 
9911 		if (root_log_pinned) {
9912 			btrfs_end_log_trans(root);
9913 			root_log_pinned = false;
9914 		}
9915 		if (dest_log_pinned) {
9916 			btrfs_end_log_trans(dest);
9917 			dest_log_pinned = false;
9918 		}
9919 	}
9920 	ret = btrfs_end_transaction(trans);
9921 out_notrans:
9922 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9923 		up_read(&fs_info->subvol_sem);
9924 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9925 		up_read(&fs_info->subvol_sem);
9926 
9927 	return ret;
9928 }
9929 
9930 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9931 				     struct btrfs_root *root,
9932 				     struct inode *dir,
9933 				     struct dentry *dentry)
9934 {
9935 	int ret;
9936 	struct inode *inode;
9937 	u64 objectid;
9938 	u64 index;
9939 
9940 	ret = btrfs_find_free_ino(root, &objectid);
9941 	if (ret)
9942 		return ret;
9943 
9944 	inode = btrfs_new_inode(trans, root, dir,
9945 				dentry->d_name.name,
9946 				dentry->d_name.len,
9947 				btrfs_ino(BTRFS_I(dir)),
9948 				objectid,
9949 				S_IFCHR | WHITEOUT_MODE,
9950 				&index);
9951 
9952 	if (IS_ERR(inode)) {
9953 		ret = PTR_ERR(inode);
9954 		return ret;
9955 	}
9956 
9957 	inode->i_op = &btrfs_special_inode_operations;
9958 	init_special_inode(inode, inode->i_mode,
9959 		WHITEOUT_DEV);
9960 
9961 	ret = btrfs_init_inode_security(trans, inode, dir,
9962 				&dentry->d_name);
9963 	if (ret)
9964 		goto out;
9965 
9966 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9967 				BTRFS_I(inode), 0, index);
9968 	if (ret)
9969 		goto out;
9970 
9971 	ret = btrfs_update_inode(trans, root, inode);
9972 out:
9973 	unlock_new_inode(inode);
9974 	if (ret)
9975 		inode_dec_link_count(inode);
9976 	iput(inode);
9977 
9978 	return ret;
9979 }
9980 
9981 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9982 			   struct inode *new_dir, struct dentry *new_dentry,
9983 			   unsigned int flags)
9984 {
9985 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9986 	struct btrfs_trans_handle *trans;
9987 	unsigned int trans_num_items;
9988 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9989 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9990 	struct inode *new_inode = d_inode(new_dentry);
9991 	struct inode *old_inode = d_inode(old_dentry);
9992 	u64 index = 0;
9993 	u64 root_objectid;
9994 	int ret;
9995 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9996 	bool log_pinned = false;
9997 
9998 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9999 		return -EPERM;
10000 
10001 	/* we only allow rename subvolume link between subvolumes */
10002 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
10003 		return -EXDEV;
10004 
10005 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
10006 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
10007 		return -ENOTEMPTY;
10008 
10009 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
10010 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
10011 		return -ENOTEMPTY;
10012 
10013 
10014 	/* check for collisions, even if the  name isn't there */
10015 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
10016 			     new_dentry->d_name.name,
10017 			     new_dentry->d_name.len);
10018 
10019 	if (ret) {
10020 		if (ret == -EEXIST) {
10021 			/* we shouldn't get
10022 			 * eexist without a new_inode */
10023 			if (WARN_ON(!new_inode)) {
10024 				return ret;
10025 			}
10026 		} else {
10027 			/* maybe -EOVERFLOW */
10028 			return ret;
10029 		}
10030 	}
10031 	ret = 0;
10032 
10033 	/*
10034 	 * we're using rename to replace one file with another.  Start IO on it
10035 	 * now so  we don't add too much work to the end of the transaction
10036 	 */
10037 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
10038 		filemap_flush(old_inode->i_mapping);
10039 
10040 	/* close the racy window with snapshot create/destroy ioctl */
10041 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10042 		down_read(&fs_info->subvol_sem);
10043 	/*
10044 	 * We want to reserve the absolute worst case amount of items.  So if
10045 	 * both inodes are subvols and we need to unlink them then that would
10046 	 * require 4 item modifications, but if they are both normal inodes it
10047 	 * would require 5 item modifications, so we'll assume they are normal
10048 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
10049 	 * should cover the worst case number of items we'll modify.
10050 	 * If our rename has the whiteout flag, we need more 5 units for the
10051 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
10052 	 * when selinux is enabled).
10053 	 */
10054 	trans_num_items = 11;
10055 	if (flags & RENAME_WHITEOUT)
10056 		trans_num_items += 5;
10057 	trans = btrfs_start_transaction(root, trans_num_items);
10058 	if (IS_ERR(trans)) {
10059 		ret = PTR_ERR(trans);
10060 		goto out_notrans;
10061 	}
10062 
10063 	if (dest != root)
10064 		btrfs_record_root_in_trans(trans, dest);
10065 
10066 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
10067 	if (ret)
10068 		goto out_fail;
10069 
10070 	BTRFS_I(old_inode)->dir_index = 0ULL;
10071 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10072 		/* force full log commit if subvolume involved. */
10073 		btrfs_set_log_full_commit(fs_info, trans);
10074 	} else {
10075 		btrfs_pin_log_trans(root);
10076 		log_pinned = true;
10077 		ret = btrfs_insert_inode_ref(trans, dest,
10078 					     new_dentry->d_name.name,
10079 					     new_dentry->d_name.len,
10080 					     old_ino,
10081 					     btrfs_ino(BTRFS_I(new_dir)), index);
10082 		if (ret)
10083 			goto out_fail;
10084 	}
10085 
10086 	inode_inc_iversion(old_dir);
10087 	inode_inc_iversion(new_dir);
10088 	inode_inc_iversion(old_inode);
10089 	old_dir->i_ctime = old_dir->i_mtime =
10090 	new_dir->i_ctime = new_dir->i_mtime =
10091 	old_inode->i_ctime = current_time(old_dir);
10092 
10093 	if (old_dentry->d_parent != new_dentry->d_parent)
10094 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10095 				BTRFS_I(old_inode), 1);
10096 
10097 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10098 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10099 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10100 					old_dentry->d_name.name,
10101 					old_dentry->d_name.len);
10102 	} else {
10103 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10104 					BTRFS_I(d_inode(old_dentry)),
10105 					old_dentry->d_name.name,
10106 					old_dentry->d_name.len);
10107 		if (!ret)
10108 			ret = btrfs_update_inode(trans, root, old_inode);
10109 	}
10110 	if (ret) {
10111 		btrfs_abort_transaction(trans, ret);
10112 		goto out_fail;
10113 	}
10114 
10115 	if (new_inode) {
10116 		inode_inc_iversion(new_inode);
10117 		new_inode->i_ctime = current_time(new_inode);
10118 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10119 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10120 			root_objectid = BTRFS_I(new_inode)->location.objectid;
10121 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
10122 						root_objectid,
10123 						new_dentry->d_name.name,
10124 						new_dentry->d_name.len);
10125 			BUG_ON(new_inode->i_nlink == 0);
10126 		} else {
10127 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10128 						 BTRFS_I(d_inode(new_dentry)),
10129 						 new_dentry->d_name.name,
10130 						 new_dentry->d_name.len);
10131 		}
10132 		if (!ret && new_inode->i_nlink == 0)
10133 			ret = btrfs_orphan_add(trans,
10134 					BTRFS_I(d_inode(new_dentry)));
10135 		if (ret) {
10136 			btrfs_abort_transaction(trans, ret);
10137 			goto out_fail;
10138 		}
10139 	}
10140 
10141 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10142 			     new_dentry->d_name.name,
10143 			     new_dentry->d_name.len, 0, index);
10144 	if (ret) {
10145 		btrfs_abort_transaction(trans, ret);
10146 		goto out_fail;
10147 	}
10148 
10149 	if (old_inode->i_nlink == 1)
10150 		BTRFS_I(old_inode)->dir_index = index;
10151 
10152 	if (log_pinned) {
10153 		struct dentry *parent = new_dentry->d_parent;
10154 
10155 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10156 				parent);
10157 		btrfs_end_log_trans(root);
10158 		log_pinned = false;
10159 	}
10160 
10161 	if (flags & RENAME_WHITEOUT) {
10162 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10163 						old_dentry);
10164 
10165 		if (ret) {
10166 			btrfs_abort_transaction(trans, ret);
10167 			goto out_fail;
10168 		}
10169 	}
10170 out_fail:
10171 	/*
10172 	 * If we have pinned the log and an error happened, we unpin tasks
10173 	 * trying to sync the log and force them to fallback to a transaction
10174 	 * commit if the log currently contains any of the inodes involved in
10175 	 * this rename operation (to ensure we do not persist a log with an
10176 	 * inconsistent state for any of these inodes or leading to any
10177 	 * inconsistencies when replayed). If the transaction was aborted, the
10178 	 * abortion reason is propagated to userspace when attempting to commit
10179 	 * the transaction. If the log does not contain any of these inodes, we
10180 	 * allow the tasks to sync it.
10181 	 */
10182 	if (ret && log_pinned) {
10183 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10184 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10185 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10186 		    (new_inode &&
10187 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10188 			btrfs_set_log_full_commit(fs_info, trans);
10189 
10190 		btrfs_end_log_trans(root);
10191 		log_pinned = false;
10192 	}
10193 	btrfs_end_transaction(trans);
10194 out_notrans:
10195 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10196 		up_read(&fs_info->subvol_sem);
10197 
10198 	return ret;
10199 }
10200 
10201 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10202 			 struct inode *new_dir, struct dentry *new_dentry,
10203 			 unsigned int flags)
10204 {
10205 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10206 		return -EINVAL;
10207 
10208 	if (flags & RENAME_EXCHANGE)
10209 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10210 					  new_dentry);
10211 
10212 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10213 }
10214 
10215 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10216 {
10217 	struct btrfs_delalloc_work *delalloc_work;
10218 	struct inode *inode;
10219 
10220 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10221 				     work);
10222 	inode = delalloc_work->inode;
10223 	filemap_flush(inode->i_mapping);
10224 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10225 				&BTRFS_I(inode)->runtime_flags))
10226 		filemap_flush(inode->i_mapping);
10227 
10228 	if (delalloc_work->delay_iput)
10229 		btrfs_add_delayed_iput(inode);
10230 	else
10231 		iput(inode);
10232 	complete(&delalloc_work->completion);
10233 }
10234 
10235 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10236 						    int delay_iput)
10237 {
10238 	struct btrfs_delalloc_work *work;
10239 
10240 	work = kmalloc(sizeof(*work), GFP_NOFS);
10241 	if (!work)
10242 		return NULL;
10243 
10244 	init_completion(&work->completion);
10245 	INIT_LIST_HEAD(&work->list);
10246 	work->inode = inode;
10247 	work->delay_iput = delay_iput;
10248 	WARN_ON_ONCE(!inode);
10249 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10250 			btrfs_run_delalloc_work, NULL, NULL);
10251 
10252 	return work;
10253 }
10254 
10255 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10256 {
10257 	wait_for_completion(&work->completion);
10258 	kfree(work);
10259 }
10260 
10261 /*
10262  * some fairly slow code that needs optimization. This walks the list
10263  * of all the inodes with pending delalloc and forces them to disk.
10264  */
10265 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10266 				   int nr)
10267 {
10268 	struct btrfs_inode *binode;
10269 	struct inode *inode;
10270 	struct btrfs_delalloc_work *work, *next;
10271 	struct list_head works;
10272 	struct list_head splice;
10273 	int ret = 0;
10274 
10275 	INIT_LIST_HEAD(&works);
10276 	INIT_LIST_HEAD(&splice);
10277 
10278 	mutex_lock(&root->delalloc_mutex);
10279 	spin_lock(&root->delalloc_lock);
10280 	list_splice_init(&root->delalloc_inodes, &splice);
10281 	while (!list_empty(&splice)) {
10282 		binode = list_entry(splice.next, struct btrfs_inode,
10283 				    delalloc_inodes);
10284 
10285 		list_move_tail(&binode->delalloc_inodes,
10286 			       &root->delalloc_inodes);
10287 		inode = igrab(&binode->vfs_inode);
10288 		if (!inode) {
10289 			cond_resched_lock(&root->delalloc_lock);
10290 			continue;
10291 		}
10292 		spin_unlock(&root->delalloc_lock);
10293 
10294 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10295 		if (!work) {
10296 			if (delay_iput)
10297 				btrfs_add_delayed_iput(inode);
10298 			else
10299 				iput(inode);
10300 			ret = -ENOMEM;
10301 			goto out;
10302 		}
10303 		list_add_tail(&work->list, &works);
10304 		btrfs_queue_work(root->fs_info->flush_workers,
10305 				 &work->work);
10306 		ret++;
10307 		if (nr != -1 && ret >= nr)
10308 			goto out;
10309 		cond_resched();
10310 		spin_lock(&root->delalloc_lock);
10311 	}
10312 	spin_unlock(&root->delalloc_lock);
10313 
10314 out:
10315 	list_for_each_entry_safe(work, next, &works, list) {
10316 		list_del_init(&work->list);
10317 		btrfs_wait_and_free_delalloc_work(work);
10318 	}
10319 
10320 	if (!list_empty_careful(&splice)) {
10321 		spin_lock(&root->delalloc_lock);
10322 		list_splice_tail(&splice, &root->delalloc_inodes);
10323 		spin_unlock(&root->delalloc_lock);
10324 	}
10325 	mutex_unlock(&root->delalloc_mutex);
10326 	return ret;
10327 }
10328 
10329 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10330 {
10331 	struct btrfs_fs_info *fs_info = root->fs_info;
10332 	int ret;
10333 
10334 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10335 		return -EROFS;
10336 
10337 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10338 	if (ret > 0)
10339 		ret = 0;
10340 	/*
10341 	 * the filemap_flush will queue IO into the worker threads, but
10342 	 * we have to make sure the IO is actually started and that
10343 	 * ordered extents get created before we return
10344 	 */
10345 	atomic_inc(&fs_info->async_submit_draining);
10346 	while (atomic_read(&fs_info->nr_async_submits) ||
10347 	       atomic_read(&fs_info->async_delalloc_pages)) {
10348 		wait_event(fs_info->async_submit_wait,
10349 			   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10350 			    atomic_read(&fs_info->async_delalloc_pages) == 0));
10351 	}
10352 	atomic_dec(&fs_info->async_submit_draining);
10353 	return ret;
10354 }
10355 
10356 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10357 			       int nr)
10358 {
10359 	struct btrfs_root *root;
10360 	struct list_head splice;
10361 	int ret;
10362 
10363 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10364 		return -EROFS;
10365 
10366 	INIT_LIST_HEAD(&splice);
10367 
10368 	mutex_lock(&fs_info->delalloc_root_mutex);
10369 	spin_lock(&fs_info->delalloc_root_lock);
10370 	list_splice_init(&fs_info->delalloc_roots, &splice);
10371 	while (!list_empty(&splice) && nr) {
10372 		root = list_first_entry(&splice, struct btrfs_root,
10373 					delalloc_root);
10374 		root = btrfs_grab_fs_root(root);
10375 		BUG_ON(!root);
10376 		list_move_tail(&root->delalloc_root,
10377 			       &fs_info->delalloc_roots);
10378 		spin_unlock(&fs_info->delalloc_root_lock);
10379 
10380 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10381 		btrfs_put_fs_root(root);
10382 		if (ret < 0)
10383 			goto out;
10384 
10385 		if (nr != -1) {
10386 			nr -= ret;
10387 			WARN_ON(nr < 0);
10388 		}
10389 		spin_lock(&fs_info->delalloc_root_lock);
10390 	}
10391 	spin_unlock(&fs_info->delalloc_root_lock);
10392 
10393 	ret = 0;
10394 	atomic_inc(&fs_info->async_submit_draining);
10395 	while (atomic_read(&fs_info->nr_async_submits) ||
10396 	      atomic_read(&fs_info->async_delalloc_pages)) {
10397 		wait_event(fs_info->async_submit_wait,
10398 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10399 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10400 	}
10401 	atomic_dec(&fs_info->async_submit_draining);
10402 out:
10403 	if (!list_empty_careful(&splice)) {
10404 		spin_lock(&fs_info->delalloc_root_lock);
10405 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10406 		spin_unlock(&fs_info->delalloc_root_lock);
10407 	}
10408 	mutex_unlock(&fs_info->delalloc_root_mutex);
10409 	return ret;
10410 }
10411 
10412 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10413 			 const char *symname)
10414 {
10415 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10416 	struct btrfs_trans_handle *trans;
10417 	struct btrfs_root *root = BTRFS_I(dir)->root;
10418 	struct btrfs_path *path;
10419 	struct btrfs_key key;
10420 	struct inode *inode = NULL;
10421 	int err;
10422 	int drop_inode = 0;
10423 	u64 objectid;
10424 	u64 index = 0;
10425 	int name_len;
10426 	int datasize;
10427 	unsigned long ptr;
10428 	struct btrfs_file_extent_item *ei;
10429 	struct extent_buffer *leaf;
10430 
10431 	name_len = strlen(symname);
10432 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10433 		return -ENAMETOOLONG;
10434 
10435 	/*
10436 	 * 2 items for inode item and ref
10437 	 * 2 items for dir items
10438 	 * 1 item for updating parent inode item
10439 	 * 1 item for the inline extent item
10440 	 * 1 item for xattr if selinux is on
10441 	 */
10442 	trans = btrfs_start_transaction(root, 7);
10443 	if (IS_ERR(trans))
10444 		return PTR_ERR(trans);
10445 
10446 	err = btrfs_find_free_ino(root, &objectid);
10447 	if (err)
10448 		goto out_unlock;
10449 
10450 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10451 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10452 				objectid, S_IFLNK|S_IRWXUGO, &index);
10453 	if (IS_ERR(inode)) {
10454 		err = PTR_ERR(inode);
10455 		goto out_unlock;
10456 	}
10457 
10458 	/*
10459 	* If the active LSM wants to access the inode during
10460 	* d_instantiate it needs these. Smack checks to see
10461 	* if the filesystem supports xattrs by looking at the
10462 	* ops vector.
10463 	*/
10464 	inode->i_fop = &btrfs_file_operations;
10465 	inode->i_op = &btrfs_file_inode_operations;
10466 	inode->i_mapping->a_ops = &btrfs_aops;
10467 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10468 
10469 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10470 	if (err)
10471 		goto out_unlock_inode;
10472 
10473 	path = btrfs_alloc_path();
10474 	if (!path) {
10475 		err = -ENOMEM;
10476 		goto out_unlock_inode;
10477 	}
10478 	key.objectid = btrfs_ino(BTRFS_I(inode));
10479 	key.offset = 0;
10480 	key.type = BTRFS_EXTENT_DATA_KEY;
10481 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10482 	err = btrfs_insert_empty_item(trans, root, path, &key,
10483 				      datasize);
10484 	if (err) {
10485 		btrfs_free_path(path);
10486 		goto out_unlock_inode;
10487 	}
10488 	leaf = path->nodes[0];
10489 	ei = btrfs_item_ptr(leaf, path->slots[0],
10490 			    struct btrfs_file_extent_item);
10491 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10492 	btrfs_set_file_extent_type(leaf, ei,
10493 				   BTRFS_FILE_EXTENT_INLINE);
10494 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10495 	btrfs_set_file_extent_compression(leaf, ei, 0);
10496 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10497 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10498 
10499 	ptr = btrfs_file_extent_inline_start(ei);
10500 	write_extent_buffer(leaf, symname, ptr, name_len);
10501 	btrfs_mark_buffer_dirty(leaf);
10502 	btrfs_free_path(path);
10503 
10504 	inode->i_op = &btrfs_symlink_inode_operations;
10505 	inode_nohighmem(inode);
10506 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10507 	inode_set_bytes(inode, name_len);
10508 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10509 	err = btrfs_update_inode(trans, root, inode);
10510 	/*
10511 	 * Last step, add directory indexes for our symlink inode. This is the
10512 	 * last step to avoid extra cleanup of these indexes if an error happens
10513 	 * elsewhere above.
10514 	 */
10515 	if (!err)
10516 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10517 				BTRFS_I(inode), 0, index);
10518 	if (err) {
10519 		drop_inode = 1;
10520 		goto out_unlock_inode;
10521 	}
10522 
10523 	unlock_new_inode(inode);
10524 	d_instantiate(dentry, inode);
10525 
10526 out_unlock:
10527 	btrfs_end_transaction(trans);
10528 	if (drop_inode) {
10529 		inode_dec_link_count(inode);
10530 		iput(inode);
10531 	}
10532 	btrfs_btree_balance_dirty(fs_info);
10533 	return err;
10534 
10535 out_unlock_inode:
10536 	drop_inode = 1;
10537 	unlock_new_inode(inode);
10538 	goto out_unlock;
10539 }
10540 
10541 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10542 				       u64 start, u64 num_bytes, u64 min_size,
10543 				       loff_t actual_len, u64 *alloc_hint,
10544 				       struct btrfs_trans_handle *trans)
10545 {
10546 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10547 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10548 	struct extent_map *em;
10549 	struct btrfs_root *root = BTRFS_I(inode)->root;
10550 	struct btrfs_key ins;
10551 	u64 cur_offset = start;
10552 	u64 i_size;
10553 	u64 cur_bytes;
10554 	u64 last_alloc = (u64)-1;
10555 	int ret = 0;
10556 	bool own_trans = true;
10557 	u64 end = start + num_bytes - 1;
10558 
10559 	if (trans)
10560 		own_trans = false;
10561 	while (num_bytes > 0) {
10562 		if (own_trans) {
10563 			trans = btrfs_start_transaction(root, 3);
10564 			if (IS_ERR(trans)) {
10565 				ret = PTR_ERR(trans);
10566 				break;
10567 			}
10568 		}
10569 
10570 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10571 		cur_bytes = max(cur_bytes, min_size);
10572 		/*
10573 		 * If we are severely fragmented we could end up with really
10574 		 * small allocations, so if the allocator is returning small
10575 		 * chunks lets make its job easier by only searching for those
10576 		 * sized chunks.
10577 		 */
10578 		cur_bytes = min(cur_bytes, last_alloc);
10579 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10580 				min_size, 0, *alloc_hint, &ins, 1, 0);
10581 		if (ret) {
10582 			if (own_trans)
10583 				btrfs_end_transaction(trans);
10584 			break;
10585 		}
10586 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10587 
10588 		last_alloc = ins.offset;
10589 		ret = insert_reserved_file_extent(trans, inode,
10590 						  cur_offset, ins.objectid,
10591 						  ins.offset, ins.offset,
10592 						  ins.offset, 0, 0, 0,
10593 						  BTRFS_FILE_EXTENT_PREALLOC);
10594 		if (ret) {
10595 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10596 						   ins.offset, 0);
10597 			btrfs_abort_transaction(trans, ret);
10598 			if (own_trans)
10599 				btrfs_end_transaction(trans);
10600 			break;
10601 		}
10602 
10603 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10604 					cur_offset + ins.offset -1, 0);
10605 
10606 		em = alloc_extent_map();
10607 		if (!em) {
10608 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10609 				&BTRFS_I(inode)->runtime_flags);
10610 			goto next;
10611 		}
10612 
10613 		em->start = cur_offset;
10614 		em->orig_start = cur_offset;
10615 		em->len = ins.offset;
10616 		em->block_start = ins.objectid;
10617 		em->block_len = ins.offset;
10618 		em->orig_block_len = ins.offset;
10619 		em->ram_bytes = ins.offset;
10620 		em->bdev = fs_info->fs_devices->latest_bdev;
10621 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10622 		em->generation = trans->transid;
10623 
10624 		while (1) {
10625 			write_lock(&em_tree->lock);
10626 			ret = add_extent_mapping(em_tree, em, 1);
10627 			write_unlock(&em_tree->lock);
10628 			if (ret != -EEXIST)
10629 				break;
10630 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10631 						cur_offset + ins.offset - 1,
10632 						0);
10633 		}
10634 		free_extent_map(em);
10635 next:
10636 		num_bytes -= ins.offset;
10637 		cur_offset += ins.offset;
10638 		*alloc_hint = ins.objectid + ins.offset;
10639 
10640 		inode_inc_iversion(inode);
10641 		inode->i_ctime = current_time(inode);
10642 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10643 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10644 		    (actual_len > inode->i_size) &&
10645 		    (cur_offset > inode->i_size)) {
10646 			if (cur_offset > actual_len)
10647 				i_size = actual_len;
10648 			else
10649 				i_size = cur_offset;
10650 			i_size_write(inode, i_size);
10651 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10652 		}
10653 
10654 		ret = btrfs_update_inode(trans, root, inode);
10655 
10656 		if (ret) {
10657 			btrfs_abort_transaction(trans, ret);
10658 			if (own_trans)
10659 				btrfs_end_transaction(trans);
10660 			break;
10661 		}
10662 
10663 		if (own_trans)
10664 			btrfs_end_transaction(trans);
10665 	}
10666 	if (cur_offset < end)
10667 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10668 			end - cur_offset + 1);
10669 	return ret;
10670 }
10671 
10672 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10673 			      u64 start, u64 num_bytes, u64 min_size,
10674 			      loff_t actual_len, u64 *alloc_hint)
10675 {
10676 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10677 					   min_size, actual_len, alloc_hint,
10678 					   NULL);
10679 }
10680 
10681 int btrfs_prealloc_file_range_trans(struct inode *inode,
10682 				    struct btrfs_trans_handle *trans, int mode,
10683 				    u64 start, u64 num_bytes, u64 min_size,
10684 				    loff_t actual_len, u64 *alloc_hint)
10685 {
10686 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10687 					   min_size, actual_len, alloc_hint, trans);
10688 }
10689 
10690 static int btrfs_set_page_dirty(struct page *page)
10691 {
10692 	return __set_page_dirty_nobuffers(page);
10693 }
10694 
10695 static int btrfs_permission(struct inode *inode, int mask)
10696 {
10697 	struct btrfs_root *root = BTRFS_I(inode)->root;
10698 	umode_t mode = inode->i_mode;
10699 
10700 	if (mask & MAY_WRITE &&
10701 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10702 		if (btrfs_root_readonly(root))
10703 			return -EROFS;
10704 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10705 			return -EACCES;
10706 	}
10707 	return generic_permission(inode, mask);
10708 }
10709 
10710 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10711 {
10712 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10713 	struct btrfs_trans_handle *trans;
10714 	struct btrfs_root *root = BTRFS_I(dir)->root;
10715 	struct inode *inode = NULL;
10716 	u64 objectid;
10717 	u64 index;
10718 	int ret = 0;
10719 
10720 	/*
10721 	 * 5 units required for adding orphan entry
10722 	 */
10723 	trans = btrfs_start_transaction(root, 5);
10724 	if (IS_ERR(trans))
10725 		return PTR_ERR(trans);
10726 
10727 	ret = btrfs_find_free_ino(root, &objectid);
10728 	if (ret)
10729 		goto out;
10730 
10731 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10732 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10733 	if (IS_ERR(inode)) {
10734 		ret = PTR_ERR(inode);
10735 		inode = NULL;
10736 		goto out;
10737 	}
10738 
10739 	inode->i_fop = &btrfs_file_operations;
10740 	inode->i_op = &btrfs_file_inode_operations;
10741 
10742 	inode->i_mapping->a_ops = &btrfs_aops;
10743 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10744 
10745 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10746 	if (ret)
10747 		goto out_inode;
10748 
10749 	ret = btrfs_update_inode(trans, root, inode);
10750 	if (ret)
10751 		goto out_inode;
10752 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10753 	if (ret)
10754 		goto out_inode;
10755 
10756 	/*
10757 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10758 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10759 	 * through:
10760 	 *
10761 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10762 	 */
10763 	set_nlink(inode, 1);
10764 	unlock_new_inode(inode);
10765 	d_tmpfile(dentry, inode);
10766 	mark_inode_dirty(inode);
10767 
10768 out:
10769 	btrfs_end_transaction(trans);
10770 	if (ret)
10771 		iput(inode);
10772 	btrfs_balance_delayed_items(fs_info);
10773 	btrfs_btree_balance_dirty(fs_info);
10774 	return ret;
10775 
10776 out_inode:
10777 	unlock_new_inode(inode);
10778 	goto out;
10779 
10780 }
10781 
10782 __attribute__((const))
10783 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10784 {
10785 	return -EAGAIN;
10786 }
10787 
10788 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10789 {
10790 	struct inode *inode = private_data;
10791 	return btrfs_sb(inode->i_sb);
10792 }
10793 
10794 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10795 					u64 start, u64 end)
10796 {
10797 	struct inode *inode = private_data;
10798 	u64 isize;
10799 
10800 	isize = i_size_read(inode);
10801 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10802 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10803 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10804 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10805 	}
10806 }
10807 
10808 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10809 {
10810 	struct inode *inode = private_data;
10811 	unsigned long index = start >> PAGE_SHIFT;
10812 	unsigned long end_index = end >> PAGE_SHIFT;
10813 	struct page *page;
10814 
10815 	while (index <= end_index) {
10816 		page = find_get_page(inode->i_mapping, index);
10817 		ASSERT(page); /* Pages should be in the extent_io_tree */
10818 		set_page_writeback(page);
10819 		put_page(page);
10820 		index++;
10821 	}
10822 }
10823 
10824 static const struct inode_operations btrfs_dir_inode_operations = {
10825 	.getattr	= btrfs_getattr,
10826 	.lookup		= btrfs_lookup,
10827 	.create		= btrfs_create,
10828 	.unlink		= btrfs_unlink,
10829 	.link		= btrfs_link,
10830 	.mkdir		= btrfs_mkdir,
10831 	.rmdir		= btrfs_rmdir,
10832 	.rename		= btrfs_rename2,
10833 	.symlink	= btrfs_symlink,
10834 	.setattr	= btrfs_setattr,
10835 	.mknod		= btrfs_mknod,
10836 	.listxattr	= btrfs_listxattr,
10837 	.permission	= btrfs_permission,
10838 	.get_acl	= btrfs_get_acl,
10839 	.set_acl	= btrfs_set_acl,
10840 	.update_time	= btrfs_update_time,
10841 	.tmpfile        = btrfs_tmpfile,
10842 };
10843 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10844 	.lookup		= btrfs_lookup,
10845 	.permission	= btrfs_permission,
10846 	.update_time	= btrfs_update_time,
10847 };
10848 
10849 static const struct file_operations btrfs_dir_file_operations = {
10850 	.llseek		= generic_file_llseek,
10851 	.read		= generic_read_dir,
10852 	.iterate_shared	= btrfs_real_readdir,
10853 	.open		= btrfs_opendir,
10854 	.unlocked_ioctl	= btrfs_ioctl,
10855 #ifdef CONFIG_COMPAT
10856 	.compat_ioctl	= btrfs_compat_ioctl,
10857 #endif
10858 	.release        = btrfs_release_file,
10859 	.fsync		= btrfs_sync_file,
10860 };
10861 
10862 static const struct extent_io_ops btrfs_extent_io_ops = {
10863 	/* mandatory callbacks */
10864 	.submit_bio_hook = btrfs_submit_bio_hook,
10865 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10866 	.merge_bio_hook = btrfs_merge_bio_hook,
10867 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10868 	.tree_fs_info = iotree_fs_info,
10869 	.set_range_writeback = btrfs_set_range_writeback,
10870 
10871 	/* optional callbacks */
10872 	.fill_delalloc = run_delalloc_range,
10873 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10874 	.writepage_start_hook = btrfs_writepage_start_hook,
10875 	.set_bit_hook = btrfs_set_bit_hook,
10876 	.clear_bit_hook = btrfs_clear_bit_hook,
10877 	.merge_extent_hook = btrfs_merge_extent_hook,
10878 	.split_extent_hook = btrfs_split_extent_hook,
10879 	.check_extent_io_range = btrfs_check_extent_io_range,
10880 };
10881 
10882 /*
10883  * btrfs doesn't support the bmap operation because swapfiles
10884  * use bmap to make a mapping of extents in the file.  They assume
10885  * these extents won't change over the life of the file and they
10886  * use the bmap result to do IO directly to the drive.
10887  *
10888  * the btrfs bmap call would return logical addresses that aren't
10889  * suitable for IO and they also will change frequently as COW
10890  * operations happen.  So, swapfile + btrfs == corruption.
10891  *
10892  * For now we're avoiding this by dropping bmap.
10893  */
10894 static const struct address_space_operations btrfs_aops = {
10895 	.readpage	= btrfs_readpage,
10896 	.writepage	= btrfs_writepage,
10897 	.writepages	= btrfs_writepages,
10898 	.readpages	= btrfs_readpages,
10899 	.direct_IO	= btrfs_direct_IO,
10900 	.invalidatepage = btrfs_invalidatepage,
10901 	.releasepage	= btrfs_releasepage,
10902 	.set_page_dirty	= btrfs_set_page_dirty,
10903 	.error_remove_page = generic_error_remove_page,
10904 };
10905 
10906 static const struct address_space_operations btrfs_symlink_aops = {
10907 	.readpage	= btrfs_readpage,
10908 	.writepage	= btrfs_writepage,
10909 	.invalidatepage = btrfs_invalidatepage,
10910 	.releasepage	= btrfs_releasepage,
10911 };
10912 
10913 static const struct inode_operations btrfs_file_inode_operations = {
10914 	.getattr	= btrfs_getattr,
10915 	.setattr	= btrfs_setattr,
10916 	.listxattr      = btrfs_listxattr,
10917 	.permission	= btrfs_permission,
10918 	.fiemap		= btrfs_fiemap,
10919 	.get_acl	= btrfs_get_acl,
10920 	.set_acl	= btrfs_set_acl,
10921 	.update_time	= btrfs_update_time,
10922 };
10923 static const struct inode_operations btrfs_special_inode_operations = {
10924 	.getattr	= btrfs_getattr,
10925 	.setattr	= btrfs_setattr,
10926 	.permission	= btrfs_permission,
10927 	.listxattr	= btrfs_listxattr,
10928 	.get_acl	= btrfs_get_acl,
10929 	.set_acl	= btrfs_set_acl,
10930 	.update_time	= btrfs_update_time,
10931 };
10932 static const struct inode_operations btrfs_symlink_inode_operations = {
10933 	.get_link	= page_get_link,
10934 	.getattr	= btrfs_getattr,
10935 	.setattr	= btrfs_setattr,
10936 	.permission	= btrfs_permission,
10937 	.listxattr	= btrfs_listxattr,
10938 	.update_time	= btrfs_update_time,
10939 };
10940 
10941 const struct dentry_operations btrfs_dentry_operations = {
10942 	.d_delete	= btrfs_dentry_delete,
10943 	.d_release	= btrfs_dentry_release,
10944 };
10945