xref: /openbmc/linux/fs/btrfs/inode.c (revision a44e4f3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "backref.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 
53 struct btrfs_iget_args {
54 	struct btrfs_key *location;
55 	struct btrfs_root *root;
56 };
57 
58 struct btrfs_dio_data {
59 	u64 reserve;
60 	u64 unsubmitted_oe_range_start;
61 	u64 unsubmitted_oe_range_end;
62 	int overwrite;
63 };
64 
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct file_operations btrfs_dir_file_operations;
72 static const struct extent_io_ops btrfs_extent_io_ops;
73 
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79 
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct inode *inode,
84 				   struct page *locked_page,
85 				   u64 start, u64 end, int *page_started,
86 				   unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 				       u64 orig_start, u64 block_start,
89 				       u64 block_len, u64 orig_block_len,
90 				       u64 ram_bytes, int compress_type,
91 				       int type);
92 
93 static void __endio_write_update_ordered(struct inode *inode,
94 					 const u64 offset, const u64 bytes,
95 					 const bool uptodate);
96 
97 /*
98  * Cleanup all submitted ordered extents in specified range to handle errors
99  * from the btrfs_run_delalloc_range() callback.
100  *
101  * NOTE: caller must ensure that when an error happens, it can not call
102  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104  * to be released, which we want to happen only when finishing the ordered
105  * extent (btrfs_finish_ordered_io()).
106  */
107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
108 						 struct page *locked_page,
109 						 u64 offset, u64 bytes)
110 {
111 	unsigned long index = offset >> PAGE_SHIFT;
112 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
113 	u64 page_start = page_offset(locked_page);
114 	u64 page_end = page_start + PAGE_SIZE - 1;
115 
116 	struct page *page;
117 
118 	while (index <= end_index) {
119 		page = find_get_page(inode->i_mapping, index);
120 		index++;
121 		if (!page)
122 			continue;
123 		ClearPagePrivate2(page);
124 		put_page(page);
125 	}
126 
127 	/*
128 	 * In case this page belongs to the delalloc range being instantiated
129 	 * then skip it, since the first page of a range is going to be
130 	 * properly cleaned up by the caller of run_delalloc_range
131 	 */
132 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 		offset += PAGE_SIZE;
134 		bytes -= PAGE_SIZE;
135 	}
136 
137 	return __endio_write_update_ordered(inode, offset, bytes, false);
138 }
139 
140 static int btrfs_dirty_inode(struct inode *inode);
141 
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143 void btrfs_test_inode_set_ops(struct inode *inode)
144 {
145 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 }
147 #endif
148 
149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
150 				     struct inode *inode,  struct inode *dir,
151 				     const struct qstr *qstr)
152 {
153 	int err;
154 
155 	err = btrfs_init_acl(trans, inode, dir);
156 	if (!err)
157 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
158 	return err;
159 }
160 
161 /*
162  * this does all the hard work for inserting an inline extent into
163  * the btree.  The caller should have done a btrfs_drop_extents so that
164  * no overlapping inline items exist in the btree
165  */
166 static int insert_inline_extent(struct btrfs_trans_handle *trans,
167 				struct btrfs_path *path, int extent_inserted,
168 				struct btrfs_root *root, struct inode *inode,
169 				u64 start, size_t size, size_t compressed_size,
170 				int compress_type,
171 				struct page **compressed_pages)
172 {
173 	struct extent_buffer *leaf;
174 	struct page *page = NULL;
175 	char *kaddr;
176 	unsigned long ptr;
177 	struct btrfs_file_extent_item *ei;
178 	int ret;
179 	size_t cur_size = size;
180 	unsigned long offset;
181 
182 	ASSERT((compressed_size > 0 && compressed_pages) ||
183 	       (compressed_size == 0 && !compressed_pages));
184 
185 	if (compressed_size && compressed_pages)
186 		cur_size = compressed_size;
187 
188 	inode_add_bytes(inode, size);
189 
190 	if (!extent_inserted) {
191 		struct btrfs_key key;
192 		size_t datasize;
193 
194 		key.objectid = btrfs_ino(BTRFS_I(inode));
195 		key.offset = start;
196 		key.type = BTRFS_EXTENT_DATA_KEY;
197 
198 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 		path->leave_spinning = 1;
200 		ret = btrfs_insert_empty_item(trans, root, path, &key,
201 					      datasize);
202 		if (ret)
203 			goto fail;
204 	}
205 	leaf = path->nodes[0];
206 	ei = btrfs_item_ptr(leaf, path->slots[0],
207 			    struct btrfs_file_extent_item);
208 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 	btrfs_set_file_extent_encryption(leaf, ei, 0);
211 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 	ptr = btrfs_file_extent_inline_start(ei);
214 
215 	if (compress_type != BTRFS_COMPRESS_NONE) {
216 		struct page *cpage;
217 		int i = 0;
218 		while (compressed_size > 0) {
219 			cpage = compressed_pages[i];
220 			cur_size = min_t(unsigned long, compressed_size,
221 				       PAGE_SIZE);
222 
223 			kaddr = kmap_atomic(cpage);
224 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
225 			kunmap_atomic(kaddr);
226 
227 			i++;
228 			ptr += cur_size;
229 			compressed_size -= cur_size;
230 		}
231 		btrfs_set_file_extent_compression(leaf, ei,
232 						  compress_type);
233 	} else {
234 		page = find_get_page(inode->i_mapping,
235 				     start >> PAGE_SHIFT);
236 		btrfs_set_file_extent_compression(leaf, ei, 0);
237 		kaddr = kmap_atomic(page);
238 		offset = offset_in_page(start);
239 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
240 		kunmap_atomic(kaddr);
241 		put_page(page);
242 	}
243 	btrfs_mark_buffer_dirty(leaf);
244 	btrfs_release_path(path);
245 
246 	/*
247 	 * we're an inline extent, so nobody can
248 	 * extend the file past i_size without locking
249 	 * a page we already have locked.
250 	 *
251 	 * We must do any isize and inode updates
252 	 * before we unlock the pages.  Otherwise we
253 	 * could end up racing with unlink.
254 	 */
255 	BTRFS_I(inode)->disk_i_size = inode->i_size;
256 	ret = btrfs_update_inode(trans, root, inode);
257 
258 fail:
259 	return ret;
260 }
261 
262 
263 /*
264  * conditionally insert an inline extent into the file.  This
265  * does the checks required to make sure the data is small enough
266  * to fit as an inline extent.
267  */
268 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
269 					  u64 end, size_t compressed_size,
270 					  int compress_type,
271 					  struct page **compressed_pages)
272 {
273 	struct btrfs_root *root = BTRFS_I(inode)->root;
274 	struct btrfs_fs_info *fs_info = root->fs_info;
275 	struct btrfs_trans_handle *trans;
276 	u64 isize = i_size_read(inode);
277 	u64 actual_end = min(end + 1, isize);
278 	u64 inline_len = actual_end - start;
279 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
280 	u64 data_len = inline_len;
281 	int ret;
282 	struct btrfs_path *path;
283 	int extent_inserted = 0;
284 	u32 extent_item_size;
285 
286 	if (compressed_size)
287 		data_len = compressed_size;
288 
289 	if (start > 0 ||
290 	    actual_end > fs_info->sectorsize ||
291 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
292 	    (!compressed_size &&
293 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
294 	    end + 1 < isize ||
295 	    data_len > fs_info->max_inline) {
296 		return 1;
297 	}
298 
299 	path = btrfs_alloc_path();
300 	if (!path)
301 		return -ENOMEM;
302 
303 	trans = btrfs_join_transaction(root);
304 	if (IS_ERR(trans)) {
305 		btrfs_free_path(path);
306 		return PTR_ERR(trans);
307 	}
308 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
309 
310 	if (compressed_size && compressed_pages)
311 		extent_item_size = btrfs_file_extent_calc_inline_size(
312 		   compressed_size);
313 	else
314 		extent_item_size = btrfs_file_extent_calc_inline_size(
315 		    inline_len);
316 
317 	ret = __btrfs_drop_extents(trans, root, inode, path,
318 				   start, aligned_end, NULL,
319 				   1, 1, extent_item_size, &extent_inserted);
320 	if (ret) {
321 		btrfs_abort_transaction(trans, ret);
322 		goto out;
323 	}
324 
325 	if (isize > actual_end)
326 		inline_len = min_t(u64, isize, actual_end);
327 	ret = insert_inline_extent(trans, path, extent_inserted,
328 				   root, inode, start,
329 				   inline_len, compressed_size,
330 				   compress_type, compressed_pages);
331 	if (ret && ret != -ENOSPC) {
332 		btrfs_abort_transaction(trans, ret);
333 		goto out;
334 	} else if (ret == -ENOSPC) {
335 		ret = 1;
336 		goto out;
337 	}
338 
339 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
340 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 out:
342 	/*
343 	 * Don't forget to free the reserved space, as for inlined extent
344 	 * it won't count as data extent, free them directly here.
345 	 * And at reserve time, it's always aligned to page size, so
346 	 * just free one page here.
347 	 */
348 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
349 	btrfs_free_path(path);
350 	btrfs_end_transaction(trans);
351 	return ret;
352 }
353 
354 struct async_extent {
355 	u64 start;
356 	u64 ram_size;
357 	u64 compressed_size;
358 	struct page **pages;
359 	unsigned long nr_pages;
360 	int compress_type;
361 	struct list_head list;
362 };
363 
364 struct async_chunk {
365 	struct inode *inode;
366 	struct page *locked_page;
367 	u64 start;
368 	u64 end;
369 	unsigned int write_flags;
370 	struct list_head extents;
371 	struct btrfs_work work;
372 	atomic_t *pending;
373 };
374 
375 struct async_cow {
376 	/* Number of chunks in flight; must be first in the structure */
377 	atomic_t num_chunks;
378 	struct async_chunk chunks[];
379 };
380 
381 static noinline int add_async_extent(struct async_chunk *cow,
382 				     u64 start, u64 ram_size,
383 				     u64 compressed_size,
384 				     struct page **pages,
385 				     unsigned long nr_pages,
386 				     int compress_type)
387 {
388 	struct async_extent *async_extent;
389 
390 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
391 	BUG_ON(!async_extent); /* -ENOMEM */
392 	async_extent->start = start;
393 	async_extent->ram_size = ram_size;
394 	async_extent->compressed_size = compressed_size;
395 	async_extent->pages = pages;
396 	async_extent->nr_pages = nr_pages;
397 	async_extent->compress_type = compress_type;
398 	list_add_tail(&async_extent->list, &cow->extents);
399 	return 0;
400 }
401 
402 /*
403  * Check if the inode has flags compatible with compression
404  */
405 static inline bool inode_can_compress(struct inode *inode)
406 {
407 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 		return false;
410 	return true;
411 }
412 
413 /*
414  * Check if the inode needs to be submitted to compression, based on mount
415  * options, defragmentation, properties or heuristics.
416  */
417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
418 {
419 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420 
421 	if (!inode_can_compress(inode)) {
422 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 			btrfs_ino(BTRFS_I(inode)));
425 		return 0;
426 	}
427 	/* force compress */
428 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 		return 1;
430 	/* defrag ioctl */
431 	if (BTRFS_I(inode)->defrag_compress)
432 		return 1;
433 	/* bad compression ratios */
434 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 		return 0;
436 	if (btrfs_test_opt(fs_info, COMPRESS) ||
437 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
438 	    BTRFS_I(inode)->prop_compress)
439 		return btrfs_compress_heuristic(inode, start, end);
440 	return 0;
441 }
442 
443 static inline void inode_should_defrag(struct btrfs_inode *inode,
444 		u64 start, u64 end, u64 num_bytes, u64 small_write)
445 {
446 	/* If this is a small write inside eof, kick off a defrag */
447 	if (num_bytes < small_write &&
448 	    (start > 0 || end + 1 < inode->disk_i_size))
449 		btrfs_add_inode_defrag(NULL, inode);
450 }
451 
452 /*
453  * we create compressed extents in two phases.  The first
454  * phase compresses a range of pages that have already been
455  * locked (both pages and state bits are locked).
456  *
457  * This is done inside an ordered work queue, and the compression
458  * is spread across many cpus.  The actual IO submission is step
459  * two, and the ordered work queue takes care of making sure that
460  * happens in the same order things were put onto the queue by
461  * writepages and friends.
462  *
463  * If this code finds it can't get good compression, it puts an
464  * entry onto the work queue to write the uncompressed bytes.  This
465  * makes sure that both compressed inodes and uncompressed inodes
466  * are written in the same order that the flusher thread sent them
467  * down.
468  */
469 static noinline int compress_file_range(struct async_chunk *async_chunk)
470 {
471 	struct inode *inode = async_chunk->inode;
472 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
473 	u64 blocksize = fs_info->sectorsize;
474 	u64 start = async_chunk->start;
475 	u64 end = async_chunk->end;
476 	u64 actual_end;
477 	u64 i_size;
478 	int ret = 0;
479 	struct page **pages = NULL;
480 	unsigned long nr_pages;
481 	unsigned long total_compressed = 0;
482 	unsigned long total_in = 0;
483 	int i;
484 	int will_compress;
485 	int compress_type = fs_info->compress_type;
486 	int compressed_extents = 0;
487 	int redirty = 0;
488 
489 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
490 			SZ_16K);
491 
492 	/*
493 	 * We need to save i_size before now because it could change in between
494 	 * us evaluating the size and assigning it.  This is because we lock and
495 	 * unlock the page in truncate and fallocate, and then modify the i_size
496 	 * later on.
497 	 *
498 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
499 	 * does that for us.
500 	 */
501 	barrier();
502 	i_size = i_size_read(inode);
503 	barrier();
504 	actual_end = min_t(u64, i_size, end + 1);
505 again:
506 	will_compress = 0;
507 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
508 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
509 	nr_pages = min_t(unsigned long, nr_pages,
510 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
511 
512 	/*
513 	 * we don't want to send crud past the end of i_size through
514 	 * compression, that's just a waste of CPU time.  So, if the
515 	 * end of the file is before the start of our current
516 	 * requested range of bytes, we bail out to the uncompressed
517 	 * cleanup code that can deal with all of this.
518 	 *
519 	 * It isn't really the fastest way to fix things, but this is a
520 	 * very uncommon corner.
521 	 */
522 	if (actual_end <= start)
523 		goto cleanup_and_bail_uncompressed;
524 
525 	total_compressed = actual_end - start;
526 
527 	/*
528 	 * skip compression for a small file range(<=blocksize) that
529 	 * isn't an inline extent, since it doesn't save disk space at all.
530 	 */
531 	if (total_compressed <= blocksize &&
532 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
533 		goto cleanup_and_bail_uncompressed;
534 
535 	total_compressed = min_t(unsigned long, total_compressed,
536 			BTRFS_MAX_UNCOMPRESSED);
537 	total_in = 0;
538 	ret = 0;
539 
540 	/*
541 	 * we do compression for mount -o compress and when the
542 	 * inode has not been flagged as nocompress.  This flag can
543 	 * change at any time if we discover bad compression ratios.
544 	 */
545 	if (inode_need_compress(inode, start, end)) {
546 		WARN_ON(pages);
547 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
548 		if (!pages) {
549 			/* just bail out to the uncompressed code */
550 			nr_pages = 0;
551 			goto cont;
552 		}
553 
554 		if (BTRFS_I(inode)->defrag_compress)
555 			compress_type = BTRFS_I(inode)->defrag_compress;
556 		else if (BTRFS_I(inode)->prop_compress)
557 			compress_type = BTRFS_I(inode)->prop_compress;
558 
559 		/*
560 		 * we need to call clear_page_dirty_for_io on each
561 		 * page in the range.  Otherwise applications with the file
562 		 * mmap'd can wander in and change the page contents while
563 		 * we are compressing them.
564 		 *
565 		 * If the compression fails for any reason, we set the pages
566 		 * dirty again later on.
567 		 *
568 		 * Note that the remaining part is redirtied, the start pointer
569 		 * has moved, the end is the original one.
570 		 */
571 		if (!redirty) {
572 			extent_range_clear_dirty_for_io(inode, start, end);
573 			redirty = 1;
574 		}
575 
576 		/* Compression level is applied here and only here */
577 		ret = btrfs_compress_pages(
578 			compress_type | (fs_info->compress_level << 4),
579 					   inode->i_mapping, start,
580 					   pages,
581 					   &nr_pages,
582 					   &total_in,
583 					   &total_compressed);
584 
585 		if (!ret) {
586 			unsigned long offset = offset_in_page(total_compressed);
587 			struct page *page = pages[nr_pages - 1];
588 			char *kaddr;
589 
590 			/* zero the tail end of the last page, we might be
591 			 * sending it down to disk
592 			 */
593 			if (offset) {
594 				kaddr = kmap_atomic(page);
595 				memset(kaddr + offset, 0,
596 				       PAGE_SIZE - offset);
597 				kunmap_atomic(kaddr);
598 			}
599 			will_compress = 1;
600 		}
601 	}
602 cont:
603 	if (start == 0) {
604 		/* lets try to make an inline extent */
605 		if (ret || total_in < actual_end) {
606 			/* we didn't compress the entire range, try
607 			 * to make an uncompressed inline extent.
608 			 */
609 			ret = cow_file_range_inline(inode, start, end, 0,
610 						    BTRFS_COMPRESS_NONE, NULL);
611 		} else {
612 			/* try making a compressed inline extent */
613 			ret = cow_file_range_inline(inode, start, end,
614 						    total_compressed,
615 						    compress_type, pages);
616 		}
617 		if (ret <= 0) {
618 			unsigned long clear_flags = EXTENT_DELALLOC |
619 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
620 				EXTENT_DO_ACCOUNTING;
621 			unsigned long page_error_op;
622 
623 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
624 
625 			/*
626 			 * inline extent creation worked or returned error,
627 			 * we don't need to create any more async work items.
628 			 * Unlock and free up our temp pages.
629 			 *
630 			 * We use DO_ACCOUNTING here because we need the
631 			 * delalloc_release_metadata to be done _after_ we drop
632 			 * our outstanding extent for clearing delalloc for this
633 			 * range.
634 			 */
635 			extent_clear_unlock_delalloc(inode, start, end, NULL,
636 						     clear_flags,
637 						     PAGE_UNLOCK |
638 						     PAGE_CLEAR_DIRTY |
639 						     PAGE_SET_WRITEBACK |
640 						     page_error_op |
641 						     PAGE_END_WRITEBACK);
642 
643 			for (i = 0; i < nr_pages; i++) {
644 				WARN_ON(pages[i]->mapping);
645 				put_page(pages[i]);
646 			}
647 			kfree(pages);
648 
649 			return 0;
650 		}
651 	}
652 
653 	if (will_compress) {
654 		/*
655 		 * we aren't doing an inline extent round the compressed size
656 		 * up to a block size boundary so the allocator does sane
657 		 * things
658 		 */
659 		total_compressed = ALIGN(total_compressed, blocksize);
660 
661 		/*
662 		 * one last check to make sure the compression is really a
663 		 * win, compare the page count read with the blocks on disk,
664 		 * compression must free at least one sector size
665 		 */
666 		total_in = ALIGN(total_in, PAGE_SIZE);
667 		if (total_compressed + blocksize <= total_in) {
668 			compressed_extents++;
669 
670 			/*
671 			 * The async work queues will take care of doing actual
672 			 * allocation on disk for these compressed pages, and
673 			 * will submit them to the elevator.
674 			 */
675 			add_async_extent(async_chunk, start, total_in,
676 					total_compressed, pages, nr_pages,
677 					compress_type);
678 
679 			if (start + total_in < end) {
680 				start += total_in;
681 				pages = NULL;
682 				cond_resched();
683 				goto again;
684 			}
685 			return compressed_extents;
686 		}
687 	}
688 	if (pages) {
689 		/*
690 		 * the compression code ran but failed to make things smaller,
691 		 * free any pages it allocated and our page pointer array
692 		 */
693 		for (i = 0; i < nr_pages; i++) {
694 			WARN_ON(pages[i]->mapping);
695 			put_page(pages[i]);
696 		}
697 		kfree(pages);
698 		pages = NULL;
699 		total_compressed = 0;
700 		nr_pages = 0;
701 
702 		/* flag the file so we don't compress in the future */
703 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
704 		    !(BTRFS_I(inode)->prop_compress)) {
705 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
706 		}
707 	}
708 cleanup_and_bail_uncompressed:
709 	/*
710 	 * No compression, but we still need to write the pages in the file
711 	 * we've been given so far.  redirty the locked page if it corresponds
712 	 * to our extent and set things up for the async work queue to run
713 	 * cow_file_range to do the normal delalloc dance.
714 	 */
715 	if (page_offset(async_chunk->locked_page) >= start &&
716 	    page_offset(async_chunk->locked_page) <= end)
717 		__set_page_dirty_nobuffers(async_chunk->locked_page);
718 		/* unlocked later on in the async handlers */
719 
720 	if (redirty)
721 		extent_range_redirty_for_io(inode, start, end);
722 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
723 			 BTRFS_COMPRESS_NONE);
724 	compressed_extents++;
725 
726 	return compressed_extents;
727 }
728 
729 static void free_async_extent_pages(struct async_extent *async_extent)
730 {
731 	int i;
732 
733 	if (!async_extent->pages)
734 		return;
735 
736 	for (i = 0; i < async_extent->nr_pages; i++) {
737 		WARN_ON(async_extent->pages[i]->mapping);
738 		put_page(async_extent->pages[i]);
739 	}
740 	kfree(async_extent->pages);
741 	async_extent->nr_pages = 0;
742 	async_extent->pages = NULL;
743 }
744 
745 /*
746  * phase two of compressed writeback.  This is the ordered portion
747  * of the code, which only gets called in the order the work was
748  * queued.  We walk all the async extents created by compress_file_range
749  * and send them down to the disk.
750  */
751 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
752 {
753 	struct inode *inode = async_chunk->inode;
754 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
755 	struct async_extent *async_extent;
756 	u64 alloc_hint = 0;
757 	struct btrfs_key ins;
758 	struct extent_map *em;
759 	struct btrfs_root *root = BTRFS_I(inode)->root;
760 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
761 	int ret = 0;
762 
763 again:
764 	while (!list_empty(&async_chunk->extents)) {
765 		async_extent = list_entry(async_chunk->extents.next,
766 					  struct async_extent, list);
767 		list_del(&async_extent->list);
768 
769 retry:
770 		lock_extent(io_tree, async_extent->start,
771 			    async_extent->start + async_extent->ram_size - 1);
772 		/* did the compression code fall back to uncompressed IO? */
773 		if (!async_extent->pages) {
774 			int page_started = 0;
775 			unsigned long nr_written = 0;
776 
777 			/* allocate blocks */
778 			ret = cow_file_range(inode, async_chunk->locked_page,
779 					     async_extent->start,
780 					     async_extent->start +
781 					     async_extent->ram_size - 1,
782 					     &page_started, &nr_written, 0);
783 
784 			/* JDM XXX */
785 
786 			/*
787 			 * if page_started, cow_file_range inserted an
788 			 * inline extent and took care of all the unlocking
789 			 * and IO for us.  Otherwise, we need to submit
790 			 * all those pages down to the drive.
791 			 */
792 			if (!page_started && !ret)
793 				extent_write_locked_range(inode,
794 						  async_extent->start,
795 						  async_extent->start +
796 						  async_extent->ram_size - 1,
797 						  WB_SYNC_ALL);
798 			else if (ret)
799 				unlock_page(async_chunk->locked_page);
800 			kfree(async_extent);
801 			cond_resched();
802 			continue;
803 		}
804 
805 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
806 					   async_extent->compressed_size,
807 					   async_extent->compressed_size,
808 					   0, alloc_hint, &ins, 1, 1);
809 		if (ret) {
810 			free_async_extent_pages(async_extent);
811 
812 			if (ret == -ENOSPC) {
813 				unlock_extent(io_tree, async_extent->start,
814 					      async_extent->start +
815 					      async_extent->ram_size - 1);
816 
817 				/*
818 				 * we need to redirty the pages if we decide to
819 				 * fallback to uncompressed IO, otherwise we
820 				 * will not submit these pages down to lower
821 				 * layers.
822 				 */
823 				extent_range_redirty_for_io(inode,
824 						async_extent->start,
825 						async_extent->start +
826 						async_extent->ram_size - 1);
827 
828 				goto retry;
829 			}
830 			goto out_free;
831 		}
832 		/*
833 		 * here we're doing allocation and writeback of the
834 		 * compressed pages
835 		 */
836 		em = create_io_em(inode, async_extent->start,
837 				  async_extent->ram_size, /* len */
838 				  async_extent->start, /* orig_start */
839 				  ins.objectid, /* block_start */
840 				  ins.offset, /* block_len */
841 				  ins.offset, /* orig_block_len */
842 				  async_extent->ram_size, /* ram_bytes */
843 				  async_extent->compress_type,
844 				  BTRFS_ORDERED_COMPRESSED);
845 		if (IS_ERR(em))
846 			/* ret value is not necessary due to void function */
847 			goto out_free_reserve;
848 		free_extent_map(em);
849 
850 		ret = btrfs_add_ordered_extent_compress(inode,
851 						async_extent->start,
852 						ins.objectid,
853 						async_extent->ram_size,
854 						ins.offset,
855 						BTRFS_ORDERED_COMPRESSED,
856 						async_extent->compress_type);
857 		if (ret) {
858 			btrfs_drop_extent_cache(BTRFS_I(inode),
859 						async_extent->start,
860 						async_extent->start +
861 						async_extent->ram_size - 1, 0);
862 			goto out_free_reserve;
863 		}
864 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
865 
866 		/*
867 		 * clear dirty, set writeback and unlock the pages.
868 		 */
869 		extent_clear_unlock_delalloc(inode, async_extent->start,
870 				async_extent->start +
871 				async_extent->ram_size - 1,
872 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
873 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
874 				PAGE_SET_WRITEBACK);
875 		if (btrfs_submit_compressed_write(inode,
876 				    async_extent->start,
877 				    async_extent->ram_size,
878 				    ins.objectid,
879 				    ins.offset, async_extent->pages,
880 				    async_extent->nr_pages,
881 				    async_chunk->write_flags)) {
882 			struct page *p = async_extent->pages[0];
883 			const u64 start = async_extent->start;
884 			const u64 end = start + async_extent->ram_size - 1;
885 
886 			p->mapping = inode->i_mapping;
887 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
888 
889 			p->mapping = NULL;
890 			extent_clear_unlock_delalloc(inode, start, end,
891 						     NULL, 0,
892 						     PAGE_END_WRITEBACK |
893 						     PAGE_SET_ERROR);
894 			free_async_extent_pages(async_extent);
895 		}
896 		alloc_hint = ins.objectid + ins.offset;
897 		kfree(async_extent);
898 		cond_resched();
899 	}
900 	return;
901 out_free_reserve:
902 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
903 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
904 out_free:
905 	extent_clear_unlock_delalloc(inode, async_extent->start,
906 				     async_extent->start +
907 				     async_extent->ram_size - 1,
908 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
909 				     EXTENT_DELALLOC_NEW |
910 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
911 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
912 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
913 				     PAGE_SET_ERROR);
914 	free_async_extent_pages(async_extent);
915 	kfree(async_extent);
916 	goto again;
917 }
918 
919 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
920 				      u64 num_bytes)
921 {
922 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
923 	struct extent_map *em;
924 	u64 alloc_hint = 0;
925 
926 	read_lock(&em_tree->lock);
927 	em = search_extent_mapping(em_tree, start, num_bytes);
928 	if (em) {
929 		/*
930 		 * if block start isn't an actual block number then find the
931 		 * first block in this inode and use that as a hint.  If that
932 		 * block is also bogus then just don't worry about it.
933 		 */
934 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
935 			free_extent_map(em);
936 			em = search_extent_mapping(em_tree, 0, 0);
937 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
938 				alloc_hint = em->block_start;
939 			if (em)
940 				free_extent_map(em);
941 		} else {
942 			alloc_hint = em->block_start;
943 			free_extent_map(em);
944 		}
945 	}
946 	read_unlock(&em_tree->lock);
947 
948 	return alloc_hint;
949 }
950 
951 /*
952  * when extent_io.c finds a delayed allocation range in the file,
953  * the call backs end up in this code.  The basic idea is to
954  * allocate extents on disk for the range, and create ordered data structs
955  * in ram to track those extents.
956  *
957  * locked_page is the page that writepage had locked already.  We use
958  * it to make sure we don't do extra locks or unlocks.
959  *
960  * *page_started is set to one if we unlock locked_page and do everything
961  * required to start IO on it.  It may be clean and already done with
962  * IO when we return.
963  */
964 static noinline int cow_file_range(struct inode *inode,
965 				   struct page *locked_page,
966 				   u64 start, u64 end, int *page_started,
967 				   unsigned long *nr_written, int unlock)
968 {
969 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
970 	struct btrfs_root *root = BTRFS_I(inode)->root;
971 	u64 alloc_hint = 0;
972 	u64 num_bytes;
973 	unsigned long ram_size;
974 	u64 cur_alloc_size = 0;
975 	u64 blocksize = fs_info->sectorsize;
976 	struct btrfs_key ins;
977 	struct extent_map *em;
978 	unsigned clear_bits;
979 	unsigned long page_ops;
980 	bool extent_reserved = false;
981 	int ret = 0;
982 
983 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
984 		WARN_ON_ONCE(1);
985 		ret = -EINVAL;
986 		goto out_unlock;
987 	}
988 
989 	num_bytes = ALIGN(end - start + 1, blocksize);
990 	num_bytes = max(blocksize,  num_bytes);
991 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
992 
993 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
994 
995 	if (start == 0) {
996 		/* lets try to make an inline extent */
997 		ret = cow_file_range_inline(inode, start, end, 0,
998 					    BTRFS_COMPRESS_NONE, NULL);
999 		if (ret == 0) {
1000 			/*
1001 			 * We use DO_ACCOUNTING here because we need the
1002 			 * delalloc_release_metadata to be run _after_ we drop
1003 			 * our outstanding extent for clearing delalloc for this
1004 			 * range.
1005 			 */
1006 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1007 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1008 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1009 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1010 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1011 				     PAGE_END_WRITEBACK);
1012 			*nr_written = *nr_written +
1013 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1014 			*page_started = 1;
1015 			goto out;
1016 		} else if (ret < 0) {
1017 			goto out_unlock;
1018 		}
1019 	}
1020 
1021 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1022 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1023 			start + num_bytes - 1, 0);
1024 
1025 	while (num_bytes > 0) {
1026 		cur_alloc_size = num_bytes;
1027 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1028 					   fs_info->sectorsize, 0, alloc_hint,
1029 					   &ins, 1, 1);
1030 		if (ret < 0)
1031 			goto out_unlock;
1032 		cur_alloc_size = ins.offset;
1033 		extent_reserved = true;
1034 
1035 		ram_size = ins.offset;
1036 		em = create_io_em(inode, start, ins.offset, /* len */
1037 				  start, /* orig_start */
1038 				  ins.objectid, /* block_start */
1039 				  ins.offset, /* block_len */
1040 				  ins.offset, /* orig_block_len */
1041 				  ram_size, /* ram_bytes */
1042 				  BTRFS_COMPRESS_NONE, /* compress_type */
1043 				  BTRFS_ORDERED_REGULAR /* type */);
1044 		if (IS_ERR(em)) {
1045 			ret = PTR_ERR(em);
1046 			goto out_reserve;
1047 		}
1048 		free_extent_map(em);
1049 
1050 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1051 					       ram_size, cur_alloc_size, 0);
1052 		if (ret)
1053 			goto out_drop_extent_cache;
1054 
1055 		if (root->root_key.objectid ==
1056 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1057 			ret = btrfs_reloc_clone_csums(inode, start,
1058 						      cur_alloc_size);
1059 			/*
1060 			 * Only drop cache here, and process as normal.
1061 			 *
1062 			 * We must not allow extent_clear_unlock_delalloc()
1063 			 * at out_unlock label to free meta of this ordered
1064 			 * extent, as its meta should be freed by
1065 			 * btrfs_finish_ordered_io().
1066 			 *
1067 			 * So we must continue until @start is increased to
1068 			 * skip current ordered extent.
1069 			 */
1070 			if (ret)
1071 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1072 						start + ram_size - 1, 0);
1073 		}
1074 
1075 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1076 
1077 		/* we're not doing compressed IO, don't unlock the first
1078 		 * page (which the caller expects to stay locked), don't
1079 		 * clear any dirty bits and don't set any writeback bits
1080 		 *
1081 		 * Do set the Private2 bit so we know this page was properly
1082 		 * setup for writepage
1083 		 */
1084 		page_ops = unlock ? PAGE_UNLOCK : 0;
1085 		page_ops |= PAGE_SET_PRIVATE2;
1086 
1087 		extent_clear_unlock_delalloc(inode, start,
1088 					     start + ram_size - 1,
1089 					     locked_page,
1090 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1091 					     page_ops);
1092 		if (num_bytes < cur_alloc_size)
1093 			num_bytes = 0;
1094 		else
1095 			num_bytes -= cur_alloc_size;
1096 		alloc_hint = ins.objectid + ins.offset;
1097 		start += cur_alloc_size;
1098 		extent_reserved = false;
1099 
1100 		/*
1101 		 * btrfs_reloc_clone_csums() error, since start is increased
1102 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1103 		 * free metadata of current ordered extent, we're OK to exit.
1104 		 */
1105 		if (ret)
1106 			goto out_unlock;
1107 	}
1108 out:
1109 	return ret;
1110 
1111 out_drop_extent_cache:
1112 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1113 out_reserve:
1114 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1115 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1116 out_unlock:
1117 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1118 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1119 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1120 		PAGE_END_WRITEBACK;
1121 	/*
1122 	 * If we reserved an extent for our delalloc range (or a subrange) and
1123 	 * failed to create the respective ordered extent, then it means that
1124 	 * when we reserved the extent we decremented the extent's size from
1125 	 * the data space_info's bytes_may_use counter and incremented the
1126 	 * space_info's bytes_reserved counter by the same amount. We must make
1127 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1128 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1129 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1130 	 */
1131 	if (extent_reserved) {
1132 		extent_clear_unlock_delalloc(inode, start,
1133 					     start + cur_alloc_size,
1134 					     locked_page,
1135 					     clear_bits,
1136 					     page_ops);
1137 		start += cur_alloc_size;
1138 		if (start >= end)
1139 			goto out;
1140 	}
1141 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1142 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1143 				     page_ops);
1144 	goto out;
1145 }
1146 
1147 /*
1148  * work queue call back to started compression on a file and pages
1149  */
1150 static noinline void async_cow_start(struct btrfs_work *work)
1151 {
1152 	struct async_chunk *async_chunk;
1153 	int compressed_extents;
1154 
1155 	async_chunk = container_of(work, struct async_chunk, work);
1156 
1157 	compressed_extents = compress_file_range(async_chunk);
1158 	if (compressed_extents == 0) {
1159 		btrfs_add_delayed_iput(async_chunk->inode);
1160 		async_chunk->inode = NULL;
1161 	}
1162 }
1163 
1164 /*
1165  * work queue call back to submit previously compressed pages
1166  */
1167 static noinline void async_cow_submit(struct btrfs_work *work)
1168 {
1169 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1170 						     work);
1171 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1172 	unsigned long nr_pages;
1173 
1174 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1175 		PAGE_SHIFT;
1176 
1177 	/* atomic_sub_return implies a barrier */
1178 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1179 	    5 * SZ_1M)
1180 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1181 
1182 	/*
1183 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1184 	 * in which case we don't have anything to submit, yet we need to
1185 	 * always adjust ->async_delalloc_pages as its paired with the init
1186 	 * happening in cow_file_range_async
1187 	 */
1188 	if (async_chunk->inode)
1189 		submit_compressed_extents(async_chunk);
1190 }
1191 
1192 static noinline void async_cow_free(struct btrfs_work *work)
1193 {
1194 	struct async_chunk *async_chunk;
1195 
1196 	async_chunk = container_of(work, struct async_chunk, work);
1197 	if (async_chunk->inode)
1198 		btrfs_add_delayed_iput(async_chunk->inode);
1199 	/*
1200 	 * Since the pointer to 'pending' is at the beginning of the array of
1201 	 * async_chunk's, freeing it ensures the whole array has been freed.
1202 	 */
1203 	if (atomic_dec_and_test(async_chunk->pending))
1204 		kvfree(async_chunk->pending);
1205 }
1206 
1207 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1208 				u64 start, u64 end, int *page_started,
1209 				unsigned long *nr_written,
1210 				unsigned int write_flags)
1211 {
1212 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1213 	struct async_cow *ctx;
1214 	struct async_chunk *async_chunk;
1215 	unsigned long nr_pages;
1216 	u64 cur_end;
1217 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1218 	int i;
1219 	bool should_compress;
1220 	unsigned nofs_flag;
1221 
1222 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1223 
1224 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1225 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1226 		num_chunks = 1;
1227 		should_compress = false;
1228 	} else {
1229 		should_compress = true;
1230 	}
1231 
1232 	nofs_flag = memalloc_nofs_save();
1233 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1234 	memalloc_nofs_restore(nofs_flag);
1235 
1236 	if (!ctx) {
1237 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1238 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1239 			EXTENT_DO_ACCOUNTING;
1240 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1241 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1242 			PAGE_SET_ERROR;
1243 
1244 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 					     clear_bits, page_ops);
1246 		return -ENOMEM;
1247 	}
1248 
1249 	async_chunk = ctx->chunks;
1250 	atomic_set(&ctx->num_chunks, num_chunks);
1251 
1252 	for (i = 0; i < num_chunks; i++) {
1253 		if (should_compress)
1254 			cur_end = min(end, start + SZ_512K - 1);
1255 		else
1256 			cur_end = end;
1257 
1258 		/*
1259 		 * igrab is called higher up in the call chain, take only the
1260 		 * lightweight reference for the callback lifetime
1261 		 */
1262 		ihold(inode);
1263 		async_chunk[i].pending = &ctx->num_chunks;
1264 		async_chunk[i].inode = inode;
1265 		async_chunk[i].start = start;
1266 		async_chunk[i].end = cur_end;
1267 		async_chunk[i].locked_page = locked_page;
1268 		async_chunk[i].write_flags = write_flags;
1269 		INIT_LIST_HEAD(&async_chunk[i].extents);
1270 
1271 		btrfs_init_work(&async_chunk[i].work,
1272 				btrfs_delalloc_helper,
1273 				async_cow_start, async_cow_submit,
1274 				async_cow_free);
1275 
1276 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1277 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1278 
1279 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1280 
1281 		*nr_written += nr_pages;
1282 		start = cur_end + 1;
1283 	}
1284 	*page_started = 1;
1285 	return 0;
1286 }
1287 
1288 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1289 					u64 bytenr, u64 num_bytes)
1290 {
1291 	int ret;
1292 	struct btrfs_ordered_sum *sums;
1293 	LIST_HEAD(list);
1294 
1295 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1296 				       bytenr + num_bytes - 1, &list, 0);
1297 	if (ret == 0 && list_empty(&list))
1298 		return 0;
1299 
1300 	while (!list_empty(&list)) {
1301 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1302 		list_del(&sums->list);
1303 		kfree(sums);
1304 	}
1305 	if (ret < 0)
1306 		return ret;
1307 	return 1;
1308 }
1309 
1310 /*
1311  * when nowcow writeback call back.  This checks for snapshots or COW copies
1312  * of the extents that exist in the file, and COWs the file as required.
1313  *
1314  * If no cow copies or snapshots exist, we write directly to the existing
1315  * blocks on disk
1316  */
1317 static noinline int run_delalloc_nocow(struct inode *inode,
1318 				       struct page *locked_page,
1319 				       const u64 start, const u64 end,
1320 				       int *page_started, int force,
1321 				       unsigned long *nr_written)
1322 {
1323 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1324 	struct btrfs_root *root = BTRFS_I(inode)->root;
1325 	struct btrfs_path *path;
1326 	u64 cow_start = (u64)-1;
1327 	u64 cur_offset = start;
1328 	int ret;
1329 	bool check_prev = true;
1330 	const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1331 	u64 ino = btrfs_ino(BTRFS_I(inode));
1332 	bool nocow = false;
1333 	u64 disk_bytenr = 0;
1334 
1335 	path = btrfs_alloc_path();
1336 	if (!path) {
1337 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1338 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1339 					     EXTENT_DO_ACCOUNTING |
1340 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1341 					     PAGE_CLEAR_DIRTY |
1342 					     PAGE_SET_WRITEBACK |
1343 					     PAGE_END_WRITEBACK);
1344 		return -ENOMEM;
1345 	}
1346 
1347 	while (1) {
1348 		struct btrfs_key found_key;
1349 		struct btrfs_file_extent_item *fi;
1350 		struct extent_buffer *leaf;
1351 		u64 extent_end;
1352 		u64 extent_offset;
1353 		u64 num_bytes = 0;
1354 		u64 disk_num_bytes;
1355 		u64 ram_bytes;
1356 		int extent_type;
1357 
1358 		nocow = false;
1359 
1360 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1361 					       cur_offset, 0);
1362 		if (ret < 0)
1363 			goto error;
1364 
1365 		/*
1366 		 * If there is no extent for our range when doing the initial
1367 		 * search, then go back to the previous slot as it will be the
1368 		 * one containing the search offset
1369 		 */
1370 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1371 			leaf = path->nodes[0];
1372 			btrfs_item_key_to_cpu(leaf, &found_key,
1373 					      path->slots[0] - 1);
1374 			if (found_key.objectid == ino &&
1375 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1376 				path->slots[0]--;
1377 		}
1378 		check_prev = false;
1379 next_slot:
1380 		/* Go to next leaf if we have exhausted the current one */
1381 		leaf = path->nodes[0];
1382 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1383 			ret = btrfs_next_leaf(root, path);
1384 			if (ret < 0) {
1385 				if (cow_start != (u64)-1)
1386 					cur_offset = cow_start;
1387 				goto error;
1388 			}
1389 			if (ret > 0)
1390 				break;
1391 			leaf = path->nodes[0];
1392 		}
1393 
1394 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1395 
1396 		/* Didn't find anything for our INO */
1397 		if (found_key.objectid > ino)
1398 			break;
1399 		/*
1400 		 * Keep searching until we find an EXTENT_ITEM or there are no
1401 		 * more extents for this inode
1402 		 */
1403 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1404 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1405 			path->slots[0]++;
1406 			goto next_slot;
1407 		}
1408 
1409 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1410 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1411 		    found_key.offset > end)
1412 			break;
1413 
1414 		/*
1415 		 * If the found extent starts after requested offset, then
1416 		 * adjust extent_end to be right before this extent begins
1417 		 */
1418 		if (found_key.offset > cur_offset) {
1419 			extent_end = found_key.offset;
1420 			extent_type = 0;
1421 			goto out_check;
1422 		}
1423 
1424 		/*
1425 		 * Found extent which begins before our range and potentially
1426 		 * intersect it
1427 		 */
1428 		fi = btrfs_item_ptr(leaf, path->slots[0],
1429 				    struct btrfs_file_extent_item);
1430 		extent_type = btrfs_file_extent_type(leaf, fi);
1431 
1432 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1433 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1434 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1435 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1436 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1437 			extent_end = found_key.offset +
1438 				btrfs_file_extent_num_bytes(leaf, fi);
1439 			disk_num_bytes =
1440 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1441 			/*
1442 			 * If extent we got ends before our range starts, skip
1443 			 * to next extent
1444 			 */
1445 			if (extent_end <= start) {
1446 				path->slots[0]++;
1447 				goto next_slot;
1448 			}
1449 			/* Skip holes */
1450 			if (disk_bytenr == 0)
1451 				goto out_check;
1452 			/* Skip compressed/encrypted/encoded extents */
1453 			if (btrfs_file_extent_compression(leaf, fi) ||
1454 			    btrfs_file_extent_encryption(leaf, fi) ||
1455 			    btrfs_file_extent_other_encoding(leaf, fi))
1456 				goto out_check;
1457 			/*
1458 			 * If extent is created before the last volume's snapshot
1459 			 * this implies the extent is shared, hence we can't do
1460 			 * nocow. This is the same check as in
1461 			 * btrfs_cross_ref_exist but without calling
1462 			 * btrfs_search_slot.
1463 			 */
1464 			if (!freespace_inode &&
1465 			    btrfs_file_extent_generation(leaf, fi) <=
1466 			    btrfs_root_last_snapshot(&root->root_item))
1467 				goto out_check;
1468 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1469 				goto out_check;
1470 			/* If extent is RO, we must COW it */
1471 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1472 				goto out_check;
1473 			ret = btrfs_cross_ref_exist(root, ino,
1474 						    found_key.offset -
1475 						    extent_offset, disk_bytenr);
1476 			if (ret) {
1477 				/*
1478 				 * ret could be -EIO if the above fails to read
1479 				 * metadata.
1480 				 */
1481 				if (ret < 0) {
1482 					if (cow_start != (u64)-1)
1483 						cur_offset = cow_start;
1484 					goto error;
1485 				}
1486 
1487 				WARN_ON_ONCE(freespace_inode);
1488 				goto out_check;
1489 			}
1490 			disk_bytenr += extent_offset;
1491 			disk_bytenr += cur_offset - found_key.offset;
1492 			num_bytes = min(end + 1, extent_end) - cur_offset;
1493 			/*
1494 			 * If there are pending snapshots for this root, we
1495 			 * fall into common COW way
1496 			 */
1497 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1498 				goto out_check;
1499 			/*
1500 			 * force cow if csum exists in the range.
1501 			 * this ensure that csum for a given extent are
1502 			 * either valid or do not exist.
1503 			 */
1504 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1505 						  num_bytes);
1506 			if (ret) {
1507 				/*
1508 				 * ret could be -EIO if the above fails to read
1509 				 * metadata.
1510 				 */
1511 				if (ret < 0) {
1512 					if (cow_start != (u64)-1)
1513 						cur_offset = cow_start;
1514 					goto error;
1515 				}
1516 				WARN_ON_ONCE(freespace_inode);
1517 				goto out_check;
1518 			}
1519 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1520 				goto out_check;
1521 			nocow = true;
1522 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1523 			extent_end = found_key.offset + ram_bytes;
1524 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1525 			/* Skip extents outside of our requested range */
1526 			if (extent_end <= start) {
1527 				path->slots[0]++;
1528 				goto next_slot;
1529 			}
1530 		} else {
1531 			/* If this triggers then we have a memory corruption */
1532 			BUG();
1533 		}
1534 out_check:
1535 		/*
1536 		 * If nocow is false then record the beginning of the range
1537 		 * that needs to be COWed
1538 		 */
1539 		if (!nocow) {
1540 			if (cow_start == (u64)-1)
1541 				cow_start = cur_offset;
1542 			cur_offset = extent_end;
1543 			if (cur_offset > end)
1544 				break;
1545 			path->slots[0]++;
1546 			goto next_slot;
1547 		}
1548 
1549 		btrfs_release_path(path);
1550 
1551 		/*
1552 		 * COW range from cow_start to found_key.offset - 1. As the key
1553 		 * will contain the beginning of the first extent that can be
1554 		 * NOCOW, following one which needs to be COW'ed
1555 		 */
1556 		if (cow_start != (u64)-1) {
1557 			ret = cow_file_range(inode, locked_page,
1558 					     cow_start, found_key.offset - 1,
1559 					     page_started, nr_written, 1);
1560 			if (ret) {
1561 				if (nocow)
1562 					btrfs_dec_nocow_writers(fs_info,
1563 								disk_bytenr);
1564 				goto error;
1565 			}
1566 			cow_start = (u64)-1;
1567 		}
1568 
1569 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1570 			u64 orig_start = found_key.offset - extent_offset;
1571 			struct extent_map *em;
1572 
1573 			em = create_io_em(inode, cur_offset, num_bytes,
1574 					  orig_start,
1575 					  disk_bytenr, /* block_start */
1576 					  num_bytes, /* block_len */
1577 					  disk_num_bytes, /* orig_block_len */
1578 					  ram_bytes, BTRFS_COMPRESS_NONE,
1579 					  BTRFS_ORDERED_PREALLOC);
1580 			if (IS_ERR(em)) {
1581 				if (nocow)
1582 					btrfs_dec_nocow_writers(fs_info,
1583 								disk_bytenr);
1584 				ret = PTR_ERR(em);
1585 				goto error;
1586 			}
1587 			free_extent_map(em);
1588 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1589 						       disk_bytenr, num_bytes,
1590 						       num_bytes,
1591 						       BTRFS_ORDERED_PREALLOC);
1592 			if (ret) {
1593 				btrfs_drop_extent_cache(BTRFS_I(inode),
1594 							cur_offset,
1595 							cur_offset + num_bytes - 1,
1596 							0);
1597 				goto error;
1598 			}
1599 		} else {
1600 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1601 						       disk_bytenr, num_bytes,
1602 						       num_bytes,
1603 						       BTRFS_ORDERED_NOCOW);
1604 			if (ret)
1605 				goto error;
1606 		}
1607 
1608 		if (nocow)
1609 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1610 		nocow = false;
1611 
1612 		if (root->root_key.objectid ==
1613 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1614 			/*
1615 			 * Error handled later, as we must prevent
1616 			 * extent_clear_unlock_delalloc() in error handler
1617 			 * from freeing metadata of created ordered extent.
1618 			 */
1619 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1620 						      num_bytes);
1621 
1622 		extent_clear_unlock_delalloc(inode, cur_offset,
1623 					     cur_offset + num_bytes - 1,
1624 					     locked_page, EXTENT_LOCKED |
1625 					     EXTENT_DELALLOC |
1626 					     EXTENT_CLEAR_DATA_RESV,
1627 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1628 
1629 		cur_offset = extent_end;
1630 
1631 		/*
1632 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1633 		 * handler, as metadata for created ordered extent will only
1634 		 * be freed by btrfs_finish_ordered_io().
1635 		 */
1636 		if (ret)
1637 			goto error;
1638 		if (cur_offset > end)
1639 			break;
1640 	}
1641 	btrfs_release_path(path);
1642 
1643 	if (cur_offset <= end && cow_start == (u64)-1)
1644 		cow_start = cur_offset;
1645 
1646 	if (cow_start != (u64)-1) {
1647 		cur_offset = end;
1648 		ret = cow_file_range(inode, locked_page, cow_start, end,
1649 				     page_started, nr_written, 1);
1650 		if (ret)
1651 			goto error;
1652 	}
1653 
1654 error:
1655 	if (nocow)
1656 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1657 
1658 	if (ret && cur_offset < end)
1659 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1660 					     locked_page, EXTENT_LOCKED |
1661 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1662 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1663 					     PAGE_CLEAR_DIRTY |
1664 					     PAGE_SET_WRITEBACK |
1665 					     PAGE_END_WRITEBACK);
1666 	btrfs_free_path(path);
1667 	return ret;
1668 }
1669 
1670 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1671 {
1672 
1673 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1674 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1675 		return 0;
1676 
1677 	/*
1678 	 * @defrag_bytes is a hint value, no spinlock held here,
1679 	 * if is not zero, it means the file is defragging.
1680 	 * Force cow if given extent needs to be defragged.
1681 	 */
1682 	if (BTRFS_I(inode)->defrag_bytes &&
1683 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1684 			   EXTENT_DEFRAG, 0, NULL))
1685 		return 1;
1686 
1687 	return 0;
1688 }
1689 
1690 /*
1691  * Function to process delayed allocation (create CoW) for ranges which are
1692  * being touched for the first time.
1693  */
1694 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1695 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1696 		struct writeback_control *wbc)
1697 {
1698 	int ret;
1699 	int force_cow = need_force_cow(inode, start, end);
1700 	unsigned int write_flags = wbc_to_write_flags(wbc);
1701 
1702 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1703 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1704 					 page_started, 1, nr_written);
1705 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1706 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1707 					 page_started, 0, nr_written);
1708 	} else if (!inode_can_compress(inode) ||
1709 		   !inode_need_compress(inode, start, end)) {
1710 		ret = cow_file_range(inode, locked_page, start, end,
1711 				      page_started, nr_written, 1);
1712 	} else {
1713 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1714 			&BTRFS_I(inode)->runtime_flags);
1715 		ret = cow_file_range_async(inode, locked_page, start, end,
1716 					   page_started, nr_written,
1717 					   write_flags);
1718 	}
1719 	if (ret)
1720 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1721 					      end - start + 1);
1722 	return ret;
1723 }
1724 
1725 void btrfs_split_delalloc_extent(struct inode *inode,
1726 				 struct extent_state *orig, u64 split)
1727 {
1728 	u64 size;
1729 
1730 	/* not delalloc, ignore it */
1731 	if (!(orig->state & EXTENT_DELALLOC))
1732 		return;
1733 
1734 	size = orig->end - orig->start + 1;
1735 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1736 		u32 num_extents;
1737 		u64 new_size;
1738 
1739 		/*
1740 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1741 		 * applies here, just in reverse.
1742 		 */
1743 		new_size = orig->end - split + 1;
1744 		num_extents = count_max_extents(new_size);
1745 		new_size = split - orig->start;
1746 		num_extents += count_max_extents(new_size);
1747 		if (count_max_extents(size) >= num_extents)
1748 			return;
1749 	}
1750 
1751 	spin_lock(&BTRFS_I(inode)->lock);
1752 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1753 	spin_unlock(&BTRFS_I(inode)->lock);
1754 }
1755 
1756 /*
1757  * Handle merged delayed allocation extents so we can keep track of new extents
1758  * that are just merged onto old extents, such as when we are doing sequential
1759  * writes, so we can properly account for the metadata space we'll need.
1760  */
1761 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1762 				 struct extent_state *other)
1763 {
1764 	u64 new_size, old_size;
1765 	u32 num_extents;
1766 
1767 	/* not delalloc, ignore it */
1768 	if (!(other->state & EXTENT_DELALLOC))
1769 		return;
1770 
1771 	if (new->start > other->start)
1772 		new_size = new->end - other->start + 1;
1773 	else
1774 		new_size = other->end - new->start + 1;
1775 
1776 	/* we're not bigger than the max, unreserve the space and go */
1777 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1778 		spin_lock(&BTRFS_I(inode)->lock);
1779 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1780 		spin_unlock(&BTRFS_I(inode)->lock);
1781 		return;
1782 	}
1783 
1784 	/*
1785 	 * We have to add up either side to figure out how many extents were
1786 	 * accounted for before we merged into one big extent.  If the number of
1787 	 * extents we accounted for is <= the amount we need for the new range
1788 	 * then we can return, otherwise drop.  Think of it like this
1789 	 *
1790 	 * [ 4k][MAX_SIZE]
1791 	 *
1792 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1793 	 * need 2 outstanding extents, on one side we have 1 and the other side
1794 	 * we have 1 so they are == and we can return.  But in this case
1795 	 *
1796 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1797 	 *
1798 	 * Each range on their own accounts for 2 extents, but merged together
1799 	 * they are only 3 extents worth of accounting, so we need to drop in
1800 	 * this case.
1801 	 */
1802 	old_size = other->end - other->start + 1;
1803 	num_extents = count_max_extents(old_size);
1804 	old_size = new->end - new->start + 1;
1805 	num_extents += count_max_extents(old_size);
1806 	if (count_max_extents(new_size) >= num_extents)
1807 		return;
1808 
1809 	spin_lock(&BTRFS_I(inode)->lock);
1810 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1811 	spin_unlock(&BTRFS_I(inode)->lock);
1812 }
1813 
1814 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1815 				      struct inode *inode)
1816 {
1817 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1818 
1819 	spin_lock(&root->delalloc_lock);
1820 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1821 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1822 			      &root->delalloc_inodes);
1823 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1824 			&BTRFS_I(inode)->runtime_flags);
1825 		root->nr_delalloc_inodes++;
1826 		if (root->nr_delalloc_inodes == 1) {
1827 			spin_lock(&fs_info->delalloc_root_lock);
1828 			BUG_ON(!list_empty(&root->delalloc_root));
1829 			list_add_tail(&root->delalloc_root,
1830 				      &fs_info->delalloc_roots);
1831 			spin_unlock(&fs_info->delalloc_root_lock);
1832 		}
1833 	}
1834 	spin_unlock(&root->delalloc_lock);
1835 }
1836 
1837 
1838 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1839 				struct btrfs_inode *inode)
1840 {
1841 	struct btrfs_fs_info *fs_info = root->fs_info;
1842 
1843 	if (!list_empty(&inode->delalloc_inodes)) {
1844 		list_del_init(&inode->delalloc_inodes);
1845 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1846 			  &inode->runtime_flags);
1847 		root->nr_delalloc_inodes--;
1848 		if (!root->nr_delalloc_inodes) {
1849 			ASSERT(list_empty(&root->delalloc_inodes));
1850 			spin_lock(&fs_info->delalloc_root_lock);
1851 			BUG_ON(list_empty(&root->delalloc_root));
1852 			list_del_init(&root->delalloc_root);
1853 			spin_unlock(&fs_info->delalloc_root_lock);
1854 		}
1855 	}
1856 }
1857 
1858 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1859 				     struct btrfs_inode *inode)
1860 {
1861 	spin_lock(&root->delalloc_lock);
1862 	__btrfs_del_delalloc_inode(root, inode);
1863 	spin_unlock(&root->delalloc_lock);
1864 }
1865 
1866 /*
1867  * Properly track delayed allocation bytes in the inode and to maintain the
1868  * list of inodes that have pending delalloc work to be done.
1869  */
1870 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1871 			       unsigned *bits)
1872 {
1873 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1874 
1875 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1876 		WARN_ON(1);
1877 	/*
1878 	 * set_bit and clear bit hooks normally require _irqsave/restore
1879 	 * but in this case, we are only testing for the DELALLOC
1880 	 * bit, which is only set or cleared with irqs on
1881 	 */
1882 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1883 		struct btrfs_root *root = BTRFS_I(inode)->root;
1884 		u64 len = state->end + 1 - state->start;
1885 		u32 num_extents = count_max_extents(len);
1886 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1887 
1888 		spin_lock(&BTRFS_I(inode)->lock);
1889 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1890 		spin_unlock(&BTRFS_I(inode)->lock);
1891 
1892 		/* For sanity tests */
1893 		if (btrfs_is_testing(fs_info))
1894 			return;
1895 
1896 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1897 					 fs_info->delalloc_batch);
1898 		spin_lock(&BTRFS_I(inode)->lock);
1899 		BTRFS_I(inode)->delalloc_bytes += len;
1900 		if (*bits & EXTENT_DEFRAG)
1901 			BTRFS_I(inode)->defrag_bytes += len;
1902 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1903 					 &BTRFS_I(inode)->runtime_flags))
1904 			btrfs_add_delalloc_inodes(root, inode);
1905 		spin_unlock(&BTRFS_I(inode)->lock);
1906 	}
1907 
1908 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1909 	    (*bits & EXTENT_DELALLOC_NEW)) {
1910 		spin_lock(&BTRFS_I(inode)->lock);
1911 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1912 			state->start;
1913 		spin_unlock(&BTRFS_I(inode)->lock);
1914 	}
1915 }
1916 
1917 /*
1918  * Once a range is no longer delalloc this function ensures that proper
1919  * accounting happens.
1920  */
1921 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1922 				 struct extent_state *state, unsigned *bits)
1923 {
1924 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1925 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1926 	u64 len = state->end + 1 - state->start;
1927 	u32 num_extents = count_max_extents(len);
1928 
1929 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1930 		spin_lock(&inode->lock);
1931 		inode->defrag_bytes -= len;
1932 		spin_unlock(&inode->lock);
1933 	}
1934 
1935 	/*
1936 	 * set_bit and clear bit hooks normally require _irqsave/restore
1937 	 * but in this case, we are only testing for the DELALLOC
1938 	 * bit, which is only set or cleared with irqs on
1939 	 */
1940 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1941 		struct btrfs_root *root = inode->root;
1942 		bool do_list = !btrfs_is_free_space_inode(inode);
1943 
1944 		spin_lock(&inode->lock);
1945 		btrfs_mod_outstanding_extents(inode, -num_extents);
1946 		spin_unlock(&inode->lock);
1947 
1948 		/*
1949 		 * We don't reserve metadata space for space cache inodes so we
1950 		 * don't need to call delalloc_release_metadata if there is an
1951 		 * error.
1952 		 */
1953 		if (*bits & EXTENT_CLEAR_META_RESV &&
1954 		    root != fs_info->tree_root)
1955 			btrfs_delalloc_release_metadata(inode, len, false);
1956 
1957 		/* For sanity tests. */
1958 		if (btrfs_is_testing(fs_info))
1959 			return;
1960 
1961 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1962 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1963 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1964 			btrfs_free_reserved_data_space_noquota(
1965 					&inode->vfs_inode,
1966 					state->start, len);
1967 
1968 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1969 					 fs_info->delalloc_batch);
1970 		spin_lock(&inode->lock);
1971 		inode->delalloc_bytes -= len;
1972 		if (do_list && inode->delalloc_bytes == 0 &&
1973 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1974 					&inode->runtime_flags))
1975 			btrfs_del_delalloc_inode(root, inode);
1976 		spin_unlock(&inode->lock);
1977 	}
1978 
1979 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1980 	    (*bits & EXTENT_DELALLOC_NEW)) {
1981 		spin_lock(&inode->lock);
1982 		ASSERT(inode->new_delalloc_bytes >= len);
1983 		inode->new_delalloc_bytes -= len;
1984 		spin_unlock(&inode->lock);
1985 	}
1986 }
1987 
1988 /*
1989  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1990  * in a chunk's stripe. This function ensures that bios do not span a
1991  * stripe/chunk
1992  *
1993  * @page - The page we are about to add to the bio
1994  * @size - size we want to add to the bio
1995  * @bio - bio we want to ensure is smaller than a stripe
1996  * @bio_flags - flags of the bio
1997  *
1998  * return 1 if page cannot be added to the bio
1999  * return 0 if page can be added to the bio
2000  * return error otherwise
2001  */
2002 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2003 			     unsigned long bio_flags)
2004 {
2005 	struct inode *inode = page->mapping->host;
2006 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2007 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2008 	u64 length = 0;
2009 	u64 map_length;
2010 	int ret;
2011 	struct btrfs_io_geometry geom;
2012 
2013 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2014 		return 0;
2015 
2016 	length = bio->bi_iter.bi_size;
2017 	map_length = length;
2018 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2019 				    &geom);
2020 	if (ret < 0)
2021 		return ret;
2022 
2023 	if (geom.len < length + size)
2024 		return 1;
2025 	return 0;
2026 }
2027 
2028 /*
2029  * in order to insert checksums into the metadata in large chunks,
2030  * we wait until bio submission time.   All the pages in the bio are
2031  * checksummed and sums are attached onto the ordered extent record.
2032  *
2033  * At IO completion time the cums attached on the ordered extent record
2034  * are inserted into the btree
2035  */
2036 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2037 				    u64 bio_offset)
2038 {
2039 	struct inode *inode = private_data;
2040 	blk_status_t ret = 0;
2041 
2042 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2043 	BUG_ON(ret); /* -ENOMEM */
2044 	return 0;
2045 }
2046 
2047 /*
2048  * extent_io.c submission hook. This does the right thing for csum calculation
2049  * on write, or reading the csums from the tree before a read.
2050  *
2051  * Rules about async/sync submit,
2052  * a) read:				sync submit
2053  *
2054  * b) write without checksum:		sync submit
2055  *
2056  * c) write with checksum:
2057  *    c-1) if bio is issued by fsync:	sync submit
2058  *         (sync_writers != 0)
2059  *
2060  *    c-2) if root is reloc root:	sync submit
2061  *         (only in case of buffered IO)
2062  *
2063  *    c-3) otherwise:			async submit
2064  */
2065 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2066 					  int mirror_num,
2067 					  unsigned long bio_flags)
2068 
2069 {
2070 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2071 	struct btrfs_root *root = BTRFS_I(inode)->root;
2072 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2073 	blk_status_t ret = 0;
2074 	int skip_sum;
2075 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2076 
2077 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2078 
2079 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2080 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2081 
2082 	if (bio_op(bio) != REQ_OP_WRITE) {
2083 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2084 		if (ret)
2085 			goto out;
2086 
2087 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2088 			ret = btrfs_submit_compressed_read(inode, bio,
2089 							   mirror_num,
2090 							   bio_flags);
2091 			goto out;
2092 		} else if (!skip_sum) {
2093 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2094 			if (ret)
2095 				goto out;
2096 		}
2097 		goto mapit;
2098 	} else if (async && !skip_sum) {
2099 		/* csum items have already been cloned */
2100 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2101 			goto mapit;
2102 		/* we're doing a write, do the async checksumming */
2103 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2104 					  0, inode, btrfs_submit_bio_start);
2105 		goto out;
2106 	} else if (!skip_sum) {
2107 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2108 		if (ret)
2109 			goto out;
2110 	}
2111 
2112 mapit:
2113 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2114 
2115 out:
2116 	if (ret) {
2117 		bio->bi_status = ret;
2118 		bio_endio(bio);
2119 	}
2120 	return ret;
2121 }
2122 
2123 /*
2124  * given a list of ordered sums record them in the inode.  This happens
2125  * at IO completion time based on sums calculated at bio submission time.
2126  */
2127 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2128 			     struct inode *inode, struct list_head *list)
2129 {
2130 	struct btrfs_ordered_sum *sum;
2131 	int ret;
2132 
2133 	list_for_each_entry(sum, list, list) {
2134 		trans->adding_csums = true;
2135 		ret = btrfs_csum_file_blocks(trans,
2136 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2137 		trans->adding_csums = false;
2138 		if (ret)
2139 			return ret;
2140 	}
2141 	return 0;
2142 }
2143 
2144 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2145 			      unsigned int extra_bits,
2146 			      struct extent_state **cached_state)
2147 {
2148 	WARN_ON(PAGE_ALIGNED(end));
2149 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2150 				   extra_bits, cached_state);
2151 }
2152 
2153 /* see btrfs_writepage_start_hook for details on why this is required */
2154 struct btrfs_writepage_fixup {
2155 	struct page *page;
2156 	struct btrfs_work work;
2157 };
2158 
2159 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2160 {
2161 	struct btrfs_writepage_fixup *fixup;
2162 	struct btrfs_ordered_extent *ordered;
2163 	struct extent_state *cached_state = NULL;
2164 	struct extent_changeset *data_reserved = NULL;
2165 	struct page *page;
2166 	struct inode *inode;
2167 	u64 page_start;
2168 	u64 page_end;
2169 	int ret;
2170 
2171 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2172 	page = fixup->page;
2173 again:
2174 	lock_page(page);
2175 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2176 		ClearPageChecked(page);
2177 		goto out_page;
2178 	}
2179 
2180 	inode = page->mapping->host;
2181 	page_start = page_offset(page);
2182 	page_end = page_offset(page) + PAGE_SIZE - 1;
2183 
2184 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2185 			 &cached_state);
2186 
2187 	/* already ordered? We're done */
2188 	if (PagePrivate2(page))
2189 		goto out;
2190 
2191 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2192 					PAGE_SIZE);
2193 	if (ordered) {
2194 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2195 				     page_end, &cached_state);
2196 		unlock_page(page);
2197 		btrfs_start_ordered_extent(inode, ordered, 1);
2198 		btrfs_put_ordered_extent(ordered);
2199 		goto again;
2200 	}
2201 
2202 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2203 					   PAGE_SIZE);
2204 	if (ret) {
2205 		mapping_set_error(page->mapping, ret);
2206 		end_extent_writepage(page, ret, page_start, page_end);
2207 		ClearPageChecked(page);
2208 		goto out;
2209 	 }
2210 
2211 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2212 					&cached_state);
2213 	if (ret) {
2214 		mapping_set_error(page->mapping, ret);
2215 		end_extent_writepage(page, ret, page_start, page_end);
2216 		ClearPageChecked(page);
2217 		goto out;
2218 	}
2219 
2220 	ClearPageChecked(page);
2221 	set_page_dirty(page);
2222 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2223 out:
2224 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2225 			     &cached_state);
2226 out_page:
2227 	unlock_page(page);
2228 	put_page(page);
2229 	kfree(fixup);
2230 	extent_changeset_free(data_reserved);
2231 }
2232 
2233 /*
2234  * There are a few paths in the higher layers of the kernel that directly
2235  * set the page dirty bit without asking the filesystem if it is a
2236  * good idea.  This causes problems because we want to make sure COW
2237  * properly happens and the data=ordered rules are followed.
2238  *
2239  * In our case any range that doesn't have the ORDERED bit set
2240  * hasn't been properly setup for IO.  We kick off an async process
2241  * to fix it up.  The async helper will wait for ordered extents, set
2242  * the delalloc bit and make it safe to write the page.
2243  */
2244 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2245 {
2246 	struct inode *inode = page->mapping->host;
2247 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2248 	struct btrfs_writepage_fixup *fixup;
2249 
2250 	/* this page is properly in the ordered list */
2251 	if (TestClearPagePrivate2(page))
2252 		return 0;
2253 
2254 	if (PageChecked(page))
2255 		return -EAGAIN;
2256 
2257 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2258 	if (!fixup)
2259 		return -EAGAIN;
2260 
2261 	SetPageChecked(page);
2262 	get_page(page);
2263 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2264 			btrfs_writepage_fixup_worker, NULL, NULL);
2265 	fixup->page = page;
2266 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2267 	return -EBUSY;
2268 }
2269 
2270 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2271 				       struct inode *inode, u64 file_pos,
2272 				       u64 disk_bytenr, u64 disk_num_bytes,
2273 				       u64 num_bytes, u64 ram_bytes,
2274 				       u8 compression, u8 encryption,
2275 				       u16 other_encoding, int extent_type)
2276 {
2277 	struct btrfs_root *root = BTRFS_I(inode)->root;
2278 	struct btrfs_file_extent_item *fi;
2279 	struct btrfs_path *path;
2280 	struct extent_buffer *leaf;
2281 	struct btrfs_key ins;
2282 	u64 qg_released;
2283 	int extent_inserted = 0;
2284 	int ret;
2285 
2286 	path = btrfs_alloc_path();
2287 	if (!path)
2288 		return -ENOMEM;
2289 
2290 	/*
2291 	 * we may be replacing one extent in the tree with another.
2292 	 * The new extent is pinned in the extent map, and we don't want
2293 	 * to drop it from the cache until it is completely in the btree.
2294 	 *
2295 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2296 	 * the caller is expected to unpin it and allow it to be merged
2297 	 * with the others.
2298 	 */
2299 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2300 				   file_pos + num_bytes, NULL, 0,
2301 				   1, sizeof(*fi), &extent_inserted);
2302 	if (ret)
2303 		goto out;
2304 
2305 	if (!extent_inserted) {
2306 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2307 		ins.offset = file_pos;
2308 		ins.type = BTRFS_EXTENT_DATA_KEY;
2309 
2310 		path->leave_spinning = 1;
2311 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2312 					      sizeof(*fi));
2313 		if (ret)
2314 			goto out;
2315 	}
2316 	leaf = path->nodes[0];
2317 	fi = btrfs_item_ptr(leaf, path->slots[0],
2318 			    struct btrfs_file_extent_item);
2319 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2320 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2321 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2322 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2323 	btrfs_set_file_extent_offset(leaf, fi, 0);
2324 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2325 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2326 	btrfs_set_file_extent_compression(leaf, fi, compression);
2327 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2328 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2329 
2330 	btrfs_mark_buffer_dirty(leaf);
2331 	btrfs_release_path(path);
2332 
2333 	inode_add_bytes(inode, num_bytes);
2334 
2335 	ins.objectid = disk_bytenr;
2336 	ins.offset = disk_num_bytes;
2337 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2338 
2339 	/*
2340 	 * Release the reserved range from inode dirty range map, as it is
2341 	 * already moved into delayed_ref_head
2342 	 */
2343 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2344 	if (ret < 0)
2345 		goto out;
2346 	qg_released = ret;
2347 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2348 					       btrfs_ino(BTRFS_I(inode)),
2349 					       file_pos, qg_released, &ins);
2350 out:
2351 	btrfs_free_path(path);
2352 
2353 	return ret;
2354 }
2355 
2356 /* snapshot-aware defrag */
2357 struct sa_defrag_extent_backref {
2358 	struct rb_node node;
2359 	struct old_sa_defrag_extent *old;
2360 	u64 root_id;
2361 	u64 inum;
2362 	u64 file_pos;
2363 	u64 extent_offset;
2364 	u64 num_bytes;
2365 	u64 generation;
2366 };
2367 
2368 struct old_sa_defrag_extent {
2369 	struct list_head list;
2370 	struct new_sa_defrag_extent *new;
2371 
2372 	u64 extent_offset;
2373 	u64 bytenr;
2374 	u64 offset;
2375 	u64 len;
2376 	int count;
2377 };
2378 
2379 struct new_sa_defrag_extent {
2380 	struct rb_root root;
2381 	struct list_head head;
2382 	struct btrfs_path *path;
2383 	struct inode *inode;
2384 	u64 file_pos;
2385 	u64 len;
2386 	u64 bytenr;
2387 	u64 disk_len;
2388 	u8 compress_type;
2389 };
2390 
2391 static int backref_comp(struct sa_defrag_extent_backref *b1,
2392 			struct sa_defrag_extent_backref *b2)
2393 {
2394 	if (b1->root_id < b2->root_id)
2395 		return -1;
2396 	else if (b1->root_id > b2->root_id)
2397 		return 1;
2398 
2399 	if (b1->inum < b2->inum)
2400 		return -1;
2401 	else if (b1->inum > b2->inum)
2402 		return 1;
2403 
2404 	if (b1->file_pos < b2->file_pos)
2405 		return -1;
2406 	else if (b1->file_pos > b2->file_pos)
2407 		return 1;
2408 
2409 	/*
2410 	 * [------------------------------] ===> (a range of space)
2411 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2412 	 * |<---------------------------->| ===> (fs/file tree B)
2413 	 *
2414 	 * A range of space can refer to two file extents in one tree while
2415 	 * refer to only one file extent in another tree.
2416 	 *
2417 	 * So we may process a disk offset more than one time(two extents in A)
2418 	 * and locate at the same extent(one extent in B), then insert two same
2419 	 * backrefs(both refer to the extent in B).
2420 	 */
2421 	return 0;
2422 }
2423 
2424 static void backref_insert(struct rb_root *root,
2425 			   struct sa_defrag_extent_backref *backref)
2426 {
2427 	struct rb_node **p = &root->rb_node;
2428 	struct rb_node *parent = NULL;
2429 	struct sa_defrag_extent_backref *entry;
2430 	int ret;
2431 
2432 	while (*p) {
2433 		parent = *p;
2434 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2435 
2436 		ret = backref_comp(backref, entry);
2437 		if (ret < 0)
2438 			p = &(*p)->rb_left;
2439 		else
2440 			p = &(*p)->rb_right;
2441 	}
2442 
2443 	rb_link_node(&backref->node, parent, p);
2444 	rb_insert_color(&backref->node, root);
2445 }
2446 
2447 /*
2448  * Note the backref might has changed, and in this case we just return 0.
2449  */
2450 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2451 				       void *ctx)
2452 {
2453 	struct btrfs_file_extent_item *extent;
2454 	struct old_sa_defrag_extent *old = ctx;
2455 	struct new_sa_defrag_extent *new = old->new;
2456 	struct btrfs_path *path = new->path;
2457 	struct btrfs_key key;
2458 	struct btrfs_root *root;
2459 	struct sa_defrag_extent_backref *backref;
2460 	struct extent_buffer *leaf;
2461 	struct inode *inode = new->inode;
2462 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2463 	int slot;
2464 	int ret;
2465 	u64 extent_offset;
2466 	u64 num_bytes;
2467 
2468 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2469 	    inum == btrfs_ino(BTRFS_I(inode)))
2470 		return 0;
2471 
2472 	key.objectid = root_id;
2473 	key.type = BTRFS_ROOT_ITEM_KEY;
2474 	key.offset = (u64)-1;
2475 
2476 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2477 	if (IS_ERR(root)) {
2478 		if (PTR_ERR(root) == -ENOENT)
2479 			return 0;
2480 		WARN_ON(1);
2481 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2482 			 inum, offset, root_id);
2483 		return PTR_ERR(root);
2484 	}
2485 
2486 	key.objectid = inum;
2487 	key.type = BTRFS_EXTENT_DATA_KEY;
2488 	if (offset > (u64)-1 << 32)
2489 		key.offset = 0;
2490 	else
2491 		key.offset = offset;
2492 
2493 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2494 	if (WARN_ON(ret < 0))
2495 		return ret;
2496 	ret = 0;
2497 
2498 	while (1) {
2499 		cond_resched();
2500 
2501 		leaf = path->nodes[0];
2502 		slot = path->slots[0];
2503 
2504 		if (slot >= btrfs_header_nritems(leaf)) {
2505 			ret = btrfs_next_leaf(root, path);
2506 			if (ret < 0) {
2507 				goto out;
2508 			} else if (ret > 0) {
2509 				ret = 0;
2510 				goto out;
2511 			}
2512 			continue;
2513 		}
2514 
2515 		path->slots[0]++;
2516 
2517 		btrfs_item_key_to_cpu(leaf, &key, slot);
2518 
2519 		if (key.objectid > inum)
2520 			goto out;
2521 
2522 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2523 			continue;
2524 
2525 		extent = btrfs_item_ptr(leaf, slot,
2526 					struct btrfs_file_extent_item);
2527 
2528 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2529 			continue;
2530 
2531 		/*
2532 		 * 'offset' refers to the exact key.offset,
2533 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2534 		 * (key.offset - extent_offset).
2535 		 */
2536 		if (key.offset != offset)
2537 			continue;
2538 
2539 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2540 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2541 
2542 		if (extent_offset >= old->extent_offset + old->offset +
2543 		    old->len || extent_offset + num_bytes <=
2544 		    old->extent_offset + old->offset)
2545 			continue;
2546 		break;
2547 	}
2548 
2549 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2550 	if (!backref) {
2551 		ret = -ENOENT;
2552 		goto out;
2553 	}
2554 
2555 	backref->root_id = root_id;
2556 	backref->inum = inum;
2557 	backref->file_pos = offset;
2558 	backref->num_bytes = num_bytes;
2559 	backref->extent_offset = extent_offset;
2560 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2561 	backref->old = old;
2562 	backref_insert(&new->root, backref);
2563 	old->count++;
2564 out:
2565 	btrfs_release_path(path);
2566 	WARN_ON(ret);
2567 	return ret;
2568 }
2569 
2570 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2571 				   struct new_sa_defrag_extent *new)
2572 {
2573 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2574 	struct old_sa_defrag_extent *old, *tmp;
2575 	int ret;
2576 
2577 	new->path = path;
2578 
2579 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2580 		ret = iterate_inodes_from_logical(old->bytenr +
2581 						  old->extent_offset, fs_info,
2582 						  path, record_one_backref,
2583 						  old, false);
2584 		if (ret < 0 && ret != -ENOENT)
2585 			return false;
2586 
2587 		/* no backref to be processed for this extent */
2588 		if (!old->count) {
2589 			list_del(&old->list);
2590 			kfree(old);
2591 		}
2592 	}
2593 
2594 	if (list_empty(&new->head))
2595 		return false;
2596 
2597 	return true;
2598 }
2599 
2600 static int relink_is_mergable(struct extent_buffer *leaf,
2601 			      struct btrfs_file_extent_item *fi,
2602 			      struct new_sa_defrag_extent *new)
2603 {
2604 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2605 		return 0;
2606 
2607 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2608 		return 0;
2609 
2610 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2611 		return 0;
2612 
2613 	if (btrfs_file_extent_encryption(leaf, fi) ||
2614 	    btrfs_file_extent_other_encoding(leaf, fi))
2615 		return 0;
2616 
2617 	return 1;
2618 }
2619 
2620 /*
2621  * Note the backref might has changed, and in this case we just return 0.
2622  */
2623 static noinline int relink_extent_backref(struct btrfs_path *path,
2624 				 struct sa_defrag_extent_backref *prev,
2625 				 struct sa_defrag_extent_backref *backref)
2626 {
2627 	struct btrfs_file_extent_item *extent;
2628 	struct btrfs_file_extent_item *item;
2629 	struct btrfs_ordered_extent *ordered;
2630 	struct btrfs_trans_handle *trans;
2631 	struct btrfs_ref ref = { 0 };
2632 	struct btrfs_root *root;
2633 	struct btrfs_key key;
2634 	struct extent_buffer *leaf;
2635 	struct old_sa_defrag_extent *old = backref->old;
2636 	struct new_sa_defrag_extent *new = old->new;
2637 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2638 	struct inode *inode;
2639 	struct extent_state *cached = NULL;
2640 	int ret = 0;
2641 	u64 start;
2642 	u64 len;
2643 	u64 lock_start;
2644 	u64 lock_end;
2645 	bool merge = false;
2646 	int index;
2647 
2648 	if (prev && prev->root_id == backref->root_id &&
2649 	    prev->inum == backref->inum &&
2650 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2651 		merge = true;
2652 
2653 	/* step 1: get root */
2654 	key.objectid = backref->root_id;
2655 	key.type = BTRFS_ROOT_ITEM_KEY;
2656 	key.offset = (u64)-1;
2657 
2658 	index = srcu_read_lock(&fs_info->subvol_srcu);
2659 
2660 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2661 	if (IS_ERR(root)) {
2662 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2663 		if (PTR_ERR(root) == -ENOENT)
2664 			return 0;
2665 		return PTR_ERR(root);
2666 	}
2667 
2668 	if (btrfs_root_readonly(root)) {
2669 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2670 		return 0;
2671 	}
2672 
2673 	/* step 2: get inode */
2674 	key.objectid = backref->inum;
2675 	key.type = BTRFS_INODE_ITEM_KEY;
2676 	key.offset = 0;
2677 
2678 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2679 	if (IS_ERR(inode)) {
2680 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2681 		return 0;
2682 	}
2683 
2684 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2685 
2686 	/* step 3: relink backref */
2687 	lock_start = backref->file_pos;
2688 	lock_end = backref->file_pos + backref->num_bytes - 1;
2689 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2690 			 &cached);
2691 
2692 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2693 	if (ordered) {
2694 		btrfs_put_ordered_extent(ordered);
2695 		goto out_unlock;
2696 	}
2697 
2698 	trans = btrfs_join_transaction(root);
2699 	if (IS_ERR(trans)) {
2700 		ret = PTR_ERR(trans);
2701 		goto out_unlock;
2702 	}
2703 
2704 	key.objectid = backref->inum;
2705 	key.type = BTRFS_EXTENT_DATA_KEY;
2706 	key.offset = backref->file_pos;
2707 
2708 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2709 	if (ret < 0) {
2710 		goto out_free_path;
2711 	} else if (ret > 0) {
2712 		ret = 0;
2713 		goto out_free_path;
2714 	}
2715 
2716 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2717 				struct btrfs_file_extent_item);
2718 
2719 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2720 	    backref->generation)
2721 		goto out_free_path;
2722 
2723 	btrfs_release_path(path);
2724 
2725 	start = backref->file_pos;
2726 	if (backref->extent_offset < old->extent_offset + old->offset)
2727 		start += old->extent_offset + old->offset -
2728 			 backref->extent_offset;
2729 
2730 	len = min(backref->extent_offset + backref->num_bytes,
2731 		  old->extent_offset + old->offset + old->len);
2732 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2733 
2734 	ret = btrfs_drop_extents(trans, root, inode, start,
2735 				 start + len, 1);
2736 	if (ret)
2737 		goto out_free_path;
2738 again:
2739 	key.objectid = btrfs_ino(BTRFS_I(inode));
2740 	key.type = BTRFS_EXTENT_DATA_KEY;
2741 	key.offset = start;
2742 
2743 	path->leave_spinning = 1;
2744 	if (merge) {
2745 		struct btrfs_file_extent_item *fi;
2746 		u64 extent_len;
2747 		struct btrfs_key found_key;
2748 
2749 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2750 		if (ret < 0)
2751 			goto out_free_path;
2752 
2753 		path->slots[0]--;
2754 		leaf = path->nodes[0];
2755 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2756 
2757 		fi = btrfs_item_ptr(leaf, path->slots[0],
2758 				    struct btrfs_file_extent_item);
2759 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2760 
2761 		if (extent_len + found_key.offset == start &&
2762 		    relink_is_mergable(leaf, fi, new)) {
2763 			btrfs_set_file_extent_num_bytes(leaf, fi,
2764 							extent_len + len);
2765 			btrfs_mark_buffer_dirty(leaf);
2766 			inode_add_bytes(inode, len);
2767 
2768 			ret = 1;
2769 			goto out_free_path;
2770 		} else {
2771 			merge = false;
2772 			btrfs_release_path(path);
2773 			goto again;
2774 		}
2775 	}
2776 
2777 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2778 					sizeof(*extent));
2779 	if (ret) {
2780 		btrfs_abort_transaction(trans, ret);
2781 		goto out_free_path;
2782 	}
2783 
2784 	leaf = path->nodes[0];
2785 	item = btrfs_item_ptr(leaf, path->slots[0],
2786 				struct btrfs_file_extent_item);
2787 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2788 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2789 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2790 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2791 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2792 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2793 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2794 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2795 	btrfs_set_file_extent_encryption(leaf, item, 0);
2796 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2797 
2798 	btrfs_mark_buffer_dirty(leaf);
2799 	inode_add_bytes(inode, len);
2800 	btrfs_release_path(path);
2801 
2802 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2803 			       new->disk_len, 0);
2804 	btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2805 			    new->file_pos);  /* start - extent_offset */
2806 	ret = btrfs_inc_extent_ref(trans, &ref);
2807 	if (ret) {
2808 		btrfs_abort_transaction(trans, ret);
2809 		goto out_free_path;
2810 	}
2811 
2812 	ret = 1;
2813 out_free_path:
2814 	btrfs_release_path(path);
2815 	path->leave_spinning = 0;
2816 	btrfs_end_transaction(trans);
2817 out_unlock:
2818 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2819 			     &cached);
2820 	iput(inode);
2821 	return ret;
2822 }
2823 
2824 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2825 {
2826 	struct old_sa_defrag_extent *old, *tmp;
2827 
2828 	if (!new)
2829 		return;
2830 
2831 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2832 		kfree(old);
2833 	}
2834 	kfree(new);
2835 }
2836 
2837 static void relink_file_extents(struct new_sa_defrag_extent *new)
2838 {
2839 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2840 	struct btrfs_path *path;
2841 	struct sa_defrag_extent_backref *backref;
2842 	struct sa_defrag_extent_backref *prev = NULL;
2843 	struct rb_node *node;
2844 	int ret;
2845 
2846 	path = btrfs_alloc_path();
2847 	if (!path)
2848 		return;
2849 
2850 	if (!record_extent_backrefs(path, new)) {
2851 		btrfs_free_path(path);
2852 		goto out;
2853 	}
2854 	btrfs_release_path(path);
2855 
2856 	while (1) {
2857 		node = rb_first(&new->root);
2858 		if (!node)
2859 			break;
2860 		rb_erase(node, &new->root);
2861 
2862 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2863 
2864 		ret = relink_extent_backref(path, prev, backref);
2865 		WARN_ON(ret < 0);
2866 
2867 		kfree(prev);
2868 
2869 		if (ret == 1)
2870 			prev = backref;
2871 		else
2872 			prev = NULL;
2873 		cond_resched();
2874 	}
2875 	kfree(prev);
2876 
2877 	btrfs_free_path(path);
2878 out:
2879 	free_sa_defrag_extent(new);
2880 
2881 	atomic_dec(&fs_info->defrag_running);
2882 	wake_up(&fs_info->transaction_wait);
2883 }
2884 
2885 static struct new_sa_defrag_extent *
2886 record_old_file_extents(struct inode *inode,
2887 			struct btrfs_ordered_extent *ordered)
2888 {
2889 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2890 	struct btrfs_root *root = BTRFS_I(inode)->root;
2891 	struct btrfs_path *path;
2892 	struct btrfs_key key;
2893 	struct old_sa_defrag_extent *old;
2894 	struct new_sa_defrag_extent *new;
2895 	int ret;
2896 
2897 	new = kmalloc(sizeof(*new), GFP_NOFS);
2898 	if (!new)
2899 		return NULL;
2900 
2901 	new->inode = inode;
2902 	new->file_pos = ordered->file_offset;
2903 	new->len = ordered->len;
2904 	new->bytenr = ordered->start;
2905 	new->disk_len = ordered->disk_len;
2906 	new->compress_type = ordered->compress_type;
2907 	new->root = RB_ROOT;
2908 	INIT_LIST_HEAD(&new->head);
2909 
2910 	path = btrfs_alloc_path();
2911 	if (!path)
2912 		goto out_kfree;
2913 
2914 	key.objectid = btrfs_ino(BTRFS_I(inode));
2915 	key.type = BTRFS_EXTENT_DATA_KEY;
2916 	key.offset = new->file_pos;
2917 
2918 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2919 	if (ret < 0)
2920 		goto out_free_path;
2921 	if (ret > 0 && path->slots[0] > 0)
2922 		path->slots[0]--;
2923 
2924 	/* find out all the old extents for the file range */
2925 	while (1) {
2926 		struct btrfs_file_extent_item *extent;
2927 		struct extent_buffer *l;
2928 		int slot;
2929 		u64 num_bytes;
2930 		u64 offset;
2931 		u64 end;
2932 		u64 disk_bytenr;
2933 		u64 extent_offset;
2934 
2935 		l = path->nodes[0];
2936 		slot = path->slots[0];
2937 
2938 		if (slot >= btrfs_header_nritems(l)) {
2939 			ret = btrfs_next_leaf(root, path);
2940 			if (ret < 0)
2941 				goto out_free_path;
2942 			else if (ret > 0)
2943 				break;
2944 			continue;
2945 		}
2946 
2947 		btrfs_item_key_to_cpu(l, &key, slot);
2948 
2949 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2950 			break;
2951 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2952 			break;
2953 		if (key.offset >= new->file_pos + new->len)
2954 			break;
2955 
2956 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2957 
2958 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2959 		if (key.offset + num_bytes < new->file_pos)
2960 			goto next;
2961 
2962 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2963 		if (!disk_bytenr)
2964 			goto next;
2965 
2966 		extent_offset = btrfs_file_extent_offset(l, extent);
2967 
2968 		old = kmalloc(sizeof(*old), GFP_NOFS);
2969 		if (!old)
2970 			goto out_free_path;
2971 
2972 		offset = max(new->file_pos, key.offset);
2973 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2974 
2975 		old->bytenr = disk_bytenr;
2976 		old->extent_offset = extent_offset;
2977 		old->offset = offset - key.offset;
2978 		old->len = end - offset;
2979 		old->new = new;
2980 		old->count = 0;
2981 		list_add_tail(&old->list, &new->head);
2982 next:
2983 		path->slots[0]++;
2984 		cond_resched();
2985 	}
2986 
2987 	btrfs_free_path(path);
2988 	atomic_inc(&fs_info->defrag_running);
2989 
2990 	return new;
2991 
2992 out_free_path:
2993 	btrfs_free_path(path);
2994 out_kfree:
2995 	free_sa_defrag_extent(new);
2996 	return NULL;
2997 }
2998 
2999 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3000 					 u64 start, u64 len)
3001 {
3002 	struct btrfs_block_group_cache *cache;
3003 
3004 	cache = btrfs_lookup_block_group(fs_info, start);
3005 	ASSERT(cache);
3006 
3007 	spin_lock(&cache->lock);
3008 	cache->delalloc_bytes -= len;
3009 	spin_unlock(&cache->lock);
3010 
3011 	btrfs_put_block_group(cache);
3012 }
3013 
3014 /* as ordered data IO finishes, this gets called so we can finish
3015  * an ordered extent if the range of bytes in the file it covers are
3016  * fully written.
3017  */
3018 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3019 {
3020 	struct inode *inode = ordered_extent->inode;
3021 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3022 	struct btrfs_root *root = BTRFS_I(inode)->root;
3023 	struct btrfs_trans_handle *trans = NULL;
3024 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3025 	struct extent_state *cached_state = NULL;
3026 	struct new_sa_defrag_extent *new = NULL;
3027 	int compress_type = 0;
3028 	int ret = 0;
3029 	u64 logical_len = ordered_extent->len;
3030 	bool nolock;
3031 	bool truncated = false;
3032 	bool range_locked = false;
3033 	bool clear_new_delalloc_bytes = false;
3034 	bool clear_reserved_extent = true;
3035 
3036 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3037 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3038 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3039 		clear_new_delalloc_bytes = true;
3040 
3041 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3042 
3043 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3044 		ret = -EIO;
3045 		goto out;
3046 	}
3047 
3048 	btrfs_free_io_failure_record(BTRFS_I(inode),
3049 			ordered_extent->file_offset,
3050 			ordered_extent->file_offset +
3051 			ordered_extent->len - 1);
3052 
3053 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3054 		truncated = true;
3055 		logical_len = ordered_extent->truncated_len;
3056 		/* Truncated the entire extent, don't bother adding */
3057 		if (!logical_len)
3058 			goto out;
3059 	}
3060 
3061 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3062 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3063 
3064 		/*
3065 		 * For mwrite(mmap + memset to write) case, we still reserve
3066 		 * space for NOCOW range.
3067 		 * As NOCOW won't cause a new delayed ref, just free the space
3068 		 */
3069 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3070 				       ordered_extent->len);
3071 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3072 		if (nolock)
3073 			trans = btrfs_join_transaction_nolock(root);
3074 		else
3075 			trans = btrfs_join_transaction(root);
3076 		if (IS_ERR(trans)) {
3077 			ret = PTR_ERR(trans);
3078 			trans = NULL;
3079 			goto out;
3080 		}
3081 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3082 		ret = btrfs_update_inode_fallback(trans, root, inode);
3083 		if (ret) /* -ENOMEM or corruption */
3084 			btrfs_abort_transaction(trans, ret);
3085 		goto out;
3086 	}
3087 
3088 	range_locked = true;
3089 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3090 			 ordered_extent->file_offset + ordered_extent->len - 1,
3091 			 &cached_state);
3092 
3093 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3094 			ordered_extent->file_offset + ordered_extent->len - 1,
3095 			EXTENT_DEFRAG, 0, cached_state);
3096 	if (ret) {
3097 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3098 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3099 			/* the inode is shared */
3100 			new = record_old_file_extents(inode, ordered_extent);
3101 
3102 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3103 			ordered_extent->file_offset + ordered_extent->len - 1,
3104 			EXTENT_DEFRAG, 0, 0, &cached_state);
3105 	}
3106 
3107 	if (nolock)
3108 		trans = btrfs_join_transaction_nolock(root);
3109 	else
3110 		trans = btrfs_join_transaction(root);
3111 	if (IS_ERR(trans)) {
3112 		ret = PTR_ERR(trans);
3113 		trans = NULL;
3114 		goto out;
3115 	}
3116 
3117 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3118 
3119 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3120 		compress_type = ordered_extent->compress_type;
3121 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3122 		BUG_ON(compress_type);
3123 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3124 				       ordered_extent->len);
3125 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3126 						ordered_extent->file_offset,
3127 						ordered_extent->file_offset +
3128 						logical_len);
3129 	} else {
3130 		BUG_ON(root == fs_info->tree_root);
3131 		ret = insert_reserved_file_extent(trans, inode,
3132 						ordered_extent->file_offset,
3133 						ordered_extent->start,
3134 						ordered_extent->disk_len,
3135 						logical_len, logical_len,
3136 						compress_type, 0, 0,
3137 						BTRFS_FILE_EXTENT_REG);
3138 		if (!ret) {
3139 			clear_reserved_extent = false;
3140 			btrfs_release_delalloc_bytes(fs_info,
3141 						     ordered_extent->start,
3142 						     ordered_extent->disk_len);
3143 		}
3144 	}
3145 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3146 			   ordered_extent->file_offset, ordered_extent->len,
3147 			   trans->transid);
3148 	if (ret < 0) {
3149 		btrfs_abort_transaction(trans, ret);
3150 		goto out;
3151 	}
3152 
3153 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3154 	if (ret) {
3155 		btrfs_abort_transaction(trans, ret);
3156 		goto out;
3157 	}
3158 
3159 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3160 	ret = btrfs_update_inode_fallback(trans, root, inode);
3161 	if (ret) { /* -ENOMEM or corruption */
3162 		btrfs_abort_transaction(trans, ret);
3163 		goto out;
3164 	}
3165 	ret = 0;
3166 out:
3167 	if (range_locked || clear_new_delalloc_bytes) {
3168 		unsigned int clear_bits = 0;
3169 
3170 		if (range_locked)
3171 			clear_bits |= EXTENT_LOCKED;
3172 		if (clear_new_delalloc_bytes)
3173 			clear_bits |= EXTENT_DELALLOC_NEW;
3174 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3175 				 ordered_extent->file_offset,
3176 				 ordered_extent->file_offset +
3177 				 ordered_extent->len - 1,
3178 				 clear_bits,
3179 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3180 				 0, &cached_state);
3181 	}
3182 
3183 	if (trans)
3184 		btrfs_end_transaction(trans);
3185 
3186 	if (ret || truncated) {
3187 		u64 start, end;
3188 
3189 		if (truncated)
3190 			start = ordered_extent->file_offset + logical_len;
3191 		else
3192 			start = ordered_extent->file_offset;
3193 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3194 		clear_extent_uptodate(io_tree, start, end, NULL);
3195 
3196 		/* Drop the cache for the part of the extent we didn't write. */
3197 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3198 
3199 		/*
3200 		 * If the ordered extent had an IOERR or something else went
3201 		 * wrong we need to return the space for this ordered extent
3202 		 * back to the allocator.  We only free the extent in the
3203 		 * truncated case if we didn't write out the extent at all.
3204 		 *
3205 		 * If we made it past insert_reserved_file_extent before we
3206 		 * errored out then we don't need to do this as the accounting
3207 		 * has already been done.
3208 		 */
3209 		if ((ret || !logical_len) &&
3210 		    clear_reserved_extent &&
3211 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3212 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3213 			btrfs_free_reserved_extent(fs_info,
3214 						   ordered_extent->start,
3215 						   ordered_extent->disk_len, 1);
3216 	}
3217 
3218 
3219 	/*
3220 	 * This needs to be done to make sure anybody waiting knows we are done
3221 	 * updating everything for this ordered extent.
3222 	 */
3223 	btrfs_remove_ordered_extent(inode, ordered_extent);
3224 
3225 	/* for snapshot-aware defrag */
3226 	if (new) {
3227 		if (ret) {
3228 			free_sa_defrag_extent(new);
3229 			atomic_dec(&fs_info->defrag_running);
3230 		} else {
3231 			relink_file_extents(new);
3232 		}
3233 	}
3234 
3235 	/* once for us */
3236 	btrfs_put_ordered_extent(ordered_extent);
3237 	/* once for the tree */
3238 	btrfs_put_ordered_extent(ordered_extent);
3239 
3240 	return ret;
3241 }
3242 
3243 static void finish_ordered_fn(struct btrfs_work *work)
3244 {
3245 	struct btrfs_ordered_extent *ordered_extent;
3246 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3247 	btrfs_finish_ordered_io(ordered_extent);
3248 }
3249 
3250 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3251 					  u64 end, int uptodate)
3252 {
3253 	struct inode *inode = page->mapping->host;
3254 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3255 	struct btrfs_ordered_extent *ordered_extent = NULL;
3256 	struct btrfs_workqueue *wq;
3257 	btrfs_work_func_t func;
3258 
3259 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3260 
3261 	ClearPagePrivate2(page);
3262 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3263 					    end - start + 1, uptodate))
3264 		return;
3265 
3266 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3267 		wq = fs_info->endio_freespace_worker;
3268 		func = btrfs_freespace_write_helper;
3269 	} else {
3270 		wq = fs_info->endio_write_workers;
3271 		func = btrfs_endio_write_helper;
3272 	}
3273 
3274 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3275 			NULL);
3276 	btrfs_queue_work(wq, &ordered_extent->work);
3277 }
3278 
3279 static int __readpage_endio_check(struct inode *inode,
3280 				  struct btrfs_io_bio *io_bio,
3281 				  int icsum, struct page *page,
3282 				  int pgoff, u64 start, size_t len)
3283 {
3284 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3285 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3286 	char *kaddr;
3287 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3288 	u8 *csum_expected;
3289 	u8 csum[BTRFS_CSUM_SIZE];
3290 
3291 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3292 
3293 	kaddr = kmap_atomic(page);
3294 	shash->tfm = fs_info->csum_shash;
3295 
3296 	crypto_shash_init(shash);
3297 	crypto_shash_update(shash, kaddr + pgoff, len);
3298 	crypto_shash_final(shash, csum);
3299 
3300 	if (memcmp(csum, csum_expected, csum_size))
3301 		goto zeroit;
3302 
3303 	kunmap_atomic(kaddr);
3304 	return 0;
3305 zeroit:
3306 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3307 				    io_bio->mirror_num);
3308 	memset(kaddr + pgoff, 1, len);
3309 	flush_dcache_page(page);
3310 	kunmap_atomic(kaddr);
3311 	return -EIO;
3312 }
3313 
3314 /*
3315  * when reads are done, we need to check csums to verify the data is correct
3316  * if there's a match, we allow the bio to finish.  If not, the code in
3317  * extent_io.c will try to find good copies for us.
3318  */
3319 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3320 				      u64 phy_offset, struct page *page,
3321 				      u64 start, u64 end, int mirror)
3322 {
3323 	size_t offset = start - page_offset(page);
3324 	struct inode *inode = page->mapping->host;
3325 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3326 	struct btrfs_root *root = BTRFS_I(inode)->root;
3327 
3328 	if (PageChecked(page)) {
3329 		ClearPageChecked(page);
3330 		return 0;
3331 	}
3332 
3333 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3334 		return 0;
3335 
3336 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3337 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3338 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3339 		return 0;
3340 	}
3341 
3342 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3343 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3344 				      start, (size_t)(end - start + 1));
3345 }
3346 
3347 /*
3348  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3349  *
3350  * @inode: The inode we want to perform iput on
3351  *
3352  * This function uses the generic vfs_inode::i_count to track whether we should
3353  * just decrement it (in case it's > 1) or if this is the last iput then link
3354  * the inode to the delayed iput machinery. Delayed iputs are processed at
3355  * transaction commit time/superblock commit/cleaner kthread.
3356  */
3357 void btrfs_add_delayed_iput(struct inode *inode)
3358 {
3359 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3360 	struct btrfs_inode *binode = BTRFS_I(inode);
3361 
3362 	if (atomic_add_unless(&inode->i_count, -1, 1))
3363 		return;
3364 
3365 	atomic_inc(&fs_info->nr_delayed_iputs);
3366 	spin_lock(&fs_info->delayed_iput_lock);
3367 	ASSERT(list_empty(&binode->delayed_iput));
3368 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3369 	spin_unlock(&fs_info->delayed_iput_lock);
3370 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3371 		wake_up_process(fs_info->cleaner_kthread);
3372 }
3373 
3374 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3375 				    struct btrfs_inode *inode)
3376 {
3377 	list_del_init(&inode->delayed_iput);
3378 	spin_unlock(&fs_info->delayed_iput_lock);
3379 	iput(&inode->vfs_inode);
3380 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3381 		wake_up(&fs_info->delayed_iputs_wait);
3382 	spin_lock(&fs_info->delayed_iput_lock);
3383 }
3384 
3385 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3386 				   struct btrfs_inode *inode)
3387 {
3388 	if (!list_empty(&inode->delayed_iput)) {
3389 		spin_lock(&fs_info->delayed_iput_lock);
3390 		if (!list_empty(&inode->delayed_iput))
3391 			run_delayed_iput_locked(fs_info, inode);
3392 		spin_unlock(&fs_info->delayed_iput_lock);
3393 	}
3394 }
3395 
3396 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3397 {
3398 
3399 	spin_lock(&fs_info->delayed_iput_lock);
3400 	while (!list_empty(&fs_info->delayed_iputs)) {
3401 		struct btrfs_inode *inode;
3402 
3403 		inode = list_first_entry(&fs_info->delayed_iputs,
3404 				struct btrfs_inode, delayed_iput);
3405 		run_delayed_iput_locked(fs_info, inode);
3406 	}
3407 	spin_unlock(&fs_info->delayed_iput_lock);
3408 }
3409 
3410 /**
3411  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3412  * @fs_info - the fs_info for this fs
3413  * @return - EINTR if we were killed, 0 if nothing's pending
3414  *
3415  * This will wait on any delayed iputs that are currently running with KILLABLE
3416  * set.  Once they are all done running we will return, unless we are killed in
3417  * which case we return EINTR. This helps in user operations like fallocate etc
3418  * that might get blocked on the iputs.
3419  */
3420 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3421 {
3422 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3423 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3424 	if (ret)
3425 		return -EINTR;
3426 	return 0;
3427 }
3428 
3429 /*
3430  * This creates an orphan entry for the given inode in case something goes wrong
3431  * in the middle of an unlink.
3432  */
3433 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3434 		     struct btrfs_inode *inode)
3435 {
3436 	int ret;
3437 
3438 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3439 	if (ret && ret != -EEXIST) {
3440 		btrfs_abort_transaction(trans, ret);
3441 		return ret;
3442 	}
3443 
3444 	return 0;
3445 }
3446 
3447 /*
3448  * We have done the delete so we can go ahead and remove the orphan item for
3449  * this particular inode.
3450  */
3451 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3452 			    struct btrfs_inode *inode)
3453 {
3454 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3455 }
3456 
3457 /*
3458  * this cleans up any orphans that may be left on the list from the last use
3459  * of this root.
3460  */
3461 int btrfs_orphan_cleanup(struct btrfs_root *root)
3462 {
3463 	struct btrfs_fs_info *fs_info = root->fs_info;
3464 	struct btrfs_path *path;
3465 	struct extent_buffer *leaf;
3466 	struct btrfs_key key, found_key;
3467 	struct btrfs_trans_handle *trans;
3468 	struct inode *inode;
3469 	u64 last_objectid = 0;
3470 	int ret = 0, nr_unlink = 0;
3471 
3472 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3473 		return 0;
3474 
3475 	path = btrfs_alloc_path();
3476 	if (!path) {
3477 		ret = -ENOMEM;
3478 		goto out;
3479 	}
3480 	path->reada = READA_BACK;
3481 
3482 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3483 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3484 	key.offset = (u64)-1;
3485 
3486 	while (1) {
3487 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3488 		if (ret < 0)
3489 			goto out;
3490 
3491 		/*
3492 		 * if ret == 0 means we found what we were searching for, which
3493 		 * is weird, but possible, so only screw with path if we didn't
3494 		 * find the key and see if we have stuff that matches
3495 		 */
3496 		if (ret > 0) {
3497 			ret = 0;
3498 			if (path->slots[0] == 0)
3499 				break;
3500 			path->slots[0]--;
3501 		}
3502 
3503 		/* pull out the item */
3504 		leaf = path->nodes[0];
3505 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3506 
3507 		/* make sure the item matches what we want */
3508 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3509 			break;
3510 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3511 			break;
3512 
3513 		/* release the path since we're done with it */
3514 		btrfs_release_path(path);
3515 
3516 		/*
3517 		 * this is where we are basically btrfs_lookup, without the
3518 		 * crossing root thing.  we store the inode number in the
3519 		 * offset of the orphan item.
3520 		 */
3521 
3522 		if (found_key.offset == last_objectid) {
3523 			btrfs_err(fs_info,
3524 				  "Error removing orphan entry, stopping orphan cleanup");
3525 			ret = -EINVAL;
3526 			goto out;
3527 		}
3528 
3529 		last_objectid = found_key.offset;
3530 
3531 		found_key.objectid = found_key.offset;
3532 		found_key.type = BTRFS_INODE_ITEM_KEY;
3533 		found_key.offset = 0;
3534 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3535 		ret = PTR_ERR_OR_ZERO(inode);
3536 		if (ret && ret != -ENOENT)
3537 			goto out;
3538 
3539 		if (ret == -ENOENT && root == fs_info->tree_root) {
3540 			struct btrfs_root *dead_root;
3541 			struct btrfs_fs_info *fs_info = root->fs_info;
3542 			int is_dead_root = 0;
3543 
3544 			/*
3545 			 * this is an orphan in the tree root. Currently these
3546 			 * could come from 2 sources:
3547 			 *  a) a snapshot deletion in progress
3548 			 *  b) a free space cache inode
3549 			 * We need to distinguish those two, as the snapshot
3550 			 * orphan must not get deleted.
3551 			 * find_dead_roots already ran before us, so if this
3552 			 * is a snapshot deletion, we should find the root
3553 			 * in the dead_roots list
3554 			 */
3555 			spin_lock(&fs_info->trans_lock);
3556 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3557 					    root_list) {
3558 				if (dead_root->root_key.objectid ==
3559 				    found_key.objectid) {
3560 					is_dead_root = 1;
3561 					break;
3562 				}
3563 			}
3564 			spin_unlock(&fs_info->trans_lock);
3565 			if (is_dead_root) {
3566 				/* prevent this orphan from being found again */
3567 				key.offset = found_key.objectid - 1;
3568 				continue;
3569 			}
3570 
3571 		}
3572 
3573 		/*
3574 		 * If we have an inode with links, there are a couple of
3575 		 * possibilities. Old kernels (before v3.12) used to create an
3576 		 * orphan item for truncate indicating that there were possibly
3577 		 * extent items past i_size that needed to be deleted. In v3.12,
3578 		 * truncate was changed to update i_size in sync with the extent
3579 		 * items, but the (useless) orphan item was still created. Since
3580 		 * v4.18, we don't create the orphan item for truncate at all.
3581 		 *
3582 		 * So, this item could mean that we need to do a truncate, but
3583 		 * only if this filesystem was last used on a pre-v3.12 kernel
3584 		 * and was not cleanly unmounted. The odds of that are quite
3585 		 * slim, and it's a pain to do the truncate now, so just delete
3586 		 * the orphan item.
3587 		 *
3588 		 * It's also possible that this orphan item was supposed to be
3589 		 * deleted but wasn't. The inode number may have been reused,
3590 		 * but either way, we can delete the orphan item.
3591 		 */
3592 		if (ret == -ENOENT || inode->i_nlink) {
3593 			if (!ret)
3594 				iput(inode);
3595 			trans = btrfs_start_transaction(root, 1);
3596 			if (IS_ERR(trans)) {
3597 				ret = PTR_ERR(trans);
3598 				goto out;
3599 			}
3600 			btrfs_debug(fs_info, "auto deleting %Lu",
3601 				    found_key.objectid);
3602 			ret = btrfs_del_orphan_item(trans, root,
3603 						    found_key.objectid);
3604 			btrfs_end_transaction(trans);
3605 			if (ret)
3606 				goto out;
3607 			continue;
3608 		}
3609 
3610 		nr_unlink++;
3611 
3612 		/* this will do delete_inode and everything for us */
3613 		iput(inode);
3614 	}
3615 	/* release the path since we're done with it */
3616 	btrfs_release_path(path);
3617 
3618 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3619 
3620 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3621 		trans = btrfs_join_transaction(root);
3622 		if (!IS_ERR(trans))
3623 			btrfs_end_transaction(trans);
3624 	}
3625 
3626 	if (nr_unlink)
3627 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3628 
3629 out:
3630 	if (ret)
3631 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3632 	btrfs_free_path(path);
3633 	return ret;
3634 }
3635 
3636 /*
3637  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3638  * don't find any xattrs, we know there can't be any acls.
3639  *
3640  * slot is the slot the inode is in, objectid is the objectid of the inode
3641  */
3642 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3643 					  int slot, u64 objectid,
3644 					  int *first_xattr_slot)
3645 {
3646 	u32 nritems = btrfs_header_nritems(leaf);
3647 	struct btrfs_key found_key;
3648 	static u64 xattr_access = 0;
3649 	static u64 xattr_default = 0;
3650 	int scanned = 0;
3651 
3652 	if (!xattr_access) {
3653 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3654 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3655 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3656 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3657 	}
3658 
3659 	slot++;
3660 	*first_xattr_slot = -1;
3661 	while (slot < nritems) {
3662 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3663 
3664 		/* we found a different objectid, there must not be acls */
3665 		if (found_key.objectid != objectid)
3666 			return 0;
3667 
3668 		/* we found an xattr, assume we've got an acl */
3669 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3670 			if (*first_xattr_slot == -1)
3671 				*first_xattr_slot = slot;
3672 			if (found_key.offset == xattr_access ||
3673 			    found_key.offset == xattr_default)
3674 				return 1;
3675 		}
3676 
3677 		/*
3678 		 * we found a key greater than an xattr key, there can't
3679 		 * be any acls later on
3680 		 */
3681 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3682 			return 0;
3683 
3684 		slot++;
3685 		scanned++;
3686 
3687 		/*
3688 		 * it goes inode, inode backrefs, xattrs, extents,
3689 		 * so if there are a ton of hard links to an inode there can
3690 		 * be a lot of backrefs.  Don't waste time searching too hard,
3691 		 * this is just an optimization
3692 		 */
3693 		if (scanned >= 8)
3694 			break;
3695 	}
3696 	/* we hit the end of the leaf before we found an xattr or
3697 	 * something larger than an xattr.  We have to assume the inode
3698 	 * has acls
3699 	 */
3700 	if (*first_xattr_slot == -1)
3701 		*first_xattr_slot = slot;
3702 	return 1;
3703 }
3704 
3705 /*
3706  * read an inode from the btree into the in-memory inode
3707  */
3708 static int btrfs_read_locked_inode(struct inode *inode,
3709 				   struct btrfs_path *in_path)
3710 {
3711 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3712 	struct btrfs_path *path = in_path;
3713 	struct extent_buffer *leaf;
3714 	struct btrfs_inode_item *inode_item;
3715 	struct btrfs_root *root = BTRFS_I(inode)->root;
3716 	struct btrfs_key location;
3717 	unsigned long ptr;
3718 	int maybe_acls;
3719 	u32 rdev;
3720 	int ret;
3721 	bool filled = false;
3722 	int first_xattr_slot;
3723 
3724 	ret = btrfs_fill_inode(inode, &rdev);
3725 	if (!ret)
3726 		filled = true;
3727 
3728 	if (!path) {
3729 		path = btrfs_alloc_path();
3730 		if (!path)
3731 			return -ENOMEM;
3732 	}
3733 
3734 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3735 
3736 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3737 	if (ret) {
3738 		if (path != in_path)
3739 			btrfs_free_path(path);
3740 		return ret;
3741 	}
3742 
3743 	leaf = path->nodes[0];
3744 
3745 	if (filled)
3746 		goto cache_index;
3747 
3748 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3749 				    struct btrfs_inode_item);
3750 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3751 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3752 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3753 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3754 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3755 
3756 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3757 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3758 
3759 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3760 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3761 
3762 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3763 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3764 
3765 	BTRFS_I(inode)->i_otime.tv_sec =
3766 		btrfs_timespec_sec(leaf, &inode_item->otime);
3767 	BTRFS_I(inode)->i_otime.tv_nsec =
3768 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3769 
3770 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3771 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3772 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3773 
3774 	inode_set_iversion_queried(inode,
3775 				   btrfs_inode_sequence(leaf, inode_item));
3776 	inode->i_generation = BTRFS_I(inode)->generation;
3777 	inode->i_rdev = 0;
3778 	rdev = btrfs_inode_rdev(leaf, inode_item);
3779 
3780 	BTRFS_I(inode)->index_cnt = (u64)-1;
3781 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3782 
3783 cache_index:
3784 	/*
3785 	 * If we were modified in the current generation and evicted from memory
3786 	 * and then re-read we need to do a full sync since we don't have any
3787 	 * idea about which extents were modified before we were evicted from
3788 	 * cache.
3789 	 *
3790 	 * This is required for both inode re-read from disk and delayed inode
3791 	 * in delayed_nodes_tree.
3792 	 */
3793 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3794 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3795 			&BTRFS_I(inode)->runtime_flags);
3796 
3797 	/*
3798 	 * We don't persist the id of the transaction where an unlink operation
3799 	 * against the inode was last made. So here we assume the inode might
3800 	 * have been evicted, and therefore the exact value of last_unlink_trans
3801 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3802 	 * between the inode and its parent if the inode is fsync'ed and the log
3803 	 * replayed. For example, in the scenario:
3804 	 *
3805 	 * touch mydir/foo
3806 	 * ln mydir/foo mydir/bar
3807 	 * sync
3808 	 * unlink mydir/bar
3809 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3810 	 * xfs_io -c fsync mydir/foo
3811 	 * <power failure>
3812 	 * mount fs, triggers fsync log replay
3813 	 *
3814 	 * We must make sure that when we fsync our inode foo we also log its
3815 	 * parent inode, otherwise after log replay the parent still has the
3816 	 * dentry with the "bar" name but our inode foo has a link count of 1
3817 	 * and doesn't have an inode ref with the name "bar" anymore.
3818 	 *
3819 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3820 	 * but it guarantees correctness at the expense of occasional full
3821 	 * transaction commits on fsync if our inode is a directory, or if our
3822 	 * inode is not a directory, logging its parent unnecessarily.
3823 	 */
3824 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3825 
3826 	path->slots[0]++;
3827 	if (inode->i_nlink != 1 ||
3828 	    path->slots[0] >= btrfs_header_nritems(leaf))
3829 		goto cache_acl;
3830 
3831 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3832 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3833 		goto cache_acl;
3834 
3835 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3836 	if (location.type == BTRFS_INODE_REF_KEY) {
3837 		struct btrfs_inode_ref *ref;
3838 
3839 		ref = (struct btrfs_inode_ref *)ptr;
3840 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3841 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3842 		struct btrfs_inode_extref *extref;
3843 
3844 		extref = (struct btrfs_inode_extref *)ptr;
3845 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3846 								     extref);
3847 	}
3848 cache_acl:
3849 	/*
3850 	 * try to precache a NULL acl entry for files that don't have
3851 	 * any xattrs or acls
3852 	 */
3853 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3854 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3855 	if (first_xattr_slot != -1) {
3856 		path->slots[0] = first_xattr_slot;
3857 		ret = btrfs_load_inode_props(inode, path);
3858 		if (ret)
3859 			btrfs_err(fs_info,
3860 				  "error loading props for ino %llu (root %llu): %d",
3861 				  btrfs_ino(BTRFS_I(inode)),
3862 				  root->root_key.objectid, ret);
3863 	}
3864 	if (path != in_path)
3865 		btrfs_free_path(path);
3866 
3867 	if (!maybe_acls)
3868 		cache_no_acl(inode);
3869 
3870 	switch (inode->i_mode & S_IFMT) {
3871 	case S_IFREG:
3872 		inode->i_mapping->a_ops = &btrfs_aops;
3873 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3874 		inode->i_fop = &btrfs_file_operations;
3875 		inode->i_op = &btrfs_file_inode_operations;
3876 		break;
3877 	case S_IFDIR:
3878 		inode->i_fop = &btrfs_dir_file_operations;
3879 		inode->i_op = &btrfs_dir_inode_operations;
3880 		break;
3881 	case S_IFLNK:
3882 		inode->i_op = &btrfs_symlink_inode_operations;
3883 		inode_nohighmem(inode);
3884 		inode->i_mapping->a_ops = &btrfs_aops;
3885 		break;
3886 	default:
3887 		inode->i_op = &btrfs_special_inode_operations;
3888 		init_special_inode(inode, inode->i_mode, rdev);
3889 		break;
3890 	}
3891 
3892 	btrfs_sync_inode_flags_to_i_flags(inode);
3893 	return 0;
3894 }
3895 
3896 /*
3897  * given a leaf and an inode, copy the inode fields into the leaf
3898  */
3899 static void fill_inode_item(struct btrfs_trans_handle *trans,
3900 			    struct extent_buffer *leaf,
3901 			    struct btrfs_inode_item *item,
3902 			    struct inode *inode)
3903 {
3904 	struct btrfs_map_token token;
3905 
3906 	btrfs_init_map_token(&token, leaf);
3907 
3908 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3909 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3910 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3911 				   &token);
3912 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3913 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3914 
3915 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3916 				     inode->i_atime.tv_sec, &token);
3917 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3918 				      inode->i_atime.tv_nsec, &token);
3919 
3920 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3921 				     inode->i_mtime.tv_sec, &token);
3922 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3923 				      inode->i_mtime.tv_nsec, &token);
3924 
3925 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3926 				     inode->i_ctime.tv_sec, &token);
3927 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3928 				      inode->i_ctime.tv_nsec, &token);
3929 
3930 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3931 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3932 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3933 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3934 
3935 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3936 				     &token);
3937 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3938 					 &token);
3939 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3940 				       &token);
3941 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3942 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3943 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3944 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3945 }
3946 
3947 /*
3948  * copy everything in the in-memory inode into the btree.
3949  */
3950 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3951 				struct btrfs_root *root, struct inode *inode)
3952 {
3953 	struct btrfs_inode_item *inode_item;
3954 	struct btrfs_path *path;
3955 	struct extent_buffer *leaf;
3956 	int ret;
3957 
3958 	path = btrfs_alloc_path();
3959 	if (!path)
3960 		return -ENOMEM;
3961 
3962 	path->leave_spinning = 1;
3963 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3964 				 1);
3965 	if (ret) {
3966 		if (ret > 0)
3967 			ret = -ENOENT;
3968 		goto failed;
3969 	}
3970 
3971 	leaf = path->nodes[0];
3972 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3973 				    struct btrfs_inode_item);
3974 
3975 	fill_inode_item(trans, leaf, inode_item, inode);
3976 	btrfs_mark_buffer_dirty(leaf);
3977 	btrfs_set_inode_last_trans(trans, inode);
3978 	ret = 0;
3979 failed:
3980 	btrfs_free_path(path);
3981 	return ret;
3982 }
3983 
3984 /*
3985  * copy everything in the in-memory inode into the btree.
3986  */
3987 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3988 				struct btrfs_root *root, struct inode *inode)
3989 {
3990 	struct btrfs_fs_info *fs_info = root->fs_info;
3991 	int ret;
3992 
3993 	/*
3994 	 * If the inode is a free space inode, we can deadlock during commit
3995 	 * if we put it into the delayed code.
3996 	 *
3997 	 * The data relocation inode should also be directly updated
3998 	 * without delay
3999 	 */
4000 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4001 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4002 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4003 		btrfs_update_root_times(trans, root);
4004 
4005 		ret = btrfs_delayed_update_inode(trans, root, inode);
4006 		if (!ret)
4007 			btrfs_set_inode_last_trans(trans, inode);
4008 		return ret;
4009 	}
4010 
4011 	return btrfs_update_inode_item(trans, root, inode);
4012 }
4013 
4014 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4015 					 struct btrfs_root *root,
4016 					 struct inode *inode)
4017 {
4018 	int ret;
4019 
4020 	ret = btrfs_update_inode(trans, root, inode);
4021 	if (ret == -ENOSPC)
4022 		return btrfs_update_inode_item(trans, root, inode);
4023 	return ret;
4024 }
4025 
4026 /*
4027  * unlink helper that gets used here in inode.c and in the tree logging
4028  * recovery code.  It remove a link in a directory with a given name, and
4029  * also drops the back refs in the inode to the directory
4030  */
4031 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4032 				struct btrfs_root *root,
4033 				struct btrfs_inode *dir,
4034 				struct btrfs_inode *inode,
4035 				const char *name, int name_len)
4036 {
4037 	struct btrfs_fs_info *fs_info = root->fs_info;
4038 	struct btrfs_path *path;
4039 	int ret = 0;
4040 	struct btrfs_dir_item *di;
4041 	u64 index;
4042 	u64 ino = btrfs_ino(inode);
4043 	u64 dir_ino = btrfs_ino(dir);
4044 
4045 	path = btrfs_alloc_path();
4046 	if (!path) {
4047 		ret = -ENOMEM;
4048 		goto out;
4049 	}
4050 
4051 	path->leave_spinning = 1;
4052 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4053 				    name, name_len, -1);
4054 	if (IS_ERR_OR_NULL(di)) {
4055 		ret = di ? PTR_ERR(di) : -ENOENT;
4056 		goto err;
4057 	}
4058 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4059 	if (ret)
4060 		goto err;
4061 	btrfs_release_path(path);
4062 
4063 	/*
4064 	 * If we don't have dir index, we have to get it by looking up
4065 	 * the inode ref, since we get the inode ref, remove it directly,
4066 	 * it is unnecessary to do delayed deletion.
4067 	 *
4068 	 * But if we have dir index, needn't search inode ref to get it.
4069 	 * Since the inode ref is close to the inode item, it is better
4070 	 * that we delay to delete it, and just do this deletion when
4071 	 * we update the inode item.
4072 	 */
4073 	if (inode->dir_index) {
4074 		ret = btrfs_delayed_delete_inode_ref(inode);
4075 		if (!ret) {
4076 			index = inode->dir_index;
4077 			goto skip_backref;
4078 		}
4079 	}
4080 
4081 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4082 				  dir_ino, &index);
4083 	if (ret) {
4084 		btrfs_info(fs_info,
4085 			"failed to delete reference to %.*s, inode %llu parent %llu",
4086 			name_len, name, ino, dir_ino);
4087 		btrfs_abort_transaction(trans, ret);
4088 		goto err;
4089 	}
4090 skip_backref:
4091 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4092 	if (ret) {
4093 		btrfs_abort_transaction(trans, ret);
4094 		goto err;
4095 	}
4096 
4097 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4098 			dir_ino);
4099 	if (ret != 0 && ret != -ENOENT) {
4100 		btrfs_abort_transaction(trans, ret);
4101 		goto err;
4102 	}
4103 
4104 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4105 			index);
4106 	if (ret == -ENOENT)
4107 		ret = 0;
4108 	else if (ret)
4109 		btrfs_abort_transaction(trans, ret);
4110 
4111 	/*
4112 	 * If we have a pending delayed iput we could end up with the final iput
4113 	 * being run in btrfs-cleaner context.  If we have enough of these built
4114 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4115 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4116 	 * the inode we can run the delayed iput here without any issues as the
4117 	 * final iput won't be done until after we drop the ref we're currently
4118 	 * holding.
4119 	 */
4120 	btrfs_run_delayed_iput(fs_info, inode);
4121 err:
4122 	btrfs_free_path(path);
4123 	if (ret)
4124 		goto out;
4125 
4126 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4127 	inode_inc_iversion(&inode->vfs_inode);
4128 	inode_inc_iversion(&dir->vfs_inode);
4129 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4130 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4131 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4132 out:
4133 	return ret;
4134 }
4135 
4136 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4137 		       struct btrfs_root *root,
4138 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4139 		       const char *name, int name_len)
4140 {
4141 	int ret;
4142 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4143 	if (!ret) {
4144 		drop_nlink(&inode->vfs_inode);
4145 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4146 	}
4147 	return ret;
4148 }
4149 
4150 /*
4151  * helper to start transaction for unlink and rmdir.
4152  *
4153  * unlink and rmdir are special in btrfs, they do not always free space, so
4154  * if we cannot make our reservations the normal way try and see if there is
4155  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4156  * allow the unlink to occur.
4157  */
4158 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4159 {
4160 	struct btrfs_root *root = BTRFS_I(dir)->root;
4161 
4162 	/*
4163 	 * 1 for the possible orphan item
4164 	 * 1 for the dir item
4165 	 * 1 for the dir index
4166 	 * 1 for the inode ref
4167 	 * 1 for the inode
4168 	 */
4169 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4170 }
4171 
4172 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4173 {
4174 	struct btrfs_root *root = BTRFS_I(dir)->root;
4175 	struct btrfs_trans_handle *trans;
4176 	struct inode *inode = d_inode(dentry);
4177 	int ret;
4178 
4179 	trans = __unlink_start_trans(dir);
4180 	if (IS_ERR(trans))
4181 		return PTR_ERR(trans);
4182 
4183 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4184 			0);
4185 
4186 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4187 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4188 			dentry->d_name.len);
4189 	if (ret)
4190 		goto out;
4191 
4192 	if (inode->i_nlink == 0) {
4193 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4194 		if (ret)
4195 			goto out;
4196 	}
4197 
4198 out:
4199 	btrfs_end_transaction(trans);
4200 	btrfs_btree_balance_dirty(root->fs_info);
4201 	return ret;
4202 }
4203 
4204 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4205 			       struct inode *dir, u64 objectid,
4206 			       const char *name, int name_len)
4207 {
4208 	struct btrfs_root *root = BTRFS_I(dir)->root;
4209 	struct btrfs_path *path;
4210 	struct extent_buffer *leaf;
4211 	struct btrfs_dir_item *di;
4212 	struct btrfs_key key;
4213 	u64 index;
4214 	int ret;
4215 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4216 
4217 	path = btrfs_alloc_path();
4218 	if (!path)
4219 		return -ENOMEM;
4220 
4221 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4222 				   name, name_len, -1);
4223 	if (IS_ERR_OR_NULL(di)) {
4224 		ret = di ? PTR_ERR(di) : -ENOENT;
4225 		goto out;
4226 	}
4227 
4228 	leaf = path->nodes[0];
4229 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4230 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4231 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4232 	if (ret) {
4233 		btrfs_abort_transaction(trans, ret);
4234 		goto out;
4235 	}
4236 	btrfs_release_path(path);
4237 
4238 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4239 				 dir_ino, &index, name, name_len);
4240 	if (ret < 0) {
4241 		if (ret != -ENOENT) {
4242 			btrfs_abort_transaction(trans, ret);
4243 			goto out;
4244 		}
4245 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4246 						 name, name_len);
4247 		if (IS_ERR_OR_NULL(di)) {
4248 			if (!di)
4249 				ret = -ENOENT;
4250 			else
4251 				ret = PTR_ERR(di);
4252 			btrfs_abort_transaction(trans, ret);
4253 			goto out;
4254 		}
4255 
4256 		leaf = path->nodes[0];
4257 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4258 		index = key.offset;
4259 	}
4260 	btrfs_release_path(path);
4261 
4262 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4263 	if (ret) {
4264 		btrfs_abort_transaction(trans, ret);
4265 		goto out;
4266 	}
4267 
4268 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4269 	inode_inc_iversion(dir);
4270 	dir->i_mtime = dir->i_ctime = current_time(dir);
4271 	ret = btrfs_update_inode_fallback(trans, root, dir);
4272 	if (ret)
4273 		btrfs_abort_transaction(trans, ret);
4274 out:
4275 	btrfs_free_path(path);
4276 	return ret;
4277 }
4278 
4279 /*
4280  * Helper to check if the subvolume references other subvolumes or if it's
4281  * default.
4282  */
4283 static noinline int may_destroy_subvol(struct btrfs_root *root)
4284 {
4285 	struct btrfs_fs_info *fs_info = root->fs_info;
4286 	struct btrfs_path *path;
4287 	struct btrfs_dir_item *di;
4288 	struct btrfs_key key;
4289 	u64 dir_id;
4290 	int ret;
4291 
4292 	path = btrfs_alloc_path();
4293 	if (!path)
4294 		return -ENOMEM;
4295 
4296 	/* Make sure this root isn't set as the default subvol */
4297 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4298 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4299 				   dir_id, "default", 7, 0);
4300 	if (di && !IS_ERR(di)) {
4301 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4302 		if (key.objectid == root->root_key.objectid) {
4303 			ret = -EPERM;
4304 			btrfs_err(fs_info,
4305 				  "deleting default subvolume %llu is not allowed",
4306 				  key.objectid);
4307 			goto out;
4308 		}
4309 		btrfs_release_path(path);
4310 	}
4311 
4312 	key.objectid = root->root_key.objectid;
4313 	key.type = BTRFS_ROOT_REF_KEY;
4314 	key.offset = (u64)-1;
4315 
4316 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4317 	if (ret < 0)
4318 		goto out;
4319 	BUG_ON(ret == 0);
4320 
4321 	ret = 0;
4322 	if (path->slots[0] > 0) {
4323 		path->slots[0]--;
4324 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4325 		if (key.objectid == root->root_key.objectid &&
4326 		    key.type == BTRFS_ROOT_REF_KEY)
4327 			ret = -ENOTEMPTY;
4328 	}
4329 out:
4330 	btrfs_free_path(path);
4331 	return ret;
4332 }
4333 
4334 /* Delete all dentries for inodes belonging to the root */
4335 static void btrfs_prune_dentries(struct btrfs_root *root)
4336 {
4337 	struct btrfs_fs_info *fs_info = root->fs_info;
4338 	struct rb_node *node;
4339 	struct rb_node *prev;
4340 	struct btrfs_inode *entry;
4341 	struct inode *inode;
4342 	u64 objectid = 0;
4343 
4344 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4345 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4346 
4347 	spin_lock(&root->inode_lock);
4348 again:
4349 	node = root->inode_tree.rb_node;
4350 	prev = NULL;
4351 	while (node) {
4352 		prev = node;
4353 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4354 
4355 		if (objectid < btrfs_ino(entry))
4356 			node = node->rb_left;
4357 		else if (objectid > btrfs_ino(entry))
4358 			node = node->rb_right;
4359 		else
4360 			break;
4361 	}
4362 	if (!node) {
4363 		while (prev) {
4364 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4365 			if (objectid <= btrfs_ino(entry)) {
4366 				node = prev;
4367 				break;
4368 			}
4369 			prev = rb_next(prev);
4370 		}
4371 	}
4372 	while (node) {
4373 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4374 		objectid = btrfs_ino(entry) + 1;
4375 		inode = igrab(&entry->vfs_inode);
4376 		if (inode) {
4377 			spin_unlock(&root->inode_lock);
4378 			if (atomic_read(&inode->i_count) > 1)
4379 				d_prune_aliases(inode);
4380 			/*
4381 			 * btrfs_drop_inode will have it removed from the inode
4382 			 * cache when its usage count hits zero.
4383 			 */
4384 			iput(inode);
4385 			cond_resched();
4386 			spin_lock(&root->inode_lock);
4387 			goto again;
4388 		}
4389 
4390 		if (cond_resched_lock(&root->inode_lock))
4391 			goto again;
4392 
4393 		node = rb_next(node);
4394 	}
4395 	spin_unlock(&root->inode_lock);
4396 }
4397 
4398 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4399 {
4400 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4401 	struct btrfs_root *root = BTRFS_I(dir)->root;
4402 	struct inode *inode = d_inode(dentry);
4403 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4404 	struct btrfs_trans_handle *trans;
4405 	struct btrfs_block_rsv block_rsv;
4406 	u64 root_flags;
4407 	int ret;
4408 	int err;
4409 
4410 	/*
4411 	 * Don't allow to delete a subvolume with send in progress. This is
4412 	 * inside the inode lock so the error handling that has to drop the bit
4413 	 * again is not run concurrently.
4414 	 */
4415 	spin_lock(&dest->root_item_lock);
4416 	if (dest->send_in_progress) {
4417 		spin_unlock(&dest->root_item_lock);
4418 		btrfs_warn(fs_info,
4419 			   "attempt to delete subvolume %llu during send",
4420 			   dest->root_key.objectid);
4421 		return -EPERM;
4422 	}
4423 	root_flags = btrfs_root_flags(&dest->root_item);
4424 	btrfs_set_root_flags(&dest->root_item,
4425 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4426 	spin_unlock(&dest->root_item_lock);
4427 
4428 	down_write(&fs_info->subvol_sem);
4429 
4430 	err = may_destroy_subvol(dest);
4431 	if (err)
4432 		goto out_up_write;
4433 
4434 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4435 	/*
4436 	 * One for dir inode,
4437 	 * two for dir entries,
4438 	 * two for root ref/backref.
4439 	 */
4440 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4441 	if (err)
4442 		goto out_up_write;
4443 
4444 	trans = btrfs_start_transaction(root, 0);
4445 	if (IS_ERR(trans)) {
4446 		err = PTR_ERR(trans);
4447 		goto out_release;
4448 	}
4449 	trans->block_rsv = &block_rsv;
4450 	trans->bytes_reserved = block_rsv.size;
4451 
4452 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4453 
4454 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4455 				  dentry->d_name.name, dentry->d_name.len);
4456 	if (ret) {
4457 		err = ret;
4458 		btrfs_abort_transaction(trans, ret);
4459 		goto out_end_trans;
4460 	}
4461 
4462 	btrfs_record_root_in_trans(trans, dest);
4463 
4464 	memset(&dest->root_item.drop_progress, 0,
4465 		sizeof(dest->root_item.drop_progress));
4466 	dest->root_item.drop_level = 0;
4467 	btrfs_set_root_refs(&dest->root_item, 0);
4468 
4469 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4470 		ret = btrfs_insert_orphan_item(trans,
4471 					fs_info->tree_root,
4472 					dest->root_key.objectid);
4473 		if (ret) {
4474 			btrfs_abort_transaction(trans, ret);
4475 			err = ret;
4476 			goto out_end_trans;
4477 		}
4478 	}
4479 
4480 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4481 				  BTRFS_UUID_KEY_SUBVOL,
4482 				  dest->root_key.objectid);
4483 	if (ret && ret != -ENOENT) {
4484 		btrfs_abort_transaction(trans, ret);
4485 		err = ret;
4486 		goto out_end_trans;
4487 	}
4488 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4489 		ret = btrfs_uuid_tree_remove(trans,
4490 					  dest->root_item.received_uuid,
4491 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4492 					  dest->root_key.objectid);
4493 		if (ret && ret != -ENOENT) {
4494 			btrfs_abort_transaction(trans, ret);
4495 			err = ret;
4496 			goto out_end_trans;
4497 		}
4498 	}
4499 
4500 out_end_trans:
4501 	trans->block_rsv = NULL;
4502 	trans->bytes_reserved = 0;
4503 	ret = btrfs_end_transaction(trans);
4504 	if (ret && !err)
4505 		err = ret;
4506 	inode->i_flags |= S_DEAD;
4507 out_release:
4508 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4509 out_up_write:
4510 	up_write(&fs_info->subvol_sem);
4511 	if (err) {
4512 		spin_lock(&dest->root_item_lock);
4513 		root_flags = btrfs_root_flags(&dest->root_item);
4514 		btrfs_set_root_flags(&dest->root_item,
4515 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4516 		spin_unlock(&dest->root_item_lock);
4517 	} else {
4518 		d_invalidate(dentry);
4519 		btrfs_prune_dentries(dest);
4520 		ASSERT(dest->send_in_progress == 0);
4521 
4522 		/* the last ref */
4523 		if (dest->ino_cache_inode) {
4524 			iput(dest->ino_cache_inode);
4525 			dest->ino_cache_inode = NULL;
4526 		}
4527 	}
4528 
4529 	return err;
4530 }
4531 
4532 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4533 {
4534 	struct inode *inode = d_inode(dentry);
4535 	int err = 0;
4536 	struct btrfs_root *root = BTRFS_I(dir)->root;
4537 	struct btrfs_trans_handle *trans;
4538 	u64 last_unlink_trans;
4539 
4540 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4541 		return -ENOTEMPTY;
4542 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4543 		return btrfs_delete_subvolume(dir, dentry);
4544 
4545 	trans = __unlink_start_trans(dir);
4546 	if (IS_ERR(trans))
4547 		return PTR_ERR(trans);
4548 
4549 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4550 		err = btrfs_unlink_subvol(trans, dir,
4551 					  BTRFS_I(inode)->location.objectid,
4552 					  dentry->d_name.name,
4553 					  dentry->d_name.len);
4554 		goto out;
4555 	}
4556 
4557 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4558 	if (err)
4559 		goto out;
4560 
4561 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4562 
4563 	/* now the directory is empty */
4564 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4565 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4566 			dentry->d_name.len);
4567 	if (!err) {
4568 		btrfs_i_size_write(BTRFS_I(inode), 0);
4569 		/*
4570 		 * Propagate the last_unlink_trans value of the deleted dir to
4571 		 * its parent directory. This is to prevent an unrecoverable
4572 		 * log tree in the case we do something like this:
4573 		 * 1) create dir foo
4574 		 * 2) create snapshot under dir foo
4575 		 * 3) delete the snapshot
4576 		 * 4) rmdir foo
4577 		 * 5) mkdir foo
4578 		 * 6) fsync foo or some file inside foo
4579 		 */
4580 		if (last_unlink_trans >= trans->transid)
4581 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4582 	}
4583 out:
4584 	btrfs_end_transaction(trans);
4585 	btrfs_btree_balance_dirty(root->fs_info);
4586 
4587 	return err;
4588 }
4589 
4590 /*
4591  * Return this if we need to call truncate_block for the last bit of the
4592  * truncate.
4593  */
4594 #define NEED_TRUNCATE_BLOCK 1
4595 
4596 /*
4597  * this can truncate away extent items, csum items and directory items.
4598  * It starts at a high offset and removes keys until it can't find
4599  * any higher than new_size
4600  *
4601  * csum items that cross the new i_size are truncated to the new size
4602  * as well.
4603  *
4604  * min_type is the minimum key type to truncate down to.  If set to 0, this
4605  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4606  */
4607 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4608 			       struct btrfs_root *root,
4609 			       struct inode *inode,
4610 			       u64 new_size, u32 min_type)
4611 {
4612 	struct btrfs_fs_info *fs_info = root->fs_info;
4613 	struct btrfs_path *path;
4614 	struct extent_buffer *leaf;
4615 	struct btrfs_file_extent_item *fi;
4616 	struct btrfs_key key;
4617 	struct btrfs_key found_key;
4618 	u64 extent_start = 0;
4619 	u64 extent_num_bytes = 0;
4620 	u64 extent_offset = 0;
4621 	u64 item_end = 0;
4622 	u64 last_size = new_size;
4623 	u32 found_type = (u8)-1;
4624 	int found_extent;
4625 	int del_item;
4626 	int pending_del_nr = 0;
4627 	int pending_del_slot = 0;
4628 	int extent_type = -1;
4629 	int ret;
4630 	u64 ino = btrfs_ino(BTRFS_I(inode));
4631 	u64 bytes_deleted = 0;
4632 	bool be_nice = false;
4633 	bool should_throttle = false;
4634 
4635 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4636 
4637 	/*
4638 	 * for non-free space inodes and ref cows, we want to back off from
4639 	 * time to time
4640 	 */
4641 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4642 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4643 		be_nice = true;
4644 
4645 	path = btrfs_alloc_path();
4646 	if (!path)
4647 		return -ENOMEM;
4648 	path->reada = READA_BACK;
4649 
4650 	/*
4651 	 * We want to drop from the next block forward in case this new size is
4652 	 * not block aligned since we will be keeping the last block of the
4653 	 * extent just the way it is.
4654 	 */
4655 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4656 	    root == fs_info->tree_root)
4657 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4658 					fs_info->sectorsize),
4659 					(u64)-1, 0);
4660 
4661 	/*
4662 	 * This function is also used to drop the items in the log tree before
4663 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4664 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4665 	 * items.
4666 	 */
4667 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4668 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4669 
4670 	key.objectid = ino;
4671 	key.offset = (u64)-1;
4672 	key.type = (u8)-1;
4673 
4674 search_again:
4675 	/*
4676 	 * with a 16K leaf size and 128MB extents, you can actually queue
4677 	 * up a huge file in a single leaf.  Most of the time that
4678 	 * bytes_deleted is > 0, it will be huge by the time we get here
4679 	 */
4680 	if (be_nice && bytes_deleted > SZ_32M &&
4681 	    btrfs_should_end_transaction(trans)) {
4682 		ret = -EAGAIN;
4683 		goto out;
4684 	}
4685 
4686 	path->leave_spinning = 1;
4687 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4688 	if (ret < 0)
4689 		goto out;
4690 
4691 	if (ret > 0) {
4692 		ret = 0;
4693 		/* there are no items in the tree for us to truncate, we're
4694 		 * done
4695 		 */
4696 		if (path->slots[0] == 0)
4697 			goto out;
4698 		path->slots[0]--;
4699 	}
4700 
4701 	while (1) {
4702 		fi = NULL;
4703 		leaf = path->nodes[0];
4704 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4705 		found_type = found_key.type;
4706 
4707 		if (found_key.objectid != ino)
4708 			break;
4709 
4710 		if (found_type < min_type)
4711 			break;
4712 
4713 		item_end = found_key.offset;
4714 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4715 			fi = btrfs_item_ptr(leaf, path->slots[0],
4716 					    struct btrfs_file_extent_item);
4717 			extent_type = btrfs_file_extent_type(leaf, fi);
4718 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4719 				item_end +=
4720 				    btrfs_file_extent_num_bytes(leaf, fi);
4721 
4722 				trace_btrfs_truncate_show_fi_regular(
4723 					BTRFS_I(inode), leaf, fi,
4724 					found_key.offset);
4725 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4726 				item_end += btrfs_file_extent_ram_bytes(leaf,
4727 									fi);
4728 
4729 				trace_btrfs_truncate_show_fi_inline(
4730 					BTRFS_I(inode), leaf, fi, path->slots[0],
4731 					found_key.offset);
4732 			}
4733 			item_end--;
4734 		}
4735 		if (found_type > min_type) {
4736 			del_item = 1;
4737 		} else {
4738 			if (item_end < new_size)
4739 				break;
4740 			if (found_key.offset >= new_size)
4741 				del_item = 1;
4742 			else
4743 				del_item = 0;
4744 		}
4745 		found_extent = 0;
4746 		/* FIXME, shrink the extent if the ref count is only 1 */
4747 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4748 			goto delete;
4749 
4750 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4751 			u64 num_dec;
4752 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4753 			if (!del_item) {
4754 				u64 orig_num_bytes =
4755 					btrfs_file_extent_num_bytes(leaf, fi);
4756 				extent_num_bytes = ALIGN(new_size -
4757 						found_key.offset,
4758 						fs_info->sectorsize);
4759 				btrfs_set_file_extent_num_bytes(leaf, fi,
4760 							 extent_num_bytes);
4761 				num_dec = (orig_num_bytes -
4762 					   extent_num_bytes);
4763 				if (test_bit(BTRFS_ROOT_REF_COWS,
4764 					     &root->state) &&
4765 				    extent_start != 0)
4766 					inode_sub_bytes(inode, num_dec);
4767 				btrfs_mark_buffer_dirty(leaf);
4768 			} else {
4769 				extent_num_bytes =
4770 					btrfs_file_extent_disk_num_bytes(leaf,
4771 									 fi);
4772 				extent_offset = found_key.offset -
4773 					btrfs_file_extent_offset(leaf, fi);
4774 
4775 				/* FIXME blocksize != 4096 */
4776 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4777 				if (extent_start != 0) {
4778 					found_extent = 1;
4779 					if (test_bit(BTRFS_ROOT_REF_COWS,
4780 						     &root->state))
4781 						inode_sub_bytes(inode, num_dec);
4782 				}
4783 			}
4784 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4785 			/*
4786 			 * we can't truncate inline items that have had
4787 			 * special encodings
4788 			 */
4789 			if (!del_item &&
4790 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4791 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4792 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4793 				u32 size = (u32)(new_size - found_key.offset);
4794 
4795 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4796 				size = btrfs_file_extent_calc_inline_size(size);
4797 				btrfs_truncate_item(path, size, 1);
4798 			} else if (!del_item) {
4799 				/*
4800 				 * We have to bail so the last_size is set to
4801 				 * just before this extent.
4802 				 */
4803 				ret = NEED_TRUNCATE_BLOCK;
4804 				break;
4805 			}
4806 
4807 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4808 				inode_sub_bytes(inode, item_end + 1 - new_size);
4809 		}
4810 delete:
4811 		if (del_item)
4812 			last_size = found_key.offset;
4813 		else
4814 			last_size = new_size;
4815 		if (del_item) {
4816 			if (!pending_del_nr) {
4817 				/* no pending yet, add ourselves */
4818 				pending_del_slot = path->slots[0];
4819 				pending_del_nr = 1;
4820 			} else if (pending_del_nr &&
4821 				   path->slots[0] + 1 == pending_del_slot) {
4822 				/* hop on the pending chunk */
4823 				pending_del_nr++;
4824 				pending_del_slot = path->slots[0];
4825 			} else {
4826 				BUG();
4827 			}
4828 		} else {
4829 			break;
4830 		}
4831 		should_throttle = false;
4832 
4833 		if (found_extent &&
4834 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4835 		     root == fs_info->tree_root)) {
4836 			struct btrfs_ref ref = { 0 };
4837 
4838 			btrfs_set_path_blocking(path);
4839 			bytes_deleted += extent_num_bytes;
4840 
4841 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4842 					extent_start, extent_num_bytes, 0);
4843 			ref.real_root = root->root_key.objectid;
4844 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4845 					ino, extent_offset);
4846 			ret = btrfs_free_extent(trans, &ref);
4847 			if (ret) {
4848 				btrfs_abort_transaction(trans, ret);
4849 				break;
4850 			}
4851 			if (be_nice) {
4852 				if (btrfs_should_throttle_delayed_refs(trans))
4853 					should_throttle = true;
4854 			}
4855 		}
4856 
4857 		if (found_type == BTRFS_INODE_ITEM_KEY)
4858 			break;
4859 
4860 		if (path->slots[0] == 0 ||
4861 		    path->slots[0] != pending_del_slot ||
4862 		    should_throttle) {
4863 			if (pending_del_nr) {
4864 				ret = btrfs_del_items(trans, root, path,
4865 						pending_del_slot,
4866 						pending_del_nr);
4867 				if (ret) {
4868 					btrfs_abort_transaction(trans, ret);
4869 					break;
4870 				}
4871 				pending_del_nr = 0;
4872 			}
4873 			btrfs_release_path(path);
4874 
4875 			/*
4876 			 * We can generate a lot of delayed refs, so we need to
4877 			 * throttle every once and a while and make sure we're
4878 			 * adding enough space to keep up with the work we are
4879 			 * generating.  Since we hold a transaction here we
4880 			 * can't flush, and we don't want to FLUSH_LIMIT because
4881 			 * we could have generated too many delayed refs to
4882 			 * actually allocate, so just bail if we're short and
4883 			 * let the normal reservation dance happen higher up.
4884 			 */
4885 			if (should_throttle) {
4886 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4887 							BTRFS_RESERVE_NO_FLUSH);
4888 				if (ret) {
4889 					ret = -EAGAIN;
4890 					break;
4891 				}
4892 			}
4893 			goto search_again;
4894 		} else {
4895 			path->slots[0]--;
4896 		}
4897 	}
4898 out:
4899 	if (ret >= 0 && pending_del_nr) {
4900 		int err;
4901 
4902 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4903 				      pending_del_nr);
4904 		if (err) {
4905 			btrfs_abort_transaction(trans, err);
4906 			ret = err;
4907 		}
4908 	}
4909 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4910 		ASSERT(last_size >= new_size);
4911 		if (!ret && last_size > new_size)
4912 			last_size = new_size;
4913 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4914 	}
4915 
4916 	btrfs_free_path(path);
4917 	return ret;
4918 }
4919 
4920 /*
4921  * btrfs_truncate_block - read, zero a chunk and write a block
4922  * @inode - inode that we're zeroing
4923  * @from - the offset to start zeroing
4924  * @len - the length to zero, 0 to zero the entire range respective to the
4925  *	offset
4926  * @front - zero up to the offset instead of from the offset on
4927  *
4928  * This will find the block for the "from" offset and cow the block and zero the
4929  * part we want to zero.  This is used with truncate and hole punching.
4930  */
4931 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4932 			int front)
4933 {
4934 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4935 	struct address_space *mapping = inode->i_mapping;
4936 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4937 	struct btrfs_ordered_extent *ordered;
4938 	struct extent_state *cached_state = NULL;
4939 	struct extent_changeset *data_reserved = NULL;
4940 	char *kaddr;
4941 	u32 blocksize = fs_info->sectorsize;
4942 	pgoff_t index = from >> PAGE_SHIFT;
4943 	unsigned offset = from & (blocksize - 1);
4944 	struct page *page;
4945 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4946 	int ret = 0;
4947 	u64 block_start;
4948 	u64 block_end;
4949 
4950 	if (IS_ALIGNED(offset, blocksize) &&
4951 	    (!len || IS_ALIGNED(len, blocksize)))
4952 		goto out;
4953 
4954 	block_start = round_down(from, blocksize);
4955 	block_end = block_start + blocksize - 1;
4956 
4957 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4958 					   block_start, blocksize);
4959 	if (ret)
4960 		goto out;
4961 
4962 again:
4963 	page = find_or_create_page(mapping, index, mask);
4964 	if (!page) {
4965 		btrfs_delalloc_release_space(inode, data_reserved,
4966 					     block_start, blocksize, true);
4967 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4968 		ret = -ENOMEM;
4969 		goto out;
4970 	}
4971 
4972 	if (!PageUptodate(page)) {
4973 		ret = btrfs_readpage(NULL, page);
4974 		lock_page(page);
4975 		if (page->mapping != mapping) {
4976 			unlock_page(page);
4977 			put_page(page);
4978 			goto again;
4979 		}
4980 		if (!PageUptodate(page)) {
4981 			ret = -EIO;
4982 			goto out_unlock;
4983 		}
4984 	}
4985 	wait_on_page_writeback(page);
4986 
4987 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4988 	set_page_extent_mapped(page);
4989 
4990 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4991 	if (ordered) {
4992 		unlock_extent_cached(io_tree, block_start, block_end,
4993 				     &cached_state);
4994 		unlock_page(page);
4995 		put_page(page);
4996 		btrfs_start_ordered_extent(inode, ordered, 1);
4997 		btrfs_put_ordered_extent(ordered);
4998 		goto again;
4999 	}
5000 
5001 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5002 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5003 			 0, 0, &cached_state);
5004 
5005 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5006 					&cached_state);
5007 	if (ret) {
5008 		unlock_extent_cached(io_tree, block_start, block_end,
5009 				     &cached_state);
5010 		goto out_unlock;
5011 	}
5012 
5013 	if (offset != blocksize) {
5014 		if (!len)
5015 			len = blocksize - offset;
5016 		kaddr = kmap(page);
5017 		if (front)
5018 			memset(kaddr + (block_start - page_offset(page)),
5019 				0, offset);
5020 		else
5021 			memset(kaddr + (block_start - page_offset(page)) +  offset,
5022 				0, len);
5023 		flush_dcache_page(page);
5024 		kunmap(page);
5025 	}
5026 	ClearPageChecked(page);
5027 	set_page_dirty(page);
5028 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5029 
5030 out_unlock:
5031 	if (ret)
5032 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
5033 					     blocksize, true);
5034 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5035 	unlock_page(page);
5036 	put_page(page);
5037 out:
5038 	extent_changeset_free(data_reserved);
5039 	return ret;
5040 }
5041 
5042 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5043 			     u64 offset, u64 len)
5044 {
5045 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5046 	struct btrfs_trans_handle *trans;
5047 	int ret;
5048 
5049 	/*
5050 	 * Still need to make sure the inode looks like it's been updated so
5051 	 * that any holes get logged if we fsync.
5052 	 */
5053 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5054 		BTRFS_I(inode)->last_trans = fs_info->generation;
5055 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
5056 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5057 		return 0;
5058 	}
5059 
5060 	/*
5061 	 * 1 - for the one we're dropping
5062 	 * 1 - for the one we're adding
5063 	 * 1 - for updating the inode.
5064 	 */
5065 	trans = btrfs_start_transaction(root, 3);
5066 	if (IS_ERR(trans))
5067 		return PTR_ERR(trans);
5068 
5069 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5070 	if (ret) {
5071 		btrfs_abort_transaction(trans, ret);
5072 		btrfs_end_transaction(trans);
5073 		return ret;
5074 	}
5075 
5076 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5077 			offset, 0, 0, len, 0, len, 0, 0, 0);
5078 	if (ret)
5079 		btrfs_abort_transaction(trans, ret);
5080 	else
5081 		btrfs_update_inode(trans, root, inode);
5082 	btrfs_end_transaction(trans);
5083 	return ret;
5084 }
5085 
5086 /*
5087  * This function puts in dummy file extents for the area we're creating a hole
5088  * for.  So if we are truncating this file to a larger size we need to insert
5089  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5090  * the range between oldsize and size
5091  */
5092 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5093 {
5094 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5095 	struct btrfs_root *root = BTRFS_I(inode)->root;
5096 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5097 	struct extent_map *em = NULL;
5098 	struct extent_state *cached_state = NULL;
5099 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5100 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5101 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5102 	u64 last_byte;
5103 	u64 cur_offset;
5104 	u64 hole_size;
5105 	int err = 0;
5106 
5107 	/*
5108 	 * If our size started in the middle of a block we need to zero out the
5109 	 * rest of the block before we expand the i_size, otherwise we could
5110 	 * expose stale data.
5111 	 */
5112 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5113 	if (err)
5114 		return err;
5115 
5116 	if (size <= hole_start)
5117 		return 0;
5118 
5119 	btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5120 					   block_end - 1, &cached_state);
5121 	cur_offset = hole_start;
5122 	while (1) {
5123 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5124 				block_end - cur_offset, 0);
5125 		if (IS_ERR(em)) {
5126 			err = PTR_ERR(em);
5127 			em = NULL;
5128 			break;
5129 		}
5130 		last_byte = min(extent_map_end(em), block_end);
5131 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5132 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5133 			struct extent_map *hole_em;
5134 			hole_size = last_byte - cur_offset;
5135 
5136 			err = maybe_insert_hole(root, inode, cur_offset,
5137 						hole_size);
5138 			if (err)
5139 				break;
5140 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5141 						cur_offset + hole_size - 1, 0);
5142 			hole_em = alloc_extent_map();
5143 			if (!hole_em) {
5144 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5145 					&BTRFS_I(inode)->runtime_flags);
5146 				goto next;
5147 			}
5148 			hole_em->start = cur_offset;
5149 			hole_em->len = hole_size;
5150 			hole_em->orig_start = cur_offset;
5151 
5152 			hole_em->block_start = EXTENT_MAP_HOLE;
5153 			hole_em->block_len = 0;
5154 			hole_em->orig_block_len = 0;
5155 			hole_em->ram_bytes = hole_size;
5156 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5157 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5158 			hole_em->generation = fs_info->generation;
5159 
5160 			while (1) {
5161 				write_lock(&em_tree->lock);
5162 				err = add_extent_mapping(em_tree, hole_em, 1);
5163 				write_unlock(&em_tree->lock);
5164 				if (err != -EEXIST)
5165 					break;
5166 				btrfs_drop_extent_cache(BTRFS_I(inode),
5167 							cur_offset,
5168 							cur_offset +
5169 							hole_size - 1, 0);
5170 			}
5171 			free_extent_map(hole_em);
5172 		}
5173 next:
5174 		free_extent_map(em);
5175 		em = NULL;
5176 		cur_offset = last_byte;
5177 		if (cur_offset >= block_end)
5178 			break;
5179 	}
5180 	free_extent_map(em);
5181 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5182 	return err;
5183 }
5184 
5185 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5186 {
5187 	struct btrfs_root *root = BTRFS_I(inode)->root;
5188 	struct btrfs_trans_handle *trans;
5189 	loff_t oldsize = i_size_read(inode);
5190 	loff_t newsize = attr->ia_size;
5191 	int mask = attr->ia_valid;
5192 	int ret;
5193 
5194 	/*
5195 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5196 	 * special case where we need to update the times despite not having
5197 	 * these flags set.  For all other operations the VFS set these flags
5198 	 * explicitly if it wants a timestamp update.
5199 	 */
5200 	if (newsize != oldsize) {
5201 		inode_inc_iversion(inode);
5202 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5203 			inode->i_ctime = inode->i_mtime =
5204 				current_time(inode);
5205 	}
5206 
5207 	if (newsize > oldsize) {
5208 		/*
5209 		 * Don't do an expanding truncate while snapshotting is ongoing.
5210 		 * This is to ensure the snapshot captures a fully consistent
5211 		 * state of this file - if the snapshot captures this expanding
5212 		 * truncation, it must capture all writes that happened before
5213 		 * this truncation.
5214 		 */
5215 		btrfs_wait_for_snapshot_creation(root);
5216 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5217 		if (ret) {
5218 			btrfs_end_write_no_snapshotting(root);
5219 			return ret;
5220 		}
5221 
5222 		trans = btrfs_start_transaction(root, 1);
5223 		if (IS_ERR(trans)) {
5224 			btrfs_end_write_no_snapshotting(root);
5225 			return PTR_ERR(trans);
5226 		}
5227 
5228 		i_size_write(inode, newsize);
5229 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5230 		pagecache_isize_extended(inode, oldsize, newsize);
5231 		ret = btrfs_update_inode(trans, root, inode);
5232 		btrfs_end_write_no_snapshotting(root);
5233 		btrfs_end_transaction(trans);
5234 	} else {
5235 
5236 		/*
5237 		 * We're truncating a file that used to have good data down to
5238 		 * zero. Make sure it gets into the ordered flush list so that
5239 		 * any new writes get down to disk quickly.
5240 		 */
5241 		if (newsize == 0)
5242 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5243 				&BTRFS_I(inode)->runtime_flags);
5244 
5245 		truncate_setsize(inode, newsize);
5246 
5247 		/* Disable nonlocked read DIO to avoid the endless truncate */
5248 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5249 		inode_dio_wait(inode);
5250 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5251 
5252 		ret = btrfs_truncate(inode, newsize == oldsize);
5253 		if (ret && inode->i_nlink) {
5254 			int err;
5255 
5256 			/*
5257 			 * Truncate failed, so fix up the in-memory size. We
5258 			 * adjusted disk_i_size down as we removed extents, so
5259 			 * wait for disk_i_size to be stable and then update the
5260 			 * in-memory size to match.
5261 			 */
5262 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5263 			if (err)
5264 				return err;
5265 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5266 		}
5267 	}
5268 
5269 	return ret;
5270 }
5271 
5272 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5273 {
5274 	struct inode *inode = d_inode(dentry);
5275 	struct btrfs_root *root = BTRFS_I(inode)->root;
5276 	int err;
5277 
5278 	if (btrfs_root_readonly(root))
5279 		return -EROFS;
5280 
5281 	err = setattr_prepare(dentry, attr);
5282 	if (err)
5283 		return err;
5284 
5285 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5286 		err = btrfs_setsize(inode, attr);
5287 		if (err)
5288 			return err;
5289 	}
5290 
5291 	if (attr->ia_valid) {
5292 		setattr_copy(inode, attr);
5293 		inode_inc_iversion(inode);
5294 		err = btrfs_dirty_inode(inode);
5295 
5296 		if (!err && attr->ia_valid & ATTR_MODE)
5297 			err = posix_acl_chmod(inode, inode->i_mode);
5298 	}
5299 
5300 	return err;
5301 }
5302 
5303 /*
5304  * While truncating the inode pages during eviction, we get the VFS calling
5305  * btrfs_invalidatepage() against each page of the inode. This is slow because
5306  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5307  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5308  * extent_state structures over and over, wasting lots of time.
5309  *
5310  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5311  * those expensive operations on a per page basis and do only the ordered io
5312  * finishing, while we release here the extent_map and extent_state structures,
5313  * without the excessive merging and splitting.
5314  */
5315 static void evict_inode_truncate_pages(struct inode *inode)
5316 {
5317 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5318 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5319 	struct rb_node *node;
5320 
5321 	ASSERT(inode->i_state & I_FREEING);
5322 	truncate_inode_pages_final(&inode->i_data);
5323 
5324 	write_lock(&map_tree->lock);
5325 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5326 		struct extent_map *em;
5327 
5328 		node = rb_first_cached(&map_tree->map);
5329 		em = rb_entry(node, struct extent_map, rb_node);
5330 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5331 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5332 		remove_extent_mapping(map_tree, em);
5333 		free_extent_map(em);
5334 		if (need_resched()) {
5335 			write_unlock(&map_tree->lock);
5336 			cond_resched();
5337 			write_lock(&map_tree->lock);
5338 		}
5339 	}
5340 	write_unlock(&map_tree->lock);
5341 
5342 	/*
5343 	 * Keep looping until we have no more ranges in the io tree.
5344 	 * We can have ongoing bios started by readpages (called from readahead)
5345 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5346 	 * still in progress (unlocked the pages in the bio but did not yet
5347 	 * unlocked the ranges in the io tree). Therefore this means some
5348 	 * ranges can still be locked and eviction started because before
5349 	 * submitting those bios, which are executed by a separate task (work
5350 	 * queue kthread), inode references (inode->i_count) were not taken
5351 	 * (which would be dropped in the end io callback of each bio).
5352 	 * Therefore here we effectively end up waiting for those bios and
5353 	 * anyone else holding locked ranges without having bumped the inode's
5354 	 * reference count - if we don't do it, when they access the inode's
5355 	 * io_tree to unlock a range it may be too late, leading to an
5356 	 * use-after-free issue.
5357 	 */
5358 	spin_lock(&io_tree->lock);
5359 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5360 		struct extent_state *state;
5361 		struct extent_state *cached_state = NULL;
5362 		u64 start;
5363 		u64 end;
5364 		unsigned state_flags;
5365 
5366 		node = rb_first(&io_tree->state);
5367 		state = rb_entry(node, struct extent_state, rb_node);
5368 		start = state->start;
5369 		end = state->end;
5370 		state_flags = state->state;
5371 		spin_unlock(&io_tree->lock);
5372 
5373 		lock_extent_bits(io_tree, start, end, &cached_state);
5374 
5375 		/*
5376 		 * If still has DELALLOC flag, the extent didn't reach disk,
5377 		 * and its reserved space won't be freed by delayed_ref.
5378 		 * So we need to free its reserved space here.
5379 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5380 		 *
5381 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5382 		 */
5383 		if (state_flags & EXTENT_DELALLOC)
5384 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5385 
5386 		clear_extent_bit(io_tree, start, end,
5387 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5388 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5389 				 &cached_state);
5390 
5391 		cond_resched();
5392 		spin_lock(&io_tree->lock);
5393 	}
5394 	spin_unlock(&io_tree->lock);
5395 }
5396 
5397 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5398 							struct btrfs_block_rsv *rsv)
5399 {
5400 	struct btrfs_fs_info *fs_info = root->fs_info;
5401 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5402 	struct btrfs_trans_handle *trans;
5403 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5404 	int ret;
5405 
5406 	/*
5407 	 * Eviction should be taking place at some place safe because of our
5408 	 * delayed iputs.  However the normal flushing code will run delayed
5409 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5410 	 *
5411 	 * We reserve the delayed_refs_extra here again because we can't use
5412 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5413 	 * above.  We reserve our extra bit here because we generate a ton of
5414 	 * delayed refs activity by truncating.
5415 	 *
5416 	 * If we cannot make our reservation we'll attempt to steal from the
5417 	 * global reserve, because we really want to be able to free up space.
5418 	 */
5419 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5420 				     BTRFS_RESERVE_FLUSH_EVICT);
5421 	if (ret) {
5422 		/*
5423 		 * Try to steal from the global reserve if there is space for
5424 		 * it.
5425 		 */
5426 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5427 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5428 			btrfs_warn(fs_info,
5429 				   "could not allocate space for delete; will truncate on mount");
5430 			return ERR_PTR(-ENOSPC);
5431 		}
5432 		delayed_refs_extra = 0;
5433 	}
5434 
5435 	trans = btrfs_join_transaction(root);
5436 	if (IS_ERR(trans))
5437 		return trans;
5438 
5439 	if (delayed_refs_extra) {
5440 		trans->block_rsv = &fs_info->trans_block_rsv;
5441 		trans->bytes_reserved = delayed_refs_extra;
5442 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5443 					delayed_refs_extra, 1);
5444 	}
5445 	return trans;
5446 }
5447 
5448 void btrfs_evict_inode(struct inode *inode)
5449 {
5450 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5451 	struct btrfs_trans_handle *trans;
5452 	struct btrfs_root *root = BTRFS_I(inode)->root;
5453 	struct btrfs_block_rsv *rsv;
5454 	int ret;
5455 
5456 	trace_btrfs_inode_evict(inode);
5457 
5458 	if (!root) {
5459 		clear_inode(inode);
5460 		return;
5461 	}
5462 
5463 	evict_inode_truncate_pages(inode);
5464 
5465 	if (inode->i_nlink &&
5466 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5467 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5468 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5469 		goto no_delete;
5470 
5471 	if (is_bad_inode(inode))
5472 		goto no_delete;
5473 
5474 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5475 
5476 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5477 		goto no_delete;
5478 
5479 	if (inode->i_nlink > 0) {
5480 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5481 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5482 		goto no_delete;
5483 	}
5484 
5485 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5486 	if (ret)
5487 		goto no_delete;
5488 
5489 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5490 	if (!rsv)
5491 		goto no_delete;
5492 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5493 	rsv->failfast = 1;
5494 
5495 	btrfs_i_size_write(BTRFS_I(inode), 0);
5496 
5497 	while (1) {
5498 		trans = evict_refill_and_join(root, rsv);
5499 		if (IS_ERR(trans))
5500 			goto free_rsv;
5501 
5502 		trans->block_rsv = rsv;
5503 
5504 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5505 		trans->block_rsv = &fs_info->trans_block_rsv;
5506 		btrfs_end_transaction(trans);
5507 		btrfs_btree_balance_dirty(fs_info);
5508 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5509 			goto free_rsv;
5510 		else if (!ret)
5511 			break;
5512 	}
5513 
5514 	/*
5515 	 * Errors here aren't a big deal, it just means we leave orphan items in
5516 	 * the tree. They will be cleaned up on the next mount. If the inode
5517 	 * number gets reused, cleanup deletes the orphan item without doing
5518 	 * anything, and unlink reuses the existing orphan item.
5519 	 *
5520 	 * If it turns out that we are dropping too many of these, we might want
5521 	 * to add a mechanism for retrying these after a commit.
5522 	 */
5523 	trans = evict_refill_and_join(root, rsv);
5524 	if (!IS_ERR(trans)) {
5525 		trans->block_rsv = rsv;
5526 		btrfs_orphan_del(trans, BTRFS_I(inode));
5527 		trans->block_rsv = &fs_info->trans_block_rsv;
5528 		btrfs_end_transaction(trans);
5529 	}
5530 
5531 	if (!(root == fs_info->tree_root ||
5532 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5533 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5534 
5535 free_rsv:
5536 	btrfs_free_block_rsv(fs_info, rsv);
5537 no_delete:
5538 	/*
5539 	 * If we didn't successfully delete, the orphan item will still be in
5540 	 * the tree and we'll retry on the next mount. Again, we might also want
5541 	 * to retry these periodically in the future.
5542 	 */
5543 	btrfs_remove_delayed_node(BTRFS_I(inode));
5544 	clear_inode(inode);
5545 }
5546 
5547 /*
5548  * Return the key found in the dir entry in the location pointer, fill @type
5549  * with BTRFS_FT_*, and return 0.
5550  *
5551  * If no dir entries were found, returns -ENOENT.
5552  * If found a corrupted location in dir entry, returns -EUCLEAN.
5553  */
5554 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5555 			       struct btrfs_key *location, u8 *type)
5556 {
5557 	const char *name = dentry->d_name.name;
5558 	int namelen = dentry->d_name.len;
5559 	struct btrfs_dir_item *di;
5560 	struct btrfs_path *path;
5561 	struct btrfs_root *root = BTRFS_I(dir)->root;
5562 	int ret = 0;
5563 
5564 	path = btrfs_alloc_path();
5565 	if (!path)
5566 		return -ENOMEM;
5567 
5568 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5569 			name, namelen, 0);
5570 	if (IS_ERR_OR_NULL(di)) {
5571 		ret = di ? PTR_ERR(di) : -ENOENT;
5572 		goto out;
5573 	}
5574 
5575 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5576 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5577 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5578 		ret = -EUCLEAN;
5579 		btrfs_warn(root->fs_info,
5580 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5581 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5582 			   location->objectid, location->type, location->offset);
5583 	}
5584 	if (!ret)
5585 		*type = btrfs_dir_type(path->nodes[0], di);
5586 out:
5587 	btrfs_free_path(path);
5588 	return ret;
5589 }
5590 
5591 /*
5592  * when we hit a tree root in a directory, the btrfs part of the inode
5593  * needs to be changed to reflect the root directory of the tree root.  This
5594  * is kind of like crossing a mount point.
5595  */
5596 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5597 				    struct inode *dir,
5598 				    struct dentry *dentry,
5599 				    struct btrfs_key *location,
5600 				    struct btrfs_root **sub_root)
5601 {
5602 	struct btrfs_path *path;
5603 	struct btrfs_root *new_root;
5604 	struct btrfs_root_ref *ref;
5605 	struct extent_buffer *leaf;
5606 	struct btrfs_key key;
5607 	int ret;
5608 	int err = 0;
5609 
5610 	path = btrfs_alloc_path();
5611 	if (!path) {
5612 		err = -ENOMEM;
5613 		goto out;
5614 	}
5615 
5616 	err = -ENOENT;
5617 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5618 	key.type = BTRFS_ROOT_REF_KEY;
5619 	key.offset = location->objectid;
5620 
5621 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5622 	if (ret) {
5623 		if (ret < 0)
5624 			err = ret;
5625 		goto out;
5626 	}
5627 
5628 	leaf = path->nodes[0];
5629 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5630 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5631 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5632 		goto out;
5633 
5634 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5635 				   (unsigned long)(ref + 1),
5636 				   dentry->d_name.len);
5637 	if (ret)
5638 		goto out;
5639 
5640 	btrfs_release_path(path);
5641 
5642 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5643 	if (IS_ERR(new_root)) {
5644 		err = PTR_ERR(new_root);
5645 		goto out;
5646 	}
5647 
5648 	*sub_root = new_root;
5649 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5650 	location->type = BTRFS_INODE_ITEM_KEY;
5651 	location->offset = 0;
5652 	err = 0;
5653 out:
5654 	btrfs_free_path(path);
5655 	return err;
5656 }
5657 
5658 static void inode_tree_add(struct inode *inode)
5659 {
5660 	struct btrfs_root *root = BTRFS_I(inode)->root;
5661 	struct btrfs_inode *entry;
5662 	struct rb_node **p;
5663 	struct rb_node *parent;
5664 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5665 	u64 ino = btrfs_ino(BTRFS_I(inode));
5666 
5667 	if (inode_unhashed(inode))
5668 		return;
5669 	parent = NULL;
5670 	spin_lock(&root->inode_lock);
5671 	p = &root->inode_tree.rb_node;
5672 	while (*p) {
5673 		parent = *p;
5674 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5675 
5676 		if (ino < btrfs_ino(entry))
5677 			p = &parent->rb_left;
5678 		else if (ino > btrfs_ino(entry))
5679 			p = &parent->rb_right;
5680 		else {
5681 			WARN_ON(!(entry->vfs_inode.i_state &
5682 				  (I_WILL_FREE | I_FREEING)));
5683 			rb_replace_node(parent, new, &root->inode_tree);
5684 			RB_CLEAR_NODE(parent);
5685 			spin_unlock(&root->inode_lock);
5686 			return;
5687 		}
5688 	}
5689 	rb_link_node(new, parent, p);
5690 	rb_insert_color(new, &root->inode_tree);
5691 	spin_unlock(&root->inode_lock);
5692 }
5693 
5694 static void inode_tree_del(struct inode *inode)
5695 {
5696 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5697 	struct btrfs_root *root = BTRFS_I(inode)->root;
5698 	int empty = 0;
5699 
5700 	spin_lock(&root->inode_lock);
5701 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5702 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5703 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5704 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5705 	}
5706 	spin_unlock(&root->inode_lock);
5707 
5708 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5709 		synchronize_srcu(&fs_info->subvol_srcu);
5710 		spin_lock(&root->inode_lock);
5711 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5712 		spin_unlock(&root->inode_lock);
5713 		if (empty)
5714 			btrfs_add_dead_root(root);
5715 	}
5716 }
5717 
5718 
5719 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5720 {
5721 	struct btrfs_iget_args *args = p;
5722 	inode->i_ino = args->location->objectid;
5723 	memcpy(&BTRFS_I(inode)->location, args->location,
5724 	       sizeof(*args->location));
5725 	BTRFS_I(inode)->root = args->root;
5726 	return 0;
5727 }
5728 
5729 static int btrfs_find_actor(struct inode *inode, void *opaque)
5730 {
5731 	struct btrfs_iget_args *args = opaque;
5732 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5733 		args->root == BTRFS_I(inode)->root;
5734 }
5735 
5736 static struct inode *btrfs_iget_locked(struct super_block *s,
5737 				       struct btrfs_key *location,
5738 				       struct btrfs_root *root)
5739 {
5740 	struct inode *inode;
5741 	struct btrfs_iget_args args;
5742 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5743 
5744 	args.location = location;
5745 	args.root = root;
5746 
5747 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5748 			     btrfs_init_locked_inode,
5749 			     (void *)&args);
5750 	return inode;
5751 }
5752 
5753 /* Get an inode object given its location and corresponding root.
5754  * Returns in *is_new if the inode was read from disk
5755  */
5756 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5757 			      struct btrfs_root *root, int *new,
5758 			      struct btrfs_path *path)
5759 {
5760 	struct inode *inode;
5761 
5762 	inode = btrfs_iget_locked(s, location, root);
5763 	if (!inode)
5764 		return ERR_PTR(-ENOMEM);
5765 
5766 	if (inode->i_state & I_NEW) {
5767 		int ret;
5768 
5769 		ret = btrfs_read_locked_inode(inode, path);
5770 		if (!ret) {
5771 			inode_tree_add(inode);
5772 			unlock_new_inode(inode);
5773 			if (new)
5774 				*new = 1;
5775 		} else {
5776 			iget_failed(inode);
5777 			/*
5778 			 * ret > 0 can come from btrfs_search_slot called by
5779 			 * btrfs_read_locked_inode, this means the inode item
5780 			 * was not found.
5781 			 */
5782 			if (ret > 0)
5783 				ret = -ENOENT;
5784 			inode = ERR_PTR(ret);
5785 		}
5786 	}
5787 
5788 	return inode;
5789 }
5790 
5791 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5792 			 struct btrfs_root *root, int *new)
5793 {
5794 	return btrfs_iget_path(s, location, root, new, NULL);
5795 }
5796 
5797 static struct inode *new_simple_dir(struct super_block *s,
5798 				    struct btrfs_key *key,
5799 				    struct btrfs_root *root)
5800 {
5801 	struct inode *inode = new_inode(s);
5802 
5803 	if (!inode)
5804 		return ERR_PTR(-ENOMEM);
5805 
5806 	BTRFS_I(inode)->root = root;
5807 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5808 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5809 
5810 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5811 	inode->i_op = &btrfs_dir_ro_inode_operations;
5812 	inode->i_opflags &= ~IOP_XATTR;
5813 	inode->i_fop = &simple_dir_operations;
5814 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5815 	inode->i_mtime = current_time(inode);
5816 	inode->i_atime = inode->i_mtime;
5817 	inode->i_ctime = inode->i_mtime;
5818 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5819 
5820 	return inode;
5821 }
5822 
5823 static inline u8 btrfs_inode_type(struct inode *inode)
5824 {
5825 	/*
5826 	 * Compile-time asserts that generic FT_* types still match
5827 	 * BTRFS_FT_* types
5828 	 */
5829 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5830 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5831 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5832 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5833 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5834 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5835 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5836 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5837 
5838 	return fs_umode_to_ftype(inode->i_mode);
5839 }
5840 
5841 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5842 {
5843 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5844 	struct inode *inode;
5845 	struct btrfs_root *root = BTRFS_I(dir)->root;
5846 	struct btrfs_root *sub_root = root;
5847 	struct btrfs_key location;
5848 	u8 di_type = 0;
5849 	int index;
5850 	int ret = 0;
5851 
5852 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5853 		return ERR_PTR(-ENAMETOOLONG);
5854 
5855 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5856 	if (ret < 0)
5857 		return ERR_PTR(ret);
5858 
5859 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5860 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5861 		if (IS_ERR(inode))
5862 			return inode;
5863 
5864 		/* Do extra check against inode mode with di_type */
5865 		if (btrfs_inode_type(inode) != di_type) {
5866 			btrfs_crit(fs_info,
5867 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5868 				  inode->i_mode, btrfs_inode_type(inode),
5869 				  di_type);
5870 			iput(inode);
5871 			return ERR_PTR(-EUCLEAN);
5872 		}
5873 		return inode;
5874 	}
5875 
5876 	index = srcu_read_lock(&fs_info->subvol_srcu);
5877 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5878 				       &location, &sub_root);
5879 	if (ret < 0) {
5880 		if (ret != -ENOENT)
5881 			inode = ERR_PTR(ret);
5882 		else
5883 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5884 	} else {
5885 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5886 	}
5887 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5888 
5889 	if (!IS_ERR(inode) && root != sub_root) {
5890 		down_read(&fs_info->cleanup_work_sem);
5891 		if (!sb_rdonly(inode->i_sb))
5892 			ret = btrfs_orphan_cleanup(sub_root);
5893 		up_read(&fs_info->cleanup_work_sem);
5894 		if (ret) {
5895 			iput(inode);
5896 			inode = ERR_PTR(ret);
5897 		}
5898 	}
5899 
5900 	return inode;
5901 }
5902 
5903 static int btrfs_dentry_delete(const struct dentry *dentry)
5904 {
5905 	struct btrfs_root *root;
5906 	struct inode *inode = d_inode(dentry);
5907 
5908 	if (!inode && !IS_ROOT(dentry))
5909 		inode = d_inode(dentry->d_parent);
5910 
5911 	if (inode) {
5912 		root = BTRFS_I(inode)->root;
5913 		if (btrfs_root_refs(&root->root_item) == 0)
5914 			return 1;
5915 
5916 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5917 			return 1;
5918 	}
5919 	return 0;
5920 }
5921 
5922 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5923 				   unsigned int flags)
5924 {
5925 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5926 
5927 	if (inode == ERR_PTR(-ENOENT))
5928 		inode = NULL;
5929 	return d_splice_alias(inode, dentry);
5930 }
5931 
5932 /*
5933  * All this infrastructure exists because dir_emit can fault, and we are holding
5934  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5935  * our information into that, and then dir_emit from the buffer.  This is
5936  * similar to what NFS does, only we don't keep the buffer around in pagecache
5937  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5938  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5939  * tree lock.
5940  */
5941 static int btrfs_opendir(struct inode *inode, struct file *file)
5942 {
5943 	struct btrfs_file_private *private;
5944 
5945 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5946 	if (!private)
5947 		return -ENOMEM;
5948 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5949 	if (!private->filldir_buf) {
5950 		kfree(private);
5951 		return -ENOMEM;
5952 	}
5953 	file->private_data = private;
5954 	return 0;
5955 }
5956 
5957 struct dir_entry {
5958 	u64 ino;
5959 	u64 offset;
5960 	unsigned type;
5961 	int name_len;
5962 };
5963 
5964 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5965 {
5966 	while (entries--) {
5967 		struct dir_entry *entry = addr;
5968 		char *name = (char *)(entry + 1);
5969 
5970 		ctx->pos = get_unaligned(&entry->offset);
5971 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5972 					 get_unaligned(&entry->ino),
5973 					 get_unaligned(&entry->type)))
5974 			return 1;
5975 		addr += sizeof(struct dir_entry) +
5976 			get_unaligned(&entry->name_len);
5977 		ctx->pos++;
5978 	}
5979 	return 0;
5980 }
5981 
5982 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5983 {
5984 	struct inode *inode = file_inode(file);
5985 	struct btrfs_root *root = BTRFS_I(inode)->root;
5986 	struct btrfs_file_private *private = file->private_data;
5987 	struct btrfs_dir_item *di;
5988 	struct btrfs_key key;
5989 	struct btrfs_key found_key;
5990 	struct btrfs_path *path;
5991 	void *addr;
5992 	struct list_head ins_list;
5993 	struct list_head del_list;
5994 	int ret;
5995 	struct extent_buffer *leaf;
5996 	int slot;
5997 	char *name_ptr;
5998 	int name_len;
5999 	int entries = 0;
6000 	int total_len = 0;
6001 	bool put = false;
6002 	struct btrfs_key location;
6003 
6004 	if (!dir_emit_dots(file, ctx))
6005 		return 0;
6006 
6007 	path = btrfs_alloc_path();
6008 	if (!path)
6009 		return -ENOMEM;
6010 
6011 	addr = private->filldir_buf;
6012 	path->reada = READA_FORWARD;
6013 
6014 	INIT_LIST_HEAD(&ins_list);
6015 	INIT_LIST_HEAD(&del_list);
6016 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6017 
6018 again:
6019 	key.type = BTRFS_DIR_INDEX_KEY;
6020 	key.offset = ctx->pos;
6021 	key.objectid = btrfs_ino(BTRFS_I(inode));
6022 
6023 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6024 	if (ret < 0)
6025 		goto err;
6026 
6027 	while (1) {
6028 		struct dir_entry *entry;
6029 
6030 		leaf = path->nodes[0];
6031 		slot = path->slots[0];
6032 		if (slot >= btrfs_header_nritems(leaf)) {
6033 			ret = btrfs_next_leaf(root, path);
6034 			if (ret < 0)
6035 				goto err;
6036 			else if (ret > 0)
6037 				break;
6038 			continue;
6039 		}
6040 
6041 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6042 
6043 		if (found_key.objectid != key.objectid)
6044 			break;
6045 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6046 			break;
6047 		if (found_key.offset < ctx->pos)
6048 			goto next;
6049 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6050 			goto next;
6051 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6052 		name_len = btrfs_dir_name_len(leaf, di);
6053 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6054 		    PAGE_SIZE) {
6055 			btrfs_release_path(path);
6056 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6057 			if (ret)
6058 				goto nopos;
6059 			addr = private->filldir_buf;
6060 			entries = 0;
6061 			total_len = 0;
6062 			goto again;
6063 		}
6064 
6065 		entry = addr;
6066 		put_unaligned(name_len, &entry->name_len);
6067 		name_ptr = (char *)(entry + 1);
6068 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6069 				   name_len);
6070 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6071 				&entry->type);
6072 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6073 		put_unaligned(location.objectid, &entry->ino);
6074 		put_unaligned(found_key.offset, &entry->offset);
6075 		entries++;
6076 		addr += sizeof(struct dir_entry) + name_len;
6077 		total_len += sizeof(struct dir_entry) + name_len;
6078 next:
6079 		path->slots[0]++;
6080 	}
6081 	btrfs_release_path(path);
6082 
6083 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6084 	if (ret)
6085 		goto nopos;
6086 
6087 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6088 	if (ret)
6089 		goto nopos;
6090 
6091 	/*
6092 	 * Stop new entries from being returned after we return the last
6093 	 * entry.
6094 	 *
6095 	 * New directory entries are assigned a strictly increasing
6096 	 * offset.  This means that new entries created during readdir
6097 	 * are *guaranteed* to be seen in the future by that readdir.
6098 	 * This has broken buggy programs which operate on names as
6099 	 * they're returned by readdir.  Until we re-use freed offsets
6100 	 * we have this hack to stop new entries from being returned
6101 	 * under the assumption that they'll never reach this huge
6102 	 * offset.
6103 	 *
6104 	 * This is being careful not to overflow 32bit loff_t unless the
6105 	 * last entry requires it because doing so has broken 32bit apps
6106 	 * in the past.
6107 	 */
6108 	if (ctx->pos >= INT_MAX)
6109 		ctx->pos = LLONG_MAX;
6110 	else
6111 		ctx->pos = INT_MAX;
6112 nopos:
6113 	ret = 0;
6114 err:
6115 	if (put)
6116 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6117 	btrfs_free_path(path);
6118 	return ret;
6119 }
6120 
6121 /*
6122  * This is somewhat expensive, updating the tree every time the
6123  * inode changes.  But, it is most likely to find the inode in cache.
6124  * FIXME, needs more benchmarking...there are no reasons other than performance
6125  * to keep or drop this code.
6126  */
6127 static int btrfs_dirty_inode(struct inode *inode)
6128 {
6129 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6130 	struct btrfs_root *root = BTRFS_I(inode)->root;
6131 	struct btrfs_trans_handle *trans;
6132 	int ret;
6133 
6134 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6135 		return 0;
6136 
6137 	trans = btrfs_join_transaction(root);
6138 	if (IS_ERR(trans))
6139 		return PTR_ERR(trans);
6140 
6141 	ret = btrfs_update_inode(trans, root, inode);
6142 	if (ret && ret == -ENOSPC) {
6143 		/* whoops, lets try again with the full transaction */
6144 		btrfs_end_transaction(trans);
6145 		trans = btrfs_start_transaction(root, 1);
6146 		if (IS_ERR(trans))
6147 			return PTR_ERR(trans);
6148 
6149 		ret = btrfs_update_inode(trans, root, inode);
6150 	}
6151 	btrfs_end_transaction(trans);
6152 	if (BTRFS_I(inode)->delayed_node)
6153 		btrfs_balance_delayed_items(fs_info);
6154 
6155 	return ret;
6156 }
6157 
6158 /*
6159  * This is a copy of file_update_time.  We need this so we can return error on
6160  * ENOSPC for updating the inode in the case of file write and mmap writes.
6161  */
6162 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6163 			     int flags)
6164 {
6165 	struct btrfs_root *root = BTRFS_I(inode)->root;
6166 	bool dirty = flags & ~S_VERSION;
6167 
6168 	if (btrfs_root_readonly(root))
6169 		return -EROFS;
6170 
6171 	if (flags & S_VERSION)
6172 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6173 	if (flags & S_CTIME)
6174 		inode->i_ctime = *now;
6175 	if (flags & S_MTIME)
6176 		inode->i_mtime = *now;
6177 	if (flags & S_ATIME)
6178 		inode->i_atime = *now;
6179 	return dirty ? btrfs_dirty_inode(inode) : 0;
6180 }
6181 
6182 /*
6183  * find the highest existing sequence number in a directory
6184  * and then set the in-memory index_cnt variable to reflect
6185  * free sequence numbers
6186  */
6187 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6188 {
6189 	struct btrfs_root *root = inode->root;
6190 	struct btrfs_key key, found_key;
6191 	struct btrfs_path *path;
6192 	struct extent_buffer *leaf;
6193 	int ret;
6194 
6195 	key.objectid = btrfs_ino(inode);
6196 	key.type = BTRFS_DIR_INDEX_KEY;
6197 	key.offset = (u64)-1;
6198 
6199 	path = btrfs_alloc_path();
6200 	if (!path)
6201 		return -ENOMEM;
6202 
6203 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6204 	if (ret < 0)
6205 		goto out;
6206 	/* FIXME: we should be able to handle this */
6207 	if (ret == 0)
6208 		goto out;
6209 	ret = 0;
6210 
6211 	/*
6212 	 * MAGIC NUMBER EXPLANATION:
6213 	 * since we search a directory based on f_pos we have to start at 2
6214 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6215 	 * else has to start at 2
6216 	 */
6217 	if (path->slots[0] == 0) {
6218 		inode->index_cnt = 2;
6219 		goto out;
6220 	}
6221 
6222 	path->slots[0]--;
6223 
6224 	leaf = path->nodes[0];
6225 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6226 
6227 	if (found_key.objectid != btrfs_ino(inode) ||
6228 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6229 		inode->index_cnt = 2;
6230 		goto out;
6231 	}
6232 
6233 	inode->index_cnt = found_key.offset + 1;
6234 out:
6235 	btrfs_free_path(path);
6236 	return ret;
6237 }
6238 
6239 /*
6240  * helper to find a free sequence number in a given directory.  This current
6241  * code is very simple, later versions will do smarter things in the btree
6242  */
6243 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6244 {
6245 	int ret = 0;
6246 
6247 	if (dir->index_cnt == (u64)-1) {
6248 		ret = btrfs_inode_delayed_dir_index_count(dir);
6249 		if (ret) {
6250 			ret = btrfs_set_inode_index_count(dir);
6251 			if (ret)
6252 				return ret;
6253 		}
6254 	}
6255 
6256 	*index = dir->index_cnt;
6257 	dir->index_cnt++;
6258 
6259 	return ret;
6260 }
6261 
6262 static int btrfs_insert_inode_locked(struct inode *inode)
6263 {
6264 	struct btrfs_iget_args args;
6265 	args.location = &BTRFS_I(inode)->location;
6266 	args.root = BTRFS_I(inode)->root;
6267 
6268 	return insert_inode_locked4(inode,
6269 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6270 		   btrfs_find_actor, &args);
6271 }
6272 
6273 /*
6274  * Inherit flags from the parent inode.
6275  *
6276  * Currently only the compression flags and the cow flags are inherited.
6277  */
6278 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6279 {
6280 	unsigned int flags;
6281 
6282 	if (!dir)
6283 		return;
6284 
6285 	flags = BTRFS_I(dir)->flags;
6286 
6287 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6288 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6289 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6290 	} else if (flags & BTRFS_INODE_COMPRESS) {
6291 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6292 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6293 	}
6294 
6295 	if (flags & BTRFS_INODE_NODATACOW) {
6296 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6297 		if (S_ISREG(inode->i_mode))
6298 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6299 	}
6300 
6301 	btrfs_sync_inode_flags_to_i_flags(inode);
6302 }
6303 
6304 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6305 				     struct btrfs_root *root,
6306 				     struct inode *dir,
6307 				     const char *name, int name_len,
6308 				     u64 ref_objectid, u64 objectid,
6309 				     umode_t mode, u64 *index)
6310 {
6311 	struct btrfs_fs_info *fs_info = root->fs_info;
6312 	struct inode *inode;
6313 	struct btrfs_inode_item *inode_item;
6314 	struct btrfs_key *location;
6315 	struct btrfs_path *path;
6316 	struct btrfs_inode_ref *ref;
6317 	struct btrfs_key key[2];
6318 	u32 sizes[2];
6319 	int nitems = name ? 2 : 1;
6320 	unsigned long ptr;
6321 	unsigned int nofs_flag;
6322 	int ret;
6323 
6324 	path = btrfs_alloc_path();
6325 	if (!path)
6326 		return ERR_PTR(-ENOMEM);
6327 
6328 	nofs_flag = memalloc_nofs_save();
6329 	inode = new_inode(fs_info->sb);
6330 	memalloc_nofs_restore(nofs_flag);
6331 	if (!inode) {
6332 		btrfs_free_path(path);
6333 		return ERR_PTR(-ENOMEM);
6334 	}
6335 
6336 	/*
6337 	 * O_TMPFILE, set link count to 0, so that after this point,
6338 	 * we fill in an inode item with the correct link count.
6339 	 */
6340 	if (!name)
6341 		set_nlink(inode, 0);
6342 
6343 	/*
6344 	 * we have to initialize this early, so we can reclaim the inode
6345 	 * number if we fail afterwards in this function.
6346 	 */
6347 	inode->i_ino = objectid;
6348 
6349 	if (dir && name) {
6350 		trace_btrfs_inode_request(dir);
6351 
6352 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6353 		if (ret) {
6354 			btrfs_free_path(path);
6355 			iput(inode);
6356 			return ERR_PTR(ret);
6357 		}
6358 	} else if (dir) {
6359 		*index = 0;
6360 	}
6361 	/*
6362 	 * index_cnt is ignored for everything but a dir,
6363 	 * btrfs_set_inode_index_count has an explanation for the magic
6364 	 * number
6365 	 */
6366 	BTRFS_I(inode)->index_cnt = 2;
6367 	BTRFS_I(inode)->dir_index = *index;
6368 	BTRFS_I(inode)->root = root;
6369 	BTRFS_I(inode)->generation = trans->transid;
6370 	inode->i_generation = BTRFS_I(inode)->generation;
6371 
6372 	/*
6373 	 * We could have gotten an inode number from somebody who was fsynced
6374 	 * and then removed in this same transaction, so let's just set full
6375 	 * sync since it will be a full sync anyway and this will blow away the
6376 	 * old info in the log.
6377 	 */
6378 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6379 
6380 	key[0].objectid = objectid;
6381 	key[0].type = BTRFS_INODE_ITEM_KEY;
6382 	key[0].offset = 0;
6383 
6384 	sizes[0] = sizeof(struct btrfs_inode_item);
6385 
6386 	if (name) {
6387 		/*
6388 		 * Start new inodes with an inode_ref. This is slightly more
6389 		 * efficient for small numbers of hard links since they will
6390 		 * be packed into one item. Extended refs will kick in if we
6391 		 * add more hard links than can fit in the ref item.
6392 		 */
6393 		key[1].objectid = objectid;
6394 		key[1].type = BTRFS_INODE_REF_KEY;
6395 		key[1].offset = ref_objectid;
6396 
6397 		sizes[1] = name_len + sizeof(*ref);
6398 	}
6399 
6400 	location = &BTRFS_I(inode)->location;
6401 	location->objectid = objectid;
6402 	location->offset = 0;
6403 	location->type = BTRFS_INODE_ITEM_KEY;
6404 
6405 	ret = btrfs_insert_inode_locked(inode);
6406 	if (ret < 0) {
6407 		iput(inode);
6408 		goto fail;
6409 	}
6410 
6411 	path->leave_spinning = 1;
6412 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6413 	if (ret != 0)
6414 		goto fail_unlock;
6415 
6416 	inode_init_owner(inode, dir, mode);
6417 	inode_set_bytes(inode, 0);
6418 
6419 	inode->i_mtime = current_time(inode);
6420 	inode->i_atime = inode->i_mtime;
6421 	inode->i_ctime = inode->i_mtime;
6422 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6423 
6424 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6425 				  struct btrfs_inode_item);
6426 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6427 			     sizeof(*inode_item));
6428 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6429 
6430 	if (name) {
6431 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6432 				     struct btrfs_inode_ref);
6433 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6434 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6435 		ptr = (unsigned long)(ref + 1);
6436 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6437 	}
6438 
6439 	btrfs_mark_buffer_dirty(path->nodes[0]);
6440 	btrfs_free_path(path);
6441 
6442 	btrfs_inherit_iflags(inode, dir);
6443 
6444 	if (S_ISREG(mode)) {
6445 		if (btrfs_test_opt(fs_info, NODATASUM))
6446 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6447 		if (btrfs_test_opt(fs_info, NODATACOW))
6448 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6449 				BTRFS_INODE_NODATASUM;
6450 	}
6451 
6452 	inode_tree_add(inode);
6453 
6454 	trace_btrfs_inode_new(inode);
6455 	btrfs_set_inode_last_trans(trans, inode);
6456 
6457 	btrfs_update_root_times(trans, root);
6458 
6459 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6460 	if (ret)
6461 		btrfs_err(fs_info,
6462 			  "error inheriting props for ino %llu (root %llu): %d",
6463 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6464 
6465 	return inode;
6466 
6467 fail_unlock:
6468 	discard_new_inode(inode);
6469 fail:
6470 	if (dir && name)
6471 		BTRFS_I(dir)->index_cnt--;
6472 	btrfs_free_path(path);
6473 	return ERR_PTR(ret);
6474 }
6475 
6476 /*
6477  * utility function to add 'inode' into 'parent_inode' with
6478  * a give name and a given sequence number.
6479  * if 'add_backref' is true, also insert a backref from the
6480  * inode to the parent directory.
6481  */
6482 int btrfs_add_link(struct btrfs_trans_handle *trans,
6483 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6484 		   const char *name, int name_len, int add_backref, u64 index)
6485 {
6486 	int ret = 0;
6487 	struct btrfs_key key;
6488 	struct btrfs_root *root = parent_inode->root;
6489 	u64 ino = btrfs_ino(inode);
6490 	u64 parent_ino = btrfs_ino(parent_inode);
6491 
6492 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6493 		memcpy(&key, &inode->root->root_key, sizeof(key));
6494 	} else {
6495 		key.objectid = ino;
6496 		key.type = BTRFS_INODE_ITEM_KEY;
6497 		key.offset = 0;
6498 	}
6499 
6500 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6501 		ret = btrfs_add_root_ref(trans, key.objectid,
6502 					 root->root_key.objectid, parent_ino,
6503 					 index, name, name_len);
6504 	} else if (add_backref) {
6505 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6506 					     parent_ino, index);
6507 	}
6508 
6509 	/* Nothing to clean up yet */
6510 	if (ret)
6511 		return ret;
6512 
6513 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6514 				    btrfs_inode_type(&inode->vfs_inode), index);
6515 	if (ret == -EEXIST || ret == -EOVERFLOW)
6516 		goto fail_dir_item;
6517 	else if (ret) {
6518 		btrfs_abort_transaction(trans, ret);
6519 		return ret;
6520 	}
6521 
6522 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6523 			   name_len * 2);
6524 	inode_inc_iversion(&parent_inode->vfs_inode);
6525 	/*
6526 	 * If we are replaying a log tree, we do not want to update the mtime
6527 	 * and ctime of the parent directory with the current time, since the
6528 	 * log replay procedure is responsible for setting them to their correct
6529 	 * values (the ones it had when the fsync was done).
6530 	 */
6531 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6532 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6533 
6534 		parent_inode->vfs_inode.i_mtime = now;
6535 		parent_inode->vfs_inode.i_ctime = now;
6536 	}
6537 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6538 	if (ret)
6539 		btrfs_abort_transaction(trans, ret);
6540 	return ret;
6541 
6542 fail_dir_item:
6543 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6544 		u64 local_index;
6545 		int err;
6546 		err = btrfs_del_root_ref(trans, key.objectid,
6547 					 root->root_key.objectid, parent_ino,
6548 					 &local_index, name, name_len);
6549 		if (err)
6550 			btrfs_abort_transaction(trans, err);
6551 	} else if (add_backref) {
6552 		u64 local_index;
6553 		int err;
6554 
6555 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6556 					  ino, parent_ino, &local_index);
6557 		if (err)
6558 			btrfs_abort_transaction(trans, err);
6559 	}
6560 
6561 	/* Return the original error code */
6562 	return ret;
6563 }
6564 
6565 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6566 			    struct btrfs_inode *dir, struct dentry *dentry,
6567 			    struct btrfs_inode *inode, int backref, u64 index)
6568 {
6569 	int err = btrfs_add_link(trans, dir, inode,
6570 				 dentry->d_name.name, dentry->d_name.len,
6571 				 backref, index);
6572 	if (err > 0)
6573 		err = -EEXIST;
6574 	return err;
6575 }
6576 
6577 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6578 			umode_t mode, dev_t rdev)
6579 {
6580 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6581 	struct btrfs_trans_handle *trans;
6582 	struct btrfs_root *root = BTRFS_I(dir)->root;
6583 	struct inode *inode = NULL;
6584 	int err;
6585 	u64 objectid;
6586 	u64 index = 0;
6587 
6588 	/*
6589 	 * 2 for inode item and ref
6590 	 * 2 for dir items
6591 	 * 1 for xattr if selinux is on
6592 	 */
6593 	trans = btrfs_start_transaction(root, 5);
6594 	if (IS_ERR(trans))
6595 		return PTR_ERR(trans);
6596 
6597 	err = btrfs_find_free_ino(root, &objectid);
6598 	if (err)
6599 		goto out_unlock;
6600 
6601 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6602 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6603 			mode, &index);
6604 	if (IS_ERR(inode)) {
6605 		err = PTR_ERR(inode);
6606 		inode = NULL;
6607 		goto out_unlock;
6608 	}
6609 
6610 	/*
6611 	* If the active LSM wants to access the inode during
6612 	* d_instantiate it needs these. Smack checks to see
6613 	* if the filesystem supports xattrs by looking at the
6614 	* ops vector.
6615 	*/
6616 	inode->i_op = &btrfs_special_inode_operations;
6617 	init_special_inode(inode, inode->i_mode, rdev);
6618 
6619 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6620 	if (err)
6621 		goto out_unlock;
6622 
6623 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6624 			0, index);
6625 	if (err)
6626 		goto out_unlock;
6627 
6628 	btrfs_update_inode(trans, root, inode);
6629 	d_instantiate_new(dentry, inode);
6630 
6631 out_unlock:
6632 	btrfs_end_transaction(trans);
6633 	btrfs_btree_balance_dirty(fs_info);
6634 	if (err && inode) {
6635 		inode_dec_link_count(inode);
6636 		discard_new_inode(inode);
6637 	}
6638 	return err;
6639 }
6640 
6641 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6642 			umode_t mode, bool excl)
6643 {
6644 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6645 	struct btrfs_trans_handle *trans;
6646 	struct btrfs_root *root = BTRFS_I(dir)->root;
6647 	struct inode *inode = NULL;
6648 	int err;
6649 	u64 objectid;
6650 	u64 index = 0;
6651 
6652 	/*
6653 	 * 2 for inode item and ref
6654 	 * 2 for dir items
6655 	 * 1 for xattr if selinux is on
6656 	 */
6657 	trans = btrfs_start_transaction(root, 5);
6658 	if (IS_ERR(trans))
6659 		return PTR_ERR(trans);
6660 
6661 	err = btrfs_find_free_ino(root, &objectid);
6662 	if (err)
6663 		goto out_unlock;
6664 
6665 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6666 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6667 			mode, &index);
6668 	if (IS_ERR(inode)) {
6669 		err = PTR_ERR(inode);
6670 		inode = NULL;
6671 		goto out_unlock;
6672 	}
6673 	/*
6674 	* If the active LSM wants to access the inode during
6675 	* d_instantiate it needs these. Smack checks to see
6676 	* if the filesystem supports xattrs by looking at the
6677 	* ops vector.
6678 	*/
6679 	inode->i_fop = &btrfs_file_operations;
6680 	inode->i_op = &btrfs_file_inode_operations;
6681 	inode->i_mapping->a_ops = &btrfs_aops;
6682 
6683 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6684 	if (err)
6685 		goto out_unlock;
6686 
6687 	err = btrfs_update_inode(trans, root, inode);
6688 	if (err)
6689 		goto out_unlock;
6690 
6691 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6692 			0, index);
6693 	if (err)
6694 		goto out_unlock;
6695 
6696 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6697 	d_instantiate_new(dentry, inode);
6698 
6699 out_unlock:
6700 	btrfs_end_transaction(trans);
6701 	if (err && inode) {
6702 		inode_dec_link_count(inode);
6703 		discard_new_inode(inode);
6704 	}
6705 	btrfs_btree_balance_dirty(fs_info);
6706 	return err;
6707 }
6708 
6709 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6710 		      struct dentry *dentry)
6711 {
6712 	struct btrfs_trans_handle *trans = NULL;
6713 	struct btrfs_root *root = BTRFS_I(dir)->root;
6714 	struct inode *inode = d_inode(old_dentry);
6715 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6716 	u64 index;
6717 	int err;
6718 	int drop_inode = 0;
6719 
6720 	/* do not allow sys_link's with other subvols of the same device */
6721 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6722 		return -EXDEV;
6723 
6724 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6725 		return -EMLINK;
6726 
6727 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6728 	if (err)
6729 		goto fail;
6730 
6731 	/*
6732 	 * 2 items for inode and inode ref
6733 	 * 2 items for dir items
6734 	 * 1 item for parent inode
6735 	 * 1 item for orphan item deletion if O_TMPFILE
6736 	 */
6737 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6738 	if (IS_ERR(trans)) {
6739 		err = PTR_ERR(trans);
6740 		trans = NULL;
6741 		goto fail;
6742 	}
6743 
6744 	/* There are several dir indexes for this inode, clear the cache. */
6745 	BTRFS_I(inode)->dir_index = 0ULL;
6746 	inc_nlink(inode);
6747 	inode_inc_iversion(inode);
6748 	inode->i_ctime = current_time(inode);
6749 	ihold(inode);
6750 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6751 
6752 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6753 			1, index);
6754 
6755 	if (err) {
6756 		drop_inode = 1;
6757 	} else {
6758 		struct dentry *parent = dentry->d_parent;
6759 		int ret;
6760 
6761 		err = btrfs_update_inode(trans, root, inode);
6762 		if (err)
6763 			goto fail;
6764 		if (inode->i_nlink == 1) {
6765 			/*
6766 			 * If new hard link count is 1, it's a file created
6767 			 * with open(2) O_TMPFILE flag.
6768 			 */
6769 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6770 			if (err)
6771 				goto fail;
6772 		}
6773 		d_instantiate(dentry, inode);
6774 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6775 					 true, NULL);
6776 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6777 			err = btrfs_commit_transaction(trans);
6778 			trans = NULL;
6779 		}
6780 	}
6781 
6782 fail:
6783 	if (trans)
6784 		btrfs_end_transaction(trans);
6785 	if (drop_inode) {
6786 		inode_dec_link_count(inode);
6787 		iput(inode);
6788 	}
6789 	btrfs_btree_balance_dirty(fs_info);
6790 	return err;
6791 }
6792 
6793 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6794 {
6795 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6796 	struct inode *inode = NULL;
6797 	struct btrfs_trans_handle *trans;
6798 	struct btrfs_root *root = BTRFS_I(dir)->root;
6799 	int err = 0;
6800 	u64 objectid = 0;
6801 	u64 index = 0;
6802 
6803 	/*
6804 	 * 2 items for inode and ref
6805 	 * 2 items for dir items
6806 	 * 1 for xattr if selinux is on
6807 	 */
6808 	trans = btrfs_start_transaction(root, 5);
6809 	if (IS_ERR(trans))
6810 		return PTR_ERR(trans);
6811 
6812 	err = btrfs_find_free_ino(root, &objectid);
6813 	if (err)
6814 		goto out_fail;
6815 
6816 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6817 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6818 			S_IFDIR | mode, &index);
6819 	if (IS_ERR(inode)) {
6820 		err = PTR_ERR(inode);
6821 		inode = NULL;
6822 		goto out_fail;
6823 	}
6824 
6825 	/* these must be set before we unlock the inode */
6826 	inode->i_op = &btrfs_dir_inode_operations;
6827 	inode->i_fop = &btrfs_dir_file_operations;
6828 
6829 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6830 	if (err)
6831 		goto out_fail;
6832 
6833 	btrfs_i_size_write(BTRFS_I(inode), 0);
6834 	err = btrfs_update_inode(trans, root, inode);
6835 	if (err)
6836 		goto out_fail;
6837 
6838 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6839 			dentry->d_name.name,
6840 			dentry->d_name.len, 0, index);
6841 	if (err)
6842 		goto out_fail;
6843 
6844 	d_instantiate_new(dentry, inode);
6845 
6846 out_fail:
6847 	btrfs_end_transaction(trans);
6848 	if (err && inode) {
6849 		inode_dec_link_count(inode);
6850 		discard_new_inode(inode);
6851 	}
6852 	btrfs_btree_balance_dirty(fs_info);
6853 	return err;
6854 }
6855 
6856 static noinline int uncompress_inline(struct btrfs_path *path,
6857 				      struct page *page,
6858 				      size_t pg_offset, u64 extent_offset,
6859 				      struct btrfs_file_extent_item *item)
6860 {
6861 	int ret;
6862 	struct extent_buffer *leaf = path->nodes[0];
6863 	char *tmp;
6864 	size_t max_size;
6865 	unsigned long inline_size;
6866 	unsigned long ptr;
6867 	int compress_type;
6868 
6869 	WARN_ON(pg_offset != 0);
6870 	compress_type = btrfs_file_extent_compression(leaf, item);
6871 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6872 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6873 					btrfs_item_nr(path->slots[0]));
6874 	tmp = kmalloc(inline_size, GFP_NOFS);
6875 	if (!tmp)
6876 		return -ENOMEM;
6877 	ptr = btrfs_file_extent_inline_start(item);
6878 
6879 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6880 
6881 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6882 	ret = btrfs_decompress(compress_type, tmp, page,
6883 			       extent_offset, inline_size, max_size);
6884 
6885 	/*
6886 	 * decompression code contains a memset to fill in any space between the end
6887 	 * of the uncompressed data and the end of max_size in case the decompressed
6888 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6889 	 * the end of an inline extent and the beginning of the next block, so we
6890 	 * cover that region here.
6891 	 */
6892 
6893 	if (max_size + pg_offset < PAGE_SIZE) {
6894 		char *map = kmap(page);
6895 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6896 		kunmap(page);
6897 	}
6898 	kfree(tmp);
6899 	return ret;
6900 }
6901 
6902 /*
6903  * a bit scary, this does extent mapping from logical file offset to the disk.
6904  * the ugly parts come from merging extents from the disk with the in-ram
6905  * representation.  This gets more complex because of the data=ordered code,
6906  * where the in-ram extents might be locked pending data=ordered completion.
6907  *
6908  * This also copies inline extents directly into the page.
6909  */
6910 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6911 				    struct page *page,
6912 				    size_t pg_offset, u64 start, u64 len,
6913 				    int create)
6914 {
6915 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6916 	int ret;
6917 	int err = 0;
6918 	u64 extent_start = 0;
6919 	u64 extent_end = 0;
6920 	u64 objectid = btrfs_ino(inode);
6921 	int extent_type = -1;
6922 	struct btrfs_path *path = NULL;
6923 	struct btrfs_root *root = inode->root;
6924 	struct btrfs_file_extent_item *item;
6925 	struct extent_buffer *leaf;
6926 	struct btrfs_key found_key;
6927 	struct extent_map *em = NULL;
6928 	struct extent_map_tree *em_tree = &inode->extent_tree;
6929 	struct extent_io_tree *io_tree = &inode->io_tree;
6930 	const bool new_inline = !page || create;
6931 
6932 	read_lock(&em_tree->lock);
6933 	em = lookup_extent_mapping(em_tree, start, len);
6934 	if (em)
6935 		em->bdev = fs_info->fs_devices->latest_bdev;
6936 	read_unlock(&em_tree->lock);
6937 
6938 	if (em) {
6939 		if (em->start > start || em->start + em->len <= start)
6940 			free_extent_map(em);
6941 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6942 			free_extent_map(em);
6943 		else
6944 			goto out;
6945 	}
6946 	em = alloc_extent_map();
6947 	if (!em) {
6948 		err = -ENOMEM;
6949 		goto out;
6950 	}
6951 	em->bdev = fs_info->fs_devices->latest_bdev;
6952 	em->start = EXTENT_MAP_HOLE;
6953 	em->orig_start = EXTENT_MAP_HOLE;
6954 	em->len = (u64)-1;
6955 	em->block_len = (u64)-1;
6956 
6957 	path = btrfs_alloc_path();
6958 	if (!path) {
6959 		err = -ENOMEM;
6960 		goto out;
6961 	}
6962 
6963 	/* Chances are we'll be called again, so go ahead and do readahead */
6964 	path->reada = READA_FORWARD;
6965 
6966 	/*
6967 	 * Unless we're going to uncompress the inline extent, no sleep would
6968 	 * happen.
6969 	 */
6970 	path->leave_spinning = 1;
6971 
6972 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6973 	if (ret < 0) {
6974 		err = ret;
6975 		goto out;
6976 	} else if (ret > 0) {
6977 		if (path->slots[0] == 0)
6978 			goto not_found;
6979 		path->slots[0]--;
6980 	}
6981 
6982 	leaf = path->nodes[0];
6983 	item = btrfs_item_ptr(leaf, path->slots[0],
6984 			      struct btrfs_file_extent_item);
6985 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6986 	if (found_key.objectid != objectid ||
6987 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6988 		/*
6989 		 * If we backup past the first extent we want to move forward
6990 		 * and see if there is an extent in front of us, otherwise we'll
6991 		 * say there is a hole for our whole search range which can
6992 		 * cause problems.
6993 		 */
6994 		extent_end = start;
6995 		goto next;
6996 	}
6997 
6998 	extent_type = btrfs_file_extent_type(leaf, item);
6999 	extent_start = found_key.offset;
7000 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7001 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7002 		/* Only regular file could have regular/prealloc extent */
7003 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7004 			ret = -EUCLEAN;
7005 			btrfs_crit(fs_info,
7006 		"regular/prealloc extent found for non-regular inode %llu",
7007 				   btrfs_ino(inode));
7008 			goto out;
7009 		}
7010 		extent_end = extent_start +
7011 		       btrfs_file_extent_num_bytes(leaf, item);
7012 
7013 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7014 						       extent_start);
7015 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7016 		size_t size;
7017 
7018 		size = btrfs_file_extent_ram_bytes(leaf, item);
7019 		extent_end = ALIGN(extent_start + size,
7020 				   fs_info->sectorsize);
7021 
7022 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7023 						      path->slots[0],
7024 						      extent_start);
7025 	}
7026 next:
7027 	if (start >= extent_end) {
7028 		path->slots[0]++;
7029 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7030 			ret = btrfs_next_leaf(root, path);
7031 			if (ret < 0) {
7032 				err = ret;
7033 				goto out;
7034 			} else if (ret > 0) {
7035 				goto not_found;
7036 			}
7037 			leaf = path->nodes[0];
7038 		}
7039 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7040 		if (found_key.objectid != objectid ||
7041 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7042 			goto not_found;
7043 		if (start + len <= found_key.offset)
7044 			goto not_found;
7045 		if (start > found_key.offset)
7046 			goto next;
7047 
7048 		/* New extent overlaps with existing one */
7049 		em->start = start;
7050 		em->orig_start = start;
7051 		em->len = found_key.offset - start;
7052 		em->block_start = EXTENT_MAP_HOLE;
7053 		goto insert;
7054 	}
7055 
7056 	btrfs_extent_item_to_extent_map(inode, path, item,
7057 			new_inline, em);
7058 
7059 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7060 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7061 		goto insert;
7062 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7063 		unsigned long ptr;
7064 		char *map;
7065 		size_t size;
7066 		size_t extent_offset;
7067 		size_t copy_size;
7068 
7069 		if (new_inline)
7070 			goto out;
7071 
7072 		size = btrfs_file_extent_ram_bytes(leaf, item);
7073 		extent_offset = page_offset(page) + pg_offset - extent_start;
7074 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7075 				  size - extent_offset);
7076 		em->start = extent_start + extent_offset;
7077 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7078 		em->orig_block_len = em->len;
7079 		em->orig_start = em->start;
7080 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7081 
7082 		btrfs_set_path_blocking(path);
7083 		if (!PageUptodate(page)) {
7084 			if (btrfs_file_extent_compression(leaf, item) !=
7085 			    BTRFS_COMPRESS_NONE) {
7086 				ret = uncompress_inline(path, page, pg_offset,
7087 							extent_offset, item);
7088 				if (ret) {
7089 					err = ret;
7090 					goto out;
7091 				}
7092 			} else {
7093 				map = kmap(page);
7094 				read_extent_buffer(leaf, map + pg_offset, ptr,
7095 						   copy_size);
7096 				if (pg_offset + copy_size < PAGE_SIZE) {
7097 					memset(map + pg_offset + copy_size, 0,
7098 					       PAGE_SIZE - pg_offset -
7099 					       copy_size);
7100 				}
7101 				kunmap(page);
7102 			}
7103 			flush_dcache_page(page);
7104 		}
7105 		set_extent_uptodate(io_tree, em->start,
7106 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7107 		goto insert;
7108 	}
7109 not_found:
7110 	em->start = start;
7111 	em->orig_start = start;
7112 	em->len = len;
7113 	em->block_start = EXTENT_MAP_HOLE;
7114 insert:
7115 	btrfs_release_path(path);
7116 	if (em->start > start || extent_map_end(em) <= start) {
7117 		btrfs_err(fs_info,
7118 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7119 			  em->start, em->len, start, len);
7120 		err = -EIO;
7121 		goto out;
7122 	}
7123 
7124 	err = 0;
7125 	write_lock(&em_tree->lock);
7126 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7127 	write_unlock(&em_tree->lock);
7128 out:
7129 	btrfs_free_path(path);
7130 
7131 	trace_btrfs_get_extent(root, inode, em);
7132 
7133 	if (err) {
7134 		free_extent_map(em);
7135 		return ERR_PTR(err);
7136 	}
7137 	BUG_ON(!em); /* Error is always set */
7138 	return em;
7139 }
7140 
7141 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7142 					   u64 start, u64 len)
7143 {
7144 	struct extent_map *em;
7145 	struct extent_map *hole_em = NULL;
7146 	u64 delalloc_start = start;
7147 	u64 end;
7148 	u64 delalloc_len;
7149 	u64 delalloc_end;
7150 	int err = 0;
7151 
7152 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7153 	if (IS_ERR(em))
7154 		return em;
7155 	/*
7156 	 * If our em maps to:
7157 	 * - a hole or
7158 	 * - a pre-alloc extent,
7159 	 * there might actually be delalloc bytes behind it.
7160 	 */
7161 	if (em->block_start != EXTENT_MAP_HOLE &&
7162 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7163 		return em;
7164 	else
7165 		hole_em = em;
7166 
7167 	/* check to see if we've wrapped (len == -1 or similar) */
7168 	end = start + len;
7169 	if (end < start)
7170 		end = (u64)-1;
7171 	else
7172 		end -= 1;
7173 
7174 	em = NULL;
7175 
7176 	/* ok, we didn't find anything, lets look for delalloc */
7177 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7178 				 end, len, EXTENT_DELALLOC, 1);
7179 	delalloc_end = delalloc_start + delalloc_len;
7180 	if (delalloc_end < delalloc_start)
7181 		delalloc_end = (u64)-1;
7182 
7183 	/*
7184 	 * We didn't find anything useful, return the original results from
7185 	 * get_extent()
7186 	 */
7187 	if (delalloc_start > end || delalloc_end <= start) {
7188 		em = hole_em;
7189 		hole_em = NULL;
7190 		goto out;
7191 	}
7192 
7193 	/*
7194 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7195 	 * the start they passed in
7196 	 */
7197 	delalloc_start = max(start, delalloc_start);
7198 	delalloc_len = delalloc_end - delalloc_start;
7199 
7200 	if (delalloc_len > 0) {
7201 		u64 hole_start;
7202 		u64 hole_len;
7203 		const u64 hole_end = extent_map_end(hole_em);
7204 
7205 		em = alloc_extent_map();
7206 		if (!em) {
7207 			err = -ENOMEM;
7208 			goto out;
7209 		}
7210 		em->bdev = NULL;
7211 
7212 		ASSERT(hole_em);
7213 		/*
7214 		 * When btrfs_get_extent can't find anything it returns one
7215 		 * huge hole
7216 		 *
7217 		 * Make sure what it found really fits our range, and adjust to
7218 		 * make sure it is based on the start from the caller
7219 		 */
7220 		if (hole_end <= start || hole_em->start > end) {
7221 		       free_extent_map(hole_em);
7222 		       hole_em = NULL;
7223 		} else {
7224 		       hole_start = max(hole_em->start, start);
7225 		       hole_len = hole_end - hole_start;
7226 		}
7227 
7228 		if (hole_em && delalloc_start > hole_start) {
7229 			/*
7230 			 * Our hole starts before our delalloc, so we have to
7231 			 * return just the parts of the hole that go until the
7232 			 * delalloc starts
7233 			 */
7234 			em->len = min(hole_len, delalloc_start - hole_start);
7235 			em->start = hole_start;
7236 			em->orig_start = hole_start;
7237 			/*
7238 			 * Don't adjust block start at all, it is fixed at
7239 			 * EXTENT_MAP_HOLE
7240 			 */
7241 			em->block_start = hole_em->block_start;
7242 			em->block_len = hole_len;
7243 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7244 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7245 		} else {
7246 			/*
7247 			 * Hole is out of passed range or it starts after
7248 			 * delalloc range
7249 			 */
7250 			em->start = delalloc_start;
7251 			em->len = delalloc_len;
7252 			em->orig_start = delalloc_start;
7253 			em->block_start = EXTENT_MAP_DELALLOC;
7254 			em->block_len = delalloc_len;
7255 		}
7256 	} else {
7257 		return hole_em;
7258 	}
7259 out:
7260 
7261 	free_extent_map(hole_em);
7262 	if (err) {
7263 		free_extent_map(em);
7264 		return ERR_PTR(err);
7265 	}
7266 	return em;
7267 }
7268 
7269 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7270 						  const u64 start,
7271 						  const u64 len,
7272 						  const u64 orig_start,
7273 						  const u64 block_start,
7274 						  const u64 block_len,
7275 						  const u64 orig_block_len,
7276 						  const u64 ram_bytes,
7277 						  const int type)
7278 {
7279 	struct extent_map *em = NULL;
7280 	int ret;
7281 
7282 	if (type != BTRFS_ORDERED_NOCOW) {
7283 		em = create_io_em(inode, start, len, orig_start,
7284 				  block_start, block_len, orig_block_len,
7285 				  ram_bytes,
7286 				  BTRFS_COMPRESS_NONE, /* compress_type */
7287 				  type);
7288 		if (IS_ERR(em))
7289 			goto out;
7290 	}
7291 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7292 					   len, block_len, type);
7293 	if (ret) {
7294 		if (em) {
7295 			free_extent_map(em);
7296 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7297 						start + len - 1, 0);
7298 		}
7299 		em = ERR_PTR(ret);
7300 	}
7301  out:
7302 
7303 	return em;
7304 }
7305 
7306 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7307 						  u64 start, u64 len)
7308 {
7309 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7310 	struct btrfs_root *root = BTRFS_I(inode)->root;
7311 	struct extent_map *em;
7312 	struct btrfs_key ins;
7313 	u64 alloc_hint;
7314 	int ret;
7315 
7316 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7317 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7318 				   0, alloc_hint, &ins, 1, 1);
7319 	if (ret)
7320 		return ERR_PTR(ret);
7321 
7322 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7323 				     ins.objectid, ins.offset, ins.offset,
7324 				     ins.offset, BTRFS_ORDERED_REGULAR);
7325 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7326 	if (IS_ERR(em))
7327 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7328 					   ins.offset, 1);
7329 
7330 	return em;
7331 }
7332 
7333 /*
7334  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7335  * block must be cow'd
7336  */
7337 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7338 			      u64 *orig_start, u64 *orig_block_len,
7339 			      u64 *ram_bytes)
7340 {
7341 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7342 	struct btrfs_path *path;
7343 	int ret;
7344 	struct extent_buffer *leaf;
7345 	struct btrfs_root *root = BTRFS_I(inode)->root;
7346 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7347 	struct btrfs_file_extent_item *fi;
7348 	struct btrfs_key key;
7349 	u64 disk_bytenr;
7350 	u64 backref_offset;
7351 	u64 extent_end;
7352 	u64 num_bytes;
7353 	int slot;
7354 	int found_type;
7355 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7356 
7357 	path = btrfs_alloc_path();
7358 	if (!path)
7359 		return -ENOMEM;
7360 
7361 	ret = btrfs_lookup_file_extent(NULL, root, path,
7362 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7363 	if (ret < 0)
7364 		goto out;
7365 
7366 	slot = path->slots[0];
7367 	if (ret == 1) {
7368 		if (slot == 0) {
7369 			/* can't find the item, must cow */
7370 			ret = 0;
7371 			goto out;
7372 		}
7373 		slot--;
7374 	}
7375 	ret = 0;
7376 	leaf = path->nodes[0];
7377 	btrfs_item_key_to_cpu(leaf, &key, slot);
7378 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7379 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7380 		/* not our file or wrong item type, must cow */
7381 		goto out;
7382 	}
7383 
7384 	if (key.offset > offset) {
7385 		/* Wrong offset, must cow */
7386 		goto out;
7387 	}
7388 
7389 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7390 	found_type = btrfs_file_extent_type(leaf, fi);
7391 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7392 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7393 		/* not a regular extent, must cow */
7394 		goto out;
7395 	}
7396 
7397 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7398 		goto out;
7399 
7400 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7401 	if (extent_end <= offset)
7402 		goto out;
7403 
7404 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7405 	if (disk_bytenr == 0)
7406 		goto out;
7407 
7408 	if (btrfs_file_extent_compression(leaf, fi) ||
7409 	    btrfs_file_extent_encryption(leaf, fi) ||
7410 	    btrfs_file_extent_other_encoding(leaf, fi))
7411 		goto out;
7412 
7413 	/*
7414 	 * Do the same check as in btrfs_cross_ref_exist but without the
7415 	 * unnecessary search.
7416 	 */
7417 	if (btrfs_file_extent_generation(leaf, fi) <=
7418 	    btrfs_root_last_snapshot(&root->root_item))
7419 		goto out;
7420 
7421 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7422 
7423 	if (orig_start) {
7424 		*orig_start = key.offset - backref_offset;
7425 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7426 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7427 	}
7428 
7429 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7430 		goto out;
7431 
7432 	num_bytes = min(offset + *len, extent_end) - offset;
7433 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7434 		u64 range_end;
7435 
7436 		range_end = round_up(offset + num_bytes,
7437 				     root->fs_info->sectorsize) - 1;
7438 		ret = test_range_bit(io_tree, offset, range_end,
7439 				     EXTENT_DELALLOC, 0, NULL);
7440 		if (ret) {
7441 			ret = -EAGAIN;
7442 			goto out;
7443 		}
7444 	}
7445 
7446 	btrfs_release_path(path);
7447 
7448 	/*
7449 	 * look for other files referencing this extent, if we
7450 	 * find any we must cow
7451 	 */
7452 
7453 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7454 				    key.offset - backref_offset, disk_bytenr);
7455 	if (ret) {
7456 		ret = 0;
7457 		goto out;
7458 	}
7459 
7460 	/*
7461 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7462 	 * in this extent we are about to write.  If there
7463 	 * are any csums in that range we have to cow in order
7464 	 * to keep the csums correct
7465 	 */
7466 	disk_bytenr += backref_offset;
7467 	disk_bytenr += offset - key.offset;
7468 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7469 		goto out;
7470 	/*
7471 	 * all of the above have passed, it is safe to overwrite this extent
7472 	 * without cow
7473 	 */
7474 	*len = num_bytes;
7475 	ret = 1;
7476 out:
7477 	btrfs_free_path(path);
7478 	return ret;
7479 }
7480 
7481 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7482 			      struct extent_state **cached_state, int writing)
7483 {
7484 	struct btrfs_ordered_extent *ordered;
7485 	int ret = 0;
7486 
7487 	while (1) {
7488 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7489 				 cached_state);
7490 		/*
7491 		 * We're concerned with the entire range that we're going to be
7492 		 * doing DIO to, so we need to make sure there's no ordered
7493 		 * extents in this range.
7494 		 */
7495 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7496 						     lockend - lockstart + 1);
7497 
7498 		/*
7499 		 * We need to make sure there are no buffered pages in this
7500 		 * range either, we could have raced between the invalidate in
7501 		 * generic_file_direct_write and locking the extent.  The
7502 		 * invalidate needs to happen so that reads after a write do not
7503 		 * get stale data.
7504 		 */
7505 		if (!ordered &&
7506 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7507 							 lockstart, lockend)))
7508 			break;
7509 
7510 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7511 				     cached_state);
7512 
7513 		if (ordered) {
7514 			/*
7515 			 * If we are doing a DIO read and the ordered extent we
7516 			 * found is for a buffered write, we can not wait for it
7517 			 * to complete and retry, because if we do so we can
7518 			 * deadlock with concurrent buffered writes on page
7519 			 * locks. This happens only if our DIO read covers more
7520 			 * than one extent map, if at this point has already
7521 			 * created an ordered extent for a previous extent map
7522 			 * and locked its range in the inode's io tree, and a
7523 			 * concurrent write against that previous extent map's
7524 			 * range and this range started (we unlock the ranges
7525 			 * in the io tree only when the bios complete and
7526 			 * buffered writes always lock pages before attempting
7527 			 * to lock range in the io tree).
7528 			 */
7529 			if (writing ||
7530 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7531 				btrfs_start_ordered_extent(inode, ordered, 1);
7532 			else
7533 				ret = -ENOTBLK;
7534 			btrfs_put_ordered_extent(ordered);
7535 		} else {
7536 			/*
7537 			 * We could trigger writeback for this range (and wait
7538 			 * for it to complete) and then invalidate the pages for
7539 			 * this range (through invalidate_inode_pages2_range()),
7540 			 * but that can lead us to a deadlock with a concurrent
7541 			 * call to readpages() (a buffered read or a defrag call
7542 			 * triggered a readahead) on a page lock due to an
7543 			 * ordered dio extent we created before but did not have
7544 			 * yet a corresponding bio submitted (whence it can not
7545 			 * complete), which makes readpages() wait for that
7546 			 * ordered extent to complete while holding a lock on
7547 			 * that page.
7548 			 */
7549 			ret = -ENOTBLK;
7550 		}
7551 
7552 		if (ret)
7553 			break;
7554 
7555 		cond_resched();
7556 	}
7557 
7558 	return ret;
7559 }
7560 
7561 /* The callers of this must take lock_extent() */
7562 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7563 				       u64 orig_start, u64 block_start,
7564 				       u64 block_len, u64 orig_block_len,
7565 				       u64 ram_bytes, int compress_type,
7566 				       int type)
7567 {
7568 	struct extent_map_tree *em_tree;
7569 	struct extent_map *em;
7570 	struct btrfs_root *root = BTRFS_I(inode)->root;
7571 	int ret;
7572 
7573 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7574 	       type == BTRFS_ORDERED_COMPRESSED ||
7575 	       type == BTRFS_ORDERED_NOCOW ||
7576 	       type == BTRFS_ORDERED_REGULAR);
7577 
7578 	em_tree = &BTRFS_I(inode)->extent_tree;
7579 	em = alloc_extent_map();
7580 	if (!em)
7581 		return ERR_PTR(-ENOMEM);
7582 
7583 	em->start = start;
7584 	em->orig_start = orig_start;
7585 	em->len = len;
7586 	em->block_len = block_len;
7587 	em->block_start = block_start;
7588 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7589 	em->orig_block_len = orig_block_len;
7590 	em->ram_bytes = ram_bytes;
7591 	em->generation = -1;
7592 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7593 	if (type == BTRFS_ORDERED_PREALLOC) {
7594 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7595 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7596 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7597 		em->compress_type = compress_type;
7598 	}
7599 
7600 	do {
7601 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7602 				em->start + em->len - 1, 0);
7603 		write_lock(&em_tree->lock);
7604 		ret = add_extent_mapping(em_tree, em, 1);
7605 		write_unlock(&em_tree->lock);
7606 		/*
7607 		 * The caller has taken lock_extent(), who could race with us
7608 		 * to add em?
7609 		 */
7610 	} while (ret == -EEXIST);
7611 
7612 	if (ret) {
7613 		free_extent_map(em);
7614 		return ERR_PTR(ret);
7615 	}
7616 
7617 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7618 	return em;
7619 }
7620 
7621 
7622 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7623 					struct buffer_head *bh_result,
7624 					struct inode *inode,
7625 					u64 start, u64 len)
7626 {
7627 	if (em->block_start == EXTENT_MAP_HOLE ||
7628 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7629 		return -ENOENT;
7630 
7631 	len = min(len, em->len - (start - em->start));
7632 
7633 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7634 		inode->i_blkbits;
7635 	bh_result->b_size = len;
7636 	bh_result->b_bdev = em->bdev;
7637 	set_buffer_mapped(bh_result);
7638 
7639 	return 0;
7640 }
7641 
7642 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7643 					 struct buffer_head *bh_result,
7644 					 struct inode *inode,
7645 					 struct btrfs_dio_data *dio_data,
7646 					 u64 start, u64 len)
7647 {
7648 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7649 	struct extent_map *em = *map;
7650 	int ret = 0;
7651 
7652 	/*
7653 	 * We don't allocate a new extent in the following cases
7654 	 *
7655 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7656 	 * existing extent.
7657 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7658 	 * just use the extent.
7659 	 *
7660 	 */
7661 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7662 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7663 	     em->block_start != EXTENT_MAP_HOLE)) {
7664 		int type;
7665 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7666 
7667 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7668 			type = BTRFS_ORDERED_PREALLOC;
7669 		else
7670 			type = BTRFS_ORDERED_NOCOW;
7671 		len = min(len, em->len - (start - em->start));
7672 		block_start = em->block_start + (start - em->start);
7673 
7674 		if (can_nocow_extent(inode, start, &len, &orig_start,
7675 				     &orig_block_len, &ram_bytes) == 1 &&
7676 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7677 			struct extent_map *em2;
7678 
7679 			em2 = btrfs_create_dio_extent(inode, start, len,
7680 						      orig_start, block_start,
7681 						      len, orig_block_len,
7682 						      ram_bytes, type);
7683 			btrfs_dec_nocow_writers(fs_info, block_start);
7684 			if (type == BTRFS_ORDERED_PREALLOC) {
7685 				free_extent_map(em);
7686 				*map = em = em2;
7687 			}
7688 
7689 			if (em2 && IS_ERR(em2)) {
7690 				ret = PTR_ERR(em2);
7691 				goto out;
7692 			}
7693 			/*
7694 			 * For inode marked NODATACOW or extent marked PREALLOC,
7695 			 * use the existing or preallocated extent, so does not
7696 			 * need to adjust btrfs_space_info's bytes_may_use.
7697 			 */
7698 			btrfs_free_reserved_data_space_noquota(inode, start,
7699 							       len);
7700 			goto skip_cow;
7701 		}
7702 	}
7703 
7704 	/* this will cow the extent */
7705 	len = bh_result->b_size;
7706 	free_extent_map(em);
7707 	*map = em = btrfs_new_extent_direct(inode, start, len);
7708 	if (IS_ERR(em)) {
7709 		ret = PTR_ERR(em);
7710 		goto out;
7711 	}
7712 
7713 	len = min(len, em->len - (start - em->start));
7714 
7715 skip_cow:
7716 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7717 		inode->i_blkbits;
7718 	bh_result->b_size = len;
7719 	bh_result->b_bdev = em->bdev;
7720 	set_buffer_mapped(bh_result);
7721 
7722 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7723 		set_buffer_new(bh_result);
7724 
7725 	/*
7726 	 * Need to update the i_size under the extent lock so buffered
7727 	 * readers will get the updated i_size when we unlock.
7728 	 */
7729 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7730 		i_size_write(inode, start + len);
7731 
7732 	WARN_ON(dio_data->reserve < len);
7733 	dio_data->reserve -= len;
7734 	dio_data->unsubmitted_oe_range_end = start + len;
7735 	current->journal_info = dio_data;
7736 out:
7737 	return ret;
7738 }
7739 
7740 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7741 				   struct buffer_head *bh_result, int create)
7742 {
7743 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7744 	struct extent_map *em;
7745 	struct extent_state *cached_state = NULL;
7746 	struct btrfs_dio_data *dio_data = NULL;
7747 	u64 start = iblock << inode->i_blkbits;
7748 	u64 lockstart, lockend;
7749 	u64 len = bh_result->b_size;
7750 	int ret = 0;
7751 
7752 	if (!create)
7753 		len = min_t(u64, len, fs_info->sectorsize);
7754 
7755 	lockstart = start;
7756 	lockend = start + len - 1;
7757 
7758 	if (current->journal_info) {
7759 		/*
7760 		 * Need to pull our outstanding extents and set journal_info to NULL so
7761 		 * that anything that needs to check if there's a transaction doesn't get
7762 		 * confused.
7763 		 */
7764 		dio_data = current->journal_info;
7765 		current->journal_info = NULL;
7766 	}
7767 
7768 	/*
7769 	 * If this errors out it's because we couldn't invalidate pagecache for
7770 	 * this range and we need to fallback to buffered.
7771 	 */
7772 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7773 			       create)) {
7774 		ret = -ENOTBLK;
7775 		goto err;
7776 	}
7777 
7778 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7779 	if (IS_ERR(em)) {
7780 		ret = PTR_ERR(em);
7781 		goto unlock_err;
7782 	}
7783 
7784 	/*
7785 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7786 	 * io.  INLINE is special, and we could probably kludge it in here, but
7787 	 * it's still buffered so for safety lets just fall back to the generic
7788 	 * buffered path.
7789 	 *
7790 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7791 	 * decompress it, so there will be buffering required no matter what we
7792 	 * do, so go ahead and fallback to buffered.
7793 	 *
7794 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7795 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7796 	 * the generic code.
7797 	 */
7798 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7799 	    em->block_start == EXTENT_MAP_INLINE) {
7800 		free_extent_map(em);
7801 		ret = -ENOTBLK;
7802 		goto unlock_err;
7803 	}
7804 
7805 	if (create) {
7806 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7807 						    dio_data, start, len);
7808 		if (ret < 0)
7809 			goto unlock_err;
7810 
7811 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7812 				     lockend, &cached_state);
7813 	} else {
7814 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7815 						   start, len);
7816 		/* Can be negative only if we read from a hole */
7817 		if (ret < 0) {
7818 			ret = 0;
7819 			free_extent_map(em);
7820 			goto unlock_err;
7821 		}
7822 		/*
7823 		 * We need to unlock only the end area that we aren't using.
7824 		 * The rest is going to be unlocked by the endio routine.
7825 		 */
7826 		lockstart = start + bh_result->b_size;
7827 		if (lockstart < lockend) {
7828 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7829 					     lockstart, lockend, &cached_state);
7830 		} else {
7831 			free_extent_state(cached_state);
7832 		}
7833 	}
7834 
7835 	free_extent_map(em);
7836 
7837 	return 0;
7838 
7839 unlock_err:
7840 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7841 			     &cached_state);
7842 err:
7843 	if (dio_data)
7844 		current->journal_info = dio_data;
7845 	return ret;
7846 }
7847 
7848 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7849 						 struct bio *bio,
7850 						 int mirror_num)
7851 {
7852 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7853 	blk_status_t ret;
7854 
7855 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7856 
7857 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7858 	if (ret)
7859 		return ret;
7860 
7861 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7862 
7863 	return ret;
7864 }
7865 
7866 static int btrfs_check_dio_repairable(struct inode *inode,
7867 				      struct bio *failed_bio,
7868 				      struct io_failure_record *failrec,
7869 				      int failed_mirror)
7870 {
7871 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7872 	int num_copies;
7873 
7874 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7875 	if (num_copies == 1) {
7876 		/*
7877 		 * we only have a single copy of the data, so don't bother with
7878 		 * all the retry and error correction code that follows. no
7879 		 * matter what the error is, it is very likely to persist.
7880 		 */
7881 		btrfs_debug(fs_info,
7882 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7883 			num_copies, failrec->this_mirror, failed_mirror);
7884 		return 0;
7885 	}
7886 
7887 	failrec->failed_mirror = failed_mirror;
7888 	failrec->this_mirror++;
7889 	if (failrec->this_mirror == failed_mirror)
7890 		failrec->this_mirror++;
7891 
7892 	if (failrec->this_mirror > num_copies) {
7893 		btrfs_debug(fs_info,
7894 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7895 			num_copies, failrec->this_mirror, failed_mirror);
7896 		return 0;
7897 	}
7898 
7899 	return 1;
7900 }
7901 
7902 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7903 				   struct page *page, unsigned int pgoff,
7904 				   u64 start, u64 end, int failed_mirror,
7905 				   bio_end_io_t *repair_endio, void *repair_arg)
7906 {
7907 	struct io_failure_record *failrec;
7908 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7909 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7910 	struct bio *bio;
7911 	int isector;
7912 	unsigned int read_mode = 0;
7913 	int segs;
7914 	int ret;
7915 	blk_status_t status;
7916 	struct bio_vec bvec;
7917 
7918 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7919 
7920 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7921 	if (ret)
7922 		return errno_to_blk_status(ret);
7923 
7924 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7925 					 failed_mirror);
7926 	if (!ret) {
7927 		free_io_failure(failure_tree, io_tree, failrec);
7928 		return BLK_STS_IOERR;
7929 	}
7930 
7931 	segs = bio_segments(failed_bio);
7932 	bio_get_first_bvec(failed_bio, &bvec);
7933 	if (segs > 1 ||
7934 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7935 		read_mode |= REQ_FAILFAST_DEV;
7936 
7937 	isector = start - btrfs_io_bio(failed_bio)->logical;
7938 	isector >>= inode->i_sb->s_blocksize_bits;
7939 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7940 				pgoff, isector, repair_endio, repair_arg);
7941 	bio->bi_opf = REQ_OP_READ | read_mode;
7942 
7943 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7944 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7945 		    read_mode, failrec->this_mirror, failrec->in_validation);
7946 
7947 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7948 	if (status) {
7949 		free_io_failure(failure_tree, io_tree, failrec);
7950 		bio_put(bio);
7951 	}
7952 
7953 	return status;
7954 }
7955 
7956 struct btrfs_retry_complete {
7957 	struct completion done;
7958 	struct inode *inode;
7959 	u64 start;
7960 	int uptodate;
7961 };
7962 
7963 static void btrfs_retry_endio_nocsum(struct bio *bio)
7964 {
7965 	struct btrfs_retry_complete *done = bio->bi_private;
7966 	struct inode *inode = done->inode;
7967 	struct bio_vec *bvec;
7968 	struct extent_io_tree *io_tree, *failure_tree;
7969 	struct bvec_iter_all iter_all;
7970 
7971 	if (bio->bi_status)
7972 		goto end;
7973 
7974 	ASSERT(bio->bi_vcnt == 1);
7975 	io_tree = &BTRFS_I(inode)->io_tree;
7976 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7977 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7978 
7979 	done->uptodate = 1;
7980 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7981 	bio_for_each_segment_all(bvec, bio, iter_all)
7982 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7983 				 io_tree, done->start, bvec->bv_page,
7984 				 btrfs_ino(BTRFS_I(inode)), 0);
7985 end:
7986 	complete(&done->done);
7987 	bio_put(bio);
7988 }
7989 
7990 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7991 						struct btrfs_io_bio *io_bio)
7992 {
7993 	struct btrfs_fs_info *fs_info;
7994 	struct bio_vec bvec;
7995 	struct bvec_iter iter;
7996 	struct btrfs_retry_complete done;
7997 	u64 start;
7998 	unsigned int pgoff;
7999 	u32 sectorsize;
8000 	int nr_sectors;
8001 	blk_status_t ret;
8002 	blk_status_t err = BLK_STS_OK;
8003 
8004 	fs_info = BTRFS_I(inode)->root->fs_info;
8005 	sectorsize = fs_info->sectorsize;
8006 
8007 	start = io_bio->logical;
8008 	done.inode = inode;
8009 	io_bio->bio.bi_iter = io_bio->iter;
8010 
8011 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8012 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8013 		pgoff = bvec.bv_offset;
8014 
8015 next_block_or_try_again:
8016 		done.uptodate = 0;
8017 		done.start = start;
8018 		init_completion(&done.done);
8019 
8020 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8021 				pgoff, start, start + sectorsize - 1,
8022 				io_bio->mirror_num,
8023 				btrfs_retry_endio_nocsum, &done);
8024 		if (ret) {
8025 			err = ret;
8026 			goto next;
8027 		}
8028 
8029 		wait_for_completion_io(&done.done);
8030 
8031 		if (!done.uptodate) {
8032 			/* We might have another mirror, so try again */
8033 			goto next_block_or_try_again;
8034 		}
8035 
8036 next:
8037 		start += sectorsize;
8038 
8039 		nr_sectors--;
8040 		if (nr_sectors) {
8041 			pgoff += sectorsize;
8042 			ASSERT(pgoff < PAGE_SIZE);
8043 			goto next_block_or_try_again;
8044 		}
8045 	}
8046 
8047 	return err;
8048 }
8049 
8050 static void btrfs_retry_endio(struct bio *bio)
8051 {
8052 	struct btrfs_retry_complete *done = bio->bi_private;
8053 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8054 	struct extent_io_tree *io_tree, *failure_tree;
8055 	struct inode *inode = done->inode;
8056 	struct bio_vec *bvec;
8057 	int uptodate;
8058 	int ret;
8059 	int i = 0;
8060 	struct bvec_iter_all iter_all;
8061 
8062 	if (bio->bi_status)
8063 		goto end;
8064 
8065 	uptodate = 1;
8066 
8067 	ASSERT(bio->bi_vcnt == 1);
8068 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8069 
8070 	io_tree = &BTRFS_I(inode)->io_tree;
8071 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8072 
8073 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8074 	bio_for_each_segment_all(bvec, bio, iter_all) {
8075 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8076 					     bvec->bv_offset, done->start,
8077 					     bvec->bv_len);
8078 		if (!ret)
8079 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8080 					 failure_tree, io_tree, done->start,
8081 					 bvec->bv_page,
8082 					 btrfs_ino(BTRFS_I(inode)),
8083 					 bvec->bv_offset);
8084 		else
8085 			uptodate = 0;
8086 		i++;
8087 	}
8088 
8089 	done->uptodate = uptodate;
8090 end:
8091 	complete(&done->done);
8092 	bio_put(bio);
8093 }
8094 
8095 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8096 		struct btrfs_io_bio *io_bio, blk_status_t err)
8097 {
8098 	struct btrfs_fs_info *fs_info;
8099 	struct bio_vec bvec;
8100 	struct bvec_iter iter;
8101 	struct btrfs_retry_complete done;
8102 	u64 start;
8103 	u64 offset = 0;
8104 	u32 sectorsize;
8105 	int nr_sectors;
8106 	unsigned int pgoff;
8107 	int csum_pos;
8108 	bool uptodate = (err == 0);
8109 	int ret;
8110 	blk_status_t status;
8111 
8112 	fs_info = BTRFS_I(inode)->root->fs_info;
8113 	sectorsize = fs_info->sectorsize;
8114 
8115 	err = BLK_STS_OK;
8116 	start = io_bio->logical;
8117 	done.inode = inode;
8118 	io_bio->bio.bi_iter = io_bio->iter;
8119 
8120 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8121 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8122 
8123 		pgoff = bvec.bv_offset;
8124 next_block:
8125 		if (uptodate) {
8126 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8127 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8128 					bvec.bv_page, pgoff, start, sectorsize);
8129 			if (likely(!ret))
8130 				goto next;
8131 		}
8132 try_again:
8133 		done.uptodate = 0;
8134 		done.start = start;
8135 		init_completion(&done.done);
8136 
8137 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8138 					pgoff, start, start + sectorsize - 1,
8139 					io_bio->mirror_num, btrfs_retry_endio,
8140 					&done);
8141 		if (status) {
8142 			err = status;
8143 			goto next;
8144 		}
8145 
8146 		wait_for_completion_io(&done.done);
8147 
8148 		if (!done.uptodate) {
8149 			/* We might have another mirror, so try again */
8150 			goto try_again;
8151 		}
8152 next:
8153 		offset += sectorsize;
8154 		start += sectorsize;
8155 
8156 		ASSERT(nr_sectors);
8157 
8158 		nr_sectors--;
8159 		if (nr_sectors) {
8160 			pgoff += sectorsize;
8161 			ASSERT(pgoff < PAGE_SIZE);
8162 			goto next_block;
8163 		}
8164 	}
8165 
8166 	return err;
8167 }
8168 
8169 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8170 		struct btrfs_io_bio *io_bio, blk_status_t err)
8171 {
8172 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8173 
8174 	if (skip_csum) {
8175 		if (unlikely(err))
8176 			return __btrfs_correct_data_nocsum(inode, io_bio);
8177 		else
8178 			return BLK_STS_OK;
8179 	} else {
8180 		return __btrfs_subio_endio_read(inode, io_bio, err);
8181 	}
8182 }
8183 
8184 static void btrfs_endio_direct_read(struct bio *bio)
8185 {
8186 	struct btrfs_dio_private *dip = bio->bi_private;
8187 	struct inode *inode = dip->inode;
8188 	struct bio *dio_bio;
8189 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8190 	blk_status_t err = bio->bi_status;
8191 
8192 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8193 		err = btrfs_subio_endio_read(inode, io_bio, err);
8194 
8195 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8196 		      dip->logical_offset + dip->bytes - 1);
8197 	dio_bio = dip->dio_bio;
8198 
8199 	kfree(dip);
8200 
8201 	dio_bio->bi_status = err;
8202 	dio_end_io(dio_bio);
8203 	btrfs_io_bio_free_csum(io_bio);
8204 	bio_put(bio);
8205 }
8206 
8207 static void __endio_write_update_ordered(struct inode *inode,
8208 					 const u64 offset, const u64 bytes,
8209 					 const bool uptodate)
8210 {
8211 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8212 	struct btrfs_ordered_extent *ordered = NULL;
8213 	struct btrfs_workqueue *wq;
8214 	btrfs_work_func_t func;
8215 	u64 ordered_offset = offset;
8216 	u64 ordered_bytes = bytes;
8217 	u64 last_offset;
8218 
8219 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8220 		wq = fs_info->endio_freespace_worker;
8221 		func = btrfs_freespace_write_helper;
8222 	} else {
8223 		wq = fs_info->endio_write_workers;
8224 		func = btrfs_endio_write_helper;
8225 	}
8226 
8227 	while (ordered_offset < offset + bytes) {
8228 		last_offset = ordered_offset;
8229 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8230 							   &ordered_offset,
8231 							   ordered_bytes,
8232 							   uptodate)) {
8233 			btrfs_init_work(&ordered->work, func,
8234 					finish_ordered_fn,
8235 					NULL, NULL);
8236 			btrfs_queue_work(wq, &ordered->work);
8237 		}
8238 		/*
8239 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8240 		 * extent in the range, we can exit.
8241 		 */
8242 		if (ordered_offset == last_offset)
8243 			return;
8244 		/*
8245 		 * Our bio might span multiple ordered extents. In this case
8246 		 * we keep going until we have accounted the whole dio.
8247 		 */
8248 		if (ordered_offset < offset + bytes) {
8249 			ordered_bytes = offset + bytes - ordered_offset;
8250 			ordered = NULL;
8251 		}
8252 	}
8253 }
8254 
8255 static void btrfs_endio_direct_write(struct bio *bio)
8256 {
8257 	struct btrfs_dio_private *dip = bio->bi_private;
8258 	struct bio *dio_bio = dip->dio_bio;
8259 
8260 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8261 				     dip->bytes, !bio->bi_status);
8262 
8263 	kfree(dip);
8264 
8265 	dio_bio->bi_status = bio->bi_status;
8266 	dio_end_io(dio_bio);
8267 	bio_put(bio);
8268 }
8269 
8270 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8271 				    struct bio *bio, u64 offset)
8272 {
8273 	struct inode *inode = private_data;
8274 	blk_status_t ret;
8275 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8276 	BUG_ON(ret); /* -ENOMEM */
8277 	return 0;
8278 }
8279 
8280 static void btrfs_end_dio_bio(struct bio *bio)
8281 {
8282 	struct btrfs_dio_private *dip = bio->bi_private;
8283 	blk_status_t err = bio->bi_status;
8284 
8285 	if (err)
8286 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8287 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8288 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8289 			   bio->bi_opf,
8290 			   (unsigned long long)bio->bi_iter.bi_sector,
8291 			   bio->bi_iter.bi_size, err);
8292 
8293 	if (dip->subio_endio)
8294 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8295 
8296 	if (err) {
8297 		/*
8298 		 * We want to perceive the errors flag being set before
8299 		 * decrementing the reference count. We don't need a barrier
8300 		 * since atomic operations with a return value are fully
8301 		 * ordered as per atomic_t.txt
8302 		 */
8303 		dip->errors = 1;
8304 	}
8305 
8306 	/* if there are more bios still pending for this dio, just exit */
8307 	if (!atomic_dec_and_test(&dip->pending_bios))
8308 		goto out;
8309 
8310 	if (dip->errors) {
8311 		bio_io_error(dip->orig_bio);
8312 	} else {
8313 		dip->dio_bio->bi_status = BLK_STS_OK;
8314 		bio_endio(dip->orig_bio);
8315 	}
8316 out:
8317 	bio_put(bio);
8318 }
8319 
8320 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8321 						 struct btrfs_dio_private *dip,
8322 						 struct bio *bio,
8323 						 u64 file_offset)
8324 {
8325 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8326 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8327 	blk_status_t ret;
8328 
8329 	/*
8330 	 * We load all the csum data we need when we submit
8331 	 * the first bio to reduce the csum tree search and
8332 	 * contention.
8333 	 */
8334 	if (dip->logical_offset == file_offset) {
8335 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8336 						file_offset);
8337 		if (ret)
8338 			return ret;
8339 	}
8340 
8341 	if (bio == dip->orig_bio)
8342 		return 0;
8343 
8344 	file_offset -= dip->logical_offset;
8345 	file_offset >>= inode->i_sb->s_blocksize_bits;
8346 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8347 
8348 	return 0;
8349 }
8350 
8351 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8352 		struct inode *inode, u64 file_offset, int async_submit)
8353 {
8354 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8355 	struct btrfs_dio_private *dip = bio->bi_private;
8356 	bool write = bio_op(bio) == REQ_OP_WRITE;
8357 	blk_status_t ret;
8358 
8359 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8360 	if (async_submit)
8361 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8362 
8363 	if (!write) {
8364 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8365 		if (ret)
8366 			goto err;
8367 	}
8368 
8369 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8370 		goto map;
8371 
8372 	if (write && async_submit) {
8373 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8374 					  file_offset, inode,
8375 					  btrfs_submit_bio_start_direct_io);
8376 		goto err;
8377 	} else if (write) {
8378 		/*
8379 		 * If we aren't doing async submit, calculate the csum of the
8380 		 * bio now.
8381 		 */
8382 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8383 		if (ret)
8384 			goto err;
8385 	} else {
8386 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8387 						     file_offset);
8388 		if (ret)
8389 			goto err;
8390 	}
8391 map:
8392 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8393 err:
8394 	return ret;
8395 }
8396 
8397 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8398 {
8399 	struct inode *inode = dip->inode;
8400 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8401 	struct bio *bio;
8402 	struct bio *orig_bio = dip->orig_bio;
8403 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8404 	u64 file_offset = dip->logical_offset;
8405 	int async_submit = 0;
8406 	u64 submit_len;
8407 	int clone_offset = 0;
8408 	int clone_len;
8409 	int ret;
8410 	blk_status_t status;
8411 	struct btrfs_io_geometry geom;
8412 
8413 	submit_len = orig_bio->bi_iter.bi_size;
8414 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8415 				    start_sector << 9, submit_len, &geom);
8416 	if (ret)
8417 		return -EIO;
8418 
8419 	if (geom.len >= submit_len) {
8420 		bio = orig_bio;
8421 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8422 		goto submit;
8423 	}
8424 
8425 	/* async crcs make it difficult to collect full stripe writes. */
8426 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8427 		async_submit = 0;
8428 	else
8429 		async_submit = 1;
8430 
8431 	/* bio split */
8432 	ASSERT(geom.len <= INT_MAX);
8433 	atomic_inc(&dip->pending_bios);
8434 	do {
8435 		clone_len = min_t(int, submit_len, geom.len);
8436 
8437 		/*
8438 		 * This will never fail as it's passing GPF_NOFS and
8439 		 * the allocation is backed by btrfs_bioset.
8440 		 */
8441 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8442 					      clone_len);
8443 		bio->bi_private = dip;
8444 		bio->bi_end_io = btrfs_end_dio_bio;
8445 		btrfs_io_bio(bio)->logical = file_offset;
8446 
8447 		ASSERT(submit_len >= clone_len);
8448 		submit_len -= clone_len;
8449 		if (submit_len == 0)
8450 			break;
8451 
8452 		/*
8453 		 * Increase the count before we submit the bio so we know
8454 		 * the end IO handler won't happen before we increase the
8455 		 * count. Otherwise, the dip might get freed before we're
8456 		 * done setting it up.
8457 		 */
8458 		atomic_inc(&dip->pending_bios);
8459 
8460 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8461 						async_submit);
8462 		if (status) {
8463 			bio_put(bio);
8464 			atomic_dec(&dip->pending_bios);
8465 			goto out_err;
8466 		}
8467 
8468 		clone_offset += clone_len;
8469 		start_sector += clone_len >> 9;
8470 		file_offset += clone_len;
8471 
8472 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8473 				      start_sector << 9, submit_len, &geom);
8474 		if (ret)
8475 			goto out_err;
8476 	} while (submit_len > 0);
8477 
8478 submit:
8479 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8480 	if (!status)
8481 		return 0;
8482 
8483 	bio_put(bio);
8484 out_err:
8485 	dip->errors = 1;
8486 	/*
8487 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8488 	 * perceived to be set. This ordering is ensured by the fact that an
8489 	 * atomic operations with a return value are fully ordered as per
8490 	 * atomic_t.txt
8491 	 */
8492 	if (atomic_dec_and_test(&dip->pending_bios))
8493 		bio_io_error(dip->orig_bio);
8494 
8495 	/* bio_end_io() will handle error, so we needn't return it */
8496 	return 0;
8497 }
8498 
8499 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8500 				loff_t file_offset)
8501 {
8502 	struct btrfs_dio_private *dip = NULL;
8503 	struct bio *bio = NULL;
8504 	struct btrfs_io_bio *io_bio;
8505 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8506 	int ret = 0;
8507 
8508 	bio = btrfs_bio_clone(dio_bio);
8509 
8510 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8511 	if (!dip) {
8512 		ret = -ENOMEM;
8513 		goto free_ordered;
8514 	}
8515 
8516 	dip->private = dio_bio->bi_private;
8517 	dip->inode = inode;
8518 	dip->logical_offset = file_offset;
8519 	dip->bytes = dio_bio->bi_iter.bi_size;
8520 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8521 	bio->bi_private = dip;
8522 	dip->orig_bio = bio;
8523 	dip->dio_bio = dio_bio;
8524 	atomic_set(&dip->pending_bios, 0);
8525 	io_bio = btrfs_io_bio(bio);
8526 	io_bio->logical = file_offset;
8527 
8528 	if (write) {
8529 		bio->bi_end_io = btrfs_endio_direct_write;
8530 	} else {
8531 		bio->bi_end_io = btrfs_endio_direct_read;
8532 		dip->subio_endio = btrfs_subio_endio_read;
8533 	}
8534 
8535 	/*
8536 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8537 	 * even if we fail to submit a bio, because in such case we do the
8538 	 * corresponding error handling below and it must not be done a second
8539 	 * time by btrfs_direct_IO().
8540 	 */
8541 	if (write) {
8542 		struct btrfs_dio_data *dio_data = current->journal_info;
8543 
8544 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8545 			dip->bytes;
8546 		dio_data->unsubmitted_oe_range_start =
8547 			dio_data->unsubmitted_oe_range_end;
8548 	}
8549 
8550 	ret = btrfs_submit_direct_hook(dip);
8551 	if (!ret)
8552 		return;
8553 
8554 	btrfs_io_bio_free_csum(io_bio);
8555 
8556 free_ordered:
8557 	/*
8558 	 * If we arrived here it means either we failed to submit the dip
8559 	 * or we either failed to clone the dio_bio or failed to allocate the
8560 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8561 	 * call bio_endio against our io_bio so that we get proper resource
8562 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8563 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8564 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8565 	 */
8566 	if (bio && dip) {
8567 		bio_io_error(bio);
8568 		/*
8569 		 * The end io callbacks free our dip, do the final put on bio
8570 		 * and all the cleanup and final put for dio_bio (through
8571 		 * dio_end_io()).
8572 		 */
8573 		dip = NULL;
8574 		bio = NULL;
8575 	} else {
8576 		if (write)
8577 			__endio_write_update_ordered(inode,
8578 						file_offset,
8579 						dio_bio->bi_iter.bi_size,
8580 						false);
8581 		else
8582 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8583 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8584 
8585 		dio_bio->bi_status = BLK_STS_IOERR;
8586 		/*
8587 		 * Releases and cleans up our dio_bio, no need to bio_put()
8588 		 * nor bio_endio()/bio_io_error() against dio_bio.
8589 		 */
8590 		dio_end_io(dio_bio);
8591 	}
8592 	if (bio)
8593 		bio_put(bio);
8594 	kfree(dip);
8595 }
8596 
8597 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8598 			       const struct iov_iter *iter, loff_t offset)
8599 {
8600 	int seg;
8601 	int i;
8602 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8603 	ssize_t retval = -EINVAL;
8604 
8605 	if (offset & blocksize_mask)
8606 		goto out;
8607 
8608 	if (iov_iter_alignment(iter) & blocksize_mask)
8609 		goto out;
8610 
8611 	/* If this is a write we don't need to check anymore */
8612 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8613 		return 0;
8614 	/*
8615 	 * Check to make sure we don't have duplicate iov_base's in this
8616 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8617 	 * when reading back.
8618 	 */
8619 	for (seg = 0; seg < iter->nr_segs; seg++) {
8620 		for (i = seg + 1; i < iter->nr_segs; i++) {
8621 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8622 				goto out;
8623 		}
8624 	}
8625 	retval = 0;
8626 out:
8627 	return retval;
8628 }
8629 
8630 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8631 {
8632 	struct file *file = iocb->ki_filp;
8633 	struct inode *inode = file->f_mapping->host;
8634 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8635 	struct btrfs_dio_data dio_data = { 0 };
8636 	struct extent_changeset *data_reserved = NULL;
8637 	loff_t offset = iocb->ki_pos;
8638 	size_t count = 0;
8639 	int flags = 0;
8640 	bool wakeup = true;
8641 	bool relock = false;
8642 	ssize_t ret;
8643 
8644 	if (check_direct_IO(fs_info, iter, offset))
8645 		return 0;
8646 
8647 	inode_dio_begin(inode);
8648 
8649 	/*
8650 	 * The generic stuff only does filemap_write_and_wait_range, which
8651 	 * isn't enough if we've written compressed pages to this area, so
8652 	 * we need to flush the dirty pages again to make absolutely sure
8653 	 * that any outstanding dirty pages are on disk.
8654 	 */
8655 	count = iov_iter_count(iter);
8656 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8657 		     &BTRFS_I(inode)->runtime_flags))
8658 		filemap_fdatawrite_range(inode->i_mapping, offset,
8659 					 offset + count - 1);
8660 
8661 	if (iov_iter_rw(iter) == WRITE) {
8662 		/*
8663 		 * If the write DIO is beyond the EOF, we need update
8664 		 * the isize, but it is protected by i_mutex. So we can
8665 		 * not unlock the i_mutex at this case.
8666 		 */
8667 		if (offset + count <= inode->i_size) {
8668 			dio_data.overwrite = 1;
8669 			inode_unlock(inode);
8670 			relock = true;
8671 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8672 			ret = -EAGAIN;
8673 			goto out;
8674 		}
8675 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8676 						   offset, count);
8677 		if (ret)
8678 			goto out;
8679 
8680 		/*
8681 		 * We need to know how many extents we reserved so that we can
8682 		 * do the accounting properly if we go over the number we
8683 		 * originally calculated.  Abuse current->journal_info for this.
8684 		 */
8685 		dio_data.reserve = round_up(count,
8686 					    fs_info->sectorsize);
8687 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8688 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8689 		current->journal_info = &dio_data;
8690 		down_read(&BTRFS_I(inode)->dio_sem);
8691 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8692 				     &BTRFS_I(inode)->runtime_flags)) {
8693 		inode_dio_end(inode);
8694 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8695 		wakeup = false;
8696 	}
8697 
8698 	ret = __blockdev_direct_IO(iocb, inode,
8699 				   fs_info->fs_devices->latest_bdev,
8700 				   iter, btrfs_get_blocks_direct, NULL,
8701 				   btrfs_submit_direct, flags);
8702 	if (iov_iter_rw(iter) == WRITE) {
8703 		up_read(&BTRFS_I(inode)->dio_sem);
8704 		current->journal_info = NULL;
8705 		if (ret < 0 && ret != -EIOCBQUEUED) {
8706 			if (dio_data.reserve)
8707 				btrfs_delalloc_release_space(inode, data_reserved,
8708 					offset, dio_data.reserve, true);
8709 			/*
8710 			 * On error we might have left some ordered extents
8711 			 * without submitting corresponding bios for them, so
8712 			 * cleanup them up to avoid other tasks getting them
8713 			 * and waiting for them to complete forever.
8714 			 */
8715 			if (dio_data.unsubmitted_oe_range_start <
8716 			    dio_data.unsubmitted_oe_range_end)
8717 				__endio_write_update_ordered(inode,
8718 					dio_data.unsubmitted_oe_range_start,
8719 					dio_data.unsubmitted_oe_range_end -
8720 					dio_data.unsubmitted_oe_range_start,
8721 					false);
8722 		} else if (ret >= 0 && (size_t)ret < count)
8723 			btrfs_delalloc_release_space(inode, data_reserved,
8724 					offset, count - (size_t)ret, true);
8725 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8726 	}
8727 out:
8728 	if (wakeup)
8729 		inode_dio_end(inode);
8730 	if (relock)
8731 		inode_lock(inode);
8732 
8733 	extent_changeset_free(data_reserved);
8734 	return ret;
8735 }
8736 
8737 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8738 
8739 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8740 		__u64 start, __u64 len)
8741 {
8742 	int	ret;
8743 
8744 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8745 	if (ret)
8746 		return ret;
8747 
8748 	return extent_fiemap(inode, fieinfo, start, len);
8749 }
8750 
8751 int btrfs_readpage(struct file *file, struct page *page)
8752 {
8753 	struct extent_io_tree *tree;
8754 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8755 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8756 }
8757 
8758 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8759 {
8760 	struct inode *inode = page->mapping->host;
8761 	int ret;
8762 
8763 	if (current->flags & PF_MEMALLOC) {
8764 		redirty_page_for_writepage(wbc, page);
8765 		unlock_page(page);
8766 		return 0;
8767 	}
8768 
8769 	/*
8770 	 * If we are under memory pressure we will call this directly from the
8771 	 * VM, we need to make sure we have the inode referenced for the ordered
8772 	 * extent.  If not just return like we didn't do anything.
8773 	 */
8774 	if (!igrab(inode)) {
8775 		redirty_page_for_writepage(wbc, page);
8776 		return AOP_WRITEPAGE_ACTIVATE;
8777 	}
8778 	ret = extent_write_full_page(page, wbc);
8779 	btrfs_add_delayed_iput(inode);
8780 	return ret;
8781 }
8782 
8783 static int btrfs_writepages(struct address_space *mapping,
8784 			    struct writeback_control *wbc)
8785 {
8786 	return extent_writepages(mapping, wbc);
8787 }
8788 
8789 static int
8790 btrfs_readpages(struct file *file, struct address_space *mapping,
8791 		struct list_head *pages, unsigned nr_pages)
8792 {
8793 	return extent_readpages(mapping, pages, nr_pages);
8794 }
8795 
8796 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8797 {
8798 	int ret = try_release_extent_mapping(page, gfp_flags);
8799 	if (ret == 1) {
8800 		ClearPagePrivate(page);
8801 		set_page_private(page, 0);
8802 		put_page(page);
8803 	}
8804 	return ret;
8805 }
8806 
8807 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8808 {
8809 	if (PageWriteback(page) || PageDirty(page))
8810 		return 0;
8811 	return __btrfs_releasepage(page, gfp_flags);
8812 }
8813 
8814 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8815 				 unsigned int length)
8816 {
8817 	struct inode *inode = page->mapping->host;
8818 	struct extent_io_tree *tree;
8819 	struct btrfs_ordered_extent *ordered;
8820 	struct extent_state *cached_state = NULL;
8821 	u64 page_start = page_offset(page);
8822 	u64 page_end = page_start + PAGE_SIZE - 1;
8823 	u64 start;
8824 	u64 end;
8825 	int inode_evicting = inode->i_state & I_FREEING;
8826 
8827 	/*
8828 	 * we have the page locked, so new writeback can't start,
8829 	 * and the dirty bit won't be cleared while we are here.
8830 	 *
8831 	 * Wait for IO on this page so that we can safely clear
8832 	 * the PagePrivate2 bit and do ordered accounting
8833 	 */
8834 	wait_on_page_writeback(page);
8835 
8836 	tree = &BTRFS_I(inode)->io_tree;
8837 	if (offset) {
8838 		btrfs_releasepage(page, GFP_NOFS);
8839 		return;
8840 	}
8841 
8842 	if (!inode_evicting)
8843 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8844 again:
8845 	start = page_start;
8846 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8847 					page_end - start + 1);
8848 	if (ordered) {
8849 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8850 		/*
8851 		 * IO on this page will never be started, so we need
8852 		 * to account for any ordered extents now
8853 		 */
8854 		if (!inode_evicting)
8855 			clear_extent_bit(tree, start, end,
8856 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8857 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8858 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8859 		/*
8860 		 * whoever cleared the private bit is responsible
8861 		 * for the finish_ordered_io
8862 		 */
8863 		if (TestClearPagePrivate2(page)) {
8864 			struct btrfs_ordered_inode_tree *tree;
8865 			u64 new_len;
8866 
8867 			tree = &BTRFS_I(inode)->ordered_tree;
8868 
8869 			spin_lock_irq(&tree->lock);
8870 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8871 			new_len = start - ordered->file_offset;
8872 			if (new_len < ordered->truncated_len)
8873 				ordered->truncated_len = new_len;
8874 			spin_unlock_irq(&tree->lock);
8875 
8876 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8877 							   start,
8878 							   end - start + 1, 1))
8879 				btrfs_finish_ordered_io(ordered);
8880 		}
8881 		btrfs_put_ordered_extent(ordered);
8882 		if (!inode_evicting) {
8883 			cached_state = NULL;
8884 			lock_extent_bits(tree, start, end,
8885 					 &cached_state);
8886 		}
8887 
8888 		start = end + 1;
8889 		if (start < page_end)
8890 			goto again;
8891 	}
8892 
8893 	/*
8894 	 * Qgroup reserved space handler
8895 	 * Page here will be either
8896 	 * 1) Already written to disk
8897 	 *    In this case, its reserved space is released from data rsv map
8898 	 *    and will be freed by delayed_ref handler finally.
8899 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8900 	 *    space.
8901 	 * 2) Not written to disk
8902 	 *    This means the reserved space should be freed here. However,
8903 	 *    if a truncate invalidates the page (by clearing PageDirty)
8904 	 *    and the page is accounted for while allocating extent
8905 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8906 	 *    free the entire extent.
8907 	 */
8908 	if (PageDirty(page))
8909 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8910 	if (!inode_evicting) {
8911 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8912 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8913 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8914 				 &cached_state);
8915 
8916 		__btrfs_releasepage(page, GFP_NOFS);
8917 	}
8918 
8919 	ClearPageChecked(page);
8920 	if (PagePrivate(page)) {
8921 		ClearPagePrivate(page);
8922 		set_page_private(page, 0);
8923 		put_page(page);
8924 	}
8925 }
8926 
8927 /*
8928  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8929  * called from a page fault handler when a page is first dirtied. Hence we must
8930  * be careful to check for EOF conditions here. We set the page up correctly
8931  * for a written page which means we get ENOSPC checking when writing into
8932  * holes and correct delalloc and unwritten extent mapping on filesystems that
8933  * support these features.
8934  *
8935  * We are not allowed to take the i_mutex here so we have to play games to
8936  * protect against truncate races as the page could now be beyond EOF.  Because
8937  * truncate_setsize() writes the inode size before removing pages, once we have
8938  * the page lock we can determine safely if the page is beyond EOF. If it is not
8939  * beyond EOF, then the page is guaranteed safe against truncation until we
8940  * unlock the page.
8941  */
8942 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8943 {
8944 	struct page *page = vmf->page;
8945 	struct inode *inode = file_inode(vmf->vma->vm_file);
8946 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8947 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8948 	struct btrfs_ordered_extent *ordered;
8949 	struct extent_state *cached_state = NULL;
8950 	struct extent_changeset *data_reserved = NULL;
8951 	char *kaddr;
8952 	unsigned long zero_start;
8953 	loff_t size;
8954 	vm_fault_t ret;
8955 	int ret2;
8956 	int reserved = 0;
8957 	u64 reserved_space;
8958 	u64 page_start;
8959 	u64 page_end;
8960 	u64 end;
8961 
8962 	reserved_space = PAGE_SIZE;
8963 
8964 	sb_start_pagefault(inode->i_sb);
8965 	page_start = page_offset(page);
8966 	page_end = page_start + PAGE_SIZE - 1;
8967 	end = page_end;
8968 
8969 	/*
8970 	 * Reserving delalloc space after obtaining the page lock can lead to
8971 	 * deadlock. For example, if a dirty page is locked by this function
8972 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8973 	 * dirty page write out, then the btrfs_writepage() function could
8974 	 * end up waiting indefinitely to get a lock on the page currently
8975 	 * being processed by btrfs_page_mkwrite() function.
8976 	 */
8977 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8978 					   reserved_space);
8979 	if (!ret2) {
8980 		ret2 = file_update_time(vmf->vma->vm_file);
8981 		reserved = 1;
8982 	}
8983 	if (ret2) {
8984 		ret = vmf_error(ret2);
8985 		if (reserved)
8986 			goto out;
8987 		goto out_noreserve;
8988 	}
8989 
8990 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8991 again:
8992 	lock_page(page);
8993 	size = i_size_read(inode);
8994 
8995 	if ((page->mapping != inode->i_mapping) ||
8996 	    (page_start >= size)) {
8997 		/* page got truncated out from underneath us */
8998 		goto out_unlock;
8999 	}
9000 	wait_on_page_writeback(page);
9001 
9002 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9003 	set_page_extent_mapped(page);
9004 
9005 	/*
9006 	 * we can't set the delalloc bits if there are pending ordered
9007 	 * extents.  Drop our locks and wait for them to finish
9008 	 */
9009 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9010 			PAGE_SIZE);
9011 	if (ordered) {
9012 		unlock_extent_cached(io_tree, page_start, page_end,
9013 				     &cached_state);
9014 		unlock_page(page);
9015 		btrfs_start_ordered_extent(inode, ordered, 1);
9016 		btrfs_put_ordered_extent(ordered);
9017 		goto again;
9018 	}
9019 
9020 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9021 		reserved_space = round_up(size - page_start,
9022 					  fs_info->sectorsize);
9023 		if (reserved_space < PAGE_SIZE) {
9024 			end = page_start + reserved_space - 1;
9025 			btrfs_delalloc_release_space(inode, data_reserved,
9026 					page_start, PAGE_SIZE - reserved_space,
9027 					true);
9028 		}
9029 	}
9030 
9031 	/*
9032 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9033 	 * faulted in, but write(2) could also dirty a page and set delalloc
9034 	 * bits, thus in this case for space account reason, we still need to
9035 	 * clear any delalloc bits within this page range since we have to
9036 	 * reserve data&meta space before lock_page() (see above comments).
9037 	 */
9038 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9039 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9040 			  EXTENT_DEFRAG, 0, 0, &cached_state);
9041 
9042 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9043 					&cached_state);
9044 	if (ret2) {
9045 		unlock_extent_cached(io_tree, page_start, page_end,
9046 				     &cached_state);
9047 		ret = VM_FAULT_SIGBUS;
9048 		goto out_unlock;
9049 	}
9050 	ret2 = 0;
9051 
9052 	/* page is wholly or partially inside EOF */
9053 	if (page_start + PAGE_SIZE > size)
9054 		zero_start = offset_in_page(size);
9055 	else
9056 		zero_start = PAGE_SIZE;
9057 
9058 	if (zero_start != PAGE_SIZE) {
9059 		kaddr = kmap(page);
9060 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9061 		flush_dcache_page(page);
9062 		kunmap(page);
9063 	}
9064 	ClearPageChecked(page);
9065 	set_page_dirty(page);
9066 	SetPageUptodate(page);
9067 
9068 	BTRFS_I(inode)->last_trans = fs_info->generation;
9069 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9070 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9071 
9072 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9073 
9074 	if (!ret2) {
9075 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9076 		sb_end_pagefault(inode->i_sb);
9077 		extent_changeset_free(data_reserved);
9078 		return VM_FAULT_LOCKED;
9079 	}
9080 
9081 out_unlock:
9082 	unlock_page(page);
9083 out:
9084 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9085 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9086 				     reserved_space, (ret != 0));
9087 out_noreserve:
9088 	sb_end_pagefault(inode->i_sb);
9089 	extent_changeset_free(data_reserved);
9090 	return ret;
9091 }
9092 
9093 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9094 {
9095 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9096 	struct btrfs_root *root = BTRFS_I(inode)->root;
9097 	struct btrfs_block_rsv *rsv;
9098 	int ret;
9099 	struct btrfs_trans_handle *trans;
9100 	u64 mask = fs_info->sectorsize - 1;
9101 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9102 
9103 	if (!skip_writeback) {
9104 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9105 					       (u64)-1);
9106 		if (ret)
9107 			return ret;
9108 	}
9109 
9110 	/*
9111 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9112 	 * things going on here:
9113 	 *
9114 	 * 1) We need to reserve space to update our inode.
9115 	 *
9116 	 * 2) We need to have something to cache all the space that is going to
9117 	 * be free'd up by the truncate operation, but also have some slack
9118 	 * space reserved in case it uses space during the truncate (thank you
9119 	 * very much snapshotting).
9120 	 *
9121 	 * And we need these to be separate.  The fact is we can use a lot of
9122 	 * space doing the truncate, and we have no earthly idea how much space
9123 	 * we will use, so we need the truncate reservation to be separate so it
9124 	 * doesn't end up using space reserved for updating the inode.  We also
9125 	 * need to be able to stop the transaction and start a new one, which
9126 	 * means we need to be able to update the inode several times, and we
9127 	 * have no idea of knowing how many times that will be, so we can't just
9128 	 * reserve 1 item for the entirety of the operation, so that has to be
9129 	 * done separately as well.
9130 	 *
9131 	 * So that leaves us with
9132 	 *
9133 	 * 1) rsv - for the truncate reservation, which we will steal from the
9134 	 * transaction reservation.
9135 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9136 	 * updating the inode.
9137 	 */
9138 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9139 	if (!rsv)
9140 		return -ENOMEM;
9141 	rsv->size = min_size;
9142 	rsv->failfast = 1;
9143 
9144 	/*
9145 	 * 1 for the truncate slack space
9146 	 * 1 for updating the inode.
9147 	 */
9148 	trans = btrfs_start_transaction(root, 2);
9149 	if (IS_ERR(trans)) {
9150 		ret = PTR_ERR(trans);
9151 		goto out;
9152 	}
9153 
9154 	/* Migrate the slack space for the truncate to our reserve */
9155 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9156 				      min_size, false);
9157 	BUG_ON(ret);
9158 
9159 	/*
9160 	 * So if we truncate and then write and fsync we normally would just
9161 	 * write the extents that changed, which is a problem if we need to
9162 	 * first truncate that entire inode.  So set this flag so we write out
9163 	 * all of the extents in the inode to the sync log so we're completely
9164 	 * safe.
9165 	 */
9166 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9167 	trans->block_rsv = rsv;
9168 
9169 	while (1) {
9170 		ret = btrfs_truncate_inode_items(trans, root, inode,
9171 						 inode->i_size,
9172 						 BTRFS_EXTENT_DATA_KEY);
9173 		trans->block_rsv = &fs_info->trans_block_rsv;
9174 		if (ret != -ENOSPC && ret != -EAGAIN)
9175 			break;
9176 
9177 		ret = btrfs_update_inode(trans, root, inode);
9178 		if (ret)
9179 			break;
9180 
9181 		btrfs_end_transaction(trans);
9182 		btrfs_btree_balance_dirty(fs_info);
9183 
9184 		trans = btrfs_start_transaction(root, 2);
9185 		if (IS_ERR(trans)) {
9186 			ret = PTR_ERR(trans);
9187 			trans = NULL;
9188 			break;
9189 		}
9190 
9191 		btrfs_block_rsv_release(fs_info, rsv, -1);
9192 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9193 					      rsv, min_size, false);
9194 		BUG_ON(ret);	/* shouldn't happen */
9195 		trans->block_rsv = rsv;
9196 	}
9197 
9198 	/*
9199 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9200 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9201 	 * we've truncated everything except the last little bit, and can do
9202 	 * btrfs_truncate_block and then update the disk_i_size.
9203 	 */
9204 	if (ret == NEED_TRUNCATE_BLOCK) {
9205 		btrfs_end_transaction(trans);
9206 		btrfs_btree_balance_dirty(fs_info);
9207 
9208 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9209 		if (ret)
9210 			goto out;
9211 		trans = btrfs_start_transaction(root, 1);
9212 		if (IS_ERR(trans)) {
9213 			ret = PTR_ERR(trans);
9214 			goto out;
9215 		}
9216 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9217 	}
9218 
9219 	if (trans) {
9220 		int ret2;
9221 
9222 		trans->block_rsv = &fs_info->trans_block_rsv;
9223 		ret2 = btrfs_update_inode(trans, root, inode);
9224 		if (ret2 && !ret)
9225 			ret = ret2;
9226 
9227 		ret2 = btrfs_end_transaction(trans);
9228 		if (ret2 && !ret)
9229 			ret = ret2;
9230 		btrfs_btree_balance_dirty(fs_info);
9231 	}
9232 out:
9233 	btrfs_free_block_rsv(fs_info, rsv);
9234 
9235 	return ret;
9236 }
9237 
9238 /*
9239  * create a new subvolume directory/inode (helper for the ioctl).
9240  */
9241 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9242 			     struct btrfs_root *new_root,
9243 			     struct btrfs_root *parent_root,
9244 			     u64 new_dirid)
9245 {
9246 	struct inode *inode;
9247 	int err;
9248 	u64 index = 0;
9249 
9250 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9251 				new_dirid, new_dirid,
9252 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9253 				&index);
9254 	if (IS_ERR(inode))
9255 		return PTR_ERR(inode);
9256 	inode->i_op = &btrfs_dir_inode_operations;
9257 	inode->i_fop = &btrfs_dir_file_operations;
9258 
9259 	set_nlink(inode, 1);
9260 	btrfs_i_size_write(BTRFS_I(inode), 0);
9261 	unlock_new_inode(inode);
9262 
9263 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9264 	if (err)
9265 		btrfs_err(new_root->fs_info,
9266 			  "error inheriting subvolume %llu properties: %d",
9267 			  new_root->root_key.objectid, err);
9268 
9269 	err = btrfs_update_inode(trans, new_root, inode);
9270 
9271 	iput(inode);
9272 	return err;
9273 }
9274 
9275 struct inode *btrfs_alloc_inode(struct super_block *sb)
9276 {
9277 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9278 	struct btrfs_inode *ei;
9279 	struct inode *inode;
9280 
9281 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9282 	if (!ei)
9283 		return NULL;
9284 
9285 	ei->root = NULL;
9286 	ei->generation = 0;
9287 	ei->last_trans = 0;
9288 	ei->last_sub_trans = 0;
9289 	ei->logged_trans = 0;
9290 	ei->delalloc_bytes = 0;
9291 	ei->new_delalloc_bytes = 0;
9292 	ei->defrag_bytes = 0;
9293 	ei->disk_i_size = 0;
9294 	ei->flags = 0;
9295 	ei->csum_bytes = 0;
9296 	ei->index_cnt = (u64)-1;
9297 	ei->dir_index = 0;
9298 	ei->last_unlink_trans = 0;
9299 	ei->last_log_commit = 0;
9300 
9301 	spin_lock_init(&ei->lock);
9302 	ei->outstanding_extents = 0;
9303 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9304 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9305 					      BTRFS_BLOCK_RSV_DELALLOC);
9306 	ei->runtime_flags = 0;
9307 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9308 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9309 
9310 	ei->delayed_node = NULL;
9311 
9312 	ei->i_otime.tv_sec = 0;
9313 	ei->i_otime.tv_nsec = 0;
9314 
9315 	inode = &ei->vfs_inode;
9316 	extent_map_tree_init(&ei->extent_tree);
9317 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9318 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9319 			    IO_TREE_INODE_IO_FAILURE, inode);
9320 	ei->io_tree.track_uptodate = true;
9321 	ei->io_failure_tree.track_uptodate = true;
9322 	atomic_set(&ei->sync_writers, 0);
9323 	mutex_init(&ei->log_mutex);
9324 	mutex_init(&ei->delalloc_mutex);
9325 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9326 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9327 	INIT_LIST_HEAD(&ei->delayed_iput);
9328 	RB_CLEAR_NODE(&ei->rb_node);
9329 	init_rwsem(&ei->dio_sem);
9330 
9331 	return inode;
9332 }
9333 
9334 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9335 void btrfs_test_destroy_inode(struct inode *inode)
9336 {
9337 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9338 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9339 }
9340 #endif
9341 
9342 void btrfs_free_inode(struct inode *inode)
9343 {
9344 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9345 }
9346 
9347 void btrfs_destroy_inode(struct inode *inode)
9348 {
9349 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9350 	struct btrfs_ordered_extent *ordered;
9351 	struct btrfs_root *root = BTRFS_I(inode)->root;
9352 
9353 	WARN_ON(!hlist_empty(&inode->i_dentry));
9354 	WARN_ON(inode->i_data.nrpages);
9355 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9356 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9357 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9358 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9359 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9360 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9361 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9362 
9363 	/*
9364 	 * This can happen where we create an inode, but somebody else also
9365 	 * created the same inode and we need to destroy the one we already
9366 	 * created.
9367 	 */
9368 	if (!root)
9369 		return;
9370 
9371 	while (1) {
9372 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9373 		if (!ordered)
9374 			break;
9375 		else {
9376 			btrfs_err(fs_info,
9377 				  "found ordered extent %llu %llu on inode cleanup",
9378 				  ordered->file_offset, ordered->len);
9379 			btrfs_remove_ordered_extent(inode, ordered);
9380 			btrfs_put_ordered_extent(ordered);
9381 			btrfs_put_ordered_extent(ordered);
9382 		}
9383 	}
9384 	btrfs_qgroup_check_reserved_leak(inode);
9385 	inode_tree_del(inode);
9386 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9387 }
9388 
9389 int btrfs_drop_inode(struct inode *inode)
9390 {
9391 	struct btrfs_root *root = BTRFS_I(inode)->root;
9392 
9393 	if (root == NULL)
9394 		return 1;
9395 
9396 	/* the snap/subvol tree is on deleting */
9397 	if (btrfs_root_refs(&root->root_item) == 0)
9398 		return 1;
9399 	else
9400 		return generic_drop_inode(inode);
9401 }
9402 
9403 static void init_once(void *foo)
9404 {
9405 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9406 
9407 	inode_init_once(&ei->vfs_inode);
9408 }
9409 
9410 void __cold btrfs_destroy_cachep(void)
9411 {
9412 	/*
9413 	 * Make sure all delayed rcu free inodes are flushed before we
9414 	 * destroy cache.
9415 	 */
9416 	rcu_barrier();
9417 	kmem_cache_destroy(btrfs_inode_cachep);
9418 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9419 	kmem_cache_destroy(btrfs_path_cachep);
9420 	kmem_cache_destroy(btrfs_free_space_cachep);
9421 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9422 }
9423 
9424 int __init btrfs_init_cachep(void)
9425 {
9426 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9427 			sizeof(struct btrfs_inode), 0,
9428 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9429 			init_once);
9430 	if (!btrfs_inode_cachep)
9431 		goto fail;
9432 
9433 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9434 			sizeof(struct btrfs_trans_handle), 0,
9435 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9436 	if (!btrfs_trans_handle_cachep)
9437 		goto fail;
9438 
9439 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9440 			sizeof(struct btrfs_path), 0,
9441 			SLAB_MEM_SPREAD, NULL);
9442 	if (!btrfs_path_cachep)
9443 		goto fail;
9444 
9445 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9446 			sizeof(struct btrfs_free_space), 0,
9447 			SLAB_MEM_SPREAD, NULL);
9448 	if (!btrfs_free_space_cachep)
9449 		goto fail;
9450 
9451 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9452 							PAGE_SIZE, PAGE_SIZE,
9453 							SLAB_RED_ZONE, NULL);
9454 	if (!btrfs_free_space_bitmap_cachep)
9455 		goto fail;
9456 
9457 	return 0;
9458 fail:
9459 	btrfs_destroy_cachep();
9460 	return -ENOMEM;
9461 }
9462 
9463 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9464 			 u32 request_mask, unsigned int flags)
9465 {
9466 	u64 delalloc_bytes;
9467 	struct inode *inode = d_inode(path->dentry);
9468 	u32 blocksize = inode->i_sb->s_blocksize;
9469 	u32 bi_flags = BTRFS_I(inode)->flags;
9470 
9471 	stat->result_mask |= STATX_BTIME;
9472 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9473 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9474 	if (bi_flags & BTRFS_INODE_APPEND)
9475 		stat->attributes |= STATX_ATTR_APPEND;
9476 	if (bi_flags & BTRFS_INODE_COMPRESS)
9477 		stat->attributes |= STATX_ATTR_COMPRESSED;
9478 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9479 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9480 	if (bi_flags & BTRFS_INODE_NODUMP)
9481 		stat->attributes |= STATX_ATTR_NODUMP;
9482 
9483 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9484 				  STATX_ATTR_COMPRESSED |
9485 				  STATX_ATTR_IMMUTABLE |
9486 				  STATX_ATTR_NODUMP);
9487 
9488 	generic_fillattr(inode, stat);
9489 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9490 
9491 	spin_lock(&BTRFS_I(inode)->lock);
9492 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9493 	spin_unlock(&BTRFS_I(inode)->lock);
9494 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9495 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9496 	return 0;
9497 }
9498 
9499 static int btrfs_rename_exchange(struct inode *old_dir,
9500 			      struct dentry *old_dentry,
9501 			      struct inode *new_dir,
9502 			      struct dentry *new_dentry)
9503 {
9504 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9505 	struct btrfs_trans_handle *trans;
9506 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9507 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9508 	struct inode *new_inode = new_dentry->d_inode;
9509 	struct inode *old_inode = old_dentry->d_inode;
9510 	struct timespec64 ctime = current_time(old_inode);
9511 	struct dentry *parent;
9512 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9513 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9514 	u64 old_idx = 0;
9515 	u64 new_idx = 0;
9516 	u64 root_objectid;
9517 	int ret;
9518 	bool root_log_pinned = false;
9519 	bool dest_log_pinned = false;
9520 	struct btrfs_log_ctx ctx_root;
9521 	struct btrfs_log_ctx ctx_dest;
9522 	bool sync_log_root = false;
9523 	bool sync_log_dest = false;
9524 	bool commit_transaction = false;
9525 
9526 	/* we only allow rename subvolume link between subvolumes */
9527 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9528 		return -EXDEV;
9529 
9530 	btrfs_init_log_ctx(&ctx_root, old_inode);
9531 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9532 
9533 	/* close the race window with snapshot create/destroy ioctl */
9534 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9535 		down_read(&fs_info->subvol_sem);
9536 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9537 		down_read(&fs_info->subvol_sem);
9538 
9539 	/*
9540 	 * We want to reserve the absolute worst case amount of items.  So if
9541 	 * both inodes are subvols and we need to unlink them then that would
9542 	 * require 4 item modifications, but if they are both normal inodes it
9543 	 * would require 5 item modifications, so we'll assume their normal
9544 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9545 	 * should cover the worst case number of items we'll modify.
9546 	 */
9547 	trans = btrfs_start_transaction(root, 12);
9548 	if (IS_ERR(trans)) {
9549 		ret = PTR_ERR(trans);
9550 		goto out_notrans;
9551 	}
9552 
9553 	/*
9554 	 * We need to find a free sequence number both in the source and
9555 	 * in the destination directory for the exchange.
9556 	 */
9557 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9558 	if (ret)
9559 		goto out_fail;
9560 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9561 	if (ret)
9562 		goto out_fail;
9563 
9564 	BTRFS_I(old_inode)->dir_index = 0ULL;
9565 	BTRFS_I(new_inode)->dir_index = 0ULL;
9566 
9567 	/* Reference for the source. */
9568 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9569 		/* force full log commit if subvolume involved. */
9570 		btrfs_set_log_full_commit(trans);
9571 	} else {
9572 		btrfs_pin_log_trans(root);
9573 		root_log_pinned = true;
9574 		ret = btrfs_insert_inode_ref(trans, dest,
9575 					     new_dentry->d_name.name,
9576 					     new_dentry->d_name.len,
9577 					     old_ino,
9578 					     btrfs_ino(BTRFS_I(new_dir)),
9579 					     old_idx);
9580 		if (ret)
9581 			goto out_fail;
9582 	}
9583 
9584 	/* And now for the dest. */
9585 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9586 		/* force full log commit if subvolume involved. */
9587 		btrfs_set_log_full_commit(trans);
9588 	} else {
9589 		btrfs_pin_log_trans(dest);
9590 		dest_log_pinned = true;
9591 		ret = btrfs_insert_inode_ref(trans, root,
9592 					     old_dentry->d_name.name,
9593 					     old_dentry->d_name.len,
9594 					     new_ino,
9595 					     btrfs_ino(BTRFS_I(old_dir)),
9596 					     new_idx);
9597 		if (ret)
9598 			goto out_fail;
9599 	}
9600 
9601 	/* Update inode version and ctime/mtime. */
9602 	inode_inc_iversion(old_dir);
9603 	inode_inc_iversion(new_dir);
9604 	inode_inc_iversion(old_inode);
9605 	inode_inc_iversion(new_inode);
9606 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9607 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9608 	old_inode->i_ctime = ctime;
9609 	new_inode->i_ctime = ctime;
9610 
9611 	if (old_dentry->d_parent != new_dentry->d_parent) {
9612 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9613 				BTRFS_I(old_inode), 1);
9614 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9615 				BTRFS_I(new_inode), 1);
9616 	}
9617 
9618 	/* src is a subvolume */
9619 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9620 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9621 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9622 					  old_dentry->d_name.name,
9623 					  old_dentry->d_name.len);
9624 	} else { /* src is an inode */
9625 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9626 					   BTRFS_I(old_dentry->d_inode),
9627 					   old_dentry->d_name.name,
9628 					   old_dentry->d_name.len);
9629 		if (!ret)
9630 			ret = btrfs_update_inode(trans, root, old_inode);
9631 	}
9632 	if (ret) {
9633 		btrfs_abort_transaction(trans, ret);
9634 		goto out_fail;
9635 	}
9636 
9637 	/* dest is a subvolume */
9638 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9639 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9640 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9641 					  new_dentry->d_name.name,
9642 					  new_dentry->d_name.len);
9643 	} else { /* dest is an inode */
9644 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9645 					   BTRFS_I(new_dentry->d_inode),
9646 					   new_dentry->d_name.name,
9647 					   new_dentry->d_name.len);
9648 		if (!ret)
9649 			ret = btrfs_update_inode(trans, dest, new_inode);
9650 	}
9651 	if (ret) {
9652 		btrfs_abort_transaction(trans, ret);
9653 		goto out_fail;
9654 	}
9655 
9656 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9657 			     new_dentry->d_name.name,
9658 			     new_dentry->d_name.len, 0, old_idx);
9659 	if (ret) {
9660 		btrfs_abort_transaction(trans, ret);
9661 		goto out_fail;
9662 	}
9663 
9664 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9665 			     old_dentry->d_name.name,
9666 			     old_dentry->d_name.len, 0, new_idx);
9667 	if (ret) {
9668 		btrfs_abort_transaction(trans, ret);
9669 		goto out_fail;
9670 	}
9671 
9672 	if (old_inode->i_nlink == 1)
9673 		BTRFS_I(old_inode)->dir_index = old_idx;
9674 	if (new_inode->i_nlink == 1)
9675 		BTRFS_I(new_inode)->dir_index = new_idx;
9676 
9677 	if (root_log_pinned) {
9678 		parent = new_dentry->d_parent;
9679 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9680 					 BTRFS_I(old_dir), parent,
9681 					 false, &ctx_root);
9682 		if (ret == BTRFS_NEED_LOG_SYNC)
9683 			sync_log_root = true;
9684 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9685 			commit_transaction = true;
9686 		ret = 0;
9687 		btrfs_end_log_trans(root);
9688 		root_log_pinned = false;
9689 	}
9690 	if (dest_log_pinned) {
9691 		if (!commit_transaction) {
9692 			parent = old_dentry->d_parent;
9693 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9694 						 BTRFS_I(new_dir), parent,
9695 						 false, &ctx_dest);
9696 			if (ret == BTRFS_NEED_LOG_SYNC)
9697 				sync_log_dest = true;
9698 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9699 				commit_transaction = true;
9700 			ret = 0;
9701 		}
9702 		btrfs_end_log_trans(dest);
9703 		dest_log_pinned = false;
9704 	}
9705 out_fail:
9706 	/*
9707 	 * If we have pinned a log and an error happened, we unpin tasks
9708 	 * trying to sync the log and force them to fallback to a transaction
9709 	 * commit if the log currently contains any of the inodes involved in
9710 	 * this rename operation (to ensure we do not persist a log with an
9711 	 * inconsistent state for any of these inodes or leading to any
9712 	 * inconsistencies when replayed). If the transaction was aborted, the
9713 	 * abortion reason is propagated to userspace when attempting to commit
9714 	 * the transaction. If the log does not contain any of these inodes, we
9715 	 * allow the tasks to sync it.
9716 	 */
9717 	if (ret && (root_log_pinned || dest_log_pinned)) {
9718 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9719 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9720 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9721 		    (new_inode &&
9722 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9723 			btrfs_set_log_full_commit(trans);
9724 
9725 		if (root_log_pinned) {
9726 			btrfs_end_log_trans(root);
9727 			root_log_pinned = false;
9728 		}
9729 		if (dest_log_pinned) {
9730 			btrfs_end_log_trans(dest);
9731 			dest_log_pinned = false;
9732 		}
9733 	}
9734 	if (!ret && sync_log_root && !commit_transaction) {
9735 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9736 				     &ctx_root);
9737 		if (ret)
9738 			commit_transaction = true;
9739 	}
9740 	if (!ret && sync_log_dest && !commit_transaction) {
9741 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9742 				     &ctx_dest);
9743 		if (ret)
9744 			commit_transaction = true;
9745 	}
9746 	if (commit_transaction) {
9747 		ret = btrfs_commit_transaction(trans);
9748 	} else {
9749 		int ret2;
9750 
9751 		ret2 = btrfs_end_transaction(trans);
9752 		ret = ret ? ret : ret2;
9753 	}
9754 out_notrans:
9755 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9756 		up_read(&fs_info->subvol_sem);
9757 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9758 		up_read(&fs_info->subvol_sem);
9759 
9760 	return ret;
9761 }
9762 
9763 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9764 				     struct btrfs_root *root,
9765 				     struct inode *dir,
9766 				     struct dentry *dentry)
9767 {
9768 	int ret;
9769 	struct inode *inode;
9770 	u64 objectid;
9771 	u64 index;
9772 
9773 	ret = btrfs_find_free_ino(root, &objectid);
9774 	if (ret)
9775 		return ret;
9776 
9777 	inode = btrfs_new_inode(trans, root, dir,
9778 				dentry->d_name.name,
9779 				dentry->d_name.len,
9780 				btrfs_ino(BTRFS_I(dir)),
9781 				objectid,
9782 				S_IFCHR | WHITEOUT_MODE,
9783 				&index);
9784 
9785 	if (IS_ERR(inode)) {
9786 		ret = PTR_ERR(inode);
9787 		return ret;
9788 	}
9789 
9790 	inode->i_op = &btrfs_special_inode_operations;
9791 	init_special_inode(inode, inode->i_mode,
9792 		WHITEOUT_DEV);
9793 
9794 	ret = btrfs_init_inode_security(trans, inode, dir,
9795 				&dentry->d_name);
9796 	if (ret)
9797 		goto out;
9798 
9799 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9800 				BTRFS_I(inode), 0, index);
9801 	if (ret)
9802 		goto out;
9803 
9804 	ret = btrfs_update_inode(trans, root, inode);
9805 out:
9806 	unlock_new_inode(inode);
9807 	if (ret)
9808 		inode_dec_link_count(inode);
9809 	iput(inode);
9810 
9811 	return ret;
9812 }
9813 
9814 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9815 			   struct inode *new_dir, struct dentry *new_dentry,
9816 			   unsigned int flags)
9817 {
9818 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9819 	struct btrfs_trans_handle *trans;
9820 	unsigned int trans_num_items;
9821 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9822 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9823 	struct inode *new_inode = d_inode(new_dentry);
9824 	struct inode *old_inode = d_inode(old_dentry);
9825 	u64 index = 0;
9826 	u64 root_objectid;
9827 	int ret;
9828 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9829 	bool log_pinned = false;
9830 	struct btrfs_log_ctx ctx;
9831 	bool sync_log = false;
9832 	bool commit_transaction = false;
9833 
9834 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9835 		return -EPERM;
9836 
9837 	/* we only allow rename subvolume link between subvolumes */
9838 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9839 		return -EXDEV;
9840 
9841 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9842 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9843 		return -ENOTEMPTY;
9844 
9845 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9846 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9847 		return -ENOTEMPTY;
9848 
9849 
9850 	/* check for collisions, even if the  name isn't there */
9851 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9852 			     new_dentry->d_name.name,
9853 			     new_dentry->d_name.len);
9854 
9855 	if (ret) {
9856 		if (ret == -EEXIST) {
9857 			/* we shouldn't get
9858 			 * eexist without a new_inode */
9859 			if (WARN_ON(!new_inode)) {
9860 				return ret;
9861 			}
9862 		} else {
9863 			/* maybe -EOVERFLOW */
9864 			return ret;
9865 		}
9866 	}
9867 	ret = 0;
9868 
9869 	/*
9870 	 * we're using rename to replace one file with another.  Start IO on it
9871 	 * now so  we don't add too much work to the end of the transaction
9872 	 */
9873 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9874 		filemap_flush(old_inode->i_mapping);
9875 
9876 	/* close the racy window with snapshot create/destroy ioctl */
9877 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9878 		down_read(&fs_info->subvol_sem);
9879 	/*
9880 	 * We want to reserve the absolute worst case amount of items.  So if
9881 	 * both inodes are subvols and we need to unlink them then that would
9882 	 * require 4 item modifications, but if they are both normal inodes it
9883 	 * would require 5 item modifications, so we'll assume they are normal
9884 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9885 	 * should cover the worst case number of items we'll modify.
9886 	 * If our rename has the whiteout flag, we need more 5 units for the
9887 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9888 	 * when selinux is enabled).
9889 	 */
9890 	trans_num_items = 11;
9891 	if (flags & RENAME_WHITEOUT)
9892 		trans_num_items += 5;
9893 	trans = btrfs_start_transaction(root, trans_num_items);
9894 	if (IS_ERR(trans)) {
9895 		ret = PTR_ERR(trans);
9896 		goto out_notrans;
9897 	}
9898 
9899 	if (dest != root)
9900 		btrfs_record_root_in_trans(trans, dest);
9901 
9902 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9903 	if (ret)
9904 		goto out_fail;
9905 
9906 	BTRFS_I(old_inode)->dir_index = 0ULL;
9907 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9908 		/* force full log commit if subvolume involved. */
9909 		btrfs_set_log_full_commit(trans);
9910 	} else {
9911 		btrfs_pin_log_trans(root);
9912 		log_pinned = true;
9913 		ret = btrfs_insert_inode_ref(trans, dest,
9914 					     new_dentry->d_name.name,
9915 					     new_dentry->d_name.len,
9916 					     old_ino,
9917 					     btrfs_ino(BTRFS_I(new_dir)), index);
9918 		if (ret)
9919 			goto out_fail;
9920 	}
9921 
9922 	inode_inc_iversion(old_dir);
9923 	inode_inc_iversion(new_dir);
9924 	inode_inc_iversion(old_inode);
9925 	old_dir->i_ctime = old_dir->i_mtime =
9926 	new_dir->i_ctime = new_dir->i_mtime =
9927 	old_inode->i_ctime = current_time(old_dir);
9928 
9929 	if (old_dentry->d_parent != new_dentry->d_parent)
9930 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9931 				BTRFS_I(old_inode), 1);
9932 
9933 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9934 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9935 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9936 					old_dentry->d_name.name,
9937 					old_dentry->d_name.len);
9938 	} else {
9939 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9940 					BTRFS_I(d_inode(old_dentry)),
9941 					old_dentry->d_name.name,
9942 					old_dentry->d_name.len);
9943 		if (!ret)
9944 			ret = btrfs_update_inode(trans, root, old_inode);
9945 	}
9946 	if (ret) {
9947 		btrfs_abort_transaction(trans, ret);
9948 		goto out_fail;
9949 	}
9950 
9951 	if (new_inode) {
9952 		inode_inc_iversion(new_inode);
9953 		new_inode->i_ctime = current_time(new_inode);
9954 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9955 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9956 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9957 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9958 						new_dentry->d_name.name,
9959 						new_dentry->d_name.len);
9960 			BUG_ON(new_inode->i_nlink == 0);
9961 		} else {
9962 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9963 						 BTRFS_I(d_inode(new_dentry)),
9964 						 new_dentry->d_name.name,
9965 						 new_dentry->d_name.len);
9966 		}
9967 		if (!ret && new_inode->i_nlink == 0)
9968 			ret = btrfs_orphan_add(trans,
9969 					BTRFS_I(d_inode(new_dentry)));
9970 		if (ret) {
9971 			btrfs_abort_transaction(trans, ret);
9972 			goto out_fail;
9973 		}
9974 	}
9975 
9976 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9977 			     new_dentry->d_name.name,
9978 			     new_dentry->d_name.len, 0, index);
9979 	if (ret) {
9980 		btrfs_abort_transaction(trans, ret);
9981 		goto out_fail;
9982 	}
9983 
9984 	if (old_inode->i_nlink == 1)
9985 		BTRFS_I(old_inode)->dir_index = index;
9986 
9987 	if (log_pinned) {
9988 		struct dentry *parent = new_dentry->d_parent;
9989 
9990 		btrfs_init_log_ctx(&ctx, old_inode);
9991 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9992 					 BTRFS_I(old_dir), parent,
9993 					 false, &ctx);
9994 		if (ret == BTRFS_NEED_LOG_SYNC)
9995 			sync_log = true;
9996 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9997 			commit_transaction = true;
9998 		ret = 0;
9999 		btrfs_end_log_trans(root);
10000 		log_pinned = false;
10001 	}
10002 
10003 	if (flags & RENAME_WHITEOUT) {
10004 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10005 						old_dentry);
10006 
10007 		if (ret) {
10008 			btrfs_abort_transaction(trans, ret);
10009 			goto out_fail;
10010 		}
10011 	}
10012 out_fail:
10013 	/*
10014 	 * If we have pinned the log and an error happened, we unpin tasks
10015 	 * trying to sync the log and force them to fallback to a transaction
10016 	 * commit if the log currently contains any of the inodes involved in
10017 	 * this rename operation (to ensure we do not persist a log with an
10018 	 * inconsistent state for any of these inodes or leading to any
10019 	 * inconsistencies when replayed). If the transaction was aborted, the
10020 	 * abortion reason is propagated to userspace when attempting to commit
10021 	 * the transaction. If the log does not contain any of these inodes, we
10022 	 * allow the tasks to sync it.
10023 	 */
10024 	if (ret && log_pinned) {
10025 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10026 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10027 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10028 		    (new_inode &&
10029 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10030 			btrfs_set_log_full_commit(trans);
10031 
10032 		btrfs_end_log_trans(root);
10033 		log_pinned = false;
10034 	}
10035 	if (!ret && sync_log) {
10036 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10037 		if (ret)
10038 			commit_transaction = true;
10039 	}
10040 	if (commit_transaction) {
10041 		ret = btrfs_commit_transaction(trans);
10042 	} else {
10043 		int ret2;
10044 
10045 		ret2 = btrfs_end_transaction(trans);
10046 		ret = ret ? ret : ret2;
10047 	}
10048 out_notrans:
10049 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10050 		up_read(&fs_info->subvol_sem);
10051 
10052 	return ret;
10053 }
10054 
10055 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10056 			 struct inode *new_dir, struct dentry *new_dentry,
10057 			 unsigned int flags)
10058 {
10059 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10060 		return -EINVAL;
10061 
10062 	if (flags & RENAME_EXCHANGE)
10063 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10064 					  new_dentry);
10065 
10066 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10067 }
10068 
10069 struct btrfs_delalloc_work {
10070 	struct inode *inode;
10071 	struct completion completion;
10072 	struct list_head list;
10073 	struct btrfs_work work;
10074 };
10075 
10076 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10077 {
10078 	struct btrfs_delalloc_work *delalloc_work;
10079 	struct inode *inode;
10080 
10081 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10082 				     work);
10083 	inode = delalloc_work->inode;
10084 	filemap_flush(inode->i_mapping);
10085 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10086 				&BTRFS_I(inode)->runtime_flags))
10087 		filemap_flush(inode->i_mapping);
10088 
10089 	iput(inode);
10090 	complete(&delalloc_work->completion);
10091 }
10092 
10093 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10094 {
10095 	struct btrfs_delalloc_work *work;
10096 
10097 	work = kmalloc(sizeof(*work), GFP_NOFS);
10098 	if (!work)
10099 		return NULL;
10100 
10101 	init_completion(&work->completion);
10102 	INIT_LIST_HEAD(&work->list);
10103 	work->inode = inode;
10104 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10105 			btrfs_run_delalloc_work, NULL, NULL);
10106 
10107 	return work;
10108 }
10109 
10110 /*
10111  * some fairly slow code that needs optimization. This walks the list
10112  * of all the inodes with pending delalloc and forces them to disk.
10113  */
10114 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10115 {
10116 	struct btrfs_inode *binode;
10117 	struct inode *inode;
10118 	struct btrfs_delalloc_work *work, *next;
10119 	struct list_head works;
10120 	struct list_head splice;
10121 	int ret = 0;
10122 
10123 	INIT_LIST_HEAD(&works);
10124 	INIT_LIST_HEAD(&splice);
10125 
10126 	mutex_lock(&root->delalloc_mutex);
10127 	spin_lock(&root->delalloc_lock);
10128 	list_splice_init(&root->delalloc_inodes, &splice);
10129 	while (!list_empty(&splice)) {
10130 		binode = list_entry(splice.next, struct btrfs_inode,
10131 				    delalloc_inodes);
10132 
10133 		list_move_tail(&binode->delalloc_inodes,
10134 			       &root->delalloc_inodes);
10135 		inode = igrab(&binode->vfs_inode);
10136 		if (!inode) {
10137 			cond_resched_lock(&root->delalloc_lock);
10138 			continue;
10139 		}
10140 		spin_unlock(&root->delalloc_lock);
10141 
10142 		if (snapshot)
10143 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10144 				&binode->runtime_flags);
10145 		work = btrfs_alloc_delalloc_work(inode);
10146 		if (!work) {
10147 			iput(inode);
10148 			ret = -ENOMEM;
10149 			goto out;
10150 		}
10151 		list_add_tail(&work->list, &works);
10152 		btrfs_queue_work(root->fs_info->flush_workers,
10153 				 &work->work);
10154 		ret++;
10155 		if (nr != -1 && ret >= nr)
10156 			goto out;
10157 		cond_resched();
10158 		spin_lock(&root->delalloc_lock);
10159 	}
10160 	spin_unlock(&root->delalloc_lock);
10161 
10162 out:
10163 	list_for_each_entry_safe(work, next, &works, list) {
10164 		list_del_init(&work->list);
10165 		wait_for_completion(&work->completion);
10166 		kfree(work);
10167 	}
10168 
10169 	if (!list_empty(&splice)) {
10170 		spin_lock(&root->delalloc_lock);
10171 		list_splice_tail(&splice, &root->delalloc_inodes);
10172 		spin_unlock(&root->delalloc_lock);
10173 	}
10174 	mutex_unlock(&root->delalloc_mutex);
10175 	return ret;
10176 }
10177 
10178 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10179 {
10180 	struct btrfs_fs_info *fs_info = root->fs_info;
10181 	int ret;
10182 
10183 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10184 		return -EROFS;
10185 
10186 	ret = start_delalloc_inodes(root, -1, true);
10187 	if (ret > 0)
10188 		ret = 0;
10189 	return ret;
10190 }
10191 
10192 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10193 {
10194 	struct btrfs_root *root;
10195 	struct list_head splice;
10196 	int ret;
10197 
10198 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10199 		return -EROFS;
10200 
10201 	INIT_LIST_HEAD(&splice);
10202 
10203 	mutex_lock(&fs_info->delalloc_root_mutex);
10204 	spin_lock(&fs_info->delalloc_root_lock);
10205 	list_splice_init(&fs_info->delalloc_roots, &splice);
10206 	while (!list_empty(&splice) && nr) {
10207 		root = list_first_entry(&splice, struct btrfs_root,
10208 					delalloc_root);
10209 		root = btrfs_grab_fs_root(root);
10210 		BUG_ON(!root);
10211 		list_move_tail(&root->delalloc_root,
10212 			       &fs_info->delalloc_roots);
10213 		spin_unlock(&fs_info->delalloc_root_lock);
10214 
10215 		ret = start_delalloc_inodes(root, nr, false);
10216 		btrfs_put_fs_root(root);
10217 		if (ret < 0)
10218 			goto out;
10219 
10220 		if (nr != -1) {
10221 			nr -= ret;
10222 			WARN_ON(nr < 0);
10223 		}
10224 		spin_lock(&fs_info->delalloc_root_lock);
10225 	}
10226 	spin_unlock(&fs_info->delalloc_root_lock);
10227 
10228 	ret = 0;
10229 out:
10230 	if (!list_empty(&splice)) {
10231 		spin_lock(&fs_info->delalloc_root_lock);
10232 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10233 		spin_unlock(&fs_info->delalloc_root_lock);
10234 	}
10235 	mutex_unlock(&fs_info->delalloc_root_mutex);
10236 	return ret;
10237 }
10238 
10239 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10240 			 const char *symname)
10241 {
10242 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10243 	struct btrfs_trans_handle *trans;
10244 	struct btrfs_root *root = BTRFS_I(dir)->root;
10245 	struct btrfs_path *path;
10246 	struct btrfs_key key;
10247 	struct inode *inode = NULL;
10248 	int err;
10249 	u64 objectid;
10250 	u64 index = 0;
10251 	int name_len;
10252 	int datasize;
10253 	unsigned long ptr;
10254 	struct btrfs_file_extent_item *ei;
10255 	struct extent_buffer *leaf;
10256 
10257 	name_len = strlen(symname);
10258 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10259 		return -ENAMETOOLONG;
10260 
10261 	/*
10262 	 * 2 items for inode item and ref
10263 	 * 2 items for dir items
10264 	 * 1 item for updating parent inode item
10265 	 * 1 item for the inline extent item
10266 	 * 1 item for xattr if selinux is on
10267 	 */
10268 	trans = btrfs_start_transaction(root, 7);
10269 	if (IS_ERR(trans))
10270 		return PTR_ERR(trans);
10271 
10272 	err = btrfs_find_free_ino(root, &objectid);
10273 	if (err)
10274 		goto out_unlock;
10275 
10276 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10277 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10278 				objectid, S_IFLNK|S_IRWXUGO, &index);
10279 	if (IS_ERR(inode)) {
10280 		err = PTR_ERR(inode);
10281 		inode = NULL;
10282 		goto out_unlock;
10283 	}
10284 
10285 	/*
10286 	* If the active LSM wants to access the inode during
10287 	* d_instantiate it needs these. Smack checks to see
10288 	* if the filesystem supports xattrs by looking at the
10289 	* ops vector.
10290 	*/
10291 	inode->i_fop = &btrfs_file_operations;
10292 	inode->i_op = &btrfs_file_inode_operations;
10293 	inode->i_mapping->a_ops = &btrfs_aops;
10294 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10295 
10296 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10297 	if (err)
10298 		goto out_unlock;
10299 
10300 	path = btrfs_alloc_path();
10301 	if (!path) {
10302 		err = -ENOMEM;
10303 		goto out_unlock;
10304 	}
10305 	key.objectid = btrfs_ino(BTRFS_I(inode));
10306 	key.offset = 0;
10307 	key.type = BTRFS_EXTENT_DATA_KEY;
10308 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10309 	err = btrfs_insert_empty_item(trans, root, path, &key,
10310 				      datasize);
10311 	if (err) {
10312 		btrfs_free_path(path);
10313 		goto out_unlock;
10314 	}
10315 	leaf = path->nodes[0];
10316 	ei = btrfs_item_ptr(leaf, path->slots[0],
10317 			    struct btrfs_file_extent_item);
10318 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10319 	btrfs_set_file_extent_type(leaf, ei,
10320 				   BTRFS_FILE_EXTENT_INLINE);
10321 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10322 	btrfs_set_file_extent_compression(leaf, ei, 0);
10323 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10324 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10325 
10326 	ptr = btrfs_file_extent_inline_start(ei);
10327 	write_extent_buffer(leaf, symname, ptr, name_len);
10328 	btrfs_mark_buffer_dirty(leaf);
10329 	btrfs_free_path(path);
10330 
10331 	inode->i_op = &btrfs_symlink_inode_operations;
10332 	inode_nohighmem(inode);
10333 	inode_set_bytes(inode, name_len);
10334 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10335 	err = btrfs_update_inode(trans, root, inode);
10336 	/*
10337 	 * Last step, add directory indexes for our symlink inode. This is the
10338 	 * last step to avoid extra cleanup of these indexes if an error happens
10339 	 * elsewhere above.
10340 	 */
10341 	if (!err)
10342 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10343 				BTRFS_I(inode), 0, index);
10344 	if (err)
10345 		goto out_unlock;
10346 
10347 	d_instantiate_new(dentry, inode);
10348 
10349 out_unlock:
10350 	btrfs_end_transaction(trans);
10351 	if (err && inode) {
10352 		inode_dec_link_count(inode);
10353 		discard_new_inode(inode);
10354 	}
10355 	btrfs_btree_balance_dirty(fs_info);
10356 	return err;
10357 }
10358 
10359 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10360 				       u64 start, u64 num_bytes, u64 min_size,
10361 				       loff_t actual_len, u64 *alloc_hint,
10362 				       struct btrfs_trans_handle *trans)
10363 {
10364 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10365 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10366 	struct extent_map *em;
10367 	struct btrfs_root *root = BTRFS_I(inode)->root;
10368 	struct btrfs_key ins;
10369 	u64 cur_offset = start;
10370 	u64 i_size;
10371 	u64 cur_bytes;
10372 	u64 last_alloc = (u64)-1;
10373 	int ret = 0;
10374 	bool own_trans = true;
10375 	u64 end = start + num_bytes - 1;
10376 
10377 	if (trans)
10378 		own_trans = false;
10379 	while (num_bytes > 0) {
10380 		if (own_trans) {
10381 			trans = btrfs_start_transaction(root, 3);
10382 			if (IS_ERR(trans)) {
10383 				ret = PTR_ERR(trans);
10384 				break;
10385 			}
10386 		}
10387 
10388 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10389 		cur_bytes = max(cur_bytes, min_size);
10390 		/*
10391 		 * If we are severely fragmented we could end up with really
10392 		 * small allocations, so if the allocator is returning small
10393 		 * chunks lets make its job easier by only searching for those
10394 		 * sized chunks.
10395 		 */
10396 		cur_bytes = min(cur_bytes, last_alloc);
10397 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10398 				min_size, 0, *alloc_hint, &ins, 1, 0);
10399 		if (ret) {
10400 			if (own_trans)
10401 				btrfs_end_transaction(trans);
10402 			break;
10403 		}
10404 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10405 
10406 		last_alloc = ins.offset;
10407 		ret = insert_reserved_file_extent(trans, inode,
10408 						  cur_offset, ins.objectid,
10409 						  ins.offset, ins.offset,
10410 						  ins.offset, 0, 0, 0,
10411 						  BTRFS_FILE_EXTENT_PREALLOC);
10412 		if (ret) {
10413 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10414 						   ins.offset, 0);
10415 			btrfs_abort_transaction(trans, ret);
10416 			if (own_trans)
10417 				btrfs_end_transaction(trans);
10418 			break;
10419 		}
10420 
10421 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10422 					cur_offset + ins.offset -1, 0);
10423 
10424 		em = alloc_extent_map();
10425 		if (!em) {
10426 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10427 				&BTRFS_I(inode)->runtime_flags);
10428 			goto next;
10429 		}
10430 
10431 		em->start = cur_offset;
10432 		em->orig_start = cur_offset;
10433 		em->len = ins.offset;
10434 		em->block_start = ins.objectid;
10435 		em->block_len = ins.offset;
10436 		em->orig_block_len = ins.offset;
10437 		em->ram_bytes = ins.offset;
10438 		em->bdev = fs_info->fs_devices->latest_bdev;
10439 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10440 		em->generation = trans->transid;
10441 
10442 		while (1) {
10443 			write_lock(&em_tree->lock);
10444 			ret = add_extent_mapping(em_tree, em, 1);
10445 			write_unlock(&em_tree->lock);
10446 			if (ret != -EEXIST)
10447 				break;
10448 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10449 						cur_offset + ins.offset - 1,
10450 						0);
10451 		}
10452 		free_extent_map(em);
10453 next:
10454 		num_bytes -= ins.offset;
10455 		cur_offset += ins.offset;
10456 		*alloc_hint = ins.objectid + ins.offset;
10457 
10458 		inode_inc_iversion(inode);
10459 		inode->i_ctime = current_time(inode);
10460 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10461 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10462 		    (actual_len > inode->i_size) &&
10463 		    (cur_offset > inode->i_size)) {
10464 			if (cur_offset > actual_len)
10465 				i_size = actual_len;
10466 			else
10467 				i_size = cur_offset;
10468 			i_size_write(inode, i_size);
10469 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10470 		}
10471 
10472 		ret = btrfs_update_inode(trans, root, inode);
10473 
10474 		if (ret) {
10475 			btrfs_abort_transaction(trans, ret);
10476 			if (own_trans)
10477 				btrfs_end_transaction(trans);
10478 			break;
10479 		}
10480 
10481 		if (own_trans)
10482 			btrfs_end_transaction(trans);
10483 	}
10484 	if (cur_offset < end)
10485 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10486 			end - cur_offset + 1);
10487 	return ret;
10488 }
10489 
10490 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10491 			      u64 start, u64 num_bytes, u64 min_size,
10492 			      loff_t actual_len, u64 *alloc_hint)
10493 {
10494 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10495 					   min_size, actual_len, alloc_hint,
10496 					   NULL);
10497 }
10498 
10499 int btrfs_prealloc_file_range_trans(struct inode *inode,
10500 				    struct btrfs_trans_handle *trans, int mode,
10501 				    u64 start, u64 num_bytes, u64 min_size,
10502 				    loff_t actual_len, u64 *alloc_hint)
10503 {
10504 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10505 					   min_size, actual_len, alloc_hint, trans);
10506 }
10507 
10508 static int btrfs_set_page_dirty(struct page *page)
10509 {
10510 	return __set_page_dirty_nobuffers(page);
10511 }
10512 
10513 static int btrfs_permission(struct inode *inode, int mask)
10514 {
10515 	struct btrfs_root *root = BTRFS_I(inode)->root;
10516 	umode_t mode = inode->i_mode;
10517 
10518 	if (mask & MAY_WRITE &&
10519 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10520 		if (btrfs_root_readonly(root))
10521 			return -EROFS;
10522 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10523 			return -EACCES;
10524 	}
10525 	return generic_permission(inode, mask);
10526 }
10527 
10528 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10529 {
10530 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10531 	struct btrfs_trans_handle *trans;
10532 	struct btrfs_root *root = BTRFS_I(dir)->root;
10533 	struct inode *inode = NULL;
10534 	u64 objectid;
10535 	u64 index;
10536 	int ret = 0;
10537 
10538 	/*
10539 	 * 5 units required for adding orphan entry
10540 	 */
10541 	trans = btrfs_start_transaction(root, 5);
10542 	if (IS_ERR(trans))
10543 		return PTR_ERR(trans);
10544 
10545 	ret = btrfs_find_free_ino(root, &objectid);
10546 	if (ret)
10547 		goto out;
10548 
10549 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10550 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10551 	if (IS_ERR(inode)) {
10552 		ret = PTR_ERR(inode);
10553 		inode = NULL;
10554 		goto out;
10555 	}
10556 
10557 	inode->i_fop = &btrfs_file_operations;
10558 	inode->i_op = &btrfs_file_inode_operations;
10559 
10560 	inode->i_mapping->a_ops = &btrfs_aops;
10561 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10562 
10563 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10564 	if (ret)
10565 		goto out;
10566 
10567 	ret = btrfs_update_inode(trans, root, inode);
10568 	if (ret)
10569 		goto out;
10570 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10571 	if (ret)
10572 		goto out;
10573 
10574 	/*
10575 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10576 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10577 	 * through:
10578 	 *
10579 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10580 	 */
10581 	set_nlink(inode, 1);
10582 	d_tmpfile(dentry, inode);
10583 	unlock_new_inode(inode);
10584 	mark_inode_dirty(inode);
10585 out:
10586 	btrfs_end_transaction(trans);
10587 	if (ret && inode)
10588 		discard_new_inode(inode);
10589 	btrfs_btree_balance_dirty(fs_info);
10590 	return ret;
10591 }
10592 
10593 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10594 {
10595 	struct inode *inode = tree->private_data;
10596 	unsigned long index = start >> PAGE_SHIFT;
10597 	unsigned long end_index = end >> PAGE_SHIFT;
10598 	struct page *page;
10599 
10600 	while (index <= end_index) {
10601 		page = find_get_page(inode->i_mapping, index);
10602 		ASSERT(page); /* Pages should be in the extent_io_tree */
10603 		set_page_writeback(page);
10604 		put_page(page);
10605 		index++;
10606 	}
10607 }
10608 
10609 #ifdef CONFIG_SWAP
10610 /*
10611  * Add an entry indicating a block group or device which is pinned by a
10612  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10613  * negative errno on failure.
10614  */
10615 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10616 				  bool is_block_group)
10617 {
10618 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10619 	struct btrfs_swapfile_pin *sp, *entry;
10620 	struct rb_node **p;
10621 	struct rb_node *parent = NULL;
10622 
10623 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10624 	if (!sp)
10625 		return -ENOMEM;
10626 	sp->ptr = ptr;
10627 	sp->inode = inode;
10628 	sp->is_block_group = is_block_group;
10629 
10630 	spin_lock(&fs_info->swapfile_pins_lock);
10631 	p = &fs_info->swapfile_pins.rb_node;
10632 	while (*p) {
10633 		parent = *p;
10634 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10635 		if (sp->ptr < entry->ptr ||
10636 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10637 			p = &(*p)->rb_left;
10638 		} else if (sp->ptr > entry->ptr ||
10639 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10640 			p = &(*p)->rb_right;
10641 		} else {
10642 			spin_unlock(&fs_info->swapfile_pins_lock);
10643 			kfree(sp);
10644 			return 1;
10645 		}
10646 	}
10647 	rb_link_node(&sp->node, parent, p);
10648 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10649 	spin_unlock(&fs_info->swapfile_pins_lock);
10650 	return 0;
10651 }
10652 
10653 /* Free all of the entries pinned by this swapfile. */
10654 static void btrfs_free_swapfile_pins(struct inode *inode)
10655 {
10656 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10657 	struct btrfs_swapfile_pin *sp;
10658 	struct rb_node *node, *next;
10659 
10660 	spin_lock(&fs_info->swapfile_pins_lock);
10661 	node = rb_first(&fs_info->swapfile_pins);
10662 	while (node) {
10663 		next = rb_next(node);
10664 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10665 		if (sp->inode == inode) {
10666 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10667 			if (sp->is_block_group)
10668 				btrfs_put_block_group(sp->ptr);
10669 			kfree(sp);
10670 		}
10671 		node = next;
10672 	}
10673 	spin_unlock(&fs_info->swapfile_pins_lock);
10674 }
10675 
10676 struct btrfs_swap_info {
10677 	u64 start;
10678 	u64 block_start;
10679 	u64 block_len;
10680 	u64 lowest_ppage;
10681 	u64 highest_ppage;
10682 	unsigned long nr_pages;
10683 	int nr_extents;
10684 };
10685 
10686 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10687 				 struct btrfs_swap_info *bsi)
10688 {
10689 	unsigned long nr_pages;
10690 	u64 first_ppage, first_ppage_reported, next_ppage;
10691 	int ret;
10692 
10693 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10694 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10695 				PAGE_SIZE) >> PAGE_SHIFT;
10696 
10697 	if (first_ppage >= next_ppage)
10698 		return 0;
10699 	nr_pages = next_ppage - first_ppage;
10700 
10701 	first_ppage_reported = first_ppage;
10702 	if (bsi->start == 0)
10703 		first_ppage_reported++;
10704 	if (bsi->lowest_ppage > first_ppage_reported)
10705 		bsi->lowest_ppage = first_ppage_reported;
10706 	if (bsi->highest_ppage < (next_ppage - 1))
10707 		bsi->highest_ppage = next_ppage - 1;
10708 
10709 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10710 	if (ret < 0)
10711 		return ret;
10712 	bsi->nr_extents += ret;
10713 	bsi->nr_pages += nr_pages;
10714 	return 0;
10715 }
10716 
10717 static void btrfs_swap_deactivate(struct file *file)
10718 {
10719 	struct inode *inode = file_inode(file);
10720 
10721 	btrfs_free_swapfile_pins(inode);
10722 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10723 }
10724 
10725 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10726 			       sector_t *span)
10727 {
10728 	struct inode *inode = file_inode(file);
10729 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10730 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10731 	struct extent_state *cached_state = NULL;
10732 	struct extent_map *em = NULL;
10733 	struct btrfs_device *device = NULL;
10734 	struct btrfs_swap_info bsi = {
10735 		.lowest_ppage = (sector_t)-1ULL,
10736 	};
10737 	int ret = 0;
10738 	u64 isize;
10739 	u64 start;
10740 
10741 	/*
10742 	 * If the swap file was just created, make sure delalloc is done. If the
10743 	 * file changes again after this, the user is doing something stupid and
10744 	 * we don't really care.
10745 	 */
10746 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10747 	if (ret)
10748 		return ret;
10749 
10750 	/*
10751 	 * The inode is locked, so these flags won't change after we check them.
10752 	 */
10753 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10754 		btrfs_warn(fs_info, "swapfile must not be compressed");
10755 		return -EINVAL;
10756 	}
10757 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10758 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10759 		return -EINVAL;
10760 	}
10761 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10762 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10763 		return -EINVAL;
10764 	}
10765 
10766 	/*
10767 	 * Balance or device remove/replace/resize can move stuff around from
10768 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10769 	 * concurrently while we are mapping the swap extents, and
10770 	 * fs_info->swapfile_pins prevents them from running while the swap file
10771 	 * is active and moving the extents. Note that this also prevents a
10772 	 * concurrent device add which isn't actually necessary, but it's not
10773 	 * really worth the trouble to allow it.
10774 	 */
10775 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10776 		btrfs_warn(fs_info,
10777 	   "cannot activate swapfile while exclusive operation is running");
10778 		return -EBUSY;
10779 	}
10780 	/*
10781 	 * Snapshots can create extents which require COW even if NODATACOW is
10782 	 * set. We use this counter to prevent snapshots. We must increment it
10783 	 * before walking the extents because we don't want a concurrent
10784 	 * snapshot to run after we've already checked the extents.
10785 	 */
10786 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10787 
10788 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10789 
10790 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10791 	start = 0;
10792 	while (start < isize) {
10793 		u64 logical_block_start, physical_block_start;
10794 		struct btrfs_block_group_cache *bg;
10795 		u64 len = isize - start;
10796 
10797 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10798 		if (IS_ERR(em)) {
10799 			ret = PTR_ERR(em);
10800 			goto out;
10801 		}
10802 
10803 		if (em->block_start == EXTENT_MAP_HOLE) {
10804 			btrfs_warn(fs_info, "swapfile must not have holes");
10805 			ret = -EINVAL;
10806 			goto out;
10807 		}
10808 		if (em->block_start == EXTENT_MAP_INLINE) {
10809 			/*
10810 			 * It's unlikely we'll ever actually find ourselves
10811 			 * here, as a file small enough to fit inline won't be
10812 			 * big enough to store more than the swap header, but in
10813 			 * case something changes in the future, let's catch it
10814 			 * here rather than later.
10815 			 */
10816 			btrfs_warn(fs_info, "swapfile must not be inline");
10817 			ret = -EINVAL;
10818 			goto out;
10819 		}
10820 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10821 			btrfs_warn(fs_info, "swapfile must not be compressed");
10822 			ret = -EINVAL;
10823 			goto out;
10824 		}
10825 
10826 		logical_block_start = em->block_start + (start - em->start);
10827 		len = min(len, em->len - (start - em->start));
10828 		free_extent_map(em);
10829 		em = NULL;
10830 
10831 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10832 		if (ret < 0) {
10833 			goto out;
10834 		} else if (ret) {
10835 			ret = 0;
10836 		} else {
10837 			btrfs_warn(fs_info,
10838 				   "swapfile must not be copy-on-write");
10839 			ret = -EINVAL;
10840 			goto out;
10841 		}
10842 
10843 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10844 		if (IS_ERR(em)) {
10845 			ret = PTR_ERR(em);
10846 			goto out;
10847 		}
10848 
10849 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10850 			btrfs_warn(fs_info,
10851 				   "swapfile must have single data profile");
10852 			ret = -EINVAL;
10853 			goto out;
10854 		}
10855 
10856 		if (device == NULL) {
10857 			device = em->map_lookup->stripes[0].dev;
10858 			ret = btrfs_add_swapfile_pin(inode, device, false);
10859 			if (ret == 1)
10860 				ret = 0;
10861 			else if (ret)
10862 				goto out;
10863 		} else if (device != em->map_lookup->stripes[0].dev) {
10864 			btrfs_warn(fs_info, "swapfile must be on one device");
10865 			ret = -EINVAL;
10866 			goto out;
10867 		}
10868 
10869 		physical_block_start = (em->map_lookup->stripes[0].physical +
10870 					(logical_block_start - em->start));
10871 		len = min(len, em->len - (logical_block_start - em->start));
10872 		free_extent_map(em);
10873 		em = NULL;
10874 
10875 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10876 		if (!bg) {
10877 			btrfs_warn(fs_info,
10878 			   "could not find block group containing swapfile");
10879 			ret = -EINVAL;
10880 			goto out;
10881 		}
10882 
10883 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10884 		if (ret) {
10885 			btrfs_put_block_group(bg);
10886 			if (ret == 1)
10887 				ret = 0;
10888 			else
10889 				goto out;
10890 		}
10891 
10892 		if (bsi.block_len &&
10893 		    bsi.block_start + bsi.block_len == physical_block_start) {
10894 			bsi.block_len += len;
10895 		} else {
10896 			if (bsi.block_len) {
10897 				ret = btrfs_add_swap_extent(sis, &bsi);
10898 				if (ret)
10899 					goto out;
10900 			}
10901 			bsi.start = start;
10902 			bsi.block_start = physical_block_start;
10903 			bsi.block_len = len;
10904 		}
10905 
10906 		start += len;
10907 	}
10908 
10909 	if (bsi.block_len)
10910 		ret = btrfs_add_swap_extent(sis, &bsi);
10911 
10912 out:
10913 	if (!IS_ERR_OR_NULL(em))
10914 		free_extent_map(em);
10915 
10916 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10917 
10918 	if (ret)
10919 		btrfs_swap_deactivate(file);
10920 
10921 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10922 
10923 	if (ret)
10924 		return ret;
10925 
10926 	if (device)
10927 		sis->bdev = device->bdev;
10928 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10929 	sis->max = bsi.nr_pages;
10930 	sis->pages = bsi.nr_pages - 1;
10931 	sis->highest_bit = bsi.nr_pages - 1;
10932 	return bsi.nr_extents;
10933 }
10934 #else
10935 static void btrfs_swap_deactivate(struct file *file)
10936 {
10937 }
10938 
10939 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10940 			       sector_t *span)
10941 {
10942 	return -EOPNOTSUPP;
10943 }
10944 #endif
10945 
10946 static const struct inode_operations btrfs_dir_inode_operations = {
10947 	.getattr	= btrfs_getattr,
10948 	.lookup		= btrfs_lookup,
10949 	.create		= btrfs_create,
10950 	.unlink		= btrfs_unlink,
10951 	.link		= btrfs_link,
10952 	.mkdir		= btrfs_mkdir,
10953 	.rmdir		= btrfs_rmdir,
10954 	.rename		= btrfs_rename2,
10955 	.symlink	= btrfs_symlink,
10956 	.setattr	= btrfs_setattr,
10957 	.mknod		= btrfs_mknod,
10958 	.listxattr	= btrfs_listxattr,
10959 	.permission	= btrfs_permission,
10960 	.get_acl	= btrfs_get_acl,
10961 	.set_acl	= btrfs_set_acl,
10962 	.update_time	= btrfs_update_time,
10963 	.tmpfile        = btrfs_tmpfile,
10964 };
10965 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10966 	.lookup		= btrfs_lookup,
10967 	.permission	= btrfs_permission,
10968 	.update_time	= btrfs_update_time,
10969 };
10970 
10971 static const struct file_operations btrfs_dir_file_operations = {
10972 	.llseek		= generic_file_llseek,
10973 	.read		= generic_read_dir,
10974 	.iterate_shared	= btrfs_real_readdir,
10975 	.open		= btrfs_opendir,
10976 	.unlocked_ioctl	= btrfs_ioctl,
10977 #ifdef CONFIG_COMPAT
10978 	.compat_ioctl	= btrfs_compat_ioctl,
10979 #endif
10980 	.release        = btrfs_release_file,
10981 	.fsync		= btrfs_sync_file,
10982 };
10983 
10984 static const struct extent_io_ops btrfs_extent_io_ops = {
10985 	/* mandatory callbacks */
10986 	.submit_bio_hook = btrfs_submit_bio_hook,
10987 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10988 };
10989 
10990 /*
10991  * btrfs doesn't support the bmap operation because swapfiles
10992  * use bmap to make a mapping of extents in the file.  They assume
10993  * these extents won't change over the life of the file and they
10994  * use the bmap result to do IO directly to the drive.
10995  *
10996  * the btrfs bmap call would return logical addresses that aren't
10997  * suitable for IO and they also will change frequently as COW
10998  * operations happen.  So, swapfile + btrfs == corruption.
10999  *
11000  * For now we're avoiding this by dropping bmap.
11001  */
11002 static const struct address_space_operations btrfs_aops = {
11003 	.readpage	= btrfs_readpage,
11004 	.writepage	= btrfs_writepage,
11005 	.writepages	= btrfs_writepages,
11006 	.readpages	= btrfs_readpages,
11007 	.direct_IO	= btrfs_direct_IO,
11008 	.invalidatepage = btrfs_invalidatepage,
11009 	.releasepage	= btrfs_releasepage,
11010 	.set_page_dirty	= btrfs_set_page_dirty,
11011 	.error_remove_page = generic_error_remove_page,
11012 	.swap_activate	= btrfs_swap_activate,
11013 	.swap_deactivate = btrfs_swap_deactivate,
11014 };
11015 
11016 static const struct inode_operations btrfs_file_inode_operations = {
11017 	.getattr	= btrfs_getattr,
11018 	.setattr	= btrfs_setattr,
11019 	.listxattr      = btrfs_listxattr,
11020 	.permission	= btrfs_permission,
11021 	.fiemap		= btrfs_fiemap,
11022 	.get_acl	= btrfs_get_acl,
11023 	.set_acl	= btrfs_set_acl,
11024 	.update_time	= btrfs_update_time,
11025 };
11026 static const struct inode_operations btrfs_special_inode_operations = {
11027 	.getattr	= btrfs_getattr,
11028 	.setattr	= btrfs_setattr,
11029 	.permission	= btrfs_permission,
11030 	.listxattr	= btrfs_listxattr,
11031 	.get_acl	= btrfs_get_acl,
11032 	.set_acl	= btrfs_set_acl,
11033 	.update_time	= btrfs_update_time,
11034 };
11035 static const struct inode_operations btrfs_symlink_inode_operations = {
11036 	.get_link	= page_get_link,
11037 	.getattr	= btrfs_getattr,
11038 	.setattr	= btrfs_setattr,
11039 	.permission	= btrfs_permission,
11040 	.listxattr	= btrfs_listxattr,
11041 	.update_time	= btrfs_update_time,
11042 };
11043 
11044 const struct dentry_operations btrfs_dentry_operations = {
11045 	.d_delete	= btrfs_dentry_delete,
11046 };
11047