1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "volumes.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 59 struct btrfs_iget_args { 60 u64 ino; 61 struct btrfs_root *root; 62 }; 63 64 struct btrfs_dio_data { 65 ssize_t submitted; 66 struct extent_changeset *data_reserved; 67 bool data_space_reserved; 68 bool nocow_done; 69 }; 70 71 struct btrfs_dio_private { 72 struct inode *inode; 73 74 /* 75 * Since DIO can use anonymous page, we cannot use page_offset() to 76 * grab the file offset, thus need a dedicated member for file offset. 77 */ 78 u64 file_offset; 79 /* Used for bio::bi_size */ 80 u32 bytes; 81 82 /* 83 * References to this structure. There is one reference per in-flight 84 * bio plus one while we're still setting up. 85 */ 86 refcount_t refs; 87 88 /* Array of checksums */ 89 u8 *csums; 90 91 /* This must be last */ 92 struct bio bio; 93 }; 94 95 static struct bio_set btrfs_dio_bioset; 96 97 struct btrfs_rename_ctx { 98 /* Output field. Stores the index number of the old directory entry. */ 99 u64 index; 100 }; 101 102 static const struct inode_operations btrfs_dir_inode_operations; 103 static const struct inode_operations btrfs_symlink_inode_operations; 104 static const struct inode_operations btrfs_special_inode_operations; 105 static const struct inode_operations btrfs_file_inode_operations; 106 static const struct address_space_operations btrfs_aops; 107 static const struct file_operations btrfs_dir_file_operations; 108 109 static struct kmem_cache *btrfs_inode_cachep; 110 struct kmem_cache *btrfs_trans_handle_cachep; 111 struct kmem_cache *btrfs_path_cachep; 112 struct kmem_cache *btrfs_free_space_cachep; 113 struct kmem_cache *btrfs_free_space_bitmap_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 117 static noinline int cow_file_range(struct btrfs_inode *inode, 118 struct page *locked_page, 119 u64 start, u64 end, int *page_started, 120 unsigned long *nr_written, int unlock, 121 u64 *done_offset); 122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 123 u64 len, u64 orig_start, u64 block_start, 124 u64 block_len, u64 orig_block_len, 125 u64 ram_bytes, int compress_type, 126 int type); 127 128 /* 129 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 130 * 131 * ilock_flags can have the following bit set: 132 * 133 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 134 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 135 * return -EAGAIN 136 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 137 */ 138 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 139 { 140 if (ilock_flags & BTRFS_ILOCK_SHARED) { 141 if (ilock_flags & BTRFS_ILOCK_TRY) { 142 if (!inode_trylock_shared(inode)) 143 return -EAGAIN; 144 else 145 return 0; 146 } 147 inode_lock_shared(inode); 148 } else { 149 if (ilock_flags & BTRFS_ILOCK_TRY) { 150 if (!inode_trylock(inode)) 151 return -EAGAIN; 152 else 153 return 0; 154 } 155 inode_lock(inode); 156 } 157 if (ilock_flags & BTRFS_ILOCK_MMAP) 158 down_write(&BTRFS_I(inode)->i_mmap_lock); 159 return 0; 160 } 161 162 /* 163 * btrfs_inode_unlock - unock inode i_rwsem 164 * 165 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 166 * to decide whether the lock acquired is shared or exclusive. 167 */ 168 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 169 { 170 if (ilock_flags & BTRFS_ILOCK_MMAP) 171 up_write(&BTRFS_I(inode)->i_mmap_lock); 172 if (ilock_flags & BTRFS_ILOCK_SHARED) 173 inode_unlock_shared(inode); 174 else 175 inode_unlock(inode); 176 } 177 178 /* 179 * Cleanup all submitted ordered extents in specified range to handle errors 180 * from the btrfs_run_delalloc_range() callback. 181 * 182 * NOTE: caller must ensure that when an error happens, it can not call 183 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 184 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 185 * to be released, which we want to happen only when finishing the ordered 186 * extent (btrfs_finish_ordered_io()). 187 */ 188 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 189 struct page *locked_page, 190 u64 offset, u64 bytes) 191 { 192 unsigned long index = offset >> PAGE_SHIFT; 193 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 194 u64 page_start, page_end; 195 struct page *page; 196 197 if (locked_page) { 198 page_start = page_offset(locked_page); 199 page_end = page_start + PAGE_SIZE - 1; 200 } 201 202 while (index <= end_index) { 203 /* 204 * For locked page, we will call end_extent_writepage() on it 205 * in run_delalloc_range() for the error handling. That 206 * end_extent_writepage() function will call 207 * btrfs_mark_ordered_io_finished() to clear page Ordered and 208 * run the ordered extent accounting. 209 * 210 * Here we can't just clear the Ordered bit, or 211 * btrfs_mark_ordered_io_finished() would skip the accounting 212 * for the page range, and the ordered extent will never finish. 213 */ 214 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 215 index++; 216 continue; 217 } 218 page = find_get_page(inode->vfs_inode.i_mapping, index); 219 index++; 220 if (!page) 221 continue; 222 223 /* 224 * Here we just clear all Ordered bits for every page in the 225 * range, then btrfs_mark_ordered_io_finished() will handle 226 * the ordered extent accounting for the range. 227 */ 228 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 229 offset, bytes); 230 put_page(page); 231 } 232 233 if (locked_page) { 234 /* The locked page covers the full range, nothing needs to be done */ 235 if (bytes + offset <= page_start + PAGE_SIZE) 236 return; 237 /* 238 * In case this page belongs to the delalloc range being 239 * instantiated then skip it, since the first page of a range is 240 * going to be properly cleaned up by the caller of 241 * run_delalloc_range 242 */ 243 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 244 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 245 offset = page_offset(locked_page) + PAGE_SIZE; 246 } 247 } 248 249 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 250 } 251 252 static int btrfs_dirty_inode(struct inode *inode); 253 254 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 255 struct btrfs_new_inode_args *args) 256 { 257 int err; 258 259 if (args->default_acl) { 260 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 261 ACL_TYPE_DEFAULT); 262 if (err) 263 return err; 264 } 265 if (args->acl) { 266 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 267 if (err) 268 return err; 269 } 270 if (!args->default_acl && !args->acl) 271 cache_no_acl(args->inode); 272 return btrfs_xattr_security_init(trans, args->inode, args->dir, 273 &args->dentry->d_name); 274 } 275 276 /* 277 * this does all the hard work for inserting an inline extent into 278 * the btree. The caller should have done a btrfs_drop_extents so that 279 * no overlapping inline items exist in the btree 280 */ 281 static int insert_inline_extent(struct btrfs_trans_handle *trans, 282 struct btrfs_path *path, 283 struct btrfs_inode *inode, bool extent_inserted, 284 size_t size, size_t compressed_size, 285 int compress_type, 286 struct page **compressed_pages, 287 bool update_i_size) 288 { 289 struct btrfs_root *root = inode->root; 290 struct extent_buffer *leaf; 291 struct page *page = NULL; 292 char *kaddr; 293 unsigned long ptr; 294 struct btrfs_file_extent_item *ei; 295 int ret; 296 size_t cur_size = size; 297 u64 i_size; 298 299 ASSERT((compressed_size > 0 && compressed_pages) || 300 (compressed_size == 0 && !compressed_pages)); 301 302 if (compressed_size && compressed_pages) 303 cur_size = compressed_size; 304 305 if (!extent_inserted) { 306 struct btrfs_key key; 307 size_t datasize; 308 309 key.objectid = btrfs_ino(inode); 310 key.offset = 0; 311 key.type = BTRFS_EXTENT_DATA_KEY; 312 313 datasize = btrfs_file_extent_calc_inline_size(cur_size); 314 ret = btrfs_insert_empty_item(trans, root, path, &key, 315 datasize); 316 if (ret) 317 goto fail; 318 } 319 leaf = path->nodes[0]; 320 ei = btrfs_item_ptr(leaf, path->slots[0], 321 struct btrfs_file_extent_item); 322 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 323 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 324 btrfs_set_file_extent_encryption(leaf, ei, 0); 325 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 326 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 327 ptr = btrfs_file_extent_inline_start(ei); 328 329 if (compress_type != BTRFS_COMPRESS_NONE) { 330 struct page *cpage; 331 int i = 0; 332 while (compressed_size > 0) { 333 cpage = compressed_pages[i]; 334 cur_size = min_t(unsigned long, compressed_size, 335 PAGE_SIZE); 336 337 kaddr = kmap_local_page(cpage); 338 write_extent_buffer(leaf, kaddr, ptr, cur_size); 339 kunmap_local(kaddr); 340 341 i++; 342 ptr += cur_size; 343 compressed_size -= cur_size; 344 } 345 btrfs_set_file_extent_compression(leaf, ei, 346 compress_type); 347 } else { 348 page = find_get_page(inode->vfs_inode.i_mapping, 0); 349 btrfs_set_file_extent_compression(leaf, ei, 0); 350 kaddr = kmap_local_page(page); 351 write_extent_buffer(leaf, kaddr, ptr, size); 352 kunmap_local(kaddr); 353 put_page(page); 354 } 355 btrfs_mark_buffer_dirty(leaf); 356 btrfs_release_path(path); 357 358 /* 359 * We align size to sectorsize for inline extents just for simplicity 360 * sake. 361 */ 362 ret = btrfs_inode_set_file_extent_range(inode, 0, 363 ALIGN(size, root->fs_info->sectorsize)); 364 if (ret) 365 goto fail; 366 367 /* 368 * We're an inline extent, so nobody can extend the file past i_size 369 * without locking a page we already have locked. 370 * 371 * We must do any i_size and inode updates before we unlock the pages. 372 * Otherwise we could end up racing with unlink. 373 */ 374 i_size = i_size_read(&inode->vfs_inode); 375 if (update_i_size && size > i_size) { 376 i_size_write(&inode->vfs_inode, size); 377 i_size = size; 378 } 379 inode->disk_i_size = i_size; 380 381 fail: 382 return ret; 383 } 384 385 386 /* 387 * conditionally insert an inline extent into the file. This 388 * does the checks required to make sure the data is small enough 389 * to fit as an inline extent. 390 */ 391 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 392 size_t compressed_size, 393 int compress_type, 394 struct page **compressed_pages, 395 bool update_i_size) 396 { 397 struct btrfs_drop_extents_args drop_args = { 0 }; 398 struct btrfs_root *root = inode->root; 399 struct btrfs_fs_info *fs_info = root->fs_info; 400 struct btrfs_trans_handle *trans; 401 u64 data_len = (compressed_size ?: size); 402 int ret; 403 struct btrfs_path *path; 404 405 /* 406 * We can create an inline extent if it ends at or beyond the current 407 * i_size, is no larger than a sector (decompressed), and the (possibly 408 * compressed) data fits in a leaf and the configured maximum inline 409 * size. 410 */ 411 if (size < i_size_read(&inode->vfs_inode) || 412 size > fs_info->sectorsize || 413 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 414 data_len > fs_info->max_inline) 415 return 1; 416 417 path = btrfs_alloc_path(); 418 if (!path) 419 return -ENOMEM; 420 421 trans = btrfs_join_transaction(root); 422 if (IS_ERR(trans)) { 423 btrfs_free_path(path); 424 return PTR_ERR(trans); 425 } 426 trans->block_rsv = &inode->block_rsv; 427 428 drop_args.path = path; 429 drop_args.start = 0; 430 drop_args.end = fs_info->sectorsize; 431 drop_args.drop_cache = true; 432 drop_args.replace_extent = true; 433 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 434 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 435 if (ret) { 436 btrfs_abort_transaction(trans, ret); 437 goto out; 438 } 439 440 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 441 size, compressed_size, compress_type, 442 compressed_pages, update_i_size); 443 if (ret && ret != -ENOSPC) { 444 btrfs_abort_transaction(trans, ret); 445 goto out; 446 } else if (ret == -ENOSPC) { 447 ret = 1; 448 goto out; 449 } 450 451 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 452 ret = btrfs_update_inode(trans, root, inode); 453 if (ret && ret != -ENOSPC) { 454 btrfs_abort_transaction(trans, ret); 455 goto out; 456 } else if (ret == -ENOSPC) { 457 ret = 1; 458 goto out; 459 } 460 461 btrfs_set_inode_full_sync(inode); 462 out: 463 /* 464 * Don't forget to free the reserved space, as for inlined extent 465 * it won't count as data extent, free them directly here. 466 * And at reserve time, it's always aligned to page size, so 467 * just free one page here. 468 */ 469 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 470 btrfs_free_path(path); 471 btrfs_end_transaction(trans); 472 return ret; 473 } 474 475 struct async_extent { 476 u64 start; 477 u64 ram_size; 478 u64 compressed_size; 479 struct page **pages; 480 unsigned long nr_pages; 481 int compress_type; 482 struct list_head list; 483 }; 484 485 struct async_chunk { 486 struct inode *inode; 487 struct page *locked_page; 488 u64 start; 489 u64 end; 490 blk_opf_t write_flags; 491 struct list_head extents; 492 struct cgroup_subsys_state *blkcg_css; 493 struct btrfs_work work; 494 struct async_cow *async_cow; 495 }; 496 497 struct async_cow { 498 atomic_t num_chunks; 499 struct async_chunk chunks[]; 500 }; 501 502 static noinline int add_async_extent(struct async_chunk *cow, 503 u64 start, u64 ram_size, 504 u64 compressed_size, 505 struct page **pages, 506 unsigned long nr_pages, 507 int compress_type) 508 { 509 struct async_extent *async_extent; 510 511 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 512 BUG_ON(!async_extent); /* -ENOMEM */ 513 async_extent->start = start; 514 async_extent->ram_size = ram_size; 515 async_extent->compressed_size = compressed_size; 516 async_extent->pages = pages; 517 async_extent->nr_pages = nr_pages; 518 async_extent->compress_type = compress_type; 519 list_add_tail(&async_extent->list, &cow->extents); 520 return 0; 521 } 522 523 /* 524 * Check if the inode needs to be submitted to compression, based on mount 525 * options, defragmentation, properties or heuristics. 526 */ 527 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 528 u64 end) 529 { 530 struct btrfs_fs_info *fs_info = inode->root->fs_info; 531 532 if (!btrfs_inode_can_compress(inode)) { 533 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 534 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 535 btrfs_ino(inode)); 536 return 0; 537 } 538 /* 539 * Special check for subpage. 540 * 541 * We lock the full page then run each delalloc range in the page, thus 542 * for the following case, we will hit some subpage specific corner case: 543 * 544 * 0 32K 64K 545 * | |///////| |///////| 546 * \- A \- B 547 * 548 * In above case, both range A and range B will try to unlock the full 549 * page [0, 64K), causing the one finished later will have page 550 * unlocked already, triggering various page lock requirement BUG_ON()s. 551 * 552 * So here we add an artificial limit that subpage compression can only 553 * if the range is fully page aligned. 554 * 555 * In theory we only need to ensure the first page is fully covered, but 556 * the tailing partial page will be locked until the full compression 557 * finishes, delaying the write of other range. 558 * 559 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 560 * first to prevent any submitted async extent to unlock the full page. 561 * By this, we can ensure for subpage case that only the last async_cow 562 * will unlock the full page. 563 */ 564 if (fs_info->sectorsize < PAGE_SIZE) { 565 if (!PAGE_ALIGNED(start) || 566 !PAGE_ALIGNED(end + 1)) 567 return 0; 568 } 569 570 /* force compress */ 571 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 572 return 1; 573 /* defrag ioctl */ 574 if (inode->defrag_compress) 575 return 1; 576 /* bad compression ratios */ 577 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 578 return 0; 579 if (btrfs_test_opt(fs_info, COMPRESS) || 580 inode->flags & BTRFS_INODE_COMPRESS || 581 inode->prop_compress) 582 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 583 return 0; 584 } 585 586 static inline void inode_should_defrag(struct btrfs_inode *inode, 587 u64 start, u64 end, u64 num_bytes, u32 small_write) 588 { 589 /* If this is a small write inside eof, kick off a defrag */ 590 if (num_bytes < small_write && 591 (start > 0 || end + 1 < inode->disk_i_size)) 592 btrfs_add_inode_defrag(NULL, inode, small_write); 593 } 594 595 /* 596 * we create compressed extents in two phases. The first 597 * phase compresses a range of pages that have already been 598 * locked (both pages and state bits are locked). 599 * 600 * This is done inside an ordered work queue, and the compression 601 * is spread across many cpus. The actual IO submission is step 602 * two, and the ordered work queue takes care of making sure that 603 * happens in the same order things were put onto the queue by 604 * writepages and friends. 605 * 606 * If this code finds it can't get good compression, it puts an 607 * entry onto the work queue to write the uncompressed bytes. This 608 * makes sure that both compressed inodes and uncompressed inodes 609 * are written in the same order that the flusher thread sent them 610 * down. 611 */ 612 static noinline int compress_file_range(struct async_chunk *async_chunk) 613 { 614 struct inode *inode = async_chunk->inode; 615 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 616 u64 blocksize = fs_info->sectorsize; 617 u64 start = async_chunk->start; 618 u64 end = async_chunk->end; 619 u64 actual_end; 620 u64 i_size; 621 int ret = 0; 622 struct page **pages = NULL; 623 unsigned long nr_pages; 624 unsigned long total_compressed = 0; 625 unsigned long total_in = 0; 626 int i; 627 int will_compress; 628 int compress_type = fs_info->compress_type; 629 int compressed_extents = 0; 630 int redirty = 0; 631 632 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 633 SZ_16K); 634 635 /* 636 * We need to save i_size before now because it could change in between 637 * us evaluating the size and assigning it. This is because we lock and 638 * unlock the page in truncate and fallocate, and then modify the i_size 639 * later on. 640 * 641 * The barriers are to emulate READ_ONCE, remove that once i_size_read 642 * does that for us. 643 */ 644 barrier(); 645 i_size = i_size_read(inode); 646 barrier(); 647 actual_end = min_t(u64, i_size, end + 1); 648 again: 649 will_compress = 0; 650 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 651 nr_pages = min_t(unsigned long, nr_pages, 652 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 653 654 /* 655 * we don't want to send crud past the end of i_size through 656 * compression, that's just a waste of CPU time. So, if the 657 * end of the file is before the start of our current 658 * requested range of bytes, we bail out to the uncompressed 659 * cleanup code that can deal with all of this. 660 * 661 * It isn't really the fastest way to fix things, but this is a 662 * very uncommon corner. 663 */ 664 if (actual_end <= start) 665 goto cleanup_and_bail_uncompressed; 666 667 total_compressed = actual_end - start; 668 669 /* 670 * Skip compression for a small file range(<=blocksize) that 671 * isn't an inline extent, since it doesn't save disk space at all. 672 */ 673 if (total_compressed <= blocksize && 674 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 675 goto cleanup_and_bail_uncompressed; 676 677 /* 678 * For subpage case, we require full page alignment for the sector 679 * aligned range. 680 * Thus we must also check against @actual_end, not just @end. 681 */ 682 if (blocksize < PAGE_SIZE) { 683 if (!PAGE_ALIGNED(start) || 684 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 685 goto cleanup_and_bail_uncompressed; 686 } 687 688 total_compressed = min_t(unsigned long, total_compressed, 689 BTRFS_MAX_UNCOMPRESSED); 690 total_in = 0; 691 ret = 0; 692 693 /* 694 * we do compression for mount -o compress and when the 695 * inode has not been flagged as nocompress. This flag can 696 * change at any time if we discover bad compression ratios. 697 */ 698 if (inode_need_compress(BTRFS_I(inode), start, end)) { 699 WARN_ON(pages); 700 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 701 if (!pages) { 702 /* just bail out to the uncompressed code */ 703 nr_pages = 0; 704 goto cont; 705 } 706 707 if (BTRFS_I(inode)->defrag_compress) 708 compress_type = BTRFS_I(inode)->defrag_compress; 709 else if (BTRFS_I(inode)->prop_compress) 710 compress_type = BTRFS_I(inode)->prop_compress; 711 712 /* 713 * we need to call clear_page_dirty_for_io on each 714 * page in the range. Otherwise applications with the file 715 * mmap'd can wander in and change the page contents while 716 * we are compressing them. 717 * 718 * If the compression fails for any reason, we set the pages 719 * dirty again later on. 720 * 721 * Note that the remaining part is redirtied, the start pointer 722 * has moved, the end is the original one. 723 */ 724 if (!redirty) { 725 extent_range_clear_dirty_for_io(inode, start, end); 726 redirty = 1; 727 } 728 729 /* Compression level is applied here and only here */ 730 ret = btrfs_compress_pages( 731 compress_type | (fs_info->compress_level << 4), 732 inode->i_mapping, start, 733 pages, 734 &nr_pages, 735 &total_in, 736 &total_compressed); 737 738 if (!ret) { 739 unsigned long offset = offset_in_page(total_compressed); 740 struct page *page = pages[nr_pages - 1]; 741 742 /* zero the tail end of the last page, we might be 743 * sending it down to disk 744 */ 745 if (offset) 746 memzero_page(page, offset, PAGE_SIZE - offset); 747 will_compress = 1; 748 } 749 } 750 cont: 751 /* 752 * Check cow_file_range() for why we don't even try to create inline 753 * extent for subpage case. 754 */ 755 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 756 /* lets try to make an inline extent */ 757 if (ret || total_in < actual_end) { 758 /* we didn't compress the entire range, try 759 * to make an uncompressed inline extent. 760 */ 761 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 762 0, BTRFS_COMPRESS_NONE, 763 NULL, false); 764 } else { 765 /* try making a compressed inline extent */ 766 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 767 total_compressed, 768 compress_type, pages, 769 false); 770 } 771 if (ret <= 0) { 772 unsigned long clear_flags = EXTENT_DELALLOC | 773 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 774 EXTENT_DO_ACCOUNTING; 775 unsigned long page_error_op; 776 777 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 778 779 /* 780 * inline extent creation worked or returned error, 781 * we don't need to create any more async work items. 782 * Unlock and free up our temp pages. 783 * 784 * We use DO_ACCOUNTING here because we need the 785 * delalloc_release_metadata to be done _after_ we drop 786 * our outstanding extent for clearing delalloc for this 787 * range. 788 */ 789 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 790 NULL, 791 clear_flags, 792 PAGE_UNLOCK | 793 PAGE_START_WRITEBACK | 794 page_error_op | 795 PAGE_END_WRITEBACK); 796 797 /* 798 * Ensure we only free the compressed pages if we have 799 * them allocated, as we can still reach here with 800 * inode_need_compress() == false. 801 */ 802 if (pages) { 803 for (i = 0; i < nr_pages; i++) { 804 WARN_ON(pages[i]->mapping); 805 put_page(pages[i]); 806 } 807 kfree(pages); 808 } 809 return 0; 810 } 811 } 812 813 if (will_compress) { 814 /* 815 * we aren't doing an inline extent round the compressed size 816 * up to a block size boundary so the allocator does sane 817 * things 818 */ 819 total_compressed = ALIGN(total_compressed, blocksize); 820 821 /* 822 * one last check to make sure the compression is really a 823 * win, compare the page count read with the blocks on disk, 824 * compression must free at least one sector size 825 */ 826 total_in = round_up(total_in, fs_info->sectorsize); 827 if (total_compressed + blocksize <= total_in) { 828 compressed_extents++; 829 830 /* 831 * The async work queues will take care of doing actual 832 * allocation on disk for these compressed pages, and 833 * will submit them to the elevator. 834 */ 835 add_async_extent(async_chunk, start, total_in, 836 total_compressed, pages, nr_pages, 837 compress_type); 838 839 if (start + total_in < end) { 840 start += total_in; 841 pages = NULL; 842 cond_resched(); 843 goto again; 844 } 845 return compressed_extents; 846 } 847 } 848 if (pages) { 849 /* 850 * the compression code ran but failed to make things smaller, 851 * free any pages it allocated and our page pointer array 852 */ 853 for (i = 0; i < nr_pages; i++) { 854 WARN_ON(pages[i]->mapping); 855 put_page(pages[i]); 856 } 857 kfree(pages); 858 pages = NULL; 859 total_compressed = 0; 860 nr_pages = 0; 861 862 /* flag the file so we don't compress in the future */ 863 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 864 !(BTRFS_I(inode)->prop_compress)) { 865 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 866 } 867 } 868 cleanup_and_bail_uncompressed: 869 /* 870 * No compression, but we still need to write the pages in the file 871 * we've been given so far. redirty the locked page if it corresponds 872 * to our extent and set things up for the async work queue to run 873 * cow_file_range to do the normal delalloc dance. 874 */ 875 if (async_chunk->locked_page && 876 (page_offset(async_chunk->locked_page) >= start && 877 page_offset(async_chunk->locked_page)) <= end) { 878 __set_page_dirty_nobuffers(async_chunk->locked_page); 879 /* unlocked later on in the async handlers */ 880 } 881 882 if (redirty) 883 extent_range_redirty_for_io(inode, start, end); 884 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 885 BTRFS_COMPRESS_NONE); 886 compressed_extents++; 887 888 return compressed_extents; 889 } 890 891 static void free_async_extent_pages(struct async_extent *async_extent) 892 { 893 int i; 894 895 if (!async_extent->pages) 896 return; 897 898 for (i = 0; i < async_extent->nr_pages; i++) { 899 WARN_ON(async_extent->pages[i]->mapping); 900 put_page(async_extent->pages[i]); 901 } 902 kfree(async_extent->pages); 903 async_extent->nr_pages = 0; 904 async_extent->pages = NULL; 905 } 906 907 static int submit_uncompressed_range(struct btrfs_inode *inode, 908 struct async_extent *async_extent, 909 struct page *locked_page) 910 { 911 u64 start = async_extent->start; 912 u64 end = async_extent->start + async_extent->ram_size - 1; 913 unsigned long nr_written = 0; 914 int page_started = 0; 915 int ret; 916 917 /* 918 * Call cow_file_range() to run the delalloc range directly, since we 919 * won't go to NOCOW or async path again. 920 * 921 * Also we call cow_file_range() with @unlock_page == 0, so that we 922 * can directly submit them without interruption. 923 */ 924 ret = cow_file_range(inode, locked_page, start, end, &page_started, 925 &nr_written, 0, NULL); 926 /* Inline extent inserted, page gets unlocked and everything is done */ 927 if (page_started) { 928 ret = 0; 929 goto out; 930 } 931 if (ret < 0) { 932 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 933 if (locked_page) { 934 const u64 page_start = page_offset(locked_page); 935 const u64 page_end = page_start + PAGE_SIZE - 1; 936 937 btrfs_page_set_error(inode->root->fs_info, locked_page, 938 page_start, PAGE_SIZE); 939 set_page_writeback(locked_page); 940 end_page_writeback(locked_page); 941 end_extent_writepage(locked_page, ret, page_start, page_end); 942 unlock_page(locked_page); 943 } 944 goto out; 945 } 946 947 ret = extent_write_locked_range(&inode->vfs_inode, start, end); 948 /* All pages will be unlocked, including @locked_page */ 949 out: 950 kfree(async_extent); 951 return ret; 952 } 953 954 static int submit_one_async_extent(struct btrfs_inode *inode, 955 struct async_chunk *async_chunk, 956 struct async_extent *async_extent, 957 u64 *alloc_hint) 958 { 959 struct extent_io_tree *io_tree = &inode->io_tree; 960 struct btrfs_root *root = inode->root; 961 struct btrfs_fs_info *fs_info = root->fs_info; 962 struct btrfs_key ins; 963 struct page *locked_page = NULL; 964 struct extent_map *em; 965 int ret = 0; 966 u64 start = async_extent->start; 967 u64 end = async_extent->start + async_extent->ram_size - 1; 968 969 /* 970 * If async_chunk->locked_page is in the async_extent range, we need to 971 * handle it. 972 */ 973 if (async_chunk->locked_page) { 974 u64 locked_page_start = page_offset(async_chunk->locked_page); 975 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 976 977 if (!(start >= locked_page_end || end <= locked_page_start)) 978 locked_page = async_chunk->locked_page; 979 } 980 lock_extent(io_tree, start, end, NULL); 981 982 /* We have fall back to uncompressed write */ 983 if (!async_extent->pages) 984 return submit_uncompressed_range(inode, async_extent, locked_page); 985 986 ret = btrfs_reserve_extent(root, async_extent->ram_size, 987 async_extent->compressed_size, 988 async_extent->compressed_size, 989 0, *alloc_hint, &ins, 1, 1); 990 if (ret) { 991 free_async_extent_pages(async_extent); 992 /* 993 * Here we used to try again by going back to non-compressed 994 * path for ENOSPC. But we can't reserve space even for 995 * compressed size, how could it work for uncompressed size 996 * which requires larger size? So here we directly go error 997 * path. 998 */ 999 goto out_free; 1000 } 1001 1002 /* Here we're doing allocation and writeback of the compressed pages */ 1003 em = create_io_em(inode, start, 1004 async_extent->ram_size, /* len */ 1005 start, /* orig_start */ 1006 ins.objectid, /* block_start */ 1007 ins.offset, /* block_len */ 1008 ins.offset, /* orig_block_len */ 1009 async_extent->ram_size, /* ram_bytes */ 1010 async_extent->compress_type, 1011 BTRFS_ORDERED_COMPRESSED); 1012 if (IS_ERR(em)) { 1013 ret = PTR_ERR(em); 1014 goto out_free_reserve; 1015 } 1016 free_extent_map(em); 1017 1018 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ 1019 async_extent->ram_size, /* num_bytes */ 1020 async_extent->ram_size, /* ram_bytes */ 1021 ins.objectid, /* disk_bytenr */ 1022 ins.offset, /* disk_num_bytes */ 1023 0, /* offset */ 1024 1 << BTRFS_ORDERED_COMPRESSED, 1025 async_extent->compress_type); 1026 if (ret) { 1027 btrfs_drop_extent_map_range(inode, start, end, false); 1028 goto out_free_reserve; 1029 } 1030 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1031 1032 /* Clear dirty, set writeback and unlock the pages. */ 1033 extent_clear_unlock_delalloc(inode, start, end, 1034 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1035 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1036 if (btrfs_submit_compressed_write(inode, start, /* file_offset */ 1037 async_extent->ram_size, /* num_bytes */ 1038 ins.objectid, /* disk_bytenr */ 1039 ins.offset, /* compressed_len */ 1040 async_extent->pages, /* compressed_pages */ 1041 async_extent->nr_pages, 1042 async_chunk->write_flags, 1043 async_chunk->blkcg_css, true)) { 1044 const u64 start = async_extent->start; 1045 const u64 end = start + async_extent->ram_size - 1; 1046 1047 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0); 1048 1049 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 1050 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1051 free_async_extent_pages(async_extent); 1052 } 1053 *alloc_hint = ins.objectid + ins.offset; 1054 kfree(async_extent); 1055 return ret; 1056 1057 out_free_reserve: 1058 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1059 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1060 out_free: 1061 extent_clear_unlock_delalloc(inode, start, end, 1062 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1063 EXTENT_DELALLOC_NEW | 1064 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1065 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1066 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1067 free_async_extent_pages(async_extent); 1068 kfree(async_extent); 1069 return ret; 1070 } 1071 1072 /* 1073 * Phase two of compressed writeback. This is the ordered portion of the code, 1074 * which only gets called in the order the work was queued. We walk all the 1075 * async extents created by compress_file_range and send them down to the disk. 1076 */ 1077 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 1078 { 1079 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 1080 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1081 struct async_extent *async_extent; 1082 u64 alloc_hint = 0; 1083 int ret = 0; 1084 1085 while (!list_empty(&async_chunk->extents)) { 1086 u64 extent_start; 1087 u64 ram_size; 1088 1089 async_extent = list_entry(async_chunk->extents.next, 1090 struct async_extent, list); 1091 list_del(&async_extent->list); 1092 extent_start = async_extent->start; 1093 ram_size = async_extent->ram_size; 1094 1095 ret = submit_one_async_extent(inode, async_chunk, async_extent, 1096 &alloc_hint); 1097 btrfs_debug(fs_info, 1098 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1099 inode->root->root_key.objectid, 1100 btrfs_ino(inode), extent_start, ram_size, ret); 1101 } 1102 } 1103 1104 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1105 u64 num_bytes) 1106 { 1107 struct extent_map_tree *em_tree = &inode->extent_tree; 1108 struct extent_map *em; 1109 u64 alloc_hint = 0; 1110 1111 read_lock(&em_tree->lock); 1112 em = search_extent_mapping(em_tree, start, num_bytes); 1113 if (em) { 1114 /* 1115 * if block start isn't an actual block number then find the 1116 * first block in this inode and use that as a hint. If that 1117 * block is also bogus then just don't worry about it. 1118 */ 1119 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1120 free_extent_map(em); 1121 em = search_extent_mapping(em_tree, 0, 0); 1122 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1123 alloc_hint = em->block_start; 1124 if (em) 1125 free_extent_map(em); 1126 } else { 1127 alloc_hint = em->block_start; 1128 free_extent_map(em); 1129 } 1130 } 1131 read_unlock(&em_tree->lock); 1132 1133 return alloc_hint; 1134 } 1135 1136 /* 1137 * when extent_io.c finds a delayed allocation range in the file, 1138 * the call backs end up in this code. The basic idea is to 1139 * allocate extents on disk for the range, and create ordered data structs 1140 * in ram to track those extents. 1141 * 1142 * locked_page is the page that writepage had locked already. We use 1143 * it to make sure we don't do extra locks or unlocks. 1144 * 1145 * *page_started is set to one if we unlock locked_page and do everything 1146 * required to start IO on it. It may be clean and already done with 1147 * IO when we return. 1148 * 1149 * When unlock == 1, we unlock the pages in successfully allocated regions. 1150 * When unlock == 0, we leave them locked for writing them out. 1151 * 1152 * However, we unlock all the pages except @locked_page in case of failure. 1153 * 1154 * In summary, page locking state will be as follow: 1155 * 1156 * - page_started == 1 (return value) 1157 * - All the pages are unlocked. IO is started. 1158 * - Note that this can happen only on success 1159 * - unlock == 1 1160 * - All the pages except @locked_page are unlocked in any case 1161 * - unlock == 0 1162 * - On success, all the pages are locked for writing out them 1163 * - On failure, all the pages except @locked_page are unlocked 1164 * 1165 * When a failure happens in the second or later iteration of the 1166 * while-loop, the ordered extents created in previous iterations are kept 1167 * intact. So, the caller must clean them up by calling 1168 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1169 * example. 1170 */ 1171 static noinline int cow_file_range(struct btrfs_inode *inode, 1172 struct page *locked_page, 1173 u64 start, u64 end, int *page_started, 1174 unsigned long *nr_written, int unlock, 1175 u64 *done_offset) 1176 { 1177 struct btrfs_root *root = inode->root; 1178 struct btrfs_fs_info *fs_info = root->fs_info; 1179 u64 alloc_hint = 0; 1180 u64 orig_start = start; 1181 u64 num_bytes; 1182 unsigned long ram_size; 1183 u64 cur_alloc_size = 0; 1184 u64 min_alloc_size; 1185 u64 blocksize = fs_info->sectorsize; 1186 struct btrfs_key ins; 1187 struct extent_map *em; 1188 unsigned clear_bits; 1189 unsigned long page_ops; 1190 bool extent_reserved = false; 1191 int ret = 0; 1192 1193 if (btrfs_is_free_space_inode(inode)) { 1194 ret = -EINVAL; 1195 goto out_unlock; 1196 } 1197 1198 num_bytes = ALIGN(end - start + 1, blocksize); 1199 num_bytes = max(blocksize, num_bytes); 1200 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1201 1202 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1203 1204 /* 1205 * Due to the page size limit, for subpage we can only trigger the 1206 * writeback for the dirty sectors of page, that means data writeback 1207 * is doing more writeback than what we want. 1208 * 1209 * This is especially unexpected for some call sites like fallocate, 1210 * where we only increase i_size after everything is done. 1211 * This means we can trigger inline extent even if we didn't want to. 1212 * So here we skip inline extent creation completely. 1213 */ 1214 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1215 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1216 end + 1); 1217 1218 /* lets try to make an inline extent */ 1219 ret = cow_file_range_inline(inode, actual_end, 0, 1220 BTRFS_COMPRESS_NONE, NULL, false); 1221 if (ret == 0) { 1222 /* 1223 * We use DO_ACCOUNTING here because we need the 1224 * delalloc_release_metadata to be run _after_ we drop 1225 * our outstanding extent for clearing delalloc for this 1226 * range. 1227 */ 1228 extent_clear_unlock_delalloc(inode, start, end, 1229 locked_page, 1230 EXTENT_LOCKED | EXTENT_DELALLOC | 1231 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1232 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1233 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1234 *nr_written = *nr_written + 1235 (end - start + PAGE_SIZE) / PAGE_SIZE; 1236 *page_started = 1; 1237 /* 1238 * locked_page is locked by the caller of 1239 * writepage_delalloc(), not locked by 1240 * __process_pages_contig(). 1241 * 1242 * We can't let __process_pages_contig() to unlock it, 1243 * as it doesn't have any subpage::writers recorded. 1244 * 1245 * Here we manually unlock the page, since the caller 1246 * can't use page_started to determine if it's an 1247 * inline extent or a compressed extent. 1248 */ 1249 unlock_page(locked_page); 1250 goto out; 1251 } else if (ret < 0) { 1252 goto out_unlock; 1253 } 1254 } 1255 1256 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1257 1258 /* 1259 * Relocation relies on the relocated extents to have exactly the same 1260 * size as the original extents. Normally writeback for relocation data 1261 * extents follows a NOCOW path because relocation preallocates the 1262 * extents. However, due to an operation such as scrub turning a block 1263 * group to RO mode, it may fallback to COW mode, so we must make sure 1264 * an extent allocated during COW has exactly the requested size and can 1265 * not be split into smaller extents, otherwise relocation breaks and 1266 * fails during the stage where it updates the bytenr of file extent 1267 * items. 1268 */ 1269 if (btrfs_is_data_reloc_root(root)) 1270 min_alloc_size = num_bytes; 1271 else 1272 min_alloc_size = fs_info->sectorsize; 1273 1274 while (num_bytes > 0) { 1275 cur_alloc_size = num_bytes; 1276 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1277 min_alloc_size, 0, alloc_hint, 1278 &ins, 1, 1); 1279 if (ret < 0) 1280 goto out_unlock; 1281 cur_alloc_size = ins.offset; 1282 extent_reserved = true; 1283 1284 ram_size = ins.offset; 1285 em = create_io_em(inode, start, ins.offset, /* len */ 1286 start, /* orig_start */ 1287 ins.objectid, /* block_start */ 1288 ins.offset, /* block_len */ 1289 ins.offset, /* orig_block_len */ 1290 ram_size, /* ram_bytes */ 1291 BTRFS_COMPRESS_NONE, /* compress_type */ 1292 BTRFS_ORDERED_REGULAR /* type */); 1293 if (IS_ERR(em)) { 1294 ret = PTR_ERR(em); 1295 goto out_reserve; 1296 } 1297 free_extent_map(em); 1298 1299 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, 1300 ins.objectid, cur_alloc_size, 0, 1301 1 << BTRFS_ORDERED_REGULAR, 1302 BTRFS_COMPRESS_NONE); 1303 if (ret) 1304 goto out_drop_extent_cache; 1305 1306 if (btrfs_is_data_reloc_root(root)) { 1307 ret = btrfs_reloc_clone_csums(inode, start, 1308 cur_alloc_size); 1309 /* 1310 * Only drop cache here, and process as normal. 1311 * 1312 * We must not allow extent_clear_unlock_delalloc() 1313 * at out_unlock label to free meta of this ordered 1314 * extent, as its meta should be freed by 1315 * btrfs_finish_ordered_io(). 1316 * 1317 * So we must continue until @start is increased to 1318 * skip current ordered extent. 1319 */ 1320 if (ret) 1321 btrfs_drop_extent_map_range(inode, start, 1322 start + ram_size - 1, 1323 false); 1324 } 1325 1326 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1327 1328 /* 1329 * We're not doing compressed IO, don't unlock the first page 1330 * (which the caller expects to stay locked), don't clear any 1331 * dirty bits and don't set any writeback bits 1332 * 1333 * Do set the Ordered (Private2) bit so we know this page was 1334 * properly setup for writepage. 1335 */ 1336 page_ops = unlock ? PAGE_UNLOCK : 0; 1337 page_ops |= PAGE_SET_ORDERED; 1338 1339 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1340 locked_page, 1341 EXTENT_LOCKED | EXTENT_DELALLOC, 1342 page_ops); 1343 if (num_bytes < cur_alloc_size) 1344 num_bytes = 0; 1345 else 1346 num_bytes -= cur_alloc_size; 1347 alloc_hint = ins.objectid + ins.offset; 1348 start += cur_alloc_size; 1349 extent_reserved = false; 1350 1351 /* 1352 * btrfs_reloc_clone_csums() error, since start is increased 1353 * extent_clear_unlock_delalloc() at out_unlock label won't 1354 * free metadata of current ordered extent, we're OK to exit. 1355 */ 1356 if (ret) 1357 goto out_unlock; 1358 } 1359 out: 1360 return ret; 1361 1362 out_drop_extent_cache: 1363 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1364 out_reserve: 1365 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1366 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1367 out_unlock: 1368 /* 1369 * If done_offset is non-NULL and ret == -EAGAIN, we expect the 1370 * caller to write out the successfully allocated region and retry. 1371 */ 1372 if (done_offset && ret == -EAGAIN) { 1373 if (orig_start < start) 1374 *done_offset = start - 1; 1375 else 1376 *done_offset = start; 1377 return ret; 1378 } else if (ret == -EAGAIN) { 1379 /* Convert to -ENOSPC since the caller cannot retry. */ 1380 ret = -ENOSPC; 1381 } 1382 1383 /* 1384 * Now, we have three regions to clean up: 1385 * 1386 * |-------(1)----|---(2)---|-------------(3)----------| 1387 * `- orig_start `- start `- start + cur_alloc_size `- end 1388 * 1389 * We process each region below. 1390 */ 1391 1392 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1393 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1394 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1395 1396 /* 1397 * For the range (1). We have already instantiated the ordered extents 1398 * for this region. They are cleaned up by 1399 * btrfs_cleanup_ordered_extents() in e.g, 1400 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1401 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1402 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1403 * function. 1404 * 1405 * However, in case of unlock == 0, we still need to unlock the pages 1406 * (except @locked_page) to ensure all the pages are unlocked. 1407 */ 1408 if (!unlock && orig_start < start) { 1409 if (!locked_page) 1410 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1411 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1412 locked_page, 0, page_ops); 1413 } 1414 1415 /* 1416 * For the range (2). If we reserved an extent for our delalloc range 1417 * (or a subrange) and failed to create the respective ordered extent, 1418 * then it means that when we reserved the extent we decremented the 1419 * extent's size from the data space_info's bytes_may_use counter and 1420 * incremented the space_info's bytes_reserved counter by the same 1421 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1422 * to decrement again the data space_info's bytes_may_use counter, 1423 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1424 */ 1425 if (extent_reserved) { 1426 extent_clear_unlock_delalloc(inode, start, 1427 start + cur_alloc_size - 1, 1428 locked_page, 1429 clear_bits, 1430 page_ops); 1431 start += cur_alloc_size; 1432 if (start >= end) 1433 return ret; 1434 } 1435 1436 /* 1437 * For the range (3). We never touched the region. In addition to the 1438 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1439 * space_info's bytes_may_use counter, reserved in 1440 * btrfs_check_data_free_space(). 1441 */ 1442 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1443 clear_bits | EXTENT_CLEAR_DATA_RESV, 1444 page_ops); 1445 return ret; 1446 } 1447 1448 /* 1449 * work queue call back to started compression on a file and pages 1450 */ 1451 static noinline void async_cow_start(struct btrfs_work *work) 1452 { 1453 struct async_chunk *async_chunk; 1454 int compressed_extents; 1455 1456 async_chunk = container_of(work, struct async_chunk, work); 1457 1458 compressed_extents = compress_file_range(async_chunk); 1459 if (compressed_extents == 0) { 1460 btrfs_add_delayed_iput(async_chunk->inode); 1461 async_chunk->inode = NULL; 1462 } 1463 } 1464 1465 /* 1466 * work queue call back to submit previously compressed pages 1467 */ 1468 static noinline void async_cow_submit(struct btrfs_work *work) 1469 { 1470 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1471 work); 1472 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1473 unsigned long nr_pages; 1474 1475 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1476 PAGE_SHIFT; 1477 1478 /* 1479 * ->inode could be NULL if async_chunk_start has failed to compress, 1480 * in which case we don't have anything to submit, yet we need to 1481 * always adjust ->async_delalloc_pages as its paired with the init 1482 * happening in cow_file_range_async 1483 */ 1484 if (async_chunk->inode) 1485 submit_compressed_extents(async_chunk); 1486 1487 /* atomic_sub_return implies a barrier */ 1488 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1489 5 * SZ_1M) 1490 cond_wake_up_nomb(&fs_info->async_submit_wait); 1491 } 1492 1493 static noinline void async_cow_free(struct btrfs_work *work) 1494 { 1495 struct async_chunk *async_chunk; 1496 struct async_cow *async_cow; 1497 1498 async_chunk = container_of(work, struct async_chunk, work); 1499 if (async_chunk->inode) 1500 btrfs_add_delayed_iput(async_chunk->inode); 1501 if (async_chunk->blkcg_css) 1502 css_put(async_chunk->blkcg_css); 1503 1504 async_cow = async_chunk->async_cow; 1505 if (atomic_dec_and_test(&async_cow->num_chunks)) 1506 kvfree(async_cow); 1507 } 1508 1509 static int cow_file_range_async(struct btrfs_inode *inode, 1510 struct writeback_control *wbc, 1511 struct page *locked_page, 1512 u64 start, u64 end, int *page_started, 1513 unsigned long *nr_written) 1514 { 1515 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1516 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1517 struct async_cow *ctx; 1518 struct async_chunk *async_chunk; 1519 unsigned long nr_pages; 1520 u64 cur_end; 1521 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1522 int i; 1523 bool should_compress; 1524 unsigned nofs_flag; 1525 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1526 1527 unlock_extent(&inode->io_tree, start, end, NULL); 1528 1529 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1530 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1531 num_chunks = 1; 1532 should_compress = false; 1533 } else { 1534 should_compress = true; 1535 } 1536 1537 nofs_flag = memalloc_nofs_save(); 1538 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1539 memalloc_nofs_restore(nofs_flag); 1540 1541 if (!ctx) { 1542 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1543 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1544 EXTENT_DO_ACCOUNTING; 1545 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1546 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1547 1548 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1549 clear_bits, page_ops); 1550 return -ENOMEM; 1551 } 1552 1553 async_chunk = ctx->chunks; 1554 atomic_set(&ctx->num_chunks, num_chunks); 1555 1556 for (i = 0; i < num_chunks; i++) { 1557 if (should_compress) 1558 cur_end = min(end, start + SZ_512K - 1); 1559 else 1560 cur_end = end; 1561 1562 /* 1563 * igrab is called higher up in the call chain, take only the 1564 * lightweight reference for the callback lifetime 1565 */ 1566 ihold(&inode->vfs_inode); 1567 async_chunk[i].async_cow = ctx; 1568 async_chunk[i].inode = &inode->vfs_inode; 1569 async_chunk[i].start = start; 1570 async_chunk[i].end = cur_end; 1571 async_chunk[i].write_flags = write_flags; 1572 INIT_LIST_HEAD(&async_chunk[i].extents); 1573 1574 /* 1575 * The locked_page comes all the way from writepage and its 1576 * the original page we were actually given. As we spread 1577 * this large delalloc region across multiple async_chunk 1578 * structs, only the first struct needs a pointer to locked_page 1579 * 1580 * This way we don't need racey decisions about who is supposed 1581 * to unlock it. 1582 */ 1583 if (locked_page) { 1584 /* 1585 * Depending on the compressibility, the pages might or 1586 * might not go through async. We want all of them to 1587 * be accounted against wbc once. Let's do it here 1588 * before the paths diverge. wbc accounting is used 1589 * only for foreign writeback detection and doesn't 1590 * need full accuracy. Just account the whole thing 1591 * against the first page. 1592 */ 1593 wbc_account_cgroup_owner(wbc, locked_page, 1594 cur_end - start); 1595 async_chunk[i].locked_page = locked_page; 1596 locked_page = NULL; 1597 } else { 1598 async_chunk[i].locked_page = NULL; 1599 } 1600 1601 if (blkcg_css != blkcg_root_css) { 1602 css_get(blkcg_css); 1603 async_chunk[i].blkcg_css = blkcg_css; 1604 } else { 1605 async_chunk[i].blkcg_css = NULL; 1606 } 1607 1608 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1609 async_cow_submit, async_cow_free); 1610 1611 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1612 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1613 1614 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1615 1616 *nr_written += nr_pages; 1617 start = cur_end + 1; 1618 } 1619 *page_started = 1; 1620 return 0; 1621 } 1622 1623 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1624 struct page *locked_page, u64 start, 1625 u64 end, int *page_started, 1626 unsigned long *nr_written) 1627 { 1628 u64 done_offset = end; 1629 int ret; 1630 bool locked_page_done = false; 1631 1632 while (start <= end) { 1633 ret = cow_file_range(inode, locked_page, start, end, page_started, 1634 nr_written, 0, &done_offset); 1635 if (ret && ret != -EAGAIN) 1636 return ret; 1637 1638 if (*page_started) { 1639 ASSERT(ret == 0); 1640 return 0; 1641 } 1642 1643 if (ret == 0) 1644 done_offset = end; 1645 1646 if (done_offset == start) { 1647 wait_on_bit_io(&inode->root->fs_info->flags, 1648 BTRFS_FS_NEED_ZONE_FINISH, 1649 TASK_UNINTERRUPTIBLE); 1650 continue; 1651 } 1652 1653 if (!locked_page_done) { 1654 __set_page_dirty_nobuffers(locked_page); 1655 account_page_redirty(locked_page); 1656 } 1657 locked_page_done = true; 1658 extent_write_locked_range(&inode->vfs_inode, start, done_offset); 1659 1660 start = done_offset + 1; 1661 } 1662 1663 *page_started = 1; 1664 1665 return 0; 1666 } 1667 1668 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1669 u64 bytenr, u64 num_bytes, bool nowait) 1670 { 1671 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1672 struct btrfs_ordered_sum *sums; 1673 int ret; 1674 LIST_HEAD(list); 1675 1676 ret = btrfs_lookup_csums_range(csum_root, bytenr, 1677 bytenr + num_bytes - 1, &list, 0, 1678 nowait); 1679 if (ret == 0 && list_empty(&list)) 1680 return 0; 1681 1682 while (!list_empty(&list)) { 1683 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1684 list_del(&sums->list); 1685 kfree(sums); 1686 } 1687 if (ret < 0) 1688 return ret; 1689 return 1; 1690 } 1691 1692 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1693 const u64 start, const u64 end, 1694 int *page_started, unsigned long *nr_written) 1695 { 1696 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1697 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1698 const u64 range_bytes = end + 1 - start; 1699 struct extent_io_tree *io_tree = &inode->io_tree; 1700 u64 range_start = start; 1701 u64 count; 1702 1703 /* 1704 * If EXTENT_NORESERVE is set it means that when the buffered write was 1705 * made we had not enough available data space and therefore we did not 1706 * reserve data space for it, since we though we could do NOCOW for the 1707 * respective file range (either there is prealloc extent or the inode 1708 * has the NOCOW bit set). 1709 * 1710 * However when we need to fallback to COW mode (because for example the 1711 * block group for the corresponding extent was turned to RO mode by a 1712 * scrub or relocation) we need to do the following: 1713 * 1714 * 1) We increment the bytes_may_use counter of the data space info. 1715 * If COW succeeds, it allocates a new data extent and after doing 1716 * that it decrements the space info's bytes_may_use counter and 1717 * increments its bytes_reserved counter by the same amount (we do 1718 * this at btrfs_add_reserved_bytes()). So we need to increment the 1719 * bytes_may_use counter to compensate (when space is reserved at 1720 * buffered write time, the bytes_may_use counter is incremented); 1721 * 1722 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1723 * that if the COW path fails for any reason, it decrements (through 1724 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1725 * data space info, which we incremented in the step above. 1726 * 1727 * If we need to fallback to cow and the inode corresponds to a free 1728 * space cache inode or an inode of the data relocation tree, we must 1729 * also increment bytes_may_use of the data space_info for the same 1730 * reason. Space caches and relocated data extents always get a prealloc 1731 * extent for them, however scrub or balance may have set the block 1732 * group that contains that extent to RO mode and therefore force COW 1733 * when starting writeback. 1734 */ 1735 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1736 EXTENT_NORESERVE, 0); 1737 if (count > 0 || is_space_ino || is_reloc_ino) { 1738 u64 bytes = count; 1739 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1740 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1741 1742 if (is_space_ino || is_reloc_ino) 1743 bytes = range_bytes; 1744 1745 spin_lock(&sinfo->lock); 1746 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1747 spin_unlock(&sinfo->lock); 1748 1749 if (count > 0) 1750 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1751 NULL); 1752 } 1753 1754 return cow_file_range(inode, locked_page, start, end, page_started, 1755 nr_written, 1, NULL); 1756 } 1757 1758 struct can_nocow_file_extent_args { 1759 /* Input fields. */ 1760 1761 /* Start file offset of the range we want to NOCOW. */ 1762 u64 start; 1763 /* End file offset (inclusive) of the range we want to NOCOW. */ 1764 u64 end; 1765 bool writeback_path; 1766 bool strict; 1767 /* 1768 * Free the path passed to can_nocow_file_extent() once it's not needed 1769 * anymore. 1770 */ 1771 bool free_path; 1772 1773 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1774 1775 u64 disk_bytenr; 1776 u64 disk_num_bytes; 1777 u64 extent_offset; 1778 /* Number of bytes that can be written to in NOCOW mode. */ 1779 u64 num_bytes; 1780 }; 1781 1782 /* 1783 * Check if we can NOCOW the file extent that the path points to. 1784 * This function may return with the path released, so the caller should check 1785 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1786 * 1787 * Returns: < 0 on error 1788 * 0 if we can not NOCOW 1789 * 1 if we can NOCOW 1790 */ 1791 static int can_nocow_file_extent(struct btrfs_path *path, 1792 struct btrfs_key *key, 1793 struct btrfs_inode *inode, 1794 struct can_nocow_file_extent_args *args) 1795 { 1796 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1797 struct extent_buffer *leaf = path->nodes[0]; 1798 struct btrfs_root *root = inode->root; 1799 struct btrfs_file_extent_item *fi; 1800 u64 extent_end; 1801 u8 extent_type; 1802 int can_nocow = 0; 1803 int ret = 0; 1804 bool nowait = path->nowait; 1805 1806 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1807 extent_type = btrfs_file_extent_type(leaf, fi); 1808 1809 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1810 goto out; 1811 1812 /* Can't access these fields unless we know it's not an inline extent. */ 1813 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1814 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1815 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1816 1817 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1818 extent_type == BTRFS_FILE_EXTENT_REG) 1819 goto out; 1820 1821 /* 1822 * If the extent was created before the generation where the last snapshot 1823 * for its subvolume was created, then this implies the extent is shared, 1824 * hence we must COW. 1825 */ 1826 if (!args->strict && 1827 btrfs_file_extent_generation(leaf, fi) <= 1828 btrfs_root_last_snapshot(&root->root_item)) 1829 goto out; 1830 1831 /* An explicit hole, must COW. */ 1832 if (args->disk_bytenr == 0) 1833 goto out; 1834 1835 /* Compressed/encrypted/encoded extents must be COWed. */ 1836 if (btrfs_file_extent_compression(leaf, fi) || 1837 btrfs_file_extent_encryption(leaf, fi) || 1838 btrfs_file_extent_other_encoding(leaf, fi)) 1839 goto out; 1840 1841 extent_end = btrfs_file_extent_end(path); 1842 1843 /* 1844 * The following checks can be expensive, as they need to take other 1845 * locks and do btree or rbtree searches, so release the path to avoid 1846 * blocking other tasks for too long. 1847 */ 1848 btrfs_release_path(path); 1849 1850 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1851 key->offset - args->extent_offset, 1852 args->disk_bytenr, false, path); 1853 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1854 if (ret != 0) 1855 goto out; 1856 1857 if (args->free_path) { 1858 /* 1859 * We don't need the path anymore, plus through the 1860 * csum_exist_in_range() call below we will end up allocating 1861 * another path. So free the path to avoid unnecessary extra 1862 * memory usage. 1863 */ 1864 btrfs_free_path(path); 1865 path = NULL; 1866 } 1867 1868 /* If there are pending snapshots for this root, we must COW. */ 1869 if (args->writeback_path && !is_freespace_inode && 1870 atomic_read(&root->snapshot_force_cow)) 1871 goto out; 1872 1873 args->disk_bytenr += args->extent_offset; 1874 args->disk_bytenr += args->start - key->offset; 1875 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1876 1877 /* 1878 * Force COW if csums exist in the range. This ensures that csums for a 1879 * given extent are either valid or do not exist. 1880 */ 1881 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1882 nowait); 1883 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1884 if (ret != 0) 1885 goto out; 1886 1887 can_nocow = 1; 1888 out: 1889 if (args->free_path && path) 1890 btrfs_free_path(path); 1891 1892 return ret < 0 ? ret : can_nocow; 1893 } 1894 1895 /* 1896 * when nowcow writeback call back. This checks for snapshots or COW copies 1897 * of the extents that exist in the file, and COWs the file as required. 1898 * 1899 * If no cow copies or snapshots exist, we write directly to the existing 1900 * blocks on disk 1901 */ 1902 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1903 struct page *locked_page, 1904 const u64 start, const u64 end, 1905 int *page_started, 1906 unsigned long *nr_written) 1907 { 1908 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1909 struct btrfs_root *root = inode->root; 1910 struct btrfs_path *path; 1911 u64 cow_start = (u64)-1; 1912 u64 cur_offset = start; 1913 int ret; 1914 bool check_prev = true; 1915 u64 ino = btrfs_ino(inode); 1916 struct btrfs_block_group *bg; 1917 bool nocow = false; 1918 struct can_nocow_file_extent_args nocow_args = { 0 }; 1919 1920 path = btrfs_alloc_path(); 1921 if (!path) { 1922 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1923 EXTENT_LOCKED | EXTENT_DELALLOC | 1924 EXTENT_DO_ACCOUNTING | 1925 EXTENT_DEFRAG, PAGE_UNLOCK | 1926 PAGE_START_WRITEBACK | 1927 PAGE_END_WRITEBACK); 1928 return -ENOMEM; 1929 } 1930 1931 nocow_args.end = end; 1932 nocow_args.writeback_path = true; 1933 1934 while (1) { 1935 struct btrfs_key found_key; 1936 struct btrfs_file_extent_item *fi; 1937 struct extent_buffer *leaf; 1938 u64 extent_end; 1939 u64 ram_bytes; 1940 u64 nocow_end; 1941 int extent_type; 1942 1943 nocow = false; 1944 1945 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1946 cur_offset, 0); 1947 if (ret < 0) 1948 goto error; 1949 1950 /* 1951 * If there is no extent for our range when doing the initial 1952 * search, then go back to the previous slot as it will be the 1953 * one containing the search offset 1954 */ 1955 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1956 leaf = path->nodes[0]; 1957 btrfs_item_key_to_cpu(leaf, &found_key, 1958 path->slots[0] - 1); 1959 if (found_key.objectid == ino && 1960 found_key.type == BTRFS_EXTENT_DATA_KEY) 1961 path->slots[0]--; 1962 } 1963 check_prev = false; 1964 next_slot: 1965 /* Go to next leaf if we have exhausted the current one */ 1966 leaf = path->nodes[0]; 1967 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1968 ret = btrfs_next_leaf(root, path); 1969 if (ret < 0) { 1970 if (cow_start != (u64)-1) 1971 cur_offset = cow_start; 1972 goto error; 1973 } 1974 if (ret > 0) 1975 break; 1976 leaf = path->nodes[0]; 1977 } 1978 1979 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1980 1981 /* Didn't find anything for our INO */ 1982 if (found_key.objectid > ino) 1983 break; 1984 /* 1985 * Keep searching until we find an EXTENT_ITEM or there are no 1986 * more extents for this inode 1987 */ 1988 if (WARN_ON_ONCE(found_key.objectid < ino) || 1989 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1990 path->slots[0]++; 1991 goto next_slot; 1992 } 1993 1994 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1995 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1996 found_key.offset > end) 1997 break; 1998 1999 /* 2000 * If the found extent starts after requested offset, then 2001 * adjust extent_end to be right before this extent begins 2002 */ 2003 if (found_key.offset > cur_offset) { 2004 extent_end = found_key.offset; 2005 extent_type = 0; 2006 goto out_check; 2007 } 2008 2009 /* 2010 * Found extent which begins before our range and potentially 2011 * intersect it 2012 */ 2013 fi = btrfs_item_ptr(leaf, path->slots[0], 2014 struct btrfs_file_extent_item); 2015 extent_type = btrfs_file_extent_type(leaf, fi); 2016 /* If this is triggered then we have a memory corruption. */ 2017 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2018 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2019 ret = -EUCLEAN; 2020 goto error; 2021 } 2022 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2023 extent_end = btrfs_file_extent_end(path); 2024 2025 /* 2026 * If the extent we got ends before our current offset, skip to 2027 * the next extent. 2028 */ 2029 if (extent_end <= cur_offset) { 2030 path->slots[0]++; 2031 goto next_slot; 2032 } 2033 2034 nocow_args.start = cur_offset; 2035 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2036 if (ret < 0) { 2037 if (cow_start != (u64)-1) 2038 cur_offset = cow_start; 2039 goto error; 2040 } else if (ret == 0) { 2041 goto out_check; 2042 } 2043 2044 ret = 0; 2045 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2046 if (bg) 2047 nocow = true; 2048 out_check: 2049 /* 2050 * If nocow is false then record the beginning of the range 2051 * that needs to be COWed 2052 */ 2053 if (!nocow) { 2054 if (cow_start == (u64)-1) 2055 cow_start = cur_offset; 2056 cur_offset = extent_end; 2057 if (cur_offset > end) 2058 break; 2059 if (!path->nodes[0]) 2060 continue; 2061 path->slots[0]++; 2062 goto next_slot; 2063 } 2064 2065 /* 2066 * COW range from cow_start to found_key.offset - 1. As the key 2067 * will contain the beginning of the first extent that can be 2068 * NOCOW, following one which needs to be COW'ed 2069 */ 2070 if (cow_start != (u64)-1) { 2071 ret = fallback_to_cow(inode, locked_page, 2072 cow_start, found_key.offset - 1, 2073 page_started, nr_written); 2074 if (ret) 2075 goto error; 2076 cow_start = (u64)-1; 2077 } 2078 2079 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2080 2081 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 2082 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2083 struct extent_map *em; 2084 2085 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2086 orig_start, 2087 nocow_args.disk_bytenr, /* block_start */ 2088 nocow_args.num_bytes, /* block_len */ 2089 nocow_args.disk_num_bytes, /* orig_block_len */ 2090 ram_bytes, BTRFS_COMPRESS_NONE, 2091 BTRFS_ORDERED_PREALLOC); 2092 if (IS_ERR(em)) { 2093 ret = PTR_ERR(em); 2094 goto error; 2095 } 2096 free_extent_map(em); 2097 ret = btrfs_add_ordered_extent(inode, 2098 cur_offset, nocow_args.num_bytes, 2099 nocow_args.num_bytes, 2100 nocow_args.disk_bytenr, 2101 nocow_args.num_bytes, 0, 2102 1 << BTRFS_ORDERED_PREALLOC, 2103 BTRFS_COMPRESS_NONE); 2104 if (ret) { 2105 btrfs_drop_extent_map_range(inode, cur_offset, 2106 nocow_end, false); 2107 goto error; 2108 } 2109 } else { 2110 ret = btrfs_add_ordered_extent(inode, cur_offset, 2111 nocow_args.num_bytes, 2112 nocow_args.num_bytes, 2113 nocow_args.disk_bytenr, 2114 nocow_args.num_bytes, 2115 0, 2116 1 << BTRFS_ORDERED_NOCOW, 2117 BTRFS_COMPRESS_NONE); 2118 if (ret) 2119 goto error; 2120 } 2121 2122 if (nocow) { 2123 btrfs_dec_nocow_writers(bg); 2124 nocow = false; 2125 } 2126 2127 if (btrfs_is_data_reloc_root(root)) 2128 /* 2129 * Error handled later, as we must prevent 2130 * extent_clear_unlock_delalloc() in error handler 2131 * from freeing metadata of created ordered extent. 2132 */ 2133 ret = btrfs_reloc_clone_csums(inode, cur_offset, 2134 nocow_args.num_bytes); 2135 2136 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2137 locked_page, EXTENT_LOCKED | 2138 EXTENT_DELALLOC | 2139 EXTENT_CLEAR_DATA_RESV, 2140 PAGE_UNLOCK | PAGE_SET_ORDERED); 2141 2142 cur_offset = extent_end; 2143 2144 /* 2145 * btrfs_reloc_clone_csums() error, now we're OK to call error 2146 * handler, as metadata for created ordered extent will only 2147 * be freed by btrfs_finish_ordered_io(). 2148 */ 2149 if (ret) 2150 goto error; 2151 if (cur_offset > end) 2152 break; 2153 } 2154 btrfs_release_path(path); 2155 2156 if (cur_offset <= end && cow_start == (u64)-1) 2157 cow_start = cur_offset; 2158 2159 if (cow_start != (u64)-1) { 2160 cur_offset = end; 2161 ret = fallback_to_cow(inode, locked_page, cow_start, end, 2162 page_started, nr_written); 2163 if (ret) 2164 goto error; 2165 } 2166 2167 error: 2168 if (nocow) 2169 btrfs_dec_nocow_writers(bg); 2170 2171 if (ret && cur_offset < end) 2172 extent_clear_unlock_delalloc(inode, cur_offset, end, 2173 locked_page, EXTENT_LOCKED | 2174 EXTENT_DELALLOC | EXTENT_DEFRAG | 2175 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2176 PAGE_START_WRITEBACK | 2177 PAGE_END_WRITEBACK); 2178 btrfs_free_path(path); 2179 return ret; 2180 } 2181 2182 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2183 { 2184 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2185 if (inode->defrag_bytes && 2186 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 2187 0, NULL)) 2188 return false; 2189 return true; 2190 } 2191 return false; 2192 } 2193 2194 /* 2195 * Function to process delayed allocation (create CoW) for ranges which are 2196 * being touched for the first time. 2197 */ 2198 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2199 u64 start, u64 end, int *page_started, unsigned long *nr_written, 2200 struct writeback_control *wbc) 2201 { 2202 int ret; 2203 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2204 2205 /* 2206 * The range must cover part of the @locked_page, or the returned 2207 * @page_started can confuse the caller. 2208 */ 2209 ASSERT(!(end <= page_offset(locked_page) || 2210 start >= page_offset(locked_page) + PAGE_SIZE)); 2211 2212 if (should_nocow(inode, start, end)) { 2213 /* 2214 * Normally on a zoned device we're only doing COW writes, but 2215 * in case of relocation on a zoned filesystem we have taken 2216 * precaution, that we're only writing sequentially. It's safe 2217 * to use run_delalloc_nocow() here, like for regular 2218 * preallocated inodes. 2219 */ 2220 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); 2221 ret = run_delalloc_nocow(inode, locked_page, start, end, 2222 page_started, nr_written); 2223 } else if (!btrfs_inode_can_compress(inode) || 2224 !inode_need_compress(inode, start, end)) { 2225 if (zoned) 2226 ret = run_delalloc_zoned(inode, locked_page, start, end, 2227 page_started, nr_written); 2228 else 2229 ret = cow_file_range(inode, locked_page, start, end, 2230 page_started, nr_written, 1, NULL); 2231 } else { 2232 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 2233 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 2234 page_started, nr_written); 2235 } 2236 ASSERT(ret <= 0); 2237 if (ret) 2238 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2239 end - start + 1); 2240 return ret; 2241 } 2242 2243 void btrfs_split_delalloc_extent(struct inode *inode, 2244 struct extent_state *orig, u64 split) 2245 { 2246 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2247 u64 size; 2248 2249 /* not delalloc, ignore it */ 2250 if (!(orig->state & EXTENT_DELALLOC)) 2251 return; 2252 2253 size = orig->end - orig->start + 1; 2254 if (size > fs_info->max_extent_size) { 2255 u32 num_extents; 2256 u64 new_size; 2257 2258 /* 2259 * See the explanation in btrfs_merge_delalloc_extent, the same 2260 * applies here, just in reverse. 2261 */ 2262 new_size = orig->end - split + 1; 2263 num_extents = count_max_extents(fs_info, new_size); 2264 new_size = split - orig->start; 2265 num_extents += count_max_extents(fs_info, new_size); 2266 if (count_max_extents(fs_info, size) >= num_extents) 2267 return; 2268 } 2269 2270 spin_lock(&BTRFS_I(inode)->lock); 2271 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 2272 spin_unlock(&BTRFS_I(inode)->lock); 2273 } 2274 2275 /* 2276 * Handle merged delayed allocation extents so we can keep track of new extents 2277 * that are just merged onto old extents, such as when we are doing sequential 2278 * writes, so we can properly account for the metadata space we'll need. 2279 */ 2280 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 2281 struct extent_state *other) 2282 { 2283 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2284 u64 new_size, old_size; 2285 u32 num_extents; 2286 2287 /* not delalloc, ignore it */ 2288 if (!(other->state & EXTENT_DELALLOC)) 2289 return; 2290 2291 if (new->start > other->start) 2292 new_size = new->end - other->start + 1; 2293 else 2294 new_size = other->end - new->start + 1; 2295 2296 /* we're not bigger than the max, unreserve the space and go */ 2297 if (new_size <= fs_info->max_extent_size) { 2298 spin_lock(&BTRFS_I(inode)->lock); 2299 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2300 spin_unlock(&BTRFS_I(inode)->lock); 2301 return; 2302 } 2303 2304 /* 2305 * We have to add up either side to figure out how many extents were 2306 * accounted for before we merged into one big extent. If the number of 2307 * extents we accounted for is <= the amount we need for the new range 2308 * then we can return, otherwise drop. Think of it like this 2309 * 2310 * [ 4k][MAX_SIZE] 2311 * 2312 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2313 * need 2 outstanding extents, on one side we have 1 and the other side 2314 * we have 1 so they are == and we can return. But in this case 2315 * 2316 * [MAX_SIZE+4k][MAX_SIZE+4k] 2317 * 2318 * Each range on their own accounts for 2 extents, but merged together 2319 * they are only 3 extents worth of accounting, so we need to drop in 2320 * this case. 2321 */ 2322 old_size = other->end - other->start + 1; 2323 num_extents = count_max_extents(fs_info, old_size); 2324 old_size = new->end - new->start + 1; 2325 num_extents += count_max_extents(fs_info, old_size); 2326 if (count_max_extents(fs_info, new_size) >= num_extents) 2327 return; 2328 2329 spin_lock(&BTRFS_I(inode)->lock); 2330 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2331 spin_unlock(&BTRFS_I(inode)->lock); 2332 } 2333 2334 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2335 struct inode *inode) 2336 { 2337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2338 2339 spin_lock(&root->delalloc_lock); 2340 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2341 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2342 &root->delalloc_inodes); 2343 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2344 &BTRFS_I(inode)->runtime_flags); 2345 root->nr_delalloc_inodes++; 2346 if (root->nr_delalloc_inodes == 1) { 2347 spin_lock(&fs_info->delalloc_root_lock); 2348 BUG_ON(!list_empty(&root->delalloc_root)); 2349 list_add_tail(&root->delalloc_root, 2350 &fs_info->delalloc_roots); 2351 spin_unlock(&fs_info->delalloc_root_lock); 2352 } 2353 } 2354 spin_unlock(&root->delalloc_lock); 2355 } 2356 2357 2358 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2359 struct btrfs_inode *inode) 2360 { 2361 struct btrfs_fs_info *fs_info = root->fs_info; 2362 2363 if (!list_empty(&inode->delalloc_inodes)) { 2364 list_del_init(&inode->delalloc_inodes); 2365 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2366 &inode->runtime_flags); 2367 root->nr_delalloc_inodes--; 2368 if (!root->nr_delalloc_inodes) { 2369 ASSERT(list_empty(&root->delalloc_inodes)); 2370 spin_lock(&fs_info->delalloc_root_lock); 2371 BUG_ON(list_empty(&root->delalloc_root)); 2372 list_del_init(&root->delalloc_root); 2373 spin_unlock(&fs_info->delalloc_root_lock); 2374 } 2375 } 2376 } 2377 2378 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2379 struct btrfs_inode *inode) 2380 { 2381 spin_lock(&root->delalloc_lock); 2382 __btrfs_del_delalloc_inode(root, inode); 2383 spin_unlock(&root->delalloc_lock); 2384 } 2385 2386 /* 2387 * Properly track delayed allocation bytes in the inode and to maintain the 2388 * list of inodes that have pending delalloc work to be done. 2389 */ 2390 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2391 u32 bits) 2392 { 2393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2394 2395 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2396 WARN_ON(1); 2397 /* 2398 * set_bit and clear bit hooks normally require _irqsave/restore 2399 * but in this case, we are only testing for the DELALLOC 2400 * bit, which is only set or cleared with irqs on 2401 */ 2402 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2403 struct btrfs_root *root = BTRFS_I(inode)->root; 2404 u64 len = state->end + 1 - state->start; 2405 u32 num_extents = count_max_extents(fs_info, len); 2406 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2407 2408 spin_lock(&BTRFS_I(inode)->lock); 2409 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2410 spin_unlock(&BTRFS_I(inode)->lock); 2411 2412 /* For sanity tests */ 2413 if (btrfs_is_testing(fs_info)) 2414 return; 2415 2416 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2417 fs_info->delalloc_batch); 2418 spin_lock(&BTRFS_I(inode)->lock); 2419 BTRFS_I(inode)->delalloc_bytes += len; 2420 if (bits & EXTENT_DEFRAG) 2421 BTRFS_I(inode)->defrag_bytes += len; 2422 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2423 &BTRFS_I(inode)->runtime_flags)) 2424 btrfs_add_delalloc_inodes(root, inode); 2425 spin_unlock(&BTRFS_I(inode)->lock); 2426 } 2427 2428 if (!(state->state & EXTENT_DELALLOC_NEW) && 2429 (bits & EXTENT_DELALLOC_NEW)) { 2430 spin_lock(&BTRFS_I(inode)->lock); 2431 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2432 state->start; 2433 spin_unlock(&BTRFS_I(inode)->lock); 2434 } 2435 } 2436 2437 /* 2438 * Once a range is no longer delalloc this function ensures that proper 2439 * accounting happens. 2440 */ 2441 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2442 struct extent_state *state, u32 bits) 2443 { 2444 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2445 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2446 u64 len = state->end + 1 - state->start; 2447 u32 num_extents = count_max_extents(fs_info, len); 2448 2449 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2450 spin_lock(&inode->lock); 2451 inode->defrag_bytes -= len; 2452 spin_unlock(&inode->lock); 2453 } 2454 2455 /* 2456 * set_bit and clear bit hooks normally require _irqsave/restore 2457 * but in this case, we are only testing for the DELALLOC 2458 * bit, which is only set or cleared with irqs on 2459 */ 2460 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2461 struct btrfs_root *root = inode->root; 2462 bool do_list = !btrfs_is_free_space_inode(inode); 2463 2464 spin_lock(&inode->lock); 2465 btrfs_mod_outstanding_extents(inode, -num_extents); 2466 spin_unlock(&inode->lock); 2467 2468 /* 2469 * We don't reserve metadata space for space cache inodes so we 2470 * don't need to call delalloc_release_metadata if there is an 2471 * error. 2472 */ 2473 if (bits & EXTENT_CLEAR_META_RESV && 2474 root != fs_info->tree_root) 2475 btrfs_delalloc_release_metadata(inode, len, false); 2476 2477 /* For sanity tests. */ 2478 if (btrfs_is_testing(fs_info)) 2479 return; 2480 2481 if (!btrfs_is_data_reloc_root(root) && 2482 do_list && !(state->state & EXTENT_NORESERVE) && 2483 (bits & EXTENT_CLEAR_DATA_RESV)) 2484 btrfs_free_reserved_data_space_noquota(fs_info, len); 2485 2486 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2487 fs_info->delalloc_batch); 2488 spin_lock(&inode->lock); 2489 inode->delalloc_bytes -= len; 2490 if (do_list && inode->delalloc_bytes == 0 && 2491 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2492 &inode->runtime_flags)) 2493 btrfs_del_delalloc_inode(root, inode); 2494 spin_unlock(&inode->lock); 2495 } 2496 2497 if ((state->state & EXTENT_DELALLOC_NEW) && 2498 (bits & EXTENT_DELALLOC_NEW)) { 2499 spin_lock(&inode->lock); 2500 ASSERT(inode->new_delalloc_bytes >= len); 2501 inode->new_delalloc_bytes -= len; 2502 if (bits & EXTENT_ADD_INODE_BYTES) 2503 inode_add_bytes(&inode->vfs_inode, len); 2504 spin_unlock(&inode->lock); 2505 } 2506 } 2507 2508 /* 2509 * in order to insert checksums into the metadata in large chunks, 2510 * we wait until bio submission time. All the pages in the bio are 2511 * checksummed and sums are attached onto the ordered extent record. 2512 * 2513 * At IO completion time the cums attached on the ordered extent record 2514 * are inserted into the btree 2515 */ 2516 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2517 u64 dio_file_offset) 2518 { 2519 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2520 } 2521 2522 /* 2523 * Split an extent_map at [start, start + len] 2524 * 2525 * This function is intended to be used only for extract_ordered_extent(). 2526 */ 2527 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, 2528 u64 pre, u64 post) 2529 { 2530 struct extent_map_tree *em_tree = &inode->extent_tree; 2531 struct extent_map *em; 2532 struct extent_map *split_pre = NULL; 2533 struct extent_map *split_mid = NULL; 2534 struct extent_map *split_post = NULL; 2535 int ret = 0; 2536 unsigned long flags; 2537 2538 /* Sanity check */ 2539 if (pre == 0 && post == 0) 2540 return 0; 2541 2542 split_pre = alloc_extent_map(); 2543 if (pre) 2544 split_mid = alloc_extent_map(); 2545 if (post) 2546 split_post = alloc_extent_map(); 2547 if (!split_pre || (pre && !split_mid) || (post && !split_post)) { 2548 ret = -ENOMEM; 2549 goto out; 2550 } 2551 2552 ASSERT(pre + post < len); 2553 2554 lock_extent(&inode->io_tree, start, start + len - 1, NULL); 2555 write_lock(&em_tree->lock); 2556 em = lookup_extent_mapping(em_tree, start, len); 2557 if (!em) { 2558 ret = -EIO; 2559 goto out_unlock; 2560 } 2561 2562 ASSERT(em->len == len); 2563 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2564 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2565 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); 2566 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); 2567 ASSERT(!list_empty(&em->list)); 2568 2569 flags = em->flags; 2570 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2571 2572 /* First, replace the em with a new extent_map starting from * em->start */ 2573 split_pre->start = em->start; 2574 split_pre->len = (pre ? pre : em->len - post); 2575 split_pre->orig_start = split_pre->start; 2576 split_pre->block_start = em->block_start; 2577 split_pre->block_len = split_pre->len; 2578 split_pre->orig_block_len = split_pre->block_len; 2579 split_pre->ram_bytes = split_pre->len; 2580 split_pre->flags = flags; 2581 split_pre->compress_type = em->compress_type; 2582 split_pre->generation = em->generation; 2583 2584 replace_extent_mapping(em_tree, em, split_pre, 1); 2585 2586 /* 2587 * Now we only have an extent_map at: 2588 * [em->start, em->start + pre] if pre != 0 2589 * [em->start, em->start + em->len - post] if pre == 0 2590 */ 2591 2592 if (pre) { 2593 /* Insert the middle extent_map */ 2594 split_mid->start = em->start + pre; 2595 split_mid->len = em->len - pre - post; 2596 split_mid->orig_start = split_mid->start; 2597 split_mid->block_start = em->block_start + pre; 2598 split_mid->block_len = split_mid->len; 2599 split_mid->orig_block_len = split_mid->block_len; 2600 split_mid->ram_bytes = split_mid->len; 2601 split_mid->flags = flags; 2602 split_mid->compress_type = em->compress_type; 2603 split_mid->generation = em->generation; 2604 add_extent_mapping(em_tree, split_mid, 1); 2605 } 2606 2607 if (post) { 2608 split_post->start = em->start + em->len - post; 2609 split_post->len = post; 2610 split_post->orig_start = split_post->start; 2611 split_post->block_start = em->block_start + em->len - post; 2612 split_post->block_len = split_post->len; 2613 split_post->orig_block_len = split_post->block_len; 2614 split_post->ram_bytes = split_post->len; 2615 split_post->flags = flags; 2616 split_post->compress_type = em->compress_type; 2617 split_post->generation = em->generation; 2618 add_extent_mapping(em_tree, split_post, 1); 2619 } 2620 2621 /* Once for us */ 2622 free_extent_map(em); 2623 /* Once for the tree */ 2624 free_extent_map(em); 2625 2626 out_unlock: 2627 write_unlock(&em_tree->lock); 2628 unlock_extent(&inode->io_tree, start, start + len - 1, NULL); 2629 out: 2630 free_extent_map(split_pre); 2631 free_extent_map(split_mid); 2632 free_extent_map(split_post); 2633 2634 return ret; 2635 } 2636 2637 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2638 struct bio *bio, loff_t file_offset) 2639 { 2640 struct btrfs_ordered_extent *ordered; 2641 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2642 u64 file_len; 2643 u64 len = bio->bi_iter.bi_size; 2644 u64 end = start + len; 2645 u64 ordered_end; 2646 u64 pre, post; 2647 int ret = 0; 2648 2649 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2650 if (WARN_ON_ONCE(!ordered)) 2651 return BLK_STS_IOERR; 2652 2653 /* No need to split */ 2654 if (ordered->disk_num_bytes == len) 2655 goto out; 2656 2657 /* We cannot split once end_bio'd ordered extent */ 2658 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2659 ret = -EINVAL; 2660 goto out; 2661 } 2662 2663 /* We cannot split a compressed ordered extent */ 2664 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2665 ret = -EINVAL; 2666 goto out; 2667 } 2668 2669 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2670 /* bio must be in one ordered extent */ 2671 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2672 ret = -EINVAL; 2673 goto out; 2674 } 2675 2676 /* Checksum list should be empty */ 2677 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2678 ret = -EINVAL; 2679 goto out; 2680 } 2681 2682 file_len = ordered->num_bytes; 2683 pre = start - ordered->disk_bytenr; 2684 post = ordered_end - end; 2685 2686 ret = btrfs_split_ordered_extent(ordered, pre, post); 2687 if (ret) 2688 goto out; 2689 ret = split_zoned_em(inode, file_offset, file_len, pre, post); 2690 2691 out: 2692 btrfs_put_ordered_extent(ordered); 2693 2694 return errno_to_blk_status(ret); 2695 } 2696 2697 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num) 2698 { 2699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2700 struct btrfs_inode *bi = BTRFS_I(inode); 2701 blk_status_t ret; 2702 2703 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2704 ret = extract_ordered_extent(bi, bio, 2705 page_offset(bio_first_bvec_all(bio)->bv_page)); 2706 if (ret) { 2707 btrfs_bio_end_io(btrfs_bio(bio), ret); 2708 return; 2709 } 2710 } 2711 2712 /* 2713 * If we need to checksum, and the I/O is not issued by fsync and 2714 * friends, that is ->sync_writers != 0, defer the submission to a 2715 * workqueue to parallelize it. 2716 * 2717 * Csum items for reloc roots have already been cloned at this point, 2718 * so they are handled as part of the no-checksum case. 2719 */ 2720 if (!(bi->flags & BTRFS_INODE_NODATASUM) && 2721 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && 2722 !btrfs_is_data_reloc_root(bi->root)) { 2723 if (!atomic_read(&bi->sync_writers) && 2724 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, 2725 btrfs_submit_bio_start)) 2726 return; 2727 2728 ret = btrfs_csum_one_bio(bi, bio, (u64)-1, false); 2729 if (ret) { 2730 btrfs_bio_end_io(btrfs_bio(bio), ret); 2731 return; 2732 } 2733 } 2734 btrfs_submit_bio(fs_info, bio, mirror_num); 2735 } 2736 2737 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio, 2738 int mirror_num, enum btrfs_compression_type compress_type) 2739 { 2740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2741 blk_status_t ret; 2742 2743 if (compress_type != BTRFS_COMPRESS_NONE) { 2744 /* 2745 * btrfs_submit_compressed_read will handle completing the bio 2746 * if there were any errors, so just return here. 2747 */ 2748 btrfs_submit_compressed_read(inode, bio, mirror_num); 2749 return; 2750 } 2751 2752 /* Save the original iter for read repair */ 2753 btrfs_bio(bio)->iter = bio->bi_iter; 2754 2755 /* 2756 * Lookup bio sums does extra checks around whether we need to csum or 2757 * not, which is why we ignore skip_sum here. 2758 */ 2759 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2760 if (ret) { 2761 btrfs_bio_end_io(btrfs_bio(bio), ret); 2762 return; 2763 } 2764 2765 btrfs_submit_bio(fs_info, bio, mirror_num); 2766 } 2767 2768 /* 2769 * given a list of ordered sums record them in the inode. This happens 2770 * at IO completion time based on sums calculated at bio submission time. 2771 */ 2772 static int add_pending_csums(struct btrfs_trans_handle *trans, 2773 struct list_head *list) 2774 { 2775 struct btrfs_ordered_sum *sum; 2776 struct btrfs_root *csum_root = NULL; 2777 int ret; 2778 2779 list_for_each_entry(sum, list, list) { 2780 trans->adding_csums = true; 2781 if (!csum_root) 2782 csum_root = btrfs_csum_root(trans->fs_info, 2783 sum->bytenr); 2784 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2785 trans->adding_csums = false; 2786 if (ret) 2787 return ret; 2788 } 2789 return 0; 2790 } 2791 2792 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2793 const u64 start, 2794 const u64 len, 2795 struct extent_state **cached_state) 2796 { 2797 u64 search_start = start; 2798 const u64 end = start + len - 1; 2799 2800 while (search_start < end) { 2801 const u64 search_len = end - search_start + 1; 2802 struct extent_map *em; 2803 u64 em_len; 2804 int ret = 0; 2805 2806 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2807 if (IS_ERR(em)) 2808 return PTR_ERR(em); 2809 2810 if (em->block_start != EXTENT_MAP_HOLE) 2811 goto next; 2812 2813 em_len = em->len; 2814 if (em->start < search_start) 2815 em_len -= search_start - em->start; 2816 if (em_len > search_len) 2817 em_len = search_len; 2818 2819 ret = set_extent_bit(&inode->io_tree, search_start, 2820 search_start + em_len - 1, 2821 EXTENT_DELALLOC_NEW, cached_state, 2822 GFP_NOFS); 2823 next: 2824 search_start = extent_map_end(em); 2825 free_extent_map(em); 2826 if (ret) 2827 return ret; 2828 } 2829 return 0; 2830 } 2831 2832 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2833 unsigned int extra_bits, 2834 struct extent_state **cached_state) 2835 { 2836 WARN_ON(PAGE_ALIGNED(end)); 2837 2838 if (start >= i_size_read(&inode->vfs_inode) && 2839 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2840 /* 2841 * There can't be any extents following eof in this case so just 2842 * set the delalloc new bit for the range directly. 2843 */ 2844 extra_bits |= EXTENT_DELALLOC_NEW; 2845 } else { 2846 int ret; 2847 2848 ret = btrfs_find_new_delalloc_bytes(inode, start, 2849 end + 1 - start, 2850 cached_state); 2851 if (ret) 2852 return ret; 2853 } 2854 2855 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2856 cached_state); 2857 } 2858 2859 /* see btrfs_writepage_start_hook for details on why this is required */ 2860 struct btrfs_writepage_fixup { 2861 struct page *page; 2862 struct inode *inode; 2863 struct btrfs_work work; 2864 }; 2865 2866 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2867 { 2868 struct btrfs_writepage_fixup *fixup; 2869 struct btrfs_ordered_extent *ordered; 2870 struct extent_state *cached_state = NULL; 2871 struct extent_changeset *data_reserved = NULL; 2872 struct page *page; 2873 struct btrfs_inode *inode; 2874 u64 page_start; 2875 u64 page_end; 2876 int ret = 0; 2877 bool free_delalloc_space = true; 2878 2879 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2880 page = fixup->page; 2881 inode = BTRFS_I(fixup->inode); 2882 page_start = page_offset(page); 2883 page_end = page_offset(page) + PAGE_SIZE - 1; 2884 2885 /* 2886 * This is similar to page_mkwrite, we need to reserve the space before 2887 * we take the page lock. 2888 */ 2889 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2890 PAGE_SIZE); 2891 again: 2892 lock_page(page); 2893 2894 /* 2895 * Before we queued this fixup, we took a reference on the page. 2896 * page->mapping may go NULL, but it shouldn't be moved to a different 2897 * address space. 2898 */ 2899 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2900 /* 2901 * Unfortunately this is a little tricky, either 2902 * 2903 * 1) We got here and our page had already been dealt with and 2904 * we reserved our space, thus ret == 0, so we need to just 2905 * drop our space reservation and bail. This can happen the 2906 * first time we come into the fixup worker, or could happen 2907 * while waiting for the ordered extent. 2908 * 2) Our page was already dealt with, but we happened to get an 2909 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2910 * this case we obviously don't have anything to release, but 2911 * because the page was already dealt with we don't want to 2912 * mark the page with an error, so make sure we're resetting 2913 * ret to 0. This is why we have this check _before_ the ret 2914 * check, because we do not want to have a surprise ENOSPC 2915 * when the page was already properly dealt with. 2916 */ 2917 if (!ret) { 2918 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2919 btrfs_delalloc_release_space(inode, data_reserved, 2920 page_start, PAGE_SIZE, 2921 true); 2922 } 2923 ret = 0; 2924 goto out_page; 2925 } 2926 2927 /* 2928 * We can't mess with the page state unless it is locked, so now that 2929 * it is locked bail if we failed to make our space reservation. 2930 */ 2931 if (ret) 2932 goto out_page; 2933 2934 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2935 2936 /* already ordered? We're done */ 2937 if (PageOrdered(page)) 2938 goto out_reserved; 2939 2940 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2941 if (ordered) { 2942 unlock_extent(&inode->io_tree, page_start, page_end, 2943 &cached_state); 2944 unlock_page(page); 2945 btrfs_start_ordered_extent(ordered, 1); 2946 btrfs_put_ordered_extent(ordered); 2947 goto again; 2948 } 2949 2950 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2951 &cached_state); 2952 if (ret) 2953 goto out_reserved; 2954 2955 /* 2956 * Everything went as planned, we're now the owner of a dirty page with 2957 * delayed allocation bits set and space reserved for our COW 2958 * destination. 2959 * 2960 * The page was dirty when we started, nothing should have cleaned it. 2961 */ 2962 BUG_ON(!PageDirty(page)); 2963 free_delalloc_space = false; 2964 out_reserved: 2965 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2966 if (free_delalloc_space) 2967 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2968 PAGE_SIZE, true); 2969 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2970 out_page: 2971 if (ret) { 2972 /* 2973 * We hit ENOSPC or other errors. Update the mapping and page 2974 * to reflect the errors and clean the page. 2975 */ 2976 mapping_set_error(page->mapping, ret); 2977 end_extent_writepage(page, ret, page_start, page_end); 2978 clear_page_dirty_for_io(page); 2979 SetPageError(page); 2980 } 2981 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); 2982 unlock_page(page); 2983 put_page(page); 2984 kfree(fixup); 2985 extent_changeset_free(data_reserved); 2986 /* 2987 * As a precaution, do a delayed iput in case it would be the last iput 2988 * that could need flushing space. Recursing back to fixup worker would 2989 * deadlock. 2990 */ 2991 btrfs_add_delayed_iput(&inode->vfs_inode); 2992 } 2993 2994 /* 2995 * There are a few paths in the higher layers of the kernel that directly 2996 * set the page dirty bit without asking the filesystem if it is a 2997 * good idea. This causes problems because we want to make sure COW 2998 * properly happens and the data=ordered rules are followed. 2999 * 3000 * In our case any range that doesn't have the ORDERED bit set 3001 * hasn't been properly setup for IO. We kick off an async process 3002 * to fix it up. The async helper will wait for ordered extents, set 3003 * the delalloc bit and make it safe to write the page. 3004 */ 3005 int btrfs_writepage_cow_fixup(struct page *page) 3006 { 3007 struct inode *inode = page->mapping->host; 3008 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3009 struct btrfs_writepage_fixup *fixup; 3010 3011 /* This page has ordered extent covering it already */ 3012 if (PageOrdered(page)) 3013 return 0; 3014 3015 /* 3016 * PageChecked is set below when we create a fixup worker for this page, 3017 * don't try to create another one if we're already PageChecked() 3018 * 3019 * The extent_io writepage code will redirty the page if we send back 3020 * EAGAIN. 3021 */ 3022 if (PageChecked(page)) 3023 return -EAGAIN; 3024 3025 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 3026 if (!fixup) 3027 return -EAGAIN; 3028 3029 /* 3030 * We are already holding a reference to this inode from 3031 * write_cache_pages. We need to hold it because the space reservation 3032 * takes place outside of the page lock, and we can't trust 3033 * page->mapping outside of the page lock. 3034 */ 3035 ihold(inode); 3036 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 3037 get_page(page); 3038 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 3039 fixup->page = page; 3040 fixup->inode = inode; 3041 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 3042 3043 return -EAGAIN; 3044 } 3045 3046 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 3047 struct btrfs_inode *inode, u64 file_pos, 3048 struct btrfs_file_extent_item *stack_fi, 3049 const bool update_inode_bytes, 3050 u64 qgroup_reserved) 3051 { 3052 struct btrfs_root *root = inode->root; 3053 const u64 sectorsize = root->fs_info->sectorsize; 3054 struct btrfs_path *path; 3055 struct extent_buffer *leaf; 3056 struct btrfs_key ins; 3057 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 3058 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 3059 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 3060 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 3061 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 3062 struct btrfs_drop_extents_args drop_args = { 0 }; 3063 int ret; 3064 3065 path = btrfs_alloc_path(); 3066 if (!path) 3067 return -ENOMEM; 3068 3069 /* 3070 * we may be replacing one extent in the tree with another. 3071 * The new extent is pinned in the extent map, and we don't want 3072 * to drop it from the cache until it is completely in the btree. 3073 * 3074 * So, tell btrfs_drop_extents to leave this extent in the cache. 3075 * the caller is expected to unpin it and allow it to be merged 3076 * with the others. 3077 */ 3078 drop_args.path = path; 3079 drop_args.start = file_pos; 3080 drop_args.end = file_pos + num_bytes; 3081 drop_args.replace_extent = true; 3082 drop_args.extent_item_size = sizeof(*stack_fi); 3083 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 3084 if (ret) 3085 goto out; 3086 3087 if (!drop_args.extent_inserted) { 3088 ins.objectid = btrfs_ino(inode); 3089 ins.offset = file_pos; 3090 ins.type = BTRFS_EXTENT_DATA_KEY; 3091 3092 ret = btrfs_insert_empty_item(trans, root, path, &ins, 3093 sizeof(*stack_fi)); 3094 if (ret) 3095 goto out; 3096 } 3097 leaf = path->nodes[0]; 3098 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3099 write_extent_buffer(leaf, stack_fi, 3100 btrfs_item_ptr_offset(leaf, path->slots[0]), 3101 sizeof(struct btrfs_file_extent_item)); 3102 3103 btrfs_mark_buffer_dirty(leaf); 3104 btrfs_release_path(path); 3105 3106 /* 3107 * If we dropped an inline extent here, we know the range where it is 3108 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3109 * number of bytes only for that range containing the inline extent. 3110 * The remaining of the range will be processed when clearning the 3111 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3112 */ 3113 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3114 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3115 3116 inline_size = drop_args.bytes_found - inline_size; 3117 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3118 drop_args.bytes_found -= inline_size; 3119 num_bytes -= sectorsize; 3120 } 3121 3122 if (update_inode_bytes) 3123 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3124 3125 ins.objectid = disk_bytenr; 3126 ins.offset = disk_num_bytes; 3127 ins.type = BTRFS_EXTENT_ITEM_KEY; 3128 3129 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3130 if (ret) 3131 goto out; 3132 3133 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3134 file_pos - offset, 3135 qgroup_reserved, &ins); 3136 out: 3137 btrfs_free_path(path); 3138 3139 return ret; 3140 } 3141 3142 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3143 u64 start, u64 len) 3144 { 3145 struct btrfs_block_group *cache; 3146 3147 cache = btrfs_lookup_block_group(fs_info, start); 3148 ASSERT(cache); 3149 3150 spin_lock(&cache->lock); 3151 cache->delalloc_bytes -= len; 3152 spin_unlock(&cache->lock); 3153 3154 btrfs_put_block_group(cache); 3155 } 3156 3157 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3158 struct btrfs_ordered_extent *oe) 3159 { 3160 struct btrfs_file_extent_item stack_fi; 3161 bool update_inode_bytes; 3162 u64 num_bytes = oe->num_bytes; 3163 u64 ram_bytes = oe->ram_bytes; 3164 3165 memset(&stack_fi, 0, sizeof(stack_fi)); 3166 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3167 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3168 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3169 oe->disk_num_bytes); 3170 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3171 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 3172 num_bytes = oe->truncated_len; 3173 ram_bytes = num_bytes; 3174 } 3175 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3176 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3177 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3178 /* Encryption and other encoding is reserved and all 0 */ 3179 3180 /* 3181 * For delalloc, when completing an ordered extent we update the inode's 3182 * bytes when clearing the range in the inode's io tree, so pass false 3183 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3184 * except if the ordered extent was truncated. 3185 */ 3186 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3187 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3188 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3189 3190 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3191 oe->file_offset, &stack_fi, 3192 update_inode_bytes, oe->qgroup_rsv); 3193 } 3194 3195 /* 3196 * As ordered data IO finishes, this gets called so we can finish 3197 * an ordered extent if the range of bytes in the file it covers are 3198 * fully written. 3199 */ 3200 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3201 { 3202 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3203 struct btrfs_root *root = inode->root; 3204 struct btrfs_fs_info *fs_info = root->fs_info; 3205 struct btrfs_trans_handle *trans = NULL; 3206 struct extent_io_tree *io_tree = &inode->io_tree; 3207 struct extent_state *cached_state = NULL; 3208 u64 start, end; 3209 int compress_type = 0; 3210 int ret = 0; 3211 u64 logical_len = ordered_extent->num_bytes; 3212 bool freespace_inode; 3213 bool truncated = false; 3214 bool clear_reserved_extent = true; 3215 unsigned int clear_bits = EXTENT_DEFRAG; 3216 3217 start = ordered_extent->file_offset; 3218 end = start + ordered_extent->num_bytes - 1; 3219 3220 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3221 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3222 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3223 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3224 clear_bits |= EXTENT_DELALLOC_NEW; 3225 3226 freespace_inode = btrfs_is_free_space_inode(inode); 3227 if (!freespace_inode) 3228 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3229 3230 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3231 ret = -EIO; 3232 goto out; 3233 } 3234 3235 /* A valid bdev implies a write on a sequential zone */ 3236 if (ordered_extent->bdev) { 3237 btrfs_rewrite_logical_zoned(ordered_extent); 3238 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3239 ordered_extent->disk_num_bytes); 3240 } 3241 3242 btrfs_free_io_failure_record(inode, start, end); 3243 3244 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3245 truncated = true; 3246 logical_len = ordered_extent->truncated_len; 3247 /* Truncated the entire extent, don't bother adding */ 3248 if (!logical_len) 3249 goto out; 3250 } 3251 3252 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3253 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3254 3255 btrfs_inode_safe_disk_i_size_write(inode, 0); 3256 if (freespace_inode) 3257 trans = btrfs_join_transaction_spacecache(root); 3258 else 3259 trans = btrfs_join_transaction(root); 3260 if (IS_ERR(trans)) { 3261 ret = PTR_ERR(trans); 3262 trans = NULL; 3263 goto out; 3264 } 3265 trans->block_rsv = &inode->block_rsv; 3266 ret = btrfs_update_inode_fallback(trans, root, inode); 3267 if (ret) /* -ENOMEM or corruption */ 3268 btrfs_abort_transaction(trans, ret); 3269 goto out; 3270 } 3271 3272 clear_bits |= EXTENT_LOCKED; 3273 lock_extent(io_tree, start, end, &cached_state); 3274 3275 if (freespace_inode) 3276 trans = btrfs_join_transaction_spacecache(root); 3277 else 3278 trans = btrfs_join_transaction(root); 3279 if (IS_ERR(trans)) { 3280 ret = PTR_ERR(trans); 3281 trans = NULL; 3282 goto out; 3283 } 3284 3285 trans->block_rsv = &inode->block_rsv; 3286 3287 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3288 compress_type = ordered_extent->compress_type; 3289 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3290 BUG_ON(compress_type); 3291 ret = btrfs_mark_extent_written(trans, inode, 3292 ordered_extent->file_offset, 3293 ordered_extent->file_offset + 3294 logical_len); 3295 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3296 ordered_extent->disk_num_bytes); 3297 } else { 3298 BUG_ON(root == fs_info->tree_root); 3299 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3300 if (!ret) { 3301 clear_reserved_extent = false; 3302 btrfs_release_delalloc_bytes(fs_info, 3303 ordered_extent->disk_bytenr, 3304 ordered_extent->disk_num_bytes); 3305 } 3306 } 3307 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3308 ordered_extent->num_bytes, trans->transid); 3309 if (ret < 0) { 3310 btrfs_abort_transaction(trans, ret); 3311 goto out; 3312 } 3313 3314 ret = add_pending_csums(trans, &ordered_extent->list); 3315 if (ret) { 3316 btrfs_abort_transaction(trans, ret); 3317 goto out; 3318 } 3319 3320 /* 3321 * If this is a new delalloc range, clear its new delalloc flag to 3322 * update the inode's number of bytes. This needs to be done first 3323 * before updating the inode item. 3324 */ 3325 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3326 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3327 clear_extent_bit(&inode->io_tree, start, end, 3328 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3329 &cached_state); 3330 3331 btrfs_inode_safe_disk_i_size_write(inode, 0); 3332 ret = btrfs_update_inode_fallback(trans, root, inode); 3333 if (ret) { /* -ENOMEM or corruption */ 3334 btrfs_abort_transaction(trans, ret); 3335 goto out; 3336 } 3337 ret = 0; 3338 out: 3339 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3340 &cached_state); 3341 3342 if (trans) 3343 btrfs_end_transaction(trans); 3344 3345 if (ret || truncated) { 3346 u64 unwritten_start = start; 3347 3348 /* 3349 * If we failed to finish this ordered extent for any reason we 3350 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3351 * extent, and mark the inode with the error if it wasn't 3352 * already set. Any error during writeback would have already 3353 * set the mapping error, so we need to set it if we're the ones 3354 * marking this ordered extent as failed. 3355 */ 3356 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3357 &ordered_extent->flags)) 3358 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3359 3360 if (truncated) 3361 unwritten_start += logical_len; 3362 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3363 3364 /* Drop extent maps for the part of the extent we didn't write. */ 3365 btrfs_drop_extent_map_range(inode, unwritten_start, end, false); 3366 3367 /* 3368 * If the ordered extent had an IOERR or something else went 3369 * wrong we need to return the space for this ordered extent 3370 * back to the allocator. We only free the extent in the 3371 * truncated case if we didn't write out the extent at all. 3372 * 3373 * If we made it past insert_reserved_file_extent before we 3374 * errored out then we don't need to do this as the accounting 3375 * has already been done. 3376 */ 3377 if ((ret || !logical_len) && 3378 clear_reserved_extent && 3379 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3380 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3381 /* 3382 * Discard the range before returning it back to the 3383 * free space pool 3384 */ 3385 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3386 btrfs_discard_extent(fs_info, 3387 ordered_extent->disk_bytenr, 3388 ordered_extent->disk_num_bytes, 3389 NULL); 3390 btrfs_free_reserved_extent(fs_info, 3391 ordered_extent->disk_bytenr, 3392 ordered_extent->disk_num_bytes, 1); 3393 } 3394 } 3395 3396 /* 3397 * This needs to be done to make sure anybody waiting knows we are done 3398 * updating everything for this ordered extent. 3399 */ 3400 btrfs_remove_ordered_extent(inode, ordered_extent); 3401 3402 /* once for us */ 3403 btrfs_put_ordered_extent(ordered_extent); 3404 /* once for the tree */ 3405 btrfs_put_ordered_extent(ordered_extent); 3406 3407 return ret; 3408 } 3409 3410 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3411 struct page *page, u64 start, 3412 u64 end, bool uptodate) 3413 { 3414 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3415 3416 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate); 3417 } 3418 3419 /* 3420 * Verify the checksum for a single sector without any extra action that depend 3421 * on the type of I/O. 3422 */ 3423 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3424 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3425 { 3426 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3427 char *kaddr; 3428 3429 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3430 3431 shash->tfm = fs_info->csum_shash; 3432 3433 kaddr = kmap_local_page(page) + pgoff; 3434 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3435 kunmap_local(kaddr); 3436 3437 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3438 return -EIO; 3439 return 0; 3440 } 3441 3442 static u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, u64 offset) 3443 { 3444 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits; 3445 3446 return csums + offset_in_sectors * fs_info->csum_size; 3447 } 3448 3449 /* 3450 * check_data_csum - verify checksum of one sector of uncompressed data 3451 * @inode: inode 3452 * @bbio: btrfs_bio which contains the csum 3453 * @bio_offset: offset to the beginning of the bio (in bytes) 3454 * @page: page where is the data to be verified 3455 * @pgoff: offset inside the page 3456 * 3457 * The length of such check is always one sector size. 3458 * 3459 * When csum mismatch is detected, we will also report the error and fill the 3460 * corrupted range with zero. (Thus it needs the extra parameters) 3461 */ 3462 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3463 u32 bio_offset, struct page *page, u32 pgoff) 3464 { 3465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3466 u32 len = fs_info->sectorsize; 3467 u8 *csum_expected; 3468 u8 csum[BTRFS_CSUM_SIZE]; 3469 3470 ASSERT(pgoff + len <= PAGE_SIZE); 3471 3472 csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset); 3473 3474 if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected)) 3475 goto zeroit; 3476 return 0; 3477 3478 zeroit: 3479 btrfs_print_data_csum_error(BTRFS_I(inode), 3480 bbio->file_offset + bio_offset, 3481 csum, csum_expected, bbio->mirror_num); 3482 if (bbio->device) 3483 btrfs_dev_stat_inc_and_print(bbio->device, 3484 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3485 memzero_page(page, pgoff, len); 3486 return -EIO; 3487 } 3488 3489 /* 3490 * When reads are done, we need to check csums to verify the data is correct. 3491 * if there's a match, we allow the bio to finish. If not, the code in 3492 * extent_io.c will try to find good copies for us. 3493 * 3494 * @bio_offset: offset to the beginning of the bio (in bytes) 3495 * @start: file offset of the range start 3496 * @end: file offset of the range end (inclusive) 3497 * 3498 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3499 * csum match. 3500 */ 3501 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3502 u32 bio_offset, struct page *page, 3503 u64 start, u64 end) 3504 { 3505 struct inode *inode = page->mapping->host; 3506 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3507 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3508 struct btrfs_root *root = BTRFS_I(inode)->root; 3509 const u32 sectorsize = root->fs_info->sectorsize; 3510 u32 pg_off; 3511 unsigned int result = 0; 3512 3513 /* 3514 * This only happens for NODATASUM or compressed read. 3515 * Normally this should be covered by above check for compressed read 3516 * or the next check for NODATASUM. Just do a quicker exit here. 3517 */ 3518 if (bbio->csum == NULL) 3519 return 0; 3520 3521 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3522 return 0; 3523 3524 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))) 3525 return 0; 3526 3527 ASSERT(page_offset(page) <= start && 3528 end <= page_offset(page) + PAGE_SIZE - 1); 3529 for (pg_off = offset_in_page(start); 3530 pg_off < offset_in_page(end); 3531 pg_off += sectorsize, bio_offset += sectorsize) { 3532 u64 file_offset = pg_off + page_offset(page); 3533 int ret; 3534 3535 if (btrfs_is_data_reloc_root(root) && 3536 test_range_bit(io_tree, file_offset, 3537 file_offset + sectorsize - 1, 3538 EXTENT_NODATASUM, 1, NULL)) { 3539 /* Skip the range without csum for data reloc inode */ 3540 clear_extent_bits(io_tree, file_offset, 3541 file_offset + sectorsize - 1, 3542 EXTENT_NODATASUM); 3543 continue; 3544 } 3545 ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off); 3546 if (ret < 0) { 3547 const int nr_bit = (pg_off - offset_in_page(start)) >> 3548 root->fs_info->sectorsize_bits; 3549 3550 result |= (1U << nr_bit); 3551 } 3552 } 3553 return result; 3554 } 3555 3556 /* 3557 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3558 * 3559 * @inode: The inode we want to perform iput on 3560 * 3561 * This function uses the generic vfs_inode::i_count to track whether we should 3562 * just decrement it (in case it's > 1) or if this is the last iput then link 3563 * the inode to the delayed iput machinery. Delayed iputs are processed at 3564 * transaction commit time/superblock commit/cleaner kthread. 3565 */ 3566 void btrfs_add_delayed_iput(struct inode *inode) 3567 { 3568 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3569 struct btrfs_inode *binode = BTRFS_I(inode); 3570 3571 if (atomic_add_unless(&inode->i_count, -1, 1)) 3572 return; 3573 3574 atomic_inc(&fs_info->nr_delayed_iputs); 3575 spin_lock(&fs_info->delayed_iput_lock); 3576 ASSERT(list_empty(&binode->delayed_iput)); 3577 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3578 spin_unlock(&fs_info->delayed_iput_lock); 3579 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3580 wake_up_process(fs_info->cleaner_kthread); 3581 } 3582 3583 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3584 struct btrfs_inode *inode) 3585 { 3586 list_del_init(&inode->delayed_iput); 3587 spin_unlock(&fs_info->delayed_iput_lock); 3588 iput(&inode->vfs_inode); 3589 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3590 wake_up(&fs_info->delayed_iputs_wait); 3591 spin_lock(&fs_info->delayed_iput_lock); 3592 } 3593 3594 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3595 struct btrfs_inode *inode) 3596 { 3597 if (!list_empty(&inode->delayed_iput)) { 3598 spin_lock(&fs_info->delayed_iput_lock); 3599 if (!list_empty(&inode->delayed_iput)) 3600 run_delayed_iput_locked(fs_info, inode); 3601 spin_unlock(&fs_info->delayed_iput_lock); 3602 } 3603 } 3604 3605 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3606 { 3607 3608 spin_lock(&fs_info->delayed_iput_lock); 3609 while (!list_empty(&fs_info->delayed_iputs)) { 3610 struct btrfs_inode *inode; 3611 3612 inode = list_first_entry(&fs_info->delayed_iputs, 3613 struct btrfs_inode, delayed_iput); 3614 run_delayed_iput_locked(fs_info, inode); 3615 cond_resched_lock(&fs_info->delayed_iput_lock); 3616 } 3617 spin_unlock(&fs_info->delayed_iput_lock); 3618 } 3619 3620 /** 3621 * Wait for flushing all delayed iputs 3622 * 3623 * @fs_info: the filesystem 3624 * 3625 * This will wait on any delayed iputs that are currently running with KILLABLE 3626 * set. Once they are all done running we will return, unless we are killed in 3627 * which case we return EINTR. This helps in user operations like fallocate etc 3628 * that might get blocked on the iputs. 3629 * 3630 * Return EINTR if we were killed, 0 if nothing's pending 3631 */ 3632 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3633 { 3634 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3635 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3636 if (ret) 3637 return -EINTR; 3638 return 0; 3639 } 3640 3641 /* 3642 * This creates an orphan entry for the given inode in case something goes wrong 3643 * in the middle of an unlink. 3644 */ 3645 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3646 struct btrfs_inode *inode) 3647 { 3648 int ret; 3649 3650 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3651 if (ret && ret != -EEXIST) { 3652 btrfs_abort_transaction(trans, ret); 3653 return ret; 3654 } 3655 3656 return 0; 3657 } 3658 3659 /* 3660 * We have done the delete so we can go ahead and remove the orphan item for 3661 * this particular inode. 3662 */ 3663 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3664 struct btrfs_inode *inode) 3665 { 3666 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3667 } 3668 3669 /* 3670 * this cleans up any orphans that may be left on the list from the last use 3671 * of this root. 3672 */ 3673 int btrfs_orphan_cleanup(struct btrfs_root *root) 3674 { 3675 struct btrfs_fs_info *fs_info = root->fs_info; 3676 struct btrfs_path *path; 3677 struct extent_buffer *leaf; 3678 struct btrfs_key key, found_key; 3679 struct btrfs_trans_handle *trans; 3680 struct inode *inode; 3681 u64 last_objectid = 0; 3682 int ret = 0, nr_unlink = 0; 3683 3684 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3685 return 0; 3686 3687 path = btrfs_alloc_path(); 3688 if (!path) { 3689 ret = -ENOMEM; 3690 goto out; 3691 } 3692 path->reada = READA_BACK; 3693 3694 key.objectid = BTRFS_ORPHAN_OBJECTID; 3695 key.type = BTRFS_ORPHAN_ITEM_KEY; 3696 key.offset = (u64)-1; 3697 3698 while (1) { 3699 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3700 if (ret < 0) 3701 goto out; 3702 3703 /* 3704 * if ret == 0 means we found what we were searching for, which 3705 * is weird, but possible, so only screw with path if we didn't 3706 * find the key and see if we have stuff that matches 3707 */ 3708 if (ret > 0) { 3709 ret = 0; 3710 if (path->slots[0] == 0) 3711 break; 3712 path->slots[0]--; 3713 } 3714 3715 /* pull out the item */ 3716 leaf = path->nodes[0]; 3717 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3718 3719 /* make sure the item matches what we want */ 3720 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3721 break; 3722 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3723 break; 3724 3725 /* release the path since we're done with it */ 3726 btrfs_release_path(path); 3727 3728 /* 3729 * this is where we are basically btrfs_lookup, without the 3730 * crossing root thing. we store the inode number in the 3731 * offset of the orphan item. 3732 */ 3733 3734 if (found_key.offset == last_objectid) { 3735 btrfs_err(fs_info, 3736 "Error removing orphan entry, stopping orphan cleanup"); 3737 ret = -EINVAL; 3738 goto out; 3739 } 3740 3741 last_objectid = found_key.offset; 3742 3743 found_key.objectid = found_key.offset; 3744 found_key.type = BTRFS_INODE_ITEM_KEY; 3745 found_key.offset = 0; 3746 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3747 ret = PTR_ERR_OR_ZERO(inode); 3748 if (ret && ret != -ENOENT) 3749 goto out; 3750 3751 if (ret == -ENOENT && root == fs_info->tree_root) { 3752 struct btrfs_root *dead_root; 3753 int is_dead_root = 0; 3754 3755 /* 3756 * This is an orphan in the tree root. Currently these 3757 * could come from 2 sources: 3758 * a) a root (snapshot/subvolume) deletion in progress 3759 * b) a free space cache inode 3760 * We need to distinguish those two, as the orphan item 3761 * for a root must not get deleted before the deletion 3762 * of the snapshot/subvolume's tree completes. 3763 * 3764 * btrfs_find_orphan_roots() ran before us, which has 3765 * found all deleted roots and loaded them into 3766 * fs_info->fs_roots_radix. So here we can find if an 3767 * orphan item corresponds to a deleted root by looking 3768 * up the root from that radix tree. 3769 */ 3770 3771 spin_lock(&fs_info->fs_roots_radix_lock); 3772 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3773 (unsigned long)found_key.objectid); 3774 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3775 is_dead_root = 1; 3776 spin_unlock(&fs_info->fs_roots_radix_lock); 3777 3778 if (is_dead_root) { 3779 /* prevent this orphan from being found again */ 3780 key.offset = found_key.objectid - 1; 3781 continue; 3782 } 3783 3784 } 3785 3786 /* 3787 * If we have an inode with links, there are a couple of 3788 * possibilities: 3789 * 3790 * 1. We were halfway through creating fsverity metadata for the 3791 * file. In that case, the orphan item represents incomplete 3792 * fsverity metadata which must be cleaned up with 3793 * btrfs_drop_verity_items and deleting the orphan item. 3794 3795 * 2. Old kernels (before v3.12) used to create an 3796 * orphan item for truncate indicating that there were possibly 3797 * extent items past i_size that needed to be deleted. In v3.12, 3798 * truncate was changed to update i_size in sync with the extent 3799 * items, but the (useless) orphan item was still created. Since 3800 * v4.18, we don't create the orphan item for truncate at all. 3801 * 3802 * So, this item could mean that we need to do a truncate, but 3803 * only if this filesystem was last used on a pre-v3.12 kernel 3804 * and was not cleanly unmounted. The odds of that are quite 3805 * slim, and it's a pain to do the truncate now, so just delete 3806 * the orphan item. 3807 * 3808 * It's also possible that this orphan item was supposed to be 3809 * deleted but wasn't. The inode number may have been reused, 3810 * but either way, we can delete the orphan item. 3811 */ 3812 if (ret == -ENOENT || inode->i_nlink) { 3813 if (!ret) { 3814 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3815 iput(inode); 3816 if (ret) 3817 goto out; 3818 } 3819 trans = btrfs_start_transaction(root, 1); 3820 if (IS_ERR(trans)) { 3821 ret = PTR_ERR(trans); 3822 goto out; 3823 } 3824 btrfs_debug(fs_info, "auto deleting %Lu", 3825 found_key.objectid); 3826 ret = btrfs_del_orphan_item(trans, root, 3827 found_key.objectid); 3828 btrfs_end_transaction(trans); 3829 if (ret) 3830 goto out; 3831 continue; 3832 } 3833 3834 nr_unlink++; 3835 3836 /* this will do delete_inode and everything for us */ 3837 iput(inode); 3838 } 3839 /* release the path since we're done with it */ 3840 btrfs_release_path(path); 3841 3842 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3843 trans = btrfs_join_transaction(root); 3844 if (!IS_ERR(trans)) 3845 btrfs_end_transaction(trans); 3846 } 3847 3848 if (nr_unlink) 3849 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3850 3851 out: 3852 if (ret) 3853 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3854 btrfs_free_path(path); 3855 return ret; 3856 } 3857 3858 /* 3859 * very simple check to peek ahead in the leaf looking for xattrs. If we 3860 * don't find any xattrs, we know there can't be any acls. 3861 * 3862 * slot is the slot the inode is in, objectid is the objectid of the inode 3863 */ 3864 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3865 int slot, u64 objectid, 3866 int *first_xattr_slot) 3867 { 3868 u32 nritems = btrfs_header_nritems(leaf); 3869 struct btrfs_key found_key; 3870 static u64 xattr_access = 0; 3871 static u64 xattr_default = 0; 3872 int scanned = 0; 3873 3874 if (!xattr_access) { 3875 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3876 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3877 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3878 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3879 } 3880 3881 slot++; 3882 *first_xattr_slot = -1; 3883 while (slot < nritems) { 3884 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3885 3886 /* we found a different objectid, there must not be acls */ 3887 if (found_key.objectid != objectid) 3888 return 0; 3889 3890 /* we found an xattr, assume we've got an acl */ 3891 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3892 if (*first_xattr_slot == -1) 3893 *first_xattr_slot = slot; 3894 if (found_key.offset == xattr_access || 3895 found_key.offset == xattr_default) 3896 return 1; 3897 } 3898 3899 /* 3900 * we found a key greater than an xattr key, there can't 3901 * be any acls later on 3902 */ 3903 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3904 return 0; 3905 3906 slot++; 3907 scanned++; 3908 3909 /* 3910 * it goes inode, inode backrefs, xattrs, extents, 3911 * so if there are a ton of hard links to an inode there can 3912 * be a lot of backrefs. Don't waste time searching too hard, 3913 * this is just an optimization 3914 */ 3915 if (scanned >= 8) 3916 break; 3917 } 3918 /* we hit the end of the leaf before we found an xattr or 3919 * something larger than an xattr. We have to assume the inode 3920 * has acls 3921 */ 3922 if (*first_xattr_slot == -1) 3923 *first_xattr_slot = slot; 3924 return 1; 3925 } 3926 3927 /* 3928 * read an inode from the btree into the in-memory inode 3929 */ 3930 static int btrfs_read_locked_inode(struct inode *inode, 3931 struct btrfs_path *in_path) 3932 { 3933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3934 struct btrfs_path *path = in_path; 3935 struct extent_buffer *leaf; 3936 struct btrfs_inode_item *inode_item; 3937 struct btrfs_root *root = BTRFS_I(inode)->root; 3938 struct btrfs_key location; 3939 unsigned long ptr; 3940 int maybe_acls; 3941 u32 rdev; 3942 int ret; 3943 bool filled = false; 3944 int first_xattr_slot; 3945 3946 ret = btrfs_fill_inode(inode, &rdev); 3947 if (!ret) 3948 filled = true; 3949 3950 if (!path) { 3951 path = btrfs_alloc_path(); 3952 if (!path) 3953 return -ENOMEM; 3954 } 3955 3956 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3957 3958 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3959 if (ret) { 3960 if (path != in_path) 3961 btrfs_free_path(path); 3962 return ret; 3963 } 3964 3965 leaf = path->nodes[0]; 3966 3967 if (filled) 3968 goto cache_index; 3969 3970 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3971 struct btrfs_inode_item); 3972 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3973 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3974 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3975 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3976 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3977 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3978 round_up(i_size_read(inode), fs_info->sectorsize)); 3979 3980 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3981 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3982 3983 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3984 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3985 3986 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3987 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3988 3989 BTRFS_I(inode)->i_otime.tv_sec = 3990 btrfs_timespec_sec(leaf, &inode_item->otime); 3991 BTRFS_I(inode)->i_otime.tv_nsec = 3992 btrfs_timespec_nsec(leaf, &inode_item->otime); 3993 3994 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3995 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3996 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3997 3998 inode_set_iversion_queried(inode, 3999 btrfs_inode_sequence(leaf, inode_item)); 4000 inode->i_generation = BTRFS_I(inode)->generation; 4001 inode->i_rdev = 0; 4002 rdev = btrfs_inode_rdev(leaf, inode_item); 4003 4004 BTRFS_I(inode)->index_cnt = (u64)-1; 4005 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 4006 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 4007 4008 cache_index: 4009 /* 4010 * If we were modified in the current generation and evicted from memory 4011 * and then re-read we need to do a full sync since we don't have any 4012 * idea about which extents were modified before we were evicted from 4013 * cache. 4014 * 4015 * This is required for both inode re-read from disk and delayed inode 4016 * in delayed_nodes_tree. 4017 */ 4018 if (BTRFS_I(inode)->last_trans == fs_info->generation) 4019 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4020 &BTRFS_I(inode)->runtime_flags); 4021 4022 /* 4023 * We don't persist the id of the transaction where an unlink operation 4024 * against the inode was last made. So here we assume the inode might 4025 * have been evicted, and therefore the exact value of last_unlink_trans 4026 * lost, and set it to last_trans to avoid metadata inconsistencies 4027 * between the inode and its parent if the inode is fsync'ed and the log 4028 * replayed. For example, in the scenario: 4029 * 4030 * touch mydir/foo 4031 * ln mydir/foo mydir/bar 4032 * sync 4033 * unlink mydir/bar 4034 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4035 * xfs_io -c fsync mydir/foo 4036 * <power failure> 4037 * mount fs, triggers fsync log replay 4038 * 4039 * We must make sure that when we fsync our inode foo we also log its 4040 * parent inode, otherwise after log replay the parent still has the 4041 * dentry with the "bar" name but our inode foo has a link count of 1 4042 * and doesn't have an inode ref with the name "bar" anymore. 4043 * 4044 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4045 * but it guarantees correctness at the expense of occasional full 4046 * transaction commits on fsync if our inode is a directory, or if our 4047 * inode is not a directory, logging its parent unnecessarily. 4048 */ 4049 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 4050 4051 /* 4052 * Same logic as for last_unlink_trans. We don't persist the generation 4053 * of the last transaction where this inode was used for a reflink 4054 * operation, so after eviction and reloading the inode we must be 4055 * pessimistic and assume the last transaction that modified the inode. 4056 */ 4057 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 4058 4059 path->slots[0]++; 4060 if (inode->i_nlink != 1 || 4061 path->slots[0] >= btrfs_header_nritems(leaf)) 4062 goto cache_acl; 4063 4064 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4065 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 4066 goto cache_acl; 4067 4068 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4069 if (location.type == BTRFS_INODE_REF_KEY) { 4070 struct btrfs_inode_ref *ref; 4071 4072 ref = (struct btrfs_inode_ref *)ptr; 4073 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 4074 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4075 struct btrfs_inode_extref *extref; 4076 4077 extref = (struct btrfs_inode_extref *)ptr; 4078 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 4079 extref); 4080 } 4081 cache_acl: 4082 /* 4083 * try to precache a NULL acl entry for files that don't have 4084 * any xattrs or acls 4085 */ 4086 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4087 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 4088 if (first_xattr_slot != -1) { 4089 path->slots[0] = first_xattr_slot; 4090 ret = btrfs_load_inode_props(inode, path); 4091 if (ret) 4092 btrfs_err(fs_info, 4093 "error loading props for ino %llu (root %llu): %d", 4094 btrfs_ino(BTRFS_I(inode)), 4095 root->root_key.objectid, ret); 4096 } 4097 if (path != in_path) 4098 btrfs_free_path(path); 4099 4100 if (!maybe_acls) 4101 cache_no_acl(inode); 4102 4103 switch (inode->i_mode & S_IFMT) { 4104 case S_IFREG: 4105 inode->i_mapping->a_ops = &btrfs_aops; 4106 inode->i_fop = &btrfs_file_operations; 4107 inode->i_op = &btrfs_file_inode_operations; 4108 break; 4109 case S_IFDIR: 4110 inode->i_fop = &btrfs_dir_file_operations; 4111 inode->i_op = &btrfs_dir_inode_operations; 4112 break; 4113 case S_IFLNK: 4114 inode->i_op = &btrfs_symlink_inode_operations; 4115 inode_nohighmem(inode); 4116 inode->i_mapping->a_ops = &btrfs_aops; 4117 break; 4118 default: 4119 inode->i_op = &btrfs_special_inode_operations; 4120 init_special_inode(inode, inode->i_mode, rdev); 4121 break; 4122 } 4123 4124 btrfs_sync_inode_flags_to_i_flags(inode); 4125 return 0; 4126 } 4127 4128 /* 4129 * given a leaf and an inode, copy the inode fields into the leaf 4130 */ 4131 static void fill_inode_item(struct btrfs_trans_handle *trans, 4132 struct extent_buffer *leaf, 4133 struct btrfs_inode_item *item, 4134 struct inode *inode) 4135 { 4136 struct btrfs_map_token token; 4137 u64 flags; 4138 4139 btrfs_init_map_token(&token, leaf); 4140 4141 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4142 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4143 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4144 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4145 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4146 4147 btrfs_set_token_timespec_sec(&token, &item->atime, 4148 inode->i_atime.tv_sec); 4149 btrfs_set_token_timespec_nsec(&token, &item->atime, 4150 inode->i_atime.tv_nsec); 4151 4152 btrfs_set_token_timespec_sec(&token, &item->mtime, 4153 inode->i_mtime.tv_sec); 4154 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4155 inode->i_mtime.tv_nsec); 4156 4157 btrfs_set_token_timespec_sec(&token, &item->ctime, 4158 inode->i_ctime.tv_sec); 4159 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4160 inode->i_ctime.tv_nsec); 4161 4162 btrfs_set_token_timespec_sec(&token, &item->otime, 4163 BTRFS_I(inode)->i_otime.tv_sec); 4164 btrfs_set_token_timespec_nsec(&token, &item->otime, 4165 BTRFS_I(inode)->i_otime.tv_nsec); 4166 4167 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4168 btrfs_set_token_inode_generation(&token, item, 4169 BTRFS_I(inode)->generation); 4170 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4171 btrfs_set_token_inode_transid(&token, item, trans->transid); 4172 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4173 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4174 BTRFS_I(inode)->ro_flags); 4175 btrfs_set_token_inode_flags(&token, item, flags); 4176 btrfs_set_token_inode_block_group(&token, item, 0); 4177 } 4178 4179 /* 4180 * copy everything in the in-memory inode into the btree. 4181 */ 4182 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4183 struct btrfs_root *root, 4184 struct btrfs_inode *inode) 4185 { 4186 struct btrfs_inode_item *inode_item; 4187 struct btrfs_path *path; 4188 struct extent_buffer *leaf; 4189 int ret; 4190 4191 path = btrfs_alloc_path(); 4192 if (!path) 4193 return -ENOMEM; 4194 4195 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 4196 if (ret) { 4197 if (ret > 0) 4198 ret = -ENOENT; 4199 goto failed; 4200 } 4201 4202 leaf = path->nodes[0]; 4203 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4204 struct btrfs_inode_item); 4205 4206 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4207 btrfs_mark_buffer_dirty(leaf); 4208 btrfs_set_inode_last_trans(trans, inode); 4209 ret = 0; 4210 failed: 4211 btrfs_free_path(path); 4212 return ret; 4213 } 4214 4215 /* 4216 * copy everything in the in-memory inode into the btree. 4217 */ 4218 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4219 struct btrfs_root *root, 4220 struct btrfs_inode *inode) 4221 { 4222 struct btrfs_fs_info *fs_info = root->fs_info; 4223 int ret; 4224 4225 /* 4226 * If the inode is a free space inode, we can deadlock during commit 4227 * if we put it into the delayed code. 4228 * 4229 * The data relocation inode should also be directly updated 4230 * without delay 4231 */ 4232 if (!btrfs_is_free_space_inode(inode) 4233 && !btrfs_is_data_reloc_root(root) 4234 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4235 btrfs_update_root_times(trans, root); 4236 4237 ret = btrfs_delayed_update_inode(trans, root, inode); 4238 if (!ret) 4239 btrfs_set_inode_last_trans(trans, inode); 4240 return ret; 4241 } 4242 4243 return btrfs_update_inode_item(trans, root, inode); 4244 } 4245 4246 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4247 struct btrfs_root *root, struct btrfs_inode *inode) 4248 { 4249 int ret; 4250 4251 ret = btrfs_update_inode(trans, root, inode); 4252 if (ret == -ENOSPC) 4253 return btrfs_update_inode_item(trans, root, inode); 4254 return ret; 4255 } 4256 4257 /* 4258 * unlink helper that gets used here in inode.c and in the tree logging 4259 * recovery code. It remove a link in a directory with a given name, and 4260 * also drops the back refs in the inode to the directory 4261 */ 4262 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4263 struct btrfs_inode *dir, 4264 struct btrfs_inode *inode, 4265 const char *name, int name_len, 4266 struct btrfs_rename_ctx *rename_ctx) 4267 { 4268 struct btrfs_root *root = dir->root; 4269 struct btrfs_fs_info *fs_info = root->fs_info; 4270 struct btrfs_path *path; 4271 int ret = 0; 4272 struct btrfs_dir_item *di; 4273 u64 index; 4274 u64 ino = btrfs_ino(inode); 4275 u64 dir_ino = btrfs_ino(dir); 4276 4277 path = btrfs_alloc_path(); 4278 if (!path) { 4279 ret = -ENOMEM; 4280 goto out; 4281 } 4282 4283 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4284 name, name_len, -1); 4285 if (IS_ERR_OR_NULL(di)) { 4286 ret = di ? PTR_ERR(di) : -ENOENT; 4287 goto err; 4288 } 4289 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4290 if (ret) 4291 goto err; 4292 btrfs_release_path(path); 4293 4294 /* 4295 * If we don't have dir index, we have to get it by looking up 4296 * the inode ref, since we get the inode ref, remove it directly, 4297 * it is unnecessary to do delayed deletion. 4298 * 4299 * But if we have dir index, needn't search inode ref to get it. 4300 * Since the inode ref is close to the inode item, it is better 4301 * that we delay to delete it, and just do this deletion when 4302 * we update the inode item. 4303 */ 4304 if (inode->dir_index) { 4305 ret = btrfs_delayed_delete_inode_ref(inode); 4306 if (!ret) { 4307 index = inode->dir_index; 4308 goto skip_backref; 4309 } 4310 } 4311 4312 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4313 dir_ino, &index); 4314 if (ret) { 4315 btrfs_info(fs_info, 4316 "failed to delete reference to %.*s, inode %llu parent %llu", 4317 name_len, name, ino, dir_ino); 4318 btrfs_abort_transaction(trans, ret); 4319 goto err; 4320 } 4321 skip_backref: 4322 if (rename_ctx) 4323 rename_ctx->index = index; 4324 4325 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4326 if (ret) { 4327 btrfs_abort_transaction(trans, ret); 4328 goto err; 4329 } 4330 4331 /* 4332 * If we are in a rename context, we don't need to update anything in the 4333 * log. That will be done later during the rename by btrfs_log_new_name(). 4334 * Besides that, doing it here would only cause extra unnecessary btree 4335 * operations on the log tree, increasing latency for applications. 4336 */ 4337 if (!rename_ctx) { 4338 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4339 dir_ino); 4340 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4341 index); 4342 } 4343 4344 /* 4345 * If we have a pending delayed iput we could end up with the final iput 4346 * being run in btrfs-cleaner context. If we have enough of these built 4347 * up we can end up burning a lot of time in btrfs-cleaner without any 4348 * way to throttle the unlinks. Since we're currently holding a ref on 4349 * the inode we can run the delayed iput here without any issues as the 4350 * final iput won't be done until after we drop the ref we're currently 4351 * holding. 4352 */ 4353 btrfs_run_delayed_iput(fs_info, inode); 4354 err: 4355 btrfs_free_path(path); 4356 if (ret) 4357 goto out; 4358 4359 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4360 inode_inc_iversion(&inode->vfs_inode); 4361 inode_inc_iversion(&dir->vfs_inode); 4362 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4363 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime; 4364 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime; 4365 ret = btrfs_update_inode(trans, root, dir); 4366 out: 4367 return ret; 4368 } 4369 4370 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4371 struct btrfs_inode *dir, struct btrfs_inode *inode, 4372 const char *name, int name_len) 4373 { 4374 int ret; 4375 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL); 4376 if (!ret) { 4377 drop_nlink(&inode->vfs_inode); 4378 ret = btrfs_update_inode(trans, inode->root, inode); 4379 } 4380 return ret; 4381 } 4382 4383 /* 4384 * helper to start transaction for unlink and rmdir. 4385 * 4386 * unlink and rmdir are special in btrfs, they do not always free space, so 4387 * if we cannot make our reservations the normal way try and see if there is 4388 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4389 * allow the unlink to occur. 4390 */ 4391 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4392 { 4393 struct btrfs_root *root = BTRFS_I(dir)->root; 4394 4395 /* 4396 * 1 for the possible orphan item 4397 * 1 for the dir item 4398 * 1 for the dir index 4399 * 1 for the inode ref 4400 * 1 for the inode 4401 * 1 for the parent inode 4402 */ 4403 return btrfs_start_transaction_fallback_global_rsv(root, 6); 4404 } 4405 4406 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4407 { 4408 struct btrfs_trans_handle *trans; 4409 struct inode *inode = d_inode(dentry); 4410 int ret; 4411 4412 trans = __unlink_start_trans(dir); 4413 if (IS_ERR(trans)) 4414 return PTR_ERR(trans); 4415 4416 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4417 0); 4418 4419 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 4420 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4421 dentry->d_name.len); 4422 if (ret) 4423 goto out; 4424 4425 if (inode->i_nlink == 0) { 4426 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4427 if (ret) 4428 goto out; 4429 } 4430 4431 out: 4432 btrfs_end_transaction(trans); 4433 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4434 return ret; 4435 } 4436 4437 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4438 struct inode *dir, struct dentry *dentry) 4439 { 4440 struct btrfs_root *root = BTRFS_I(dir)->root; 4441 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4442 struct btrfs_path *path; 4443 struct extent_buffer *leaf; 4444 struct btrfs_dir_item *di; 4445 struct btrfs_key key; 4446 const char *name = dentry->d_name.name; 4447 int name_len = dentry->d_name.len; 4448 u64 index; 4449 int ret; 4450 u64 objectid; 4451 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4452 4453 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4454 objectid = inode->root->root_key.objectid; 4455 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4456 objectid = inode->location.objectid; 4457 } else { 4458 WARN_ON(1); 4459 return -EINVAL; 4460 } 4461 4462 path = btrfs_alloc_path(); 4463 if (!path) 4464 return -ENOMEM; 4465 4466 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4467 name, name_len, -1); 4468 if (IS_ERR_OR_NULL(di)) { 4469 ret = di ? PTR_ERR(di) : -ENOENT; 4470 goto out; 4471 } 4472 4473 leaf = path->nodes[0]; 4474 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4475 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4476 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4477 if (ret) { 4478 btrfs_abort_transaction(trans, ret); 4479 goto out; 4480 } 4481 btrfs_release_path(path); 4482 4483 /* 4484 * This is a placeholder inode for a subvolume we didn't have a 4485 * reference to at the time of the snapshot creation. In the meantime 4486 * we could have renamed the real subvol link into our snapshot, so 4487 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4488 * Instead simply lookup the dir_index_item for this entry so we can 4489 * remove it. Otherwise we know we have a ref to the root and we can 4490 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4491 */ 4492 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4493 di = btrfs_search_dir_index_item(root, path, dir_ino, 4494 name, name_len); 4495 if (IS_ERR_OR_NULL(di)) { 4496 if (!di) 4497 ret = -ENOENT; 4498 else 4499 ret = PTR_ERR(di); 4500 btrfs_abort_transaction(trans, ret); 4501 goto out; 4502 } 4503 4504 leaf = path->nodes[0]; 4505 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4506 index = key.offset; 4507 btrfs_release_path(path); 4508 } else { 4509 ret = btrfs_del_root_ref(trans, objectid, 4510 root->root_key.objectid, dir_ino, 4511 &index, name, name_len); 4512 if (ret) { 4513 btrfs_abort_transaction(trans, ret); 4514 goto out; 4515 } 4516 } 4517 4518 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4519 if (ret) { 4520 btrfs_abort_transaction(trans, ret); 4521 goto out; 4522 } 4523 4524 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4525 inode_inc_iversion(dir); 4526 dir->i_mtime = current_time(dir); 4527 dir->i_ctime = dir->i_mtime; 4528 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4529 if (ret) 4530 btrfs_abort_transaction(trans, ret); 4531 out: 4532 btrfs_free_path(path); 4533 return ret; 4534 } 4535 4536 /* 4537 * Helper to check if the subvolume references other subvolumes or if it's 4538 * default. 4539 */ 4540 static noinline int may_destroy_subvol(struct btrfs_root *root) 4541 { 4542 struct btrfs_fs_info *fs_info = root->fs_info; 4543 struct btrfs_path *path; 4544 struct btrfs_dir_item *di; 4545 struct btrfs_key key; 4546 u64 dir_id; 4547 int ret; 4548 4549 path = btrfs_alloc_path(); 4550 if (!path) 4551 return -ENOMEM; 4552 4553 /* Make sure this root isn't set as the default subvol */ 4554 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4555 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4556 dir_id, "default", 7, 0); 4557 if (di && !IS_ERR(di)) { 4558 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4559 if (key.objectid == root->root_key.objectid) { 4560 ret = -EPERM; 4561 btrfs_err(fs_info, 4562 "deleting default subvolume %llu is not allowed", 4563 key.objectid); 4564 goto out; 4565 } 4566 btrfs_release_path(path); 4567 } 4568 4569 key.objectid = root->root_key.objectid; 4570 key.type = BTRFS_ROOT_REF_KEY; 4571 key.offset = (u64)-1; 4572 4573 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4574 if (ret < 0) 4575 goto out; 4576 BUG_ON(ret == 0); 4577 4578 ret = 0; 4579 if (path->slots[0] > 0) { 4580 path->slots[0]--; 4581 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4582 if (key.objectid == root->root_key.objectid && 4583 key.type == BTRFS_ROOT_REF_KEY) 4584 ret = -ENOTEMPTY; 4585 } 4586 out: 4587 btrfs_free_path(path); 4588 return ret; 4589 } 4590 4591 /* Delete all dentries for inodes belonging to the root */ 4592 static void btrfs_prune_dentries(struct btrfs_root *root) 4593 { 4594 struct btrfs_fs_info *fs_info = root->fs_info; 4595 struct rb_node *node; 4596 struct rb_node *prev; 4597 struct btrfs_inode *entry; 4598 struct inode *inode; 4599 u64 objectid = 0; 4600 4601 if (!BTRFS_FS_ERROR(fs_info)) 4602 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4603 4604 spin_lock(&root->inode_lock); 4605 again: 4606 node = root->inode_tree.rb_node; 4607 prev = NULL; 4608 while (node) { 4609 prev = node; 4610 entry = rb_entry(node, struct btrfs_inode, rb_node); 4611 4612 if (objectid < btrfs_ino(entry)) 4613 node = node->rb_left; 4614 else if (objectid > btrfs_ino(entry)) 4615 node = node->rb_right; 4616 else 4617 break; 4618 } 4619 if (!node) { 4620 while (prev) { 4621 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4622 if (objectid <= btrfs_ino(entry)) { 4623 node = prev; 4624 break; 4625 } 4626 prev = rb_next(prev); 4627 } 4628 } 4629 while (node) { 4630 entry = rb_entry(node, struct btrfs_inode, rb_node); 4631 objectid = btrfs_ino(entry) + 1; 4632 inode = igrab(&entry->vfs_inode); 4633 if (inode) { 4634 spin_unlock(&root->inode_lock); 4635 if (atomic_read(&inode->i_count) > 1) 4636 d_prune_aliases(inode); 4637 /* 4638 * btrfs_drop_inode will have it removed from the inode 4639 * cache when its usage count hits zero. 4640 */ 4641 iput(inode); 4642 cond_resched(); 4643 spin_lock(&root->inode_lock); 4644 goto again; 4645 } 4646 4647 if (cond_resched_lock(&root->inode_lock)) 4648 goto again; 4649 4650 node = rb_next(node); 4651 } 4652 spin_unlock(&root->inode_lock); 4653 } 4654 4655 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4656 { 4657 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4658 struct btrfs_root *root = BTRFS_I(dir)->root; 4659 struct inode *inode = d_inode(dentry); 4660 struct btrfs_root *dest = BTRFS_I(inode)->root; 4661 struct btrfs_trans_handle *trans; 4662 struct btrfs_block_rsv block_rsv; 4663 u64 root_flags; 4664 int ret; 4665 4666 /* 4667 * Don't allow to delete a subvolume with send in progress. This is 4668 * inside the inode lock so the error handling that has to drop the bit 4669 * again is not run concurrently. 4670 */ 4671 spin_lock(&dest->root_item_lock); 4672 if (dest->send_in_progress) { 4673 spin_unlock(&dest->root_item_lock); 4674 btrfs_warn(fs_info, 4675 "attempt to delete subvolume %llu during send", 4676 dest->root_key.objectid); 4677 return -EPERM; 4678 } 4679 if (atomic_read(&dest->nr_swapfiles)) { 4680 spin_unlock(&dest->root_item_lock); 4681 btrfs_warn(fs_info, 4682 "attempt to delete subvolume %llu with active swapfile", 4683 root->root_key.objectid); 4684 return -EPERM; 4685 } 4686 root_flags = btrfs_root_flags(&dest->root_item); 4687 btrfs_set_root_flags(&dest->root_item, 4688 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4689 spin_unlock(&dest->root_item_lock); 4690 4691 down_write(&fs_info->subvol_sem); 4692 4693 ret = may_destroy_subvol(dest); 4694 if (ret) 4695 goto out_up_write; 4696 4697 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4698 /* 4699 * One for dir inode, 4700 * two for dir entries, 4701 * two for root ref/backref. 4702 */ 4703 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4704 if (ret) 4705 goto out_up_write; 4706 4707 trans = btrfs_start_transaction(root, 0); 4708 if (IS_ERR(trans)) { 4709 ret = PTR_ERR(trans); 4710 goto out_release; 4711 } 4712 trans->block_rsv = &block_rsv; 4713 trans->bytes_reserved = block_rsv.size; 4714 4715 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4716 4717 ret = btrfs_unlink_subvol(trans, dir, dentry); 4718 if (ret) { 4719 btrfs_abort_transaction(trans, ret); 4720 goto out_end_trans; 4721 } 4722 4723 ret = btrfs_record_root_in_trans(trans, dest); 4724 if (ret) { 4725 btrfs_abort_transaction(trans, ret); 4726 goto out_end_trans; 4727 } 4728 4729 memset(&dest->root_item.drop_progress, 0, 4730 sizeof(dest->root_item.drop_progress)); 4731 btrfs_set_root_drop_level(&dest->root_item, 0); 4732 btrfs_set_root_refs(&dest->root_item, 0); 4733 4734 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4735 ret = btrfs_insert_orphan_item(trans, 4736 fs_info->tree_root, 4737 dest->root_key.objectid); 4738 if (ret) { 4739 btrfs_abort_transaction(trans, ret); 4740 goto out_end_trans; 4741 } 4742 } 4743 4744 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4745 BTRFS_UUID_KEY_SUBVOL, 4746 dest->root_key.objectid); 4747 if (ret && ret != -ENOENT) { 4748 btrfs_abort_transaction(trans, ret); 4749 goto out_end_trans; 4750 } 4751 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4752 ret = btrfs_uuid_tree_remove(trans, 4753 dest->root_item.received_uuid, 4754 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4755 dest->root_key.objectid); 4756 if (ret && ret != -ENOENT) { 4757 btrfs_abort_transaction(trans, ret); 4758 goto out_end_trans; 4759 } 4760 } 4761 4762 free_anon_bdev(dest->anon_dev); 4763 dest->anon_dev = 0; 4764 out_end_trans: 4765 trans->block_rsv = NULL; 4766 trans->bytes_reserved = 0; 4767 ret = btrfs_end_transaction(trans); 4768 inode->i_flags |= S_DEAD; 4769 out_release: 4770 btrfs_subvolume_release_metadata(root, &block_rsv); 4771 out_up_write: 4772 up_write(&fs_info->subvol_sem); 4773 if (ret) { 4774 spin_lock(&dest->root_item_lock); 4775 root_flags = btrfs_root_flags(&dest->root_item); 4776 btrfs_set_root_flags(&dest->root_item, 4777 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4778 spin_unlock(&dest->root_item_lock); 4779 } else { 4780 d_invalidate(dentry); 4781 btrfs_prune_dentries(dest); 4782 ASSERT(dest->send_in_progress == 0); 4783 } 4784 4785 return ret; 4786 } 4787 4788 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4789 { 4790 struct inode *inode = d_inode(dentry); 4791 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4792 int err = 0; 4793 struct btrfs_trans_handle *trans; 4794 u64 last_unlink_trans; 4795 4796 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4797 return -ENOTEMPTY; 4798 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4799 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4800 btrfs_err(fs_info, 4801 "extent tree v2 doesn't support snapshot deletion yet"); 4802 return -EOPNOTSUPP; 4803 } 4804 return btrfs_delete_subvolume(dir, dentry); 4805 } 4806 4807 trans = __unlink_start_trans(dir); 4808 if (IS_ERR(trans)) 4809 return PTR_ERR(trans); 4810 4811 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4812 err = btrfs_unlink_subvol(trans, dir, dentry); 4813 goto out; 4814 } 4815 4816 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4817 if (err) 4818 goto out; 4819 4820 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4821 4822 /* now the directory is empty */ 4823 err = btrfs_unlink_inode(trans, BTRFS_I(dir), 4824 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4825 dentry->d_name.len); 4826 if (!err) { 4827 btrfs_i_size_write(BTRFS_I(inode), 0); 4828 /* 4829 * Propagate the last_unlink_trans value of the deleted dir to 4830 * its parent directory. This is to prevent an unrecoverable 4831 * log tree in the case we do something like this: 4832 * 1) create dir foo 4833 * 2) create snapshot under dir foo 4834 * 3) delete the snapshot 4835 * 4) rmdir foo 4836 * 5) mkdir foo 4837 * 6) fsync foo or some file inside foo 4838 */ 4839 if (last_unlink_trans >= trans->transid) 4840 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4841 } 4842 out: 4843 btrfs_end_transaction(trans); 4844 btrfs_btree_balance_dirty(fs_info); 4845 4846 return err; 4847 } 4848 4849 /* 4850 * btrfs_truncate_block - read, zero a chunk and write a block 4851 * @inode - inode that we're zeroing 4852 * @from - the offset to start zeroing 4853 * @len - the length to zero, 0 to zero the entire range respective to the 4854 * offset 4855 * @front - zero up to the offset instead of from the offset on 4856 * 4857 * This will find the block for the "from" offset and cow the block and zero the 4858 * part we want to zero. This is used with truncate and hole punching. 4859 */ 4860 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4861 int front) 4862 { 4863 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4864 struct address_space *mapping = inode->vfs_inode.i_mapping; 4865 struct extent_io_tree *io_tree = &inode->io_tree; 4866 struct btrfs_ordered_extent *ordered; 4867 struct extent_state *cached_state = NULL; 4868 struct extent_changeset *data_reserved = NULL; 4869 bool only_release_metadata = false; 4870 u32 blocksize = fs_info->sectorsize; 4871 pgoff_t index = from >> PAGE_SHIFT; 4872 unsigned offset = from & (blocksize - 1); 4873 struct page *page; 4874 gfp_t mask = btrfs_alloc_write_mask(mapping); 4875 size_t write_bytes = blocksize; 4876 int ret = 0; 4877 u64 block_start; 4878 u64 block_end; 4879 4880 if (IS_ALIGNED(offset, blocksize) && 4881 (!len || IS_ALIGNED(len, blocksize))) 4882 goto out; 4883 4884 block_start = round_down(from, blocksize); 4885 block_end = block_start + blocksize - 1; 4886 4887 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4888 blocksize, false); 4889 if (ret < 0) { 4890 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4891 /* For nocow case, no need to reserve data space */ 4892 only_release_metadata = true; 4893 } else { 4894 goto out; 4895 } 4896 } 4897 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4898 if (ret < 0) { 4899 if (!only_release_metadata) 4900 btrfs_free_reserved_data_space(inode, data_reserved, 4901 block_start, blocksize); 4902 goto out; 4903 } 4904 again: 4905 page = find_or_create_page(mapping, index, mask); 4906 if (!page) { 4907 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4908 blocksize, true); 4909 btrfs_delalloc_release_extents(inode, blocksize); 4910 ret = -ENOMEM; 4911 goto out; 4912 } 4913 ret = set_page_extent_mapped(page); 4914 if (ret < 0) 4915 goto out_unlock; 4916 4917 if (!PageUptodate(page)) { 4918 ret = btrfs_read_folio(NULL, page_folio(page)); 4919 lock_page(page); 4920 if (page->mapping != mapping) { 4921 unlock_page(page); 4922 put_page(page); 4923 goto again; 4924 } 4925 if (!PageUptodate(page)) { 4926 ret = -EIO; 4927 goto out_unlock; 4928 } 4929 } 4930 wait_on_page_writeback(page); 4931 4932 lock_extent(io_tree, block_start, block_end, &cached_state); 4933 4934 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4935 if (ordered) { 4936 unlock_extent(io_tree, block_start, block_end, &cached_state); 4937 unlock_page(page); 4938 put_page(page); 4939 btrfs_start_ordered_extent(ordered, 1); 4940 btrfs_put_ordered_extent(ordered); 4941 goto again; 4942 } 4943 4944 clear_extent_bit(&inode->io_tree, block_start, block_end, 4945 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4946 &cached_state); 4947 4948 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4949 &cached_state); 4950 if (ret) { 4951 unlock_extent(io_tree, block_start, block_end, &cached_state); 4952 goto out_unlock; 4953 } 4954 4955 if (offset != blocksize) { 4956 if (!len) 4957 len = blocksize - offset; 4958 if (front) 4959 memzero_page(page, (block_start - page_offset(page)), 4960 offset); 4961 else 4962 memzero_page(page, (block_start - page_offset(page)) + offset, 4963 len); 4964 } 4965 btrfs_page_clear_checked(fs_info, page, block_start, 4966 block_end + 1 - block_start); 4967 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4968 unlock_extent(io_tree, block_start, block_end, &cached_state); 4969 4970 if (only_release_metadata) 4971 set_extent_bit(&inode->io_tree, block_start, block_end, 4972 EXTENT_NORESERVE, NULL, GFP_NOFS); 4973 4974 out_unlock: 4975 if (ret) { 4976 if (only_release_metadata) 4977 btrfs_delalloc_release_metadata(inode, blocksize, true); 4978 else 4979 btrfs_delalloc_release_space(inode, data_reserved, 4980 block_start, blocksize, true); 4981 } 4982 btrfs_delalloc_release_extents(inode, blocksize); 4983 unlock_page(page); 4984 put_page(page); 4985 out: 4986 if (only_release_metadata) 4987 btrfs_check_nocow_unlock(inode); 4988 extent_changeset_free(data_reserved); 4989 return ret; 4990 } 4991 4992 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4993 u64 offset, u64 len) 4994 { 4995 struct btrfs_fs_info *fs_info = root->fs_info; 4996 struct btrfs_trans_handle *trans; 4997 struct btrfs_drop_extents_args drop_args = { 0 }; 4998 int ret; 4999 5000 /* 5001 * If NO_HOLES is enabled, we don't need to do anything. 5002 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5003 * or btrfs_update_inode() will be called, which guarantee that the next 5004 * fsync will know this inode was changed and needs to be logged. 5005 */ 5006 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5007 return 0; 5008 5009 /* 5010 * 1 - for the one we're dropping 5011 * 1 - for the one we're adding 5012 * 1 - for updating the inode. 5013 */ 5014 trans = btrfs_start_transaction(root, 3); 5015 if (IS_ERR(trans)) 5016 return PTR_ERR(trans); 5017 5018 drop_args.start = offset; 5019 drop_args.end = offset + len; 5020 drop_args.drop_cache = true; 5021 5022 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5023 if (ret) { 5024 btrfs_abort_transaction(trans, ret); 5025 btrfs_end_transaction(trans); 5026 return ret; 5027 } 5028 5029 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5030 if (ret) { 5031 btrfs_abort_transaction(trans, ret); 5032 } else { 5033 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5034 btrfs_update_inode(trans, root, inode); 5035 } 5036 btrfs_end_transaction(trans); 5037 return ret; 5038 } 5039 5040 /* 5041 * This function puts in dummy file extents for the area we're creating a hole 5042 * for. So if we are truncating this file to a larger size we need to insert 5043 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5044 * the range between oldsize and size 5045 */ 5046 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5047 { 5048 struct btrfs_root *root = inode->root; 5049 struct btrfs_fs_info *fs_info = root->fs_info; 5050 struct extent_io_tree *io_tree = &inode->io_tree; 5051 struct extent_map *em = NULL; 5052 struct extent_state *cached_state = NULL; 5053 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5054 u64 block_end = ALIGN(size, fs_info->sectorsize); 5055 u64 last_byte; 5056 u64 cur_offset; 5057 u64 hole_size; 5058 int err = 0; 5059 5060 /* 5061 * If our size started in the middle of a block we need to zero out the 5062 * rest of the block before we expand the i_size, otherwise we could 5063 * expose stale data. 5064 */ 5065 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5066 if (err) 5067 return err; 5068 5069 if (size <= hole_start) 5070 return 0; 5071 5072 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5073 &cached_state); 5074 cur_offset = hole_start; 5075 while (1) { 5076 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5077 block_end - cur_offset); 5078 if (IS_ERR(em)) { 5079 err = PTR_ERR(em); 5080 em = NULL; 5081 break; 5082 } 5083 last_byte = min(extent_map_end(em), block_end); 5084 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5085 hole_size = last_byte - cur_offset; 5086 5087 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5088 struct extent_map *hole_em; 5089 5090 err = maybe_insert_hole(root, inode, cur_offset, 5091 hole_size); 5092 if (err) 5093 break; 5094 5095 err = btrfs_inode_set_file_extent_range(inode, 5096 cur_offset, hole_size); 5097 if (err) 5098 break; 5099 5100 hole_em = alloc_extent_map(); 5101 if (!hole_em) { 5102 btrfs_drop_extent_map_range(inode, cur_offset, 5103 cur_offset + hole_size - 1, 5104 false); 5105 btrfs_set_inode_full_sync(inode); 5106 goto next; 5107 } 5108 hole_em->start = cur_offset; 5109 hole_em->len = hole_size; 5110 hole_em->orig_start = cur_offset; 5111 5112 hole_em->block_start = EXTENT_MAP_HOLE; 5113 hole_em->block_len = 0; 5114 hole_em->orig_block_len = 0; 5115 hole_em->ram_bytes = hole_size; 5116 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5117 hole_em->generation = fs_info->generation; 5118 5119 err = btrfs_replace_extent_map_range(inode, hole_em, true); 5120 free_extent_map(hole_em); 5121 } else { 5122 err = btrfs_inode_set_file_extent_range(inode, 5123 cur_offset, hole_size); 5124 if (err) 5125 break; 5126 } 5127 next: 5128 free_extent_map(em); 5129 em = NULL; 5130 cur_offset = last_byte; 5131 if (cur_offset >= block_end) 5132 break; 5133 } 5134 free_extent_map(em); 5135 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5136 return err; 5137 } 5138 5139 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5140 { 5141 struct btrfs_root *root = BTRFS_I(inode)->root; 5142 struct btrfs_trans_handle *trans; 5143 loff_t oldsize = i_size_read(inode); 5144 loff_t newsize = attr->ia_size; 5145 int mask = attr->ia_valid; 5146 int ret; 5147 5148 /* 5149 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5150 * special case where we need to update the times despite not having 5151 * these flags set. For all other operations the VFS set these flags 5152 * explicitly if it wants a timestamp update. 5153 */ 5154 if (newsize != oldsize) { 5155 inode_inc_iversion(inode); 5156 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5157 inode->i_mtime = current_time(inode); 5158 inode->i_ctime = inode->i_mtime; 5159 } 5160 } 5161 5162 if (newsize > oldsize) { 5163 /* 5164 * Don't do an expanding truncate while snapshotting is ongoing. 5165 * This is to ensure the snapshot captures a fully consistent 5166 * state of this file - if the snapshot captures this expanding 5167 * truncation, it must capture all writes that happened before 5168 * this truncation. 5169 */ 5170 btrfs_drew_write_lock(&root->snapshot_lock); 5171 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5172 if (ret) { 5173 btrfs_drew_write_unlock(&root->snapshot_lock); 5174 return ret; 5175 } 5176 5177 trans = btrfs_start_transaction(root, 1); 5178 if (IS_ERR(trans)) { 5179 btrfs_drew_write_unlock(&root->snapshot_lock); 5180 return PTR_ERR(trans); 5181 } 5182 5183 i_size_write(inode, newsize); 5184 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5185 pagecache_isize_extended(inode, oldsize, newsize); 5186 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5187 btrfs_drew_write_unlock(&root->snapshot_lock); 5188 btrfs_end_transaction(trans); 5189 } else { 5190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5191 5192 if (btrfs_is_zoned(fs_info)) { 5193 ret = btrfs_wait_ordered_range(inode, 5194 ALIGN(newsize, fs_info->sectorsize), 5195 (u64)-1); 5196 if (ret) 5197 return ret; 5198 } 5199 5200 /* 5201 * We're truncating a file that used to have good data down to 5202 * zero. Make sure any new writes to the file get on disk 5203 * on close. 5204 */ 5205 if (newsize == 0) 5206 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5207 &BTRFS_I(inode)->runtime_flags); 5208 5209 truncate_setsize(inode, newsize); 5210 5211 inode_dio_wait(inode); 5212 5213 ret = btrfs_truncate(inode, newsize == oldsize); 5214 if (ret && inode->i_nlink) { 5215 int err; 5216 5217 /* 5218 * Truncate failed, so fix up the in-memory size. We 5219 * adjusted disk_i_size down as we removed extents, so 5220 * wait for disk_i_size to be stable and then update the 5221 * in-memory size to match. 5222 */ 5223 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5224 if (err) 5225 return err; 5226 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5227 } 5228 } 5229 5230 return ret; 5231 } 5232 5233 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5234 struct iattr *attr) 5235 { 5236 struct inode *inode = d_inode(dentry); 5237 struct btrfs_root *root = BTRFS_I(inode)->root; 5238 int err; 5239 5240 if (btrfs_root_readonly(root)) 5241 return -EROFS; 5242 5243 err = setattr_prepare(mnt_userns, dentry, attr); 5244 if (err) 5245 return err; 5246 5247 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5248 err = btrfs_setsize(inode, attr); 5249 if (err) 5250 return err; 5251 } 5252 5253 if (attr->ia_valid) { 5254 setattr_copy(mnt_userns, inode, attr); 5255 inode_inc_iversion(inode); 5256 err = btrfs_dirty_inode(inode); 5257 5258 if (!err && attr->ia_valid & ATTR_MODE) 5259 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5260 } 5261 5262 return err; 5263 } 5264 5265 /* 5266 * While truncating the inode pages during eviction, we get the VFS 5267 * calling btrfs_invalidate_folio() against each folio of the inode. This 5268 * is slow because the calls to btrfs_invalidate_folio() result in a 5269 * huge amount of calls to lock_extent() and clear_extent_bit(), 5270 * which keep merging and splitting extent_state structures over and over, 5271 * wasting lots of time. 5272 * 5273 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5274 * skip all those expensive operations on a per folio basis and do only 5275 * the ordered io finishing, while we release here the extent_map and 5276 * extent_state structures, without the excessive merging and splitting. 5277 */ 5278 static void evict_inode_truncate_pages(struct inode *inode) 5279 { 5280 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5281 struct rb_node *node; 5282 5283 ASSERT(inode->i_state & I_FREEING); 5284 truncate_inode_pages_final(&inode->i_data); 5285 5286 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5287 5288 /* 5289 * Keep looping until we have no more ranges in the io tree. 5290 * We can have ongoing bios started by readahead that have 5291 * their endio callback (extent_io.c:end_bio_extent_readpage) 5292 * still in progress (unlocked the pages in the bio but did not yet 5293 * unlocked the ranges in the io tree). Therefore this means some 5294 * ranges can still be locked and eviction started because before 5295 * submitting those bios, which are executed by a separate task (work 5296 * queue kthread), inode references (inode->i_count) were not taken 5297 * (which would be dropped in the end io callback of each bio). 5298 * Therefore here we effectively end up waiting for those bios and 5299 * anyone else holding locked ranges without having bumped the inode's 5300 * reference count - if we don't do it, when they access the inode's 5301 * io_tree to unlock a range it may be too late, leading to an 5302 * use-after-free issue. 5303 */ 5304 spin_lock(&io_tree->lock); 5305 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5306 struct extent_state *state; 5307 struct extent_state *cached_state = NULL; 5308 u64 start; 5309 u64 end; 5310 unsigned state_flags; 5311 5312 node = rb_first(&io_tree->state); 5313 state = rb_entry(node, struct extent_state, rb_node); 5314 start = state->start; 5315 end = state->end; 5316 state_flags = state->state; 5317 spin_unlock(&io_tree->lock); 5318 5319 lock_extent(io_tree, start, end, &cached_state); 5320 5321 /* 5322 * If still has DELALLOC flag, the extent didn't reach disk, 5323 * and its reserved space won't be freed by delayed_ref. 5324 * So we need to free its reserved space here. 5325 * (Refer to comment in btrfs_invalidate_folio, case 2) 5326 * 5327 * Note, end is the bytenr of last byte, so we need + 1 here. 5328 */ 5329 if (state_flags & EXTENT_DELALLOC) 5330 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5331 end - start + 1); 5332 5333 clear_extent_bit(io_tree, start, end, 5334 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5335 &cached_state); 5336 5337 cond_resched(); 5338 spin_lock(&io_tree->lock); 5339 } 5340 spin_unlock(&io_tree->lock); 5341 } 5342 5343 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5344 struct btrfs_block_rsv *rsv) 5345 { 5346 struct btrfs_fs_info *fs_info = root->fs_info; 5347 struct btrfs_trans_handle *trans; 5348 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5349 int ret; 5350 5351 /* 5352 * Eviction should be taking place at some place safe because of our 5353 * delayed iputs. However the normal flushing code will run delayed 5354 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5355 * 5356 * We reserve the delayed_refs_extra here again because we can't use 5357 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5358 * above. We reserve our extra bit here because we generate a ton of 5359 * delayed refs activity by truncating. 5360 * 5361 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5362 * if we fail to make this reservation we can re-try without the 5363 * delayed_refs_extra so we can make some forward progress. 5364 */ 5365 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5366 BTRFS_RESERVE_FLUSH_EVICT); 5367 if (ret) { 5368 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5369 BTRFS_RESERVE_FLUSH_EVICT); 5370 if (ret) { 5371 btrfs_warn(fs_info, 5372 "could not allocate space for delete; will truncate on mount"); 5373 return ERR_PTR(-ENOSPC); 5374 } 5375 delayed_refs_extra = 0; 5376 } 5377 5378 trans = btrfs_join_transaction(root); 5379 if (IS_ERR(trans)) 5380 return trans; 5381 5382 if (delayed_refs_extra) { 5383 trans->block_rsv = &fs_info->trans_block_rsv; 5384 trans->bytes_reserved = delayed_refs_extra; 5385 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5386 delayed_refs_extra, 1); 5387 } 5388 return trans; 5389 } 5390 5391 void btrfs_evict_inode(struct inode *inode) 5392 { 5393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5394 struct btrfs_trans_handle *trans; 5395 struct btrfs_root *root = BTRFS_I(inode)->root; 5396 struct btrfs_block_rsv *rsv; 5397 int ret; 5398 5399 trace_btrfs_inode_evict(inode); 5400 5401 if (!root) { 5402 fsverity_cleanup_inode(inode); 5403 clear_inode(inode); 5404 return; 5405 } 5406 5407 evict_inode_truncate_pages(inode); 5408 5409 if (inode->i_nlink && 5410 ((btrfs_root_refs(&root->root_item) != 0 && 5411 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5412 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5413 goto no_delete; 5414 5415 if (is_bad_inode(inode)) 5416 goto no_delete; 5417 5418 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5419 5420 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5421 goto no_delete; 5422 5423 if (inode->i_nlink > 0) { 5424 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5425 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5426 goto no_delete; 5427 } 5428 5429 /* 5430 * This makes sure the inode item in tree is uptodate and the space for 5431 * the inode update is released. 5432 */ 5433 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5434 if (ret) 5435 goto no_delete; 5436 5437 /* 5438 * This drops any pending insert or delete operations we have for this 5439 * inode. We could have a delayed dir index deletion queued up, but 5440 * we're removing the inode completely so that'll be taken care of in 5441 * the truncate. 5442 */ 5443 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5444 5445 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5446 if (!rsv) 5447 goto no_delete; 5448 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5449 rsv->failfast = true; 5450 5451 btrfs_i_size_write(BTRFS_I(inode), 0); 5452 5453 while (1) { 5454 struct btrfs_truncate_control control = { 5455 .inode = BTRFS_I(inode), 5456 .ino = btrfs_ino(BTRFS_I(inode)), 5457 .new_size = 0, 5458 .min_type = 0, 5459 }; 5460 5461 trans = evict_refill_and_join(root, rsv); 5462 if (IS_ERR(trans)) 5463 goto free_rsv; 5464 5465 trans->block_rsv = rsv; 5466 5467 ret = btrfs_truncate_inode_items(trans, root, &control); 5468 trans->block_rsv = &fs_info->trans_block_rsv; 5469 btrfs_end_transaction(trans); 5470 btrfs_btree_balance_dirty(fs_info); 5471 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5472 goto free_rsv; 5473 else if (!ret) 5474 break; 5475 } 5476 5477 /* 5478 * Errors here aren't a big deal, it just means we leave orphan items in 5479 * the tree. They will be cleaned up on the next mount. If the inode 5480 * number gets reused, cleanup deletes the orphan item without doing 5481 * anything, and unlink reuses the existing orphan item. 5482 * 5483 * If it turns out that we are dropping too many of these, we might want 5484 * to add a mechanism for retrying these after a commit. 5485 */ 5486 trans = evict_refill_and_join(root, rsv); 5487 if (!IS_ERR(trans)) { 5488 trans->block_rsv = rsv; 5489 btrfs_orphan_del(trans, BTRFS_I(inode)); 5490 trans->block_rsv = &fs_info->trans_block_rsv; 5491 btrfs_end_transaction(trans); 5492 } 5493 5494 free_rsv: 5495 btrfs_free_block_rsv(fs_info, rsv); 5496 no_delete: 5497 /* 5498 * If we didn't successfully delete, the orphan item will still be in 5499 * the tree and we'll retry on the next mount. Again, we might also want 5500 * to retry these periodically in the future. 5501 */ 5502 btrfs_remove_delayed_node(BTRFS_I(inode)); 5503 fsverity_cleanup_inode(inode); 5504 clear_inode(inode); 5505 } 5506 5507 /* 5508 * Return the key found in the dir entry in the location pointer, fill @type 5509 * with BTRFS_FT_*, and return 0. 5510 * 5511 * If no dir entries were found, returns -ENOENT. 5512 * If found a corrupted location in dir entry, returns -EUCLEAN. 5513 */ 5514 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5515 struct btrfs_key *location, u8 *type) 5516 { 5517 const char *name = dentry->d_name.name; 5518 int namelen = dentry->d_name.len; 5519 struct btrfs_dir_item *di; 5520 struct btrfs_path *path; 5521 struct btrfs_root *root = BTRFS_I(dir)->root; 5522 int ret = 0; 5523 5524 path = btrfs_alloc_path(); 5525 if (!path) 5526 return -ENOMEM; 5527 5528 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5529 name, namelen, 0); 5530 if (IS_ERR_OR_NULL(di)) { 5531 ret = di ? PTR_ERR(di) : -ENOENT; 5532 goto out; 5533 } 5534 5535 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5536 if (location->type != BTRFS_INODE_ITEM_KEY && 5537 location->type != BTRFS_ROOT_ITEM_KEY) { 5538 ret = -EUCLEAN; 5539 btrfs_warn(root->fs_info, 5540 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5541 __func__, name, btrfs_ino(BTRFS_I(dir)), 5542 location->objectid, location->type, location->offset); 5543 } 5544 if (!ret) 5545 *type = btrfs_dir_type(path->nodes[0], di); 5546 out: 5547 btrfs_free_path(path); 5548 return ret; 5549 } 5550 5551 /* 5552 * when we hit a tree root in a directory, the btrfs part of the inode 5553 * needs to be changed to reflect the root directory of the tree root. This 5554 * is kind of like crossing a mount point. 5555 */ 5556 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5557 struct inode *dir, 5558 struct dentry *dentry, 5559 struct btrfs_key *location, 5560 struct btrfs_root **sub_root) 5561 { 5562 struct btrfs_path *path; 5563 struct btrfs_root *new_root; 5564 struct btrfs_root_ref *ref; 5565 struct extent_buffer *leaf; 5566 struct btrfs_key key; 5567 int ret; 5568 int err = 0; 5569 5570 path = btrfs_alloc_path(); 5571 if (!path) { 5572 err = -ENOMEM; 5573 goto out; 5574 } 5575 5576 err = -ENOENT; 5577 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5578 key.type = BTRFS_ROOT_REF_KEY; 5579 key.offset = location->objectid; 5580 5581 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5582 if (ret) { 5583 if (ret < 0) 5584 err = ret; 5585 goto out; 5586 } 5587 5588 leaf = path->nodes[0]; 5589 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5590 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5591 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5592 goto out; 5593 5594 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5595 (unsigned long)(ref + 1), 5596 dentry->d_name.len); 5597 if (ret) 5598 goto out; 5599 5600 btrfs_release_path(path); 5601 5602 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5603 if (IS_ERR(new_root)) { 5604 err = PTR_ERR(new_root); 5605 goto out; 5606 } 5607 5608 *sub_root = new_root; 5609 location->objectid = btrfs_root_dirid(&new_root->root_item); 5610 location->type = BTRFS_INODE_ITEM_KEY; 5611 location->offset = 0; 5612 err = 0; 5613 out: 5614 btrfs_free_path(path); 5615 return err; 5616 } 5617 5618 static void inode_tree_add(struct inode *inode) 5619 { 5620 struct btrfs_root *root = BTRFS_I(inode)->root; 5621 struct btrfs_inode *entry; 5622 struct rb_node **p; 5623 struct rb_node *parent; 5624 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5625 u64 ino = btrfs_ino(BTRFS_I(inode)); 5626 5627 if (inode_unhashed(inode)) 5628 return; 5629 parent = NULL; 5630 spin_lock(&root->inode_lock); 5631 p = &root->inode_tree.rb_node; 5632 while (*p) { 5633 parent = *p; 5634 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5635 5636 if (ino < btrfs_ino(entry)) 5637 p = &parent->rb_left; 5638 else if (ino > btrfs_ino(entry)) 5639 p = &parent->rb_right; 5640 else { 5641 WARN_ON(!(entry->vfs_inode.i_state & 5642 (I_WILL_FREE | I_FREEING))); 5643 rb_replace_node(parent, new, &root->inode_tree); 5644 RB_CLEAR_NODE(parent); 5645 spin_unlock(&root->inode_lock); 5646 return; 5647 } 5648 } 5649 rb_link_node(new, parent, p); 5650 rb_insert_color(new, &root->inode_tree); 5651 spin_unlock(&root->inode_lock); 5652 } 5653 5654 static void inode_tree_del(struct btrfs_inode *inode) 5655 { 5656 struct btrfs_root *root = inode->root; 5657 int empty = 0; 5658 5659 spin_lock(&root->inode_lock); 5660 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5661 rb_erase(&inode->rb_node, &root->inode_tree); 5662 RB_CLEAR_NODE(&inode->rb_node); 5663 empty = RB_EMPTY_ROOT(&root->inode_tree); 5664 } 5665 spin_unlock(&root->inode_lock); 5666 5667 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5668 spin_lock(&root->inode_lock); 5669 empty = RB_EMPTY_ROOT(&root->inode_tree); 5670 spin_unlock(&root->inode_lock); 5671 if (empty) 5672 btrfs_add_dead_root(root); 5673 } 5674 } 5675 5676 5677 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5678 { 5679 struct btrfs_iget_args *args = p; 5680 5681 inode->i_ino = args->ino; 5682 BTRFS_I(inode)->location.objectid = args->ino; 5683 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5684 BTRFS_I(inode)->location.offset = 0; 5685 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5686 BUG_ON(args->root && !BTRFS_I(inode)->root); 5687 5688 if (args->root && args->root == args->root->fs_info->tree_root && 5689 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5690 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5691 &BTRFS_I(inode)->runtime_flags); 5692 return 0; 5693 } 5694 5695 static int btrfs_find_actor(struct inode *inode, void *opaque) 5696 { 5697 struct btrfs_iget_args *args = opaque; 5698 5699 return args->ino == BTRFS_I(inode)->location.objectid && 5700 args->root == BTRFS_I(inode)->root; 5701 } 5702 5703 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5704 struct btrfs_root *root) 5705 { 5706 struct inode *inode; 5707 struct btrfs_iget_args args; 5708 unsigned long hashval = btrfs_inode_hash(ino, root); 5709 5710 args.ino = ino; 5711 args.root = root; 5712 5713 inode = iget5_locked(s, hashval, btrfs_find_actor, 5714 btrfs_init_locked_inode, 5715 (void *)&args); 5716 return inode; 5717 } 5718 5719 /* 5720 * Get an inode object given its inode number and corresponding root. 5721 * Path can be preallocated to prevent recursing back to iget through 5722 * allocator. NULL is also valid but may require an additional allocation 5723 * later. 5724 */ 5725 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5726 struct btrfs_root *root, struct btrfs_path *path) 5727 { 5728 struct inode *inode; 5729 5730 inode = btrfs_iget_locked(s, ino, root); 5731 if (!inode) 5732 return ERR_PTR(-ENOMEM); 5733 5734 if (inode->i_state & I_NEW) { 5735 int ret; 5736 5737 ret = btrfs_read_locked_inode(inode, path); 5738 if (!ret) { 5739 inode_tree_add(inode); 5740 unlock_new_inode(inode); 5741 } else { 5742 iget_failed(inode); 5743 /* 5744 * ret > 0 can come from btrfs_search_slot called by 5745 * btrfs_read_locked_inode, this means the inode item 5746 * was not found. 5747 */ 5748 if (ret > 0) 5749 ret = -ENOENT; 5750 inode = ERR_PTR(ret); 5751 } 5752 } 5753 5754 return inode; 5755 } 5756 5757 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5758 { 5759 return btrfs_iget_path(s, ino, root, NULL); 5760 } 5761 5762 static struct inode *new_simple_dir(struct super_block *s, 5763 struct btrfs_key *key, 5764 struct btrfs_root *root) 5765 { 5766 struct inode *inode = new_inode(s); 5767 5768 if (!inode) 5769 return ERR_PTR(-ENOMEM); 5770 5771 BTRFS_I(inode)->root = btrfs_grab_root(root); 5772 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5773 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5774 5775 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5776 /* 5777 * We only need lookup, the rest is read-only and there's no inode 5778 * associated with the dentry 5779 */ 5780 inode->i_op = &simple_dir_inode_operations; 5781 inode->i_opflags &= ~IOP_XATTR; 5782 inode->i_fop = &simple_dir_operations; 5783 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5784 inode->i_mtime = current_time(inode); 5785 inode->i_atime = inode->i_mtime; 5786 inode->i_ctime = inode->i_mtime; 5787 BTRFS_I(inode)->i_otime = inode->i_mtime; 5788 5789 return inode; 5790 } 5791 5792 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5793 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5794 static_assert(BTRFS_FT_DIR == FT_DIR); 5795 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5796 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5797 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5798 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5799 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5800 5801 static inline u8 btrfs_inode_type(struct inode *inode) 5802 { 5803 return fs_umode_to_ftype(inode->i_mode); 5804 } 5805 5806 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5807 { 5808 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5809 struct inode *inode; 5810 struct btrfs_root *root = BTRFS_I(dir)->root; 5811 struct btrfs_root *sub_root = root; 5812 struct btrfs_key location; 5813 u8 di_type = 0; 5814 int ret = 0; 5815 5816 if (dentry->d_name.len > BTRFS_NAME_LEN) 5817 return ERR_PTR(-ENAMETOOLONG); 5818 5819 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5820 if (ret < 0) 5821 return ERR_PTR(ret); 5822 5823 if (location.type == BTRFS_INODE_ITEM_KEY) { 5824 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5825 if (IS_ERR(inode)) 5826 return inode; 5827 5828 /* Do extra check against inode mode with di_type */ 5829 if (btrfs_inode_type(inode) != di_type) { 5830 btrfs_crit(fs_info, 5831 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5832 inode->i_mode, btrfs_inode_type(inode), 5833 di_type); 5834 iput(inode); 5835 return ERR_PTR(-EUCLEAN); 5836 } 5837 return inode; 5838 } 5839 5840 ret = fixup_tree_root_location(fs_info, dir, dentry, 5841 &location, &sub_root); 5842 if (ret < 0) { 5843 if (ret != -ENOENT) 5844 inode = ERR_PTR(ret); 5845 else 5846 inode = new_simple_dir(dir->i_sb, &location, root); 5847 } else { 5848 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5849 btrfs_put_root(sub_root); 5850 5851 if (IS_ERR(inode)) 5852 return inode; 5853 5854 down_read(&fs_info->cleanup_work_sem); 5855 if (!sb_rdonly(inode->i_sb)) 5856 ret = btrfs_orphan_cleanup(sub_root); 5857 up_read(&fs_info->cleanup_work_sem); 5858 if (ret) { 5859 iput(inode); 5860 inode = ERR_PTR(ret); 5861 } 5862 } 5863 5864 return inode; 5865 } 5866 5867 static int btrfs_dentry_delete(const struct dentry *dentry) 5868 { 5869 struct btrfs_root *root; 5870 struct inode *inode = d_inode(dentry); 5871 5872 if (!inode && !IS_ROOT(dentry)) 5873 inode = d_inode(dentry->d_parent); 5874 5875 if (inode) { 5876 root = BTRFS_I(inode)->root; 5877 if (btrfs_root_refs(&root->root_item) == 0) 5878 return 1; 5879 5880 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5881 return 1; 5882 } 5883 return 0; 5884 } 5885 5886 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5887 unsigned int flags) 5888 { 5889 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5890 5891 if (inode == ERR_PTR(-ENOENT)) 5892 inode = NULL; 5893 return d_splice_alias(inode, dentry); 5894 } 5895 5896 /* 5897 * All this infrastructure exists because dir_emit can fault, and we are holding 5898 * the tree lock when doing readdir. For now just allocate a buffer and copy 5899 * our information into that, and then dir_emit from the buffer. This is 5900 * similar to what NFS does, only we don't keep the buffer around in pagecache 5901 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5902 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5903 * tree lock. 5904 */ 5905 static int btrfs_opendir(struct inode *inode, struct file *file) 5906 { 5907 struct btrfs_file_private *private; 5908 5909 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5910 if (!private) 5911 return -ENOMEM; 5912 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5913 if (!private->filldir_buf) { 5914 kfree(private); 5915 return -ENOMEM; 5916 } 5917 file->private_data = private; 5918 return 0; 5919 } 5920 5921 struct dir_entry { 5922 u64 ino; 5923 u64 offset; 5924 unsigned type; 5925 int name_len; 5926 }; 5927 5928 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5929 { 5930 while (entries--) { 5931 struct dir_entry *entry = addr; 5932 char *name = (char *)(entry + 1); 5933 5934 ctx->pos = get_unaligned(&entry->offset); 5935 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5936 get_unaligned(&entry->ino), 5937 get_unaligned(&entry->type))) 5938 return 1; 5939 addr += sizeof(struct dir_entry) + 5940 get_unaligned(&entry->name_len); 5941 ctx->pos++; 5942 } 5943 return 0; 5944 } 5945 5946 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5947 { 5948 struct inode *inode = file_inode(file); 5949 struct btrfs_root *root = BTRFS_I(inode)->root; 5950 struct btrfs_file_private *private = file->private_data; 5951 struct btrfs_dir_item *di; 5952 struct btrfs_key key; 5953 struct btrfs_key found_key; 5954 struct btrfs_path *path; 5955 void *addr; 5956 struct list_head ins_list; 5957 struct list_head del_list; 5958 int ret; 5959 char *name_ptr; 5960 int name_len; 5961 int entries = 0; 5962 int total_len = 0; 5963 bool put = false; 5964 struct btrfs_key location; 5965 5966 if (!dir_emit_dots(file, ctx)) 5967 return 0; 5968 5969 path = btrfs_alloc_path(); 5970 if (!path) 5971 return -ENOMEM; 5972 5973 addr = private->filldir_buf; 5974 path->reada = READA_FORWARD; 5975 5976 INIT_LIST_HEAD(&ins_list); 5977 INIT_LIST_HEAD(&del_list); 5978 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5979 5980 again: 5981 key.type = BTRFS_DIR_INDEX_KEY; 5982 key.offset = ctx->pos; 5983 key.objectid = btrfs_ino(BTRFS_I(inode)); 5984 5985 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5986 struct dir_entry *entry; 5987 struct extent_buffer *leaf = path->nodes[0]; 5988 5989 if (found_key.objectid != key.objectid) 5990 break; 5991 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5992 break; 5993 if (found_key.offset < ctx->pos) 5994 continue; 5995 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5996 continue; 5997 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5998 name_len = btrfs_dir_name_len(leaf, di); 5999 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6000 PAGE_SIZE) { 6001 btrfs_release_path(path); 6002 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6003 if (ret) 6004 goto nopos; 6005 addr = private->filldir_buf; 6006 entries = 0; 6007 total_len = 0; 6008 goto again; 6009 } 6010 6011 entry = addr; 6012 put_unaligned(name_len, &entry->name_len); 6013 name_ptr = (char *)(entry + 1); 6014 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6015 name_len); 6016 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6017 &entry->type); 6018 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6019 put_unaligned(location.objectid, &entry->ino); 6020 put_unaligned(found_key.offset, &entry->offset); 6021 entries++; 6022 addr += sizeof(struct dir_entry) + name_len; 6023 total_len += sizeof(struct dir_entry) + name_len; 6024 } 6025 /* Catch error encountered during iteration */ 6026 if (ret < 0) 6027 goto err; 6028 6029 btrfs_release_path(path); 6030 6031 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6032 if (ret) 6033 goto nopos; 6034 6035 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6036 if (ret) 6037 goto nopos; 6038 6039 /* 6040 * Stop new entries from being returned after we return the last 6041 * entry. 6042 * 6043 * New directory entries are assigned a strictly increasing 6044 * offset. This means that new entries created during readdir 6045 * are *guaranteed* to be seen in the future by that readdir. 6046 * This has broken buggy programs which operate on names as 6047 * they're returned by readdir. Until we re-use freed offsets 6048 * we have this hack to stop new entries from being returned 6049 * under the assumption that they'll never reach this huge 6050 * offset. 6051 * 6052 * This is being careful not to overflow 32bit loff_t unless the 6053 * last entry requires it because doing so has broken 32bit apps 6054 * in the past. 6055 */ 6056 if (ctx->pos >= INT_MAX) 6057 ctx->pos = LLONG_MAX; 6058 else 6059 ctx->pos = INT_MAX; 6060 nopos: 6061 ret = 0; 6062 err: 6063 if (put) 6064 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6065 btrfs_free_path(path); 6066 return ret; 6067 } 6068 6069 /* 6070 * This is somewhat expensive, updating the tree every time the 6071 * inode changes. But, it is most likely to find the inode in cache. 6072 * FIXME, needs more benchmarking...there are no reasons other than performance 6073 * to keep or drop this code. 6074 */ 6075 static int btrfs_dirty_inode(struct inode *inode) 6076 { 6077 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6078 struct btrfs_root *root = BTRFS_I(inode)->root; 6079 struct btrfs_trans_handle *trans; 6080 int ret; 6081 6082 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6083 return 0; 6084 6085 trans = btrfs_join_transaction(root); 6086 if (IS_ERR(trans)) 6087 return PTR_ERR(trans); 6088 6089 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6090 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6091 /* whoops, lets try again with the full transaction */ 6092 btrfs_end_transaction(trans); 6093 trans = btrfs_start_transaction(root, 1); 6094 if (IS_ERR(trans)) 6095 return PTR_ERR(trans); 6096 6097 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6098 } 6099 btrfs_end_transaction(trans); 6100 if (BTRFS_I(inode)->delayed_node) 6101 btrfs_balance_delayed_items(fs_info); 6102 6103 return ret; 6104 } 6105 6106 /* 6107 * This is a copy of file_update_time. We need this so we can return error on 6108 * ENOSPC for updating the inode in the case of file write and mmap writes. 6109 */ 6110 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6111 int flags) 6112 { 6113 struct btrfs_root *root = BTRFS_I(inode)->root; 6114 bool dirty = flags & ~S_VERSION; 6115 6116 if (btrfs_root_readonly(root)) 6117 return -EROFS; 6118 6119 if (flags & S_VERSION) 6120 dirty |= inode_maybe_inc_iversion(inode, dirty); 6121 if (flags & S_CTIME) 6122 inode->i_ctime = *now; 6123 if (flags & S_MTIME) 6124 inode->i_mtime = *now; 6125 if (flags & S_ATIME) 6126 inode->i_atime = *now; 6127 return dirty ? btrfs_dirty_inode(inode) : 0; 6128 } 6129 6130 /* 6131 * find the highest existing sequence number in a directory 6132 * and then set the in-memory index_cnt variable to reflect 6133 * free sequence numbers 6134 */ 6135 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6136 { 6137 struct btrfs_root *root = inode->root; 6138 struct btrfs_key key, found_key; 6139 struct btrfs_path *path; 6140 struct extent_buffer *leaf; 6141 int ret; 6142 6143 key.objectid = btrfs_ino(inode); 6144 key.type = BTRFS_DIR_INDEX_KEY; 6145 key.offset = (u64)-1; 6146 6147 path = btrfs_alloc_path(); 6148 if (!path) 6149 return -ENOMEM; 6150 6151 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6152 if (ret < 0) 6153 goto out; 6154 /* FIXME: we should be able to handle this */ 6155 if (ret == 0) 6156 goto out; 6157 ret = 0; 6158 6159 if (path->slots[0] == 0) { 6160 inode->index_cnt = BTRFS_DIR_START_INDEX; 6161 goto out; 6162 } 6163 6164 path->slots[0]--; 6165 6166 leaf = path->nodes[0]; 6167 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6168 6169 if (found_key.objectid != btrfs_ino(inode) || 6170 found_key.type != BTRFS_DIR_INDEX_KEY) { 6171 inode->index_cnt = BTRFS_DIR_START_INDEX; 6172 goto out; 6173 } 6174 6175 inode->index_cnt = found_key.offset + 1; 6176 out: 6177 btrfs_free_path(path); 6178 return ret; 6179 } 6180 6181 /* 6182 * helper to find a free sequence number in a given directory. This current 6183 * code is very simple, later versions will do smarter things in the btree 6184 */ 6185 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6186 { 6187 int ret = 0; 6188 6189 if (dir->index_cnt == (u64)-1) { 6190 ret = btrfs_inode_delayed_dir_index_count(dir); 6191 if (ret) { 6192 ret = btrfs_set_inode_index_count(dir); 6193 if (ret) 6194 return ret; 6195 } 6196 } 6197 6198 *index = dir->index_cnt; 6199 dir->index_cnt++; 6200 6201 return ret; 6202 } 6203 6204 static int btrfs_insert_inode_locked(struct inode *inode) 6205 { 6206 struct btrfs_iget_args args; 6207 6208 args.ino = BTRFS_I(inode)->location.objectid; 6209 args.root = BTRFS_I(inode)->root; 6210 6211 return insert_inode_locked4(inode, 6212 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6213 btrfs_find_actor, &args); 6214 } 6215 6216 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6217 unsigned int *trans_num_items) 6218 { 6219 struct inode *dir = args->dir; 6220 struct inode *inode = args->inode; 6221 int ret; 6222 6223 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6224 if (ret) 6225 return ret; 6226 6227 /* 1 to add inode item */ 6228 *trans_num_items = 1; 6229 /* 1 to add compression property */ 6230 if (BTRFS_I(dir)->prop_compress) 6231 (*trans_num_items)++; 6232 /* 1 to add default ACL xattr */ 6233 if (args->default_acl) 6234 (*trans_num_items)++; 6235 /* 1 to add access ACL xattr */ 6236 if (args->acl) 6237 (*trans_num_items)++; 6238 #ifdef CONFIG_SECURITY 6239 /* 1 to add LSM xattr */ 6240 if (dir->i_security) 6241 (*trans_num_items)++; 6242 #endif 6243 if (args->orphan) { 6244 /* 1 to add orphan item */ 6245 (*trans_num_items)++; 6246 } else { 6247 /* 6248 * 1 to add dir item 6249 * 1 to add dir index 6250 * 1 to update parent inode item 6251 * 6252 * No need for 1 unit for the inode ref item because it is 6253 * inserted in a batch together with the inode item at 6254 * btrfs_create_new_inode(). 6255 */ 6256 *trans_num_items += 3; 6257 } 6258 return 0; 6259 } 6260 6261 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6262 { 6263 posix_acl_release(args->acl); 6264 posix_acl_release(args->default_acl); 6265 } 6266 6267 /* 6268 * Inherit flags from the parent inode. 6269 * 6270 * Currently only the compression flags and the cow flags are inherited. 6271 */ 6272 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6273 { 6274 unsigned int flags; 6275 6276 flags = BTRFS_I(dir)->flags; 6277 6278 if (flags & BTRFS_INODE_NOCOMPRESS) { 6279 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6280 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6281 } else if (flags & BTRFS_INODE_COMPRESS) { 6282 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6283 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6284 } 6285 6286 if (flags & BTRFS_INODE_NODATACOW) { 6287 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6288 if (S_ISREG(inode->i_mode)) 6289 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6290 } 6291 6292 btrfs_sync_inode_flags_to_i_flags(inode); 6293 } 6294 6295 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6296 struct btrfs_new_inode_args *args) 6297 { 6298 struct inode *dir = args->dir; 6299 struct inode *inode = args->inode; 6300 const char *name = args->orphan ? NULL : args->dentry->d_name.name; 6301 int name_len = args->orphan ? 0 : args->dentry->d_name.len; 6302 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6303 struct btrfs_root *root; 6304 struct btrfs_inode_item *inode_item; 6305 struct btrfs_key *location; 6306 struct btrfs_path *path; 6307 u64 objectid; 6308 struct btrfs_inode_ref *ref; 6309 struct btrfs_key key[2]; 6310 u32 sizes[2]; 6311 struct btrfs_item_batch batch; 6312 unsigned long ptr; 6313 int ret; 6314 6315 path = btrfs_alloc_path(); 6316 if (!path) 6317 return -ENOMEM; 6318 6319 if (!args->subvol) 6320 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6321 root = BTRFS_I(inode)->root; 6322 6323 ret = btrfs_get_free_objectid(root, &objectid); 6324 if (ret) 6325 goto out; 6326 inode->i_ino = objectid; 6327 6328 if (args->orphan) { 6329 /* 6330 * O_TMPFILE, set link count to 0, so that after this point, we 6331 * fill in an inode item with the correct link count. 6332 */ 6333 set_nlink(inode, 0); 6334 } else { 6335 trace_btrfs_inode_request(dir); 6336 6337 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6338 if (ret) 6339 goto out; 6340 } 6341 /* index_cnt is ignored for everything but a dir. */ 6342 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6343 BTRFS_I(inode)->generation = trans->transid; 6344 inode->i_generation = BTRFS_I(inode)->generation; 6345 6346 /* 6347 * Subvolumes don't inherit flags from their parent directory. 6348 * Originally this was probably by accident, but we probably can't 6349 * change it now without compatibility issues. 6350 */ 6351 if (!args->subvol) 6352 btrfs_inherit_iflags(inode, dir); 6353 6354 if (S_ISREG(inode->i_mode)) { 6355 if (btrfs_test_opt(fs_info, NODATASUM)) 6356 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6357 if (btrfs_test_opt(fs_info, NODATACOW)) 6358 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6359 BTRFS_INODE_NODATASUM; 6360 } 6361 6362 location = &BTRFS_I(inode)->location; 6363 location->objectid = objectid; 6364 location->offset = 0; 6365 location->type = BTRFS_INODE_ITEM_KEY; 6366 6367 ret = btrfs_insert_inode_locked(inode); 6368 if (ret < 0) { 6369 if (!args->orphan) 6370 BTRFS_I(dir)->index_cnt--; 6371 goto out; 6372 } 6373 6374 /* 6375 * We could have gotten an inode number from somebody who was fsynced 6376 * and then removed in this same transaction, so let's just set full 6377 * sync since it will be a full sync anyway and this will blow away the 6378 * old info in the log. 6379 */ 6380 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6381 6382 key[0].objectid = objectid; 6383 key[0].type = BTRFS_INODE_ITEM_KEY; 6384 key[0].offset = 0; 6385 6386 sizes[0] = sizeof(struct btrfs_inode_item); 6387 6388 if (!args->orphan) { 6389 /* 6390 * Start new inodes with an inode_ref. This is slightly more 6391 * efficient for small numbers of hard links since they will 6392 * be packed into one item. Extended refs will kick in if we 6393 * add more hard links than can fit in the ref item. 6394 */ 6395 key[1].objectid = objectid; 6396 key[1].type = BTRFS_INODE_REF_KEY; 6397 if (args->subvol) { 6398 key[1].offset = objectid; 6399 sizes[1] = 2 + sizeof(*ref); 6400 } else { 6401 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6402 sizes[1] = name_len + sizeof(*ref); 6403 } 6404 } 6405 6406 batch.keys = &key[0]; 6407 batch.data_sizes = &sizes[0]; 6408 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6409 batch.nr = args->orphan ? 1 : 2; 6410 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6411 if (ret != 0) { 6412 btrfs_abort_transaction(trans, ret); 6413 goto discard; 6414 } 6415 6416 inode->i_mtime = current_time(inode); 6417 inode->i_atime = inode->i_mtime; 6418 inode->i_ctime = inode->i_mtime; 6419 BTRFS_I(inode)->i_otime = inode->i_mtime; 6420 6421 /* 6422 * We're going to fill the inode item now, so at this point the inode 6423 * must be fully initialized. 6424 */ 6425 6426 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6427 struct btrfs_inode_item); 6428 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6429 sizeof(*inode_item)); 6430 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6431 6432 if (!args->orphan) { 6433 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6434 struct btrfs_inode_ref); 6435 ptr = (unsigned long)(ref + 1); 6436 if (args->subvol) { 6437 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6438 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6439 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6440 } else { 6441 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6442 btrfs_set_inode_ref_index(path->nodes[0], ref, 6443 BTRFS_I(inode)->dir_index); 6444 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6445 } 6446 } 6447 6448 btrfs_mark_buffer_dirty(path->nodes[0]); 6449 /* 6450 * We don't need the path anymore, plus inheriting properties, adding 6451 * ACLs, security xattrs, orphan item or adding the link, will result in 6452 * allocating yet another path. So just free our path. 6453 */ 6454 btrfs_free_path(path); 6455 path = NULL; 6456 6457 if (args->subvol) { 6458 struct inode *parent; 6459 6460 /* 6461 * Subvolumes inherit properties from their parent subvolume, 6462 * not the directory they were created in. 6463 */ 6464 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6465 BTRFS_I(dir)->root); 6466 if (IS_ERR(parent)) { 6467 ret = PTR_ERR(parent); 6468 } else { 6469 ret = btrfs_inode_inherit_props(trans, inode, parent); 6470 iput(parent); 6471 } 6472 } else { 6473 ret = btrfs_inode_inherit_props(trans, inode, dir); 6474 } 6475 if (ret) { 6476 btrfs_err(fs_info, 6477 "error inheriting props for ino %llu (root %llu): %d", 6478 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6479 ret); 6480 } 6481 6482 /* 6483 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6484 * probably a bug. 6485 */ 6486 if (!args->subvol) { 6487 ret = btrfs_init_inode_security(trans, args); 6488 if (ret) { 6489 btrfs_abort_transaction(trans, ret); 6490 goto discard; 6491 } 6492 } 6493 6494 inode_tree_add(inode); 6495 6496 trace_btrfs_inode_new(inode); 6497 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6498 6499 btrfs_update_root_times(trans, root); 6500 6501 if (args->orphan) { 6502 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6503 } else { 6504 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6505 name_len, 0, BTRFS_I(inode)->dir_index); 6506 } 6507 if (ret) { 6508 btrfs_abort_transaction(trans, ret); 6509 goto discard; 6510 } 6511 6512 return 0; 6513 6514 discard: 6515 /* 6516 * discard_new_inode() calls iput(), but the caller owns the reference 6517 * to the inode. 6518 */ 6519 ihold(inode); 6520 discard_new_inode(inode); 6521 out: 6522 btrfs_free_path(path); 6523 return ret; 6524 } 6525 6526 /* 6527 * utility function to add 'inode' into 'parent_inode' with 6528 * a give name and a given sequence number. 6529 * if 'add_backref' is true, also insert a backref from the 6530 * inode to the parent directory. 6531 */ 6532 int btrfs_add_link(struct btrfs_trans_handle *trans, 6533 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6534 const char *name, int name_len, int add_backref, u64 index) 6535 { 6536 int ret = 0; 6537 struct btrfs_key key; 6538 struct btrfs_root *root = parent_inode->root; 6539 u64 ino = btrfs_ino(inode); 6540 u64 parent_ino = btrfs_ino(parent_inode); 6541 6542 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6543 memcpy(&key, &inode->root->root_key, sizeof(key)); 6544 } else { 6545 key.objectid = ino; 6546 key.type = BTRFS_INODE_ITEM_KEY; 6547 key.offset = 0; 6548 } 6549 6550 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6551 ret = btrfs_add_root_ref(trans, key.objectid, 6552 root->root_key.objectid, parent_ino, 6553 index, name, name_len); 6554 } else if (add_backref) { 6555 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6556 parent_ino, index); 6557 } 6558 6559 /* Nothing to clean up yet */ 6560 if (ret) 6561 return ret; 6562 6563 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6564 btrfs_inode_type(&inode->vfs_inode), index); 6565 if (ret == -EEXIST || ret == -EOVERFLOW) 6566 goto fail_dir_item; 6567 else if (ret) { 6568 btrfs_abort_transaction(trans, ret); 6569 return ret; 6570 } 6571 6572 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6573 name_len * 2); 6574 inode_inc_iversion(&parent_inode->vfs_inode); 6575 /* 6576 * If we are replaying a log tree, we do not want to update the mtime 6577 * and ctime of the parent directory with the current time, since the 6578 * log replay procedure is responsible for setting them to their correct 6579 * values (the ones it had when the fsync was done). 6580 */ 6581 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6582 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6583 6584 parent_inode->vfs_inode.i_mtime = now; 6585 parent_inode->vfs_inode.i_ctime = now; 6586 } 6587 ret = btrfs_update_inode(trans, root, parent_inode); 6588 if (ret) 6589 btrfs_abort_transaction(trans, ret); 6590 return ret; 6591 6592 fail_dir_item: 6593 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6594 u64 local_index; 6595 int err; 6596 err = btrfs_del_root_ref(trans, key.objectid, 6597 root->root_key.objectid, parent_ino, 6598 &local_index, name, name_len); 6599 if (err) 6600 btrfs_abort_transaction(trans, err); 6601 } else if (add_backref) { 6602 u64 local_index; 6603 int err; 6604 6605 err = btrfs_del_inode_ref(trans, root, name, name_len, 6606 ino, parent_ino, &local_index); 6607 if (err) 6608 btrfs_abort_transaction(trans, err); 6609 } 6610 6611 /* Return the original error code */ 6612 return ret; 6613 } 6614 6615 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6616 struct inode *inode) 6617 { 6618 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6619 struct btrfs_root *root = BTRFS_I(dir)->root; 6620 struct btrfs_new_inode_args new_inode_args = { 6621 .dir = dir, 6622 .dentry = dentry, 6623 .inode = inode, 6624 }; 6625 unsigned int trans_num_items; 6626 struct btrfs_trans_handle *trans; 6627 int err; 6628 6629 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6630 if (err) 6631 goto out_inode; 6632 6633 trans = btrfs_start_transaction(root, trans_num_items); 6634 if (IS_ERR(trans)) { 6635 err = PTR_ERR(trans); 6636 goto out_new_inode_args; 6637 } 6638 6639 err = btrfs_create_new_inode(trans, &new_inode_args); 6640 if (!err) 6641 d_instantiate_new(dentry, inode); 6642 6643 btrfs_end_transaction(trans); 6644 btrfs_btree_balance_dirty(fs_info); 6645 out_new_inode_args: 6646 btrfs_new_inode_args_destroy(&new_inode_args); 6647 out_inode: 6648 if (err) 6649 iput(inode); 6650 return err; 6651 } 6652 6653 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6654 struct dentry *dentry, umode_t mode, dev_t rdev) 6655 { 6656 struct inode *inode; 6657 6658 inode = new_inode(dir->i_sb); 6659 if (!inode) 6660 return -ENOMEM; 6661 inode_init_owner(mnt_userns, inode, dir, mode); 6662 inode->i_op = &btrfs_special_inode_operations; 6663 init_special_inode(inode, inode->i_mode, rdev); 6664 return btrfs_create_common(dir, dentry, inode); 6665 } 6666 6667 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6668 struct dentry *dentry, umode_t mode, bool excl) 6669 { 6670 struct inode *inode; 6671 6672 inode = new_inode(dir->i_sb); 6673 if (!inode) 6674 return -ENOMEM; 6675 inode_init_owner(mnt_userns, inode, dir, mode); 6676 inode->i_fop = &btrfs_file_operations; 6677 inode->i_op = &btrfs_file_inode_operations; 6678 inode->i_mapping->a_ops = &btrfs_aops; 6679 return btrfs_create_common(dir, dentry, inode); 6680 } 6681 6682 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6683 struct dentry *dentry) 6684 { 6685 struct btrfs_trans_handle *trans = NULL; 6686 struct btrfs_root *root = BTRFS_I(dir)->root; 6687 struct inode *inode = d_inode(old_dentry); 6688 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6689 u64 index; 6690 int err; 6691 int drop_inode = 0; 6692 6693 /* do not allow sys_link's with other subvols of the same device */ 6694 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6695 return -EXDEV; 6696 6697 if (inode->i_nlink >= BTRFS_LINK_MAX) 6698 return -EMLINK; 6699 6700 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6701 if (err) 6702 goto fail; 6703 6704 /* 6705 * 2 items for inode and inode ref 6706 * 2 items for dir items 6707 * 1 item for parent inode 6708 * 1 item for orphan item deletion if O_TMPFILE 6709 */ 6710 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6711 if (IS_ERR(trans)) { 6712 err = PTR_ERR(trans); 6713 trans = NULL; 6714 goto fail; 6715 } 6716 6717 /* There are several dir indexes for this inode, clear the cache. */ 6718 BTRFS_I(inode)->dir_index = 0ULL; 6719 inc_nlink(inode); 6720 inode_inc_iversion(inode); 6721 inode->i_ctime = current_time(inode); 6722 ihold(inode); 6723 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6724 6725 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6726 dentry->d_name.name, dentry->d_name.len, 1, index); 6727 6728 if (err) { 6729 drop_inode = 1; 6730 } else { 6731 struct dentry *parent = dentry->d_parent; 6732 6733 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6734 if (err) 6735 goto fail; 6736 if (inode->i_nlink == 1) { 6737 /* 6738 * If new hard link count is 1, it's a file created 6739 * with open(2) O_TMPFILE flag. 6740 */ 6741 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6742 if (err) 6743 goto fail; 6744 } 6745 d_instantiate(dentry, inode); 6746 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6747 } 6748 6749 fail: 6750 if (trans) 6751 btrfs_end_transaction(trans); 6752 if (drop_inode) { 6753 inode_dec_link_count(inode); 6754 iput(inode); 6755 } 6756 btrfs_btree_balance_dirty(fs_info); 6757 return err; 6758 } 6759 6760 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6761 struct dentry *dentry, umode_t mode) 6762 { 6763 struct inode *inode; 6764 6765 inode = new_inode(dir->i_sb); 6766 if (!inode) 6767 return -ENOMEM; 6768 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode); 6769 inode->i_op = &btrfs_dir_inode_operations; 6770 inode->i_fop = &btrfs_dir_file_operations; 6771 return btrfs_create_common(dir, dentry, inode); 6772 } 6773 6774 static noinline int uncompress_inline(struct btrfs_path *path, 6775 struct page *page, 6776 size_t pg_offset, u64 extent_offset, 6777 struct btrfs_file_extent_item *item) 6778 { 6779 int ret; 6780 struct extent_buffer *leaf = path->nodes[0]; 6781 char *tmp; 6782 size_t max_size; 6783 unsigned long inline_size; 6784 unsigned long ptr; 6785 int compress_type; 6786 6787 WARN_ON(pg_offset != 0); 6788 compress_type = btrfs_file_extent_compression(leaf, item); 6789 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6790 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6791 tmp = kmalloc(inline_size, GFP_NOFS); 6792 if (!tmp) 6793 return -ENOMEM; 6794 ptr = btrfs_file_extent_inline_start(item); 6795 6796 read_extent_buffer(leaf, tmp, ptr, inline_size); 6797 6798 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6799 ret = btrfs_decompress(compress_type, tmp, page, 6800 extent_offset, inline_size, max_size); 6801 6802 /* 6803 * decompression code contains a memset to fill in any space between the end 6804 * of the uncompressed data and the end of max_size in case the decompressed 6805 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6806 * the end of an inline extent and the beginning of the next block, so we 6807 * cover that region here. 6808 */ 6809 6810 if (max_size + pg_offset < PAGE_SIZE) 6811 memzero_page(page, pg_offset + max_size, 6812 PAGE_SIZE - max_size - pg_offset); 6813 kfree(tmp); 6814 return ret; 6815 } 6816 6817 /** 6818 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6819 * @inode: file to search in 6820 * @page: page to read extent data into if the extent is inline 6821 * @pg_offset: offset into @page to copy to 6822 * @start: file offset 6823 * @len: length of range starting at @start 6824 * 6825 * This returns the first &struct extent_map which overlaps with the given 6826 * range, reading it from the B-tree and caching it if necessary. Note that 6827 * there may be more extents which overlap the given range after the returned 6828 * extent_map. 6829 * 6830 * If @page is not NULL and the extent is inline, this also reads the extent 6831 * data directly into the page and marks the extent up to date in the io_tree. 6832 * 6833 * Return: ERR_PTR on error, non-NULL extent_map on success. 6834 */ 6835 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6836 struct page *page, size_t pg_offset, 6837 u64 start, u64 len) 6838 { 6839 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6840 int ret = 0; 6841 u64 extent_start = 0; 6842 u64 extent_end = 0; 6843 u64 objectid = btrfs_ino(inode); 6844 int extent_type = -1; 6845 struct btrfs_path *path = NULL; 6846 struct btrfs_root *root = inode->root; 6847 struct btrfs_file_extent_item *item; 6848 struct extent_buffer *leaf; 6849 struct btrfs_key found_key; 6850 struct extent_map *em = NULL; 6851 struct extent_map_tree *em_tree = &inode->extent_tree; 6852 6853 read_lock(&em_tree->lock); 6854 em = lookup_extent_mapping(em_tree, start, len); 6855 read_unlock(&em_tree->lock); 6856 6857 if (em) { 6858 if (em->start > start || em->start + em->len <= start) 6859 free_extent_map(em); 6860 else if (em->block_start == EXTENT_MAP_INLINE && page) 6861 free_extent_map(em); 6862 else 6863 goto out; 6864 } 6865 em = alloc_extent_map(); 6866 if (!em) { 6867 ret = -ENOMEM; 6868 goto out; 6869 } 6870 em->start = EXTENT_MAP_HOLE; 6871 em->orig_start = EXTENT_MAP_HOLE; 6872 em->len = (u64)-1; 6873 em->block_len = (u64)-1; 6874 6875 path = btrfs_alloc_path(); 6876 if (!path) { 6877 ret = -ENOMEM; 6878 goto out; 6879 } 6880 6881 /* Chances are we'll be called again, so go ahead and do readahead */ 6882 path->reada = READA_FORWARD; 6883 6884 /* 6885 * The same explanation in load_free_space_cache applies here as well, 6886 * we only read when we're loading the free space cache, and at that 6887 * point the commit_root has everything we need. 6888 */ 6889 if (btrfs_is_free_space_inode(inode)) { 6890 path->search_commit_root = 1; 6891 path->skip_locking = 1; 6892 } 6893 6894 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6895 if (ret < 0) { 6896 goto out; 6897 } else if (ret > 0) { 6898 if (path->slots[0] == 0) 6899 goto not_found; 6900 path->slots[0]--; 6901 ret = 0; 6902 } 6903 6904 leaf = path->nodes[0]; 6905 item = btrfs_item_ptr(leaf, path->slots[0], 6906 struct btrfs_file_extent_item); 6907 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6908 if (found_key.objectid != objectid || 6909 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6910 /* 6911 * If we backup past the first extent we want to move forward 6912 * and see if there is an extent in front of us, otherwise we'll 6913 * say there is a hole for our whole search range which can 6914 * cause problems. 6915 */ 6916 extent_end = start; 6917 goto next; 6918 } 6919 6920 extent_type = btrfs_file_extent_type(leaf, item); 6921 extent_start = found_key.offset; 6922 extent_end = btrfs_file_extent_end(path); 6923 if (extent_type == BTRFS_FILE_EXTENT_REG || 6924 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6925 /* Only regular file could have regular/prealloc extent */ 6926 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6927 ret = -EUCLEAN; 6928 btrfs_crit(fs_info, 6929 "regular/prealloc extent found for non-regular inode %llu", 6930 btrfs_ino(inode)); 6931 goto out; 6932 } 6933 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6934 extent_start); 6935 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6936 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6937 path->slots[0], 6938 extent_start); 6939 } 6940 next: 6941 if (start >= extent_end) { 6942 path->slots[0]++; 6943 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6944 ret = btrfs_next_leaf(root, path); 6945 if (ret < 0) 6946 goto out; 6947 else if (ret > 0) 6948 goto not_found; 6949 6950 leaf = path->nodes[0]; 6951 } 6952 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6953 if (found_key.objectid != objectid || 6954 found_key.type != BTRFS_EXTENT_DATA_KEY) 6955 goto not_found; 6956 if (start + len <= found_key.offset) 6957 goto not_found; 6958 if (start > found_key.offset) 6959 goto next; 6960 6961 /* New extent overlaps with existing one */ 6962 em->start = start; 6963 em->orig_start = start; 6964 em->len = found_key.offset - start; 6965 em->block_start = EXTENT_MAP_HOLE; 6966 goto insert; 6967 } 6968 6969 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6970 6971 if (extent_type == BTRFS_FILE_EXTENT_REG || 6972 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6973 goto insert; 6974 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6975 unsigned long ptr; 6976 char *map; 6977 size_t size; 6978 size_t extent_offset; 6979 size_t copy_size; 6980 6981 if (!page) 6982 goto out; 6983 6984 size = btrfs_file_extent_ram_bytes(leaf, item); 6985 extent_offset = page_offset(page) + pg_offset - extent_start; 6986 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6987 size - extent_offset); 6988 em->start = extent_start + extent_offset; 6989 em->len = ALIGN(copy_size, fs_info->sectorsize); 6990 em->orig_block_len = em->len; 6991 em->orig_start = em->start; 6992 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6993 6994 if (!PageUptodate(page)) { 6995 if (btrfs_file_extent_compression(leaf, item) != 6996 BTRFS_COMPRESS_NONE) { 6997 ret = uncompress_inline(path, page, pg_offset, 6998 extent_offset, item); 6999 if (ret) 7000 goto out; 7001 } else { 7002 map = kmap_local_page(page); 7003 read_extent_buffer(leaf, map + pg_offset, ptr, 7004 copy_size); 7005 if (pg_offset + copy_size < PAGE_SIZE) { 7006 memset(map + pg_offset + copy_size, 0, 7007 PAGE_SIZE - pg_offset - 7008 copy_size); 7009 } 7010 kunmap_local(map); 7011 } 7012 flush_dcache_page(page); 7013 } 7014 goto insert; 7015 } 7016 not_found: 7017 em->start = start; 7018 em->orig_start = start; 7019 em->len = len; 7020 em->block_start = EXTENT_MAP_HOLE; 7021 insert: 7022 ret = 0; 7023 btrfs_release_path(path); 7024 if (em->start > start || extent_map_end(em) <= start) { 7025 btrfs_err(fs_info, 7026 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7027 em->start, em->len, start, len); 7028 ret = -EIO; 7029 goto out; 7030 } 7031 7032 write_lock(&em_tree->lock); 7033 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7034 write_unlock(&em_tree->lock); 7035 out: 7036 btrfs_free_path(path); 7037 7038 trace_btrfs_get_extent(root, inode, em); 7039 7040 if (ret) { 7041 free_extent_map(em); 7042 return ERR_PTR(ret); 7043 } 7044 return em; 7045 } 7046 7047 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7048 const u64 start, 7049 const u64 len, 7050 const u64 orig_start, 7051 const u64 block_start, 7052 const u64 block_len, 7053 const u64 orig_block_len, 7054 const u64 ram_bytes, 7055 const int type) 7056 { 7057 struct extent_map *em = NULL; 7058 int ret; 7059 7060 if (type != BTRFS_ORDERED_NOCOW) { 7061 em = create_io_em(inode, start, len, orig_start, block_start, 7062 block_len, orig_block_len, ram_bytes, 7063 BTRFS_COMPRESS_NONE, /* compress_type */ 7064 type); 7065 if (IS_ERR(em)) 7066 goto out; 7067 } 7068 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start, 7069 block_len, 0, 7070 (1 << type) | 7071 (1 << BTRFS_ORDERED_DIRECT), 7072 BTRFS_COMPRESS_NONE); 7073 if (ret) { 7074 if (em) { 7075 free_extent_map(em); 7076 btrfs_drop_extent_map_range(inode, start, 7077 start + len - 1, false); 7078 } 7079 em = ERR_PTR(ret); 7080 } 7081 out: 7082 7083 return em; 7084 } 7085 7086 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7087 u64 start, u64 len) 7088 { 7089 struct btrfs_root *root = inode->root; 7090 struct btrfs_fs_info *fs_info = root->fs_info; 7091 struct extent_map *em; 7092 struct btrfs_key ins; 7093 u64 alloc_hint; 7094 int ret; 7095 7096 alloc_hint = get_extent_allocation_hint(inode, start, len); 7097 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7098 0, alloc_hint, &ins, 1, 1); 7099 if (ret) 7100 return ERR_PTR(ret); 7101 7102 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7103 ins.objectid, ins.offset, ins.offset, 7104 ins.offset, BTRFS_ORDERED_REGULAR); 7105 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7106 if (IS_ERR(em)) 7107 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7108 1); 7109 7110 return em; 7111 } 7112 7113 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7114 { 7115 struct btrfs_block_group *block_group; 7116 bool readonly = false; 7117 7118 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7119 if (!block_group || block_group->ro) 7120 readonly = true; 7121 if (block_group) 7122 btrfs_put_block_group(block_group); 7123 return readonly; 7124 } 7125 7126 /* 7127 * Check if we can do nocow write into the range [@offset, @offset + @len) 7128 * 7129 * @offset: File offset 7130 * @len: The length to write, will be updated to the nocow writeable 7131 * range 7132 * @orig_start: (optional) Return the original file offset of the file extent 7133 * @orig_len: (optional) Return the original on-disk length of the file extent 7134 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7135 * @strict: if true, omit optimizations that might force us into unnecessary 7136 * cow. e.g., don't trust generation number. 7137 * 7138 * Return: 7139 * >0 and update @len if we can do nocow write 7140 * 0 if we can't do nocow write 7141 * <0 if error happened 7142 * 7143 * NOTE: This only checks the file extents, caller is responsible to wait for 7144 * any ordered extents. 7145 */ 7146 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7147 u64 *orig_start, u64 *orig_block_len, 7148 u64 *ram_bytes, bool nowait, bool strict) 7149 { 7150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7151 struct can_nocow_file_extent_args nocow_args = { 0 }; 7152 struct btrfs_path *path; 7153 int ret; 7154 struct extent_buffer *leaf; 7155 struct btrfs_root *root = BTRFS_I(inode)->root; 7156 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7157 struct btrfs_file_extent_item *fi; 7158 struct btrfs_key key; 7159 int found_type; 7160 7161 path = btrfs_alloc_path(); 7162 if (!path) 7163 return -ENOMEM; 7164 path->nowait = nowait; 7165 7166 ret = btrfs_lookup_file_extent(NULL, root, path, 7167 btrfs_ino(BTRFS_I(inode)), offset, 0); 7168 if (ret < 0) 7169 goto out; 7170 7171 if (ret == 1) { 7172 if (path->slots[0] == 0) { 7173 /* can't find the item, must cow */ 7174 ret = 0; 7175 goto out; 7176 } 7177 path->slots[0]--; 7178 } 7179 ret = 0; 7180 leaf = path->nodes[0]; 7181 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7182 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7183 key.type != BTRFS_EXTENT_DATA_KEY) { 7184 /* not our file or wrong item type, must cow */ 7185 goto out; 7186 } 7187 7188 if (key.offset > offset) { 7189 /* Wrong offset, must cow */ 7190 goto out; 7191 } 7192 7193 if (btrfs_file_extent_end(path) <= offset) 7194 goto out; 7195 7196 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7197 found_type = btrfs_file_extent_type(leaf, fi); 7198 if (ram_bytes) 7199 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7200 7201 nocow_args.start = offset; 7202 nocow_args.end = offset + *len - 1; 7203 nocow_args.strict = strict; 7204 nocow_args.free_path = true; 7205 7206 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7207 /* can_nocow_file_extent() has freed the path. */ 7208 path = NULL; 7209 7210 if (ret != 1) { 7211 /* Treat errors as not being able to NOCOW. */ 7212 ret = 0; 7213 goto out; 7214 } 7215 7216 ret = 0; 7217 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7218 goto out; 7219 7220 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7221 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7222 u64 range_end; 7223 7224 range_end = round_up(offset + nocow_args.num_bytes, 7225 root->fs_info->sectorsize) - 1; 7226 ret = test_range_bit(io_tree, offset, range_end, 7227 EXTENT_DELALLOC, 0, NULL); 7228 if (ret) { 7229 ret = -EAGAIN; 7230 goto out; 7231 } 7232 } 7233 7234 if (orig_start) 7235 *orig_start = key.offset - nocow_args.extent_offset; 7236 if (orig_block_len) 7237 *orig_block_len = nocow_args.disk_num_bytes; 7238 7239 *len = nocow_args.num_bytes; 7240 ret = 1; 7241 out: 7242 btrfs_free_path(path); 7243 return ret; 7244 } 7245 7246 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7247 struct extent_state **cached_state, 7248 unsigned int iomap_flags) 7249 { 7250 const bool writing = (iomap_flags & IOMAP_WRITE); 7251 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7252 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7253 struct btrfs_ordered_extent *ordered; 7254 int ret = 0; 7255 7256 while (1) { 7257 if (nowait) { 7258 if (!try_lock_extent(io_tree, lockstart, lockend)) 7259 return -EAGAIN; 7260 } else { 7261 lock_extent(io_tree, lockstart, lockend, cached_state); 7262 } 7263 /* 7264 * We're concerned with the entire range that we're going to be 7265 * doing DIO to, so we need to make sure there's no ordered 7266 * extents in this range. 7267 */ 7268 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7269 lockend - lockstart + 1); 7270 7271 /* 7272 * We need to make sure there are no buffered pages in this 7273 * range either, we could have raced between the invalidate in 7274 * generic_file_direct_write and locking the extent. The 7275 * invalidate needs to happen so that reads after a write do not 7276 * get stale data. 7277 */ 7278 if (!ordered && 7279 (!writing || !filemap_range_has_page(inode->i_mapping, 7280 lockstart, lockend))) 7281 break; 7282 7283 unlock_extent(io_tree, lockstart, lockend, cached_state); 7284 7285 if (ordered) { 7286 if (nowait) { 7287 btrfs_put_ordered_extent(ordered); 7288 ret = -EAGAIN; 7289 break; 7290 } 7291 /* 7292 * If we are doing a DIO read and the ordered extent we 7293 * found is for a buffered write, we can not wait for it 7294 * to complete and retry, because if we do so we can 7295 * deadlock with concurrent buffered writes on page 7296 * locks. This happens only if our DIO read covers more 7297 * than one extent map, if at this point has already 7298 * created an ordered extent for a previous extent map 7299 * and locked its range in the inode's io tree, and a 7300 * concurrent write against that previous extent map's 7301 * range and this range started (we unlock the ranges 7302 * in the io tree only when the bios complete and 7303 * buffered writes always lock pages before attempting 7304 * to lock range in the io tree). 7305 */ 7306 if (writing || 7307 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7308 btrfs_start_ordered_extent(ordered, 1); 7309 else 7310 ret = nowait ? -EAGAIN : -ENOTBLK; 7311 btrfs_put_ordered_extent(ordered); 7312 } else { 7313 /* 7314 * We could trigger writeback for this range (and wait 7315 * for it to complete) and then invalidate the pages for 7316 * this range (through invalidate_inode_pages2_range()), 7317 * but that can lead us to a deadlock with a concurrent 7318 * call to readahead (a buffered read or a defrag call 7319 * triggered a readahead) on a page lock due to an 7320 * ordered dio extent we created before but did not have 7321 * yet a corresponding bio submitted (whence it can not 7322 * complete), which makes readahead wait for that 7323 * ordered extent to complete while holding a lock on 7324 * that page. 7325 */ 7326 ret = nowait ? -EAGAIN : -ENOTBLK; 7327 } 7328 7329 if (ret) 7330 break; 7331 7332 cond_resched(); 7333 } 7334 7335 return ret; 7336 } 7337 7338 /* The callers of this must take lock_extent() */ 7339 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7340 u64 len, u64 orig_start, u64 block_start, 7341 u64 block_len, u64 orig_block_len, 7342 u64 ram_bytes, int compress_type, 7343 int type) 7344 { 7345 struct extent_map *em; 7346 int ret; 7347 7348 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7349 type == BTRFS_ORDERED_COMPRESSED || 7350 type == BTRFS_ORDERED_NOCOW || 7351 type == BTRFS_ORDERED_REGULAR); 7352 7353 em = alloc_extent_map(); 7354 if (!em) 7355 return ERR_PTR(-ENOMEM); 7356 7357 em->start = start; 7358 em->orig_start = orig_start; 7359 em->len = len; 7360 em->block_len = block_len; 7361 em->block_start = block_start; 7362 em->orig_block_len = orig_block_len; 7363 em->ram_bytes = ram_bytes; 7364 em->generation = -1; 7365 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7366 if (type == BTRFS_ORDERED_PREALLOC) { 7367 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7368 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7369 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7370 em->compress_type = compress_type; 7371 } 7372 7373 ret = btrfs_replace_extent_map_range(inode, em, true); 7374 if (ret) { 7375 free_extent_map(em); 7376 return ERR_PTR(ret); 7377 } 7378 7379 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7380 return em; 7381 } 7382 7383 7384 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7385 struct inode *inode, 7386 struct btrfs_dio_data *dio_data, 7387 u64 start, u64 len, 7388 unsigned int iomap_flags) 7389 { 7390 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7392 struct extent_map *em = *map; 7393 int type; 7394 u64 block_start, orig_start, orig_block_len, ram_bytes; 7395 struct btrfs_block_group *bg; 7396 bool can_nocow = false; 7397 bool space_reserved = false; 7398 u64 prev_len; 7399 int ret = 0; 7400 7401 /* 7402 * We don't allocate a new extent in the following cases 7403 * 7404 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7405 * existing extent. 7406 * 2) The extent is marked as PREALLOC. We're good to go here and can 7407 * just use the extent. 7408 * 7409 */ 7410 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7411 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7412 em->block_start != EXTENT_MAP_HOLE)) { 7413 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7414 type = BTRFS_ORDERED_PREALLOC; 7415 else 7416 type = BTRFS_ORDERED_NOCOW; 7417 len = min(len, em->len - (start - em->start)); 7418 block_start = em->block_start + (start - em->start); 7419 7420 if (can_nocow_extent(inode, start, &len, &orig_start, 7421 &orig_block_len, &ram_bytes, false, false) == 1) { 7422 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7423 if (bg) 7424 can_nocow = true; 7425 } 7426 } 7427 7428 prev_len = len; 7429 if (can_nocow) { 7430 struct extent_map *em2; 7431 7432 /* We can NOCOW, so only need to reserve metadata space. */ 7433 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7434 nowait); 7435 if (ret < 0) { 7436 /* Our caller expects us to free the input extent map. */ 7437 free_extent_map(em); 7438 *map = NULL; 7439 btrfs_dec_nocow_writers(bg); 7440 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7441 ret = -EAGAIN; 7442 goto out; 7443 } 7444 space_reserved = true; 7445 7446 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7447 orig_start, block_start, 7448 len, orig_block_len, 7449 ram_bytes, type); 7450 btrfs_dec_nocow_writers(bg); 7451 if (type == BTRFS_ORDERED_PREALLOC) { 7452 free_extent_map(em); 7453 *map = em2; 7454 em = em2; 7455 } 7456 7457 if (IS_ERR(em2)) { 7458 ret = PTR_ERR(em2); 7459 goto out; 7460 } 7461 7462 dio_data->nocow_done = true; 7463 } else { 7464 /* Our caller expects us to free the input extent map. */ 7465 free_extent_map(em); 7466 *map = NULL; 7467 7468 if (nowait) 7469 return -EAGAIN; 7470 7471 /* 7472 * If we could not allocate data space before locking the file 7473 * range and we can't do a NOCOW write, then we have to fail. 7474 */ 7475 if (!dio_data->data_space_reserved) 7476 return -ENOSPC; 7477 7478 /* 7479 * We have to COW and we have already reserved data space before, 7480 * so now we reserve only metadata. 7481 */ 7482 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7483 false); 7484 if (ret < 0) 7485 goto out; 7486 space_reserved = true; 7487 7488 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7489 if (IS_ERR(em)) { 7490 ret = PTR_ERR(em); 7491 goto out; 7492 } 7493 *map = em; 7494 len = min(len, em->len - (start - em->start)); 7495 if (len < prev_len) 7496 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7497 prev_len - len, true); 7498 } 7499 7500 /* 7501 * We have created our ordered extent, so we can now release our reservation 7502 * for an outstanding extent. 7503 */ 7504 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7505 7506 /* 7507 * Need to update the i_size under the extent lock so buffered 7508 * readers will get the updated i_size when we unlock. 7509 */ 7510 if (start + len > i_size_read(inode)) 7511 i_size_write(inode, start + len); 7512 out: 7513 if (ret && space_reserved) { 7514 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7515 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7516 } 7517 return ret; 7518 } 7519 7520 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7521 loff_t length, unsigned int flags, struct iomap *iomap, 7522 struct iomap *srcmap) 7523 { 7524 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7525 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7526 struct extent_map *em; 7527 struct extent_state *cached_state = NULL; 7528 struct btrfs_dio_data *dio_data = iter->private; 7529 u64 lockstart, lockend; 7530 const bool write = !!(flags & IOMAP_WRITE); 7531 int ret = 0; 7532 u64 len = length; 7533 const u64 data_alloc_len = length; 7534 bool unlock_extents = false; 7535 7536 /* 7537 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7538 * we're NOWAIT we may submit a bio for a partial range and return 7539 * EIOCBQUEUED, which would result in an errant short read. 7540 * 7541 * The best way to handle this would be to allow for partial completions 7542 * of iocb's, so we could submit the partial bio, return and fault in 7543 * the rest of the pages, and then submit the io for the rest of the 7544 * range. However we don't have that currently, so simply return 7545 * -EAGAIN at this point so that the normal path is used. 7546 */ 7547 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7548 return -EAGAIN; 7549 7550 /* 7551 * Cap the size of reads to that usually seen in buffered I/O as we need 7552 * to allocate a contiguous array for the checksums. 7553 */ 7554 if (!write) 7555 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7556 7557 lockstart = start; 7558 lockend = start + len - 1; 7559 7560 /* 7561 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7562 * enough if we've written compressed pages to this area, so we need to 7563 * flush the dirty pages again to make absolutely sure that any 7564 * outstanding dirty pages are on disk - the first flush only starts 7565 * compression on the data, while keeping the pages locked, so by the 7566 * time the second flush returns we know bios for the compressed pages 7567 * were submitted and finished, and the pages no longer under writeback. 7568 * 7569 * If we have a NOWAIT request and we have any pages in the range that 7570 * are locked, likely due to compression still in progress, we don't want 7571 * to block on page locks. We also don't want to block on pages marked as 7572 * dirty or under writeback (same as for the non-compression case). 7573 * iomap_dio_rw() did the same check, but after that and before we got 7574 * here, mmap'ed writes may have happened or buffered reads started 7575 * (readpage() and readahead(), which lock pages), as we haven't locked 7576 * the file range yet. 7577 */ 7578 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7579 &BTRFS_I(inode)->runtime_flags)) { 7580 if (flags & IOMAP_NOWAIT) { 7581 if (filemap_range_needs_writeback(inode->i_mapping, 7582 lockstart, lockend)) 7583 return -EAGAIN; 7584 } else { 7585 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7586 start + length - 1); 7587 if (ret) 7588 return ret; 7589 } 7590 } 7591 7592 memset(dio_data, 0, sizeof(*dio_data)); 7593 7594 /* 7595 * We always try to allocate data space and must do it before locking 7596 * the file range, to avoid deadlocks with concurrent writes to the same 7597 * range if the range has several extents and the writes don't expand the 7598 * current i_size (the inode lock is taken in shared mode). If we fail to 7599 * allocate data space here we continue and later, after locking the 7600 * file range, we fail with ENOSPC only if we figure out we can not do a 7601 * NOCOW write. 7602 */ 7603 if (write && !(flags & IOMAP_NOWAIT)) { 7604 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7605 &dio_data->data_reserved, 7606 start, data_alloc_len, false); 7607 if (!ret) 7608 dio_data->data_space_reserved = true; 7609 else if (ret && !(BTRFS_I(inode)->flags & 7610 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7611 goto err; 7612 } 7613 7614 /* 7615 * If this errors out it's because we couldn't invalidate pagecache for 7616 * this range and we need to fallback to buffered IO, or we are doing a 7617 * NOWAIT read/write and we need to block. 7618 */ 7619 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7620 if (ret < 0) 7621 goto err; 7622 7623 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7624 if (IS_ERR(em)) { 7625 ret = PTR_ERR(em); 7626 goto unlock_err; 7627 } 7628 7629 /* 7630 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7631 * io. INLINE is special, and we could probably kludge it in here, but 7632 * it's still buffered so for safety lets just fall back to the generic 7633 * buffered path. 7634 * 7635 * For COMPRESSED we _have_ to read the entire extent in so we can 7636 * decompress it, so there will be buffering required no matter what we 7637 * do, so go ahead and fallback to buffered. 7638 * 7639 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7640 * to buffered IO. Don't blame me, this is the price we pay for using 7641 * the generic code. 7642 */ 7643 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7644 em->block_start == EXTENT_MAP_INLINE) { 7645 free_extent_map(em); 7646 /* 7647 * If we are in a NOWAIT context, return -EAGAIN in order to 7648 * fallback to buffered IO. This is not only because we can 7649 * block with buffered IO (no support for NOWAIT semantics at 7650 * the moment) but also to avoid returning short reads to user 7651 * space - this happens if we were able to read some data from 7652 * previous non-compressed extents and then when we fallback to 7653 * buffered IO, at btrfs_file_read_iter() by calling 7654 * filemap_read(), we fail to fault in pages for the read buffer, 7655 * in which case filemap_read() returns a short read (the number 7656 * of bytes previously read is > 0, so it does not return -EFAULT). 7657 */ 7658 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7659 goto unlock_err; 7660 } 7661 7662 len = min(len, em->len - (start - em->start)); 7663 7664 /* 7665 * If we have a NOWAIT request and the range contains multiple extents 7666 * (or a mix of extents and holes), then we return -EAGAIN to make the 7667 * caller fallback to a context where it can do a blocking (without 7668 * NOWAIT) request. This way we avoid doing partial IO and returning 7669 * success to the caller, which is not optimal for writes and for reads 7670 * it can result in unexpected behaviour for an application. 7671 * 7672 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7673 * iomap_dio_rw(), we can end up returning less data then what the caller 7674 * asked for, resulting in an unexpected, and incorrect, short read. 7675 * That is, the caller asked to read N bytes and we return less than that, 7676 * which is wrong unless we are crossing EOF. This happens if we get a 7677 * page fault error when trying to fault in pages for the buffer that is 7678 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7679 * have previously submitted bios for other extents in the range, in 7680 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7681 * those bios have completed by the time we get the page fault error, 7682 * which we return back to our caller - we should only return EIOCBQUEUED 7683 * after we have submitted bios for all the extents in the range. 7684 */ 7685 if ((flags & IOMAP_NOWAIT) && len < length) { 7686 free_extent_map(em); 7687 ret = -EAGAIN; 7688 goto unlock_err; 7689 } 7690 7691 if (write) { 7692 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7693 start, len, flags); 7694 if (ret < 0) 7695 goto unlock_err; 7696 unlock_extents = true; 7697 /* Recalc len in case the new em is smaller than requested */ 7698 len = min(len, em->len - (start - em->start)); 7699 if (dio_data->data_space_reserved) { 7700 u64 release_offset; 7701 u64 release_len = 0; 7702 7703 if (dio_data->nocow_done) { 7704 release_offset = start; 7705 release_len = data_alloc_len; 7706 } else if (len < data_alloc_len) { 7707 release_offset = start + len; 7708 release_len = data_alloc_len - len; 7709 } 7710 7711 if (release_len > 0) 7712 btrfs_free_reserved_data_space(BTRFS_I(inode), 7713 dio_data->data_reserved, 7714 release_offset, 7715 release_len); 7716 } 7717 } else { 7718 /* 7719 * We need to unlock only the end area that we aren't using. 7720 * The rest is going to be unlocked by the endio routine. 7721 */ 7722 lockstart = start + len; 7723 if (lockstart < lockend) 7724 unlock_extents = true; 7725 } 7726 7727 if (unlock_extents) 7728 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7729 &cached_state); 7730 else 7731 free_extent_state(cached_state); 7732 7733 /* 7734 * Translate extent map information to iomap. 7735 * We trim the extents (and move the addr) even though iomap code does 7736 * that, since we have locked only the parts we are performing I/O in. 7737 */ 7738 if ((em->block_start == EXTENT_MAP_HOLE) || 7739 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7740 iomap->addr = IOMAP_NULL_ADDR; 7741 iomap->type = IOMAP_HOLE; 7742 } else { 7743 iomap->addr = em->block_start + (start - em->start); 7744 iomap->type = IOMAP_MAPPED; 7745 } 7746 iomap->offset = start; 7747 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7748 iomap->length = len; 7749 7750 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7751 iomap->flags |= IOMAP_F_ZONE_APPEND; 7752 7753 free_extent_map(em); 7754 7755 return 0; 7756 7757 unlock_err: 7758 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7759 &cached_state); 7760 err: 7761 if (dio_data->data_space_reserved) { 7762 btrfs_free_reserved_data_space(BTRFS_I(inode), 7763 dio_data->data_reserved, 7764 start, data_alloc_len); 7765 extent_changeset_free(dio_data->data_reserved); 7766 } 7767 7768 return ret; 7769 } 7770 7771 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7772 ssize_t written, unsigned int flags, struct iomap *iomap) 7773 { 7774 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7775 struct btrfs_dio_data *dio_data = iter->private; 7776 size_t submitted = dio_data->submitted; 7777 const bool write = !!(flags & IOMAP_WRITE); 7778 int ret = 0; 7779 7780 if (!write && (iomap->type == IOMAP_HOLE)) { 7781 /* If reading from a hole, unlock and return */ 7782 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7783 NULL); 7784 return 0; 7785 } 7786 7787 if (submitted < length) { 7788 pos += submitted; 7789 length -= submitted; 7790 if (write) 7791 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 7792 pos, length, false); 7793 else 7794 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7795 pos + length - 1, NULL); 7796 ret = -ENOTBLK; 7797 } 7798 7799 if (write) 7800 extent_changeset_free(dio_data->data_reserved); 7801 return ret; 7802 } 7803 7804 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7805 { 7806 /* 7807 * This implies a barrier so that stores to dio_bio->bi_status before 7808 * this and loads of dio_bio->bi_status after this are fully ordered. 7809 */ 7810 if (!refcount_dec_and_test(&dip->refs)) 7811 return; 7812 7813 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) { 7814 btrfs_mark_ordered_io_finished(BTRFS_I(dip->inode), NULL, 7815 dip->file_offset, dip->bytes, 7816 !dip->bio.bi_status); 7817 } else { 7818 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7819 dip->file_offset, 7820 dip->file_offset + dip->bytes - 1, NULL); 7821 } 7822 7823 kfree(dip->csums); 7824 bio_endio(&dip->bio); 7825 } 7826 7827 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7828 int mirror_num, 7829 enum btrfs_compression_type compress_type) 7830 { 7831 struct btrfs_dio_private *dip = btrfs_bio(bio)->private; 7832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7833 7834 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7835 7836 refcount_inc(&dip->refs); 7837 btrfs_submit_bio(fs_info, bio, mirror_num); 7838 } 7839 7840 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip, 7841 struct btrfs_bio *bbio, 7842 const bool uptodate) 7843 { 7844 struct inode *inode = dip->inode; 7845 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7846 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7847 blk_status_t err = BLK_STS_OK; 7848 struct bvec_iter iter; 7849 struct bio_vec bv; 7850 u32 offset; 7851 7852 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) { 7853 u64 start = bbio->file_offset + offset; 7854 7855 if (uptodate && 7856 (!csum || !btrfs_check_data_csum(inode, bbio, offset, bv.bv_page, 7857 bv.bv_offset))) { 7858 btrfs_clean_io_failure(BTRFS_I(inode), start, 7859 bv.bv_page, bv.bv_offset); 7860 } else { 7861 int ret; 7862 7863 ret = btrfs_repair_one_sector(inode, bbio, offset, 7864 bv.bv_page, bv.bv_offset, 7865 submit_dio_repair_bio); 7866 if (ret) 7867 err = errno_to_blk_status(ret); 7868 } 7869 } 7870 7871 return err; 7872 } 7873 7874 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7875 struct bio *bio, 7876 u64 dio_file_offset) 7877 { 7878 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false); 7879 } 7880 7881 static void btrfs_end_dio_bio(struct btrfs_bio *bbio) 7882 { 7883 struct btrfs_dio_private *dip = bbio->private; 7884 struct bio *bio = &bbio->bio; 7885 blk_status_t err = bio->bi_status; 7886 7887 if (err) 7888 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7889 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7890 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7891 bio->bi_opf, bio->bi_iter.bi_sector, 7892 bio->bi_iter.bi_size, err); 7893 7894 if (bio_op(bio) == REQ_OP_READ) 7895 err = btrfs_check_read_dio_bio(dip, bbio, !err); 7896 7897 if (err) 7898 dip->bio.bi_status = err; 7899 7900 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio); 7901 7902 bio_put(bio); 7903 btrfs_dio_private_put(dip); 7904 } 7905 7906 static void btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7907 u64 file_offset, int async_submit) 7908 { 7909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7910 struct btrfs_dio_private *dip = btrfs_bio(bio)->private; 7911 blk_status_t ret; 7912 7913 /* Save the original iter for read repair */ 7914 if (btrfs_op(bio) == BTRFS_MAP_READ) 7915 btrfs_bio(bio)->iter = bio->bi_iter; 7916 7917 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7918 goto map; 7919 7920 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7921 /* Check btrfs_submit_data_write_bio() for async submit rules */ 7922 if (async_submit && !atomic_read(&BTRFS_I(inode)->sync_writers) && 7923 btrfs_wq_submit_bio(inode, bio, 0, file_offset, 7924 btrfs_submit_bio_start_direct_io)) 7925 return; 7926 7927 /* 7928 * If we aren't doing async submit, calculate the csum of the 7929 * bio now. 7930 */ 7931 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false); 7932 if (ret) { 7933 btrfs_bio_end_io(btrfs_bio(bio), ret); 7934 return; 7935 } 7936 } else { 7937 btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums, 7938 file_offset - dip->file_offset); 7939 } 7940 map: 7941 btrfs_submit_bio(fs_info, bio, 0); 7942 } 7943 7944 static void btrfs_submit_direct(const struct iomap_iter *iter, 7945 struct bio *dio_bio, loff_t file_offset) 7946 { 7947 struct btrfs_dio_private *dip = 7948 container_of(dio_bio, struct btrfs_dio_private, bio); 7949 struct inode *inode = iter->inode; 7950 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 7951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7952 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7953 BTRFS_BLOCK_GROUP_RAID56_MASK); 7954 struct bio *bio; 7955 u64 start_sector; 7956 int async_submit = 0; 7957 u64 submit_len; 7958 u64 clone_offset = 0; 7959 u64 clone_len; 7960 u64 logical; 7961 int ret; 7962 blk_status_t status; 7963 struct btrfs_io_geometry geom; 7964 struct btrfs_dio_data *dio_data = iter->private; 7965 struct extent_map *em = NULL; 7966 7967 dip->inode = inode; 7968 dip->file_offset = file_offset; 7969 dip->bytes = dio_bio->bi_iter.bi_size; 7970 refcount_set(&dip->refs, 1); 7971 dip->csums = NULL; 7972 7973 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 7974 unsigned int nr_sectors = 7975 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 7976 7977 /* 7978 * Load the csums up front to reduce csum tree searches and 7979 * contention when submitting bios. 7980 */ 7981 status = BLK_STS_RESOURCE; 7982 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS); 7983 if (!dip->csums) 7984 goto out_err; 7985 7986 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 7987 if (status != BLK_STS_OK) 7988 goto out_err; 7989 } 7990 7991 start_sector = dio_bio->bi_iter.bi_sector; 7992 submit_len = dio_bio->bi_iter.bi_size; 7993 7994 do { 7995 logical = start_sector << 9; 7996 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 7997 if (IS_ERR(em)) { 7998 status = errno_to_blk_status(PTR_ERR(em)); 7999 em = NULL; 8000 goto out_err_em; 8001 } 8002 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8003 logical, &geom); 8004 if (ret) { 8005 status = errno_to_blk_status(ret); 8006 goto out_err_em; 8007 } 8008 8009 clone_len = min(submit_len, geom.len); 8010 ASSERT(clone_len <= UINT_MAX); 8011 8012 /* 8013 * This will never fail as it's passing GPF_NOFS and 8014 * the allocation is backed by btrfs_bioset. 8015 */ 8016 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len, 8017 btrfs_end_dio_bio, dip); 8018 btrfs_bio(bio)->file_offset = file_offset; 8019 8020 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8021 status = extract_ordered_extent(BTRFS_I(inode), bio, 8022 file_offset); 8023 if (status) { 8024 bio_put(bio); 8025 goto out_err; 8026 } 8027 } 8028 8029 ASSERT(submit_len >= clone_len); 8030 submit_len -= clone_len; 8031 8032 /* 8033 * Increase the count before we submit the bio so we know 8034 * the end IO handler won't happen before we increase the 8035 * count. Otherwise, the dip might get freed before we're 8036 * done setting it up. 8037 * 8038 * We transfer the initial reference to the last bio, so we 8039 * don't need to increment the reference count for the last one. 8040 */ 8041 if (submit_len > 0) { 8042 refcount_inc(&dip->refs); 8043 /* 8044 * If we are submitting more than one bio, submit them 8045 * all asynchronously. The exception is RAID 5 or 6, as 8046 * asynchronous checksums make it difficult to collect 8047 * full stripe writes. 8048 */ 8049 if (!raid56) 8050 async_submit = 1; 8051 } 8052 8053 btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8054 8055 dio_data->submitted += clone_len; 8056 clone_offset += clone_len; 8057 start_sector += clone_len >> 9; 8058 file_offset += clone_len; 8059 8060 free_extent_map(em); 8061 } while (submit_len > 0); 8062 return; 8063 8064 out_err_em: 8065 free_extent_map(em); 8066 out_err: 8067 dio_bio->bi_status = status; 8068 btrfs_dio_private_put(dip); 8069 } 8070 8071 static const struct iomap_ops btrfs_dio_iomap_ops = { 8072 .iomap_begin = btrfs_dio_iomap_begin, 8073 .iomap_end = btrfs_dio_iomap_end, 8074 }; 8075 8076 static const struct iomap_dio_ops btrfs_dio_ops = { 8077 .submit_io = btrfs_submit_direct, 8078 .bio_set = &btrfs_dio_bioset, 8079 }; 8080 8081 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 8082 { 8083 struct btrfs_dio_data data; 8084 8085 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 8086 IOMAP_DIO_PARTIAL, &data, done_before); 8087 } 8088 8089 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 8090 size_t done_before) 8091 { 8092 struct btrfs_dio_data data; 8093 8094 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 8095 IOMAP_DIO_PARTIAL, &data, done_before); 8096 } 8097 8098 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8099 u64 start, u64 len) 8100 { 8101 int ret; 8102 8103 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8104 if (ret) 8105 return ret; 8106 8107 /* 8108 * fiemap_prep() called filemap_write_and_wait() for the whole possible 8109 * file range (0 to LLONG_MAX), but that is not enough if we have 8110 * compression enabled. The first filemap_fdatawrite_range() only kicks 8111 * in the compression of data (in an async thread) and will return 8112 * before the compression is done and writeback is started. A second 8113 * filemap_fdatawrite_range() is needed to wait for the compression to 8114 * complete and writeback to start. We also need to wait for ordered 8115 * extents to complete, because our fiemap implementation uses mainly 8116 * file extent items to list the extents, searching for extent maps 8117 * only for file ranges with holes or prealloc extents to figure out 8118 * if we have delalloc in those ranges. 8119 */ 8120 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 8121 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 8122 if (ret) 8123 return ret; 8124 } 8125 8126 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8127 } 8128 8129 static int btrfs_writepages(struct address_space *mapping, 8130 struct writeback_control *wbc) 8131 { 8132 return extent_writepages(mapping, wbc); 8133 } 8134 8135 static void btrfs_readahead(struct readahead_control *rac) 8136 { 8137 extent_readahead(rac); 8138 } 8139 8140 /* 8141 * For release_folio() and invalidate_folio() we have a race window where 8142 * folio_end_writeback() is called but the subpage spinlock is not yet released. 8143 * If we continue to release/invalidate the page, we could cause use-after-free 8144 * for subpage spinlock. So this function is to spin and wait for subpage 8145 * spinlock. 8146 */ 8147 static void wait_subpage_spinlock(struct page *page) 8148 { 8149 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 8150 struct btrfs_subpage *subpage; 8151 8152 if (!btrfs_is_subpage(fs_info, page)) 8153 return; 8154 8155 ASSERT(PagePrivate(page) && page->private); 8156 subpage = (struct btrfs_subpage *)page->private; 8157 8158 /* 8159 * This may look insane as we just acquire the spinlock and release it, 8160 * without doing anything. But we just want to make sure no one is 8161 * still holding the subpage spinlock. 8162 * And since the page is not dirty nor writeback, and we have page 8163 * locked, the only possible way to hold a spinlock is from the endio 8164 * function to clear page writeback. 8165 * 8166 * Here we just acquire the spinlock so that all existing callers 8167 * should exit and we're safe to release/invalidate the page. 8168 */ 8169 spin_lock_irq(&subpage->lock); 8170 spin_unlock_irq(&subpage->lock); 8171 } 8172 8173 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 8174 { 8175 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 8176 8177 if (ret == 1) { 8178 wait_subpage_spinlock(&folio->page); 8179 clear_page_extent_mapped(&folio->page); 8180 } 8181 return ret; 8182 } 8183 8184 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 8185 { 8186 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 8187 return false; 8188 return __btrfs_release_folio(folio, gfp_flags); 8189 } 8190 8191 #ifdef CONFIG_MIGRATION 8192 static int btrfs_migrate_folio(struct address_space *mapping, 8193 struct folio *dst, struct folio *src, 8194 enum migrate_mode mode) 8195 { 8196 int ret = filemap_migrate_folio(mapping, dst, src, mode); 8197 8198 if (ret != MIGRATEPAGE_SUCCESS) 8199 return ret; 8200 8201 if (folio_test_ordered(src)) { 8202 folio_clear_ordered(src); 8203 folio_set_ordered(dst); 8204 } 8205 8206 return MIGRATEPAGE_SUCCESS; 8207 } 8208 #else 8209 #define btrfs_migrate_folio NULL 8210 #endif 8211 8212 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8213 size_t length) 8214 { 8215 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 8216 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8217 struct extent_io_tree *tree = &inode->io_tree; 8218 struct extent_state *cached_state = NULL; 8219 u64 page_start = folio_pos(folio); 8220 u64 page_end = page_start + folio_size(folio) - 1; 8221 u64 cur; 8222 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8223 8224 /* 8225 * We have folio locked so no new ordered extent can be created on this 8226 * page, nor bio can be submitted for this folio. 8227 * 8228 * But already submitted bio can still be finished on this folio. 8229 * Furthermore, endio function won't skip folio which has Ordered 8230 * (Private2) already cleared, so it's possible for endio and 8231 * invalidate_folio to do the same ordered extent accounting twice 8232 * on one folio. 8233 * 8234 * So here we wait for any submitted bios to finish, so that we won't 8235 * do double ordered extent accounting on the same folio. 8236 */ 8237 folio_wait_writeback(folio); 8238 wait_subpage_spinlock(&folio->page); 8239 8240 /* 8241 * For subpage case, we have call sites like 8242 * btrfs_punch_hole_lock_range() which passes range not aligned to 8243 * sectorsize. 8244 * If the range doesn't cover the full folio, we don't need to and 8245 * shouldn't clear page extent mapped, as folio->private can still 8246 * record subpage dirty bits for other part of the range. 8247 * 8248 * For cases that invalidate the full folio even the range doesn't 8249 * cover the full folio, like invalidating the last folio, we're 8250 * still safe to wait for ordered extent to finish. 8251 */ 8252 if (!(offset == 0 && length == folio_size(folio))) { 8253 btrfs_release_folio(folio, GFP_NOFS); 8254 return; 8255 } 8256 8257 if (!inode_evicting) 8258 lock_extent(tree, page_start, page_end, &cached_state); 8259 8260 cur = page_start; 8261 while (cur < page_end) { 8262 struct btrfs_ordered_extent *ordered; 8263 u64 range_end; 8264 u32 range_len; 8265 u32 extra_flags = 0; 8266 8267 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8268 page_end + 1 - cur); 8269 if (!ordered) { 8270 range_end = page_end; 8271 /* 8272 * No ordered extent covering this range, we are safe 8273 * to delete all extent states in the range. 8274 */ 8275 extra_flags = EXTENT_CLEAR_ALL_BITS; 8276 goto next; 8277 } 8278 if (ordered->file_offset > cur) { 8279 /* 8280 * There is a range between [cur, oe->file_offset) not 8281 * covered by any ordered extent. 8282 * We are safe to delete all extent states, and handle 8283 * the ordered extent in the next iteration. 8284 */ 8285 range_end = ordered->file_offset - 1; 8286 extra_flags = EXTENT_CLEAR_ALL_BITS; 8287 goto next; 8288 } 8289 8290 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8291 page_end); 8292 ASSERT(range_end + 1 - cur < U32_MAX); 8293 range_len = range_end + 1 - cur; 8294 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8295 /* 8296 * If Ordered (Private2) is cleared, it means endio has 8297 * already been executed for the range. 8298 * We can't delete the extent states as 8299 * btrfs_finish_ordered_io() may still use some of them. 8300 */ 8301 goto next; 8302 } 8303 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8304 8305 /* 8306 * IO on this page will never be started, so we need to account 8307 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8308 * here, must leave that up for the ordered extent completion. 8309 * 8310 * This will also unlock the range for incoming 8311 * btrfs_finish_ordered_io(). 8312 */ 8313 if (!inode_evicting) 8314 clear_extent_bit(tree, cur, range_end, 8315 EXTENT_DELALLOC | 8316 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8317 EXTENT_DEFRAG, &cached_state); 8318 8319 spin_lock_irq(&inode->ordered_tree.lock); 8320 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8321 ordered->truncated_len = min(ordered->truncated_len, 8322 cur - ordered->file_offset); 8323 spin_unlock_irq(&inode->ordered_tree.lock); 8324 8325 /* 8326 * If the ordered extent has finished, we're safe to delete all 8327 * the extent states of the range, otherwise 8328 * btrfs_finish_ordered_io() will get executed by endio for 8329 * other pages, so we can't delete extent states. 8330 */ 8331 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8332 cur, range_end + 1 - cur)) { 8333 btrfs_finish_ordered_io(ordered); 8334 /* 8335 * The ordered extent has finished, now we're again 8336 * safe to delete all extent states of the range. 8337 */ 8338 extra_flags = EXTENT_CLEAR_ALL_BITS; 8339 } 8340 next: 8341 if (ordered) 8342 btrfs_put_ordered_extent(ordered); 8343 /* 8344 * Qgroup reserved space handler 8345 * Sector(s) here will be either: 8346 * 8347 * 1) Already written to disk or bio already finished 8348 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8349 * Qgroup will be handled by its qgroup_record then. 8350 * btrfs_qgroup_free_data() call will do nothing here. 8351 * 8352 * 2) Not written to disk yet 8353 * Then btrfs_qgroup_free_data() call will clear the 8354 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8355 * reserved data space. 8356 * Since the IO will never happen for this page. 8357 */ 8358 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8359 if (!inode_evicting) { 8360 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8361 EXTENT_DELALLOC | EXTENT_UPTODATE | 8362 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8363 extra_flags, &cached_state); 8364 } 8365 cur = range_end + 1; 8366 } 8367 /* 8368 * We have iterated through all ordered extents of the page, the page 8369 * should not have Ordered (Private2) anymore, or the above iteration 8370 * did something wrong. 8371 */ 8372 ASSERT(!folio_test_ordered(folio)); 8373 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8374 if (!inode_evicting) 8375 __btrfs_release_folio(folio, GFP_NOFS); 8376 clear_page_extent_mapped(&folio->page); 8377 } 8378 8379 /* 8380 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8381 * called from a page fault handler when a page is first dirtied. Hence we must 8382 * be careful to check for EOF conditions here. We set the page up correctly 8383 * for a written page which means we get ENOSPC checking when writing into 8384 * holes and correct delalloc and unwritten extent mapping on filesystems that 8385 * support these features. 8386 * 8387 * We are not allowed to take the i_mutex here so we have to play games to 8388 * protect against truncate races as the page could now be beyond EOF. Because 8389 * truncate_setsize() writes the inode size before removing pages, once we have 8390 * the page lock we can determine safely if the page is beyond EOF. If it is not 8391 * beyond EOF, then the page is guaranteed safe against truncation until we 8392 * unlock the page. 8393 */ 8394 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8395 { 8396 struct page *page = vmf->page; 8397 struct inode *inode = file_inode(vmf->vma->vm_file); 8398 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8399 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8400 struct btrfs_ordered_extent *ordered; 8401 struct extent_state *cached_state = NULL; 8402 struct extent_changeset *data_reserved = NULL; 8403 unsigned long zero_start; 8404 loff_t size; 8405 vm_fault_t ret; 8406 int ret2; 8407 int reserved = 0; 8408 u64 reserved_space; 8409 u64 page_start; 8410 u64 page_end; 8411 u64 end; 8412 8413 reserved_space = PAGE_SIZE; 8414 8415 sb_start_pagefault(inode->i_sb); 8416 page_start = page_offset(page); 8417 page_end = page_start + PAGE_SIZE - 1; 8418 end = page_end; 8419 8420 /* 8421 * Reserving delalloc space after obtaining the page lock can lead to 8422 * deadlock. For example, if a dirty page is locked by this function 8423 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8424 * dirty page write out, then the btrfs_writepages() function could 8425 * end up waiting indefinitely to get a lock on the page currently 8426 * being processed by btrfs_page_mkwrite() function. 8427 */ 8428 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8429 page_start, reserved_space); 8430 if (!ret2) { 8431 ret2 = file_update_time(vmf->vma->vm_file); 8432 reserved = 1; 8433 } 8434 if (ret2) { 8435 ret = vmf_error(ret2); 8436 if (reserved) 8437 goto out; 8438 goto out_noreserve; 8439 } 8440 8441 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8442 again: 8443 down_read(&BTRFS_I(inode)->i_mmap_lock); 8444 lock_page(page); 8445 size = i_size_read(inode); 8446 8447 if ((page->mapping != inode->i_mapping) || 8448 (page_start >= size)) { 8449 /* page got truncated out from underneath us */ 8450 goto out_unlock; 8451 } 8452 wait_on_page_writeback(page); 8453 8454 lock_extent(io_tree, page_start, page_end, &cached_state); 8455 ret2 = set_page_extent_mapped(page); 8456 if (ret2 < 0) { 8457 ret = vmf_error(ret2); 8458 unlock_extent(io_tree, page_start, page_end, &cached_state); 8459 goto out_unlock; 8460 } 8461 8462 /* 8463 * we can't set the delalloc bits if there are pending ordered 8464 * extents. Drop our locks and wait for them to finish 8465 */ 8466 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8467 PAGE_SIZE); 8468 if (ordered) { 8469 unlock_extent(io_tree, page_start, page_end, &cached_state); 8470 unlock_page(page); 8471 up_read(&BTRFS_I(inode)->i_mmap_lock); 8472 btrfs_start_ordered_extent(ordered, 1); 8473 btrfs_put_ordered_extent(ordered); 8474 goto again; 8475 } 8476 8477 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8478 reserved_space = round_up(size - page_start, 8479 fs_info->sectorsize); 8480 if (reserved_space < PAGE_SIZE) { 8481 end = page_start + reserved_space - 1; 8482 btrfs_delalloc_release_space(BTRFS_I(inode), 8483 data_reserved, page_start, 8484 PAGE_SIZE - reserved_space, true); 8485 } 8486 } 8487 8488 /* 8489 * page_mkwrite gets called when the page is firstly dirtied after it's 8490 * faulted in, but write(2) could also dirty a page and set delalloc 8491 * bits, thus in this case for space account reason, we still need to 8492 * clear any delalloc bits within this page range since we have to 8493 * reserve data&meta space before lock_page() (see above comments). 8494 */ 8495 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8496 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8497 EXTENT_DEFRAG, &cached_state); 8498 8499 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8500 &cached_state); 8501 if (ret2) { 8502 unlock_extent(io_tree, page_start, page_end, &cached_state); 8503 ret = VM_FAULT_SIGBUS; 8504 goto out_unlock; 8505 } 8506 8507 /* page is wholly or partially inside EOF */ 8508 if (page_start + PAGE_SIZE > size) 8509 zero_start = offset_in_page(size); 8510 else 8511 zero_start = PAGE_SIZE; 8512 8513 if (zero_start != PAGE_SIZE) 8514 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8515 8516 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8517 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8518 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8519 8520 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8521 8522 unlock_extent(io_tree, page_start, page_end, &cached_state); 8523 up_read(&BTRFS_I(inode)->i_mmap_lock); 8524 8525 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8526 sb_end_pagefault(inode->i_sb); 8527 extent_changeset_free(data_reserved); 8528 return VM_FAULT_LOCKED; 8529 8530 out_unlock: 8531 unlock_page(page); 8532 up_read(&BTRFS_I(inode)->i_mmap_lock); 8533 out: 8534 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8535 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8536 reserved_space, (ret != 0)); 8537 out_noreserve: 8538 sb_end_pagefault(inode->i_sb); 8539 extent_changeset_free(data_reserved); 8540 return ret; 8541 } 8542 8543 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8544 { 8545 struct btrfs_truncate_control control = { 8546 .inode = BTRFS_I(inode), 8547 .ino = btrfs_ino(BTRFS_I(inode)), 8548 .min_type = BTRFS_EXTENT_DATA_KEY, 8549 .clear_extent_range = true, 8550 }; 8551 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8552 struct btrfs_root *root = BTRFS_I(inode)->root; 8553 struct btrfs_block_rsv *rsv; 8554 int ret; 8555 struct btrfs_trans_handle *trans; 8556 u64 mask = fs_info->sectorsize - 1; 8557 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8558 8559 if (!skip_writeback) { 8560 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8561 (u64)-1); 8562 if (ret) 8563 return ret; 8564 } 8565 8566 /* 8567 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8568 * things going on here: 8569 * 8570 * 1) We need to reserve space to update our inode. 8571 * 8572 * 2) We need to have something to cache all the space that is going to 8573 * be free'd up by the truncate operation, but also have some slack 8574 * space reserved in case it uses space during the truncate (thank you 8575 * very much snapshotting). 8576 * 8577 * And we need these to be separate. The fact is we can use a lot of 8578 * space doing the truncate, and we have no earthly idea how much space 8579 * we will use, so we need the truncate reservation to be separate so it 8580 * doesn't end up using space reserved for updating the inode. We also 8581 * need to be able to stop the transaction and start a new one, which 8582 * means we need to be able to update the inode several times, and we 8583 * have no idea of knowing how many times that will be, so we can't just 8584 * reserve 1 item for the entirety of the operation, so that has to be 8585 * done separately as well. 8586 * 8587 * So that leaves us with 8588 * 8589 * 1) rsv - for the truncate reservation, which we will steal from the 8590 * transaction reservation. 8591 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8592 * updating the inode. 8593 */ 8594 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8595 if (!rsv) 8596 return -ENOMEM; 8597 rsv->size = min_size; 8598 rsv->failfast = true; 8599 8600 /* 8601 * 1 for the truncate slack space 8602 * 1 for updating the inode. 8603 */ 8604 trans = btrfs_start_transaction(root, 2); 8605 if (IS_ERR(trans)) { 8606 ret = PTR_ERR(trans); 8607 goto out; 8608 } 8609 8610 /* Migrate the slack space for the truncate to our reserve */ 8611 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8612 min_size, false); 8613 BUG_ON(ret); 8614 8615 trans->block_rsv = rsv; 8616 8617 while (1) { 8618 struct extent_state *cached_state = NULL; 8619 const u64 new_size = inode->i_size; 8620 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8621 8622 control.new_size = new_size; 8623 lock_extent(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 8624 &cached_state); 8625 /* 8626 * We want to drop from the next block forward in case this new 8627 * size is not block aligned since we will be keeping the last 8628 * block of the extent just the way it is. 8629 */ 8630 btrfs_drop_extent_map_range(BTRFS_I(inode), 8631 ALIGN(new_size, fs_info->sectorsize), 8632 (u64)-1, false); 8633 8634 ret = btrfs_truncate_inode_items(trans, root, &control); 8635 8636 inode_sub_bytes(inode, control.sub_bytes); 8637 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size); 8638 8639 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 8640 &cached_state); 8641 8642 trans->block_rsv = &fs_info->trans_block_rsv; 8643 if (ret != -ENOSPC && ret != -EAGAIN) 8644 break; 8645 8646 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8647 if (ret) 8648 break; 8649 8650 btrfs_end_transaction(trans); 8651 btrfs_btree_balance_dirty(fs_info); 8652 8653 trans = btrfs_start_transaction(root, 2); 8654 if (IS_ERR(trans)) { 8655 ret = PTR_ERR(trans); 8656 trans = NULL; 8657 break; 8658 } 8659 8660 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8661 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8662 rsv, min_size, false); 8663 BUG_ON(ret); /* shouldn't happen */ 8664 trans->block_rsv = rsv; 8665 } 8666 8667 /* 8668 * We can't call btrfs_truncate_block inside a trans handle as we could 8669 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8670 * know we've truncated everything except the last little bit, and can 8671 * do btrfs_truncate_block and then update the disk_i_size. 8672 */ 8673 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8674 btrfs_end_transaction(trans); 8675 btrfs_btree_balance_dirty(fs_info); 8676 8677 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8678 if (ret) 8679 goto out; 8680 trans = btrfs_start_transaction(root, 1); 8681 if (IS_ERR(trans)) { 8682 ret = PTR_ERR(trans); 8683 goto out; 8684 } 8685 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8686 } 8687 8688 if (trans) { 8689 int ret2; 8690 8691 trans->block_rsv = &fs_info->trans_block_rsv; 8692 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8693 if (ret2 && !ret) 8694 ret = ret2; 8695 8696 ret2 = btrfs_end_transaction(trans); 8697 if (ret2 && !ret) 8698 ret = ret2; 8699 btrfs_btree_balance_dirty(fs_info); 8700 } 8701 out: 8702 btrfs_free_block_rsv(fs_info, rsv); 8703 /* 8704 * So if we truncate and then write and fsync we normally would just 8705 * write the extents that changed, which is a problem if we need to 8706 * first truncate that entire inode. So set this flag so we write out 8707 * all of the extents in the inode to the sync log so we're completely 8708 * safe. 8709 * 8710 * If no extents were dropped or trimmed we don't need to force the next 8711 * fsync to truncate all the inode's items from the log and re-log them 8712 * all. This means the truncate operation did not change the file size, 8713 * or changed it to a smaller size but there was only an implicit hole 8714 * between the old i_size and the new i_size, and there were no prealloc 8715 * extents beyond i_size to drop. 8716 */ 8717 if (control.extents_found > 0) 8718 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8719 8720 return ret; 8721 } 8722 8723 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 8724 struct inode *dir) 8725 { 8726 struct inode *inode; 8727 8728 inode = new_inode(dir->i_sb); 8729 if (inode) { 8730 /* 8731 * Subvolumes don't inherit the sgid bit or the parent's gid if 8732 * the parent's sgid bit is set. This is probably a bug. 8733 */ 8734 inode_init_owner(mnt_userns, inode, NULL, 8735 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8736 inode->i_op = &btrfs_dir_inode_operations; 8737 inode->i_fop = &btrfs_dir_file_operations; 8738 } 8739 return inode; 8740 } 8741 8742 struct inode *btrfs_alloc_inode(struct super_block *sb) 8743 { 8744 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8745 struct btrfs_inode *ei; 8746 struct inode *inode; 8747 8748 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8749 if (!ei) 8750 return NULL; 8751 8752 ei->root = NULL; 8753 ei->generation = 0; 8754 ei->last_trans = 0; 8755 ei->last_sub_trans = 0; 8756 ei->logged_trans = 0; 8757 ei->delalloc_bytes = 0; 8758 ei->new_delalloc_bytes = 0; 8759 ei->defrag_bytes = 0; 8760 ei->disk_i_size = 0; 8761 ei->flags = 0; 8762 ei->ro_flags = 0; 8763 ei->csum_bytes = 0; 8764 ei->index_cnt = (u64)-1; 8765 ei->dir_index = 0; 8766 ei->last_unlink_trans = 0; 8767 ei->last_reflink_trans = 0; 8768 ei->last_log_commit = 0; 8769 8770 spin_lock_init(&ei->lock); 8771 spin_lock_init(&ei->io_failure_lock); 8772 ei->outstanding_extents = 0; 8773 if (sb->s_magic != BTRFS_TEST_MAGIC) 8774 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8775 BTRFS_BLOCK_RSV_DELALLOC); 8776 ei->runtime_flags = 0; 8777 ei->prop_compress = BTRFS_COMPRESS_NONE; 8778 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8779 8780 ei->delayed_node = NULL; 8781 8782 ei->i_otime.tv_sec = 0; 8783 ei->i_otime.tv_nsec = 0; 8784 8785 inode = &ei->vfs_inode; 8786 extent_map_tree_init(&ei->extent_tree); 8787 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8788 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8789 IO_TREE_INODE_FILE_EXTENT, NULL); 8790 ei->io_failure_tree = RB_ROOT; 8791 atomic_set(&ei->sync_writers, 0); 8792 mutex_init(&ei->log_mutex); 8793 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8794 INIT_LIST_HEAD(&ei->delalloc_inodes); 8795 INIT_LIST_HEAD(&ei->delayed_iput); 8796 RB_CLEAR_NODE(&ei->rb_node); 8797 init_rwsem(&ei->i_mmap_lock); 8798 8799 return inode; 8800 } 8801 8802 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8803 void btrfs_test_destroy_inode(struct inode *inode) 8804 { 8805 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8806 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8807 } 8808 #endif 8809 8810 void btrfs_free_inode(struct inode *inode) 8811 { 8812 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8813 } 8814 8815 void btrfs_destroy_inode(struct inode *vfs_inode) 8816 { 8817 struct btrfs_ordered_extent *ordered; 8818 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8819 struct btrfs_root *root = inode->root; 8820 bool freespace_inode; 8821 8822 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8823 WARN_ON(vfs_inode->i_data.nrpages); 8824 WARN_ON(inode->block_rsv.reserved); 8825 WARN_ON(inode->block_rsv.size); 8826 WARN_ON(inode->outstanding_extents); 8827 if (!S_ISDIR(vfs_inode->i_mode)) { 8828 WARN_ON(inode->delalloc_bytes); 8829 WARN_ON(inode->new_delalloc_bytes); 8830 } 8831 WARN_ON(inode->csum_bytes); 8832 WARN_ON(inode->defrag_bytes); 8833 8834 /* 8835 * This can happen where we create an inode, but somebody else also 8836 * created the same inode and we need to destroy the one we already 8837 * created. 8838 */ 8839 if (!root) 8840 return; 8841 8842 /* 8843 * If this is a free space inode do not take the ordered extents lockdep 8844 * map. 8845 */ 8846 freespace_inode = btrfs_is_free_space_inode(inode); 8847 8848 while (1) { 8849 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8850 if (!ordered) 8851 break; 8852 else { 8853 btrfs_err(root->fs_info, 8854 "found ordered extent %llu %llu on inode cleanup", 8855 ordered->file_offset, ordered->num_bytes); 8856 8857 if (!freespace_inode) 8858 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8859 8860 btrfs_remove_ordered_extent(inode, ordered); 8861 btrfs_put_ordered_extent(ordered); 8862 btrfs_put_ordered_extent(ordered); 8863 } 8864 } 8865 btrfs_qgroup_check_reserved_leak(inode); 8866 inode_tree_del(inode); 8867 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8868 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8869 btrfs_put_root(inode->root); 8870 } 8871 8872 int btrfs_drop_inode(struct inode *inode) 8873 { 8874 struct btrfs_root *root = BTRFS_I(inode)->root; 8875 8876 if (root == NULL) 8877 return 1; 8878 8879 /* the snap/subvol tree is on deleting */ 8880 if (btrfs_root_refs(&root->root_item) == 0) 8881 return 1; 8882 else 8883 return generic_drop_inode(inode); 8884 } 8885 8886 static void init_once(void *foo) 8887 { 8888 struct btrfs_inode *ei = foo; 8889 8890 inode_init_once(&ei->vfs_inode); 8891 } 8892 8893 void __cold btrfs_destroy_cachep(void) 8894 { 8895 /* 8896 * Make sure all delayed rcu free inodes are flushed before we 8897 * destroy cache. 8898 */ 8899 rcu_barrier(); 8900 bioset_exit(&btrfs_dio_bioset); 8901 kmem_cache_destroy(btrfs_inode_cachep); 8902 kmem_cache_destroy(btrfs_trans_handle_cachep); 8903 kmem_cache_destroy(btrfs_path_cachep); 8904 kmem_cache_destroy(btrfs_free_space_cachep); 8905 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8906 } 8907 8908 int __init btrfs_init_cachep(void) 8909 { 8910 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8911 sizeof(struct btrfs_inode), 0, 8912 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8913 init_once); 8914 if (!btrfs_inode_cachep) 8915 goto fail; 8916 8917 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8918 sizeof(struct btrfs_trans_handle), 0, 8919 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8920 if (!btrfs_trans_handle_cachep) 8921 goto fail; 8922 8923 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8924 sizeof(struct btrfs_path), 0, 8925 SLAB_MEM_SPREAD, NULL); 8926 if (!btrfs_path_cachep) 8927 goto fail; 8928 8929 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8930 sizeof(struct btrfs_free_space), 0, 8931 SLAB_MEM_SPREAD, NULL); 8932 if (!btrfs_free_space_cachep) 8933 goto fail; 8934 8935 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8936 PAGE_SIZE, PAGE_SIZE, 8937 SLAB_MEM_SPREAD, NULL); 8938 if (!btrfs_free_space_bitmap_cachep) 8939 goto fail; 8940 8941 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8942 offsetof(struct btrfs_dio_private, bio), 8943 BIOSET_NEED_BVECS)) 8944 goto fail; 8945 8946 return 0; 8947 fail: 8948 btrfs_destroy_cachep(); 8949 return -ENOMEM; 8950 } 8951 8952 static int btrfs_getattr(struct user_namespace *mnt_userns, 8953 const struct path *path, struct kstat *stat, 8954 u32 request_mask, unsigned int flags) 8955 { 8956 u64 delalloc_bytes; 8957 u64 inode_bytes; 8958 struct inode *inode = d_inode(path->dentry); 8959 u32 blocksize = inode->i_sb->s_blocksize; 8960 u32 bi_flags = BTRFS_I(inode)->flags; 8961 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8962 8963 stat->result_mask |= STATX_BTIME; 8964 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8965 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8966 if (bi_flags & BTRFS_INODE_APPEND) 8967 stat->attributes |= STATX_ATTR_APPEND; 8968 if (bi_flags & BTRFS_INODE_COMPRESS) 8969 stat->attributes |= STATX_ATTR_COMPRESSED; 8970 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8971 stat->attributes |= STATX_ATTR_IMMUTABLE; 8972 if (bi_flags & BTRFS_INODE_NODUMP) 8973 stat->attributes |= STATX_ATTR_NODUMP; 8974 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8975 stat->attributes |= STATX_ATTR_VERITY; 8976 8977 stat->attributes_mask |= (STATX_ATTR_APPEND | 8978 STATX_ATTR_COMPRESSED | 8979 STATX_ATTR_IMMUTABLE | 8980 STATX_ATTR_NODUMP); 8981 8982 generic_fillattr(mnt_userns, inode, stat); 8983 stat->dev = BTRFS_I(inode)->root->anon_dev; 8984 8985 spin_lock(&BTRFS_I(inode)->lock); 8986 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8987 inode_bytes = inode_get_bytes(inode); 8988 spin_unlock(&BTRFS_I(inode)->lock); 8989 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8990 ALIGN(delalloc_bytes, blocksize)) >> 9; 8991 return 0; 8992 } 8993 8994 static int btrfs_rename_exchange(struct inode *old_dir, 8995 struct dentry *old_dentry, 8996 struct inode *new_dir, 8997 struct dentry *new_dentry) 8998 { 8999 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9000 struct btrfs_trans_handle *trans; 9001 unsigned int trans_num_items; 9002 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9003 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9004 struct inode *new_inode = new_dentry->d_inode; 9005 struct inode *old_inode = old_dentry->d_inode; 9006 struct timespec64 ctime = current_time(old_inode); 9007 struct btrfs_rename_ctx old_rename_ctx; 9008 struct btrfs_rename_ctx new_rename_ctx; 9009 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9010 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9011 u64 old_idx = 0; 9012 u64 new_idx = 0; 9013 int ret; 9014 int ret2; 9015 bool need_abort = false; 9016 9017 /* 9018 * For non-subvolumes allow exchange only within one subvolume, in the 9019 * same inode namespace. Two subvolumes (represented as directory) can 9020 * be exchanged as they're a logical link and have a fixed inode number. 9021 */ 9022 if (root != dest && 9023 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 9024 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 9025 return -EXDEV; 9026 9027 /* close the race window with snapshot create/destroy ioctl */ 9028 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9029 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9030 down_read(&fs_info->subvol_sem); 9031 9032 /* 9033 * For each inode: 9034 * 1 to remove old dir item 9035 * 1 to remove old dir index 9036 * 1 to add new dir item 9037 * 1 to add new dir index 9038 * 1 to update parent inode 9039 * 9040 * If the parents are the same, we only need to account for one 9041 */ 9042 trans_num_items = (old_dir == new_dir ? 9 : 10); 9043 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9044 /* 9045 * 1 to remove old root ref 9046 * 1 to remove old root backref 9047 * 1 to add new root ref 9048 * 1 to add new root backref 9049 */ 9050 trans_num_items += 4; 9051 } else { 9052 /* 9053 * 1 to update inode item 9054 * 1 to remove old inode ref 9055 * 1 to add new inode ref 9056 */ 9057 trans_num_items += 3; 9058 } 9059 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9060 trans_num_items += 4; 9061 else 9062 trans_num_items += 3; 9063 trans = btrfs_start_transaction(root, trans_num_items); 9064 if (IS_ERR(trans)) { 9065 ret = PTR_ERR(trans); 9066 goto out_notrans; 9067 } 9068 9069 if (dest != root) { 9070 ret = btrfs_record_root_in_trans(trans, dest); 9071 if (ret) 9072 goto out_fail; 9073 } 9074 9075 /* 9076 * We need to find a free sequence number both in the source and 9077 * in the destination directory for the exchange. 9078 */ 9079 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9080 if (ret) 9081 goto out_fail; 9082 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9083 if (ret) 9084 goto out_fail; 9085 9086 BTRFS_I(old_inode)->dir_index = 0ULL; 9087 BTRFS_I(new_inode)->dir_index = 0ULL; 9088 9089 /* Reference for the source. */ 9090 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9091 /* force full log commit if subvolume involved. */ 9092 btrfs_set_log_full_commit(trans); 9093 } else { 9094 ret = btrfs_insert_inode_ref(trans, dest, 9095 new_dentry->d_name.name, 9096 new_dentry->d_name.len, 9097 old_ino, 9098 btrfs_ino(BTRFS_I(new_dir)), 9099 old_idx); 9100 if (ret) 9101 goto out_fail; 9102 need_abort = true; 9103 } 9104 9105 /* And now for the dest. */ 9106 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9107 /* force full log commit if subvolume involved. */ 9108 btrfs_set_log_full_commit(trans); 9109 } else { 9110 ret = btrfs_insert_inode_ref(trans, root, 9111 old_dentry->d_name.name, 9112 old_dentry->d_name.len, 9113 new_ino, 9114 btrfs_ino(BTRFS_I(old_dir)), 9115 new_idx); 9116 if (ret) { 9117 if (need_abort) 9118 btrfs_abort_transaction(trans, ret); 9119 goto out_fail; 9120 } 9121 } 9122 9123 /* Update inode version and ctime/mtime. */ 9124 inode_inc_iversion(old_dir); 9125 inode_inc_iversion(new_dir); 9126 inode_inc_iversion(old_inode); 9127 inode_inc_iversion(new_inode); 9128 old_dir->i_mtime = ctime; 9129 old_dir->i_ctime = ctime; 9130 new_dir->i_mtime = ctime; 9131 new_dir->i_ctime = ctime; 9132 old_inode->i_ctime = ctime; 9133 new_inode->i_ctime = ctime; 9134 9135 if (old_dentry->d_parent != new_dentry->d_parent) { 9136 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9137 BTRFS_I(old_inode), 1); 9138 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9139 BTRFS_I(new_inode), 1); 9140 } 9141 9142 /* src is a subvolume */ 9143 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9144 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9145 } else { /* src is an inode */ 9146 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9147 BTRFS_I(old_dentry->d_inode), 9148 old_dentry->d_name.name, 9149 old_dentry->d_name.len, 9150 &old_rename_ctx); 9151 if (!ret) 9152 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9153 } 9154 if (ret) { 9155 btrfs_abort_transaction(trans, ret); 9156 goto out_fail; 9157 } 9158 9159 /* dest is a subvolume */ 9160 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9161 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9162 } else { /* dest is an inode */ 9163 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9164 BTRFS_I(new_dentry->d_inode), 9165 new_dentry->d_name.name, 9166 new_dentry->d_name.len, 9167 &new_rename_ctx); 9168 if (!ret) 9169 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9170 } 9171 if (ret) { 9172 btrfs_abort_transaction(trans, ret); 9173 goto out_fail; 9174 } 9175 9176 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9177 new_dentry->d_name.name, 9178 new_dentry->d_name.len, 0, old_idx); 9179 if (ret) { 9180 btrfs_abort_transaction(trans, ret); 9181 goto out_fail; 9182 } 9183 9184 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9185 old_dentry->d_name.name, 9186 old_dentry->d_name.len, 0, new_idx); 9187 if (ret) { 9188 btrfs_abort_transaction(trans, ret); 9189 goto out_fail; 9190 } 9191 9192 if (old_inode->i_nlink == 1) 9193 BTRFS_I(old_inode)->dir_index = old_idx; 9194 if (new_inode->i_nlink == 1) 9195 BTRFS_I(new_inode)->dir_index = new_idx; 9196 9197 /* 9198 * Now pin the logs of the roots. We do it to ensure that no other task 9199 * can sync the logs while we are in progress with the rename, because 9200 * that could result in an inconsistency in case any of the inodes that 9201 * are part of this rename operation were logged before. 9202 */ 9203 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9204 btrfs_pin_log_trans(root); 9205 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9206 btrfs_pin_log_trans(dest); 9207 9208 /* Do the log updates for all inodes. */ 9209 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9210 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9211 old_rename_ctx.index, new_dentry->d_parent); 9212 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9213 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 9214 new_rename_ctx.index, old_dentry->d_parent); 9215 9216 /* Now unpin the logs. */ 9217 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9218 btrfs_end_log_trans(root); 9219 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9220 btrfs_end_log_trans(dest); 9221 out_fail: 9222 ret2 = btrfs_end_transaction(trans); 9223 ret = ret ? ret : ret2; 9224 out_notrans: 9225 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9226 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9227 up_read(&fs_info->subvol_sem); 9228 9229 return ret; 9230 } 9231 9232 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns, 9233 struct inode *dir) 9234 { 9235 struct inode *inode; 9236 9237 inode = new_inode(dir->i_sb); 9238 if (inode) { 9239 inode_init_owner(mnt_userns, inode, dir, 9240 S_IFCHR | WHITEOUT_MODE); 9241 inode->i_op = &btrfs_special_inode_operations; 9242 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 9243 } 9244 return inode; 9245 } 9246 9247 static int btrfs_rename(struct user_namespace *mnt_userns, 9248 struct inode *old_dir, struct dentry *old_dentry, 9249 struct inode *new_dir, struct dentry *new_dentry, 9250 unsigned int flags) 9251 { 9252 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9253 struct btrfs_new_inode_args whiteout_args = { 9254 .dir = old_dir, 9255 .dentry = old_dentry, 9256 }; 9257 struct btrfs_trans_handle *trans; 9258 unsigned int trans_num_items; 9259 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9260 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9261 struct inode *new_inode = d_inode(new_dentry); 9262 struct inode *old_inode = d_inode(old_dentry); 9263 struct btrfs_rename_ctx rename_ctx; 9264 u64 index = 0; 9265 int ret; 9266 int ret2; 9267 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9268 9269 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9270 return -EPERM; 9271 9272 /* we only allow rename subvolume link between subvolumes */ 9273 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9274 return -EXDEV; 9275 9276 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9277 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9278 return -ENOTEMPTY; 9279 9280 if (S_ISDIR(old_inode->i_mode) && new_inode && 9281 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9282 return -ENOTEMPTY; 9283 9284 9285 /* check for collisions, even if the name isn't there */ 9286 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9287 new_dentry->d_name.name, 9288 new_dentry->d_name.len); 9289 9290 if (ret) { 9291 if (ret == -EEXIST) { 9292 /* we shouldn't get 9293 * eexist without a new_inode */ 9294 if (WARN_ON(!new_inode)) { 9295 return ret; 9296 } 9297 } else { 9298 /* maybe -EOVERFLOW */ 9299 return ret; 9300 } 9301 } 9302 ret = 0; 9303 9304 /* 9305 * we're using rename to replace one file with another. Start IO on it 9306 * now so we don't add too much work to the end of the transaction 9307 */ 9308 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9309 filemap_flush(old_inode->i_mapping); 9310 9311 if (flags & RENAME_WHITEOUT) { 9312 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir); 9313 if (!whiteout_args.inode) 9314 return -ENOMEM; 9315 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9316 if (ret) 9317 goto out_whiteout_inode; 9318 } else { 9319 /* 1 to update the old parent inode. */ 9320 trans_num_items = 1; 9321 } 9322 9323 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9324 /* Close the race window with snapshot create/destroy ioctl */ 9325 down_read(&fs_info->subvol_sem); 9326 /* 9327 * 1 to remove old root ref 9328 * 1 to remove old root backref 9329 * 1 to add new root ref 9330 * 1 to add new root backref 9331 */ 9332 trans_num_items += 4; 9333 } else { 9334 /* 9335 * 1 to update inode 9336 * 1 to remove old inode ref 9337 * 1 to add new inode ref 9338 */ 9339 trans_num_items += 3; 9340 } 9341 /* 9342 * 1 to remove old dir item 9343 * 1 to remove old dir index 9344 * 1 to add new dir item 9345 * 1 to add new dir index 9346 */ 9347 trans_num_items += 4; 9348 /* 1 to update new parent inode if it's not the same as the old parent */ 9349 if (new_dir != old_dir) 9350 trans_num_items++; 9351 if (new_inode) { 9352 /* 9353 * 1 to update inode 9354 * 1 to remove inode ref 9355 * 1 to remove dir item 9356 * 1 to remove dir index 9357 * 1 to possibly add orphan item 9358 */ 9359 trans_num_items += 5; 9360 } 9361 trans = btrfs_start_transaction(root, trans_num_items); 9362 if (IS_ERR(trans)) { 9363 ret = PTR_ERR(trans); 9364 goto out_notrans; 9365 } 9366 9367 if (dest != root) { 9368 ret = btrfs_record_root_in_trans(trans, dest); 9369 if (ret) 9370 goto out_fail; 9371 } 9372 9373 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9374 if (ret) 9375 goto out_fail; 9376 9377 BTRFS_I(old_inode)->dir_index = 0ULL; 9378 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9379 /* force full log commit if subvolume involved. */ 9380 btrfs_set_log_full_commit(trans); 9381 } else { 9382 ret = btrfs_insert_inode_ref(trans, dest, 9383 new_dentry->d_name.name, 9384 new_dentry->d_name.len, 9385 old_ino, 9386 btrfs_ino(BTRFS_I(new_dir)), index); 9387 if (ret) 9388 goto out_fail; 9389 } 9390 9391 inode_inc_iversion(old_dir); 9392 inode_inc_iversion(new_dir); 9393 inode_inc_iversion(old_inode); 9394 old_dir->i_mtime = current_time(old_dir); 9395 old_dir->i_ctime = old_dir->i_mtime; 9396 new_dir->i_mtime = old_dir->i_mtime; 9397 new_dir->i_ctime = old_dir->i_mtime; 9398 old_inode->i_ctime = old_dir->i_mtime; 9399 9400 if (old_dentry->d_parent != new_dentry->d_parent) 9401 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9402 BTRFS_I(old_inode), 1); 9403 9404 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9405 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9406 } else { 9407 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9408 BTRFS_I(d_inode(old_dentry)), 9409 old_dentry->d_name.name, 9410 old_dentry->d_name.len, 9411 &rename_ctx); 9412 if (!ret) 9413 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9414 } 9415 if (ret) { 9416 btrfs_abort_transaction(trans, ret); 9417 goto out_fail; 9418 } 9419 9420 if (new_inode) { 9421 inode_inc_iversion(new_inode); 9422 new_inode->i_ctime = current_time(new_inode); 9423 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9424 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9425 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9426 BUG_ON(new_inode->i_nlink == 0); 9427 } else { 9428 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9429 BTRFS_I(d_inode(new_dentry)), 9430 new_dentry->d_name.name, 9431 new_dentry->d_name.len); 9432 } 9433 if (!ret && new_inode->i_nlink == 0) 9434 ret = btrfs_orphan_add(trans, 9435 BTRFS_I(d_inode(new_dentry))); 9436 if (ret) { 9437 btrfs_abort_transaction(trans, ret); 9438 goto out_fail; 9439 } 9440 } 9441 9442 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9443 new_dentry->d_name.name, 9444 new_dentry->d_name.len, 0, index); 9445 if (ret) { 9446 btrfs_abort_transaction(trans, ret); 9447 goto out_fail; 9448 } 9449 9450 if (old_inode->i_nlink == 1) 9451 BTRFS_I(old_inode)->dir_index = index; 9452 9453 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9454 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9455 rename_ctx.index, new_dentry->d_parent); 9456 9457 if (flags & RENAME_WHITEOUT) { 9458 ret = btrfs_create_new_inode(trans, &whiteout_args); 9459 if (ret) { 9460 btrfs_abort_transaction(trans, ret); 9461 goto out_fail; 9462 } else { 9463 unlock_new_inode(whiteout_args.inode); 9464 iput(whiteout_args.inode); 9465 whiteout_args.inode = NULL; 9466 } 9467 } 9468 out_fail: 9469 ret2 = btrfs_end_transaction(trans); 9470 ret = ret ? ret : ret2; 9471 out_notrans: 9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9473 up_read(&fs_info->subvol_sem); 9474 if (flags & RENAME_WHITEOUT) 9475 btrfs_new_inode_args_destroy(&whiteout_args); 9476 out_whiteout_inode: 9477 if (flags & RENAME_WHITEOUT) 9478 iput(whiteout_args.inode); 9479 return ret; 9480 } 9481 9482 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9483 struct dentry *old_dentry, struct inode *new_dir, 9484 struct dentry *new_dentry, unsigned int flags) 9485 { 9486 int ret; 9487 9488 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9489 return -EINVAL; 9490 9491 if (flags & RENAME_EXCHANGE) 9492 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9493 new_dentry); 9494 else 9495 ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, 9496 new_dentry, flags); 9497 9498 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9499 9500 return ret; 9501 } 9502 9503 struct btrfs_delalloc_work { 9504 struct inode *inode; 9505 struct completion completion; 9506 struct list_head list; 9507 struct btrfs_work work; 9508 }; 9509 9510 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9511 { 9512 struct btrfs_delalloc_work *delalloc_work; 9513 struct inode *inode; 9514 9515 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9516 work); 9517 inode = delalloc_work->inode; 9518 filemap_flush(inode->i_mapping); 9519 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9520 &BTRFS_I(inode)->runtime_flags)) 9521 filemap_flush(inode->i_mapping); 9522 9523 iput(inode); 9524 complete(&delalloc_work->completion); 9525 } 9526 9527 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9528 { 9529 struct btrfs_delalloc_work *work; 9530 9531 work = kmalloc(sizeof(*work), GFP_NOFS); 9532 if (!work) 9533 return NULL; 9534 9535 init_completion(&work->completion); 9536 INIT_LIST_HEAD(&work->list); 9537 work->inode = inode; 9538 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9539 9540 return work; 9541 } 9542 9543 /* 9544 * some fairly slow code that needs optimization. This walks the list 9545 * of all the inodes with pending delalloc and forces them to disk. 9546 */ 9547 static int start_delalloc_inodes(struct btrfs_root *root, 9548 struct writeback_control *wbc, bool snapshot, 9549 bool in_reclaim_context) 9550 { 9551 struct btrfs_inode *binode; 9552 struct inode *inode; 9553 struct btrfs_delalloc_work *work, *next; 9554 struct list_head works; 9555 struct list_head splice; 9556 int ret = 0; 9557 bool full_flush = wbc->nr_to_write == LONG_MAX; 9558 9559 INIT_LIST_HEAD(&works); 9560 INIT_LIST_HEAD(&splice); 9561 9562 mutex_lock(&root->delalloc_mutex); 9563 spin_lock(&root->delalloc_lock); 9564 list_splice_init(&root->delalloc_inodes, &splice); 9565 while (!list_empty(&splice)) { 9566 binode = list_entry(splice.next, struct btrfs_inode, 9567 delalloc_inodes); 9568 9569 list_move_tail(&binode->delalloc_inodes, 9570 &root->delalloc_inodes); 9571 9572 if (in_reclaim_context && 9573 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9574 continue; 9575 9576 inode = igrab(&binode->vfs_inode); 9577 if (!inode) { 9578 cond_resched_lock(&root->delalloc_lock); 9579 continue; 9580 } 9581 spin_unlock(&root->delalloc_lock); 9582 9583 if (snapshot) 9584 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9585 &binode->runtime_flags); 9586 if (full_flush) { 9587 work = btrfs_alloc_delalloc_work(inode); 9588 if (!work) { 9589 iput(inode); 9590 ret = -ENOMEM; 9591 goto out; 9592 } 9593 list_add_tail(&work->list, &works); 9594 btrfs_queue_work(root->fs_info->flush_workers, 9595 &work->work); 9596 } else { 9597 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9598 btrfs_add_delayed_iput(inode); 9599 if (ret || wbc->nr_to_write <= 0) 9600 goto out; 9601 } 9602 cond_resched(); 9603 spin_lock(&root->delalloc_lock); 9604 } 9605 spin_unlock(&root->delalloc_lock); 9606 9607 out: 9608 list_for_each_entry_safe(work, next, &works, list) { 9609 list_del_init(&work->list); 9610 wait_for_completion(&work->completion); 9611 kfree(work); 9612 } 9613 9614 if (!list_empty(&splice)) { 9615 spin_lock(&root->delalloc_lock); 9616 list_splice_tail(&splice, &root->delalloc_inodes); 9617 spin_unlock(&root->delalloc_lock); 9618 } 9619 mutex_unlock(&root->delalloc_mutex); 9620 return ret; 9621 } 9622 9623 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9624 { 9625 struct writeback_control wbc = { 9626 .nr_to_write = LONG_MAX, 9627 .sync_mode = WB_SYNC_NONE, 9628 .range_start = 0, 9629 .range_end = LLONG_MAX, 9630 }; 9631 struct btrfs_fs_info *fs_info = root->fs_info; 9632 9633 if (BTRFS_FS_ERROR(fs_info)) 9634 return -EROFS; 9635 9636 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9637 } 9638 9639 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9640 bool in_reclaim_context) 9641 { 9642 struct writeback_control wbc = { 9643 .nr_to_write = nr, 9644 .sync_mode = WB_SYNC_NONE, 9645 .range_start = 0, 9646 .range_end = LLONG_MAX, 9647 }; 9648 struct btrfs_root *root; 9649 struct list_head splice; 9650 int ret; 9651 9652 if (BTRFS_FS_ERROR(fs_info)) 9653 return -EROFS; 9654 9655 INIT_LIST_HEAD(&splice); 9656 9657 mutex_lock(&fs_info->delalloc_root_mutex); 9658 spin_lock(&fs_info->delalloc_root_lock); 9659 list_splice_init(&fs_info->delalloc_roots, &splice); 9660 while (!list_empty(&splice)) { 9661 /* 9662 * Reset nr_to_write here so we know that we're doing a full 9663 * flush. 9664 */ 9665 if (nr == LONG_MAX) 9666 wbc.nr_to_write = LONG_MAX; 9667 9668 root = list_first_entry(&splice, struct btrfs_root, 9669 delalloc_root); 9670 root = btrfs_grab_root(root); 9671 BUG_ON(!root); 9672 list_move_tail(&root->delalloc_root, 9673 &fs_info->delalloc_roots); 9674 spin_unlock(&fs_info->delalloc_root_lock); 9675 9676 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9677 btrfs_put_root(root); 9678 if (ret < 0 || wbc.nr_to_write <= 0) 9679 goto out; 9680 spin_lock(&fs_info->delalloc_root_lock); 9681 } 9682 spin_unlock(&fs_info->delalloc_root_lock); 9683 9684 ret = 0; 9685 out: 9686 if (!list_empty(&splice)) { 9687 spin_lock(&fs_info->delalloc_root_lock); 9688 list_splice_tail(&splice, &fs_info->delalloc_roots); 9689 spin_unlock(&fs_info->delalloc_root_lock); 9690 } 9691 mutex_unlock(&fs_info->delalloc_root_mutex); 9692 return ret; 9693 } 9694 9695 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9696 struct dentry *dentry, const char *symname) 9697 { 9698 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9699 struct btrfs_trans_handle *trans; 9700 struct btrfs_root *root = BTRFS_I(dir)->root; 9701 struct btrfs_path *path; 9702 struct btrfs_key key; 9703 struct inode *inode; 9704 struct btrfs_new_inode_args new_inode_args = { 9705 .dir = dir, 9706 .dentry = dentry, 9707 }; 9708 unsigned int trans_num_items; 9709 int err; 9710 int name_len; 9711 int datasize; 9712 unsigned long ptr; 9713 struct btrfs_file_extent_item *ei; 9714 struct extent_buffer *leaf; 9715 9716 name_len = strlen(symname); 9717 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9718 return -ENAMETOOLONG; 9719 9720 inode = new_inode(dir->i_sb); 9721 if (!inode) 9722 return -ENOMEM; 9723 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO); 9724 inode->i_op = &btrfs_symlink_inode_operations; 9725 inode_nohighmem(inode); 9726 inode->i_mapping->a_ops = &btrfs_aops; 9727 btrfs_i_size_write(BTRFS_I(inode), name_len); 9728 inode_set_bytes(inode, name_len); 9729 9730 new_inode_args.inode = inode; 9731 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9732 if (err) 9733 goto out_inode; 9734 /* 1 additional item for the inline extent */ 9735 trans_num_items++; 9736 9737 trans = btrfs_start_transaction(root, trans_num_items); 9738 if (IS_ERR(trans)) { 9739 err = PTR_ERR(trans); 9740 goto out_new_inode_args; 9741 } 9742 9743 err = btrfs_create_new_inode(trans, &new_inode_args); 9744 if (err) 9745 goto out; 9746 9747 path = btrfs_alloc_path(); 9748 if (!path) { 9749 err = -ENOMEM; 9750 btrfs_abort_transaction(trans, err); 9751 discard_new_inode(inode); 9752 inode = NULL; 9753 goto out; 9754 } 9755 key.objectid = btrfs_ino(BTRFS_I(inode)); 9756 key.offset = 0; 9757 key.type = BTRFS_EXTENT_DATA_KEY; 9758 datasize = btrfs_file_extent_calc_inline_size(name_len); 9759 err = btrfs_insert_empty_item(trans, root, path, &key, 9760 datasize); 9761 if (err) { 9762 btrfs_abort_transaction(trans, err); 9763 btrfs_free_path(path); 9764 discard_new_inode(inode); 9765 inode = NULL; 9766 goto out; 9767 } 9768 leaf = path->nodes[0]; 9769 ei = btrfs_item_ptr(leaf, path->slots[0], 9770 struct btrfs_file_extent_item); 9771 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9772 btrfs_set_file_extent_type(leaf, ei, 9773 BTRFS_FILE_EXTENT_INLINE); 9774 btrfs_set_file_extent_encryption(leaf, ei, 0); 9775 btrfs_set_file_extent_compression(leaf, ei, 0); 9776 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9777 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9778 9779 ptr = btrfs_file_extent_inline_start(ei); 9780 write_extent_buffer(leaf, symname, ptr, name_len); 9781 btrfs_mark_buffer_dirty(leaf); 9782 btrfs_free_path(path); 9783 9784 d_instantiate_new(dentry, inode); 9785 err = 0; 9786 out: 9787 btrfs_end_transaction(trans); 9788 btrfs_btree_balance_dirty(fs_info); 9789 out_new_inode_args: 9790 btrfs_new_inode_args_destroy(&new_inode_args); 9791 out_inode: 9792 if (err) 9793 iput(inode); 9794 return err; 9795 } 9796 9797 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9798 struct btrfs_trans_handle *trans_in, 9799 struct btrfs_inode *inode, 9800 struct btrfs_key *ins, 9801 u64 file_offset) 9802 { 9803 struct btrfs_file_extent_item stack_fi; 9804 struct btrfs_replace_extent_info extent_info; 9805 struct btrfs_trans_handle *trans = trans_in; 9806 struct btrfs_path *path; 9807 u64 start = ins->objectid; 9808 u64 len = ins->offset; 9809 int qgroup_released; 9810 int ret; 9811 9812 memset(&stack_fi, 0, sizeof(stack_fi)); 9813 9814 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9815 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9816 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9817 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9818 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9819 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9820 /* Encryption and other encoding is reserved and all 0 */ 9821 9822 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9823 if (qgroup_released < 0) 9824 return ERR_PTR(qgroup_released); 9825 9826 if (trans) { 9827 ret = insert_reserved_file_extent(trans, inode, 9828 file_offset, &stack_fi, 9829 true, qgroup_released); 9830 if (ret) 9831 goto free_qgroup; 9832 return trans; 9833 } 9834 9835 extent_info.disk_offset = start; 9836 extent_info.disk_len = len; 9837 extent_info.data_offset = 0; 9838 extent_info.data_len = len; 9839 extent_info.file_offset = file_offset; 9840 extent_info.extent_buf = (char *)&stack_fi; 9841 extent_info.is_new_extent = true; 9842 extent_info.update_times = true; 9843 extent_info.qgroup_reserved = qgroup_released; 9844 extent_info.insertions = 0; 9845 9846 path = btrfs_alloc_path(); 9847 if (!path) { 9848 ret = -ENOMEM; 9849 goto free_qgroup; 9850 } 9851 9852 ret = btrfs_replace_file_extents(inode, path, file_offset, 9853 file_offset + len - 1, &extent_info, 9854 &trans); 9855 btrfs_free_path(path); 9856 if (ret) 9857 goto free_qgroup; 9858 return trans; 9859 9860 free_qgroup: 9861 /* 9862 * We have released qgroup data range at the beginning of the function, 9863 * and normally qgroup_released bytes will be freed when committing 9864 * transaction. 9865 * But if we error out early, we have to free what we have released 9866 * or we leak qgroup data reservation. 9867 */ 9868 btrfs_qgroup_free_refroot(inode->root->fs_info, 9869 inode->root->root_key.objectid, qgroup_released, 9870 BTRFS_QGROUP_RSV_DATA); 9871 return ERR_PTR(ret); 9872 } 9873 9874 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9875 u64 start, u64 num_bytes, u64 min_size, 9876 loff_t actual_len, u64 *alloc_hint, 9877 struct btrfs_trans_handle *trans) 9878 { 9879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9880 struct extent_map *em; 9881 struct btrfs_root *root = BTRFS_I(inode)->root; 9882 struct btrfs_key ins; 9883 u64 cur_offset = start; 9884 u64 clear_offset = start; 9885 u64 i_size; 9886 u64 cur_bytes; 9887 u64 last_alloc = (u64)-1; 9888 int ret = 0; 9889 bool own_trans = true; 9890 u64 end = start + num_bytes - 1; 9891 9892 if (trans) 9893 own_trans = false; 9894 while (num_bytes > 0) { 9895 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9896 cur_bytes = max(cur_bytes, min_size); 9897 /* 9898 * If we are severely fragmented we could end up with really 9899 * small allocations, so if the allocator is returning small 9900 * chunks lets make its job easier by only searching for those 9901 * sized chunks. 9902 */ 9903 cur_bytes = min(cur_bytes, last_alloc); 9904 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9905 min_size, 0, *alloc_hint, &ins, 1, 0); 9906 if (ret) 9907 break; 9908 9909 /* 9910 * We've reserved this space, and thus converted it from 9911 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9912 * from here on out we will only need to clear our reservation 9913 * for the remaining unreserved area, so advance our 9914 * clear_offset by our extent size. 9915 */ 9916 clear_offset += ins.offset; 9917 9918 last_alloc = ins.offset; 9919 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9920 &ins, cur_offset); 9921 /* 9922 * Now that we inserted the prealloc extent we can finally 9923 * decrement the number of reservations in the block group. 9924 * If we did it before, we could race with relocation and have 9925 * relocation miss the reserved extent, making it fail later. 9926 */ 9927 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9928 if (IS_ERR(trans)) { 9929 ret = PTR_ERR(trans); 9930 btrfs_free_reserved_extent(fs_info, ins.objectid, 9931 ins.offset, 0); 9932 break; 9933 } 9934 9935 em = alloc_extent_map(); 9936 if (!em) { 9937 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9938 cur_offset + ins.offset - 1, false); 9939 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9940 goto next; 9941 } 9942 9943 em->start = cur_offset; 9944 em->orig_start = cur_offset; 9945 em->len = ins.offset; 9946 em->block_start = ins.objectid; 9947 em->block_len = ins.offset; 9948 em->orig_block_len = ins.offset; 9949 em->ram_bytes = ins.offset; 9950 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9951 em->generation = trans->transid; 9952 9953 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9954 free_extent_map(em); 9955 next: 9956 num_bytes -= ins.offset; 9957 cur_offset += ins.offset; 9958 *alloc_hint = ins.objectid + ins.offset; 9959 9960 inode_inc_iversion(inode); 9961 inode->i_ctime = current_time(inode); 9962 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9963 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9964 (actual_len > inode->i_size) && 9965 (cur_offset > inode->i_size)) { 9966 if (cur_offset > actual_len) 9967 i_size = actual_len; 9968 else 9969 i_size = cur_offset; 9970 i_size_write(inode, i_size); 9971 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9972 } 9973 9974 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9975 9976 if (ret) { 9977 btrfs_abort_transaction(trans, ret); 9978 if (own_trans) 9979 btrfs_end_transaction(trans); 9980 break; 9981 } 9982 9983 if (own_trans) { 9984 btrfs_end_transaction(trans); 9985 trans = NULL; 9986 } 9987 } 9988 if (clear_offset < end) 9989 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9990 end - clear_offset + 1); 9991 return ret; 9992 } 9993 9994 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9995 u64 start, u64 num_bytes, u64 min_size, 9996 loff_t actual_len, u64 *alloc_hint) 9997 { 9998 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9999 min_size, actual_len, alloc_hint, 10000 NULL); 10001 } 10002 10003 int btrfs_prealloc_file_range_trans(struct inode *inode, 10004 struct btrfs_trans_handle *trans, int mode, 10005 u64 start, u64 num_bytes, u64 min_size, 10006 loff_t actual_len, u64 *alloc_hint) 10007 { 10008 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10009 min_size, actual_len, alloc_hint, trans); 10010 } 10011 10012 static int btrfs_permission(struct user_namespace *mnt_userns, 10013 struct inode *inode, int mask) 10014 { 10015 struct btrfs_root *root = BTRFS_I(inode)->root; 10016 umode_t mode = inode->i_mode; 10017 10018 if (mask & MAY_WRITE && 10019 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10020 if (btrfs_root_readonly(root)) 10021 return -EROFS; 10022 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10023 return -EACCES; 10024 } 10025 return generic_permission(mnt_userns, inode, mask); 10026 } 10027 10028 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10029 struct file *file, umode_t mode) 10030 { 10031 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10032 struct btrfs_trans_handle *trans; 10033 struct btrfs_root *root = BTRFS_I(dir)->root; 10034 struct inode *inode; 10035 struct btrfs_new_inode_args new_inode_args = { 10036 .dir = dir, 10037 .dentry = file->f_path.dentry, 10038 .orphan = true, 10039 }; 10040 unsigned int trans_num_items; 10041 int ret; 10042 10043 inode = new_inode(dir->i_sb); 10044 if (!inode) 10045 return -ENOMEM; 10046 inode_init_owner(mnt_userns, inode, dir, mode); 10047 inode->i_fop = &btrfs_file_operations; 10048 inode->i_op = &btrfs_file_inode_operations; 10049 inode->i_mapping->a_ops = &btrfs_aops; 10050 10051 new_inode_args.inode = inode; 10052 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 10053 if (ret) 10054 goto out_inode; 10055 10056 trans = btrfs_start_transaction(root, trans_num_items); 10057 if (IS_ERR(trans)) { 10058 ret = PTR_ERR(trans); 10059 goto out_new_inode_args; 10060 } 10061 10062 ret = btrfs_create_new_inode(trans, &new_inode_args); 10063 10064 /* 10065 * We set number of links to 0 in btrfs_create_new_inode(), and here we 10066 * set it to 1 because d_tmpfile() will issue a warning if the count is 10067 * 0, through: 10068 * 10069 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10070 */ 10071 set_nlink(inode, 1); 10072 10073 if (!ret) { 10074 d_tmpfile(file, inode); 10075 unlock_new_inode(inode); 10076 mark_inode_dirty(inode); 10077 } 10078 10079 btrfs_end_transaction(trans); 10080 btrfs_btree_balance_dirty(fs_info); 10081 out_new_inode_args: 10082 btrfs_new_inode_args_destroy(&new_inode_args); 10083 out_inode: 10084 if (ret) 10085 iput(inode); 10086 return finish_open_simple(file, ret); 10087 } 10088 10089 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10090 { 10091 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10092 unsigned long index = start >> PAGE_SHIFT; 10093 unsigned long end_index = end >> PAGE_SHIFT; 10094 struct page *page; 10095 u32 len; 10096 10097 ASSERT(end + 1 - start <= U32_MAX); 10098 len = end + 1 - start; 10099 while (index <= end_index) { 10100 page = find_get_page(inode->vfs_inode.i_mapping, index); 10101 ASSERT(page); /* Pages should be in the extent_io_tree */ 10102 10103 btrfs_page_set_writeback(fs_info, page, start, len); 10104 put_page(page); 10105 index++; 10106 } 10107 } 10108 10109 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 10110 int compress_type) 10111 { 10112 switch (compress_type) { 10113 case BTRFS_COMPRESS_NONE: 10114 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 10115 case BTRFS_COMPRESS_ZLIB: 10116 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 10117 case BTRFS_COMPRESS_LZO: 10118 /* 10119 * The LZO format depends on the sector size. 64K is the maximum 10120 * sector size that we support. 10121 */ 10122 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 10123 return -EINVAL; 10124 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 10125 (fs_info->sectorsize_bits - 12); 10126 case BTRFS_COMPRESS_ZSTD: 10127 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 10128 default: 10129 return -EUCLEAN; 10130 } 10131 } 10132 10133 static ssize_t btrfs_encoded_read_inline( 10134 struct kiocb *iocb, 10135 struct iov_iter *iter, u64 start, 10136 u64 lockend, 10137 struct extent_state **cached_state, 10138 u64 extent_start, size_t count, 10139 struct btrfs_ioctl_encoded_io_args *encoded, 10140 bool *unlocked) 10141 { 10142 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10143 struct btrfs_root *root = inode->root; 10144 struct btrfs_fs_info *fs_info = root->fs_info; 10145 struct extent_io_tree *io_tree = &inode->io_tree; 10146 struct btrfs_path *path; 10147 struct extent_buffer *leaf; 10148 struct btrfs_file_extent_item *item; 10149 u64 ram_bytes; 10150 unsigned long ptr; 10151 void *tmp; 10152 ssize_t ret; 10153 10154 path = btrfs_alloc_path(); 10155 if (!path) { 10156 ret = -ENOMEM; 10157 goto out; 10158 } 10159 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 10160 extent_start, 0); 10161 if (ret) { 10162 if (ret > 0) { 10163 /* The extent item disappeared? */ 10164 ret = -EIO; 10165 } 10166 goto out; 10167 } 10168 leaf = path->nodes[0]; 10169 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10170 10171 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 10172 ptr = btrfs_file_extent_inline_start(item); 10173 10174 encoded->len = min_t(u64, extent_start + ram_bytes, 10175 inode->vfs_inode.i_size) - iocb->ki_pos; 10176 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10177 btrfs_file_extent_compression(leaf, item)); 10178 if (ret < 0) 10179 goto out; 10180 encoded->compression = ret; 10181 if (encoded->compression) { 10182 size_t inline_size; 10183 10184 inline_size = btrfs_file_extent_inline_item_len(leaf, 10185 path->slots[0]); 10186 if (inline_size > count) { 10187 ret = -ENOBUFS; 10188 goto out; 10189 } 10190 count = inline_size; 10191 encoded->unencoded_len = ram_bytes; 10192 encoded->unencoded_offset = iocb->ki_pos - extent_start; 10193 } else { 10194 count = min_t(u64, count, encoded->len); 10195 encoded->len = count; 10196 encoded->unencoded_len = count; 10197 ptr += iocb->ki_pos - extent_start; 10198 } 10199 10200 tmp = kmalloc(count, GFP_NOFS); 10201 if (!tmp) { 10202 ret = -ENOMEM; 10203 goto out; 10204 } 10205 read_extent_buffer(leaf, tmp, ptr, count); 10206 btrfs_release_path(path); 10207 unlock_extent(io_tree, start, lockend, cached_state); 10208 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10209 *unlocked = true; 10210 10211 ret = copy_to_iter(tmp, count, iter); 10212 if (ret != count) 10213 ret = -EFAULT; 10214 kfree(tmp); 10215 out: 10216 btrfs_free_path(path); 10217 return ret; 10218 } 10219 10220 struct btrfs_encoded_read_private { 10221 struct btrfs_inode *inode; 10222 u64 file_offset; 10223 wait_queue_head_t wait; 10224 atomic_t pending; 10225 blk_status_t status; 10226 bool skip_csum; 10227 }; 10228 10229 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode, 10230 struct bio *bio, int mirror_num) 10231 { 10232 struct btrfs_encoded_read_private *priv = btrfs_bio(bio)->private; 10233 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10234 blk_status_t ret; 10235 10236 if (!priv->skip_csum) { 10237 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL); 10238 if (ret) 10239 return ret; 10240 } 10241 10242 atomic_inc(&priv->pending); 10243 btrfs_submit_bio(fs_info, bio, mirror_num); 10244 return BLK_STS_OK; 10245 } 10246 10247 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio) 10248 { 10249 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK); 10250 struct btrfs_encoded_read_private *priv = bbio->private; 10251 struct btrfs_inode *inode = priv->inode; 10252 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10253 u32 sectorsize = fs_info->sectorsize; 10254 struct bio_vec *bvec; 10255 struct bvec_iter_all iter_all; 10256 u32 bio_offset = 0; 10257 10258 if (priv->skip_csum || !uptodate) 10259 return bbio->bio.bi_status; 10260 10261 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 10262 unsigned int i, nr_sectors, pgoff; 10263 10264 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 10265 pgoff = bvec->bv_offset; 10266 for (i = 0; i < nr_sectors; i++) { 10267 ASSERT(pgoff < PAGE_SIZE); 10268 if (btrfs_check_data_csum(&inode->vfs_inode, bbio, bio_offset, 10269 bvec->bv_page, pgoff)) 10270 return BLK_STS_IOERR; 10271 bio_offset += sectorsize; 10272 pgoff += sectorsize; 10273 } 10274 } 10275 return BLK_STS_OK; 10276 } 10277 10278 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 10279 { 10280 struct btrfs_encoded_read_private *priv = bbio->private; 10281 blk_status_t status; 10282 10283 status = btrfs_encoded_read_verify_csum(bbio); 10284 if (status) { 10285 /* 10286 * The memory barrier implied by the atomic_dec_return() here 10287 * pairs with the memory barrier implied by the 10288 * atomic_dec_return() or io_wait_event() in 10289 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10290 * write is observed before the load of status in 10291 * btrfs_encoded_read_regular_fill_pages(). 10292 */ 10293 WRITE_ONCE(priv->status, status); 10294 } 10295 if (!atomic_dec_return(&priv->pending)) 10296 wake_up(&priv->wait); 10297 btrfs_bio_free_csum(bbio); 10298 bio_put(&bbio->bio); 10299 } 10300 10301 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10302 u64 file_offset, u64 disk_bytenr, 10303 u64 disk_io_size, struct page **pages) 10304 { 10305 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10306 struct btrfs_encoded_read_private priv = { 10307 .inode = inode, 10308 .file_offset = file_offset, 10309 .pending = ATOMIC_INIT(1), 10310 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM), 10311 }; 10312 unsigned long i = 0; 10313 u64 cur = 0; 10314 int ret; 10315 10316 init_waitqueue_head(&priv.wait); 10317 /* 10318 * Submit bios for the extent, splitting due to bio or stripe limits as 10319 * necessary. 10320 */ 10321 while (cur < disk_io_size) { 10322 struct extent_map *em; 10323 struct btrfs_io_geometry geom; 10324 struct bio *bio = NULL; 10325 u64 remaining; 10326 10327 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur, 10328 disk_io_size - cur); 10329 if (IS_ERR(em)) { 10330 ret = PTR_ERR(em); 10331 } else { 10332 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ, 10333 disk_bytenr + cur, &geom); 10334 free_extent_map(em); 10335 } 10336 if (ret) { 10337 WRITE_ONCE(priv.status, errno_to_blk_status(ret)); 10338 break; 10339 } 10340 remaining = min(geom.len, disk_io_size - cur); 10341 while (bio || remaining) { 10342 size_t bytes = min_t(u64, remaining, PAGE_SIZE); 10343 10344 if (!bio) { 10345 bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, 10346 btrfs_encoded_read_endio, 10347 &priv); 10348 bio->bi_iter.bi_sector = 10349 (disk_bytenr + cur) >> SECTOR_SHIFT; 10350 } 10351 10352 if (!bytes || 10353 bio_add_page(bio, pages[i], bytes, 0) < bytes) { 10354 blk_status_t status; 10355 10356 status = submit_encoded_read_bio(inode, bio, 0); 10357 if (status) { 10358 WRITE_ONCE(priv.status, status); 10359 bio_put(bio); 10360 goto out; 10361 } 10362 bio = NULL; 10363 continue; 10364 } 10365 10366 i++; 10367 cur += bytes; 10368 remaining -= bytes; 10369 } 10370 } 10371 10372 out: 10373 if (atomic_dec_return(&priv.pending)) 10374 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10375 /* See btrfs_encoded_read_endio() for ordering. */ 10376 return blk_status_to_errno(READ_ONCE(priv.status)); 10377 } 10378 10379 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10380 struct iov_iter *iter, 10381 u64 start, u64 lockend, 10382 struct extent_state **cached_state, 10383 u64 disk_bytenr, u64 disk_io_size, 10384 size_t count, bool compressed, 10385 bool *unlocked) 10386 { 10387 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10388 struct extent_io_tree *io_tree = &inode->io_tree; 10389 struct page **pages; 10390 unsigned long nr_pages, i; 10391 u64 cur; 10392 size_t page_offset; 10393 ssize_t ret; 10394 10395 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10396 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10397 if (!pages) 10398 return -ENOMEM; 10399 ret = btrfs_alloc_page_array(nr_pages, pages); 10400 if (ret) { 10401 ret = -ENOMEM; 10402 goto out; 10403 } 10404 10405 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10406 disk_io_size, pages); 10407 if (ret) 10408 goto out; 10409 10410 unlock_extent(io_tree, start, lockend, cached_state); 10411 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10412 *unlocked = true; 10413 10414 if (compressed) { 10415 i = 0; 10416 page_offset = 0; 10417 } else { 10418 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10419 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10420 } 10421 cur = 0; 10422 while (cur < count) { 10423 size_t bytes = min_t(size_t, count - cur, 10424 PAGE_SIZE - page_offset); 10425 10426 if (copy_page_to_iter(pages[i], page_offset, bytes, 10427 iter) != bytes) { 10428 ret = -EFAULT; 10429 goto out; 10430 } 10431 i++; 10432 cur += bytes; 10433 page_offset = 0; 10434 } 10435 ret = count; 10436 out: 10437 for (i = 0; i < nr_pages; i++) { 10438 if (pages[i]) 10439 __free_page(pages[i]); 10440 } 10441 kfree(pages); 10442 return ret; 10443 } 10444 10445 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10446 struct btrfs_ioctl_encoded_io_args *encoded) 10447 { 10448 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10449 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10450 struct extent_io_tree *io_tree = &inode->io_tree; 10451 ssize_t ret; 10452 size_t count = iov_iter_count(iter); 10453 u64 start, lockend, disk_bytenr, disk_io_size; 10454 struct extent_state *cached_state = NULL; 10455 struct extent_map *em; 10456 bool unlocked = false; 10457 10458 file_accessed(iocb->ki_filp); 10459 10460 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10461 10462 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10463 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10464 return 0; 10465 } 10466 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10467 /* 10468 * We don't know how long the extent containing iocb->ki_pos is, but if 10469 * it's compressed we know that it won't be longer than this. 10470 */ 10471 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10472 10473 for (;;) { 10474 struct btrfs_ordered_extent *ordered; 10475 10476 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10477 lockend - start + 1); 10478 if (ret) 10479 goto out_unlock_inode; 10480 lock_extent(io_tree, start, lockend, &cached_state); 10481 ordered = btrfs_lookup_ordered_range(inode, start, 10482 lockend - start + 1); 10483 if (!ordered) 10484 break; 10485 btrfs_put_ordered_extent(ordered); 10486 unlock_extent(io_tree, start, lockend, &cached_state); 10487 cond_resched(); 10488 } 10489 10490 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10491 if (IS_ERR(em)) { 10492 ret = PTR_ERR(em); 10493 goto out_unlock_extent; 10494 } 10495 10496 if (em->block_start == EXTENT_MAP_INLINE) { 10497 u64 extent_start = em->start; 10498 10499 /* 10500 * For inline extents we get everything we need out of the 10501 * extent item. 10502 */ 10503 free_extent_map(em); 10504 em = NULL; 10505 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10506 &cached_state, extent_start, 10507 count, encoded, &unlocked); 10508 goto out; 10509 } 10510 10511 /* 10512 * We only want to return up to EOF even if the extent extends beyond 10513 * that. 10514 */ 10515 encoded->len = min_t(u64, extent_map_end(em), 10516 inode->vfs_inode.i_size) - iocb->ki_pos; 10517 if (em->block_start == EXTENT_MAP_HOLE || 10518 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10519 disk_bytenr = EXTENT_MAP_HOLE; 10520 count = min_t(u64, count, encoded->len); 10521 encoded->len = count; 10522 encoded->unencoded_len = count; 10523 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10524 disk_bytenr = em->block_start; 10525 /* 10526 * Bail if the buffer isn't large enough to return the whole 10527 * compressed extent. 10528 */ 10529 if (em->block_len > count) { 10530 ret = -ENOBUFS; 10531 goto out_em; 10532 } 10533 disk_io_size = em->block_len; 10534 count = em->block_len; 10535 encoded->unencoded_len = em->ram_bytes; 10536 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10537 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10538 em->compress_type); 10539 if (ret < 0) 10540 goto out_em; 10541 encoded->compression = ret; 10542 } else { 10543 disk_bytenr = em->block_start + (start - em->start); 10544 if (encoded->len > count) 10545 encoded->len = count; 10546 /* 10547 * Don't read beyond what we locked. This also limits the page 10548 * allocations that we'll do. 10549 */ 10550 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10551 count = start + disk_io_size - iocb->ki_pos; 10552 encoded->len = count; 10553 encoded->unencoded_len = count; 10554 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10555 } 10556 free_extent_map(em); 10557 em = NULL; 10558 10559 if (disk_bytenr == EXTENT_MAP_HOLE) { 10560 unlock_extent(io_tree, start, lockend, &cached_state); 10561 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10562 unlocked = true; 10563 ret = iov_iter_zero(count, iter); 10564 if (ret != count) 10565 ret = -EFAULT; 10566 } else { 10567 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10568 &cached_state, disk_bytenr, 10569 disk_io_size, count, 10570 encoded->compression, 10571 &unlocked); 10572 } 10573 10574 out: 10575 if (ret >= 0) 10576 iocb->ki_pos += encoded->len; 10577 out_em: 10578 free_extent_map(em); 10579 out_unlock_extent: 10580 if (!unlocked) 10581 unlock_extent(io_tree, start, lockend, &cached_state); 10582 out_unlock_inode: 10583 if (!unlocked) 10584 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10585 return ret; 10586 } 10587 10588 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10589 const struct btrfs_ioctl_encoded_io_args *encoded) 10590 { 10591 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10592 struct btrfs_root *root = inode->root; 10593 struct btrfs_fs_info *fs_info = root->fs_info; 10594 struct extent_io_tree *io_tree = &inode->io_tree; 10595 struct extent_changeset *data_reserved = NULL; 10596 struct extent_state *cached_state = NULL; 10597 int compression; 10598 size_t orig_count; 10599 u64 start, end; 10600 u64 num_bytes, ram_bytes, disk_num_bytes; 10601 unsigned long nr_pages, i; 10602 struct page **pages; 10603 struct btrfs_key ins; 10604 bool extent_reserved = false; 10605 struct extent_map *em; 10606 ssize_t ret; 10607 10608 switch (encoded->compression) { 10609 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10610 compression = BTRFS_COMPRESS_ZLIB; 10611 break; 10612 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10613 compression = BTRFS_COMPRESS_ZSTD; 10614 break; 10615 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10616 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10617 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10618 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10619 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10620 /* The sector size must match for LZO. */ 10621 if (encoded->compression - 10622 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10623 fs_info->sectorsize_bits) 10624 return -EINVAL; 10625 compression = BTRFS_COMPRESS_LZO; 10626 break; 10627 default: 10628 return -EINVAL; 10629 } 10630 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10631 return -EINVAL; 10632 10633 orig_count = iov_iter_count(from); 10634 10635 /* The extent size must be sane. */ 10636 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10637 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10638 return -EINVAL; 10639 10640 /* 10641 * The compressed data must be smaller than the decompressed data. 10642 * 10643 * It's of course possible for data to compress to larger or the same 10644 * size, but the buffered I/O path falls back to no compression for such 10645 * data, and we don't want to break any assumptions by creating these 10646 * extents. 10647 * 10648 * Note that this is less strict than the current check we have that the 10649 * compressed data must be at least one sector smaller than the 10650 * decompressed data. We only want to enforce the weaker requirement 10651 * from old kernels that it is at least one byte smaller. 10652 */ 10653 if (orig_count >= encoded->unencoded_len) 10654 return -EINVAL; 10655 10656 /* The extent must start on a sector boundary. */ 10657 start = iocb->ki_pos; 10658 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10659 return -EINVAL; 10660 10661 /* 10662 * The extent must end on a sector boundary. However, we allow a write 10663 * which ends at or extends i_size to have an unaligned length; we round 10664 * up the extent size and set i_size to the unaligned end. 10665 */ 10666 if (start + encoded->len < inode->vfs_inode.i_size && 10667 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10668 return -EINVAL; 10669 10670 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10671 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10672 return -EINVAL; 10673 10674 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10675 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10676 end = start + num_bytes - 1; 10677 10678 /* 10679 * If the extent cannot be inline, the compressed data on disk must be 10680 * sector-aligned. For convenience, we extend it with zeroes if it 10681 * isn't. 10682 */ 10683 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10684 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10685 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10686 if (!pages) 10687 return -ENOMEM; 10688 for (i = 0; i < nr_pages; i++) { 10689 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10690 char *kaddr; 10691 10692 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10693 if (!pages[i]) { 10694 ret = -ENOMEM; 10695 goto out_pages; 10696 } 10697 kaddr = kmap_local_page(pages[i]); 10698 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10699 kunmap_local(kaddr); 10700 ret = -EFAULT; 10701 goto out_pages; 10702 } 10703 if (bytes < PAGE_SIZE) 10704 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10705 kunmap_local(kaddr); 10706 } 10707 10708 for (;;) { 10709 struct btrfs_ordered_extent *ordered; 10710 10711 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10712 if (ret) 10713 goto out_pages; 10714 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10715 start >> PAGE_SHIFT, 10716 end >> PAGE_SHIFT); 10717 if (ret) 10718 goto out_pages; 10719 lock_extent(io_tree, start, end, &cached_state); 10720 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10721 if (!ordered && 10722 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10723 break; 10724 if (ordered) 10725 btrfs_put_ordered_extent(ordered); 10726 unlock_extent(io_tree, start, end, &cached_state); 10727 cond_resched(); 10728 } 10729 10730 /* 10731 * We don't use the higher-level delalloc space functions because our 10732 * num_bytes and disk_num_bytes are different. 10733 */ 10734 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10735 if (ret) 10736 goto out_unlock; 10737 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10738 if (ret) 10739 goto out_free_data_space; 10740 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10741 false); 10742 if (ret) 10743 goto out_qgroup_free_data; 10744 10745 /* Try an inline extent first. */ 10746 if (start == 0 && encoded->unencoded_len == encoded->len && 10747 encoded->unencoded_offset == 0) { 10748 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10749 compression, pages, true); 10750 if (ret <= 0) { 10751 if (ret == 0) 10752 ret = orig_count; 10753 goto out_delalloc_release; 10754 } 10755 } 10756 10757 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10758 disk_num_bytes, 0, 0, &ins, 1, 1); 10759 if (ret) 10760 goto out_delalloc_release; 10761 extent_reserved = true; 10762 10763 em = create_io_em(inode, start, num_bytes, 10764 start - encoded->unencoded_offset, ins.objectid, 10765 ins.offset, ins.offset, ram_bytes, compression, 10766 BTRFS_ORDERED_COMPRESSED); 10767 if (IS_ERR(em)) { 10768 ret = PTR_ERR(em); 10769 goto out_free_reserved; 10770 } 10771 free_extent_map(em); 10772 10773 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, 10774 ins.objectid, ins.offset, 10775 encoded->unencoded_offset, 10776 (1 << BTRFS_ORDERED_ENCODED) | 10777 (1 << BTRFS_ORDERED_COMPRESSED), 10778 compression); 10779 if (ret) { 10780 btrfs_drop_extent_map_range(inode, start, end, false); 10781 goto out_free_reserved; 10782 } 10783 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10784 10785 if (start + encoded->len > inode->vfs_inode.i_size) 10786 i_size_write(&inode->vfs_inode, start + encoded->len); 10787 10788 unlock_extent(io_tree, start, end, &cached_state); 10789 10790 btrfs_delalloc_release_extents(inode, num_bytes); 10791 10792 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, 10793 ins.offset, pages, nr_pages, 0, NULL, 10794 false)) { 10795 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0); 10796 ret = -EIO; 10797 goto out_pages; 10798 } 10799 ret = orig_count; 10800 goto out; 10801 10802 out_free_reserved: 10803 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10804 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10805 out_delalloc_release: 10806 btrfs_delalloc_release_extents(inode, num_bytes); 10807 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10808 out_qgroup_free_data: 10809 if (ret < 0) 10810 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10811 out_free_data_space: 10812 /* 10813 * If btrfs_reserve_extent() succeeded, then we already decremented 10814 * bytes_may_use. 10815 */ 10816 if (!extent_reserved) 10817 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10818 out_unlock: 10819 unlock_extent(io_tree, start, end, &cached_state); 10820 out_pages: 10821 for (i = 0; i < nr_pages; i++) { 10822 if (pages[i]) 10823 __free_page(pages[i]); 10824 } 10825 kvfree(pages); 10826 out: 10827 if (ret >= 0) 10828 iocb->ki_pos += encoded->len; 10829 return ret; 10830 } 10831 10832 #ifdef CONFIG_SWAP 10833 /* 10834 * Add an entry indicating a block group or device which is pinned by a 10835 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10836 * negative errno on failure. 10837 */ 10838 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10839 bool is_block_group) 10840 { 10841 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10842 struct btrfs_swapfile_pin *sp, *entry; 10843 struct rb_node **p; 10844 struct rb_node *parent = NULL; 10845 10846 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10847 if (!sp) 10848 return -ENOMEM; 10849 sp->ptr = ptr; 10850 sp->inode = inode; 10851 sp->is_block_group = is_block_group; 10852 sp->bg_extent_count = 1; 10853 10854 spin_lock(&fs_info->swapfile_pins_lock); 10855 p = &fs_info->swapfile_pins.rb_node; 10856 while (*p) { 10857 parent = *p; 10858 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10859 if (sp->ptr < entry->ptr || 10860 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10861 p = &(*p)->rb_left; 10862 } else if (sp->ptr > entry->ptr || 10863 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10864 p = &(*p)->rb_right; 10865 } else { 10866 if (is_block_group) 10867 entry->bg_extent_count++; 10868 spin_unlock(&fs_info->swapfile_pins_lock); 10869 kfree(sp); 10870 return 1; 10871 } 10872 } 10873 rb_link_node(&sp->node, parent, p); 10874 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10875 spin_unlock(&fs_info->swapfile_pins_lock); 10876 return 0; 10877 } 10878 10879 /* Free all of the entries pinned by this swapfile. */ 10880 static void btrfs_free_swapfile_pins(struct inode *inode) 10881 { 10882 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10883 struct btrfs_swapfile_pin *sp; 10884 struct rb_node *node, *next; 10885 10886 spin_lock(&fs_info->swapfile_pins_lock); 10887 node = rb_first(&fs_info->swapfile_pins); 10888 while (node) { 10889 next = rb_next(node); 10890 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10891 if (sp->inode == inode) { 10892 rb_erase(&sp->node, &fs_info->swapfile_pins); 10893 if (sp->is_block_group) { 10894 btrfs_dec_block_group_swap_extents(sp->ptr, 10895 sp->bg_extent_count); 10896 btrfs_put_block_group(sp->ptr); 10897 } 10898 kfree(sp); 10899 } 10900 node = next; 10901 } 10902 spin_unlock(&fs_info->swapfile_pins_lock); 10903 } 10904 10905 struct btrfs_swap_info { 10906 u64 start; 10907 u64 block_start; 10908 u64 block_len; 10909 u64 lowest_ppage; 10910 u64 highest_ppage; 10911 unsigned long nr_pages; 10912 int nr_extents; 10913 }; 10914 10915 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10916 struct btrfs_swap_info *bsi) 10917 { 10918 unsigned long nr_pages; 10919 unsigned long max_pages; 10920 u64 first_ppage, first_ppage_reported, next_ppage; 10921 int ret; 10922 10923 /* 10924 * Our swapfile may have had its size extended after the swap header was 10925 * written. In that case activating the swapfile should not go beyond 10926 * the max size set in the swap header. 10927 */ 10928 if (bsi->nr_pages >= sis->max) 10929 return 0; 10930 10931 max_pages = sis->max - bsi->nr_pages; 10932 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10933 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10934 PAGE_SIZE) >> PAGE_SHIFT; 10935 10936 if (first_ppage >= next_ppage) 10937 return 0; 10938 nr_pages = next_ppage - first_ppage; 10939 nr_pages = min(nr_pages, max_pages); 10940 10941 first_ppage_reported = first_ppage; 10942 if (bsi->start == 0) 10943 first_ppage_reported++; 10944 if (bsi->lowest_ppage > first_ppage_reported) 10945 bsi->lowest_ppage = first_ppage_reported; 10946 if (bsi->highest_ppage < (next_ppage - 1)) 10947 bsi->highest_ppage = next_ppage - 1; 10948 10949 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10950 if (ret < 0) 10951 return ret; 10952 bsi->nr_extents += ret; 10953 bsi->nr_pages += nr_pages; 10954 return 0; 10955 } 10956 10957 static void btrfs_swap_deactivate(struct file *file) 10958 { 10959 struct inode *inode = file_inode(file); 10960 10961 btrfs_free_swapfile_pins(inode); 10962 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10963 } 10964 10965 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10966 sector_t *span) 10967 { 10968 struct inode *inode = file_inode(file); 10969 struct btrfs_root *root = BTRFS_I(inode)->root; 10970 struct btrfs_fs_info *fs_info = root->fs_info; 10971 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10972 struct extent_state *cached_state = NULL; 10973 struct extent_map *em = NULL; 10974 struct btrfs_device *device = NULL; 10975 struct btrfs_swap_info bsi = { 10976 .lowest_ppage = (sector_t)-1ULL, 10977 }; 10978 int ret = 0; 10979 u64 isize; 10980 u64 start; 10981 10982 /* 10983 * If the swap file was just created, make sure delalloc is done. If the 10984 * file changes again after this, the user is doing something stupid and 10985 * we don't really care. 10986 */ 10987 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10988 if (ret) 10989 return ret; 10990 10991 /* 10992 * The inode is locked, so these flags won't change after we check them. 10993 */ 10994 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10995 btrfs_warn(fs_info, "swapfile must not be compressed"); 10996 return -EINVAL; 10997 } 10998 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10999 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 11000 return -EINVAL; 11001 } 11002 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 11003 btrfs_warn(fs_info, "swapfile must not be checksummed"); 11004 return -EINVAL; 11005 } 11006 11007 /* 11008 * Balance or device remove/replace/resize can move stuff around from 11009 * under us. The exclop protection makes sure they aren't running/won't 11010 * run concurrently while we are mapping the swap extents, and 11011 * fs_info->swapfile_pins prevents them from running while the swap 11012 * file is active and moving the extents. Note that this also prevents 11013 * a concurrent device add which isn't actually necessary, but it's not 11014 * really worth the trouble to allow it. 11015 */ 11016 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 11017 btrfs_warn(fs_info, 11018 "cannot activate swapfile while exclusive operation is running"); 11019 return -EBUSY; 11020 } 11021 11022 /* 11023 * Prevent snapshot creation while we are activating the swap file. 11024 * We do not want to race with snapshot creation. If snapshot creation 11025 * already started before we bumped nr_swapfiles from 0 to 1 and 11026 * completes before the first write into the swap file after it is 11027 * activated, than that write would fallback to COW. 11028 */ 11029 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 11030 btrfs_exclop_finish(fs_info); 11031 btrfs_warn(fs_info, 11032 "cannot activate swapfile because snapshot creation is in progress"); 11033 return -EINVAL; 11034 } 11035 /* 11036 * Snapshots can create extents which require COW even if NODATACOW is 11037 * set. We use this counter to prevent snapshots. We must increment it 11038 * before walking the extents because we don't want a concurrent 11039 * snapshot to run after we've already checked the extents. 11040 * 11041 * It is possible that subvolume is marked for deletion but still not 11042 * removed yet. To prevent this race, we check the root status before 11043 * activating the swapfile. 11044 */ 11045 spin_lock(&root->root_item_lock); 11046 if (btrfs_root_dead(root)) { 11047 spin_unlock(&root->root_item_lock); 11048 11049 btrfs_exclop_finish(fs_info); 11050 btrfs_warn(fs_info, 11051 "cannot activate swapfile because subvolume %llu is being deleted", 11052 root->root_key.objectid); 11053 return -EPERM; 11054 } 11055 atomic_inc(&root->nr_swapfiles); 11056 spin_unlock(&root->root_item_lock); 11057 11058 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 11059 11060 lock_extent(io_tree, 0, isize - 1, &cached_state); 11061 start = 0; 11062 while (start < isize) { 11063 u64 logical_block_start, physical_block_start; 11064 struct btrfs_block_group *bg; 11065 u64 len = isize - start; 11066 11067 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 11068 if (IS_ERR(em)) { 11069 ret = PTR_ERR(em); 11070 goto out; 11071 } 11072 11073 if (em->block_start == EXTENT_MAP_HOLE) { 11074 btrfs_warn(fs_info, "swapfile must not have holes"); 11075 ret = -EINVAL; 11076 goto out; 11077 } 11078 if (em->block_start == EXTENT_MAP_INLINE) { 11079 /* 11080 * It's unlikely we'll ever actually find ourselves 11081 * here, as a file small enough to fit inline won't be 11082 * big enough to store more than the swap header, but in 11083 * case something changes in the future, let's catch it 11084 * here rather than later. 11085 */ 11086 btrfs_warn(fs_info, "swapfile must not be inline"); 11087 ret = -EINVAL; 11088 goto out; 11089 } 11090 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 11091 btrfs_warn(fs_info, "swapfile must not be compressed"); 11092 ret = -EINVAL; 11093 goto out; 11094 } 11095 11096 logical_block_start = em->block_start + (start - em->start); 11097 len = min(len, em->len - (start - em->start)); 11098 free_extent_map(em); 11099 em = NULL; 11100 11101 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 11102 if (ret < 0) { 11103 goto out; 11104 } else if (ret) { 11105 ret = 0; 11106 } else { 11107 btrfs_warn(fs_info, 11108 "swapfile must not be copy-on-write"); 11109 ret = -EINVAL; 11110 goto out; 11111 } 11112 11113 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 11114 if (IS_ERR(em)) { 11115 ret = PTR_ERR(em); 11116 goto out; 11117 } 11118 11119 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 11120 btrfs_warn(fs_info, 11121 "swapfile must have single data profile"); 11122 ret = -EINVAL; 11123 goto out; 11124 } 11125 11126 if (device == NULL) { 11127 device = em->map_lookup->stripes[0].dev; 11128 ret = btrfs_add_swapfile_pin(inode, device, false); 11129 if (ret == 1) 11130 ret = 0; 11131 else if (ret) 11132 goto out; 11133 } else if (device != em->map_lookup->stripes[0].dev) { 11134 btrfs_warn(fs_info, "swapfile must be on one device"); 11135 ret = -EINVAL; 11136 goto out; 11137 } 11138 11139 physical_block_start = (em->map_lookup->stripes[0].physical + 11140 (logical_block_start - em->start)); 11141 len = min(len, em->len - (logical_block_start - em->start)); 11142 free_extent_map(em); 11143 em = NULL; 11144 11145 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 11146 if (!bg) { 11147 btrfs_warn(fs_info, 11148 "could not find block group containing swapfile"); 11149 ret = -EINVAL; 11150 goto out; 11151 } 11152 11153 if (!btrfs_inc_block_group_swap_extents(bg)) { 11154 btrfs_warn(fs_info, 11155 "block group for swapfile at %llu is read-only%s", 11156 bg->start, 11157 atomic_read(&fs_info->scrubs_running) ? 11158 " (scrub running)" : ""); 11159 btrfs_put_block_group(bg); 11160 ret = -EINVAL; 11161 goto out; 11162 } 11163 11164 ret = btrfs_add_swapfile_pin(inode, bg, true); 11165 if (ret) { 11166 btrfs_put_block_group(bg); 11167 if (ret == 1) 11168 ret = 0; 11169 else 11170 goto out; 11171 } 11172 11173 if (bsi.block_len && 11174 bsi.block_start + bsi.block_len == physical_block_start) { 11175 bsi.block_len += len; 11176 } else { 11177 if (bsi.block_len) { 11178 ret = btrfs_add_swap_extent(sis, &bsi); 11179 if (ret) 11180 goto out; 11181 } 11182 bsi.start = start; 11183 bsi.block_start = physical_block_start; 11184 bsi.block_len = len; 11185 } 11186 11187 start += len; 11188 } 11189 11190 if (bsi.block_len) 11191 ret = btrfs_add_swap_extent(sis, &bsi); 11192 11193 out: 11194 if (!IS_ERR_OR_NULL(em)) 11195 free_extent_map(em); 11196 11197 unlock_extent(io_tree, 0, isize - 1, &cached_state); 11198 11199 if (ret) 11200 btrfs_swap_deactivate(file); 11201 11202 btrfs_drew_write_unlock(&root->snapshot_lock); 11203 11204 btrfs_exclop_finish(fs_info); 11205 11206 if (ret) 11207 return ret; 11208 11209 if (device) 11210 sis->bdev = device->bdev; 11211 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 11212 sis->max = bsi.nr_pages; 11213 sis->pages = bsi.nr_pages - 1; 11214 sis->highest_bit = bsi.nr_pages - 1; 11215 return bsi.nr_extents; 11216 } 11217 #else 11218 static void btrfs_swap_deactivate(struct file *file) 11219 { 11220 } 11221 11222 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11223 sector_t *span) 11224 { 11225 return -EOPNOTSUPP; 11226 } 11227 #endif 11228 11229 /* 11230 * Update the number of bytes used in the VFS' inode. When we replace extents in 11231 * a range (clone, dedupe, fallocate's zero range), we must update the number of 11232 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 11233 * always get a correct value. 11234 */ 11235 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 11236 const u64 add_bytes, 11237 const u64 del_bytes) 11238 { 11239 if (add_bytes == del_bytes) 11240 return; 11241 11242 spin_lock(&inode->lock); 11243 if (del_bytes > 0) 11244 inode_sub_bytes(&inode->vfs_inode, del_bytes); 11245 if (add_bytes > 0) 11246 inode_add_bytes(&inode->vfs_inode, add_bytes); 11247 spin_unlock(&inode->lock); 11248 } 11249 11250 /** 11251 * Verify that there are no ordered extents for a given file range. 11252 * 11253 * @inode: The target inode. 11254 * @start: Start offset of the file range, should be sector size aligned. 11255 * @end: End offset (inclusive) of the file range, its value +1 should be 11256 * sector size aligned. 11257 * 11258 * This should typically be used for cases where we locked an inode's VFS lock in 11259 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 11260 * we have flushed all delalloc in the range, we have waited for all ordered 11261 * extents in the range to complete and finally we have locked the file range in 11262 * the inode's io_tree. 11263 */ 11264 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 11265 { 11266 struct btrfs_root *root = inode->root; 11267 struct btrfs_ordered_extent *ordered; 11268 11269 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 11270 return; 11271 11272 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 11273 if (ordered) { 11274 btrfs_err(root->fs_info, 11275 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 11276 start, end, btrfs_ino(inode), root->root_key.objectid, 11277 ordered->file_offset, 11278 ordered->file_offset + ordered->num_bytes - 1); 11279 btrfs_put_ordered_extent(ordered); 11280 } 11281 11282 ASSERT(ordered == NULL); 11283 } 11284 11285 static const struct inode_operations btrfs_dir_inode_operations = { 11286 .getattr = btrfs_getattr, 11287 .lookup = btrfs_lookup, 11288 .create = btrfs_create, 11289 .unlink = btrfs_unlink, 11290 .link = btrfs_link, 11291 .mkdir = btrfs_mkdir, 11292 .rmdir = btrfs_rmdir, 11293 .rename = btrfs_rename2, 11294 .symlink = btrfs_symlink, 11295 .setattr = btrfs_setattr, 11296 .mknod = btrfs_mknod, 11297 .listxattr = btrfs_listxattr, 11298 .permission = btrfs_permission, 11299 .get_acl = btrfs_get_acl, 11300 .set_acl = btrfs_set_acl, 11301 .update_time = btrfs_update_time, 11302 .tmpfile = btrfs_tmpfile, 11303 .fileattr_get = btrfs_fileattr_get, 11304 .fileattr_set = btrfs_fileattr_set, 11305 }; 11306 11307 static const struct file_operations btrfs_dir_file_operations = { 11308 .llseek = generic_file_llseek, 11309 .read = generic_read_dir, 11310 .iterate_shared = btrfs_real_readdir, 11311 .open = btrfs_opendir, 11312 .unlocked_ioctl = btrfs_ioctl, 11313 #ifdef CONFIG_COMPAT 11314 .compat_ioctl = btrfs_compat_ioctl, 11315 #endif 11316 .release = btrfs_release_file, 11317 .fsync = btrfs_sync_file, 11318 }; 11319 11320 /* 11321 * btrfs doesn't support the bmap operation because swapfiles 11322 * use bmap to make a mapping of extents in the file. They assume 11323 * these extents won't change over the life of the file and they 11324 * use the bmap result to do IO directly to the drive. 11325 * 11326 * the btrfs bmap call would return logical addresses that aren't 11327 * suitable for IO and they also will change frequently as COW 11328 * operations happen. So, swapfile + btrfs == corruption. 11329 * 11330 * For now we're avoiding this by dropping bmap. 11331 */ 11332 static const struct address_space_operations btrfs_aops = { 11333 .read_folio = btrfs_read_folio, 11334 .writepages = btrfs_writepages, 11335 .readahead = btrfs_readahead, 11336 .direct_IO = noop_direct_IO, 11337 .invalidate_folio = btrfs_invalidate_folio, 11338 .release_folio = btrfs_release_folio, 11339 .migrate_folio = btrfs_migrate_folio, 11340 .dirty_folio = filemap_dirty_folio, 11341 .error_remove_page = generic_error_remove_page, 11342 .swap_activate = btrfs_swap_activate, 11343 .swap_deactivate = btrfs_swap_deactivate, 11344 }; 11345 11346 static const struct inode_operations btrfs_file_inode_operations = { 11347 .getattr = btrfs_getattr, 11348 .setattr = btrfs_setattr, 11349 .listxattr = btrfs_listxattr, 11350 .permission = btrfs_permission, 11351 .fiemap = btrfs_fiemap, 11352 .get_acl = btrfs_get_acl, 11353 .set_acl = btrfs_set_acl, 11354 .update_time = btrfs_update_time, 11355 .fileattr_get = btrfs_fileattr_get, 11356 .fileattr_set = btrfs_fileattr_set, 11357 }; 11358 static const struct inode_operations btrfs_special_inode_operations = { 11359 .getattr = btrfs_getattr, 11360 .setattr = btrfs_setattr, 11361 .permission = btrfs_permission, 11362 .listxattr = btrfs_listxattr, 11363 .get_acl = btrfs_get_acl, 11364 .set_acl = btrfs_set_acl, 11365 .update_time = btrfs_update_time, 11366 }; 11367 static const struct inode_operations btrfs_symlink_inode_operations = { 11368 .get_link = page_get_link, 11369 .getattr = btrfs_getattr, 11370 .setattr = btrfs_setattr, 11371 .permission = btrfs_permission, 11372 .listxattr = btrfs_listxattr, 11373 .update_time = btrfs_update_time, 11374 }; 11375 11376 const struct dentry_operations btrfs_dentry_operations = { 11377 .d_delete = btrfs_dentry_delete, 11378 }; 11379