1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include <linux/magic.h> 46 #include <linux/iversion.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "ordered-data.h" 53 #include "xattr.h" 54 #include "tree-log.h" 55 #include "volumes.h" 56 #include "compression.h" 57 #include "locking.h" 58 #include "free-space-cache.h" 59 #include "inode-map.h" 60 #include "backref.h" 61 #include "hash.h" 62 #include "props.h" 63 #include "qgroup.h" 64 #include "dedupe.h" 65 66 struct btrfs_iget_args { 67 struct btrfs_key *location; 68 struct btrfs_root *root; 69 }; 70 71 struct btrfs_dio_data { 72 u64 reserve; 73 u64 unsubmitted_oe_range_start; 74 u64 unsubmitted_oe_range_end; 75 int overwrite; 76 }; 77 78 static const struct inode_operations btrfs_dir_inode_operations; 79 static const struct inode_operations btrfs_symlink_inode_operations; 80 static const struct inode_operations btrfs_dir_ro_inode_operations; 81 static const struct inode_operations btrfs_special_inode_operations; 82 static const struct inode_operations btrfs_file_inode_operations; 83 static const struct address_space_operations btrfs_aops; 84 static const struct address_space_operations btrfs_symlink_aops; 85 static const struct file_operations btrfs_dir_file_operations; 86 static const struct extent_io_ops btrfs_extent_io_ops; 87 88 static struct kmem_cache *btrfs_inode_cachep; 89 struct kmem_cache *btrfs_trans_handle_cachep; 90 struct kmem_cache *btrfs_path_cachep; 91 struct kmem_cache *btrfs_free_space_cachep; 92 93 #define S_SHIFT 12 94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 102 }; 103 104 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 105 static int btrfs_truncate(struct inode *inode); 106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 107 static noinline int cow_file_range(struct inode *inode, 108 struct page *locked_page, 109 u64 start, u64 end, u64 delalloc_end, 110 int *page_started, unsigned long *nr_written, 111 int unlock, struct btrfs_dedupe_hash *hash); 112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 113 u64 orig_start, u64 block_start, 114 u64 block_len, u64 orig_block_len, 115 u64 ram_bytes, int compress_type, 116 int type); 117 118 static void __endio_write_update_ordered(struct inode *inode, 119 const u64 offset, const u64 bytes, 120 const bool uptodate); 121 122 /* 123 * Cleanup all submitted ordered extents in specified range to handle errors 124 * from the fill_dellaloc() callback. 125 * 126 * NOTE: caller must ensure that when an error happens, it can not call 127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 129 * to be released, which we want to happen only when finishing the ordered 130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 131 * fill_delalloc() callback already does proper cleanup for the first page of 132 * the range, that is, it invokes the callback writepage_end_io_hook() for the 133 * range of the first page. 134 */ 135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 136 const u64 offset, 137 const u64 bytes) 138 { 139 unsigned long index = offset >> PAGE_SHIFT; 140 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 141 struct page *page; 142 143 while (index <= end_index) { 144 page = find_get_page(inode->i_mapping, index); 145 index++; 146 if (!page) 147 continue; 148 ClearPagePrivate2(page); 149 put_page(page); 150 } 151 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 152 bytes - PAGE_SIZE, false); 153 } 154 155 static int btrfs_dirty_inode(struct inode *inode); 156 157 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 158 void btrfs_test_inode_set_ops(struct inode *inode) 159 { 160 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 161 } 162 #endif 163 164 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 165 struct inode *inode, struct inode *dir, 166 const struct qstr *qstr) 167 { 168 int err; 169 170 err = btrfs_init_acl(trans, inode, dir); 171 if (!err) 172 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 173 return err; 174 } 175 176 /* 177 * this does all the hard work for inserting an inline extent into 178 * the btree. The caller should have done a btrfs_drop_extents so that 179 * no overlapping inline items exist in the btree 180 */ 181 static int insert_inline_extent(struct btrfs_trans_handle *trans, 182 struct btrfs_path *path, int extent_inserted, 183 struct btrfs_root *root, struct inode *inode, 184 u64 start, size_t size, size_t compressed_size, 185 int compress_type, 186 struct page **compressed_pages) 187 { 188 struct extent_buffer *leaf; 189 struct page *page = NULL; 190 char *kaddr; 191 unsigned long ptr; 192 struct btrfs_file_extent_item *ei; 193 int ret; 194 size_t cur_size = size; 195 unsigned long offset; 196 197 if (compressed_size && compressed_pages) 198 cur_size = compressed_size; 199 200 inode_add_bytes(inode, size); 201 202 if (!extent_inserted) { 203 struct btrfs_key key; 204 size_t datasize; 205 206 key.objectid = btrfs_ino(BTRFS_I(inode)); 207 key.offset = start; 208 key.type = BTRFS_EXTENT_DATA_KEY; 209 210 datasize = btrfs_file_extent_calc_inline_size(cur_size); 211 path->leave_spinning = 1; 212 ret = btrfs_insert_empty_item(trans, root, path, &key, 213 datasize); 214 if (ret) 215 goto fail; 216 } 217 leaf = path->nodes[0]; 218 ei = btrfs_item_ptr(leaf, path->slots[0], 219 struct btrfs_file_extent_item); 220 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 221 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 222 btrfs_set_file_extent_encryption(leaf, ei, 0); 223 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 224 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 225 ptr = btrfs_file_extent_inline_start(ei); 226 227 if (compress_type != BTRFS_COMPRESS_NONE) { 228 struct page *cpage; 229 int i = 0; 230 while (compressed_size > 0) { 231 cpage = compressed_pages[i]; 232 cur_size = min_t(unsigned long, compressed_size, 233 PAGE_SIZE); 234 235 kaddr = kmap_atomic(cpage); 236 write_extent_buffer(leaf, kaddr, ptr, cur_size); 237 kunmap_atomic(kaddr); 238 239 i++; 240 ptr += cur_size; 241 compressed_size -= cur_size; 242 } 243 btrfs_set_file_extent_compression(leaf, ei, 244 compress_type); 245 } else { 246 page = find_get_page(inode->i_mapping, 247 start >> PAGE_SHIFT); 248 btrfs_set_file_extent_compression(leaf, ei, 0); 249 kaddr = kmap_atomic(page); 250 offset = start & (PAGE_SIZE - 1); 251 write_extent_buffer(leaf, kaddr + offset, ptr, size); 252 kunmap_atomic(kaddr); 253 put_page(page); 254 } 255 btrfs_mark_buffer_dirty(leaf); 256 btrfs_release_path(path); 257 258 /* 259 * we're an inline extent, so nobody can 260 * extend the file past i_size without locking 261 * a page we already have locked. 262 * 263 * We must do any isize and inode updates 264 * before we unlock the pages. Otherwise we 265 * could end up racing with unlink. 266 */ 267 BTRFS_I(inode)->disk_i_size = inode->i_size; 268 ret = btrfs_update_inode(trans, root, inode); 269 270 fail: 271 return ret; 272 } 273 274 275 /* 276 * conditionally insert an inline extent into the file. This 277 * does the checks required to make sure the data is small enough 278 * to fit as an inline extent. 279 */ 280 static noinline int cow_file_range_inline(struct btrfs_root *root, 281 struct inode *inode, u64 start, 282 u64 end, size_t compressed_size, 283 int compress_type, 284 struct page **compressed_pages) 285 { 286 struct btrfs_fs_info *fs_info = root->fs_info; 287 struct btrfs_trans_handle *trans; 288 u64 isize = i_size_read(inode); 289 u64 actual_end = min(end + 1, isize); 290 u64 inline_len = actual_end - start; 291 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 292 u64 data_len = inline_len; 293 int ret; 294 struct btrfs_path *path; 295 int extent_inserted = 0; 296 u32 extent_item_size; 297 298 if (compressed_size) 299 data_len = compressed_size; 300 301 if (start > 0 || 302 actual_end > fs_info->sectorsize || 303 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 304 (!compressed_size && 305 (actual_end & (fs_info->sectorsize - 1)) == 0) || 306 end + 1 < isize || 307 data_len > fs_info->max_inline) { 308 return 1; 309 } 310 311 path = btrfs_alloc_path(); 312 if (!path) 313 return -ENOMEM; 314 315 trans = btrfs_join_transaction(root); 316 if (IS_ERR(trans)) { 317 btrfs_free_path(path); 318 return PTR_ERR(trans); 319 } 320 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 321 322 if (compressed_size && compressed_pages) 323 extent_item_size = btrfs_file_extent_calc_inline_size( 324 compressed_size); 325 else 326 extent_item_size = btrfs_file_extent_calc_inline_size( 327 inline_len); 328 329 ret = __btrfs_drop_extents(trans, root, inode, path, 330 start, aligned_end, NULL, 331 1, 1, extent_item_size, &extent_inserted); 332 if (ret) { 333 btrfs_abort_transaction(trans, ret); 334 goto out; 335 } 336 337 if (isize > actual_end) 338 inline_len = min_t(u64, isize, actual_end); 339 ret = insert_inline_extent(trans, path, extent_inserted, 340 root, inode, start, 341 inline_len, compressed_size, 342 compress_type, compressed_pages); 343 if (ret && ret != -ENOSPC) { 344 btrfs_abort_transaction(trans, ret); 345 goto out; 346 } else if (ret == -ENOSPC) { 347 ret = 1; 348 goto out; 349 } 350 351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 353 out: 354 /* 355 * Don't forget to free the reserved space, as for inlined extent 356 * it won't count as data extent, free them directly here. 357 * And at reserve time, it's always aligned to page size, so 358 * just free one page here. 359 */ 360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 361 btrfs_free_path(path); 362 btrfs_end_transaction(trans); 363 return ret; 364 } 365 366 struct async_extent { 367 u64 start; 368 u64 ram_size; 369 u64 compressed_size; 370 struct page **pages; 371 unsigned long nr_pages; 372 int compress_type; 373 struct list_head list; 374 }; 375 376 struct async_cow { 377 struct inode *inode; 378 struct btrfs_root *root; 379 struct page *locked_page; 380 u64 start; 381 u64 end; 382 unsigned int write_flags; 383 struct list_head extents; 384 struct btrfs_work work; 385 }; 386 387 static noinline int add_async_extent(struct async_cow *cow, 388 u64 start, u64 ram_size, 389 u64 compressed_size, 390 struct page **pages, 391 unsigned long nr_pages, 392 int compress_type) 393 { 394 struct async_extent *async_extent; 395 396 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 397 BUG_ON(!async_extent); /* -ENOMEM */ 398 async_extent->start = start; 399 async_extent->ram_size = ram_size; 400 async_extent->compressed_size = compressed_size; 401 async_extent->pages = pages; 402 async_extent->nr_pages = nr_pages; 403 async_extent->compress_type = compress_type; 404 list_add_tail(&async_extent->list, &cow->extents); 405 return 0; 406 } 407 408 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 409 { 410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 411 412 /* force compress */ 413 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 414 return 1; 415 /* defrag ioctl */ 416 if (BTRFS_I(inode)->defrag_compress) 417 return 1; 418 /* bad compression ratios */ 419 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 420 return 0; 421 if (btrfs_test_opt(fs_info, COMPRESS) || 422 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 423 BTRFS_I(inode)->prop_compress) 424 return btrfs_compress_heuristic(inode, start, end); 425 return 0; 426 } 427 428 static inline void inode_should_defrag(struct btrfs_inode *inode, 429 u64 start, u64 end, u64 num_bytes, u64 small_write) 430 { 431 /* If this is a small write inside eof, kick off a defrag */ 432 if (num_bytes < small_write && 433 (start > 0 || end + 1 < inode->disk_i_size)) 434 btrfs_add_inode_defrag(NULL, inode); 435 } 436 437 /* 438 * we create compressed extents in two phases. The first 439 * phase compresses a range of pages that have already been 440 * locked (both pages and state bits are locked). 441 * 442 * This is done inside an ordered work queue, and the compression 443 * is spread across many cpus. The actual IO submission is step 444 * two, and the ordered work queue takes care of making sure that 445 * happens in the same order things were put onto the queue by 446 * writepages and friends. 447 * 448 * If this code finds it can't get good compression, it puts an 449 * entry onto the work queue to write the uncompressed bytes. This 450 * makes sure that both compressed inodes and uncompressed inodes 451 * are written in the same order that the flusher thread sent them 452 * down. 453 */ 454 static noinline void compress_file_range(struct inode *inode, 455 struct page *locked_page, 456 u64 start, u64 end, 457 struct async_cow *async_cow, 458 int *num_added) 459 { 460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 461 struct btrfs_root *root = BTRFS_I(inode)->root; 462 u64 blocksize = fs_info->sectorsize; 463 u64 actual_end; 464 u64 isize = i_size_read(inode); 465 int ret = 0; 466 struct page **pages = NULL; 467 unsigned long nr_pages; 468 unsigned long total_compressed = 0; 469 unsigned long total_in = 0; 470 int i; 471 int will_compress; 472 int compress_type = fs_info->compress_type; 473 int redirty = 0; 474 475 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 476 SZ_16K); 477 478 actual_end = min_t(u64, isize, end + 1); 479 again: 480 will_compress = 0; 481 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 482 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 483 nr_pages = min_t(unsigned long, nr_pages, 484 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 485 486 /* 487 * we don't want to send crud past the end of i_size through 488 * compression, that's just a waste of CPU time. So, if the 489 * end of the file is before the start of our current 490 * requested range of bytes, we bail out to the uncompressed 491 * cleanup code that can deal with all of this. 492 * 493 * It isn't really the fastest way to fix things, but this is a 494 * very uncommon corner. 495 */ 496 if (actual_end <= start) 497 goto cleanup_and_bail_uncompressed; 498 499 total_compressed = actual_end - start; 500 501 /* 502 * skip compression for a small file range(<=blocksize) that 503 * isn't an inline extent, since it doesn't save disk space at all. 504 */ 505 if (total_compressed <= blocksize && 506 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 507 goto cleanup_and_bail_uncompressed; 508 509 total_compressed = min_t(unsigned long, total_compressed, 510 BTRFS_MAX_UNCOMPRESSED); 511 total_in = 0; 512 ret = 0; 513 514 /* 515 * we do compression for mount -o compress and when the 516 * inode has not been flagged as nocompress. This flag can 517 * change at any time if we discover bad compression ratios. 518 */ 519 if (inode_need_compress(inode, start, end)) { 520 WARN_ON(pages); 521 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 522 if (!pages) { 523 /* just bail out to the uncompressed code */ 524 goto cont; 525 } 526 527 if (BTRFS_I(inode)->defrag_compress) 528 compress_type = BTRFS_I(inode)->defrag_compress; 529 else if (BTRFS_I(inode)->prop_compress) 530 compress_type = BTRFS_I(inode)->prop_compress; 531 532 /* 533 * we need to call clear_page_dirty_for_io on each 534 * page in the range. Otherwise applications with the file 535 * mmap'd can wander in and change the page contents while 536 * we are compressing them. 537 * 538 * If the compression fails for any reason, we set the pages 539 * dirty again later on. 540 * 541 * Note that the remaining part is redirtied, the start pointer 542 * has moved, the end is the original one. 543 */ 544 if (!redirty) { 545 extent_range_clear_dirty_for_io(inode, start, end); 546 redirty = 1; 547 } 548 549 /* Compression level is applied here and only here */ 550 ret = btrfs_compress_pages( 551 compress_type | (fs_info->compress_level << 4), 552 inode->i_mapping, start, 553 pages, 554 &nr_pages, 555 &total_in, 556 &total_compressed); 557 558 if (!ret) { 559 unsigned long offset = total_compressed & 560 (PAGE_SIZE - 1); 561 struct page *page = pages[nr_pages - 1]; 562 char *kaddr; 563 564 /* zero the tail end of the last page, we might be 565 * sending it down to disk 566 */ 567 if (offset) { 568 kaddr = kmap_atomic(page); 569 memset(kaddr + offset, 0, 570 PAGE_SIZE - offset); 571 kunmap_atomic(kaddr); 572 } 573 will_compress = 1; 574 } 575 } 576 cont: 577 if (start == 0) { 578 /* lets try to make an inline extent */ 579 if (ret || total_in < actual_end) { 580 /* we didn't compress the entire range, try 581 * to make an uncompressed inline extent. 582 */ 583 ret = cow_file_range_inline(root, inode, start, end, 584 0, BTRFS_COMPRESS_NONE, NULL); 585 } else { 586 /* try making a compressed inline extent */ 587 ret = cow_file_range_inline(root, inode, start, end, 588 total_compressed, 589 compress_type, pages); 590 } 591 if (ret <= 0) { 592 unsigned long clear_flags = EXTENT_DELALLOC | 593 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 594 EXTENT_DO_ACCOUNTING; 595 unsigned long page_error_op; 596 597 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 598 599 /* 600 * inline extent creation worked or returned error, 601 * we don't need to create any more async work items. 602 * Unlock and free up our temp pages. 603 * 604 * We use DO_ACCOUNTING here because we need the 605 * delalloc_release_metadata to be done _after_ we drop 606 * our outstanding extent for clearing delalloc for this 607 * range. 608 */ 609 extent_clear_unlock_delalloc(inode, start, end, end, 610 NULL, clear_flags, 611 PAGE_UNLOCK | 612 PAGE_CLEAR_DIRTY | 613 PAGE_SET_WRITEBACK | 614 page_error_op | 615 PAGE_END_WRITEBACK); 616 goto free_pages_out; 617 } 618 } 619 620 if (will_compress) { 621 /* 622 * we aren't doing an inline extent round the compressed size 623 * up to a block size boundary so the allocator does sane 624 * things 625 */ 626 total_compressed = ALIGN(total_compressed, blocksize); 627 628 /* 629 * one last check to make sure the compression is really a 630 * win, compare the page count read with the blocks on disk, 631 * compression must free at least one sector size 632 */ 633 total_in = ALIGN(total_in, PAGE_SIZE); 634 if (total_compressed + blocksize <= total_in) { 635 *num_added += 1; 636 637 /* 638 * The async work queues will take care of doing actual 639 * allocation on disk for these compressed pages, and 640 * will submit them to the elevator. 641 */ 642 add_async_extent(async_cow, start, total_in, 643 total_compressed, pages, nr_pages, 644 compress_type); 645 646 if (start + total_in < end) { 647 start += total_in; 648 pages = NULL; 649 cond_resched(); 650 goto again; 651 } 652 return; 653 } 654 } 655 if (pages) { 656 /* 657 * the compression code ran but failed to make things smaller, 658 * free any pages it allocated and our page pointer array 659 */ 660 for (i = 0; i < nr_pages; i++) { 661 WARN_ON(pages[i]->mapping); 662 put_page(pages[i]); 663 } 664 kfree(pages); 665 pages = NULL; 666 total_compressed = 0; 667 nr_pages = 0; 668 669 /* flag the file so we don't compress in the future */ 670 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 671 !(BTRFS_I(inode)->prop_compress)) { 672 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 673 } 674 } 675 cleanup_and_bail_uncompressed: 676 /* 677 * No compression, but we still need to write the pages in the file 678 * we've been given so far. redirty the locked page if it corresponds 679 * to our extent and set things up for the async work queue to run 680 * cow_file_range to do the normal delalloc dance. 681 */ 682 if (page_offset(locked_page) >= start && 683 page_offset(locked_page) <= end) 684 __set_page_dirty_nobuffers(locked_page); 685 /* unlocked later on in the async handlers */ 686 687 if (redirty) 688 extent_range_redirty_for_io(inode, start, end); 689 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 690 BTRFS_COMPRESS_NONE); 691 *num_added += 1; 692 693 return; 694 695 free_pages_out: 696 for (i = 0; i < nr_pages; i++) { 697 WARN_ON(pages[i]->mapping); 698 put_page(pages[i]); 699 } 700 kfree(pages); 701 } 702 703 static void free_async_extent_pages(struct async_extent *async_extent) 704 { 705 int i; 706 707 if (!async_extent->pages) 708 return; 709 710 for (i = 0; i < async_extent->nr_pages; i++) { 711 WARN_ON(async_extent->pages[i]->mapping); 712 put_page(async_extent->pages[i]); 713 } 714 kfree(async_extent->pages); 715 async_extent->nr_pages = 0; 716 async_extent->pages = NULL; 717 } 718 719 /* 720 * phase two of compressed writeback. This is the ordered portion 721 * of the code, which only gets called in the order the work was 722 * queued. We walk all the async extents created by compress_file_range 723 * and send them down to the disk. 724 */ 725 static noinline void submit_compressed_extents(struct inode *inode, 726 struct async_cow *async_cow) 727 { 728 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 729 struct async_extent *async_extent; 730 u64 alloc_hint = 0; 731 struct btrfs_key ins; 732 struct extent_map *em; 733 struct btrfs_root *root = BTRFS_I(inode)->root; 734 struct extent_io_tree *io_tree; 735 int ret = 0; 736 737 again: 738 while (!list_empty(&async_cow->extents)) { 739 async_extent = list_entry(async_cow->extents.next, 740 struct async_extent, list); 741 list_del(&async_extent->list); 742 743 io_tree = &BTRFS_I(inode)->io_tree; 744 745 retry: 746 /* did the compression code fall back to uncompressed IO? */ 747 if (!async_extent->pages) { 748 int page_started = 0; 749 unsigned long nr_written = 0; 750 751 lock_extent(io_tree, async_extent->start, 752 async_extent->start + 753 async_extent->ram_size - 1); 754 755 /* allocate blocks */ 756 ret = cow_file_range(inode, async_cow->locked_page, 757 async_extent->start, 758 async_extent->start + 759 async_extent->ram_size - 1, 760 async_extent->start + 761 async_extent->ram_size - 1, 762 &page_started, &nr_written, 0, 763 NULL); 764 765 /* JDM XXX */ 766 767 /* 768 * if page_started, cow_file_range inserted an 769 * inline extent and took care of all the unlocking 770 * and IO for us. Otherwise, we need to submit 771 * all those pages down to the drive. 772 */ 773 if (!page_started && !ret) 774 extent_write_locked_range(inode, 775 async_extent->start, 776 async_extent->start + 777 async_extent->ram_size - 1, 778 WB_SYNC_ALL); 779 else if (ret) 780 unlock_page(async_cow->locked_page); 781 kfree(async_extent); 782 cond_resched(); 783 continue; 784 } 785 786 lock_extent(io_tree, async_extent->start, 787 async_extent->start + async_extent->ram_size - 1); 788 789 ret = btrfs_reserve_extent(root, async_extent->ram_size, 790 async_extent->compressed_size, 791 async_extent->compressed_size, 792 0, alloc_hint, &ins, 1, 1); 793 if (ret) { 794 free_async_extent_pages(async_extent); 795 796 if (ret == -ENOSPC) { 797 unlock_extent(io_tree, async_extent->start, 798 async_extent->start + 799 async_extent->ram_size - 1); 800 801 /* 802 * we need to redirty the pages if we decide to 803 * fallback to uncompressed IO, otherwise we 804 * will not submit these pages down to lower 805 * layers. 806 */ 807 extent_range_redirty_for_io(inode, 808 async_extent->start, 809 async_extent->start + 810 async_extent->ram_size - 1); 811 812 goto retry; 813 } 814 goto out_free; 815 } 816 /* 817 * here we're doing allocation and writeback of the 818 * compressed pages 819 */ 820 em = create_io_em(inode, async_extent->start, 821 async_extent->ram_size, /* len */ 822 async_extent->start, /* orig_start */ 823 ins.objectid, /* block_start */ 824 ins.offset, /* block_len */ 825 ins.offset, /* orig_block_len */ 826 async_extent->ram_size, /* ram_bytes */ 827 async_extent->compress_type, 828 BTRFS_ORDERED_COMPRESSED); 829 if (IS_ERR(em)) 830 /* ret value is not necessary due to void function */ 831 goto out_free_reserve; 832 free_extent_map(em); 833 834 ret = btrfs_add_ordered_extent_compress(inode, 835 async_extent->start, 836 ins.objectid, 837 async_extent->ram_size, 838 ins.offset, 839 BTRFS_ORDERED_COMPRESSED, 840 async_extent->compress_type); 841 if (ret) { 842 btrfs_drop_extent_cache(BTRFS_I(inode), 843 async_extent->start, 844 async_extent->start + 845 async_extent->ram_size - 1, 0); 846 goto out_free_reserve; 847 } 848 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 849 850 /* 851 * clear dirty, set writeback and unlock the pages. 852 */ 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 async_extent->start + 857 async_extent->ram_size - 1, 858 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 859 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 860 PAGE_SET_WRITEBACK); 861 if (btrfs_submit_compressed_write(inode, 862 async_extent->start, 863 async_extent->ram_size, 864 ins.objectid, 865 ins.offset, async_extent->pages, 866 async_extent->nr_pages, 867 async_cow->write_flags)) { 868 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 869 struct page *p = async_extent->pages[0]; 870 const u64 start = async_extent->start; 871 const u64 end = start + async_extent->ram_size - 1; 872 873 p->mapping = inode->i_mapping; 874 tree->ops->writepage_end_io_hook(p, start, end, 875 NULL, 0); 876 p->mapping = NULL; 877 extent_clear_unlock_delalloc(inode, start, end, end, 878 NULL, 0, 879 PAGE_END_WRITEBACK | 880 PAGE_SET_ERROR); 881 free_async_extent_pages(async_extent); 882 } 883 alloc_hint = ins.objectid + ins.offset; 884 kfree(async_extent); 885 cond_resched(); 886 } 887 return; 888 out_free_reserve: 889 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 890 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 891 out_free: 892 extent_clear_unlock_delalloc(inode, async_extent->start, 893 async_extent->start + 894 async_extent->ram_size - 1, 895 async_extent->start + 896 async_extent->ram_size - 1, 897 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 898 EXTENT_DELALLOC_NEW | 899 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 900 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 901 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 902 PAGE_SET_ERROR); 903 free_async_extent_pages(async_extent); 904 kfree(async_extent); 905 goto again; 906 } 907 908 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 909 u64 num_bytes) 910 { 911 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 912 struct extent_map *em; 913 u64 alloc_hint = 0; 914 915 read_lock(&em_tree->lock); 916 em = search_extent_mapping(em_tree, start, num_bytes); 917 if (em) { 918 /* 919 * if block start isn't an actual block number then find the 920 * first block in this inode and use that as a hint. If that 921 * block is also bogus then just don't worry about it. 922 */ 923 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 924 free_extent_map(em); 925 em = search_extent_mapping(em_tree, 0, 0); 926 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 927 alloc_hint = em->block_start; 928 if (em) 929 free_extent_map(em); 930 } else { 931 alloc_hint = em->block_start; 932 free_extent_map(em); 933 } 934 } 935 read_unlock(&em_tree->lock); 936 937 return alloc_hint; 938 } 939 940 /* 941 * when extent_io.c finds a delayed allocation range in the file, 942 * the call backs end up in this code. The basic idea is to 943 * allocate extents on disk for the range, and create ordered data structs 944 * in ram to track those extents. 945 * 946 * locked_page is the page that writepage had locked already. We use 947 * it to make sure we don't do extra locks or unlocks. 948 * 949 * *page_started is set to one if we unlock locked_page and do everything 950 * required to start IO on it. It may be clean and already done with 951 * IO when we return. 952 */ 953 static noinline int cow_file_range(struct inode *inode, 954 struct page *locked_page, 955 u64 start, u64 end, u64 delalloc_end, 956 int *page_started, unsigned long *nr_written, 957 int unlock, struct btrfs_dedupe_hash *hash) 958 { 959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 960 struct btrfs_root *root = BTRFS_I(inode)->root; 961 u64 alloc_hint = 0; 962 u64 num_bytes; 963 unsigned long ram_size; 964 u64 disk_num_bytes; 965 u64 cur_alloc_size = 0; 966 u64 blocksize = fs_info->sectorsize; 967 struct btrfs_key ins; 968 struct extent_map *em; 969 unsigned clear_bits; 970 unsigned long page_ops; 971 bool extent_reserved = false; 972 int ret = 0; 973 974 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 975 WARN_ON_ONCE(1); 976 ret = -EINVAL; 977 goto out_unlock; 978 } 979 980 num_bytes = ALIGN(end - start + 1, blocksize); 981 num_bytes = max(blocksize, num_bytes); 982 disk_num_bytes = num_bytes; 983 984 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 985 986 if (start == 0) { 987 /* lets try to make an inline extent */ 988 ret = cow_file_range_inline(root, inode, start, end, 0, 989 BTRFS_COMPRESS_NONE, NULL); 990 if (ret == 0) { 991 /* 992 * We use DO_ACCOUNTING here because we need the 993 * delalloc_release_metadata to be run _after_ we drop 994 * our outstanding extent for clearing delalloc for this 995 * range. 996 */ 997 extent_clear_unlock_delalloc(inode, start, end, 998 delalloc_end, NULL, 999 EXTENT_LOCKED | EXTENT_DELALLOC | 1000 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1001 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1002 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1003 PAGE_END_WRITEBACK); 1004 *nr_written = *nr_written + 1005 (end - start + PAGE_SIZE) / PAGE_SIZE; 1006 *page_started = 1; 1007 goto out; 1008 } else if (ret < 0) { 1009 goto out_unlock; 1010 } 1011 } 1012 1013 BUG_ON(disk_num_bytes > 1014 btrfs_super_total_bytes(fs_info->super_copy)); 1015 1016 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1017 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1018 start + num_bytes - 1, 0); 1019 1020 while (disk_num_bytes > 0) { 1021 cur_alloc_size = disk_num_bytes; 1022 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1023 fs_info->sectorsize, 0, alloc_hint, 1024 &ins, 1, 1); 1025 if (ret < 0) 1026 goto out_unlock; 1027 cur_alloc_size = ins.offset; 1028 extent_reserved = true; 1029 1030 ram_size = ins.offset; 1031 em = create_io_em(inode, start, ins.offset, /* len */ 1032 start, /* orig_start */ 1033 ins.objectid, /* block_start */ 1034 ins.offset, /* block_len */ 1035 ins.offset, /* orig_block_len */ 1036 ram_size, /* ram_bytes */ 1037 BTRFS_COMPRESS_NONE, /* compress_type */ 1038 BTRFS_ORDERED_REGULAR /* type */); 1039 if (IS_ERR(em)) 1040 goto out_reserve; 1041 free_extent_map(em); 1042 1043 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1044 ram_size, cur_alloc_size, 0); 1045 if (ret) 1046 goto out_drop_extent_cache; 1047 1048 if (root->root_key.objectid == 1049 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1050 ret = btrfs_reloc_clone_csums(inode, start, 1051 cur_alloc_size); 1052 /* 1053 * Only drop cache here, and process as normal. 1054 * 1055 * We must not allow extent_clear_unlock_delalloc() 1056 * at out_unlock label to free meta of this ordered 1057 * extent, as its meta should be freed by 1058 * btrfs_finish_ordered_io(). 1059 * 1060 * So we must continue until @start is increased to 1061 * skip current ordered extent. 1062 */ 1063 if (ret) 1064 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1065 start + ram_size - 1, 0); 1066 } 1067 1068 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1069 1070 /* we're not doing compressed IO, don't unlock the first 1071 * page (which the caller expects to stay locked), don't 1072 * clear any dirty bits and don't set any writeback bits 1073 * 1074 * Do set the Private2 bit so we know this page was properly 1075 * setup for writepage 1076 */ 1077 page_ops = unlock ? PAGE_UNLOCK : 0; 1078 page_ops |= PAGE_SET_PRIVATE2; 1079 1080 extent_clear_unlock_delalloc(inode, start, 1081 start + ram_size - 1, 1082 delalloc_end, locked_page, 1083 EXTENT_LOCKED | EXTENT_DELALLOC, 1084 page_ops); 1085 if (disk_num_bytes < cur_alloc_size) 1086 disk_num_bytes = 0; 1087 else 1088 disk_num_bytes -= cur_alloc_size; 1089 num_bytes -= cur_alloc_size; 1090 alloc_hint = ins.objectid + ins.offset; 1091 start += cur_alloc_size; 1092 extent_reserved = false; 1093 1094 /* 1095 * btrfs_reloc_clone_csums() error, since start is increased 1096 * extent_clear_unlock_delalloc() at out_unlock label won't 1097 * free metadata of current ordered extent, we're OK to exit. 1098 */ 1099 if (ret) 1100 goto out_unlock; 1101 } 1102 out: 1103 return ret; 1104 1105 out_drop_extent_cache: 1106 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1107 out_reserve: 1108 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1109 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1110 out_unlock: 1111 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1112 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1113 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1114 PAGE_END_WRITEBACK; 1115 /* 1116 * If we reserved an extent for our delalloc range (or a subrange) and 1117 * failed to create the respective ordered extent, then it means that 1118 * when we reserved the extent we decremented the extent's size from 1119 * the data space_info's bytes_may_use counter and incremented the 1120 * space_info's bytes_reserved counter by the same amount. We must make 1121 * sure extent_clear_unlock_delalloc() does not try to decrement again 1122 * the data space_info's bytes_may_use counter, therefore we do not pass 1123 * it the flag EXTENT_CLEAR_DATA_RESV. 1124 */ 1125 if (extent_reserved) { 1126 extent_clear_unlock_delalloc(inode, start, 1127 start + cur_alloc_size, 1128 start + cur_alloc_size, 1129 locked_page, 1130 clear_bits, 1131 page_ops); 1132 start += cur_alloc_size; 1133 if (start >= end) 1134 goto out; 1135 } 1136 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1137 locked_page, 1138 clear_bits | EXTENT_CLEAR_DATA_RESV, 1139 page_ops); 1140 goto out; 1141 } 1142 1143 /* 1144 * work queue call back to started compression on a file and pages 1145 */ 1146 static noinline void async_cow_start(struct btrfs_work *work) 1147 { 1148 struct async_cow *async_cow; 1149 int num_added = 0; 1150 async_cow = container_of(work, struct async_cow, work); 1151 1152 compress_file_range(async_cow->inode, async_cow->locked_page, 1153 async_cow->start, async_cow->end, async_cow, 1154 &num_added); 1155 if (num_added == 0) { 1156 btrfs_add_delayed_iput(async_cow->inode); 1157 async_cow->inode = NULL; 1158 } 1159 } 1160 1161 /* 1162 * work queue call back to submit previously compressed pages 1163 */ 1164 static noinline void async_cow_submit(struct btrfs_work *work) 1165 { 1166 struct btrfs_fs_info *fs_info; 1167 struct async_cow *async_cow; 1168 struct btrfs_root *root; 1169 unsigned long nr_pages; 1170 1171 async_cow = container_of(work, struct async_cow, work); 1172 1173 root = async_cow->root; 1174 fs_info = root->fs_info; 1175 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1176 PAGE_SHIFT; 1177 1178 /* 1179 * atomic_sub_return implies a barrier for waitqueue_active 1180 */ 1181 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1182 5 * SZ_1M && 1183 waitqueue_active(&fs_info->async_submit_wait)) 1184 wake_up(&fs_info->async_submit_wait); 1185 1186 if (async_cow->inode) 1187 submit_compressed_extents(async_cow->inode, async_cow); 1188 } 1189 1190 static noinline void async_cow_free(struct btrfs_work *work) 1191 { 1192 struct async_cow *async_cow; 1193 async_cow = container_of(work, struct async_cow, work); 1194 if (async_cow->inode) 1195 btrfs_add_delayed_iput(async_cow->inode); 1196 kfree(async_cow); 1197 } 1198 1199 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1200 u64 start, u64 end, int *page_started, 1201 unsigned long *nr_written, 1202 unsigned int write_flags) 1203 { 1204 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1205 struct async_cow *async_cow; 1206 struct btrfs_root *root = BTRFS_I(inode)->root; 1207 unsigned long nr_pages; 1208 u64 cur_end; 1209 1210 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1211 1, 0, NULL); 1212 while (start < end) { 1213 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1214 BUG_ON(!async_cow); /* -ENOMEM */ 1215 async_cow->inode = igrab(inode); 1216 async_cow->root = root; 1217 async_cow->locked_page = locked_page; 1218 async_cow->start = start; 1219 async_cow->write_flags = write_flags; 1220 1221 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1222 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1223 cur_end = end; 1224 else 1225 cur_end = min(end, start + SZ_512K - 1); 1226 1227 async_cow->end = cur_end; 1228 INIT_LIST_HEAD(&async_cow->extents); 1229 1230 btrfs_init_work(&async_cow->work, 1231 btrfs_delalloc_helper, 1232 async_cow_start, async_cow_submit, 1233 async_cow_free); 1234 1235 nr_pages = (cur_end - start + PAGE_SIZE) >> 1236 PAGE_SHIFT; 1237 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1238 1239 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1240 1241 *nr_written += nr_pages; 1242 start = cur_end + 1; 1243 } 1244 *page_started = 1; 1245 return 0; 1246 } 1247 1248 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1249 u64 bytenr, u64 num_bytes) 1250 { 1251 int ret; 1252 struct btrfs_ordered_sum *sums; 1253 LIST_HEAD(list); 1254 1255 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1256 bytenr + num_bytes - 1, &list, 0); 1257 if (ret == 0 && list_empty(&list)) 1258 return 0; 1259 1260 while (!list_empty(&list)) { 1261 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1262 list_del(&sums->list); 1263 kfree(sums); 1264 } 1265 return 1; 1266 } 1267 1268 /* 1269 * when nowcow writeback call back. This checks for snapshots or COW copies 1270 * of the extents that exist in the file, and COWs the file as required. 1271 * 1272 * If no cow copies or snapshots exist, we write directly to the existing 1273 * blocks on disk 1274 */ 1275 static noinline int run_delalloc_nocow(struct inode *inode, 1276 struct page *locked_page, 1277 u64 start, u64 end, int *page_started, int force, 1278 unsigned long *nr_written) 1279 { 1280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1281 struct btrfs_root *root = BTRFS_I(inode)->root; 1282 struct extent_buffer *leaf; 1283 struct btrfs_path *path; 1284 struct btrfs_file_extent_item *fi; 1285 struct btrfs_key found_key; 1286 struct extent_map *em; 1287 u64 cow_start; 1288 u64 cur_offset; 1289 u64 extent_end; 1290 u64 extent_offset; 1291 u64 disk_bytenr; 1292 u64 num_bytes; 1293 u64 disk_num_bytes; 1294 u64 ram_bytes; 1295 int extent_type; 1296 int ret, err; 1297 int type; 1298 int nocow; 1299 int check_prev = 1; 1300 bool nolock; 1301 u64 ino = btrfs_ino(BTRFS_I(inode)); 1302 1303 path = btrfs_alloc_path(); 1304 if (!path) { 1305 extent_clear_unlock_delalloc(inode, start, end, end, 1306 locked_page, 1307 EXTENT_LOCKED | EXTENT_DELALLOC | 1308 EXTENT_DO_ACCOUNTING | 1309 EXTENT_DEFRAG, PAGE_UNLOCK | 1310 PAGE_CLEAR_DIRTY | 1311 PAGE_SET_WRITEBACK | 1312 PAGE_END_WRITEBACK); 1313 return -ENOMEM; 1314 } 1315 1316 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1317 1318 cow_start = (u64)-1; 1319 cur_offset = start; 1320 while (1) { 1321 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1322 cur_offset, 0); 1323 if (ret < 0) 1324 goto error; 1325 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1326 leaf = path->nodes[0]; 1327 btrfs_item_key_to_cpu(leaf, &found_key, 1328 path->slots[0] - 1); 1329 if (found_key.objectid == ino && 1330 found_key.type == BTRFS_EXTENT_DATA_KEY) 1331 path->slots[0]--; 1332 } 1333 check_prev = 0; 1334 next_slot: 1335 leaf = path->nodes[0]; 1336 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1337 ret = btrfs_next_leaf(root, path); 1338 if (ret < 0) 1339 goto error; 1340 if (ret > 0) 1341 break; 1342 leaf = path->nodes[0]; 1343 } 1344 1345 nocow = 0; 1346 disk_bytenr = 0; 1347 num_bytes = 0; 1348 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1349 1350 if (found_key.objectid > ino) 1351 break; 1352 if (WARN_ON_ONCE(found_key.objectid < ino) || 1353 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1354 path->slots[0]++; 1355 goto next_slot; 1356 } 1357 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1358 found_key.offset > end) 1359 break; 1360 1361 if (found_key.offset > cur_offset) { 1362 extent_end = found_key.offset; 1363 extent_type = 0; 1364 goto out_check; 1365 } 1366 1367 fi = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_file_extent_item); 1369 extent_type = btrfs_file_extent_type(leaf, fi); 1370 1371 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1372 if (extent_type == BTRFS_FILE_EXTENT_REG || 1373 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1374 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1375 extent_offset = btrfs_file_extent_offset(leaf, fi); 1376 extent_end = found_key.offset + 1377 btrfs_file_extent_num_bytes(leaf, fi); 1378 disk_num_bytes = 1379 btrfs_file_extent_disk_num_bytes(leaf, fi); 1380 if (extent_end <= start) { 1381 path->slots[0]++; 1382 goto next_slot; 1383 } 1384 if (disk_bytenr == 0) 1385 goto out_check; 1386 if (btrfs_file_extent_compression(leaf, fi) || 1387 btrfs_file_extent_encryption(leaf, fi) || 1388 btrfs_file_extent_other_encoding(leaf, fi)) 1389 goto out_check; 1390 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1391 goto out_check; 1392 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1393 goto out_check; 1394 if (btrfs_cross_ref_exist(root, ino, 1395 found_key.offset - 1396 extent_offset, disk_bytenr)) 1397 goto out_check; 1398 disk_bytenr += extent_offset; 1399 disk_bytenr += cur_offset - found_key.offset; 1400 num_bytes = min(end + 1, extent_end) - cur_offset; 1401 /* 1402 * if there are pending snapshots for this root, 1403 * we fall into common COW way. 1404 */ 1405 if (!nolock) { 1406 err = btrfs_start_write_no_snapshotting(root); 1407 if (!err) 1408 goto out_check; 1409 } 1410 /* 1411 * force cow if csum exists in the range. 1412 * this ensure that csum for a given extent are 1413 * either valid or do not exist. 1414 */ 1415 if (csum_exist_in_range(fs_info, disk_bytenr, 1416 num_bytes)) { 1417 if (!nolock) 1418 btrfs_end_write_no_snapshotting(root); 1419 goto out_check; 1420 } 1421 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1422 if (!nolock) 1423 btrfs_end_write_no_snapshotting(root); 1424 goto out_check; 1425 } 1426 nocow = 1; 1427 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1428 extent_end = found_key.offset + 1429 btrfs_file_extent_inline_len(leaf, 1430 path->slots[0], fi); 1431 extent_end = ALIGN(extent_end, 1432 fs_info->sectorsize); 1433 } else { 1434 BUG_ON(1); 1435 } 1436 out_check: 1437 if (extent_end <= start) { 1438 path->slots[0]++; 1439 if (!nolock && nocow) 1440 btrfs_end_write_no_snapshotting(root); 1441 if (nocow) 1442 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1443 goto next_slot; 1444 } 1445 if (!nocow) { 1446 if (cow_start == (u64)-1) 1447 cow_start = cur_offset; 1448 cur_offset = extent_end; 1449 if (cur_offset > end) 1450 break; 1451 path->slots[0]++; 1452 goto next_slot; 1453 } 1454 1455 btrfs_release_path(path); 1456 if (cow_start != (u64)-1) { 1457 ret = cow_file_range(inode, locked_page, 1458 cow_start, found_key.offset - 1, 1459 end, page_started, nr_written, 1, 1460 NULL); 1461 if (ret) { 1462 if (!nolock && nocow) 1463 btrfs_end_write_no_snapshotting(root); 1464 if (nocow) 1465 btrfs_dec_nocow_writers(fs_info, 1466 disk_bytenr); 1467 goto error; 1468 } 1469 cow_start = (u64)-1; 1470 } 1471 1472 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1473 u64 orig_start = found_key.offset - extent_offset; 1474 1475 em = create_io_em(inode, cur_offset, num_bytes, 1476 orig_start, 1477 disk_bytenr, /* block_start */ 1478 num_bytes, /* block_len */ 1479 disk_num_bytes, /* orig_block_len */ 1480 ram_bytes, BTRFS_COMPRESS_NONE, 1481 BTRFS_ORDERED_PREALLOC); 1482 if (IS_ERR(em)) { 1483 if (!nolock && nocow) 1484 btrfs_end_write_no_snapshotting(root); 1485 if (nocow) 1486 btrfs_dec_nocow_writers(fs_info, 1487 disk_bytenr); 1488 ret = PTR_ERR(em); 1489 goto error; 1490 } 1491 free_extent_map(em); 1492 } 1493 1494 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1495 type = BTRFS_ORDERED_PREALLOC; 1496 } else { 1497 type = BTRFS_ORDERED_NOCOW; 1498 } 1499 1500 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1501 num_bytes, num_bytes, type); 1502 if (nocow) 1503 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1504 BUG_ON(ret); /* -ENOMEM */ 1505 1506 if (root->root_key.objectid == 1507 BTRFS_DATA_RELOC_TREE_OBJECTID) 1508 /* 1509 * Error handled later, as we must prevent 1510 * extent_clear_unlock_delalloc() in error handler 1511 * from freeing metadata of created ordered extent. 1512 */ 1513 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1514 num_bytes); 1515 1516 extent_clear_unlock_delalloc(inode, cur_offset, 1517 cur_offset + num_bytes - 1, end, 1518 locked_page, EXTENT_LOCKED | 1519 EXTENT_DELALLOC | 1520 EXTENT_CLEAR_DATA_RESV, 1521 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1522 1523 if (!nolock && nocow) 1524 btrfs_end_write_no_snapshotting(root); 1525 cur_offset = extent_end; 1526 1527 /* 1528 * btrfs_reloc_clone_csums() error, now we're OK to call error 1529 * handler, as metadata for created ordered extent will only 1530 * be freed by btrfs_finish_ordered_io(). 1531 */ 1532 if (ret) 1533 goto error; 1534 if (cur_offset > end) 1535 break; 1536 } 1537 btrfs_release_path(path); 1538 1539 if (cur_offset <= end && cow_start == (u64)-1) { 1540 cow_start = cur_offset; 1541 cur_offset = end; 1542 } 1543 1544 if (cow_start != (u64)-1) { 1545 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1546 page_started, nr_written, 1, NULL); 1547 if (ret) 1548 goto error; 1549 } 1550 1551 error: 1552 if (ret && cur_offset < end) 1553 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1554 locked_page, EXTENT_LOCKED | 1555 EXTENT_DELALLOC | EXTENT_DEFRAG | 1556 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1557 PAGE_CLEAR_DIRTY | 1558 PAGE_SET_WRITEBACK | 1559 PAGE_END_WRITEBACK); 1560 btrfs_free_path(path); 1561 return ret; 1562 } 1563 1564 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1565 { 1566 1567 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1568 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1569 return 0; 1570 1571 /* 1572 * @defrag_bytes is a hint value, no spinlock held here, 1573 * if is not zero, it means the file is defragging. 1574 * Force cow if given extent needs to be defragged. 1575 */ 1576 if (BTRFS_I(inode)->defrag_bytes && 1577 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1578 EXTENT_DEFRAG, 0, NULL)) 1579 return 1; 1580 1581 return 0; 1582 } 1583 1584 /* 1585 * extent_io.c call back to do delayed allocation processing 1586 */ 1587 static int run_delalloc_range(void *private_data, struct page *locked_page, 1588 u64 start, u64 end, int *page_started, 1589 unsigned long *nr_written, 1590 struct writeback_control *wbc) 1591 { 1592 struct inode *inode = private_data; 1593 int ret; 1594 int force_cow = need_force_cow(inode, start, end); 1595 unsigned int write_flags = wbc_to_write_flags(wbc); 1596 1597 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1598 ret = run_delalloc_nocow(inode, locked_page, start, end, 1599 page_started, 1, nr_written); 1600 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1601 ret = run_delalloc_nocow(inode, locked_page, start, end, 1602 page_started, 0, nr_written); 1603 } else if (!inode_need_compress(inode, start, end)) { 1604 ret = cow_file_range(inode, locked_page, start, end, end, 1605 page_started, nr_written, 1, NULL); 1606 } else { 1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1608 &BTRFS_I(inode)->runtime_flags); 1609 ret = cow_file_range_async(inode, locked_page, start, end, 1610 page_started, nr_written, 1611 write_flags); 1612 } 1613 if (ret) 1614 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1615 return ret; 1616 } 1617 1618 static void btrfs_split_extent_hook(void *private_data, 1619 struct extent_state *orig, u64 split) 1620 { 1621 struct inode *inode = private_data; 1622 u64 size; 1623 1624 /* not delalloc, ignore it */ 1625 if (!(orig->state & EXTENT_DELALLOC)) 1626 return; 1627 1628 size = orig->end - orig->start + 1; 1629 if (size > BTRFS_MAX_EXTENT_SIZE) { 1630 u32 num_extents; 1631 u64 new_size; 1632 1633 /* 1634 * See the explanation in btrfs_merge_extent_hook, the same 1635 * applies here, just in reverse. 1636 */ 1637 new_size = orig->end - split + 1; 1638 num_extents = count_max_extents(new_size); 1639 new_size = split - orig->start; 1640 num_extents += count_max_extents(new_size); 1641 if (count_max_extents(size) >= num_extents) 1642 return; 1643 } 1644 1645 spin_lock(&BTRFS_I(inode)->lock); 1646 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1647 spin_unlock(&BTRFS_I(inode)->lock); 1648 } 1649 1650 /* 1651 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1652 * extents so we can keep track of new extents that are just merged onto old 1653 * extents, such as when we are doing sequential writes, so we can properly 1654 * account for the metadata space we'll need. 1655 */ 1656 static void btrfs_merge_extent_hook(void *private_data, 1657 struct extent_state *new, 1658 struct extent_state *other) 1659 { 1660 struct inode *inode = private_data; 1661 u64 new_size, old_size; 1662 u32 num_extents; 1663 1664 /* not delalloc, ignore it */ 1665 if (!(other->state & EXTENT_DELALLOC)) 1666 return; 1667 1668 if (new->start > other->start) 1669 new_size = new->end - other->start + 1; 1670 else 1671 new_size = other->end - new->start + 1; 1672 1673 /* we're not bigger than the max, unreserve the space and go */ 1674 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1675 spin_lock(&BTRFS_I(inode)->lock); 1676 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1677 spin_unlock(&BTRFS_I(inode)->lock); 1678 return; 1679 } 1680 1681 /* 1682 * We have to add up either side to figure out how many extents were 1683 * accounted for before we merged into one big extent. If the number of 1684 * extents we accounted for is <= the amount we need for the new range 1685 * then we can return, otherwise drop. Think of it like this 1686 * 1687 * [ 4k][MAX_SIZE] 1688 * 1689 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1690 * need 2 outstanding extents, on one side we have 1 and the other side 1691 * we have 1 so they are == and we can return. But in this case 1692 * 1693 * [MAX_SIZE+4k][MAX_SIZE+4k] 1694 * 1695 * Each range on their own accounts for 2 extents, but merged together 1696 * they are only 3 extents worth of accounting, so we need to drop in 1697 * this case. 1698 */ 1699 old_size = other->end - other->start + 1; 1700 num_extents = count_max_extents(old_size); 1701 old_size = new->end - new->start + 1; 1702 num_extents += count_max_extents(old_size); 1703 if (count_max_extents(new_size) >= num_extents) 1704 return; 1705 1706 spin_lock(&BTRFS_I(inode)->lock); 1707 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1708 spin_unlock(&BTRFS_I(inode)->lock); 1709 } 1710 1711 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1712 struct inode *inode) 1713 { 1714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1715 1716 spin_lock(&root->delalloc_lock); 1717 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1718 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1719 &root->delalloc_inodes); 1720 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1721 &BTRFS_I(inode)->runtime_flags); 1722 root->nr_delalloc_inodes++; 1723 if (root->nr_delalloc_inodes == 1) { 1724 spin_lock(&fs_info->delalloc_root_lock); 1725 BUG_ON(!list_empty(&root->delalloc_root)); 1726 list_add_tail(&root->delalloc_root, 1727 &fs_info->delalloc_roots); 1728 spin_unlock(&fs_info->delalloc_root_lock); 1729 } 1730 } 1731 spin_unlock(&root->delalloc_lock); 1732 } 1733 1734 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1735 struct btrfs_inode *inode) 1736 { 1737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1738 1739 spin_lock(&root->delalloc_lock); 1740 if (!list_empty(&inode->delalloc_inodes)) { 1741 list_del_init(&inode->delalloc_inodes); 1742 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1743 &inode->runtime_flags); 1744 root->nr_delalloc_inodes--; 1745 if (!root->nr_delalloc_inodes) { 1746 spin_lock(&fs_info->delalloc_root_lock); 1747 BUG_ON(list_empty(&root->delalloc_root)); 1748 list_del_init(&root->delalloc_root); 1749 spin_unlock(&fs_info->delalloc_root_lock); 1750 } 1751 } 1752 spin_unlock(&root->delalloc_lock); 1753 } 1754 1755 /* 1756 * extent_io.c set_bit_hook, used to track delayed allocation 1757 * bytes in this file, and to maintain the list of inodes that 1758 * have pending delalloc work to be done. 1759 */ 1760 static void btrfs_set_bit_hook(void *private_data, 1761 struct extent_state *state, unsigned *bits) 1762 { 1763 struct inode *inode = private_data; 1764 1765 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1766 1767 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1768 WARN_ON(1); 1769 /* 1770 * set_bit and clear bit hooks normally require _irqsave/restore 1771 * but in this case, we are only testing for the DELALLOC 1772 * bit, which is only set or cleared with irqs on 1773 */ 1774 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1775 struct btrfs_root *root = BTRFS_I(inode)->root; 1776 u64 len = state->end + 1 - state->start; 1777 u32 num_extents = count_max_extents(len); 1778 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1779 1780 spin_lock(&BTRFS_I(inode)->lock); 1781 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1782 spin_unlock(&BTRFS_I(inode)->lock); 1783 1784 /* For sanity tests */ 1785 if (btrfs_is_testing(fs_info)) 1786 return; 1787 1788 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1789 fs_info->delalloc_batch); 1790 spin_lock(&BTRFS_I(inode)->lock); 1791 BTRFS_I(inode)->delalloc_bytes += len; 1792 if (*bits & EXTENT_DEFRAG) 1793 BTRFS_I(inode)->defrag_bytes += len; 1794 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1795 &BTRFS_I(inode)->runtime_flags)) 1796 btrfs_add_delalloc_inodes(root, inode); 1797 spin_unlock(&BTRFS_I(inode)->lock); 1798 } 1799 1800 if (!(state->state & EXTENT_DELALLOC_NEW) && 1801 (*bits & EXTENT_DELALLOC_NEW)) { 1802 spin_lock(&BTRFS_I(inode)->lock); 1803 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1804 state->start; 1805 spin_unlock(&BTRFS_I(inode)->lock); 1806 } 1807 } 1808 1809 /* 1810 * extent_io.c clear_bit_hook, see set_bit_hook for why 1811 */ 1812 static void btrfs_clear_bit_hook(void *private_data, 1813 struct extent_state *state, 1814 unsigned *bits) 1815 { 1816 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1817 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1818 u64 len = state->end + 1 - state->start; 1819 u32 num_extents = count_max_extents(len); 1820 1821 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1822 spin_lock(&inode->lock); 1823 inode->defrag_bytes -= len; 1824 spin_unlock(&inode->lock); 1825 } 1826 1827 /* 1828 * set_bit and clear bit hooks normally require _irqsave/restore 1829 * but in this case, we are only testing for the DELALLOC 1830 * bit, which is only set or cleared with irqs on 1831 */ 1832 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1833 struct btrfs_root *root = inode->root; 1834 bool do_list = !btrfs_is_free_space_inode(inode); 1835 1836 spin_lock(&inode->lock); 1837 btrfs_mod_outstanding_extents(inode, -num_extents); 1838 spin_unlock(&inode->lock); 1839 1840 /* 1841 * We don't reserve metadata space for space cache inodes so we 1842 * don't need to call dellalloc_release_metadata if there is an 1843 * error. 1844 */ 1845 if (*bits & EXTENT_CLEAR_META_RESV && 1846 root != fs_info->tree_root) 1847 btrfs_delalloc_release_metadata(inode, len); 1848 1849 /* For sanity tests. */ 1850 if (btrfs_is_testing(fs_info)) 1851 return; 1852 1853 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1854 do_list && !(state->state & EXTENT_NORESERVE) && 1855 (*bits & EXTENT_CLEAR_DATA_RESV)) 1856 btrfs_free_reserved_data_space_noquota( 1857 &inode->vfs_inode, 1858 state->start, len); 1859 1860 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1861 fs_info->delalloc_batch); 1862 spin_lock(&inode->lock); 1863 inode->delalloc_bytes -= len; 1864 if (do_list && inode->delalloc_bytes == 0 && 1865 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1866 &inode->runtime_flags)) 1867 btrfs_del_delalloc_inode(root, inode); 1868 spin_unlock(&inode->lock); 1869 } 1870 1871 if ((state->state & EXTENT_DELALLOC_NEW) && 1872 (*bits & EXTENT_DELALLOC_NEW)) { 1873 spin_lock(&inode->lock); 1874 ASSERT(inode->new_delalloc_bytes >= len); 1875 inode->new_delalloc_bytes -= len; 1876 spin_unlock(&inode->lock); 1877 } 1878 } 1879 1880 /* 1881 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1882 * we don't create bios that span stripes or chunks 1883 * 1884 * return 1 if page cannot be merged to bio 1885 * return 0 if page can be merged to bio 1886 * return error otherwise 1887 */ 1888 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1889 size_t size, struct bio *bio, 1890 unsigned long bio_flags) 1891 { 1892 struct inode *inode = page->mapping->host; 1893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1894 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1895 u64 length = 0; 1896 u64 map_length; 1897 int ret; 1898 1899 if (bio_flags & EXTENT_BIO_COMPRESSED) 1900 return 0; 1901 1902 length = bio->bi_iter.bi_size; 1903 map_length = length; 1904 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1905 NULL, 0); 1906 if (ret < 0) 1907 return ret; 1908 if (map_length < length + size) 1909 return 1; 1910 return 0; 1911 } 1912 1913 /* 1914 * in order to insert checksums into the metadata in large chunks, 1915 * we wait until bio submission time. All the pages in the bio are 1916 * checksummed and sums are attached onto the ordered extent record. 1917 * 1918 * At IO completion time the cums attached on the ordered extent record 1919 * are inserted into the btree 1920 */ 1921 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio, 1922 int mirror_num, unsigned long bio_flags, 1923 u64 bio_offset) 1924 { 1925 struct inode *inode = private_data; 1926 blk_status_t ret = 0; 1927 1928 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1929 BUG_ON(ret); /* -ENOMEM */ 1930 return 0; 1931 } 1932 1933 /* 1934 * in order to insert checksums into the metadata in large chunks, 1935 * we wait until bio submission time. All the pages in the bio are 1936 * checksummed and sums are attached onto the ordered extent record. 1937 * 1938 * At IO completion time the cums attached on the ordered extent record 1939 * are inserted into the btree 1940 */ 1941 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio, 1942 int mirror_num, unsigned long bio_flags, 1943 u64 bio_offset) 1944 { 1945 struct inode *inode = private_data; 1946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1947 blk_status_t ret; 1948 1949 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1950 if (ret) { 1951 bio->bi_status = ret; 1952 bio_endio(bio); 1953 } 1954 return ret; 1955 } 1956 1957 /* 1958 * extent_io.c submission hook. This does the right thing for csum calculation 1959 * on write, or reading the csums from the tree before a read. 1960 * 1961 * Rules about async/sync submit, 1962 * a) read: sync submit 1963 * 1964 * b) write without checksum: sync submit 1965 * 1966 * c) write with checksum: 1967 * c-1) if bio is issued by fsync: sync submit 1968 * (sync_writers != 0) 1969 * 1970 * c-2) if root is reloc root: sync submit 1971 * (only in case of buffered IO) 1972 * 1973 * c-3) otherwise: async submit 1974 */ 1975 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1976 int mirror_num, unsigned long bio_flags, 1977 u64 bio_offset) 1978 { 1979 struct inode *inode = private_data; 1980 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1981 struct btrfs_root *root = BTRFS_I(inode)->root; 1982 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1983 blk_status_t ret = 0; 1984 int skip_sum; 1985 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1986 1987 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1988 1989 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1990 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1991 1992 if (bio_op(bio) != REQ_OP_WRITE) { 1993 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1994 if (ret) 1995 goto out; 1996 1997 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1998 ret = btrfs_submit_compressed_read(inode, bio, 1999 mirror_num, 2000 bio_flags); 2001 goto out; 2002 } else if (!skip_sum) { 2003 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2004 if (ret) 2005 goto out; 2006 } 2007 goto mapit; 2008 } else if (async && !skip_sum) { 2009 /* csum items have already been cloned */ 2010 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2011 goto mapit; 2012 /* we're doing a write, do the async checksumming */ 2013 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2014 bio_offset, inode, 2015 __btrfs_submit_bio_start, 2016 __btrfs_submit_bio_done); 2017 goto out; 2018 } else if (!skip_sum) { 2019 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2020 if (ret) 2021 goto out; 2022 } 2023 2024 mapit: 2025 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2026 2027 out: 2028 if (ret) { 2029 bio->bi_status = ret; 2030 bio_endio(bio); 2031 } 2032 return ret; 2033 } 2034 2035 /* 2036 * given a list of ordered sums record them in the inode. This happens 2037 * at IO completion time based on sums calculated at bio submission time. 2038 */ 2039 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2040 struct inode *inode, struct list_head *list) 2041 { 2042 struct btrfs_ordered_sum *sum; 2043 2044 list_for_each_entry(sum, list, list) { 2045 trans->adding_csums = true; 2046 btrfs_csum_file_blocks(trans, 2047 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2048 trans->adding_csums = false; 2049 } 2050 return 0; 2051 } 2052 2053 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2054 unsigned int extra_bits, 2055 struct extent_state **cached_state, int dedupe) 2056 { 2057 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2058 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2059 extra_bits, cached_state); 2060 } 2061 2062 /* see btrfs_writepage_start_hook for details on why this is required */ 2063 struct btrfs_writepage_fixup { 2064 struct page *page; 2065 struct btrfs_work work; 2066 }; 2067 2068 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2069 { 2070 struct btrfs_writepage_fixup *fixup; 2071 struct btrfs_ordered_extent *ordered; 2072 struct extent_state *cached_state = NULL; 2073 struct extent_changeset *data_reserved = NULL; 2074 struct page *page; 2075 struct inode *inode; 2076 u64 page_start; 2077 u64 page_end; 2078 int ret; 2079 2080 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2081 page = fixup->page; 2082 again: 2083 lock_page(page); 2084 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2085 ClearPageChecked(page); 2086 goto out_page; 2087 } 2088 2089 inode = page->mapping->host; 2090 page_start = page_offset(page); 2091 page_end = page_offset(page) + PAGE_SIZE - 1; 2092 2093 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2094 &cached_state); 2095 2096 /* already ordered? We're done */ 2097 if (PagePrivate2(page)) 2098 goto out; 2099 2100 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2101 PAGE_SIZE); 2102 if (ordered) { 2103 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2104 page_end, &cached_state); 2105 unlock_page(page); 2106 btrfs_start_ordered_extent(inode, ordered, 1); 2107 btrfs_put_ordered_extent(ordered); 2108 goto again; 2109 } 2110 2111 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2112 PAGE_SIZE); 2113 if (ret) { 2114 mapping_set_error(page->mapping, ret); 2115 end_extent_writepage(page, ret, page_start, page_end); 2116 ClearPageChecked(page); 2117 goto out; 2118 } 2119 2120 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2121 &cached_state, 0); 2122 if (ret) { 2123 mapping_set_error(page->mapping, ret); 2124 end_extent_writepage(page, ret, page_start, page_end); 2125 ClearPageChecked(page); 2126 goto out; 2127 } 2128 2129 ClearPageChecked(page); 2130 set_page_dirty(page); 2131 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2132 out: 2133 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2134 &cached_state); 2135 out_page: 2136 unlock_page(page); 2137 put_page(page); 2138 kfree(fixup); 2139 extent_changeset_free(data_reserved); 2140 } 2141 2142 /* 2143 * There are a few paths in the higher layers of the kernel that directly 2144 * set the page dirty bit without asking the filesystem if it is a 2145 * good idea. This causes problems because we want to make sure COW 2146 * properly happens and the data=ordered rules are followed. 2147 * 2148 * In our case any range that doesn't have the ORDERED bit set 2149 * hasn't been properly setup for IO. We kick off an async process 2150 * to fix it up. The async helper will wait for ordered extents, set 2151 * the delalloc bit and make it safe to write the page. 2152 */ 2153 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2154 { 2155 struct inode *inode = page->mapping->host; 2156 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2157 struct btrfs_writepage_fixup *fixup; 2158 2159 /* this page is properly in the ordered list */ 2160 if (TestClearPagePrivate2(page)) 2161 return 0; 2162 2163 if (PageChecked(page)) 2164 return -EAGAIN; 2165 2166 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2167 if (!fixup) 2168 return -EAGAIN; 2169 2170 SetPageChecked(page); 2171 get_page(page); 2172 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2173 btrfs_writepage_fixup_worker, NULL, NULL); 2174 fixup->page = page; 2175 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2176 return -EBUSY; 2177 } 2178 2179 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2180 struct inode *inode, u64 file_pos, 2181 u64 disk_bytenr, u64 disk_num_bytes, 2182 u64 num_bytes, u64 ram_bytes, 2183 u8 compression, u8 encryption, 2184 u16 other_encoding, int extent_type) 2185 { 2186 struct btrfs_root *root = BTRFS_I(inode)->root; 2187 struct btrfs_file_extent_item *fi; 2188 struct btrfs_path *path; 2189 struct extent_buffer *leaf; 2190 struct btrfs_key ins; 2191 u64 qg_released; 2192 int extent_inserted = 0; 2193 int ret; 2194 2195 path = btrfs_alloc_path(); 2196 if (!path) 2197 return -ENOMEM; 2198 2199 /* 2200 * we may be replacing one extent in the tree with another. 2201 * The new extent is pinned in the extent map, and we don't want 2202 * to drop it from the cache until it is completely in the btree. 2203 * 2204 * So, tell btrfs_drop_extents to leave this extent in the cache. 2205 * the caller is expected to unpin it and allow it to be merged 2206 * with the others. 2207 */ 2208 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2209 file_pos + num_bytes, NULL, 0, 2210 1, sizeof(*fi), &extent_inserted); 2211 if (ret) 2212 goto out; 2213 2214 if (!extent_inserted) { 2215 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2216 ins.offset = file_pos; 2217 ins.type = BTRFS_EXTENT_DATA_KEY; 2218 2219 path->leave_spinning = 1; 2220 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2221 sizeof(*fi)); 2222 if (ret) 2223 goto out; 2224 } 2225 leaf = path->nodes[0]; 2226 fi = btrfs_item_ptr(leaf, path->slots[0], 2227 struct btrfs_file_extent_item); 2228 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2229 btrfs_set_file_extent_type(leaf, fi, extent_type); 2230 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2231 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2232 btrfs_set_file_extent_offset(leaf, fi, 0); 2233 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2234 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2235 btrfs_set_file_extent_compression(leaf, fi, compression); 2236 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2237 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2238 2239 btrfs_mark_buffer_dirty(leaf); 2240 btrfs_release_path(path); 2241 2242 inode_add_bytes(inode, num_bytes); 2243 2244 ins.objectid = disk_bytenr; 2245 ins.offset = disk_num_bytes; 2246 ins.type = BTRFS_EXTENT_ITEM_KEY; 2247 2248 /* 2249 * Release the reserved range from inode dirty range map, as it is 2250 * already moved into delayed_ref_head 2251 */ 2252 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2253 if (ret < 0) 2254 goto out; 2255 qg_released = ret; 2256 ret = btrfs_alloc_reserved_file_extent(trans, root, 2257 btrfs_ino(BTRFS_I(inode)), 2258 file_pos, qg_released, &ins); 2259 out: 2260 btrfs_free_path(path); 2261 2262 return ret; 2263 } 2264 2265 /* snapshot-aware defrag */ 2266 struct sa_defrag_extent_backref { 2267 struct rb_node node; 2268 struct old_sa_defrag_extent *old; 2269 u64 root_id; 2270 u64 inum; 2271 u64 file_pos; 2272 u64 extent_offset; 2273 u64 num_bytes; 2274 u64 generation; 2275 }; 2276 2277 struct old_sa_defrag_extent { 2278 struct list_head list; 2279 struct new_sa_defrag_extent *new; 2280 2281 u64 extent_offset; 2282 u64 bytenr; 2283 u64 offset; 2284 u64 len; 2285 int count; 2286 }; 2287 2288 struct new_sa_defrag_extent { 2289 struct rb_root root; 2290 struct list_head head; 2291 struct btrfs_path *path; 2292 struct inode *inode; 2293 u64 file_pos; 2294 u64 len; 2295 u64 bytenr; 2296 u64 disk_len; 2297 u8 compress_type; 2298 }; 2299 2300 static int backref_comp(struct sa_defrag_extent_backref *b1, 2301 struct sa_defrag_extent_backref *b2) 2302 { 2303 if (b1->root_id < b2->root_id) 2304 return -1; 2305 else if (b1->root_id > b2->root_id) 2306 return 1; 2307 2308 if (b1->inum < b2->inum) 2309 return -1; 2310 else if (b1->inum > b2->inum) 2311 return 1; 2312 2313 if (b1->file_pos < b2->file_pos) 2314 return -1; 2315 else if (b1->file_pos > b2->file_pos) 2316 return 1; 2317 2318 /* 2319 * [------------------------------] ===> (a range of space) 2320 * |<--->| |<---->| =============> (fs/file tree A) 2321 * |<---------------------------->| ===> (fs/file tree B) 2322 * 2323 * A range of space can refer to two file extents in one tree while 2324 * refer to only one file extent in another tree. 2325 * 2326 * So we may process a disk offset more than one time(two extents in A) 2327 * and locate at the same extent(one extent in B), then insert two same 2328 * backrefs(both refer to the extent in B). 2329 */ 2330 return 0; 2331 } 2332 2333 static void backref_insert(struct rb_root *root, 2334 struct sa_defrag_extent_backref *backref) 2335 { 2336 struct rb_node **p = &root->rb_node; 2337 struct rb_node *parent = NULL; 2338 struct sa_defrag_extent_backref *entry; 2339 int ret; 2340 2341 while (*p) { 2342 parent = *p; 2343 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2344 2345 ret = backref_comp(backref, entry); 2346 if (ret < 0) 2347 p = &(*p)->rb_left; 2348 else 2349 p = &(*p)->rb_right; 2350 } 2351 2352 rb_link_node(&backref->node, parent, p); 2353 rb_insert_color(&backref->node, root); 2354 } 2355 2356 /* 2357 * Note the backref might has changed, and in this case we just return 0. 2358 */ 2359 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2360 void *ctx) 2361 { 2362 struct btrfs_file_extent_item *extent; 2363 struct old_sa_defrag_extent *old = ctx; 2364 struct new_sa_defrag_extent *new = old->new; 2365 struct btrfs_path *path = new->path; 2366 struct btrfs_key key; 2367 struct btrfs_root *root; 2368 struct sa_defrag_extent_backref *backref; 2369 struct extent_buffer *leaf; 2370 struct inode *inode = new->inode; 2371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2372 int slot; 2373 int ret; 2374 u64 extent_offset; 2375 u64 num_bytes; 2376 2377 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2378 inum == btrfs_ino(BTRFS_I(inode))) 2379 return 0; 2380 2381 key.objectid = root_id; 2382 key.type = BTRFS_ROOT_ITEM_KEY; 2383 key.offset = (u64)-1; 2384 2385 root = btrfs_read_fs_root_no_name(fs_info, &key); 2386 if (IS_ERR(root)) { 2387 if (PTR_ERR(root) == -ENOENT) 2388 return 0; 2389 WARN_ON(1); 2390 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2391 inum, offset, root_id); 2392 return PTR_ERR(root); 2393 } 2394 2395 key.objectid = inum; 2396 key.type = BTRFS_EXTENT_DATA_KEY; 2397 if (offset > (u64)-1 << 32) 2398 key.offset = 0; 2399 else 2400 key.offset = offset; 2401 2402 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2403 if (WARN_ON(ret < 0)) 2404 return ret; 2405 ret = 0; 2406 2407 while (1) { 2408 cond_resched(); 2409 2410 leaf = path->nodes[0]; 2411 slot = path->slots[0]; 2412 2413 if (slot >= btrfs_header_nritems(leaf)) { 2414 ret = btrfs_next_leaf(root, path); 2415 if (ret < 0) { 2416 goto out; 2417 } else if (ret > 0) { 2418 ret = 0; 2419 goto out; 2420 } 2421 continue; 2422 } 2423 2424 path->slots[0]++; 2425 2426 btrfs_item_key_to_cpu(leaf, &key, slot); 2427 2428 if (key.objectid > inum) 2429 goto out; 2430 2431 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2432 continue; 2433 2434 extent = btrfs_item_ptr(leaf, slot, 2435 struct btrfs_file_extent_item); 2436 2437 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2438 continue; 2439 2440 /* 2441 * 'offset' refers to the exact key.offset, 2442 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2443 * (key.offset - extent_offset). 2444 */ 2445 if (key.offset != offset) 2446 continue; 2447 2448 extent_offset = btrfs_file_extent_offset(leaf, extent); 2449 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2450 2451 if (extent_offset >= old->extent_offset + old->offset + 2452 old->len || extent_offset + num_bytes <= 2453 old->extent_offset + old->offset) 2454 continue; 2455 break; 2456 } 2457 2458 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2459 if (!backref) { 2460 ret = -ENOENT; 2461 goto out; 2462 } 2463 2464 backref->root_id = root_id; 2465 backref->inum = inum; 2466 backref->file_pos = offset; 2467 backref->num_bytes = num_bytes; 2468 backref->extent_offset = extent_offset; 2469 backref->generation = btrfs_file_extent_generation(leaf, extent); 2470 backref->old = old; 2471 backref_insert(&new->root, backref); 2472 old->count++; 2473 out: 2474 btrfs_release_path(path); 2475 WARN_ON(ret); 2476 return ret; 2477 } 2478 2479 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2480 struct new_sa_defrag_extent *new) 2481 { 2482 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2483 struct old_sa_defrag_extent *old, *tmp; 2484 int ret; 2485 2486 new->path = path; 2487 2488 list_for_each_entry_safe(old, tmp, &new->head, list) { 2489 ret = iterate_inodes_from_logical(old->bytenr + 2490 old->extent_offset, fs_info, 2491 path, record_one_backref, 2492 old, false); 2493 if (ret < 0 && ret != -ENOENT) 2494 return false; 2495 2496 /* no backref to be processed for this extent */ 2497 if (!old->count) { 2498 list_del(&old->list); 2499 kfree(old); 2500 } 2501 } 2502 2503 if (list_empty(&new->head)) 2504 return false; 2505 2506 return true; 2507 } 2508 2509 static int relink_is_mergable(struct extent_buffer *leaf, 2510 struct btrfs_file_extent_item *fi, 2511 struct new_sa_defrag_extent *new) 2512 { 2513 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2514 return 0; 2515 2516 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2517 return 0; 2518 2519 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2520 return 0; 2521 2522 if (btrfs_file_extent_encryption(leaf, fi) || 2523 btrfs_file_extent_other_encoding(leaf, fi)) 2524 return 0; 2525 2526 return 1; 2527 } 2528 2529 /* 2530 * Note the backref might has changed, and in this case we just return 0. 2531 */ 2532 static noinline int relink_extent_backref(struct btrfs_path *path, 2533 struct sa_defrag_extent_backref *prev, 2534 struct sa_defrag_extent_backref *backref) 2535 { 2536 struct btrfs_file_extent_item *extent; 2537 struct btrfs_file_extent_item *item; 2538 struct btrfs_ordered_extent *ordered; 2539 struct btrfs_trans_handle *trans; 2540 struct btrfs_root *root; 2541 struct btrfs_key key; 2542 struct extent_buffer *leaf; 2543 struct old_sa_defrag_extent *old = backref->old; 2544 struct new_sa_defrag_extent *new = old->new; 2545 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2546 struct inode *inode; 2547 struct extent_state *cached = NULL; 2548 int ret = 0; 2549 u64 start; 2550 u64 len; 2551 u64 lock_start; 2552 u64 lock_end; 2553 bool merge = false; 2554 int index; 2555 2556 if (prev && prev->root_id == backref->root_id && 2557 prev->inum == backref->inum && 2558 prev->file_pos + prev->num_bytes == backref->file_pos) 2559 merge = true; 2560 2561 /* step 1: get root */ 2562 key.objectid = backref->root_id; 2563 key.type = BTRFS_ROOT_ITEM_KEY; 2564 key.offset = (u64)-1; 2565 2566 index = srcu_read_lock(&fs_info->subvol_srcu); 2567 2568 root = btrfs_read_fs_root_no_name(fs_info, &key); 2569 if (IS_ERR(root)) { 2570 srcu_read_unlock(&fs_info->subvol_srcu, index); 2571 if (PTR_ERR(root) == -ENOENT) 2572 return 0; 2573 return PTR_ERR(root); 2574 } 2575 2576 if (btrfs_root_readonly(root)) { 2577 srcu_read_unlock(&fs_info->subvol_srcu, index); 2578 return 0; 2579 } 2580 2581 /* step 2: get inode */ 2582 key.objectid = backref->inum; 2583 key.type = BTRFS_INODE_ITEM_KEY; 2584 key.offset = 0; 2585 2586 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2587 if (IS_ERR(inode)) { 2588 srcu_read_unlock(&fs_info->subvol_srcu, index); 2589 return 0; 2590 } 2591 2592 srcu_read_unlock(&fs_info->subvol_srcu, index); 2593 2594 /* step 3: relink backref */ 2595 lock_start = backref->file_pos; 2596 lock_end = backref->file_pos + backref->num_bytes - 1; 2597 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2598 &cached); 2599 2600 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2601 if (ordered) { 2602 btrfs_put_ordered_extent(ordered); 2603 goto out_unlock; 2604 } 2605 2606 trans = btrfs_join_transaction(root); 2607 if (IS_ERR(trans)) { 2608 ret = PTR_ERR(trans); 2609 goto out_unlock; 2610 } 2611 2612 key.objectid = backref->inum; 2613 key.type = BTRFS_EXTENT_DATA_KEY; 2614 key.offset = backref->file_pos; 2615 2616 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2617 if (ret < 0) { 2618 goto out_free_path; 2619 } else if (ret > 0) { 2620 ret = 0; 2621 goto out_free_path; 2622 } 2623 2624 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2625 struct btrfs_file_extent_item); 2626 2627 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2628 backref->generation) 2629 goto out_free_path; 2630 2631 btrfs_release_path(path); 2632 2633 start = backref->file_pos; 2634 if (backref->extent_offset < old->extent_offset + old->offset) 2635 start += old->extent_offset + old->offset - 2636 backref->extent_offset; 2637 2638 len = min(backref->extent_offset + backref->num_bytes, 2639 old->extent_offset + old->offset + old->len); 2640 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2641 2642 ret = btrfs_drop_extents(trans, root, inode, start, 2643 start + len, 1); 2644 if (ret) 2645 goto out_free_path; 2646 again: 2647 key.objectid = btrfs_ino(BTRFS_I(inode)); 2648 key.type = BTRFS_EXTENT_DATA_KEY; 2649 key.offset = start; 2650 2651 path->leave_spinning = 1; 2652 if (merge) { 2653 struct btrfs_file_extent_item *fi; 2654 u64 extent_len; 2655 struct btrfs_key found_key; 2656 2657 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2658 if (ret < 0) 2659 goto out_free_path; 2660 2661 path->slots[0]--; 2662 leaf = path->nodes[0]; 2663 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2664 2665 fi = btrfs_item_ptr(leaf, path->slots[0], 2666 struct btrfs_file_extent_item); 2667 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2668 2669 if (extent_len + found_key.offset == start && 2670 relink_is_mergable(leaf, fi, new)) { 2671 btrfs_set_file_extent_num_bytes(leaf, fi, 2672 extent_len + len); 2673 btrfs_mark_buffer_dirty(leaf); 2674 inode_add_bytes(inode, len); 2675 2676 ret = 1; 2677 goto out_free_path; 2678 } else { 2679 merge = false; 2680 btrfs_release_path(path); 2681 goto again; 2682 } 2683 } 2684 2685 ret = btrfs_insert_empty_item(trans, root, path, &key, 2686 sizeof(*extent)); 2687 if (ret) { 2688 btrfs_abort_transaction(trans, ret); 2689 goto out_free_path; 2690 } 2691 2692 leaf = path->nodes[0]; 2693 item = btrfs_item_ptr(leaf, path->slots[0], 2694 struct btrfs_file_extent_item); 2695 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2696 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2697 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2698 btrfs_set_file_extent_num_bytes(leaf, item, len); 2699 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2700 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2701 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2702 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2703 btrfs_set_file_extent_encryption(leaf, item, 0); 2704 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2705 2706 btrfs_mark_buffer_dirty(leaf); 2707 inode_add_bytes(inode, len); 2708 btrfs_release_path(path); 2709 2710 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2711 new->disk_len, 0, 2712 backref->root_id, backref->inum, 2713 new->file_pos); /* start - extent_offset */ 2714 if (ret) { 2715 btrfs_abort_transaction(trans, ret); 2716 goto out_free_path; 2717 } 2718 2719 ret = 1; 2720 out_free_path: 2721 btrfs_release_path(path); 2722 path->leave_spinning = 0; 2723 btrfs_end_transaction(trans); 2724 out_unlock: 2725 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2726 &cached); 2727 iput(inode); 2728 return ret; 2729 } 2730 2731 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2732 { 2733 struct old_sa_defrag_extent *old, *tmp; 2734 2735 if (!new) 2736 return; 2737 2738 list_for_each_entry_safe(old, tmp, &new->head, list) { 2739 kfree(old); 2740 } 2741 kfree(new); 2742 } 2743 2744 static void relink_file_extents(struct new_sa_defrag_extent *new) 2745 { 2746 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2747 struct btrfs_path *path; 2748 struct sa_defrag_extent_backref *backref; 2749 struct sa_defrag_extent_backref *prev = NULL; 2750 struct inode *inode; 2751 struct btrfs_root *root; 2752 struct rb_node *node; 2753 int ret; 2754 2755 inode = new->inode; 2756 root = BTRFS_I(inode)->root; 2757 2758 path = btrfs_alloc_path(); 2759 if (!path) 2760 return; 2761 2762 if (!record_extent_backrefs(path, new)) { 2763 btrfs_free_path(path); 2764 goto out; 2765 } 2766 btrfs_release_path(path); 2767 2768 while (1) { 2769 node = rb_first(&new->root); 2770 if (!node) 2771 break; 2772 rb_erase(node, &new->root); 2773 2774 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2775 2776 ret = relink_extent_backref(path, prev, backref); 2777 WARN_ON(ret < 0); 2778 2779 kfree(prev); 2780 2781 if (ret == 1) 2782 prev = backref; 2783 else 2784 prev = NULL; 2785 cond_resched(); 2786 } 2787 kfree(prev); 2788 2789 btrfs_free_path(path); 2790 out: 2791 free_sa_defrag_extent(new); 2792 2793 atomic_dec(&fs_info->defrag_running); 2794 wake_up(&fs_info->transaction_wait); 2795 } 2796 2797 static struct new_sa_defrag_extent * 2798 record_old_file_extents(struct inode *inode, 2799 struct btrfs_ordered_extent *ordered) 2800 { 2801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2802 struct btrfs_root *root = BTRFS_I(inode)->root; 2803 struct btrfs_path *path; 2804 struct btrfs_key key; 2805 struct old_sa_defrag_extent *old; 2806 struct new_sa_defrag_extent *new; 2807 int ret; 2808 2809 new = kmalloc(sizeof(*new), GFP_NOFS); 2810 if (!new) 2811 return NULL; 2812 2813 new->inode = inode; 2814 new->file_pos = ordered->file_offset; 2815 new->len = ordered->len; 2816 new->bytenr = ordered->start; 2817 new->disk_len = ordered->disk_len; 2818 new->compress_type = ordered->compress_type; 2819 new->root = RB_ROOT; 2820 INIT_LIST_HEAD(&new->head); 2821 2822 path = btrfs_alloc_path(); 2823 if (!path) 2824 goto out_kfree; 2825 2826 key.objectid = btrfs_ino(BTRFS_I(inode)); 2827 key.type = BTRFS_EXTENT_DATA_KEY; 2828 key.offset = new->file_pos; 2829 2830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2831 if (ret < 0) 2832 goto out_free_path; 2833 if (ret > 0 && path->slots[0] > 0) 2834 path->slots[0]--; 2835 2836 /* find out all the old extents for the file range */ 2837 while (1) { 2838 struct btrfs_file_extent_item *extent; 2839 struct extent_buffer *l; 2840 int slot; 2841 u64 num_bytes; 2842 u64 offset; 2843 u64 end; 2844 u64 disk_bytenr; 2845 u64 extent_offset; 2846 2847 l = path->nodes[0]; 2848 slot = path->slots[0]; 2849 2850 if (slot >= btrfs_header_nritems(l)) { 2851 ret = btrfs_next_leaf(root, path); 2852 if (ret < 0) 2853 goto out_free_path; 2854 else if (ret > 0) 2855 break; 2856 continue; 2857 } 2858 2859 btrfs_item_key_to_cpu(l, &key, slot); 2860 2861 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2862 break; 2863 if (key.type != BTRFS_EXTENT_DATA_KEY) 2864 break; 2865 if (key.offset >= new->file_pos + new->len) 2866 break; 2867 2868 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2869 2870 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2871 if (key.offset + num_bytes < new->file_pos) 2872 goto next; 2873 2874 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2875 if (!disk_bytenr) 2876 goto next; 2877 2878 extent_offset = btrfs_file_extent_offset(l, extent); 2879 2880 old = kmalloc(sizeof(*old), GFP_NOFS); 2881 if (!old) 2882 goto out_free_path; 2883 2884 offset = max(new->file_pos, key.offset); 2885 end = min(new->file_pos + new->len, key.offset + num_bytes); 2886 2887 old->bytenr = disk_bytenr; 2888 old->extent_offset = extent_offset; 2889 old->offset = offset - key.offset; 2890 old->len = end - offset; 2891 old->new = new; 2892 old->count = 0; 2893 list_add_tail(&old->list, &new->head); 2894 next: 2895 path->slots[0]++; 2896 cond_resched(); 2897 } 2898 2899 btrfs_free_path(path); 2900 atomic_inc(&fs_info->defrag_running); 2901 2902 return new; 2903 2904 out_free_path: 2905 btrfs_free_path(path); 2906 out_kfree: 2907 free_sa_defrag_extent(new); 2908 return NULL; 2909 } 2910 2911 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2912 u64 start, u64 len) 2913 { 2914 struct btrfs_block_group_cache *cache; 2915 2916 cache = btrfs_lookup_block_group(fs_info, start); 2917 ASSERT(cache); 2918 2919 spin_lock(&cache->lock); 2920 cache->delalloc_bytes -= len; 2921 spin_unlock(&cache->lock); 2922 2923 btrfs_put_block_group(cache); 2924 } 2925 2926 /* as ordered data IO finishes, this gets called so we can finish 2927 * an ordered extent if the range of bytes in the file it covers are 2928 * fully written. 2929 */ 2930 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2931 { 2932 struct inode *inode = ordered_extent->inode; 2933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2934 struct btrfs_root *root = BTRFS_I(inode)->root; 2935 struct btrfs_trans_handle *trans = NULL; 2936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2937 struct extent_state *cached_state = NULL; 2938 struct new_sa_defrag_extent *new = NULL; 2939 int compress_type = 0; 2940 int ret = 0; 2941 u64 logical_len = ordered_extent->len; 2942 bool nolock; 2943 bool truncated = false; 2944 bool range_locked = false; 2945 bool clear_new_delalloc_bytes = false; 2946 2947 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2948 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2949 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2950 clear_new_delalloc_bytes = true; 2951 2952 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2953 2954 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2955 ret = -EIO; 2956 goto out; 2957 } 2958 2959 btrfs_free_io_failure_record(BTRFS_I(inode), 2960 ordered_extent->file_offset, 2961 ordered_extent->file_offset + 2962 ordered_extent->len - 1); 2963 2964 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2965 truncated = true; 2966 logical_len = ordered_extent->truncated_len; 2967 /* Truncated the entire extent, don't bother adding */ 2968 if (!logical_len) 2969 goto out; 2970 } 2971 2972 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2973 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2974 2975 /* 2976 * For mwrite(mmap + memset to write) case, we still reserve 2977 * space for NOCOW range. 2978 * As NOCOW won't cause a new delayed ref, just free the space 2979 */ 2980 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2981 ordered_extent->len); 2982 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2983 if (nolock) 2984 trans = btrfs_join_transaction_nolock(root); 2985 else 2986 trans = btrfs_join_transaction(root); 2987 if (IS_ERR(trans)) { 2988 ret = PTR_ERR(trans); 2989 trans = NULL; 2990 goto out; 2991 } 2992 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2993 ret = btrfs_update_inode_fallback(trans, root, inode); 2994 if (ret) /* -ENOMEM or corruption */ 2995 btrfs_abort_transaction(trans, ret); 2996 goto out; 2997 } 2998 2999 range_locked = true; 3000 lock_extent_bits(io_tree, ordered_extent->file_offset, 3001 ordered_extent->file_offset + ordered_extent->len - 1, 3002 &cached_state); 3003 3004 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3005 ordered_extent->file_offset + ordered_extent->len - 1, 3006 EXTENT_DEFRAG, 0, cached_state); 3007 if (ret) { 3008 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3009 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3010 /* the inode is shared */ 3011 new = record_old_file_extents(inode, ordered_extent); 3012 3013 clear_extent_bit(io_tree, ordered_extent->file_offset, 3014 ordered_extent->file_offset + ordered_extent->len - 1, 3015 EXTENT_DEFRAG, 0, 0, &cached_state); 3016 } 3017 3018 if (nolock) 3019 trans = btrfs_join_transaction_nolock(root); 3020 else 3021 trans = btrfs_join_transaction(root); 3022 if (IS_ERR(trans)) { 3023 ret = PTR_ERR(trans); 3024 trans = NULL; 3025 goto out; 3026 } 3027 3028 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3029 3030 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3031 compress_type = ordered_extent->compress_type; 3032 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3033 BUG_ON(compress_type); 3034 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3035 ordered_extent->len); 3036 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3037 ordered_extent->file_offset, 3038 ordered_extent->file_offset + 3039 logical_len); 3040 } else { 3041 BUG_ON(root == fs_info->tree_root); 3042 ret = insert_reserved_file_extent(trans, inode, 3043 ordered_extent->file_offset, 3044 ordered_extent->start, 3045 ordered_extent->disk_len, 3046 logical_len, logical_len, 3047 compress_type, 0, 0, 3048 BTRFS_FILE_EXTENT_REG); 3049 if (!ret) 3050 btrfs_release_delalloc_bytes(fs_info, 3051 ordered_extent->start, 3052 ordered_extent->disk_len); 3053 } 3054 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3055 ordered_extent->file_offset, ordered_extent->len, 3056 trans->transid); 3057 if (ret < 0) { 3058 btrfs_abort_transaction(trans, ret); 3059 goto out; 3060 } 3061 3062 add_pending_csums(trans, inode, &ordered_extent->list); 3063 3064 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3065 ret = btrfs_update_inode_fallback(trans, root, inode); 3066 if (ret) { /* -ENOMEM or corruption */ 3067 btrfs_abort_transaction(trans, ret); 3068 goto out; 3069 } 3070 ret = 0; 3071 out: 3072 if (range_locked || clear_new_delalloc_bytes) { 3073 unsigned int clear_bits = 0; 3074 3075 if (range_locked) 3076 clear_bits |= EXTENT_LOCKED; 3077 if (clear_new_delalloc_bytes) 3078 clear_bits |= EXTENT_DELALLOC_NEW; 3079 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3080 ordered_extent->file_offset, 3081 ordered_extent->file_offset + 3082 ordered_extent->len - 1, 3083 clear_bits, 3084 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3085 0, &cached_state); 3086 } 3087 3088 if (trans) 3089 btrfs_end_transaction(trans); 3090 3091 if (ret || truncated) { 3092 u64 start, end; 3093 3094 if (truncated) 3095 start = ordered_extent->file_offset + logical_len; 3096 else 3097 start = ordered_extent->file_offset; 3098 end = ordered_extent->file_offset + ordered_extent->len - 1; 3099 clear_extent_uptodate(io_tree, start, end, NULL); 3100 3101 /* Drop the cache for the part of the extent we didn't write. */ 3102 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3103 3104 /* 3105 * If the ordered extent had an IOERR or something else went 3106 * wrong we need to return the space for this ordered extent 3107 * back to the allocator. We only free the extent in the 3108 * truncated case if we didn't write out the extent at all. 3109 */ 3110 if ((ret || !logical_len) && 3111 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3112 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3113 btrfs_free_reserved_extent(fs_info, 3114 ordered_extent->start, 3115 ordered_extent->disk_len, 1); 3116 } 3117 3118 3119 /* 3120 * This needs to be done to make sure anybody waiting knows we are done 3121 * updating everything for this ordered extent. 3122 */ 3123 btrfs_remove_ordered_extent(inode, ordered_extent); 3124 3125 /* for snapshot-aware defrag */ 3126 if (new) { 3127 if (ret) { 3128 free_sa_defrag_extent(new); 3129 atomic_dec(&fs_info->defrag_running); 3130 } else { 3131 relink_file_extents(new); 3132 } 3133 } 3134 3135 /* once for us */ 3136 btrfs_put_ordered_extent(ordered_extent); 3137 /* once for the tree */ 3138 btrfs_put_ordered_extent(ordered_extent); 3139 3140 return ret; 3141 } 3142 3143 static void finish_ordered_fn(struct btrfs_work *work) 3144 { 3145 struct btrfs_ordered_extent *ordered_extent; 3146 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3147 btrfs_finish_ordered_io(ordered_extent); 3148 } 3149 3150 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3151 struct extent_state *state, int uptodate) 3152 { 3153 struct inode *inode = page->mapping->host; 3154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3155 struct btrfs_ordered_extent *ordered_extent = NULL; 3156 struct btrfs_workqueue *wq; 3157 btrfs_work_func_t func; 3158 3159 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3160 3161 ClearPagePrivate2(page); 3162 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3163 end - start + 1, uptodate)) 3164 return; 3165 3166 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3167 wq = fs_info->endio_freespace_worker; 3168 func = btrfs_freespace_write_helper; 3169 } else { 3170 wq = fs_info->endio_write_workers; 3171 func = btrfs_endio_write_helper; 3172 } 3173 3174 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3175 NULL); 3176 btrfs_queue_work(wq, &ordered_extent->work); 3177 } 3178 3179 static int __readpage_endio_check(struct inode *inode, 3180 struct btrfs_io_bio *io_bio, 3181 int icsum, struct page *page, 3182 int pgoff, u64 start, size_t len) 3183 { 3184 char *kaddr; 3185 u32 csum_expected; 3186 u32 csum = ~(u32)0; 3187 3188 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3189 3190 kaddr = kmap_atomic(page); 3191 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3192 btrfs_csum_final(csum, (u8 *)&csum); 3193 if (csum != csum_expected) 3194 goto zeroit; 3195 3196 kunmap_atomic(kaddr); 3197 return 0; 3198 zeroit: 3199 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3200 io_bio->mirror_num); 3201 memset(kaddr + pgoff, 1, len); 3202 flush_dcache_page(page); 3203 kunmap_atomic(kaddr); 3204 return -EIO; 3205 } 3206 3207 /* 3208 * when reads are done, we need to check csums to verify the data is correct 3209 * if there's a match, we allow the bio to finish. If not, the code in 3210 * extent_io.c will try to find good copies for us. 3211 */ 3212 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3213 u64 phy_offset, struct page *page, 3214 u64 start, u64 end, int mirror) 3215 { 3216 size_t offset = start - page_offset(page); 3217 struct inode *inode = page->mapping->host; 3218 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3219 struct btrfs_root *root = BTRFS_I(inode)->root; 3220 3221 if (PageChecked(page)) { 3222 ClearPageChecked(page); 3223 return 0; 3224 } 3225 3226 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3227 return 0; 3228 3229 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3230 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3231 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3232 return 0; 3233 } 3234 3235 phy_offset >>= inode->i_sb->s_blocksize_bits; 3236 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3237 start, (size_t)(end - start + 1)); 3238 } 3239 3240 void btrfs_add_delayed_iput(struct inode *inode) 3241 { 3242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3243 struct btrfs_inode *binode = BTRFS_I(inode); 3244 3245 if (atomic_add_unless(&inode->i_count, -1, 1)) 3246 return; 3247 3248 spin_lock(&fs_info->delayed_iput_lock); 3249 if (binode->delayed_iput_count == 0) { 3250 ASSERT(list_empty(&binode->delayed_iput)); 3251 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3252 } else { 3253 binode->delayed_iput_count++; 3254 } 3255 spin_unlock(&fs_info->delayed_iput_lock); 3256 } 3257 3258 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3259 { 3260 3261 spin_lock(&fs_info->delayed_iput_lock); 3262 while (!list_empty(&fs_info->delayed_iputs)) { 3263 struct btrfs_inode *inode; 3264 3265 inode = list_first_entry(&fs_info->delayed_iputs, 3266 struct btrfs_inode, delayed_iput); 3267 if (inode->delayed_iput_count) { 3268 inode->delayed_iput_count--; 3269 list_move_tail(&inode->delayed_iput, 3270 &fs_info->delayed_iputs); 3271 } else { 3272 list_del_init(&inode->delayed_iput); 3273 } 3274 spin_unlock(&fs_info->delayed_iput_lock); 3275 iput(&inode->vfs_inode); 3276 spin_lock(&fs_info->delayed_iput_lock); 3277 } 3278 spin_unlock(&fs_info->delayed_iput_lock); 3279 } 3280 3281 /* 3282 * This is called in transaction commit time. If there are no orphan 3283 * files in the subvolume, it removes orphan item and frees block_rsv 3284 * structure. 3285 */ 3286 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3287 struct btrfs_root *root) 3288 { 3289 struct btrfs_fs_info *fs_info = root->fs_info; 3290 struct btrfs_block_rsv *block_rsv; 3291 int ret; 3292 3293 if (atomic_read(&root->orphan_inodes) || 3294 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3295 return; 3296 3297 spin_lock(&root->orphan_lock); 3298 if (atomic_read(&root->orphan_inodes)) { 3299 spin_unlock(&root->orphan_lock); 3300 return; 3301 } 3302 3303 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3304 spin_unlock(&root->orphan_lock); 3305 return; 3306 } 3307 3308 block_rsv = root->orphan_block_rsv; 3309 root->orphan_block_rsv = NULL; 3310 spin_unlock(&root->orphan_lock); 3311 3312 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3313 btrfs_root_refs(&root->root_item) > 0) { 3314 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3315 root->root_key.objectid); 3316 if (ret) 3317 btrfs_abort_transaction(trans, ret); 3318 else 3319 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3320 &root->state); 3321 } 3322 3323 if (block_rsv) { 3324 WARN_ON(block_rsv->size > 0); 3325 btrfs_free_block_rsv(fs_info, block_rsv); 3326 } 3327 } 3328 3329 /* 3330 * This creates an orphan entry for the given inode in case something goes 3331 * wrong in the middle of an unlink/truncate. 3332 * 3333 * NOTE: caller of this function should reserve 5 units of metadata for 3334 * this function. 3335 */ 3336 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3337 struct btrfs_inode *inode) 3338 { 3339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3340 struct btrfs_root *root = inode->root; 3341 struct btrfs_block_rsv *block_rsv = NULL; 3342 int reserve = 0; 3343 int insert = 0; 3344 int ret; 3345 3346 if (!root->orphan_block_rsv) { 3347 block_rsv = btrfs_alloc_block_rsv(fs_info, 3348 BTRFS_BLOCK_RSV_TEMP); 3349 if (!block_rsv) 3350 return -ENOMEM; 3351 } 3352 3353 spin_lock(&root->orphan_lock); 3354 if (!root->orphan_block_rsv) { 3355 root->orphan_block_rsv = block_rsv; 3356 } else if (block_rsv) { 3357 btrfs_free_block_rsv(fs_info, block_rsv); 3358 block_rsv = NULL; 3359 } 3360 3361 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3362 &inode->runtime_flags)) { 3363 #if 0 3364 /* 3365 * For proper ENOSPC handling, we should do orphan 3366 * cleanup when mounting. But this introduces backward 3367 * compatibility issue. 3368 */ 3369 if (!xchg(&root->orphan_item_inserted, 1)) 3370 insert = 2; 3371 else 3372 insert = 1; 3373 #endif 3374 insert = 1; 3375 atomic_inc(&root->orphan_inodes); 3376 } 3377 3378 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3379 &inode->runtime_flags)) 3380 reserve = 1; 3381 spin_unlock(&root->orphan_lock); 3382 3383 /* grab metadata reservation from transaction handle */ 3384 if (reserve) { 3385 ret = btrfs_orphan_reserve_metadata(trans, inode); 3386 ASSERT(!ret); 3387 if (ret) { 3388 atomic_dec(&root->orphan_inodes); 3389 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3390 &inode->runtime_flags); 3391 if (insert) 3392 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3393 &inode->runtime_flags); 3394 return ret; 3395 } 3396 } 3397 3398 /* insert an orphan item to track this unlinked/truncated file */ 3399 if (insert >= 1) { 3400 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3401 if (ret) { 3402 atomic_dec(&root->orphan_inodes); 3403 if (reserve) { 3404 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3405 &inode->runtime_flags); 3406 btrfs_orphan_release_metadata(inode); 3407 } 3408 if (ret != -EEXIST) { 3409 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3410 &inode->runtime_flags); 3411 btrfs_abort_transaction(trans, ret); 3412 return ret; 3413 } 3414 } 3415 ret = 0; 3416 } 3417 3418 /* insert an orphan item to track subvolume contains orphan files */ 3419 if (insert >= 2) { 3420 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3421 root->root_key.objectid); 3422 if (ret && ret != -EEXIST) { 3423 btrfs_abort_transaction(trans, ret); 3424 return ret; 3425 } 3426 } 3427 return 0; 3428 } 3429 3430 /* 3431 * We have done the truncate/delete so we can go ahead and remove the orphan 3432 * item for this particular inode. 3433 */ 3434 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3435 struct btrfs_inode *inode) 3436 { 3437 struct btrfs_root *root = inode->root; 3438 int delete_item = 0; 3439 int release_rsv = 0; 3440 int ret = 0; 3441 3442 spin_lock(&root->orphan_lock); 3443 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3444 &inode->runtime_flags)) 3445 delete_item = 1; 3446 3447 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3448 &inode->runtime_flags)) 3449 release_rsv = 1; 3450 spin_unlock(&root->orphan_lock); 3451 3452 if (delete_item) { 3453 atomic_dec(&root->orphan_inodes); 3454 if (trans) 3455 ret = btrfs_del_orphan_item(trans, root, 3456 btrfs_ino(inode)); 3457 } 3458 3459 if (release_rsv) 3460 btrfs_orphan_release_metadata(inode); 3461 3462 return ret; 3463 } 3464 3465 /* 3466 * this cleans up any orphans that may be left on the list from the last use 3467 * of this root. 3468 */ 3469 int btrfs_orphan_cleanup(struct btrfs_root *root) 3470 { 3471 struct btrfs_fs_info *fs_info = root->fs_info; 3472 struct btrfs_path *path; 3473 struct extent_buffer *leaf; 3474 struct btrfs_key key, found_key; 3475 struct btrfs_trans_handle *trans; 3476 struct inode *inode; 3477 u64 last_objectid = 0; 3478 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3479 3480 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3481 return 0; 3482 3483 path = btrfs_alloc_path(); 3484 if (!path) { 3485 ret = -ENOMEM; 3486 goto out; 3487 } 3488 path->reada = READA_BACK; 3489 3490 key.objectid = BTRFS_ORPHAN_OBJECTID; 3491 key.type = BTRFS_ORPHAN_ITEM_KEY; 3492 key.offset = (u64)-1; 3493 3494 while (1) { 3495 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3496 if (ret < 0) 3497 goto out; 3498 3499 /* 3500 * if ret == 0 means we found what we were searching for, which 3501 * is weird, but possible, so only screw with path if we didn't 3502 * find the key and see if we have stuff that matches 3503 */ 3504 if (ret > 0) { 3505 ret = 0; 3506 if (path->slots[0] == 0) 3507 break; 3508 path->slots[0]--; 3509 } 3510 3511 /* pull out the item */ 3512 leaf = path->nodes[0]; 3513 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3514 3515 /* make sure the item matches what we want */ 3516 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3517 break; 3518 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3519 break; 3520 3521 /* release the path since we're done with it */ 3522 btrfs_release_path(path); 3523 3524 /* 3525 * this is where we are basically btrfs_lookup, without the 3526 * crossing root thing. we store the inode number in the 3527 * offset of the orphan item. 3528 */ 3529 3530 if (found_key.offset == last_objectid) { 3531 btrfs_err(fs_info, 3532 "Error removing orphan entry, stopping orphan cleanup"); 3533 ret = -EINVAL; 3534 goto out; 3535 } 3536 3537 last_objectid = found_key.offset; 3538 3539 found_key.objectid = found_key.offset; 3540 found_key.type = BTRFS_INODE_ITEM_KEY; 3541 found_key.offset = 0; 3542 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3543 ret = PTR_ERR_OR_ZERO(inode); 3544 if (ret && ret != -ENOENT) 3545 goto out; 3546 3547 if (ret == -ENOENT && root == fs_info->tree_root) { 3548 struct btrfs_root *dead_root; 3549 struct btrfs_fs_info *fs_info = root->fs_info; 3550 int is_dead_root = 0; 3551 3552 /* 3553 * this is an orphan in the tree root. Currently these 3554 * could come from 2 sources: 3555 * a) a snapshot deletion in progress 3556 * b) a free space cache inode 3557 * We need to distinguish those two, as the snapshot 3558 * orphan must not get deleted. 3559 * find_dead_roots already ran before us, so if this 3560 * is a snapshot deletion, we should find the root 3561 * in the dead_roots list 3562 */ 3563 spin_lock(&fs_info->trans_lock); 3564 list_for_each_entry(dead_root, &fs_info->dead_roots, 3565 root_list) { 3566 if (dead_root->root_key.objectid == 3567 found_key.objectid) { 3568 is_dead_root = 1; 3569 break; 3570 } 3571 } 3572 spin_unlock(&fs_info->trans_lock); 3573 if (is_dead_root) { 3574 /* prevent this orphan from being found again */ 3575 key.offset = found_key.objectid - 1; 3576 continue; 3577 } 3578 } 3579 /* 3580 * Inode is already gone but the orphan item is still there, 3581 * kill the orphan item. 3582 */ 3583 if (ret == -ENOENT) { 3584 trans = btrfs_start_transaction(root, 1); 3585 if (IS_ERR(trans)) { 3586 ret = PTR_ERR(trans); 3587 goto out; 3588 } 3589 btrfs_debug(fs_info, "auto deleting %Lu", 3590 found_key.objectid); 3591 ret = btrfs_del_orphan_item(trans, root, 3592 found_key.objectid); 3593 btrfs_end_transaction(trans); 3594 if (ret) 3595 goto out; 3596 continue; 3597 } 3598 3599 /* 3600 * add this inode to the orphan list so btrfs_orphan_del does 3601 * the proper thing when we hit it 3602 */ 3603 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3604 &BTRFS_I(inode)->runtime_flags); 3605 atomic_inc(&root->orphan_inodes); 3606 3607 /* if we have links, this was a truncate, lets do that */ 3608 if (inode->i_nlink) { 3609 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3610 iput(inode); 3611 continue; 3612 } 3613 nr_truncate++; 3614 3615 /* 1 for the orphan item deletion. */ 3616 trans = btrfs_start_transaction(root, 1); 3617 if (IS_ERR(trans)) { 3618 iput(inode); 3619 ret = PTR_ERR(trans); 3620 goto out; 3621 } 3622 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3623 btrfs_end_transaction(trans); 3624 if (ret) { 3625 iput(inode); 3626 goto out; 3627 } 3628 3629 ret = btrfs_truncate(inode); 3630 if (ret) 3631 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3632 } else { 3633 nr_unlink++; 3634 } 3635 3636 /* this will do delete_inode and everything for us */ 3637 iput(inode); 3638 if (ret) 3639 goto out; 3640 } 3641 /* release the path since we're done with it */ 3642 btrfs_release_path(path); 3643 3644 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3645 3646 if (root->orphan_block_rsv) 3647 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3648 (u64)-1); 3649 3650 if (root->orphan_block_rsv || 3651 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3652 trans = btrfs_join_transaction(root); 3653 if (!IS_ERR(trans)) 3654 btrfs_end_transaction(trans); 3655 } 3656 3657 if (nr_unlink) 3658 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3659 if (nr_truncate) 3660 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3661 3662 out: 3663 if (ret) 3664 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3665 btrfs_free_path(path); 3666 return ret; 3667 } 3668 3669 /* 3670 * very simple check to peek ahead in the leaf looking for xattrs. If we 3671 * don't find any xattrs, we know there can't be any acls. 3672 * 3673 * slot is the slot the inode is in, objectid is the objectid of the inode 3674 */ 3675 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3676 int slot, u64 objectid, 3677 int *first_xattr_slot) 3678 { 3679 u32 nritems = btrfs_header_nritems(leaf); 3680 struct btrfs_key found_key; 3681 static u64 xattr_access = 0; 3682 static u64 xattr_default = 0; 3683 int scanned = 0; 3684 3685 if (!xattr_access) { 3686 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3687 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3688 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3689 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3690 } 3691 3692 slot++; 3693 *first_xattr_slot = -1; 3694 while (slot < nritems) { 3695 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3696 3697 /* we found a different objectid, there must not be acls */ 3698 if (found_key.objectid != objectid) 3699 return 0; 3700 3701 /* we found an xattr, assume we've got an acl */ 3702 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3703 if (*first_xattr_slot == -1) 3704 *first_xattr_slot = slot; 3705 if (found_key.offset == xattr_access || 3706 found_key.offset == xattr_default) 3707 return 1; 3708 } 3709 3710 /* 3711 * we found a key greater than an xattr key, there can't 3712 * be any acls later on 3713 */ 3714 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3715 return 0; 3716 3717 slot++; 3718 scanned++; 3719 3720 /* 3721 * it goes inode, inode backrefs, xattrs, extents, 3722 * so if there are a ton of hard links to an inode there can 3723 * be a lot of backrefs. Don't waste time searching too hard, 3724 * this is just an optimization 3725 */ 3726 if (scanned >= 8) 3727 break; 3728 } 3729 /* we hit the end of the leaf before we found an xattr or 3730 * something larger than an xattr. We have to assume the inode 3731 * has acls 3732 */ 3733 if (*first_xattr_slot == -1) 3734 *first_xattr_slot = slot; 3735 return 1; 3736 } 3737 3738 /* 3739 * read an inode from the btree into the in-memory inode 3740 */ 3741 static int btrfs_read_locked_inode(struct inode *inode) 3742 { 3743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3744 struct btrfs_path *path; 3745 struct extent_buffer *leaf; 3746 struct btrfs_inode_item *inode_item; 3747 struct btrfs_root *root = BTRFS_I(inode)->root; 3748 struct btrfs_key location; 3749 unsigned long ptr; 3750 int maybe_acls; 3751 u32 rdev; 3752 int ret; 3753 bool filled = false; 3754 int first_xattr_slot; 3755 3756 ret = btrfs_fill_inode(inode, &rdev); 3757 if (!ret) 3758 filled = true; 3759 3760 path = btrfs_alloc_path(); 3761 if (!path) { 3762 ret = -ENOMEM; 3763 goto make_bad; 3764 } 3765 3766 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3767 3768 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3769 if (ret) { 3770 if (ret > 0) 3771 ret = -ENOENT; 3772 goto make_bad; 3773 } 3774 3775 leaf = path->nodes[0]; 3776 3777 if (filled) 3778 goto cache_index; 3779 3780 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3781 struct btrfs_inode_item); 3782 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3783 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3784 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3785 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3786 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3787 3788 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3789 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3790 3791 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3792 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3793 3794 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3795 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3796 3797 BTRFS_I(inode)->i_otime.tv_sec = 3798 btrfs_timespec_sec(leaf, &inode_item->otime); 3799 BTRFS_I(inode)->i_otime.tv_nsec = 3800 btrfs_timespec_nsec(leaf, &inode_item->otime); 3801 3802 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3803 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3804 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3805 3806 inode_set_iversion_queried(inode, 3807 btrfs_inode_sequence(leaf, inode_item)); 3808 inode->i_generation = BTRFS_I(inode)->generation; 3809 inode->i_rdev = 0; 3810 rdev = btrfs_inode_rdev(leaf, inode_item); 3811 3812 BTRFS_I(inode)->index_cnt = (u64)-1; 3813 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3814 3815 cache_index: 3816 /* 3817 * If we were modified in the current generation and evicted from memory 3818 * and then re-read we need to do a full sync since we don't have any 3819 * idea about which extents were modified before we were evicted from 3820 * cache. 3821 * 3822 * This is required for both inode re-read from disk and delayed inode 3823 * in delayed_nodes_tree. 3824 */ 3825 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3826 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3827 &BTRFS_I(inode)->runtime_flags); 3828 3829 /* 3830 * We don't persist the id of the transaction where an unlink operation 3831 * against the inode was last made. So here we assume the inode might 3832 * have been evicted, and therefore the exact value of last_unlink_trans 3833 * lost, and set it to last_trans to avoid metadata inconsistencies 3834 * between the inode and its parent if the inode is fsync'ed and the log 3835 * replayed. For example, in the scenario: 3836 * 3837 * touch mydir/foo 3838 * ln mydir/foo mydir/bar 3839 * sync 3840 * unlink mydir/bar 3841 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3842 * xfs_io -c fsync mydir/foo 3843 * <power failure> 3844 * mount fs, triggers fsync log replay 3845 * 3846 * We must make sure that when we fsync our inode foo we also log its 3847 * parent inode, otherwise after log replay the parent still has the 3848 * dentry with the "bar" name but our inode foo has a link count of 1 3849 * and doesn't have an inode ref with the name "bar" anymore. 3850 * 3851 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3852 * but it guarantees correctness at the expense of occasional full 3853 * transaction commits on fsync if our inode is a directory, or if our 3854 * inode is not a directory, logging its parent unnecessarily. 3855 */ 3856 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3857 3858 path->slots[0]++; 3859 if (inode->i_nlink != 1 || 3860 path->slots[0] >= btrfs_header_nritems(leaf)) 3861 goto cache_acl; 3862 3863 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3864 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3865 goto cache_acl; 3866 3867 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3868 if (location.type == BTRFS_INODE_REF_KEY) { 3869 struct btrfs_inode_ref *ref; 3870 3871 ref = (struct btrfs_inode_ref *)ptr; 3872 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3873 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3874 struct btrfs_inode_extref *extref; 3875 3876 extref = (struct btrfs_inode_extref *)ptr; 3877 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3878 extref); 3879 } 3880 cache_acl: 3881 /* 3882 * try to precache a NULL acl entry for files that don't have 3883 * any xattrs or acls 3884 */ 3885 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3886 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3887 if (first_xattr_slot != -1) { 3888 path->slots[0] = first_xattr_slot; 3889 ret = btrfs_load_inode_props(inode, path); 3890 if (ret) 3891 btrfs_err(fs_info, 3892 "error loading props for ino %llu (root %llu): %d", 3893 btrfs_ino(BTRFS_I(inode)), 3894 root->root_key.objectid, ret); 3895 } 3896 btrfs_free_path(path); 3897 3898 if (!maybe_acls) 3899 cache_no_acl(inode); 3900 3901 switch (inode->i_mode & S_IFMT) { 3902 case S_IFREG: 3903 inode->i_mapping->a_ops = &btrfs_aops; 3904 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3905 inode->i_fop = &btrfs_file_operations; 3906 inode->i_op = &btrfs_file_inode_operations; 3907 break; 3908 case S_IFDIR: 3909 inode->i_fop = &btrfs_dir_file_operations; 3910 inode->i_op = &btrfs_dir_inode_operations; 3911 break; 3912 case S_IFLNK: 3913 inode->i_op = &btrfs_symlink_inode_operations; 3914 inode_nohighmem(inode); 3915 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3916 break; 3917 default: 3918 inode->i_op = &btrfs_special_inode_operations; 3919 init_special_inode(inode, inode->i_mode, rdev); 3920 break; 3921 } 3922 3923 btrfs_update_iflags(inode); 3924 return 0; 3925 3926 make_bad: 3927 btrfs_free_path(path); 3928 make_bad_inode(inode); 3929 return ret; 3930 } 3931 3932 /* 3933 * given a leaf and an inode, copy the inode fields into the leaf 3934 */ 3935 static void fill_inode_item(struct btrfs_trans_handle *trans, 3936 struct extent_buffer *leaf, 3937 struct btrfs_inode_item *item, 3938 struct inode *inode) 3939 { 3940 struct btrfs_map_token token; 3941 3942 btrfs_init_map_token(&token); 3943 3944 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3945 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3946 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3947 &token); 3948 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3949 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3950 3951 btrfs_set_token_timespec_sec(leaf, &item->atime, 3952 inode->i_atime.tv_sec, &token); 3953 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3954 inode->i_atime.tv_nsec, &token); 3955 3956 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3957 inode->i_mtime.tv_sec, &token); 3958 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3959 inode->i_mtime.tv_nsec, &token); 3960 3961 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3962 inode->i_ctime.tv_sec, &token); 3963 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3964 inode->i_ctime.tv_nsec, &token); 3965 3966 btrfs_set_token_timespec_sec(leaf, &item->otime, 3967 BTRFS_I(inode)->i_otime.tv_sec, &token); 3968 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3969 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3970 3971 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3972 &token); 3973 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3974 &token); 3975 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3976 &token); 3977 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3978 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3979 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3980 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3981 } 3982 3983 /* 3984 * copy everything in the in-memory inode into the btree. 3985 */ 3986 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3987 struct btrfs_root *root, struct inode *inode) 3988 { 3989 struct btrfs_inode_item *inode_item; 3990 struct btrfs_path *path; 3991 struct extent_buffer *leaf; 3992 int ret; 3993 3994 path = btrfs_alloc_path(); 3995 if (!path) 3996 return -ENOMEM; 3997 3998 path->leave_spinning = 1; 3999 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 4000 1); 4001 if (ret) { 4002 if (ret > 0) 4003 ret = -ENOENT; 4004 goto failed; 4005 } 4006 4007 leaf = path->nodes[0]; 4008 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4009 struct btrfs_inode_item); 4010 4011 fill_inode_item(trans, leaf, inode_item, inode); 4012 btrfs_mark_buffer_dirty(leaf); 4013 btrfs_set_inode_last_trans(trans, inode); 4014 ret = 0; 4015 failed: 4016 btrfs_free_path(path); 4017 return ret; 4018 } 4019 4020 /* 4021 * copy everything in the in-memory inode into the btree. 4022 */ 4023 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4024 struct btrfs_root *root, struct inode *inode) 4025 { 4026 struct btrfs_fs_info *fs_info = root->fs_info; 4027 int ret; 4028 4029 /* 4030 * If the inode is a free space inode, we can deadlock during commit 4031 * if we put it into the delayed code. 4032 * 4033 * The data relocation inode should also be directly updated 4034 * without delay 4035 */ 4036 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4037 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4038 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4039 btrfs_update_root_times(trans, root); 4040 4041 ret = btrfs_delayed_update_inode(trans, root, inode); 4042 if (!ret) 4043 btrfs_set_inode_last_trans(trans, inode); 4044 return ret; 4045 } 4046 4047 return btrfs_update_inode_item(trans, root, inode); 4048 } 4049 4050 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4051 struct btrfs_root *root, 4052 struct inode *inode) 4053 { 4054 int ret; 4055 4056 ret = btrfs_update_inode(trans, root, inode); 4057 if (ret == -ENOSPC) 4058 return btrfs_update_inode_item(trans, root, inode); 4059 return ret; 4060 } 4061 4062 /* 4063 * unlink helper that gets used here in inode.c and in the tree logging 4064 * recovery code. It remove a link in a directory with a given name, and 4065 * also drops the back refs in the inode to the directory 4066 */ 4067 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4068 struct btrfs_root *root, 4069 struct btrfs_inode *dir, 4070 struct btrfs_inode *inode, 4071 const char *name, int name_len) 4072 { 4073 struct btrfs_fs_info *fs_info = root->fs_info; 4074 struct btrfs_path *path; 4075 int ret = 0; 4076 struct extent_buffer *leaf; 4077 struct btrfs_dir_item *di; 4078 struct btrfs_key key; 4079 u64 index; 4080 u64 ino = btrfs_ino(inode); 4081 u64 dir_ino = btrfs_ino(dir); 4082 4083 path = btrfs_alloc_path(); 4084 if (!path) { 4085 ret = -ENOMEM; 4086 goto out; 4087 } 4088 4089 path->leave_spinning = 1; 4090 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4091 name, name_len, -1); 4092 if (IS_ERR(di)) { 4093 ret = PTR_ERR(di); 4094 goto err; 4095 } 4096 if (!di) { 4097 ret = -ENOENT; 4098 goto err; 4099 } 4100 leaf = path->nodes[0]; 4101 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4102 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4103 if (ret) 4104 goto err; 4105 btrfs_release_path(path); 4106 4107 /* 4108 * If we don't have dir index, we have to get it by looking up 4109 * the inode ref, since we get the inode ref, remove it directly, 4110 * it is unnecessary to do delayed deletion. 4111 * 4112 * But if we have dir index, needn't search inode ref to get it. 4113 * Since the inode ref is close to the inode item, it is better 4114 * that we delay to delete it, and just do this deletion when 4115 * we update the inode item. 4116 */ 4117 if (inode->dir_index) { 4118 ret = btrfs_delayed_delete_inode_ref(inode); 4119 if (!ret) { 4120 index = inode->dir_index; 4121 goto skip_backref; 4122 } 4123 } 4124 4125 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4126 dir_ino, &index); 4127 if (ret) { 4128 btrfs_info(fs_info, 4129 "failed to delete reference to %.*s, inode %llu parent %llu", 4130 name_len, name, ino, dir_ino); 4131 btrfs_abort_transaction(trans, ret); 4132 goto err; 4133 } 4134 skip_backref: 4135 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4136 if (ret) { 4137 btrfs_abort_transaction(trans, ret); 4138 goto err; 4139 } 4140 4141 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4142 dir_ino); 4143 if (ret != 0 && ret != -ENOENT) { 4144 btrfs_abort_transaction(trans, ret); 4145 goto err; 4146 } 4147 4148 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4149 index); 4150 if (ret == -ENOENT) 4151 ret = 0; 4152 else if (ret) 4153 btrfs_abort_transaction(trans, ret); 4154 err: 4155 btrfs_free_path(path); 4156 if (ret) 4157 goto out; 4158 4159 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4160 inode_inc_iversion(&inode->vfs_inode); 4161 inode_inc_iversion(&dir->vfs_inode); 4162 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4163 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4164 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4165 out: 4166 return ret; 4167 } 4168 4169 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4170 struct btrfs_root *root, 4171 struct btrfs_inode *dir, struct btrfs_inode *inode, 4172 const char *name, int name_len) 4173 { 4174 int ret; 4175 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4176 if (!ret) { 4177 drop_nlink(&inode->vfs_inode); 4178 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4179 } 4180 return ret; 4181 } 4182 4183 /* 4184 * helper to start transaction for unlink and rmdir. 4185 * 4186 * unlink and rmdir are special in btrfs, they do not always free space, so 4187 * if we cannot make our reservations the normal way try and see if there is 4188 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4189 * allow the unlink to occur. 4190 */ 4191 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4192 { 4193 struct btrfs_root *root = BTRFS_I(dir)->root; 4194 4195 /* 4196 * 1 for the possible orphan item 4197 * 1 for the dir item 4198 * 1 for the dir index 4199 * 1 for the inode ref 4200 * 1 for the inode 4201 */ 4202 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4203 } 4204 4205 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4206 { 4207 struct btrfs_root *root = BTRFS_I(dir)->root; 4208 struct btrfs_trans_handle *trans; 4209 struct inode *inode = d_inode(dentry); 4210 int ret; 4211 4212 trans = __unlink_start_trans(dir); 4213 if (IS_ERR(trans)) 4214 return PTR_ERR(trans); 4215 4216 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4217 0); 4218 4219 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4220 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4221 dentry->d_name.len); 4222 if (ret) 4223 goto out; 4224 4225 if (inode->i_nlink == 0) { 4226 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4227 if (ret) 4228 goto out; 4229 } 4230 4231 out: 4232 btrfs_end_transaction(trans); 4233 btrfs_btree_balance_dirty(root->fs_info); 4234 return ret; 4235 } 4236 4237 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4238 struct btrfs_root *root, 4239 struct inode *dir, u64 objectid, 4240 const char *name, int name_len) 4241 { 4242 struct btrfs_fs_info *fs_info = root->fs_info; 4243 struct btrfs_path *path; 4244 struct extent_buffer *leaf; 4245 struct btrfs_dir_item *di; 4246 struct btrfs_key key; 4247 u64 index; 4248 int ret; 4249 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4250 4251 path = btrfs_alloc_path(); 4252 if (!path) 4253 return -ENOMEM; 4254 4255 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4256 name, name_len, -1); 4257 if (IS_ERR_OR_NULL(di)) { 4258 if (!di) 4259 ret = -ENOENT; 4260 else 4261 ret = PTR_ERR(di); 4262 goto out; 4263 } 4264 4265 leaf = path->nodes[0]; 4266 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4267 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4268 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4269 if (ret) { 4270 btrfs_abort_transaction(trans, ret); 4271 goto out; 4272 } 4273 btrfs_release_path(path); 4274 4275 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4276 root->root_key.objectid, dir_ino, 4277 &index, name, name_len); 4278 if (ret < 0) { 4279 if (ret != -ENOENT) { 4280 btrfs_abort_transaction(trans, ret); 4281 goto out; 4282 } 4283 di = btrfs_search_dir_index_item(root, path, dir_ino, 4284 name, name_len); 4285 if (IS_ERR_OR_NULL(di)) { 4286 if (!di) 4287 ret = -ENOENT; 4288 else 4289 ret = PTR_ERR(di); 4290 btrfs_abort_transaction(trans, ret); 4291 goto out; 4292 } 4293 4294 leaf = path->nodes[0]; 4295 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4296 btrfs_release_path(path); 4297 index = key.offset; 4298 } 4299 btrfs_release_path(path); 4300 4301 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4302 if (ret) { 4303 btrfs_abort_transaction(trans, ret); 4304 goto out; 4305 } 4306 4307 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4308 inode_inc_iversion(dir); 4309 dir->i_mtime = dir->i_ctime = current_time(dir); 4310 ret = btrfs_update_inode_fallback(trans, root, dir); 4311 if (ret) 4312 btrfs_abort_transaction(trans, ret); 4313 out: 4314 btrfs_free_path(path); 4315 return ret; 4316 } 4317 4318 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4319 { 4320 struct inode *inode = d_inode(dentry); 4321 int err = 0; 4322 struct btrfs_root *root = BTRFS_I(dir)->root; 4323 struct btrfs_trans_handle *trans; 4324 u64 last_unlink_trans; 4325 4326 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4327 return -ENOTEMPTY; 4328 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4329 return -EPERM; 4330 4331 trans = __unlink_start_trans(dir); 4332 if (IS_ERR(trans)) 4333 return PTR_ERR(trans); 4334 4335 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4336 err = btrfs_unlink_subvol(trans, root, dir, 4337 BTRFS_I(inode)->location.objectid, 4338 dentry->d_name.name, 4339 dentry->d_name.len); 4340 goto out; 4341 } 4342 4343 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4344 if (err) 4345 goto out; 4346 4347 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4348 4349 /* now the directory is empty */ 4350 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4351 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4352 dentry->d_name.len); 4353 if (!err) { 4354 btrfs_i_size_write(BTRFS_I(inode), 0); 4355 /* 4356 * Propagate the last_unlink_trans value of the deleted dir to 4357 * its parent directory. This is to prevent an unrecoverable 4358 * log tree in the case we do something like this: 4359 * 1) create dir foo 4360 * 2) create snapshot under dir foo 4361 * 3) delete the snapshot 4362 * 4) rmdir foo 4363 * 5) mkdir foo 4364 * 6) fsync foo or some file inside foo 4365 */ 4366 if (last_unlink_trans >= trans->transid) 4367 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4368 } 4369 out: 4370 btrfs_end_transaction(trans); 4371 btrfs_btree_balance_dirty(root->fs_info); 4372 4373 return err; 4374 } 4375 4376 static int truncate_space_check(struct btrfs_trans_handle *trans, 4377 struct btrfs_root *root, 4378 u64 bytes_deleted) 4379 { 4380 struct btrfs_fs_info *fs_info = root->fs_info; 4381 int ret; 4382 4383 /* 4384 * This is only used to apply pressure to the enospc system, we don't 4385 * intend to use this reservation at all. 4386 */ 4387 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4388 bytes_deleted *= fs_info->nodesize; 4389 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4390 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4391 if (!ret) { 4392 trace_btrfs_space_reservation(fs_info, "transaction", 4393 trans->transid, 4394 bytes_deleted, 1); 4395 trans->bytes_reserved += bytes_deleted; 4396 } 4397 return ret; 4398 4399 } 4400 4401 /* 4402 * Return this if we need to call truncate_block for the last bit of the 4403 * truncate. 4404 */ 4405 #define NEED_TRUNCATE_BLOCK 1 4406 4407 /* 4408 * this can truncate away extent items, csum items and directory items. 4409 * It starts at a high offset and removes keys until it can't find 4410 * any higher than new_size 4411 * 4412 * csum items that cross the new i_size are truncated to the new size 4413 * as well. 4414 * 4415 * min_type is the minimum key type to truncate down to. If set to 0, this 4416 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4417 */ 4418 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4419 struct btrfs_root *root, 4420 struct inode *inode, 4421 u64 new_size, u32 min_type) 4422 { 4423 struct btrfs_fs_info *fs_info = root->fs_info; 4424 struct btrfs_path *path; 4425 struct extent_buffer *leaf; 4426 struct btrfs_file_extent_item *fi; 4427 struct btrfs_key key; 4428 struct btrfs_key found_key; 4429 u64 extent_start = 0; 4430 u64 extent_num_bytes = 0; 4431 u64 extent_offset = 0; 4432 u64 item_end = 0; 4433 u64 last_size = new_size; 4434 u32 found_type = (u8)-1; 4435 int found_extent; 4436 int del_item; 4437 int pending_del_nr = 0; 4438 int pending_del_slot = 0; 4439 int extent_type = -1; 4440 int ret; 4441 int err = 0; 4442 u64 ino = btrfs_ino(BTRFS_I(inode)); 4443 u64 bytes_deleted = 0; 4444 bool be_nice = false; 4445 bool should_throttle = false; 4446 bool should_end = false; 4447 4448 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4449 4450 /* 4451 * for non-free space inodes and ref cows, we want to back off from 4452 * time to time 4453 */ 4454 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4455 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4456 be_nice = true; 4457 4458 path = btrfs_alloc_path(); 4459 if (!path) 4460 return -ENOMEM; 4461 path->reada = READA_BACK; 4462 4463 /* 4464 * We want to drop from the next block forward in case this new size is 4465 * not block aligned since we will be keeping the last block of the 4466 * extent just the way it is. 4467 */ 4468 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4469 root == fs_info->tree_root) 4470 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4471 fs_info->sectorsize), 4472 (u64)-1, 0); 4473 4474 /* 4475 * This function is also used to drop the items in the log tree before 4476 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4477 * it is used to drop the loged items. So we shouldn't kill the delayed 4478 * items. 4479 */ 4480 if (min_type == 0 && root == BTRFS_I(inode)->root) 4481 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4482 4483 key.objectid = ino; 4484 key.offset = (u64)-1; 4485 key.type = (u8)-1; 4486 4487 search_again: 4488 /* 4489 * with a 16K leaf size and 128MB extents, you can actually queue 4490 * up a huge file in a single leaf. Most of the time that 4491 * bytes_deleted is > 0, it will be huge by the time we get here 4492 */ 4493 if (be_nice && bytes_deleted > SZ_32M) { 4494 if (btrfs_should_end_transaction(trans)) { 4495 err = -EAGAIN; 4496 goto error; 4497 } 4498 } 4499 4500 4501 path->leave_spinning = 1; 4502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4503 if (ret < 0) { 4504 err = ret; 4505 goto out; 4506 } 4507 4508 if (ret > 0) { 4509 /* there are no items in the tree for us to truncate, we're 4510 * done 4511 */ 4512 if (path->slots[0] == 0) 4513 goto out; 4514 path->slots[0]--; 4515 } 4516 4517 while (1) { 4518 fi = NULL; 4519 leaf = path->nodes[0]; 4520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4521 found_type = found_key.type; 4522 4523 if (found_key.objectid != ino) 4524 break; 4525 4526 if (found_type < min_type) 4527 break; 4528 4529 item_end = found_key.offset; 4530 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4531 fi = btrfs_item_ptr(leaf, path->slots[0], 4532 struct btrfs_file_extent_item); 4533 extent_type = btrfs_file_extent_type(leaf, fi); 4534 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4535 item_end += 4536 btrfs_file_extent_num_bytes(leaf, fi); 4537 4538 trace_btrfs_truncate_show_fi_regular( 4539 BTRFS_I(inode), leaf, fi, 4540 found_key.offset); 4541 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4542 item_end += btrfs_file_extent_inline_len(leaf, 4543 path->slots[0], fi); 4544 4545 trace_btrfs_truncate_show_fi_inline( 4546 BTRFS_I(inode), leaf, fi, path->slots[0], 4547 found_key.offset); 4548 } 4549 item_end--; 4550 } 4551 if (found_type > min_type) { 4552 del_item = 1; 4553 } else { 4554 if (item_end < new_size) 4555 break; 4556 if (found_key.offset >= new_size) 4557 del_item = 1; 4558 else 4559 del_item = 0; 4560 } 4561 found_extent = 0; 4562 /* FIXME, shrink the extent if the ref count is only 1 */ 4563 if (found_type != BTRFS_EXTENT_DATA_KEY) 4564 goto delete; 4565 4566 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4567 u64 num_dec; 4568 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4569 if (!del_item) { 4570 u64 orig_num_bytes = 4571 btrfs_file_extent_num_bytes(leaf, fi); 4572 extent_num_bytes = ALIGN(new_size - 4573 found_key.offset, 4574 fs_info->sectorsize); 4575 btrfs_set_file_extent_num_bytes(leaf, fi, 4576 extent_num_bytes); 4577 num_dec = (orig_num_bytes - 4578 extent_num_bytes); 4579 if (test_bit(BTRFS_ROOT_REF_COWS, 4580 &root->state) && 4581 extent_start != 0) 4582 inode_sub_bytes(inode, num_dec); 4583 btrfs_mark_buffer_dirty(leaf); 4584 } else { 4585 extent_num_bytes = 4586 btrfs_file_extent_disk_num_bytes(leaf, 4587 fi); 4588 extent_offset = found_key.offset - 4589 btrfs_file_extent_offset(leaf, fi); 4590 4591 /* FIXME blocksize != 4096 */ 4592 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4593 if (extent_start != 0) { 4594 found_extent = 1; 4595 if (test_bit(BTRFS_ROOT_REF_COWS, 4596 &root->state)) 4597 inode_sub_bytes(inode, num_dec); 4598 } 4599 } 4600 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4601 /* 4602 * we can't truncate inline items that have had 4603 * special encodings 4604 */ 4605 if (!del_item && 4606 btrfs_file_extent_encryption(leaf, fi) == 0 && 4607 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4608 btrfs_file_extent_compression(leaf, fi) == 0) { 4609 u32 size = (u32)(new_size - found_key.offset); 4610 4611 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4612 size = btrfs_file_extent_calc_inline_size(size); 4613 btrfs_truncate_item(root->fs_info, path, size, 1); 4614 } else if (!del_item) { 4615 /* 4616 * We have to bail so the last_size is set to 4617 * just before this extent. 4618 */ 4619 err = NEED_TRUNCATE_BLOCK; 4620 break; 4621 } 4622 4623 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4624 inode_sub_bytes(inode, item_end + 1 - new_size); 4625 } 4626 delete: 4627 if (del_item) 4628 last_size = found_key.offset; 4629 else 4630 last_size = new_size; 4631 if (del_item) { 4632 if (!pending_del_nr) { 4633 /* no pending yet, add ourselves */ 4634 pending_del_slot = path->slots[0]; 4635 pending_del_nr = 1; 4636 } else if (pending_del_nr && 4637 path->slots[0] + 1 == pending_del_slot) { 4638 /* hop on the pending chunk */ 4639 pending_del_nr++; 4640 pending_del_slot = path->slots[0]; 4641 } else { 4642 BUG(); 4643 } 4644 } else { 4645 break; 4646 } 4647 should_throttle = false; 4648 4649 if (found_extent && 4650 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4651 root == fs_info->tree_root)) { 4652 btrfs_set_path_blocking(path); 4653 bytes_deleted += extent_num_bytes; 4654 ret = btrfs_free_extent(trans, root, extent_start, 4655 extent_num_bytes, 0, 4656 btrfs_header_owner(leaf), 4657 ino, extent_offset); 4658 BUG_ON(ret); 4659 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4660 btrfs_async_run_delayed_refs(fs_info, 4661 trans->delayed_ref_updates * 2, 4662 trans->transid, 0); 4663 if (be_nice) { 4664 if (truncate_space_check(trans, root, 4665 extent_num_bytes)) { 4666 should_end = true; 4667 } 4668 if (btrfs_should_throttle_delayed_refs(trans, 4669 fs_info)) 4670 should_throttle = true; 4671 } 4672 } 4673 4674 if (found_type == BTRFS_INODE_ITEM_KEY) 4675 break; 4676 4677 if (path->slots[0] == 0 || 4678 path->slots[0] != pending_del_slot || 4679 should_throttle || should_end) { 4680 if (pending_del_nr) { 4681 ret = btrfs_del_items(trans, root, path, 4682 pending_del_slot, 4683 pending_del_nr); 4684 if (ret) { 4685 btrfs_abort_transaction(trans, ret); 4686 goto error; 4687 } 4688 pending_del_nr = 0; 4689 } 4690 btrfs_release_path(path); 4691 if (should_throttle) { 4692 unsigned long updates = trans->delayed_ref_updates; 4693 if (updates) { 4694 trans->delayed_ref_updates = 0; 4695 ret = btrfs_run_delayed_refs(trans, 4696 fs_info, 4697 updates * 2); 4698 if (ret && !err) 4699 err = ret; 4700 } 4701 } 4702 /* 4703 * if we failed to refill our space rsv, bail out 4704 * and let the transaction restart 4705 */ 4706 if (should_end) { 4707 err = -EAGAIN; 4708 goto error; 4709 } 4710 goto search_again; 4711 } else { 4712 path->slots[0]--; 4713 } 4714 } 4715 out: 4716 if (pending_del_nr) { 4717 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4718 pending_del_nr); 4719 if (ret) 4720 btrfs_abort_transaction(trans, ret); 4721 } 4722 error: 4723 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4724 ASSERT(last_size >= new_size); 4725 if (!err && last_size > new_size) 4726 last_size = new_size; 4727 btrfs_ordered_update_i_size(inode, last_size, NULL); 4728 } 4729 4730 btrfs_free_path(path); 4731 4732 if (be_nice && bytes_deleted > SZ_32M) { 4733 unsigned long updates = trans->delayed_ref_updates; 4734 if (updates) { 4735 trans->delayed_ref_updates = 0; 4736 ret = btrfs_run_delayed_refs(trans, fs_info, 4737 updates * 2); 4738 if (ret && !err) 4739 err = ret; 4740 } 4741 } 4742 return err; 4743 } 4744 4745 /* 4746 * btrfs_truncate_block - read, zero a chunk and write a block 4747 * @inode - inode that we're zeroing 4748 * @from - the offset to start zeroing 4749 * @len - the length to zero, 0 to zero the entire range respective to the 4750 * offset 4751 * @front - zero up to the offset instead of from the offset on 4752 * 4753 * This will find the block for the "from" offset and cow the block and zero the 4754 * part we want to zero. This is used with truncate and hole punching. 4755 */ 4756 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4757 int front) 4758 { 4759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4760 struct address_space *mapping = inode->i_mapping; 4761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4762 struct btrfs_ordered_extent *ordered; 4763 struct extent_state *cached_state = NULL; 4764 struct extent_changeset *data_reserved = NULL; 4765 char *kaddr; 4766 u32 blocksize = fs_info->sectorsize; 4767 pgoff_t index = from >> PAGE_SHIFT; 4768 unsigned offset = from & (blocksize - 1); 4769 struct page *page; 4770 gfp_t mask = btrfs_alloc_write_mask(mapping); 4771 int ret = 0; 4772 u64 block_start; 4773 u64 block_end; 4774 4775 if (IS_ALIGNED(offset, blocksize) && 4776 (!len || IS_ALIGNED(len, blocksize))) 4777 goto out; 4778 4779 block_start = round_down(from, blocksize); 4780 block_end = block_start + blocksize - 1; 4781 4782 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4783 block_start, blocksize); 4784 if (ret) 4785 goto out; 4786 4787 again: 4788 page = find_or_create_page(mapping, index, mask); 4789 if (!page) { 4790 btrfs_delalloc_release_space(inode, data_reserved, 4791 block_start, blocksize); 4792 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4793 ret = -ENOMEM; 4794 goto out; 4795 } 4796 4797 if (!PageUptodate(page)) { 4798 ret = btrfs_readpage(NULL, page); 4799 lock_page(page); 4800 if (page->mapping != mapping) { 4801 unlock_page(page); 4802 put_page(page); 4803 goto again; 4804 } 4805 if (!PageUptodate(page)) { 4806 ret = -EIO; 4807 goto out_unlock; 4808 } 4809 } 4810 wait_on_page_writeback(page); 4811 4812 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4813 set_page_extent_mapped(page); 4814 4815 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4816 if (ordered) { 4817 unlock_extent_cached(io_tree, block_start, block_end, 4818 &cached_state); 4819 unlock_page(page); 4820 put_page(page); 4821 btrfs_start_ordered_extent(inode, ordered, 1); 4822 btrfs_put_ordered_extent(ordered); 4823 goto again; 4824 } 4825 4826 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4827 EXTENT_DIRTY | EXTENT_DELALLOC | 4828 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4829 0, 0, &cached_state); 4830 4831 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4832 &cached_state, 0); 4833 if (ret) { 4834 unlock_extent_cached(io_tree, block_start, block_end, 4835 &cached_state); 4836 goto out_unlock; 4837 } 4838 4839 if (offset != blocksize) { 4840 if (!len) 4841 len = blocksize - offset; 4842 kaddr = kmap(page); 4843 if (front) 4844 memset(kaddr + (block_start - page_offset(page)), 4845 0, offset); 4846 else 4847 memset(kaddr + (block_start - page_offset(page)) + offset, 4848 0, len); 4849 flush_dcache_page(page); 4850 kunmap(page); 4851 } 4852 ClearPageChecked(page); 4853 set_page_dirty(page); 4854 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4855 4856 out_unlock: 4857 if (ret) 4858 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4859 blocksize); 4860 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4861 unlock_page(page); 4862 put_page(page); 4863 out: 4864 extent_changeset_free(data_reserved); 4865 return ret; 4866 } 4867 4868 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4869 u64 offset, u64 len) 4870 { 4871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4872 struct btrfs_trans_handle *trans; 4873 int ret; 4874 4875 /* 4876 * Still need to make sure the inode looks like it's been updated so 4877 * that any holes get logged if we fsync. 4878 */ 4879 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4880 BTRFS_I(inode)->last_trans = fs_info->generation; 4881 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4882 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4883 return 0; 4884 } 4885 4886 /* 4887 * 1 - for the one we're dropping 4888 * 1 - for the one we're adding 4889 * 1 - for updating the inode. 4890 */ 4891 trans = btrfs_start_transaction(root, 3); 4892 if (IS_ERR(trans)) 4893 return PTR_ERR(trans); 4894 4895 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4896 if (ret) { 4897 btrfs_abort_transaction(trans, ret); 4898 btrfs_end_transaction(trans); 4899 return ret; 4900 } 4901 4902 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4903 offset, 0, 0, len, 0, len, 0, 0, 0); 4904 if (ret) 4905 btrfs_abort_transaction(trans, ret); 4906 else 4907 btrfs_update_inode(trans, root, inode); 4908 btrfs_end_transaction(trans); 4909 return ret; 4910 } 4911 4912 /* 4913 * This function puts in dummy file extents for the area we're creating a hole 4914 * for. So if we are truncating this file to a larger size we need to insert 4915 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4916 * the range between oldsize and size 4917 */ 4918 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4919 { 4920 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4921 struct btrfs_root *root = BTRFS_I(inode)->root; 4922 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4923 struct extent_map *em = NULL; 4924 struct extent_state *cached_state = NULL; 4925 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4926 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4927 u64 block_end = ALIGN(size, fs_info->sectorsize); 4928 u64 last_byte; 4929 u64 cur_offset; 4930 u64 hole_size; 4931 int err = 0; 4932 4933 /* 4934 * If our size started in the middle of a block we need to zero out the 4935 * rest of the block before we expand the i_size, otherwise we could 4936 * expose stale data. 4937 */ 4938 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4939 if (err) 4940 return err; 4941 4942 if (size <= hole_start) 4943 return 0; 4944 4945 while (1) { 4946 struct btrfs_ordered_extent *ordered; 4947 4948 lock_extent_bits(io_tree, hole_start, block_end - 1, 4949 &cached_state); 4950 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4951 block_end - hole_start); 4952 if (!ordered) 4953 break; 4954 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4955 &cached_state); 4956 btrfs_start_ordered_extent(inode, ordered, 1); 4957 btrfs_put_ordered_extent(ordered); 4958 } 4959 4960 cur_offset = hole_start; 4961 while (1) { 4962 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4963 block_end - cur_offset, 0); 4964 if (IS_ERR(em)) { 4965 err = PTR_ERR(em); 4966 em = NULL; 4967 break; 4968 } 4969 last_byte = min(extent_map_end(em), block_end); 4970 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4971 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4972 struct extent_map *hole_em; 4973 hole_size = last_byte - cur_offset; 4974 4975 err = maybe_insert_hole(root, inode, cur_offset, 4976 hole_size); 4977 if (err) 4978 break; 4979 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4980 cur_offset + hole_size - 1, 0); 4981 hole_em = alloc_extent_map(); 4982 if (!hole_em) { 4983 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4984 &BTRFS_I(inode)->runtime_flags); 4985 goto next; 4986 } 4987 hole_em->start = cur_offset; 4988 hole_em->len = hole_size; 4989 hole_em->orig_start = cur_offset; 4990 4991 hole_em->block_start = EXTENT_MAP_HOLE; 4992 hole_em->block_len = 0; 4993 hole_em->orig_block_len = 0; 4994 hole_em->ram_bytes = hole_size; 4995 hole_em->bdev = fs_info->fs_devices->latest_bdev; 4996 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4997 hole_em->generation = fs_info->generation; 4998 4999 while (1) { 5000 write_lock(&em_tree->lock); 5001 err = add_extent_mapping(em_tree, hole_em, 1); 5002 write_unlock(&em_tree->lock); 5003 if (err != -EEXIST) 5004 break; 5005 btrfs_drop_extent_cache(BTRFS_I(inode), 5006 cur_offset, 5007 cur_offset + 5008 hole_size - 1, 0); 5009 } 5010 free_extent_map(hole_em); 5011 } 5012 next: 5013 free_extent_map(em); 5014 em = NULL; 5015 cur_offset = last_byte; 5016 if (cur_offset >= block_end) 5017 break; 5018 } 5019 free_extent_map(em); 5020 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5021 return err; 5022 } 5023 5024 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5025 { 5026 struct btrfs_root *root = BTRFS_I(inode)->root; 5027 struct btrfs_trans_handle *trans; 5028 loff_t oldsize = i_size_read(inode); 5029 loff_t newsize = attr->ia_size; 5030 int mask = attr->ia_valid; 5031 int ret; 5032 5033 /* 5034 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5035 * special case where we need to update the times despite not having 5036 * these flags set. For all other operations the VFS set these flags 5037 * explicitly if it wants a timestamp update. 5038 */ 5039 if (newsize != oldsize) { 5040 inode_inc_iversion(inode); 5041 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5042 inode->i_ctime = inode->i_mtime = 5043 current_time(inode); 5044 } 5045 5046 if (newsize > oldsize) { 5047 /* 5048 * Don't do an expanding truncate while snapshotting is ongoing. 5049 * This is to ensure the snapshot captures a fully consistent 5050 * state of this file - if the snapshot captures this expanding 5051 * truncation, it must capture all writes that happened before 5052 * this truncation. 5053 */ 5054 btrfs_wait_for_snapshot_creation(root); 5055 ret = btrfs_cont_expand(inode, oldsize, newsize); 5056 if (ret) { 5057 btrfs_end_write_no_snapshotting(root); 5058 return ret; 5059 } 5060 5061 trans = btrfs_start_transaction(root, 1); 5062 if (IS_ERR(trans)) { 5063 btrfs_end_write_no_snapshotting(root); 5064 return PTR_ERR(trans); 5065 } 5066 5067 i_size_write(inode, newsize); 5068 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5069 pagecache_isize_extended(inode, oldsize, newsize); 5070 ret = btrfs_update_inode(trans, root, inode); 5071 btrfs_end_write_no_snapshotting(root); 5072 btrfs_end_transaction(trans); 5073 } else { 5074 5075 /* 5076 * We're truncating a file that used to have good data down to 5077 * zero. Make sure it gets into the ordered flush list so that 5078 * any new writes get down to disk quickly. 5079 */ 5080 if (newsize == 0) 5081 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5082 &BTRFS_I(inode)->runtime_flags); 5083 5084 /* 5085 * 1 for the orphan item we're going to add 5086 * 1 for the orphan item deletion. 5087 */ 5088 trans = btrfs_start_transaction(root, 2); 5089 if (IS_ERR(trans)) 5090 return PTR_ERR(trans); 5091 5092 /* 5093 * We need to do this in case we fail at _any_ point during the 5094 * actual truncate. Once we do the truncate_setsize we could 5095 * invalidate pages which forces any outstanding ordered io to 5096 * be instantly completed which will give us extents that need 5097 * to be truncated. If we fail to get an orphan inode down we 5098 * could have left over extents that were never meant to live, 5099 * so we need to guarantee from this point on that everything 5100 * will be consistent. 5101 */ 5102 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5103 btrfs_end_transaction(trans); 5104 if (ret) 5105 return ret; 5106 5107 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5108 truncate_setsize(inode, newsize); 5109 5110 /* Disable nonlocked read DIO to avoid the end less truncate */ 5111 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5112 inode_dio_wait(inode); 5113 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5114 5115 ret = btrfs_truncate(inode); 5116 if (ret && inode->i_nlink) { 5117 int err; 5118 5119 /* To get a stable disk_i_size */ 5120 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5121 if (err) { 5122 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5123 return err; 5124 } 5125 5126 /* 5127 * failed to truncate, disk_i_size is only adjusted down 5128 * as we remove extents, so it should represent the true 5129 * size of the inode, so reset the in memory size and 5130 * delete our orphan entry. 5131 */ 5132 trans = btrfs_join_transaction(root); 5133 if (IS_ERR(trans)) { 5134 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5135 return ret; 5136 } 5137 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5138 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5139 if (err) 5140 btrfs_abort_transaction(trans, err); 5141 btrfs_end_transaction(trans); 5142 } 5143 } 5144 5145 return ret; 5146 } 5147 5148 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5149 { 5150 struct inode *inode = d_inode(dentry); 5151 struct btrfs_root *root = BTRFS_I(inode)->root; 5152 int err; 5153 5154 if (btrfs_root_readonly(root)) 5155 return -EROFS; 5156 5157 err = setattr_prepare(dentry, attr); 5158 if (err) 5159 return err; 5160 5161 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5162 err = btrfs_setsize(inode, attr); 5163 if (err) 5164 return err; 5165 } 5166 5167 if (attr->ia_valid) { 5168 setattr_copy(inode, attr); 5169 inode_inc_iversion(inode); 5170 err = btrfs_dirty_inode(inode); 5171 5172 if (!err && attr->ia_valid & ATTR_MODE) 5173 err = posix_acl_chmod(inode, inode->i_mode); 5174 } 5175 5176 return err; 5177 } 5178 5179 /* 5180 * While truncating the inode pages during eviction, we get the VFS calling 5181 * btrfs_invalidatepage() against each page of the inode. This is slow because 5182 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5183 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5184 * extent_state structures over and over, wasting lots of time. 5185 * 5186 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5187 * those expensive operations on a per page basis and do only the ordered io 5188 * finishing, while we release here the extent_map and extent_state structures, 5189 * without the excessive merging and splitting. 5190 */ 5191 static void evict_inode_truncate_pages(struct inode *inode) 5192 { 5193 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5194 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5195 struct rb_node *node; 5196 5197 ASSERT(inode->i_state & I_FREEING); 5198 truncate_inode_pages_final(&inode->i_data); 5199 5200 write_lock(&map_tree->lock); 5201 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5202 struct extent_map *em; 5203 5204 node = rb_first(&map_tree->map); 5205 em = rb_entry(node, struct extent_map, rb_node); 5206 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5207 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5208 remove_extent_mapping(map_tree, em); 5209 free_extent_map(em); 5210 if (need_resched()) { 5211 write_unlock(&map_tree->lock); 5212 cond_resched(); 5213 write_lock(&map_tree->lock); 5214 } 5215 } 5216 write_unlock(&map_tree->lock); 5217 5218 /* 5219 * Keep looping until we have no more ranges in the io tree. 5220 * We can have ongoing bios started by readpages (called from readahead) 5221 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5222 * still in progress (unlocked the pages in the bio but did not yet 5223 * unlocked the ranges in the io tree). Therefore this means some 5224 * ranges can still be locked and eviction started because before 5225 * submitting those bios, which are executed by a separate task (work 5226 * queue kthread), inode references (inode->i_count) were not taken 5227 * (which would be dropped in the end io callback of each bio). 5228 * Therefore here we effectively end up waiting for those bios and 5229 * anyone else holding locked ranges without having bumped the inode's 5230 * reference count - if we don't do it, when they access the inode's 5231 * io_tree to unlock a range it may be too late, leading to an 5232 * use-after-free issue. 5233 */ 5234 spin_lock(&io_tree->lock); 5235 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5236 struct extent_state *state; 5237 struct extent_state *cached_state = NULL; 5238 u64 start; 5239 u64 end; 5240 5241 node = rb_first(&io_tree->state); 5242 state = rb_entry(node, struct extent_state, rb_node); 5243 start = state->start; 5244 end = state->end; 5245 spin_unlock(&io_tree->lock); 5246 5247 lock_extent_bits(io_tree, start, end, &cached_state); 5248 5249 /* 5250 * If still has DELALLOC flag, the extent didn't reach disk, 5251 * and its reserved space won't be freed by delayed_ref. 5252 * So we need to free its reserved space here. 5253 * (Refer to comment in btrfs_invalidatepage, case 2) 5254 * 5255 * Note, end is the bytenr of last byte, so we need + 1 here. 5256 */ 5257 if (state->state & EXTENT_DELALLOC) 5258 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5259 5260 clear_extent_bit(io_tree, start, end, 5261 EXTENT_LOCKED | EXTENT_DIRTY | 5262 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5263 EXTENT_DEFRAG, 1, 1, &cached_state); 5264 5265 cond_resched(); 5266 spin_lock(&io_tree->lock); 5267 } 5268 spin_unlock(&io_tree->lock); 5269 } 5270 5271 void btrfs_evict_inode(struct inode *inode) 5272 { 5273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5274 struct btrfs_trans_handle *trans; 5275 struct btrfs_root *root = BTRFS_I(inode)->root; 5276 struct btrfs_block_rsv *rsv, *global_rsv; 5277 int steal_from_global = 0; 5278 u64 min_size; 5279 int ret; 5280 5281 trace_btrfs_inode_evict(inode); 5282 5283 if (!root) { 5284 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5285 return; 5286 } 5287 5288 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5289 5290 evict_inode_truncate_pages(inode); 5291 5292 if (inode->i_nlink && 5293 ((btrfs_root_refs(&root->root_item) != 0 && 5294 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5295 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5296 goto no_delete; 5297 5298 if (is_bad_inode(inode)) { 5299 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5300 goto no_delete; 5301 } 5302 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5303 if (!special_file(inode->i_mode)) 5304 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5305 5306 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5307 5308 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5309 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5310 &BTRFS_I(inode)->runtime_flags)); 5311 goto no_delete; 5312 } 5313 5314 if (inode->i_nlink > 0) { 5315 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5316 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5317 goto no_delete; 5318 } 5319 5320 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5321 if (ret) { 5322 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5323 goto no_delete; 5324 } 5325 5326 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5327 if (!rsv) { 5328 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5329 goto no_delete; 5330 } 5331 rsv->size = min_size; 5332 rsv->failfast = 1; 5333 global_rsv = &fs_info->global_block_rsv; 5334 5335 btrfs_i_size_write(BTRFS_I(inode), 0); 5336 5337 /* 5338 * This is a bit simpler than btrfs_truncate since we've already 5339 * reserved our space for our orphan item in the unlink, so we just 5340 * need to reserve some slack space in case we add bytes and update 5341 * inode item when doing the truncate. 5342 */ 5343 while (1) { 5344 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5345 BTRFS_RESERVE_FLUSH_LIMIT); 5346 5347 /* 5348 * Try and steal from the global reserve since we will 5349 * likely not use this space anyway, we want to try as 5350 * hard as possible to get this to work. 5351 */ 5352 if (ret) 5353 steal_from_global++; 5354 else 5355 steal_from_global = 0; 5356 ret = 0; 5357 5358 /* 5359 * steal_from_global == 0: we reserved stuff, hooray! 5360 * steal_from_global == 1: we didn't reserve stuff, boo! 5361 * steal_from_global == 2: we've committed, still not a lot of 5362 * room but maybe we'll have room in the global reserve this 5363 * time. 5364 * steal_from_global == 3: abandon all hope! 5365 */ 5366 if (steal_from_global > 2) { 5367 btrfs_warn(fs_info, 5368 "Could not get space for a delete, will truncate on mount %d", 5369 ret); 5370 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5371 btrfs_free_block_rsv(fs_info, rsv); 5372 goto no_delete; 5373 } 5374 5375 trans = btrfs_join_transaction(root); 5376 if (IS_ERR(trans)) { 5377 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5378 btrfs_free_block_rsv(fs_info, rsv); 5379 goto no_delete; 5380 } 5381 5382 /* 5383 * We can't just steal from the global reserve, we need to make 5384 * sure there is room to do it, if not we need to commit and try 5385 * again. 5386 */ 5387 if (steal_from_global) { 5388 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5389 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5390 min_size, 0); 5391 else 5392 ret = -ENOSPC; 5393 } 5394 5395 /* 5396 * Couldn't steal from the global reserve, we have too much 5397 * pending stuff built up, commit the transaction and try it 5398 * again. 5399 */ 5400 if (ret) { 5401 ret = btrfs_commit_transaction(trans); 5402 if (ret) { 5403 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5404 btrfs_free_block_rsv(fs_info, rsv); 5405 goto no_delete; 5406 } 5407 continue; 5408 } else { 5409 steal_from_global = 0; 5410 } 5411 5412 trans->block_rsv = rsv; 5413 5414 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5415 if (ret != -ENOSPC && ret != -EAGAIN) 5416 break; 5417 5418 trans->block_rsv = &fs_info->trans_block_rsv; 5419 btrfs_end_transaction(trans); 5420 trans = NULL; 5421 btrfs_btree_balance_dirty(fs_info); 5422 } 5423 5424 btrfs_free_block_rsv(fs_info, rsv); 5425 5426 /* 5427 * Errors here aren't a big deal, it just means we leave orphan items 5428 * in the tree. They will be cleaned up on the next mount. 5429 */ 5430 if (ret == 0) { 5431 trans->block_rsv = root->orphan_block_rsv; 5432 btrfs_orphan_del(trans, BTRFS_I(inode)); 5433 } else { 5434 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5435 } 5436 5437 trans->block_rsv = &fs_info->trans_block_rsv; 5438 if (!(root == fs_info->tree_root || 5439 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5440 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5441 5442 btrfs_end_transaction(trans); 5443 btrfs_btree_balance_dirty(fs_info); 5444 no_delete: 5445 btrfs_remove_delayed_node(BTRFS_I(inode)); 5446 clear_inode(inode); 5447 } 5448 5449 /* 5450 * this returns the key found in the dir entry in the location pointer. 5451 * If no dir entries were found, location->objectid is 0. 5452 */ 5453 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5454 struct btrfs_key *location) 5455 { 5456 const char *name = dentry->d_name.name; 5457 int namelen = dentry->d_name.len; 5458 struct btrfs_dir_item *di; 5459 struct btrfs_path *path; 5460 struct btrfs_root *root = BTRFS_I(dir)->root; 5461 int ret = 0; 5462 5463 path = btrfs_alloc_path(); 5464 if (!path) 5465 return -ENOMEM; 5466 5467 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5468 name, namelen, 0); 5469 if (IS_ERR(di)) 5470 ret = PTR_ERR(di); 5471 5472 if (IS_ERR_OR_NULL(di)) 5473 goto out_err; 5474 5475 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5476 if (location->type != BTRFS_INODE_ITEM_KEY && 5477 location->type != BTRFS_ROOT_ITEM_KEY) { 5478 btrfs_warn(root->fs_info, 5479 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5480 __func__, name, btrfs_ino(BTRFS_I(dir)), 5481 location->objectid, location->type, location->offset); 5482 goto out_err; 5483 } 5484 out: 5485 btrfs_free_path(path); 5486 return ret; 5487 out_err: 5488 location->objectid = 0; 5489 goto out; 5490 } 5491 5492 /* 5493 * when we hit a tree root in a directory, the btrfs part of the inode 5494 * needs to be changed to reflect the root directory of the tree root. This 5495 * is kind of like crossing a mount point. 5496 */ 5497 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5498 struct inode *dir, 5499 struct dentry *dentry, 5500 struct btrfs_key *location, 5501 struct btrfs_root **sub_root) 5502 { 5503 struct btrfs_path *path; 5504 struct btrfs_root *new_root; 5505 struct btrfs_root_ref *ref; 5506 struct extent_buffer *leaf; 5507 struct btrfs_key key; 5508 int ret; 5509 int err = 0; 5510 5511 path = btrfs_alloc_path(); 5512 if (!path) { 5513 err = -ENOMEM; 5514 goto out; 5515 } 5516 5517 err = -ENOENT; 5518 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5519 key.type = BTRFS_ROOT_REF_KEY; 5520 key.offset = location->objectid; 5521 5522 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5523 if (ret) { 5524 if (ret < 0) 5525 err = ret; 5526 goto out; 5527 } 5528 5529 leaf = path->nodes[0]; 5530 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5531 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5532 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5533 goto out; 5534 5535 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5536 (unsigned long)(ref + 1), 5537 dentry->d_name.len); 5538 if (ret) 5539 goto out; 5540 5541 btrfs_release_path(path); 5542 5543 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5544 if (IS_ERR(new_root)) { 5545 err = PTR_ERR(new_root); 5546 goto out; 5547 } 5548 5549 *sub_root = new_root; 5550 location->objectid = btrfs_root_dirid(&new_root->root_item); 5551 location->type = BTRFS_INODE_ITEM_KEY; 5552 location->offset = 0; 5553 err = 0; 5554 out: 5555 btrfs_free_path(path); 5556 return err; 5557 } 5558 5559 static void inode_tree_add(struct inode *inode) 5560 { 5561 struct btrfs_root *root = BTRFS_I(inode)->root; 5562 struct btrfs_inode *entry; 5563 struct rb_node **p; 5564 struct rb_node *parent; 5565 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5566 u64 ino = btrfs_ino(BTRFS_I(inode)); 5567 5568 if (inode_unhashed(inode)) 5569 return; 5570 parent = NULL; 5571 spin_lock(&root->inode_lock); 5572 p = &root->inode_tree.rb_node; 5573 while (*p) { 5574 parent = *p; 5575 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5576 5577 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5578 p = &parent->rb_left; 5579 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5580 p = &parent->rb_right; 5581 else { 5582 WARN_ON(!(entry->vfs_inode.i_state & 5583 (I_WILL_FREE | I_FREEING))); 5584 rb_replace_node(parent, new, &root->inode_tree); 5585 RB_CLEAR_NODE(parent); 5586 spin_unlock(&root->inode_lock); 5587 return; 5588 } 5589 } 5590 rb_link_node(new, parent, p); 5591 rb_insert_color(new, &root->inode_tree); 5592 spin_unlock(&root->inode_lock); 5593 } 5594 5595 static void inode_tree_del(struct inode *inode) 5596 { 5597 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5598 struct btrfs_root *root = BTRFS_I(inode)->root; 5599 int empty = 0; 5600 5601 spin_lock(&root->inode_lock); 5602 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5603 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5604 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5605 empty = RB_EMPTY_ROOT(&root->inode_tree); 5606 } 5607 spin_unlock(&root->inode_lock); 5608 5609 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5610 synchronize_srcu(&fs_info->subvol_srcu); 5611 spin_lock(&root->inode_lock); 5612 empty = RB_EMPTY_ROOT(&root->inode_tree); 5613 spin_unlock(&root->inode_lock); 5614 if (empty) 5615 btrfs_add_dead_root(root); 5616 } 5617 } 5618 5619 void btrfs_invalidate_inodes(struct btrfs_root *root) 5620 { 5621 struct btrfs_fs_info *fs_info = root->fs_info; 5622 struct rb_node *node; 5623 struct rb_node *prev; 5624 struct btrfs_inode *entry; 5625 struct inode *inode; 5626 u64 objectid = 0; 5627 5628 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5629 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5630 5631 spin_lock(&root->inode_lock); 5632 again: 5633 node = root->inode_tree.rb_node; 5634 prev = NULL; 5635 while (node) { 5636 prev = node; 5637 entry = rb_entry(node, struct btrfs_inode, rb_node); 5638 5639 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5640 node = node->rb_left; 5641 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5642 node = node->rb_right; 5643 else 5644 break; 5645 } 5646 if (!node) { 5647 while (prev) { 5648 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5649 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5650 node = prev; 5651 break; 5652 } 5653 prev = rb_next(prev); 5654 } 5655 } 5656 while (node) { 5657 entry = rb_entry(node, struct btrfs_inode, rb_node); 5658 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5659 inode = igrab(&entry->vfs_inode); 5660 if (inode) { 5661 spin_unlock(&root->inode_lock); 5662 if (atomic_read(&inode->i_count) > 1) 5663 d_prune_aliases(inode); 5664 /* 5665 * btrfs_drop_inode will have it removed from 5666 * the inode cache when its usage count 5667 * hits zero. 5668 */ 5669 iput(inode); 5670 cond_resched(); 5671 spin_lock(&root->inode_lock); 5672 goto again; 5673 } 5674 5675 if (cond_resched_lock(&root->inode_lock)) 5676 goto again; 5677 5678 node = rb_next(node); 5679 } 5680 spin_unlock(&root->inode_lock); 5681 } 5682 5683 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5684 { 5685 struct btrfs_iget_args *args = p; 5686 inode->i_ino = args->location->objectid; 5687 memcpy(&BTRFS_I(inode)->location, args->location, 5688 sizeof(*args->location)); 5689 BTRFS_I(inode)->root = args->root; 5690 return 0; 5691 } 5692 5693 static int btrfs_find_actor(struct inode *inode, void *opaque) 5694 { 5695 struct btrfs_iget_args *args = opaque; 5696 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5697 args->root == BTRFS_I(inode)->root; 5698 } 5699 5700 static struct inode *btrfs_iget_locked(struct super_block *s, 5701 struct btrfs_key *location, 5702 struct btrfs_root *root) 5703 { 5704 struct inode *inode; 5705 struct btrfs_iget_args args; 5706 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5707 5708 args.location = location; 5709 args.root = root; 5710 5711 inode = iget5_locked(s, hashval, btrfs_find_actor, 5712 btrfs_init_locked_inode, 5713 (void *)&args); 5714 return inode; 5715 } 5716 5717 /* Get an inode object given its location and corresponding root. 5718 * Returns in *is_new if the inode was read from disk 5719 */ 5720 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5721 struct btrfs_root *root, int *new) 5722 { 5723 struct inode *inode; 5724 5725 inode = btrfs_iget_locked(s, location, root); 5726 if (!inode) 5727 return ERR_PTR(-ENOMEM); 5728 5729 if (inode->i_state & I_NEW) { 5730 int ret; 5731 5732 ret = btrfs_read_locked_inode(inode); 5733 if (!is_bad_inode(inode)) { 5734 inode_tree_add(inode); 5735 unlock_new_inode(inode); 5736 if (new) 5737 *new = 1; 5738 } else { 5739 unlock_new_inode(inode); 5740 iput(inode); 5741 ASSERT(ret < 0); 5742 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5743 } 5744 } 5745 5746 return inode; 5747 } 5748 5749 static struct inode *new_simple_dir(struct super_block *s, 5750 struct btrfs_key *key, 5751 struct btrfs_root *root) 5752 { 5753 struct inode *inode = new_inode(s); 5754 5755 if (!inode) 5756 return ERR_PTR(-ENOMEM); 5757 5758 BTRFS_I(inode)->root = root; 5759 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5760 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5761 5762 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5763 inode->i_op = &btrfs_dir_ro_inode_operations; 5764 inode->i_opflags &= ~IOP_XATTR; 5765 inode->i_fop = &simple_dir_operations; 5766 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5767 inode->i_mtime = current_time(inode); 5768 inode->i_atime = inode->i_mtime; 5769 inode->i_ctime = inode->i_mtime; 5770 BTRFS_I(inode)->i_otime = inode->i_mtime; 5771 5772 return inode; 5773 } 5774 5775 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5776 { 5777 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5778 struct inode *inode; 5779 struct btrfs_root *root = BTRFS_I(dir)->root; 5780 struct btrfs_root *sub_root = root; 5781 struct btrfs_key location; 5782 int index; 5783 int ret = 0; 5784 5785 if (dentry->d_name.len > BTRFS_NAME_LEN) 5786 return ERR_PTR(-ENAMETOOLONG); 5787 5788 ret = btrfs_inode_by_name(dir, dentry, &location); 5789 if (ret < 0) 5790 return ERR_PTR(ret); 5791 5792 if (location.objectid == 0) 5793 return ERR_PTR(-ENOENT); 5794 5795 if (location.type == BTRFS_INODE_ITEM_KEY) { 5796 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5797 return inode; 5798 } 5799 5800 index = srcu_read_lock(&fs_info->subvol_srcu); 5801 ret = fixup_tree_root_location(fs_info, dir, dentry, 5802 &location, &sub_root); 5803 if (ret < 0) { 5804 if (ret != -ENOENT) 5805 inode = ERR_PTR(ret); 5806 else 5807 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5808 } else { 5809 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5810 } 5811 srcu_read_unlock(&fs_info->subvol_srcu, index); 5812 5813 if (!IS_ERR(inode) && root != sub_root) { 5814 down_read(&fs_info->cleanup_work_sem); 5815 if (!sb_rdonly(inode->i_sb)) 5816 ret = btrfs_orphan_cleanup(sub_root); 5817 up_read(&fs_info->cleanup_work_sem); 5818 if (ret) { 5819 iput(inode); 5820 inode = ERR_PTR(ret); 5821 } 5822 } 5823 5824 return inode; 5825 } 5826 5827 static int btrfs_dentry_delete(const struct dentry *dentry) 5828 { 5829 struct btrfs_root *root; 5830 struct inode *inode = d_inode(dentry); 5831 5832 if (!inode && !IS_ROOT(dentry)) 5833 inode = d_inode(dentry->d_parent); 5834 5835 if (inode) { 5836 root = BTRFS_I(inode)->root; 5837 if (btrfs_root_refs(&root->root_item) == 0) 5838 return 1; 5839 5840 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5841 return 1; 5842 } 5843 return 0; 5844 } 5845 5846 static void btrfs_dentry_release(struct dentry *dentry) 5847 { 5848 kfree(dentry->d_fsdata); 5849 } 5850 5851 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5852 unsigned int flags) 5853 { 5854 struct inode *inode; 5855 5856 inode = btrfs_lookup_dentry(dir, dentry); 5857 if (IS_ERR(inode)) { 5858 if (PTR_ERR(inode) == -ENOENT) 5859 inode = NULL; 5860 else 5861 return ERR_CAST(inode); 5862 } 5863 5864 return d_splice_alias(inode, dentry); 5865 } 5866 5867 unsigned char btrfs_filetype_table[] = { 5868 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5869 }; 5870 5871 /* 5872 * All this infrastructure exists because dir_emit can fault, and we are holding 5873 * the tree lock when doing readdir. For now just allocate a buffer and copy 5874 * our information into that, and then dir_emit from the buffer. This is 5875 * similar to what NFS does, only we don't keep the buffer around in pagecache 5876 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5877 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5878 * tree lock. 5879 */ 5880 static int btrfs_opendir(struct inode *inode, struct file *file) 5881 { 5882 struct btrfs_file_private *private; 5883 5884 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5885 if (!private) 5886 return -ENOMEM; 5887 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5888 if (!private->filldir_buf) { 5889 kfree(private); 5890 return -ENOMEM; 5891 } 5892 file->private_data = private; 5893 return 0; 5894 } 5895 5896 struct dir_entry { 5897 u64 ino; 5898 u64 offset; 5899 unsigned type; 5900 int name_len; 5901 }; 5902 5903 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5904 { 5905 while (entries--) { 5906 struct dir_entry *entry = addr; 5907 char *name = (char *)(entry + 1); 5908 5909 ctx->pos = entry->offset; 5910 if (!dir_emit(ctx, name, entry->name_len, entry->ino, 5911 entry->type)) 5912 return 1; 5913 addr += sizeof(struct dir_entry) + entry->name_len; 5914 ctx->pos++; 5915 } 5916 return 0; 5917 } 5918 5919 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5920 { 5921 struct inode *inode = file_inode(file); 5922 struct btrfs_root *root = BTRFS_I(inode)->root; 5923 struct btrfs_file_private *private = file->private_data; 5924 struct btrfs_dir_item *di; 5925 struct btrfs_key key; 5926 struct btrfs_key found_key; 5927 struct btrfs_path *path; 5928 void *addr; 5929 struct list_head ins_list; 5930 struct list_head del_list; 5931 int ret; 5932 struct extent_buffer *leaf; 5933 int slot; 5934 char *name_ptr; 5935 int name_len; 5936 int entries = 0; 5937 int total_len = 0; 5938 bool put = false; 5939 struct btrfs_key location; 5940 5941 if (!dir_emit_dots(file, ctx)) 5942 return 0; 5943 5944 path = btrfs_alloc_path(); 5945 if (!path) 5946 return -ENOMEM; 5947 5948 addr = private->filldir_buf; 5949 path->reada = READA_FORWARD; 5950 5951 INIT_LIST_HEAD(&ins_list); 5952 INIT_LIST_HEAD(&del_list); 5953 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5954 5955 again: 5956 key.type = BTRFS_DIR_INDEX_KEY; 5957 key.offset = ctx->pos; 5958 key.objectid = btrfs_ino(BTRFS_I(inode)); 5959 5960 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5961 if (ret < 0) 5962 goto err; 5963 5964 while (1) { 5965 struct dir_entry *entry; 5966 5967 leaf = path->nodes[0]; 5968 slot = path->slots[0]; 5969 if (slot >= btrfs_header_nritems(leaf)) { 5970 ret = btrfs_next_leaf(root, path); 5971 if (ret < 0) 5972 goto err; 5973 else if (ret > 0) 5974 break; 5975 continue; 5976 } 5977 5978 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5979 5980 if (found_key.objectid != key.objectid) 5981 break; 5982 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5983 break; 5984 if (found_key.offset < ctx->pos) 5985 goto next; 5986 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5987 goto next; 5988 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5989 name_len = btrfs_dir_name_len(leaf, di); 5990 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5991 PAGE_SIZE) { 5992 btrfs_release_path(path); 5993 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5994 if (ret) 5995 goto nopos; 5996 addr = private->filldir_buf; 5997 entries = 0; 5998 total_len = 0; 5999 goto again; 6000 } 6001 6002 entry = addr; 6003 entry->name_len = name_len; 6004 name_ptr = (char *)(entry + 1); 6005 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6006 name_len); 6007 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 6008 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6009 entry->ino = location.objectid; 6010 entry->offset = found_key.offset; 6011 entries++; 6012 addr += sizeof(struct dir_entry) + name_len; 6013 total_len += sizeof(struct dir_entry) + name_len; 6014 next: 6015 path->slots[0]++; 6016 } 6017 btrfs_release_path(path); 6018 6019 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6020 if (ret) 6021 goto nopos; 6022 6023 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6024 if (ret) 6025 goto nopos; 6026 6027 /* 6028 * Stop new entries from being returned after we return the last 6029 * entry. 6030 * 6031 * New directory entries are assigned a strictly increasing 6032 * offset. This means that new entries created during readdir 6033 * are *guaranteed* to be seen in the future by that readdir. 6034 * This has broken buggy programs which operate on names as 6035 * they're returned by readdir. Until we re-use freed offsets 6036 * we have this hack to stop new entries from being returned 6037 * under the assumption that they'll never reach this huge 6038 * offset. 6039 * 6040 * This is being careful not to overflow 32bit loff_t unless the 6041 * last entry requires it because doing so has broken 32bit apps 6042 * in the past. 6043 */ 6044 if (ctx->pos >= INT_MAX) 6045 ctx->pos = LLONG_MAX; 6046 else 6047 ctx->pos = INT_MAX; 6048 nopos: 6049 ret = 0; 6050 err: 6051 if (put) 6052 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6053 btrfs_free_path(path); 6054 return ret; 6055 } 6056 6057 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6058 { 6059 struct btrfs_root *root = BTRFS_I(inode)->root; 6060 struct btrfs_trans_handle *trans; 6061 int ret = 0; 6062 bool nolock = false; 6063 6064 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6065 return 0; 6066 6067 if (btrfs_fs_closing(root->fs_info) && 6068 btrfs_is_free_space_inode(BTRFS_I(inode))) 6069 nolock = true; 6070 6071 if (wbc->sync_mode == WB_SYNC_ALL) { 6072 if (nolock) 6073 trans = btrfs_join_transaction_nolock(root); 6074 else 6075 trans = btrfs_join_transaction(root); 6076 if (IS_ERR(trans)) 6077 return PTR_ERR(trans); 6078 ret = btrfs_commit_transaction(trans); 6079 } 6080 return ret; 6081 } 6082 6083 /* 6084 * This is somewhat expensive, updating the tree every time the 6085 * inode changes. But, it is most likely to find the inode in cache. 6086 * FIXME, needs more benchmarking...there are no reasons other than performance 6087 * to keep or drop this code. 6088 */ 6089 static int btrfs_dirty_inode(struct inode *inode) 6090 { 6091 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6092 struct btrfs_root *root = BTRFS_I(inode)->root; 6093 struct btrfs_trans_handle *trans; 6094 int ret; 6095 6096 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6097 return 0; 6098 6099 trans = btrfs_join_transaction(root); 6100 if (IS_ERR(trans)) 6101 return PTR_ERR(trans); 6102 6103 ret = btrfs_update_inode(trans, root, inode); 6104 if (ret && ret == -ENOSPC) { 6105 /* whoops, lets try again with the full transaction */ 6106 btrfs_end_transaction(trans); 6107 trans = btrfs_start_transaction(root, 1); 6108 if (IS_ERR(trans)) 6109 return PTR_ERR(trans); 6110 6111 ret = btrfs_update_inode(trans, root, inode); 6112 } 6113 btrfs_end_transaction(trans); 6114 if (BTRFS_I(inode)->delayed_node) 6115 btrfs_balance_delayed_items(fs_info); 6116 6117 return ret; 6118 } 6119 6120 /* 6121 * This is a copy of file_update_time. We need this so we can return error on 6122 * ENOSPC for updating the inode in the case of file write and mmap writes. 6123 */ 6124 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6125 int flags) 6126 { 6127 struct btrfs_root *root = BTRFS_I(inode)->root; 6128 bool dirty = flags & ~S_VERSION; 6129 6130 if (btrfs_root_readonly(root)) 6131 return -EROFS; 6132 6133 if (flags & S_VERSION) 6134 dirty |= inode_maybe_inc_iversion(inode, dirty); 6135 if (flags & S_CTIME) 6136 inode->i_ctime = *now; 6137 if (flags & S_MTIME) 6138 inode->i_mtime = *now; 6139 if (flags & S_ATIME) 6140 inode->i_atime = *now; 6141 return dirty ? btrfs_dirty_inode(inode) : 0; 6142 } 6143 6144 /* 6145 * find the highest existing sequence number in a directory 6146 * and then set the in-memory index_cnt variable to reflect 6147 * free sequence numbers 6148 */ 6149 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6150 { 6151 struct btrfs_root *root = inode->root; 6152 struct btrfs_key key, found_key; 6153 struct btrfs_path *path; 6154 struct extent_buffer *leaf; 6155 int ret; 6156 6157 key.objectid = btrfs_ino(inode); 6158 key.type = BTRFS_DIR_INDEX_KEY; 6159 key.offset = (u64)-1; 6160 6161 path = btrfs_alloc_path(); 6162 if (!path) 6163 return -ENOMEM; 6164 6165 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6166 if (ret < 0) 6167 goto out; 6168 /* FIXME: we should be able to handle this */ 6169 if (ret == 0) 6170 goto out; 6171 ret = 0; 6172 6173 /* 6174 * MAGIC NUMBER EXPLANATION: 6175 * since we search a directory based on f_pos we have to start at 2 6176 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6177 * else has to start at 2 6178 */ 6179 if (path->slots[0] == 0) { 6180 inode->index_cnt = 2; 6181 goto out; 6182 } 6183 6184 path->slots[0]--; 6185 6186 leaf = path->nodes[0]; 6187 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6188 6189 if (found_key.objectid != btrfs_ino(inode) || 6190 found_key.type != BTRFS_DIR_INDEX_KEY) { 6191 inode->index_cnt = 2; 6192 goto out; 6193 } 6194 6195 inode->index_cnt = found_key.offset + 1; 6196 out: 6197 btrfs_free_path(path); 6198 return ret; 6199 } 6200 6201 /* 6202 * helper to find a free sequence number in a given directory. This current 6203 * code is very simple, later versions will do smarter things in the btree 6204 */ 6205 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6206 { 6207 int ret = 0; 6208 6209 if (dir->index_cnt == (u64)-1) { 6210 ret = btrfs_inode_delayed_dir_index_count(dir); 6211 if (ret) { 6212 ret = btrfs_set_inode_index_count(dir); 6213 if (ret) 6214 return ret; 6215 } 6216 } 6217 6218 *index = dir->index_cnt; 6219 dir->index_cnt++; 6220 6221 return ret; 6222 } 6223 6224 static int btrfs_insert_inode_locked(struct inode *inode) 6225 { 6226 struct btrfs_iget_args args; 6227 args.location = &BTRFS_I(inode)->location; 6228 args.root = BTRFS_I(inode)->root; 6229 6230 return insert_inode_locked4(inode, 6231 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6232 btrfs_find_actor, &args); 6233 } 6234 6235 /* 6236 * Inherit flags from the parent inode. 6237 * 6238 * Currently only the compression flags and the cow flags are inherited. 6239 */ 6240 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6241 { 6242 unsigned int flags; 6243 6244 if (!dir) 6245 return; 6246 6247 flags = BTRFS_I(dir)->flags; 6248 6249 if (flags & BTRFS_INODE_NOCOMPRESS) { 6250 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6251 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6252 } else if (flags & BTRFS_INODE_COMPRESS) { 6253 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6254 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6255 } 6256 6257 if (flags & BTRFS_INODE_NODATACOW) { 6258 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6259 if (S_ISREG(inode->i_mode)) 6260 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6261 } 6262 6263 btrfs_update_iflags(inode); 6264 } 6265 6266 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6267 struct btrfs_root *root, 6268 struct inode *dir, 6269 const char *name, int name_len, 6270 u64 ref_objectid, u64 objectid, 6271 umode_t mode, u64 *index) 6272 { 6273 struct btrfs_fs_info *fs_info = root->fs_info; 6274 struct inode *inode; 6275 struct btrfs_inode_item *inode_item; 6276 struct btrfs_key *location; 6277 struct btrfs_path *path; 6278 struct btrfs_inode_ref *ref; 6279 struct btrfs_key key[2]; 6280 u32 sizes[2]; 6281 int nitems = name ? 2 : 1; 6282 unsigned long ptr; 6283 int ret; 6284 6285 path = btrfs_alloc_path(); 6286 if (!path) 6287 return ERR_PTR(-ENOMEM); 6288 6289 inode = new_inode(fs_info->sb); 6290 if (!inode) { 6291 btrfs_free_path(path); 6292 return ERR_PTR(-ENOMEM); 6293 } 6294 6295 /* 6296 * O_TMPFILE, set link count to 0, so that after this point, 6297 * we fill in an inode item with the correct link count. 6298 */ 6299 if (!name) 6300 set_nlink(inode, 0); 6301 6302 /* 6303 * we have to initialize this early, so we can reclaim the inode 6304 * number if we fail afterwards in this function. 6305 */ 6306 inode->i_ino = objectid; 6307 6308 if (dir && name) { 6309 trace_btrfs_inode_request(dir); 6310 6311 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6312 if (ret) { 6313 btrfs_free_path(path); 6314 iput(inode); 6315 return ERR_PTR(ret); 6316 } 6317 } else if (dir) { 6318 *index = 0; 6319 } 6320 /* 6321 * index_cnt is ignored for everything but a dir, 6322 * btrfs_set_inode_index_count has an explanation for the magic 6323 * number 6324 */ 6325 BTRFS_I(inode)->index_cnt = 2; 6326 BTRFS_I(inode)->dir_index = *index; 6327 BTRFS_I(inode)->root = root; 6328 BTRFS_I(inode)->generation = trans->transid; 6329 inode->i_generation = BTRFS_I(inode)->generation; 6330 6331 /* 6332 * We could have gotten an inode number from somebody who was fsynced 6333 * and then removed in this same transaction, so let's just set full 6334 * sync since it will be a full sync anyway and this will blow away the 6335 * old info in the log. 6336 */ 6337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6338 6339 key[0].objectid = objectid; 6340 key[0].type = BTRFS_INODE_ITEM_KEY; 6341 key[0].offset = 0; 6342 6343 sizes[0] = sizeof(struct btrfs_inode_item); 6344 6345 if (name) { 6346 /* 6347 * Start new inodes with an inode_ref. This is slightly more 6348 * efficient for small numbers of hard links since they will 6349 * be packed into one item. Extended refs will kick in if we 6350 * add more hard links than can fit in the ref item. 6351 */ 6352 key[1].objectid = objectid; 6353 key[1].type = BTRFS_INODE_REF_KEY; 6354 key[1].offset = ref_objectid; 6355 6356 sizes[1] = name_len + sizeof(*ref); 6357 } 6358 6359 location = &BTRFS_I(inode)->location; 6360 location->objectid = objectid; 6361 location->offset = 0; 6362 location->type = BTRFS_INODE_ITEM_KEY; 6363 6364 ret = btrfs_insert_inode_locked(inode); 6365 if (ret < 0) 6366 goto fail; 6367 6368 path->leave_spinning = 1; 6369 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6370 if (ret != 0) 6371 goto fail_unlock; 6372 6373 inode_init_owner(inode, dir, mode); 6374 inode_set_bytes(inode, 0); 6375 6376 inode->i_mtime = current_time(inode); 6377 inode->i_atime = inode->i_mtime; 6378 inode->i_ctime = inode->i_mtime; 6379 BTRFS_I(inode)->i_otime = inode->i_mtime; 6380 6381 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6382 struct btrfs_inode_item); 6383 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6384 sizeof(*inode_item)); 6385 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6386 6387 if (name) { 6388 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6389 struct btrfs_inode_ref); 6390 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6391 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6392 ptr = (unsigned long)(ref + 1); 6393 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6394 } 6395 6396 btrfs_mark_buffer_dirty(path->nodes[0]); 6397 btrfs_free_path(path); 6398 6399 btrfs_inherit_iflags(inode, dir); 6400 6401 if (S_ISREG(mode)) { 6402 if (btrfs_test_opt(fs_info, NODATASUM)) 6403 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6404 if (btrfs_test_opt(fs_info, NODATACOW)) 6405 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6406 BTRFS_INODE_NODATASUM; 6407 } 6408 6409 inode_tree_add(inode); 6410 6411 trace_btrfs_inode_new(inode); 6412 btrfs_set_inode_last_trans(trans, inode); 6413 6414 btrfs_update_root_times(trans, root); 6415 6416 ret = btrfs_inode_inherit_props(trans, inode, dir); 6417 if (ret) 6418 btrfs_err(fs_info, 6419 "error inheriting props for ino %llu (root %llu): %d", 6420 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6421 6422 return inode; 6423 6424 fail_unlock: 6425 unlock_new_inode(inode); 6426 fail: 6427 if (dir && name) 6428 BTRFS_I(dir)->index_cnt--; 6429 btrfs_free_path(path); 6430 iput(inode); 6431 return ERR_PTR(ret); 6432 } 6433 6434 static inline u8 btrfs_inode_type(struct inode *inode) 6435 { 6436 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6437 } 6438 6439 /* 6440 * utility function to add 'inode' into 'parent_inode' with 6441 * a give name and a given sequence number. 6442 * if 'add_backref' is true, also insert a backref from the 6443 * inode to the parent directory. 6444 */ 6445 int btrfs_add_link(struct btrfs_trans_handle *trans, 6446 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6447 const char *name, int name_len, int add_backref, u64 index) 6448 { 6449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6450 int ret = 0; 6451 struct btrfs_key key; 6452 struct btrfs_root *root = parent_inode->root; 6453 u64 ino = btrfs_ino(inode); 6454 u64 parent_ino = btrfs_ino(parent_inode); 6455 6456 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6457 memcpy(&key, &inode->root->root_key, sizeof(key)); 6458 } else { 6459 key.objectid = ino; 6460 key.type = BTRFS_INODE_ITEM_KEY; 6461 key.offset = 0; 6462 } 6463 6464 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6465 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6466 root->root_key.objectid, parent_ino, 6467 index, name, name_len); 6468 } else if (add_backref) { 6469 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6470 parent_ino, index); 6471 } 6472 6473 /* Nothing to clean up yet */ 6474 if (ret) 6475 return ret; 6476 6477 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6478 parent_inode, &key, 6479 btrfs_inode_type(&inode->vfs_inode), index); 6480 if (ret == -EEXIST || ret == -EOVERFLOW) 6481 goto fail_dir_item; 6482 else if (ret) { 6483 btrfs_abort_transaction(trans, ret); 6484 return ret; 6485 } 6486 6487 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6488 name_len * 2); 6489 inode_inc_iversion(&parent_inode->vfs_inode); 6490 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6491 current_time(&parent_inode->vfs_inode); 6492 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6493 if (ret) 6494 btrfs_abort_transaction(trans, ret); 6495 return ret; 6496 6497 fail_dir_item: 6498 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6499 u64 local_index; 6500 int err; 6501 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6502 root->root_key.objectid, parent_ino, 6503 &local_index, name, name_len); 6504 6505 } else if (add_backref) { 6506 u64 local_index; 6507 int err; 6508 6509 err = btrfs_del_inode_ref(trans, root, name, name_len, 6510 ino, parent_ino, &local_index); 6511 } 6512 return ret; 6513 } 6514 6515 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6516 struct btrfs_inode *dir, struct dentry *dentry, 6517 struct btrfs_inode *inode, int backref, u64 index) 6518 { 6519 int err = btrfs_add_link(trans, dir, inode, 6520 dentry->d_name.name, dentry->d_name.len, 6521 backref, index); 6522 if (err > 0) 6523 err = -EEXIST; 6524 return err; 6525 } 6526 6527 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6528 umode_t mode, dev_t rdev) 6529 { 6530 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6531 struct btrfs_trans_handle *trans; 6532 struct btrfs_root *root = BTRFS_I(dir)->root; 6533 struct inode *inode = NULL; 6534 int err; 6535 int drop_inode = 0; 6536 u64 objectid; 6537 u64 index = 0; 6538 6539 /* 6540 * 2 for inode item and ref 6541 * 2 for dir items 6542 * 1 for xattr if selinux is on 6543 */ 6544 trans = btrfs_start_transaction(root, 5); 6545 if (IS_ERR(trans)) 6546 return PTR_ERR(trans); 6547 6548 err = btrfs_find_free_ino(root, &objectid); 6549 if (err) 6550 goto out_unlock; 6551 6552 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6553 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6554 mode, &index); 6555 if (IS_ERR(inode)) { 6556 err = PTR_ERR(inode); 6557 goto out_unlock; 6558 } 6559 6560 /* 6561 * If the active LSM wants to access the inode during 6562 * d_instantiate it needs these. Smack checks to see 6563 * if the filesystem supports xattrs by looking at the 6564 * ops vector. 6565 */ 6566 inode->i_op = &btrfs_special_inode_operations; 6567 init_special_inode(inode, inode->i_mode, rdev); 6568 6569 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6570 if (err) 6571 goto out_unlock_inode; 6572 6573 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6574 0, index); 6575 if (err) { 6576 goto out_unlock_inode; 6577 } else { 6578 btrfs_update_inode(trans, root, inode); 6579 unlock_new_inode(inode); 6580 d_instantiate(dentry, inode); 6581 } 6582 6583 out_unlock: 6584 btrfs_end_transaction(trans); 6585 btrfs_btree_balance_dirty(fs_info); 6586 if (drop_inode) { 6587 inode_dec_link_count(inode); 6588 iput(inode); 6589 } 6590 return err; 6591 6592 out_unlock_inode: 6593 drop_inode = 1; 6594 unlock_new_inode(inode); 6595 goto out_unlock; 6596 6597 } 6598 6599 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6600 umode_t mode, bool excl) 6601 { 6602 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6603 struct btrfs_trans_handle *trans; 6604 struct btrfs_root *root = BTRFS_I(dir)->root; 6605 struct inode *inode = NULL; 6606 int drop_inode_on_err = 0; 6607 int err; 6608 u64 objectid; 6609 u64 index = 0; 6610 6611 /* 6612 * 2 for inode item and ref 6613 * 2 for dir items 6614 * 1 for xattr if selinux is on 6615 */ 6616 trans = btrfs_start_transaction(root, 5); 6617 if (IS_ERR(trans)) 6618 return PTR_ERR(trans); 6619 6620 err = btrfs_find_free_ino(root, &objectid); 6621 if (err) 6622 goto out_unlock; 6623 6624 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6625 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6626 mode, &index); 6627 if (IS_ERR(inode)) { 6628 err = PTR_ERR(inode); 6629 goto out_unlock; 6630 } 6631 drop_inode_on_err = 1; 6632 /* 6633 * If the active LSM wants to access the inode during 6634 * d_instantiate it needs these. Smack checks to see 6635 * if the filesystem supports xattrs by looking at the 6636 * ops vector. 6637 */ 6638 inode->i_fop = &btrfs_file_operations; 6639 inode->i_op = &btrfs_file_inode_operations; 6640 inode->i_mapping->a_ops = &btrfs_aops; 6641 6642 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6643 if (err) 6644 goto out_unlock_inode; 6645 6646 err = btrfs_update_inode(trans, root, inode); 6647 if (err) 6648 goto out_unlock_inode; 6649 6650 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6651 0, index); 6652 if (err) 6653 goto out_unlock_inode; 6654 6655 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6656 unlock_new_inode(inode); 6657 d_instantiate(dentry, inode); 6658 6659 out_unlock: 6660 btrfs_end_transaction(trans); 6661 if (err && drop_inode_on_err) { 6662 inode_dec_link_count(inode); 6663 iput(inode); 6664 } 6665 btrfs_btree_balance_dirty(fs_info); 6666 return err; 6667 6668 out_unlock_inode: 6669 unlock_new_inode(inode); 6670 goto out_unlock; 6671 6672 } 6673 6674 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6675 struct dentry *dentry) 6676 { 6677 struct btrfs_trans_handle *trans = NULL; 6678 struct btrfs_root *root = BTRFS_I(dir)->root; 6679 struct inode *inode = d_inode(old_dentry); 6680 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6681 u64 index; 6682 int err; 6683 int drop_inode = 0; 6684 6685 /* do not allow sys_link's with other subvols of the same device */ 6686 if (root->objectid != BTRFS_I(inode)->root->objectid) 6687 return -EXDEV; 6688 6689 if (inode->i_nlink >= BTRFS_LINK_MAX) 6690 return -EMLINK; 6691 6692 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6693 if (err) 6694 goto fail; 6695 6696 /* 6697 * 2 items for inode and inode ref 6698 * 2 items for dir items 6699 * 1 item for parent inode 6700 */ 6701 trans = btrfs_start_transaction(root, 5); 6702 if (IS_ERR(trans)) { 6703 err = PTR_ERR(trans); 6704 trans = NULL; 6705 goto fail; 6706 } 6707 6708 /* There are several dir indexes for this inode, clear the cache. */ 6709 BTRFS_I(inode)->dir_index = 0ULL; 6710 inc_nlink(inode); 6711 inode_inc_iversion(inode); 6712 inode->i_ctime = current_time(inode); 6713 ihold(inode); 6714 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6715 6716 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6717 1, index); 6718 6719 if (err) { 6720 drop_inode = 1; 6721 } else { 6722 struct dentry *parent = dentry->d_parent; 6723 err = btrfs_update_inode(trans, root, inode); 6724 if (err) 6725 goto fail; 6726 if (inode->i_nlink == 1) { 6727 /* 6728 * If new hard link count is 1, it's a file created 6729 * with open(2) O_TMPFILE flag. 6730 */ 6731 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6732 if (err) 6733 goto fail; 6734 } 6735 d_instantiate(dentry, inode); 6736 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6737 } 6738 6739 fail: 6740 if (trans) 6741 btrfs_end_transaction(trans); 6742 if (drop_inode) { 6743 inode_dec_link_count(inode); 6744 iput(inode); 6745 } 6746 btrfs_btree_balance_dirty(fs_info); 6747 return err; 6748 } 6749 6750 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6751 { 6752 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6753 struct inode *inode = NULL; 6754 struct btrfs_trans_handle *trans; 6755 struct btrfs_root *root = BTRFS_I(dir)->root; 6756 int err = 0; 6757 int drop_on_err = 0; 6758 u64 objectid = 0; 6759 u64 index = 0; 6760 6761 /* 6762 * 2 items for inode and ref 6763 * 2 items for dir items 6764 * 1 for xattr if selinux is on 6765 */ 6766 trans = btrfs_start_transaction(root, 5); 6767 if (IS_ERR(trans)) 6768 return PTR_ERR(trans); 6769 6770 err = btrfs_find_free_ino(root, &objectid); 6771 if (err) 6772 goto out_fail; 6773 6774 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6775 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6776 S_IFDIR | mode, &index); 6777 if (IS_ERR(inode)) { 6778 err = PTR_ERR(inode); 6779 goto out_fail; 6780 } 6781 6782 drop_on_err = 1; 6783 /* these must be set before we unlock the inode */ 6784 inode->i_op = &btrfs_dir_inode_operations; 6785 inode->i_fop = &btrfs_dir_file_operations; 6786 6787 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6788 if (err) 6789 goto out_fail_inode; 6790 6791 btrfs_i_size_write(BTRFS_I(inode), 0); 6792 err = btrfs_update_inode(trans, root, inode); 6793 if (err) 6794 goto out_fail_inode; 6795 6796 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6797 dentry->d_name.name, 6798 dentry->d_name.len, 0, index); 6799 if (err) 6800 goto out_fail_inode; 6801 6802 d_instantiate(dentry, inode); 6803 /* 6804 * mkdir is special. We're unlocking after we call d_instantiate 6805 * to avoid a race with nfsd calling d_instantiate. 6806 */ 6807 unlock_new_inode(inode); 6808 drop_on_err = 0; 6809 6810 out_fail: 6811 btrfs_end_transaction(trans); 6812 if (drop_on_err) { 6813 inode_dec_link_count(inode); 6814 iput(inode); 6815 } 6816 btrfs_btree_balance_dirty(fs_info); 6817 return err; 6818 6819 out_fail_inode: 6820 unlock_new_inode(inode); 6821 goto out_fail; 6822 } 6823 6824 static noinline int uncompress_inline(struct btrfs_path *path, 6825 struct page *page, 6826 size_t pg_offset, u64 extent_offset, 6827 struct btrfs_file_extent_item *item) 6828 { 6829 int ret; 6830 struct extent_buffer *leaf = path->nodes[0]; 6831 char *tmp; 6832 size_t max_size; 6833 unsigned long inline_size; 6834 unsigned long ptr; 6835 int compress_type; 6836 6837 WARN_ON(pg_offset != 0); 6838 compress_type = btrfs_file_extent_compression(leaf, item); 6839 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6840 inline_size = btrfs_file_extent_inline_item_len(leaf, 6841 btrfs_item_nr(path->slots[0])); 6842 tmp = kmalloc(inline_size, GFP_NOFS); 6843 if (!tmp) 6844 return -ENOMEM; 6845 ptr = btrfs_file_extent_inline_start(item); 6846 6847 read_extent_buffer(leaf, tmp, ptr, inline_size); 6848 6849 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6850 ret = btrfs_decompress(compress_type, tmp, page, 6851 extent_offset, inline_size, max_size); 6852 6853 /* 6854 * decompression code contains a memset to fill in any space between the end 6855 * of the uncompressed data and the end of max_size in case the decompressed 6856 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6857 * the end of an inline extent and the beginning of the next block, so we 6858 * cover that region here. 6859 */ 6860 6861 if (max_size + pg_offset < PAGE_SIZE) { 6862 char *map = kmap(page); 6863 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6864 kunmap(page); 6865 } 6866 kfree(tmp); 6867 return ret; 6868 } 6869 6870 /* 6871 * a bit scary, this does extent mapping from logical file offset to the disk. 6872 * the ugly parts come from merging extents from the disk with the in-ram 6873 * representation. This gets more complex because of the data=ordered code, 6874 * where the in-ram extents might be locked pending data=ordered completion. 6875 * 6876 * This also copies inline extents directly into the page. 6877 */ 6878 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6879 struct page *page, 6880 size_t pg_offset, u64 start, u64 len, 6881 int create) 6882 { 6883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6884 int ret; 6885 int err = 0; 6886 u64 extent_start = 0; 6887 u64 extent_end = 0; 6888 u64 objectid = btrfs_ino(inode); 6889 u32 found_type; 6890 struct btrfs_path *path = NULL; 6891 struct btrfs_root *root = inode->root; 6892 struct btrfs_file_extent_item *item; 6893 struct extent_buffer *leaf; 6894 struct btrfs_key found_key; 6895 struct extent_map *em = NULL; 6896 struct extent_map_tree *em_tree = &inode->extent_tree; 6897 struct extent_io_tree *io_tree = &inode->io_tree; 6898 const bool new_inline = !page || create; 6899 6900 read_lock(&em_tree->lock); 6901 em = lookup_extent_mapping(em_tree, start, len); 6902 if (em) 6903 em->bdev = fs_info->fs_devices->latest_bdev; 6904 read_unlock(&em_tree->lock); 6905 6906 if (em) { 6907 if (em->start > start || em->start + em->len <= start) 6908 free_extent_map(em); 6909 else if (em->block_start == EXTENT_MAP_INLINE && page) 6910 free_extent_map(em); 6911 else 6912 goto out; 6913 } 6914 em = alloc_extent_map(); 6915 if (!em) { 6916 err = -ENOMEM; 6917 goto out; 6918 } 6919 em->bdev = fs_info->fs_devices->latest_bdev; 6920 em->start = EXTENT_MAP_HOLE; 6921 em->orig_start = EXTENT_MAP_HOLE; 6922 em->len = (u64)-1; 6923 em->block_len = (u64)-1; 6924 6925 if (!path) { 6926 path = btrfs_alloc_path(); 6927 if (!path) { 6928 err = -ENOMEM; 6929 goto out; 6930 } 6931 /* 6932 * Chances are we'll be called again, so go ahead and do 6933 * readahead 6934 */ 6935 path->reada = READA_FORWARD; 6936 } 6937 6938 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6939 if (ret < 0) { 6940 err = ret; 6941 goto out; 6942 } 6943 6944 if (ret != 0) { 6945 if (path->slots[0] == 0) 6946 goto not_found; 6947 path->slots[0]--; 6948 } 6949 6950 leaf = path->nodes[0]; 6951 item = btrfs_item_ptr(leaf, path->slots[0], 6952 struct btrfs_file_extent_item); 6953 /* are we inside the extent that was found? */ 6954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6955 found_type = found_key.type; 6956 if (found_key.objectid != objectid || 6957 found_type != BTRFS_EXTENT_DATA_KEY) { 6958 /* 6959 * If we backup past the first extent we want to move forward 6960 * and see if there is an extent in front of us, otherwise we'll 6961 * say there is a hole for our whole search range which can 6962 * cause problems. 6963 */ 6964 extent_end = start; 6965 goto next; 6966 } 6967 6968 found_type = btrfs_file_extent_type(leaf, item); 6969 extent_start = found_key.offset; 6970 if (found_type == BTRFS_FILE_EXTENT_REG || 6971 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6972 extent_end = extent_start + 6973 btrfs_file_extent_num_bytes(leaf, item); 6974 6975 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6976 extent_start); 6977 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6978 size_t size; 6979 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6980 extent_end = ALIGN(extent_start + size, 6981 fs_info->sectorsize); 6982 6983 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6984 path->slots[0], 6985 extent_start); 6986 } 6987 next: 6988 if (start >= extent_end) { 6989 path->slots[0]++; 6990 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6991 ret = btrfs_next_leaf(root, path); 6992 if (ret < 0) { 6993 err = ret; 6994 goto out; 6995 } 6996 if (ret > 0) 6997 goto not_found; 6998 leaf = path->nodes[0]; 6999 } 7000 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7001 if (found_key.objectid != objectid || 7002 found_key.type != BTRFS_EXTENT_DATA_KEY) 7003 goto not_found; 7004 if (start + len <= found_key.offset) 7005 goto not_found; 7006 if (start > found_key.offset) 7007 goto next; 7008 em->start = start; 7009 em->orig_start = start; 7010 em->len = found_key.offset - start; 7011 goto not_found_em; 7012 } 7013 7014 btrfs_extent_item_to_extent_map(inode, path, item, 7015 new_inline, em); 7016 7017 if (found_type == BTRFS_FILE_EXTENT_REG || 7018 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7019 goto insert; 7020 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7021 unsigned long ptr; 7022 char *map; 7023 size_t size; 7024 size_t extent_offset; 7025 size_t copy_size; 7026 7027 if (new_inline) 7028 goto out; 7029 7030 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7031 extent_offset = page_offset(page) + pg_offset - extent_start; 7032 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7033 size - extent_offset); 7034 em->start = extent_start + extent_offset; 7035 em->len = ALIGN(copy_size, fs_info->sectorsize); 7036 em->orig_block_len = em->len; 7037 em->orig_start = em->start; 7038 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7039 if (!PageUptodate(page)) { 7040 if (btrfs_file_extent_compression(leaf, item) != 7041 BTRFS_COMPRESS_NONE) { 7042 ret = uncompress_inline(path, page, pg_offset, 7043 extent_offset, item); 7044 if (ret) { 7045 err = ret; 7046 goto out; 7047 } 7048 } else { 7049 map = kmap(page); 7050 read_extent_buffer(leaf, map + pg_offset, ptr, 7051 copy_size); 7052 if (pg_offset + copy_size < PAGE_SIZE) { 7053 memset(map + pg_offset + copy_size, 0, 7054 PAGE_SIZE - pg_offset - 7055 copy_size); 7056 } 7057 kunmap(page); 7058 } 7059 flush_dcache_page(page); 7060 } 7061 set_extent_uptodate(io_tree, em->start, 7062 extent_map_end(em) - 1, NULL, GFP_NOFS); 7063 goto insert; 7064 } 7065 not_found: 7066 em->start = start; 7067 em->orig_start = start; 7068 em->len = len; 7069 not_found_em: 7070 em->block_start = EXTENT_MAP_HOLE; 7071 insert: 7072 btrfs_release_path(path); 7073 if (em->start > start || extent_map_end(em) <= start) { 7074 btrfs_err(fs_info, 7075 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7076 em->start, em->len, start, len); 7077 err = -EIO; 7078 goto out; 7079 } 7080 7081 err = 0; 7082 write_lock(&em_tree->lock); 7083 err = btrfs_add_extent_mapping(em_tree, &em, start, len); 7084 write_unlock(&em_tree->lock); 7085 out: 7086 7087 trace_btrfs_get_extent(root, inode, em); 7088 7089 btrfs_free_path(path); 7090 if (err) { 7091 free_extent_map(em); 7092 return ERR_PTR(err); 7093 } 7094 BUG_ON(!em); /* Error is always set */ 7095 return em; 7096 } 7097 7098 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7099 struct page *page, 7100 size_t pg_offset, u64 start, u64 len, 7101 int create) 7102 { 7103 struct extent_map *em; 7104 struct extent_map *hole_em = NULL; 7105 u64 range_start = start; 7106 u64 end; 7107 u64 found; 7108 u64 found_end; 7109 int err = 0; 7110 7111 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7112 if (IS_ERR(em)) 7113 return em; 7114 /* 7115 * If our em maps to: 7116 * - a hole or 7117 * - a pre-alloc extent, 7118 * there might actually be delalloc bytes behind it. 7119 */ 7120 if (em->block_start != EXTENT_MAP_HOLE && 7121 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7122 return em; 7123 else 7124 hole_em = em; 7125 7126 /* check to see if we've wrapped (len == -1 or similar) */ 7127 end = start + len; 7128 if (end < start) 7129 end = (u64)-1; 7130 else 7131 end -= 1; 7132 7133 em = NULL; 7134 7135 /* ok, we didn't find anything, lets look for delalloc */ 7136 found = count_range_bits(&inode->io_tree, &range_start, 7137 end, len, EXTENT_DELALLOC, 1); 7138 found_end = range_start + found; 7139 if (found_end < range_start) 7140 found_end = (u64)-1; 7141 7142 /* 7143 * we didn't find anything useful, return 7144 * the original results from get_extent() 7145 */ 7146 if (range_start > end || found_end <= start) { 7147 em = hole_em; 7148 hole_em = NULL; 7149 goto out; 7150 } 7151 7152 /* adjust the range_start to make sure it doesn't 7153 * go backwards from the start they passed in 7154 */ 7155 range_start = max(start, range_start); 7156 found = found_end - range_start; 7157 7158 if (found > 0) { 7159 u64 hole_start = start; 7160 u64 hole_len = len; 7161 7162 em = alloc_extent_map(); 7163 if (!em) { 7164 err = -ENOMEM; 7165 goto out; 7166 } 7167 /* 7168 * when btrfs_get_extent can't find anything it 7169 * returns one huge hole 7170 * 7171 * make sure what it found really fits our range, and 7172 * adjust to make sure it is based on the start from 7173 * the caller 7174 */ 7175 if (hole_em) { 7176 u64 calc_end = extent_map_end(hole_em); 7177 7178 if (calc_end <= start || (hole_em->start > end)) { 7179 free_extent_map(hole_em); 7180 hole_em = NULL; 7181 } else { 7182 hole_start = max(hole_em->start, start); 7183 hole_len = calc_end - hole_start; 7184 } 7185 } 7186 em->bdev = NULL; 7187 if (hole_em && range_start > hole_start) { 7188 /* our hole starts before our delalloc, so we 7189 * have to return just the parts of the hole 7190 * that go until the delalloc starts 7191 */ 7192 em->len = min(hole_len, 7193 range_start - hole_start); 7194 em->start = hole_start; 7195 em->orig_start = hole_start; 7196 /* 7197 * don't adjust block start at all, 7198 * it is fixed at EXTENT_MAP_HOLE 7199 */ 7200 em->block_start = hole_em->block_start; 7201 em->block_len = hole_len; 7202 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7203 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7204 } else { 7205 em->start = range_start; 7206 em->len = found; 7207 em->orig_start = range_start; 7208 em->block_start = EXTENT_MAP_DELALLOC; 7209 em->block_len = found; 7210 } 7211 } else { 7212 return hole_em; 7213 } 7214 out: 7215 7216 free_extent_map(hole_em); 7217 if (err) { 7218 free_extent_map(em); 7219 return ERR_PTR(err); 7220 } 7221 return em; 7222 } 7223 7224 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7225 const u64 start, 7226 const u64 len, 7227 const u64 orig_start, 7228 const u64 block_start, 7229 const u64 block_len, 7230 const u64 orig_block_len, 7231 const u64 ram_bytes, 7232 const int type) 7233 { 7234 struct extent_map *em = NULL; 7235 int ret; 7236 7237 if (type != BTRFS_ORDERED_NOCOW) { 7238 em = create_io_em(inode, start, len, orig_start, 7239 block_start, block_len, orig_block_len, 7240 ram_bytes, 7241 BTRFS_COMPRESS_NONE, /* compress_type */ 7242 type); 7243 if (IS_ERR(em)) 7244 goto out; 7245 } 7246 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7247 len, block_len, type); 7248 if (ret) { 7249 if (em) { 7250 free_extent_map(em); 7251 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7252 start + len - 1, 0); 7253 } 7254 em = ERR_PTR(ret); 7255 } 7256 out: 7257 7258 return em; 7259 } 7260 7261 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7262 u64 start, u64 len) 7263 { 7264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7265 struct btrfs_root *root = BTRFS_I(inode)->root; 7266 struct extent_map *em; 7267 struct btrfs_key ins; 7268 u64 alloc_hint; 7269 int ret; 7270 7271 alloc_hint = get_extent_allocation_hint(inode, start, len); 7272 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7273 0, alloc_hint, &ins, 1, 1); 7274 if (ret) 7275 return ERR_PTR(ret); 7276 7277 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7278 ins.objectid, ins.offset, ins.offset, 7279 ins.offset, BTRFS_ORDERED_REGULAR); 7280 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7281 if (IS_ERR(em)) 7282 btrfs_free_reserved_extent(fs_info, ins.objectid, 7283 ins.offset, 1); 7284 7285 return em; 7286 } 7287 7288 /* 7289 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7290 * block must be cow'd 7291 */ 7292 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7293 u64 *orig_start, u64 *orig_block_len, 7294 u64 *ram_bytes) 7295 { 7296 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7297 struct btrfs_path *path; 7298 int ret; 7299 struct extent_buffer *leaf; 7300 struct btrfs_root *root = BTRFS_I(inode)->root; 7301 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7302 struct btrfs_file_extent_item *fi; 7303 struct btrfs_key key; 7304 u64 disk_bytenr; 7305 u64 backref_offset; 7306 u64 extent_end; 7307 u64 num_bytes; 7308 int slot; 7309 int found_type; 7310 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7311 7312 path = btrfs_alloc_path(); 7313 if (!path) 7314 return -ENOMEM; 7315 7316 ret = btrfs_lookup_file_extent(NULL, root, path, 7317 btrfs_ino(BTRFS_I(inode)), offset, 0); 7318 if (ret < 0) 7319 goto out; 7320 7321 slot = path->slots[0]; 7322 if (ret == 1) { 7323 if (slot == 0) { 7324 /* can't find the item, must cow */ 7325 ret = 0; 7326 goto out; 7327 } 7328 slot--; 7329 } 7330 ret = 0; 7331 leaf = path->nodes[0]; 7332 btrfs_item_key_to_cpu(leaf, &key, slot); 7333 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7334 key.type != BTRFS_EXTENT_DATA_KEY) { 7335 /* not our file or wrong item type, must cow */ 7336 goto out; 7337 } 7338 7339 if (key.offset > offset) { 7340 /* Wrong offset, must cow */ 7341 goto out; 7342 } 7343 7344 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7345 found_type = btrfs_file_extent_type(leaf, fi); 7346 if (found_type != BTRFS_FILE_EXTENT_REG && 7347 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7348 /* not a regular extent, must cow */ 7349 goto out; 7350 } 7351 7352 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7353 goto out; 7354 7355 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7356 if (extent_end <= offset) 7357 goto out; 7358 7359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7360 if (disk_bytenr == 0) 7361 goto out; 7362 7363 if (btrfs_file_extent_compression(leaf, fi) || 7364 btrfs_file_extent_encryption(leaf, fi) || 7365 btrfs_file_extent_other_encoding(leaf, fi)) 7366 goto out; 7367 7368 backref_offset = btrfs_file_extent_offset(leaf, fi); 7369 7370 if (orig_start) { 7371 *orig_start = key.offset - backref_offset; 7372 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7373 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7374 } 7375 7376 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7377 goto out; 7378 7379 num_bytes = min(offset + *len, extent_end) - offset; 7380 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7381 u64 range_end; 7382 7383 range_end = round_up(offset + num_bytes, 7384 root->fs_info->sectorsize) - 1; 7385 ret = test_range_bit(io_tree, offset, range_end, 7386 EXTENT_DELALLOC, 0, NULL); 7387 if (ret) { 7388 ret = -EAGAIN; 7389 goto out; 7390 } 7391 } 7392 7393 btrfs_release_path(path); 7394 7395 /* 7396 * look for other files referencing this extent, if we 7397 * find any we must cow 7398 */ 7399 7400 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7401 key.offset - backref_offset, disk_bytenr); 7402 if (ret) { 7403 ret = 0; 7404 goto out; 7405 } 7406 7407 /* 7408 * adjust disk_bytenr and num_bytes to cover just the bytes 7409 * in this extent we are about to write. If there 7410 * are any csums in that range we have to cow in order 7411 * to keep the csums correct 7412 */ 7413 disk_bytenr += backref_offset; 7414 disk_bytenr += offset - key.offset; 7415 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7416 goto out; 7417 /* 7418 * all of the above have passed, it is safe to overwrite this extent 7419 * without cow 7420 */ 7421 *len = num_bytes; 7422 ret = 1; 7423 out: 7424 btrfs_free_path(path); 7425 return ret; 7426 } 7427 7428 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7429 { 7430 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7431 bool found = false; 7432 void **pagep = NULL; 7433 struct page *page = NULL; 7434 unsigned long start_idx; 7435 unsigned long end_idx; 7436 7437 start_idx = start >> PAGE_SHIFT; 7438 7439 /* 7440 * end is the last byte in the last page. end == start is legal 7441 */ 7442 end_idx = end >> PAGE_SHIFT; 7443 7444 rcu_read_lock(); 7445 7446 /* Most of the code in this while loop is lifted from 7447 * find_get_page. It's been modified to begin searching from a 7448 * page and return just the first page found in that range. If the 7449 * found idx is less than or equal to the end idx then we know that 7450 * a page exists. If no pages are found or if those pages are 7451 * outside of the range then we're fine (yay!) */ 7452 while (page == NULL && 7453 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7454 page = radix_tree_deref_slot(pagep); 7455 if (unlikely(!page)) 7456 break; 7457 7458 if (radix_tree_exception(page)) { 7459 if (radix_tree_deref_retry(page)) { 7460 page = NULL; 7461 continue; 7462 } 7463 /* 7464 * Otherwise, shmem/tmpfs must be storing a swap entry 7465 * here as an exceptional entry: so return it without 7466 * attempting to raise page count. 7467 */ 7468 page = NULL; 7469 break; /* TODO: Is this relevant for this use case? */ 7470 } 7471 7472 if (!page_cache_get_speculative(page)) { 7473 page = NULL; 7474 continue; 7475 } 7476 7477 /* 7478 * Has the page moved? 7479 * This is part of the lockless pagecache protocol. See 7480 * include/linux/pagemap.h for details. 7481 */ 7482 if (unlikely(page != *pagep)) { 7483 put_page(page); 7484 page = NULL; 7485 } 7486 } 7487 7488 if (page) { 7489 if (page->index <= end_idx) 7490 found = true; 7491 put_page(page); 7492 } 7493 7494 rcu_read_unlock(); 7495 return found; 7496 } 7497 7498 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7499 struct extent_state **cached_state, int writing) 7500 { 7501 struct btrfs_ordered_extent *ordered; 7502 int ret = 0; 7503 7504 while (1) { 7505 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7506 cached_state); 7507 /* 7508 * We're concerned with the entire range that we're going to be 7509 * doing DIO to, so we need to make sure there's no ordered 7510 * extents in this range. 7511 */ 7512 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7513 lockend - lockstart + 1); 7514 7515 /* 7516 * We need to make sure there are no buffered pages in this 7517 * range either, we could have raced between the invalidate in 7518 * generic_file_direct_write and locking the extent. The 7519 * invalidate needs to happen so that reads after a write do not 7520 * get stale data. 7521 */ 7522 if (!ordered && 7523 (!writing || 7524 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7525 break; 7526 7527 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7528 cached_state); 7529 7530 if (ordered) { 7531 /* 7532 * If we are doing a DIO read and the ordered extent we 7533 * found is for a buffered write, we can not wait for it 7534 * to complete and retry, because if we do so we can 7535 * deadlock with concurrent buffered writes on page 7536 * locks. This happens only if our DIO read covers more 7537 * than one extent map, if at this point has already 7538 * created an ordered extent for a previous extent map 7539 * and locked its range in the inode's io tree, and a 7540 * concurrent write against that previous extent map's 7541 * range and this range started (we unlock the ranges 7542 * in the io tree only when the bios complete and 7543 * buffered writes always lock pages before attempting 7544 * to lock range in the io tree). 7545 */ 7546 if (writing || 7547 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7548 btrfs_start_ordered_extent(inode, ordered, 1); 7549 else 7550 ret = -ENOTBLK; 7551 btrfs_put_ordered_extent(ordered); 7552 } else { 7553 /* 7554 * We could trigger writeback for this range (and wait 7555 * for it to complete) and then invalidate the pages for 7556 * this range (through invalidate_inode_pages2_range()), 7557 * but that can lead us to a deadlock with a concurrent 7558 * call to readpages() (a buffered read or a defrag call 7559 * triggered a readahead) on a page lock due to an 7560 * ordered dio extent we created before but did not have 7561 * yet a corresponding bio submitted (whence it can not 7562 * complete), which makes readpages() wait for that 7563 * ordered extent to complete while holding a lock on 7564 * that page. 7565 */ 7566 ret = -ENOTBLK; 7567 } 7568 7569 if (ret) 7570 break; 7571 7572 cond_resched(); 7573 } 7574 7575 return ret; 7576 } 7577 7578 /* The callers of this must take lock_extent() */ 7579 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7580 u64 orig_start, u64 block_start, 7581 u64 block_len, u64 orig_block_len, 7582 u64 ram_bytes, int compress_type, 7583 int type) 7584 { 7585 struct extent_map_tree *em_tree; 7586 struct extent_map *em; 7587 struct btrfs_root *root = BTRFS_I(inode)->root; 7588 int ret; 7589 7590 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7591 type == BTRFS_ORDERED_COMPRESSED || 7592 type == BTRFS_ORDERED_NOCOW || 7593 type == BTRFS_ORDERED_REGULAR); 7594 7595 em_tree = &BTRFS_I(inode)->extent_tree; 7596 em = alloc_extent_map(); 7597 if (!em) 7598 return ERR_PTR(-ENOMEM); 7599 7600 em->start = start; 7601 em->orig_start = orig_start; 7602 em->len = len; 7603 em->block_len = block_len; 7604 em->block_start = block_start; 7605 em->bdev = root->fs_info->fs_devices->latest_bdev; 7606 em->orig_block_len = orig_block_len; 7607 em->ram_bytes = ram_bytes; 7608 em->generation = -1; 7609 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7610 if (type == BTRFS_ORDERED_PREALLOC) { 7611 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7612 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7614 em->compress_type = compress_type; 7615 } 7616 7617 do { 7618 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7619 em->start + em->len - 1, 0); 7620 write_lock(&em_tree->lock); 7621 ret = add_extent_mapping(em_tree, em, 1); 7622 write_unlock(&em_tree->lock); 7623 /* 7624 * The caller has taken lock_extent(), who could race with us 7625 * to add em? 7626 */ 7627 } while (ret == -EEXIST); 7628 7629 if (ret) { 7630 free_extent_map(em); 7631 return ERR_PTR(ret); 7632 } 7633 7634 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7635 return em; 7636 } 7637 7638 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7639 struct buffer_head *bh_result, int create) 7640 { 7641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7642 struct extent_map *em; 7643 struct extent_state *cached_state = NULL; 7644 struct btrfs_dio_data *dio_data = NULL; 7645 u64 start = iblock << inode->i_blkbits; 7646 u64 lockstart, lockend; 7647 u64 len = bh_result->b_size; 7648 int unlock_bits = EXTENT_LOCKED; 7649 int ret = 0; 7650 7651 if (create) 7652 unlock_bits |= EXTENT_DIRTY; 7653 else 7654 len = min_t(u64, len, fs_info->sectorsize); 7655 7656 lockstart = start; 7657 lockend = start + len - 1; 7658 7659 if (current->journal_info) { 7660 /* 7661 * Need to pull our outstanding extents and set journal_info to NULL so 7662 * that anything that needs to check if there's a transaction doesn't get 7663 * confused. 7664 */ 7665 dio_data = current->journal_info; 7666 current->journal_info = NULL; 7667 } 7668 7669 /* 7670 * If this errors out it's because we couldn't invalidate pagecache for 7671 * this range and we need to fallback to buffered. 7672 */ 7673 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7674 create)) { 7675 ret = -ENOTBLK; 7676 goto err; 7677 } 7678 7679 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7680 if (IS_ERR(em)) { 7681 ret = PTR_ERR(em); 7682 goto unlock_err; 7683 } 7684 7685 /* 7686 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7687 * io. INLINE is special, and we could probably kludge it in here, but 7688 * it's still buffered so for safety lets just fall back to the generic 7689 * buffered path. 7690 * 7691 * For COMPRESSED we _have_ to read the entire extent in so we can 7692 * decompress it, so there will be buffering required no matter what we 7693 * do, so go ahead and fallback to buffered. 7694 * 7695 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7696 * to buffered IO. Don't blame me, this is the price we pay for using 7697 * the generic code. 7698 */ 7699 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7700 em->block_start == EXTENT_MAP_INLINE) { 7701 free_extent_map(em); 7702 ret = -ENOTBLK; 7703 goto unlock_err; 7704 } 7705 7706 /* Just a good old fashioned hole, return */ 7707 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7708 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7709 free_extent_map(em); 7710 goto unlock_err; 7711 } 7712 7713 /* 7714 * We don't allocate a new extent in the following cases 7715 * 7716 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7717 * existing extent. 7718 * 2) The extent is marked as PREALLOC. We're good to go here and can 7719 * just use the extent. 7720 * 7721 */ 7722 if (!create) { 7723 len = min(len, em->len - (start - em->start)); 7724 lockstart = start + len; 7725 goto unlock; 7726 } 7727 7728 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7729 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7730 em->block_start != EXTENT_MAP_HOLE)) { 7731 int type; 7732 u64 block_start, orig_start, orig_block_len, ram_bytes; 7733 7734 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7735 type = BTRFS_ORDERED_PREALLOC; 7736 else 7737 type = BTRFS_ORDERED_NOCOW; 7738 len = min(len, em->len - (start - em->start)); 7739 block_start = em->block_start + (start - em->start); 7740 7741 if (can_nocow_extent(inode, start, &len, &orig_start, 7742 &orig_block_len, &ram_bytes) == 1 && 7743 btrfs_inc_nocow_writers(fs_info, block_start)) { 7744 struct extent_map *em2; 7745 7746 em2 = btrfs_create_dio_extent(inode, start, len, 7747 orig_start, block_start, 7748 len, orig_block_len, 7749 ram_bytes, type); 7750 btrfs_dec_nocow_writers(fs_info, block_start); 7751 if (type == BTRFS_ORDERED_PREALLOC) { 7752 free_extent_map(em); 7753 em = em2; 7754 } 7755 if (em2 && IS_ERR(em2)) { 7756 ret = PTR_ERR(em2); 7757 goto unlock_err; 7758 } 7759 /* 7760 * For inode marked NODATACOW or extent marked PREALLOC, 7761 * use the existing or preallocated extent, so does not 7762 * need to adjust btrfs_space_info's bytes_may_use. 7763 */ 7764 btrfs_free_reserved_data_space_noquota(inode, 7765 start, len); 7766 goto unlock; 7767 } 7768 } 7769 7770 /* 7771 * this will cow the extent, reset the len in case we changed 7772 * it above 7773 */ 7774 len = bh_result->b_size; 7775 free_extent_map(em); 7776 em = btrfs_new_extent_direct(inode, start, len); 7777 if (IS_ERR(em)) { 7778 ret = PTR_ERR(em); 7779 goto unlock_err; 7780 } 7781 len = min(len, em->len - (start - em->start)); 7782 unlock: 7783 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7784 inode->i_blkbits; 7785 bh_result->b_size = len; 7786 bh_result->b_bdev = em->bdev; 7787 set_buffer_mapped(bh_result); 7788 if (create) { 7789 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7790 set_buffer_new(bh_result); 7791 7792 /* 7793 * Need to update the i_size under the extent lock so buffered 7794 * readers will get the updated i_size when we unlock. 7795 */ 7796 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7797 i_size_write(inode, start + len); 7798 7799 WARN_ON(dio_data->reserve < len); 7800 dio_data->reserve -= len; 7801 dio_data->unsubmitted_oe_range_end = start + len; 7802 current->journal_info = dio_data; 7803 } 7804 7805 /* 7806 * In the case of write we need to clear and unlock the entire range, 7807 * in the case of read we need to unlock only the end area that we 7808 * aren't using if there is any left over space. 7809 */ 7810 if (lockstart < lockend) { 7811 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7812 lockend, unlock_bits, 1, 0, 7813 &cached_state); 7814 } else { 7815 free_extent_state(cached_state); 7816 } 7817 7818 free_extent_map(em); 7819 7820 return 0; 7821 7822 unlock_err: 7823 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7824 unlock_bits, 1, 0, &cached_state); 7825 err: 7826 if (dio_data) 7827 current->journal_info = dio_data; 7828 return ret; 7829 } 7830 7831 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7832 struct bio *bio, 7833 int mirror_num) 7834 { 7835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7836 blk_status_t ret; 7837 7838 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7839 7840 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7841 if (ret) 7842 return ret; 7843 7844 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7845 7846 return ret; 7847 } 7848 7849 static int btrfs_check_dio_repairable(struct inode *inode, 7850 struct bio *failed_bio, 7851 struct io_failure_record *failrec, 7852 int failed_mirror) 7853 { 7854 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7855 int num_copies; 7856 7857 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7858 if (num_copies == 1) { 7859 /* 7860 * we only have a single copy of the data, so don't bother with 7861 * all the retry and error correction code that follows. no 7862 * matter what the error is, it is very likely to persist. 7863 */ 7864 btrfs_debug(fs_info, 7865 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7866 num_copies, failrec->this_mirror, failed_mirror); 7867 return 0; 7868 } 7869 7870 failrec->failed_mirror = failed_mirror; 7871 failrec->this_mirror++; 7872 if (failrec->this_mirror == failed_mirror) 7873 failrec->this_mirror++; 7874 7875 if (failrec->this_mirror > num_copies) { 7876 btrfs_debug(fs_info, 7877 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7878 num_copies, failrec->this_mirror, failed_mirror); 7879 return 0; 7880 } 7881 7882 return 1; 7883 } 7884 7885 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7886 struct page *page, unsigned int pgoff, 7887 u64 start, u64 end, int failed_mirror, 7888 bio_end_io_t *repair_endio, void *repair_arg) 7889 { 7890 struct io_failure_record *failrec; 7891 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7892 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7893 struct bio *bio; 7894 int isector; 7895 unsigned int read_mode = 0; 7896 int segs; 7897 int ret; 7898 blk_status_t status; 7899 struct bio_vec bvec; 7900 7901 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7902 7903 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7904 if (ret) 7905 return errno_to_blk_status(ret); 7906 7907 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7908 failed_mirror); 7909 if (!ret) { 7910 free_io_failure(failure_tree, io_tree, failrec); 7911 return BLK_STS_IOERR; 7912 } 7913 7914 segs = bio_segments(failed_bio); 7915 bio_get_first_bvec(failed_bio, &bvec); 7916 if (segs > 1 || 7917 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7918 read_mode |= REQ_FAILFAST_DEV; 7919 7920 isector = start - btrfs_io_bio(failed_bio)->logical; 7921 isector >>= inode->i_sb->s_blocksize_bits; 7922 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7923 pgoff, isector, repair_endio, repair_arg); 7924 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7925 7926 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7927 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7928 read_mode, failrec->this_mirror, failrec->in_validation); 7929 7930 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7931 if (status) { 7932 free_io_failure(failure_tree, io_tree, failrec); 7933 bio_put(bio); 7934 } 7935 7936 return status; 7937 } 7938 7939 struct btrfs_retry_complete { 7940 struct completion done; 7941 struct inode *inode; 7942 u64 start; 7943 int uptodate; 7944 }; 7945 7946 static void btrfs_retry_endio_nocsum(struct bio *bio) 7947 { 7948 struct btrfs_retry_complete *done = bio->bi_private; 7949 struct inode *inode = done->inode; 7950 struct bio_vec *bvec; 7951 struct extent_io_tree *io_tree, *failure_tree; 7952 int i; 7953 7954 if (bio->bi_status) 7955 goto end; 7956 7957 ASSERT(bio->bi_vcnt == 1); 7958 io_tree = &BTRFS_I(inode)->io_tree; 7959 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7960 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7961 7962 done->uptodate = 1; 7963 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7964 bio_for_each_segment_all(bvec, bio, i) 7965 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7966 io_tree, done->start, bvec->bv_page, 7967 btrfs_ino(BTRFS_I(inode)), 0); 7968 end: 7969 complete(&done->done); 7970 bio_put(bio); 7971 } 7972 7973 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7974 struct btrfs_io_bio *io_bio) 7975 { 7976 struct btrfs_fs_info *fs_info; 7977 struct bio_vec bvec; 7978 struct bvec_iter iter; 7979 struct btrfs_retry_complete done; 7980 u64 start; 7981 unsigned int pgoff; 7982 u32 sectorsize; 7983 int nr_sectors; 7984 blk_status_t ret; 7985 blk_status_t err = BLK_STS_OK; 7986 7987 fs_info = BTRFS_I(inode)->root->fs_info; 7988 sectorsize = fs_info->sectorsize; 7989 7990 start = io_bio->logical; 7991 done.inode = inode; 7992 io_bio->bio.bi_iter = io_bio->iter; 7993 7994 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7995 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7996 pgoff = bvec.bv_offset; 7997 7998 next_block_or_try_again: 7999 done.uptodate = 0; 8000 done.start = start; 8001 init_completion(&done.done); 8002 8003 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8004 pgoff, start, start + sectorsize - 1, 8005 io_bio->mirror_num, 8006 btrfs_retry_endio_nocsum, &done); 8007 if (ret) { 8008 err = ret; 8009 goto next; 8010 } 8011 8012 wait_for_completion_io(&done.done); 8013 8014 if (!done.uptodate) { 8015 /* We might have another mirror, so try again */ 8016 goto next_block_or_try_again; 8017 } 8018 8019 next: 8020 start += sectorsize; 8021 8022 nr_sectors--; 8023 if (nr_sectors) { 8024 pgoff += sectorsize; 8025 ASSERT(pgoff < PAGE_SIZE); 8026 goto next_block_or_try_again; 8027 } 8028 } 8029 8030 return err; 8031 } 8032 8033 static void btrfs_retry_endio(struct bio *bio) 8034 { 8035 struct btrfs_retry_complete *done = bio->bi_private; 8036 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8037 struct extent_io_tree *io_tree, *failure_tree; 8038 struct inode *inode = done->inode; 8039 struct bio_vec *bvec; 8040 int uptodate; 8041 int ret; 8042 int i; 8043 8044 if (bio->bi_status) 8045 goto end; 8046 8047 uptodate = 1; 8048 8049 ASSERT(bio->bi_vcnt == 1); 8050 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 8051 8052 io_tree = &BTRFS_I(inode)->io_tree; 8053 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8054 8055 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8056 bio_for_each_segment_all(bvec, bio, i) { 8057 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8058 bvec->bv_offset, done->start, 8059 bvec->bv_len); 8060 if (!ret) 8061 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8062 failure_tree, io_tree, done->start, 8063 bvec->bv_page, 8064 btrfs_ino(BTRFS_I(inode)), 8065 bvec->bv_offset); 8066 else 8067 uptodate = 0; 8068 } 8069 8070 done->uptodate = uptodate; 8071 end: 8072 complete(&done->done); 8073 bio_put(bio); 8074 } 8075 8076 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8077 struct btrfs_io_bio *io_bio, blk_status_t err) 8078 { 8079 struct btrfs_fs_info *fs_info; 8080 struct bio_vec bvec; 8081 struct bvec_iter iter; 8082 struct btrfs_retry_complete done; 8083 u64 start; 8084 u64 offset = 0; 8085 u32 sectorsize; 8086 int nr_sectors; 8087 unsigned int pgoff; 8088 int csum_pos; 8089 bool uptodate = (err == 0); 8090 int ret; 8091 blk_status_t status; 8092 8093 fs_info = BTRFS_I(inode)->root->fs_info; 8094 sectorsize = fs_info->sectorsize; 8095 8096 err = BLK_STS_OK; 8097 start = io_bio->logical; 8098 done.inode = inode; 8099 io_bio->bio.bi_iter = io_bio->iter; 8100 8101 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8102 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8103 8104 pgoff = bvec.bv_offset; 8105 next_block: 8106 if (uptodate) { 8107 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8108 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8109 bvec.bv_page, pgoff, start, sectorsize); 8110 if (likely(!ret)) 8111 goto next; 8112 } 8113 try_again: 8114 done.uptodate = 0; 8115 done.start = start; 8116 init_completion(&done.done); 8117 8118 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8119 pgoff, start, start + sectorsize - 1, 8120 io_bio->mirror_num, btrfs_retry_endio, 8121 &done); 8122 if (status) { 8123 err = status; 8124 goto next; 8125 } 8126 8127 wait_for_completion_io(&done.done); 8128 8129 if (!done.uptodate) { 8130 /* We might have another mirror, so try again */ 8131 goto try_again; 8132 } 8133 next: 8134 offset += sectorsize; 8135 start += sectorsize; 8136 8137 ASSERT(nr_sectors); 8138 8139 nr_sectors--; 8140 if (nr_sectors) { 8141 pgoff += sectorsize; 8142 ASSERT(pgoff < PAGE_SIZE); 8143 goto next_block; 8144 } 8145 } 8146 8147 return err; 8148 } 8149 8150 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8151 struct btrfs_io_bio *io_bio, blk_status_t err) 8152 { 8153 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8154 8155 if (skip_csum) { 8156 if (unlikely(err)) 8157 return __btrfs_correct_data_nocsum(inode, io_bio); 8158 else 8159 return BLK_STS_OK; 8160 } else { 8161 return __btrfs_subio_endio_read(inode, io_bio, err); 8162 } 8163 } 8164 8165 static void btrfs_endio_direct_read(struct bio *bio) 8166 { 8167 struct btrfs_dio_private *dip = bio->bi_private; 8168 struct inode *inode = dip->inode; 8169 struct bio *dio_bio; 8170 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8171 blk_status_t err = bio->bi_status; 8172 8173 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8174 err = btrfs_subio_endio_read(inode, io_bio, err); 8175 8176 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8177 dip->logical_offset + dip->bytes - 1); 8178 dio_bio = dip->dio_bio; 8179 8180 kfree(dip); 8181 8182 dio_bio->bi_status = err; 8183 dio_end_io(dio_bio); 8184 8185 if (io_bio->end_io) 8186 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8187 bio_put(bio); 8188 } 8189 8190 static void __endio_write_update_ordered(struct inode *inode, 8191 const u64 offset, const u64 bytes, 8192 const bool uptodate) 8193 { 8194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8195 struct btrfs_ordered_extent *ordered = NULL; 8196 struct btrfs_workqueue *wq; 8197 btrfs_work_func_t func; 8198 u64 ordered_offset = offset; 8199 u64 ordered_bytes = bytes; 8200 u64 last_offset; 8201 int ret; 8202 8203 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8204 wq = fs_info->endio_freespace_worker; 8205 func = btrfs_freespace_write_helper; 8206 } else { 8207 wq = fs_info->endio_write_workers; 8208 func = btrfs_endio_write_helper; 8209 } 8210 8211 again: 8212 last_offset = ordered_offset; 8213 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8214 &ordered_offset, 8215 ordered_bytes, 8216 uptodate); 8217 if (!ret) 8218 goto out_test; 8219 8220 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8221 btrfs_queue_work(wq, &ordered->work); 8222 out_test: 8223 /* 8224 * If btrfs_dec_test_ordered_pending does not find any ordered extent 8225 * in the range, we can exit. 8226 */ 8227 if (ordered_offset == last_offset) 8228 return; 8229 /* 8230 * our bio might span multiple ordered extents. If we haven't 8231 * completed the accounting for the whole dio, go back and try again 8232 */ 8233 if (ordered_offset < offset + bytes) { 8234 ordered_bytes = offset + bytes - ordered_offset; 8235 ordered = NULL; 8236 goto again; 8237 } 8238 } 8239 8240 static void btrfs_endio_direct_write(struct bio *bio) 8241 { 8242 struct btrfs_dio_private *dip = bio->bi_private; 8243 struct bio *dio_bio = dip->dio_bio; 8244 8245 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8246 dip->bytes, !bio->bi_status); 8247 8248 kfree(dip); 8249 8250 dio_bio->bi_status = bio->bi_status; 8251 dio_end_io(dio_bio); 8252 bio_put(bio); 8253 } 8254 8255 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data, 8256 struct bio *bio, int mirror_num, 8257 unsigned long bio_flags, u64 offset) 8258 { 8259 struct inode *inode = private_data; 8260 blk_status_t ret; 8261 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8262 BUG_ON(ret); /* -ENOMEM */ 8263 return 0; 8264 } 8265 8266 static void btrfs_end_dio_bio(struct bio *bio) 8267 { 8268 struct btrfs_dio_private *dip = bio->bi_private; 8269 blk_status_t err = bio->bi_status; 8270 8271 if (err) 8272 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8273 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8274 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8275 bio->bi_opf, 8276 (unsigned long long)bio->bi_iter.bi_sector, 8277 bio->bi_iter.bi_size, err); 8278 8279 if (dip->subio_endio) 8280 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8281 8282 if (err) { 8283 dip->errors = 1; 8284 8285 /* 8286 * before atomic variable goto zero, we must make sure 8287 * dip->errors is perceived to be set. 8288 */ 8289 smp_mb__before_atomic(); 8290 } 8291 8292 /* if there are more bios still pending for this dio, just exit */ 8293 if (!atomic_dec_and_test(&dip->pending_bios)) 8294 goto out; 8295 8296 if (dip->errors) { 8297 bio_io_error(dip->orig_bio); 8298 } else { 8299 dip->dio_bio->bi_status = BLK_STS_OK; 8300 bio_endio(dip->orig_bio); 8301 } 8302 out: 8303 bio_put(bio); 8304 } 8305 8306 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8307 struct btrfs_dio_private *dip, 8308 struct bio *bio, 8309 u64 file_offset) 8310 { 8311 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8312 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8313 blk_status_t ret; 8314 8315 /* 8316 * We load all the csum data we need when we submit 8317 * the first bio to reduce the csum tree search and 8318 * contention. 8319 */ 8320 if (dip->logical_offset == file_offset) { 8321 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8322 file_offset); 8323 if (ret) 8324 return ret; 8325 } 8326 8327 if (bio == dip->orig_bio) 8328 return 0; 8329 8330 file_offset -= dip->logical_offset; 8331 file_offset >>= inode->i_sb->s_blocksize_bits; 8332 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8333 8334 return 0; 8335 } 8336 8337 static inline blk_status_t 8338 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, 8339 int async_submit) 8340 { 8341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8342 struct btrfs_dio_private *dip = bio->bi_private; 8343 bool write = bio_op(bio) == REQ_OP_WRITE; 8344 blk_status_t ret; 8345 8346 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8347 if (async_submit) 8348 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8349 8350 if (!write) { 8351 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8352 if (ret) 8353 goto err; 8354 } 8355 8356 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8357 goto map; 8358 8359 if (write && async_submit) { 8360 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8361 file_offset, inode, 8362 __btrfs_submit_bio_start_direct_io, 8363 __btrfs_submit_bio_done); 8364 goto err; 8365 } else if (write) { 8366 /* 8367 * If we aren't doing async submit, calculate the csum of the 8368 * bio now. 8369 */ 8370 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8371 if (ret) 8372 goto err; 8373 } else { 8374 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8375 file_offset); 8376 if (ret) 8377 goto err; 8378 } 8379 map: 8380 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8381 err: 8382 return ret; 8383 } 8384 8385 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8386 { 8387 struct inode *inode = dip->inode; 8388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8389 struct bio *bio; 8390 struct bio *orig_bio = dip->orig_bio; 8391 u64 start_sector = orig_bio->bi_iter.bi_sector; 8392 u64 file_offset = dip->logical_offset; 8393 u64 map_length; 8394 int async_submit = 0; 8395 u64 submit_len; 8396 int clone_offset = 0; 8397 int clone_len; 8398 int ret; 8399 blk_status_t status; 8400 8401 map_length = orig_bio->bi_iter.bi_size; 8402 submit_len = map_length; 8403 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8404 &map_length, NULL, 0); 8405 if (ret) 8406 return -EIO; 8407 8408 if (map_length >= submit_len) { 8409 bio = orig_bio; 8410 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8411 goto submit; 8412 } 8413 8414 /* async crcs make it difficult to collect full stripe writes. */ 8415 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8416 async_submit = 0; 8417 else 8418 async_submit = 1; 8419 8420 /* bio split */ 8421 ASSERT(map_length <= INT_MAX); 8422 atomic_inc(&dip->pending_bios); 8423 do { 8424 clone_len = min_t(int, submit_len, map_length); 8425 8426 /* 8427 * This will never fail as it's passing GPF_NOFS and 8428 * the allocation is backed by btrfs_bioset. 8429 */ 8430 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8431 clone_len); 8432 bio->bi_private = dip; 8433 bio->bi_end_io = btrfs_end_dio_bio; 8434 btrfs_io_bio(bio)->logical = file_offset; 8435 8436 ASSERT(submit_len >= clone_len); 8437 submit_len -= clone_len; 8438 if (submit_len == 0) 8439 break; 8440 8441 /* 8442 * Increase the count before we submit the bio so we know 8443 * the end IO handler won't happen before we increase the 8444 * count. Otherwise, the dip might get freed before we're 8445 * done setting it up. 8446 */ 8447 atomic_inc(&dip->pending_bios); 8448 8449 status = __btrfs_submit_dio_bio(bio, inode, file_offset, 8450 async_submit); 8451 if (status) { 8452 bio_put(bio); 8453 atomic_dec(&dip->pending_bios); 8454 goto out_err; 8455 } 8456 8457 clone_offset += clone_len; 8458 start_sector += clone_len >> 9; 8459 file_offset += clone_len; 8460 8461 map_length = submit_len; 8462 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8463 start_sector << 9, &map_length, NULL, 0); 8464 if (ret) 8465 goto out_err; 8466 } while (submit_len > 0); 8467 8468 submit: 8469 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8470 if (!status) 8471 return 0; 8472 8473 bio_put(bio); 8474 out_err: 8475 dip->errors = 1; 8476 /* 8477 * before atomic variable goto zero, we must 8478 * make sure dip->errors is perceived to be set. 8479 */ 8480 smp_mb__before_atomic(); 8481 if (atomic_dec_and_test(&dip->pending_bios)) 8482 bio_io_error(dip->orig_bio); 8483 8484 /* bio_end_io() will handle error, so we needn't return it */ 8485 return 0; 8486 } 8487 8488 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8489 loff_t file_offset) 8490 { 8491 struct btrfs_dio_private *dip = NULL; 8492 struct bio *bio = NULL; 8493 struct btrfs_io_bio *io_bio; 8494 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8495 int ret = 0; 8496 8497 bio = btrfs_bio_clone(dio_bio); 8498 8499 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8500 if (!dip) { 8501 ret = -ENOMEM; 8502 goto free_ordered; 8503 } 8504 8505 dip->private = dio_bio->bi_private; 8506 dip->inode = inode; 8507 dip->logical_offset = file_offset; 8508 dip->bytes = dio_bio->bi_iter.bi_size; 8509 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8510 bio->bi_private = dip; 8511 dip->orig_bio = bio; 8512 dip->dio_bio = dio_bio; 8513 atomic_set(&dip->pending_bios, 0); 8514 io_bio = btrfs_io_bio(bio); 8515 io_bio->logical = file_offset; 8516 8517 if (write) { 8518 bio->bi_end_io = btrfs_endio_direct_write; 8519 } else { 8520 bio->bi_end_io = btrfs_endio_direct_read; 8521 dip->subio_endio = btrfs_subio_endio_read; 8522 } 8523 8524 /* 8525 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8526 * even if we fail to submit a bio, because in such case we do the 8527 * corresponding error handling below and it must not be done a second 8528 * time by btrfs_direct_IO(). 8529 */ 8530 if (write) { 8531 struct btrfs_dio_data *dio_data = current->journal_info; 8532 8533 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8534 dip->bytes; 8535 dio_data->unsubmitted_oe_range_start = 8536 dio_data->unsubmitted_oe_range_end; 8537 } 8538 8539 ret = btrfs_submit_direct_hook(dip); 8540 if (!ret) 8541 return; 8542 8543 if (io_bio->end_io) 8544 io_bio->end_io(io_bio, ret); 8545 8546 free_ordered: 8547 /* 8548 * If we arrived here it means either we failed to submit the dip 8549 * or we either failed to clone the dio_bio or failed to allocate the 8550 * dip. If we cloned the dio_bio and allocated the dip, we can just 8551 * call bio_endio against our io_bio so that we get proper resource 8552 * cleanup if we fail to submit the dip, otherwise, we must do the 8553 * same as btrfs_endio_direct_[write|read] because we can't call these 8554 * callbacks - they require an allocated dip and a clone of dio_bio. 8555 */ 8556 if (bio && dip) { 8557 bio_io_error(bio); 8558 /* 8559 * The end io callbacks free our dip, do the final put on bio 8560 * and all the cleanup and final put for dio_bio (through 8561 * dio_end_io()). 8562 */ 8563 dip = NULL; 8564 bio = NULL; 8565 } else { 8566 if (write) 8567 __endio_write_update_ordered(inode, 8568 file_offset, 8569 dio_bio->bi_iter.bi_size, 8570 false); 8571 else 8572 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8573 file_offset + dio_bio->bi_iter.bi_size - 1); 8574 8575 dio_bio->bi_status = BLK_STS_IOERR; 8576 /* 8577 * Releases and cleans up our dio_bio, no need to bio_put() 8578 * nor bio_endio()/bio_io_error() against dio_bio. 8579 */ 8580 dio_end_io(dio_bio); 8581 } 8582 if (bio) 8583 bio_put(bio); 8584 kfree(dip); 8585 } 8586 8587 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8588 const struct iov_iter *iter, loff_t offset) 8589 { 8590 int seg; 8591 int i; 8592 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8593 ssize_t retval = -EINVAL; 8594 8595 if (offset & blocksize_mask) 8596 goto out; 8597 8598 if (iov_iter_alignment(iter) & blocksize_mask) 8599 goto out; 8600 8601 /* If this is a write we don't need to check anymore */ 8602 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8603 return 0; 8604 /* 8605 * Check to make sure we don't have duplicate iov_base's in this 8606 * iovec, if so return EINVAL, otherwise we'll get csum errors 8607 * when reading back. 8608 */ 8609 for (seg = 0; seg < iter->nr_segs; seg++) { 8610 for (i = seg + 1; i < iter->nr_segs; i++) { 8611 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8612 goto out; 8613 } 8614 } 8615 retval = 0; 8616 out: 8617 return retval; 8618 } 8619 8620 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8621 { 8622 struct file *file = iocb->ki_filp; 8623 struct inode *inode = file->f_mapping->host; 8624 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8625 struct btrfs_dio_data dio_data = { 0 }; 8626 struct extent_changeset *data_reserved = NULL; 8627 loff_t offset = iocb->ki_pos; 8628 size_t count = 0; 8629 int flags = 0; 8630 bool wakeup = true; 8631 bool relock = false; 8632 ssize_t ret; 8633 8634 if (check_direct_IO(fs_info, iter, offset)) 8635 return 0; 8636 8637 inode_dio_begin(inode); 8638 8639 /* 8640 * The generic stuff only does filemap_write_and_wait_range, which 8641 * isn't enough if we've written compressed pages to this area, so 8642 * we need to flush the dirty pages again to make absolutely sure 8643 * that any outstanding dirty pages are on disk. 8644 */ 8645 count = iov_iter_count(iter); 8646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8647 &BTRFS_I(inode)->runtime_flags)) 8648 filemap_fdatawrite_range(inode->i_mapping, offset, 8649 offset + count - 1); 8650 8651 if (iov_iter_rw(iter) == WRITE) { 8652 /* 8653 * If the write DIO is beyond the EOF, we need update 8654 * the isize, but it is protected by i_mutex. So we can 8655 * not unlock the i_mutex at this case. 8656 */ 8657 if (offset + count <= inode->i_size) { 8658 dio_data.overwrite = 1; 8659 inode_unlock(inode); 8660 relock = true; 8661 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8662 ret = -EAGAIN; 8663 goto out; 8664 } 8665 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8666 offset, count); 8667 if (ret) 8668 goto out; 8669 8670 /* 8671 * We need to know how many extents we reserved so that we can 8672 * do the accounting properly if we go over the number we 8673 * originally calculated. Abuse current->journal_info for this. 8674 */ 8675 dio_data.reserve = round_up(count, 8676 fs_info->sectorsize); 8677 dio_data.unsubmitted_oe_range_start = (u64)offset; 8678 dio_data.unsubmitted_oe_range_end = (u64)offset; 8679 current->journal_info = &dio_data; 8680 down_read(&BTRFS_I(inode)->dio_sem); 8681 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8682 &BTRFS_I(inode)->runtime_flags)) { 8683 inode_dio_end(inode); 8684 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8685 wakeup = false; 8686 } 8687 8688 ret = __blockdev_direct_IO(iocb, inode, 8689 fs_info->fs_devices->latest_bdev, 8690 iter, btrfs_get_blocks_direct, NULL, 8691 btrfs_submit_direct, flags); 8692 if (iov_iter_rw(iter) == WRITE) { 8693 up_read(&BTRFS_I(inode)->dio_sem); 8694 current->journal_info = NULL; 8695 if (ret < 0 && ret != -EIOCBQUEUED) { 8696 if (dio_data.reserve) 8697 btrfs_delalloc_release_space(inode, data_reserved, 8698 offset, dio_data.reserve); 8699 /* 8700 * On error we might have left some ordered extents 8701 * without submitting corresponding bios for them, so 8702 * cleanup them up to avoid other tasks getting them 8703 * and waiting for them to complete forever. 8704 */ 8705 if (dio_data.unsubmitted_oe_range_start < 8706 dio_data.unsubmitted_oe_range_end) 8707 __endio_write_update_ordered(inode, 8708 dio_data.unsubmitted_oe_range_start, 8709 dio_data.unsubmitted_oe_range_end - 8710 dio_data.unsubmitted_oe_range_start, 8711 false); 8712 } else if (ret >= 0 && (size_t)ret < count) 8713 btrfs_delalloc_release_space(inode, data_reserved, 8714 offset, count - (size_t)ret); 8715 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8716 } 8717 out: 8718 if (wakeup) 8719 inode_dio_end(inode); 8720 if (relock) 8721 inode_lock(inode); 8722 8723 extent_changeset_free(data_reserved); 8724 return ret; 8725 } 8726 8727 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8728 8729 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8730 __u64 start, __u64 len) 8731 { 8732 int ret; 8733 8734 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8735 if (ret) 8736 return ret; 8737 8738 return extent_fiemap(inode, fieinfo, start, len); 8739 } 8740 8741 int btrfs_readpage(struct file *file, struct page *page) 8742 { 8743 struct extent_io_tree *tree; 8744 tree = &BTRFS_I(page->mapping->host)->io_tree; 8745 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8746 } 8747 8748 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8749 { 8750 struct inode *inode = page->mapping->host; 8751 int ret; 8752 8753 if (current->flags & PF_MEMALLOC) { 8754 redirty_page_for_writepage(wbc, page); 8755 unlock_page(page); 8756 return 0; 8757 } 8758 8759 /* 8760 * If we are under memory pressure we will call this directly from the 8761 * VM, we need to make sure we have the inode referenced for the ordered 8762 * extent. If not just return like we didn't do anything. 8763 */ 8764 if (!igrab(inode)) { 8765 redirty_page_for_writepage(wbc, page); 8766 return AOP_WRITEPAGE_ACTIVATE; 8767 } 8768 ret = extent_write_full_page(page, wbc); 8769 btrfs_add_delayed_iput(inode); 8770 return ret; 8771 } 8772 8773 static int btrfs_writepages(struct address_space *mapping, 8774 struct writeback_control *wbc) 8775 { 8776 struct extent_io_tree *tree; 8777 8778 tree = &BTRFS_I(mapping->host)->io_tree; 8779 return extent_writepages(tree, mapping, wbc); 8780 } 8781 8782 static int 8783 btrfs_readpages(struct file *file, struct address_space *mapping, 8784 struct list_head *pages, unsigned nr_pages) 8785 { 8786 struct extent_io_tree *tree; 8787 tree = &BTRFS_I(mapping->host)->io_tree; 8788 return extent_readpages(tree, mapping, pages, nr_pages); 8789 } 8790 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8791 { 8792 struct extent_io_tree *tree; 8793 struct extent_map_tree *map; 8794 int ret; 8795 8796 tree = &BTRFS_I(page->mapping->host)->io_tree; 8797 map = &BTRFS_I(page->mapping->host)->extent_tree; 8798 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8799 if (ret == 1) { 8800 ClearPagePrivate(page); 8801 set_page_private(page, 0); 8802 put_page(page); 8803 } 8804 return ret; 8805 } 8806 8807 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8808 { 8809 if (PageWriteback(page) || PageDirty(page)) 8810 return 0; 8811 return __btrfs_releasepage(page, gfp_flags); 8812 } 8813 8814 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8815 unsigned int length) 8816 { 8817 struct inode *inode = page->mapping->host; 8818 struct extent_io_tree *tree; 8819 struct btrfs_ordered_extent *ordered; 8820 struct extent_state *cached_state = NULL; 8821 u64 page_start = page_offset(page); 8822 u64 page_end = page_start + PAGE_SIZE - 1; 8823 u64 start; 8824 u64 end; 8825 int inode_evicting = inode->i_state & I_FREEING; 8826 8827 /* 8828 * we have the page locked, so new writeback can't start, 8829 * and the dirty bit won't be cleared while we are here. 8830 * 8831 * Wait for IO on this page so that we can safely clear 8832 * the PagePrivate2 bit and do ordered accounting 8833 */ 8834 wait_on_page_writeback(page); 8835 8836 tree = &BTRFS_I(inode)->io_tree; 8837 if (offset) { 8838 btrfs_releasepage(page, GFP_NOFS); 8839 return; 8840 } 8841 8842 if (!inode_evicting) 8843 lock_extent_bits(tree, page_start, page_end, &cached_state); 8844 again: 8845 start = page_start; 8846 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8847 page_end - start + 1); 8848 if (ordered) { 8849 end = min(page_end, ordered->file_offset + ordered->len - 1); 8850 /* 8851 * IO on this page will never be started, so we need 8852 * to account for any ordered extents now 8853 */ 8854 if (!inode_evicting) 8855 clear_extent_bit(tree, start, end, 8856 EXTENT_DIRTY | EXTENT_DELALLOC | 8857 EXTENT_DELALLOC_NEW | 8858 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8859 EXTENT_DEFRAG, 1, 0, &cached_state); 8860 /* 8861 * whoever cleared the private bit is responsible 8862 * for the finish_ordered_io 8863 */ 8864 if (TestClearPagePrivate2(page)) { 8865 struct btrfs_ordered_inode_tree *tree; 8866 u64 new_len; 8867 8868 tree = &BTRFS_I(inode)->ordered_tree; 8869 8870 spin_lock_irq(&tree->lock); 8871 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8872 new_len = start - ordered->file_offset; 8873 if (new_len < ordered->truncated_len) 8874 ordered->truncated_len = new_len; 8875 spin_unlock_irq(&tree->lock); 8876 8877 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8878 start, 8879 end - start + 1, 1)) 8880 btrfs_finish_ordered_io(ordered); 8881 } 8882 btrfs_put_ordered_extent(ordered); 8883 if (!inode_evicting) { 8884 cached_state = NULL; 8885 lock_extent_bits(tree, start, end, 8886 &cached_state); 8887 } 8888 8889 start = end + 1; 8890 if (start < page_end) 8891 goto again; 8892 } 8893 8894 /* 8895 * Qgroup reserved space handler 8896 * Page here will be either 8897 * 1) Already written to disk 8898 * In this case, its reserved space is released from data rsv map 8899 * and will be freed by delayed_ref handler finally. 8900 * So even we call qgroup_free_data(), it won't decrease reserved 8901 * space. 8902 * 2) Not written to disk 8903 * This means the reserved space should be freed here. However, 8904 * if a truncate invalidates the page (by clearing PageDirty) 8905 * and the page is accounted for while allocating extent 8906 * in btrfs_check_data_free_space() we let delayed_ref to 8907 * free the entire extent. 8908 */ 8909 if (PageDirty(page)) 8910 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8911 if (!inode_evicting) { 8912 clear_extent_bit(tree, page_start, page_end, 8913 EXTENT_LOCKED | EXTENT_DIRTY | 8914 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8915 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8916 &cached_state); 8917 8918 __btrfs_releasepage(page, GFP_NOFS); 8919 } 8920 8921 ClearPageChecked(page); 8922 if (PagePrivate(page)) { 8923 ClearPagePrivate(page); 8924 set_page_private(page, 0); 8925 put_page(page); 8926 } 8927 } 8928 8929 /* 8930 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8931 * called from a page fault handler when a page is first dirtied. Hence we must 8932 * be careful to check for EOF conditions here. We set the page up correctly 8933 * for a written page which means we get ENOSPC checking when writing into 8934 * holes and correct delalloc and unwritten extent mapping on filesystems that 8935 * support these features. 8936 * 8937 * We are not allowed to take the i_mutex here so we have to play games to 8938 * protect against truncate races as the page could now be beyond EOF. Because 8939 * vmtruncate() writes the inode size before removing pages, once we have the 8940 * page lock we can determine safely if the page is beyond EOF. If it is not 8941 * beyond EOF, then the page is guaranteed safe against truncation until we 8942 * unlock the page. 8943 */ 8944 int btrfs_page_mkwrite(struct vm_fault *vmf) 8945 { 8946 struct page *page = vmf->page; 8947 struct inode *inode = file_inode(vmf->vma->vm_file); 8948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8949 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8950 struct btrfs_ordered_extent *ordered; 8951 struct extent_state *cached_state = NULL; 8952 struct extent_changeset *data_reserved = NULL; 8953 char *kaddr; 8954 unsigned long zero_start; 8955 loff_t size; 8956 int ret; 8957 int reserved = 0; 8958 u64 reserved_space; 8959 u64 page_start; 8960 u64 page_end; 8961 u64 end; 8962 8963 reserved_space = PAGE_SIZE; 8964 8965 sb_start_pagefault(inode->i_sb); 8966 page_start = page_offset(page); 8967 page_end = page_start + PAGE_SIZE - 1; 8968 end = page_end; 8969 8970 /* 8971 * Reserving delalloc space after obtaining the page lock can lead to 8972 * deadlock. For example, if a dirty page is locked by this function 8973 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8974 * dirty page write out, then the btrfs_writepage() function could 8975 * end up waiting indefinitely to get a lock on the page currently 8976 * being processed by btrfs_page_mkwrite() function. 8977 */ 8978 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8979 reserved_space); 8980 if (!ret) { 8981 ret = file_update_time(vmf->vma->vm_file); 8982 reserved = 1; 8983 } 8984 if (ret) { 8985 if (ret == -ENOMEM) 8986 ret = VM_FAULT_OOM; 8987 else /* -ENOSPC, -EIO, etc */ 8988 ret = VM_FAULT_SIGBUS; 8989 if (reserved) 8990 goto out; 8991 goto out_noreserve; 8992 } 8993 8994 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8995 again: 8996 lock_page(page); 8997 size = i_size_read(inode); 8998 8999 if ((page->mapping != inode->i_mapping) || 9000 (page_start >= size)) { 9001 /* page got truncated out from underneath us */ 9002 goto out_unlock; 9003 } 9004 wait_on_page_writeback(page); 9005 9006 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9007 set_page_extent_mapped(page); 9008 9009 /* 9010 * we can't set the delalloc bits if there are pending ordered 9011 * extents. Drop our locks and wait for them to finish 9012 */ 9013 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9014 PAGE_SIZE); 9015 if (ordered) { 9016 unlock_extent_cached(io_tree, page_start, page_end, 9017 &cached_state); 9018 unlock_page(page); 9019 btrfs_start_ordered_extent(inode, ordered, 1); 9020 btrfs_put_ordered_extent(ordered); 9021 goto again; 9022 } 9023 9024 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9025 reserved_space = round_up(size - page_start, 9026 fs_info->sectorsize); 9027 if (reserved_space < PAGE_SIZE) { 9028 end = page_start + reserved_space - 1; 9029 btrfs_delalloc_release_space(inode, data_reserved, 9030 page_start, PAGE_SIZE - reserved_space); 9031 } 9032 } 9033 9034 /* 9035 * page_mkwrite gets called when the page is firstly dirtied after it's 9036 * faulted in, but write(2) could also dirty a page and set delalloc 9037 * bits, thus in this case for space account reason, we still need to 9038 * clear any delalloc bits within this page range since we have to 9039 * reserve data&meta space before lock_page() (see above comments). 9040 */ 9041 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9042 EXTENT_DIRTY | EXTENT_DELALLOC | 9043 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9044 0, 0, &cached_state); 9045 9046 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9047 &cached_state, 0); 9048 if (ret) { 9049 unlock_extent_cached(io_tree, page_start, page_end, 9050 &cached_state); 9051 ret = VM_FAULT_SIGBUS; 9052 goto out_unlock; 9053 } 9054 ret = 0; 9055 9056 /* page is wholly or partially inside EOF */ 9057 if (page_start + PAGE_SIZE > size) 9058 zero_start = size & ~PAGE_MASK; 9059 else 9060 zero_start = PAGE_SIZE; 9061 9062 if (zero_start != PAGE_SIZE) { 9063 kaddr = kmap(page); 9064 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9065 flush_dcache_page(page); 9066 kunmap(page); 9067 } 9068 ClearPageChecked(page); 9069 set_page_dirty(page); 9070 SetPageUptodate(page); 9071 9072 BTRFS_I(inode)->last_trans = fs_info->generation; 9073 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9074 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9075 9076 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9077 9078 out_unlock: 9079 if (!ret) { 9080 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9081 sb_end_pagefault(inode->i_sb); 9082 extent_changeset_free(data_reserved); 9083 return VM_FAULT_LOCKED; 9084 } 9085 unlock_page(page); 9086 out: 9087 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9088 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9089 reserved_space); 9090 out_noreserve: 9091 sb_end_pagefault(inode->i_sb); 9092 extent_changeset_free(data_reserved); 9093 return ret; 9094 } 9095 9096 static int btrfs_truncate(struct inode *inode) 9097 { 9098 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9099 struct btrfs_root *root = BTRFS_I(inode)->root; 9100 struct btrfs_block_rsv *rsv; 9101 int ret = 0; 9102 int err = 0; 9103 struct btrfs_trans_handle *trans; 9104 u64 mask = fs_info->sectorsize - 1; 9105 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9106 9107 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9108 (u64)-1); 9109 if (ret) 9110 return ret; 9111 9112 /* 9113 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9114 * 3 things going on here 9115 * 9116 * 1) We need to reserve space for our orphan item and the space to 9117 * delete our orphan item. Lord knows we don't want to have a dangling 9118 * orphan item because we didn't reserve space to remove it. 9119 * 9120 * 2) We need to reserve space to update our inode. 9121 * 9122 * 3) We need to have something to cache all the space that is going to 9123 * be free'd up by the truncate operation, but also have some slack 9124 * space reserved in case it uses space during the truncate (thank you 9125 * very much snapshotting). 9126 * 9127 * And we need these to all be separate. The fact is we can use a lot of 9128 * space doing the truncate, and we have no earthly idea how much space 9129 * we will use, so we need the truncate reservation to be separate so it 9130 * doesn't end up using space reserved for updating the inode or 9131 * removing the orphan item. We also need to be able to stop the 9132 * transaction and start a new one, which means we need to be able to 9133 * update the inode several times, and we have no idea of knowing how 9134 * many times that will be, so we can't just reserve 1 item for the 9135 * entirety of the operation, so that has to be done separately as well. 9136 * Then there is the orphan item, which does indeed need to be held on 9137 * to for the whole operation, and we need nobody to touch this reserved 9138 * space except the orphan code. 9139 * 9140 * So that leaves us with 9141 * 9142 * 1) root->orphan_block_rsv - for the orphan deletion. 9143 * 2) rsv - for the truncate reservation, which we will steal from the 9144 * transaction reservation. 9145 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9146 * updating the inode. 9147 */ 9148 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9149 if (!rsv) 9150 return -ENOMEM; 9151 rsv->size = min_size; 9152 rsv->failfast = 1; 9153 9154 /* 9155 * 1 for the truncate slack space 9156 * 1 for updating the inode. 9157 */ 9158 trans = btrfs_start_transaction(root, 2); 9159 if (IS_ERR(trans)) { 9160 err = PTR_ERR(trans); 9161 goto out; 9162 } 9163 9164 /* Migrate the slack space for the truncate to our reserve */ 9165 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9166 min_size, 0); 9167 BUG_ON(ret); 9168 9169 /* 9170 * So if we truncate and then write and fsync we normally would just 9171 * write the extents that changed, which is a problem if we need to 9172 * first truncate that entire inode. So set this flag so we write out 9173 * all of the extents in the inode to the sync log so we're completely 9174 * safe. 9175 */ 9176 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9177 trans->block_rsv = rsv; 9178 9179 while (1) { 9180 ret = btrfs_truncate_inode_items(trans, root, inode, 9181 inode->i_size, 9182 BTRFS_EXTENT_DATA_KEY); 9183 trans->block_rsv = &fs_info->trans_block_rsv; 9184 if (ret != -ENOSPC && ret != -EAGAIN) { 9185 err = ret; 9186 break; 9187 } 9188 9189 ret = btrfs_update_inode(trans, root, inode); 9190 if (ret) { 9191 err = ret; 9192 break; 9193 } 9194 9195 btrfs_end_transaction(trans); 9196 btrfs_btree_balance_dirty(fs_info); 9197 9198 trans = btrfs_start_transaction(root, 2); 9199 if (IS_ERR(trans)) { 9200 ret = err = PTR_ERR(trans); 9201 trans = NULL; 9202 break; 9203 } 9204 9205 btrfs_block_rsv_release(fs_info, rsv, -1); 9206 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9207 rsv, min_size, 0); 9208 BUG_ON(ret); /* shouldn't happen */ 9209 trans->block_rsv = rsv; 9210 } 9211 9212 /* 9213 * We can't call btrfs_truncate_block inside a trans handle as we could 9214 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9215 * we've truncated everything except the last little bit, and can do 9216 * btrfs_truncate_block and then update the disk_i_size. 9217 */ 9218 if (ret == NEED_TRUNCATE_BLOCK) { 9219 btrfs_end_transaction(trans); 9220 btrfs_btree_balance_dirty(fs_info); 9221 9222 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9223 if (ret) 9224 goto out; 9225 trans = btrfs_start_transaction(root, 1); 9226 if (IS_ERR(trans)) { 9227 ret = PTR_ERR(trans); 9228 goto out; 9229 } 9230 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9231 } 9232 9233 if (ret == 0 && inode->i_nlink > 0) { 9234 trans->block_rsv = root->orphan_block_rsv; 9235 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9236 if (ret) 9237 err = ret; 9238 } 9239 9240 if (trans) { 9241 trans->block_rsv = &fs_info->trans_block_rsv; 9242 ret = btrfs_update_inode(trans, root, inode); 9243 if (ret && !err) 9244 err = ret; 9245 9246 ret = btrfs_end_transaction(trans); 9247 btrfs_btree_balance_dirty(fs_info); 9248 } 9249 out: 9250 btrfs_free_block_rsv(fs_info, rsv); 9251 9252 if (ret && !err) 9253 err = ret; 9254 9255 return err; 9256 } 9257 9258 /* 9259 * create a new subvolume directory/inode (helper for the ioctl). 9260 */ 9261 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9262 struct btrfs_root *new_root, 9263 struct btrfs_root *parent_root, 9264 u64 new_dirid) 9265 { 9266 struct inode *inode; 9267 int err; 9268 u64 index = 0; 9269 9270 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9271 new_dirid, new_dirid, 9272 S_IFDIR | (~current_umask() & S_IRWXUGO), 9273 &index); 9274 if (IS_ERR(inode)) 9275 return PTR_ERR(inode); 9276 inode->i_op = &btrfs_dir_inode_operations; 9277 inode->i_fop = &btrfs_dir_file_operations; 9278 9279 set_nlink(inode, 1); 9280 btrfs_i_size_write(BTRFS_I(inode), 0); 9281 unlock_new_inode(inode); 9282 9283 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9284 if (err) 9285 btrfs_err(new_root->fs_info, 9286 "error inheriting subvolume %llu properties: %d", 9287 new_root->root_key.objectid, err); 9288 9289 err = btrfs_update_inode(trans, new_root, inode); 9290 9291 iput(inode); 9292 return err; 9293 } 9294 9295 struct inode *btrfs_alloc_inode(struct super_block *sb) 9296 { 9297 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9298 struct btrfs_inode *ei; 9299 struct inode *inode; 9300 9301 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9302 if (!ei) 9303 return NULL; 9304 9305 ei->root = NULL; 9306 ei->generation = 0; 9307 ei->last_trans = 0; 9308 ei->last_sub_trans = 0; 9309 ei->logged_trans = 0; 9310 ei->delalloc_bytes = 0; 9311 ei->new_delalloc_bytes = 0; 9312 ei->defrag_bytes = 0; 9313 ei->disk_i_size = 0; 9314 ei->flags = 0; 9315 ei->csum_bytes = 0; 9316 ei->index_cnt = (u64)-1; 9317 ei->dir_index = 0; 9318 ei->last_unlink_trans = 0; 9319 ei->last_log_commit = 0; 9320 ei->delayed_iput_count = 0; 9321 9322 spin_lock_init(&ei->lock); 9323 ei->outstanding_extents = 0; 9324 if (sb->s_magic != BTRFS_TEST_MAGIC) 9325 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9326 BTRFS_BLOCK_RSV_DELALLOC); 9327 ei->runtime_flags = 0; 9328 ei->prop_compress = BTRFS_COMPRESS_NONE; 9329 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9330 9331 ei->delayed_node = NULL; 9332 9333 ei->i_otime.tv_sec = 0; 9334 ei->i_otime.tv_nsec = 0; 9335 9336 inode = &ei->vfs_inode; 9337 extent_map_tree_init(&ei->extent_tree); 9338 extent_io_tree_init(&ei->io_tree, inode); 9339 extent_io_tree_init(&ei->io_failure_tree, inode); 9340 ei->io_tree.track_uptodate = 1; 9341 ei->io_failure_tree.track_uptodate = 1; 9342 atomic_set(&ei->sync_writers, 0); 9343 mutex_init(&ei->log_mutex); 9344 mutex_init(&ei->delalloc_mutex); 9345 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9346 INIT_LIST_HEAD(&ei->delalloc_inodes); 9347 INIT_LIST_HEAD(&ei->delayed_iput); 9348 RB_CLEAR_NODE(&ei->rb_node); 9349 init_rwsem(&ei->dio_sem); 9350 9351 return inode; 9352 } 9353 9354 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9355 void btrfs_test_destroy_inode(struct inode *inode) 9356 { 9357 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9358 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9359 } 9360 #endif 9361 9362 static void btrfs_i_callback(struct rcu_head *head) 9363 { 9364 struct inode *inode = container_of(head, struct inode, i_rcu); 9365 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9366 } 9367 9368 void btrfs_destroy_inode(struct inode *inode) 9369 { 9370 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9371 struct btrfs_ordered_extent *ordered; 9372 struct btrfs_root *root = BTRFS_I(inode)->root; 9373 9374 WARN_ON(!hlist_empty(&inode->i_dentry)); 9375 WARN_ON(inode->i_data.nrpages); 9376 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9377 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9378 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9379 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9380 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9381 WARN_ON(BTRFS_I(inode)->csum_bytes); 9382 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9383 9384 /* 9385 * This can happen where we create an inode, but somebody else also 9386 * created the same inode and we need to destroy the one we already 9387 * created. 9388 */ 9389 if (!root) 9390 goto free; 9391 9392 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9393 &BTRFS_I(inode)->runtime_flags)) { 9394 btrfs_info(fs_info, "inode %llu still on the orphan list", 9395 btrfs_ino(BTRFS_I(inode))); 9396 atomic_dec(&root->orphan_inodes); 9397 } 9398 9399 while (1) { 9400 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9401 if (!ordered) 9402 break; 9403 else { 9404 btrfs_err(fs_info, 9405 "found ordered extent %llu %llu on inode cleanup", 9406 ordered->file_offset, ordered->len); 9407 btrfs_remove_ordered_extent(inode, ordered); 9408 btrfs_put_ordered_extent(ordered); 9409 btrfs_put_ordered_extent(ordered); 9410 } 9411 } 9412 btrfs_qgroup_check_reserved_leak(inode); 9413 inode_tree_del(inode); 9414 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9415 free: 9416 call_rcu(&inode->i_rcu, btrfs_i_callback); 9417 } 9418 9419 int btrfs_drop_inode(struct inode *inode) 9420 { 9421 struct btrfs_root *root = BTRFS_I(inode)->root; 9422 9423 if (root == NULL) 9424 return 1; 9425 9426 /* the snap/subvol tree is on deleting */ 9427 if (btrfs_root_refs(&root->root_item) == 0) 9428 return 1; 9429 else 9430 return generic_drop_inode(inode); 9431 } 9432 9433 static void init_once(void *foo) 9434 { 9435 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9436 9437 inode_init_once(&ei->vfs_inode); 9438 } 9439 9440 void btrfs_destroy_cachep(void) 9441 { 9442 /* 9443 * Make sure all delayed rcu free inodes are flushed before we 9444 * destroy cache. 9445 */ 9446 rcu_barrier(); 9447 kmem_cache_destroy(btrfs_inode_cachep); 9448 kmem_cache_destroy(btrfs_trans_handle_cachep); 9449 kmem_cache_destroy(btrfs_path_cachep); 9450 kmem_cache_destroy(btrfs_free_space_cachep); 9451 } 9452 9453 int __init btrfs_init_cachep(void) 9454 { 9455 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9456 sizeof(struct btrfs_inode), 0, 9457 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9458 init_once); 9459 if (!btrfs_inode_cachep) 9460 goto fail; 9461 9462 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9463 sizeof(struct btrfs_trans_handle), 0, 9464 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9465 if (!btrfs_trans_handle_cachep) 9466 goto fail; 9467 9468 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9469 sizeof(struct btrfs_path), 0, 9470 SLAB_MEM_SPREAD, NULL); 9471 if (!btrfs_path_cachep) 9472 goto fail; 9473 9474 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9475 sizeof(struct btrfs_free_space), 0, 9476 SLAB_MEM_SPREAD, NULL); 9477 if (!btrfs_free_space_cachep) 9478 goto fail; 9479 9480 return 0; 9481 fail: 9482 btrfs_destroy_cachep(); 9483 return -ENOMEM; 9484 } 9485 9486 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9487 u32 request_mask, unsigned int flags) 9488 { 9489 u64 delalloc_bytes; 9490 struct inode *inode = d_inode(path->dentry); 9491 u32 blocksize = inode->i_sb->s_blocksize; 9492 u32 bi_flags = BTRFS_I(inode)->flags; 9493 9494 stat->result_mask |= STATX_BTIME; 9495 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9496 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9497 if (bi_flags & BTRFS_INODE_APPEND) 9498 stat->attributes |= STATX_ATTR_APPEND; 9499 if (bi_flags & BTRFS_INODE_COMPRESS) 9500 stat->attributes |= STATX_ATTR_COMPRESSED; 9501 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9502 stat->attributes |= STATX_ATTR_IMMUTABLE; 9503 if (bi_flags & BTRFS_INODE_NODUMP) 9504 stat->attributes |= STATX_ATTR_NODUMP; 9505 9506 stat->attributes_mask |= (STATX_ATTR_APPEND | 9507 STATX_ATTR_COMPRESSED | 9508 STATX_ATTR_IMMUTABLE | 9509 STATX_ATTR_NODUMP); 9510 9511 generic_fillattr(inode, stat); 9512 stat->dev = BTRFS_I(inode)->root->anon_dev; 9513 9514 spin_lock(&BTRFS_I(inode)->lock); 9515 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9516 spin_unlock(&BTRFS_I(inode)->lock); 9517 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9518 ALIGN(delalloc_bytes, blocksize)) >> 9; 9519 return 0; 9520 } 9521 9522 static int btrfs_rename_exchange(struct inode *old_dir, 9523 struct dentry *old_dentry, 9524 struct inode *new_dir, 9525 struct dentry *new_dentry) 9526 { 9527 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9528 struct btrfs_trans_handle *trans; 9529 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9530 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9531 struct inode *new_inode = new_dentry->d_inode; 9532 struct inode *old_inode = old_dentry->d_inode; 9533 struct timespec ctime = current_time(old_inode); 9534 struct dentry *parent; 9535 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9536 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9537 u64 old_idx = 0; 9538 u64 new_idx = 0; 9539 u64 root_objectid; 9540 int ret; 9541 bool root_log_pinned = false; 9542 bool dest_log_pinned = false; 9543 9544 /* we only allow rename subvolume link between subvolumes */ 9545 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9546 return -EXDEV; 9547 9548 /* close the race window with snapshot create/destroy ioctl */ 9549 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9550 down_read(&fs_info->subvol_sem); 9551 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9552 down_read(&fs_info->subvol_sem); 9553 9554 /* 9555 * We want to reserve the absolute worst case amount of items. So if 9556 * both inodes are subvols and we need to unlink them then that would 9557 * require 4 item modifications, but if they are both normal inodes it 9558 * would require 5 item modifications, so we'll assume their normal 9559 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9560 * should cover the worst case number of items we'll modify. 9561 */ 9562 trans = btrfs_start_transaction(root, 12); 9563 if (IS_ERR(trans)) { 9564 ret = PTR_ERR(trans); 9565 goto out_notrans; 9566 } 9567 9568 /* 9569 * We need to find a free sequence number both in the source and 9570 * in the destination directory for the exchange. 9571 */ 9572 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9573 if (ret) 9574 goto out_fail; 9575 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9576 if (ret) 9577 goto out_fail; 9578 9579 BTRFS_I(old_inode)->dir_index = 0ULL; 9580 BTRFS_I(new_inode)->dir_index = 0ULL; 9581 9582 /* Reference for the source. */ 9583 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9584 /* force full log commit if subvolume involved. */ 9585 btrfs_set_log_full_commit(fs_info, trans); 9586 } else { 9587 btrfs_pin_log_trans(root); 9588 root_log_pinned = true; 9589 ret = btrfs_insert_inode_ref(trans, dest, 9590 new_dentry->d_name.name, 9591 new_dentry->d_name.len, 9592 old_ino, 9593 btrfs_ino(BTRFS_I(new_dir)), 9594 old_idx); 9595 if (ret) 9596 goto out_fail; 9597 } 9598 9599 /* And now for the dest. */ 9600 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9601 /* force full log commit if subvolume involved. */ 9602 btrfs_set_log_full_commit(fs_info, trans); 9603 } else { 9604 btrfs_pin_log_trans(dest); 9605 dest_log_pinned = true; 9606 ret = btrfs_insert_inode_ref(trans, root, 9607 old_dentry->d_name.name, 9608 old_dentry->d_name.len, 9609 new_ino, 9610 btrfs_ino(BTRFS_I(old_dir)), 9611 new_idx); 9612 if (ret) 9613 goto out_fail; 9614 } 9615 9616 /* Update inode version and ctime/mtime. */ 9617 inode_inc_iversion(old_dir); 9618 inode_inc_iversion(new_dir); 9619 inode_inc_iversion(old_inode); 9620 inode_inc_iversion(new_inode); 9621 old_dir->i_ctime = old_dir->i_mtime = ctime; 9622 new_dir->i_ctime = new_dir->i_mtime = ctime; 9623 old_inode->i_ctime = ctime; 9624 new_inode->i_ctime = ctime; 9625 9626 if (old_dentry->d_parent != new_dentry->d_parent) { 9627 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9628 BTRFS_I(old_inode), 1); 9629 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9630 BTRFS_I(new_inode), 1); 9631 } 9632 9633 /* src is a subvolume */ 9634 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9635 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9636 ret = btrfs_unlink_subvol(trans, root, old_dir, 9637 root_objectid, 9638 old_dentry->d_name.name, 9639 old_dentry->d_name.len); 9640 } else { /* src is an inode */ 9641 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9642 BTRFS_I(old_dentry->d_inode), 9643 old_dentry->d_name.name, 9644 old_dentry->d_name.len); 9645 if (!ret) 9646 ret = btrfs_update_inode(trans, root, old_inode); 9647 } 9648 if (ret) { 9649 btrfs_abort_transaction(trans, ret); 9650 goto out_fail; 9651 } 9652 9653 /* dest is a subvolume */ 9654 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9655 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9656 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9657 root_objectid, 9658 new_dentry->d_name.name, 9659 new_dentry->d_name.len); 9660 } else { /* dest is an inode */ 9661 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9662 BTRFS_I(new_dentry->d_inode), 9663 new_dentry->d_name.name, 9664 new_dentry->d_name.len); 9665 if (!ret) 9666 ret = btrfs_update_inode(trans, dest, new_inode); 9667 } 9668 if (ret) { 9669 btrfs_abort_transaction(trans, ret); 9670 goto out_fail; 9671 } 9672 9673 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9674 new_dentry->d_name.name, 9675 new_dentry->d_name.len, 0, old_idx); 9676 if (ret) { 9677 btrfs_abort_transaction(trans, ret); 9678 goto out_fail; 9679 } 9680 9681 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9682 old_dentry->d_name.name, 9683 old_dentry->d_name.len, 0, new_idx); 9684 if (ret) { 9685 btrfs_abort_transaction(trans, ret); 9686 goto out_fail; 9687 } 9688 9689 if (old_inode->i_nlink == 1) 9690 BTRFS_I(old_inode)->dir_index = old_idx; 9691 if (new_inode->i_nlink == 1) 9692 BTRFS_I(new_inode)->dir_index = new_idx; 9693 9694 if (root_log_pinned) { 9695 parent = new_dentry->d_parent; 9696 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9697 parent); 9698 btrfs_end_log_trans(root); 9699 root_log_pinned = false; 9700 } 9701 if (dest_log_pinned) { 9702 parent = old_dentry->d_parent; 9703 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9704 parent); 9705 btrfs_end_log_trans(dest); 9706 dest_log_pinned = false; 9707 } 9708 out_fail: 9709 /* 9710 * If we have pinned a log and an error happened, we unpin tasks 9711 * trying to sync the log and force them to fallback to a transaction 9712 * commit if the log currently contains any of the inodes involved in 9713 * this rename operation (to ensure we do not persist a log with an 9714 * inconsistent state for any of these inodes or leading to any 9715 * inconsistencies when replayed). If the transaction was aborted, the 9716 * abortion reason is propagated to userspace when attempting to commit 9717 * the transaction. If the log does not contain any of these inodes, we 9718 * allow the tasks to sync it. 9719 */ 9720 if (ret && (root_log_pinned || dest_log_pinned)) { 9721 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9722 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9723 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9724 (new_inode && 9725 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9726 btrfs_set_log_full_commit(fs_info, trans); 9727 9728 if (root_log_pinned) { 9729 btrfs_end_log_trans(root); 9730 root_log_pinned = false; 9731 } 9732 if (dest_log_pinned) { 9733 btrfs_end_log_trans(dest); 9734 dest_log_pinned = false; 9735 } 9736 } 9737 ret = btrfs_end_transaction(trans); 9738 out_notrans: 9739 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9740 up_read(&fs_info->subvol_sem); 9741 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9742 up_read(&fs_info->subvol_sem); 9743 9744 return ret; 9745 } 9746 9747 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9748 struct btrfs_root *root, 9749 struct inode *dir, 9750 struct dentry *dentry) 9751 { 9752 int ret; 9753 struct inode *inode; 9754 u64 objectid; 9755 u64 index; 9756 9757 ret = btrfs_find_free_ino(root, &objectid); 9758 if (ret) 9759 return ret; 9760 9761 inode = btrfs_new_inode(trans, root, dir, 9762 dentry->d_name.name, 9763 dentry->d_name.len, 9764 btrfs_ino(BTRFS_I(dir)), 9765 objectid, 9766 S_IFCHR | WHITEOUT_MODE, 9767 &index); 9768 9769 if (IS_ERR(inode)) { 9770 ret = PTR_ERR(inode); 9771 return ret; 9772 } 9773 9774 inode->i_op = &btrfs_special_inode_operations; 9775 init_special_inode(inode, inode->i_mode, 9776 WHITEOUT_DEV); 9777 9778 ret = btrfs_init_inode_security(trans, inode, dir, 9779 &dentry->d_name); 9780 if (ret) 9781 goto out; 9782 9783 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9784 BTRFS_I(inode), 0, index); 9785 if (ret) 9786 goto out; 9787 9788 ret = btrfs_update_inode(trans, root, inode); 9789 out: 9790 unlock_new_inode(inode); 9791 if (ret) 9792 inode_dec_link_count(inode); 9793 iput(inode); 9794 9795 return ret; 9796 } 9797 9798 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9799 struct inode *new_dir, struct dentry *new_dentry, 9800 unsigned int flags) 9801 { 9802 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9803 struct btrfs_trans_handle *trans; 9804 unsigned int trans_num_items; 9805 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9806 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9807 struct inode *new_inode = d_inode(new_dentry); 9808 struct inode *old_inode = d_inode(old_dentry); 9809 u64 index = 0; 9810 u64 root_objectid; 9811 int ret; 9812 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9813 bool log_pinned = false; 9814 9815 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9816 return -EPERM; 9817 9818 /* we only allow rename subvolume link between subvolumes */ 9819 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9820 return -EXDEV; 9821 9822 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9823 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9824 return -ENOTEMPTY; 9825 9826 if (S_ISDIR(old_inode->i_mode) && new_inode && 9827 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9828 return -ENOTEMPTY; 9829 9830 9831 /* check for collisions, even if the name isn't there */ 9832 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9833 new_dentry->d_name.name, 9834 new_dentry->d_name.len); 9835 9836 if (ret) { 9837 if (ret == -EEXIST) { 9838 /* we shouldn't get 9839 * eexist without a new_inode */ 9840 if (WARN_ON(!new_inode)) { 9841 return ret; 9842 } 9843 } else { 9844 /* maybe -EOVERFLOW */ 9845 return ret; 9846 } 9847 } 9848 ret = 0; 9849 9850 /* 9851 * we're using rename to replace one file with another. Start IO on it 9852 * now so we don't add too much work to the end of the transaction 9853 */ 9854 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9855 filemap_flush(old_inode->i_mapping); 9856 9857 /* close the racy window with snapshot create/destroy ioctl */ 9858 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9859 down_read(&fs_info->subvol_sem); 9860 /* 9861 * We want to reserve the absolute worst case amount of items. So if 9862 * both inodes are subvols and we need to unlink them then that would 9863 * require 4 item modifications, but if they are both normal inodes it 9864 * would require 5 item modifications, so we'll assume they are normal 9865 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9866 * should cover the worst case number of items we'll modify. 9867 * If our rename has the whiteout flag, we need more 5 units for the 9868 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9869 * when selinux is enabled). 9870 */ 9871 trans_num_items = 11; 9872 if (flags & RENAME_WHITEOUT) 9873 trans_num_items += 5; 9874 trans = btrfs_start_transaction(root, trans_num_items); 9875 if (IS_ERR(trans)) { 9876 ret = PTR_ERR(trans); 9877 goto out_notrans; 9878 } 9879 9880 if (dest != root) 9881 btrfs_record_root_in_trans(trans, dest); 9882 9883 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9884 if (ret) 9885 goto out_fail; 9886 9887 BTRFS_I(old_inode)->dir_index = 0ULL; 9888 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9889 /* force full log commit if subvolume involved. */ 9890 btrfs_set_log_full_commit(fs_info, trans); 9891 } else { 9892 btrfs_pin_log_trans(root); 9893 log_pinned = true; 9894 ret = btrfs_insert_inode_ref(trans, dest, 9895 new_dentry->d_name.name, 9896 new_dentry->d_name.len, 9897 old_ino, 9898 btrfs_ino(BTRFS_I(new_dir)), index); 9899 if (ret) 9900 goto out_fail; 9901 } 9902 9903 inode_inc_iversion(old_dir); 9904 inode_inc_iversion(new_dir); 9905 inode_inc_iversion(old_inode); 9906 old_dir->i_ctime = old_dir->i_mtime = 9907 new_dir->i_ctime = new_dir->i_mtime = 9908 old_inode->i_ctime = current_time(old_dir); 9909 9910 if (old_dentry->d_parent != new_dentry->d_parent) 9911 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9912 BTRFS_I(old_inode), 1); 9913 9914 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9915 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9916 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9917 old_dentry->d_name.name, 9918 old_dentry->d_name.len); 9919 } else { 9920 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9921 BTRFS_I(d_inode(old_dentry)), 9922 old_dentry->d_name.name, 9923 old_dentry->d_name.len); 9924 if (!ret) 9925 ret = btrfs_update_inode(trans, root, old_inode); 9926 } 9927 if (ret) { 9928 btrfs_abort_transaction(trans, ret); 9929 goto out_fail; 9930 } 9931 9932 if (new_inode) { 9933 inode_inc_iversion(new_inode); 9934 new_inode->i_ctime = current_time(new_inode); 9935 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9936 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9937 root_objectid = BTRFS_I(new_inode)->location.objectid; 9938 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9939 root_objectid, 9940 new_dentry->d_name.name, 9941 new_dentry->d_name.len); 9942 BUG_ON(new_inode->i_nlink == 0); 9943 } else { 9944 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9945 BTRFS_I(d_inode(new_dentry)), 9946 new_dentry->d_name.name, 9947 new_dentry->d_name.len); 9948 } 9949 if (!ret && new_inode->i_nlink == 0) 9950 ret = btrfs_orphan_add(trans, 9951 BTRFS_I(d_inode(new_dentry))); 9952 if (ret) { 9953 btrfs_abort_transaction(trans, ret); 9954 goto out_fail; 9955 } 9956 } 9957 9958 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9959 new_dentry->d_name.name, 9960 new_dentry->d_name.len, 0, index); 9961 if (ret) { 9962 btrfs_abort_transaction(trans, ret); 9963 goto out_fail; 9964 } 9965 9966 if (old_inode->i_nlink == 1) 9967 BTRFS_I(old_inode)->dir_index = index; 9968 9969 if (log_pinned) { 9970 struct dentry *parent = new_dentry->d_parent; 9971 9972 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9973 parent); 9974 btrfs_end_log_trans(root); 9975 log_pinned = false; 9976 } 9977 9978 if (flags & RENAME_WHITEOUT) { 9979 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9980 old_dentry); 9981 9982 if (ret) { 9983 btrfs_abort_transaction(trans, ret); 9984 goto out_fail; 9985 } 9986 } 9987 out_fail: 9988 /* 9989 * If we have pinned the log and an error happened, we unpin tasks 9990 * trying to sync the log and force them to fallback to a transaction 9991 * commit if the log currently contains any of the inodes involved in 9992 * this rename operation (to ensure we do not persist a log with an 9993 * inconsistent state for any of these inodes or leading to any 9994 * inconsistencies when replayed). If the transaction was aborted, the 9995 * abortion reason is propagated to userspace when attempting to commit 9996 * the transaction. If the log does not contain any of these inodes, we 9997 * allow the tasks to sync it. 9998 */ 9999 if (ret && log_pinned) { 10000 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10001 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10002 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10003 (new_inode && 10004 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10005 btrfs_set_log_full_commit(fs_info, trans); 10006 10007 btrfs_end_log_trans(root); 10008 log_pinned = false; 10009 } 10010 btrfs_end_transaction(trans); 10011 out_notrans: 10012 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10013 up_read(&fs_info->subvol_sem); 10014 10015 return ret; 10016 } 10017 10018 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10019 struct inode *new_dir, struct dentry *new_dentry, 10020 unsigned int flags) 10021 { 10022 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10023 return -EINVAL; 10024 10025 if (flags & RENAME_EXCHANGE) 10026 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10027 new_dentry); 10028 10029 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10030 } 10031 10032 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10033 { 10034 struct btrfs_delalloc_work *delalloc_work; 10035 struct inode *inode; 10036 10037 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10038 work); 10039 inode = delalloc_work->inode; 10040 filemap_flush(inode->i_mapping); 10041 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10042 &BTRFS_I(inode)->runtime_flags)) 10043 filemap_flush(inode->i_mapping); 10044 10045 if (delalloc_work->delay_iput) 10046 btrfs_add_delayed_iput(inode); 10047 else 10048 iput(inode); 10049 complete(&delalloc_work->completion); 10050 } 10051 10052 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10053 int delay_iput) 10054 { 10055 struct btrfs_delalloc_work *work; 10056 10057 work = kmalloc(sizeof(*work), GFP_NOFS); 10058 if (!work) 10059 return NULL; 10060 10061 init_completion(&work->completion); 10062 INIT_LIST_HEAD(&work->list); 10063 work->inode = inode; 10064 work->delay_iput = delay_iput; 10065 WARN_ON_ONCE(!inode); 10066 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10067 btrfs_run_delalloc_work, NULL, NULL); 10068 10069 return work; 10070 } 10071 10072 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10073 { 10074 wait_for_completion(&work->completion); 10075 kfree(work); 10076 } 10077 10078 /* 10079 * some fairly slow code that needs optimization. This walks the list 10080 * of all the inodes with pending delalloc and forces them to disk. 10081 */ 10082 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10083 int nr) 10084 { 10085 struct btrfs_inode *binode; 10086 struct inode *inode; 10087 struct btrfs_delalloc_work *work, *next; 10088 struct list_head works; 10089 struct list_head splice; 10090 int ret = 0; 10091 10092 INIT_LIST_HEAD(&works); 10093 INIT_LIST_HEAD(&splice); 10094 10095 mutex_lock(&root->delalloc_mutex); 10096 spin_lock(&root->delalloc_lock); 10097 list_splice_init(&root->delalloc_inodes, &splice); 10098 while (!list_empty(&splice)) { 10099 binode = list_entry(splice.next, struct btrfs_inode, 10100 delalloc_inodes); 10101 10102 list_move_tail(&binode->delalloc_inodes, 10103 &root->delalloc_inodes); 10104 inode = igrab(&binode->vfs_inode); 10105 if (!inode) { 10106 cond_resched_lock(&root->delalloc_lock); 10107 continue; 10108 } 10109 spin_unlock(&root->delalloc_lock); 10110 10111 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10112 if (!work) { 10113 if (delay_iput) 10114 btrfs_add_delayed_iput(inode); 10115 else 10116 iput(inode); 10117 ret = -ENOMEM; 10118 goto out; 10119 } 10120 list_add_tail(&work->list, &works); 10121 btrfs_queue_work(root->fs_info->flush_workers, 10122 &work->work); 10123 ret++; 10124 if (nr != -1 && ret >= nr) 10125 goto out; 10126 cond_resched(); 10127 spin_lock(&root->delalloc_lock); 10128 } 10129 spin_unlock(&root->delalloc_lock); 10130 10131 out: 10132 list_for_each_entry_safe(work, next, &works, list) { 10133 list_del_init(&work->list); 10134 btrfs_wait_and_free_delalloc_work(work); 10135 } 10136 10137 if (!list_empty_careful(&splice)) { 10138 spin_lock(&root->delalloc_lock); 10139 list_splice_tail(&splice, &root->delalloc_inodes); 10140 spin_unlock(&root->delalloc_lock); 10141 } 10142 mutex_unlock(&root->delalloc_mutex); 10143 return ret; 10144 } 10145 10146 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10147 { 10148 struct btrfs_fs_info *fs_info = root->fs_info; 10149 int ret; 10150 10151 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10152 return -EROFS; 10153 10154 ret = __start_delalloc_inodes(root, delay_iput, -1); 10155 if (ret > 0) 10156 ret = 0; 10157 return ret; 10158 } 10159 10160 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10161 int nr) 10162 { 10163 struct btrfs_root *root; 10164 struct list_head splice; 10165 int ret; 10166 10167 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10168 return -EROFS; 10169 10170 INIT_LIST_HEAD(&splice); 10171 10172 mutex_lock(&fs_info->delalloc_root_mutex); 10173 spin_lock(&fs_info->delalloc_root_lock); 10174 list_splice_init(&fs_info->delalloc_roots, &splice); 10175 while (!list_empty(&splice) && nr) { 10176 root = list_first_entry(&splice, struct btrfs_root, 10177 delalloc_root); 10178 root = btrfs_grab_fs_root(root); 10179 BUG_ON(!root); 10180 list_move_tail(&root->delalloc_root, 10181 &fs_info->delalloc_roots); 10182 spin_unlock(&fs_info->delalloc_root_lock); 10183 10184 ret = __start_delalloc_inodes(root, delay_iput, nr); 10185 btrfs_put_fs_root(root); 10186 if (ret < 0) 10187 goto out; 10188 10189 if (nr != -1) { 10190 nr -= ret; 10191 WARN_ON(nr < 0); 10192 } 10193 spin_lock(&fs_info->delalloc_root_lock); 10194 } 10195 spin_unlock(&fs_info->delalloc_root_lock); 10196 10197 ret = 0; 10198 out: 10199 if (!list_empty_careful(&splice)) { 10200 spin_lock(&fs_info->delalloc_root_lock); 10201 list_splice_tail(&splice, &fs_info->delalloc_roots); 10202 spin_unlock(&fs_info->delalloc_root_lock); 10203 } 10204 mutex_unlock(&fs_info->delalloc_root_mutex); 10205 return ret; 10206 } 10207 10208 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10209 const char *symname) 10210 { 10211 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10212 struct btrfs_trans_handle *trans; 10213 struct btrfs_root *root = BTRFS_I(dir)->root; 10214 struct btrfs_path *path; 10215 struct btrfs_key key; 10216 struct inode *inode = NULL; 10217 int err; 10218 int drop_inode = 0; 10219 u64 objectid; 10220 u64 index = 0; 10221 int name_len; 10222 int datasize; 10223 unsigned long ptr; 10224 struct btrfs_file_extent_item *ei; 10225 struct extent_buffer *leaf; 10226 10227 name_len = strlen(symname); 10228 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10229 return -ENAMETOOLONG; 10230 10231 /* 10232 * 2 items for inode item and ref 10233 * 2 items for dir items 10234 * 1 item for updating parent inode item 10235 * 1 item for the inline extent item 10236 * 1 item for xattr if selinux is on 10237 */ 10238 trans = btrfs_start_transaction(root, 7); 10239 if (IS_ERR(trans)) 10240 return PTR_ERR(trans); 10241 10242 err = btrfs_find_free_ino(root, &objectid); 10243 if (err) 10244 goto out_unlock; 10245 10246 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10247 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10248 objectid, S_IFLNK|S_IRWXUGO, &index); 10249 if (IS_ERR(inode)) { 10250 err = PTR_ERR(inode); 10251 goto out_unlock; 10252 } 10253 10254 /* 10255 * If the active LSM wants to access the inode during 10256 * d_instantiate it needs these. Smack checks to see 10257 * if the filesystem supports xattrs by looking at the 10258 * ops vector. 10259 */ 10260 inode->i_fop = &btrfs_file_operations; 10261 inode->i_op = &btrfs_file_inode_operations; 10262 inode->i_mapping->a_ops = &btrfs_aops; 10263 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10264 10265 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10266 if (err) 10267 goto out_unlock_inode; 10268 10269 path = btrfs_alloc_path(); 10270 if (!path) { 10271 err = -ENOMEM; 10272 goto out_unlock_inode; 10273 } 10274 key.objectid = btrfs_ino(BTRFS_I(inode)); 10275 key.offset = 0; 10276 key.type = BTRFS_EXTENT_DATA_KEY; 10277 datasize = btrfs_file_extent_calc_inline_size(name_len); 10278 err = btrfs_insert_empty_item(trans, root, path, &key, 10279 datasize); 10280 if (err) { 10281 btrfs_free_path(path); 10282 goto out_unlock_inode; 10283 } 10284 leaf = path->nodes[0]; 10285 ei = btrfs_item_ptr(leaf, path->slots[0], 10286 struct btrfs_file_extent_item); 10287 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10288 btrfs_set_file_extent_type(leaf, ei, 10289 BTRFS_FILE_EXTENT_INLINE); 10290 btrfs_set_file_extent_encryption(leaf, ei, 0); 10291 btrfs_set_file_extent_compression(leaf, ei, 0); 10292 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10293 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10294 10295 ptr = btrfs_file_extent_inline_start(ei); 10296 write_extent_buffer(leaf, symname, ptr, name_len); 10297 btrfs_mark_buffer_dirty(leaf); 10298 btrfs_free_path(path); 10299 10300 inode->i_op = &btrfs_symlink_inode_operations; 10301 inode_nohighmem(inode); 10302 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10303 inode_set_bytes(inode, name_len); 10304 btrfs_i_size_write(BTRFS_I(inode), name_len); 10305 err = btrfs_update_inode(trans, root, inode); 10306 /* 10307 * Last step, add directory indexes for our symlink inode. This is the 10308 * last step to avoid extra cleanup of these indexes if an error happens 10309 * elsewhere above. 10310 */ 10311 if (!err) 10312 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10313 BTRFS_I(inode), 0, index); 10314 if (err) { 10315 drop_inode = 1; 10316 goto out_unlock_inode; 10317 } 10318 10319 unlock_new_inode(inode); 10320 d_instantiate(dentry, inode); 10321 10322 out_unlock: 10323 btrfs_end_transaction(trans); 10324 if (drop_inode) { 10325 inode_dec_link_count(inode); 10326 iput(inode); 10327 } 10328 btrfs_btree_balance_dirty(fs_info); 10329 return err; 10330 10331 out_unlock_inode: 10332 drop_inode = 1; 10333 unlock_new_inode(inode); 10334 goto out_unlock; 10335 } 10336 10337 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10338 u64 start, u64 num_bytes, u64 min_size, 10339 loff_t actual_len, u64 *alloc_hint, 10340 struct btrfs_trans_handle *trans) 10341 { 10342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10343 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10344 struct extent_map *em; 10345 struct btrfs_root *root = BTRFS_I(inode)->root; 10346 struct btrfs_key ins; 10347 u64 cur_offset = start; 10348 u64 i_size; 10349 u64 cur_bytes; 10350 u64 last_alloc = (u64)-1; 10351 int ret = 0; 10352 bool own_trans = true; 10353 u64 end = start + num_bytes - 1; 10354 10355 if (trans) 10356 own_trans = false; 10357 while (num_bytes > 0) { 10358 if (own_trans) { 10359 trans = btrfs_start_transaction(root, 3); 10360 if (IS_ERR(trans)) { 10361 ret = PTR_ERR(trans); 10362 break; 10363 } 10364 } 10365 10366 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10367 cur_bytes = max(cur_bytes, min_size); 10368 /* 10369 * If we are severely fragmented we could end up with really 10370 * small allocations, so if the allocator is returning small 10371 * chunks lets make its job easier by only searching for those 10372 * sized chunks. 10373 */ 10374 cur_bytes = min(cur_bytes, last_alloc); 10375 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10376 min_size, 0, *alloc_hint, &ins, 1, 0); 10377 if (ret) { 10378 if (own_trans) 10379 btrfs_end_transaction(trans); 10380 break; 10381 } 10382 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10383 10384 last_alloc = ins.offset; 10385 ret = insert_reserved_file_extent(trans, inode, 10386 cur_offset, ins.objectid, 10387 ins.offset, ins.offset, 10388 ins.offset, 0, 0, 0, 10389 BTRFS_FILE_EXTENT_PREALLOC); 10390 if (ret) { 10391 btrfs_free_reserved_extent(fs_info, ins.objectid, 10392 ins.offset, 0); 10393 btrfs_abort_transaction(trans, ret); 10394 if (own_trans) 10395 btrfs_end_transaction(trans); 10396 break; 10397 } 10398 10399 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10400 cur_offset + ins.offset -1, 0); 10401 10402 em = alloc_extent_map(); 10403 if (!em) { 10404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10405 &BTRFS_I(inode)->runtime_flags); 10406 goto next; 10407 } 10408 10409 em->start = cur_offset; 10410 em->orig_start = cur_offset; 10411 em->len = ins.offset; 10412 em->block_start = ins.objectid; 10413 em->block_len = ins.offset; 10414 em->orig_block_len = ins.offset; 10415 em->ram_bytes = ins.offset; 10416 em->bdev = fs_info->fs_devices->latest_bdev; 10417 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10418 em->generation = trans->transid; 10419 10420 while (1) { 10421 write_lock(&em_tree->lock); 10422 ret = add_extent_mapping(em_tree, em, 1); 10423 write_unlock(&em_tree->lock); 10424 if (ret != -EEXIST) 10425 break; 10426 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10427 cur_offset + ins.offset - 1, 10428 0); 10429 } 10430 free_extent_map(em); 10431 next: 10432 num_bytes -= ins.offset; 10433 cur_offset += ins.offset; 10434 *alloc_hint = ins.objectid + ins.offset; 10435 10436 inode_inc_iversion(inode); 10437 inode->i_ctime = current_time(inode); 10438 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10439 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10440 (actual_len > inode->i_size) && 10441 (cur_offset > inode->i_size)) { 10442 if (cur_offset > actual_len) 10443 i_size = actual_len; 10444 else 10445 i_size = cur_offset; 10446 i_size_write(inode, i_size); 10447 btrfs_ordered_update_i_size(inode, i_size, NULL); 10448 } 10449 10450 ret = btrfs_update_inode(trans, root, inode); 10451 10452 if (ret) { 10453 btrfs_abort_transaction(trans, ret); 10454 if (own_trans) 10455 btrfs_end_transaction(trans); 10456 break; 10457 } 10458 10459 if (own_trans) 10460 btrfs_end_transaction(trans); 10461 } 10462 if (cur_offset < end) 10463 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10464 end - cur_offset + 1); 10465 return ret; 10466 } 10467 10468 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10469 u64 start, u64 num_bytes, u64 min_size, 10470 loff_t actual_len, u64 *alloc_hint) 10471 { 10472 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10473 min_size, actual_len, alloc_hint, 10474 NULL); 10475 } 10476 10477 int btrfs_prealloc_file_range_trans(struct inode *inode, 10478 struct btrfs_trans_handle *trans, int mode, 10479 u64 start, u64 num_bytes, u64 min_size, 10480 loff_t actual_len, u64 *alloc_hint) 10481 { 10482 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10483 min_size, actual_len, alloc_hint, trans); 10484 } 10485 10486 static int btrfs_set_page_dirty(struct page *page) 10487 { 10488 return __set_page_dirty_nobuffers(page); 10489 } 10490 10491 static int btrfs_permission(struct inode *inode, int mask) 10492 { 10493 struct btrfs_root *root = BTRFS_I(inode)->root; 10494 umode_t mode = inode->i_mode; 10495 10496 if (mask & MAY_WRITE && 10497 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10498 if (btrfs_root_readonly(root)) 10499 return -EROFS; 10500 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10501 return -EACCES; 10502 } 10503 return generic_permission(inode, mask); 10504 } 10505 10506 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10507 { 10508 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10509 struct btrfs_trans_handle *trans; 10510 struct btrfs_root *root = BTRFS_I(dir)->root; 10511 struct inode *inode = NULL; 10512 u64 objectid; 10513 u64 index; 10514 int ret = 0; 10515 10516 /* 10517 * 5 units required for adding orphan entry 10518 */ 10519 trans = btrfs_start_transaction(root, 5); 10520 if (IS_ERR(trans)) 10521 return PTR_ERR(trans); 10522 10523 ret = btrfs_find_free_ino(root, &objectid); 10524 if (ret) 10525 goto out; 10526 10527 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10528 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10529 if (IS_ERR(inode)) { 10530 ret = PTR_ERR(inode); 10531 inode = NULL; 10532 goto out; 10533 } 10534 10535 inode->i_fop = &btrfs_file_operations; 10536 inode->i_op = &btrfs_file_inode_operations; 10537 10538 inode->i_mapping->a_ops = &btrfs_aops; 10539 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10540 10541 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10542 if (ret) 10543 goto out_inode; 10544 10545 ret = btrfs_update_inode(trans, root, inode); 10546 if (ret) 10547 goto out_inode; 10548 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10549 if (ret) 10550 goto out_inode; 10551 10552 /* 10553 * We set number of links to 0 in btrfs_new_inode(), and here we set 10554 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10555 * through: 10556 * 10557 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10558 */ 10559 set_nlink(inode, 1); 10560 unlock_new_inode(inode); 10561 d_tmpfile(dentry, inode); 10562 mark_inode_dirty(inode); 10563 10564 out: 10565 btrfs_end_transaction(trans); 10566 if (ret) 10567 iput(inode); 10568 btrfs_btree_balance_dirty(fs_info); 10569 return ret; 10570 10571 out_inode: 10572 unlock_new_inode(inode); 10573 goto out; 10574 10575 } 10576 10577 __attribute__((const)) 10578 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10579 { 10580 return -EAGAIN; 10581 } 10582 10583 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10584 { 10585 struct inode *inode = private_data; 10586 return btrfs_sb(inode->i_sb); 10587 } 10588 10589 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10590 u64 start, u64 end) 10591 { 10592 struct inode *inode = private_data; 10593 u64 isize; 10594 10595 isize = i_size_read(inode); 10596 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10597 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10598 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10599 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10600 } 10601 } 10602 10603 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10604 { 10605 struct inode *inode = private_data; 10606 unsigned long index = start >> PAGE_SHIFT; 10607 unsigned long end_index = end >> PAGE_SHIFT; 10608 struct page *page; 10609 10610 while (index <= end_index) { 10611 page = find_get_page(inode->i_mapping, index); 10612 ASSERT(page); /* Pages should be in the extent_io_tree */ 10613 set_page_writeback(page); 10614 put_page(page); 10615 index++; 10616 } 10617 } 10618 10619 static const struct inode_operations btrfs_dir_inode_operations = { 10620 .getattr = btrfs_getattr, 10621 .lookup = btrfs_lookup, 10622 .create = btrfs_create, 10623 .unlink = btrfs_unlink, 10624 .link = btrfs_link, 10625 .mkdir = btrfs_mkdir, 10626 .rmdir = btrfs_rmdir, 10627 .rename = btrfs_rename2, 10628 .symlink = btrfs_symlink, 10629 .setattr = btrfs_setattr, 10630 .mknod = btrfs_mknod, 10631 .listxattr = btrfs_listxattr, 10632 .permission = btrfs_permission, 10633 .get_acl = btrfs_get_acl, 10634 .set_acl = btrfs_set_acl, 10635 .update_time = btrfs_update_time, 10636 .tmpfile = btrfs_tmpfile, 10637 }; 10638 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10639 .lookup = btrfs_lookup, 10640 .permission = btrfs_permission, 10641 .update_time = btrfs_update_time, 10642 }; 10643 10644 static const struct file_operations btrfs_dir_file_operations = { 10645 .llseek = generic_file_llseek, 10646 .read = generic_read_dir, 10647 .iterate_shared = btrfs_real_readdir, 10648 .open = btrfs_opendir, 10649 .unlocked_ioctl = btrfs_ioctl, 10650 #ifdef CONFIG_COMPAT 10651 .compat_ioctl = btrfs_compat_ioctl, 10652 #endif 10653 .release = btrfs_release_file, 10654 .fsync = btrfs_sync_file, 10655 }; 10656 10657 static const struct extent_io_ops btrfs_extent_io_ops = { 10658 /* mandatory callbacks */ 10659 .submit_bio_hook = btrfs_submit_bio_hook, 10660 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10661 .merge_bio_hook = btrfs_merge_bio_hook, 10662 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10663 .tree_fs_info = iotree_fs_info, 10664 .set_range_writeback = btrfs_set_range_writeback, 10665 10666 /* optional callbacks */ 10667 .fill_delalloc = run_delalloc_range, 10668 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10669 .writepage_start_hook = btrfs_writepage_start_hook, 10670 .set_bit_hook = btrfs_set_bit_hook, 10671 .clear_bit_hook = btrfs_clear_bit_hook, 10672 .merge_extent_hook = btrfs_merge_extent_hook, 10673 .split_extent_hook = btrfs_split_extent_hook, 10674 .check_extent_io_range = btrfs_check_extent_io_range, 10675 }; 10676 10677 /* 10678 * btrfs doesn't support the bmap operation because swapfiles 10679 * use bmap to make a mapping of extents in the file. They assume 10680 * these extents won't change over the life of the file and they 10681 * use the bmap result to do IO directly to the drive. 10682 * 10683 * the btrfs bmap call would return logical addresses that aren't 10684 * suitable for IO and they also will change frequently as COW 10685 * operations happen. So, swapfile + btrfs == corruption. 10686 * 10687 * For now we're avoiding this by dropping bmap. 10688 */ 10689 static const struct address_space_operations btrfs_aops = { 10690 .readpage = btrfs_readpage, 10691 .writepage = btrfs_writepage, 10692 .writepages = btrfs_writepages, 10693 .readpages = btrfs_readpages, 10694 .direct_IO = btrfs_direct_IO, 10695 .invalidatepage = btrfs_invalidatepage, 10696 .releasepage = btrfs_releasepage, 10697 .set_page_dirty = btrfs_set_page_dirty, 10698 .error_remove_page = generic_error_remove_page, 10699 }; 10700 10701 static const struct address_space_operations btrfs_symlink_aops = { 10702 .readpage = btrfs_readpage, 10703 .writepage = btrfs_writepage, 10704 .invalidatepage = btrfs_invalidatepage, 10705 .releasepage = btrfs_releasepage, 10706 }; 10707 10708 static const struct inode_operations btrfs_file_inode_operations = { 10709 .getattr = btrfs_getattr, 10710 .setattr = btrfs_setattr, 10711 .listxattr = btrfs_listxattr, 10712 .permission = btrfs_permission, 10713 .fiemap = btrfs_fiemap, 10714 .get_acl = btrfs_get_acl, 10715 .set_acl = btrfs_set_acl, 10716 .update_time = btrfs_update_time, 10717 }; 10718 static const struct inode_operations btrfs_special_inode_operations = { 10719 .getattr = btrfs_getattr, 10720 .setattr = btrfs_setattr, 10721 .permission = btrfs_permission, 10722 .listxattr = btrfs_listxattr, 10723 .get_acl = btrfs_get_acl, 10724 .set_acl = btrfs_set_acl, 10725 .update_time = btrfs_update_time, 10726 }; 10727 static const struct inode_operations btrfs_symlink_inode_operations = { 10728 .get_link = page_get_link, 10729 .getattr = btrfs_getattr, 10730 .setattr = btrfs_setattr, 10731 .permission = btrfs_permission, 10732 .listxattr = btrfs_listxattr, 10733 .update_time = btrfs_update_time, 10734 }; 10735 10736 const struct dentry_operations btrfs_dentry_operations = { 10737 .d_delete = btrfs_dentry_delete, 10738 .d_release = btrfs_dentry_release, 10739 }; 10740