xref: /openbmc/linux/fs/btrfs/inode.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "backref.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 
53 struct btrfs_iget_args {
54 	struct btrfs_key *location;
55 	struct btrfs_root *root;
56 };
57 
58 struct btrfs_dio_data {
59 	u64 reserve;
60 	u64 unsubmitted_oe_range_start;
61 	u64 unsubmitted_oe_range_end;
62 	int overwrite;
63 };
64 
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct file_operations btrfs_dir_file_operations;
72 static const struct extent_io_ops btrfs_extent_io_ops;
73 
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79 
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct inode *inode,
84 				   struct page *locked_page,
85 				   u64 start, u64 end, int *page_started,
86 				   unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 				       u64 orig_start, u64 block_start,
89 				       u64 block_len, u64 orig_block_len,
90 				       u64 ram_bytes, int compress_type,
91 				       int type);
92 
93 static void __endio_write_update_ordered(struct inode *inode,
94 					 const u64 offset, const u64 bytes,
95 					 const bool uptodate);
96 
97 /*
98  * Cleanup all submitted ordered extents in specified range to handle errors
99  * from the btrfs_run_delalloc_range() callback.
100  *
101  * NOTE: caller must ensure that when an error happens, it can not call
102  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104  * to be released, which we want to happen only when finishing the ordered
105  * extent (btrfs_finish_ordered_io()).
106  */
107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
108 						 struct page *locked_page,
109 						 u64 offset, u64 bytes)
110 {
111 	unsigned long index = offset >> PAGE_SHIFT;
112 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
113 	u64 page_start = page_offset(locked_page);
114 	u64 page_end = page_start + PAGE_SIZE - 1;
115 
116 	struct page *page;
117 
118 	while (index <= end_index) {
119 		page = find_get_page(inode->i_mapping, index);
120 		index++;
121 		if (!page)
122 			continue;
123 		ClearPagePrivate2(page);
124 		put_page(page);
125 	}
126 
127 	/*
128 	 * In case this page belongs to the delalloc range being instantiated
129 	 * then skip it, since the first page of a range is going to be
130 	 * properly cleaned up by the caller of run_delalloc_range
131 	 */
132 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 		offset += PAGE_SIZE;
134 		bytes -= PAGE_SIZE;
135 	}
136 
137 	return __endio_write_update_ordered(inode, offset, bytes, false);
138 }
139 
140 static int btrfs_dirty_inode(struct inode *inode);
141 
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143 void btrfs_test_inode_set_ops(struct inode *inode)
144 {
145 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 }
147 #endif
148 
149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
150 				     struct inode *inode,  struct inode *dir,
151 				     const struct qstr *qstr)
152 {
153 	int err;
154 
155 	err = btrfs_init_acl(trans, inode, dir);
156 	if (!err)
157 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
158 	return err;
159 }
160 
161 /*
162  * this does all the hard work for inserting an inline extent into
163  * the btree.  The caller should have done a btrfs_drop_extents so that
164  * no overlapping inline items exist in the btree
165  */
166 static int insert_inline_extent(struct btrfs_trans_handle *trans,
167 				struct btrfs_path *path, int extent_inserted,
168 				struct btrfs_root *root, struct inode *inode,
169 				u64 start, size_t size, size_t compressed_size,
170 				int compress_type,
171 				struct page **compressed_pages)
172 {
173 	struct extent_buffer *leaf;
174 	struct page *page = NULL;
175 	char *kaddr;
176 	unsigned long ptr;
177 	struct btrfs_file_extent_item *ei;
178 	int ret;
179 	size_t cur_size = size;
180 	unsigned long offset;
181 
182 	ASSERT((compressed_size > 0 && compressed_pages) ||
183 	       (compressed_size == 0 && !compressed_pages));
184 
185 	if (compressed_size && compressed_pages)
186 		cur_size = compressed_size;
187 
188 	inode_add_bytes(inode, size);
189 
190 	if (!extent_inserted) {
191 		struct btrfs_key key;
192 		size_t datasize;
193 
194 		key.objectid = btrfs_ino(BTRFS_I(inode));
195 		key.offset = start;
196 		key.type = BTRFS_EXTENT_DATA_KEY;
197 
198 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 		path->leave_spinning = 1;
200 		ret = btrfs_insert_empty_item(trans, root, path, &key,
201 					      datasize);
202 		if (ret)
203 			goto fail;
204 	}
205 	leaf = path->nodes[0];
206 	ei = btrfs_item_ptr(leaf, path->slots[0],
207 			    struct btrfs_file_extent_item);
208 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 	btrfs_set_file_extent_encryption(leaf, ei, 0);
211 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 	ptr = btrfs_file_extent_inline_start(ei);
214 
215 	if (compress_type != BTRFS_COMPRESS_NONE) {
216 		struct page *cpage;
217 		int i = 0;
218 		while (compressed_size > 0) {
219 			cpage = compressed_pages[i];
220 			cur_size = min_t(unsigned long, compressed_size,
221 				       PAGE_SIZE);
222 
223 			kaddr = kmap_atomic(cpage);
224 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
225 			kunmap_atomic(kaddr);
226 
227 			i++;
228 			ptr += cur_size;
229 			compressed_size -= cur_size;
230 		}
231 		btrfs_set_file_extent_compression(leaf, ei,
232 						  compress_type);
233 	} else {
234 		page = find_get_page(inode->i_mapping,
235 				     start >> PAGE_SHIFT);
236 		btrfs_set_file_extent_compression(leaf, ei, 0);
237 		kaddr = kmap_atomic(page);
238 		offset = offset_in_page(start);
239 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
240 		kunmap_atomic(kaddr);
241 		put_page(page);
242 	}
243 	btrfs_mark_buffer_dirty(leaf);
244 	btrfs_release_path(path);
245 
246 	/*
247 	 * we're an inline extent, so nobody can
248 	 * extend the file past i_size without locking
249 	 * a page we already have locked.
250 	 *
251 	 * We must do any isize and inode updates
252 	 * before we unlock the pages.  Otherwise we
253 	 * could end up racing with unlink.
254 	 */
255 	BTRFS_I(inode)->disk_i_size = inode->i_size;
256 	ret = btrfs_update_inode(trans, root, inode);
257 
258 fail:
259 	return ret;
260 }
261 
262 
263 /*
264  * conditionally insert an inline extent into the file.  This
265  * does the checks required to make sure the data is small enough
266  * to fit as an inline extent.
267  */
268 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
269 					  u64 end, size_t compressed_size,
270 					  int compress_type,
271 					  struct page **compressed_pages)
272 {
273 	struct btrfs_root *root = BTRFS_I(inode)->root;
274 	struct btrfs_fs_info *fs_info = root->fs_info;
275 	struct btrfs_trans_handle *trans;
276 	u64 isize = i_size_read(inode);
277 	u64 actual_end = min(end + 1, isize);
278 	u64 inline_len = actual_end - start;
279 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
280 	u64 data_len = inline_len;
281 	int ret;
282 	struct btrfs_path *path;
283 	int extent_inserted = 0;
284 	u32 extent_item_size;
285 
286 	if (compressed_size)
287 		data_len = compressed_size;
288 
289 	if (start > 0 ||
290 	    actual_end > fs_info->sectorsize ||
291 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
292 	    (!compressed_size &&
293 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
294 	    end + 1 < isize ||
295 	    data_len > fs_info->max_inline) {
296 		return 1;
297 	}
298 
299 	path = btrfs_alloc_path();
300 	if (!path)
301 		return -ENOMEM;
302 
303 	trans = btrfs_join_transaction(root);
304 	if (IS_ERR(trans)) {
305 		btrfs_free_path(path);
306 		return PTR_ERR(trans);
307 	}
308 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
309 
310 	if (compressed_size && compressed_pages)
311 		extent_item_size = btrfs_file_extent_calc_inline_size(
312 		   compressed_size);
313 	else
314 		extent_item_size = btrfs_file_extent_calc_inline_size(
315 		    inline_len);
316 
317 	ret = __btrfs_drop_extents(trans, root, inode, path,
318 				   start, aligned_end, NULL,
319 				   1, 1, extent_item_size, &extent_inserted);
320 	if (ret) {
321 		btrfs_abort_transaction(trans, ret);
322 		goto out;
323 	}
324 
325 	if (isize > actual_end)
326 		inline_len = min_t(u64, isize, actual_end);
327 	ret = insert_inline_extent(trans, path, extent_inserted,
328 				   root, inode, start,
329 				   inline_len, compressed_size,
330 				   compress_type, compressed_pages);
331 	if (ret && ret != -ENOSPC) {
332 		btrfs_abort_transaction(trans, ret);
333 		goto out;
334 	} else if (ret == -ENOSPC) {
335 		ret = 1;
336 		goto out;
337 	}
338 
339 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
340 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 out:
342 	/*
343 	 * Don't forget to free the reserved space, as for inlined extent
344 	 * it won't count as data extent, free them directly here.
345 	 * And at reserve time, it's always aligned to page size, so
346 	 * just free one page here.
347 	 */
348 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
349 	btrfs_free_path(path);
350 	btrfs_end_transaction(trans);
351 	return ret;
352 }
353 
354 struct async_extent {
355 	u64 start;
356 	u64 ram_size;
357 	u64 compressed_size;
358 	struct page **pages;
359 	unsigned long nr_pages;
360 	int compress_type;
361 	struct list_head list;
362 };
363 
364 struct async_chunk {
365 	struct inode *inode;
366 	struct page *locked_page;
367 	u64 start;
368 	u64 end;
369 	unsigned int write_flags;
370 	struct list_head extents;
371 	struct cgroup_subsys_state *blkcg_css;
372 	struct btrfs_work work;
373 	atomic_t *pending;
374 };
375 
376 struct async_cow {
377 	/* Number of chunks in flight; must be first in the structure */
378 	atomic_t num_chunks;
379 	struct async_chunk chunks[];
380 };
381 
382 static noinline int add_async_extent(struct async_chunk *cow,
383 				     u64 start, u64 ram_size,
384 				     u64 compressed_size,
385 				     struct page **pages,
386 				     unsigned long nr_pages,
387 				     int compress_type)
388 {
389 	struct async_extent *async_extent;
390 
391 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
392 	BUG_ON(!async_extent); /* -ENOMEM */
393 	async_extent->start = start;
394 	async_extent->ram_size = ram_size;
395 	async_extent->compressed_size = compressed_size;
396 	async_extent->pages = pages;
397 	async_extent->nr_pages = nr_pages;
398 	async_extent->compress_type = compress_type;
399 	list_add_tail(&async_extent->list, &cow->extents);
400 	return 0;
401 }
402 
403 /*
404  * Check if the inode has flags compatible with compression
405  */
406 static inline bool inode_can_compress(struct inode *inode)
407 {
408 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
409 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
410 		return false;
411 	return true;
412 }
413 
414 /*
415  * Check if the inode needs to be submitted to compression, based on mount
416  * options, defragmentation, properties or heuristics.
417  */
418 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
419 {
420 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
421 
422 	if (!inode_can_compress(inode)) {
423 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
424 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
425 			btrfs_ino(BTRFS_I(inode)));
426 		return 0;
427 	}
428 	/* force compress */
429 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
430 		return 1;
431 	/* defrag ioctl */
432 	if (BTRFS_I(inode)->defrag_compress)
433 		return 1;
434 	/* bad compression ratios */
435 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
436 		return 0;
437 	if (btrfs_test_opt(fs_info, COMPRESS) ||
438 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
439 	    BTRFS_I(inode)->prop_compress)
440 		return btrfs_compress_heuristic(inode, start, end);
441 	return 0;
442 }
443 
444 static inline void inode_should_defrag(struct btrfs_inode *inode,
445 		u64 start, u64 end, u64 num_bytes, u64 small_write)
446 {
447 	/* If this is a small write inside eof, kick off a defrag */
448 	if (num_bytes < small_write &&
449 	    (start > 0 || end + 1 < inode->disk_i_size))
450 		btrfs_add_inode_defrag(NULL, inode);
451 }
452 
453 /*
454  * we create compressed extents in two phases.  The first
455  * phase compresses a range of pages that have already been
456  * locked (both pages and state bits are locked).
457  *
458  * This is done inside an ordered work queue, and the compression
459  * is spread across many cpus.  The actual IO submission is step
460  * two, and the ordered work queue takes care of making sure that
461  * happens in the same order things were put onto the queue by
462  * writepages and friends.
463  *
464  * If this code finds it can't get good compression, it puts an
465  * entry onto the work queue to write the uncompressed bytes.  This
466  * makes sure that both compressed inodes and uncompressed inodes
467  * are written in the same order that the flusher thread sent them
468  * down.
469  */
470 static noinline int compress_file_range(struct async_chunk *async_chunk)
471 {
472 	struct inode *inode = async_chunk->inode;
473 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
474 	u64 blocksize = fs_info->sectorsize;
475 	u64 start = async_chunk->start;
476 	u64 end = async_chunk->end;
477 	u64 actual_end;
478 	u64 i_size;
479 	int ret = 0;
480 	struct page **pages = NULL;
481 	unsigned long nr_pages;
482 	unsigned long total_compressed = 0;
483 	unsigned long total_in = 0;
484 	int i;
485 	int will_compress;
486 	int compress_type = fs_info->compress_type;
487 	int compressed_extents = 0;
488 	int redirty = 0;
489 
490 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
491 			SZ_16K);
492 
493 	/*
494 	 * We need to save i_size before now because it could change in between
495 	 * us evaluating the size and assigning it.  This is because we lock and
496 	 * unlock the page in truncate and fallocate, and then modify the i_size
497 	 * later on.
498 	 *
499 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
500 	 * does that for us.
501 	 */
502 	barrier();
503 	i_size = i_size_read(inode);
504 	barrier();
505 	actual_end = min_t(u64, i_size, end + 1);
506 again:
507 	will_compress = 0;
508 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
509 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
510 	nr_pages = min_t(unsigned long, nr_pages,
511 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
512 
513 	/*
514 	 * we don't want to send crud past the end of i_size through
515 	 * compression, that's just a waste of CPU time.  So, if the
516 	 * end of the file is before the start of our current
517 	 * requested range of bytes, we bail out to the uncompressed
518 	 * cleanup code that can deal with all of this.
519 	 *
520 	 * It isn't really the fastest way to fix things, but this is a
521 	 * very uncommon corner.
522 	 */
523 	if (actual_end <= start)
524 		goto cleanup_and_bail_uncompressed;
525 
526 	total_compressed = actual_end - start;
527 
528 	/*
529 	 * skip compression for a small file range(<=blocksize) that
530 	 * isn't an inline extent, since it doesn't save disk space at all.
531 	 */
532 	if (total_compressed <= blocksize &&
533 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
534 		goto cleanup_and_bail_uncompressed;
535 
536 	total_compressed = min_t(unsigned long, total_compressed,
537 			BTRFS_MAX_UNCOMPRESSED);
538 	total_in = 0;
539 	ret = 0;
540 
541 	/*
542 	 * we do compression for mount -o compress and when the
543 	 * inode has not been flagged as nocompress.  This flag can
544 	 * change at any time if we discover bad compression ratios.
545 	 */
546 	if (inode_need_compress(inode, start, end)) {
547 		WARN_ON(pages);
548 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
549 		if (!pages) {
550 			/* just bail out to the uncompressed code */
551 			nr_pages = 0;
552 			goto cont;
553 		}
554 
555 		if (BTRFS_I(inode)->defrag_compress)
556 			compress_type = BTRFS_I(inode)->defrag_compress;
557 		else if (BTRFS_I(inode)->prop_compress)
558 			compress_type = BTRFS_I(inode)->prop_compress;
559 
560 		/*
561 		 * we need to call clear_page_dirty_for_io on each
562 		 * page in the range.  Otherwise applications with the file
563 		 * mmap'd can wander in and change the page contents while
564 		 * we are compressing them.
565 		 *
566 		 * If the compression fails for any reason, we set the pages
567 		 * dirty again later on.
568 		 *
569 		 * Note that the remaining part is redirtied, the start pointer
570 		 * has moved, the end is the original one.
571 		 */
572 		if (!redirty) {
573 			extent_range_clear_dirty_for_io(inode, start, end);
574 			redirty = 1;
575 		}
576 
577 		/* Compression level is applied here and only here */
578 		ret = btrfs_compress_pages(
579 			compress_type | (fs_info->compress_level << 4),
580 					   inode->i_mapping, start,
581 					   pages,
582 					   &nr_pages,
583 					   &total_in,
584 					   &total_compressed);
585 
586 		if (!ret) {
587 			unsigned long offset = offset_in_page(total_compressed);
588 			struct page *page = pages[nr_pages - 1];
589 			char *kaddr;
590 
591 			/* zero the tail end of the last page, we might be
592 			 * sending it down to disk
593 			 */
594 			if (offset) {
595 				kaddr = kmap_atomic(page);
596 				memset(kaddr + offset, 0,
597 				       PAGE_SIZE - offset);
598 				kunmap_atomic(kaddr);
599 			}
600 			will_compress = 1;
601 		}
602 	}
603 cont:
604 	if (start == 0) {
605 		/* lets try to make an inline extent */
606 		if (ret || total_in < actual_end) {
607 			/* we didn't compress the entire range, try
608 			 * to make an uncompressed inline extent.
609 			 */
610 			ret = cow_file_range_inline(inode, start, end, 0,
611 						    BTRFS_COMPRESS_NONE, NULL);
612 		} else {
613 			/* try making a compressed inline extent */
614 			ret = cow_file_range_inline(inode, start, end,
615 						    total_compressed,
616 						    compress_type, pages);
617 		}
618 		if (ret <= 0) {
619 			unsigned long clear_flags = EXTENT_DELALLOC |
620 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
621 				EXTENT_DO_ACCOUNTING;
622 			unsigned long page_error_op;
623 
624 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
625 
626 			/*
627 			 * inline extent creation worked or returned error,
628 			 * we don't need to create any more async work items.
629 			 * Unlock and free up our temp pages.
630 			 *
631 			 * We use DO_ACCOUNTING here because we need the
632 			 * delalloc_release_metadata to be done _after_ we drop
633 			 * our outstanding extent for clearing delalloc for this
634 			 * range.
635 			 */
636 			extent_clear_unlock_delalloc(inode, start, end, NULL,
637 						     clear_flags,
638 						     PAGE_UNLOCK |
639 						     PAGE_CLEAR_DIRTY |
640 						     PAGE_SET_WRITEBACK |
641 						     page_error_op |
642 						     PAGE_END_WRITEBACK);
643 
644 			for (i = 0; i < nr_pages; i++) {
645 				WARN_ON(pages[i]->mapping);
646 				put_page(pages[i]);
647 			}
648 			kfree(pages);
649 
650 			return 0;
651 		}
652 	}
653 
654 	if (will_compress) {
655 		/*
656 		 * we aren't doing an inline extent round the compressed size
657 		 * up to a block size boundary so the allocator does sane
658 		 * things
659 		 */
660 		total_compressed = ALIGN(total_compressed, blocksize);
661 
662 		/*
663 		 * one last check to make sure the compression is really a
664 		 * win, compare the page count read with the blocks on disk,
665 		 * compression must free at least one sector size
666 		 */
667 		total_in = ALIGN(total_in, PAGE_SIZE);
668 		if (total_compressed + blocksize <= total_in) {
669 			compressed_extents++;
670 
671 			/*
672 			 * The async work queues will take care of doing actual
673 			 * allocation on disk for these compressed pages, and
674 			 * will submit them to the elevator.
675 			 */
676 			add_async_extent(async_chunk, start, total_in,
677 					total_compressed, pages, nr_pages,
678 					compress_type);
679 
680 			if (start + total_in < end) {
681 				start += total_in;
682 				pages = NULL;
683 				cond_resched();
684 				goto again;
685 			}
686 			return compressed_extents;
687 		}
688 	}
689 	if (pages) {
690 		/*
691 		 * the compression code ran but failed to make things smaller,
692 		 * free any pages it allocated and our page pointer array
693 		 */
694 		for (i = 0; i < nr_pages; i++) {
695 			WARN_ON(pages[i]->mapping);
696 			put_page(pages[i]);
697 		}
698 		kfree(pages);
699 		pages = NULL;
700 		total_compressed = 0;
701 		nr_pages = 0;
702 
703 		/* flag the file so we don't compress in the future */
704 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
705 		    !(BTRFS_I(inode)->prop_compress)) {
706 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
707 		}
708 	}
709 cleanup_and_bail_uncompressed:
710 	/*
711 	 * No compression, but we still need to write the pages in the file
712 	 * we've been given so far.  redirty the locked page if it corresponds
713 	 * to our extent and set things up for the async work queue to run
714 	 * cow_file_range to do the normal delalloc dance.
715 	 */
716 	if (async_chunk->locked_page &&
717 	    (page_offset(async_chunk->locked_page) >= start &&
718 	     page_offset(async_chunk->locked_page)) <= end) {
719 		__set_page_dirty_nobuffers(async_chunk->locked_page);
720 		/* unlocked later on in the async handlers */
721 	}
722 
723 	if (redirty)
724 		extent_range_redirty_for_io(inode, start, end);
725 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
726 			 BTRFS_COMPRESS_NONE);
727 	compressed_extents++;
728 
729 	return compressed_extents;
730 }
731 
732 static void free_async_extent_pages(struct async_extent *async_extent)
733 {
734 	int i;
735 
736 	if (!async_extent->pages)
737 		return;
738 
739 	for (i = 0; i < async_extent->nr_pages; i++) {
740 		WARN_ON(async_extent->pages[i]->mapping);
741 		put_page(async_extent->pages[i]);
742 	}
743 	kfree(async_extent->pages);
744 	async_extent->nr_pages = 0;
745 	async_extent->pages = NULL;
746 }
747 
748 /*
749  * phase two of compressed writeback.  This is the ordered portion
750  * of the code, which only gets called in the order the work was
751  * queued.  We walk all the async extents created by compress_file_range
752  * and send them down to the disk.
753  */
754 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
755 {
756 	struct inode *inode = async_chunk->inode;
757 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
758 	struct async_extent *async_extent;
759 	u64 alloc_hint = 0;
760 	struct btrfs_key ins;
761 	struct extent_map *em;
762 	struct btrfs_root *root = BTRFS_I(inode)->root;
763 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
764 	int ret = 0;
765 
766 again:
767 	while (!list_empty(&async_chunk->extents)) {
768 		async_extent = list_entry(async_chunk->extents.next,
769 					  struct async_extent, list);
770 		list_del(&async_extent->list);
771 
772 retry:
773 		lock_extent(io_tree, async_extent->start,
774 			    async_extent->start + async_extent->ram_size - 1);
775 		/* did the compression code fall back to uncompressed IO? */
776 		if (!async_extent->pages) {
777 			int page_started = 0;
778 			unsigned long nr_written = 0;
779 
780 			/* allocate blocks */
781 			ret = cow_file_range(inode, async_chunk->locked_page,
782 					     async_extent->start,
783 					     async_extent->start +
784 					     async_extent->ram_size - 1,
785 					     &page_started, &nr_written, 0);
786 
787 			/* JDM XXX */
788 
789 			/*
790 			 * if page_started, cow_file_range inserted an
791 			 * inline extent and took care of all the unlocking
792 			 * and IO for us.  Otherwise, we need to submit
793 			 * all those pages down to the drive.
794 			 */
795 			if (!page_started && !ret)
796 				extent_write_locked_range(inode,
797 						  async_extent->start,
798 						  async_extent->start +
799 						  async_extent->ram_size - 1,
800 						  WB_SYNC_ALL);
801 			else if (ret && async_chunk->locked_page)
802 				unlock_page(async_chunk->locked_page);
803 			kfree(async_extent);
804 			cond_resched();
805 			continue;
806 		}
807 
808 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
809 					   async_extent->compressed_size,
810 					   async_extent->compressed_size,
811 					   0, alloc_hint, &ins, 1, 1);
812 		if (ret) {
813 			free_async_extent_pages(async_extent);
814 
815 			if (ret == -ENOSPC) {
816 				unlock_extent(io_tree, async_extent->start,
817 					      async_extent->start +
818 					      async_extent->ram_size - 1);
819 
820 				/*
821 				 * we need to redirty the pages if we decide to
822 				 * fallback to uncompressed IO, otherwise we
823 				 * will not submit these pages down to lower
824 				 * layers.
825 				 */
826 				extent_range_redirty_for_io(inode,
827 						async_extent->start,
828 						async_extent->start +
829 						async_extent->ram_size - 1);
830 
831 				goto retry;
832 			}
833 			goto out_free;
834 		}
835 		/*
836 		 * here we're doing allocation and writeback of the
837 		 * compressed pages
838 		 */
839 		em = create_io_em(inode, async_extent->start,
840 				  async_extent->ram_size, /* len */
841 				  async_extent->start, /* orig_start */
842 				  ins.objectid, /* block_start */
843 				  ins.offset, /* block_len */
844 				  ins.offset, /* orig_block_len */
845 				  async_extent->ram_size, /* ram_bytes */
846 				  async_extent->compress_type,
847 				  BTRFS_ORDERED_COMPRESSED);
848 		if (IS_ERR(em))
849 			/* ret value is not necessary due to void function */
850 			goto out_free_reserve;
851 		free_extent_map(em);
852 
853 		ret = btrfs_add_ordered_extent_compress(inode,
854 						async_extent->start,
855 						ins.objectid,
856 						async_extent->ram_size,
857 						ins.offset,
858 						BTRFS_ORDERED_COMPRESSED,
859 						async_extent->compress_type);
860 		if (ret) {
861 			btrfs_drop_extent_cache(BTRFS_I(inode),
862 						async_extent->start,
863 						async_extent->start +
864 						async_extent->ram_size - 1, 0);
865 			goto out_free_reserve;
866 		}
867 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
868 
869 		/*
870 		 * clear dirty, set writeback and unlock the pages.
871 		 */
872 		extent_clear_unlock_delalloc(inode, async_extent->start,
873 				async_extent->start +
874 				async_extent->ram_size - 1,
875 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
876 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
877 				PAGE_SET_WRITEBACK);
878 		if (btrfs_submit_compressed_write(inode,
879 				    async_extent->start,
880 				    async_extent->ram_size,
881 				    ins.objectid,
882 				    ins.offset, async_extent->pages,
883 				    async_extent->nr_pages,
884 				    async_chunk->write_flags,
885 				    async_chunk->blkcg_css)) {
886 			struct page *p = async_extent->pages[0];
887 			const u64 start = async_extent->start;
888 			const u64 end = start + async_extent->ram_size - 1;
889 
890 			p->mapping = inode->i_mapping;
891 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
892 
893 			p->mapping = NULL;
894 			extent_clear_unlock_delalloc(inode, start, end,
895 						     NULL, 0,
896 						     PAGE_END_WRITEBACK |
897 						     PAGE_SET_ERROR);
898 			free_async_extent_pages(async_extent);
899 		}
900 		alloc_hint = ins.objectid + ins.offset;
901 		kfree(async_extent);
902 		cond_resched();
903 	}
904 	return;
905 out_free_reserve:
906 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
907 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
908 out_free:
909 	extent_clear_unlock_delalloc(inode, async_extent->start,
910 				     async_extent->start +
911 				     async_extent->ram_size - 1,
912 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
913 				     EXTENT_DELALLOC_NEW |
914 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
915 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
916 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
917 				     PAGE_SET_ERROR);
918 	free_async_extent_pages(async_extent);
919 	kfree(async_extent);
920 	goto again;
921 }
922 
923 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
924 				      u64 num_bytes)
925 {
926 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 	struct extent_map *em;
928 	u64 alloc_hint = 0;
929 
930 	read_lock(&em_tree->lock);
931 	em = search_extent_mapping(em_tree, start, num_bytes);
932 	if (em) {
933 		/*
934 		 * if block start isn't an actual block number then find the
935 		 * first block in this inode and use that as a hint.  If that
936 		 * block is also bogus then just don't worry about it.
937 		 */
938 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
939 			free_extent_map(em);
940 			em = search_extent_mapping(em_tree, 0, 0);
941 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
942 				alloc_hint = em->block_start;
943 			if (em)
944 				free_extent_map(em);
945 		} else {
946 			alloc_hint = em->block_start;
947 			free_extent_map(em);
948 		}
949 	}
950 	read_unlock(&em_tree->lock);
951 
952 	return alloc_hint;
953 }
954 
955 /*
956  * when extent_io.c finds a delayed allocation range in the file,
957  * the call backs end up in this code.  The basic idea is to
958  * allocate extents on disk for the range, and create ordered data structs
959  * in ram to track those extents.
960  *
961  * locked_page is the page that writepage had locked already.  We use
962  * it to make sure we don't do extra locks or unlocks.
963  *
964  * *page_started is set to one if we unlock locked_page and do everything
965  * required to start IO on it.  It may be clean and already done with
966  * IO when we return.
967  */
968 static noinline int cow_file_range(struct inode *inode,
969 				   struct page *locked_page,
970 				   u64 start, u64 end, int *page_started,
971 				   unsigned long *nr_written, int unlock)
972 {
973 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
974 	struct btrfs_root *root = BTRFS_I(inode)->root;
975 	u64 alloc_hint = 0;
976 	u64 num_bytes;
977 	unsigned long ram_size;
978 	u64 cur_alloc_size = 0;
979 	u64 blocksize = fs_info->sectorsize;
980 	struct btrfs_key ins;
981 	struct extent_map *em;
982 	unsigned clear_bits;
983 	unsigned long page_ops;
984 	bool extent_reserved = false;
985 	int ret = 0;
986 
987 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
988 		WARN_ON_ONCE(1);
989 		ret = -EINVAL;
990 		goto out_unlock;
991 	}
992 
993 	num_bytes = ALIGN(end - start + 1, blocksize);
994 	num_bytes = max(blocksize,  num_bytes);
995 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
996 
997 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
998 
999 	if (start == 0) {
1000 		/* lets try to make an inline extent */
1001 		ret = cow_file_range_inline(inode, start, end, 0,
1002 					    BTRFS_COMPRESS_NONE, NULL);
1003 		if (ret == 0) {
1004 			/*
1005 			 * We use DO_ACCOUNTING here because we need the
1006 			 * delalloc_release_metadata to be run _after_ we drop
1007 			 * our outstanding extent for clearing delalloc for this
1008 			 * range.
1009 			 */
1010 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1011 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1012 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1013 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1014 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1015 				     PAGE_END_WRITEBACK);
1016 			*nr_written = *nr_written +
1017 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1018 			*page_started = 1;
1019 			goto out;
1020 		} else if (ret < 0) {
1021 			goto out_unlock;
1022 		}
1023 	}
1024 
1025 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1026 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1027 			start + num_bytes - 1, 0);
1028 
1029 	while (num_bytes > 0) {
1030 		cur_alloc_size = num_bytes;
1031 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1032 					   fs_info->sectorsize, 0, alloc_hint,
1033 					   &ins, 1, 1);
1034 		if (ret < 0)
1035 			goto out_unlock;
1036 		cur_alloc_size = ins.offset;
1037 		extent_reserved = true;
1038 
1039 		ram_size = ins.offset;
1040 		em = create_io_em(inode, start, ins.offset, /* len */
1041 				  start, /* orig_start */
1042 				  ins.objectid, /* block_start */
1043 				  ins.offset, /* block_len */
1044 				  ins.offset, /* orig_block_len */
1045 				  ram_size, /* ram_bytes */
1046 				  BTRFS_COMPRESS_NONE, /* compress_type */
1047 				  BTRFS_ORDERED_REGULAR /* type */);
1048 		if (IS_ERR(em)) {
1049 			ret = PTR_ERR(em);
1050 			goto out_reserve;
1051 		}
1052 		free_extent_map(em);
1053 
1054 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1055 					       ram_size, cur_alloc_size, 0);
1056 		if (ret)
1057 			goto out_drop_extent_cache;
1058 
1059 		if (root->root_key.objectid ==
1060 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1061 			ret = btrfs_reloc_clone_csums(inode, start,
1062 						      cur_alloc_size);
1063 			/*
1064 			 * Only drop cache here, and process as normal.
1065 			 *
1066 			 * We must not allow extent_clear_unlock_delalloc()
1067 			 * at out_unlock label to free meta of this ordered
1068 			 * extent, as its meta should be freed by
1069 			 * btrfs_finish_ordered_io().
1070 			 *
1071 			 * So we must continue until @start is increased to
1072 			 * skip current ordered extent.
1073 			 */
1074 			if (ret)
1075 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1076 						start + ram_size - 1, 0);
1077 		}
1078 
1079 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1080 
1081 		/* we're not doing compressed IO, don't unlock the first
1082 		 * page (which the caller expects to stay locked), don't
1083 		 * clear any dirty bits and don't set any writeback bits
1084 		 *
1085 		 * Do set the Private2 bit so we know this page was properly
1086 		 * setup for writepage
1087 		 */
1088 		page_ops = unlock ? PAGE_UNLOCK : 0;
1089 		page_ops |= PAGE_SET_PRIVATE2;
1090 
1091 		extent_clear_unlock_delalloc(inode, start,
1092 					     start + ram_size - 1,
1093 					     locked_page,
1094 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1095 					     page_ops);
1096 		if (num_bytes < cur_alloc_size)
1097 			num_bytes = 0;
1098 		else
1099 			num_bytes -= cur_alloc_size;
1100 		alloc_hint = ins.objectid + ins.offset;
1101 		start += cur_alloc_size;
1102 		extent_reserved = false;
1103 
1104 		/*
1105 		 * btrfs_reloc_clone_csums() error, since start is increased
1106 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1107 		 * free metadata of current ordered extent, we're OK to exit.
1108 		 */
1109 		if (ret)
1110 			goto out_unlock;
1111 	}
1112 out:
1113 	return ret;
1114 
1115 out_drop_extent_cache:
1116 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1117 out_reserve:
1118 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1119 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1120 out_unlock:
1121 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1122 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1123 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1124 		PAGE_END_WRITEBACK;
1125 	/*
1126 	 * If we reserved an extent for our delalloc range (or a subrange) and
1127 	 * failed to create the respective ordered extent, then it means that
1128 	 * when we reserved the extent we decremented the extent's size from
1129 	 * the data space_info's bytes_may_use counter and incremented the
1130 	 * space_info's bytes_reserved counter by the same amount. We must make
1131 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1132 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1133 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1134 	 */
1135 	if (extent_reserved) {
1136 		extent_clear_unlock_delalloc(inode, start,
1137 					     start + cur_alloc_size,
1138 					     locked_page,
1139 					     clear_bits,
1140 					     page_ops);
1141 		start += cur_alloc_size;
1142 		if (start >= end)
1143 			goto out;
1144 	}
1145 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1146 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1147 				     page_ops);
1148 	goto out;
1149 }
1150 
1151 /*
1152  * work queue call back to started compression on a file and pages
1153  */
1154 static noinline void async_cow_start(struct btrfs_work *work)
1155 {
1156 	struct async_chunk *async_chunk;
1157 	int compressed_extents;
1158 
1159 	async_chunk = container_of(work, struct async_chunk, work);
1160 
1161 	compressed_extents = compress_file_range(async_chunk);
1162 	if (compressed_extents == 0) {
1163 		btrfs_add_delayed_iput(async_chunk->inode);
1164 		async_chunk->inode = NULL;
1165 	}
1166 }
1167 
1168 /*
1169  * work queue call back to submit previously compressed pages
1170  */
1171 static noinline void async_cow_submit(struct btrfs_work *work)
1172 {
1173 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1174 						     work);
1175 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1176 	unsigned long nr_pages;
1177 
1178 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1179 		PAGE_SHIFT;
1180 
1181 	/* atomic_sub_return implies a barrier */
1182 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1183 	    5 * SZ_1M)
1184 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1185 
1186 	/*
1187 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1188 	 * in which case we don't have anything to submit, yet we need to
1189 	 * always adjust ->async_delalloc_pages as its paired with the init
1190 	 * happening in cow_file_range_async
1191 	 */
1192 	if (async_chunk->inode)
1193 		submit_compressed_extents(async_chunk);
1194 }
1195 
1196 static noinline void async_cow_free(struct btrfs_work *work)
1197 {
1198 	struct async_chunk *async_chunk;
1199 
1200 	async_chunk = container_of(work, struct async_chunk, work);
1201 	if (async_chunk->inode)
1202 		btrfs_add_delayed_iput(async_chunk->inode);
1203 	if (async_chunk->blkcg_css)
1204 		css_put(async_chunk->blkcg_css);
1205 	/*
1206 	 * Since the pointer to 'pending' is at the beginning of the array of
1207 	 * async_chunk's, freeing it ensures the whole array has been freed.
1208 	 */
1209 	if (atomic_dec_and_test(async_chunk->pending))
1210 		kvfree(async_chunk->pending);
1211 }
1212 
1213 static int cow_file_range_async(struct inode *inode,
1214 				struct writeback_control *wbc,
1215 				struct page *locked_page,
1216 				u64 start, u64 end, int *page_started,
1217 				unsigned long *nr_written)
1218 {
1219 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1220 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1221 	struct async_cow *ctx;
1222 	struct async_chunk *async_chunk;
1223 	unsigned long nr_pages;
1224 	u64 cur_end;
1225 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1226 	int i;
1227 	bool should_compress;
1228 	unsigned nofs_flag;
1229 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1230 
1231 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1232 
1233 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1234 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1235 		num_chunks = 1;
1236 		should_compress = false;
1237 	} else {
1238 		should_compress = true;
1239 	}
1240 
1241 	nofs_flag = memalloc_nofs_save();
1242 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1243 	memalloc_nofs_restore(nofs_flag);
1244 
1245 	if (!ctx) {
1246 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1247 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1248 			EXTENT_DO_ACCOUNTING;
1249 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1250 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1251 			PAGE_SET_ERROR;
1252 
1253 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1254 					     clear_bits, page_ops);
1255 		return -ENOMEM;
1256 	}
1257 
1258 	async_chunk = ctx->chunks;
1259 	atomic_set(&ctx->num_chunks, num_chunks);
1260 
1261 	for (i = 0; i < num_chunks; i++) {
1262 		if (should_compress)
1263 			cur_end = min(end, start + SZ_512K - 1);
1264 		else
1265 			cur_end = end;
1266 
1267 		/*
1268 		 * igrab is called higher up in the call chain, take only the
1269 		 * lightweight reference for the callback lifetime
1270 		 */
1271 		ihold(inode);
1272 		async_chunk[i].pending = &ctx->num_chunks;
1273 		async_chunk[i].inode = inode;
1274 		async_chunk[i].start = start;
1275 		async_chunk[i].end = cur_end;
1276 		async_chunk[i].write_flags = write_flags;
1277 		INIT_LIST_HEAD(&async_chunk[i].extents);
1278 
1279 		/*
1280 		 * The locked_page comes all the way from writepage and its
1281 		 * the original page we were actually given.  As we spread
1282 		 * this large delalloc region across multiple async_chunk
1283 		 * structs, only the first struct needs a pointer to locked_page
1284 		 *
1285 		 * This way we don't need racey decisions about who is supposed
1286 		 * to unlock it.
1287 		 */
1288 		if (locked_page) {
1289 			/*
1290 			 * Depending on the compressibility, the pages might or
1291 			 * might not go through async.  We want all of them to
1292 			 * be accounted against wbc once.  Let's do it here
1293 			 * before the paths diverge.  wbc accounting is used
1294 			 * only for foreign writeback detection and doesn't
1295 			 * need full accuracy.  Just account the whole thing
1296 			 * against the first page.
1297 			 */
1298 			wbc_account_cgroup_owner(wbc, locked_page,
1299 						 cur_end - start);
1300 			async_chunk[i].locked_page = locked_page;
1301 			locked_page = NULL;
1302 		} else {
1303 			async_chunk[i].locked_page = NULL;
1304 		}
1305 
1306 		if (blkcg_css != blkcg_root_css) {
1307 			css_get(blkcg_css);
1308 			async_chunk[i].blkcg_css = blkcg_css;
1309 		} else {
1310 			async_chunk[i].blkcg_css = NULL;
1311 		}
1312 
1313 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1314 				async_cow_submit, async_cow_free);
1315 
1316 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1317 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1318 
1319 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1320 
1321 		*nr_written += nr_pages;
1322 		start = cur_end + 1;
1323 	}
1324 	*page_started = 1;
1325 	return 0;
1326 }
1327 
1328 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1329 					u64 bytenr, u64 num_bytes)
1330 {
1331 	int ret;
1332 	struct btrfs_ordered_sum *sums;
1333 	LIST_HEAD(list);
1334 
1335 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1336 				       bytenr + num_bytes - 1, &list, 0);
1337 	if (ret == 0 && list_empty(&list))
1338 		return 0;
1339 
1340 	while (!list_empty(&list)) {
1341 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1342 		list_del(&sums->list);
1343 		kfree(sums);
1344 	}
1345 	if (ret < 0)
1346 		return ret;
1347 	return 1;
1348 }
1349 
1350 /*
1351  * when nowcow writeback call back.  This checks for snapshots or COW copies
1352  * of the extents that exist in the file, and COWs the file as required.
1353  *
1354  * If no cow copies or snapshots exist, we write directly to the existing
1355  * blocks on disk
1356  */
1357 static noinline int run_delalloc_nocow(struct inode *inode,
1358 				       struct page *locked_page,
1359 				       const u64 start, const u64 end,
1360 				       int *page_started, int force,
1361 				       unsigned long *nr_written)
1362 {
1363 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1364 	struct btrfs_root *root = BTRFS_I(inode)->root;
1365 	struct btrfs_path *path;
1366 	u64 cow_start = (u64)-1;
1367 	u64 cur_offset = start;
1368 	int ret;
1369 	bool check_prev = true;
1370 	const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1371 	u64 ino = btrfs_ino(BTRFS_I(inode));
1372 	bool nocow = false;
1373 	u64 disk_bytenr = 0;
1374 
1375 	path = btrfs_alloc_path();
1376 	if (!path) {
1377 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1378 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1379 					     EXTENT_DO_ACCOUNTING |
1380 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1381 					     PAGE_CLEAR_DIRTY |
1382 					     PAGE_SET_WRITEBACK |
1383 					     PAGE_END_WRITEBACK);
1384 		return -ENOMEM;
1385 	}
1386 
1387 	while (1) {
1388 		struct btrfs_key found_key;
1389 		struct btrfs_file_extent_item *fi;
1390 		struct extent_buffer *leaf;
1391 		u64 extent_end;
1392 		u64 extent_offset;
1393 		u64 num_bytes = 0;
1394 		u64 disk_num_bytes;
1395 		u64 ram_bytes;
1396 		int extent_type;
1397 
1398 		nocow = false;
1399 
1400 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1401 					       cur_offset, 0);
1402 		if (ret < 0)
1403 			goto error;
1404 
1405 		/*
1406 		 * If there is no extent for our range when doing the initial
1407 		 * search, then go back to the previous slot as it will be the
1408 		 * one containing the search offset
1409 		 */
1410 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1411 			leaf = path->nodes[0];
1412 			btrfs_item_key_to_cpu(leaf, &found_key,
1413 					      path->slots[0] - 1);
1414 			if (found_key.objectid == ino &&
1415 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1416 				path->slots[0]--;
1417 		}
1418 		check_prev = false;
1419 next_slot:
1420 		/* Go to next leaf if we have exhausted the current one */
1421 		leaf = path->nodes[0];
1422 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1423 			ret = btrfs_next_leaf(root, path);
1424 			if (ret < 0) {
1425 				if (cow_start != (u64)-1)
1426 					cur_offset = cow_start;
1427 				goto error;
1428 			}
1429 			if (ret > 0)
1430 				break;
1431 			leaf = path->nodes[0];
1432 		}
1433 
1434 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1435 
1436 		/* Didn't find anything for our INO */
1437 		if (found_key.objectid > ino)
1438 			break;
1439 		/*
1440 		 * Keep searching until we find an EXTENT_ITEM or there are no
1441 		 * more extents for this inode
1442 		 */
1443 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1444 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1445 			path->slots[0]++;
1446 			goto next_slot;
1447 		}
1448 
1449 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1450 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1451 		    found_key.offset > end)
1452 			break;
1453 
1454 		/*
1455 		 * If the found extent starts after requested offset, then
1456 		 * adjust extent_end to be right before this extent begins
1457 		 */
1458 		if (found_key.offset > cur_offset) {
1459 			extent_end = found_key.offset;
1460 			extent_type = 0;
1461 			goto out_check;
1462 		}
1463 
1464 		/*
1465 		 * Found extent which begins before our range and potentially
1466 		 * intersect it
1467 		 */
1468 		fi = btrfs_item_ptr(leaf, path->slots[0],
1469 				    struct btrfs_file_extent_item);
1470 		extent_type = btrfs_file_extent_type(leaf, fi);
1471 
1472 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1473 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1474 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1475 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1476 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1477 			extent_end = found_key.offset +
1478 				btrfs_file_extent_num_bytes(leaf, fi);
1479 			disk_num_bytes =
1480 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1481 			/*
1482 			 * If extent we got ends before our range starts, skip
1483 			 * to next extent
1484 			 */
1485 			if (extent_end <= start) {
1486 				path->slots[0]++;
1487 				goto next_slot;
1488 			}
1489 			/* Skip holes */
1490 			if (disk_bytenr == 0)
1491 				goto out_check;
1492 			/* Skip compressed/encrypted/encoded extents */
1493 			if (btrfs_file_extent_compression(leaf, fi) ||
1494 			    btrfs_file_extent_encryption(leaf, fi) ||
1495 			    btrfs_file_extent_other_encoding(leaf, fi))
1496 				goto out_check;
1497 			/*
1498 			 * If extent is created before the last volume's snapshot
1499 			 * this implies the extent is shared, hence we can't do
1500 			 * nocow. This is the same check as in
1501 			 * btrfs_cross_ref_exist but without calling
1502 			 * btrfs_search_slot.
1503 			 */
1504 			if (!freespace_inode &&
1505 			    btrfs_file_extent_generation(leaf, fi) <=
1506 			    btrfs_root_last_snapshot(&root->root_item))
1507 				goto out_check;
1508 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1509 				goto out_check;
1510 			/* If extent is RO, we must COW it */
1511 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1512 				goto out_check;
1513 			ret = btrfs_cross_ref_exist(root, ino,
1514 						    found_key.offset -
1515 						    extent_offset, disk_bytenr);
1516 			if (ret) {
1517 				/*
1518 				 * ret could be -EIO if the above fails to read
1519 				 * metadata.
1520 				 */
1521 				if (ret < 0) {
1522 					if (cow_start != (u64)-1)
1523 						cur_offset = cow_start;
1524 					goto error;
1525 				}
1526 
1527 				WARN_ON_ONCE(freespace_inode);
1528 				goto out_check;
1529 			}
1530 			disk_bytenr += extent_offset;
1531 			disk_bytenr += cur_offset - found_key.offset;
1532 			num_bytes = min(end + 1, extent_end) - cur_offset;
1533 			/*
1534 			 * If there are pending snapshots for this root, we
1535 			 * fall into common COW way
1536 			 */
1537 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1538 				goto out_check;
1539 			/*
1540 			 * force cow if csum exists in the range.
1541 			 * this ensure that csum for a given extent are
1542 			 * either valid or do not exist.
1543 			 */
1544 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1545 						  num_bytes);
1546 			if (ret) {
1547 				/*
1548 				 * ret could be -EIO if the above fails to read
1549 				 * metadata.
1550 				 */
1551 				if (ret < 0) {
1552 					if (cow_start != (u64)-1)
1553 						cur_offset = cow_start;
1554 					goto error;
1555 				}
1556 				WARN_ON_ONCE(freespace_inode);
1557 				goto out_check;
1558 			}
1559 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1560 				goto out_check;
1561 			nocow = true;
1562 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1563 			extent_end = found_key.offset + ram_bytes;
1564 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1565 			/* Skip extents outside of our requested range */
1566 			if (extent_end <= start) {
1567 				path->slots[0]++;
1568 				goto next_slot;
1569 			}
1570 		} else {
1571 			/* If this triggers then we have a memory corruption */
1572 			BUG();
1573 		}
1574 out_check:
1575 		/*
1576 		 * If nocow is false then record the beginning of the range
1577 		 * that needs to be COWed
1578 		 */
1579 		if (!nocow) {
1580 			if (cow_start == (u64)-1)
1581 				cow_start = cur_offset;
1582 			cur_offset = extent_end;
1583 			if (cur_offset > end)
1584 				break;
1585 			path->slots[0]++;
1586 			goto next_slot;
1587 		}
1588 
1589 		btrfs_release_path(path);
1590 
1591 		/*
1592 		 * COW range from cow_start to found_key.offset - 1. As the key
1593 		 * will contain the beginning of the first extent that can be
1594 		 * NOCOW, following one which needs to be COW'ed
1595 		 */
1596 		if (cow_start != (u64)-1) {
1597 			ret = cow_file_range(inode, locked_page,
1598 					     cow_start, found_key.offset - 1,
1599 					     page_started, nr_written, 1);
1600 			if (ret) {
1601 				if (nocow)
1602 					btrfs_dec_nocow_writers(fs_info,
1603 								disk_bytenr);
1604 				goto error;
1605 			}
1606 			cow_start = (u64)-1;
1607 		}
1608 
1609 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1610 			u64 orig_start = found_key.offset - extent_offset;
1611 			struct extent_map *em;
1612 
1613 			em = create_io_em(inode, cur_offset, num_bytes,
1614 					  orig_start,
1615 					  disk_bytenr, /* block_start */
1616 					  num_bytes, /* block_len */
1617 					  disk_num_bytes, /* orig_block_len */
1618 					  ram_bytes, BTRFS_COMPRESS_NONE,
1619 					  BTRFS_ORDERED_PREALLOC);
1620 			if (IS_ERR(em)) {
1621 				if (nocow)
1622 					btrfs_dec_nocow_writers(fs_info,
1623 								disk_bytenr);
1624 				ret = PTR_ERR(em);
1625 				goto error;
1626 			}
1627 			free_extent_map(em);
1628 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1629 						       disk_bytenr, num_bytes,
1630 						       num_bytes,
1631 						       BTRFS_ORDERED_PREALLOC);
1632 			if (ret) {
1633 				btrfs_drop_extent_cache(BTRFS_I(inode),
1634 							cur_offset,
1635 							cur_offset + num_bytes - 1,
1636 							0);
1637 				goto error;
1638 			}
1639 		} else {
1640 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1641 						       disk_bytenr, num_bytes,
1642 						       num_bytes,
1643 						       BTRFS_ORDERED_NOCOW);
1644 			if (ret)
1645 				goto error;
1646 		}
1647 
1648 		if (nocow)
1649 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1650 		nocow = false;
1651 
1652 		if (root->root_key.objectid ==
1653 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1654 			/*
1655 			 * Error handled later, as we must prevent
1656 			 * extent_clear_unlock_delalloc() in error handler
1657 			 * from freeing metadata of created ordered extent.
1658 			 */
1659 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1660 						      num_bytes);
1661 
1662 		extent_clear_unlock_delalloc(inode, cur_offset,
1663 					     cur_offset + num_bytes - 1,
1664 					     locked_page, EXTENT_LOCKED |
1665 					     EXTENT_DELALLOC |
1666 					     EXTENT_CLEAR_DATA_RESV,
1667 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1668 
1669 		cur_offset = extent_end;
1670 
1671 		/*
1672 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1673 		 * handler, as metadata for created ordered extent will only
1674 		 * be freed by btrfs_finish_ordered_io().
1675 		 */
1676 		if (ret)
1677 			goto error;
1678 		if (cur_offset > end)
1679 			break;
1680 	}
1681 	btrfs_release_path(path);
1682 
1683 	if (cur_offset <= end && cow_start == (u64)-1)
1684 		cow_start = cur_offset;
1685 
1686 	if (cow_start != (u64)-1) {
1687 		cur_offset = end;
1688 		ret = cow_file_range(inode, locked_page, cow_start, end,
1689 				     page_started, nr_written, 1);
1690 		if (ret)
1691 			goto error;
1692 	}
1693 
1694 error:
1695 	if (nocow)
1696 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1697 
1698 	if (ret && cur_offset < end)
1699 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1700 					     locked_page, EXTENT_LOCKED |
1701 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1702 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1703 					     PAGE_CLEAR_DIRTY |
1704 					     PAGE_SET_WRITEBACK |
1705 					     PAGE_END_WRITEBACK);
1706 	btrfs_free_path(path);
1707 	return ret;
1708 }
1709 
1710 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1711 {
1712 
1713 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1714 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1715 		return 0;
1716 
1717 	/*
1718 	 * @defrag_bytes is a hint value, no spinlock held here,
1719 	 * if is not zero, it means the file is defragging.
1720 	 * Force cow if given extent needs to be defragged.
1721 	 */
1722 	if (BTRFS_I(inode)->defrag_bytes &&
1723 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1724 			   EXTENT_DEFRAG, 0, NULL))
1725 		return 1;
1726 
1727 	return 0;
1728 }
1729 
1730 /*
1731  * Function to process delayed allocation (create CoW) for ranges which are
1732  * being touched for the first time.
1733  */
1734 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1735 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1736 		struct writeback_control *wbc)
1737 {
1738 	int ret;
1739 	int force_cow = need_force_cow(inode, start, end);
1740 
1741 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1742 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1743 					 page_started, 1, nr_written);
1744 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1745 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1746 					 page_started, 0, nr_written);
1747 	} else if (!inode_can_compress(inode) ||
1748 		   !inode_need_compress(inode, start, end)) {
1749 		ret = cow_file_range(inode, locked_page, start, end,
1750 				      page_started, nr_written, 1);
1751 	} else {
1752 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1753 			&BTRFS_I(inode)->runtime_flags);
1754 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1755 					   page_started, nr_written);
1756 	}
1757 	if (ret)
1758 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1759 					      end - start + 1);
1760 	return ret;
1761 }
1762 
1763 void btrfs_split_delalloc_extent(struct inode *inode,
1764 				 struct extent_state *orig, u64 split)
1765 {
1766 	u64 size;
1767 
1768 	/* not delalloc, ignore it */
1769 	if (!(orig->state & EXTENT_DELALLOC))
1770 		return;
1771 
1772 	size = orig->end - orig->start + 1;
1773 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1774 		u32 num_extents;
1775 		u64 new_size;
1776 
1777 		/*
1778 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1779 		 * applies here, just in reverse.
1780 		 */
1781 		new_size = orig->end - split + 1;
1782 		num_extents = count_max_extents(new_size);
1783 		new_size = split - orig->start;
1784 		num_extents += count_max_extents(new_size);
1785 		if (count_max_extents(size) >= num_extents)
1786 			return;
1787 	}
1788 
1789 	spin_lock(&BTRFS_I(inode)->lock);
1790 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1791 	spin_unlock(&BTRFS_I(inode)->lock);
1792 }
1793 
1794 /*
1795  * Handle merged delayed allocation extents so we can keep track of new extents
1796  * that are just merged onto old extents, such as when we are doing sequential
1797  * writes, so we can properly account for the metadata space we'll need.
1798  */
1799 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1800 				 struct extent_state *other)
1801 {
1802 	u64 new_size, old_size;
1803 	u32 num_extents;
1804 
1805 	/* not delalloc, ignore it */
1806 	if (!(other->state & EXTENT_DELALLOC))
1807 		return;
1808 
1809 	if (new->start > other->start)
1810 		new_size = new->end - other->start + 1;
1811 	else
1812 		new_size = other->end - new->start + 1;
1813 
1814 	/* we're not bigger than the max, unreserve the space and go */
1815 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1816 		spin_lock(&BTRFS_I(inode)->lock);
1817 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1818 		spin_unlock(&BTRFS_I(inode)->lock);
1819 		return;
1820 	}
1821 
1822 	/*
1823 	 * We have to add up either side to figure out how many extents were
1824 	 * accounted for before we merged into one big extent.  If the number of
1825 	 * extents we accounted for is <= the amount we need for the new range
1826 	 * then we can return, otherwise drop.  Think of it like this
1827 	 *
1828 	 * [ 4k][MAX_SIZE]
1829 	 *
1830 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1831 	 * need 2 outstanding extents, on one side we have 1 and the other side
1832 	 * we have 1 so they are == and we can return.  But in this case
1833 	 *
1834 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1835 	 *
1836 	 * Each range on their own accounts for 2 extents, but merged together
1837 	 * they are only 3 extents worth of accounting, so we need to drop in
1838 	 * this case.
1839 	 */
1840 	old_size = other->end - other->start + 1;
1841 	num_extents = count_max_extents(old_size);
1842 	old_size = new->end - new->start + 1;
1843 	num_extents += count_max_extents(old_size);
1844 	if (count_max_extents(new_size) >= num_extents)
1845 		return;
1846 
1847 	spin_lock(&BTRFS_I(inode)->lock);
1848 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1849 	spin_unlock(&BTRFS_I(inode)->lock);
1850 }
1851 
1852 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1853 				      struct inode *inode)
1854 {
1855 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1856 
1857 	spin_lock(&root->delalloc_lock);
1858 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1859 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1860 			      &root->delalloc_inodes);
1861 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1862 			&BTRFS_I(inode)->runtime_flags);
1863 		root->nr_delalloc_inodes++;
1864 		if (root->nr_delalloc_inodes == 1) {
1865 			spin_lock(&fs_info->delalloc_root_lock);
1866 			BUG_ON(!list_empty(&root->delalloc_root));
1867 			list_add_tail(&root->delalloc_root,
1868 				      &fs_info->delalloc_roots);
1869 			spin_unlock(&fs_info->delalloc_root_lock);
1870 		}
1871 	}
1872 	spin_unlock(&root->delalloc_lock);
1873 }
1874 
1875 
1876 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1877 				struct btrfs_inode *inode)
1878 {
1879 	struct btrfs_fs_info *fs_info = root->fs_info;
1880 
1881 	if (!list_empty(&inode->delalloc_inodes)) {
1882 		list_del_init(&inode->delalloc_inodes);
1883 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1884 			  &inode->runtime_flags);
1885 		root->nr_delalloc_inodes--;
1886 		if (!root->nr_delalloc_inodes) {
1887 			ASSERT(list_empty(&root->delalloc_inodes));
1888 			spin_lock(&fs_info->delalloc_root_lock);
1889 			BUG_ON(list_empty(&root->delalloc_root));
1890 			list_del_init(&root->delalloc_root);
1891 			spin_unlock(&fs_info->delalloc_root_lock);
1892 		}
1893 	}
1894 }
1895 
1896 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1897 				     struct btrfs_inode *inode)
1898 {
1899 	spin_lock(&root->delalloc_lock);
1900 	__btrfs_del_delalloc_inode(root, inode);
1901 	spin_unlock(&root->delalloc_lock);
1902 }
1903 
1904 /*
1905  * Properly track delayed allocation bytes in the inode and to maintain the
1906  * list of inodes that have pending delalloc work to be done.
1907  */
1908 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1909 			       unsigned *bits)
1910 {
1911 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1912 
1913 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1914 		WARN_ON(1);
1915 	/*
1916 	 * set_bit and clear bit hooks normally require _irqsave/restore
1917 	 * but in this case, we are only testing for the DELALLOC
1918 	 * bit, which is only set or cleared with irqs on
1919 	 */
1920 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1921 		struct btrfs_root *root = BTRFS_I(inode)->root;
1922 		u64 len = state->end + 1 - state->start;
1923 		u32 num_extents = count_max_extents(len);
1924 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1925 
1926 		spin_lock(&BTRFS_I(inode)->lock);
1927 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1928 		spin_unlock(&BTRFS_I(inode)->lock);
1929 
1930 		/* For sanity tests */
1931 		if (btrfs_is_testing(fs_info))
1932 			return;
1933 
1934 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1935 					 fs_info->delalloc_batch);
1936 		spin_lock(&BTRFS_I(inode)->lock);
1937 		BTRFS_I(inode)->delalloc_bytes += len;
1938 		if (*bits & EXTENT_DEFRAG)
1939 			BTRFS_I(inode)->defrag_bytes += len;
1940 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1941 					 &BTRFS_I(inode)->runtime_flags))
1942 			btrfs_add_delalloc_inodes(root, inode);
1943 		spin_unlock(&BTRFS_I(inode)->lock);
1944 	}
1945 
1946 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1947 	    (*bits & EXTENT_DELALLOC_NEW)) {
1948 		spin_lock(&BTRFS_I(inode)->lock);
1949 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1950 			state->start;
1951 		spin_unlock(&BTRFS_I(inode)->lock);
1952 	}
1953 }
1954 
1955 /*
1956  * Once a range is no longer delalloc this function ensures that proper
1957  * accounting happens.
1958  */
1959 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1960 				 struct extent_state *state, unsigned *bits)
1961 {
1962 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1963 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1964 	u64 len = state->end + 1 - state->start;
1965 	u32 num_extents = count_max_extents(len);
1966 
1967 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1968 		spin_lock(&inode->lock);
1969 		inode->defrag_bytes -= len;
1970 		spin_unlock(&inode->lock);
1971 	}
1972 
1973 	/*
1974 	 * set_bit and clear bit hooks normally require _irqsave/restore
1975 	 * but in this case, we are only testing for the DELALLOC
1976 	 * bit, which is only set or cleared with irqs on
1977 	 */
1978 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1979 		struct btrfs_root *root = inode->root;
1980 		bool do_list = !btrfs_is_free_space_inode(inode);
1981 
1982 		spin_lock(&inode->lock);
1983 		btrfs_mod_outstanding_extents(inode, -num_extents);
1984 		spin_unlock(&inode->lock);
1985 
1986 		/*
1987 		 * We don't reserve metadata space for space cache inodes so we
1988 		 * don't need to call delalloc_release_metadata if there is an
1989 		 * error.
1990 		 */
1991 		if (*bits & EXTENT_CLEAR_META_RESV &&
1992 		    root != fs_info->tree_root)
1993 			btrfs_delalloc_release_metadata(inode, len, false);
1994 
1995 		/* For sanity tests. */
1996 		if (btrfs_is_testing(fs_info))
1997 			return;
1998 
1999 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2000 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2001 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2002 			btrfs_free_reserved_data_space_noquota(
2003 					&inode->vfs_inode,
2004 					state->start, len);
2005 
2006 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2007 					 fs_info->delalloc_batch);
2008 		spin_lock(&inode->lock);
2009 		inode->delalloc_bytes -= len;
2010 		if (do_list && inode->delalloc_bytes == 0 &&
2011 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2012 					&inode->runtime_flags))
2013 			btrfs_del_delalloc_inode(root, inode);
2014 		spin_unlock(&inode->lock);
2015 	}
2016 
2017 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2018 	    (*bits & EXTENT_DELALLOC_NEW)) {
2019 		spin_lock(&inode->lock);
2020 		ASSERT(inode->new_delalloc_bytes >= len);
2021 		inode->new_delalloc_bytes -= len;
2022 		spin_unlock(&inode->lock);
2023 	}
2024 }
2025 
2026 /*
2027  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2028  * in a chunk's stripe. This function ensures that bios do not span a
2029  * stripe/chunk
2030  *
2031  * @page - The page we are about to add to the bio
2032  * @size - size we want to add to the bio
2033  * @bio - bio we want to ensure is smaller than a stripe
2034  * @bio_flags - flags of the bio
2035  *
2036  * return 1 if page cannot be added to the bio
2037  * return 0 if page can be added to the bio
2038  * return error otherwise
2039  */
2040 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2041 			     unsigned long bio_flags)
2042 {
2043 	struct inode *inode = page->mapping->host;
2044 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2045 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2046 	u64 length = 0;
2047 	u64 map_length;
2048 	int ret;
2049 	struct btrfs_io_geometry geom;
2050 
2051 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2052 		return 0;
2053 
2054 	length = bio->bi_iter.bi_size;
2055 	map_length = length;
2056 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2057 				    &geom);
2058 	if (ret < 0)
2059 		return ret;
2060 
2061 	if (geom.len < length + size)
2062 		return 1;
2063 	return 0;
2064 }
2065 
2066 /*
2067  * in order to insert checksums into the metadata in large chunks,
2068  * we wait until bio submission time.   All the pages in the bio are
2069  * checksummed and sums are attached onto the ordered extent record.
2070  *
2071  * At IO completion time the cums attached on the ordered extent record
2072  * are inserted into the btree
2073  */
2074 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2075 				    u64 bio_offset)
2076 {
2077 	struct inode *inode = private_data;
2078 	blk_status_t ret = 0;
2079 
2080 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2081 	BUG_ON(ret); /* -ENOMEM */
2082 	return 0;
2083 }
2084 
2085 /*
2086  * extent_io.c submission hook. This does the right thing for csum calculation
2087  * on write, or reading the csums from the tree before a read.
2088  *
2089  * Rules about async/sync submit,
2090  * a) read:				sync submit
2091  *
2092  * b) write without checksum:		sync submit
2093  *
2094  * c) write with checksum:
2095  *    c-1) if bio is issued by fsync:	sync submit
2096  *         (sync_writers != 0)
2097  *
2098  *    c-2) if root is reloc root:	sync submit
2099  *         (only in case of buffered IO)
2100  *
2101  *    c-3) otherwise:			async submit
2102  */
2103 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2104 					  int mirror_num,
2105 					  unsigned long bio_flags)
2106 
2107 {
2108 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2109 	struct btrfs_root *root = BTRFS_I(inode)->root;
2110 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2111 	blk_status_t ret = 0;
2112 	int skip_sum;
2113 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2114 
2115 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2116 
2117 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2118 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2119 
2120 	if (bio_op(bio) != REQ_OP_WRITE) {
2121 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2122 		if (ret)
2123 			goto out;
2124 
2125 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2126 			ret = btrfs_submit_compressed_read(inode, bio,
2127 							   mirror_num,
2128 							   bio_flags);
2129 			goto out;
2130 		} else if (!skip_sum) {
2131 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2132 			if (ret)
2133 				goto out;
2134 		}
2135 		goto mapit;
2136 	} else if (async && !skip_sum) {
2137 		/* csum items have already been cloned */
2138 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2139 			goto mapit;
2140 		/* we're doing a write, do the async checksumming */
2141 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2142 					  0, inode, btrfs_submit_bio_start);
2143 		goto out;
2144 	} else if (!skip_sum) {
2145 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2146 		if (ret)
2147 			goto out;
2148 	}
2149 
2150 mapit:
2151 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2152 
2153 out:
2154 	if (ret) {
2155 		bio->bi_status = ret;
2156 		bio_endio(bio);
2157 	}
2158 	return ret;
2159 }
2160 
2161 /*
2162  * given a list of ordered sums record them in the inode.  This happens
2163  * at IO completion time based on sums calculated at bio submission time.
2164  */
2165 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2166 			     struct inode *inode, struct list_head *list)
2167 {
2168 	struct btrfs_ordered_sum *sum;
2169 	int ret;
2170 
2171 	list_for_each_entry(sum, list, list) {
2172 		trans->adding_csums = true;
2173 		ret = btrfs_csum_file_blocks(trans,
2174 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2175 		trans->adding_csums = false;
2176 		if (ret)
2177 			return ret;
2178 	}
2179 	return 0;
2180 }
2181 
2182 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2183 			      unsigned int extra_bits,
2184 			      struct extent_state **cached_state)
2185 {
2186 	WARN_ON(PAGE_ALIGNED(end));
2187 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2188 				   extra_bits, cached_state);
2189 }
2190 
2191 /* see btrfs_writepage_start_hook for details on why this is required */
2192 struct btrfs_writepage_fixup {
2193 	struct page *page;
2194 	struct btrfs_work work;
2195 };
2196 
2197 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2198 {
2199 	struct btrfs_writepage_fixup *fixup;
2200 	struct btrfs_ordered_extent *ordered;
2201 	struct extent_state *cached_state = NULL;
2202 	struct extent_changeset *data_reserved = NULL;
2203 	struct page *page;
2204 	struct inode *inode;
2205 	u64 page_start;
2206 	u64 page_end;
2207 	int ret;
2208 
2209 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2210 	page = fixup->page;
2211 again:
2212 	lock_page(page);
2213 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2214 		ClearPageChecked(page);
2215 		goto out_page;
2216 	}
2217 
2218 	inode = page->mapping->host;
2219 	page_start = page_offset(page);
2220 	page_end = page_offset(page) + PAGE_SIZE - 1;
2221 
2222 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2223 			 &cached_state);
2224 
2225 	/* already ordered? We're done */
2226 	if (PagePrivate2(page))
2227 		goto out;
2228 
2229 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2230 					PAGE_SIZE);
2231 	if (ordered) {
2232 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2233 				     page_end, &cached_state);
2234 		unlock_page(page);
2235 		btrfs_start_ordered_extent(inode, ordered, 1);
2236 		btrfs_put_ordered_extent(ordered);
2237 		goto again;
2238 	}
2239 
2240 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2241 					   PAGE_SIZE);
2242 	if (ret) {
2243 		mapping_set_error(page->mapping, ret);
2244 		end_extent_writepage(page, ret, page_start, page_end);
2245 		ClearPageChecked(page);
2246 		goto out;
2247 	 }
2248 
2249 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2250 					&cached_state);
2251 	if (ret) {
2252 		mapping_set_error(page->mapping, ret);
2253 		end_extent_writepage(page, ret, page_start, page_end);
2254 		ClearPageChecked(page);
2255 		goto out_reserved;
2256 	}
2257 
2258 	ClearPageChecked(page);
2259 	set_page_dirty(page);
2260 out_reserved:
2261 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2262 	if (ret)
2263 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2264 					     PAGE_SIZE, true);
2265 out:
2266 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2267 			     &cached_state);
2268 out_page:
2269 	unlock_page(page);
2270 	put_page(page);
2271 	kfree(fixup);
2272 	extent_changeset_free(data_reserved);
2273 }
2274 
2275 /*
2276  * There are a few paths in the higher layers of the kernel that directly
2277  * set the page dirty bit without asking the filesystem if it is a
2278  * good idea.  This causes problems because we want to make sure COW
2279  * properly happens and the data=ordered rules are followed.
2280  *
2281  * In our case any range that doesn't have the ORDERED bit set
2282  * hasn't been properly setup for IO.  We kick off an async process
2283  * to fix it up.  The async helper will wait for ordered extents, set
2284  * the delalloc bit and make it safe to write the page.
2285  */
2286 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2287 {
2288 	struct inode *inode = page->mapping->host;
2289 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2290 	struct btrfs_writepage_fixup *fixup;
2291 
2292 	/* this page is properly in the ordered list */
2293 	if (TestClearPagePrivate2(page))
2294 		return 0;
2295 
2296 	if (PageChecked(page))
2297 		return -EAGAIN;
2298 
2299 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2300 	if (!fixup)
2301 		return -EAGAIN;
2302 
2303 	SetPageChecked(page);
2304 	get_page(page);
2305 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2306 	fixup->page = page;
2307 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2308 	return -EBUSY;
2309 }
2310 
2311 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2312 				       struct inode *inode, u64 file_pos,
2313 				       u64 disk_bytenr, u64 disk_num_bytes,
2314 				       u64 num_bytes, u64 ram_bytes,
2315 				       u8 compression, u8 encryption,
2316 				       u16 other_encoding, int extent_type)
2317 {
2318 	struct btrfs_root *root = BTRFS_I(inode)->root;
2319 	struct btrfs_file_extent_item *fi;
2320 	struct btrfs_path *path;
2321 	struct extent_buffer *leaf;
2322 	struct btrfs_key ins;
2323 	u64 qg_released;
2324 	int extent_inserted = 0;
2325 	int ret;
2326 
2327 	path = btrfs_alloc_path();
2328 	if (!path)
2329 		return -ENOMEM;
2330 
2331 	/*
2332 	 * we may be replacing one extent in the tree with another.
2333 	 * The new extent is pinned in the extent map, and we don't want
2334 	 * to drop it from the cache until it is completely in the btree.
2335 	 *
2336 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2337 	 * the caller is expected to unpin it and allow it to be merged
2338 	 * with the others.
2339 	 */
2340 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2341 				   file_pos + num_bytes, NULL, 0,
2342 				   1, sizeof(*fi), &extent_inserted);
2343 	if (ret)
2344 		goto out;
2345 
2346 	if (!extent_inserted) {
2347 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2348 		ins.offset = file_pos;
2349 		ins.type = BTRFS_EXTENT_DATA_KEY;
2350 
2351 		path->leave_spinning = 1;
2352 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2353 					      sizeof(*fi));
2354 		if (ret)
2355 			goto out;
2356 	}
2357 	leaf = path->nodes[0];
2358 	fi = btrfs_item_ptr(leaf, path->slots[0],
2359 			    struct btrfs_file_extent_item);
2360 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2361 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2362 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2363 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2364 	btrfs_set_file_extent_offset(leaf, fi, 0);
2365 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2366 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2367 	btrfs_set_file_extent_compression(leaf, fi, compression);
2368 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2369 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2370 
2371 	btrfs_mark_buffer_dirty(leaf);
2372 	btrfs_release_path(path);
2373 
2374 	inode_add_bytes(inode, num_bytes);
2375 
2376 	ins.objectid = disk_bytenr;
2377 	ins.offset = disk_num_bytes;
2378 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2379 
2380 	/*
2381 	 * Release the reserved range from inode dirty range map, as it is
2382 	 * already moved into delayed_ref_head
2383 	 */
2384 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2385 	if (ret < 0)
2386 		goto out;
2387 	qg_released = ret;
2388 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2389 					       btrfs_ino(BTRFS_I(inode)),
2390 					       file_pos, qg_released, &ins);
2391 out:
2392 	btrfs_free_path(path);
2393 
2394 	return ret;
2395 }
2396 
2397 /* snapshot-aware defrag */
2398 struct sa_defrag_extent_backref {
2399 	struct rb_node node;
2400 	struct old_sa_defrag_extent *old;
2401 	u64 root_id;
2402 	u64 inum;
2403 	u64 file_pos;
2404 	u64 extent_offset;
2405 	u64 num_bytes;
2406 	u64 generation;
2407 };
2408 
2409 struct old_sa_defrag_extent {
2410 	struct list_head list;
2411 	struct new_sa_defrag_extent *new;
2412 
2413 	u64 extent_offset;
2414 	u64 bytenr;
2415 	u64 offset;
2416 	u64 len;
2417 	int count;
2418 };
2419 
2420 struct new_sa_defrag_extent {
2421 	struct rb_root root;
2422 	struct list_head head;
2423 	struct btrfs_path *path;
2424 	struct inode *inode;
2425 	u64 file_pos;
2426 	u64 len;
2427 	u64 bytenr;
2428 	u64 disk_len;
2429 	u8 compress_type;
2430 };
2431 
2432 static int backref_comp(struct sa_defrag_extent_backref *b1,
2433 			struct sa_defrag_extent_backref *b2)
2434 {
2435 	if (b1->root_id < b2->root_id)
2436 		return -1;
2437 	else if (b1->root_id > b2->root_id)
2438 		return 1;
2439 
2440 	if (b1->inum < b2->inum)
2441 		return -1;
2442 	else if (b1->inum > b2->inum)
2443 		return 1;
2444 
2445 	if (b1->file_pos < b2->file_pos)
2446 		return -1;
2447 	else if (b1->file_pos > b2->file_pos)
2448 		return 1;
2449 
2450 	/*
2451 	 * [------------------------------] ===> (a range of space)
2452 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2453 	 * |<---------------------------->| ===> (fs/file tree B)
2454 	 *
2455 	 * A range of space can refer to two file extents in one tree while
2456 	 * refer to only one file extent in another tree.
2457 	 *
2458 	 * So we may process a disk offset more than one time(two extents in A)
2459 	 * and locate at the same extent(one extent in B), then insert two same
2460 	 * backrefs(both refer to the extent in B).
2461 	 */
2462 	return 0;
2463 }
2464 
2465 static void backref_insert(struct rb_root *root,
2466 			   struct sa_defrag_extent_backref *backref)
2467 {
2468 	struct rb_node **p = &root->rb_node;
2469 	struct rb_node *parent = NULL;
2470 	struct sa_defrag_extent_backref *entry;
2471 	int ret;
2472 
2473 	while (*p) {
2474 		parent = *p;
2475 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2476 
2477 		ret = backref_comp(backref, entry);
2478 		if (ret < 0)
2479 			p = &(*p)->rb_left;
2480 		else
2481 			p = &(*p)->rb_right;
2482 	}
2483 
2484 	rb_link_node(&backref->node, parent, p);
2485 	rb_insert_color(&backref->node, root);
2486 }
2487 
2488 /*
2489  * Note the backref might has changed, and in this case we just return 0.
2490  */
2491 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2492 				       void *ctx)
2493 {
2494 	struct btrfs_file_extent_item *extent;
2495 	struct old_sa_defrag_extent *old = ctx;
2496 	struct new_sa_defrag_extent *new = old->new;
2497 	struct btrfs_path *path = new->path;
2498 	struct btrfs_key key;
2499 	struct btrfs_root *root;
2500 	struct sa_defrag_extent_backref *backref;
2501 	struct extent_buffer *leaf;
2502 	struct inode *inode = new->inode;
2503 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2504 	int slot;
2505 	int ret;
2506 	u64 extent_offset;
2507 	u64 num_bytes;
2508 
2509 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2510 	    inum == btrfs_ino(BTRFS_I(inode)))
2511 		return 0;
2512 
2513 	key.objectid = root_id;
2514 	key.type = BTRFS_ROOT_ITEM_KEY;
2515 	key.offset = (u64)-1;
2516 
2517 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2518 	if (IS_ERR(root)) {
2519 		if (PTR_ERR(root) == -ENOENT)
2520 			return 0;
2521 		WARN_ON(1);
2522 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2523 			 inum, offset, root_id);
2524 		return PTR_ERR(root);
2525 	}
2526 
2527 	key.objectid = inum;
2528 	key.type = BTRFS_EXTENT_DATA_KEY;
2529 	if (offset > (u64)-1 << 32)
2530 		key.offset = 0;
2531 	else
2532 		key.offset = offset;
2533 
2534 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2535 	if (WARN_ON(ret < 0))
2536 		return ret;
2537 	ret = 0;
2538 
2539 	while (1) {
2540 		cond_resched();
2541 
2542 		leaf = path->nodes[0];
2543 		slot = path->slots[0];
2544 
2545 		if (slot >= btrfs_header_nritems(leaf)) {
2546 			ret = btrfs_next_leaf(root, path);
2547 			if (ret < 0) {
2548 				goto out;
2549 			} else if (ret > 0) {
2550 				ret = 0;
2551 				goto out;
2552 			}
2553 			continue;
2554 		}
2555 
2556 		path->slots[0]++;
2557 
2558 		btrfs_item_key_to_cpu(leaf, &key, slot);
2559 
2560 		if (key.objectid > inum)
2561 			goto out;
2562 
2563 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2564 			continue;
2565 
2566 		extent = btrfs_item_ptr(leaf, slot,
2567 					struct btrfs_file_extent_item);
2568 
2569 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2570 			continue;
2571 
2572 		/*
2573 		 * 'offset' refers to the exact key.offset,
2574 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2575 		 * (key.offset - extent_offset).
2576 		 */
2577 		if (key.offset != offset)
2578 			continue;
2579 
2580 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2581 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2582 
2583 		if (extent_offset >= old->extent_offset + old->offset +
2584 		    old->len || extent_offset + num_bytes <=
2585 		    old->extent_offset + old->offset)
2586 			continue;
2587 		break;
2588 	}
2589 
2590 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2591 	if (!backref) {
2592 		ret = -ENOENT;
2593 		goto out;
2594 	}
2595 
2596 	backref->root_id = root_id;
2597 	backref->inum = inum;
2598 	backref->file_pos = offset;
2599 	backref->num_bytes = num_bytes;
2600 	backref->extent_offset = extent_offset;
2601 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2602 	backref->old = old;
2603 	backref_insert(&new->root, backref);
2604 	old->count++;
2605 out:
2606 	btrfs_release_path(path);
2607 	WARN_ON(ret);
2608 	return ret;
2609 }
2610 
2611 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2612 				   struct new_sa_defrag_extent *new)
2613 {
2614 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2615 	struct old_sa_defrag_extent *old, *tmp;
2616 	int ret;
2617 
2618 	new->path = path;
2619 
2620 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2621 		ret = iterate_inodes_from_logical(old->bytenr +
2622 						  old->extent_offset, fs_info,
2623 						  path, record_one_backref,
2624 						  old, false);
2625 		if (ret < 0 && ret != -ENOENT)
2626 			return false;
2627 
2628 		/* no backref to be processed for this extent */
2629 		if (!old->count) {
2630 			list_del(&old->list);
2631 			kfree(old);
2632 		}
2633 	}
2634 
2635 	if (list_empty(&new->head))
2636 		return false;
2637 
2638 	return true;
2639 }
2640 
2641 static int relink_is_mergable(struct extent_buffer *leaf,
2642 			      struct btrfs_file_extent_item *fi,
2643 			      struct new_sa_defrag_extent *new)
2644 {
2645 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2646 		return 0;
2647 
2648 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2649 		return 0;
2650 
2651 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2652 		return 0;
2653 
2654 	if (btrfs_file_extent_encryption(leaf, fi) ||
2655 	    btrfs_file_extent_other_encoding(leaf, fi))
2656 		return 0;
2657 
2658 	return 1;
2659 }
2660 
2661 /*
2662  * Note the backref might has changed, and in this case we just return 0.
2663  */
2664 static noinline int relink_extent_backref(struct btrfs_path *path,
2665 				 struct sa_defrag_extent_backref *prev,
2666 				 struct sa_defrag_extent_backref *backref)
2667 {
2668 	struct btrfs_file_extent_item *extent;
2669 	struct btrfs_file_extent_item *item;
2670 	struct btrfs_ordered_extent *ordered;
2671 	struct btrfs_trans_handle *trans;
2672 	struct btrfs_ref ref = { 0 };
2673 	struct btrfs_root *root;
2674 	struct btrfs_key key;
2675 	struct extent_buffer *leaf;
2676 	struct old_sa_defrag_extent *old = backref->old;
2677 	struct new_sa_defrag_extent *new = old->new;
2678 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2679 	struct inode *inode;
2680 	struct extent_state *cached = NULL;
2681 	int ret = 0;
2682 	u64 start;
2683 	u64 len;
2684 	u64 lock_start;
2685 	u64 lock_end;
2686 	bool merge = false;
2687 	int index;
2688 
2689 	if (prev && prev->root_id == backref->root_id &&
2690 	    prev->inum == backref->inum &&
2691 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2692 		merge = true;
2693 
2694 	/* step 1: get root */
2695 	key.objectid = backref->root_id;
2696 	key.type = BTRFS_ROOT_ITEM_KEY;
2697 	key.offset = (u64)-1;
2698 
2699 	index = srcu_read_lock(&fs_info->subvol_srcu);
2700 
2701 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2702 	if (IS_ERR(root)) {
2703 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2704 		if (PTR_ERR(root) == -ENOENT)
2705 			return 0;
2706 		return PTR_ERR(root);
2707 	}
2708 
2709 	if (btrfs_root_readonly(root)) {
2710 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2711 		return 0;
2712 	}
2713 
2714 	/* step 2: get inode */
2715 	key.objectid = backref->inum;
2716 	key.type = BTRFS_INODE_ITEM_KEY;
2717 	key.offset = 0;
2718 
2719 	inode = btrfs_iget(fs_info->sb, &key, root);
2720 	if (IS_ERR(inode)) {
2721 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2722 		return 0;
2723 	}
2724 
2725 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2726 
2727 	/* step 3: relink backref */
2728 	lock_start = backref->file_pos;
2729 	lock_end = backref->file_pos + backref->num_bytes - 1;
2730 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2731 			 &cached);
2732 
2733 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2734 	if (ordered) {
2735 		btrfs_put_ordered_extent(ordered);
2736 		goto out_unlock;
2737 	}
2738 
2739 	trans = btrfs_join_transaction(root);
2740 	if (IS_ERR(trans)) {
2741 		ret = PTR_ERR(trans);
2742 		goto out_unlock;
2743 	}
2744 
2745 	key.objectid = backref->inum;
2746 	key.type = BTRFS_EXTENT_DATA_KEY;
2747 	key.offset = backref->file_pos;
2748 
2749 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2750 	if (ret < 0) {
2751 		goto out_free_path;
2752 	} else if (ret > 0) {
2753 		ret = 0;
2754 		goto out_free_path;
2755 	}
2756 
2757 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2758 				struct btrfs_file_extent_item);
2759 
2760 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2761 	    backref->generation)
2762 		goto out_free_path;
2763 
2764 	btrfs_release_path(path);
2765 
2766 	start = backref->file_pos;
2767 	if (backref->extent_offset < old->extent_offset + old->offset)
2768 		start += old->extent_offset + old->offset -
2769 			 backref->extent_offset;
2770 
2771 	len = min(backref->extent_offset + backref->num_bytes,
2772 		  old->extent_offset + old->offset + old->len);
2773 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2774 
2775 	ret = btrfs_drop_extents(trans, root, inode, start,
2776 				 start + len, 1);
2777 	if (ret)
2778 		goto out_free_path;
2779 again:
2780 	key.objectid = btrfs_ino(BTRFS_I(inode));
2781 	key.type = BTRFS_EXTENT_DATA_KEY;
2782 	key.offset = start;
2783 
2784 	path->leave_spinning = 1;
2785 	if (merge) {
2786 		struct btrfs_file_extent_item *fi;
2787 		u64 extent_len;
2788 		struct btrfs_key found_key;
2789 
2790 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2791 		if (ret < 0)
2792 			goto out_free_path;
2793 
2794 		path->slots[0]--;
2795 		leaf = path->nodes[0];
2796 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2797 
2798 		fi = btrfs_item_ptr(leaf, path->slots[0],
2799 				    struct btrfs_file_extent_item);
2800 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2801 
2802 		if (extent_len + found_key.offset == start &&
2803 		    relink_is_mergable(leaf, fi, new)) {
2804 			btrfs_set_file_extent_num_bytes(leaf, fi,
2805 							extent_len + len);
2806 			btrfs_mark_buffer_dirty(leaf);
2807 			inode_add_bytes(inode, len);
2808 
2809 			ret = 1;
2810 			goto out_free_path;
2811 		} else {
2812 			merge = false;
2813 			btrfs_release_path(path);
2814 			goto again;
2815 		}
2816 	}
2817 
2818 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2819 					sizeof(*extent));
2820 	if (ret) {
2821 		btrfs_abort_transaction(trans, ret);
2822 		goto out_free_path;
2823 	}
2824 
2825 	leaf = path->nodes[0];
2826 	item = btrfs_item_ptr(leaf, path->slots[0],
2827 				struct btrfs_file_extent_item);
2828 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2829 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2830 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2831 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2832 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2833 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2834 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2835 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2836 	btrfs_set_file_extent_encryption(leaf, item, 0);
2837 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2838 
2839 	btrfs_mark_buffer_dirty(leaf);
2840 	inode_add_bytes(inode, len);
2841 	btrfs_release_path(path);
2842 
2843 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2844 			       new->disk_len, 0);
2845 	btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2846 			    new->file_pos);  /* start - extent_offset */
2847 	ret = btrfs_inc_extent_ref(trans, &ref);
2848 	if (ret) {
2849 		btrfs_abort_transaction(trans, ret);
2850 		goto out_free_path;
2851 	}
2852 
2853 	ret = 1;
2854 out_free_path:
2855 	btrfs_release_path(path);
2856 	path->leave_spinning = 0;
2857 	btrfs_end_transaction(trans);
2858 out_unlock:
2859 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2860 			     &cached);
2861 	iput(inode);
2862 	return ret;
2863 }
2864 
2865 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2866 {
2867 	struct old_sa_defrag_extent *old, *tmp;
2868 
2869 	if (!new)
2870 		return;
2871 
2872 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2873 		kfree(old);
2874 	}
2875 	kfree(new);
2876 }
2877 
2878 static void relink_file_extents(struct new_sa_defrag_extent *new)
2879 {
2880 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2881 	struct btrfs_path *path;
2882 	struct sa_defrag_extent_backref *backref;
2883 	struct sa_defrag_extent_backref *prev = NULL;
2884 	struct rb_node *node;
2885 	int ret;
2886 
2887 	path = btrfs_alloc_path();
2888 	if (!path)
2889 		return;
2890 
2891 	if (!record_extent_backrefs(path, new)) {
2892 		btrfs_free_path(path);
2893 		goto out;
2894 	}
2895 	btrfs_release_path(path);
2896 
2897 	while (1) {
2898 		node = rb_first(&new->root);
2899 		if (!node)
2900 			break;
2901 		rb_erase(node, &new->root);
2902 
2903 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2904 
2905 		ret = relink_extent_backref(path, prev, backref);
2906 		WARN_ON(ret < 0);
2907 
2908 		kfree(prev);
2909 
2910 		if (ret == 1)
2911 			prev = backref;
2912 		else
2913 			prev = NULL;
2914 		cond_resched();
2915 	}
2916 	kfree(prev);
2917 
2918 	btrfs_free_path(path);
2919 out:
2920 	free_sa_defrag_extent(new);
2921 
2922 	atomic_dec(&fs_info->defrag_running);
2923 	wake_up(&fs_info->transaction_wait);
2924 }
2925 
2926 static struct new_sa_defrag_extent *
2927 record_old_file_extents(struct inode *inode,
2928 			struct btrfs_ordered_extent *ordered)
2929 {
2930 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2931 	struct btrfs_root *root = BTRFS_I(inode)->root;
2932 	struct btrfs_path *path;
2933 	struct btrfs_key key;
2934 	struct old_sa_defrag_extent *old;
2935 	struct new_sa_defrag_extent *new;
2936 	int ret;
2937 
2938 	new = kmalloc(sizeof(*new), GFP_NOFS);
2939 	if (!new)
2940 		return NULL;
2941 
2942 	new->inode = inode;
2943 	new->file_pos = ordered->file_offset;
2944 	new->len = ordered->len;
2945 	new->bytenr = ordered->start;
2946 	new->disk_len = ordered->disk_len;
2947 	new->compress_type = ordered->compress_type;
2948 	new->root = RB_ROOT;
2949 	INIT_LIST_HEAD(&new->head);
2950 
2951 	path = btrfs_alloc_path();
2952 	if (!path)
2953 		goto out_kfree;
2954 
2955 	key.objectid = btrfs_ino(BTRFS_I(inode));
2956 	key.type = BTRFS_EXTENT_DATA_KEY;
2957 	key.offset = new->file_pos;
2958 
2959 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2960 	if (ret < 0)
2961 		goto out_free_path;
2962 	if (ret > 0 && path->slots[0] > 0)
2963 		path->slots[0]--;
2964 
2965 	/* find out all the old extents for the file range */
2966 	while (1) {
2967 		struct btrfs_file_extent_item *extent;
2968 		struct extent_buffer *l;
2969 		int slot;
2970 		u64 num_bytes;
2971 		u64 offset;
2972 		u64 end;
2973 		u64 disk_bytenr;
2974 		u64 extent_offset;
2975 
2976 		l = path->nodes[0];
2977 		slot = path->slots[0];
2978 
2979 		if (slot >= btrfs_header_nritems(l)) {
2980 			ret = btrfs_next_leaf(root, path);
2981 			if (ret < 0)
2982 				goto out_free_path;
2983 			else if (ret > 0)
2984 				break;
2985 			continue;
2986 		}
2987 
2988 		btrfs_item_key_to_cpu(l, &key, slot);
2989 
2990 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2991 			break;
2992 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2993 			break;
2994 		if (key.offset >= new->file_pos + new->len)
2995 			break;
2996 
2997 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2998 
2999 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
3000 		if (key.offset + num_bytes < new->file_pos)
3001 			goto next;
3002 
3003 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
3004 		if (!disk_bytenr)
3005 			goto next;
3006 
3007 		extent_offset = btrfs_file_extent_offset(l, extent);
3008 
3009 		old = kmalloc(sizeof(*old), GFP_NOFS);
3010 		if (!old)
3011 			goto out_free_path;
3012 
3013 		offset = max(new->file_pos, key.offset);
3014 		end = min(new->file_pos + new->len, key.offset + num_bytes);
3015 
3016 		old->bytenr = disk_bytenr;
3017 		old->extent_offset = extent_offset;
3018 		old->offset = offset - key.offset;
3019 		old->len = end - offset;
3020 		old->new = new;
3021 		old->count = 0;
3022 		list_add_tail(&old->list, &new->head);
3023 next:
3024 		path->slots[0]++;
3025 		cond_resched();
3026 	}
3027 
3028 	btrfs_free_path(path);
3029 	atomic_inc(&fs_info->defrag_running);
3030 
3031 	return new;
3032 
3033 out_free_path:
3034 	btrfs_free_path(path);
3035 out_kfree:
3036 	free_sa_defrag_extent(new);
3037 	return NULL;
3038 }
3039 
3040 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3041 					 u64 start, u64 len)
3042 {
3043 	struct btrfs_block_group *cache;
3044 
3045 	cache = btrfs_lookup_block_group(fs_info, start);
3046 	ASSERT(cache);
3047 
3048 	spin_lock(&cache->lock);
3049 	cache->delalloc_bytes -= len;
3050 	spin_unlock(&cache->lock);
3051 
3052 	btrfs_put_block_group(cache);
3053 }
3054 
3055 /* as ordered data IO finishes, this gets called so we can finish
3056  * an ordered extent if the range of bytes in the file it covers are
3057  * fully written.
3058  */
3059 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3060 {
3061 	struct inode *inode = ordered_extent->inode;
3062 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3063 	struct btrfs_root *root = BTRFS_I(inode)->root;
3064 	struct btrfs_trans_handle *trans = NULL;
3065 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3066 	struct extent_state *cached_state = NULL;
3067 	struct new_sa_defrag_extent *new = NULL;
3068 	int compress_type = 0;
3069 	int ret = 0;
3070 	u64 logical_len = ordered_extent->len;
3071 	bool freespace_inode;
3072 	bool truncated = false;
3073 	bool range_locked = false;
3074 	bool clear_new_delalloc_bytes = false;
3075 	bool clear_reserved_extent = true;
3076 
3077 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3078 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3079 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3080 		clear_new_delalloc_bytes = true;
3081 
3082 	freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
3083 
3084 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3085 		ret = -EIO;
3086 		goto out;
3087 	}
3088 
3089 	btrfs_free_io_failure_record(BTRFS_I(inode),
3090 			ordered_extent->file_offset,
3091 			ordered_extent->file_offset +
3092 			ordered_extent->len - 1);
3093 
3094 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3095 		truncated = true;
3096 		logical_len = ordered_extent->truncated_len;
3097 		/* Truncated the entire extent, don't bother adding */
3098 		if (!logical_len)
3099 			goto out;
3100 	}
3101 
3102 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3103 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3104 
3105 		/*
3106 		 * For mwrite(mmap + memset to write) case, we still reserve
3107 		 * space for NOCOW range.
3108 		 * As NOCOW won't cause a new delayed ref, just free the space
3109 		 */
3110 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3111 				       ordered_extent->len);
3112 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3113 		if (freespace_inode)
3114 			trans = btrfs_join_transaction_spacecache(root);
3115 		else
3116 			trans = btrfs_join_transaction(root);
3117 		if (IS_ERR(trans)) {
3118 			ret = PTR_ERR(trans);
3119 			trans = NULL;
3120 			goto out;
3121 		}
3122 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3123 		ret = btrfs_update_inode_fallback(trans, root, inode);
3124 		if (ret) /* -ENOMEM or corruption */
3125 			btrfs_abort_transaction(trans, ret);
3126 		goto out;
3127 	}
3128 
3129 	range_locked = true;
3130 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3131 			 ordered_extent->file_offset + ordered_extent->len - 1,
3132 			 &cached_state);
3133 
3134 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3135 			ordered_extent->file_offset + ordered_extent->len - 1,
3136 			EXTENT_DEFRAG, 0, cached_state);
3137 	if (ret) {
3138 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3139 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3140 			/* the inode is shared */
3141 			new = record_old_file_extents(inode, ordered_extent);
3142 
3143 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3144 			ordered_extent->file_offset + ordered_extent->len - 1,
3145 			EXTENT_DEFRAG, 0, 0, &cached_state);
3146 	}
3147 
3148 	if (freespace_inode)
3149 		trans = btrfs_join_transaction_spacecache(root);
3150 	else
3151 		trans = btrfs_join_transaction(root);
3152 	if (IS_ERR(trans)) {
3153 		ret = PTR_ERR(trans);
3154 		trans = NULL;
3155 		goto out;
3156 	}
3157 
3158 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3159 
3160 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3161 		compress_type = ordered_extent->compress_type;
3162 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3163 		BUG_ON(compress_type);
3164 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3165 				       ordered_extent->len);
3166 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3167 						ordered_extent->file_offset,
3168 						ordered_extent->file_offset +
3169 						logical_len);
3170 	} else {
3171 		BUG_ON(root == fs_info->tree_root);
3172 		ret = insert_reserved_file_extent(trans, inode,
3173 						ordered_extent->file_offset,
3174 						ordered_extent->start,
3175 						ordered_extent->disk_len,
3176 						logical_len, logical_len,
3177 						compress_type, 0, 0,
3178 						BTRFS_FILE_EXTENT_REG);
3179 		if (!ret) {
3180 			clear_reserved_extent = false;
3181 			btrfs_release_delalloc_bytes(fs_info,
3182 						     ordered_extent->start,
3183 						     ordered_extent->disk_len);
3184 		}
3185 	}
3186 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3187 			   ordered_extent->file_offset, ordered_extent->len,
3188 			   trans->transid);
3189 	if (ret < 0) {
3190 		btrfs_abort_transaction(trans, ret);
3191 		goto out;
3192 	}
3193 
3194 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3195 	if (ret) {
3196 		btrfs_abort_transaction(trans, ret);
3197 		goto out;
3198 	}
3199 
3200 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3201 	ret = btrfs_update_inode_fallback(trans, root, inode);
3202 	if (ret) { /* -ENOMEM or corruption */
3203 		btrfs_abort_transaction(trans, ret);
3204 		goto out;
3205 	}
3206 	ret = 0;
3207 out:
3208 	if (range_locked || clear_new_delalloc_bytes) {
3209 		unsigned int clear_bits = 0;
3210 
3211 		if (range_locked)
3212 			clear_bits |= EXTENT_LOCKED;
3213 		if (clear_new_delalloc_bytes)
3214 			clear_bits |= EXTENT_DELALLOC_NEW;
3215 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3216 				 ordered_extent->file_offset,
3217 				 ordered_extent->file_offset +
3218 				 ordered_extent->len - 1,
3219 				 clear_bits,
3220 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3221 				 0, &cached_state);
3222 	}
3223 
3224 	if (trans)
3225 		btrfs_end_transaction(trans);
3226 
3227 	if (ret || truncated) {
3228 		u64 start, end;
3229 
3230 		if (truncated)
3231 			start = ordered_extent->file_offset + logical_len;
3232 		else
3233 			start = ordered_extent->file_offset;
3234 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3235 		clear_extent_uptodate(io_tree, start, end, NULL);
3236 
3237 		/* Drop the cache for the part of the extent we didn't write. */
3238 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3239 
3240 		/*
3241 		 * If the ordered extent had an IOERR or something else went
3242 		 * wrong we need to return the space for this ordered extent
3243 		 * back to the allocator.  We only free the extent in the
3244 		 * truncated case if we didn't write out the extent at all.
3245 		 *
3246 		 * If we made it past insert_reserved_file_extent before we
3247 		 * errored out then we don't need to do this as the accounting
3248 		 * has already been done.
3249 		 */
3250 		if ((ret || !logical_len) &&
3251 		    clear_reserved_extent &&
3252 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3253 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3254 			btrfs_free_reserved_extent(fs_info,
3255 						   ordered_extent->start,
3256 						   ordered_extent->disk_len, 1);
3257 	}
3258 
3259 
3260 	/*
3261 	 * This needs to be done to make sure anybody waiting knows we are done
3262 	 * updating everything for this ordered extent.
3263 	 */
3264 	btrfs_remove_ordered_extent(inode, ordered_extent);
3265 
3266 	/* for snapshot-aware defrag */
3267 	if (new) {
3268 		if (ret) {
3269 			free_sa_defrag_extent(new);
3270 			atomic_dec(&fs_info->defrag_running);
3271 		} else {
3272 			relink_file_extents(new);
3273 		}
3274 	}
3275 
3276 	/* once for us */
3277 	btrfs_put_ordered_extent(ordered_extent);
3278 	/* once for the tree */
3279 	btrfs_put_ordered_extent(ordered_extent);
3280 
3281 	return ret;
3282 }
3283 
3284 static void finish_ordered_fn(struct btrfs_work *work)
3285 {
3286 	struct btrfs_ordered_extent *ordered_extent;
3287 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3288 	btrfs_finish_ordered_io(ordered_extent);
3289 }
3290 
3291 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3292 					  u64 end, int uptodate)
3293 {
3294 	struct inode *inode = page->mapping->host;
3295 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3296 	struct btrfs_ordered_extent *ordered_extent = NULL;
3297 	struct btrfs_workqueue *wq;
3298 
3299 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3300 
3301 	ClearPagePrivate2(page);
3302 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3303 					    end - start + 1, uptodate))
3304 		return;
3305 
3306 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
3307 		wq = fs_info->endio_freespace_worker;
3308 	else
3309 		wq = fs_info->endio_write_workers;
3310 
3311 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3312 	btrfs_queue_work(wq, &ordered_extent->work);
3313 }
3314 
3315 static int __readpage_endio_check(struct inode *inode,
3316 				  struct btrfs_io_bio *io_bio,
3317 				  int icsum, struct page *page,
3318 				  int pgoff, u64 start, size_t len)
3319 {
3320 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3321 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3322 	char *kaddr;
3323 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3324 	u8 *csum_expected;
3325 	u8 csum[BTRFS_CSUM_SIZE];
3326 
3327 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3328 
3329 	kaddr = kmap_atomic(page);
3330 	shash->tfm = fs_info->csum_shash;
3331 
3332 	crypto_shash_init(shash);
3333 	crypto_shash_update(shash, kaddr + pgoff, len);
3334 	crypto_shash_final(shash, csum);
3335 
3336 	if (memcmp(csum, csum_expected, csum_size))
3337 		goto zeroit;
3338 
3339 	kunmap_atomic(kaddr);
3340 	return 0;
3341 zeroit:
3342 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3343 				    io_bio->mirror_num);
3344 	memset(kaddr + pgoff, 1, len);
3345 	flush_dcache_page(page);
3346 	kunmap_atomic(kaddr);
3347 	return -EIO;
3348 }
3349 
3350 /*
3351  * when reads are done, we need to check csums to verify the data is correct
3352  * if there's a match, we allow the bio to finish.  If not, the code in
3353  * extent_io.c will try to find good copies for us.
3354  */
3355 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3356 				      u64 phy_offset, struct page *page,
3357 				      u64 start, u64 end, int mirror)
3358 {
3359 	size_t offset = start - page_offset(page);
3360 	struct inode *inode = page->mapping->host;
3361 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3362 	struct btrfs_root *root = BTRFS_I(inode)->root;
3363 
3364 	if (PageChecked(page)) {
3365 		ClearPageChecked(page);
3366 		return 0;
3367 	}
3368 
3369 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3370 		return 0;
3371 
3372 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3373 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3374 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3375 		return 0;
3376 	}
3377 
3378 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3379 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3380 				      start, (size_t)(end - start + 1));
3381 }
3382 
3383 /*
3384  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3385  *
3386  * @inode: The inode we want to perform iput on
3387  *
3388  * This function uses the generic vfs_inode::i_count to track whether we should
3389  * just decrement it (in case it's > 1) or if this is the last iput then link
3390  * the inode to the delayed iput machinery. Delayed iputs are processed at
3391  * transaction commit time/superblock commit/cleaner kthread.
3392  */
3393 void btrfs_add_delayed_iput(struct inode *inode)
3394 {
3395 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3396 	struct btrfs_inode *binode = BTRFS_I(inode);
3397 
3398 	if (atomic_add_unless(&inode->i_count, -1, 1))
3399 		return;
3400 
3401 	atomic_inc(&fs_info->nr_delayed_iputs);
3402 	spin_lock(&fs_info->delayed_iput_lock);
3403 	ASSERT(list_empty(&binode->delayed_iput));
3404 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3405 	spin_unlock(&fs_info->delayed_iput_lock);
3406 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3407 		wake_up_process(fs_info->cleaner_kthread);
3408 }
3409 
3410 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3411 				    struct btrfs_inode *inode)
3412 {
3413 	list_del_init(&inode->delayed_iput);
3414 	spin_unlock(&fs_info->delayed_iput_lock);
3415 	iput(&inode->vfs_inode);
3416 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3417 		wake_up(&fs_info->delayed_iputs_wait);
3418 	spin_lock(&fs_info->delayed_iput_lock);
3419 }
3420 
3421 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3422 				   struct btrfs_inode *inode)
3423 {
3424 	if (!list_empty(&inode->delayed_iput)) {
3425 		spin_lock(&fs_info->delayed_iput_lock);
3426 		if (!list_empty(&inode->delayed_iput))
3427 			run_delayed_iput_locked(fs_info, inode);
3428 		spin_unlock(&fs_info->delayed_iput_lock);
3429 	}
3430 }
3431 
3432 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3433 {
3434 
3435 	spin_lock(&fs_info->delayed_iput_lock);
3436 	while (!list_empty(&fs_info->delayed_iputs)) {
3437 		struct btrfs_inode *inode;
3438 
3439 		inode = list_first_entry(&fs_info->delayed_iputs,
3440 				struct btrfs_inode, delayed_iput);
3441 		run_delayed_iput_locked(fs_info, inode);
3442 	}
3443 	spin_unlock(&fs_info->delayed_iput_lock);
3444 }
3445 
3446 /**
3447  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3448  * @fs_info - the fs_info for this fs
3449  * @return - EINTR if we were killed, 0 if nothing's pending
3450  *
3451  * This will wait on any delayed iputs that are currently running with KILLABLE
3452  * set.  Once they are all done running we will return, unless we are killed in
3453  * which case we return EINTR. This helps in user operations like fallocate etc
3454  * that might get blocked on the iputs.
3455  */
3456 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3457 {
3458 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3459 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3460 	if (ret)
3461 		return -EINTR;
3462 	return 0;
3463 }
3464 
3465 /*
3466  * This creates an orphan entry for the given inode in case something goes wrong
3467  * in the middle of an unlink.
3468  */
3469 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3470 		     struct btrfs_inode *inode)
3471 {
3472 	int ret;
3473 
3474 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3475 	if (ret && ret != -EEXIST) {
3476 		btrfs_abort_transaction(trans, ret);
3477 		return ret;
3478 	}
3479 
3480 	return 0;
3481 }
3482 
3483 /*
3484  * We have done the delete so we can go ahead and remove the orphan item for
3485  * this particular inode.
3486  */
3487 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3488 			    struct btrfs_inode *inode)
3489 {
3490 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3491 }
3492 
3493 /*
3494  * this cleans up any orphans that may be left on the list from the last use
3495  * of this root.
3496  */
3497 int btrfs_orphan_cleanup(struct btrfs_root *root)
3498 {
3499 	struct btrfs_fs_info *fs_info = root->fs_info;
3500 	struct btrfs_path *path;
3501 	struct extent_buffer *leaf;
3502 	struct btrfs_key key, found_key;
3503 	struct btrfs_trans_handle *trans;
3504 	struct inode *inode;
3505 	u64 last_objectid = 0;
3506 	int ret = 0, nr_unlink = 0;
3507 
3508 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3509 		return 0;
3510 
3511 	path = btrfs_alloc_path();
3512 	if (!path) {
3513 		ret = -ENOMEM;
3514 		goto out;
3515 	}
3516 	path->reada = READA_BACK;
3517 
3518 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3519 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3520 	key.offset = (u64)-1;
3521 
3522 	while (1) {
3523 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3524 		if (ret < 0)
3525 			goto out;
3526 
3527 		/*
3528 		 * if ret == 0 means we found what we were searching for, which
3529 		 * is weird, but possible, so only screw with path if we didn't
3530 		 * find the key and see if we have stuff that matches
3531 		 */
3532 		if (ret > 0) {
3533 			ret = 0;
3534 			if (path->slots[0] == 0)
3535 				break;
3536 			path->slots[0]--;
3537 		}
3538 
3539 		/* pull out the item */
3540 		leaf = path->nodes[0];
3541 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3542 
3543 		/* make sure the item matches what we want */
3544 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3545 			break;
3546 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3547 			break;
3548 
3549 		/* release the path since we're done with it */
3550 		btrfs_release_path(path);
3551 
3552 		/*
3553 		 * this is where we are basically btrfs_lookup, without the
3554 		 * crossing root thing.  we store the inode number in the
3555 		 * offset of the orphan item.
3556 		 */
3557 
3558 		if (found_key.offset == last_objectid) {
3559 			btrfs_err(fs_info,
3560 				  "Error removing orphan entry, stopping orphan cleanup");
3561 			ret = -EINVAL;
3562 			goto out;
3563 		}
3564 
3565 		last_objectid = found_key.offset;
3566 
3567 		found_key.objectid = found_key.offset;
3568 		found_key.type = BTRFS_INODE_ITEM_KEY;
3569 		found_key.offset = 0;
3570 		inode = btrfs_iget(fs_info->sb, &found_key, root);
3571 		ret = PTR_ERR_OR_ZERO(inode);
3572 		if (ret && ret != -ENOENT)
3573 			goto out;
3574 
3575 		if (ret == -ENOENT && root == fs_info->tree_root) {
3576 			struct btrfs_root *dead_root;
3577 			struct btrfs_fs_info *fs_info = root->fs_info;
3578 			int is_dead_root = 0;
3579 
3580 			/*
3581 			 * this is an orphan in the tree root. Currently these
3582 			 * could come from 2 sources:
3583 			 *  a) a snapshot deletion in progress
3584 			 *  b) a free space cache inode
3585 			 * We need to distinguish those two, as the snapshot
3586 			 * orphan must not get deleted.
3587 			 * find_dead_roots already ran before us, so if this
3588 			 * is a snapshot deletion, we should find the root
3589 			 * in the dead_roots list
3590 			 */
3591 			spin_lock(&fs_info->trans_lock);
3592 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3593 					    root_list) {
3594 				if (dead_root->root_key.objectid ==
3595 				    found_key.objectid) {
3596 					is_dead_root = 1;
3597 					break;
3598 				}
3599 			}
3600 			spin_unlock(&fs_info->trans_lock);
3601 			if (is_dead_root) {
3602 				/* prevent this orphan from being found again */
3603 				key.offset = found_key.objectid - 1;
3604 				continue;
3605 			}
3606 
3607 		}
3608 
3609 		/*
3610 		 * If we have an inode with links, there are a couple of
3611 		 * possibilities. Old kernels (before v3.12) used to create an
3612 		 * orphan item for truncate indicating that there were possibly
3613 		 * extent items past i_size that needed to be deleted. In v3.12,
3614 		 * truncate was changed to update i_size in sync with the extent
3615 		 * items, but the (useless) orphan item was still created. Since
3616 		 * v4.18, we don't create the orphan item for truncate at all.
3617 		 *
3618 		 * So, this item could mean that we need to do a truncate, but
3619 		 * only if this filesystem was last used on a pre-v3.12 kernel
3620 		 * and was not cleanly unmounted. The odds of that are quite
3621 		 * slim, and it's a pain to do the truncate now, so just delete
3622 		 * the orphan item.
3623 		 *
3624 		 * It's also possible that this orphan item was supposed to be
3625 		 * deleted but wasn't. The inode number may have been reused,
3626 		 * but either way, we can delete the orphan item.
3627 		 */
3628 		if (ret == -ENOENT || inode->i_nlink) {
3629 			if (!ret)
3630 				iput(inode);
3631 			trans = btrfs_start_transaction(root, 1);
3632 			if (IS_ERR(trans)) {
3633 				ret = PTR_ERR(trans);
3634 				goto out;
3635 			}
3636 			btrfs_debug(fs_info, "auto deleting %Lu",
3637 				    found_key.objectid);
3638 			ret = btrfs_del_orphan_item(trans, root,
3639 						    found_key.objectid);
3640 			btrfs_end_transaction(trans);
3641 			if (ret)
3642 				goto out;
3643 			continue;
3644 		}
3645 
3646 		nr_unlink++;
3647 
3648 		/* this will do delete_inode and everything for us */
3649 		iput(inode);
3650 	}
3651 	/* release the path since we're done with it */
3652 	btrfs_release_path(path);
3653 
3654 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3655 
3656 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3657 		trans = btrfs_join_transaction(root);
3658 		if (!IS_ERR(trans))
3659 			btrfs_end_transaction(trans);
3660 	}
3661 
3662 	if (nr_unlink)
3663 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3664 
3665 out:
3666 	if (ret)
3667 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3668 	btrfs_free_path(path);
3669 	return ret;
3670 }
3671 
3672 /*
3673  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3674  * don't find any xattrs, we know there can't be any acls.
3675  *
3676  * slot is the slot the inode is in, objectid is the objectid of the inode
3677  */
3678 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3679 					  int slot, u64 objectid,
3680 					  int *first_xattr_slot)
3681 {
3682 	u32 nritems = btrfs_header_nritems(leaf);
3683 	struct btrfs_key found_key;
3684 	static u64 xattr_access = 0;
3685 	static u64 xattr_default = 0;
3686 	int scanned = 0;
3687 
3688 	if (!xattr_access) {
3689 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3690 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3691 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3692 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3693 	}
3694 
3695 	slot++;
3696 	*first_xattr_slot = -1;
3697 	while (slot < nritems) {
3698 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3699 
3700 		/* we found a different objectid, there must not be acls */
3701 		if (found_key.objectid != objectid)
3702 			return 0;
3703 
3704 		/* we found an xattr, assume we've got an acl */
3705 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3706 			if (*first_xattr_slot == -1)
3707 				*first_xattr_slot = slot;
3708 			if (found_key.offset == xattr_access ||
3709 			    found_key.offset == xattr_default)
3710 				return 1;
3711 		}
3712 
3713 		/*
3714 		 * we found a key greater than an xattr key, there can't
3715 		 * be any acls later on
3716 		 */
3717 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3718 			return 0;
3719 
3720 		slot++;
3721 		scanned++;
3722 
3723 		/*
3724 		 * it goes inode, inode backrefs, xattrs, extents,
3725 		 * so if there are a ton of hard links to an inode there can
3726 		 * be a lot of backrefs.  Don't waste time searching too hard,
3727 		 * this is just an optimization
3728 		 */
3729 		if (scanned >= 8)
3730 			break;
3731 	}
3732 	/* we hit the end of the leaf before we found an xattr or
3733 	 * something larger than an xattr.  We have to assume the inode
3734 	 * has acls
3735 	 */
3736 	if (*first_xattr_slot == -1)
3737 		*first_xattr_slot = slot;
3738 	return 1;
3739 }
3740 
3741 /*
3742  * read an inode from the btree into the in-memory inode
3743  */
3744 static int btrfs_read_locked_inode(struct inode *inode,
3745 				   struct btrfs_path *in_path)
3746 {
3747 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3748 	struct btrfs_path *path = in_path;
3749 	struct extent_buffer *leaf;
3750 	struct btrfs_inode_item *inode_item;
3751 	struct btrfs_root *root = BTRFS_I(inode)->root;
3752 	struct btrfs_key location;
3753 	unsigned long ptr;
3754 	int maybe_acls;
3755 	u32 rdev;
3756 	int ret;
3757 	bool filled = false;
3758 	int first_xattr_slot;
3759 
3760 	ret = btrfs_fill_inode(inode, &rdev);
3761 	if (!ret)
3762 		filled = true;
3763 
3764 	if (!path) {
3765 		path = btrfs_alloc_path();
3766 		if (!path)
3767 			return -ENOMEM;
3768 	}
3769 
3770 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3771 
3772 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3773 	if (ret) {
3774 		if (path != in_path)
3775 			btrfs_free_path(path);
3776 		return ret;
3777 	}
3778 
3779 	leaf = path->nodes[0];
3780 
3781 	if (filled)
3782 		goto cache_index;
3783 
3784 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3785 				    struct btrfs_inode_item);
3786 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3787 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3788 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3789 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3790 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3791 
3792 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3793 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3794 
3795 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3796 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3797 
3798 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3799 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3800 
3801 	BTRFS_I(inode)->i_otime.tv_sec =
3802 		btrfs_timespec_sec(leaf, &inode_item->otime);
3803 	BTRFS_I(inode)->i_otime.tv_nsec =
3804 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3805 
3806 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3807 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3808 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3809 
3810 	inode_set_iversion_queried(inode,
3811 				   btrfs_inode_sequence(leaf, inode_item));
3812 	inode->i_generation = BTRFS_I(inode)->generation;
3813 	inode->i_rdev = 0;
3814 	rdev = btrfs_inode_rdev(leaf, inode_item);
3815 
3816 	BTRFS_I(inode)->index_cnt = (u64)-1;
3817 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3818 
3819 cache_index:
3820 	/*
3821 	 * If we were modified in the current generation and evicted from memory
3822 	 * and then re-read we need to do a full sync since we don't have any
3823 	 * idea about which extents were modified before we were evicted from
3824 	 * cache.
3825 	 *
3826 	 * This is required for both inode re-read from disk and delayed inode
3827 	 * in delayed_nodes_tree.
3828 	 */
3829 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3830 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3831 			&BTRFS_I(inode)->runtime_flags);
3832 
3833 	/*
3834 	 * We don't persist the id of the transaction where an unlink operation
3835 	 * against the inode was last made. So here we assume the inode might
3836 	 * have been evicted, and therefore the exact value of last_unlink_trans
3837 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3838 	 * between the inode and its parent if the inode is fsync'ed and the log
3839 	 * replayed. For example, in the scenario:
3840 	 *
3841 	 * touch mydir/foo
3842 	 * ln mydir/foo mydir/bar
3843 	 * sync
3844 	 * unlink mydir/bar
3845 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3846 	 * xfs_io -c fsync mydir/foo
3847 	 * <power failure>
3848 	 * mount fs, triggers fsync log replay
3849 	 *
3850 	 * We must make sure that when we fsync our inode foo we also log its
3851 	 * parent inode, otherwise after log replay the parent still has the
3852 	 * dentry with the "bar" name but our inode foo has a link count of 1
3853 	 * and doesn't have an inode ref with the name "bar" anymore.
3854 	 *
3855 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3856 	 * but it guarantees correctness at the expense of occasional full
3857 	 * transaction commits on fsync if our inode is a directory, or if our
3858 	 * inode is not a directory, logging its parent unnecessarily.
3859 	 */
3860 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3861 
3862 	path->slots[0]++;
3863 	if (inode->i_nlink != 1 ||
3864 	    path->slots[0] >= btrfs_header_nritems(leaf))
3865 		goto cache_acl;
3866 
3867 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3868 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3869 		goto cache_acl;
3870 
3871 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3872 	if (location.type == BTRFS_INODE_REF_KEY) {
3873 		struct btrfs_inode_ref *ref;
3874 
3875 		ref = (struct btrfs_inode_ref *)ptr;
3876 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3877 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3878 		struct btrfs_inode_extref *extref;
3879 
3880 		extref = (struct btrfs_inode_extref *)ptr;
3881 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3882 								     extref);
3883 	}
3884 cache_acl:
3885 	/*
3886 	 * try to precache a NULL acl entry for files that don't have
3887 	 * any xattrs or acls
3888 	 */
3889 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3890 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3891 	if (first_xattr_slot != -1) {
3892 		path->slots[0] = first_xattr_slot;
3893 		ret = btrfs_load_inode_props(inode, path);
3894 		if (ret)
3895 			btrfs_err(fs_info,
3896 				  "error loading props for ino %llu (root %llu): %d",
3897 				  btrfs_ino(BTRFS_I(inode)),
3898 				  root->root_key.objectid, ret);
3899 	}
3900 	if (path != in_path)
3901 		btrfs_free_path(path);
3902 
3903 	if (!maybe_acls)
3904 		cache_no_acl(inode);
3905 
3906 	switch (inode->i_mode & S_IFMT) {
3907 	case S_IFREG:
3908 		inode->i_mapping->a_ops = &btrfs_aops;
3909 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3910 		inode->i_fop = &btrfs_file_operations;
3911 		inode->i_op = &btrfs_file_inode_operations;
3912 		break;
3913 	case S_IFDIR:
3914 		inode->i_fop = &btrfs_dir_file_operations;
3915 		inode->i_op = &btrfs_dir_inode_operations;
3916 		break;
3917 	case S_IFLNK:
3918 		inode->i_op = &btrfs_symlink_inode_operations;
3919 		inode_nohighmem(inode);
3920 		inode->i_mapping->a_ops = &btrfs_aops;
3921 		break;
3922 	default:
3923 		inode->i_op = &btrfs_special_inode_operations;
3924 		init_special_inode(inode, inode->i_mode, rdev);
3925 		break;
3926 	}
3927 
3928 	btrfs_sync_inode_flags_to_i_flags(inode);
3929 	return 0;
3930 }
3931 
3932 /*
3933  * given a leaf and an inode, copy the inode fields into the leaf
3934  */
3935 static void fill_inode_item(struct btrfs_trans_handle *trans,
3936 			    struct extent_buffer *leaf,
3937 			    struct btrfs_inode_item *item,
3938 			    struct inode *inode)
3939 {
3940 	struct btrfs_map_token token;
3941 
3942 	btrfs_init_map_token(&token, leaf);
3943 
3944 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3945 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3946 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3947 				   &token);
3948 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3949 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3950 
3951 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3952 				     inode->i_atime.tv_sec, &token);
3953 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3954 				      inode->i_atime.tv_nsec, &token);
3955 
3956 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3957 				     inode->i_mtime.tv_sec, &token);
3958 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3959 				      inode->i_mtime.tv_nsec, &token);
3960 
3961 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3962 				     inode->i_ctime.tv_sec, &token);
3963 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3964 				      inode->i_ctime.tv_nsec, &token);
3965 
3966 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3967 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3968 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3969 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3970 
3971 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3972 				     &token);
3973 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3974 					 &token);
3975 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3976 				       &token);
3977 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3978 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3979 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3980 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3981 }
3982 
3983 /*
3984  * copy everything in the in-memory inode into the btree.
3985  */
3986 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3987 				struct btrfs_root *root, struct inode *inode)
3988 {
3989 	struct btrfs_inode_item *inode_item;
3990 	struct btrfs_path *path;
3991 	struct extent_buffer *leaf;
3992 	int ret;
3993 
3994 	path = btrfs_alloc_path();
3995 	if (!path)
3996 		return -ENOMEM;
3997 
3998 	path->leave_spinning = 1;
3999 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4000 				 1);
4001 	if (ret) {
4002 		if (ret > 0)
4003 			ret = -ENOENT;
4004 		goto failed;
4005 	}
4006 
4007 	leaf = path->nodes[0];
4008 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4009 				    struct btrfs_inode_item);
4010 
4011 	fill_inode_item(trans, leaf, inode_item, inode);
4012 	btrfs_mark_buffer_dirty(leaf);
4013 	btrfs_set_inode_last_trans(trans, inode);
4014 	ret = 0;
4015 failed:
4016 	btrfs_free_path(path);
4017 	return ret;
4018 }
4019 
4020 /*
4021  * copy everything in the in-memory inode into the btree.
4022  */
4023 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4024 				struct btrfs_root *root, struct inode *inode)
4025 {
4026 	struct btrfs_fs_info *fs_info = root->fs_info;
4027 	int ret;
4028 
4029 	/*
4030 	 * If the inode is a free space inode, we can deadlock during commit
4031 	 * if we put it into the delayed code.
4032 	 *
4033 	 * The data relocation inode should also be directly updated
4034 	 * without delay
4035 	 */
4036 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4037 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4038 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4039 		btrfs_update_root_times(trans, root);
4040 
4041 		ret = btrfs_delayed_update_inode(trans, root, inode);
4042 		if (!ret)
4043 			btrfs_set_inode_last_trans(trans, inode);
4044 		return ret;
4045 	}
4046 
4047 	return btrfs_update_inode_item(trans, root, inode);
4048 }
4049 
4050 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4051 					 struct btrfs_root *root,
4052 					 struct inode *inode)
4053 {
4054 	int ret;
4055 
4056 	ret = btrfs_update_inode(trans, root, inode);
4057 	if (ret == -ENOSPC)
4058 		return btrfs_update_inode_item(trans, root, inode);
4059 	return ret;
4060 }
4061 
4062 /*
4063  * unlink helper that gets used here in inode.c and in the tree logging
4064  * recovery code.  It remove a link in a directory with a given name, and
4065  * also drops the back refs in the inode to the directory
4066  */
4067 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4068 				struct btrfs_root *root,
4069 				struct btrfs_inode *dir,
4070 				struct btrfs_inode *inode,
4071 				const char *name, int name_len)
4072 {
4073 	struct btrfs_fs_info *fs_info = root->fs_info;
4074 	struct btrfs_path *path;
4075 	int ret = 0;
4076 	struct btrfs_dir_item *di;
4077 	u64 index;
4078 	u64 ino = btrfs_ino(inode);
4079 	u64 dir_ino = btrfs_ino(dir);
4080 
4081 	path = btrfs_alloc_path();
4082 	if (!path) {
4083 		ret = -ENOMEM;
4084 		goto out;
4085 	}
4086 
4087 	path->leave_spinning = 1;
4088 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4089 				    name, name_len, -1);
4090 	if (IS_ERR_OR_NULL(di)) {
4091 		ret = di ? PTR_ERR(di) : -ENOENT;
4092 		goto err;
4093 	}
4094 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4095 	if (ret)
4096 		goto err;
4097 	btrfs_release_path(path);
4098 
4099 	/*
4100 	 * If we don't have dir index, we have to get it by looking up
4101 	 * the inode ref, since we get the inode ref, remove it directly,
4102 	 * it is unnecessary to do delayed deletion.
4103 	 *
4104 	 * But if we have dir index, needn't search inode ref to get it.
4105 	 * Since the inode ref is close to the inode item, it is better
4106 	 * that we delay to delete it, and just do this deletion when
4107 	 * we update the inode item.
4108 	 */
4109 	if (inode->dir_index) {
4110 		ret = btrfs_delayed_delete_inode_ref(inode);
4111 		if (!ret) {
4112 			index = inode->dir_index;
4113 			goto skip_backref;
4114 		}
4115 	}
4116 
4117 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4118 				  dir_ino, &index);
4119 	if (ret) {
4120 		btrfs_info(fs_info,
4121 			"failed to delete reference to %.*s, inode %llu parent %llu",
4122 			name_len, name, ino, dir_ino);
4123 		btrfs_abort_transaction(trans, ret);
4124 		goto err;
4125 	}
4126 skip_backref:
4127 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4128 	if (ret) {
4129 		btrfs_abort_transaction(trans, ret);
4130 		goto err;
4131 	}
4132 
4133 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4134 			dir_ino);
4135 	if (ret != 0 && ret != -ENOENT) {
4136 		btrfs_abort_transaction(trans, ret);
4137 		goto err;
4138 	}
4139 
4140 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4141 			index);
4142 	if (ret == -ENOENT)
4143 		ret = 0;
4144 	else if (ret)
4145 		btrfs_abort_transaction(trans, ret);
4146 
4147 	/*
4148 	 * If we have a pending delayed iput we could end up with the final iput
4149 	 * being run in btrfs-cleaner context.  If we have enough of these built
4150 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4151 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4152 	 * the inode we can run the delayed iput here without any issues as the
4153 	 * final iput won't be done until after we drop the ref we're currently
4154 	 * holding.
4155 	 */
4156 	btrfs_run_delayed_iput(fs_info, inode);
4157 err:
4158 	btrfs_free_path(path);
4159 	if (ret)
4160 		goto out;
4161 
4162 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4163 	inode_inc_iversion(&inode->vfs_inode);
4164 	inode_inc_iversion(&dir->vfs_inode);
4165 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4166 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4167 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4168 out:
4169 	return ret;
4170 }
4171 
4172 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4173 		       struct btrfs_root *root,
4174 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4175 		       const char *name, int name_len)
4176 {
4177 	int ret;
4178 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4179 	if (!ret) {
4180 		drop_nlink(&inode->vfs_inode);
4181 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4182 	}
4183 	return ret;
4184 }
4185 
4186 /*
4187  * helper to start transaction for unlink and rmdir.
4188  *
4189  * unlink and rmdir are special in btrfs, they do not always free space, so
4190  * if we cannot make our reservations the normal way try and see if there is
4191  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4192  * allow the unlink to occur.
4193  */
4194 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4195 {
4196 	struct btrfs_root *root = BTRFS_I(dir)->root;
4197 
4198 	/*
4199 	 * 1 for the possible orphan item
4200 	 * 1 for the dir item
4201 	 * 1 for the dir index
4202 	 * 1 for the inode ref
4203 	 * 1 for the inode
4204 	 */
4205 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4206 }
4207 
4208 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4209 {
4210 	struct btrfs_root *root = BTRFS_I(dir)->root;
4211 	struct btrfs_trans_handle *trans;
4212 	struct inode *inode = d_inode(dentry);
4213 	int ret;
4214 
4215 	trans = __unlink_start_trans(dir);
4216 	if (IS_ERR(trans))
4217 		return PTR_ERR(trans);
4218 
4219 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4220 			0);
4221 
4222 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4223 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4224 			dentry->d_name.len);
4225 	if (ret)
4226 		goto out;
4227 
4228 	if (inode->i_nlink == 0) {
4229 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4230 		if (ret)
4231 			goto out;
4232 	}
4233 
4234 out:
4235 	btrfs_end_transaction(trans);
4236 	btrfs_btree_balance_dirty(root->fs_info);
4237 	return ret;
4238 }
4239 
4240 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4241 			       struct inode *dir, u64 objectid,
4242 			       const char *name, int name_len)
4243 {
4244 	struct btrfs_root *root = BTRFS_I(dir)->root;
4245 	struct btrfs_path *path;
4246 	struct extent_buffer *leaf;
4247 	struct btrfs_dir_item *di;
4248 	struct btrfs_key key;
4249 	u64 index;
4250 	int ret;
4251 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4252 
4253 	path = btrfs_alloc_path();
4254 	if (!path)
4255 		return -ENOMEM;
4256 
4257 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4258 				   name, name_len, -1);
4259 	if (IS_ERR_OR_NULL(di)) {
4260 		ret = di ? PTR_ERR(di) : -ENOENT;
4261 		goto out;
4262 	}
4263 
4264 	leaf = path->nodes[0];
4265 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4266 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4267 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4268 	if (ret) {
4269 		btrfs_abort_transaction(trans, ret);
4270 		goto out;
4271 	}
4272 	btrfs_release_path(path);
4273 
4274 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4275 				 dir_ino, &index, name, name_len);
4276 	if (ret < 0) {
4277 		if (ret != -ENOENT) {
4278 			btrfs_abort_transaction(trans, ret);
4279 			goto out;
4280 		}
4281 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4282 						 name, name_len);
4283 		if (IS_ERR_OR_NULL(di)) {
4284 			if (!di)
4285 				ret = -ENOENT;
4286 			else
4287 				ret = PTR_ERR(di);
4288 			btrfs_abort_transaction(trans, ret);
4289 			goto out;
4290 		}
4291 
4292 		leaf = path->nodes[0];
4293 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4294 		index = key.offset;
4295 	}
4296 	btrfs_release_path(path);
4297 
4298 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4299 	if (ret) {
4300 		btrfs_abort_transaction(trans, ret);
4301 		goto out;
4302 	}
4303 
4304 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4305 	inode_inc_iversion(dir);
4306 	dir->i_mtime = dir->i_ctime = current_time(dir);
4307 	ret = btrfs_update_inode_fallback(trans, root, dir);
4308 	if (ret)
4309 		btrfs_abort_transaction(trans, ret);
4310 out:
4311 	btrfs_free_path(path);
4312 	return ret;
4313 }
4314 
4315 /*
4316  * Helper to check if the subvolume references other subvolumes or if it's
4317  * default.
4318  */
4319 static noinline int may_destroy_subvol(struct btrfs_root *root)
4320 {
4321 	struct btrfs_fs_info *fs_info = root->fs_info;
4322 	struct btrfs_path *path;
4323 	struct btrfs_dir_item *di;
4324 	struct btrfs_key key;
4325 	u64 dir_id;
4326 	int ret;
4327 
4328 	path = btrfs_alloc_path();
4329 	if (!path)
4330 		return -ENOMEM;
4331 
4332 	/* Make sure this root isn't set as the default subvol */
4333 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4334 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4335 				   dir_id, "default", 7, 0);
4336 	if (di && !IS_ERR(di)) {
4337 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4338 		if (key.objectid == root->root_key.objectid) {
4339 			ret = -EPERM;
4340 			btrfs_err(fs_info,
4341 				  "deleting default subvolume %llu is not allowed",
4342 				  key.objectid);
4343 			goto out;
4344 		}
4345 		btrfs_release_path(path);
4346 	}
4347 
4348 	key.objectid = root->root_key.objectid;
4349 	key.type = BTRFS_ROOT_REF_KEY;
4350 	key.offset = (u64)-1;
4351 
4352 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4353 	if (ret < 0)
4354 		goto out;
4355 	BUG_ON(ret == 0);
4356 
4357 	ret = 0;
4358 	if (path->slots[0] > 0) {
4359 		path->slots[0]--;
4360 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4361 		if (key.objectid == root->root_key.objectid &&
4362 		    key.type == BTRFS_ROOT_REF_KEY)
4363 			ret = -ENOTEMPTY;
4364 	}
4365 out:
4366 	btrfs_free_path(path);
4367 	return ret;
4368 }
4369 
4370 /* Delete all dentries for inodes belonging to the root */
4371 static void btrfs_prune_dentries(struct btrfs_root *root)
4372 {
4373 	struct btrfs_fs_info *fs_info = root->fs_info;
4374 	struct rb_node *node;
4375 	struct rb_node *prev;
4376 	struct btrfs_inode *entry;
4377 	struct inode *inode;
4378 	u64 objectid = 0;
4379 
4380 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4381 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4382 
4383 	spin_lock(&root->inode_lock);
4384 again:
4385 	node = root->inode_tree.rb_node;
4386 	prev = NULL;
4387 	while (node) {
4388 		prev = node;
4389 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4390 
4391 		if (objectid < btrfs_ino(entry))
4392 			node = node->rb_left;
4393 		else if (objectid > btrfs_ino(entry))
4394 			node = node->rb_right;
4395 		else
4396 			break;
4397 	}
4398 	if (!node) {
4399 		while (prev) {
4400 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4401 			if (objectid <= btrfs_ino(entry)) {
4402 				node = prev;
4403 				break;
4404 			}
4405 			prev = rb_next(prev);
4406 		}
4407 	}
4408 	while (node) {
4409 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4410 		objectid = btrfs_ino(entry) + 1;
4411 		inode = igrab(&entry->vfs_inode);
4412 		if (inode) {
4413 			spin_unlock(&root->inode_lock);
4414 			if (atomic_read(&inode->i_count) > 1)
4415 				d_prune_aliases(inode);
4416 			/*
4417 			 * btrfs_drop_inode will have it removed from the inode
4418 			 * cache when its usage count hits zero.
4419 			 */
4420 			iput(inode);
4421 			cond_resched();
4422 			spin_lock(&root->inode_lock);
4423 			goto again;
4424 		}
4425 
4426 		if (cond_resched_lock(&root->inode_lock))
4427 			goto again;
4428 
4429 		node = rb_next(node);
4430 	}
4431 	spin_unlock(&root->inode_lock);
4432 }
4433 
4434 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4435 {
4436 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4437 	struct btrfs_root *root = BTRFS_I(dir)->root;
4438 	struct inode *inode = d_inode(dentry);
4439 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4440 	struct btrfs_trans_handle *trans;
4441 	struct btrfs_block_rsv block_rsv;
4442 	u64 root_flags;
4443 	int ret;
4444 	int err;
4445 
4446 	/*
4447 	 * Don't allow to delete a subvolume with send in progress. This is
4448 	 * inside the inode lock so the error handling that has to drop the bit
4449 	 * again is not run concurrently.
4450 	 */
4451 	spin_lock(&dest->root_item_lock);
4452 	if (dest->send_in_progress) {
4453 		spin_unlock(&dest->root_item_lock);
4454 		btrfs_warn(fs_info,
4455 			   "attempt to delete subvolume %llu during send",
4456 			   dest->root_key.objectid);
4457 		return -EPERM;
4458 	}
4459 	root_flags = btrfs_root_flags(&dest->root_item);
4460 	btrfs_set_root_flags(&dest->root_item,
4461 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4462 	spin_unlock(&dest->root_item_lock);
4463 
4464 	down_write(&fs_info->subvol_sem);
4465 
4466 	err = may_destroy_subvol(dest);
4467 	if (err)
4468 		goto out_up_write;
4469 
4470 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4471 	/*
4472 	 * One for dir inode,
4473 	 * two for dir entries,
4474 	 * two for root ref/backref.
4475 	 */
4476 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4477 	if (err)
4478 		goto out_up_write;
4479 
4480 	trans = btrfs_start_transaction(root, 0);
4481 	if (IS_ERR(trans)) {
4482 		err = PTR_ERR(trans);
4483 		goto out_release;
4484 	}
4485 	trans->block_rsv = &block_rsv;
4486 	trans->bytes_reserved = block_rsv.size;
4487 
4488 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4489 
4490 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4491 				  dentry->d_name.name, dentry->d_name.len);
4492 	if (ret) {
4493 		err = ret;
4494 		btrfs_abort_transaction(trans, ret);
4495 		goto out_end_trans;
4496 	}
4497 
4498 	btrfs_record_root_in_trans(trans, dest);
4499 
4500 	memset(&dest->root_item.drop_progress, 0,
4501 		sizeof(dest->root_item.drop_progress));
4502 	dest->root_item.drop_level = 0;
4503 	btrfs_set_root_refs(&dest->root_item, 0);
4504 
4505 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4506 		ret = btrfs_insert_orphan_item(trans,
4507 					fs_info->tree_root,
4508 					dest->root_key.objectid);
4509 		if (ret) {
4510 			btrfs_abort_transaction(trans, ret);
4511 			err = ret;
4512 			goto out_end_trans;
4513 		}
4514 	}
4515 
4516 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4517 				  BTRFS_UUID_KEY_SUBVOL,
4518 				  dest->root_key.objectid);
4519 	if (ret && ret != -ENOENT) {
4520 		btrfs_abort_transaction(trans, ret);
4521 		err = ret;
4522 		goto out_end_trans;
4523 	}
4524 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4525 		ret = btrfs_uuid_tree_remove(trans,
4526 					  dest->root_item.received_uuid,
4527 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4528 					  dest->root_key.objectid);
4529 		if (ret && ret != -ENOENT) {
4530 			btrfs_abort_transaction(trans, ret);
4531 			err = ret;
4532 			goto out_end_trans;
4533 		}
4534 	}
4535 
4536 out_end_trans:
4537 	trans->block_rsv = NULL;
4538 	trans->bytes_reserved = 0;
4539 	ret = btrfs_end_transaction(trans);
4540 	if (ret && !err)
4541 		err = ret;
4542 	inode->i_flags |= S_DEAD;
4543 out_release:
4544 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4545 out_up_write:
4546 	up_write(&fs_info->subvol_sem);
4547 	if (err) {
4548 		spin_lock(&dest->root_item_lock);
4549 		root_flags = btrfs_root_flags(&dest->root_item);
4550 		btrfs_set_root_flags(&dest->root_item,
4551 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4552 		spin_unlock(&dest->root_item_lock);
4553 	} else {
4554 		d_invalidate(dentry);
4555 		btrfs_prune_dentries(dest);
4556 		ASSERT(dest->send_in_progress == 0);
4557 
4558 		/* the last ref */
4559 		if (dest->ino_cache_inode) {
4560 			iput(dest->ino_cache_inode);
4561 			dest->ino_cache_inode = NULL;
4562 		}
4563 	}
4564 
4565 	return err;
4566 }
4567 
4568 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4569 {
4570 	struct inode *inode = d_inode(dentry);
4571 	int err = 0;
4572 	struct btrfs_root *root = BTRFS_I(dir)->root;
4573 	struct btrfs_trans_handle *trans;
4574 	u64 last_unlink_trans;
4575 
4576 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4577 		return -ENOTEMPTY;
4578 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4579 		return btrfs_delete_subvolume(dir, dentry);
4580 
4581 	trans = __unlink_start_trans(dir);
4582 	if (IS_ERR(trans))
4583 		return PTR_ERR(trans);
4584 
4585 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4586 		err = btrfs_unlink_subvol(trans, dir,
4587 					  BTRFS_I(inode)->location.objectid,
4588 					  dentry->d_name.name,
4589 					  dentry->d_name.len);
4590 		goto out;
4591 	}
4592 
4593 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4594 	if (err)
4595 		goto out;
4596 
4597 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4598 
4599 	/* now the directory is empty */
4600 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4601 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4602 			dentry->d_name.len);
4603 	if (!err) {
4604 		btrfs_i_size_write(BTRFS_I(inode), 0);
4605 		/*
4606 		 * Propagate the last_unlink_trans value of the deleted dir to
4607 		 * its parent directory. This is to prevent an unrecoverable
4608 		 * log tree in the case we do something like this:
4609 		 * 1) create dir foo
4610 		 * 2) create snapshot under dir foo
4611 		 * 3) delete the snapshot
4612 		 * 4) rmdir foo
4613 		 * 5) mkdir foo
4614 		 * 6) fsync foo or some file inside foo
4615 		 */
4616 		if (last_unlink_trans >= trans->transid)
4617 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4618 	}
4619 out:
4620 	btrfs_end_transaction(trans);
4621 	btrfs_btree_balance_dirty(root->fs_info);
4622 
4623 	return err;
4624 }
4625 
4626 /*
4627  * Return this if we need to call truncate_block for the last bit of the
4628  * truncate.
4629  */
4630 #define NEED_TRUNCATE_BLOCK 1
4631 
4632 /*
4633  * this can truncate away extent items, csum items and directory items.
4634  * It starts at a high offset and removes keys until it can't find
4635  * any higher than new_size
4636  *
4637  * csum items that cross the new i_size are truncated to the new size
4638  * as well.
4639  *
4640  * min_type is the minimum key type to truncate down to.  If set to 0, this
4641  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4642  */
4643 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4644 			       struct btrfs_root *root,
4645 			       struct inode *inode,
4646 			       u64 new_size, u32 min_type)
4647 {
4648 	struct btrfs_fs_info *fs_info = root->fs_info;
4649 	struct btrfs_path *path;
4650 	struct extent_buffer *leaf;
4651 	struct btrfs_file_extent_item *fi;
4652 	struct btrfs_key key;
4653 	struct btrfs_key found_key;
4654 	u64 extent_start = 0;
4655 	u64 extent_num_bytes = 0;
4656 	u64 extent_offset = 0;
4657 	u64 item_end = 0;
4658 	u64 last_size = new_size;
4659 	u32 found_type = (u8)-1;
4660 	int found_extent;
4661 	int del_item;
4662 	int pending_del_nr = 0;
4663 	int pending_del_slot = 0;
4664 	int extent_type = -1;
4665 	int ret;
4666 	u64 ino = btrfs_ino(BTRFS_I(inode));
4667 	u64 bytes_deleted = 0;
4668 	bool be_nice = false;
4669 	bool should_throttle = false;
4670 
4671 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4672 
4673 	/*
4674 	 * for non-free space inodes and ref cows, we want to back off from
4675 	 * time to time
4676 	 */
4677 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4678 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4679 		be_nice = true;
4680 
4681 	path = btrfs_alloc_path();
4682 	if (!path)
4683 		return -ENOMEM;
4684 	path->reada = READA_BACK;
4685 
4686 	/*
4687 	 * We want to drop from the next block forward in case this new size is
4688 	 * not block aligned since we will be keeping the last block of the
4689 	 * extent just the way it is.
4690 	 */
4691 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4692 	    root == fs_info->tree_root)
4693 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4694 					fs_info->sectorsize),
4695 					(u64)-1, 0);
4696 
4697 	/*
4698 	 * This function is also used to drop the items in the log tree before
4699 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4700 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4701 	 * items.
4702 	 */
4703 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4704 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4705 
4706 	key.objectid = ino;
4707 	key.offset = (u64)-1;
4708 	key.type = (u8)-1;
4709 
4710 search_again:
4711 	/*
4712 	 * with a 16K leaf size and 128MB extents, you can actually queue
4713 	 * up a huge file in a single leaf.  Most of the time that
4714 	 * bytes_deleted is > 0, it will be huge by the time we get here
4715 	 */
4716 	if (be_nice && bytes_deleted > SZ_32M &&
4717 	    btrfs_should_end_transaction(trans)) {
4718 		ret = -EAGAIN;
4719 		goto out;
4720 	}
4721 
4722 	path->leave_spinning = 1;
4723 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4724 	if (ret < 0)
4725 		goto out;
4726 
4727 	if (ret > 0) {
4728 		ret = 0;
4729 		/* there are no items in the tree for us to truncate, we're
4730 		 * done
4731 		 */
4732 		if (path->slots[0] == 0)
4733 			goto out;
4734 		path->slots[0]--;
4735 	}
4736 
4737 	while (1) {
4738 		fi = NULL;
4739 		leaf = path->nodes[0];
4740 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4741 		found_type = found_key.type;
4742 
4743 		if (found_key.objectid != ino)
4744 			break;
4745 
4746 		if (found_type < min_type)
4747 			break;
4748 
4749 		item_end = found_key.offset;
4750 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4751 			fi = btrfs_item_ptr(leaf, path->slots[0],
4752 					    struct btrfs_file_extent_item);
4753 			extent_type = btrfs_file_extent_type(leaf, fi);
4754 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4755 				item_end +=
4756 				    btrfs_file_extent_num_bytes(leaf, fi);
4757 
4758 				trace_btrfs_truncate_show_fi_regular(
4759 					BTRFS_I(inode), leaf, fi,
4760 					found_key.offset);
4761 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4762 				item_end += btrfs_file_extent_ram_bytes(leaf,
4763 									fi);
4764 
4765 				trace_btrfs_truncate_show_fi_inline(
4766 					BTRFS_I(inode), leaf, fi, path->slots[0],
4767 					found_key.offset);
4768 			}
4769 			item_end--;
4770 		}
4771 		if (found_type > min_type) {
4772 			del_item = 1;
4773 		} else {
4774 			if (item_end < new_size)
4775 				break;
4776 			if (found_key.offset >= new_size)
4777 				del_item = 1;
4778 			else
4779 				del_item = 0;
4780 		}
4781 		found_extent = 0;
4782 		/* FIXME, shrink the extent if the ref count is only 1 */
4783 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4784 			goto delete;
4785 
4786 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4787 			u64 num_dec;
4788 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4789 			if (!del_item) {
4790 				u64 orig_num_bytes =
4791 					btrfs_file_extent_num_bytes(leaf, fi);
4792 				extent_num_bytes = ALIGN(new_size -
4793 						found_key.offset,
4794 						fs_info->sectorsize);
4795 				btrfs_set_file_extent_num_bytes(leaf, fi,
4796 							 extent_num_bytes);
4797 				num_dec = (orig_num_bytes -
4798 					   extent_num_bytes);
4799 				if (test_bit(BTRFS_ROOT_REF_COWS,
4800 					     &root->state) &&
4801 				    extent_start != 0)
4802 					inode_sub_bytes(inode, num_dec);
4803 				btrfs_mark_buffer_dirty(leaf);
4804 			} else {
4805 				extent_num_bytes =
4806 					btrfs_file_extent_disk_num_bytes(leaf,
4807 									 fi);
4808 				extent_offset = found_key.offset -
4809 					btrfs_file_extent_offset(leaf, fi);
4810 
4811 				/* FIXME blocksize != 4096 */
4812 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4813 				if (extent_start != 0) {
4814 					found_extent = 1;
4815 					if (test_bit(BTRFS_ROOT_REF_COWS,
4816 						     &root->state))
4817 						inode_sub_bytes(inode, num_dec);
4818 				}
4819 			}
4820 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4821 			/*
4822 			 * we can't truncate inline items that have had
4823 			 * special encodings
4824 			 */
4825 			if (!del_item &&
4826 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4827 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4828 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4829 				u32 size = (u32)(new_size - found_key.offset);
4830 
4831 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4832 				size = btrfs_file_extent_calc_inline_size(size);
4833 				btrfs_truncate_item(path, size, 1);
4834 			} else if (!del_item) {
4835 				/*
4836 				 * We have to bail so the last_size is set to
4837 				 * just before this extent.
4838 				 */
4839 				ret = NEED_TRUNCATE_BLOCK;
4840 				break;
4841 			}
4842 
4843 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4844 				inode_sub_bytes(inode, item_end + 1 - new_size);
4845 		}
4846 delete:
4847 		if (del_item)
4848 			last_size = found_key.offset;
4849 		else
4850 			last_size = new_size;
4851 		if (del_item) {
4852 			if (!pending_del_nr) {
4853 				/* no pending yet, add ourselves */
4854 				pending_del_slot = path->slots[0];
4855 				pending_del_nr = 1;
4856 			} else if (pending_del_nr &&
4857 				   path->slots[0] + 1 == pending_del_slot) {
4858 				/* hop on the pending chunk */
4859 				pending_del_nr++;
4860 				pending_del_slot = path->slots[0];
4861 			} else {
4862 				BUG();
4863 			}
4864 		} else {
4865 			break;
4866 		}
4867 		should_throttle = false;
4868 
4869 		if (found_extent &&
4870 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4871 		     root == fs_info->tree_root)) {
4872 			struct btrfs_ref ref = { 0 };
4873 
4874 			btrfs_set_path_blocking(path);
4875 			bytes_deleted += extent_num_bytes;
4876 
4877 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4878 					extent_start, extent_num_bytes, 0);
4879 			ref.real_root = root->root_key.objectid;
4880 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4881 					ino, extent_offset);
4882 			ret = btrfs_free_extent(trans, &ref);
4883 			if (ret) {
4884 				btrfs_abort_transaction(trans, ret);
4885 				break;
4886 			}
4887 			if (be_nice) {
4888 				if (btrfs_should_throttle_delayed_refs(trans))
4889 					should_throttle = true;
4890 			}
4891 		}
4892 
4893 		if (found_type == BTRFS_INODE_ITEM_KEY)
4894 			break;
4895 
4896 		if (path->slots[0] == 0 ||
4897 		    path->slots[0] != pending_del_slot ||
4898 		    should_throttle) {
4899 			if (pending_del_nr) {
4900 				ret = btrfs_del_items(trans, root, path,
4901 						pending_del_slot,
4902 						pending_del_nr);
4903 				if (ret) {
4904 					btrfs_abort_transaction(trans, ret);
4905 					break;
4906 				}
4907 				pending_del_nr = 0;
4908 			}
4909 			btrfs_release_path(path);
4910 
4911 			/*
4912 			 * We can generate a lot of delayed refs, so we need to
4913 			 * throttle every once and a while and make sure we're
4914 			 * adding enough space to keep up with the work we are
4915 			 * generating.  Since we hold a transaction here we
4916 			 * can't flush, and we don't want to FLUSH_LIMIT because
4917 			 * we could have generated too many delayed refs to
4918 			 * actually allocate, so just bail if we're short and
4919 			 * let the normal reservation dance happen higher up.
4920 			 */
4921 			if (should_throttle) {
4922 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4923 							BTRFS_RESERVE_NO_FLUSH);
4924 				if (ret) {
4925 					ret = -EAGAIN;
4926 					break;
4927 				}
4928 			}
4929 			goto search_again;
4930 		} else {
4931 			path->slots[0]--;
4932 		}
4933 	}
4934 out:
4935 	if (ret >= 0 && pending_del_nr) {
4936 		int err;
4937 
4938 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4939 				      pending_del_nr);
4940 		if (err) {
4941 			btrfs_abort_transaction(trans, err);
4942 			ret = err;
4943 		}
4944 	}
4945 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4946 		ASSERT(last_size >= new_size);
4947 		if (!ret && last_size > new_size)
4948 			last_size = new_size;
4949 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4950 	}
4951 
4952 	btrfs_free_path(path);
4953 	return ret;
4954 }
4955 
4956 /*
4957  * btrfs_truncate_block - read, zero a chunk and write a block
4958  * @inode - inode that we're zeroing
4959  * @from - the offset to start zeroing
4960  * @len - the length to zero, 0 to zero the entire range respective to the
4961  *	offset
4962  * @front - zero up to the offset instead of from the offset on
4963  *
4964  * This will find the block for the "from" offset and cow the block and zero the
4965  * part we want to zero.  This is used with truncate and hole punching.
4966  */
4967 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4968 			int front)
4969 {
4970 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4971 	struct address_space *mapping = inode->i_mapping;
4972 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4973 	struct btrfs_ordered_extent *ordered;
4974 	struct extent_state *cached_state = NULL;
4975 	struct extent_changeset *data_reserved = NULL;
4976 	char *kaddr;
4977 	u32 blocksize = fs_info->sectorsize;
4978 	pgoff_t index = from >> PAGE_SHIFT;
4979 	unsigned offset = from & (blocksize - 1);
4980 	struct page *page;
4981 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4982 	int ret = 0;
4983 	u64 block_start;
4984 	u64 block_end;
4985 
4986 	if (IS_ALIGNED(offset, blocksize) &&
4987 	    (!len || IS_ALIGNED(len, blocksize)))
4988 		goto out;
4989 
4990 	block_start = round_down(from, blocksize);
4991 	block_end = block_start + blocksize - 1;
4992 
4993 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4994 					   block_start, blocksize);
4995 	if (ret)
4996 		goto out;
4997 
4998 again:
4999 	page = find_or_create_page(mapping, index, mask);
5000 	if (!page) {
5001 		btrfs_delalloc_release_space(inode, data_reserved,
5002 					     block_start, blocksize, true);
5003 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5004 		ret = -ENOMEM;
5005 		goto out;
5006 	}
5007 
5008 	if (!PageUptodate(page)) {
5009 		ret = btrfs_readpage(NULL, page);
5010 		lock_page(page);
5011 		if (page->mapping != mapping) {
5012 			unlock_page(page);
5013 			put_page(page);
5014 			goto again;
5015 		}
5016 		if (!PageUptodate(page)) {
5017 			ret = -EIO;
5018 			goto out_unlock;
5019 		}
5020 	}
5021 	wait_on_page_writeback(page);
5022 
5023 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5024 	set_page_extent_mapped(page);
5025 
5026 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
5027 	if (ordered) {
5028 		unlock_extent_cached(io_tree, block_start, block_end,
5029 				     &cached_state);
5030 		unlock_page(page);
5031 		put_page(page);
5032 		btrfs_start_ordered_extent(inode, ordered, 1);
5033 		btrfs_put_ordered_extent(ordered);
5034 		goto again;
5035 	}
5036 
5037 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5038 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5039 			 0, 0, &cached_state);
5040 
5041 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5042 					&cached_state);
5043 	if (ret) {
5044 		unlock_extent_cached(io_tree, block_start, block_end,
5045 				     &cached_state);
5046 		goto out_unlock;
5047 	}
5048 
5049 	if (offset != blocksize) {
5050 		if (!len)
5051 			len = blocksize - offset;
5052 		kaddr = kmap(page);
5053 		if (front)
5054 			memset(kaddr + (block_start - page_offset(page)),
5055 				0, offset);
5056 		else
5057 			memset(kaddr + (block_start - page_offset(page)) +  offset,
5058 				0, len);
5059 		flush_dcache_page(page);
5060 		kunmap(page);
5061 	}
5062 	ClearPageChecked(page);
5063 	set_page_dirty(page);
5064 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5065 
5066 out_unlock:
5067 	if (ret)
5068 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
5069 					     blocksize, true);
5070 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5071 	unlock_page(page);
5072 	put_page(page);
5073 out:
5074 	extent_changeset_free(data_reserved);
5075 	return ret;
5076 }
5077 
5078 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5079 			     u64 offset, u64 len)
5080 {
5081 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5082 	struct btrfs_trans_handle *trans;
5083 	int ret;
5084 
5085 	/*
5086 	 * Still need to make sure the inode looks like it's been updated so
5087 	 * that any holes get logged if we fsync.
5088 	 */
5089 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5090 		BTRFS_I(inode)->last_trans = fs_info->generation;
5091 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
5092 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5093 		return 0;
5094 	}
5095 
5096 	/*
5097 	 * 1 - for the one we're dropping
5098 	 * 1 - for the one we're adding
5099 	 * 1 - for updating the inode.
5100 	 */
5101 	trans = btrfs_start_transaction(root, 3);
5102 	if (IS_ERR(trans))
5103 		return PTR_ERR(trans);
5104 
5105 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5106 	if (ret) {
5107 		btrfs_abort_transaction(trans, ret);
5108 		btrfs_end_transaction(trans);
5109 		return ret;
5110 	}
5111 
5112 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5113 			offset, 0, 0, len, 0, len, 0, 0, 0);
5114 	if (ret)
5115 		btrfs_abort_transaction(trans, ret);
5116 	else
5117 		btrfs_update_inode(trans, root, inode);
5118 	btrfs_end_transaction(trans);
5119 	return ret;
5120 }
5121 
5122 /*
5123  * This function puts in dummy file extents for the area we're creating a hole
5124  * for.  So if we are truncating this file to a larger size we need to insert
5125  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5126  * the range between oldsize and size
5127  */
5128 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5129 {
5130 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5131 	struct btrfs_root *root = BTRFS_I(inode)->root;
5132 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5133 	struct extent_map *em = NULL;
5134 	struct extent_state *cached_state = NULL;
5135 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5136 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5137 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5138 	u64 last_byte;
5139 	u64 cur_offset;
5140 	u64 hole_size;
5141 	int err = 0;
5142 
5143 	/*
5144 	 * If our size started in the middle of a block we need to zero out the
5145 	 * rest of the block before we expand the i_size, otherwise we could
5146 	 * expose stale data.
5147 	 */
5148 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5149 	if (err)
5150 		return err;
5151 
5152 	if (size <= hole_start)
5153 		return 0;
5154 
5155 	btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5156 					   block_end - 1, &cached_state);
5157 	cur_offset = hole_start;
5158 	while (1) {
5159 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5160 				block_end - cur_offset, 0);
5161 		if (IS_ERR(em)) {
5162 			err = PTR_ERR(em);
5163 			em = NULL;
5164 			break;
5165 		}
5166 		last_byte = min(extent_map_end(em), block_end);
5167 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5168 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5169 			struct extent_map *hole_em;
5170 			hole_size = last_byte - cur_offset;
5171 
5172 			err = maybe_insert_hole(root, inode, cur_offset,
5173 						hole_size);
5174 			if (err)
5175 				break;
5176 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5177 						cur_offset + hole_size - 1, 0);
5178 			hole_em = alloc_extent_map();
5179 			if (!hole_em) {
5180 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5181 					&BTRFS_I(inode)->runtime_flags);
5182 				goto next;
5183 			}
5184 			hole_em->start = cur_offset;
5185 			hole_em->len = hole_size;
5186 			hole_em->orig_start = cur_offset;
5187 
5188 			hole_em->block_start = EXTENT_MAP_HOLE;
5189 			hole_em->block_len = 0;
5190 			hole_em->orig_block_len = 0;
5191 			hole_em->ram_bytes = hole_size;
5192 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5193 			hole_em->generation = fs_info->generation;
5194 
5195 			while (1) {
5196 				write_lock(&em_tree->lock);
5197 				err = add_extent_mapping(em_tree, hole_em, 1);
5198 				write_unlock(&em_tree->lock);
5199 				if (err != -EEXIST)
5200 					break;
5201 				btrfs_drop_extent_cache(BTRFS_I(inode),
5202 							cur_offset,
5203 							cur_offset +
5204 							hole_size - 1, 0);
5205 			}
5206 			free_extent_map(hole_em);
5207 		}
5208 next:
5209 		free_extent_map(em);
5210 		em = NULL;
5211 		cur_offset = last_byte;
5212 		if (cur_offset >= block_end)
5213 			break;
5214 	}
5215 	free_extent_map(em);
5216 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5217 	return err;
5218 }
5219 
5220 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5221 {
5222 	struct btrfs_root *root = BTRFS_I(inode)->root;
5223 	struct btrfs_trans_handle *trans;
5224 	loff_t oldsize = i_size_read(inode);
5225 	loff_t newsize = attr->ia_size;
5226 	int mask = attr->ia_valid;
5227 	int ret;
5228 
5229 	/*
5230 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5231 	 * special case where we need to update the times despite not having
5232 	 * these flags set.  For all other operations the VFS set these flags
5233 	 * explicitly if it wants a timestamp update.
5234 	 */
5235 	if (newsize != oldsize) {
5236 		inode_inc_iversion(inode);
5237 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5238 			inode->i_ctime = inode->i_mtime =
5239 				current_time(inode);
5240 	}
5241 
5242 	if (newsize > oldsize) {
5243 		/*
5244 		 * Don't do an expanding truncate while snapshotting is ongoing.
5245 		 * This is to ensure the snapshot captures a fully consistent
5246 		 * state of this file - if the snapshot captures this expanding
5247 		 * truncation, it must capture all writes that happened before
5248 		 * this truncation.
5249 		 */
5250 		btrfs_wait_for_snapshot_creation(root);
5251 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5252 		if (ret) {
5253 			btrfs_end_write_no_snapshotting(root);
5254 			return ret;
5255 		}
5256 
5257 		trans = btrfs_start_transaction(root, 1);
5258 		if (IS_ERR(trans)) {
5259 			btrfs_end_write_no_snapshotting(root);
5260 			return PTR_ERR(trans);
5261 		}
5262 
5263 		i_size_write(inode, newsize);
5264 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5265 		pagecache_isize_extended(inode, oldsize, newsize);
5266 		ret = btrfs_update_inode(trans, root, inode);
5267 		btrfs_end_write_no_snapshotting(root);
5268 		btrfs_end_transaction(trans);
5269 	} else {
5270 
5271 		/*
5272 		 * We're truncating a file that used to have good data down to
5273 		 * zero. Make sure it gets into the ordered flush list so that
5274 		 * any new writes get down to disk quickly.
5275 		 */
5276 		if (newsize == 0)
5277 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5278 				&BTRFS_I(inode)->runtime_flags);
5279 
5280 		truncate_setsize(inode, newsize);
5281 
5282 		/* Disable nonlocked read DIO to avoid the endless truncate */
5283 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5284 		inode_dio_wait(inode);
5285 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5286 
5287 		ret = btrfs_truncate(inode, newsize == oldsize);
5288 		if (ret && inode->i_nlink) {
5289 			int err;
5290 
5291 			/*
5292 			 * Truncate failed, so fix up the in-memory size. We
5293 			 * adjusted disk_i_size down as we removed extents, so
5294 			 * wait for disk_i_size to be stable and then update the
5295 			 * in-memory size to match.
5296 			 */
5297 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5298 			if (err)
5299 				return err;
5300 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5301 		}
5302 	}
5303 
5304 	return ret;
5305 }
5306 
5307 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5308 {
5309 	struct inode *inode = d_inode(dentry);
5310 	struct btrfs_root *root = BTRFS_I(inode)->root;
5311 	int err;
5312 
5313 	if (btrfs_root_readonly(root))
5314 		return -EROFS;
5315 
5316 	err = setattr_prepare(dentry, attr);
5317 	if (err)
5318 		return err;
5319 
5320 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5321 		err = btrfs_setsize(inode, attr);
5322 		if (err)
5323 			return err;
5324 	}
5325 
5326 	if (attr->ia_valid) {
5327 		setattr_copy(inode, attr);
5328 		inode_inc_iversion(inode);
5329 		err = btrfs_dirty_inode(inode);
5330 
5331 		if (!err && attr->ia_valid & ATTR_MODE)
5332 			err = posix_acl_chmod(inode, inode->i_mode);
5333 	}
5334 
5335 	return err;
5336 }
5337 
5338 /*
5339  * While truncating the inode pages during eviction, we get the VFS calling
5340  * btrfs_invalidatepage() against each page of the inode. This is slow because
5341  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5342  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5343  * extent_state structures over and over, wasting lots of time.
5344  *
5345  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5346  * those expensive operations on a per page basis and do only the ordered io
5347  * finishing, while we release here the extent_map and extent_state structures,
5348  * without the excessive merging and splitting.
5349  */
5350 static void evict_inode_truncate_pages(struct inode *inode)
5351 {
5352 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5353 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5354 	struct rb_node *node;
5355 
5356 	ASSERT(inode->i_state & I_FREEING);
5357 	truncate_inode_pages_final(&inode->i_data);
5358 
5359 	write_lock(&map_tree->lock);
5360 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5361 		struct extent_map *em;
5362 
5363 		node = rb_first_cached(&map_tree->map);
5364 		em = rb_entry(node, struct extent_map, rb_node);
5365 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5366 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5367 		remove_extent_mapping(map_tree, em);
5368 		free_extent_map(em);
5369 		if (need_resched()) {
5370 			write_unlock(&map_tree->lock);
5371 			cond_resched();
5372 			write_lock(&map_tree->lock);
5373 		}
5374 	}
5375 	write_unlock(&map_tree->lock);
5376 
5377 	/*
5378 	 * Keep looping until we have no more ranges in the io tree.
5379 	 * We can have ongoing bios started by readpages (called from readahead)
5380 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5381 	 * still in progress (unlocked the pages in the bio but did not yet
5382 	 * unlocked the ranges in the io tree). Therefore this means some
5383 	 * ranges can still be locked and eviction started because before
5384 	 * submitting those bios, which are executed by a separate task (work
5385 	 * queue kthread), inode references (inode->i_count) were not taken
5386 	 * (which would be dropped in the end io callback of each bio).
5387 	 * Therefore here we effectively end up waiting for those bios and
5388 	 * anyone else holding locked ranges without having bumped the inode's
5389 	 * reference count - if we don't do it, when they access the inode's
5390 	 * io_tree to unlock a range it may be too late, leading to an
5391 	 * use-after-free issue.
5392 	 */
5393 	spin_lock(&io_tree->lock);
5394 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5395 		struct extent_state *state;
5396 		struct extent_state *cached_state = NULL;
5397 		u64 start;
5398 		u64 end;
5399 		unsigned state_flags;
5400 
5401 		node = rb_first(&io_tree->state);
5402 		state = rb_entry(node, struct extent_state, rb_node);
5403 		start = state->start;
5404 		end = state->end;
5405 		state_flags = state->state;
5406 		spin_unlock(&io_tree->lock);
5407 
5408 		lock_extent_bits(io_tree, start, end, &cached_state);
5409 
5410 		/*
5411 		 * If still has DELALLOC flag, the extent didn't reach disk,
5412 		 * and its reserved space won't be freed by delayed_ref.
5413 		 * So we need to free its reserved space here.
5414 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5415 		 *
5416 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5417 		 */
5418 		if (state_flags & EXTENT_DELALLOC)
5419 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5420 
5421 		clear_extent_bit(io_tree, start, end,
5422 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5423 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5424 				 &cached_state);
5425 
5426 		cond_resched();
5427 		spin_lock(&io_tree->lock);
5428 	}
5429 	spin_unlock(&io_tree->lock);
5430 }
5431 
5432 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5433 							struct btrfs_block_rsv *rsv)
5434 {
5435 	struct btrfs_fs_info *fs_info = root->fs_info;
5436 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5437 	struct btrfs_trans_handle *trans;
5438 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5439 	int ret;
5440 
5441 	/*
5442 	 * Eviction should be taking place at some place safe because of our
5443 	 * delayed iputs.  However the normal flushing code will run delayed
5444 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5445 	 *
5446 	 * We reserve the delayed_refs_extra here again because we can't use
5447 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5448 	 * above.  We reserve our extra bit here because we generate a ton of
5449 	 * delayed refs activity by truncating.
5450 	 *
5451 	 * If we cannot make our reservation we'll attempt to steal from the
5452 	 * global reserve, because we really want to be able to free up space.
5453 	 */
5454 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5455 				     BTRFS_RESERVE_FLUSH_EVICT);
5456 	if (ret) {
5457 		/*
5458 		 * Try to steal from the global reserve if there is space for
5459 		 * it.
5460 		 */
5461 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5462 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5463 			btrfs_warn(fs_info,
5464 				   "could not allocate space for delete; will truncate on mount");
5465 			return ERR_PTR(-ENOSPC);
5466 		}
5467 		delayed_refs_extra = 0;
5468 	}
5469 
5470 	trans = btrfs_join_transaction(root);
5471 	if (IS_ERR(trans))
5472 		return trans;
5473 
5474 	if (delayed_refs_extra) {
5475 		trans->block_rsv = &fs_info->trans_block_rsv;
5476 		trans->bytes_reserved = delayed_refs_extra;
5477 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5478 					delayed_refs_extra, 1);
5479 	}
5480 	return trans;
5481 }
5482 
5483 void btrfs_evict_inode(struct inode *inode)
5484 {
5485 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5486 	struct btrfs_trans_handle *trans;
5487 	struct btrfs_root *root = BTRFS_I(inode)->root;
5488 	struct btrfs_block_rsv *rsv;
5489 	int ret;
5490 
5491 	trace_btrfs_inode_evict(inode);
5492 
5493 	if (!root) {
5494 		clear_inode(inode);
5495 		return;
5496 	}
5497 
5498 	evict_inode_truncate_pages(inode);
5499 
5500 	if (inode->i_nlink &&
5501 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5502 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5503 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5504 		goto no_delete;
5505 
5506 	if (is_bad_inode(inode))
5507 		goto no_delete;
5508 
5509 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5510 
5511 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5512 		goto no_delete;
5513 
5514 	if (inode->i_nlink > 0) {
5515 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5516 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5517 		goto no_delete;
5518 	}
5519 
5520 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5521 	if (ret)
5522 		goto no_delete;
5523 
5524 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5525 	if (!rsv)
5526 		goto no_delete;
5527 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5528 	rsv->failfast = 1;
5529 
5530 	btrfs_i_size_write(BTRFS_I(inode), 0);
5531 
5532 	while (1) {
5533 		trans = evict_refill_and_join(root, rsv);
5534 		if (IS_ERR(trans))
5535 			goto free_rsv;
5536 
5537 		trans->block_rsv = rsv;
5538 
5539 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5540 		trans->block_rsv = &fs_info->trans_block_rsv;
5541 		btrfs_end_transaction(trans);
5542 		btrfs_btree_balance_dirty(fs_info);
5543 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5544 			goto free_rsv;
5545 		else if (!ret)
5546 			break;
5547 	}
5548 
5549 	/*
5550 	 * Errors here aren't a big deal, it just means we leave orphan items in
5551 	 * the tree. They will be cleaned up on the next mount. If the inode
5552 	 * number gets reused, cleanup deletes the orphan item without doing
5553 	 * anything, and unlink reuses the existing orphan item.
5554 	 *
5555 	 * If it turns out that we are dropping too many of these, we might want
5556 	 * to add a mechanism for retrying these after a commit.
5557 	 */
5558 	trans = evict_refill_and_join(root, rsv);
5559 	if (!IS_ERR(trans)) {
5560 		trans->block_rsv = rsv;
5561 		btrfs_orphan_del(trans, BTRFS_I(inode));
5562 		trans->block_rsv = &fs_info->trans_block_rsv;
5563 		btrfs_end_transaction(trans);
5564 	}
5565 
5566 	if (!(root == fs_info->tree_root ||
5567 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5568 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5569 
5570 free_rsv:
5571 	btrfs_free_block_rsv(fs_info, rsv);
5572 no_delete:
5573 	/*
5574 	 * If we didn't successfully delete, the orphan item will still be in
5575 	 * the tree and we'll retry on the next mount. Again, we might also want
5576 	 * to retry these periodically in the future.
5577 	 */
5578 	btrfs_remove_delayed_node(BTRFS_I(inode));
5579 	clear_inode(inode);
5580 }
5581 
5582 /*
5583  * Return the key found in the dir entry in the location pointer, fill @type
5584  * with BTRFS_FT_*, and return 0.
5585  *
5586  * If no dir entries were found, returns -ENOENT.
5587  * If found a corrupted location in dir entry, returns -EUCLEAN.
5588  */
5589 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5590 			       struct btrfs_key *location, u8 *type)
5591 {
5592 	const char *name = dentry->d_name.name;
5593 	int namelen = dentry->d_name.len;
5594 	struct btrfs_dir_item *di;
5595 	struct btrfs_path *path;
5596 	struct btrfs_root *root = BTRFS_I(dir)->root;
5597 	int ret = 0;
5598 
5599 	path = btrfs_alloc_path();
5600 	if (!path)
5601 		return -ENOMEM;
5602 
5603 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5604 			name, namelen, 0);
5605 	if (IS_ERR_OR_NULL(di)) {
5606 		ret = di ? PTR_ERR(di) : -ENOENT;
5607 		goto out;
5608 	}
5609 
5610 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5611 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5612 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5613 		ret = -EUCLEAN;
5614 		btrfs_warn(root->fs_info,
5615 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5616 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5617 			   location->objectid, location->type, location->offset);
5618 	}
5619 	if (!ret)
5620 		*type = btrfs_dir_type(path->nodes[0], di);
5621 out:
5622 	btrfs_free_path(path);
5623 	return ret;
5624 }
5625 
5626 /*
5627  * when we hit a tree root in a directory, the btrfs part of the inode
5628  * needs to be changed to reflect the root directory of the tree root.  This
5629  * is kind of like crossing a mount point.
5630  */
5631 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5632 				    struct inode *dir,
5633 				    struct dentry *dentry,
5634 				    struct btrfs_key *location,
5635 				    struct btrfs_root **sub_root)
5636 {
5637 	struct btrfs_path *path;
5638 	struct btrfs_root *new_root;
5639 	struct btrfs_root_ref *ref;
5640 	struct extent_buffer *leaf;
5641 	struct btrfs_key key;
5642 	int ret;
5643 	int err = 0;
5644 
5645 	path = btrfs_alloc_path();
5646 	if (!path) {
5647 		err = -ENOMEM;
5648 		goto out;
5649 	}
5650 
5651 	err = -ENOENT;
5652 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5653 	key.type = BTRFS_ROOT_REF_KEY;
5654 	key.offset = location->objectid;
5655 
5656 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5657 	if (ret) {
5658 		if (ret < 0)
5659 			err = ret;
5660 		goto out;
5661 	}
5662 
5663 	leaf = path->nodes[0];
5664 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5665 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5666 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5667 		goto out;
5668 
5669 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5670 				   (unsigned long)(ref + 1),
5671 				   dentry->d_name.len);
5672 	if (ret)
5673 		goto out;
5674 
5675 	btrfs_release_path(path);
5676 
5677 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5678 	if (IS_ERR(new_root)) {
5679 		err = PTR_ERR(new_root);
5680 		goto out;
5681 	}
5682 
5683 	*sub_root = new_root;
5684 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5685 	location->type = BTRFS_INODE_ITEM_KEY;
5686 	location->offset = 0;
5687 	err = 0;
5688 out:
5689 	btrfs_free_path(path);
5690 	return err;
5691 }
5692 
5693 static void inode_tree_add(struct inode *inode)
5694 {
5695 	struct btrfs_root *root = BTRFS_I(inode)->root;
5696 	struct btrfs_inode *entry;
5697 	struct rb_node **p;
5698 	struct rb_node *parent;
5699 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5700 	u64 ino = btrfs_ino(BTRFS_I(inode));
5701 
5702 	if (inode_unhashed(inode))
5703 		return;
5704 	parent = NULL;
5705 	spin_lock(&root->inode_lock);
5706 	p = &root->inode_tree.rb_node;
5707 	while (*p) {
5708 		parent = *p;
5709 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5710 
5711 		if (ino < btrfs_ino(entry))
5712 			p = &parent->rb_left;
5713 		else if (ino > btrfs_ino(entry))
5714 			p = &parent->rb_right;
5715 		else {
5716 			WARN_ON(!(entry->vfs_inode.i_state &
5717 				  (I_WILL_FREE | I_FREEING)));
5718 			rb_replace_node(parent, new, &root->inode_tree);
5719 			RB_CLEAR_NODE(parent);
5720 			spin_unlock(&root->inode_lock);
5721 			return;
5722 		}
5723 	}
5724 	rb_link_node(new, parent, p);
5725 	rb_insert_color(new, &root->inode_tree);
5726 	spin_unlock(&root->inode_lock);
5727 }
5728 
5729 static void inode_tree_del(struct inode *inode)
5730 {
5731 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5732 	struct btrfs_root *root = BTRFS_I(inode)->root;
5733 	int empty = 0;
5734 
5735 	spin_lock(&root->inode_lock);
5736 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5737 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5738 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5739 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5740 	}
5741 	spin_unlock(&root->inode_lock);
5742 
5743 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5744 		synchronize_srcu(&fs_info->subvol_srcu);
5745 		spin_lock(&root->inode_lock);
5746 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5747 		spin_unlock(&root->inode_lock);
5748 		if (empty)
5749 			btrfs_add_dead_root(root);
5750 	}
5751 }
5752 
5753 
5754 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5755 {
5756 	struct btrfs_iget_args *args = p;
5757 	inode->i_ino = args->location->objectid;
5758 	memcpy(&BTRFS_I(inode)->location, args->location,
5759 	       sizeof(*args->location));
5760 	BTRFS_I(inode)->root = args->root;
5761 	return 0;
5762 }
5763 
5764 static int btrfs_find_actor(struct inode *inode, void *opaque)
5765 {
5766 	struct btrfs_iget_args *args = opaque;
5767 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5768 		args->root == BTRFS_I(inode)->root;
5769 }
5770 
5771 static struct inode *btrfs_iget_locked(struct super_block *s,
5772 				       struct btrfs_key *location,
5773 				       struct btrfs_root *root)
5774 {
5775 	struct inode *inode;
5776 	struct btrfs_iget_args args;
5777 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5778 
5779 	args.location = location;
5780 	args.root = root;
5781 
5782 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5783 			     btrfs_init_locked_inode,
5784 			     (void *)&args);
5785 	return inode;
5786 }
5787 
5788 /*
5789  * Get an inode object given its location and corresponding root.
5790  * Path can be preallocated to prevent recursing back to iget through
5791  * allocator. NULL is also valid but may require an additional allocation
5792  * later.
5793  */
5794 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5795 			      struct btrfs_root *root, struct btrfs_path *path)
5796 {
5797 	struct inode *inode;
5798 
5799 	inode = btrfs_iget_locked(s, location, root);
5800 	if (!inode)
5801 		return ERR_PTR(-ENOMEM);
5802 
5803 	if (inode->i_state & I_NEW) {
5804 		int ret;
5805 
5806 		ret = btrfs_read_locked_inode(inode, path);
5807 		if (!ret) {
5808 			inode_tree_add(inode);
5809 			unlock_new_inode(inode);
5810 		} else {
5811 			iget_failed(inode);
5812 			/*
5813 			 * ret > 0 can come from btrfs_search_slot called by
5814 			 * btrfs_read_locked_inode, this means the inode item
5815 			 * was not found.
5816 			 */
5817 			if (ret > 0)
5818 				ret = -ENOENT;
5819 			inode = ERR_PTR(ret);
5820 		}
5821 	}
5822 
5823 	return inode;
5824 }
5825 
5826 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5827 			 struct btrfs_root *root)
5828 {
5829 	return btrfs_iget_path(s, location, root, NULL);
5830 }
5831 
5832 static struct inode *new_simple_dir(struct super_block *s,
5833 				    struct btrfs_key *key,
5834 				    struct btrfs_root *root)
5835 {
5836 	struct inode *inode = new_inode(s);
5837 
5838 	if (!inode)
5839 		return ERR_PTR(-ENOMEM);
5840 
5841 	BTRFS_I(inode)->root = root;
5842 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5843 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5844 
5845 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5846 	inode->i_op = &btrfs_dir_ro_inode_operations;
5847 	inode->i_opflags &= ~IOP_XATTR;
5848 	inode->i_fop = &simple_dir_operations;
5849 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5850 	inode->i_mtime = current_time(inode);
5851 	inode->i_atime = inode->i_mtime;
5852 	inode->i_ctime = inode->i_mtime;
5853 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5854 
5855 	return inode;
5856 }
5857 
5858 static inline u8 btrfs_inode_type(struct inode *inode)
5859 {
5860 	/*
5861 	 * Compile-time asserts that generic FT_* types still match
5862 	 * BTRFS_FT_* types
5863 	 */
5864 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5865 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5866 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5867 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5868 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5869 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5870 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5871 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5872 
5873 	return fs_umode_to_ftype(inode->i_mode);
5874 }
5875 
5876 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5877 {
5878 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5879 	struct inode *inode;
5880 	struct btrfs_root *root = BTRFS_I(dir)->root;
5881 	struct btrfs_root *sub_root = root;
5882 	struct btrfs_key location;
5883 	u8 di_type = 0;
5884 	int index;
5885 	int ret = 0;
5886 
5887 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5888 		return ERR_PTR(-ENAMETOOLONG);
5889 
5890 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5891 	if (ret < 0)
5892 		return ERR_PTR(ret);
5893 
5894 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5895 		inode = btrfs_iget(dir->i_sb, &location, root);
5896 		if (IS_ERR(inode))
5897 			return inode;
5898 
5899 		/* Do extra check against inode mode with di_type */
5900 		if (btrfs_inode_type(inode) != di_type) {
5901 			btrfs_crit(fs_info,
5902 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5903 				  inode->i_mode, btrfs_inode_type(inode),
5904 				  di_type);
5905 			iput(inode);
5906 			return ERR_PTR(-EUCLEAN);
5907 		}
5908 		return inode;
5909 	}
5910 
5911 	index = srcu_read_lock(&fs_info->subvol_srcu);
5912 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5913 				       &location, &sub_root);
5914 	if (ret < 0) {
5915 		if (ret != -ENOENT)
5916 			inode = ERR_PTR(ret);
5917 		else
5918 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5919 	} else {
5920 		inode = btrfs_iget(dir->i_sb, &location, sub_root);
5921 	}
5922 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5923 
5924 	if (!IS_ERR(inode) && root != sub_root) {
5925 		down_read(&fs_info->cleanup_work_sem);
5926 		if (!sb_rdonly(inode->i_sb))
5927 			ret = btrfs_orphan_cleanup(sub_root);
5928 		up_read(&fs_info->cleanup_work_sem);
5929 		if (ret) {
5930 			iput(inode);
5931 			inode = ERR_PTR(ret);
5932 		}
5933 	}
5934 
5935 	return inode;
5936 }
5937 
5938 static int btrfs_dentry_delete(const struct dentry *dentry)
5939 {
5940 	struct btrfs_root *root;
5941 	struct inode *inode = d_inode(dentry);
5942 
5943 	if (!inode && !IS_ROOT(dentry))
5944 		inode = d_inode(dentry->d_parent);
5945 
5946 	if (inode) {
5947 		root = BTRFS_I(inode)->root;
5948 		if (btrfs_root_refs(&root->root_item) == 0)
5949 			return 1;
5950 
5951 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5952 			return 1;
5953 	}
5954 	return 0;
5955 }
5956 
5957 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5958 				   unsigned int flags)
5959 {
5960 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5961 
5962 	if (inode == ERR_PTR(-ENOENT))
5963 		inode = NULL;
5964 	return d_splice_alias(inode, dentry);
5965 }
5966 
5967 /*
5968  * All this infrastructure exists because dir_emit can fault, and we are holding
5969  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5970  * our information into that, and then dir_emit from the buffer.  This is
5971  * similar to what NFS does, only we don't keep the buffer around in pagecache
5972  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5973  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5974  * tree lock.
5975  */
5976 static int btrfs_opendir(struct inode *inode, struct file *file)
5977 {
5978 	struct btrfs_file_private *private;
5979 
5980 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5981 	if (!private)
5982 		return -ENOMEM;
5983 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5984 	if (!private->filldir_buf) {
5985 		kfree(private);
5986 		return -ENOMEM;
5987 	}
5988 	file->private_data = private;
5989 	return 0;
5990 }
5991 
5992 struct dir_entry {
5993 	u64 ino;
5994 	u64 offset;
5995 	unsigned type;
5996 	int name_len;
5997 };
5998 
5999 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6000 {
6001 	while (entries--) {
6002 		struct dir_entry *entry = addr;
6003 		char *name = (char *)(entry + 1);
6004 
6005 		ctx->pos = get_unaligned(&entry->offset);
6006 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6007 					 get_unaligned(&entry->ino),
6008 					 get_unaligned(&entry->type)))
6009 			return 1;
6010 		addr += sizeof(struct dir_entry) +
6011 			get_unaligned(&entry->name_len);
6012 		ctx->pos++;
6013 	}
6014 	return 0;
6015 }
6016 
6017 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6018 {
6019 	struct inode *inode = file_inode(file);
6020 	struct btrfs_root *root = BTRFS_I(inode)->root;
6021 	struct btrfs_file_private *private = file->private_data;
6022 	struct btrfs_dir_item *di;
6023 	struct btrfs_key key;
6024 	struct btrfs_key found_key;
6025 	struct btrfs_path *path;
6026 	void *addr;
6027 	struct list_head ins_list;
6028 	struct list_head del_list;
6029 	int ret;
6030 	struct extent_buffer *leaf;
6031 	int slot;
6032 	char *name_ptr;
6033 	int name_len;
6034 	int entries = 0;
6035 	int total_len = 0;
6036 	bool put = false;
6037 	struct btrfs_key location;
6038 
6039 	if (!dir_emit_dots(file, ctx))
6040 		return 0;
6041 
6042 	path = btrfs_alloc_path();
6043 	if (!path)
6044 		return -ENOMEM;
6045 
6046 	addr = private->filldir_buf;
6047 	path->reada = READA_FORWARD;
6048 
6049 	INIT_LIST_HEAD(&ins_list);
6050 	INIT_LIST_HEAD(&del_list);
6051 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6052 
6053 again:
6054 	key.type = BTRFS_DIR_INDEX_KEY;
6055 	key.offset = ctx->pos;
6056 	key.objectid = btrfs_ino(BTRFS_I(inode));
6057 
6058 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6059 	if (ret < 0)
6060 		goto err;
6061 
6062 	while (1) {
6063 		struct dir_entry *entry;
6064 
6065 		leaf = path->nodes[0];
6066 		slot = path->slots[0];
6067 		if (slot >= btrfs_header_nritems(leaf)) {
6068 			ret = btrfs_next_leaf(root, path);
6069 			if (ret < 0)
6070 				goto err;
6071 			else if (ret > 0)
6072 				break;
6073 			continue;
6074 		}
6075 
6076 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6077 
6078 		if (found_key.objectid != key.objectid)
6079 			break;
6080 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6081 			break;
6082 		if (found_key.offset < ctx->pos)
6083 			goto next;
6084 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6085 			goto next;
6086 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6087 		name_len = btrfs_dir_name_len(leaf, di);
6088 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6089 		    PAGE_SIZE) {
6090 			btrfs_release_path(path);
6091 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6092 			if (ret)
6093 				goto nopos;
6094 			addr = private->filldir_buf;
6095 			entries = 0;
6096 			total_len = 0;
6097 			goto again;
6098 		}
6099 
6100 		entry = addr;
6101 		put_unaligned(name_len, &entry->name_len);
6102 		name_ptr = (char *)(entry + 1);
6103 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6104 				   name_len);
6105 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6106 				&entry->type);
6107 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6108 		put_unaligned(location.objectid, &entry->ino);
6109 		put_unaligned(found_key.offset, &entry->offset);
6110 		entries++;
6111 		addr += sizeof(struct dir_entry) + name_len;
6112 		total_len += sizeof(struct dir_entry) + name_len;
6113 next:
6114 		path->slots[0]++;
6115 	}
6116 	btrfs_release_path(path);
6117 
6118 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6119 	if (ret)
6120 		goto nopos;
6121 
6122 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6123 	if (ret)
6124 		goto nopos;
6125 
6126 	/*
6127 	 * Stop new entries from being returned after we return the last
6128 	 * entry.
6129 	 *
6130 	 * New directory entries are assigned a strictly increasing
6131 	 * offset.  This means that new entries created during readdir
6132 	 * are *guaranteed* to be seen in the future by that readdir.
6133 	 * This has broken buggy programs which operate on names as
6134 	 * they're returned by readdir.  Until we re-use freed offsets
6135 	 * we have this hack to stop new entries from being returned
6136 	 * under the assumption that they'll never reach this huge
6137 	 * offset.
6138 	 *
6139 	 * This is being careful not to overflow 32bit loff_t unless the
6140 	 * last entry requires it because doing so has broken 32bit apps
6141 	 * in the past.
6142 	 */
6143 	if (ctx->pos >= INT_MAX)
6144 		ctx->pos = LLONG_MAX;
6145 	else
6146 		ctx->pos = INT_MAX;
6147 nopos:
6148 	ret = 0;
6149 err:
6150 	if (put)
6151 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6152 	btrfs_free_path(path);
6153 	return ret;
6154 }
6155 
6156 /*
6157  * This is somewhat expensive, updating the tree every time the
6158  * inode changes.  But, it is most likely to find the inode in cache.
6159  * FIXME, needs more benchmarking...there are no reasons other than performance
6160  * to keep or drop this code.
6161  */
6162 static int btrfs_dirty_inode(struct inode *inode)
6163 {
6164 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6165 	struct btrfs_root *root = BTRFS_I(inode)->root;
6166 	struct btrfs_trans_handle *trans;
6167 	int ret;
6168 
6169 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6170 		return 0;
6171 
6172 	trans = btrfs_join_transaction(root);
6173 	if (IS_ERR(trans))
6174 		return PTR_ERR(trans);
6175 
6176 	ret = btrfs_update_inode(trans, root, inode);
6177 	if (ret && ret == -ENOSPC) {
6178 		/* whoops, lets try again with the full transaction */
6179 		btrfs_end_transaction(trans);
6180 		trans = btrfs_start_transaction(root, 1);
6181 		if (IS_ERR(trans))
6182 			return PTR_ERR(trans);
6183 
6184 		ret = btrfs_update_inode(trans, root, inode);
6185 	}
6186 	btrfs_end_transaction(trans);
6187 	if (BTRFS_I(inode)->delayed_node)
6188 		btrfs_balance_delayed_items(fs_info);
6189 
6190 	return ret;
6191 }
6192 
6193 /*
6194  * This is a copy of file_update_time.  We need this so we can return error on
6195  * ENOSPC for updating the inode in the case of file write and mmap writes.
6196  */
6197 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6198 			     int flags)
6199 {
6200 	struct btrfs_root *root = BTRFS_I(inode)->root;
6201 	bool dirty = flags & ~S_VERSION;
6202 
6203 	if (btrfs_root_readonly(root))
6204 		return -EROFS;
6205 
6206 	if (flags & S_VERSION)
6207 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6208 	if (flags & S_CTIME)
6209 		inode->i_ctime = *now;
6210 	if (flags & S_MTIME)
6211 		inode->i_mtime = *now;
6212 	if (flags & S_ATIME)
6213 		inode->i_atime = *now;
6214 	return dirty ? btrfs_dirty_inode(inode) : 0;
6215 }
6216 
6217 /*
6218  * find the highest existing sequence number in a directory
6219  * and then set the in-memory index_cnt variable to reflect
6220  * free sequence numbers
6221  */
6222 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6223 {
6224 	struct btrfs_root *root = inode->root;
6225 	struct btrfs_key key, found_key;
6226 	struct btrfs_path *path;
6227 	struct extent_buffer *leaf;
6228 	int ret;
6229 
6230 	key.objectid = btrfs_ino(inode);
6231 	key.type = BTRFS_DIR_INDEX_KEY;
6232 	key.offset = (u64)-1;
6233 
6234 	path = btrfs_alloc_path();
6235 	if (!path)
6236 		return -ENOMEM;
6237 
6238 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6239 	if (ret < 0)
6240 		goto out;
6241 	/* FIXME: we should be able to handle this */
6242 	if (ret == 0)
6243 		goto out;
6244 	ret = 0;
6245 
6246 	/*
6247 	 * MAGIC NUMBER EXPLANATION:
6248 	 * since we search a directory based on f_pos we have to start at 2
6249 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6250 	 * else has to start at 2
6251 	 */
6252 	if (path->slots[0] == 0) {
6253 		inode->index_cnt = 2;
6254 		goto out;
6255 	}
6256 
6257 	path->slots[0]--;
6258 
6259 	leaf = path->nodes[0];
6260 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6261 
6262 	if (found_key.objectid != btrfs_ino(inode) ||
6263 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6264 		inode->index_cnt = 2;
6265 		goto out;
6266 	}
6267 
6268 	inode->index_cnt = found_key.offset + 1;
6269 out:
6270 	btrfs_free_path(path);
6271 	return ret;
6272 }
6273 
6274 /*
6275  * helper to find a free sequence number in a given directory.  This current
6276  * code is very simple, later versions will do smarter things in the btree
6277  */
6278 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6279 {
6280 	int ret = 0;
6281 
6282 	if (dir->index_cnt == (u64)-1) {
6283 		ret = btrfs_inode_delayed_dir_index_count(dir);
6284 		if (ret) {
6285 			ret = btrfs_set_inode_index_count(dir);
6286 			if (ret)
6287 				return ret;
6288 		}
6289 	}
6290 
6291 	*index = dir->index_cnt;
6292 	dir->index_cnt++;
6293 
6294 	return ret;
6295 }
6296 
6297 static int btrfs_insert_inode_locked(struct inode *inode)
6298 {
6299 	struct btrfs_iget_args args;
6300 	args.location = &BTRFS_I(inode)->location;
6301 	args.root = BTRFS_I(inode)->root;
6302 
6303 	return insert_inode_locked4(inode,
6304 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6305 		   btrfs_find_actor, &args);
6306 }
6307 
6308 /*
6309  * Inherit flags from the parent inode.
6310  *
6311  * Currently only the compression flags and the cow flags are inherited.
6312  */
6313 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6314 {
6315 	unsigned int flags;
6316 
6317 	if (!dir)
6318 		return;
6319 
6320 	flags = BTRFS_I(dir)->flags;
6321 
6322 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6323 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6324 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6325 	} else if (flags & BTRFS_INODE_COMPRESS) {
6326 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6327 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6328 	}
6329 
6330 	if (flags & BTRFS_INODE_NODATACOW) {
6331 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6332 		if (S_ISREG(inode->i_mode))
6333 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6334 	}
6335 
6336 	btrfs_sync_inode_flags_to_i_flags(inode);
6337 }
6338 
6339 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6340 				     struct btrfs_root *root,
6341 				     struct inode *dir,
6342 				     const char *name, int name_len,
6343 				     u64 ref_objectid, u64 objectid,
6344 				     umode_t mode, u64 *index)
6345 {
6346 	struct btrfs_fs_info *fs_info = root->fs_info;
6347 	struct inode *inode;
6348 	struct btrfs_inode_item *inode_item;
6349 	struct btrfs_key *location;
6350 	struct btrfs_path *path;
6351 	struct btrfs_inode_ref *ref;
6352 	struct btrfs_key key[2];
6353 	u32 sizes[2];
6354 	int nitems = name ? 2 : 1;
6355 	unsigned long ptr;
6356 	unsigned int nofs_flag;
6357 	int ret;
6358 
6359 	path = btrfs_alloc_path();
6360 	if (!path)
6361 		return ERR_PTR(-ENOMEM);
6362 
6363 	nofs_flag = memalloc_nofs_save();
6364 	inode = new_inode(fs_info->sb);
6365 	memalloc_nofs_restore(nofs_flag);
6366 	if (!inode) {
6367 		btrfs_free_path(path);
6368 		return ERR_PTR(-ENOMEM);
6369 	}
6370 
6371 	/*
6372 	 * O_TMPFILE, set link count to 0, so that after this point,
6373 	 * we fill in an inode item with the correct link count.
6374 	 */
6375 	if (!name)
6376 		set_nlink(inode, 0);
6377 
6378 	/*
6379 	 * we have to initialize this early, so we can reclaim the inode
6380 	 * number if we fail afterwards in this function.
6381 	 */
6382 	inode->i_ino = objectid;
6383 
6384 	if (dir && name) {
6385 		trace_btrfs_inode_request(dir);
6386 
6387 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6388 		if (ret) {
6389 			btrfs_free_path(path);
6390 			iput(inode);
6391 			return ERR_PTR(ret);
6392 		}
6393 	} else if (dir) {
6394 		*index = 0;
6395 	}
6396 	/*
6397 	 * index_cnt is ignored for everything but a dir,
6398 	 * btrfs_set_inode_index_count has an explanation for the magic
6399 	 * number
6400 	 */
6401 	BTRFS_I(inode)->index_cnt = 2;
6402 	BTRFS_I(inode)->dir_index = *index;
6403 	BTRFS_I(inode)->root = root;
6404 	BTRFS_I(inode)->generation = trans->transid;
6405 	inode->i_generation = BTRFS_I(inode)->generation;
6406 
6407 	/*
6408 	 * We could have gotten an inode number from somebody who was fsynced
6409 	 * and then removed in this same transaction, so let's just set full
6410 	 * sync since it will be a full sync anyway and this will blow away the
6411 	 * old info in the log.
6412 	 */
6413 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6414 
6415 	key[0].objectid = objectid;
6416 	key[0].type = BTRFS_INODE_ITEM_KEY;
6417 	key[0].offset = 0;
6418 
6419 	sizes[0] = sizeof(struct btrfs_inode_item);
6420 
6421 	if (name) {
6422 		/*
6423 		 * Start new inodes with an inode_ref. This is slightly more
6424 		 * efficient for small numbers of hard links since they will
6425 		 * be packed into one item. Extended refs will kick in if we
6426 		 * add more hard links than can fit in the ref item.
6427 		 */
6428 		key[1].objectid = objectid;
6429 		key[1].type = BTRFS_INODE_REF_KEY;
6430 		key[1].offset = ref_objectid;
6431 
6432 		sizes[1] = name_len + sizeof(*ref);
6433 	}
6434 
6435 	location = &BTRFS_I(inode)->location;
6436 	location->objectid = objectid;
6437 	location->offset = 0;
6438 	location->type = BTRFS_INODE_ITEM_KEY;
6439 
6440 	ret = btrfs_insert_inode_locked(inode);
6441 	if (ret < 0) {
6442 		iput(inode);
6443 		goto fail;
6444 	}
6445 
6446 	path->leave_spinning = 1;
6447 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6448 	if (ret != 0)
6449 		goto fail_unlock;
6450 
6451 	inode_init_owner(inode, dir, mode);
6452 	inode_set_bytes(inode, 0);
6453 
6454 	inode->i_mtime = current_time(inode);
6455 	inode->i_atime = inode->i_mtime;
6456 	inode->i_ctime = inode->i_mtime;
6457 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6458 
6459 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6460 				  struct btrfs_inode_item);
6461 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6462 			     sizeof(*inode_item));
6463 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6464 
6465 	if (name) {
6466 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6467 				     struct btrfs_inode_ref);
6468 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6469 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6470 		ptr = (unsigned long)(ref + 1);
6471 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6472 	}
6473 
6474 	btrfs_mark_buffer_dirty(path->nodes[0]);
6475 	btrfs_free_path(path);
6476 
6477 	btrfs_inherit_iflags(inode, dir);
6478 
6479 	if (S_ISREG(mode)) {
6480 		if (btrfs_test_opt(fs_info, NODATASUM))
6481 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6482 		if (btrfs_test_opt(fs_info, NODATACOW))
6483 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6484 				BTRFS_INODE_NODATASUM;
6485 	}
6486 
6487 	inode_tree_add(inode);
6488 
6489 	trace_btrfs_inode_new(inode);
6490 	btrfs_set_inode_last_trans(trans, inode);
6491 
6492 	btrfs_update_root_times(trans, root);
6493 
6494 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6495 	if (ret)
6496 		btrfs_err(fs_info,
6497 			  "error inheriting props for ino %llu (root %llu): %d",
6498 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6499 
6500 	return inode;
6501 
6502 fail_unlock:
6503 	discard_new_inode(inode);
6504 fail:
6505 	if (dir && name)
6506 		BTRFS_I(dir)->index_cnt--;
6507 	btrfs_free_path(path);
6508 	return ERR_PTR(ret);
6509 }
6510 
6511 /*
6512  * utility function to add 'inode' into 'parent_inode' with
6513  * a give name and a given sequence number.
6514  * if 'add_backref' is true, also insert a backref from the
6515  * inode to the parent directory.
6516  */
6517 int btrfs_add_link(struct btrfs_trans_handle *trans,
6518 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6519 		   const char *name, int name_len, int add_backref, u64 index)
6520 {
6521 	int ret = 0;
6522 	struct btrfs_key key;
6523 	struct btrfs_root *root = parent_inode->root;
6524 	u64 ino = btrfs_ino(inode);
6525 	u64 parent_ino = btrfs_ino(parent_inode);
6526 
6527 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6528 		memcpy(&key, &inode->root->root_key, sizeof(key));
6529 	} else {
6530 		key.objectid = ino;
6531 		key.type = BTRFS_INODE_ITEM_KEY;
6532 		key.offset = 0;
6533 	}
6534 
6535 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6536 		ret = btrfs_add_root_ref(trans, key.objectid,
6537 					 root->root_key.objectid, parent_ino,
6538 					 index, name, name_len);
6539 	} else if (add_backref) {
6540 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6541 					     parent_ino, index);
6542 	}
6543 
6544 	/* Nothing to clean up yet */
6545 	if (ret)
6546 		return ret;
6547 
6548 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6549 				    btrfs_inode_type(&inode->vfs_inode), index);
6550 	if (ret == -EEXIST || ret == -EOVERFLOW)
6551 		goto fail_dir_item;
6552 	else if (ret) {
6553 		btrfs_abort_transaction(trans, ret);
6554 		return ret;
6555 	}
6556 
6557 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6558 			   name_len * 2);
6559 	inode_inc_iversion(&parent_inode->vfs_inode);
6560 	/*
6561 	 * If we are replaying a log tree, we do not want to update the mtime
6562 	 * and ctime of the parent directory with the current time, since the
6563 	 * log replay procedure is responsible for setting them to their correct
6564 	 * values (the ones it had when the fsync was done).
6565 	 */
6566 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6567 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6568 
6569 		parent_inode->vfs_inode.i_mtime = now;
6570 		parent_inode->vfs_inode.i_ctime = now;
6571 	}
6572 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6573 	if (ret)
6574 		btrfs_abort_transaction(trans, ret);
6575 	return ret;
6576 
6577 fail_dir_item:
6578 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6579 		u64 local_index;
6580 		int err;
6581 		err = btrfs_del_root_ref(trans, key.objectid,
6582 					 root->root_key.objectid, parent_ino,
6583 					 &local_index, name, name_len);
6584 		if (err)
6585 			btrfs_abort_transaction(trans, err);
6586 	} else if (add_backref) {
6587 		u64 local_index;
6588 		int err;
6589 
6590 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6591 					  ino, parent_ino, &local_index);
6592 		if (err)
6593 			btrfs_abort_transaction(trans, err);
6594 	}
6595 
6596 	/* Return the original error code */
6597 	return ret;
6598 }
6599 
6600 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6601 			    struct btrfs_inode *dir, struct dentry *dentry,
6602 			    struct btrfs_inode *inode, int backref, u64 index)
6603 {
6604 	int err = btrfs_add_link(trans, dir, inode,
6605 				 dentry->d_name.name, dentry->d_name.len,
6606 				 backref, index);
6607 	if (err > 0)
6608 		err = -EEXIST;
6609 	return err;
6610 }
6611 
6612 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6613 			umode_t mode, dev_t rdev)
6614 {
6615 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6616 	struct btrfs_trans_handle *trans;
6617 	struct btrfs_root *root = BTRFS_I(dir)->root;
6618 	struct inode *inode = NULL;
6619 	int err;
6620 	u64 objectid;
6621 	u64 index = 0;
6622 
6623 	/*
6624 	 * 2 for inode item and ref
6625 	 * 2 for dir items
6626 	 * 1 for xattr if selinux is on
6627 	 */
6628 	trans = btrfs_start_transaction(root, 5);
6629 	if (IS_ERR(trans))
6630 		return PTR_ERR(trans);
6631 
6632 	err = btrfs_find_free_ino(root, &objectid);
6633 	if (err)
6634 		goto out_unlock;
6635 
6636 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6637 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6638 			mode, &index);
6639 	if (IS_ERR(inode)) {
6640 		err = PTR_ERR(inode);
6641 		inode = NULL;
6642 		goto out_unlock;
6643 	}
6644 
6645 	/*
6646 	* If the active LSM wants to access the inode during
6647 	* d_instantiate it needs these. Smack checks to see
6648 	* if the filesystem supports xattrs by looking at the
6649 	* ops vector.
6650 	*/
6651 	inode->i_op = &btrfs_special_inode_operations;
6652 	init_special_inode(inode, inode->i_mode, rdev);
6653 
6654 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6655 	if (err)
6656 		goto out_unlock;
6657 
6658 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6659 			0, index);
6660 	if (err)
6661 		goto out_unlock;
6662 
6663 	btrfs_update_inode(trans, root, inode);
6664 	d_instantiate_new(dentry, inode);
6665 
6666 out_unlock:
6667 	btrfs_end_transaction(trans);
6668 	btrfs_btree_balance_dirty(fs_info);
6669 	if (err && inode) {
6670 		inode_dec_link_count(inode);
6671 		discard_new_inode(inode);
6672 	}
6673 	return err;
6674 }
6675 
6676 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6677 			umode_t mode, bool excl)
6678 {
6679 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6680 	struct btrfs_trans_handle *trans;
6681 	struct btrfs_root *root = BTRFS_I(dir)->root;
6682 	struct inode *inode = NULL;
6683 	int err;
6684 	u64 objectid;
6685 	u64 index = 0;
6686 
6687 	/*
6688 	 * 2 for inode item and ref
6689 	 * 2 for dir items
6690 	 * 1 for xattr if selinux is on
6691 	 */
6692 	trans = btrfs_start_transaction(root, 5);
6693 	if (IS_ERR(trans))
6694 		return PTR_ERR(trans);
6695 
6696 	err = btrfs_find_free_ino(root, &objectid);
6697 	if (err)
6698 		goto out_unlock;
6699 
6700 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6701 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6702 			mode, &index);
6703 	if (IS_ERR(inode)) {
6704 		err = PTR_ERR(inode);
6705 		inode = NULL;
6706 		goto out_unlock;
6707 	}
6708 	/*
6709 	* If the active LSM wants to access the inode during
6710 	* d_instantiate it needs these. Smack checks to see
6711 	* if the filesystem supports xattrs by looking at the
6712 	* ops vector.
6713 	*/
6714 	inode->i_fop = &btrfs_file_operations;
6715 	inode->i_op = &btrfs_file_inode_operations;
6716 	inode->i_mapping->a_ops = &btrfs_aops;
6717 
6718 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6719 	if (err)
6720 		goto out_unlock;
6721 
6722 	err = btrfs_update_inode(trans, root, inode);
6723 	if (err)
6724 		goto out_unlock;
6725 
6726 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6727 			0, index);
6728 	if (err)
6729 		goto out_unlock;
6730 
6731 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6732 	d_instantiate_new(dentry, inode);
6733 
6734 out_unlock:
6735 	btrfs_end_transaction(trans);
6736 	if (err && inode) {
6737 		inode_dec_link_count(inode);
6738 		discard_new_inode(inode);
6739 	}
6740 	btrfs_btree_balance_dirty(fs_info);
6741 	return err;
6742 }
6743 
6744 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6745 		      struct dentry *dentry)
6746 {
6747 	struct btrfs_trans_handle *trans = NULL;
6748 	struct btrfs_root *root = BTRFS_I(dir)->root;
6749 	struct inode *inode = d_inode(old_dentry);
6750 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6751 	u64 index;
6752 	int err;
6753 	int drop_inode = 0;
6754 
6755 	/* do not allow sys_link's with other subvols of the same device */
6756 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6757 		return -EXDEV;
6758 
6759 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6760 		return -EMLINK;
6761 
6762 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6763 	if (err)
6764 		goto fail;
6765 
6766 	/*
6767 	 * 2 items for inode and inode ref
6768 	 * 2 items for dir items
6769 	 * 1 item for parent inode
6770 	 * 1 item for orphan item deletion if O_TMPFILE
6771 	 */
6772 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6773 	if (IS_ERR(trans)) {
6774 		err = PTR_ERR(trans);
6775 		trans = NULL;
6776 		goto fail;
6777 	}
6778 
6779 	/* There are several dir indexes for this inode, clear the cache. */
6780 	BTRFS_I(inode)->dir_index = 0ULL;
6781 	inc_nlink(inode);
6782 	inode_inc_iversion(inode);
6783 	inode->i_ctime = current_time(inode);
6784 	ihold(inode);
6785 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6786 
6787 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6788 			1, index);
6789 
6790 	if (err) {
6791 		drop_inode = 1;
6792 	} else {
6793 		struct dentry *parent = dentry->d_parent;
6794 		int ret;
6795 
6796 		err = btrfs_update_inode(trans, root, inode);
6797 		if (err)
6798 			goto fail;
6799 		if (inode->i_nlink == 1) {
6800 			/*
6801 			 * If new hard link count is 1, it's a file created
6802 			 * with open(2) O_TMPFILE flag.
6803 			 */
6804 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6805 			if (err)
6806 				goto fail;
6807 		}
6808 		d_instantiate(dentry, inode);
6809 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6810 					 true, NULL);
6811 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6812 			err = btrfs_commit_transaction(trans);
6813 			trans = NULL;
6814 		}
6815 	}
6816 
6817 fail:
6818 	if (trans)
6819 		btrfs_end_transaction(trans);
6820 	if (drop_inode) {
6821 		inode_dec_link_count(inode);
6822 		iput(inode);
6823 	}
6824 	btrfs_btree_balance_dirty(fs_info);
6825 	return err;
6826 }
6827 
6828 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6829 {
6830 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6831 	struct inode *inode = NULL;
6832 	struct btrfs_trans_handle *trans;
6833 	struct btrfs_root *root = BTRFS_I(dir)->root;
6834 	int err = 0;
6835 	u64 objectid = 0;
6836 	u64 index = 0;
6837 
6838 	/*
6839 	 * 2 items for inode and ref
6840 	 * 2 items for dir items
6841 	 * 1 for xattr if selinux is on
6842 	 */
6843 	trans = btrfs_start_transaction(root, 5);
6844 	if (IS_ERR(trans))
6845 		return PTR_ERR(trans);
6846 
6847 	err = btrfs_find_free_ino(root, &objectid);
6848 	if (err)
6849 		goto out_fail;
6850 
6851 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6852 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6853 			S_IFDIR | mode, &index);
6854 	if (IS_ERR(inode)) {
6855 		err = PTR_ERR(inode);
6856 		inode = NULL;
6857 		goto out_fail;
6858 	}
6859 
6860 	/* these must be set before we unlock the inode */
6861 	inode->i_op = &btrfs_dir_inode_operations;
6862 	inode->i_fop = &btrfs_dir_file_operations;
6863 
6864 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6865 	if (err)
6866 		goto out_fail;
6867 
6868 	btrfs_i_size_write(BTRFS_I(inode), 0);
6869 	err = btrfs_update_inode(trans, root, inode);
6870 	if (err)
6871 		goto out_fail;
6872 
6873 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6874 			dentry->d_name.name,
6875 			dentry->d_name.len, 0, index);
6876 	if (err)
6877 		goto out_fail;
6878 
6879 	d_instantiate_new(dentry, inode);
6880 
6881 out_fail:
6882 	btrfs_end_transaction(trans);
6883 	if (err && inode) {
6884 		inode_dec_link_count(inode);
6885 		discard_new_inode(inode);
6886 	}
6887 	btrfs_btree_balance_dirty(fs_info);
6888 	return err;
6889 }
6890 
6891 static noinline int uncompress_inline(struct btrfs_path *path,
6892 				      struct page *page,
6893 				      size_t pg_offset, u64 extent_offset,
6894 				      struct btrfs_file_extent_item *item)
6895 {
6896 	int ret;
6897 	struct extent_buffer *leaf = path->nodes[0];
6898 	char *tmp;
6899 	size_t max_size;
6900 	unsigned long inline_size;
6901 	unsigned long ptr;
6902 	int compress_type;
6903 
6904 	WARN_ON(pg_offset != 0);
6905 	compress_type = btrfs_file_extent_compression(leaf, item);
6906 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6907 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6908 					btrfs_item_nr(path->slots[0]));
6909 	tmp = kmalloc(inline_size, GFP_NOFS);
6910 	if (!tmp)
6911 		return -ENOMEM;
6912 	ptr = btrfs_file_extent_inline_start(item);
6913 
6914 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6915 
6916 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6917 	ret = btrfs_decompress(compress_type, tmp, page,
6918 			       extent_offset, inline_size, max_size);
6919 
6920 	/*
6921 	 * decompression code contains a memset to fill in any space between the end
6922 	 * of the uncompressed data and the end of max_size in case the decompressed
6923 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6924 	 * the end of an inline extent and the beginning of the next block, so we
6925 	 * cover that region here.
6926 	 */
6927 
6928 	if (max_size + pg_offset < PAGE_SIZE) {
6929 		char *map = kmap(page);
6930 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6931 		kunmap(page);
6932 	}
6933 	kfree(tmp);
6934 	return ret;
6935 }
6936 
6937 /*
6938  * a bit scary, this does extent mapping from logical file offset to the disk.
6939  * the ugly parts come from merging extents from the disk with the in-ram
6940  * representation.  This gets more complex because of the data=ordered code,
6941  * where the in-ram extents might be locked pending data=ordered completion.
6942  *
6943  * This also copies inline extents directly into the page.
6944  */
6945 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6946 				    struct page *page,
6947 				    size_t pg_offset, u64 start, u64 len,
6948 				    int create)
6949 {
6950 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6951 	int ret;
6952 	int err = 0;
6953 	u64 extent_start = 0;
6954 	u64 extent_end = 0;
6955 	u64 objectid = btrfs_ino(inode);
6956 	int extent_type = -1;
6957 	struct btrfs_path *path = NULL;
6958 	struct btrfs_root *root = inode->root;
6959 	struct btrfs_file_extent_item *item;
6960 	struct extent_buffer *leaf;
6961 	struct btrfs_key found_key;
6962 	struct extent_map *em = NULL;
6963 	struct extent_map_tree *em_tree = &inode->extent_tree;
6964 	struct extent_io_tree *io_tree = &inode->io_tree;
6965 	const bool new_inline = !page || create;
6966 
6967 	read_lock(&em_tree->lock);
6968 	em = lookup_extent_mapping(em_tree, start, len);
6969 	read_unlock(&em_tree->lock);
6970 
6971 	if (em) {
6972 		if (em->start > start || em->start + em->len <= start)
6973 			free_extent_map(em);
6974 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6975 			free_extent_map(em);
6976 		else
6977 			goto out;
6978 	}
6979 	em = alloc_extent_map();
6980 	if (!em) {
6981 		err = -ENOMEM;
6982 		goto out;
6983 	}
6984 	em->start = EXTENT_MAP_HOLE;
6985 	em->orig_start = EXTENT_MAP_HOLE;
6986 	em->len = (u64)-1;
6987 	em->block_len = (u64)-1;
6988 
6989 	path = btrfs_alloc_path();
6990 	if (!path) {
6991 		err = -ENOMEM;
6992 		goto out;
6993 	}
6994 
6995 	/* Chances are we'll be called again, so go ahead and do readahead */
6996 	path->reada = READA_FORWARD;
6997 
6998 	/*
6999 	 * Unless we're going to uncompress the inline extent, no sleep would
7000 	 * happen.
7001 	 */
7002 	path->leave_spinning = 1;
7003 
7004 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7005 	if (ret < 0) {
7006 		err = ret;
7007 		goto out;
7008 	} else if (ret > 0) {
7009 		if (path->slots[0] == 0)
7010 			goto not_found;
7011 		path->slots[0]--;
7012 	}
7013 
7014 	leaf = path->nodes[0];
7015 	item = btrfs_item_ptr(leaf, path->slots[0],
7016 			      struct btrfs_file_extent_item);
7017 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7018 	if (found_key.objectid != objectid ||
7019 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
7020 		/*
7021 		 * If we backup past the first extent we want to move forward
7022 		 * and see if there is an extent in front of us, otherwise we'll
7023 		 * say there is a hole for our whole search range which can
7024 		 * cause problems.
7025 		 */
7026 		extent_end = start;
7027 		goto next;
7028 	}
7029 
7030 	extent_type = btrfs_file_extent_type(leaf, item);
7031 	extent_start = found_key.offset;
7032 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7033 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7034 		/* Only regular file could have regular/prealloc extent */
7035 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7036 			ret = -EUCLEAN;
7037 			btrfs_crit(fs_info,
7038 		"regular/prealloc extent found for non-regular inode %llu",
7039 				   btrfs_ino(inode));
7040 			goto out;
7041 		}
7042 		extent_end = extent_start +
7043 		       btrfs_file_extent_num_bytes(leaf, item);
7044 
7045 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7046 						       extent_start);
7047 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7048 		size_t size;
7049 
7050 		size = btrfs_file_extent_ram_bytes(leaf, item);
7051 		extent_end = ALIGN(extent_start + size,
7052 				   fs_info->sectorsize);
7053 
7054 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7055 						      path->slots[0],
7056 						      extent_start);
7057 	}
7058 next:
7059 	if (start >= extent_end) {
7060 		path->slots[0]++;
7061 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7062 			ret = btrfs_next_leaf(root, path);
7063 			if (ret < 0) {
7064 				err = ret;
7065 				goto out;
7066 			} else if (ret > 0) {
7067 				goto not_found;
7068 			}
7069 			leaf = path->nodes[0];
7070 		}
7071 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7072 		if (found_key.objectid != objectid ||
7073 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7074 			goto not_found;
7075 		if (start + len <= found_key.offset)
7076 			goto not_found;
7077 		if (start > found_key.offset)
7078 			goto next;
7079 
7080 		/* New extent overlaps with existing one */
7081 		em->start = start;
7082 		em->orig_start = start;
7083 		em->len = found_key.offset - start;
7084 		em->block_start = EXTENT_MAP_HOLE;
7085 		goto insert;
7086 	}
7087 
7088 	btrfs_extent_item_to_extent_map(inode, path, item,
7089 			new_inline, em);
7090 
7091 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7092 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7093 		goto insert;
7094 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7095 		unsigned long ptr;
7096 		char *map;
7097 		size_t size;
7098 		size_t extent_offset;
7099 		size_t copy_size;
7100 
7101 		if (new_inline)
7102 			goto out;
7103 
7104 		size = btrfs_file_extent_ram_bytes(leaf, item);
7105 		extent_offset = page_offset(page) + pg_offset - extent_start;
7106 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7107 				  size - extent_offset);
7108 		em->start = extent_start + extent_offset;
7109 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7110 		em->orig_block_len = em->len;
7111 		em->orig_start = em->start;
7112 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7113 
7114 		btrfs_set_path_blocking(path);
7115 		if (!PageUptodate(page)) {
7116 			if (btrfs_file_extent_compression(leaf, item) !=
7117 			    BTRFS_COMPRESS_NONE) {
7118 				ret = uncompress_inline(path, page, pg_offset,
7119 							extent_offset, item);
7120 				if (ret) {
7121 					err = ret;
7122 					goto out;
7123 				}
7124 			} else {
7125 				map = kmap(page);
7126 				read_extent_buffer(leaf, map + pg_offset, ptr,
7127 						   copy_size);
7128 				if (pg_offset + copy_size < PAGE_SIZE) {
7129 					memset(map + pg_offset + copy_size, 0,
7130 					       PAGE_SIZE - pg_offset -
7131 					       copy_size);
7132 				}
7133 				kunmap(page);
7134 			}
7135 			flush_dcache_page(page);
7136 		}
7137 		set_extent_uptodate(io_tree, em->start,
7138 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7139 		goto insert;
7140 	}
7141 not_found:
7142 	em->start = start;
7143 	em->orig_start = start;
7144 	em->len = len;
7145 	em->block_start = EXTENT_MAP_HOLE;
7146 insert:
7147 	btrfs_release_path(path);
7148 	if (em->start > start || extent_map_end(em) <= start) {
7149 		btrfs_err(fs_info,
7150 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7151 			  em->start, em->len, start, len);
7152 		err = -EIO;
7153 		goto out;
7154 	}
7155 
7156 	err = 0;
7157 	write_lock(&em_tree->lock);
7158 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7159 	write_unlock(&em_tree->lock);
7160 out:
7161 	btrfs_free_path(path);
7162 
7163 	trace_btrfs_get_extent(root, inode, em);
7164 
7165 	if (err) {
7166 		free_extent_map(em);
7167 		return ERR_PTR(err);
7168 	}
7169 	BUG_ON(!em); /* Error is always set */
7170 	return em;
7171 }
7172 
7173 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7174 					   u64 start, u64 len)
7175 {
7176 	struct extent_map *em;
7177 	struct extent_map *hole_em = NULL;
7178 	u64 delalloc_start = start;
7179 	u64 end;
7180 	u64 delalloc_len;
7181 	u64 delalloc_end;
7182 	int err = 0;
7183 
7184 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7185 	if (IS_ERR(em))
7186 		return em;
7187 	/*
7188 	 * If our em maps to:
7189 	 * - a hole or
7190 	 * - a pre-alloc extent,
7191 	 * there might actually be delalloc bytes behind it.
7192 	 */
7193 	if (em->block_start != EXTENT_MAP_HOLE &&
7194 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7195 		return em;
7196 	else
7197 		hole_em = em;
7198 
7199 	/* check to see if we've wrapped (len == -1 or similar) */
7200 	end = start + len;
7201 	if (end < start)
7202 		end = (u64)-1;
7203 	else
7204 		end -= 1;
7205 
7206 	em = NULL;
7207 
7208 	/* ok, we didn't find anything, lets look for delalloc */
7209 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7210 				 end, len, EXTENT_DELALLOC, 1);
7211 	delalloc_end = delalloc_start + delalloc_len;
7212 	if (delalloc_end < delalloc_start)
7213 		delalloc_end = (u64)-1;
7214 
7215 	/*
7216 	 * We didn't find anything useful, return the original results from
7217 	 * get_extent()
7218 	 */
7219 	if (delalloc_start > end || delalloc_end <= start) {
7220 		em = hole_em;
7221 		hole_em = NULL;
7222 		goto out;
7223 	}
7224 
7225 	/*
7226 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7227 	 * the start they passed in
7228 	 */
7229 	delalloc_start = max(start, delalloc_start);
7230 	delalloc_len = delalloc_end - delalloc_start;
7231 
7232 	if (delalloc_len > 0) {
7233 		u64 hole_start;
7234 		u64 hole_len;
7235 		const u64 hole_end = extent_map_end(hole_em);
7236 
7237 		em = alloc_extent_map();
7238 		if (!em) {
7239 			err = -ENOMEM;
7240 			goto out;
7241 		}
7242 
7243 		ASSERT(hole_em);
7244 		/*
7245 		 * When btrfs_get_extent can't find anything it returns one
7246 		 * huge hole
7247 		 *
7248 		 * Make sure what it found really fits our range, and adjust to
7249 		 * make sure it is based on the start from the caller
7250 		 */
7251 		if (hole_end <= start || hole_em->start > end) {
7252 		       free_extent_map(hole_em);
7253 		       hole_em = NULL;
7254 		} else {
7255 		       hole_start = max(hole_em->start, start);
7256 		       hole_len = hole_end - hole_start;
7257 		}
7258 
7259 		if (hole_em && delalloc_start > hole_start) {
7260 			/*
7261 			 * Our hole starts before our delalloc, so we have to
7262 			 * return just the parts of the hole that go until the
7263 			 * delalloc starts
7264 			 */
7265 			em->len = min(hole_len, delalloc_start - hole_start);
7266 			em->start = hole_start;
7267 			em->orig_start = hole_start;
7268 			/*
7269 			 * Don't adjust block start at all, it is fixed at
7270 			 * EXTENT_MAP_HOLE
7271 			 */
7272 			em->block_start = hole_em->block_start;
7273 			em->block_len = hole_len;
7274 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7275 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7276 		} else {
7277 			/*
7278 			 * Hole is out of passed range or it starts after
7279 			 * delalloc range
7280 			 */
7281 			em->start = delalloc_start;
7282 			em->len = delalloc_len;
7283 			em->orig_start = delalloc_start;
7284 			em->block_start = EXTENT_MAP_DELALLOC;
7285 			em->block_len = delalloc_len;
7286 		}
7287 	} else {
7288 		return hole_em;
7289 	}
7290 out:
7291 
7292 	free_extent_map(hole_em);
7293 	if (err) {
7294 		free_extent_map(em);
7295 		return ERR_PTR(err);
7296 	}
7297 	return em;
7298 }
7299 
7300 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7301 						  const u64 start,
7302 						  const u64 len,
7303 						  const u64 orig_start,
7304 						  const u64 block_start,
7305 						  const u64 block_len,
7306 						  const u64 orig_block_len,
7307 						  const u64 ram_bytes,
7308 						  const int type)
7309 {
7310 	struct extent_map *em = NULL;
7311 	int ret;
7312 
7313 	if (type != BTRFS_ORDERED_NOCOW) {
7314 		em = create_io_em(inode, start, len, orig_start,
7315 				  block_start, block_len, orig_block_len,
7316 				  ram_bytes,
7317 				  BTRFS_COMPRESS_NONE, /* compress_type */
7318 				  type);
7319 		if (IS_ERR(em))
7320 			goto out;
7321 	}
7322 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7323 					   len, block_len, type);
7324 	if (ret) {
7325 		if (em) {
7326 			free_extent_map(em);
7327 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7328 						start + len - 1, 0);
7329 		}
7330 		em = ERR_PTR(ret);
7331 	}
7332  out:
7333 
7334 	return em;
7335 }
7336 
7337 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7338 						  u64 start, u64 len)
7339 {
7340 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7341 	struct btrfs_root *root = BTRFS_I(inode)->root;
7342 	struct extent_map *em;
7343 	struct btrfs_key ins;
7344 	u64 alloc_hint;
7345 	int ret;
7346 
7347 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7348 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7349 				   0, alloc_hint, &ins, 1, 1);
7350 	if (ret)
7351 		return ERR_PTR(ret);
7352 
7353 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7354 				     ins.objectid, ins.offset, ins.offset,
7355 				     ins.offset, BTRFS_ORDERED_REGULAR);
7356 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7357 	if (IS_ERR(em))
7358 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7359 					   ins.offset, 1);
7360 
7361 	return em;
7362 }
7363 
7364 /*
7365  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7366  * block must be cow'd
7367  */
7368 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7369 			      u64 *orig_start, u64 *orig_block_len,
7370 			      u64 *ram_bytes)
7371 {
7372 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7373 	struct btrfs_path *path;
7374 	int ret;
7375 	struct extent_buffer *leaf;
7376 	struct btrfs_root *root = BTRFS_I(inode)->root;
7377 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7378 	struct btrfs_file_extent_item *fi;
7379 	struct btrfs_key key;
7380 	u64 disk_bytenr;
7381 	u64 backref_offset;
7382 	u64 extent_end;
7383 	u64 num_bytes;
7384 	int slot;
7385 	int found_type;
7386 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7387 
7388 	path = btrfs_alloc_path();
7389 	if (!path)
7390 		return -ENOMEM;
7391 
7392 	ret = btrfs_lookup_file_extent(NULL, root, path,
7393 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7394 	if (ret < 0)
7395 		goto out;
7396 
7397 	slot = path->slots[0];
7398 	if (ret == 1) {
7399 		if (slot == 0) {
7400 			/* can't find the item, must cow */
7401 			ret = 0;
7402 			goto out;
7403 		}
7404 		slot--;
7405 	}
7406 	ret = 0;
7407 	leaf = path->nodes[0];
7408 	btrfs_item_key_to_cpu(leaf, &key, slot);
7409 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7410 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7411 		/* not our file or wrong item type, must cow */
7412 		goto out;
7413 	}
7414 
7415 	if (key.offset > offset) {
7416 		/* Wrong offset, must cow */
7417 		goto out;
7418 	}
7419 
7420 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7421 	found_type = btrfs_file_extent_type(leaf, fi);
7422 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7423 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7424 		/* not a regular extent, must cow */
7425 		goto out;
7426 	}
7427 
7428 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7429 		goto out;
7430 
7431 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7432 	if (extent_end <= offset)
7433 		goto out;
7434 
7435 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7436 	if (disk_bytenr == 0)
7437 		goto out;
7438 
7439 	if (btrfs_file_extent_compression(leaf, fi) ||
7440 	    btrfs_file_extent_encryption(leaf, fi) ||
7441 	    btrfs_file_extent_other_encoding(leaf, fi))
7442 		goto out;
7443 
7444 	/*
7445 	 * Do the same check as in btrfs_cross_ref_exist but without the
7446 	 * unnecessary search.
7447 	 */
7448 	if (btrfs_file_extent_generation(leaf, fi) <=
7449 	    btrfs_root_last_snapshot(&root->root_item))
7450 		goto out;
7451 
7452 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7453 
7454 	if (orig_start) {
7455 		*orig_start = key.offset - backref_offset;
7456 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7457 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7458 	}
7459 
7460 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7461 		goto out;
7462 
7463 	num_bytes = min(offset + *len, extent_end) - offset;
7464 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7465 		u64 range_end;
7466 
7467 		range_end = round_up(offset + num_bytes,
7468 				     root->fs_info->sectorsize) - 1;
7469 		ret = test_range_bit(io_tree, offset, range_end,
7470 				     EXTENT_DELALLOC, 0, NULL);
7471 		if (ret) {
7472 			ret = -EAGAIN;
7473 			goto out;
7474 		}
7475 	}
7476 
7477 	btrfs_release_path(path);
7478 
7479 	/*
7480 	 * look for other files referencing this extent, if we
7481 	 * find any we must cow
7482 	 */
7483 
7484 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7485 				    key.offset - backref_offset, disk_bytenr);
7486 	if (ret) {
7487 		ret = 0;
7488 		goto out;
7489 	}
7490 
7491 	/*
7492 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7493 	 * in this extent we are about to write.  If there
7494 	 * are any csums in that range we have to cow in order
7495 	 * to keep the csums correct
7496 	 */
7497 	disk_bytenr += backref_offset;
7498 	disk_bytenr += offset - key.offset;
7499 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7500 		goto out;
7501 	/*
7502 	 * all of the above have passed, it is safe to overwrite this extent
7503 	 * without cow
7504 	 */
7505 	*len = num_bytes;
7506 	ret = 1;
7507 out:
7508 	btrfs_free_path(path);
7509 	return ret;
7510 }
7511 
7512 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7513 			      struct extent_state **cached_state, int writing)
7514 {
7515 	struct btrfs_ordered_extent *ordered;
7516 	int ret = 0;
7517 
7518 	while (1) {
7519 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7520 				 cached_state);
7521 		/*
7522 		 * We're concerned with the entire range that we're going to be
7523 		 * doing DIO to, so we need to make sure there's no ordered
7524 		 * extents in this range.
7525 		 */
7526 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7527 						     lockend - lockstart + 1);
7528 
7529 		/*
7530 		 * We need to make sure there are no buffered pages in this
7531 		 * range either, we could have raced between the invalidate in
7532 		 * generic_file_direct_write and locking the extent.  The
7533 		 * invalidate needs to happen so that reads after a write do not
7534 		 * get stale data.
7535 		 */
7536 		if (!ordered &&
7537 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7538 							 lockstart, lockend)))
7539 			break;
7540 
7541 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7542 				     cached_state);
7543 
7544 		if (ordered) {
7545 			/*
7546 			 * If we are doing a DIO read and the ordered extent we
7547 			 * found is for a buffered write, we can not wait for it
7548 			 * to complete and retry, because if we do so we can
7549 			 * deadlock with concurrent buffered writes on page
7550 			 * locks. This happens only if our DIO read covers more
7551 			 * than one extent map, if at this point has already
7552 			 * created an ordered extent for a previous extent map
7553 			 * and locked its range in the inode's io tree, and a
7554 			 * concurrent write against that previous extent map's
7555 			 * range and this range started (we unlock the ranges
7556 			 * in the io tree only when the bios complete and
7557 			 * buffered writes always lock pages before attempting
7558 			 * to lock range in the io tree).
7559 			 */
7560 			if (writing ||
7561 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7562 				btrfs_start_ordered_extent(inode, ordered, 1);
7563 			else
7564 				ret = -ENOTBLK;
7565 			btrfs_put_ordered_extent(ordered);
7566 		} else {
7567 			/*
7568 			 * We could trigger writeback for this range (and wait
7569 			 * for it to complete) and then invalidate the pages for
7570 			 * this range (through invalidate_inode_pages2_range()),
7571 			 * but that can lead us to a deadlock with a concurrent
7572 			 * call to readpages() (a buffered read or a defrag call
7573 			 * triggered a readahead) on a page lock due to an
7574 			 * ordered dio extent we created before but did not have
7575 			 * yet a corresponding bio submitted (whence it can not
7576 			 * complete), which makes readpages() wait for that
7577 			 * ordered extent to complete while holding a lock on
7578 			 * that page.
7579 			 */
7580 			ret = -ENOTBLK;
7581 		}
7582 
7583 		if (ret)
7584 			break;
7585 
7586 		cond_resched();
7587 	}
7588 
7589 	return ret;
7590 }
7591 
7592 /* The callers of this must take lock_extent() */
7593 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7594 				       u64 orig_start, u64 block_start,
7595 				       u64 block_len, u64 orig_block_len,
7596 				       u64 ram_bytes, int compress_type,
7597 				       int type)
7598 {
7599 	struct extent_map_tree *em_tree;
7600 	struct extent_map *em;
7601 	int ret;
7602 
7603 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7604 	       type == BTRFS_ORDERED_COMPRESSED ||
7605 	       type == BTRFS_ORDERED_NOCOW ||
7606 	       type == BTRFS_ORDERED_REGULAR);
7607 
7608 	em_tree = &BTRFS_I(inode)->extent_tree;
7609 	em = alloc_extent_map();
7610 	if (!em)
7611 		return ERR_PTR(-ENOMEM);
7612 
7613 	em->start = start;
7614 	em->orig_start = orig_start;
7615 	em->len = len;
7616 	em->block_len = block_len;
7617 	em->block_start = block_start;
7618 	em->orig_block_len = orig_block_len;
7619 	em->ram_bytes = ram_bytes;
7620 	em->generation = -1;
7621 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7622 	if (type == BTRFS_ORDERED_PREALLOC) {
7623 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7624 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7625 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7626 		em->compress_type = compress_type;
7627 	}
7628 
7629 	do {
7630 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7631 				em->start + em->len - 1, 0);
7632 		write_lock(&em_tree->lock);
7633 		ret = add_extent_mapping(em_tree, em, 1);
7634 		write_unlock(&em_tree->lock);
7635 		/*
7636 		 * The caller has taken lock_extent(), who could race with us
7637 		 * to add em?
7638 		 */
7639 	} while (ret == -EEXIST);
7640 
7641 	if (ret) {
7642 		free_extent_map(em);
7643 		return ERR_PTR(ret);
7644 	}
7645 
7646 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7647 	return em;
7648 }
7649 
7650 
7651 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7652 					struct buffer_head *bh_result,
7653 					struct inode *inode,
7654 					u64 start, u64 len)
7655 {
7656 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7657 
7658 	if (em->block_start == EXTENT_MAP_HOLE ||
7659 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7660 		return -ENOENT;
7661 
7662 	len = min(len, em->len - (start - em->start));
7663 
7664 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7665 		inode->i_blkbits;
7666 	bh_result->b_size = len;
7667 	bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7668 	set_buffer_mapped(bh_result);
7669 
7670 	return 0;
7671 }
7672 
7673 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7674 					 struct buffer_head *bh_result,
7675 					 struct inode *inode,
7676 					 struct btrfs_dio_data *dio_data,
7677 					 u64 start, u64 len)
7678 {
7679 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7680 	struct extent_map *em = *map;
7681 	int ret = 0;
7682 
7683 	/*
7684 	 * We don't allocate a new extent in the following cases
7685 	 *
7686 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7687 	 * existing extent.
7688 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7689 	 * just use the extent.
7690 	 *
7691 	 */
7692 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7693 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7694 	     em->block_start != EXTENT_MAP_HOLE)) {
7695 		int type;
7696 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7697 
7698 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7699 			type = BTRFS_ORDERED_PREALLOC;
7700 		else
7701 			type = BTRFS_ORDERED_NOCOW;
7702 		len = min(len, em->len - (start - em->start));
7703 		block_start = em->block_start + (start - em->start);
7704 
7705 		if (can_nocow_extent(inode, start, &len, &orig_start,
7706 				     &orig_block_len, &ram_bytes) == 1 &&
7707 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7708 			struct extent_map *em2;
7709 
7710 			em2 = btrfs_create_dio_extent(inode, start, len,
7711 						      orig_start, block_start,
7712 						      len, orig_block_len,
7713 						      ram_bytes, type);
7714 			btrfs_dec_nocow_writers(fs_info, block_start);
7715 			if (type == BTRFS_ORDERED_PREALLOC) {
7716 				free_extent_map(em);
7717 				*map = em = em2;
7718 			}
7719 
7720 			if (em2 && IS_ERR(em2)) {
7721 				ret = PTR_ERR(em2);
7722 				goto out;
7723 			}
7724 			/*
7725 			 * For inode marked NODATACOW or extent marked PREALLOC,
7726 			 * use the existing or preallocated extent, so does not
7727 			 * need to adjust btrfs_space_info's bytes_may_use.
7728 			 */
7729 			btrfs_free_reserved_data_space_noquota(inode, start,
7730 							       len);
7731 			goto skip_cow;
7732 		}
7733 	}
7734 
7735 	/* this will cow the extent */
7736 	len = bh_result->b_size;
7737 	free_extent_map(em);
7738 	*map = em = btrfs_new_extent_direct(inode, start, len);
7739 	if (IS_ERR(em)) {
7740 		ret = PTR_ERR(em);
7741 		goto out;
7742 	}
7743 
7744 	len = min(len, em->len - (start - em->start));
7745 
7746 skip_cow:
7747 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7748 		inode->i_blkbits;
7749 	bh_result->b_size = len;
7750 	bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7751 	set_buffer_mapped(bh_result);
7752 
7753 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7754 		set_buffer_new(bh_result);
7755 
7756 	/*
7757 	 * Need to update the i_size under the extent lock so buffered
7758 	 * readers will get the updated i_size when we unlock.
7759 	 */
7760 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7761 		i_size_write(inode, start + len);
7762 
7763 	WARN_ON(dio_data->reserve < len);
7764 	dio_data->reserve -= len;
7765 	dio_data->unsubmitted_oe_range_end = start + len;
7766 	current->journal_info = dio_data;
7767 out:
7768 	return ret;
7769 }
7770 
7771 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7772 				   struct buffer_head *bh_result, int create)
7773 {
7774 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7775 	struct extent_map *em;
7776 	struct extent_state *cached_state = NULL;
7777 	struct btrfs_dio_data *dio_data = NULL;
7778 	u64 start = iblock << inode->i_blkbits;
7779 	u64 lockstart, lockend;
7780 	u64 len = bh_result->b_size;
7781 	int ret = 0;
7782 
7783 	if (!create)
7784 		len = min_t(u64, len, fs_info->sectorsize);
7785 
7786 	lockstart = start;
7787 	lockend = start + len - 1;
7788 
7789 	if (current->journal_info) {
7790 		/*
7791 		 * Need to pull our outstanding extents and set journal_info to NULL so
7792 		 * that anything that needs to check if there's a transaction doesn't get
7793 		 * confused.
7794 		 */
7795 		dio_data = current->journal_info;
7796 		current->journal_info = NULL;
7797 	}
7798 
7799 	/*
7800 	 * If this errors out it's because we couldn't invalidate pagecache for
7801 	 * this range and we need to fallback to buffered.
7802 	 */
7803 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7804 			       create)) {
7805 		ret = -ENOTBLK;
7806 		goto err;
7807 	}
7808 
7809 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7810 	if (IS_ERR(em)) {
7811 		ret = PTR_ERR(em);
7812 		goto unlock_err;
7813 	}
7814 
7815 	/*
7816 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7817 	 * io.  INLINE is special, and we could probably kludge it in here, but
7818 	 * it's still buffered so for safety lets just fall back to the generic
7819 	 * buffered path.
7820 	 *
7821 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7822 	 * decompress it, so there will be buffering required no matter what we
7823 	 * do, so go ahead and fallback to buffered.
7824 	 *
7825 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7826 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7827 	 * the generic code.
7828 	 */
7829 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7830 	    em->block_start == EXTENT_MAP_INLINE) {
7831 		free_extent_map(em);
7832 		ret = -ENOTBLK;
7833 		goto unlock_err;
7834 	}
7835 
7836 	if (create) {
7837 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7838 						    dio_data, start, len);
7839 		if (ret < 0)
7840 			goto unlock_err;
7841 
7842 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7843 				     lockend, &cached_state);
7844 	} else {
7845 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7846 						   start, len);
7847 		/* Can be negative only if we read from a hole */
7848 		if (ret < 0) {
7849 			ret = 0;
7850 			free_extent_map(em);
7851 			goto unlock_err;
7852 		}
7853 		/*
7854 		 * We need to unlock only the end area that we aren't using.
7855 		 * The rest is going to be unlocked by the endio routine.
7856 		 */
7857 		lockstart = start + bh_result->b_size;
7858 		if (lockstart < lockend) {
7859 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7860 					     lockstart, lockend, &cached_state);
7861 		} else {
7862 			free_extent_state(cached_state);
7863 		}
7864 	}
7865 
7866 	free_extent_map(em);
7867 
7868 	return 0;
7869 
7870 unlock_err:
7871 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7872 			     &cached_state);
7873 err:
7874 	if (dio_data)
7875 		current->journal_info = dio_data;
7876 	return ret;
7877 }
7878 
7879 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7880 						 struct bio *bio,
7881 						 int mirror_num)
7882 {
7883 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7884 	blk_status_t ret;
7885 
7886 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7887 
7888 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7889 	if (ret)
7890 		return ret;
7891 
7892 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7893 
7894 	return ret;
7895 }
7896 
7897 static int btrfs_check_dio_repairable(struct inode *inode,
7898 				      struct bio *failed_bio,
7899 				      struct io_failure_record *failrec,
7900 				      int failed_mirror)
7901 {
7902 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7903 	int num_copies;
7904 
7905 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7906 	if (num_copies == 1) {
7907 		/*
7908 		 * we only have a single copy of the data, so don't bother with
7909 		 * all the retry and error correction code that follows. no
7910 		 * matter what the error is, it is very likely to persist.
7911 		 */
7912 		btrfs_debug(fs_info,
7913 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7914 			num_copies, failrec->this_mirror, failed_mirror);
7915 		return 0;
7916 	}
7917 
7918 	failrec->failed_mirror = failed_mirror;
7919 	failrec->this_mirror++;
7920 	if (failrec->this_mirror == failed_mirror)
7921 		failrec->this_mirror++;
7922 
7923 	if (failrec->this_mirror > num_copies) {
7924 		btrfs_debug(fs_info,
7925 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7926 			num_copies, failrec->this_mirror, failed_mirror);
7927 		return 0;
7928 	}
7929 
7930 	return 1;
7931 }
7932 
7933 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7934 				   struct page *page, unsigned int pgoff,
7935 				   u64 start, u64 end, int failed_mirror,
7936 				   bio_end_io_t *repair_endio, void *repair_arg)
7937 {
7938 	struct io_failure_record *failrec;
7939 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7940 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7941 	struct bio *bio;
7942 	int isector;
7943 	unsigned int read_mode = 0;
7944 	int segs;
7945 	int ret;
7946 	blk_status_t status;
7947 	struct bio_vec bvec;
7948 
7949 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7950 
7951 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7952 	if (ret)
7953 		return errno_to_blk_status(ret);
7954 
7955 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7956 					 failed_mirror);
7957 	if (!ret) {
7958 		free_io_failure(failure_tree, io_tree, failrec);
7959 		return BLK_STS_IOERR;
7960 	}
7961 
7962 	segs = bio_segments(failed_bio);
7963 	bio_get_first_bvec(failed_bio, &bvec);
7964 	if (segs > 1 ||
7965 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7966 		read_mode |= REQ_FAILFAST_DEV;
7967 
7968 	isector = start - btrfs_io_bio(failed_bio)->logical;
7969 	isector >>= inode->i_sb->s_blocksize_bits;
7970 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7971 				pgoff, isector, repair_endio, repair_arg);
7972 	bio->bi_opf = REQ_OP_READ | read_mode;
7973 
7974 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7975 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7976 		    read_mode, failrec->this_mirror, failrec->in_validation);
7977 
7978 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7979 	if (status) {
7980 		free_io_failure(failure_tree, io_tree, failrec);
7981 		bio_put(bio);
7982 	}
7983 
7984 	return status;
7985 }
7986 
7987 struct btrfs_retry_complete {
7988 	struct completion done;
7989 	struct inode *inode;
7990 	u64 start;
7991 	int uptodate;
7992 };
7993 
7994 static void btrfs_retry_endio_nocsum(struct bio *bio)
7995 {
7996 	struct btrfs_retry_complete *done = bio->bi_private;
7997 	struct inode *inode = done->inode;
7998 	struct bio_vec *bvec;
7999 	struct extent_io_tree *io_tree, *failure_tree;
8000 	struct bvec_iter_all iter_all;
8001 
8002 	if (bio->bi_status)
8003 		goto end;
8004 
8005 	ASSERT(bio->bi_vcnt == 1);
8006 	io_tree = &BTRFS_I(inode)->io_tree;
8007 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8008 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
8009 
8010 	done->uptodate = 1;
8011 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8012 	bio_for_each_segment_all(bvec, bio, iter_all)
8013 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8014 				 io_tree, done->start, bvec->bv_page,
8015 				 btrfs_ino(BTRFS_I(inode)), 0);
8016 end:
8017 	complete(&done->done);
8018 	bio_put(bio);
8019 }
8020 
8021 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8022 						struct btrfs_io_bio *io_bio)
8023 {
8024 	struct btrfs_fs_info *fs_info;
8025 	struct bio_vec bvec;
8026 	struct bvec_iter iter;
8027 	struct btrfs_retry_complete done;
8028 	u64 start;
8029 	unsigned int pgoff;
8030 	u32 sectorsize;
8031 	int nr_sectors;
8032 	blk_status_t ret;
8033 	blk_status_t err = BLK_STS_OK;
8034 
8035 	fs_info = BTRFS_I(inode)->root->fs_info;
8036 	sectorsize = fs_info->sectorsize;
8037 
8038 	start = io_bio->logical;
8039 	done.inode = inode;
8040 	io_bio->bio.bi_iter = io_bio->iter;
8041 
8042 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8043 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8044 		pgoff = bvec.bv_offset;
8045 
8046 next_block_or_try_again:
8047 		done.uptodate = 0;
8048 		done.start = start;
8049 		init_completion(&done.done);
8050 
8051 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8052 				pgoff, start, start + sectorsize - 1,
8053 				io_bio->mirror_num,
8054 				btrfs_retry_endio_nocsum, &done);
8055 		if (ret) {
8056 			err = ret;
8057 			goto next;
8058 		}
8059 
8060 		wait_for_completion_io(&done.done);
8061 
8062 		if (!done.uptodate) {
8063 			/* We might have another mirror, so try again */
8064 			goto next_block_or_try_again;
8065 		}
8066 
8067 next:
8068 		start += sectorsize;
8069 
8070 		nr_sectors--;
8071 		if (nr_sectors) {
8072 			pgoff += sectorsize;
8073 			ASSERT(pgoff < PAGE_SIZE);
8074 			goto next_block_or_try_again;
8075 		}
8076 	}
8077 
8078 	return err;
8079 }
8080 
8081 static void btrfs_retry_endio(struct bio *bio)
8082 {
8083 	struct btrfs_retry_complete *done = bio->bi_private;
8084 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8085 	struct extent_io_tree *io_tree, *failure_tree;
8086 	struct inode *inode = done->inode;
8087 	struct bio_vec *bvec;
8088 	int uptodate;
8089 	int ret;
8090 	int i = 0;
8091 	struct bvec_iter_all iter_all;
8092 
8093 	if (bio->bi_status)
8094 		goto end;
8095 
8096 	uptodate = 1;
8097 
8098 	ASSERT(bio->bi_vcnt == 1);
8099 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8100 
8101 	io_tree = &BTRFS_I(inode)->io_tree;
8102 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8103 
8104 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8105 	bio_for_each_segment_all(bvec, bio, iter_all) {
8106 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8107 					     bvec->bv_offset, done->start,
8108 					     bvec->bv_len);
8109 		if (!ret)
8110 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8111 					 failure_tree, io_tree, done->start,
8112 					 bvec->bv_page,
8113 					 btrfs_ino(BTRFS_I(inode)),
8114 					 bvec->bv_offset);
8115 		else
8116 			uptodate = 0;
8117 		i++;
8118 	}
8119 
8120 	done->uptodate = uptodate;
8121 end:
8122 	complete(&done->done);
8123 	bio_put(bio);
8124 }
8125 
8126 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8127 		struct btrfs_io_bio *io_bio, blk_status_t err)
8128 {
8129 	struct btrfs_fs_info *fs_info;
8130 	struct bio_vec bvec;
8131 	struct bvec_iter iter;
8132 	struct btrfs_retry_complete done;
8133 	u64 start;
8134 	u64 offset = 0;
8135 	u32 sectorsize;
8136 	int nr_sectors;
8137 	unsigned int pgoff;
8138 	int csum_pos;
8139 	bool uptodate = (err == 0);
8140 	int ret;
8141 	blk_status_t status;
8142 
8143 	fs_info = BTRFS_I(inode)->root->fs_info;
8144 	sectorsize = fs_info->sectorsize;
8145 
8146 	err = BLK_STS_OK;
8147 	start = io_bio->logical;
8148 	done.inode = inode;
8149 	io_bio->bio.bi_iter = io_bio->iter;
8150 
8151 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8152 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8153 
8154 		pgoff = bvec.bv_offset;
8155 next_block:
8156 		if (uptodate) {
8157 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8158 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8159 					bvec.bv_page, pgoff, start, sectorsize);
8160 			if (likely(!ret))
8161 				goto next;
8162 		}
8163 try_again:
8164 		done.uptodate = 0;
8165 		done.start = start;
8166 		init_completion(&done.done);
8167 
8168 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8169 					pgoff, start, start + sectorsize - 1,
8170 					io_bio->mirror_num, btrfs_retry_endio,
8171 					&done);
8172 		if (status) {
8173 			err = status;
8174 			goto next;
8175 		}
8176 
8177 		wait_for_completion_io(&done.done);
8178 
8179 		if (!done.uptodate) {
8180 			/* We might have another mirror, so try again */
8181 			goto try_again;
8182 		}
8183 next:
8184 		offset += sectorsize;
8185 		start += sectorsize;
8186 
8187 		ASSERT(nr_sectors);
8188 
8189 		nr_sectors--;
8190 		if (nr_sectors) {
8191 			pgoff += sectorsize;
8192 			ASSERT(pgoff < PAGE_SIZE);
8193 			goto next_block;
8194 		}
8195 	}
8196 
8197 	return err;
8198 }
8199 
8200 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8201 		struct btrfs_io_bio *io_bio, blk_status_t err)
8202 {
8203 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8204 
8205 	if (skip_csum) {
8206 		if (unlikely(err))
8207 			return __btrfs_correct_data_nocsum(inode, io_bio);
8208 		else
8209 			return BLK_STS_OK;
8210 	} else {
8211 		return __btrfs_subio_endio_read(inode, io_bio, err);
8212 	}
8213 }
8214 
8215 static void btrfs_endio_direct_read(struct bio *bio)
8216 {
8217 	struct btrfs_dio_private *dip = bio->bi_private;
8218 	struct inode *inode = dip->inode;
8219 	struct bio *dio_bio;
8220 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8221 	blk_status_t err = bio->bi_status;
8222 
8223 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8224 		err = btrfs_subio_endio_read(inode, io_bio, err);
8225 
8226 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8227 		      dip->logical_offset + dip->bytes - 1);
8228 	dio_bio = dip->dio_bio;
8229 
8230 	kfree(dip);
8231 
8232 	dio_bio->bi_status = err;
8233 	dio_end_io(dio_bio);
8234 	btrfs_io_bio_free_csum(io_bio);
8235 	bio_put(bio);
8236 }
8237 
8238 static void __endio_write_update_ordered(struct inode *inode,
8239 					 const u64 offset, const u64 bytes,
8240 					 const bool uptodate)
8241 {
8242 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8243 	struct btrfs_ordered_extent *ordered = NULL;
8244 	struct btrfs_workqueue *wq;
8245 	u64 ordered_offset = offset;
8246 	u64 ordered_bytes = bytes;
8247 	u64 last_offset;
8248 
8249 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
8250 		wq = fs_info->endio_freespace_worker;
8251 	else
8252 		wq = fs_info->endio_write_workers;
8253 
8254 	while (ordered_offset < offset + bytes) {
8255 		last_offset = ordered_offset;
8256 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8257 							   &ordered_offset,
8258 							   ordered_bytes,
8259 							   uptodate)) {
8260 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
8261 					NULL);
8262 			btrfs_queue_work(wq, &ordered->work);
8263 		}
8264 		/*
8265 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8266 		 * extent in the range, we can exit.
8267 		 */
8268 		if (ordered_offset == last_offset)
8269 			return;
8270 		/*
8271 		 * Our bio might span multiple ordered extents. In this case
8272 		 * we keep going until we have accounted the whole dio.
8273 		 */
8274 		if (ordered_offset < offset + bytes) {
8275 			ordered_bytes = offset + bytes - ordered_offset;
8276 			ordered = NULL;
8277 		}
8278 	}
8279 }
8280 
8281 static void btrfs_endio_direct_write(struct bio *bio)
8282 {
8283 	struct btrfs_dio_private *dip = bio->bi_private;
8284 	struct bio *dio_bio = dip->dio_bio;
8285 
8286 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8287 				     dip->bytes, !bio->bi_status);
8288 
8289 	kfree(dip);
8290 
8291 	dio_bio->bi_status = bio->bi_status;
8292 	dio_end_io(dio_bio);
8293 	bio_put(bio);
8294 }
8295 
8296 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8297 				    struct bio *bio, u64 offset)
8298 {
8299 	struct inode *inode = private_data;
8300 	blk_status_t ret;
8301 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8302 	BUG_ON(ret); /* -ENOMEM */
8303 	return 0;
8304 }
8305 
8306 static void btrfs_end_dio_bio(struct bio *bio)
8307 {
8308 	struct btrfs_dio_private *dip = bio->bi_private;
8309 	blk_status_t err = bio->bi_status;
8310 
8311 	if (err)
8312 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8313 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8314 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8315 			   bio->bi_opf,
8316 			   (unsigned long long)bio->bi_iter.bi_sector,
8317 			   bio->bi_iter.bi_size, err);
8318 
8319 	if (dip->subio_endio)
8320 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8321 
8322 	if (err) {
8323 		/*
8324 		 * We want to perceive the errors flag being set before
8325 		 * decrementing the reference count. We don't need a barrier
8326 		 * since atomic operations with a return value are fully
8327 		 * ordered as per atomic_t.txt
8328 		 */
8329 		dip->errors = 1;
8330 	}
8331 
8332 	/* if there are more bios still pending for this dio, just exit */
8333 	if (!atomic_dec_and_test(&dip->pending_bios))
8334 		goto out;
8335 
8336 	if (dip->errors) {
8337 		bio_io_error(dip->orig_bio);
8338 	} else {
8339 		dip->dio_bio->bi_status = BLK_STS_OK;
8340 		bio_endio(dip->orig_bio);
8341 	}
8342 out:
8343 	bio_put(bio);
8344 }
8345 
8346 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8347 						 struct btrfs_dio_private *dip,
8348 						 struct bio *bio,
8349 						 u64 file_offset)
8350 {
8351 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8352 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8353 	blk_status_t ret;
8354 
8355 	/*
8356 	 * We load all the csum data we need when we submit
8357 	 * the first bio to reduce the csum tree search and
8358 	 * contention.
8359 	 */
8360 	if (dip->logical_offset == file_offset) {
8361 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8362 						file_offset);
8363 		if (ret)
8364 			return ret;
8365 	}
8366 
8367 	if (bio == dip->orig_bio)
8368 		return 0;
8369 
8370 	file_offset -= dip->logical_offset;
8371 	file_offset >>= inode->i_sb->s_blocksize_bits;
8372 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8373 
8374 	return 0;
8375 }
8376 
8377 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8378 		struct inode *inode, u64 file_offset, int async_submit)
8379 {
8380 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8381 	struct btrfs_dio_private *dip = bio->bi_private;
8382 	bool write = bio_op(bio) == REQ_OP_WRITE;
8383 	blk_status_t ret;
8384 
8385 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8386 	if (async_submit)
8387 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8388 
8389 	if (!write) {
8390 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8391 		if (ret)
8392 			goto err;
8393 	}
8394 
8395 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8396 		goto map;
8397 
8398 	if (write && async_submit) {
8399 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8400 					  file_offset, inode,
8401 					  btrfs_submit_bio_start_direct_io);
8402 		goto err;
8403 	} else if (write) {
8404 		/*
8405 		 * If we aren't doing async submit, calculate the csum of the
8406 		 * bio now.
8407 		 */
8408 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8409 		if (ret)
8410 			goto err;
8411 	} else {
8412 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8413 						     file_offset);
8414 		if (ret)
8415 			goto err;
8416 	}
8417 map:
8418 	ret = btrfs_map_bio(fs_info, bio, 0);
8419 err:
8420 	return ret;
8421 }
8422 
8423 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8424 {
8425 	struct inode *inode = dip->inode;
8426 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8427 	struct bio *bio;
8428 	struct bio *orig_bio = dip->orig_bio;
8429 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8430 	u64 file_offset = dip->logical_offset;
8431 	int async_submit = 0;
8432 	u64 submit_len;
8433 	int clone_offset = 0;
8434 	int clone_len;
8435 	int ret;
8436 	blk_status_t status;
8437 	struct btrfs_io_geometry geom;
8438 
8439 	submit_len = orig_bio->bi_iter.bi_size;
8440 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8441 				    start_sector << 9, submit_len, &geom);
8442 	if (ret)
8443 		return -EIO;
8444 
8445 	if (geom.len >= submit_len) {
8446 		bio = orig_bio;
8447 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8448 		goto submit;
8449 	}
8450 
8451 	/* async crcs make it difficult to collect full stripe writes. */
8452 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8453 		async_submit = 0;
8454 	else
8455 		async_submit = 1;
8456 
8457 	/* bio split */
8458 	ASSERT(geom.len <= INT_MAX);
8459 	atomic_inc(&dip->pending_bios);
8460 	do {
8461 		clone_len = min_t(int, submit_len, geom.len);
8462 
8463 		/*
8464 		 * This will never fail as it's passing GPF_NOFS and
8465 		 * the allocation is backed by btrfs_bioset.
8466 		 */
8467 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8468 					      clone_len);
8469 		bio->bi_private = dip;
8470 		bio->bi_end_io = btrfs_end_dio_bio;
8471 		btrfs_io_bio(bio)->logical = file_offset;
8472 
8473 		ASSERT(submit_len >= clone_len);
8474 		submit_len -= clone_len;
8475 		if (submit_len == 0)
8476 			break;
8477 
8478 		/*
8479 		 * Increase the count before we submit the bio so we know
8480 		 * the end IO handler won't happen before we increase the
8481 		 * count. Otherwise, the dip might get freed before we're
8482 		 * done setting it up.
8483 		 */
8484 		atomic_inc(&dip->pending_bios);
8485 
8486 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8487 						async_submit);
8488 		if (status) {
8489 			bio_put(bio);
8490 			atomic_dec(&dip->pending_bios);
8491 			goto out_err;
8492 		}
8493 
8494 		clone_offset += clone_len;
8495 		start_sector += clone_len >> 9;
8496 		file_offset += clone_len;
8497 
8498 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8499 				      start_sector << 9, submit_len, &geom);
8500 		if (ret)
8501 			goto out_err;
8502 	} while (submit_len > 0);
8503 
8504 submit:
8505 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8506 	if (!status)
8507 		return 0;
8508 
8509 	bio_put(bio);
8510 out_err:
8511 	dip->errors = 1;
8512 	/*
8513 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8514 	 * perceived to be set. This ordering is ensured by the fact that an
8515 	 * atomic operations with a return value are fully ordered as per
8516 	 * atomic_t.txt
8517 	 */
8518 	if (atomic_dec_and_test(&dip->pending_bios))
8519 		bio_io_error(dip->orig_bio);
8520 
8521 	/* bio_end_io() will handle error, so we needn't return it */
8522 	return 0;
8523 }
8524 
8525 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8526 				loff_t file_offset)
8527 {
8528 	struct btrfs_dio_private *dip = NULL;
8529 	struct bio *bio = NULL;
8530 	struct btrfs_io_bio *io_bio;
8531 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8532 	int ret = 0;
8533 
8534 	bio = btrfs_bio_clone(dio_bio);
8535 
8536 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8537 	if (!dip) {
8538 		ret = -ENOMEM;
8539 		goto free_ordered;
8540 	}
8541 
8542 	dip->private = dio_bio->bi_private;
8543 	dip->inode = inode;
8544 	dip->logical_offset = file_offset;
8545 	dip->bytes = dio_bio->bi_iter.bi_size;
8546 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8547 	bio->bi_private = dip;
8548 	dip->orig_bio = bio;
8549 	dip->dio_bio = dio_bio;
8550 	atomic_set(&dip->pending_bios, 0);
8551 	io_bio = btrfs_io_bio(bio);
8552 	io_bio->logical = file_offset;
8553 
8554 	if (write) {
8555 		bio->bi_end_io = btrfs_endio_direct_write;
8556 	} else {
8557 		bio->bi_end_io = btrfs_endio_direct_read;
8558 		dip->subio_endio = btrfs_subio_endio_read;
8559 	}
8560 
8561 	/*
8562 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8563 	 * even if we fail to submit a bio, because in such case we do the
8564 	 * corresponding error handling below and it must not be done a second
8565 	 * time by btrfs_direct_IO().
8566 	 */
8567 	if (write) {
8568 		struct btrfs_dio_data *dio_data = current->journal_info;
8569 
8570 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8571 			dip->bytes;
8572 		dio_data->unsubmitted_oe_range_start =
8573 			dio_data->unsubmitted_oe_range_end;
8574 	}
8575 
8576 	ret = btrfs_submit_direct_hook(dip);
8577 	if (!ret)
8578 		return;
8579 
8580 	btrfs_io_bio_free_csum(io_bio);
8581 
8582 free_ordered:
8583 	/*
8584 	 * If we arrived here it means either we failed to submit the dip
8585 	 * or we either failed to clone the dio_bio or failed to allocate the
8586 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8587 	 * call bio_endio against our io_bio so that we get proper resource
8588 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8589 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8590 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8591 	 */
8592 	if (bio && dip) {
8593 		bio_io_error(bio);
8594 		/*
8595 		 * The end io callbacks free our dip, do the final put on bio
8596 		 * and all the cleanup and final put for dio_bio (through
8597 		 * dio_end_io()).
8598 		 */
8599 		dip = NULL;
8600 		bio = NULL;
8601 	} else {
8602 		if (write)
8603 			__endio_write_update_ordered(inode,
8604 						file_offset,
8605 						dio_bio->bi_iter.bi_size,
8606 						false);
8607 		else
8608 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8609 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8610 
8611 		dio_bio->bi_status = BLK_STS_IOERR;
8612 		/*
8613 		 * Releases and cleans up our dio_bio, no need to bio_put()
8614 		 * nor bio_endio()/bio_io_error() against dio_bio.
8615 		 */
8616 		dio_end_io(dio_bio);
8617 	}
8618 	if (bio)
8619 		bio_put(bio);
8620 	kfree(dip);
8621 }
8622 
8623 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8624 			       const struct iov_iter *iter, loff_t offset)
8625 {
8626 	int seg;
8627 	int i;
8628 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8629 	ssize_t retval = -EINVAL;
8630 
8631 	if (offset & blocksize_mask)
8632 		goto out;
8633 
8634 	if (iov_iter_alignment(iter) & blocksize_mask)
8635 		goto out;
8636 
8637 	/* If this is a write we don't need to check anymore */
8638 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8639 		return 0;
8640 	/*
8641 	 * Check to make sure we don't have duplicate iov_base's in this
8642 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8643 	 * when reading back.
8644 	 */
8645 	for (seg = 0; seg < iter->nr_segs; seg++) {
8646 		for (i = seg + 1; i < iter->nr_segs; i++) {
8647 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8648 				goto out;
8649 		}
8650 	}
8651 	retval = 0;
8652 out:
8653 	return retval;
8654 }
8655 
8656 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8657 {
8658 	struct file *file = iocb->ki_filp;
8659 	struct inode *inode = file->f_mapping->host;
8660 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8661 	struct btrfs_dio_data dio_data = { 0 };
8662 	struct extent_changeset *data_reserved = NULL;
8663 	loff_t offset = iocb->ki_pos;
8664 	size_t count = 0;
8665 	int flags = 0;
8666 	bool wakeup = true;
8667 	bool relock = false;
8668 	ssize_t ret;
8669 
8670 	if (check_direct_IO(fs_info, iter, offset))
8671 		return 0;
8672 
8673 	inode_dio_begin(inode);
8674 
8675 	/*
8676 	 * The generic stuff only does filemap_write_and_wait_range, which
8677 	 * isn't enough if we've written compressed pages to this area, so
8678 	 * we need to flush the dirty pages again to make absolutely sure
8679 	 * that any outstanding dirty pages are on disk.
8680 	 */
8681 	count = iov_iter_count(iter);
8682 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8683 		     &BTRFS_I(inode)->runtime_flags))
8684 		filemap_fdatawrite_range(inode->i_mapping, offset,
8685 					 offset + count - 1);
8686 
8687 	if (iov_iter_rw(iter) == WRITE) {
8688 		/*
8689 		 * If the write DIO is beyond the EOF, we need update
8690 		 * the isize, but it is protected by i_mutex. So we can
8691 		 * not unlock the i_mutex at this case.
8692 		 */
8693 		if (offset + count <= inode->i_size) {
8694 			dio_data.overwrite = 1;
8695 			inode_unlock(inode);
8696 			relock = true;
8697 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8698 			ret = -EAGAIN;
8699 			goto out;
8700 		}
8701 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8702 						   offset, count);
8703 		if (ret)
8704 			goto out;
8705 
8706 		/*
8707 		 * We need to know how many extents we reserved so that we can
8708 		 * do the accounting properly if we go over the number we
8709 		 * originally calculated.  Abuse current->journal_info for this.
8710 		 */
8711 		dio_data.reserve = round_up(count,
8712 					    fs_info->sectorsize);
8713 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8714 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8715 		current->journal_info = &dio_data;
8716 		down_read(&BTRFS_I(inode)->dio_sem);
8717 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8718 				     &BTRFS_I(inode)->runtime_flags)) {
8719 		inode_dio_end(inode);
8720 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8721 		wakeup = false;
8722 	}
8723 
8724 	ret = __blockdev_direct_IO(iocb, inode,
8725 				   fs_info->fs_devices->latest_bdev,
8726 				   iter, btrfs_get_blocks_direct, NULL,
8727 				   btrfs_submit_direct, flags);
8728 	if (iov_iter_rw(iter) == WRITE) {
8729 		up_read(&BTRFS_I(inode)->dio_sem);
8730 		current->journal_info = NULL;
8731 		if (ret < 0 && ret != -EIOCBQUEUED) {
8732 			if (dio_data.reserve)
8733 				btrfs_delalloc_release_space(inode, data_reserved,
8734 					offset, dio_data.reserve, true);
8735 			/*
8736 			 * On error we might have left some ordered extents
8737 			 * without submitting corresponding bios for them, so
8738 			 * cleanup them up to avoid other tasks getting them
8739 			 * and waiting for them to complete forever.
8740 			 */
8741 			if (dio_data.unsubmitted_oe_range_start <
8742 			    dio_data.unsubmitted_oe_range_end)
8743 				__endio_write_update_ordered(inode,
8744 					dio_data.unsubmitted_oe_range_start,
8745 					dio_data.unsubmitted_oe_range_end -
8746 					dio_data.unsubmitted_oe_range_start,
8747 					false);
8748 		} else if (ret >= 0 && (size_t)ret < count)
8749 			btrfs_delalloc_release_space(inode, data_reserved,
8750 					offset, count - (size_t)ret, true);
8751 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8752 	}
8753 out:
8754 	if (wakeup)
8755 		inode_dio_end(inode);
8756 	if (relock)
8757 		inode_lock(inode);
8758 
8759 	extent_changeset_free(data_reserved);
8760 	return ret;
8761 }
8762 
8763 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8764 
8765 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8766 		__u64 start, __u64 len)
8767 {
8768 	int	ret;
8769 
8770 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8771 	if (ret)
8772 		return ret;
8773 
8774 	return extent_fiemap(inode, fieinfo, start, len);
8775 }
8776 
8777 int btrfs_readpage(struct file *file, struct page *page)
8778 {
8779 	struct extent_io_tree *tree;
8780 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8781 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8782 }
8783 
8784 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8785 {
8786 	struct inode *inode = page->mapping->host;
8787 	int ret;
8788 
8789 	if (current->flags & PF_MEMALLOC) {
8790 		redirty_page_for_writepage(wbc, page);
8791 		unlock_page(page);
8792 		return 0;
8793 	}
8794 
8795 	/*
8796 	 * If we are under memory pressure we will call this directly from the
8797 	 * VM, we need to make sure we have the inode referenced for the ordered
8798 	 * extent.  If not just return like we didn't do anything.
8799 	 */
8800 	if (!igrab(inode)) {
8801 		redirty_page_for_writepage(wbc, page);
8802 		return AOP_WRITEPAGE_ACTIVATE;
8803 	}
8804 	ret = extent_write_full_page(page, wbc);
8805 	btrfs_add_delayed_iput(inode);
8806 	return ret;
8807 }
8808 
8809 static int btrfs_writepages(struct address_space *mapping,
8810 			    struct writeback_control *wbc)
8811 {
8812 	return extent_writepages(mapping, wbc);
8813 }
8814 
8815 static int
8816 btrfs_readpages(struct file *file, struct address_space *mapping,
8817 		struct list_head *pages, unsigned nr_pages)
8818 {
8819 	return extent_readpages(mapping, pages, nr_pages);
8820 }
8821 
8822 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8823 {
8824 	int ret = try_release_extent_mapping(page, gfp_flags);
8825 	if (ret == 1) {
8826 		ClearPagePrivate(page);
8827 		set_page_private(page, 0);
8828 		put_page(page);
8829 	}
8830 	return ret;
8831 }
8832 
8833 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8834 {
8835 	if (PageWriteback(page) || PageDirty(page))
8836 		return 0;
8837 	return __btrfs_releasepage(page, gfp_flags);
8838 }
8839 
8840 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8841 				 unsigned int length)
8842 {
8843 	struct inode *inode = page->mapping->host;
8844 	struct extent_io_tree *tree;
8845 	struct btrfs_ordered_extent *ordered;
8846 	struct extent_state *cached_state = NULL;
8847 	u64 page_start = page_offset(page);
8848 	u64 page_end = page_start + PAGE_SIZE - 1;
8849 	u64 start;
8850 	u64 end;
8851 	int inode_evicting = inode->i_state & I_FREEING;
8852 
8853 	/*
8854 	 * we have the page locked, so new writeback can't start,
8855 	 * and the dirty bit won't be cleared while we are here.
8856 	 *
8857 	 * Wait for IO on this page so that we can safely clear
8858 	 * the PagePrivate2 bit and do ordered accounting
8859 	 */
8860 	wait_on_page_writeback(page);
8861 
8862 	tree = &BTRFS_I(inode)->io_tree;
8863 	if (offset) {
8864 		btrfs_releasepage(page, GFP_NOFS);
8865 		return;
8866 	}
8867 
8868 	if (!inode_evicting)
8869 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8870 again:
8871 	start = page_start;
8872 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8873 					page_end - start + 1);
8874 	if (ordered) {
8875 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8876 		/*
8877 		 * IO on this page will never be started, so we need
8878 		 * to account for any ordered extents now
8879 		 */
8880 		if (!inode_evicting)
8881 			clear_extent_bit(tree, start, end,
8882 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8883 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8884 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8885 		/*
8886 		 * whoever cleared the private bit is responsible
8887 		 * for the finish_ordered_io
8888 		 */
8889 		if (TestClearPagePrivate2(page)) {
8890 			struct btrfs_ordered_inode_tree *tree;
8891 			u64 new_len;
8892 
8893 			tree = &BTRFS_I(inode)->ordered_tree;
8894 
8895 			spin_lock_irq(&tree->lock);
8896 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8897 			new_len = start - ordered->file_offset;
8898 			if (new_len < ordered->truncated_len)
8899 				ordered->truncated_len = new_len;
8900 			spin_unlock_irq(&tree->lock);
8901 
8902 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8903 							   start,
8904 							   end - start + 1, 1))
8905 				btrfs_finish_ordered_io(ordered);
8906 		}
8907 		btrfs_put_ordered_extent(ordered);
8908 		if (!inode_evicting) {
8909 			cached_state = NULL;
8910 			lock_extent_bits(tree, start, end,
8911 					 &cached_state);
8912 		}
8913 
8914 		start = end + 1;
8915 		if (start < page_end)
8916 			goto again;
8917 	}
8918 
8919 	/*
8920 	 * Qgroup reserved space handler
8921 	 * Page here will be either
8922 	 * 1) Already written to disk
8923 	 *    In this case, its reserved space is released from data rsv map
8924 	 *    and will be freed by delayed_ref handler finally.
8925 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8926 	 *    space.
8927 	 * 2) Not written to disk
8928 	 *    This means the reserved space should be freed here. However,
8929 	 *    if a truncate invalidates the page (by clearing PageDirty)
8930 	 *    and the page is accounted for while allocating extent
8931 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8932 	 *    free the entire extent.
8933 	 */
8934 	if (PageDirty(page))
8935 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8936 	if (!inode_evicting) {
8937 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8938 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8939 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8940 				 &cached_state);
8941 
8942 		__btrfs_releasepage(page, GFP_NOFS);
8943 	}
8944 
8945 	ClearPageChecked(page);
8946 	if (PagePrivate(page)) {
8947 		ClearPagePrivate(page);
8948 		set_page_private(page, 0);
8949 		put_page(page);
8950 	}
8951 }
8952 
8953 /*
8954  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8955  * called from a page fault handler when a page is first dirtied. Hence we must
8956  * be careful to check for EOF conditions here. We set the page up correctly
8957  * for a written page which means we get ENOSPC checking when writing into
8958  * holes and correct delalloc and unwritten extent mapping on filesystems that
8959  * support these features.
8960  *
8961  * We are not allowed to take the i_mutex here so we have to play games to
8962  * protect against truncate races as the page could now be beyond EOF.  Because
8963  * truncate_setsize() writes the inode size before removing pages, once we have
8964  * the page lock we can determine safely if the page is beyond EOF. If it is not
8965  * beyond EOF, then the page is guaranteed safe against truncation until we
8966  * unlock the page.
8967  */
8968 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8969 {
8970 	struct page *page = vmf->page;
8971 	struct inode *inode = file_inode(vmf->vma->vm_file);
8972 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8973 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8974 	struct btrfs_ordered_extent *ordered;
8975 	struct extent_state *cached_state = NULL;
8976 	struct extent_changeset *data_reserved = NULL;
8977 	char *kaddr;
8978 	unsigned long zero_start;
8979 	loff_t size;
8980 	vm_fault_t ret;
8981 	int ret2;
8982 	int reserved = 0;
8983 	u64 reserved_space;
8984 	u64 page_start;
8985 	u64 page_end;
8986 	u64 end;
8987 
8988 	reserved_space = PAGE_SIZE;
8989 
8990 	sb_start_pagefault(inode->i_sb);
8991 	page_start = page_offset(page);
8992 	page_end = page_start + PAGE_SIZE - 1;
8993 	end = page_end;
8994 
8995 	/*
8996 	 * Reserving delalloc space after obtaining the page lock can lead to
8997 	 * deadlock. For example, if a dirty page is locked by this function
8998 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8999 	 * dirty page write out, then the btrfs_writepage() function could
9000 	 * end up waiting indefinitely to get a lock on the page currently
9001 	 * being processed by btrfs_page_mkwrite() function.
9002 	 */
9003 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9004 					   reserved_space);
9005 	if (!ret2) {
9006 		ret2 = file_update_time(vmf->vma->vm_file);
9007 		reserved = 1;
9008 	}
9009 	if (ret2) {
9010 		ret = vmf_error(ret2);
9011 		if (reserved)
9012 			goto out;
9013 		goto out_noreserve;
9014 	}
9015 
9016 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9017 again:
9018 	lock_page(page);
9019 	size = i_size_read(inode);
9020 
9021 	if ((page->mapping != inode->i_mapping) ||
9022 	    (page_start >= size)) {
9023 		/* page got truncated out from underneath us */
9024 		goto out_unlock;
9025 	}
9026 	wait_on_page_writeback(page);
9027 
9028 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9029 	set_page_extent_mapped(page);
9030 
9031 	/*
9032 	 * we can't set the delalloc bits if there are pending ordered
9033 	 * extents.  Drop our locks and wait for them to finish
9034 	 */
9035 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9036 			PAGE_SIZE);
9037 	if (ordered) {
9038 		unlock_extent_cached(io_tree, page_start, page_end,
9039 				     &cached_state);
9040 		unlock_page(page);
9041 		btrfs_start_ordered_extent(inode, ordered, 1);
9042 		btrfs_put_ordered_extent(ordered);
9043 		goto again;
9044 	}
9045 
9046 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9047 		reserved_space = round_up(size - page_start,
9048 					  fs_info->sectorsize);
9049 		if (reserved_space < PAGE_SIZE) {
9050 			end = page_start + reserved_space - 1;
9051 			btrfs_delalloc_release_space(inode, data_reserved,
9052 					page_start, PAGE_SIZE - reserved_space,
9053 					true);
9054 		}
9055 	}
9056 
9057 	/*
9058 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9059 	 * faulted in, but write(2) could also dirty a page and set delalloc
9060 	 * bits, thus in this case for space account reason, we still need to
9061 	 * clear any delalloc bits within this page range since we have to
9062 	 * reserve data&meta space before lock_page() (see above comments).
9063 	 */
9064 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9065 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9066 			  EXTENT_DEFRAG, 0, 0, &cached_state);
9067 
9068 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9069 					&cached_state);
9070 	if (ret2) {
9071 		unlock_extent_cached(io_tree, page_start, page_end,
9072 				     &cached_state);
9073 		ret = VM_FAULT_SIGBUS;
9074 		goto out_unlock;
9075 	}
9076 	ret2 = 0;
9077 
9078 	/* page is wholly or partially inside EOF */
9079 	if (page_start + PAGE_SIZE > size)
9080 		zero_start = offset_in_page(size);
9081 	else
9082 		zero_start = PAGE_SIZE;
9083 
9084 	if (zero_start != PAGE_SIZE) {
9085 		kaddr = kmap(page);
9086 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9087 		flush_dcache_page(page);
9088 		kunmap(page);
9089 	}
9090 	ClearPageChecked(page);
9091 	set_page_dirty(page);
9092 	SetPageUptodate(page);
9093 
9094 	BTRFS_I(inode)->last_trans = fs_info->generation;
9095 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9096 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9097 
9098 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9099 
9100 	if (!ret2) {
9101 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9102 		sb_end_pagefault(inode->i_sb);
9103 		extent_changeset_free(data_reserved);
9104 		return VM_FAULT_LOCKED;
9105 	}
9106 
9107 out_unlock:
9108 	unlock_page(page);
9109 out:
9110 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9111 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9112 				     reserved_space, (ret != 0));
9113 out_noreserve:
9114 	sb_end_pagefault(inode->i_sb);
9115 	extent_changeset_free(data_reserved);
9116 	return ret;
9117 }
9118 
9119 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9120 {
9121 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9122 	struct btrfs_root *root = BTRFS_I(inode)->root;
9123 	struct btrfs_block_rsv *rsv;
9124 	int ret;
9125 	struct btrfs_trans_handle *trans;
9126 	u64 mask = fs_info->sectorsize - 1;
9127 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9128 
9129 	if (!skip_writeback) {
9130 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9131 					       (u64)-1);
9132 		if (ret)
9133 			return ret;
9134 	}
9135 
9136 	/*
9137 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9138 	 * things going on here:
9139 	 *
9140 	 * 1) We need to reserve space to update our inode.
9141 	 *
9142 	 * 2) We need to have something to cache all the space that is going to
9143 	 * be free'd up by the truncate operation, but also have some slack
9144 	 * space reserved in case it uses space during the truncate (thank you
9145 	 * very much snapshotting).
9146 	 *
9147 	 * And we need these to be separate.  The fact is we can use a lot of
9148 	 * space doing the truncate, and we have no earthly idea how much space
9149 	 * we will use, so we need the truncate reservation to be separate so it
9150 	 * doesn't end up using space reserved for updating the inode.  We also
9151 	 * need to be able to stop the transaction and start a new one, which
9152 	 * means we need to be able to update the inode several times, and we
9153 	 * have no idea of knowing how many times that will be, so we can't just
9154 	 * reserve 1 item for the entirety of the operation, so that has to be
9155 	 * done separately as well.
9156 	 *
9157 	 * So that leaves us with
9158 	 *
9159 	 * 1) rsv - for the truncate reservation, which we will steal from the
9160 	 * transaction reservation.
9161 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9162 	 * updating the inode.
9163 	 */
9164 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9165 	if (!rsv)
9166 		return -ENOMEM;
9167 	rsv->size = min_size;
9168 	rsv->failfast = 1;
9169 
9170 	/*
9171 	 * 1 for the truncate slack space
9172 	 * 1 for updating the inode.
9173 	 */
9174 	trans = btrfs_start_transaction(root, 2);
9175 	if (IS_ERR(trans)) {
9176 		ret = PTR_ERR(trans);
9177 		goto out;
9178 	}
9179 
9180 	/* Migrate the slack space for the truncate to our reserve */
9181 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9182 				      min_size, false);
9183 	BUG_ON(ret);
9184 
9185 	/*
9186 	 * So if we truncate and then write and fsync we normally would just
9187 	 * write the extents that changed, which is a problem if we need to
9188 	 * first truncate that entire inode.  So set this flag so we write out
9189 	 * all of the extents in the inode to the sync log so we're completely
9190 	 * safe.
9191 	 */
9192 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9193 	trans->block_rsv = rsv;
9194 
9195 	while (1) {
9196 		ret = btrfs_truncate_inode_items(trans, root, inode,
9197 						 inode->i_size,
9198 						 BTRFS_EXTENT_DATA_KEY);
9199 		trans->block_rsv = &fs_info->trans_block_rsv;
9200 		if (ret != -ENOSPC && ret != -EAGAIN)
9201 			break;
9202 
9203 		ret = btrfs_update_inode(trans, root, inode);
9204 		if (ret)
9205 			break;
9206 
9207 		btrfs_end_transaction(trans);
9208 		btrfs_btree_balance_dirty(fs_info);
9209 
9210 		trans = btrfs_start_transaction(root, 2);
9211 		if (IS_ERR(trans)) {
9212 			ret = PTR_ERR(trans);
9213 			trans = NULL;
9214 			break;
9215 		}
9216 
9217 		btrfs_block_rsv_release(fs_info, rsv, -1);
9218 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9219 					      rsv, min_size, false);
9220 		BUG_ON(ret);	/* shouldn't happen */
9221 		trans->block_rsv = rsv;
9222 	}
9223 
9224 	/*
9225 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9226 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9227 	 * we've truncated everything except the last little bit, and can do
9228 	 * btrfs_truncate_block and then update the disk_i_size.
9229 	 */
9230 	if (ret == NEED_TRUNCATE_BLOCK) {
9231 		btrfs_end_transaction(trans);
9232 		btrfs_btree_balance_dirty(fs_info);
9233 
9234 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9235 		if (ret)
9236 			goto out;
9237 		trans = btrfs_start_transaction(root, 1);
9238 		if (IS_ERR(trans)) {
9239 			ret = PTR_ERR(trans);
9240 			goto out;
9241 		}
9242 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9243 	}
9244 
9245 	if (trans) {
9246 		int ret2;
9247 
9248 		trans->block_rsv = &fs_info->trans_block_rsv;
9249 		ret2 = btrfs_update_inode(trans, root, inode);
9250 		if (ret2 && !ret)
9251 			ret = ret2;
9252 
9253 		ret2 = btrfs_end_transaction(trans);
9254 		if (ret2 && !ret)
9255 			ret = ret2;
9256 		btrfs_btree_balance_dirty(fs_info);
9257 	}
9258 out:
9259 	btrfs_free_block_rsv(fs_info, rsv);
9260 
9261 	return ret;
9262 }
9263 
9264 /*
9265  * create a new subvolume directory/inode (helper for the ioctl).
9266  */
9267 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9268 			     struct btrfs_root *new_root,
9269 			     struct btrfs_root *parent_root,
9270 			     u64 new_dirid)
9271 {
9272 	struct inode *inode;
9273 	int err;
9274 	u64 index = 0;
9275 
9276 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9277 				new_dirid, new_dirid,
9278 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9279 				&index);
9280 	if (IS_ERR(inode))
9281 		return PTR_ERR(inode);
9282 	inode->i_op = &btrfs_dir_inode_operations;
9283 	inode->i_fop = &btrfs_dir_file_operations;
9284 
9285 	set_nlink(inode, 1);
9286 	btrfs_i_size_write(BTRFS_I(inode), 0);
9287 	unlock_new_inode(inode);
9288 
9289 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9290 	if (err)
9291 		btrfs_err(new_root->fs_info,
9292 			  "error inheriting subvolume %llu properties: %d",
9293 			  new_root->root_key.objectid, err);
9294 
9295 	err = btrfs_update_inode(trans, new_root, inode);
9296 
9297 	iput(inode);
9298 	return err;
9299 }
9300 
9301 struct inode *btrfs_alloc_inode(struct super_block *sb)
9302 {
9303 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9304 	struct btrfs_inode *ei;
9305 	struct inode *inode;
9306 
9307 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9308 	if (!ei)
9309 		return NULL;
9310 
9311 	ei->root = NULL;
9312 	ei->generation = 0;
9313 	ei->last_trans = 0;
9314 	ei->last_sub_trans = 0;
9315 	ei->logged_trans = 0;
9316 	ei->delalloc_bytes = 0;
9317 	ei->new_delalloc_bytes = 0;
9318 	ei->defrag_bytes = 0;
9319 	ei->disk_i_size = 0;
9320 	ei->flags = 0;
9321 	ei->csum_bytes = 0;
9322 	ei->index_cnt = (u64)-1;
9323 	ei->dir_index = 0;
9324 	ei->last_unlink_trans = 0;
9325 	ei->last_log_commit = 0;
9326 
9327 	spin_lock_init(&ei->lock);
9328 	ei->outstanding_extents = 0;
9329 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9330 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9331 					      BTRFS_BLOCK_RSV_DELALLOC);
9332 	ei->runtime_flags = 0;
9333 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9334 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9335 
9336 	ei->delayed_node = NULL;
9337 
9338 	ei->i_otime.tv_sec = 0;
9339 	ei->i_otime.tv_nsec = 0;
9340 
9341 	inode = &ei->vfs_inode;
9342 	extent_map_tree_init(&ei->extent_tree);
9343 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9344 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9345 			    IO_TREE_INODE_IO_FAILURE, inode);
9346 	ei->io_tree.track_uptodate = true;
9347 	ei->io_failure_tree.track_uptodate = true;
9348 	atomic_set(&ei->sync_writers, 0);
9349 	mutex_init(&ei->log_mutex);
9350 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9351 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9352 	INIT_LIST_HEAD(&ei->delayed_iput);
9353 	RB_CLEAR_NODE(&ei->rb_node);
9354 	init_rwsem(&ei->dio_sem);
9355 
9356 	return inode;
9357 }
9358 
9359 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9360 void btrfs_test_destroy_inode(struct inode *inode)
9361 {
9362 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9363 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9364 }
9365 #endif
9366 
9367 void btrfs_free_inode(struct inode *inode)
9368 {
9369 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9370 }
9371 
9372 void btrfs_destroy_inode(struct inode *inode)
9373 {
9374 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9375 	struct btrfs_ordered_extent *ordered;
9376 	struct btrfs_root *root = BTRFS_I(inode)->root;
9377 
9378 	WARN_ON(!hlist_empty(&inode->i_dentry));
9379 	WARN_ON(inode->i_data.nrpages);
9380 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9381 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9382 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9383 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9384 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9385 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9386 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9387 
9388 	/*
9389 	 * This can happen where we create an inode, but somebody else also
9390 	 * created the same inode and we need to destroy the one we already
9391 	 * created.
9392 	 */
9393 	if (!root)
9394 		return;
9395 
9396 	while (1) {
9397 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9398 		if (!ordered)
9399 			break;
9400 		else {
9401 			btrfs_err(fs_info,
9402 				  "found ordered extent %llu %llu on inode cleanup",
9403 				  ordered->file_offset, ordered->len);
9404 			btrfs_remove_ordered_extent(inode, ordered);
9405 			btrfs_put_ordered_extent(ordered);
9406 			btrfs_put_ordered_extent(ordered);
9407 		}
9408 	}
9409 	btrfs_qgroup_check_reserved_leak(inode);
9410 	inode_tree_del(inode);
9411 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9412 }
9413 
9414 int btrfs_drop_inode(struct inode *inode)
9415 {
9416 	struct btrfs_root *root = BTRFS_I(inode)->root;
9417 
9418 	if (root == NULL)
9419 		return 1;
9420 
9421 	/* the snap/subvol tree is on deleting */
9422 	if (btrfs_root_refs(&root->root_item) == 0)
9423 		return 1;
9424 	else
9425 		return generic_drop_inode(inode);
9426 }
9427 
9428 static void init_once(void *foo)
9429 {
9430 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9431 
9432 	inode_init_once(&ei->vfs_inode);
9433 }
9434 
9435 void __cold btrfs_destroy_cachep(void)
9436 {
9437 	/*
9438 	 * Make sure all delayed rcu free inodes are flushed before we
9439 	 * destroy cache.
9440 	 */
9441 	rcu_barrier();
9442 	kmem_cache_destroy(btrfs_inode_cachep);
9443 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9444 	kmem_cache_destroy(btrfs_path_cachep);
9445 	kmem_cache_destroy(btrfs_free_space_cachep);
9446 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9447 }
9448 
9449 int __init btrfs_init_cachep(void)
9450 {
9451 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9452 			sizeof(struct btrfs_inode), 0,
9453 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9454 			init_once);
9455 	if (!btrfs_inode_cachep)
9456 		goto fail;
9457 
9458 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9459 			sizeof(struct btrfs_trans_handle), 0,
9460 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9461 	if (!btrfs_trans_handle_cachep)
9462 		goto fail;
9463 
9464 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9465 			sizeof(struct btrfs_path), 0,
9466 			SLAB_MEM_SPREAD, NULL);
9467 	if (!btrfs_path_cachep)
9468 		goto fail;
9469 
9470 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9471 			sizeof(struct btrfs_free_space), 0,
9472 			SLAB_MEM_SPREAD, NULL);
9473 	if (!btrfs_free_space_cachep)
9474 		goto fail;
9475 
9476 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9477 							PAGE_SIZE, PAGE_SIZE,
9478 							SLAB_RED_ZONE, NULL);
9479 	if (!btrfs_free_space_bitmap_cachep)
9480 		goto fail;
9481 
9482 	return 0;
9483 fail:
9484 	btrfs_destroy_cachep();
9485 	return -ENOMEM;
9486 }
9487 
9488 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9489 			 u32 request_mask, unsigned int flags)
9490 {
9491 	u64 delalloc_bytes;
9492 	struct inode *inode = d_inode(path->dentry);
9493 	u32 blocksize = inode->i_sb->s_blocksize;
9494 	u32 bi_flags = BTRFS_I(inode)->flags;
9495 
9496 	stat->result_mask |= STATX_BTIME;
9497 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9498 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9499 	if (bi_flags & BTRFS_INODE_APPEND)
9500 		stat->attributes |= STATX_ATTR_APPEND;
9501 	if (bi_flags & BTRFS_INODE_COMPRESS)
9502 		stat->attributes |= STATX_ATTR_COMPRESSED;
9503 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9504 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9505 	if (bi_flags & BTRFS_INODE_NODUMP)
9506 		stat->attributes |= STATX_ATTR_NODUMP;
9507 
9508 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9509 				  STATX_ATTR_COMPRESSED |
9510 				  STATX_ATTR_IMMUTABLE |
9511 				  STATX_ATTR_NODUMP);
9512 
9513 	generic_fillattr(inode, stat);
9514 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9515 
9516 	spin_lock(&BTRFS_I(inode)->lock);
9517 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9518 	spin_unlock(&BTRFS_I(inode)->lock);
9519 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9520 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9521 	return 0;
9522 }
9523 
9524 static int btrfs_rename_exchange(struct inode *old_dir,
9525 			      struct dentry *old_dentry,
9526 			      struct inode *new_dir,
9527 			      struct dentry *new_dentry)
9528 {
9529 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9530 	struct btrfs_trans_handle *trans;
9531 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9532 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9533 	struct inode *new_inode = new_dentry->d_inode;
9534 	struct inode *old_inode = old_dentry->d_inode;
9535 	struct timespec64 ctime = current_time(old_inode);
9536 	struct dentry *parent;
9537 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9538 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9539 	u64 old_idx = 0;
9540 	u64 new_idx = 0;
9541 	u64 root_objectid;
9542 	int ret;
9543 	bool root_log_pinned = false;
9544 	bool dest_log_pinned = false;
9545 	struct btrfs_log_ctx ctx_root;
9546 	struct btrfs_log_ctx ctx_dest;
9547 	bool sync_log_root = false;
9548 	bool sync_log_dest = false;
9549 	bool commit_transaction = false;
9550 
9551 	/* we only allow rename subvolume link between subvolumes */
9552 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9553 		return -EXDEV;
9554 
9555 	btrfs_init_log_ctx(&ctx_root, old_inode);
9556 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9557 
9558 	/* close the race window with snapshot create/destroy ioctl */
9559 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9560 		down_read(&fs_info->subvol_sem);
9561 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9562 		down_read(&fs_info->subvol_sem);
9563 
9564 	/*
9565 	 * We want to reserve the absolute worst case amount of items.  So if
9566 	 * both inodes are subvols and we need to unlink them then that would
9567 	 * require 4 item modifications, but if they are both normal inodes it
9568 	 * would require 5 item modifications, so we'll assume their normal
9569 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9570 	 * should cover the worst case number of items we'll modify.
9571 	 */
9572 	trans = btrfs_start_transaction(root, 12);
9573 	if (IS_ERR(trans)) {
9574 		ret = PTR_ERR(trans);
9575 		goto out_notrans;
9576 	}
9577 
9578 	if (dest != root)
9579 		btrfs_record_root_in_trans(trans, dest);
9580 
9581 	/*
9582 	 * We need to find a free sequence number both in the source and
9583 	 * in the destination directory for the exchange.
9584 	 */
9585 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9586 	if (ret)
9587 		goto out_fail;
9588 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9589 	if (ret)
9590 		goto out_fail;
9591 
9592 	BTRFS_I(old_inode)->dir_index = 0ULL;
9593 	BTRFS_I(new_inode)->dir_index = 0ULL;
9594 
9595 	/* Reference for the source. */
9596 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9597 		/* force full log commit if subvolume involved. */
9598 		btrfs_set_log_full_commit(trans);
9599 	} else {
9600 		btrfs_pin_log_trans(root);
9601 		root_log_pinned = true;
9602 		ret = btrfs_insert_inode_ref(trans, dest,
9603 					     new_dentry->d_name.name,
9604 					     new_dentry->d_name.len,
9605 					     old_ino,
9606 					     btrfs_ino(BTRFS_I(new_dir)),
9607 					     old_idx);
9608 		if (ret)
9609 			goto out_fail;
9610 	}
9611 
9612 	/* And now for the dest. */
9613 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9614 		/* force full log commit if subvolume involved. */
9615 		btrfs_set_log_full_commit(trans);
9616 	} else {
9617 		btrfs_pin_log_trans(dest);
9618 		dest_log_pinned = true;
9619 		ret = btrfs_insert_inode_ref(trans, root,
9620 					     old_dentry->d_name.name,
9621 					     old_dentry->d_name.len,
9622 					     new_ino,
9623 					     btrfs_ino(BTRFS_I(old_dir)),
9624 					     new_idx);
9625 		if (ret)
9626 			goto out_fail;
9627 	}
9628 
9629 	/* Update inode version and ctime/mtime. */
9630 	inode_inc_iversion(old_dir);
9631 	inode_inc_iversion(new_dir);
9632 	inode_inc_iversion(old_inode);
9633 	inode_inc_iversion(new_inode);
9634 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9635 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9636 	old_inode->i_ctime = ctime;
9637 	new_inode->i_ctime = ctime;
9638 
9639 	if (old_dentry->d_parent != new_dentry->d_parent) {
9640 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9641 				BTRFS_I(old_inode), 1);
9642 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9643 				BTRFS_I(new_inode), 1);
9644 	}
9645 
9646 	/* src is a subvolume */
9647 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9648 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9649 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9650 					  old_dentry->d_name.name,
9651 					  old_dentry->d_name.len);
9652 	} else { /* src is an inode */
9653 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9654 					   BTRFS_I(old_dentry->d_inode),
9655 					   old_dentry->d_name.name,
9656 					   old_dentry->d_name.len);
9657 		if (!ret)
9658 			ret = btrfs_update_inode(trans, root, old_inode);
9659 	}
9660 	if (ret) {
9661 		btrfs_abort_transaction(trans, ret);
9662 		goto out_fail;
9663 	}
9664 
9665 	/* dest is a subvolume */
9666 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9667 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9668 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9669 					  new_dentry->d_name.name,
9670 					  new_dentry->d_name.len);
9671 	} else { /* dest is an inode */
9672 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9673 					   BTRFS_I(new_dentry->d_inode),
9674 					   new_dentry->d_name.name,
9675 					   new_dentry->d_name.len);
9676 		if (!ret)
9677 			ret = btrfs_update_inode(trans, dest, new_inode);
9678 	}
9679 	if (ret) {
9680 		btrfs_abort_transaction(trans, ret);
9681 		goto out_fail;
9682 	}
9683 
9684 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9685 			     new_dentry->d_name.name,
9686 			     new_dentry->d_name.len, 0, old_idx);
9687 	if (ret) {
9688 		btrfs_abort_transaction(trans, ret);
9689 		goto out_fail;
9690 	}
9691 
9692 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9693 			     old_dentry->d_name.name,
9694 			     old_dentry->d_name.len, 0, new_idx);
9695 	if (ret) {
9696 		btrfs_abort_transaction(trans, ret);
9697 		goto out_fail;
9698 	}
9699 
9700 	if (old_inode->i_nlink == 1)
9701 		BTRFS_I(old_inode)->dir_index = old_idx;
9702 	if (new_inode->i_nlink == 1)
9703 		BTRFS_I(new_inode)->dir_index = new_idx;
9704 
9705 	if (root_log_pinned) {
9706 		parent = new_dentry->d_parent;
9707 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9708 					 BTRFS_I(old_dir), parent,
9709 					 false, &ctx_root);
9710 		if (ret == BTRFS_NEED_LOG_SYNC)
9711 			sync_log_root = true;
9712 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9713 			commit_transaction = true;
9714 		ret = 0;
9715 		btrfs_end_log_trans(root);
9716 		root_log_pinned = false;
9717 	}
9718 	if (dest_log_pinned) {
9719 		if (!commit_transaction) {
9720 			parent = old_dentry->d_parent;
9721 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9722 						 BTRFS_I(new_dir), parent,
9723 						 false, &ctx_dest);
9724 			if (ret == BTRFS_NEED_LOG_SYNC)
9725 				sync_log_dest = true;
9726 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9727 				commit_transaction = true;
9728 			ret = 0;
9729 		}
9730 		btrfs_end_log_trans(dest);
9731 		dest_log_pinned = false;
9732 	}
9733 out_fail:
9734 	/*
9735 	 * If we have pinned a log and an error happened, we unpin tasks
9736 	 * trying to sync the log and force them to fallback to a transaction
9737 	 * commit if the log currently contains any of the inodes involved in
9738 	 * this rename operation (to ensure we do not persist a log with an
9739 	 * inconsistent state for any of these inodes or leading to any
9740 	 * inconsistencies when replayed). If the transaction was aborted, the
9741 	 * abortion reason is propagated to userspace when attempting to commit
9742 	 * the transaction. If the log does not contain any of these inodes, we
9743 	 * allow the tasks to sync it.
9744 	 */
9745 	if (ret && (root_log_pinned || dest_log_pinned)) {
9746 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9747 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9748 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9749 		    (new_inode &&
9750 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9751 			btrfs_set_log_full_commit(trans);
9752 
9753 		if (root_log_pinned) {
9754 			btrfs_end_log_trans(root);
9755 			root_log_pinned = false;
9756 		}
9757 		if (dest_log_pinned) {
9758 			btrfs_end_log_trans(dest);
9759 			dest_log_pinned = false;
9760 		}
9761 	}
9762 	if (!ret && sync_log_root && !commit_transaction) {
9763 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9764 				     &ctx_root);
9765 		if (ret)
9766 			commit_transaction = true;
9767 	}
9768 	if (!ret && sync_log_dest && !commit_transaction) {
9769 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9770 				     &ctx_dest);
9771 		if (ret)
9772 			commit_transaction = true;
9773 	}
9774 	if (commit_transaction) {
9775 		/*
9776 		 * We may have set commit_transaction when logging the new name
9777 		 * in the destination root, in which case we left the source
9778 		 * root context in the list of log contextes. So make sure we
9779 		 * remove it to avoid invalid memory accesses, since the context
9780 		 * was allocated in our stack frame.
9781 		 */
9782 		if (sync_log_root) {
9783 			mutex_lock(&root->log_mutex);
9784 			list_del_init(&ctx_root.list);
9785 			mutex_unlock(&root->log_mutex);
9786 		}
9787 		ret = btrfs_commit_transaction(trans);
9788 	} else {
9789 		int ret2;
9790 
9791 		ret2 = btrfs_end_transaction(trans);
9792 		ret = ret ? ret : ret2;
9793 	}
9794 out_notrans:
9795 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9796 		up_read(&fs_info->subvol_sem);
9797 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9798 		up_read(&fs_info->subvol_sem);
9799 
9800 	ASSERT(list_empty(&ctx_root.list));
9801 	ASSERT(list_empty(&ctx_dest.list));
9802 
9803 	return ret;
9804 }
9805 
9806 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9807 				     struct btrfs_root *root,
9808 				     struct inode *dir,
9809 				     struct dentry *dentry)
9810 {
9811 	int ret;
9812 	struct inode *inode;
9813 	u64 objectid;
9814 	u64 index;
9815 
9816 	ret = btrfs_find_free_ino(root, &objectid);
9817 	if (ret)
9818 		return ret;
9819 
9820 	inode = btrfs_new_inode(trans, root, dir,
9821 				dentry->d_name.name,
9822 				dentry->d_name.len,
9823 				btrfs_ino(BTRFS_I(dir)),
9824 				objectid,
9825 				S_IFCHR | WHITEOUT_MODE,
9826 				&index);
9827 
9828 	if (IS_ERR(inode)) {
9829 		ret = PTR_ERR(inode);
9830 		return ret;
9831 	}
9832 
9833 	inode->i_op = &btrfs_special_inode_operations;
9834 	init_special_inode(inode, inode->i_mode,
9835 		WHITEOUT_DEV);
9836 
9837 	ret = btrfs_init_inode_security(trans, inode, dir,
9838 				&dentry->d_name);
9839 	if (ret)
9840 		goto out;
9841 
9842 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9843 				BTRFS_I(inode), 0, index);
9844 	if (ret)
9845 		goto out;
9846 
9847 	ret = btrfs_update_inode(trans, root, inode);
9848 out:
9849 	unlock_new_inode(inode);
9850 	if (ret)
9851 		inode_dec_link_count(inode);
9852 	iput(inode);
9853 
9854 	return ret;
9855 }
9856 
9857 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9858 			   struct inode *new_dir, struct dentry *new_dentry,
9859 			   unsigned int flags)
9860 {
9861 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9862 	struct btrfs_trans_handle *trans;
9863 	unsigned int trans_num_items;
9864 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9865 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9866 	struct inode *new_inode = d_inode(new_dentry);
9867 	struct inode *old_inode = d_inode(old_dentry);
9868 	u64 index = 0;
9869 	u64 root_objectid;
9870 	int ret;
9871 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9872 	bool log_pinned = false;
9873 	struct btrfs_log_ctx ctx;
9874 	bool sync_log = false;
9875 	bool commit_transaction = false;
9876 
9877 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9878 		return -EPERM;
9879 
9880 	/* we only allow rename subvolume link between subvolumes */
9881 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9882 		return -EXDEV;
9883 
9884 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9885 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9886 		return -ENOTEMPTY;
9887 
9888 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9889 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9890 		return -ENOTEMPTY;
9891 
9892 
9893 	/* check for collisions, even if the  name isn't there */
9894 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9895 			     new_dentry->d_name.name,
9896 			     new_dentry->d_name.len);
9897 
9898 	if (ret) {
9899 		if (ret == -EEXIST) {
9900 			/* we shouldn't get
9901 			 * eexist without a new_inode */
9902 			if (WARN_ON(!new_inode)) {
9903 				return ret;
9904 			}
9905 		} else {
9906 			/* maybe -EOVERFLOW */
9907 			return ret;
9908 		}
9909 	}
9910 	ret = 0;
9911 
9912 	/*
9913 	 * we're using rename to replace one file with another.  Start IO on it
9914 	 * now so  we don't add too much work to the end of the transaction
9915 	 */
9916 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9917 		filemap_flush(old_inode->i_mapping);
9918 
9919 	/* close the racy window with snapshot create/destroy ioctl */
9920 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9921 		down_read(&fs_info->subvol_sem);
9922 	/*
9923 	 * We want to reserve the absolute worst case amount of items.  So if
9924 	 * both inodes are subvols and we need to unlink them then that would
9925 	 * require 4 item modifications, but if they are both normal inodes it
9926 	 * would require 5 item modifications, so we'll assume they are normal
9927 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9928 	 * should cover the worst case number of items we'll modify.
9929 	 * If our rename has the whiteout flag, we need more 5 units for the
9930 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9931 	 * when selinux is enabled).
9932 	 */
9933 	trans_num_items = 11;
9934 	if (flags & RENAME_WHITEOUT)
9935 		trans_num_items += 5;
9936 	trans = btrfs_start_transaction(root, trans_num_items);
9937 	if (IS_ERR(trans)) {
9938 		ret = PTR_ERR(trans);
9939 		goto out_notrans;
9940 	}
9941 
9942 	if (dest != root)
9943 		btrfs_record_root_in_trans(trans, dest);
9944 
9945 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9946 	if (ret)
9947 		goto out_fail;
9948 
9949 	BTRFS_I(old_inode)->dir_index = 0ULL;
9950 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9951 		/* force full log commit if subvolume involved. */
9952 		btrfs_set_log_full_commit(trans);
9953 	} else {
9954 		btrfs_pin_log_trans(root);
9955 		log_pinned = true;
9956 		ret = btrfs_insert_inode_ref(trans, dest,
9957 					     new_dentry->d_name.name,
9958 					     new_dentry->d_name.len,
9959 					     old_ino,
9960 					     btrfs_ino(BTRFS_I(new_dir)), index);
9961 		if (ret)
9962 			goto out_fail;
9963 	}
9964 
9965 	inode_inc_iversion(old_dir);
9966 	inode_inc_iversion(new_dir);
9967 	inode_inc_iversion(old_inode);
9968 	old_dir->i_ctime = old_dir->i_mtime =
9969 	new_dir->i_ctime = new_dir->i_mtime =
9970 	old_inode->i_ctime = current_time(old_dir);
9971 
9972 	if (old_dentry->d_parent != new_dentry->d_parent)
9973 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9974 				BTRFS_I(old_inode), 1);
9975 
9976 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9977 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9978 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9979 					old_dentry->d_name.name,
9980 					old_dentry->d_name.len);
9981 	} else {
9982 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9983 					BTRFS_I(d_inode(old_dentry)),
9984 					old_dentry->d_name.name,
9985 					old_dentry->d_name.len);
9986 		if (!ret)
9987 			ret = btrfs_update_inode(trans, root, old_inode);
9988 	}
9989 	if (ret) {
9990 		btrfs_abort_transaction(trans, ret);
9991 		goto out_fail;
9992 	}
9993 
9994 	if (new_inode) {
9995 		inode_inc_iversion(new_inode);
9996 		new_inode->i_ctime = current_time(new_inode);
9997 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9998 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9999 			root_objectid = BTRFS_I(new_inode)->location.objectid;
10000 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
10001 						new_dentry->d_name.name,
10002 						new_dentry->d_name.len);
10003 			BUG_ON(new_inode->i_nlink == 0);
10004 		} else {
10005 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10006 						 BTRFS_I(d_inode(new_dentry)),
10007 						 new_dentry->d_name.name,
10008 						 new_dentry->d_name.len);
10009 		}
10010 		if (!ret && new_inode->i_nlink == 0)
10011 			ret = btrfs_orphan_add(trans,
10012 					BTRFS_I(d_inode(new_dentry)));
10013 		if (ret) {
10014 			btrfs_abort_transaction(trans, ret);
10015 			goto out_fail;
10016 		}
10017 	}
10018 
10019 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10020 			     new_dentry->d_name.name,
10021 			     new_dentry->d_name.len, 0, index);
10022 	if (ret) {
10023 		btrfs_abort_transaction(trans, ret);
10024 		goto out_fail;
10025 	}
10026 
10027 	if (old_inode->i_nlink == 1)
10028 		BTRFS_I(old_inode)->dir_index = index;
10029 
10030 	if (log_pinned) {
10031 		struct dentry *parent = new_dentry->d_parent;
10032 
10033 		btrfs_init_log_ctx(&ctx, old_inode);
10034 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
10035 					 BTRFS_I(old_dir), parent,
10036 					 false, &ctx);
10037 		if (ret == BTRFS_NEED_LOG_SYNC)
10038 			sync_log = true;
10039 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
10040 			commit_transaction = true;
10041 		ret = 0;
10042 		btrfs_end_log_trans(root);
10043 		log_pinned = false;
10044 	}
10045 
10046 	if (flags & RENAME_WHITEOUT) {
10047 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10048 						old_dentry);
10049 
10050 		if (ret) {
10051 			btrfs_abort_transaction(trans, ret);
10052 			goto out_fail;
10053 		}
10054 	}
10055 out_fail:
10056 	/*
10057 	 * If we have pinned the log and an error happened, we unpin tasks
10058 	 * trying to sync the log and force them to fallback to a transaction
10059 	 * commit if the log currently contains any of the inodes involved in
10060 	 * this rename operation (to ensure we do not persist a log with an
10061 	 * inconsistent state for any of these inodes or leading to any
10062 	 * inconsistencies when replayed). If the transaction was aborted, the
10063 	 * abortion reason is propagated to userspace when attempting to commit
10064 	 * the transaction. If the log does not contain any of these inodes, we
10065 	 * allow the tasks to sync it.
10066 	 */
10067 	if (ret && log_pinned) {
10068 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10069 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10070 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10071 		    (new_inode &&
10072 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10073 			btrfs_set_log_full_commit(trans);
10074 
10075 		btrfs_end_log_trans(root);
10076 		log_pinned = false;
10077 	}
10078 	if (!ret && sync_log) {
10079 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10080 		if (ret)
10081 			commit_transaction = true;
10082 	}
10083 	if (commit_transaction) {
10084 		ret = btrfs_commit_transaction(trans);
10085 	} else {
10086 		int ret2;
10087 
10088 		ret2 = btrfs_end_transaction(trans);
10089 		ret = ret ? ret : ret2;
10090 	}
10091 out_notrans:
10092 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10093 		up_read(&fs_info->subvol_sem);
10094 
10095 	return ret;
10096 }
10097 
10098 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10099 			 struct inode *new_dir, struct dentry *new_dentry,
10100 			 unsigned int flags)
10101 {
10102 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10103 		return -EINVAL;
10104 
10105 	if (flags & RENAME_EXCHANGE)
10106 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10107 					  new_dentry);
10108 
10109 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10110 }
10111 
10112 struct btrfs_delalloc_work {
10113 	struct inode *inode;
10114 	struct completion completion;
10115 	struct list_head list;
10116 	struct btrfs_work work;
10117 };
10118 
10119 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10120 {
10121 	struct btrfs_delalloc_work *delalloc_work;
10122 	struct inode *inode;
10123 
10124 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10125 				     work);
10126 	inode = delalloc_work->inode;
10127 	filemap_flush(inode->i_mapping);
10128 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10129 				&BTRFS_I(inode)->runtime_flags))
10130 		filemap_flush(inode->i_mapping);
10131 
10132 	iput(inode);
10133 	complete(&delalloc_work->completion);
10134 }
10135 
10136 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10137 {
10138 	struct btrfs_delalloc_work *work;
10139 
10140 	work = kmalloc(sizeof(*work), GFP_NOFS);
10141 	if (!work)
10142 		return NULL;
10143 
10144 	init_completion(&work->completion);
10145 	INIT_LIST_HEAD(&work->list);
10146 	work->inode = inode;
10147 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
10148 
10149 	return work;
10150 }
10151 
10152 /*
10153  * some fairly slow code that needs optimization. This walks the list
10154  * of all the inodes with pending delalloc and forces them to disk.
10155  */
10156 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10157 {
10158 	struct btrfs_inode *binode;
10159 	struct inode *inode;
10160 	struct btrfs_delalloc_work *work, *next;
10161 	struct list_head works;
10162 	struct list_head splice;
10163 	int ret = 0;
10164 
10165 	INIT_LIST_HEAD(&works);
10166 	INIT_LIST_HEAD(&splice);
10167 
10168 	mutex_lock(&root->delalloc_mutex);
10169 	spin_lock(&root->delalloc_lock);
10170 	list_splice_init(&root->delalloc_inodes, &splice);
10171 	while (!list_empty(&splice)) {
10172 		binode = list_entry(splice.next, struct btrfs_inode,
10173 				    delalloc_inodes);
10174 
10175 		list_move_tail(&binode->delalloc_inodes,
10176 			       &root->delalloc_inodes);
10177 		inode = igrab(&binode->vfs_inode);
10178 		if (!inode) {
10179 			cond_resched_lock(&root->delalloc_lock);
10180 			continue;
10181 		}
10182 		spin_unlock(&root->delalloc_lock);
10183 
10184 		if (snapshot)
10185 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10186 				&binode->runtime_flags);
10187 		work = btrfs_alloc_delalloc_work(inode);
10188 		if (!work) {
10189 			iput(inode);
10190 			ret = -ENOMEM;
10191 			goto out;
10192 		}
10193 		list_add_tail(&work->list, &works);
10194 		btrfs_queue_work(root->fs_info->flush_workers,
10195 				 &work->work);
10196 		ret++;
10197 		if (nr != -1 && ret >= nr)
10198 			goto out;
10199 		cond_resched();
10200 		spin_lock(&root->delalloc_lock);
10201 	}
10202 	spin_unlock(&root->delalloc_lock);
10203 
10204 out:
10205 	list_for_each_entry_safe(work, next, &works, list) {
10206 		list_del_init(&work->list);
10207 		wait_for_completion(&work->completion);
10208 		kfree(work);
10209 	}
10210 
10211 	if (!list_empty(&splice)) {
10212 		spin_lock(&root->delalloc_lock);
10213 		list_splice_tail(&splice, &root->delalloc_inodes);
10214 		spin_unlock(&root->delalloc_lock);
10215 	}
10216 	mutex_unlock(&root->delalloc_mutex);
10217 	return ret;
10218 }
10219 
10220 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10221 {
10222 	struct btrfs_fs_info *fs_info = root->fs_info;
10223 	int ret;
10224 
10225 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10226 		return -EROFS;
10227 
10228 	ret = start_delalloc_inodes(root, -1, true);
10229 	if (ret > 0)
10230 		ret = 0;
10231 	return ret;
10232 }
10233 
10234 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10235 {
10236 	struct btrfs_root *root;
10237 	struct list_head splice;
10238 	int ret;
10239 
10240 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10241 		return -EROFS;
10242 
10243 	INIT_LIST_HEAD(&splice);
10244 
10245 	mutex_lock(&fs_info->delalloc_root_mutex);
10246 	spin_lock(&fs_info->delalloc_root_lock);
10247 	list_splice_init(&fs_info->delalloc_roots, &splice);
10248 	while (!list_empty(&splice) && nr) {
10249 		root = list_first_entry(&splice, struct btrfs_root,
10250 					delalloc_root);
10251 		root = btrfs_grab_fs_root(root);
10252 		BUG_ON(!root);
10253 		list_move_tail(&root->delalloc_root,
10254 			       &fs_info->delalloc_roots);
10255 		spin_unlock(&fs_info->delalloc_root_lock);
10256 
10257 		ret = start_delalloc_inodes(root, nr, false);
10258 		btrfs_put_fs_root(root);
10259 		if (ret < 0)
10260 			goto out;
10261 
10262 		if (nr != -1) {
10263 			nr -= ret;
10264 			WARN_ON(nr < 0);
10265 		}
10266 		spin_lock(&fs_info->delalloc_root_lock);
10267 	}
10268 	spin_unlock(&fs_info->delalloc_root_lock);
10269 
10270 	ret = 0;
10271 out:
10272 	if (!list_empty(&splice)) {
10273 		spin_lock(&fs_info->delalloc_root_lock);
10274 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10275 		spin_unlock(&fs_info->delalloc_root_lock);
10276 	}
10277 	mutex_unlock(&fs_info->delalloc_root_mutex);
10278 	return ret;
10279 }
10280 
10281 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10282 			 const char *symname)
10283 {
10284 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10285 	struct btrfs_trans_handle *trans;
10286 	struct btrfs_root *root = BTRFS_I(dir)->root;
10287 	struct btrfs_path *path;
10288 	struct btrfs_key key;
10289 	struct inode *inode = NULL;
10290 	int err;
10291 	u64 objectid;
10292 	u64 index = 0;
10293 	int name_len;
10294 	int datasize;
10295 	unsigned long ptr;
10296 	struct btrfs_file_extent_item *ei;
10297 	struct extent_buffer *leaf;
10298 
10299 	name_len = strlen(symname);
10300 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10301 		return -ENAMETOOLONG;
10302 
10303 	/*
10304 	 * 2 items for inode item and ref
10305 	 * 2 items for dir items
10306 	 * 1 item for updating parent inode item
10307 	 * 1 item for the inline extent item
10308 	 * 1 item for xattr if selinux is on
10309 	 */
10310 	trans = btrfs_start_transaction(root, 7);
10311 	if (IS_ERR(trans))
10312 		return PTR_ERR(trans);
10313 
10314 	err = btrfs_find_free_ino(root, &objectid);
10315 	if (err)
10316 		goto out_unlock;
10317 
10318 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10319 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10320 				objectid, S_IFLNK|S_IRWXUGO, &index);
10321 	if (IS_ERR(inode)) {
10322 		err = PTR_ERR(inode);
10323 		inode = NULL;
10324 		goto out_unlock;
10325 	}
10326 
10327 	/*
10328 	* If the active LSM wants to access the inode during
10329 	* d_instantiate it needs these. Smack checks to see
10330 	* if the filesystem supports xattrs by looking at the
10331 	* ops vector.
10332 	*/
10333 	inode->i_fop = &btrfs_file_operations;
10334 	inode->i_op = &btrfs_file_inode_operations;
10335 	inode->i_mapping->a_ops = &btrfs_aops;
10336 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10337 
10338 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10339 	if (err)
10340 		goto out_unlock;
10341 
10342 	path = btrfs_alloc_path();
10343 	if (!path) {
10344 		err = -ENOMEM;
10345 		goto out_unlock;
10346 	}
10347 	key.objectid = btrfs_ino(BTRFS_I(inode));
10348 	key.offset = 0;
10349 	key.type = BTRFS_EXTENT_DATA_KEY;
10350 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10351 	err = btrfs_insert_empty_item(trans, root, path, &key,
10352 				      datasize);
10353 	if (err) {
10354 		btrfs_free_path(path);
10355 		goto out_unlock;
10356 	}
10357 	leaf = path->nodes[0];
10358 	ei = btrfs_item_ptr(leaf, path->slots[0],
10359 			    struct btrfs_file_extent_item);
10360 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10361 	btrfs_set_file_extent_type(leaf, ei,
10362 				   BTRFS_FILE_EXTENT_INLINE);
10363 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10364 	btrfs_set_file_extent_compression(leaf, ei, 0);
10365 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10366 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10367 
10368 	ptr = btrfs_file_extent_inline_start(ei);
10369 	write_extent_buffer(leaf, symname, ptr, name_len);
10370 	btrfs_mark_buffer_dirty(leaf);
10371 	btrfs_free_path(path);
10372 
10373 	inode->i_op = &btrfs_symlink_inode_operations;
10374 	inode_nohighmem(inode);
10375 	inode_set_bytes(inode, name_len);
10376 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10377 	err = btrfs_update_inode(trans, root, inode);
10378 	/*
10379 	 * Last step, add directory indexes for our symlink inode. This is the
10380 	 * last step to avoid extra cleanup of these indexes if an error happens
10381 	 * elsewhere above.
10382 	 */
10383 	if (!err)
10384 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10385 				BTRFS_I(inode), 0, index);
10386 	if (err)
10387 		goto out_unlock;
10388 
10389 	d_instantiate_new(dentry, inode);
10390 
10391 out_unlock:
10392 	btrfs_end_transaction(trans);
10393 	if (err && inode) {
10394 		inode_dec_link_count(inode);
10395 		discard_new_inode(inode);
10396 	}
10397 	btrfs_btree_balance_dirty(fs_info);
10398 	return err;
10399 }
10400 
10401 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10402 				       u64 start, u64 num_bytes, u64 min_size,
10403 				       loff_t actual_len, u64 *alloc_hint,
10404 				       struct btrfs_trans_handle *trans)
10405 {
10406 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10407 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10408 	struct extent_map *em;
10409 	struct btrfs_root *root = BTRFS_I(inode)->root;
10410 	struct btrfs_key ins;
10411 	u64 cur_offset = start;
10412 	u64 i_size;
10413 	u64 cur_bytes;
10414 	u64 last_alloc = (u64)-1;
10415 	int ret = 0;
10416 	bool own_trans = true;
10417 	u64 end = start + num_bytes - 1;
10418 
10419 	if (trans)
10420 		own_trans = false;
10421 	while (num_bytes > 0) {
10422 		if (own_trans) {
10423 			trans = btrfs_start_transaction(root, 3);
10424 			if (IS_ERR(trans)) {
10425 				ret = PTR_ERR(trans);
10426 				break;
10427 			}
10428 		}
10429 
10430 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10431 		cur_bytes = max(cur_bytes, min_size);
10432 		/*
10433 		 * If we are severely fragmented we could end up with really
10434 		 * small allocations, so if the allocator is returning small
10435 		 * chunks lets make its job easier by only searching for those
10436 		 * sized chunks.
10437 		 */
10438 		cur_bytes = min(cur_bytes, last_alloc);
10439 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10440 				min_size, 0, *alloc_hint, &ins, 1, 0);
10441 		if (ret) {
10442 			if (own_trans)
10443 				btrfs_end_transaction(trans);
10444 			break;
10445 		}
10446 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10447 
10448 		last_alloc = ins.offset;
10449 		ret = insert_reserved_file_extent(trans, inode,
10450 						  cur_offset, ins.objectid,
10451 						  ins.offset, ins.offset,
10452 						  ins.offset, 0, 0, 0,
10453 						  BTRFS_FILE_EXTENT_PREALLOC);
10454 		if (ret) {
10455 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10456 						   ins.offset, 0);
10457 			btrfs_abort_transaction(trans, ret);
10458 			if (own_trans)
10459 				btrfs_end_transaction(trans);
10460 			break;
10461 		}
10462 
10463 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10464 					cur_offset + ins.offset -1, 0);
10465 
10466 		em = alloc_extent_map();
10467 		if (!em) {
10468 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10469 				&BTRFS_I(inode)->runtime_flags);
10470 			goto next;
10471 		}
10472 
10473 		em->start = cur_offset;
10474 		em->orig_start = cur_offset;
10475 		em->len = ins.offset;
10476 		em->block_start = ins.objectid;
10477 		em->block_len = ins.offset;
10478 		em->orig_block_len = ins.offset;
10479 		em->ram_bytes = ins.offset;
10480 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10481 		em->generation = trans->transid;
10482 
10483 		while (1) {
10484 			write_lock(&em_tree->lock);
10485 			ret = add_extent_mapping(em_tree, em, 1);
10486 			write_unlock(&em_tree->lock);
10487 			if (ret != -EEXIST)
10488 				break;
10489 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10490 						cur_offset + ins.offset - 1,
10491 						0);
10492 		}
10493 		free_extent_map(em);
10494 next:
10495 		num_bytes -= ins.offset;
10496 		cur_offset += ins.offset;
10497 		*alloc_hint = ins.objectid + ins.offset;
10498 
10499 		inode_inc_iversion(inode);
10500 		inode->i_ctime = current_time(inode);
10501 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10502 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10503 		    (actual_len > inode->i_size) &&
10504 		    (cur_offset > inode->i_size)) {
10505 			if (cur_offset > actual_len)
10506 				i_size = actual_len;
10507 			else
10508 				i_size = cur_offset;
10509 			i_size_write(inode, i_size);
10510 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10511 		}
10512 
10513 		ret = btrfs_update_inode(trans, root, inode);
10514 
10515 		if (ret) {
10516 			btrfs_abort_transaction(trans, ret);
10517 			if (own_trans)
10518 				btrfs_end_transaction(trans);
10519 			break;
10520 		}
10521 
10522 		if (own_trans)
10523 			btrfs_end_transaction(trans);
10524 	}
10525 	if (cur_offset < end)
10526 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10527 			end - cur_offset + 1);
10528 	return ret;
10529 }
10530 
10531 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10532 			      u64 start, u64 num_bytes, u64 min_size,
10533 			      loff_t actual_len, u64 *alloc_hint)
10534 {
10535 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10536 					   min_size, actual_len, alloc_hint,
10537 					   NULL);
10538 }
10539 
10540 int btrfs_prealloc_file_range_trans(struct inode *inode,
10541 				    struct btrfs_trans_handle *trans, int mode,
10542 				    u64 start, u64 num_bytes, u64 min_size,
10543 				    loff_t actual_len, u64 *alloc_hint)
10544 {
10545 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10546 					   min_size, actual_len, alloc_hint, trans);
10547 }
10548 
10549 static int btrfs_set_page_dirty(struct page *page)
10550 {
10551 	return __set_page_dirty_nobuffers(page);
10552 }
10553 
10554 static int btrfs_permission(struct inode *inode, int mask)
10555 {
10556 	struct btrfs_root *root = BTRFS_I(inode)->root;
10557 	umode_t mode = inode->i_mode;
10558 
10559 	if (mask & MAY_WRITE &&
10560 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10561 		if (btrfs_root_readonly(root))
10562 			return -EROFS;
10563 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10564 			return -EACCES;
10565 	}
10566 	return generic_permission(inode, mask);
10567 }
10568 
10569 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10570 {
10571 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10572 	struct btrfs_trans_handle *trans;
10573 	struct btrfs_root *root = BTRFS_I(dir)->root;
10574 	struct inode *inode = NULL;
10575 	u64 objectid;
10576 	u64 index;
10577 	int ret = 0;
10578 
10579 	/*
10580 	 * 5 units required for adding orphan entry
10581 	 */
10582 	trans = btrfs_start_transaction(root, 5);
10583 	if (IS_ERR(trans))
10584 		return PTR_ERR(trans);
10585 
10586 	ret = btrfs_find_free_ino(root, &objectid);
10587 	if (ret)
10588 		goto out;
10589 
10590 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10591 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10592 	if (IS_ERR(inode)) {
10593 		ret = PTR_ERR(inode);
10594 		inode = NULL;
10595 		goto out;
10596 	}
10597 
10598 	inode->i_fop = &btrfs_file_operations;
10599 	inode->i_op = &btrfs_file_inode_operations;
10600 
10601 	inode->i_mapping->a_ops = &btrfs_aops;
10602 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10603 
10604 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10605 	if (ret)
10606 		goto out;
10607 
10608 	ret = btrfs_update_inode(trans, root, inode);
10609 	if (ret)
10610 		goto out;
10611 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10612 	if (ret)
10613 		goto out;
10614 
10615 	/*
10616 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10617 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10618 	 * through:
10619 	 *
10620 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10621 	 */
10622 	set_nlink(inode, 1);
10623 	d_tmpfile(dentry, inode);
10624 	unlock_new_inode(inode);
10625 	mark_inode_dirty(inode);
10626 out:
10627 	btrfs_end_transaction(trans);
10628 	if (ret && inode)
10629 		discard_new_inode(inode);
10630 	btrfs_btree_balance_dirty(fs_info);
10631 	return ret;
10632 }
10633 
10634 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10635 {
10636 	struct inode *inode = tree->private_data;
10637 	unsigned long index = start >> PAGE_SHIFT;
10638 	unsigned long end_index = end >> PAGE_SHIFT;
10639 	struct page *page;
10640 
10641 	while (index <= end_index) {
10642 		page = find_get_page(inode->i_mapping, index);
10643 		ASSERT(page); /* Pages should be in the extent_io_tree */
10644 		set_page_writeback(page);
10645 		put_page(page);
10646 		index++;
10647 	}
10648 }
10649 
10650 #ifdef CONFIG_SWAP
10651 /*
10652  * Add an entry indicating a block group or device which is pinned by a
10653  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10654  * negative errno on failure.
10655  */
10656 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10657 				  bool is_block_group)
10658 {
10659 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10660 	struct btrfs_swapfile_pin *sp, *entry;
10661 	struct rb_node **p;
10662 	struct rb_node *parent = NULL;
10663 
10664 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10665 	if (!sp)
10666 		return -ENOMEM;
10667 	sp->ptr = ptr;
10668 	sp->inode = inode;
10669 	sp->is_block_group = is_block_group;
10670 
10671 	spin_lock(&fs_info->swapfile_pins_lock);
10672 	p = &fs_info->swapfile_pins.rb_node;
10673 	while (*p) {
10674 		parent = *p;
10675 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10676 		if (sp->ptr < entry->ptr ||
10677 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10678 			p = &(*p)->rb_left;
10679 		} else if (sp->ptr > entry->ptr ||
10680 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10681 			p = &(*p)->rb_right;
10682 		} else {
10683 			spin_unlock(&fs_info->swapfile_pins_lock);
10684 			kfree(sp);
10685 			return 1;
10686 		}
10687 	}
10688 	rb_link_node(&sp->node, parent, p);
10689 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10690 	spin_unlock(&fs_info->swapfile_pins_lock);
10691 	return 0;
10692 }
10693 
10694 /* Free all of the entries pinned by this swapfile. */
10695 static void btrfs_free_swapfile_pins(struct inode *inode)
10696 {
10697 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10698 	struct btrfs_swapfile_pin *sp;
10699 	struct rb_node *node, *next;
10700 
10701 	spin_lock(&fs_info->swapfile_pins_lock);
10702 	node = rb_first(&fs_info->swapfile_pins);
10703 	while (node) {
10704 		next = rb_next(node);
10705 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10706 		if (sp->inode == inode) {
10707 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10708 			if (sp->is_block_group)
10709 				btrfs_put_block_group(sp->ptr);
10710 			kfree(sp);
10711 		}
10712 		node = next;
10713 	}
10714 	spin_unlock(&fs_info->swapfile_pins_lock);
10715 }
10716 
10717 struct btrfs_swap_info {
10718 	u64 start;
10719 	u64 block_start;
10720 	u64 block_len;
10721 	u64 lowest_ppage;
10722 	u64 highest_ppage;
10723 	unsigned long nr_pages;
10724 	int nr_extents;
10725 };
10726 
10727 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10728 				 struct btrfs_swap_info *bsi)
10729 {
10730 	unsigned long nr_pages;
10731 	u64 first_ppage, first_ppage_reported, next_ppage;
10732 	int ret;
10733 
10734 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10735 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10736 				PAGE_SIZE) >> PAGE_SHIFT;
10737 
10738 	if (first_ppage >= next_ppage)
10739 		return 0;
10740 	nr_pages = next_ppage - first_ppage;
10741 
10742 	first_ppage_reported = first_ppage;
10743 	if (bsi->start == 0)
10744 		first_ppage_reported++;
10745 	if (bsi->lowest_ppage > first_ppage_reported)
10746 		bsi->lowest_ppage = first_ppage_reported;
10747 	if (bsi->highest_ppage < (next_ppage - 1))
10748 		bsi->highest_ppage = next_ppage - 1;
10749 
10750 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10751 	if (ret < 0)
10752 		return ret;
10753 	bsi->nr_extents += ret;
10754 	bsi->nr_pages += nr_pages;
10755 	return 0;
10756 }
10757 
10758 static void btrfs_swap_deactivate(struct file *file)
10759 {
10760 	struct inode *inode = file_inode(file);
10761 
10762 	btrfs_free_swapfile_pins(inode);
10763 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10764 }
10765 
10766 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10767 			       sector_t *span)
10768 {
10769 	struct inode *inode = file_inode(file);
10770 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10771 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10772 	struct extent_state *cached_state = NULL;
10773 	struct extent_map *em = NULL;
10774 	struct btrfs_device *device = NULL;
10775 	struct btrfs_swap_info bsi = {
10776 		.lowest_ppage = (sector_t)-1ULL,
10777 	};
10778 	int ret = 0;
10779 	u64 isize;
10780 	u64 start;
10781 
10782 	/*
10783 	 * If the swap file was just created, make sure delalloc is done. If the
10784 	 * file changes again after this, the user is doing something stupid and
10785 	 * we don't really care.
10786 	 */
10787 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10788 	if (ret)
10789 		return ret;
10790 
10791 	/*
10792 	 * The inode is locked, so these flags won't change after we check them.
10793 	 */
10794 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10795 		btrfs_warn(fs_info, "swapfile must not be compressed");
10796 		return -EINVAL;
10797 	}
10798 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10799 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10800 		return -EINVAL;
10801 	}
10802 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10803 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10804 		return -EINVAL;
10805 	}
10806 
10807 	/*
10808 	 * Balance or device remove/replace/resize can move stuff around from
10809 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10810 	 * concurrently while we are mapping the swap extents, and
10811 	 * fs_info->swapfile_pins prevents them from running while the swap file
10812 	 * is active and moving the extents. Note that this also prevents a
10813 	 * concurrent device add which isn't actually necessary, but it's not
10814 	 * really worth the trouble to allow it.
10815 	 */
10816 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10817 		btrfs_warn(fs_info,
10818 	   "cannot activate swapfile while exclusive operation is running");
10819 		return -EBUSY;
10820 	}
10821 	/*
10822 	 * Snapshots can create extents which require COW even if NODATACOW is
10823 	 * set. We use this counter to prevent snapshots. We must increment it
10824 	 * before walking the extents because we don't want a concurrent
10825 	 * snapshot to run after we've already checked the extents.
10826 	 */
10827 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10828 
10829 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10830 
10831 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10832 	start = 0;
10833 	while (start < isize) {
10834 		u64 logical_block_start, physical_block_start;
10835 		struct btrfs_block_group *bg;
10836 		u64 len = isize - start;
10837 
10838 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10839 		if (IS_ERR(em)) {
10840 			ret = PTR_ERR(em);
10841 			goto out;
10842 		}
10843 
10844 		if (em->block_start == EXTENT_MAP_HOLE) {
10845 			btrfs_warn(fs_info, "swapfile must not have holes");
10846 			ret = -EINVAL;
10847 			goto out;
10848 		}
10849 		if (em->block_start == EXTENT_MAP_INLINE) {
10850 			/*
10851 			 * It's unlikely we'll ever actually find ourselves
10852 			 * here, as a file small enough to fit inline won't be
10853 			 * big enough to store more than the swap header, but in
10854 			 * case something changes in the future, let's catch it
10855 			 * here rather than later.
10856 			 */
10857 			btrfs_warn(fs_info, "swapfile must not be inline");
10858 			ret = -EINVAL;
10859 			goto out;
10860 		}
10861 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10862 			btrfs_warn(fs_info, "swapfile must not be compressed");
10863 			ret = -EINVAL;
10864 			goto out;
10865 		}
10866 
10867 		logical_block_start = em->block_start + (start - em->start);
10868 		len = min(len, em->len - (start - em->start));
10869 		free_extent_map(em);
10870 		em = NULL;
10871 
10872 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10873 		if (ret < 0) {
10874 			goto out;
10875 		} else if (ret) {
10876 			ret = 0;
10877 		} else {
10878 			btrfs_warn(fs_info,
10879 				   "swapfile must not be copy-on-write");
10880 			ret = -EINVAL;
10881 			goto out;
10882 		}
10883 
10884 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10885 		if (IS_ERR(em)) {
10886 			ret = PTR_ERR(em);
10887 			goto out;
10888 		}
10889 
10890 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10891 			btrfs_warn(fs_info,
10892 				   "swapfile must have single data profile");
10893 			ret = -EINVAL;
10894 			goto out;
10895 		}
10896 
10897 		if (device == NULL) {
10898 			device = em->map_lookup->stripes[0].dev;
10899 			ret = btrfs_add_swapfile_pin(inode, device, false);
10900 			if (ret == 1)
10901 				ret = 0;
10902 			else if (ret)
10903 				goto out;
10904 		} else if (device != em->map_lookup->stripes[0].dev) {
10905 			btrfs_warn(fs_info, "swapfile must be on one device");
10906 			ret = -EINVAL;
10907 			goto out;
10908 		}
10909 
10910 		physical_block_start = (em->map_lookup->stripes[0].physical +
10911 					(logical_block_start - em->start));
10912 		len = min(len, em->len - (logical_block_start - em->start));
10913 		free_extent_map(em);
10914 		em = NULL;
10915 
10916 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10917 		if (!bg) {
10918 			btrfs_warn(fs_info,
10919 			   "could not find block group containing swapfile");
10920 			ret = -EINVAL;
10921 			goto out;
10922 		}
10923 
10924 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10925 		if (ret) {
10926 			btrfs_put_block_group(bg);
10927 			if (ret == 1)
10928 				ret = 0;
10929 			else
10930 				goto out;
10931 		}
10932 
10933 		if (bsi.block_len &&
10934 		    bsi.block_start + bsi.block_len == physical_block_start) {
10935 			bsi.block_len += len;
10936 		} else {
10937 			if (bsi.block_len) {
10938 				ret = btrfs_add_swap_extent(sis, &bsi);
10939 				if (ret)
10940 					goto out;
10941 			}
10942 			bsi.start = start;
10943 			bsi.block_start = physical_block_start;
10944 			bsi.block_len = len;
10945 		}
10946 
10947 		start += len;
10948 	}
10949 
10950 	if (bsi.block_len)
10951 		ret = btrfs_add_swap_extent(sis, &bsi);
10952 
10953 out:
10954 	if (!IS_ERR_OR_NULL(em))
10955 		free_extent_map(em);
10956 
10957 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10958 
10959 	if (ret)
10960 		btrfs_swap_deactivate(file);
10961 
10962 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10963 
10964 	if (ret)
10965 		return ret;
10966 
10967 	if (device)
10968 		sis->bdev = device->bdev;
10969 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10970 	sis->max = bsi.nr_pages;
10971 	sis->pages = bsi.nr_pages - 1;
10972 	sis->highest_bit = bsi.nr_pages - 1;
10973 	return bsi.nr_extents;
10974 }
10975 #else
10976 static void btrfs_swap_deactivate(struct file *file)
10977 {
10978 }
10979 
10980 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10981 			       sector_t *span)
10982 {
10983 	return -EOPNOTSUPP;
10984 }
10985 #endif
10986 
10987 static const struct inode_operations btrfs_dir_inode_operations = {
10988 	.getattr	= btrfs_getattr,
10989 	.lookup		= btrfs_lookup,
10990 	.create		= btrfs_create,
10991 	.unlink		= btrfs_unlink,
10992 	.link		= btrfs_link,
10993 	.mkdir		= btrfs_mkdir,
10994 	.rmdir		= btrfs_rmdir,
10995 	.rename		= btrfs_rename2,
10996 	.symlink	= btrfs_symlink,
10997 	.setattr	= btrfs_setattr,
10998 	.mknod		= btrfs_mknod,
10999 	.listxattr	= btrfs_listxattr,
11000 	.permission	= btrfs_permission,
11001 	.get_acl	= btrfs_get_acl,
11002 	.set_acl	= btrfs_set_acl,
11003 	.update_time	= btrfs_update_time,
11004 	.tmpfile        = btrfs_tmpfile,
11005 };
11006 static const struct inode_operations btrfs_dir_ro_inode_operations = {
11007 	.lookup		= btrfs_lookup,
11008 	.permission	= btrfs_permission,
11009 	.update_time	= btrfs_update_time,
11010 };
11011 
11012 static const struct file_operations btrfs_dir_file_operations = {
11013 	.llseek		= generic_file_llseek,
11014 	.read		= generic_read_dir,
11015 	.iterate_shared	= btrfs_real_readdir,
11016 	.open		= btrfs_opendir,
11017 	.unlocked_ioctl	= btrfs_ioctl,
11018 #ifdef CONFIG_COMPAT
11019 	.compat_ioctl	= btrfs_compat_ioctl,
11020 #endif
11021 	.release        = btrfs_release_file,
11022 	.fsync		= btrfs_sync_file,
11023 };
11024 
11025 static const struct extent_io_ops btrfs_extent_io_ops = {
11026 	/* mandatory callbacks */
11027 	.submit_bio_hook = btrfs_submit_bio_hook,
11028 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
11029 };
11030 
11031 /*
11032  * btrfs doesn't support the bmap operation because swapfiles
11033  * use bmap to make a mapping of extents in the file.  They assume
11034  * these extents won't change over the life of the file and they
11035  * use the bmap result to do IO directly to the drive.
11036  *
11037  * the btrfs bmap call would return logical addresses that aren't
11038  * suitable for IO and they also will change frequently as COW
11039  * operations happen.  So, swapfile + btrfs == corruption.
11040  *
11041  * For now we're avoiding this by dropping bmap.
11042  */
11043 static const struct address_space_operations btrfs_aops = {
11044 	.readpage	= btrfs_readpage,
11045 	.writepage	= btrfs_writepage,
11046 	.writepages	= btrfs_writepages,
11047 	.readpages	= btrfs_readpages,
11048 	.direct_IO	= btrfs_direct_IO,
11049 	.invalidatepage = btrfs_invalidatepage,
11050 	.releasepage	= btrfs_releasepage,
11051 	.set_page_dirty	= btrfs_set_page_dirty,
11052 	.error_remove_page = generic_error_remove_page,
11053 	.swap_activate	= btrfs_swap_activate,
11054 	.swap_deactivate = btrfs_swap_deactivate,
11055 };
11056 
11057 static const struct inode_operations btrfs_file_inode_operations = {
11058 	.getattr	= btrfs_getattr,
11059 	.setattr	= btrfs_setattr,
11060 	.listxattr      = btrfs_listxattr,
11061 	.permission	= btrfs_permission,
11062 	.fiemap		= btrfs_fiemap,
11063 	.get_acl	= btrfs_get_acl,
11064 	.set_acl	= btrfs_set_acl,
11065 	.update_time	= btrfs_update_time,
11066 };
11067 static const struct inode_operations btrfs_special_inode_operations = {
11068 	.getattr	= btrfs_getattr,
11069 	.setattr	= btrfs_setattr,
11070 	.permission	= btrfs_permission,
11071 	.listxattr	= btrfs_listxattr,
11072 	.get_acl	= btrfs_get_acl,
11073 	.set_acl	= btrfs_set_acl,
11074 	.update_time	= btrfs_update_time,
11075 };
11076 static const struct inode_operations btrfs_symlink_inode_operations = {
11077 	.get_link	= page_get_link,
11078 	.getattr	= btrfs_getattr,
11079 	.setattr	= btrfs_setattr,
11080 	.permission	= btrfs_permission,
11081 	.listxattr	= btrfs_listxattr,
11082 	.update_time	= btrfs_update_time,
11083 };
11084 
11085 const struct dentry_operations btrfs_dentry_operations = {
11086 	.d_delete	= btrfs_dentry_delete,
11087 };
11088