xref: /openbmc/linux/fs/btrfs/inode.c (revision afb46f79)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 
63 struct btrfs_iget_args {
64 	struct btrfs_key *location;
65 	struct btrfs_root *root;
66 };
67 
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77 
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84 
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
88 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
89 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
90 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
91 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
92 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
93 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
94 };
95 
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 				   struct page *locked_page,
101 				   u64 start, u64 end, int *page_started,
102 				   unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 					   u64 len, u64 orig_start,
105 					   u64 block_start, u64 block_len,
106 					   u64 orig_block_len, u64 ram_bytes,
107 					   int type);
108 
109 static int btrfs_dirty_inode(struct inode *inode);
110 
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 				     struct inode *inode,  struct inode *dir,
113 				     const struct qstr *qstr)
114 {
115 	int err;
116 
117 	err = btrfs_init_acl(trans, inode, dir);
118 	if (!err)
119 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 	return err;
121 }
122 
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
129 				struct btrfs_path *path, int extent_inserted,
130 				struct btrfs_root *root, struct inode *inode,
131 				u64 start, size_t size, size_t compressed_size,
132 				int compress_type,
133 				struct page **compressed_pages)
134 {
135 	struct extent_buffer *leaf;
136 	struct page *page = NULL;
137 	char *kaddr;
138 	unsigned long ptr;
139 	struct btrfs_file_extent_item *ei;
140 	int err = 0;
141 	int ret;
142 	size_t cur_size = size;
143 	unsigned long offset;
144 
145 	if (compressed_size && compressed_pages)
146 		cur_size = compressed_size;
147 
148 	inode_add_bytes(inode, size);
149 
150 	if (!extent_inserted) {
151 		struct btrfs_key key;
152 		size_t datasize;
153 
154 		key.objectid = btrfs_ino(inode);
155 		key.offset = start;
156 		btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
157 
158 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 		path->leave_spinning = 1;
160 		ret = btrfs_insert_empty_item(trans, root, path, &key,
161 					      datasize);
162 		if (ret) {
163 			err = ret;
164 			goto fail;
165 		}
166 	}
167 	leaf = path->nodes[0];
168 	ei = btrfs_item_ptr(leaf, path->slots[0],
169 			    struct btrfs_file_extent_item);
170 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 	btrfs_set_file_extent_encryption(leaf, ei, 0);
173 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 	ptr = btrfs_file_extent_inline_start(ei);
176 
177 	if (compress_type != BTRFS_COMPRESS_NONE) {
178 		struct page *cpage;
179 		int i = 0;
180 		while (compressed_size > 0) {
181 			cpage = compressed_pages[i];
182 			cur_size = min_t(unsigned long, compressed_size,
183 				       PAGE_CACHE_SIZE);
184 
185 			kaddr = kmap_atomic(cpage);
186 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 			kunmap_atomic(kaddr);
188 
189 			i++;
190 			ptr += cur_size;
191 			compressed_size -= cur_size;
192 		}
193 		btrfs_set_file_extent_compression(leaf, ei,
194 						  compress_type);
195 	} else {
196 		page = find_get_page(inode->i_mapping,
197 				     start >> PAGE_CACHE_SHIFT);
198 		btrfs_set_file_extent_compression(leaf, ei, 0);
199 		kaddr = kmap_atomic(page);
200 		offset = start & (PAGE_CACHE_SIZE - 1);
201 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 		kunmap_atomic(kaddr);
203 		page_cache_release(page);
204 	}
205 	btrfs_mark_buffer_dirty(leaf);
206 	btrfs_release_path(path);
207 
208 	/*
209 	 * we're an inline extent, so nobody can
210 	 * extend the file past i_size without locking
211 	 * a page we already have locked.
212 	 *
213 	 * We must do any isize and inode updates
214 	 * before we unlock the pages.  Otherwise we
215 	 * could end up racing with unlink.
216 	 */
217 	BTRFS_I(inode)->disk_i_size = inode->i_size;
218 	ret = btrfs_update_inode(trans, root, inode);
219 
220 	return ret;
221 fail:
222 	return err;
223 }
224 
225 
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 					  struct inode *inode, u64 start,
233 					  u64 end, size_t compressed_size,
234 					  int compress_type,
235 					  struct page **compressed_pages)
236 {
237 	struct btrfs_trans_handle *trans;
238 	u64 isize = i_size_read(inode);
239 	u64 actual_end = min(end + 1, isize);
240 	u64 inline_len = actual_end - start;
241 	u64 aligned_end = ALIGN(end, root->sectorsize);
242 	u64 data_len = inline_len;
243 	int ret;
244 	struct btrfs_path *path;
245 	int extent_inserted = 0;
246 	u32 extent_item_size;
247 
248 	if (compressed_size)
249 		data_len = compressed_size;
250 
251 	if (start > 0 ||
252 	    actual_end >= PAGE_CACHE_SIZE ||
253 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 	    (!compressed_size &&
255 	    (actual_end & (root->sectorsize - 1)) == 0) ||
256 	    end + 1 < isize ||
257 	    data_len > root->fs_info->max_inline) {
258 		return 1;
259 	}
260 
261 	path = btrfs_alloc_path();
262 	if (!path)
263 		return -ENOMEM;
264 
265 	trans = btrfs_join_transaction(root);
266 	if (IS_ERR(trans)) {
267 		btrfs_free_path(path);
268 		return PTR_ERR(trans);
269 	}
270 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271 
272 	if (compressed_size && compressed_pages)
273 		extent_item_size = btrfs_file_extent_calc_inline_size(
274 		   compressed_size);
275 	else
276 		extent_item_size = btrfs_file_extent_calc_inline_size(
277 		    inline_len);
278 
279 	ret = __btrfs_drop_extents(trans, root, inode, path,
280 				   start, aligned_end, NULL,
281 				   1, 1, extent_item_size, &extent_inserted);
282 	if (ret) {
283 		btrfs_abort_transaction(trans, root, ret);
284 		goto out;
285 	}
286 
287 	if (isize > actual_end)
288 		inline_len = min_t(u64, isize, actual_end);
289 	ret = insert_inline_extent(trans, path, extent_inserted,
290 				   root, inode, start,
291 				   inline_len, compressed_size,
292 				   compress_type, compressed_pages);
293 	if (ret && ret != -ENOSPC) {
294 		btrfs_abort_transaction(trans, root, ret);
295 		goto out;
296 	} else if (ret == -ENOSPC) {
297 		ret = 1;
298 		goto out;
299 	}
300 
301 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305 	btrfs_free_path(path);
306 	btrfs_end_transaction(trans, root);
307 	return ret;
308 }
309 
310 struct async_extent {
311 	u64 start;
312 	u64 ram_size;
313 	u64 compressed_size;
314 	struct page **pages;
315 	unsigned long nr_pages;
316 	int compress_type;
317 	struct list_head list;
318 };
319 
320 struct async_cow {
321 	struct inode *inode;
322 	struct btrfs_root *root;
323 	struct page *locked_page;
324 	u64 start;
325 	u64 end;
326 	struct list_head extents;
327 	struct btrfs_work work;
328 };
329 
330 static noinline int add_async_extent(struct async_cow *cow,
331 				     u64 start, u64 ram_size,
332 				     u64 compressed_size,
333 				     struct page **pages,
334 				     unsigned long nr_pages,
335 				     int compress_type)
336 {
337 	struct async_extent *async_extent;
338 
339 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 	BUG_ON(!async_extent); /* -ENOMEM */
341 	async_extent->start = start;
342 	async_extent->ram_size = ram_size;
343 	async_extent->compressed_size = compressed_size;
344 	async_extent->pages = pages;
345 	async_extent->nr_pages = nr_pages;
346 	async_extent->compress_type = compress_type;
347 	list_add_tail(&async_extent->list, &cow->extents);
348 	return 0;
349 }
350 
351 /*
352  * we create compressed extents in two phases.  The first
353  * phase compresses a range of pages that have already been
354  * locked (both pages and state bits are locked).
355  *
356  * This is done inside an ordered work queue, and the compression
357  * is spread across many cpus.  The actual IO submission is step
358  * two, and the ordered work queue takes care of making sure that
359  * happens in the same order things were put onto the queue by
360  * writepages and friends.
361  *
362  * If this code finds it can't get good compression, it puts an
363  * entry onto the work queue to write the uncompressed bytes.  This
364  * makes sure that both compressed inodes and uncompressed inodes
365  * are written in the same order that the flusher thread sent them
366  * down.
367  */
368 static noinline int compress_file_range(struct inode *inode,
369 					struct page *locked_page,
370 					u64 start, u64 end,
371 					struct async_cow *async_cow,
372 					int *num_added)
373 {
374 	struct btrfs_root *root = BTRFS_I(inode)->root;
375 	u64 num_bytes;
376 	u64 blocksize = root->sectorsize;
377 	u64 actual_end;
378 	u64 isize = i_size_read(inode);
379 	int ret = 0;
380 	struct page **pages = NULL;
381 	unsigned long nr_pages;
382 	unsigned long nr_pages_ret = 0;
383 	unsigned long total_compressed = 0;
384 	unsigned long total_in = 0;
385 	unsigned long max_compressed = 128 * 1024;
386 	unsigned long max_uncompressed = 128 * 1024;
387 	int i;
388 	int will_compress;
389 	int compress_type = root->fs_info->compress_type;
390 	int redirty = 0;
391 
392 	/* if this is a small write inside eof, kick off a defrag */
393 	if ((end - start + 1) < 16 * 1024 &&
394 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
395 		btrfs_add_inode_defrag(NULL, inode);
396 
397 	/*
398 	 * skip compression for a small file range(<=blocksize) that
399 	 * isn't an inline extent, since it dosen't save disk space at all.
400 	 */
401 	if ((end - start + 1) <= blocksize &&
402 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 		goto cleanup_and_bail_uncompressed;
404 
405 	actual_end = min_t(u64, isize, end + 1);
406 again:
407 	will_compress = 0;
408 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
410 
411 	/*
412 	 * we don't want to send crud past the end of i_size through
413 	 * compression, that's just a waste of CPU time.  So, if the
414 	 * end of the file is before the start of our current
415 	 * requested range of bytes, we bail out to the uncompressed
416 	 * cleanup code that can deal with all of this.
417 	 *
418 	 * It isn't really the fastest way to fix things, but this is a
419 	 * very uncommon corner.
420 	 */
421 	if (actual_end <= start)
422 		goto cleanup_and_bail_uncompressed;
423 
424 	total_compressed = actual_end - start;
425 
426 	/* we want to make sure that amount of ram required to uncompress
427 	 * an extent is reasonable, so we limit the total size in ram
428 	 * of a compressed extent to 128k.  This is a crucial number
429 	 * because it also controls how easily we can spread reads across
430 	 * cpus for decompression.
431 	 *
432 	 * We also want to make sure the amount of IO required to do
433 	 * a random read is reasonably small, so we limit the size of
434 	 * a compressed extent to 128k.
435 	 */
436 	total_compressed = min(total_compressed, max_uncompressed);
437 	num_bytes = ALIGN(end - start + 1, blocksize);
438 	num_bytes = max(blocksize,  num_bytes);
439 	total_in = 0;
440 	ret = 0;
441 
442 	/*
443 	 * we do compression for mount -o compress and when the
444 	 * inode has not been flagged as nocompress.  This flag can
445 	 * change at any time if we discover bad compression ratios.
446 	 */
447 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
448 	    (btrfs_test_opt(root, COMPRESS) ||
449 	     (BTRFS_I(inode)->force_compress) ||
450 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
451 		WARN_ON(pages);
452 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
453 		if (!pages) {
454 			/* just bail out to the uncompressed code */
455 			goto cont;
456 		}
457 
458 		if (BTRFS_I(inode)->force_compress)
459 			compress_type = BTRFS_I(inode)->force_compress;
460 
461 		/*
462 		 * we need to call clear_page_dirty_for_io on each
463 		 * page in the range.  Otherwise applications with the file
464 		 * mmap'd can wander in and change the page contents while
465 		 * we are compressing them.
466 		 *
467 		 * If the compression fails for any reason, we set the pages
468 		 * dirty again later on.
469 		 */
470 		extent_range_clear_dirty_for_io(inode, start, end);
471 		redirty = 1;
472 		ret = btrfs_compress_pages(compress_type,
473 					   inode->i_mapping, start,
474 					   total_compressed, pages,
475 					   nr_pages, &nr_pages_ret,
476 					   &total_in,
477 					   &total_compressed,
478 					   max_compressed);
479 
480 		if (!ret) {
481 			unsigned long offset = total_compressed &
482 				(PAGE_CACHE_SIZE - 1);
483 			struct page *page = pages[nr_pages_ret - 1];
484 			char *kaddr;
485 
486 			/* zero the tail end of the last page, we might be
487 			 * sending it down to disk
488 			 */
489 			if (offset) {
490 				kaddr = kmap_atomic(page);
491 				memset(kaddr + offset, 0,
492 				       PAGE_CACHE_SIZE - offset);
493 				kunmap_atomic(kaddr);
494 			}
495 			will_compress = 1;
496 		}
497 	}
498 cont:
499 	if (start == 0) {
500 		/* lets try to make an inline extent */
501 		if (ret || total_in < (actual_end - start)) {
502 			/* we didn't compress the entire range, try
503 			 * to make an uncompressed inline extent.
504 			 */
505 			ret = cow_file_range_inline(root, inode, start, end,
506 						    0, 0, NULL);
507 		} else {
508 			/* try making a compressed inline extent */
509 			ret = cow_file_range_inline(root, inode, start, end,
510 						    total_compressed,
511 						    compress_type, pages);
512 		}
513 		if (ret <= 0) {
514 			unsigned long clear_flags = EXTENT_DELALLOC |
515 				EXTENT_DEFRAG;
516 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
517 
518 			/*
519 			 * inline extent creation worked or returned error,
520 			 * we don't need to create any more async work items.
521 			 * Unlock and free up our temp pages.
522 			 */
523 			extent_clear_unlock_delalloc(inode, start, end, NULL,
524 						     clear_flags, PAGE_UNLOCK |
525 						     PAGE_CLEAR_DIRTY |
526 						     PAGE_SET_WRITEBACK |
527 						     PAGE_END_WRITEBACK);
528 			goto free_pages_out;
529 		}
530 	}
531 
532 	if (will_compress) {
533 		/*
534 		 * we aren't doing an inline extent round the compressed size
535 		 * up to a block size boundary so the allocator does sane
536 		 * things
537 		 */
538 		total_compressed = ALIGN(total_compressed, blocksize);
539 
540 		/*
541 		 * one last check to make sure the compression is really a
542 		 * win, compare the page count read with the blocks on disk
543 		 */
544 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
545 		if (total_compressed >= total_in) {
546 			will_compress = 0;
547 		} else {
548 			num_bytes = total_in;
549 		}
550 	}
551 	if (!will_compress && pages) {
552 		/*
553 		 * the compression code ran but failed to make things smaller,
554 		 * free any pages it allocated and our page pointer array
555 		 */
556 		for (i = 0; i < nr_pages_ret; i++) {
557 			WARN_ON(pages[i]->mapping);
558 			page_cache_release(pages[i]);
559 		}
560 		kfree(pages);
561 		pages = NULL;
562 		total_compressed = 0;
563 		nr_pages_ret = 0;
564 
565 		/* flag the file so we don't compress in the future */
566 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 		    !(BTRFS_I(inode)->force_compress)) {
568 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
569 		}
570 	}
571 	if (will_compress) {
572 		*num_added += 1;
573 
574 		/* the async work queues will take care of doing actual
575 		 * allocation on disk for these compressed pages,
576 		 * and will submit them to the elevator.
577 		 */
578 		add_async_extent(async_cow, start, num_bytes,
579 				 total_compressed, pages, nr_pages_ret,
580 				 compress_type);
581 
582 		if (start + num_bytes < end) {
583 			start += num_bytes;
584 			pages = NULL;
585 			cond_resched();
586 			goto again;
587 		}
588 	} else {
589 cleanup_and_bail_uncompressed:
590 		/*
591 		 * No compression, but we still need to write the pages in
592 		 * the file we've been given so far.  redirty the locked
593 		 * page if it corresponds to our extent and set things up
594 		 * for the async work queue to run cow_file_range to do
595 		 * the normal delalloc dance
596 		 */
597 		if (page_offset(locked_page) >= start &&
598 		    page_offset(locked_page) <= end) {
599 			__set_page_dirty_nobuffers(locked_page);
600 			/* unlocked later on in the async handlers */
601 		}
602 		if (redirty)
603 			extent_range_redirty_for_io(inode, start, end);
604 		add_async_extent(async_cow, start, end - start + 1,
605 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
606 		*num_added += 1;
607 	}
608 
609 out:
610 	return ret;
611 
612 free_pages_out:
613 	for (i = 0; i < nr_pages_ret; i++) {
614 		WARN_ON(pages[i]->mapping);
615 		page_cache_release(pages[i]);
616 	}
617 	kfree(pages);
618 
619 	goto out;
620 }
621 
622 /*
623  * phase two of compressed writeback.  This is the ordered portion
624  * of the code, which only gets called in the order the work was
625  * queued.  We walk all the async extents created by compress_file_range
626  * and send them down to the disk.
627  */
628 static noinline int submit_compressed_extents(struct inode *inode,
629 					      struct async_cow *async_cow)
630 {
631 	struct async_extent *async_extent;
632 	u64 alloc_hint = 0;
633 	struct btrfs_key ins;
634 	struct extent_map *em;
635 	struct btrfs_root *root = BTRFS_I(inode)->root;
636 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 	struct extent_io_tree *io_tree;
638 	int ret = 0;
639 
640 	if (list_empty(&async_cow->extents))
641 		return 0;
642 
643 again:
644 	while (!list_empty(&async_cow->extents)) {
645 		async_extent = list_entry(async_cow->extents.next,
646 					  struct async_extent, list);
647 		list_del(&async_extent->list);
648 
649 		io_tree = &BTRFS_I(inode)->io_tree;
650 
651 retry:
652 		/* did the compression code fall back to uncompressed IO? */
653 		if (!async_extent->pages) {
654 			int page_started = 0;
655 			unsigned long nr_written = 0;
656 
657 			lock_extent(io_tree, async_extent->start,
658 					 async_extent->start +
659 					 async_extent->ram_size - 1);
660 
661 			/* allocate blocks */
662 			ret = cow_file_range(inode, async_cow->locked_page,
663 					     async_extent->start,
664 					     async_extent->start +
665 					     async_extent->ram_size - 1,
666 					     &page_started, &nr_written, 0);
667 
668 			/* JDM XXX */
669 
670 			/*
671 			 * if page_started, cow_file_range inserted an
672 			 * inline extent and took care of all the unlocking
673 			 * and IO for us.  Otherwise, we need to submit
674 			 * all those pages down to the drive.
675 			 */
676 			if (!page_started && !ret)
677 				extent_write_locked_range(io_tree,
678 						  inode, async_extent->start,
679 						  async_extent->start +
680 						  async_extent->ram_size - 1,
681 						  btrfs_get_extent,
682 						  WB_SYNC_ALL);
683 			else if (ret)
684 				unlock_page(async_cow->locked_page);
685 			kfree(async_extent);
686 			cond_resched();
687 			continue;
688 		}
689 
690 		lock_extent(io_tree, async_extent->start,
691 			    async_extent->start + async_extent->ram_size - 1);
692 
693 		ret = btrfs_reserve_extent(root,
694 					   async_extent->compressed_size,
695 					   async_extent->compressed_size,
696 					   0, alloc_hint, &ins, 1);
697 		if (ret) {
698 			int i;
699 
700 			for (i = 0; i < async_extent->nr_pages; i++) {
701 				WARN_ON(async_extent->pages[i]->mapping);
702 				page_cache_release(async_extent->pages[i]);
703 			}
704 			kfree(async_extent->pages);
705 			async_extent->nr_pages = 0;
706 			async_extent->pages = NULL;
707 
708 			if (ret == -ENOSPC) {
709 				unlock_extent(io_tree, async_extent->start,
710 					      async_extent->start +
711 					      async_extent->ram_size - 1);
712 				goto retry;
713 			}
714 			goto out_free;
715 		}
716 
717 		/*
718 		 * here we're doing allocation and writeback of the
719 		 * compressed pages
720 		 */
721 		btrfs_drop_extent_cache(inode, async_extent->start,
722 					async_extent->start +
723 					async_extent->ram_size - 1, 0);
724 
725 		em = alloc_extent_map();
726 		if (!em) {
727 			ret = -ENOMEM;
728 			goto out_free_reserve;
729 		}
730 		em->start = async_extent->start;
731 		em->len = async_extent->ram_size;
732 		em->orig_start = em->start;
733 		em->mod_start = em->start;
734 		em->mod_len = em->len;
735 
736 		em->block_start = ins.objectid;
737 		em->block_len = ins.offset;
738 		em->orig_block_len = ins.offset;
739 		em->ram_bytes = async_extent->ram_size;
740 		em->bdev = root->fs_info->fs_devices->latest_bdev;
741 		em->compress_type = async_extent->compress_type;
742 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
743 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
744 		em->generation = -1;
745 
746 		while (1) {
747 			write_lock(&em_tree->lock);
748 			ret = add_extent_mapping(em_tree, em, 1);
749 			write_unlock(&em_tree->lock);
750 			if (ret != -EEXIST) {
751 				free_extent_map(em);
752 				break;
753 			}
754 			btrfs_drop_extent_cache(inode, async_extent->start,
755 						async_extent->start +
756 						async_extent->ram_size - 1, 0);
757 		}
758 
759 		if (ret)
760 			goto out_free_reserve;
761 
762 		ret = btrfs_add_ordered_extent_compress(inode,
763 						async_extent->start,
764 						ins.objectid,
765 						async_extent->ram_size,
766 						ins.offset,
767 						BTRFS_ORDERED_COMPRESSED,
768 						async_extent->compress_type);
769 		if (ret)
770 			goto out_free_reserve;
771 
772 		/*
773 		 * clear dirty, set writeback and unlock the pages.
774 		 */
775 		extent_clear_unlock_delalloc(inode, async_extent->start,
776 				async_extent->start +
777 				async_extent->ram_size - 1,
778 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
779 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
780 				PAGE_SET_WRITEBACK);
781 		ret = btrfs_submit_compressed_write(inode,
782 				    async_extent->start,
783 				    async_extent->ram_size,
784 				    ins.objectid,
785 				    ins.offset, async_extent->pages,
786 				    async_extent->nr_pages);
787 		alloc_hint = ins.objectid + ins.offset;
788 		kfree(async_extent);
789 		if (ret)
790 			goto out;
791 		cond_resched();
792 	}
793 	ret = 0;
794 out:
795 	return ret;
796 out_free_reserve:
797 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
798 out_free:
799 	extent_clear_unlock_delalloc(inode, async_extent->start,
800 				     async_extent->start +
801 				     async_extent->ram_size - 1,
802 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
803 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
804 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
805 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
806 	kfree(async_extent);
807 	goto again;
808 }
809 
810 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
811 				      u64 num_bytes)
812 {
813 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
814 	struct extent_map *em;
815 	u64 alloc_hint = 0;
816 
817 	read_lock(&em_tree->lock);
818 	em = search_extent_mapping(em_tree, start, num_bytes);
819 	if (em) {
820 		/*
821 		 * if block start isn't an actual block number then find the
822 		 * first block in this inode and use that as a hint.  If that
823 		 * block is also bogus then just don't worry about it.
824 		 */
825 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
826 			free_extent_map(em);
827 			em = search_extent_mapping(em_tree, 0, 0);
828 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
829 				alloc_hint = em->block_start;
830 			if (em)
831 				free_extent_map(em);
832 		} else {
833 			alloc_hint = em->block_start;
834 			free_extent_map(em);
835 		}
836 	}
837 	read_unlock(&em_tree->lock);
838 
839 	return alloc_hint;
840 }
841 
842 /*
843  * when extent_io.c finds a delayed allocation range in the file,
844  * the call backs end up in this code.  The basic idea is to
845  * allocate extents on disk for the range, and create ordered data structs
846  * in ram to track those extents.
847  *
848  * locked_page is the page that writepage had locked already.  We use
849  * it to make sure we don't do extra locks or unlocks.
850  *
851  * *page_started is set to one if we unlock locked_page and do everything
852  * required to start IO on it.  It may be clean and already done with
853  * IO when we return.
854  */
855 static noinline int cow_file_range(struct inode *inode,
856 				   struct page *locked_page,
857 				   u64 start, u64 end, int *page_started,
858 				   unsigned long *nr_written,
859 				   int unlock)
860 {
861 	struct btrfs_root *root = BTRFS_I(inode)->root;
862 	u64 alloc_hint = 0;
863 	u64 num_bytes;
864 	unsigned long ram_size;
865 	u64 disk_num_bytes;
866 	u64 cur_alloc_size;
867 	u64 blocksize = root->sectorsize;
868 	struct btrfs_key ins;
869 	struct extent_map *em;
870 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
871 	int ret = 0;
872 
873 	if (btrfs_is_free_space_inode(inode)) {
874 		WARN_ON_ONCE(1);
875 		ret = -EINVAL;
876 		goto out_unlock;
877 	}
878 
879 	num_bytes = ALIGN(end - start + 1, blocksize);
880 	num_bytes = max(blocksize,  num_bytes);
881 	disk_num_bytes = num_bytes;
882 
883 	/* if this is a small write inside eof, kick off defrag */
884 	if (num_bytes < 64 * 1024 &&
885 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
886 		btrfs_add_inode_defrag(NULL, inode);
887 
888 	if (start == 0) {
889 		/* lets try to make an inline extent */
890 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
891 					    NULL);
892 		if (ret == 0) {
893 			extent_clear_unlock_delalloc(inode, start, end, NULL,
894 				     EXTENT_LOCKED | EXTENT_DELALLOC |
895 				     EXTENT_DEFRAG, PAGE_UNLOCK |
896 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
897 				     PAGE_END_WRITEBACK);
898 
899 			*nr_written = *nr_written +
900 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
901 			*page_started = 1;
902 			goto out;
903 		} else if (ret < 0) {
904 			goto out_unlock;
905 		}
906 	}
907 
908 	BUG_ON(disk_num_bytes >
909 	       btrfs_super_total_bytes(root->fs_info->super_copy));
910 
911 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
912 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
913 
914 	while (disk_num_bytes > 0) {
915 		unsigned long op;
916 
917 		cur_alloc_size = disk_num_bytes;
918 		ret = btrfs_reserve_extent(root, cur_alloc_size,
919 					   root->sectorsize, 0, alloc_hint,
920 					   &ins, 1);
921 		if (ret < 0)
922 			goto out_unlock;
923 
924 		em = alloc_extent_map();
925 		if (!em) {
926 			ret = -ENOMEM;
927 			goto out_reserve;
928 		}
929 		em->start = start;
930 		em->orig_start = em->start;
931 		ram_size = ins.offset;
932 		em->len = ins.offset;
933 		em->mod_start = em->start;
934 		em->mod_len = em->len;
935 
936 		em->block_start = ins.objectid;
937 		em->block_len = ins.offset;
938 		em->orig_block_len = ins.offset;
939 		em->ram_bytes = ram_size;
940 		em->bdev = root->fs_info->fs_devices->latest_bdev;
941 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
942 		em->generation = -1;
943 
944 		while (1) {
945 			write_lock(&em_tree->lock);
946 			ret = add_extent_mapping(em_tree, em, 1);
947 			write_unlock(&em_tree->lock);
948 			if (ret != -EEXIST) {
949 				free_extent_map(em);
950 				break;
951 			}
952 			btrfs_drop_extent_cache(inode, start,
953 						start + ram_size - 1, 0);
954 		}
955 		if (ret)
956 			goto out_reserve;
957 
958 		cur_alloc_size = ins.offset;
959 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
960 					       ram_size, cur_alloc_size, 0);
961 		if (ret)
962 			goto out_reserve;
963 
964 		if (root->root_key.objectid ==
965 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
966 			ret = btrfs_reloc_clone_csums(inode, start,
967 						      cur_alloc_size);
968 			if (ret)
969 				goto out_reserve;
970 		}
971 
972 		if (disk_num_bytes < cur_alloc_size)
973 			break;
974 
975 		/* we're not doing compressed IO, don't unlock the first
976 		 * page (which the caller expects to stay locked), don't
977 		 * clear any dirty bits and don't set any writeback bits
978 		 *
979 		 * Do set the Private2 bit so we know this page was properly
980 		 * setup for writepage
981 		 */
982 		op = unlock ? PAGE_UNLOCK : 0;
983 		op |= PAGE_SET_PRIVATE2;
984 
985 		extent_clear_unlock_delalloc(inode, start,
986 					     start + ram_size - 1, locked_page,
987 					     EXTENT_LOCKED | EXTENT_DELALLOC,
988 					     op);
989 		disk_num_bytes -= cur_alloc_size;
990 		num_bytes -= cur_alloc_size;
991 		alloc_hint = ins.objectid + ins.offset;
992 		start += cur_alloc_size;
993 	}
994 out:
995 	return ret;
996 
997 out_reserve:
998 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
999 out_unlock:
1000 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1001 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1002 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1003 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1004 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1005 	goto out;
1006 }
1007 
1008 /*
1009  * work queue call back to started compression on a file and pages
1010  */
1011 static noinline void async_cow_start(struct btrfs_work *work)
1012 {
1013 	struct async_cow *async_cow;
1014 	int num_added = 0;
1015 	async_cow = container_of(work, struct async_cow, work);
1016 
1017 	compress_file_range(async_cow->inode, async_cow->locked_page,
1018 			    async_cow->start, async_cow->end, async_cow,
1019 			    &num_added);
1020 	if (num_added == 0) {
1021 		btrfs_add_delayed_iput(async_cow->inode);
1022 		async_cow->inode = NULL;
1023 	}
1024 }
1025 
1026 /*
1027  * work queue call back to submit previously compressed pages
1028  */
1029 static noinline void async_cow_submit(struct btrfs_work *work)
1030 {
1031 	struct async_cow *async_cow;
1032 	struct btrfs_root *root;
1033 	unsigned long nr_pages;
1034 
1035 	async_cow = container_of(work, struct async_cow, work);
1036 
1037 	root = async_cow->root;
1038 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1039 		PAGE_CACHE_SHIFT;
1040 
1041 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1042 	    5 * 1024 * 1024 &&
1043 	    waitqueue_active(&root->fs_info->async_submit_wait))
1044 		wake_up(&root->fs_info->async_submit_wait);
1045 
1046 	if (async_cow->inode)
1047 		submit_compressed_extents(async_cow->inode, async_cow);
1048 }
1049 
1050 static noinline void async_cow_free(struct btrfs_work *work)
1051 {
1052 	struct async_cow *async_cow;
1053 	async_cow = container_of(work, struct async_cow, work);
1054 	if (async_cow->inode)
1055 		btrfs_add_delayed_iput(async_cow->inode);
1056 	kfree(async_cow);
1057 }
1058 
1059 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1060 				u64 start, u64 end, int *page_started,
1061 				unsigned long *nr_written)
1062 {
1063 	struct async_cow *async_cow;
1064 	struct btrfs_root *root = BTRFS_I(inode)->root;
1065 	unsigned long nr_pages;
1066 	u64 cur_end;
1067 	int limit = 10 * 1024 * 1024;
1068 
1069 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1070 			 1, 0, NULL, GFP_NOFS);
1071 	while (start < end) {
1072 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1073 		BUG_ON(!async_cow); /* -ENOMEM */
1074 		async_cow->inode = igrab(inode);
1075 		async_cow->root = root;
1076 		async_cow->locked_page = locked_page;
1077 		async_cow->start = start;
1078 
1079 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1080 			cur_end = end;
1081 		else
1082 			cur_end = min(end, start + 512 * 1024 - 1);
1083 
1084 		async_cow->end = cur_end;
1085 		INIT_LIST_HEAD(&async_cow->extents);
1086 
1087 		btrfs_init_work(&async_cow->work, async_cow_start,
1088 				async_cow_submit, async_cow_free);
1089 
1090 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1091 			PAGE_CACHE_SHIFT;
1092 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1093 
1094 		btrfs_queue_work(root->fs_info->delalloc_workers,
1095 				 &async_cow->work);
1096 
1097 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1098 			wait_event(root->fs_info->async_submit_wait,
1099 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1100 			    limit));
1101 		}
1102 
1103 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1104 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1105 			wait_event(root->fs_info->async_submit_wait,
1106 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1107 			   0));
1108 		}
1109 
1110 		*nr_written += nr_pages;
1111 		start = cur_end + 1;
1112 	}
1113 	*page_started = 1;
1114 	return 0;
1115 }
1116 
1117 static noinline int csum_exist_in_range(struct btrfs_root *root,
1118 					u64 bytenr, u64 num_bytes)
1119 {
1120 	int ret;
1121 	struct btrfs_ordered_sum *sums;
1122 	LIST_HEAD(list);
1123 
1124 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1125 				       bytenr + num_bytes - 1, &list, 0);
1126 	if (ret == 0 && list_empty(&list))
1127 		return 0;
1128 
1129 	while (!list_empty(&list)) {
1130 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1131 		list_del(&sums->list);
1132 		kfree(sums);
1133 	}
1134 	return 1;
1135 }
1136 
1137 /*
1138  * when nowcow writeback call back.  This checks for snapshots or COW copies
1139  * of the extents that exist in the file, and COWs the file as required.
1140  *
1141  * If no cow copies or snapshots exist, we write directly to the existing
1142  * blocks on disk
1143  */
1144 static noinline int run_delalloc_nocow(struct inode *inode,
1145 				       struct page *locked_page,
1146 			      u64 start, u64 end, int *page_started, int force,
1147 			      unsigned long *nr_written)
1148 {
1149 	struct btrfs_root *root = BTRFS_I(inode)->root;
1150 	struct btrfs_trans_handle *trans;
1151 	struct extent_buffer *leaf;
1152 	struct btrfs_path *path;
1153 	struct btrfs_file_extent_item *fi;
1154 	struct btrfs_key found_key;
1155 	u64 cow_start;
1156 	u64 cur_offset;
1157 	u64 extent_end;
1158 	u64 extent_offset;
1159 	u64 disk_bytenr;
1160 	u64 num_bytes;
1161 	u64 disk_num_bytes;
1162 	u64 ram_bytes;
1163 	int extent_type;
1164 	int ret, err;
1165 	int type;
1166 	int nocow;
1167 	int check_prev = 1;
1168 	bool nolock;
1169 	u64 ino = btrfs_ino(inode);
1170 
1171 	path = btrfs_alloc_path();
1172 	if (!path) {
1173 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1174 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1175 					     EXTENT_DO_ACCOUNTING |
1176 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1177 					     PAGE_CLEAR_DIRTY |
1178 					     PAGE_SET_WRITEBACK |
1179 					     PAGE_END_WRITEBACK);
1180 		return -ENOMEM;
1181 	}
1182 
1183 	nolock = btrfs_is_free_space_inode(inode);
1184 
1185 	if (nolock)
1186 		trans = btrfs_join_transaction_nolock(root);
1187 	else
1188 		trans = btrfs_join_transaction(root);
1189 
1190 	if (IS_ERR(trans)) {
1191 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1192 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1193 					     EXTENT_DO_ACCOUNTING |
1194 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1195 					     PAGE_CLEAR_DIRTY |
1196 					     PAGE_SET_WRITEBACK |
1197 					     PAGE_END_WRITEBACK);
1198 		btrfs_free_path(path);
1199 		return PTR_ERR(trans);
1200 	}
1201 
1202 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1203 
1204 	cow_start = (u64)-1;
1205 	cur_offset = start;
1206 	while (1) {
1207 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1208 					       cur_offset, 0);
1209 		if (ret < 0)
1210 			goto error;
1211 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1212 			leaf = path->nodes[0];
1213 			btrfs_item_key_to_cpu(leaf, &found_key,
1214 					      path->slots[0] - 1);
1215 			if (found_key.objectid == ino &&
1216 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1217 				path->slots[0]--;
1218 		}
1219 		check_prev = 0;
1220 next_slot:
1221 		leaf = path->nodes[0];
1222 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1223 			ret = btrfs_next_leaf(root, path);
1224 			if (ret < 0)
1225 				goto error;
1226 			if (ret > 0)
1227 				break;
1228 			leaf = path->nodes[0];
1229 		}
1230 
1231 		nocow = 0;
1232 		disk_bytenr = 0;
1233 		num_bytes = 0;
1234 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1235 
1236 		if (found_key.objectid > ino ||
1237 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1238 		    found_key.offset > end)
1239 			break;
1240 
1241 		if (found_key.offset > cur_offset) {
1242 			extent_end = found_key.offset;
1243 			extent_type = 0;
1244 			goto out_check;
1245 		}
1246 
1247 		fi = btrfs_item_ptr(leaf, path->slots[0],
1248 				    struct btrfs_file_extent_item);
1249 		extent_type = btrfs_file_extent_type(leaf, fi);
1250 
1251 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1252 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1253 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1254 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1255 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1256 			extent_end = found_key.offset +
1257 				btrfs_file_extent_num_bytes(leaf, fi);
1258 			disk_num_bytes =
1259 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1260 			if (extent_end <= start) {
1261 				path->slots[0]++;
1262 				goto next_slot;
1263 			}
1264 			if (disk_bytenr == 0)
1265 				goto out_check;
1266 			if (btrfs_file_extent_compression(leaf, fi) ||
1267 			    btrfs_file_extent_encryption(leaf, fi) ||
1268 			    btrfs_file_extent_other_encoding(leaf, fi))
1269 				goto out_check;
1270 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1271 				goto out_check;
1272 			if (btrfs_extent_readonly(root, disk_bytenr))
1273 				goto out_check;
1274 			if (btrfs_cross_ref_exist(trans, root, ino,
1275 						  found_key.offset -
1276 						  extent_offset, disk_bytenr))
1277 				goto out_check;
1278 			disk_bytenr += extent_offset;
1279 			disk_bytenr += cur_offset - found_key.offset;
1280 			num_bytes = min(end + 1, extent_end) - cur_offset;
1281 			/*
1282 			 * if there are pending snapshots for this root,
1283 			 * we fall into common COW way.
1284 			 */
1285 			if (!nolock) {
1286 				err = btrfs_start_nocow_write(root);
1287 				if (!err)
1288 					goto out_check;
1289 			}
1290 			/*
1291 			 * force cow if csum exists in the range.
1292 			 * this ensure that csum for a given extent are
1293 			 * either valid or do not exist.
1294 			 */
1295 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1296 				goto out_check;
1297 			nocow = 1;
1298 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1299 			extent_end = found_key.offset +
1300 				btrfs_file_extent_inline_len(leaf,
1301 						     path->slots[0], fi);
1302 			extent_end = ALIGN(extent_end, root->sectorsize);
1303 		} else {
1304 			BUG_ON(1);
1305 		}
1306 out_check:
1307 		if (extent_end <= start) {
1308 			path->slots[0]++;
1309 			if (!nolock && nocow)
1310 				btrfs_end_nocow_write(root);
1311 			goto next_slot;
1312 		}
1313 		if (!nocow) {
1314 			if (cow_start == (u64)-1)
1315 				cow_start = cur_offset;
1316 			cur_offset = extent_end;
1317 			if (cur_offset > end)
1318 				break;
1319 			path->slots[0]++;
1320 			goto next_slot;
1321 		}
1322 
1323 		btrfs_release_path(path);
1324 		if (cow_start != (u64)-1) {
1325 			ret = cow_file_range(inode, locked_page,
1326 					     cow_start, found_key.offset - 1,
1327 					     page_started, nr_written, 1);
1328 			if (ret) {
1329 				if (!nolock && nocow)
1330 					btrfs_end_nocow_write(root);
1331 				goto error;
1332 			}
1333 			cow_start = (u64)-1;
1334 		}
1335 
1336 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 			struct extent_map *em;
1338 			struct extent_map_tree *em_tree;
1339 			em_tree = &BTRFS_I(inode)->extent_tree;
1340 			em = alloc_extent_map();
1341 			BUG_ON(!em); /* -ENOMEM */
1342 			em->start = cur_offset;
1343 			em->orig_start = found_key.offset - extent_offset;
1344 			em->len = num_bytes;
1345 			em->block_len = num_bytes;
1346 			em->block_start = disk_bytenr;
1347 			em->orig_block_len = disk_num_bytes;
1348 			em->ram_bytes = ram_bytes;
1349 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1350 			em->mod_start = em->start;
1351 			em->mod_len = em->len;
1352 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1353 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1354 			em->generation = -1;
1355 			while (1) {
1356 				write_lock(&em_tree->lock);
1357 				ret = add_extent_mapping(em_tree, em, 1);
1358 				write_unlock(&em_tree->lock);
1359 				if (ret != -EEXIST) {
1360 					free_extent_map(em);
1361 					break;
1362 				}
1363 				btrfs_drop_extent_cache(inode, em->start,
1364 						em->start + em->len - 1, 0);
1365 			}
1366 			type = BTRFS_ORDERED_PREALLOC;
1367 		} else {
1368 			type = BTRFS_ORDERED_NOCOW;
1369 		}
1370 
1371 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1372 					       num_bytes, num_bytes, type);
1373 		BUG_ON(ret); /* -ENOMEM */
1374 
1375 		if (root->root_key.objectid ==
1376 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1377 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1378 						      num_bytes);
1379 			if (ret) {
1380 				if (!nolock && nocow)
1381 					btrfs_end_nocow_write(root);
1382 				goto error;
1383 			}
1384 		}
1385 
1386 		extent_clear_unlock_delalloc(inode, cur_offset,
1387 					     cur_offset + num_bytes - 1,
1388 					     locked_page, EXTENT_LOCKED |
1389 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1390 					     PAGE_SET_PRIVATE2);
1391 		if (!nolock && nocow)
1392 			btrfs_end_nocow_write(root);
1393 		cur_offset = extent_end;
1394 		if (cur_offset > end)
1395 			break;
1396 	}
1397 	btrfs_release_path(path);
1398 
1399 	if (cur_offset <= end && cow_start == (u64)-1) {
1400 		cow_start = cur_offset;
1401 		cur_offset = end;
1402 	}
1403 
1404 	if (cow_start != (u64)-1) {
1405 		ret = cow_file_range(inode, locked_page, cow_start, end,
1406 				     page_started, nr_written, 1);
1407 		if (ret)
1408 			goto error;
1409 	}
1410 
1411 error:
1412 	err = btrfs_end_transaction(trans, root);
1413 	if (!ret)
1414 		ret = err;
1415 
1416 	if (ret && cur_offset < end)
1417 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1418 					     locked_page, EXTENT_LOCKED |
1419 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1420 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1421 					     PAGE_CLEAR_DIRTY |
1422 					     PAGE_SET_WRITEBACK |
1423 					     PAGE_END_WRITEBACK);
1424 	btrfs_free_path(path);
1425 	return ret;
1426 }
1427 
1428 /*
1429  * extent_io.c call back to do delayed allocation processing
1430  */
1431 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1432 			      u64 start, u64 end, int *page_started,
1433 			      unsigned long *nr_written)
1434 {
1435 	int ret;
1436 	struct btrfs_root *root = BTRFS_I(inode)->root;
1437 
1438 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1439 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1440 					 page_started, 1, nr_written);
1441 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1442 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1443 					 page_started, 0, nr_written);
1444 	} else if (!btrfs_test_opt(root, COMPRESS) &&
1445 		   !(BTRFS_I(inode)->force_compress) &&
1446 		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1447 		ret = cow_file_range(inode, locked_page, start, end,
1448 				      page_started, nr_written, 1);
1449 	} else {
1450 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1451 			&BTRFS_I(inode)->runtime_flags);
1452 		ret = cow_file_range_async(inode, locked_page, start, end,
1453 					   page_started, nr_written);
1454 	}
1455 	return ret;
1456 }
1457 
1458 static void btrfs_split_extent_hook(struct inode *inode,
1459 				    struct extent_state *orig, u64 split)
1460 {
1461 	/* not delalloc, ignore it */
1462 	if (!(orig->state & EXTENT_DELALLOC))
1463 		return;
1464 
1465 	spin_lock(&BTRFS_I(inode)->lock);
1466 	BTRFS_I(inode)->outstanding_extents++;
1467 	spin_unlock(&BTRFS_I(inode)->lock);
1468 }
1469 
1470 /*
1471  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1472  * extents so we can keep track of new extents that are just merged onto old
1473  * extents, such as when we are doing sequential writes, so we can properly
1474  * account for the metadata space we'll need.
1475  */
1476 static void btrfs_merge_extent_hook(struct inode *inode,
1477 				    struct extent_state *new,
1478 				    struct extent_state *other)
1479 {
1480 	/* not delalloc, ignore it */
1481 	if (!(other->state & EXTENT_DELALLOC))
1482 		return;
1483 
1484 	spin_lock(&BTRFS_I(inode)->lock);
1485 	BTRFS_I(inode)->outstanding_extents--;
1486 	spin_unlock(&BTRFS_I(inode)->lock);
1487 }
1488 
1489 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1490 				      struct inode *inode)
1491 {
1492 	spin_lock(&root->delalloc_lock);
1493 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1494 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1495 			      &root->delalloc_inodes);
1496 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1497 			&BTRFS_I(inode)->runtime_flags);
1498 		root->nr_delalloc_inodes++;
1499 		if (root->nr_delalloc_inodes == 1) {
1500 			spin_lock(&root->fs_info->delalloc_root_lock);
1501 			BUG_ON(!list_empty(&root->delalloc_root));
1502 			list_add_tail(&root->delalloc_root,
1503 				      &root->fs_info->delalloc_roots);
1504 			spin_unlock(&root->fs_info->delalloc_root_lock);
1505 		}
1506 	}
1507 	spin_unlock(&root->delalloc_lock);
1508 }
1509 
1510 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1511 				     struct inode *inode)
1512 {
1513 	spin_lock(&root->delalloc_lock);
1514 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1515 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1516 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1517 			  &BTRFS_I(inode)->runtime_flags);
1518 		root->nr_delalloc_inodes--;
1519 		if (!root->nr_delalloc_inodes) {
1520 			spin_lock(&root->fs_info->delalloc_root_lock);
1521 			BUG_ON(list_empty(&root->delalloc_root));
1522 			list_del_init(&root->delalloc_root);
1523 			spin_unlock(&root->fs_info->delalloc_root_lock);
1524 		}
1525 	}
1526 	spin_unlock(&root->delalloc_lock);
1527 }
1528 
1529 /*
1530  * extent_io.c set_bit_hook, used to track delayed allocation
1531  * bytes in this file, and to maintain the list of inodes that
1532  * have pending delalloc work to be done.
1533  */
1534 static void btrfs_set_bit_hook(struct inode *inode,
1535 			       struct extent_state *state, unsigned long *bits)
1536 {
1537 
1538 	/*
1539 	 * set_bit and clear bit hooks normally require _irqsave/restore
1540 	 * but in this case, we are only testing for the DELALLOC
1541 	 * bit, which is only set or cleared with irqs on
1542 	 */
1543 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1544 		struct btrfs_root *root = BTRFS_I(inode)->root;
1545 		u64 len = state->end + 1 - state->start;
1546 		bool do_list = !btrfs_is_free_space_inode(inode);
1547 
1548 		if (*bits & EXTENT_FIRST_DELALLOC) {
1549 			*bits &= ~EXTENT_FIRST_DELALLOC;
1550 		} else {
1551 			spin_lock(&BTRFS_I(inode)->lock);
1552 			BTRFS_I(inode)->outstanding_extents++;
1553 			spin_unlock(&BTRFS_I(inode)->lock);
1554 		}
1555 
1556 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1557 				     root->fs_info->delalloc_batch);
1558 		spin_lock(&BTRFS_I(inode)->lock);
1559 		BTRFS_I(inode)->delalloc_bytes += len;
1560 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1561 					 &BTRFS_I(inode)->runtime_flags))
1562 			btrfs_add_delalloc_inodes(root, inode);
1563 		spin_unlock(&BTRFS_I(inode)->lock);
1564 	}
1565 }
1566 
1567 /*
1568  * extent_io.c clear_bit_hook, see set_bit_hook for why
1569  */
1570 static void btrfs_clear_bit_hook(struct inode *inode,
1571 				 struct extent_state *state,
1572 				 unsigned long *bits)
1573 {
1574 	/*
1575 	 * set_bit and clear bit hooks normally require _irqsave/restore
1576 	 * but in this case, we are only testing for the DELALLOC
1577 	 * bit, which is only set or cleared with irqs on
1578 	 */
1579 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1580 		struct btrfs_root *root = BTRFS_I(inode)->root;
1581 		u64 len = state->end + 1 - state->start;
1582 		bool do_list = !btrfs_is_free_space_inode(inode);
1583 
1584 		if (*bits & EXTENT_FIRST_DELALLOC) {
1585 			*bits &= ~EXTENT_FIRST_DELALLOC;
1586 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1587 			spin_lock(&BTRFS_I(inode)->lock);
1588 			BTRFS_I(inode)->outstanding_extents--;
1589 			spin_unlock(&BTRFS_I(inode)->lock);
1590 		}
1591 
1592 		/*
1593 		 * We don't reserve metadata space for space cache inodes so we
1594 		 * don't need to call dellalloc_release_metadata if there is an
1595 		 * error.
1596 		 */
1597 		if (*bits & EXTENT_DO_ACCOUNTING &&
1598 		    root != root->fs_info->tree_root)
1599 			btrfs_delalloc_release_metadata(inode, len);
1600 
1601 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1602 		    && do_list && !(state->state & EXTENT_NORESERVE))
1603 			btrfs_free_reserved_data_space(inode, len);
1604 
1605 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1606 				     root->fs_info->delalloc_batch);
1607 		spin_lock(&BTRFS_I(inode)->lock);
1608 		BTRFS_I(inode)->delalloc_bytes -= len;
1609 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1610 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1611 			     &BTRFS_I(inode)->runtime_flags))
1612 			btrfs_del_delalloc_inode(root, inode);
1613 		spin_unlock(&BTRFS_I(inode)->lock);
1614 	}
1615 }
1616 
1617 /*
1618  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1619  * we don't create bios that span stripes or chunks
1620  */
1621 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1622 			 size_t size, struct bio *bio,
1623 			 unsigned long bio_flags)
1624 {
1625 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1626 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1627 	u64 length = 0;
1628 	u64 map_length;
1629 	int ret;
1630 
1631 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1632 		return 0;
1633 
1634 	length = bio->bi_iter.bi_size;
1635 	map_length = length;
1636 	ret = btrfs_map_block(root->fs_info, rw, logical,
1637 			      &map_length, NULL, 0);
1638 	/* Will always return 0 with map_multi == NULL */
1639 	BUG_ON(ret < 0);
1640 	if (map_length < length + size)
1641 		return 1;
1642 	return 0;
1643 }
1644 
1645 /*
1646  * in order to insert checksums into the metadata in large chunks,
1647  * we wait until bio submission time.   All the pages in the bio are
1648  * checksummed and sums are attached onto the ordered extent record.
1649  *
1650  * At IO completion time the cums attached on the ordered extent record
1651  * are inserted into the btree
1652  */
1653 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1654 				    struct bio *bio, int mirror_num,
1655 				    unsigned long bio_flags,
1656 				    u64 bio_offset)
1657 {
1658 	struct btrfs_root *root = BTRFS_I(inode)->root;
1659 	int ret = 0;
1660 
1661 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1662 	BUG_ON(ret); /* -ENOMEM */
1663 	return 0;
1664 }
1665 
1666 /*
1667  * in order to insert checksums into the metadata in large chunks,
1668  * we wait until bio submission time.   All the pages in the bio are
1669  * checksummed and sums are attached onto the ordered extent record.
1670  *
1671  * At IO completion time the cums attached on the ordered extent record
1672  * are inserted into the btree
1673  */
1674 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1675 			  int mirror_num, unsigned long bio_flags,
1676 			  u64 bio_offset)
1677 {
1678 	struct btrfs_root *root = BTRFS_I(inode)->root;
1679 	int ret;
1680 
1681 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1682 	if (ret)
1683 		bio_endio(bio, ret);
1684 	return ret;
1685 }
1686 
1687 /*
1688  * extent_io.c submission hook. This does the right thing for csum calculation
1689  * on write, or reading the csums from the tree before a read
1690  */
1691 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1692 			  int mirror_num, unsigned long bio_flags,
1693 			  u64 bio_offset)
1694 {
1695 	struct btrfs_root *root = BTRFS_I(inode)->root;
1696 	int ret = 0;
1697 	int skip_sum;
1698 	int metadata = 0;
1699 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1700 
1701 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1702 
1703 	if (btrfs_is_free_space_inode(inode))
1704 		metadata = 2;
1705 
1706 	if (!(rw & REQ_WRITE)) {
1707 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1708 		if (ret)
1709 			goto out;
1710 
1711 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1712 			ret = btrfs_submit_compressed_read(inode, bio,
1713 							   mirror_num,
1714 							   bio_flags);
1715 			goto out;
1716 		} else if (!skip_sum) {
1717 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1718 			if (ret)
1719 				goto out;
1720 		}
1721 		goto mapit;
1722 	} else if (async && !skip_sum) {
1723 		/* csum items have already been cloned */
1724 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1725 			goto mapit;
1726 		/* we're doing a write, do the async checksumming */
1727 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1728 				   inode, rw, bio, mirror_num,
1729 				   bio_flags, bio_offset,
1730 				   __btrfs_submit_bio_start,
1731 				   __btrfs_submit_bio_done);
1732 		goto out;
1733 	} else if (!skip_sum) {
1734 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1735 		if (ret)
1736 			goto out;
1737 	}
1738 
1739 mapit:
1740 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1741 
1742 out:
1743 	if (ret < 0)
1744 		bio_endio(bio, ret);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * given a list of ordered sums record them in the inode.  This happens
1750  * at IO completion time based on sums calculated at bio submission time.
1751  */
1752 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1753 			     struct inode *inode, u64 file_offset,
1754 			     struct list_head *list)
1755 {
1756 	struct btrfs_ordered_sum *sum;
1757 
1758 	list_for_each_entry(sum, list, list) {
1759 		trans->adding_csums = 1;
1760 		btrfs_csum_file_blocks(trans,
1761 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1762 		trans->adding_csums = 0;
1763 	}
1764 	return 0;
1765 }
1766 
1767 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1768 			      struct extent_state **cached_state)
1769 {
1770 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1771 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1772 				   cached_state, GFP_NOFS);
1773 }
1774 
1775 /* see btrfs_writepage_start_hook for details on why this is required */
1776 struct btrfs_writepage_fixup {
1777 	struct page *page;
1778 	struct btrfs_work work;
1779 };
1780 
1781 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1782 {
1783 	struct btrfs_writepage_fixup *fixup;
1784 	struct btrfs_ordered_extent *ordered;
1785 	struct extent_state *cached_state = NULL;
1786 	struct page *page;
1787 	struct inode *inode;
1788 	u64 page_start;
1789 	u64 page_end;
1790 	int ret;
1791 
1792 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1793 	page = fixup->page;
1794 again:
1795 	lock_page(page);
1796 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1797 		ClearPageChecked(page);
1798 		goto out_page;
1799 	}
1800 
1801 	inode = page->mapping->host;
1802 	page_start = page_offset(page);
1803 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1804 
1805 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1806 			 &cached_state);
1807 
1808 	/* already ordered? We're done */
1809 	if (PagePrivate2(page))
1810 		goto out;
1811 
1812 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1813 	if (ordered) {
1814 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1815 				     page_end, &cached_state, GFP_NOFS);
1816 		unlock_page(page);
1817 		btrfs_start_ordered_extent(inode, ordered, 1);
1818 		btrfs_put_ordered_extent(ordered);
1819 		goto again;
1820 	}
1821 
1822 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1823 	if (ret) {
1824 		mapping_set_error(page->mapping, ret);
1825 		end_extent_writepage(page, ret, page_start, page_end);
1826 		ClearPageChecked(page);
1827 		goto out;
1828 	 }
1829 
1830 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1831 	ClearPageChecked(page);
1832 	set_page_dirty(page);
1833 out:
1834 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1835 			     &cached_state, GFP_NOFS);
1836 out_page:
1837 	unlock_page(page);
1838 	page_cache_release(page);
1839 	kfree(fixup);
1840 }
1841 
1842 /*
1843  * There are a few paths in the higher layers of the kernel that directly
1844  * set the page dirty bit without asking the filesystem if it is a
1845  * good idea.  This causes problems because we want to make sure COW
1846  * properly happens and the data=ordered rules are followed.
1847  *
1848  * In our case any range that doesn't have the ORDERED bit set
1849  * hasn't been properly setup for IO.  We kick off an async process
1850  * to fix it up.  The async helper will wait for ordered extents, set
1851  * the delalloc bit and make it safe to write the page.
1852  */
1853 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1854 {
1855 	struct inode *inode = page->mapping->host;
1856 	struct btrfs_writepage_fixup *fixup;
1857 	struct btrfs_root *root = BTRFS_I(inode)->root;
1858 
1859 	/* this page is properly in the ordered list */
1860 	if (TestClearPagePrivate2(page))
1861 		return 0;
1862 
1863 	if (PageChecked(page))
1864 		return -EAGAIN;
1865 
1866 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1867 	if (!fixup)
1868 		return -EAGAIN;
1869 
1870 	SetPageChecked(page);
1871 	page_cache_get(page);
1872 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
1873 	fixup->page = page;
1874 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1875 	return -EBUSY;
1876 }
1877 
1878 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1879 				       struct inode *inode, u64 file_pos,
1880 				       u64 disk_bytenr, u64 disk_num_bytes,
1881 				       u64 num_bytes, u64 ram_bytes,
1882 				       u8 compression, u8 encryption,
1883 				       u16 other_encoding, int extent_type)
1884 {
1885 	struct btrfs_root *root = BTRFS_I(inode)->root;
1886 	struct btrfs_file_extent_item *fi;
1887 	struct btrfs_path *path;
1888 	struct extent_buffer *leaf;
1889 	struct btrfs_key ins;
1890 	int extent_inserted = 0;
1891 	int ret;
1892 
1893 	path = btrfs_alloc_path();
1894 	if (!path)
1895 		return -ENOMEM;
1896 
1897 	/*
1898 	 * we may be replacing one extent in the tree with another.
1899 	 * The new extent is pinned in the extent map, and we don't want
1900 	 * to drop it from the cache until it is completely in the btree.
1901 	 *
1902 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1903 	 * the caller is expected to unpin it and allow it to be merged
1904 	 * with the others.
1905 	 */
1906 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1907 				   file_pos + num_bytes, NULL, 0,
1908 				   1, sizeof(*fi), &extent_inserted);
1909 	if (ret)
1910 		goto out;
1911 
1912 	if (!extent_inserted) {
1913 		ins.objectid = btrfs_ino(inode);
1914 		ins.offset = file_pos;
1915 		ins.type = BTRFS_EXTENT_DATA_KEY;
1916 
1917 		path->leave_spinning = 1;
1918 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
1919 					      sizeof(*fi));
1920 		if (ret)
1921 			goto out;
1922 	}
1923 	leaf = path->nodes[0];
1924 	fi = btrfs_item_ptr(leaf, path->slots[0],
1925 			    struct btrfs_file_extent_item);
1926 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1927 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1928 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1929 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1930 	btrfs_set_file_extent_offset(leaf, fi, 0);
1931 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1932 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1933 	btrfs_set_file_extent_compression(leaf, fi, compression);
1934 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1935 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1936 
1937 	btrfs_mark_buffer_dirty(leaf);
1938 	btrfs_release_path(path);
1939 
1940 	inode_add_bytes(inode, num_bytes);
1941 
1942 	ins.objectid = disk_bytenr;
1943 	ins.offset = disk_num_bytes;
1944 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1945 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1946 					root->root_key.objectid,
1947 					btrfs_ino(inode), file_pos, &ins);
1948 out:
1949 	btrfs_free_path(path);
1950 
1951 	return ret;
1952 }
1953 
1954 /* snapshot-aware defrag */
1955 struct sa_defrag_extent_backref {
1956 	struct rb_node node;
1957 	struct old_sa_defrag_extent *old;
1958 	u64 root_id;
1959 	u64 inum;
1960 	u64 file_pos;
1961 	u64 extent_offset;
1962 	u64 num_bytes;
1963 	u64 generation;
1964 };
1965 
1966 struct old_sa_defrag_extent {
1967 	struct list_head list;
1968 	struct new_sa_defrag_extent *new;
1969 
1970 	u64 extent_offset;
1971 	u64 bytenr;
1972 	u64 offset;
1973 	u64 len;
1974 	int count;
1975 };
1976 
1977 struct new_sa_defrag_extent {
1978 	struct rb_root root;
1979 	struct list_head head;
1980 	struct btrfs_path *path;
1981 	struct inode *inode;
1982 	u64 file_pos;
1983 	u64 len;
1984 	u64 bytenr;
1985 	u64 disk_len;
1986 	u8 compress_type;
1987 };
1988 
1989 static int backref_comp(struct sa_defrag_extent_backref *b1,
1990 			struct sa_defrag_extent_backref *b2)
1991 {
1992 	if (b1->root_id < b2->root_id)
1993 		return -1;
1994 	else if (b1->root_id > b2->root_id)
1995 		return 1;
1996 
1997 	if (b1->inum < b2->inum)
1998 		return -1;
1999 	else if (b1->inum > b2->inum)
2000 		return 1;
2001 
2002 	if (b1->file_pos < b2->file_pos)
2003 		return -1;
2004 	else if (b1->file_pos > b2->file_pos)
2005 		return 1;
2006 
2007 	/*
2008 	 * [------------------------------] ===> (a range of space)
2009 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2010 	 * |<---------------------------->| ===> (fs/file tree B)
2011 	 *
2012 	 * A range of space can refer to two file extents in one tree while
2013 	 * refer to only one file extent in another tree.
2014 	 *
2015 	 * So we may process a disk offset more than one time(two extents in A)
2016 	 * and locate at the same extent(one extent in B), then insert two same
2017 	 * backrefs(both refer to the extent in B).
2018 	 */
2019 	return 0;
2020 }
2021 
2022 static void backref_insert(struct rb_root *root,
2023 			   struct sa_defrag_extent_backref *backref)
2024 {
2025 	struct rb_node **p = &root->rb_node;
2026 	struct rb_node *parent = NULL;
2027 	struct sa_defrag_extent_backref *entry;
2028 	int ret;
2029 
2030 	while (*p) {
2031 		parent = *p;
2032 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2033 
2034 		ret = backref_comp(backref, entry);
2035 		if (ret < 0)
2036 			p = &(*p)->rb_left;
2037 		else
2038 			p = &(*p)->rb_right;
2039 	}
2040 
2041 	rb_link_node(&backref->node, parent, p);
2042 	rb_insert_color(&backref->node, root);
2043 }
2044 
2045 /*
2046  * Note the backref might has changed, and in this case we just return 0.
2047  */
2048 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2049 				       void *ctx)
2050 {
2051 	struct btrfs_file_extent_item *extent;
2052 	struct btrfs_fs_info *fs_info;
2053 	struct old_sa_defrag_extent *old = ctx;
2054 	struct new_sa_defrag_extent *new = old->new;
2055 	struct btrfs_path *path = new->path;
2056 	struct btrfs_key key;
2057 	struct btrfs_root *root;
2058 	struct sa_defrag_extent_backref *backref;
2059 	struct extent_buffer *leaf;
2060 	struct inode *inode = new->inode;
2061 	int slot;
2062 	int ret;
2063 	u64 extent_offset;
2064 	u64 num_bytes;
2065 
2066 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2067 	    inum == btrfs_ino(inode))
2068 		return 0;
2069 
2070 	key.objectid = root_id;
2071 	key.type = BTRFS_ROOT_ITEM_KEY;
2072 	key.offset = (u64)-1;
2073 
2074 	fs_info = BTRFS_I(inode)->root->fs_info;
2075 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2076 	if (IS_ERR(root)) {
2077 		if (PTR_ERR(root) == -ENOENT)
2078 			return 0;
2079 		WARN_ON(1);
2080 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2081 			 inum, offset, root_id);
2082 		return PTR_ERR(root);
2083 	}
2084 
2085 	key.objectid = inum;
2086 	key.type = BTRFS_EXTENT_DATA_KEY;
2087 	if (offset > (u64)-1 << 32)
2088 		key.offset = 0;
2089 	else
2090 		key.offset = offset;
2091 
2092 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2093 	if (WARN_ON(ret < 0))
2094 		return ret;
2095 	ret = 0;
2096 
2097 	while (1) {
2098 		cond_resched();
2099 
2100 		leaf = path->nodes[0];
2101 		slot = path->slots[0];
2102 
2103 		if (slot >= btrfs_header_nritems(leaf)) {
2104 			ret = btrfs_next_leaf(root, path);
2105 			if (ret < 0) {
2106 				goto out;
2107 			} else if (ret > 0) {
2108 				ret = 0;
2109 				goto out;
2110 			}
2111 			continue;
2112 		}
2113 
2114 		path->slots[0]++;
2115 
2116 		btrfs_item_key_to_cpu(leaf, &key, slot);
2117 
2118 		if (key.objectid > inum)
2119 			goto out;
2120 
2121 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2122 			continue;
2123 
2124 		extent = btrfs_item_ptr(leaf, slot,
2125 					struct btrfs_file_extent_item);
2126 
2127 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2128 			continue;
2129 
2130 		/*
2131 		 * 'offset' refers to the exact key.offset,
2132 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2133 		 * (key.offset - extent_offset).
2134 		 */
2135 		if (key.offset != offset)
2136 			continue;
2137 
2138 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2139 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2140 
2141 		if (extent_offset >= old->extent_offset + old->offset +
2142 		    old->len || extent_offset + num_bytes <=
2143 		    old->extent_offset + old->offset)
2144 			continue;
2145 		break;
2146 	}
2147 
2148 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2149 	if (!backref) {
2150 		ret = -ENOENT;
2151 		goto out;
2152 	}
2153 
2154 	backref->root_id = root_id;
2155 	backref->inum = inum;
2156 	backref->file_pos = offset;
2157 	backref->num_bytes = num_bytes;
2158 	backref->extent_offset = extent_offset;
2159 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2160 	backref->old = old;
2161 	backref_insert(&new->root, backref);
2162 	old->count++;
2163 out:
2164 	btrfs_release_path(path);
2165 	WARN_ON(ret);
2166 	return ret;
2167 }
2168 
2169 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2170 				   struct new_sa_defrag_extent *new)
2171 {
2172 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2173 	struct old_sa_defrag_extent *old, *tmp;
2174 	int ret;
2175 
2176 	new->path = path;
2177 
2178 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2179 		ret = iterate_inodes_from_logical(old->bytenr +
2180 						  old->extent_offset, fs_info,
2181 						  path, record_one_backref,
2182 						  old);
2183 		if (ret < 0 && ret != -ENOENT)
2184 			return false;
2185 
2186 		/* no backref to be processed for this extent */
2187 		if (!old->count) {
2188 			list_del(&old->list);
2189 			kfree(old);
2190 		}
2191 	}
2192 
2193 	if (list_empty(&new->head))
2194 		return false;
2195 
2196 	return true;
2197 }
2198 
2199 static int relink_is_mergable(struct extent_buffer *leaf,
2200 			      struct btrfs_file_extent_item *fi,
2201 			      struct new_sa_defrag_extent *new)
2202 {
2203 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2204 		return 0;
2205 
2206 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2207 		return 0;
2208 
2209 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2210 		return 0;
2211 
2212 	if (btrfs_file_extent_encryption(leaf, fi) ||
2213 	    btrfs_file_extent_other_encoding(leaf, fi))
2214 		return 0;
2215 
2216 	return 1;
2217 }
2218 
2219 /*
2220  * Note the backref might has changed, and in this case we just return 0.
2221  */
2222 static noinline int relink_extent_backref(struct btrfs_path *path,
2223 				 struct sa_defrag_extent_backref *prev,
2224 				 struct sa_defrag_extent_backref *backref)
2225 {
2226 	struct btrfs_file_extent_item *extent;
2227 	struct btrfs_file_extent_item *item;
2228 	struct btrfs_ordered_extent *ordered;
2229 	struct btrfs_trans_handle *trans;
2230 	struct btrfs_fs_info *fs_info;
2231 	struct btrfs_root *root;
2232 	struct btrfs_key key;
2233 	struct extent_buffer *leaf;
2234 	struct old_sa_defrag_extent *old = backref->old;
2235 	struct new_sa_defrag_extent *new = old->new;
2236 	struct inode *src_inode = new->inode;
2237 	struct inode *inode;
2238 	struct extent_state *cached = NULL;
2239 	int ret = 0;
2240 	u64 start;
2241 	u64 len;
2242 	u64 lock_start;
2243 	u64 lock_end;
2244 	bool merge = false;
2245 	int index;
2246 
2247 	if (prev && prev->root_id == backref->root_id &&
2248 	    prev->inum == backref->inum &&
2249 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2250 		merge = true;
2251 
2252 	/* step 1: get root */
2253 	key.objectid = backref->root_id;
2254 	key.type = BTRFS_ROOT_ITEM_KEY;
2255 	key.offset = (u64)-1;
2256 
2257 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2258 	index = srcu_read_lock(&fs_info->subvol_srcu);
2259 
2260 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2261 	if (IS_ERR(root)) {
2262 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2263 		if (PTR_ERR(root) == -ENOENT)
2264 			return 0;
2265 		return PTR_ERR(root);
2266 	}
2267 
2268 	if (btrfs_root_readonly(root)) {
2269 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2270 		return 0;
2271 	}
2272 
2273 	/* step 2: get inode */
2274 	key.objectid = backref->inum;
2275 	key.type = BTRFS_INODE_ITEM_KEY;
2276 	key.offset = 0;
2277 
2278 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2279 	if (IS_ERR(inode)) {
2280 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2281 		return 0;
2282 	}
2283 
2284 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2285 
2286 	/* step 3: relink backref */
2287 	lock_start = backref->file_pos;
2288 	lock_end = backref->file_pos + backref->num_bytes - 1;
2289 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2290 			 0, &cached);
2291 
2292 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2293 	if (ordered) {
2294 		btrfs_put_ordered_extent(ordered);
2295 		goto out_unlock;
2296 	}
2297 
2298 	trans = btrfs_join_transaction(root);
2299 	if (IS_ERR(trans)) {
2300 		ret = PTR_ERR(trans);
2301 		goto out_unlock;
2302 	}
2303 
2304 	key.objectid = backref->inum;
2305 	key.type = BTRFS_EXTENT_DATA_KEY;
2306 	key.offset = backref->file_pos;
2307 
2308 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2309 	if (ret < 0) {
2310 		goto out_free_path;
2311 	} else if (ret > 0) {
2312 		ret = 0;
2313 		goto out_free_path;
2314 	}
2315 
2316 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2317 				struct btrfs_file_extent_item);
2318 
2319 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2320 	    backref->generation)
2321 		goto out_free_path;
2322 
2323 	btrfs_release_path(path);
2324 
2325 	start = backref->file_pos;
2326 	if (backref->extent_offset < old->extent_offset + old->offset)
2327 		start += old->extent_offset + old->offset -
2328 			 backref->extent_offset;
2329 
2330 	len = min(backref->extent_offset + backref->num_bytes,
2331 		  old->extent_offset + old->offset + old->len);
2332 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2333 
2334 	ret = btrfs_drop_extents(trans, root, inode, start,
2335 				 start + len, 1);
2336 	if (ret)
2337 		goto out_free_path;
2338 again:
2339 	key.objectid = btrfs_ino(inode);
2340 	key.type = BTRFS_EXTENT_DATA_KEY;
2341 	key.offset = start;
2342 
2343 	path->leave_spinning = 1;
2344 	if (merge) {
2345 		struct btrfs_file_extent_item *fi;
2346 		u64 extent_len;
2347 		struct btrfs_key found_key;
2348 
2349 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2350 		if (ret < 0)
2351 			goto out_free_path;
2352 
2353 		path->slots[0]--;
2354 		leaf = path->nodes[0];
2355 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2356 
2357 		fi = btrfs_item_ptr(leaf, path->slots[0],
2358 				    struct btrfs_file_extent_item);
2359 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2360 
2361 		if (extent_len + found_key.offset == start &&
2362 		    relink_is_mergable(leaf, fi, new)) {
2363 			btrfs_set_file_extent_num_bytes(leaf, fi,
2364 							extent_len + len);
2365 			btrfs_mark_buffer_dirty(leaf);
2366 			inode_add_bytes(inode, len);
2367 
2368 			ret = 1;
2369 			goto out_free_path;
2370 		} else {
2371 			merge = false;
2372 			btrfs_release_path(path);
2373 			goto again;
2374 		}
2375 	}
2376 
2377 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2378 					sizeof(*extent));
2379 	if (ret) {
2380 		btrfs_abort_transaction(trans, root, ret);
2381 		goto out_free_path;
2382 	}
2383 
2384 	leaf = path->nodes[0];
2385 	item = btrfs_item_ptr(leaf, path->slots[0],
2386 				struct btrfs_file_extent_item);
2387 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2388 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2389 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2390 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2391 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2392 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2393 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2394 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2395 	btrfs_set_file_extent_encryption(leaf, item, 0);
2396 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2397 
2398 	btrfs_mark_buffer_dirty(leaf);
2399 	inode_add_bytes(inode, len);
2400 	btrfs_release_path(path);
2401 
2402 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2403 			new->disk_len, 0,
2404 			backref->root_id, backref->inum,
2405 			new->file_pos, 0);	/* start - extent_offset */
2406 	if (ret) {
2407 		btrfs_abort_transaction(trans, root, ret);
2408 		goto out_free_path;
2409 	}
2410 
2411 	ret = 1;
2412 out_free_path:
2413 	btrfs_release_path(path);
2414 	path->leave_spinning = 0;
2415 	btrfs_end_transaction(trans, root);
2416 out_unlock:
2417 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2418 			     &cached, GFP_NOFS);
2419 	iput(inode);
2420 	return ret;
2421 }
2422 
2423 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2424 {
2425 	struct old_sa_defrag_extent *old, *tmp;
2426 
2427 	if (!new)
2428 		return;
2429 
2430 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2431 		list_del(&old->list);
2432 		kfree(old);
2433 	}
2434 	kfree(new);
2435 }
2436 
2437 static void relink_file_extents(struct new_sa_defrag_extent *new)
2438 {
2439 	struct btrfs_path *path;
2440 	struct sa_defrag_extent_backref *backref;
2441 	struct sa_defrag_extent_backref *prev = NULL;
2442 	struct inode *inode;
2443 	struct btrfs_root *root;
2444 	struct rb_node *node;
2445 	int ret;
2446 
2447 	inode = new->inode;
2448 	root = BTRFS_I(inode)->root;
2449 
2450 	path = btrfs_alloc_path();
2451 	if (!path)
2452 		return;
2453 
2454 	if (!record_extent_backrefs(path, new)) {
2455 		btrfs_free_path(path);
2456 		goto out;
2457 	}
2458 	btrfs_release_path(path);
2459 
2460 	while (1) {
2461 		node = rb_first(&new->root);
2462 		if (!node)
2463 			break;
2464 		rb_erase(node, &new->root);
2465 
2466 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2467 
2468 		ret = relink_extent_backref(path, prev, backref);
2469 		WARN_ON(ret < 0);
2470 
2471 		kfree(prev);
2472 
2473 		if (ret == 1)
2474 			prev = backref;
2475 		else
2476 			prev = NULL;
2477 		cond_resched();
2478 	}
2479 	kfree(prev);
2480 
2481 	btrfs_free_path(path);
2482 out:
2483 	free_sa_defrag_extent(new);
2484 
2485 	atomic_dec(&root->fs_info->defrag_running);
2486 	wake_up(&root->fs_info->transaction_wait);
2487 }
2488 
2489 static struct new_sa_defrag_extent *
2490 record_old_file_extents(struct inode *inode,
2491 			struct btrfs_ordered_extent *ordered)
2492 {
2493 	struct btrfs_root *root = BTRFS_I(inode)->root;
2494 	struct btrfs_path *path;
2495 	struct btrfs_key key;
2496 	struct old_sa_defrag_extent *old;
2497 	struct new_sa_defrag_extent *new;
2498 	int ret;
2499 
2500 	new = kmalloc(sizeof(*new), GFP_NOFS);
2501 	if (!new)
2502 		return NULL;
2503 
2504 	new->inode = inode;
2505 	new->file_pos = ordered->file_offset;
2506 	new->len = ordered->len;
2507 	new->bytenr = ordered->start;
2508 	new->disk_len = ordered->disk_len;
2509 	new->compress_type = ordered->compress_type;
2510 	new->root = RB_ROOT;
2511 	INIT_LIST_HEAD(&new->head);
2512 
2513 	path = btrfs_alloc_path();
2514 	if (!path)
2515 		goto out_kfree;
2516 
2517 	key.objectid = btrfs_ino(inode);
2518 	key.type = BTRFS_EXTENT_DATA_KEY;
2519 	key.offset = new->file_pos;
2520 
2521 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2522 	if (ret < 0)
2523 		goto out_free_path;
2524 	if (ret > 0 && path->slots[0] > 0)
2525 		path->slots[0]--;
2526 
2527 	/* find out all the old extents for the file range */
2528 	while (1) {
2529 		struct btrfs_file_extent_item *extent;
2530 		struct extent_buffer *l;
2531 		int slot;
2532 		u64 num_bytes;
2533 		u64 offset;
2534 		u64 end;
2535 		u64 disk_bytenr;
2536 		u64 extent_offset;
2537 
2538 		l = path->nodes[0];
2539 		slot = path->slots[0];
2540 
2541 		if (slot >= btrfs_header_nritems(l)) {
2542 			ret = btrfs_next_leaf(root, path);
2543 			if (ret < 0)
2544 				goto out_free_path;
2545 			else if (ret > 0)
2546 				break;
2547 			continue;
2548 		}
2549 
2550 		btrfs_item_key_to_cpu(l, &key, slot);
2551 
2552 		if (key.objectid != btrfs_ino(inode))
2553 			break;
2554 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2555 			break;
2556 		if (key.offset >= new->file_pos + new->len)
2557 			break;
2558 
2559 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2560 
2561 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2562 		if (key.offset + num_bytes < new->file_pos)
2563 			goto next;
2564 
2565 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2566 		if (!disk_bytenr)
2567 			goto next;
2568 
2569 		extent_offset = btrfs_file_extent_offset(l, extent);
2570 
2571 		old = kmalloc(sizeof(*old), GFP_NOFS);
2572 		if (!old)
2573 			goto out_free_path;
2574 
2575 		offset = max(new->file_pos, key.offset);
2576 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2577 
2578 		old->bytenr = disk_bytenr;
2579 		old->extent_offset = extent_offset;
2580 		old->offset = offset - key.offset;
2581 		old->len = end - offset;
2582 		old->new = new;
2583 		old->count = 0;
2584 		list_add_tail(&old->list, &new->head);
2585 next:
2586 		path->slots[0]++;
2587 		cond_resched();
2588 	}
2589 
2590 	btrfs_free_path(path);
2591 	atomic_inc(&root->fs_info->defrag_running);
2592 
2593 	return new;
2594 
2595 out_free_path:
2596 	btrfs_free_path(path);
2597 out_kfree:
2598 	free_sa_defrag_extent(new);
2599 	return NULL;
2600 }
2601 
2602 /* as ordered data IO finishes, this gets called so we can finish
2603  * an ordered extent if the range of bytes in the file it covers are
2604  * fully written.
2605  */
2606 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2607 {
2608 	struct inode *inode = ordered_extent->inode;
2609 	struct btrfs_root *root = BTRFS_I(inode)->root;
2610 	struct btrfs_trans_handle *trans = NULL;
2611 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2612 	struct extent_state *cached_state = NULL;
2613 	struct new_sa_defrag_extent *new = NULL;
2614 	int compress_type = 0;
2615 	int ret = 0;
2616 	u64 logical_len = ordered_extent->len;
2617 	bool nolock;
2618 	bool truncated = false;
2619 
2620 	nolock = btrfs_is_free_space_inode(inode);
2621 
2622 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2623 		ret = -EIO;
2624 		goto out;
2625 	}
2626 
2627 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2628 		truncated = true;
2629 		logical_len = ordered_extent->truncated_len;
2630 		/* Truncated the entire extent, don't bother adding */
2631 		if (!logical_len)
2632 			goto out;
2633 	}
2634 
2635 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2636 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2637 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2638 		if (nolock)
2639 			trans = btrfs_join_transaction_nolock(root);
2640 		else
2641 			trans = btrfs_join_transaction(root);
2642 		if (IS_ERR(trans)) {
2643 			ret = PTR_ERR(trans);
2644 			trans = NULL;
2645 			goto out;
2646 		}
2647 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2648 		ret = btrfs_update_inode_fallback(trans, root, inode);
2649 		if (ret) /* -ENOMEM or corruption */
2650 			btrfs_abort_transaction(trans, root, ret);
2651 		goto out;
2652 	}
2653 
2654 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2655 			 ordered_extent->file_offset + ordered_extent->len - 1,
2656 			 0, &cached_state);
2657 
2658 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2659 			ordered_extent->file_offset + ordered_extent->len - 1,
2660 			EXTENT_DEFRAG, 1, cached_state);
2661 	if (ret) {
2662 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2663 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2664 			/* the inode is shared */
2665 			new = record_old_file_extents(inode, ordered_extent);
2666 
2667 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2668 			ordered_extent->file_offset + ordered_extent->len - 1,
2669 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2670 	}
2671 
2672 	if (nolock)
2673 		trans = btrfs_join_transaction_nolock(root);
2674 	else
2675 		trans = btrfs_join_transaction(root);
2676 	if (IS_ERR(trans)) {
2677 		ret = PTR_ERR(trans);
2678 		trans = NULL;
2679 		goto out_unlock;
2680 	}
2681 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2682 
2683 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2684 		compress_type = ordered_extent->compress_type;
2685 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2686 		BUG_ON(compress_type);
2687 		ret = btrfs_mark_extent_written(trans, inode,
2688 						ordered_extent->file_offset,
2689 						ordered_extent->file_offset +
2690 						logical_len);
2691 	} else {
2692 		BUG_ON(root == root->fs_info->tree_root);
2693 		ret = insert_reserved_file_extent(trans, inode,
2694 						ordered_extent->file_offset,
2695 						ordered_extent->start,
2696 						ordered_extent->disk_len,
2697 						logical_len, logical_len,
2698 						compress_type, 0, 0,
2699 						BTRFS_FILE_EXTENT_REG);
2700 	}
2701 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2702 			   ordered_extent->file_offset, ordered_extent->len,
2703 			   trans->transid);
2704 	if (ret < 0) {
2705 		btrfs_abort_transaction(trans, root, ret);
2706 		goto out_unlock;
2707 	}
2708 
2709 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2710 			  &ordered_extent->list);
2711 
2712 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2713 	ret = btrfs_update_inode_fallback(trans, root, inode);
2714 	if (ret) { /* -ENOMEM or corruption */
2715 		btrfs_abort_transaction(trans, root, ret);
2716 		goto out_unlock;
2717 	}
2718 	ret = 0;
2719 out_unlock:
2720 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2721 			     ordered_extent->file_offset +
2722 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2723 out:
2724 	if (root != root->fs_info->tree_root)
2725 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2726 	if (trans)
2727 		btrfs_end_transaction(trans, root);
2728 
2729 	if (ret || truncated) {
2730 		u64 start, end;
2731 
2732 		if (truncated)
2733 			start = ordered_extent->file_offset + logical_len;
2734 		else
2735 			start = ordered_extent->file_offset;
2736 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2737 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2738 
2739 		/* Drop the cache for the part of the extent we didn't write. */
2740 		btrfs_drop_extent_cache(inode, start, end, 0);
2741 
2742 		/*
2743 		 * If the ordered extent had an IOERR or something else went
2744 		 * wrong we need to return the space for this ordered extent
2745 		 * back to the allocator.  We only free the extent in the
2746 		 * truncated case if we didn't write out the extent at all.
2747 		 */
2748 		if ((ret || !logical_len) &&
2749 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2750 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2751 			btrfs_free_reserved_extent(root, ordered_extent->start,
2752 						   ordered_extent->disk_len);
2753 	}
2754 
2755 
2756 	/*
2757 	 * This needs to be done to make sure anybody waiting knows we are done
2758 	 * updating everything for this ordered extent.
2759 	 */
2760 	btrfs_remove_ordered_extent(inode, ordered_extent);
2761 
2762 	/* for snapshot-aware defrag */
2763 	if (new) {
2764 		if (ret) {
2765 			free_sa_defrag_extent(new);
2766 			atomic_dec(&root->fs_info->defrag_running);
2767 		} else {
2768 			relink_file_extents(new);
2769 		}
2770 	}
2771 
2772 	/* once for us */
2773 	btrfs_put_ordered_extent(ordered_extent);
2774 	/* once for the tree */
2775 	btrfs_put_ordered_extent(ordered_extent);
2776 
2777 	return ret;
2778 }
2779 
2780 static void finish_ordered_fn(struct btrfs_work *work)
2781 {
2782 	struct btrfs_ordered_extent *ordered_extent;
2783 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2784 	btrfs_finish_ordered_io(ordered_extent);
2785 }
2786 
2787 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2788 				struct extent_state *state, int uptodate)
2789 {
2790 	struct inode *inode = page->mapping->host;
2791 	struct btrfs_root *root = BTRFS_I(inode)->root;
2792 	struct btrfs_ordered_extent *ordered_extent = NULL;
2793 	struct btrfs_workqueue *workers;
2794 
2795 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2796 
2797 	ClearPagePrivate2(page);
2798 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2799 					    end - start + 1, uptodate))
2800 		return 0;
2801 
2802 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2803 
2804 	if (btrfs_is_free_space_inode(inode))
2805 		workers = root->fs_info->endio_freespace_worker;
2806 	else
2807 		workers = root->fs_info->endio_write_workers;
2808 	btrfs_queue_work(workers, &ordered_extent->work);
2809 
2810 	return 0;
2811 }
2812 
2813 /*
2814  * when reads are done, we need to check csums to verify the data is correct
2815  * if there's a match, we allow the bio to finish.  If not, the code in
2816  * extent_io.c will try to find good copies for us.
2817  */
2818 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2819 				      u64 phy_offset, struct page *page,
2820 				      u64 start, u64 end, int mirror)
2821 {
2822 	size_t offset = start - page_offset(page);
2823 	struct inode *inode = page->mapping->host;
2824 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2825 	char *kaddr;
2826 	struct btrfs_root *root = BTRFS_I(inode)->root;
2827 	u32 csum_expected;
2828 	u32 csum = ~(u32)0;
2829 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2830 	                              DEFAULT_RATELIMIT_BURST);
2831 
2832 	if (PageChecked(page)) {
2833 		ClearPageChecked(page);
2834 		goto good;
2835 	}
2836 
2837 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2838 		goto good;
2839 
2840 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2841 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2842 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2843 				  GFP_NOFS);
2844 		return 0;
2845 	}
2846 
2847 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2848 	csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2849 
2850 	kaddr = kmap_atomic(page);
2851 	csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2852 	btrfs_csum_final(csum, (char *)&csum);
2853 	if (csum != csum_expected)
2854 		goto zeroit;
2855 
2856 	kunmap_atomic(kaddr);
2857 good:
2858 	return 0;
2859 
2860 zeroit:
2861 	if (__ratelimit(&_rs))
2862 		btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2863 			btrfs_ino(page->mapping->host), start, csum, csum_expected);
2864 	memset(kaddr + offset, 1, end - start + 1);
2865 	flush_dcache_page(page);
2866 	kunmap_atomic(kaddr);
2867 	if (csum_expected == 0)
2868 		return 0;
2869 	return -EIO;
2870 }
2871 
2872 struct delayed_iput {
2873 	struct list_head list;
2874 	struct inode *inode;
2875 };
2876 
2877 /* JDM: If this is fs-wide, why can't we add a pointer to
2878  * btrfs_inode instead and avoid the allocation? */
2879 void btrfs_add_delayed_iput(struct inode *inode)
2880 {
2881 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2882 	struct delayed_iput *delayed;
2883 
2884 	if (atomic_add_unless(&inode->i_count, -1, 1))
2885 		return;
2886 
2887 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2888 	delayed->inode = inode;
2889 
2890 	spin_lock(&fs_info->delayed_iput_lock);
2891 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2892 	spin_unlock(&fs_info->delayed_iput_lock);
2893 }
2894 
2895 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2896 {
2897 	LIST_HEAD(list);
2898 	struct btrfs_fs_info *fs_info = root->fs_info;
2899 	struct delayed_iput *delayed;
2900 	int empty;
2901 
2902 	spin_lock(&fs_info->delayed_iput_lock);
2903 	empty = list_empty(&fs_info->delayed_iputs);
2904 	spin_unlock(&fs_info->delayed_iput_lock);
2905 	if (empty)
2906 		return;
2907 
2908 	spin_lock(&fs_info->delayed_iput_lock);
2909 	list_splice_init(&fs_info->delayed_iputs, &list);
2910 	spin_unlock(&fs_info->delayed_iput_lock);
2911 
2912 	while (!list_empty(&list)) {
2913 		delayed = list_entry(list.next, struct delayed_iput, list);
2914 		list_del(&delayed->list);
2915 		iput(delayed->inode);
2916 		kfree(delayed);
2917 	}
2918 }
2919 
2920 /*
2921  * This is called in transaction commit time. If there are no orphan
2922  * files in the subvolume, it removes orphan item and frees block_rsv
2923  * structure.
2924  */
2925 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2926 			      struct btrfs_root *root)
2927 {
2928 	struct btrfs_block_rsv *block_rsv;
2929 	int ret;
2930 
2931 	if (atomic_read(&root->orphan_inodes) ||
2932 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2933 		return;
2934 
2935 	spin_lock(&root->orphan_lock);
2936 	if (atomic_read(&root->orphan_inodes)) {
2937 		spin_unlock(&root->orphan_lock);
2938 		return;
2939 	}
2940 
2941 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2942 		spin_unlock(&root->orphan_lock);
2943 		return;
2944 	}
2945 
2946 	block_rsv = root->orphan_block_rsv;
2947 	root->orphan_block_rsv = NULL;
2948 	spin_unlock(&root->orphan_lock);
2949 
2950 	if (root->orphan_item_inserted &&
2951 	    btrfs_root_refs(&root->root_item) > 0) {
2952 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2953 					    root->root_key.objectid);
2954 		if (ret)
2955 			btrfs_abort_transaction(trans, root, ret);
2956 		else
2957 			root->orphan_item_inserted = 0;
2958 	}
2959 
2960 	if (block_rsv) {
2961 		WARN_ON(block_rsv->size > 0);
2962 		btrfs_free_block_rsv(root, block_rsv);
2963 	}
2964 }
2965 
2966 /*
2967  * This creates an orphan entry for the given inode in case something goes
2968  * wrong in the middle of an unlink/truncate.
2969  *
2970  * NOTE: caller of this function should reserve 5 units of metadata for
2971  *	 this function.
2972  */
2973 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2974 {
2975 	struct btrfs_root *root = BTRFS_I(inode)->root;
2976 	struct btrfs_block_rsv *block_rsv = NULL;
2977 	int reserve = 0;
2978 	int insert = 0;
2979 	int ret;
2980 
2981 	if (!root->orphan_block_rsv) {
2982 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2983 		if (!block_rsv)
2984 			return -ENOMEM;
2985 	}
2986 
2987 	spin_lock(&root->orphan_lock);
2988 	if (!root->orphan_block_rsv) {
2989 		root->orphan_block_rsv = block_rsv;
2990 	} else if (block_rsv) {
2991 		btrfs_free_block_rsv(root, block_rsv);
2992 		block_rsv = NULL;
2993 	}
2994 
2995 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2996 			      &BTRFS_I(inode)->runtime_flags)) {
2997 #if 0
2998 		/*
2999 		 * For proper ENOSPC handling, we should do orphan
3000 		 * cleanup when mounting. But this introduces backward
3001 		 * compatibility issue.
3002 		 */
3003 		if (!xchg(&root->orphan_item_inserted, 1))
3004 			insert = 2;
3005 		else
3006 			insert = 1;
3007 #endif
3008 		insert = 1;
3009 		atomic_inc(&root->orphan_inodes);
3010 	}
3011 
3012 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3013 			      &BTRFS_I(inode)->runtime_flags))
3014 		reserve = 1;
3015 	spin_unlock(&root->orphan_lock);
3016 
3017 	/* grab metadata reservation from transaction handle */
3018 	if (reserve) {
3019 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3020 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3021 	}
3022 
3023 	/* insert an orphan item to track this unlinked/truncated file */
3024 	if (insert >= 1) {
3025 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3026 		if (ret) {
3027 			atomic_dec(&root->orphan_inodes);
3028 			if (reserve) {
3029 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3030 					  &BTRFS_I(inode)->runtime_flags);
3031 				btrfs_orphan_release_metadata(inode);
3032 			}
3033 			if (ret != -EEXIST) {
3034 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3035 					  &BTRFS_I(inode)->runtime_flags);
3036 				btrfs_abort_transaction(trans, root, ret);
3037 				return ret;
3038 			}
3039 		}
3040 		ret = 0;
3041 	}
3042 
3043 	/* insert an orphan item to track subvolume contains orphan files */
3044 	if (insert >= 2) {
3045 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3046 					       root->root_key.objectid);
3047 		if (ret && ret != -EEXIST) {
3048 			btrfs_abort_transaction(trans, root, ret);
3049 			return ret;
3050 		}
3051 	}
3052 	return 0;
3053 }
3054 
3055 /*
3056  * We have done the truncate/delete so we can go ahead and remove the orphan
3057  * item for this particular inode.
3058  */
3059 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3060 			    struct inode *inode)
3061 {
3062 	struct btrfs_root *root = BTRFS_I(inode)->root;
3063 	int delete_item = 0;
3064 	int release_rsv = 0;
3065 	int ret = 0;
3066 
3067 	spin_lock(&root->orphan_lock);
3068 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3069 			       &BTRFS_I(inode)->runtime_flags))
3070 		delete_item = 1;
3071 
3072 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3073 			       &BTRFS_I(inode)->runtime_flags))
3074 		release_rsv = 1;
3075 	spin_unlock(&root->orphan_lock);
3076 
3077 	if (delete_item) {
3078 		atomic_dec(&root->orphan_inodes);
3079 		if (trans)
3080 			ret = btrfs_del_orphan_item(trans, root,
3081 						    btrfs_ino(inode));
3082 	}
3083 
3084 	if (release_rsv)
3085 		btrfs_orphan_release_metadata(inode);
3086 
3087 	return ret;
3088 }
3089 
3090 /*
3091  * this cleans up any orphans that may be left on the list from the last use
3092  * of this root.
3093  */
3094 int btrfs_orphan_cleanup(struct btrfs_root *root)
3095 {
3096 	struct btrfs_path *path;
3097 	struct extent_buffer *leaf;
3098 	struct btrfs_key key, found_key;
3099 	struct btrfs_trans_handle *trans;
3100 	struct inode *inode;
3101 	u64 last_objectid = 0;
3102 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3103 
3104 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3105 		return 0;
3106 
3107 	path = btrfs_alloc_path();
3108 	if (!path) {
3109 		ret = -ENOMEM;
3110 		goto out;
3111 	}
3112 	path->reada = -1;
3113 
3114 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3115 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3116 	key.offset = (u64)-1;
3117 
3118 	while (1) {
3119 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3120 		if (ret < 0)
3121 			goto out;
3122 
3123 		/*
3124 		 * if ret == 0 means we found what we were searching for, which
3125 		 * is weird, but possible, so only screw with path if we didn't
3126 		 * find the key and see if we have stuff that matches
3127 		 */
3128 		if (ret > 0) {
3129 			ret = 0;
3130 			if (path->slots[0] == 0)
3131 				break;
3132 			path->slots[0]--;
3133 		}
3134 
3135 		/* pull out the item */
3136 		leaf = path->nodes[0];
3137 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3138 
3139 		/* make sure the item matches what we want */
3140 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3141 			break;
3142 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3143 			break;
3144 
3145 		/* release the path since we're done with it */
3146 		btrfs_release_path(path);
3147 
3148 		/*
3149 		 * this is where we are basically btrfs_lookup, without the
3150 		 * crossing root thing.  we store the inode number in the
3151 		 * offset of the orphan item.
3152 		 */
3153 
3154 		if (found_key.offset == last_objectid) {
3155 			btrfs_err(root->fs_info,
3156 				"Error removing orphan entry, stopping orphan cleanup");
3157 			ret = -EINVAL;
3158 			goto out;
3159 		}
3160 
3161 		last_objectid = found_key.offset;
3162 
3163 		found_key.objectid = found_key.offset;
3164 		found_key.type = BTRFS_INODE_ITEM_KEY;
3165 		found_key.offset = 0;
3166 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3167 		ret = PTR_ERR_OR_ZERO(inode);
3168 		if (ret && ret != -ESTALE)
3169 			goto out;
3170 
3171 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3172 			struct btrfs_root *dead_root;
3173 			struct btrfs_fs_info *fs_info = root->fs_info;
3174 			int is_dead_root = 0;
3175 
3176 			/*
3177 			 * this is an orphan in the tree root. Currently these
3178 			 * could come from 2 sources:
3179 			 *  a) a snapshot deletion in progress
3180 			 *  b) a free space cache inode
3181 			 * We need to distinguish those two, as the snapshot
3182 			 * orphan must not get deleted.
3183 			 * find_dead_roots already ran before us, so if this
3184 			 * is a snapshot deletion, we should find the root
3185 			 * in the dead_roots list
3186 			 */
3187 			spin_lock(&fs_info->trans_lock);
3188 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3189 					    root_list) {
3190 				if (dead_root->root_key.objectid ==
3191 				    found_key.objectid) {
3192 					is_dead_root = 1;
3193 					break;
3194 				}
3195 			}
3196 			spin_unlock(&fs_info->trans_lock);
3197 			if (is_dead_root) {
3198 				/* prevent this orphan from being found again */
3199 				key.offset = found_key.objectid - 1;
3200 				continue;
3201 			}
3202 		}
3203 		/*
3204 		 * Inode is already gone but the orphan item is still there,
3205 		 * kill the orphan item.
3206 		 */
3207 		if (ret == -ESTALE) {
3208 			trans = btrfs_start_transaction(root, 1);
3209 			if (IS_ERR(trans)) {
3210 				ret = PTR_ERR(trans);
3211 				goto out;
3212 			}
3213 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3214 				found_key.objectid);
3215 			ret = btrfs_del_orphan_item(trans, root,
3216 						    found_key.objectid);
3217 			btrfs_end_transaction(trans, root);
3218 			if (ret)
3219 				goto out;
3220 			continue;
3221 		}
3222 
3223 		/*
3224 		 * add this inode to the orphan list so btrfs_orphan_del does
3225 		 * the proper thing when we hit it
3226 		 */
3227 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3228 			&BTRFS_I(inode)->runtime_flags);
3229 		atomic_inc(&root->orphan_inodes);
3230 
3231 		/* if we have links, this was a truncate, lets do that */
3232 		if (inode->i_nlink) {
3233 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3234 				iput(inode);
3235 				continue;
3236 			}
3237 			nr_truncate++;
3238 
3239 			/* 1 for the orphan item deletion. */
3240 			trans = btrfs_start_transaction(root, 1);
3241 			if (IS_ERR(trans)) {
3242 				iput(inode);
3243 				ret = PTR_ERR(trans);
3244 				goto out;
3245 			}
3246 			ret = btrfs_orphan_add(trans, inode);
3247 			btrfs_end_transaction(trans, root);
3248 			if (ret) {
3249 				iput(inode);
3250 				goto out;
3251 			}
3252 
3253 			ret = btrfs_truncate(inode);
3254 			if (ret)
3255 				btrfs_orphan_del(NULL, inode);
3256 		} else {
3257 			nr_unlink++;
3258 		}
3259 
3260 		/* this will do delete_inode and everything for us */
3261 		iput(inode);
3262 		if (ret)
3263 			goto out;
3264 	}
3265 	/* release the path since we're done with it */
3266 	btrfs_release_path(path);
3267 
3268 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3269 
3270 	if (root->orphan_block_rsv)
3271 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3272 					(u64)-1);
3273 
3274 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
3275 		trans = btrfs_join_transaction(root);
3276 		if (!IS_ERR(trans))
3277 			btrfs_end_transaction(trans, root);
3278 	}
3279 
3280 	if (nr_unlink)
3281 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3282 	if (nr_truncate)
3283 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3284 
3285 out:
3286 	if (ret)
3287 		btrfs_crit(root->fs_info,
3288 			"could not do orphan cleanup %d", ret);
3289 	btrfs_free_path(path);
3290 	return ret;
3291 }
3292 
3293 /*
3294  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3295  * don't find any xattrs, we know there can't be any acls.
3296  *
3297  * slot is the slot the inode is in, objectid is the objectid of the inode
3298  */
3299 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3300 					  int slot, u64 objectid,
3301 					  int *first_xattr_slot)
3302 {
3303 	u32 nritems = btrfs_header_nritems(leaf);
3304 	struct btrfs_key found_key;
3305 	static u64 xattr_access = 0;
3306 	static u64 xattr_default = 0;
3307 	int scanned = 0;
3308 
3309 	if (!xattr_access) {
3310 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3311 					strlen(POSIX_ACL_XATTR_ACCESS));
3312 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3313 					strlen(POSIX_ACL_XATTR_DEFAULT));
3314 	}
3315 
3316 	slot++;
3317 	*first_xattr_slot = -1;
3318 	while (slot < nritems) {
3319 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3320 
3321 		/* we found a different objectid, there must not be acls */
3322 		if (found_key.objectid != objectid)
3323 			return 0;
3324 
3325 		/* we found an xattr, assume we've got an acl */
3326 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3327 			if (*first_xattr_slot == -1)
3328 				*first_xattr_slot = slot;
3329 			if (found_key.offset == xattr_access ||
3330 			    found_key.offset == xattr_default)
3331 				return 1;
3332 		}
3333 
3334 		/*
3335 		 * we found a key greater than an xattr key, there can't
3336 		 * be any acls later on
3337 		 */
3338 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3339 			return 0;
3340 
3341 		slot++;
3342 		scanned++;
3343 
3344 		/*
3345 		 * it goes inode, inode backrefs, xattrs, extents,
3346 		 * so if there are a ton of hard links to an inode there can
3347 		 * be a lot of backrefs.  Don't waste time searching too hard,
3348 		 * this is just an optimization
3349 		 */
3350 		if (scanned >= 8)
3351 			break;
3352 	}
3353 	/* we hit the end of the leaf before we found an xattr or
3354 	 * something larger than an xattr.  We have to assume the inode
3355 	 * has acls
3356 	 */
3357 	if (*first_xattr_slot == -1)
3358 		*first_xattr_slot = slot;
3359 	return 1;
3360 }
3361 
3362 /*
3363  * read an inode from the btree into the in-memory inode
3364  */
3365 static void btrfs_read_locked_inode(struct inode *inode)
3366 {
3367 	struct btrfs_path *path;
3368 	struct extent_buffer *leaf;
3369 	struct btrfs_inode_item *inode_item;
3370 	struct btrfs_timespec *tspec;
3371 	struct btrfs_root *root = BTRFS_I(inode)->root;
3372 	struct btrfs_key location;
3373 	unsigned long ptr;
3374 	int maybe_acls;
3375 	u32 rdev;
3376 	int ret;
3377 	bool filled = false;
3378 	int first_xattr_slot;
3379 
3380 	ret = btrfs_fill_inode(inode, &rdev);
3381 	if (!ret)
3382 		filled = true;
3383 
3384 	path = btrfs_alloc_path();
3385 	if (!path)
3386 		goto make_bad;
3387 
3388 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3389 
3390 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3391 	if (ret)
3392 		goto make_bad;
3393 
3394 	leaf = path->nodes[0];
3395 
3396 	if (filled)
3397 		goto cache_index;
3398 
3399 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3400 				    struct btrfs_inode_item);
3401 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3402 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3403 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3404 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3405 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3406 
3407 	tspec = btrfs_inode_atime(inode_item);
3408 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3409 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3410 
3411 	tspec = btrfs_inode_mtime(inode_item);
3412 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3413 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3414 
3415 	tspec = btrfs_inode_ctime(inode_item);
3416 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3417 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3418 
3419 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3420 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3421 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3422 
3423 	/*
3424 	 * If we were modified in the current generation and evicted from memory
3425 	 * and then re-read we need to do a full sync since we don't have any
3426 	 * idea about which extents were modified before we were evicted from
3427 	 * cache.
3428 	 */
3429 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3430 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3431 			&BTRFS_I(inode)->runtime_flags);
3432 
3433 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3434 	inode->i_generation = BTRFS_I(inode)->generation;
3435 	inode->i_rdev = 0;
3436 	rdev = btrfs_inode_rdev(leaf, inode_item);
3437 
3438 	BTRFS_I(inode)->index_cnt = (u64)-1;
3439 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3440 
3441 cache_index:
3442 	path->slots[0]++;
3443 	if (inode->i_nlink != 1 ||
3444 	    path->slots[0] >= btrfs_header_nritems(leaf))
3445 		goto cache_acl;
3446 
3447 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3448 	if (location.objectid != btrfs_ino(inode))
3449 		goto cache_acl;
3450 
3451 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3452 	if (location.type == BTRFS_INODE_REF_KEY) {
3453 		struct btrfs_inode_ref *ref;
3454 
3455 		ref = (struct btrfs_inode_ref *)ptr;
3456 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3457 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3458 		struct btrfs_inode_extref *extref;
3459 
3460 		extref = (struct btrfs_inode_extref *)ptr;
3461 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3462 								     extref);
3463 	}
3464 cache_acl:
3465 	/*
3466 	 * try to precache a NULL acl entry for files that don't have
3467 	 * any xattrs or acls
3468 	 */
3469 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3470 					   btrfs_ino(inode), &first_xattr_slot);
3471 	if (first_xattr_slot != -1) {
3472 		path->slots[0] = first_xattr_slot;
3473 		ret = btrfs_load_inode_props(inode, path);
3474 		if (ret)
3475 			btrfs_err(root->fs_info,
3476 				  "error loading props for ino %llu (root %llu): %d\n",
3477 				  btrfs_ino(inode),
3478 				  root->root_key.objectid, ret);
3479 	}
3480 	btrfs_free_path(path);
3481 
3482 	if (!maybe_acls)
3483 		cache_no_acl(inode);
3484 
3485 	switch (inode->i_mode & S_IFMT) {
3486 	case S_IFREG:
3487 		inode->i_mapping->a_ops = &btrfs_aops;
3488 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3489 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3490 		inode->i_fop = &btrfs_file_operations;
3491 		inode->i_op = &btrfs_file_inode_operations;
3492 		break;
3493 	case S_IFDIR:
3494 		inode->i_fop = &btrfs_dir_file_operations;
3495 		if (root == root->fs_info->tree_root)
3496 			inode->i_op = &btrfs_dir_ro_inode_operations;
3497 		else
3498 			inode->i_op = &btrfs_dir_inode_operations;
3499 		break;
3500 	case S_IFLNK:
3501 		inode->i_op = &btrfs_symlink_inode_operations;
3502 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3503 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3504 		break;
3505 	default:
3506 		inode->i_op = &btrfs_special_inode_operations;
3507 		init_special_inode(inode, inode->i_mode, rdev);
3508 		break;
3509 	}
3510 
3511 	btrfs_update_iflags(inode);
3512 	return;
3513 
3514 make_bad:
3515 	btrfs_free_path(path);
3516 	make_bad_inode(inode);
3517 }
3518 
3519 /*
3520  * given a leaf and an inode, copy the inode fields into the leaf
3521  */
3522 static void fill_inode_item(struct btrfs_trans_handle *trans,
3523 			    struct extent_buffer *leaf,
3524 			    struct btrfs_inode_item *item,
3525 			    struct inode *inode)
3526 {
3527 	struct btrfs_map_token token;
3528 
3529 	btrfs_init_map_token(&token);
3530 
3531 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3532 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3533 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3534 				   &token);
3535 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3536 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3537 
3538 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3539 				     inode->i_atime.tv_sec, &token);
3540 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3541 				      inode->i_atime.tv_nsec, &token);
3542 
3543 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3544 				     inode->i_mtime.tv_sec, &token);
3545 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3546 				      inode->i_mtime.tv_nsec, &token);
3547 
3548 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3549 				     inode->i_ctime.tv_sec, &token);
3550 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3551 				      inode->i_ctime.tv_nsec, &token);
3552 
3553 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3554 				     &token);
3555 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3556 					 &token);
3557 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3558 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3559 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3560 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3561 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3562 }
3563 
3564 /*
3565  * copy everything in the in-memory inode into the btree.
3566  */
3567 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3568 				struct btrfs_root *root, struct inode *inode)
3569 {
3570 	struct btrfs_inode_item *inode_item;
3571 	struct btrfs_path *path;
3572 	struct extent_buffer *leaf;
3573 	int ret;
3574 
3575 	path = btrfs_alloc_path();
3576 	if (!path)
3577 		return -ENOMEM;
3578 
3579 	path->leave_spinning = 1;
3580 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3581 				 1);
3582 	if (ret) {
3583 		if (ret > 0)
3584 			ret = -ENOENT;
3585 		goto failed;
3586 	}
3587 
3588 	leaf = path->nodes[0];
3589 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3590 				    struct btrfs_inode_item);
3591 
3592 	fill_inode_item(trans, leaf, inode_item, inode);
3593 	btrfs_mark_buffer_dirty(leaf);
3594 	btrfs_set_inode_last_trans(trans, inode);
3595 	ret = 0;
3596 failed:
3597 	btrfs_free_path(path);
3598 	return ret;
3599 }
3600 
3601 /*
3602  * copy everything in the in-memory inode into the btree.
3603  */
3604 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3605 				struct btrfs_root *root, struct inode *inode)
3606 {
3607 	int ret;
3608 
3609 	/*
3610 	 * If the inode is a free space inode, we can deadlock during commit
3611 	 * if we put it into the delayed code.
3612 	 *
3613 	 * The data relocation inode should also be directly updated
3614 	 * without delay
3615 	 */
3616 	if (!btrfs_is_free_space_inode(inode)
3617 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3618 		btrfs_update_root_times(trans, root);
3619 
3620 		ret = btrfs_delayed_update_inode(trans, root, inode);
3621 		if (!ret)
3622 			btrfs_set_inode_last_trans(trans, inode);
3623 		return ret;
3624 	}
3625 
3626 	return btrfs_update_inode_item(trans, root, inode);
3627 }
3628 
3629 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3630 					 struct btrfs_root *root,
3631 					 struct inode *inode)
3632 {
3633 	int ret;
3634 
3635 	ret = btrfs_update_inode(trans, root, inode);
3636 	if (ret == -ENOSPC)
3637 		return btrfs_update_inode_item(trans, root, inode);
3638 	return ret;
3639 }
3640 
3641 /*
3642  * unlink helper that gets used here in inode.c and in the tree logging
3643  * recovery code.  It remove a link in a directory with a given name, and
3644  * also drops the back refs in the inode to the directory
3645  */
3646 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3647 				struct btrfs_root *root,
3648 				struct inode *dir, struct inode *inode,
3649 				const char *name, int name_len)
3650 {
3651 	struct btrfs_path *path;
3652 	int ret = 0;
3653 	struct extent_buffer *leaf;
3654 	struct btrfs_dir_item *di;
3655 	struct btrfs_key key;
3656 	u64 index;
3657 	u64 ino = btrfs_ino(inode);
3658 	u64 dir_ino = btrfs_ino(dir);
3659 
3660 	path = btrfs_alloc_path();
3661 	if (!path) {
3662 		ret = -ENOMEM;
3663 		goto out;
3664 	}
3665 
3666 	path->leave_spinning = 1;
3667 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3668 				    name, name_len, -1);
3669 	if (IS_ERR(di)) {
3670 		ret = PTR_ERR(di);
3671 		goto err;
3672 	}
3673 	if (!di) {
3674 		ret = -ENOENT;
3675 		goto err;
3676 	}
3677 	leaf = path->nodes[0];
3678 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3679 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3680 	if (ret)
3681 		goto err;
3682 	btrfs_release_path(path);
3683 
3684 	/*
3685 	 * If we don't have dir index, we have to get it by looking up
3686 	 * the inode ref, since we get the inode ref, remove it directly,
3687 	 * it is unnecessary to do delayed deletion.
3688 	 *
3689 	 * But if we have dir index, needn't search inode ref to get it.
3690 	 * Since the inode ref is close to the inode item, it is better
3691 	 * that we delay to delete it, and just do this deletion when
3692 	 * we update the inode item.
3693 	 */
3694 	if (BTRFS_I(inode)->dir_index) {
3695 		ret = btrfs_delayed_delete_inode_ref(inode);
3696 		if (!ret) {
3697 			index = BTRFS_I(inode)->dir_index;
3698 			goto skip_backref;
3699 		}
3700 	}
3701 
3702 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3703 				  dir_ino, &index);
3704 	if (ret) {
3705 		btrfs_info(root->fs_info,
3706 			"failed to delete reference to %.*s, inode %llu parent %llu",
3707 			name_len, name, ino, dir_ino);
3708 		btrfs_abort_transaction(trans, root, ret);
3709 		goto err;
3710 	}
3711 skip_backref:
3712 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3713 	if (ret) {
3714 		btrfs_abort_transaction(trans, root, ret);
3715 		goto err;
3716 	}
3717 
3718 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3719 					 inode, dir_ino);
3720 	if (ret != 0 && ret != -ENOENT) {
3721 		btrfs_abort_transaction(trans, root, ret);
3722 		goto err;
3723 	}
3724 
3725 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3726 					   dir, index);
3727 	if (ret == -ENOENT)
3728 		ret = 0;
3729 	else if (ret)
3730 		btrfs_abort_transaction(trans, root, ret);
3731 err:
3732 	btrfs_free_path(path);
3733 	if (ret)
3734 		goto out;
3735 
3736 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3737 	inode_inc_iversion(inode);
3738 	inode_inc_iversion(dir);
3739 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3740 	ret = btrfs_update_inode(trans, root, dir);
3741 out:
3742 	return ret;
3743 }
3744 
3745 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3746 		       struct btrfs_root *root,
3747 		       struct inode *dir, struct inode *inode,
3748 		       const char *name, int name_len)
3749 {
3750 	int ret;
3751 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3752 	if (!ret) {
3753 		drop_nlink(inode);
3754 		ret = btrfs_update_inode(trans, root, inode);
3755 	}
3756 	return ret;
3757 }
3758 
3759 /*
3760  * helper to start transaction for unlink and rmdir.
3761  *
3762  * unlink and rmdir are special in btrfs, they do not always free space, so
3763  * if we cannot make our reservations the normal way try and see if there is
3764  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3765  * allow the unlink to occur.
3766  */
3767 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3768 {
3769 	struct btrfs_trans_handle *trans;
3770 	struct btrfs_root *root = BTRFS_I(dir)->root;
3771 	int ret;
3772 
3773 	/*
3774 	 * 1 for the possible orphan item
3775 	 * 1 for the dir item
3776 	 * 1 for the dir index
3777 	 * 1 for the inode ref
3778 	 * 1 for the inode
3779 	 */
3780 	trans = btrfs_start_transaction(root, 5);
3781 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3782 		return trans;
3783 
3784 	if (PTR_ERR(trans) == -ENOSPC) {
3785 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3786 
3787 		trans = btrfs_start_transaction(root, 0);
3788 		if (IS_ERR(trans))
3789 			return trans;
3790 		ret = btrfs_cond_migrate_bytes(root->fs_info,
3791 					       &root->fs_info->trans_block_rsv,
3792 					       num_bytes, 5);
3793 		if (ret) {
3794 			btrfs_end_transaction(trans, root);
3795 			return ERR_PTR(ret);
3796 		}
3797 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3798 		trans->bytes_reserved = num_bytes;
3799 	}
3800 	return trans;
3801 }
3802 
3803 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3804 {
3805 	struct btrfs_root *root = BTRFS_I(dir)->root;
3806 	struct btrfs_trans_handle *trans;
3807 	struct inode *inode = dentry->d_inode;
3808 	int ret;
3809 
3810 	trans = __unlink_start_trans(dir);
3811 	if (IS_ERR(trans))
3812 		return PTR_ERR(trans);
3813 
3814 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3815 
3816 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3817 				 dentry->d_name.name, dentry->d_name.len);
3818 	if (ret)
3819 		goto out;
3820 
3821 	if (inode->i_nlink == 0) {
3822 		ret = btrfs_orphan_add(trans, inode);
3823 		if (ret)
3824 			goto out;
3825 	}
3826 
3827 out:
3828 	btrfs_end_transaction(trans, root);
3829 	btrfs_btree_balance_dirty(root);
3830 	return ret;
3831 }
3832 
3833 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3834 			struct btrfs_root *root,
3835 			struct inode *dir, u64 objectid,
3836 			const char *name, int name_len)
3837 {
3838 	struct btrfs_path *path;
3839 	struct extent_buffer *leaf;
3840 	struct btrfs_dir_item *di;
3841 	struct btrfs_key key;
3842 	u64 index;
3843 	int ret;
3844 	u64 dir_ino = btrfs_ino(dir);
3845 
3846 	path = btrfs_alloc_path();
3847 	if (!path)
3848 		return -ENOMEM;
3849 
3850 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3851 				   name, name_len, -1);
3852 	if (IS_ERR_OR_NULL(di)) {
3853 		if (!di)
3854 			ret = -ENOENT;
3855 		else
3856 			ret = PTR_ERR(di);
3857 		goto out;
3858 	}
3859 
3860 	leaf = path->nodes[0];
3861 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3862 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3863 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3864 	if (ret) {
3865 		btrfs_abort_transaction(trans, root, ret);
3866 		goto out;
3867 	}
3868 	btrfs_release_path(path);
3869 
3870 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3871 				 objectid, root->root_key.objectid,
3872 				 dir_ino, &index, name, name_len);
3873 	if (ret < 0) {
3874 		if (ret != -ENOENT) {
3875 			btrfs_abort_transaction(trans, root, ret);
3876 			goto out;
3877 		}
3878 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3879 						 name, name_len);
3880 		if (IS_ERR_OR_NULL(di)) {
3881 			if (!di)
3882 				ret = -ENOENT;
3883 			else
3884 				ret = PTR_ERR(di);
3885 			btrfs_abort_transaction(trans, root, ret);
3886 			goto out;
3887 		}
3888 
3889 		leaf = path->nodes[0];
3890 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3891 		btrfs_release_path(path);
3892 		index = key.offset;
3893 	}
3894 	btrfs_release_path(path);
3895 
3896 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3897 	if (ret) {
3898 		btrfs_abort_transaction(trans, root, ret);
3899 		goto out;
3900 	}
3901 
3902 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3903 	inode_inc_iversion(dir);
3904 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3905 	ret = btrfs_update_inode_fallback(trans, root, dir);
3906 	if (ret)
3907 		btrfs_abort_transaction(trans, root, ret);
3908 out:
3909 	btrfs_free_path(path);
3910 	return ret;
3911 }
3912 
3913 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3914 {
3915 	struct inode *inode = dentry->d_inode;
3916 	int err = 0;
3917 	struct btrfs_root *root = BTRFS_I(dir)->root;
3918 	struct btrfs_trans_handle *trans;
3919 
3920 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3921 		return -ENOTEMPTY;
3922 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3923 		return -EPERM;
3924 
3925 	trans = __unlink_start_trans(dir);
3926 	if (IS_ERR(trans))
3927 		return PTR_ERR(trans);
3928 
3929 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3930 		err = btrfs_unlink_subvol(trans, root, dir,
3931 					  BTRFS_I(inode)->location.objectid,
3932 					  dentry->d_name.name,
3933 					  dentry->d_name.len);
3934 		goto out;
3935 	}
3936 
3937 	err = btrfs_orphan_add(trans, inode);
3938 	if (err)
3939 		goto out;
3940 
3941 	/* now the directory is empty */
3942 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3943 				 dentry->d_name.name, dentry->d_name.len);
3944 	if (!err)
3945 		btrfs_i_size_write(inode, 0);
3946 out:
3947 	btrfs_end_transaction(trans, root);
3948 	btrfs_btree_balance_dirty(root);
3949 
3950 	return err;
3951 }
3952 
3953 /*
3954  * this can truncate away extent items, csum items and directory items.
3955  * It starts at a high offset and removes keys until it can't find
3956  * any higher than new_size
3957  *
3958  * csum items that cross the new i_size are truncated to the new size
3959  * as well.
3960  *
3961  * min_type is the minimum key type to truncate down to.  If set to 0, this
3962  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3963  */
3964 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3965 			       struct btrfs_root *root,
3966 			       struct inode *inode,
3967 			       u64 new_size, u32 min_type)
3968 {
3969 	struct btrfs_path *path;
3970 	struct extent_buffer *leaf;
3971 	struct btrfs_file_extent_item *fi;
3972 	struct btrfs_key key;
3973 	struct btrfs_key found_key;
3974 	u64 extent_start = 0;
3975 	u64 extent_num_bytes = 0;
3976 	u64 extent_offset = 0;
3977 	u64 item_end = 0;
3978 	u64 last_size = (u64)-1;
3979 	u32 found_type = (u8)-1;
3980 	int found_extent;
3981 	int del_item;
3982 	int pending_del_nr = 0;
3983 	int pending_del_slot = 0;
3984 	int extent_type = -1;
3985 	int ret;
3986 	int err = 0;
3987 	u64 ino = btrfs_ino(inode);
3988 
3989 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3990 
3991 	path = btrfs_alloc_path();
3992 	if (!path)
3993 		return -ENOMEM;
3994 	path->reada = -1;
3995 
3996 	/*
3997 	 * We want to drop from the next block forward in case this new size is
3998 	 * not block aligned since we will be keeping the last block of the
3999 	 * extent just the way it is.
4000 	 */
4001 	if (root->ref_cows || root == root->fs_info->tree_root)
4002 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4003 					root->sectorsize), (u64)-1, 0);
4004 
4005 	/*
4006 	 * This function is also used to drop the items in the log tree before
4007 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4008 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4009 	 * items.
4010 	 */
4011 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4012 		btrfs_kill_delayed_inode_items(inode);
4013 
4014 	key.objectid = ino;
4015 	key.offset = (u64)-1;
4016 	key.type = (u8)-1;
4017 
4018 search_again:
4019 	path->leave_spinning = 1;
4020 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4021 	if (ret < 0) {
4022 		err = ret;
4023 		goto out;
4024 	}
4025 
4026 	if (ret > 0) {
4027 		/* there are no items in the tree for us to truncate, we're
4028 		 * done
4029 		 */
4030 		if (path->slots[0] == 0)
4031 			goto out;
4032 		path->slots[0]--;
4033 	}
4034 
4035 	while (1) {
4036 		fi = NULL;
4037 		leaf = path->nodes[0];
4038 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4039 		found_type = btrfs_key_type(&found_key);
4040 
4041 		if (found_key.objectid != ino)
4042 			break;
4043 
4044 		if (found_type < min_type)
4045 			break;
4046 
4047 		item_end = found_key.offset;
4048 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4049 			fi = btrfs_item_ptr(leaf, path->slots[0],
4050 					    struct btrfs_file_extent_item);
4051 			extent_type = btrfs_file_extent_type(leaf, fi);
4052 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4053 				item_end +=
4054 				    btrfs_file_extent_num_bytes(leaf, fi);
4055 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4056 				item_end += btrfs_file_extent_inline_len(leaf,
4057 							 path->slots[0], fi);
4058 			}
4059 			item_end--;
4060 		}
4061 		if (found_type > min_type) {
4062 			del_item = 1;
4063 		} else {
4064 			if (item_end < new_size)
4065 				break;
4066 			if (found_key.offset >= new_size)
4067 				del_item = 1;
4068 			else
4069 				del_item = 0;
4070 		}
4071 		found_extent = 0;
4072 		/* FIXME, shrink the extent if the ref count is only 1 */
4073 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4074 			goto delete;
4075 
4076 		if (del_item)
4077 			last_size = found_key.offset;
4078 		else
4079 			last_size = new_size;
4080 
4081 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4082 			u64 num_dec;
4083 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4084 			if (!del_item) {
4085 				u64 orig_num_bytes =
4086 					btrfs_file_extent_num_bytes(leaf, fi);
4087 				extent_num_bytes = ALIGN(new_size -
4088 						found_key.offset,
4089 						root->sectorsize);
4090 				btrfs_set_file_extent_num_bytes(leaf, fi,
4091 							 extent_num_bytes);
4092 				num_dec = (orig_num_bytes -
4093 					   extent_num_bytes);
4094 				if (root->ref_cows && extent_start != 0)
4095 					inode_sub_bytes(inode, num_dec);
4096 				btrfs_mark_buffer_dirty(leaf);
4097 			} else {
4098 				extent_num_bytes =
4099 					btrfs_file_extent_disk_num_bytes(leaf,
4100 									 fi);
4101 				extent_offset = found_key.offset -
4102 					btrfs_file_extent_offset(leaf, fi);
4103 
4104 				/* FIXME blocksize != 4096 */
4105 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4106 				if (extent_start != 0) {
4107 					found_extent = 1;
4108 					if (root->ref_cows)
4109 						inode_sub_bytes(inode, num_dec);
4110 				}
4111 			}
4112 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4113 			/*
4114 			 * we can't truncate inline items that have had
4115 			 * special encodings
4116 			 */
4117 			if (!del_item &&
4118 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4119 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4120 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4121 				u32 size = new_size - found_key.offset;
4122 
4123 				if (root->ref_cows) {
4124 					inode_sub_bytes(inode, item_end + 1 -
4125 							new_size);
4126 				}
4127 
4128 				/*
4129 				 * update the ram bytes to properly reflect
4130 				 * the new size of our item
4131 				 */
4132 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4133 				size =
4134 				    btrfs_file_extent_calc_inline_size(size);
4135 				btrfs_truncate_item(root, path, size, 1);
4136 			} else if (root->ref_cows) {
4137 				inode_sub_bytes(inode, item_end + 1 -
4138 						found_key.offset);
4139 			}
4140 		}
4141 delete:
4142 		if (del_item) {
4143 			if (!pending_del_nr) {
4144 				/* no pending yet, add ourselves */
4145 				pending_del_slot = path->slots[0];
4146 				pending_del_nr = 1;
4147 			} else if (pending_del_nr &&
4148 				   path->slots[0] + 1 == pending_del_slot) {
4149 				/* hop on the pending chunk */
4150 				pending_del_nr++;
4151 				pending_del_slot = path->slots[0];
4152 			} else {
4153 				BUG();
4154 			}
4155 		} else {
4156 			break;
4157 		}
4158 		if (found_extent && (root->ref_cows ||
4159 				     root == root->fs_info->tree_root)) {
4160 			btrfs_set_path_blocking(path);
4161 			ret = btrfs_free_extent(trans, root, extent_start,
4162 						extent_num_bytes, 0,
4163 						btrfs_header_owner(leaf),
4164 						ino, extent_offset, 0);
4165 			BUG_ON(ret);
4166 		}
4167 
4168 		if (found_type == BTRFS_INODE_ITEM_KEY)
4169 			break;
4170 
4171 		if (path->slots[0] == 0 ||
4172 		    path->slots[0] != pending_del_slot) {
4173 			if (pending_del_nr) {
4174 				ret = btrfs_del_items(trans, root, path,
4175 						pending_del_slot,
4176 						pending_del_nr);
4177 				if (ret) {
4178 					btrfs_abort_transaction(trans,
4179 								root, ret);
4180 					goto error;
4181 				}
4182 				pending_del_nr = 0;
4183 			}
4184 			btrfs_release_path(path);
4185 			goto search_again;
4186 		} else {
4187 			path->slots[0]--;
4188 		}
4189 	}
4190 out:
4191 	if (pending_del_nr) {
4192 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4193 				      pending_del_nr);
4194 		if (ret)
4195 			btrfs_abort_transaction(trans, root, ret);
4196 	}
4197 error:
4198 	if (last_size != (u64)-1)
4199 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4200 	btrfs_free_path(path);
4201 	return err;
4202 }
4203 
4204 /*
4205  * btrfs_truncate_page - read, zero a chunk and write a page
4206  * @inode - inode that we're zeroing
4207  * @from - the offset to start zeroing
4208  * @len - the length to zero, 0 to zero the entire range respective to the
4209  *	offset
4210  * @front - zero up to the offset instead of from the offset on
4211  *
4212  * This will find the page for the "from" offset and cow the page and zero the
4213  * part we want to zero.  This is used with truncate and hole punching.
4214  */
4215 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4216 			int front)
4217 {
4218 	struct address_space *mapping = inode->i_mapping;
4219 	struct btrfs_root *root = BTRFS_I(inode)->root;
4220 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4221 	struct btrfs_ordered_extent *ordered;
4222 	struct extent_state *cached_state = NULL;
4223 	char *kaddr;
4224 	u32 blocksize = root->sectorsize;
4225 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4226 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4227 	struct page *page;
4228 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4229 	int ret = 0;
4230 	u64 page_start;
4231 	u64 page_end;
4232 
4233 	if ((offset & (blocksize - 1)) == 0 &&
4234 	    (!len || ((len & (blocksize - 1)) == 0)))
4235 		goto out;
4236 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4237 	if (ret)
4238 		goto out;
4239 
4240 again:
4241 	page = find_or_create_page(mapping, index, mask);
4242 	if (!page) {
4243 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4244 		ret = -ENOMEM;
4245 		goto out;
4246 	}
4247 
4248 	page_start = page_offset(page);
4249 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4250 
4251 	if (!PageUptodate(page)) {
4252 		ret = btrfs_readpage(NULL, page);
4253 		lock_page(page);
4254 		if (page->mapping != mapping) {
4255 			unlock_page(page);
4256 			page_cache_release(page);
4257 			goto again;
4258 		}
4259 		if (!PageUptodate(page)) {
4260 			ret = -EIO;
4261 			goto out_unlock;
4262 		}
4263 	}
4264 	wait_on_page_writeback(page);
4265 
4266 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4267 	set_page_extent_mapped(page);
4268 
4269 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4270 	if (ordered) {
4271 		unlock_extent_cached(io_tree, page_start, page_end,
4272 				     &cached_state, GFP_NOFS);
4273 		unlock_page(page);
4274 		page_cache_release(page);
4275 		btrfs_start_ordered_extent(inode, ordered, 1);
4276 		btrfs_put_ordered_extent(ordered);
4277 		goto again;
4278 	}
4279 
4280 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4281 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4282 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4283 			  0, 0, &cached_state, GFP_NOFS);
4284 
4285 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4286 					&cached_state);
4287 	if (ret) {
4288 		unlock_extent_cached(io_tree, page_start, page_end,
4289 				     &cached_state, GFP_NOFS);
4290 		goto out_unlock;
4291 	}
4292 
4293 	if (offset != PAGE_CACHE_SIZE) {
4294 		if (!len)
4295 			len = PAGE_CACHE_SIZE - offset;
4296 		kaddr = kmap(page);
4297 		if (front)
4298 			memset(kaddr, 0, offset);
4299 		else
4300 			memset(kaddr + offset, 0, len);
4301 		flush_dcache_page(page);
4302 		kunmap(page);
4303 	}
4304 	ClearPageChecked(page);
4305 	set_page_dirty(page);
4306 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4307 			     GFP_NOFS);
4308 
4309 out_unlock:
4310 	if (ret)
4311 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4312 	unlock_page(page);
4313 	page_cache_release(page);
4314 out:
4315 	return ret;
4316 }
4317 
4318 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4319 			     u64 offset, u64 len)
4320 {
4321 	struct btrfs_trans_handle *trans;
4322 	int ret;
4323 
4324 	/*
4325 	 * Still need to make sure the inode looks like it's been updated so
4326 	 * that any holes get logged if we fsync.
4327 	 */
4328 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4329 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4330 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4331 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4332 		return 0;
4333 	}
4334 
4335 	/*
4336 	 * 1 - for the one we're dropping
4337 	 * 1 - for the one we're adding
4338 	 * 1 - for updating the inode.
4339 	 */
4340 	trans = btrfs_start_transaction(root, 3);
4341 	if (IS_ERR(trans))
4342 		return PTR_ERR(trans);
4343 
4344 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4345 	if (ret) {
4346 		btrfs_abort_transaction(trans, root, ret);
4347 		btrfs_end_transaction(trans, root);
4348 		return ret;
4349 	}
4350 
4351 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4352 				       0, 0, len, 0, len, 0, 0, 0);
4353 	if (ret)
4354 		btrfs_abort_transaction(trans, root, ret);
4355 	else
4356 		btrfs_update_inode(trans, root, inode);
4357 	btrfs_end_transaction(trans, root);
4358 	return ret;
4359 }
4360 
4361 /*
4362  * This function puts in dummy file extents for the area we're creating a hole
4363  * for.  So if we are truncating this file to a larger size we need to insert
4364  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4365  * the range between oldsize and size
4366  */
4367 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4368 {
4369 	struct btrfs_root *root = BTRFS_I(inode)->root;
4370 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4371 	struct extent_map *em = NULL;
4372 	struct extent_state *cached_state = NULL;
4373 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4374 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4375 	u64 block_end = ALIGN(size, root->sectorsize);
4376 	u64 last_byte;
4377 	u64 cur_offset;
4378 	u64 hole_size;
4379 	int err = 0;
4380 
4381 	/*
4382 	 * If our size started in the middle of a page we need to zero out the
4383 	 * rest of the page before we expand the i_size, otherwise we could
4384 	 * expose stale data.
4385 	 */
4386 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4387 	if (err)
4388 		return err;
4389 
4390 	if (size <= hole_start)
4391 		return 0;
4392 
4393 	while (1) {
4394 		struct btrfs_ordered_extent *ordered;
4395 
4396 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4397 				 &cached_state);
4398 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4399 						     block_end - hole_start);
4400 		if (!ordered)
4401 			break;
4402 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4403 				     &cached_state, GFP_NOFS);
4404 		btrfs_start_ordered_extent(inode, ordered, 1);
4405 		btrfs_put_ordered_extent(ordered);
4406 	}
4407 
4408 	cur_offset = hole_start;
4409 	while (1) {
4410 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4411 				block_end - cur_offset, 0);
4412 		if (IS_ERR(em)) {
4413 			err = PTR_ERR(em);
4414 			em = NULL;
4415 			break;
4416 		}
4417 		last_byte = min(extent_map_end(em), block_end);
4418 		last_byte = ALIGN(last_byte , root->sectorsize);
4419 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4420 			struct extent_map *hole_em;
4421 			hole_size = last_byte - cur_offset;
4422 
4423 			err = maybe_insert_hole(root, inode, cur_offset,
4424 						hole_size);
4425 			if (err)
4426 				break;
4427 			btrfs_drop_extent_cache(inode, cur_offset,
4428 						cur_offset + hole_size - 1, 0);
4429 			hole_em = alloc_extent_map();
4430 			if (!hole_em) {
4431 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4432 					&BTRFS_I(inode)->runtime_flags);
4433 				goto next;
4434 			}
4435 			hole_em->start = cur_offset;
4436 			hole_em->len = hole_size;
4437 			hole_em->orig_start = cur_offset;
4438 
4439 			hole_em->block_start = EXTENT_MAP_HOLE;
4440 			hole_em->block_len = 0;
4441 			hole_em->orig_block_len = 0;
4442 			hole_em->ram_bytes = hole_size;
4443 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4444 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4445 			hole_em->generation = root->fs_info->generation;
4446 
4447 			while (1) {
4448 				write_lock(&em_tree->lock);
4449 				err = add_extent_mapping(em_tree, hole_em, 1);
4450 				write_unlock(&em_tree->lock);
4451 				if (err != -EEXIST)
4452 					break;
4453 				btrfs_drop_extent_cache(inode, cur_offset,
4454 							cur_offset +
4455 							hole_size - 1, 0);
4456 			}
4457 			free_extent_map(hole_em);
4458 		}
4459 next:
4460 		free_extent_map(em);
4461 		em = NULL;
4462 		cur_offset = last_byte;
4463 		if (cur_offset >= block_end)
4464 			break;
4465 	}
4466 	free_extent_map(em);
4467 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4468 			     GFP_NOFS);
4469 	return err;
4470 }
4471 
4472 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4473 {
4474 	struct btrfs_root *root = BTRFS_I(inode)->root;
4475 	struct btrfs_trans_handle *trans;
4476 	loff_t oldsize = i_size_read(inode);
4477 	loff_t newsize = attr->ia_size;
4478 	int mask = attr->ia_valid;
4479 	int ret;
4480 
4481 	/*
4482 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4483 	 * special case where we need to update the times despite not having
4484 	 * these flags set.  For all other operations the VFS set these flags
4485 	 * explicitly if it wants a timestamp update.
4486 	 */
4487 	if (newsize != oldsize) {
4488 		inode_inc_iversion(inode);
4489 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4490 			inode->i_ctime = inode->i_mtime =
4491 				current_fs_time(inode->i_sb);
4492 	}
4493 
4494 	if (newsize > oldsize) {
4495 		truncate_pagecache(inode, newsize);
4496 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4497 		if (ret)
4498 			return ret;
4499 
4500 		trans = btrfs_start_transaction(root, 1);
4501 		if (IS_ERR(trans))
4502 			return PTR_ERR(trans);
4503 
4504 		i_size_write(inode, newsize);
4505 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4506 		ret = btrfs_update_inode(trans, root, inode);
4507 		btrfs_end_transaction(trans, root);
4508 	} else {
4509 
4510 		/*
4511 		 * We're truncating a file that used to have good data down to
4512 		 * zero. Make sure it gets into the ordered flush list so that
4513 		 * any new writes get down to disk quickly.
4514 		 */
4515 		if (newsize == 0)
4516 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4517 				&BTRFS_I(inode)->runtime_flags);
4518 
4519 		/*
4520 		 * 1 for the orphan item we're going to add
4521 		 * 1 for the orphan item deletion.
4522 		 */
4523 		trans = btrfs_start_transaction(root, 2);
4524 		if (IS_ERR(trans))
4525 			return PTR_ERR(trans);
4526 
4527 		/*
4528 		 * We need to do this in case we fail at _any_ point during the
4529 		 * actual truncate.  Once we do the truncate_setsize we could
4530 		 * invalidate pages which forces any outstanding ordered io to
4531 		 * be instantly completed which will give us extents that need
4532 		 * to be truncated.  If we fail to get an orphan inode down we
4533 		 * could have left over extents that were never meant to live,
4534 		 * so we need to garuntee from this point on that everything
4535 		 * will be consistent.
4536 		 */
4537 		ret = btrfs_orphan_add(trans, inode);
4538 		btrfs_end_transaction(trans, root);
4539 		if (ret)
4540 			return ret;
4541 
4542 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4543 		truncate_setsize(inode, newsize);
4544 
4545 		/* Disable nonlocked read DIO to avoid the end less truncate */
4546 		btrfs_inode_block_unlocked_dio(inode);
4547 		inode_dio_wait(inode);
4548 		btrfs_inode_resume_unlocked_dio(inode);
4549 
4550 		ret = btrfs_truncate(inode);
4551 		if (ret && inode->i_nlink) {
4552 			int err;
4553 
4554 			/*
4555 			 * failed to truncate, disk_i_size is only adjusted down
4556 			 * as we remove extents, so it should represent the true
4557 			 * size of the inode, so reset the in memory size and
4558 			 * delete our orphan entry.
4559 			 */
4560 			trans = btrfs_join_transaction(root);
4561 			if (IS_ERR(trans)) {
4562 				btrfs_orphan_del(NULL, inode);
4563 				return ret;
4564 			}
4565 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4566 			err = btrfs_orphan_del(trans, inode);
4567 			if (err)
4568 				btrfs_abort_transaction(trans, root, err);
4569 			btrfs_end_transaction(trans, root);
4570 		}
4571 	}
4572 
4573 	return ret;
4574 }
4575 
4576 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4577 {
4578 	struct inode *inode = dentry->d_inode;
4579 	struct btrfs_root *root = BTRFS_I(inode)->root;
4580 	int err;
4581 
4582 	if (btrfs_root_readonly(root))
4583 		return -EROFS;
4584 
4585 	err = inode_change_ok(inode, attr);
4586 	if (err)
4587 		return err;
4588 
4589 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4590 		err = btrfs_setsize(inode, attr);
4591 		if (err)
4592 			return err;
4593 	}
4594 
4595 	if (attr->ia_valid) {
4596 		setattr_copy(inode, attr);
4597 		inode_inc_iversion(inode);
4598 		err = btrfs_dirty_inode(inode);
4599 
4600 		if (!err && attr->ia_valid & ATTR_MODE)
4601 			err = posix_acl_chmod(inode, inode->i_mode);
4602 	}
4603 
4604 	return err;
4605 }
4606 
4607 /*
4608  * While truncating the inode pages during eviction, we get the VFS calling
4609  * btrfs_invalidatepage() against each page of the inode. This is slow because
4610  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4611  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4612  * extent_state structures over and over, wasting lots of time.
4613  *
4614  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4615  * those expensive operations on a per page basis and do only the ordered io
4616  * finishing, while we release here the extent_map and extent_state structures,
4617  * without the excessive merging and splitting.
4618  */
4619 static void evict_inode_truncate_pages(struct inode *inode)
4620 {
4621 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4622 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4623 	struct rb_node *node;
4624 
4625 	ASSERT(inode->i_state & I_FREEING);
4626 	truncate_inode_pages_final(&inode->i_data);
4627 
4628 	write_lock(&map_tree->lock);
4629 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
4630 		struct extent_map *em;
4631 
4632 		node = rb_first(&map_tree->map);
4633 		em = rb_entry(node, struct extent_map, rb_node);
4634 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4635 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4636 		remove_extent_mapping(map_tree, em);
4637 		free_extent_map(em);
4638 	}
4639 	write_unlock(&map_tree->lock);
4640 
4641 	spin_lock(&io_tree->lock);
4642 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4643 		struct extent_state *state;
4644 		struct extent_state *cached_state = NULL;
4645 
4646 		node = rb_first(&io_tree->state);
4647 		state = rb_entry(node, struct extent_state, rb_node);
4648 		atomic_inc(&state->refs);
4649 		spin_unlock(&io_tree->lock);
4650 
4651 		lock_extent_bits(io_tree, state->start, state->end,
4652 				 0, &cached_state);
4653 		clear_extent_bit(io_tree, state->start, state->end,
4654 				 EXTENT_LOCKED | EXTENT_DIRTY |
4655 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4656 				 EXTENT_DEFRAG, 1, 1,
4657 				 &cached_state, GFP_NOFS);
4658 		free_extent_state(state);
4659 
4660 		spin_lock(&io_tree->lock);
4661 	}
4662 	spin_unlock(&io_tree->lock);
4663 }
4664 
4665 void btrfs_evict_inode(struct inode *inode)
4666 {
4667 	struct btrfs_trans_handle *trans;
4668 	struct btrfs_root *root = BTRFS_I(inode)->root;
4669 	struct btrfs_block_rsv *rsv, *global_rsv;
4670 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4671 	int ret;
4672 
4673 	trace_btrfs_inode_evict(inode);
4674 
4675 	evict_inode_truncate_pages(inode);
4676 
4677 	if (inode->i_nlink &&
4678 	    ((btrfs_root_refs(&root->root_item) != 0 &&
4679 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4680 	     btrfs_is_free_space_inode(inode)))
4681 		goto no_delete;
4682 
4683 	if (is_bad_inode(inode)) {
4684 		btrfs_orphan_del(NULL, inode);
4685 		goto no_delete;
4686 	}
4687 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4688 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
4689 
4690 	if (root->fs_info->log_root_recovering) {
4691 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4692 				 &BTRFS_I(inode)->runtime_flags));
4693 		goto no_delete;
4694 	}
4695 
4696 	if (inode->i_nlink > 0) {
4697 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4698 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4699 		goto no_delete;
4700 	}
4701 
4702 	ret = btrfs_commit_inode_delayed_inode(inode);
4703 	if (ret) {
4704 		btrfs_orphan_del(NULL, inode);
4705 		goto no_delete;
4706 	}
4707 
4708 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4709 	if (!rsv) {
4710 		btrfs_orphan_del(NULL, inode);
4711 		goto no_delete;
4712 	}
4713 	rsv->size = min_size;
4714 	rsv->failfast = 1;
4715 	global_rsv = &root->fs_info->global_block_rsv;
4716 
4717 	btrfs_i_size_write(inode, 0);
4718 
4719 	/*
4720 	 * This is a bit simpler than btrfs_truncate since we've already
4721 	 * reserved our space for our orphan item in the unlink, so we just
4722 	 * need to reserve some slack space in case we add bytes and update
4723 	 * inode item when doing the truncate.
4724 	 */
4725 	while (1) {
4726 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
4727 					     BTRFS_RESERVE_FLUSH_LIMIT);
4728 
4729 		/*
4730 		 * Try and steal from the global reserve since we will
4731 		 * likely not use this space anyway, we want to try as
4732 		 * hard as possible to get this to work.
4733 		 */
4734 		if (ret)
4735 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4736 
4737 		if (ret) {
4738 			btrfs_warn(root->fs_info,
4739 				"Could not get space for a delete, will truncate on mount %d",
4740 				ret);
4741 			btrfs_orphan_del(NULL, inode);
4742 			btrfs_free_block_rsv(root, rsv);
4743 			goto no_delete;
4744 		}
4745 
4746 		trans = btrfs_join_transaction(root);
4747 		if (IS_ERR(trans)) {
4748 			btrfs_orphan_del(NULL, inode);
4749 			btrfs_free_block_rsv(root, rsv);
4750 			goto no_delete;
4751 		}
4752 
4753 		trans->block_rsv = rsv;
4754 
4755 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4756 		if (ret != -ENOSPC)
4757 			break;
4758 
4759 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4760 		btrfs_end_transaction(trans, root);
4761 		trans = NULL;
4762 		btrfs_btree_balance_dirty(root);
4763 	}
4764 
4765 	btrfs_free_block_rsv(root, rsv);
4766 
4767 	/*
4768 	 * Errors here aren't a big deal, it just means we leave orphan items
4769 	 * in the tree.  They will be cleaned up on the next mount.
4770 	 */
4771 	if (ret == 0) {
4772 		trans->block_rsv = root->orphan_block_rsv;
4773 		btrfs_orphan_del(trans, inode);
4774 	} else {
4775 		btrfs_orphan_del(NULL, inode);
4776 	}
4777 
4778 	trans->block_rsv = &root->fs_info->trans_block_rsv;
4779 	if (!(root == root->fs_info->tree_root ||
4780 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4781 		btrfs_return_ino(root, btrfs_ino(inode));
4782 
4783 	btrfs_end_transaction(trans, root);
4784 	btrfs_btree_balance_dirty(root);
4785 no_delete:
4786 	btrfs_remove_delayed_node(inode);
4787 	clear_inode(inode);
4788 	return;
4789 }
4790 
4791 /*
4792  * this returns the key found in the dir entry in the location pointer.
4793  * If no dir entries were found, location->objectid is 0.
4794  */
4795 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4796 			       struct btrfs_key *location)
4797 {
4798 	const char *name = dentry->d_name.name;
4799 	int namelen = dentry->d_name.len;
4800 	struct btrfs_dir_item *di;
4801 	struct btrfs_path *path;
4802 	struct btrfs_root *root = BTRFS_I(dir)->root;
4803 	int ret = 0;
4804 
4805 	path = btrfs_alloc_path();
4806 	if (!path)
4807 		return -ENOMEM;
4808 
4809 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4810 				    namelen, 0);
4811 	if (IS_ERR(di))
4812 		ret = PTR_ERR(di);
4813 
4814 	if (IS_ERR_OR_NULL(di))
4815 		goto out_err;
4816 
4817 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4818 out:
4819 	btrfs_free_path(path);
4820 	return ret;
4821 out_err:
4822 	location->objectid = 0;
4823 	goto out;
4824 }
4825 
4826 /*
4827  * when we hit a tree root in a directory, the btrfs part of the inode
4828  * needs to be changed to reflect the root directory of the tree root.  This
4829  * is kind of like crossing a mount point.
4830  */
4831 static int fixup_tree_root_location(struct btrfs_root *root,
4832 				    struct inode *dir,
4833 				    struct dentry *dentry,
4834 				    struct btrfs_key *location,
4835 				    struct btrfs_root **sub_root)
4836 {
4837 	struct btrfs_path *path;
4838 	struct btrfs_root *new_root;
4839 	struct btrfs_root_ref *ref;
4840 	struct extent_buffer *leaf;
4841 	int ret;
4842 	int err = 0;
4843 
4844 	path = btrfs_alloc_path();
4845 	if (!path) {
4846 		err = -ENOMEM;
4847 		goto out;
4848 	}
4849 
4850 	err = -ENOENT;
4851 	ret = btrfs_find_item(root->fs_info->tree_root, path,
4852 				BTRFS_I(dir)->root->root_key.objectid,
4853 				location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4854 	if (ret) {
4855 		if (ret < 0)
4856 			err = ret;
4857 		goto out;
4858 	}
4859 
4860 	leaf = path->nodes[0];
4861 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4862 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4863 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4864 		goto out;
4865 
4866 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4867 				   (unsigned long)(ref + 1),
4868 				   dentry->d_name.len);
4869 	if (ret)
4870 		goto out;
4871 
4872 	btrfs_release_path(path);
4873 
4874 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4875 	if (IS_ERR(new_root)) {
4876 		err = PTR_ERR(new_root);
4877 		goto out;
4878 	}
4879 
4880 	*sub_root = new_root;
4881 	location->objectid = btrfs_root_dirid(&new_root->root_item);
4882 	location->type = BTRFS_INODE_ITEM_KEY;
4883 	location->offset = 0;
4884 	err = 0;
4885 out:
4886 	btrfs_free_path(path);
4887 	return err;
4888 }
4889 
4890 static void inode_tree_add(struct inode *inode)
4891 {
4892 	struct btrfs_root *root = BTRFS_I(inode)->root;
4893 	struct btrfs_inode *entry;
4894 	struct rb_node **p;
4895 	struct rb_node *parent;
4896 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
4897 	u64 ino = btrfs_ino(inode);
4898 
4899 	if (inode_unhashed(inode))
4900 		return;
4901 	parent = NULL;
4902 	spin_lock(&root->inode_lock);
4903 	p = &root->inode_tree.rb_node;
4904 	while (*p) {
4905 		parent = *p;
4906 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
4907 
4908 		if (ino < btrfs_ino(&entry->vfs_inode))
4909 			p = &parent->rb_left;
4910 		else if (ino > btrfs_ino(&entry->vfs_inode))
4911 			p = &parent->rb_right;
4912 		else {
4913 			WARN_ON(!(entry->vfs_inode.i_state &
4914 				  (I_WILL_FREE | I_FREEING)));
4915 			rb_replace_node(parent, new, &root->inode_tree);
4916 			RB_CLEAR_NODE(parent);
4917 			spin_unlock(&root->inode_lock);
4918 			return;
4919 		}
4920 	}
4921 	rb_link_node(new, parent, p);
4922 	rb_insert_color(new, &root->inode_tree);
4923 	spin_unlock(&root->inode_lock);
4924 }
4925 
4926 static void inode_tree_del(struct inode *inode)
4927 {
4928 	struct btrfs_root *root = BTRFS_I(inode)->root;
4929 	int empty = 0;
4930 
4931 	spin_lock(&root->inode_lock);
4932 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4933 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4934 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4935 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4936 	}
4937 	spin_unlock(&root->inode_lock);
4938 
4939 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
4940 		synchronize_srcu(&root->fs_info->subvol_srcu);
4941 		spin_lock(&root->inode_lock);
4942 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4943 		spin_unlock(&root->inode_lock);
4944 		if (empty)
4945 			btrfs_add_dead_root(root);
4946 	}
4947 }
4948 
4949 void btrfs_invalidate_inodes(struct btrfs_root *root)
4950 {
4951 	struct rb_node *node;
4952 	struct rb_node *prev;
4953 	struct btrfs_inode *entry;
4954 	struct inode *inode;
4955 	u64 objectid = 0;
4956 
4957 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
4958 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4959 
4960 	spin_lock(&root->inode_lock);
4961 again:
4962 	node = root->inode_tree.rb_node;
4963 	prev = NULL;
4964 	while (node) {
4965 		prev = node;
4966 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4967 
4968 		if (objectid < btrfs_ino(&entry->vfs_inode))
4969 			node = node->rb_left;
4970 		else if (objectid > btrfs_ino(&entry->vfs_inode))
4971 			node = node->rb_right;
4972 		else
4973 			break;
4974 	}
4975 	if (!node) {
4976 		while (prev) {
4977 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4978 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4979 				node = prev;
4980 				break;
4981 			}
4982 			prev = rb_next(prev);
4983 		}
4984 	}
4985 	while (node) {
4986 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4987 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
4988 		inode = igrab(&entry->vfs_inode);
4989 		if (inode) {
4990 			spin_unlock(&root->inode_lock);
4991 			if (atomic_read(&inode->i_count) > 1)
4992 				d_prune_aliases(inode);
4993 			/*
4994 			 * btrfs_drop_inode will have it removed from
4995 			 * the inode cache when its usage count
4996 			 * hits zero.
4997 			 */
4998 			iput(inode);
4999 			cond_resched();
5000 			spin_lock(&root->inode_lock);
5001 			goto again;
5002 		}
5003 
5004 		if (cond_resched_lock(&root->inode_lock))
5005 			goto again;
5006 
5007 		node = rb_next(node);
5008 	}
5009 	spin_unlock(&root->inode_lock);
5010 }
5011 
5012 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5013 {
5014 	struct btrfs_iget_args *args = p;
5015 	inode->i_ino = args->location->objectid;
5016 	memcpy(&BTRFS_I(inode)->location, args->location,
5017 	       sizeof(*args->location));
5018 	BTRFS_I(inode)->root = args->root;
5019 	return 0;
5020 }
5021 
5022 static int btrfs_find_actor(struct inode *inode, void *opaque)
5023 {
5024 	struct btrfs_iget_args *args = opaque;
5025 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5026 		args->root == BTRFS_I(inode)->root;
5027 }
5028 
5029 static struct inode *btrfs_iget_locked(struct super_block *s,
5030 				       struct btrfs_key *location,
5031 				       struct btrfs_root *root)
5032 {
5033 	struct inode *inode;
5034 	struct btrfs_iget_args args;
5035 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5036 
5037 	args.location = location;
5038 	args.root = root;
5039 
5040 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5041 			     btrfs_init_locked_inode,
5042 			     (void *)&args);
5043 	return inode;
5044 }
5045 
5046 /* Get an inode object given its location and corresponding root.
5047  * Returns in *is_new if the inode was read from disk
5048  */
5049 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5050 			 struct btrfs_root *root, int *new)
5051 {
5052 	struct inode *inode;
5053 
5054 	inode = btrfs_iget_locked(s, location, root);
5055 	if (!inode)
5056 		return ERR_PTR(-ENOMEM);
5057 
5058 	if (inode->i_state & I_NEW) {
5059 		btrfs_read_locked_inode(inode);
5060 		if (!is_bad_inode(inode)) {
5061 			inode_tree_add(inode);
5062 			unlock_new_inode(inode);
5063 			if (new)
5064 				*new = 1;
5065 		} else {
5066 			unlock_new_inode(inode);
5067 			iput(inode);
5068 			inode = ERR_PTR(-ESTALE);
5069 		}
5070 	}
5071 
5072 	return inode;
5073 }
5074 
5075 static struct inode *new_simple_dir(struct super_block *s,
5076 				    struct btrfs_key *key,
5077 				    struct btrfs_root *root)
5078 {
5079 	struct inode *inode = new_inode(s);
5080 
5081 	if (!inode)
5082 		return ERR_PTR(-ENOMEM);
5083 
5084 	BTRFS_I(inode)->root = root;
5085 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5086 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5087 
5088 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5089 	inode->i_op = &btrfs_dir_ro_inode_operations;
5090 	inode->i_fop = &simple_dir_operations;
5091 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5092 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5093 
5094 	return inode;
5095 }
5096 
5097 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5098 {
5099 	struct inode *inode;
5100 	struct btrfs_root *root = BTRFS_I(dir)->root;
5101 	struct btrfs_root *sub_root = root;
5102 	struct btrfs_key location;
5103 	int index;
5104 	int ret = 0;
5105 
5106 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5107 		return ERR_PTR(-ENAMETOOLONG);
5108 
5109 	ret = btrfs_inode_by_name(dir, dentry, &location);
5110 	if (ret < 0)
5111 		return ERR_PTR(ret);
5112 
5113 	if (location.objectid == 0)
5114 		return ERR_PTR(-ENOENT);
5115 
5116 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5117 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5118 		return inode;
5119 	}
5120 
5121 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5122 
5123 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5124 	ret = fixup_tree_root_location(root, dir, dentry,
5125 				       &location, &sub_root);
5126 	if (ret < 0) {
5127 		if (ret != -ENOENT)
5128 			inode = ERR_PTR(ret);
5129 		else
5130 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5131 	} else {
5132 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5133 	}
5134 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5135 
5136 	if (!IS_ERR(inode) && root != sub_root) {
5137 		down_read(&root->fs_info->cleanup_work_sem);
5138 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5139 			ret = btrfs_orphan_cleanup(sub_root);
5140 		up_read(&root->fs_info->cleanup_work_sem);
5141 		if (ret) {
5142 			iput(inode);
5143 			inode = ERR_PTR(ret);
5144 		}
5145 	}
5146 
5147 	return inode;
5148 }
5149 
5150 static int btrfs_dentry_delete(const struct dentry *dentry)
5151 {
5152 	struct btrfs_root *root;
5153 	struct inode *inode = dentry->d_inode;
5154 
5155 	if (!inode && !IS_ROOT(dentry))
5156 		inode = dentry->d_parent->d_inode;
5157 
5158 	if (inode) {
5159 		root = BTRFS_I(inode)->root;
5160 		if (btrfs_root_refs(&root->root_item) == 0)
5161 			return 1;
5162 
5163 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5164 			return 1;
5165 	}
5166 	return 0;
5167 }
5168 
5169 static void btrfs_dentry_release(struct dentry *dentry)
5170 {
5171 	if (dentry->d_fsdata)
5172 		kfree(dentry->d_fsdata);
5173 }
5174 
5175 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5176 				   unsigned int flags)
5177 {
5178 	struct inode *inode;
5179 
5180 	inode = btrfs_lookup_dentry(dir, dentry);
5181 	if (IS_ERR(inode)) {
5182 		if (PTR_ERR(inode) == -ENOENT)
5183 			inode = NULL;
5184 		else
5185 			return ERR_CAST(inode);
5186 	}
5187 
5188 	return d_materialise_unique(dentry, inode);
5189 }
5190 
5191 unsigned char btrfs_filetype_table[] = {
5192 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5193 };
5194 
5195 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5196 {
5197 	struct inode *inode = file_inode(file);
5198 	struct btrfs_root *root = BTRFS_I(inode)->root;
5199 	struct btrfs_item *item;
5200 	struct btrfs_dir_item *di;
5201 	struct btrfs_key key;
5202 	struct btrfs_key found_key;
5203 	struct btrfs_path *path;
5204 	struct list_head ins_list;
5205 	struct list_head del_list;
5206 	int ret;
5207 	struct extent_buffer *leaf;
5208 	int slot;
5209 	unsigned char d_type;
5210 	int over = 0;
5211 	u32 di_cur;
5212 	u32 di_total;
5213 	u32 di_len;
5214 	int key_type = BTRFS_DIR_INDEX_KEY;
5215 	char tmp_name[32];
5216 	char *name_ptr;
5217 	int name_len;
5218 	int is_curr = 0;	/* ctx->pos points to the current index? */
5219 
5220 	/* FIXME, use a real flag for deciding about the key type */
5221 	if (root->fs_info->tree_root == root)
5222 		key_type = BTRFS_DIR_ITEM_KEY;
5223 
5224 	if (!dir_emit_dots(file, ctx))
5225 		return 0;
5226 
5227 	path = btrfs_alloc_path();
5228 	if (!path)
5229 		return -ENOMEM;
5230 
5231 	path->reada = 1;
5232 
5233 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5234 		INIT_LIST_HEAD(&ins_list);
5235 		INIT_LIST_HEAD(&del_list);
5236 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5237 	}
5238 
5239 	btrfs_set_key_type(&key, key_type);
5240 	key.offset = ctx->pos;
5241 	key.objectid = btrfs_ino(inode);
5242 
5243 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5244 	if (ret < 0)
5245 		goto err;
5246 
5247 	while (1) {
5248 		leaf = path->nodes[0];
5249 		slot = path->slots[0];
5250 		if (slot >= btrfs_header_nritems(leaf)) {
5251 			ret = btrfs_next_leaf(root, path);
5252 			if (ret < 0)
5253 				goto err;
5254 			else if (ret > 0)
5255 				break;
5256 			continue;
5257 		}
5258 
5259 		item = btrfs_item_nr(slot);
5260 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5261 
5262 		if (found_key.objectid != key.objectid)
5263 			break;
5264 		if (btrfs_key_type(&found_key) != key_type)
5265 			break;
5266 		if (found_key.offset < ctx->pos)
5267 			goto next;
5268 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5269 		    btrfs_should_delete_dir_index(&del_list,
5270 						  found_key.offset))
5271 			goto next;
5272 
5273 		ctx->pos = found_key.offset;
5274 		is_curr = 1;
5275 
5276 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5277 		di_cur = 0;
5278 		di_total = btrfs_item_size(leaf, item);
5279 
5280 		while (di_cur < di_total) {
5281 			struct btrfs_key location;
5282 
5283 			if (verify_dir_item(root, leaf, di))
5284 				break;
5285 
5286 			name_len = btrfs_dir_name_len(leaf, di);
5287 			if (name_len <= sizeof(tmp_name)) {
5288 				name_ptr = tmp_name;
5289 			} else {
5290 				name_ptr = kmalloc(name_len, GFP_NOFS);
5291 				if (!name_ptr) {
5292 					ret = -ENOMEM;
5293 					goto err;
5294 				}
5295 			}
5296 			read_extent_buffer(leaf, name_ptr,
5297 					   (unsigned long)(di + 1), name_len);
5298 
5299 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5300 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5301 
5302 
5303 			/* is this a reference to our own snapshot? If so
5304 			 * skip it.
5305 			 *
5306 			 * In contrast to old kernels, we insert the snapshot's
5307 			 * dir item and dir index after it has been created, so
5308 			 * we won't find a reference to our own snapshot. We
5309 			 * still keep the following code for backward
5310 			 * compatibility.
5311 			 */
5312 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5313 			    location.objectid == root->root_key.objectid) {
5314 				over = 0;
5315 				goto skip;
5316 			}
5317 			over = !dir_emit(ctx, name_ptr, name_len,
5318 				       location.objectid, d_type);
5319 
5320 skip:
5321 			if (name_ptr != tmp_name)
5322 				kfree(name_ptr);
5323 
5324 			if (over)
5325 				goto nopos;
5326 			di_len = btrfs_dir_name_len(leaf, di) +
5327 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5328 			di_cur += di_len;
5329 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5330 		}
5331 next:
5332 		path->slots[0]++;
5333 	}
5334 
5335 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5336 		if (is_curr)
5337 			ctx->pos++;
5338 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5339 		if (ret)
5340 			goto nopos;
5341 	}
5342 
5343 	/* Reached end of directory/root. Bump pos past the last item. */
5344 	ctx->pos++;
5345 
5346 	/*
5347 	 * Stop new entries from being returned after we return the last
5348 	 * entry.
5349 	 *
5350 	 * New directory entries are assigned a strictly increasing
5351 	 * offset.  This means that new entries created during readdir
5352 	 * are *guaranteed* to be seen in the future by that readdir.
5353 	 * This has broken buggy programs which operate on names as
5354 	 * they're returned by readdir.  Until we re-use freed offsets
5355 	 * we have this hack to stop new entries from being returned
5356 	 * under the assumption that they'll never reach this huge
5357 	 * offset.
5358 	 *
5359 	 * This is being careful not to overflow 32bit loff_t unless the
5360 	 * last entry requires it because doing so has broken 32bit apps
5361 	 * in the past.
5362 	 */
5363 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5364 		if (ctx->pos >= INT_MAX)
5365 			ctx->pos = LLONG_MAX;
5366 		else
5367 			ctx->pos = INT_MAX;
5368 	}
5369 nopos:
5370 	ret = 0;
5371 err:
5372 	if (key_type == BTRFS_DIR_INDEX_KEY)
5373 		btrfs_put_delayed_items(&ins_list, &del_list);
5374 	btrfs_free_path(path);
5375 	return ret;
5376 }
5377 
5378 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5379 {
5380 	struct btrfs_root *root = BTRFS_I(inode)->root;
5381 	struct btrfs_trans_handle *trans;
5382 	int ret = 0;
5383 	bool nolock = false;
5384 
5385 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5386 		return 0;
5387 
5388 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5389 		nolock = true;
5390 
5391 	if (wbc->sync_mode == WB_SYNC_ALL) {
5392 		if (nolock)
5393 			trans = btrfs_join_transaction_nolock(root);
5394 		else
5395 			trans = btrfs_join_transaction(root);
5396 		if (IS_ERR(trans))
5397 			return PTR_ERR(trans);
5398 		ret = btrfs_commit_transaction(trans, root);
5399 	}
5400 	return ret;
5401 }
5402 
5403 /*
5404  * This is somewhat expensive, updating the tree every time the
5405  * inode changes.  But, it is most likely to find the inode in cache.
5406  * FIXME, needs more benchmarking...there are no reasons other than performance
5407  * to keep or drop this code.
5408  */
5409 static int btrfs_dirty_inode(struct inode *inode)
5410 {
5411 	struct btrfs_root *root = BTRFS_I(inode)->root;
5412 	struct btrfs_trans_handle *trans;
5413 	int ret;
5414 
5415 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5416 		return 0;
5417 
5418 	trans = btrfs_join_transaction(root);
5419 	if (IS_ERR(trans))
5420 		return PTR_ERR(trans);
5421 
5422 	ret = btrfs_update_inode(trans, root, inode);
5423 	if (ret && ret == -ENOSPC) {
5424 		/* whoops, lets try again with the full transaction */
5425 		btrfs_end_transaction(trans, root);
5426 		trans = btrfs_start_transaction(root, 1);
5427 		if (IS_ERR(trans))
5428 			return PTR_ERR(trans);
5429 
5430 		ret = btrfs_update_inode(trans, root, inode);
5431 	}
5432 	btrfs_end_transaction(trans, root);
5433 	if (BTRFS_I(inode)->delayed_node)
5434 		btrfs_balance_delayed_items(root);
5435 
5436 	return ret;
5437 }
5438 
5439 /*
5440  * This is a copy of file_update_time.  We need this so we can return error on
5441  * ENOSPC for updating the inode in the case of file write and mmap writes.
5442  */
5443 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5444 			     int flags)
5445 {
5446 	struct btrfs_root *root = BTRFS_I(inode)->root;
5447 
5448 	if (btrfs_root_readonly(root))
5449 		return -EROFS;
5450 
5451 	if (flags & S_VERSION)
5452 		inode_inc_iversion(inode);
5453 	if (flags & S_CTIME)
5454 		inode->i_ctime = *now;
5455 	if (flags & S_MTIME)
5456 		inode->i_mtime = *now;
5457 	if (flags & S_ATIME)
5458 		inode->i_atime = *now;
5459 	return btrfs_dirty_inode(inode);
5460 }
5461 
5462 /*
5463  * find the highest existing sequence number in a directory
5464  * and then set the in-memory index_cnt variable to reflect
5465  * free sequence numbers
5466  */
5467 static int btrfs_set_inode_index_count(struct inode *inode)
5468 {
5469 	struct btrfs_root *root = BTRFS_I(inode)->root;
5470 	struct btrfs_key key, found_key;
5471 	struct btrfs_path *path;
5472 	struct extent_buffer *leaf;
5473 	int ret;
5474 
5475 	key.objectid = btrfs_ino(inode);
5476 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5477 	key.offset = (u64)-1;
5478 
5479 	path = btrfs_alloc_path();
5480 	if (!path)
5481 		return -ENOMEM;
5482 
5483 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5484 	if (ret < 0)
5485 		goto out;
5486 	/* FIXME: we should be able to handle this */
5487 	if (ret == 0)
5488 		goto out;
5489 	ret = 0;
5490 
5491 	/*
5492 	 * MAGIC NUMBER EXPLANATION:
5493 	 * since we search a directory based on f_pos we have to start at 2
5494 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5495 	 * else has to start at 2
5496 	 */
5497 	if (path->slots[0] == 0) {
5498 		BTRFS_I(inode)->index_cnt = 2;
5499 		goto out;
5500 	}
5501 
5502 	path->slots[0]--;
5503 
5504 	leaf = path->nodes[0];
5505 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5506 
5507 	if (found_key.objectid != btrfs_ino(inode) ||
5508 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5509 		BTRFS_I(inode)->index_cnt = 2;
5510 		goto out;
5511 	}
5512 
5513 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5514 out:
5515 	btrfs_free_path(path);
5516 	return ret;
5517 }
5518 
5519 /*
5520  * helper to find a free sequence number in a given directory.  This current
5521  * code is very simple, later versions will do smarter things in the btree
5522  */
5523 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5524 {
5525 	int ret = 0;
5526 
5527 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5528 		ret = btrfs_inode_delayed_dir_index_count(dir);
5529 		if (ret) {
5530 			ret = btrfs_set_inode_index_count(dir);
5531 			if (ret)
5532 				return ret;
5533 		}
5534 	}
5535 
5536 	*index = BTRFS_I(dir)->index_cnt;
5537 	BTRFS_I(dir)->index_cnt++;
5538 
5539 	return ret;
5540 }
5541 
5542 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5543 				     struct btrfs_root *root,
5544 				     struct inode *dir,
5545 				     const char *name, int name_len,
5546 				     u64 ref_objectid, u64 objectid,
5547 				     umode_t mode, u64 *index)
5548 {
5549 	struct inode *inode;
5550 	struct btrfs_inode_item *inode_item;
5551 	struct btrfs_key *location;
5552 	struct btrfs_path *path;
5553 	struct btrfs_inode_ref *ref;
5554 	struct btrfs_key key[2];
5555 	u32 sizes[2];
5556 	unsigned long ptr;
5557 	int ret;
5558 
5559 	path = btrfs_alloc_path();
5560 	if (!path)
5561 		return ERR_PTR(-ENOMEM);
5562 
5563 	inode = new_inode(root->fs_info->sb);
5564 	if (!inode) {
5565 		btrfs_free_path(path);
5566 		return ERR_PTR(-ENOMEM);
5567 	}
5568 
5569 	/*
5570 	 * we have to initialize this early, so we can reclaim the inode
5571 	 * number if we fail afterwards in this function.
5572 	 */
5573 	inode->i_ino = objectid;
5574 
5575 	if (dir) {
5576 		trace_btrfs_inode_request(dir);
5577 
5578 		ret = btrfs_set_inode_index(dir, index);
5579 		if (ret) {
5580 			btrfs_free_path(path);
5581 			iput(inode);
5582 			return ERR_PTR(ret);
5583 		}
5584 	}
5585 	/*
5586 	 * index_cnt is ignored for everything but a dir,
5587 	 * btrfs_get_inode_index_count has an explanation for the magic
5588 	 * number
5589 	 */
5590 	BTRFS_I(inode)->index_cnt = 2;
5591 	BTRFS_I(inode)->dir_index = *index;
5592 	BTRFS_I(inode)->root = root;
5593 	BTRFS_I(inode)->generation = trans->transid;
5594 	inode->i_generation = BTRFS_I(inode)->generation;
5595 
5596 	/*
5597 	 * We could have gotten an inode number from somebody who was fsynced
5598 	 * and then removed in this same transaction, so let's just set full
5599 	 * sync since it will be a full sync anyway and this will blow away the
5600 	 * old info in the log.
5601 	 */
5602 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5603 
5604 	key[0].objectid = objectid;
5605 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5606 	key[0].offset = 0;
5607 
5608 	/*
5609 	 * Start new inodes with an inode_ref. This is slightly more
5610 	 * efficient for small numbers of hard links since they will
5611 	 * be packed into one item. Extended refs will kick in if we
5612 	 * add more hard links than can fit in the ref item.
5613 	 */
5614 	key[1].objectid = objectid;
5615 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5616 	key[1].offset = ref_objectid;
5617 
5618 	sizes[0] = sizeof(struct btrfs_inode_item);
5619 	sizes[1] = name_len + sizeof(*ref);
5620 
5621 	path->leave_spinning = 1;
5622 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5623 	if (ret != 0)
5624 		goto fail;
5625 
5626 	inode_init_owner(inode, dir, mode);
5627 	inode_set_bytes(inode, 0);
5628 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5629 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5630 				  struct btrfs_inode_item);
5631 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5632 			     sizeof(*inode_item));
5633 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5634 
5635 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5636 			     struct btrfs_inode_ref);
5637 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5638 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5639 	ptr = (unsigned long)(ref + 1);
5640 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
5641 
5642 	btrfs_mark_buffer_dirty(path->nodes[0]);
5643 	btrfs_free_path(path);
5644 
5645 	location = &BTRFS_I(inode)->location;
5646 	location->objectid = objectid;
5647 	location->offset = 0;
5648 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5649 
5650 	btrfs_inherit_iflags(inode, dir);
5651 
5652 	if (S_ISREG(mode)) {
5653 		if (btrfs_test_opt(root, NODATASUM))
5654 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5655 		if (btrfs_test_opt(root, NODATACOW))
5656 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5657 				BTRFS_INODE_NODATASUM;
5658 	}
5659 
5660 	btrfs_insert_inode_hash(inode);
5661 	inode_tree_add(inode);
5662 
5663 	trace_btrfs_inode_new(inode);
5664 	btrfs_set_inode_last_trans(trans, inode);
5665 
5666 	btrfs_update_root_times(trans, root);
5667 
5668 	ret = btrfs_inode_inherit_props(trans, inode, dir);
5669 	if (ret)
5670 		btrfs_err(root->fs_info,
5671 			  "error inheriting props for ino %llu (root %llu): %d",
5672 			  btrfs_ino(inode), root->root_key.objectid, ret);
5673 
5674 	return inode;
5675 fail:
5676 	if (dir)
5677 		BTRFS_I(dir)->index_cnt--;
5678 	btrfs_free_path(path);
5679 	iput(inode);
5680 	return ERR_PTR(ret);
5681 }
5682 
5683 static inline u8 btrfs_inode_type(struct inode *inode)
5684 {
5685 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5686 }
5687 
5688 /*
5689  * utility function to add 'inode' into 'parent_inode' with
5690  * a give name and a given sequence number.
5691  * if 'add_backref' is true, also insert a backref from the
5692  * inode to the parent directory.
5693  */
5694 int btrfs_add_link(struct btrfs_trans_handle *trans,
5695 		   struct inode *parent_inode, struct inode *inode,
5696 		   const char *name, int name_len, int add_backref, u64 index)
5697 {
5698 	int ret = 0;
5699 	struct btrfs_key key;
5700 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5701 	u64 ino = btrfs_ino(inode);
5702 	u64 parent_ino = btrfs_ino(parent_inode);
5703 
5704 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5705 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5706 	} else {
5707 		key.objectid = ino;
5708 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5709 		key.offset = 0;
5710 	}
5711 
5712 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5713 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5714 					 key.objectid, root->root_key.objectid,
5715 					 parent_ino, index, name, name_len);
5716 	} else if (add_backref) {
5717 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5718 					     parent_ino, index);
5719 	}
5720 
5721 	/* Nothing to clean up yet */
5722 	if (ret)
5723 		return ret;
5724 
5725 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
5726 				    parent_inode, &key,
5727 				    btrfs_inode_type(inode), index);
5728 	if (ret == -EEXIST || ret == -EOVERFLOW)
5729 		goto fail_dir_item;
5730 	else if (ret) {
5731 		btrfs_abort_transaction(trans, root, ret);
5732 		return ret;
5733 	}
5734 
5735 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
5736 			   name_len * 2);
5737 	inode_inc_iversion(parent_inode);
5738 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5739 	ret = btrfs_update_inode(trans, root, parent_inode);
5740 	if (ret)
5741 		btrfs_abort_transaction(trans, root, ret);
5742 	return ret;
5743 
5744 fail_dir_item:
5745 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5746 		u64 local_index;
5747 		int err;
5748 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5749 				 key.objectid, root->root_key.objectid,
5750 				 parent_ino, &local_index, name, name_len);
5751 
5752 	} else if (add_backref) {
5753 		u64 local_index;
5754 		int err;
5755 
5756 		err = btrfs_del_inode_ref(trans, root, name, name_len,
5757 					  ino, parent_ino, &local_index);
5758 	}
5759 	return ret;
5760 }
5761 
5762 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5763 			    struct inode *dir, struct dentry *dentry,
5764 			    struct inode *inode, int backref, u64 index)
5765 {
5766 	int err = btrfs_add_link(trans, dir, inode,
5767 				 dentry->d_name.name, dentry->d_name.len,
5768 				 backref, index);
5769 	if (err > 0)
5770 		err = -EEXIST;
5771 	return err;
5772 }
5773 
5774 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5775 			umode_t mode, dev_t rdev)
5776 {
5777 	struct btrfs_trans_handle *trans;
5778 	struct btrfs_root *root = BTRFS_I(dir)->root;
5779 	struct inode *inode = NULL;
5780 	int err;
5781 	int drop_inode = 0;
5782 	u64 objectid;
5783 	u64 index = 0;
5784 
5785 	if (!new_valid_dev(rdev))
5786 		return -EINVAL;
5787 
5788 	/*
5789 	 * 2 for inode item and ref
5790 	 * 2 for dir items
5791 	 * 1 for xattr if selinux is on
5792 	 */
5793 	trans = btrfs_start_transaction(root, 5);
5794 	if (IS_ERR(trans))
5795 		return PTR_ERR(trans);
5796 
5797 	err = btrfs_find_free_ino(root, &objectid);
5798 	if (err)
5799 		goto out_unlock;
5800 
5801 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5802 				dentry->d_name.len, btrfs_ino(dir), objectid,
5803 				mode, &index);
5804 	if (IS_ERR(inode)) {
5805 		err = PTR_ERR(inode);
5806 		goto out_unlock;
5807 	}
5808 
5809 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5810 	if (err) {
5811 		drop_inode = 1;
5812 		goto out_unlock;
5813 	}
5814 
5815 	/*
5816 	* If the active LSM wants to access the inode during
5817 	* d_instantiate it needs these. Smack checks to see
5818 	* if the filesystem supports xattrs by looking at the
5819 	* ops vector.
5820 	*/
5821 
5822 	inode->i_op = &btrfs_special_inode_operations;
5823 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5824 	if (err)
5825 		drop_inode = 1;
5826 	else {
5827 		init_special_inode(inode, inode->i_mode, rdev);
5828 		btrfs_update_inode(trans, root, inode);
5829 		d_instantiate(dentry, inode);
5830 	}
5831 out_unlock:
5832 	btrfs_end_transaction(trans, root);
5833 	btrfs_balance_delayed_items(root);
5834 	btrfs_btree_balance_dirty(root);
5835 	if (drop_inode) {
5836 		inode_dec_link_count(inode);
5837 		iput(inode);
5838 	}
5839 	return err;
5840 }
5841 
5842 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5843 			umode_t mode, bool excl)
5844 {
5845 	struct btrfs_trans_handle *trans;
5846 	struct btrfs_root *root = BTRFS_I(dir)->root;
5847 	struct inode *inode = NULL;
5848 	int drop_inode_on_err = 0;
5849 	int err;
5850 	u64 objectid;
5851 	u64 index = 0;
5852 
5853 	/*
5854 	 * 2 for inode item and ref
5855 	 * 2 for dir items
5856 	 * 1 for xattr if selinux is on
5857 	 */
5858 	trans = btrfs_start_transaction(root, 5);
5859 	if (IS_ERR(trans))
5860 		return PTR_ERR(trans);
5861 
5862 	err = btrfs_find_free_ino(root, &objectid);
5863 	if (err)
5864 		goto out_unlock;
5865 
5866 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5867 				dentry->d_name.len, btrfs_ino(dir), objectid,
5868 				mode, &index);
5869 	if (IS_ERR(inode)) {
5870 		err = PTR_ERR(inode);
5871 		goto out_unlock;
5872 	}
5873 	drop_inode_on_err = 1;
5874 
5875 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5876 	if (err)
5877 		goto out_unlock;
5878 
5879 	err = btrfs_update_inode(trans, root, inode);
5880 	if (err)
5881 		goto out_unlock;
5882 
5883 	/*
5884 	* If the active LSM wants to access the inode during
5885 	* d_instantiate it needs these. Smack checks to see
5886 	* if the filesystem supports xattrs by looking at the
5887 	* ops vector.
5888 	*/
5889 	inode->i_fop = &btrfs_file_operations;
5890 	inode->i_op = &btrfs_file_inode_operations;
5891 
5892 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5893 	if (err)
5894 		goto out_unlock;
5895 
5896 	inode->i_mapping->a_ops = &btrfs_aops;
5897 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5898 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5899 	d_instantiate(dentry, inode);
5900 
5901 out_unlock:
5902 	btrfs_end_transaction(trans, root);
5903 	if (err && drop_inode_on_err) {
5904 		inode_dec_link_count(inode);
5905 		iput(inode);
5906 	}
5907 	btrfs_balance_delayed_items(root);
5908 	btrfs_btree_balance_dirty(root);
5909 	return err;
5910 }
5911 
5912 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5913 		      struct dentry *dentry)
5914 {
5915 	struct btrfs_trans_handle *trans;
5916 	struct btrfs_root *root = BTRFS_I(dir)->root;
5917 	struct inode *inode = old_dentry->d_inode;
5918 	u64 index;
5919 	int err;
5920 	int drop_inode = 0;
5921 
5922 	/* do not allow sys_link's with other subvols of the same device */
5923 	if (root->objectid != BTRFS_I(inode)->root->objectid)
5924 		return -EXDEV;
5925 
5926 	if (inode->i_nlink >= BTRFS_LINK_MAX)
5927 		return -EMLINK;
5928 
5929 	err = btrfs_set_inode_index(dir, &index);
5930 	if (err)
5931 		goto fail;
5932 
5933 	/*
5934 	 * 2 items for inode and inode ref
5935 	 * 2 items for dir items
5936 	 * 1 item for parent inode
5937 	 */
5938 	trans = btrfs_start_transaction(root, 5);
5939 	if (IS_ERR(trans)) {
5940 		err = PTR_ERR(trans);
5941 		goto fail;
5942 	}
5943 
5944 	/* There are several dir indexes for this inode, clear the cache. */
5945 	BTRFS_I(inode)->dir_index = 0ULL;
5946 	inc_nlink(inode);
5947 	inode_inc_iversion(inode);
5948 	inode->i_ctime = CURRENT_TIME;
5949 	ihold(inode);
5950 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5951 
5952 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5953 
5954 	if (err) {
5955 		drop_inode = 1;
5956 	} else {
5957 		struct dentry *parent = dentry->d_parent;
5958 		err = btrfs_update_inode(trans, root, inode);
5959 		if (err)
5960 			goto fail;
5961 		d_instantiate(dentry, inode);
5962 		btrfs_log_new_name(trans, inode, NULL, parent);
5963 	}
5964 
5965 	btrfs_end_transaction(trans, root);
5966 	btrfs_balance_delayed_items(root);
5967 fail:
5968 	if (drop_inode) {
5969 		inode_dec_link_count(inode);
5970 		iput(inode);
5971 	}
5972 	btrfs_btree_balance_dirty(root);
5973 	return err;
5974 }
5975 
5976 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5977 {
5978 	struct inode *inode = NULL;
5979 	struct btrfs_trans_handle *trans;
5980 	struct btrfs_root *root = BTRFS_I(dir)->root;
5981 	int err = 0;
5982 	int drop_on_err = 0;
5983 	u64 objectid = 0;
5984 	u64 index = 0;
5985 
5986 	/*
5987 	 * 2 items for inode and ref
5988 	 * 2 items for dir items
5989 	 * 1 for xattr if selinux is on
5990 	 */
5991 	trans = btrfs_start_transaction(root, 5);
5992 	if (IS_ERR(trans))
5993 		return PTR_ERR(trans);
5994 
5995 	err = btrfs_find_free_ino(root, &objectid);
5996 	if (err)
5997 		goto out_fail;
5998 
5999 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6000 				dentry->d_name.len, btrfs_ino(dir), objectid,
6001 				S_IFDIR | mode, &index);
6002 	if (IS_ERR(inode)) {
6003 		err = PTR_ERR(inode);
6004 		goto out_fail;
6005 	}
6006 
6007 	drop_on_err = 1;
6008 
6009 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6010 	if (err)
6011 		goto out_fail;
6012 
6013 	inode->i_op = &btrfs_dir_inode_operations;
6014 	inode->i_fop = &btrfs_dir_file_operations;
6015 
6016 	btrfs_i_size_write(inode, 0);
6017 	err = btrfs_update_inode(trans, root, inode);
6018 	if (err)
6019 		goto out_fail;
6020 
6021 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6022 			     dentry->d_name.len, 0, index);
6023 	if (err)
6024 		goto out_fail;
6025 
6026 	d_instantiate(dentry, inode);
6027 	drop_on_err = 0;
6028 
6029 out_fail:
6030 	btrfs_end_transaction(trans, root);
6031 	if (drop_on_err)
6032 		iput(inode);
6033 	btrfs_balance_delayed_items(root);
6034 	btrfs_btree_balance_dirty(root);
6035 	return err;
6036 }
6037 
6038 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6039  * and an extent that you want to insert, deal with overlap and insert
6040  * the new extent into the tree.
6041  */
6042 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6043 				struct extent_map *existing,
6044 				struct extent_map *em,
6045 				u64 map_start, u64 map_len)
6046 {
6047 	u64 start_diff;
6048 
6049 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6050 	start_diff = map_start - em->start;
6051 	em->start = map_start;
6052 	em->len = map_len;
6053 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6054 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6055 		em->block_start += start_diff;
6056 		em->block_len -= start_diff;
6057 	}
6058 	return add_extent_mapping(em_tree, em, 0);
6059 }
6060 
6061 static noinline int uncompress_inline(struct btrfs_path *path,
6062 				      struct inode *inode, struct page *page,
6063 				      size_t pg_offset, u64 extent_offset,
6064 				      struct btrfs_file_extent_item *item)
6065 {
6066 	int ret;
6067 	struct extent_buffer *leaf = path->nodes[0];
6068 	char *tmp;
6069 	size_t max_size;
6070 	unsigned long inline_size;
6071 	unsigned long ptr;
6072 	int compress_type;
6073 
6074 	WARN_ON(pg_offset != 0);
6075 	compress_type = btrfs_file_extent_compression(leaf, item);
6076 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6077 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6078 					btrfs_item_nr(path->slots[0]));
6079 	tmp = kmalloc(inline_size, GFP_NOFS);
6080 	if (!tmp)
6081 		return -ENOMEM;
6082 	ptr = btrfs_file_extent_inline_start(item);
6083 
6084 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6085 
6086 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6087 	ret = btrfs_decompress(compress_type, tmp, page,
6088 			       extent_offset, inline_size, max_size);
6089 	if (ret) {
6090 		char *kaddr = kmap_atomic(page);
6091 		unsigned long copy_size = min_t(u64,
6092 				  PAGE_CACHE_SIZE - pg_offset,
6093 				  max_size - extent_offset);
6094 		memset(kaddr + pg_offset, 0, copy_size);
6095 		kunmap_atomic(kaddr);
6096 	}
6097 	kfree(tmp);
6098 	return 0;
6099 }
6100 
6101 /*
6102  * a bit scary, this does extent mapping from logical file offset to the disk.
6103  * the ugly parts come from merging extents from the disk with the in-ram
6104  * representation.  This gets more complex because of the data=ordered code,
6105  * where the in-ram extents might be locked pending data=ordered completion.
6106  *
6107  * This also copies inline extents directly into the page.
6108  */
6109 
6110 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6111 				    size_t pg_offset, u64 start, u64 len,
6112 				    int create)
6113 {
6114 	int ret;
6115 	int err = 0;
6116 	u64 bytenr;
6117 	u64 extent_start = 0;
6118 	u64 extent_end = 0;
6119 	u64 objectid = btrfs_ino(inode);
6120 	u32 found_type;
6121 	struct btrfs_path *path = NULL;
6122 	struct btrfs_root *root = BTRFS_I(inode)->root;
6123 	struct btrfs_file_extent_item *item;
6124 	struct extent_buffer *leaf;
6125 	struct btrfs_key found_key;
6126 	struct extent_map *em = NULL;
6127 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6128 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6129 	struct btrfs_trans_handle *trans = NULL;
6130 	int compress_type;
6131 
6132 again:
6133 	read_lock(&em_tree->lock);
6134 	em = lookup_extent_mapping(em_tree, start, len);
6135 	if (em)
6136 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6137 	read_unlock(&em_tree->lock);
6138 
6139 	if (em) {
6140 		if (em->start > start || em->start + em->len <= start)
6141 			free_extent_map(em);
6142 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6143 			free_extent_map(em);
6144 		else
6145 			goto out;
6146 	}
6147 	em = alloc_extent_map();
6148 	if (!em) {
6149 		err = -ENOMEM;
6150 		goto out;
6151 	}
6152 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6153 	em->start = EXTENT_MAP_HOLE;
6154 	em->orig_start = EXTENT_MAP_HOLE;
6155 	em->len = (u64)-1;
6156 	em->block_len = (u64)-1;
6157 
6158 	if (!path) {
6159 		path = btrfs_alloc_path();
6160 		if (!path) {
6161 			err = -ENOMEM;
6162 			goto out;
6163 		}
6164 		/*
6165 		 * Chances are we'll be called again, so go ahead and do
6166 		 * readahead
6167 		 */
6168 		path->reada = 1;
6169 	}
6170 
6171 	ret = btrfs_lookup_file_extent(trans, root, path,
6172 				       objectid, start, trans != NULL);
6173 	if (ret < 0) {
6174 		err = ret;
6175 		goto out;
6176 	}
6177 
6178 	if (ret != 0) {
6179 		if (path->slots[0] == 0)
6180 			goto not_found;
6181 		path->slots[0]--;
6182 	}
6183 
6184 	leaf = path->nodes[0];
6185 	item = btrfs_item_ptr(leaf, path->slots[0],
6186 			      struct btrfs_file_extent_item);
6187 	/* are we inside the extent that was found? */
6188 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6189 	found_type = btrfs_key_type(&found_key);
6190 	if (found_key.objectid != objectid ||
6191 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6192 		/*
6193 		 * If we backup past the first extent we want to move forward
6194 		 * and see if there is an extent in front of us, otherwise we'll
6195 		 * say there is a hole for our whole search range which can
6196 		 * cause problems.
6197 		 */
6198 		extent_end = start;
6199 		goto next;
6200 	}
6201 
6202 	found_type = btrfs_file_extent_type(leaf, item);
6203 	extent_start = found_key.offset;
6204 	compress_type = btrfs_file_extent_compression(leaf, item);
6205 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6206 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6207 		extent_end = extent_start +
6208 		       btrfs_file_extent_num_bytes(leaf, item);
6209 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6210 		size_t size;
6211 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6212 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6213 	}
6214 next:
6215 	if (start >= extent_end) {
6216 		path->slots[0]++;
6217 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6218 			ret = btrfs_next_leaf(root, path);
6219 			if (ret < 0) {
6220 				err = ret;
6221 				goto out;
6222 			}
6223 			if (ret > 0)
6224 				goto not_found;
6225 			leaf = path->nodes[0];
6226 		}
6227 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6228 		if (found_key.objectid != objectid ||
6229 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6230 			goto not_found;
6231 		if (start + len <= found_key.offset)
6232 			goto not_found;
6233 		em->start = start;
6234 		em->orig_start = start;
6235 		em->len = found_key.offset - start;
6236 		goto not_found_em;
6237 	}
6238 
6239 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6240 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6241 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6242 		em->start = extent_start;
6243 		em->len = extent_end - extent_start;
6244 		em->orig_start = extent_start -
6245 				 btrfs_file_extent_offset(leaf, item);
6246 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6247 								      item);
6248 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6249 		if (bytenr == 0) {
6250 			em->block_start = EXTENT_MAP_HOLE;
6251 			goto insert;
6252 		}
6253 		if (compress_type != BTRFS_COMPRESS_NONE) {
6254 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6255 			em->compress_type = compress_type;
6256 			em->block_start = bytenr;
6257 			em->block_len = em->orig_block_len;
6258 		} else {
6259 			bytenr += btrfs_file_extent_offset(leaf, item);
6260 			em->block_start = bytenr;
6261 			em->block_len = em->len;
6262 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6263 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6264 		}
6265 		goto insert;
6266 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6267 		unsigned long ptr;
6268 		char *map;
6269 		size_t size;
6270 		size_t extent_offset;
6271 		size_t copy_size;
6272 
6273 		em->block_start = EXTENT_MAP_INLINE;
6274 		if (!page || create) {
6275 			em->start = extent_start;
6276 			em->len = extent_end - extent_start;
6277 			goto out;
6278 		}
6279 
6280 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6281 		extent_offset = page_offset(page) + pg_offset - extent_start;
6282 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6283 				size - extent_offset);
6284 		em->start = extent_start + extent_offset;
6285 		em->len = ALIGN(copy_size, root->sectorsize);
6286 		em->orig_block_len = em->len;
6287 		em->orig_start = em->start;
6288 		if (compress_type) {
6289 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6290 			em->compress_type = compress_type;
6291 		}
6292 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6293 		if (create == 0 && !PageUptodate(page)) {
6294 			if (btrfs_file_extent_compression(leaf, item) !=
6295 			    BTRFS_COMPRESS_NONE) {
6296 				ret = uncompress_inline(path, inode, page,
6297 							pg_offset,
6298 							extent_offset, item);
6299 				BUG_ON(ret); /* -ENOMEM */
6300 			} else {
6301 				map = kmap(page);
6302 				read_extent_buffer(leaf, map + pg_offset, ptr,
6303 						   copy_size);
6304 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6305 					memset(map + pg_offset + copy_size, 0,
6306 					       PAGE_CACHE_SIZE - pg_offset -
6307 					       copy_size);
6308 				}
6309 				kunmap(page);
6310 			}
6311 			flush_dcache_page(page);
6312 		} else if (create && PageUptodate(page)) {
6313 			BUG();
6314 			if (!trans) {
6315 				kunmap(page);
6316 				free_extent_map(em);
6317 				em = NULL;
6318 
6319 				btrfs_release_path(path);
6320 				trans = btrfs_join_transaction(root);
6321 
6322 				if (IS_ERR(trans))
6323 					return ERR_CAST(trans);
6324 				goto again;
6325 			}
6326 			map = kmap(page);
6327 			write_extent_buffer(leaf, map + pg_offset, ptr,
6328 					    copy_size);
6329 			kunmap(page);
6330 			btrfs_mark_buffer_dirty(leaf);
6331 		}
6332 		set_extent_uptodate(io_tree, em->start,
6333 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6334 		goto insert;
6335 	} else {
6336 		WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6337 	}
6338 not_found:
6339 	em->start = start;
6340 	em->orig_start = start;
6341 	em->len = len;
6342 not_found_em:
6343 	em->block_start = EXTENT_MAP_HOLE;
6344 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6345 insert:
6346 	btrfs_release_path(path);
6347 	if (em->start > start || extent_map_end(em) <= start) {
6348 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6349 			em->start, em->len, start, len);
6350 		err = -EIO;
6351 		goto out;
6352 	}
6353 
6354 	err = 0;
6355 	write_lock(&em_tree->lock);
6356 	ret = add_extent_mapping(em_tree, em, 0);
6357 	/* it is possible that someone inserted the extent into the tree
6358 	 * while we had the lock dropped.  It is also possible that
6359 	 * an overlapping map exists in the tree
6360 	 */
6361 	if (ret == -EEXIST) {
6362 		struct extent_map *existing;
6363 
6364 		ret = 0;
6365 
6366 		existing = lookup_extent_mapping(em_tree, start, len);
6367 		if (existing && (existing->start > start ||
6368 		    existing->start + existing->len <= start)) {
6369 			free_extent_map(existing);
6370 			existing = NULL;
6371 		}
6372 		if (!existing) {
6373 			existing = lookup_extent_mapping(em_tree, em->start,
6374 							 em->len);
6375 			if (existing) {
6376 				err = merge_extent_mapping(em_tree, existing,
6377 							   em, start,
6378 							   root->sectorsize);
6379 				free_extent_map(existing);
6380 				if (err) {
6381 					free_extent_map(em);
6382 					em = NULL;
6383 				}
6384 			} else {
6385 				err = -EIO;
6386 				free_extent_map(em);
6387 				em = NULL;
6388 			}
6389 		} else {
6390 			free_extent_map(em);
6391 			em = existing;
6392 			err = 0;
6393 		}
6394 	}
6395 	write_unlock(&em_tree->lock);
6396 out:
6397 
6398 	trace_btrfs_get_extent(root, em);
6399 
6400 	if (path)
6401 		btrfs_free_path(path);
6402 	if (trans) {
6403 		ret = btrfs_end_transaction(trans, root);
6404 		if (!err)
6405 			err = ret;
6406 	}
6407 	if (err) {
6408 		free_extent_map(em);
6409 		return ERR_PTR(err);
6410 	}
6411 	BUG_ON(!em); /* Error is always set */
6412 	return em;
6413 }
6414 
6415 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6416 					   size_t pg_offset, u64 start, u64 len,
6417 					   int create)
6418 {
6419 	struct extent_map *em;
6420 	struct extent_map *hole_em = NULL;
6421 	u64 range_start = start;
6422 	u64 end;
6423 	u64 found;
6424 	u64 found_end;
6425 	int err = 0;
6426 
6427 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6428 	if (IS_ERR(em))
6429 		return em;
6430 	if (em) {
6431 		/*
6432 		 * if our em maps to
6433 		 * -  a hole or
6434 		 * -  a pre-alloc extent,
6435 		 * there might actually be delalloc bytes behind it.
6436 		 */
6437 		if (em->block_start != EXTENT_MAP_HOLE &&
6438 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6439 			return em;
6440 		else
6441 			hole_em = em;
6442 	}
6443 
6444 	/* check to see if we've wrapped (len == -1 or similar) */
6445 	end = start + len;
6446 	if (end < start)
6447 		end = (u64)-1;
6448 	else
6449 		end -= 1;
6450 
6451 	em = NULL;
6452 
6453 	/* ok, we didn't find anything, lets look for delalloc */
6454 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6455 				 end, len, EXTENT_DELALLOC, 1);
6456 	found_end = range_start + found;
6457 	if (found_end < range_start)
6458 		found_end = (u64)-1;
6459 
6460 	/*
6461 	 * we didn't find anything useful, return
6462 	 * the original results from get_extent()
6463 	 */
6464 	if (range_start > end || found_end <= start) {
6465 		em = hole_em;
6466 		hole_em = NULL;
6467 		goto out;
6468 	}
6469 
6470 	/* adjust the range_start to make sure it doesn't
6471 	 * go backwards from the start they passed in
6472 	 */
6473 	range_start = max(start, range_start);
6474 	found = found_end - range_start;
6475 
6476 	if (found > 0) {
6477 		u64 hole_start = start;
6478 		u64 hole_len = len;
6479 
6480 		em = alloc_extent_map();
6481 		if (!em) {
6482 			err = -ENOMEM;
6483 			goto out;
6484 		}
6485 		/*
6486 		 * when btrfs_get_extent can't find anything it
6487 		 * returns one huge hole
6488 		 *
6489 		 * make sure what it found really fits our range, and
6490 		 * adjust to make sure it is based on the start from
6491 		 * the caller
6492 		 */
6493 		if (hole_em) {
6494 			u64 calc_end = extent_map_end(hole_em);
6495 
6496 			if (calc_end <= start || (hole_em->start > end)) {
6497 				free_extent_map(hole_em);
6498 				hole_em = NULL;
6499 			} else {
6500 				hole_start = max(hole_em->start, start);
6501 				hole_len = calc_end - hole_start;
6502 			}
6503 		}
6504 		em->bdev = NULL;
6505 		if (hole_em && range_start > hole_start) {
6506 			/* our hole starts before our delalloc, so we
6507 			 * have to return just the parts of the hole
6508 			 * that go until  the delalloc starts
6509 			 */
6510 			em->len = min(hole_len,
6511 				      range_start - hole_start);
6512 			em->start = hole_start;
6513 			em->orig_start = hole_start;
6514 			/*
6515 			 * don't adjust block start at all,
6516 			 * it is fixed at EXTENT_MAP_HOLE
6517 			 */
6518 			em->block_start = hole_em->block_start;
6519 			em->block_len = hole_len;
6520 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6521 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6522 		} else {
6523 			em->start = range_start;
6524 			em->len = found;
6525 			em->orig_start = range_start;
6526 			em->block_start = EXTENT_MAP_DELALLOC;
6527 			em->block_len = found;
6528 		}
6529 	} else if (hole_em) {
6530 		return hole_em;
6531 	}
6532 out:
6533 
6534 	free_extent_map(hole_em);
6535 	if (err) {
6536 		free_extent_map(em);
6537 		return ERR_PTR(err);
6538 	}
6539 	return em;
6540 }
6541 
6542 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6543 						  u64 start, u64 len)
6544 {
6545 	struct btrfs_root *root = BTRFS_I(inode)->root;
6546 	struct extent_map *em;
6547 	struct btrfs_key ins;
6548 	u64 alloc_hint;
6549 	int ret;
6550 
6551 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6552 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6553 				   alloc_hint, &ins, 1);
6554 	if (ret)
6555 		return ERR_PTR(ret);
6556 
6557 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6558 			      ins.offset, ins.offset, ins.offset, 0);
6559 	if (IS_ERR(em)) {
6560 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6561 		return em;
6562 	}
6563 
6564 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6565 					   ins.offset, ins.offset, 0);
6566 	if (ret) {
6567 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6568 		free_extent_map(em);
6569 		return ERR_PTR(ret);
6570 	}
6571 
6572 	return em;
6573 }
6574 
6575 /*
6576  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6577  * block must be cow'd
6578  */
6579 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6580 			      u64 *orig_start, u64 *orig_block_len,
6581 			      u64 *ram_bytes)
6582 {
6583 	struct btrfs_trans_handle *trans;
6584 	struct btrfs_path *path;
6585 	int ret;
6586 	struct extent_buffer *leaf;
6587 	struct btrfs_root *root = BTRFS_I(inode)->root;
6588 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6589 	struct btrfs_file_extent_item *fi;
6590 	struct btrfs_key key;
6591 	u64 disk_bytenr;
6592 	u64 backref_offset;
6593 	u64 extent_end;
6594 	u64 num_bytes;
6595 	int slot;
6596 	int found_type;
6597 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6598 
6599 	path = btrfs_alloc_path();
6600 	if (!path)
6601 		return -ENOMEM;
6602 
6603 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6604 				       offset, 0);
6605 	if (ret < 0)
6606 		goto out;
6607 
6608 	slot = path->slots[0];
6609 	if (ret == 1) {
6610 		if (slot == 0) {
6611 			/* can't find the item, must cow */
6612 			ret = 0;
6613 			goto out;
6614 		}
6615 		slot--;
6616 	}
6617 	ret = 0;
6618 	leaf = path->nodes[0];
6619 	btrfs_item_key_to_cpu(leaf, &key, slot);
6620 	if (key.objectid != btrfs_ino(inode) ||
6621 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6622 		/* not our file or wrong item type, must cow */
6623 		goto out;
6624 	}
6625 
6626 	if (key.offset > offset) {
6627 		/* Wrong offset, must cow */
6628 		goto out;
6629 	}
6630 
6631 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6632 	found_type = btrfs_file_extent_type(leaf, fi);
6633 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6634 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6635 		/* not a regular extent, must cow */
6636 		goto out;
6637 	}
6638 
6639 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6640 		goto out;
6641 
6642 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6643 	if (extent_end <= offset)
6644 		goto out;
6645 
6646 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6647 	if (disk_bytenr == 0)
6648 		goto out;
6649 
6650 	if (btrfs_file_extent_compression(leaf, fi) ||
6651 	    btrfs_file_extent_encryption(leaf, fi) ||
6652 	    btrfs_file_extent_other_encoding(leaf, fi))
6653 		goto out;
6654 
6655 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6656 
6657 	if (orig_start) {
6658 		*orig_start = key.offset - backref_offset;
6659 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6660 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6661 	}
6662 
6663 	if (btrfs_extent_readonly(root, disk_bytenr))
6664 		goto out;
6665 
6666 	num_bytes = min(offset + *len, extent_end) - offset;
6667 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6668 		u64 range_end;
6669 
6670 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6671 		ret = test_range_bit(io_tree, offset, range_end,
6672 				     EXTENT_DELALLOC, 0, NULL);
6673 		if (ret) {
6674 			ret = -EAGAIN;
6675 			goto out;
6676 		}
6677 	}
6678 
6679 	btrfs_release_path(path);
6680 
6681 	/*
6682 	 * look for other files referencing this extent, if we
6683 	 * find any we must cow
6684 	 */
6685 	trans = btrfs_join_transaction(root);
6686 	if (IS_ERR(trans)) {
6687 		ret = 0;
6688 		goto out;
6689 	}
6690 
6691 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6692 				    key.offset - backref_offset, disk_bytenr);
6693 	btrfs_end_transaction(trans, root);
6694 	if (ret) {
6695 		ret = 0;
6696 		goto out;
6697 	}
6698 
6699 	/*
6700 	 * adjust disk_bytenr and num_bytes to cover just the bytes
6701 	 * in this extent we are about to write.  If there
6702 	 * are any csums in that range we have to cow in order
6703 	 * to keep the csums correct
6704 	 */
6705 	disk_bytenr += backref_offset;
6706 	disk_bytenr += offset - key.offset;
6707 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6708 				goto out;
6709 	/*
6710 	 * all of the above have passed, it is safe to overwrite this extent
6711 	 * without cow
6712 	 */
6713 	*len = num_bytes;
6714 	ret = 1;
6715 out:
6716 	btrfs_free_path(path);
6717 	return ret;
6718 }
6719 
6720 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6721 			      struct extent_state **cached_state, int writing)
6722 {
6723 	struct btrfs_ordered_extent *ordered;
6724 	int ret = 0;
6725 
6726 	while (1) {
6727 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6728 				 0, cached_state);
6729 		/*
6730 		 * We're concerned with the entire range that we're going to be
6731 		 * doing DIO to, so we need to make sure theres no ordered
6732 		 * extents in this range.
6733 		 */
6734 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6735 						     lockend - lockstart + 1);
6736 
6737 		/*
6738 		 * We need to make sure there are no buffered pages in this
6739 		 * range either, we could have raced between the invalidate in
6740 		 * generic_file_direct_write and locking the extent.  The
6741 		 * invalidate needs to happen so that reads after a write do not
6742 		 * get stale data.
6743 		 */
6744 		if (!ordered && (!writing ||
6745 		    !test_range_bit(&BTRFS_I(inode)->io_tree,
6746 				    lockstart, lockend, EXTENT_UPTODATE, 0,
6747 				    *cached_state)))
6748 			break;
6749 
6750 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6751 				     cached_state, GFP_NOFS);
6752 
6753 		if (ordered) {
6754 			btrfs_start_ordered_extent(inode, ordered, 1);
6755 			btrfs_put_ordered_extent(ordered);
6756 		} else {
6757 			/* Screw you mmap */
6758 			ret = filemap_write_and_wait_range(inode->i_mapping,
6759 							   lockstart,
6760 							   lockend);
6761 			if (ret)
6762 				break;
6763 
6764 			/*
6765 			 * If we found a page that couldn't be invalidated just
6766 			 * fall back to buffered.
6767 			 */
6768 			ret = invalidate_inode_pages2_range(inode->i_mapping,
6769 					lockstart >> PAGE_CACHE_SHIFT,
6770 					lockend >> PAGE_CACHE_SHIFT);
6771 			if (ret)
6772 				break;
6773 		}
6774 
6775 		cond_resched();
6776 	}
6777 
6778 	return ret;
6779 }
6780 
6781 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6782 					   u64 len, u64 orig_start,
6783 					   u64 block_start, u64 block_len,
6784 					   u64 orig_block_len, u64 ram_bytes,
6785 					   int type)
6786 {
6787 	struct extent_map_tree *em_tree;
6788 	struct extent_map *em;
6789 	struct btrfs_root *root = BTRFS_I(inode)->root;
6790 	int ret;
6791 
6792 	em_tree = &BTRFS_I(inode)->extent_tree;
6793 	em = alloc_extent_map();
6794 	if (!em)
6795 		return ERR_PTR(-ENOMEM);
6796 
6797 	em->start = start;
6798 	em->orig_start = orig_start;
6799 	em->mod_start = start;
6800 	em->mod_len = len;
6801 	em->len = len;
6802 	em->block_len = block_len;
6803 	em->block_start = block_start;
6804 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6805 	em->orig_block_len = orig_block_len;
6806 	em->ram_bytes = ram_bytes;
6807 	em->generation = -1;
6808 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6809 	if (type == BTRFS_ORDERED_PREALLOC)
6810 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
6811 
6812 	do {
6813 		btrfs_drop_extent_cache(inode, em->start,
6814 				em->start + em->len - 1, 0);
6815 		write_lock(&em_tree->lock);
6816 		ret = add_extent_mapping(em_tree, em, 1);
6817 		write_unlock(&em_tree->lock);
6818 	} while (ret == -EEXIST);
6819 
6820 	if (ret) {
6821 		free_extent_map(em);
6822 		return ERR_PTR(ret);
6823 	}
6824 
6825 	return em;
6826 }
6827 
6828 
6829 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6830 				   struct buffer_head *bh_result, int create)
6831 {
6832 	struct extent_map *em;
6833 	struct btrfs_root *root = BTRFS_I(inode)->root;
6834 	struct extent_state *cached_state = NULL;
6835 	u64 start = iblock << inode->i_blkbits;
6836 	u64 lockstart, lockend;
6837 	u64 len = bh_result->b_size;
6838 	int unlock_bits = EXTENT_LOCKED;
6839 	int ret = 0;
6840 
6841 	if (create)
6842 		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6843 	else
6844 		len = min_t(u64, len, root->sectorsize);
6845 
6846 	lockstart = start;
6847 	lockend = start + len - 1;
6848 
6849 	/*
6850 	 * If this errors out it's because we couldn't invalidate pagecache for
6851 	 * this range and we need to fallback to buffered.
6852 	 */
6853 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6854 		return -ENOTBLK;
6855 
6856 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6857 	if (IS_ERR(em)) {
6858 		ret = PTR_ERR(em);
6859 		goto unlock_err;
6860 	}
6861 
6862 	/*
6863 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6864 	 * io.  INLINE is special, and we could probably kludge it in here, but
6865 	 * it's still buffered so for safety lets just fall back to the generic
6866 	 * buffered path.
6867 	 *
6868 	 * For COMPRESSED we _have_ to read the entire extent in so we can
6869 	 * decompress it, so there will be buffering required no matter what we
6870 	 * do, so go ahead and fallback to buffered.
6871 	 *
6872 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6873 	 * to buffered IO.  Don't blame me, this is the price we pay for using
6874 	 * the generic code.
6875 	 */
6876 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6877 	    em->block_start == EXTENT_MAP_INLINE) {
6878 		free_extent_map(em);
6879 		ret = -ENOTBLK;
6880 		goto unlock_err;
6881 	}
6882 
6883 	/* Just a good old fashioned hole, return */
6884 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6885 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6886 		free_extent_map(em);
6887 		goto unlock_err;
6888 	}
6889 
6890 	/*
6891 	 * We don't allocate a new extent in the following cases
6892 	 *
6893 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6894 	 * existing extent.
6895 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
6896 	 * just use the extent.
6897 	 *
6898 	 */
6899 	if (!create) {
6900 		len = min(len, em->len - (start - em->start));
6901 		lockstart = start + len;
6902 		goto unlock;
6903 	}
6904 
6905 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6906 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6907 	     em->block_start != EXTENT_MAP_HOLE)) {
6908 		int type;
6909 		int ret;
6910 		u64 block_start, orig_start, orig_block_len, ram_bytes;
6911 
6912 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6913 			type = BTRFS_ORDERED_PREALLOC;
6914 		else
6915 			type = BTRFS_ORDERED_NOCOW;
6916 		len = min(len, em->len - (start - em->start));
6917 		block_start = em->block_start + (start - em->start);
6918 
6919 		if (can_nocow_extent(inode, start, &len, &orig_start,
6920 				     &orig_block_len, &ram_bytes) == 1) {
6921 			if (type == BTRFS_ORDERED_PREALLOC) {
6922 				free_extent_map(em);
6923 				em = create_pinned_em(inode, start, len,
6924 						       orig_start,
6925 						       block_start, len,
6926 						       orig_block_len,
6927 						       ram_bytes, type);
6928 				if (IS_ERR(em))
6929 					goto unlock_err;
6930 			}
6931 
6932 			ret = btrfs_add_ordered_extent_dio(inode, start,
6933 					   block_start, len, len, type);
6934 			if (ret) {
6935 				free_extent_map(em);
6936 				goto unlock_err;
6937 			}
6938 			goto unlock;
6939 		}
6940 	}
6941 
6942 	/*
6943 	 * this will cow the extent, reset the len in case we changed
6944 	 * it above
6945 	 */
6946 	len = bh_result->b_size;
6947 	free_extent_map(em);
6948 	em = btrfs_new_extent_direct(inode, start, len);
6949 	if (IS_ERR(em)) {
6950 		ret = PTR_ERR(em);
6951 		goto unlock_err;
6952 	}
6953 	len = min(len, em->len - (start - em->start));
6954 unlock:
6955 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6956 		inode->i_blkbits;
6957 	bh_result->b_size = len;
6958 	bh_result->b_bdev = em->bdev;
6959 	set_buffer_mapped(bh_result);
6960 	if (create) {
6961 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6962 			set_buffer_new(bh_result);
6963 
6964 		/*
6965 		 * Need to update the i_size under the extent lock so buffered
6966 		 * readers will get the updated i_size when we unlock.
6967 		 */
6968 		if (start + len > i_size_read(inode))
6969 			i_size_write(inode, start + len);
6970 
6971 		spin_lock(&BTRFS_I(inode)->lock);
6972 		BTRFS_I(inode)->outstanding_extents++;
6973 		spin_unlock(&BTRFS_I(inode)->lock);
6974 
6975 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6976 				     lockstart + len - 1, EXTENT_DELALLOC, NULL,
6977 				     &cached_state, GFP_NOFS);
6978 		BUG_ON(ret);
6979 	}
6980 
6981 	/*
6982 	 * In the case of write we need to clear and unlock the entire range,
6983 	 * in the case of read we need to unlock only the end area that we
6984 	 * aren't using if there is any left over space.
6985 	 */
6986 	if (lockstart < lockend) {
6987 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6988 				 lockend, unlock_bits, 1, 0,
6989 				 &cached_state, GFP_NOFS);
6990 	} else {
6991 		free_extent_state(cached_state);
6992 	}
6993 
6994 	free_extent_map(em);
6995 
6996 	return 0;
6997 
6998 unlock_err:
6999 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7000 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7001 	return ret;
7002 }
7003 
7004 static void btrfs_endio_direct_read(struct bio *bio, int err)
7005 {
7006 	struct btrfs_dio_private *dip = bio->bi_private;
7007 	struct bio_vec *bvec;
7008 	struct inode *inode = dip->inode;
7009 	struct btrfs_root *root = BTRFS_I(inode)->root;
7010 	struct bio *dio_bio;
7011 	u32 *csums = (u32 *)dip->csum;
7012 	u64 start;
7013 	int i;
7014 
7015 	start = dip->logical_offset;
7016 	bio_for_each_segment_all(bvec, bio, i) {
7017 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7018 			struct page *page = bvec->bv_page;
7019 			char *kaddr;
7020 			u32 csum = ~(u32)0;
7021 			unsigned long flags;
7022 
7023 			local_irq_save(flags);
7024 			kaddr = kmap_atomic(page);
7025 			csum = btrfs_csum_data(kaddr + bvec->bv_offset,
7026 					       csum, bvec->bv_len);
7027 			btrfs_csum_final(csum, (char *)&csum);
7028 			kunmap_atomic(kaddr);
7029 			local_irq_restore(flags);
7030 
7031 			flush_dcache_page(bvec->bv_page);
7032 			if (csum != csums[i]) {
7033 				btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
7034 					  btrfs_ino(inode), start, csum,
7035 					  csums[i]);
7036 				err = -EIO;
7037 			}
7038 		}
7039 
7040 		start += bvec->bv_len;
7041 	}
7042 
7043 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7044 		      dip->logical_offset + dip->bytes - 1);
7045 	dio_bio = dip->dio_bio;
7046 
7047 	kfree(dip);
7048 
7049 	/* If we had a csum failure make sure to clear the uptodate flag */
7050 	if (err)
7051 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7052 	dio_end_io(dio_bio, err);
7053 	bio_put(bio);
7054 }
7055 
7056 static void btrfs_endio_direct_write(struct bio *bio, int err)
7057 {
7058 	struct btrfs_dio_private *dip = bio->bi_private;
7059 	struct inode *inode = dip->inode;
7060 	struct btrfs_root *root = BTRFS_I(inode)->root;
7061 	struct btrfs_ordered_extent *ordered = NULL;
7062 	u64 ordered_offset = dip->logical_offset;
7063 	u64 ordered_bytes = dip->bytes;
7064 	struct bio *dio_bio;
7065 	int ret;
7066 
7067 	if (err)
7068 		goto out_done;
7069 again:
7070 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7071 						   &ordered_offset,
7072 						   ordered_bytes, !err);
7073 	if (!ret)
7074 		goto out_test;
7075 
7076 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
7077 	btrfs_queue_work(root->fs_info->endio_write_workers,
7078 			 &ordered->work);
7079 out_test:
7080 	/*
7081 	 * our bio might span multiple ordered extents.  If we haven't
7082 	 * completed the accounting for the whole dio, go back and try again
7083 	 */
7084 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7085 		ordered_bytes = dip->logical_offset + dip->bytes -
7086 			ordered_offset;
7087 		ordered = NULL;
7088 		goto again;
7089 	}
7090 out_done:
7091 	dio_bio = dip->dio_bio;
7092 
7093 	kfree(dip);
7094 
7095 	/* If we had an error make sure to clear the uptodate flag */
7096 	if (err)
7097 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7098 	dio_end_io(dio_bio, err);
7099 	bio_put(bio);
7100 }
7101 
7102 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7103 				    struct bio *bio, int mirror_num,
7104 				    unsigned long bio_flags, u64 offset)
7105 {
7106 	int ret;
7107 	struct btrfs_root *root = BTRFS_I(inode)->root;
7108 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7109 	BUG_ON(ret); /* -ENOMEM */
7110 	return 0;
7111 }
7112 
7113 static void btrfs_end_dio_bio(struct bio *bio, int err)
7114 {
7115 	struct btrfs_dio_private *dip = bio->bi_private;
7116 
7117 	if (err) {
7118 		btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7119 			  "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7120 		      btrfs_ino(dip->inode), bio->bi_rw,
7121 		      (unsigned long long)bio->bi_iter.bi_sector,
7122 		      bio->bi_iter.bi_size, err);
7123 		dip->errors = 1;
7124 
7125 		/*
7126 		 * before atomic variable goto zero, we must make sure
7127 		 * dip->errors is perceived to be set.
7128 		 */
7129 		smp_mb__before_atomic_dec();
7130 	}
7131 
7132 	/* if there are more bios still pending for this dio, just exit */
7133 	if (!atomic_dec_and_test(&dip->pending_bios))
7134 		goto out;
7135 
7136 	if (dip->errors) {
7137 		bio_io_error(dip->orig_bio);
7138 	} else {
7139 		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7140 		bio_endio(dip->orig_bio, 0);
7141 	}
7142 out:
7143 	bio_put(bio);
7144 }
7145 
7146 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7147 				       u64 first_sector, gfp_t gfp_flags)
7148 {
7149 	int nr_vecs = bio_get_nr_vecs(bdev);
7150 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7151 }
7152 
7153 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7154 					 int rw, u64 file_offset, int skip_sum,
7155 					 int async_submit)
7156 {
7157 	struct btrfs_dio_private *dip = bio->bi_private;
7158 	int write = rw & REQ_WRITE;
7159 	struct btrfs_root *root = BTRFS_I(inode)->root;
7160 	int ret;
7161 
7162 	if (async_submit)
7163 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7164 
7165 	bio_get(bio);
7166 
7167 	if (!write) {
7168 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7169 		if (ret)
7170 			goto err;
7171 	}
7172 
7173 	if (skip_sum)
7174 		goto map;
7175 
7176 	if (write && async_submit) {
7177 		ret = btrfs_wq_submit_bio(root->fs_info,
7178 				   inode, rw, bio, 0, 0,
7179 				   file_offset,
7180 				   __btrfs_submit_bio_start_direct_io,
7181 				   __btrfs_submit_bio_done);
7182 		goto err;
7183 	} else if (write) {
7184 		/*
7185 		 * If we aren't doing async submit, calculate the csum of the
7186 		 * bio now.
7187 		 */
7188 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7189 		if (ret)
7190 			goto err;
7191 	} else if (!skip_sum) {
7192 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7193 						file_offset);
7194 		if (ret)
7195 			goto err;
7196 	}
7197 
7198 map:
7199 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7200 err:
7201 	bio_put(bio);
7202 	return ret;
7203 }
7204 
7205 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7206 				    int skip_sum)
7207 {
7208 	struct inode *inode = dip->inode;
7209 	struct btrfs_root *root = BTRFS_I(inode)->root;
7210 	struct bio *bio;
7211 	struct bio *orig_bio = dip->orig_bio;
7212 	struct bio_vec *bvec = orig_bio->bi_io_vec;
7213 	u64 start_sector = orig_bio->bi_iter.bi_sector;
7214 	u64 file_offset = dip->logical_offset;
7215 	u64 submit_len = 0;
7216 	u64 map_length;
7217 	int nr_pages = 0;
7218 	int ret = 0;
7219 	int async_submit = 0;
7220 
7221 	map_length = orig_bio->bi_iter.bi_size;
7222 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7223 			      &map_length, NULL, 0);
7224 	if (ret) {
7225 		bio_put(orig_bio);
7226 		return -EIO;
7227 	}
7228 
7229 	if (map_length >= orig_bio->bi_iter.bi_size) {
7230 		bio = orig_bio;
7231 		goto submit;
7232 	}
7233 
7234 	/* async crcs make it difficult to collect full stripe writes. */
7235 	if (btrfs_get_alloc_profile(root, 1) &
7236 	    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7237 		async_submit = 0;
7238 	else
7239 		async_submit = 1;
7240 
7241 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7242 	if (!bio)
7243 		return -ENOMEM;
7244 	bio->bi_private = dip;
7245 	bio->bi_end_io = btrfs_end_dio_bio;
7246 	atomic_inc(&dip->pending_bios);
7247 
7248 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7249 		if (unlikely(map_length < submit_len + bvec->bv_len ||
7250 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7251 				 bvec->bv_offset) < bvec->bv_len)) {
7252 			/*
7253 			 * inc the count before we submit the bio so
7254 			 * we know the end IO handler won't happen before
7255 			 * we inc the count. Otherwise, the dip might get freed
7256 			 * before we're done setting it up
7257 			 */
7258 			atomic_inc(&dip->pending_bios);
7259 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
7260 						     file_offset, skip_sum,
7261 						     async_submit);
7262 			if (ret) {
7263 				bio_put(bio);
7264 				atomic_dec(&dip->pending_bios);
7265 				goto out_err;
7266 			}
7267 
7268 			start_sector += submit_len >> 9;
7269 			file_offset += submit_len;
7270 
7271 			submit_len = 0;
7272 			nr_pages = 0;
7273 
7274 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7275 						  start_sector, GFP_NOFS);
7276 			if (!bio)
7277 				goto out_err;
7278 			bio->bi_private = dip;
7279 			bio->bi_end_io = btrfs_end_dio_bio;
7280 
7281 			map_length = orig_bio->bi_iter.bi_size;
7282 			ret = btrfs_map_block(root->fs_info, rw,
7283 					      start_sector << 9,
7284 					      &map_length, NULL, 0);
7285 			if (ret) {
7286 				bio_put(bio);
7287 				goto out_err;
7288 			}
7289 		} else {
7290 			submit_len += bvec->bv_len;
7291 			nr_pages++;
7292 			bvec++;
7293 		}
7294 	}
7295 
7296 submit:
7297 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7298 				     async_submit);
7299 	if (!ret)
7300 		return 0;
7301 
7302 	bio_put(bio);
7303 out_err:
7304 	dip->errors = 1;
7305 	/*
7306 	 * before atomic variable goto zero, we must
7307 	 * make sure dip->errors is perceived to be set.
7308 	 */
7309 	smp_mb__before_atomic_dec();
7310 	if (atomic_dec_and_test(&dip->pending_bios))
7311 		bio_io_error(dip->orig_bio);
7312 
7313 	/* bio_end_io() will handle error, so we needn't return it */
7314 	return 0;
7315 }
7316 
7317 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7318 				struct inode *inode, loff_t file_offset)
7319 {
7320 	struct btrfs_root *root = BTRFS_I(inode)->root;
7321 	struct btrfs_dio_private *dip;
7322 	struct bio *io_bio;
7323 	int skip_sum;
7324 	int sum_len;
7325 	int write = rw & REQ_WRITE;
7326 	int ret = 0;
7327 	u16 csum_size;
7328 
7329 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7330 
7331 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7332 	if (!io_bio) {
7333 		ret = -ENOMEM;
7334 		goto free_ordered;
7335 	}
7336 
7337 	if (!skip_sum && !write) {
7338 		csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7339 		sum_len = dio_bio->bi_iter.bi_size >>
7340 			inode->i_sb->s_blocksize_bits;
7341 		sum_len *= csum_size;
7342 	} else {
7343 		sum_len = 0;
7344 	}
7345 
7346 	dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7347 	if (!dip) {
7348 		ret = -ENOMEM;
7349 		goto free_io_bio;
7350 	}
7351 
7352 	dip->private = dio_bio->bi_private;
7353 	dip->inode = inode;
7354 	dip->logical_offset = file_offset;
7355 	dip->bytes = dio_bio->bi_iter.bi_size;
7356 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7357 	io_bio->bi_private = dip;
7358 	dip->errors = 0;
7359 	dip->orig_bio = io_bio;
7360 	dip->dio_bio = dio_bio;
7361 	atomic_set(&dip->pending_bios, 0);
7362 
7363 	if (write)
7364 		io_bio->bi_end_io = btrfs_endio_direct_write;
7365 	else
7366 		io_bio->bi_end_io = btrfs_endio_direct_read;
7367 
7368 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7369 	if (!ret)
7370 		return;
7371 
7372 free_io_bio:
7373 	bio_put(io_bio);
7374 
7375 free_ordered:
7376 	/*
7377 	 * If this is a write, we need to clean up the reserved space and kill
7378 	 * the ordered extent.
7379 	 */
7380 	if (write) {
7381 		struct btrfs_ordered_extent *ordered;
7382 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7383 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7384 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7385 			btrfs_free_reserved_extent(root, ordered->start,
7386 						   ordered->disk_len);
7387 		btrfs_put_ordered_extent(ordered);
7388 		btrfs_put_ordered_extent(ordered);
7389 	}
7390 	bio_endio(dio_bio, ret);
7391 }
7392 
7393 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7394 			const struct iovec *iov, loff_t offset,
7395 			unsigned long nr_segs)
7396 {
7397 	int seg;
7398 	int i;
7399 	size_t size;
7400 	unsigned long addr;
7401 	unsigned blocksize_mask = root->sectorsize - 1;
7402 	ssize_t retval = -EINVAL;
7403 	loff_t end = offset;
7404 
7405 	if (offset & blocksize_mask)
7406 		goto out;
7407 
7408 	/* Check the memory alignment.  Blocks cannot straddle pages */
7409 	for (seg = 0; seg < nr_segs; seg++) {
7410 		addr = (unsigned long)iov[seg].iov_base;
7411 		size = iov[seg].iov_len;
7412 		end += size;
7413 		if ((addr & blocksize_mask) || (size & blocksize_mask))
7414 			goto out;
7415 
7416 		/* If this is a write we don't need to check anymore */
7417 		if (rw & WRITE)
7418 			continue;
7419 
7420 		/*
7421 		 * Check to make sure we don't have duplicate iov_base's in this
7422 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
7423 		 * when reading back.
7424 		 */
7425 		for (i = seg + 1; i < nr_segs; i++) {
7426 			if (iov[seg].iov_base == iov[i].iov_base)
7427 				goto out;
7428 		}
7429 	}
7430 	retval = 0;
7431 out:
7432 	return retval;
7433 }
7434 
7435 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7436 			const struct iovec *iov, loff_t offset,
7437 			unsigned long nr_segs)
7438 {
7439 	struct file *file = iocb->ki_filp;
7440 	struct inode *inode = file->f_mapping->host;
7441 	size_t count = 0;
7442 	int flags = 0;
7443 	bool wakeup = true;
7444 	bool relock = false;
7445 	ssize_t ret;
7446 
7447 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7448 			    offset, nr_segs))
7449 		return 0;
7450 
7451 	atomic_inc(&inode->i_dio_count);
7452 	smp_mb__after_atomic_inc();
7453 
7454 	/*
7455 	 * The generic stuff only does filemap_write_and_wait_range, which
7456 	 * isn't enough if we've written compressed pages to this area, so
7457 	 * we need to flush the dirty pages again to make absolutely sure
7458 	 * that any outstanding dirty pages are on disk.
7459 	 */
7460 	count = iov_length(iov, nr_segs);
7461 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7462 		     &BTRFS_I(inode)->runtime_flags))
7463 		filemap_fdatawrite_range(inode->i_mapping, offset, count);
7464 
7465 	if (rw & WRITE) {
7466 		/*
7467 		 * If the write DIO is beyond the EOF, we need update
7468 		 * the isize, but it is protected by i_mutex. So we can
7469 		 * not unlock the i_mutex at this case.
7470 		 */
7471 		if (offset + count <= inode->i_size) {
7472 			mutex_unlock(&inode->i_mutex);
7473 			relock = true;
7474 		}
7475 		ret = btrfs_delalloc_reserve_space(inode, count);
7476 		if (ret)
7477 			goto out;
7478 	} else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7479 				     &BTRFS_I(inode)->runtime_flags))) {
7480 		inode_dio_done(inode);
7481 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7482 		wakeup = false;
7483 	}
7484 
7485 	ret = __blockdev_direct_IO(rw, iocb, inode,
7486 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7487 			iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7488 			btrfs_submit_direct, flags);
7489 	if (rw & WRITE) {
7490 		if (ret < 0 && ret != -EIOCBQUEUED)
7491 			btrfs_delalloc_release_space(inode, count);
7492 		else if (ret >= 0 && (size_t)ret < count)
7493 			btrfs_delalloc_release_space(inode,
7494 						     count - (size_t)ret);
7495 		else
7496 			btrfs_delalloc_release_metadata(inode, 0);
7497 	}
7498 out:
7499 	if (wakeup)
7500 		inode_dio_done(inode);
7501 	if (relock)
7502 		mutex_lock(&inode->i_mutex);
7503 
7504 	return ret;
7505 }
7506 
7507 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
7508 
7509 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7510 		__u64 start, __u64 len)
7511 {
7512 	int	ret;
7513 
7514 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7515 	if (ret)
7516 		return ret;
7517 
7518 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7519 }
7520 
7521 int btrfs_readpage(struct file *file, struct page *page)
7522 {
7523 	struct extent_io_tree *tree;
7524 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7525 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7526 }
7527 
7528 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7529 {
7530 	struct extent_io_tree *tree;
7531 
7532 
7533 	if (current->flags & PF_MEMALLOC) {
7534 		redirty_page_for_writepage(wbc, page);
7535 		unlock_page(page);
7536 		return 0;
7537 	}
7538 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7539 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7540 }
7541 
7542 static int btrfs_writepages(struct address_space *mapping,
7543 			    struct writeback_control *wbc)
7544 {
7545 	struct extent_io_tree *tree;
7546 
7547 	tree = &BTRFS_I(mapping->host)->io_tree;
7548 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7549 }
7550 
7551 static int
7552 btrfs_readpages(struct file *file, struct address_space *mapping,
7553 		struct list_head *pages, unsigned nr_pages)
7554 {
7555 	struct extent_io_tree *tree;
7556 	tree = &BTRFS_I(mapping->host)->io_tree;
7557 	return extent_readpages(tree, mapping, pages, nr_pages,
7558 				btrfs_get_extent);
7559 }
7560 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7561 {
7562 	struct extent_io_tree *tree;
7563 	struct extent_map_tree *map;
7564 	int ret;
7565 
7566 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7567 	map = &BTRFS_I(page->mapping->host)->extent_tree;
7568 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7569 	if (ret == 1) {
7570 		ClearPagePrivate(page);
7571 		set_page_private(page, 0);
7572 		page_cache_release(page);
7573 	}
7574 	return ret;
7575 }
7576 
7577 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7578 {
7579 	if (PageWriteback(page) || PageDirty(page))
7580 		return 0;
7581 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7582 }
7583 
7584 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7585 				 unsigned int length)
7586 {
7587 	struct inode *inode = page->mapping->host;
7588 	struct extent_io_tree *tree;
7589 	struct btrfs_ordered_extent *ordered;
7590 	struct extent_state *cached_state = NULL;
7591 	u64 page_start = page_offset(page);
7592 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7593 	int inode_evicting = inode->i_state & I_FREEING;
7594 
7595 	/*
7596 	 * we have the page locked, so new writeback can't start,
7597 	 * and the dirty bit won't be cleared while we are here.
7598 	 *
7599 	 * Wait for IO on this page so that we can safely clear
7600 	 * the PagePrivate2 bit and do ordered accounting
7601 	 */
7602 	wait_on_page_writeback(page);
7603 
7604 	tree = &BTRFS_I(inode)->io_tree;
7605 	if (offset) {
7606 		btrfs_releasepage(page, GFP_NOFS);
7607 		return;
7608 	}
7609 
7610 	if (!inode_evicting)
7611 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7612 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7613 	if (ordered) {
7614 		/*
7615 		 * IO on this page will never be started, so we need
7616 		 * to account for any ordered extents now
7617 		 */
7618 		if (!inode_evicting)
7619 			clear_extent_bit(tree, page_start, page_end,
7620 					 EXTENT_DIRTY | EXTENT_DELALLOC |
7621 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7622 					 EXTENT_DEFRAG, 1, 0, &cached_state,
7623 					 GFP_NOFS);
7624 		/*
7625 		 * whoever cleared the private bit is responsible
7626 		 * for the finish_ordered_io
7627 		 */
7628 		if (TestClearPagePrivate2(page)) {
7629 			struct btrfs_ordered_inode_tree *tree;
7630 			u64 new_len;
7631 
7632 			tree = &BTRFS_I(inode)->ordered_tree;
7633 
7634 			spin_lock_irq(&tree->lock);
7635 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7636 			new_len = page_start - ordered->file_offset;
7637 			if (new_len < ordered->truncated_len)
7638 				ordered->truncated_len = new_len;
7639 			spin_unlock_irq(&tree->lock);
7640 
7641 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
7642 							   page_start,
7643 							   PAGE_CACHE_SIZE, 1))
7644 				btrfs_finish_ordered_io(ordered);
7645 		}
7646 		btrfs_put_ordered_extent(ordered);
7647 		if (!inode_evicting) {
7648 			cached_state = NULL;
7649 			lock_extent_bits(tree, page_start, page_end, 0,
7650 					 &cached_state);
7651 		}
7652 	}
7653 
7654 	if (!inode_evicting) {
7655 		clear_extent_bit(tree, page_start, page_end,
7656 				 EXTENT_LOCKED | EXTENT_DIRTY |
7657 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7658 				 EXTENT_DEFRAG, 1, 1,
7659 				 &cached_state, GFP_NOFS);
7660 
7661 		__btrfs_releasepage(page, GFP_NOFS);
7662 	}
7663 
7664 	ClearPageChecked(page);
7665 	if (PagePrivate(page)) {
7666 		ClearPagePrivate(page);
7667 		set_page_private(page, 0);
7668 		page_cache_release(page);
7669 	}
7670 }
7671 
7672 /*
7673  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7674  * called from a page fault handler when a page is first dirtied. Hence we must
7675  * be careful to check for EOF conditions here. We set the page up correctly
7676  * for a written page which means we get ENOSPC checking when writing into
7677  * holes and correct delalloc and unwritten extent mapping on filesystems that
7678  * support these features.
7679  *
7680  * We are not allowed to take the i_mutex here so we have to play games to
7681  * protect against truncate races as the page could now be beyond EOF.  Because
7682  * vmtruncate() writes the inode size before removing pages, once we have the
7683  * page lock we can determine safely if the page is beyond EOF. If it is not
7684  * beyond EOF, then the page is guaranteed safe against truncation until we
7685  * unlock the page.
7686  */
7687 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7688 {
7689 	struct page *page = vmf->page;
7690 	struct inode *inode = file_inode(vma->vm_file);
7691 	struct btrfs_root *root = BTRFS_I(inode)->root;
7692 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7693 	struct btrfs_ordered_extent *ordered;
7694 	struct extent_state *cached_state = NULL;
7695 	char *kaddr;
7696 	unsigned long zero_start;
7697 	loff_t size;
7698 	int ret;
7699 	int reserved = 0;
7700 	u64 page_start;
7701 	u64 page_end;
7702 
7703 	sb_start_pagefault(inode->i_sb);
7704 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7705 	if (!ret) {
7706 		ret = file_update_time(vma->vm_file);
7707 		reserved = 1;
7708 	}
7709 	if (ret) {
7710 		if (ret == -ENOMEM)
7711 			ret = VM_FAULT_OOM;
7712 		else /* -ENOSPC, -EIO, etc */
7713 			ret = VM_FAULT_SIGBUS;
7714 		if (reserved)
7715 			goto out;
7716 		goto out_noreserve;
7717 	}
7718 
7719 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7720 again:
7721 	lock_page(page);
7722 	size = i_size_read(inode);
7723 	page_start = page_offset(page);
7724 	page_end = page_start + PAGE_CACHE_SIZE - 1;
7725 
7726 	if ((page->mapping != inode->i_mapping) ||
7727 	    (page_start >= size)) {
7728 		/* page got truncated out from underneath us */
7729 		goto out_unlock;
7730 	}
7731 	wait_on_page_writeback(page);
7732 
7733 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7734 	set_page_extent_mapped(page);
7735 
7736 	/*
7737 	 * we can't set the delalloc bits if there are pending ordered
7738 	 * extents.  Drop our locks and wait for them to finish
7739 	 */
7740 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7741 	if (ordered) {
7742 		unlock_extent_cached(io_tree, page_start, page_end,
7743 				     &cached_state, GFP_NOFS);
7744 		unlock_page(page);
7745 		btrfs_start_ordered_extent(inode, ordered, 1);
7746 		btrfs_put_ordered_extent(ordered);
7747 		goto again;
7748 	}
7749 
7750 	/*
7751 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
7752 	 * if it was already dirty, so for space accounting reasons we need to
7753 	 * clear any delalloc bits for the range we are fixing to save.  There
7754 	 * is probably a better way to do this, but for now keep consistent with
7755 	 * prepare_pages in the normal write path.
7756 	 */
7757 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7758 			  EXTENT_DIRTY | EXTENT_DELALLOC |
7759 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7760 			  0, 0, &cached_state, GFP_NOFS);
7761 
7762 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7763 					&cached_state);
7764 	if (ret) {
7765 		unlock_extent_cached(io_tree, page_start, page_end,
7766 				     &cached_state, GFP_NOFS);
7767 		ret = VM_FAULT_SIGBUS;
7768 		goto out_unlock;
7769 	}
7770 	ret = 0;
7771 
7772 	/* page is wholly or partially inside EOF */
7773 	if (page_start + PAGE_CACHE_SIZE > size)
7774 		zero_start = size & ~PAGE_CACHE_MASK;
7775 	else
7776 		zero_start = PAGE_CACHE_SIZE;
7777 
7778 	if (zero_start != PAGE_CACHE_SIZE) {
7779 		kaddr = kmap(page);
7780 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7781 		flush_dcache_page(page);
7782 		kunmap(page);
7783 	}
7784 	ClearPageChecked(page);
7785 	set_page_dirty(page);
7786 	SetPageUptodate(page);
7787 
7788 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
7789 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7790 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7791 
7792 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7793 
7794 out_unlock:
7795 	if (!ret) {
7796 		sb_end_pagefault(inode->i_sb);
7797 		return VM_FAULT_LOCKED;
7798 	}
7799 	unlock_page(page);
7800 out:
7801 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7802 out_noreserve:
7803 	sb_end_pagefault(inode->i_sb);
7804 	return ret;
7805 }
7806 
7807 static int btrfs_truncate(struct inode *inode)
7808 {
7809 	struct btrfs_root *root = BTRFS_I(inode)->root;
7810 	struct btrfs_block_rsv *rsv;
7811 	int ret = 0;
7812 	int err = 0;
7813 	struct btrfs_trans_handle *trans;
7814 	u64 mask = root->sectorsize - 1;
7815 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7816 
7817 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7818 				       (u64)-1);
7819 	if (ret)
7820 		return ret;
7821 
7822 	/*
7823 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7824 	 * 3 things going on here
7825 	 *
7826 	 * 1) We need to reserve space for our orphan item and the space to
7827 	 * delete our orphan item.  Lord knows we don't want to have a dangling
7828 	 * orphan item because we didn't reserve space to remove it.
7829 	 *
7830 	 * 2) We need to reserve space to update our inode.
7831 	 *
7832 	 * 3) We need to have something to cache all the space that is going to
7833 	 * be free'd up by the truncate operation, but also have some slack
7834 	 * space reserved in case it uses space during the truncate (thank you
7835 	 * very much snapshotting).
7836 	 *
7837 	 * And we need these to all be seperate.  The fact is we can use alot of
7838 	 * space doing the truncate, and we have no earthly idea how much space
7839 	 * we will use, so we need the truncate reservation to be seperate so it
7840 	 * doesn't end up using space reserved for updating the inode or
7841 	 * removing the orphan item.  We also need to be able to stop the
7842 	 * transaction and start a new one, which means we need to be able to
7843 	 * update the inode several times, and we have no idea of knowing how
7844 	 * many times that will be, so we can't just reserve 1 item for the
7845 	 * entirety of the opration, so that has to be done seperately as well.
7846 	 * Then there is the orphan item, which does indeed need to be held on
7847 	 * to for the whole operation, and we need nobody to touch this reserved
7848 	 * space except the orphan code.
7849 	 *
7850 	 * So that leaves us with
7851 	 *
7852 	 * 1) root->orphan_block_rsv - for the orphan deletion.
7853 	 * 2) rsv - for the truncate reservation, which we will steal from the
7854 	 * transaction reservation.
7855 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7856 	 * updating the inode.
7857 	 */
7858 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7859 	if (!rsv)
7860 		return -ENOMEM;
7861 	rsv->size = min_size;
7862 	rsv->failfast = 1;
7863 
7864 	/*
7865 	 * 1 for the truncate slack space
7866 	 * 1 for updating the inode.
7867 	 */
7868 	trans = btrfs_start_transaction(root, 2);
7869 	if (IS_ERR(trans)) {
7870 		err = PTR_ERR(trans);
7871 		goto out;
7872 	}
7873 
7874 	/* Migrate the slack space for the truncate to our reserve */
7875 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7876 				      min_size);
7877 	BUG_ON(ret);
7878 
7879 	/*
7880 	 * setattr is responsible for setting the ordered_data_close flag,
7881 	 * but that is only tested during the last file release.  That
7882 	 * could happen well after the next commit, leaving a great big
7883 	 * window where new writes may get lost if someone chooses to write
7884 	 * to this file after truncating to zero
7885 	 *
7886 	 * The inode doesn't have any dirty data here, and so if we commit
7887 	 * this is a noop.  If someone immediately starts writing to the inode
7888 	 * it is very likely we'll catch some of their writes in this
7889 	 * transaction, and the commit will find this file on the ordered
7890 	 * data list with good things to send down.
7891 	 *
7892 	 * This is a best effort solution, there is still a window where
7893 	 * using truncate to replace the contents of the file will
7894 	 * end up with a zero length file after a crash.
7895 	 */
7896 	if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7897 					   &BTRFS_I(inode)->runtime_flags))
7898 		btrfs_add_ordered_operation(trans, root, inode);
7899 
7900 	/*
7901 	 * So if we truncate and then write and fsync we normally would just
7902 	 * write the extents that changed, which is a problem if we need to
7903 	 * first truncate that entire inode.  So set this flag so we write out
7904 	 * all of the extents in the inode to the sync log so we're completely
7905 	 * safe.
7906 	 */
7907 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7908 	trans->block_rsv = rsv;
7909 
7910 	while (1) {
7911 		ret = btrfs_truncate_inode_items(trans, root, inode,
7912 						 inode->i_size,
7913 						 BTRFS_EXTENT_DATA_KEY);
7914 		if (ret != -ENOSPC) {
7915 			err = ret;
7916 			break;
7917 		}
7918 
7919 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7920 		ret = btrfs_update_inode(trans, root, inode);
7921 		if (ret) {
7922 			err = ret;
7923 			break;
7924 		}
7925 
7926 		btrfs_end_transaction(trans, root);
7927 		btrfs_btree_balance_dirty(root);
7928 
7929 		trans = btrfs_start_transaction(root, 2);
7930 		if (IS_ERR(trans)) {
7931 			ret = err = PTR_ERR(trans);
7932 			trans = NULL;
7933 			break;
7934 		}
7935 
7936 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7937 					      rsv, min_size);
7938 		BUG_ON(ret);	/* shouldn't happen */
7939 		trans->block_rsv = rsv;
7940 	}
7941 
7942 	if (ret == 0 && inode->i_nlink > 0) {
7943 		trans->block_rsv = root->orphan_block_rsv;
7944 		ret = btrfs_orphan_del(trans, inode);
7945 		if (ret)
7946 			err = ret;
7947 	}
7948 
7949 	if (trans) {
7950 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7951 		ret = btrfs_update_inode(trans, root, inode);
7952 		if (ret && !err)
7953 			err = ret;
7954 
7955 		ret = btrfs_end_transaction(trans, root);
7956 		btrfs_btree_balance_dirty(root);
7957 	}
7958 
7959 out:
7960 	btrfs_free_block_rsv(root, rsv);
7961 
7962 	if (ret && !err)
7963 		err = ret;
7964 
7965 	return err;
7966 }
7967 
7968 /*
7969  * create a new subvolume directory/inode (helper for the ioctl).
7970  */
7971 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7972 			     struct btrfs_root *new_root,
7973 			     struct btrfs_root *parent_root,
7974 			     u64 new_dirid)
7975 {
7976 	struct inode *inode;
7977 	int err;
7978 	u64 index = 0;
7979 
7980 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7981 				new_dirid, new_dirid,
7982 				S_IFDIR | (~current_umask() & S_IRWXUGO),
7983 				&index);
7984 	if (IS_ERR(inode))
7985 		return PTR_ERR(inode);
7986 	inode->i_op = &btrfs_dir_inode_operations;
7987 	inode->i_fop = &btrfs_dir_file_operations;
7988 
7989 	set_nlink(inode, 1);
7990 	btrfs_i_size_write(inode, 0);
7991 
7992 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
7993 	if (err)
7994 		btrfs_err(new_root->fs_info,
7995 			  "error inheriting subvolume %llu properties: %d\n",
7996 			  new_root->root_key.objectid, err);
7997 
7998 	err = btrfs_update_inode(trans, new_root, inode);
7999 
8000 	iput(inode);
8001 	return err;
8002 }
8003 
8004 struct inode *btrfs_alloc_inode(struct super_block *sb)
8005 {
8006 	struct btrfs_inode *ei;
8007 	struct inode *inode;
8008 
8009 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8010 	if (!ei)
8011 		return NULL;
8012 
8013 	ei->root = NULL;
8014 	ei->generation = 0;
8015 	ei->last_trans = 0;
8016 	ei->last_sub_trans = 0;
8017 	ei->logged_trans = 0;
8018 	ei->delalloc_bytes = 0;
8019 	ei->disk_i_size = 0;
8020 	ei->flags = 0;
8021 	ei->csum_bytes = 0;
8022 	ei->index_cnt = (u64)-1;
8023 	ei->dir_index = 0;
8024 	ei->last_unlink_trans = 0;
8025 	ei->last_log_commit = 0;
8026 
8027 	spin_lock_init(&ei->lock);
8028 	ei->outstanding_extents = 0;
8029 	ei->reserved_extents = 0;
8030 
8031 	ei->runtime_flags = 0;
8032 	ei->force_compress = BTRFS_COMPRESS_NONE;
8033 
8034 	ei->delayed_node = NULL;
8035 
8036 	inode = &ei->vfs_inode;
8037 	extent_map_tree_init(&ei->extent_tree);
8038 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
8039 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8040 	ei->io_tree.track_uptodate = 1;
8041 	ei->io_failure_tree.track_uptodate = 1;
8042 	atomic_set(&ei->sync_writers, 0);
8043 	mutex_init(&ei->log_mutex);
8044 	mutex_init(&ei->delalloc_mutex);
8045 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8046 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8047 	INIT_LIST_HEAD(&ei->ordered_operations);
8048 	RB_CLEAR_NODE(&ei->rb_node);
8049 
8050 	return inode;
8051 }
8052 
8053 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8054 void btrfs_test_destroy_inode(struct inode *inode)
8055 {
8056 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8057 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8058 }
8059 #endif
8060 
8061 static void btrfs_i_callback(struct rcu_head *head)
8062 {
8063 	struct inode *inode = container_of(head, struct inode, i_rcu);
8064 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8065 }
8066 
8067 void btrfs_destroy_inode(struct inode *inode)
8068 {
8069 	struct btrfs_ordered_extent *ordered;
8070 	struct btrfs_root *root = BTRFS_I(inode)->root;
8071 
8072 	WARN_ON(!hlist_empty(&inode->i_dentry));
8073 	WARN_ON(inode->i_data.nrpages);
8074 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8075 	WARN_ON(BTRFS_I(inode)->reserved_extents);
8076 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8077 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8078 
8079 	/*
8080 	 * This can happen where we create an inode, but somebody else also
8081 	 * created the same inode and we need to destroy the one we already
8082 	 * created.
8083 	 */
8084 	if (!root)
8085 		goto free;
8086 
8087 	/*
8088 	 * Make sure we're properly removed from the ordered operation
8089 	 * lists.
8090 	 */
8091 	smp_mb();
8092 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
8093 		spin_lock(&root->fs_info->ordered_root_lock);
8094 		list_del_init(&BTRFS_I(inode)->ordered_operations);
8095 		spin_unlock(&root->fs_info->ordered_root_lock);
8096 	}
8097 
8098 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8099 		     &BTRFS_I(inode)->runtime_flags)) {
8100 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8101 			btrfs_ino(inode));
8102 		atomic_dec(&root->orphan_inodes);
8103 	}
8104 
8105 	while (1) {
8106 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8107 		if (!ordered)
8108 			break;
8109 		else {
8110 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8111 				ordered->file_offset, ordered->len);
8112 			btrfs_remove_ordered_extent(inode, ordered);
8113 			btrfs_put_ordered_extent(ordered);
8114 			btrfs_put_ordered_extent(ordered);
8115 		}
8116 	}
8117 	inode_tree_del(inode);
8118 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8119 free:
8120 	call_rcu(&inode->i_rcu, btrfs_i_callback);
8121 }
8122 
8123 int btrfs_drop_inode(struct inode *inode)
8124 {
8125 	struct btrfs_root *root = BTRFS_I(inode)->root;
8126 
8127 	if (root == NULL)
8128 		return 1;
8129 
8130 	/* the snap/subvol tree is on deleting */
8131 	if (btrfs_root_refs(&root->root_item) == 0)
8132 		return 1;
8133 	else
8134 		return generic_drop_inode(inode);
8135 }
8136 
8137 static void init_once(void *foo)
8138 {
8139 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8140 
8141 	inode_init_once(&ei->vfs_inode);
8142 }
8143 
8144 void btrfs_destroy_cachep(void)
8145 {
8146 	/*
8147 	 * Make sure all delayed rcu free inodes are flushed before we
8148 	 * destroy cache.
8149 	 */
8150 	rcu_barrier();
8151 	if (btrfs_inode_cachep)
8152 		kmem_cache_destroy(btrfs_inode_cachep);
8153 	if (btrfs_trans_handle_cachep)
8154 		kmem_cache_destroy(btrfs_trans_handle_cachep);
8155 	if (btrfs_transaction_cachep)
8156 		kmem_cache_destroy(btrfs_transaction_cachep);
8157 	if (btrfs_path_cachep)
8158 		kmem_cache_destroy(btrfs_path_cachep);
8159 	if (btrfs_free_space_cachep)
8160 		kmem_cache_destroy(btrfs_free_space_cachep);
8161 	if (btrfs_delalloc_work_cachep)
8162 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
8163 }
8164 
8165 int btrfs_init_cachep(void)
8166 {
8167 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8168 			sizeof(struct btrfs_inode), 0,
8169 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8170 	if (!btrfs_inode_cachep)
8171 		goto fail;
8172 
8173 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8174 			sizeof(struct btrfs_trans_handle), 0,
8175 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8176 	if (!btrfs_trans_handle_cachep)
8177 		goto fail;
8178 
8179 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8180 			sizeof(struct btrfs_transaction), 0,
8181 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8182 	if (!btrfs_transaction_cachep)
8183 		goto fail;
8184 
8185 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8186 			sizeof(struct btrfs_path), 0,
8187 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8188 	if (!btrfs_path_cachep)
8189 		goto fail;
8190 
8191 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8192 			sizeof(struct btrfs_free_space), 0,
8193 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8194 	if (!btrfs_free_space_cachep)
8195 		goto fail;
8196 
8197 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8198 			sizeof(struct btrfs_delalloc_work), 0,
8199 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8200 			NULL);
8201 	if (!btrfs_delalloc_work_cachep)
8202 		goto fail;
8203 
8204 	return 0;
8205 fail:
8206 	btrfs_destroy_cachep();
8207 	return -ENOMEM;
8208 }
8209 
8210 static int btrfs_getattr(struct vfsmount *mnt,
8211 			 struct dentry *dentry, struct kstat *stat)
8212 {
8213 	u64 delalloc_bytes;
8214 	struct inode *inode = dentry->d_inode;
8215 	u32 blocksize = inode->i_sb->s_blocksize;
8216 
8217 	generic_fillattr(inode, stat);
8218 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8219 	stat->blksize = PAGE_CACHE_SIZE;
8220 
8221 	spin_lock(&BTRFS_I(inode)->lock);
8222 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8223 	spin_unlock(&BTRFS_I(inode)->lock);
8224 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8225 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8226 	return 0;
8227 }
8228 
8229 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8230 			   struct inode *new_dir, struct dentry *new_dentry)
8231 {
8232 	struct btrfs_trans_handle *trans;
8233 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8234 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8235 	struct inode *new_inode = new_dentry->d_inode;
8236 	struct inode *old_inode = old_dentry->d_inode;
8237 	struct timespec ctime = CURRENT_TIME;
8238 	u64 index = 0;
8239 	u64 root_objectid;
8240 	int ret;
8241 	u64 old_ino = btrfs_ino(old_inode);
8242 
8243 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8244 		return -EPERM;
8245 
8246 	/* we only allow rename subvolume link between subvolumes */
8247 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8248 		return -EXDEV;
8249 
8250 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8251 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8252 		return -ENOTEMPTY;
8253 
8254 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8255 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8256 		return -ENOTEMPTY;
8257 
8258 
8259 	/* check for collisions, even if the  name isn't there */
8260 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8261 			     new_dentry->d_name.name,
8262 			     new_dentry->d_name.len);
8263 
8264 	if (ret) {
8265 		if (ret == -EEXIST) {
8266 			/* we shouldn't get
8267 			 * eexist without a new_inode */
8268 			if (WARN_ON(!new_inode)) {
8269 				return ret;
8270 			}
8271 		} else {
8272 			/* maybe -EOVERFLOW */
8273 			return ret;
8274 		}
8275 	}
8276 	ret = 0;
8277 
8278 	/*
8279 	 * we're using rename to replace one file with another.
8280 	 * and the replacement file is large.  Start IO on it now so
8281 	 * we don't add too much work to the end of the transaction
8282 	 */
8283 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8284 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8285 		filemap_flush(old_inode->i_mapping);
8286 
8287 	/* close the racy window with snapshot create/destroy ioctl */
8288 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8289 		down_read(&root->fs_info->subvol_sem);
8290 	/*
8291 	 * We want to reserve the absolute worst case amount of items.  So if
8292 	 * both inodes are subvols and we need to unlink them then that would
8293 	 * require 4 item modifications, but if they are both normal inodes it
8294 	 * would require 5 item modifications, so we'll assume their normal
8295 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8296 	 * should cover the worst case number of items we'll modify.
8297 	 */
8298 	trans = btrfs_start_transaction(root, 11);
8299 	if (IS_ERR(trans)) {
8300                 ret = PTR_ERR(trans);
8301                 goto out_notrans;
8302         }
8303 
8304 	if (dest != root)
8305 		btrfs_record_root_in_trans(trans, dest);
8306 
8307 	ret = btrfs_set_inode_index(new_dir, &index);
8308 	if (ret)
8309 		goto out_fail;
8310 
8311 	BTRFS_I(old_inode)->dir_index = 0ULL;
8312 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8313 		/* force full log commit if subvolume involved. */
8314 		root->fs_info->last_trans_log_full_commit = trans->transid;
8315 	} else {
8316 		ret = btrfs_insert_inode_ref(trans, dest,
8317 					     new_dentry->d_name.name,
8318 					     new_dentry->d_name.len,
8319 					     old_ino,
8320 					     btrfs_ino(new_dir), index);
8321 		if (ret)
8322 			goto out_fail;
8323 		/*
8324 		 * this is an ugly little race, but the rename is required
8325 		 * to make sure that if we crash, the inode is either at the
8326 		 * old name or the new one.  pinning the log transaction lets
8327 		 * us make sure we don't allow a log commit to come in after
8328 		 * we unlink the name but before we add the new name back in.
8329 		 */
8330 		btrfs_pin_log_trans(root);
8331 	}
8332 	/*
8333 	 * make sure the inode gets flushed if it is replacing
8334 	 * something.
8335 	 */
8336 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8337 		btrfs_add_ordered_operation(trans, root, old_inode);
8338 
8339 	inode_inc_iversion(old_dir);
8340 	inode_inc_iversion(new_dir);
8341 	inode_inc_iversion(old_inode);
8342 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8343 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8344 	old_inode->i_ctime = ctime;
8345 
8346 	if (old_dentry->d_parent != new_dentry->d_parent)
8347 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8348 
8349 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8350 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8351 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8352 					old_dentry->d_name.name,
8353 					old_dentry->d_name.len);
8354 	} else {
8355 		ret = __btrfs_unlink_inode(trans, root, old_dir,
8356 					old_dentry->d_inode,
8357 					old_dentry->d_name.name,
8358 					old_dentry->d_name.len);
8359 		if (!ret)
8360 			ret = btrfs_update_inode(trans, root, old_inode);
8361 	}
8362 	if (ret) {
8363 		btrfs_abort_transaction(trans, root, ret);
8364 		goto out_fail;
8365 	}
8366 
8367 	if (new_inode) {
8368 		inode_inc_iversion(new_inode);
8369 		new_inode->i_ctime = CURRENT_TIME;
8370 		if (unlikely(btrfs_ino(new_inode) ==
8371 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8372 			root_objectid = BTRFS_I(new_inode)->location.objectid;
8373 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
8374 						root_objectid,
8375 						new_dentry->d_name.name,
8376 						new_dentry->d_name.len);
8377 			BUG_ON(new_inode->i_nlink == 0);
8378 		} else {
8379 			ret = btrfs_unlink_inode(trans, dest, new_dir,
8380 						 new_dentry->d_inode,
8381 						 new_dentry->d_name.name,
8382 						 new_dentry->d_name.len);
8383 		}
8384 		if (!ret && new_inode->i_nlink == 0)
8385 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8386 		if (ret) {
8387 			btrfs_abort_transaction(trans, root, ret);
8388 			goto out_fail;
8389 		}
8390 	}
8391 
8392 	ret = btrfs_add_link(trans, new_dir, old_inode,
8393 			     new_dentry->d_name.name,
8394 			     new_dentry->d_name.len, 0, index);
8395 	if (ret) {
8396 		btrfs_abort_transaction(trans, root, ret);
8397 		goto out_fail;
8398 	}
8399 
8400 	if (old_inode->i_nlink == 1)
8401 		BTRFS_I(old_inode)->dir_index = index;
8402 
8403 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8404 		struct dentry *parent = new_dentry->d_parent;
8405 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
8406 		btrfs_end_log_trans(root);
8407 	}
8408 out_fail:
8409 	btrfs_end_transaction(trans, root);
8410 out_notrans:
8411 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8412 		up_read(&root->fs_info->subvol_sem);
8413 
8414 	return ret;
8415 }
8416 
8417 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8418 {
8419 	struct btrfs_delalloc_work *delalloc_work;
8420 	struct inode *inode;
8421 
8422 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8423 				     work);
8424 	inode = delalloc_work->inode;
8425 	if (delalloc_work->wait) {
8426 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
8427 	} else {
8428 		filemap_flush(inode->i_mapping);
8429 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8430 			     &BTRFS_I(inode)->runtime_flags))
8431 			filemap_flush(inode->i_mapping);
8432 	}
8433 
8434 	if (delalloc_work->delay_iput)
8435 		btrfs_add_delayed_iput(inode);
8436 	else
8437 		iput(inode);
8438 	complete(&delalloc_work->completion);
8439 }
8440 
8441 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8442 						    int wait, int delay_iput)
8443 {
8444 	struct btrfs_delalloc_work *work;
8445 
8446 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8447 	if (!work)
8448 		return NULL;
8449 
8450 	init_completion(&work->completion);
8451 	INIT_LIST_HEAD(&work->list);
8452 	work->inode = inode;
8453 	work->wait = wait;
8454 	work->delay_iput = delay_iput;
8455 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8456 
8457 	return work;
8458 }
8459 
8460 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8461 {
8462 	wait_for_completion(&work->completion);
8463 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
8464 }
8465 
8466 /*
8467  * some fairly slow code that needs optimization. This walks the list
8468  * of all the inodes with pending delalloc and forces them to disk.
8469  */
8470 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8471 				   int nr)
8472 {
8473 	struct btrfs_inode *binode;
8474 	struct inode *inode;
8475 	struct btrfs_delalloc_work *work, *next;
8476 	struct list_head works;
8477 	struct list_head splice;
8478 	int ret = 0;
8479 
8480 	INIT_LIST_HEAD(&works);
8481 	INIT_LIST_HEAD(&splice);
8482 
8483 	mutex_lock(&root->delalloc_mutex);
8484 	spin_lock(&root->delalloc_lock);
8485 	list_splice_init(&root->delalloc_inodes, &splice);
8486 	while (!list_empty(&splice)) {
8487 		binode = list_entry(splice.next, struct btrfs_inode,
8488 				    delalloc_inodes);
8489 
8490 		list_move_tail(&binode->delalloc_inodes,
8491 			       &root->delalloc_inodes);
8492 		inode = igrab(&binode->vfs_inode);
8493 		if (!inode) {
8494 			cond_resched_lock(&root->delalloc_lock);
8495 			continue;
8496 		}
8497 		spin_unlock(&root->delalloc_lock);
8498 
8499 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8500 		if (unlikely(!work)) {
8501 			if (delay_iput)
8502 				btrfs_add_delayed_iput(inode);
8503 			else
8504 				iput(inode);
8505 			ret = -ENOMEM;
8506 			goto out;
8507 		}
8508 		list_add_tail(&work->list, &works);
8509 		btrfs_queue_work(root->fs_info->flush_workers,
8510 				 &work->work);
8511 		ret++;
8512 		if (nr != -1 && ret >= nr)
8513 			goto out;
8514 		cond_resched();
8515 		spin_lock(&root->delalloc_lock);
8516 	}
8517 	spin_unlock(&root->delalloc_lock);
8518 
8519 out:
8520 	list_for_each_entry_safe(work, next, &works, list) {
8521 		list_del_init(&work->list);
8522 		btrfs_wait_and_free_delalloc_work(work);
8523 	}
8524 
8525 	if (!list_empty_careful(&splice)) {
8526 		spin_lock(&root->delalloc_lock);
8527 		list_splice_tail(&splice, &root->delalloc_inodes);
8528 		spin_unlock(&root->delalloc_lock);
8529 	}
8530 	mutex_unlock(&root->delalloc_mutex);
8531 	return ret;
8532 }
8533 
8534 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8535 {
8536 	int ret;
8537 
8538 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
8539 		return -EROFS;
8540 
8541 	ret = __start_delalloc_inodes(root, delay_iput, -1);
8542 	if (ret > 0)
8543 		ret = 0;
8544 	/*
8545 	 * the filemap_flush will queue IO into the worker threads, but
8546 	 * we have to make sure the IO is actually started and that
8547 	 * ordered extents get created before we return
8548 	 */
8549 	atomic_inc(&root->fs_info->async_submit_draining);
8550 	while (atomic_read(&root->fs_info->nr_async_submits) ||
8551 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
8552 		wait_event(root->fs_info->async_submit_wait,
8553 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8554 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8555 	}
8556 	atomic_dec(&root->fs_info->async_submit_draining);
8557 	return ret;
8558 }
8559 
8560 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8561 			       int nr)
8562 {
8563 	struct btrfs_root *root;
8564 	struct list_head splice;
8565 	int ret;
8566 
8567 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
8568 		return -EROFS;
8569 
8570 	INIT_LIST_HEAD(&splice);
8571 
8572 	mutex_lock(&fs_info->delalloc_root_mutex);
8573 	spin_lock(&fs_info->delalloc_root_lock);
8574 	list_splice_init(&fs_info->delalloc_roots, &splice);
8575 	while (!list_empty(&splice) && nr) {
8576 		root = list_first_entry(&splice, struct btrfs_root,
8577 					delalloc_root);
8578 		root = btrfs_grab_fs_root(root);
8579 		BUG_ON(!root);
8580 		list_move_tail(&root->delalloc_root,
8581 			       &fs_info->delalloc_roots);
8582 		spin_unlock(&fs_info->delalloc_root_lock);
8583 
8584 		ret = __start_delalloc_inodes(root, delay_iput, nr);
8585 		btrfs_put_fs_root(root);
8586 		if (ret < 0)
8587 			goto out;
8588 
8589 		if (nr != -1) {
8590 			nr -= ret;
8591 			WARN_ON(nr < 0);
8592 		}
8593 		spin_lock(&fs_info->delalloc_root_lock);
8594 	}
8595 	spin_unlock(&fs_info->delalloc_root_lock);
8596 
8597 	ret = 0;
8598 	atomic_inc(&fs_info->async_submit_draining);
8599 	while (atomic_read(&fs_info->nr_async_submits) ||
8600 	      atomic_read(&fs_info->async_delalloc_pages)) {
8601 		wait_event(fs_info->async_submit_wait,
8602 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
8603 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
8604 	}
8605 	atomic_dec(&fs_info->async_submit_draining);
8606 out:
8607 	if (!list_empty_careful(&splice)) {
8608 		spin_lock(&fs_info->delalloc_root_lock);
8609 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8610 		spin_unlock(&fs_info->delalloc_root_lock);
8611 	}
8612 	mutex_unlock(&fs_info->delalloc_root_mutex);
8613 	return ret;
8614 }
8615 
8616 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8617 			 const char *symname)
8618 {
8619 	struct btrfs_trans_handle *trans;
8620 	struct btrfs_root *root = BTRFS_I(dir)->root;
8621 	struct btrfs_path *path;
8622 	struct btrfs_key key;
8623 	struct inode *inode = NULL;
8624 	int err;
8625 	int drop_inode = 0;
8626 	u64 objectid;
8627 	u64 index = 0;
8628 	int name_len;
8629 	int datasize;
8630 	unsigned long ptr;
8631 	struct btrfs_file_extent_item *ei;
8632 	struct extent_buffer *leaf;
8633 
8634 	name_len = strlen(symname);
8635 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8636 		return -ENAMETOOLONG;
8637 
8638 	/*
8639 	 * 2 items for inode item and ref
8640 	 * 2 items for dir items
8641 	 * 1 item for xattr if selinux is on
8642 	 */
8643 	trans = btrfs_start_transaction(root, 5);
8644 	if (IS_ERR(trans))
8645 		return PTR_ERR(trans);
8646 
8647 	err = btrfs_find_free_ino(root, &objectid);
8648 	if (err)
8649 		goto out_unlock;
8650 
8651 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8652 				dentry->d_name.len, btrfs_ino(dir), objectid,
8653 				S_IFLNK|S_IRWXUGO, &index);
8654 	if (IS_ERR(inode)) {
8655 		err = PTR_ERR(inode);
8656 		goto out_unlock;
8657 	}
8658 
8659 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8660 	if (err) {
8661 		drop_inode = 1;
8662 		goto out_unlock;
8663 	}
8664 
8665 	/*
8666 	* If the active LSM wants to access the inode during
8667 	* d_instantiate it needs these. Smack checks to see
8668 	* if the filesystem supports xattrs by looking at the
8669 	* ops vector.
8670 	*/
8671 	inode->i_fop = &btrfs_file_operations;
8672 	inode->i_op = &btrfs_file_inode_operations;
8673 
8674 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8675 	if (err)
8676 		drop_inode = 1;
8677 	else {
8678 		inode->i_mapping->a_ops = &btrfs_aops;
8679 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8680 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8681 	}
8682 	if (drop_inode)
8683 		goto out_unlock;
8684 
8685 	path = btrfs_alloc_path();
8686 	if (!path) {
8687 		err = -ENOMEM;
8688 		drop_inode = 1;
8689 		goto out_unlock;
8690 	}
8691 	key.objectid = btrfs_ino(inode);
8692 	key.offset = 0;
8693 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8694 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8695 	err = btrfs_insert_empty_item(trans, root, path, &key,
8696 				      datasize);
8697 	if (err) {
8698 		drop_inode = 1;
8699 		btrfs_free_path(path);
8700 		goto out_unlock;
8701 	}
8702 	leaf = path->nodes[0];
8703 	ei = btrfs_item_ptr(leaf, path->slots[0],
8704 			    struct btrfs_file_extent_item);
8705 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8706 	btrfs_set_file_extent_type(leaf, ei,
8707 				   BTRFS_FILE_EXTENT_INLINE);
8708 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8709 	btrfs_set_file_extent_compression(leaf, ei, 0);
8710 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8711 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8712 
8713 	ptr = btrfs_file_extent_inline_start(ei);
8714 	write_extent_buffer(leaf, symname, ptr, name_len);
8715 	btrfs_mark_buffer_dirty(leaf);
8716 	btrfs_free_path(path);
8717 
8718 	inode->i_op = &btrfs_symlink_inode_operations;
8719 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
8720 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8721 	inode_set_bytes(inode, name_len);
8722 	btrfs_i_size_write(inode, name_len);
8723 	err = btrfs_update_inode(trans, root, inode);
8724 	if (err)
8725 		drop_inode = 1;
8726 
8727 out_unlock:
8728 	if (!err)
8729 		d_instantiate(dentry, inode);
8730 	btrfs_end_transaction(trans, root);
8731 	if (drop_inode) {
8732 		inode_dec_link_count(inode);
8733 		iput(inode);
8734 	}
8735 	btrfs_btree_balance_dirty(root);
8736 	return err;
8737 }
8738 
8739 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8740 				       u64 start, u64 num_bytes, u64 min_size,
8741 				       loff_t actual_len, u64 *alloc_hint,
8742 				       struct btrfs_trans_handle *trans)
8743 {
8744 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8745 	struct extent_map *em;
8746 	struct btrfs_root *root = BTRFS_I(inode)->root;
8747 	struct btrfs_key ins;
8748 	u64 cur_offset = start;
8749 	u64 i_size;
8750 	u64 cur_bytes;
8751 	int ret = 0;
8752 	bool own_trans = true;
8753 
8754 	if (trans)
8755 		own_trans = false;
8756 	while (num_bytes > 0) {
8757 		if (own_trans) {
8758 			trans = btrfs_start_transaction(root, 3);
8759 			if (IS_ERR(trans)) {
8760 				ret = PTR_ERR(trans);
8761 				break;
8762 			}
8763 		}
8764 
8765 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8766 		cur_bytes = max(cur_bytes, min_size);
8767 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8768 					   *alloc_hint, &ins, 1);
8769 		if (ret) {
8770 			if (own_trans)
8771 				btrfs_end_transaction(trans, root);
8772 			break;
8773 		}
8774 
8775 		ret = insert_reserved_file_extent(trans, inode,
8776 						  cur_offset, ins.objectid,
8777 						  ins.offset, ins.offset,
8778 						  ins.offset, 0, 0, 0,
8779 						  BTRFS_FILE_EXTENT_PREALLOC);
8780 		if (ret) {
8781 			btrfs_free_reserved_extent(root, ins.objectid,
8782 						   ins.offset);
8783 			btrfs_abort_transaction(trans, root, ret);
8784 			if (own_trans)
8785 				btrfs_end_transaction(trans, root);
8786 			break;
8787 		}
8788 		btrfs_drop_extent_cache(inode, cur_offset,
8789 					cur_offset + ins.offset -1, 0);
8790 
8791 		em = alloc_extent_map();
8792 		if (!em) {
8793 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8794 				&BTRFS_I(inode)->runtime_flags);
8795 			goto next;
8796 		}
8797 
8798 		em->start = cur_offset;
8799 		em->orig_start = cur_offset;
8800 		em->len = ins.offset;
8801 		em->block_start = ins.objectid;
8802 		em->block_len = ins.offset;
8803 		em->orig_block_len = ins.offset;
8804 		em->ram_bytes = ins.offset;
8805 		em->bdev = root->fs_info->fs_devices->latest_bdev;
8806 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8807 		em->generation = trans->transid;
8808 
8809 		while (1) {
8810 			write_lock(&em_tree->lock);
8811 			ret = add_extent_mapping(em_tree, em, 1);
8812 			write_unlock(&em_tree->lock);
8813 			if (ret != -EEXIST)
8814 				break;
8815 			btrfs_drop_extent_cache(inode, cur_offset,
8816 						cur_offset + ins.offset - 1,
8817 						0);
8818 		}
8819 		free_extent_map(em);
8820 next:
8821 		num_bytes -= ins.offset;
8822 		cur_offset += ins.offset;
8823 		*alloc_hint = ins.objectid + ins.offset;
8824 
8825 		inode_inc_iversion(inode);
8826 		inode->i_ctime = CURRENT_TIME;
8827 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8828 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8829 		    (actual_len > inode->i_size) &&
8830 		    (cur_offset > inode->i_size)) {
8831 			if (cur_offset > actual_len)
8832 				i_size = actual_len;
8833 			else
8834 				i_size = cur_offset;
8835 			i_size_write(inode, i_size);
8836 			btrfs_ordered_update_i_size(inode, i_size, NULL);
8837 		}
8838 
8839 		ret = btrfs_update_inode(trans, root, inode);
8840 
8841 		if (ret) {
8842 			btrfs_abort_transaction(trans, root, ret);
8843 			if (own_trans)
8844 				btrfs_end_transaction(trans, root);
8845 			break;
8846 		}
8847 
8848 		if (own_trans)
8849 			btrfs_end_transaction(trans, root);
8850 	}
8851 	return ret;
8852 }
8853 
8854 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8855 			      u64 start, u64 num_bytes, u64 min_size,
8856 			      loff_t actual_len, u64 *alloc_hint)
8857 {
8858 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8859 					   min_size, actual_len, alloc_hint,
8860 					   NULL);
8861 }
8862 
8863 int btrfs_prealloc_file_range_trans(struct inode *inode,
8864 				    struct btrfs_trans_handle *trans, int mode,
8865 				    u64 start, u64 num_bytes, u64 min_size,
8866 				    loff_t actual_len, u64 *alloc_hint)
8867 {
8868 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8869 					   min_size, actual_len, alloc_hint, trans);
8870 }
8871 
8872 static int btrfs_set_page_dirty(struct page *page)
8873 {
8874 	return __set_page_dirty_nobuffers(page);
8875 }
8876 
8877 static int btrfs_permission(struct inode *inode, int mask)
8878 {
8879 	struct btrfs_root *root = BTRFS_I(inode)->root;
8880 	umode_t mode = inode->i_mode;
8881 
8882 	if (mask & MAY_WRITE &&
8883 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8884 		if (btrfs_root_readonly(root))
8885 			return -EROFS;
8886 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8887 			return -EACCES;
8888 	}
8889 	return generic_permission(inode, mask);
8890 }
8891 
8892 static const struct inode_operations btrfs_dir_inode_operations = {
8893 	.getattr	= btrfs_getattr,
8894 	.lookup		= btrfs_lookup,
8895 	.create		= btrfs_create,
8896 	.unlink		= btrfs_unlink,
8897 	.link		= btrfs_link,
8898 	.mkdir		= btrfs_mkdir,
8899 	.rmdir		= btrfs_rmdir,
8900 	.rename		= btrfs_rename,
8901 	.symlink	= btrfs_symlink,
8902 	.setattr	= btrfs_setattr,
8903 	.mknod		= btrfs_mknod,
8904 	.setxattr	= btrfs_setxattr,
8905 	.getxattr	= btrfs_getxattr,
8906 	.listxattr	= btrfs_listxattr,
8907 	.removexattr	= btrfs_removexattr,
8908 	.permission	= btrfs_permission,
8909 	.get_acl	= btrfs_get_acl,
8910 	.set_acl	= btrfs_set_acl,
8911 	.update_time	= btrfs_update_time,
8912 };
8913 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8914 	.lookup		= btrfs_lookup,
8915 	.permission	= btrfs_permission,
8916 	.get_acl	= btrfs_get_acl,
8917 	.set_acl	= btrfs_set_acl,
8918 	.update_time	= btrfs_update_time,
8919 };
8920 
8921 static const struct file_operations btrfs_dir_file_operations = {
8922 	.llseek		= generic_file_llseek,
8923 	.read		= generic_read_dir,
8924 	.iterate	= btrfs_real_readdir,
8925 	.unlocked_ioctl	= btrfs_ioctl,
8926 #ifdef CONFIG_COMPAT
8927 	.compat_ioctl	= btrfs_ioctl,
8928 #endif
8929 	.release        = btrfs_release_file,
8930 	.fsync		= btrfs_sync_file,
8931 };
8932 
8933 static struct extent_io_ops btrfs_extent_io_ops = {
8934 	.fill_delalloc = run_delalloc_range,
8935 	.submit_bio_hook = btrfs_submit_bio_hook,
8936 	.merge_bio_hook = btrfs_merge_bio_hook,
8937 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
8938 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
8939 	.writepage_start_hook = btrfs_writepage_start_hook,
8940 	.set_bit_hook = btrfs_set_bit_hook,
8941 	.clear_bit_hook = btrfs_clear_bit_hook,
8942 	.merge_extent_hook = btrfs_merge_extent_hook,
8943 	.split_extent_hook = btrfs_split_extent_hook,
8944 };
8945 
8946 /*
8947  * btrfs doesn't support the bmap operation because swapfiles
8948  * use bmap to make a mapping of extents in the file.  They assume
8949  * these extents won't change over the life of the file and they
8950  * use the bmap result to do IO directly to the drive.
8951  *
8952  * the btrfs bmap call would return logical addresses that aren't
8953  * suitable for IO and they also will change frequently as COW
8954  * operations happen.  So, swapfile + btrfs == corruption.
8955  *
8956  * For now we're avoiding this by dropping bmap.
8957  */
8958 static const struct address_space_operations btrfs_aops = {
8959 	.readpage	= btrfs_readpage,
8960 	.writepage	= btrfs_writepage,
8961 	.writepages	= btrfs_writepages,
8962 	.readpages	= btrfs_readpages,
8963 	.direct_IO	= btrfs_direct_IO,
8964 	.invalidatepage = btrfs_invalidatepage,
8965 	.releasepage	= btrfs_releasepage,
8966 	.set_page_dirty	= btrfs_set_page_dirty,
8967 	.error_remove_page = generic_error_remove_page,
8968 };
8969 
8970 static const struct address_space_operations btrfs_symlink_aops = {
8971 	.readpage	= btrfs_readpage,
8972 	.writepage	= btrfs_writepage,
8973 	.invalidatepage = btrfs_invalidatepage,
8974 	.releasepage	= btrfs_releasepage,
8975 };
8976 
8977 static const struct inode_operations btrfs_file_inode_operations = {
8978 	.getattr	= btrfs_getattr,
8979 	.setattr	= btrfs_setattr,
8980 	.setxattr	= btrfs_setxattr,
8981 	.getxattr	= btrfs_getxattr,
8982 	.listxattr      = btrfs_listxattr,
8983 	.removexattr	= btrfs_removexattr,
8984 	.permission	= btrfs_permission,
8985 	.fiemap		= btrfs_fiemap,
8986 	.get_acl	= btrfs_get_acl,
8987 	.set_acl	= btrfs_set_acl,
8988 	.update_time	= btrfs_update_time,
8989 };
8990 static const struct inode_operations btrfs_special_inode_operations = {
8991 	.getattr	= btrfs_getattr,
8992 	.setattr	= btrfs_setattr,
8993 	.permission	= btrfs_permission,
8994 	.setxattr	= btrfs_setxattr,
8995 	.getxattr	= btrfs_getxattr,
8996 	.listxattr	= btrfs_listxattr,
8997 	.removexattr	= btrfs_removexattr,
8998 	.get_acl	= btrfs_get_acl,
8999 	.set_acl	= btrfs_set_acl,
9000 	.update_time	= btrfs_update_time,
9001 };
9002 static const struct inode_operations btrfs_symlink_inode_operations = {
9003 	.readlink	= generic_readlink,
9004 	.follow_link	= page_follow_link_light,
9005 	.put_link	= page_put_link,
9006 	.getattr	= btrfs_getattr,
9007 	.setattr	= btrfs_setattr,
9008 	.permission	= btrfs_permission,
9009 	.setxattr	= btrfs_setxattr,
9010 	.getxattr	= btrfs_getxattr,
9011 	.listxattr	= btrfs_listxattr,
9012 	.removexattr	= btrfs_removexattr,
9013 	.update_time	= btrfs_update_time,
9014 };
9015 
9016 const struct dentry_operations btrfs_dentry_operations = {
9017 	.d_delete	= btrfs_dentry_delete,
9018 	.d_release	= btrfs_dentry_release,
9019 };
9020