1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/posix_acl_xattr.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 63 struct btrfs_iget_args { 64 struct btrfs_key *location; 65 struct btrfs_root *root; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_dir_ro_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct address_space_operations btrfs_symlink_aops; 75 static const struct file_operations btrfs_dir_file_operations; 76 static struct extent_io_ops btrfs_extent_io_ops; 77 78 static struct kmem_cache *btrfs_inode_cachep; 79 static struct kmem_cache *btrfs_delalloc_work_cachep; 80 struct kmem_cache *btrfs_trans_handle_cachep; 81 struct kmem_cache *btrfs_transaction_cachep; 82 struct kmem_cache *btrfs_path_cachep; 83 struct kmem_cache *btrfs_free_space_cachep; 84 85 #define S_SHIFT 12 86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 94 }; 95 96 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 97 static int btrfs_truncate(struct inode *inode); 98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 99 static noinline int cow_file_range(struct inode *inode, 100 struct page *locked_page, 101 u64 start, u64 end, int *page_started, 102 unsigned long *nr_written, int unlock); 103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 104 u64 len, u64 orig_start, 105 u64 block_start, u64 block_len, 106 u64 orig_block_len, u64 ram_bytes, 107 int type); 108 109 static int btrfs_dirty_inode(struct inode *inode); 110 111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 112 struct inode *inode, struct inode *dir, 113 const struct qstr *qstr) 114 { 115 int err; 116 117 err = btrfs_init_acl(trans, inode, dir); 118 if (!err) 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 120 return err; 121 } 122 123 /* 124 * this does all the hard work for inserting an inline extent into 125 * the btree. The caller should have done a btrfs_drop_extents so that 126 * no overlapping inline items exist in the btree 127 */ 128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 129 struct btrfs_path *path, int extent_inserted, 130 struct btrfs_root *root, struct inode *inode, 131 u64 start, size_t size, size_t compressed_size, 132 int compress_type, 133 struct page **compressed_pages) 134 { 135 struct extent_buffer *leaf; 136 struct page *page = NULL; 137 char *kaddr; 138 unsigned long ptr; 139 struct btrfs_file_extent_item *ei; 140 int err = 0; 141 int ret; 142 size_t cur_size = size; 143 unsigned long offset; 144 145 if (compressed_size && compressed_pages) 146 cur_size = compressed_size; 147 148 inode_add_bytes(inode, size); 149 150 if (!extent_inserted) { 151 struct btrfs_key key; 152 size_t datasize; 153 154 key.objectid = btrfs_ino(inode); 155 key.offset = start; 156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 157 158 datasize = btrfs_file_extent_calc_inline_size(cur_size); 159 path->leave_spinning = 1; 160 ret = btrfs_insert_empty_item(trans, root, path, &key, 161 datasize); 162 if (ret) { 163 err = ret; 164 goto fail; 165 } 166 } 167 leaf = path->nodes[0]; 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_file_extent_item); 170 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 172 btrfs_set_file_extent_encryption(leaf, ei, 0); 173 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 174 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 175 ptr = btrfs_file_extent_inline_start(ei); 176 177 if (compress_type != BTRFS_COMPRESS_NONE) { 178 struct page *cpage; 179 int i = 0; 180 while (compressed_size > 0) { 181 cpage = compressed_pages[i]; 182 cur_size = min_t(unsigned long, compressed_size, 183 PAGE_CACHE_SIZE); 184 185 kaddr = kmap_atomic(cpage); 186 write_extent_buffer(leaf, kaddr, ptr, cur_size); 187 kunmap_atomic(kaddr); 188 189 i++; 190 ptr += cur_size; 191 compressed_size -= cur_size; 192 } 193 btrfs_set_file_extent_compression(leaf, ei, 194 compress_type); 195 } else { 196 page = find_get_page(inode->i_mapping, 197 start >> PAGE_CACHE_SHIFT); 198 btrfs_set_file_extent_compression(leaf, ei, 0); 199 kaddr = kmap_atomic(page); 200 offset = start & (PAGE_CACHE_SIZE - 1); 201 write_extent_buffer(leaf, kaddr + offset, ptr, size); 202 kunmap_atomic(kaddr); 203 page_cache_release(page); 204 } 205 btrfs_mark_buffer_dirty(leaf); 206 btrfs_release_path(path); 207 208 /* 209 * we're an inline extent, so nobody can 210 * extend the file past i_size without locking 211 * a page we already have locked. 212 * 213 * We must do any isize and inode updates 214 * before we unlock the pages. Otherwise we 215 * could end up racing with unlink. 216 */ 217 BTRFS_I(inode)->disk_i_size = inode->i_size; 218 ret = btrfs_update_inode(trans, root, inode); 219 220 return ret; 221 fail: 222 return err; 223 } 224 225 226 /* 227 * conditionally insert an inline extent into the file. This 228 * does the checks required to make sure the data is small enough 229 * to fit as an inline extent. 230 */ 231 static noinline int cow_file_range_inline(struct btrfs_root *root, 232 struct inode *inode, u64 start, 233 u64 end, size_t compressed_size, 234 int compress_type, 235 struct page **compressed_pages) 236 { 237 struct btrfs_trans_handle *trans; 238 u64 isize = i_size_read(inode); 239 u64 actual_end = min(end + 1, isize); 240 u64 inline_len = actual_end - start; 241 u64 aligned_end = ALIGN(end, root->sectorsize); 242 u64 data_len = inline_len; 243 int ret; 244 struct btrfs_path *path; 245 int extent_inserted = 0; 246 u32 extent_item_size; 247 248 if (compressed_size) 249 data_len = compressed_size; 250 251 if (start > 0 || 252 actual_end >= PAGE_CACHE_SIZE || 253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 254 (!compressed_size && 255 (actual_end & (root->sectorsize - 1)) == 0) || 256 end + 1 < isize || 257 data_len > root->fs_info->max_inline) { 258 return 1; 259 } 260 261 path = btrfs_alloc_path(); 262 if (!path) 263 return -ENOMEM; 264 265 trans = btrfs_join_transaction(root); 266 if (IS_ERR(trans)) { 267 btrfs_free_path(path); 268 return PTR_ERR(trans); 269 } 270 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 271 272 if (compressed_size && compressed_pages) 273 extent_item_size = btrfs_file_extent_calc_inline_size( 274 compressed_size); 275 else 276 extent_item_size = btrfs_file_extent_calc_inline_size( 277 inline_len); 278 279 ret = __btrfs_drop_extents(trans, root, inode, path, 280 start, aligned_end, NULL, 281 1, 1, extent_item_size, &extent_inserted); 282 if (ret) { 283 btrfs_abort_transaction(trans, root, ret); 284 goto out; 285 } 286 287 if (isize > actual_end) 288 inline_len = min_t(u64, isize, actual_end); 289 ret = insert_inline_extent(trans, path, extent_inserted, 290 root, inode, start, 291 inline_len, compressed_size, 292 compress_type, compressed_pages); 293 if (ret && ret != -ENOSPC) { 294 btrfs_abort_transaction(trans, root, ret); 295 goto out; 296 } else if (ret == -ENOSPC) { 297 ret = 1; 298 goto out; 299 } 300 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 302 btrfs_delalloc_release_metadata(inode, end + 1 - start); 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 304 out: 305 btrfs_free_path(path); 306 btrfs_end_transaction(trans, root); 307 return ret; 308 } 309 310 struct async_extent { 311 u64 start; 312 u64 ram_size; 313 u64 compressed_size; 314 struct page **pages; 315 unsigned long nr_pages; 316 int compress_type; 317 struct list_head list; 318 }; 319 320 struct async_cow { 321 struct inode *inode; 322 struct btrfs_root *root; 323 struct page *locked_page; 324 u64 start; 325 u64 end; 326 struct list_head extents; 327 struct btrfs_work work; 328 }; 329 330 static noinline int add_async_extent(struct async_cow *cow, 331 u64 start, u64 ram_size, 332 u64 compressed_size, 333 struct page **pages, 334 unsigned long nr_pages, 335 int compress_type) 336 { 337 struct async_extent *async_extent; 338 339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 340 BUG_ON(!async_extent); /* -ENOMEM */ 341 async_extent->start = start; 342 async_extent->ram_size = ram_size; 343 async_extent->compressed_size = compressed_size; 344 async_extent->pages = pages; 345 async_extent->nr_pages = nr_pages; 346 async_extent->compress_type = compress_type; 347 list_add_tail(&async_extent->list, &cow->extents); 348 return 0; 349 } 350 351 /* 352 * we create compressed extents in two phases. The first 353 * phase compresses a range of pages that have already been 354 * locked (both pages and state bits are locked). 355 * 356 * This is done inside an ordered work queue, and the compression 357 * is spread across many cpus. The actual IO submission is step 358 * two, and the ordered work queue takes care of making sure that 359 * happens in the same order things were put onto the queue by 360 * writepages and friends. 361 * 362 * If this code finds it can't get good compression, it puts an 363 * entry onto the work queue to write the uncompressed bytes. This 364 * makes sure that both compressed inodes and uncompressed inodes 365 * are written in the same order that the flusher thread sent them 366 * down. 367 */ 368 static noinline int compress_file_range(struct inode *inode, 369 struct page *locked_page, 370 u64 start, u64 end, 371 struct async_cow *async_cow, 372 int *num_added) 373 { 374 struct btrfs_root *root = BTRFS_I(inode)->root; 375 u64 num_bytes; 376 u64 blocksize = root->sectorsize; 377 u64 actual_end; 378 u64 isize = i_size_read(inode); 379 int ret = 0; 380 struct page **pages = NULL; 381 unsigned long nr_pages; 382 unsigned long nr_pages_ret = 0; 383 unsigned long total_compressed = 0; 384 unsigned long total_in = 0; 385 unsigned long max_compressed = 128 * 1024; 386 unsigned long max_uncompressed = 128 * 1024; 387 int i; 388 int will_compress; 389 int compress_type = root->fs_info->compress_type; 390 int redirty = 0; 391 392 /* if this is a small write inside eof, kick off a defrag */ 393 if ((end - start + 1) < 16 * 1024 && 394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 395 btrfs_add_inode_defrag(NULL, inode); 396 397 /* 398 * skip compression for a small file range(<=blocksize) that 399 * isn't an inline extent, since it dosen't save disk space at all. 400 */ 401 if ((end - start + 1) <= blocksize && 402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 403 goto cleanup_and_bail_uncompressed; 404 405 actual_end = min_t(u64, isize, end + 1); 406 again: 407 will_compress = 0; 408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 410 411 /* 412 * we don't want to send crud past the end of i_size through 413 * compression, that's just a waste of CPU time. So, if the 414 * end of the file is before the start of our current 415 * requested range of bytes, we bail out to the uncompressed 416 * cleanup code that can deal with all of this. 417 * 418 * It isn't really the fastest way to fix things, but this is a 419 * very uncommon corner. 420 */ 421 if (actual_end <= start) 422 goto cleanup_and_bail_uncompressed; 423 424 total_compressed = actual_end - start; 425 426 /* we want to make sure that amount of ram required to uncompress 427 * an extent is reasonable, so we limit the total size in ram 428 * of a compressed extent to 128k. This is a crucial number 429 * because it also controls how easily we can spread reads across 430 * cpus for decompression. 431 * 432 * We also want to make sure the amount of IO required to do 433 * a random read is reasonably small, so we limit the size of 434 * a compressed extent to 128k. 435 */ 436 total_compressed = min(total_compressed, max_uncompressed); 437 num_bytes = ALIGN(end - start + 1, blocksize); 438 num_bytes = max(blocksize, num_bytes); 439 total_in = 0; 440 ret = 0; 441 442 /* 443 * we do compression for mount -o compress and when the 444 * inode has not been flagged as nocompress. This flag can 445 * change at any time if we discover bad compression ratios. 446 */ 447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 448 (btrfs_test_opt(root, COMPRESS) || 449 (BTRFS_I(inode)->force_compress) || 450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 451 WARN_ON(pages); 452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 453 if (!pages) { 454 /* just bail out to the uncompressed code */ 455 goto cont; 456 } 457 458 if (BTRFS_I(inode)->force_compress) 459 compress_type = BTRFS_I(inode)->force_compress; 460 461 /* 462 * we need to call clear_page_dirty_for_io on each 463 * page in the range. Otherwise applications with the file 464 * mmap'd can wander in and change the page contents while 465 * we are compressing them. 466 * 467 * If the compression fails for any reason, we set the pages 468 * dirty again later on. 469 */ 470 extent_range_clear_dirty_for_io(inode, start, end); 471 redirty = 1; 472 ret = btrfs_compress_pages(compress_type, 473 inode->i_mapping, start, 474 total_compressed, pages, 475 nr_pages, &nr_pages_ret, 476 &total_in, 477 &total_compressed, 478 max_compressed); 479 480 if (!ret) { 481 unsigned long offset = total_compressed & 482 (PAGE_CACHE_SIZE - 1); 483 struct page *page = pages[nr_pages_ret - 1]; 484 char *kaddr; 485 486 /* zero the tail end of the last page, we might be 487 * sending it down to disk 488 */ 489 if (offset) { 490 kaddr = kmap_atomic(page); 491 memset(kaddr + offset, 0, 492 PAGE_CACHE_SIZE - offset); 493 kunmap_atomic(kaddr); 494 } 495 will_compress = 1; 496 } 497 } 498 cont: 499 if (start == 0) { 500 /* lets try to make an inline extent */ 501 if (ret || total_in < (actual_end - start)) { 502 /* we didn't compress the entire range, try 503 * to make an uncompressed inline extent. 504 */ 505 ret = cow_file_range_inline(root, inode, start, end, 506 0, 0, NULL); 507 } else { 508 /* try making a compressed inline extent */ 509 ret = cow_file_range_inline(root, inode, start, end, 510 total_compressed, 511 compress_type, pages); 512 } 513 if (ret <= 0) { 514 unsigned long clear_flags = EXTENT_DELALLOC | 515 EXTENT_DEFRAG; 516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 517 518 /* 519 * inline extent creation worked or returned error, 520 * we don't need to create any more async work items. 521 * Unlock and free up our temp pages. 522 */ 523 extent_clear_unlock_delalloc(inode, start, end, NULL, 524 clear_flags, PAGE_UNLOCK | 525 PAGE_CLEAR_DIRTY | 526 PAGE_SET_WRITEBACK | 527 PAGE_END_WRITEBACK); 528 goto free_pages_out; 529 } 530 } 531 532 if (will_compress) { 533 /* 534 * we aren't doing an inline extent round the compressed size 535 * up to a block size boundary so the allocator does sane 536 * things 537 */ 538 total_compressed = ALIGN(total_compressed, blocksize); 539 540 /* 541 * one last check to make sure the compression is really a 542 * win, compare the page count read with the blocks on disk 543 */ 544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 545 if (total_compressed >= total_in) { 546 will_compress = 0; 547 } else { 548 num_bytes = total_in; 549 } 550 } 551 if (!will_compress && pages) { 552 /* 553 * the compression code ran but failed to make things smaller, 554 * free any pages it allocated and our page pointer array 555 */ 556 for (i = 0; i < nr_pages_ret; i++) { 557 WARN_ON(pages[i]->mapping); 558 page_cache_release(pages[i]); 559 } 560 kfree(pages); 561 pages = NULL; 562 total_compressed = 0; 563 nr_pages_ret = 0; 564 565 /* flag the file so we don't compress in the future */ 566 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 567 !(BTRFS_I(inode)->force_compress)) { 568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 569 } 570 } 571 if (will_compress) { 572 *num_added += 1; 573 574 /* the async work queues will take care of doing actual 575 * allocation on disk for these compressed pages, 576 * and will submit them to the elevator. 577 */ 578 add_async_extent(async_cow, start, num_bytes, 579 total_compressed, pages, nr_pages_ret, 580 compress_type); 581 582 if (start + num_bytes < end) { 583 start += num_bytes; 584 pages = NULL; 585 cond_resched(); 586 goto again; 587 } 588 } else { 589 cleanup_and_bail_uncompressed: 590 /* 591 * No compression, but we still need to write the pages in 592 * the file we've been given so far. redirty the locked 593 * page if it corresponds to our extent and set things up 594 * for the async work queue to run cow_file_range to do 595 * the normal delalloc dance 596 */ 597 if (page_offset(locked_page) >= start && 598 page_offset(locked_page) <= end) { 599 __set_page_dirty_nobuffers(locked_page); 600 /* unlocked later on in the async handlers */ 601 } 602 if (redirty) 603 extent_range_redirty_for_io(inode, start, end); 604 add_async_extent(async_cow, start, end - start + 1, 605 0, NULL, 0, BTRFS_COMPRESS_NONE); 606 *num_added += 1; 607 } 608 609 out: 610 return ret; 611 612 free_pages_out: 613 for (i = 0; i < nr_pages_ret; i++) { 614 WARN_ON(pages[i]->mapping); 615 page_cache_release(pages[i]); 616 } 617 kfree(pages); 618 619 goto out; 620 } 621 622 /* 623 * phase two of compressed writeback. This is the ordered portion 624 * of the code, which only gets called in the order the work was 625 * queued. We walk all the async extents created by compress_file_range 626 * and send them down to the disk. 627 */ 628 static noinline int submit_compressed_extents(struct inode *inode, 629 struct async_cow *async_cow) 630 { 631 struct async_extent *async_extent; 632 u64 alloc_hint = 0; 633 struct btrfs_key ins; 634 struct extent_map *em; 635 struct btrfs_root *root = BTRFS_I(inode)->root; 636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 637 struct extent_io_tree *io_tree; 638 int ret = 0; 639 640 if (list_empty(&async_cow->extents)) 641 return 0; 642 643 again: 644 while (!list_empty(&async_cow->extents)) { 645 async_extent = list_entry(async_cow->extents.next, 646 struct async_extent, list); 647 list_del(&async_extent->list); 648 649 io_tree = &BTRFS_I(inode)->io_tree; 650 651 retry: 652 /* did the compression code fall back to uncompressed IO? */ 653 if (!async_extent->pages) { 654 int page_started = 0; 655 unsigned long nr_written = 0; 656 657 lock_extent(io_tree, async_extent->start, 658 async_extent->start + 659 async_extent->ram_size - 1); 660 661 /* allocate blocks */ 662 ret = cow_file_range(inode, async_cow->locked_page, 663 async_extent->start, 664 async_extent->start + 665 async_extent->ram_size - 1, 666 &page_started, &nr_written, 0); 667 668 /* JDM XXX */ 669 670 /* 671 * if page_started, cow_file_range inserted an 672 * inline extent and took care of all the unlocking 673 * and IO for us. Otherwise, we need to submit 674 * all those pages down to the drive. 675 */ 676 if (!page_started && !ret) 677 extent_write_locked_range(io_tree, 678 inode, async_extent->start, 679 async_extent->start + 680 async_extent->ram_size - 1, 681 btrfs_get_extent, 682 WB_SYNC_ALL); 683 else if (ret) 684 unlock_page(async_cow->locked_page); 685 kfree(async_extent); 686 cond_resched(); 687 continue; 688 } 689 690 lock_extent(io_tree, async_extent->start, 691 async_extent->start + async_extent->ram_size - 1); 692 693 ret = btrfs_reserve_extent(root, 694 async_extent->compressed_size, 695 async_extent->compressed_size, 696 0, alloc_hint, &ins, 1); 697 if (ret) { 698 int i; 699 700 for (i = 0; i < async_extent->nr_pages; i++) { 701 WARN_ON(async_extent->pages[i]->mapping); 702 page_cache_release(async_extent->pages[i]); 703 } 704 kfree(async_extent->pages); 705 async_extent->nr_pages = 0; 706 async_extent->pages = NULL; 707 708 if (ret == -ENOSPC) { 709 unlock_extent(io_tree, async_extent->start, 710 async_extent->start + 711 async_extent->ram_size - 1); 712 goto retry; 713 } 714 goto out_free; 715 } 716 717 /* 718 * here we're doing allocation and writeback of the 719 * compressed pages 720 */ 721 btrfs_drop_extent_cache(inode, async_extent->start, 722 async_extent->start + 723 async_extent->ram_size - 1, 0); 724 725 em = alloc_extent_map(); 726 if (!em) { 727 ret = -ENOMEM; 728 goto out_free_reserve; 729 } 730 em->start = async_extent->start; 731 em->len = async_extent->ram_size; 732 em->orig_start = em->start; 733 em->mod_start = em->start; 734 em->mod_len = em->len; 735 736 em->block_start = ins.objectid; 737 em->block_len = ins.offset; 738 em->orig_block_len = ins.offset; 739 em->ram_bytes = async_extent->ram_size; 740 em->bdev = root->fs_info->fs_devices->latest_bdev; 741 em->compress_type = async_extent->compress_type; 742 set_bit(EXTENT_FLAG_PINNED, &em->flags); 743 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 744 em->generation = -1; 745 746 while (1) { 747 write_lock(&em_tree->lock); 748 ret = add_extent_mapping(em_tree, em, 1); 749 write_unlock(&em_tree->lock); 750 if (ret != -EEXIST) { 751 free_extent_map(em); 752 break; 753 } 754 btrfs_drop_extent_cache(inode, async_extent->start, 755 async_extent->start + 756 async_extent->ram_size - 1, 0); 757 } 758 759 if (ret) 760 goto out_free_reserve; 761 762 ret = btrfs_add_ordered_extent_compress(inode, 763 async_extent->start, 764 ins.objectid, 765 async_extent->ram_size, 766 ins.offset, 767 BTRFS_ORDERED_COMPRESSED, 768 async_extent->compress_type); 769 if (ret) 770 goto out_free_reserve; 771 772 /* 773 * clear dirty, set writeback and unlock the pages. 774 */ 775 extent_clear_unlock_delalloc(inode, async_extent->start, 776 async_extent->start + 777 async_extent->ram_size - 1, 778 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 779 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 780 PAGE_SET_WRITEBACK); 781 ret = btrfs_submit_compressed_write(inode, 782 async_extent->start, 783 async_extent->ram_size, 784 ins.objectid, 785 ins.offset, async_extent->pages, 786 async_extent->nr_pages); 787 alloc_hint = ins.objectid + ins.offset; 788 kfree(async_extent); 789 if (ret) 790 goto out; 791 cond_resched(); 792 } 793 ret = 0; 794 out: 795 return ret; 796 out_free_reserve: 797 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 798 out_free: 799 extent_clear_unlock_delalloc(inode, async_extent->start, 800 async_extent->start + 801 async_extent->ram_size - 1, 802 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 803 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 804 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 805 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 806 kfree(async_extent); 807 goto again; 808 } 809 810 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 811 u64 num_bytes) 812 { 813 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 814 struct extent_map *em; 815 u64 alloc_hint = 0; 816 817 read_lock(&em_tree->lock); 818 em = search_extent_mapping(em_tree, start, num_bytes); 819 if (em) { 820 /* 821 * if block start isn't an actual block number then find the 822 * first block in this inode and use that as a hint. If that 823 * block is also bogus then just don't worry about it. 824 */ 825 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 826 free_extent_map(em); 827 em = search_extent_mapping(em_tree, 0, 0); 828 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 829 alloc_hint = em->block_start; 830 if (em) 831 free_extent_map(em); 832 } else { 833 alloc_hint = em->block_start; 834 free_extent_map(em); 835 } 836 } 837 read_unlock(&em_tree->lock); 838 839 return alloc_hint; 840 } 841 842 /* 843 * when extent_io.c finds a delayed allocation range in the file, 844 * the call backs end up in this code. The basic idea is to 845 * allocate extents on disk for the range, and create ordered data structs 846 * in ram to track those extents. 847 * 848 * locked_page is the page that writepage had locked already. We use 849 * it to make sure we don't do extra locks or unlocks. 850 * 851 * *page_started is set to one if we unlock locked_page and do everything 852 * required to start IO on it. It may be clean and already done with 853 * IO when we return. 854 */ 855 static noinline int cow_file_range(struct inode *inode, 856 struct page *locked_page, 857 u64 start, u64 end, int *page_started, 858 unsigned long *nr_written, 859 int unlock) 860 { 861 struct btrfs_root *root = BTRFS_I(inode)->root; 862 u64 alloc_hint = 0; 863 u64 num_bytes; 864 unsigned long ram_size; 865 u64 disk_num_bytes; 866 u64 cur_alloc_size; 867 u64 blocksize = root->sectorsize; 868 struct btrfs_key ins; 869 struct extent_map *em; 870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 871 int ret = 0; 872 873 if (btrfs_is_free_space_inode(inode)) { 874 WARN_ON_ONCE(1); 875 ret = -EINVAL; 876 goto out_unlock; 877 } 878 879 num_bytes = ALIGN(end - start + 1, blocksize); 880 num_bytes = max(blocksize, num_bytes); 881 disk_num_bytes = num_bytes; 882 883 /* if this is a small write inside eof, kick off defrag */ 884 if (num_bytes < 64 * 1024 && 885 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 886 btrfs_add_inode_defrag(NULL, inode); 887 888 if (start == 0) { 889 /* lets try to make an inline extent */ 890 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 891 NULL); 892 if (ret == 0) { 893 extent_clear_unlock_delalloc(inode, start, end, NULL, 894 EXTENT_LOCKED | EXTENT_DELALLOC | 895 EXTENT_DEFRAG, PAGE_UNLOCK | 896 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 897 PAGE_END_WRITEBACK); 898 899 *nr_written = *nr_written + 900 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 901 *page_started = 1; 902 goto out; 903 } else if (ret < 0) { 904 goto out_unlock; 905 } 906 } 907 908 BUG_ON(disk_num_bytes > 909 btrfs_super_total_bytes(root->fs_info->super_copy)); 910 911 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 912 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 913 914 while (disk_num_bytes > 0) { 915 unsigned long op; 916 917 cur_alloc_size = disk_num_bytes; 918 ret = btrfs_reserve_extent(root, cur_alloc_size, 919 root->sectorsize, 0, alloc_hint, 920 &ins, 1); 921 if (ret < 0) 922 goto out_unlock; 923 924 em = alloc_extent_map(); 925 if (!em) { 926 ret = -ENOMEM; 927 goto out_reserve; 928 } 929 em->start = start; 930 em->orig_start = em->start; 931 ram_size = ins.offset; 932 em->len = ins.offset; 933 em->mod_start = em->start; 934 em->mod_len = em->len; 935 936 em->block_start = ins.objectid; 937 em->block_len = ins.offset; 938 em->orig_block_len = ins.offset; 939 em->ram_bytes = ram_size; 940 em->bdev = root->fs_info->fs_devices->latest_bdev; 941 set_bit(EXTENT_FLAG_PINNED, &em->flags); 942 em->generation = -1; 943 944 while (1) { 945 write_lock(&em_tree->lock); 946 ret = add_extent_mapping(em_tree, em, 1); 947 write_unlock(&em_tree->lock); 948 if (ret != -EEXIST) { 949 free_extent_map(em); 950 break; 951 } 952 btrfs_drop_extent_cache(inode, start, 953 start + ram_size - 1, 0); 954 } 955 if (ret) 956 goto out_reserve; 957 958 cur_alloc_size = ins.offset; 959 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 960 ram_size, cur_alloc_size, 0); 961 if (ret) 962 goto out_reserve; 963 964 if (root->root_key.objectid == 965 BTRFS_DATA_RELOC_TREE_OBJECTID) { 966 ret = btrfs_reloc_clone_csums(inode, start, 967 cur_alloc_size); 968 if (ret) 969 goto out_reserve; 970 } 971 972 if (disk_num_bytes < cur_alloc_size) 973 break; 974 975 /* we're not doing compressed IO, don't unlock the first 976 * page (which the caller expects to stay locked), don't 977 * clear any dirty bits and don't set any writeback bits 978 * 979 * Do set the Private2 bit so we know this page was properly 980 * setup for writepage 981 */ 982 op = unlock ? PAGE_UNLOCK : 0; 983 op |= PAGE_SET_PRIVATE2; 984 985 extent_clear_unlock_delalloc(inode, start, 986 start + ram_size - 1, locked_page, 987 EXTENT_LOCKED | EXTENT_DELALLOC, 988 op); 989 disk_num_bytes -= cur_alloc_size; 990 num_bytes -= cur_alloc_size; 991 alloc_hint = ins.objectid + ins.offset; 992 start += cur_alloc_size; 993 } 994 out: 995 return ret; 996 997 out_reserve: 998 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 999 out_unlock: 1000 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1001 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1002 EXTENT_DELALLOC | EXTENT_DEFRAG, 1003 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1004 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1005 goto out; 1006 } 1007 1008 /* 1009 * work queue call back to started compression on a file and pages 1010 */ 1011 static noinline void async_cow_start(struct btrfs_work *work) 1012 { 1013 struct async_cow *async_cow; 1014 int num_added = 0; 1015 async_cow = container_of(work, struct async_cow, work); 1016 1017 compress_file_range(async_cow->inode, async_cow->locked_page, 1018 async_cow->start, async_cow->end, async_cow, 1019 &num_added); 1020 if (num_added == 0) { 1021 btrfs_add_delayed_iput(async_cow->inode); 1022 async_cow->inode = NULL; 1023 } 1024 } 1025 1026 /* 1027 * work queue call back to submit previously compressed pages 1028 */ 1029 static noinline void async_cow_submit(struct btrfs_work *work) 1030 { 1031 struct async_cow *async_cow; 1032 struct btrfs_root *root; 1033 unsigned long nr_pages; 1034 1035 async_cow = container_of(work, struct async_cow, work); 1036 1037 root = async_cow->root; 1038 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1039 PAGE_CACHE_SHIFT; 1040 1041 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1042 5 * 1024 * 1024 && 1043 waitqueue_active(&root->fs_info->async_submit_wait)) 1044 wake_up(&root->fs_info->async_submit_wait); 1045 1046 if (async_cow->inode) 1047 submit_compressed_extents(async_cow->inode, async_cow); 1048 } 1049 1050 static noinline void async_cow_free(struct btrfs_work *work) 1051 { 1052 struct async_cow *async_cow; 1053 async_cow = container_of(work, struct async_cow, work); 1054 if (async_cow->inode) 1055 btrfs_add_delayed_iput(async_cow->inode); 1056 kfree(async_cow); 1057 } 1058 1059 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1060 u64 start, u64 end, int *page_started, 1061 unsigned long *nr_written) 1062 { 1063 struct async_cow *async_cow; 1064 struct btrfs_root *root = BTRFS_I(inode)->root; 1065 unsigned long nr_pages; 1066 u64 cur_end; 1067 int limit = 10 * 1024 * 1024; 1068 1069 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1070 1, 0, NULL, GFP_NOFS); 1071 while (start < end) { 1072 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1073 BUG_ON(!async_cow); /* -ENOMEM */ 1074 async_cow->inode = igrab(inode); 1075 async_cow->root = root; 1076 async_cow->locked_page = locked_page; 1077 async_cow->start = start; 1078 1079 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1080 cur_end = end; 1081 else 1082 cur_end = min(end, start + 512 * 1024 - 1); 1083 1084 async_cow->end = cur_end; 1085 INIT_LIST_HEAD(&async_cow->extents); 1086 1087 btrfs_init_work(&async_cow->work, async_cow_start, 1088 async_cow_submit, async_cow_free); 1089 1090 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1091 PAGE_CACHE_SHIFT; 1092 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1093 1094 btrfs_queue_work(root->fs_info->delalloc_workers, 1095 &async_cow->work); 1096 1097 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1098 wait_event(root->fs_info->async_submit_wait, 1099 (atomic_read(&root->fs_info->async_delalloc_pages) < 1100 limit)); 1101 } 1102 1103 while (atomic_read(&root->fs_info->async_submit_draining) && 1104 atomic_read(&root->fs_info->async_delalloc_pages)) { 1105 wait_event(root->fs_info->async_submit_wait, 1106 (atomic_read(&root->fs_info->async_delalloc_pages) == 1107 0)); 1108 } 1109 1110 *nr_written += nr_pages; 1111 start = cur_end + 1; 1112 } 1113 *page_started = 1; 1114 return 0; 1115 } 1116 1117 static noinline int csum_exist_in_range(struct btrfs_root *root, 1118 u64 bytenr, u64 num_bytes) 1119 { 1120 int ret; 1121 struct btrfs_ordered_sum *sums; 1122 LIST_HEAD(list); 1123 1124 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1125 bytenr + num_bytes - 1, &list, 0); 1126 if (ret == 0 && list_empty(&list)) 1127 return 0; 1128 1129 while (!list_empty(&list)) { 1130 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1131 list_del(&sums->list); 1132 kfree(sums); 1133 } 1134 return 1; 1135 } 1136 1137 /* 1138 * when nowcow writeback call back. This checks for snapshots or COW copies 1139 * of the extents that exist in the file, and COWs the file as required. 1140 * 1141 * If no cow copies or snapshots exist, we write directly to the existing 1142 * blocks on disk 1143 */ 1144 static noinline int run_delalloc_nocow(struct inode *inode, 1145 struct page *locked_page, 1146 u64 start, u64 end, int *page_started, int force, 1147 unsigned long *nr_written) 1148 { 1149 struct btrfs_root *root = BTRFS_I(inode)->root; 1150 struct btrfs_trans_handle *trans; 1151 struct extent_buffer *leaf; 1152 struct btrfs_path *path; 1153 struct btrfs_file_extent_item *fi; 1154 struct btrfs_key found_key; 1155 u64 cow_start; 1156 u64 cur_offset; 1157 u64 extent_end; 1158 u64 extent_offset; 1159 u64 disk_bytenr; 1160 u64 num_bytes; 1161 u64 disk_num_bytes; 1162 u64 ram_bytes; 1163 int extent_type; 1164 int ret, err; 1165 int type; 1166 int nocow; 1167 int check_prev = 1; 1168 bool nolock; 1169 u64 ino = btrfs_ino(inode); 1170 1171 path = btrfs_alloc_path(); 1172 if (!path) { 1173 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1174 EXTENT_LOCKED | EXTENT_DELALLOC | 1175 EXTENT_DO_ACCOUNTING | 1176 EXTENT_DEFRAG, PAGE_UNLOCK | 1177 PAGE_CLEAR_DIRTY | 1178 PAGE_SET_WRITEBACK | 1179 PAGE_END_WRITEBACK); 1180 return -ENOMEM; 1181 } 1182 1183 nolock = btrfs_is_free_space_inode(inode); 1184 1185 if (nolock) 1186 trans = btrfs_join_transaction_nolock(root); 1187 else 1188 trans = btrfs_join_transaction(root); 1189 1190 if (IS_ERR(trans)) { 1191 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1192 EXTENT_LOCKED | EXTENT_DELALLOC | 1193 EXTENT_DO_ACCOUNTING | 1194 EXTENT_DEFRAG, PAGE_UNLOCK | 1195 PAGE_CLEAR_DIRTY | 1196 PAGE_SET_WRITEBACK | 1197 PAGE_END_WRITEBACK); 1198 btrfs_free_path(path); 1199 return PTR_ERR(trans); 1200 } 1201 1202 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1203 1204 cow_start = (u64)-1; 1205 cur_offset = start; 1206 while (1) { 1207 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1208 cur_offset, 0); 1209 if (ret < 0) 1210 goto error; 1211 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1212 leaf = path->nodes[0]; 1213 btrfs_item_key_to_cpu(leaf, &found_key, 1214 path->slots[0] - 1); 1215 if (found_key.objectid == ino && 1216 found_key.type == BTRFS_EXTENT_DATA_KEY) 1217 path->slots[0]--; 1218 } 1219 check_prev = 0; 1220 next_slot: 1221 leaf = path->nodes[0]; 1222 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1223 ret = btrfs_next_leaf(root, path); 1224 if (ret < 0) 1225 goto error; 1226 if (ret > 0) 1227 break; 1228 leaf = path->nodes[0]; 1229 } 1230 1231 nocow = 0; 1232 disk_bytenr = 0; 1233 num_bytes = 0; 1234 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1235 1236 if (found_key.objectid > ino || 1237 found_key.type > BTRFS_EXTENT_DATA_KEY || 1238 found_key.offset > end) 1239 break; 1240 1241 if (found_key.offset > cur_offset) { 1242 extent_end = found_key.offset; 1243 extent_type = 0; 1244 goto out_check; 1245 } 1246 1247 fi = btrfs_item_ptr(leaf, path->slots[0], 1248 struct btrfs_file_extent_item); 1249 extent_type = btrfs_file_extent_type(leaf, fi); 1250 1251 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1252 if (extent_type == BTRFS_FILE_EXTENT_REG || 1253 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1254 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1255 extent_offset = btrfs_file_extent_offset(leaf, fi); 1256 extent_end = found_key.offset + 1257 btrfs_file_extent_num_bytes(leaf, fi); 1258 disk_num_bytes = 1259 btrfs_file_extent_disk_num_bytes(leaf, fi); 1260 if (extent_end <= start) { 1261 path->slots[0]++; 1262 goto next_slot; 1263 } 1264 if (disk_bytenr == 0) 1265 goto out_check; 1266 if (btrfs_file_extent_compression(leaf, fi) || 1267 btrfs_file_extent_encryption(leaf, fi) || 1268 btrfs_file_extent_other_encoding(leaf, fi)) 1269 goto out_check; 1270 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1271 goto out_check; 1272 if (btrfs_extent_readonly(root, disk_bytenr)) 1273 goto out_check; 1274 if (btrfs_cross_ref_exist(trans, root, ino, 1275 found_key.offset - 1276 extent_offset, disk_bytenr)) 1277 goto out_check; 1278 disk_bytenr += extent_offset; 1279 disk_bytenr += cur_offset - found_key.offset; 1280 num_bytes = min(end + 1, extent_end) - cur_offset; 1281 /* 1282 * if there are pending snapshots for this root, 1283 * we fall into common COW way. 1284 */ 1285 if (!nolock) { 1286 err = btrfs_start_nocow_write(root); 1287 if (!err) 1288 goto out_check; 1289 } 1290 /* 1291 * force cow if csum exists in the range. 1292 * this ensure that csum for a given extent are 1293 * either valid or do not exist. 1294 */ 1295 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1296 goto out_check; 1297 nocow = 1; 1298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1299 extent_end = found_key.offset + 1300 btrfs_file_extent_inline_len(leaf, 1301 path->slots[0], fi); 1302 extent_end = ALIGN(extent_end, root->sectorsize); 1303 } else { 1304 BUG_ON(1); 1305 } 1306 out_check: 1307 if (extent_end <= start) { 1308 path->slots[0]++; 1309 if (!nolock && nocow) 1310 btrfs_end_nocow_write(root); 1311 goto next_slot; 1312 } 1313 if (!nocow) { 1314 if (cow_start == (u64)-1) 1315 cow_start = cur_offset; 1316 cur_offset = extent_end; 1317 if (cur_offset > end) 1318 break; 1319 path->slots[0]++; 1320 goto next_slot; 1321 } 1322 1323 btrfs_release_path(path); 1324 if (cow_start != (u64)-1) { 1325 ret = cow_file_range(inode, locked_page, 1326 cow_start, found_key.offset - 1, 1327 page_started, nr_written, 1); 1328 if (ret) { 1329 if (!nolock && nocow) 1330 btrfs_end_nocow_write(root); 1331 goto error; 1332 } 1333 cow_start = (u64)-1; 1334 } 1335 1336 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1337 struct extent_map *em; 1338 struct extent_map_tree *em_tree; 1339 em_tree = &BTRFS_I(inode)->extent_tree; 1340 em = alloc_extent_map(); 1341 BUG_ON(!em); /* -ENOMEM */ 1342 em->start = cur_offset; 1343 em->orig_start = found_key.offset - extent_offset; 1344 em->len = num_bytes; 1345 em->block_len = num_bytes; 1346 em->block_start = disk_bytenr; 1347 em->orig_block_len = disk_num_bytes; 1348 em->ram_bytes = ram_bytes; 1349 em->bdev = root->fs_info->fs_devices->latest_bdev; 1350 em->mod_start = em->start; 1351 em->mod_len = em->len; 1352 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1353 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1354 em->generation = -1; 1355 while (1) { 1356 write_lock(&em_tree->lock); 1357 ret = add_extent_mapping(em_tree, em, 1); 1358 write_unlock(&em_tree->lock); 1359 if (ret != -EEXIST) { 1360 free_extent_map(em); 1361 break; 1362 } 1363 btrfs_drop_extent_cache(inode, em->start, 1364 em->start + em->len - 1, 0); 1365 } 1366 type = BTRFS_ORDERED_PREALLOC; 1367 } else { 1368 type = BTRFS_ORDERED_NOCOW; 1369 } 1370 1371 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1372 num_bytes, num_bytes, type); 1373 BUG_ON(ret); /* -ENOMEM */ 1374 1375 if (root->root_key.objectid == 1376 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1377 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1378 num_bytes); 1379 if (ret) { 1380 if (!nolock && nocow) 1381 btrfs_end_nocow_write(root); 1382 goto error; 1383 } 1384 } 1385 1386 extent_clear_unlock_delalloc(inode, cur_offset, 1387 cur_offset + num_bytes - 1, 1388 locked_page, EXTENT_LOCKED | 1389 EXTENT_DELALLOC, PAGE_UNLOCK | 1390 PAGE_SET_PRIVATE2); 1391 if (!nolock && nocow) 1392 btrfs_end_nocow_write(root); 1393 cur_offset = extent_end; 1394 if (cur_offset > end) 1395 break; 1396 } 1397 btrfs_release_path(path); 1398 1399 if (cur_offset <= end && cow_start == (u64)-1) { 1400 cow_start = cur_offset; 1401 cur_offset = end; 1402 } 1403 1404 if (cow_start != (u64)-1) { 1405 ret = cow_file_range(inode, locked_page, cow_start, end, 1406 page_started, nr_written, 1); 1407 if (ret) 1408 goto error; 1409 } 1410 1411 error: 1412 err = btrfs_end_transaction(trans, root); 1413 if (!ret) 1414 ret = err; 1415 1416 if (ret && cur_offset < end) 1417 extent_clear_unlock_delalloc(inode, cur_offset, end, 1418 locked_page, EXTENT_LOCKED | 1419 EXTENT_DELALLOC | EXTENT_DEFRAG | 1420 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1421 PAGE_CLEAR_DIRTY | 1422 PAGE_SET_WRITEBACK | 1423 PAGE_END_WRITEBACK); 1424 btrfs_free_path(path); 1425 return ret; 1426 } 1427 1428 /* 1429 * extent_io.c call back to do delayed allocation processing 1430 */ 1431 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1432 u64 start, u64 end, int *page_started, 1433 unsigned long *nr_written) 1434 { 1435 int ret; 1436 struct btrfs_root *root = BTRFS_I(inode)->root; 1437 1438 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1439 ret = run_delalloc_nocow(inode, locked_page, start, end, 1440 page_started, 1, nr_written); 1441 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1442 ret = run_delalloc_nocow(inode, locked_page, start, end, 1443 page_started, 0, nr_written); 1444 } else if (!btrfs_test_opt(root, COMPRESS) && 1445 !(BTRFS_I(inode)->force_compress) && 1446 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1447 ret = cow_file_range(inode, locked_page, start, end, 1448 page_started, nr_written, 1); 1449 } else { 1450 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1451 &BTRFS_I(inode)->runtime_flags); 1452 ret = cow_file_range_async(inode, locked_page, start, end, 1453 page_started, nr_written); 1454 } 1455 return ret; 1456 } 1457 1458 static void btrfs_split_extent_hook(struct inode *inode, 1459 struct extent_state *orig, u64 split) 1460 { 1461 /* not delalloc, ignore it */ 1462 if (!(orig->state & EXTENT_DELALLOC)) 1463 return; 1464 1465 spin_lock(&BTRFS_I(inode)->lock); 1466 BTRFS_I(inode)->outstanding_extents++; 1467 spin_unlock(&BTRFS_I(inode)->lock); 1468 } 1469 1470 /* 1471 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1472 * extents so we can keep track of new extents that are just merged onto old 1473 * extents, such as when we are doing sequential writes, so we can properly 1474 * account for the metadata space we'll need. 1475 */ 1476 static void btrfs_merge_extent_hook(struct inode *inode, 1477 struct extent_state *new, 1478 struct extent_state *other) 1479 { 1480 /* not delalloc, ignore it */ 1481 if (!(other->state & EXTENT_DELALLOC)) 1482 return; 1483 1484 spin_lock(&BTRFS_I(inode)->lock); 1485 BTRFS_I(inode)->outstanding_extents--; 1486 spin_unlock(&BTRFS_I(inode)->lock); 1487 } 1488 1489 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1490 struct inode *inode) 1491 { 1492 spin_lock(&root->delalloc_lock); 1493 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1494 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1495 &root->delalloc_inodes); 1496 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1497 &BTRFS_I(inode)->runtime_flags); 1498 root->nr_delalloc_inodes++; 1499 if (root->nr_delalloc_inodes == 1) { 1500 spin_lock(&root->fs_info->delalloc_root_lock); 1501 BUG_ON(!list_empty(&root->delalloc_root)); 1502 list_add_tail(&root->delalloc_root, 1503 &root->fs_info->delalloc_roots); 1504 spin_unlock(&root->fs_info->delalloc_root_lock); 1505 } 1506 } 1507 spin_unlock(&root->delalloc_lock); 1508 } 1509 1510 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1511 struct inode *inode) 1512 { 1513 spin_lock(&root->delalloc_lock); 1514 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1515 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1516 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1517 &BTRFS_I(inode)->runtime_flags); 1518 root->nr_delalloc_inodes--; 1519 if (!root->nr_delalloc_inodes) { 1520 spin_lock(&root->fs_info->delalloc_root_lock); 1521 BUG_ON(list_empty(&root->delalloc_root)); 1522 list_del_init(&root->delalloc_root); 1523 spin_unlock(&root->fs_info->delalloc_root_lock); 1524 } 1525 } 1526 spin_unlock(&root->delalloc_lock); 1527 } 1528 1529 /* 1530 * extent_io.c set_bit_hook, used to track delayed allocation 1531 * bytes in this file, and to maintain the list of inodes that 1532 * have pending delalloc work to be done. 1533 */ 1534 static void btrfs_set_bit_hook(struct inode *inode, 1535 struct extent_state *state, unsigned long *bits) 1536 { 1537 1538 /* 1539 * set_bit and clear bit hooks normally require _irqsave/restore 1540 * but in this case, we are only testing for the DELALLOC 1541 * bit, which is only set or cleared with irqs on 1542 */ 1543 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1544 struct btrfs_root *root = BTRFS_I(inode)->root; 1545 u64 len = state->end + 1 - state->start; 1546 bool do_list = !btrfs_is_free_space_inode(inode); 1547 1548 if (*bits & EXTENT_FIRST_DELALLOC) { 1549 *bits &= ~EXTENT_FIRST_DELALLOC; 1550 } else { 1551 spin_lock(&BTRFS_I(inode)->lock); 1552 BTRFS_I(inode)->outstanding_extents++; 1553 spin_unlock(&BTRFS_I(inode)->lock); 1554 } 1555 1556 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1557 root->fs_info->delalloc_batch); 1558 spin_lock(&BTRFS_I(inode)->lock); 1559 BTRFS_I(inode)->delalloc_bytes += len; 1560 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1561 &BTRFS_I(inode)->runtime_flags)) 1562 btrfs_add_delalloc_inodes(root, inode); 1563 spin_unlock(&BTRFS_I(inode)->lock); 1564 } 1565 } 1566 1567 /* 1568 * extent_io.c clear_bit_hook, see set_bit_hook for why 1569 */ 1570 static void btrfs_clear_bit_hook(struct inode *inode, 1571 struct extent_state *state, 1572 unsigned long *bits) 1573 { 1574 /* 1575 * set_bit and clear bit hooks normally require _irqsave/restore 1576 * but in this case, we are only testing for the DELALLOC 1577 * bit, which is only set or cleared with irqs on 1578 */ 1579 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1580 struct btrfs_root *root = BTRFS_I(inode)->root; 1581 u64 len = state->end + 1 - state->start; 1582 bool do_list = !btrfs_is_free_space_inode(inode); 1583 1584 if (*bits & EXTENT_FIRST_DELALLOC) { 1585 *bits &= ~EXTENT_FIRST_DELALLOC; 1586 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1587 spin_lock(&BTRFS_I(inode)->lock); 1588 BTRFS_I(inode)->outstanding_extents--; 1589 spin_unlock(&BTRFS_I(inode)->lock); 1590 } 1591 1592 /* 1593 * We don't reserve metadata space for space cache inodes so we 1594 * don't need to call dellalloc_release_metadata if there is an 1595 * error. 1596 */ 1597 if (*bits & EXTENT_DO_ACCOUNTING && 1598 root != root->fs_info->tree_root) 1599 btrfs_delalloc_release_metadata(inode, len); 1600 1601 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1602 && do_list && !(state->state & EXTENT_NORESERVE)) 1603 btrfs_free_reserved_data_space(inode, len); 1604 1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1606 root->fs_info->delalloc_batch); 1607 spin_lock(&BTRFS_I(inode)->lock); 1608 BTRFS_I(inode)->delalloc_bytes -= len; 1609 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1610 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1611 &BTRFS_I(inode)->runtime_flags)) 1612 btrfs_del_delalloc_inode(root, inode); 1613 spin_unlock(&BTRFS_I(inode)->lock); 1614 } 1615 } 1616 1617 /* 1618 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1619 * we don't create bios that span stripes or chunks 1620 */ 1621 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1622 size_t size, struct bio *bio, 1623 unsigned long bio_flags) 1624 { 1625 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1626 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1627 u64 length = 0; 1628 u64 map_length; 1629 int ret; 1630 1631 if (bio_flags & EXTENT_BIO_COMPRESSED) 1632 return 0; 1633 1634 length = bio->bi_iter.bi_size; 1635 map_length = length; 1636 ret = btrfs_map_block(root->fs_info, rw, logical, 1637 &map_length, NULL, 0); 1638 /* Will always return 0 with map_multi == NULL */ 1639 BUG_ON(ret < 0); 1640 if (map_length < length + size) 1641 return 1; 1642 return 0; 1643 } 1644 1645 /* 1646 * in order to insert checksums into the metadata in large chunks, 1647 * we wait until bio submission time. All the pages in the bio are 1648 * checksummed and sums are attached onto the ordered extent record. 1649 * 1650 * At IO completion time the cums attached on the ordered extent record 1651 * are inserted into the btree 1652 */ 1653 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1654 struct bio *bio, int mirror_num, 1655 unsigned long bio_flags, 1656 u64 bio_offset) 1657 { 1658 struct btrfs_root *root = BTRFS_I(inode)->root; 1659 int ret = 0; 1660 1661 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1662 BUG_ON(ret); /* -ENOMEM */ 1663 return 0; 1664 } 1665 1666 /* 1667 * in order to insert checksums into the metadata in large chunks, 1668 * we wait until bio submission time. All the pages in the bio are 1669 * checksummed and sums are attached onto the ordered extent record. 1670 * 1671 * At IO completion time the cums attached on the ordered extent record 1672 * are inserted into the btree 1673 */ 1674 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1675 int mirror_num, unsigned long bio_flags, 1676 u64 bio_offset) 1677 { 1678 struct btrfs_root *root = BTRFS_I(inode)->root; 1679 int ret; 1680 1681 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1682 if (ret) 1683 bio_endio(bio, ret); 1684 return ret; 1685 } 1686 1687 /* 1688 * extent_io.c submission hook. This does the right thing for csum calculation 1689 * on write, or reading the csums from the tree before a read 1690 */ 1691 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1692 int mirror_num, unsigned long bio_flags, 1693 u64 bio_offset) 1694 { 1695 struct btrfs_root *root = BTRFS_I(inode)->root; 1696 int ret = 0; 1697 int skip_sum; 1698 int metadata = 0; 1699 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1700 1701 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1702 1703 if (btrfs_is_free_space_inode(inode)) 1704 metadata = 2; 1705 1706 if (!(rw & REQ_WRITE)) { 1707 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1708 if (ret) 1709 goto out; 1710 1711 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1712 ret = btrfs_submit_compressed_read(inode, bio, 1713 mirror_num, 1714 bio_flags); 1715 goto out; 1716 } else if (!skip_sum) { 1717 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1718 if (ret) 1719 goto out; 1720 } 1721 goto mapit; 1722 } else if (async && !skip_sum) { 1723 /* csum items have already been cloned */ 1724 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1725 goto mapit; 1726 /* we're doing a write, do the async checksumming */ 1727 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1728 inode, rw, bio, mirror_num, 1729 bio_flags, bio_offset, 1730 __btrfs_submit_bio_start, 1731 __btrfs_submit_bio_done); 1732 goto out; 1733 } else if (!skip_sum) { 1734 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1735 if (ret) 1736 goto out; 1737 } 1738 1739 mapit: 1740 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1741 1742 out: 1743 if (ret < 0) 1744 bio_endio(bio, ret); 1745 return ret; 1746 } 1747 1748 /* 1749 * given a list of ordered sums record them in the inode. This happens 1750 * at IO completion time based on sums calculated at bio submission time. 1751 */ 1752 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1753 struct inode *inode, u64 file_offset, 1754 struct list_head *list) 1755 { 1756 struct btrfs_ordered_sum *sum; 1757 1758 list_for_each_entry(sum, list, list) { 1759 trans->adding_csums = 1; 1760 btrfs_csum_file_blocks(trans, 1761 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1762 trans->adding_csums = 0; 1763 } 1764 return 0; 1765 } 1766 1767 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1768 struct extent_state **cached_state) 1769 { 1770 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1771 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1772 cached_state, GFP_NOFS); 1773 } 1774 1775 /* see btrfs_writepage_start_hook for details on why this is required */ 1776 struct btrfs_writepage_fixup { 1777 struct page *page; 1778 struct btrfs_work work; 1779 }; 1780 1781 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1782 { 1783 struct btrfs_writepage_fixup *fixup; 1784 struct btrfs_ordered_extent *ordered; 1785 struct extent_state *cached_state = NULL; 1786 struct page *page; 1787 struct inode *inode; 1788 u64 page_start; 1789 u64 page_end; 1790 int ret; 1791 1792 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1793 page = fixup->page; 1794 again: 1795 lock_page(page); 1796 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1797 ClearPageChecked(page); 1798 goto out_page; 1799 } 1800 1801 inode = page->mapping->host; 1802 page_start = page_offset(page); 1803 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1804 1805 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1806 &cached_state); 1807 1808 /* already ordered? We're done */ 1809 if (PagePrivate2(page)) 1810 goto out; 1811 1812 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1813 if (ordered) { 1814 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1815 page_end, &cached_state, GFP_NOFS); 1816 unlock_page(page); 1817 btrfs_start_ordered_extent(inode, ordered, 1); 1818 btrfs_put_ordered_extent(ordered); 1819 goto again; 1820 } 1821 1822 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1823 if (ret) { 1824 mapping_set_error(page->mapping, ret); 1825 end_extent_writepage(page, ret, page_start, page_end); 1826 ClearPageChecked(page); 1827 goto out; 1828 } 1829 1830 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1831 ClearPageChecked(page); 1832 set_page_dirty(page); 1833 out: 1834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1835 &cached_state, GFP_NOFS); 1836 out_page: 1837 unlock_page(page); 1838 page_cache_release(page); 1839 kfree(fixup); 1840 } 1841 1842 /* 1843 * There are a few paths in the higher layers of the kernel that directly 1844 * set the page dirty bit without asking the filesystem if it is a 1845 * good idea. This causes problems because we want to make sure COW 1846 * properly happens and the data=ordered rules are followed. 1847 * 1848 * In our case any range that doesn't have the ORDERED bit set 1849 * hasn't been properly setup for IO. We kick off an async process 1850 * to fix it up. The async helper will wait for ordered extents, set 1851 * the delalloc bit and make it safe to write the page. 1852 */ 1853 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1854 { 1855 struct inode *inode = page->mapping->host; 1856 struct btrfs_writepage_fixup *fixup; 1857 struct btrfs_root *root = BTRFS_I(inode)->root; 1858 1859 /* this page is properly in the ordered list */ 1860 if (TestClearPagePrivate2(page)) 1861 return 0; 1862 1863 if (PageChecked(page)) 1864 return -EAGAIN; 1865 1866 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1867 if (!fixup) 1868 return -EAGAIN; 1869 1870 SetPageChecked(page); 1871 page_cache_get(page); 1872 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 1873 fixup->page = page; 1874 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 1875 return -EBUSY; 1876 } 1877 1878 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1879 struct inode *inode, u64 file_pos, 1880 u64 disk_bytenr, u64 disk_num_bytes, 1881 u64 num_bytes, u64 ram_bytes, 1882 u8 compression, u8 encryption, 1883 u16 other_encoding, int extent_type) 1884 { 1885 struct btrfs_root *root = BTRFS_I(inode)->root; 1886 struct btrfs_file_extent_item *fi; 1887 struct btrfs_path *path; 1888 struct extent_buffer *leaf; 1889 struct btrfs_key ins; 1890 int extent_inserted = 0; 1891 int ret; 1892 1893 path = btrfs_alloc_path(); 1894 if (!path) 1895 return -ENOMEM; 1896 1897 /* 1898 * we may be replacing one extent in the tree with another. 1899 * The new extent is pinned in the extent map, and we don't want 1900 * to drop it from the cache until it is completely in the btree. 1901 * 1902 * So, tell btrfs_drop_extents to leave this extent in the cache. 1903 * the caller is expected to unpin it and allow it to be merged 1904 * with the others. 1905 */ 1906 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 1907 file_pos + num_bytes, NULL, 0, 1908 1, sizeof(*fi), &extent_inserted); 1909 if (ret) 1910 goto out; 1911 1912 if (!extent_inserted) { 1913 ins.objectid = btrfs_ino(inode); 1914 ins.offset = file_pos; 1915 ins.type = BTRFS_EXTENT_DATA_KEY; 1916 1917 path->leave_spinning = 1; 1918 ret = btrfs_insert_empty_item(trans, root, path, &ins, 1919 sizeof(*fi)); 1920 if (ret) 1921 goto out; 1922 } 1923 leaf = path->nodes[0]; 1924 fi = btrfs_item_ptr(leaf, path->slots[0], 1925 struct btrfs_file_extent_item); 1926 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1927 btrfs_set_file_extent_type(leaf, fi, extent_type); 1928 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1929 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1930 btrfs_set_file_extent_offset(leaf, fi, 0); 1931 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1932 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1933 btrfs_set_file_extent_compression(leaf, fi, compression); 1934 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1935 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1936 1937 btrfs_mark_buffer_dirty(leaf); 1938 btrfs_release_path(path); 1939 1940 inode_add_bytes(inode, num_bytes); 1941 1942 ins.objectid = disk_bytenr; 1943 ins.offset = disk_num_bytes; 1944 ins.type = BTRFS_EXTENT_ITEM_KEY; 1945 ret = btrfs_alloc_reserved_file_extent(trans, root, 1946 root->root_key.objectid, 1947 btrfs_ino(inode), file_pos, &ins); 1948 out: 1949 btrfs_free_path(path); 1950 1951 return ret; 1952 } 1953 1954 /* snapshot-aware defrag */ 1955 struct sa_defrag_extent_backref { 1956 struct rb_node node; 1957 struct old_sa_defrag_extent *old; 1958 u64 root_id; 1959 u64 inum; 1960 u64 file_pos; 1961 u64 extent_offset; 1962 u64 num_bytes; 1963 u64 generation; 1964 }; 1965 1966 struct old_sa_defrag_extent { 1967 struct list_head list; 1968 struct new_sa_defrag_extent *new; 1969 1970 u64 extent_offset; 1971 u64 bytenr; 1972 u64 offset; 1973 u64 len; 1974 int count; 1975 }; 1976 1977 struct new_sa_defrag_extent { 1978 struct rb_root root; 1979 struct list_head head; 1980 struct btrfs_path *path; 1981 struct inode *inode; 1982 u64 file_pos; 1983 u64 len; 1984 u64 bytenr; 1985 u64 disk_len; 1986 u8 compress_type; 1987 }; 1988 1989 static int backref_comp(struct sa_defrag_extent_backref *b1, 1990 struct sa_defrag_extent_backref *b2) 1991 { 1992 if (b1->root_id < b2->root_id) 1993 return -1; 1994 else if (b1->root_id > b2->root_id) 1995 return 1; 1996 1997 if (b1->inum < b2->inum) 1998 return -1; 1999 else if (b1->inum > b2->inum) 2000 return 1; 2001 2002 if (b1->file_pos < b2->file_pos) 2003 return -1; 2004 else if (b1->file_pos > b2->file_pos) 2005 return 1; 2006 2007 /* 2008 * [------------------------------] ===> (a range of space) 2009 * |<--->| |<---->| =============> (fs/file tree A) 2010 * |<---------------------------->| ===> (fs/file tree B) 2011 * 2012 * A range of space can refer to two file extents in one tree while 2013 * refer to only one file extent in another tree. 2014 * 2015 * So we may process a disk offset more than one time(two extents in A) 2016 * and locate at the same extent(one extent in B), then insert two same 2017 * backrefs(both refer to the extent in B). 2018 */ 2019 return 0; 2020 } 2021 2022 static void backref_insert(struct rb_root *root, 2023 struct sa_defrag_extent_backref *backref) 2024 { 2025 struct rb_node **p = &root->rb_node; 2026 struct rb_node *parent = NULL; 2027 struct sa_defrag_extent_backref *entry; 2028 int ret; 2029 2030 while (*p) { 2031 parent = *p; 2032 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2033 2034 ret = backref_comp(backref, entry); 2035 if (ret < 0) 2036 p = &(*p)->rb_left; 2037 else 2038 p = &(*p)->rb_right; 2039 } 2040 2041 rb_link_node(&backref->node, parent, p); 2042 rb_insert_color(&backref->node, root); 2043 } 2044 2045 /* 2046 * Note the backref might has changed, and in this case we just return 0. 2047 */ 2048 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2049 void *ctx) 2050 { 2051 struct btrfs_file_extent_item *extent; 2052 struct btrfs_fs_info *fs_info; 2053 struct old_sa_defrag_extent *old = ctx; 2054 struct new_sa_defrag_extent *new = old->new; 2055 struct btrfs_path *path = new->path; 2056 struct btrfs_key key; 2057 struct btrfs_root *root; 2058 struct sa_defrag_extent_backref *backref; 2059 struct extent_buffer *leaf; 2060 struct inode *inode = new->inode; 2061 int slot; 2062 int ret; 2063 u64 extent_offset; 2064 u64 num_bytes; 2065 2066 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2067 inum == btrfs_ino(inode)) 2068 return 0; 2069 2070 key.objectid = root_id; 2071 key.type = BTRFS_ROOT_ITEM_KEY; 2072 key.offset = (u64)-1; 2073 2074 fs_info = BTRFS_I(inode)->root->fs_info; 2075 root = btrfs_read_fs_root_no_name(fs_info, &key); 2076 if (IS_ERR(root)) { 2077 if (PTR_ERR(root) == -ENOENT) 2078 return 0; 2079 WARN_ON(1); 2080 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2081 inum, offset, root_id); 2082 return PTR_ERR(root); 2083 } 2084 2085 key.objectid = inum; 2086 key.type = BTRFS_EXTENT_DATA_KEY; 2087 if (offset > (u64)-1 << 32) 2088 key.offset = 0; 2089 else 2090 key.offset = offset; 2091 2092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2093 if (WARN_ON(ret < 0)) 2094 return ret; 2095 ret = 0; 2096 2097 while (1) { 2098 cond_resched(); 2099 2100 leaf = path->nodes[0]; 2101 slot = path->slots[0]; 2102 2103 if (slot >= btrfs_header_nritems(leaf)) { 2104 ret = btrfs_next_leaf(root, path); 2105 if (ret < 0) { 2106 goto out; 2107 } else if (ret > 0) { 2108 ret = 0; 2109 goto out; 2110 } 2111 continue; 2112 } 2113 2114 path->slots[0]++; 2115 2116 btrfs_item_key_to_cpu(leaf, &key, slot); 2117 2118 if (key.objectid > inum) 2119 goto out; 2120 2121 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2122 continue; 2123 2124 extent = btrfs_item_ptr(leaf, slot, 2125 struct btrfs_file_extent_item); 2126 2127 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2128 continue; 2129 2130 /* 2131 * 'offset' refers to the exact key.offset, 2132 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2133 * (key.offset - extent_offset). 2134 */ 2135 if (key.offset != offset) 2136 continue; 2137 2138 extent_offset = btrfs_file_extent_offset(leaf, extent); 2139 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2140 2141 if (extent_offset >= old->extent_offset + old->offset + 2142 old->len || extent_offset + num_bytes <= 2143 old->extent_offset + old->offset) 2144 continue; 2145 break; 2146 } 2147 2148 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2149 if (!backref) { 2150 ret = -ENOENT; 2151 goto out; 2152 } 2153 2154 backref->root_id = root_id; 2155 backref->inum = inum; 2156 backref->file_pos = offset; 2157 backref->num_bytes = num_bytes; 2158 backref->extent_offset = extent_offset; 2159 backref->generation = btrfs_file_extent_generation(leaf, extent); 2160 backref->old = old; 2161 backref_insert(&new->root, backref); 2162 old->count++; 2163 out: 2164 btrfs_release_path(path); 2165 WARN_ON(ret); 2166 return ret; 2167 } 2168 2169 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2170 struct new_sa_defrag_extent *new) 2171 { 2172 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2173 struct old_sa_defrag_extent *old, *tmp; 2174 int ret; 2175 2176 new->path = path; 2177 2178 list_for_each_entry_safe(old, tmp, &new->head, list) { 2179 ret = iterate_inodes_from_logical(old->bytenr + 2180 old->extent_offset, fs_info, 2181 path, record_one_backref, 2182 old); 2183 if (ret < 0 && ret != -ENOENT) 2184 return false; 2185 2186 /* no backref to be processed for this extent */ 2187 if (!old->count) { 2188 list_del(&old->list); 2189 kfree(old); 2190 } 2191 } 2192 2193 if (list_empty(&new->head)) 2194 return false; 2195 2196 return true; 2197 } 2198 2199 static int relink_is_mergable(struct extent_buffer *leaf, 2200 struct btrfs_file_extent_item *fi, 2201 struct new_sa_defrag_extent *new) 2202 { 2203 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2204 return 0; 2205 2206 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2207 return 0; 2208 2209 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2210 return 0; 2211 2212 if (btrfs_file_extent_encryption(leaf, fi) || 2213 btrfs_file_extent_other_encoding(leaf, fi)) 2214 return 0; 2215 2216 return 1; 2217 } 2218 2219 /* 2220 * Note the backref might has changed, and in this case we just return 0. 2221 */ 2222 static noinline int relink_extent_backref(struct btrfs_path *path, 2223 struct sa_defrag_extent_backref *prev, 2224 struct sa_defrag_extent_backref *backref) 2225 { 2226 struct btrfs_file_extent_item *extent; 2227 struct btrfs_file_extent_item *item; 2228 struct btrfs_ordered_extent *ordered; 2229 struct btrfs_trans_handle *trans; 2230 struct btrfs_fs_info *fs_info; 2231 struct btrfs_root *root; 2232 struct btrfs_key key; 2233 struct extent_buffer *leaf; 2234 struct old_sa_defrag_extent *old = backref->old; 2235 struct new_sa_defrag_extent *new = old->new; 2236 struct inode *src_inode = new->inode; 2237 struct inode *inode; 2238 struct extent_state *cached = NULL; 2239 int ret = 0; 2240 u64 start; 2241 u64 len; 2242 u64 lock_start; 2243 u64 lock_end; 2244 bool merge = false; 2245 int index; 2246 2247 if (prev && prev->root_id == backref->root_id && 2248 prev->inum == backref->inum && 2249 prev->file_pos + prev->num_bytes == backref->file_pos) 2250 merge = true; 2251 2252 /* step 1: get root */ 2253 key.objectid = backref->root_id; 2254 key.type = BTRFS_ROOT_ITEM_KEY; 2255 key.offset = (u64)-1; 2256 2257 fs_info = BTRFS_I(src_inode)->root->fs_info; 2258 index = srcu_read_lock(&fs_info->subvol_srcu); 2259 2260 root = btrfs_read_fs_root_no_name(fs_info, &key); 2261 if (IS_ERR(root)) { 2262 srcu_read_unlock(&fs_info->subvol_srcu, index); 2263 if (PTR_ERR(root) == -ENOENT) 2264 return 0; 2265 return PTR_ERR(root); 2266 } 2267 2268 if (btrfs_root_readonly(root)) { 2269 srcu_read_unlock(&fs_info->subvol_srcu, index); 2270 return 0; 2271 } 2272 2273 /* step 2: get inode */ 2274 key.objectid = backref->inum; 2275 key.type = BTRFS_INODE_ITEM_KEY; 2276 key.offset = 0; 2277 2278 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2279 if (IS_ERR(inode)) { 2280 srcu_read_unlock(&fs_info->subvol_srcu, index); 2281 return 0; 2282 } 2283 2284 srcu_read_unlock(&fs_info->subvol_srcu, index); 2285 2286 /* step 3: relink backref */ 2287 lock_start = backref->file_pos; 2288 lock_end = backref->file_pos + backref->num_bytes - 1; 2289 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2290 0, &cached); 2291 2292 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2293 if (ordered) { 2294 btrfs_put_ordered_extent(ordered); 2295 goto out_unlock; 2296 } 2297 2298 trans = btrfs_join_transaction(root); 2299 if (IS_ERR(trans)) { 2300 ret = PTR_ERR(trans); 2301 goto out_unlock; 2302 } 2303 2304 key.objectid = backref->inum; 2305 key.type = BTRFS_EXTENT_DATA_KEY; 2306 key.offset = backref->file_pos; 2307 2308 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2309 if (ret < 0) { 2310 goto out_free_path; 2311 } else if (ret > 0) { 2312 ret = 0; 2313 goto out_free_path; 2314 } 2315 2316 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2317 struct btrfs_file_extent_item); 2318 2319 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2320 backref->generation) 2321 goto out_free_path; 2322 2323 btrfs_release_path(path); 2324 2325 start = backref->file_pos; 2326 if (backref->extent_offset < old->extent_offset + old->offset) 2327 start += old->extent_offset + old->offset - 2328 backref->extent_offset; 2329 2330 len = min(backref->extent_offset + backref->num_bytes, 2331 old->extent_offset + old->offset + old->len); 2332 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2333 2334 ret = btrfs_drop_extents(trans, root, inode, start, 2335 start + len, 1); 2336 if (ret) 2337 goto out_free_path; 2338 again: 2339 key.objectid = btrfs_ino(inode); 2340 key.type = BTRFS_EXTENT_DATA_KEY; 2341 key.offset = start; 2342 2343 path->leave_spinning = 1; 2344 if (merge) { 2345 struct btrfs_file_extent_item *fi; 2346 u64 extent_len; 2347 struct btrfs_key found_key; 2348 2349 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2350 if (ret < 0) 2351 goto out_free_path; 2352 2353 path->slots[0]--; 2354 leaf = path->nodes[0]; 2355 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2356 2357 fi = btrfs_item_ptr(leaf, path->slots[0], 2358 struct btrfs_file_extent_item); 2359 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2360 2361 if (extent_len + found_key.offset == start && 2362 relink_is_mergable(leaf, fi, new)) { 2363 btrfs_set_file_extent_num_bytes(leaf, fi, 2364 extent_len + len); 2365 btrfs_mark_buffer_dirty(leaf); 2366 inode_add_bytes(inode, len); 2367 2368 ret = 1; 2369 goto out_free_path; 2370 } else { 2371 merge = false; 2372 btrfs_release_path(path); 2373 goto again; 2374 } 2375 } 2376 2377 ret = btrfs_insert_empty_item(trans, root, path, &key, 2378 sizeof(*extent)); 2379 if (ret) { 2380 btrfs_abort_transaction(trans, root, ret); 2381 goto out_free_path; 2382 } 2383 2384 leaf = path->nodes[0]; 2385 item = btrfs_item_ptr(leaf, path->slots[0], 2386 struct btrfs_file_extent_item); 2387 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2388 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2389 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2390 btrfs_set_file_extent_num_bytes(leaf, item, len); 2391 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2392 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2393 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2394 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2395 btrfs_set_file_extent_encryption(leaf, item, 0); 2396 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2397 2398 btrfs_mark_buffer_dirty(leaf); 2399 inode_add_bytes(inode, len); 2400 btrfs_release_path(path); 2401 2402 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2403 new->disk_len, 0, 2404 backref->root_id, backref->inum, 2405 new->file_pos, 0); /* start - extent_offset */ 2406 if (ret) { 2407 btrfs_abort_transaction(trans, root, ret); 2408 goto out_free_path; 2409 } 2410 2411 ret = 1; 2412 out_free_path: 2413 btrfs_release_path(path); 2414 path->leave_spinning = 0; 2415 btrfs_end_transaction(trans, root); 2416 out_unlock: 2417 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2418 &cached, GFP_NOFS); 2419 iput(inode); 2420 return ret; 2421 } 2422 2423 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2424 { 2425 struct old_sa_defrag_extent *old, *tmp; 2426 2427 if (!new) 2428 return; 2429 2430 list_for_each_entry_safe(old, tmp, &new->head, list) { 2431 list_del(&old->list); 2432 kfree(old); 2433 } 2434 kfree(new); 2435 } 2436 2437 static void relink_file_extents(struct new_sa_defrag_extent *new) 2438 { 2439 struct btrfs_path *path; 2440 struct sa_defrag_extent_backref *backref; 2441 struct sa_defrag_extent_backref *prev = NULL; 2442 struct inode *inode; 2443 struct btrfs_root *root; 2444 struct rb_node *node; 2445 int ret; 2446 2447 inode = new->inode; 2448 root = BTRFS_I(inode)->root; 2449 2450 path = btrfs_alloc_path(); 2451 if (!path) 2452 return; 2453 2454 if (!record_extent_backrefs(path, new)) { 2455 btrfs_free_path(path); 2456 goto out; 2457 } 2458 btrfs_release_path(path); 2459 2460 while (1) { 2461 node = rb_first(&new->root); 2462 if (!node) 2463 break; 2464 rb_erase(node, &new->root); 2465 2466 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2467 2468 ret = relink_extent_backref(path, prev, backref); 2469 WARN_ON(ret < 0); 2470 2471 kfree(prev); 2472 2473 if (ret == 1) 2474 prev = backref; 2475 else 2476 prev = NULL; 2477 cond_resched(); 2478 } 2479 kfree(prev); 2480 2481 btrfs_free_path(path); 2482 out: 2483 free_sa_defrag_extent(new); 2484 2485 atomic_dec(&root->fs_info->defrag_running); 2486 wake_up(&root->fs_info->transaction_wait); 2487 } 2488 2489 static struct new_sa_defrag_extent * 2490 record_old_file_extents(struct inode *inode, 2491 struct btrfs_ordered_extent *ordered) 2492 { 2493 struct btrfs_root *root = BTRFS_I(inode)->root; 2494 struct btrfs_path *path; 2495 struct btrfs_key key; 2496 struct old_sa_defrag_extent *old; 2497 struct new_sa_defrag_extent *new; 2498 int ret; 2499 2500 new = kmalloc(sizeof(*new), GFP_NOFS); 2501 if (!new) 2502 return NULL; 2503 2504 new->inode = inode; 2505 new->file_pos = ordered->file_offset; 2506 new->len = ordered->len; 2507 new->bytenr = ordered->start; 2508 new->disk_len = ordered->disk_len; 2509 new->compress_type = ordered->compress_type; 2510 new->root = RB_ROOT; 2511 INIT_LIST_HEAD(&new->head); 2512 2513 path = btrfs_alloc_path(); 2514 if (!path) 2515 goto out_kfree; 2516 2517 key.objectid = btrfs_ino(inode); 2518 key.type = BTRFS_EXTENT_DATA_KEY; 2519 key.offset = new->file_pos; 2520 2521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2522 if (ret < 0) 2523 goto out_free_path; 2524 if (ret > 0 && path->slots[0] > 0) 2525 path->slots[0]--; 2526 2527 /* find out all the old extents for the file range */ 2528 while (1) { 2529 struct btrfs_file_extent_item *extent; 2530 struct extent_buffer *l; 2531 int slot; 2532 u64 num_bytes; 2533 u64 offset; 2534 u64 end; 2535 u64 disk_bytenr; 2536 u64 extent_offset; 2537 2538 l = path->nodes[0]; 2539 slot = path->slots[0]; 2540 2541 if (slot >= btrfs_header_nritems(l)) { 2542 ret = btrfs_next_leaf(root, path); 2543 if (ret < 0) 2544 goto out_free_path; 2545 else if (ret > 0) 2546 break; 2547 continue; 2548 } 2549 2550 btrfs_item_key_to_cpu(l, &key, slot); 2551 2552 if (key.objectid != btrfs_ino(inode)) 2553 break; 2554 if (key.type != BTRFS_EXTENT_DATA_KEY) 2555 break; 2556 if (key.offset >= new->file_pos + new->len) 2557 break; 2558 2559 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2560 2561 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2562 if (key.offset + num_bytes < new->file_pos) 2563 goto next; 2564 2565 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2566 if (!disk_bytenr) 2567 goto next; 2568 2569 extent_offset = btrfs_file_extent_offset(l, extent); 2570 2571 old = kmalloc(sizeof(*old), GFP_NOFS); 2572 if (!old) 2573 goto out_free_path; 2574 2575 offset = max(new->file_pos, key.offset); 2576 end = min(new->file_pos + new->len, key.offset + num_bytes); 2577 2578 old->bytenr = disk_bytenr; 2579 old->extent_offset = extent_offset; 2580 old->offset = offset - key.offset; 2581 old->len = end - offset; 2582 old->new = new; 2583 old->count = 0; 2584 list_add_tail(&old->list, &new->head); 2585 next: 2586 path->slots[0]++; 2587 cond_resched(); 2588 } 2589 2590 btrfs_free_path(path); 2591 atomic_inc(&root->fs_info->defrag_running); 2592 2593 return new; 2594 2595 out_free_path: 2596 btrfs_free_path(path); 2597 out_kfree: 2598 free_sa_defrag_extent(new); 2599 return NULL; 2600 } 2601 2602 /* as ordered data IO finishes, this gets called so we can finish 2603 * an ordered extent if the range of bytes in the file it covers are 2604 * fully written. 2605 */ 2606 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2607 { 2608 struct inode *inode = ordered_extent->inode; 2609 struct btrfs_root *root = BTRFS_I(inode)->root; 2610 struct btrfs_trans_handle *trans = NULL; 2611 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2612 struct extent_state *cached_state = NULL; 2613 struct new_sa_defrag_extent *new = NULL; 2614 int compress_type = 0; 2615 int ret = 0; 2616 u64 logical_len = ordered_extent->len; 2617 bool nolock; 2618 bool truncated = false; 2619 2620 nolock = btrfs_is_free_space_inode(inode); 2621 2622 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2623 ret = -EIO; 2624 goto out; 2625 } 2626 2627 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2628 truncated = true; 2629 logical_len = ordered_extent->truncated_len; 2630 /* Truncated the entire extent, don't bother adding */ 2631 if (!logical_len) 2632 goto out; 2633 } 2634 2635 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2636 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2637 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2638 if (nolock) 2639 trans = btrfs_join_transaction_nolock(root); 2640 else 2641 trans = btrfs_join_transaction(root); 2642 if (IS_ERR(trans)) { 2643 ret = PTR_ERR(trans); 2644 trans = NULL; 2645 goto out; 2646 } 2647 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2648 ret = btrfs_update_inode_fallback(trans, root, inode); 2649 if (ret) /* -ENOMEM or corruption */ 2650 btrfs_abort_transaction(trans, root, ret); 2651 goto out; 2652 } 2653 2654 lock_extent_bits(io_tree, ordered_extent->file_offset, 2655 ordered_extent->file_offset + ordered_extent->len - 1, 2656 0, &cached_state); 2657 2658 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2659 ordered_extent->file_offset + ordered_extent->len - 1, 2660 EXTENT_DEFRAG, 1, cached_state); 2661 if (ret) { 2662 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2663 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2664 /* the inode is shared */ 2665 new = record_old_file_extents(inode, ordered_extent); 2666 2667 clear_extent_bit(io_tree, ordered_extent->file_offset, 2668 ordered_extent->file_offset + ordered_extent->len - 1, 2669 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2670 } 2671 2672 if (nolock) 2673 trans = btrfs_join_transaction_nolock(root); 2674 else 2675 trans = btrfs_join_transaction(root); 2676 if (IS_ERR(trans)) { 2677 ret = PTR_ERR(trans); 2678 trans = NULL; 2679 goto out_unlock; 2680 } 2681 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2682 2683 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2684 compress_type = ordered_extent->compress_type; 2685 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2686 BUG_ON(compress_type); 2687 ret = btrfs_mark_extent_written(trans, inode, 2688 ordered_extent->file_offset, 2689 ordered_extent->file_offset + 2690 logical_len); 2691 } else { 2692 BUG_ON(root == root->fs_info->tree_root); 2693 ret = insert_reserved_file_extent(trans, inode, 2694 ordered_extent->file_offset, 2695 ordered_extent->start, 2696 ordered_extent->disk_len, 2697 logical_len, logical_len, 2698 compress_type, 0, 0, 2699 BTRFS_FILE_EXTENT_REG); 2700 } 2701 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2702 ordered_extent->file_offset, ordered_extent->len, 2703 trans->transid); 2704 if (ret < 0) { 2705 btrfs_abort_transaction(trans, root, ret); 2706 goto out_unlock; 2707 } 2708 2709 add_pending_csums(trans, inode, ordered_extent->file_offset, 2710 &ordered_extent->list); 2711 2712 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2713 ret = btrfs_update_inode_fallback(trans, root, inode); 2714 if (ret) { /* -ENOMEM or corruption */ 2715 btrfs_abort_transaction(trans, root, ret); 2716 goto out_unlock; 2717 } 2718 ret = 0; 2719 out_unlock: 2720 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2721 ordered_extent->file_offset + 2722 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2723 out: 2724 if (root != root->fs_info->tree_root) 2725 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2726 if (trans) 2727 btrfs_end_transaction(trans, root); 2728 2729 if (ret || truncated) { 2730 u64 start, end; 2731 2732 if (truncated) 2733 start = ordered_extent->file_offset + logical_len; 2734 else 2735 start = ordered_extent->file_offset; 2736 end = ordered_extent->file_offset + ordered_extent->len - 1; 2737 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2738 2739 /* Drop the cache for the part of the extent we didn't write. */ 2740 btrfs_drop_extent_cache(inode, start, end, 0); 2741 2742 /* 2743 * If the ordered extent had an IOERR or something else went 2744 * wrong we need to return the space for this ordered extent 2745 * back to the allocator. We only free the extent in the 2746 * truncated case if we didn't write out the extent at all. 2747 */ 2748 if ((ret || !logical_len) && 2749 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2750 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2751 btrfs_free_reserved_extent(root, ordered_extent->start, 2752 ordered_extent->disk_len); 2753 } 2754 2755 2756 /* 2757 * This needs to be done to make sure anybody waiting knows we are done 2758 * updating everything for this ordered extent. 2759 */ 2760 btrfs_remove_ordered_extent(inode, ordered_extent); 2761 2762 /* for snapshot-aware defrag */ 2763 if (new) { 2764 if (ret) { 2765 free_sa_defrag_extent(new); 2766 atomic_dec(&root->fs_info->defrag_running); 2767 } else { 2768 relink_file_extents(new); 2769 } 2770 } 2771 2772 /* once for us */ 2773 btrfs_put_ordered_extent(ordered_extent); 2774 /* once for the tree */ 2775 btrfs_put_ordered_extent(ordered_extent); 2776 2777 return ret; 2778 } 2779 2780 static void finish_ordered_fn(struct btrfs_work *work) 2781 { 2782 struct btrfs_ordered_extent *ordered_extent; 2783 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2784 btrfs_finish_ordered_io(ordered_extent); 2785 } 2786 2787 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2788 struct extent_state *state, int uptodate) 2789 { 2790 struct inode *inode = page->mapping->host; 2791 struct btrfs_root *root = BTRFS_I(inode)->root; 2792 struct btrfs_ordered_extent *ordered_extent = NULL; 2793 struct btrfs_workqueue *workers; 2794 2795 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2796 2797 ClearPagePrivate2(page); 2798 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2799 end - start + 1, uptodate)) 2800 return 0; 2801 2802 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2803 2804 if (btrfs_is_free_space_inode(inode)) 2805 workers = root->fs_info->endio_freespace_worker; 2806 else 2807 workers = root->fs_info->endio_write_workers; 2808 btrfs_queue_work(workers, &ordered_extent->work); 2809 2810 return 0; 2811 } 2812 2813 /* 2814 * when reads are done, we need to check csums to verify the data is correct 2815 * if there's a match, we allow the bio to finish. If not, the code in 2816 * extent_io.c will try to find good copies for us. 2817 */ 2818 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2819 u64 phy_offset, struct page *page, 2820 u64 start, u64 end, int mirror) 2821 { 2822 size_t offset = start - page_offset(page); 2823 struct inode *inode = page->mapping->host; 2824 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2825 char *kaddr; 2826 struct btrfs_root *root = BTRFS_I(inode)->root; 2827 u32 csum_expected; 2828 u32 csum = ~(u32)0; 2829 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2830 DEFAULT_RATELIMIT_BURST); 2831 2832 if (PageChecked(page)) { 2833 ClearPageChecked(page); 2834 goto good; 2835 } 2836 2837 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2838 goto good; 2839 2840 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2841 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2842 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2843 GFP_NOFS); 2844 return 0; 2845 } 2846 2847 phy_offset >>= inode->i_sb->s_blocksize_bits; 2848 csum_expected = *(((u32 *)io_bio->csum) + phy_offset); 2849 2850 kaddr = kmap_atomic(page); 2851 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2852 btrfs_csum_final(csum, (char *)&csum); 2853 if (csum != csum_expected) 2854 goto zeroit; 2855 2856 kunmap_atomic(kaddr); 2857 good: 2858 return 0; 2859 2860 zeroit: 2861 if (__ratelimit(&_rs)) 2862 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 2863 btrfs_ino(page->mapping->host), start, csum, csum_expected); 2864 memset(kaddr + offset, 1, end - start + 1); 2865 flush_dcache_page(page); 2866 kunmap_atomic(kaddr); 2867 if (csum_expected == 0) 2868 return 0; 2869 return -EIO; 2870 } 2871 2872 struct delayed_iput { 2873 struct list_head list; 2874 struct inode *inode; 2875 }; 2876 2877 /* JDM: If this is fs-wide, why can't we add a pointer to 2878 * btrfs_inode instead and avoid the allocation? */ 2879 void btrfs_add_delayed_iput(struct inode *inode) 2880 { 2881 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2882 struct delayed_iput *delayed; 2883 2884 if (atomic_add_unless(&inode->i_count, -1, 1)) 2885 return; 2886 2887 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2888 delayed->inode = inode; 2889 2890 spin_lock(&fs_info->delayed_iput_lock); 2891 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2892 spin_unlock(&fs_info->delayed_iput_lock); 2893 } 2894 2895 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2896 { 2897 LIST_HEAD(list); 2898 struct btrfs_fs_info *fs_info = root->fs_info; 2899 struct delayed_iput *delayed; 2900 int empty; 2901 2902 spin_lock(&fs_info->delayed_iput_lock); 2903 empty = list_empty(&fs_info->delayed_iputs); 2904 spin_unlock(&fs_info->delayed_iput_lock); 2905 if (empty) 2906 return; 2907 2908 spin_lock(&fs_info->delayed_iput_lock); 2909 list_splice_init(&fs_info->delayed_iputs, &list); 2910 spin_unlock(&fs_info->delayed_iput_lock); 2911 2912 while (!list_empty(&list)) { 2913 delayed = list_entry(list.next, struct delayed_iput, list); 2914 list_del(&delayed->list); 2915 iput(delayed->inode); 2916 kfree(delayed); 2917 } 2918 } 2919 2920 /* 2921 * This is called in transaction commit time. If there are no orphan 2922 * files in the subvolume, it removes orphan item and frees block_rsv 2923 * structure. 2924 */ 2925 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2926 struct btrfs_root *root) 2927 { 2928 struct btrfs_block_rsv *block_rsv; 2929 int ret; 2930 2931 if (atomic_read(&root->orphan_inodes) || 2932 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2933 return; 2934 2935 spin_lock(&root->orphan_lock); 2936 if (atomic_read(&root->orphan_inodes)) { 2937 spin_unlock(&root->orphan_lock); 2938 return; 2939 } 2940 2941 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2942 spin_unlock(&root->orphan_lock); 2943 return; 2944 } 2945 2946 block_rsv = root->orphan_block_rsv; 2947 root->orphan_block_rsv = NULL; 2948 spin_unlock(&root->orphan_lock); 2949 2950 if (root->orphan_item_inserted && 2951 btrfs_root_refs(&root->root_item) > 0) { 2952 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2953 root->root_key.objectid); 2954 if (ret) 2955 btrfs_abort_transaction(trans, root, ret); 2956 else 2957 root->orphan_item_inserted = 0; 2958 } 2959 2960 if (block_rsv) { 2961 WARN_ON(block_rsv->size > 0); 2962 btrfs_free_block_rsv(root, block_rsv); 2963 } 2964 } 2965 2966 /* 2967 * This creates an orphan entry for the given inode in case something goes 2968 * wrong in the middle of an unlink/truncate. 2969 * 2970 * NOTE: caller of this function should reserve 5 units of metadata for 2971 * this function. 2972 */ 2973 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2974 { 2975 struct btrfs_root *root = BTRFS_I(inode)->root; 2976 struct btrfs_block_rsv *block_rsv = NULL; 2977 int reserve = 0; 2978 int insert = 0; 2979 int ret; 2980 2981 if (!root->orphan_block_rsv) { 2982 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2983 if (!block_rsv) 2984 return -ENOMEM; 2985 } 2986 2987 spin_lock(&root->orphan_lock); 2988 if (!root->orphan_block_rsv) { 2989 root->orphan_block_rsv = block_rsv; 2990 } else if (block_rsv) { 2991 btrfs_free_block_rsv(root, block_rsv); 2992 block_rsv = NULL; 2993 } 2994 2995 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2996 &BTRFS_I(inode)->runtime_flags)) { 2997 #if 0 2998 /* 2999 * For proper ENOSPC handling, we should do orphan 3000 * cleanup when mounting. But this introduces backward 3001 * compatibility issue. 3002 */ 3003 if (!xchg(&root->orphan_item_inserted, 1)) 3004 insert = 2; 3005 else 3006 insert = 1; 3007 #endif 3008 insert = 1; 3009 atomic_inc(&root->orphan_inodes); 3010 } 3011 3012 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3013 &BTRFS_I(inode)->runtime_flags)) 3014 reserve = 1; 3015 spin_unlock(&root->orphan_lock); 3016 3017 /* grab metadata reservation from transaction handle */ 3018 if (reserve) { 3019 ret = btrfs_orphan_reserve_metadata(trans, inode); 3020 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3021 } 3022 3023 /* insert an orphan item to track this unlinked/truncated file */ 3024 if (insert >= 1) { 3025 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3026 if (ret) { 3027 atomic_dec(&root->orphan_inodes); 3028 if (reserve) { 3029 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3030 &BTRFS_I(inode)->runtime_flags); 3031 btrfs_orphan_release_metadata(inode); 3032 } 3033 if (ret != -EEXIST) { 3034 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3035 &BTRFS_I(inode)->runtime_flags); 3036 btrfs_abort_transaction(trans, root, ret); 3037 return ret; 3038 } 3039 } 3040 ret = 0; 3041 } 3042 3043 /* insert an orphan item to track subvolume contains orphan files */ 3044 if (insert >= 2) { 3045 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3046 root->root_key.objectid); 3047 if (ret && ret != -EEXIST) { 3048 btrfs_abort_transaction(trans, root, ret); 3049 return ret; 3050 } 3051 } 3052 return 0; 3053 } 3054 3055 /* 3056 * We have done the truncate/delete so we can go ahead and remove the orphan 3057 * item for this particular inode. 3058 */ 3059 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3060 struct inode *inode) 3061 { 3062 struct btrfs_root *root = BTRFS_I(inode)->root; 3063 int delete_item = 0; 3064 int release_rsv = 0; 3065 int ret = 0; 3066 3067 spin_lock(&root->orphan_lock); 3068 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3069 &BTRFS_I(inode)->runtime_flags)) 3070 delete_item = 1; 3071 3072 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3073 &BTRFS_I(inode)->runtime_flags)) 3074 release_rsv = 1; 3075 spin_unlock(&root->orphan_lock); 3076 3077 if (delete_item) { 3078 atomic_dec(&root->orphan_inodes); 3079 if (trans) 3080 ret = btrfs_del_orphan_item(trans, root, 3081 btrfs_ino(inode)); 3082 } 3083 3084 if (release_rsv) 3085 btrfs_orphan_release_metadata(inode); 3086 3087 return ret; 3088 } 3089 3090 /* 3091 * this cleans up any orphans that may be left on the list from the last use 3092 * of this root. 3093 */ 3094 int btrfs_orphan_cleanup(struct btrfs_root *root) 3095 { 3096 struct btrfs_path *path; 3097 struct extent_buffer *leaf; 3098 struct btrfs_key key, found_key; 3099 struct btrfs_trans_handle *trans; 3100 struct inode *inode; 3101 u64 last_objectid = 0; 3102 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3103 3104 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3105 return 0; 3106 3107 path = btrfs_alloc_path(); 3108 if (!path) { 3109 ret = -ENOMEM; 3110 goto out; 3111 } 3112 path->reada = -1; 3113 3114 key.objectid = BTRFS_ORPHAN_OBJECTID; 3115 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3116 key.offset = (u64)-1; 3117 3118 while (1) { 3119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3120 if (ret < 0) 3121 goto out; 3122 3123 /* 3124 * if ret == 0 means we found what we were searching for, which 3125 * is weird, but possible, so only screw with path if we didn't 3126 * find the key and see if we have stuff that matches 3127 */ 3128 if (ret > 0) { 3129 ret = 0; 3130 if (path->slots[0] == 0) 3131 break; 3132 path->slots[0]--; 3133 } 3134 3135 /* pull out the item */ 3136 leaf = path->nodes[0]; 3137 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3138 3139 /* make sure the item matches what we want */ 3140 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3141 break; 3142 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3143 break; 3144 3145 /* release the path since we're done with it */ 3146 btrfs_release_path(path); 3147 3148 /* 3149 * this is where we are basically btrfs_lookup, without the 3150 * crossing root thing. we store the inode number in the 3151 * offset of the orphan item. 3152 */ 3153 3154 if (found_key.offset == last_objectid) { 3155 btrfs_err(root->fs_info, 3156 "Error removing orphan entry, stopping orphan cleanup"); 3157 ret = -EINVAL; 3158 goto out; 3159 } 3160 3161 last_objectid = found_key.offset; 3162 3163 found_key.objectid = found_key.offset; 3164 found_key.type = BTRFS_INODE_ITEM_KEY; 3165 found_key.offset = 0; 3166 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3167 ret = PTR_ERR_OR_ZERO(inode); 3168 if (ret && ret != -ESTALE) 3169 goto out; 3170 3171 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3172 struct btrfs_root *dead_root; 3173 struct btrfs_fs_info *fs_info = root->fs_info; 3174 int is_dead_root = 0; 3175 3176 /* 3177 * this is an orphan in the tree root. Currently these 3178 * could come from 2 sources: 3179 * a) a snapshot deletion in progress 3180 * b) a free space cache inode 3181 * We need to distinguish those two, as the snapshot 3182 * orphan must not get deleted. 3183 * find_dead_roots already ran before us, so if this 3184 * is a snapshot deletion, we should find the root 3185 * in the dead_roots list 3186 */ 3187 spin_lock(&fs_info->trans_lock); 3188 list_for_each_entry(dead_root, &fs_info->dead_roots, 3189 root_list) { 3190 if (dead_root->root_key.objectid == 3191 found_key.objectid) { 3192 is_dead_root = 1; 3193 break; 3194 } 3195 } 3196 spin_unlock(&fs_info->trans_lock); 3197 if (is_dead_root) { 3198 /* prevent this orphan from being found again */ 3199 key.offset = found_key.objectid - 1; 3200 continue; 3201 } 3202 } 3203 /* 3204 * Inode is already gone but the orphan item is still there, 3205 * kill the orphan item. 3206 */ 3207 if (ret == -ESTALE) { 3208 trans = btrfs_start_transaction(root, 1); 3209 if (IS_ERR(trans)) { 3210 ret = PTR_ERR(trans); 3211 goto out; 3212 } 3213 btrfs_debug(root->fs_info, "auto deleting %Lu", 3214 found_key.objectid); 3215 ret = btrfs_del_orphan_item(trans, root, 3216 found_key.objectid); 3217 btrfs_end_transaction(trans, root); 3218 if (ret) 3219 goto out; 3220 continue; 3221 } 3222 3223 /* 3224 * add this inode to the orphan list so btrfs_orphan_del does 3225 * the proper thing when we hit it 3226 */ 3227 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3228 &BTRFS_I(inode)->runtime_flags); 3229 atomic_inc(&root->orphan_inodes); 3230 3231 /* if we have links, this was a truncate, lets do that */ 3232 if (inode->i_nlink) { 3233 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3234 iput(inode); 3235 continue; 3236 } 3237 nr_truncate++; 3238 3239 /* 1 for the orphan item deletion. */ 3240 trans = btrfs_start_transaction(root, 1); 3241 if (IS_ERR(trans)) { 3242 iput(inode); 3243 ret = PTR_ERR(trans); 3244 goto out; 3245 } 3246 ret = btrfs_orphan_add(trans, inode); 3247 btrfs_end_transaction(trans, root); 3248 if (ret) { 3249 iput(inode); 3250 goto out; 3251 } 3252 3253 ret = btrfs_truncate(inode); 3254 if (ret) 3255 btrfs_orphan_del(NULL, inode); 3256 } else { 3257 nr_unlink++; 3258 } 3259 3260 /* this will do delete_inode and everything for us */ 3261 iput(inode); 3262 if (ret) 3263 goto out; 3264 } 3265 /* release the path since we're done with it */ 3266 btrfs_release_path(path); 3267 3268 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3269 3270 if (root->orphan_block_rsv) 3271 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3272 (u64)-1); 3273 3274 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3275 trans = btrfs_join_transaction(root); 3276 if (!IS_ERR(trans)) 3277 btrfs_end_transaction(trans, root); 3278 } 3279 3280 if (nr_unlink) 3281 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3282 if (nr_truncate) 3283 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3284 3285 out: 3286 if (ret) 3287 btrfs_crit(root->fs_info, 3288 "could not do orphan cleanup %d", ret); 3289 btrfs_free_path(path); 3290 return ret; 3291 } 3292 3293 /* 3294 * very simple check to peek ahead in the leaf looking for xattrs. If we 3295 * don't find any xattrs, we know there can't be any acls. 3296 * 3297 * slot is the slot the inode is in, objectid is the objectid of the inode 3298 */ 3299 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3300 int slot, u64 objectid, 3301 int *first_xattr_slot) 3302 { 3303 u32 nritems = btrfs_header_nritems(leaf); 3304 struct btrfs_key found_key; 3305 static u64 xattr_access = 0; 3306 static u64 xattr_default = 0; 3307 int scanned = 0; 3308 3309 if (!xattr_access) { 3310 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3311 strlen(POSIX_ACL_XATTR_ACCESS)); 3312 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3313 strlen(POSIX_ACL_XATTR_DEFAULT)); 3314 } 3315 3316 slot++; 3317 *first_xattr_slot = -1; 3318 while (slot < nritems) { 3319 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3320 3321 /* we found a different objectid, there must not be acls */ 3322 if (found_key.objectid != objectid) 3323 return 0; 3324 3325 /* we found an xattr, assume we've got an acl */ 3326 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3327 if (*first_xattr_slot == -1) 3328 *first_xattr_slot = slot; 3329 if (found_key.offset == xattr_access || 3330 found_key.offset == xattr_default) 3331 return 1; 3332 } 3333 3334 /* 3335 * we found a key greater than an xattr key, there can't 3336 * be any acls later on 3337 */ 3338 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3339 return 0; 3340 3341 slot++; 3342 scanned++; 3343 3344 /* 3345 * it goes inode, inode backrefs, xattrs, extents, 3346 * so if there are a ton of hard links to an inode there can 3347 * be a lot of backrefs. Don't waste time searching too hard, 3348 * this is just an optimization 3349 */ 3350 if (scanned >= 8) 3351 break; 3352 } 3353 /* we hit the end of the leaf before we found an xattr or 3354 * something larger than an xattr. We have to assume the inode 3355 * has acls 3356 */ 3357 if (*first_xattr_slot == -1) 3358 *first_xattr_slot = slot; 3359 return 1; 3360 } 3361 3362 /* 3363 * read an inode from the btree into the in-memory inode 3364 */ 3365 static void btrfs_read_locked_inode(struct inode *inode) 3366 { 3367 struct btrfs_path *path; 3368 struct extent_buffer *leaf; 3369 struct btrfs_inode_item *inode_item; 3370 struct btrfs_timespec *tspec; 3371 struct btrfs_root *root = BTRFS_I(inode)->root; 3372 struct btrfs_key location; 3373 unsigned long ptr; 3374 int maybe_acls; 3375 u32 rdev; 3376 int ret; 3377 bool filled = false; 3378 int first_xattr_slot; 3379 3380 ret = btrfs_fill_inode(inode, &rdev); 3381 if (!ret) 3382 filled = true; 3383 3384 path = btrfs_alloc_path(); 3385 if (!path) 3386 goto make_bad; 3387 3388 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3389 3390 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3391 if (ret) 3392 goto make_bad; 3393 3394 leaf = path->nodes[0]; 3395 3396 if (filled) 3397 goto cache_index; 3398 3399 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3400 struct btrfs_inode_item); 3401 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3402 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3403 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3404 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3405 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3406 3407 tspec = btrfs_inode_atime(inode_item); 3408 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3409 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3410 3411 tspec = btrfs_inode_mtime(inode_item); 3412 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3413 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3414 3415 tspec = btrfs_inode_ctime(inode_item); 3416 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3417 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3418 3419 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3420 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3421 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3422 3423 /* 3424 * If we were modified in the current generation and evicted from memory 3425 * and then re-read we need to do a full sync since we don't have any 3426 * idea about which extents were modified before we were evicted from 3427 * cache. 3428 */ 3429 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3430 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3431 &BTRFS_I(inode)->runtime_flags); 3432 3433 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3434 inode->i_generation = BTRFS_I(inode)->generation; 3435 inode->i_rdev = 0; 3436 rdev = btrfs_inode_rdev(leaf, inode_item); 3437 3438 BTRFS_I(inode)->index_cnt = (u64)-1; 3439 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3440 3441 cache_index: 3442 path->slots[0]++; 3443 if (inode->i_nlink != 1 || 3444 path->slots[0] >= btrfs_header_nritems(leaf)) 3445 goto cache_acl; 3446 3447 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3448 if (location.objectid != btrfs_ino(inode)) 3449 goto cache_acl; 3450 3451 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3452 if (location.type == BTRFS_INODE_REF_KEY) { 3453 struct btrfs_inode_ref *ref; 3454 3455 ref = (struct btrfs_inode_ref *)ptr; 3456 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3457 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3458 struct btrfs_inode_extref *extref; 3459 3460 extref = (struct btrfs_inode_extref *)ptr; 3461 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3462 extref); 3463 } 3464 cache_acl: 3465 /* 3466 * try to precache a NULL acl entry for files that don't have 3467 * any xattrs or acls 3468 */ 3469 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3470 btrfs_ino(inode), &first_xattr_slot); 3471 if (first_xattr_slot != -1) { 3472 path->slots[0] = first_xattr_slot; 3473 ret = btrfs_load_inode_props(inode, path); 3474 if (ret) 3475 btrfs_err(root->fs_info, 3476 "error loading props for ino %llu (root %llu): %d\n", 3477 btrfs_ino(inode), 3478 root->root_key.objectid, ret); 3479 } 3480 btrfs_free_path(path); 3481 3482 if (!maybe_acls) 3483 cache_no_acl(inode); 3484 3485 switch (inode->i_mode & S_IFMT) { 3486 case S_IFREG: 3487 inode->i_mapping->a_ops = &btrfs_aops; 3488 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3489 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3490 inode->i_fop = &btrfs_file_operations; 3491 inode->i_op = &btrfs_file_inode_operations; 3492 break; 3493 case S_IFDIR: 3494 inode->i_fop = &btrfs_dir_file_operations; 3495 if (root == root->fs_info->tree_root) 3496 inode->i_op = &btrfs_dir_ro_inode_operations; 3497 else 3498 inode->i_op = &btrfs_dir_inode_operations; 3499 break; 3500 case S_IFLNK: 3501 inode->i_op = &btrfs_symlink_inode_operations; 3502 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3503 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3504 break; 3505 default: 3506 inode->i_op = &btrfs_special_inode_operations; 3507 init_special_inode(inode, inode->i_mode, rdev); 3508 break; 3509 } 3510 3511 btrfs_update_iflags(inode); 3512 return; 3513 3514 make_bad: 3515 btrfs_free_path(path); 3516 make_bad_inode(inode); 3517 } 3518 3519 /* 3520 * given a leaf and an inode, copy the inode fields into the leaf 3521 */ 3522 static void fill_inode_item(struct btrfs_trans_handle *trans, 3523 struct extent_buffer *leaf, 3524 struct btrfs_inode_item *item, 3525 struct inode *inode) 3526 { 3527 struct btrfs_map_token token; 3528 3529 btrfs_init_map_token(&token); 3530 3531 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3532 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3533 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3534 &token); 3535 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3536 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3537 3538 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3539 inode->i_atime.tv_sec, &token); 3540 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3541 inode->i_atime.tv_nsec, &token); 3542 3543 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3544 inode->i_mtime.tv_sec, &token); 3545 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3546 inode->i_mtime.tv_nsec, &token); 3547 3548 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3549 inode->i_ctime.tv_sec, &token); 3550 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3551 inode->i_ctime.tv_nsec, &token); 3552 3553 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3554 &token); 3555 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3556 &token); 3557 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3558 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3559 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3560 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3561 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3562 } 3563 3564 /* 3565 * copy everything in the in-memory inode into the btree. 3566 */ 3567 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3568 struct btrfs_root *root, struct inode *inode) 3569 { 3570 struct btrfs_inode_item *inode_item; 3571 struct btrfs_path *path; 3572 struct extent_buffer *leaf; 3573 int ret; 3574 3575 path = btrfs_alloc_path(); 3576 if (!path) 3577 return -ENOMEM; 3578 3579 path->leave_spinning = 1; 3580 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3581 1); 3582 if (ret) { 3583 if (ret > 0) 3584 ret = -ENOENT; 3585 goto failed; 3586 } 3587 3588 leaf = path->nodes[0]; 3589 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3590 struct btrfs_inode_item); 3591 3592 fill_inode_item(trans, leaf, inode_item, inode); 3593 btrfs_mark_buffer_dirty(leaf); 3594 btrfs_set_inode_last_trans(trans, inode); 3595 ret = 0; 3596 failed: 3597 btrfs_free_path(path); 3598 return ret; 3599 } 3600 3601 /* 3602 * copy everything in the in-memory inode into the btree. 3603 */ 3604 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3605 struct btrfs_root *root, struct inode *inode) 3606 { 3607 int ret; 3608 3609 /* 3610 * If the inode is a free space inode, we can deadlock during commit 3611 * if we put it into the delayed code. 3612 * 3613 * The data relocation inode should also be directly updated 3614 * without delay 3615 */ 3616 if (!btrfs_is_free_space_inode(inode) 3617 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3618 btrfs_update_root_times(trans, root); 3619 3620 ret = btrfs_delayed_update_inode(trans, root, inode); 3621 if (!ret) 3622 btrfs_set_inode_last_trans(trans, inode); 3623 return ret; 3624 } 3625 3626 return btrfs_update_inode_item(trans, root, inode); 3627 } 3628 3629 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3630 struct btrfs_root *root, 3631 struct inode *inode) 3632 { 3633 int ret; 3634 3635 ret = btrfs_update_inode(trans, root, inode); 3636 if (ret == -ENOSPC) 3637 return btrfs_update_inode_item(trans, root, inode); 3638 return ret; 3639 } 3640 3641 /* 3642 * unlink helper that gets used here in inode.c and in the tree logging 3643 * recovery code. It remove a link in a directory with a given name, and 3644 * also drops the back refs in the inode to the directory 3645 */ 3646 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3647 struct btrfs_root *root, 3648 struct inode *dir, struct inode *inode, 3649 const char *name, int name_len) 3650 { 3651 struct btrfs_path *path; 3652 int ret = 0; 3653 struct extent_buffer *leaf; 3654 struct btrfs_dir_item *di; 3655 struct btrfs_key key; 3656 u64 index; 3657 u64 ino = btrfs_ino(inode); 3658 u64 dir_ino = btrfs_ino(dir); 3659 3660 path = btrfs_alloc_path(); 3661 if (!path) { 3662 ret = -ENOMEM; 3663 goto out; 3664 } 3665 3666 path->leave_spinning = 1; 3667 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3668 name, name_len, -1); 3669 if (IS_ERR(di)) { 3670 ret = PTR_ERR(di); 3671 goto err; 3672 } 3673 if (!di) { 3674 ret = -ENOENT; 3675 goto err; 3676 } 3677 leaf = path->nodes[0]; 3678 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3679 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3680 if (ret) 3681 goto err; 3682 btrfs_release_path(path); 3683 3684 /* 3685 * If we don't have dir index, we have to get it by looking up 3686 * the inode ref, since we get the inode ref, remove it directly, 3687 * it is unnecessary to do delayed deletion. 3688 * 3689 * But if we have dir index, needn't search inode ref to get it. 3690 * Since the inode ref is close to the inode item, it is better 3691 * that we delay to delete it, and just do this deletion when 3692 * we update the inode item. 3693 */ 3694 if (BTRFS_I(inode)->dir_index) { 3695 ret = btrfs_delayed_delete_inode_ref(inode); 3696 if (!ret) { 3697 index = BTRFS_I(inode)->dir_index; 3698 goto skip_backref; 3699 } 3700 } 3701 3702 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3703 dir_ino, &index); 3704 if (ret) { 3705 btrfs_info(root->fs_info, 3706 "failed to delete reference to %.*s, inode %llu parent %llu", 3707 name_len, name, ino, dir_ino); 3708 btrfs_abort_transaction(trans, root, ret); 3709 goto err; 3710 } 3711 skip_backref: 3712 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3713 if (ret) { 3714 btrfs_abort_transaction(trans, root, ret); 3715 goto err; 3716 } 3717 3718 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3719 inode, dir_ino); 3720 if (ret != 0 && ret != -ENOENT) { 3721 btrfs_abort_transaction(trans, root, ret); 3722 goto err; 3723 } 3724 3725 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3726 dir, index); 3727 if (ret == -ENOENT) 3728 ret = 0; 3729 else if (ret) 3730 btrfs_abort_transaction(trans, root, ret); 3731 err: 3732 btrfs_free_path(path); 3733 if (ret) 3734 goto out; 3735 3736 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3737 inode_inc_iversion(inode); 3738 inode_inc_iversion(dir); 3739 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3740 ret = btrfs_update_inode(trans, root, dir); 3741 out: 3742 return ret; 3743 } 3744 3745 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3746 struct btrfs_root *root, 3747 struct inode *dir, struct inode *inode, 3748 const char *name, int name_len) 3749 { 3750 int ret; 3751 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3752 if (!ret) { 3753 drop_nlink(inode); 3754 ret = btrfs_update_inode(trans, root, inode); 3755 } 3756 return ret; 3757 } 3758 3759 /* 3760 * helper to start transaction for unlink and rmdir. 3761 * 3762 * unlink and rmdir are special in btrfs, they do not always free space, so 3763 * if we cannot make our reservations the normal way try and see if there is 3764 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3765 * allow the unlink to occur. 3766 */ 3767 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3768 { 3769 struct btrfs_trans_handle *trans; 3770 struct btrfs_root *root = BTRFS_I(dir)->root; 3771 int ret; 3772 3773 /* 3774 * 1 for the possible orphan item 3775 * 1 for the dir item 3776 * 1 for the dir index 3777 * 1 for the inode ref 3778 * 1 for the inode 3779 */ 3780 trans = btrfs_start_transaction(root, 5); 3781 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3782 return trans; 3783 3784 if (PTR_ERR(trans) == -ENOSPC) { 3785 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3786 3787 trans = btrfs_start_transaction(root, 0); 3788 if (IS_ERR(trans)) 3789 return trans; 3790 ret = btrfs_cond_migrate_bytes(root->fs_info, 3791 &root->fs_info->trans_block_rsv, 3792 num_bytes, 5); 3793 if (ret) { 3794 btrfs_end_transaction(trans, root); 3795 return ERR_PTR(ret); 3796 } 3797 trans->block_rsv = &root->fs_info->trans_block_rsv; 3798 trans->bytes_reserved = num_bytes; 3799 } 3800 return trans; 3801 } 3802 3803 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3804 { 3805 struct btrfs_root *root = BTRFS_I(dir)->root; 3806 struct btrfs_trans_handle *trans; 3807 struct inode *inode = dentry->d_inode; 3808 int ret; 3809 3810 trans = __unlink_start_trans(dir); 3811 if (IS_ERR(trans)) 3812 return PTR_ERR(trans); 3813 3814 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3815 3816 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3817 dentry->d_name.name, dentry->d_name.len); 3818 if (ret) 3819 goto out; 3820 3821 if (inode->i_nlink == 0) { 3822 ret = btrfs_orphan_add(trans, inode); 3823 if (ret) 3824 goto out; 3825 } 3826 3827 out: 3828 btrfs_end_transaction(trans, root); 3829 btrfs_btree_balance_dirty(root); 3830 return ret; 3831 } 3832 3833 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3834 struct btrfs_root *root, 3835 struct inode *dir, u64 objectid, 3836 const char *name, int name_len) 3837 { 3838 struct btrfs_path *path; 3839 struct extent_buffer *leaf; 3840 struct btrfs_dir_item *di; 3841 struct btrfs_key key; 3842 u64 index; 3843 int ret; 3844 u64 dir_ino = btrfs_ino(dir); 3845 3846 path = btrfs_alloc_path(); 3847 if (!path) 3848 return -ENOMEM; 3849 3850 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3851 name, name_len, -1); 3852 if (IS_ERR_OR_NULL(di)) { 3853 if (!di) 3854 ret = -ENOENT; 3855 else 3856 ret = PTR_ERR(di); 3857 goto out; 3858 } 3859 3860 leaf = path->nodes[0]; 3861 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3862 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3863 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3864 if (ret) { 3865 btrfs_abort_transaction(trans, root, ret); 3866 goto out; 3867 } 3868 btrfs_release_path(path); 3869 3870 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3871 objectid, root->root_key.objectid, 3872 dir_ino, &index, name, name_len); 3873 if (ret < 0) { 3874 if (ret != -ENOENT) { 3875 btrfs_abort_transaction(trans, root, ret); 3876 goto out; 3877 } 3878 di = btrfs_search_dir_index_item(root, path, dir_ino, 3879 name, name_len); 3880 if (IS_ERR_OR_NULL(di)) { 3881 if (!di) 3882 ret = -ENOENT; 3883 else 3884 ret = PTR_ERR(di); 3885 btrfs_abort_transaction(trans, root, ret); 3886 goto out; 3887 } 3888 3889 leaf = path->nodes[0]; 3890 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3891 btrfs_release_path(path); 3892 index = key.offset; 3893 } 3894 btrfs_release_path(path); 3895 3896 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3897 if (ret) { 3898 btrfs_abort_transaction(trans, root, ret); 3899 goto out; 3900 } 3901 3902 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3903 inode_inc_iversion(dir); 3904 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3905 ret = btrfs_update_inode_fallback(trans, root, dir); 3906 if (ret) 3907 btrfs_abort_transaction(trans, root, ret); 3908 out: 3909 btrfs_free_path(path); 3910 return ret; 3911 } 3912 3913 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3914 { 3915 struct inode *inode = dentry->d_inode; 3916 int err = 0; 3917 struct btrfs_root *root = BTRFS_I(dir)->root; 3918 struct btrfs_trans_handle *trans; 3919 3920 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3921 return -ENOTEMPTY; 3922 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3923 return -EPERM; 3924 3925 trans = __unlink_start_trans(dir); 3926 if (IS_ERR(trans)) 3927 return PTR_ERR(trans); 3928 3929 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3930 err = btrfs_unlink_subvol(trans, root, dir, 3931 BTRFS_I(inode)->location.objectid, 3932 dentry->d_name.name, 3933 dentry->d_name.len); 3934 goto out; 3935 } 3936 3937 err = btrfs_orphan_add(trans, inode); 3938 if (err) 3939 goto out; 3940 3941 /* now the directory is empty */ 3942 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3943 dentry->d_name.name, dentry->d_name.len); 3944 if (!err) 3945 btrfs_i_size_write(inode, 0); 3946 out: 3947 btrfs_end_transaction(trans, root); 3948 btrfs_btree_balance_dirty(root); 3949 3950 return err; 3951 } 3952 3953 /* 3954 * this can truncate away extent items, csum items and directory items. 3955 * It starts at a high offset and removes keys until it can't find 3956 * any higher than new_size 3957 * 3958 * csum items that cross the new i_size are truncated to the new size 3959 * as well. 3960 * 3961 * min_type is the minimum key type to truncate down to. If set to 0, this 3962 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3963 */ 3964 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3965 struct btrfs_root *root, 3966 struct inode *inode, 3967 u64 new_size, u32 min_type) 3968 { 3969 struct btrfs_path *path; 3970 struct extent_buffer *leaf; 3971 struct btrfs_file_extent_item *fi; 3972 struct btrfs_key key; 3973 struct btrfs_key found_key; 3974 u64 extent_start = 0; 3975 u64 extent_num_bytes = 0; 3976 u64 extent_offset = 0; 3977 u64 item_end = 0; 3978 u64 last_size = (u64)-1; 3979 u32 found_type = (u8)-1; 3980 int found_extent; 3981 int del_item; 3982 int pending_del_nr = 0; 3983 int pending_del_slot = 0; 3984 int extent_type = -1; 3985 int ret; 3986 int err = 0; 3987 u64 ino = btrfs_ino(inode); 3988 3989 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3990 3991 path = btrfs_alloc_path(); 3992 if (!path) 3993 return -ENOMEM; 3994 path->reada = -1; 3995 3996 /* 3997 * We want to drop from the next block forward in case this new size is 3998 * not block aligned since we will be keeping the last block of the 3999 * extent just the way it is. 4000 */ 4001 if (root->ref_cows || root == root->fs_info->tree_root) 4002 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4003 root->sectorsize), (u64)-1, 0); 4004 4005 /* 4006 * This function is also used to drop the items in the log tree before 4007 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4008 * it is used to drop the loged items. So we shouldn't kill the delayed 4009 * items. 4010 */ 4011 if (min_type == 0 && root == BTRFS_I(inode)->root) 4012 btrfs_kill_delayed_inode_items(inode); 4013 4014 key.objectid = ino; 4015 key.offset = (u64)-1; 4016 key.type = (u8)-1; 4017 4018 search_again: 4019 path->leave_spinning = 1; 4020 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4021 if (ret < 0) { 4022 err = ret; 4023 goto out; 4024 } 4025 4026 if (ret > 0) { 4027 /* there are no items in the tree for us to truncate, we're 4028 * done 4029 */ 4030 if (path->slots[0] == 0) 4031 goto out; 4032 path->slots[0]--; 4033 } 4034 4035 while (1) { 4036 fi = NULL; 4037 leaf = path->nodes[0]; 4038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4039 found_type = btrfs_key_type(&found_key); 4040 4041 if (found_key.objectid != ino) 4042 break; 4043 4044 if (found_type < min_type) 4045 break; 4046 4047 item_end = found_key.offset; 4048 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4049 fi = btrfs_item_ptr(leaf, path->slots[0], 4050 struct btrfs_file_extent_item); 4051 extent_type = btrfs_file_extent_type(leaf, fi); 4052 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4053 item_end += 4054 btrfs_file_extent_num_bytes(leaf, fi); 4055 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4056 item_end += btrfs_file_extent_inline_len(leaf, 4057 path->slots[0], fi); 4058 } 4059 item_end--; 4060 } 4061 if (found_type > min_type) { 4062 del_item = 1; 4063 } else { 4064 if (item_end < new_size) 4065 break; 4066 if (found_key.offset >= new_size) 4067 del_item = 1; 4068 else 4069 del_item = 0; 4070 } 4071 found_extent = 0; 4072 /* FIXME, shrink the extent if the ref count is only 1 */ 4073 if (found_type != BTRFS_EXTENT_DATA_KEY) 4074 goto delete; 4075 4076 if (del_item) 4077 last_size = found_key.offset; 4078 else 4079 last_size = new_size; 4080 4081 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4082 u64 num_dec; 4083 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4084 if (!del_item) { 4085 u64 orig_num_bytes = 4086 btrfs_file_extent_num_bytes(leaf, fi); 4087 extent_num_bytes = ALIGN(new_size - 4088 found_key.offset, 4089 root->sectorsize); 4090 btrfs_set_file_extent_num_bytes(leaf, fi, 4091 extent_num_bytes); 4092 num_dec = (orig_num_bytes - 4093 extent_num_bytes); 4094 if (root->ref_cows && extent_start != 0) 4095 inode_sub_bytes(inode, num_dec); 4096 btrfs_mark_buffer_dirty(leaf); 4097 } else { 4098 extent_num_bytes = 4099 btrfs_file_extent_disk_num_bytes(leaf, 4100 fi); 4101 extent_offset = found_key.offset - 4102 btrfs_file_extent_offset(leaf, fi); 4103 4104 /* FIXME blocksize != 4096 */ 4105 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4106 if (extent_start != 0) { 4107 found_extent = 1; 4108 if (root->ref_cows) 4109 inode_sub_bytes(inode, num_dec); 4110 } 4111 } 4112 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4113 /* 4114 * we can't truncate inline items that have had 4115 * special encodings 4116 */ 4117 if (!del_item && 4118 btrfs_file_extent_compression(leaf, fi) == 0 && 4119 btrfs_file_extent_encryption(leaf, fi) == 0 && 4120 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4121 u32 size = new_size - found_key.offset; 4122 4123 if (root->ref_cows) { 4124 inode_sub_bytes(inode, item_end + 1 - 4125 new_size); 4126 } 4127 4128 /* 4129 * update the ram bytes to properly reflect 4130 * the new size of our item 4131 */ 4132 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4133 size = 4134 btrfs_file_extent_calc_inline_size(size); 4135 btrfs_truncate_item(root, path, size, 1); 4136 } else if (root->ref_cows) { 4137 inode_sub_bytes(inode, item_end + 1 - 4138 found_key.offset); 4139 } 4140 } 4141 delete: 4142 if (del_item) { 4143 if (!pending_del_nr) { 4144 /* no pending yet, add ourselves */ 4145 pending_del_slot = path->slots[0]; 4146 pending_del_nr = 1; 4147 } else if (pending_del_nr && 4148 path->slots[0] + 1 == pending_del_slot) { 4149 /* hop on the pending chunk */ 4150 pending_del_nr++; 4151 pending_del_slot = path->slots[0]; 4152 } else { 4153 BUG(); 4154 } 4155 } else { 4156 break; 4157 } 4158 if (found_extent && (root->ref_cows || 4159 root == root->fs_info->tree_root)) { 4160 btrfs_set_path_blocking(path); 4161 ret = btrfs_free_extent(trans, root, extent_start, 4162 extent_num_bytes, 0, 4163 btrfs_header_owner(leaf), 4164 ino, extent_offset, 0); 4165 BUG_ON(ret); 4166 } 4167 4168 if (found_type == BTRFS_INODE_ITEM_KEY) 4169 break; 4170 4171 if (path->slots[0] == 0 || 4172 path->slots[0] != pending_del_slot) { 4173 if (pending_del_nr) { 4174 ret = btrfs_del_items(trans, root, path, 4175 pending_del_slot, 4176 pending_del_nr); 4177 if (ret) { 4178 btrfs_abort_transaction(trans, 4179 root, ret); 4180 goto error; 4181 } 4182 pending_del_nr = 0; 4183 } 4184 btrfs_release_path(path); 4185 goto search_again; 4186 } else { 4187 path->slots[0]--; 4188 } 4189 } 4190 out: 4191 if (pending_del_nr) { 4192 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4193 pending_del_nr); 4194 if (ret) 4195 btrfs_abort_transaction(trans, root, ret); 4196 } 4197 error: 4198 if (last_size != (u64)-1) 4199 btrfs_ordered_update_i_size(inode, last_size, NULL); 4200 btrfs_free_path(path); 4201 return err; 4202 } 4203 4204 /* 4205 * btrfs_truncate_page - read, zero a chunk and write a page 4206 * @inode - inode that we're zeroing 4207 * @from - the offset to start zeroing 4208 * @len - the length to zero, 0 to zero the entire range respective to the 4209 * offset 4210 * @front - zero up to the offset instead of from the offset on 4211 * 4212 * This will find the page for the "from" offset and cow the page and zero the 4213 * part we want to zero. This is used with truncate and hole punching. 4214 */ 4215 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4216 int front) 4217 { 4218 struct address_space *mapping = inode->i_mapping; 4219 struct btrfs_root *root = BTRFS_I(inode)->root; 4220 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4221 struct btrfs_ordered_extent *ordered; 4222 struct extent_state *cached_state = NULL; 4223 char *kaddr; 4224 u32 blocksize = root->sectorsize; 4225 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4226 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4227 struct page *page; 4228 gfp_t mask = btrfs_alloc_write_mask(mapping); 4229 int ret = 0; 4230 u64 page_start; 4231 u64 page_end; 4232 4233 if ((offset & (blocksize - 1)) == 0 && 4234 (!len || ((len & (blocksize - 1)) == 0))) 4235 goto out; 4236 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4237 if (ret) 4238 goto out; 4239 4240 again: 4241 page = find_or_create_page(mapping, index, mask); 4242 if (!page) { 4243 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4244 ret = -ENOMEM; 4245 goto out; 4246 } 4247 4248 page_start = page_offset(page); 4249 page_end = page_start + PAGE_CACHE_SIZE - 1; 4250 4251 if (!PageUptodate(page)) { 4252 ret = btrfs_readpage(NULL, page); 4253 lock_page(page); 4254 if (page->mapping != mapping) { 4255 unlock_page(page); 4256 page_cache_release(page); 4257 goto again; 4258 } 4259 if (!PageUptodate(page)) { 4260 ret = -EIO; 4261 goto out_unlock; 4262 } 4263 } 4264 wait_on_page_writeback(page); 4265 4266 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4267 set_page_extent_mapped(page); 4268 4269 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4270 if (ordered) { 4271 unlock_extent_cached(io_tree, page_start, page_end, 4272 &cached_state, GFP_NOFS); 4273 unlock_page(page); 4274 page_cache_release(page); 4275 btrfs_start_ordered_extent(inode, ordered, 1); 4276 btrfs_put_ordered_extent(ordered); 4277 goto again; 4278 } 4279 4280 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4281 EXTENT_DIRTY | EXTENT_DELALLOC | 4282 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4283 0, 0, &cached_state, GFP_NOFS); 4284 4285 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4286 &cached_state); 4287 if (ret) { 4288 unlock_extent_cached(io_tree, page_start, page_end, 4289 &cached_state, GFP_NOFS); 4290 goto out_unlock; 4291 } 4292 4293 if (offset != PAGE_CACHE_SIZE) { 4294 if (!len) 4295 len = PAGE_CACHE_SIZE - offset; 4296 kaddr = kmap(page); 4297 if (front) 4298 memset(kaddr, 0, offset); 4299 else 4300 memset(kaddr + offset, 0, len); 4301 flush_dcache_page(page); 4302 kunmap(page); 4303 } 4304 ClearPageChecked(page); 4305 set_page_dirty(page); 4306 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4307 GFP_NOFS); 4308 4309 out_unlock: 4310 if (ret) 4311 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4312 unlock_page(page); 4313 page_cache_release(page); 4314 out: 4315 return ret; 4316 } 4317 4318 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4319 u64 offset, u64 len) 4320 { 4321 struct btrfs_trans_handle *trans; 4322 int ret; 4323 4324 /* 4325 * Still need to make sure the inode looks like it's been updated so 4326 * that any holes get logged if we fsync. 4327 */ 4328 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4329 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4330 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4331 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4332 return 0; 4333 } 4334 4335 /* 4336 * 1 - for the one we're dropping 4337 * 1 - for the one we're adding 4338 * 1 - for updating the inode. 4339 */ 4340 trans = btrfs_start_transaction(root, 3); 4341 if (IS_ERR(trans)) 4342 return PTR_ERR(trans); 4343 4344 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4345 if (ret) { 4346 btrfs_abort_transaction(trans, root, ret); 4347 btrfs_end_transaction(trans, root); 4348 return ret; 4349 } 4350 4351 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4352 0, 0, len, 0, len, 0, 0, 0); 4353 if (ret) 4354 btrfs_abort_transaction(trans, root, ret); 4355 else 4356 btrfs_update_inode(trans, root, inode); 4357 btrfs_end_transaction(trans, root); 4358 return ret; 4359 } 4360 4361 /* 4362 * This function puts in dummy file extents for the area we're creating a hole 4363 * for. So if we are truncating this file to a larger size we need to insert 4364 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4365 * the range between oldsize and size 4366 */ 4367 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4368 { 4369 struct btrfs_root *root = BTRFS_I(inode)->root; 4370 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4371 struct extent_map *em = NULL; 4372 struct extent_state *cached_state = NULL; 4373 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4374 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4375 u64 block_end = ALIGN(size, root->sectorsize); 4376 u64 last_byte; 4377 u64 cur_offset; 4378 u64 hole_size; 4379 int err = 0; 4380 4381 /* 4382 * If our size started in the middle of a page we need to zero out the 4383 * rest of the page before we expand the i_size, otherwise we could 4384 * expose stale data. 4385 */ 4386 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4387 if (err) 4388 return err; 4389 4390 if (size <= hole_start) 4391 return 0; 4392 4393 while (1) { 4394 struct btrfs_ordered_extent *ordered; 4395 4396 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4397 &cached_state); 4398 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4399 block_end - hole_start); 4400 if (!ordered) 4401 break; 4402 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4403 &cached_state, GFP_NOFS); 4404 btrfs_start_ordered_extent(inode, ordered, 1); 4405 btrfs_put_ordered_extent(ordered); 4406 } 4407 4408 cur_offset = hole_start; 4409 while (1) { 4410 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4411 block_end - cur_offset, 0); 4412 if (IS_ERR(em)) { 4413 err = PTR_ERR(em); 4414 em = NULL; 4415 break; 4416 } 4417 last_byte = min(extent_map_end(em), block_end); 4418 last_byte = ALIGN(last_byte , root->sectorsize); 4419 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4420 struct extent_map *hole_em; 4421 hole_size = last_byte - cur_offset; 4422 4423 err = maybe_insert_hole(root, inode, cur_offset, 4424 hole_size); 4425 if (err) 4426 break; 4427 btrfs_drop_extent_cache(inode, cur_offset, 4428 cur_offset + hole_size - 1, 0); 4429 hole_em = alloc_extent_map(); 4430 if (!hole_em) { 4431 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4432 &BTRFS_I(inode)->runtime_flags); 4433 goto next; 4434 } 4435 hole_em->start = cur_offset; 4436 hole_em->len = hole_size; 4437 hole_em->orig_start = cur_offset; 4438 4439 hole_em->block_start = EXTENT_MAP_HOLE; 4440 hole_em->block_len = 0; 4441 hole_em->orig_block_len = 0; 4442 hole_em->ram_bytes = hole_size; 4443 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4444 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4445 hole_em->generation = root->fs_info->generation; 4446 4447 while (1) { 4448 write_lock(&em_tree->lock); 4449 err = add_extent_mapping(em_tree, hole_em, 1); 4450 write_unlock(&em_tree->lock); 4451 if (err != -EEXIST) 4452 break; 4453 btrfs_drop_extent_cache(inode, cur_offset, 4454 cur_offset + 4455 hole_size - 1, 0); 4456 } 4457 free_extent_map(hole_em); 4458 } 4459 next: 4460 free_extent_map(em); 4461 em = NULL; 4462 cur_offset = last_byte; 4463 if (cur_offset >= block_end) 4464 break; 4465 } 4466 free_extent_map(em); 4467 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4468 GFP_NOFS); 4469 return err; 4470 } 4471 4472 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4473 { 4474 struct btrfs_root *root = BTRFS_I(inode)->root; 4475 struct btrfs_trans_handle *trans; 4476 loff_t oldsize = i_size_read(inode); 4477 loff_t newsize = attr->ia_size; 4478 int mask = attr->ia_valid; 4479 int ret; 4480 4481 /* 4482 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4483 * special case where we need to update the times despite not having 4484 * these flags set. For all other operations the VFS set these flags 4485 * explicitly if it wants a timestamp update. 4486 */ 4487 if (newsize != oldsize) { 4488 inode_inc_iversion(inode); 4489 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4490 inode->i_ctime = inode->i_mtime = 4491 current_fs_time(inode->i_sb); 4492 } 4493 4494 if (newsize > oldsize) { 4495 truncate_pagecache(inode, newsize); 4496 ret = btrfs_cont_expand(inode, oldsize, newsize); 4497 if (ret) 4498 return ret; 4499 4500 trans = btrfs_start_transaction(root, 1); 4501 if (IS_ERR(trans)) 4502 return PTR_ERR(trans); 4503 4504 i_size_write(inode, newsize); 4505 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4506 ret = btrfs_update_inode(trans, root, inode); 4507 btrfs_end_transaction(trans, root); 4508 } else { 4509 4510 /* 4511 * We're truncating a file that used to have good data down to 4512 * zero. Make sure it gets into the ordered flush list so that 4513 * any new writes get down to disk quickly. 4514 */ 4515 if (newsize == 0) 4516 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4517 &BTRFS_I(inode)->runtime_flags); 4518 4519 /* 4520 * 1 for the orphan item we're going to add 4521 * 1 for the orphan item deletion. 4522 */ 4523 trans = btrfs_start_transaction(root, 2); 4524 if (IS_ERR(trans)) 4525 return PTR_ERR(trans); 4526 4527 /* 4528 * We need to do this in case we fail at _any_ point during the 4529 * actual truncate. Once we do the truncate_setsize we could 4530 * invalidate pages which forces any outstanding ordered io to 4531 * be instantly completed which will give us extents that need 4532 * to be truncated. If we fail to get an orphan inode down we 4533 * could have left over extents that were never meant to live, 4534 * so we need to garuntee from this point on that everything 4535 * will be consistent. 4536 */ 4537 ret = btrfs_orphan_add(trans, inode); 4538 btrfs_end_transaction(trans, root); 4539 if (ret) 4540 return ret; 4541 4542 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4543 truncate_setsize(inode, newsize); 4544 4545 /* Disable nonlocked read DIO to avoid the end less truncate */ 4546 btrfs_inode_block_unlocked_dio(inode); 4547 inode_dio_wait(inode); 4548 btrfs_inode_resume_unlocked_dio(inode); 4549 4550 ret = btrfs_truncate(inode); 4551 if (ret && inode->i_nlink) { 4552 int err; 4553 4554 /* 4555 * failed to truncate, disk_i_size is only adjusted down 4556 * as we remove extents, so it should represent the true 4557 * size of the inode, so reset the in memory size and 4558 * delete our orphan entry. 4559 */ 4560 trans = btrfs_join_transaction(root); 4561 if (IS_ERR(trans)) { 4562 btrfs_orphan_del(NULL, inode); 4563 return ret; 4564 } 4565 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4566 err = btrfs_orphan_del(trans, inode); 4567 if (err) 4568 btrfs_abort_transaction(trans, root, err); 4569 btrfs_end_transaction(trans, root); 4570 } 4571 } 4572 4573 return ret; 4574 } 4575 4576 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4577 { 4578 struct inode *inode = dentry->d_inode; 4579 struct btrfs_root *root = BTRFS_I(inode)->root; 4580 int err; 4581 4582 if (btrfs_root_readonly(root)) 4583 return -EROFS; 4584 4585 err = inode_change_ok(inode, attr); 4586 if (err) 4587 return err; 4588 4589 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4590 err = btrfs_setsize(inode, attr); 4591 if (err) 4592 return err; 4593 } 4594 4595 if (attr->ia_valid) { 4596 setattr_copy(inode, attr); 4597 inode_inc_iversion(inode); 4598 err = btrfs_dirty_inode(inode); 4599 4600 if (!err && attr->ia_valid & ATTR_MODE) 4601 err = posix_acl_chmod(inode, inode->i_mode); 4602 } 4603 4604 return err; 4605 } 4606 4607 /* 4608 * While truncating the inode pages during eviction, we get the VFS calling 4609 * btrfs_invalidatepage() against each page of the inode. This is slow because 4610 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4611 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4612 * extent_state structures over and over, wasting lots of time. 4613 * 4614 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4615 * those expensive operations on a per page basis and do only the ordered io 4616 * finishing, while we release here the extent_map and extent_state structures, 4617 * without the excessive merging and splitting. 4618 */ 4619 static void evict_inode_truncate_pages(struct inode *inode) 4620 { 4621 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4622 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4623 struct rb_node *node; 4624 4625 ASSERT(inode->i_state & I_FREEING); 4626 truncate_inode_pages_final(&inode->i_data); 4627 4628 write_lock(&map_tree->lock); 4629 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4630 struct extent_map *em; 4631 4632 node = rb_first(&map_tree->map); 4633 em = rb_entry(node, struct extent_map, rb_node); 4634 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4635 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4636 remove_extent_mapping(map_tree, em); 4637 free_extent_map(em); 4638 } 4639 write_unlock(&map_tree->lock); 4640 4641 spin_lock(&io_tree->lock); 4642 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4643 struct extent_state *state; 4644 struct extent_state *cached_state = NULL; 4645 4646 node = rb_first(&io_tree->state); 4647 state = rb_entry(node, struct extent_state, rb_node); 4648 atomic_inc(&state->refs); 4649 spin_unlock(&io_tree->lock); 4650 4651 lock_extent_bits(io_tree, state->start, state->end, 4652 0, &cached_state); 4653 clear_extent_bit(io_tree, state->start, state->end, 4654 EXTENT_LOCKED | EXTENT_DIRTY | 4655 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 4656 EXTENT_DEFRAG, 1, 1, 4657 &cached_state, GFP_NOFS); 4658 free_extent_state(state); 4659 4660 spin_lock(&io_tree->lock); 4661 } 4662 spin_unlock(&io_tree->lock); 4663 } 4664 4665 void btrfs_evict_inode(struct inode *inode) 4666 { 4667 struct btrfs_trans_handle *trans; 4668 struct btrfs_root *root = BTRFS_I(inode)->root; 4669 struct btrfs_block_rsv *rsv, *global_rsv; 4670 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4671 int ret; 4672 4673 trace_btrfs_inode_evict(inode); 4674 4675 evict_inode_truncate_pages(inode); 4676 4677 if (inode->i_nlink && 4678 ((btrfs_root_refs(&root->root_item) != 0 && 4679 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4680 btrfs_is_free_space_inode(inode))) 4681 goto no_delete; 4682 4683 if (is_bad_inode(inode)) { 4684 btrfs_orphan_del(NULL, inode); 4685 goto no_delete; 4686 } 4687 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4688 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4689 4690 if (root->fs_info->log_root_recovering) { 4691 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4692 &BTRFS_I(inode)->runtime_flags)); 4693 goto no_delete; 4694 } 4695 4696 if (inode->i_nlink > 0) { 4697 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4698 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4699 goto no_delete; 4700 } 4701 4702 ret = btrfs_commit_inode_delayed_inode(inode); 4703 if (ret) { 4704 btrfs_orphan_del(NULL, inode); 4705 goto no_delete; 4706 } 4707 4708 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4709 if (!rsv) { 4710 btrfs_orphan_del(NULL, inode); 4711 goto no_delete; 4712 } 4713 rsv->size = min_size; 4714 rsv->failfast = 1; 4715 global_rsv = &root->fs_info->global_block_rsv; 4716 4717 btrfs_i_size_write(inode, 0); 4718 4719 /* 4720 * This is a bit simpler than btrfs_truncate since we've already 4721 * reserved our space for our orphan item in the unlink, so we just 4722 * need to reserve some slack space in case we add bytes and update 4723 * inode item when doing the truncate. 4724 */ 4725 while (1) { 4726 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4727 BTRFS_RESERVE_FLUSH_LIMIT); 4728 4729 /* 4730 * Try and steal from the global reserve since we will 4731 * likely not use this space anyway, we want to try as 4732 * hard as possible to get this to work. 4733 */ 4734 if (ret) 4735 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4736 4737 if (ret) { 4738 btrfs_warn(root->fs_info, 4739 "Could not get space for a delete, will truncate on mount %d", 4740 ret); 4741 btrfs_orphan_del(NULL, inode); 4742 btrfs_free_block_rsv(root, rsv); 4743 goto no_delete; 4744 } 4745 4746 trans = btrfs_join_transaction(root); 4747 if (IS_ERR(trans)) { 4748 btrfs_orphan_del(NULL, inode); 4749 btrfs_free_block_rsv(root, rsv); 4750 goto no_delete; 4751 } 4752 4753 trans->block_rsv = rsv; 4754 4755 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4756 if (ret != -ENOSPC) 4757 break; 4758 4759 trans->block_rsv = &root->fs_info->trans_block_rsv; 4760 btrfs_end_transaction(trans, root); 4761 trans = NULL; 4762 btrfs_btree_balance_dirty(root); 4763 } 4764 4765 btrfs_free_block_rsv(root, rsv); 4766 4767 /* 4768 * Errors here aren't a big deal, it just means we leave orphan items 4769 * in the tree. They will be cleaned up on the next mount. 4770 */ 4771 if (ret == 0) { 4772 trans->block_rsv = root->orphan_block_rsv; 4773 btrfs_orphan_del(trans, inode); 4774 } else { 4775 btrfs_orphan_del(NULL, inode); 4776 } 4777 4778 trans->block_rsv = &root->fs_info->trans_block_rsv; 4779 if (!(root == root->fs_info->tree_root || 4780 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4781 btrfs_return_ino(root, btrfs_ino(inode)); 4782 4783 btrfs_end_transaction(trans, root); 4784 btrfs_btree_balance_dirty(root); 4785 no_delete: 4786 btrfs_remove_delayed_node(inode); 4787 clear_inode(inode); 4788 return; 4789 } 4790 4791 /* 4792 * this returns the key found in the dir entry in the location pointer. 4793 * If no dir entries were found, location->objectid is 0. 4794 */ 4795 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4796 struct btrfs_key *location) 4797 { 4798 const char *name = dentry->d_name.name; 4799 int namelen = dentry->d_name.len; 4800 struct btrfs_dir_item *di; 4801 struct btrfs_path *path; 4802 struct btrfs_root *root = BTRFS_I(dir)->root; 4803 int ret = 0; 4804 4805 path = btrfs_alloc_path(); 4806 if (!path) 4807 return -ENOMEM; 4808 4809 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4810 namelen, 0); 4811 if (IS_ERR(di)) 4812 ret = PTR_ERR(di); 4813 4814 if (IS_ERR_OR_NULL(di)) 4815 goto out_err; 4816 4817 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4818 out: 4819 btrfs_free_path(path); 4820 return ret; 4821 out_err: 4822 location->objectid = 0; 4823 goto out; 4824 } 4825 4826 /* 4827 * when we hit a tree root in a directory, the btrfs part of the inode 4828 * needs to be changed to reflect the root directory of the tree root. This 4829 * is kind of like crossing a mount point. 4830 */ 4831 static int fixup_tree_root_location(struct btrfs_root *root, 4832 struct inode *dir, 4833 struct dentry *dentry, 4834 struct btrfs_key *location, 4835 struct btrfs_root **sub_root) 4836 { 4837 struct btrfs_path *path; 4838 struct btrfs_root *new_root; 4839 struct btrfs_root_ref *ref; 4840 struct extent_buffer *leaf; 4841 int ret; 4842 int err = 0; 4843 4844 path = btrfs_alloc_path(); 4845 if (!path) { 4846 err = -ENOMEM; 4847 goto out; 4848 } 4849 4850 err = -ENOENT; 4851 ret = btrfs_find_item(root->fs_info->tree_root, path, 4852 BTRFS_I(dir)->root->root_key.objectid, 4853 location->objectid, BTRFS_ROOT_REF_KEY, NULL); 4854 if (ret) { 4855 if (ret < 0) 4856 err = ret; 4857 goto out; 4858 } 4859 4860 leaf = path->nodes[0]; 4861 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4862 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4863 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4864 goto out; 4865 4866 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4867 (unsigned long)(ref + 1), 4868 dentry->d_name.len); 4869 if (ret) 4870 goto out; 4871 4872 btrfs_release_path(path); 4873 4874 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4875 if (IS_ERR(new_root)) { 4876 err = PTR_ERR(new_root); 4877 goto out; 4878 } 4879 4880 *sub_root = new_root; 4881 location->objectid = btrfs_root_dirid(&new_root->root_item); 4882 location->type = BTRFS_INODE_ITEM_KEY; 4883 location->offset = 0; 4884 err = 0; 4885 out: 4886 btrfs_free_path(path); 4887 return err; 4888 } 4889 4890 static void inode_tree_add(struct inode *inode) 4891 { 4892 struct btrfs_root *root = BTRFS_I(inode)->root; 4893 struct btrfs_inode *entry; 4894 struct rb_node **p; 4895 struct rb_node *parent; 4896 struct rb_node *new = &BTRFS_I(inode)->rb_node; 4897 u64 ino = btrfs_ino(inode); 4898 4899 if (inode_unhashed(inode)) 4900 return; 4901 parent = NULL; 4902 spin_lock(&root->inode_lock); 4903 p = &root->inode_tree.rb_node; 4904 while (*p) { 4905 parent = *p; 4906 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4907 4908 if (ino < btrfs_ino(&entry->vfs_inode)) 4909 p = &parent->rb_left; 4910 else if (ino > btrfs_ino(&entry->vfs_inode)) 4911 p = &parent->rb_right; 4912 else { 4913 WARN_ON(!(entry->vfs_inode.i_state & 4914 (I_WILL_FREE | I_FREEING))); 4915 rb_replace_node(parent, new, &root->inode_tree); 4916 RB_CLEAR_NODE(parent); 4917 spin_unlock(&root->inode_lock); 4918 return; 4919 } 4920 } 4921 rb_link_node(new, parent, p); 4922 rb_insert_color(new, &root->inode_tree); 4923 spin_unlock(&root->inode_lock); 4924 } 4925 4926 static void inode_tree_del(struct inode *inode) 4927 { 4928 struct btrfs_root *root = BTRFS_I(inode)->root; 4929 int empty = 0; 4930 4931 spin_lock(&root->inode_lock); 4932 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4933 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4934 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4935 empty = RB_EMPTY_ROOT(&root->inode_tree); 4936 } 4937 spin_unlock(&root->inode_lock); 4938 4939 if (empty && btrfs_root_refs(&root->root_item) == 0) { 4940 synchronize_srcu(&root->fs_info->subvol_srcu); 4941 spin_lock(&root->inode_lock); 4942 empty = RB_EMPTY_ROOT(&root->inode_tree); 4943 spin_unlock(&root->inode_lock); 4944 if (empty) 4945 btrfs_add_dead_root(root); 4946 } 4947 } 4948 4949 void btrfs_invalidate_inodes(struct btrfs_root *root) 4950 { 4951 struct rb_node *node; 4952 struct rb_node *prev; 4953 struct btrfs_inode *entry; 4954 struct inode *inode; 4955 u64 objectid = 0; 4956 4957 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 4958 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4959 4960 spin_lock(&root->inode_lock); 4961 again: 4962 node = root->inode_tree.rb_node; 4963 prev = NULL; 4964 while (node) { 4965 prev = node; 4966 entry = rb_entry(node, struct btrfs_inode, rb_node); 4967 4968 if (objectid < btrfs_ino(&entry->vfs_inode)) 4969 node = node->rb_left; 4970 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4971 node = node->rb_right; 4972 else 4973 break; 4974 } 4975 if (!node) { 4976 while (prev) { 4977 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4978 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4979 node = prev; 4980 break; 4981 } 4982 prev = rb_next(prev); 4983 } 4984 } 4985 while (node) { 4986 entry = rb_entry(node, struct btrfs_inode, rb_node); 4987 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4988 inode = igrab(&entry->vfs_inode); 4989 if (inode) { 4990 spin_unlock(&root->inode_lock); 4991 if (atomic_read(&inode->i_count) > 1) 4992 d_prune_aliases(inode); 4993 /* 4994 * btrfs_drop_inode will have it removed from 4995 * the inode cache when its usage count 4996 * hits zero. 4997 */ 4998 iput(inode); 4999 cond_resched(); 5000 spin_lock(&root->inode_lock); 5001 goto again; 5002 } 5003 5004 if (cond_resched_lock(&root->inode_lock)) 5005 goto again; 5006 5007 node = rb_next(node); 5008 } 5009 spin_unlock(&root->inode_lock); 5010 } 5011 5012 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5013 { 5014 struct btrfs_iget_args *args = p; 5015 inode->i_ino = args->location->objectid; 5016 memcpy(&BTRFS_I(inode)->location, args->location, 5017 sizeof(*args->location)); 5018 BTRFS_I(inode)->root = args->root; 5019 return 0; 5020 } 5021 5022 static int btrfs_find_actor(struct inode *inode, void *opaque) 5023 { 5024 struct btrfs_iget_args *args = opaque; 5025 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5026 args->root == BTRFS_I(inode)->root; 5027 } 5028 5029 static struct inode *btrfs_iget_locked(struct super_block *s, 5030 struct btrfs_key *location, 5031 struct btrfs_root *root) 5032 { 5033 struct inode *inode; 5034 struct btrfs_iget_args args; 5035 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5036 5037 args.location = location; 5038 args.root = root; 5039 5040 inode = iget5_locked(s, hashval, btrfs_find_actor, 5041 btrfs_init_locked_inode, 5042 (void *)&args); 5043 return inode; 5044 } 5045 5046 /* Get an inode object given its location and corresponding root. 5047 * Returns in *is_new if the inode was read from disk 5048 */ 5049 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5050 struct btrfs_root *root, int *new) 5051 { 5052 struct inode *inode; 5053 5054 inode = btrfs_iget_locked(s, location, root); 5055 if (!inode) 5056 return ERR_PTR(-ENOMEM); 5057 5058 if (inode->i_state & I_NEW) { 5059 btrfs_read_locked_inode(inode); 5060 if (!is_bad_inode(inode)) { 5061 inode_tree_add(inode); 5062 unlock_new_inode(inode); 5063 if (new) 5064 *new = 1; 5065 } else { 5066 unlock_new_inode(inode); 5067 iput(inode); 5068 inode = ERR_PTR(-ESTALE); 5069 } 5070 } 5071 5072 return inode; 5073 } 5074 5075 static struct inode *new_simple_dir(struct super_block *s, 5076 struct btrfs_key *key, 5077 struct btrfs_root *root) 5078 { 5079 struct inode *inode = new_inode(s); 5080 5081 if (!inode) 5082 return ERR_PTR(-ENOMEM); 5083 5084 BTRFS_I(inode)->root = root; 5085 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5086 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5087 5088 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5089 inode->i_op = &btrfs_dir_ro_inode_operations; 5090 inode->i_fop = &simple_dir_operations; 5091 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5092 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5093 5094 return inode; 5095 } 5096 5097 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5098 { 5099 struct inode *inode; 5100 struct btrfs_root *root = BTRFS_I(dir)->root; 5101 struct btrfs_root *sub_root = root; 5102 struct btrfs_key location; 5103 int index; 5104 int ret = 0; 5105 5106 if (dentry->d_name.len > BTRFS_NAME_LEN) 5107 return ERR_PTR(-ENAMETOOLONG); 5108 5109 ret = btrfs_inode_by_name(dir, dentry, &location); 5110 if (ret < 0) 5111 return ERR_PTR(ret); 5112 5113 if (location.objectid == 0) 5114 return ERR_PTR(-ENOENT); 5115 5116 if (location.type == BTRFS_INODE_ITEM_KEY) { 5117 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5118 return inode; 5119 } 5120 5121 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5122 5123 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5124 ret = fixup_tree_root_location(root, dir, dentry, 5125 &location, &sub_root); 5126 if (ret < 0) { 5127 if (ret != -ENOENT) 5128 inode = ERR_PTR(ret); 5129 else 5130 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5131 } else { 5132 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5133 } 5134 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5135 5136 if (!IS_ERR(inode) && root != sub_root) { 5137 down_read(&root->fs_info->cleanup_work_sem); 5138 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5139 ret = btrfs_orphan_cleanup(sub_root); 5140 up_read(&root->fs_info->cleanup_work_sem); 5141 if (ret) { 5142 iput(inode); 5143 inode = ERR_PTR(ret); 5144 } 5145 } 5146 5147 return inode; 5148 } 5149 5150 static int btrfs_dentry_delete(const struct dentry *dentry) 5151 { 5152 struct btrfs_root *root; 5153 struct inode *inode = dentry->d_inode; 5154 5155 if (!inode && !IS_ROOT(dentry)) 5156 inode = dentry->d_parent->d_inode; 5157 5158 if (inode) { 5159 root = BTRFS_I(inode)->root; 5160 if (btrfs_root_refs(&root->root_item) == 0) 5161 return 1; 5162 5163 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5164 return 1; 5165 } 5166 return 0; 5167 } 5168 5169 static void btrfs_dentry_release(struct dentry *dentry) 5170 { 5171 if (dentry->d_fsdata) 5172 kfree(dentry->d_fsdata); 5173 } 5174 5175 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5176 unsigned int flags) 5177 { 5178 struct inode *inode; 5179 5180 inode = btrfs_lookup_dentry(dir, dentry); 5181 if (IS_ERR(inode)) { 5182 if (PTR_ERR(inode) == -ENOENT) 5183 inode = NULL; 5184 else 5185 return ERR_CAST(inode); 5186 } 5187 5188 return d_materialise_unique(dentry, inode); 5189 } 5190 5191 unsigned char btrfs_filetype_table[] = { 5192 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5193 }; 5194 5195 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5196 { 5197 struct inode *inode = file_inode(file); 5198 struct btrfs_root *root = BTRFS_I(inode)->root; 5199 struct btrfs_item *item; 5200 struct btrfs_dir_item *di; 5201 struct btrfs_key key; 5202 struct btrfs_key found_key; 5203 struct btrfs_path *path; 5204 struct list_head ins_list; 5205 struct list_head del_list; 5206 int ret; 5207 struct extent_buffer *leaf; 5208 int slot; 5209 unsigned char d_type; 5210 int over = 0; 5211 u32 di_cur; 5212 u32 di_total; 5213 u32 di_len; 5214 int key_type = BTRFS_DIR_INDEX_KEY; 5215 char tmp_name[32]; 5216 char *name_ptr; 5217 int name_len; 5218 int is_curr = 0; /* ctx->pos points to the current index? */ 5219 5220 /* FIXME, use a real flag for deciding about the key type */ 5221 if (root->fs_info->tree_root == root) 5222 key_type = BTRFS_DIR_ITEM_KEY; 5223 5224 if (!dir_emit_dots(file, ctx)) 5225 return 0; 5226 5227 path = btrfs_alloc_path(); 5228 if (!path) 5229 return -ENOMEM; 5230 5231 path->reada = 1; 5232 5233 if (key_type == BTRFS_DIR_INDEX_KEY) { 5234 INIT_LIST_HEAD(&ins_list); 5235 INIT_LIST_HEAD(&del_list); 5236 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5237 } 5238 5239 btrfs_set_key_type(&key, key_type); 5240 key.offset = ctx->pos; 5241 key.objectid = btrfs_ino(inode); 5242 5243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5244 if (ret < 0) 5245 goto err; 5246 5247 while (1) { 5248 leaf = path->nodes[0]; 5249 slot = path->slots[0]; 5250 if (slot >= btrfs_header_nritems(leaf)) { 5251 ret = btrfs_next_leaf(root, path); 5252 if (ret < 0) 5253 goto err; 5254 else if (ret > 0) 5255 break; 5256 continue; 5257 } 5258 5259 item = btrfs_item_nr(slot); 5260 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5261 5262 if (found_key.objectid != key.objectid) 5263 break; 5264 if (btrfs_key_type(&found_key) != key_type) 5265 break; 5266 if (found_key.offset < ctx->pos) 5267 goto next; 5268 if (key_type == BTRFS_DIR_INDEX_KEY && 5269 btrfs_should_delete_dir_index(&del_list, 5270 found_key.offset)) 5271 goto next; 5272 5273 ctx->pos = found_key.offset; 5274 is_curr = 1; 5275 5276 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5277 di_cur = 0; 5278 di_total = btrfs_item_size(leaf, item); 5279 5280 while (di_cur < di_total) { 5281 struct btrfs_key location; 5282 5283 if (verify_dir_item(root, leaf, di)) 5284 break; 5285 5286 name_len = btrfs_dir_name_len(leaf, di); 5287 if (name_len <= sizeof(tmp_name)) { 5288 name_ptr = tmp_name; 5289 } else { 5290 name_ptr = kmalloc(name_len, GFP_NOFS); 5291 if (!name_ptr) { 5292 ret = -ENOMEM; 5293 goto err; 5294 } 5295 } 5296 read_extent_buffer(leaf, name_ptr, 5297 (unsigned long)(di + 1), name_len); 5298 5299 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5300 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5301 5302 5303 /* is this a reference to our own snapshot? If so 5304 * skip it. 5305 * 5306 * In contrast to old kernels, we insert the snapshot's 5307 * dir item and dir index after it has been created, so 5308 * we won't find a reference to our own snapshot. We 5309 * still keep the following code for backward 5310 * compatibility. 5311 */ 5312 if (location.type == BTRFS_ROOT_ITEM_KEY && 5313 location.objectid == root->root_key.objectid) { 5314 over = 0; 5315 goto skip; 5316 } 5317 over = !dir_emit(ctx, name_ptr, name_len, 5318 location.objectid, d_type); 5319 5320 skip: 5321 if (name_ptr != tmp_name) 5322 kfree(name_ptr); 5323 5324 if (over) 5325 goto nopos; 5326 di_len = btrfs_dir_name_len(leaf, di) + 5327 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5328 di_cur += di_len; 5329 di = (struct btrfs_dir_item *)((char *)di + di_len); 5330 } 5331 next: 5332 path->slots[0]++; 5333 } 5334 5335 if (key_type == BTRFS_DIR_INDEX_KEY) { 5336 if (is_curr) 5337 ctx->pos++; 5338 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5339 if (ret) 5340 goto nopos; 5341 } 5342 5343 /* Reached end of directory/root. Bump pos past the last item. */ 5344 ctx->pos++; 5345 5346 /* 5347 * Stop new entries from being returned after we return the last 5348 * entry. 5349 * 5350 * New directory entries are assigned a strictly increasing 5351 * offset. This means that new entries created during readdir 5352 * are *guaranteed* to be seen in the future by that readdir. 5353 * This has broken buggy programs which operate on names as 5354 * they're returned by readdir. Until we re-use freed offsets 5355 * we have this hack to stop new entries from being returned 5356 * under the assumption that they'll never reach this huge 5357 * offset. 5358 * 5359 * This is being careful not to overflow 32bit loff_t unless the 5360 * last entry requires it because doing so has broken 32bit apps 5361 * in the past. 5362 */ 5363 if (key_type == BTRFS_DIR_INDEX_KEY) { 5364 if (ctx->pos >= INT_MAX) 5365 ctx->pos = LLONG_MAX; 5366 else 5367 ctx->pos = INT_MAX; 5368 } 5369 nopos: 5370 ret = 0; 5371 err: 5372 if (key_type == BTRFS_DIR_INDEX_KEY) 5373 btrfs_put_delayed_items(&ins_list, &del_list); 5374 btrfs_free_path(path); 5375 return ret; 5376 } 5377 5378 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5379 { 5380 struct btrfs_root *root = BTRFS_I(inode)->root; 5381 struct btrfs_trans_handle *trans; 5382 int ret = 0; 5383 bool nolock = false; 5384 5385 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5386 return 0; 5387 5388 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5389 nolock = true; 5390 5391 if (wbc->sync_mode == WB_SYNC_ALL) { 5392 if (nolock) 5393 trans = btrfs_join_transaction_nolock(root); 5394 else 5395 trans = btrfs_join_transaction(root); 5396 if (IS_ERR(trans)) 5397 return PTR_ERR(trans); 5398 ret = btrfs_commit_transaction(trans, root); 5399 } 5400 return ret; 5401 } 5402 5403 /* 5404 * This is somewhat expensive, updating the tree every time the 5405 * inode changes. But, it is most likely to find the inode in cache. 5406 * FIXME, needs more benchmarking...there are no reasons other than performance 5407 * to keep or drop this code. 5408 */ 5409 static int btrfs_dirty_inode(struct inode *inode) 5410 { 5411 struct btrfs_root *root = BTRFS_I(inode)->root; 5412 struct btrfs_trans_handle *trans; 5413 int ret; 5414 5415 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5416 return 0; 5417 5418 trans = btrfs_join_transaction(root); 5419 if (IS_ERR(trans)) 5420 return PTR_ERR(trans); 5421 5422 ret = btrfs_update_inode(trans, root, inode); 5423 if (ret && ret == -ENOSPC) { 5424 /* whoops, lets try again with the full transaction */ 5425 btrfs_end_transaction(trans, root); 5426 trans = btrfs_start_transaction(root, 1); 5427 if (IS_ERR(trans)) 5428 return PTR_ERR(trans); 5429 5430 ret = btrfs_update_inode(trans, root, inode); 5431 } 5432 btrfs_end_transaction(trans, root); 5433 if (BTRFS_I(inode)->delayed_node) 5434 btrfs_balance_delayed_items(root); 5435 5436 return ret; 5437 } 5438 5439 /* 5440 * This is a copy of file_update_time. We need this so we can return error on 5441 * ENOSPC for updating the inode in the case of file write and mmap writes. 5442 */ 5443 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5444 int flags) 5445 { 5446 struct btrfs_root *root = BTRFS_I(inode)->root; 5447 5448 if (btrfs_root_readonly(root)) 5449 return -EROFS; 5450 5451 if (flags & S_VERSION) 5452 inode_inc_iversion(inode); 5453 if (flags & S_CTIME) 5454 inode->i_ctime = *now; 5455 if (flags & S_MTIME) 5456 inode->i_mtime = *now; 5457 if (flags & S_ATIME) 5458 inode->i_atime = *now; 5459 return btrfs_dirty_inode(inode); 5460 } 5461 5462 /* 5463 * find the highest existing sequence number in a directory 5464 * and then set the in-memory index_cnt variable to reflect 5465 * free sequence numbers 5466 */ 5467 static int btrfs_set_inode_index_count(struct inode *inode) 5468 { 5469 struct btrfs_root *root = BTRFS_I(inode)->root; 5470 struct btrfs_key key, found_key; 5471 struct btrfs_path *path; 5472 struct extent_buffer *leaf; 5473 int ret; 5474 5475 key.objectid = btrfs_ino(inode); 5476 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5477 key.offset = (u64)-1; 5478 5479 path = btrfs_alloc_path(); 5480 if (!path) 5481 return -ENOMEM; 5482 5483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5484 if (ret < 0) 5485 goto out; 5486 /* FIXME: we should be able to handle this */ 5487 if (ret == 0) 5488 goto out; 5489 ret = 0; 5490 5491 /* 5492 * MAGIC NUMBER EXPLANATION: 5493 * since we search a directory based on f_pos we have to start at 2 5494 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5495 * else has to start at 2 5496 */ 5497 if (path->slots[0] == 0) { 5498 BTRFS_I(inode)->index_cnt = 2; 5499 goto out; 5500 } 5501 5502 path->slots[0]--; 5503 5504 leaf = path->nodes[0]; 5505 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5506 5507 if (found_key.objectid != btrfs_ino(inode) || 5508 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5509 BTRFS_I(inode)->index_cnt = 2; 5510 goto out; 5511 } 5512 5513 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5514 out: 5515 btrfs_free_path(path); 5516 return ret; 5517 } 5518 5519 /* 5520 * helper to find a free sequence number in a given directory. This current 5521 * code is very simple, later versions will do smarter things in the btree 5522 */ 5523 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5524 { 5525 int ret = 0; 5526 5527 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5528 ret = btrfs_inode_delayed_dir_index_count(dir); 5529 if (ret) { 5530 ret = btrfs_set_inode_index_count(dir); 5531 if (ret) 5532 return ret; 5533 } 5534 } 5535 5536 *index = BTRFS_I(dir)->index_cnt; 5537 BTRFS_I(dir)->index_cnt++; 5538 5539 return ret; 5540 } 5541 5542 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5543 struct btrfs_root *root, 5544 struct inode *dir, 5545 const char *name, int name_len, 5546 u64 ref_objectid, u64 objectid, 5547 umode_t mode, u64 *index) 5548 { 5549 struct inode *inode; 5550 struct btrfs_inode_item *inode_item; 5551 struct btrfs_key *location; 5552 struct btrfs_path *path; 5553 struct btrfs_inode_ref *ref; 5554 struct btrfs_key key[2]; 5555 u32 sizes[2]; 5556 unsigned long ptr; 5557 int ret; 5558 5559 path = btrfs_alloc_path(); 5560 if (!path) 5561 return ERR_PTR(-ENOMEM); 5562 5563 inode = new_inode(root->fs_info->sb); 5564 if (!inode) { 5565 btrfs_free_path(path); 5566 return ERR_PTR(-ENOMEM); 5567 } 5568 5569 /* 5570 * we have to initialize this early, so we can reclaim the inode 5571 * number if we fail afterwards in this function. 5572 */ 5573 inode->i_ino = objectid; 5574 5575 if (dir) { 5576 trace_btrfs_inode_request(dir); 5577 5578 ret = btrfs_set_inode_index(dir, index); 5579 if (ret) { 5580 btrfs_free_path(path); 5581 iput(inode); 5582 return ERR_PTR(ret); 5583 } 5584 } 5585 /* 5586 * index_cnt is ignored for everything but a dir, 5587 * btrfs_get_inode_index_count has an explanation for the magic 5588 * number 5589 */ 5590 BTRFS_I(inode)->index_cnt = 2; 5591 BTRFS_I(inode)->dir_index = *index; 5592 BTRFS_I(inode)->root = root; 5593 BTRFS_I(inode)->generation = trans->transid; 5594 inode->i_generation = BTRFS_I(inode)->generation; 5595 5596 /* 5597 * We could have gotten an inode number from somebody who was fsynced 5598 * and then removed in this same transaction, so let's just set full 5599 * sync since it will be a full sync anyway and this will blow away the 5600 * old info in the log. 5601 */ 5602 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5603 5604 key[0].objectid = objectid; 5605 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5606 key[0].offset = 0; 5607 5608 /* 5609 * Start new inodes with an inode_ref. This is slightly more 5610 * efficient for small numbers of hard links since they will 5611 * be packed into one item. Extended refs will kick in if we 5612 * add more hard links than can fit in the ref item. 5613 */ 5614 key[1].objectid = objectid; 5615 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5616 key[1].offset = ref_objectid; 5617 5618 sizes[0] = sizeof(struct btrfs_inode_item); 5619 sizes[1] = name_len + sizeof(*ref); 5620 5621 path->leave_spinning = 1; 5622 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5623 if (ret != 0) 5624 goto fail; 5625 5626 inode_init_owner(inode, dir, mode); 5627 inode_set_bytes(inode, 0); 5628 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5629 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5630 struct btrfs_inode_item); 5631 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5632 sizeof(*inode_item)); 5633 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5634 5635 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5636 struct btrfs_inode_ref); 5637 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5638 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5639 ptr = (unsigned long)(ref + 1); 5640 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5641 5642 btrfs_mark_buffer_dirty(path->nodes[0]); 5643 btrfs_free_path(path); 5644 5645 location = &BTRFS_I(inode)->location; 5646 location->objectid = objectid; 5647 location->offset = 0; 5648 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5649 5650 btrfs_inherit_iflags(inode, dir); 5651 5652 if (S_ISREG(mode)) { 5653 if (btrfs_test_opt(root, NODATASUM)) 5654 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5655 if (btrfs_test_opt(root, NODATACOW)) 5656 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5657 BTRFS_INODE_NODATASUM; 5658 } 5659 5660 btrfs_insert_inode_hash(inode); 5661 inode_tree_add(inode); 5662 5663 trace_btrfs_inode_new(inode); 5664 btrfs_set_inode_last_trans(trans, inode); 5665 5666 btrfs_update_root_times(trans, root); 5667 5668 ret = btrfs_inode_inherit_props(trans, inode, dir); 5669 if (ret) 5670 btrfs_err(root->fs_info, 5671 "error inheriting props for ino %llu (root %llu): %d", 5672 btrfs_ino(inode), root->root_key.objectid, ret); 5673 5674 return inode; 5675 fail: 5676 if (dir) 5677 BTRFS_I(dir)->index_cnt--; 5678 btrfs_free_path(path); 5679 iput(inode); 5680 return ERR_PTR(ret); 5681 } 5682 5683 static inline u8 btrfs_inode_type(struct inode *inode) 5684 { 5685 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5686 } 5687 5688 /* 5689 * utility function to add 'inode' into 'parent_inode' with 5690 * a give name and a given sequence number. 5691 * if 'add_backref' is true, also insert a backref from the 5692 * inode to the parent directory. 5693 */ 5694 int btrfs_add_link(struct btrfs_trans_handle *trans, 5695 struct inode *parent_inode, struct inode *inode, 5696 const char *name, int name_len, int add_backref, u64 index) 5697 { 5698 int ret = 0; 5699 struct btrfs_key key; 5700 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5701 u64 ino = btrfs_ino(inode); 5702 u64 parent_ino = btrfs_ino(parent_inode); 5703 5704 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5705 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5706 } else { 5707 key.objectid = ino; 5708 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5709 key.offset = 0; 5710 } 5711 5712 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5713 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5714 key.objectid, root->root_key.objectid, 5715 parent_ino, index, name, name_len); 5716 } else if (add_backref) { 5717 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5718 parent_ino, index); 5719 } 5720 5721 /* Nothing to clean up yet */ 5722 if (ret) 5723 return ret; 5724 5725 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5726 parent_inode, &key, 5727 btrfs_inode_type(inode), index); 5728 if (ret == -EEXIST || ret == -EOVERFLOW) 5729 goto fail_dir_item; 5730 else if (ret) { 5731 btrfs_abort_transaction(trans, root, ret); 5732 return ret; 5733 } 5734 5735 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5736 name_len * 2); 5737 inode_inc_iversion(parent_inode); 5738 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5739 ret = btrfs_update_inode(trans, root, parent_inode); 5740 if (ret) 5741 btrfs_abort_transaction(trans, root, ret); 5742 return ret; 5743 5744 fail_dir_item: 5745 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5746 u64 local_index; 5747 int err; 5748 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5749 key.objectid, root->root_key.objectid, 5750 parent_ino, &local_index, name, name_len); 5751 5752 } else if (add_backref) { 5753 u64 local_index; 5754 int err; 5755 5756 err = btrfs_del_inode_ref(trans, root, name, name_len, 5757 ino, parent_ino, &local_index); 5758 } 5759 return ret; 5760 } 5761 5762 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5763 struct inode *dir, struct dentry *dentry, 5764 struct inode *inode, int backref, u64 index) 5765 { 5766 int err = btrfs_add_link(trans, dir, inode, 5767 dentry->d_name.name, dentry->d_name.len, 5768 backref, index); 5769 if (err > 0) 5770 err = -EEXIST; 5771 return err; 5772 } 5773 5774 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5775 umode_t mode, dev_t rdev) 5776 { 5777 struct btrfs_trans_handle *trans; 5778 struct btrfs_root *root = BTRFS_I(dir)->root; 5779 struct inode *inode = NULL; 5780 int err; 5781 int drop_inode = 0; 5782 u64 objectid; 5783 u64 index = 0; 5784 5785 if (!new_valid_dev(rdev)) 5786 return -EINVAL; 5787 5788 /* 5789 * 2 for inode item and ref 5790 * 2 for dir items 5791 * 1 for xattr if selinux is on 5792 */ 5793 trans = btrfs_start_transaction(root, 5); 5794 if (IS_ERR(trans)) 5795 return PTR_ERR(trans); 5796 5797 err = btrfs_find_free_ino(root, &objectid); 5798 if (err) 5799 goto out_unlock; 5800 5801 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5802 dentry->d_name.len, btrfs_ino(dir), objectid, 5803 mode, &index); 5804 if (IS_ERR(inode)) { 5805 err = PTR_ERR(inode); 5806 goto out_unlock; 5807 } 5808 5809 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5810 if (err) { 5811 drop_inode = 1; 5812 goto out_unlock; 5813 } 5814 5815 /* 5816 * If the active LSM wants to access the inode during 5817 * d_instantiate it needs these. Smack checks to see 5818 * if the filesystem supports xattrs by looking at the 5819 * ops vector. 5820 */ 5821 5822 inode->i_op = &btrfs_special_inode_operations; 5823 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5824 if (err) 5825 drop_inode = 1; 5826 else { 5827 init_special_inode(inode, inode->i_mode, rdev); 5828 btrfs_update_inode(trans, root, inode); 5829 d_instantiate(dentry, inode); 5830 } 5831 out_unlock: 5832 btrfs_end_transaction(trans, root); 5833 btrfs_balance_delayed_items(root); 5834 btrfs_btree_balance_dirty(root); 5835 if (drop_inode) { 5836 inode_dec_link_count(inode); 5837 iput(inode); 5838 } 5839 return err; 5840 } 5841 5842 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5843 umode_t mode, bool excl) 5844 { 5845 struct btrfs_trans_handle *trans; 5846 struct btrfs_root *root = BTRFS_I(dir)->root; 5847 struct inode *inode = NULL; 5848 int drop_inode_on_err = 0; 5849 int err; 5850 u64 objectid; 5851 u64 index = 0; 5852 5853 /* 5854 * 2 for inode item and ref 5855 * 2 for dir items 5856 * 1 for xattr if selinux is on 5857 */ 5858 trans = btrfs_start_transaction(root, 5); 5859 if (IS_ERR(trans)) 5860 return PTR_ERR(trans); 5861 5862 err = btrfs_find_free_ino(root, &objectid); 5863 if (err) 5864 goto out_unlock; 5865 5866 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5867 dentry->d_name.len, btrfs_ino(dir), objectid, 5868 mode, &index); 5869 if (IS_ERR(inode)) { 5870 err = PTR_ERR(inode); 5871 goto out_unlock; 5872 } 5873 drop_inode_on_err = 1; 5874 5875 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5876 if (err) 5877 goto out_unlock; 5878 5879 err = btrfs_update_inode(trans, root, inode); 5880 if (err) 5881 goto out_unlock; 5882 5883 /* 5884 * If the active LSM wants to access the inode during 5885 * d_instantiate it needs these. Smack checks to see 5886 * if the filesystem supports xattrs by looking at the 5887 * ops vector. 5888 */ 5889 inode->i_fop = &btrfs_file_operations; 5890 inode->i_op = &btrfs_file_inode_operations; 5891 5892 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5893 if (err) 5894 goto out_unlock; 5895 5896 inode->i_mapping->a_ops = &btrfs_aops; 5897 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5898 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5899 d_instantiate(dentry, inode); 5900 5901 out_unlock: 5902 btrfs_end_transaction(trans, root); 5903 if (err && drop_inode_on_err) { 5904 inode_dec_link_count(inode); 5905 iput(inode); 5906 } 5907 btrfs_balance_delayed_items(root); 5908 btrfs_btree_balance_dirty(root); 5909 return err; 5910 } 5911 5912 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5913 struct dentry *dentry) 5914 { 5915 struct btrfs_trans_handle *trans; 5916 struct btrfs_root *root = BTRFS_I(dir)->root; 5917 struct inode *inode = old_dentry->d_inode; 5918 u64 index; 5919 int err; 5920 int drop_inode = 0; 5921 5922 /* do not allow sys_link's with other subvols of the same device */ 5923 if (root->objectid != BTRFS_I(inode)->root->objectid) 5924 return -EXDEV; 5925 5926 if (inode->i_nlink >= BTRFS_LINK_MAX) 5927 return -EMLINK; 5928 5929 err = btrfs_set_inode_index(dir, &index); 5930 if (err) 5931 goto fail; 5932 5933 /* 5934 * 2 items for inode and inode ref 5935 * 2 items for dir items 5936 * 1 item for parent inode 5937 */ 5938 trans = btrfs_start_transaction(root, 5); 5939 if (IS_ERR(trans)) { 5940 err = PTR_ERR(trans); 5941 goto fail; 5942 } 5943 5944 /* There are several dir indexes for this inode, clear the cache. */ 5945 BTRFS_I(inode)->dir_index = 0ULL; 5946 inc_nlink(inode); 5947 inode_inc_iversion(inode); 5948 inode->i_ctime = CURRENT_TIME; 5949 ihold(inode); 5950 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5951 5952 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5953 5954 if (err) { 5955 drop_inode = 1; 5956 } else { 5957 struct dentry *parent = dentry->d_parent; 5958 err = btrfs_update_inode(trans, root, inode); 5959 if (err) 5960 goto fail; 5961 d_instantiate(dentry, inode); 5962 btrfs_log_new_name(trans, inode, NULL, parent); 5963 } 5964 5965 btrfs_end_transaction(trans, root); 5966 btrfs_balance_delayed_items(root); 5967 fail: 5968 if (drop_inode) { 5969 inode_dec_link_count(inode); 5970 iput(inode); 5971 } 5972 btrfs_btree_balance_dirty(root); 5973 return err; 5974 } 5975 5976 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5977 { 5978 struct inode *inode = NULL; 5979 struct btrfs_trans_handle *trans; 5980 struct btrfs_root *root = BTRFS_I(dir)->root; 5981 int err = 0; 5982 int drop_on_err = 0; 5983 u64 objectid = 0; 5984 u64 index = 0; 5985 5986 /* 5987 * 2 items for inode and ref 5988 * 2 items for dir items 5989 * 1 for xattr if selinux is on 5990 */ 5991 trans = btrfs_start_transaction(root, 5); 5992 if (IS_ERR(trans)) 5993 return PTR_ERR(trans); 5994 5995 err = btrfs_find_free_ino(root, &objectid); 5996 if (err) 5997 goto out_fail; 5998 5999 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6000 dentry->d_name.len, btrfs_ino(dir), objectid, 6001 S_IFDIR | mode, &index); 6002 if (IS_ERR(inode)) { 6003 err = PTR_ERR(inode); 6004 goto out_fail; 6005 } 6006 6007 drop_on_err = 1; 6008 6009 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6010 if (err) 6011 goto out_fail; 6012 6013 inode->i_op = &btrfs_dir_inode_operations; 6014 inode->i_fop = &btrfs_dir_file_operations; 6015 6016 btrfs_i_size_write(inode, 0); 6017 err = btrfs_update_inode(trans, root, inode); 6018 if (err) 6019 goto out_fail; 6020 6021 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6022 dentry->d_name.len, 0, index); 6023 if (err) 6024 goto out_fail; 6025 6026 d_instantiate(dentry, inode); 6027 drop_on_err = 0; 6028 6029 out_fail: 6030 btrfs_end_transaction(trans, root); 6031 if (drop_on_err) 6032 iput(inode); 6033 btrfs_balance_delayed_items(root); 6034 btrfs_btree_balance_dirty(root); 6035 return err; 6036 } 6037 6038 /* helper for btfs_get_extent. Given an existing extent in the tree, 6039 * and an extent that you want to insert, deal with overlap and insert 6040 * the new extent into the tree. 6041 */ 6042 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6043 struct extent_map *existing, 6044 struct extent_map *em, 6045 u64 map_start, u64 map_len) 6046 { 6047 u64 start_diff; 6048 6049 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6050 start_diff = map_start - em->start; 6051 em->start = map_start; 6052 em->len = map_len; 6053 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6054 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6055 em->block_start += start_diff; 6056 em->block_len -= start_diff; 6057 } 6058 return add_extent_mapping(em_tree, em, 0); 6059 } 6060 6061 static noinline int uncompress_inline(struct btrfs_path *path, 6062 struct inode *inode, struct page *page, 6063 size_t pg_offset, u64 extent_offset, 6064 struct btrfs_file_extent_item *item) 6065 { 6066 int ret; 6067 struct extent_buffer *leaf = path->nodes[0]; 6068 char *tmp; 6069 size_t max_size; 6070 unsigned long inline_size; 6071 unsigned long ptr; 6072 int compress_type; 6073 6074 WARN_ON(pg_offset != 0); 6075 compress_type = btrfs_file_extent_compression(leaf, item); 6076 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6077 inline_size = btrfs_file_extent_inline_item_len(leaf, 6078 btrfs_item_nr(path->slots[0])); 6079 tmp = kmalloc(inline_size, GFP_NOFS); 6080 if (!tmp) 6081 return -ENOMEM; 6082 ptr = btrfs_file_extent_inline_start(item); 6083 6084 read_extent_buffer(leaf, tmp, ptr, inline_size); 6085 6086 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6087 ret = btrfs_decompress(compress_type, tmp, page, 6088 extent_offset, inline_size, max_size); 6089 if (ret) { 6090 char *kaddr = kmap_atomic(page); 6091 unsigned long copy_size = min_t(u64, 6092 PAGE_CACHE_SIZE - pg_offset, 6093 max_size - extent_offset); 6094 memset(kaddr + pg_offset, 0, copy_size); 6095 kunmap_atomic(kaddr); 6096 } 6097 kfree(tmp); 6098 return 0; 6099 } 6100 6101 /* 6102 * a bit scary, this does extent mapping from logical file offset to the disk. 6103 * the ugly parts come from merging extents from the disk with the in-ram 6104 * representation. This gets more complex because of the data=ordered code, 6105 * where the in-ram extents might be locked pending data=ordered completion. 6106 * 6107 * This also copies inline extents directly into the page. 6108 */ 6109 6110 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6111 size_t pg_offset, u64 start, u64 len, 6112 int create) 6113 { 6114 int ret; 6115 int err = 0; 6116 u64 bytenr; 6117 u64 extent_start = 0; 6118 u64 extent_end = 0; 6119 u64 objectid = btrfs_ino(inode); 6120 u32 found_type; 6121 struct btrfs_path *path = NULL; 6122 struct btrfs_root *root = BTRFS_I(inode)->root; 6123 struct btrfs_file_extent_item *item; 6124 struct extent_buffer *leaf; 6125 struct btrfs_key found_key; 6126 struct extent_map *em = NULL; 6127 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6128 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6129 struct btrfs_trans_handle *trans = NULL; 6130 int compress_type; 6131 6132 again: 6133 read_lock(&em_tree->lock); 6134 em = lookup_extent_mapping(em_tree, start, len); 6135 if (em) 6136 em->bdev = root->fs_info->fs_devices->latest_bdev; 6137 read_unlock(&em_tree->lock); 6138 6139 if (em) { 6140 if (em->start > start || em->start + em->len <= start) 6141 free_extent_map(em); 6142 else if (em->block_start == EXTENT_MAP_INLINE && page) 6143 free_extent_map(em); 6144 else 6145 goto out; 6146 } 6147 em = alloc_extent_map(); 6148 if (!em) { 6149 err = -ENOMEM; 6150 goto out; 6151 } 6152 em->bdev = root->fs_info->fs_devices->latest_bdev; 6153 em->start = EXTENT_MAP_HOLE; 6154 em->orig_start = EXTENT_MAP_HOLE; 6155 em->len = (u64)-1; 6156 em->block_len = (u64)-1; 6157 6158 if (!path) { 6159 path = btrfs_alloc_path(); 6160 if (!path) { 6161 err = -ENOMEM; 6162 goto out; 6163 } 6164 /* 6165 * Chances are we'll be called again, so go ahead and do 6166 * readahead 6167 */ 6168 path->reada = 1; 6169 } 6170 6171 ret = btrfs_lookup_file_extent(trans, root, path, 6172 objectid, start, trans != NULL); 6173 if (ret < 0) { 6174 err = ret; 6175 goto out; 6176 } 6177 6178 if (ret != 0) { 6179 if (path->slots[0] == 0) 6180 goto not_found; 6181 path->slots[0]--; 6182 } 6183 6184 leaf = path->nodes[0]; 6185 item = btrfs_item_ptr(leaf, path->slots[0], 6186 struct btrfs_file_extent_item); 6187 /* are we inside the extent that was found? */ 6188 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6189 found_type = btrfs_key_type(&found_key); 6190 if (found_key.objectid != objectid || 6191 found_type != BTRFS_EXTENT_DATA_KEY) { 6192 /* 6193 * If we backup past the first extent we want to move forward 6194 * and see if there is an extent in front of us, otherwise we'll 6195 * say there is a hole for our whole search range which can 6196 * cause problems. 6197 */ 6198 extent_end = start; 6199 goto next; 6200 } 6201 6202 found_type = btrfs_file_extent_type(leaf, item); 6203 extent_start = found_key.offset; 6204 compress_type = btrfs_file_extent_compression(leaf, item); 6205 if (found_type == BTRFS_FILE_EXTENT_REG || 6206 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6207 extent_end = extent_start + 6208 btrfs_file_extent_num_bytes(leaf, item); 6209 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6210 size_t size; 6211 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6212 extent_end = ALIGN(extent_start + size, root->sectorsize); 6213 } 6214 next: 6215 if (start >= extent_end) { 6216 path->slots[0]++; 6217 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6218 ret = btrfs_next_leaf(root, path); 6219 if (ret < 0) { 6220 err = ret; 6221 goto out; 6222 } 6223 if (ret > 0) 6224 goto not_found; 6225 leaf = path->nodes[0]; 6226 } 6227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6228 if (found_key.objectid != objectid || 6229 found_key.type != BTRFS_EXTENT_DATA_KEY) 6230 goto not_found; 6231 if (start + len <= found_key.offset) 6232 goto not_found; 6233 em->start = start; 6234 em->orig_start = start; 6235 em->len = found_key.offset - start; 6236 goto not_found_em; 6237 } 6238 6239 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 6240 if (found_type == BTRFS_FILE_EXTENT_REG || 6241 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6242 em->start = extent_start; 6243 em->len = extent_end - extent_start; 6244 em->orig_start = extent_start - 6245 btrfs_file_extent_offset(leaf, item); 6246 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 6247 item); 6248 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 6249 if (bytenr == 0) { 6250 em->block_start = EXTENT_MAP_HOLE; 6251 goto insert; 6252 } 6253 if (compress_type != BTRFS_COMPRESS_NONE) { 6254 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6255 em->compress_type = compress_type; 6256 em->block_start = bytenr; 6257 em->block_len = em->orig_block_len; 6258 } else { 6259 bytenr += btrfs_file_extent_offset(leaf, item); 6260 em->block_start = bytenr; 6261 em->block_len = em->len; 6262 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 6263 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6264 } 6265 goto insert; 6266 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6267 unsigned long ptr; 6268 char *map; 6269 size_t size; 6270 size_t extent_offset; 6271 size_t copy_size; 6272 6273 em->block_start = EXTENT_MAP_INLINE; 6274 if (!page || create) { 6275 em->start = extent_start; 6276 em->len = extent_end - extent_start; 6277 goto out; 6278 } 6279 6280 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6281 extent_offset = page_offset(page) + pg_offset - extent_start; 6282 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6283 size - extent_offset); 6284 em->start = extent_start + extent_offset; 6285 em->len = ALIGN(copy_size, root->sectorsize); 6286 em->orig_block_len = em->len; 6287 em->orig_start = em->start; 6288 if (compress_type) { 6289 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6290 em->compress_type = compress_type; 6291 } 6292 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6293 if (create == 0 && !PageUptodate(page)) { 6294 if (btrfs_file_extent_compression(leaf, item) != 6295 BTRFS_COMPRESS_NONE) { 6296 ret = uncompress_inline(path, inode, page, 6297 pg_offset, 6298 extent_offset, item); 6299 BUG_ON(ret); /* -ENOMEM */ 6300 } else { 6301 map = kmap(page); 6302 read_extent_buffer(leaf, map + pg_offset, ptr, 6303 copy_size); 6304 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6305 memset(map + pg_offset + copy_size, 0, 6306 PAGE_CACHE_SIZE - pg_offset - 6307 copy_size); 6308 } 6309 kunmap(page); 6310 } 6311 flush_dcache_page(page); 6312 } else if (create && PageUptodate(page)) { 6313 BUG(); 6314 if (!trans) { 6315 kunmap(page); 6316 free_extent_map(em); 6317 em = NULL; 6318 6319 btrfs_release_path(path); 6320 trans = btrfs_join_transaction(root); 6321 6322 if (IS_ERR(trans)) 6323 return ERR_CAST(trans); 6324 goto again; 6325 } 6326 map = kmap(page); 6327 write_extent_buffer(leaf, map + pg_offset, ptr, 6328 copy_size); 6329 kunmap(page); 6330 btrfs_mark_buffer_dirty(leaf); 6331 } 6332 set_extent_uptodate(io_tree, em->start, 6333 extent_map_end(em) - 1, NULL, GFP_NOFS); 6334 goto insert; 6335 } else { 6336 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6337 } 6338 not_found: 6339 em->start = start; 6340 em->orig_start = start; 6341 em->len = len; 6342 not_found_em: 6343 em->block_start = EXTENT_MAP_HOLE; 6344 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6345 insert: 6346 btrfs_release_path(path); 6347 if (em->start > start || extent_map_end(em) <= start) { 6348 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6349 em->start, em->len, start, len); 6350 err = -EIO; 6351 goto out; 6352 } 6353 6354 err = 0; 6355 write_lock(&em_tree->lock); 6356 ret = add_extent_mapping(em_tree, em, 0); 6357 /* it is possible that someone inserted the extent into the tree 6358 * while we had the lock dropped. It is also possible that 6359 * an overlapping map exists in the tree 6360 */ 6361 if (ret == -EEXIST) { 6362 struct extent_map *existing; 6363 6364 ret = 0; 6365 6366 existing = lookup_extent_mapping(em_tree, start, len); 6367 if (existing && (existing->start > start || 6368 existing->start + existing->len <= start)) { 6369 free_extent_map(existing); 6370 existing = NULL; 6371 } 6372 if (!existing) { 6373 existing = lookup_extent_mapping(em_tree, em->start, 6374 em->len); 6375 if (existing) { 6376 err = merge_extent_mapping(em_tree, existing, 6377 em, start, 6378 root->sectorsize); 6379 free_extent_map(existing); 6380 if (err) { 6381 free_extent_map(em); 6382 em = NULL; 6383 } 6384 } else { 6385 err = -EIO; 6386 free_extent_map(em); 6387 em = NULL; 6388 } 6389 } else { 6390 free_extent_map(em); 6391 em = existing; 6392 err = 0; 6393 } 6394 } 6395 write_unlock(&em_tree->lock); 6396 out: 6397 6398 trace_btrfs_get_extent(root, em); 6399 6400 if (path) 6401 btrfs_free_path(path); 6402 if (trans) { 6403 ret = btrfs_end_transaction(trans, root); 6404 if (!err) 6405 err = ret; 6406 } 6407 if (err) { 6408 free_extent_map(em); 6409 return ERR_PTR(err); 6410 } 6411 BUG_ON(!em); /* Error is always set */ 6412 return em; 6413 } 6414 6415 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6416 size_t pg_offset, u64 start, u64 len, 6417 int create) 6418 { 6419 struct extent_map *em; 6420 struct extent_map *hole_em = NULL; 6421 u64 range_start = start; 6422 u64 end; 6423 u64 found; 6424 u64 found_end; 6425 int err = 0; 6426 6427 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6428 if (IS_ERR(em)) 6429 return em; 6430 if (em) { 6431 /* 6432 * if our em maps to 6433 * - a hole or 6434 * - a pre-alloc extent, 6435 * there might actually be delalloc bytes behind it. 6436 */ 6437 if (em->block_start != EXTENT_MAP_HOLE && 6438 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6439 return em; 6440 else 6441 hole_em = em; 6442 } 6443 6444 /* check to see if we've wrapped (len == -1 or similar) */ 6445 end = start + len; 6446 if (end < start) 6447 end = (u64)-1; 6448 else 6449 end -= 1; 6450 6451 em = NULL; 6452 6453 /* ok, we didn't find anything, lets look for delalloc */ 6454 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6455 end, len, EXTENT_DELALLOC, 1); 6456 found_end = range_start + found; 6457 if (found_end < range_start) 6458 found_end = (u64)-1; 6459 6460 /* 6461 * we didn't find anything useful, return 6462 * the original results from get_extent() 6463 */ 6464 if (range_start > end || found_end <= start) { 6465 em = hole_em; 6466 hole_em = NULL; 6467 goto out; 6468 } 6469 6470 /* adjust the range_start to make sure it doesn't 6471 * go backwards from the start they passed in 6472 */ 6473 range_start = max(start, range_start); 6474 found = found_end - range_start; 6475 6476 if (found > 0) { 6477 u64 hole_start = start; 6478 u64 hole_len = len; 6479 6480 em = alloc_extent_map(); 6481 if (!em) { 6482 err = -ENOMEM; 6483 goto out; 6484 } 6485 /* 6486 * when btrfs_get_extent can't find anything it 6487 * returns one huge hole 6488 * 6489 * make sure what it found really fits our range, and 6490 * adjust to make sure it is based on the start from 6491 * the caller 6492 */ 6493 if (hole_em) { 6494 u64 calc_end = extent_map_end(hole_em); 6495 6496 if (calc_end <= start || (hole_em->start > end)) { 6497 free_extent_map(hole_em); 6498 hole_em = NULL; 6499 } else { 6500 hole_start = max(hole_em->start, start); 6501 hole_len = calc_end - hole_start; 6502 } 6503 } 6504 em->bdev = NULL; 6505 if (hole_em && range_start > hole_start) { 6506 /* our hole starts before our delalloc, so we 6507 * have to return just the parts of the hole 6508 * that go until the delalloc starts 6509 */ 6510 em->len = min(hole_len, 6511 range_start - hole_start); 6512 em->start = hole_start; 6513 em->orig_start = hole_start; 6514 /* 6515 * don't adjust block start at all, 6516 * it is fixed at EXTENT_MAP_HOLE 6517 */ 6518 em->block_start = hole_em->block_start; 6519 em->block_len = hole_len; 6520 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6521 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6522 } else { 6523 em->start = range_start; 6524 em->len = found; 6525 em->orig_start = range_start; 6526 em->block_start = EXTENT_MAP_DELALLOC; 6527 em->block_len = found; 6528 } 6529 } else if (hole_em) { 6530 return hole_em; 6531 } 6532 out: 6533 6534 free_extent_map(hole_em); 6535 if (err) { 6536 free_extent_map(em); 6537 return ERR_PTR(err); 6538 } 6539 return em; 6540 } 6541 6542 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6543 u64 start, u64 len) 6544 { 6545 struct btrfs_root *root = BTRFS_I(inode)->root; 6546 struct extent_map *em; 6547 struct btrfs_key ins; 6548 u64 alloc_hint; 6549 int ret; 6550 6551 alloc_hint = get_extent_allocation_hint(inode, start, len); 6552 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 6553 alloc_hint, &ins, 1); 6554 if (ret) 6555 return ERR_PTR(ret); 6556 6557 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6558 ins.offset, ins.offset, ins.offset, 0); 6559 if (IS_ERR(em)) { 6560 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6561 return em; 6562 } 6563 6564 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6565 ins.offset, ins.offset, 0); 6566 if (ret) { 6567 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6568 free_extent_map(em); 6569 return ERR_PTR(ret); 6570 } 6571 6572 return em; 6573 } 6574 6575 /* 6576 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6577 * block must be cow'd 6578 */ 6579 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6580 u64 *orig_start, u64 *orig_block_len, 6581 u64 *ram_bytes) 6582 { 6583 struct btrfs_trans_handle *trans; 6584 struct btrfs_path *path; 6585 int ret; 6586 struct extent_buffer *leaf; 6587 struct btrfs_root *root = BTRFS_I(inode)->root; 6588 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6589 struct btrfs_file_extent_item *fi; 6590 struct btrfs_key key; 6591 u64 disk_bytenr; 6592 u64 backref_offset; 6593 u64 extent_end; 6594 u64 num_bytes; 6595 int slot; 6596 int found_type; 6597 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6598 6599 path = btrfs_alloc_path(); 6600 if (!path) 6601 return -ENOMEM; 6602 6603 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 6604 offset, 0); 6605 if (ret < 0) 6606 goto out; 6607 6608 slot = path->slots[0]; 6609 if (ret == 1) { 6610 if (slot == 0) { 6611 /* can't find the item, must cow */ 6612 ret = 0; 6613 goto out; 6614 } 6615 slot--; 6616 } 6617 ret = 0; 6618 leaf = path->nodes[0]; 6619 btrfs_item_key_to_cpu(leaf, &key, slot); 6620 if (key.objectid != btrfs_ino(inode) || 6621 key.type != BTRFS_EXTENT_DATA_KEY) { 6622 /* not our file or wrong item type, must cow */ 6623 goto out; 6624 } 6625 6626 if (key.offset > offset) { 6627 /* Wrong offset, must cow */ 6628 goto out; 6629 } 6630 6631 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6632 found_type = btrfs_file_extent_type(leaf, fi); 6633 if (found_type != BTRFS_FILE_EXTENT_REG && 6634 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6635 /* not a regular extent, must cow */ 6636 goto out; 6637 } 6638 6639 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6640 goto out; 6641 6642 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6643 if (extent_end <= offset) 6644 goto out; 6645 6646 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6647 if (disk_bytenr == 0) 6648 goto out; 6649 6650 if (btrfs_file_extent_compression(leaf, fi) || 6651 btrfs_file_extent_encryption(leaf, fi) || 6652 btrfs_file_extent_other_encoding(leaf, fi)) 6653 goto out; 6654 6655 backref_offset = btrfs_file_extent_offset(leaf, fi); 6656 6657 if (orig_start) { 6658 *orig_start = key.offset - backref_offset; 6659 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6660 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6661 } 6662 6663 if (btrfs_extent_readonly(root, disk_bytenr)) 6664 goto out; 6665 6666 num_bytes = min(offset + *len, extent_end) - offset; 6667 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6668 u64 range_end; 6669 6670 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 6671 ret = test_range_bit(io_tree, offset, range_end, 6672 EXTENT_DELALLOC, 0, NULL); 6673 if (ret) { 6674 ret = -EAGAIN; 6675 goto out; 6676 } 6677 } 6678 6679 btrfs_release_path(path); 6680 6681 /* 6682 * look for other files referencing this extent, if we 6683 * find any we must cow 6684 */ 6685 trans = btrfs_join_transaction(root); 6686 if (IS_ERR(trans)) { 6687 ret = 0; 6688 goto out; 6689 } 6690 6691 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6692 key.offset - backref_offset, disk_bytenr); 6693 btrfs_end_transaction(trans, root); 6694 if (ret) { 6695 ret = 0; 6696 goto out; 6697 } 6698 6699 /* 6700 * adjust disk_bytenr and num_bytes to cover just the bytes 6701 * in this extent we are about to write. If there 6702 * are any csums in that range we have to cow in order 6703 * to keep the csums correct 6704 */ 6705 disk_bytenr += backref_offset; 6706 disk_bytenr += offset - key.offset; 6707 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6708 goto out; 6709 /* 6710 * all of the above have passed, it is safe to overwrite this extent 6711 * without cow 6712 */ 6713 *len = num_bytes; 6714 ret = 1; 6715 out: 6716 btrfs_free_path(path); 6717 return ret; 6718 } 6719 6720 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6721 struct extent_state **cached_state, int writing) 6722 { 6723 struct btrfs_ordered_extent *ordered; 6724 int ret = 0; 6725 6726 while (1) { 6727 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6728 0, cached_state); 6729 /* 6730 * We're concerned with the entire range that we're going to be 6731 * doing DIO to, so we need to make sure theres no ordered 6732 * extents in this range. 6733 */ 6734 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6735 lockend - lockstart + 1); 6736 6737 /* 6738 * We need to make sure there are no buffered pages in this 6739 * range either, we could have raced between the invalidate in 6740 * generic_file_direct_write and locking the extent. The 6741 * invalidate needs to happen so that reads after a write do not 6742 * get stale data. 6743 */ 6744 if (!ordered && (!writing || 6745 !test_range_bit(&BTRFS_I(inode)->io_tree, 6746 lockstart, lockend, EXTENT_UPTODATE, 0, 6747 *cached_state))) 6748 break; 6749 6750 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6751 cached_state, GFP_NOFS); 6752 6753 if (ordered) { 6754 btrfs_start_ordered_extent(inode, ordered, 1); 6755 btrfs_put_ordered_extent(ordered); 6756 } else { 6757 /* Screw you mmap */ 6758 ret = filemap_write_and_wait_range(inode->i_mapping, 6759 lockstart, 6760 lockend); 6761 if (ret) 6762 break; 6763 6764 /* 6765 * If we found a page that couldn't be invalidated just 6766 * fall back to buffered. 6767 */ 6768 ret = invalidate_inode_pages2_range(inode->i_mapping, 6769 lockstart >> PAGE_CACHE_SHIFT, 6770 lockend >> PAGE_CACHE_SHIFT); 6771 if (ret) 6772 break; 6773 } 6774 6775 cond_resched(); 6776 } 6777 6778 return ret; 6779 } 6780 6781 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6782 u64 len, u64 orig_start, 6783 u64 block_start, u64 block_len, 6784 u64 orig_block_len, u64 ram_bytes, 6785 int type) 6786 { 6787 struct extent_map_tree *em_tree; 6788 struct extent_map *em; 6789 struct btrfs_root *root = BTRFS_I(inode)->root; 6790 int ret; 6791 6792 em_tree = &BTRFS_I(inode)->extent_tree; 6793 em = alloc_extent_map(); 6794 if (!em) 6795 return ERR_PTR(-ENOMEM); 6796 6797 em->start = start; 6798 em->orig_start = orig_start; 6799 em->mod_start = start; 6800 em->mod_len = len; 6801 em->len = len; 6802 em->block_len = block_len; 6803 em->block_start = block_start; 6804 em->bdev = root->fs_info->fs_devices->latest_bdev; 6805 em->orig_block_len = orig_block_len; 6806 em->ram_bytes = ram_bytes; 6807 em->generation = -1; 6808 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6809 if (type == BTRFS_ORDERED_PREALLOC) 6810 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6811 6812 do { 6813 btrfs_drop_extent_cache(inode, em->start, 6814 em->start + em->len - 1, 0); 6815 write_lock(&em_tree->lock); 6816 ret = add_extent_mapping(em_tree, em, 1); 6817 write_unlock(&em_tree->lock); 6818 } while (ret == -EEXIST); 6819 6820 if (ret) { 6821 free_extent_map(em); 6822 return ERR_PTR(ret); 6823 } 6824 6825 return em; 6826 } 6827 6828 6829 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6830 struct buffer_head *bh_result, int create) 6831 { 6832 struct extent_map *em; 6833 struct btrfs_root *root = BTRFS_I(inode)->root; 6834 struct extent_state *cached_state = NULL; 6835 u64 start = iblock << inode->i_blkbits; 6836 u64 lockstart, lockend; 6837 u64 len = bh_result->b_size; 6838 int unlock_bits = EXTENT_LOCKED; 6839 int ret = 0; 6840 6841 if (create) 6842 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6843 else 6844 len = min_t(u64, len, root->sectorsize); 6845 6846 lockstart = start; 6847 lockend = start + len - 1; 6848 6849 /* 6850 * If this errors out it's because we couldn't invalidate pagecache for 6851 * this range and we need to fallback to buffered. 6852 */ 6853 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6854 return -ENOTBLK; 6855 6856 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6857 if (IS_ERR(em)) { 6858 ret = PTR_ERR(em); 6859 goto unlock_err; 6860 } 6861 6862 /* 6863 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6864 * io. INLINE is special, and we could probably kludge it in here, but 6865 * it's still buffered so for safety lets just fall back to the generic 6866 * buffered path. 6867 * 6868 * For COMPRESSED we _have_ to read the entire extent in so we can 6869 * decompress it, so there will be buffering required no matter what we 6870 * do, so go ahead and fallback to buffered. 6871 * 6872 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6873 * to buffered IO. Don't blame me, this is the price we pay for using 6874 * the generic code. 6875 */ 6876 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6877 em->block_start == EXTENT_MAP_INLINE) { 6878 free_extent_map(em); 6879 ret = -ENOTBLK; 6880 goto unlock_err; 6881 } 6882 6883 /* Just a good old fashioned hole, return */ 6884 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6885 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6886 free_extent_map(em); 6887 goto unlock_err; 6888 } 6889 6890 /* 6891 * We don't allocate a new extent in the following cases 6892 * 6893 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6894 * existing extent. 6895 * 2) The extent is marked as PREALLOC. We're good to go here and can 6896 * just use the extent. 6897 * 6898 */ 6899 if (!create) { 6900 len = min(len, em->len - (start - em->start)); 6901 lockstart = start + len; 6902 goto unlock; 6903 } 6904 6905 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6906 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6907 em->block_start != EXTENT_MAP_HOLE)) { 6908 int type; 6909 int ret; 6910 u64 block_start, orig_start, orig_block_len, ram_bytes; 6911 6912 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6913 type = BTRFS_ORDERED_PREALLOC; 6914 else 6915 type = BTRFS_ORDERED_NOCOW; 6916 len = min(len, em->len - (start - em->start)); 6917 block_start = em->block_start + (start - em->start); 6918 6919 if (can_nocow_extent(inode, start, &len, &orig_start, 6920 &orig_block_len, &ram_bytes) == 1) { 6921 if (type == BTRFS_ORDERED_PREALLOC) { 6922 free_extent_map(em); 6923 em = create_pinned_em(inode, start, len, 6924 orig_start, 6925 block_start, len, 6926 orig_block_len, 6927 ram_bytes, type); 6928 if (IS_ERR(em)) 6929 goto unlock_err; 6930 } 6931 6932 ret = btrfs_add_ordered_extent_dio(inode, start, 6933 block_start, len, len, type); 6934 if (ret) { 6935 free_extent_map(em); 6936 goto unlock_err; 6937 } 6938 goto unlock; 6939 } 6940 } 6941 6942 /* 6943 * this will cow the extent, reset the len in case we changed 6944 * it above 6945 */ 6946 len = bh_result->b_size; 6947 free_extent_map(em); 6948 em = btrfs_new_extent_direct(inode, start, len); 6949 if (IS_ERR(em)) { 6950 ret = PTR_ERR(em); 6951 goto unlock_err; 6952 } 6953 len = min(len, em->len - (start - em->start)); 6954 unlock: 6955 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6956 inode->i_blkbits; 6957 bh_result->b_size = len; 6958 bh_result->b_bdev = em->bdev; 6959 set_buffer_mapped(bh_result); 6960 if (create) { 6961 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6962 set_buffer_new(bh_result); 6963 6964 /* 6965 * Need to update the i_size under the extent lock so buffered 6966 * readers will get the updated i_size when we unlock. 6967 */ 6968 if (start + len > i_size_read(inode)) 6969 i_size_write(inode, start + len); 6970 6971 spin_lock(&BTRFS_I(inode)->lock); 6972 BTRFS_I(inode)->outstanding_extents++; 6973 spin_unlock(&BTRFS_I(inode)->lock); 6974 6975 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6976 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6977 &cached_state, GFP_NOFS); 6978 BUG_ON(ret); 6979 } 6980 6981 /* 6982 * In the case of write we need to clear and unlock the entire range, 6983 * in the case of read we need to unlock only the end area that we 6984 * aren't using if there is any left over space. 6985 */ 6986 if (lockstart < lockend) { 6987 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6988 lockend, unlock_bits, 1, 0, 6989 &cached_state, GFP_NOFS); 6990 } else { 6991 free_extent_state(cached_state); 6992 } 6993 6994 free_extent_map(em); 6995 6996 return 0; 6997 6998 unlock_err: 6999 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7000 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7001 return ret; 7002 } 7003 7004 static void btrfs_endio_direct_read(struct bio *bio, int err) 7005 { 7006 struct btrfs_dio_private *dip = bio->bi_private; 7007 struct bio_vec *bvec; 7008 struct inode *inode = dip->inode; 7009 struct btrfs_root *root = BTRFS_I(inode)->root; 7010 struct bio *dio_bio; 7011 u32 *csums = (u32 *)dip->csum; 7012 u64 start; 7013 int i; 7014 7015 start = dip->logical_offset; 7016 bio_for_each_segment_all(bvec, bio, i) { 7017 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 7018 struct page *page = bvec->bv_page; 7019 char *kaddr; 7020 u32 csum = ~(u32)0; 7021 unsigned long flags; 7022 7023 local_irq_save(flags); 7024 kaddr = kmap_atomic(page); 7025 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 7026 csum, bvec->bv_len); 7027 btrfs_csum_final(csum, (char *)&csum); 7028 kunmap_atomic(kaddr); 7029 local_irq_restore(flags); 7030 7031 flush_dcache_page(bvec->bv_page); 7032 if (csum != csums[i]) { 7033 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 7034 btrfs_ino(inode), start, csum, 7035 csums[i]); 7036 err = -EIO; 7037 } 7038 } 7039 7040 start += bvec->bv_len; 7041 } 7042 7043 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7044 dip->logical_offset + dip->bytes - 1); 7045 dio_bio = dip->dio_bio; 7046 7047 kfree(dip); 7048 7049 /* If we had a csum failure make sure to clear the uptodate flag */ 7050 if (err) 7051 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7052 dio_end_io(dio_bio, err); 7053 bio_put(bio); 7054 } 7055 7056 static void btrfs_endio_direct_write(struct bio *bio, int err) 7057 { 7058 struct btrfs_dio_private *dip = bio->bi_private; 7059 struct inode *inode = dip->inode; 7060 struct btrfs_root *root = BTRFS_I(inode)->root; 7061 struct btrfs_ordered_extent *ordered = NULL; 7062 u64 ordered_offset = dip->logical_offset; 7063 u64 ordered_bytes = dip->bytes; 7064 struct bio *dio_bio; 7065 int ret; 7066 7067 if (err) 7068 goto out_done; 7069 again: 7070 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7071 &ordered_offset, 7072 ordered_bytes, !err); 7073 if (!ret) 7074 goto out_test; 7075 7076 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL); 7077 btrfs_queue_work(root->fs_info->endio_write_workers, 7078 &ordered->work); 7079 out_test: 7080 /* 7081 * our bio might span multiple ordered extents. If we haven't 7082 * completed the accounting for the whole dio, go back and try again 7083 */ 7084 if (ordered_offset < dip->logical_offset + dip->bytes) { 7085 ordered_bytes = dip->logical_offset + dip->bytes - 7086 ordered_offset; 7087 ordered = NULL; 7088 goto again; 7089 } 7090 out_done: 7091 dio_bio = dip->dio_bio; 7092 7093 kfree(dip); 7094 7095 /* If we had an error make sure to clear the uptodate flag */ 7096 if (err) 7097 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7098 dio_end_io(dio_bio, err); 7099 bio_put(bio); 7100 } 7101 7102 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7103 struct bio *bio, int mirror_num, 7104 unsigned long bio_flags, u64 offset) 7105 { 7106 int ret; 7107 struct btrfs_root *root = BTRFS_I(inode)->root; 7108 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7109 BUG_ON(ret); /* -ENOMEM */ 7110 return 0; 7111 } 7112 7113 static void btrfs_end_dio_bio(struct bio *bio, int err) 7114 { 7115 struct btrfs_dio_private *dip = bio->bi_private; 7116 7117 if (err) { 7118 btrfs_err(BTRFS_I(dip->inode)->root->fs_info, 7119 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7120 btrfs_ino(dip->inode), bio->bi_rw, 7121 (unsigned long long)bio->bi_iter.bi_sector, 7122 bio->bi_iter.bi_size, err); 7123 dip->errors = 1; 7124 7125 /* 7126 * before atomic variable goto zero, we must make sure 7127 * dip->errors is perceived to be set. 7128 */ 7129 smp_mb__before_atomic_dec(); 7130 } 7131 7132 /* if there are more bios still pending for this dio, just exit */ 7133 if (!atomic_dec_and_test(&dip->pending_bios)) 7134 goto out; 7135 7136 if (dip->errors) { 7137 bio_io_error(dip->orig_bio); 7138 } else { 7139 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7140 bio_endio(dip->orig_bio, 0); 7141 } 7142 out: 7143 bio_put(bio); 7144 } 7145 7146 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7147 u64 first_sector, gfp_t gfp_flags) 7148 { 7149 int nr_vecs = bio_get_nr_vecs(bdev); 7150 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7151 } 7152 7153 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7154 int rw, u64 file_offset, int skip_sum, 7155 int async_submit) 7156 { 7157 struct btrfs_dio_private *dip = bio->bi_private; 7158 int write = rw & REQ_WRITE; 7159 struct btrfs_root *root = BTRFS_I(inode)->root; 7160 int ret; 7161 7162 if (async_submit) 7163 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7164 7165 bio_get(bio); 7166 7167 if (!write) { 7168 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 7169 if (ret) 7170 goto err; 7171 } 7172 7173 if (skip_sum) 7174 goto map; 7175 7176 if (write && async_submit) { 7177 ret = btrfs_wq_submit_bio(root->fs_info, 7178 inode, rw, bio, 0, 0, 7179 file_offset, 7180 __btrfs_submit_bio_start_direct_io, 7181 __btrfs_submit_bio_done); 7182 goto err; 7183 } else if (write) { 7184 /* 7185 * If we aren't doing async submit, calculate the csum of the 7186 * bio now. 7187 */ 7188 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7189 if (ret) 7190 goto err; 7191 } else if (!skip_sum) { 7192 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio, 7193 file_offset); 7194 if (ret) 7195 goto err; 7196 } 7197 7198 map: 7199 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7200 err: 7201 bio_put(bio); 7202 return ret; 7203 } 7204 7205 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7206 int skip_sum) 7207 { 7208 struct inode *inode = dip->inode; 7209 struct btrfs_root *root = BTRFS_I(inode)->root; 7210 struct bio *bio; 7211 struct bio *orig_bio = dip->orig_bio; 7212 struct bio_vec *bvec = orig_bio->bi_io_vec; 7213 u64 start_sector = orig_bio->bi_iter.bi_sector; 7214 u64 file_offset = dip->logical_offset; 7215 u64 submit_len = 0; 7216 u64 map_length; 7217 int nr_pages = 0; 7218 int ret = 0; 7219 int async_submit = 0; 7220 7221 map_length = orig_bio->bi_iter.bi_size; 7222 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7223 &map_length, NULL, 0); 7224 if (ret) { 7225 bio_put(orig_bio); 7226 return -EIO; 7227 } 7228 7229 if (map_length >= orig_bio->bi_iter.bi_size) { 7230 bio = orig_bio; 7231 goto submit; 7232 } 7233 7234 /* async crcs make it difficult to collect full stripe writes. */ 7235 if (btrfs_get_alloc_profile(root, 1) & 7236 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7237 async_submit = 0; 7238 else 7239 async_submit = 1; 7240 7241 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7242 if (!bio) 7243 return -ENOMEM; 7244 bio->bi_private = dip; 7245 bio->bi_end_io = btrfs_end_dio_bio; 7246 atomic_inc(&dip->pending_bios); 7247 7248 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7249 if (unlikely(map_length < submit_len + bvec->bv_len || 7250 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7251 bvec->bv_offset) < bvec->bv_len)) { 7252 /* 7253 * inc the count before we submit the bio so 7254 * we know the end IO handler won't happen before 7255 * we inc the count. Otherwise, the dip might get freed 7256 * before we're done setting it up 7257 */ 7258 atomic_inc(&dip->pending_bios); 7259 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7260 file_offset, skip_sum, 7261 async_submit); 7262 if (ret) { 7263 bio_put(bio); 7264 atomic_dec(&dip->pending_bios); 7265 goto out_err; 7266 } 7267 7268 start_sector += submit_len >> 9; 7269 file_offset += submit_len; 7270 7271 submit_len = 0; 7272 nr_pages = 0; 7273 7274 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7275 start_sector, GFP_NOFS); 7276 if (!bio) 7277 goto out_err; 7278 bio->bi_private = dip; 7279 bio->bi_end_io = btrfs_end_dio_bio; 7280 7281 map_length = orig_bio->bi_iter.bi_size; 7282 ret = btrfs_map_block(root->fs_info, rw, 7283 start_sector << 9, 7284 &map_length, NULL, 0); 7285 if (ret) { 7286 bio_put(bio); 7287 goto out_err; 7288 } 7289 } else { 7290 submit_len += bvec->bv_len; 7291 nr_pages++; 7292 bvec++; 7293 } 7294 } 7295 7296 submit: 7297 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7298 async_submit); 7299 if (!ret) 7300 return 0; 7301 7302 bio_put(bio); 7303 out_err: 7304 dip->errors = 1; 7305 /* 7306 * before atomic variable goto zero, we must 7307 * make sure dip->errors is perceived to be set. 7308 */ 7309 smp_mb__before_atomic_dec(); 7310 if (atomic_dec_and_test(&dip->pending_bios)) 7311 bio_io_error(dip->orig_bio); 7312 7313 /* bio_end_io() will handle error, so we needn't return it */ 7314 return 0; 7315 } 7316 7317 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7318 struct inode *inode, loff_t file_offset) 7319 { 7320 struct btrfs_root *root = BTRFS_I(inode)->root; 7321 struct btrfs_dio_private *dip; 7322 struct bio *io_bio; 7323 int skip_sum; 7324 int sum_len; 7325 int write = rw & REQ_WRITE; 7326 int ret = 0; 7327 u16 csum_size; 7328 7329 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7330 7331 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7332 if (!io_bio) { 7333 ret = -ENOMEM; 7334 goto free_ordered; 7335 } 7336 7337 if (!skip_sum && !write) { 7338 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 7339 sum_len = dio_bio->bi_iter.bi_size >> 7340 inode->i_sb->s_blocksize_bits; 7341 sum_len *= csum_size; 7342 } else { 7343 sum_len = 0; 7344 } 7345 7346 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS); 7347 if (!dip) { 7348 ret = -ENOMEM; 7349 goto free_io_bio; 7350 } 7351 7352 dip->private = dio_bio->bi_private; 7353 dip->inode = inode; 7354 dip->logical_offset = file_offset; 7355 dip->bytes = dio_bio->bi_iter.bi_size; 7356 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7357 io_bio->bi_private = dip; 7358 dip->errors = 0; 7359 dip->orig_bio = io_bio; 7360 dip->dio_bio = dio_bio; 7361 atomic_set(&dip->pending_bios, 0); 7362 7363 if (write) 7364 io_bio->bi_end_io = btrfs_endio_direct_write; 7365 else 7366 io_bio->bi_end_io = btrfs_endio_direct_read; 7367 7368 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7369 if (!ret) 7370 return; 7371 7372 free_io_bio: 7373 bio_put(io_bio); 7374 7375 free_ordered: 7376 /* 7377 * If this is a write, we need to clean up the reserved space and kill 7378 * the ordered extent. 7379 */ 7380 if (write) { 7381 struct btrfs_ordered_extent *ordered; 7382 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7383 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7384 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7385 btrfs_free_reserved_extent(root, ordered->start, 7386 ordered->disk_len); 7387 btrfs_put_ordered_extent(ordered); 7388 btrfs_put_ordered_extent(ordered); 7389 } 7390 bio_endio(dio_bio, ret); 7391 } 7392 7393 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7394 const struct iovec *iov, loff_t offset, 7395 unsigned long nr_segs) 7396 { 7397 int seg; 7398 int i; 7399 size_t size; 7400 unsigned long addr; 7401 unsigned blocksize_mask = root->sectorsize - 1; 7402 ssize_t retval = -EINVAL; 7403 loff_t end = offset; 7404 7405 if (offset & blocksize_mask) 7406 goto out; 7407 7408 /* Check the memory alignment. Blocks cannot straddle pages */ 7409 for (seg = 0; seg < nr_segs; seg++) { 7410 addr = (unsigned long)iov[seg].iov_base; 7411 size = iov[seg].iov_len; 7412 end += size; 7413 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7414 goto out; 7415 7416 /* If this is a write we don't need to check anymore */ 7417 if (rw & WRITE) 7418 continue; 7419 7420 /* 7421 * Check to make sure we don't have duplicate iov_base's in this 7422 * iovec, if so return EINVAL, otherwise we'll get csum errors 7423 * when reading back. 7424 */ 7425 for (i = seg + 1; i < nr_segs; i++) { 7426 if (iov[seg].iov_base == iov[i].iov_base) 7427 goto out; 7428 } 7429 } 7430 retval = 0; 7431 out: 7432 return retval; 7433 } 7434 7435 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7436 const struct iovec *iov, loff_t offset, 7437 unsigned long nr_segs) 7438 { 7439 struct file *file = iocb->ki_filp; 7440 struct inode *inode = file->f_mapping->host; 7441 size_t count = 0; 7442 int flags = 0; 7443 bool wakeup = true; 7444 bool relock = false; 7445 ssize_t ret; 7446 7447 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7448 offset, nr_segs)) 7449 return 0; 7450 7451 atomic_inc(&inode->i_dio_count); 7452 smp_mb__after_atomic_inc(); 7453 7454 /* 7455 * The generic stuff only does filemap_write_and_wait_range, which 7456 * isn't enough if we've written compressed pages to this area, so 7457 * we need to flush the dirty pages again to make absolutely sure 7458 * that any outstanding dirty pages are on disk. 7459 */ 7460 count = iov_length(iov, nr_segs); 7461 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7462 &BTRFS_I(inode)->runtime_flags)) 7463 filemap_fdatawrite_range(inode->i_mapping, offset, count); 7464 7465 if (rw & WRITE) { 7466 /* 7467 * If the write DIO is beyond the EOF, we need update 7468 * the isize, but it is protected by i_mutex. So we can 7469 * not unlock the i_mutex at this case. 7470 */ 7471 if (offset + count <= inode->i_size) { 7472 mutex_unlock(&inode->i_mutex); 7473 relock = true; 7474 } 7475 ret = btrfs_delalloc_reserve_space(inode, count); 7476 if (ret) 7477 goto out; 7478 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7479 &BTRFS_I(inode)->runtime_flags))) { 7480 inode_dio_done(inode); 7481 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7482 wakeup = false; 7483 } 7484 7485 ret = __blockdev_direct_IO(rw, iocb, inode, 7486 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7487 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7488 btrfs_submit_direct, flags); 7489 if (rw & WRITE) { 7490 if (ret < 0 && ret != -EIOCBQUEUED) 7491 btrfs_delalloc_release_space(inode, count); 7492 else if (ret >= 0 && (size_t)ret < count) 7493 btrfs_delalloc_release_space(inode, 7494 count - (size_t)ret); 7495 else 7496 btrfs_delalloc_release_metadata(inode, 0); 7497 } 7498 out: 7499 if (wakeup) 7500 inode_dio_done(inode); 7501 if (relock) 7502 mutex_lock(&inode->i_mutex); 7503 7504 return ret; 7505 } 7506 7507 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7508 7509 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7510 __u64 start, __u64 len) 7511 { 7512 int ret; 7513 7514 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7515 if (ret) 7516 return ret; 7517 7518 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7519 } 7520 7521 int btrfs_readpage(struct file *file, struct page *page) 7522 { 7523 struct extent_io_tree *tree; 7524 tree = &BTRFS_I(page->mapping->host)->io_tree; 7525 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7526 } 7527 7528 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7529 { 7530 struct extent_io_tree *tree; 7531 7532 7533 if (current->flags & PF_MEMALLOC) { 7534 redirty_page_for_writepage(wbc, page); 7535 unlock_page(page); 7536 return 0; 7537 } 7538 tree = &BTRFS_I(page->mapping->host)->io_tree; 7539 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7540 } 7541 7542 static int btrfs_writepages(struct address_space *mapping, 7543 struct writeback_control *wbc) 7544 { 7545 struct extent_io_tree *tree; 7546 7547 tree = &BTRFS_I(mapping->host)->io_tree; 7548 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7549 } 7550 7551 static int 7552 btrfs_readpages(struct file *file, struct address_space *mapping, 7553 struct list_head *pages, unsigned nr_pages) 7554 { 7555 struct extent_io_tree *tree; 7556 tree = &BTRFS_I(mapping->host)->io_tree; 7557 return extent_readpages(tree, mapping, pages, nr_pages, 7558 btrfs_get_extent); 7559 } 7560 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7561 { 7562 struct extent_io_tree *tree; 7563 struct extent_map_tree *map; 7564 int ret; 7565 7566 tree = &BTRFS_I(page->mapping->host)->io_tree; 7567 map = &BTRFS_I(page->mapping->host)->extent_tree; 7568 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7569 if (ret == 1) { 7570 ClearPagePrivate(page); 7571 set_page_private(page, 0); 7572 page_cache_release(page); 7573 } 7574 return ret; 7575 } 7576 7577 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7578 { 7579 if (PageWriteback(page) || PageDirty(page)) 7580 return 0; 7581 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7582 } 7583 7584 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7585 unsigned int length) 7586 { 7587 struct inode *inode = page->mapping->host; 7588 struct extent_io_tree *tree; 7589 struct btrfs_ordered_extent *ordered; 7590 struct extent_state *cached_state = NULL; 7591 u64 page_start = page_offset(page); 7592 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7593 int inode_evicting = inode->i_state & I_FREEING; 7594 7595 /* 7596 * we have the page locked, so new writeback can't start, 7597 * and the dirty bit won't be cleared while we are here. 7598 * 7599 * Wait for IO on this page so that we can safely clear 7600 * the PagePrivate2 bit and do ordered accounting 7601 */ 7602 wait_on_page_writeback(page); 7603 7604 tree = &BTRFS_I(inode)->io_tree; 7605 if (offset) { 7606 btrfs_releasepage(page, GFP_NOFS); 7607 return; 7608 } 7609 7610 if (!inode_evicting) 7611 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7612 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7613 if (ordered) { 7614 /* 7615 * IO on this page will never be started, so we need 7616 * to account for any ordered extents now 7617 */ 7618 if (!inode_evicting) 7619 clear_extent_bit(tree, page_start, page_end, 7620 EXTENT_DIRTY | EXTENT_DELALLOC | 7621 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7622 EXTENT_DEFRAG, 1, 0, &cached_state, 7623 GFP_NOFS); 7624 /* 7625 * whoever cleared the private bit is responsible 7626 * for the finish_ordered_io 7627 */ 7628 if (TestClearPagePrivate2(page)) { 7629 struct btrfs_ordered_inode_tree *tree; 7630 u64 new_len; 7631 7632 tree = &BTRFS_I(inode)->ordered_tree; 7633 7634 spin_lock_irq(&tree->lock); 7635 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7636 new_len = page_start - ordered->file_offset; 7637 if (new_len < ordered->truncated_len) 7638 ordered->truncated_len = new_len; 7639 spin_unlock_irq(&tree->lock); 7640 7641 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7642 page_start, 7643 PAGE_CACHE_SIZE, 1)) 7644 btrfs_finish_ordered_io(ordered); 7645 } 7646 btrfs_put_ordered_extent(ordered); 7647 if (!inode_evicting) { 7648 cached_state = NULL; 7649 lock_extent_bits(tree, page_start, page_end, 0, 7650 &cached_state); 7651 } 7652 } 7653 7654 if (!inode_evicting) { 7655 clear_extent_bit(tree, page_start, page_end, 7656 EXTENT_LOCKED | EXTENT_DIRTY | 7657 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7658 EXTENT_DEFRAG, 1, 1, 7659 &cached_state, GFP_NOFS); 7660 7661 __btrfs_releasepage(page, GFP_NOFS); 7662 } 7663 7664 ClearPageChecked(page); 7665 if (PagePrivate(page)) { 7666 ClearPagePrivate(page); 7667 set_page_private(page, 0); 7668 page_cache_release(page); 7669 } 7670 } 7671 7672 /* 7673 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7674 * called from a page fault handler when a page is first dirtied. Hence we must 7675 * be careful to check for EOF conditions here. We set the page up correctly 7676 * for a written page which means we get ENOSPC checking when writing into 7677 * holes and correct delalloc and unwritten extent mapping on filesystems that 7678 * support these features. 7679 * 7680 * We are not allowed to take the i_mutex here so we have to play games to 7681 * protect against truncate races as the page could now be beyond EOF. Because 7682 * vmtruncate() writes the inode size before removing pages, once we have the 7683 * page lock we can determine safely if the page is beyond EOF. If it is not 7684 * beyond EOF, then the page is guaranteed safe against truncation until we 7685 * unlock the page. 7686 */ 7687 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7688 { 7689 struct page *page = vmf->page; 7690 struct inode *inode = file_inode(vma->vm_file); 7691 struct btrfs_root *root = BTRFS_I(inode)->root; 7692 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7693 struct btrfs_ordered_extent *ordered; 7694 struct extent_state *cached_state = NULL; 7695 char *kaddr; 7696 unsigned long zero_start; 7697 loff_t size; 7698 int ret; 7699 int reserved = 0; 7700 u64 page_start; 7701 u64 page_end; 7702 7703 sb_start_pagefault(inode->i_sb); 7704 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7705 if (!ret) { 7706 ret = file_update_time(vma->vm_file); 7707 reserved = 1; 7708 } 7709 if (ret) { 7710 if (ret == -ENOMEM) 7711 ret = VM_FAULT_OOM; 7712 else /* -ENOSPC, -EIO, etc */ 7713 ret = VM_FAULT_SIGBUS; 7714 if (reserved) 7715 goto out; 7716 goto out_noreserve; 7717 } 7718 7719 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7720 again: 7721 lock_page(page); 7722 size = i_size_read(inode); 7723 page_start = page_offset(page); 7724 page_end = page_start + PAGE_CACHE_SIZE - 1; 7725 7726 if ((page->mapping != inode->i_mapping) || 7727 (page_start >= size)) { 7728 /* page got truncated out from underneath us */ 7729 goto out_unlock; 7730 } 7731 wait_on_page_writeback(page); 7732 7733 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7734 set_page_extent_mapped(page); 7735 7736 /* 7737 * we can't set the delalloc bits if there are pending ordered 7738 * extents. Drop our locks and wait for them to finish 7739 */ 7740 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7741 if (ordered) { 7742 unlock_extent_cached(io_tree, page_start, page_end, 7743 &cached_state, GFP_NOFS); 7744 unlock_page(page); 7745 btrfs_start_ordered_extent(inode, ordered, 1); 7746 btrfs_put_ordered_extent(ordered); 7747 goto again; 7748 } 7749 7750 /* 7751 * XXX - page_mkwrite gets called every time the page is dirtied, even 7752 * if it was already dirty, so for space accounting reasons we need to 7753 * clear any delalloc bits for the range we are fixing to save. There 7754 * is probably a better way to do this, but for now keep consistent with 7755 * prepare_pages in the normal write path. 7756 */ 7757 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7758 EXTENT_DIRTY | EXTENT_DELALLOC | 7759 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7760 0, 0, &cached_state, GFP_NOFS); 7761 7762 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7763 &cached_state); 7764 if (ret) { 7765 unlock_extent_cached(io_tree, page_start, page_end, 7766 &cached_state, GFP_NOFS); 7767 ret = VM_FAULT_SIGBUS; 7768 goto out_unlock; 7769 } 7770 ret = 0; 7771 7772 /* page is wholly or partially inside EOF */ 7773 if (page_start + PAGE_CACHE_SIZE > size) 7774 zero_start = size & ~PAGE_CACHE_MASK; 7775 else 7776 zero_start = PAGE_CACHE_SIZE; 7777 7778 if (zero_start != PAGE_CACHE_SIZE) { 7779 kaddr = kmap(page); 7780 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7781 flush_dcache_page(page); 7782 kunmap(page); 7783 } 7784 ClearPageChecked(page); 7785 set_page_dirty(page); 7786 SetPageUptodate(page); 7787 7788 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7789 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7790 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7791 7792 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7793 7794 out_unlock: 7795 if (!ret) { 7796 sb_end_pagefault(inode->i_sb); 7797 return VM_FAULT_LOCKED; 7798 } 7799 unlock_page(page); 7800 out: 7801 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7802 out_noreserve: 7803 sb_end_pagefault(inode->i_sb); 7804 return ret; 7805 } 7806 7807 static int btrfs_truncate(struct inode *inode) 7808 { 7809 struct btrfs_root *root = BTRFS_I(inode)->root; 7810 struct btrfs_block_rsv *rsv; 7811 int ret = 0; 7812 int err = 0; 7813 struct btrfs_trans_handle *trans; 7814 u64 mask = root->sectorsize - 1; 7815 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7816 7817 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 7818 (u64)-1); 7819 if (ret) 7820 return ret; 7821 7822 /* 7823 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7824 * 3 things going on here 7825 * 7826 * 1) We need to reserve space for our orphan item and the space to 7827 * delete our orphan item. Lord knows we don't want to have a dangling 7828 * orphan item because we didn't reserve space to remove it. 7829 * 7830 * 2) We need to reserve space to update our inode. 7831 * 7832 * 3) We need to have something to cache all the space that is going to 7833 * be free'd up by the truncate operation, but also have some slack 7834 * space reserved in case it uses space during the truncate (thank you 7835 * very much snapshotting). 7836 * 7837 * And we need these to all be seperate. The fact is we can use alot of 7838 * space doing the truncate, and we have no earthly idea how much space 7839 * we will use, so we need the truncate reservation to be seperate so it 7840 * doesn't end up using space reserved for updating the inode or 7841 * removing the orphan item. We also need to be able to stop the 7842 * transaction and start a new one, which means we need to be able to 7843 * update the inode several times, and we have no idea of knowing how 7844 * many times that will be, so we can't just reserve 1 item for the 7845 * entirety of the opration, so that has to be done seperately as well. 7846 * Then there is the orphan item, which does indeed need to be held on 7847 * to for the whole operation, and we need nobody to touch this reserved 7848 * space except the orphan code. 7849 * 7850 * So that leaves us with 7851 * 7852 * 1) root->orphan_block_rsv - for the orphan deletion. 7853 * 2) rsv - for the truncate reservation, which we will steal from the 7854 * transaction reservation. 7855 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7856 * updating the inode. 7857 */ 7858 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7859 if (!rsv) 7860 return -ENOMEM; 7861 rsv->size = min_size; 7862 rsv->failfast = 1; 7863 7864 /* 7865 * 1 for the truncate slack space 7866 * 1 for updating the inode. 7867 */ 7868 trans = btrfs_start_transaction(root, 2); 7869 if (IS_ERR(trans)) { 7870 err = PTR_ERR(trans); 7871 goto out; 7872 } 7873 7874 /* Migrate the slack space for the truncate to our reserve */ 7875 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7876 min_size); 7877 BUG_ON(ret); 7878 7879 /* 7880 * setattr is responsible for setting the ordered_data_close flag, 7881 * but that is only tested during the last file release. That 7882 * could happen well after the next commit, leaving a great big 7883 * window where new writes may get lost if someone chooses to write 7884 * to this file after truncating to zero 7885 * 7886 * The inode doesn't have any dirty data here, and so if we commit 7887 * this is a noop. If someone immediately starts writing to the inode 7888 * it is very likely we'll catch some of their writes in this 7889 * transaction, and the commit will find this file on the ordered 7890 * data list with good things to send down. 7891 * 7892 * This is a best effort solution, there is still a window where 7893 * using truncate to replace the contents of the file will 7894 * end up with a zero length file after a crash. 7895 */ 7896 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7897 &BTRFS_I(inode)->runtime_flags)) 7898 btrfs_add_ordered_operation(trans, root, inode); 7899 7900 /* 7901 * So if we truncate and then write and fsync we normally would just 7902 * write the extents that changed, which is a problem if we need to 7903 * first truncate that entire inode. So set this flag so we write out 7904 * all of the extents in the inode to the sync log so we're completely 7905 * safe. 7906 */ 7907 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7908 trans->block_rsv = rsv; 7909 7910 while (1) { 7911 ret = btrfs_truncate_inode_items(trans, root, inode, 7912 inode->i_size, 7913 BTRFS_EXTENT_DATA_KEY); 7914 if (ret != -ENOSPC) { 7915 err = ret; 7916 break; 7917 } 7918 7919 trans->block_rsv = &root->fs_info->trans_block_rsv; 7920 ret = btrfs_update_inode(trans, root, inode); 7921 if (ret) { 7922 err = ret; 7923 break; 7924 } 7925 7926 btrfs_end_transaction(trans, root); 7927 btrfs_btree_balance_dirty(root); 7928 7929 trans = btrfs_start_transaction(root, 2); 7930 if (IS_ERR(trans)) { 7931 ret = err = PTR_ERR(trans); 7932 trans = NULL; 7933 break; 7934 } 7935 7936 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7937 rsv, min_size); 7938 BUG_ON(ret); /* shouldn't happen */ 7939 trans->block_rsv = rsv; 7940 } 7941 7942 if (ret == 0 && inode->i_nlink > 0) { 7943 trans->block_rsv = root->orphan_block_rsv; 7944 ret = btrfs_orphan_del(trans, inode); 7945 if (ret) 7946 err = ret; 7947 } 7948 7949 if (trans) { 7950 trans->block_rsv = &root->fs_info->trans_block_rsv; 7951 ret = btrfs_update_inode(trans, root, inode); 7952 if (ret && !err) 7953 err = ret; 7954 7955 ret = btrfs_end_transaction(trans, root); 7956 btrfs_btree_balance_dirty(root); 7957 } 7958 7959 out: 7960 btrfs_free_block_rsv(root, rsv); 7961 7962 if (ret && !err) 7963 err = ret; 7964 7965 return err; 7966 } 7967 7968 /* 7969 * create a new subvolume directory/inode (helper for the ioctl). 7970 */ 7971 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7972 struct btrfs_root *new_root, 7973 struct btrfs_root *parent_root, 7974 u64 new_dirid) 7975 { 7976 struct inode *inode; 7977 int err; 7978 u64 index = 0; 7979 7980 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7981 new_dirid, new_dirid, 7982 S_IFDIR | (~current_umask() & S_IRWXUGO), 7983 &index); 7984 if (IS_ERR(inode)) 7985 return PTR_ERR(inode); 7986 inode->i_op = &btrfs_dir_inode_operations; 7987 inode->i_fop = &btrfs_dir_file_operations; 7988 7989 set_nlink(inode, 1); 7990 btrfs_i_size_write(inode, 0); 7991 7992 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 7993 if (err) 7994 btrfs_err(new_root->fs_info, 7995 "error inheriting subvolume %llu properties: %d\n", 7996 new_root->root_key.objectid, err); 7997 7998 err = btrfs_update_inode(trans, new_root, inode); 7999 8000 iput(inode); 8001 return err; 8002 } 8003 8004 struct inode *btrfs_alloc_inode(struct super_block *sb) 8005 { 8006 struct btrfs_inode *ei; 8007 struct inode *inode; 8008 8009 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8010 if (!ei) 8011 return NULL; 8012 8013 ei->root = NULL; 8014 ei->generation = 0; 8015 ei->last_trans = 0; 8016 ei->last_sub_trans = 0; 8017 ei->logged_trans = 0; 8018 ei->delalloc_bytes = 0; 8019 ei->disk_i_size = 0; 8020 ei->flags = 0; 8021 ei->csum_bytes = 0; 8022 ei->index_cnt = (u64)-1; 8023 ei->dir_index = 0; 8024 ei->last_unlink_trans = 0; 8025 ei->last_log_commit = 0; 8026 8027 spin_lock_init(&ei->lock); 8028 ei->outstanding_extents = 0; 8029 ei->reserved_extents = 0; 8030 8031 ei->runtime_flags = 0; 8032 ei->force_compress = BTRFS_COMPRESS_NONE; 8033 8034 ei->delayed_node = NULL; 8035 8036 inode = &ei->vfs_inode; 8037 extent_map_tree_init(&ei->extent_tree); 8038 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8039 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8040 ei->io_tree.track_uptodate = 1; 8041 ei->io_failure_tree.track_uptodate = 1; 8042 atomic_set(&ei->sync_writers, 0); 8043 mutex_init(&ei->log_mutex); 8044 mutex_init(&ei->delalloc_mutex); 8045 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8046 INIT_LIST_HEAD(&ei->delalloc_inodes); 8047 INIT_LIST_HEAD(&ei->ordered_operations); 8048 RB_CLEAR_NODE(&ei->rb_node); 8049 8050 return inode; 8051 } 8052 8053 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8054 void btrfs_test_destroy_inode(struct inode *inode) 8055 { 8056 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8057 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8058 } 8059 #endif 8060 8061 static void btrfs_i_callback(struct rcu_head *head) 8062 { 8063 struct inode *inode = container_of(head, struct inode, i_rcu); 8064 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8065 } 8066 8067 void btrfs_destroy_inode(struct inode *inode) 8068 { 8069 struct btrfs_ordered_extent *ordered; 8070 struct btrfs_root *root = BTRFS_I(inode)->root; 8071 8072 WARN_ON(!hlist_empty(&inode->i_dentry)); 8073 WARN_ON(inode->i_data.nrpages); 8074 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8075 WARN_ON(BTRFS_I(inode)->reserved_extents); 8076 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8077 WARN_ON(BTRFS_I(inode)->csum_bytes); 8078 8079 /* 8080 * This can happen where we create an inode, but somebody else also 8081 * created the same inode and we need to destroy the one we already 8082 * created. 8083 */ 8084 if (!root) 8085 goto free; 8086 8087 /* 8088 * Make sure we're properly removed from the ordered operation 8089 * lists. 8090 */ 8091 smp_mb(); 8092 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 8093 spin_lock(&root->fs_info->ordered_root_lock); 8094 list_del_init(&BTRFS_I(inode)->ordered_operations); 8095 spin_unlock(&root->fs_info->ordered_root_lock); 8096 } 8097 8098 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8099 &BTRFS_I(inode)->runtime_flags)) { 8100 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8101 btrfs_ino(inode)); 8102 atomic_dec(&root->orphan_inodes); 8103 } 8104 8105 while (1) { 8106 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8107 if (!ordered) 8108 break; 8109 else { 8110 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8111 ordered->file_offset, ordered->len); 8112 btrfs_remove_ordered_extent(inode, ordered); 8113 btrfs_put_ordered_extent(ordered); 8114 btrfs_put_ordered_extent(ordered); 8115 } 8116 } 8117 inode_tree_del(inode); 8118 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8119 free: 8120 call_rcu(&inode->i_rcu, btrfs_i_callback); 8121 } 8122 8123 int btrfs_drop_inode(struct inode *inode) 8124 { 8125 struct btrfs_root *root = BTRFS_I(inode)->root; 8126 8127 if (root == NULL) 8128 return 1; 8129 8130 /* the snap/subvol tree is on deleting */ 8131 if (btrfs_root_refs(&root->root_item) == 0) 8132 return 1; 8133 else 8134 return generic_drop_inode(inode); 8135 } 8136 8137 static void init_once(void *foo) 8138 { 8139 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8140 8141 inode_init_once(&ei->vfs_inode); 8142 } 8143 8144 void btrfs_destroy_cachep(void) 8145 { 8146 /* 8147 * Make sure all delayed rcu free inodes are flushed before we 8148 * destroy cache. 8149 */ 8150 rcu_barrier(); 8151 if (btrfs_inode_cachep) 8152 kmem_cache_destroy(btrfs_inode_cachep); 8153 if (btrfs_trans_handle_cachep) 8154 kmem_cache_destroy(btrfs_trans_handle_cachep); 8155 if (btrfs_transaction_cachep) 8156 kmem_cache_destroy(btrfs_transaction_cachep); 8157 if (btrfs_path_cachep) 8158 kmem_cache_destroy(btrfs_path_cachep); 8159 if (btrfs_free_space_cachep) 8160 kmem_cache_destroy(btrfs_free_space_cachep); 8161 if (btrfs_delalloc_work_cachep) 8162 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8163 } 8164 8165 int btrfs_init_cachep(void) 8166 { 8167 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8168 sizeof(struct btrfs_inode), 0, 8169 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8170 if (!btrfs_inode_cachep) 8171 goto fail; 8172 8173 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8174 sizeof(struct btrfs_trans_handle), 0, 8175 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8176 if (!btrfs_trans_handle_cachep) 8177 goto fail; 8178 8179 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8180 sizeof(struct btrfs_transaction), 0, 8181 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8182 if (!btrfs_transaction_cachep) 8183 goto fail; 8184 8185 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8186 sizeof(struct btrfs_path), 0, 8187 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8188 if (!btrfs_path_cachep) 8189 goto fail; 8190 8191 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8192 sizeof(struct btrfs_free_space), 0, 8193 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8194 if (!btrfs_free_space_cachep) 8195 goto fail; 8196 8197 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8198 sizeof(struct btrfs_delalloc_work), 0, 8199 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8200 NULL); 8201 if (!btrfs_delalloc_work_cachep) 8202 goto fail; 8203 8204 return 0; 8205 fail: 8206 btrfs_destroy_cachep(); 8207 return -ENOMEM; 8208 } 8209 8210 static int btrfs_getattr(struct vfsmount *mnt, 8211 struct dentry *dentry, struct kstat *stat) 8212 { 8213 u64 delalloc_bytes; 8214 struct inode *inode = dentry->d_inode; 8215 u32 blocksize = inode->i_sb->s_blocksize; 8216 8217 generic_fillattr(inode, stat); 8218 stat->dev = BTRFS_I(inode)->root->anon_dev; 8219 stat->blksize = PAGE_CACHE_SIZE; 8220 8221 spin_lock(&BTRFS_I(inode)->lock); 8222 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8223 spin_unlock(&BTRFS_I(inode)->lock); 8224 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8225 ALIGN(delalloc_bytes, blocksize)) >> 9; 8226 return 0; 8227 } 8228 8229 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8230 struct inode *new_dir, struct dentry *new_dentry) 8231 { 8232 struct btrfs_trans_handle *trans; 8233 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8234 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8235 struct inode *new_inode = new_dentry->d_inode; 8236 struct inode *old_inode = old_dentry->d_inode; 8237 struct timespec ctime = CURRENT_TIME; 8238 u64 index = 0; 8239 u64 root_objectid; 8240 int ret; 8241 u64 old_ino = btrfs_ino(old_inode); 8242 8243 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8244 return -EPERM; 8245 8246 /* we only allow rename subvolume link between subvolumes */ 8247 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8248 return -EXDEV; 8249 8250 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8251 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8252 return -ENOTEMPTY; 8253 8254 if (S_ISDIR(old_inode->i_mode) && new_inode && 8255 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8256 return -ENOTEMPTY; 8257 8258 8259 /* check for collisions, even if the name isn't there */ 8260 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 8261 new_dentry->d_name.name, 8262 new_dentry->d_name.len); 8263 8264 if (ret) { 8265 if (ret == -EEXIST) { 8266 /* we shouldn't get 8267 * eexist without a new_inode */ 8268 if (WARN_ON(!new_inode)) { 8269 return ret; 8270 } 8271 } else { 8272 /* maybe -EOVERFLOW */ 8273 return ret; 8274 } 8275 } 8276 ret = 0; 8277 8278 /* 8279 * we're using rename to replace one file with another. 8280 * and the replacement file is large. Start IO on it now so 8281 * we don't add too much work to the end of the transaction 8282 */ 8283 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8284 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8285 filemap_flush(old_inode->i_mapping); 8286 8287 /* close the racy window with snapshot create/destroy ioctl */ 8288 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8289 down_read(&root->fs_info->subvol_sem); 8290 /* 8291 * We want to reserve the absolute worst case amount of items. So if 8292 * both inodes are subvols and we need to unlink them then that would 8293 * require 4 item modifications, but if they are both normal inodes it 8294 * would require 5 item modifications, so we'll assume their normal 8295 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8296 * should cover the worst case number of items we'll modify. 8297 */ 8298 trans = btrfs_start_transaction(root, 11); 8299 if (IS_ERR(trans)) { 8300 ret = PTR_ERR(trans); 8301 goto out_notrans; 8302 } 8303 8304 if (dest != root) 8305 btrfs_record_root_in_trans(trans, dest); 8306 8307 ret = btrfs_set_inode_index(new_dir, &index); 8308 if (ret) 8309 goto out_fail; 8310 8311 BTRFS_I(old_inode)->dir_index = 0ULL; 8312 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8313 /* force full log commit if subvolume involved. */ 8314 root->fs_info->last_trans_log_full_commit = trans->transid; 8315 } else { 8316 ret = btrfs_insert_inode_ref(trans, dest, 8317 new_dentry->d_name.name, 8318 new_dentry->d_name.len, 8319 old_ino, 8320 btrfs_ino(new_dir), index); 8321 if (ret) 8322 goto out_fail; 8323 /* 8324 * this is an ugly little race, but the rename is required 8325 * to make sure that if we crash, the inode is either at the 8326 * old name or the new one. pinning the log transaction lets 8327 * us make sure we don't allow a log commit to come in after 8328 * we unlink the name but before we add the new name back in. 8329 */ 8330 btrfs_pin_log_trans(root); 8331 } 8332 /* 8333 * make sure the inode gets flushed if it is replacing 8334 * something. 8335 */ 8336 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8337 btrfs_add_ordered_operation(trans, root, old_inode); 8338 8339 inode_inc_iversion(old_dir); 8340 inode_inc_iversion(new_dir); 8341 inode_inc_iversion(old_inode); 8342 old_dir->i_ctime = old_dir->i_mtime = ctime; 8343 new_dir->i_ctime = new_dir->i_mtime = ctime; 8344 old_inode->i_ctime = ctime; 8345 8346 if (old_dentry->d_parent != new_dentry->d_parent) 8347 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8348 8349 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8350 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8351 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8352 old_dentry->d_name.name, 8353 old_dentry->d_name.len); 8354 } else { 8355 ret = __btrfs_unlink_inode(trans, root, old_dir, 8356 old_dentry->d_inode, 8357 old_dentry->d_name.name, 8358 old_dentry->d_name.len); 8359 if (!ret) 8360 ret = btrfs_update_inode(trans, root, old_inode); 8361 } 8362 if (ret) { 8363 btrfs_abort_transaction(trans, root, ret); 8364 goto out_fail; 8365 } 8366 8367 if (new_inode) { 8368 inode_inc_iversion(new_inode); 8369 new_inode->i_ctime = CURRENT_TIME; 8370 if (unlikely(btrfs_ino(new_inode) == 8371 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8372 root_objectid = BTRFS_I(new_inode)->location.objectid; 8373 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8374 root_objectid, 8375 new_dentry->d_name.name, 8376 new_dentry->d_name.len); 8377 BUG_ON(new_inode->i_nlink == 0); 8378 } else { 8379 ret = btrfs_unlink_inode(trans, dest, new_dir, 8380 new_dentry->d_inode, 8381 new_dentry->d_name.name, 8382 new_dentry->d_name.len); 8383 } 8384 if (!ret && new_inode->i_nlink == 0) 8385 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8386 if (ret) { 8387 btrfs_abort_transaction(trans, root, ret); 8388 goto out_fail; 8389 } 8390 } 8391 8392 ret = btrfs_add_link(trans, new_dir, old_inode, 8393 new_dentry->d_name.name, 8394 new_dentry->d_name.len, 0, index); 8395 if (ret) { 8396 btrfs_abort_transaction(trans, root, ret); 8397 goto out_fail; 8398 } 8399 8400 if (old_inode->i_nlink == 1) 8401 BTRFS_I(old_inode)->dir_index = index; 8402 8403 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8404 struct dentry *parent = new_dentry->d_parent; 8405 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8406 btrfs_end_log_trans(root); 8407 } 8408 out_fail: 8409 btrfs_end_transaction(trans, root); 8410 out_notrans: 8411 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8412 up_read(&root->fs_info->subvol_sem); 8413 8414 return ret; 8415 } 8416 8417 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8418 { 8419 struct btrfs_delalloc_work *delalloc_work; 8420 struct inode *inode; 8421 8422 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8423 work); 8424 inode = delalloc_work->inode; 8425 if (delalloc_work->wait) { 8426 btrfs_wait_ordered_range(inode, 0, (u64)-1); 8427 } else { 8428 filemap_flush(inode->i_mapping); 8429 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8430 &BTRFS_I(inode)->runtime_flags)) 8431 filemap_flush(inode->i_mapping); 8432 } 8433 8434 if (delalloc_work->delay_iput) 8435 btrfs_add_delayed_iput(inode); 8436 else 8437 iput(inode); 8438 complete(&delalloc_work->completion); 8439 } 8440 8441 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8442 int wait, int delay_iput) 8443 { 8444 struct btrfs_delalloc_work *work; 8445 8446 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8447 if (!work) 8448 return NULL; 8449 8450 init_completion(&work->completion); 8451 INIT_LIST_HEAD(&work->list); 8452 work->inode = inode; 8453 work->wait = wait; 8454 work->delay_iput = delay_iput; 8455 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 8456 8457 return work; 8458 } 8459 8460 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8461 { 8462 wait_for_completion(&work->completion); 8463 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8464 } 8465 8466 /* 8467 * some fairly slow code that needs optimization. This walks the list 8468 * of all the inodes with pending delalloc and forces them to disk. 8469 */ 8470 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 8471 int nr) 8472 { 8473 struct btrfs_inode *binode; 8474 struct inode *inode; 8475 struct btrfs_delalloc_work *work, *next; 8476 struct list_head works; 8477 struct list_head splice; 8478 int ret = 0; 8479 8480 INIT_LIST_HEAD(&works); 8481 INIT_LIST_HEAD(&splice); 8482 8483 mutex_lock(&root->delalloc_mutex); 8484 spin_lock(&root->delalloc_lock); 8485 list_splice_init(&root->delalloc_inodes, &splice); 8486 while (!list_empty(&splice)) { 8487 binode = list_entry(splice.next, struct btrfs_inode, 8488 delalloc_inodes); 8489 8490 list_move_tail(&binode->delalloc_inodes, 8491 &root->delalloc_inodes); 8492 inode = igrab(&binode->vfs_inode); 8493 if (!inode) { 8494 cond_resched_lock(&root->delalloc_lock); 8495 continue; 8496 } 8497 spin_unlock(&root->delalloc_lock); 8498 8499 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8500 if (unlikely(!work)) { 8501 if (delay_iput) 8502 btrfs_add_delayed_iput(inode); 8503 else 8504 iput(inode); 8505 ret = -ENOMEM; 8506 goto out; 8507 } 8508 list_add_tail(&work->list, &works); 8509 btrfs_queue_work(root->fs_info->flush_workers, 8510 &work->work); 8511 ret++; 8512 if (nr != -1 && ret >= nr) 8513 goto out; 8514 cond_resched(); 8515 spin_lock(&root->delalloc_lock); 8516 } 8517 spin_unlock(&root->delalloc_lock); 8518 8519 out: 8520 list_for_each_entry_safe(work, next, &works, list) { 8521 list_del_init(&work->list); 8522 btrfs_wait_and_free_delalloc_work(work); 8523 } 8524 8525 if (!list_empty_careful(&splice)) { 8526 spin_lock(&root->delalloc_lock); 8527 list_splice_tail(&splice, &root->delalloc_inodes); 8528 spin_unlock(&root->delalloc_lock); 8529 } 8530 mutex_unlock(&root->delalloc_mutex); 8531 return ret; 8532 } 8533 8534 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8535 { 8536 int ret; 8537 8538 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 8539 return -EROFS; 8540 8541 ret = __start_delalloc_inodes(root, delay_iput, -1); 8542 if (ret > 0) 8543 ret = 0; 8544 /* 8545 * the filemap_flush will queue IO into the worker threads, but 8546 * we have to make sure the IO is actually started and that 8547 * ordered extents get created before we return 8548 */ 8549 atomic_inc(&root->fs_info->async_submit_draining); 8550 while (atomic_read(&root->fs_info->nr_async_submits) || 8551 atomic_read(&root->fs_info->async_delalloc_pages)) { 8552 wait_event(root->fs_info->async_submit_wait, 8553 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8554 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8555 } 8556 atomic_dec(&root->fs_info->async_submit_draining); 8557 return ret; 8558 } 8559 8560 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 8561 int nr) 8562 { 8563 struct btrfs_root *root; 8564 struct list_head splice; 8565 int ret; 8566 8567 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 8568 return -EROFS; 8569 8570 INIT_LIST_HEAD(&splice); 8571 8572 mutex_lock(&fs_info->delalloc_root_mutex); 8573 spin_lock(&fs_info->delalloc_root_lock); 8574 list_splice_init(&fs_info->delalloc_roots, &splice); 8575 while (!list_empty(&splice) && nr) { 8576 root = list_first_entry(&splice, struct btrfs_root, 8577 delalloc_root); 8578 root = btrfs_grab_fs_root(root); 8579 BUG_ON(!root); 8580 list_move_tail(&root->delalloc_root, 8581 &fs_info->delalloc_roots); 8582 spin_unlock(&fs_info->delalloc_root_lock); 8583 8584 ret = __start_delalloc_inodes(root, delay_iput, nr); 8585 btrfs_put_fs_root(root); 8586 if (ret < 0) 8587 goto out; 8588 8589 if (nr != -1) { 8590 nr -= ret; 8591 WARN_ON(nr < 0); 8592 } 8593 spin_lock(&fs_info->delalloc_root_lock); 8594 } 8595 spin_unlock(&fs_info->delalloc_root_lock); 8596 8597 ret = 0; 8598 atomic_inc(&fs_info->async_submit_draining); 8599 while (atomic_read(&fs_info->nr_async_submits) || 8600 atomic_read(&fs_info->async_delalloc_pages)) { 8601 wait_event(fs_info->async_submit_wait, 8602 (atomic_read(&fs_info->nr_async_submits) == 0 && 8603 atomic_read(&fs_info->async_delalloc_pages) == 0)); 8604 } 8605 atomic_dec(&fs_info->async_submit_draining); 8606 out: 8607 if (!list_empty_careful(&splice)) { 8608 spin_lock(&fs_info->delalloc_root_lock); 8609 list_splice_tail(&splice, &fs_info->delalloc_roots); 8610 spin_unlock(&fs_info->delalloc_root_lock); 8611 } 8612 mutex_unlock(&fs_info->delalloc_root_mutex); 8613 return ret; 8614 } 8615 8616 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8617 const char *symname) 8618 { 8619 struct btrfs_trans_handle *trans; 8620 struct btrfs_root *root = BTRFS_I(dir)->root; 8621 struct btrfs_path *path; 8622 struct btrfs_key key; 8623 struct inode *inode = NULL; 8624 int err; 8625 int drop_inode = 0; 8626 u64 objectid; 8627 u64 index = 0; 8628 int name_len; 8629 int datasize; 8630 unsigned long ptr; 8631 struct btrfs_file_extent_item *ei; 8632 struct extent_buffer *leaf; 8633 8634 name_len = strlen(symname); 8635 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8636 return -ENAMETOOLONG; 8637 8638 /* 8639 * 2 items for inode item and ref 8640 * 2 items for dir items 8641 * 1 item for xattr if selinux is on 8642 */ 8643 trans = btrfs_start_transaction(root, 5); 8644 if (IS_ERR(trans)) 8645 return PTR_ERR(trans); 8646 8647 err = btrfs_find_free_ino(root, &objectid); 8648 if (err) 8649 goto out_unlock; 8650 8651 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8652 dentry->d_name.len, btrfs_ino(dir), objectid, 8653 S_IFLNK|S_IRWXUGO, &index); 8654 if (IS_ERR(inode)) { 8655 err = PTR_ERR(inode); 8656 goto out_unlock; 8657 } 8658 8659 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8660 if (err) { 8661 drop_inode = 1; 8662 goto out_unlock; 8663 } 8664 8665 /* 8666 * If the active LSM wants to access the inode during 8667 * d_instantiate it needs these. Smack checks to see 8668 * if the filesystem supports xattrs by looking at the 8669 * ops vector. 8670 */ 8671 inode->i_fop = &btrfs_file_operations; 8672 inode->i_op = &btrfs_file_inode_operations; 8673 8674 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8675 if (err) 8676 drop_inode = 1; 8677 else { 8678 inode->i_mapping->a_ops = &btrfs_aops; 8679 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8680 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8681 } 8682 if (drop_inode) 8683 goto out_unlock; 8684 8685 path = btrfs_alloc_path(); 8686 if (!path) { 8687 err = -ENOMEM; 8688 drop_inode = 1; 8689 goto out_unlock; 8690 } 8691 key.objectid = btrfs_ino(inode); 8692 key.offset = 0; 8693 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8694 datasize = btrfs_file_extent_calc_inline_size(name_len); 8695 err = btrfs_insert_empty_item(trans, root, path, &key, 8696 datasize); 8697 if (err) { 8698 drop_inode = 1; 8699 btrfs_free_path(path); 8700 goto out_unlock; 8701 } 8702 leaf = path->nodes[0]; 8703 ei = btrfs_item_ptr(leaf, path->slots[0], 8704 struct btrfs_file_extent_item); 8705 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8706 btrfs_set_file_extent_type(leaf, ei, 8707 BTRFS_FILE_EXTENT_INLINE); 8708 btrfs_set_file_extent_encryption(leaf, ei, 0); 8709 btrfs_set_file_extent_compression(leaf, ei, 0); 8710 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8711 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8712 8713 ptr = btrfs_file_extent_inline_start(ei); 8714 write_extent_buffer(leaf, symname, ptr, name_len); 8715 btrfs_mark_buffer_dirty(leaf); 8716 btrfs_free_path(path); 8717 8718 inode->i_op = &btrfs_symlink_inode_operations; 8719 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8720 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8721 inode_set_bytes(inode, name_len); 8722 btrfs_i_size_write(inode, name_len); 8723 err = btrfs_update_inode(trans, root, inode); 8724 if (err) 8725 drop_inode = 1; 8726 8727 out_unlock: 8728 if (!err) 8729 d_instantiate(dentry, inode); 8730 btrfs_end_transaction(trans, root); 8731 if (drop_inode) { 8732 inode_dec_link_count(inode); 8733 iput(inode); 8734 } 8735 btrfs_btree_balance_dirty(root); 8736 return err; 8737 } 8738 8739 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8740 u64 start, u64 num_bytes, u64 min_size, 8741 loff_t actual_len, u64 *alloc_hint, 8742 struct btrfs_trans_handle *trans) 8743 { 8744 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8745 struct extent_map *em; 8746 struct btrfs_root *root = BTRFS_I(inode)->root; 8747 struct btrfs_key ins; 8748 u64 cur_offset = start; 8749 u64 i_size; 8750 u64 cur_bytes; 8751 int ret = 0; 8752 bool own_trans = true; 8753 8754 if (trans) 8755 own_trans = false; 8756 while (num_bytes > 0) { 8757 if (own_trans) { 8758 trans = btrfs_start_transaction(root, 3); 8759 if (IS_ERR(trans)) { 8760 ret = PTR_ERR(trans); 8761 break; 8762 } 8763 } 8764 8765 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8766 cur_bytes = max(cur_bytes, min_size); 8767 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 8768 *alloc_hint, &ins, 1); 8769 if (ret) { 8770 if (own_trans) 8771 btrfs_end_transaction(trans, root); 8772 break; 8773 } 8774 8775 ret = insert_reserved_file_extent(trans, inode, 8776 cur_offset, ins.objectid, 8777 ins.offset, ins.offset, 8778 ins.offset, 0, 0, 0, 8779 BTRFS_FILE_EXTENT_PREALLOC); 8780 if (ret) { 8781 btrfs_free_reserved_extent(root, ins.objectid, 8782 ins.offset); 8783 btrfs_abort_transaction(trans, root, ret); 8784 if (own_trans) 8785 btrfs_end_transaction(trans, root); 8786 break; 8787 } 8788 btrfs_drop_extent_cache(inode, cur_offset, 8789 cur_offset + ins.offset -1, 0); 8790 8791 em = alloc_extent_map(); 8792 if (!em) { 8793 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8794 &BTRFS_I(inode)->runtime_flags); 8795 goto next; 8796 } 8797 8798 em->start = cur_offset; 8799 em->orig_start = cur_offset; 8800 em->len = ins.offset; 8801 em->block_start = ins.objectid; 8802 em->block_len = ins.offset; 8803 em->orig_block_len = ins.offset; 8804 em->ram_bytes = ins.offset; 8805 em->bdev = root->fs_info->fs_devices->latest_bdev; 8806 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8807 em->generation = trans->transid; 8808 8809 while (1) { 8810 write_lock(&em_tree->lock); 8811 ret = add_extent_mapping(em_tree, em, 1); 8812 write_unlock(&em_tree->lock); 8813 if (ret != -EEXIST) 8814 break; 8815 btrfs_drop_extent_cache(inode, cur_offset, 8816 cur_offset + ins.offset - 1, 8817 0); 8818 } 8819 free_extent_map(em); 8820 next: 8821 num_bytes -= ins.offset; 8822 cur_offset += ins.offset; 8823 *alloc_hint = ins.objectid + ins.offset; 8824 8825 inode_inc_iversion(inode); 8826 inode->i_ctime = CURRENT_TIME; 8827 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8828 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8829 (actual_len > inode->i_size) && 8830 (cur_offset > inode->i_size)) { 8831 if (cur_offset > actual_len) 8832 i_size = actual_len; 8833 else 8834 i_size = cur_offset; 8835 i_size_write(inode, i_size); 8836 btrfs_ordered_update_i_size(inode, i_size, NULL); 8837 } 8838 8839 ret = btrfs_update_inode(trans, root, inode); 8840 8841 if (ret) { 8842 btrfs_abort_transaction(trans, root, ret); 8843 if (own_trans) 8844 btrfs_end_transaction(trans, root); 8845 break; 8846 } 8847 8848 if (own_trans) 8849 btrfs_end_transaction(trans, root); 8850 } 8851 return ret; 8852 } 8853 8854 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8855 u64 start, u64 num_bytes, u64 min_size, 8856 loff_t actual_len, u64 *alloc_hint) 8857 { 8858 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8859 min_size, actual_len, alloc_hint, 8860 NULL); 8861 } 8862 8863 int btrfs_prealloc_file_range_trans(struct inode *inode, 8864 struct btrfs_trans_handle *trans, int mode, 8865 u64 start, u64 num_bytes, u64 min_size, 8866 loff_t actual_len, u64 *alloc_hint) 8867 { 8868 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8869 min_size, actual_len, alloc_hint, trans); 8870 } 8871 8872 static int btrfs_set_page_dirty(struct page *page) 8873 { 8874 return __set_page_dirty_nobuffers(page); 8875 } 8876 8877 static int btrfs_permission(struct inode *inode, int mask) 8878 { 8879 struct btrfs_root *root = BTRFS_I(inode)->root; 8880 umode_t mode = inode->i_mode; 8881 8882 if (mask & MAY_WRITE && 8883 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8884 if (btrfs_root_readonly(root)) 8885 return -EROFS; 8886 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8887 return -EACCES; 8888 } 8889 return generic_permission(inode, mask); 8890 } 8891 8892 static const struct inode_operations btrfs_dir_inode_operations = { 8893 .getattr = btrfs_getattr, 8894 .lookup = btrfs_lookup, 8895 .create = btrfs_create, 8896 .unlink = btrfs_unlink, 8897 .link = btrfs_link, 8898 .mkdir = btrfs_mkdir, 8899 .rmdir = btrfs_rmdir, 8900 .rename = btrfs_rename, 8901 .symlink = btrfs_symlink, 8902 .setattr = btrfs_setattr, 8903 .mknod = btrfs_mknod, 8904 .setxattr = btrfs_setxattr, 8905 .getxattr = btrfs_getxattr, 8906 .listxattr = btrfs_listxattr, 8907 .removexattr = btrfs_removexattr, 8908 .permission = btrfs_permission, 8909 .get_acl = btrfs_get_acl, 8910 .set_acl = btrfs_set_acl, 8911 .update_time = btrfs_update_time, 8912 }; 8913 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8914 .lookup = btrfs_lookup, 8915 .permission = btrfs_permission, 8916 .get_acl = btrfs_get_acl, 8917 .set_acl = btrfs_set_acl, 8918 .update_time = btrfs_update_time, 8919 }; 8920 8921 static const struct file_operations btrfs_dir_file_operations = { 8922 .llseek = generic_file_llseek, 8923 .read = generic_read_dir, 8924 .iterate = btrfs_real_readdir, 8925 .unlocked_ioctl = btrfs_ioctl, 8926 #ifdef CONFIG_COMPAT 8927 .compat_ioctl = btrfs_ioctl, 8928 #endif 8929 .release = btrfs_release_file, 8930 .fsync = btrfs_sync_file, 8931 }; 8932 8933 static struct extent_io_ops btrfs_extent_io_ops = { 8934 .fill_delalloc = run_delalloc_range, 8935 .submit_bio_hook = btrfs_submit_bio_hook, 8936 .merge_bio_hook = btrfs_merge_bio_hook, 8937 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8938 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8939 .writepage_start_hook = btrfs_writepage_start_hook, 8940 .set_bit_hook = btrfs_set_bit_hook, 8941 .clear_bit_hook = btrfs_clear_bit_hook, 8942 .merge_extent_hook = btrfs_merge_extent_hook, 8943 .split_extent_hook = btrfs_split_extent_hook, 8944 }; 8945 8946 /* 8947 * btrfs doesn't support the bmap operation because swapfiles 8948 * use bmap to make a mapping of extents in the file. They assume 8949 * these extents won't change over the life of the file and they 8950 * use the bmap result to do IO directly to the drive. 8951 * 8952 * the btrfs bmap call would return logical addresses that aren't 8953 * suitable for IO and they also will change frequently as COW 8954 * operations happen. So, swapfile + btrfs == corruption. 8955 * 8956 * For now we're avoiding this by dropping bmap. 8957 */ 8958 static const struct address_space_operations btrfs_aops = { 8959 .readpage = btrfs_readpage, 8960 .writepage = btrfs_writepage, 8961 .writepages = btrfs_writepages, 8962 .readpages = btrfs_readpages, 8963 .direct_IO = btrfs_direct_IO, 8964 .invalidatepage = btrfs_invalidatepage, 8965 .releasepage = btrfs_releasepage, 8966 .set_page_dirty = btrfs_set_page_dirty, 8967 .error_remove_page = generic_error_remove_page, 8968 }; 8969 8970 static const struct address_space_operations btrfs_symlink_aops = { 8971 .readpage = btrfs_readpage, 8972 .writepage = btrfs_writepage, 8973 .invalidatepage = btrfs_invalidatepage, 8974 .releasepage = btrfs_releasepage, 8975 }; 8976 8977 static const struct inode_operations btrfs_file_inode_operations = { 8978 .getattr = btrfs_getattr, 8979 .setattr = btrfs_setattr, 8980 .setxattr = btrfs_setxattr, 8981 .getxattr = btrfs_getxattr, 8982 .listxattr = btrfs_listxattr, 8983 .removexattr = btrfs_removexattr, 8984 .permission = btrfs_permission, 8985 .fiemap = btrfs_fiemap, 8986 .get_acl = btrfs_get_acl, 8987 .set_acl = btrfs_set_acl, 8988 .update_time = btrfs_update_time, 8989 }; 8990 static const struct inode_operations btrfs_special_inode_operations = { 8991 .getattr = btrfs_getattr, 8992 .setattr = btrfs_setattr, 8993 .permission = btrfs_permission, 8994 .setxattr = btrfs_setxattr, 8995 .getxattr = btrfs_getxattr, 8996 .listxattr = btrfs_listxattr, 8997 .removexattr = btrfs_removexattr, 8998 .get_acl = btrfs_get_acl, 8999 .set_acl = btrfs_set_acl, 9000 .update_time = btrfs_update_time, 9001 }; 9002 static const struct inode_operations btrfs_symlink_inode_operations = { 9003 .readlink = generic_readlink, 9004 .follow_link = page_follow_link_light, 9005 .put_link = page_put_link, 9006 .getattr = btrfs_getattr, 9007 .setattr = btrfs_setattr, 9008 .permission = btrfs_permission, 9009 .setxattr = btrfs_setxattr, 9010 .getxattr = btrfs_getxattr, 9011 .listxattr = btrfs_listxattr, 9012 .removexattr = btrfs_removexattr, 9013 .update_time = btrfs_update_time, 9014 }; 9015 9016 const struct dentry_operations btrfs_dentry_operations = { 9017 .d_delete = btrfs_dentry_delete, 9018 .d_release = btrfs_dentry_release, 9019 }; 9020