xref: /openbmc/linux/fs/btrfs/inode.c (revision a86854d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mpage.h>
18 #include <linux/swap.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/xattr.h>
23 #include <linux/posix_acl.h>
24 #include <linux/falloc.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/mount.h>
28 #include <linux/btrfs.h>
29 #include <linux/blkdev.h>
30 #include <linux/posix_acl_xattr.h>
31 #include <linux/uio.h>
32 #include <linux/magic.h>
33 #include <linux/iversion.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
41 #include "xattr.h"
42 #include "tree-log.h"
43 #include "volumes.h"
44 #include "compression.h"
45 #include "locking.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "backref.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "dedupe.h"
52 
53 struct btrfs_iget_args {
54 	struct btrfs_key *location;
55 	struct btrfs_root *root;
56 };
57 
58 struct btrfs_dio_data {
59 	u64 reserve;
60 	u64 unsubmitted_oe_range_start;
61 	u64 unsubmitted_oe_range_end;
62 	int overwrite;
63 };
64 
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct address_space_operations btrfs_symlink_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 
80 #define S_SHIFT 12
81 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
83 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
84 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
85 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
86 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
87 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
88 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
89 };
90 
91 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
92 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 				   struct page *locked_page,
96 				   u64 start, u64 end, u64 delalloc_end,
97 				   int *page_started, unsigned long *nr_written,
98 				   int unlock, struct btrfs_dedupe_hash *hash);
99 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 				       u64 orig_start, u64 block_start,
101 				       u64 block_len, u64 orig_block_len,
102 				       u64 ram_bytes, int compress_type,
103 				       int type);
104 
105 static void __endio_write_update_ordered(struct inode *inode,
106 					 const u64 offset, const u64 bytes,
107 					 const bool uptodate);
108 
109 /*
110  * Cleanup all submitted ordered extents in specified range to handle errors
111  * from the fill_dellaloc() callback.
112  *
113  * NOTE: caller must ensure that when an error happens, it can not call
114  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116  * to be released, which we want to happen only when finishing the ordered
117  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118  * fill_delalloc() callback already does proper cleanup for the first page of
119  * the range, that is, it invokes the callback writepage_end_io_hook() for the
120  * range of the first page.
121  */
122 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
123 						 const u64 offset,
124 						 const u64 bytes)
125 {
126 	unsigned long index = offset >> PAGE_SHIFT;
127 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
128 	struct page *page;
129 
130 	while (index <= end_index) {
131 		page = find_get_page(inode->i_mapping, index);
132 		index++;
133 		if (!page)
134 			continue;
135 		ClearPagePrivate2(page);
136 		put_page(page);
137 	}
138 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 					    bytes - PAGE_SIZE, false);
140 }
141 
142 static int btrfs_dirty_inode(struct inode *inode);
143 
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode *inode)
146 {
147 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148 }
149 #endif
150 
151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
152 				     struct inode *inode,  struct inode *dir,
153 				     const struct qstr *qstr)
154 {
155 	int err;
156 
157 	err = btrfs_init_acl(trans, inode, dir);
158 	if (!err)
159 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 	return err;
161 }
162 
163 /*
164  * this does all the hard work for inserting an inline extent into
165  * the btree.  The caller should have done a btrfs_drop_extents so that
166  * no overlapping inline items exist in the btree
167  */
168 static int insert_inline_extent(struct btrfs_trans_handle *trans,
169 				struct btrfs_path *path, int extent_inserted,
170 				struct btrfs_root *root, struct inode *inode,
171 				u64 start, size_t size, size_t compressed_size,
172 				int compress_type,
173 				struct page **compressed_pages)
174 {
175 	struct extent_buffer *leaf;
176 	struct page *page = NULL;
177 	char *kaddr;
178 	unsigned long ptr;
179 	struct btrfs_file_extent_item *ei;
180 	int ret;
181 	size_t cur_size = size;
182 	unsigned long offset;
183 
184 	if (compressed_size && compressed_pages)
185 		cur_size = compressed_size;
186 
187 	inode_add_bytes(inode, size);
188 
189 	if (!extent_inserted) {
190 		struct btrfs_key key;
191 		size_t datasize;
192 
193 		key.objectid = btrfs_ino(BTRFS_I(inode));
194 		key.offset = start;
195 		key.type = BTRFS_EXTENT_DATA_KEY;
196 
197 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 		path->leave_spinning = 1;
199 		ret = btrfs_insert_empty_item(trans, root, path, &key,
200 					      datasize);
201 		if (ret)
202 			goto fail;
203 	}
204 	leaf = path->nodes[0];
205 	ei = btrfs_item_ptr(leaf, path->slots[0],
206 			    struct btrfs_file_extent_item);
207 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 	btrfs_set_file_extent_encryption(leaf, ei, 0);
210 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 	ptr = btrfs_file_extent_inline_start(ei);
213 
214 	if (compress_type != BTRFS_COMPRESS_NONE) {
215 		struct page *cpage;
216 		int i = 0;
217 		while (compressed_size > 0) {
218 			cpage = compressed_pages[i];
219 			cur_size = min_t(unsigned long, compressed_size,
220 				       PAGE_SIZE);
221 
222 			kaddr = kmap_atomic(cpage);
223 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
224 			kunmap_atomic(kaddr);
225 
226 			i++;
227 			ptr += cur_size;
228 			compressed_size -= cur_size;
229 		}
230 		btrfs_set_file_extent_compression(leaf, ei,
231 						  compress_type);
232 	} else {
233 		page = find_get_page(inode->i_mapping,
234 				     start >> PAGE_SHIFT);
235 		btrfs_set_file_extent_compression(leaf, ei, 0);
236 		kaddr = kmap_atomic(page);
237 		offset = start & (PAGE_SIZE - 1);
238 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
239 		kunmap_atomic(kaddr);
240 		put_page(page);
241 	}
242 	btrfs_mark_buffer_dirty(leaf);
243 	btrfs_release_path(path);
244 
245 	/*
246 	 * we're an inline extent, so nobody can
247 	 * extend the file past i_size without locking
248 	 * a page we already have locked.
249 	 *
250 	 * We must do any isize and inode updates
251 	 * before we unlock the pages.  Otherwise we
252 	 * could end up racing with unlink.
253 	 */
254 	BTRFS_I(inode)->disk_i_size = inode->i_size;
255 	ret = btrfs_update_inode(trans, root, inode);
256 
257 fail:
258 	return ret;
259 }
260 
261 
262 /*
263  * conditionally insert an inline extent into the file.  This
264  * does the checks required to make sure the data is small enough
265  * to fit as an inline extent.
266  */
267 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
268 					  u64 end, size_t compressed_size,
269 					  int compress_type,
270 					  struct page **compressed_pages)
271 {
272 	struct btrfs_root *root = BTRFS_I(inode)->root;
273 	struct btrfs_fs_info *fs_info = root->fs_info;
274 	struct btrfs_trans_handle *trans;
275 	u64 isize = i_size_read(inode);
276 	u64 actual_end = min(end + 1, isize);
277 	u64 inline_len = actual_end - start;
278 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
279 	u64 data_len = inline_len;
280 	int ret;
281 	struct btrfs_path *path;
282 	int extent_inserted = 0;
283 	u32 extent_item_size;
284 
285 	if (compressed_size)
286 		data_len = compressed_size;
287 
288 	if (start > 0 ||
289 	    actual_end > fs_info->sectorsize ||
290 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
291 	    (!compressed_size &&
292 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
293 	    end + 1 < isize ||
294 	    data_len > fs_info->max_inline) {
295 		return 1;
296 	}
297 
298 	path = btrfs_alloc_path();
299 	if (!path)
300 		return -ENOMEM;
301 
302 	trans = btrfs_join_transaction(root);
303 	if (IS_ERR(trans)) {
304 		btrfs_free_path(path);
305 		return PTR_ERR(trans);
306 	}
307 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
308 
309 	if (compressed_size && compressed_pages)
310 		extent_item_size = btrfs_file_extent_calc_inline_size(
311 		   compressed_size);
312 	else
313 		extent_item_size = btrfs_file_extent_calc_inline_size(
314 		    inline_len);
315 
316 	ret = __btrfs_drop_extents(trans, root, inode, path,
317 				   start, aligned_end, NULL,
318 				   1, 1, extent_item_size, &extent_inserted);
319 	if (ret) {
320 		btrfs_abort_transaction(trans, ret);
321 		goto out;
322 	}
323 
324 	if (isize > actual_end)
325 		inline_len = min_t(u64, isize, actual_end);
326 	ret = insert_inline_extent(trans, path, extent_inserted,
327 				   root, inode, start,
328 				   inline_len, compressed_size,
329 				   compress_type, compressed_pages);
330 	if (ret && ret != -ENOSPC) {
331 		btrfs_abort_transaction(trans, ret);
332 		goto out;
333 	} else if (ret == -ENOSPC) {
334 		ret = 1;
335 		goto out;
336 	}
337 
338 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
339 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
340 out:
341 	/*
342 	 * Don't forget to free the reserved space, as for inlined extent
343 	 * it won't count as data extent, free them directly here.
344 	 * And at reserve time, it's always aligned to page size, so
345 	 * just free one page here.
346 	 */
347 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
348 	btrfs_free_path(path);
349 	btrfs_end_transaction(trans);
350 	return ret;
351 }
352 
353 struct async_extent {
354 	u64 start;
355 	u64 ram_size;
356 	u64 compressed_size;
357 	struct page **pages;
358 	unsigned long nr_pages;
359 	int compress_type;
360 	struct list_head list;
361 };
362 
363 struct async_cow {
364 	struct inode *inode;
365 	struct btrfs_root *root;
366 	struct page *locked_page;
367 	u64 start;
368 	u64 end;
369 	unsigned int write_flags;
370 	struct list_head extents;
371 	struct btrfs_work work;
372 };
373 
374 static noinline int add_async_extent(struct async_cow *cow,
375 				     u64 start, u64 ram_size,
376 				     u64 compressed_size,
377 				     struct page **pages,
378 				     unsigned long nr_pages,
379 				     int compress_type)
380 {
381 	struct async_extent *async_extent;
382 
383 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
384 	BUG_ON(!async_extent); /* -ENOMEM */
385 	async_extent->start = start;
386 	async_extent->ram_size = ram_size;
387 	async_extent->compressed_size = compressed_size;
388 	async_extent->pages = pages;
389 	async_extent->nr_pages = nr_pages;
390 	async_extent->compress_type = compress_type;
391 	list_add_tail(&async_extent->list, &cow->extents);
392 	return 0;
393 }
394 
395 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
396 {
397 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
398 
399 	/* force compress */
400 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
401 		return 1;
402 	/* defrag ioctl */
403 	if (BTRFS_I(inode)->defrag_compress)
404 		return 1;
405 	/* bad compression ratios */
406 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 		return 0;
408 	if (btrfs_test_opt(fs_info, COMPRESS) ||
409 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
410 	    BTRFS_I(inode)->prop_compress)
411 		return btrfs_compress_heuristic(inode, start, end);
412 	return 0;
413 }
414 
415 static inline void inode_should_defrag(struct btrfs_inode *inode,
416 		u64 start, u64 end, u64 num_bytes, u64 small_write)
417 {
418 	/* If this is a small write inside eof, kick off a defrag */
419 	if (num_bytes < small_write &&
420 	    (start > 0 || end + 1 < inode->disk_i_size))
421 		btrfs_add_inode_defrag(NULL, inode);
422 }
423 
424 /*
425  * we create compressed extents in two phases.  The first
426  * phase compresses a range of pages that have already been
427  * locked (both pages and state bits are locked).
428  *
429  * This is done inside an ordered work queue, and the compression
430  * is spread across many cpus.  The actual IO submission is step
431  * two, and the ordered work queue takes care of making sure that
432  * happens in the same order things were put onto the queue by
433  * writepages and friends.
434  *
435  * If this code finds it can't get good compression, it puts an
436  * entry onto the work queue to write the uncompressed bytes.  This
437  * makes sure that both compressed inodes and uncompressed inodes
438  * are written in the same order that the flusher thread sent them
439  * down.
440  */
441 static noinline void compress_file_range(struct inode *inode,
442 					struct page *locked_page,
443 					u64 start, u64 end,
444 					struct async_cow *async_cow,
445 					int *num_added)
446 {
447 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
448 	u64 blocksize = fs_info->sectorsize;
449 	u64 actual_end;
450 	u64 isize = i_size_read(inode);
451 	int ret = 0;
452 	struct page **pages = NULL;
453 	unsigned long nr_pages;
454 	unsigned long total_compressed = 0;
455 	unsigned long total_in = 0;
456 	int i;
457 	int will_compress;
458 	int compress_type = fs_info->compress_type;
459 	int redirty = 0;
460 
461 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
462 			SZ_16K);
463 
464 	actual_end = min_t(u64, isize, end + 1);
465 again:
466 	will_compress = 0;
467 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
468 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 	nr_pages = min_t(unsigned long, nr_pages,
470 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
471 
472 	/*
473 	 * we don't want to send crud past the end of i_size through
474 	 * compression, that's just a waste of CPU time.  So, if the
475 	 * end of the file is before the start of our current
476 	 * requested range of bytes, we bail out to the uncompressed
477 	 * cleanup code that can deal with all of this.
478 	 *
479 	 * It isn't really the fastest way to fix things, but this is a
480 	 * very uncommon corner.
481 	 */
482 	if (actual_end <= start)
483 		goto cleanup_and_bail_uncompressed;
484 
485 	total_compressed = actual_end - start;
486 
487 	/*
488 	 * skip compression for a small file range(<=blocksize) that
489 	 * isn't an inline extent, since it doesn't save disk space at all.
490 	 */
491 	if (total_compressed <= blocksize &&
492 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 		goto cleanup_and_bail_uncompressed;
494 
495 	total_compressed = min_t(unsigned long, total_compressed,
496 			BTRFS_MAX_UNCOMPRESSED);
497 	total_in = 0;
498 	ret = 0;
499 
500 	/*
501 	 * we do compression for mount -o compress and when the
502 	 * inode has not been flagged as nocompress.  This flag can
503 	 * change at any time if we discover bad compression ratios.
504 	 */
505 	if (inode_need_compress(inode, start, end)) {
506 		WARN_ON(pages);
507 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
508 		if (!pages) {
509 			/* just bail out to the uncompressed code */
510 			goto cont;
511 		}
512 
513 		if (BTRFS_I(inode)->defrag_compress)
514 			compress_type = BTRFS_I(inode)->defrag_compress;
515 		else if (BTRFS_I(inode)->prop_compress)
516 			compress_type = BTRFS_I(inode)->prop_compress;
517 
518 		/*
519 		 * we need to call clear_page_dirty_for_io on each
520 		 * page in the range.  Otherwise applications with the file
521 		 * mmap'd can wander in and change the page contents while
522 		 * we are compressing them.
523 		 *
524 		 * If the compression fails for any reason, we set the pages
525 		 * dirty again later on.
526 		 *
527 		 * Note that the remaining part is redirtied, the start pointer
528 		 * has moved, the end is the original one.
529 		 */
530 		if (!redirty) {
531 			extent_range_clear_dirty_for_io(inode, start, end);
532 			redirty = 1;
533 		}
534 
535 		/* Compression level is applied here and only here */
536 		ret = btrfs_compress_pages(
537 			compress_type | (fs_info->compress_level << 4),
538 					   inode->i_mapping, start,
539 					   pages,
540 					   &nr_pages,
541 					   &total_in,
542 					   &total_compressed);
543 
544 		if (!ret) {
545 			unsigned long offset = total_compressed &
546 				(PAGE_SIZE - 1);
547 			struct page *page = pages[nr_pages - 1];
548 			char *kaddr;
549 
550 			/* zero the tail end of the last page, we might be
551 			 * sending it down to disk
552 			 */
553 			if (offset) {
554 				kaddr = kmap_atomic(page);
555 				memset(kaddr + offset, 0,
556 				       PAGE_SIZE - offset);
557 				kunmap_atomic(kaddr);
558 			}
559 			will_compress = 1;
560 		}
561 	}
562 cont:
563 	if (start == 0) {
564 		/* lets try to make an inline extent */
565 		if (ret || total_in < actual_end) {
566 			/* we didn't compress the entire range, try
567 			 * to make an uncompressed inline extent.
568 			 */
569 			ret = cow_file_range_inline(inode, start, end, 0,
570 						    BTRFS_COMPRESS_NONE, NULL);
571 		} else {
572 			/* try making a compressed inline extent */
573 			ret = cow_file_range_inline(inode, start, end,
574 						    total_compressed,
575 						    compress_type, pages);
576 		}
577 		if (ret <= 0) {
578 			unsigned long clear_flags = EXTENT_DELALLOC |
579 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 				EXTENT_DO_ACCOUNTING;
581 			unsigned long page_error_op;
582 
583 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
584 
585 			/*
586 			 * inline extent creation worked or returned error,
587 			 * we don't need to create any more async work items.
588 			 * Unlock and free up our temp pages.
589 			 *
590 			 * We use DO_ACCOUNTING here because we need the
591 			 * delalloc_release_metadata to be done _after_ we drop
592 			 * our outstanding extent for clearing delalloc for this
593 			 * range.
594 			 */
595 			extent_clear_unlock_delalloc(inode, start, end, end,
596 						     NULL, clear_flags,
597 						     PAGE_UNLOCK |
598 						     PAGE_CLEAR_DIRTY |
599 						     PAGE_SET_WRITEBACK |
600 						     page_error_op |
601 						     PAGE_END_WRITEBACK);
602 			goto free_pages_out;
603 		}
604 	}
605 
606 	if (will_compress) {
607 		/*
608 		 * we aren't doing an inline extent round the compressed size
609 		 * up to a block size boundary so the allocator does sane
610 		 * things
611 		 */
612 		total_compressed = ALIGN(total_compressed, blocksize);
613 
614 		/*
615 		 * one last check to make sure the compression is really a
616 		 * win, compare the page count read with the blocks on disk,
617 		 * compression must free at least one sector size
618 		 */
619 		total_in = ALIGN(total_in, PAGE_SIZE);
620 		if (total_compressed + blocksize <= total_in) {
621 			*num_added += 1;
622 
623 			/*
624 			 * The async work queues will take care of doing actual
625 			 * allocation on disk for these compressed pages, and
626 			 * will submit them to the elevator.
627 			 */
628 			add_async_extent(async_cow, start, total_in,
629 					total_compressed, pages, nr_pages,
630 					compress_type);
631 
632 			if (start + total_in < end) {
633 				start += total_in;
634 				pages = NULL;
635 				cond_resched();
636 				goto again;
637 			}
638 			return;
639 		}
640 	}
641 	if (pages) {
642 		/*
643 		 * the compression code ran but failed to make things smaller,
644 		 * free any pages it allocated and our page pointer array
645 		 */
646 		for (i = 0; i < nr_pages; i++) {
647 			WARN_ON(pages[i]->mapping);
648 			put_page(pages[i]);
649 		}
650 		kfree(pages);
651 		pages = NULL;
652 		total_compressed = 0;
653 		nr_pages = 0;
654 
655 		/* flag the file so we don't compress in the future */
656 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
657 		    !(BTRFS_I(inode)->prop_compress)) {
658 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
659 		}
660 	}
661 cleanup_and_bail_uncompressed:
662 	/*
663 	 * No compression, but we still need to write the pages in the file
664 	 * we've been given so far.  redirty the locked page if it corresponds
665 	 * to our extent and set things up for the async work queue to run
666 	 * cow_file_range to do the normal delalloc dance.
667 	 */
668 	if (page_offset(locked_page) >= start &&
669 	    page_offset(locked_page) <= end)
670 		__set_page_dirty_nobuffers(locked_page);
671 		/* unlocked later on in the async handlers */
672 
673 	if (redirty)
674 		extent_range_redirty_for_io(inode, start, end);
675 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 			 BTRFS_COMPRESS_NONE);
677 	*num_added += 1;
678 
679 	return;
680 
681 free_pages_out:
682 	for (i = 0; i < nr_pages; i++) {
683 		WARN_ON(pages[i]->mapping);
684 		put_page(pages[i]);
685 	}
686 	kfree(pages);
687 }
688 
689 static void free_async_extent_pages(struct async_extent *async_extent)
690 {
691 	int i;
692 
693 	if (!async_extent->pages)
694 		return;
695 
696 	for (i = 0; i < async_extent->nr_pages; i++) {
697 		WARN_ON(async_extent->pages[i]->mapping);
698 		put_page(async_extent->pages[i]);
699 	}
700 	kfree(async_extent->pages);
701 	async_extent->nr_pages = 0;
702 	async_extent->pages = NULL;
703 }
704 
705 /*
706  * phase two of compressed writeback.  This is the ordered portion
707  * of the code, which only gets called in the order the work was
708  * queued.  We walk all the async extents created by compress_file_range
709  * and send them down to the disk.
710  */
711 static noinline void submit_compressed_extents(struct inode *inode,
712 					      struct async_cow *async_cow)
713 {
714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
715 	struct async_extent *async_extent;
716 	u64 alloc_hint = 0;
717 	struct btrfs_key ins;
718 	struct extent_map *em;
719 	struct btrfs_root *root = BTRFS_I(inode)->root;
720 	struct extent_io_tree *io_tree;
721 	int ret = 0;
722 
723 again:
724 	while (!list_empty(&async_cow->extents)) {
725 		async_extent = list_entry(async_cow->extents.next,
726 					  struct async_extent, list);
727 		list_del(&async_extent->list);
728 
729 		io_tree = &BTRFS_I(inode)->io_tree;
730 
731 retry:
732 		/* did the compression code fall back to uncompressed IO? */
733 		if (!async_extent->pages) {
734 			int page_started = 0;
735 			unsigned long nr_written = 0;
736 
737 			lock_extent(io_tree, async_extent->start,
738 					 async_extent->start +
739 					 async_extent->ram_size - 1);
740 
741 			/* allocate blocks */
742 			ret = cow_file_range(inode, async_cow->locked_page,
743 					     async_extent->start,
744 					     async_extent->start +
745 					     async_extent->ram_size - 1,
746 					     async_extent->start +
747 					     async_extent->ram_size - 1,
748 					     &page_started, &nr_written, 0,
749 					     NULL);
750 
751 			/* JDM XXX */
752 
753 			/*
754 			 * if page_started, cow_file_range inserted an
755 			 * inline extent and took care of all the unlocking
756 			 * and IO for us.  Otherwise, we need to submit
757 			 * all those pages down to the drive.
758 			 */
759 			if (!page_started && !ret)
760 				extent_write_locked_range(inode,
761 						  async_extent->start,
762 						  async_extent->start +
763 						  async_extent->ram_size - 1,
764 						  WB_SYNC_ALL);
765 			else if (ret)
766 				unlock_page(async_cow->locked_page);
767 			kfree(async_extent);
768 			cond_resched();
769 			continue;
770 		}
771 
772 		lock_extent(io_tree, async_extent->start,
773 			    async_extent->start + async_extent->ram_size - 1);
774 
775 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
776 					   async_extent->compressed_size,
777 					   async_extent->compressed_size,
778 					   0, alloc_hint, &ins, 1, 1);
779 		if (ret) {
780 			free_async_extent_pages(async_extent);
781 
782 			if (ret == -ENOSPC) {
783 				unlock_extent(io_tree, async_extent->start,
784 					      async_extent->start +
785 					      async_extent->ram_size - 1);
786 
787 				/*
788 				 * we need to redirty the pages if we decide to
789 				 * fallback to uncompressed IO, otherwise we
790 				 * will not submit these pages down to lower
791 				 * layers.
792 				 */
793 				extent_range_redirty_for_io(inode,
794 						async_extent->start,
795 						async_extent->start +
796 						async_extent->ram_size - 1);
797 
798 				goto retry;
799 			}
800 			goto out_free;
801 		}
802 		/*
803 		 * here we're doing allocation and writeback of the
804 		 * compressed pages
805 		 */
806 		em = create_io_em(inode, async_extent->start,
807 				  async_extent->ram_size, /* len */
808 				  async_extent->start, /* orig_start */
809 				  ins.objectid, /* block_start */
810 				  ins.offset, /* block_len */
811 				  ins.offset, /* orig_block_len */
812 				  async_extent->ram_size, /* ram_bytes */
813 				  async_extent->compress_type,
814 				  BTRFS_ORDERED_COMPRESSED);
815 		if (IS_ERR(em))
816 			/* ret value is not necessary due to void function */
817 			goto out_free_reserve;
818 		free_extent_map(em);
819 
820 		ret = btrfs_add_ordered_extent_compress(inode,
821 						async_extent->start,
822 						ins.objectid,
823 						async_extent->ram_size,
824 						ins.offset,
825 						BTRFS_ORDERED_COMPRESSED,
826 						async_extent->compress_type);
827 		if (ret) {
828 			btrfs_drop_extent_cache(BTRFS_I(inode),
829 						async_extent->start,
830 						async_extent->start +
831 						async_extent->ram_size - 1, 0);
832 			goto out_free_reserve;
833 		}
834 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
835 
836 		/*
837 		 * clear dirty, set writeback and unlock the pages.
838 		 */
839 		extent_clear_unlock_delalloc(inode, async_extent->start,
840 				async_extent->start +
841 				async_extent->ram_size - 1,
842 				async_extent->start +
843 				async_extent->ram_size - 1,
844 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
846 				PAGE_SET_WRITEBACK);
847 		if (btrfs_submit_compressed_write(inode,
848 				    async_extent->start,
849 				    async_extent->ram_size,
850 				    ins.objectid,
851 				    ins.offset, async_extent->pages,
852 				    async_extent->nr_pages,
853 				    async_cow->write_flags)) {
854 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 			struct page *p = async_extent->pages[0];
856 			const u64 start = async_extent->start;
857 			const u64 end = start + async_extent->ram_size - 1;
858 
859 			p->mapping = inode->i_mapping;
860 			tree->ops->writepage_end_io_hook(p, start, end,
861 							 NULL, 0);
862 			p->mapping = NULL;
863 			extent_clear_unlock_delalloc(inode, start, end, end,
864 						     NULL, 0,
865 						     PAGE_END_WRITEBACK |
866 						     PAGE_SET_ERROR);
867 			free_async_extent_pages(async_extent);
868 		}
869 		alloc_hint = ins.objectid + ins.offset;
870 		kfree(async_extent);
871 		cond_resched();
872 	}
873 	return;
874 out_free_reserve:
875 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
876 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
877 out_free:
878 	extent_clear_unlock_delalloc(inode, async_extent->start,
879 				     async_extent->start +
880 				     async_extent->ram_size - 1,
881 				     async_extent->start +
882 				     async_extent->ram_size - 1,
883 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
884 				     EXTENT_DELALLOC_NEW |
885 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
887 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 				     PAGE_SET_ERROR);
889 	free_async_extent_pages(async_extent);
890 	kfree(async_extent);
891 	goto again;
892 }
893 
894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 				      u64 num_bytes)
896 {
897 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 	struct extent_map *em;
899 	u64 alloc_hint = 0;
900 
901 	read_lock(&em_tree->lock);
902 	em = search_extent_mapping(em_tree, start, num_bytes);
903 	if (em) {
904 		/*
905 		 * if block start isn't an actual block number then find the
906 		 * first block in this inode and use that as a hint.  If that
907 		 * block is also bogus then just don't worry about it.
908 		 */
909 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 			free_extent_map(em);
911 			em = search_extent_mapping(em_tree, 0, 0);
912 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 				alloc_hint = em->block_start;
914 			if (em)
915 				free_extent_map(em);
916 		} else {
917 			alloc_hint = em->block_start;
918 			free_extent_map(em);
919 		}
920 	}
921 	read_unlock(&em_tree->lock);
922 
923 	return alloc_hint;
924 }
925 
926 /*
927  * when extent_io.c finds a delayed allocation range in the file,
928  * the call backs end up in this code.  The basic idea is to
929  * allocate extents on disk for the range, and create ordered data structs
930  * in ram to track those extents.
931  *
932  * locked_page is the page that writepage had locked already.  We use
933  * it to make sure we don't do extra locks or unlocks.
934  *
935  * *page_started is set to one if we unlock locked_page and do everything
936  * required to start IO on it.  It may be clean and already done with
937  * IO when we return.
938  */
939 static noinline int cow_file_range(struct inode *inode,
940 				   struct page *locked_page,
941 				   u64 start, u64 end, u64 delalloc_end,
942 				   int *page_started, unsigned long *nr_written,
943 				   int unlock, struct btrfs_dedupe_hash *hash)
944 {
945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
946 	struct btrfs_root *root = BTRFS_I(inode)->root;
947 	u64 alloc_hint = 0;
948 	u64 num_bytes;
949 	unsigned long ram_size;
950 	u64 cur_alloc_size = 0;
951 	u64 blocksize = fs_info->sectorsize;
952 	struct btrfs_key ins;
953 	struct extent_map *em;
954 	unsigned clear_bits;
955 	unsigned long page_ops;
956 	bool extent_reserved = false;
957 	int ret = 0;
958 
959 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
960 		WARN_ON_ONCE(1);
961 		ret = -EINVAL;
962 		goto out_unlock;
963 	}
964 
965 	num_bytes = ALIGN(end - start + 1, blocksize);
966 	num_bytes = max(blocksize,  num_bytes);
967 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
968 
969 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
970 
971 	if (start == 0) {
972 		/* lets try to make an inline extent */
973 		ret = cow_file_range_inline(inode, start, end, 0,
974 					    BTRFS_COMPRESS_NONE, NULL);
975 		if (ret == 0) {
976 			/*
977 			 * We use DO_ACCOUNTING here because we need the
978 			 * delalloc_release_metadata to be run _after_ we drop
979 			 * our outstanding extent for clearing delalloc for this
980 			 * range.
981 			 */
982 			extent_clear_unlock_delalloc(inode, start, end,
983 				     delalloc_end, NULL,
984 				     EXTENT_LOCKED | EXTENT_DELALLOC |
985 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
987 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
988 				     PAGE_END_WRITEBACK);
989 			*nr_written = *nr_written +
990 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
991 			*page_started = 1;
992 			goto out;
993 		} else if (ret < 0) {
994 			goto out_unlock;
995 		}
996 	}
997 
998 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
999 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 			start + num_bytes - 1, 0);
1001 
1002 	while (num_bytes > 0) {
1003 		cur_alloc_size = num_bytes;
1004 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1005 					   fs_info->sectorsize, 0, alloc_hint,
1006 					   &ins, 1, 1);
1007 		if (ret < 0)
1008 			goto out_unlock;
1009 		cur_alloc_size = ins.offset;
1010 		extent_reserved = true;
1011 
1012 		ram_size = ins.offset;
1013 		em = create_io_em(inode, start, ins.offset, /* len */
1014 				  start, /* orig_start */
1015 				  ins.objectid, /* block_start */
1016 				  ins.offset, /* block_len */
1017 				  ins.offset, /* orig_block_len */
1018 				  ram_size, /* ram_bytes */
1019 				  BTRFS_COMPRESS_NONE, /* compress_type */
1020 				  BTRFS_ORDERED_REGULAR /* type */);
1021 		if (IS_ERR(em)) {
1022 			ret = PTR_ERR(em);
1023 			goto out_reserve;
1024 		}
1025 		free_extent_map(em);
1026 
1027 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1028 					       ram_size, cur_alloc_size, 0);
1029 		if (ret)
1030 			goto out_drop_extent_cache;
1031 
1032 		if (root->root_key.objectid ==
1033 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1034 			ret = btrfs_reloc_clone_csums(inode, start,
1035 						      cur_alloc_size);
1036 			/*
1037 			 * Only drop cache here, and process as normal.
1038 			 *
1039 			 * We must not allow extent_clear_unlock_delalloc()
1040 			 * at out_unlock label to free meta of this ordered
1041 			 * extent, as its meta should be freed by
1042 			 * btrfs_finish_ordered_io().
1043 			 *
1044 			 * So we must continue until @start is increased to
1045 			 * skip current ordered extent.
1046 			 */
1047 			if (ret)
1048 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1049 						start + ram_size - 1, 0);
1050 		}
1051 
1052 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1053 
1054 		/* we're not doing compressed IO, don't unlock the first
1055 		 * page (which the caller expects to stay locked), don't
1056 		 * clear any dirty bits and don't set any writeback bits
1057 		 *
1058 		 * Do set the Private2 bit so we know this page was properly
1059 		 * setup for writepage
1060 		 */
1061 		page_ops = unlock ? PAGE_UNLOCK : 0;
1062 		page_ops |= PAGE_SET_PRIVATE2;
1063 
1064 		extent_clear_unlock_delalloc(inode, start,
1065 					     start + ram_size - 1,
1066 					     delalloc_end, locked_page,
1067 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1068 					     page_ops);
1069 		if (num_bytes < cur_alloc_size)
1070 			num_bytes = 0;
1071 		else
1072 			num_bytes -= cur_alloc_size;
1073 		alloc_hint = ins.objectid + ins.offset;
1074 		start += cur_alloc_size;
1075 		extent_reserved = false;
1076 
1077 		/*
1078 		 * btrfs_reloc_clone_csums() error, since start is increased
1079 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1080 		 * free metadata of current ordered extent, we're OK to exit.
1081 		 */
1082 		if (ret)
1083 			goto out_unlock;
1084 	}
1085 out:
1086 	return ret;
1087 
1088 out_drop_extent_cache:
1089 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1090 out_reserve:
1091 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1092 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1093 out_unlock:
1094 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1095 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1096 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1097 		PAGE_END_WRITEBACK;
1098 	/*
1099 	 * If we reserved an extent for our delalloc range (or a subrange) and
1100 	 * failed to create the respective ordered extent, then it means that
1101 	 * when we reserved the extent we decremented the extent's size from
1102 	 * the data space_info's bytes_may_use counter and incremented the
1103 	 * space_info's bytes_reserved counter by the same amount. We must make
1104 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1105 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1106 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1107 	 */
1108 	if (extent_reserved) {
1109 		extent_clear_unlock_delalloc(inode, start,
1110 					     start + cur_alloc_size,
1111 					     start + cur_alloc_size,
1112 					     locked_page,
1113 					     clear_bits,
1114 					     page_ops);
1115 		start += cur_alloc_size;
1116 		if (start >= end)
1117 			goto out;
1118 	}
1119 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1120 				     locked_page,
1121 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1122 				     page_ops);
1123 	goto out;
1124 }
1125 
1126 /*
1127  * work queue call back to started compression on a file and pages
1128  */
1129 static noinline void async_cow_start(struct btrfs_work *work)
1130 {
1131 	struct async_cow *async_cow;
1132 	int num_added = 0;
1133 	async_cow = container_of(work, struct async_cow, work);
1134 
1135 	compress_file_range(async_cow->inode, async_cow->locked_page,
1136 			    async_cow->start, async_cow->end, async_cow,
1137 			    &num_added);
1138 	if (num_added == 0) {
1139 		btrfs_add_delayed_iput(async_cow->inode);
1140 		async_cow->inode = NULL;
1141 	}
1142 }
1143 
1144 /*
1145  * work queue call back to submit previously compressed pages
1146  */
1147 static noinline void async_cow_submit(struct btrfs_work *work)
1148 {
1149 	struct btrfs_fs_info *fs_info;
1150 	struct async_cow *async_cow;
1151 	struct btrfs_root *root;
1152 	unsigned long nr_pages;
1153 
1154 	async_cow = container_of(work, struct async_cow, work);
1155 
1156 	root = async_cow->root;
1157 	fs_info = root->fs_info;
1158 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1159 		PAGE_SHIFT;
1160 
1161 	/* atomic_sub_return implies a barrier */
1162 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1163 	    5 * SZ_1M)
1164 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1165 
1166 	if (async_cow->inode)
1167 		submit_compressed_extents(async_cow->inode, async_cow);
1168 }
1169 
1170 static noinline void async_cow_free(struct btrfs_work *work)
1171 {
1172 	struct async_cow *async_cow;
1173 	async_cow = container_of(work, struct async_cow, work);
1174 	if (async_cow->inode)
1175 		btrfs_add_delayed_iput(async_cow->inode);
1176 	kfree(async_cow);
1177 }
1178 
1179 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1180 				u64 start, u64 end, int *page_started,
1181 				unsigned long *nr_written,
1182 				unsigned int write_flags)
1183 {
1184 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1185 	struct async_cow *async_cow;
1186 	struct btrfs_root *root = BTRFS_I(inode)->root;
1187 	unsigned long nr_pages;
1188 	u64 cur_end;
1189 
1190 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1191 			 1, 0, NULL);
1192 	while (start < end) {
1193 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1194 		BUG_ON(!async_cow); /* -ENOMEM */
1195 		async_cow->inode = igrab(inode);
1196 		async_cow->root = root;
1197 		async_cow->locked_page = locked_page;
1198 		async_cow->start = start;
1199 		async_cow->write_flags = write_flags;
1200 
1201 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1202 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1203 			cur_end = end;
1204 		else
1205 			cur_end = min(end, start + SZ_512K - 1);
1206 
1207 		async_cow->end = cur_end;
1208 		INIT_LIST_HEAD(&async_cow->extents);
1209 
1210 		btrfs_init_work(&async_cow->work,
1211 				btrfs_delalloc_helper,
1212 				async_cow_start, async_cow_submit,
1213 				async_cow_free);
1214 
1215 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1216 			PAGE_SHIFT;
1217 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1218 
1219 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1220 
1221 		*nr_written += nr_pages;
1222 		start = cur_end + 1;
1223 	}
1224 	*page_started = 1;
1225 	return 0;
1226 }
1227 
1228 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1229 					u64 bytenr, u64 num_bytes)
1230 {
1231 	int ret;
1232 	struct btrfs_ordered_sum *sums;
1233 	LIST_HEAD(list);
1234 
1235 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1236 				       bytenr + num_bytes - 1, &list, 0);
1237 	if (ret == 0 && list_empty(&list))
1238 		return 0;
1239 
1240 	while (!list_empty(&list)) {
1241 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1242 		list_del(&sums->list);
1243 		kfree(sums);
1244 	}
1245 	if (ret < 0)
1246 		return ret;
1247 	return 1;
1248 }
1249 
1250 /*
1251  * when nowcow writeback call back.  This checks for snapshots or COW copies
1252  * of the extents that exist in the file, and COWs the file as required.
1253  *
1254  * If no cow copies or snapshots exist, we write directly to the existing
1255  * blocks on disk
1256  */
1257 static noinline int run_delalloc_nocow(struct inode *inode,
1258 				       struct page *locked_page,
1259 			      u64 start, u64 end, int *page_started, int force,
1260 			      unsigned long *nr_written)
1261 {
1262 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1263 	struct btrfs_root *root = BTRFS_I(inode)->root;
1264 	struct extent_buffer *leaf;
1265 	struct btrfs_path *path;
1266 	struct btrfs_file_extent_item *fi;
1267 	struct btrfs_key found_key;
1268 	struct extent_map *em;
1269 	u64 cow_start;
1270 	u64 cur_offset;
1271 	u64 extent_end;
1272 	u64 extent_offset;
1273 	u64 disk_bytenr;
1274 	u64 num_bytes;
1275 	u64 disk_num_bytes;
1276 	u64 ram_bytes;
1277 	int extent_type;
1278 	int ret, err;
1279 	int type;
1280 	int nocow;
1281 	int check_prev = 1;
1282 	bool nolock;
1283 	u64 ino = btrfs_ino(BTRFS_I(inode));
1284 
1285 	path = btrfs_alloc_path();
1286 	if (!path) {
1287 		extent_clear_unlock_delalloc(inode, start, end, end,
1288 					     locked_page,
1289 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1290 					     EXTENT_DO_ACCOUNTING |
1291 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1292 					     PAGE_CLEAR_DIRTY |
1293 					     PAGE_SET_WRITEBACK |
1294 					     PAGE_END_WRITEBACK);
1295 		return -ENOMEM;
1296 	}
1297 
1298 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1299 
1300 	cow_start = (u64)-1;
1301 	cur_offset = start;
1302 	while (1) {
1303 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1304 					       cur_offset, 0);
1305 		if (ret < 0)
1306 			goto error;
1307 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1308 			leaf = path->nodes[0];
1309 			btrfs_item_key_to_cpu(leaf, &found_key,
1310 					      path->slots[0] - 1);
1311 			if (found_key.objectid == ino &&
1312 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1313 				path->slots[0]--;
1314 		}
1315 		check_prev = 0;
1316 next_slot:
1317 		leaf = path->nodes[0];
1318 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1319 			ret = btrfs_next_leaf(root, path);
1320 			if (ret < 0) {
1321 				if (cow_start != (u64)-1)
1322 					cur_offset = cow_start;
1323 				goto error;
1324 			}
1325 			if (ret > 0)
1326 				break;
1327 			leaf = path->nodes[0];
1328 		}
1329 
1330 		nocow = 0;
1331 		disk_bytenr = 0;
1332 		num_bytes = 0;
1333 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334 
1335 		if (found_key.objectid > ino)
1336 			break;
1337 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1339 			path->slots[0]++;
1340 			goto next_slot;
1341 		}
1342 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1343 		    found_key.offset > end)
1344 			break;
1345 
1346 		if (found_key.offset > cur_offset) {
1347 			extent_end = found_key.offset;
1348 			extent_type = 0;
1349 			goto out_check;
1350 		}
1351 
1352 		fi = btrfs_item_ptr(leaf, path->slots[0],
1353 				    struct btrfs_file_extent_item);
1354 		extent_type = btrfs_file_extent_type(leaf, fi);
1355 
1356 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1357 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1359 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1360 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1361 			extent_end = found_key.offset +
1362 				btrfs_file_extent_num_bytes(leaf, fi);
1363 			disk_num_bytes =
1364 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1365 			if (extent_end <= start) {
1366 				path->slots[0]++;
1367 				goto next_slot;
1368 			}
1369 			if (disk_bytenr == 0)
1370 				goto out_check;
1371 			if (btrfs_file_extent_compression(leaf, fi) ||
1372 			    btrfs_file_extent_encryption(leaf, fi) ||
1373 			    btrfs_file_extent_other_encoding(leaf, fi))
1374 				goto out_check;
1375 			/*
1376 			 * Do the same check as in btrfs_cross_ref_exist but
1377 			 * without the unnecessary search.
1378 			 */
1379 			if (btrfs_file_extent_generation(leaf, fi) <=
1380 			    btrfs_root_last_snapshot(&root->root_item))
1381 				goto out_check;
1382 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1383 				goto out_check;
1384 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1385 				goto out_check;
1386 			ret = btrfs_cross_ref_exist(root, ino,
1387 						    found_key.offset -
1388 						    extent_offset, disk_bytenr);
1389 			if (ret) {
1390 				/*
1391 				 * ret could be -EIO if the above fails to read
1392 				 * metadata.
1393 				 */
1394 				if (ret < 0) {
1395 					if (cow_start != (u64)-1)
1396 						cur_offset = cow_start;
1397 					goto error;
1398 				}
1399 
1400 				WARN_ON_ONCE(nolock);
1401 				goto out_check;
1402 			}
1403 			disk_bytenr += extent_offset;
1404 			disk_bytenr += cur_offset - found_key.offset;
1405 			num_bytes = min(end + 1, extent_end) - cur_offset;
1406 			/*
1407 			 * if there are pending snapshots for this root,
1408 			 * we fall into common COW way.
1409 			 */
1410 			if (!nolock) {
1411 				err = btrfs_start_write_no_snapshotting(root);
1412 				if (!err)
1413 					goto out_check;
1414 			}
1415 			/*
1416 			 * force cow if csum exists in the range.
1417 			 * this ensure that csum for a given extent are
1418 			 * either valid or do not exist.
1419 			 */
1420 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1421 						  num_bytes);
1422 			if (ret) {
1423 				if (!nolock)
1424 					btrfs_end_write_no_snapshotting(root);
1425 
1426 				/*
1427 				 * ret could be -EIO if the above fails to read
1428 				 * metadata.
1429 				 */
1430 				if (ret < 0) {
1431 					if (cow_start != (u64)-1)
1432 						cur_offset = cow_start;
1433 					goto error;
1434 				}
1435 				WARN_ON_ONCE(nolock);
1436 				goto out_check;
1437 			}
1438 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1439 				if (!nolock)
1440 					btrfs_end_write_no_snapshotting(root);
1441 				goto out_check;
1442 			}
1443 			nocow = 1;
1444 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1445 			extent_end = found_key.offset +
1446 				btrfs_file_extent_inline_len(leaf,
1447 						     path->slots[0], fi);
1448 			extent_end = ALIGN(extent_end,
1449 					   fs_info->sectorsize);
1450 		} else {
1451 			BUG_ON(1);
1452 		}
1453 out_check:
1454 		if (extent_end <= start) {
1455 			path->slots[0]++;
1456 			if (!nolock && nocow)
1457 				btrfs_end_write_no_snapshotting(root);
1458 			if (nocow)
1459 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1460 			goto next_slot;
1461 		}
1462 		if (!nocow) {
1463 			if (cow_start == (u64)-1)
1464 				cow_start = cur_offset;
1465 			cur_offset = extent_end;
1466 			if (cur_offset > end)
1467 				break;
1468 			path->slots[0]++;
1469 			goto next_slot;
1470 		}
1471 
1472 		btrfs_release_path(path);
1473 		if (cow_start != (u64)-1) {
1474 			ret = cow_file_range(inode, locked_page,
1475 					     cow_start, found_key.offset - 1,
1476 					     end, page_started, nr_written, 1,
1477 					     NULL);
1478 			if (ret) {
1479 				if (!nolock && nocow)
1480 					btrfs_end_write_no_snapshotting(root);
1481 				if (nocow)
1482 					btrfs_dec_nocow_writers(fs_info,
1483 								disk_bytenr);
1484 				goto error;
1485 			}
1486 			cow_start = (u64)-1;
1487 		}
1488 
1489 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1490 			u64 orig_start = found_key.offset - extent_offset;
1491 
1492 			em = create_io_em(inode, cur_offset, num_bytes,
1493 					  orig_start,
1494 					  disk_bytenr, /* block_start */
1495 					  num_bytes, /* block_len */
1496 					  disk_num_bytes, /* orig_block_len */
1497 					  ram_bytes, BTRFS_COMPRESS_NONE,
1498 					  BTRFS_ORDERED_PREALLOC);
1499 			if (IS_ERR(em)) {
1500 				if (!nolock && nocow)
1501 					btrfs_end_write_no_snapshotting(root);
1502 				if (nocow)
1503 					btrfs_dec_nocow_writers(fs_info,
1504 								disk_bytenr);
1505 				ret = PTR_ERR(em);
1506 				goto error;
1507 			}
1508 			free_extent_map(em);
1509 		}
1510 
1511 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1512 			type = BTRFS_ORDERED_PREALLOC;
1513 		} else {
1514 			type = BTRFS_ORDERED_NOCOW;
1515 		}
1516 
1517 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1518 					       num_bytes, num_bytes, type);
1519 		if (nocow)
1520 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1521 		BUG_ON(ret); /* -ENOMEM */
1522 
1523 		if (root->root_key.objectid ==
1524 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1525 			/*
1526 			 * Error handled later, as we must prevent
1527 			 * extent_clear_unlock_delalloc() in error handler
1528 			 * from freeing metadata of created ordered extent.
1529 			 */
1530 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1531 						      num_bytes);
1532 
1533 		extent_clear_unlock_delalloc(inode, cur_offset,
1534 					     cur_offset + num_bytes - 1, end,
1535 					     locked_page, EXTENT_LOCKED |
1536 					     EXTENT_DELALLOC |
1537 					     EXTENT_CLEAR_DATA_RESV,
1538 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1539 
1540 		if (!nolock && nocow)
1541 			btrfs_end_write_no_snapshotting(root);
1542 		cur_offset = extent_end;
1543 
1544 		/*
1545 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1546 		 * handler, as metadata for created ordered extent will only
1547 		 * be freed by btrfs_finish_ordered_io().
1548 		 */
1549 		if (ret)
1550 			goto error;
1551 		if (cur_offset > end)
1552 			break;
1553 	}
1554 	btrfs_release_path(path);
1555 
1556 	if (cur_offset <= end && cow_start == (u64)-1) {
1557 		cow_start = cur_offset;
1558 		cur_offset = end;
1559 	}
1560 
1561 	if (cow_start != (u64)-1) {
1562 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1563 				     page_started, nr_written, 1, NULL);
1564 		if (ret)
1565 			goto error;
1566 	}
1567 
1568 error:
1569 	if (ret && cur_offset < end)
1570 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1571 					     locked_page, EXTENT_LOCKED |
1572 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1573 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1574 					     PAGE_CLEAR_DIRTY |
1575 					     PAGE_SET_WRITEBACK |
1576 					     PAGE_END_WRITEBACK);
1577 	btrfs_free_path(path);
1578 	return ret;
1579 }
1580 
1581 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1582 {
1583 
1584 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1585 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1586 		return 0;
1587 
1588 	/*
1589 	 * @defrag_bytes is a hint value, no spinlock held here,
1590 	 * if is not zero, it means the file is defragging.
1591 	 * Force cow if given extent needs to be defragged.
1592 	 */
1593 	if (BTRFS_I(inode)->defrag_bytes &&
1594 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1595 			   EXTENT_DEFRAG, 0, NULL))
1596 		return 1;
1597 
1598 	return 0;
1599 }
1600 
1601 /*
1602  * extent_io.c call back to do delayed allocation processing
1603  */
1604 static int run_delalloc_range(void *private_data, struct page *locked_page,
1605 			      u64 start, u64 end, int *page_started,
1606 			      unsigned long *nr_written,
1607 			      struct writeback_control *wbc)
1608 {
1609 	struct inode *inode = private_data;
1610 	int ret;
1611 	int force_cow = need_force_cow(inode, start, end);
1612 	unsigned int write_flags = wbc_to_write_flags(wbc);
1613 
1614 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1615 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1616 					 page_started, 1, nr_written);
1617 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1618 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1619 					 page_started, 0, nr_written);
1620 	} else if (!inode_need_compress(inode, start, end)) {
1621 		ret = cow_file_range(inode, locked_page, start, end, end,
1622 				      page_started, nr_written, 1, NULL);
1623 	} else {
1624 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1625 			&BTRFS_I(inode)->runtime_flags);
1626 		ret = cow_file_range_async(inode, locked_page, start, end,
1627 					   page_started, nr_written,
1628 					   write_flags);
1629 	}
1630 	if (ret)
1631 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1632 	return ret;
1633 }
1634 
1635 static void btrfs_split_extent_hook(void *private_data,
1636 				    struct extent_state *orig, u64 split)
1637 {
1638 	struct inode *inode = private_data;
1639 	u64 size;
1640 
1641 	/* not delalloc, ignore it */
1642 	if (!(orig->state & EXTENT_DELALLOC))
1643 		return;
1644 
1645 	size = orig->end - orig->start + 1;
1646 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1647 		u32 num_extents;
1648 		u64 new_size;
1649 
1650 		/*
1651 		 * See the explanation in btrfs_merge_extent_hook, the same
1652 		 * applies here, just in reverse.
1653 		 */
1654 		new_size = orig->end - split + 1;
1655 		num_extents = count_max_extents(new_size);
1656 		new_size = split - orig->start;
1657 		num_extents += count_max_extents(new_size);
1658 		if (count_max_extents(size) >= num_extents)
1659 			return;
1660 	}
1661 
1662 	spin_lock(&BTRFS_I(inode)->lock);
1663 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1664 	spin_unlock(&BTRFS_I(inode)->lock);
1665 }
1666 
1667 /*
1668  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1669  * extents so we can keep track of new extents that are just merged onto old
1670  * extents, such as when we are doing sequential writes, so we can properly
1671  * account for the metadata space we'll need.
1672  */
1673 static void btrfs_merge_extent_hook(void *private_data,
1674 				    struct extent_state *new,
1675 				    struct extent_state *other)
1676 {
1677 	struct inode *inode = private_data;
1678 	u64 new_size, old_size;
1679 	u32 num_extents;
1680 
1681 	/* not delalloc, ignore it */
1682 	if (!(other->state & EXTENT_DELALLOC))
1683 		return;
1684 
1685 	if (new->start > other->start)
1686 		new_size = new->end - other->start + 1;
1687 	else
1688 		new_size = other->end - new->start + 1;
1689 
1690 	/* we're not bigger than the max, unreserve the space and go */
1691 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1692 		spin_lock(&BTRFS_I(inode)->lock);
1693 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1694 		spin_unlock(&BTRFS_I(inode)->lock);
1695 		return;
1696 	}
1697 
1698 	/*
1699 	 * We have to add up either side to figure out how many extents were
1700 	 * accounted for before we merged into one big extent.  If the number of
1701 	 * extents we accounted for is <= the amount we need for the new range
1702 	 * then we can return, otherwise drop.  Think of it like this
1703 	 *
1704 	 * [ 4k][MAX_SIZE]
1705 	 *
1706 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1707 	 * need 2 outstanding extents, on one side we have 1 and the other side
1708 	 * we have 1 so they are == and we can return.  But in this case
1709 	 *
1710 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1711 	 *
1712 	 * Each range on their own accounts for 2 extents, but merged together
1713 	 * they are only 3 extents worth of accounting, so we need to drop in
1714 	 * this case.
1715 	 */
1716 	old_size = other->end - other->start + 1;
1717 	num_extents = count_max_extents(old_size);
1718 	old_size = new->end - new->start + 1;
1719 	num_extents += count_max_extents(old_size);
1720 	if (count_max_extents(new_size) >= num_extents)
1721 		return;
1722 
1723 	spin_lock(&BTRFS_I(inode)->lock);
1724 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1725 	spin_unlock(&BTRFS_I(inode)->lock);
1726 }
1727 
1728 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1729 				      struct inode *inode)
1730 {
1731 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1732 
1733 	spin_lock(&root->delalloc_lock);
1734 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1735 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1736 			      &root->delalloc_inodes);
1737 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1738 			&BTRFS_I(inode)->runtime_flags);
1739 		root->nr_delalloc_inodes++;
1740 		if (root->nr_delalloc_inodes == 1) {
1741 			spin_lock(&fs_info->delalloc_root_lock);
1742 			BUG_ON(!list_empty(&root->delalloc_root));
1743 			list_add_tail(&root->delalloc_root,
1744 				      &fs_info->delalloc_roots);
1745 			spin_unlock(&fs_info->delalloc_root_lock);
1746 		}
1747 	}
1748 	spin_unlock(&root->delalloc_lock);
1749 }
1750 
1751 
1752 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1753 				struct btrfs_inode *inode)
1754 {
1755 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1756 
1757 	if (!list_empty(&inode->delalloc_inodes)) {
1758 		list_del_init(&inode->delalloc_inodes);
1759 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1760 			  &inode->runtime_flags);
1761 		root->nr_delalloc_inodes--;
1762 		if (!root->nr_delalloc_inodes) {
1763 			ASSERT(list_empty(&root->delalloc_inodes));
1764 			spin_lock(&fs_info->delalloc_root_lock);
1765 			BUG_ON(list_empty(&root->delalloc_root));
1766 			list_del_init(&root->delalloc_root);
1767 			spin_unlock(&fs_info->delalloc_root_lock);
1768 		}
1769 	}
1770 }
1771 
1772 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1773 				     struct btrfs_inode *inode)
1774 {
1775 	spin_lock(&root->delalloc_lock);
1776 	__btrfs_del_delalloc_inode(root, inode);
1777 	spin_unlock(&root->delalloc_lock);
1778 }
1779 
1780 /*
1781  * extent_io.c set_bit_hook, used to track delayed allocation
1782  * bytes in this file, and to maintain the list of inodes that
1783  * have pending delalloc work to be done.
1784  */
1785 static void btrfs_set_bit_hook(void *private_data,
1786 			       struct extent_state *state, unsigned *bits)
1787 {
1788 	struct inode *inode = private_data;
1789 
1790 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1791 
1792 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1793 		WARN_ON(1);
1794 	/*
1795 	 * set_bit and clear bit hooks normally require _irqsave/restore
1796 	 * but in this case, we are only testing for the DELALLOC
1797 	 * bit, which is only set or cleared with irqs on
1798 	 */
1799 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1800 		struct btrfs_root *root = BTRFS_I(inode)->root;
1801 		u64 len = state->end + 1 - state->start;
1802 		u32 num_extents = count_max_extents(len);
1803 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1804 
1805 		spin_lock(&BTRFS_I(inode)->lock);
1806 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1807 		spin_unlock(&BTRFS_I(inode)->lock);
1808 
1809 		/* For sanity tests */
1810 		if (btrfs_is_testing(fs_info))
1811 			return;
1812 
1813 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1814 					 fs_info->delalloc_batch);
1815 		spin_lock(&BTRFS_I(inode)->lock);
1816 		BTRFS_I(inode)->delalloc_bytes += len;
1817 		if (*bits & EXTENT_DEFRAG)
1818 			BTRFS_I(inode)->defrag_bytes += len;
1819 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1820 					 &BTRFS_I(inode)->runtime_flags))
1821 			btrfs_add_delalloc_inodes(root, inode);
1822 		spin_unlock(&BTRFS_I(inode)->lock);
1823 	}
1824 
1825 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1826 	    (*bits & EXTENT_DELALLOC_NEW)) {
1827 		spin_lock(&BTRFS_I(inode)->lock);
1828 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1829 			state->start;
1830 		spin_unlock(&BTRFS_I(inode)->lock);
1831 	}
1832 }
1833 
1834 /*
1835  * extent_io.c clear_bit_hook, see set_bit_hook for why
1836  */
1837 static void btrfs_clear_bit_hook(void *private_data,
1838 				 struct extent_state *state,
1839 				 unsigned *bits)
1840 {
1841 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1842 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1843 	u64 len = state->end + 1 - state->start;
1844 	u32 num_extents = count_max_extents(len);
1845 
1846 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1847 		spin_lock(&inode->lock);
1848 		inode->defrag_bytes -= len;
1849 		spin_unlock(&inode->lock);
1850 	}
1851 
1852 	/*
1853 	 * set_bit and clear bit hooks normally require _irqsave/restore
1854 	 * but in this case, we are only testing for the DELALLOC
1855 	 * bit, which is only set or cleared with irqs on
1856 	 */
1857 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1858 		struct btrfs_root *root = inode->root;
1859 		bool do_list = !btrfs_is_free_space_inode(inode);
1860 
1861 		spin_lock(&inode->lock);
1862 		btrfs_mod_outstanding_extents(inode, -num_extents);
1863 		spin_unlock(&inode->lock);
1864 
1865 		/*
1866 		 * We don't reserve metadata space for space cache inodes so we
1867 		 * don't need to call dellalloc_release_metadata if there is an
1868 		 * error.
1869 		 */
1870 		if (*bits & EXTENT_CLEAR_META_RESV &&
1871 		    root != fs_info->tree_root)
1872 			btrfs_delalloc_release_metadata(inode, len, false);
1873 
1874 		/* For sanity tests. */
1875 		if (btrfs_is_testing(fs_info))
1876 			return;
1877 
1878 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1879 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1880 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1881 			btrfs_free_reserved_data_space_noquota(
1882 					&inode->vfs_inode,
1883 					state->start, len);
1884 
1885 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1886 					 fs_info->delalloc_batch);
1887 		spin_lock(&inode->lock);
1888 		inode->delalloc_bytes -= len;
1889 		if (do_list && inode->delalloc_bytes == 0 &&
1890 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1891 					&inode->runtime_flags))
1892 			btrfs_del_delalloc_inode(root, inode);
1893 		spin_unlock(&inode->lock);
1894 	}
1895 
1896 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1897 	    (*bits & EXTENT_DELALLOC_NEW)) {
1898 		spin_lock(&inode->lock);
1899 		ASSERT(inode->new_delalloc_bytes >= len);
1900 		inode->new_delalloc_bytes -= len;
1901 		spin_unlock(&inode->lock);
1902 	}
1903 }
1904 
1905 /*
1906  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1907  * we don't create bios that span stripes or chunks
1908  *
1909  * return 1 if page cannot be merged to bio
1910  * return 0 if page can be merged to bio
1911  * return error otherwise
1912  */
1913 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1914 			 size_t size, struct bio *bio,
1915 			 unsigned long bio_flags)
1916 {
1917 	struct inode *inode = page->mapping->host;
1918 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1919 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1920 	u64 length = 0;
1921 	u64 map_length;
1922 	int ret;
1923 
1924 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1925 		return 0;
1926 
1927 	length = bio->bi_iter.bi_size;
1928 	map_length = length;
1929 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1930 			      NULL, 0);
1931 	if (ret < 0)
1932 		return ret;
1933 	if (map_length < length + size)
1934 		return 1;
1935 	return 0;
1936 }
1937 
1938 /*
1939  * in order to insert checksums into the metadata in large chunks,
1940  * we wait until bio submission time.   All the pages in the bio are
1941  * checksummed and sums are attached onto the ordered extent record.
1942  *
1943  * At IO completion time the cums attached on the ordered extent record
1944  * are inserted into the btree
1945  */
1946 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1947 				    u64 bio_offset)
1948 {
1949 	struct inode *inode = private_data;
1950 	blk_status_t ret = 0;
1951 
1952 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1953 	BUG_ON(ret); /* -ENOMEM */
1954 	return 0;
1955 }
1956 
1957 /*
1958  * in order to insert checksums into the metadata in large chunks,
1959  * we wait until bio submission time.   All the pages in the bio are
1960  * checksummed and sums are attached onto the ordered extent record.
1961  *
1962  * At IO completion time the cums attached on the ordered extent record
1963  * are inserted into the btree
1964  */
1965 static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1966 			  int mirror_num)
1967 {
1968 	struct inode *inode = private_data;
1969 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1970 	blk_status_t ret;
1971 
1972 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1973 	if (ret) {
1974 		bio->bi_status = ret;
1975 		bio_endio(bio);
1976 	}
1977 	return ret;
1978 }
1979 
1980 /*
1981  * extent_io.c submission hook. This does the right thing for csum calculation
1982  * on write, or reading the csums from the tree before a read.
1983  *
1984  * Rules about async/sync submit,
1985  * a) read:				sync submit
1986  *
1987  * b) write without checksum:		sync submit
1988  *
1989  * c) write with checksum:
1990  *    c-1) if bio is issued by fsync:	sync submit
1991  *         (sync_writers != 0)
1992  *
1993  *    c-2) if root is reloc root:	sync submit
1994  *         (only in case of buffered IO)
1995  *
1996  *    c-3) otherwise:			async submit
1997  */
1998 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1999 				 int mirror_num, unsigned long bio_flags,
2000 				 u64 bio_offset)
2001 {
2002 	struct inode *inode = private_data;
2003 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2004 	struct btrfs_root *root = BTRFS_I(inode)->root;
2005 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2006 	blk_status_t ret = 0;
2007 	int skip_sum;
2008 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2009 
2010 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2011 
2012 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2013 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2014 
2015 	if (bio_op(bio) != REQ_OP_WRITE) {
2016 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2017 		if (ret)
2018 			goto out;
2019 
2020 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2021 			ret = btrfs_submit_compressed_read(inode, bio,
2022 							   mirror_num,
2023 							   bio_flags);
2024 			goto out;
2025 		} else if (!skip_sum) {
2026 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2027 			if (ret)
2028 				goto out;
2029 		}
2030 		goto mapit;
2031 	} else if (async && !skip_sum) {
2032 		/* csum items have already been cloned */
2033 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2034 			goto mapit;
2035 		/* we're doing a write, do the async checksumming */
2036 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2037 					  bio_offset, inode,
2038 					  btrfs_submit_bio_start,
2039 					  btrfs_submit_bio_done);
2040 		goto out;
2041 	} else if (!skip_sum) {
2042 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2043 		if (ret)
2044 			goto out;
2045 	}
2046 
2047 mapit:
2048 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2049 
2050 out:
2051 	if (ret) {
2052 		bio->bi_status = ret;
2053 		bio_endio(bio);
2054 	}
2055 	return ret;
2056 }
2057 
2058 /*
2059  * given a list of ordered sums record them in the inode.  This happens
2060  * at IO completion time based on sums calculated at bio submission time.
2061  */
2062 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2063 			     struct inode *inode, struct list_head *list)
2064 {
2065 	struct btrfs_ordered_sum *sum;
2066 	int ret;
2067 
2068 	list_for_each_entry(sum, list, list) {
2069 		trans->adding_csums = true;
2070 		ret = btrfs_csum_file_blocks(trans,
2071 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2072 		trans->adding_csums = false;
2073 		if (ret)
2074 			return ret;
2075 	}
2076 	return 0;
2077 }
2078 
2079 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2080 			      unsigned int extra_bits,
2081 			      struct extent_state **cached_state, int dedupe)
2082 {
2083 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2084 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2085 				   extra_bits, cached_state);
2086 }
2087 
2088 /* see btrfs_writepage_start_hook for details on why this is required */
2089 struct btrfs_writepage_fixup {
2090 	struct page *page;
2091 	struct btrfs_work work;
2092 };
2093 
2094 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2095 {
2096 	struct btrfs_writepage_fixup *fixup;
2097 	struct btrfs_ordered_extent *ordered;
2098 	struct extent_state *cached_state = NULL;
2099 	struct extent_changeset *data_reserved = NULL;
2100 	struct page *page;
2101 	struct inode *inode;
2102 	u64 page_start;
2103 	u64 page_end;
2104 	int ret;
2105 
2106 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2107 	page = fixup->page;
2108 again:
2109 	lock_page(page);
2110 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2111 		ClearPageChecked(page);
2112 		goto out_page;
2113 	}
2114 
2115 	inode = page->mapping->host;
2116 	page_start = page_offset(page);
2117 	page_end = page_offset(page) + PAGE_SIZE - 1;
2118 
2119 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2120 			 &cached_state);
2121 
2122 	/* already ordered? We're done */
2123 	if (PagePrivate2(page))
2124 		goto out;
2125 
2126 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2127 					PAGE_SIZE);
2128 	if (ordered) {
2129 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2130 				     page_end, &cached_state);
2131 		unlock_page(page);
2132 		btrfs_start_ordered_extent(inode, ordered, 1);
2133 		btrfs_put_ordered_extent(ordered);
2134 		goto again;
2135 	}
2136 
2137 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2138 					   PAGE_SIZE);
2139 	if (ret) {
2140 		mapping_set_error(page->mapping, ret);
2141 		end_extent_writepage(page, ret, page_start, page_end);
2142 		ClearPageChecked(page);
2143 		goto out;
2144 	 }
2145 
2146 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2147 					&cached_state, 0);
2148 	if (ret) {
2149 		mapping_set_error(page->mapping, ret);
2150 		end_extent_writepage(page, ret, page_start, page_end);
2151 		ClearPageChecked(page);
2152 		goto out;
2153 	}
2154 
2155 	ClearPageChecked(page);
2156 	set_page_dirty(page);
2157 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2158 out:
2159 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2160 			     &cached_state);
2161 out_page:
2162 	unlock_page(page);
2163 	put_page(page);
2164 	kfree(fixup);
2165 	extent_changeset_free(data_reserved);
2166 }
2167 
2168 /*
2169  * There are a few paths in the higher layers of the kernel that directly
2170  * set the page dirty bit without asking the filesystem if it is a
2171  * good idea.  This causes problems because we want to make sure COW
2172  * properly happens and the data=ordered rules are followed.
2173  *
2174  * In our case any range that doesn't have the ORDERED bit set
2175  * hasn't been properly setup for IO.  We kick off an async process
2176  * to fix it up.  The async helper will wait for ordered extents, set
2177  * the delalloc bit and make it safe to write the page.
2178  */
2179 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2180 {
2181 	struct inode *inode = page->mapping->host;
2182 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2183 	struct btrfs_writepage_fixup *fixup;
2184 
2185 	/* this page is properly in the ordered list */
2186 	if (TestClearPagePrivate2(page))
2187 		return 0;
2188 
2189 	if (PageChecked(page))
2190 		return -EAGAIN;
2191 
2192 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2193 	if (!fixup)
2194 		return -EAGAIN;
2195 
2196 	SetPageChecked(page);
2197 	get_page(page);
2198 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2199 			btrfs_writepage_fixup_worker, NULL, NULL);
2200 	fixup->page = page;
2201 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2202 	return -EBUSY;
2203 }
2204 
2205 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2206 				       struct inode *inode, u64 file_pos,
2207 				       u64 disk_bytenr, u64 disk_num_bytes,
2208 				       u64 num_bytes, u64 ram_bytes,
2209 				       u8 compression, u8 encryption,
2210 				       u16 other_encoding, int extent_type)
2211 {
2212 	struct btrfs_root *root = BTRFS_I(inode)->root;
2213 	struct btrfs_file_extent_item *fi;
2214 	struct btrfs_path *path;
2215 	struct extent_buffer *leaf;
2216 	struct btrfs_key ins;
2217 	u64 qg_released;
2218 	int extent_inserted = 0;
2219 	int ret;
2220 
2221 	path = btrfs_alloc_path();
2222 	if (!path)
2223 		return -ENOMEM;
2224 
2225 	/*
2226 	 * we may be replacing one extent in the tree with another.
2227 	 * The new extent is pinned in the extent map, and we don't want
2228 	 * to drop it from the cache until it is completely in the btree.
2229 	 *
2230 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2231 	 * the caller is expected to unpin it and allow it to be merged
2232 	 * with the others.
2233 	 */
2234 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2235 				   file_pos + num_bytes, NULL, 0,
2236 				   1, sizeof(*fi), &extent_inserted);
2237 	if (ret)
2238 		goto out;
2239 
2240 	if (!extent_inserted) {
2241 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2242 		ins.offset = file_pos;
2243 		ins.type = BTRFS_EXTENT_DATA_KEY;
2244 
2245 		path->leave_spinning = 1;
2246 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2247 					      sizeof(*fi));
2248 		if (ret)
2249 			goto out;
2250 	}
2251 	leaf = path->nodes[0];
2252 	fi = btrfs_item_ptr(leaf, path->slots[0],
2253 			    struct btrfs_file_extent_item);
2254 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2255 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2256 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2257 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2258 	btrfs_set_file_extent_offset(leaf, fi, 0);
2259 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2260 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2261 	btrfs_set_file_extent_compression(leaf, fi, compression);
2262 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2263 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2264 
2265 	btrfs_mark_buffer_dirty(leaf);
2266 	btrfs_release_path(path);
2267 
2268 	inode_add_bytes(inode, num_bytes);
2269 
2270 	ins.objectid = disk_bytenr;
2271 	ins.offset = disk_num_bytes;
2272 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2273 
2274 	/*
2275 	 * Release the reserved range from inode dirty range map, as it is
2276 	 * already moved into delayed_ref_head
2277 	 */
2278 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2279 	if (ret < 0)
2280 		goto out;
2281 	qg_released = ret;
2282 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2283 					       btrfs_ino(BTRFS_I(inode)),
2284 					       file_pos, qg_released, &ins);
2285 out:
2286 	btrfs_free_path(path);
2287 
2288 	return ret;
2289 }
2290 
2291 /* snapshot-aware defrag */
2292 struct sa_defrag_extent_backref {
2293 	struct rb_node node;
2294 	struct old_sa_defrag_extent *old;
2295 	u64 root_id;
2296 	u64 inum;
2297 	u64 file_pos;
2298 	u64 extent_offset;
2299 	u64 num_bytes;
2300 	u64 generation;
2301 };
2302 
2303 struct old_sa_defrag_extent {
2304 	struct list_head list;
2305 	struct new_sa_defrag_extent *new;
2306 
2307 	u64 extent_offset;
2308 	u64 bytenr;
2309 	u64 offset;
2310 	u64 len;
2311 	int count;
2312 };
2313 
2314 struct new_sa_defrag_extent {
2315 	struct rb_root root;
2316 	struct list_head head;
2317 	struct btrfs_path *path;
2318 	struct inode *inode;
2319 	u64 file_pos;
2320 	u64 len;
2321 	u64 bytenr;
2322 	u64 disk_len;
2323 	u8 compress_type;
2324 };
2325 
2326 static int backref_comp(struct sa_defrag_extent_backref *b1,
2327 			struct sa_defrag_extent_backref *b2)
2328 {
2329 	if (b1->root_id < b2->root_id)
2330 		return -1;
2331 	else if (b1->root_id > b2->root_id)
2332 		return 1;
2333 
2334 	if (b1->inum < b2->inum)
2335 		return -1;
2336 	else if (b1->inum > b2->inum)
2337 		return 1;
2338 
2339 	if (b1->file_pos < b2->file_pos)
2340 		return -1;
2341 	else if (b1->file_pos > b2->file_pos)
2342 		return 1;
2343 
2344 	/*
2345 	 * [------------------------------] ===> (a range of space)
2346 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2347 	 * |<---------------------------->| ===> (fs/file tree B)
2348 	 *
2349 	 * A range of space can refer to two file extents in one tree while
2350 	 * refer to only one file extent in another tree.
2351 	 *
2352 	 * So we may process a disk offset more than one time(two extents in A)
2353 	 * and locate at the same extent(one extent in B), then insert two same
2354 	 * backrefs(both refer to the extent in B).
2355 	 */
2356 	return 0;
2357 }
2358 
2359 static void backref_insert(struct rb_root *root,
2360 			   struct sa_defrag_extent_backref *backref)
2361 {
2362 	struct rb_node **p = &root->rb_node;
2363 	struct rb_node *parent = NULL;
2364 	struct sa_defrag_extent_backref *entry;
2365 	int ret;
2366 
2367 	while (*p) {
2368 		parent = *p;
2369 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2370 
2371 		ret = backref_comp(backref, entry);
2372 		if (ret < 0)
2373 			p = &(*p)->rb_left;
2374 		else
2375 			p = &(*p)->rb_right;
2376 	}
2377 
2378 	rb_link_node(&backref->node, parent, p);
2379 	rb_insert_color(&backref->node, root);
2380 }
2381 
2382 /*
2383  * Note the backref might has changed, and in this case we just return 0.
2384  */
2385 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2386 				       void *ctx)
2387 {
2388 	struct btrfs_file_extent_item *extent;
2389 	struct old_sa_defrag_extent *old = ctx;
2390 	struct new_sa_defrag_extent *new = old->new;
2391 	struct btrfs_path *path = new->path;
2392 	struct btrfs_key key;
2393 	struct btrfs_root *root;
2394 	struct sa_defrag_extent_backref *backref;
2395 	struct extent_buffer *leaf;
2396 	struct inode *inode = new->inode;
2397 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2398 	int slot;
2399 	int ret;
2400 	u64 extent_offset;
2401 	u64 num_bytes;
2402 
2403 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2404 	    inum == btrfs_ino(BTRFS_I(inode)))
2405 		return 0;
2406 
2407 	key.objectid = root_id;
2408 	key.type = BTRFS_ROOT_ITEM_KEY;
2409 	key.offset = (u64)-1;
2410 
2411 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2412 	if (IS_ERR(root)) {
2413 		if (PTR_ERR(root) == -ENOENT)
2414 			return 0;
2415 		WARN_ON(1);
2416 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2417 			 inum, offset, root_id);
2418 		return PTR_ERR(root);
2419 	}
2420 
2421 	key.objectid = inum;
2422 	key.type = BTRFS_EXTENT_DATA_KEY;
2423 	if (offset > (u64)-1 << 32)
2424 		key.offset = 0;
2425 	else
2426 		key.offset = offset;
2427 
2428 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2429 	if (WARN_ON(ret < 0))
2430 		return ret;
2431 	ret = 0;
2432 
2433 	while (1) {
2434 		cond_resched();
2435 
2436 		leaf = path->nodes[0];
2437 		slot = path->slots[0];
2438 
2439 		if (slot >= btrfs_header_nritems(leaf)) {
2440 			ret = btrfs_next_leaf(root, path);
2441 			if (ret < 0) {
2442 				goto out;
2443 			} else if (ret > 0) {
2444 				ret = 0;
2445 				goto out;
2446 			}
2447 			continue;
2448 		}
2449 
2450 		path->slots[0]++;
2451 
2452 		btrfs_item_key_to_cpu(leaf, &key, slot);
2453 
2454 		if (key.objectid > inum)
2455 			goto out;
2456 
2457 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2458 			continue;
2459 
2460 		extent = btrfs_item_ptr(leaf, slot,
2461 					struct btrfs_file_extent_item);
2462 
2463 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2464 			continue;
2465 
2466 		/*
2467 		 * 'offset' refers to the exact key.offset,
2468 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2469 		 * (key.offset - extent_offset).
2470 		 */
2471 		if (key.offset != offset)
2472 			continue;
2473 
2474 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2475 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2476 
2477 		if (extent_offset >= old->extent_offset + old->offset +
2478 		    old->len || extent_offset + num_bytes <=
2479 		    old->extent_offset + old->offset)
2480 			continue;
2481 		break;
2482 	}
2483 
2484 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2485 	if (!backref) {
2486 		ret = -ENOENT;
2487 		goto out;
2488 	}
2489 
2490 	backref->root_id = root_id;
2491 	backref->inum = inum;
2492 	backref->file_pos = offset;
2493 	backref->num_bytes = num_bytes;
2494 	backref->extent_offset = extent_offset;
2495 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2496 	backref->old = old;
2497 	backref_insert(&new->root, backref);
2498 	old->count++;
2499 out:
2500 	btrfs_release_path(path);
2501 	WARN_ON(ret);
2502 	return ret;
2503 }
2504 
2505 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2506 				   struct new_sa_defrag_extent *new)
2507 {
2508 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2509 	struct old_sa_defrag_extent *old, *tmp;
2510 	int ret;
2511 
2512 	new->path = path;
2513 
2514 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2515 		ret = iterate_inodes_from_logical(old->bytenr +
2516 						  old->extent_offset, fs_info,
2517 						  path, record_one_backref,
2518 						  old, false);
2519 		if (ret < 0 && ret != -ENOENT)
2520 			return false;
2521 
2522 		/* no backref to be processed for this extent */
2523 		if (!old->count) {
2524 			list_del(&old->list);
2525 			kfree(old);
2526 		}
2527 	}
2528 
2529 	if (list_empty(&new->head))
2530 		return false;
2531 
2532 	return true;
2533 }
2534 
2535 static int relink_is_mergable(struct extent_buffer *leaf,
2536 			      struct btrfs_file_extent_item *fi,
2537 			      struct new_sa_defrag_extent *new)
2538 {
2539 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2540 		return 0;
2541 
2542 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2543 		return 0;
2544 
2545 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2546 		return 0;
2547 
2548 	if (btrfs_file_extent_encryption(leaf, fi) ||
2549 	    btrfs_file_extent_other_encoding(leaf, fi))
2550 		return 0;
2551 
2552 	return 1;
2553 }
2554 
2555 /*
2556  * Note the backref might has changed, and in this case we just return 0.
2557  */
2558 static noinline int relink_extent_backref(struct btrfs_path *path,
2559 				 struct sa_defrag_extent_backref *prev,
2560 				 struct sa_defrag_extent_backref *backref)
2561 {
2562 	struct btrfs_file_extent_item *extent;
2563 	struct btrfs_file_extent_item *item;
2564 	struct btrfs_ordered_extent *ordered;
2565 	struct btrfs_trans_handle *trans;
2566 	struct btrfs_root *root;
2567 	struct btrfs_key key;
2568 	struct extent_buffer *leaf;
2569 	struct old_sa_defrag_extent *old = backref->old;
2570 	struct new_sa_defrag_extent *new = old->new;
2571 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2572 	struct inode *inode;
2573 	struct extent_state *cached = NULL;
2574 	int ret = 0;
2575 	u64 start;
2576 	u64 len;
2577 	u64 lock_start;
2578 	u64 lock_end;
2579 	bool merge = false;
2580 	int index;
2581 
2582 	if (prev && prev->root_id == backref->root_id &&
2583 	    prev->inum == backref->inum &&
2584 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2585 		merge = true;
2586 
2587 	/* step 1: get root */
2588 	key.objectid = backref->root_id;
2589 	key.type = BTRFS_ROOT_ITEM_KEY;
2590 	key.offset = (u64)-1;
2591 
2592 	index = srcu_read_lock(&fs_info->subvol_srcu);
2593 
2594 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2595 	if (IS_ERR(root)) {
2596 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2597 		if (PTR_ERR(root) == -ENOENT)
2598 			return 0;
2599 		return PTR_ERR(root);
2600 	}
2601 
2602 	if (btrfs_root_readonly(root)) {
2603 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2604 		return 0;
2605 	}
2606 
2607 	/* step 2: get inode */
2608 	key.objectid = backref->inum;
2609 	key.type = BTRFS_INODE_ITEM_KEY;
2610 	key.offset = 0;
2611 
2612 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2613 	if (IS_ERR(inode)) {
2614 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2615 		return 0;
2616 	}
2617 
2618 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2619 
2620 	/* step 3: relink backref */
2621 	lock_start = backref->file_pos;
2622 	lock_end = backref->file_pos + backref->num_bytes - 1;
2623 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2624 			 &cached);
2625 
2626 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2627 	if (ordered) {
2628 		btrfs_put_ordered_extent(ordered);
2629 		goto out_unlock;
2630 	}
2631 
2632 	trans = btrfs_join_transaction(root);
2633 	if (IS_ERR(trans)) {
2634 		ret = PTR_ERR(trans);
2635 		goto out_unlock;
2636 	}
2637 
2638 	key.objectid = backref->inum;
2639 	key.type = BTRFS_EXTENT_DATA_KEY;
2640 	key.offset = backref->file_pos;
2641 
2642 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2643 	if (ret < 0) {
2644 		goto out_free_path;
2645 	} else if (ret > 0) {
2646 		ret = 0;
2647 		goto out_free_path;
2648 	}
2649 
2650 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2651 				struct btrfs_file_extent_item);
2652 
2653 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2654 	    backref->generation)
2655 		goto out_free_path;
2656 
2657 	btrfs_release_path(path);
2658 
2659 	start = backref->file_pos;
2660 	if (backref->extent_offset < old->extent_offset + old->offset)
2661 		start += old->extent_offset + old->offset -
2662 			 backref->extent_offset;
2663 
2664 	len = min(backref->extent_offset + backref->num_bytes,
2665 		  old->extent_offset + old->offset + old->len);
2666 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2667 
2668 	ret = btrfs_drop_extents(trans, root, inode, start,
2669 				 start + len, 1);
2670 	if (ret)
2671 		goto out_free_path;
2672 again:
2673 	key.objectid = btrfs_ino(BTRFS_I(inode));
2674 	key.type = BTRFS_EXTENT_DATA_KEY;
2675 	key.offset = start;
2676 
2677 	path->leave_spinning = 1;
2678 	if (merge) {
2679 		struct btrfs_file_extent_item *fi;
2680 		u64 extent_len;
2681 		struct btrfs_key found_key;
2682 
2683 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2684 		if (ret < 0)
2685 			goto out_free_path;
2686 
2687 		path->slots[0]--;
2688 		leaf = path->nodes[0];
2689 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2690 
2691 		fi = btrfs_item_ptr(leaf, path->slots[0],
2692 				    struct btrfs_file_extent_item);
2693 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2694 
2695 		if (extent_len + found_key.offset == start &&
2696 		    relink_is_mergable(leaf, fi, new)) {
2697 			btrfs_set_file_extent_num_bytes(leaf, fi,
2698 							extent_len + len);
2699 			btrfs_mark_buffer_dirty(leaf);
2700 			inode_add_bytes(inode, len);
2701 
2702 			ret = 1;
2703 			goto out_free_path;
2704 		} else {
2705 			merge = false;
2706 			btrfs_release_path(path);
2707 			goto again;
2708 		}
2709 	}
2710 
2711 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2712 					sizeof(*extent));
2713 	if (ret) {
2714 		btrfs_abort_transaction(trans, ret);
2715 		goto out_free_path;
2716 	}
2717 
2718 	leaf = path->nodes[0];
2719 	item = btrfs_item_ptr(leaf, path->slots[0],
2720 				struct btrfs_file_extent_item);
2721 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2722 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2723 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2724 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2725 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2726 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2727 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2728 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2729 	btrfs_set_file_extent_encryption(leaf, item, 0);
2730 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2731 
2732 	btrfs_mark_buffer_dirty(leaf);
2733 	inode_add_bytes(inode, len);
2734 	btrfs_release_path(path);
2735 
2736 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2737 			new->disk_len, 0,
2738 			backref->root_id, backref->inum,
2739 			new->file_pos);	/* start - extent_offset */
2740 	if (ret) {
2741 		btrfs_abort_transaction(trans, ret);
2742 		goto out_free_path;
2743 	}
2744 
2745 	ret = 1;
2746 out_free_path:
2747 	btrfs_release_path(path);
2748 	path->leave_spinning = 0;
2749 	btrfs_end_transaction(trans);
2750 out_unlock:
2751 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2752 			     &cached);
2753 	iput(inode);
2754 	return ret;
2755 }
2756 
2757 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2758 {
2759 	struct old_sa_defrag_extent *old, *tmp;
2760 
2761 	if (!new)
2762 		return;
2763 
2764 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2765 		kfree(old);
2766 	}
2767 	kfree(new);
2768 }
2769 
2770 static void relink_file_extents(struct new_sa_defrag_extent *new)
2771 {
2772 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2773 	struct btrfs_path *path;
2774 	struct sa_defrag_extent_backref *backref;
2775 	struct sa_defrag_extent_backref *prev = NULL;
2776 	struct inode *inode;
2777 	struct rb_node *node;
2778 	int ret;
2779 
2780 	inode = new->inode;
2781 
2782 	path = btrfs_alloc_path();
2783 	if (!path)
2784 		return;
2785 
2786 	if (!record_extent_backrefs(path, new)) {
2787 		btrfs_free_path(path);
2788 		goto out;
2789 	}
2790 	btrfs_release_path(path);
2791 
2792 	while (1) {
2793 		node = rb_first(&new->root);
2794 		if (!node)
2795 			break;
2796 		rb_erase(node, &new->root);
2797 
2798 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2799 
2800 		ret = relink_extent_backref(path, prev, backref);
2801 		WARN_ON(ret < 0);
2802 
2803 		kfree(prev);
2804 
2805 		if (ret == 1)
2806 			prev = backref;
2807 		else
2808 			prev = NULL;
2809 		cond_resched();
2810 	}
2811 	kfree(prev);
2812 
2813 	btrfs_free_path(path);
2814 out:
2815 	free_sa_defrag_extent(new);
2816 
2817 	atomic_dec(&fs_info->defrag_running);
2818 	wake_up(&fs_info->transaction_wait);
2819 }
2820 
2821 static struct new_sa_defrag_extent *
2822 record_old_file_extents(struct inode *inode,
2823 			struct btrfs_ordered_extent *ordered)
2824 {
2825 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2826 	struct btrfs_root *root = BTRFS_I(inode)->root;
2827 	struct btrfs_path *path;
2828 	struct btrfs_key key;
2829 	struct old_sa_defrag_extent *old;
2830 	struct new_sa_defrag_extent *new;
2831 	int ret;
2832 
2833 	new = kmalloc(sizeof(*new), GFP_NOFS);
2834 	if (!new)
2835 		return NULL;
2836 
2837 	new->inode = inode;
2838 	new->file_pos = ordered->file_offset;
2839 	new->len = ordered->len;
2840 	new->bytenr = ordered->start;
2841 	new->disk_len = ordered->disk_len;
2842 	new->compress_type = ordered->compress_type;
2843 	new->root = RB_ROOT;
2844 	INIT_LIST_HEAD(&new->head);
2845 
2846 	path = btrfs_alloc_path();
2847 	if (!path)
2848 		goto out_kfree;
2849 
2850 	key.objectid = btrfs_ino(BTRFS_I(inode));
2851 	key.type = BTRFS_EXTENT_DATA_KEY;
2852 	key.offset = new->file_pos;
2853 
2854 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2855 	if (ret < 0)
2856 		goto out_free_path;
2857 	if (ret > 0 && path->slots[0] > 0)
2858 		path->slots[0]--;
2859 
2860 	/* find out all the old extents for the file range */
2861 	while (1) {
2862 		struct btrfs_file_extent_item *extent;
2863 		struct extent_buffer *l;
2864 		int slot;
2865 		u64 num_bytes;
2866 		u64 offset;
2867 		u64 end;
2868 		u64 disk_bytenr;
2869 		u64 extent_offset;
2870 
2871 		l = path->nodes[0];
2872 		slot = path->slots[0];
2873 
2874 		if (slot >= btrfs_header_nritems(l)) {
2875 			ret = btrfs_next_leaf(root, path);
2876 			if (ret < 0)
2877 				goto out_free_path;
2878 			else if (ret > 0)
2879 				break;
2880 			continue;
2881 		}
2882 
2883 		btrfs_item_key_to_cpu(l, &key, slot);
2884 
2885 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2886 			break;
2887 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2888 			break;
2889 		if (key.offset >= new->file_pos + new->len)
2890 			break;
2891 
2892 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2893 
2894 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2895 		if (key.offset + num_bytes < new->file_pos)
2896 			goto next;
2897 
2898 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2899 		if (!disk_bytenr)
2900 			goto next;
2901 
2902 		extent_offset = btrfs_file_extent_offset(l, extent);
2903 
2904 		old = kmalloc(sizeof(*old), GFP_NOFS);
2905 		if (!old)
2906 			goto out_free_path;
2907 
2908 		offset = max(new->file_pos, key.offset);
2909 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2910 
2911 		old->bytenr = disk_bytenr;
2912 		old->extent_offset = extent_offset;
2913 		old->offset = offset - key.offset;
2914 		old->len = end - offset;
2915 		old->new = new;
2916 		old->count = 0;
2917 		list_add_tail(&old->list, &new->head);
2918 next:
2919 		path->slots[0]++;
2920 		cond_resched();
2921 	}
2922 
2923 	btrfs_free_path(path);
2924 	atomic_inc(&fs_info->defrag_running);
2925 
2926 	return new;
2927 
2928 out_free_path:
2929 	btrfs_free_path(path);
2930 out_kfree:
2931 	free_sa_defrag_extent(new);
2932 	return NULL;
2933 }
2934 
2935 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2936 					 u64 start, u64 len)
2937 {
2938 	struct btrfs_block_group_cache *cache;
2939 
2940 	cache = btrfs_lookup_block_group(fs_info, start);
2941 	ASSERT(cache);
2942 
2943 	spin_lock(&cache->lock);
2944 	cache->delalloc_bytes -= len;
2945 	spin_unlock(&cache->lock);
2946 
2947 	btrfs_put_block_group(cache);
2948 }
2949 
2950 /* as ordered data IO finishes, this gets called so we can finish
2951  * an ordered extent if the range of bytes in the file it covers are
2952  * fully written.
2953  */
2954 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2955 {
2956 	struct inode *inode = ordered_extent->inode;
2957 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2958 	struct btrfs_root *root = BTRFS_I(inode)->root;
2959 	struct btrfs_trans_handle *trans = NULL;
2960 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2961 	struct extent_state *cached_state = NULL;
2962 	struct new_sa_defrag_extent *new = NULL;
2963 	int compress_type = 0;
2964 	int ret = 0;
2965 	u64 logical_len = ordered_extent->len;
2966 	bool nolock;
2967 	bool truncated = false;
2968 	bool range_locked = false;
2969 	bool clear_new_delalloc_bytes = false;
2970 
2971 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2972 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2973 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2974 		clear_new_delalloc_bytes = true;
2975 
2976 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2977 
2978 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2979 		ret = -EIO;
2980 		goto out;
2981 	}
2982 
2983 	btrfs_free_io_failure_record(BTRFS_I(inode),
2984 			ordered_extent->file_offset,
2985 			ordered_extent->file_offset +
2986 			ordered_extent->len - 1);
2987 
2988 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2989 		truncated = true;
2990 		logical_len = ordered_extent->truncated_len;
2991 		/* Truncated the entire extent, don't bother adding */
2992 		if (!logical_len)
2993 			goto out;
2994 	}
2995 
2996 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2997 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2998 
2999 		/*
3000 		 * For mwrite(mmap + memset to write) case, we still reserve
3001 		 * space for NOCOW range.
3002 		 * As NOCOW won't cause a new delayed ref, just free the space
3003 		 */
3004 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3005 				       ordered_extent->len);
3006 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3007 		if (nolock)
3008 			trans = btrfs_join_transaction_nolock(root);
3009 		else
3010 			trans = btrfs_join_transaction(root);
3011 		if (IS_ERR(trans)) {
3012 			ret = PTR_ERR(trans);
3013 			trans = NULL;
3014 			goto out;
3015 		}
3016 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3017 		ret = btrfs_update_inode_fallback(trans, root, inode);
3018 		if (ret) /* -ENOMEM or corruption */
3019 			btrfs_abort_transaction(trans, ret);
3020 		goto out;
3021 	}
3022 
3023 	range_locked = true;
3024 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3025 			 ordered_extent->file_offset + ordered_extent->len - 1,
3026 			 &cached_state);
3027 
3028 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3029 			ordered_extent->file_offset + ordered_extent->len - 1,
3030 			EXTENT_DEFRAG, 0, cached_state);
3031 	if (ret) {
3032 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3033 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3034 			/* the inode is shared */
3035 			new = record_old_file_extents(inode, ordered_extent);
3036 
3037 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3038 			ordered_extent->file_offset + ordered_extent->len - 1,
3039 			EXTENT_DEFRAG, 0, 0, &cached_state);
3040 	}
3041 
3042 	if (nolock)
3043 		trans = btrfs_join_transaction_nolock(root);
3044 	else
3045 		trans = btrfs_join_transaction(root);
3046 	if (IS_ERR(trans)) {
3047 		ret = PTR_ERR(trans);
3048 		trans = NULL;
3049 		goto out;
3050 	}
3051 
3052 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3053 
3054 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3055 		compress_type = ordered_extent->compress_type;
3056 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3057 		BUG_ON(compress_type);
3058 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3059 				       ordered_extent->len);
3060 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3061 						ordered_extent->file_offset,
3062 						ordered_extent->file_offset +
3063 						logical_len);
3064 	} else {
3065 		BUG_ON(root == fs_info->tree_root);
3066 		ret = insert_reserved_file_extent(trans, inode,
3067 						ordered_extent->file_offset,
3068 						ordered_extent->start,
3069 						ordered_extent->disk_len,
3070 						logical_len, logical_len,
3071 						compress_type, 0, 0,
3072 						BTRFS_FILE_EXTENT_REG);
3073 		if (!ret)
3074 			btrfs_release_delalloc_bytes(fs_info,
3075 						     ordered_extent->start,
3076 						     ordered_extent->disk_len);
3077 	}
3078 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3079 			   ordered_extent->file_offset, ordered_extent->len,
3080 			   trans->transid);
3081 	if (ret < 0) {
3082 		btrfs_abort_transaction(trans, ret);
3083 		goto out;
3084 	}
3085 
3086 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3087 	if (ret) {
3088 		btrfs_abort_transaction(trans, ret);
3089 		goto out;
3090 	}
3091 
3092 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3093 	ret = btrfs_update_inode_fallback(trans, root, inode);
3094 	if (ret) { /* -ENOMEM or corruption */
3095 		btrfs_abort_transaction(trans, ret);
3096 		goto out;
3097 	}
3098 	ret = 0;
3099 out:
3100 	if (range_locked || clear_new_delalloc_bytes) {
3101 		unsigned int clear_bits = 0;
3102 
3103 		if (range_locked)
3104 			clear_bits |= EXTENT_LOCKED;
3105 		if (clear_new_delalloc_bytes)
3106 			clear_bits |= EXTENT_DELALLOC_NEW;
3107 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3108 				 ordered_extent->file_offset,
3109 				 ordered_extent->file_offset +
3110 				 ordered_extent->len - 1,
3111 				 clear_bits,
3112 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3113 				 0, &cached_state);
3114 	}
3115 
3116 	if (trans)
3117 		btrfs_end_transaction(trans);
3118 
3119 	if (ret || truncated) {
3120 		u64 start, end;
3121 
3122 		if (truncated)
3123 			start = ordered_extent->file_offset + logical_len;
3124 		else
3125 			start = ordered_extent->file_offset;
3126 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3127 		clear_extent_uptodate(io_tree, start, end, NULL);
3128 
3129 		/* Drop the cache for the part of the extent we didn't write. */
3130 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3131 
3132 		/*
3133 		 * If the ordered extent had an IOERR or something else went
3134 		 * wrong we need to return the space for this ordered extent
3135 		 * back to the allocator.  We only free the extent in the
3136 		 * truncated case if we didn't write out the extent at all.
3137 		 */
3138 		if ((ret || !logical_len) &&
3139 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3140 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3141 			btrfs_free_reserved_extent(fs_info,
3142 						   ordered_extent->start,
3143 						   ordered_extent->disk_len, 1);
3144 	}
3145 
3146 
3147 	/*
3148 	 * This needs to be done to make sure anybody waiting knows we are done
3149 	 * updating everything for this ordered extent.
3150 	 */
3151 	btrfs_remove_ordered_extent(inode, ordered_extent);
3152 
3153 	/* for snapshot-aware defrag */
3154 	if (new) {
3155 		if (ret) {
3156 			free_sa_defrag_extent(new);
3157 			atomic_dec(&fs_info->defrag_running);
3158 		} else {
3159 			relink_file_extents(new);
3160 		}
3161 	}
3162 
3163 	/* once for us */
3164 	btrfs_put_ordered_extent(ordered_extent);
3165 	/* once for the tree */
3166 	btrfs_put_ordered_extent(ordered_extent);
3167 
3168 	/* Try to release some metadata so we don't get an OOM but don't wait */
3169 	btrfs_btree_balance_dirty_nodelay(fs_info);
3170 
3171 	return ret;
3172 }
3173 
3174 static void finish_ordered_fn(struct btrfs_work *work)
3175 {
3176 	struct btrfs_ordered_extent *ordered_extent;
3177 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3178 	btrfs_finish_ordered_io(ordered_extent);
3179 }
3180 
3181 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3182 				struct extent_state *state, int uptodate)
3183 {
3184 	struct inode *inode = page->mapping->host;
3185 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3186 	struct btrfs_ordered_extent *ordered_extent = NULL;
3187 	struct btrfs_workqueue *wq;
3188 	btrfs_work_func_t func;
3189 
3190 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3191 
3192 	ClearPagePrivate2(page);
3193 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3194 					    end - start + 1, uptodate))
3195 		return;
3196 
3197 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3198 		wq = fs_info->endio_freespace_worker;
3199 		func = btrfs_freespace_write_helper;
3200 	} else {
3201 		wq = fs_info->endio_write_workers;
3202 		func = btrfs_endio_write_helper;
3203 	}
3204 
3205 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3206 			NULL);
3207 	btrfs_queue_work(wq, &ordered_extent->work);
3208 }
3209 
3210 static int __readpage_endio_check(struct inode *inode,
3211 				  struct btrfs_io_bio *io_bio,
3212 				  int icsum, struct page *page,
3213 				  int pgoff, u64 start, size_t len)
3214 {
3215 	char *kaddr;
3216 	u32 csum_expected;
3217 	u32 csum = ~(u32)0;
3218 
3219 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3220 
3221 	kaddr = kmap_atomic(page);
3222 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3223 	btrfs_csum_final(csum, (u8 *)&csum);
3224 	if (csum != csum_expected)
3225 		goto zeroit;
3226 
3227 	kunmap_atomic(kaddr);
3228 	return 0;
3229 zeroit:
3230 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3231 				    io_bio->mirror_num);
3232 	memset(kaddr + pgoff, 1, len);
3233 	flush_dcache_page(page);
3234 	kunmap_atomic(kaddr);
3235 	return -EIO;
3236 }
3237 
3238 /*
3239  * when reads are done, we need to check csums to verify the data is correct
3240  * if there's a match, we allow the bio to finish.  If not, the code in
3241  * extent_io.c will try to find good copies for us.
3242  */
3243 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3244 				      u64 phy_offset, struct page *page,
3245 				      u64 start, u64 end, int mirror)
3246 {
3247 	size_t offset = start - page_offset(page);
3248 	struct inode *inode = page->mapping->host;
3249 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3250 	struct btrfs_root *root = BTRFS_I(inode)->root;
3251 
3252 	if (PageChecked(page)) {
3253 		ClearPageChecked(page);
3254 		return 0;
3255 	}
3256 
3257 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3258 		return 0;
3259 
3260 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3261 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3262 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3263 		return 0;
3264 	}
3265 
3266 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3267 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3268 				      start, (size_t)(end - start + 1));
3269 }
3270 
3271 /*
3272  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3273  *
3274  * @inode: The inode we want to perform iput on
3275  *
3276  * This function uses the generic vfs_inode::i_count to track whether we should
3277  * just decrement it (in case it's > 1) or if this is the last iput then link
3278  * the inode to the delayed iput machinery. Delayed iputs are processed at
3279  * transaction commit time/superblock commit/cleaner kthread.
3280  */
3281 void btrfs_add_delayed_iput(struct inode *inode)
3282 {
3283 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3284 	struct btrfs_inode *binode = BTRFS_I(inode);
3285 
3286 	if (atomic_add_unless(&inode->i_count, -1, 1))
3287 		return;
3288 
3289 	spin_lock(&fs_info->delayed_iput_lock);
3290 	ASSERT(list_empty(&binode->delayed_iput));
3291 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3292 	spin_unlock(&fs_info->delayed_iput_lock);
3293 }
3294 
3295 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3296 {
3297 
3298 	spin_lock(&fs_info->delayed_iput_lock);
3299 	while (!list_empty(&fs_info->delayed_iputs)) {
3300 		struct btrfs_inode *inode;
3301 
3302 		inode = list_first_entry(&fs_info->delayed_iputs,
3303 				struct btrfs_inode, delayed_iput);
3304 		list_del_init(&inode->delayed_iput);
3305 		spin_unlock(&fs_info->delayed_iput_lock);
3306 		iput(&inode->vfs_inode);
3307 		spin_lock(&fs_info->delayed_iput_lock);
3308 	}
3309 	spin_unlock(&fs_info->delayed_iput_lock);
3310 }
3311 
3312 /*
3313  * This creates an orphan entry for the given inode in case something goes wrong
3314  * in the middle of an unlink.
3315  */
3316 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3317 		     struct btrfs_inode *inode)
3318 {
3319 	int ret;
3320 
3321 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3322 	if (ret && ret != -EEXIST) {
3323 		btrfs_abort_transaction(trans, ret);
3324 		return ret;
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 /*
3331  * We have done the delete so we can go ahead and remove the orphan item for
3332  * this particular inode.
3333  */
3334 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3335 			    struct btrfs_inode *inode)
3336 {
3337 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3338 }
3339 
3340 /*
3341  * this cleans up any orphans that may be left on the list from the last use
3342  * of this root.
3343  */
3344 int btrfs_orphan_cleanup(struct btrfs_root *root)
3345 {
3346 	struct btrfs_fs_info *fs_info = root->fs_info;
3347 	struct btrfs_path *path;
3348 	struct extent_buffer *leaf;
3349 	struct btrfs_key key, found_key;
3350 	struct btrfs_trans_handle *trans;
3351 	struct inode *inode;
3352 	u64 last_objectid = 0;
3353 	int ret = 0, nr_unlink = 0;
3354 
3355 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3356 		return 0;
3357 
3358 	path = btrfs_alloc_path();
3359 	if (!path) {
3360 		ret = -ENOMEM;
3361 		goto out;
3362 	}
3363 	path->reada = READA_BACK;
3364 
3365 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3366 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3367 	key.offset = (u64)-1;
3368 
3369 	while (1) {
3370 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3371 		if (ret < 0)
3372 			goto out;
3373 
3374 		/*
3375 		 * if ret == 0 means we found what we were searching for, which
3376 		 * is weird, but possible, so only screw with path if we didn't
3377 		 * find the key and see if we have stuff that matches
3378 		 */
3379 		if (ret > 0) {
3380 			ret = 0;
3381 			if (path->slots[0] == 0)
3382 				break;
3383 			path->slots[0]--;
3384 		}
3385 
3386 		/* pull out the item */
3387 		leaf = path->nodes[0];
3388 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3389 
3390 		/* make sure the item matches what we want */
3391 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3392 			break;
3393 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3394 			break;
3395 
3396 		/* release the path since we're done with it */
3397 		btrfs_release_path(path);
3398 
3399 		/*
3400 		 * this is where we are basically btrfs_lookup, without the
3401 		 * crossing root thing.  we store the inode number in the
3402 		 * offset of the orphan item.
3403 		 */
3404 
3405 		if (found_key.offset == last_objectid) {
3406 			btrfs_err(fs_info,
3407 				  "Error removing orphan entry, stopping orphan cleanup");
3408 			ret = -EINVAL;
3409 			goto out;
3410 		}
3411 
3412 		last_objectid = found_key.offset;
3413 
3414 		found_key.objectid = found_key.offset;
3415 		found_key.type = BTRFS_INODE_ITEM_KEY;
3416 		found_key.offset = 0;
3417 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3418 		ret = PTR_ERR_OR_ZERO(inode);
3419 		if (ret && ret != -ENOENT)
3420 			goto out;
3421 
3422 		if (ret == -ENOENT && root == fs_info->tree_root) {
3423 			struct btrfs_root *dead_root;
3424 			struct btrfs_fs_info *fs_info = root->fs_info;
3425 			int is_dead_root = 0;
3426 
3427 			/*
3428 			 * this is an orphan in the tree root. Currently these
3429 			 * could come from 2 sources:
3430 			 *  a) a snapshot deletion in progress
3431 			 *  b) a free space cache inode
3432 			 * We need to distinguish those two, as the snapshot
3433 			 * orphan must not get deleted.
3434 			 * find_dead_roots already ran before us, so if this
3435 			 * is a snapshot deletion, we should find the root
3436 			 * in the dead_roots list
3437 			 */
3438 			spin_lock(&fs_info->trans_lock);
3439 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3440 					    root_list) {
3441 				if (dead_root->root_key.objectid ==
3442 				    found_key.objectid) {
3443 					is_dead_root = 1;
3444 					break;
3445 				}
3446 			}
3447 			spin_unlock(&fs_info->trans_lock);
3448 			if (is_dead_root) {
3449 				/* prevent this orphan from being found again */
3450 				key.offset = found_key.objectid - 1;
3451 				continue;
3452 			}
3453 
3454 		}
3455 
3456 		/*
3457 		 * If we have an inode with links, there are a couple of
3458 		 * possibilities. Old kernels (before v3.12) used to create an
3459 		 * orphan item for truncate indicating that there were possibly
3460 		 * extent items past i_size that needed to be deleted. In v3.12,
3461 		 * truncate was changed to update i_size in sync with the extent
3462 		 * items, but the (useless) orphan item was still created. Since
3463 		 * v4.18, we don't create the orphan item for truncate at all.
3464 		 *
3465 		 * So, this item could mean that we need to do a truncate, but
3466 		 * only if this filesystem was last used on a pre-v3.12 kernel
3467 		 * and was not cleanly unmounted. The odds of that are quite
3468 		 * slim, and it's a pain to do the truncate now, so just delete
3469 		 * the orphan item.
3470 		 *
3471 		 * It's also possible that this orphan item was supposed to be
3472 		 * deleted but wasn't. The inode number may have been reused,
3473 		 * but either way, we can delete the orphan item.
3474 		 */
3475 		if (ret == -ENOENT || inode->i_nlink) {
3476 			if (!ret)
3477 				iput(inode);
3478 			trans = btrfs_start_transaction(root, 1);
3479 			if (IS_ERR(trans)) {
3480 				ret = PTR_ERR(trans);
3481 				goto out;
3482 			}
3483 			btrfs_debug(fs_info, "auto deleting %Lu",
3484 				    found_key.objectid);
3485 			ret = btrfs_del_orphan_item(trans, root,
3486 						    found_key.objectid);
3487 			btrfs_end_transaction(trans);
3488 			if (ret)
3489 				goto out;
3490 			continue;
3491 		}
3492 
3493 		nr_unlink++;
3494 
3495 		/* this will do delete_inode and everything for us */
3496 		iput(inode);
3497 		if (ret)
3498 			goto out;
3499 	}
3500 	/* release the path since we're done with it */
3501 	btrfs_release_path(path);
3502 
3503 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3504 
3505 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3506 		trans = btrfs_join_transaction(root);
3507 		if (!IS_ERR(trans))
3508 			btrfs_end_transaction(trans);
3509 	}
3510 
3511 	if (nr_unlink)
3512 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3513 
3514 out:
3515 	if (ret)
3516 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3517 	btrfs_free_path(path);
3518 	return ret;
3519 }
3520 
3521 /*
3522  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3523  * don't find any xattrs, we know there can't be any acls.
3524  *
3525  * slot is the slot the inode is in, objectid is the objectid of the inode
3526  */
3527 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3528 					  int slot, u64 objectid,
3529 					  int *first_xattr_slot)
3530 {
3531 	u32 nritems = btrfs_header_nritems(leaf);
3532 	struct btrfs_key found_key;
3533 	static u64 xattr_access = 0;
3534 	static u64 xattr_default = 0;
3535 	int scanned = 0;
3536 
3537 	if (!xattr_access) {
3538 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3539 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3540 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3541 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3542 	}
3543 
3544 	slot++;
3545 	*first_xattr_slot = -1;
3546 	while (slot < nritems) {
3547 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3548 
3549 		/* we found a different objectid, there must not be acls */
3550 		if (found_key.objectid != objectid)
3551 			return 0;
3552 
3553 		/* we found an xattr, assume we've got an acl */
3554 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3555 			if (*first_xattr_slot == -1)
3556 				*first_xattr_slot = slot;
3557 			if (found_key.offset == xattr_access ||
3558 			    found_key.offset == xattr_default)
3559 				return 1;
3560 		}
3561 
3562 		/*
3563 		 * we found a key greater than an xattr key, there can't
3564 		 * be any acls later on
3565 		 */
3566 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3567 			return 0;
3568 
3569 		slot++;
3570 		scanned++;
3571 
3572 		/*
3573 		 * it goes inode, inode backrefs, xattrs, extents,
3574 		 * so if there are a ton of hard links to an inode there can
3575 		 * be a lot of backrefs.  Don't waste time searching too hard,
3576 		 * this is just an optimization
3577 		 */
3578 		if (scanned >= 8)
3579 			break;
3580 	}
3581 	/* we hit the end of the leaf before we found an xattr or
3582 	 * something larger than an xattr.  We have to assume the inode
3583 	 * has acls
3584 	 */
3585 	if (*first_xattr_slot == -1)
3586 		*first_xattr_slot = slot;
3587 	return 1;
3588 }
3589 
3590 /*
3591  * read an inode from the btree into the in-memory inode
3592  */
3593 static int btrfs_read_locked_inode(struct inode *inode)
3594 {
3595 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3596 	struct btrfs_path *path;
3597 	struct extent_buffer *leaf;
3598 	struct btrfs_inode_item *inode_item;
3599 	struct btrfs_root *root = BTRFS_I(inode)->root;
3600 	struct btrfs_key location;
3601 	unsigned long ptr;
3602 	int maybe_acls;
3603 	u32 rdev;
3604 	int ret;
3605 	bool filled = false;
3606 	int first_xattr_slot;
3607 
3608 	ret = btrfs_fill_inode(inode, &rdev);
3609 	if (!ret)
3610 		filled = true;
3611 
3612 	path = btrfs_alloc_path();
3613 	if (!path) {
3614 		ret = -ENOMEM;
3615 		goto make_bad;
3616 	}
3617 
3618 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3619 
3620 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3621 	if (ret) {
3622 		if (ret > 0)
3623 			ret = -ENOENT;
3624 		goto make_bad;
3625 	}
3626 
3627 	leaf = path->nodes[0];
3628 
3629 	if (filled)
3630 		goto cache_index;
3631 
3632 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3633 				    struct btrfs_inode_item);
3634 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3635 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3636 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3637 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3638 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3639 
3640 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3641 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3642 
3643 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3644 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3645 
3646 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3647 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3648 
3649 	BTRFS_I(inode)->i_otime.tv_sec =
3650 		btrfs_timespec_sec(leaf, &inode_item->otime);
3651 	BTRFS_I(inode)->i_otime.tv_nsec =
3652 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3653 
3654 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3655 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3656 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3657 
3658 	inode_set_iversion_queried(inode,
3659 				   btrfs_inode_sequence(leaf, inode_item));
3660 	inode->i_generation = BTRFS_I(inode)->generation;
3661 	inode->i_rdev = 0;
3662 	rdev = btrfs_inode_rdev(leaf, inode_item);
3663 
3664 	BTRFS_I(inode)->index_cnt = (u64)-1;
3665 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3666 
3667 cache_index:
3668 	/*
3669 	 * If we were modified in the current generation and evicted from memory
3670 	 * and then re-read we need to do a full sync since we don't have any
3671 	 * idea about which extents were modified before we were evicted from
3672 	 * cache.
3673 	 *
3674 	 * This is required for both inode re-read from disk and delayed inode
3675 	 * in delayed_nodes_tree.
3676 	 */
3677 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3678 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3679 			&BTRFS_I(inode)->runtime_flags);
3680 
3681 	/*
3682 	 * We don't persist the id of the transaction where an unlink operation
3683 	 * against the inode was last made. So here we assume the inode might
3684 	 * have been evicted, and therefore the exact value of last_unlink_trans
3685 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3686 	 * between the inode and its parent if the inode is fsync'ed and the log
3687 	 * replayed. For example, in the scenario:
3688 	 *
3689 	 * touch mydir/foo
3690 	 * ln mydir/foo mydir/bar
3691 	 * sync
3692 	 * unlink mydir/bar
3693 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3694 	 * xfs_io -c fsync mydir/foo
3695 	 * <power failure>
3696 	 * mount fs, triggers fsync log replay
3697 	 *
3698 	 * We must make sure that when we fsync our inode foo we also log its
3699 	 * parent inode, otherwise after log replay the parent still has the
3700 	 * dentry with the "bar" name but our inode foo has a link count of 1
3701 	 * and doesn't have an inode ref with the name "bar" anymore.
3702 	 *
3703 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3704 	 * but it guarantees correctness at the expense of occasional full
3705 	 * transaction commits on fsync if our inode is a directory, or if our
3706 	 * inode is not a directory, logging its parent unnecessarily.
3707 	 */
3708 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3709 
3710 	path->slots[0]++;
3711 	if (inode->i_nlink != 1 ||
3712 	    path->slots[0] >= btrfs_header_nritems(leaf))
3713 		goto cache_acl;
3714 
3715 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3716 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3717 		goto cache_acl;
3718 
3719 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3720 	if (location.type == BTRFS_INODE_REF_KEY) {
3721 		struct btrfs_inode_ref *ref;
3722 
3723 		ref = (struct btrfs_inode_ref *)ptr;
3724 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3725 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3726 		struct btrfs_inode_extref *extref;
3727 
3728 		extref = (struct btrfs_inode_extref *)ptr;
3729 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3730 								     extref);
3731 	}
3732 cache_acl:
3733 	/*
3734 	 * try to precache a NULL acl entry for files that don't have
3735 	 * any xattrs or acls
3736 	 */
3737 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3738 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3739 	if (first_xattr_slot != -1) {
3740 		path->slots[0] = first_xattr_slot;
3741 		ret = btrfs_load_inode_props(inode, path);
3742 		if (ret)
3743 			btrfs_err(fs_info,
3744 				  "error loading props for ino %llu (root %llu): %d",
3745 				  btrfs_ino(BTRFS_I(inode)),
3746 				  root->root_key.objectid, ret);
3747 	}
3748 	btrfs_free_path(path);
3749 
3750 	if (!maybe_acls)
3751 		cache_no_acl(inode);
3752 
3753 	switch (inode->i_mode & S_IFMT) {
3754 	case S_IFREG:
3755 		inode->i_mapping->a_ops = &btrfs_aops;
3756 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3757 		inode->i_fop = &btrfs_file_operations;
3758 		inode->i_op = &btrfs_file_inode_operations;
3759 		break;
3760 	case S_IFDIR:
3761 		inode->i_fop = &btrfs_dir_file_operations;
3762 		inode->i_op = &btrfs_dir_inode_operations;
3763 		break;
3764 	case S_IFLNK:
3765 		inode->i_op = &btrfs_symlink_inode_operations;
3766 		inode_nohighmem(inode);
3767 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3768 		break;
3769 	default:
3770 		inode->i_op = &btrfs_special_inode_operations;
3771 		init_special_inode(inode, inode->i_mode, rdev);
3772 		break;
3773 	}
3774 
3775 	btrfs_sync_inode_flags_to_i_flags(inode);
3776 	return 0;
3777 
3778 make_bad:
3779 	btrfs_free_path(path);
3780 	make_bad_inode(inode);
3781 	return ret;
3782 }
3783 
3784 /*
3785  * given a leaf and an inode, copy the inode fields into the leaf
3786  */
3787 static void fill_inode_item(struct btrfs_trans_handle *trans,
3788 			    struct extent_buffer *leaf,
3789 			    struct btrfs_inode_item *item,
3790 			    struct inode *inode)
3791 {
3792 	struct btrfs_map_token token;
3793 
3794 	btrfs_init_map_token(&token);
3795 
3796 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3797 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3798 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3799 				   &token);
3800 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3801 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3802 
3803 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3804 				     inode->i_atime.tv_sec, &token);
3805 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3806 				      inode->i_atime.tv_nsec, &token);
3807 
3808 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3809 				     inode->i_mtime.tv_sec, &token);
3810 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3811 				      inode->i_mtime.tv_nsec, &token);
3812 
3813 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3814 				     inode->i_ctime.tv_sec, &token);
3815 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3816 				      inode->i_ctime.tv_nsec, &token);
3817 
3818 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3819 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3820 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3821 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3822 
3823 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3824 				     &token);
3825 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3826 					 &token);
3827 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3828 				       &token);
3829 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3830 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3831 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3832 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3833 }
3834 
3835 /*
3836  * copy everything in the in-memory inode into the btree.
3837  */
3838 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3839 				struct btrfs_root *root, struct inode *inode)
3840 {
3841 	struct btrfs_inode_item *inode_item;
3842 	struct btrfs_path *path;
3843 	struct extent_buffer *leaf;
3844 	int ret;
3845 
3846 	path = btrfs_alloc_path();
3847 	if (!path)
3848 		return -ENOMEM;
3849 
3850 	path->leave_spinning = 1;
3851 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3852 				 1);
3853 	if (ret) {
3854 		if (ret > 0)
3855 			ret = -ENOENT;
3856 		goto failed;
3857 	}
3858 
3859 	leaf = path->nodes[0];
3860 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3861 				    struct btrfs_inode_item);
3862 
3863 	fill_inode_item(trans, leaf, inode_item, inode);
3864 	btrfs_mark_buffer_dirty(leaf);
3865 	btrfs_set_inode_last_trans(trans, inode);
3866 	ret = 0;
3867 failed:
3868 	btrfs_free_path(path);
3869 	return ret;
3870 }
3871 
3872 /*
3873  * copy everything in the in-memory inode into the btree.
3874  */
3875 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3876 				struct btrfs_root *root, struct inode *inode)
3877 {
3878 	struct btrfs_fs_info *fs_info = root->fs_info;
3879 	int ret;
3880 
3881 	/*
3882 	 * If the inode is a free space inode, we can deadlock during commit
3883 	 * if we put it into the delayed code.
3884 	 *
3885 	 * The data relocation inode should also be directly updated
3886 	 * without delay
3887 	 */
3888 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3889 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3890 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3891 		btrfs_update_root_times(trans, root);
3892 
3893 		ret = btrfs_delayed_update_inode(trans, root, inode);
3894 		if (!ret)
3895 			btrfs_set_inode_last_trans(trans, inode);
3896 		return ret;
3897 	}
3898 
3899 	return btrfs_update_inode_item(trans, root, inode);
3900 }
3901 
3902 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3903 					 struct btrfs_root *root,
3904 					 struct inode *inode)
3905 {
3906 	int ret;
3907 
3908 	ret = btrfs_update_inode(trans, root, inode);
3909 	if (ret == -ENOSPC)
3910 		return btrfs_update_inode_item(trans, root, inode);
3911 	return ret;
3912 }
3913 
3914 /*
3915  * unlink helper that gets used here in inode.c and in the tree logging
3916  * recovery code.  It remove a link in a directory with a given name, and
3917  * also drops the back refs in the inode to the directory
3918  */
3919 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3920 				struct btrfs_root *root,
3921 				struct btrfs_inode *dir,
3922 				struct btrfs_inode *inode,
3923 				const char *name, int name_len)
3924 {
3925 	struct btrfs_fs_info *fs_info = root->fs_info;
3926 	struct btrfs_path *path;
3927 	int ret = 0;
3928 	struct extent_buffer *leaf;
3929 	struct btrfs_dir_item *di;
3930 	struct btrfs_key key;
3931 	u64 index;
3932 	u64 ino = btrfs_ino(inode);
3933 	u64 dir_ino = btrfs_ino(dir);
3934 
3935 	path = btrfs_alloc_path();
3936 	if (!path) {
3937 		ret = -ENOMEM;
3938 		goto out;
3939 	}
3940 
3941 	path->leave_spinning = 1;
3942 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3943 				    name, name_len, -1);
3944 	if (IS_ERR(di)) {
3945 		ret = PTR_ERR(di);
3946 		goto err;
3947 	}
3948 	if (!di) {
3949 		ret = -ENOENT;
3950 		goto err;
3951 	}
3952 	leaf = path->nodes[0];
3953 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3954 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3955 	if (ret)
3956 		goto err;
3957 	btrfs_release_path(path);
3958 
3959 	/*
3960 	 * If we don't have dir index, we have to get it by looking up
3961 	 * the inode ref, since we get the inode ref, remove it directly,
3962 	 * it is unnecessary to do delayed deletion.
3963 	 *
3964 	 * But if we have dir index, needn't search inode ref to get it.
3965 	 * Since the inode ref is close to the inode item, it is better
3966 	 * that we delay to delete it, and just do this deletion when
3967 	 * we update the inode item.
3968 	 */
3969 	if (inode->dir_index) {
3970 		ret = btrfs_delayed_delete_inode_ref(inode);
3971 		if (!ret) {
3972 			index = inode->dir_index;
3973 			goto skip_backref;
3974 		}
3975 	}
3976 
3977 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3978 				  dir_ino, &index);
3979 	if (ret) {
3980 		btrfs_info(fs_info,
3981 			"failed to delete reference to %.*s, inode %llu parent %llu",
3982 			name_len, name, ino, dir_ino);
3983 		btrfs_abort_transaction(trans, ret);
3984 		goto err;
3985 	}
3986 skip_backref:
3987 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
3988 	if (ret) {
3989 		btrfs_abort_transaction(trans, ret);
3990 		goto err;
3991 	}
3992 
3993 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3994 			dir_ino);
3995 	if (ret != 0 && ret != -ENOENT) {
3996 		btrfs_abort_transaction(trans, ret);
3997 		goto err;
3998 	}
3999 
4000 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4001 			index);
4002 	if (ret == -ENOENT)
4003 		ret = 0;
4004 	else if (ret)
4005 		btrfs_abort_transaction(trans, ret);
4006 err:
4007 	btrfs_free_path(path);
4008 	if (ret)
4009 		goto out;
4010 
4011 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4012 	inode_inc_iversion(&inode->vfs_inode);
4013 	inode_inc_iversion(&dir->vfs_inode);
4014 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4015 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4016 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4017 out:
4018 	return ret;
4019 }
4020 
4021 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4022 		       struct btrfs_root *root,
4023 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4024 		       const char *name, int name_len)
4025 {
4026 	int ret;
4027 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4028 	if (!ret) {
4029 		drop_nlink(&inode->vfs_inode);
4030 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4031 	}
4032 	return ret;
4033 }
4034 
4035 /*
4036  * helper to start transaction for unlink and rmdir.
4037  *
4038  * unlink and rmdir are special in btrfs, they do not always free space, so
4039  * if we cannot make our reservations the normal way try and see if there is
4040  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4041  * allow the unlink to occur.
4042  */
4043 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4044 {
4045 	struct btrfs_root *root = BTRFS_I(dir)->root;
4046 
4047 	/*
4048 	 * 1 for the possible orphan item
4049 	 * 1 for the dir item
4050 	 * 1 for the dir index
4051 	 * 1 for the inode ref
4052 	 * 1 for the inode
4053 	 */
4054 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4055 }
4056 
4057 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4058 {
4059 	struct btrfs_root *root = BTRFS_I(dir)->root;
4060 	struct btrfs_trans_handle *trans;
4061 	struct inode *inode = d_inode(dentry);
4062 	int ret;
4063 
4064 	trans = __unlink_start_trans(dir);
4065 	if (IS_ERR(trans))
4066 		return PTR_ERR(trans);
4067 
4068 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4069 			0);
4070 
4071 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4072 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4073 			dentry->d_name.len);
4074 	if (ret)
4075 		goto out;
4076 
4077 	if (inode->i_nlink == 0) {
4078 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4079 		if (ret)
4080 			goto out;
4081 	}
4082 
4083 out:
4084 	btrfs_end_transaction(trans);
4085 	btrfs_btree_balance_dirty(root->fs_info);
4086 	return ret;
4087 }
4088 
4089 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4090 			struct btrfs_root *root,
4091 			struct inode *dir, u64 objectid,
4092 			const char *name, int name_len)
4093 {
4094 	struct btrfs_fs_info *fs_info = root->fs_info;
4095 	struct btrfs_path *path;
4096 	struct extent_buffer *leaf;
4097 	struct btrfs_dir_item *di;
4098 	struct btrfs_key key;
4099 	u64 index;
4100 	int ret;
4101 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4102 
4103 	path = btrfs_alloc_path();
4104 	if (!path)
4105 		return -ENOMEM;
4106 
4107 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4108 				   name, name_len, -1);
4109 	if (IS_ERR_OR_NULL(di)) {
4110 		if (!di)
4111 			ret = -ENOENT;
4112 		else
4113 			ret = PTR_ERR(di);
4114 		goto out;
4115 	}
4116 
4117 	leaf = path->nodes[0];
4118 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4119 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4120 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4121 	if (ret) {
4122 		btrfs_abort_transaction(trans, ret);
4123 		goto out;
4124 	}
4125 	btrfs_release_path(path);
4126 
4127 	ret = btrfs_del_root_ref(trans, fs_info, objectid,
4128 				 root->root_key.objectid, dir_ino,
4129 				 &index, name, name_len);
4130 	if (ret < 0) {
4131 		if (ret != -ENOENT) {
4132 			btrfs_abort_transaction(trans, ret);
4133 			goto out;
4134 		}
4135 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4136 						 name, name_len);
4137 		if (IS_ERR_OR_NULL(di)) {
4138 			if (!di)
4139 				ret = -ENOENT;
4140 			else
4141 				ret = PTR_ERR(di);
4142 			btrfs_abort_transaction(trans, ret);
4143 			goto out;
4144 		}
4145 
4146 		leaf = path->nodes[0];
4147 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4148 		btrfs_release_path(path);
4149 		index = key.offset;
4150 	}
4151 	btrfs_release_path(path);
4152 
4153 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4154 	if (ret) {
4155 		btrfs_abort_transaction(trans, ret);
4156 		goto out;
4157 	}
4158 
4159 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4160 	inode_inc_iversion(dir);
4161 	dir->i_mtime = dir->i_ctime = current_time(dir);
4162 	ret = btrfs_update_inode_fallback(trans, root, dir);
4163 	if (ret)
4164 		btrfs_abort_transaction(trans, ret);
4165 out:
4166 	btrfs_free_path(path);
4167 	return ret;
4168 }
4169 
4170 /*
4171  * Helper to check if the subvolume references other subvolumes or if it's
4172  * default.
4173  */
4174 static noinline int may_destroy_subvol(struct btrfs_root *root)
4175 {
4176 	struct btrfs_fs_info *fs_info = root->fs_info;
4177 	struct btrfs_path *path;
4178 	struct btrfs_dir_item *di;
4179 	struct btrfs_key key;
4180 	u64 dir_id;
4181 	int ret;
4182 
4183 	path = btrfs_alloc_path();
4184 	if (!path)
4185 		return -ENOMEM;
4186 
4187 	/* Make sure this root isn't set as the default subvol */
4188 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4189 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4190 				   dir_id, "default", 7, 0);
4191 	if (di && !IS_ERR(di)) {
4192 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4193 		if (key.objectid == root->root_key.objectid) {
4194 			ret = -EPERM;
4195 			btrfs_err(fs_info,
4196 				  "deleting default subvolume %llu is not allowed",
4197 				  key.objectid);
4198 			goto out;
4199 		}
4200 		btrfs_release_path(path);
4201 	}
4202 
4203 	key.objectid = root->root_key.objectid;
4204 	key.type = BTRFS_ROOT_REF_KEY;
4205 	key.offset = (u64)-1;
4206 
4207 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4208 	if (ret < 0)
4209 		goto out;
4210 	BUG_ON(ret == 0);
4211 
4212 	ret = 0;
4213 	if (path->slots[0] > 0) {
4214 		path->slots[0]--;
4215 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4216 		if (key.objectid == root->root_key.objectid &&
4217 		    key.type == BTRFS_ROOT_REF_KEY)
4218 			ret = -ENOTEMPTY;
4219 	}
4220 out:
4221 	btrfs_free_path(path);
4222 	return ret;
4223 }
4224 
4225 /* Delete all dentries for inodes belonging to the root */
4226 static void btrfs_prune_dentries(struct btrfs_root *root)
4227 {
4228 	struct btrfs_fs_info *fs_info = root->fs_info;
4229 	struct rb_node *node;
4230 	struct rb_node *prev;
4231 	struct btrfs_inode *entry;
4232 	struct inode *inode;
4233 	u64 objectid = 0;
4234 
4235 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4236 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4237 
4238 	spin_lock(&root->inode_lock);
4239 again:
4240 	node = root->inode_tree.rb_node;
4241 	prev = NULL;
4242 	while (node) {
4243 		prev = node;
4244 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4245 
4246 		if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4247 			node = node->rb_left;
4248 		else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4249 			node = node->rb_right;
4250 		else
4251 			break;
4252 	}
4253 	if (!node) {
4254 		while (prev) {
4255 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4256 			if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
4257 				node = prev;
4258 				break;
4259 			}
4260 			prev = rb_next(prev);
4261 		}
4262 	}
4263 	while (node) {
4264 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4265 		objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
4266 		inode = igrab(&entry->vfs_inode);
4267 		if (inode) {
4268 			spin_unlock(&root->inode_lock);
4269 			if (atomic_read(&inode->i_count) > 1)
4270 				d_prune_aliases(inode);
4271 			/*
4272 			 * btrfs_drop_inode will have it removed from the inode
4273 			 * cache when its usage count hits zero.
4274 			 */
4275 			iput(inode);
4276 			cond_resched();
4277 			spin_lock(&root->inode_lock);
4278 			goto again;
4279 		}
4280 
4281 		if (cond_resched_lock(&root->inode_lock))
4282 			goto again;
4283 
4284 		node = rb_next(node);
4285 	}
4286 	spin_unlock(&root->inode_lock);
4287 }
4288 
4289 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4290 {
4291 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4292 	struct btrfs_root *root = BTRFS_I(dir)->root;
4293 	struct inode *inode = d_inode(dentry);
4294 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4295 	struct btrfs_trans_handle *trans;
4296 	struct btrfs_block_rsv block_rsv;
4297 	u64 root_flags;
4298 	int ret;
4299 	int err;
4300 
4301 	/*
4302 	 * Don't allow to delete a subvolume with send in progress. This is
4303 	 * inside the inode lock so the error handling that has to drop the bit
4304 	 * again is not run concurrently.
4305 	 */
4306 	spin_lock(&dest->root_item_lock);
4307 	root_flags = btrfs_root_flags(&dest->root_item);
4308 	if (dest->send_in_progress == 0) {
4309 		btrfs_set_root_flags(&dest->root_item,
4310 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4311 		spin_unlock(&dest->root_item_lock);
4312 	} else {
4313 		spin_unlock(&dest->root_item_lock);
4314 		btrfs_warn(fs_info,
4315 			   "attempt to delete subvolume %llu during send",
4316 			   dest->root_key.objectid);
4317 		return -EPERM;
4318 	}
4319 
4320 	down_write(&fs_info->subvol_sem);
4321 
4322 	err = may_destroy_subvol(dest);
4323 	if (err)
4324 		goto out_up_write;
4325 
4326 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4327 	/*
4328 	 * One for dir inode,
4329 	 * two for dir entries,
4330 	 * two for root ref/backref.
4331 	 */
4332 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4333 	if (err)
4334 		goto out_up_write;
4335 
4336 	trans = btrfs_start_transaction(root, 0);
4337 	if (IS_ERR(trans)) {
4338 		err = PTR_ERR(trans);
4339 		goto out_release;
4340 	}
4341 	trans->block_rsv = &block_rsv;
4342 	trans->bytes_reserved = block_rsv.size;
4343 
4344 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4345 
4346 	ret = btrfs_unlink_subvol(trans, root, dir,
4347 				dest->root_key.objectid,
4348 				dentry->d_name.name,
4349 				dentry->d_name.len);
4350 	if (ret) {
4351 		err = ret;
4352 		btrfs_abort_transaction(trans, ret);
4353 		goto out_end_trans;
4354 	}
4355 
4356 	btrfs_record_root_in_trans(trans, dest);
4357 
4358 	memset(&dest->root_item.drop_progress, 0,
4359 		sizeof(dest->root_item.drop_progress));
4360 	dest->root_item.drop_level = 0;
4361 	btrfs_set_root_refs(&dest->root_item, 0);
4362 
4363 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4364 		ret = btrfs_insert_orphan_item(trans,
4365 					fs_info->tree_root,
4366 					dest->root_key.objectid);
4367 		if (ret) {
4368 			btrfs_abort_transaction(trans, ret);
4369 			err = ret;
4370 			goto out_end_trans;
4371 		}
4372 	}
4373 
4374 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4375 				  BTRFS_UUID_KEY_SUBVOL,
4376 				  dest->root_key.objectid);
4377 	if (ret && ret != -ENOENT) {
4378 		btrfs_abort_transaction(trans, ret);
4379 		err = ret;
4380 		goto out_end_trans;
4381 	}
4382 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4383 		ret = btrfs_uuid_tree_remove(trans,
4384 					  dest->root_item.received_uuid,
4385 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4386 					  dest->root_key.objectid);
4387 		if (ret && ret != -ENOENT) {
4388 			btrfs_abort_transaction(trans, ret);
4389 			err = ret;
4390 			goto out_end_trans;
4391 		}
4392 	}
4393 
4394 out_end_trans:
4395 	trans->block_rsv = NULL;
4396 	trans->bytes_reserved = 0;
4397 	ret = btrfs_end_transaction(trans);
4398 	if (ret && !err)
4399 		err = ret;
4400 	inode->i_flags |= S_DEAD;
4401 out_release:
4402 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4403 out_up_write:
4404 	up_write(&fs_info->subvol_sem);
4405 	if (err) {
4406 		spin_lock(&dest->root_item_lock);
4407 		root_flags = btrfs_root_flags(&dest->root_item);
4408 		btrfs_set_root_flags(&dest->root_item,
4409 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4410 		spin_unlock(&dest->root_item_lock);
4411 	} else {
4412 		d_invalidate(dentry);
4413 		btrfs_prune_dentries(dest);
4414 		ASSERT(dest->send_in_progress == 0);
4415 
4416 		/* the last ref */
4417 		if (dest->ino_cache_inode) {
4418 			iput(dest->ino_cache_inode);
4419 			dest->ino_cache_inode = NULL;
4420 		}
4421 	}
4422 
4423 	return err;
4424 }
4425 
4426 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4427 {
4428 	struct inode *inode = d_inode(dentry);
4429 	int err = 0;
4430 	struct btrfs_root *root = BTRFS_I(dir)->root;
4431 	struct btrfs_trans_handle *trans;
4432 	u64 last_unlink_trans;
4433 
4434 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4435 		return -ENOTEMPTY;
4436 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4437 		return btrfs_delete_subvolume(dir, dentry);
4438 
4439 	trans = __unlink_start_trans(dir);
4440 	if (IS_ERR(trans))
4441 		return PTR_ERR(trans);
4442 
4443 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4444 		err = btrfs_unlink_subvol(trans, root, dir,
4445 					  BTRFS_I(inode)->location.objectid,
4446 					  dentry->d_name.name,
4447 					  dentry->d_name.len);
4448 		goto out;
4449 	}
4450 
4451 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4452 	if (err)
4453 		goto out;
4454 
4455 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4456 
4457 	/* now the directory is empty */
4458 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4459 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4460 			dentry->d_name.len);
4461 	if (!err) {
4462 		btrfs_i_size_write(BTRFS_I(inode), 0);
4463 		/*
4464 		 * Propagate the last_unlink_trans value of the deleted dir to
4465 		 * its parent directory. This is to prevent an unrecoverable
4466 		 * log tree in the case we do something like this:
4467 		 * 1) create dir foo
4468 		 * 2) create snapshot under dir foo
4469 		 * 3) delete the snapshot
4470 		 * 4) rmdir foo
4471 		 * 5) mkdir foo
4472 		 * 6) fsync foo or some file inside foo
4473 		 */
4474 		if (last_unlink_trans >= trans->transid)
4475 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4476 	}
4477 out:
4478 	btrfs_end_transaction(trans);
4479 	btrfs_btree_balance_dirty(root->fs_info);
4480 
4481 	return err;
4482 }
4483 
4484 static int truncate_space_check(struct btrfs_trans_handle *trans,
4485 				struct btrfs_root *root,
4486 				u64 bytes_deleted)
4487 {
4488 	struct btrfs_fs_info *fs_info = root->fs_info;
4489 	int ret;
4490 
4491 	/*
4492 	 * This is only used to apply pressure to the enospc system, we don't
4493 	 * intend to use this reservation at all.
4494 	 */
4495 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4496 	bytes_deleted *= fs_info->nodesize;
4497 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4498 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4499 	if (!ret) {
4500 		trace_btrfs_space_reservation(fs_info, "transaction",
4501 					      trans->transid,
4502 					      bytes_deleted, 1);
4503 		trans->bytes_reserved += bytes_deleted;
4504 	}
4505 	return ret;
4506 
4507 }
4508 
4509 /*
4510  * Return this if we need to call truncate_block for the last bit of the
4511  * truncate.
4512  */
4513 #define NEED_TRUNCATE_BLOCK 1
4514 
4515 /*
4516  * this can truncate away extent items, csum items and directory items.
4517  * It starts at a high offset and removes keys until it can't find
4518  * any higher than new_size
4519  *
4520  * csum items that cross the new i_size are truncated to the new size
4521  * as well.
4522  *
4523  * min_type is the minimum key type to truncate down to.  If set to 0, this
4524  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4525  */
4526 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4527 			       struct btrfs_root *root,
4528 			       struct inode *inode,
4529 			       u64 new_size, u32 min_type)
4530 {
4531 	struct btrfs_fs_info *fs_info = root->fs_info;
4532 	struct btrfs_path *path;
4533 	struct extent_buffer *leaf;
4534 	struct btrfs_file_extent_item *fi;
4535 	struct btrfs_key key;
4536 	struct btrfs_key found_key;
4537 	u64 extent_start = 0;
4538 	u64 extent_num_bytes = 0;
4539 	u64 extent_offset = 0;
4540 	u64 item_end = 0;
4541 	u64 last_size = new_size;
4542 	u32 found_type = (u8)-1;
4543 	int found_extent;
4544 	int del_item;
4545 	int pending_del_nr = 0;
4546 	int pending_del_slot = 0;
4547 	int extent_type = -1;
4548 	int ret;
4549 	u64 ino = btrfs_ino(BTRFS_I(inode));
4550 	u64 bytes_deleted = 0;
4551 	bool be_nice = false;
4552 	bool should_throttle = false;
4553 	bool should_end = false;
4554 
4555 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4556 
4557 	/*
4558 	 * for non-free space inodes and ref cows, we want to back off from
4559 	 * time to time
4560 	 */
4561 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4562 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4563 		be_nice = true;
4564 
4565 	path = btrfs_alloc_path();
4566 	if (!path)
4567 		return -ENOMEM;
4568 	path->reada = READA_BACK;
4569 
4570 	/*
4571 	 * We want to drop from the next block forward in case this new size is
4572 	 * not block aligned since we will be keeping the last block of the
4573 	 * extent just the way it is.
4574 	 */
4575 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4576 	    root == fs_info->tree_root)
4577 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4578 					fs_info->sectorsize),
4579 					(u64)-1, 0);
4580 
4581 	/*
4582 	 * This function is also used to drop the items in the log tree before
4583 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4584 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4585 	 * items.
4586 	 */
4587 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4588 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4589 
4590 	key.objectid = ino;
4591 	key.offset = (u64)-1;
4592 	key.type = (u8)-1;
4593 
4594 search_again:
4595 	/*
4596 	 * with a 16K leaf size and 128MB extents, you can actually queue
4597 	 * up a huge file in a single leaf.  Most of the time that
4598 	 * bytes_deleted is > 0, it will be huge by the time we get here
4599 	 */
4600 	if (be_nice && bytes_deleted > SZ_32M &&
4601 	    btrfs_should_end_transaction(trans)) {
4602 		ret = -EAGAIN;
4603 		goto out;
4604 	}
4605 
4606 	path->leave_spinning = 1;
4607 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4608 	if (ret < 0)
4609 		goto out;
4610 
4611 	if (ret > 0) {
4612 		ret = 0;
4613 		/* there are no items in the tree for us to truncate, we're
4614 		 * done
4615 		 */
4616 		if (path->slots[0] == 0)
4617 			goto out;
4618 		path->slots[0]--;
4619 	}
4620 
4621 	while (1) {
4622 		fi = NULL;
4623 		leaf = path->nodes[0];
4624 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4625 		found_type = found_key.type;
4626 
4627 		if (found_key.objectid != ino)
4628 			break;
4629 
4630 		if (found_type < min_type)
4631 			break;
4632 
4633 		item_end = found_key.offset;
4634 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4635 			fi = btrfs_item_ptr(leaf, path->slots[0],
4636 					    struct btrfs_file_extent_item);
4637 			extent_type = btrfs_file_extent_type(leaf, fi);
4638 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4639 				item_end +=
4640 				    btrfs_file_extent_num_bytes(leaf, fi);
4641 
4642 				trace_btrfs_truncate_show_fi_regular(
4643 					BTRFS_I(inode), leaf, fi,
4644 					found_key.offset);
4645 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4646 				item_end += btrfs_file_extent_inline_len(leaf,
4647 							 path->slots[0], fi);
4648 
4649 				trace_btrfs_truncate_show_fi_inline(
4650 					BTRFS_I(inode), leaf, fi, path->slots[0],
4651 					found_key.offset);
4652 			}
4653 			item_end--;
4654 		}
4655 		if (found_type > min_type) {
4656 			del_item = 1;
4657 		} else {
4658 			if (item_end < new_size)
4659 				break;
4660 			if (found_key.offset >= new_size)
4661 				del_item = 1;
4662 			else
4663 				del_item = 0;
4664 		}
4665 		found_extent = 0;
4666 		/* FIXME, shrink the extent if the ref count is only 1 */
4667 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4668 			goto delete;
4669 
4670 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4671 			u64 num_dec;
4672 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4673 			if (!del_item) {
4674 				u64 orig_num_bytes =
4675 					btrfs_file_extent_num_bytes(leaf, fi);
4676 				extent_num_bytes = ALIGN(new_size -
4677 						found_key.offset,
4678 						fs_info->sectorsize);
4679 				btrfs_set_file_extent_num_bytes(leaf, fi,
4680 							 extent_num_bytes);
4681 				num_dec = (orig_num_bytes -
4682 					   extent_num_bytes);
4683 				if (test_bit(BTRFS_ROOT_REF_COWS,
4684 					     &root->state) &&
4685 				    extent_start != 0)
4686 					inode_sub_bytes(inode, num_dec);
4687 				btrfs_mark_buffer_dirty(leaf);
4688 			} else {
4689 				extent_num_bytes =
4690 					btrfs_file_extent_disk_num_bytes(leaf,
4691 									 fi);
4692 				extent_offset = found_key.offset -
4693 					btrfs_file_extent_offset(leaf, fi);
4694 
4695 				/* FIXME blocksize != 4096 */
4696 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4697 				if (extent_start != 0) {
4698 					found_extent = 1;
4699 					if (test_bit(BTRFS_ROOT_REF_COWS,
4700 						     &root->state))
4701 						inode_sub_bytes(inode, num_dec);
4702 				}
4703 			}
4704 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4705 			/*
4706 			 * we can't truncate inline items that have had
4707 			 * special encodings
4708 			 */
4709 			if (!del_item &&
4710 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4711 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4712 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4713 				u32 size = (u32)(new_size - found_key.offset);
4714 
4715 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4716 				size = btrfs_file_extent_calc_inline_size(size);
4717 				btrfs_truncate_item(root->fs_info, path, size, 1);
4718 			} else if (!del_item) {
4719 				/*
4720 				 * We have to bail so the last_size is set to
4721 				 * just before this extent.
4722 				 */
4723 				ret = NEED_TRUNCATE_BLOCK;
4724 				break;
4725 			}
4726 
4727 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4728 				inode_sub_bytes(inode, item_end + 1 - new_size);
4729 		}
4730 delete:
4731 		if (del_item)
4732 			last_size = found_key.offset;
4733 		else
4734 			last_size = new_size;
4735 		if (del_item) {
4736 			if (!pending_del_nr) {
4737 				/* no pending yet, add ourselves */
4738 				pending_del_slot = path->slots[0];
4739 				pending_del_nr = 1;
4740 			} else if (pending_del_nr &&
4741 				   path->slots[0] + 1 == pending_del_slot) {
4742 				/* hop on the pending chunk */
4743 				pending_del_nr++;
4744 				pending_del_slot = path->slots[0];
4745 			} else {
4746 				BUG();
4747 			}
4748 		} else {
4749 			break;
4750 		}
4751 		should_throttle = false;
4752 
4753 		if (found_extent &&
4754 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4755 		     root == fs_info->tree_root)) {
4756 			btrfs_set_path_blocking(path);
4757 			bytes_deleted += extent_num_bytes;
4758 			ret = btrfs_free_extent(trans, root, extent_start,
4759 						extent_num_bytes, 0,
4760 						btrfs_header_owner(leaf),
4761 						ino, extent_offset);
4762 			if (ret) {
4763 				btrfs_abort_transaction(trans, ret);
4764 				break;
4765 			}
4766 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4767 				btrfs_async_run_delayed_refs(fs_info,
4768 					trans->delayed_ref_updates * 2,
4769 					trans->transid, 0);
4770 			if (be_nice) {
4771 				if (truncate_space_check(trans, root,
4772 							 extent_num_bytes)) {
4773 					should_end = true;
4774 				}
4775 				if (btrfs_should_throttle_delayed_refs(trans,
4776 								       fs_info))
4777 					should_throttle = true;
4778 			}
4779 		}
4780 
4781 		if (found_type == BTRFS_INODE_ITEM_KEY)
4782 			break;
4783 
4784 		if (path->slots[0] == 0 ||
4785 		    path->slots[0] != pending_del_slot ||
4786 		    should_throttle || should_end) {
4787 			if (pending_del_nr) {
4788 				ret = btrfs_del_items(trans, root, path,
4789 						pending_del_slot,
4790 						pending_del_nr);
4791 				if (ret) {
4792 					btrfs_abort_transaction(trans, ret);
4793 					break;
4794 				}
4795 				pending_del_nr = 0;
4796 			}
4797 			btrfs_release_path(path);
4798 			if (should_throttle) {
4799 				unsigned long updates = trans->delayed_ref_updates;
4800 				if (updates) {
4801 					trans->delayed_ref_updates = 0;
4802 					ret = btrfs_run_delayed_refs(trans,
4803 								   updates * 2);
4804 					if (ret)
4805 						break;
4806 				}
4807 			}
4808 			/*
4809 			 * if we failed to refill our space rsv, bail out
4810 			 * and let the transaction restart
4811 			 */
4812 			if (should_end) {
4813 				ret = -EAGAIN;
4814 				break;
4815 			}
4816 			goto search_again;
4817 		} else {
4818 			path->slots[0]--;
4819 		}
4820 	}
4821 out:
4822 	if (ret >= 0 && pending_del_nr) {
4823 		int err;
4824 
4825 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4826 				      pending_del_nr);
4827 		if (err) {
4828 			btrfs_abort_transaction(trans, err);
4829 			ret = err;
4830 		}
4831 	}
4832 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4833 		ASSERT(last_size >= new_size);
4834 		if (!ret && last_size > new_size)
4835 			last_size = new_size;
4836 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4837 	}
4838 
4839 	btrfs_free_path(path);
4840 
4841 	if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4842 		unsigned long updates = trans->delayed_ref_updates;
4843 		int err;
4844 
4845 		if (updates) {
4846 			trans->delayed_ref_updates = 0;
4847 			err = btrfs_run_delayed_refs(trans, updates * 2);
4848 			if (err)
4849 				ret = err;
4850 		}
4851 	}
4852 	return ret;
4853 }
4854 
4855 /*
4856  * btrfs_truncate_block - read, zero a chunk and write a block
4857  * @inode - inode that we're zeroing
4858  * @from - the offset to start zeroing
4859  * @len - the length to zero, 0 to zero the entire range respective to the
4860  *	offset
4861  * @front - zero up to the offset instead of from the offset on
4862  *
4863  * This will find the block for the "from" offset and cow the block and zero the
4864  * part we want to zero.  This is used with truncate and hole punching.
4865  */
4866 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4867 			int front)
4868 {
4869 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4870 	struct address_space *mapping = inode->i_mapping;
4871 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4872 	struct btrfs_ordered_extent *ordered;
4873 	struct extent_state *cached_state = NULL;
4874 	struct extent_changeset *data_reserved = NULL;
4875 	char *kaddr;
4876 	u32 blocksize = fs_info->sectorsize;
4877 	pgoff_t index = from >> PAGE_SHIFT;
4878 	unsigned offset = from & (blocksize - 1);
4879 	struct page *page;
4880 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4881 	int ret = 0;
4882 	u64 block_start;
4883 	u64 block_end;
4884 
4885 	if (IS_ALIGNED(offset, blocksize) &&
4886 	    (!len || IS_ALIGNED(len, blocksize)))
4887 		goto out;
4888 
4889 	block_start = round_down(from, blocksize);
4890 	block_end = block_start + blocksize - 1;
4891 
4892 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4893 					   block_start, blocksize);
4894 	if (ret)
4895 		goto out;
4896 
4897 again:
4898 	page = find_or_create_page(mapping, index, mask);
4899 	if (!page) {
4900 		btrfs_delalloc_release_space(inode, data_reserved,
4901 					     block_start, blocksize, true);
4902 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4903 		ret = -ENOMEM;
4904 		goto out;
4905 	}
4906 
4907 	if (!PageUptodate(page)) {
4908 		ret = btrfs_readpage(NULL, page);
4909 		lock_page(page);
4910 		if (page->mapping != mapping) {
4911 			unlock_page(page);
4912 			put_page(page);
4913 			goto again;
4914 		}
4915 		if (!PageUptodate(page)) {
4916 			ret = -EIO;
4917 			goto out_unlock;
4918 		}
4919 	}
4920 	wait_on_page_writeback(page);
4921 
4922 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4923 	set_page_extent_mapped(page);
4924 
4925 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4926 	if (ordered) {
4927 		unlock_extent_cached(io_tree, block_start, block_end,
4928 				     &cached_state);
4929 		unlock_page(page);
4930 		put_page(page);
4931 		btrfs_start_ordered_extent(inode, ordered, 1);
4932 		btrfs_put_ordered_extent(ordered);
4933 		goto again;
4934 	}
4935 
4936 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4937 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4938 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4939 			  0, 0, &cached_state);
4940 
4941 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4942 					&cached_state, 0);
4943 	if (ret) {
4944 		unlock_extent_cached(io_tree, block_start, block_end,
4945 				     &cached_state);
4946 		goto out_unlock;
4947 	}
4948 
4949 	if (offset != blocksize) {
4950 		if (!len)
4951 			len = blocksize - offset;
4952 		kaddr = kmap(page);
4953 		if (front)
4954 			memset(kaddr + (block_start - page_offset(page)),
4955 				0, offset);
4956 		else
4957 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4958 				0, len);
4959 		flush_dcache_page(page);
4960 		kunmap(page);
4961 	}
4962 	ClearPageChecked(page);
4963 	set_page_dirty(page);
4964 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4965 
4966 out_unlock:
4967 	if (ret)
4968 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4969 					     blocksize, true);
4970 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4971 	unlock_page(page);
4972 	put_page(page);
4973 out:
4974 	extent_changeset_free(data_reserved);
4975 	return ret;
4976 }
4977 
4978 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4979 			     u64 offset, u64 len)
4980 {
4981 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4982 	struct btrfs_trans_handle *trans;
4983 	int ret;
4984 
4985 	/*
4986 	 * Still need to make sure the inode looks like it's been updated so
4987 	 * that any holes get logged if we fsync.
4988 	 */
4989 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4990 		BTRFS_I(inode)->last_trans = fs_info->generation;
4991 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4992 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4993 		return 0;
4994 	}
4995 
4996 	/*
4997 	 * 1 - for the one we're dropping
4998 	 * 1 - for the one we're adding
4999 	 * 1 - for updating the inode.
5000 	 */
5001 	trans = btrfs_start_transaction(root, 3);
5002 	if (IS_ERR(trans))
5003 		return PTR_ERR(trans);
5004 
5005 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5006 	if (ret) {
5007 		btrfs_abort_transaction(trans, ret);
5008 		btrfs_end_transaction(trans);
5009 		return ret;
5010 	}
5011 
5012 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5013 			offset, 0, 0, len, 0, len, 0, 0, 0);
5014 	if (ret)
5015 		btrfs_abort_transaction(trans, ret);
5016 	else
5017 		btrfs_update_inode(trans, root, inode);
5018 	btrfs_end_transaction(trans);
5019 	return ret;
5020 }
5021 
5022 /*
5023  * This function puts in dummy file extents for the area we're creating a hole
5024  * for.  So if we are truncating this file to a larger size we need to insert
5025  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5026  * the range between oldsize and size
5027  */
5028 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5029 {
5030 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5031 	struct btrfs_root *root = BTRFS_I(inode)->root;
5032 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5033 	struct extent_map *em = NULL;
5034 	struct extent_state *cached_state = NULL;
5035 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5036 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5037 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5038 	u64 last_byte;
5039 	u64 cur_offset;
5040 	u64 hole_size;
5041 	int err = 0;
5042 
5043 	/*
5044 	 * If our size started in the middle of a block we need to zero out the
5045 	 * rest of the block before we expand the i_size, otherwise we could
5046 	 * expose stale data.
5047 	 */
5048 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5049 	if (err)
5050 		return err;
5051 
5052 	if (size <= hole_start)
5053 		return 0;
5054 
5055 	while (1) {
5056 		struct btrfs_ordered_extent *ordered;
5057 
5058 		lock_extent_bits(io_tree, hole_start, block_end - 1,
5059 				 &cached_state);
5060 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5061 						     block_end - hole_start);
5062 		if (!ordered)
5063 			break;
5064 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
5065 				     &cached_state);
5066 		btrfs_start_ordered_extent(inode, ordered, 1);
5067 		btrfs_put_ordered_extent(ordered);
5068 	}
5069 
5070 	cur_offset = hole_start;
5071 	while (1) {
5072 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5073 				block_end - cur_offset, 0);
5074 		if (IS_ERR(em)) {
5075 			err = PTR_ERR(em);
5076 			em = NULL;
5077 			break;
5078 		}
5079 		last_byte = min(extent_map_end(em), block_end);
5080 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5081 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5082 			struct extent_map *hole_em;
5083 			hole_size = last_byte - cur_offset;
5084 
5085 			err = maybe_insert_hole(root, inode, cur_offset,
5086 						hole_size);
5087 			if (err)
5088 				break;
5089 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5090 						cur_offset + hole_size - 1, 0);
5091 			hole_em = alloc_extent_map();
5092 			if (!hole_em) {
5093 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5094 					&BTRFS_I(inode)->runtime_flags);
5095 				goto next;
5096 			}
5097 			hole_em->start = cur_offset;
5098 			hole_em->len = hole_size;
5099 			hole_em->orig_start = cur_offset;
5100 
5101 			hole_em->block_start = EXTENT_MAP_HOLE;
5102 			hole_em->block_len = 0;
5103 			hole_em->orig_block_len = 0;
5104 			hole_em->ram_bytes = hole_size;
5105 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5106 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5107 			hole_em->generation = fs_info->generation;
5108 
5109 			while (1) {
5110 				write_lock(&em_tree->lock);
5111 				err = add_extent_mapping(em_tree, hole_em, 1);
5112 				write_unlock(&em_tree->lock);
5113 				if (err != -EEXIST)
5114 					break;
5115 				btrfs_drop_extent_cache(BTRFS_I(inode),
5116 							cur_offset,
5117 							cur_offset +
5118 							hole_size - 1, 0);
5119 			}
5120 			free_extent_map(hole_em);
5121 		}
5122 next:
5123 		free_extent_map(em);
5124 		em = NULL;
5125 		cur_offset = last_byte;
5126 		if (cur_offset >= block_end)
5127 			break;
5128 	}
5129 	free_extent_map(em);
5130 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5131 	return err;
5132 }
5133 
5134 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5135 {
5136 	struct btrfs_root *root = BTRFS_I(inode)->root;
5137 	struct btrfs_trans_handle *trans;
5138 	loff_t oldsize = i_size_read(inode);
5139 	loff_t newsize = attr->ia_size;
5140 	int mask = attr->ia_valid;
5141 	int ret;
5142 
5143 	/*
5144 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5145 	 * special case where we need to update the times despite not having
5146 	 * these flags set.  For all other operations the VFS set these flags
5147 	 * explicitly if it wants a timestamp update.
5148 	 */
5149 	if (newsize != oldsize) {
5150 		inode_inc_iversion(inode);
5151 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5152 			inode->i_ctime = inode->i_mtime =
5153 				current_time(inode);
5154 	}
5155 
5156 	if (newsize > oldsize) {
5157 		/*
5158 		 * Don't do an expanding truncate while snapshotting is ongoing.
5159 		 * This is to ensure the snapshot captures a fully consistent
5160 		 * state of this file - if the snapshot captures this expanding
5161 		 * truncation, it must capture all writes that happened before
5162 		 * this truncation.
5163 		 */
5164 		btrfs_wait_for_snapshot_creation(root);
5165 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5166 		if (ret) {
5167 			btrfs_end_write_no_snapshotting(root);
5168 			return ret;
5169 		}
5170 
5171 		trans = btrfs_start_transaction(root, 1);
5172 		if (IS_ERR(trans)) {
5173 			btrfs_end_write_no_snapshotting(root);
5174 			return PTR_ERR(trans);
5175 		}
5176 
5177 		i_size_write(inode, newsize);
5178 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5179 		pagecache_isize_extended(inode, oldsize, newsize);
5180 		ret = btrfs_update_inode(trans, root, inode);
5181 		btrfs_end_write_no_snapshotting(root);
5182 		btrfs_end_transaction(trans);
5183 	} else {
5184 
5185 		/*
5186 		 * We're truncating a file that used to have good data down to
5187 		 * zero. Make sure it gets into the ordered flush list so that
5188 		 * any new writes get down to disk quickly.
5189 		 */
5190 		if (newsize == 0)
5191 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5192 				&BTRFS_I(inode)->runtime_flags);
5193 
5194 		truncate_setsize(inode, newsize);
5195 
5196 		/* Disable nonlocked read DIO to avoid the end less truncate */
5197 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5198 		inode_dio_wait(inode);
5199 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5200 
5201 		ret = btrfs_truncate(inode, newsize == oldsize);
5202 		if (ret && inode->i_nlink) {
5203 			int err;
5204 
5205 			/*
5206 			 * Truncate failed, so fix up the in-memory size. We
5207 			 * adjusted disk_i_size down as we removed extents, so
5208 			 * wait for disk_i_size to be stable and then update the
5209 			 * in-memory size to match.
5210 			 */
5211 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5212 			if (err)
5213 				return err;
5214 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5215 		}
5216 	}
5217 
5218 	return ret;
5219 }
5220 
5221 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5222 {
5223 	struct inode *inode = d_inode(dentry);
5224 	struct btrfs_root *root = BTRFS_I(inode)->root;
5225 	int err;
5226 
5227 	if (btrfs_root_readonly(root))
5228 		return -EROFS;
5229 
5230 	err = setattr_prepare(dentry, attr);
5231 	if (err)
5232 		return err;
5233 
5234 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5235 		err = btrfs_setsize(inode, attr);
5236 		if (err)
5237 			return err;
5238 	}
5239 
5240 	if (attr->ia_valid) {
5241 		setattr_copy(inode, attr);
5242 		inode_inc_iversion(inode);
5243 		err = btrfs_dirty_inode(inode);
5244 
5245 		if (!err && attr->ia_valid & ATTR_MODE)
5246 			err = posix_acl_chmod(inode, inode->i_mode);
5247 	}
5248 
5249 	return err;
5250 }
5251 
5252 /*
5253  * While truncating the inode pages during eviction, we get the VFS calling
5254  * btrfs_invalidatepage() against each page of the inode. This is slow because
5255  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5256  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5257  * extent_state structures over and over, wasting lots of time.
5258  *
5259  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5260  * those expensive operations on a per page basis and do only the ordered io
5261  * finishing, while we release here the extent_map and extent_state structures,
5262  * without the excessive merging and splitting.
5263  */
5264 static void evict_inode_truncate_pages(struct inode *inode)
5265 {
5266 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5267 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5268 	struct rb_node *node;
5269 
5270 	ASSERT(inode->i_state & I_FREEING);
5271 	truncate_inode_pages_final(&inode->i_data);
5272 
5273 	write_lock(&map_tree->lock);
5274 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5275 		struct extent_map *em;
5276 
5277 		node = rb_first(&map_tree->map);
5278 		em = rb_entry(node, struct extent_map, rb_node);
5279 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5280 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5281 		remove_extent_mapping(map_tree, em);
5282 		free_extent_map(em);
5283 		if (need_resched()) {
5284 			write_unlock(&map_tree->lock);
5285 			cond_resched();
5286 			write_lock(&map_tree->lock);
5287 		}
5288 	}
5289 	write_unlock(&map_tree->lock);
5290 
5291 	/*
5292 	 * Keep looping until we have no more ranges in the io tree.
5293 	 * We can have ongoing bios started by readpages (called from readahead)
5294 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5295 	 * still in progress (unlocked the pages in the bio but did not yet
5296 	 * unlocked the ranges in the io tree). Therefore this means some
5297 	 * ranges can still be locked and eviction started because before
5298 	 * submitting those bios, which are executed by a separate task (work
5299 	 * queue kthread), inode references (inode->i_count) were not taken
5300 	 * (which would be dropped in the end io callback of each bio).
5301 	 * Therefore here we effectively end up waiting for those bios and
5302 	 * anyone else holding locked ranges without having bumped the inode's
5303 	 * reference count - if we don't do it, when they access the inode's
5304 	 * io_tree to unlock a range it may be too late, leading to an
5305 	 * use-after-free issue.
5306 	 */
5307 	spin_lock(&io_tree->lock);
5308 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5309 		struct extent_state *state;
5310 		struct extent_state *cached_state = NULL;
5311 		u64 start;
5312 		u64 end;
5313 
5314 		node = rb_first(&io_tree->state);
5315 		state = rb_entry(node, struct extent_state, rb_node);
5316 		start = state->start;
5317 		end = state->end;
5318 		spin_unlock(&io_tree->lock);
5319 
5320 		lock_extent_bits(io_tree, start, end, &cached_state);
5321 
5322 		/*
5323 		 * If still has DELALLOC flag, the extent didn't reach disk,
5324 		 * and its reserved space won't be freed by delayed_ref.
5325 		 * So we need to free its reserved space here.
5326 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5327 		 *
5328 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5329 		 */
5330 		if (state->state & EXTENT_DELALLOC)
5331 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5332 
5333 		clear_extent_bit(io_tree, start, end,
5334 				 EXTENT_LOCKED | EXTENT_DIRTY |
5335 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5336 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5337 
5338 		cond_resched();
5339 		spin_lock(&io_tree->lock);
5340 	}
5341 	spin_unlock(&io_tree->lock);
5342 }
5343 
5344 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5345 							struct btrfs_block_rsv *rsv,
5346 							u64 min_size)
5347 {
5348 	struct btrfs_fs_info *fs_info = root->fs_info;
5349 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5350 	int failures = 0;
5351 
5352 	for (;;) {
5353 		struct btrfs_trans_handle *trans;
5354 		int ret;
5355 
5356 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5357 					     BTRFS_RESERVE_FLUSH_LIMIT);
5358 
5359 		if (ret && ++failures > 2) {
5360 			btrfs_warn(fs_info,
5361 				   "could not allocate space for a delete; will truncate on mount");
5362 			return ERR_PTR(-ENOSPC);
5363 		}
5364 
5365 		trans = btrfs_join_transaction(root);
5366 		if (IS_ERR(trans) || !ret)
5367 			return trans;
5368 
5369 		/*
5370 		 * Try to steal from the global reserve if there is space for
5371 		 * it.
5372 		 */
5373 		if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5374 		    !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5375 			return trans;
5376 
5377 		/* If not, commit and try again. */
5378 		ret = btrfs_commit_transaction(trans);
5379 		if (ret)
5380 			return ERR_PTR(ret);
5381 	}
5382 }
5383 
5384 void btrfs_evict_inode(struct inode *inode)
5385 {
5386 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5387 	struct btrfs_trans_handle *trans;
5388 	struct btrfs_root *root = BTRFS_I(inode)->root;
5389 	struct btrfs_block_rsv *rsv;
5390 	u64 min_size;
5391 	int ret;
5392 
5393 	trace_btrfs_inode_evict(inode);
5394 
5395 	if (!root) {
5396 		clear_inode(inode);
5397 		return;
5398 	}
5399 
5400 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5401 
5402 	evict_inode_truncate_pages(inode);
5403 
5404 	if (inode->i_nlink &&
5405 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5406 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5407 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5408 		goto no_delete;
5409 
5410 	if (is_bad_inode(inode))
5411 		goto no_delete;
5412 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5413 	if (!special_file(inode->i_mode))
5414 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5415 
5416 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5417 
5418 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5419 		goto no_delete;
5420 
5421 	if (inode->i_nlink > 0) {
5422 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5423 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5424 		goto no_delete;
5425 	}
5426 
5427 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5428 	if (ret)
5429 		goto no_delete;
5430 
5431 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5432 	if (!rsv)
5433 		goto no_delete;
5434 	rsv->size = min_size;
5435 	rsv->failfast = 1;
5436 
5437 	btrfs_i_size_write(BTRFS_I(inode), 0);
5438 
5439 	while (1) {
5440 		trans = evict_refill_and_join(root, rsv, min_size);
5441 		if (IS_ERR(trans))
5442 			goto free_rsv;
5443 
5444 		trans->block_rsv = rsv;
5445 
5446 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5447 		trans->block_rsv = &fs_info->trans_block_rsv;
5448 		btrfs_end_transaction(trans);
5449 		btrfs_btree_balance_dirty(fs_info);
5450 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5451 			goto free_rsv;
5452 		else if (!ret)
5453 			break;
5454 	}
5455 
5456 	/*
5457 	 * Errors here aren't a big deal, it just means we leave orphan items in
5458 	 * the tree. They will be cleaned up on the next mount. If the inode
5459 	 * number gets reused, cleanup deletes the orphan item without doing
5460 	 * anything, and unlink reuses the existing orphan item.
5461 	 *
5462 	 * If it turns out that we are dropping too many of these, we might want
5463 	 * to add a mechanism for retrying these after a commit.
5464 	 */
5465 	trans = evict_refill_and_join(root, rsv, min_size);
5466 	if (!IS_ERR(trans)) {
5467 		trans->block_rsv = rsv;
5468 		btrfs_orphan_del(trans, BTRFS_I(inode));
5469 		trans->block_rsv = &fs_info->trans_block_rsv;
5470 		btrfs_end_transaction(trans);
5471 	}
5472 
5473 	if (!(root == fs_info->tree_root ||
5474 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5475 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5476 
5477 free_rsv:
5478 	btrfs_free_block_rsv(fs_info, rsv);
5479 no_delete:
5480 	/*
5481 	 * If we didn't successfully delete, the orphan item will still be in
5482 	 * the tree and we'll retry on the next mount. Again, we might also want
5483 	 * to retry these periodically in the future.
5484 	 */
5485 	btrfs_remove_delayed_node(BTRFS_I(inode));
5486 	clear_inode(inode);
5487 }
5488 
5489 /*
5490  * this returns the key found in the dir entry in the location pointer.
5491  * If no dir entries were found, returns -ENOENT.
5492  * If found a corrupted location in dir entry, returns -EUCLEAN.
5493  */
5494 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5495 			       struct btrfs_key *location)
5496 {
5497 	const char *name = dentry->d_name.name;
5498 	int namelen = dentry->d_name.len;
5499 	struct btrfs_dir_item *di;
5500 	struct btrfs_path *path;
5501 	struct btrfs_root *root = BTRFS_I(dir)->root;
5502 	int ret = 0;
5503 
5504 	path = btrfs_alloc_path();
5505 	if (!path)
5506 		return -ENOMEM;
5507 
5508 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5509 			name, namelen, 0);
5510 	if (!di) {
5511 		ret = -ENOENT;
5512 		goto out;
5513 	}
5514 	if (IS_ERR(di)) {
5515 		ret = PTR_ERR(di);
5516 		goto out;
5517 	}
5518 
5519 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5520 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5521 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5522 		ret = -EUCLEAN;
5523 		btrfs_warn(root->fs_info,
5524 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5525 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5526 			   location->objectid, location->type, location->offset);
5527 	}
5528 out:
5529 	btrfs_free_path(path);
5530 	return ret;
5531 }
5532 
5533 /*
5534  * when we hit a tree root in a directory, the btrfs part of the inode
5535  * needs to be changed to reflect the root directory of the tree root.  This
5536  * is kind of like crossing a mount point.
5537  */
5538 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5539 				    struct inode *dir,
5540 				    struct dentry *dentry,
5541 				    struct btrfs_key *location,
5542 				    struct btrfs_root **sub_root)
5543 {
5544 	struct btrfs_path *path;
5545 	struct btrfs_root *new_root;
5546 	struct btrfs_root_ref *ref;
5547 	struct extent_buffer *leaf;
5548 	struct btrfs_key key;
5549 	int ret;
5550 	int err = 0;
5551 
5552 	path = btrfs_alloc_path();
5553 	if (!path) {
5554 		err = -ENOMEM;
5555 		goto out;
5556 	}
5557 
5558 	err = -ENOENT;
5559 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5560 	key.type = BTRFS_ROOT_REF_KEY;
5561 	key.offset = location->objectid;
5562 
5563 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5564 	if (ret) {
5565 		if (ret < 0)
5566 			err = ret;
5567 		goto out;
5568 	}
5569 
5570 	leaf = path->nodes[0];
5571 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5572 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5573 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5574 		goto out;
5575 
5576 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5577 				   (unsigned long)(ref + 1),
5578 				   dentry->d_name.len);
5579 	if (ret)
5580 		goto out;
5581 
5582 	btrfs_release_path(path);
5583 
5584 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5585 	if (IS_ERR(new_root)) {
5586 		err = PTR_ERR(new_root);
5587 		goto out;
5588 	}
5589 
5590 	*sub_root = new_root;
5591 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5592 	location->type = BTRFS_INODE_ITEM_KEY;
5593 	location->offset = 0;
5594 	err = 0;
5595 out:
5596 	btrfs_free_path(path);
5597 	return err;
5598 }
5599 
5600 static void inode_tree_add(struct inode *inode)
5601 {
5602 	struct btrfs_root *root = BTRFS_I(inode)->root;
5603 	struct btrfs_inode *entry;
5604 	struct rb_node **p;
5605 	struct rb_node *parent;
5606 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5607 	u64 ino = btrfs_ino(BTRFS_I(inode));
5608 
5609 	if (inode_unhashed(inode))
5610 		return;
5611 	parent = NULL;
5612 	spin_lock(&root->inode_lock);
5613 	p = &root->inode_tree.rb_node;
5614 	while (*p) {
5615 		parent = *p;
5616 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5617 
5618 		if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5619 			p = &parent->rb_left;
5620 		else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5621 			p = &parent->rb_right;
5622 		else {
5623 			WARN_ON(!(entry->vfs_inode.i_state &
5624 				  (I_WILL_FREE | I_FREEING)));
5625 			rb_replace_node(parent, new, &root->inode_tree);
5626 			RB_CLEAR_NODE(parent);
5627 			spin_unlock(&root->inode_lock);
5628 			return;
5629 		}
5630 	}
5631 	rb_link_node(new, parent, p);
5632 	rb_insert_color(new, &root->inode_tree);
5633 	spin_unlock(&root->inode_lock);
5634 }
5635 
5636 static void inode_tree_del(struct inode *inode)
5637 {
5638 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5639 	struct btrfs_root *root = BTRFS_I(inode)->root;
5640 	int empty = 0;
5641 
5642 	spin_lock(&root->inode_lock);
5643 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5644 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5645 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5646 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5647 	}
5648 	spin_unlock(&root->inode_lock);
5649 
5650 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5651 		synchronize_srcu(&fs_info->subvol_srcu);
5652 		spin_lock(&root->inode_lock);
5653 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5654 		spin_unlock(&root->inode_lock);
5655 		if (empty)
5656 			btrfs_add_dead_root(root);
5657 	}
5658 }
5659 
5660 
5661 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5662 {
5663 	struct btrfs_iget_args *args = p;
5664 	inode->i_ino = args->location->objectid;
5665 	memcpy(&BTRFS_I(inode)->location, args->location,
5666 	       sizeof(*args->location));
5667 	BTRFS_I(inode)->root = args->root;
5668 	return 0;
5669 }
5670 
5671 static int btrfs_find_actor(struct inode *inode, void *opaque)
5672 {
5673 	struct btrfs_iget_args *args = opaque;
5674 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5675 		args->root == BTRFS_I(inode)->root;
5676 }
5677 
5678 static struct inode *btrfs_iget_locked(struct super_block *s,
5679 				       struct btrfs_key *location,
5680 				       struct btrfs_root *root)
5681 {
5682 	struct inode *inode;
5683 	struct btrfs_iget_args args;
5684 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5685 
5686 	args.location = location;
5687 	args.root = root;
5688 
5689 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5690 			     btrfs_init_locked_inode,
5691 			     (void *)&args);
5692 	return inode;
5693 }
5694 
5695 /* Get an inode object given its location and corresponding root.
5696  * Returns in *is_new if the inode was read from disk
5697  */
5698 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5699 			 struct btrfs_root *root, int *new)
5700 {
5701 	struct inode *inode;
5702 
5703 	inode = btrfs_iget_locked(s, location, root);
5704 	if (!inode)
5705 		return ERR_PTR(-ENOMEM);
5706 
5707 	if (inode->i_state & I_NEW) {
5708 		int ret;
5709 
5710 		ret = btrfs_read_locked_inode(inode);
5711 		if (!is_bad_inode(inode)) {
5712 			inode_tree_add(inode);
5713 			unlock_new_inode(inode);
5714 			if (new)
5715 				*new = 1;
5716 		} else {
5717 			unlock_new_inode(inode);
5718 			iput(inode);
5719 			ASSERT(ret < 0);
5720 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5721 		}
5722 	}
5723 
5724 	return inode;
5725 }
5726 
5727 static struct inode *new_simple_dir(struct super_block *s,
5728 				    struct btrfs_key *key,
5729 				    struct btrfs_root *root)
5730 {
5731 	struct inode *inode = new_inode(s);
5732 
5733 	if (!inode)
5734 		return ERR_PTR(-ENOMEM);
5735 
5736 	BTRFS_I(inode)->root = root;
5737 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5738 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5739 
5740 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5741 	inode->i_op = &btrfs_dir_ro_inode_operations;
5742 	inode->i_opflags &= ~IOP_XATTR;
5743 	inode->i_fop = &simple_dir_operations;
5744 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5745 	inode->i_mtime = current_time(inode);
5746 	inode->i_atime = inode->i_mtime;
5747 	inode->i_ctime = inode->i_mtime;
5748 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5749 
5750 	return inode;
5751 }
5752 
5753 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5754 {
5755 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5756 	struct inode *inode;
5757 	struct btrfs_root *root = BTRFS_I(dir)->root;
5758 	struct btrfs_root *sub_root = root;
5759 	struct btrfs_key location;
5760 	int index;
5761 	int ret = 0;
5762 
5763 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5764 		return ERR_PTR(-ENAMETOOLONG);
5765 
5766 	ret = btrfs_inode_by_name(dir, dentry, &location);
5767 	if (ret < 0)
5768 		return ERR_PTR(ret);
5769 
5770 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5771 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5772 		return inode;
5773 	}
5774 
5775 	index = srcu_read_lock(&fs_info->subvol_srcu);
5776 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5777 				       &location, &sub_root);
5778 	if (ret < 0) {
5779 		if (ret != -ENOENT)
5780 			inode = ERR_PTR(ret);
5781 		else
5782 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5783 	} else {
5784 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5785 	}
5786 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5787 
5788 	if (!IS_ERR(inode) && root != sub_root) {
5789 		down_read(&fs_info->cleanup_work_sem);
5790 		if (!sb_rdonly(inode->i_sb))
5791 			ret = btrfs_orphan_cleanup(sub_root);
5792 		up_read(&fs_info->cleanup_work_sem);
5793 		if (ret) {
5794 			iput(inode);
5795 			inode = ERR_PTR(ret);
5796 		}
5797 	}
5798 
5799 	return inode;
5800 }
5801 
5802 static int btrfs_dentry_delete(const struct dentry *dentry)
5803 {
5804 	struct btrfs_root *root;
5805 	struct inode *inode = d_inode(dentry);
5806 
5807 	if (!inode && !IS_ROOT(dentry))
5808 		inode = d_inode(dentry->d_parent);
5809 
5810 	if (inode) {
5811 		root = BTRFS_I(inode)->root;
5812 		if (btrfs_root_refs(&root->root_item) == 0)
5813 			return 1;
5814 
5815 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5816 			return 1;
5817 	}
5818 	return 0;
5819 }
5820 
5821 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5822 				   unsigned int flags)
5823 {
5824 	struct inode *inode;
5825 
5826 	inode = btrfs_lookup_dentry(dir, dentry);
5827 	if (IS_ERR(inode)) {
5828 		if (PTR_ERR(inode) == -ENOENT)
5829 			inode = NULL;
5830 		else
5831 			return ERR_CAST(inode);
5832 	}
5833 
5834 	return d_splice_alias(inode, dentry);
5835 }
5836 
5837 unsigned char btrfs_filetype_table[] = {
5838 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5839 };
5840 
5841 /*
5842  * All this infrastructure exists because dir_emit can fault, and we are holding
5843  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5844  * our information into that, and then dir_emit from the buffer.  This is
5845  * similar to what NFS does, only we don't keep the buffer around in pagecache
5846  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5847  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5848  * tree lock.
5849  */
5850 static int btrfs_opendir(struct inode *inode, struct file *file)
5851 {
5852 	struct btrfs_file_private *private;
5853 
5854 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5855 	if (!private)
5856 		return -ENOMEM;
5857 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5858 	if (!private->filldir_buf) {
5859 		kfree(private);
5860 		return -ENOMEM;
5861 	}
5862 	file->private_data = private;
5863 	return 0;
5864 }
5865 
5866 struct dir_entry {
5867 	u64 ino;
5868 	u64 offset;
5869 	unsigned type;
5870 	int name_len;
5871 };
5872 
5873 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5874 {
5875 	while (entries--) {
5876 		struct dir_entry *entry = addr;
5877 		char *name = (char *)(entry + 1);
5878 
5879 		ctx->pos = get_unaligned(&entry->offset);
5880 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5881 					 get_unaligned(&entry->ino),
5882 					 get_unaligned(&entry->type)))
5883 			return 1;
5884 		addr += sizeof(struct dir_entry) +
5885 			get_unaligned(&entry->name_len);
5886 		ctx->pos++;
5887 	}
5888 	return 0;
5889 }
5890 
5891 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5892 {
5893 	struct inode *inode = file_inode(file);
5894 	struct btrfs_root *root = BTRFS_I(inode)->root;
5895 	struct btrfs_file_private *private = file->private_data;
5896 	struct btrfs_dir_item *di;
5897 	struct btrfs_key key;
5898 	struct btrfs_key found_key;
5899 	struct btrfs_path *path;
5900 	void *addr;
5901 	struct list_head ins_list;
5902 	struct list_head del_list;
5903 	int ret;
5904 	struct extent_buffer *leaf;
5905 	int slot;
5906 	char *name_ptr;
5907 	int name_len;
5908 	int entries = 0;
5909 	int total_len = 0;
5910 	bool put = false;
5911 	struct btrfs_key location;
5912 
5913 	if (!dir_emit_dots(file, ctx))
5914 		return 0;
5915 
5916 	path = btrfs_alloc_path();
5917 	if (!path)
5918 		return -ENOMEM;
5919 
5920 	addr = private->filldir_buf;
5921 	path->reada = READA_FORWARD;
5922 
5923 	INIT_LIST_HEAD(&ins_list);
5924 	INIT_LIST_HEAD(&del_list);
5925 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5926 
5927 again:
5928 	key.type = BTRFS_DIR_INDEX_KEY;
5929 	key.offset = ctx->pos;
5930 	key.objectid = btrfs_ino(BTRFS_I(inode));
5931 
5932 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5933 	if (ret < 0)
5934 		goto err;
5935 
5936 	while (1) {
5937 		struct dir_entry *entry;
5938 
5939 		leaf = path->nodes[0];
5940 		slot = path->slots[0];
5941 		if (slot >= btrfs_header_nritems(leaf)) {
5942 			ret = btrfs_next_leaf(root, path);
5943 			if (ret < 0)
5944 				goto err;
5945 			else if (ret > 0)
5946 				break;
5947 			continue;
5948 		}
5949 
5950 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5951 
5952 		if (found_key.objectid != key.objectid)
5953 			break;
5954 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5955 			break;
5956 		if (found_key.offset < ctx->pos)
5957 			goto next;
5958 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5959 			goto next;
5960 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5961 		name_len = btrfs_dir_name_len(leaf, di);
5962 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5963 		    PAGE_SIZE) {
5964 			btrfs_release_path(path);
5965 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5966 			if (ret)
5967 				goto nopos;
5968 			addr = private->filldir_buf;
5969 			entries = 0;
5970 			total_len = 0;
5971 			goto again;
5972 		}
5973 
5974 		entry = addr;
5975 		put_unaligned(name_len, &entry->name_len);
5976 		name_ptr = (char *)(entry + 1);
5977 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5978 				   name_len);
5979 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5980 				&entry->type);
5981 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5982 		put_unaligned(location.objectid, &entry->ino);
5983 		put_unaligned(found_key.offset, &entry->offset);
5984 		entries++;
5985 		addr += sizeof(struct dir_entry) + name_len;
5986 		total_len += sizeof(struct dir_entry) + name_len;
5987 next:
5988 		path->slots[0]++;
5989 	}
5990 	btrfs_release_path(path);
5991 
5992 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5993 	if (ret)
5994 		goto nopos;
5995 
5996 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5997 	if (ret)
5998 		goto nopos;
5999 
6000 	/*
6001 	 * Stop new entries from being returned after we return the last
6002 	 * entry.
6003 	 *
6004 	 * New directory entries are assigned a strictly increasing
6005 	 * offset.  This means that new entries created during readdir
6006 	 * are *guaranteed* to be seen in the future by that readdir.
6007 	 * This has broken buggy programs which operate on names as
6008 	 * they're returned by readdir.  Until we re-use freed offsets
6009 	 * we have this hack to stop new entries from being returned
6010 	 * under the assumption that they'll never reach this huge
6011 	 * offset.
6012 	 *
6013 	 * This is being careful not to overflow 32bit loff_t unless the
6014 	 * last entry requires it because doing so has broken 32bit apps
6015 	 * in the past.
6016 	 */
6017 	if (ctx->pos >= INT_MAX)
6018 		ctx->pos = LLONG_MAX;
6019 	else
6020 		ctx->pos = INT_MAX;
6021 nopos:
6022 	ret = 0;
6023 err:
6024 	if (put)
6025 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6026 	btrfs_free_path(path);
6027 	return ret;
6028 }
6029 
6030 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6031 {
6032 	struct btrfs_root *root = BTRFS_I(inode)->root;
6033 	struct btrfs_trans_handle *trans;
6034 	int ret = 0;
6035 	bool nolock = false;
6036 
6037 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6038 		return 0;
6039 
6040 	if (btrfs_fs_closing(root->fs_info) &&
6041 			btrfs_is_free_space_inode(BTRFS_I(inode)))
6042 		nolock = true;
6043 
6044 	if (wbc->sync_mode == WB_SYNC_ALL) {
6045 		if (nolock)
6046 			trans = btrfs_join_transaction_nolock(root);
6047 		else
6048 			trans = btrfs_join_transaction(root);
6049 		if (IS_ERR(trans))
6050 			return PTR_ERR(trans);
6051 		ret = btrfs_commit_transaction(trans);
6052 	}
6053 	return ret;
6054 }
6055 
6056 /*
6057  * This is somewhat expensive, updating the tree every time the
6058  * inode changes.  But, it is most likely to find the inode in cache.
6059  * FIXME, needs more benchmarking...there are no reasons other than performance
6060  * to keep or drop this code.
6061  */
6062 static int btrfs_dirty_inode(struct inode *inode)
6063 {
6064 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6065 	struct btrfs_root *root = BTRFS_I(inode)->root;
6066 	struct btrfs_trans_handle *trans;
6067 	int ret;
6068 
6069 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6070 		return 0;
6071 
6072 	trans = btrfs_join_transaction(root);
6073 	if (IS_ERR(trans))
6074 		return PTR_ERR(trans);
6075 
6076 	ret = btrfs_update_inode(trans, root, inode);
6077 	if (ret && ret == -ENOSPC) {
6078 		/* whoops, lets try again with the full transaction */
6079 		btrfs_end_transaction(trans);
6080 		trans = btrfs_start_transaction(root, 1);
6081 		if (IS_ERR(trans))
6082 			return PTR_ERR(trans);
6083 
6084 		ret = btrfs_update_inode(trans, root, inode);
6085 	}
6086 	btrfs_end_transaction(trans);
6087 	if (BTRFS_I(inode)->delayed_node)
6088 		btrfs_balance_delayed_items(fs_info);
6089 
6090 	return ret;
6091 }
6092 
6093 /*
6094  * This is a copy of file_update_time.  We need this so we can return error on
6095  * ENOSPC for updating the inode in the case of file write and mmap writes.
6096  */
6097 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6098 			     int flags)
6099 {
6100 	struct btrfs_root *root = BTRFS_I(inode)->root;
6101 	bool dirty = flags & ~S_VERSION;
6102 
6103 	if (btrfs_root_readonly(root))
6104 		return -EROFS;
6105 
6106 	if (flags & S_VERSION)
6107 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6108 	if (flags & S_CTIME)
6109 		inode->i_ctime = *now;
6110 	if (flags & S_MTIME)
6111 		inode->i_mtime = *now;
6112 	if (flags & S_ATIME)
6113 		inode->i_atime = *now;
6114 	return dirty ? btrfs_dirty_inode(inode) : 0;
6115 }
6116 
6117 /*
6118  * find the highest existing sequence number in a directory
6119  * and then set the in-memory index_cnt variable to reflect
6120  * free sequence numbers
6121  */
6122 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6123 {
6124 	struct btrfs_root *root = inode->root;
6125 	struct btrfs_key key, found_key;
6126 	struct btrfs_path *path;
6127 	struct extent_buffer *leaf;
6128 	int ret;
6129 
6130 	key.objectid = btrfs_ino(inode);
6131 	key.type = BTRFS_DIR_INDEX_KEY;
6132 	key.offset = (u64)-1;
6133 
6134 	path = btrfs_alloc_path();
6135 	if (!path)
6136 		return -ENOMEM;
6137 
6138 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6139 	if (ret < 0)
6140 		goto out;
6141 	/* FIXME: we should be able to handle this */
6142 	if (ret == 0)
6143 		goto out;
6144 	ret = 0;
6145 
6146 	/*
6147 	 * MAGIC NUMBER EXPLANATION:
6148 	 * since we search a directory based on f_pos we have to start at 2
6149 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6150 	 * else has to start at 2
6151 	 */
6152 	if (path->slots[0] == 0) {
6153 		inode->index_cnt = 2;
6154 		goto out;
6155 	}
6156 
6157 	path->slots[0]--;
6158 
6159 	leaf = path->nodes[0];
6160 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6161 
6162 	if (found_key.objectid != btrfs_ino(inode) ||
6163 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6164 		inode->index_cnt = 2;
6165 		goto out;
6166 	}
6167 
6168 	inode->index_cnt = found_key.offset + 1;
6169 out:
6170 	btrfs_free_path(path);
6171 	return ret;
6172 }
6173 
6174 /*
6175  * helper to find a free sequence number in a given directory.  This current
6176  * code is very simple, later versions will do smarter things in the btree
6177  */
6178 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6179 {
6180 	int ret = 0;
6181 
6182 	if (dir->index_cnt == (u64)-1) {
6183 		ret = btrfs_inode_delayed_dir_index_count(dir);
6184 		if (ret) {
6185 			ret = btrfs_set_inode_index_count(dir);
6186 			if (ret)
6187 				return ret;
6188 		}
6189 	}
6190 
6191 	*index = dir->index_cnt;
6192 	dir->index_cnt++;
6193 
6194 	return ret;
6195 }
6196 
6197 static int btrfs_insert_inode_locked(struct inode *inode)
6198 {
6199 	struct btrfs_iget_args args;
6200 	args.location = &BTRFS_I(inode)->location;
6201 	args.root = BTRFS_I(inode)->root;
6202 
6203 	return insert_inode_locked4(inode,
6204 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6205 		   btrfs_find_actor, &args);
6206 }
6207 
6208 /*
6209  * Inherit flags from the parent inode.
6210  *
6211  * Currently only the compression flags and the cow flags are inherited.
6212  */
6213 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6214 {
6215 	unsigned int flags;
6216 
6217 	if (!dir)
6218 		return;
6219 
6220 	flags = BTRFS_I(dir)->flags;
6221 
6222 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6223 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6224 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6225 	} else if (flags & BTRFS_INODE_COMPRESS) {
6226 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6227 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6228 	}
6229 
6230 	if (flags & BTRFS_INODE_NODATACOW) {
6231 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6232 		if (S_ISREG(inode->i_mode))
6233 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6234 	}
6235 
6236 	btrfs_sync_inode_flags_to_i_flags(inode);
6237 }
6238 
6239 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6240 				     struct btrfs_root *root,
6241 				     struct inode *dir,
6242 				     const char *name, int name_len,
6243 				     u64 ref_objectid, u64 objectid,
6244 				     umode_t mode, u64 *index)
6245 {
6246 	struct btrfs_fs_info *fs_info = root->fs_info;
6247 	struct inode *inode;
6248 	struct btrfs_inode_item *inode_item;
6249 	struct btrfs_key *location;
6250 	struct btrfs_path *path;
6251 	struct btrfs_inode_ref *ref;
6252 	struct btrfs_key key[2];
6253 	u32 sizes[2];
6254 	int nitems = name ? 2 : 1;
6255 	unsigned long ptr;
6256 	int ret;
6257 
6258 	path = btrfs_alloc_path();
6259 	if (!path)
6260 		return ERR_PTR(-ENOMEM);
6261 
6262 	inode = new_inode(fs_info->sb);
6263 	if (!inode) {
6264 		btrfs_free_path(path);
6265 		return ERR_PTR(-ENOMEM);
6266 	}
6267 
6268 	/*
6269 	 * O_TMPFILE, set link count to 0, so that after this point,
6270 	 * we fill in an inode item with the correct link count.
6271 	 */
6272 	if (!name)
6273 		set_nlink(inode, 0);
6274 
6275 	/*
6276 	 * we have to initialize this early, so we can reclaim the inode
6277 	 * number if we fail afterwards in this function.
6278 	 */
6279 	inode->i_ino = objectid;
6280 
6281 	if (dir && name) {
6282 		trace_btrfs_inode_request(dir);
6283 
6284 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6285 		if (ret) {
6286 			btrfs_free_path(path);
6287 			iput(inode);
6288 			return ERR_PTR(ret);
6289 		}
6290 	} else if (dir) {
6291 		*index = 0;
6292 	}
6293 	/*
6294 	 * index_cnt is ignored for everything but a dir,
6295 	 * btrfs_set_inode_index_count has an explanation for the magic
6296 	 * number
6297 	 */
6298 	BTRFS_I(inode)->index_cnt = 2;
6299 	BTRFS_I(inode)->dir_index = *index;
6300 	BTRFS_I(inode)->root = root;
6301 	BTRFS_I(inode)->generation = trans->transid;
6302 	inode->i_generation = BTRFS_I(inode)->generation;
6303 
6304 	/*
6305 	 * We could have gotten an inode number from somebody who was fsynced
6306 	 * and then removed in this same transaction, so let's just set full
6307 	 * sync since it will be a full sync anyway and this will blow away the
6308 	 * old info in the log.
6309 	 */
6310 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6311 
6312 	key[0].objectid = objectid;
6313 	key[0].type = BTRFS_INODE_ITEM_KEY;
6314 	key[0].offset = 0;
6315 
6316 	sizes[0] = sizeof(struct btrfs_inode_item);
6317 
6318 	if (name) {
6319 		/*
6320 		 * Start new inodes with an inode_ref. This is slightly more
6321 		 * efficient for small numbers of hard links since they will
6322 		 * be packed into one item. Extended refs will kick in if we
6323 		 * add more hard links than can fit in the ref item.
6324 		 */
6325 		key[1].objectid = objectid;
6326 		key[1].type = BTRFS_INODE_REF_KEY;
6327 		key[1].offset = ref_objectid;
6328 
6329 		sizes[1] = name_len + sizeof(*ref);
6330 	}
6331 
6332 	location = &BTRFS_I(inode)->location;
6333 	location->objectid = objectid;
6334 	location->offset = 0;
6335 	location->type = BTRFS_INODE_ITEM_KEY;
6336 
6337 	ret = btrfs_insert_inode_locked(inode);
6338 	if (ret < 0)
6339 		goto fail;
6340 
6341 	path->leave_spinning = 1;
6342 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6343 	if (ret != 0)
6344 		goto fail_unlock;
6345 
6346 	inode_init_owner(inode, dir, mode);
6347 	inode_set_bytes(inode, 0);
6348 
6349 	inode->i_mtime = current_time(inode);
6350 	inode->i_atime = inode->i_mtime;
6351 	inode->i_ctime = inode->i_mtime;
6352 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6353 
6354 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6355 				  struct btrfs_inode_item);
6356 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6357 			     sizeof(*inode_item));
6358 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6359 
6360 	if (name) {
6361 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6362 				     struct btrfs_inode_ref);
6363 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6364 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6365 		ptr = (unsigned long)(ref + 1);
6366 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6367 	}
6368 
6369 	btrfs_mark_buffer_dirty(path->nodes[0]);
6370 	btrfs_free_path(path);
6371 
6372 	btrfs_inherit_iflags(inode, dir);
6373 
6374 	if (S_ISREG(mode)) {
6375 		if (btrfs_test_opt(fs_info, NODATASUM))
6376 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6377 		if (btrfs_test_opt(fs_info, NODATACOW))
6378 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6379 				BTRFS_INODE_NODATASUM;
6380 	}
6381 
6382 	inode_tree_add(inode);
6383 
6384 	trace_btrfs_inode_new(inode);
6385 	btrfs_set_inode_last_trans(trans, inode);
6386 
6387 	btrfs_update_root_times(trans, root);
6388 
6389 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6390 	if (ret)
6391 		btrfs_err(fs_info,
6392 			  "error inheriting props for ino %llu (root %llu): %d",
6393 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6394 
6395 	return inode;
6396 
6397 fail_unlock:
6398 	unlock_new_inode(inode);
6399 fail:
6400 	if (dir && name)
6401 		BTRFS_I(dir)->index_cnt--;
6402 	btrfs_free_path(path);
6403 	iput(inode);
6404 	return ERR_PTR(ret);
6405 }
6406 
6407 static inline u8 btrfs_inode_type(struct inode *inode)
6408 {
6409 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6410 }
6411 
6412 /*
6413  * utility function to add 'inode' into 'parent_inode' with
6414  * a give name and a given sequence number.
6415  * if 'add_backref' is true, also insert a backref from the
6416  * inode to the parent directory.
6417  */
6418 int btrfs_add_link(struct btrfs_trans_handle *trans,
6419 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6420 		   const char *name, int name_len, int add_backref, u64 index)
6421 {
6422 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6423 	int ret = 0;
6424 	struct btrfs_key key;
6425 	struct btrfs_root *root = parent_inode->root;
6426 	u64 ino = btrfs_ino(inode);
6427 	u64 parent_ino = btrfs_ino(parent_inode);
6428 
6429 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6430 		memcpy(&key, &inode->root->root_key, sizeof(key));
6431 	} else {
6432 		key.objectid = ino;
6433 		key.type = BTRFS_INODE_ITEM_KEY;
6434 		key.offset = 0;
6435 	}
6436 
6437 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6438 		ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6439 					 root->root_key.objectid, parent_ino,
6440 					 index, name, name_len);
6441 	} else if (add_backref) {
6442 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6443 					     parent_ino, index);
6444 	}
6445 
6446 	/* Nothing to clean up yet */
6447 	if (ret)
6448 		return ret;
6449 
6450 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6451 				    parent_inode, &key,
6452 				    btrfs_inode_type(&inode->vfs_inode), index);
6453 	if (ret == -EEXIST || ret == -EOVERFLOW)
6454 		goto fail_dir_item;
6455 	else if (ret) {
6456 		btrfs_abort_transaction(trans, ret);
6457 		return ret;
6458 	}
6459 
6460 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6461 			   name_len * 2);
6462 	inode_inc_iversion(&parent_inode->vfs_inode);
6463 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6464 		current_time(&parent_inode->vfs_inode);
6465 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6466 	if (ret)
6467 		btrfs_abort_transaction(trans, ret);
6468 	return ret;
6469 
6470 fail_dir_item:
6471 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6472 		u64 local_index;
6473 		int err;
6474 		err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6475 					 root->root_key.objectid, parent_ino,
6476 					 &local_index, name, name_len);
6477 
6478 	} else if (add_backref) {
6479 		u64 local_index;
6480 		int err;
6481 
6482 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6483 					  ino, parent_ino, &local_index);
6484 	}
6485 	return ret;
6486 }
6487 
6488 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6489 			    struct btrfs_inode *dir, struct dentry *dentry,
6490 			    struct btrfs_inode *inode, int backref, u64 index)
6491 {
6492 	int err = btrfs_add_link(trans, dir, inode,
6493 				 dentry->d_name.name, dentry->d_name.len,
6494 				 backref, index);
6495 	if (err > 0)
6496 		err = -EEXIST;
6497 	return err;
6498 }
6499 
6500 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6501 			umode_t mode, dev_t rdev)
6502 {
6503 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6504 	struct btrfs_trans_handle *trans;
6505 	struct btrfs_root *root = BTRFS_I(dir)->root;
6506 	struct inode *inode = NULL;
6507 	int err;
6508 	int drop_inode = 0;
6509 	u64 objectid;
6510 	u64 index = 0;
6511 
6512 	/*
6513 	 * 2 for inode item and ref
6514 	 * 2 for dir items
6515 	 * 1 for xattr if selinux is on
6516 	 */
6517 	trans = btrfs_start_transaction(root, 5);
6518 	if (IS_ERR(trans))
6519 		return PTR_ERR(trans);
6520 
6521 	err = btrfs_find_free_ino(root, &objectid);
6522 	if (err)
6523 		goto out_unlock;
6524 
6525 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6526 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6527 			mode, &index);
6528 	if (IS_ERR(inode)) {
6529 		err = PTR_ERR(inode);
6530 		goto out_unlock;
6531 	}
6532 
6533 	/*
6534 	* If the active LSM wants to access the inode during
6535 	* d_instantiate it needs these. Smack checks to see
6536 	* if the filesystem supports xattrs by looking at the
6537 	* ops vector.
6538 	*/
6539 	inode->i_op = &btrfs_special_inode_operations;
6540 	init_special_inode(inode, inode->i_mode, rdev);
6541 
6542 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6543 	if (err)
6544 		goto out_unlock_inode;
6545 
6546 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6547 			0, index);
6548 	if (err) {
6549 		goto out_unlock_inode;
6550 	} else {
6551 		btrfs_update_inode(trans, root, inode);
6552 		d_instantiate_new(dentry, inode);
6553 	}
6554 
6555 out_unlock:
6556 	btrfs_end_transaction(trans);
6557 	btrfs_btree_balance_dirty(fs_info);
6558 	if (drop_inode) {
6559 		inode_dec_link_count(inode);
6560 		iput(inode);
6561 	}
6562 	return err;
6563 
6564 out_unlock_inode:
6565 	drop_inode = 1;
6566 	unlock_new_inode(inode);
6567 	goto out_unlock;
6568 
6569 }
6570 
6571 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6572 			umode_t mode, bool excl)
6573 {
6574 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6575 	struct btrfs_trans_handle *trans;
6576 	struct btrfs_root *root = BTRFS_I(dir)->root;
6577 	struct inode *inode = NULL;
6578 	int drop_inode_on_err = 0;
6579 	int err;
6580 	u64 objectid;
6581 	u64 index = 0;
6582 
6583 	/*
6584 	 * 2 for inode item and ref
6585 	 * 2 for dir items
6586 	 * 1 for xattr if selinux is on
6587 	 */
6588 	trans = btrfs_start_transaction(root, 5);
6589 	if (IS_ERR(trans))
6590 		return PTR_ERR(trans);
6591 
6592 	err = btrfs_find_free_ino(root, &objectid);
6593 	if (err)
6594 		goto out_unlock;
6595 
6596 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6597 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6598 			mode, &index);
6599 	if (IS_ERR(inode)) {
6600 		err = PTR_ERR(inode);
6601 		goto out_unlock;
6602 	}
6603 	drop_inode_on_err = 1;
6604 	/*
6605 	* If the active LSM wants to access the inode during
6606 	* d_instantiate it needs these. Smack checks to see
6607 	* if the filesystem supports xattrs by looking at the
6608 	* ops vector.
6609 	*/
6610 	inode->i_fop = &btrfs_file_operations;
6611 	inode->i_op = &btrfs_file_inode_operations;
6612 	inode->i_mapping->a_ops = &btrfs_aops;
6613 
6614 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6615 	if (err)
6616 		goto out_unlock_inode;
6617 
6618 	err = btrfs_update_inode(trans, root, inode);
6619 	if (err)
6620 		goto out_unlock_inode;
6621 
6622 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6623 			0, index);
6624 	if (err)
6625 		goto out_unlock_inode;
6626 
6627 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6628 	d_instantiate_new(dentry, inode);
6629 
6630 out_unlock:
6631 	btrfs_end_transaction(trans);
6632 	if (err && drop_inode_on_err) {
6633 		inode_dec_link_count(inode);
6634 		iput(inode);
6635 	}
6636 	btrfs_btree_balance_dirty(fs_info);
6637 	return err;
6638 
6639 out_unlock_inode:
6640 	unlock_new_inode(inode);
6641 	goto out_unlock;
6642 
6643 }
6644 
6645 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6646 		      struct dentry *dentry)
6647 {
6648 	struct btrfs_trans_handle *trans = NULL;
6649 	struct btrfs_root *root = BTRFS_I(dir)->root;
6650 	struct inode *inode = d_inode(old_dentry);
6651 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6652 	u64 index;
6653 	int err;
6654 	int drop_inode = 0;
6655 
6656 	/* do not allow sys_link's with other subvols of the same device */
6657 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6658 		return -EXDEV;
6659 
6660 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6661 		return -EMLINK;
6662 
6663 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6664 	if (err)
6665 		goto fail;
6666 
6667 	/*
6668 	 * 2 items for inode and inode ref
6669 	 * 2 items for dir items
6670 	 * 1 item for parent inode
6671 	 * 1 item for orphan item deletion if O_TMPFILE
6672 	 */
6673 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6674 	if (IS_ERR(trans)) {
6675 		err = PTR_ERR(trans);
6676 		trans = NULL;
6677 		goto fail;
6678 	}
6679 
6680 	/* There are several dir indexes for this inode, clear the cache. */
6681 	BTRFS_I(inode)->dir_index = 0ULL;
6682 	inc_nlink(inode);
6683 	inode_inc_iversion(inode);
6684 	inode->i_ctime = current_time(inode);
6685 	ihold(inode);
6686 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6687 
6688 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6689 			1, index);
6690 
6691 	if (err) {
6692 		drop_inode = 1;
6693 	} else {
6694 		struct dentry *parent = dentry->d_parent;
6695 		err = btrfs_update_inode(trans, root, inode);
6696 		if (err)
6697 			goto fail;
6698 		if (inode->i_nlink == 1) {
6699 			/*
6700 			 * If new hard link count is 1, it's a file created
6701 			 * with open(2) O_TMPFILE flag.
6702 			 */
6703 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6704 			if (err)
6705 				goto fail;
6706 		}
6707 		d_instantiate(dentry, inode);
6708 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6709 	}
6710 
6711 fail:
6712 	if (trans)
6713 		btrfs_end_transaction(trans);
6714 	if (drop_inode) {
6715 		inode_dec_link_count(inode);
6716 		iput(inode);
6717 	}
6718 	btrfs_btree_balance_dirty(fs_info);
6719 	return err;
6720 }
6721 
6722 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6723 {
6724 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6725 	struct inode *inode = NULL;
6726 	struct btrfs_trans_handle *trans;
6727 	struct btrfs_root *root = BTRFS_I(dir)->root;
6728 	int err = 0;
6729 	int drop_on_err = 0;
6730 	u64 objectid = 0;
6731 	u64 index = 0;
6732 
6733 	/*
6734 	 * 2 items for inode and ref
6735 	 * 2 items for dir items
6736 	 * 1 for xattr if selinux is on
6737 	 */
6738 	trans = btrfs_start_transaction(root, 5);
6739 	if (IS_ERR(trans))
6740 		return PTR_ERR(trans);
6741 
6742 	err = btrfs_find_free_ino(root, &objectid);
6743 	if (err)
6744 		goto out_fail;
6745 
6746 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6747 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6748 			S_IFDIR | mode, &index);
6749 	if (IS_ERR(inode)) {
6750 		err = PTR_ERR(inode);
6751 		goto out_fail;
6752 	}
6753 
6754 	drop_on_err = 1;
6755 	/* these must be set before we unlock the inode */
6756 	inode->i_op = &btrfs_dir_inode_operations;
6757 	inode->i_fop = &btrfs_dir_file_operations;
6758 
6759 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6760 	if (err)
6761 		goto out_fail_inode;
6762 
6763 	btrfs_i_size_write(BTRFS_I(inode), 0);
6764 	err = btrfs_update_inode(trans, root, inode);
6765 	if (err)
6766 		goto out_fail_inode;
6767 
6768 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6769 			dentry->d_name.name,
6770 			dentry->d_name.len, 0, index);
6771 	if (err)
6772 		goto out_fail_inode;
6773 
6774 	d_instantiate_new(dentry, inode);
6775 	drop_on_err = 0;
6776 
6777 out_fail:
6778 	btrfs_end_transaction(trans);
6779 	if (drop_on_err) {
6780 		inode_dec_link_count(inode);
6781 		iput(inode);
6782 	}
6783 	btrfs_btree_balance_dirty(fs_info);
6784 	return err;
6785 
6786 out_fail_inode:
6787 	unlock_new_inode(inode);
6788 	goto out_fail;
6789 }
6790 
6791 static noinline int uncompress_inline(struct btrfs_path *path,
6792 				      struct page *page,
6793 				      size_t pg_offset, u64 extent_offset,
6794 				      struct btrfs_file_extent_item *item)
6795 {
6796 	int ret;
6797 	struct extent_buffer *leaf = path->nodes[0];
6798 	char *tmp;
6799 	size_t max_size;
6800 	unsigned long inline_size;
6801 	unsigned long ptr;
6802 	int compress_type;
6803 
6804 	WARN_ON(pg_offset != 0);
6805 	compress_type = btrfs_file_extent_compression(leaf, item);
6806 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6807 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6808 					btrfs_item_nr(path->slots[0]));
6809 	tmp = kmalloc(inline_size, GFP_NOFS);
6810 	if (!tmp)
6811 		return -ENOMEM;
6812 	ptr = btrfs_file_extent_inline_start(item);
6813 
6814 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6815 
6816 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6817 	ret = btrfs_decompress(compress_type, tmp, page,
6818 			       extent_offset, inline_size, max_size);
6819 
6820 	/*
6821 	 * decompression code contains a memset to fill in any space between the end
6822 	 * of the uncompressed data and the end of max_size in case the decompressed
6823 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6824 	 * the end of an inline extent and the beginning of the next block, so we
6825 	 * cover that region here.
6826 	 */
6827 
6828 	if (max_size + pg_offset < PAGE_SIZE) {
6829 		char *map = kmap(page);
6830 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6831 		kunmap(page);
6832 	}
6833 	kfree(tmp);
6834 	return ret;
6835 }
6836 
6837 /*
6838  * a bit scary, this does extent mapping from logical file offset to the disk.
6839  * the ugly parts come from merging extents from the disk with the in-ram
6840  * representation.  This gets more complex because of the data=ordered code,
6841  * where the in-ram extents might be locked pending data=ordered completion.
6842  *
6843  * This also copies inline extents directly into the page.
6844  */
6845 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6846 		struct page *page,
6847 	    size_t pg_offset, u64 start, u64 len,
6848 		int create)
6849 {
6850 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6851 	int ret;
6852 	int err = 0;
6853 	u64 extent_start = 0;
6854 	u64 extent_end = 0;
6855 	u64 objectid = btrfs_ino(inode);
6856 	u32 found_type;
6857 	struct btrfs_path *path = NULL;
6858 	struct btrfs_root *root = inode->root;
6859 	struct btrfs_file_extent_item *item;
6860 	struct extent_buffer *leaf;
6861 	struct btrfs_key found_key;
6862 	struct extent_map *em = NULL;
6863 	struct extent_map_tree *em_tree = &inode->extent_tree;
6864 	struct extent_io_tree *io_tree = &inode->io_tree;
6865 	const bool new_inline = !page || create;
6866 
6867 	read_lock(&em_tree->lock);
6868 	em = lookup_extent_mapping(em_tree, start, len);
6869 	if (em)
6870 		em->bdev = fs_info->fs_devices->latest_bdev;
6871 	read_unlock(&em_tree->lock);
6872 
6873 	if (em) {
6874 		if (em->start > start || em->start + em->len <= start)
6875 			free_extent_map(em);
6876 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6877 			free_extent_map(em);
6878 		else
6879 			goto out;
6880 	}
6881 	em = alloc_extent_map();
6882 	if (!em) {
6883 		err = -ENOMEM;
6884 		goto out;
6885 	}
6886 	em->bdev = fs_info->fs_devices->latest_bdev;
6887 	em->start = EXTENT_MAP_HOLE;
6888 	em->orig_start = EXTENT_MAP_HOLE;
6889 	em->len = (u64)-1;
6890 	em->block_len = (u64)-1;
6891 
6892 	if (!path) {
6893 		path = btrfs_alloc_path();
6894 		if (!path) {
6895 			err = -ENOMEM;
6896 			goto out;
6897 		}
6898 		/*
6899 		 * Chances are we'll be called again, so go ahead and do
6900 		 * readahead
6901 		 */
6902 		path->reada = READA_FORWARD;
6903 	}
6904 
6905 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6906 	if (ret < 0) {
6907 		err = ret;
6908 		goto out;
6909 	}
6910 
6911 	if (ret != 0) {
6912 		if (path->slots[0] == 0)
6913 			goto not_found;
6914 		path->slots[0]--;
6915 	}
6916 
6917 	leaf = path->nodes[0];
6918 	item = btrfs_item_ptr(leaf, path->slots[0],
6919 			      struct btrfs_file_extent_item);
6920 	/* are we inside the extent that was found? */
6921 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6922 	found_type = found_key.type;
6923 	if (found_key.objectid != objectid ||
6924 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6925 		/*
6926 		 * If we backup past the first extent we want to move forward
6927 		 * and see if there is an extent in front of us, otherwise we'll
6928 		 * say there is a hole for our whole search range which can
6929 		 * cause problems.
6930 		 */
6931 		extent_end = start;
6932 		goto next;
6933 	}
6934 
6935 	found_type = btrfs_file_extent_type(leaf, item);
6936 	extent_start = found_key.offset;
6937 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6938 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6939 		extent_end = extent_start +
6940 		       btrfs_file_extent_num_bytes(leaf, item);
6941 
6942 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6943 						       extent_start);
6944 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6945 		size_t size;
6946 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6947 		extent_end = ALIGN(extent_start + size,
6948 				   fs_info->sectorsize);
6949 
6950 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6951 						      path->slots[0],
6952 						      extent_start);
6953 	}
6954 next:
6955 	if (start >= extent_end) {
6956 		path->slots[0]++;
6957 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6958 			ret = btrfs_next_leaf(root, path);
6959 			if (ret < 0) {
6960 				err = ret;
6961 				goto out;
6962 			}
6963 			if (ret > 0)
6964 				goto not_found;
6965 			leaf = path->nodes[0];
6966 		}
6967 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6968 		if (found_key.objectid != objectid ||
6969 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6970 			goto not_found;
6971 		if (start + len <= found_key.offset)
6972 			goto not_found;
6973 		if (start > found_key.offset)
6974 			goto next;
6975 		em->start = start;
6976 		em->orig_start = start;
6977 		em->len = found_key.offset - start;
6978 		goto not_found_em;
6979 	}
6980 
6981 	btrfs_extent_item_to_extent_map(inode, path, item,
6982 			new_inline, em);
6983 
6984 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6985 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6986 		goto insert;
6987 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6988 		unsigned long ptr;
6989 		char *map;
6990 		size_t size;
6991 		size_t extent_offset;
6992 		size_t copy_size;
6993 
6994 		if (new_inline)
6995 			goto out;
6996 
6997 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6998 		extent_offset = page_offset(page) + pg_offset - extent_start;
6999 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7000 				  size - extent_offset);
7001 		em->start = extent_start + extent_offset;
7002 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7003 		em->orig_block_len = em->len;
7004 		em->orig_start = em->start;
7005 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7006 		if (!PageUptodate(page)) {
7007 			if (btrfs_file_extent_compression(leaf, item) !=
7008 			    BTRFS_COMPRESS_NONE) {
7009 				ret = uncompress_inline(path, page, pg_offset,
7010 							extent_offset, item);
7011 				if (ret) {
7012 					err = ret;
7013 					goto out;
7014 				}
7015 			} else {
7016 				map = kmap(page);
7017 				read_extent_buffer(leaf, map + pg_offset, ptr,
7018 						   copy_size);
7019 				if (pg_offset + copy_size < PAGE_SIZE) {
7020 					memset(map + pg_offset + copy_size, 0,
7021 					       PAGE_SIZE - pg_offset -
7022 					       copy_size);
7023 				}
7024 				kunmap(page);
7025 			}
7026 			flush_dcache_page(page);
7027 		}
7028 		set_extent_uptodate(io_tree, em->start,
7029 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7030 		goto insert;
7031 	}
7032 not_found:
7033 	em->start = start;
7034 	em->orig_start = start;
7035 	em->len = len;
7036 not_found_em:
7037 	em->block_start = EXTENT_MAP_HOLE;
7038 insert:
7039 	btrfs_release_path(path);
7040 	if (em->start > start || extent_map_end(em) <= start) {
7041 		btrfs_err(fs_info,
7042 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7043 			  em->start, em->len, start, len);
7044 		err = -EIO;
7045 		goto out;
7046 	}
7047 
7048 	err = 0;
7049 	write_lock(&em_tree->lock);
7050 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7051 	write_unlock(&em_tree->lock);
7052 out:
7053 
7054 	trace_btrfs_get_extent(root, inode, em);
7055 
7056 	btrfs_free_path(path);
7057 	if (err) {
7058 		free_extent_map(em);
7059 		return ERR_PTR(err);
7060 	}
7061 	BUG_ON(!em); /* Error is always set */
7062 	return em;
7063 }
7064 
7065 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7066 		struct page *page,
7067 		size_t pg_offset, u64 start, u64 len,
7068 		int create)
7069 {
7070 	struct extent_map *em;
7071 	struct extent_map *hole_em = NULL;
7072 	u64 range_start = start;
7073 	u64 end;
7074 	u64 found;
7075 	u64 found_end;
7076 	int err = 0;
7077 
7078 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7079 	if (IS_ERR(em))
7080 		return em;
7081 	/*
7082 	 * If our em maps to:
7083 	 * - a hole or
7084 	 * - a pre-alloc extent,
7085 	 * there might actually be delalloc bytes behind it.
7086 	 */
7087 	if (em->block_start != EXTENT_MAP_HOLE &&
7088 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7089 		return em;
7090 	else
7091 		hole_em = em;
7092 
7093 	/* check to see if we've wrapped (len == -1 or similar) */
7094 	end = start + len;
7095 	if (end < start)
7096 		end = (u64)-1;
7097 	else
7098 		end -= 1;
7099 
7100 	em = NULL;
7101 
7102 	/* ok, we didn't find anything, lets look for delalloc */
7103 	found = count_range_bits(&inode->io_tree, &range_start,
7104 				 end, len, EXTENT_DELALLOC, 1);
7105 	found_end = range_start + found;
7106 	if (found_end < range_start)
7107 		found_end = (u64)-1;
7108 
7109 	/*
7110 	 * we didn't find anything useful, return
7111 	 * the original results from get_extent()
7112 	 */
7113 	if (range_start > end || found_end <= start) {
7114 		em = hole_em;
7115 		hole_em = NULL;
7116 		goto out;
7117 	}
7118 
7119 	/* adjust the range_start to make sure it doesn't
7120 	 * go backwards from the start they passed in
7121 	 */
7122 	range_start = max(start, range_start);
7123 	found = found_end - range_start;
7124 
7125 	if (found > 0) {
7126 		u64 hole_start = start;
7127 		u64 hole_len = len;
7128 
7129 		em = alloc_extent_map();
7130 		if (!em) {
7131 			err = -ENOMEM;
7132 			goto out;
7133 		}
7134 		/*
7135 		 * when btrfs_get_extent can't find anything it
7136 		 * returns one huge hole
7137 		 *
7138 		 * make sure what it found really fits our range, and
7139 		 * adjust to make sure it is based on the start from
7140 		 * the caller
7141 		 */
7142 		if (hole_em) {
7143 			u64 calc_end = extent_map_end(hole_em);
7144 
7145 			if (calc_end <= start || (hole_em->start > end)) {
7146 				free_extent_map(hole_em);
7147 				hole_em = NULL;
7148 			} else {
7149 				hole_start = max(hole_em->start, start);
7150 				hole_len = calc_end - hole_start;
7151 			}
7152 		}
7153 		em->bdev = NULL;
7154 		if (hole_em && range_start > hole_start) {
7155 			/* our hole starts before our delalloc, so we
7156 			 * have to return just the parts of the hole
7157 			 * that go until  the delalloc starts
7158 			 */
7159 			em->len = min(hole_len,
7160 				      range_start - hole_start);
7161 			em->start = hole_start;
7162 			em->orig_start = hole_start;
7163 			/*
7164 			 * don't adjust block start at all,
7165 			 * it is fixed at EXTENT_MAP_HOLE
7166 			 */
7167 			em->block_start = hole_em->block_start;
7168 			em->block_len = hole_len;
7169 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7170 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7171 		} else {
7172 			em->start = range_start;
7173 			em->len = found;
7174 			em->orig_start = range_start;
7175 			em->block_start = EXTENT_MAP_DELALLOC;
7176 			em->block_len = found;
7177 		}
7178 	} else {
7179 		return hole_em;
7180 	}
7181 out:
7182 
7183 	free_extent_map(hole_em);
7184 	if (err) {
7185 		free_extent_map(em);
7186 		return ERR_PTR(err);
7187 	}
7188 	return em;
7189 }
7190 
7191 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7192 						  const u64 start,
7193 						  const u64 len,
7194 						  const u64 orig_start,
7195 						  const u64 block_start,
7196 						  const u64 block_len,
7197 						  const u64 orig_block_len,
7198 						  const u64 ram_bytes,
7199 						  const int type)
7200 {
7201 	struct extent_map *em = NULL;
7202 	int ret;
7203 
7204 	if (type != BTRFS_ORDERED_NOCOW) {
7205 		em = create_io_em(inode, start, len, orig_start,
7206 				  block_start, block_len, orig_block_len,
7207 				  ram_bytes,
7208 				  BTRFS_COMPRESS_NONE, /* compress_type */
7209 				  type);
7210 		if (IS_ERR(em))
7211 			goto out;
7212 	}
7213 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7214 					   len, block_len, type);
7215 	if (ret) {
7216 		if (em) {
7217 			free_extent_map(em);
7218 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7219 						start + len - 1, 0);
7220 		}
7221 		em = ERR_PTR(ret);
7222 	}
7223  out:
7224 
7225 	return em;
7226 }
7227 
7228 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7229 						  u64 start, u64 len)
7230 {
7231 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7232 	struct btrfs_root *root = BTRFS_I(inode)->root;
7233 	struct extent_map *em;
7234 	struct btrfs_key ins;
7235 	u64 alloc_hint;
7236 	int ret;
7237 
7238 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7239 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7240 				   0, alloc_hint, &ins, 1, 1);
7241 	if (ret)
7242 		return ERR_PTR(ret);
7243 
7244 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7245 				     ins.objectid, ins.offset, ins.offset,
7246 				     ins.offset, BTRFS_ORDERED_REGULAR);
7247 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7248 	if (IS_ERR(em))
7249 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7250 					   ins.offset, 1);
7251 
7252 	return em;
7253 }
7254 
7255 /*
7256  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7257  * block must be cow'd
7258  */
7259 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7260 			      u64 *orig_start, u64 *orig_block_len,
7261 			      u64 *ram_bytes)
7262 {
7263 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7264 	struct btrfs_path *path;
7265 	int ret;
7266 	struct extent_buffer *leaf;
7267 	struct btrfs_root *root = BTRFS_I(inode)->root;
7268 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7269 	struct btrfs_file_extent_item *fi;
7270 	struct btrfs_key key;
7271 	u64 disk_bytenr;
7272 	u64 backref_offset;
7273 	u64 extent_end;
7274 	u64 num_bytes;
7275 	int slot;
7276 	int found_type;
7277 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7278 
7279 	path = btrfs_alloc_path();
7280 	if (!path)
7281 		return -ENOMEM;
7282 
7283 	ret = btrfs_lookup_file_extent(NULL, root, path,
7284 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7285 	if (ret < 0)
7286 		goto out;
7287 
7288 	slot = path->slots[0];
7289 	if (ret == 1) {
7290 		if (slot == 0) {
7291 			/* can't find the item, must cow */
7292 			ret = 0;
7293 			goto out;
7294 		}
7295 		slot--;
7296 	}
7297 	ret = 0;
7298 	leaf = path->nodes[0];
7299 	btrfs_item_key_to_cpu(leaf, &key, slot);
7300 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7301 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7302 		/* not our file or wrong item type, must cow */
7303 		goto out;
7304 	}
7305 
7306 	if (key.offset > offset) {
7307 		/* Wrong offset, must cow */
7308 		goto out;
7309 	}
7310 
7311 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7312 	found_type = btrfs_file_extent_type(leaf, fi);
7313 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7314 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7315 		/* not a regular extent, must cow */
7316 		goto out;
7317 	}
7318 
7319 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7320 		goto out;
7321 
7322 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7323 	if (extent_end <= offset)
7324 		goto out;
7325 
7326 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7327 	if (disk_bytenr == 0)
7328 		goto out;
7329 
7330 	if (btrfs_file_extent_compression(leaf, fi) ||
7331 	    btrfs_file_extent_encryption(leaf, fi) ||
7332 	    btrfs_file_extent_other_encoding(leaf, fi))
7333 		goto out;
7334 
7335 	/*
7336 	 * Do the same check as in btrfs_cross_ref_exist but without the
7337 	 * unnecessary search.
7338 	 */
7339 	if (btrfs_file_extent_generation(leaf, fi) <=
7340 	    btrfs_root_last_snapshot(&root->root_item))
7341 		goto out;
7342 
7343 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7344 
7345 	if (orig_start) {
7346 		*orig_start = key.offset - backref_offset;
7347 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7348 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7349 	}
7350 
7351 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7352 		goto out;
7353 
7354 	num_bytes = min(offset + *len, extent_end) - offset;
7355 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7356 		u64 range_end;
7357 
7358 		range_end = round_up(offset + num_bytes,
7359 				     root->fs_info->sectorsize) - 1;
7360 		ret = test_range_bit(io_tree, offset, range_end,
7361 				     EXTENT_DELALLOC, 0, NULL);
7362 		if (ret) {
7363 			ret = -EAGAIN;
7364 			goto out;
7365 		}
7366 	}
7367 
7368 	btrfs_release_path(path);
7369 
7370 	/*
7371 	 * look for other files referencing this extent, if we
7372 	 * find any we must cow
7373 	 */
7374 
7375 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7376 				    key.offset - backref_offset, disk_bytenr);
7377 	if (ret) {
7378 		ret = 0;
7379 		goto out;
7380 	}
7381 
7382 	/*
7383 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7384 	 * in this extent we are about to write.  If there
7385 	 * are any csums in that range we have to cow in order
7386 	 * to keep the csums correct
7387 	 */
7388 	disk_bytenr += backref_offset;
7389 	disk_bytenr += offset - key.offset;
7390 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7391 		goto out;
7392 	/*
7393 	 * all of the above have passed, it is safe to overwrite this extent
7394 	 * without cow
7395 	 */
7396 	*len = num_bytes;
7397 	ret = 1;
7398 out:
7399 	btrfs_free_path(path);
7400 	return ret;
7401 }
7402 
7403 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7404 			      struct extent_state **cached_state, int writing)
7405 {
7406 	struct btrfs_ordered_extent *ordered;
7407 	int ret = 0;
7408 
7409 	while (1) {
7410 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7411 				 cached_state);
7412 		/*
7413 		 * We're concerned with the entire range that we're going to be
7414 		 * doing DIO to, so we need to make sure there's no ordered
7415 		 * extents in this range.
7416 		 */
7417 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7418 						     lockend - lockstart + 1);
7419 
7420 		/*
7421 		 * We need to make sure there are no buffered pages in this
7422 		 * range either, we could have raced between the invalidate in
7423 		 * generic_file_direct_write and locking the extent.  The
7424 		 * invalidate needs to happen so that reads after a write do not
7425 		 * get stale data.
7426 		 */
7427 		if (!ordered &&
7428 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7429 							 lockstart, lockend)))
7430 			break;
7431 
7432 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7433 				     cached_state);
7434 
7435 		if (ordered) {
7436 			/*
7437 			 * If we are doing a DIO read and the ordered extent we
7438 			 * found is for a buffered write, we can not wait for it
7439 			 * to complete and retry, because if we do so we can
7440 			 * deadlock with concurrent buffered writes on page
7441 			 * locks. This happens only if our DIO read covers more
7442 			 * than one extent map, if at this point has already
7443 			 * created an ordered extent for a previous extent map
7444 			 * and locked its range in the inode's io tree, and a
7445 			 * concurrent write against that previous extent map's
7446 			 * range and this range started (we unlock the ranges
7447 			 * in the io tree only when the bios complete and
7448 			 * buffered writes always lock pages before attempting
7449 			 * to lock range in the io tree).
7450 			 */
7451 			if (writing ||
7452 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7453 				btrfs_start_ordered_extent(inode, ordered, 1);
7454 			else
7455 				ret = -ENOTBLK;
7456 			btrfs_put_ordered_extent(ordered);
7457 		} else {
7458 			/*
7459 			 * We could trigger writeback for this range (and wait
7460 			 * for it to complete) and then invalidate the pages for
7461 			 * this range (through invalidate_inode_pages2_range()),
7462 			 * but that can lead us to a deadlock with a concurrent
7463 			 * call to readpages() (a buffered read or a defrag call
7464 			 * triggered a readahead) on a page lock due to an
7465 			 * ordered dio extent we created before but did not have
7466 			 * yet a corresponding bio submitted (whence it can not
7467 			 * complete), which makes readpages() wait for that
7468 			 * ordered extent to complete while holding a lock on
7469 			 * that page.
7470 			 */
7471 			ret = -ENOTBLK;
7472 		}
7473 
7474 		if (ret)
7475 			break;
7476 
7477 		cond_resched();
7478 	}
7479 
7480 	return ret;
7481 }
7482 
7483 /* The callers of this must take lock_extent() */
7484 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7485 				       u64 orig_start, u64 block_start,
7486 				       u64 block_len, u64 orig_block_len,
7487 				       u64 ram_bytes, int compress_type,
7488 				       int type)
7489 {
7490 	struct extent_map_tree *em_tree;
7491 	struct extent_map *em;
7492 	struct btrfs_root *root = BTRFS_I(inode)->root;
7493 	int ret;
7494 
7495 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7496 	       type == BTRFS_ORDERED_COMPRESSED ||
7497 	       type == BTRFS_ORDERED_NOCOW ||
7498 	       type == BTRFS_ORDERED_REGULAR);
7499 
7500 	em_tree = &BTRFS_I(inode)->extent_tree;
7501 	em = alloc_extent_map();
7502 	if (!em)
7503 		return ERR_PTR(-ENOMEM);
7504 
7505 	em->start = start;
7506 	em->orig_start = orig_start;
7507 	em->len = len;
7508 	em->block_len = block_len;
7509 	em->block_start = block_start;
7510 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7511 	em->orig_block_len = orig_block_len;
7512 	em->ram_bytes = ram_bytes;
7513 	em->generation = -1;
7514 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7515 	if (type == BTRFS_ORDERED_PREALLOC) {
7516 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7517 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7518 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7519 		em->compress_type = compress_type;
7520 	}
7521 
7522 	do {
7523 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7524 				em->start + em->len - 1, 0);
7525 		write_lock(&em_tree->lock);
7526 		ret = add_extent_mapping(em_tree, em, 1);
7527 		write_unlock(&em_tree->lock);
7528 		/*
7529 		 * The caller has taken lock_extent(), who could race with us
7530 		 * to add em?
7531 		 */
7532 	} while (ret == -EEXIST);
7533 
7534 	if (ret) {
7535 		free_extent_map(em);
7536 		return ERR_PTR(ret);
7537 	}
7538 
7539 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7540 	return em;
7541 }
7542 
7543 
7544 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7545 					struct buffer_head *bh_result,
7546 					struct inode *inode,
7547 					u64 start, u64 len)
7548 {
7549 	if (em->block_start == EXTENT_MAP_HOLE ||
7550 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7551 		return -ENOENT;
7552 
7553 	len = min(len, em->len - (start - em->start));
7554 
7555 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7556 		inode->i_blkbits;
7557 	bh_result->b_size = len;
7558 	bh_result->b_bdev = em->bdev;
7559 	set_buffer_mapped(bh_result);
7560 
7561 	return 0;
7562 }
7563 
7564 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7565 					 struct buffer_head *bh_result,
7566 					 struct inode *inode,
7567 					 struct btrfs_dio_data *dio_data,
7568 					 u64 start, u64 len)
7569 {
7570 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7571 	struct extent_map *em = *map;
7572 	int ret = 0;
7573 
7574 	/*
7575 	 * We don't allocate a new extent in the following cases
7576 	 *
7577 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7578 	 * existing extent.
7579 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7580 	 * just use the extent.
7581 	 *
7582 	 */
7583 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7584 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7585 	     em->block_start != EXTENT_MAP_HOLE)) {
7586 		int type;
7587 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7588 
7589 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7590 			type = BTRFS_ORDERED_PREALLOC;
7591 		else
7592 			type = BTRFS_ORDERED_NOCOW;
7593 		len = min(len, em->len - (start - em->start));
7594 		block_start = em->block_start + (start - em->start);
7595 
7596 		if (can_nocow_extent(inode, start, &len, &orig_start,
7597 				     &orig_block_len, &ram_bytes) == 1 &&
7598 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7599 			struct extent_map *em2;
7600 
7601 			em2 = btrfs_create_dio_extent(inode, start, len,
7602 						      orig_start, block_start,
7603 						      len, orig_block_len,
7604 						      ram_bytes, type);
7605 			btrfs_dec_nocow_writers(fs_info, block_start);
7606 			if (type == BTRFS_ORDERED_PREALLOC) {
7607 				free_extent_map(em);
7608 				*map = em = em2;
7609 			}
7610 
7611 			if (em2 && IS_ERR(em2)) {
7612 				ret = PTR_ERR(em2);
7613 				goto out;
7614 			}
7615 			/*
7616 			 * For inode marked NODATACOW or extent marked PREALLOC,
7617 			 * use the existing or preallocated extent, so does not
7618 			 * need to adjust btrfs_space_info's bytes_may_use.
7619 			 */
7620 			btrfs_free_reserved_data_space_noquota(inode, start,
7621 							       len);
7622 			goto skip_cow;
7623 		}
7624 	}
7625 
7626 	/* this will cow the extent */
7627 	len = bh_result->b_size;
7628 	free_extent_map(em);
7629 	*map = em = btrfs_new_extent_direct(inode, start, len);
7630 	if (IS_ERR(em)) {
7631 		ret = PTR_ERR(em);
7632 		goto out;
7633 	}
7634 
7635 	len = min(len, em->len - (start - em->start));
7636 
7637 skip_cow:
7638 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7639 		inode->i_blkbits;
7640 	bh_result->b_size = len;
7641 	bh_result->b_bdev = em->bdev;
7642 	set_buffer_mapped(bh_result);
7643 
7644 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7645 		set_buffer_new(bh_result);
7646 
7647 	/*
7648 	 * Need to update the i_size under the extent lock so buffered
7649 	 * readers will get the updated i_size when we unlock.
7650 	 */
7651 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7652 		i_size_write(inode, start + len);
7653 
7654 	WARN_ON(dio_data->reserve < len);
7655 	dio_data->reserve -= len;
7656 	dio_data->unsubmitted_oe_range_end = start + len;
7657 	current->journal_info = dio_data;
7658 out:
7659 	return ret;
7660 }
7661 
7662 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7663 				   struct buffer_head *bh_result, int create)
7664 {
7665 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7666 	struct extent_map *em;
7667 	struct extent_state *cached_state = NULL;
7668 	struct btrfs_dio_data *dio_data = NULL;
7669 	u64 start = iblock << inode->i_blkbits;
7670 	u64 lockstart, lockend;
7671 	u64 len = bh_result->b_size;
7672 	int unlock_bits = EXTENT_LOCKED;
7673 	int ret = 0;
7674 
7675 	if (create)
7676 		unlock_bits |= EXTENT_DIRTY;
7677 	else
7678 		len = min_t(u64, len, fs_info->sectorsize);
7679 
7680 	lockstart = start;
7681 	lockend = start + len - 1;
7682 
7683 	if (current->journal_info) {
7684 		/*
7685 		 * Need to pull our outstanding extents and set journal_info to NULL so
7686 		 * that anything that needs to check if there's a transaction doesn't get
7687 		 * confused.
7688 		 */
7689 		dio_data = current->journal_info;
7690 		current->journal_info = NULL;
7691 	}
7692 
7693 	/*
7694 	 * If this errors out it's because we couldn't invalidate pagecache for
7695 	 * this range and we need to fallback to buffered.
7696 	 */
7697 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7698 			       create)) {
7699 		ret = -ENOTBLK;
7700 		goto err;
7701 	}
7702 
7703 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7704 	if (IS_ERR(em)) {
7705 		ret = PTR_ERR(em);
7706 		goto unlock_err;
7707 	}
7708 
7709 	/*
7710 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7711 	 * io.  INLINE is special, and we could probably kludge it in here, but
7712 	 * it's still buffered so for safety lets just fall back to the generic
7713 	 * buffered path.
7714 	 *
7715 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7716 	 * decompress it, so there will be buffering required no matter what we
7717 	 * do, so go ahead and fallback to buffered.
7718 	 *
7719 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7720 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7721 	 * the generic code.
7722 	 */
7723 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7724 	    em->block_start == EXTENT_MAP_INLINE) {
7725 		free_extent_map(em);
7726 		ret = -ENOTBLK;
7727 		goto unlock_err;
7728 	}
7729 
7730 	if (create) {
7731 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7732 						    dio_data, start, len);
7733 		if (ret < 0)
7734 			goto unlock_err;
7735 
7736 		/* clear and unlock the entire range */
7737 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7738 				 unlock_bits, 1, 0, &cached_state);
7739 	} else {
7740 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7741 						   start, len);
7742 		/* Can be negative only if we read from a hole */
7743 		if (ret < 0) {
7744 			ret = 0;
7745 			free_extent_map(em);
7746 			goto unlock_err;
7747 		}
7748 		/*
7749 		 * We need to unlock only the end area that we aren't using.
7750 		 * The rest is going to be unlocked by the endio routine.
7751 		 */
7752 		lockstart = start + bh_result->b_size;
7753 		if (lockstart < lockend) {
7754 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7755 					 lockend, unlock_bits, 1, 0,
7756 					 &cached_state);
7757 		} else {
7758 			free_extent_state(cached_state);
7759 		}
7760 	}
7761 
7762 	free_extent_map(em);
7763 
7764 	return 0;
7765 
7766 unlock_err:
7767 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7768 			 unlock_bits, 1, 0, &cached_state);
7769 err:
7770 	if (dio_data)
7771 		current->journal_info = dio_data;
7772 	return ret;
7773 }
7774 
7775 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7776 						 struct bio *bio,
7777 						 int mirror_num)
7778 {
7779 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7780 	blk_status_t ret;
7781 
7782 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7783 
7784 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7785 	if (ret)
7786 		return ret;
7787 
7788 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7789 
7790 	return ret;
7791 }
7792 
7793 static int btrfs_check_dio_repairable(struct inode *inode,
7794 				      struct bio *failed_bio,
7795 				      struct io_failure_record *failrec,
7796 				      int failed_mirror)
7797 {
7798 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7799 	int num_copies;
7800 
7801 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7802 	if (num_copies == 1) {
7803 		/*
7804 		 * we only have a single copy of the data, so don't bother with
7805 		 * all the retry and error correction code that follows. no
7806 		 * matter what the error is, it is very likely to persist.
7807 		 */
7808 		btrfs_debug(fs_info,
7809 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7810 			num_copies, failrec->this_mirror, failed_mirror);
7811 		return 0;
7812 	}
7813 
7814 	failrec->failed_mirror = failed_mirror;
7815 	failrec->this_mirror++;
7816 	if (failrec->this_mirror == failed_mirror)
7817 		failrec->this_mirror++;
7818 
7819 	if (failrec->this_mirror > num_copies) {
7820 		btrfs_debug(fs_info,
7821 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7822 			num_copies, failrec->this_mirror, failed_mirror);
7823 		return 0;
7824 	}
7825 
7826 	return 1;
7827 }
7828 
7829 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7830 				   struct page *page, unsigned int pgoff,
7831 				   u64 start, u64 end, int failed_mirror,
7832 				   bio_end_io_t *repair_endio, void *repair_arg)
7833 {
7834 	struct io_failure_record *failrec;
7835 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7836 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7837 	struct bio *bio;
7838 	int isector;
7839 	unsigned int read_mode = 0;
7840 	int segs;
7841 	int ret;
7842 	blk_status_t status;
7843 	struct bio_vec bvec;
7844 
7845 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7846 
7847 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7848 	if (ret)
7849 		return errno_to_blk_status(ret);
7850 
7851 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7852 					 failed_mirror);
7853 	if (!ret) {
7854 		free_io_failure(failure_tree, io_tree, failrec);
7855 		return BLK_STS_IOERR;
7856 	}
7857 
7858 	segs = bio_segments(failed_bio);
7859 	bio_get_first_bvec(failed_bio, &bvec);
7860 	if (segs > 1 ||
7861 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7862 		read_mode |= REQ_FAILFAST_DEV;
7863 
7864 	isector = start - btrfs_io_bio(failed_bio)->logical;
7865 	isector >>= inode->i_sb->s_blocksize_bits;
7866 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7867 				pgoff, isector, repair_endio, repair_arg);
7868 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7869 
7870 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7871 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7872 		    read_mode, failrec->this_mirror, failrec->in_validation);
7873 
7874 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7875 	if (status) {
7876 		free_io_failure(failure_tree, io_tree, failrec);
7877 		bio_put(bio);
7878 	}
7879 
7880 	return status;
7881 }
7882 
7883 struct btrfs_retry_complete {
7884 	struct completion done;
7885 	struct inode *inode;
7886 	u64 start;
7887 	int uptodate;
7888 };
7889 
7890 static void btrfs_retry_endio_nocsum(struct bio *bio)
7891 {
7892 	struct btrfs_retry_complete *done = bio->bi_private;
7893 	struct inode *inode = done->inode;
7894 	struct bio_vec *bvec;
7895 	struct extent_io_tree *io_tree, *failure_tree;
7896 	int i;
7897 
7898 	if (bio->bi_status)
7899 		goto end;
7900 
7901 	ASSERT(bio->bi_vcnt == 1);
7902 	io_tree = &BTRFS_I(inode)->io_tree;
7903 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7904 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7905 
7906 	done->uptodate = 1;
7907 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7908 	bio_for_each_segment_all(bvec, bio, i)
7909 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7910 				 io_tree, done->start, bvec->bv_page,
7911 				 btrfs_ino(BTRFS_I(inode)), 0);
7912 end:
7913 	complete(&done->done);
7914 	bio_put(bio);
7915 }
7916 
7917 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7918 						struct btrfs_io_bio *io_bio)
7919 {
7920 	struct btrfs_fs_info *fs_info;
7921 	struct bio_vec bvec;
7922 	struct bvec_iter iter;
7923 	struct btrfs_retry_complete done;
7924 	u64 start;
7925 	unsigned int pgoff;
7926 	u32 sectorsize;
7927 	int nr_sectors;
7928 	blk_status_t ret;
7929 	blk_status_t err = BLK_STS_OK;
7930 
7931 	fs_info = BTRFS_I(inode)->root->fs_info;
7932 	sectorsize = fs_info->sectorsize;
7933 
7934 	start = io_bio->logical;
7935 	done.inode = inode;
7936 	io_bio->bio.bi_iter = io_bio->iter;
7937 
7938 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7939 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7940 		pgoff = bvec.bv_offset;
7941 
7942 next_block_or_try_again:
7943 		done.uptodate = 0;
7944 		done.start = start;
7945 		init_completion(&done.done);
7946 
7947 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7948 				pgoff, start, start + sectorsize - 1,
7949 				io_bio->mirror_num,
7950 				btrfs_retry_endio_nocsum, &done);
7951 		if (ret) {
7952 			err = ret;
7953 			goto next;
7954 		}
7955 
7956 		wait_for_completion_io(&done.done);
7957 
7958 		if (!done.uptodate) {
7959 			/* We might have another mirror, so try again */
7960 			goto next_block_or_try_again;
7961 		}
7962 
7963 next:
7964 		start += sectorsize;
7965 
7966 		nr_sectors--;
7967 		if (nr_sectors) {
7968 			pgoff += sectorsize;
7969 			ASSERT(pgoff < PAGE_SIZE);
7970 			goto next_block_or_try_again;
7971 		}
7972 	}
7973 
7974 	return err;
7975 }
7976 
7977 static void btrfs_retry_endio(struct bio *bio)
7978 {
7979 	struct btrfs_retry_complete *done = bio->bi_private;
7980 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7981 	struct extent_io_tree *io_tree, *failure_tree;
7982 	struct inode *inode = done->inode;
7983 	struct bio_vec *bvec;
7984 	int uptodate;
7985 	int ret;
7986 	int i;
7987 
7988 	if (bio->bi_status)
7989 		goto end;
7990 
7991 	uptodate = 1;
7992 
7993 	ASSERT(bio->bi_vcnt == 1);
7994 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7995 
7996 	io_tree = &BTRFS_I(inode)->io_tree;
7997 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7998 
7999 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8000 	bio_for_each_segment_all(bvec, bio, i) {
8001 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8002 					     bvec->bv_offset, done->start,
8003 					     bvec->bv_len);
8004 		if (!ret)
8005 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8006 					 failure_tree, io_tree, done->start,
8007 					 bvec->bv_page,
8008 					 btrfs_ino(BTRFS_I(inode)),
8009 					 bvec->bv_offset);
8010 		else
8011 			uptodate = 0;
8012 	}
8013 
8014 	done->uptodate = uptodate;
8015 end:
8016 	complete(&done->done);
8017 	bio_put(bio);
8018 }
8019 
8020 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8021 		struct btrfs_io_bio *io_bio, blk_status_t err)
8022 {
8023 	struct btrfs_fs_info *fs_info;
8024 	struct bio_vec bvec;
8025 	struct bvec_iter iter;
8026 	struct btrfs_retry_complete done;
8027 	u64 start;
8028 	u64 offset = 0;
8029 	u32 sectorsize;
8030 	int nr_sectors;
8031 	unsigned int pgoff;
8032 	int csum_pos;
8033 	bool uptodate = (err == 0);
8034 	int ret;
8035 	blk_status_t status;
8036 
8037 	fs_info = BTRFS_I(inode)->root->fs_info;
8038 	sectorsize = fs_info->sectorsize;
8039 
8040 	err = BLK_STS_OK;
8041 	start = io_bio->logical;
8042 	done.inode = inode;
8043 	io_bio->bio.bi_iter = io_bio->iter;
8044 
8045 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8046 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8047 
8048 		pgoff = bvec.bv_offset;
8049 next_block:
8050 		if (uptodate) {
8051 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8052 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8053 					bvec.bv_page, pgoff, start, sectorsize);
8054 			if (likely(!ret))
8055 				goto next;
8056 		}
8057 try_again:
8058 		done.uptodate = 0;
8059 		done.start = start;
8060 		init_completion(&done.done);
8061 
8062 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8063 					pgoff, start, start + sectorsize - 1,
8064 					io_bio->mirror_num, btrfs_retry_endio,
8065 					&done);
8066 		if (status) {
8067 			err = status;
8068 			goto next;
8069 		}
8070 
8071 		wait_for_completion_io(&done.done);
8072 
8073 		if (!done.uptodate) {
8074 			/* We might have another mirror, so try again */
8075 			goto try_again;
8076 		}
8077 next:
8078 		offset += sectorsize;
8079 		start += sectorsize;
8080 
8081 		ASSERT(nr_sectors);
8082 
8083 		nr_sectors--;
8084 		if (nr_sectors) {
8085 			pgoff += sectorsize;
8086 			ASSERT(pgoff < PAGE_SIZE);
8087 			goto next_block;
8088 		}
8089 	}
8090 
8091 	return err;
8092 }
8093 
8094 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8095 		struct btrfs_io_bio *io_bio, blk_status_t err)
8096 {
8097 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8098 
8099 	if (skip_csum) {
8100 		if (unlikely(err))
8101 			return __btrfs_correct_data_nocsum(inode, io_bio);
8102 		else
8103 			return BLK_STS_OK;
8104 	} else {
8105 		return __btrfs_subio_endio_read(inode, io_bio, err);
8106 	}
8107 }
8108 
8109 static void btrfs_endio_direct_read(struct bio *bio)
8110 {
8111 	struct btrfs_dio_private *dip = bio->bi_private;
8112 	struct inode *inode = dip->inode;
8113 	struct bio *dio_bio;
8114 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8115 	blk_status_t err = bio->bi_status;
8116 
8117 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8118 		err = btrfs_subio_endio_read(inode, io_bio, err);
8119 
8120 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8121 		      dip->logical_offset + dip->bytes - 1);
8122 	dio_bio = dip->dio_bio;
8123 
8124 	kfree(dip);
8125 
8126 	dio_bio->bi_status = err;
8127 	dio_end_io(dio_bio);
8128 
8129 	if (io_bio->end_io)
8130 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8131 	bio_put(bio);
8132 }
8133 
8134 static void __endio_write_update_ordered(struct inode *inode,
8135 					 const u64 offset, const u64 bytes,
8136 					 const bool uptodate)
8137 {
8138 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8139 	struct btrfs_ordered_extent *ordered = NULL;
8140 	struct btrfs_workqueue *wq;
8141 	btrfs_work_func_t func;
8142 	u64 ordered_offset = offset;
8143 	u64 ordered_bytes = bytes;
8144 	u64 last_offset;
8145 
8146 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8147 		wq = fs_info->endio_freespace_worker;
8148 		func = btrfs_freespace_write_helper;
8149 	} else {
8150 		wq = fs_info->endio_write_workers;
8151 		func = btrfs_endio_write_helper;
8152 	}
8153 
8154 	while (ordered_offset < offset + bytes) {
8155 		last_offset = ordered_offset;
8156 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8157 							   &ordered_offset,
8158 							   ordered_bytes,
8159 							   uptodate)) {
8160 			btrfs_init_work(&ordered->work, func,
8161 					finish_ordered_fn,
8162 					NULL, NULL);
8163 			btrfs_queue_work(wq, &ordered->work);
8164 		}
8165 		/*
8166 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8167 		 * extent in the range, we can exit.
8168 		 */
8169 		if (ordered_offset == last_offset)
8170 			return;
8171 		/*
8172 		 * Our bio might span multiple ordered extents. In this case
8173 		 * we keep goin until we have accounted the whole dio.
8174 		 */
8175 		if (ordered_offset < offset + bytes) {
8176 			ordered_bytes = offset + bytes - ordered_offset;
8177 			ordered = NULL;
8178 		}
8179 	}
8180 }
8181 
8182 static void btrfs_endio_direct_write(struct bio *bio)
8183 {
8184 	struct btrfs_dio_private *dip = bio->bi_private;
8185 	struct bio *dio_bio = dip->dio_bio;
8186 
8187 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8188 				     dip->bytes, !bio->bi_status);
8189 
8190 	kfree(dip);
8191 
8192 	dio_bio->bi_status = bio->bi_status;
8193 	dio_end_io(dio_bio);
8194 	bio_put(bio);
8195 }
8196 
8197 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8198 				    struct bio *bio, u64 offset)
8199 {
8200 	struct inode *inode = private_data;
8201 	blk_status_t ret;
8202 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8203 	BUG_ON(ret); /* -ENOMEM */
8204 	return 0;
8205 }
8206 
8207 static void btrfs_end_dio_bio(struct bio *bio)
8208 {
8209 	struct btrfs_dio_private *dip = bio->bi_private;
8210 	blk_status_t err = bio->bi_status;
8211 
8212 	if (err)
8213 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8214 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8215 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8216 			   bio->bi_opf,
8217 			   (unsigned long long)bio->bi_iter.bi_sector,
8218 			   bio->bi_iter.bi_size, err);
8219 
8220 	if (dip->subio_endio)
8221 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8222 
8223 	if (err) {
8224 		/*
8225 		 * We want to perceive the errors flag being set before
8226 		 * decrementing the reference count. We don't need a barrier
8227 		 * since atomic operations with a return value are fully
8228 		 * ordered as per atomic_t.txt
8229 		 */
8230 		dip->errors = 1;
8231 	}
8232 
8233 	/* if there are more bios still pending for this dio, just exit */
8234 	if (!atomic_dec_and_test(&dip->pending_bios))
8235 		goto out;
8236 
8237 	if (dip->errors) {
8238 		bio_io_error(dip->orig_bio);
8239 	} else {
8240 		dip->dio_bio->bi_status = BLK_STS_OK;
8241 		bio_endio(dip->orig_bio);
8242 	}
8243 out:
8244 	bio_put(bio);
8245 }
8246 
8247 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8248 						 struct btrfs_dio_private *dip,
8249 						 struct bio *bio,
8250 						 u64 file_offset)
8251 {
8252 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8253 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8254 	blk_status_t ret;
8255 
8256 	/*
8257 	 * We load all the csum data we need when we submit
8258 	 * the first bio to reduce the csum tree search and
8259 	 * contention.
8260 	 */
8261 	if (dip->logical_offset == file_offset) {
8262 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8263 						file_offset);
8264 		if (ret)
8265 			return ret;
8266 	}
8267 
8268 	if (bio == dip->orig_bio)
8269 		return 0;
8270 
8271 	file_offset -= dip->logical_offset;
8272 	file_offset >>= inode->i_sb->s_blocksize_bits;
8273 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8274 
8275 	return 0;
8276 }
8277 
8278 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8279 		struct inode *inode, u64 file_offset, int async_submit)
8280 {
8281 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8282 	struct btrfs_dio_private *dip = bio->bi_private;
8283 	bool write = bio_op(bio) == REQ_OP_WRITE;
8284 	blk_status_t ret;
8285 
8286 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8287 	if (async_submit)
8288 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8289 
8290 	if (!write) {
8291 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8292 		if (ret)
8293 			goto err;
8294 	}
8295 
8296 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8297 		goto map;
8298 
8299 	if (write && async_submit) {
8300 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8301 					  file_offset, inode,
8302 					  btrfs_submit_bio_start_direct_io,
8303 					  btrfs_submit_bio_done);
8304 		goto err;
8305 	} else if (write) {
8306 		/*
8307 		 * If we aren't doing async submit, calculate the csum of the
8308 		 * bio now.
8309 		 */
8310 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8311 		if (ret)
8312 			goto err;
8313 	} else {
8314 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8315 						     file_offset);
8316 		if (ret)
8317 			goto err;
8318 	}
8319 map:
8320 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8321 err:
8322 	return ret;
8323 }
8324 
8325 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8326 {
8327 	struct inode *inode = dip->inode;
8328 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8329 	struct bio *bio;
8330 	struct bio *orig_bio = dip->orig_bio;
8331 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8332 	u64 file_offset = dip->logical_offset;
8333 	u64 map_length;
8334 	int async_submit = 0;
8335 	u64 submit_len;
8336 	int clone_offset = 0;
8337 	int clone_len;
8338 	int ret;
8339 	blk_status_t status;
8340 
8341 	map_length = orig_bio->bi_iter.bi_size;
8342 	submit_len = map_length;
8343 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8344 			      &map_length, NULL, 0);
8345 	if (ret)
8346 		return -EIO;
8347 
8348 	if (map_length >= submit_len) {
8349 		bio = orig_bio;
8350 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8351 		goto submit;
8352 	}
8353 
8354 	/* async crcs make it difficult to collect full stripe writes. */
8355 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8356 		async_submit = 0;
8357 	else
8358 		async_submit = 1;
8359 
8360 	/* bio split */
8361 	ASSERT(map_length <= INT_MAX);
8362 	atomic_inc(&dip->pending_bios);
8363 	do {
8364 		clone_len = min_t(int, submit_len, map_length);
8365 
8366 		/*
8367 		 * This will never fail as it's passing GPF_NOFS and
8368 		 * the allocation is backed by btrfs_bioset.
8369 		 */
8370 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8371 					      clone_len);
8372 		bio->bi_private = dip;
8373 		bio->bi_end_io = btrfs_end_dio_bio;
8374 		btrfs_io_bio(bio)->logical = file_offset;
8375 
8376 		ASSERT(submit_len >= clone_len);
8377 		submit_len -= clone_len;
8378 		if (submit_len == 0)
8379 			break;
8380 
8381 		/*
8382 		 * Increase the count before we submit the bio so we know
8383 		 * the end IO handler won't happen before we increase the
8384 		 * count. Otherwise, the dip might get freed before we're
8385 		 * done setting it up.
8386 		 */
8387 		atomic_inc(&dip->pending_bios);
8388 
8389 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8390 						async_submit);
8391 		if (status) {
8392 			bio_put(bio);
8393 			atomic_dec(&dip->pending_bios);
8394 			goto out_err;
8395 		}
8396 
8397 		clone_offset += clone_len;
8398 		start_sector += clone_len >> 9;
8399 		file_offset += clone_len;
8400 
8401 		map_length = submit_len;
8402 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8403 				      start_sector << 9, &map_length, NULL, 0);
8404 		if (ret)
8405 			goto out_err;
8406 	} while (submit_len > 0);
8407 
8408 submit:
8409 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8410 	if (!status)
8411 		return 0;
8412 
8413 	bio_put(bio);
8414 out_err:
8415 	dip->errors = 1;
8416 	/*
8417 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8418 	 * perceived to be set. This ordering is ensured by the fact that an
8419 	 * atomic operations with a return value are fully ordered as per
8420 	 * atomic_t.txt
8421 	 */
8422 	if (atomic_dec_and_test(&dip->pending_bios))
8423 		bio_io_error(dip->orig_bio);
8424 
8425 	/* bio_end_io() will handle error, so we needn't return it */
8426 	return 0;
8427 }
8428 
8429 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8430 				loff_t file_offset)
8431 {
8432 	struct btrfs_dio_private *dip = NULL;
8433 	struct bio *bio = NULL;
8434 	struct btrfs_io_bio *io_bio;
8435 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8436 	int ret = 0;
8437 
8438 	bio = btrfs_bio_clone(dio_bio);
8439 
8440 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8441 	if (!dip) {
8442 		ret = -ENOMEM;
8443 		goto free_ordered;
8444 	}
8445 
8446 	dip->private = dio_bio->bi_private;
8447 	dip->inode = inode;
8448 	dip->logical_offset = file_offset;
8449 	dip->bytes = dio_bio->bi_iter.bi_size;
8450 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8451 	bio->bi_private = dip;
8452 	dip->orig_bio = bio;
8453 	dip->dio_bio = dio_bio;
8454 	atomic_set(&dip->pending_bios, 0);
8455 	io_bio = btrfs_io_bio(bio);
8456 	io_bio->logical = file_offset;
8457 
8458 	if (write) {
8459 		bio->bi_end_io = btrfs_endio_direct_write;
8460 	} else {
8461 		bio->bi_end_io = btrfs_endio_direct_read;
8462 		dip->subio_endio = btrfs_subio_endio_read;
8463 	}
8464 
8465 	/*
8466 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8467 	 * even if we fail to submit a bio, because in such case we do the
8468 	 * corresponding error handling below and it must not be done a second
8469 	 * time by btrfs_direct_IO().
8470 	 */
8471 	if (write) {
8472 		struct btrfs_dio_data *dio_data = current->journal_info;
8473 
8474 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8475 			dip->bytes;
8476 		dio_data->unsubmitted_oe_range_start =
8477 			dio_data->unsubmitted_oe_range_end;
8478 	}
8479 
8480 	ret = btrfs_submit_direct_hook(dip);
8481 	if (!ret)
8482 		return;
8483 
8484 	if (io_bio->end_io)
8485 		io_bio->end_io(io_bio, ret);
8486 
8487 free_ordered:
8488 	/*
8489 	 * If we arrived here it means either we failed to submit the dip
8490 	 * or we either failed to clone the dio_bio or failed to allocate the
8491 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8492 	 * call bio_endio against our io_bio so that we get proper resource
8493 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8494 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8495 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8496 	 */
8497 	if (bio && dip) {
8498 		bio_io_error(bio);
8499 		/*
8500 		 * The end io callbacks free our dip, do the final put on bio
8501 		 * and all the cleanup and final put for dio_bio (through
8502 		 * dio_end_io()).
8503 		 */
8504 		dip = NULL;
8505 		bio = NULL;
8506 	} else {
8507 		if (write)
8508 			__endio_write_update_ordered(inode,
8509 						file_offset,
8510 						dio_bio->bi_iter.bi_size,
8511 						false);
8512 		else
8513 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8514 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8515 
8516 		dio_bio->bi_status = BLK_STS_IOERR;
8517 		/*
8518 		 * Releases and cleans up our dio_bio, no need to bio_put()
8519 		 * nor bio_endio()/bio_io_error() against dio_bio.
8520 		 */
8521 		dio_end_io(dio_bio);
8522 	}
8523 	if (bio)
8524 		bio_put(bio);
8525 	kfree(dip);
8526 }
8527 
8528 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8529 			       const struct iov_iter *iter, loff_t offset)
8530 {
8531 	int seg;
8532 	int i;
8533 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8534 	ssize_t retval = -EINVAL;
8535 
8536 	if (offset & blocksize_mask)
8537 		goto out;
8538 
8539 	if (iov_iter_alignment(iter) & blocksize_mask)
8540 		goto out;
8541 
8542 	/* If this is a write we don't need to check anymore */
8543 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8544 		return 0;
8545 	/*
8546 	 * Check to make sure we don't have duplicate iov_base's in this
8547 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8548 	 * when reading back.
8549 	 */
8550 	for (seg = 0; seg < iter->nr_segs; seg++) {
8551 		for (i = seg + 1; i < iter->nr_segs; i++) {
8552 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8553 				goto out;
8554 		}
8555 	}
8556 	retval = 0;
8557 out:
8558 	return retval;
8559 }
8560 
8561 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8562 {
8563 	struct file *file = iocb->ki_filp;
8564 	struct inode *inode = file->f_mapping->host;
8565 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8566 	struct btrfs_dio_data dio_data = { 0 };
8567 	struct extent_changeset *data_reserved = NULL;
8568 	loff_t offset = iocb->ki_pos;
8569 	size_t count = 0;
8570 	int flags = 0;
8571 	bool wakeup = true;
8572 	bool relock = false;
8573 	ssize_t ret;
8574 
8575 	if (check_direct_IO(fs_info, iter, offset))
8576 		return 0;
8577 
8578 	inode_dio_begin(inode);
8579 
8580 	/*
8581 	 * The generic stuff only does filemap_write_and_wait_range, which
8582 	 * isn't enough if we've written compressed pages to this area, so
8583 	 * we need to flush the dirty pages again to make absolutely sure
8584 	 * that any outstanding dirty pages are on disk.
8585 	 */
8586 	count = iov_iter_count(iter);
8587 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8588 		     &BTRFS_I(inode)->runtime_flags))
8589 		filemap_fdatawrite_range(inode->i_mapping, offset,
8590 					 offset + count - 1);
8591 
8592 	if (iov_iter_rw(iter) == WRITE) {
8593 		/*
8594 		 * If the write DIO is beyond the EOF, we need update
8595 		 * the isize, but it is protected by i_mutex. So we can
8596 		 * not unlock the i_mutex at this case.
8597 		 */
8598 		if (offset + count <= inode->i_size) {
8599 			dio_data.overwrite = 1;
8600 			inode_unlock(inode);
8601 			relock = true;
8602 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8603 			ret = -EAGAIN;
8604 			goto out;
8605 		}
8606 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8607 						   offset, count);
8608 		if (ret)
8609 			goto out;
8610 
8611 		/*
8612 		 * We need to know how many extents we reserved so that we can
8613 		 * do the accounting properly if we go over the number we
8614 		 * originally calculated.  Abuse current->journal_info for this.
8615 		 */
8616 		dio_data.reserve = round_up(count,
8617 					    fs_info->sectorsize);
8618 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8619 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8620 		current->journal_info = &dio_data;
8621 		down_read(&BTRFS_I(inode)->dio_sem);
8622 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8623 				     &BTRFS_I(inode)->runtime_flags)) {
8624 		inode_dio_end(inode);
8625 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8626 		wakeup = false;
8627 	}
8628 
8629 	ret = __blockdev_direct_IO(iocb, inode,
8630 				   fs_info->fs_devices->latest_bdev,
8631 				   iter, btrfs_get_blocks_direct, NULL,
8632 				   btrfs_submit_direct, flags);
8633 	if (iov_iter_rw(iter) == WRITE) {
8634 		up_read(&BTRFS_I(inode)->dio_sem);
8635 		current->journal_info = NULL;
8636 		if (ret < 0 && ret != -EIOCBQUEUED) {
8637 			if (dio_data.reserve)
8638 				btrfs_delalloc_release_space(inode, data_reserved,
8639 					offset, dio_data.reserve, true);
8640 			/*
8641 			 * On error we might have left some ordered extents
8642 			 * without submitting corresponding bios for them, so
8643 			 * cleanup them up to avoid other tasks getting them
8644 			 * and waiting for them to complete forever.
8645 			 */
8646 			if (dio_data.unsubmitted_oe_range_start <
8647 			    dio_data.unsubmitted_oe_range_end)
8648 				__endio_write_update_ordered(inode,
8649 					dio_data.unsubmitted_oe_range_start,
8650 					dio_data.unsubmitted_oe_range_end -
8651 					dio_data.unsubmitted_oe_range_start,
8652 					false);
8653 		} else if (ret >= 0 && (size_t)ret < count)
8654 			btrfs_delalloc_release_space(inode, data_reserved,
8655 					offset, count - (size_t)ret, true);
8656 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8657 	}
8658 out:
8659 	if (wakeup)
8660 		inode_dio_end(inode);
8661 	if (relock)
8662 		inode_lock(inode);
8663 
8664 	extent_changeset_free(data_reserved);
8665 	return ret;
8666 }
8667 
8668 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8669 
8670 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8671 		__u64 start, __u64 len)
8672 {
8673 	int	ret;
8674 
8675 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8676 	if (ret)
8677 		return ret;
8678 
8679 	return extent_fiemap(inode, fieinfo, start, len);
8680 }
8681 
8682 int btrfs_readpage(struct file *file, struct page *page)
8683 {
8684 	struct extent_io_tree *tree;
8685 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8686 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8687 }
8688 
8689 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8690 {
8691 	struct inode *inode = page->mapping->host;
8692 	int ret;
8693 
8694 	if (current->flags & PF_MEMALLOC) {
8695 		redirty_page_for_writepage(wbc, page);
8696 		unlock_page(page);
8697 		return 0;
8698 	}
8699 
8700 	/*
8701 	 * If we are under memory pressure we will call this directly from the
8702 	 * VM, we need to make sure we have the inode referenced for the ordered
8703 	 * extent.  If not just return like we didn't do anything.
8704 	 */
8705 	if (!igrab(inode)) {
8706 		redirty_page_for_writepage(wbc, page);
8707 		return AOP_WRITEPAGE_ACTIVATE;
8708 	}
8709 	ret = extent_write_full_page(page, wbc);
8710 	btrfs_add_delayed_iput(inode);
8711 	return ret;
8712 }
8713 
8714 static int btrfs_writepages(struct address_space *mapping,
8715 			    struct writeback_control *wbc)
8716 {
8717 	return extent_writepages(mapping, wbc);
8718 }
8719 
8720 static int
8721 btrfs_readpages(struct file *file, struct address_space *mapping,
8722 		struct list_head *pages, unsigned nr_pages)
8723 {
8724 	return extent_readpages(mapping, pages, nr_pages);
8725 }
8726 
8727 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8728 {
8729 	int ret = try_release_extent_mapping(page, gfp_flags);
8730 	if (ret == 1) {
8731 		ClearPagePrivate(page);
8732 		set_page_private(page, 0);
8733 		put_page(page);
8734 	}
8735 	return ret;
8736 }
8737 
8738 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8739 {
8740 	if (PageWriteback(page) || PageDirty(page))
8741 		return 0;
8742 	return __btrfs_releasepage(page, gfp_flags);
8743 }
8744 
8745 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8746 				 unsigned int length)
8747 {
8748 	struct inode *inode = page->mapping->host;
8749 	struct extent_io_tree *tree;
8750 	struct btrfs_ordered_extent *ordered;
8751 	struct extent_state *cached_state = NULL;
8752 	u64 page_start = page_offset(page);
8753 	u64 page_end = page_start + PAGE_SIZE - 1;
8754 	u64 start;
8755 	u64 end;
8756 	int inode_evicting = inode->i_state & I_FREEING;
8757 
8758 	/*
8759 	 * we have the page locked, so new writeback can't start,
8760 	 * and the dirty bit won't be cleared while we are here.
8761 	 *
8762 	 * Wait for IO on this page so that we can safely clear
8763 	 * the PagePrivate2 bit and do ordered accounting
8764 	 */
8765 	wait_on_page_writeback(page);
8766 
8767 	tree = &BTRFS_I(inode)->io_tree;
8768 	if (offset) {
8769 		btrfs_releasepage(page, GFP_NOFS);
8770 		return;
8771 	}
8772 
8773 	if (!inode_evicting)
8774 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8775 again:
8776 	start = page_start;
8777 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8778 					page_end - start + 1);
8779 	if (ordered) {
8780 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8781 		/*
8782 		 * IO on this page will never be started, so we need
8783 		 * to account for any ordered extents now
8784 		 */
8785 		if (!inode_evicting)
8786 			clear_extent_bit(tree, start, end,
8787 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8788 					 EXTENT_DELALLOC_NEW |
8789 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8790 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8791 		/*
8792 		 * whoever cleared the private bit is responsible
8793 		 * for the finish_ordered_io
8794 		 */
8795 		if (TestClearPagePrivate2(page)) {
8796 			struct btrfs_ordered_inode_tree *tree;
8797 			u64 new_len;
8798 
8799 			tree = &BTRFS_I(inode)->ordered_tree;
8800 
8801 			spin_lock_irq(&tree->lock);
8802 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8803 			new_len = start - ordered->file_offset;
8804 			if (new_len < ordered->truncated_len)
8805 				ordered->truncated_len = new_len;
8806 			spin_unlock_irq(&tree->lock);
8807 
8808 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8809 							   start,
8810 							   end - start + 1, 1))
8811 				btrfs_finish_ordered_io(ordered);
8812 		}
8813 		btrfs_put_ordered_extent(ordered);
8814 		if (!inode_evicting) {
8815 			cached_state = NULL;
8816 			lock_extent_bits(tree, start, end,
8817 					 &cached_state);
8818 		}
8819 
8820 		start = end + 1;
8821 		if (start < page_end)
8822 			goto again;
8823 	}
8824 
8825 	/*
8826 	 * Qgroup reserved space handler
8827 	 * Page here will be either
8828 	 * 1) Already written to disk
8829 	 *    In this case, its reserved space is released from data rsv map
8830 	 *    and will be freed by delayed_ref handler finally.
8831 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8832 	 *    space.
8833 	 * 2) Not written to disk
8834 	 *    This means the reserved space should be freed here. However,
8835 	 *    if a truncate invalidates the page (by clearing PageDirty)
8836 	 *    and the page is accounted for while allocating extent
8837 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8838 	 *    free the entire extent.
8839 	 */
8840 	if (PageDirty(page))
8841 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8842 	if (!inode_evicting) {
8843 		clear_extent_bit(tree, page_start, page_end,
8844 				 EXTENT_LOCKED | EXTENT_DIRTY |
8845 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8846 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8847 				 &cached_state);
8848 
8849 		__btrfs_releasepage(page, GFP_NOFS);
8850 	}
8851 
8852 	ClearPageChecked(page);
8853 	if (PagePrivate(page)) {
8854 		ClearPagePrivate(page);
8855 		set_page_private(page, 0);
8856 		put_page(page);
8857 	}
8858 }
8859 
8860 /*
8861  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8862  * called from a page fault handler when a page is first dirtied. Hence we must
8863  * be careful to check for EOF conditions here. We set the page up correctly
8864  * for a written page which means we get ENOSPC checking when writing into
8865  * holes and correct delalloc and unwritten extent mapping on filesystems that
8866  * support these features.
8867  *
8868  * We are not allowed to take the i_mutex here so we have to play games to
8869  * protect against truncate races as the page could now be beyond EOF.  Because
8870  * truncate_setsize() writes the inode size before removing pages, once we have
8871  * the page lock we can determine safely if the page is beyond EOF. If it is not
8872  * beyond EOF, then the page is guaranteed safe against truncation until we
8873  * unlock the page.
8874  */
8875 int btrfs_page_mkwrite(struct vm_fault *vmf)
8876 {
8877 	struct page *page = vmf->page;
8878 	struct inode *inode = file_inode(vmf->vma->vm_file);
8879 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8880 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8881 	struct btrfs_ordered_extent *ordered;
8882 	struct extent_state *cached_state = NULL;
8883 	struct extent_changeset *data_reserved = NULL;
8884 	char *kaddr;
8885 	unsigned long zero_start;
8886 	loff_t size;
8887 	int ret;
8888 	int reserved = 0;
8889 	u64 reserved_space;
8890 	u64 page_start;
8891 	u64 page_end;
8892 	u64 end;
8893 
8894 	reserved_space = PAGE_SIZE;
8895 
8896 	sb_start_pagefault(inode->i_sb);
8897 	page_start = page_offset(page);
8898 	page_end = page_start + PAGE_SIZE - 1;
8899 	end = page_end;
8900 
8901 	/*
8902 	 * Reserving delalloc space after obtaining the page lock can lead to
8903 	 * deadlock. For example, if a dirty page is locked by this function
8904 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8905 	 * dirty page write out, then the btrfs_writepage() function could
8906 	 * end up waiting indefinitely to get a lock on the page currently
8907 	 * being processed by btrfs_page_mkwrite() function.
8908 	 */
8909 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8910 					   reserved_space);
8911 	if (!ret) {
8912 		ret = file_update_time(vmf->vma->vm_file);
8913 		reserved = 1;
8914 	}
8915 	if (ret) {
8916 		if (ret == -ENOMEM)
8917 			ret = VM_FAULT_OOM;
8918 		else /* -ENOSPC, -EIO, etc */
8919 			ret = VM_FAULT_SIGBUS;
8920 		if (reserved)
8921 			goto out;
8922 		goto out_noreserve;
8923 	}
8924 
8925 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8926 again:
8927 	lock_page(page);
8928 	size = i_size_read(inode);
8929 
8930 	if ((page->mapping != inode->i_mapping) ||
8931 	    (page_start >= size)) {
8932 		/* page got truncated out from underneath us */
8933 		goto out_unlock;
8934 	}
8935 	wait_on_page_writeback(page);
8936 
8937 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8938 	set_page_extent_mapped(page);
8939 
8940 	/*
8941 	 * we can't set the delalloc bits if there are pending ordered
8942 	 * extents.  Drop our locks and wait for them to finish
8943 	 */
8944 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8945 			PAGE_SIZE);
8946 	if (ordered) {
8947 		unlock_extent_cached(io_tree, page_start, page_end,
8948 				     &cached_state);
8949 		unlock_page(page);
8950 		btrfs_start_ordered_extent(inode, ordered, 1);
8951 		btrfs_put_ordered_extent(ordered);
8952 		goto again;
8953 	}
8954 
8955 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8956 		reserved_space = round_up(size - page_start,
8957 					  fs_info->sectorsize);
8958 		if (reserved_space < PAGE_SIZE) {
8959 			end = page_start + reserved_space - 1;
8960 			btrfs_delalloc_release_space(inode, data_reserved,
8961 					page_start, PAGE_SIZE - reserved_space,
8962 					true);
8963 		}
8964 	}
8965 
8966 	/*
8967 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8968 	 * faulted in, but write(2) could also dirty a page and set delalloc
8969 	 * bits, thus in this case for space account reason, we still need to
8970 	 * clear any delalloc bits within this page range since we have to
8971 	 * reserve data&meta space before lock_page() (see above comments).
8972 	 */
8973 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8974 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8975 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8976 			  0, 0, &cached_state);
8977 
8978 	ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8979 					&cached_state, 0);
8980 	if (ret) {
8981 		unlock_extent_cached(io_tree, page_start, page_end,
8982 				     &cached_state);
8983 		ret = VM_FAULT_SIGBUS;
8984 		goto out_unlock;
8985 	}
8986 	ret = 0;
8987 
8988 	/* page is wholly or partially inside EOF */
8989 	if (page_start + PAGE_SIZE > size)
8990 		zero_start = size & ~PAGE_MASK;
8991 	else
8992 		zero_start = PAGE_SIZE;
8993 
8994 	if (zero_start != PAGE_SIZE) {
8995 		kaddr = kmap(page);
8996 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8997 		flush_dcache_page(page);
8998 		kunmap(page);
8999 	}
9000 	ClearPageChecked(page);
9001 	set_page_dirty(page);
9002 	SetPageUptodate(page);
9003 
9004 	BTRFS_I(inode)->last_trans = fs_info->generation;
9005 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9006 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9007 
9008 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9009 
9010 out_unlock:
9011 	if (!ret) {
9012 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9013 		sb_end_pagefault(inode->i_sb);
9014 		extent_changeset_free(data_reserved);
9015 		return VM_FAULT_LOCKED;
9016 	}
9017 	unlock_page(page);
9018 out:
9019 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9020 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9021 				     reserved_space, (ret != 0));
9022 out_noreserve:
9023 	sb_end_pagefault(inode->i_sb);
9024 	extent_changeset_free(data_reserved);
9025 	return ret;
9026 }
9027 
9028 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9029 {
9030 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9031 	struct btrfs_root *root = BTRFS_I(inode)->root;
9032 	struct btrfs_block_rsv *rsv;
9033 	int ret;
9034 	struct btrfs_trans_handle *trans;
9035 	u64 mask = fs_info->sectorsize - 1;
9036 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9037 
9038 	if (!skip_writeback) {
9039 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9040 					       (u64)-1);
9041 		if (ret)
9042 			return ret;
9043 	}
9044 
9045 	/*
9046 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9047 	 * things going on here:
9048 	 *
9049 	 * 1) We need to reserve space to update our inode.
9050 	 *
9051 	 * 2) We need to have something to cache all the space that is going to
9052 	 * be free'd up by the truncate operation, but also have some slack
9053 	 * space reserved in case it uses space during the truncate (thank you
9054 	 * very much snapshotting).
9055 	 *
9056 	 * And we need these to be separate.  The fact is we can use a lot of
9057 	 * space doing the truncate, and we have no earthly idea how much space
9058 	 * we will use, so we need the truncate reservation to be separate so it
9059 	 * doesn't end up using space reserved for updating the inode.  We also
9060 	 * need to be able to stop the transaction and start a new one, which
9061 	 * means we need to be able to update the inode several times, and we
9062 	 * have no idea of knowing how many times that will be, so we can't just
9063 	 * reserve 1 item for the entirety of the operation, so that has to be
9064 	 * done separately as well.
9065 	 *
9066 	 * So that leaves us with
9067 	 *
9068 	 * 1) rsv - for the truncate reservation, which we will steal from the
9069 	 * transaction reservation.
9070 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9071 	 * updating the inode.
9072 	 */
9073 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9074 	if (!rsv)
9075 		return -ENOMEM;
9076 	rsv->size = min_size;
9077 	rsv->failfast = 1;
9078 
9079 	/*
9080 	 * 1 for the truncate slack space
9081 	 * 1 for updating the inode.
9082 	 */
9083 	trans = btrfs_start_transaction(root, 2);
9084 	if (IS_ERR(trans)) {
9085 		ret = PTR_ERR(trans);
9086 		goto out;
9087 	}
9088 
9089 	/* Migrate the slack space for the truncate to our reserve */
9090 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9091 				      min_size, 0);
9092 	BUG_ON(ret);
9093 
9094 	/*
9095 	 * So if we truncate and then write and fsync we normally would just
9096 	 * write the extents that changed, which is a problem if we need to
9097 	 * first truncate that entire inode.  So set this flag so we write out
9098 	 * all of the extents in the inode to the sync log so we're completely
9099 	 * safe.
9100 	 */
9101 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9102 	trans->block_rsv = rsv;
9103 
9104 	while (1) {
9105 		ret = btrfs_truncate_inode_items(trans, root, inode,
9106 						 inode->i_size,
9107 						 BTRFS_EXTENT_DATA_KEY);
9108 		trans->block_rsv = &fs_info->trans_block_rsv;
9109 		if (ret != -ENOSPC && ret != -EAGAIN)
9110 			break;
9111 
9112 		ret = btrfs_update_inode(trans, root, inode);
9113 		if (ret)
9114 			break;
9115 
9116 		btrfs_end_transaction(trans);
9117 		btrfs_btree_balance_dirty(fs_info);
9118 
9119 		trans = btrfs_start_transaction(root, 2);
9120 		if (IS_ERR(trans)) {
9121 			ret = PTR_ERR(trans);
9122 			trans = NULL;
9123 			break;
9124 		}
9125 
9126 		btrfs_block_rsv_release(fs_info, rsv, -1);
9127 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9128 					      rsv, min_size, 0);
9129 		BUG_ON(ret);	/* shouldn't happen */
9130 		trans->block_rsv = rsv;
9131 	}
9132 
9133 	/*
9134 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9135 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9136 	 * we've truncated everything except the last little bit, and can do
9137 	 * btrfs_truncate_block and then update the disk_i_size.
9138 	 */
9139 	if (ret == NEED_TRUNCATE_BLOCK) {
9140 		btrfs_end_transaction(trans);
9141 		btrfs_btree_balance_dirty(fs_info);
9142 
9143 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9144 		if (ret)
9145 			goto out;
9146 		trans = btrfs_start_transaction(root, 1);
9147 		if (IS_ERR(trans)) {
9148 			ret = PTR_ERR(trans);
9149 			goto out;
9150 		}
9151 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9152 	}
9153 
9154 	if (trans) {
9155 		int ret2;
9156 
9157 		trans->block_rsv = &fs_info->trans_block_rsv;
9158 		ret2 = btrfs_update_inode(trans, root, inode);
9159 		if (ret2 && !ret)
9160 			ret = ret2;
9161 
9162 		ret2 = btrfs_end_transaction(trans);
9163 		if (ret2 && !ret)
9164 			ret = ret2;
9165 		btrfs_btree_balance_dirty(fs_info);
9166 	}
9167 out:
9168 	btrfs_free_block_rsv(fs_info, rsv);
9169 
9170 	return ret;
9171 }
9172 
9173 /*
9174  * create a new subvolume directory/inode (helper for the ioctl).
9175  */
9176 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9177 			     struct btrfs_root *new_root,
9178 			     struct btrfs_root *parent_root,
9179 			     u64 new_dirid)
9180 {
9181 	struct inode *inode;
9182 	int err;
9183 	u64 index = 0;
9184 
9185 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9186 				new_dirid, new_dirid,
9187 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9188 				&index);
9189 	if (IS_ERR(inode))
9190 		return PTR_ERR(inode);
9191 	inode->i_op = &btrfs_dir_inode_operations;
9192 	inode->i_fop = &btrfs_dir_file_operations;
9193 
9194 	set_nlink(inode, 1);
9195 	btrfs_i_size_write(BTRFS_I(inode), 0);
9196 	unlock_new_inode(inode);
9197 
9198 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9199 	if (err)
9200 		btrfs_err(new_root->fs_info,
9201 			  "error inheriting subvolume %llu properties: %d",
9202 			  new_root->root_key.objectid, err);
9203 
9204 	err = btrfs_update_inode(trans, new_root, inode);
9205 
9206 	iput(inode);
9207 	return err;
9208 }
9209 
9210 struct inode *btrfs_alloc_inode(struct super_block *sb)
9211 {
9212 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9213 	struct btrfs_inode *ei;
9214 	struct inode *inode;
9215 
9216 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9217 	if (!ei)
9218 		return NULL;
9219 
9220 	ei->root = NULL;
9221 	ei->generation = 0;
9222 	ei->last_trans = 0;
9223 	ei->last_sub_trans = 0;
9224 	ei->logged_trans = 0;
9225 	ei->delalloc_bytes = 0;
9226 	ei->new_delalloc_bytes = 0;
9227 	ei->defrag_bytes = 0;
9228 	ei->disk_i_size = 0;
9229 	ei->flags = 0;
9230 	ei->csum_bytes = 0;
9231 	ei->index_cnt = (u64)-1;
9232 	ei->dir_index = 0;
9233 	ei->last_unlink_trans = 0;
9234 	ei->last_log_commit = 0;
9235 
9236 	spin_lock_init(&ei->lock);
9237 	ei->outstanding_extents = 0;
9238 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9239 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9240 					      BTRFS_BLOCK_RSV_DELALLOC);
9241 	ei->runtime_flags = 0;
9242 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9243 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9244 
9245 	ei->delayed_node = NULL;
9246 
9247 	ei->i_otime.tv_sec = 0;
9248 	ei->i_otime.tv_nsec = 0;
9249 
9250 	inode = &ei->vfs_inode;
9251 	extent_map_tree_init(&ei->extent_tree);
9252 	extent_io_tree_init(&ei->io_tree, inode);
9253 	extent_io_tree_init(&ei->io_failure_tree, inode);
9254 	ei->io_tree.track_uptodate = 1;
9255 	ei->io_failure_tree.track_uptodate = 1;
9256 	atomic_set(&ei->sync_writers, 0);
9257 	mutex_init(&ei->log_mutex);
9258 	mutex_init(&ei->delalloc_mutex);
9259 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9260 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9261 	INIT_LIST_HEAD(&ei->delayed_iput);
9262 	RB_CLEAR_NODE(&ei->rb_node);
9263 	init_rwsem(&ei->dio_sem);
9264 
9265 	return inode;
9266 }
9267 
9268 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9269 void btrfs_test_destroy_inode(struct inode *inode)
9270 {
9271 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9272 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9273 }
9274 #endif
9275 
9276 static void btrfs_i_callback(struct rcu_head *head)
9277 {
9278 	struct inode *inode = container_of(head, struct inode, i_rcu);
9279 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9280 }
9281 
9282 void btrfs_destroy_inode(struct inode *inode)
9283 {
9284 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9285 	struct btrfs_ordered_extent *ordered;
9286 	struct btrfs_root *root = BTRFS_I(inode)->root;
9287 
9288 	WARN_ON(!hlist_empty(&inode->i_dentry));
9289 	WARN_ON(inode->i_data.nrpages);
9290 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9291 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9292 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9293 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9294 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9295 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9296 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9297 
9298 	/*
9299 	 * This can happen where we create an inode, but somebody else also
9300 	 * created the same inode and we need to destroy the one we already
9301 	 * created.
9302 	 */
9303 	if (!root)
9304 		goto free;
9305 
9306 	while (1) {
9307 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9308 		if (!ordered)
9309 			break;
9310 		else {
9311 			btrfs_err(fs_info,
9312 				  "found ordered extent %llu %llu on inode cleanup",
9313 				  ordered->file_offset, ordered->len);
9314 			btrfs_remove_ordered_extent(inode, ordered);
9315 			btrfs_put_ordered_extent(ordered);
9316 			btrfs_put_ordered_extent(ordered);
9317 		}
9318 	}
9319 	btrfs_qgroup_check_reserved_leak(inode);
9320 	inode_tree_del(inode);
9321 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9322 free:
9323 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9324 }
9325 
9326 int btrfs_drop_inode(struct inode *inode)
9327 {
9328 	struct btrfs_root *root = BTRFS_I(inode)->root;
9329 
9330 	if (root == NULL)
9331 		return 1;
9332 
9333 	/* the snap/subvol tree is on deleting */
9334 	if (btrfs_root_refs(&root->root_item) == 0)
9335 		return 1;
9336 	else
9337 		return generic_drop_inode(inode);
9338 }
9339 
9340 static void init_once(void *foo)
9341 {
9342 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9343 
9344 	inode_init_once(&ei->vfs_inode);
9345 }
9346 
9347 void __cold btrfs_destroy_cachep(void)
9348 {
9349 	/*
9350 	 * Make sure all delayed rcu free inodes are flushed before we
9351 	 * destroy cache.
9352 	 */
9353 	rcu_barrier();
9354 	kmem_cache_destroy(btrfs_inode_cachep);
9355 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9356 	kmem_cache_destroy(btrfs_path_cachep);
9357 	kmem_cache_destroy(btrfs_free_space_cachep);
9358 }
9359 
9360 int __init btrfs_init_cachep(void)
9361 {
9362 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9363 			sizeof(struct btrfs_inode), 0,
9364 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9365 			init_once);
9366 	if (!btrfs_inode_cachep)
9367 		goto fail;
9368 
9369 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9370 			sizeof(struct btrfs_trans_handle), 0,
9371 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9372 	if (!btrfs_trans_handle_cachep)
9373 		goto fail;
9374 
9375 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9376 			sizeof(struct btrfs_path), 0,
9377 			SLAB_MEM_SPREAD, NULL);
9378 	if (!btrfs_path_cachep)
9379 		goto fail;
9380 
9381 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9382 			sizeof(struct btrfs_free_space), 0,
9383 			SLAB_MEM_SPREAD, NULL);
9384 	if (!btrfs_free_space_cachep)
9385 		goto fail;
9386 
9387 	return 0;
9388 fail:
9389 	btrfs_destroy_cachep();
9390 	return -ENOMEM;
9391 }
9392 
9393 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9394 			 u32 request_mask, unsigned int flags)
9395 {
9396 	u64 delalloc_bytes;
9397 	struct inode *inode = d_inode(path->dentry);
9398 	u32 blocksize = inode->i_sb->s_blocksize;
9399 	u32 bi_flags = BTRFS_I(inode)->flags;
9400 
9401 	stat->result_mask |= STATX_BTIME;
9402 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9403 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9404 	if (bi_flags & BTRFS_INODE_APPEND)
9405 		stat->attributes |= STATX_ATTR_APPEND;
9406 	if (bi_flags & BTRFS_INODE_COMPRESS)
9407 		stat->attributes |= STATX_ATTR_COMPRESSED;
9408 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9409 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9410 	if (bi_flags & BTRFS_INODE_NODUMP)
9411 		stat->attributes |= STATX_ATTR_NODUMP;
9412 
9413 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9414 				  STATX_ATTR_COMPRESSED |
9415 				  STATX_ATTR_IMMUTABLE |
9416 				  STATX_ATTR_NODUMP);
9417 
9418 	generic_fillattr(inode, stat);
9419 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9420 
9421 	spin_lock(&BTRFS_I(inode)->lock);
9422 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9423 	spin_unlock(&BTRFS_I(inode)->lock);
9424 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9425 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9426 	return 0;
9427 }
9428 
9429 static int btrfs_rename_exchange(struct inode *old_dir,
9430 			      struct dentry *old_dentry,
9431 			      struct inode *new_dir,
9432 			      struct dentry *new_dentry)
9433 {
9434 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9435 	struct btrfs_trans_handle *trans;
9436 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9437 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9438 	struct inode *new_inode = new_dentry->d_inode;
9439 	struct inode *old_inode = old_dentry->d_inode;
9440 	struct timespec ctime = current_time(old_inode);
9441 	struct dentry *parent;
9442 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9443 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9444 	u64 old_idx = 0;
9445 	u64 new_idx = 0;
9446 	u64 root_objectid;
9447 	int ret;
9448 	bool root_log_pinned = false;
9449 	bool dest_log_pinned = false;
9450 
9451 	/* we only allow rename subvolume link between subvolumes */
9452 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9453 		return -EXDEV;
9454 
9455 	/* close the race window with snapshot create/destroy ioctl */
9456 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9457 		down_read(&fs_info->subvol_sem);
9458 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9459 		down_read(&fs_info->subvol_sem);
9460 
9461 	/*
9462 	 * We want to reserve the absolute worst case amount of items.  So if
9463 	 * both inodes are subvols and we need to unlink them then that would
9464 	 * require 4 item modifications, but if they are both normal inodes it
9465 	 * would require 5 item modifications, so we'll assume their normal
9466 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9467 	 * should cover the worst case number of items we'll modify.
9468 	 */
9469 	trans = btrfs_start_transaction(root, 12);
9470 	if (IS_ERR(trans)) {
9471 		ret = PTR_ERR(trans);
9472 		goto out_notrans;
9473 	}
9474 
9475 	/*
9476 	 * We need to find a free sequence number both in the source and
9477 	 * in the destination directory for the exchange.
9478 	 */
9479 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9480 	if (ret)
9481 		goto out_fail;
9482 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9483 	if (ret)
9484 		goto out_fail;
9485 
9486 	BTRFS_I(old_inode)->dir_index = 0ULL;
9487 	BTRFS_I(new_inode)->dir_index = 0ULL;
9488 
9489 	/* Reference for the source. */
9490 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9491 		/* force full log commit if subvolume involved. */
9492 		btrfs_set_log_full_commit(fs_info, trans);
9493 	} else {
9494 		btrfs_pin_log_trans(root);
9495 		root_log_pinned = true;
9496 		ret = btrfs_insert_inode_ref(trans, dest,
9497 					     new_dentry->d_name.name,
9498 					     new_dentry->d_name.len,
9499 					     old_ino,
9500 					     btrfs_ino(BTRFS_I(new_dir)),
9501 					     old_idx);
9502 		if (ret)
9503 			goto out_fail;
9504 	}
9505 
9506 	/* And now for the dest. */
9507 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9508 		/* force full log commit if subvolume involved. */
9509 		btrfs_set_log_full_commit(fs_info, trans);
9510 	} else {
9511 		btrfs_pin_log_trans(dest);
9512 		dest_log_pinned = true;
9513 		ret = btrfs_insert_inode_ref(trans, root,
9514 					     old_dentry->d_name.name,
9515 					     old_dentry->d_name.len,
9516 					     new_ino,
9517 					     btrfs_ino(BTRFS_I(old_dir)),
9518 					     new_idx);
9519 		if (ret)
9520 			goto out_fail;
9521 	}
9522 
9523 	/* Update inode version and ctime/mtime. */
9524 	inode_inc_iversion(old_dir);
9525 	inode_inc_iversion(new_dir);
9526 	inode_inc_iversion(old_inode);
9527 	inode_inc_iversion(new_inode);
9528 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9529 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9530 	old_inode->i_ctime = ctime;
9531 	new_inode->i_ctime = ctime;
9532 
9533 	if (old_dentry->d_parent != new_dentry->d_parent) {
9534 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9535 				BTRFS_I(old_inode), 1);
9536 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9537 				BTRFS_I(new_inode), 1);
9538 	}
9539 
9540 	/* src is a subvolume */
9541 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9542 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9543 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9544 					  root_objectid,
9545 					  old_dentry->d_name.name,
9546 					  old_dentry->d_name.len);
9547 	} else { /* src is an inode */
9548 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9549 					   BTRFS_I(old_dentry->d_inode),
9550 					   old_dentry->d_name.name,
9551 					   old_dentry->d_name.len);
9552 		if (!ret)
9553 			ret = btrfs_update_inode(trans, root, old_inode);
9554 	}
9555 	if (ret) {
9556 		btrfs_abort_transaction(trans, ret);
9557 		goto out_fail;
9558 	}
9559 
9560 	/* dest is a subvolume */
9561 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9562 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9563 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9564 					  root_objectid,
9565 					  new_dentry->d_name.name,
9566 					  new_dentry->d_name.len);
9567 	} else { /* dest is an inode */
9568 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9569 					   BTRFS_I(new_dentry->d_inode),
9570 					   new_dentry->d_name.name,
9571 					   new_dentry->d_name.len);
9572 		if (!ret)
9573 			ret = btrfs_update_inode(trans, dest, new_inode);
9574 	}
9575 	if (ret) {
9576 		btrfs_abort_transaction(trans, ret);
9577 		goto out_fail;
9578 	}
9579 
9580 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9581 			     new_dentry->d_name.name,
9582 			     new_dentry->d_name.len, 0, old_idx);
9583 	if (ret) {
9584 		btrfs_abort_transaction(trans, ret);
9585 		goto out_fail;
9586 	}
9587 
9588 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9589 			     old_dentry->d_name.name,
9590 			     old_dentry->d_name.len, 0, new_idx);
9591 	if (ret) {
9592 		btrfs_abort_transaction(trans, ret);
9593 		goto out_fail;
9594 	}
9595 
9596 	if (old_inode->i_nlink == 1)
9597 		BTRFS_I(old_inode)->dir_index = old_idx;
9598 	if (new_inode->i_nlink == 1)
9599 		BTRFS_I(new_inode)->dir_index = new_idx;
9600 
9601 	if (root_log_pinned) {
9602 		parent = new_dentry->d_parent;
9603 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9604 				parent);
9605 		btrfs_end_log_trans(root);
9606 		root_log_pinned = false;
9607 	}
9608 	if (dest_log_pinned) {
9609 		parent = old_dentry->d_parent;
9610 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9611 				parent);
9612 		btrfs_end_log_trans(dest);
9613 		dest_log_pinned = false;
9614 	}
9615 out_fail:
9616 	/*
9617 	 * If we have pinned a log and an error happened, we unpin tasks
9618 	 * trying to sync the log and force them to fallback to a transaction
9619 	 * commit if the log currently contains any of the inodes involved in
9620 	 * this rename operation (to ensure we do not persist a log with an
9621 	 * inconsistent state for any of these inodes or leading to any
9622 	 * inconsistencies when replayed). If the transaction was aborted, the
9623 	 * abortion reason is propagated to userspace when attempting to commit
9624 	 * the transaction. If the log does not contain any of these inodes, we
9625 	 * allow the tasks to sync it.
9626 	 */
9627 	if (ret && (root_log_pinned || dest_log_pinned)) {
9628 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9629 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9630 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9631 		    (new_inode &&
9632 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9633 			btrfs_set_log_full_commit(fs_info, trans);
9634 
9635 		if (root_log_pinned) {
9636 			btrfs_end_log_trans(root);
9637 			root_log_pinned = false;
9638 		}
9639 		if (dest_log_pinned) {
9640 			btrfs_end_log_trans(dest);
9641 			dest_log_pinned = false;
9642 		}
9643 	}
9644 	ret = btrfs_end_transaction(trans);
9645 out_notrans:
9646 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9647 		up_read(&fs_info->subvol_sem);
9648 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9649 		up_read(&fs_info->subvol_sem);
9650 
9651 	return ret;
9652 }
9653 
9654 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9655 				     struct btrfs_root *root,
9656 				     struct inode *dir,
9657 				     struct dentry *dentry)
9658 {
9659 	int ret;
9660 	struct inode *inode;
9661 	u64 objectid;
9662 	u64 index;
9663 
9664 	ret = btrfs_find_free_ino(root, &objectid);
9665 	if (ret)
9666 		return ret;
9667 
9668 	inode = btrfs_new_inode(trans, root, dir,
9669 				dentry->d_name.name,
9670 				dentry->d_name.len,
9671 				btrfs_ino(BTRFS_I(dir)),
9672 				objectid,
9673 				S_IFCHR | WHITEOUT_MODE,
9674 				&index);
9675 
9676 	if (IS_ERR(inode)) {
9677 		ret = PTR_ERR(inode);
9678 		return ret;
9679 	}
9680 
9681 	inode->i_op = &btrfs_special_inode_operations;
9682 	init_special_inode(inode, inode->i_mode,
9683 		WHITEOUT_DEV);
9684 
9685 	ret = btrfs_init_inode_security(trans, inode, dir,
9686 				&dentry->d_name);
9687 	if (ret)
9688 		goto out;
9689 
9690 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9691 				BTRFS_I(inode), 0, index);
9692 	if (ret)
9693 		goto out;
9694 
9695 	ret = btrfs_update_inode(trans, root, inode);
9696 out:
9697 	unlock_new_inode(inode);
9698 	if (ret)
9699 		inode_dec_link_count(inode);
9700 	iput(inode);
9701 
9702 	return ret;
9703 }
9704 
9705 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9706 			   struct inode *new_dir, struct dentry *new_dentry,
9707 			   unsigned int flags)
9708 {
9709 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9710 	struct btrfs_trans_handle *trans;
9711 	unsigned int trans_num_items;
9712 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9713 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9714 	struct inode *new_inode = d_inode(new_dentry);
9715 	struct inode *old_inode = d_inode(old_dentry);
9716 	u64 index = 0;
9717 	u64 root_objectid;
9718 	int ret;
9719 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9720 	bool log_pinned = false;
9721 
9722 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9723 		return -EPERM;
9724 
9725 	/* we only allow rename subvolume link between subvolumes */
9726 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9727 		return -EXDEV;
9728 
9729 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9730 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9731 		return -ENOTEMPTY;
9732 
9733 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9734 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9735 		return -ENOTEMPTY;
9736 
9737 
9738 	/* check for collisions, even if the  name isn't there */
9739 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9740 			     new_dentry->d_name.name,
9741 			     new_dentry->d_name.len);
9742 
9743 	if (ret) {
9744 		if (ret == -EEXIST) {
9745 			/* we shouldn't get
9746 			 * eexist without a new_inode */
9747 			if (WARN_ON(!new_inode)) {
9748 				return ret;
9749 			}
9750 		} else {
9751 			/* maybe -EOVERFLOW */
9752 			return ret;
9753 		}
9754 	}
9755 	ret = 0;
9756 
9757 	/*
9758 	 * we're using rename to replace one file with another.  Start IO on it
9759 	 * now so  we don't add too much work to the end of the transaction
9760 	 */
9761 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9762 		filemap_flush(old_inode->i_mapping);
9763 
9764 	/* close the racy window with snapshot create/destroy ioctl */
9765 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9766 		down_read(&fs_info->subvol_sem);
9767 	/*
9768 	 * We want to reserve the absolute worst case amount of items.  So if
9769 	 * both inodes are subvols and we need to unlink them then that would
9770 	 * require 4 item modifications, but if they are both normal inodes it
9771 	 * would require 5 item modifications, so we'll assume they are normal
9772 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9773 	 * should cover the worst case number of items we'll modify.
9774 	 * If our rename has the whiteout flag, we need more 5 units for the
9775 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9776 	 * when selinux is enabled).
9777 	 */
9778 	trans_num_items = 11;
9779 	if (flags & RENAME_WHITEOUT)
9780 		trans_num_items += 5;
9781 	trans = btrfs_start_transaction(root, trans_num_items);
9782 	if (IS_ERR(trans)) {
9783 		ret = PTR_ERR(trans);
9784 		goto out_notrans;
9785 	}
9786 
9787 	if (dest != root)
9788 		btrfs_record_root_in_trans(trans, dest);
9789 
9790 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9791 	if (ret)
9792 		goto out_fail;
9793 
9794 	BTRFS_I(old_inode)->dir_index = 0ULL;
9795 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9796 		/* force full log commit if subvolume involved. */
9797 		btrfs_set_log_full_commit(fs_info, trans);
9798 	} else {
9799 		btrfs_pin_log_trans(root);
9800 		log_pinned = true;
9801 		ret = btrfs_insert_inode_ref(trans, dest,
9802 					     new_dentry->d_name.name,
9803 					     new_dentry->d_name.len,
9804 					     old_ino,
9805 					     btrfs_ino(BTRFS_I(new_dir)), index);
9806 		if (ret)
9807 			goto out_fail;
9808 	}
9809 
9810 	inode_inc_iversion(old_dir);
9811 	inode_inc_iversion(new_dir);
9812 	inode_inc_iversion(old_inode);
9813 	old_dir->i_ctime = old_dir->i_mtime =
9814 	new_dir->i_ctime = new_dir->i_mtime =
9815 	old_inode->i_ctime = current_time(old_dir);
9816 
9817 	if (old_dentry->d_parent != new_dentry->d_parent)
9818 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9819 				BTRFS_I(old_inode), 1);
9820 
9821 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9822 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9823 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9824 					old_dentry->d_name.name,
9825 					old_dentry->d_name.len);
9826 	} else {
9827 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9828 					BTRFS_I(d_inode(old_dentry)),
9829 					old_dentry->d_name.name,
9830 					old_dentry->d_name.len);
9831 		if (!ret)
9832 			ret = btrfs_update_inode(trans, root, old_inode);
9833 	}
9834 	if (ret) {
9835 		btrfs_abort_transaction(trans, ret);
9836 		goto out_fail;
9837 	}
9838 
9839 	if (new_inode) {
9840 		inode_inc_iversion(new_inode);
9841 		new_inode->i_ctime = current_time(new_inode);
9842 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9843 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9844 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9845 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9846 						root_objectid,
9847 						new_dentry->d_name.name,
9848 						new_dentry->d_name.len);
9849 			BUG_ON(new_inode->i_nlink == 0);
9850 		} else {
9851 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9852 						 BTRFS_I(d_inode(new_dentry)),
9853 						 new_dentry->d_name.name,
9854 						 new_dentry->d_name.len);
9855 		}
9856 		if (!ret && new_inode->i_nlink == 0)
9857 			ret = btrfs_orphan_add(trans,
9858 					BTRFS_I(d_inode(new_dentry)));
9859 		if (ret) {
9860 			btrfs_abort_transaction(trans, ret);
9861 			goto out_fail;
9862 		}
9863 	}
9864 
9865 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9866 			     new_dentry->d_name.name,
9867 			     new_dentry->d_name.len, 0, index);
9868 	if (ret) {
9869 		btrfs_abort_transaction(trans, ret);
9870 		goto out_fail;
9871 	}
9872 
9873 	if (old_inode->i_nlink == 1)
9874 		BTRFS_I(old_inode)->dir_index = index;
9875 
9876 	if (log_pinned) {
9877 		struct dentry *parent = new_dentry->d_parent;
9878 
9879 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9880 				parent);
9881 		btrfs_end_log_trans(root);
9882 		log_pinned = false;
9883 	}
9884 
9885 	if (flags & RENAME_WHITEOUT) {
9886 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9887 						old_dentry);
9888 
9889 		if (ret) {
9890 			btrfs_abort_transaction(trans, ret);
9891 			goto out_fail;
9892 		}
9893 	}
9894 out_fail:
9895 	/*
9896 	 * If we have pinned the log and an error happened, we unpin tasks
9897 	 * trying to sync the log and force them to fallback to a transaction
9898 	 * commit if the log currently contains any of the inodes involved in
9899 	 * this rename operation (to ensure we do not persist a log with an
9900 	 * inconsistent state for any of these inodes or leading to any
9901 	 * inconsistencies when replayed). If the transaction was aborted, the
9902 	 * abortion reason is propagated to userspace when attempting to commit
9903 	 * the transaction. If the log does not contain any of these inodes, we
9904 	 * allow the tasks to sync it.
9905 	 */
9906 	if (ret && log_pinned) {
9907 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9908 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9909 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9910 		    (new_inode &&
9911 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9912 			btrfs_set_log_full_commit(fs_info, trans);
9913 
9914 		btrfs_end_log_trans(root);
9915 		log_pinned = false;
9916 	}
9917 	btrfs_end_transaction(trans);
9918 out_notrans:
9919 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9920 		up_read(&fs_info->subvol_sem);
9921 
9922 	return ret;
9923 }
9924 
9925 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9926 			 struct inode *new_dir, struct dentry *new_dentry,
9927 			 unsigned int flags)
9928 {
9929 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9930 		return -EINVAL;
9931 
9932 	if (flags & RENAME_EXCHANGE)
9933 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9934 					  new_dentry);
9935 
9936 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9937 }
9938 
9939 struct btrfs_delalloc_work {
9940 	struct inode *inode;
9941 	struct completion completion;
9942 	struct list_head list;
9943 	struct btrfs_work work;
9944 };
9945 
9946 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9947 {
9948 	struct btrfs_delalloc_work *delalloc_work;
9949 	struct inode *inode;
9950 
9951 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9952 				     work);
9953 	inode = delalloc_work->inode;
9954 	filemap_flush(inode->i_mapping);
9955 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9956 				&BTRFS_I(inode)->runtime_flags))
9957 		filemap_flush(inode->i_mapping);
9958 
9959 	iput(inode);
9960 	complete(&delalloc_work->completion);
9961 }
9962 
9963 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9964 {
9965 	struct btrfs_delalloc_work *work;
9966 
9967 	work = kmalloc(sizeof(*work), GFP_NOFS);
9968 	if (!work)
9969 		return NULL;
9970 
9971 	init_completion(&work->completion);
9972 	INIT_LIST_HEAD(&work->list);
9973 	work->inode = inode;
9974 	WARN_ON_ONCE(!inode);
9975 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9976 			btrfs_run_delalloc_work, NULL, NULL);
9977 
9978 	return work;
9979 }
9980 
9981 /*
9982  * some fairly slow code that needs optimization. This walks the list
9983  * of all the inodes with pending delalloc and forces them to disk.
9984  */
9985 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9986 {
9987 	struct btrfs_inode *binode;
9988 	struct inode *inode;
9989 	struct btrfs_delalloc_work *work, *next;
9990 	struct list_head works;
9991 	struct list_head splice;
9992 	int ret = 0;
9993 
9994 	INIT_LIST_HEAD(&works);
9995 	INIT_LIST_HEAD(&splice);
9996 
9997 	mutex_lock(&root->delalloc_mutex);
9998 	spin_lock(&root->delalloc_lock);
9999 	list_splice_init(&root->delalloc_inodes, &splice);
10000 	while (!list_empty(&splice)) {
10001 		binode = list_entry(splice.next, struct btrfs_inode,
10002 				    delalloc_inodes);
10003 
10004 		list_move_tail(&binode->delalloc_inodes,
10005 			       &root->delalloc_inodes);
10006 		inode = igrab(&binode->vfs_inode);
10007 		if (!inode) {
10008 			cond_resched_lock(&root->delalloc_lock);
10009 			continue;
10010 		}
10011 		spin_unlock(&root->delalloc_lock);
10012 
10013 		work = btrfs_alloc_delalloc_work(inode);
10014 		if (!work) {
10015 			iput(inode);
10016 			ret = -ENOMEM;
10017 			goto out;
10018 		}
10019 		list_add_tail(&work->list, &works);
10020 		btrfs_queue_work(root->fs_info->flush_workers,
10021 				 &work->work);
10022 		ret++;
10023 		if (nr != -1 && ret >= nr)
10024 			goto out;
10025 		cond_resched();
10026 		spin_lock(&root->delalloc_lock);
10027 	}
10028 	spin_unlock(&root->delalloc_lock);
10029 
10030 out:
10031 	list_for_each_entry_safe(work, next, &works, list) {
10032 		list_del_init(&work->list);
10033 		wait_for_completion(&work->completion);
10034 		kfree(work);
10035 	}
10036 
10037 	if (!list_empty(&splice)) {
10038 		spin_lock(&root->delalloc_lock);
10039 		list_splice_tail(&splice, &root->delalloc_inodes);
10040 		spin_unlock(&root->delalloc_lock);
10041 	}
10042 	mutex_unlock(&root->delalloc_mutex);
10043 	return ret;
10044 }
10045 
10046 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
10047 {
10048 	struct btrfs_fs_info *fs_info = root->fs_info;
10049 	int ret;
10050 
10051 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10052 		return -EROFS;
10053 
10054 	ret = start_delalloc_inodes(root, -1);
10055 	if (ret > 0)
10056 		ret = 0;
10057 	return ret;
10058 }
10059 
10060 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10061 {
10062 	struct btrfs_root *root;
10063 	struct list_head splice;
10064 	int ret;
10065 
10066 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10067 		return -EROFS;
10068 
10069 	INIT_LIST_HEAD(&splice);
10070 
10071 	mutex_lock(&fs_info->delalloc_root_mutex);
10072 	spin_lock(&fs_info->delalloc_root_lock);
10073 	list_splice_init(&fs_info->delalloc_roots, &splice);
10074 	while (!list_empty(&splice) && nr) {
10075 		root = list_first_entry(&splice, struct btrfs_root,
10076 					delalloc_root);
10077 		root = btrfs_grab_fs_root(root);
10078 		BUG_ON(!root);
10079 		list_move_tail(&root->delalloc_root,
10080 			       &fs_info->delalloc_roots);
10081 		spin_unlock(&fs_info->delalloc_root_lock);
10082 
10083 		ret = start_delalloc_inodes(root, nr);
10084 		btrfs_put_fs_root(root);
10085 		if (ret < 0)
10086 			goto out;
10087 
10088 		if (nr != -1) {
10089 			nr -= ret;
10090 			WARN_ON(nr < 0);
10091 		}
10092 		spin_lock(&fs_info->delalloc_root_lock);
10093 	}
10094 	spin_unlock(&fs_info->delalloc_root_lock);
10095 
10096 	ret = 0;
10097 out:
10098 	if (!list_empty(&splice)) {
10099 		spin_lock(&fs_info->delalloc_root_lock);
10100 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10101 		spin_unlock(&fs_info->delalloc_root_lock);
10102 	}
10103 	mutex_unlock(&fs_info->delalloc_root_mutex);
10104 	return ret;
10105 }
10106 
10107 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10108 			 const char *symname)
10109 {
10110 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10111 	struct btrfs_trans_handle *trans;
10112 	struct btrfs_root *root = BTRFS_I(dir)->root;
10113 	struct btrfs_path *path;
10114 	struct btrfs_key key;
10115 	struct inode *inode = NULL;
10116 	int err;
10117 	int drop_inode = 0;
10118 	u64 objectid;
10119 	u64 index = 0;
10120 	int name_len;
10121 	int datasize;
10122 	unsigned long ptr;
10123 	struct btrfs_file_extent_item *ei;
10124 	struct extent_buffer *leaf;
10125 
10126 	name_len = strlen(symname);
10127 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10128 		return -ENAMETOOLONG;
10129 
10130 	/*
10131 	 * 2 items for inode item and ref
10132 	 * 2 items for dir items
10133 	 * 1 item for updating parent inode item
10134 	 * 1 item for the inline extent item
10135 	 * 1 item for xattr if selinux is on
10136 	 */
10137 	trans = btrfs_start_transaction(root, 7);
10138 	if (IS_ERR(trans))
10139 		return PTR_ERR(trans);
10140 
10141 	err = btrfs_find_free_ino(root, &objectid);
10142 	if (err)
10143 		goto out_unlock;
10144 
10145 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10146 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10147 				objectid, S_IFLNK|S_IRWXUGO, &index);
10148 	if (IS_ERR(inode)) {
10149 		err = PTR_ERR(inode);
10150 		goto out_unlock;
10151 	}
10152 
10153 	/*
10154 	* If the active LSM wants to access the inode during
10155 	* d_instantiate it needs these. Smack checks to see
10156 	* if the filesystem supports xattrs by looking at the
10157 	* ops vector.
10158 	*/
10159 	inode->i_fop = &btrfs_file_operations;
10160 	inode->i_op = &btrfs_file_inode_operations;
10161 	inode->i_mapping->a_ops = &btrfs_aops;
10162 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10163 
10164 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10165 	if (err)
10166 		goto out_unlock_inode;
10167 
10168 	path = btrfs_alloc_path();
10169 	if (!path) {
10170 		err = -ENOMEM;
10171 		goto out_unlock_inode;
10172 	}
10173 	key.objectid = btrfs_ino(BTRFS_I(inode));
10174 	key.offset = 0;
10175 	key.type = BTRFS_EXTENT_DATA_KEY;
10176 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10177 	err = btrfs_insert_empty_item(trans, root, path, &key,
10178 				      datasize);
10179 	if (err) {
10180 		btrfs_free_path(path);
10181 		goto out_unlock_inode;
10182 	}
10183 	leaf = path->nodes[0];
10184 	ei = btrfs_item_ptr(leaf, path->slots[0],
10185 			    struct btrfs_file_extent_item);
10186 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10187 	btrfs_set_file_extent_type(leaf, ei,
10188 				   BTRFS_FILE_EXTENT_INLINE);
10189 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10190 	btrfs_set_file_extent_compression(leaf, ei, 0);
10191 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10192 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10193 
10194 	ptr = btrfs_file_extent_inline_start(ei);
10195 	write_extent_buffer(leaf, symname, ptr, name_len);
10196 	btrfs_mark_buffer_dirty(leaf);
10197 	btrfs_free_path(path);
10198 
10199 	inode->i_op = &btrfs_symlink_inode_operations;
10200 	inode_nohighmem(inode);
10201 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10202 	inode_set_bytes(inode, name_len);
10203 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10204 	err = btrfs_update_inode(trans, root, inode);
10205 	/*
10206 	 * Last step, add directory indexes for our symlink inode. This is the
10207 	 * last step to avoid extra cleanup of these indexes if an error happens
10208 	 * elsewhere above.
10209 	 */
10210 	if (!err)
10211 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10212 				BTRFS_I(inode), 0, index);
10213 	if (err) {
10214 		drop_inode = 1;
10215 		goto out_unlock_inode;
10216 	}
10217 
10218 	d_instantiate_new(dentry, inode);
10219 
10220 out_unlock:
10221 	btrfs_end_transaction(trans);
10222 	if (drop_inode) {
10223 		inode_dec_link_count(inode);
10224 		iput(inode);
10225 	}
10226 	btrfs_btree_balance_dirty(fs_info);
10227 	return err;
10228 
10229 out_unlock_inode:
10230 	drop_inode = 1;
10231 	unlock_new_inode(inode);
10232 	goto out_unlock;
10233 }
10234 
10235 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10236 				       u64 start, u64 num_bytes, u64 min_size,
10237 				       loff_t actual_len, u64 *alloc_hint,
10238 				       struct btrfs_trans_handle *trans)
10239 {
10240 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10241 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10242 	struct extent_map *em;
10243 	struct btrfs_root *root = BTRFS_I(inode)->root;
10244 	struct btrfs_key ins;
10245 	u64 cur_offset = start;
10246 	u64 i_size;
10247 	u64 cur_bytes;
10248 	u64 last_alloc = (u64)-1;
10249 	int ret = 0;
10250 	bool own_trans = true;
10251 	u64 end = start + num_bytes - 1;
10252 
10253 	if (trans)
10254 		own_trans = false;
10255 	while (num_bytes > 0) {
10256 		if (own_trans) {
10257 			trans = btrfs_start_transaction(root, 3);
10258 			if (IS_ERR(trans)) {
10259 				ret = PTR_ERR(trans);
10260 				break;
10261 			}
10262 		}
10263 
10264 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10265 		cur_bytes = max(cur_bytes, min_size);
10266 		/*
10267 		 * If we are severely fragmented we could end up with really
10268 		 * small allocations, so if the allocator is returning small
10269 		 * chunks lets make its job easier by only searching for those
10270 		 * sized chunks.
10271 		 */
10272 		cur_bytes = min(cur_bytes, last_alloc);
10273 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10274 				min_size, 0, *alloc_hint, &ins, 1, 0);
10275 		if (ret) {
10276 			if (own_trans)
10277 				btrfs_end_transaction(trans);
10278 			break;
10279 		}
10280 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10281 
10282 		last_alloc = ins.offset;
10283 		ret = insert_reserved_file_extent(trans, inode,
10284 						  cur_offset, ins.objectid,
10285 						  ins.offset, ins.offset,
10286 						  ins.offset, 0, 0, 0,
10287 						  BTRFS_FILE_EXTENT_PREALLOC);
10288 		if (ret) {
10289 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10290 						   ins.offset, 0);
10291 			btrfs_abort_transaction(trans, ret);
10292 			if (own_trans)
10293 				btrfs_end_transaction(trans);
10294 			break;
10295 		}
10296 
10297 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10298 					cur_offset + ins.offset -1, 0);
10299 
10300 		em = alloc_extent_map();
10301 		if (!em) {
10302 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10303 				&BTRFS_I(inode)->runtime_flags);
10304 			goto next;
10305 		}
10306 
10307 		em->start = cur_offset;
10308 		em->orig_start = cur_offset;
10309 		em->len = ins.offset;
10310 		em->block_start = ins.objectid;
10311 		em->block_len = ins.offset;
10312 		em->orig_block_len = ins.offset;
10313 		em->ram_bytes = ins.offset;
10314 		em->bdev = fs_info->fs_devices->latest_bdev;
10315 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10316 		em->generation = trans->transid;
10317 
10318 		while (1) {
10319 			write_lock(&em_tree->lock);
10320 			ret = add_extent_mapping(em_tree, em, 1);
10321 			write_unlock(&em_tree->lock);
10322 			if (ret != -EEXIST)
10323 				break;
10324 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10325 						cur_offset + ins.offset - 1,
10326 						0);
10327 		}
10328 		free_extent_map(em);
10329 next:
10330 		num_bytes -= ins.offset;
10331 		cur_offset += ins.offset;
10332 		*alloc_hint = ins.objectid + ins.offset;
10333 
10334 		inode_inc_iversion(inode);
10335 		inode->i_ctime = current_time(inode);
10336 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10337 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10338 		    (actual_len > inode->i_size) &&
10339 		    (cur_offset > inode->i_size)) {
10340 			if (cur_offset > actual_len)
10341 				i_size = actual_len;
10342 			else
10343 				i_size = cur_offset;
10344 			i_size_write(inode, i_size);
10345 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10346 		}
10347 
10348 		ret = btrfs_update_inode(trans, root, inode);
10349 
10350 		if (ret) {
10351 			btrfs_abort_transaction(trans, ret);
10352 			if (own_trans)
10353 				btrfs_end_transaction(trans);
10354 			break;
10355 		}
10356 
10357 		if (own_trans)
10358 			btrfs_end_transaction(trans);
10359 	}
10360 	if (cur_offset < end)
10361 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10362 			end - cur_offset + 1);
10363 	return ret;
10364 }
10365 
10366 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10367 			      u64 start, u64 num_bytes, u64 min_size,
10368 			      loff_t actual_len, u64 *alloc_hint)
10369 {
10370 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10371 					   min_size, actual_len, alloc_hint,
10372 					   NULL);
10373 }
10374 
10375 int btrfs_prealloc_file_range_trans(struct inode *inode,
10376 				    struct btrfs_trans_handle *trans, int mode,
10377 				    u64 start, u64 num_bytes, u64 min_size,
10378 				    loff_t actual_len, u64 *alloc_hint)
10379 {
10380 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10381 					   min_size, actual_len, alloc_hint, trans);
10382 }
10383 
10384 static int btrfs_set_page_dirty(struct page *page)
10385 {
10386 	return __set_page_dirty_nobuffers(page);
10387 }
10388 
10389 static int btrfs_permission(struct inode *inode, int mask)
10390 {
10391 	struct btrfs_root *root = BTRFS_I(inode)->root;
10392 	umode_t mode = inode->i_mode;
10393 
10394 	if (mask & MAY_WRITE &&
10395 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10396 		if (btrfs_root_readonly(root))
10397 			return -EROFS;
10398 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10399 			return -EACCES;
10400 	}
10401 	return generic_permission(inode, mask);
10402 }
10403 
10404 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10405 {
10406 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10407 	struct btrfs_trans_handle *trans;
10408 	struct btrfs_root *root = BTRFS_I(dir)->root;
10409 	struct inode *inode = NULL;
10410 	u64 objectid;
10411 	u64 index;
10412 	int ret = 0;
10413 
10414 	/*
10415 	 * 5 units required for adding orphan entry
10416 	 */
10417 	trans = btrfs_start_transaction(root, 5);
10418 	if (IS_ERR(trans))
10419 		return PTR_ERR(trans);
10420 
10421 	ret = btrfs_find_free_ino(root, &objectid);
10422 	if (ret)
10423 		goto out;
10424 
10425 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10426 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10427 	if (IS_ERR(inode)) {
10428 		ret = PTR_ERR(inode);
10429 		inode = NULL;
10430 		goto out;
10431 	}
10432 
10433 	inode->i_fop = &btrfs_file_operations;
10434 	inode->i_op = &btrfs_file_inode_operations;
10435 
10436 	inode->i_mapping->a_ops = &btrfs_aops;
10437 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10438 
10439 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10440 	if (ret)
10441 		goto out_inode;
10442 
10443 	ret = btrfs_update_inode(trans, root, inode);
10444 	if (ret)
10445 		goto out_inode;
10446 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10447 	if (ret)
10448 		goto out_inode;
10449 
10450 	/*
10451 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10452 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10453 	 * through:
10454 	 *
10455 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10456 	 */
10457 	set_nlink(inode, 1);
10458 	unlock_new_inode(inode);
10459 	d_tmpfile(dentry, inode);
10460 	mark_inode_dirty(inode);
10461 
10462 out:
10463 	btrfs_end_transaction(trans);
10464 	if (ret)
10465 		iput(inode);
10466 	btrfs_btree_balance_dirty(fs_info);
10467 	return ret;
10468 
10469 out_inode:
10470 	unlock_new_inode(inode);
10471 	goto out;
10472 
10473 }
10474 
10475 __attribute__((const))
10476 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10477 {
10478 	return -EAGAIN;
10479 }
10480 
10481 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10482 {
10483 	struct inode *inode = private_data;
10484 	return btrfs_sb(inode->i_sb);
10485 }
10486 
10487 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10488 					u64 start, u64 end)
10489 {
10490 	struct inode *inode = private_data;
10491 	u64 isize;
10492 
10493 	isize = i_size_read(inode);
10494 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10495 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10496 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10497 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10498 	}
10499 }
10500 
10501 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10502 {
10503 	struct inode *inode = private_data;
10504 	unsigned long index = start >> PAGE_SHIFT;
10505 	unsigned long end_index = end >> PAGE_SHIFT;
10506 	struct page *page;
10507 
10508 	while (index <= end_index) {
10509 		page = find_get_page(inode->i_mapping, index);
10510 		ASSERT(page); /* Pages should be in the extent_io_tree */
10511 		set_page_writeback(page);
10512 		put_page(page);
10513 		index++;
10514 	}
10515 }
10516 
10517 static const struct inode_operations btrfs_dir_inode_operations = {
10518 	.getattr	= btrfs_getattr,
10519 	.lookup		= btrfs_lookup,
10520 	.create		= btrfs_create,
10521 	.unlink		= btrfs_unlink,
10522 	.link		= btrfs_link,
10523 	.mkdir		= btrfs_mkdir,
10524 	.rmdir		= btrfs_rmdir,
10525 	.rename		= btrfs_rename2,
10526 	.symlink	= btrfs_symlink,
10527 	.setattr	= btrfs_setattr,
10528 	.mknod		= btrfs_mknod,
10529 	.listxattr	= btrfs_listxattr,
10530 	.permission	= btrfs_permission,
10531 	.get_acl	= btrfs_get_acl,
10532 	.set_acl	= btrfs_set_acl,
10533 	.update_time	= btrfs_update_time,
10534 	.tmpfile        = btrfs_tmpfile,
10535 };
10536 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10537 	.lookup		= btrfs_lookup,
10538 	.permission	= btrfs_permission,
10539 	.update_time	= btrfs_update_time,
10540 };
10541 
10542 static const struct file_operations btrfs_dir_file_operations = {
10543 	.llseek		= generic_file_llseek,
10544 	.read		= generic_read_dir,
10545 	.iterate_shared	= btrfs_real_readdir,
10546 	.open		= btrfs_opendir,
10547 	.unlocked_ioctl	= btrfs_ioctl,
10548 #ifdef CONFIG_COMPAT
10549 	.compat_ioctl	= btrfs_compat_ioctl,
10550 #endif
10551 	.release        = btrfs_release_file,
10552 	.fsync		= btrfs_sync_file,
10553 };
10554 
10555 static const struct extent_io_ops btrfs_extent_io_ops = {
10556 	/* mandatory callbacks */
10557 	.submit_bio_hook = btrfs_submit_bio_hook,
10558 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10559 	.merge_bio_hook = btrfs_merge_bio_hook,
10560 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10561 	.tree_fs_info = iotree_fs_info,
10562 	.set_range_writeback = btrfs_set_range_writeback,
10563 
10564 	/* optional callbacks */
10565 	.fill_delalloc = run_delalloc_range,
10566 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10567 	.writepage_start_hook = btrfs_writepage_start_hook,
10568 	.set_bit_hook = btrfs_set_bit_hook,
10569 	.clear_bit_hook = btrfs_clear_bit_hook,
10570 	.merge_extent_hook = btrfs_merge_extent_hook,
10571 	.split_extent_hook = btrfs_split_extent_hook,
10572 	.check_extent_io_range = btrfs_check_extent_io_range,
10573 };
10574 
10575 /*
10576  * btrfs doesn't support the bmap operation because swapfiles
10577  * use bmap to make a mapping of extents in the file.  They assume
10578  * these extents won't change over the life of the file and they
10579  * use the bmap result to do IO directly to the drive.
10580  *
10581  * the btrfs bmap call would return logical addresses that aren't
10582  * suitable for IO and they also will change frequently as COW
10583  * operations happen.  So, swapfile + btrfs == corruption.
10584  *
10585  * For now we're avoiding this by dropping bmap.
10586  */
10587 static const struct address_space_operations btrfs_aops = {
10588 	.readpage	= btrfs_readpage,
10589 	.writepage	= btrfs_writepage,
10590 	.writepages	= btrfs_writepages,
10591 	.readpages	= btrfs_readpages,
10592 	.direct_IO	= btrfs_direct_IO,
10593 	.invalidatepage = btrfs_invalidatepage,
10594 	.releasepage	= btrfs_releasepage,
10595 	.set_page_dirty	= btrfs_set_page_dirty,
10596 	.error_remove_page = generic_error_remove_page,
10597 };
10598 
10599 static const struct address_space_operations btrfs_symlink_aops = {
10600 	.readpage	= btrfs_readpage,
10601 	.writepage	= btrfs_writepage,
10602 	.invalidatepage = btrfs_invalidatepage,
10603 	.releasepage	= btrfs_releasepage,
10604 };
10605 
10606 static const struct inode_operations btrfs_file_inode_operations = {
10607 	.getattr	= btrfs_getattr,
10608 	.setattr	= btrfs_setattr,
10609 	.listxattr      = btrfs_listxattr,
10610 	.permission	= btrfs_permission,
10611 	.fiemap		= btrfs_fiemap,
10612 	.get_acl	= btrfs_get_acl,
10613 	.set_acl	= btrfs_set_acl,
10614 	.update_time	= btrfs_update_time,
10615 };
10616 static const struct inode_operations btrfs_special_inode_operations = {
10617 	.getattr	= btrfs_getattr,
10618 	.setattr	= btrfs_setattr,
10619 	.permission	= btrfs_permission,
10620 	.listxattr	= btrfs_listxattr,
10621 	.get_acl	= btrfs_get_acl,
10622 	.set_acl	= btrfs_set_acl,
10623 	.update_time	= btrfs_update_time,
10624 };
10625 static const struct inode_operations btrfs_symlink_inode_operations = {
10626 	.get_link	= page_get_link,
10627 	.getattr	= btrfs_getattr,
10628 	.setattr	= btrfs_setattr,
10629 	.permission	= btrfs_permission,
10630 	.listxattr	= btrfs_listxattr,
10631 	.update_time	= btrfs_update_time,
10632 };
10633 
10634 const struct dentry_operations btrfs_dentry_operations = {
10635 	.d_delete	= btrfs_dentry_delete,
10636 };
10637