1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "misc.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "ordered-data.h" 40 #include "xattr.h" 41 #include "tree-log.h" 42 #include "volumes.h" 43 #include "compression.h" 44 #include "locking.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "backref.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 53 struct btrfs_iget_args { 54 struct btrfs_key *location; 55 struct btrfs_root *root; 56 }; 57 58 struct btrfs_dio_data { 59 u64 reserve; 60 u64 unsubmitted_oe_range_start; 61 u64 unsubmitted_oe_range_end; 62 int overwrite; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_dir_ro_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct file_operations btrfs_dir_file_operations; 72 static const struct extent_io_ops btrfs_extent_io_ops; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 88 u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * Cleanup all submitted ordered extents in specified range to handle errors 99 * from the btrfs_run_delalloc_range() callback. 100 * 101 * NOTE: caller must ensure that when an error happens, it can not call 102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 104 * to be released, which we want to happen only when finishing the ordered 105 * extent (btrfs_finish_ordered_io()). 106 */ 107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 108 struct page *locked_page, 109 u64 offset, u64 bytes) 110 { 111 unsigned long index = offset >> PAGE_SHIFT; 112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 113 u64 page_start = page_offset(locked_page); 114 u64 page_end = page_start + PAGE_SIZE - 1; 115 116 struct page *page; 117 118 while (index <= end_index) { 119 page = find_get_page(inode->i_mapping, index); 120 index++; 121 if (!page) 122 continue; 123 ClearPagePrivate2(page); 124 put_page(page); 125 } 126 127 /* 128 * In case this page belongs to the delalloc range being instantiated 129 * then skip it, since the first page of a range is going to be 130 * properly cleaned up by the caller of run_delalloc_range 131 */ 132 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 133 offset += PAGE_SIZE; 134 bytes -= PAGE_SIZE; 135 } 136 137 return __endio_write_update_ordered(inode, offset, bytes, false); 138 } 139 140 static int btrfs_dirty_inode(struct inode *inode); 141 142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 143 void btrfs_test_inode_set_ops(struct inode *inode) 144 { 145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 146 } 147 #endif 148 149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 150 struct inode *inode, struct inode *dir, 151 const struct qstr *qstr) 152 { 153 int err; 154 155 err = btrfs_init_acl(trans, inode, dir); 156 if (!err) 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 158 return err; 159 } 160 161 /* 162 * this does all the hard work for inserting an inline extent into 163 * the btree. The caller should have done a btrfs_drop_extents so that 164 * no overlapping inline items exist in the btree 165 */ 166 static int insert_inline_extent(struct btrfs_trans_handle *trans, 167 struct btrfs_path *path, int extent_inserted, 168 struct btrfs_root *root, struct inode *inode, 169 u64 start, size_t size, size_t compressed_size, 170 int compress_type, 171 struct page **compressed_pages) 172 { 173 struct extent_buffer *leaf; 174 struct page *page = NULL; 175 char *kaddr; 176 unsigned long ptr; 177 struct btrfs_file_extent_item *ei; 178 int ret; 179 size_t cur_size = size; 180 unsigned long offset; 181 182 ASSERT((compressed_size > 0 && compressed_pages) || 183 (compressed_size == 0 && !compressed_pages)); 184 185 if (compressed_size && compressed_pages) 186 cur_size = compressed_size; 187 188 inode_add_bytes(inode, size); 189 190 if (!extent_inserted) { 191 struct btrfs_key key; 192 size_t datasize; 193 194 key.objectid = btrfs_ino(BTRFS_I(inode)); 195 key.offset = start; 196 key.type = BTRFS_EXTENT_DATA_KEY; 197 198 datasize = btrfs_file_extent_calc_inline_size(cur_size); 199 path->leave_spinning = 1; 200 ret = btrfs_insert_empty_item(trans, root, path, &key, 201 datasize); 202 if (ret) 203 goto fail; 204 } 205 leaf = path->nodes[0]; 206 ei = btrfs_item_ptr(leaf, path->slots[0], 207 struct btrfs_file_extent_item); 208 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 210 btrfs_set_file_extent_encryption(leaf, ei, 0); 211 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 212 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 213 ptr = btrfs_file_extent_inline_start(ei); 214 215 if (compress_type != BTRFS_COMPRESS_NONE) { 216 struct page *cpage; 217 int i = 0; 218 while (compressed_size > 0) { 219 cpage = compressed_pages[i]; 220 cur_size = min_t(unsigned long, compressed_size, 221 PAGE_SIZE); 222 223 kaddr = kmap_atomic(cpage); 224 write_extent_buffer(leaf, kaddr, ptr, cur_size); 225 kunmap_atomic(kaddr); 226 227 i++; 228 ptr += cur_size; 229 compressed_size -= cur_size; 230 } 231 btrfs_set_file_extent_compression(leaf, ei, 232 compress_type); 233 } else { 234 page = find_get_page(inode->i_mapping, 235 start >> PAGE_SHIFT); 236 btrfs_set_file_extent_compression(leaf, ei, 0); 237 kaddr = kmap_atomic(page); 238 offset = offset_in_page(start); 239 write_extent_buffer(leaf, kaddr + offset, ptr, size); 240 kunmap_atomic(kaddr); 241 put_page(page); 242 } 243 btrfs_mark_buffer_dirty(leaf); 244 btrfs_release_path(path); 245 246 /* 247 * we're an inline extent, so nobody can 248 * extend the file past i_size without locking 249 * a page we already have locked. 250 * 251 * We must do any isize and inode updates 252 * before we unlock the pages. Otherwise we 253 * could end up racing with unlink. 254 */ 255 BTRFS_I(inode)->disk_i_size = inode->i_size; 256 ret = btrfs_update_inode(trans, root, inode); 257 258 fail: 259 return ret; 260 } 261 262 263 /* 264 * conditionally insert an inline extent into the file. This 265 * does the checks required to make sure the data is small enough 266 * to fit as an inline extent. 267 */ 268 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 269 u64 end, size_t compressed_size, 270 int compress_type, 271 struct page **compressed_pages) 272 { 273 struct btrfs_root *root = BTRFS_I(inode)->root; 274 struct btrfs_fs_info *fs_info = root->fs_info; 275 struct btrfs_trans_handle *trans; 276 u64 isize = i_size_read(inode); 277 u64 actual_end = min(end + 1, isize); 278 u64 inline_len = actual_end - start; 279 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 280 u64 data_len = inline_len; 281 int ret; 282 struct btrfs_path *path; 283 int extent_inserted = 0; 284 u32 extent_item_size; 285 286 if (compressed_size) 287 data_len = compressed_size; 288 289 if (start > 0 || 290 actual_end > fs_info->sectorsize || 291 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 292 (!compressed_size && 293 (actual_end & (fs_info->sectorsize - 1)) == 0) || 294 end + 1 < isize || 295 data_len > fs_info->max_inline) { 296 return 1; 297 } 298 299 path = btrfs_alloc_path(); 300 if (!path) 301 return -ENOMEM; 302 303 trans = btrfs_join_transaction(root); 304 if (IS_ERR(trans)) { 305 btrfs_free_path(path); 306 return PTR_ERR(trans); 307 } 308 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 309 310 if (compressed_size && compressed_pages) 311 extent_item_size = btrfs_file_extent_calc_inline_size( 312 compressed_size); 313 else 314 extent_item_size = btrfs_file_extent_calc_inline_size( 315 inline_len); 316 317 ret = __btrfs_drop_extents(trans, root, inode, path, 318 start, aligned_end, NULL, 319 1, 1, extent_item_size, &extent_inserted); 320 if (ret) { 321 btrfs_abort_transaction(trans, ret); 322 goto out; 323 } 324 325 if (isize > actual_end) 326 inline_len = min_t(u64, isize, actual_end); 327 ret = insert_inline_extent(trans, path, extent_inserted, 328 root, inode, start, 329 inline_len, compressed_size, 330 compress_type, compressed_pages); 331 if (ret && ret != -ENOSPC) { 332 btrfs_abort_transaction(trans, ret); 333 goto out; 334 } else if (ret == -ENOSPC) { 335 ret = 1; 336 goto out; 337 } 338 339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 341 out: 342 /* 343 * Don't forget to free the reserved space, as for inlined extent 344 * it won't count as data extent, free them directly here. 345 * And at reserve time, it's always aligned to page size, so 346 * just free one page here. 347 */ 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 349 btrfs_free_path(path); 350 btrfs_end_transaction(trans); 351 return ret; 352 } 353 354 struct async_extent { 355 u64 start; 356 u64 ram_size; 357 u64 compressed_size; 358 struct page **pages; 359 unsigned long nr_pages; 360 int compress_type; 361 struct list_head list; 362 }; 363 364 struct async_chunk { 365 struct inode *inode; 366 struct page *locked_page; 367 u64 start; 368 u64 end; 369 unsigned int write_flags; 370 struct list_head extents; 371 struct btrfs_work work; 372 atomic_t *pending; 373 }; 374 375 struct async_cow { 376 /* Number of chunks in flight; must be first in the structure */ 377 atomic_t num_chunks; 378 struct async_chunk chunks[]; 379 }; 380 381 static noinline int add_async_extent(struct async_chunk *cow, 382 u64 start, u64 ram_size, 383 u64 compressed_size, 384 struct page **pages, 385 unsigned long nr_pages, 386 int compress_type) 387 { 388 struct async_extent *async_extent; 389 390 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 391 BUG_ON(!async_extent); /* -ENOMEM */ 392 async_extent->start = start; 393 async_extent->ram_size = ram_size; 394 async_extent->compressed_size = compressed_size; 395 async_extent->pages = pages; 396 async_extent->nr_pages = nr_pages; 397 async_extent->compress_type = compress_type; 398 list_add_tail(&async_extent->list, &cow->extents); 399 return 0; 400 } 401 402 /* 403 * Check if the inode has flags compatible with compression 404 */ 405 static inline bool inode_can_compress(struct inode *inode) 406 { 407 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 408 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 409 return false; 410 return true; 411 } 412 413 /* 414 * Check if the inode needs to be submitted to compression, based on mount 415 * options, defragmentation, properties or heuristics. 416 */ 417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 418 { 419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 420 421 if (!inode_can_compress(inode)) { 422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 423 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 424 btrfs_ino(BTRFS_I(inode))); 425 return 0; 426 } 427 /* force compress */ 428 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 429 return 1; 430 /* defrag ioctl */ 431 if (BTRFS_I(inode)->defrag_compress) 432 return 1; 433 /* bad compression ratios */ 434 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 435 return 0; 436 if (btrfs_test_opt(fs_info, COMPRESS) || 437 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 438 BTRFS_I(inode)->prop_compress) 439 return btrfs_compress_heuristic(inode, start, end); 440 return 0; 441 } 442 443 static inline void inode_should_defrag(struct btrfs_inode *inode, 444 u64 start, u64 end, u64 num_bytes, u64 small_write) 445 { 446 /* If this is a small write inside eof, kick off a defrag */ 447 if (num_bytes < small_write && 448 (start > 0 || end + 1 < inode->disk_i_size)) 449 btrfs_add_inode_defrag(NULL, inode); 450 } 451 452 /* 453 * we create compressed extents in two phases. The first 454 * phase compresses a range of pages that have already been 455 * locked (both pages and state bits are locked). 456 * 457 * This is done inside an ordered work queue, and the compression 458 * is spread across many cpus. The actual IO submission is step 459 * two, and the ordered work queue takes care of making sure that 460 * happens in the same order things were put onto the queue by 461 * writepages and friends. 462 * 463 * If this code finds it can't get good compression, it puts an 464 * entry onto the work queue to write the uncompressed bytes. This 465 * makes sure that both compressed inodes and uncompressed inodes 466 * are written in the same order that the flusher thread sent them 467 * down. 468 */ 469 static noinline int compress_file_range(struct async_chunk *async_chunk) 470 { 471 struct inode *inode = async_chunk->inode; 472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 473 u64 blocksize = fs_info->sectorsize; 474 u64 start = async_chunk->start; 475 u64 end = async_chunk->end; 476 u64 actual_end; 477 u64 i_size; 478 int ret = 0; 479 struct page **pages = NULL; 480 unsigned long nr_pages; 481 unsigned long total_compressed = 0; 482 unsigned long total_in = 0; 483 int i; 484 int will_compress; 485 int compress_type = fs_info->compress_type; 486 int compressed_extents = 0; 487 int redirty = 0; 488 489 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 490 SZ_16K); 491 492 /* 493 * We need to save i_size before now because it could change in between 494 * us evaluating the size and assigning it. This is because we lock and 495 * unlock the page in truncate and fallocate, and then modify the i_size 496 * later on. 497 * 498 * The barriers are to emulate READ_ONCE, remove that once i_size_read 499 * does that for us. 500 */ 501 barrier(); 502 i_size = i_size_read(inode); 503 barrier(); 504 actual_end = min_t(u64, i_size, end + 1); 505 again: 506 will_compress = 0; 507 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 508 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 509 nr_pages = min_t(unsigned long, nr_pages, 510 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 511 512 /* 513 * we don't want to send crud past the end of i_size through 514 * compression, that's just a waste of CPU time. So, if the 515 * end of the file is before the start of our current 516 * requested range of bytes, we bail out to the uncompressed 517 * cleanup code that can deal with all of this. 518 * 519 * It isn't really the fastest way to fix things, but this is a 520 * very uncommon corner. 521 */ 522 if (actual_end <= start) 523 goto cleanup_and_bail_uncompressed; 524 525 total_compressed = actual_end - start; 526 527 /* 528 * skip compression for a small file range(<=blocksize) that 529 * isn't an inline extent, since it doesn't save disk space at all. 530 */ 531 if (total_compressed <= blocksize && 532 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 533 goto cleanup_and_bail_uncompressed; 534 535 total_compressed = min_t(unsigned long, total_compressed, 536 BTRFS_MAX_UNCOMPRESSED); 537 total_in = 0; 538 ret = 0; 539 540 /* 541 * we do compression for mount -o compress and when the 542 * inode has not been flagged as nocompress. This flag can 543 * change at any time if we discover bad compression ratios. 544 */ 545 if (inode_need_compress(inode, start, end)) { 546 WARN_ON(pages); 547 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 548 if (!pages) { 549 /* just bail out to the uncompressed code */ 550 nr_pages = 0; 551 goto cont; 552 } 553 554 if (BTRFS_I(inode)->defrag_compress) 555 compress_type = BTRFS_I(inode)->defrag_compress; 556 else if (BTRFS_I(inode)->prop_compress) 557 compress_type = BTRFS_I(inode)->prop_compress; 558 559 /* 560 * we need to call clear_page_dirty_for_io on each 561 * page in the range. Otherwise applications with the file 562 * mmap'd can wander in and change the page contents while 563 * we are compressing them. 564 * 565 * If the compression fails for any reason, we set the pages 566 * dirty again later on. 567 * 568 * Note that the remaining part is redirtied, the start pointer 569 * has moved, the end is the original one. 570 */ 571 if (!redirty) { 572 extent_range_clear_dirty_for_io(inode, start, end); 573 redirty = 1; 574 } 575 576 /* Compression level is applied here and only here */ 577 ret = btrfs_compress_pages( 578 compress_type | (fs_info->compress_level << 4), 579 inode->i_mapping, start, 580 pages, 581 &nr_pages, 582 &total_in, 583 &total_compressed); 584 585 if (!ret) { 586 unsigned long offset = offset_in_page(total_compressed); 587 struct page *page = pages[nr_pages - 1]; 588 char *kaddr; 589 590 /* zero the tail end of the last page, we might be 591 * sending it down to disk 592 */ 593 if (offset) { 594 kaddr = kmap_atomic(page); 595 memset(kaddr + offset, 0, 596 PAGE_SIZE - offset); 597 kunmap_atomic(kaddr); 598 } 599 will_compress = 1; 600 } 601 } 602 cont: 603 if (start == 0) { 604 /* lets try to make an inline extent */ 605 if (ret || total_in < actual_end) { 606 /* we didn't compress the entire range, try 607 * to make an uncompressed inline extent. 608 */ 609 ret = cow_file_range_inline(inode, start, end, 0, 610 BTRFS_COMPRESS_NONE, NULL); 611 } else { 612 /* try making a compressed inline extent */ 613 ret = cow_file_range_inline(inode, start, end, 614 total_compressed, 615 compress_type, pages); 616 } 617 if (ret <= 0) { 618 unsigned long clear_flags = EXTENT_DELALLOC | 619 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 620 EXTENT_DO_ACCOUNTING; 621 unsigned long page_error_op; 622 623 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 624 625 /* 626 * inline extent creation worked or returned error, 627 * we don't need to create any more async work items. 628 * Unlock and free up our temp pages. 629 * 630 * We use DO_ACCOUNTING here because we need the 631 * delalloc_release_metadata to be done _after_ we drop 632 * our outstanding extent for clearing delalloc for this 633 * range. 634 */ 635 extent_clear_unlock_delalloc(inode, start, end, NULL, 636 clear_flags, 637 PAGE_UNLOCK | 638 PAGE_CLEAR_DIRTY | 639 PAGE_SET_WRITEBACK | 640 page_error_op | 641 PAGE_END_WRITEBACK); 642 643 for (i = 0; i < nr_pages; i++) { 644 WARN_ON(pages[i]->mapping); 645 put_page(pages[i]); 646 } 647 kfree(pages); 648 649 return 0; 650 } 651 } 652 653 if (will_compress) { 654 /* 655 * we aren't doing an inline extent round the compressed size 656 * up to a block size boundary so the allocator does sane 657 * things 658 */ 659 total_compressed = ALIGN(total_compressed, blocksize); 660 661 /* 662 * one last check to make sure the compression is really a 663 * win, compare the page count read with the blocks on disk, 664 * compression must free at least one sector size 665 */ 666 total_in = ALIGN(total_in, PAGE_SIZE); 667 if (total_compressed + blocksize <= total_in) { 668 compressed_extents++; 669 670 /* 671 * The async work queues will take care of doing actual 672 * allocation on disk for these compressed pages, and 673 * will submit them to the elevator. 674 */ 675 add_async_extent(async_chunk, start, total_in, 676 total_compressed, pages, nr_pages, 677 compress_type); 678 679 if (start + total_in < end) { 680 start += total_in; 681 pages = NULL; 682 cond_resched(); 683 goto again; 684 } 685 return compressed_extents; 686 } 687 } 688 if (pages) { 689 /* 690 * the compression code ran but failed to make things smaller, 691 * free any pages it allocated and our page pointer array 692 */ 693 for (i = 0; i < nr_pages; i++) { 694 WARN_ON(pages[i]->mapping); 695 put_page(pages[i]); 696 } 697 kfree(pages); 698 pages = NULL; 699 total_compressed = 0; 700 nr_pages = 0; 701 702 /* flag the file so we don't compress in the future */ 703 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 704 !(BTRFS_I(inode)->prop_compress)) { 705 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 706 } 707 } 708 cleanup_and_bail_uncompressed: 709 /* 710 * No compression, but we still need to write the pages in the file 711 * we've been given so far. redirty the locked page if it corresponds 712 * to our extent and set things up for the async work queue to run 713 * cow_file_range to do the normal delalloc dance. 714 */ 715 if (page_offset(async_chunk->locked_page) >= start && 716 page_offset(async_chunk->locked_page) <= end) 717 __set_page_dirty_nobuffers(async_chunk->locked_page); 718 /* unlocked later on in the async handlers */ 719 720 if (redirty) 721 extent_range_redirty_for_io(inode, start, end); 722 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 723 BTRFS_COMPRESS_NONE); 724 compressed_extents++; 725 726 return compressed_extents; 727 } 728 729 static void free_async_extent_pages(struct async_extent *async_extent) 730 { 731 int i; 732 733 if (!async_extent->pages) 734 return; 735 736 for (i = 0; i < async_extent->nr_pages; i++) { 737 WARN_ON(async_extent->pages[i]->mapping); 738 put_page(async_extent->pages[i]); 739 } 740 kfree(async_extent->pages); 741 async_extent->nr_pages = 0; 742 async_extent->pages = NULL; 743 } 744 745 /* 746 * phase two of compressed writeback. This is the ordered portion 747 * of the code, which only gets called in the order the work was 748 * queued. We walk all the async extents created by compress_file_range 749 * and send them down to the disk. 750 */ 751 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 752 { 753 struct inode *inode = async_chunk->inode; 754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 755 struct async_extent *async_extent; 756 u64 alloc_hint = 0; 757 struct btrfs_key ins; 758 struct extent_map *em; 759 struct btrfs_root *root = BTRFS_I(inode)->root; 760 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 761 int ret = 0; 762 763 again: 764 while (!list_empty(&async_chunk->extents)) { 765 async_extent = list_entry(async_chunk->extents.next, 766 struct async_extent, list); 767 list_del(&async_extent->list); 768 769 retry: 770 lock_extent(io_tree, async_extent->start, 771 async_extent->start + async_extent->ram_size - 1); 772 /* did the compression code fall back to uncompressed IO? */ 773 if (!async_extent->pages) { 774 int page_started = 0; 775 unsigned long nr_written = 0; 776 777 /* allocate blocks */ 778 ret = cow_file_range(inode, async_chunk->locked_page, 779 async_extent->start, 780 async_extent->start + 781 async_extent->ram_size - 1, 782 &page_started, &nr_written, 0); 783 784 /* JDM XXX */ 785 786 /* 787 * if page_started, cow_file_range inserted an 788 * inline extent and took care of all the unlocking 789 * and IO for us. Otherwise, we need to submit 790 * all those pages down to the drive. 791 */ 792 if (!page_started && !ret) 793 extent_write_locked_range(inode, 794 async_extent->start, 795 async_extent->start + 796 async_extent->ram_size - 1, 797 WB_SYNC_ALL); 798 else if (ret) 799 unlock_page(async_chunk->locked_page); 800 kfree(async_extent); 801 cond_resched(); 802 continue; 803 } 804 805 ret = btrfs_reserve_extent(root, async_extent->ram_size, 806 async_extent->compressed_size, 807 async_extent->compressed_size, 808 0, alloc_hint, &ins, 1, 1); 809 if (ret) { 810 free_async_extent_pages(async_extent); 811 812 if (ret == -ENOSPC) { 813 unlock_extent(io_tree, async_extent->start, 814 async_extent->start + 815 async_extent->ram_size - 1); 816 817 /* 818 * we need to redirty the pages if we decide to 819 * fallback to uncompressed IO, otherwise we 820 * will not submit these pages down to lower 821 * layers. 822 */ 823 extent_range_redirty_for_io(inode, 824 async_extent->start, 825 async_extent->start + 826 async_extent->ram_size - 1); 827 828 goto retry; 829 } 830 goto out_free; 831 } 832 /* 833 * here we're doing allocation and writeback of the 834 * compressed pages 835 */ 836 em = create_io_em(inode, async_extent->start, 837 async_extent->ram_size, /* len */ 838 async_extent->start, /* orig_start */ 839 ins.objectid, /* block_start */ 840 ins.offset, /* block_len */ 841 ins.offset, /* orig_block_len */ 842 async_extent->ram_size, /* ram_bytes */ 843 async_extent->compress_type, 844 BTRFS_ORDERED_COMPRESSED); 845 if (IS_ERR(em)) 846 /* ret value is not necessary due to void function */ 847 goto out_free_reserve; 848 free_extent_map(em); 849 850 ret = btrfs_add_ordered_extent_compress(inode, 851 async_extent->start, 852 ins.objectid, 853 async_extent->ram_size, 854 ins.offset, 855 BTRFS_ORDERED_COMPRESSED, 856 async_extent->compress_type); 857 if (ret) { 858 btrfs_drop_extent_cache(BTRFS_I(inode), 859 async_extent->start, 860 async_extent->start + 861 async_extent->ram_size - 1, 0); 862 goto out_free_reserve; 863 } 864 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 865 866 /* 867 * clear dirty, set writeback and unlock the pages. 868 */ 869 extent_clear_unlock_delalloc(inode, async_extent->start, 870 async_extent->start + 871 async_extent->ram_size - 1, 872 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 874 PAGE_SET_WRITEBACK); 875 if (btrfs_submit_compressed_write(inode, 876 async_extent->start, 877 async_extent->ram_size, 878 ins.objectid, 879 ins.offset, async_extent->pages, 880 async_extent->nr_pages, 881 async_chunk->write_flags)) { 882 struct page *p = async_extent->pages[0]; 883 const u64 start = async_extent->start; 884 const u64 end = start + async_extent->ram_size - 1; 885 886 p->mapping = inode->i_mapping; 887 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 888 889 p->mapping = NULL; 890 extent_clear_unlock_delalloc(inode, start, end, 891 NULL, 0, 892 PAGE_END_WRITEBACK | 893 PAGE_SET_ERROR); 894 free_async_extent_pages(async_extent); 895 } 896 alloc_hint = ins.objectid + ins.offset; 897 kfree(async_extent); 898 cond_resched(); 899 } 900 return; 901 out_free_reserve: 902 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 903 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 904 out_free: 905 extent_clear_unlock_delalloc(inode, async_extent->start, 906 async_extent->start + 907 async_extent->ram_size - 1, 908 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 909 EXTENT_DELALLOC_NEW | 910 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 911 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 912 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 913 PAGE_SET_ERROR); 914 free_async_extent_pages(async_extent); 915 kfree(async_extent); 916 goto again; 917 } 918 919 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 920 u64 num_bytes) 921 { 922 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 923 struct extent_map *em; 924 u64 alloc_hint = 0; 925 926 read_lock(&em_tree->lock); 927 em = search_extent_mapping(em_tree, start, num_bytes); 928 if (em) { 929 /* 930 * if block start isn't an actual block number then find the 931 * first block in this inode and use that as a hint. If that 932 * block is also bogus then just don't worry about it. 933 */ 934 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 935 free_extent_map(em); 936 em = search_extent_mapping(em_tree, 0, 0); 937 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 938 alloc_hint = em->block_start; 939 if (em) 940 free_extent_map(em); 941 } else { 942 alloc_hint = em->block_start; 943 free_extent_map(em); 944 } 945 } 946 read_unlock(&em_tree->lock); 947 948 return alloc_hint; 949 } 950 951 /* 952 * when extent_io.c finds a delayed allocation range in the file, 953 * the call backs end up in this code. The basic idea is to 954 * allocate extents on disk for the range, and create ordered data structs 955 * in ram to track those extents. 956 * 957 * locked_page is the page that writepage had locked already. We use 958 * it to make sure we don't do extra locks or unlocks. 959 * 960 * *page_started is set to one if we unlock locked_page and do everything 961 * required to start IO on it. It may be clean and already done with 962 * IO when we return. 963 */ 964 static noinline int cow_file_range(struct inode *inode, 965 struct page *locked_page, 966 u64 start, u64 end, int *page_started, 967 unsigned long *nr_written, int unlock) 968 { 969 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 970 struct btrfs_root *root = BTRFS_I(inode)->root; 971 u64 alloc_hint = 0; 972 u64 num_bytes; 973 unsigned long ram_size; 974 u64 cur_alloc_size = 0; 975 u64 blocksize = fs_info->sectorsize; 976 struct btrfs_key ins; 977 struct extent_map *em; 978 unsigned clear_bits; 979 unsigned long page_ops; 980 bool extent_reserved = false; 981 int ret = 0; 982 983 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 984 WARN_ON_ONCE(1); 985 ret = -EINVAL; 986 goto out_unlock; 987 } 988 989 num_bytes = ALIGN(end - start + 1, blocksize); 990 num_bytes = max(blocksize, num_bytes); 991 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 992 993 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 994 995 if (start == 0) { 996 /* lets try to make an inline extent */ 997 ret = cow_file_range_inline(inode, start, end, 0, 998 BTRFS_COMPRESS_NONE, NULL); 999 if (ret == 0) { 1000 /* 1001 * We use DO_ACCOUNTING here because we need the 1002 * delalloc_release_metadata to be run _after_ we drop 1003 * our outstanding extent for clearing delalloc for this 1004 * range. 1005 */ 1006 extent_clear_unlock_delalloc(inode, start, end, NULL, 1007 EXTENT_LOCKED | EXTENT_DELALLOC | 1008 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1009 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1010 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1011 PAGE_END_WRITEBACK); 1012 *nr_written = *nr_written + 1013 (end - start + PAGE_SIZE) / PAGE_SIZE; 1014 *page_started = 1; 1015 goto out; 1016 } else if (ret < 0) { 1017 goto out_unlock; 1018 } 1019 } 1020 1021 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1022 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1023 start + num_bytes - 1, 0); 1024 1025 while (num_bytes > 0) { 1026 cur_alloc_size = num_bytes; 1027 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1028 fs_info->sectorsize, 0, alloc_hint, 1029 &ins, 1, 1); 1030 if (ret < 0) 1031 goto out_unlock; 1032 cur_alloc_size = ins.offset; 1033 extent_reserved = true; 1034 1035 ram_size = ins.offset; 1036 em = create_io_em(inode, start, ins.offset, /* len */ 1037 start, /* orig_start */ 1038 ins.objectid, /* block_start */ 1039 ins.offset, /* block_len */ 1040 ins.offset, /* orig_block_len */ 1041 ram_size, /* ram_bytes */ 1042 BTRFS_COMPRESS_NONE, /* compress_type */ 1043 BTRFS_ORDERED_REGULAR /* type */); 1044 if (IS_ERR(em)) { 1045 ret = PTR_ERR(em); 1046 goto out_reserve; 1047 } 1048 free_extent_map(em); 1049 1050 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1051 ram_size, cur_alloc_size, 0); 1052 if (ret) 1053 goto out_drop_extent_cache; 1054 1055 if (root->root_key.objectid == 1056 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1057 ret = btrfs_reloc_clone_csums(inode, start, 1058 cur_alloc_size); 1059 /* 1060 * Only drop cache here, and process as normal. 1061 * 1062 * We must not allow extent_clear_unlock_delalloc() 1063 * at out_unlock label to free meta of this ordered 1064 * extent, as its meta should be freed by 1065 * btrfs_finish_ordered_io(). 1066 * 1067 * So we must continue until @start is increased to 1068 * skip current ordered extent. 1069 */ 1070 if (ret) 1071 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1072 start + ram_size - 1, 0); 1073 } 1074 1075 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1076 1077 /* we're not doing compressed IO, don't unlock the first 1078 * page (which the caller expects to stay locked), don't 1079 * clear any dirty bits and don't set any writeback bits 1080 * 1081 * Do set the Private2 bit so we know this page was properly 1082 * setup for writepage 1083 */ 1084 page_ops = unlock ? PAGE_UNLOCK : 0; 1085 page_ops |= PAGE_SET_PRIVATE2; 1086 1087 extent_clear_unlock_delalloc(inode, start, 1088 start + ram_size - 1, 1089 locked_page, 1090 EXTENT_LOCKED | EXTENT_DELALLOC, 1091 page_ops); 1092 if (num_bytes < cur_alloc_size) 1093 num_bytes = 0; 1094 else 1095 num_bytes -= cur_alloc_size; 1096 alloc_hint = ins.objectid + ins.offset; 1097 start += cur_alloc_size; 1098 extent_reserved = false; 1099 1100 /* 1101 * btrfs_reloc_clone_csums() error, since start is increased 1102 * extent_clear_unlock_delalloc() at out_unlock label won't 1103 * free metadata of current ordered extent, we're OK to exit. 1104 */ 1105 if (ret) 1106 goto out_unlock; 1107 } 1108 out: 1109 return ret; 1110 1111 out_drop_extent_cache: 1112 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1113 out_reserve: 1114 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1115 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1116 out_unlock: 1117 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1118 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1119 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1120 PAGE_END_WRITEBACK; 1121 /* 1122 * If we reserved an extent for our delalloc range (or a subrange) and 1123 * failed to create the respective ordered extent, then it means that 1124 * when we reserved the extent we decremented the extent's size from 1125 * the data space_info's bytes_may_use counter and incremented the 1126 * space_info's bytes_reserved counter by the same amount. We must make 1127 * sure extent_clear_unlock_delalloc() does not try to decrement again 1128 * the data space_info's bytes_may_use counter, therefore we do not pass 1129 * it the flag EXTENT_CLEAR_DATA_RESV. 1130 */ 1131 if (extent_reserved) { 1132 extent_clear_unlock_delalloc(inode, start, 1133 start + cur_alloc_size, 1134 locked_page, 1135 clear_bits, 1136 page_ops); 1137 start += cur_alloc_size; 1138 if (start >= end) 1139 goto out; 1140 } 1141 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1142 clear_bits | EXTENT_CLEAR_DATA_RESV, 1143 page_ops); 1144 goto out; 1145 } 1146 1147 /* 1148 * work queue call back to started compression on a file and pages 1149 */ 1150 static noinline void async_cow_start(struct btrfs_work *work) 1151 { 1152 struct async_chunk *async_chunk; 1153 int compressed_extents; 1154 1155 async_chunk = container_of(work, struct async_chunk, work); 1156 1157 compressed_extents = compress_file_range(async_chunk); 1158 if (compressed_extents == 0) { 1159 btrfs_add_delayed_iput(async_chunk->inode); 1160 async_chunk->inode = NULL; 1161 } 1162 } 1163 1164 /* 1165 * work queue call back to submit previously compressed pages 1166 */ 1167 static noinline void async_cow_submit(struct btrfs_work *work) 1168 { 1169 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1170 work); 1171 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1172 unsigned long nr_pages; 1173 1174 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1175 PAGE_SHIFT; 1176 1177 /* atomic_sub_return implies a barrier */ 1178 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1179 5 * SZ_1M) 1180 cond_wake_up_nomb(&fs_info->async_submit_wait); 1181 1182 /* 1183 * ->inode could be NULL if async_chunk_start has failed to compress, 1184 * in which case we don't have anything to submit, yet we need to 1185 * always adjust ->async_delalloc_pages as its paired with the init 1186 * happening in cow_file_range_async 1187 */ 1188 if (async_chunk->inode) 1189 submit_compressed_extents(async_chunk); 1190 } 1191 1192 static noinline void async_cow_free(struct btrfs_work *work) 1193 { 1194 struct async_chunk *async_chunk; 1195 1196 async_chunk = container_of(work, struct async_chunk, work); 1197 if (async_chunk->inode) 1198 btrfs_add_delayed_iput(async_chunk->inode); 1199 /* 1200 * Since the pointer to 'pending' is at the beginning of the array of 1201 * async_chunk's, freeing it ensures the whole array has been freed. 1202 */ 1203 if (atomic_dec_and_test(async_chunk->pending)) 1204 kvfree(async_chunk->pending); 1205 } 1206 1207 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1208 u64 start, u64 end, int *page_started, 1209 unsigned long *nr_written, 1210 unsigned int write_flags) 1211 { 1212 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1213 struct async_cow *ctx; 1214 struct async_chunk *async_chunk; 1215 unsigned long nr_pages; 1216 u64 cur_end; 1217 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1218 int i; 1219 bool should_compress; 1220 unsigned nofs_flag; 1221 1222 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1223 1224 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1225 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1226 num_chunks = 1; 1227 should_compress = false; 1228 } else { 1229 should_compress = true; 1230 } 1231 1232 nofs_flag = memalloc_nofs_save(); 1233 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1234 memalloc_nofs_restore(nofs_flag); 1235 1236 if (!ctx) { 1237 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1238 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1239 EXTENT_DO_ACCOUNTING; 1240 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1241 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1242 PAGE_SET_ERROR; 1243 1244 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1245 clear_bits, page_ops); 1246 return -ENOMEM; 1247 } 1248 1249 async_chunk = ctx->chunks; 1250 atomic_set(&ctx->num_chunks, num_chunks); 1251 1252 for (i = 0; i < num_chunks; i++) { 1253 if (should_compress) 1254 cur_end = min(end, start + SZ_512K - 1); 1255 else 1256 cur_end = end; 1257 1258 /* 1259 * igrab is called higher up in the call chain, take only the 1260 * lightweight reference for the callback lifetime 1261 */ 1262 ihold(inode); 1263 async_chunk[i].pending = &ctx->num_chunks; 1264 async_chunk[i].inode = inode; 1265 async_chunk[i].start = start; 1266 async_chunk[i].end = cur_end; 1267 async_chunk[i].locked_page = locked_page; 1268 async_chunk[i].write_flags = write_flags; 1269 INIT_LIST_HEAD(&async_chunk[i].extents); 1270 1271 btrfs_init_work(&async_chunk[i].work, 1272 btrfs_delalloc_helper, 1273 async_cow_start, async_cow_submit, 1274 async_cow_free); 1275 1276 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1277 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1278 1279 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1280 1281 *nr_written += nr_pages; 1282 start = cur_end + 1; 1283 } 1284 *page_started = 1; 1285 return 0; 1286 } 1287 1288 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1289 u64 bytenr, u64 num_bytes) 1290 { 1291 int ret; 1292 struct btrfs_ordered_sum *sums; 1293 LIST_HEAD(list); 1294 1295 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1296 bytenr + num_bytes - 1, &list, 0); 1297 if (ret == 0 && list_empty(&list)) 1298 return 0; 1299 1300 while (!list_empty(&list)) { 1301 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1302 list_del(&sums->list); 1303 kfree(sums); 1304 } 1305 if (ret < 0) 1306 return ret; 1307 return 1; 1308 } 1309 1310 /* 1311 * when nowcow writeback call back. This checks for snapshots or COW copies 1312 * of the extents that exist in the file, and COWs the file as required. 1313 * 1314 * If no cow copies or snapshots exist, we write directly to the existing 1315 * blocks on disk 1316 */ 1317 static noinline int run_delalloc_nocow(struct inode *inode, 1318 struct page *locked_page, 1319 const u64 start, const u64 end, 1320 int *page_started, int force, 1321 unsigned long *nr_written) 1322 { 1323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1324 struct btrfs_root *root = BTRFS_I(inode)->root; 1325 struct btrfs_path *path; 1326 u64 cow_start = (u64)-1; 1327 u64 cur_offset = start; 1328 int ret; 1329 bool check_prev = true; 1330 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1331 u64 ino = btrfs_ino(BTRFS_I(inode)); 1332 bool nocow = false; 1333 u64 disk_bytenr = 0; 1334 1335 path = btrfs_alloc_path(); 1336 if (!path) { 1337 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1338 EXTENT_LOCKED | EXTENT_DELALLOC | 1339 EXTENT_DO_ACCOUNTING | 1340 EXTENT_DEFRAG, PAGE_UNLOCK | 1341 PAGE_CLEAR_DIRTY | 1342 PAGE_SET_WRITEBACK | 1343 PAGE_END_WRITEBACK); 1344 return -ENOMEM; 1345 } 1346 1347 while (1) { 1348 struct btrfs_key found_key; 1349 struct btrfs_file_extent_item *fi; 1350 struct extent_buffer *leaf; 1351 u64 extent_end; 1352 u64 extent_offset; 1353 u64 num_bytes = 0; 1354 u64 disk_num_bytes; 1355 u64 ram_bytes; 1356 int extent_type; 1357 1358 nocow = false; 1359 1360 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1361 cur_offset, 0); 1362 if (ret < 0) 1363 goto error; 1364 1365 /* 1366 * If there is no extent for our range when doing the initial 1367 * search, then go back to the previous slot as it will be the 1368 * one containing the search offset 1369 */ 1370 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1371 leaf = path->nodes[0]; 1372 btrfs_item_key_to_cpu(leaf, &found_key, 1373 path->slots[0] - 1); 1374 if (found_key.objectid == ino && 1375 found_key.type == BTRFS_EXTENT_DATA_KEY) 1376 path->slots[0]--; 1377 } 1378 check_prev = false; 1379 next_slot: 1380 /* Go to next leaf if we have exhausted the current one */ 1381 leaf = path->nodes[0]; 1382 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1383 ret = btrfs_next_leaf(root, path); 1384 if (ret < 0) { 1385 if (cow_start != (u64)-1) 1386 cur_offset = cow_start; 1387 goto error; 1388 } 1389 if (ret > 0) 1390 break; 1391 leaf = path->nodes[0]; 1392 } 1393 1394 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1395 1396 /* Didn't find anything for our INO */ 1397 if (found_key.objectid > ino) 1398 break; 1399 /* 1400 * Keep searching until we find an EXTENT_ITEM or there are no 1401 * more extents for this inode 1402 */ 1403 if (WARN_ON_ONCE(found_key.objectid < ino) || 1404 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1405 path->slots[0]++; 1406 goto next_slot; 1407 } 1408 1409 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1410 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1411 found_key.offset > end) 1412 break; 1413 1414 /* 1415 * If the found extent starts after requested offset, then 1416 * adjust extent_end to be right before this extent begins 1417 */ 1418 if (found_key.offset > cur_offset) { 1419 extent_end = found_key.offset; 1420 extent_type = 0; 1421 goto out_check; 1422 } 1423 1424 /* 1425 * Found extent which begins before our range and potentially 1426 * intersect it 1427 */ 1428 fi = btrfs_item_ptr(leaf, path->slots[0], 1429 struct btrfs_file_extent_item); 1430 extent_type = btrfs_file_extent_type(leaf, fi); 1431 1432 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1433 if (extent_type == BTRFS_FILE_EXTENT_REG || 1434 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1435 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1436 extent_offset = btrfs_file_extent_offset(leaf, fi); 1437 extent_end = found_key.offset + 1438 btrfs_file_extent_num_bytes(leaf, fi); 1439 disk_num_bytes = 1440 btrfs_file_extent_disk_num_bytes(leaf, fi); 1441 /* 1442 * If extent we got ends before our range starts, skip 1443 * to next extent 1444 */ 1445 if (extent_end <= start) { 1446 path->slots[0]++; 1447 goto next_slot; 1448 } 1449 /* Skip holes */ 1450 if (disk_bytenr == 0) 1451 goto out_check; 1452 /* Skip compressed/encrypted/encoded extents */ 1453 if (btrfs_file_extent_compression(leaf, fi) || 1454 btrfs_file_extent_encryption(leaf, fi) || 1455 btrfs_file_extent_other_encoding(leaf, fi)) 1456 goto out_check; 1457 /* 1458 * If extent is created before the last volume's snapshot 1459 * this implies the extent is shared, hence we can't do 1460 * nocow. This is the same check as in 1461 * btrfs_cross_ref_exist but without calling 1462 * btrfs_search_slot. 1463 */ 1464 if (!freespace_inode && 1465 btrfs_file_extent_generation(leaf, fi) <= 1466 btrfs_root_last_snapshot(&root->root_item)) 1467 goto out_check; 1468 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1469 goto out_check; 1470 /* If extent is RO, we must COW it */ 1471 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1472 goto out_check; 1473 ret = btrfs_cross_ref_exist(root, ino, 1474 found_key.offset - 1475 extent_offset, disk_bytenr); 1476 if (ret) { 1477 /* 1478 * ret could be -EIO if the above fails to read 1479 * metadata. 1480 */ 1481 if (ret < 0) { 1482 if (cow_start != (u64)-1) 1483 cur_offset = cow_start; 1484 goto error; 1485 } 1486 1487 WARN_ON_ONCE(freespace_inode); 1488 goto out_check; 1489 } 1490 disk_bytenr += extent_offset; 1491 disk_bytenr += cur_offset - found_key.offset; 1492 num_bytes = min(end + 1, extent_end) - cur_offset; 1493 /* 1494 * If there are pending snapshots for this root, we 1495 * fall into common COW way 1496 */ 1497 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1498 goto out_check; 1499 /* 1500 * force cow if csum exists in the range. 1501 * this ensure that csum for a given extent are 1502 * either valid or do not exist. 1503 */ 1504 ret = csum_exist_in_range(fs_info, disk_bytenr, 1505 num_bytes); 1506 if (ret) { 1507 /* 1508 * ret could be -EIO if the above fails to read 1509 * metadata. 1510 */ 1511 if (ret < 0) { 1512 if (cow_start != (u64)-1) 1513 cur_offset = cow_start; 1514 goto error; 1515 } 1516 WARN_ON_ONCE(freespace_inode); 1517 goto out_check; 1518 } 1519 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1520 goto out_check; 1521 nocow = true; 1522 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1523 extent_end = found_key.offset + ram_bytes; 1524 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1525 /* Skip extents outside of our requested range */ 1526 if (extent_end <= start) { 1527 path->slots[0]++; 1528 goto next_slot; 1529 } 1530 } else { 1531 /* If this triggers then we have a memory corruption */ 1532 BUG(); 1533 } 1534 out_check: 1535 /* 1536 * If nocow is false then record the beginning of the range 1537 * that needs to be COWed 1538 */ 1539 if (!nocow) { 1540 if (cow_start == (u64)-1) 1541 cow_start = cur_offset; 1542 cur_offset = extent_end; 1543 if (cur_offset > end) 1544 break; 1545 path->slots[0]++; 1546 goto next_slot; 1547 } 1548 1549 btrfs_release_path(path); 1550 1551 /* 1552 * COW range from cow_start to found_key.offset - 1. As the key 1553 * will contain the beginning of the first extent that can be 1554 * NOCOW, following one which needs to be COW'ed 1555 */ 1556 if (cow_start != (u64)-1) { 1557 ret = cow_file_range(inode, locked_page, 1558 cow_start, found_key.offset - 1, 1559 page_started, nr_written, 1); 1560 if (ret) { 1561 if (nocow) 1562 btrfs_dec_nocow_writers(fs_info, 1563 disk_bytenr); 1564 goto error; 1565 } 1566 cow_start = (u64)-1; 1567 } 1568 1569 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1570 u64 orig_start = found_key.offset - extent_offset; 1571 struct extent_map *em; 1572 1573 em = create_io_em(inode, cur_offset, num_bytes, 1574 orig_start, 1575 disk_bytenr, /* block_start */ 1576 num_bytes, /* block_len */ 1577 disk_num_bytes, /* orig_block_len */ 1578 ram_bytes, BTRFS_COMPRESS_NONE, 1579 BTRFS_ORDERED_PREALLOC); 1580 if (IS_ERR(em)) { 1581 if (nocow) 1582 btrfs_dec_nocow_writers(fs_info, 1583 disk_bytenr); 1584 ret = PTR_ERR(em); 1585 goto error; 1586 } 1587 free_extent_map(em); 1588 ret = btrfs_add_ordered_extent(inode, cur_offset, 1589 disk_bytenr, num_bytes, 1590 num_bytes, 1591 BTRFS_ORDERED_PREALLOC); 1592 if (ret) { 1593 btrfs_drop_extent_cache(BTRFS_I(inode), 1594 cur_offset, 1595 cur_offset + num_bytes - 1, 1596 0); 1597 goto error; 1598 } 1599 } else { 1600 ret = btrfs_add_ordered_extent(inode, cur_offset, 1601 disk_bytenr, num_bytes, 1602 num_bytes, 1603 BTRFS_ORDERED_NOCOW); 1604 if (ret) 1605 goto error; 1606 } 1607 1608 if (nocow) 1609 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1610 nocow = false; 1611 1612 if (root->root_key.objectid == 1613 BTRFS_DATA_RELOC_TREE_OBJECTID) 1614 /* 1615 * Error handled later, as we must prevent 1616 * extent_clear_unlock_delalloc() in error handler 1617 * from freeing metadata of created ordered extent. 1618 */ 1619 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1620 num_bytes); 1621 1622 extent_clear_unlock_delalloc(inode, cur_offset, 1623 cur_offset + num_bytes - 1, 1624 locked_page, EXTENT_LOCKED | 1625 EXTENT_DELALLOC | 1626 EXTENT_CLEAR_DATA_RESV, 1627 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1628 1629 cur_offset = extent_end; 1630 1631 /* 1632 * btrfs_reloc_clone_csums() error, now we're OK to call error 1633 * handler, as metadata for created ordered extent will only 1634 * be freed by btrfs_finish_ordered_io(). 1635 */ 1636 if (ret) 1637 goto error; 1638 if (cur_offset > end) 1639 break; 1640 } 1641 btrfs_release_path(path); 1642 1643 if (cur_offset <= end && cow_start == (u64)-1) 1644 cow_start = cur_offset; 1645 1646 if (cow_start != (u64)-1) { 1647 cur_offset = end; 1648 ret = cow_file_range(inode, locked_page, cow_start, end, 1649 page_started, nr_written, 1); 1650 if (ret) 1651 goto error; 1652 } 1653 1654 error: 1655 if (nocow) 1656 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1657 1658 if (ret && cur_offset < end) 1659 extent_clear_unlock_delalloc(inode, cur_offset, end, 1660 locked_page, EXTENT_LOCKED | 1661 EXTENT_DELALLOC | EXTENT_DEFRAG | 1662 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1663 PAGE_CLEAR_DIRTY | 1664 PAGE_SET_WRITEBACK | 1665 PAGE_END_WRITEBACK); 1666 btrfs_free_path(path); 1667 return ret; 1668 } 1669 1670 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1671 { 1672 1673 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1674 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1675 return 0; 1676 1677 /* 1678 * @defrag_bytes is a hint value, no spinlock held here, 1679 * if is not zero, it means the file is defragging. 1680 * Force cow if given extent needs to be defragged. 1681 */ 1682 if (BTRFS_I(inode)->defrag_bytes && 1683 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1684 EXTENT_DEFRAG, 0, NULL)) 1685 return 1; 1686 1687 return 0; 1688 } 1689 1690 /* 1691 * Function to process delayed allocation (create CoW) for ranges which are 1692 * being touched for the first time. 1693 */ 1694 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1695 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1696 struct writeback_control *wbc) 1697 { 1698 int ret; 1699 int force_cow = need_force_cow(inode, start, end); 1700 unsigned int write_flags = wbc_to_write_flags(wbc); 1701 1702 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1703 ret = run_delalloc_nocow(inode, locked_page, start, end, 1704 page_started, 1, nr_written); 1705 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1706 ret = run_delalloc_nocow(inode, locked_page, start, end, 1707 page_started, 0, nr_written); 1708 } else if (!inode_can_compress(inode) || 1709 !inode_need_compress(inode, start, end)) { 1710 ret = cow_file_range(inode, locked_page, start, end, 1711 page_started, nr_written, 1); 1712 } else { 1713 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1714 &BTRFS_I(inode)->runtime_flags); 1715 ret = cow_file_range_async(inode, locked_page, start, end, 1716 page_started, nr_written, 1717 write_flags); 1718 } 1719 if (ret) 1720 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1721 end - start + 1); 1722 return ret; 1723 } 1724 1725 void btrfs_split_delalloc_extent(struct inode *inode, 1726 struct extent_state *orig, u64 split) 1727 { 1728 u64 size; 1729 1730 /* not delalloc, ignore it */ 1731 if (!(orig->state & EXTENT_DELALLOC)) 1732 return; 1733 1734 size = orig->end - orig->start + 1; 1735 if (size > BTRFS_MAX_EXTENT_SIZE) { 1736 u32 num_extents; 1737 u64 new_size; 1738 1739 /* 1740 * See the explanation in btrfs_merge_delalloc_extent, the same 1741 * applies here, just in reverse. 1742 */ 1743 new_size = orig->end - split + 1; 1744 num_extents = count_max_extents(new_size); 1745 new_size = split - orig->start; 1746 num_extents += count_max_extents(new_size); 1747 if (count_max_extents(size) >= num_extents) 1748 return; 1749 } 1750 1751 spin_lock(&BTRFS_I(inode)->lock); 1752 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1753 spin_unlock(&BTRFS_I(inode)->lock); 1754 } 1755 1756 /* 1757 * Handle merged delayed allocation extents so we can keep track of new extents 1758 * that are just merged onto old extents, such as when we are doing sequential 1759 * writes, so we can properly account for the metadata space we'll need. 1760 */ 1761 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1762 struct extent_state *other) 1763 { 1764 u64 new_size, old_size; 1765 u32 num_extents; 1766 1767 /* not delalloc, ignore it */ 1768 if (!(other->state & EXTENT_DELALLOC)) 1769 return; 1770 1771 if (new->start > other->start) 1772 new_size = new->end - other->start + 1; 1773 else 1774 new_size = other->end - new->start + 1; 1775 1776 /* we're not bigger than the max, unreserve the space and go */ 1777 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1778 spin_lock(&BTRFS_I(inode)->lock); 1779 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1780 spin_unlock(&BTRFS_I(inode)->lock); 1781 return; 1782 } 1783 1784 /* 1785 * We have to add up either side to figure out how many extents were 1786 * accounted for before we merged into one big extent. If the number of 1787 * extents we accounted for is <= the amount we need for the new range 1788 * then we can return, otherwise drop. Think of it like this 1789 * 1790 * [ 4k][MAX_SIZE] 1791 * 1792 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1793 * need 2 outstanding extents, on one side we have 1 and the other side 1794 * we have 1 so they are == and we can return. But in this case 1795 * 1796 * [MAX_SIZE+4k][MAX_SIZE+4k] 1797 * 1798 * Each range on their own accounts for 2 extents, but merged together 1799 * they are only 3 extents worth of accounting, so we need to drop in 1800 * this case. 1801 */ 1802 old_size = other->end - other->start + 1; 1803 num_extents = count_max_extents(old_size); 1804 old_size = new->end - new->start + 1; 1805 num_extents += count_max_extents(old_size); 1806 if (count_max_extents(new_size) >= num_extents) 1807 return; 1808 1809 spin_lock(&BTRFS_I(inode)->lock); 1810 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1811 spin_unlock(&BTRFS_I(inode)->lock); 1812 } 1813 1814 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1815 struct inode *inode) 1816 { 1817 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1818 1819 spin_lock(&root->delalloc_lock); 1820 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1821 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1822 &root->delalloc_inodes); 1823 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1824 &BTRFS_I(inode)->runtime_flags); 1825 root->nr_delalloc_inodes++; 1826 if (root->nr_delalloc_inodes == 1) { 1827 spin_lock(&fs_info->delalloc_root_lock); 1828 BUG_ON(!list_empty(&root->delalloc_root)); 1829 list_add_tail(&root->delalloc_root, 1830 &fs_info->delalloc_roots); 1831 spin_unlock(&fs_info->delalloc_root_lock); 1832 } 1833 } 1834 spin_unlock(&root->delalloc_lock); 1835 } 1836 1837 1838 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1839 struct btrfs_inode *inode) 1840 { 1841 struct btrfs_fs_info *fs_info = root->fs_info; 1842 1843 if (!list_empty(&inode->delalloc_inodes)) { 1844 list_del_init(&inode->delalloc_inodes); 1845 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1846 &inode->runtime_flags); 1847 root->nr_delalloc_inodes--; 1848 if (!root->nr_delalloc_inodes) { 1849 ASSERT(list_empty(&root->delalloc_inodes)); 1850 spin_lock(&fs_info->delalloc_root_lock); 1851 BUG_ON(list_empty(&root->delalloc_root)); 1852 list_del_init(&root->delalloc_root); 1853 spin_unlock(&fs_info->delalloc_root_lock); 1854 } 1855 } 1856 } 1857 1858 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1859 struct btrfs_inode *inode) 1860 { 1861 spin_lock(&root->delalloc_lock); 1862 __btrfs_del_delalloc_inode(root, inode); 1863 spin_unlock(&root->delalloc_lock); 1864 } 1865 1866 /* 1867 * Properly track delayed allocation bytes in the inode and to maintain the 1868 * list of inodes that have pending delalloc work to be done. 1869 */ 1870 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1871 unsigned *bits) 1872 { 1873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1874 1875 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1876 WARN_ON(1); 1877 /* 1878 * set_bit and clear bit hooks normally require _irqsave/restore 1879 * but in this case, we are only testing for the DELALLOC 1880 * bit, which is only set or cleared with irqs on 1881 */ 1882 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1883 struct btrfs_root *root = BTRFS_I(inode)->root; 1884 u64 len = state->end + 1 - state->start; 1885 u32 num_extents = count_max_extents(len); 1886 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1887 1888 spin_lock(&BTRFS_I(inode)->lock); 1889 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1890 spin_unlock(&BTRFS_I(inode)->lock); 1891 1892 /* For sanity tests */ 1893 if (btrfs_is_testing(fs_info)) 1894 return; 1895 1896 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1897 fs_info->delalloc_batch); 1898 spin_lock(&BTRFS_I(inode)->lock); 1899 BTRFS_I(inode)->delalloc_bytes += len; 1900 if (*bits & EXTENT_DEFRAG) 1901 BTRFS_I(inode)->defrag_bytes += len; 1902 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1903 &BTRFS_I(inode)->runtime_flags)) 1904 btrfs_add_delalloc_inodes(root, inode); 1905 spin_unlock(&BTRFS_I(inode)->lock); 1906 } 1907 1908 if (!(state->state & EXTENT_DELALLOC_NEW) && 1909 (*bits & EXTENT_DELALLOC_NEW)) { 1910 spin_lock(&BTRFS_I(inode)->lock); 1911 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1912 state->start; 1913 spin_unlock(&BTRFS_I(inode)->lock); 1914 } 1915 } 1916 1917 /* 1918 * Once a range is no longer delalloc this function ensures that proper 1919 * accounting happens. 1920 */ 1921 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1922 struct extent_state *state, unsigned *bits) 1923 { 1924 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1925 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1926 u64 len = state->end + 1 - state->start; 1927 u32 num_extents = count_max_extents(len); 1928 1929 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1930 spin_lock(&inode->lock); 1931 inode->defrag_bytes -= len; 1932 spin_unlock(&inode->lock); 1933 } 1934 1935 /* 1936 * set_bit and clear bit hooks normally require _irqsave/restore 1937 * but in this case, we are only testing for the DELALLOC 1938 * bit, which is only set or cleared with irqs on 1939 */ 1940 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1941 struct btrfs_root *root = inode->root; 1942 bool do_list = !btrfs_is_free_space_inode(inode); 1943 1944 spin_lock(&inode->lock); 1945 btrfs_mod_outstanding_extents(inode, -num_extents); 1946 spin_unlock(&inode->lock); 1947 1948 /* 1949 * We don't reserve metadata space for space cache inodes so we 1950 * don't need to call delalloc_release_metadata if there is an 1951 * error. 1952 */ 1953 if (*bits & EXTENT_CLEAR_META_RESV && 1954 root != fs_info->tree_root) 1955 btrfs_delalloc_release_metadata(inode, len, false); 1956 1957 /* For sanity tests. */ 1958 if (btrfs_is_testing(fs_info)) 1959 return; 1960 1961 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1962 do_list && !(state->state & EXTENT_NORESERVE) && 1963 (*bits & EXTENT_CLEAR_DATA_RESV)) 1964 btrfs_free_reserved_data_space_noquota( 1965 &inode->vfs_inode, 1966 state->start, len); 1967 1968 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1969 fs_info->delalloc_batch); 1970 spin_lock(&inode->lock); 1971 inode->delalloc_bytes -= len; 1972 if (do_list && inode->delalloc_bytes == 0 && 1973 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1974 &inode->runtime_flags)) 1975 btrfs_del_delalloc_inode(root, inode); 1976 spin_unlock(&inode->lock); 1977 } 1978 1979 if ((state->state & EXTENT_DELALLOC_NEW) && 1980 (*bits & EXTENT_DELALLOC_NEW)) { 1981 spin_lock(&inode->lock); 1982 ASSERT(inode->new_delalloc_bytes >= len); 1983 inode->new_delalloc_bytes -= len; 1984 spin_unlock(&inode->lock); 1985 } 1986 } 1987 1988 /* 1989 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 1990 * in a chunk's stripe. This function ensures that bios do not span a 1991 * stripe/chunk 1992 * 1993 * @page - The page we are about to add to the bio 1994 * @size - size we want to add to the bio 1995 * @bio - bio we want to ensure is smaller than a stripe 1996 * @bio_flags - flags of the bio 1997 * 1998 * return 1 if page cannot be added to the bio 1999 * return 0 if page can be added to the bio 2000 * return error otherwise 2001 */ 2002 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2003 unsigned long bio_flags) 2004 { 2005 struct inode *inode = page->mapping->host; 2006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2007 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2008 u64 length = 0; 2009 u64 map_length; 2010 int ret; 2011 struct btrfs_io_geometry geom; 2012 2013 if (bio_flags & EXTENT_BIO_COMPRESSED) 2014 return 0; 2015 2016 length = bio->bi_iter.bi_size; 2017 map_length = length; 2018 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2019 &geom); 2020 if (ret < 0) 2021 return ret; 2022 2023 if (geom.len < length + size) 2024 return 1; 2025 return 0; 2026 } 2027 2028 /* 2029 * in order to insert checksums into the metadata in large chunks, 2030 * we wait until bio submission time. All the pages in the bio are 2031 * checksummed and sums are attached onto the ordered extent record. 2032 * 2033 * At IO completion time the cums attached on the ordered extent record 2034 * are inserted into the btree 2035 */ 2036 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2037 u64 bio_offset) 2038 { 2039 struct inode *inode = private_data; 2040 blk_status_t ret = 0; 2041 2042 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2043 BUG_ON(ret); /* -ENOMEM */ 2044 return 0; 2045 } 2046 2047 /* 2048 * extent_io.c submission hook. This does the right thing for csum calculation 2049 * on write, or reading the csums from the tree before a read. 2050 * 2051 * Rules about async/sync submit, 2052 * a) read: sync submit 2053 * 2054 * b) write without checksum: sync submit 2055 * 2056 * c) write with checksum: 2057 * c-1) if bio is issued by fsync: sync submit 2058 * (sync_writers != 0) 2059 * 2060 * c-2) if root is reloc root: sync submit 2061 * (only in case of buffered IO) 2062 * 2063 * c-3) otherwise: async submit 2064 */ 2065 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2066 int mirror_num, 2067 unsigned long bio_flags) 2068 2069 { 2070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2071 struct btrfs_root *root = BTRFS_I(inode)->root; 2072 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2073 blk_status_t ret = 0; 2074 int skip_sum; 2075 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2076 2077 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2078 2079 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2080 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2081 2082 if (bio_op(bio) != REQ_OP_WRITE) { 2083 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2084 if (ret) 2085 goto out; 2086 2087 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2088 ret = btrfs_submit_compressed_read(inode, bio, 2089 mirror_num, 2090 bio_flags); 2091 goto out; 2092 } else if (!skip_sum) { 2093 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2094 if (ret) 2095 goto out; 2096 } 2097 goto mapit; 2098 } else if (async && !skip_sum) { 2099 /* csum items have already been cloned */ 2100 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2101 goto mapit; 2102 /* we're doing a write, do the async checksumming */ 2103 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2104 0, inode, btrfs_submit_bio_start); 2105 goto out; 2106 } else if (!skip_sum) { 2107 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2108 if (ret) 2109 goto out; 2110 } 2111 2112 mapit: 2113 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2114 2115 out: 2116 if (ret) { 2117 bio->bi_status = ret; 2118 bio_endio(bio); 2119 } 2120 return ret; 2121 } 2122 2123 /* 2124 * given a list of ordered sums record them in the inode. This happens 2125 * at IO completion time based on sums calculated at bio submission time. 2126 */ 2127 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2128 struct inode *inode, struct list_head *list) 2129 { 2130 struct btrfs_ordered_sum *sum; 2131 int ret; 2132 2133 list_for_each_entry(sum, list, list) { 2134 trans->adding_csums = true; 2135 ret = btrfs_csum_file_blocks(trans, 2136 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2137 trans->adding_csums = false; 2138 if (ret) 2139 return ret; 2140 } 2141 return 0; 2142 } 2143 2144 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2145 unsigned int extra_bits, 2146 struct extent_state **cached_state) 2147 { 2148 WARN_ON(PAGE_ALIGNED(end)); 2149 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2150 extra_bits, cached_state); 2151 } 2152 2153 /* see btrfs_writepage_start_hook for details on why this is required */ 2154 struct btrfs_writepage_fixup { 2155 struct page *page; 2156 struct btrfs_work work; 2157 }; 2158 2159 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2160 { 2161 struct btrfs_writepage_fixup *fixup; 2162 struct btrfs_ordered_extent *ordered; 2163 struct extent_state *cached_state = NULL; 2164 struct extent_changeset *data_reserved = NULL; 2165 struct page *page; 2166 struct inode *inode; 2167 u64 page_start; 2168 u64 page_end; 2169 int ret; 2170 2171 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2172 page = fixup->page; 2173 again: 2174 lock_page(page); 2175 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2176 ClearPageChecked(page); 2177 goto out_page; 2178 } 2179 2180 inode = page->mapping->host; 2181 page_start = page_offset(page); 2182 page_end = page_offset(page) + PAGE_SIZE - 1; 2183 2184 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2185 &cached_state); 2186 2187 /* already ordered? We're done */ 2188 if (PagePrivate2(page)) 2189 goto out; 2190 2191 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2192 PAGE_SIZE); 2193 if (ordered) { 2194 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2195 page_end, &cached_state); 2196 unlock_page(page); 2197 btrfs_start_ordered_extent(inode, ordered, 1); 2198 btrfs_put_ordered_extent(ordered); 2199 goto again; 2200 } 2201 2202 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2203 PAGE_SIZE); 2204 if (ret) { 2205 mapping_set_error(page->mapping, ret); 2206 end_extent_writepage(page, ret, page_start, page_end); 2207 ClearPageChecked(page); 2208 goto out; 2209 } 2210 2211 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2212 &cached_state); 2213 if (ret) { 2214 mapping_set_error(page->mapping, ret); 2215 end_extent_writepage(page, ret, page_start, page_end); 2216 ClearPageChecked(page); 2217 goto out; 2218 } 2219 2220 ClearPageChecked(page); 2221 set_page_dirty(page); 2222 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2223 out: 2224 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2225 &cached_state); 2226 out_page: 2227 unlock_page(page); 2228 put_page(page); 2229 kfree(fixup); 2230 extent_changeset_free(data_reserved); 2231 } 2232 2233 /* 2234 * There are a few paths in the higher layers of the kernel that directly 2235 * set the page dirty bit without asking the filesystem if it is a 2236 * good idea. This causes problems because we want to make sure COW 2237 * properly happens and the data=ordered rules are followed. 2238 * 2239 * In our case any range that doesn't have the ORDERED bit set 2240 * hasn't been properly setup for IO. We kick off an async process 2241 * to fix it up. The async helper will wait for ordered extents, set 2242 * the delalloc bit and make it safe to write the page. 2243 */ 2244 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2245 { 2246 struct inode *inode = page->mapping->host; 2247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2248 struct btrfs_writepage_fixup *fixup; 2249 2250 /* this page is properly in the ordered list */ 2251 if (TestClearPagePrivate2(page)) 2252 return 0; 2253 2254 if (PageChecked(page)) 2255 return -EAGAIN; 2256 2257 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2258 if (!fixup) 2259 return -EAGAIN; 2260 2261 SetPageChecked(page); 2262 get_page(page); 2263 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2264 btrfs_writepage_fixup_worker, NULL, NULL); 2265 fixup->page = page; 2266 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2267 return -EBUSY; 2268 } 2269 2270 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2271 struct inode *inode, u64 file_pos, 2272 u64 disk_bytenr, u64 disk_num_bytes, 2273 u64 num_bytes, u64 ram_bytes, 2274 u8 compression, u8 encryption, 2275 u16 other_encoding, int extent_type) 2276 { 2277 struct btrfs_root *root = BTRFS_I(inode)->root; 2278 struct btrfs_file_extent_item *fi; 2279 struct btrfs_path *path; 2280 struct extent_buffer *leaf; 2281 struct btrfs_key ins; 2282 u64 qg_released; 2283 int extent_inserted = 0; 2284 int ret; 2285 2286 path = btrfs_alloc_path(); 2287 if (!path) 2288 return -ENOMEM; 2289 2290 /* 2291 * we may be replacing one extent in the tree with another. 2292 * The new extent is pinned in the extent map, and we don't want 2293 * to drop it from the cache until it is completely in the btree. 2294 * 2295 * So, tell btrfs_drop_extents to leave this extent in the cache. 2296 * the caller is expected to unpin it and allow it to be merged 2297 * with the others. 2298 */ 2299 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2300 file_pos + num_bytes, NULL, 0, 2301 1, sizeof(*fi), &extent_inserted); 2302 if (ret) 2303 goto out; 2304 2305 if (!extent_inserted) { 2306 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2307 ins.offset = file_pos; 2308 ins.type = BTRFS_EXTENT_DATA_KEY; 2309 2310 path->leave_spinning = 1; 2311 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2312 sizeof(*fi)); 2313 if (ret) 2314 goto out; 2315 } 2316 leaf = path->nodes[0]; 2317 fi = btrfs_item_ptr(leaf, path->slots[0], 2318 struct btrfs_file_extent_item); 2319 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2320 btrfs_set_file_extent_type(leaf, fi, extent_type); 2321 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2322 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2323 btrfs_set_file_extent_offset(leaf, fi, 0); 2324 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2325 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2326 btrfs_set_file_extent_compression(leaf, fi, compression); 2327 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2328 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2329 2330 btrfs_mark_buffer_dirty(leaf); 2331 btrfs_release_path(path); 2332 2333 inode_add_bytes(inode, num_bytes); 2334 2335 ins.objectid = disk_bytenr; 2336 ins.offset = disk_num_bytes; 2337 ins.type = BTRFS_EXTENT_ITEM_KEY; 2338 2339 /* 2340 * Release the reserved range from inode dirty range map, as it is 2341 * already moved into delayed_ref_head 2342 */ 2343 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2344 if (ret < 0) 2345 goto out; 2346 qg_released = ret; 2347 ret = btrfs_alloc_reserved_file_extent(trans, root, 2348 btrfs_ino(BTRFS_I(inode)), 2349 file_pos, qg_released, &ins); 2350 out: 2351 btrfs_free_path(path); 2352 2353 return ret; 2354 } 2355 2356 /* snapshot-aware defrag */ 2357 struct sa_defrag_extent_backref { 2358 struct rb_node node; 2359 struct old_sa_defrag_extent *old; 2360 u64 root_id; 2361 u64 inum; 2362 u64 file_pos; 2363 u64 extent_offset; 2364 u64 num_bytes; 2365 u64 generation; 2366 }; 2367 2368 struct old_sa_defrag_extent { 2369 struct list_head list; 2370 struct new_sa_defrag_extent *new; 2371 2372 u64 extent_offset; 2373 u64 bytenr; 2374 u64 offset; 2375 u64 len; 2376 int count; 2377 }; 2378 2379 struct new_sa_defrag_extent { 2380 struct rb_root root; 2381 struct list_head head; 2382 struct btrfs_path *path; 2383 struct inode *inode; 2384 u64 file_pos; 2385 u64 len; 2386 u64 bytenr; 2387 u64 disk_len; 2388 u8 compress_type; 2389 }; 2390 2391 static int backref_comp(struct sa_defrag_extent_backref *b1, 2392 struct sa_defrag_extent_backref *b2) 2393 { 2394 if (b1->root_id < b2->root_id) 2395 return -1; 2396 else if (b1->root_id > b2->root_id) 2397 return 1; 2398 2399 if (b1->inum < b2->inum) 2400 return -1; 2401 else if (b1->inum > b2->inum) 2402 return 1; 2403 2404 if (b1->file_pos < b2->file_pos) 2405 return -1; 2406 else if (b1->file_pos > b2->file_pos) 2407 return 1; 2408 2409 /* 2410 * [------------------------------] ===> (a range of space) 2411 * |<--->| |<---->| =============> (fs/file tree A) 2412 * |<---------------------------->| ===> (fs/file tree B) 2413 * 2414 * A range of space can refer to two file extents in one tree while 2415 * refer to only one file extent in another tree. 2416 * 2417 * So we may process a disk offset more than one time(two extents in A) 2418 * and locate at the same extent(one extent in B), then insert two same 2419 * backrefs(both refer to the extent in B). 2420 */ 2421 return 0; 2422 } 2423 2424 static void backref_insert(struct rb_root *root, 2425 struct sa_defrag_extent_backref *backref) 2426 { 2427 struct rb_node **p = &root->rb_node; 2428 struct rb_node *parent = NULL; 2429 struct sa_defrag_extent_backref *entry; 2430 int ret; 2431 2432 while (*p) { 2433 parent = *p; 2434 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2435 2436 ret = backref_comp(backref, entry); 2437 if (ret < 0) 2438 p = &(*p)->rb_left; 2439 else 2440 p = &(*p)->rb_right; 2441 } 2442 2443 rb_link_node(&backref->node, parent, p); 2444 rb_insert_color(&backref->node, root); 2445 } 2446 2447 /* 2448 * Note the backref might has changed, and in this case we just return 0. 2449 */ 2450 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2451 void *ctx) 2452 { 2453 struct btrfs_file_extent_item *extent; 2454 struct old_sa_defrag_extent *old = ctx; 2455 struct new_sa_defrag_extent *new = old->new; 2456 struct btrfs_path *path = new->path; 2457 struct btrfs_key key; 2458 struct btrfs_root *root; 2459 struct sa_defrag_extent_backref *backref; 2460 struct extent_buffer *leaf; 2461 struct inode *inode = new->inode; 2462 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2463 int slot; 2464 int ret; 2465 u64 extent_offset; 2466 u64 num_bytes; 2467 2468 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2469 inum == btrfs_ino(BTRFS_I(inode))) 2470 return 0; 2471 2472 key.objectid = root_id; 2473 key.type = BTRFS_ROOT_ITEM_KEY; 2474 key.offset = (u64)-1; 2475 2476 root = btrfs_read_fs_root_no_name(fs_info, &key); 2477 if (IS_ERR(root)) { 2478 if (PTR_ERR(root) == -ENOENT) 2479 return 0; 2480 WARN_ON(1); 2481 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2482 inum, offset, root_id); 2483 return PTR_ERR(root); 2484 } 2485 2486 key.objectid = inum; 2487 key.type = BTRFS_EXTENT_DATA_KEY; 2488 if (offset > (u64)-1 << 32) 2489 key.offset = 0; 2490 else 2491 key.offset = offset; 2492 2493 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2494 if (WARN_ON(ret < 0)) 2495 return ret; 2496 ret = 0; 2497 2498 while (1) { 2499 cond_resched(); 2500 2501 leaf = path->nodes[0]; 2502 slot = path->slots[0]; 2503 2504 if (slot >= btrfs_header_nritems(leaf)) { 2505 ret = btrfs_next_leaf(root, path); 2506 if (ret < 0) { 2507 goto out; 2508 } else if (ret > 0) { 2509 ret = 0; 2510 goto out; 2511 } 2512 continue; 2513 } 2514 2515 path->slots[0]++; 2516 2517 btrfs_item_key_to_cpu(leaf, &key, slot); 2518 2519 if (key.objectid > inum) 2520 goto out; 2521 2522 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2523 continue; 2524 2525 extent = btrfs_item_ptr(leaf, slot, 2526 struct btrfs_file_extent_item); 2527 2528 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2529 continue; 2530 2531 /* 2532 * 'offset' refers to the exact key.offset, 2533 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2534 * (key.offset - extent_offset). 2535 */ 2536 if (key.offset != offset) 2537 continue; 2538 2539 extent_offset = btrfs_file_extent_offset(leaf, extent); 2540 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2541 2542 if (extent_offset >= old->extent_offset + old->offset + 2543 old->len || extent_offset + num_bytes <= 2544 old->extent_offset + old->offset) 2545 continue; 2546 break; 2547 } 2548 2549 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2550 if (!backref) { 2551 ret = -ENOENT; 2552 goto out; 2553 } 2554 2555 backref->root_id = root_id; 2556 backref->inum = inum; 2557 backref->file_pos = offset; 2558 backref->num_bytes = num_bytes; 2559 backref->extent_offset = extent_offset; 2560 backref->generation = btrfs_file_extent_generation(leaf, extent); 2561 backref->old = old; 2562 backref_insert(&new->root, backref); 2563 old->count++; 2564 out: 2565 btrfs_release_path(path); 2566 WARN_ON(ret); 2567 return ret; 2568 } 2569 2570 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2571 struct new_sa_defrag_extent *new) 2572 { 2573 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2574 struct old_sa_defrag_extent *old, *tmp; 2575 int ret; 2576 2577 new->path = path; 2578 2579 list_for_each_entry_safe(old, tmp, &new->head, list) { 2580 ret = iterate_inodes_from_logical(old->bytenr + 2581 old->extent_offset, fs_info, 2582 path, record_one_backref, 2583 old, false); 2584 if (ret < 0 && ret != -ENOENT) 2585 return false; 2586 2587 /* no backref to be processed for this extent */ 2588 if (!old->count) { 2589 list_del(&old->list); 2590 kfree(old); 2591 } 2592 } 2593 2594 if (list_empty(&new->head)) 2595 return false; 2596 2597 return true; 2598 } 2599 2600 static int relink_is_mergable(struct extent_buffer *leaf, 2601 struct btrfs_file_extent_item *fi, 2602 struct new_sa_defrag_extent *new) 2603 { 2604 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2605 return 0; 2606 2607 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2608 return 0; 2609 2610 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2611 return 0; 2612 2613 if (btrfs_file_extent_encryption(leaf, fi) || 2614 btrfs_file_extent_other_encoding(leaf, fi)) 2615 return 0; 2616 2617 return 1; 2618 } 2619 2620 /* 2621 * Note the backref might has changed, and in this case we just return 0. 2622 */ 2623 static noinline int relink_extent_backref(struct btrfs_path *path, 2624 struct sa_defrag_extent_backref *prev, 2625 struct sa_defrag_extent_backref *backref) 2626 { 2627 struct btrfs_file_extent_item *extent; 2628 struct btrfs_file_extent_item *item; 2629 struct btrfs_ordered_extent *ordered; 2630 struct btrfs_trans_handle *trans; 2631 struct btrfs_ref ref = { 0 }; 2632 struct btrfs_root *root; 2633 struct btrfs_key key; 2634 struct extent_buffer *leaf; 2635 struct old_sa_defrag_extent *old = backref->old; 2636 struct new_sa_defrag_extent *new = old->new; 2637 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2638 struct inode *inode; 2639 struct extent_state *cached = NULL; 2640 int ret = 0; 2641 u64 start; 2642 u64 len; 2643 u64 lock_start; 2644 u64 lock_end; 2645 bool merge = false; 2646 int index; 2647 2648 if (prev && prev->root_id == backref->root_id && 2649 prev->inum == backref->inum && 2650 prev->file_pos + prev->num_bytes == backref->file_pos) 2651 merge = true; 2652 2653 /* step 1: get root */ 2654 key.objectid = backref->root_id; 2655 key.type = BTRFS_ROOT_ITEM_KEY; 2656 key.offset = (u64)-1; 2657 2658 index = srcu_read_lock(&fs_info->subvol_srcu); 2659 2660 root = btrfs_read_fs_root_no_name(fs_info, &key); 2661 if (IS_ERR(root)) { 2662 srcu_read_unlock(&fs_info->subvol_srcu, index); 2663 if (PTR_ERR(root) == -ENOENT) 2664 return 0; 2665 return PTR_ERR(root); 2666 } 2667 2668 if (btrfs_root_readonly(root)) { 2669 srcu_read_unlock(&fs_info->subvol_srcu, index); 2670 return 0; 2671 } 2672 2673 /* step 2: get inode */ 2674 key.objectid = backref->inum; 2675 key.type = BTRFS_INODE_ITEM_KEY; 2676 key.offset = 0; 2677 2678 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2679 if (IS_ERR(inode)) { 2680 srcu_read_unlock(&fs_info->subvol_srcu, index); 2681 return 0; 2682 } 2683 2684 srcu_read_unlock(&fs_info->subvol_srcu, index); 2685 2686 /* step 3: relink backref */ 2687 lock_start = backref->file_pos; 2688 lock_end = backref->file_pos + backref->num_bytes - 1; 2689 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2690 &cached); 2691 2692 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2693 if (ordered) { 2694 btrfs_put_ordered_extent(ordered); 2695 goto out_unlock; 2696 } 2697 2698 trans = btrfs_join_transaction(root); 2699 if (IS_ERR(trans)) { 2700 ret = PTR_ERR(trans); 2701 goto out_unlock; 2702 } 2703 2704 key.objectid = backref->inum; 2705 key.type = BTRFS_EXTENT_DATA_KEY; 2706 key.offset = backref->file_pos; 2707 2708 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2709 if (ret < 0) { 2710 goto out_free_path; 2711 } else if (ret > 0) { 2712 ret = 0; 2713 goto out_free_path; 2714 } 2715 2716 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2717 struct btrfs_file_extent_item); 2718 2719 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2720 backref->generation) 2721 goto out_free_path; 2722 2723 btrfs_release_path(path); 2724 2725 start = backref->file_pos; 2726 if (backref->extent_offset < old->extent_offset + old->offset) 2727 start += old->extent_offset + old->offset - 2728 backref->extent_offset; 2729 2730 len = min(backref->extent_offset + backref->num_bytes, 2731 old->extent_offset + old->offset + old->len); 2732 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2733 2734 ret = btrfs_drop_extents(trans, root, inode, start, 2735 start + len, 1); 2736 if (ret) 2737 goto out_free_path; 2738 again: 2739 key.objectid = btrfs_ino(BTRFS_I(inode)); 2740 key.type = BTRFS_EXTENT_DATA_KEY; 2741 key.offset = start; 2742 2743 path->leave_spinning = 1; 2744 if (merge) { 2745 struct btrfs_file_extent_item *fi; 2746 u64 extent_len; 2747 struct btrfs_key found_key; 2748 2749 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2750 if (ret < 0) 2751 goto out_free_path; 2752 2753 path->slots[0]--; 2754 leaf = path->nodes[0]; 2755 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2756 2757 fi = btrfs_item_ptr(leaf, path->slots[0], 2758 struct btrfs_file_extent_item); 2759 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2760 2761 if (extent_len + found_key.offset == start && 2762 relink_is_mergable(leaf, fi, new)) { 2763 btrfs_set_file_extent_num_bytes(leaf, fi, 2764 extent_len + len); 2765 btrfs_mark_buffer_dirty(leaf); 2766 inode_add_bytes(inode, len); 2767 2768 ret = 1; 2769 goto out_free_path; 2770 } else { 2771 merge = false; 2772 btrfs_release_path(path); 2773 goto again; 2774 } 2775 } 2776 2777 ret = btrfs_insert_empty_item(trans, root, path, &key, 2778 sizeof(*extent)); 2779 if (ret) { 2780 btrfs_abort_transaction(trans, ret); 2781 goto out_free_path; 2782 } 2783 2784 leaf = path->nodes[0]; 2785 item = btrfs_item_ptr(leaf, path->slots[0], 2786 struct btrfs_file_extent_item); 2787 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2788 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2789 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2790 btrfs_set_file_extent_num_bytes(leaf, item, len); 2791 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2792 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2793 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2794 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2795 btrfs_set_file_extent_encryption(leaf, item, 0); 2796 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2797 2798 btrfs_mark_buffer_dirty(leaf); 2799 inode_add_bytes(inode, len); 2800 btrfs_release_path(path); 2801 2802 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr, 2803 new->disk_len, 0); 2804 btrfs_init_data_ref(&ref, backref->root_id, backref->inum, 2805 new->file_pos); /* start - extent_offset */ 2806 ret = btrfs_inc_extent_ref(trans, &ref); 2807 if (ret) { 2808 btrfs_abort_transaction(trans, ret); 2809 goto out_free_path; 2810 } 2811 2812 ret = 1; 2813 out_free_path: 2814 btrfs_release_path(path); 2815 path->leave_spinning = 0; 2816 btrfs_end_transaction(trans); 2817 out_unlock: 2818 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2819 &cached); 2820 iput(inode); 2821 return ret; 2822 } 2823 2824 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2825 { 2826 struct old_sa_defrag_extent *old, *tmp; 2827 2828 if (!new) 2829 return; 2830 2831 list_for_each_entry_safe(old, tmp, &new->head, list) { 2832 kfree(old); 2833 } 2834 kfree(new); 2835 } 2836 2837 static void relink_file_extents(struct new_sa_defrag_extent *new) 2838 { 2839 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2840 struct btrfs_path *path; 2841 struct sa_defrag_extent_backref *backref; 2842 struct sa_defrag_extent_backref *prev = NULL; 2843 struct rb_node *node; 2844 int ret; 2845 2846 path = btrfs_alloc_path(); 2847 if (!path) 2848 return; 2849 2850 if (!record_extent_backrefs(path, new)) { 2851 btrfs_free_path(path); 2852 goto out; 2853 } 2854 btrfs_release_path(path); 2855 2856 while (1) { 2857 node = rb_first(&new->root); 2858 if (!node) 2859 break; 2860 rb_erase(node, &new->root); 2861 2862 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2863 2864 ret = relink_extent_backref(path, prev, backref); 2865 WARN_ON(ret < 0); 2866 2867 kfree(prev); 2868 2869 if (ret == 1) 2870 prev = backref; 2871 else 2872 prev = NULL; 2873 cond_resched(); 2874 } 2875 kfree(prev); 2876 2877 btrfs_free_path(path); 2878 out: 2879 free_sa_defrag_extent(new); 2880 2881 atomic_dec(&fs_info->defrag_running); 2882 wake_up(&fs_info->transaction_wait); 2883 } 2884 2885 static struct new_sa_defrag_extent * 2886 record_old_file_extents(struct inode *inode, 2887 struct btrfs_ordered_extent *ordered) 2888 { 2889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2890 struct btrfs_root *root = BTRFS_I(inode)->root; 2891 struct btrfs_path *path; 2892 struct btrfs_key key; 2893 struct old_sa_defrag_extent *old; 2894 struct new_sa_defrag_extent *new; 2895 int ret; 2896 2897 new = kmalloc(sizeof(*new), GFP_NOFS); 2898 if (!new) 2899 return NULL; 2900 2901 new->inode = inode; 2902 new->file_pos = ordered->file_offset; 2903 new->len = ordered->len; 2904 new->bytenr = ordered->start; 2905 new->disk_len = ordered->disk_len; 2906 new->compress_type = ordered->compress_type; 2907 new->root = RB_ROOT; 2908 INIT_LIST_HEAD(&new->head); 2909 2910 path = btrfs_alloc_path(); 2911 if (!path) 2912 goto out_kfree; 2913 2914 key.objectid = btrfs_ino(BTRFS_I(inode)); 2915 key.type = BTRFS_EXTENT_DATA_KEY; 2916 key.offset = new->file_pos; 2917 2918 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2919 if (ret < 0) 2920 goto out_free_path; 2921 if (ret > 0 && path->slots[0] > 0) 2922 path->slots[0]--; 2923 2924 /* find out all the old extents for the file range */ 2925 while (1) { 2926 struct btrfs_file_extent_item *extent; 2927 struct extent_buffer *l; 2928 int slot; 2929 u64 num_bytes; 2930 u64 offset; 2931 u64 end; 2932 u64 disk_bytenr; 2933 u64 extent_offset; 2934 2935 l = path->nodes[0]; 2936 slot = path->slots[0]; 2937 2938 if (slot >= btrfs_header_nritems(l)) { 2939 ret = btrfs_next_leaf(root, path); 2940 if (ret < 0) 2941 goto out_free_path; 2942 else if (ret > 0) 2943 break; 2944 continue; 2945 } 2946 2947 btrfs_item_key_to_cpu(l, &key, slot); 2948 2949 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2950 break; 2951 if (key.type != BTRFS_EXTENT_DATA_KEY) 2952 break; 2953 if (key.offset >= new->file_pos + new->len) 2954 break; 2955 2956 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2957 2958 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2959 if (key.offset + num_bytes < new->file_pos) 2960 goto next; 2961 2962 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2963 if (!disk_bytenr) 2964 goto next; 2965 2966 extent_offset = btrfs_file_extent_offset(l, extent); 2967 2968 old = kmalloc(sizeof(*old), GFP_NOFS); 2969 if (!old) 2970 goto out_free_path; 2971 2972 offset = max(new->file_pos, key.offset); 2973 end = min(new->file_pos + new->len, key.offset + num_bytes); 2974 2975 old->bytenr = disk_bytenr; 2976 old->extent_offset = extent_offset; 2977 old->offset = offset - key.offset; 2978 old->len = end - offset; 2979 old->new = new; 2980 old->count = 0; 2981 list_add_tail(&old->list, &new->head); 2982 next: 2983 path->slots[0]++; 2984 cond_resched(); 2985 } 2986 2987 btrfs_free_path(path); 2988 atomic_inc(&fs_info->defrag_running); 2989 2990 return new; 2991 2992 out_free_path: 2993 btrfs_free_path(path); 2994 out_kfree: 2995 free_sa_defrag_extent(new); 2996 return NULL; 2997 } 2998 2999 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3000 u64 start, u64 len) 3001 { 3002 struct btrfs_block_group_cache *cache; 3003 3004 cache = btrfs_lookup_block_group(fs_info, start); 3005 ASSERT(cache); 3006 3007 spin_lock(&cache->lock); 3008 cache->delalloc_bytes -= len; 3009 spin_unlock(&cache->lock); 3010 3011 btrfs_put_block_group(cache); 3012 } 3013 3014 /* as ordered data IO finishes, this gets called so we can finish 3015 * an ordered extent if the range of bytes in the file it covers are 3016 * fully written. 3017 */ 3018 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3019 { 3020 struct inode *inode = ordered_extent->inode; 3021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3022 struct btrfs_root *root = BTRFS_I(inode)->root; 3023 struct btrfs_trans_handle *trans = NULL; 3024 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3025 struct extent_state *cached_state = NULL; 3026 struct new_sa_defrag_extent *new = NULL; 3027 int compress_type = 0; 3028 int ret = 0; 3029 u64 logical_len = ordered_extent->len; 3030 bool nolock; 3031 bool truncated = false; 3032 bool range_locked = false; 3033 bool clear_new_delalloc_bytes = false; 3034 bool clear_reserved_extent = true; 3035 3036 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3037 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3038 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 3039 clear_new_delalloc_bytes = true; 3040 3041 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 3042 3043 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3044 ret = -EIO; 3045 goto out; 3046 } 3047 3048 btrfs_free_io_failure_record(BTRFS_I(inode), 3049 ordered_extent->file_offset, 3050 ordered_extent->file_offset + 3051 ordered_extent->len - 1); 3052 3053 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3054 truncated = true; 3055 logical_len = ordered_extent->truncated_len; 3056 /* Truncated the entire extent, don't bother adding */ 3057 if (!logical_len) 3058 goto out; 3059 } 3060 3061 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3062 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3063 3064 /* 3065 * For mwrite(mmap + memset to write) case, we still reserve 3066 * space for NOCOW range. 3067 * As NOCOW won't cause a new delayed ref, just free the space 3068 */ 3069 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3070 ordered_extent->len); 3071 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3072 if (nolock) 3073 trans = btrfs_join_transaction_nolock(root); 3074 else 3075 trans = btrfs_join_transaction(root); 3076 if (IS_ERR(trans)) { 3077 ret = PTR_ERR(trans); 3078 trans = NULL; 3079 goto out; 3080 } 3081 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3082 ret = btrfs_update_inode_fallback(trans, root, inode); 3083 if (ret) /* -ENOMEM or corruption */ 3084 btrfs_abort_transaction(trans, ret); 3085 goto out; 3086 } 3087 3088 range_locked = true; 3089 lock_extent_bits(io_tree, ordered_extent->file_offset, 3090 ordered_extent->file_offset + ordered_extent->len - 1, 3091 &cached_state); 3092 3093 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3094 ordered_extent->file_offset + ordered_extent->len - 1, 3095 EXTENT_DEFRAG, 0, cached_state); 3096 if (ret) { 3097 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3098 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3099 /* the inode is shared */ 3100 new = record_old_file_extents(inode, ordered_extent); 3101 3102 clear_extent_bit(io_tree, ordered_extent->file_offset, 3103 ordered_extent->file_offset + ordered_extent->len - 1, 3104 EXTENT_DEFRAG, 0, 0, &cached_state); 3105 } 3106 3107 if (nolock) 3108 trans = btrfs_join_transaction_nolock(root); 3109 else 3110 trans = btrfs_join_transaction(root); 3111 if (IS_ERR(trans)) { 3112 ret = PTR_ERR(trans); 3113 trans = NULL; 3114 goto out; 3115 } 3116 3117 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3118 3119 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3120 compress_type = ordered_extent->compress_type; 3121 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3122 BUG_ON(compress_type); 3123 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3124 ordered_extent->len); 3125 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3126 ordered_extent->file_offset, 3127 ordered_extent->file_offset + 3128 logical_len); 3129 } else { 3130 BUG_ON(root == fs_info->tree_root); 3131 ret = insert_reserved_file_extent(trans, inode, 3132 ordered_extent->file_offset, 3133 ordered_extent->start, 3134 ordered_extent->disk_len, 3135 logical_len, logical_len, 3136 compress_type, 0, 0, 3137 BTRFS_FILE_EXTENT_REG); 3138 if (!ret) { 3139 clear_reserved_extent = false; 3140 btrfs_release_delalloc_bytes(fs_info, 3141 ordered_extent->start, 3142 ordered_extent->disk_len); 3143 } 3144 } 3145 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3146 ordered_extent->file_offset, ordered_extent->len, 3147 trans->transid); 3148 if (ret < 0) { 3149 btrfs_abort_transaction(trans, ret); 3150 goto out; 3151 } 3152 3153 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3154 if (ret) { 3155 btrfs_abort_transaction(trans, ret); 3156 goto out; 3157 } 3158 3159 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3160 ret = btrfs_update_inode_fallback(trans, root, inode); 3161 if (ret) { /* -ENOMEM or corruption */ 3162 btrfs_abort_transaction(trans, ret); 3163 goto out; 3164 } 3165 ret = 0; 3166 out: 3167 if (range_locked || clear_new_delalloc_bytes) { 3168 unsigned int clear_bits = 0; 3169 3170 if (range_locked) 3171 clear_bits |= EXTENT_LOCKED; 3172 if (clear_new_delalloc_bytes) 3173 clear_bits |= EXTENT_DELALLOC_NEW; 3174 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3175 ordered_extent->file_offset, 3176 ordered_extent->file_offset + 3177 ordered_extent->len - 1, 3178 clear_bits, 3179 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3180 0, &cached_state); 3181 } 3182 3183 if (trans) 3184 btrfs_end_transaction(trans); 3185 3186 if (ret || truncated) { 3187 u64 start, end; 3188 3189 if (truncated) 3190 start = ordered_extent->file_offset + logical_len; 3191 else 3192 start = ordered_extent->file_offset; 3193 end = ordered_extent->file_offset + ordered_extent->len - 1; 3194 clear_extent_uptodate(io_tree, start, end, NULL); 3195 3196 /* Drop the cache for the part of the extent we didn't write. */ 3197 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3198 3199 /* 3200 * If the ordered extent had an IOERR or something else went 3201 * wrong we need to return the space for this ordered extent 3202 * back to the allocator. We only free the extent in the 3203 * truncated case if we didn't write out the extent at all. 3204 * 3205 * If we made it past insert_reserved_file_extent before we 3206 * errored out then we don't need to do this as the accounting 3207 * has already been done. 3208 */ 3209 if ((ret || !logical_len) && 3210 clear_reserved_extent && 3211 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3212 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3213 btrfs_free_reserved_extent(fs_info, 3214 ordered_extent->start, 3215 ordered_extent->disk_len, 1); 3216 } 3217 3218 3219 /* 3220 * This needs to be done to make sure anybody waiting knows we are done 3221 * updating everything for this ordered extent. 3222 */ 3223 btrfs_remove_ordered_extent(inode, ordered_extent); 3224 3225 /* for snapshot-aware defrag */ 3226 if (new) { 3227 if (ret) { 3228 free_sa_defrag_extent(new); 3229 atomic_dec(&fs_info->defrag_running); 3230 } else { 3231 relink_file_extents(new); 3232 } 3233 } 3234 3235 /* once for us */ 3236 btrfs_put_ordered_extent(ordered_extent); 3237 /* once for the tree */ 3238 btrfs_put_ordered_extent(ordered_extent); 3239 3240 return ret; 3241 } 3242 3243 static void finish_ordered_fn(struct btrfs_work *work) 3244 { 3245 struct btrfs_ordered_extent *ordered_extent; 3246 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3247 btrfs_finish_ordered_io(ordered_extent); 3248 } 3249 3250 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3251 u64 end, int uptodate) 3252 { 3253 struct inode *inode = page->mapping->host; 3254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3255 struct btrfs_ordered_extent *ordered_extent = NULL; 3256 struct btrfs_workqueue *wq; 3257 btrfs_work_func_t func; 3258 3259 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3260 3261 ClearPagePrivate2(page); 3262 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3263 end - start + 1, uptodate)) 3264 return; 3265 3266 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3267 wq = fs_info->endio_freespace_worker; 3268 func = btrfs_freespace_write_helper; 3269 } else { 3270 wq = fs_info->endio_write_workers; 3271 func = btrfs_endio_write_helper; 3272 } 3273 3274 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3275 NULL); 3276 btrfs_queue_work(wq, &ordered_extent->work); 3277 } 3278 3279 static int __readpage_endio_check(struct inode *inode, 3280 struct btrfs_io_bio *io_bio, 3281 int icsum, struct page *page, 3282 int pgoff, u64 start, size_t len) 3283 { 3284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3285 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3286 char *kaddr; 3287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 3288 u8 *csum_expected; 3289 u8 csum[BTRFS_CSUM_SIZE]; 3290 3291 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 3292 3293 kaddr = kmap_atomic(page); 3294 shash->tfm = fs_info->csum_shash; 3295 3296 crypto_shash_init(shash); 3297 crypto_shash_update(shash, kaddr + pgoff, len); 3298 crypto_shash_final(shash, csum); 3299 3300 if (memcmp(csum, csum_expected, csum_size)) 3301 goto zeroit; 3302 3303 kunmap_atomic(kaddr); 3304 return 0; 3305 zeroit: 3306 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3307 io_bio->mirror_num); 3308 memset(kaddr + pgoff, 1, len); 3309 flush_dcache_page(page); 3310 kunmap_atomic(kaddr); 3311 return -EIO; 3312 } 3313 3314 /* 3315 * when reads are done, we need to check csums to verify the data is correct 3316 * if there's a match, we allow the bio to finish. If not, the code in 3317 * extent_io.c will try to find good copies for us. 3318 */ 3319 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3320 u64 phy_offset, struct page *page, 3321 u64 start, u64 end, int mirror) 3322 { 3323 size_t offset = start - page_offset(page); 3324 struct inode *inode = page->mapping->host; 3325 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3326 struct btrfs_root *root = BTRFS_I(inode)->root; 3327 3328 if (PageChecked(page)) { 3329 ClearPageChecked(page); 3330 return 0; 3331 } 3332 3333 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3334 return 0; 3335 3336 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3337 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3338 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3339 return 0; 3340 } 3341 3342 phy_offset >>= inode->i_sb->s_blocksize_bits; 3343 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3344 start, (size_t)(end - start + 1)); 3345 } 3346 3347 /* 3348 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3349 * 3350 * @inode: The inode we want to perform iput on 3351 * 3352 * This function uses the generic vfs_inode::i_count to track whether we should 3353 * just decrement it (in case it's > 1) or if this is the last iput then link 3354 * the inode to the delayed iput machinery. Delayed iputs are processed at 3355 * transaction commit time/superblock commit/cleaner kthread. 3356 */ 3357 void btrfs_add_delayed_iput(struct inode *inode) 3358 { 3359 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3360 struct btrfs_inode *binode = BTRFS_I(inode); 3361 3362 if (atomic_add_unless(&inode->i_count, -1, 1)) 3363 return; 3364 3365 atomic_inc(&fs_info->nr_delayed_iputs); 3366 spin_lock(&fs_info->delayed_iput_lock); 3367 ASSERT(list_empty(&binode->delayed_iput)); 3368 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3369 spin_unlock(&fs_info->delayed_iput_lock); 3370 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3371 wake_up_process(fs_info->cleaner_kthread); 3372 } 3373 3374 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3375 struct btrfs_inode *inode) 3376 { 3377 list_del_init(&inode->delayed_iput); 3378 spin_unlock(&fs_info->delayed_iput_lock); 3379 iput(&inode->vfs_inode); 3380 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3381 wake_up(&fs_info->delayed_iputs_wait); 3382 spin_lock(&fs_info->delayed_iput_lock); 3383 } 3384 3385 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3386 struct btrfs_inode *inode) 3387 { 3388 if (!list_empty(&inode->delayed_iput)) { 3389 spin_lock(&fs_info->delayed_iput_lock); 3390 if (!list_empty(&inode->delayed_iput)) 3391 run_delayed_iput_locked(fs_info, inode); 3392 spin_unlock(&fs_info->delayed_iput_lock); 3393 } 3394 } 3395 3396 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3397 { 3398 3399 spin_lock(&fs_info->delayed_iput_lock); 3400 while (!list_empty(&fs_info->delayed_iputs)) { 3401 struct btrfs_inode *inode; 3402 3403 inode = list_first_entry(&fs_info->delayed_iputs, 3404 struct btrfs_inode, delayed_iput); 3405 run_delayed_iput_locked(fs_info, inode); 3406 } 3407 spin_unlock(&fs_info->delayed_iput_lock); 3408 } 3409 3410 /** 3411 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 3412 * @fs_info - the fs_info for this fs 3413 * @return - EINTR if we were killed, 0 if nothing's pending 3414 * 3415 * This will wait on any delayed iputs that are currently running with KILLABLE 3416 * set. Once they are all done running we will return, unless we are killed in 3417 * which case we return EINTR. This helps in user operations like fallocate etc 3418 * that might get blocked on the iputs. 3419 */ 3420 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3421 { 3422 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3423 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3424 if (ret) 3425 return -EINTR; 3426 return 0; 3427 } 3428 3429 /* 3430 * This creates an orphan entry for the given inode in case something goes wrong 3431 * in the middle of an unlink. 3432 */ 3433 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3434 struct btrfs_inode *inode) 3435 { 3436 int ret; 3437 3438 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3439 if (ret && ret != -EEXIST) { 3440 btrfs_abort_transaction(trans, ret); 3441 return ret; 3442 } 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * We have done the delete so we can go ahead and remove the orphan item for 3449 * this particular inode. 3450 */ 3451 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3452 struct btrfs_inode *inode) 3453 { 3454 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3455 } 3456 3457 /* 3458 * this cleans up any orphans that may be left on the list from the last use 3459 * of this root. 3460 */ 3461 int btrfs_orphan_cleanup(struct btrfs_root *root) 3462 { 3463 struct btrfs_fs_info *fs_info = root->fs_info; 3464 struct btrfs_path *path; 3465 struct extent_buffer *leaf; 3466 struct btrfs_key key, found_key; 3467 struct btrfs_trans_handle *trans; 3468 struct inode *inode; 3469 u64 last_objectid = 0; 3470 int ret = 0, nr_unlink = 0; 3471 3472 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3473 return 0; 3474 3475 path = btrfs_alloc_path(); 3476 if (!path) { 3477 ret = -ENOMEM; 3478 goto out; 3479 } 3480 path->reada = READA_BACK; 3481 3482 key.objectid = BTRFS_ORPHAN_OBJECTID; 3483 key.type = BTRFS_ORPHAN_ITEM_KEY; 3484 key.offset = (u64)-1; 3485 3486 while (1) { 3487 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3488 if (ret < 0) 3489 goto out; 3490 3491 /* 3492 * if ret == 0 means we found what we were searching for, which 3493 * is weird, but possible, so only screw with path if we didn't 3494 * find the key and see if we have stuff that matches 3495 */ 3496 if (ret > 0) { 3497 ret = 0; 3498 if (path->slots[0] == 0) 3499 break; 3500 path->slots[0]--; 3501 } 3502 3503 /* pull out the item */ 3504 leaf = path->nodes[0]; 3505 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3506 3507 /* make sure the item matches what we want */ 3508 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3509 break; 3510 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3511 break; 3512 3513 /* release the path since we're done with it */ 3514 btrfs_release_path(path); 3515 3516 /* 3517 * this is where we are basically btrfs_lookup, without the 3518 * crossing root thing. we store the inode number in the 3519 * offset of the orphan item. 3520 */ 3521 3522 if (found_key.offset == last_objectid) { 3523 btrfs_err(fs_info, 3524 "Error removing orphan entry, stopping orphan cleanup"); 3525 ret = -EINVAL; 3526 goto out; 3527 } 3528 3529 last_objectid = found_key.offset; 3530 3531 found_key.objectid = found_key.offset; 3532 found_key.type = BTRFS_INODE_ITEM_KEY; 3533 found_key.offset = 0; 3534 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3535 ret = PTR_ERR_OR_ZERO(inode); 3536 if (ret && ret != -ENOENT) 3537 goto out; 3538 3539 if (ret == -ENOENT && root == fs_info->tree_root) { 3540 struct btrfs_root *dead_root; 3541 struct btrfs_fs_info *fs_info = root->fs_info; 3542 int is_dead_root = 0; 3543 3544 /* 3545 * this is an orphan in the tree root. Currently these 3546 * could come from 2 sources: 3547 * a) a snapshot deletion in progress 3548 * b) a free space cache inode 3549 * We need to distinguish those two, as the snapshot 3550 * orphan must not get deleted. 3551 * find_dead_roots already ran before us, so if this 3552 * is a snapshot deletion, we should find the root 3553 * in the dead_roots list 3554 */ 3555 spin_lock(&fs_info->trans_lock); 3556 list_for_each_entry(dead_root, &fs_info->dead_roots, 3557 root_list) { 3558 if (dead_root->root_key.objectid == 3559 found_key.objectid) { 3560 is_dead_root = 1; 3561 break; 3562 } 3563 } 3564 spin_unlock(&fs_info->trans_lock); 3565 if (is_dead_root) { 3566 /* prevent this orphan from being found again */ 3567 key.offset = found_key.objectid - 1; 3568 continue; 3569 } 3570 3571 } 3572 3573 /* 3574 * If we have an inode with links, there are a couple of 3575 * possibilities. Old kernels (before v3.12) used to create an 3576 * orphan item for truncate indicating that there were possibly 3577 * extent items past i_size that needed to be deleted. In v3.12, 3578 * truncate was changed to update i_size in sync with the extent 3579 * items, but the (useless) orphan item was still created. Since 3580 * v4.18, we don't create the orphan item for truncate at all. 3581 * 3582 * So, this item could mean that we need to do a truncate, but 3583 * only if this filesystem was last used on a pre-v3.12 kernel 3584 * and was not cleanly unmounted. The odds of that are quite 3585 * slim, and it's a pain to do the truncate now, so just delete 3586 * the orphan item. 3587 * 3588 * It's also possible that this orphan item was supposed to be 3589 * deleted but wasn't. The inode number may have been reused, 3590 * but either way, we can delete the orphan item. 3591 */ 3592 if (ret == -ENOENT || inode->i_nlink) { 3593 if (!ret) 3594 iput(inode); 3595 trans = btrfs_start_transaction(root, 1); 3596 if (IS_ERR(trans)) { 3597 ret = PTR_ERR(trans); 3598 goto out; 3599 } 3600 btrfs_debug(fs_info, "auto deleting %Lu", 3601 found_key.objectid); 3602 ret = btrfs_del_orphan_item(trans, root, 3603 found_key.objectid); 3604 btrfs_end_transaction(trans); 3605 if (ret) 3606 goto out; 3607 continue; 3608 } 3609 3610 nr_unlink++; 3611 3612 /* this will do delete_inode and everything for us */ 3613 iput(inode); 3614 } 3615 /* release the path since we're done with it */ 3616 btrfs_release_path(path); 3617 3618 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3619 3620 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3621 trans = btrfs_join_transaction(root); 3622 if (!IS_ERR(trans)) 3623 btrfs_end_transaction(trans); 3624 } 3625 3626 if (nr_unlink) 3627 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3628 3629 out: 3630 if (ret) 3631 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3632 btrfs_free_path(path); 3633 return ret; 3634 } 3635 3636 /* 3637 * very simple check to peek ahead in the leaf looking for xattrs. If we 3638 * don't find any xattrs, we know there can't be any acls. 3639 * 3640 * slot is the slot the inode is in, objectid is the objectid of the inode 3641 */ 3642 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3643 int slot, u64 objectid, 3644 int *first_xattr_slot) 3645 { 3646 u32 nritems = btrfs_header_nritems(leaf); 3647 struct btrfs_key found_key; 3648 static u64 xattr_access = 0; 3649 static u64 xattr_default = 0; 3650 int scanned = 0; 3651 3652 if (!xattr_access) { 3653 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3654 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3655 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3656 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3657 } 3658 3659 slot++; 3660 *first_xattr_slot = -1; 3661 while (slot < nritems) { 3662 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3663 3664 /* we found a different objectid, there must not be acls */ 3665 if (found_key.objectid != objectid) 3666 return 0; 3667 3668 /* we found an xattr, assume we've got an acl */ 3669 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3670 if (*first_xattr_slot == -1) 3671 *first_xattr_slot = slot; 3672 if (found_key.offset == xattr_access || 3673 found_key.offset == xattr_default) 3674 return 1; 3675 } 3676 3677 /* 3678 * we found a key greater than an xattr key, there can't 3679 * be any acls later on 3680 */ 3681 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3682 return 0; 3683 3684 slot++; 3685 scanned++; 3686 3687 /* 3688 * it goes inode, inode backrefs, xattrs, extents, 3689 * so if there are a ton of hard links to an inode there can 3690 * be a lot of backrefs. Don't waste time searching too hard, 3691 * this is just an optimization 3692 */ 3693 if (scanned >= 8) 3694 break; 3695 } 3696 /* we hit the end of the leaf before we found an xattr or 3697 * something larger than an xattr. We have to assume the inode 3698 * has acls 3699 */ 3700 if (*first_xattr_slot == -1) 3701 *first_xattr_slot = slot; 3702 return 1; 3703 } 3704 3705 /* 3706 * read an inode from the btree into the in-memory inode 3707 */ 3708 static int btrfs_read_locked_inode(struct inode *inode, 3709 struct btrfs_path *in_path) 3710 { 3711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3712 struct btrfs_path *path = in_path; 3713 struct extent_buffer *leaf; 3714 struct btrfs_inode_item *inode_item; 3715 struct btrfs_root *root = BTRFS_I(inode)->root; 3716 struct btrfs_key location; 3717 unsigned long ptr; 3718 int maybe_acls; 3719 u32 rdev; 3720 int ret; 3721 bool filled = false; 3722 int first_xattr_slot; 3723 3724 ret = btrfs_fill_inode(inode, &rdev); 3725 if (!ret) 3726 filled = true; 3727 3728 if (!path) { 3729 path = btrfs_alloc_path(); 3730 if (!path) 3731 return -ENOMEM; 3732 } 3733 3734 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3735 3736 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3737 if (ret) { 3738 if (path != in_path) 3739 btrfs_free_path(path); 3740 return ret; 3741 } 3742 3743 leaf = path->nodes[0]; 3744 3745 if (filled) 3746 goto cache_index; 3747 3748 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3749 struct btrfs_inode_item); 3750 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3751 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3752 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3753 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3754 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3755 3756 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3757 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3758 3759 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3760 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3761 3762 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3763 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3764 3765 BTRFS_I(inode)->i_otime.tv_sec = 3766 btrfs_timespec_sec(leaf, &inode_item->otime); 3767 BTRFS_I(inode)->i_otime.tv_nsec = 3768 btrfs_timespec_nsec(leaf, &inode_item->otime); 3769 3770 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3771 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3772 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3773 3774 inode_set_iversion_queried(inode, 3775 btrfs_inode_sequence(leaf, inode_item)); 3776 inode->i_generation = BTRFS_I(inode)->generation; 3777 inode->i_rdev = 0; 3778 rdev = btrfs_inode_rdev(leaf, inode_item); 3779 3780 BTRFS_I(inode)->index_cnt = (u64)-1; 3781 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3782 3783 cache_index: 3784 /* 3785 * If we were modified in the current generation and evicted from memory 3786 * and then re-read we need to do a full sync since we don't have any 3787 * idea about which extents were modified before we were evicted from 3788 * cache. 3789 * 3790 * This is required for both inode re-read from disk and delayed inode 3791 * in delayed_nodes_tree. 3792 */ 3793 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3794 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3795 &BTRFS_I(inode)->runtime_flags); 3796 3797 /* 3798 * We don't persist the id of the transaction where an unlink operation 3799 * against the inode was last made. So here we assume the inode might 3800 * have been evicted, and therefore the exact value of last_unlink_trans 3801 * lost, and set it to last_trans to avoid metadata inconsistencies 3802 * between the inode and its parent if the inode is fsync'ed and the log 3803 * replayed. For example, in the scenario: 3804 * 3805 * touch mydir/foo 3806 * ln mydir/foo mydir/bar 3807 * sync 3808 * unlink mydir/bar 3809 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3810 * xfs_io -c fsync mydir/foo 3811 * <power failure> 3812 * mount fs, triggers fsync log replay 3813 * 3814 * We must make sure that when we fsync our inode foo we also log its 3815 * parent inode, otherwise after log replay the parent still has the 3816 * dentry with the "bar" name but our inode foo has a link count of 1 3817 * and doesn't have an inode ref with the name "bar" anymore. 3818 * 3819 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3820 * but it guarantees correctness at the expense of occasional full 3821 * transaction commits on fsync if our inode is a directory, or if our 3822 * inode is not a directory, logging its parent unnecessarily. 3823 */ 3824 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3825 3826 path->slots[0]++; 3827 if (inode->i_nlink != 1 || 3828 path->slots[0] >= btrfs_header_nritems(leaf)) 3829 goto cache_acl; 3830 3831 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3832 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3833 goto cache_acl; 3834 3835 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3836 if (location.type == BTRFS_INODE_REF_KEY) { 3837 struct btrfs_inode_ref *ref; 3838 3839 ref = (struct btrfs_inode_ref *)ptr; 3840 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3841 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3842 struct btrfs_inode_extref *extref; 3843 3844 extref = (struct btrfs_inode_extref *)ptr; 3845 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3846 extref); 3847 } 3848 cache_acl: 3849 /* 3850 * try to precache a NULL acl entry for files that don't have 3851 * any xattrs or acls 3852 */ 3853 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3854 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3855 if (first_xattr_slot != -1) { 3856 path->slots[0] = first_xattr_slot; 3857 ret = btrfs_load_inode_props(inode, path); 3858 if (ret) 3859 btrfs_err(fs_info, 3860 "error loading props for ino %llu (root %llu): %d", 3861 btrfs_ino(BTRFS_I(inode)), 3862 root->root_key.objectid, ret); 3863 } 3864 if (path != in_path) 3865 btrfs_free_path(path); 3866 3867 if (!maybe_acls) 3868 cache_no_acl(inode); 3869 3870 switch (inode->i_mode & S_IFMT) { 3871 case S_IFREG: 3872 inode->i_mapping->a_ops = &btrfs_aops; 3873 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3874 inode->i_fop = &btrfs_file_operations; 3875 inode->i_op = &btrfs_file_inode_operations; 3876 break; 3877 case S_IFDIR: 3878 inode->i_fop = &btrfs_dir_file_operations; 3879 inode->i_op = &btrfs_dir_inode_operations; 3880 break; 3881 case S_IFLNK: 3882 inode->i_op = &btrfs_symlink_inode_operations; 3883 inode_nohighmem(inode); 3884 inode->i_mapping->a_ops = &btrfs_aops; 3885 break; 3886 default: 3887 inode->i_op = &btrfs_special_inode_operations; 3888 init_special_inode(inode, inode->i_mode, rdev); 3889 break; 3890 } 3891 3892 btrfs_sync_inode_flags_to_i_flags(inode); 3893 return 0; 3894 } 3895 3896 /* 3897 * given a leaf and an inode, copy the inode fields into the leaf 3898 */ 3899 static void fill_inode_item(struct btrfs_trans_handle *trans, 3900 struct extent_buffer *leaf, 3901 struct btrfs_inode_item *item, 3902 struct inode *inode) 3903 { 3904 struct btrfs_map_token token; 3905 3906 btrfs_init_map_token(&token, leaf); 3907 3908 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3909 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3910 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3911 &token); 3912 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3913 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3914 3915 btrfs_set_token_timespec_sec(leaf, &item->atime, 3916 inode->i_atime.tv_sec, &token); 3917 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3918 inode->i_atime.tv_nsec, &token); 3919 3920 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3921 inode->i_mtime.tv_sec, &token); 3922 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3923 inode->i_mtime.tv_nsec, &token); 3924 3925 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3926 inode->i_ctime.tv_sec, &token); 3927 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3928 inode->i_ctime.tv_nsec, &token); 3929 3930 btrfs_set_token_timespec_sec(leaf, &item->otime, 3931 BTRFS_I(inode)->i_otime.tv_sec, &token); 3932 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3933 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3934 3935 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3936 &token); 3937 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3938 &token); 3939 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3940 &token); 3941 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3942 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3943 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3944 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3945 } 3946 3947 /* 3948 * copy everything in the in-memory inode into the btree. 3949 */ 3950 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3951 struct btrfs_root *root, struct inode *inode) 3952 { 3953 struct btrfs_inode_item *inode_item; 3954 struct btrfs_path *path; 3955 struct extent_buffer *leaf; 3956 int ret; 3957 3958 path = btrfs_alloc_path(); 3959 if (!path) 3960 return -ENOMEM; 3961 3962 path->leave_spinning = 1; 3963 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3964 1); 3965 if (ret) { 3966 if (ret > 0) 3967 ret = -ENOENT; 3968 goto failed; 3969 } 3970 3971 leaf = path->nodes[0]; 3972 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3973 struct btrfs_inode_item); 3974 3975 fill_inode_item(trans, leaf, inode_item, inode); 3976 btrfs_mark_buffer_dirty(leaf); 3977 btrfs_set_inode_last_trans(trans, inode); 3978 ret = 0; 3979 failed: 3980 btrfs_free_path(path); 3981 return ret; 3982 } 3983 3984 /* 3985 * copy everything in the in-memory inode into the btree. 3986 */ 3987 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3988 struct btrfs_root *root, struct inode *inode) 3989 { 3990 struct btrfs_fs_info *fs_info = root->fs_info; 3991 int ret; 3992 3993 /* 3994 * If the inode is a free space inode, we can deadlock during commit 3995 * if we put it into the delayed code. 3996 * 3997 * The data relocation inode should also be directly updated 3998 * without delay 3999 */ 4000 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4001 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4002 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4003 btrfs_update_root_times(trans, root); 4004 4005 ret = btrfs_delayed_update_inode(trans, root, inode); 4006 if (!ret) 4007 btrfs_set_inode_last_trans(trans, inode); 4008 return ret; 4009 } 4010 4011 return btrfs_update_inode_item(trans, root, inode); 4012 } 4013 4014 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4015 struct btrfs_root *root, 4016 struct inode *inode) 4017 { 4018 int ret; 4019 4020 ret = btrfs_update_inode(trans, root, inode); 4021 if (ret == -ENOSPC) 4022 return btrfs_update_inode_item(trans, root, inode); 4023 return ret; 4024 } 4025 4026 /* 4027 * unlink helper that gets used here in inode.c and in the tree logging 4028 * recovery code. It remove a link in a directory with a given name, and 4029 * also drops the back refs in the inode to the directory 4030 */ 4031 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4032 struct btrfs_root *root, 4033 struct btrfs_inode *dir, 4034 struct btrfs_inode *inode, 4035 const char *name, int name_len) 4036 { 4037 struct btrfs_fs_info *fs_info = root->fs_info; 4038 struct btrfs_path *path; 4039 int ret = 0; 4040 struct btrfs_dir_item *di; 4041 u64 index; 4042 u64 ino = btrfs_ino(inode); 4043 u64 dir_ino = btrfs_ino(dir); 4044 4045 path = btrfs_alloc_path(); 4046 if (!path) { 4047 ret = -ENOMEM; 4048 goto out; 4049 } 4050 4051 path->leave_spinning = 1; 4052 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4053 name, name_len, -1); 4054 if (IS_ERR_OR_NULL(di)) { 4055 ret = di ? PTR_ERR(di) : -ENOENT; 4056 goto err; 4057 } 4058 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4059 if (ret) 4060 goto err; 4061 btrfs_release_path(path); 4062 4063 /* 4064 * If we don't have dir index, we have to get it by looking up 4065 * the inode ref, since we get the inode ref, remove it directly, 4066 * it is unnecessary to do delayed deletion. 4067 * 4068 * But if we have dir index, needn't search inode ref to get it. 4069 * Since the inode ref is close to the inode item, it is better 4070 * that we delay to delete it, and just do this deletion when 4071 * we update the inode item. 4072 */ 4073 if (inode->dir_index) { 4074 ret = btrfs_delayed_delete_inode_ref(inode); 4075 if (!ret) { 4076 index = inode->dir_index; 4077 goto skip_backref; 4078 } 4079 } 4080 4081 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4082 dir_ino, &index); 4083 if (ret) { 4084 btrfs_info(fs_info, 4085 "failed to delete reference to %.*s, inode %llu parent %llu", 4086 name_len, name, ino, dir_ino); 4087 btrfs_abort_transaction(trans, ret); 4088 goto err; 4089 } 4090 skip_backref: 4091 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4092 if (ret) { 4093 btrfs_abort_transaction(trans, ret); 4094 goto err; 4095 } 4096 4097 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4098 dir_ino); 4099 if (ret != 0 && ret != -ENOENT) { 4100 btrfs_abort_transaction(trans, ret); 4101 goto err; 4102 } 4103 4104 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4105 index); 4106 if (ret == -ENOENT) 4107 ret = 0; 4108 else if (ret) 4109 btrfs_abort_transaction(trans, ret); 4110 4111 /* 4112 * If we have a pending delayed iput we could end up with the final iput 4113 * being run in btrfs-cleaner context. If we have enough of these built 4114 * up we can end up burning a lot of time in btrfs-cleaner without any 4115 * way to throttle the unlinks. Since we're currently holding a ref on 4116 * the inode we can run the delayed iput here without any issues as the 4117 * final iput won't be done until after we drop the ref we're currently 4118 * holding. 4119 */ 4120 btrfs_run_delayed_iput(fs_info, inode); 4121 err: 4122 btrfs_free_path(path); 4123 if (ret) 4124 goto out; 4125 4126 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4127 inode_inc_iversion(&inode->vfs_inode); 4128 inode_inc_iversion(&dir->vfs_inode); 4129 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4130 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4131 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4132 out: 4133 return ret; 4134 } 4135 4136 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4137 struct btrfs_root *root, 4138 struct btrfs_inode *dir, struct btrfs_inode *inode, 4139 const char *name, int name_len) 4140 { 4141 int ret; 4142 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4143 if (!ret) { 4144 drop_nlink(&inode->vfs_inode); 4145 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4146 } 4147 return ret; 4148 } 4149 4150 /* 4151 * helper to start transaction for unlink and rmdir. 4152 * 4153 * unlink and rmdir are special in btrfs, they do not always free space, so 4154 * if we cannot make our reservations the normal way try and see if there is 4155 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4156 * allow the unlink to occur. 4157 */ 4158 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4159 { 4160 struct btrfs_root *root = BTRFS_I(dir)->root; 4161 4162 /* 4163 * 1 for the possible orphan item 4164 * 1 for the dir item 4165 * 1 for the dir index 4166 * 1 for the inode ref 4167 * 1 for the inode 4168 */ 4169 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4170 } 4171 4172 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4173 { 4174 struct btrfs_root *root = BTRFS_I(dir)->root; 4175 struct btrfs_trans_handle *trans; 4176 struct inode *inode = d_inode(dentry); 4177 int ret; 4178 4179 trans = __unlink_start_trans(dir); 4180 if (IS_ERR(trans)) 4181 return PTR_ERR(trans); 4182 4183 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4184 0); 4185 4186 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4187 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4188 dentry->d_name.len); 4189 if (ret) 4190 goto out; 4191 4192 if (inode->i_nlink == 0) { 4193 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4194 if (ret) 4195 goto out; 4196 } 4197 4198 out: 4199 btrfs_end_transaction(trans); 4200 btrfs_btree_balance_dirty(root->fs_info); 4201 return ret; 4202 } 4203 4204 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4205 struct inode *dir, u64 objectid, 4206 const char *name, int name_len) 4207 { 4208 struct btrfs_root *root = BTRFS_I(dir)->root; 4209 struct btrfs_path *path; 4210 struct extent_buffer *leaf; 4211 struct btrfs_dir_item *di; 4212 struct btrfs_key key; 4213 u64 index; 4214 int ret; 4215 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4216 4217 path = btrfs_alloc_path(); 4218 if (!path) 4219 return -ENOMEM; 4220 4221 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4222 name, name_len, -1); 4223 if (IS_ERR_OR_NULL(di)) { 4224 ret = di ? PTR_ERR(di) : -ENOENT; 4225 goto out; 4226 } 4227 4228 leaf = path->nodes[0]; 4229 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4230 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4231 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4232 if (ret) { 4233 btrfs_abort_transaction(trans, ret); 4234 goto out; 4235 } 4236 btrfs_release_path(path); 4237 4238 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4239 dir_ino, &index, name, name_len); 4240 if (ret < 0) { 4241 if (ret != -ENOENT) { 4242 btrfs_abort_transaction(trans, ret); 4243 goto out; 4244 } 4245 di = btrfs_search_dir_index_item(root, path, dir_ino, 4246 name, name_len); 4247 if (IS_ERR_OR_NULL(di)) { 4248 if (!di) 4249 ret = -ENOENT; 4250 else 4251 ret = PTR_ERR(di); 4252 btrfs_abort_transaction(trans, ret); 4253 goto out; 4254 } 4255 4256 leaf = path->nodes[0]; 4257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4258 index = key.offset; 4259 } 4260 btrfs_release_path(path); 4261 4262 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4263 if (ret) { 4264 btrfs_abort_transaction(trans, ret); 4265 goto out; 4266 } 4267 4268 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4269 inode_inc_iversion(dir); 4270 dir->i_mtime = dir->i_ctime = current_time(dir); 4271 ret = btrfs_update_inode_fallback(trans, root, dir); 4272 if (ret) 4273 btrfs_abort_transaction(trans, ret); 4274 out: 4275 btrfs_free_path(path); 4276 return ret; 4277 } 4278 4279 /* 4280 * Helper to check if the subvolume references other subvolumes or if it's 4281 * default. 4282 */ 4283 static noinline int may_destroy_subvol(struct btrfs_root *root) 4284 { 4285 struct btrfs_fs_info *fs_info = root->fs_info; 4286 struct btrfs_path *path; 4287 struct btrfs_dir_item *di; 4288 struct btrfs_key key; 4289 u64 dir_id; 4290 int ret; 4291 4292 path = btrfs_alloc_path(); 4293 if (!path) 4294 return -ENOMEM; 4295 4296 /* Make sure this root isn't set as the default subvol */ 4297 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4298 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4299 dir_id, "default", 7, 0); 4300 if (di && !IS_ERR(di)) { 4301 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4302 if (key.objectid == root->root_key.objectid) { 4303 ret = -EPERM; 4304 btrfs_err(fs_info, 4305 "deleting default subvolume %llu is not allowed", 4306 key.objectid); 4307 goto out; 4308 } 4309 btrfs_release_path(path); 4310 } 4311 4312 key.objectid = root->root_key.objectid; 4313 key.type = BTRFS_ROOT_REF_KEY; 4314 key.offset = (u64)-1; 4315 4316 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4317 if (ret < 0) 4318 goto out; 4319 BUG_ON(ret == 0); 4320 4321 ret = 0; 4322 if (path->slots[0] > 0) { 4323 path->slots[0]--; 4324 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4325 if (key.objectid == root->root_key.objectid && 4326 key.type == BTRFS_ROOT_REF_KEY) 4327 ret = -ENOTEMPTY; 4328 } 4329 out: 4330 btrfs_free_path(path); 4331 return ret; 4332 } 4333 4334 /* Delete all dentries for inodes belonging to the root */ 4335 static void btrfs_prune_dentries(struct btrfs_root *root) 4336 { 4337 struct btrfs_fs_info *fs_info = root->fs_info; 4338 struct rb_node *node; 4339 struct rb_node *prev; 4340 struct btrfs_inode *entry; 4341 struct inode *inode; 4342 u64 objectid = 0; 4343 4344 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4345 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4346 4347 spin_lock(&root->inode_lock); 4348 again: 4349 node = root->inode_tree.rb_node; 4350 prev = NULL; 4351 while (node) { 4352 prev = node; 4353 entry = rb_entry(node, struct btrfs_inode, rb_node); 4354 4355 if (objectid < btrfs_ino(entry)) 4356 node = node->rb_left; 4357 else if (objectid > btrfs_ino(entry)) 4358 node = node->rb_right; 4359 else 4360 break; 4361 } 4362 if (!node) { 4363 while (prev) { 4364 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4365 if (objectid <= btrfs_ino(entry)) { 4366 node = prev; 4367 break; 4368 } 4369 prev = rb_next(prev); 4370 } 4371 } 4372 while (node) { 4373 entry = rb_entry(node, struct btrfs_inode, rb_node); 4374 objectid = btrfs_ino(entry) + 1; 4375 inode = igrab(&entry->vfs_inode); 4376 if (inode) { 4377 spin_unlock(&root->inode_lock); 4378 if (atomic_read(&inode->i_count) > 1) 4379 d_prune_aliases(inode); 4380 /* 4381 * btrfs_drop_inode will have it removed from the inode 4382 * cache when its usage count hits zero. 4383 */ 4384 iput(inode); 4385 cond_resched(); 4386 spin_lock(&root->inode_lock); 4387 goto again; 4388 } 4389 4390 if (cond_resched_lock(&root->inode_lock)) 4391 goto again; 4392 4393 node = rb_next(node); 4394 } 4395 spin_unlock(&root->inode_lock); 4396 } 4397 4398 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4399 { 4400 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4401 struct btrfs_root *root = BTRFS_I(dir)->root; 4402 struct inode *inode = d_inode(dentry); 4403 struct btrfs_root *dest = BTRFS_I(inode)->root; 4404 struct btrfs_trans_handle *trans; 4405 struct btrfs_block_rsv block_rsv; 4406 u64 root_flags; 4407 int ret; 4408 int err; 4409 4410 /* 4411 * Don't allow to delete a subvolume with send in progress. This is 4412 * inside the inode lock so the error handling that has to drop the bit 4413 * again is not run concurrently. 4414 */ 4415 spin_lock(&dest->root_item_lock); 4416 if (dest->send_in_progress) { 4417 spin_unlock(&dest->root_item_lock); 4418 btrfs_warn(fs_info, 4419 "attempt to delete subvolume %llu during send", 4420 dest->root_key.objectid); 4421 return -EPERM; 4422 } 4423 root_flags = btrfs_root_flags(&dest->root_item); 4424 btrfs_set_root_flags(&dest->root_item, 4425 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4426 spin_unlock(&dest->root_item_lock); 4427 4428 down_write(&fs_info->subvol_sem); 4429 4430 err = may_destroy_subvol(dest); 4431 if (err) 4432 goto out_up_write; 4433 4434 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4435 /* 4436 * One for dir inode, 4437 * two for dir entries, 4438 * two for root ref/backref. 4439 */ 4440 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4441 if (err) 4442 goto out_up_write; 4443 4444 trans = btrfs_start_transaction(root, 0); 4445 if (IS_ERR(trans)) { 4446 err = PTR_ERR(trans); 4447 goto out_release; 4448 } 4449 trans->block_rsv = &block_rsv; 4450 trans->bytes_reserved = block_rsv.size; 4451 4452 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4453 4454 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4455 dentry->d_name.name, dentry->d_name.len); 4456 if (ret) { 4457 err = ret; 4458 btrfs_abort_transaction(trans, ret); 4459 goto out_end_trans; 4460 } 4461 4462 btrfs_record_root_in_trans(trans, dest); 4463 4464 memset(&dest->root_item.drop_progress, 0, 4465 sizeof(dest->root_item.drop_progress)); 4466 dest->root_item.drop_level = 0; 4467 btrfs_set_root_refs(&dest->root_item, 0); 4468 4469 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4470 ret = btrfs_insert_orphan_item(trans, 4471 fs_info->tree_root, 4472 dest->root_key.objectid); 4473 if (ret) { 4474 btrfs_abort_transaction(trans, ret); 4475 err = ret; 4476 goto out_end_trans; 4477 } 4478 } 4479 4480 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4481 BTRFS_UUID_KEY_SUBVOL, 4482 dest->root_key.objectid); 4483 if (ret && ret != -ENOENT) { 4484 btrfs_abort_transaction(trans, ret); 4485 err = ret; 4486 goto out_end_trans; 4487 } 4488 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4489 ret = btrfs_uuid_tree_remove(trans, 4490 dest->root_item.received_uuid, 4491 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4492 dest->root_key.objectid); 4493 if (ret && ret != -ENOENT) { 4494 btrfs_abort_transaction(trans, ret); 4495 err = ret; 4496 goto out_end_trans; 4497 } 4498 } 4499 4500 out_end_trans: 4501 trans->block_rsv = NULL; 4502 trans->bytes_reserved = 0; 4503 ret = btrfs_end_transaction(trans); 4504 if (ret && !err) 4505 err = ret; 4506 inode->i_flags |= S_DEAD; 4507 out_release: 4508 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4509 out_up_write: 4510 up_write(&fs_info->subvol_sem); 4511 if (err) { 4512 spin_lock(&dest->root_item_lock); 4513 root_flags = btrfs_root_flags(&dest->root_item); 4514 btrfs_set_root_flags(&dest->root_item, 4515 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4516 spin_unlock(&dest->root_item_lock); 4517 } else { 4518 d_invalidate(dentry); 4519 btrfs_prune_dentries(dest); 4520 ASSERT(dest->send_in_progress == 0); 4521 4522 /* the last ref */ 4523 if (dest->ino_cache_inode) { 4524 iput(dest->ino_cache_inode); 4525 dest->ino_cache_inode = NULL; 4526 } 4527 } 4528 4529 return err; 4530 } 4531 4532 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4533 { 4534 struct inode *inode = d_inode(dentry); 4535 int err = 0; 4536 struct btrfs_root *root = BTRFS_I(dir)->root; 4537 struct btrfs_trans_handle *trans; 4538 u64 last_unlink_trans; 4539 4540 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4541 return -ENOTEMPTY; 4542 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4543 return btrfs_delete_subvolume(dir, dentry); 4544 4545 trans = __unlink_start_trans(dir); 4546 if (IS_ERR(trans)) 4547 return PTR_ERR(trans); 4548 4549 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4550 err = btrfs_unlink_subvol(trans, dir, 4551 BTRFS_I(inode)->location.objectid, 4552 dentry->d_name.name, 4553 dentry->d_name.len); 4554 goto out; 4555 } 4556 4557 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4558 if (err) 4559 goto out; 4560 4561 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4562 4563 /* now the directory is empty */ 4564 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4565 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4566 dentry->d_name.len); 4567 if (!err) { 4568 btrfs_i_size_write(BTRFS_I(inode), 0); 4569 /* 4570 * Propagate the last_unlink_trans value of the deleted dir to 4571 * its parent directory. This is to prevent an unrecoverable 4572 * log tree in the case we do something like this: 4573 * 1) create dir foo 4574 * 2) create snapshot under dir foo 4575 * 3) delete the snapshot 4576 * 4) rmdir foo 4577 * 5) mkdir foo 4578 * 6) fsync foo or some file inside foo 4579 */ 4580 if (last_unlink_trans >= trans->transid) 4581 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4582 } 4583 out: 4584 btrfs_end_transaction(trans); 4585 btrfs_btree_balance_dirty(root->fs_info); 4586 4587 return err; 4588 } 4589 4590 /* 4591 * Return this if we need to call truncate_block for the last bit of the 4592 * truncate. 4593 */ 4594 #define NEED_TRUNCATE_BLOCK 1 4595 4596 /* 4597 * this can truncate away extent items, csum items and directory items. 4598 * It starts at a high offset and removes keys until it can't find 4599 * any higher than new_size 4600 * 4601 * csum items that cross the new i_size are truncated to the new size 4602 * as well. 4603 * 4604 * min_type is the minimum key type to truncate down to. If set to 0, this 4605 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4606 */ 4607 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4608 struct btrfs_root *root, 4609 struct inode *inode, 4610 u64 new_size, u32 min_type) 4611 { 4612 struct btrfs_fs_info *fs_info = root->fs_info; 4613 struct btrfs_path *path; 4614 struct extent_buffer *leaf; 4615 struct btrfs_file_extent_item *fi; 4616 struct btrfs_key key; 4617 struct btrfs_key found_key; 4618 u64 extent_start = 0; 4619 u64 extent_num_bytes = 0; 4620 u64 extent_offset = 0; 4621 u64 item_end = 0; 4622 u64 last_size = new_size; 4623 u32 found_type = (u8)-1; 4624 int found_extent; 4625 int del_item; 4626 int pending_del_nr = 0; 4627 int pending_del_slot = 0; 4628 int extent_type = -1; 4629 int ret; 4630 u64 ino = btrfs_ino(BTRFS_I(inode)); 4631 u64 bytes_deleted = 0; 4632 bool be_nice = false; 4633 bool should_throttle = false; 4634 4635 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4636 4637 /* 4638 * for non-free space inodes and ref cows, we want to back off from 4639 * time to time 4640 */ 4641 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4642 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4643 be_nice = true; 4644 4645 path = btrfs_alloc_path(); 4646 if (!path) 4647 return -ENOMEM; 4648 path->reada = READA_BACK; 4649 4650 /* 4651 * We want to drop from the next block forward in case this new size is 4652 * not block aligned since we will be keeping the last block of the 4653 * extent just the way it is. 4654 */ 4655 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4656 root == fs_info->tree_root) 4657 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4658 fs_info->sectorsize), 4659 (u64)-1, 0); 4660 4661 /* 4662 * This function is also used to drop the items in the log tree before 4663 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4664 * it is used to drop the logged items. So we shouldn't kill the delayed 4665 * items. 4666 */ 4667 if (min_type == 0 && root == BTRFS_I(inode)->root) 4668 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4669 4670 key.objectid = ino; 4671 key.offset = (u64)-1; 4672 key.type = (u8)-1; 4673 4674 search_again: 4675 /* 4676 * with a 16K leaf size and 128MB extents, you can actually queue 4677 * up a huge file in a single leaf. Most of the time that 4678 * bytes_deleted is > 0, it will be huge by the time we get here 4679 */ 4680 if (be_nice && bytes_deleted > SZ_32M && 4681 btrfs_should_end_transaction(trans)) { 4682 ret = -EAGAIN; 4683 goto out; 4684 } 4685 4686 path->leave_spinning = 1; 4687 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4688 if (ret < 0) 4689 goto out; 4690 4691 if (ret > 0) { 4692 ret = 0; 4693 /* there are no items in the tree for us to truncate, we're 4694 * done 4695 */ 4696 if (path->slots[0] == 0) 4697 goto out; 4698 path->slots[0]--; 4699 } 4700 4701 while (1) { 4702 fi = NULL; 4703 leaf = path->nodes[0]; 4704 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4705 found_type = found_key.type; 4706 4707 if (found_key.objectid != ino) 4708 break; 4709 4710 if (found_type < min_type) 4711 break; 4712 4713 item_end = found_key.offset; 4714 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4715 fi = btrfs_item_ptr(leaf, path->slots[0], 4716 struct btrfs_file_extent_item); 4717 extent_type = btrfs_file_extent_type(leaf, fi); 4718 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4719 item_end += 4720 btrfs_file_extent_num_bytes(leaf, fi); 4721 4722 trace_btrfs_truncate_show_fi_regular( 4723 BTRFS_I(inode), leaf, fi, 4724 found_key.offset); 4725 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4726 item_end += btrfs_file_extent_ram_bytes(leaf, 4727 fi); 4728 4729 trace_btrfs_truncate_show_fi_inline( 4730 BTRFS_I(inode), leaf, fi, path->slots[0], 4731 found_key.offset); 4732 } 4733 item_end--; 4734 } 4735 if (found_type > min_type) { 4736 del_item = 1; 4737 } else { 4738 if (item_end < new_size) 4739 break; 4740 if (found_key.offset >= new_size) 4741 del_item = 1; 4742 else 4743 del_item = 0; 4744 } 4745 found_extent = 0; 4746 /* FIXME, shrink the extent if the ref count is only 1 */ 4747 if (found_type != BTRFS_EXTENT_DATA_KEY) 4748 goto delete; 4749 4750 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4751 u64 num_dec; 4752 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4753 if (!del_item) { 4754 u64 orig_num_bytes = 4755 btrfs_file_extent_num_bytes(leaf, fi); 4756 extent_num_bytes = ALIGN(new_size - 4757 found_key.offset, 4758 fs_info->sectorsize); 4759 btrfs_set_file_extent_num_bytes(leaf, fi, 4760 extent_num_bytes); 4761 num_dec = (orig_num_bytes - 4762 extent_num_bytes); 4763 if (test_bit(BTRFS_ROOT_REF_COWS, 4764 &root->state) && 4765 extent_start != 0) 4766 inode_sub_bytes(inode, num_dec); 4767 btrfs_mark_buffer_dirty(leaf); 4768 } else { 4769 extent_num_bytes = 4770 btrfs_file_extent_disk_num_bytes(leaf, 4771 fi); 4772 extent_offset = found_key.offset - 4773 btrfs_file_extent_offset(leaf, fi); 4774 4775 /* FIXME blocksize != 4096 */ 4776 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4777 if (extent_start != 0) { 4778 found_extent = 1; 4779 if (test_bit(BTRFS_ROOT_REF_COWS, 4780 &root->state)) 4781 inode_sub_bytes(inode, num_dec); 4782 } 4783 } 4784 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4785 /* 4786 * we can't truncate inline items that have had 4787 * special encodings 4788 */ 4789 if (!del_item && 4790 btrfs_file_extent_encryption(leaf, fi) == 0 && 4791 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4792 btrfs_file_extent_compression(leaf, fi) == 0) { 4793 u32 size = (u32)(new_size - found_key.offset); 4794 4795 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4796 size = btrfs_file_extent_calc_inline_size(size); 4797 btrfs_truncate_item(path, size, 1); 4798 } else if (!del_item) { 4799 /* 4800 * We have to bail so the last_size is set to 4801 * just before this extent. 4802 */ 4803 ret = NEED_TRUNCATE_BLOCK; 4804 break; 4805 } 4806 4807 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4808 inode_sub_bytes(inode, item_end + 1 - new_size); 4809 } 4810 delete: 4811 if (del_item) 4812 last_size = found_key.offset; 4813 else 4814 last_size = new_size; 4815 if (del_item) { 4816 if (!pending_del_nr) { 4817 /* no pending yet, add ourselves */ 4818 pending_del_slot = path->slots[0]; 4819 pending_del_nr = 1; 4820 } else if (pending_del_nr && 4821 path->slots[0] + 1 == pending_del_slot) { 4822 /* hop on the pending chunk */ 4823 pending_del_nr++; 4824 pending_del_slot = path->slots[0]; 4825 } else { 4826 BUG(); 4827 } 4828 } else { 4829 break; 4830 } 4831 should_throttle = false; 4832 4833 if (found_extent && 4834 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4835 root == fs_info->tree_root)) { 4836 struct btrfs_ref ref = { 0 }; 4837 4838 btrfs_set_path_blocking(path); 4839 bytes_deleted += extent_num_bytes; 4840 4841 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4842 extent_start, extent_num_bytes, 0); 4843 ref.real_root = root->root_key.objectid; 4844 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4845 ino, extent_offset); 4846 ret = btrfs_free_extent(trans, &ref); 4847 if (ret) { 4848 btrfs_abort_transaction(trans, ret); 4849 break; 4850 } 4851 if (be_nice) { 4852 if (btrfs_should_throttle_delayed_refs(trans)) 4853 should_throttle = true; 4854 } 4855 } 4856 4857 if (found_type == BTRFS_INODE_ITEM_KEY) 4858 break; 4859 4860 if (path->slots[0] == 0 || 4861 path->slots[0] != pending_del_slot || 4862 should_throttle) { 4863 if (pending_del_nr) { 4864 ret = btrfs_del_items(trans, root, path, 4865 pending_del_slot, 4866 pending_del_nr); 4867 if (ret) { 4868 btrfs_abort_transaction(trans, ret); 4869 break; 4870 } 4871 pending_del_nr = 0; 4872 } 4873 btrfs_release_path(path); 4874 4875 /* 4876 * We can generate a lot of delayed refs, so we need to 4877 * throttle every once and a while and make sure we're 4878 * adding enough space to keep up with the work we are 4879 * generating. Since we hold a transaction here we 4880 * can't flush, and we don't want to FLUSH_LIMIT because 4881 * we could have generated too many delayed refs to 4882 * actually allocate, so just bail if we're short and 4883 * let the normal reservation dance happen higher up. 4884 */ 4885 if (should_throttle) { 4886 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4887 BTRFS_RESERVE_NO_FLUSH); 4888 if (ret) { 4889 ret = -EAGAIN; 4890 break; 4891 } 4892 } 4893 goto search_again; 4894 } else { 4895 path->slots[0]--; 4896 } 4897 } 4898 out: 4899 if (ret >= 0 && pending_del_nr) { 4900 int err; 4901 4902 err = btrfs_del_items(trans, root, path, pending_del_slot, 4903 pending_del_nr); 4904 if (err) { 4905 btrfs_abort_transaction(trans, err); 4906 ret = err; 4907 } 4908 } 4909 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4910 ASSERT(last_size >= new_size); 4911 if (!ret && last_size > new_size) 4912 last_size = new_size; 4913 btrfs_ordered_update_i_size(inode, last_size, NULL); 4914 } 4915 4916 btrfs_free_path(path); 4917 return ret; 4918 } 4919 4920 /* 4921 * btrfs_truncate_block - read, zero a chunk and write a block 4922 * @inode - inode that we're zeroing 4923 * @from - the offset to start zeroing 4924 * @len - the length to zero, 0 to zero the entire range respective to the 4925 * offset 4926 * @front - zero up to the offset instead of from the offset on 4927 * 4928 * This will find the block for the "from" offset and cow the block and zero the 4929 * part we want to zero. This is used with truncate and hole punching. 4930 */ 4931 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4932 int front) 4933 { 4934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4935 struct address_space *mapping = inode->i_mapping; 4936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4937 struct btrfs_ordered_extent *ordered; 4938 struct extent_state *cached_state = NULL; 4939 struct extent_changeset *data_reserved = NULL; 4940 char *kaddr; 4941 u32 blocksize = fs_info->sectorsize; 4942 pgoff_t index = from >> PAGE_SHIFT; 4943 unsigned offset = from & (blocksize - 1); 4944 struct page *page; 4945 gfp_t mask = btrfs_alloc_write_mask(mapping); 4946 int ret = 0; 4947 u64 block_start; 4948 u64 block_end; 4949 4950 if (IS_ALIGNED(offset, blocksize) && 4951 (!len || IS_ALIGNED(len, blocksize))) 4952 goto out; 4953 4954 block_start = round_down(from, blocksize); 4955 block_end = block_start + blocksize - 1; 4956 4957 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4958 block_start, blocksize); 4959 if (ret) 4960 goto out; 4961 4962 again: 4963 page = find_or_create_page(mapping, index, mask); 4964 if (!page) { 4965 btrfs_delalloc_release_space(inode, data_reserved, 4966 block_start, blocksize, true); 4967 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4968 ret = -ENOMEM; 4969 goto out; 4970 } 4971 4972 if (!PageUptodate(page)) { 4973 ret = btrfs_readpage(NULL, page); 4974 lock_page(page); 4975 if (page->mapping != mapping) { 4976 unlock_page(page); 4977 put_page(page); 4978 goto again; 4979 } 4980 if (!PageUptodate(page)) { 4981 ret = -EIO; 4982 goto out_unlock; 4983 } 4984 } 4985 wait_on_page_writeback(page); 4986 4987 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4988 set_page_extent_mapped(page); 4989 4990 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4991 if (ordered) { 4992 unlock_extent_cached(io_tree, block_start, block_end, 4993 &cached_state); 4994 unlock_page(page); 4995 put_page(page); 4996 btrfs_start_ordered_extent(inode, ordered, 1); 4997 btrfs_put_ordered_extent(ordered); 4998 goto again; 4999 } 5000 5001 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 5002 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5003 0, 0, &cached_state); 5004 5005 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5006 &cached_state); 5007 if (ret) { 5008 unlock_extent_cached(io_tree, block_start, block_end, 5009 &cached_state); 5010 goto out_unlock; 5011 } 5012 5013 if (offset != blocksize) { 5014 if (!len) 5015 len = blocksize - offset; 5016 kaddr = kmap(page); 5017 if (front) 5018 memset(kaddr + (block_start - page_offset(page)), 5019 0, offset); 5020 else 5021 memset(kaddr + (block_start - page_offset(page)) + offset, 5022 0, len); 5023 flush_dcache_page(page); 5024 kunmap(page); 5025 } 5026 ClearPageChecked(page); 5027 set_page_dirty(page); 5028 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 5029 5030 out_unlock: 5031 if (ret) 5032 btrfs_delalloc_release_space(inode, data_reserved, block_start, 5033 blocksize, true); 5034 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 5035 unlock_page(page); 5036 put_page(page); 5037 out: 5038 extent_changeset_free(data_reserved); 5039 return ret; 5040 } 5041 5042 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 5043 u64 offset, u64 len) 5044 { 5045 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5046 struct btrfs_trans_handle *trans; 5047 int ret; 5048 5049 /* 5050 * Still need to make sure the inode looks like it's been updated so 5051 * that any holes get logged if we fsync. 5052 */ 5053 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 5054 BTRFS_I(inode)->last_trans = fs_info->generation; 5055 BTRFS_I(inode)->last_sub_trans = root->log_transid; 5056 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 5057 return 0; 5058 } 5059 5060 /* 5061 * 1 - for the one we're dropping 5062 * 1 - for the one we're adding 5063 * 1 - for updating the inode. 5064 */ 5065 trans = btrfs_start_transaction(root, 3); 5066 if (IS_ERR(trans)) 5067 return PTR_ERR(trans); 5068 5069 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 5070 if (ret) { 5071 btrfs_abort_transaction(trans, ret); 5072 btrfs_end_transaction(trans); 5073 return ret; 5074 } 5075 5076 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 5077 offset, 0, 0, len, 0, len, 0, 0, 0); 5078 if (ret) 5079 btrfs_abort_transaction(trans, ret); 5080 else 5081 btrfs_update_inode(trans, root, inode); 5082 btrfs_end_transaction(trans); 5083 return ret; 5084 } 5085 5086 /* 5087 * This function puts in dummy file extents for the area we're creating a hole 5088 * for. So if we are truncating this file to a larger size we need to insert 5089 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5090 * the range between oldsize and size 5091 */ 5092 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 5093 { 5094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5095 struct btrfs_root *root = BTRFS_I(inode)->root; 5096 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5097 struct extent_map *em = NULL; 5098 struct extent_state *cached_state = NULL; 5099 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5100 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5101 u64 block_end = ALIGN(size, fs_info->sectorsize); 5102 u64 last_byte; 5103 u64 cur_offset; 5104 u64 hole_size; 5105 int err = 0; 5106 5107 /* 5108 * If our size started in the middle of a block we need to zero out the 5109 * rest of the block before we expand the i_size, otherwise we could 5110 * expose stale data. 5111 */ 5112 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5113 if (err) 5114 return err; 5115 5116 if (size <= hole_start) 5117 return 0; 5118 5119 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start, 5120 block_end - 1, &cached_state); 5121 cur_offset = hole_start; 5122 while (1) { 5123 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5124 block_end - cur_offset, 0); 5125 if (IS_ERR(em)) { 5126 err = PTR_ERR(em); 5127 em = NULL; 5128 break; 5129 } 5130 last_byte = min(extent_map_end(em), block_end); 5131 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5132 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5133 struct extent_map *hole_em; 5134 hole_size = last_byte - cur_offset; 5135 5136 err = maybe_insert_hole(root, inode, cur_offset, 5137 hole_size); 5138 if (err) 5139 break; 5140 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5141 cur_offset + hole_size - 1, 0); 5142 hole_em = alloc_extent_map(); 5143 if (!hole_em) { 5144 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5145 &BTRFS_I(inode)->runtime_flags); 5146 goto next; 5147 } 5148 hole_em->start = cur_offset; 5149 hole_em->len = hole_size; 5150 hole_em->orig_start = cur_offset; 5151 5152 hole_em->block_start = EXTENT_MAP_HOLE; 5153 hole_em->block_len = 0; 5154 hole_em->orig_block_len = 0; 5155 hole_em->ram_bytes = hole_size; 5156 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5157 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5158 hole_em->generation = fs_info->generation; 5159 5160 while (1) { 5161 write_lock(&em_tree->lock); 5162 err = add_extent_mapping(em_tree, hole_em, 1); 5163 write_unlock(&em_tree->lock); 5164 if (err != -EEXIST) 5165 break; 5166 btrfs_drop_extent_cache(BTRFS_I(inode), 5167 cur_offset, 5168 cur_offset + 5169 hole_size - 1, 0); 5170 } 5171 free_extent_map(hole_em); 5172 } 5173 next: 5174 free_extent_map(em); 5175 em = NULL; 5176 cur_offset = last_byte; 5177 if (cur_offset >= block_end) 5178 break; 5179 } 5180 free_extent_map(em); 5181 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5182 return err; 5183 } 5184 5185 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5186 { 5187 struct btrfs_root *root = BTRFS_I(inode)->root; 5188 struct btrfs_trans_handle *trans; 5189 loff_t oldsize = i_size_read(inode); 5190 loff_t newsize = attr->ia_size; 5191 int mask = attr->ia_valid; 5192 int ret; 5193 5194 /* 5195 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5196 * special case where we need to update the times despite not having 5197 * these flags set. For all other operations the VFS set these flags 5198 * explicitly if it wants a timestamp update. 5199 */ 5200 if (newsize != oldsize) { 5201 inode_inc_iversion(inode); 5202 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5203 inode->i_ctime = inode->i_mtime = 5204 current_time(inode); 5205 } 5206 5207 if (newsize > oldsize) { 5208 /* 5209 * Don't do an expanding truncate while snapshotting is ongoing. 5210 * This is to ensure the snapshot captures a fully consistent 5211 * state of this file - if the snapshot captures this expanding 5212 * truncation, it must capture all writes that happened before 5213 * this truncation. 5214 */ 5215 btrfs_wait_for_snapshot_creation(root); 5216 ret = btrfs_cont_expand(inode, oldsize, newsize); 5217 if (ret) { 5218 btrfs_end_write_no_snapshotting(root); 5219 return ret; 5220 } 5221 5222 trans = btrfs_start_transaction(root, 1); 5223 if (IS_ERR(trans)) { 5224 btrfs_end_write_no_snapshotting(root); 5225 return PTR_ERR(trans); 5226 } 5227 5228 i_size_write(inode, newsize); 5229 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5230 pagecache_isize_extended(inode, oldsize, newsize); 5231 ret = btrfs_update_inode(trans, root, inode); 5232 btrfs_end_write_no_snapshotting(root); 5233 btrfs_end_transaction(trans); 5234 } else { 5235 5236 /* 5237 * We're truncating a file that used to have good data down to 5238 * zero. Make sure it gets into the ordered flush list so that 5239 * any new writes get down to disk quickly. 5240 */ 5241 if (newsize == 0) 5242 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5243 &BTRFS_I(inode)->runtime_flags); 5244 5245 truncate_setsize(inode, newsize); 5246 5247 /* Disable nonlocked read DIO to avoid the endless truncate */ 5248 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5249 inode_dio_wait(inode); 5250 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5251 5252 ret = btrfs_truncate(inode, newsize == oldsize); 5253 if (ret && inode->i_nlink) { 5254 int err; 5255 5256 /* 5257 * Truncate failed, so fix up the in-memory size. We 5258 * adjusted disk_i_size down as we removed extents, so 5259 * wait for disk_i_size to be stable and then update the 5260 * in-memory size to match. 5261 */ 5262 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5263 if (err) 5264 return err; 5265 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5266 } 5267 } 5268 5269 return ret; 5270 } 5271 5272 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5273 { 5274 struct inode *inode = d_inode(dentry); 5275 struct btrfs_root *root = BTRFS_I(inode)->root; 5276 int err; 5277 5278 if (btrfs_root_readonly(root)) 5279 return -EROFS; 5280 5281 err = setattr_prepare(dentry, attr); 5282 if (err) 5283 return err; 5284 5285 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5286 err = btrfs_setsize(inode, attr); 5287 if (err) 5288 return err; 5289 } 5290 5291 if (attr->ia_valid) { 5292 setattr_copy(inode, attr); 5293 inode_inc_iversion(inode); 5294 err = btrfs_dirty_inode(inode); 5295 5296 if (!err && attr->ia_valid & ATTR_MODE) 5297 err = posix_acl_chmod(inode, inode->i_mode); 5298 } 5299 5300 return err; 5301 } 5302 5303 /* 5304 * While truncating the inode pages during eviction, we get the VFS calling 5305 * btrfs_invalidatepage() against each page of the inode. This is slow because 5306 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5307 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5308 * extent_state structures over and over, wasting lots of time. 5309 * 5310 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5311 * those expensive operations on a per page basis and do only the ordered io 5312 * finishing, while we release here the extent_map and extent_state structures, 5313 * without the excessive merging and splitting. 5314 */ 5315 static void evict_inode_truncate_pages(struct inode *inode) 5316 { 5317 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5318 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5319 struct rb_node *node; 5320 5321 ASSERT(inode->i_state & I_FREEING); 5322 truncate_inode_pages_final(&inode->i_data); 5323 5324 write_lock(&map_tree->lock); 5325 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5326 struct extent_map *em; 5327 5328 node = rb_first_cached(&map_tree->map); 5329 em = rb_entry(node, struct extent_map, rb_node); 5330 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5331 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5332 remove_extent_mapping(map_tree, em); 5333 free_extent_map(em); 5334 if (need_resched()) { 5335 write_unlock(&map_tree->lock); 5336 cond_resched(); 5337 write_lock(&map_tree->lock); 5338 } 5339 } 5340 write_unlock(&map_tree->lock); 5341 5342 /* 5343 * Keep looping until we have no more ranges in the io tree. 5344 * We can have ongoing bios started by readpages (called from readahead) 5345 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5346 * still in progress (unlocked the pages in the bio but did not yet 5347 * unlocked the ranges in the io tree). Therefore this means some 5348 * ranges can still be locked and eviction started because before 5349 * submitting those bios, which are executed by a separate task (work 5350 * queue kthread), inode references (inode->i_count) were not taken 5351 * (which would be dropped in the end io callback of each bio). 5352 * Therefore here we effectively end up waiting for those bios and 5353 * anyone else holding locked ranges without having bumped the inode's 5354 * reference count - if we don't do it, when they access the inode's 5355 * io_tree to unlock a range it may be too late, leading to an 5356 * use-after-free issue. 5357 */ 5358 spin_lock(&io_tree->lock); 5359 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5360 struct extent_state *state; 5361 struct extent_state *cached_state = NULL; 5362 u64 start; 5363 u64 end; 5364 unsigned state_flags; 5365 5366 node = rb_first(&io_tree->state); 5367 state = rb_entry(node, struct extent_state, rb_node); 5368 start = state->start; 5369 end = state->end; 5370 state_flags = state->state; 5371 spin_unlock(&io_tree->lock); 5372 5373 lock_extent_bits(io_tree, start, end, &cached_state); 5374 5375 /* 5376 * If still has DELALLOC flag, the extent didn't reach disk, 5377 * and its reserved space won't be freed by delayed_ref. 5378 * So we need to free its reserved space here. 5379 * (Refer to comment in btrfs_invalidatepage, case 2) 5380 * 5381 * Note, end is the bytenr of last byte, so we need + 1 here. 5382 */ 5383 if (state_flags & EXTENT_DELALLOC) 5384 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5385 5386 clear_extent_bit(io_tree, start, end, 5387 EXTENT_LOCKED | EXTENT_DELALLOC | 5388 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5389 &cached_state); 5390 5391 cond_resched(); 5392 spin_lock(&io_tree->lock); 5393 } 5394 spin_unlock(&io_tree->lock); 5395 } 5396 5397 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5398 struct btrfs_block_rsv *rsv) 5399 { 5400 struct btrfs_fs_info *fs_info = root->fs_info; 5401 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5402 struct btrfs_trans_handle *trans; 5403 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5404 int ret; 5405 5406 /* 5407 * Eviction should be taking place at some place safe because of our 5408 * delayed iputs. However the normal flushing code will run delayed 5409 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5410 * 5411 * We reserve the delayed_refs_extra here again because we can't use 5412 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5413 * above. We reserve our extra bit here because we generate a ton of 5414 * delayed refs activity by truncating. 5415 * 5416 * If we cannot make our reservation we'll attempt to steal from the 5417 * global reserve, because we really want to be able to free up space. 5418 */ 5419 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5420 BTRFS_RESERVE_FLUSH_EVICT); 5421 if (ret) { 5422 /* 5423 * Try to steal from the global reserve if there is space for 5424 * it. 5425 */ 5426 if (btrfs_check_space_for_delayed_refs(fs_info) || 5427 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5428 btrfs_warn(fs_info, 5429 "could not allocate space for delete; will truncate on mount"); 5430 return ERR_PTR(-ENOSPC); 5431 } 5432 delayed_refs_extra = 0; 5433 } 5434 5435 trans = btrfs_join_transaction(root); 5436 if (IS_ERR(trans)) 5437 return trans; 5438 5439 if (delayed_refs_extra) { 5440 trans->block_rsv = &fs_info->trans_block_rsv; 5441 trans->bytes_reserved = delayed_refs_extra; 5442 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5443 delayed_refs_extra, 1); 5444 } 5445 return trans; 5446 } 5447 5448 void btrfs_evict_inode(struct inode *inode) 5449 { 5450 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5451 struct btrfs_trans_handle *trans; 5452 struct btrfs_root *root = BTRFS_I(inode)->root; 5453 struct btrfs_block_rsv *rsv; 5454 int ret; 5455 5456 trace_btrfs_inode_evict(inode); 5457 5458 if (!root) { 5459 clear_inode(inode); 5460 return; 5461 } 5462 5463 evict_inode_truncate_pages(inode); 5464 5465 if (inode->i_nlink && 5466 ((btrfs_root_refs(&root->root_item) != 0 && 5467 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5468 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5469 goto no_delete; 5470 5471 if (is_bad_inode(inode)) 5472 goto no_delete; 5473 5474 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5475 5476 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5477 goto no_delete; 5478 5479 if (inode->i_nlink > 0) { 5480 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5481 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5482 goto no_delete; 5483 } 5484 5485 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5486 if (ret) 5487 goto no_delete; 5488 5489 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5490 if (!rsv) 5491 goto no_delete; 5492 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5493 rsv->failfast = 1; 5494 5495 btrfs_i_size_write(BTRFS_I(inode), 0); 5496 5497 while (1) { 5498 trans = evict_refill_and_join(root, rsv); 5499 if (IS_ERR(trans)) 5500 goto free_rsv; 5501 5502 trans->block_rsv = rsv; 5503 5504 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5505 trans->block_rsv = &fs_info->trans_block_rsv; 5506 btrfs_end_transaction(trans); 5507 btrfs_btree_balance_dirty(fs_info); 5508 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5509 goto free_rsv; 5510 else if (!ret) 5511 break; 5512 } 5513 5514 /* 5515 * Errors here aren't a big deal, it just means we leave orphan items in 5516 * the tree. They will be cleaned up on the next mount. If the inode 5517 * number gets reused, cleanup deletes the orphan item without doing 5518 * anything, and unlink reuses the existing orphan item. 5519 * 5520 * If it turns out that we are dropping too many of these, we might want 5521 * to add a mechanism for retrying these after a commit. 5522 */ 5523 trans = evict_refill_and_join(root, rsv); 5524 if (!IS_ERR(trans)) { 5525 trans->block_rsv = rsv; 5526 btrfs_orphan_del(trans, BTRFS_I(inode)); 5527 trans->block_rsv = &fs_info->trans_block_rsv; 5528 btrfs_end_transaction(trans); 5529 } 5530 5531 if (!(root == fs_info->tree_root || 5532 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5533 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5534 5535 free_rsv: 5536 btrfs_free_block_rsv(fs_info, rsv); 5537 no_delete: 5538 /* 5539 * If we didn't successfully delete, the orphan item will still be in 5540 * the tree and we'll retry on the next mount. Again, we might also want 5541 * to retry these periodically in the future. 5542 */ 5543 btrfs_remove_delayed_node(BTRFS_I(inode)); 5544 clear_inode(inode); 5545 } 5546 5547 /* 5548 * Return the key found in the dir entry in the location pointer, fill @type 5549 * with BTRFS_FT_*, and return 0. 5550 * 5551 * If no dir entries were found, returns -ENOENT. 5552 * If found a corrupted location in dir entry, returns -EUCLEAN. 5553 */ 5554 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5555 struct btrfs_key *location, u8 *type) 5556 { 5557 const char *name = dentry->d_name.name; 5558 int namelen = dentry->d_name.len; 5559 struct btrfs_dir_item *di; 5560 struct btrfs_path *path; 5561 struct btrfs_root *root = BTRFS_I(dir)->root; 5562 int ret = 0; 5563 5564 path = btrfs_alloc_path(); 5565 if (!path) 5566 return -ENOMEM; 5567 5568 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5569 name, namelen, 0); 5570 if (IS_ERR_OR_NULL(di)) { 5571 ret = di ? PTR_ERR(di) : -ENOENT; 5572 goto out; 5573 } 5574 5575 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5576 if (location->type != BTRFS_INODE_ITEM_KEY && 5577 location->type != BTRFS_ROOT_ITEM_KEY) { 5578 ret = -EUCLEAN; 5579 btrfs_warn(root->fs_info, 5580 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5581 __func__, name, btrfs_ino(BTRFS_I(dir)), 5582 location->objectid, location->type, location->offset); 5583 } 5584 if (!ret) 5585 *type = btrfs_dir_type(path->nodes[0], di); 5586 out: 5587 btrfs_free_path(path); 5588 return ret; 5589 } 5590 5591 /* 5592 * when we hit a tree root in a directory, the btrfs part of the inode 5593 * needs to be changed to reflect the root directory of the tree root. This 5594 * is kind of like crossing a mount point. 5595 */ 5596 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5597 struct inode *dir, 5598 struct dentry *dentry, 5599 struct btrfs_key *location, 5600 struct btrfs_root **sub_root) 5601 { 5602 struct btrfs_path *path; 5603 struct btrfs_root *new_root; 5604 struct btrfs_root_ref *ref; 5605 struct extent_buffer *leaf; 5606 struct btrfs_key key; 5607 int ret; 5608 int err = 0; 5609 5610 path = btrfs_alloc_path(); 5611 if (!path) { 5612 err = -ENOMEM; 5613 goto out; 5614 } 5615 5616 err = -ENOENT; 5617 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5618 key.type = BTRFS_ROOT_REF_KEY; 5619 key.offset = location->objectid; 5620 5621 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5622 if (ret) { 5623 if (ret < 0) 5624 err = ret; 5625 goto out; 5626 } 5627 5628 leaf = path->nodes[0]; 5629 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5630 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5631 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5632 goto out; 5633 5634 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5635 (unsigned long)(ref + 1), 5636 dentry->d_name.len); 5637 if (ret) 5638 goto out; 5639 5640 btrfs_release_path(path); 5641 5642 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5643 if (IS_ERR(new_root)) { 5644 err = PTR_ERR(new_root); 5645 goto out; 5646 } 5647 5648 *sub_root = new_root; 5649 location->objectid = btrfs_root_dirid(&new_root->root_item); 5650 location->type = BTRFS_INODE_ITEM_KEY; 5651 location->offset = 0; 5652 err = 0; 5653 out: 5654 btrfs_free_path(path); 5655 return err; 5656 } 5657 5658 static void inode_tree_add(struct inode *inode) 5659 { 5660 struct btrfs_root *root = BTRFS_I(inode)->root; 5661 struct btrfs_inode *entry; 5662 struct rb_node **p; 5663 struct rb_node *parent; 5664 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5665 u64 ino = btrfs_ino(BTRFS_I(inode)); 5666 5667 if (inode_unhashed(inode)) 5668 return; 5669 parent = NULL; 5670 spin_lock(&root->inode_lock); 5671 p = &root->inode_tree.rb_node; 5672 while (*p) { 5673 parent = *p; 5674 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5675 5676 if (ino < btrfs_ino(entry)) 5677 p = &parent->rb_left; 5678 else if (ino > btrfs_ino(entry)) 5679 p = &parent->rb_right; 5680 else { 5681 WARN_ON(!(entry->vfs_inode.i_state & 5682 (I_WILL_FREE | I_FREEING))); 5683 rb_replace_node(parent, new, &root->inode_tree); 5684 RB_CLEAR_NODE(parent); 5685 spin_unlock(&root->inode_lock); 5686 return; 5687 } 5688 } 5689 rb_link_node(new, parent, p); 5690 rb_insert_color(new, &root->inode_tree); 5691 spin_unlock(&root->inode_lock); 5692 } 5693 5694 static void inode_tree_del(struct inode *inode) 5695 { 5696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5697 struct btrfs_root *root = BTRFS_I(inode)->root; 5698 int empty = 0; 5699 5700 spin_lock(&root->inode_lock); 5701 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5702 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5703 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5704 empty = RB_EMPTY_ROOT(&root->inode_tree); 5705 } 5706 spin_unlock(&root->inode_lock); 5707 5708 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5709 synchronize_srcu(&fs_info->subvol_srcu); 5710 spin_lock(&root->inode_lock); 5711 empty = RB_EMPTY_ROOT(&root->inode_tree); 5712 spin_unlock(&root->inode_lock); 5713 if (empty) 5714 btrfs_add_dead_root(root); 5715 } 5716 } 5717 5718 5719 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5720 { 5721 struct btrfs_iget_args *args = p; 5722 inode->i_ino = args->location->objectid; 5723 memcpy(&BTRFS_I(inode)->location, args->location, 5724 sizeof(*args->location)); 5725 BTRFS_I(inode)->root = args->root; 5726 return 0; 5727 } 5728 5729 static int btrfs_find_actor(struct inode *inode, void *opaque) 5730 { 5731 struct btrfs_iget_args *args = opaque; 5732 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5733 args->root == BTRFS_I(inode)->root; 5734 } 5735 5736 static struct inode *btrfs_iget_locked(struct super_block *s, 5737 struct btrfs_key *location, 5738 struct btrfs_root *root) 5739 { 5740 struct inode *inode; 5741 struct btrfs_iget_args args; 5742 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5743 5744 args.location = location; 5745 args.root = root; 5746 5747 inode = iget5_locked(s, hashval, btrfs_find_actor, 5748 btrfs_init_locked_inode, 5749 (void *)&args); 5750 return inode; 5751 } 5752 5753 /* Get an inode object given its location and corresponding root. 5754 * Returns in *is_new if the inode was read from disk 5755 */ 5756 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5757 struct btrfs_root *root, int *new, 5758 struct btrfs_path *path) 5759 { 5760 struct inode *inode; 5761 5762 inode = btrfs_iget_locked(s, location, root); 5763 if (!inode) 5764 return ERR_PTR(-ENOMEM); 5765 5766 if (inode->i_state & I_NEW) { 5767 int ret; 5768 5769 ret = btrfs_read_locked_inode(inode, path); 5770 if (!ret) { 5771 inode_tree_add(inode); 5772 unlock_new_inode(inode); 5773 if (new) 5774 *new = 1; 5775 } else { 5776 iget_failed(inode); 5777 /* 5778 * ret > 0 can come from btrfs_search_slot called by 5779 * btrfs_read_locked_inode, this means the inode item 5780 * was not found. 5781 */ 5782 if (ret > 0) 5783 ret = -ENOENT; 5784 inode = ERR_PTR(ret); 5785 } 5786 } 5787 5788 return inode; 5789 } 5790 5791 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5792 struct btrfs_root *root, int *new) 5793 { 5794 return btrfs_iget_path(s, location, root, new, NULL); 5795 } 5796 5797 static struct inode *new_simple_dir(struct super_block *s, 5798 struct btrfs_key *key, 5799 struct btrfs_root *root) 5800 { 5801 struct inode *inode = new_inode(s); 5802 5803 if (!inode) 5804 return ERR_PTR(-ENOMEM); 5805 5806 BTRFS_I(inode)->root = root; 5807 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5808 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5809 5810 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5811 inode->i_op = &btrfs_dir_ro_inode_operations; 5812 inode->i_opflags &= ~IOP_XATTR; 5813 inode->i_fop = &simple_dir_operations; 5814 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5815 inode->i_mtime = current_time(inode); 5816 inode->i_atime = inode->i_mtime; 5817 inode->i_ctime = inode->i_mtime; 5818 BTRFS_I(inode)->i_otime = inode->i_mtime; 5819 5820 return inode; 5821 } 5822 5823 static inline u8 btrfs_inode_type(struct inode *inode) 5824 { 5825 /* 5826 * Compile-time asserts that generic FT_* types still match 5827 * BTRFS_FT_* types 5828 */ 5829 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5830 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5831 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5832 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5833 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5834 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5835 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5836 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5837 5838 return fs_umode_to_ftype(inode->i_mode); 5839 } 5840 5841 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5842 { 5843 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5844 struct inode *inode; 5845 struct btrfs_root *root = BTRFS_I(dir)->root; 5846 struct btrfs_root *sub_root = root; 5847 struct btrfs_key location; 5848 u8 di_type = 0; 5849 int index; 5850 int ret = 0; 5851 5852 if (dentry->d_name.len > BTRFS_NAME_LEN) 5853 return ERR_PTR(-ENAMETOOLONG); 5854 5855 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5856 if (ret < 0) 5857 return ERR_PTR(ret); 5858 5859 if (location.type == BTRFS_INODE_ITEM_KEY) { 5860 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5861 if (IS_ERR(inode)) 5862 return inode; 5863 5864 /* Do extra check against inode mode with di_type */ 5865 if (btrfs_inode_type(inode) != di_type) { 5866 btrfs_crit(fs_info, 5867 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5868 inode->i_mode, btrfs_inode_type(inode), 5869 di_type); 5870 iput(inode); 5871 return ERR_PTR(-EUCLEAN); 5872 } 5873 return inode; 5874 } 5875 5876 index = srcu_read_lock(&fs_info->subvol_srcu); 5877 ret = fixup_tree_root_location(fs_info, dir, dentry, 5878 &location, &sub_root); 5879 if (ret < 0) { 5880 if (ret != -ENOENT) 5881 inode = ERR_PTR(ret); 5882 else 5883 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5884 } else { 5885 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5886 } 5887 srcu_read_unlock(&fs_info->subvol_srcu, index); 5888 5889 if (!IS_ERR(inode) && root != sub_root) { 5890 down_read(&fs_info->cleanup_work_sem); 5891 if (!sb_rdonly(inode->i_sb)) 5892 ret = btrfs_orphan_cleanup(sub_root); 5893 up_read(&fs_info->cleanup_work_sem); 5894 if (ret) { 5895 iput(inode); 5896 inode = ERR_PTR(ret); 5897 } 5898 } 5899 5900 return inode; 5901 } 5902 5903 static int btrfs_dentry_delete(const struct dentry *dentry) 5904 { 5905 struct btrfs_root *root; 5906 struct inode *inode = d_inode(dentry); 5907 5908 if (!inode && !IS_ROOT(dentry)) 5909 inode = d_inode(dentry->d_parent); 5910 5911 if (inode) { 5912 root = BTRFS_I(inode)->root; 5913 if (btrfs_root_refs(&root->root_item) == 0) 5914 return 1; 5915 5916 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5917 return 1; 5918 } 5919 return 0; 5920 } 5921 5922 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5923 unsigned int flags) 5924 { 5925 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5926 5927 if (inode == ERR_PTR(-ENOENT)) 5928 inode = NULL; 5929 return d_splice_alias(inode, dentry); 5930 } 5931 5932 /* 5933 * All this infrastructure exists because dir_emit can fault, and we are holding 5934 * the tree lock when doing readdir. For now just allocate a buffer and copy 5935 * our information into that, and then dir_emit from the buffer. This is 5936 * similar to what NFS does, only we don't keep the buffer around in pagecache 5937 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5938 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5939 * tree lock. 5940 */ 5941 static int btrfs_opendir(struct inode *inode, struct file *file) 5942 { 5943 struct btrfs_file_private *private; 5944 5945 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5946 if (!private) 5947 return -ENOMEM; 5948 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5949 if (!private->filldir_buf) { 5950 kfree(private); 5951 return -ENOMEM; 5952 } 5953 file->private_data = private; 5954 return 0; 5955 } 5956 5957 struct dir_entry { 5958 u64 ino; 5959 u64 offset; 5960 unsigned type; 5961 int name_len; 5962 }; 5963 5964 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5965 { 5966 while (entries--) { 5967 struct dir_entry *entry = addr; 5968 char *name = (char *)(entry + 1); 5969 5970 ctx->pos = get_unaligned(&entry->offset); 5971 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5972 get_unaligned(&entry->ino), 5973 get_unaligned(&entry->type))) 5974 return 1; 5975 addr += sizeof(struct dir_entry) + 5976 get_unaligned(&entry->name_len); 5977 ctx->pos++; 5978 } 5979 return 0; 5980 } 5981 5982 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5983 { 5984 struct inode *inode = file_inode(file); 5985 struct btrfs_root *root = BTRFS_I(inode)->root; 5986 struct btrfs_file_private *private = file->private_data; 5987 struct btrfs_dir_item *di; 5988 struct btrfs_key key; 5989 struct btrfs_key found_key; 5990 struct btrfs_path *path; 5991 void *addr; 5992 struct list_head ins_list; 5993 struct list_head del_list; 5994 int ret; 5995 struct extent_buffer *leaf; 5996 int slot; 5997 char *name_ptr; 5998 int name_len; 5999 int entries = 0; 6000 int total_len = 0; 6001 bool put = false; 6002 struct btrfs_key location; 6003 6004 if (!dir_emit_dots(file, ctx)) 6005 return 0; 6006 6007 path = btrfs_alloc_path(); 6008 if (!path) 6009 return -ENOMEM; 6010 6011 addr = private->filldir_buf; 6012 path->reada = READA_FORWARD; 6013 6014 INIT_LIST_HEAD(&ins_list); 6015 INIT_LIST_HEAD(&del_list); 6016 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 6017 6018 again: 6019 key.type = BTRFS_DIR_INDEX_KEY; 6020 key.offset = ctx->pos; 6021 key.objectid = btrfs_ino(BTRFS_I(inode)); 6022 6023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6024 if (ret < 0) 6025 goto err; 6026 6027 while (1) { 6028 struct dir_entry *entry; 6029 6030 leaf = path->nodes[0]; 6031 slot = path->slots[0]; 6032 if (slot >= btrfs_header_nritems(leaf)) { 6033 ret = btrfs_next_leaf(root, path); 6034 if (ret < 0) 6035 goto err; 6036 else if (ret > 0) 6037 break; 6038 continue; 6039 } 6040 6041 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6042 6043 if (found_key.objectid != key.objectid) 6044 break; 6045 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6046 break; 6047 if (found_key.offset < ctx->pos) 6048 goto next; 6049 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6050 goto next; 6051 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6052 name_len = btrfs_dir_name_len(leaf, di); 6053 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6054 PAGE_SIZE) { 6055 btrfs_release_path(path); 6056 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6057 if (ret) 6058 goto nopos; 6059 addr = private->filldir_buf; 6060 entries = 0; 6061 total_len = 0; 6062 goto again; 6063 } 6064 6065 entry = addr; 6066 put_unaligned(name_len, &entry->name_len); 6067 name_ptr = (char *)(entry + 1); 6068 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6069 name_len); 6070 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6071 &entry->type); 6072 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6073 put_unaligned(location.objectid, &entry->ino); 6074 put_unaligned(found_key.offset, &entry->offset); 6075 entries++; 6076 addr += sizeof(struct dir_entry) + name_len; 6077 total_len += sizeof(struct dir_entry) + name_len; 6078 next: 6079 path->slots[0]++; 6080 } 6081 btrfs_release_path(path); 6082 6083 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6084 if (ret) 6085 goto nopos; 6086 6087 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6088 if (ret) 6089 goto nopos; 6090 6091 /* 6092 * Stop new entries from being returned after we return the last 6093 * entry. 6094 * 6095 * New directory entries are assigned a strictly increasing 6096 * offset. This means that new entries created during readdir 6097 * are *guaranteed* to be seen in the future by that readdir. 6098 * This has broken buggy programs which operate on names as 6099 * they're returned by readdir. Until we re-use freed offsets 6100 * we have this hack to stop new entries from being returned 6101 * under the assumption that they'll never reach this huge 6102 * offset. 6103 * 6104 * This is being careful not to overflow 32bit loff_t unless the 6105 * last entry requires it because doing so has broken 32bit apps 6106 * in the past. 6107 */ 6108 if (ctx->pos >= INT_MAX) 6109 ctx->pos = LLONG_MAX; 6110 else 6111 ctx->pos = INT_MAX; 6112 nopos: 6113 ret = 0; 6114 err: 6115 if (put) 6116 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6117 btrfs_free_path(path); 6118 return ret; 6119 } 6120 6121 /* 6122 * This is somewhat expensive, updating the tree every time the 6123 * inode changes. But, it is most likely to find the inode in cache. 6124 * FIXME, needs more benchmarking...there are no reasons other than performance 6125 * to keep or drop this code. 6126 */ 6127 static int btrfs_dirty_inode(struct inode *inode) 6128 { 6129 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6130 struct btrfs_root *root = BTRFS_I(inode)->root; 6131 struct btrfs_trans_handle *trans; 6132 int ret; 6133 6134 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6135 return 0; 6136 6137 trans = btrfs_join_transaction(root); 6138 if (IS_ERR(trans)) 6139 return PTR_ERR(trans); 6140 6141 ret = btrfs_update_inode(trans, root, inode); 6142 if (ret && ret == -ENOSPC) { 6143 /* whoops, lets try again with the full transaction */ 6144 btrfs_end_transaction(trans); 6145 trans = btrfs_start_transaction(root, 1); 6146 if (IS_ERR(trans)) 6147 return PTR_ERR(trans); 6148 6149 ret = btrfs_update_inode(trans, root, inode); 6150 } 6151 btrfs_end_transaction(trans); 6152 if (BTRFS_I(inode)->delayed_node) 6153 btrfs_balance_delayed_items(fs_info); 6154 6155 return ret; 6156 } 6157 6158 /* 6159 * This is a copy of file_update_time. We need this so we can return error on 6160 * ENOSPC for updating the inode in the case of file write and mmap writes. 6161 */ 6162 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6163 int flags) 6164 { 6165 struct btrfs_root *root = BTRFS_I(inode)->root; 6166 bool dirty = flags & ~S_VERSION; 6167 6168 if (btrfs_root_readonly(root)) 6169 return -EROFS; 6170 6171 if (flags & S_VERSION) 6172 dirty |= inode_maybe_inc_iversion(inode, dirty); 6173 if (flags & S_CTIME) 6174 inode->i_ctime = *now; 6175 if (flags & S_MTIME) 6176 inode->i_mtime = *now; 6177 if (flags & S_ATIME) 6178 inode->i_atime = *now; 6179 return dirty ? btrfs_dirty_inode(inode) : 0; 6180 } 6181 6182 /* 6183 * find the highest existing sequence number in a directory 6184 * and then set the in-memory index_cnt variable to reflect 6185 * free sequence numbers 6186 */ 6187 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6188 { 6189 struct btrfs_root *root = inode->root; 6190 struct btrfs_key key, found_key; 6191 struct btrfs_path *path; 6192 struct extent_buffer *leaf; 6193 int ret; 6194 6195 key.objectid = btrfs_ino(inode); 6196 key.type = BTRFS_DIR_INDEX_KEY; 6197 key.offset = (u64)-1; 6198 6199 path = btrfs_alloc_path(); 6200 if (!path) 6201 return -ENOMEM; 6202 6203 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6204 if (ret < 0) 6205 goto out; 6206 /* FIXME: we should be able to handle this */ 6207 if (ret == 0) 6208 goto out; 6209 ret = 0; 6210 6211 /* 6212 * MAGIC NUMBER EXPLANATION: 6213 * since we search a directory based on f_pos we have to start at 2 6214 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6215 * else has to start at 2 6216 */ 6217 if (path->slots[0] == 0) { 6218 inode->index_cnt = 2; 6219 goto out; 6220 } 6221 6222 path->slots[0]--; 6223 6224 leaf = path->nodes[0]; 6225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6226 6227 if (found_key.objectid != btrfs_ino(inode) || 6228 found_key.type != BTRFS_DIR_INDEX_KEY) { 6229 inode->index_cnt = 2; 6230 goto out; 6231 } 6232 6233 inode->index_cnt = found_key.offset + 1; 6234 out: 6235 btrfs_free_path(path); 6236 return ret; 6237 } 6238 6239 /* 6240 * helper to find a free sequence number in a given directory. This current 6241 * code is very simple, later versions will do smarter things in the btree 6242 */ 6243 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6244 { 6245 int ret = 0; 6246 6247 if (dir->index_cnt == (u64)-1) { 6248 ret = btrfs_inode_delayed_dir_index_count(dir); 6249 if (ret) { 6250 ret = btrfs_set_inode_index_count(dir); 6251 if (ret) 6252 return ret; 6253 } 6254 } 6255 6256 *index = dir->index_cnt; 6257 dir->index_cnt++; 6258 6259 return ret; 6260 } 6261 6262 static int btrfs_insert_inode_locked(struct inode *inode) 6263 { 6264 struct btrfs_iget_args args; 6265 args.location = &BTRFS_I(inode)->location; 6266 args.root = BTRFS_I(inode)->root; 6267 6268 return insert_inode_locked4(inode, 6269 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6270 btrfs_find_actor, &args); 6271 } 6272 6273 /* 6274 * Inherit flags from the parent inode. 6275 * 6276 * Currently only the compression flags and the cow flags are inherited. 6277 */ 6278 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6279 { 6280 unsigned int flags; 6281 6282 if (!dir) 6283 return; 6284 6285 flags = BTRFS_I(dir)->flags; 6286 6287 if (flags & BTRFS_INODE_NOCOMPRESS) { 6288 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6289 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6290 } else if (flags & BTRFS_INODE_COMPRESS) { 6291 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6292 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6293 } 6294 6295 if (flags & BTRFS_INODE_NODATACOW) { 6296 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6297 if (S_ISREG(inode->i_mode)) 6298 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6299 } 6300 6301 btrfs_sync_inode_flags_to_i_flags(inode); 6302 } 6303 6304 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6305 struct btrfs_root *root, 6306 struct inode *dir, 6307 const char *name, int name_len, 6308 u64 ref_objectid, u64 objectid, 6309 umode_t mode, u64 *index) 6310 { 6311 struct btrfs_fs_info *fs_info = root->fs_info; 6312 struct inode *inode; 6313 struct btrfs_inode_item *inode_item; 6314 struct btrfs_key *location; 6315 struct btrfs_path *path; 6316 struct btrfs_inode_ref *ref; 6317 struct btrfs_key key[2]; 6318 u32 sizes[2]; 6319 int nitems = name ? 2 : 1; 6320 unsigned long ptr; 6321 unsigned int nofs_flag; 6322 int ret; 6323 6324 path = btrfs_alloc_path(); 6325 if (!path) 6326 return ERR_PTR(-ENOMEM); 6327 6328 nofs_flag = memalloc_nofs_save(); 6329 inode = new_inode(fs_info->sb); 6330 memalloc_nofs_restore(nofs_flag); 6331 if (!inode) { 6332 btrfs_free_path(path); 6333 return ERR_PTR(-ENOMEM); 6334 } 6335 6336 /* 6337 * O_TMPFILE, set link count to 0, so that after this point, 6338 * we fill in an inode item with the correct link count. 6339 */ 6340 if (!name) 6341 set_nlink(inode, 0); 6342 6343 /* 6344 * we have to initialize this early, so we can reclaim the inode 6345 * number if we fail afterwards in this function. 6346 */ 6347 inode->i_ino = objectid; 6348 6349 if (dir && name) { 6350 trace_btrfs_inode_request(dir); 6351 6352 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6353 if (ret) { 6354 btrfs_free_path(path); 6355 iput(inode); 6356 return ERR_PTR(ret); 6357 } 6358 } else if (dir) { 6359 *index = 0; 6360 } 6361 /* 6362 * index_cnt is ignored for everything but a dir, 6363 * btrfs_set_inode_index_count has an explanation for the magic 6364 * number 6365 */ 6366 BTRFS_I(inode)->index_cnt = 2; 6367 BTRFS_I(inode)->dir_index = *index; 6368 BTRFS_I(inode)->root = root; 6369 BTRFS_I(inode)->generation = trans->transid; 6370 inode->i_generation = BTRFS_I(inode)->generation; 6371 6372 /* 6373 * We could have gotten an inode number from somebody who was fsynced 6374 * and then removed in this same transaction, so let's just set full 6375 * sync since it will be a full sync anyway and this will blow away the 6376 * old info in the log. 6377 */ 6378 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6379 6380 key[0].objectid = objectid; 6381 key[0].type = BTRFS_INODE_ITEM_KEY; 6382 key[0].offset = 0; 6383 6384 sizes[0] = sizeof(struct btrfs_inode_item); 6385 6386 if (name) { 6387 /* 6388 * Start new inodes with an inode_ref. This is slightly more 6389 * efficient for small numbers of hard links since they will 6390 * be packed into one item. Extended refs will kick in if we 6391 * add more hard links than can fit in the ref item. 6392 */ 6393 key[1].objectid = objectid; 6394 key[1].type = BTRFS_INODE_REF_KEY; 6395 key[1].offset = ref_objectid; 6396 6397 sizes[1] = name_len + sizeof(*ref); 6398 } 6399 6400 location = &BTRFS_I(inode)->location; 6401 location->objectid = objectid; 6402 location->offset = 0; 6403 location->type = BTRFS_INODE_ITEM_KEY; 6404 6405 ret = btrfs_insert_inode_locked(inode); 6406 if (ret < 0) { 6407 iput(inode); 6408 goto fail; 6409 } 6410 6411 path->leave_spinning = 1; 6412 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6413 if (ret != 0) 6414 goto fail_unlock; 6415 6416 inode_init_owner(inode, dir, mode); 6417 inode_set_bytes(inode, 0); 6418 6419 inode->i_mtime = current_time(inode); 6420 inode->i_atime = inode->i_mtime; 6421 inode->i_ctime = inode->i_mtime; 6422 BTRFS_I(inode)->i_otime = inode->i_mtime; 6423 6424 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6425 struct btrfs_inode_item); 6426 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6427 sizeof(*inode_item)); 6428 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6429 6430 if (name) { 6431 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6432 struct btrfs_inode_ref); 6433 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6434 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6435 ptr = (unsigned long)(ref + 1); 6436 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6437 } 6438 6439 btrfs_mark_buffer_dirty(path->nodes[0]); 6440 btrfs_free_path(path); 6441 6442 btrfs_inherit_iflags(inode, dir); 6443 6444 if (S_ISREG(mode)) { 6445 if (btrfs_test_opt(fs_info, NODATASUM)) 6446 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6447 if (btrfs_test_opt(fs_info, NODATACOW)) 6448 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6449 BTRFS_INODE_NODATASUM; 6450 } 6451 6452 inode_tree_add(inode); 6453 6454 trace_btrfs_inode_new(inode); 6455 btrfs_set_inode_last_trans(trans, inode); 6456 6457 btrfs_update_root_times(trans, root); 6458 6459 ret = btrfs_inode_inherit_props(trans, inode, dir); 6460 if (ret) 6461 btrfs_err(fs_info, 6462 "error inheriting props for ino %llu (root %llu): %d", 6463 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6464 6465 return inode; 6466 6467 fail_unlock: 6468 discard_new_inode(inode); 6469 fail: 6470 if (dir && name) 6471 BTRFS_I(dir)->index_cnt--; 6472 btrfs_free_path(path); 6473 return ERR_PTR(ret); 6474 } 6475 6476 /* 6477 * utility function to add 'inode' into 'parent_inode' with 6478 * a give name and a given sequence number. 6479 * if 'add_backref' is true, also insert a backref from the 6480 * inode to the parent directory. 6481 */ 6482 int btrfs_add_link(struct btrfs_trans_handle *trans, 6483 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6484 const char *name, int name_len, int add_backref, u64 index) 6485 { 6486 int ret = 0; 6487 struct btrfs_key key; 6488 struct btrfs_root *root = parent_inode->root; 6489 u64 ino = btrfs_ino(inode); 6490 u64 parent_ino = btrfs_ino(parent_inode); 6491 6492 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6493 memcpy(&key, &inode->root->root_key, sizeof(key)); 6494 } else { 6495 key.objectid = ino; 6496 key.type = BTRFS_INODE_ITEM_KEY; 6497 key.offset = 0; 6498 } 6499 6500 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6501 ret = btrfs_add_root_ref(trans, key.objectid, 6502 root->root_key.objectid, parent_ino, 6503 index, name, name_len); 6504 } else if (add_backref) { 6505 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6506 parent_ino, index); 6507 } 6508 6509 /* Nothing to clean up yet */ 6510 if (ret) 6511 return ret; 6512 6513 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6514 btrfs_inode_type(&inode->vfs_inode), index); 6515 if (ret == -EEXIST || ret == -EOVERFLOW) 6516 goto fail_dir_item; 6517 else if (ret) { 6518 btrfs_abort_transaction(trans, ret); 6519 return ret; 6520 } 6521 6522 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6523 name_len * 2); 6524 inode_inc_iversion(&parent_inode->vfs_inode); 6525 /* 6526 * If we are replaying a log tree, we do not want to update the mtime 6527 * and ctime of the parent directory with the current time, since the 6528 * log replay procedure is responsible for setting them to their correct 6529 * values (the ones it had when the fsync was done). 6530 */ 6531 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6532 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6533 6534 parent_inode->vfs_inode.i_mtime = now; 6535 parent_inode->vfs_inode.i_ctime = now; 6536 } 6537 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6538 if (ret) 6539 btrfs_abort_transaction(trans, ret); 6540 return ret; 6541 6542 fail_dir_item: 6543 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6544 u64 local_index; 6545 int err; 6546 err = btrfs_del_root_ref(trans, key.objectid, 6547 root->root_key.objectid, parent_ino, 6548 &local_index, name, name_len); 6549 if (err) 6550 btrfs_abort_transaction(trans, err); 6551 } else if (add_backref) { 6552 u64 local_index; 6553 int err; 6554 6555 err = btrfs_del_inode_ref(trans, root, name, name_len, 6556 ino, parent_ino, &local_index); 6557 if (err) 6558 btrfs_abort_transaction(trans, err); 6559 } 6560 6561 /* Return the original error code */ 6562 return ret; 6563 } 6564 6565 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6566 struct btrfs_inode *dir, struct dentry *dentry, 6567 struct btrfs_inode *inode, int backref, u64 index) 6568 { 6569 int err = btrfs_add_link(trans, dir, inode, 6570 dentry->d_name.name, dentry->d_name.len, 6571 backref, index); 6572 if (err > 0) 6573 err = -EEXIST; 6574 return err; 6575 } 6576 6577 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6578 umode_t mode, dev_t rdev) 6579 { 6580 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6581 struct btrfs_trans_handle *trans; 6582 struct btrfs_root *root = BTRFS_I(dir)->root; 6583 struct inode *inode = NULL; 6584 int err; 6585 u64 objectid; 6586 u64 index = 0; 6587 6588 /* 6589 * 2 for inode item and ref 6590 * 2 for dir items 6591 * 1 for xattr if selinux is on 6592 */ 6593 trans = btrfs_start_transaction(root, 5); 6594 if (IS_ERR(trans)) 6595 return PTR_ERR(trans); 6596 6597 err = btrfs_find_free_ino(root, &objectid); 6598 if (err) 6599 goto out_unlock; 6600 6601 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6602 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6603 mode, &index); 6604 if (IS_ERR(inode)) { 6605 err = PTR_ERR(inode); 6606 inode = NULL; 6607 goto out_unlock; 6608 } 6609 6610 /* 6611 * If the active LSM wants to access the inode during 6612 * d_instantiate it needs these. Smack checks to see 6613 * if the filesystem supports xattrs by looking at the 6614 * ops vector. 6615 */ 6616 inode->i_op = &btrfs_special_inode_operations; 6617 init_special_inode(inode, inode->i_mode, rdev); 6618 6619 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6620 if (err) 6621 goto out_unlock; 6622 6623 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6624 0, index); 6625 if (err) 6626 goto out_unlock; 6627 6628 btrfs_update_inode(trans, root, inode); 6629 d_instantiate_new(dentry, inode); 6630 6631 out_unlock: 6632 btrfs_end_transaction(trans); 6633 btrfs_btree_balance_dirty(fs_info); 6634 if (err && inode) { 6635 inode_dec_link_count(inode); 6636 discard_new_inode(inode); 6637 } 6638 return err; 6639 } 6640 6641 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6642 umode_t mode, bool excl) 6643 { 6644 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6645 struct btrfs_trans_handle *trans; 6646 struct btrfs_root *root = BTRFS_I(dir)->root; 6647 struct inode *inode = NULL; 6648 int err; 6649 u64 objectid; 6650 u64 index = 0; 6651 6652 /* 6653 * 2 for inode item and ref 6654 * 2 for dir items 6655 * 1 for xattr if selinux is on 6656 */ 6657 trans = btrfs_start_transaction(root, 5); 6658 if (IS_ERR(trans)) 6659 return PTR_ERR(trans); 6660 6661 err = btrfs_find_free_ino(root, &objectid); 6662 if (err) 6663 goto out_unlock; 6664 6665 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6666 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6667 mode, &index); 6668 if (IS_ERR(inode)) { 6669 err = PTR_ERR(inode); 6670 inode = NULL; 6671 goto out_unlock; 6672 } 6673 /* 6674 * If the active LSM wants to access the inode during 6675 * d_instantiate it needs these. Smack checks to see 6676 * if the filesystem supports xattrs by looking at the 6677 * ops vector. 6678 */ 6679 inode->i_fop = &btrfs_file_operations; 6680 inode->i_op = &btrfs_file_inode_operations; 6681 inode->i_mapping->a_ops = &btrfs_aops; 6682 6683 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6684 if (err) 6685 goto out_unlock; 6686 6687 err = btrfs_update_inode(trans, root, inode); 6688 if (err) 6689 goto out_unlock; 6690 6691 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6692 0, index); 6693 if (err) 6694 goto out_unlock; 6695 6696 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6697 d_instantiate_new(dentry, inode); 6698 6699 out_unlock: 6700 btrfs_end_transaction(trans); 6701 if (err && inode) { 6702 inode_dec_link_count(inode); 6703 discard_new_inode(inode); 6704 } 6705 btrfs_btree_balance_dirty(fs_info); 6706 return err; 6707 } 6708 6709 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6710 struct dentry *dentry) 6711 { 6712 struct btrfs_trans_handle *trans = NULL; 6713 struct btrfs_root *root = BTRFS_I(dir)->root; 6714 struct inode *inode = d_inode(old_dentry); 6715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6716 u64 index; 6717 int err; 6718 int drop_inode = 0; 6719 6720 /* do not allow sys_link's with other subvols of the same device */ 6721 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6722 return -EXDEV; 6723 6724 if (inode->i_nlink >= BTRFS_LINK_MAX) 6725 return -EMLINK; 6726 6727 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6728 if (err) 6729 goto fail; 6730 6731 /* 6732 * 2 items for inode and inode ref 6733 * 2 items for dir items 6734 * 1 item for parent inode 6735 * 1 item for orphan item deletion if O_TMPFILE 6736 */ 6737 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6738 if (IS_ERR(trans)) { 6739 err = PTR_ERR(trans); 6740 trans = NULL; 6741 goto fail; 6742 } 6743 6744 /* There are several dir indexes for this inode, clear the cache. */ 6745 BTRFS_I(inode)->dir_index = 0ULL; 6746 inc_nlink(inode); 6747 inode_inc_iversion(inode); 6748 inode->i_ctime = current_time(inode); 6749 ihold(inode); 6750 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6751 6752 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6753 1, index); 6754 6755 if (err) { 6756 drop_inode = 1; 6757 } else { 6758 struct dentry *parent = dentry->d_parent; 6759 int ret; 6760 6761 err = btrfs_update_inode(trans, root, inode); 6762 if (err) 6763 goto fail; 6764 if (inode->i_nlink == 1) { 6765 /* 6766 * If new hard link count is 1, it's a file created 6767 * with open(2) O_TMPFILE flag. 6768 */ 6769 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6770 if (err) 6771 goto fail; 6772 } 6773 d_instantiate(dentry, inode); 6774 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6775 true, NULL); 6776 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6777 err = btrfs_commit_transaction(trans); 6778 trans = NULL; 6779 } 6780 } 6781 6782 fail: 6783 if (trans) 6784 btrfs_end_transaction(trans); 6785 if (drop_inode) { 6786 inode_dec_link_count(inode); 6787 iput(inode); 6788 } 6789 btrfs_btree_balance_dirty(fs_info); 6790 return err; 6791 } 6792 6793 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6794 { 6795 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6796 struct inode *inode = NULL; 6797 struct btrfs_trans_handle *trans; 6798 struct btrfs_root *root = BTRFS_I(dir)->root; 6799 int err = 0; 6800 u64 objectid = 0; 6801 u64 index = 0; 6802 6803 /* 6804 * 2 items for inode and ref 6805 * 2 items for dir items 6806 * 1 for xattr if selinux is on 6807 */ 6808 trans = btrfs_start_transaction(root, 5); 6809 if (IS_ERR(trans)) 6810 return PTR_ERR(trans); 6811 6812 err = btrfs_find_free_ino(root, &objectid); 6813 if (err) 6814 goto out_fail; 6815 6816 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6817 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6818 S_IFDIR | mode, &index); 6819 if (IS_ERR(inode)) { 6820 err = PTR_ERR(inode); 6821 inode = NULL; 6822 goto out_fail; 6823 } 6824 6825 /* these must be set before we unlock the inode */ 6826 inode->i_op = &btrfs_dir_inode_operations; 6827 inode->i_fop = &btrfs_dir_file_operations; 6828 6829 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6830 if (err) 6831 goto out_fail; 6832 6833 btrfs_i_size_write(BTRFS_I(inode), 0); 6834 err = btrfs_update_inode(trans, root, inode); 6835 if (err) 6836 goto out_fail; 6837 6838 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6839 dentry->d_name.name, 6840 dentry->d_name.len, 0, index); 6841 if (err) 6842 goto out_fail; 6843 6844 d_instantiate_new(dentry, inode); 6845 6846 out_fail: 6847 btrfs_end_transaction(trans); 6848 if (err && inode) { 6849 inode_dec_link_count(inode); 6850 discard_new_inode(inode); 6851 } 6852 btrfs_btree_balance_dirty(fs_info); 6853 return err; 6854 } 6855 6856 static noinline int uncompress_inline(struct btrfs_path *path, 6857 struct page *page, 6858 size_t pg_offset, u64 extent_offset, 6859 struct btrfs_file_extent_item *item) 6860 { 6861 int ret; 6862 struct extent_buffer *leaf = path->nodes[0]; 6863 char *tmp; 6864 size_t max_size; 6865 unsigned long inline_size; 6866 unsigned long ptr; 6867 int compress_type; 6868 6869 WARN_ON(pg_offset != 0); 6870 compress_type = btrfs_file_extent_compression(leaf, item); 6871 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6872 inline_size = btrfs_file_extent_inline_item_len(leaf, 6873 btrfs_item_nr(path->slots[0])); 6874 tmp = kmalloc(inline_size, GFP_NOFS); 6875 if (!tmp) 6876 return -ENOMEM; 6877 ptr = btrfs_file_extent_inline_start(item); 6878 6879 read_extent_buffer(leaf, tmp, ptr, inline_size); 6880 6881 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6882 ret = btrfs_decompress(compress_type, tmp, page, 6883 extent_offset, inline_size, max_size); 6884 6885 /* 6886 * decompression code contains a memset to fill in any space between the end 6887 * of the uncompressed data and the end of max_size in case the decompressed 6888 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6889 * the end of an inline extent and the beginning of the next block, so we 6890 * cover that region here. 6891 */ 6892 6893 if (max_size + pg_offset < PAGE_SIZE) { 6894 char *map = kmap(page); 6895 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6896 kunmap(page); 6897 } 6898 kfree(tmp); 6899 return ret; 6900 } 6901 6902 /* 6903 * a bit scary, this does extent mapping from logical file offset to the disk. 6904 * the ugly parts come from merging extents from the disk with the in-ram 6905 * representation. This gets more complex because of the data=ordered code, 6906 * where the in-ram extents might be locked pending data=ordered completion. 6907 * 6908 * This also copies inline extents directly into the page. 6909 */ 6910 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6911 struct page *page, 6912 size_t pg_offset, u64 start, u64 len, 6913 int create) 6914 { 6915 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6916 int ret; 6917 int err = 0; 6918 u64 extent_start = 0; 6919 u64 extent_end = 0; 6920 u64 objectid = btrfs_ino(inode); 6921 int extent_type = -1; 6922 struct btrfs_path *path = NULL; 6923 struct btrfs_root *root = inode->root; 6924 struct btrfs_file_extent_item *item; 6925 struct extent_buffer *leaf; 6926 struct btrfs_key found_key; 6927 struct extent_map *em = NULL; 6928 struct extent_map_tree *em_tree = &inode->extent_tree; 6929 struct extent_io_tree *io_tree = &inode->io_tree; 6930 const bool new_inline = !page || create; 6931 6932 read_lock(&em_tree->lock); 6933 em = lookup_extent_mapping(em_tree, start, len); 6934 if (em) 6935 em->bdev = fs_info->fs_devices->latest_bdev; 6936 read_unlock(&em_tree->lock); 6937 6938 if (em) { 6939 if (em->start > start || em->start + em->len <= start) 6940 free_extent_map(em); 6941 else if (em->block_start == EXTENT_MAP_INLINE && page) 6942 free_extent_map(em); 6943 else 6944 goto out; 6945 } 6946 em = alloc_extent_map(); 6947 if (!em) { 6948 err = -ENOMEM; 6949 goto out; 6950 } 6951 em->bdev = fs_info->fs_devices->latest_bdev; 6952 em->start = EXTENT_MAP_HOLE; 6953 em->orig_start = EXTENT_MAP_HOLE; 6954 em->len = (u64)-1; 6955 em->block_len = (u64)-1; 6956 6957 path = btrfs_alloc_path(); 6958 if (!path) { 6959 err = -ENOMEM; 6960 goto out; 6961 } 6962 6963 /* Chances are we'll be called again, so go ahead and do readahead */ 6964 path->reada = READA_FORWARD; 6965 6966 /* 6967 * Unless we're going to uncompress the inline extent, no sleep would 6968 * happen. 6969 */ 6970 path->leave_spinning = 1; 6971 6972 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6973 if (ret < 0) { 6974 err = ret; 6975 goto out; 6976 } else if (ret > 0) { 6977 if (path->slots[0] == 0) 6978 goto not_found; 6979 path->slots[0]--; 6980 } 6981 6982 leaf = path->nodes[0]; 6983 item = btrfs_item_ptr(leaf, path->slots[0], 6984 struct btrfs_file_extent_item); 6985 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6986 if (found_key.objectid != objectid || 6987 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6988 /* 6989 * If we backup past the first extent we want to move forward 6990 * and see if there is an extent in front of us, otherwise we'll 6991 * say there is a hole for our whole search range which can 6992 * cause problems. 6993 */ 6994 extent_end = start; 6995 goto next; 6996 } 6997 6998 extent_type = btrfs_file_extent_type(leaf, item); 6999 extent_start = found_key.offset; 7000 if (extent_type == BTRFS_FILE_EXTENT_REG || 7001 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7002 /* Only regular file could have regular/prealloc extent */ 7003 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7004 ret = -EUCLEAN; 7005 btrfs_crit(fs_info, 7006 "regular/prealloc extent found for non-regular inode %llu", 7007 btrfs_ino(inode)); 7008 goto out; 7009 } 7010 extent_end = extent_start + 7011 btrfs_file_extent_num_bytes(leaf, item); 7012 7013 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7014 extent_start); 7015 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7016 size_t size; 7017 7018 size = btrfs_file_extent_ram_bytes(leaf, item); 7019 extent_end = ALIGN(extent_start + size, 7020 fs_info->sectorsize); 7021 7022 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7023 path->slots[0], 7024 extent_start); 7025 } 7026 next: 7027 if (start >= extent_end) { 7028 path->slots[0]++; 7029 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7030 ret = btrfs_next_leaf(root, path); 7031 if (ret < 0) { 7032 err = ret; 7033 goto out; 7034 } else if (ret > 0) { 7035 goto not_found; 7036 } 7037 leaf = path->nodes[0]; 7038 } 7039 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7040 if (found_key.objectid != objectid || 7041 found_key.type != BTRFS_EXTENT_DATA_KEY) 7042 goto not_found; 7043 if (start + len <= found_key.offset) 7044 goto not_found; 7045 if (start > found_key.offset) 7046 goto next; 7047 7048 /* New extent overlaps with existing one */ 7049 em->start = start; 7050 em->orig_start = start; 7051 em->len = found_key.offset - start; 7052 em->block_start = EXTENT_MAP_HOLE; 7053 goto insert; 7054 } 7055 7056 btrfs_extent_item_to_extent_map(inode, path, item, 7057 new_inline, em); 7058 7059 if (extent_type == BTRFS_FILE_EXTENT_REG || 7060 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7061 goto insert; 7062 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7063 unsigned long ptr; 7064 char *map; 7065 size_t size; 7066 size_t extent_offset; 7067 size_t copy_size; 7068 7069 if (new_inline) 7070 goto out; 7071 7072 size = btrfs_file_extent_ram_bytes(leaf, item); 7073 extent_offset = page_offset(page) + pg_offset - extent_start; 7074 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7075 size - extent_offset); 7076 em->start = extent_start + extent_offset; 7077 em->len = ALIGN(copy_size, fs_info->sectorsize); 7078 em->orig_block_len = em->len; 7079 em->orig_start = em->start; 7080 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7081 7082 btrfs_set_path_blocking(path); 7083 if (!PageUptodate(page)) { 7084 if (btrfs_file_extent_compression(leaf, item) != 7085 BTRFS_COMPRESS_NONE) { 7086 ret = uncompress_inline(path, page, pg_offset, 7087 extent_offset, item); 7088 if (ret) { 7089 err = ret; 7090 goto out; 7091 } 7092 } else { 7093 map = kmap(page); 7094 read_extent_buffer(leaf, map + pg_offset, ptr, 7095 copy_size); 7096 if (pg_offset + copy_size < PAGE_SIZE) { 7097 memset(map + pg_offset + copy_size, 0, 7098 PAGE_SIZE - pg_offset - 7099 copy_size); 7100 } 7101 kunmap(page); 7102 } 7103 flush_dcache_page(page); 7104 } 7105 set_extent_uptodate(io_tree, em->start, 7106 extent_map_end(em) - 1, NULL, GFP_NOFS); 7107 goto insert; 7108 } 7109 not_found: 7110 em->start = start; 7111 em->orig_start = start; 7112 em->len = len; 7113 em->block_start = EXTENT_MAP_HOLE; 7114 insert: 7115 btrfs_release_path(path); 7116 if (em->start > start || extent_map_end(em) <= start) { 7117 btrfs_err(fs_info, 7118 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7119 em->start, em->len, start, len); 7120 err = -EIO; 7121 goto out; 7122 } 7123 7124 err = 0; 7125 write_lock(&em_tree->lock); 7126 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7127 write_unlock(&em_tree->lock); 7128 out: 7129 btrfs_free_path(path); 7130 7131 trace_btrfs_get_extent(root, inode, em); 7132 7133 if (err) { 7134 free_extent_map(em); 7135 return ERR_PTR(err); 7136 } 7137 BUG_ON(!em); /* Error is always set */ 7138 return em; 7139 } 7140 7141 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7142 u64 start, u64 len) 7143 { 7144 struct extent_map *em; 7145 struct extent_map *hole_em = NULL; 7146 u64 delalloc_start = start; 7147 u64 end; 7148 u64 delalloc_len; 7149 u64 delalloc_end; 7150 int err = 0; 7151 7152 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7153 if (IS_ERR(em)) 7154 return em; 7155 /* 7156 * If our em maps to: 7157 * - a hole or 7158 * - a pre-alloc extent, 7159 * there might actually be delalloc bytes behind it. 7160 */ 7161 if (em->block_start != EXTENT_MAP_HOLE && 7162 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7163 return em; 7164 else 7165 hole_em = em; 7166 7167 /* check to see if we've wrapped (len == -1 or similar) */ 7168 end = start + len; 7169 if (end < start) 7170 end = (u64)-1; 7171 else 7172 end -= 1; 7173 7174 em = NULL; 7175 7176 /* ok, we didn't find anything, lets look for delalloc */ 7177 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7178 end, len, EXTENT_DELALLOC, 1); 7179 delalloc_end = delalloc_start + delalloc_len; 7180 if (delalloc_end < delalloc_start) 7181 delalloc_end = (u64)-1; 7182 7183 /* 7184 * We didn't find anything useful, return the original results from 7185 * get_extent() 7186 */ 7187 if (delalloc_start > end || delalloc_end <= start) { 7188 em = hole_em; 7189 hole_em = NULL; 7190 goto out; 7191 } 7192 7193 /* 7194 * Adjust the delalloc_start to make sure it doesn't go backwards from 7195 * the start they passed in 7196 */ 7197 delalloc_start = max(start, delalloc_start); 7198 delalloc_len = delalloc_end - delalloc_start; 7199 7200 if (delalloc_len > 0) { 7201 u64 hole_start; 7202 u64 hole_len; 7203 const u64 hole_end = extent_map_end(hole_em); 7204 7205 em = alloc_extent_map(); 7206 if (!em) { 7207 err = -ENOMEM; 7208 goto out; 7209 } 7210 em->bdev = NULL; 7211 7212 ASSERT(hole_em); 7213 /* 7214 * When btrfs_get_extent can't find anything it returns one 7215 * huge hole 7216 * 7217 * Make sure what it found really fits our range, and adjust to 7218 * make sure it is based on the start from the caller 7219 */ 7220 if (hole_end <= start || hole_em->start > end) { 7221 free_extent_map(hole_em); 7222 hole_em = NULL; 7223 } else { 7224 hole_start = max(hole_em->start, start); 7225 hole_len = hole_end - hole_start; 7226 } 7227 7228 if (hole_em && delalloc_start > hole_start) { 7229 /* 7230 * Our hole starts before our delalloc, so we have to 7231 * return just the parts of the hole that go until the 7232 * delalloc starts 7233 */ 7234 em->len = min(hole_len, delalloc_start - hole_start); 7235 em->start = hole_start; 7236 em->orig_start = hole_start; 7237 /* 7238 * Don't adjust block start at all, it is fixed at 7239 * EXTENT_MAP_HOLE 7240 */ 7241 em->block_start = hole_em->block_start; 7242 em->block_len = hole_len; 7243 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7244 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7245 } else { 7246 /* 7247 * Hole is out of passed range or it starts after 7248 * delalloc range 7249 */ 7250 em->start = delalloc_start; 7251 em->len = delalloc_len; 7252 em->orig_start = delalloc_start; 7253 em->block_start = EXTENT_MAP_DELALLOC; 7254 em->block_len = delalloc_len; 7255 } 7256 } else { 7257 return hole_em; 7258 } 7259 out: 7260 7261 free_extent_map(hole_em); 7262 if (err) { 7263 free_extent_map(em); 7264 return ERR_PTR(err); 7265 } 7266 return em; 7267 } 7268 7269 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7270 const u64 start, 7271 const u64 len, 7272 const u64 orig_start, 7273 const u64 block_start, 7274 const u64 block_len, 7275 const u64 orig_block_len, 7276 const u64 ram_bytes, 7277 const int type) 7278 { 7279 struct extent_map *em = NULL; 7280 int ret; 7281 7282 if (type != BTRFS_ORDERED_NOCOW) { 7283 em = create_io_em(inode, start, len, orig_start, 7284 block_start, block_len, orig_block_len, 7285 ram_bytes, 7286 BTRFS_COMPRESS_NONE, /* compress_type */ 7287 type); 7288 if (IS_ERR(em)) 7289 goto out; 7290 } 7291 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7292 len, block_len, type); 7293 if (ret) { 7294 if (em) { 7295 free_extent_map(em); 7296 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7297 start + len - 1, 0); 7298 } 7299 em = ERR_PTR(ret); 7300 } 7301 out: 7302 7303 return em; 7304 } 7305 7306 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7307 u64 start, u64 len) 7308 { 7309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7310 struct btrfs_root *root = BTRFS_I(inode)->root; 7311 struct extent_map *em; 7312 struct btrfs_key ins; 7313 u64 alloc_hint; 7314 int ret; 7315 7316 alloc_hint = get_extent_allocation_hint(inode, start, len); 7317 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7318 0, alloc_hint, &ins, 1, 1); 7319 if (ret) 7320 return ERR_PTR(ret); 7321 7322 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7323 ins.objectid, ins.offset, ins.offset, 7324 ins.offset, BTRFS_ORDERED_REGULAR); 7325 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7326 if (IS_ERR(em)) 7327 btrfs_free_reserved_extent(fs_info, ins.objectid, 7328 ins.offset, 1); 7329 7330 return em; 7331 } 7332 7333 /* 7334 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7335 * block must be cow'd 7336 */ 7337 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7338 u64 *orig_start, u64 *orig_block_len, 7339 u64 *ram_bytes) 7340 { 7341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7342 struct btrfs_path *path; 7343 int ret; 7344 struct extent_buffer *leaf; 7345 struct btrfs_root *root = BTRFS_I(inode)->root; 7346 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7347 struct btrfs_file_extent_item *fi; 7348 struct btrfs_key key; 7349 u64 disk_bytenr; 7350 u64 backref_offset; 7351 u64 extent_end; 7352 u64 num_bytes; 7353 int slot; 7354 int found_type; 7355 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7356 7357 path = btrfs_alloc_path(); 7358 if (!path) 7359 return -ENOMEM; 7360 7361 ret = btrfs_lookup_file_extent(NULL, root, path, 7362 btrfs_ino(BTRFS_I(inode)), offset, 0); 7363 if (ret < 0) 7364 goto out; 7365 7366 slot = path->slots[0]; 7367 if (ret == 1) { 7368 if (slot == 0) { 7369 /* can't find the item, must cow */ 7370 ret = 0; 7371 goto out; 7372 } 7373 slot--; 7374 } 7375 ret = 0; 7376 leaf = path->nodes[0]; 7377 btrfs_item_key_to_cpu(leaf, &key, slot); 7378 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7379 key.type != BTRFS_EXTENT_DATA_KEY) { 7380 /* not our file or wrong item type, must cow */ 7381 goto out; 7382 } 7383 7384 if (key.offset > offset) { 7385 /* Wrong offset, must cow */ 7386 goto out; 7387 } 7388 7389 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7390 found_type = btrfs_file_extent_type(leaf, fi); 7391 if (found_type != BTRFS_FILE_EXTENT_REG && 7392 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7393 /* not a regular extent, must cow */ 7394 goto out; 7395 } 7396 7397 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7398 goto out; 7399 7400 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7401 if (extent_end <= offset) 7402 goto out; 7403 7404 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7405 if (disk_bytenr == 0) 7406 goto out; 7407 7408 if (btrfs_file_extent_compression(leaf, fi) || 7409 btrfs_file_extent_encryption(leaf, fi) || 7410 btrfs_file_extent_other_encoding(leaf, fi)) 7411 goto out; 7412 7413 /* 7414 * Do the same check as in btrfs_cross_ref_exist but without the 7415 * unnecessary search. 7416 */ 7417 if (btrfs_file_extent_generation(leaf, fi) <= 7418 btrfs_root_last_snapshot(&root->root_item)) 7419 goto out; 7420 7421 backref_offset = btrfs_file_extent_offset(leaf, fi); 7422 7423 if (orig_start) { 7424 *orig_start = key.offset - backref_offset; 7425 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7426 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7427 } 7428 7429 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7430 goto out; 7431 7432 num_bytes = min(offset + *len, extent_end) - offset; 7433 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7434 u64 range_end; 7435 7436 range_end = round_up(offset + num_bytes, 7437 root->fs_info->sectorsize) - 1; 7438 ret = test_range_bit(io_tree, offset, range_end, 7439 EXTENT_DELALLOC, 0, NULL); 7440 if (ret) { 7441 ret = -EAGAIN; 7442 goto out; 7443 } 7444 } 7445 7446 btrfs_release_path(path); 7447 7448 /* 7449 * look for other files referencing this extent, if we 7450 * find any we must cow 7451 */ 7452 7453 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7454 key.offset - backref_offset, disk_bytenr); 7455 if (ret) { 7456 ret = 0; 7457 goto out; 7458 } 7459 7460 /* 7461 * adjust disk_bytenr and num_bytes to cover just the bytes 7462 * in this extent we are about to write. If there 7463 * are any csums in that range we have to cow in order 7464 * to keep the csums correct 7465 */ 7466 disk_bytenr += backref_offset; 7467 disk_bytenr += offset - key.offset; 7468 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7469 goto out; 7470 /* 7471 * all of the above have passed, it is safe to overwrite this extent 7472 * without cow 7473 */ 7474 *len = num_bytes; 7475 ret = 1; 7476 out: 7477 btrfs_free_path(path); 7478 return ret; 7479 } 7480 7481 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7482 struct extent_state **cached_state, int writing) 7483 { 7484 struct btrfs_ordered_extent *ordered; 7485 int ret = 0; 7486 7487 while (1) { 7488 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7489 cached_state); 7490 /* 7491 * We're concerned with the entire range that we're going to be 7492 * doing DIO to, so we need to make sure there's no ordered 7493 * extents in this range. 7494 */ 7495 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7496 lockend - lockstart + 1); 7497 7498 /* 7499 * We need to make sure there are no buffered pages in this 7500 * range either, we could have raced between the invalidate in 7501 * generic_file_direct_write and locking the extent. The 7502 * invalidate needs to happen so that reads after a write do not 7503 * get stale data. 7504 */ 7505 if (!ordered && 7506 (!writing || !filemap_range_has_page(inode->i_mapping, 7507 lockstart, lockend))) 7508 break; 7509 7510 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7511 cached_state); 7512 7513 if (ordered) { 7514 /* 7515 * If we are doing a DIO read and the ordered extent we 7516 * found is for a buffered write, we can not wait for it 7517 * to complete and retry, because if we do so we can 7518 * deadlock with concurrent buffered writes on page 7519 * locks. This happens only if our DIO read covers more 7520 * than one extent map, if at this point has already 7521 * created an ordered extent for a previous extent map 7522 * and locked its range in the inode's io tree, and a 7523 * concurrent write against that previous extent map's 7524 * range and this range started (we unlock the ranges 7525 * in the io tree only when the bios complete and 7526 * buffered writes always lock pages before attempting 7527 * to lock range in the io tree). 7528 */ 7529 if (writing || 7530 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7531 btrfs_start_ordered_extent(inode, ordered, 1); 7532 else 7533 ret = -ENOTBLK; 7534 btrfs_put_ordered_extent(ordered); 7535 } else { 7536 /* 7537 * We could trigger writeback for this range (and wait 7538 * for it to complete) and then invalidate the pages for 7539 * this range (through invalidate_inode_pages2_range()), 7540 * but that can lead us to a deadlock with a concurrent 7541 * call to readpages() (a buffered read or a defrag call 7542 * triggered a readahead) on a page lock due to an 7543 * ordered dio extent we created before but did not have 7544 * yet a corresponding bio submitted (whence it can not 7545 * complete), which makes readpages() wait for that 7546 * ordered extent to complete while holding a lock on 7547 * that page. 7548 */ 7549 ret = -ENOTBLK; 7550 } 7551 7552 if (ret) 7553 break; 7554 7555 cond_resched(); 7556 } 7557 7558 return ret; 7559 } 7560 7561 /* The callers of this must take lock_extent() */ 7562 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7563 u64 orig_start, u64 block_start, 7564 u64 block_len, u64 orig_block_len, 7565 u64 ram_bytes, int compress_type, 7566 int type) 7567 { 7568 struct extent_map_tree *em_tree; 7569 struct extent_map *em; 7570 struct btrfs_root *root = BTRFS_I(inode)->root; 7571 int ret; 7572 7573 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7574 type == BTRFS_ORDERED_COMPRESSED || 7575 type == BTRFS_ORDERED_NOCOW || 7576 type == BTRFS_ORDERED_REGULAR); 7577 7578 em_tree = &BTRFS_I(inode)->extent_tree; 7579 em = alloc_extent_map(); 7580 if (!em) 7581 return ERR_PTR(-ENOMEM); 7582 7583 em->start = start; 7584 em->orig_start = orig_start; 7585 em->len = len; 7586 em->block_len = block_len; 7587 em->block_start = block_start; 7588 em->bdev = root->fs_info->fs_devices->latest_bdev; 7589 em->orig_block_len = orig_block_len; 7590 em->ram_bytes = ram_bytes; 7591 em->generation = -1; 7592 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7593 if (type == BTRFS_ORDERED_PREALLOC) { 7594 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7595 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7596 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7597 em->compress_type = compress_type; 7598 } 7599 7600 do { 7601 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7602 em->start + em->len - 1, 0); 7603 write_lock(&em_tree->lock); 7604 ret = add_extent_mapping(em_tree, em, 1); 7605 write_unlock(&em_tree->lock); 7606 /* 7607 * The caller has taken lock_extent(), who could race with us 7608 * to add em? 7609 */ 7610 } while (ret == -EEXIST); 7611 7612 if (ret) { 7613 free_extent_map(em); 7614 return ERR_PTR(ret); 7615 } 7616 7617 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7618 return em; 7619 } 7620 7621 7622 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7623 struct buffer_head *bh_result, 7624 struct inode *inode, 7625 u64 start, u64 len) 7626 { 7627 if (em->block_start == EXTENT_MAP_HOLE || 7628 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7629 return -ENOENT; 7630 7631 len = min(len, em->len - (start - em->start)); 7632 7633 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7634 inode->i_blkbits; 7635 bh_result->b_size = len; 7636 bh_result->b_bdev = em->bdev; 7637 set_buffer_mapped(bh_result); 7638 7639 return 0; 7640 } 7641 7642 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7643 struct buffer_head *bh_result, 7644 struct inode *inode, 7645 struct btrfs_dio_data *dio_data, 7646 u64 start, u64 len) 7647 { 7648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7649 struct extent_map *em = *map; 7650 int ret = 0; 7651 7652 /* 7653 * We don't allocate a new extent in the following cases 7654 * 7655 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7656 * existing extent. 7657 * 2) The extent is marked as PREALLOC. We're good to go here and can 7658 * just use the extent. 7659 * 7660 */ 7661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7662 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7663 em->block_start != EXTENT_MAP_HOLE)) { 7664 int type; 7665 u64 block_start, orig_start, orig_block_len, ram_bytes; 7666 7667 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7668 type = BTRFS_ORDERED_PREALLOC; 7669 else 7670 type = BTRFS_ORDERED_NOCOW; 7671 len = min(len, em->len - (start - em->start)); 7672 block_start = em->block_start + (start - em->start); 7673 7674 if (can_nocow_extent(inode, start, &len, &orig_start, 7675 &orig_block_len, &ram_bytes) == 1 && 7676 btrfs_inc_nocow_writers(fs_info, block_start)) { 7677 struct extent_map *em2; 7678 7679 em2 = btrfs_create_dio_extent(inode, start, len, 7680 orig_start, block_start, 7681 len, orig_block_len, 7682 ram_bytes, type); 7683 btrfs_dec_nocow_writers(fs_info, block_start); 7684 if (type == BTRFS_ORDERED_PREALLOC) { 7685 free_extent_map(em); 7686 *map = em = em2; 7687 } 7688 7689 if (em2 && IS_ERR(em2)) { 7690 ret = PTR_ERR(em2); 7691 goto out; 7692 } 7693 /* 7694 * For inode marked NODATACOW or extent marked PREALLOC, 7695 * use the existing or preallocated extent, so does not 7696 * need to adjust btrfs_space_info's bytes_may_use. 7697 */ 7698 btrfs_free_reserved_data_space_noquota(inode, start, 7699 len); 7700 goto skip_cow; 7701 } 7702 } 7703 7704 /* this will cow the extent */ 7705 len = bh_result->b_size; 7706 free_extent_map(em); 7707 *map = em = btrfs_new_extent_direct(inode, start, len); 7708 if (IS_ERR(em)) { 7709 ret = PTR_ERR(em); 7710 goto out; 7711 } 7712 7713 len = min(len, em->len - (start - em->start)); 7714 7715 skip_cow: 7716 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7717 inode->i_blkbits; 7718 bh_result->b_size = len; 7719 bh_result->b_bdev = em->bdev; 7720 set_buffer_mapped(bh_result); 7721 7722 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7723 set_buffer_new(bh_result); 7724 7725 /* 7726 * Need to update the i_size under the extent lock so buffered 7727 * readers will get the updated i_size when we unlock. 7728 */ 7729 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7730 i_size_write(inode, start + len); 7731 7732 WARN_ON(dio_data->reserve < len); 7733 dio_data->reserve -= len; 7734 dio_data->unsubmitted_oe_range_end = start + len; 7735 current->journal_info = dio_data; 7736 out: 7737 return ret; 7738 } 7739 7740 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7741 struct buffer_head *bh_result, int create) 7742 { 7743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7744 struct extent_map *em; 7745 struct extent_state *cached_state = NULL; 7746 struct btrfs_dio_data *dio_data = NULL; 7747 u64 start = iblock << inode->i_blkbits; 7748 u64 lockstart, lockend; 7749 u64 len = bh_result->b_size; 7750 int ret = 0; 7751 7752 if (!create) 7753 len = min_t(u64, len, fs_info->sectorsize); 7754 7755 lockstart = start; 7756 lockend = start + len - 1; 7757 7758 if (current->journal_info) { 7759 /* 7760 * Need to pull our outstanding extents and set journal_info to NULL so 7761 * that anything that needs to check if there's a transaction doesn't get 7762 * confused. 7763 */ 7764 dio_data = current->journal_info; 7765 current->journal_info = NULL; 7766 } 7767 7768 /* 7769 * If this errors out it's because we couldn't invalidate pagecache for 7770 * this range and we need to fallback to buffered. 7771 */ 7772 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7773 create)) { 7774 ret = -ENOTBLK; 7775 goto err; 7776 } 7777 7778 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7779 if (IS_ERR(em)) { 7780 ret = PTR_ERR(em); 7781 goto unlock_err; 7782 } 7783 7784 /* 7785 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7786 * io. INLINE is special, and we could probably kludge it in here, but 7787 * it's still buffered so for safety lets just fall back to the generic 7788 * buffered path. 7789 * 7790 * For COMPRESSED we _have_ to read the entire extent in so we can 7791 * decompress it, so there will be buffering required no matter what we 7792 * do, so go ahead and fallback to buffered. 7793 * 7794 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7795 * to buffered IO. Don't blame me, this is the price we pay for using 7796 * the generic code. 7797 */ 7798 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7799 em->block_start == EXTENT_MAP_INLINE) { 7800 free_extent_map(em); 7801 ret = -ENOTBLK; 7802 goto unlock_err; 7803 } 7804 7805 if (create) { 7806 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7807 dio_data, start, len); 7808 if (ret < 0) 7809 goto unlock_err; 7810 7811 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7812 lockend, &cached_state); 7813 } else { 7814 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7815 start, len); 7816 /* Can be negative only if we read from a hole */ 7817 if (ret < 0) { 7818 ret = 0; 7819 free_extent_map(em); 7820 goto unlock_err; 7821 } 7822 /* 7823 * We need to unlock only the end area that we aren't using. 7824 * The rest is going to be unlocked by the endio routine. 7825 */ 7826 lockstart = start + bh_result->b_size; 7827 if (lockstart < lockend) { 7828 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7829 lockstart, lockend, &cached_state); 7830 } else { 7831 free_extent_state(cached_state); 7832 } 7833 } 7834 7835 free_extent_map(em); 7836 7837 return 0; 7838 7839 unlock_err: 7840 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7841 &cached_state); 7842 err: 7843 if (dio_data) 7844 current->journal_info = dio_data; 7845 return ret; 7846 } 7847 7848 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7849 struct bio *bio, 7850 int mirror_num) 7851 { 7852 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7853 blk_status_t ret; 7854 7855 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7856 7857 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7858 if (ret) 7859 return ret; 7860 7861 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7862 7863 return ret; 7864 } 7865 7866 static int btrfs_check_dio_repairable(struct inode *inode, 7867 struct bio *failed_bio, 7868 struct io_failure_record *failrec, 7869 int failed_mirror) 7870 { 7871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7872 int num_copies; 7873 7874 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7875 if (num_copies == 1) { 7876 /* 7877 * we only have a single copy of the data, so don't bother with 7878 * all the retry and error correction code that follows. no 7879 * matter what the error is, it is very likely to persist. 7880 */ 7881 btrfs_debug(fs_info, 7882 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7883 num_copies, failrec->this_mirror, failed_mirror); 7884 return 0; 7885 } 7886 7887 failrec->failed_mirror = failed_mirror; 7888 failrec->this_mirror++; 7889 if (failrec->this_mirror == failed_mirror) 7890 failrec->this_mirror++; 7891 7892 if (failrec->this_mirror > num_copies) { 7893 btrfs_debug(fs_info, 7894 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7895 num_copies, failrec->this_mirror, failed_mirror); 7896 return 0; 7897 } 7898 7899 return 1; 7900 } 7901 7902 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7903 struct page *page, unsigned int pgoff, 7904 u64 start, u64 end, int failed_mirror, 7905 bio_end_io_t *repair_endio, void *repair_arg) 7906 { 7907 struct io_failure_record *failrec; 7908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7909 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7910 struct bio *bio; 7911 int isector; 7912 unsigned int read_mode = 0; 7913 int segs; 7914 int ret; 7915 blk_status_t status; 7916 struct bio_vec bvec; 7917 7918 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7919 7920 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7921 if (ret) 7922 return errno_to_blk_status(ret); 7923 7924 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7925 failed_mirror); 7926 if (!ret) { 7927 free_io_failure(failure_tree, io_tree, failrec); 7928 return BLK_STS_IOERR; 7929 } 7930 7931 segs = bio_segments(failed_bio); 7932 bio_get_first_bvec(failed_bio, &bvec); 7933 if (segs > 1 || 7934 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7935 read_mode |= REQ_FAILFAST_DEV; 7936 7937 isector = start - btrfs_io_bio(failed_bio)->logical; 7938 isector >>= inode->i_sb->s_blocksize_bits; 7939 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7940 pgoff, isector, repair_endio, repair_arg); 7941 bio->bi_opf = REQ_OP_READ | read_mode; 7942 7943 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7944 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7945 read_mode, failrec->this_mirror, failrec->in_validation); 7946 7947 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7948 if (status) { 7949 free_io_failure(failure_tree, io_tree, failrec); 7950 bio_put(bio); 7951 } 7952 7953 return status; 7954 } 7955 7956 struct btrfs_retry_complete { 7957 struct completion done; 7958 struct inode *inode; 7959 u64 start; 7960 int uptodate; 7961 }; 7962 7963 static void btrfs_retry_endio_nocsum(struct bio *bio) 7964 { 7965 struct btrfs_retry_complete *done = bio->bi_private; 7966 struct inode *inode = done->inode; 7967 struct bio_vec *bvec; 7968 struct extent_io_tree *io_tree, *failure_tree; 7969 struct bvec_iter_all iter_all; 7970 7971 if (bio->bi_status) 7972 goto end; 7973 7974 ASSERT(bio->bi_vcnt == 1); 7975 io_tree = &BTRFS_I(inode)->io_tree; 7976 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7977 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7978 7979 done->uptodate = 1; 7980 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7981 bio_for_each_segment_all(bvec, bio, iter_all) 7982 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7983 io_tree, done->start, bvec->bv_page, 7984 btrfs_ino(BTRFS_I(inode)), 0); 7985 end: 7986 complete(&done->done); 7987 bio_put(bio); 7988 } 7989 7990 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7991 struct btrfs_io_bio *io_bio) 7992 { 7993 struct btrfs_fs_info *fs_info; 7994 struct bio_vec bvec; 7995 struct bvec_iter iter; 7996 struct btrfs_retry_complete done; 7997 u64 start; 7998 unsigned int pgoff; 7999 u32 sectorsize; 8000 int nr_sectors; 8001 blk_status_t ret; 8002 blk_status_t err = BLK_STS_OK; 8003 8004 fs_info = BTRFS_I(inode)->root->fs_info; 8005 sectorsize = fs_info->sectorsize; 8006 8007 start = io_bio->logical; 8008 done.inode = inode; 8009 io_bio->bio.bi_iter = io_bio->iter; 8010 8011 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8012 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8013 pgoff = bvec.bv_offset; 8014 8015 next_block_or_try_again: 8016 done.uptodate = 0; 8017 done.start = start; 8018 init_completion(&done.done); 8019 8020 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8021 pgoff, start, start + sectorsize - 1, 8022 io_bio->mirror_num, 8023 btrfs_retry_endio_nocsum, &done); 8024 if (ret) { 8025 err = ret; 8026 goto next; 8027 } 8028 8029 wait_for_completion_io(&done.done); 8030 8031 if (!done.uptodate) { 8032 /* We might have another mirror, so try again */ 8033 goto next_block_or_try_again; 8034 } 8035 8036 next: 8037 start += sectorsize; 8038 8039 nr_sectors--; 8040 if (nr_sectors) { 8041 pgoff += sectorsize; 8042 ASSERT(pgoff < PAGE_SIZE); 8043 goto next_block_or_try_again; 8044 } 8045 } 8046 8047 return err; 8048 } 8049 8050 static void btrfs_retry_endio(struct bio *bio) 8051 { 8052 struct btrfs_retry_complete *done = bio->bi_private; 8053 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8054 struct extent_io_tree *io_tree, *failure_tree; 8055 struct inode *inode = done->inode; 8056 struct bio_vec *bvec; 8057 int uptodate; 8058 int ret; 8059 int i = 0; 8060 struct bvec_iter_all iter_all; 8061 8062 if (bio->bi_status) 8063 goto end; 8064 8065 uptodate = 1; 8066 8067 ASSERT(bio->bi_vcnt == 1); 8068 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 8069 8070 io_tree = &BTRFS_I(inode)->io_tree; 8071 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8072 8073 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8074 bio_for_each_segment_all(bvec, bio, iter_all) { 8075 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8076 bvec->bv_offset, done->start, 8077 bvec->bv_len); 8078 if (!ret) 8079 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8080 failure_tree, io_tree, done->start, 8081 bvec->bv_page, 8082 btrfs_ino(BTRFS_I(inode)), 8083 bvec->bv_offset); 8084 else 8085 uptodate = 0; 8086 i++; 8087 } 8088 8089 done->uptodate = uptodate; 8090 end: 8091 complete(&done->done); 8092 bio_put(bio); 8093 } 8094 8095 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8096 struct btrfs_io_bio *io_bio, blk_status_t err) 8097 { 8098 struct btrfs_fs_info *fs_info; 8099 struct bio_vec bvec; 8100 struct bvec_iter iter; 8101 struct btrfs_retry_complete done; 8102 u64 start; 8103 u64 offset = 0; 8104 u32 sectorsize; 8105 int nr_sectors; 8106 unsigned int pgoff; 8107 int csum_pos; 8108 bool uptodate = (err == 0); 8109 int ret; 8110 blk_status_t status; 8111 8112 fs_info = BTRFS_I(inode)->root->fs_info; 8113 sectorsize = fs_info->sectorsize; 8114 8115 err = BLK_STS_OK; 8116 start = io_bio->logical; 8117 done.inode = inode; 8118 io_bio->bio.bi_iter = io_bio->iter; 8119 8120 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8121 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8122 8123 pgoff = bvec.bv_offset; 8124 next_block: 8125 if (uptodate) { 8126 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8127 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8128 bvec.bv_page, pgoff, start, sectorsize); 8129 if (likely(!ret)) 8130 goto next; 8131 } 8132 try_again: 8133 done.uptodate = 0; 8134 done.start = start; 8135 init_completion(&done.done); 8136 8137 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8138 pgoff, start, start + sectorsize - 1, 8139 io_bio->mirror_num, btrfs_retry_endio, 8140 &done); 8141 if (status) { 8142 err = status; 8143 goto next; 8144 } 8145 8146 wait_for_completion_io(&done.done); 8147 8148 if (!done.uptodate) { 8149 /* We might have another mirror, so try again */ 8150 goto try_again; 8151 } 8152 next: 8153 offset += sectorsize; 8154 start += sectorsize; 8155 8156 ASSERT(nr_sectors); 8157 8158 nr_sectors--; 8159 if (nr_sectors) { 8160 pgoff += sectorsize; 8161 ASSERT(pgoff < PAGE_SIZE); 8162 goto next_block; 8163 } 8164 } 8165 8166 return err; 8167 } 8168 8169 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8170 struct btrfs_io_bio *io_bio, blk_status_t err) 8171 { 8172 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8173 8174 if (skip_csum) { 8175 if (unlikely(err)) 8176 return __btrfs_correct_data_nocsum(inode, io_bio); 8177 else 8178 return BLK_STS_OK; 8179 } else { 8180 return __btrfs_subio_endio_read(inode, io_bio, err); 8181 } 8182 } 8183 8184 static void btrfs_endio_direct_read(struct bio *bio) 8185 { 8186 struct btrfs_dio_private *dip = bio->bi_private; 8187 struct inode *inode = dip->inode; 8188 struct bio *dio_bio; 8189 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8190 blk_status_t err = bio->bi_status; 8191 8192 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8193 err = btrfs_subio_endio_read(inode, io_bio, err); 8194 8195 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8196 dip->logical_offset + dip->bytes - 1); 8197 dio_bio = dip->dio_bio; 8198 8199 kfree(dip); 8200 8201 dio_bio->bi_status = err; 8202 dio_end_io(dio_bio); 8203 btrfs_io_bio_free_csum(io_bio); 8204 bio_put(bio); 8205 } 8206 8207 static void __endio_write_update_ordered(struct inode *inode, 8208 const u64 offset, const u64 bytes, 8209 const bool uptodate) 8210 { 8211 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8212 struct btrfs_ordered_extent *ordered = NULL; 8213 struct btrfs_workqueue *wq; 8214 btrfs_work_func_t func; 8215 u64 ordered_offset = offset; 8216 u64 ordered_bytes = bytes; 8217 u64 last_offset; 8218 8219 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8220 wq = fs_info->endio_freespace_worker; 8221 func = btrfs_freespace_write_helper; 8222 } else { 8223 wq = fs_info->endio_write_workers; 8224 func = btrfs_endio_write_helper; 8225 } 8226 8227 while (ordered_offset < offset + bytes) { 8228 last_offset = ordered_offset; 8229 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8230 &ordered_offset, 8231 ordered_bytes, 8232 uptodate)) { 8233 btrfs_init_work(&ordered->work, func, 8234 finish_ordered_fn, 8235 NULL, NULL); 8236 btrfs_queue_work(wq, &ordered->work); 8237 } 8238 /* 8239 * If btrfs_dec_test_ordered_pending does not find any ordered 8240 * extent in the range, we can exit. 8241 */ 8242 if (ordered_offset == last_offset) 8243 return; 8244 /* 8245 * Our bio might span multiple ordered extents. In this case 8246 * we keep going until we have accounted the whole dio. 8247 */ 8248 if (ordered_offset < offset + bytes) { 8249 ordered_bytes = offset + bytes - ordered_offset; 8250 ordered = NULL; 8251 } 8252 } 8253 } 8254 8255 static void btrfs_endio_direct_write(struct bio *bio) 8256 { 8257 struct btrfs_dio_private *dip = bio->bi_private; 8258 struct bio *dio_bio = dip->dio_bio; 8259 8260 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8261 dip->bytes, !bio->bi_status); 8262 8263 kfree(dip); 8264 8265 dio_bio->bi_status = bio->bi_status; 8266 dio_end_io(dio_bio); 8267 bio_put(bio); 8268 } 8269 8270 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8271 struct bio *bio, u64 offset) 8272 { 8273 struct inode *inode = private_data; 8274 blk_status_t ret; 8275 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8276 BUG_ON(ret); /* -ENOMEM */ 8277 return 0; 8278 } 8279 8280 static void btrfs_end_dio_bio(struct bio *bio) 8281 { 8282 struct btrfs_dio_private *dip = bio->bi_private; 8283 blk_status_t err = bio->bi_status; 8284 8285 if (err) 8286 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8287 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8288 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8289 bio->bi_opf, 8290 (unsigned long long)bio->bi_iter.bi_sector, 8291 bio->bi_iter.bi_size, err); 8292 8293 if (dip->subio_endio) 8294 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8295 8296 if (err) { 8297 /* 8298 * We want to perceive the errors flag being set before 8299 * decrementing the reference count. We don't need a barrier 8300 * since atomic operations with a return value are fully 8301 * ordered as per atomic_t.txt 8302 */ 8303 dip->errors = 1; 8304 } 8305 8306 /* if there are more bios still pending for this dio, just exit */ 8307 if (!atomic_dec_and_test(&dip->pending_bios)) 8308 goto out; 8309 8310 if (dip->errors) { 8311 bio_io_error(dip->orig_bio); 8312 } else { 8313 dip->dio_bio->bi_status = BLK_STS_OK; 8314 bio_endio(dip->orig_bio); 8315 } 8316 out: 8317 bio_put(bio); 8318 } 8319 8320 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8321 struct btrfs_dio_private *dip, 8322 struct bio *bio, 8323 u64 file_offset) 8324 { 8325 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8326 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8327 blk_status_t ret; 8328 8329 /* 8330 * We load all the csum data we need when we submit 8331 * the first bio to reduce the csum tree search and 8332 * contention. 8333 */ 8334 if (dip->logical_offset == file_offset) { 8335 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8336 file_offset); 8337 if (ret) 8338 return ret; 8339 } 8340 8341 if (bio == dip->orig_bio) 8342 return 0; 8343 8344 file_offset -= dip->logical_offset; 8345 file_offset >>= inode->i_sb->s_blocksize_bits; 8346 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8347 8348 return 0; 8349 } 8350 8351 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8352 struct inode *inode, u64 file_offset, int async_submit) 8353 { 8354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8355 struct btrfs_dio_private *dip = bio->bi_private; 8356 bool write = bio_op(bio) == REQ_OP_WRITE; 8357 blk_status_t ret; 8358 8359 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8360 if (async_submit) 8361 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8362 8363 if (!write) { 8364 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8365 if (ret) 8366 goto err; 8367 } 8368 8369 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8370 goto map; 8371 8372 if (write && async_submit) { 8373 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8374 file_offset, inode, 8375 btrfs_submit_bio_start_direct_io); 8376 goto err; 8377 } else if (write) { 8378 /* 8379 * If we aren't doing async submit, calculate the csum of the 8380 * bio now. 8381 */ 8382 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8383 if (ret) 8384 goto err; 8385 } else { 8386 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8387 file_offset); 8388 if (ret) 8389 goto err; 8390 } 8391 map: 8392 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8393 err: 8394 return ret; 8395 } 8396 8397 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8398 { 8399 struct inode *inode = dip->inode; 8400 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8401 struct bio *bio; 8402 struct bio *orig_bio = dip->orig_bio; 8403 u64 start_sector = orig_bio->bi_iter.bi_sector; 8404 u64 file_offset = dip->logical_offset; 8405 int async_submit = 0; 8406 u64 submit_len; 8407 int clone_offset = 0; 8408 int clone_len; 8409 int ret; 8410 blk_status_t status; 8411 struct btrfs_io_geometry geom; 8412 8413 submit_len = orig_bio->bi_iter.bi_size; 8414 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8415 start_sector << 9, submit_len, &geom); 8416 if (ret) 8417 return -EIO; 8418 8419 if (geom.len >= submit_len) { 8420 bio = orig_bio; 8421 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8422 goto submit; 8423 } 8424 8425 /* async crcs make it difficult to collect full stripe writes. */ 8426 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8427 async_submit = 0; 8428 else 8429 async_submit = 1; 8430 8431 /* bio split */ 8432 ASSERT(geom.len <= INT_MAX); 8433 atomic_inc(&dip->pending_bios); 8434 do { 8435 clone_len = min_t(int, submit_len, geom.len); 8436 8437 /* 8438 * This will never fail as it's passing GPF_NOFS and 8439 * the allocation is backed by btrfs_bioset. 8440 */ 8441 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8442 clone_len); 8443 bio->bi_private = dip; 8444 bio->bi_end_io = btrfs_end_dio_bio; 8445 btrfs_io_bio(bio)->logical = file_offset; 8446 8447 ASSERT(submit_len >= clone_len); 8448 submit_len -= clone_len; 8449 if (submit_len == 0) 8450 break; 8451 8452 /* 8453 * Increase the count before we submit the bio so we know 8454 * the end IO handler won't happen before we increase the 8455 * count. Otherwise, the dip might get freed before we're 8456 * done setting it up. 8457 */ 8458 atomic_inc(&dip->pending_bios); 8459 8460 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8461 async_submit); 8462 if (status) { 8463 bio_put(bio); 8464 atomic_dec(&dip->pending_bios); 8465 goto out_err; 8466 } 8467 8468 clone_offset += clone_len; 8469 start_sector += clone_len >> 9; 8470 file_offset += clone_len; 8471 8472 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8473 start_sector << 9, submit_len, &geom); 8474 if (ret) 8475 goto out_err; 8476 } while (submit_len > 0); 8477 8478 submit: 8479 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8480 if (!status) 8481 return 0; 8482 8483 bio_put(bio); 8484 out_err: 8485 dip->errors = 1; 8486 /* 8487 * Before atomic variable goto zero, we must make sure dip->errors is 8488 * perceived to be set. This ordering is ensured by the fact that an 8489 * atomic operations with a return value are fully ordered as per 8490 * atomic_t.txt 8491 */ 8492 if (atomic_dec_and_test(&dip->pending_bios)) 8493 bio_io_error(dip->orig_bio); 8494 8495 /* bio_end_io() will handle error, so we needn't return it */ 8496 return 0; 8497 } 8498 8499 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8500 loff_t file_offset) 8501 { 8502 struct btrfs_dio_private *dip = NULL; 8503 struct bio *bio = NULL; 8504 struct btrfs_io_bio *io_bio; 8505 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8506 int ret = 0; 8507 8508 bio = btrfs_bio_clone(dio_bio); 8509 8510 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8511 if (!dip) { 8512 ret = -ENOMEM; 8513 goto free_ordered; 8514 } 8515 8516 dip->private = dio_bio->bi_private; 8517 dip->inode = inode; 8518 dip->logical_offset = file_offset; 8519 dip->bytes = dio_bio->bi_iter.bi_size; 8520 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8521 bio->bi_private = dip; 8522 dip->orig_bio = bio; 8523 dip->dio_bio = dio_bio; 8524 atomic_set(&dip->pending_bios, 0); 8525 io_bio = btrfs_io_bio(bio); 8526 io_bio->logical = file_offset; 8527 8528 if (write) { 8529 bio->bi_end_io = btrfs_endio_direct_write; 8530 } else { 8531 bio->bi_end_io = btrfs_endio_direct_read; 8532 dip->subio_endio = btrfs_subio_endio_read; 8533 } 8534 8535 /* 8536 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8537 * even if we fail to submit a bio, because in such case we do the 8538 * corresponding error handling below and it must not be done a second 8539 * time by btrfs_direct_IO(). 8540 */ 8541 if (write) { 8542 struct btrfs_dio_data *dio_data = current->journal_info; 8543 8544 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8545 dip->bytes; 8546 dio_data->unsubmitted_oe_range_start = 8547 dio_data->unsubmitted_oe_range_end; 8548 } 8549 8550 ret = btrfs_submit_direct_hook(dip); 8551 if (!ret) 8552 return; 8553 8554 btrfs_io_bio_free_csum(io_bio); 8555 8556 free_ordered: 8557 /* 8558 * If we arrived here it means either we failed to submit the dip 8559 * or we either failed to clone the dio_bio or failed to allocate the 8560 * dip. If we cloned the dio_bio and allocated the dip, we can just 8561 * call bio_endio against our io_bio so that we get proper resource 8562 * cleanup if we fail to submit the dip, otherwise, we must do the 8563 * same as btrfs_endio_direct_[write|read] because we can't call these 8564 * callbacks - they require an allocated dip and a clone of dio_bio. 8565 */ 8566 if (bio && dip) { 8567 bio_io_error(bio); 8568 /* 8569 * The end io callbacks free our dip, do the final put on bio 8570 * and all the cleanup and final put for dio_bio (through 8571 * dio_end_io()). 8572 */ 8573 dip = NULL; 8574 bio = NULL; 8575 } else { 8576 if (write) 8577 __endio_write_update_ordered(inode, 8578 file_offset, 8579 dio_bio->bi_iter.bi_size, 8580 false); 8581 else 8582 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8583 file_offset + dio_bio->bi_iter.bi_size - 1); 8584 8585 dio_bio->bi_status = BLK_STS_IOERR; 8586 /* 8587 * Releases and cleans up our dio_bio, no need to bio_put() 8588 * nor bio_endio()/bio_io_error() against dio_bio. 8589 */ 8590 dio_end_io(dio_bio); 8591 } 8592 if (bio) 8593 bio_put(bio); 8594 kfree(dip); 8595 } 8596 8597 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8598 const struct iov_iter *iter, loff_t offset) 8599 { 8600 int seg; 8601 int i; 8602 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8603 ssize_t retval = -EINVAL; 8604 8605 if (offset & blocksize_mask) 8606 goto out; 8607 8608 if (iov_iter_alignment(iter) & blocksize_mask) 8609 goto out; 8610 8611 /* If this is a write we don't need to check anymore */ 8612 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8613 return 0; 8614 /* 8615 * Check to make sure we don't have duplicate iov_base's in this 8616 * iovec, if so return EINVAL, otherwise we'll get csum errors 8617 * when reading back. 8618 */ 8619 for (seg = 0; seg < iter->nr_segs; seg++) { 8620 for (i = seg + 1; i < iter->nr_segs; i++) { 8621 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8622 goto out; 8623 } 8624 } 8625 retval = 0; 8626 out: 8627 return retval; 8628 } 8629 8630 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8631 { 8632 struct file *file = iocb->ki_filp; 8633 struct inode *inode = file->f_mapping->host; 8634 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8635 struct btrfs_dio_data dio_data = { 0 }; 8636 struct extent_changeset *data_reserved = NULL; 8637 loff_t offset = iocb->ki_pos; 8638 size_t count = 0; 8639 int flags = 0; 8640 bool wakeup = true; 8641 bool relock = false; 8642 ssize_t ret; 8643 8644 if (check_direct_IO(fs_info, iter, offset)) 8645 return 0; 8646 8647 inode_dio_begin(inode); 8648 8649 /* 8650 * The generic stuff only does filemap_write_and_wait_range, which 8651 * isn't enough if we've written compressed pages to this area, so 8652 * we need to flush the dirty pages again to make absolutely sure 8653 * that any outstanding dirty pages are on disk. 8654 */ 8655 count = iov_iter_count(iter); 8656 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8657 &BTRFS_I(inode)->runtime_flags)) 8658 filemap_fdatawrite_range(inode->i_mapping, offset, 8659 offset + count - 1); 8660 8661 if (iov_iter_rw(iter) == WRITE) { 8662 /* 8663 * If the write DIO is beyond the EOF, we need update 8664 * the isize, but it is protected by i_mutex. So we can 8665 * not unlock the i_mutex at this case. 8666 */ 8667 if (offset + count <= inode->i_size) { 8668 dio_data.overwrite = 1; 8669 inode_unlock(inode); 8670 relock = true; 8671 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8672 ret = -EAGAIN; 8673 goto out; 8674 } 8675 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8676 offset, count); 8677 if (ret) 8678 goto out; 8679 8680 /* 8681 * We need to know how many extents we reserved so that we can 8682 * do the accounting properly if we go over the number we 8683 * originally calculated. Abuse current->journal_info for this. 8684 */ 8685 dio_data.reserve = round_up(count, 8686 fs_info->sectorsize); 8687 dio_data.unsubmitted_oe_range_start = (u64)offset; 8688 dio_data.unsubmitted_oe_range_end = (u64)offset; 8689 current->journal_info = &dio_data; 8690 down_read(&BTRFS_I(inode)->dio_sem); 8691 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8692 &BTRFS_I(inode)->runtime_flags)) { 8693 inode_dio_end(inode); 8694 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8695 wakeup = false; 8696 } 8697 8698 ret = __blockdev_direct_IO(iocb, inode, 8699 fs_info->fs_devices->latest_bdev, 8700 iter, btrfs_get_blocks_direct, NULL, 8701 btrfs_submit_direct, flags); 8702 if (iov_iter_rw(iter) == WRITE) { 8703 up_read(&BTRFS_I(inode)->dio_sem); 8704 current->journal_info = NULL; 8705 if (ret < 0 && ret != -EIOCBQUEUED) { 8706 if (dio_data.reserve) 8707 btrfs_delalloc_release_space(inode, data_reserved, 8708 offset, dio_data.reserve, true); 8709 /* 8710 * On error we might have left some ordered extents 8711 * without submitting corresponding bios for them, so 8712 * cleanup them up to avoid other tasks getting them 8713 * and waiting for them to complete forever. 8714 */ 8715 if (dio_data.unsubmitted_oe_range_start < 8716 dio_data.unsubmitted_oe_range_end) 8717 __endio_write_update_ordered(inode, 8718 dio_data.unsubmitted_oe_range_start, 8719 dio_data.unsubmitted_oe_range_end - 8720 dio_data.unsubmitted_oe_range_start, 8721 false); 8722 } else if (ret >= 0 && (size_t)ret < count) 8723 btrfs_delalloc_release_space(inode, data_reserved, 8724 offset, count - (size_t)ret, true); 8725 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8726 } 8727 out: 8728 if (wakeup) 8729 inode_dio_end(inode); 8730 if (relock) 8731 inode_lock(inode); 8732 8733 extent_changeset_free(data_reserved); 8734 return ret; 8735 } 8736 8737 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8738 8739 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8740 __u64 start, __u64 len) 8741 { 8742 int ret; 8743 8744 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8745 if (ret) 8746 return ret; 8747 8748 return extent_fiemap(inode, fieinfo, start, len); 8749 } 8750 8751 int btrfs_readpage(struct file *file, struct page *page) 8752 { 8753 struct extent_io_tree *tree; 8754 tree = &BTRFS_I(page->mapping->host)->io_tree; 8755 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8756 } 8757 8758 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8759 { 8760 struct inode *inode = page->mapping->host; 8761 int ret; 8762 8763 if (current->flags & PF_MEMALLOC) { 8764 redirty_page_for_writepage(wbc, page); 8765 unlock_page(page); 8766 return 0; 8767 } 8768 8769 /* 8770 * If we are under memory pressure we will call this directly from the 8771 * VM, we need to make sure we have the inode referenced for the ordered 8772 * extent. If not just return like we didn't do anything. 8773 */ 8774 if (!igrab(inode)) { 8775 redirty_page_for_writepage(wbc, page); 8776 return AOP_WRITEPAGE_ACTIVATE; 8777 } 8778 ret = extent_write_full_page(page, wbc); 8779 btrfs_add_delayed_iput(inode); 8780 return ret; 8781 } 8782 8783 static int btrfs_writepages(struct address_space *mapping, 8784 struct writeback_control *wbc) 8785 { 8786 return extent_writepages(mapping, wbc); 8787 } 8788 8789 static int 8790 btrfs_readpages(struct file *file, struct address_space *mapping, 8791 struct list_head *pages, unsigned nr_pages) 8792 { 8793 return extent_readpages(mapping, pages, nr_pages); 8794 } 8795 8796 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8797 { 8798 int ret = try_release_extent_mapping(page, gfp_flags); 8799 if (ret == 1) { 8800 ClearPagePrivate(page); 8801 set_page_private(page, 0); 8802 put_page(page); 8803 } 8804 return ret; 8805 } 8806 8807 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8808 { 8809 if (PageWriteback(page) || PageDirty(page)) 8810 return 0; 8811 return __btrfs_releasepage(page, gfp_flags); 8812 } 8813 8814 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8815 unsigned int length) 8816 { 8817 struct inode *inode = page->mapping->host; 8818 struct extent_io_tree *tree; 8819 struct btrfs_ordered_extent *ordered; 8820 struct extent_state *cached_state = NULL; 8821 u64 page_start = page_offset(page); 8822 u64 page_end = page_start + PAGE_SIZE - 1; 8823 u64 start; 8824 u64 end; 8825 int inode_evicting = inode->i_state & I_FREEING; 8826 8827 /* 8828 * we have the page locked, so new writeback can't start, 8829 * and the dirty bit won't be cleared while we are here. 8830 * 8831 * Wait for IO on this page so that we can safely clear 8832 * the PagePrivate2 bit and do ordered accounting 8833 */ 8834 wait_on_page_writeback(page); 8835 8836 tree = &BTRFS_I(inode)->io_tree; 8837 if (offset) { 8838 btrfs_releasepage(page, GFP_NOFS); 8839 return; 8840 } 8841 8842 if (!inode_evicting) 8843 lock_extent_bits(tree, page_start, page_end, &cached_state); 8844 again: 8845 start = page_start; 8846 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8847 page_end - start + 1); 8848 if (ordered) { 8849 end = min(page_end, ordered->file_offset + ordered->len - 1); 8850 /* 8851 * IO on this page will never be started, so we need 8852 * to account for any ordered extents now 8853 */ 8854 if (!inode_evicting) 8855 clear_extent_bit(tree, start, end, 8856 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8857 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8858 EXTENT_DEFRAG, 1, 0, &cached_state); 8859 /* 8860 * whoever cleared the private bit is responsible 8861 * for the finish_ordered_io 8862 */ 8863 if (TestClearPagePrivate2(page)) { 8864 struct btrfs_ordered_inode_tree *tree; 8865 u64 new_len; 8866 8867 tree = &BTRFS_I(inode)->ordered_tree; 8868 8869 spin_lock_irq(&tree->lock); 8870 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8871 new_len = start - ordered->file_offset; 8872 if (new_len < ordered->truncated_len) 8873 ordered->truncated_len = new_len; 8874 spin_unlock_irq(&tree->lock); 8875 8876 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8877 start, 8878 end - start + 1, 1)) 8879 btrfs_finish_ordered_io(ordered); 8880 } 8881 btrfs_put_ordered_extent(ordered); 8882 if (!inode_evicting) { 8883 cached_state = NULL; 8884 lock_extent_bits(tree, start, end, 8885 &cached_state); 8886 } 8887 8888 start = end + 1; 8889 if (start < page_end) 8890 goto again; 8891 } 8892 8893 /* 8894 * Qgroup reserved space handler 8895 * Page here will be either 8896 * 1) Already written to disk 8897 * In this case, its reserved space is released from data rsv map 8898 * and will be freed by delayed_ref handler finally. 8899 * So even we call qgroup_free_data(), it won't decrease reserved 8900 * space. 8901 * 2) Not written to disk 8902 * This means the reserved space should be freed here. However, 8903 * if a truncate invalidates the page (by clearing PageDirty) 8904 * and the page is accounted for while allocating extent 8905 * in btrfs_check_data_free_space() we let delayed_ref to 8906 * free the entire extent. 8907 */ 8908 if (PageDirty(page)) 8909 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8910 if (!inode_evicting) { 8911 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8912 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8913 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8914 &cached_state); 8915 8916 __btrfs_releasepage(page, GFP_NOFS); 8917 } 8918 8919 ClearPageChecked(page); 8920 if (PagePrivate(page)) { 8921 ClearPagePrivate(page); 8922 set_page_private(page, 0); 8923 put_page(page); 8924 } 8925 } 8926 8927 /* 8928 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8929 * called from a page fault handler when a page is first dirtied. Hence we must 8930 * be careful to check for EOF conditions here. We set the page up correctly 8931 * for a written page which means we get ENOSPC checking when writing into 8932 * holes and correct delalloc and unwritten extent mapping on filesystems that 8933 * support these features. 8934 * 8935 * We are not allowed to take the i_mutex here so we have to play games to 8936 * protect against truncate races as the page could now be beyond EOF. Because 8937 * truncate_setsize() writes the inode size before removing pages, once we have 8938 * the page lock we can determine safely if the page is beyond EOF. If it is not 8939 * beyond EOF, then the page is guaranteed safe against truncation until we 8940 * unlock the page. 8941 */ 8942 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8943 { 8944 struct page *page = vmf->page; 8945 struct inode *inode = file_inode(vmf->vma->vm_file); 8946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8947 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8948 struct btrfs_ordered_extent *ordered; 8949 struct extent_state *cached_state = NULL; 8950 struct extent_changeset *data_reserved = NULL; 8951 char *kaddr; 8952 unsigned long zero_start; 8953 loff_t size; 8954 vm_fault_t ret; 8955 int ret2; 8956 int reserved = 0; 8957 u64 reserved_space; 8958 u64 page_start; 8959 u64 page_end; 8960 u64 end; 8961 8962 reserved_space = PAGE_SIZE; 8963 8964 sb_start_pagefault(inode->i_sb); 8965 page_start = page_offset(page); 8966 page_end = page_start + PAGE_SIZE - 1; 8967 end = page_end; 8968 8969 /* 8970 * Reserving delalloc space after obtaining the page lock can lead to 8971 * deadlock. For example, if a dirty page is locked by this function 8972 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8973 * dirty page write out, then the btrfs_writepage() function could 8974 * end up waiting indefinitely to get a lock on the page currently 8975 * being processed by btrfs_page_mkwrite() function. 8976 */ 8977 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8978 reserved_space); 8979 if (!ret2) { 8980 ret2 = file_update_time(vmf->vma->vm_file); 8981 reserved = 1; 8982 } 8983 if (ret2) { 8984 ret = vmf_error(ret2); 8985 if (reserved) 8986 goto out; 8987 goto out_noreserve; 8988 } 8989 8990 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8991 again: 8992 lock_page(page); 8993 size = i_size_read(inode); 8994 8995 if ((page->mapping != inode->i_mapping) || 8996 (page_start >= size)) { 8997 /* page got truncated out from underneath us */ 8998 goto out_unlock; 8999 } 9000 wait_on_page_writeback(page); 9001 9002 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9003 set_page_extent_mapped(page); 9004 9005 /* 9006 * we can't set the delalloc bits if there are pending ordered 9007 * extents. Drop our locks and wait for them to finish 9008 */ 9009 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9010 PAGE_SIZE); 9011 if (ordered) { 9012 unlock_extent_cached(io_tree, page_start, page_end, 9013 &cached_state); 9014 unlock_page(page); 9015 btrfs_start_ordered_extent(inode, ordered, 1); 9016 btrfs_put_ordered_extent(ordered); 9017 goto again; 9018 } 9019 9020 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9021 reserved_space = round_up(size - page_start, 9022 fs_info->sectorsize); 9023 if (reserved_space < PAGE_SIZE) { 9024 end = page_start + reserved_space - 1; 9025 btrfs_delalloc_release_space(inode, data_reserved, 9026 page_start, PAGE_SIZE - reserved_space, 9027 true); 9028 } 9029 } 9030 9031 /* 9032 * page_mkwrite gets called when the page is firstly dirtied after it's 9033 * faulted in, but write(2) could also dirty a page and set delalloc 9034 * bits, thus in this case for space account reason, we still need to 9035 * clear any delalloc bits within this page range since we have to 9036 * reserve data&meta space before lock_page() (see above comments). 9037 */ 9038 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9039 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 9040 EXTENT_DEFRAG, 0, 0, &cached_state); 9041 9042 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9043 &cached_state); 9044 if (ret2) { 9045 unlock_extent_cached(io_tree, page_start, page_end, 9046 &cached_state); 9047 ret = VM_FAULT_SIGBUS; 9048 goto out_unlock; 9049 } 9050 ret2 = 0; 9051 9052 /* page is wholly or partially inside EOF */ 9053 if (page_start + PAGE_SIZE > size) 9054 zero_start = offset_in_page(size); 9055 else 9056 zero_start = PAGE_SIZE; 9057 9058 if (zero_start != PAGE_SIZE) { 9059 kaddr = kmap(page); 9060 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9061 flush_dcache_page(page); 9062 kunmap(page); 9063 } 9064 ClearPageChecked(page); 9065 set_page_dirty(page); 9066 SetPageUptodate(page); 9067 9068 BTRFS_I(inode)->last_trans = fs_info->generation; 9069 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9070 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9071 9072 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9073 9074 if (!ret2) { 9075 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9076 sb_end_pagefault(inode->i_sb); 9077 extent_changeset_free(data_reserved); 9078 return VM_FAULT_LOCKED; 9079 } 9080 9081 out_unlock: 9082 unlock_page(page); 9083 out: 9084 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9085 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9086 reserved_space, (ret != 0)); 9087 out_noreserve: 9088 sb_end_pagefault(inode->i_sb); 9089 extent_changeset_free(data_reserved); 9090 return ret; 9091 } 9092 9093 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 9094 { 9095 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9096 struct btrfs_root *root = BTRFS_I(inode)->root; 9097 struct btrfs_block_rsv *rsv; 9098 int ret; 9099 struct btrfs_trans_handle *trans; 9100 u64 mask = fs_info->sectorsize - 1; 9101 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 9102 9103 if (!skip_writeback) { 9104 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9105 (u64)-1); 9106 if (ret) 9107 return ret; 9108 } 9109 9110 /* 9111 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 9112 * things going on here: 9113 * 9114 * 1) We need to reserve space to update our inode. 9115 * 9116 * 2) We need to have something to cache all the space that is going to 9117 * be free'd up by the truncate operation, but also have some slack 9118 * space reserved in case it uses space during the truncate (thank you 9119 * very much snapshotting). 9120 * 9121 * And we need these to be separate. The fact is we can use a lot of 9122 * space doing the truncate, and we have no earthly idea how much space 9123 * we will use, so we need the truncate reservation to be separate so it 9124 * doesn't end up using space reserved for updating the inode. We also 9125 * need to be able to stop the transaction and start a new one, which 9126 * means we need to be able to update the inode several times, and we 9127 * have no idea of knowing how many times that will be, so we can't just 9128 * reserve 1 item for the entirety of the operation, so that has to be 9129 * done separately as well. 9130 * 9131 * So that leaves us with 9132 * 9133 * 1) rsv - for the truncate reservation, which we will steal from the 9134 * transaction reservation. 9135 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9136 * updating the inode. 9137 */ 9138 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9139 if (!rsv) 9140 return -ENOMEM; 9141 rsv->size = min_size; 9142 rsv->failfast = 1; 9143 9144 /* 9145 * 1 for the truncate slack space 9146 * 1 for updating the inode. 9147 */ 9148 trans = btrfs_start_transaction(root, 2); 9149 if (IS_ERR(trans)) { 9150 ret = PTR_ERR(trans); 9151 goto out; 9152 } 9153 9154 /* Migrate the slack space for the truncate to our reserve */ 9155 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9156 min_size, false); 9157 BUG_ON(ret); 9158 9159 /* 9160 * So if we truncate and then write and fsync we normally would just 9161 * write the extents that changed, which is a problem if we need to 9162 * first truncate that entire inode. So set this flag so we write out 9163 * all of the extents in the inode to the sync log so we're completely 9164 * safe. 9165 */ 9166 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9167 trans->block_rsv = rsv; 9168 9169 while (1) { 9170 ret = btrfs_truncate_inode_items(trans, root, inode, 9171 inode->i_size, 9172 BTRFS_EXTENT_DATA_KEY); 9173 trans->block_rsv = &fs_info->trans_block_rsv; 9174 if (ret != -ENOSPC && ret != -EAGAIN) 9175 break; 9176 9177 ret = btrfs_update_inode(trans, root, inode); 9178 if (ret) 9179 break; 9180 9181 btrfs_end_transaction(trans); 9182 btrfs_btree_balance_dirty(fs_info); 9183 9184 trans = btrfs_start_transaction(root, 2); 9185 if (IS_ERR(trans)) { 9186 ret = PTR_ERR(trans); 9187 trans = NULL; 9188 break; 9189 } 9190 9191 btrfs_block_rsv_release(fs_info, rsv, -1); 9192 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9193 rsv, min_size, false); 9194 BUG_ON(ret); /* shouldn't happen */ 9195 trans->block_rsv = rsv; 9196 } 9197 9198 /* 9199 * We can't call btrfs_truncate_block inside a trans handle as we could 9200 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9201 * we've truncated everything except the last little bit, and can do 9202 * btrfs_truncate_block and then update the disk_i_size. 9203 */ 9204 if (ret == NEED_TRUNCATE_BLOCK) { 9205 btrfs_end_transaction(trans); 9206 btrfs_btree_balance_dirty(fs_info); 9207 9208 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9209 if (ret) 9210 goto out; 9211 trans = btrfs_start_transaction(root, 1); 9212 if (IS_ERR(trans)) { 9213 ret = PTR_ERR(trans); 9214 goto out; 9215 } 9216 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9217 } 9218 9219 if (trans) { 9220 int ret2; 9221 9222 trans->block_rsv = &fs_info->trans_block_rsv; 9223 ret2 = btrfs_update_inode(trans, root, inode); 9224 if (ret2 && !ret) 9225 ret = ret2; 9226 9227 ret2 = btrfs_end_transaction(trans); 9228 if (ret2 && !ret) 9229 ret = ret2; 9230 btrfs_btree_balance_dirty(fs_info); 9231 } 9232 out: 9233 btrfs_free_block_rsv(fs_info, rsv); 9234 9235 return ret; 9236 } 9237 9238 /* 9239 * create a new subvolume directory/inode (helper for the ioctl). 9240 */ 9241 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9242 struct btrfs_root *new_root, 9243 struct btrfs_root *parent_root, 9244 u64 new_dirid) 9245 { 9246 struct inode *inode; 9247 int err; 9248 u64 index = 0; 9249 9250 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9251 new_dirid, new_dirid, 9252 S_IFDIR | (~current_umask() & S_IRWXUGO), 9253 &index); 9254 if (IS_ERR(inode)) 9255 return PTR_ERR(inode); 9256 inode->i_op = &btrfs_dir_inode_operations; 9257 inode->i_fop = &btrfs_dir_file_operations; 9258 9259 set_nlink(inode, 1); 9260 btrfs_i_size_write(BTRFS_I(inode), 0); 9261 unlock_new_inode(inode); 9262 9263 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9264 if (err) 9265 btrfs_err(new_root->fs_info, 9266 "error inheriting subvolume %llu properties: %d", 9267 new_root->root_key.objectid, err); 9268 9269 err = btrfs_update_inode(trans, new_root, inode); 9270 9271 iput(inode); 9272 return err; 9273 } 9274 9275 struct inode *btrfs_alloc_inode(struct super_block *sb) 9276 { 9277 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9278 struct btrfs_inode *ei; 9279 struct inode *inode; 9280 9281 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9282 if (!ei) 9283 return NULL; 9284 9285 ei->root = NULL; 9286 ei->generation = 0; 9287 ei->last_trans = 0; 9288 ei->last_sub_trans = 0; 9289 ei->logged_trans = 0; 9290 ei->delalloc_bytes = 0; 9291 ei->new_delalloc_bytes = 0; 9292 ei->defrag_bytes = 0; 9293 ei->disk_i_size = 0; 9294 ei->flags = 0; 9295 ei->csum_bytes = 0; 9296 ei->index_cnt = (u64)-1; 9297 ei->dir_index = 0; 9298 ei->last_unlink_trans = 0; 9299 ei->last_log_commit = 0; 9300 9301 spin_lock_init(&ei->lock); 9302 ei->outstanding_extents = 0; 9303 if (sb->s_magic != BTRFS_TEST_MAGIC) 9304 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9305 BTRFS_BLOCK_RSV_DELALLOC); 9306 ei->runtime_flags = 0; 9307 ei->prop_compress = BTRFS_COMPRESS_NONE; 9308 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9309 9310 ei->delayed_node = NULL; 9311 9312 ei->i_otime.tv_sec = 0; 9313 ei->i_otime.tv_nsec = 0; 9314 9315 inode = &ei->vfs_inode; 9316 extent_map_tree_init(&ei->extent_tree); 9317 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 9318 extent_io_tree_init(fs_info, &ei->io_failure_tree, 9319 IO_TREE_INODE_IO_FAILURE, inode); 9320 ei->io_tree.track_uptodate = true; 9321 ei->io_failure_tree.track_uptodate = true; 9322 atomic_set(&ei->sync_writers, 0); 9323 mutex_init(&ei->log_mutex); 9324 mutex_init(&ei->delalloc_mutex); 9325 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9326 INIT_LIST_HEAD(&ei->delalloc_inodes); 9327 INIT_LIST_HEAD(&ei->delayed_iput); 9328 RB_CLEAR_NODE(&ei->rb_node); 9329 init_rwsem(&ei->dio_sem); 9330 9331 return inode; 9332 } 9333 9334 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9335 void btrfs_test_destroy_inode(struct inode *inode) 9336 { 9337 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9338 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9339 } 9340 #endif 9341 9342 void btrfs_free_inode(struct inode *inode) 9343 { 9344 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9345 } 9346 9347 void btrfs_destroy_inode(struct inode *inode) 9348 { 9349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9350 struct btrfs_ordered_extent *ordered; 9351 struct btrfs_root *root = BTRFS_I(inode)->root; 9352 9353 WARN_ON(!hlist_empty(&inode->i_dentry)); 9354 WARN_ON(inode->i_data.nrpages); 9355 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9356 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9357 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9358 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9359 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9360 WARN_ON(BTRFS_I(inode)->csum_bytes); 9361 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9362 9363 /* 9364 * This can happen where we create an inode, but somebody else also 9365 * created the same inode and we need to destroy the one we already 9366 * created. 9367 */ 9368 if (!root) 9369 return; 9370 9371 while (1) { 9372 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9373 if (!ordered) 9374 break; 9375 else { 9376 btrfs_err(fs_info, 9377 "found ordered extent %llu %llu on inode cleanup", 9378 ordered->file_offset, ordered->len); 9379 btrfs_remove_ordered_extent(inode, ordered); 9380 btrfs_put_ordered_extent(ordered); 9381 btrfs_put_ordered_extent(ordered); 9382 } 9383 } 9384 btrfs_qgroup_check_reserved_leak(inode); 9385 inode_tree_del(inode); 9386 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9387 } 9388 9389 int btrfs_drop_inode(struct inode *inode) 9390 { 9391 struct btrfs_root *root = BTRFS_I(inode)->root; 9392 9393 if (root == NULL) 9394 return 1; 9395 9396 /* the snap/subvol tree is on deleting */ 9397 if (btrfs_root_refs(&root->root_item) == 0) 9398 return 1; 9399 else 9400 return generic_drop_inode(inode); 9401 } 9402 9403 static void init_once(void *foo) 9404 { 9405 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9406 9407 inode_init_once(&ei->vfs_inode); 9408 } 9409 9410 void __cold btrfs_destroy_cachep(void) 9411 { 9412 /* 9413 * Make sure all delayed rcu free inodes are flushed before we 9414 * destroy cache. 9415 */ 9416 rcu_barrier(); 9417 kmem_cache_destroy(btrfs_inode_cachep); 9418 kmem_cache_destroy(btrfs_trans_handle_cachep); 9419 kmem_cache_destroy(btrfs_path_cachep); 9420 kmem_cache_destroy(btrfs_free_space_cachep); 9421 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 9422 } 9423 9424 int __init btrfs_init_cachep(void) 9425 { 9426 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9427 sizeof(struct btrfs_inode), 0, 9428 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9429 init_once); 9430 if (!btrfs_inode_cachep) 9431 goto fail; 9432 9433 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9434 sizeof(struct btrfs_trans_handle), 0, 9435 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9436 if (!btrfs_trans_handle_cachep) 9437 goto fail; 9438 9439 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9440 sizeof(struct btrfs_path), 0, 9441 SLAB_MEM_SPREAD, NULL); 9442 if (!btrfs_path_cachep) 9443 goto fail; 9444 9445 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9446 sizeof(struct btrfs_free_space), 0, 9447 SLAB_MEM_SPREAD, NULL); 9448 if (!btrfs_free_space_cachep) 9449 goto fail; 9450 9451 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9452 PAGE_SIZE, PAGE_SIZE, 9453 SLAB_RED_ZONE, NULL); 9454 if (!btrfs_free_space_bitmap_cachep) 9455 goto fail; 9456 9457 return 0; 9458 fail: 9459 btrfs_destroy_cachep(); 9460 return -ENOMEM; 9461 } 9462 9463 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9464 u32 request_mask, unsigned int flags) 9465 { 9466 u64 delalloc_bytes; 9467 struct inode *inode = d_inode(path->dentry); 9468 u32 blocksize = inode->i_sb->s_blocksize; 9469 u32 bi_flags = BTRFS_I(inode)->flags; 9470 9471 stat->result_mask |= STATX_BTIME; 9472 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9473 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9474 if (bi_flags & BTRFS_INODE_APPEND) 9475 stat->attributes |= STATX_ATTR_APPEND; 9476 if (bi_flags & BTRFS_INODE_COMPRESS) 9477 stat->attributes |= STATX_ATTR_COMPRESSED; 9478 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9479 stat->attributes |= STATX_ATTR_IMMUTABLE; 9480 if (bi_flags & BTRFS_INODE_NODUMP) 9481 stat->attributes |= STATX_ATTR_NODUMP; 9482 9483 stat->attributes_mask |= (STATX_ATTR_APPEND | 9484 STATX_ATTR_COMPRESSED | 9485 STATX_ATTR_IMMUTABLE | 9486 STATX_ATTR_NODUMP); 9487 9488 generic_fillattr(inode, stat); 9489 stat->dev = BTRFS_I(inode)->root->anon_dev; 9490 9491 spin_lock(&BTRFS_I(inode)->lock); 9492 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9493 spin_unlock(&BTRFS_I(inode)->lock); 9494 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9495 ALIGN(delalloc_bytes, blocksize)) >> 9; 9496 return 0; 9497 } 9498 9499 static int btrfs_rename_exchange(struct inode *old_dir, 9500 struct dentry *old_dentry, 9501 struct inode *new_dir, 9502 struct dentry *new_dentry) 9503 { 9504 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9505 struct btrfs_trans_handle *trans; 9506 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9507 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9508 struct inode *new_inode = new_dentry->d_inode; 9509 struct inode *old_inode = old_dentry->d_inode; 9510 struct timespec64 ctime = current_time(old_inode); 9511 struct dentry *parent; 9512 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9513 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9514 u64 old_idx = 0; 9515 u64 new_idx = 0; 9516 u64 root_objectid; 9517 int ret; 9518 bool root_log_pinned = false; 9519 bool dest_log_pinned = false; 9520 struct btrfs_log_ctx ctx_root; 9521 struct btrfs_log_ctx ctx_dest; 9522 bool sync_log_root = false; 9523 bool sync_log_dest = false; 9524 bool commit_transaction = false; 9525 9526 /* we only allow rename subvolume link between subvolumes */ 9527 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9528 return -EXDEV; 9529 9530 btrfs_init_log_ctx(&ctx_root, old_inode); 9531 btrfs_init_log_ctx(&ctx_dest, new_inode); 9532 9533 /* close the race window with snapshot create/destroy ioctl */ 9534 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9535 down_read(&fs_info->subvol_sem); 9536 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9537 down_read(&fs_info->subvol_sem); 9538 9539 /* 9540 * We want to reserve the absolute worst case amount of items. So if 9541 * both inodes are subvols and we need to unlink them then that would 9542 * require 4 item modifications, but if they are both normal inodes it 9543 * would require 5 item modifications, so we'll assume their normal 9544 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9545 * should cover the worst case number of items we'll modify. 9546 */ 9547 trans = btrfs_start_transaction(root, 12); 9548 if (IS_ERR(trans)) { 9549 ret = PTR_ERR(trans); 9550 goto out_notrans; 9551 } 9552 9553 /* 9554 * We need to find a free sequence number both in the source and 9555 * in the destination directory for the exchange. 9556 */ 9557 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9558 if (ret) 9559 goto out_fail; 9560 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9561 if (ret) 9562 goto out_fail; 9563 9564 BTRFS_I(old_inode)->dir_index = 0ULL; 9565 BTRFS_I(new_inode)->dir_index = 0ULL; 9566 9567 /* Reference for the source. */ 9568 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9569 /* force full log commit if subvolume involved. */ 9570 btrfs_set_log_full_commit(trans); 9571 } else { 9572 btrfs_pin_log_trans(root); 9573 root_log_pinned = true; 9574 ret = btrfs_insert_inode_ref(trans, dest, 9575 new_dentry->d_name.name, 9576 new_dentry->d_name.len, 9577 old_ino, 9578 btrfs_ino(BTRFS_I(new_dir)), 9579 old_idx); 9580 if (ret) 9581 goto out_fail; 9582 } 9583 9584 /* And now for the dest. */ 9585 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9586 /* force full log commit if subvolume involved. */ 9587 btrfs_set_log_full_commit(trans); 9588 } else { 9589 btrfs_pin_log_trans(dest); 9590 dest_log_pinned = true; 9591 ret = btrfs_insert_inode_ref(trans, root, 9592 old_dentry->d_name.name, 9593 old_dentry->d_name.len, 9594 new_ino, 9595 btrfs_ino(BTRFS_I(old_dir)), 9596 new_idx); 9597 if (ret) 9598 goto out_fail; 9599 } 9600 9601 /* Update inode version and ctime/mtime. */ 9602 inode_inc_iversion(old_dir); 9603 inode_inc_iversion(new_dir); 9604 inode_inc_iversion(old_inode); 9605 inode_inc_iversion(new_inode); 9606 old_dir->i_ctime = old_dir->i_mtime = ctime; 9607 new_dir->i_ctime = new_dir->i_mtime = ctime; 9608 old_inode->i_ctime = ctime; 9609 new_inode->i_ctime = ctime; 9610 9611 if (old_dentry->d_parent != new_dentry->d_parent) { 9612 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9613 BTRFS_I(old_inode), 1); 9614 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9615 BTRFS_I(new_inode), 1); 9616 } 9617 9618 /* src is a subvolume */ 9619 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9620 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9621 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9622 old_dentry->d_name.name, 9623 old_dentry->d_name.len); 9624 } else { /* src is an inode */ 9625 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9626 BTRFS_I(old_dentry->d_inode), 9627 old_dentry->d_name.name, 9628 old_dentry->d_name.len); 9629 if (!ret) 9630 ret = btrfs_update_inode(trans, root, old_inode); 9631 } 9632 if (ret) { 9633 btrfs_abort_transaction(trans, ret); 9634 goto out_fail; 9635 } 9636 9637 /* dest is a subvolume */ 9638 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9639 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9640 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9641 new_dentry->d_name.name, 9642 new_dentry->d_name.len); 9643 } else { /* dest is an inode */ 9644 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9645 BTRFS_I(new_dentry->d_inode), 9646 new_dentry->d_name.name, 9647 new_dentry->d_name.len); 9648 if (!ret) 9649 ret = btrfs_update_inode(trans, dest, new_inode); 9650 } 9651 if (ret) { 9652 btrfs_abort_transaction(trans, ret); 9653 goto out_fail; 9654 } 9655 9656 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9657 new_dentry->d_name.name, 9658 new_dentry->d_name.len, 0, old_idx); 9659 if (ret) { 9660 btrfs_abort_transaction(trans, ret); 9661 goto out_fail; 9662 } 9663 9664 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9665 old_dentry->d_name.name, 9666 old_dentry->d_name.len, 0, new_idx); 9667 if (ret) { 9668 btrfs_abort_transaction(trans, ret); 9669 goto out_fail; 9670 } 9671 9672 if (old_inode->i_nlink == 1) 9673 BTRFS_I(old_inode)->dir_index = old_idx; 9674 if (new_inode->i_nlink == 1) 9675 BTRFS_I(new_inode)->dir_index = new_idx; 9676 9677 if (root_log_pinned) { 9678 parent = new_dentry->d_parent; 9679 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9680 BTRFS_I(old_dir), parent, 9681 false, &ctx_root); 9682 if (ret == BTRFS_NEED_LOG_SYNC) 9683 sync_log_root = true; 9684 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9685 commit_transaction = true; 9686 ret = 0; 9687 btrfs_end_log_trans(root); 9688 root_log_pinned = false; 9689 } 9690 if (dest_log_pinned) { 9691 if (!commit_transaction) { 9692 parent = old_dentry->d_parent; 9693 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9694 BTRFS_I(new_dir), parent, 9695 false, &ctx_dest); 9696 if (ret == BTRFS_NEED_LOG_SYNC) 9697 sync_log_dest = true; 9698 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9699 commit_transaction = true; 9700 ret = 0; 9701 } 9702 btrfs_end_log_trans(dest); 9703 dest_log_pinned = false; 9704 } 9705 out_fail: 9706 /* 9707 * If we have pinned a log and an error happened, we unpin tasks 9708 * trying to sync the log and force them to fallback to a transaction 9709 * commit if the log currently contains any of the inodes involved in 9710 * this rename operation (to ensure we do not persist a log with an 9711 * inconsistent state for any of these inodes or leading to any 9712 * inconsistencies when replayed). If the transaction was aborted, the 9713 * abortion reason is propagated to userspace when attempting to commit 9714 * the transaction. If the log does not contain any of these inodes, we 9715 * allow the tasks to sync it. 9716 */ 9717 if (ret && (root_log_pinned || dest_log_pinned)) { 9718 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9719 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9720 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9721 (new_inode && 9722 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9723 btrfs_set_log_full_commit(trans); 9724 9725 if (root_log_pinned) { 9726 btrfs_end_log_trans(root); 9727 root_log_pinned = false; 9728 } 9729 if (dest_log_pinned) { 9730 btrfs_end_log_trans(dest); 9731 dest_log_pinned = false; 9732 } 9733 } 9734 if (!ret && sync_log_root && !commit_transaction) { 9735 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9736 &ctx_root); 9737 if (ret) 9738 commit_transaction = true; 9739 } 9740 if (!ret && sync_log_dest && !commit_transaction) { 9741 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9742 &ctx_dest); 9743 if (ret) 9744 commit_transaction = true; 9745 } 9746 if (commit_transaction) { 9747 ret = btrfs_commit_transaction(trans); 9748 } else { 9749 int ret2; 9750 9751 ret2 = btrfs_end_transaction(trans); 9752 ret = ret ? ret : ret2; 9753 } 9754 out_notrans: 9755 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9756 up_read(&fs_info->subvol_sem); 9757 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9758 up_read(&fs_info->subvol_sem); 9759 9760 return ret; 9761 } 9762 9763 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9764 struct btrfs_root *root, 9765 struct inode *dir, 9766 struct dentry *dentry) 9767 { 9768 int ret; 9769 struct inode *inode; 9770 u64 objectid; 9771 u64 index; 9772 9773 ret = btrfs_find_free_ino(root, &objectid); 9774 if (ret) 9775 return ret; 9776 9777 inode = btrfs_new_inode(trans, root, dir, 9778 dentry->d_name.name, 9779 dentry->d_name.len, 9780 btrfs_ino(BTRFS_I(dir)), 9781 objectid, 9782 S_IFCHR | WHITEOUT_MODE, 9783 &index); 9784 9785 if (IS_ERR(inode)) { 9786 ret = PTR_ERR(inode); 9787 return ret; 9788 } 9789 9790 inode->i_op = &btrfs_special_inode_operations; 9791 init_special_inode(inode, inode->i_mode, 9792 WHITEOUT_DEV); 9793 9794 ret = btrfs_init_inode_security(trans, inode, dir, 9795 &dentry->d_name); 9796 if (ret) 9797 goto out; 9798 9799 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9800 BTRFS_I(inode), 0, index); 9801 if (ret) 9802 goto out; 9803 9804 ret = btrfs_update_inode(trans, root, inode); 9805 out: 9806 unlock_new_inode(inode); 9807 if (ret) 9808 inode_dec_link_count(inode); 9809 iput(inode); 9810 9811 return ret; 9812 } 9813 9814 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9815 struct inode *new_dir, struct dentry *new_dentry, 9816 unsigned int flags) 9817 { 9818 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9819 struct btrfs_trans_handle *trans; 9820 unsigned int trans_num_items; 9821 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9822 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9823 struct inode *new_inode = d_inode(new_dentry); 9824 struct inode *old_inode = d_inode(old_dentry); 9825 u64 index = 0; 9826 u64 root_objectid; 9827 int ret; 9828 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9829 bool log_pinned = false; 9830 struct btrfs_log_ctx ctx; 9831 bool sync_log = false; 9832 bool commit_transaction = false; 9833 9834 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9835 return -EPERM; 9836 9837 /* we only allow rename subvolume link between subvolumes */ 9838 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9839 return -EXDEV; 9840 9841 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9842 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9843 return -ENOTEMPTY; 9844 9845 if (S_ISDIR(old_inode->i_mode) && new_inode && 9846 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9847 return -ENOTEMPTY; 9848 9849 9850 /* check for collisions, even if the name isn't there */ 9851 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9852 new_dentry->d_name.name, 9853 new_dentry->d_name.len); 9854 9855 if (ret) { 9856 if (ret == -EEXIST) { 9857 /* we shouldn't get 9858 * eexist without a new_inode */ 9859 if (WARN_ON(!new_inode)) { 9860 return ret; 9861 } 9862 } else { 9863 /* maybe -EOVERFLOW */ 9864 return ret; 9865 } 9866 } 9867 ret = 0; 9868 9869 /* 9870 * we're using rename to replace one file with another. Start IO on it 9871 * now so we don't add too much work to the end of the transaction 9872 */ 9873 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9874 filemap_flush(old_inode->i_mapping); 9875 9876 /* close the racy window with snapshot create/destroy ioctl */ 9877 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9878 down_read(&fs_info->subvol_sem); 9879 /* 9880 * We want to reserve the absolute worst case amount of items. So if 9881 * both inodes are subvols and we need to unlink them then that would 9882 * require 4 item modifications, but if they are both normal inodes it 9883 * would require 5 item modifications, so we'll assume they are normal 9884 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9885 * should cover the worst case number of items we'll modify. 9886 * If our rename has the whiteout flag, we need more 5 units for the 9887 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9888 * when selinux is enabled). 9889 */ 9890 trans_num_items = 11; 9891 if (flags & RENAME_WHITEOUT) 9892 trans_num_items += 5; 9893 trans = btrfs_start_transaction(root, trans_num_items); 9894 if (IS_ERR(trans)) { 9895 ret = PTR_ERR(trans); 9896 goto out_notrans; 9897 } 9898 9899 if (dest != root) 9900 btrfs_record_root_in_trans(trans, dest); 9901 9902 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9903 if (ret) 9904 goto out_fail; 9905 9906 BTRFS_I(old_inode)->dir_index = 0ULL; 9907 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9908 /* force full log commit if subvolume involved. */ 9909 btrfs_set_log_full_commit(trans); 9910 } else { 9911 btrfs_pin_log_trans(root); 9912 log_pinned = true; 9913 ret = btrfs_insert_inode_ref(trans, dest, 9914 new_dentry->d_name.name, 9915 new_dentry->d_name.len, 9916 old_ino, 9917 btrfs_ino(BTRFS_I(new_dir)), index); 9918 if (ret) 9919 goto out_fail; 9920 } 9921 9922 inode_inc_iversion(old_dir); 9923 inode_inc_iversion(new_dir); 9924 inode_inc_iversion(old_inode); 9925 old_dir->i_ctime = old_dir->i_mtime = 9926 new_dir->i_ctime = new_dir->i_mtime = 9927 old_inode->i_ctime = current_time(old_dir); 9928 9929 if (old_dentry->d_parent != new_dentry->d_parent) 9930 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9931 BTRFS_I(old_inode), 1); 9932 9933 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9934 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9935 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9936 old_dentry->d_name.name, 9937 old_dentry->d_name.len); 9938 } else { 9939 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9940 BTRFS_I(d_inode(old_dentry)), 9941 old_dentry->d_name.name, 9942 old_dentry->d_name.len); 9943 if (!ret) 9944 ret = btrfs_update_inode(trans, root, old_inode); 9945 } 9946 if (ret) { 9947 btrfs_abort_transaction(trans, ret); 9948 goto out_fail; 9949 } 9950 9951 if (new_inode) { 9952 inode_inc_iversion(new_inode); 9953 new_inode->i_ctime = current_time(new_inode); 9954 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9955 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9956 root_objectid = BTRFS_I(new_inode)->location.objectid; 9957 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9958 new_dentry->d_name.name, 9959 new_dentry->d_name.len); 9960 BUG_ON(new_inode->i_nlink == 0); 9961 } else { 9962 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9963 BTRFS_I(d_inode(new_dentry)), 9964 new_dentry->d_name.name, 9965 new_dentry->d_name.len); 9966 } 9967 if (!ret && new_inode->i_nlink == 0) 9968 ret = btrfs_orphan_add(trans, 9969 BTRFS_I(d_inode(new_dentry))); 9970 if (ret) { 9971 btrfs_abort_transaction(trans, ret); 9972 goto out_fail; 9973 } 9974 } 9975 9976 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9977 new_dentry->d_name.name, 9978 new_dentry->d_name.len, 0, index); 9979 if (ret) { 9980 btrfs_abort_transaction(trans, ret); 9981 goto out_fail; 9982 } 9983 9984 if (old_inode->i_nlink == 1) 9985 BTRFS_I(old_inode)->dir_index = index; 9986 9987 if (log_pinned) { 9988 struct dentry *parent = new_dentry->d_parent; 9989 9990 btrfs_init_log_ctx(&ctx, old_inode); 9991 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9992 BTRFS_I(old_dir), parent, 9993 false, &ctx); 9994 if (ret == BTRFS_NEED_LOG_SYNC) 9995 sync_log = true; 9996 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9997 commit_transaction = true; 9998 ret = 0; 9999 btrfs_end_log_trans(root); 10000 log_pinned = false; 10001 } 10002 10003 if (flags & RENAME_WHITEOUT) { 10004 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10005 old_dentry); 10006 10007 if (ret) { 10008 btrfs_abort_transaction(trans, ret); 10009 goto out_fail; 10010 } 10011 } 10012 out_fail: 10013 /* 10014 * If we have pinned the log and an error happened, we unpin tasks 10015 * trying to sync the log and force them to fallback to a transaction 10016 * commit if the log currently contains any of the inodes involved in 10017 * this rename operation (to ensure we do not persist a log with an 10018 * inconsistent state for any of these inodes or leading to any 10019 * inconsistencies when replayed). If the transaction was aborted, the 10020 * abortion reason is propagated to userspace when attempting to commit 10021 * the transaction. If the log does not contain any of these inodes, we 10022 * allow the tasks to sync it. 10023 */ 10024 if (ret && log_pinned) { 10025 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10026 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10027 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10028 (new_inode && 10029 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10030 btrfs_set_log_full_commit(trans); 10031 10032 btrfs_end_log_trans(root); 10033 log_pinned = false; 10034 } 10035 if (!ret && sync_log) { 10036 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 10037 if (ret) 10038 commit_transaction = true; 10039 } 10040 if (commit_transaction) { 10041 ret = btrfs_commit_transaction(trans); 10042 } else { 10043 int ret2; 10044 10045 ret2 = btrfs_end_transaction(trans); 10046 ret = ret ? ret : ret2; 10047 } 10048 out_notrans: 10049 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10050 up_read(&fs_info->subvol_sem); 10051 10052 return ret; 10053 } 10054 10055 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10056 struct inode *new_dir, struct dentry *new_dentry, 10057 unsigned int flags) 10058 { 10059 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10060 return -EINVAL; 10061 10062 if (flags & RENAME_EXCHANGE) 10063 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10064 new_dentry); 10065 10066 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10067 } 10068 10069 struct btrfs_delalloc_work { 10070 struct inode *inode; 10071 struct completion completion; 10072 struct list_head list; 10073 struct btrfs_work work; 10074 }; 10075 10076 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10077 { 10078 struct btrfs_delalloc_work *delalloc_work; 10079 struct inode *inode; 10080 10081 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10082 work); 10083 inode = delalloc_work->inode; 10084 filemap_flush(inode->i_mapping); 10085 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10086 &BTRFS_I(inode)->runtime_flags)) 10087 filemap_flush(inode->i_mapping); 10088 10089 iput(inode); 10090 complete(&delalloc_work->completion); 10091 } 10092 10093 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 10094 { 10095 struct btrfs_delalloc_work *work; 10096 10097 work = kmalloc(sizeof(*work), GFP_NOFS); 10098 if (!work) 10099 return NULL; 10100 10101 init_completion(&work->completion); 10102 INIT_LIST_HEAD(&work->list); 10103 work->inode = inode; 10104 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10105 btrfs_run_delalloc_work, NULL, NULL); 10106 10107 return work; 10108 } 10109 10110 /* 10111 * some fairly slow code that needs optimization. This walks the list 10112 * of all the inodes with pending delalloc and forces them to disk. 10113 */ 10114 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 10115 { 10116 struct btrfs_inode *binode; 10117 struct inode *inode; 10118 struct btrfs_delalloc_work *work, *next; 10119 struct list_head works; 10120 struct list_head splice; 10121 int ret = 0; 10122 10123 INIT_LIST_HEAD(&works); 10124 INIT_LIST_HEAD(&splice); 10125 10126 mutex_lock(&root->delalloc_mutex); 10127 spin_lock(&root->delalloc_lock); 10128 list_splice_init(&root->delalloc_inodes, &splice); 10129 while (!list_empty(&splice)) { 10130 binode = list_entry(splice.next, struct btrfs_inode, 10131 delalloc_inodes); 10132 10133 list_move_tail(&binode->delalloc_inodes, 10134 &root->delalloc_inodes); 10135 inode = igrab(&binode->vfs_inode); 10136 if (!inode) { 10137 cond_resched_lock(&root->delalloc_lock); 10138 continue; 10139 } 10140 spin_unlock(&root->delalloc_lock); 10141 10142 if (snapshot) 10143 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 10144 &binode->runtime_flags); 10145 work = btrfs_alloc_delalloc_work(inode); 10146 if (!work) { 10147 iput(inode); 10148 ret = -ENOMEM; 10149 goto out; 10150 } 10151 list_add_tail(&work->list, &works); 10152 btrfs_queue_work(root->fs_info->flush_workers, 10153 &work->work); 10154 ret++; 10155 if (nr != -1 && ret >= nr) 10156 goto out; 10157 cond_resched(); 10158 spin_lock(&root->delalloc_lock); 10159 } 10160 spin_unlock(&root->delalloc_lock); 10161 10162 out: 10163 list_for_each_entry_safe(work, next, &works, list) { 10164 list_del_init(&work->list); 10165 wait_for_completion(&work->completion); 10166 kfree(work); 10167 } 10168 10169 if (!list_empty(&splice)) { 10170 spin_lock(&root->delalloc_lock); 10171 list_splice_tail(&splice, &root->delalloc_inodes); 10172 spin_unlock(&root->delalloc_lock); 10173 } 10174 mutex_unlock(&root->delalloc_mutex); 10175 return ret; 10176 } 10177 10178 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 10179 { 10180 struct btrfs_fs_info *fs_info = root->fs_info; 10181 int ret; 10182 10183 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10184 return -EROFS; 10185 10186 ret = start_delalloc_inodes(root, -1, true); 10187 if (ret > 0) 10188 ret = 0; 10189 return ret; 10190 } 10191 10192 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10193 { 10194 struct btrfs_root *root; 10195 struct list_head splice; 10196 int ret; 10197 10198 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10199 return -EROFS; 10200 10201 INIT_LIST_HEAD(&splice); 10202 10203 mutex_lock(&fs_info->delalloc_root_mutex); 10204 spin_lock(&fs_info->delalloc_root_lock); 10205 list_splice_init(&fs_info->delalloc_roots, &splice); 10206 while (!list_empty(&splice) && nr) { 10207 root = list_first_entry(&splice, struct btrfs_root, 10208 delalloc_root); 10209 root = btrfs_grab_fs_root(root); 10210 BUG_ON(!root); 10211 list_move_tail(&root->delalloc_root, 10212 &fs_info->delalloc_roots); 10213 spin_unlock(&fs_info->delalloc_root_lock); 10214 10215 ret = start_delalloc_inodes(root, nr, false); 10216 btrfs_put_fs_root(root); 10217 if (ret < 0) 10218 goto out; 10219 10220 if (nr != -1) { 10221 nr -= ret; 10222 WARN_ON(nr < 0); 10223 } 10224 spin_lock(&fs_info->delalloc_root_lock); 10225 } 10226 spin_unlock(&fs_info->delalloc_root_lock); 10227 10228 ret = 0; 10229 out: 10230 if (!list_empty(&splice)) { 10231 spin_lock(&fs_info->delalloc_root_lock); 10232 list_splice_tail(&splice, &fs_info->delalloc_roots); 10233 spin_unlock(&fs_info->delalloc_root_lock); 10234 } 10235 mutex_unlock(&fs_info->delalloc_root_mutex); 10236 return ret; 10237 } 10238 10239 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10240 const char *symname) 10241 { 10242 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10243 struct btrfs_trans_handle *trans; 10244 struct btrfs_root *root = BTRFS_I(dir)->root; 10245 struct btrfs_path *path; 10246 struct btrfs_key key; 10247 struct inode *inode = NULL; 10248 int err; 10249 u64 objectid; 10250 u64 index = 0; 10251 int name_len; 10252 int datasize; 10253 unsigned long ptr; 10254 struct btrfs_file_extent_item *ei; 10255 struct extent_buffer *leaf; 10256 10257 name_len = strlen(symname); 10258 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10259 return -ENAMETOOLONG; 10260 10261 /* 10262 * 2 items for inode item and ref 10263 * 2 items for dir items 10264 * 1 item for updating parent inode item 10265 * 1 item for the inline extent item 10266 * 1 item for xattr if selinux is on 10267 */ 10268 trans = btrfs_start_transaction(root, 7); 10269 if (IS_ERR(trans)) 10270 return PTR_ERR(trans); 10271 10272 err = btrfs_find_free_ino(root, &objectid); 10273 if (err) 10274 goto out_unlock; 10275 10276 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10277 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10278 objectid, S_IFLNK|S_IRWXUGO, &index); 10279 if (IS_ERR(inode)) { 10280 err = PTR_ERR(inode); 10281 inode = NULL; 10282 goto out_unlock; 10283 } 10284 10285 /* 10286 * If the active LSM wants to access the inode during 10287 * d_instantiate it needs these. Smack checks to see 10288 * if the filesystem supports xattrs by looking at the 10289 * ops vector. 10290 */ 10291 inode->i_fop = &btrfs_file_operations; 10292 inode->i_op = &btrfs_file_inode_operations; 10293 inode->i_mapping->a_ops = &btrfs_aops; 10294 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10295 10296 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10297 if (err) 10298 goto out_unlock; 10299 10300 path = btrfs_alloc_path(); 10301 if (!path) { 10302 err = -ENOMEM; 10303 goto out_unlock; 10304 } 10305 key.objectid = btrfs_ino(BTRFS_I(inode)); 10306 key.offset = 0; 10307 key.type = BTRFS_EXTENT_DATA_KEY; 10308 datasize = btrfs_file_extent_calc_inline_size(name_len); 10309 err = btrfs_insert_empty_item(trans, root, path, &key, 10310 datasize); 10311 if (err) { 10312 btrfs_free_path(path); 10313 goto out_unlock; 10314 } 10315 leaf = path->nodes[0]; 10316 ei = btrfs_item_ptr(leaf, path->slots[0], 10317 struct btrfs_file_extent_item); 10318 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10319 btrfs_set_file_extent_type(leaf, ei, 10320 BTRFS_FILE_EXTENT_INLINE); 10321 btrfs_set_file_extent_encryption(leaf, ei, 0); 10322 btrfs_set_file_extent_compression(leaf, ei, 0); 10323 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10324 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10325 10326 ptr = btrfs_file_extent_inline_start(ei); 10327 write_extent_buffer(leaf, symname, ptr, name_len); 10328 btrfs_mark_buffer_dirty(leaf); 10329 btrfs_free_path(path); 10330 10331 inode->i_op = &btrfs_symlink_inode_operations; 10332 inode_nohighmem(inode); 10333 inode_set_bytes(inode, name_len); 10334 btrfs_i_size_write(BTRFS_I(inode), name_len); 10335 err = btrfs_update_inode(trans, root, inode); 10336 /* 10337 * Last step, add directory indexes for our symlink inode. This is the 10338 * last step to avoid extra cleanup of these indexes if an error happens 10339 * elsewhere above. 10340 */ 10341 if (!err) 10342 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10343 BTRFS_I(inode), 0, index); 10344 if (err) 10345 goto out_unlock; 10346 10347 d_instantiate_new(dentry, inode); 10348 10349 out_unlock: 10350 btrfs_end_transaction(trans); 10351 if (err && inode) { 10352 inode_dec_link_count(inode); 10353 discard_new_inode(inode); 10354 } 10355 btrfs_btree_balance_dirty(fs_info); 10356 return err; 10357 } 10358 10359 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10360 u64 start, u64 num_bytes, u64 min_size, 10361 loff_t actual_len, u64 *alloc_hint, 10362 struct btrfs_trans_handle *trans) 10363 { 10364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10365 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10366 struct extent_map *em; 10367 struct btrfs_root *root = BTRFS_I(inode)->root; 10368 struct btrfs_key ins; 10369 u64 cur_offset = start; 10370 u64 i_size; 10371 u64 cur_bytes; 10372 u64 last_alloc = (u64)-1; 10373 int ret = 0; 10374 bool own_trans = true; 10375 u64 end = start + num_bytes - 1; 10376 10377 if (trans) 10378 own_trans = false; 10379 while (num_bytes > 0) { 10380 if (own_trans) { 10381 trans = btrfs_start_transaction(root, 3); 10382 if (IS_ERR(trans)) { 10383 ret = PTR_ERR(trans); 10384 break; 10385 } 10386 } 10387 10388 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10389 cur_bytes = max(cur_bytes, min_size); 10390 /* 10391 * If we are severely fragmented we could end up with really 10392 * small allocations, so if the allocator is returning small 10393 * chunks lets make its job easier by only searching for those 10394 * sized chunks. 10395 */ 10396 cur_bytes = min(cur_bytes, last_alloc); 10397 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10398 min_size, 0, *alloc_hint, &ins, 1, 0); 10399 if (ret) { 10400 if (own_trans) 10401 btrfs_end_transaction(trans); 10402 break; 10403 } 10404 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10405 10406 last_alloc = ins.offset; 10407 ret = insert_reserved_file_extent(trans, inode, 10408 cur_offset, ins.objectid, 10409 ins.offset, ins.offset, 10410 ins.offset, 0, 0, 0, 10411 BTRFS_FILE_EXTENT_PREALLOC); 10412 if (ret) { 10413 btrfs_free_reserved_extent(fs_info, ins.objectid, 10414 ins.offset, 0); 10415 btrfs_abort_transaction(trans, ret); 10416 if (own_trans) 10417 btrfs_end_transaction(trans); 10418 break; 10419 } 10420 10421 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10422 cur_offset + ins.offset -1, 0); 10423 10424 em = alloc_extent_map(); 10425 if (!em) { 10426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10427 &BTRFS_I(inode)->runtime_flags); 10428 goto next; 10429 } 10430 10431 em->start = cur_offset; 10432 em->orig_start = cur_offset; 10433 em->len = ins.offset; 10434 em->block_start = ins.objectid; 10435 em->block_len = ins.offset; 10436 em->orig_block_len = ins.offset; 10437 em->ram_bytes = ins.offset; 10438 em->bdev = fs_info->fs_devices->latest_bdev; 10439 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10440 em->generation = trans->transid; 10441 10442 while (1) { 10443 write_lock(&em_tree->lock); 10444 ret = add_extent_mapping(em_tree, em, 1); 10445 write_unlock(&em_tree->lock); 10446 if (ret != -EEXIST) 10447 break; 10448 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10449 cur_offset + ins.offset - 1, 10450 0); 10451 } 10452 free_extent_map(em); 10453 next: 10454 num_bytes -= ins.offset; 10455 cur_offset += ins.offset; 10456 *alloc_hint = ins.objectid + ins.offset; 10457 10458 inode_inc_iversion(inode); 10459 inode->i_ctime = current_time(inode); 10460 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10461 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10462 (actual_len > inode->i_size) && 10463 (cur_offset > inode->i_size)) { 10464 if (cur_offset > actual_len) 10465 i_size = actual_len; 10466 else 10467 i_size = cur_offset; 10468 i_size_write(inode, i_size); 10469 btrfs_ordered_update_i_size(inode, i_size, NULL); 10470 } 10471 10472 ret = btrfs_update_inode(trans, root, inode); 10473 10474 if (ret) { 10475 btrfs_abort_transaction(trans, ret); 10476 if (own_trans) 10477 btrfs_end_transaction(trans); 10478 break; 10479 } 10480 10481 if (own_trans) 10482 btrfs_end_transaction(trans); 10483 } 10484 if (cur_offset < end) 10485 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10486 end - cur_offset + 1); 10487 return ret; 10488 } 10489 10490 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10491 u64 start, u64 num_bytes, u64 min_size, 10492 loff_t actual_len, u64 *alloc_hint) 10493 { 10494 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10495 min_size, actual_len, alloc_hint, 10496 NULL); 10497 } 10498 10499 int btrfs_prealloc_file_range_trans(struct inode *inode, 10500 struct btrfs_trans_handle *trans, int mode, 10501 u64 start, u64 num_bytes, u64 min_size, 10502 loff_t actual_len, u64 *alloc_hint) 10503 { 10504 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10505 min_size, actual_len, alloc_hint, trans); 10506 } 10507 10508 static int btrfs_set_page_dirty(struct page *page) 10509 { 10510 return __set_page_dirty_nobuffers(page); 10511 } 10512 10513 static int btrfs_permission(struct inode *inode, int mask) 10514 { 10515 struct btrfs_root *root = BTRFS_I(inode)->root; 10516 umode_t mode = inode->i_mode; 10517 10518 if (mask & MAY_WRITE && 10519 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10520 if (btrfs_root_readonly(root)) 10521 return -EROFS; 10522 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10523 return -EACCES; 10524 } 10525 return generic_permission(inode, mask); 10526 } 10527 10528 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10529 { 10530 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10531 struct btrfs_trans_handle *trans; 10532 struct btrfs_root *root = BTRFS_I(dir)->root; 10533 struct inode *inode = NULL; 10534 u64 objectid; 10535 u64 index; 10536 int ret = 0; 10537 10538 /* 10539 * 5 units required for adding orphan entry 10540 */ 10541 trans = btrfs_start_transaction(root, 5); 10542 if (IS_ERR(trans)) 10543 return PTR_ERR(trans); 10544 10545 ret = btrfs_find_free_ino(root, &objectid); 10546 if (ret) 10547 goto out; 10548 10549 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10550 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10551 if (IS_ERR(inode)) { 10552 ret = PTR_ERR(inode); 10553 inode = NULL; 10554 goto out; 10555 } 10556 10557 inode->i_fop = &btrfs_file_operations; 10558 inode->i_op = &btrfs_file_inode_operations; 10559 10560 inode->i_mapping->a_ops = &btrfs_aops; 10561 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10562 10563 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10564 if (ret) 10565 goto out; 10566 10567 ret = btrfs_update_inode(trans, root, inode); 10568 if (ret) 10569 goto out; 10570 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10571 if (ret) 10572 goto out; 10573 10574 /* 10575 * We set number of links to 0 in btrfs_new_inode(), and here we set 10576 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10577 * through: 10578 * 10579 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10580 */ 10581 set_nlink(inode, 1); 10582 d_tmpfile(dentry, inode); 10583 unlock_new_inode(inode); 10584 mark_inode_dirty(inode); 10585 out: 10586 btrfs_end_transaction(trans); 10587 if (ret && inode) 10588 discard_new_inode(inode); 10589 btrfs_btree_balance_dirty(fs_info); 10590 return ret; 10591 } 10592 10593 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10594 { 10595 struct inode *inode = tree->private_data; 10596 unsigned long index = start >> PAGE_SHIFT; 10597 unsigned long end_index = end >> PAGE_SHIFT; 10598 struct page *page; 10599 10600 while (index <= end_index) { 10601 page = find_get_page(inode->i_mapping, index); 10602 ASSERT(page); /* Pages should be in the extent_io_tree */ 10603 set_page_writeback(page); 10604 put_page(page); 10605 index++; 10606 } 10607 } 10608 10609 #ifdef CONFIG_SWAP 10610 /* 10611 * Add an entry indicating a block group or device which is pinned by a 10612 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10613 * negative errno on failure. 10614 */ 10615 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10616 bool is_block_group) 10617 { 10618 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10619 struct btrfs_swapfile_pin *sp, *entry; 10620 struct rb_node **p; 10621 struct rb_node *parent = NULL; 10622 10623 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10624 if (!sp) 10625 return -ENOMEM; 10626 sp->ptr = ptr; 10627 sp->inode = inode; 10628 sp->is_block_group = is_block_group; 10629 10630 spin_lock(&fs_info->swapfile_pins_lock); 10631 p = &fs_info->swapfile_pins.rb_node; 10632 while (*p) { 10633 parent = *p; 10634 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10635 if (sp->ptr < entry->ptr || 10636 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10637 p = &(*p)->rb_left; 10638 } else if (sp->ptr > entry->ptr || 10639 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10640 p = &(*p)->rb_right; 10641 } else { 10642 spin_unlock(&fs_info->swapfile_pins_lock); 10643 kfree(sp); 10644 return 1; 10645 } 10646 } 10647 rb_link_node(&sp->node, parent, p); 10648 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10649 spin_unlock(&fs_info->swapfile_pins_lock); 10650 return 0; 10651 } 10652 10653 /* Free all of the entries pinned by this swapfile. */ 10654 static void btrfs_free_swapfile_pins(struct inode *inode) 10655 { 10656 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10657 struct btrfs_swapfile_pin *sp; 10658 struct rb_node *node, *next; 10659 10660 spin_lock(&fs_info->swapfile_pins_lock); 10661 node = rb_first(&fs_info->swapfile_pins); 10662 while (node) { 10663 next = rb_next(node); 10664 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10665 if (sp->inode == inode) { 10666 rb_erase(&sp->node, &fs_info->swapfile_pins); 10667 if (sp->is_block_group) 10668 btrfs_put_block_group(sp->ptr); 10669 kfree(sp); 10670 } 10671 node = next; 10672 } 10673 spin_unlock(&fs_info->swapfile_pins_lock); 10674 } 10675 10676 struct btrfs_swap_info { 10677 u64 start; 10678 u64 block_start; 10679 u64 block_len; 10680 u64 lowest_ppage; 10681 u64 highest_ppage; 10682 unsigned long nr_pages; 10683 int nr_extents; 10684 }; 10685 10686 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10687 struct btrfs_swap_info *bsi) 10688 { 10689 unsigned long nr_pages; 10690 u64 first_ppage, first_ppage_reported, next_ppage; 10691 int ret; 10692 10693 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10694 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10695 PAGE_SIZE) >> PAGE_SHIFT; 10696 10697 if (first_ppage >= next_ppage) 10698 return 0; 10699 nr_pages = next_ppage - first_ppage; 10700 10701 first_ppage_reported = first_ppage; 10702 if (bsi->start == 0) 10703 first_ppage_reported++; 10704 if (bsi->lowest_ppage > first_ppage_reported) 10705 bsi->lowest_ppage = first_ppage_reported; 10706 if (bsi->highest_ppage < (next_ppage - 1)) 10707 bsi->highest_ppage = next_ppage - 1; 10708 10709 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10710 if (ret < 0) 10711 return ret; 10712 bsi->nr_extents += ret; 10713 bsi->nr_pages += nr_pages; 10714 return 0; 10715 } 10716 10717 static void btrfs_swap_deactivate(struct file *file) 10718 { 10719 struct inode *inode = file_inode(file); 10720 10721 btrfs_free_swapfile_pins(inode); 10722 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10723 } 10724 10725 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10726 sector_t *span) 10727 { 10728 struct inode *inode = file_inode(file); 10729 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10730 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10731 struct extent_state *cached_state = NULL; 10732 struct extent_map *em = NULL; 10733 struct btrfs_device *device = NULL; 10734 struct btrfs_swap_info bsi = { 10735 .lowest_ppage = (sector_t)-1ULL, 10736 }; 10737 int ret = 0; 10738 u64 isize; 10739 u64 start; 10740 10741 /* 10742 * If the swap file was just created, make sure delalloc is done. If the 10743 * file changes again after this, the user is doing something stupid and 10744 * we don't really care. 10745 */ 10746 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10747 if (ret) 10748 return ret; 10749 10750 /* 10751 * The inode is locked, so these flags won't change after we check them. 10752 */ 10753 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10754 btrfs_warn(fs_info, "swapfile must not be compressed"); 10755 return -EINVAL; 10756 } 10757 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10758 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10759 return -EINVAL; 10760 } 10761 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10762 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10763 return -EINVAL; 10764 } 10765 10766 /* 10767 * Balance or device remove/replace/resize can move stuff around from 10768 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10769 * concurrently while we are mapping the swap extents, and 10770 * fs_info->swapfile_pins prevents them from running while the swap file 10771 * is active and moving the extents. Note that this also prevents a 10772 * concurrent device add which isn't actually necessary, but it's not 10773 * really worth the trouble to allow it. 10774 */ 10775 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10776 btrfs_warn(fs_info, 10777 "cannot activate swapfile while exclusive operation is running"); 10778 return -EBUSY; 10779 } 10780 /* 10781 * Snapshots can create extents which require COW even if NODATACOW is 10782 * set. We use this counter to prevent snapshots. We must increment it 10783 * before walking the extents because we don't want a concurrent 10784 * snapshot to run after we've already checked the extents. 10785 */ 10786 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10787 10788 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10789 10790 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10791 start = 0; 10792 while (start < isize) { 10793 u64 logical_block_start, physical_block_start; 10794 struct btrfs_block_group_cache *bg; 10795 u64 len = isize - start; 10796 10797 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10798 if (IS_ERR(em)) { 10799 ret = PTR_ERR(em); 10800 goto out; 10801 } 10802 10803 if (em->block_start == EXTENT_MAP_HOLE) { 10804 btrfs_warn(fs_info, "swapfile must not have holes"); 10805 ret = -EINVAL; 10806 goto out; 10807 } 10808 if (em->block_start == EXTENT_MAP_INLINE) { 10809 /* 10810 * It's unlikely we'll ever actually find ourselves 10811 * here, as a file small enough to fit inline won't be 10812 * big enough to store more than the swap header, but in 10813 * case something changes in the future, let's catch it 10814 * here rather than later. 10815 */ 10816 btrfs_warn(fs_info, "swapfile must not be inline"); 10817 ret = -EINVAL; 10818 goto out; 10819 } 10820 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10821 btrfs_warn(fs_info, "swapfile must not be compressed"); 10822 ret = -EINVAL; 10823 goto out; 10824 } 10825 10826 logical_block_start = em->block_start + (start - em->start); 10827 len = min(len, em->len - (start - em->start)); 10828 free_extent_map(em); 10829 em = NULL; 10830 10831 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10832 if (ret < 0) { 10833 goto out; 10834 } else if (ret) { 10835 ret = 0; 10836 } else { 10837 btrfs_warn(fs_info, 10838 "swapfile must not be copy-on-write"); 10839 ret = -EINVAL; 10840 goto out; 10841 } 10842 10843 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10844 if (IS_ERR(em)) { 10845 ret = PTR_ERR(em); 10846 goto out; 10847 } 10848 10849 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10850 btrfs_warn(fs_info, 10851 "swapfile must have single data profile"); 10852 ret = -EINVAL; 10853 goto out; 10854 } 10855 10856 if (device == NULL) { 10857 device = em->map_lookup->stripes[0].dev; 10858 ret = btrfs_add_swapfile_pin(inode, device, false); 10859 if (ret == 1) 10860 ret = 0; 10861 else if (ret) 10862 goto out; 10863 } else if (device != em->map_lookup->stripes[0].dev) { 10864 btrfs_warn(fs_info, "swapfile must be on one device"); 10865 ret = -EINVAL; 10866 goto out; 10867 } 10868 10869 physical_block_start = (em->map_lookup->stripes[0].physical + 10870 (logical_block_start - em->start)); 10871 len = min(len, em->len - (logical_block_start - em->start)); 10872 free_extent_map(em); 10873 em = NULL; 10874 10875 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10876 if (!bg) { 10877 btrfs_warn(fs_info, 10878 "could not find block group containing swapfile"); 10879 ret = -EINVAL; 10880 goto out; 10881 } 10882 10883 ret = btrfs_add_swapfile_pin(inode, bg, true); 10884 if (ret) { 10885 btrfs_put_block_group(bg); 10886 if (ret == 1) 10887 ret = 0; 10888 else 10889 goto out; 10890 } 10891 10892 if (bsi.block_len && 10893 bsi.block_start + bsi.block_len == physical_block_start) { 10894 bsi.block_len += len; 10895 } else { 10896 if (bsi.block_len) { 10897 ret = btrfs_add_swap_extent(sis, &bsi); 10898 if (ret) 10899 goto out; 10900 } 10901 bsi.start = start; 10902 bsi.block_start = physical_block_start; 10903 bsi.block_len = len; 10904 } 10905 10906 start += len; 10907 } 10908 10909 if (bsi.block_len) 10910 ret = btrfs_add_swap_extent(sis, &bsi); 10911 10912 out: 10913 if (!IS_ERR_OR_NULL(em)) 10914 free_extent_map(em); 10915 10916 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10917 10918 if (ret) 10919 btrfs_swap_deactivate(file); 10920 10921 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10922 10923 if (ret) 10924 return ret; 10925 10926 if (device) 10927 sis->bdev = device->bdev; 10928 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10929 sis->max = bsi.nr_pages; 10930 sis->pages = bsi.nr_pages - 1; 10931 sis->highest_bit = bsi.nr_pages - 1; 10932 return bsi.nr_extents; 10933 } 10934 #else 10935 static void btrfs_swap_deactivate(struct file *file) 10936 { 10937 } 10938 10939 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10940 sector_t *span) 10941 { 10942 return -EOPNOTSUPP; 10943 } 10944 #endif 10945 10946 static const struct inode_operations btrfs_dir_inode_operations = { 10947 .getattr = btrfs_getattr, 10948 .lookup = btrfs_lookup, 10949 .create = btrfs_create, 10950 .unlink = btrfs_unlink, 10951 .link = btrfs_link, 10952 .mkdir = btrfs_mkdir, 10953 .rmdir = btrfs_rmdir, 10954 .rename = btrfs_rename2, 10955 .symlink = btrfs_symlink, 10956 .setattr = btrfs_setattr, 10957 .mknod = btrfs_mknod, 10958 .listxattr = btrfs_listxattr, 10959 .permission = btrfs_permission, 10960 .get_acl = btrfs_get_acl, 10961 .set_acl = btrfs_set_acl, 10962 .update_time = btrfs_update_time, 10963 .tmpfile = btrfs_tmpfile, 10964 }; 10965 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10966 .lookup = btrfs_lookup, 10967 .permission = btrfs_permission, 10968 .update_time = btrfs_update_time, 10969 }; 10970 10971 static const struct file_operations btrfs_dir_file_operations = { 10972 .llseek = generic_file_llseek, 10973 .read = generic_read_dir, 10974 .iterate_shared = btrfs_real_readdir, 10975 .open = btrfs_opendir, 10976 .unlocked_ioctl = btrfs_ioctl, 10977 #ifdef CONFIG_COMPAT 10978 .compat_ioctl = btrfs_compat_ioctl, 10979 #endif 10980 .release = btrfs_release_file, 10981 .fsync = btrfs_sync_file, 10982 }; 10983 10984 static const struct extent_io_ops btrfs_extent_io_ops = { 10985 /* mandatory callbacks */ 10986 .submit_bio_hook = btrfs_submit_bio_hook, 10987 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10988 }; 10989 10990 /* 10991 * btrfs doesn't support the bmap operation because swapfiles 10992 * use bmap to make a mapping of extents in the file. They assume 10993 * these extents won't change over the life of the file and they 10994 * use the bmap result to do IO directly to the drive. 10995 * 10996 * the btrfs bmap call would return logical addresses that aren't 10997 * suitable for IO and they also will change frequently as COW 10998 * operations happen. So, swapfile + btrfs == corruption. 10999 * 11000 * For now we're avoiding this by dropping bmap. 11001 */ 11002 static const struct address_space_operations btrfs_aops = { 11003 .readpage = btrfs_readpage, 11004 .writepage = btrfs_writepage, 11005 .writepages = btrfs_writepages, 11006 .readpages = btrfs_readpages, 11007 .direct_IO = btrfs_direct_IO, 11008 .invalidatepage = btrfs_invalidatepage, 11009 .releasepage = btrfs_releasepage, 11010 .set_page_dirty = btrfs_set_page_dirty, 11011 .error_remove_page = generic_error_remove_page, 11012 .swap_activate = btrfs_swap_activate, 11013 .swap_deactivate = btrfs_swap_deactivate, 11014 }; 11015 11016 static const struct inode_operations btrfs_file_inode_operations = { 11017 .getattr = btrfs_getattr, 11018 .setattr = btrfs_setattr, 11019 .listxattr = btrfs_listxattr, 11020 .permission = btrfs_permission, 11021 .fiemap = btrfs_fiemap, 11022 .get_acl = btrfs_get_acl, 11023 .set_acl = btrfs_set_acl, 11024 .update_time = btrfs_update_time, 11025 }; 11026 static const struct inode_operations btrfs_special_inode_operations = { 11027 .getattr = btrfs_getattr, 11028 .setattr = btrfs_setattr, 11029 .permission = btrfs_permission, 11030 .listxattr = btrfs_listxattr, 11031 .get_acl = btrfs_get_acl, 11032 .set_acl = btrfs_set_acl, 11033 .update_time = btrfs_update_time, 11034 }; 11035 static const struct inode_operations btrfs_symlink_inode_operations = { 11036 .get_link = page_get_link, 11037 .getattr = btrfs_getattr, 11038 .setattr = btrfs_setattr, 11039 .permission = btrfs_permission, 11040 .listxattr = btrfs_listxattr, 11041 .update_time = btrfs_update_time, 11042 }; 11043 11044 const struct dentry_operations btrfs_dentry_operations = { 11045 .d_delete = btrfs_dentry_delete, 11046 }; 11047