1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/compat.h> 18 #include <linux/xattr.h> 19 #include <linux/posix_acl.h> 20 #include <linux/falloc.h> 21 #include <linux/slab.h> 22 #include <linux/ratelimit.h> 23 #include <linux/btrfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/uio.h> 27 #include <linux/magic.h> 28 #include <linux/iversion.h> 29 #include <linux/swap.h> 30 #include <linux/migrate.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "misc.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "ordered-data.h" 40 #include "xattr.h" 41 #include "tree-log.h" 42 #include "volumes.h" 43 #include "compression.h" 44 #include "locking.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "props.h" 48 #include "qgroup.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 #include "space-info.h" 52 53 struct btrfs_iget_args { 54 u64 ino; 55 struct btrfs_root *root; 56 }; 57 58 struct btrfs_dio_data { 59 u64 reserve; 60 loff_t length; 61 ssize_t submitted; 62 struct extent_changeset *data_reserved; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_special_inode_operations; 68 static const struct inode_operations btrfs_file_inode_operations; 69 static const struct address_space_operations btrfs_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static const struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 struct kmem_cache *btrfs_free_space_bitmap_cachep; 78 79 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 80 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 81 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 82 static noinline int cow_file_range(struct inode *inode, 83 struct page *locked_page, 84 u64 start, u64 end, int *page_started, 85 unsigned long *nr_written, int unlock); 86 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 87 u64 orig_start, u64 block_start, 88 u64 block_len, u64 orig_block_len, 89 u64 ram_bytes, int compress_type, 90 int type); 91 92 static void __endio_write_update_ordered(struct inode *inode, 93 const u64 offset, const u64 bytes, 94 const bool uptodate); 95 96 /* 97 * Cleanup all submitted ordered extents in specified range to handle errors 98 * from the btrfs_run_delalloc_range() callback. 99 * 100 * NOTE: caller must ensure that when an error happens, it can not call 101 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 102 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 103 * to be released, which we want to happen only when finishing the ordered 104 * extent (btrfs_finish_ordered_io()). 105 */ 106 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 107 struct page *locked_page, 108 u64 offset, u64 bytes) 109 { 110 unsigned long index = offset >> PAGE_SHIFT; 111 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 112 u64 page_start = page_offset(locked_page); 113 u64 page_end = page_start + PAGE_SIZE - 1; 114 115 struct page *page; 116 117 while (index <= end_index) { 118 page = find_get_page(inode->i_mapping, index); 119 index++; 120 if (!page) 121 continue; 122 ClearPagePrivate2(page); 123 put_page(page); 124 } 125 126 /* 127 * In case this page belongs to the delalloc range being instantiated 128 * then skip it, since the first page of a range is going to be 129 * properly cleaned up by the caller of run_delalloc_range 130 */ 131 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 132 offset += PAGE_SIZE; 133 bytes -= PAGE_SIZE; 134 } 135 136 return __endio_write_update_ordered(inode, offset, bytes, false); 137 } 138 139 static int btrfs_dirty_inode(struct inode *inode); 140 141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 142 void btrfs_test_inode_set_ops(struct inode *inode) 143 { 144 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 145 } 146 #endif 147 148 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 149 struct inode *inode, struct inode *dir, 150 const struct qstr *qstr) 151 { 152 int err; 153 154 err = btrfs_init_acl(trans, inode, dir); 155 if (!err) 156 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 157 return err; 158 } 159 160 /* 161 * this does all the hard work for inserting an inline extent into 162 * the btree. The caller should have done a btrfs_drop_extents so that 163 * no overlapping inline items exist in the btree 164 */ 165 static int insert_inline_extent(struct btrfs_trans_handle *trans, 166 struct btrfs_path *path, int extent_inserted, 167 struct btrfs_root *root, struct inode *inode, 168 u64 start, size_t size, size_t compressed_size, 169 int compress_type, 170 struct page **compressed_pages) 171 { 172 struct extent_buffer *leaf; 173 struct page *page = NULL; 174 char *kaddr; 175 unsigned long ptr; 176 struct btrfs_file_extent_item *ei; 177 int ret; 178 size_t cur_size = size; 179 unsigned long offset; 180 181 ASSERT((compressed_size > 0 && compressed_pages) || 182 (compressed_size == 0 && !compressed_pages)); 183 184 if (compressed_size && compressed_pages) 185 cur_size = compressed_size; 186 187 inode_add_bytes(inode, size); 188 189 if (!extent_inserted) { 190 struct btrfs_key key; 191 size_t datasize; 192 193 key.objectid = btrfs_ino(BTRFS_I(inode)); 194 key.offset = start; 195 key.type = BTRFS_EXTENT_DATA_KEY; 196 197 datasize = btrfs_file_extent_calc_inline_size(cur_size); 198 path->leave_spinning = 1; 199 ret = btrfs_insert_empty_item(trans, root, path, &key, 200 datasize); 201 if (ret) 202 goto fail; 203 } 204 leaf = path->nodes[0]; 205 ei = btrfs_item_ptr(leaf, path->slots[0], 206 struct btrfs_file_extent_item); 207 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 209 btrfs_set_file_extent_encryption(leaf, ei, 0); 210 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 211 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 212 ptr = btrfs_file_extent_inline_start(ei); 213 214 if (compress_type != BTRFS_COMPRESS_NONE) { 215 struct page *cpage; 216 int i = 0; 217 while (compressed_size > 0) { 218 cpage = compressed_pages[i]; 219 cur_size = min_t(unsigned long, compressed_size, 220 PAGE_SIZE); 221 222 kaddr = kmap_atomic(cpage); 223 write_extent_buffer(leaf, kaddr, ptr, cur_size); 224 kunmap_atomic(kaddr); 225 226 i++; 227 ptr += cur_size; 228 compressed_size -= cur_size; 229 } 230 btrfs_set_file_extent_compression(leaf, ei, 231 compress_type); 232 } else { 233 page = find_get_page(inode->i_mapping, 234 start >> PAGE_SHIFT); 235 btrfs_set_file_extent_compression(leaf, ei, 0); 236 kaddr = kmap_atomic(page); 237 offset = offset_in_page(start); 238 write_extent_buffer(leaf, kaddr + offset, ptr, size); 239 kunmap_atomic(kaddr); 240 put_page(page); 241 } 242 btrfs_mark_buffer_dirty(leaf); 243 btrfs_release_path(path); 244 245 /* 246 * We align size to sectorsize for inline extents just for simplicity 247 * sake. 248 */ 249 size = ALIGN(size, root->fs_info->sectorsize); 250 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 251 if (ret) 252 goto fail; 253 254 /* 255 * we're an inline extent, so nobody can 256 * extend the file past i_size without locking 257 * a page we already have locked. 258 * 259 * We must do any isize and inode updates 260 * before we unlock the pages. Otherwise we 261 * could end up racing with unlink. 262 */ 263 BTRFS_I(inode)->disk_i_size = inode->i_size; 264 ret = btrfs_update_inode(trans, root, inode); 265 266 fail: 267 return ret; 268 } 269 270 271 /* 272 * conditionally insert an inline extent into the file. This 273 * does the checks required to make sure the data is small enough 274 * to fit as an inline extent. 275 */ 276 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 277 u64 end, size_t compressed_size, 278 int compress_type, 279 struct page **compressed_pages) 280 { 281 struct btrfs_root *root = BTRFS_I(inode)->root; 282 struct btrfs_fs_info *fs_info = root->fs_info; 283 struct btrfs_trans_handle *trans; 284 u64 isize = i_size_read(inode); 285 u64 actual_end = min(end + 1, isize); 286 u64 inline_len = actual_end - start; 287 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 288 u64 data_len = inline_len; 289 int ret; 290 struct btrfs_path *path; 291 int extent_inserted = 0; 292 u32 extent_item_size; 293 294 if (compressed_size) 295 data_len = compressed_size; 296 297 if (start > 0 || 298 actual_end > fs_info->sectorsize || 299 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 300 (!compressed_size && 301 (actual_end & (fs_info->sectorsize - 1)) == 0) || 302 end + 1 < isize || 303 data_len > fs_info->max_inline) { 304 return 1; 305 } 306 307 path = btrfs_alloc_path(); 308 if (!path) 309 return -ENOMEM; 310 311 trans = btrfs_join_transaction(root); 312 if (IS_ERR(trans)) { 313 btrfs_free_path(path); 314 return PTR_ERR(trans); 315 } 316 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 317 318 if (compressed_size && compressed_pages) 319 extent_item_size = btrfs_file_extent_calc_inline_size( 320 compressed_size); 321 else 322 extent_item_size = btrfs_file_extent_calc_inline_size( 323 inline_len); 324 325 ret = __btrfs_drop_extents(trans, root, inode, path, 326 start, aligned_end, NULL, 327 1, 1, extent_item_size, &extent_inserted); 328 if (ret) { 329 btrfs_abort_transaction(trans, ret); 330 goto out; 331 } 332 333 if (isize > actual_end) 334 inline_len = min_t(u64, isize, actual_end); 335 ret = insert_inline_extent(trans, path, extent_inserted, 336 root, inode, start, 337 inline_len, compressed_size, 338 compress_type, compressed_pages); 339 if (ret && ret != -ENOSPC) { 340 btrfs_abort_transaction(trans, ret); 341 goto out; 342 } else if (ret == -ENOSPC) { 343 ret = 1; 344 goto out; 345 } 346 347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 348 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 349 out: 350 /* 351 * Don't forget to free the reserved space, as for inlined extent 352 * it won't count as data extent, free them directly here. 353 * And at reserve time, it's always aligned to page size, so 354 * just free one page here. 355 */ 356 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 357 btrfs_free_path(path); 358 btrfs_end_transaction(trans); 359 return ret; 360 } 361 362 struct async_extent { 363 u64 start; 364 u64 ram_size; 365 u64 compressed_size; 366 struct page **pages; 367 unsigned long nr_pages; 368 int compress_type; 369 struct list_head list; 370 }; 371 372 struct async_chunk { 373 struct inode *inode; 374 struct page *locked_page; 375 u64 start; 376 u64 end; 377 unsigned int write_flags; 378 struct list_head extents; 379 struct cgroup_subsys_state *blkcg_css; 380 struct btrfs_work work; 381 atomic_t *pending; 382 }; 383 384 struct async_cow { 385 /* Number of chunks in flight; must be first in the structure */ 386 atomic_t num_chunks; 387 struct async_chunk chunks[]; 388 }; 389 390 static noinline int add_async_extent(struct async_chunk *cow, 391 u64 start, u64 ram_size, 392 u64 compressed_size, 393 struct page **pages, 394 unsigned long nr_pages, 395 int compress_type) 396 { 397 struct async_extent *async_extent; 398 399 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 400 BUG_ON(!async_extent); /* -ENOMEM */ 401 async_extent->start = start; 402 async_extent->ram_size = ram_size; 403 async_extent->compressed_size = compressed_size; 404 async_extent->pages = pages; 405 async_extent->nr_pages = nr_pages; 406 async_extent->compress_type = compress_type; 407 list_add_tail(&async_extent->list, &cow->extents); 408 return 0; 409 } 410 411 /* 412 * Check if the inode has flags compatible with compression 413 */ 414 static inline bool inode_can_compress(struct inode *inode) 415 { 416 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 417 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 418 return false; 419 return true; 420 } 421 422 /* 423 * Check if the inode needs to be submitted to compression, based on mount 424 * options, defragmentation, properties or heuristics. 425 */ 426 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 427 { 428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 429 430 if (!inode_can_compress(inode)) { 431 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 432 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 433 btrfs_ino(BTRFS_I(inode))); 434 return 0; 435 } 436 /* force compress */ 437 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 438 return 1; 439 /* defrag ioctl */ 440 if (BTRFS_I(inode)->defrag_compress) 441 return 1; 442 /* bad compression ratios */ 443 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 444 return 0; 445 if (btrfs_test_opt(fs_info, COMPRESS) || 446 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 447 BTRFS_I(inode)->prop_compress) 448 return btrfs_compress_heuristic(inode, start, end); 449 return 0; 450 } 451 452 static inline void inode_should_defrag(struct btrfs_inode *inode, 453 u64 start, u64 end, u64 num_bytes, u64 small_write) 454 { 455 /* If this is a small write inside eof, kick off a defrag */ 456 if (num_bytes < small_write && 457 (start > 0 || end + 1 < inode->disk_i_size)) 458 btrfs_add_inode_defrag(NULL, inode); 459 } 460 461 /* 462 * we create compressed extents in two phases. The first 463 * phase compresses a range of pages that have already been 464 * locked (both pages and state bits are locked). 465 * 466 * This is done inside an ordered work queue, and the compression 467 * is spread across many cpus. The actual IO submission is step 468 * two, and the ordered work queue takes care of making sure that 469 * happens in the same order things were put onto the queue by 470 * writepages and friends. 471 * 472 * If this code finds it can't get good compression, it puts an 473 * entry onto the work queue to write the uncompressed bytes. This 474 * makes sure that both compressed inodes and uncompressed inodes 475 * are written in the same order that the flusher thread sent them 476 * down. 477 */ 478 static noinline int compress_file_range(struct async_chunk *async_chunk) 479 { 480 struct inode *inode = async_chunk->inode; 481 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 482 u64 blocksize = fs_info->sectorsize; 483 u64 start = async_chunk->start; 484 u64 end = async_chunk->end; 485 u64 actual_end; 486 u64 i_size; 487 int ret = 0; 488 struct page **pages = NULL; 489 unsigned long nr_pages; 490 unsigned long total_compressed = 0; 491 unsigned long total_in = 0; 492 int i; 493 int will_compress; 494 int compress_type = fs_info->compress_type; 495 int compressed_extents = 0; 496 int redirty = 0; 497 498 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 499 SZ_16K); 500 501 /* 502 * We need to save i_size before now because it could change in between 503 * us evaluating the size and assigning it. This is because we lock and 504 * unlock the page in truncate and fallocate, and then modify the i_size 505 * later on. 506 * 507 * The barriers are to emulate READ_ONCE, remove that once i_size_read 508 * does that for us. 509 */ 510 barrier(); 511 i_size = i_size_read(inode); 512 barrier(); 513 actual_end = min_t(u64, i_size, end + 1); 514 again: 515 will_compress = 0; 516 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 517 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 518 nr_pages = min_t(unsigned long, nr_pages, 519 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 520 521 /* 522 * we don't want to send crud past the end of i_size through 523 * compression, that's just a waste of CPU time. So, if the 524 * end of the file is before the start of our current 525 * requested range of bytes, we bail out to the uncompressed 526 * cleanup code that can deal with all of this. 527 * 528 * It isn't really the fastest way to fix things, but this is a 529 * very uncommon corner. 530 */ 531 if (actual_end <= start) 532 goto cleanup_and_bail_uncompressed; 533 534 total_compressed = actual_end - start; 535 536 /* 537 * skip compression for a small file range(<=blocksize) that 538 * isn't an inline extent, since it doesn't save disk space at all. 539 */ 540 if (total_compressed <= blocksize && 541 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 542 goto cleanup_and_bail_uncompressed; 543 544 total_compressed = min_t(unsigned long, total_compressed, 545 BTRFS_MAX_UNCOMPRESSED); 546 total_in = 0; 547 ret = 0; 548 549 /* 550 * we do compression for mount -o compress and when the 551 * inode has not been flagged as nocompress. This flag can 552 * change at any time if we discover bad compression ratios. 553 */ 554 if (inode_need_compress(inode, start, end)) { 555 WARN_ON(pages); 556 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 557 if (!pages) { 558 /* just bail out to the uncompressed code */ 559 nr_pages = 0; 560 goto cont; 561 } 562 563 if (BTRFS_I(inode)->defrag_compress) 564 compress_type = BTRFS_I(inode)->defrag_compress; 565 else if (BTRFS_I(inode)->prop_compress) 566 compress_type = BTRFS_I(inode)->prop_compress; 567 568 /* 569 * we need to call clear_page_dirty_for_io on each 570 * page in the range. Otherwise applications with the file 571 * mmap'd can wander in and change the page contents while 572 * we are compressing them. 573 * 574 * If the compression fails for any reason, we set the pages 575 * dirty again later on. 576 * 577 * Note that the remaining part is redirtied, the start pointer 578 * has moved, the end is the original one. 579 */ 580 if (!redirty) { 581 extent_range_clear_dirty_for_io(inode, start, end); 582 redirty = 1; 583 } 584 585 /* Compression level is applied here and only here */ 586 ret = btrfs_compress_pages( 587 compress_type | (fs_info->compress_level << 4), 588 inode->i_mapping, start, 589 pages, 590 &nr_pages, 591 &total_in, 592 &total_compressed); 593 594 if (!ret) { 595 unsigned long offset = offset_in_page(total_compressed); 596 struct page *page = pages[nr_pages - 1]; 597 char *kaddr; 598 599 /* zero the tail end of the last page, we might be 600 * sending it down to disk 601 */ 602 if (offset) { 603 kaddr = kmap_atomic(page); 604 memset(kaddr + offset, 0, 605 PAGE_SIZE - offset); 606 kunmap_atomic(kaddr); 607 } 608 will_compress = 1; 609 } 610 } 611 cont: 612 if (start == 0) { 613 /* lets try to make an inline extent */ 614 if (ret || total_in < actual_end) { 615 /* we didn't compress the entire range, try 616 * to make an uncompressed inline extent. 617 */ 618 ret = cow_file_range_inline(inode, start, end, 0, 619 BTRFS_COMPRESS_NONE, NULL); 620 } else { 621 /* try making a compressed inline extent */ 622 ret = cow_file_range_inline(inode, start, end, 623 total_compressed, 624 compress_type, pages); 625 } 626 if (ret <= 0) { 627 unsigned long clear_flags = EXTENT_DELALLOC | 628 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 629 EXTENT_DO_ACCOUNTING; 630 unsigned long page_error_op; 631 632 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 633 634 /* 635 * inline extent creation worked or returned error, 636 * we don't need to create any more async work items. 637 * Unlock and free up our temp pages. 638 * 639 * We use DO_ACCOUNTING here because we need the 640 * delalloc_release_metadata to be done _after_ we drop 641 * our outstanding extent for clearing delalloc for this 642 * range. 643 */ 644 extent_clear_unlock_delalloc(inode, start, end, NULL, 645 clear_flags, 646 PAGE_UNLOCK | 647 PAGE_CLEAR_DIRTY | 648 PAGE_SET_WRITEBACK | 649 page_error_op | 650 PAGE_END_WRITEBACK); 651 652 for (i = 0; i < nr_pages; i++) { 653 WARN_ON(pages[i]->mapping); 654 put_page(pages[i]); 655 } 656 kfree(pages); 657 658 return 0; 659 } 660 } 661 662 if (will_compress) { 663 /* 664 * we aren't doing an inline extent round the compressed size 665 * up to a block size boundary so the allocator does sane 666 * things 667 */ 668 total_compressed = ALIGN(total_compressed, blocksize); 669 670 /* 671 * one last check to make sure the compression is really a 672 * win, compare the page count read with the blocks on disk, 673 * compression must free at least one sector size 674 */ 675 total_in = ALIGN(total_in, PAGE_SIZE); 676 if (total_compressed + blocksize <= total_in) { 677 compressed_extents++; 678 679 /* 680 * The async work queues will take care of doing actual 681 * allocation on disk for these compressed pages, and 682 * will submit them to the elevator. 683 */ 684 add_async_extent(async_chunk, start, total_in, 685 total_compressed, pages, nr_pages, 686 compress_type); 687 688 if (start + total_in < end) { 689 start += total_in; 690 pages = NULL; 691 cond_resched(); 692 goto again; 693 } 694 return compressed_extents; 695 } 696 } 697 if (pages) { 698 /* 699 * the compression code ran but failed to make things smaller, 700 * free any pages it allocated and our page pointer array 701 */ 702 for (i = 0; i < nr_pages; i++) { 703 WARN_ON(pages[i]->mapping); 704 put_page(pages[i]); 705 } 706 kfree(pages); 707 pages = NULL; 708 total_compressed = 0; 709 nr_pages = 0; 710 711 /* flag the file so we don't compress in the future */ 712 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 713 !(BTRFS_I(inode)->prop_compress)) { 714 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 715 } 716 } 717 cleanup_and_bail_uncompressed: 718 /* 719 * No compression, but we still need to write the pages in the file 720 * we've been given so far. redirty the locked page if it corresponds 721 * to our extent and set things up for the async work queue to run 722 * cow_file_range to do the normal delalloc dance. 723 */ 724 if (async_chunk->locked_page && 725 (page_offset(async_chunk->locked_page) >= start && 726 page_offset(async_chunk->locked_page)) <= end) { 727 __set_page_dirty_nobuffers(async_chunk->locked_page); 728 /* unlocked later on in the async handlers */ 729 } 730 731 if (redirty) 732 extent_range_redirty_for_io(inode, start, end); 733 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 734 BTRFS_COMPRESS_NONE); 735 compressed_extents++; 736 737 return compressed_extents; 738 } 739 740 static void free_async_extent_pages(struct async_extent *async_extent) 741 { 742 int i; 743 744 if (!async_extent->pages) 745 return; 746 747 for (i = 0; i < async_extent->nr_pages; i++) { 748 WARN_ON(async_extent->pages[i]->mapping); 749 put_page(async_extent->pages[i]); 750 } 751 kfree(async_extent->pages); 752 async_extent->nr_pages = 0; 753 async_extent->pages = NULL; 754 } 755 756 /* 757 * phase two of compressed writeback. This is the ordered portion 758 * of the code, which only gets called in the order the work was 759 * queued. We walk all the async extents created by compress_file_range 760 * and send them down to the disk. 761 */ 762 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 763 { 764 struct inode *inode = async_chunk->inode; 765 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 766 struct async_extent *async_extent; 767 u64 alloc_hint = 0; 768 struct btrfs_key ins; 769 struct extent_map *em; 770 struct btrfs_root *root = BTRFS_I(inode)->root; 771 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 772 int ret = 0; 773 774 again: 775 while (!list_empty(&async_chunk->extents)) { 776 async_extent = list_entry(async_chunk->extents.next, 777 struct async_extent, list); 778 list_del(&async_extent->list); 779 780 retry: 781 lock_extent(io_tree, async_extent->start, 782 async_extent->start + async_extent->ram_size - 1); 783 /* did the compression code fall back to uncompressed IO? */ 784 if (!async_extent->pages) { 785 int page_started = 0; 786 unsigned long nr_written = 0; 787 788 /* allocate blocks */ 789 ret = cow_file_range(inode, async_chunk->locked_page, 790 async_extent->start, 791 async_extent->start + 792 async_extent->ram_size - 1, 793 &page_started, &nr_written, 0); 794 795 /* JDM XXX */ 796 797 /* 798 * if page_started, cow_file_range inserted an 799 * inline extent and took care of all the unlocking 800 * and IO for us. Otherwise, we need to submit 801 * all those pages down to the drive. 802 */ 803 if (!page_started && !ret) 804 extent_write_locked_range(inode, 805 async_extent->start, 806 async_extent->start + 807 async_extent->ram_size - 1, 808 WB_SYNC_ALL); 809 else if (ret && async_chunk->locked_page) 810 unlock_page(async_chunk->locked_page); 811 kfree(async_extent); 812 cond_resched(); 813 continue; 814 } 815 816 ret = btrfs_reserve_extent(root, async_extent->ram_size, 817 async_extent->compressed_size, 818 async_extent->compressed_size, 819 0, alloc_hint, &ins, 1, 1); 820 if (ret) { 821 free_async_extent_pages(async_extent); 822 823 if (ret == -ENOSPC) { 824 unlock_extent(io_tree, async_extent->start, 825 async_extent->start + 826 async_extent->ram_size - 1); 827 828 /* 829 * we need to redirty the pages if we decide to 830 * fallback to uncompressed IO, otherwise we 831 * will not submit these pages down to lower 832 * layers. 833 */ 834 extent_range_redirty_for_io(inode, 835 async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1); 838 839 goto retry; 840 } 841 goto out_free; 842 } 843 /* 844 * here we're doing allocation and writeback of the 845 * compressed pages 846 */ 847 em = create_io_em(inode, async_extent->start, 848 async_extent->ram_size, /* len */ 849 async_extent->start, /* orig_start */ 850 ins.objectid, /* block_start */ 851 ins.offset, /* block_len */ 852 ins.offset, /* orig_block_len */ 853 async_extent->ram_size, /* ram_bytes */ 854 async_extent->compress_type, 855 BTRFS_ORDERED_COMPRESSED); 856 if (IS_ERR(em)) 857 /* ret value is not necessary due to void function */ 858 goto out_free_reserve; 859 free_extent_map(em); 860 861 ret = btrfs_add_ordered_extent_compress(inode, 862 async_extent->start, 863 ins.objectid, 864 async_extent->ram_size, 865 ins.offset, 866 BTRFS_ORDERED_COMPRESSED, 867 async_extent->compress_type); 868 if (ret) { 869 btrfs_drop_extent_cache(BTRFS_I(inode), 870 async_extent->start, 871 async_extent->start + 872 async_extent->ram_size - 1, 0); 873 goto out_free_reserve; 874 } 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 876 877 /* 878 * clear dirty, set writeback and unlock the pages. 879 */ 880 extent_clear_unlock_delalloc(inode, async_extent->start, 881 async_extent->start + 882 async_extent->ram_size - 1, 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 885 PAGE_SET_WRITEBACK); 886 if (btrfs_submit_compressed_write(inode, 887 async_extent->start, 888 async_extent->ram_size, 889 ins.objectid, 890 ins.offset, async_extent->pages, 891 async_extent->nr_pages, 892 async_chunk->write_flags, 893 async_chunk->blkcg_css)) { 894 struct page *p = async_extent->pages[0]; 895 const u64 start = async_extent->start; 896 const u64 end = start + async_extent->ram_size - 1; 897 898 p->mapping = inode->i_mapping; 899 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 900 901 p->mapping = NULL; 902 extent_clear_unlock_delalloc(inode, start, end, 903 NULL, 0, 904 PAGE_END_WRITEBACK | 905 PAGE_SET_ERROR); 906 free_async_extent_pages(async_extent); 907 } 908 alloc_hint = ins.objectid + ins.offset; 909 kfree(async_extent); 910 cond_resched(); 911 } 912 return; 913 out_free_reserve: 914 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 915 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 916 out_free: 917 extent_clear_unlock_delalloc(inode, async_extent->start, 918 async_extent->start + 919 async_extent->ram_size - 1, 920 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 921 EXTENT_DELALLOC_NEW | 922 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 923 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 924 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 925 PAGE_SET_ERROR); 926 free_async_extent_pages(async_extent); 927 kfree(async_extent); 928 goto again; 929 } 930 931 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 932 u64 num_bytes) 933 { 934 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 935 struct extent_map *em; 936 u64 alloc_hint = 0; 937 938 read_lock(&em_tree->lock); 939 em = search_extent_mapping(em_tree, start, num_bytes); 940 if (em) { 941 /* 942 * if block start isn't an actual block number then find the 943 * first block in this inode and use that as a hint. If that 944 * block is also bogus then just don't worry about it. 945 */ 946 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 947 free_extent_map(em); 948 em = search_extent_mapping(em_tree, 0, 0); 949 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 950 alloc_hint = em->block_start; 951 if (em) 952 free_extent_map(em); 953 } else { 954 alloc_hint = em->block_start; 955 free_extent_map(em); 956 } 957 } 958 read_unlock(&em_tree->lock); 959 960 return alloc_hint; 961 } 962 963 /* 964 * when extent_io.c finds a delayed allocation range in the file, 965 * the call backs end up in this code. The basic idea is to 966 * allocate extents on disk for the range, and create ordered data structs 967 * in ram to track those extents. 968 * 969 * locked_page is the page that writepage had locked already. We use 970 * it to make sure we don't do extra locks or unlocks. 971 * 972 * *page_started is set to one if we unlock locked_page and do everything 973 * required to start IO on it. It may be clean and already done with 974 * IO when we return. 975 */ 976 static noinline int cow_file_range(struct inode *inode, 977 struct page *locked_page, 978 u64 start, u64 end, int *page_started, 979 unsigned long *nr_written, int unlock) 980 { 981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 982 struct btrfs_root *root = BTRFS_I(inode)->root; 983 u64 alloc_hint = 0; 984 u64 num_bytes; 985 unsigned long ram_size; 986 u64 cur_alloc_size = 0; 987 u64 blocksize = fs_info->sectorsize; 988 struct btrfs_key ins; 989 struct extent_map *em; 990 unsigned clear_bits; 991 unsigned long page_ops; 992 bool extent_reserved = false; 993 int ret = 0; 994 995 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 996 WARN_ON_ONCE(1); 997 ret = -EINVAL; 998 goto out_unlock; 999 } 1000 1001 num_bytes = ALIGN(end - start + 1, blocksize); 1002 num_bytes = max(blocksize, num_bytes); 1003 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1004 1005 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 1006 1007 if (start == 0) { 1008 /* lets try to make an inline extent */ 1009 ret = cow_file_range_inline(inode, start, end, 0, 1010 BTRFS_COMPRESS_NONE, NULL); 1011 if (ret == 0) { 1012 /* 1013 * We use DO_ACCOUNTING here because we need the 1014 * delalloc_release_metadata to be run _after_ we drop 1015 * our outstanding extent for clearing delalloc for this 1016 * range. 1017 */ 1018 extent_clear_unlock_delalloc(inode, start, end, NULL, 1019 EXTENT_LOCKED | EXTENT_DELALLOC | 1020 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1021 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1022 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1023 PAGE_END_WRITEBACK); 1024 *nr_written = *nr_written + 1025 (end - start + PAGE_SIZE) / PAGE_SIZE; 1026 *page_started = 1; 1027 goto out; 1028 } else if (ret < 0) { 1029 goto out_unlock; 1030 } 1031 } 1032 1033 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1034 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1035 start + num_bytes - 1, 0); 1036 1037 while (num_bytes > 0) { 1038 cur_alloc_size = num_bytes; 1039 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1040 fs_info->sectorsize, 0, alloc_hint, 1041 &ins, 1, 1); 1042 if (ret < 0) 1043 goto out_unlock; 1044 cur_alloc_size = ins.offset; 1045 extent_reserved = true; 1046 1047 ram_size = ins.offset; 1048 em = create_io_em(inode, start, ins.offset, /* len */ 1049 start, /* orig_start */ 1050 ins.objectid, /* block_start */ 1051 ins.offset, /* block_len */ 1052 ins.offset, /* orig_block_len */ 1053 ram_size, /* ram_bytes */ 1054 BTRFS_COMPRESS_NONE, /* compress_type */ 1055 BTRFS_ORDERED_REGULAR /* type */); 1056 if (IS_ERR(em)) { 1057 ret = PTR_ERR(em); 1058 goto out_reserve; 1059 } 1060 free_extent_map(em); 1061 1062 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1063 ram_size, cur_alloc_size, 0); 1064 if (ret) 1065 goto out_drop_extent_cache; 1066 1067 if (root->root_key.objectid == 1068 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1069 ret = btrfs_reloc_clone_csums(inode, start, 1070 cur_alloc_size); 1071 /* 1072 * Only drop cache here, and process as normal. 1073 * 1074 * We must not allow extent_clear_unlock_delalloc() 1075 * at out_unlock label to free meta of this ordered 1076 * extent, as its meta should be freed by 1077 * btrfs_finish_ordered_io(). 1078 * 1079 * So we must continue until @start is increased to 1080 * skip current ordered extent. 1081 */ 1082 if (ret) 1083 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1084 start + ram_size - 1, 0); 1085 } 1086 1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1088 1089 /* we're not doing compressed IO, don't unlock the first 1090 * page (which the caller expects to stay locked), don't 1091 * clear any dirty bits and don't set any writeback bits 1092 * 1093 * Do set the Private2 bit so we know this page was properly 1094 * setup for writepage 1095 */ 1096 page_ops = unlock ? PAGE_UNLOCK : 0; 1097 page_ops |= PAGE_SET_PRIVATE2; 1098 1099 extent_clear_unlock_delalloc(inode, start, 1100 start + ram_size - 1, 1101 locked_page, 1102 EXTENT_LOCKED | EXTENT_DELALLOC, 1103 page_ops); 1104 if (num_bytes < cur_alloc_size) 1105 num_bytes = 0; 1106 else 1107 num_bytes -= cur_alloc_size; 1108 alloc_hint = ins.objectid + ins.offset; 1109 start += cur_alloc_size; 1110 extent_reserved = false; 1111 1112 /* 1113 * btrfs_reloc_clone_csums() error, since start is increased 1114 * extent_clear_unlock_delalloc() at out_unlock label won't 1115 * free metadata of current ordered extent, we're OK to exit. 1116 */ 1117 if (ret) 1118 goto out_unlock; 1119 } 1120 out: 1121 return ret; 1122 1123 out_drop_extent_cache: 1124 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1125 out_reserve: 1126 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1127 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1128 out_unlock: 1129 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1130 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1131 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1132 PAGE_END_WRITEBACK; 1133 /* 1134 * If we reserved an extent for our delalloc range (or a subrange) and 1135 * failed to create the respective ordered extent, then it means that 1136 * when we reserved the extent we decremented the extent's size from 1137 * the data space_info's bytes_may_use counter and incremented the 1138 * space_info's bytes_reserved counter by the same amount. We must make 1139 * sure extent_clear_unlock_delalloc() does not try to decrement again 1140 * the data space_info's bytes_may_use counter, therefore we do not pass 1141 * it the flag EXTENT_CLEAR_DATA_RESV. 1142 */ 1143 if (extent_reserved) { 1144 extent_clear_unlock_delalloc(inode, start, 1145 start + cur_alloc_size - 1, 1146 locked_page, 1147 clear_bits, 1148 page_ops); 1149 start += cur_alloc_size; 1150 if (start >= end) 1151 goto out; 1152 } 1153 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1154 clear_bits | EXTENT_CLEAR_DATA_RESV, 1155 page_ops); 1156 goto out; 1157 } 1158 1159 /* 1160 * work queue call back to started compression on a file and pages 1161 */ 1162 static noinline void async_cow_start(struct btrfs_work *work) 1163 { 1164 struct async_chunk *async_chunk; 1165 int compressed_extents; 1166 1167 async_chunk = container_of(work, struct async_chunk, work); 1168 1169 compressed_extents = compress_file_range(async_chunk); 1170 if (compressed_extents == 0) { 1171 btrfs_add_delayed_iput(async_chunk->inode); 1172 async_chunk->inode = NULL; 1173 } 1174 } 1175 1176 /* 1177 * work queue call back to submit previously compressed pages 1178 */ 1179 static noinline void async_cow_submit(struct btrfs_work *work) 1180 { 1181 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1182 work); 1183 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1184 unsigned long nr_pages; 1185 1186 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1187 PAGE_SHIFT; 1188 1189 /* atomic_sub_return implies a barrier */ 1190 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1191 5 * SZ_1M) 1192 cond_wake_up_nomb(&fs_info->async_submit_wait); 1193 1194 /* 1195 * ->inode could be NULL if async_chunk_start has failed to compress, 1196 * in which case we don't have anything to submit, yet we need to 1197 * always adjust ->async_delalloc_pages as its paired with the init 1198 * happening in cow_file_range_async 1199 */ 1200 if (async_chunk->inode) 1201 submit_compressed_extents(async_chunk); 1202 } 1203 1204 static noinline void async_cow_free(struct btrfs_work *work) 1205 { 1206 struct async_chunk *async_chunk; 1207 1208 async_chunk = container_of(work, struct async_chunk, work); 1209 if (async_chunk->inode) 1210 btrfs_add_delayed_iput(async_chunk->inode); 1211 if (async_chunk->blkcg_css) 1212 css_put(async_chunk->blkcg_css); 1213 /* 1214 * Since the pointer to 'pending' is at the beginning of the array of 1215 * async_chunk's, freeing it ensures the whole array has been freed. 1216 */ 1217 if (atomic_dec_and_test(async_chunk->pending)) 1218 kvfree(async_chunk->pending); 1219 } 1220 1221 static int cow_file_range_async(struct inode *inode, 1222 struct writeback_control *wbc, 1223 struct page *locked_page, 1224 u64 start, u64 end, int *page_started, 1225 unsigned long *nr_written) 1226 { 1227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1228 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1229 struct async_cow *ctx; 1230 struct async_chunk *async_chunk; 1231 unsigned long nr_pages; 1232 u64 cur_end; 1233 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1234 int i; 1235 bool should_compress; 1236 unsigned nofs_flag; 1237 const unsigned int write_flags = wbc_to_write_flags(wbc); 1238 1239 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1240 1241 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1242 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1243 num_chunks = 1; 1244 should_compress = false; 1245 } else { 1246 should_compress = true; 1247 } 1248 1249 nofs_flag = memalloc_nofs_save(); 1250 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1251 memalloc_nofs_restore(nofs_flag); 1252 1253 if (!ctx) { 1254 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1255 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1256 EXTENT_DO_ACCOUNTING; 1257 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1258 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1259 PAGE_SET_ERROR; 1260 1261 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1262 clear_bits, page_ops); 1263 return -ENOMEM; 1264 } 1265 1266 async_chunk = ctx->chunks; 1267 atomic_set(&ctx->num_chunks, num_chunks); 1268 1269 for (i = 0; i < num_chunks; i++) { 1270 if (should_compress) 1271 cur_end = min(end, start + SZ_512K - 1); 1272 else 1273 cur_end = end; 1274 1275 /* 1276 * igrab is called higher up in the call chain, take only the 1277 * lightweight reference for the callback lifetime 1278 */ 1279 ihold(inode); 1280 async_chunk[i].pending = &ctx->num_chunks; 1281 async_chunk[i].inode = inode; 1282 async_chunk[i].start = start; 1283 async_chunk[i].end = cur_end; 1284 async_chunk[i].write_flags = write_flags; 1285 INIT_LIST_HEAD(&async_chunk[i].extents); 1286 1287 /* 1288 * The locked_page comes all the way from writepage and its 1289 * the original page we were actually given. As we spread 1290 * this large delalloc region across multiple async_chunk 1291 * structs, only the first struct needs a pointer to locked_page 1292 * 1293 * This way we don't need racey decisions about who is supposed 1294 * to unlock it. 1295 */ 1296 if (locked_page) { 1297 /* 1298 * Depending on the compressibility, the pages might or 1299 * might not go through async. We want all of them to 1300 * be accounted against wbc once. Let's do it here 1301 * before the paths diverge. wbc accounting is used 1302 * only for foreign writeback detection and doesn't 1303 * need full accuracy. Just account the whole thing 1304 * against the first page. 1305 */ 1306 wbc_account_cgroup_owner(wbc, locked_page, 1307 cur_end - start); 1308 async_chunk[i].locked_page = locked_page; 1309 locked_page = NULL; 1310 } else { 1311 async_chunk[i].locked_page = NULL; 1312 } 1313 1314 if (blkcg_css != blkcg_root_css) { 1315 css_get(blkcg_css); 1316 async_chunk[i].blkcg_css = blkcg_css; 1317 } else { 1318 async_chunk[i].blkcg_css = NULL; 1319 } 1320 1321 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1322 async_cow_submit, async_cow_free); 1323 1324 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1325 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1326 1327 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1328 1329 *nr_written += nr_pages; 1330 start = cur_end + 1; 1331 } 1332 *page_started = 1; 1333 return 0; 1334 } 1335 1336 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1337 u64 bytenr, u64 num_bytes) 1338 { 1339 int ret; 1340 struct btrfs_ordered_sum *sums; 1341 LIST_HEAD(list); 1342 1343 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1344 bytenr + num_bytes - 1, &list, 0); 1345 if (ret == 0 && list_empty(&list)) 1346 return 0; 1347 1348 while (!list_empty(&list)) { 1349 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1350 list_del(&sums->list); 1351 kfree(sums); 1352 } 1353 if (ret < 0) 1354 return ret; 1355 return 1; 1356 } 1357 1358 static int fallback_to_cow(struct inode *inode, struct page *locked_page, 1359 const u64 start, const u64 end, 1360 int *page_started, unsigned long *nr_written) 1361 { 1362 const bool is_space_ino = btrfs_is_free_space_inode(BTRFS_I(inode)); 1363 const u64 range_bytes = end + 1 - start; 1364 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1365 u64 range_start = start; 1366 u64 count; 1367 1368 /* 1369 * If EXTENT_NORESERVE is set it means that when the buffered write was 1370 * made we had not enough available data space and therefore we did not 1371 * reserve data space for it, since we though we could do NOCOW for the 1372 * respective file range (either there is prealloc extent or the inode 1373 * has the NOCOW bit set). 1374 * 1375 * However when we need to fallback to COW mode (because for example the 1376 * block group for the corresponding extent was turned to RO mode by a 1377 * scrub or relocation) we need to do the following: 1378 * 1379 * 1) We increment the bytes_may_use counter of the data space info. 1380 * If COW succeeds, it allocates a new data extent and after doing 1381 * that it decrements the space info's bytes_may_use counter and 1382 * increments its bytes_reserved counter by the same amount (we do 1383 * this at btrfs_add_reserved_bytes()). So we need to increment the 1384 * bytes_may_use counter to compensate (when space is reserved at 1385 * buffered write time, the bytes_may_use counter is incremented); 1386 * 1387 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1388 * that if the COW path fails for any reason, it decrements (through 1389 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1390 * data space info, which we incremented in the step above. 1391 * 1392 * If we need to fallback to cow and the inode corresponds to a free 1393 * space cache inode, we must also increment bytes_may_use of the data 1394 * space_info for the same reason. Space caches always get a prealloc 1395 * extent for them, however scrub or balance may have set the block 1396 * group that contains that extent to RO mode. 1397 */ 1398 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1399 EXTENT_NORESERVE, 0); 1400 if (count > 0 || is_space_ino) { 1401 const u64 bytes = is_space_ino ? range_bytes : count; 1402 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1403 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1404 1405 spin_lock(&sinfo->lock); 1406 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1407 spin_unlock(&sinfo->lock); 1408 1409 if (count > 0) 1410 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1411 0, 0, NULL); 1412 } 1413 1414 return cow_file_range(inode, locked_page, start, end, page_started, 1415 nr_written, 1); 1416 } 1417 1418 /* 1419 * when nowcow writeback call back. This checks for snapshots or COW copies 1420 * of the extents that exist in the file, and COWs the file as required. 1421 * 1422 * If no cow copies or snapshots exist, we write directly to the existing 1423 * blocks on disk 1424 */ 1425 static noinline int run_delalloc_nocow(struct inode *inode, 1426 struct page *locked_page, 1427 const u64 start, const u64 end, 1428 int *page_started, int force, 1429 unsigned long *nr_written) 1430 { 1431 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1432 struct btrfs_root *root = BTRFS_I(inode)->root; 1433 struct btrfs_path *path; 1434 u64 cow_start = (u64)-1; 1435 u64 cur_offset = start; 1436 int ret; 1437 bool check_prev = true; 1438 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1439 u64 ino = btrfs_ino(BTRFS_I(inode)); 1440 bool nocow = false; 1441 u64 disk_bytenr = 0; 1442 1443 path = btrfs_alloc_path(); 1444 if (!path) { 1445 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1446 EXTENT_LOCKED | EXTENT_DELALLOC | 1447 EXTENT_DO_ACCOUNTING | 1448 EXTENT_DEFRAG, PAGE_UNLOCK | 1449 PAGE_CLEAR_DIRTY | 1450 PAGE_SET_WRITEBACK | 1451 PAGE_END_WRITEBACK); 1452 return -ENOMEM; 1453 } 1454 1455 while (1) { 1456 struct btrfs_key found_key; 1457 struct btrfs_file_extent_item *fi; 1458 struct extent_buffer *leaf; 1459 u64 extent_end; 1460 u64 extent_offset; 1461 u64 num_bytes = 0; 1462 u64 disk_num_bytes; 1463 u64 ram_bytes; 1464 int extent_type; 1465 1466 nocow = false; 1467 1468 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1469 cur_offset, 0); 1470 if (ret < 0) 1471 goto error; 1472 1473 /* 1474 * If there is no extent for our range when doing the initial 1475 * search, then go back to the previous slot as it will be the 1476 * one containing the search offset 1477 */ 1478 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1479 leaf = path->nodes[0]; 1480 btrfs_item_key_to_cpu(leaf, &found_key, 1481 path->slots[0] - 1); 1482 if (found_key.objectid == ino && 1483 found_key.type == BTRFS_EXTENT_DATA_KEY) 1484 path->slots[0]--; 1485 } 1486 check_prev = false; 1487 next_slot: 1488 /* Go to next leaf if we have exhausted the current one */ 1489 leaf = path->nodes[0]; 1490 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1491 ret = btrfs_next_leaf(root, path); 1492 if (ret < 0) { 1493 if (cow_start != (u64)-1) 1494 cur_offset = cow_start; 1495 goto error; 1496 } 1497 if (ret > 0) 1498 break; 1499 leaf = path->nodes[0]; 1500 } 1501 1502 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1503 1504 /* Didn't find anything for our INO */ 1505 if (found_key.objectid > ino) 1506 break; 1507 /* 1508 * Keep searching until we find an EXTENT_ITEM or there are no 1509 * more extents for this inode 1510 */ 1511 if (WARN_ON_ONCE(found_key.objectid < ino) || 1512 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1513 path->slots[0]++; 1514 goto next_slot; 1515 } 1516 1517 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1518 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1519 found_key.offset > end) 1520 break; 1521 1522 /* 1523 * If the found extent starts after requested offset, then 1524 * adjust extent_end to be right before this extent begins 1525 */ 1526 if (found_key.offset > cur_offset) { 1527 extent_end = found_key.offset; 1528 extent_type = 0; 1529 goto out_check; 1530 } 1531 1532 /* 1533 * Found extent which begins before our range and potentially 1534 * intersect it 1535 */ 1536 fi = btrfs_item_ptr(leaf, path->slots[0], 1537 struct btrfs_file_extent_item); 1538 extent_type = btrfs_file_extent_type(leaf, fi); 1539 1540 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1541 if (extent_type == BTRFS_FILE_EXTENT_REG || 1542 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1543 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1544 extent_offset = btrfs_file_extent_offset(leaf, fi); 1545 extent_end = found_key.offset + 1546 btrfs_file_extent_num_bytes(leaf, fi); 1547 disk_num_bytes = 1548 btrfs_file_extent_disk_num_bytes(leaf, fi); 1549 /* 1550 * If the extent we got ends before our current offset, 1551 * skip to the next extent. 1552 */ 1553 if (extent_end <= cur_offset) { 1554 path->slots[0]++; 1555 goto next_slot; 1556 } 1557 /* Skip holes */ 1558 if (disk_bytenr == 0) 1559 goto out_check; 1560 /* Skip compressed/encrypted/encoded extents */ 1561 if (btrfs_file_extent_compression(leaf, fi) || 1562 btrfs_file_extent_encryption(leaf, fi) || 1563 btrfs_file_extent_other_encoding(leaf, fi)) 1564 goto out_check; 1565 /* 1566 * If extent is created before the last volume's snapshot 1567 * this implies the extent is shared, hence we can't do 1568 * nocow. This is the same check as in 1569 * btrfs_cross_ref_exist but without calling 1570 * btrfs_search_slot. 1571 */ 1572 if (!freespace_inode && 1573 btrfs_file_extent_generation(leaf, fi) <= 1574 btrfs_root_last_snapshot(&root->root_item)) 1575 goto out_check; 1576 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1577 goto out_check; 1578 /* If extent is RO, we must COW it */ 1579 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1580 goto out_check; 1581 ret = btrfs_cross_ref_exist(root, ino, 1582 found_key.offset - 1583 extent_offset, disk_bytenr); 1584 if (ret) { 1585 /* 1586 * ret could be -EIO if the above fails to read 1587 * metadata. 1588 */ 1589 if (ret < 0) { 1590 if (cow_start != (u64)-1) 1591 cur_offset = cow_start; 1592 goto error; 1593 } 1594 1595 WARN_ON_ONCE(freespace_inode); 1596 goto out_check; 1597 } 1598 disk_bytenr += extent_offset; 1599 disk_bytenr += cur_offset - found_key.offset; 1600 num_bytes = min(end + 1, extent_end) - cur_offset; 1601 /* 1602 * If there are pending snapshots for this root, we 1603 * fall into common COW way 1604 */ 1605 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1606 goto out_check; 1607 /* 1608 * force cow if csum exists in the range. 1609 * this ensure that csum for a given extent are 1610 * either valid or do not exist. 1611 */ 1612 ret = csum_exist_in_range(fs_info, disk_bytenr, 1613 num_bytes); 1614 if (ret) { 1615 /* 1616 * ret could be -EIO if the above fails to read 1617 * metadata. 1618 */ 1619 if (ret < 0) { 1620 if (cow_start != (u64)-1) 1621 cur_offset = cow_start; 1622 goto error; 1623 } 1624 WARN_ON_ONCE(freespace_inode); 1625 goto out_check; 1626 } 1627 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1628 goto out_check; 1629 nocow = true; 1630 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1631 extent_end = found_key.offset + ram_bytes; 1632 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1633 /* Skip extents outside of our requested range */ 1634 if (extent_end <= start) { 1635 path->slots[0]++; 1636 goto next_slot; 1637 } 1638 } else { 1639 /* If this triggers then we have a memory corruption */ 1640 BUG(); 1641 } 1642 out_check: 1643 /* 1644 * If nocow is false then record the beginning of the range 1645 * that needs to be COWed 1646 */ 1647 if (!nocow) { 1648 if (cow_start == (u64)-1) 1649 cow_start = cur_offset; 1650 cur_offset = extent_end; 1651 if (cur_offset > end) 1652 break; 1653 path->slots[0]++; 1654 goto next_slot; 1655 } 1656 1657 btrfs_release_path(path); 1658 1659 /* 1660 * COW range from cow_start to found_key.offset - 1. As the key 1661 * will contain the beginning of the first extent that can be 1662 * NOCOW, following one which needs to be COW'ed 1663 */ 1664 if (cow_start != (u64)-1) { 1665 ret = fallback_to_cow(inode, locked_page, cow_start, 1666 found_key.offset - 1, 1667 page_started, nr_written); 1668 if (ret) { 1669 if (nocow) 1670 btrfs_dec_nocow_writers(fs_info, 1671 disk_bytenr); 1672 goto error; 1673 } 1674 cow_start = (u64)-1; 1675 } 1676 1677 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1678 u64 orig_start = found_key.offset - extent_offset; 1679 struct extent_map *em; 1680 1681 em = create_io_em(inode, cur_offset, num_bytes, 1682 orig_start, 1683 disk_bytenr, /* block_start */ 1684 num_bytes, /* block_len */ 1685 disk_num_bytes, /* orig_block_len */ 1686 ram_bytes, BTRFS_COMPRESS_NONE, 1687 BTRFS_ORDERED_PREALLOC); 1688 if (IS_ERR(em)) { 1689 if (nocow) 1690 btrfs_dec_nocow_writers(fs_info, 1691 disk_bytenr); 1692 ret = PTR_ERR(em); 1693 goto error; 1694 } 1695 free_extent_map(em); 1696 ret = btrfs_add_ordered_extent(inode, cur_offset, 1697 disk_bytenr, num_bytes, 1698 num_bytes, 1699 BTRFS_ORDERED_PREALLOC); 1700 if (ret) { 1701 btrfs_drop_extent_cache(BTRFS_I(inode), 1702 cur_offset, 1703 cur_offset + num_bytes - 1, 1704 0); 1705 goto error; 1706 } 1707 } else { 1708 ret = btrfs_add_ordered_extent(inode, cur_offset, 1709 disk_bytenr, num_bytes, 1710 num_bytes, 1711 BTRFS_ORDERED_NOCOW); 1712 if (ret) 1713 goto error; 1714 } 1715 1716 if (nocow) 1717 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1718 nocow = false; 1719 1720 if (root->root_key.objectid == 1721 BTRFS_DATA_RELOC_TREE_OBJECTID) 1722 /* 1723 * Error handled later, as we must prevent 1724 * extent_clear_unlock_delalloc() in error handler 1725 * from freeing metadata of created ordered extent. 1726 */ 1727 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1728 num_bytes); 1729 1730 extent_clear_unlock_delalloc(inode, cur_offset, 1731 cur_offset + num_bytes - 1, 1732 locked_page, EXTENT_LOCKED | 1733 EXTENT_DELALLOC | 1734 EXTENT_CLEAR_DATA_RESV, 1735 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1736 1737 cur_offset = extent_end; 1738 1739 /* 1740 * btrfs_reloc_clone_csums() error, now we're OK to call error 1741 * handler, as metadata for created ordered extent will only 1742 * be freed by btrfs_finish_ordered_io(). 1743 */ 1744 if (ret) 1745 goto error; 1746 if (cur_offset > end) 1747 break; 1748 } 1749 btrfs_release_path(path); 1750 1751 if (cur_offset <= end && cow_start == (u64)-1) 1752 cow_start = cur_offset; 1753 1754 if (cow_start != (u64)-1) { 1755 cur_offset = end; 1756 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1757 page_started, nr_written); 1758 if (ret) 1759 goto error; 1760 } 1761 1762 error: 1763 if (nocow) 1764 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1765 1766 if (ret && cur_offset < end) 1767 extent_clear_unlock_delalloc(inode, cur_offset, end, 1768 locked_page, EXTENT_LOCKED | 1769 EXTENT_DELALLOC | EXTENT_DEFRAG | 1770 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1771 PAGE_CLEAR_DIRTY | 1772 PAGE_SET_WRITEBACK | 1773 PAGE_END_WRITEBACK); 1774 btrfs_free_path(path); 1775 return ret; 1776 } 1777 1778 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1779 { 1780 1781 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1782 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1783 return 0; 1784 1785 /* 1786 * @defrag_bytes is a hint value, no spinlock held here, 1787 * if is not zero, it means the file is defragging. 1788 * Force cow if given extent needs to be defragged. 1789 */ 1790 if (BTRFS_I(inode)->defrag_bytes && 1791 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1792 EXTENT_DEFRAG, 0, NULL)) 1793 return 1; 1794 1795 return 0; 1796 } 1797 1798 /* 1799 * Function to process delayed allocation (create CoW) for ranges which are 1800 * being touched for the first time. 1801 */ 1802 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1803 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1804 struct writeback_control *wbc) 1805 { 1806 int ret; 1807 int force_cow = need_force_cow(inode, start, end); 1808 1809 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1810 ret = run_delalloc_nocow(inode, locked_page, start, end, 1811 page_started, 1, nr_written); 1812 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1813 ret = run_delalloc_nocow(inode, locked_page, start, end, 1814 page_started, 0, nr_written); 1815 } else if (!inode_can_compress(inode) || 1816 !inode_need_compress(inode, start, end)) { 1817 ret = cow_file_range(inode, locked_page, start, end, 1818 page_started, nr_written, 1); 1819 } else { 1820 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1821 &BTRFS_I(inode)->runtime_flags); 1822 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1823 page_started, nr_written); 1824 } 1825 if (ret) 1826 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1827 end - start + 1); 1828 return ret; 1829 } 1830 1831 void btrfs_split_delalloc_extent(struct inode *inode, 1832 struct extent_state *orig, u64 split) 1833 { 1834 u64 size; 1835 1836 /* not delalloc, ignore it */ 1837 if (!(orig->state & EXTENT_DELALLOC)) 1838 return; 1839 1840 size = orig->end - orig->start + 1; 1841 if (size > BTRFS_MAX_EXTENT_SIZE) { 1842 u32 num_extents; 1843 u64 new_size; 1844 1845 /* 1846 * See the explanation in btrfs_merge_delalloc_extent, the same 1847 * applies here, just in reverse. 1848 */ 1849 new_size = orig->end - split + 1; 1850 num_extents = count_max_extents(new_size); 1851 new_size = split - orig->start; 1852 num_extents += count_max_extents(new_size); 1853 if (count_max_extents(size) >= num_extents) 1854 return; 1855 } 1856 1857 spin_lock(&BTRFS_I(inode)->lock); 1858 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1859 spin_unlock(&BTRFS_I(inode)->lock); 1860 } 1861 1862 /* 1863 * Handle merged delayed allocation extents so we can keep track of new extents 1864 * that are just merged onto old extents, such as when we are doing sequential 1865 * writes, so we can properly account for the metadata space we'll need. 1866 */ 1867 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1868 struct extent_state *other) 1869 { 1870 u64 new_size, old_size; 1871 u32 num_extents; 1872 1873 /* not delalloc, ignore it */ 1874 if (!(other->state & EXTENT_DELALLOC)) 1875 return; 1876 1877 if (new->start > other->start) 1878 new_size = new->end - other->start + 1; 1879 else 1880 new_size = other->end - new->start + 1; 1881 1882 /* we're not bigger than the max, unreserve the space and go */ 1883 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1884 spin_lock(&BTRFS_I(inode)->lock); 1885 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1886 spin_unlock(&BTRFS_I(inode)->lock); 1887 return; 1888 } 1889 1890 /* 1891 * We have to add up either side to figure out how many extents were 1892 * accounted for before we merged into one big extent. If the number of 1893 * extents we accounted for is <= the amount we need for the new range 1894 * then we can return, otherwise drop. Think of it like this 1895 * 1896 * [ 4k][MAX_SIZE] 1897 * 1898 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1899 * need 2 outstanding extents, on one side we have 1 and the other side 1900 * we have 1 so they are == and we can return. But in this case 1901 * 1902 * [MAX_SIZE+4k][MAX_SIZE+4k] 1903 * 1904 * Each range on their own accounts for 2 extents, but merged together 1905 * they are only 3 extents worth of accounting, so we need to drop in 1906 * this case. 1907 */ 1908 old_size = other->end - other->start + 1; 1909 num_extents = count_max_extents(old_size); 1910 old_size = new->end - new->start + 1; 1911 num_extents += count_max_extents(old_size); 1912 if (count_max_extents(new_size) >= num_extents) 1913 return; 1914 1915 spin_lock(&BTRFS_I(inode)->lock); 1916 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1917 spin_unlock(&BTRFS_I(inode)->lock); 1918 } 1919 1920 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1921 struct inode *inode) 1922 { 1923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1924 1925 spin_lock(&root->delalloc_lock); 1926 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1927 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1928 &root->delalloc_inodes); 1929 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1930 &BTRFS_I(inode)->runtime_flags); 1931 root->nr_delalloc_inodes++; 1932 if (root->nr_delalloc_inodes == 1) { 1933 spin_lock(&fs_info->delalloc_root_lock); 1934 BUG_ON(!list_empty(&root->delalloc_root)); 1935 list_add_tail(&root->delalloc_root, 1936 &fs_info->delalloc_roots); 1937 spin_unlock(&fs_info->delalloc_root_lock); 1938 } 1939 } 1940 spin_unlock(&root->delalloc_lock); 1941 } 1942 1943 1944 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1945 struct btrfs_inode *inode) 1946 { 1947 struct btrfs_fs_info *fs_info = root->fs_info; 1948 1949 if (!list_empty(&inode->delalloc_inodes)) { 1950 list_del_init(&inode->delalloc_inodes); 1951 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1952 &inode->runtime_flags); 1953 root->nr_delalloc_inodes--; 1954 if (!root->nr_delalloc_inodes) { 1955 ASSERT(list_empty(&root->delalloc_inodes)); 1956 spin_lock(&fs_info->delalloc_root_lock); 1957 BUG_ON(list_empty(&root->delalloc_root)); 1958 list_del_init(&root->delalloc_root); 1959 spin_unlock(&fs_info->delalloc_root_lock); 1960 } 1961 } 1962 } 1963 1964 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1965 struct btrfs_inode *inode) 1966 { 1967 spin_lock(&root->delalloc_lock); 1968 __btrfs_del_delalloc_inode(root, inode); 1969 spin_unlock(&root->delalloc_lock); 1970 } 1971 1972 /* 1973 * Properly track delayed allocation bytes in the inode and to maintain the 1974 * list of inodes that have pending delalloc work to be done. 1975 */ 1976 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1977 unsigned *bits) 1978 { 1979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1980 1981 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1982 WARN_ON(1); 1983 /* 1984 * set_bit and clear bit hooks normally require _irqsave/restore 1985 * but in this case, we are only testing for the DELALLOC 1986 * bit, which is only set or cleared with irqs on 1987 */ 1988 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1989 struct btrfs_root *root = BTRFS_I(inode)->root; 1990 u64 len = state->end + 1 - state->start; 1991 u32 num_extents = count_max_extents(len); 1992 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1993 1994 spin_lock(&BTRFS_I(inode)->lock); 1995 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1996 spin_unlock(&BTRFS_I(inode)->lock); 1997 1998 /* For sanity tests */ 1999 if (btrfs_is_testing(fs_info)) 2000 return; 2001 2002 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2003 fs_info->delalloc_batch); 2004 spin_lock(&BTRFS_I(inode)->lock); 2005 BTRFS_I(inode)->delalloc_bytes += len; 2006 if (*bits & EXTENT_DEFRAG) 2007 BTRFS_I(inode)->defrag_bytes += len; 2008 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2009 &BTRFS_I(inode)->runtime_flags)) 2010 btrfs_add_delalloc_inodes(root, inode); 2011 spin_unlock(&BTRFS_I(inode)->lock); 2012 } 2013 2014 if (!(state->state & EXTENT_DELALLOC_NEW) && 2015 (*bits & EXTENT_DELALLOC_NEW)) { 2016 spin_lock(&BTRFS_I(inode)->lock); 2017 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2018 state->start; 2019 spin_unlock(&BTRFS_I(inode)->lock); 2020 } 2021 } 2022 2023 /* 2024 * Once a range is no longer delalloc this function ensures that proper 2025 * accounting happens. 2026 */ 2027 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2028 struct extent_state *state, unsigned *bits) 2029 { 2030 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2031 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2032 u64 len = state->end + 1 - state->start; 2033 u32 num_extents = count_max_extents(len); 2034 2035 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2036 spin_lock(&inode->lock); 2037 inode->defrag_bytes -= len; 2038 spin_unlock(&inode->lock); 2039 } 2040 2041 /* 2042 * set_bit and clear bit hooks normally require _irqsave/restore 2043 * but in this case, we are only testing for the DELALLOC 2044 * bit, which is only set or cleared with irqs on 2045 */ 2046 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2047 struct btrfs_root *root = inode->root; 2048 bool do_list = !btrfs_is_free_space_inode(inode); 2049 2050 spin_lock(&inode->lock); 2051 btrfs_mod_outstanding_extents(inode, -num_extents); 2052 spin_unlock(&inode->lock); 2053 2054 /* 2055 * We don't reserve metadata space for space cache inodes so we 2056 * don't need to call delalloc_release_metadata if there is an 2057 * error. 2058 */ 2059 if (*bits & EXTENT_CLEAR_META_RESV && 2060 root != fs_info->tree_root) 2061 btrfs_delalloc_release_metadata(inode, len, false); 2062 2063 /* For sanity tests. */ 2064 if (btrfs_is_testing(fs_info)) 2065 return; 2066 2067 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2068 do_list && !(state->state & EXTENT_NORESERVE) && 2069 (*bits & EXTENT_CLEAR_DATA_RESV)) 2070 btrfs_free_reserved_data_space_noquota( 2071 &inode->vfs_inode, 2072 state->start, len); 2073 2074 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2075 fs_info->delalloc_batch); 2076 spin_lock(&inode->lock); 2077 inode->delalloc_bytes -= len; 2078 if (do_list && inode->delalloc_bytes == 0 && 2079 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2080 &inode->runtime_flags)) 2081 btrfs_del_delalloc_inode(root, inode); 2082 spin_unlock(&inode->lock); 2083 } 2084 2085 if ((state->state & EXTENT_DELALLOC_NEW) && 2086 (*bits & EXTENT_DELALLOC_NEW)) { 2087 spin_lock(&inode->lock); 2088 ASSERT(inode->new_delalloc_bytes >= len); 2089 inode->new_delalloc_bytes -= len; 2090 spin_unlock(&inode->lock); 2091 } 2092 } 2093 2094 /* 2095 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2096 * in a chunk's stripe. This function ensures that bios do not span a 2097 * stripe/chunk 2098 * 2099 * @page - The page we are about to add to the bio 2100 * @size - size we want to add to the bio 2101 * @bio - bio we want to ensure is smaller than a stripe 2102 * @bio_flags - flags of the bio 2103 * 2104 * return 1 if page cannot be added to the bio 2105 * return 0 if page can be added to the bio 2106 * return error otherwise 2107 */ 2108 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2109 unsigned long bio_flags) 2110 { 2111 struct inode *inode = page->mapping->host; 2112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2113 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2114 u64 length = 0; 2115 u64 map_length; 2116 int ret; 2117 struct btrfs_io_geometry geom; 2118 2119 if (bio_flags & EXTENT_BIO_COMPRESSED) 2120 return 0; 2121 2122 length = bio->bi_iter.bi_size; 2123 map_length = length; 2124 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2125 &geom); 2126 if (ret < 0) 2127 return ret; 2128 2129 if (geom.len < length + size) 2130 return 1; 2131 return 0; 2132 } 2133 2134 /* 2135 * in order to insert checksums into the metadata in large chunks, 2136 * we wait until bio submission time. All the pages in the bio are 2137 * checksummed and sums are attached onto the ordered extent record. 2138 * 2139 * At IO completion time the cums attached on the ordered extent record 2140 * are inserted into the btree 2141 */ 2142 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2143 u64 bio_offset) 2144 { 2145 struct inode *inode = private_data; 2146 blk_status_t ret = 0; 2147 2148 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2149 BUG_ON(ret); /* -ENOMEM */ 2150 return 0; 2151 } 2152 2153 /* 2154 * extent_io.c submission hook. This does the right thing for csum calculation 2155 * on write, or reading the csums from the tree before a read. 2156 * 2157 * Rules about async/sync submit, 2158 * a) read: sync submit 2159 * 2160 * b) write without checksum: sync submit 2161 * 2162 * c) write with checksum: 2163 * c-1) if bio is issued by fsync: sync submit 2164 * (sync_writers != 0) 2165 * 2166 * c-2) if root is reloc root: sync submit 2167 * (only in case of buffered IO) 2168 * 2169 * c-3) otherwise: async submit 2170 */ 2171 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2172 int mirror_num, 2173 unsigned long bio_flags) 2174 2175 { 2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2177 struct btrfs_root *root = BTRFS_I(inode)->root; 2178 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2179 blk_status_t ret = 0; 2180 int skip_sum; 2181 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2182 2183 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2184 2185 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2186 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2187 2188 if (bio_op(bio) != REQ_OP_WRITE) { 2189 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2190 if (ret) 2191 goto out; 2192 2193 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2194 ret = btrfs_submit_compressed_read(inode, bio, 2195 mirror_num, 2196 bio_flags); 2197 goto out; 2198 } else if (!skip_sum) { 2199 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2200 if (ret) 2201 goto out; 2202 } 2203 goto mapit; 2204 } else if (async && !skip_sum) { 2205 /* csum items have already been cloned */ 2206 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2207 goto mapit; 2208 /* we're doing a write, do the async checksumming */ 2209 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2210 0, inode, btrfs_submit_bio_start); 2211 goto out; 2212 } else if (!skip_sum) { 2213 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2214 if (ret) 2215 goto out; 2216 } 2217 2218 mapit: 2219 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2220 2221 out: 2222 if (ret) { 2223 bio->bi_status = ret; 2224 bio_endio(bio); 2225 } 2226 return ret; 2227 } 2228 2229 /* 2230 * given a list of ordered sums record them in the inode. This happens 2231 * at IO completion time based on sums calculated at bio submission time. 2232 */ 2233 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2234 struct inode *inode, struct list_head *list) 2235 { 2236 struct btrfs_ordered_sum *sum; 2237 int ret; 2238 2239 list_for_each_entry(sum, list, list) { 2240 trans->adding_csums = true; 2241 ret = btrfs_csum_file_blocks(trans, 2242 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2243 trans->adding_csums = false; 2244 if (ret) 2245 return ret; 2246 } 2247 return 0; 2248 } 2249 2250 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2251 unsigned int extra_bits, 2252 struct extent_state **cached_state) 2253 { 2254 WARN_ON(PAGE_ALIGNED(end)); 2255 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2256 extra_bits, cached_state); 2257 } 2258 2259 /* see btrfs_writepage_start_hook for details on why this is required */ 2260 struct btrfs_writepage_fixup { 2261 struct page *page; 2262 struct inode *inode; 2263 struct btrfs_work work; 2264 }; 2265 2266 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2267 { 2268 struct btrfs_writepage_fixup *fixup; 2269 struct btrfs_ordered_extent *ordered; 2270 struct extent_state *cached_state = NULL; 2271 struct extent_changeset *data_reserved = NULL; 2272 struct page *page; 2273 struct inode *inode; 2274 u64 page_start; 2275 u64 page_end; 2276 int ret = 0; 2277 bool free_delalloc_space = true; 2278 2279 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2280 page = fixup->page; 2281 inode = fixup->inode; 2282 page_start = page_offset(page); 2283 page_end = page_offset(page) + PAGE_SIZE - 1; 2284 2285 /* 2286 * This is similar to page_mkwrite, we need to reserve the space before 2287 * we take the page lock. 2288 */ 2289 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2290 PAGE_SIZE); 2291 again: 2292 lock_page(page); 2293 2294 /* 2295 * Before we queued this fixup, we took a reference on the page. 2296 * page->mapping may go NULL, but it shouldn't be moved to a different 2297 * address space. 2298 */ 2299 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2300 /* 2301 * Unfortunately this is a little tricky, either 2302 * 2303 * 1) We got here and our page had already been dealt with and 2304 * we reserved our space, thus ret == 0, so we need to just 2305 * drop our space reservation and bail. This can happen the 2306 * first time we come into the fixup worker, or could happen 2307 * while waiting for the ordered extent. 2308 * 2) Our page was already dealt with, but we happened to get an 2309 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2310 * this case we obviously don't have anything to release, but 2311 * because the page was already dealt with we don't want to 2312 * mark the page with an error, so make sure we're resetting 2313 * ret to 0. This is why we have this check _before_ the ret 2314 * check, because we do not want to have a surprise ENOSPC 2315 * when the page was already properly dealt with. 2316 */ 2317 if (!ret) { 2318 btrfs_delalloc_release_extents(BTRFS_I(inode), 2319 PAGE_SIZE); 2320 btrfs_delalloc_release_space(inode, data_reserved, 2321 page_start, PAGE_SIZE, 2322 true); 2323 } 2324 ret = 0; 2325 goto out_page; 2326 } 2327 2328 /* 2329 * We can't mess with the page state unless it is locked, so now that 2330 * it is locked bail if we failed to make our space reservation. 2331 */ 2332 if (ret) 2333 goto out_page; 2334 2335 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2336 &cached_state); 2337 2338 /* already ordered? We're done */ 2339 if (PagePrivate2(page)) 2340 goto out_reserved; 2341 2342 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2343 PAGE_SIZE); 2344 if (ordered) { 2345 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2346 page_end, &cached_state); 2347 unlock_page(page); 2348 btrfs_start_ordered_extent(inode, ordered, 1); 2349 btrfs_put_ordered_extent(ordered); 2350 goto again; 2351 } 2352 2353 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2354 &cached_state); 2355 if (ret) 2356 goto out_reserved; 2357 2358 /* 2359 * Everything went as planned, we're now the owner of a dirty page with 2360 * delayed allocation bits set and space reserved for our COW 2361 * destination. 2362 * 2363 * The page was dirty when we started, nothing should have cleaned it. 2364 */ 2365 BUG_ON(!PageDirty(page)); 2366 free_delalloc_space = false; 2367 out_reserved: 2368 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2369 if (free_delalloc_space) 2370 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2371 PAGE_SIZE, true); 2372 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2373 &cached_state); 2374 out_page: 2375 if (ret) { 2376 /* 2377 * We hit ENOSPC or other errors. Update the mapping and page 2378 * to reflect the errors and clean the page. 2379 */ 2380 mapping_set_error(page->mapping, ret); 2381 end_extent_writepage(page, ret, page_start, page_end); 2382 clear_page_dirty_for_io(page); 2383 SetPageError(page); 2384 } 2385 ClearPageChecked(page); 2386 unlock_page(page); 2387 put_page(page); 2388 kfree(fixup); 2389 extent_changeset_free(data_reserved); 2390 /* 2391 * As a precaution, do a delayed iput in case it would be the last iput 2392 * that could need flushing space. Recursing back to fixup worker would 2393 * deadlock. 2394 */ 2395 btrfs_add_delayed_iput(inode); 2396 } 2397 2398 /* 2399 * There are a few paths in the higher layers of the kernel that directly 2400 * set the page dirty bit without asking the filesystem if it is a 2401 * good idea. This causes problems because we want to make sure COW 2402 * properly happens and the data=ordered rules are followed. 2403 * 2404 * In our case any range that doesn't have the ORDERED bit set 2405 * hasn't been properly setup for IO. We kick off an async process 2406 * to fix it up. The async helper will wait for ordered extents, set 2407 * the delalloc bit and make it safe to write the page. 2408 */ 2409 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2410 { 2411 struct inode *inode = page->mapping->host; 2412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2413 struct btrfs_writepage_fixup *fixup; 2414 2415 /* this page is properly in the ordered list */ 2416 if (TestClearPagePrivate2(page)) 2417 return 0; 2418 2419 /* 2420 * PageChecked is set below when we create a fixup worker for this page, 2421 * don't try to create another one if we're already PageChecked() 2422 * 2423 * The extent_io writepage code will redirty the page if we send back 2424 * EAGAIN. 2425 */ 2426 if (PageChecked(page)) 2427 return -EAGAIN; 2428 2429 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2430 if (!fixup) 2431 return -EAGAIN; 2432 2433 /* 2434 * We are already holding a reference to this inode from 2435 * write_cache_pages. We need to hold it because the space reservation 2436 * takes place outside of the page lock, and we can't trust 2437 * page->mapping outside of the page lock. 2438 */ 2439 ihold(inode); 2440 SetPageChecked(page); 2441 get_page(page); 2442 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2443 fixup->page = page; 2444 fixup->inode = inode; 2445 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2446 2447 return -EAGAIN; 2448 } 2449 2450 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2451 struct inode *inode, u64 file_pos, 2452 u64 disk_bytenr, u64 disk_num_bytes, 2453 u64 num_bytes, u64 ram_bytes, 2454 u8 compression, u8 encryption, 2455 u16 other_encoding, int extent_type) 2456 { 2457 struct btrfs_root *root = BTRFS_I(inode)->root; 2458 struct btrfs_file_extent_item *fi; 2459 struct btrfs_path *path; 2460 struct extent_buffer *leaf; 2461 struct btrfs_key ins; 2462 u64 qg_released; 2463 int extent_inserted = 0; 2464 int ret; 2465 2466 path = btrfs_alloc_path(); 2467 if (!path) 2468 return -ENOMEM; 2469 2470 /* 2471 * we may be replacing one extent in the tree with another. 2472 * The new extent is pinned in the extent map, and we don't want 2473 * to drop it from the cache until it is completely in the btree. 2474 * 2475 * So, tell btrfs_drop_extents to leave this extent in the cache. 2476 * the caller is expected to unpin it and allow it to be merged 2477 * with the others. 2478 */ 2479 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2480 file_pos + num_bytes, NULL, 0, 2481 1, sizeof(*fi), &extent_inserted); 2482 if (ret) 2483 goto out; 2484 2485 if (!extent_inserted) { 2486 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2487 ins.offset = file_pos; 2488 ins.type = BTRFS_EXTENT_DATA_KEY; 2489 2490 path->leave_spinning = 1; 2491 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2492 sizeof(*fi)); 2493 if (ret) 2494 goto out; 2495 } 2496 leaf = path->nodes[0]; 2497 fi = btrfs_item_ptr(leaf, path->slots[0], 2498 struct btrfs_file_extent_item); 2499 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2500 btrfs_set_file_extent_type(leaf, fi, extent_type); 2501 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2502 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2503 btrfs_set_file_extent_offset(leaf, fi, 0); 2504 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2505 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2506 btrfs_set_file_extent_compression(leaf, fi, compression); 2507 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2508 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2509 2510 btrfs_mark_buffer_dirty(leaf); 2511 btrfs_release_path(path); 2512 2513 inode_add_bytes(inode, num_bytes); 2514 2515 ins.objectid = disk_bytenr; 2516 ins.offset = disk_num_bytes; 2517 ins.type = BTRFS_EXTENT_ITEM_KEY; 2518 2519 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), file_pos, 2520 ram_bytes); 2521 if (ret) 2522 goto out; 2523 2524 /* 2525 * Release the reserved range from inode dirty range map, as it is 2526 * already moved into delayed_ref_head 2527 */ 2528 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2529 if (ret < 0) 2530 goto out; 2531 qg_released = ret; 2532 ret = btrfs_alloc_reserved_file_extent(trans, root, 2533 btrfs_ino(BTRFS_I(inode)), 2534 file_pos, qg_released, &ins); 2535 out: 2536 btrfs_free_path(path); 2537 2538 return ret; 2539 } 2540 2541 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2542 u64 start, u64 len) 2543 { 2544 struct btrfs_block_group *cache; 2545 2546 cache = btrfs_lookup_block_group(fs_info, start); 2547 ASSERT(cache); 2548 2549 spin_lock(&cache->lock); 2550 cache->delalloc_bytes -= len; 2551 spin_unlock(&cache->lock); 2552 2553 btrfs_put_block_group(cache); 2554 } 2555 2556 /* as ordered data IO finishes, this gets called so we can finish 2557 * an ordered extent if the range of bytes in the file it covers are 2558 * fully written. 2559 */ 2560 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2561 { 2562 struct inode *inode = ordered_extent->inode; 2563 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2564 struct btrfs_root *root = BTRFS_I(inode)->root; 2565 struct btrfs_trans_handle *trans = NULL; 2566 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2567 struct extent_state *cached_state = NULL; 2568 u64 start, end; 2569 int compress_type = 0; 2570 int ret = 0; 2571 u64 logical_len = ordered_extent->num_bytes; 2572 bool freespace_inode; 2573 bool truncated = false; 2574 bool range_locked = false; 2575 bool clear_new_delalloc_bytes = false; 2576 bool clear_reserved_extent = true; 2577 unsigned int clear_bits; 2578 2579 start = ordered_extent->file_offset; 2580 end = start + ordered_extent->num_bytes - 1; 2581 2582 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2583 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2584 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2585 clear_new_delalloc_bytes = true; 2586 2587 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2588 2589 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2590 ret = -EIO; 2591 goto out; 2592 } 2593 2594 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2595 2596 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2597 truncated = true; 2598 logical_len = ordered_extent->truncated_len; 2599 /* Truncated the entire extent, don't bother adding */ 2600 if (!logical_len) 2601 goto out; 2602 } 2603 2604 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2605 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2606 2607 /* 2608 * For mwrite(mmap + memset to write) case, we still reserve 2609 * space for NOCOW range. 2610 * As NOCOW won't cause a new delayed ref, just free the space 2611 */ 2612 btrfs_qgroup_free_data(inode, NULL, start, 2613 ordered_extent->num_bytes); 2614 btrfs_inode_safe_disk_i_size_write(inode, 0); 2615 if (freespace_inode) 2616 trans = btrfs_join_transaction_spacecache(root); 2617 else 2618 trans = btrfs_join_transaction(root); 2619 if (IS_ERR(trans)) { 2620 ret = PTR_ERR(trans); 2621 trans = NULL; 2622 goto out; 2623 } 2624 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2625 ret = btrfs_update_inode_fallback(trans, root, inode); 2626 if (ret) /* -ENOMEM or corruption */ 2627 btrfs_abort_transaction(trans, ret); 2628 goto out; 2629 } 2630 2631 range_locked = true; 2632 lock_extent_bits(io_tree, start, end, &cached_state); 2633 2634 if (freespace_inode) 2635 trans = btrfs_join_transaction_spacecache(root); 2636 else 2637 trans = btrfs_join_transaction(root); 2638 if (IS_ERR(trans)) { 2639 ret = PTR_ERR(trans); 2640 trans = NULL; 2641 goto out; 2642 } 2643 2644 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2645 2646 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2647 compress_type = ordered_extent->compress_type; 2648 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2649 BUG_ON(compress_type); 2650 btrfs_qgroup_free_data(inode, NULL, start, 2651 ordered_extent->num_bytes); 2652 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2653 ordered_extent->file_offset, 2654 ordered_extent->file_offset + 2655 logical_len); 2656 } else { 2657 BUG_ON(root == fs_info->tree_root); 2658 ret = insert_reserved_file_extent(trans, inode, start, 2659 ordered_extent->disk_bytenr, 2660 ordered_extent->disk_num_bytes, 2661 logical_len, logical_len, 2662 compress_type, 0, 0, 2663 BTRFS_FILE_EXTENT_REG); 2664 if (!ret) { 2665 clear_reserved_extent = false; 2666 btrfs_release_delalloc_bytes(fs_info, 2667 ordered_extent->disk_bytenr, 2668 ordered_extent->disk_num_bytes); 2669 } 2670 } 2671 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2672 ordered_extent->file_offset, 2673 ordered_extent->num_bytes, trans->transid); 2674 if (ret < 0) { 2675 btrfs_abort_transaction(trans, ret); 2676 goto out; 2677 } 2678 2679 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2680 if (ret) { 2681 btrfs_abort_transaction(trans, ret); 2682 goto out; 2683 } 2684 2685 btrfs_inode_safe_disk_i_size_write(inode, 0); 2686 ret = btrfs_update_inode_fallback(trans, root, inode); 2687 if (ret) { /* -ENOMEM or corruption */ 2688 btrfs_abort_transaction(trans, ret); 2689 goto out; 2690 } 2691 ret = 0; 2692 out: 2693 clear_bits = EXTENT_DEFRAG; 2694 if (range_locked) 2695 clear_bits |= EXTENT_LOCKED; 2696 if (clear_new_delalloc_bytes) 2697 clear_bits |= EXTENT_DELALLOC_NEW; 2698 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2699 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2700 &cached_state); 2701 2702 if (trans) 2703 btrfs_end_transaction(trans); 2704 2705 if (ret || truncated) { 2706 u64 unwritten_start = start; 2707 2708 if (truncated) 2709 unwritten_start += logical_len; 2710 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2711 2712 /* Drop the cache for the part of the extent we didn't write. */ 2713 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2714 2715 /* 2716 * If the ordered extent had an IOERR or something else went 2717 * wrong we need to return the space for this ordered extent 2718 * back to the allocator. We only free the extent in the 2719 * truncated case if we didn't write out the extent at all. 2720 * 2721 * If we made it past insert_reserved_file_extent before we 2722 * errored out then we don't need to do this as the accounting 2723 * has already been done. 2724 */ 2725 if ((ret || !logical_len) && 2726 clear_reserved_extent && 2727 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2728 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2729 /* 2730 * Discard the range before returning it back to the 2731 * free space pool 2732 */ 2733 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2734 btrfs_discard_extent(fs_info, 2735 ordered_extent->disk_bytenr, 2736 ordered_extent->disk_num_bytes, 2737 NULL); 2738 btrfs_free_reserved_extent(fs_info, 2739 ordered_extent->disk_bytenr, 2740 ordered_extent->disk_num_bytes, 1); 2741 } 2742 } 2743 2744 /* 2745 * This needs to be done to make sure anybody waiting knows we are done 2746 * updating everything for this ordered extent. 2747 */ 2748 btrfs_remove_ordered_extent(inode, ordered_extent); 2749 2750 /* once for us */ 2751 btrfs_put_ordered_extent(ordered_extent); 2752 /* once for the tree */ 2753 btrfs_put_ordered_extent(ordered_extent); 2754 2755 return ret; 2756 } 2757 2758 static void finish_ordered_fn(struct btrfs_work *work) 2759 { 2760 struct btrfs_ordered_extent *ordered_extent; 2761 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2762 btrfs_finish_ordered_io(ordered_extent); 2763 } 2764 2765 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2766 u64 end, int uptodate) 2767 { 2768 struct inode *inode = page->mapping->host; 2769 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2770 struct btrfs_ordered_extent *ordered_extent = NULL; 2771 struct btrfs_workqueue *wq; 2772 2773 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2774 2775 ClearPagePrivate2(page); 2776 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2777 end - start + 1, uptodate)) 2778 return; 2779 2780 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2781 wq = fs_info->endio_freespace_worker; 2782 else 2783 wq = fs_info->endio_write_workers; 2784 2785 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2786 btrfs_queue_work(wq, &ordered_extent->work); 2787 } 2788 2789 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 2790 int icsum, struct page *page, int pgoff, u64 start, 2791 size_t len) 2792 { 2793 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2794 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2795 char *kaddr; 2796 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2797 u8 *csum_expected; 2798 u8 csum[BTRFS_CSUM_SIZE]; 2799 2800 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2801 2802 kaddr = kmap_atomic(page); 2803 shash->tfm = fs_info->csum_shash; 2804 2805 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 2806 2807 if (memcmp(csum, csum_expected, csum_size)) 2808 goto zeroit; 2809 2810 kunmap_atomic(kaddr); 2811 return 0; 2812 zeroit: 2813 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2814 io_bio->mirror_num); 2815 memset(kaddr + pgoff, 1, len); 2816 flush_dcache_page(page); 2817 kunmap_atomic(kaddr); 2818 return -EIO; 2819 } 2820 2821 /* 2822 * when reads are done, we need to check csums to verify the data is correct 2823 * if there's a match, we allow the bio to finish. If not, the code in 2824 * extent_io.c will try to find good copies for us. 2825 */ 2826 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2827 u64 phy_offset, struct page *page, 2828 u64 start, u64 end, int mirror) 2829 { 2830 size_t offset = start - page_offset(page); 2831 struct inode *inode = page->mapping->host; 2832 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2833 struct btrfs_root *root = BTRFS_I(inode)->root; 2834 2835 if (PageChecked(page)) { 2836 ClearPageChecked(page); 2837 return 0; 2838 } 2839 2840 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2841 return 0; 2842 2843 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2844 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2845 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2846 return 0; 2847 } 2848 2849 phy_offset >>= inode->i_sb->s_blocksize_bits; 2850 return check_data_csum(inode, io_bio, phy_offset, page, offset, start, 2851 (size_t)(end - start + 1)); 2852 } 2853 2854 /* 2855 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2856 * 2857 * @inode: The inode we want to perform iput on 2858 * 2859 * This function uses the generic vfs_inode::i_count to track whether we should 2860 * just decrement it (in case it's > 1) or if this is the last iput then link 2861 * the inode to the delayed iput machinery. Delayed iputs are processed at 2862 * transaction commit time/superblock commit/cleaner kthread. 2863 */ 2864 void btrfs_add_delayed_iput(struct inode *inode) 2865 { 2866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2867 struct btrfs_inode *binode = BTRFS_I(inode); 2868 2869 if (atomic_add_unless(&inode->i_count, -1, 1)) 2870 return; 2871 2872 atomic_inc(&fs_info->nr_delayed_iputs); 2873 spin_lock(&fs_info->delayed_iput_lock); 2874 ASSERT(list_empty(&binode->delayed_iput)); 2875 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2876 spin_unlock(&fs_info->delayed_iput_lock); 2877 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2878 wake_up_process(fs_info->cleaner_kthread); 2879 } 2880 2881 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2882 struct btrfs_inode *inode) 2883 { 2884 list_del_init(&inode->delayed_iput); 2885 spin_unlock(&fs_info->delayed_iput_lock); 2886 iput(&inode->vfs_inode); 2887 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2888 wake_up(&fs_info->delayed_iputs_wait); 2889 spin_lock(&fs_info->delayed_iput_lock); 2890 } 2891 2892 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2893 struct btrfs_inode *inode) 2894 { 2895 if (!list_empty(&inode->delayed_iput)) { 2896 spin_lock(&fs_info->delayed_iput_lock); 2897 if (!list_empty(&inode->delayed_iput)) 2898 run_delayed_iput_locked(fs_info, inode); 2899 spin_unlock(&fs_info->delayed_iput_lock); 2900 } 2901 } 2902 2903 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2904 { 2905 2906 spin_lock(&fs_info->delayed_iput_lock); 2907 while (!list_empty(&fs_info->delayed_iputs)) { 2908 struct btrfs_inode *inode; 2909 2910 inode = list_first_entry(&fs_info->delayed_iputs, 2911 struct btrfs_inode, delayed_iput); 2912 run_delayed_iput_locked(fs_info, inode); 2913 } 2914 spin_unlock(&fs_info->delayed_iput_lock); 2915 } 2916 2917 /** 2918 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2919 * @fs_info - the fs_info for this fs 2920 * @return - EINTR if we were killed, 0 if nothing's pending 2921 * 2922 * This will wait on any delayed iputs that are currently running with KILLABLE 2923 * set. Once they are all done running we will return, unless we are killed in 2924 * which case we return EINTR. This helps in user operations like fallocate etc 2925 * that might get blocked on the iputs. 2926 */ 2927 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2928 { 2929 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2930 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2931 if (ret) 2932 return -EINTR; 2933 return 0; 2934 } 2935 2936 /* 2937 * This creates an orphan entry for the given inode in case something goes wrong 2938 * in the middle of an unlink. 2939 */ 2940 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2941 struct btrfs_inode *inode) 2942 { 2943 int ret; 2944 2945 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2946 if (ret && ret != -EEXIST) { 2947 btrfs_abort_transaction(trans, ret); 2948 return ret; 2949 } 2950 2951 return 0; 2952 } 2953 2954 /* 2955 * We have done the delete so we can go ahead and remove the orphan item for 2956 * this particular inode. 2957 */ 2958 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2959 struct btrfs_inode *inode) 2960 { 2961 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2962 } 2963 2964 /* 2965 * this cleans up any orphans that may be left on the list from the last use 2966 * of this root. 2967 */ 2968 int btrfs_orphan_cleanup(struct btrfs_root *root) 2969 { 2970 struct btrfs_fs_info *fs_info = root->fs_info; 2971 struct btrfs_path *path; 2972 struct extent_buffer *leaf; 2973 struct btrfs_key key, found_key; 2974 struct btrfs_trans_handle *trans; 2975 struct inode *inode; 2976 u64 last_objectid = 0; 2977 int ret = 0, nr_unlink = 0; 2978 2979 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2980 return 0; 2981 2982 path = btrfs_alloc_path(); 2983 if (!path) { 2984 ret = -ENOMEM; 2985 goto out; 2986 } 2987 path->reada = READA_BACK; 2988 2989 key.objectid = BTRFS_ORPHAN_OBJECTID; 2990 key.type = BTRFS_ORPHAN_ITEM_KEY; 2991 key.offset = (u64)-1; 2992 2993 while (1) { 2994 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2995 if (ret < 0) 2996 goto out; 2997 2998 /* 2999 * if ret == 0 means we found what we were searching for, which 3000 * is weird, but possible, so only screw with path if we didn't 3001 * find the key and see if we have stuff that matches 3002 */ 3003 if (ret > 0) { 3004 ret = 0; 3005 if (path->slots[0] == 0) 3006 break; 3007 path->slots[0]--; 3008 } 3009 3010 /* pull out the item */ 3011 leaf = path->nodes[0]; 3012 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3013 3014 /* make sure the item matches what we want */ 3015 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3016 break; 3017 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3018 break; 3019 3020 /* release the path since we're done with it */ 3021 btrfs_release_path(path); 3022 3023 /* 3024 * this is where we are basically btrfs_lookup, without the 3025 * crossing root thing. we store the inode number in the 3026 * offset of the orphan item. 3027 */ 3028 3029 if (found_key.offset == last_objectid) { 3030 btrfs_err(fs_info, 3031 "Error removing orphan entry, stopping orphan cleanup"); 3032 ret = -EINVAL; 3033 goto out; 3034 } 3035 3036 last_objectid = found_key.offset; 3037 3038 found_key.objectid = found_key.offset; 3039 found_key.type = BTRFS_INODE_ITEM_KEY; 3040 found_key.offset = 0; 3041 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3042 ret = PTR_ERR_OR_ZERO(inode); 3043 if (ret && ret != -ENOENT) 3044 goto out; 3045 3046 if (ret == -ENOENT && root == fs_info->tree_root) { 3047 struct btrfs_root *dead_root; 3048 struct btrfs_fs_info *fs_info = root->fs_info; 3049 int is_dead_root = 0; 3050 3051 /* 3052 * this is an orphan in the tree root. Currently these 3053 * could come from 2 sources: 3054 * a) a snapshot deletion in progress 3055 * b) a free space cache inode 3056 * We need to distinguish those two, as the snapshot 3057 * orphan must not get deleted. 3058 * find_dead_roots already ran before us, so if this 3059 * is a snapshot deletion, we should find the root 3060 * in the fs_roots radix tree. 3061 */ 3062 3063 spin_lock(&fs_info->fs_roots_radix_lock); 3064 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3065 (unsigned long)found_key.objectid); 3066 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3067 is_dead_root = 1; 3068 spin_unlock(&fs_info->fs_roots_radix_lock); 3069 3070 if (is_dead_root) { 3071 /* prevent this orphan from being found again */ 3072 key.offset = found_key.objectid - 1; 3073 continue; 3074 } 3075 3076 } 3077 3078 /* 3079 * If we have an inode with links, there are a couple of 3080 * possibilities. Old kernels (before v3.12) used to create an 3081 * orphan item for truncate indicating that there were possibly 3082 * extent items past i_size that needed to be deleted. In v3.12, 3083 * truncate was changed to update i_size in sync with the extent 3084 * items, but the (useless) orphan item was still created. Since 3085 * v4.18, we don't create the orphan item for truncate at all. 3086 * 3087 * So, this item could mean that we need to do a truncate, but 3088 * only if this filesystem was last used on a pre-v3.12 kernel 3089 * and was not cleanly unmounted. The odds of that are quite 3090 * slim, and it's a pain to do the truncate now, so just delete 3091 * the orphan item. 3092 * 3093 * It's also possible that this orphan item was supposed to be 3094 * deleted but wasn't. The inode number may have been reused, 3095 * but either way, we can delete the orphan item. 3096 */ 3097 if (ret == -ENOENT || inode->i_nlink) { 3098 if (!ret) 3099 iput(inode); 3100 trans = btrfs_start_transaction(root, 1); 3101 if (IS_ERR(trans)) { 3102 ret = PTR_ERR(trans); 3103 goto out; 3104 } 3105 btrfs_debug(fs_info, "auto deleting %Lu", 3106 found_key.objectid); 3107 ret = btrfs_del_orphan_item(trans, root, 3108 found_key.objectid); 3109 btrfs_end_transaction(trans); 3110 if (ret) 3111 goto out; 3112 continue; 3113 } 3114 3115 nr_unlink++; 3116 3117 /* this will do delete_inode and everything for us */ 3118 iput(inode); 3119 } 3120 /* release the path since we're done with it */ 3121 btrfs_release_path(path); 3122 3123 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3124 3125 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3126 trans = btrfs_join_transaction(root); 3127 if (!IS_ERR(trans)) 3128 btrfs_end_transaction(trans); 3129 } 3130 3131 if (nr_unlink) 3132 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3133 3134 out: 3135 if (ret) 3136 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3137 btrfs_free_path(path); 3138 return ret; 3139 } 3140 3141 /* 3142 * very simple check to peek ahead in the leaf looking for xattrs. If we 3143 * don't find any xattrs, we know there can't be any acls. 3144 * 3145 * slot is the slot the inode is in, objectid is the objectid of the inode 3146 */ 3147 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3148 int slot, u64 objectid, 3149 int *first_xattr_slot) 3150 { 3151 u32 nritems = btrfs_header_nritems(leaf); 3152 struct btrfs_key found_key; 3153 static u64 xattr_access = 0; 3154 static u64 xattr_default = 0; 3155 int scanned = 0; 3156 3157 if (!xattr_access) { 3158 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3159 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3160 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3161 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3162 } 3163 3164 slot++; 3165 *first_xattr_slot = -1; 3166 while (slot < nritems) { 3167 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3168 3169 /* we found a different objectid, there must not be acls */ 3170 if (found_key.objectid != objectid) 3171 return 0; 3172 3173 /* we found an xattr, assume we've got an acl */ 3174 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3175 if (*first_xattr_slot == -1) 3176 *first_xattr_slot = slot; 3177 if (found_key.offset == xattr_access || 3178 found_key.offset == xattr_default) 3179 return 1; 3180 } 3181 3182 /* 3183 * we found a key greater than an xattr key, there can't 3184 * be any acls later on 3185 */ 3186 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3187 return 0; 3188 3189 slot++; 3190 scanned++; 3191 3192 /* 3193 * it goes inode, inode backrefs, xattrs, extents, 3194 * so if there are a ton of hard links to an inode there can 3195 * be a lot of backrefs. Don't waste time searching too hard, 3196 * this is just an optimization 3197 */ 3198 if (scanned >= 8) 3199 break; 3200 } 3201 /* we hit the end of the leaf before we found an xattr or 3202 * something larger than an xattr. We have to assume the inode 3203 * has acls 3204 */ 3205 if (*first_xattr_slot == -1) 3206 *first_xattr_slot = slot; 3207 return 1; 3208 } 3209 3210 /* 3211 * read an inode from the btree into the in-memory inode 3212 */ 3213 static int btrfs_read_locked_inode(struct inode *inode, 3214 struct btrfs_path *in_path) 3215 { 3216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3217 struct btrfs_path *path = in_path; 3218 struct extent_buffer *leaf; 3219 struct btrfs_inode_item *inode_item; 3220 struct btrfs_root *root = BTRFS_I(inode)->root; 3221 struct btrfs_key location; 3222 unsigned long ptr; 3223 int maybe_acls; 3224 u32 rdev; 3225 int ret; 3226 bool filled = false; 3227 int first_xattr_slot; 3228 3229 ret = btrfs_fill_inode(inode, &rdev); 3230 if (!ret) 3231 filled = true; 3232 3233 if (!path) { 3234 path = btrfs_alloc_path(); 3235 if (!path) 3236 return -ENOMEM; 3237 } 3238 3239 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3240 3241 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3242 if (ret) { 3243 if (path != in_path) 3244 btrfs_free_path(path); 3245 return ret; 3246 } 3247 3248 leaf = path->nodes[0]; 3249 3250 if (filled) 3251 goto cache_index; 3252 3253 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3254 struct btrfs_inode_item); 3255 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3256 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3257 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3258 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3259 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3260 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3261 round_up(i_size_read(inode), fs_info->sectorsize)); 3262 3263 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3264 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3265 3266 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3267 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3268 3269 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3270 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3271 3272 BTRFS_I(inode)->i_otime.tv_sec = 3273 btrfs_timespec_sec(leaf, &inode_item->otime); 3274 BTRFS_I(inode)->i_otime.tv_nsec = 3275 btrfs_timespec_nsec(leaf, &inode_item->otime); 3276 3277 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3278 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3279 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3280 3281 inode_set_iversion_queried(inode, 3282 btrfs_inode_sequence(leaf, inode_item)); 3283 inode->i_generation = BTRFS_I(inode)->generation; 3284 inode->i_rdev = 0; 3285 rdev = btrfs_inode_rdev(leaf, inode_item); 3286 3287 BTRFS_I(inode)->index_cnt = (u64)-1; 3288 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3289 3290 cache_index: 3291 /* 3292 * If we were modified in the current generation and evicted from memory 3293 * and then re-read we need to do a full sync since we don't have any 3294 * idea about which extents were modified before we were evicted from 3295 * cache. 3296 * 3297 * This is required for both inode re-read from disk and delayed inode 3298 * in delayed_nodes_tree. 3299 */ 3300 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3302 &BTRFS_I(inode)->runtime_flags); 3303 3304 /* 3305 * We don't persist the id of the transaction where an unlink operation 3306 * against the inode was last made. So here we assume the inode might 3307 * have been evicted, and therefore the exact value of last_unlink_trans 3308 * lost, and set it to last_trans to avoid metadata inconsistencies 3309 * between the inode and its parent if the inode is fsync'ed and the log 3310 * replayed. For example, in the scenario: 3311 * 3312 * touch mydir/foo 3313 * ln mydir/foo mydir/bar 3314 * sync 3315 * unlink mydir/bar 3316 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3317 * xfs_io -c fsync mydir/foo 3318 * <power failure> 3319 * mount fs, triggers fsync log replay 3320 * 3321 * We must make sure that when we fsync our inode foo we also log its 3322 * parent inode, otherwise after log replay the parent still has the 3323 * dentry with the "bar" name but our inode foo has a link count of 1 3324 * and doesn't have an inode ref with the name "bar" anymore. 3325 * 3326 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3327 * but it guarantees correctness at the expense of occasional full 3328 * transaction commits on fsync if our inode is a directory, or if our 3329 * inode is not a directory, logging its parent unnecessarily. 3330 */ 3331 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3332 3333 path->slots[0]++; 3334 if (inode->i_nlink != 1 || 3335 path->slots[0] >= btrfs_header_nritems(leaf)) 3336 goto cache_acl; 3337 3338 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3339 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3340 goto cache_acl; 3341 3342 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3343 if (location.type == BTRFS_INODE_REF_KEY) { 3344 struct btrfs_inode_ref *ref; 3345 3346 ref = (struct btrfs_inode_ref *)ptr; 3347 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3348 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3349 struct btrfs_inode_extref *extref; 3350 3351 extref = (struct btrfs_inode_extref *)ptr; 3352 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3353 extref); 3354 } 3355 cache_acl: 3356 /* 3357 * try to precache a NULL acl entry for files that don't have 3358 * any xattrs or acls 3359 */ 3360 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3361 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3362 if (first_xattr_slot != -1) { 3363 path->slots[0] = first_xattr_slot; 3364 ret = btrfs_load_inode_props(inode, path); 3365 if (ret) 3366 btrfs_err(fs_info, 3367 "error loading props for ino %llu (root %llu): %d", 3368 btrfs_ino(BTRFS_I(inode)), 3369 root->root_key.objectid, ret); 3370 } 3371 if (path != in_path) 3372 btrfs_free_path(path); 3373 3374 if (!maybe_acls) 3375 cache_no_acl(inode); 3376 3377 switch (inode->i_mode & S_IFMT) { 3378 case S_IFREG: 3379 inode->i_mapping->a_ops = &btrfs_aops; 3380 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3381 inode->i_fop = &btrfs_file_operations; 3382 inode->i_op = &btrfs_file_inode_operations; 3383 break; 3384 case S_IFDIR: 3385 inode->i_fop = &btrfs_dir_file_operations; 3386 inode->i_op = &btrfs_dir_inode_operations; 3387 break; 3388 case S_IFLNK: 3389 inode->i_op = &btrfs_symlink_inode_operations; 3390 inode_nohighmem(inode); 3391 inode->i_mapping->a_ops = &btrfs_aops; 3392 break; 3393 default: 3394 inode->i_op = &btrfs_special_inode_operations; 3395 init_special_inode(inode, inode->i_mode, rdev); 3396 break; 3397 } 3398 3399 btrfs_sync_inode_flags_to_i_flags(inode); 3400 return 0; 3401 } 3402 3403 /* 3404 * given a leaf and an inode, copy the inode fields into the leaf 3405 */ 3406 static void fill_inode_item(struct btrfs_trans_handle *trans, 3407 struct extent_buffer *leaf, 3408 struct btrfs_inode_item *item, 3409 struct inode *inode) 3410 { 3411 struct btrfs_map_token token; 3412 3413 btrfs_init_map_token(&token, leaf); 3414 3415 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3416 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3417 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3418 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3419 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3420 3421 btrfs_set_token_timespec_sec(&token, &item->atime, 3422 inode->i_atime.tv_sec); 3423 btrfs_set_token_timespec_nsec(&token, &item->atime, 3424 inode->i_atime.tv_nsec); 3425 3426 btrfs_set_token_timespec_sec(&token, &item->mtime, 3427 inode->i_mtime.tv_sec); 3428 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3429 inode->i_mtime.tv_nsec); 3430 3431 btrfs_set_token_timespec_sec(&token, &item->ctime, 3432 inode->i_ctime.tv_sec); 3433 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3434 inode->i_ctime.tv_nsec); 3435 3436 btrfs_set_token_timespec_sec(&token, &item->otime, 3437 BTRFS_I(inode)->i_otime.tv_sec); 3438 btrfs_set_token_timespec_nsec(&token, &item->otime, 3439 BTRFS_I(inode)->i_otime.tv_nsec); 3440 3441 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3442 btrfs_set_token_inode_generation(&token, item, 3443 BTRFS_I(inode)->generation); 3444 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3445 btrfs_set_token_inode_transid(&token, item, trans->transid); 3446 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3447 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3448 btrfs_set_token_inode_block_group(&token, item, 0); 3449 } 3450 3451 /* 3452 * copy everything in the in-memory inode into the btree. 3453 */ 3454 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3455 struct btrfs_root *root, struct inode *inode) 3456 { 3457 struct btrfs_inode_item *inode_item; 3458 struct btrfs_path *path; 3459 struct extent_buffer *leaf; 3460 int ret; 3461 3462 path = btrfs_alloc_path(); 3463 if (!path) 3464 return -ENOMEM; 3465 3466 path->leave_spinning = 1; 3467 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3468 1); 3469 if (ret) { 3470 if (ret > 0) 3471 ret = -ENOENT; 3472 goto failed; 3473 } 3474 3475 leaf = path->nodes[0]; 3476 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3477 struct btrfs_inode_item); 3478 3479 fill_inode_item(trans, leaf, inode_item, inode); 3480 btrfs_mark_buffer_dirty(leaf); 3481 btrfs_set_inode_last_trans(trans, inode); 3482 ret = 0; 3483 failed: 3484 btrfs_free_path(path); 3485 return ret; 3486 } 3487 3488 /* 3489 * copy everything in the in-memory inode into the btree. 3490 */ 3491 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3492 struct btrfs_root *root, struct inode *inode) 3493 { 3494 struct btrfs_fs_info *fs_info = root->fs_info; 3495 int ret; 3496 3497 /* 3498 * If the inode is a free space inode, we can deadlock during commit 3499 * if we put it into the delayed code. 3500 * 3501 * The data relocation inode should also be directly updated 3502 * without delay 3503 */ 3504 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3505 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3506 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3507 btrfs_update_root_times(trans, root); 3508 3509 ret = btrfs_delayed_update_inode(trans, root, inode); 3510 if (!ret) 3511 btrfs_set_inode_last_trans(trans, inode); 3512 return ret; 3513 } 3514 3515 return btrfs_update_inode_item(trans, root, inode); 3516 } 3517 3518 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3519 struct btrfs_root *root, 3520 struct inode *inode) 3521 { 3522 int ret; 3523 3524 ret = btrfs_update_inode(trans, root, inode); 3525 if (ret == -ENOSPC) 3526 return btrfs_update_inode_item(trans, root, inode); 3527 return ret; 3528 } 3529 3530 /* 3531 * unlink helper that gets used here in inode.c and in the tree logging 3532 * recovery code. It remove a link in a directory with a given name, and 3533 * also drops the back refs in the inode to the directory 3534 */ 3535 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3536 struct btrfs_root *root, 3537 struct btrfs_inode *dir, 3538 struct btrfs_inode *inode, 3539 const char *name, int name_len) 3540 { 3541 struct btrfs_fs_info *fs_info = root->fs_info; 3542 struct btrfs_path *path; 3543 int ret = 0; 3544 struct btrfs_dir_item *di; 3545 u64 index; 3546 u64 ino = btrfs_ino(inode); 3547 u64 dir_ino = btrfs_ino(dir); 3548 3549 path = btrfs_alloc_path(); 3550 if (!path) { 3551 ret = -ENOMEM; 3552 goto out; 3553 } 3554 3555 path->leave_spinning = 1; 3556 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3557 name, name_len, -1); 3558 if (IS_ERR_OR_NULL(di)) { 3559 ret = di ? PTR_ERR(di) : -ENOENT; 3560 goto err; 3561 } 3562 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3563 if (ret) 3564 goto err; 3565 btrfs_release_path(path); 3566 3567 /* 3568 * If we don't have dir index, we have to get it by looking up 3569 * the inode ref, since we get the inode ref, remove it directly, 3570 * it is unnecessary to do delayed deletion. 3571 * 3572 * But if we have dir index, needn't search inode ref to get it. 3573 * Since the inode ref is close to the inode item, it is better 3574 * that we delay to delete it, and just do this deletion when 3575 * we update the inode item. 3576 */ 3577 if (inode->dir_index) { 3578 ret = btrfs_delayed_delete_inode_ref(inode); 3579 if (!ret) { 3580 index = inode->dir_index; 3581 goto skip_backref; 3582 } 3583 } 3584 3585 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3586 dir_ino, &index); 3587 if (ret) { 3588 btrfs_info(fs_info, 3589 "failed to delete reference to %.*s, inode %llu parent %llu", 3590 name_len, name, ino, dir_ino); 3591 btrfs_abort_transaction(trans, ret); 3592 goto err; 3593 } 3594 skip_backref: 3595 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3596 if (ret) { 3597 btrfs_abort_transaction(trans, ret); 3598 goto err; 3599 } 3600 3601 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3602 dir_ino); 3603 if (ret != 0 && ret != -ENOENT) { 3604 btrfs_abort_transaction(trans, ret); 3605 goto err; 3606 } 3607 3608 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3609 index); 3610 if (ret == -ENOENT) 3611 ret = 0; 3612 else if (ret) 3613 btrfs_abort_transaction(trans, ret); 3614 3615 /* 3616 * If we have a pending delayed iput we could end up with the final iput 3617 * being run in btrfs-cleaner context. If we have enough of these built 3618 * up we can end up burning a lot of time in btrfs-cleaner without any 3619 * way to throttle the unlinks. Since we're currently holding a ref on 3620 * the inode we can run the delayed iput here without any issues as the 3621 * final iput won't be done until after we drop the ref we're currently 3622 * holding. 3623 */ 3624 btrfs_run_delayed_iput(fs_info, inode); 3625 err: 3626 btrfs_free_path(path); 3627 if (ret) 3628 goto out; 3629 3630 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3631 inode_inc_iversion(&inode->vfs_inode); 3632 inode_inc_iversion(&dir->vfs_inode); 3633 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3634 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3635 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3636 out: 3637 return ret; 3638 } 3639 3640 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3641 struct btrfs_root *root, 3642 struct btrfs_inode *dir, struct btrfs_inode *inode, 3643 const char *name, int name_len) 3644 { 3645 int ret; 3646 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3647 if (!ret) { 3648 drop_nlink(&inode->vfs_inode); 3649 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3650 } 3651 return ret; 3652 } 3653 3654 /* 3655 * helper to start transaction for unlink and rmdir. 3656 * 3657 * unlink and rmdir are special in btrfs, they do not always free space, so 3658 * if we cannot make our reservations the normal way try and see if there is 3659 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3660 * allow the unlink to occur. 3661 */ 3662 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3663 { 3664 struct btrfs_root *root = BTRFS_I(dir)->root; 3665 3666 /* 3667 * 1 for the possible orphan item 3668 * 1 for the dir item 3669 * 1 for the dir index 3670 * 1 for the inode ref 3671 * 1 for the inode 3672 */ 3673 return btrfs_start_transaction_fallback_global_rsv(root, 5); 3674 } 3675 3676 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3677 { 3678 struct btrfs_root *root = BTRFS_I(dir)->root; 3679 struct btrfs_trans_handle *trans; 3680 struct inode *inode = d_inode(dentry); 3681 int ret; 3682 3683 trans = __unlink_start_trans(dir); 3684 if (IS_ERR(trans)) 3685 return PTR_ERR(trans); 3686 3687 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3688 0); 3689 3690 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3691 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3692 dentry->d_name.len); 3693 if (ret) 3694 goto out; 3695 3696 if (inode->i_nlink == 0) { 3697 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3698 if (ret) 3699 goto out; 3700 } 3701 3702 out: 3703 btrfs_end_transaction(trans); 3704 btrfs_btree_balance_dirty(root->fs_info); 3705 return ret; 3706 } 3707 3708 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3709 struct inode *dir, struct dentry *dentry) 3710 { 3711 struct btrfs_root *root = BTRFS_I(dir)->root; 3712 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3713 struct btrfs_path *path; 3714 struct extent_buffer *leaf; 3715 struct btrfs_dir_item *di; 3716 struct btrfs_key key; 3717 const char *name = dentry->d_name.name; 3718 int name_len = dentry->d_name.len; 3719 u64 index; 3720 int ret; 3721 u64 objectid; 3722 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3723 3724 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3725 objectid = inode->root->root_key.objectid; 3726 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3727 objectid = inode->location.objectid; 3728 } else { 3729 WARN_ON(1); 3730 return -EINVAL; 3731 } 3732 3733 path = btrfs_alloc_path(); 3734 if (!path) 3735 return -ENOMEM; 3736 3737 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3738 name, name_len, -1); 3739 if (IS_ERR_OR_NULL(di)) { 3740 ret = di ? PTR_ERR(di) : -ENOENT; 3741 goto out; 3742 } 3743 3744 leaf = path->nodes[0]; 3745 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3746 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3747 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3748 if (ret) { 3749 btrfs_abort_transaction(trans, ret); 3750 goto out; 3751 } 3752 btrfs_release_path(path); 3753 3754 /* 3755 * This is a placeholder inode for a subvolume we didn't have a 3756 * reference to at the time of the snapshot creation. In the meantime 3757 * we could have renamed the real subvol link into our snapshot, so 3758 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3759 * Instead simply lookup the dir_index_item for this entry so we can 3760 * remove it. Otherwise we know we have a ref to the root and we can 3761 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3762 */ 3763 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3764 di = btrfs_search_dir_index_item(root, path, dir_ino, 3765 name, name_len); 3766 if (IS_ERR_OR_NULL(di)) { 3767 if (!di) 3768 ret = -ENOENT; 3769 else 3770 ret = PTR_ERR(di); 3771 btrfs_abort_transaction(trans, ret); 3772 goto out; 3773 } 3774 3775 leaf = path->nodes[0]; 3776 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3777 index = key.offset; 3778 btrfs_release_path(path); 3779 } else { 3780 ret = btrfs_del_root_ref(trans, objectid, 3781 root->root_key.objectid, dir_ino, 3782 &index, name, name_len); 3783 if (ret) { 3784 btrfs_abort_transaction(trans, ret); 3785 goto out; 3786 } 3787 } 3788 3789 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3790 if (ret) { 3791 btrfs_abort_transaction(trans, ret); 3792 goto out; 3793 } 3794 3795 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3796 inode_inc_iversion(dir); 3797 dir->i_mtime = dir->i_ctime = current_time(dir); 3798 ret = btrfs_update_inode_fallback(trans, root, dir); 3799 if (ret) 3800 btrfs_abort_transaction(trans, ret); 3801 out: 3802 btrfs_free_path(path); 3803 return ret; 3804 } 3805 3806 /* 3807 * Helper to check if the subvolume references other subvolumes or if it's 3808 * default. 3809 */ 3810 static noinline int may_destroy_subvol(struct btrfs_root *root) 3811 { 3812 struct btrfs_fs_info *fs_info = root->fs_info; 3813 struct btrfs_path *path; 3814 struct btrfs_dir_item *di; 3815 struct btrfs_key key; 3816 u64 dir_id; 3817 int ret; 3818 3819 path = btrfs_alloc_path(); 3820 if (!path) 3821 return -ENOMEM; 3822 3823 /* Make sure this root isn't set as the default subvol */ 3824 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3825 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3826 dir_id, "default", 7, 0); 3827 if (di && !IS_ERR(di)) { 3828 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3829 if (key.objectid == root->root_key.objectid) { 3830 ret = -EPERM; 3831 btrfs_err(fs_info, 3832 "deleting default subvolume %llu is not allowed", 3833 key.objectid); 3834 goto out; 3835 } 3836 btrfs_release_path(path); 3837 } 3838 3839 key.objectid = root->root_key.objectid; 3840 key.type = BTRFS_ROOT_REF_KEY; 3841 key.offset = (u64)-1; 3842 3843 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3844 if (ret < 0) 3845 goto out; 3846 BUG_ON(ret == 0); 3847 3848 ret = 0; 3849 if (path->slots[0] > 0) { 3850 path->slots[0]--; 3851 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3852 if (key.objectid == root->root_key.objectid && 3853 key.type == BTRFS_ROOT_REF_KEY) 3854 ret = -ENOTEMPTY; 3855 } 3856 out: 3857 btrfs_free_path(path); 3858 return ret; 3859 } 3860 3861 /* Delete all dentries for inodes belonging to the root */ 3862 static void btrfs_prune_dentries(struct btrfs_root *root) 3863 { 3864 struct btrfs_fs_info *fs_info = root->fs_info; 3865 struct rb_node *node; 3866 struct rb_node *prev; 3867 struct btrfs_inode *entry; 3868 struct inode *inode; 3869 u64 objectid = 0; 3870 3871 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3872 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3873 3874 spin_lock(&root->inode_lock); 3875 again: 3876 node = root->inode_tree.rb_node; 3877 prev = NULL; 3878 while (node) { 3879 prev = node; 3880 entry = rb_entry(node, struct btrfs_inode, rb_node); 3881 3882 if (objectid < btrfs_ino(entry)) 3883 node = node->rb_left; 3884 else if (objectid > btrfs_ino(entry)) 3885 node = node->rb_right; 3886 else 3887 break; 3888 } 3889 if (!node) { 3890 while (prev) { 3891 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3892 if (objectid <= btrfs_ino(entry)) { 3893 node = prev; 3894 break; 3895 } 3896 prev = rb_next(prev); 3897 } 3898 } 3899 while (node) { 3900 entry = rb_entry(node, struct btrfs_inode, rb_node); 3901 objectid = btrfs_ino(entry) + 1; 3902 inode = igrab(&entry->vfs_inode); 3903 if (inode) { 3904 spin_unlock(&root->inode_lock); 3905 if (atomic_read(&inode->i_count) > 1) 3906 d_prune_aliases(inode); 3907 /* 3908 * btrfs_drop_inode will have it removed from the inode 3909 * cache when its usage count hits zero. 3910 */ 3911 iput(inode); 3912 cond_resched(); 3913 spin_lock(&root->inode_lock); 3914 goto again; 3915 } 3916 3917 if (cond_resched_lock(&root->inode_lock)) 3918 goto again; 3919 3920 node = rb_next(node); 3921 } 3922 spin_unlock(&root->inode_lock); 3923 } 3924 3925 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3926 { 3927 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3928 struct btrfs_root *root = BTRFS_I(dir)->root; 3929 struct inode *inode = d_inode(dentry); 3930 struct btrfs_root *dest = BTRFS_I(inode)->root; 3931 struct btrfs_trans_handle *trans; 3932 struct btrfs_block_rsv block_rsv; 3933 u64 root_flags; 3934 int ret; 3935 int err; 3936 3937 /* 3938 * Don't allow to delete a subvolume with send in progress. This is 3939 * inside the inode lock so the error handling that has to drop the bit 3940 * again is not run concurrently. 3941 */ 3942 spin_lock(&dest->root_item_lock); 3943 if (dest->send_in_progress) { 3944 spin_unlock(&dest->root_item_lock); 3945 btrfs_warn(fs_info, 3946 "attempt to delete subvolume %llu during send", 3947 dest->root_key.objectid); 3948 return -EPERM; 3949 } 3950 root_flags = btrfs_root_flags(&dest->root_item); 3951 btrfs_set_root_flags(&dest->root_item, 3952 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3953 spin_unlock(&dest->root_item_lock); 3954 3955 down_write(&fs_info->subvol_sem); 3956 3957 err = may_destroy_subvol(dest); 3958 if (err) 3959 goto out_up_write; 3960 3961 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3962 /* 3963 * One for dir inode, 3964 * two for dir entries, 3965 * two for root ref/backref. 3966 */ 3967 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3968 if (err) 3969 goto out_up_write; 3970 3971 trans = btrfs_start_transaction(root, 0); 3972 if (IS_ERR(trans)) { 3973 err = PTR_ERR(trans); 3974 goto out_release; 3975 } 3976 trans->block_rsv = &block_rsv; 3977 trans->bytes_reserved = block_rsv.size; 3978 3979 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 3980 3981 ret = btrfs_unlink_subvol(trans, dir, dentry); 3982 if (ret) { 3983 err = ret; 3984 btrfs_abort_transaction(trans, ret); 3985 goto out_end_trans; 3986 } 3987 3988 btrfs_record_root_in_trans(trans, dest); 3989 3990 memset(&dest->root_item.drop_progress, 0, 3991 sizeof(dest->root_item.drop_progress)); 3992 dest->root_item.drop_level = 0; 3993 btrfs_set_root_refs(&dest->root_item, 0); 3994 3995 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 3996 ret = btrfs_insert_orphan_item(trans, 3997 fs_info->tree_root, 3998 dest->root_key.objectid); 3999 if (ret) { 4000 btrfs_abort_transaction(trans, ret); 4001 err = ret; 4002 goto out_end_trans; 4003 } 4004 } 4005 4006 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4007 BTRFS_UUID_KEY_SUBVOL, 4008 dest->root_key.objectid); 4009 if (ret && ret != -ENOENT) { 4010 btrfs_abort_transaction(trans, ret); 4011 err = ret; 4012 goto out_end_trans; 4013 } 4014 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4015 ret = btrfs_uuid_tree_remove(trans, 4016 dest->root_item.received_uuid, 4017 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4018 dest->root_key.objectid); 4019 if (ret && ret != -ENOENT) { 4020 btrfs_abort_transaction(trans, ret); 4021 err = ret; 4022 goto out_end_trans; 4023 } 4024 } 4025 4026 out_end_trans: 4027 trans->block_rsv = NULL; 4028 trans->bytes_reserved = 0; 4029 ret = btrfs_end_transaction(trans); 4030 if (ret && !err) 4031 err = ret; 4032 inode->i_flags |= S_DEAD; 4033 out_release: 4034 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4035 out_up_write: 4036 up_write(&fs_info->subvol_sem); 4037 if (err) { 4038 spin_lock(&dest->root_item_lock); 4039 root_flags = btrfs_root_flags(&dest->root_item); 4040 btrfs_set_root_flags(&dest->root_item, 4041 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4042 spin_unlock(&dest->root_item_lock); 4043 } else { 4044 d_invalidate(dentry); 4045 btrfs_prune_dentries(dest); 4046 ASSERT(dest->send_in_progress == 0); 4047 4048 /* the last ref */ 4049 if (dest->ino_cache_inode) { 4050 iput(dest->ino_cache_inode); 4051 dest->ino_cache_inode = NULL; 4052 } 4053 } 4054 4055 return err; 4056 } 4057 4058 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4059 { 4060 struct inode *inode = d_inode(dentry); 4061 int err = 0; 4062 struct btrfs_root *root = BTRFS_I(dir)->root; 4063 struct btrfs_trans_handle *trans; 4064 u64 last_unlink_trans; 4065 4066 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4067 return -ENOTEMPTY; 4068 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4069 return btrfs_delete_subvolume(dir, dentry); 4070 4071 trans = __unlink_start_trans(dir); 4072 if (IS_ERR(trans)) 4073 return PTR_ERR(trans); 4074 4075 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4076 err = btrfs_unlink_subvol(trans, dir, dentry); 4077 goto out; 4078 } 4079 4080 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4081 if (err) 4082 goto out; 4083 4084 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4085 4086 /* now the directory is empty */ 4087 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4088 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4089 dentry->d_name.len); 4090 if (!err) { 4091 btrfs_i_size_write(BTRFS_I(inode), 0); 4092 /* 4093 * Propagate the last_unlink_trans value of the deleted dir to 4094 * its parent directory. This is to prevent an unrecoverable 4095 * log tree in the case we do something like this: 4096 * 1) create dir foo 4097 * 2) create snapshot under dir foo 4098 * 3) delete the snapshot 4099 * 4) rmdir foo 4100 * 5) mkdir foo 4101 * 6) fsync foo or some file inside foo 4102 */ 4103 if (last_unlink_trans >= trans->transid) 4104 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4105 } 4106 out: 4107 btrfs_end_transaction(trans); 4108 btrfs_btree_balance_dirty(root->fs_info); 4109 4110 return err; 4111 } 4112 4113 /* 4114 * Return this if we need to call truncate_block for the last bit of the 4115 * truncate. 4116 */ 4117 #define NEED_TRUNCATE_BLOCK 1 4118 4119 /* 4120 * this can truncate away extent items, csum items and directory items. 4121 * It starts at a high offset and removes keys until it can't find 4122 * any higher than new_size 4123 * 4124 * csum items that cross the new i_size are truncated to the new size 4125 * as well. 4126 * 4127 * min_type is the minimum key type to truncate down to. If set to 0, this 4128 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4129 */ 4130 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4131 struct btrfs_root *root, 4132 struct inode *inode, 4133 u64 new_size, u32 min_type) 4134 { 4135 struct btrfs_fs_info *fs_info = root->fs_info; 4136 struct btrfs_path *path; 4137 struct extent_buffer *leaf; 4138 struct btrfs_file_extent_item *fi; 4139 struct btrfs_key key; 4140 struct btrfs_key found_key; 4141 u64 extent_start = 0; 4142 u64 extent_num_bytes = 0; 4143 u64 extent_offset = 0; 4144 u64 item_end = 0; 4145 u64 last_size = new_size; 4146 u32 found_type = (u8)-1; 4147 int found_extent; 4148 int del_item; 4149 int pending_del_nr = 0; 4150 int pending_del_slot = 0; 4151 int extent_type = -1; 4152 int ret; 4153 u64 ino = btrfs_ino(BTRFS_I(inode)); 4154 u64 bytes_deleted = 0; 4155 bool be_nice = false; 4156 bool should_throttle = false; 4157 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4158 struct extent_state *cached_state = NULL; 4159 4160 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4161 4162 /* 4163 * For non-free space inodes and non-shareable roots, we want to back 4164 * off from time to time. This means all inodes in subvolume roots, 4165 * reloc roots, and data reloc roots. 4166 */ 4167 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4168 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4169 be_nice = true; 4170 4171 path = btrfs_alloc_path(); 4172 if (!path) 4173 return -ENOMEM; 4174 path->reada = READA_BACK; 4175 4176 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4177 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4178 &cached_state); 4179 4180 /* 4181 * We want to drop from the next block forward in case this 4182 * new size is not block aligned since we will be keeping the 4183 * last block of the extent just the way it is. 4184 */ 4185 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4186 fs_info->sectorsize), 4187 (u64)-1, 0); 4188 } 4189 4190 /* 4191 * This function is also used to drop the items in the log tree before 4192 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4193 * it is used to drop the logged items. So we shouldn't kill the delayed 4194 * items. 4195 */ 4196 if (min_type == 0 && root == BTRFS_I(inode)->root) 4197 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4198 4199 key.objectid = ino; 4200 key.offset = (u64)-1; 4201 key.type = (u8)-1; 4202 4203 search_again: 4204 /* 4205 * with a 16K leaf size and 128MB extents, you can actually queue 4206 * up a huge file in a single leaf. Most of the time that 4207 * bytes_deleted is > 0, it will be huge by the time we get here 4208 */ 4209 if (be_nice && bytes_deleted > SZ_32M && 4210 btrfs_should_end_transaction(trans)) { 4211 ret = -EAGAIN; 4212 goto out; 4213 } 4214 4215 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4216 if (ret < 0) 4217 goto out; 4218 4219 if (ret > 0) { 4220 ret = 0; 4221 /* there are no items in the tree for us to truncate, we're 4222 * done 4223 */ 4224 if (path->slots[0] == 0) 4225 goto out; 4226 path->slots[0]--; 4227 } 4228 4229 while (1) { 4230 u64 clear_start = 0, clear_len = 0; 4231 4232 fi = NULL; 4233 leaf = path->nodes[0]; 4234 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4235 found_type = found_key.type; 4236 4237 if (found_key.objectid != ino) 4238 break; 4239 4240 if (found_type < min_type) 4241 break; 4242 4243 item_end = found_key.offset; 4244 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4245 fi = btrfs_item_ptr(leaf, path->slots[0], 4246 struct btrfs_file_extent_item); 4247 extent_type = btrfs_file_extent_type(leaf, fi); 4248 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4249 item_end += 4250 btrfs_file_extent_num_bytes(leaf, fi); 4251 4252 trace_btrfs_truncate_show_fi_regular( 4253 BTRFS_I(inode), leaf, fi, 4254 found_key.offset); 4255 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4256 item_end += btrfs_file_extent_ram_bytes(leaf, 4257 fi); 4258 4259 trace_btrfs_truncate_show_fi_inline( 4260 BTRFS_I(inode), leaf, fi, path->slots[0], 4261 found_key.offset); 4262 } 4263 item_end--; 4264 } 4265 if (found_type > min_type) { 4266 del_item = 1; 4267 } else { 4268 if (item_end < new_size) 4269 break; 4270 if (found_key.offset >= new_size) 4271 del_item = 1; 4272 else 4273 del_item = 0; 4274 } 4275 found_extent = 0; 4276 /* FIXME, shrink the extent if the ref count is only 1 */ 4277 if (found_type != BTRFS_EXTENT_DATA_KEY) 4278 goto delete; 4279 4280 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4281 u64 num_dec; 4282 4283 clear_start = found_key.offset; 4284 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4285 if (!del_item) { 4286 u64 orig_num_bytes = 4287 btrfs_file_extent_num_bytes(leaf, fi); 4288 extent_num_bytes = ALIGN(new_size - 4289 found_key.offset, 4290 fs_info->sectorsize); 4291 clear_start = ALIGN(new_size, fs_info->sectorsize); 4292 btrfs_set_file_extent_num_bytes(leaf, fi, 4293 extent_num_bytes); 4294 num_dec = (orig_num_bytes - 4295 extent_num_bytes); 4296 if (test_bit(BTRFS_ROOT_SHAREABLE, 4297 &root->state) && 4298 extent_start != 0) 4299 inode_sub_bytes(inode, num_dec); 4300 btrfs_mark_buffer_dirty(leaf); 4301 } else { 4302 extent_num_bytes = 4303 btrfs_file_extent_disk_num_bytes(leaf, 4304 fi); 4305 extent_offset = found_key.offset - 4306 btrfs_file_extent_offset(leaf, fi); 4307 4308 /* FIXME blocksize != 4096 */ 4309 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4310 if (extent_start != 0) { 4311 found_extent = 1; 4312 if (test_bit(BTRFS_ROOT_SHAREABLE, 4313 &root->state)) 4314 inode_sub_bytes(inode, num_dec); 4315 } 4316 } 4317 clear_len = num_dec; 4318 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4319 /* 4320 * we can't truncate inline items that have had 4321 * special encodings 4322 */ 4323 if (!del_item && 4324 btrfs_file_extent_encryption(leaf, fi) == 0 && 4325 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4326 btrfs_file_extent_compression(leaf, fi) == 0) { 4327 u32 size = (u32)(new_size - found_key.offset); 4328 4329 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4330 size = btrfs_file_extent_calc_inline_size(size); 4331 btrfs_truncate_item(path, size, 1); 4332 } else if (!del_item) { 4333 /* 4334 * We have to bail so the last_size is set to 4335 * just before this extent. 4336 */ 4337 ret = NEED_TRUNCATE_BLOCK; 4338 break; 4339 } else { 4340 /* 4341 * Inline extents are special, we just treat 4342 * them as a full sector worth in the file 4343 * extent tree just for simplicity sake. 4344 */ 4345 clear_len = fs_info->sectorsize; 4346 } 4347 4348 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4349 inode_sub_bytes(inode, item_end + 1 - new_size); 4350 } 4351 delete: 4352 /* 4353 * We use btrfs_truncate_inode_items() to clean up log trees for 4354 * multiple fsyncs, and in this case we don't want to clear the 4355 * file extent range because it's just the log. 4356 */ 4357 if (root == BTRFS_I(inode)->root) { 4358 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 4359 clear_start, clear_len); 4360 if (ret) { 4361 btrfs_abort_transaction(trans, ret); 4362 break; 4363 } 4364 } 4365 4366 if (del_item) 4367 last_size = found_key.offset; 4368 else 4369 last_size = new_size; 4370 if (del_item) { 4371 if (!pending_del_nr) { 4372 /* no pending yet, add ourselves */ 4373 pending_del_slot = path->slots[0]; 4374 pending_del_nr = 1; 4375 } else if (pending_del_nr && 4376 path->slots[0] + 1 == pending_del_slot) { 4377 /* hop on the pending chunk */ 4378 pending_del_nr++; 4379 pending_del_slot = path->slots[0]; 4380 } else { 4381 BUG(); 4382 } 4383 } else { 4384 break; 4385 } 4386 should_throttle = false; 4387 4388 if (found_extent && 4389 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4390 struct btrfs_ref ref = { 0 }; 4391 4392 bytes_deleted += extent_num_bytes; 4393 4394 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4395 extent_start, extent_num_bytes, 0); 4396 ref.real_root = root->root_key.objectid; 4397 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4398 ino, extent_offset); 4399 ret = btrfs_free_extent(trans, &ref); 4400 if (ret) { 4401 btrfs_abort_transaction(trans, ret); 4402 break; 4403 } 4404 if (be_nice) { 4405 if (btrfs_should_throttle_delayed_refs(trans)) 4406 should_throttle = true; 4407 } 4408 } 4409 4410 if (found_type == BTRFS_INODE_ITEM_KEY) 4411 break; 4412 4413 if (path->slots[0] == 0 || 4414 path->slots[0] != pending_del_slot || 4415 should_throttle) { 4416 if (pending_del_nr) { 4417 ret = btrfs_del_items(trans, root, path, 4418 pending_del_slot, 4419 pending_del_nr); 4420 if (ret) { 4421 btrfs_abort_transaction(trans, ret); 4422 break; 4423 } 4424 pending_del_nr = 0; 4425 } 4426 btrfs_release_path(path); 4427 4428 /* 4429 * We can generate a lot of delayed refs, so we need to 4430 * throttle every once and a while and make sure we're 4431 * adding enough space to keep up with the work we are 4432 * generating. Since we hold a transaction here we 4433 * can't flush, and we don't want to FLUSH_LIMIT because 4434 * we could have generated too many delayed refs to 4435 * actually allocate, so just bail if we're short and 4436 * let the normal reservation dance happen higher up. 4437 */ 4438 if (should_throttle) { 4439 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4440 BTRFS_RESERVE_NO_FLUSH); 4441 if (ret) { 4442 ret = -EAGAIN; 4443 break; 4444 } 4445 } 4446 goto search_again; 4447 } else { 4448 path->slots[0]--; 4449 } 4450 } 4451 out: 4452 if (ret >= 0 && pending_del_nr) { 4453 int err; 4454 4455 err = btrfs_del_items(trans, root, path, pending_del_slot, 4456 pending_del_nr); 4457 if (err) { 4458 btrfs_abort_transaction(trans, err); 4459 ret = err; 4460 } 4461 } 4462 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4463 ASSERT(last_size >= new_size); 4464 if (!ret && last_size > new_size) 4465 last_size = new_size; 4466 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4467 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4468 (u64)-1, &cached_state); 4469 } 4470 4471 btrfs_free_path(path); 4472 return ret; 4473 } 4474 4475 /* 4476 * btrfs_truncate_block - read, zero a chunk and write a block 4477 * @inode - inode that we're zeroing 4478 * @from - the offset to start zeroing 4479 * @len - the length to zero, 0 to zero the entire range respective to the 4480 * offset 4481 * @front - zero up to the offset instead of from the offset on 4482 * 4483 * This will find the block for the "from" offset and cow the block and zero the 4484 * part we want to zero. This is used with truncate and hole punching. 4485 */ 4486 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4487 int front) 4488 { 4489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4490 struct address_space *mapping = inode->i_mapping; 4491 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4492 struct btrfs_ordered_extent *ordered; 4493 struct extent_state *cached_state = NULL; 4494 struct extent_changeset *data_reserved = NULL; 4495 char *kaddr; 4496 u32 blocksize = fs_info->sectorsize; 4497 pgoff_t index = from >> PAGE_SHIFT; 4498 unsigned offset = from & (blocksize - 1); 4499 struct page *page; 4500 gfp_t mask = btrfs_alloc_write_mask(mapping); 4501 int ret = 0; 4502 u64 block_start; 4503 u64 block_end; 4504 4505 if (IS_ALIGNED(offset, blocksize) && 4506 (!len || IS_ALIGNED(len, blocksize))) 4507 goto out; 4508 4509 block_start = round_down(from, blocksize); 4510 block_end = block_start + blocksize - 1; 4511 4512 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4513 block_start, blocksize); 4514 if (ret) 4515 goto out; 4516 4517 again: 4518 page = find_or_create_page(mapping, index, mask); 4519 if (!page) { 4520 btrfs_delalloc_release_space(inode, data_reserved, 4521 block_start, blocksize, true); 4522 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4523 ret = -ENOMEM; 4524 goto out; 4525 } 4526 4527 if (!PageUptodate(page)) { 4528 ret = btrfs_readpage(NULL, page); 4529 lock_page(page); 4530 if (page->mapping != mapping) { 4531 unlock_page(page); 4532 put_page(page); 4533 goto again; 4534 } 4535 if (!PageUptodate(page)) { 4536 ret = -EIO; 4537 goto out_unlock; 4538 } 4539 } 4540 wait_on_page_writeback(page); 4541 4542 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4543 set_page_extent_mapped(page); 4544 4545 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4546 if (ordered) { 4547 unlock_extent_cached(io_tree, block_start, block_end, 4548 &cached_state); 4549 unlock_page(page); 4550 put_page(page); 4551 btrfs_start_ordered_extent(inode, ordered, 1); 4552 btrfs_put_ordered_extent(ordered); 4553 goto again; 4554 } 4555 4556 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4557 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4558 0, 0, &cached_state); 4559 4560 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4561 &cached_state); 4562 if (ret) { 4563 unlock_extent_cached(io_tree, block_start, block_end, 4564 &cached_state); 4565 goto out_unlock; 4566 } 4567 4568 if (offset != blocksize) { 4569 if (!len) 4570 len = blocksize - offset; 4571 kaddr = kmap(page); 4572 if (front) 4573 memset(kaddr + (block_start - page_offset(page)), 4574 0, offset); 4575 else 4576 memset(kaddr + (block_start - page_offset(page)) + offset, 4577 0, len); 4578 flush_dcache_page(page); 4579 kunmap(page); 4580 } 4581 ClearPageChecked(page); 4582 set_page_dirty(page); 4583 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4584 4585 out_unlock: 4586 if (ret) 4587 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4588 blocksize, true); 4589 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4590 unlock_page(page); 4591 put_page(page); 4592 out: 4593 extent_changeset_free(data_reserved); 4594 return ret; 4595 } 4596 4597 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4598 u64 offset, u64 len) 4599 { 4600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4601 struct btrfs_trans_handle *trans; 4602 int ret; 4603 4604 /* 4605 * Still need to make sure the inode looks like it's been updated so 4606 * that any holes get logged if we fsync. 4607 */ 4608 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4609 BTRFS_I(inode)->last_trans = fs_info->generation; 4610 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4611 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4612 return 0; 4613 } 4614 4615 /* 4616 * 1 - for the one we're dropping 4617 * 1 - for the one we're adding 4618 * 1 - for updating the inode. 4619 */ 4620 trans = btrfs_start_transaction(root, 3); 4621 if (IS_ERR(trans)) 4622 return PTR_ERR(trans); 4623 4624 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4625 if (ret) { 4626 btrfs_abort_transaction(trans, ret); 4627 btrfs_end_transaction(trans); 4628 return ret; 4629 } 4630 4631 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4632 offset, 0, 0, len, 0, len, 0, 0, 0); 4633 if (ret) 4634 btrfs_abort_transaction(trans, ret); 4635 else 4636 btrfs_update_inode(trans, root, inode); 4637 btrfs_end_transaction(trans); 4638 return ret; 4639 } 4640 4641 /* 4642 * This function puts in dummy file extents for the area we're creating a hole 4643 * for. So if we are truncating this file to a larger size we need to insert 4644 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4645 * the range between oldsize and size 4646 */ 4647 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4648 { 4649 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4650 struct btrfs_root *root = BTRFS_I(inode)->root; 4651 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4652 struct extent_map *em = NULL; 4653 struct extent_state *cached_state = NULL; 4654 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4655 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4656 u64 block_end = ALIGN(size, fs_info->sectorsize); 4657 u64 last_byte; 4658 u64 cur_offset; 4659 u64 hole_size; 4660 int err = 0; 4661 4662 /* 4663 * If our size started in the middle of a block we need to zero out the 4664 * rest of the block before we expand the i_size, otherwise we could 4665 * expose stale data. 4666 */ 4667 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4668 if (err) 4669 return err; 4670 4671 if (size <= hole_start) 4672 return 0; 4673 4674 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, 4675 block_end - 1, &cached_state); 4676 cur_offset = hole_start; 4677 while (1) { 4678 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4679 block_end - cur_offset); 4680 if (IS_ERR(em)) { 4681 err = PTR_ERR(em); 4682 em = NULL; 4683 break; 4684 } 4685 last_byte = min(extent_map_end(em), block_end); 4686 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4687 hole_size = last_byte - cur_offset; 4688 4689 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4690 struct extent_map *hole_em; 4691 4692 err = maybe_insert_hole(root, inode, cur_offset, 4693 hole_size); 4694 if (err) 4695 break; 4696 4697 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4698 cur_offset, hole_size); 4699 if (err) 4700 break; 4701 4702 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4703 cur_offset + hole_size - 1, 0); 4704 hole_em = alloc_extent_map(); 4705 if (!hole_em) { 4706 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4707 &BTRFS_I(inode)->runtime_flags); 4708 goto next; 4709 } 4710 hole_em->start = cur_offset; 4711 hole_em->len = hole_size; 4712 hole_em->orig_start = cur_offset; 4713 4714 hole_em->block_start = EXTENT_MAP_HOLE; 4715 hole_em->block_len = 0; 4716 hole_em->orig_block_len = 0; 4717 hole_em->ram_bytes = hole_size; 4718 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4719 hole_em->generation = fs_info->generation; 4720 4721 while (1) { 4722 write_lock(&em_tree->lock); 4723 err = add_extent_mapping(em_tree, hole_em, 1); 4724 write_unlock(&em_tree->lock); 4725 if (err != -EEXIST) 4726 break; 4727 btrfs_drop_extent_cache(BTRFS_I(inode), 4728 cur_offset, 4729 cur_offset + 4730 hole_size - 1, 0); 4731 } 4732 free_extent_map(hole_em); 4733 } else { 4734 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4735 cur_offset, hole_size); 4736 if (err) 4737 break; 4738 } 4739 next: 4740 free_extent_map(em); 4741 em = NULL; 4742 cur_offset = last_byte; 4743 if (cur_offset >= block_end) 4744 break; 4745 } 4746 free_extent_map(em); 4747 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4748 return err; 4749 } 4750 4751 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4752 { 4753 struct btrfs_root *root = BTRFS_I(inode)->root; 4754 struct btrfs_trans_handle *trans; 4755 loff_t oldsize = i_size_read(inode); 4756 loff_t newsize = attr->ia_size; 4757 int mask = attr->ia_valid; 4758 int ret; 4759 4760 /* 4761 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4762 * special case where we need to update the times despite not having 4763 * these flags set. For all other operations the VFS set these flags 4764 * explicitly if it wants a timestamp update. 4765 */ 4766 if (newsize != oldsize) { 4767 inode_inc_iversion(inode); 4768 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4769 inode->i_ctime = inode->i_mtime = 4770 current_time(inode); 4771 } 4772 4773 if (newsize > oldsize) { 4774 /* 4775 * Don't do an expanding truncate while snapshotting is ongoing. 4776 * This is to ensure the snapshot captures a fully consistent 4777 * state of this file - if the snapshot captures this expanding 4778 * truncation, it must capture all writes that happened before 4779 * this truncation. 4780 */ 4781 btrfs_drew_write_lock(&root->snapshot_lock); 4782 ret = btrfs_cont_expand(inode, oldsize, newsize); 4783 if (ret) { 4784 btrfs_drew_write_unlock(&root->snapshot_lock); 4785 return ret; 4786 } 4787 4788 trans = btrfs_start_transaction(root, 1); 4789 if (IS_ERR(trans)) { 4790 btrfs_drew_write_unlock(&root->snapshot_lock); 4791 return PTR_ERR(trans); 4792 } 4793 4794 i_size_write(inode, newsize); 4795 btrfs_inode_safe_disk_i_size_write(inode, 0); 4796 pagecache_isize_extended(inode, oldsize, newsize); 4797 ret = btrfs_update_inode(trans, root, inode); 4798 btrfs_drew_write_unlock(&root->snapshot_lock); 4799 btrfs_end_transaction(trans); 4800 } else { 4801 4802 /* 4803 * We're truncating a file that used to have good data down to 4804 * zero. Make sure it gets into the ordered flush list so that 4805 * any new writes get down to disk quickly. 4806 */ 4807 if (newsize == 0) 4808 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4809 &BTRFS_I(inode)->runtime_flags); 4810 4811 truncate_setsize(inode, newsize); 4812 4813 inode_dio_wait(inode); 4814 4815 ret = btrfs_truncate(inode, newsize == oldsize); 4816 if (ret && inode->i_nlink) { 4817 int err; 4818 4819 /* 4820 * Truncate failed, so fix up the in-memory size. We 4821 * adjusted disk_i_size down as we removed extents, so 4822 * wait for disk_i_size to be stable and then update the 4823 * in-memory size to match. 4824 */ 4825 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4826 if (err) 4827 return err; 4828 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4829 } 4830 } 4831 4832 return ret; 4833 } 4834 4835 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4836 { 4837 struct inode *inode = d_inode(dentry); 4838 struct btrfs_root *root = BTRFS_I(inode)->root; 4839 int err; 4840 4841 if (btrfs_root_readonly(root)) 4842 return -EROFS; 4843 4844 err = setattr_prepare(dentry, attr); 4845 if (err) 4846 return err; 4847 4848 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4849 err = btrfs_setsize(inode, attr); 4850 if (err) 4851 return err; 4852 } 4853 4854 if (attr->ia_valid) { 4855 setattr_copy(inode, attr); 4856 inode_inc_iversion(inode); 4857 err = btrfs_dirty_inode(inode); 4858 4859 if (!err && attr->ia_valid & ATTR_MODE) 4860 err = posix_acl_chmod(inode, inode->i_mode); 4861 } 4862 4863 return err; 4864 } 4865 4866 /* 4867 * While truncating the inode pages during eviction, we get the VFS calling 4868 * btrfs_invalidatepage() against each page of the inode. This is slow because 4869 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4870 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4871 * extent_state structures over and over, wasting lots of time. 4872 * 4873 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4874 * those expensive operations on a per page basis and do only the ordered io 4875 * finishing, while we release here the extent_map and extent_state structures, 4876 * without the excessive merging and splitting. 4877 */ 4878 static void evict_inode_truncate_pages(struct inode *inode) 4879 { 4880 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4881 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4882 struct rb_node *node; 4883 4884 ASSERT(inode->i_state & I_FREEING); 4885 truncate_inode_pages_final(&inode->i_data); 4886 4887 write_lock(&map_tree->lock); 4888 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4889 struct extent_map *em; 4890 4891 node = rb_first_cached(&map_tree->map); 4892 em = rb_entry(node, struct extent_map, rb_node); 4893 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4894 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4895 remove_extent_mapping(map_tree, em); 4896 free_extent_map(em); 4897 if (need_resched()) { 4898 write_unlock(&map_tree->lock); 4899 cond_resched(); 4900 write_lock(&map_tree->lock); 4901 } 4902 } 4903 write_unlock(&map_tree->lock); 4904 4905 /* 4906 * Keep looping until we have no more ranges in the io tree. 4907 * We can have ongoing bios started by readahead that have 4908 * their endio callback (extent_io.c:end_bio_extent_readpage) 4909 * still in progress (unlocked the pages in the bio but did not yet 4910 * unlocked the ranges in the io tree). Therefore this means some 4911 * ranges can still be locked and eviction started because before 4912 * submitting those bios, which are executed by a separate task (work 4913 * queue kthread), inode references (inode->i_count) were not taken 4914 * (which would be dropped in the end io callback of each bio). 4915 * Therefore here we effectively end up waiting for those bios and 4916 * anyone else holding locked ranges without having bumped the inode's 4917 * reference count - if we don't do it, when they access the inode's 4918 * io_tree to unlock a range it may be too late, leading to an 4919 * use-after-free issue. 4920 */ 4921 spin_lock(&io_tree->lock); 4922 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4923 struct extent_state *state; 4924 struct extent_state *cached_state = NULL; 4925 u64 start; 4926 u64 end; 4927 unsigned state_flags; 4928 4929 node = rb_first(&io_tree->state); 4930 state = rb_entry(node, struct extent_state, rb_node); 4931 start = state->start; 4932 end = state->end; 4933 state_flags = state->state; 4934 spin_unlock(&io_tree->lock); 4935 4936 lock_extent_bits(io_tree, start, end, &cached_state); 4937 4938 /* 4939 * If still has DELALLOC flag, the extent didn't reach disk, 4940 * and its reserved space won't be freed by delayed_ref. 4941 * So we need to free its reserved space here. 4942 * (Refer to comment in btrfs_invalidatepage, case 2) 4943 * 4944 * Note, end is the bytenr of last byte, so we need + 1 here. 4945 */ 4946 if (state_flags & EXTENT_DELALLOC) 4947 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 4948 4949 clear_extent_bit(io_tree, start, end, 4950 EXTENT_LOCKED | EXTENT_DELALLOC | 4951 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4952 &cached_state); 4953 4954 cond_resched(); 4955 spin_lock(&io_tree->lock); 4956 } 4957 spin_unlock(&io_tree->lock); 4958 } 4959 4960 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4961 struct btrfs_block_rsv *rsv) 4962 { 4963 struct btrfs_fs_info *fs_info = root->fs_info; 4964 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4965 struct btrfs_trans_handle *trans; 4966 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 4967 int ret; 4968 4969 /* 4970 * Eviction should be taking place at some place safe because of our 4971 * delayed iputs. However the normal flushing code will run delayed 4972 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 4973 * 4974 * We reserve the delayed_refs_extra here again because we can't use 4975 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 4976 * above. We reserve our extra bit here because we generate a ton of 4977 * delayed refs activity by truncating. 4978 * 4979 * If we cannot make our reservation we'll attempt to steal from the 4980 * global reserve, because we really want to be able to free up space. 4981 */ 4982 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 4983 BTRFS_RESERVE_FLUSH_EVICT); 4984 if (ret) { 4985 /* 4986 * Try to steal from the global reserve if there is space for 4987 * it. 4988 */ 4989 if (btrfs_check_space_for_delayed_refs(fs_info) || 4990 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 4991 btrfs_warn(fs_info, 4992 "could not allocate space for delete; will truncate on mount"); 4993 return ERR_PTR(-ENOSPC); 4994 } 4995 delayed_refs_extra = 0; 4996 } 4997 4998 trans = btrfs_join_transaction(root); 4999 if (IS_ERR(trans)) 5000 return trans; 5001 5002 if (delayed_refs_extra) { 5003 trans->block_rsv = &fs_info->trans_block_rsv; 5004 trans->bytes_reserved = delayed_refs_extra; 5005 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5006 delayed_refs_extra, 1); 5007 } 5008 return trans; 5009 } 5010 5011 void btrfs_evict_inode(struct inode *inode) 5012 { 5013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5014 struct btrfs_trans_handle *trans; 5015 struct btrfs_root *root = BTRFS_I(inode)->root; 5016 struct btrfs_block_rsv *rsv; 5017 int ret; 5018 5019 trace_btrfs_inode_evict(inode); 5020 5021 if (!root) { 5022 clear_inode(inode); 5023 return; 5024 } 5025 5026 evict_inode_truncate_pages(inode); 5027 5028 if (inode->i_nlink && 5029 ((btrfs_root_refs(&root->root_item) != 0 && 5030 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5031 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5032 goto no_delete; 5033 5034 if (is_bad_inode(inode)) 5035 goto no_delete; 5036 5037 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5038 5039 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5040 goto no_delete; 5041 5042 if (inode->i_nlink > 0) { 5043 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5044 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5045 goto no_delete; 5046 } 5047 5048 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5049 if (ret) 5050 goto no_delete; 5051 5052 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5053 if (!rsv) 5054 goto no_delete; 5055 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5056 rsv->failfast = 1; 5057 5058 btrfs_i_size_write(BTRFS_I(inode), 0); 5059 5060 while (1) { 5061 trans = evict_refill_and_join(root, rsv); 5062 if (IS_ERR(trans)) 5063 goto free_rsv; 5064 5065 trans->block_rsv = rsv; 5066 5067 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5068 trans->block_rsv = &fs_info->trans_block_rsv; 5069 btrfs_end_transaction(trans); 5070 btrfs_btree_balance_dirty(fs_info); 5071 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5072 goto free_rsv; 5073 else if (!ret) 5074 break; 5075 } 5076 5077 /* 5078 * Errors here aren't a big deal, it just means we leave orphan items in 5079 * the tree. They will be cleaned up on the next mount. If the inode 5080 * number gets reused, cleanup deletes the orphan item without doing 5081 * anything, and unlink reuses the existing orphan item. 5082 * 5083 * If it turns out that we are dropping too many of these, we might want 5084 * to add a mechanism for retrying these after a commit. 5085 */ 5086 trans = evict_refill_and_join(root, rsv); 5087 if (!IS_ERR(trans)) { 5088 trans->block_rsv = rsv; 5089 btrfs_orphan_del(trans, BTRFS_I(inode)); 5090 trans->block_rsv = &fs_info->trans_block_rsv; 5091 btrfs_end_transaction(trans); 5092 } 5093 5094 if (!(root == fs_info->tree_root || 5095 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5096 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5097 5098 free_rsv: 5099 btrfs_free_block_rsv(fs_info, rsv); 5100 no_delete: 5101 /* 5102 * If we didn't successfully delete, the orphan item will still be in 5103 * the tree and we'll retry on the next mount. Again, we might also want 5104 * to retry these periodically in the future. 5105 */ 5106 btrfs_remove_delayed_node(BTRFS_I(inode)); 5107 clear_inode(inode); 5108 } 5109 5110 /* 5111 * Return the key found in the dir entry in the location pointer, fill @type 5112 * with BTRFS_FT_*, and return 0. 5113 * 5114 * If no dir entries were found, returns -ENOENT. 5115 * If found a corrupted location in dir entry, returns -EUCLEAN. 5116 */ 5117 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5118 struct btrfs_key *location, u8 *type) 5119 { 5120 const char *name = dentry->d_name.name; 5121 int namelen = dentry->d_name.len; 5122 struct btrfs_dir_item *di; 5123 struct btrfs_path *path; 5124 struct btrfs_root *root = BTRFS_I(dir)->root; 5125 int ret = 0; 5126 5127 path = btrfs_alloc_path(); 5128 if (!path) 5129 return -ENOMEM; 5130 5131 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5132 name, namelen, 0); 5133 if (IS_ERR_OR_NULL(di)) { 5134 ret = di ? PTR_ERR(di) : -ENOENT; 5135 goto out; 5136 } 5137 5138 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5139 if (location->type != BTRFS_INODE_ITEM_KEY && 5140 location->type != BTRFS_ROOT_ITEM_KEY) { 5141 ret = -EUCLEAN; 5142 btrfs_warn(root->fs_info, 5143 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5144 __func__, name, btrfs_ino(BTRFS_I(dir)), 5145 location->objectid, location->type, location->offset); 5146 } 5147 if (!ret) 5148 *type = btrfs_dir_type(path->nodes[0], di); 5149 out: 5150 btrfs_free_path(path); 5151 return ret; 5152 } 5153 5154 /* 5155 * when we hit a tree root in a directory, the btrfs part of the inode 5156 * needs to be changed to reflect the root directory of the tree root. This 5157 * is kind of like crossing a mount point. 5158 */ 5159 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5160 struct inode *dir, 5161 struct dentry *dentry, 5162 struct btrfs_key *location, 5163 struct btrfs_root **sub_root) 5164 { 5165 struct btrfs_path *path; 5166 struct btrfs_root *new_root; 5167 struct btrfs_root_ref *ref; 5168 struct extent_buffer *leaf; 5169 struct btrfs_key key; 5170 int ret; 5171 int err = 0; 5172 5173 path = btrfs_alloc_path(); 5174 if (!path) { 5175 err = -ENOMEM; 5176 goto out; 5177 } 5178 5179 err = -ENOENT; 5180 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5181 key.type = BTRFS_ROOT_REF_KEY; 5182 key.offset = location->objectid; 5183 5184 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5185 if (ret) { 5186 if (ret < 0) 5187 err = ret; 5188 goto out; 5189 } 5190 5191 leaf = path->nodes[0]; 5192 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5193 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5194 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5195 goto out; 5196 5197 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5198 (unsigned long)(ref + 1), 5199 dentry->d_name.len); 5200 if (ret) 5201 goto out; 5202 5203 btrfs_release_path(path); 5204 5205 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5206 if (IS_ERR(new_root)) { 5207 err = PTR_ERR(new_root); 5208 goto out; 5209 } 5210 5211 *sub_root = new_root; 5212 location->objectid = btrfs_root_dirid(&new_root->root_item); 5213 location->type = BTRFS_INODE_ITEM_KEY; 5214 location->offset = 0; 5215 err = 0; 5216 out: 5217 btrfs_free_path(path); 5218 return err; 5219 } 5220 5221 static void inode_tree_add(struct inode *inode) 5222 { 5223 struct btrfs_root *root = BTRFS_I(inode)->root; 5224 struct btrfs_inode *entry; 5225 struct rb_node **p; 5226 struct rb_node *parent; 5227 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5228 u64 ino = btrfs_ino(BTRFS_I(inode)); 5229 5230 if (inode_unhashed(inode)) 5231 return; 5232 parent = NULL; 5233 spin_lock(&root->inode_lock); 5234 p = &root->inode_tree.rb_node; 5235 while (*p) { 5236 parent = *p; 5237 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5238 5239 if (ino < btrfs_ino(entry)) 5240 p = &parent->rb_left; 5241 else if (ino > btrfs_ino(entry)) 5242 p = &parent->rb_right; 5243 else { 5244 WARN_ON(!(entry->vfs_inode.i_state & 5245 (I_WILL_FREE | I_FREEING))); 5246 rb_replace_node(parent, new, &root->inode_tree); 5247 RB_CLEAR_NODE(parent); 5248 spin_unlock(&root->inode_lock); 5249 return; 5250 } 5251 } 5252 rb_link_node(new, parent, p); 5253 rb_insert_color(new, &root->inode_tree); 5254 spin_unlock(&root->inode_lock); 5255 } 5256 5257 static void inode_tree_del(struct inode *inode) 5258 { 5259 struct btrfs_root *root = BTRFS_I(inode)->root; 5260 int empty = 0; 5261 5262 spin_lock(&root->inode_lock); 5263 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5264 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5265 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5266 empty = RB_EMPTY_ROOT(&root->inode_tree); 5267 } 5268 spin_unlock(&root->inode_lock); 5269 5270 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5271 spin_lock(&root->inode_lock); 5272 empty = RB_EMPTY_ROOT(&root->inode_tree); 5273 spin_unlock(&root->inode_lock); 5274 if (empty) 5275 btrfs_add_dead_root(root); 5276 } 5277 } 5278 5279 5280 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5281 { 5282 struct btrfs_iget_args *args = p; 5283 5284 inode->i_ino = args->ino; 5285 BTRFS_I(inode)->location.objectid = args->ino; 5286 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5287 BTRFS_I(inode)->location.offset = 0; 5288 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5289 BUG_ON(args->root && !BTRFS_I(inode)->root); 5290 return 0; 5291 } 5292 5293 static int btrfs_find_actor(struct inode *inode, void *opaque) 5294 { 5295 struct btrfs_iget_args *args = opaque; 5296 5297 return args->ino == BTRFS_I(inode)->location.objectid && 5298 args->root == BTRFS_I(inode)->root; 5299 } 5300 5301 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5302 struct btrfs_root *root) 5303 { 5304 struct inode *inode; 5305 struct btrfs_iget_args args; 5306 unsigned long hashval = btrfs_inode_hash(ino, root); 5307 5308 args.ino = ino; 5309 args.root = root; 5310 5311 inode = iget5_locked(s, hashval, btrfs_find_actor, 5312 btrfs_init_locked_inode, 5313 (void *)&args); 5314 return inode; 5315 } 5316 5317 /* 5318 * Get an inode object given its inode number and corresponding root. 5319 * Path can be preallocated to prevent recursing back to iget through 5320 * allocator. NULL is also valid but may require an additional allocation 5321 * later. 5322 */ 5323 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5324 struct btrfs_root *root, struct btrfs_path *path) 5325 { 5326 struct inode *inode; 5327 5328 inode = btrfs_iget_locked(s, ino, root); 5329 if (!inode) 5330 return ERR_PTR(-ENOMEM); 5331 5332 if (inode->i_state & I_NEW) { 5333 int ret; 5334 5335 ret = btrfs_read_locked_inode(inode, path); 5336 if (!ret) { 5337 inode_tree_add(inode); 5338 unlock_new_inode(inode); 5339 } else { 5340 iget_failed(inode); 5341 /* 5342 * ret > 0 can come from btrfs_search_slot called by 5343 * btrfs_read_locked_inode, this means the inode item 5344 * was not found. 5345 */ 5346 if (ret > 0) 5347 ret = -ENOENT; 5348 inode = ERR_PTR(ret); 5349 } 5350 } 5351 5352 return inode; 5353 } 5354 5355 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5356 { 5357 return btrfs_iget_path(s, ino, root, NULL); 5358 } 5359 5360 static struct inode *new_simple_dir(struct super_block *s, 5361 struct btrfs_key *key, 5362 struct btrfs_root *root) 5363 { 5364 struct inode *inode = new_inode(s); 5365 5366 if (!inode) 5367 return ERR_PTR(-ENOMEM); 5368 5369 BTRFS_I(inode)->root = btrfs_grab_root(root); 5370 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5371 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5372 5373 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5374 /* 5375 * We only need lookup, the rest is read-only and there's no inode 5376 * associated with the dentry 5377 */ 5378 inode->i_op = &simple_dir_inode_operations; 5379 inode->i_opflags &= ~IOP_XATTR; 5380 inode->i_fop = &simple_dir_operations; 5381 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5382 inode->i_mtime = current_time(inode); 5383 inode->i_atime = inode->i_mtime; 5384 inode->i_ctime = inode->i_mtime; 5385 BTRFS_I(inode)->i_otime = inode->i_mtime; 5386 5387 return inode; 5388 } 5389 5390 static inline u8 btrfs_inode_type(struct inode *inode) 5391 { 5392 /* 5393 * Compile-time asserts that generic FT_* types still match 5394 * BTRFS_FT_* types 5395 */ 5396 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5397 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5398 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5399 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5400 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5401 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5402 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5403 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5404 5405 return fs_umode_to_ftype(inode->i_mode); 5406 } 5407 5408 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5409 { 5410 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5411 struct inode *inode; 5412 struct btrfs_root *root = BTRFS_I(dir)->root; 5413 struct btrfs_root *sub_root = root; 5414 struct btrfs_key location; 5415 u8 di_type = 0; 5416 int ret = 0; 5417 5418 if (dentry->d_name.len > BTRFS_NAME_LEN) 5419 return ERR_PTR(-ENAMETOOLONG); 5420 5421 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5422 if (ret < 0) 5423 return ERR_PTR(ret); 5424 5425 if (location.type == BTRFS_INODE_ITEM_KEY) { 5426 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5427 if (IS_ERR(inode)) 5428 return inode; 5429 5430 /* Do extra check against inode mode with di_type */ 5431 if (btrfs_inode_type(inode) != di_type) { 5432 btrfs_crit(fs_info, 5433 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5434 inode->i_mode, btrfs_inode_type(inode), 5435 di_type); 5436 iput(inode); 5437 return ERR_PTR(-EUCLEAN); 5438 } 5439 return inode; 5440 } 5441 5442 ret = fixup_tree_root_location(fs_info, dir, dentry, 5443 &location, &sub_root); 5444 if (ret < 0) { 5445 if (ret != -ENOENT) 5446 inode = ERR_PTR(ret); 5447 else 5448 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5449 } else { 5450 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5451 } 5452 if (root != sub_root) 5453 btrfs_put_root(sub_root); 5454 5455 if (!IS_ERR(inode) && root != sub_root) { 5456 down_read(&fs_info->cleanup_work_sem); 5457 if (!sb_rdonly(inode->i_sb)) 5458 ret = btrfs_orphan_cleanup(sub_root); 5459 up_read(&fs_info->cleanup_work_sem); 5460 if (ret) { 5461 iput(inode); 5462 inode = ERR_PTR(ret); 5463 } 5464 } 5465 5466 return inode; 5467 } 5468 5469 static int btrfs_dentry_delete(const struct dentry *dentry) 5470 { 5471 struct btrfs_root *root; 5472 struct inode *inode = d_inode(dentry); 5473 5474 if (!inode && !IS_ROOT(dentry)) 5475 inode = d_inode(dentry->d_parent); 5476 5477 if (inode) { 5478 root = BTRFS_I(inode)->root; 5479 if (btrfs_root_refs(&root->root_item) == 0) 5480 return 1; 5481 5482 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5483 return 1; 5484 } 5485 return 0; 5486 } 5487 5488 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5489 unsigned int flags) 5490 { 5491 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5492 5493 if (inode == ERR_PTR(-ENOENT)) 5494 inode = NULL; 5495 return d_splice_alias(inode, dentry); 5496 } 5497 5498 /* 5499 * All this infrastructure exists because dir_emit can fault, and we are holding 5500 * the tree lock when doing readdir. For now just allocate a buffer and copy 5501 * our information into that, and then dir_emit from the buffer. This is 5502 * similar to what NFS does, only we don't keep the buffer around in pagecache 5503 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5504 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5505 * tree lock. 5506 */ 5507 static int btrfs_opendir(struct inode *inode, struct file *file) 5508 { 5509 struct btrfs_file_private *private; 5510 5511 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5512 if (!private) 5513 return -ENOMEM; 5514 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5515 if (!private->filldir_buf) { 5516 kfree(private); 5517 return -ENOMEM; 5518 } 5519 file->private_data = private; 5520 return 0; 5521 } 5522 5523 struct dir_entry { 5524 u64 ino; 5525 u64 offset; 5526 unsigned type; 5527 int name_len; 5528 }; 5529 5530 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5531 { 5532 while (entries--) { 5533 struct dir_entry *entry = addr; 5534 char *name = (char *)(entry + 1); 5535 5536 ctx->pos = get_unaligned(&entry->offset); 5537 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5538 get_unaligned(&entry->ino), 5539 get_unaligned(&entry->type))) 5540 return 1; 5541 addr += sizeof(struct dir_entry) + 5542 get_unaligned(&entry->name_len); 5543 ctx->pos++; 5544 } 5545 return 0; 5546 } 5547 5548 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5549 { 5550 struct inode *inode = file_inode(file); 5551 struct btrfs_root *root = BTRFS_I(inode)->root; 5552 struct btrfs_file_private *private = file->private_data; 5553 struct btrfs_dir_item *di; 5554 struct btrfs_key key; 5555 struct btrfs_key found_key; 5556 struct btrfs_path *path; 5557 void *addr; 5558 struct list_head ins_list; 5559 struct list_head del_list; 5560 int ret; 5561 struct extent_buffer *leaf; 5562 int slot; 5563 char *name_ptr; 5564 int name_len; 5565 int entries = 0; 5566 int total_len = 0; 5567 bool put = false; 5568 struct btrfs_key location; 5569 5570 if (!dir_emit_dots(file, ctx)) 5571 return 0; 5572 5573 path = btrfs_alloc_path(); 5574 if (!path) 5575 return -ENOMEM; 5576 5577 addr = private->filldir_buf; 5578 path->reada = READA_FORWARD; 5579 5580 INIT_LIST_HEAD(&ins_list); 5581 INIT_LIST_HEAD(&del_list); 5582 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5583 5584 again: 5585 key.type = BTRFS_DIR_INDEX_KEY; 5586 key.offset = ctx->pos; 5587 key.objectid = btrfs_ino(BTRFS_I(inode)); 5588 5589 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5590 if (ret < 0) 5591 goto err; 5592 5593 while (1) { 5594 struct dir_entry *entry; 5595 5596 leaf = path->nodes[0]; 5597 slot = path->slots[0]; 5598 if (slot >= btrfs_header_nritems(leaf)) { 5599 ret = btrfs_next_leaf(root, path); 5600 if (ret < 0) 5601 goto err; 5602 else if (ret > 0) 5603 break; 5604 continue; 5605 } 5606 5607 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5608 5609 if (found_key.objectid != key.objectid) 5610 break; 5611 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5612 break; 5613 if (found_key.offset < ctx->pos) 5614 goto next; 5615 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5616 goto next; 5617 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5618 name_len = btrfs_dir_name_len(leaf, di); 5619 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5620 PAGE_SIZE) { 5621 btrfs_release_path(path); 5622 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5623 if (ret) 5624 goto nopos; 5625 addr = private->filldir_buf; 5626 entries = 0; 5627 total_len = 0; 5628 goto again; 5629 } 5630 5631 entry = addr; 5632 put_unaligned(name_len, &entry->name_len); 5633 name_ptr = (char *)(entry + 1); 5634 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5635 name_len); 5636 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5637 &entry->type); 5638 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5639 put_unaligned(location.objectid, &entry->ino); 5640 put_unaligned(found_key.offset, &entry->offset); 5641 entries++; 5642 addr += sizeof(struct dir_entry) + name_len; 5643 total_len += sizeof(struct dir_entry) + name_len; 5644 next: 5645 path->slots[0]++; 5646 } 5647 btrfs_release_path(path); 5648 5649 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5650 if (ret) 5651 goto nopos; 5652 5653 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5654 if (ret) 5655 goto nopos; 5656 5657 /* 5658 * Stop new entries from being returned after we return the last 5659 * entry. 5660 * 5661 * New directory entries are assigned a strictly increasing 5662 * offset. This means that new entries created during readdir 5663 * are *guaranteed* to be seen in the future by that readdir. 5664 * This has broken buggy programs which operate on names as 5665 * they're returned by readdir. Until we re-use freed offsets 5666 * we have this hack to stop new entries from being returned 5667 * under the assumption that they'll never reach this huge 5668 * offset. 5669 * 5670 * This is being careful not to overflow 32bit loff_t unless the 5671 * last entry requires it because doing so has broken 32bit apps 5672 * in the past. 5673 */ 5674 if (ctx->pos >= INT_MAX) 5675 ctx->pos = LLONG_MAX; 5676 else 5677 ctx->pos = INT_MAX; 5678 nopos: 5679 ret = 0; 5680 err: 5681 if (put) 5682 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5683 btrfs_free_path(path); 5684 return ret; 5685 } 5686 5687 /* 5688 * This is somewhat expensive, updating the tree every time the 5689 * inode changes. But, it is most likely to find the inode in cache. 5690 * FIXME, needs more benchmarking...there are no reasons other than performance 5691 * to keep or drop this code. 5692 */ 5693 static int btrfs_dirty_inode(struct inode *inode) 5694 { 5695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5696 struct btrfs_root *root = BTRFS_I(inode)->root; 5697 struct btrfs_trans_handle *trans; 5698 int ret; 5699 5700 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5701 return 0; 5702 5703 trans = btrfs_join_transaction(root); 5704 if (IS_ERR(trans)) 5705 return PTR_ERR(trans); 5706 5707 ret = btrfs_update_inode(trans, root, inode); 5708 if (ret && ret == -ENOSPC) { 5709 /* whoops, lets try again with the full transaction */ 5710 btrfs_end_transaction(trans); 5711 trans = btrfs_start_transaction(root, 1); 5712 if (IS_ERR(trans)) 5713 return PTR_ERR(trans); 5714 5715 ret = btrfs_update_inode(trans, root, inode); 5716 } 5717 btrfs_end_transaction(trans); 5718 if (BTRFS_I(inode)->delayed_node) 5719 btrfs_balance_delayed_items(fs_info); 5720 5721 return ret; 5722 } 5723 5724 /* 5725 * This is a copy of file_update_time. We need this so we can return error on 5726 * ENOSPC for updating the inode in the case of file write and mmap writes. 5727 */ 5728 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5729 int flags) 5730 { 5731 struct btrfs_root *root = BTRFS_I(inode)->root; 5732 bool dirty = flags & ~S_VERSION; 5733 5734 if (btrfs_root_readonly(root)) 5735 return -EROFS; 5736 5737 if (flags & S_VERSION) 5738 dirty |= inode_maybe_inc_iversion(inode, dirty); 5739 if (flags & S_CTIME) 5740 inode->i_ctime = *now; 5741 if (flags & S_MTIME) 5742 inode->i_mtime = *now; 5743 if (flags & S_ATIME) 5744 inode->i_atime = *now; 5745 return dirty ? btrfs_dirty_inode(inode) : 0; 5746 } 5747 5748 /* 5749 * find the highest existing sequence number in a directory 5750 * and then set the in-memory index_cnt variable to reflect 5751 * free sequence numbers 5752 */ 5753 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5754 { 5755 struct btrfs_root *root = inode->root; 5756 struct btrfs_key key, found_key; 5757 struct btrfs_path *path; 5758 struct extent_buffer *leaf; 5759 int ret; 5760 5761 key.objectid = btrfs_ino(inode); 5762 key.type = BTRFS_DIR_INDEX_KEY; 5763 key.offset = (u64)-1; 5764 5765 path = btrfs_alloc_path(); 5766 if (!path) 5767 return -ENOMEM; 5768 5769 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5770 if (ret < 0) 5771 goto out; 5772 /* FIXME: we should be able to handle this */ 5773 if (ret == 0) 5774 goto out; 5775 ret = 0; 5776 5777 /* 5778 * MAGIC NUMBER EXPLANATION: 5779 * since we search a directory based on f_pos we have to start at 2 5780 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5781 * else has to start at 2 5782 */ 5783 if (path->slots[0] == 0) { 5784 inode->index_cnt = 2; 5785 goto out; 5786 } 5787 5788 path->slots[0]--; 5789 5790 leaf = path->nodes[0]; 5791 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5792 5793 if (found_key.objectid != btrfs_ino(inode) || 5794 found_key.type != BTRFS_DIR_INDEX_KEY) { 5795 inode->index_cnt = 2; 5796 goto out; 5797 } 5798 5799 inode->index_cnt = found_key.offset + 1; 5800 out: 5801 btrfs_free_path(path); 5802 return ret; 5803 } 5804 5805 /* 5806 * helper to find a free sequence number in a given directory. This current 5807 * code is very simple, later versions will do smarter things in the btree 5808 */ 5809 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5810 { 5811 int ret = 0; 5812 5813 if (dir->index_cnt == (u64)-1) { 5814 ret = btrfs_inode_delayed_dir_index_count(dir); 5815 if (ret) { 5816 ret = btrfs_set_inode_index_count(dir); 5817 if (ret) 5818 return ret; 5819 } 5820 } 5821 5822 *index = dir->index_cnt; 5823 dir->index_cnt++; 5824 5825 return ret; 5826 } 5827 5828 static int btrfs_insert_inode_locked(struct inode *inode) 5829 { 5830 struct btrfs_iget_args args; 5831 5832 args.ino = BTRFS_I(inode)->location.objectid; 5833 args.root = BTRFS_I(inode)->root; 5834 5835 return insert_inode_locked4(inode, 5836 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5837 btrfs_find_actor, &args); 5838 } 5839 5840 /* 5841 * Inherit flags from the parent inode. 5842 * 5843 * Currently only the compression flags and the cow flags are inherited. 5844 */ 5845 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5846 { 5847 unsigned int flags; 5848 5849 if (!dir) 5850 return; 5851 5852 flags = BTRFS_I(dir)->flags; 5853 5854 if (flags & BTRFS_INODE_NOCOMPRESS) { 5855 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5856 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5857 } else if (flags & BTRFS_INODE_COMPRESS) { 5858 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5859 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5860 } 5861 5862 if (flags & BTRFS_INODE_NODATACOW) { 5863 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5864 if (S_ISREG(inode->i_mode)) 5865 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5866 } 5867 5868 btrfs_sync_inode_flags_to_i_flags(inode); 5869 } 5870 5871 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5872 struct btrfs_root *root, 5873 struct inode *dir, 5874 const char *name, int name_len, 5875 u64 ref_objectid, u64 objectid, 5876 umode_t mode, u64 *index) 5877 { 5878 struct btrfs_fs_info *fs_info = root->fs_info; 5879 struct inode *inode; 5880 struct btrfs_inode_item *inode_item; 5881 struct btrfs_key *location; 5882 struct btrfs_path *path; 5883 struct btrfs_inode_ref *ref; 5884 struct btrfs_key key[2]; 5885 u32 sizes[2]; 5886 int nitems = name ? 2 : 1; 5887 unsigned long ptr; 5888 unsigned int nofs_flag; 5889 int ret; 5890 5891 path = btrfs_alloc_path(); 5892 if (!path) 5893 return ERR_PTR(-ENOMEM); 5894 5895 nofs_flag = memalloc_nofs_save(); 5896 inode = new_inode(fs_info->sb); 5897 memalloc_nofs_restore(nofs_flag); 5898 if (!inode) { 5899 btrfs_free_path(path); 5900 return ERR_PTR(-ENOMEM); 5901 } 5902 5903 /* 5904 * O_TMPFILE, set link count to 0, so that after this point, 5905 * we fill in an inode item with the correct link count. 5906 */ 5907 if (!name) 5908 set_nlink(inode, 0); 5909 5910 /* 5911 * we have to initialize this early, so we can reclaim the inode 5912 * number if we fail afterwards in this function. 5913 */ 5914 inode->i_ino = objectid; 5915 5916 if (dir && name) { 5917 trace_btrfs_inode_request(dir); 5918 5919 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5920 if (ret) { 5921 btrfs_free_path(path); 5922 iput(inode); 5923 return ERR_PTR(ret); 5924 } 5925 } else if (dir) { 5926 *index = 0; 5927 } 5928 /* 5929 * index_cnt is ignored for everything but a dir, 5930 * btrfs_set_inode_index_count has an explanation for the magic 5931 * number 5932 */ 5933 BTRFS_I(inode)->index_cnt = 2; 5934 BTRFS_I(inode)->dir_index = *index; 5935 BTRFS_I(inode)->root = btrfs_grab_root(root); 5936 BTRFS_I(inode)->generation = trans->transid; 5937 inode->i_generation = BTRFS_I(inode)->generation; 5938 5939 /* 5940 * We could have gotten an inode number from somebody who was fsynced 5941 * and then removed in this same transaction, so let's just set full 5942 * sync since it will be a full sync anyway and this will blow away the 5943 * old info in the log. 5944 */ 5945 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5946 5947 key[0].objectid = objectid; 5948 key[0].type = BTRFS_INODE_ITEM_KEY; 5949 key[0].offset = 0; 5950 5951 sizes[0] = sizeof(struct btrfs_inode_item); 5952 5953 if (name) { 5954 /* 5955 * Start new inodes with an inode_ref. This is slightly more 5956 * efficient for small numbers of hard links since they will 5957 * be packed into one item. Extended refs will kick in if we 5958 * add more hard links than can fit in the ref item. 5959 */ 5960 key[1].objectid = objectid; 5961 key[1].type = BTRFS_INODE_REF_KEY; 5962 key[1].offset = ref_objectid; 5963 5964 sizes[1] = name_len + sizeof(*ref); 5965 } 5966 5967 location = &BTRFS_I(inode)->location; 5968 location->objectid = objectid; 5969 location->offset = 0; 5970 location->type = BTRFS_INODE_ITEM_KEY; 5971 5972 ret = btrfs_insert_inode_locked(inode); 5973 if (ret < 0) { 5974 iput(inode); 5975 goto fail; 5976 } 5977 5978 path->leave_spinning = 1; 5979 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5980 if (ret != 0) 5981 goto fail_unlock; 5982 5983 inode_init_owner(inode, dir, mode); 5984 inode_set_bytes(inode, 0); 5985 5986 inode->i_mtime = current_time(inode); 5987 inode->i_atime = inode->i_mtime; 5988 inode->i_ctime = inode->i_mtime; 5989 BTRFS_I(inode)->i_otime = inode->i_mtime; 5990 5991 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5992 struct btrfs_inode_item); 5993 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 5994 sizeof(*inode_item)); 5995 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5996 5997 if (name) { 5998 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5999 struct btrfs_inode_ref); 6000 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6001 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6002 ptr = (unsigned long)(ref + 1); 6003 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6004 } 6005 6006 btrfs_mark_buffer_dirty(path->nodes[0]); 6007 btrfs_free_path(path); 6008 6009 btrfs_inherit_iflags(inode, dir); 6010 6011 if (S_ISREG(mode)) { 6012 if (btrfs_test_opt(fs_info, NODATASUM)) 6013 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6014 if (btrfs_test_opt(fs_info, NODATACOW)) 6015 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6016 BTRFS_INODE_NODATASUM; 6017 } 6018 6019 inode_tree_add(inode); 6020 6021 trace_btrfs_inode_new(inode); 6022 btrfs_set_inode_last_trans(trans, inode); 6023 6024 btrfs_update_root_times(trans, root); 6025 6026 ret = btrfs_inode_inherit_props(trans, inode, dir); 6027 if (ret) 6028 btrfs_err(fs_info, 6029 "error inheriting props for ino %llu (root %llu): %d", 6030 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6031 6032 return inode; 6033 6034 fail_unlock: 6035 discard_new_inode(inode); 6036 fail: 6037 if (dir && name) 6038 BTRFS_I(dir)->index_cnt--; 6039 btrfs_free_path(path); 6040 return ERR_PTR(ret); 6041 } 6042 6043 /* 6044 * utility function to add 'inode' into 'parent_inode' with 6045 * a give name and a given sequence number. 6046 * if 'add_backref' is true, also insert a backref from the 6047 * inode to the parent directory. 6048 */ 6049 int btrfs_add_link(struct btrfs_trans_handle *trans, 6050 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6051 const char *name, int name_len, int add_backref, u64 index) 6052 { 6053 int ret = 0; 6054 struct btrfs_key key; 6055 struct btrfs_root *root = parent_inode->root; 6056 u64 ino = btrfs_ino(inode); 6057 u64 parent_ino = btrfs_ino(parent_inode); 6058 6059 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6060 memcpy(&key, &inode->root->root_key, sizeof(key)); 6061 } else { 6062 key.objectid = ino; 6063 key.type = BTRFS_INODE_ITEM_KEY; 6064 key.offset = 0; 6065 } 6066 6067 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6068 ret = btrfs_add_root_ref(trans, key.objectid, 6069 root->root_key.objectid, parent_ino, 6070 index, name, name_len); 6071 } else if (add_backref) { 6072 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6073 parent_ino, index); 6074 } 6075 6076 /* Nothing to clean up yet */ 6077 if (ret) 6078 return ret; 6079 6080 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6081 btrfs_inode_type(&inode->vfs_inode), index); 6082 if (ret == -EEXIST || ret == -EOVERFLOW) 6083 goto fail_dir_item; 6084 else if (ret) { 6085 btrfs_abort_transaction(trans, ret); 6086 return ret; 6087 } 6088 6089 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6090 name_len * 2); 6091 inode_inc_iversion(&parent_inode->vfs_inode); 6092 /* 6093 * If we are replaying a log tree, we do not want to update the mtime 6094 * and ctime of the parent directory with the current time, since the 6095 * log replay procedure is responsible for setting them to their correct 6096 * values (the ones it had when the fsync was done). 6097 */ 6098 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6099 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6100 6101 parent_inode->vfs_inode.i_mtime = now; 6102 parent_inode->vfs_inode.i_ctime = now; 6103 } 6104 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6105 if (ret) 6106 btrfs_abort_transaction(trans, ret); 6107 return ret; 6108 6109 fail_dir_item: 6110 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6111 u64 local_index; 6112 int err; 6113 err = btrfs_del_root_ref(trans, key.objectid, 6114 root->root_key.objectid, parent_ino, 6115 &local_index, name, name_len); 6116 if (err) 6117 btrfs_abort_transaction(trans, err); 6118 } else if (add_backref) { 6119 u64 local_index; 6120 int err; 6121 6122 err = btrfs_del_inode_ref(trans, root, name, name_len, 6123 ino, parent_ino, &local_index); 6124 if (err) 6125 btrfs_abort_transaction(trans, err); 6126 } 6127 6128 /* Return the original error code */ 6129 return ret; 6130 } 6131 6132 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6133 struct btrfs_inode *dir, struct dentry *dentry, 6134 struct btrfs_inode *inode, int backref, u64 index) 6135 { 6136 int err = btrfs_add_link(trans, dir, inode, 6137 dentry->d_name.name, dentry->d_name.len, 6138 backref, index); 6139 if (err > 0) 6140 err = -EEXIST; 6141 return err; 6142 } 6143 6144 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6145 umode_t mode, dev_t rdev) 6146 { 6147 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6148 struct btrfs_trans_handle *trans; 6149 struct btrfs_root *root = BTRFS_I(dir)->root; 6150 struct inode *inode = NULL; 6151 int err; 6152 u64 objectid; 6153 u64 index = 0; 6154 6155 /* 6156 * 2 for inode item and ref 6157 * 2 for dir items 6158 * 1 for xattr if selinux is on 6159 */ 6160 trans = btrfs_start_transaction(root, 5); 6161 if (IS_ERR(trans)) 6162 return PTR_ERR(trans); 6163 6164 err = btrfs_find_free_ino(root, &objectid); 6165 if (err) 6166 goto out_unlock; 6167 6168 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6169 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6170 mode, &index); 6171 if (IS_ERR(inode)) { 6172 err = PTR_ERR(inode); 6173 inode = NULL; 6174 goto out_unlock; 6175 } 6176 6177 /* 6178 * If the active LSM wants to access the inode during 6179 * d_instantiate it needs these. Smack checks to see 6180 * if the filesystem supports xattrs by looking at the 6181 * ops vector. 6182 */ 6183 inode->i_op = &btrfs_special_inode_operations; 6184 init_special_inode(inode, inode->i_mode, rdev); 6185 6186 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6187 if (err) 6188 goto out_unlock; 6189 6190 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6191 0, index); 6192 if (err) 6193 goto out_unlock; 6194 6195 btrfs_update_inode(trans, root, inode); 6196 d_instantiate_new(dentry, inode); 6197 6198 out_unlock: 6199 btrfs_end_transaction(trans); 6200 btrfs_btree_balance_dirty(fs_info); 6201 if (err && inode) { 6202 inode_dec_link_count(inode); 6203 discard_new_inode(inode); 6204 } 6205 return err; 6206 } 6207 6208 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6209 umode_t mode, bool excl) 6210 { 6211 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6212 struct btrfs_trans_handle *trans; 6213 struct btrfs_root *root = BTRFS_I(dir)->root; 6214 struct inode *inode = NULL; 6215 int err; 6216 u64 objectid; 6217 u64 index = 0; 6218 6219 /* 6220 * 2 for inode item and ref 6221 * 2 for dir items 6222 * 1 for xattr if selinux is on 6223 */ 6224 trans = btrfs_start_transaction(root, 5); 6225 if (IS_ERR(trans)) 6226 return PTR_ERR(trans); 6227 6228 err = btrfs_find_free_ino(root, &objectid); 6229 if (err) 6230 goto out_unlock; 6231 6232 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6233 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6234 mode, &index); 6235 if (IS_ERR(inode)) { 6236 err = PTR_ERR(inode); 6237 inode = NULL; 6238 goto out_unlock; 6239 } 6240 /* 6241 * If the active LSM wants to access the inode during 6242 * d_instantiate it needs these. Smack checks to see 6243 * if the filesystem supports xattrs by looking at the 6244 * ops vector. 6245 */ 6246 inode->i_fop = &btrfs_file_operations; 6247 inode->i_op = &btrfs_file_inode_operations; 6248 inode->i_mapping->a_ops = &btrfs_aops; 6249 6250 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6251 if (err) 6252 goto out_unlock; 6253 6254 err = btrfs_update_inode(trans, root, inode); 6255 if (err) 6256 goto out_unlock; 6257 6258 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6259 0, index); 6260 if (err) 6261 goto out_unlock; 6262 6263 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6264 d_instantiate_new(dentry, inode); 6265 6266 out_unlock: 6267 btrfs_end_transaction(trans); 6268 if (err && inode) { 6269 inode_dec_link_count(inode); 6270 discard_new_inode(inode); 6271 } 6272 btrfs_btree_balance_dirty(fs_info); 6273 return err; 6274 } 6275 6276 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6277 struct dentry *dentry) 6278 { 6279 struct btrfs_trans_handle *trans = NULL; 6280 struct btrfs_root *root = BTRFS_I(dir)->root; 6281 struct inode *inode = d_inode(old_dentry); 6282 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6283 u64 index; 6284 int err; 6285 int drop_inode = 0; 6286 6287 /* do not allow sys_link's with other subvols of the same device */ 6288 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6289 return -EXDEV; 6290 6291 if (inode->i_nlink >= BTRFS_LINK_MAX) 6292 return -EMLINK; 6293 6294 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6295 if (err) 6296 goto fail; 6297 6298 /* 6299 * 2 items for inode and inode ref 6300 * 2 items for dir items 6301 * 1 item for parent inode 6302 * 1 item for orphan item deletion if O_TMPFILE 6303 */ 6304 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6305 if (IS_ERR(trans)) { 6306 err = PTR_ERR(trans); 6307 trans = NULL; 6308 goto fail; 6309 } 6310 6311 /* There are several dir indexes for this inode, clear the cache. */ 6312 BTRFS_I(inode)->dir_index = 0ULL; 6313 inc_nlink(inode); 6314 inode_inc_iversion(inode); 6315 inode->i_ctime = current_time(inode); 6316 ihold(inode); 6317 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6318 6319 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6320 1, index); 6321 6322 if (err) { 6323 drop_inode = 1; 6324 } else { 6325 struct dentry *parent = dentry->d_parent; 6326 int ret; 6327 6328 err = btrfs_update_inode(trans, root, inode); 6329 if (err) 6330 goto fail; 6331 if (inode->i_nlink == 1) { 6332 /* 6333 * If new hard link count is 1, it's a file created 6334 * with open(2) O_TMPFILE flag. 6335 */ 6336 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6337 if (err) 6338 goto fail; 6339 } 6340 d_instantiate(dentry, inode); 6341 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6342 true, NULL); 6343 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6344 err = btrfs_commit_transaction(trans); 6345 trans = NULL; 6346 } 6347 } 6348 6349 fail: 6350 if (trans) 6351 btrfs_end_transaction(trans); 6352 if (drop_inode) { 6353 inode_dec_link_count(inode); 6354 iput(inode); 6355 } 6356 btrfs_btree_balance_dirty(fs_info); 6357 return err; 6358 } 6359 6360 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6361 { 6362 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6363 struct inode *inode = NULL; 6364 struct btrfs_trans_handle *trans; 6365 struct btrfs_root *root = BTRFS_I(dir)->root; 6366 int err = 0; 6367 u64 objectid = 0; 6368 u64 index = 0; 6369 6370 /* 6371 * 2 items for inode and ref 6372 * 2 items for dir items 6373 * 1 for xattr if selinux is on 6374 */ 6375 trans = btrfs_start_transaction(root, 5); 6376 if (IS_ERR(trans)) 6377 return PTR_ERR(trans); 6378 6379 err = btrfs_find_free_ino(root, &objectid); 6380 if (err) 6381 goto out_fail; 6382 6383 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6384 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6385 S_IFDIR | mode, &index); 6386 if (IS_ERR(inode)) { 6387 err = PTR_ERR(inode); 6388 inode = NULL; 6389 goto out_fail; 6390 } 6391 6392 /* these must be set before we unlock the inode */ 6393 inode->i_op = &btrfs_dir_inode_operations; 6394 inode->i_fop = &btrfs_dir_file_operations; 6395 6396 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6397 if (err) 6398 goto out_fail; 6399 6400 btrfs_i_size_write(BTRFS_I(inode), 0); 6401 err = btrfs_update_inode(trans, root, inode); 6402 if (err) 6403 goto out_fail; 6404 6405 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6406 dentry->d_name.name, 6407 dentry->d_name.len, 0, index); 6408 if (err) 6409 goto out_fail; 6410 6411 d_instantiate_new(dentry, inode); 6412 6413 out_fail: 6414 btrfs_end_transaction(trans); 6415 if (err && inode) { 6416 inode_dec_link_count(inode); 6417 discard_new_inode(inode); 6418 } 6419 btrfs_btree_balance_dirty(fs_info); 6420 return err; 6421 } 6422 6423 static noinline int uncompress_inline(struct btrfs_path *path, 6424 struct page *page, 6425 size_t pg_offset, u64 extent_offset, 6426 struct btrfs_file_extent_item *item) 6427 { 6428 int ret; 6429 struct extent_buffer *leaf = path->nodes[0]; 6430 char *tmp; 6431 size_t max_size; 6432 unsigned long inline_size; 6433 unsigned long ptr; 6434 int compress_type; 6435 6436 WARN_ON(pg_offset != 0); 6437 compress_type = btrfs_file_extent_compression(leaf, item); 6438 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6439 inline_size = btrfs_file_extent_inline_item_len(leaf, 6440 btrfs_item_nr(path->slots[0])); 6441 tmp = kmalloc(inline_size, GFP_NOFS); 6442 if (!tmp) 6443 return -ENOMEM; 6444 ptr = btrfs_file_extent_inline_start(item); 6445 6446 read_extent_buffer(leaf, tmp, ptr, inline_size); 6447 6448 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6449 ret = btrfs_decompress(compress_type, tmp, page, 6450 extent_offset, inline_size, max_size); 6451 6452 /* 6453 * decompression code contains a memset to fill in any space between the end 6454 * of the uncompressed data and the end of max_size in case the decompressed 6455 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6456 * the end of an inline extent and the beginning of the next block, so we 6457 * cover that region here. 6458 */ 6459 6460 if (max_size + pg_offset < PAGE_SIZE) { 6461 char *map = kmap(page); 6462 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6463 kunmap(page); 6464 } 6465 kfree(tmp); 6466 return ret; 6467 } 6468 6469 /** 6470 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6471 * @inode: file to search in 6472 * @page: page to read extent data into if the extent is inline 6473 * @pg_offset: offset into @page to copy to 6474 * @start: file offset 6475 * @len: length of range starting at @start 6476 * 6477 * This returns the first &struct extent_map which overlaps with the given 6478 * range, reading it from the B-tree and caching it if necessary. Note that 6479 * there may be more extents which overlap the given range after the returned 6480 * extent_map. 6481 * 6482 * If @page is not NULL and the extent is inline, this also reads the extent 6483 * data directly into the page and marks the extent up to date in the io_tree. 6484 * 6485 * Return: ERR_PTR on error, non-NULL extent_map on success. 6486 */ 6487 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6488 struct page *page, size_t pg_offset, 6489 u64 start, u64 len) 6490 { 6491 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6492 int ret; 6493 int err = 0; 6494 u64 extent_start = 0; 6495 u64 extent_end = 0; 6496 u64 objectid = btrfs_ino(inode); 6497 int extent_type = -1; 6498 struct btrfs_path *path = NULL; 6499 struct btrfs_root *root = inode->root; 6500 struct btrfs_file_extent_item *item; 6501 struct extent_buffer *leaf; 6502 struct btrfs_key found_key; 6503 struct extent_map *em = NULL; 6504 struct extent_map_tree *em_tree = &inode->extent_tree; 6505 struct extent_io_tree *io_tree = &inode->io_tree; 6506 6507 read_lock(&em_tree->lock); 6508 em = lookup_extent_mapping(em_tree, start, len); 6509 read_unlock(&em_tree->lock); 6510 6511 if (em) { 6512 if (em->start > start || em->start + em->len <= start) 6513 free_extent_map(em); 6514 else if (em->block_start == EXTENT_MAP_INLINE && page) 6515 free_extent_map(em); 6516 else 6517 goto out; 6518 } 6519 em = alloc_extent_map(); 6520 if (!em) { 6521 err = -ENOMEM; 6522 goto out; 6523 } 6524 em->start = EXTENT_MAP_HOLE; 6525 em->orig_start = EXTENT_MAP_HOLE; 6526 em->len = (u64)-1; 6527 em->block_len = (u64)-1; 6528 6529 path = btrfs_alloc_path(); 6530 if (!path) { 6531 err = -ENOMEM; 6532 goto out; 6533 } 6534 6535 /* Chances are we'll be called again, so go ahead and do readahead */ 6536 path->reada = READA_FORWARD; 6537 6538 /* 6539 * Unless we're going to uncompress the inline extent, no sleep would 6540 * happen. 6541 */ 6542 path->leave_spinning = 1; 6543 6544 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6545 if (ret < 0) { 6546 err = ret; 6547 goto out; 6548 } else if (ret > 0) { 6549 if (path->slots[0] == 0) 6550 goto not_found; 6551 path->slots[0]--; 6552 } 6553 6554 leaf = path->nodes[0]; 6555 item = btrfs_item_ptr(leaf, path->slots[0], 6556 struct btrfs_file_extent_item); 6557 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6558 if (found_key.objectid != objectid || 6559 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6560 /* 6561 * If we backup past the first extent we want to move forward 6562 * and see if there is an extent in front of us, otherwise we'll 6563 * say there is a hole for our whole search range which can 6564 * cause problems. 6565 */ 6566 extent_end = start; 6567 goto next; 6568 } 6569 6570 extent_type = btrfs_file_extent_type(leaf, item); 6571 extent_start = found_key.offset; 6572 extent_end = btrfs_file_extent_end(path); 6573 if (extent_type == BTRFS_FILE_EXTENT_REG || 6574 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6575 /* Only regular file could have regular/prealloc extent */ 6576 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6577 ret = -EUCLEAN; 6578 btrfs_crit(fs_info, 6579 "regular/prealloc extent found for non-regular inode %llu", 6580 btrfs_ino(inode)); 6581 goto out; 6582 } 6583 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6584 extent_start); 6585 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6586 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6587 path->slots[0], 6588 extent_start); 6589 } 6590 next: 6591 if (start >= extent_end) { 6592 path->slots[0]++; 6593 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6594 ret = btrfs_next_leaf(root, path); 6595 if (ret < 0) { 6596 err = ret; 6597 goto out; 6598 } else if (ret > 0) { 6599 goto not_found; 6600 } 6601 leaf = path->nodes[0]; 6602 } 6603 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6604 if (found_key.objectid != objectid || 6605 found_key.type != BTRFS_EXTENT_DATA_KEY) 6606 goto not_found; 6607 if (start + len <= found_key.offset) 6608 goto not_found; 6609 if (start > found_key.offset) 6610 goto next; 6611 6612 /* New extent overlaps with existing one */ 6613 em->start = start; 6614 em->orig_start = start; 6615 em->len = found_key.offset - start; 6616 em->block_start = EXTENT_MAP_HOLE; 6617 goto insert; 6618 } 6619 6620 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6621 6622 if (extent_type == BTRFS_FILE_EXTENT_REG || 6623 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6624 goto insert; 6625 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6626 unsigned long ptr; 6627 char *map; 6628 size_t size; 6629 size_t extent_offset; 6630 size_t copy_size; 6631 6632 if (!page) 6633 goto out; 6634 6635 size = btrfs_file_extent_ram_bytes(leaf, item); 6636 extent_offset = page_offset(page) + pg_offset - extent_start; 6637 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6638 size - extent_offset); 6639 em->start = extent_start + extent_offset; 6640 em->len = ALIGN(copy_size, fs_info->sectorsize); 6641 em->orig_block_len = em->len; 6642 em->orig_start = em->start; 6643 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6644 6645 btrfs_set_path_blocking(path); 6646 if (!PageUptodate(page)) { 6647 if (btrfs_file_extent_compression(leaf, item) != 6648 BTRFS_COMPRESS_NONE) { 6649 ret = uncompress_inline(path, page, pg_offset, 6650 extent_offset, item); 6651 if (ret) { 6652 err = ret; 6653 goto out; 6654 } 6655 } else { 6656 map = kmap(page); 6657 read_extent_buffer(leaf, map + pg_offset, ptr, 6658 copy_size); 6659 if (pg_offset + copy_size < PAGE_SIZE) { 6660 memset(map + pg_offset + copy_size, 0, 6661 PAGE_SIZE - pg_offset - 6662 copy_size); 6663 } 6664 kunmap(page); 6665 } 6666 flush_dcache_page(page); 6667 } 6668 set_extent_uptodate(io_tree, em->start, 6669 extent_map_end(em) - 1, NULL, GFP_NOFS); 6670 goto insert; 6671 } 6672 not_found: 6673 em->start = start; 6674 em->orig_start = start; 6675 em->len = len; 6676 em->block_start = EXTENT_MAP_HOLE; 6677 insert: 6678 btrfs_release_path(path); 6679 if (em->start > start || extent_map_end(em) <= start) { 6680 btrfs_err(fs_info, 6681 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6682 em->start, em->len, start, len); 6683 err = -EIO; 6684 goto out; 6685 } 6686 6687 err = 0; 6688 write_lock(&em_tree->lock); 6689 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6690 write_unlock(&em_tree->lock); 6691 out: 6692 btrfs_free_path(path); 6693 6694 trace_btrfs_get_extent(root, inode, em); 6695 6696 if (err) { 6697 free_extent_map(em); 6698 return ERR_PTR(err); 6699 } 6700 BUG_ON(!em); /* Error is always set */ 6701 return em; 6702 } 6703 6704 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6705 u64 start, u64 len) 6706 { 6707 struct extent_map *em; 6708 struct extent_map *hole_em = NULL; 6709 u64 delalloc_start = start; 6710 u64 end; 6711 u64 delalloc_len; 6712 u64 delalloc_end; 6713 int err = 0; 6714 6715 em = btrfs_get_extent(inode, NULL, 0, start, len); 6716 if (IS_ERR(em)) 6717 return em; 6718 /* 6719 * If our em maps to: 6720 * - a hole or 6721 * - a pre-alloc extent, 6722 * there might actually be delalloc bytes behind it. 6723 */ 6724 if (em->block_start != EXTENT_MAP_HOLE && 6725 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6726 return em; 6727 else 6728 hole_em = em; 6729 6730 /* check to see if we've wrapped (len == -1 or similar) */ 6731 end = start + len; 6732 if (end < start) 6733 end = (u64)-1; 6734 else 6735 end -= 1; 6736 6737 em = NULL; 6738 6739 /* ok, we didn't find anything, lets look for delalloc */ 6740 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6741 end, len, EXTENT_DELALLOC, 1); 6742 delalloc_end = delalloc_start + delalloc_len; 6743 if (delalloc_end < delalloc_start) 6744 delalloc_end = (u64)-1; 6745 6746 /* 6747 * We didn't find anything useful, return the original results from 6748 * get_extent() 6749 */ 6750 if (delalloc_start > end || delalloc_end <= start) { 6751 em = hole_em; 6752 hole_em = NULL; 6753 goto out; 6754 } 6755 6756 /* 6757 * Adjust the delalloc_start to make sure it doesn't go backwards from 6758 * the start they passed in 6759 */ 6760 delalloc_start = max(start, delalloc_start); 6761 delalloc_len = delalloc_end - delalloc_start; 6762 6763 if (delalloc_len > 0) { 6764 u64 hole_start; 6765 u64 hole_len; 6766 const u64 hole_end = extent_map_end(hole_em); 6767 6768 em = alloc_extent_map(); 6769 if (!em) { 6770 err = -ENOMEM; 6771 goto out; 6772 } 6773 6774 ASSERT(hole_em); 6775 /* 6776 * When btrfs_get_extent can't find anything it returns one 6777 * huge hole 6778 * 6779 * Make sure what it found really fits our range, and adjust to 6780 * make sure it is based on the start from the caller 6781 */ 6782 if (hole_end <= start || hole_em->start > end) { 6783 free_extent_map(hole_em); 6784 hole_em = NULL; 6785 } else { 6786 hole_start = max(hole_em->start, start); 6787 hole_len = hole_end - hole_start; 6788 } 6789 6790 if (hole_em && delalloc_start > hole_start) { 6791 /* 6792 * Our hole starts before our delalloc, so we have to 6793 * return just the parts of the hole that go until the 6794 * delalloc starts 6795 */ 6796 em->len = min(hole_len, delalloc_start - hole_start); 6797 em->start = hole_start; 6798 em->orig_start = hole_start; 6799 /* 6800 * Don't adjust block start at all, it is fixed at 6801 * EXTENT_MAP_HOLE 6802 */ 6803 em->block_start = hole_em->block_start; 6804 em->block_len = hole_len; 6805 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6806 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6807 } else { 6808 /* 6809 * Hole is out of passed range or it starts after 6810 * delalloc range 6811 */ 6812 em->start = delalloc_start; 6813 em->len = delalloc_len; 6814 em->orig_start = delalloc_start; 6815 em->block_start = EXTENT_MAP_DELALLOC; 6816 em->block_len = delalloc_len; 6817 } 6818 } else { 6819 return hole_em; 6820 } 6821 out: 6822 6823 free_extent_map(hole_em); 6824 if (err) { 6825 free_extent_map(em); 6826 return ERR_PTR(err); 6827 } 6828 return em; 6829 } 6830 6831 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 6832 const u64 start, 6833 const u64 len, 6834 const u64 orig_start, 6835 const u64 block_start, 6836 const u64 block_len, 6837 const u64 orig_block_len, 6838 const u64 ram_bytes, 6839 const int type) 6840 { 6841 struct extent_map *em = NULL; 6842 int ret; 6843 6844 if (type != BTRFS_ORDERED_NOCOW) { 6845 em = create_io_em(inode, start, len, orig_start, 6846 block_start, block_len, orig_block_len, 6847 ram_bytes, 6848 BTRFS_COMPRESS_NONE, /* compress_type */ 6849 type); 6850 if (IS_ERR(em)) 6851 goto out; 6852 } 6853 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 6854 len, block_len, type); 6855 if (ret) { 6856 if (em) { 6857 free_extent_map(em); 6858 btrfs_drop_extent_cache(BTRFS_I(inode), start, 6859 start + len - 1, 0); 6860 } 6861 em = ERR_PTR(ret); 6862 } 6863 out: 6864 6865 return em; 6866 } 6867 6868 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6869 u64 start, u64 len) 6870 { 6871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6872 struct btrfs_root *root = BTRFS_I(inode)->root; 6873 struct extent_map *em; 6874 struct btrfs_key ins; 6875 u64 alloc_hint; 6876 int ret; 6877 6878 alloc_hint = get_extent_allocation_hint(inode, start, len); 6879 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6880 0, alloc_hint, &ins, 1, 1); 6881 if (ret) 6882 return ERR_PTR(ret); 6883 6884 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6885 ins.objectid, ins.offset, ins.offset, 6886 ins.offset, BTRFS_ORDERED_REGULAR); 6887 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6888 if (IS_ERR(em)) 6889 btrfs_free_reserved_extent(fs_info, ins.objectid, 6890 ins.offset, 1); 6891 6892 return em; 6893 } 6894 6895 /* 6896 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6897 * block must be cow'd 6898 */ 6899 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6900 u64 *orig_start, u64 *orig_block_len, 6901 u64 *ram_bytes) 6902 { 6903 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6904 struct btrfs_path *path; 6905 int ret; 6906 struct extent_buffer *leaf; 6907 struct btrfs_root *root = BTRFS_I(inode)->root; 6908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6909 struct btrfs_file_extent_item *fi; 6910 struct btrfs_key key; 6911 u64 disk_bytenr; 6912 u64 backref_offset; 6913 u64 extent_end; 6914 u64 num_bytes; 6915 int slot; 6916 int found_type; 6917 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6918 6919 path = btrfs_alloc_path(); 6920 if (!path) 6921 return -ENOMEM; 6922 6923 ret = btrfs_lookup_file_extent(NULL, root, path, 6924 btrfs_ino(BTRFS_I(inode)), offset, 0); 6925 if (ret < 0) 6926 goto out; 6927 6928 slot = path->slots[0]; 6929 if (ret == 1) { 6930 if (slot == 0) { 6931 /* can't find the item, must cow */ 6932 ret = 0; 6933 goto out; 6934 } 6935 slot--; 6936 } 6937 ret = 0; 6938 leaf = path->nodes[0]; 6939 btrfs_item_key_to_cpu(leaf, &key, slot); 6940 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6941 key.type != BTRFS_EXTENT_DATA_KEY) { 6942 /* not our file or wrong item type, must cow */ 6943 goto out; 6944 } 6945 6946 if (key.offset > offset) { 6947 /* Wrong offset, must cow */ 6948 goto out; 6949 } 6950 6951 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6952 found_type = btrfs_file_extent_type(leaf, fi); 6953 if (found_type != BTRFS_FILE_EXTENT_REG && 6954 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6955 /* not a regular extent, must cow */ 6956 goto out; 6957 } 6958 6959 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6960 goto out; 6961 6962 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6963 if (extent_end <= offset) 6964 goto out; 6965 6966 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6967 if (disk_bytenr == 0) 6968 goto out; 6969 6970 if (btrfs_file_extent_compression(leaf, fi) || 6971 btrfs_file_extent_encryption(leaf, fi) || 6972 btrfs_file_extent_other_encoding(leaf, fi)) 6973 goto out; 6974 6975 /* 6976 * Do the same check as in btrfs_cross_ref_exist but without the 6977 * unnecessary search. 6978 */ 6979 if (btrfs_file_extent_generation(leaf, fi) <= 6980 btrfs_root_last_snapshot(&root->root_item)) 6981 goto out; 6982 6983 backref_offset = btrfs_file_extent_offset(leaf, fi); 6984 6985 if (orig_start) { 6986 *orig_start = key.offset - backref_offset; 6987 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6988 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6989 } 6990 6991 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 6992 goto out; 6993 6994 num_bytes = min(offset + *len, extent_end) - offset; 6995 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6996 u64 range_end; 6997 6998 range_end = round_up(offset + num_bytes, 6999 root->fs_info->sectorsize) - 1; 7000 ret = test_range_bit(io_tree, offset, range_end, 7001 EXTENT_DELALLOC, 0, NULL); 7002 if (ret) { 7003 ret = -EAGAIN; 7004 goto out; 7005 } 7006 } 7007 7008 btrfs_release_path(path); 7009 7010 /* 7011 * look for other files referencing this extent, if we 7012 * find any we must cow 7013 */ 7014 7015 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7016 key.offset - backref_offset, disk_bytenr); 7017 if (ret) { 7018 ret = 0; 7019 goto out; 7020 } 7021 7022 /* 7023 * adjust disk_bytenr and num_bytes to cover just the bytes 7024 * in this extent we are about to write. If there 7025 * are any csums in that range we have to cow in order 7026 * to keep the csums correct 7027 */ 7028 disk_bytenr += backref_offset; 7029 disk_bytenr += offset - key.offset; 7030 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7031 goto out; 7032 /* 7033 * all of the above have passed, it is safe to overwrite this extent 7034 * without cow 7035 */ 7036 *len = num_bytes; 7037 ret = 1; 7038 out: 7039 btrfs_free_path(path); 7040 return ret; 7041 } 7042 7043 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7044 struct extent_state **cached_state, bool writing) 7045 { 7046 struct btrfs_ordered_extent *ordered; 7047 int ret = 0; 7048 7049 while (1) { 7050 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7051 cached_state); 7052 /* 7053 * We're concerned with the entire range that we're going to be 7054 * doing DIO to, so we need to make sure there's no ordered 7055 * extents in this range. 7056 */ 7057 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7058 lockend - lockstart + 1); 7059 7060 /* 7061 * We need to make sure there are no buffered pages in this 7062 * range either, we could have raced between the invalidate in 7063 * generic_file_direct_write and locking the extent. The 7064 * invalidate needs to happen so that reads after a write do not 7065 * get stale data. 7066 */ 7067 if (!ordered && 7068 (!writing || !filemap_range_has_page(inode->i_mapping, 7069 lockstart, lockend))) 7070 break; 7071 7072 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7073 cached_state); 7074 7075 if (ordered) { 7076 /* 7077 * If we are doing a DIO read and the ordered extent we 7078 * found is for a buffered write, we can not wait for it 7079 * to complete and retry, because if we do so we can 7080 * deadlock with concurrent buffered writes on page 7081 * locks. This happens only if our DIO read covers more 7082 * than one extent map, if at this point has already 7083 * created an ordered extent for a previous extent map 7084 * and locked its range in the inode's io tree, and a 7085 * concurrent write against that previous extent map's 7086 * range and this range started (we unlock the ranges 7087 * in the io tree only when the bios complete and 7088 * buffered writes always lock pages before attempting 7089 * to lock range in the io tree). 7090 */ 7091 if (writing || 7092 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7093 btrfs_start_ordered_extent(inode, ordered, 1); 7094 else 7095 ret = -ENOTBLK; 7096 btrfs_put_ordered_extent(ordered); 7097 } else { 7098 /* 7099 * We could trigger writeback for this range (and wait 7100 * for it to complete) and then invalidate the pages for 7101 * this range (through invalidate_inode_pages2_range()), 7102 * but that can lead us to a deadlock with a concurrent 7103 * call to readahead (a buffered read or a defrag call 7104 * triggered a readahead) on a page lock due to an 7105 * ordered dio extent we created before but did not have 7106 * yet a corresponding bio submitted (whence it can not 7107 * complete), which makes readahead wait for that 7108 * ordered extent to complete while holding a lock on 7109 * that page. 7110 */ 7111 ret = -ENOTBLK; 7112 } 7113 7114 if (ret) 7115 break; 7116 7117 cond_resched(); 7118 } 7119 7120 return ret; 7121 } 7122 7123 /* The callers of this must take lock_extent() */ 7124 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7125 u64 orig_start, u64 block_start, 7126 u64 block_len, u64 orig_block_len, 7127 u64 ram_bytes, int compress_type, 7128 int type) 7129 { 7130 struct extent_map_tree *em_tree; 7131 struct extent_map *em; 7132 int ret; 7133 7134 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7135 type == BTRFS_ORDERED_COMPRESSED || 7136 type == BTRFS_ORDERED_NOCOW || 7137 type == BTRFS_ORDERED_REGULAR); 7138 7139 em_tree = &BTRFS_I(inode)->extent_tree; 7140 em = alloc_extent_map(); 7141 if (!em) 7142 return ERR_PTR(-ENOMEM); 7143 7144 em->start = start; 7145 em->orig_start = orig_start; 7146 em->len = len; 7147 em->block_len = block_len; 7148 em->block_start = block_start; 7149 em->orig_block_len = orig_block_len; 7150 em->ram_bytes = ram_bytes; 7151 em->generation = -1; 7152 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7153 if (type == BTRFS_ORDERED_PREALLOC) { 7154 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7155 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7156 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7157 em->compress_type = compress_type; 7158 } 7159 7160 do { 7161 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7162 em->start + em->len - 1, 0); 7163 write_lock(&em_tree->lock); 7164 ret = add_extent_mapping(em_tree, em, 1); 7165 write_unlock(&em_tree->lock); 7166 /* 7167 * The caller has taken lock_extent(), who could race with us 7168 * to add em? 7169 */ 7170 } while (ret == -EEXIST); 7171 7172 if (ret) { 7173 free_extent_map(em); 7174 return ERR_PTR(ret); 7175 } 7176 7177 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7178 return em; 7179 } 7180 7181 7182 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7183 struct inode *inode, 7184 struct btrfs_dio_data *dio_data, 7185 u64 start, u64 len) 7186 { 7187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7188 struct extent_map *em = *map; 7189 int ret = 0; 7190 7191 /* 7192 * We don't allocate a new extent in the following cases 7193 * 7194 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7195 * existing extent. 7196 * 2) The extent is marked as PREALLOC. We're good to go here and can 7197 * just use the extent. 7198 * 7199 */ 7200 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7201 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7202 em->block_start != EXTENT_MAP_HOLE)) { 7203 int type; 7204 u64 block_start, orig_start, orig_block_len, ram_bytes; 7205 7206 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7207 type = BTRFS_ORDERED_PREALLOC; 7208 else 7209 type = BTRFS_ORDERED_NOCOW; 7210 len = min(len, em->len - (start - em->start)); 7211 block_start = em->block_start + (start - em->start); 7212 7213 if (can_nocow_extent(inode, start, &len, &orig_start, 7214 &orig_block_len, &ram_bytes) == 1 && 7215 btrfs_inc_nocow_writers(fs_info, block_start)) { 7216 struct extent_map *em2; 7217 7218 em2 = btrfs_create_dio_extent(inode, start, len, 7219 orig_start, block_start, 7220 len, orig_block_len, 7221 ram_bytes, type); 7222 btrfs_dec_nocow_writers(fs_info, block_start); 7223 if (type == BTRFS_ORDERED_PREALLOC) { 7224 free_extent_map(em); 7225 *map = em = em2; 7226 } 7227 7228 if (em2 && IS_ERR(em2)) { 7229 ret = PTR_ERR(em2); 7230 goto out; 7231 } 7232 /* 7233 * For inode marked NODATACOW or extent marked PREALLOC, 7234 * use the existing or preallocated extent, so does not 7235 * need to adjust btrfs_space_info's bytes_may_use. 7236 */ 7237 btrfs_free_reserved_data_space_noquota(inode, start, 7238 len); 7239 goto skip_cow; 7240 } 7241 } 7242 7243 /* this will cow the extent */ 7244 free_extent_map(em); 7245 *map = em = btrfs_new_extent_direct(inode, start, len); 7246 if (IS_ERR(em)) { 7247 ret = PTR_ERR(em); 7248 goto out; 7249 } 7250 7251 len = min(len, em->len - (start - em->start)); 7252 7253 skip_cow: 7254 /* 7255 * Need to update the i_size under the extent lock so buffered 7256 * readers will get the updated i_size when we unlock. 7257 */ 7258 if (start + len > i_size_read(inode)) 7259 i_size_write(inode, start + len); 7260 7261 dio_data->reserve -= len; 7262 out: 7263 return ret; 7264 } 7265 7266 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7267 loff_t length, unsigned flags, struct iomap *iomap, 7268 struct iomap *srcmap) 7269 { 7270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7271 struct extent_map *em; 7272 struct extent_state *cached_state = NULL; 7273 struct btrfs_dio_data *dio_data = NULL; 7274 u64 lockstart, lockend; 7275 const bool write = !!(flags & IOMAP_WRITE); 7276 int ret = 0; 7277 u64 len = length; 7278 bool unlock_extents = false; 7279 7280 if (!write) 7281 len = min_t(u64, len, fs_info->sectorsize); 7282 7283 lockstart = start; 7284 lockend = start + len - 1; 7285 7286 /* 7287 * The generic stuff only does filemap_write_and_wait_range, which 7288 * isn't enough if we've written compressed pages to this area, so we 7289 * need to flush the dirty pages again to make absolutely sure that any 7290 * outstanding dirty pages are on disk. 7291 */ 7292 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7293 &BTRFS_I(inode)->runtime_flags)) 7294 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7295 start + length - 1); 7296 7297 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7298 if (!dio_data) 7299 return -ENOMEM; 7300 7301 dio_data->length = length; 7302 if (write) { 7303 dio_data->reserve = round_up(length, fs_info->sectorsize); 7304 ret = btrfs_delalloc_reserve_space(inode, 7305 &dio_data->data_reserved, 7306 start, dio_data->reserve); 7307 if (ret) { 7308 extent_changeset_free(dio_data->data_reserved); 7309 kfree(dio_data); 7310 return ret; 7311 } 7312 } 7313 iomap->private = dio_data; 7314 7315 7316 /* 7317 * If this errors out it's because we couldn't invalidate pagecache for 7318 * this range and we need to fallback to buffered. 7319 */ 7320 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7321 ret = -ENOTBLK; 7322 goto err; 7323 } 7324 7325 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7326 if (IS_ERR(em)) { 7327 ret = PTR_ERR(em); 7328 goto unlock_err; 7329 } 7330 7331 /* 7332 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7333 * io. INLINE is special, and we could probably kludge it in here, but 7334 * it's still buffered so for safety lets just fall back to the generic 7335 * buffered path. 7336 * 7337 * For COMPRESSED we _have_ to read the entire extent in so we can 7338 * decompress it, so there will be buffering required no matter what we 7339 * do, so go ahead and fallback to buffered. 7340 * 7341 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7342 * to buffered IO. Don't blame me, this is the price we pay for using 7343 * the generic code. 7344 */ 7345 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7346 em->block_start == EXTENT_MAP_INLINE) { 7347 free_extent_map(em); 7348 ret = -ENOTBLK; 7349 goto unlock_err; 7350 } 7351 7352 len = min(len, em->len - (start - em->start)); 7353 if (write) { 7354 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7355 start, len); 7356 if (ret < 0) 7357 goto unlock_err; 7358 unlock_extents = true; 7359 /* Recalc len in case the new em is smaller than requested */ 7360 len = min(len, em->len - (start - em->start)); 7361 } else { 7362 /* 7363 * We need to unlock only the end area that we aren't using. 7364 * The rest is going to be unlocked by the endio routine. 7365 */ 7366 lockstart = start + len; 7367 if (lockstart < lockend) 7368 unlock_extents = true; 7369 } 7370 7371 if (unlock_extents) 7372 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7373 lockstart, lockend, &cached_state); 7374 else 7375 free_extent_state(cached_state); 7376 7377 /* 7378 * Translate extent map information to iomap. 7379 * We trim the extents (and move the addr) even though iomap code does 7380 * that, since we have locked only the parts we are performing I/O in. 7381 */ 7382 if ((em->block_start == EXTENT_MAP_HOLE) || 7383 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7384 iomap->addr = IOMAP_NULL_ADDR; 7385 iomap->type = IOMAP_HOLE; 7386 } else { 7387 iomap->addr = em->block_start + (start - em->start); 7388 iomap->type = IOMAP_MAPPED; 7389 } 7390 iomap->offset = start; 7391 iomap->bdev = fs_info->fs_devices->latest_bdev; 7392 iomap->length = len; 7393 7394 free_extent_map(em); 7395 7396 return 0; 7397 7398 unlock_err: 7399 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7400 &cached_state); 7401 err: 7402 if (dio_data) { 7403 btrfs_delalloc_release_space(inode, dio_data->data_reserved, 7404 start, dio_data->reserve, true); 7405 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7406 extent_changeset_free(dio_data->data_reserved); 7407 kfree(dio_data); 7408 } 7409 return ret; 7410 } 7411 7412 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7413 ssize_t written, unsigned flags, struct iomap *iomap) 7414 { 7415 int ret = 0; 7416 struct btrfs_dio_data *dio_data = iomap->private; 7417 size_t submitted = dio_data->submitted; 7418 const bool write = !!(flags & IOMAP_WRITE); 7419 7420 if (!write && (iomap->type == IOMAP_HOLE)) { 7421 /* If reading from a hole, unlock and return */ 7422 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7423 goto out; 7424 } 7425 7426 if (submitted < length) { 7427 pos += submitted; 7428 length -= submitted; 7429 if (write) 7430 __endio_write_update_ordered(inode, pos, length, false); 7431 else 7432 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7433 pos + length - 1); 7434 ret = -ENOTBLK; 7435 } 7436 7437 if (write) { 7438 if (dio_data->reserve) 7439 btrfs_delalloc_release_space(inode, 7440 dio_data->data_reserved, pos, 7441 dio_data->reserve, true); 7442 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7443 extent_changeset_free(dio_data->data_reserved); 7444 } 7445 out: 7446 kfree(dio_data); 7447 iomap->private = NULL; 7448 7449 return ret; 7450 } 7451 7452 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7453 { 7454 /* 7455 * This implies a barrier so that stores to dio_bio->bi_status before 7456 * this and loads of dio_bio->bi_status after this are fully ordered. 7457 */ 7458 if (!refcount_dec_and_test(&dip->refs)) 7459 return; 7460 7461 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { 7462 __endio_write_update_ordered(dip->inode, dip->logical_offset, 7463 dip->bytes, 7464 !dip->dio_bio->bi_status); 7465 } else { 7466 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7467 dip->logical_offset, 7468 dip->logical_offset + dip->bytes - 1); 7469 } 7470 7471 bio_endio(dip->dio_bio); 7472 kfree(dip); 7473 } 7474 7475 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7476 int mirror_num, 7477 unsigned long bio_flags) 7478 { 7479 struct btrfs_dio_private *dip = bio->bi_private; 7480 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7481 blk_status_t ret; 7482 7483 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7484 7485 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7486 if (ret) 7487 return ret; 7488 7489 refcount_inc(&dip->refs); 7490 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7491 if (ret) 7492 refcount_dec(&dip->refs); 7493 return ret; 7494 } 7495 7496 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7497 struct btrfs_io_bio *io_bio, 7498 const bool uptodate) 7499 { 7500 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7501 const u32 sectorsize = fs_info->sectorsize; 7502 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7503 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7504 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7505 struct bio_vec bvec; 7506 struct bvec_iter iter; 7507 u64 start = io_bio->logical; 7508 int icsum = 0; 7509 blk_status_t err = BLK_STS_OK; 7510 7511 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7512 unsigned int i, nr_sectors, pgoff; 7513 7514 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7515 pgoff = bvec.bv_offset; 7516 for (i = 0; i < nr_sectors; i++) { 7517 ASSERT(pgoff < PAGE_SIZE); 7518 if (uptodate && 7519 (!csum || !check_data_csum(inode, io_bio, icsum, 7520 bvec.bv_page, pgoff, 7521 start, sectorsize))) { 7522 clean_io_failure(fs_info, failure_tree, io_tree, 7523 start, bvec.bv_page, 7524 btrfs_ino(BTRFS_I(inode)), 7525 pgoff); 7526 } else { 7527 blk_status_t status; 7528 7529 status = btrfs_submit_read_repair(inode, 7530 &io_bio->bio, 7531 start - io_bio->logical, 7532 bvec.bv_page, pgoff, 7533 start, 7534 start + sectorsize - 1, 7535 io_bio->mirror_num, 7536 submit_dio_repair_bio); 7537 if (status) 7538 err = status; 7539 } 7540 start += sectorsize; 7541 icsum++; 7542 pgoff += sectorsize; 7543 } 7544 } 7545 return err; 7546 } 7547 7548 static void __endio_write_update_ordered(struct inode *inode, 7549 const u64 offset, const u64 bytes, 7550 const bool uptodate) 7551 { 7552 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7553 struct btrfs_ordered_extent *ordered = NULL; 7554 struct btrfs_workqueue *wq; 7555 u64 ordered_offset = offset; 7556 u64 ordered_bytes = bytes; 7557 u64 last_offset; 7558 7559 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 7560 wq = fs_info->endio_freespace_worker; 7561 else 7562 wq = fs_info->endio_write_workers; 7563 7564 while (ordered_offset < offset + bytes) { 7565 last_offset = ordered_offset; 7566 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7567 &ordered_offset, 7568 ordered_bytes, 7569 uptodate)) { 7570 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7571 NULL); 7572 btrfs_queue_work(wq, &ordered->work); 7573 } 7574 /* 7575 * If btrfs_dec_test_ordered_pending does not find any ordered 7576 * extent in the range, we can exit. 7577 */ 7578 if (ordered_offset == last_offset) 7579 return; 7580 /* 7581 * Our bio might span multiple ordered extents. In this case 7582 * we keep going until we have accounted the whole dio. 7583 */ 7584 if (ordered_offset < offset + bytes) { 7585 ordered_bytes = offset + bytes - ordered_offset; 7586 ordered = NULL; 7587 } 7588 } 7589 } 7590 7591 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7592 struct bio *bio, u64 offset) 7593 { 7594 struct inode *inode = private_data; 7595 blk_status_t ret; 7596 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 7597 BUG_ON(ret); /* -ENOMEM */ 7598 return 0; 7599 } 7600 7601 static void btrfs_end_dio_bio(struct bio *bio) 7602 { 7603 struct btrfs_dio_private *dip = bio->bi_private; 7604 blk_status_t err = bio->bi_status; 7605 7606 if (err) 7607 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7608 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7609 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7610 bio->bi_opf, 7611 (unsigned long long)bio->bi_iter.bi_sector, 7612 bio->bi_iter.bi_size, err); 7613 7614 if (bio_op(bio) == REQ_OP_READ) { 7615 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 7616 !err); 7617 } 7618 7619 if (err) 7620 dip->dio_bio->bi_status = err; 7621 7622 bio_put(bio); 7623 btrfs_dio_private_put(dip); 7624 } 7625 7626 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7627 struct inode *inode, u64 file_offset, int async_submit) 7628 { 7629 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7630 struct btrfs_dio_private *dip = bio->bi_private; 7631 bool write = bio_op(bio) == REQ_OP_WRITE; 7632 blk_status_t ret; 7633 7634 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7635 if (async_submit) 7636 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7637 7638 if (!write) { 7639 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7640 if (ret) 7641 goto err; 7642 } 7643 7644 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7645 goto map; 7646 7647 if (write && async_submit) { 7648 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7649 file_offset, inode, 7650 btrfs_submit_bio_start_direct_io); 7651 goto err; 7652 } else if (write) { 7653 /* 7654 * If we aren't doing async submit, calculate the csum of the 7655 * bio now. 7656 */ 7657 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 7658 if (ret) 7659 goto err; 7660 } else { 7661 u64 csum_offset; 7662 7663 csum_offset = file_offset - dip->logical_offset; 7664 csum_offset >>= inode->i_sb->s_blocksize_bits; 7665 csum_offset *= btrfs_super_csum_size(fs_info->super_copy); 7666 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 7667 } 7668 map: 7669 ret = btrfs_map_bio(fs_info, bio, 0); 7670 err: 7671 return ret; 7672 } 7673 7674 /* 7675 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7676 * or ordered extents whether or not we submit any bios. 7677 */ 7678 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7679 struct inode *inode, 7680 loff_t file_offset) 7681 { 7682 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7683 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7684 size_t dip_size; 7685 struct btrfs_dio_private *dip; 7686 7687 dip_size = sizeof(*dip); 7688 if (!write && csum) { 7689 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7690 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 7691 size_t nblocks; 7692 7693 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 7694 dip_size += csum_size * nblocks; 7695 } 7696 7697 dip = kzalloc(dip_size, GFP_NOFS); 7698 if (!dip) 7699 return NULL; 7700 7701 dip->inode = inode; 7702 dip->logical_offset = file_offset; 7703 dip->bytes = dio_bio->bi_iter.bi_size; 7704 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7705 dip->dio_bio = dio_bio; 7706 refcount_set(&dip->refs, 1); 7707 return dip; 7708 } 7709 7710 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 7711 struct bio *dio_bio, loff_t file_offset) 7712 { 7713 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7714 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7716 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7717 BTRFS_BLOCK_GROUP_RAID56_MASK); 7718 struct btrfs_dio_private *dip; 7719 struct bio *bio; 7720 u64 start_sector; 7721 int async_submit = 0; 7722 u64 submit_len; 7723 int clone_offset = 0; 7724 int clone_len; 7725 int ret; 7726 blk_status_t status; 7727 struct btrfs_io_geometry geom; 7728 struct btrfs_dio_data *dio_data = iomap->private; 7729 7730 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7731 if (!dip) { 7732 if (!write) { 7733 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7734 file_offset + dio_bio->bi_iter.bi_size - 1); 7735 } 7736 dio_bio->bi_status = BLK_STS_RESOURCE; 7737 bio_endio(dio_bio); 7738 return BLK_QC_T_NONE; 7739 } 7740 7741 if (!write && csum) { 7742 /* 7743 * Load the csums up front to reduce csum tree searches and 7744 * contention when submitting bios. 7745 */ 7746 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, 7747 dip->csums); 7748 if (status != BLK_STS_OK) 7749 goto out_err; 7750 } 7751 7752 start_sector = dio_bio->bi_iter.bi_sector; 7753 submit_len = dio_bio->bi_iter.bi_size; 7754 7755 do { 7756 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), 7757 start_sector << 9, submit_len, 7758 &geom); 7759 if (ret) { 7760 status = errno_to_blk_status(ret); 7761 goto out_err; 7762 } 7763 ASSERT(geom.len <= INT_MAX); 7764 7765 clone_len = min_t(int, submit_len, geom.len); 7766 7767 /* 7768 * This will never fail as it's passing GPF_NOFS and 7769 * the allocation is backed by btrfs_bioset. 7770 */ 7771 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 7772 bio->bi_private = dip; 7773 bio->bi_end_io = btrfs_end_dio_bio; 7774 btrfs_io_bio(bio)->logical = file_offset; 7775 7776 ASSERT(submit_len >= clone_len); 7777 submit_len -= clone_len; 7778 7779 /* 7780 * Increase the count before we submit the bio so we know 7781 * the end IO handler won't happen before we increase the 7782 * count. Otherwise, the dip might get freed before we're 7783 * done setting it up. 7784 * 7785 * We transfer the initial reference to the last bio, so we 7786 * don't need to increment the reference count for the last one. 7787 */ 7788 if (submit_len > 0) { 7789 refcount_inc(&dip->refs); 7790 /* 7791 * If we are submitting more than one bio, submit them 7792 * all asynchronously. The exception is RAID 5 or 6, as 7793 * asynchronous checksums make it difficult to collect 7794 * full stripe writes. 7795 */ 7796 if (!raid56) 7797 async_submit = 1; 7798 } 7799 7800 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7801 async_submit); 7802 if (status) { 7803 bio_put(bio); 7804 if (submit_len > 0) 7805 refcount_dec(&dip->refs); 7806 goto out_err; 7807 } 7808 7809 dio_data->submitted += clone_len; 7810 clone_offset += clone_len; 7811 start_sector += clone_len >> 9; 7812 file_offset += clone_len; 7813 } while (submit_len > 0); 7814 return BLK_QC_T_NONE; 7815 7816 out_err: 7817 dip->dio_bio->bi_status = status; 7818 btrfs_dio_private_put(dip); 7819 return BLK_QC_T_NONE; 7820 } 7821 7822 const struct iomap_ops btrfs_dio_iomap_ops = { 7823 .iomap_begin = btrfs_dio_iomap_begin, 7824 .iomap_end = btrfs_dio_iomap_end, 7825 }; 7826 7827 const struct iomap_dio_ops btrfs_dops = { 7828 .submit_io = btrfs_submit_direct, 7829 }; 7830 7831 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7832 __u64 start, __u64 len) 7833 { 7834 int ret; 7835 7836 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7837 if (ret) 7838 return ret; 7839 7840 return extent_fiemap(inode, fieinfo, start, len); 7841 } 7842 7843 int btrfs_readpage(struct file *file, struct page *page) 7844 { 7845 return extent_read_full_page(page, btrfs_get_extent, 0); 7846 } 7847 7848 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7849 { 7850 struct inode *inode = page->mapping->host; 7851 int ret; 7852 7853 if (current->flags & PF_MEMALLOC) { 7854 redirty_page_for_writepage(wbc, page); 7855 unlock_page(page); 7856 return 0; 7857 } 7858 7859 /* 7860 * If we are under memory pressure we will call this directly from the 7861 * VM, we need to make sure we have the inode referenced for the ordered 7862 * extent. If not just return like we didn't do anything. 7863 */ 7864 if (!igrab(inode)) { 7865 redirty_page_for_writepage(wbc, page); 7866 return AOP_WRITEPAGE_ACTIVATE; 7867 } 7868 ret = extent_write_full_page(page, wbc); 7869 btrfs_add_delayed_iput(inode); 7870 return ret; 7871 } 7872 7873 static int btrfs_writepages(struct address_space *mapping, 7874 struct writeback_control *wbc) 7875 { 7876 return extent_writepages(mapping, wbc); 7877 } 7878 7879 static void btrfs_readahead(struct readahead_control *rac) 7880 { 7881 extent_readahead(rac); 7882 } 7883 7884 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7885 { 7886 int ret = try_release_extent_mapping(page, gfp_flags); 7887 if (ret == 1) 7888 detach_page_private(page); 7889 return ret; 7890 } 7891 7892 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7893 { 7894 if (PageWriteback(page) || PageDirty(page)) 7895 return 0; 7896 return __btrfs_releasepage(page, gfp_flags); 7897 } 7898 7899 #ifdef CONFIG_MIGRATION 7900 static int btrfs_migratepage(struct address_space *mapping, 7901 struct page *newpage, struct page *page, 7902 enum migrate_mode mode) 7903 { 7904 int ret; 7905 7906 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 7907 if (ret != MIGRATEPAGE_SUCCESS) 7908 return ret; 7909 7910 if (page_has_private(page)) 7911 attach_page_private(newpage, detach_page_private(page)); 7912 7913 if (PagePrivate2(page)) { 7914 ClearPagePrivate2(page); 7915 SetPagePrivate2(newpage); 7916 } 7917 7918 if (mode != MIGRATE_SYNC_NO_COPY) 7919 migrate_page_copy(newpage, page); 7920 else 7921 migrate_page_states(newpage, page); 7922 return MIGRATEPAGE_SUCCESS; 7923 } 7924 #endif 7925 7926 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7927 unsigned int length) 7928 { 7929 struct inode *inode = page->mapping->host; 7930 struct extent_io_tree *tree; 7931 struct btrfs_ordered_extent *ordered; 7932 struct extent_state *cached_state = NULL; 7933 u64 page_start = page_offset(page); 7934 u64 page_end = page_start + PAGE_SIZE - 1; 7935 u64 start; 7936 u64 end; 7937 int inode_evicting = inode->i_state & I_FREEING; 7938 7939 /* 7940 * we have the page locked, so new writeback can't start, 7941 * and the dirty bit won't be cleared while we are here. 7942 * 7943 * Wait for IO on this page so that we can safely clear 7944 * the PagePrivate2 bit and do ordered accounting 7945 */ 7946 wait_on_page_writeback(page); 7947 7948 tree = &BTRFS_I(inode)->io_tree; 7949 if (offset) { 7950 btrfs_releasepage(page, GFP_NOFS); 7951 return; 7952 } 7953 7954 if (!inode_evicting) 7955 lock_extent_bits(tree, page_start, page_end, &cached_state); 7956 again: 7957 start = page_start; 7958 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 7959 page_end - start + 1); 7960 if (ordered) { 7961 end = min(page_end, 7962 ordered->file_offset + ordered->num_bytes - 1); 7963 /* 7964 * IO on this page will never be started, so we need 7965 * to account for any ordered extents now 7966 */ 7967 if (!inode_evicting) 7968 clear_extent_bit(tree, start, end, 7969 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 7970 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7971 EXTENT_DEFRAG, 1, 0, &cached_state); 7972 /* 7973 * whoever cleared the private bit is responsible 7974 * for the finish_ordered_io 7975 */ 7976 if (TestClearPagePrivate2(page)) { 7977 struct btrfs_ordered_inode_tree *tree; 7978 u64 new_len; 7979 7980 tree = &BTRFS_I(inode)->ordered_tree; 7981 7982 spin_lock_irq(&tree->lock); 7983 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7984 new_len = start - ordered->file_offset; 7985 if (new_len < ordered->truncated_len) 7986 ordered->truncated_len = new_len; 7987 spin_unlock_irq(&tree->lock); 7988 7989 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7990 start, 7991 end - start + 1, 1)) 7992 btrfs_finish_ordered_io(ordered); 7993 } 7994 btrfs_put_ordered_extent(ordered); 7995 if (!inode_evicting) { 7996 cached_state = NULL; 7997 lock_extent_bits(tree, start, end, 7998 &cached_state); 7999 } 8000 8001 start = end + 1; 8002 if (start < page_end) 8003 goto again; 8004 } 8005 8006 /* 8007 * Qgroup reserved space handler 8008 * Page here will be either 8009 * 1) Already written to disk 8010 * In this case, its reserved space is released from data rsv map 8011 * and will be freed by delayed_ref handler finally. 8012 * So even we call qgroup_free_data(), it won't decrease reserved 8013 * space. 8014 * 2) Not written to disk 8015 * This means the reserved space should be freed here. However, 8016 * if a truncate invalidates the page (by clearing PageDirty) 8017 * and the page is accounted for while allocating extent 8018 * in btrfs_check_data_free_space() we let delayed_ref to 8019 * free the entire extent. 8020 */ 8021 if (PageDirty(page)) 8022 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8023 if (!inode_evicting) { 8024 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8025 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8026 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8027 &cached_state); 8028 8029 __btrfs_releasepage(page, GFP_NOFS); 8030 } 8031 8032 ClearPageChecked(page); 8033 detach_page_private(page); 8034 } 8035 8036 /* 8037 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8038 * called from a page fault handler when a page is first dirtied. Hence we must 8039 * be careful to check for EOF conditions here. We set the page up correctly 8040 * for a written page which means we get ENOSPC checking when writing into 8041 * holes and correct delalloc and unwritten extent mapping on filesystems that 8042 * support these features. 8043 * 8044 * We are not allowed to take the i_mutex here so we have to play games to 8045 * protect against truncate races as the page could now be beyond EOF. Because 8046 * truncate_setsize() writes the inode size before removing pages, once we have 8047 * the page lock we can determine safely if the page is beyond EOF. If it is not 8048 * beyond EOF, then the page is guaranteed safe against truncation until we 8049 * unlock the page. 8050 */ 8051 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8052 { 8053 struct page *page = vmf->page; 8054 struct inode *inode = file_inode(vmf->vma->vm_file); 8055 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8056 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8057 struct btrfs_ordered_extent *ordered; 8058 struct extent_state *cached_state = NULL; 8059 struct extent_changeset *data_reserved = NULL; 8060 char *kaddr; 8061 unsigned long zero_start; 8062 loff_t size; 8063 vm_fault_t ret; 8064 int ret2; 8065 int reserved = 0; 8066 u64 reserved_space; 8067 u64 page_start; 8068 u64 page_end; 8069 u64 end; 8070 8071 reserved_space = PAGE_SIZE; 8072 8073 sb_start_pagefault(inode->i_sb); 8074 page_start = page_offset(page); 8075 page_end = page_start + PAGE_SIZE - 1; 8076 end = page_end; 8077 8078 /* 8079 * Reserving delalloc space after obtaining the page lock can lead to 8080 * deadlock. For example, if a dirty page is locked by this function 8081 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8082 * dirty page write out, then the btrfs_writepage() function could 8083 * end up waiting indefinitely to get a lock on the page currently 8084 * being processed by btrfs_page_mkwrite() function. 8085 */ 8086 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8087 reserved_space); 8088 if (!ret2) { 8089 ret2 = file_update_time(vmf->vma->vm_file); 8090 reserved = 1; 8091 } 8092 if (ret2) { 8093 ret = vmf_error(ret2); 8094 if (reserved) 8095 goto out; 8096 goto out_noreserve; 8097 } 8098 8099 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8100 again: 8101 lock_page(page); 8102 size = i_size_read(inode); 8103 8104 if ((page->mapping != inode->i_mapping) || 8105 (page_start >= size)) { 8106 /* page got truncated out from underneath us */ 8107 goto out_unlock; 8108 } 8109 wait_on_page_writeback(page); 8110 8111 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8112 set_page_extent_mapped(page); 8113 8114 /* 8115 * we can't set the delalloc bits if there are pending ordered 8116 * extents. Drop our locks and wait for them to finish 8117 */ 8118 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8119 PAGE_SIZE); 8120 if (ordered) { 8121 unlock_extent_cached(io_tree, page_start, page_end, 8122 &cached_state); 8123 unlock_page(page); 8124 btrfs_start_ordered_extent(inode, ordered, 1); 8125 btrfs_put_ordered_extent(ordered); 8126 goto again; 8127 } 8128 8129 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8130 reserved_space = round_up(size - page_start, 8131 fs_info->sectorsize); 8132 if (reserved_space < PAGE_SIZE) { 8133 end = page_start + reserved_space - 1; 8134 btrfs_delalloc_release_space(inode, data_reserved, 8135 page_start, PAGE_SIZE - reserved_space, 8136 true); 8137 } 8138 } 8139 8140 /* 8141 * page_mkwrite gets called when the page is firstly dirtied after it's 8142 * faulted in, but write(2) could also dirty a page and set delalloc 8143 * bits, thus in this case for space account reason, we still need to 8144 * clear any delalloc bits within this page range since we have to 8145 * reserve data&meta space before lock_page() (see above comments). 8146 */ 8147 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8148 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8149 EXTENT_DEFRAG, 0, 0, &cached_state); 8150 8151 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8152 &cached_state); 8153 if (ret2) { 8154 unlock_extent_cached(io_tree, page_start, page_end, 8155 &cached_state); 8156 ret = VM_FAULT_SIGBUS; 8157 goto out_unlock; 8158 } 8159 8160 /* page is wholly or partially inside EOF */ 8161 if (page_start + PAGE_SIZE > size) 8162 zero_start = offset_in_page(size); 8163 else 8164 zero_start = PAGE_SIZE; 8165 8166 if (zero_start != PAGE_SIZE) { 8167 kaddr = kmap(page); 8168 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8169 flush_dcache_page(page); 8170 kunmap(page); 8171 } 8172 ClearPageChecked(page); 8173 set_page_dirty(page); 8174 SetPageUptodate(page); 8175 8176 BTRFS_I(inode)->last_trans = fs_info->generation; 8177 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8178 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8179 8180 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8181 8182 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8183 sb_end_pagefault(inode->i_sb); 8184 extent_changeset_free(data_reserved); 8185 return VM_FAULT_LOCKED; 8186 8187 out_unlock: 8188 unlock_page(page); 8189 out: 8190 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8191 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8192 reserved_space, (ret != 0)); 8193 out_noreserve: 8194 sb_end_pagefault(inode->i_sb); 8195 extent_changeset_free(data_reserved); 8196 return ret; 8197 } 8198 8199 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8200 { 8201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8202 struct btrfs_root *root = BTRFS_I(inode)->root; 8203 struct btrfs_block_rsv *rsv; 8204 int ret; 8205 struct btrfs_trans_handle *trans; 8206 u64 mask = fs_info->sectorsize - 1; 8207 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8208 8209 if (!skip_writeback) { 8210 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8211 (u64)-1); 8212 if (ret) 8213 return ret; 8214 } 8215 8216 /* 8217 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8218 * things going on here: 8219 * 8220 * 1) We need to reserve space to update our inode. 8221 * 8222 * 2) We need to have something to cache all the space that is going to 8223 * be free'd up by the truncate operation, but also have some slack 8224 * space reserved in case it uses space during the truncate (thank you 8225 * very much snapshotting). 8226 * 8227 * And we need these to be separate. The fact is we can use a lot of 8228 * space doing the truncate, and we have no earthly idea how much space 8229 * we will use, so we need the truncate reservation to be separate so it 8230 * doesn't end up using space reserved for updating the inode. We also 8231 * need to be able to stop the transaction and start a new one, which 8232 * means we need to be able to update the inode several times, and we 8233 * have no idea of knowing how many times that will be, so we can't just 8234 * reserve 1 item for the entirety of the operation, so that has to be 8235 * done separately as well. 8236 * 8237 * So that leaves us with 8238 * 8239 * 1) rsv - for the truncate reservation, which we will steal from the 8240 * transaction reservation. 8241 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8242 * updating the inode. 8243 */ 8244 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8245 if (!rsv) 8246 return -ENOMEM; 8247 rsv->size = min_size; 8248 rsv->failfast = 1; 8249 8250 /* 8251 * 1 for the truncate slack space 8252 * 1 for updating the inode. 8253 */ 8254 trans = btrfs_start_transaction(root, 2); 8255 if (IS_ERR(trans)) { 8256 ret = PTR_ERR(trans); 8257 goto out; 8258 } 8259 8260 /* Migrate the slack space for the truncate to our reserve */ 8261 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8262 min_size, false); 8263 BUG_ON(ret); 8264 8265 /* 8266 * So if we truncate and then write and fsync we normally would just 8267 * write the extents that changed, which is a problem if we need to 8268 * first truncate that entire inode. So set this flag so we write out 8269 * all of the extents in the inode to the sync log so we're completely 8270 * safe. 8271 */ 8272 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8273 trans->block_rsv = rsv; 8274 8275 while (1) { 8276 ret = btrfs_truncate_inode_items(trans, root, inode, 8277 inode->i_size, 8278 BTRFS_EXTENT_DATA_KEY); 8279 trans->block_rsv = &fs_info->trans_block_rsv; 8280 if (ret != -ENOSPC && ret != -EAGAIN) 8281 break; 8282 8283 ret = btrfs_update_inode(trans, root, inode); 8284 if (ret) 8285 break; 8286 8287 btrfs_end_transaction(trans); 8288 btrfs_btree_balance_dirty(fs_info); 8289 8290 trans = btrfs_start_transaction(root, 2); 8291 if (IS_ERR(trans)) { 8292 ret = PTR_ERR(trans); 8293 trans = NULL; 8294 break; 8295 } 8296 8297 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8298 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8299 rsv, min_size, false); 8300 BUG_ON(ret); /* shouldn't happen */ 8301 trans->block_rsv = rsv; 8302 } 8303 8304 /* 8305 * We can't call btrfs_truncate_block inside a trans handle as we could 8306 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8307 * we've truncated everything except the last little bit, and can do 8308 * btrfs_truncate_block and then update the disk_i_size. 8309 */ 8310 if (ret == NEED_TRUNCATE_BLOCK) { 8311 btrfs_end_transaction(trans); 8312 btrfs_btree_balance_dirty(fs_info); 8313 8314 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8315 if (ret) 8316 goto out; 8317 trans = btrfs_start_transaction(root, 1); 8318 if (IS_ERR(trans)) { 8319 ret = PTR_ERR(trans); 8320 goto out; 8321 } 8322 btrfs_inode_safe_disk_i_size_write(inode, 0); 8323 } 8324 8325 if (trans) { 8326 int ret2; 8327 8328 trans->block_rsv = &fs_info->trans_block_rsv; 8329 ret2 = btrfs_update_inode(trans, root, inode); 8330 if (ret2 && !ret) 8331 ret = ret2; 8332 8333 ret2 = btrfs_end_transaction(trans); 8334 if (ret2 && !ret) 8335 ret = ret2; 8336 btrfs_btree_balance_dirty(fs_info); 8337 } 8338 out: 8339 btrfs_free_block_rsv(fs_info, rsv); 8340 8341 return ret; 8342 } 8343 8344 /* 8345 * create a new subvolume directory/inode (helper for the ioctl). 8346 */ 8347 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8348 struct btrfs_root *new_root, 8349 struct btrfs_root *parent_root, 8350 u64 new_dirid) 8351 { 8352 struct inode *inode; 8353 int err; 8354 u64 index = 0; 8355 8356 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8357 new_dirid, new_dirid, 8358 S_IFDIR | (~current_umask() & S_IRWXUGO), 8359 &index); 8360 if (IS_ERR(inode)) 8361 return PTR_ERR(inode); 8362 inode->i_op = &btrfs_dir_inode_operations; 8363 inode->i_fop = &btrfs_dir_file_operations; 8364 8365 set_nlink(inode, 1); 8366 btrfs_i_size_write(BTRFS_I(inode), 0); 8367 unlock_new_inode(inode); 8368 8369 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8370 if (err) 8371 btrfs_err(new_root->fs_info, 8372 "error inheriting subvolume %llu properties: %d", 8373 new_root->root_key.objectid, err); 8374 8375 err = btrfs_update_inode(trans, new_root, inode); 8376 8377 iput(inode); 8378 return err; 8379 } 8380 8381 struct inode *btrfs_alloc_inode(struct super_block *sb) 8382 { 8383 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8384 struct btrfs_inode *ei; 8385 struct inode *inode; 8386 8387 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8388 if (!ei) 8389 return NULL; 8390 8391 ei->root = NULL; 8392 ei->generation = 0; 8393 ei->last_trans = 0; 8394 ei->last_sub_trans = 0; 8395 ei->logged_trans = 0; 8396 ei->delalloc_bytes = 0; 8397 ei->new_delalloc_bytes = 0; 8398 ei->defrag_bytes = 0; 8399 ei->disk_i_size = 0; 8400 ei->flags = 0; 8401 ei->csum_bytes = 0; 8402 ei->index_cnt = (u64)-1; 8403 ei->dir_index = 0; 8404 ei->last_unlink_trans = 0; 8405 ei->last_log_commit = 0; 8406 8407 spin_lock_init(&ei->lock); 8408 ei->outstanding_extents = 0; 8409 if (sb->s_magic != BTRFS_TEST_MAGIC) 8410 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8411 BTRFS_BLOCK_RSV_DELALLOC); 8412 ei->runtime_flags = 0; 8413 ei->prop_compress = BTRFS_COMPRESS_NONE; 8414 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8415 8416 ei->delayed_node = NULL; 8417 8418 ei->i_otime.tv_sec = 0; 8419 ei->i_otime.tv_nsec = 0; 8420 8421 inode = &ei->vfs_inode; 8422 extent_map_tree_init(&ei->extent_tree); 8423 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8424 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8425 IO_TREE_INODE_IO_FAILURE, inode); 8426 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8427 IO_TREE_INODE_FILE_EXTENT, inode); 8428 ei->io_tree.track_uptodate = true; 8429 ei->io_failure_tree.track_uptodate = true; 8430 atomic_set(&ei->sync_writers, 0); 8431 mutex_init(&ei->log_mutex); 8432 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8433 INIT_LIST_HEAD(&ei->delalloc_inodes); 8434 INIT_LIST_HEAD(&ei->delayed_iput); 8435 RB_CLEAR_NODE(&ei->rb_node); 8436 init_rwsem(&ei->dio_sem); 8437 8438 return inode; 8439 } 8440 8441 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8442 void btrfs_test_destroy_inode(struct inode *inode) 8443 { 8444 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8445 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8446 } 8447 #endif 8448 8449 void btrfs_free_inode(struct inode *inode) 8450 { 8451 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8452 } 8453 8454 void btrfs_destroy_inode(struct inode *inode) 8455 { 8456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8457 struct btrfs_ordered_extent *ordered; 8458 struct btrfs_root *root = BTRFS_I(inode)->root; 8459 8460 WARN_ON(!hlist_empty(&inode->i_dentry)); 8461 WARN_ON(inode->i_data.nrpages); 8462 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8463 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8464 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8465 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8466 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8467 WARN_ON(BTRFS_I(inode)->csum_bytes); 8468 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8469 8470 /* 8471 * This can happen where we create an inode, but somebody else also 8472 * created the same inode and we need to destroy the one we already 8473 * created. 8474 */ 8475 if (!root) 8476 return; 8477 8478 while (1) { 8479 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8480 if (!ordered) 8481 break; 8482 else { 8483 btrfs_err(fs_info, 8484 "found ordered extent %llu %llu on inode cleanup", 8485 ordered->file_offset, ordered->num_bytes); 8486 btrfs_remove_ordered_extent(inode, ordered); 8487 btrfs_put_ordered_extent(ordered); 8488 btrfs_put_ordered_extent(ordered); 8489 } 8490 } 8491 btrfs_qgroup_check_reserved_leak(inode); 8492 inode_tree_del(inode); 8493 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8494 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1); 8495 btrfs_put_root(BTRFS_I(inode)->root); 8496 } 8497 8498 int btrfs_drop_inode(struct inode *inode) 8499 { 8500 struct btrfs_root *root = BTRFS_I(inode)->root; 8501 8502 if (root == NULL) 8503 return 1; 8504 8505 /* the snap/subvol tree is on deleting */ 8506 if (btrfs_root_refs(&root->root_item) == 0) 8507 return 1; 8508 else 8509 return generic_drop_inode(inode); 8510 } 8511 8512 static void init_once(void *foo) 8513 { 8514 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8515 8516 inode_init_once(&ei->vfs_inode); 8517 } 8518 8519 void __cold btrfs_destroy_cachep(void) 8520 { 8521 /* 8522 * Make sure all delayed rcu free inodes are flushed before we 8523 * destroy cache. 8524 */ 8525 rcu_barrier(); 8526 kmem_cache_destroy(btrfs_inode_cachep); 8527 kmem_cache_destroy(btrfs_trans_handle_cachep); 8528 kmem_cache_destroy(btrfs_path_cachep); 8529 kmem_cache_destroy(btrfs_free_space_cachep); 8530 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8531 } 8532 8533 int __init btrfs_init_cachep(void) 8534 { 8535 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8536 sizeof(struct btrfs_inode), 0, 8537 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8538 init_once); 8539 if (!btrfs_inode_cachep) 8540 goto fail; 8541 8542 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8543 sizeof(struct btrfs_trans_handle), 0, 8544 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8545 if (!btrfs_trans_handle_cachep) 8546 goto fail; 8547 8548 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8549 sizeof(struct btrfs_path), 0, 8550 SLAB_MEM_SPREAD, NULL); 8551 if (!btrfs_path_cachep) 8552 goto fail; 8553 8554 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8555 sizeof(struct btrfs_free_space), 0, 8556 SLAB_MEM_SPREAD, NULL); 8557 if (!btrfs_free_space_cachep) 8558 goto fail; 8559 8560 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8561 PAGE_SIZE, PAGE_SIZE, 8562 SLAB_RED_ZONE, NULL); 8563 if (!btrfs_free_space_bitmap_cachep) 8564 goto fail; 8565 8566 return 0; 8567 fail: 8568 btrfs_destroy_cachep(); 8569 return -ENOMEM; 8570 } 8571 8572 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8573 u32 request_mask, unsigned int flags) 8574 { 8575 u64 delalloc_bytes; 8576 struct inode *inode = d_inode(path->dentry); 8577 u32 blocksize = inode->i_sb->s_blocksize; 8578 u32 bi_flags = BTRFS_I(inode)->flags; 8579 8580 stat->result_mask |= STATX_BTIME; 8581 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8582 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8583 if (bi_flags & BTRFS_INODE_APPEND) 8584 stat->attributes |= STATX_ATTR_APPEND; 8585 if (bi_flags & BTRFS_INODE_COMPRESS) 8586 stat->attributes |= STATX_ATTR_COMPRESSED; 8587 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8588 stat->attributes |= STATX_ATTR_IMMUTABLE; 8589 if (bi_flags & BTRFS_INODE_NODUMP) 8590 stat->attributes |= STATX_ATTR_NODUMP; 8591 8592 stat->attributes_mask |= (STATX_ATTR_APPEND | 8593 STATX_ATTR_COMPRESSED | 8594 STATX_ATTR_IMMUTABLE | 8595 STATX_ATTR_NODUMP); 8596 8597 generic_fillattr(inode, stat); 8598 stat->dev = BTRFS_I(inode)->root->anon_dev; 8599 8600 spin_lock(&BTRFS_I(inode)->lock); 8601 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8602 spin_unlock(&BTRFS_I(inode)->lock); 8603 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8604 ALIGN(delalloc_bytes, blocksize)) >> 9; 8605 return 0; 8606 } 8607 8608 static int btrfs_rename_exchange(struct inode *old_dir, 8609 struct dentry *old_dentry, 8610 struct inode *new_dir, 8611 struct dentry *new_dentry) 8612 { 8613 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8614 struct btrfs_trans_handle *trans; 8615 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8616 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8617 struct inode *new_inode = new_dentry->d_inode; 8618 struct inode *old_inode = old_dentry->d_inode; 8619 struct timespec64 ctime = current_time(old_inode); 8620 struct dentry *parent; 8621 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8622 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8623 u64 old_idx = 0; 8624 u64 new_idx = 0; 8625 int ret; 8626 bool root_log_pinned = false; 8627 bool dest_log_pinned = false; 8628 struct btrfs_log_ctx ctx_root; 8629 struct btrfs_log_ctx ctx_dest; 8630 bool sync_log_root = false; 8631 bool sync_log_dest = false; 8632 bool commit_transaction = false; 8633 8634 /* we only allow rename subvolume link between subvolumes */ 8635 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8636 return -EXDEV; 8637 8638 btrfs_init_log_ctx(&ctx_root, old_inode); 8639 btrfs_init_log_ctx(&ctx_dest, new_inode); 8640 8641 /* close the race window with snapshot create/destroy ioctl */ 8642 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8643 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8644 down_read(&fs_info->subvol_sem); 8645 8646 /* 8647 * We want to reserve the absolute worst case amount of items. So if 8648 * both inodes are subvols and we need to unlink them then that would 8649 * require 4 item modifications, but if they are both normal inodes it 8650 * would require 5 item modifications, so we'll assume their normal 8651 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8652 * should cover the worst case number of items we'll modify. 8653 */ 8654 trans = btrfs_start_transaction(root, 12); 8655 if (IS_ERR(trans)) { 8656 ret = PTR_ERR(trans); 8657 goto out_notrans; 8658 } 8659 8660 if (dest != root) 8661 btrfs_record_root_in_trans(trans, dest); 8662 8663 /* 8664 * We need to find a free sequence number both in the source and 8665 * in the destination directory for the exchange. 8666 */ 8667 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8668 if (ret) 8669 goto out_fail; 8670 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8671 if (ret) 8672 goto out_fail; 8673 8674 BTRFS_I(old_inode)->dir_index = 0ULL; 8675 BTRFS_I(new_inode)->dir_index = 0ULL; 8676 8677 /* Reference for the source. */ 8678 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8679 /* force full log commit if subvolume involved. */ 8680 btrfs_set_log_full_commit(trans); 8681 } else { 8682 btrfs_pin_log_trans(root); 8683 root_log_pinned = true; 8684 ret = btrfs_insert_inode_ref(trans, dest, 8685 new_dentry->d_name.name, 8686 new_dentry->d_name.len, 8687 old_ino, 8688 btrfs_ino(BTRFS_I(new_dir)), 8689 old_idx); 8690 if (ret) 8691 goto out_fail; 8692 } 8693 8694 /* And now for the dest. */ 8695 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8696 /* force full log commit if subvolume involved. */ 8697 btrfs_set_log_full_commit(trans); 8698 } else { 8699 btrfs_pin_log_trans(dest); 8700 dest_log_pinned = true; 8701 ret = btrfs_insert_inode_ref(trans, root, 8702 old_dentry->d_name.name, 8703 old_dentry->d_name.len, 8704 new_ino, 8705 btrfs_ino(BTRFS_I(old_dir)), 8706 new_idx); 8707 if (ret) 8708 goto out_fail; 8709 } 8710 8711 /* Update inode version and ctime/mtime. */ 8712 inode_inc_iversion(old_dir); 8713 inode_inc_iversion(new_dir); 8714 inode_inc_iversion(old_inode); 8715 inode_inc_iversion(new_inode); 8716 old_dir->i_ctime = old_dir->i_mtime = ctime; 8717 new_dir->i_ctime = new_dir->i_mtime = ctime; 8718 old_inode->i_ctime = ctime; 8719 new_inode->i_ctime = ctime; 8720 8721 if (old_dentry->d_parent != new_dentry->d_parent) { 8722 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8723 BTRFS_I(old_inode), 1); 8724 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8725 BTRFS_I(new_inode), 1); 8726 } 8727 8728 /* src is a subvolume */ 8729 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8730 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 8731 } else { /* src is an inode */ 8732 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 8733 BTRFS_I(old_dentry->d_inode), 8734 old_dentry->d_name.name, 8735 old_dentry->d_name.len); 8736 if (!ret) 8737 ret = btrfs_update_inode(trans, root, old_inode); 8738 } 8739 if (ret) { 8740 btrfs_abort_transaction(trans, ret); 8741 goto out_fail; 8742 } 8743 8744 /* dest is a subvolume */ 8745 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8746 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 8747 } else { /* dest is an inode */ 8748 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 8749 BTRFS_I(new_dentry->d_inode), 8750 new_dentry->d_name.name, 8751 new_dentry->d_name.len); 8752 if (!ret) 8753 ret = btrfs_update_inode(trans, dest, new_inode); 8754 } 8755 if (ret) { 8756 btrfs_abort_transaction(trans, ret); 8757 goto out_fail; 8758 } 8759 8760 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8761 new_dentry->d_name.name, 8762 new_dentry->d_name.len, 0, old_idx); 8763 if (ret) { 8764 btrfs_abort_transaction(trans, ret); 8765 goto out_fail; 8766 } 8767 8768 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8769 old_dentry->d_name.name, 8770 old_dentry->d_name.len, 0, new_idx); 8771 if (ret) { 8772 btrfs_abort_transaction(trans, ret); 8773 goto out_fail; 8774 } 8775 8776 if (old_inode->i_nlink == 1) 8777 BTRFS_I(old_inode)->dir_index = old_idx; 8778 if (new_inode->i_nlink == 1) 8779 BTRFS_I(new_inode)->dir_index = new_idx; 8780 8781 if (root_log_pinned) { 8782 parent = new_dentry->d_parent; 8783 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 8784 BTRFS_I(old_dir), parent, 8785 false, &ctx_root); 8786 if (ret == BTRFS_NEED_LOG_SYNC) 8787 sync_log_root = true; 8788 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8789 commit_transaction = true; 8790 ret = 0; 8791 btrfs_end_log_trans(root); 8792 root_log_pinned = false; 8793 } 8794 if (dest_log_pinned) { 8795 if (!commit_transaction) { 8796 parent = old_dentry->d_parent; 8797 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 8798 BTRFS_I(new_dir), parent, 8799 false, &ctx_dest); 8800 if (ret == BTRFS_NEED_LOG_SYNC) 8801 sync_log_dest = true; 8802 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8803 commit_transaction = true; 8804 ret = 0; 8805 } 8806 btrfs_end_log_trans(dest); 8807 dest_log_pinned = false; 8808 } 8809 out_fail: 8810 /* 8811 * If we have pinned a log and an error happened, we unpin tasks 8812 * trying to sync the log and force them to fallback to a transaction 8813 * commit if the log currently contains any of the inodes involved in 8814 * this rename operation (to ensure we do not persist a log with an 8815 * inconsistent state for any of these inodes or leading to any 8816 * inconsistencies when replayed). If the transaction was aborted, the 8817 * abortion reason is propagated to userspace when attempting to commit 8818 * the transaction. If the log does not contain any of these inodes, we 8819 * allow the tasks to sync it. 8820 */ 8821 if (ret && (root_log_pinned || dest_log_pinned)) { 8822 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 8823 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 8824 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 8825 (new_inode && 8826 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 8827 btrfs_set_log_full_commit(trans); 8828 8829 if (root_log_pinned) { 8830 btrfs_end_log_trans(root); 8831 root_log_pinned = false; 8832 } 8833 if (dest_log_pinned) { 8834 btrfs_end_log_trans(dest); 8835 dest_log_pinned = false; 8836 } 8837 } 8838 if (!ret && sync_log_root && !commit_transaction) { 8839 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 8840 &ctx_root); 8841 if (ret) 8842 commit_transaction = true; 8843 } 8844 if (!ret && sync_log_dest && !commit_transaction) { 8845 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 8846 &ctx_dest); 8847 if (ret) 8848 commit_transaction = true; 8849 } 8850 if (commit_transaction) { 8851 /* 8852 * We may have set commit_transaction when logging the new name 8853 * in the destination root, in which case we left the source 8854 * root context in the list of log contextes. So make sure we 8855 * remove it to avoid invalid memory accesses, since the context 8856 * was allocated in our stack frame. 8857 */ 8858 if (sync_log_root) { 8859 mutex_lock(&root->log_mutex); 8860 list_del_init(&ctx_root.list); 8861 mutex_unlock(&root->log_mutex); 8862 } 8863 ret = btrfs_commit_transaction(trans); 8864 } else { 8865 int ret2; 8866 8867 ret2 = btrfs_end_transaction(trans); 8868 ret = ret ? ret : ret2; 8869 } 8870 out_notrans: 8871 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8872 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8873 up_read(&fs_info->subvol_sem); 8874 8875 ASSERT(list_empty(&ctx_root.list)); 8876 ASSERT(list_empty(&ctx_dest.list)); 8877 8878 return ret; 8879 } 8880 8881 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 8882 struct btrfs_root *root, 8883 struct inode *dir, 8884 struct dentry *dentry) 8885 { 8886 int ret; 8887 struct inode *inode; 8888 u64 objectid; 8889 u64 index; 8890 8891 ret = btrfs_find_free_ino(root, &objectid); 8892 if (ret) 8893 return ret; 8894 8895 inode = btrfs_new_inode(trans, root, dir, 8896 dentry->d_name.name, 8897 dentry->d_name.len, 8898 btrfs_ino(BTRFS_I(dir)), 8899 objectid, 8900 S_IFCHR | WHITEOUT_MODE, 8901 &index); 8902 8903 if (IS_ERR(inode)) { 8904 ret = PTR_ERR(inode); 8905 return ret; 8906 } 8907 8908 inode->i_op = &btrfs_special_inode_operations; 8909 init_special_inode(inode, inode->i_mode, 8910 WHITEOUT_DEV); 8911 8912 ret = btrfs_init_inode_security(trans, inode, dir, 8913 &dentry->d_name); 8914 if (ret) 8915 goto out; 8916 8917 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 8918 BTRFS_I(inode), 0, index); 8919 if (ret) 8920 goto out; 8921 8922 ret = btrfs_update_inode(trans, root, inode); 8923 out: 8924 unlock_new_inode(inode); 8925 if (ret) 8926 inode_dec_link_count(inode); 8927 iput(inode); 8928 8929 return ret; 8930 } 8931 8932 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8933 struct inode *new_dir, struct dentry *new_dentry, 8934 unsigned int flags) 8935 { 8936 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8937 struct btrfs_trans_handle *trans; 8938 unsigned int trans_num_items; 8939 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8940 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8941 struct inode *new_inode = d_inode(new_dentry); 8942 struct inode *old_inode = d_inode(old_dentry); 8943 u64 index = 0; 8944 int ret; 8945 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8946 bool log_pinned = false; 8947 struct btrfs_log_ctx ctx; 8948 bool sync_log = false; 8949 bool commit_transaction = false; 8950 8951 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8952 return -EPERM; 8953 8954 /* we only allow rename subvolume link between subvolumes */ 8955 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8956 return -EXDEV; 8957 8958 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8959 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8960 return -ENOTEMPTY; 8961 8962 if (S_ISDIR(old_inode->i_mode) && new_inode && 8963 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8964 return -ENOTEMPTY; 8965 8966 8967 /* check for collisions, even if the name isn't there */ 8968 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 8969 new_dentry->d_name.name, 8970 new_dentry->d_name.len); 8971 8972 if (ret) { 8973 if (ret == -EEXIST) { 8974 /* we shouldn't get 8975 * eexist without a new_inode */ 8976 if (WARN_ON(!new_inode)) { 8977 return ret; 8978 } 8979 } else { 8980 /* maybe -EOVERFLOW */ 8981 return ret; 8982 } 8983 } 8984 ret = 0; 8985 8986 /* 8987 * we're using rename to replace one file with another. Start IO on it 8988 * now so we don't add too much work to the end of the transaction 8989 */ 8990 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8991 filemap_flush(old_inode->i_mapping); 8992 8993 /* close the racy window with snapshot create/destroy ioctl */ 8994 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8995 down_read(&fs_info->subvol_sem); 8996 /* 8997 * We want to reserve the absolute worst case amount of items. So if 8998 * both inodes are subvols and we need to unlink them then that would 8999 * require 4 item modifications, but if they are both normal inodes it 9000 * would require 5 item modifications, so we'll assume they are normal 9001 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9002 * should cover the worst case number of items we'll modify. 9003 * If our rename has the whiteout flag, we need more 5 units for the 9004 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9005 * when selinux is enabled). 9006 */ 9007 trans_num_items = 11; 9008 if (flags & RENAME_WHITEOUT) 9009 trans_num_items += 5; 9010 trans = btrfs_start_transaction(root, trans_num_items); 9011 if (IS_ERR(trans)) { 9012 ret = PTR_ERR(trans); 9013 goto out_notrans; 9014 } 9015 9016 if (dest != root) 9017 btrfs_record_root_in_trans(trans, dest); 9018 9019 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9020 if (ret) 9021 goto out_fail; 9022 9023 BTRFS_I(old_inode)->dir_index = 0ULL; 9024 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9025 /* force full log commit if subvolume involved. */ 9026 btrfs_set_log_full_commit(trans); 9027 } else { 9028 btrfs_pin_log_trans(root); 9029 log_pinned = true; 9030 ret = btrfs_insert_inode_ref(trans, dest, 9031 new_dentry->d_name.name, 9032 new_dentry->d_name.len, 9033 old_ino, 9034 btrfs_ino(BTRFS_I(new_dir)), index); 9035 if (ret) 9036 goto out_fail; 9037 } 9038 9039 inode_inc_iversion(old_dir); 9040 inode_inc_iversion(new_dir); 9041 inode_inc_iversion(old_inode); 9042 old_dir->i_ctime = old_dir->i_mtime = 9043 new_dir->i_ctime = new_dir->i_mtime = 9044 old_inode->i_ctime = current_time(old_dir); 9045 9046 if (old_dentry->d_parent != new_dentry->d_parent) 9047 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9048 BTRFS_I(old_inode), 1); 9049 9050 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9051 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9052 } else { 9053 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9054 BTRFS_I(d_inode(old_dentry)), 9055 old_dentry->d_name.name, 9056 old_dentry->d_name.len); 9057 if (!ret) 9058 ret = btrfs_update_inode(trans, root, old_inode); 9059 } 9060 if (ret) { 9061 btrfs_abort_transaction(trans, ret); 9062 goto out_fail; 9063 } 9064 9065 if (new_inode) { 9066 inode_inc_iversion(new_inode); 9067 new_inode->i_ctime = current_time(new_inode); 9068 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9069 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9070 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9071 BUG_ON(new_inode->i_nlink == 0); 9072 } else { 9073 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9074 BTRFS_I(d_inode(new_dentry)), 9075 new_dentry->d_name.name, 9076 new_dentry->d_name.len); 9077 } 9078 if (!ret && new_inode->i_nlink == 0) 9079 ret = btrfs_orphan_add(trans, 9080 BTRFS_I(d_inode(new_dentry))); 9081 if (ret) { 9082 btrfs_abort_transaction(trans, ret); 9083 goto out_fail; 9084 } 9085 } 9086 9087 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9088 new_dentry->d_name.name, 9089 new_dentry->d_name.len, 0, index); 9090 if (ret) { 9091 btrfs_abort_transaction(trans, ret); 9092 goto out_fail; 9093 } 9094 9095 if (old_inode->i_nlink == 1) 9096 BTRFS_I(old_inode)->dir_index = index; 9097 9098 if (log_pinned) { 9099 struct dentry *parent = new_dentry->d_parent; 9100 9101 btrfs_init_log_ctx(&ctx, old_inode); 9102 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9103 BTRFS_I(old_dir), parent, 9104 false, &ctx); 9105 if (ret == BTRFS_NEED_LOG_SYNC) 9106 sync_log = true; 9107 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9108 commit_transaction = true; 9109 ret = 0; 9110 btrfs_end_log_trans(root); 9111 log_pinned = false; 9112 } 9113 9114 if (flags & RENAME_WHITEOUT) { 9115 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9116 old_dentry); 9117 9118 if (ret) { 9119 btrfs_abort_transaction(trans, ret); 9120 goto out_fail; 9121 } 9122 } 9123 out_fail: 9124 /* 9125 * If we have pinned the log and an error happened, we unpin tasks 9126 * trying to sync the log and force them to fallback to a transaction 9127 * commit if the log currently contains any of the inodes involved in 9128 * this rename operation (to ensure we do not persist a log with an 9129 * inconsistent state for any of these inodes or leading to any 9130 * inconsistencies when replayed). If the transaction was aborted, the 9131 * abortion reason is propagated to userspace when attempting to commit 9132 * the transaction. If the log does not contain any of these inodes, we 9133 * allow the tasks to sync it. 9134 */ 9135 if (ret && log_pinned) { 9136 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9137 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9138 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9139 (new_inode && 9140 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9141 btrfs_set_log_full_commit(trans); 9142 9143 btrfs_end_log_trans(root); 9144 log_pinned = false; 9145 } 9146 if (!ret && sync_log) { 9147 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9148 if (ret) 9149 commit_transaction = true; 9150 } else if (sync_log) { 9151 mutex_lock(&root->log_mutex); 9152 list_del(&ctx.list); 9153 mutex_unlock(&root->log_mutex); 9154 } 9155 if (commit_transaction) { 9156 ret = btrfs_commit_transaction(trans); 9157 } else { 9158 int ret2; 9159 9160 ret2 = btrfs_end_transaction(trans); 9161 ret = ret ? ret : ret2; 9162 } 9163 out_notrans: 9164 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9165 up_read(&fs_info->subvol_sem); 9166 9167 return ret; 9168 } 9169 9170 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9171 struct inode *new_dir, struct dentry *new_dentry, 9172 unsigned int flags) 9173 { 9174 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9175 return -EINVAL; 9176 9177 if (flags & RENAME_EXCHANGE) 9178 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9179 new_dentry); 9180 9181 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9182 } 9183 9184 struct btrfs_delalloc_work { 9185 struct inode *inode; 9186 struct completion completion; 9187 struct list_head list; 9188 struct btrfs_work work; 9189 }; 9190 9191 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9192 { 9193 struct btrfs_delalloc_work *delalloc_work; 9194 struct inode *inode; 9195 9196 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9197 work); 9198 inode = delalloc_work->inode; 9199 filemap_flush(inode->i_mapping); 9200 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9201 &BTRFS_I(inode)->runtime_flags)) 9202 filemap_flush(inode->i_mapping); 9203 9204 iput(inode); 9205 complete(&delalloc_work->completion); 9206 } 9207 9208 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9209 { 9210 struct btrfs_delalloc_work *work; 9211 9212 work = kmalloc(sizeof(*work), GFP_NOFS); 9213 if (!work) 9214 return NULL; 9215 9216 init_completion(&work->completion); 9217 INIT_LIST_HEAD(&work->list); 9218 work->inode = inode; 9219 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9220 9221 return work; 9222 } 9223 9224 /* 9225 * some fairly slow code that needs optimization. This walks the list 9226 * of all the inodes with pending delalloc and forces them to disk. 9227 */ 9228 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9229 { 9230 struct btrfs_inode *binode; 9231 struct inode *inode; 9232 struct btrfs_delalloc_work *work, *next; 9233 struct list_head works; 9234 struct list_head splice; 9235 int ret = 0; 9236 9237 INIT_LIST_HEAD(&works); 9238 INIT_LIST_HEAD(&splice); 9239 9240 mutex_lock(&root->delalloc_mutex); 9241 spin_lock(&root->delalloc_lock); 9242 list_splice_init(&root->delalloc_inodes, &splice); 9243 while (!list_empty(&splice)) { 9244 binode = list_entry(splice.next, struct btrfs_inode, 9245 delalloc_inodes); 9246 9247 list_move_tail(&binode->delalloc_inodes, 9248 &root->delalloc_inodes); 9249 inode = igrab(&binode->vfs_inode); 9250 if (!inode) { 9251 cond_resched_lock(&root->delalloc_lock); 9252 continue; 9253 } 9254 spin_unlock(&root->delalloc_lock); 9255 9256 if (snapshot) 9257 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9258 &binode->runtime_flags); 9259 work = btrfs_alloc_delalloc_work(inode); 9260 if (!work) { 9261 iput(inode); 9262 ret = -ENOMEM; 9263 goto out; 9264 } 9265 list_add_tail(&work->list, &works); 9266 btrfs_queue_work(root->fs_info->flush_workers, 9267 &work->work); 9268 ret++; 9269 if (nr != -1 && ret >= nr) 9270 goto out; 9271 cond_resched(); 9272 spin_lock(&root->delalloc_lock); 9273 } 9274 spin_unlock(&root->delalloc_lock); 9275 9276 out: 9277 list_for_each_entry_safe(work, next, &works, list) { 9278 list_del_init(&work->list); 9279 wait_for_completion(&work->completion); 9280 kfree(work); 9281 } 9282 9283 if (!list_empty(&splice)) { 9284 spin_lock(&root->delalloc_lock); 9285 list_splice_tail(&splice, &root->delalloc_inodes); 9286 spin_unlock(&root->delalloc_lock); 9287 } 9288 mutex_unlock(&root->delalloc_mutex); 9289 return ret; 9290 } 9291 9292 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9293 { 9294 struct btrfs_fs_info *fs_info = root->fs_info; 9295 int ret; 9296 9297 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9298 return -EROFS; 9299 9300 ret = start_delalloc_inodes(root, -1, true); 9301 if (ret > 0) 9302 ret = 0; 9303 return ret; 9304 } 9305 9306 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9307 { 9308 struct btrfs_root *root; 9309 struct list_head splice; 9310 int ret; 9311 9312 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9313 return -EROFS; 9314 9315 INIT_LIST_HEAD(&splice); 9316 9317 mutex_lock(&fs_info->delalloc_root_mutex); 9318 spin_lock(&fs_info->delalloc_root_lock); 9319 list_splice_init(&fs_info->delalloc_roots, &splice); 9320 while (!list_empty(&splice) && nr) { 9321 root = list_first_entry(&splice, struct btrfs_root, 9322 delalloc_root); 9323 root = btrfs_grab_root(root); 9324 BUG_ON(!root); 9325 list_move_tail(&root->delalloc_root, 9326 &fs_info->delalloc_roots); 9327 spin_unlock(&fs_info->delalloc_root_lock); 9328 9329 ret = start_delalloc_inodes(root, nr, false); 9330 btrfs_put_root(root); 9331 if (ret < 0) 9332 goto out; 9333 9334 if (nr != -1) { 9335 nr -= ret; 9336 WARN_ON(nr < 0); 9337 } 9338 spin_lock(&fs_info->delalloc_root_lock); 9339 } 9340 spin_unlock(&fs_info->delalloc_root_lock); 9341 9342 ret = 0; 9343 out: 9344 if (!list_empty(&splice)) { 9345 spin_lock(&fs_info->delalloc_root_lock); 9346 list_splice_tail(&splice, &fs_info->delalloc_roots); 9347 spin_unlock(&fs_info->delalloc_root_lock); 9348 } 9349 mutex_unlock(&fs_info->delalloc_root_mutex); 9350 return ret; 9351 } 9352 9353 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9354 const char *symname) 9355 { 9356 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9357 struct btrfs_trans_handle *trans; 9358 struct btrfs_root *root = BTRFS_I(dir)->root; 9359 struct btrfs_path *path; 9360 struct btrfs_key key; 9361 struct inode *inode = NULL; 9362 int err; 9363 u64 objectid; 9364 u64 index = 0; 9365 int name_len; 9366 int datasize; 9367 unsigned long ptr; 9368 struct btrfs_file_extent_item *ei; 9369 struct extent_buffer *leaf; 9370 9371 name_len = strlen(symname); 9372 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9373 return -ENAMETOOLONG; 9374 9375 /* 9376 * 2 items for inode item and ref 9377 * 2 items for dir items 9378 * 1 item for updating parent inode item 9379 * 1 item for the inline extent item 9380 * 1 item for xattr if selinux is on 9381 */ 9382 trans = btrfs_start_transaction(root, 7); 9383 if (IS_ERR(trans)) 9384 return PTR_ERR(trans); 9385 9386 err = btrfs_find_free_ino(root, &objectid); 9387 if (err) 9388 goto out_unlock; 9389 9390 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9391 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9392 objectid, S_IFLNK|S_IRWXUGO, &index); 9393 if (IS_ERR(inode)) { 9394 err = PTR_ERR(inode); 9395 inode = NULL; 9396 goto out_unlock; 9397 } 9398 9399 /* 9400 * If the active LSM wants to access the inode during 9401 * d_instantiate it needs these. Smack checks to see 9402 * if the filesystem supports xattrs by looking at the 9403 * ops vector. 9404 */ 9405 inode->i_fop = &btrfs_file_operations; 9406 inode->i_op = &btrfs_file_inode_operations; 9407 inode->i_mapping->a_ops = &btrfs_aops; 9408 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9409 9410 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9411 if (err) 9412 goto out_unlock; 9413 9414 path = btrfs_alloc_path(); 9415 if (!path) { 9416 err = -ENOMEM; 9417 goto out_unlock; 9418 } 9419 key.objectid = btrfs_ino(BTRFS_I(inode)); 9420 key.offset = 0; 9421 key.type = BTRFS_EXTENT_DATA_KEY; 9422 datasize = btrfs_file_extent_calc_inline_size(name_len); 9423 err = btrfs_insert_empty_item(trans, root, path, &key, 9424 datasize); 9425 if (err) { 9426 btrfs_free_path(path); 9427 goto out_unlock; 9428 } 9429 leaf = path->nodes[0]; 9430 ei = btrfs_item_ptr(leaf, path->slots[0], 9431 struct btrfs_file_extent_item); 9432 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9433 btrfs_set_file_extent_type(leaf, ei, 9434 BTRFS_FILE_EXTENT_INLINE); 9435 btrfs_set_file_extent_encryption(leaf, ei, 0); 9436 btrfs_set_file_extent_compression(leaf, ei, 0); 9437 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9438 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9439 9440 ptr = btrfs_file_extent_inline_start(ei); 9441 write_extent_buffer(leaf, symname, ptr, name_len); 9442 btrfs_mark_buffer_dirty(leaf); 9443 btrfs_free_path(path); 9444 9445 inode->i_op = &btrfs_symlink_inode_operations; 9446 inode_nohighmem(inode); 9447 inode_set_bytes(inode, name_len); 9448 btrfs_i_size_write(BTRFS_I(inode), name_len); 9449 err = btrfs_update_inode(trans, root, inode); 9450 /* 9451 * Last step, add directory indexes for our symlink inode. This is the 9452 * last step to avoid extra cleanup of these indexes if an error happens 9453 * elsewhere above. 9454 */ 9455 if (!err) 9456 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9457 BTRFS_I(inode), 0, index); 9458 if (err) 9459 goto out_unlock; 9460 9461 d_instantiate_new(dentry, inode); 9462 9463 out_unlock: 9464 btrfs_end_transaction(trans); 9465 if (err && inode) { 9466 inode_dec_link_count(inode); 9467 discard_new_inode(inode); 9468 } 9469 btrfs_btree_balance_dirty(fs_info); 9470 return err; 9471 } 9472 9473 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9474 u64 start, u64 num_bytes, u64 min_size, 9475 loff_t actual_len, u64 *alloc_hint, 9476 struct btrfs_trans_handle *trans) 9477 { 9478 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9479 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9480 struct extent_map *em; 9481 struct btrfs_root *root = BTRFS_I(inode)->root; 9482 struct btrfs_key ins; 9483 u64 cur_offset = start; 9484 u64 clear_offset = start; 9485 u64 i_size; 9486 u64 cur_bytes; 9487 u64 last_alloc = (u64)-1; 9488 int ret = 0; 9489 bool own_trans = true; 9490 u64 end = start + num_bytes - 1; 9491 9492 if (trans) 9493 own_trans = false; 9494 while (num_bytes > 0) { 9495 if (own_trans) { 9496 trans = btrfs_start_transaction(root, 3); 9497 if (IS_ERR(trans)) { 9498 ret = PTR_ERR(trans); 9499 break; 9500 } 9501 } 9502 9503 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9504 cur_bytes = max(cur_bytes, min_size); 9505 /* 9506 * If we are severely fragmented we could end up with really 9507 * small allocations, so if the allocator is returning small 9508 * chunks lets make its job easier by only searching for those 9509 * sized chunks. 9510 */ 9511 cur_bytes = min(cur_bytes, last_alloc); 9512 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9513 min_size, 0, *alloc_hint, &ins, 1, 0); 9514 if (ret) { 9515 if (own_trans) 9516 btrfs_end_transaction(trans); 9517 break; 9518 } 9519 9520 /* 9521 * We've reserved this space, and thus converted it from 9522 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9523 * from here on out we will only need to clear our reservation 9524 * for the remaining unreserved area, so advance our 9525 * clear_offset by our extent size. 9526 */ 9527 clear_offset += ins.offset; 9528 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9529 9530 last_alloc = ins.offset; 9531 ret = insert_reserved_file_extent(trans, inode, 9532 cur_offset, ins.objectid, 9533 ins.offset, ins.offset, 9534 ins.offset, 0, 0, 0, 9535 BTRFS_FILE_EXTENT_PREALLOC); 9536 if (ret) { 9537 btrfs_free_reserved_extent(fs_info, ins.objectid, 9538 ins.offset, 0); 9539 btrfs_abort_transaction(trans, ret); 9540 if (own_trans) 9541 btrfs_end_transaction(trans); 9542 break; 9543 } 9544 9545 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9546 cur_offset + ins.offset -1, 0); 9547 9548 em = alloc_extent_map(); 9549 if (!em) { 9550 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9551 &BTRFS_I(inode)->runtime_flags); 9552 goto next; 9553 } 9554 9555 em->start = cur_offset; 9556 em->orig_start = cur_offset; 9557 em->len = ins.offset; 9558 em->block_start = ins.objectid; 9559 em->block_len = ins.offset; 9560 em->orig_block_len = ins.offset; 9561 em->ram_bytes = ins.offset; 9562 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9563 em->generation = trans->transid; 9564 9565 while (1) { 9566 write_lock(&em_tree->lock); 9567 ret = add_extent_mapping(em_tree, em, 1); 9568 write_unlock(&em_tree->lock); 9569 if (ret != -EEXIST) 9570 break; 9571 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9572 cur_offset + ins.offset - 1, 9573 0); 9574 } 9575 free_extent_map(em); 9576 next: 9577 num_bytes -= ins.offset; 9578 cur_offset += ins.offset; 9579 *alloc_hint = ins.objectid + ins.offset; 9580 9581 inode_inc_iversion(inode); 9582 inode->i_ctime = current_time(inode); 9583 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9584 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9585 (actual_len > inode->i_size) && 9586 (cur_offset > inode->i_size)) { 9587 if (cur_offset > actual_len) 9588 i_size = actual_len; 9589 else 9590 i_size = cur_offset; 9591 i_size_write(inode, i_size); 9592 btrfs_inode_safe_disk_i_size_write(inode, 0); 9593 } 9594 9595 ret = btrfs_update_inode(trans, root, inode); 9596 9597 if (ret) { 9598 btrfs_abort_transaction(trans, ret); 9599 if (own_trans) 9600 btrfs_end_transaction(trans); 9601 break; 9602 } 9603 9604 if (own_trans) 9605 btrfs_end_transaction(trans); 9606 } 9607 if (clear_offset < end) 9608 btrfs_free_reserved_data_space(inode, NULL, clear_offset, 9609 end - clear_offset + 1); 9610 return ret; 9611 } 9612 9613 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9614 u64 start, u64 num_bytes, u64 min_size, 9615 loff_t actual_len, u64 *alloc_hint) 9616 { 9617 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9618 min_size, actual_len, alloc_hint, 9619 NULL); 9620 } 9621 9622 int btrfs_prealloc_file_range_trans(struct inode *inode, 9623 struct btrfs_trans_handle *trans, int mode, 9624 u64 start, u64 num_bytes, u64 min_size, 9625 loff_t actual_len, u64 *alloc_hint) 9626 { 9627 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9628 min_size, actual_len, alloc_hint, trans); 9629 } 9630 9631 static int btrfs_set_page_dirty(struct page *page) 9632 { 9633 return __set_page_dirty_nobuffers(page); 9634 } 9635 9636 static int btrfs_permission(struct inode *inode, int mask) 9637 { 9638 struct btrfs_root *root = BTRFS_I(inode)->root; 9639 umode_t mode = inode->i_mode; 9640 9641 if (mask & MAY_WRITE && 9642 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9643 if (btrfs_root_readonly(root)) 9644 return -EROFS; 9645 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9646 return -EACCES; 9647 } 9648 return generic_permission(inode, mask); 9649 } 9650 9651 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9652 { 9653 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9654 struct btrfs_trans_handle *trans; 9655 struct btrfs_root *root = BTRFS_I(dir)->root; 9656 struct inode *inode = NULL; 9657 u64 objectid; 9658 u64 index; 9659 int ret = 0; 9660 9661 /* 9662 * 5 units required for adding orphan entry 9663 */ 9664 trans = btrfs_start_transaction(root, 5); 9665 if (IS_ERR(trans)) 9666 return PTR_ERR(trans); 9667 9668 ret = btrfs_find_free_ino(root, &objectid); 9669 if (ret) 9670 goto out; 9671 9672 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9673 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9674 if (IS_ERR(inode)) { 9675 ret = PTR_ERR(inode); 9676 inode = NULL; 9677 goto out; 9678 } 9679 9680 inode->i_fop = &btrfs_file_operations; 9681 inode->i_op = &btrfs_file_inode_operations; 9682 9683 inode->i_mapping->a_ops = &btrfs_aops; 9684 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9685 9686 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9687 if (ret) 9688 goto out; 9689 9690 ret = btrfs_update_inode(trans, root, inode); 9691 if (ret) 9692 goto out; 9693 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9694 if (ret) 9695 goto out; 9696 9697 /* 9698 * We set number of links to 0 in btrfs_new_inode(), and here we set 9699 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9700 * through: 9701 * 9702 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9703 */ 9704 set_nlink(inode, 1); 9705 d_tmpfile(dentry, inode); 9706 unlock_new_inode(inode); 9707 mark_inode_dirty(inode); 9708 out: 9709 btrfs_end_transaction(trans); 9710 if (ret && inode) 9711 discard_new_inode(inode); 9712 btrfs_btree_balance_dirty(fs_info); 9713 return ret; 9714 } 9715 9716 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 9717 { 9718 struct inode *inode = tree->private_data; 9719 unsigned long index = start >> PAGE_SHIFT; 9720 unsigned long end_index = end >> PAGE_SHIFT; 9721 struct page *page; 9722 9723 while (index <= end_index) { 9724 page = find_get_page(inode->i_mapping, index); 9725 ASSERT(page); /* Pages should be in the extent_io_tree */ 9726 set_page_writeback(page); 9727 put_page(page); 9728 index++; 9729 } 9730 } 9731 9732 #ifdef CONFIG_SWAP 9733 /* 9734 * Add an entry indicating a block group or device which is pinned by a 9735 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9736 * negative errno on failure. 9737 */ 9738 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9739 bool is_block_group) 9740 { 9741 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9742 struct btrfs_swapfile_pin *sp, *entry; 9743 struct rb_node **p; 9744 struct rb_node *parent = NULL; 9745 9746 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9747 if (!sp) 9748 return -ENOMEM; 9749 sp->ptr = ptr; 9750 sp->inode = inode; 9751 sp->is_block_group = is_block_group; 9752 9753 spin_lock(&fs_info->swapfile_pins_lock); 9754 p = &fs_info->swapfile_pins.rb_node; 9755 while (*p) { 9756 parent = *p; 9757 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9758 if (sp->ptr < entry->ptr || 9759 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9760 p = &(*p)->rb_left; 9761 } else if (sp->ptr > entry->ptr || 9762 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9763 p = &(*p)->rb_right; 9764 } else { 9765 spin_unlock(&fs_info->swapfile_pins_lock); 9766 kfree(sp); 9767 return 1; 9768 } 9769 } 9770 rb_link_node(&sp->node, parent, p); 9771 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9772 spin_unlock(&fs_info->swapfile_pins_lock); 9773 return 0; 9774 } 9775 9776 /* Free all of the entries pinned by this swapfile. */ 9777 static void btrfs_free_swapfile_pins(struct inode *inode) 9778 { 9779 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9780 struct btrfs_swapfile_pin *sp; 9781 struct rb_node *node, *next; 9782 9783 spin_lock(&fs_info->swapfile_pins_lock); 9784 node = rb_first(&fs_info->swapfile_pins); 9785 while (node) { 9786 next = rb_next(node); 9787 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9788 if (sp->inode == inode) { 9789 rb_erase(&sp->node, &fs_info->swapfile_pins); 9790 if (sp->is_block_group) 9791 btrfs_put_block_group(sp->ptr); 9792 kfree(sp); 9793 } 9794 node = next; 9795 } 9796 spin_unlock(&fs_info->swapfile_pins_lock); 9797 } 9798 9799 struct btrfs_swap_info { 9800 u64 start; 9801 u64 block_start; 9802 u64 block_len; 9803 u64 lowest_ppage; 9804 u64 highest_ppage; 9805 unsigned long nr_pages; 9806 int nr_extents; 9807 }; 9808 9809 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9810 struct btrfs_swap_info *bsi) 9811 { 9812 unsigned long nr_pages; 9813 u64 first_ppage, first_ppage_reported, next_ppage; 9814 int ret; 9815 9816 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 9817 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 9818 PAGE_SIZE) >> PAGE_SHIFT; 9819 9820 if (first_ppage >= next_ppage) 9821 return 0; 9822 nr_pages = next_ppage - first_ppage; 9823 9824 first_ppage_reported = first_ppage; 9825 if (bsi->start == 0) 9826 first_ppage_reported++; 9827 if (bsi->lowest_ppage > first_ppage_reported) 9828 bsi->lowest_ppage = first_ppage_reported; 9829 if (bsi->highest_ppage < (next_ppage - 1)) 9830 bsi->highest_ppage = next_ppage - 1; 9831 9832 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9833 if (ret < 0) 9834 return ret; 9835 bsi->nr_extents += ret; 9836 bsi->nr_pages += nr_pages; 9837 return 0; 9838 } 9839 9840 static void btrfs_swap_deactivate(struct file *file) 9841 { 9842 struct inode *inode = file_inode(file); 9843 9844 btrfs_free_swapfile_pins(inode); 9845 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9846 } 9847 9848 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9849 sector_t *span) 9850 { 9851 struct inode *inode = file_inode(file); 9852 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9853 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9854 struct extent_state *cached_state = NULL; 9855 struct extent_map *em = NULL; 9856 struct btrfs_device *device = NULL; 9857 struct btrfs_swap_info bsi = { 9858 .lowest_ppage = (sector_t)-1ULL, 9859 }; 9860 int ret = 0; 9861 u64 isize; 9862 u64 start; 9863 9864 /* 9865 * If the swap file was just created, make sure delalloc is done. If the 9866 * file changes again after this, the user is doing something stupid and 9867 * we don't really care. 9868 */ 9869 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 9870 if (ret) 9871 return ret; 9872 9873 /* 9874 * The inode is locked, so these flags won't change after we check them. 9875 */ 9876 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9877 btrfs_warn(fs_info, "swapfile must not be compressed"); 9878 return -EINVAL; 9879 } 9880 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9881 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9882 return -EINVAL; 9883 } 9884 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9885 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9886 return -EINVAL; 9887 } 9888 9889 /* 9890 * Balance or device remove/replace/resize can move stuff around from 9891 * under us. The EXCL_OP flag makes sure they aren't running/won't run 9892 * concurrently while we are mapping the swap extents, and 9893 * fs_info->swapfile_pins prevents them from running while the swap file 9894 * is active and moving the extents. Note that this also prevents a 9895 * concurrent device add which isn't actually necessary, but it's not 9896 * really worth the trouble to allow it. 9897 */ 9898 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 9899 btrfs_warn(fs_info, 9900 "cannot activate swapfile while exclusive operation is running"); 9901 return -EBUSY; 9902 } 9903 /* 9904 * Snapshots can create extents which require COW even if NODATACOW is 9905 * set. We use this counter to prevent snapshots. We must increment it 9906 * before walking the extents because we don't want a concurrent 9907 * snapshot to run after we've already checked the extents. 9908 */ 9909 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 9910 9911 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 9912 9913 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 9914 start = 0; 9915 while (start < isize) { 9916 u64 logical_block_start, physical_block_start; 9917 struct btrfs_block_group *bg; 9918 u64 len = isize - start; 9919 9920 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 9921 if (IS_ERR(em)) { 9922 ret = PTR_ERR(em); 9923 goto out; 9924 } 9925 9926 if (em->block_start == EXTENT_MAP_HOLE) { 9927 btrfs_warn(fs_info, "swapfile must not have holes"); 9928 ret = -EINVAL; 9929 goto out; 9930 } 9931 if (em->block_start == EXTENT_MAP_INLINE) { 9932 /* 9933 * It's unlikely we'll ever actually find ourselves 9934 * here, as a file small enough to fit inline won't be 9935 * big enough to store more than the swap header, but in 9936 * case something changes in the future, let's catch it 9937 * here rather than later. 9938 */ 9939 btrfs_warn(fs_info, "swapfile must not be inline"); 9940 ret = -EINVAL; 9941 goto out; 9942 } 9943 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 9944 btrfs_warn(fs_info, "swapfile must not be compressed"); 9945 ret = -EINVAL; 9946 goto out; 9947 } 9948 9949 logical_block_start = em->block_start + (start - em->start); 9950 len = min(len, em->len - (start - em->start)); 9951 free_extent_map(em); 9952 em = NULL; 9953 9954 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 9955 if (ret < 0) { 9956 goto out; 9957 } else if (ret) { 9958 ret = 0; 9959 } else { 9960 btrfs_warn(fs_info, 9961 "swapfile must not be copy-on-write"); 9962 ret = -EINVAL; 9963 goto out; 9964 } 9965 9966 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 9967 if (IS_ERR(em)) { 9968 ret = PTR_ERR(em); 9969 goto out; 9970 } 9971 9972 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 9973 btrfs_warn(fs_info, 9974 "swapfile must have single data profile"); 9975 ret = -EINVAL; 9976 goto out; 9977 } 9978 9979 if (device == NULL) { 9980 device = em->map_lookup->stripes[0].dev; 9981 ret = btrfs_add_swapfile_pin(inode, device, false); 9982 if (ret == 1) 9983 ret = 0; 9984 else if (ret) 9985 goto out; 9986 } else if (device != em->map_lookup->stripes[0].dev) { 9987 btrfs_warn(fs_info, "swapfile must be on one device"); 9988 ret = -EINVAL; 9989 goto out; 9990 } 9991 9992 physical_block_start = (em->map_lookup->stripes[0].physical + 9993 (logical_block_start - em->start)); 9994 len = min(len, em->len - (logical_block_start - em->start)); 9995 free_extent_map(em); 9996 em = NULL; 9997 9998 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 9999 if (!bg) { 10000 btrfs_warn(fs_info, 10001 "could not find block group containing swapfile"); 10002 ret = -EINVAL; 10003 goto out; 10004 } 10005 10006 ret = btrfs_add_swapfile_pin(inode, bg, true); 10007 if (ret) { 10008 btrfs_put_block_group(bg); 10009 if (ret == 1) 10010 ret = 0; 10011 else 10012 goto out; 10013 } 10014 10015 if (bsi.block_len && 10016 bsi.block_start + bsi.block_len == physical_block_start) { 10017 bsi.block_len += len; 10018 } else { 10019 if (bsi.block_len) { 10020 ret = btrfs_add_swap_extent(sis, &bsi); 10021 if (ret) 10022 goto out; 10023 } 10024 bsi.start = start; 10025 bsi.block_start = physical_block_start; 10026 bsi.block_len = len; 10027 } 10028 10029 start += len; 10030 } 10031 10032 if (bsi.block_len) 10033 ret = btrfs_add_swap_extent(sis, &bsi); 10034 10035 out: 10036 if (!IS_ERR_OR_NULL(em)) 10037 free_extent_map(em); 10038 10039 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10040 10041 if (ret) 10042 btrfs_swap_deactivate(file); 10043 10044 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10045 10046 if (ret) 10047 return ret; 10048 10049 if (device) 10050 sis->bdev = device->bdev; 10051 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10052 sis->max = bsi.nr_pages; 10053 sis->pages = bsi.nr_pages - 1; 10054 sis->highest_bit = bsi.nr_pages - 1; 10055 return bsi.nr_extents; 10056 } 10057 #else 10058 static void btrfs_swap_deactivate(struct file *file) 10059 { 10060 } 10061 10062 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10063 sector_t *span) 10064 { 10065 return -EOPNOTSUPP; 10066 } 10067 #endif 10068 10069 static const struct inode_operations btrfs_dir_inode_operations = { 10070 .getattr = btrfs_getattr, 10071 .lookup = btrfs_lookup, 10072 .create = btrfs_create, 10073 .unlink = btrfs_unlink, 10074 .link = btrfs_link, 10075 .mkdir = btrfs_mkdir, 10076 .rmdir = btrfs_rmdir, 10077 .rename = btrfs_rename2, 10078 .symlink = btrfs_symlink, 10079 .setattr = btrfs_setattr, 10080 .mknod = btrfs_mknod, 10081 .listxattr = btrfs_listxattr, 10082 .permission = btrfs_permission, 10083 .get_acl = btrfs_get_acl, 10084 .set_acl = btrfs_set_acl, 10085 .update_time = btrfs_update_time, 10086 .tmpfile = btrfs_tmpfile, 10087 }; 10088 10089 static const struct file_operations btrfs_dir_file_operations = { 10090 .llseek = generic_file_llseek, 10091 .read = generic_read_dir, 10092 .iterate_shared = btrfs_real_readdir, 10093 .open = btrfs_opendir, 10094 .unlocked_ioctl = btrfs_ioctl, 10095 #ifdef CONFIG_COMPAT 10096 .compat_ioctl = btrfs_compat_ioctl, 10097 #endif 10098 .release = btrfs_release_file, 10099 .fsync = btrfs_sync_file, 10100 }; 10101 10102 static const struct extent_io_ops btrfs_extent_io_ops = { 10103 /* mandatory callbacks */ 10104 .submit_bio_hook = btrfs_submit_bio_hook, 10105 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10106 }; 10107 10108 /* 10109 * btrfs doesn't support the bmap operation because swapfiles 10110 * use bmap to make a mapping of extents in the file. They assume 10111 * these extents won't change over the life of the file and they 10112 * use the bmap result to do IO directly to the drive. 10113 * 10114 * the btrfs bmap call would return logical addresses that aren't 10115 * suitable for IO and they also will change frequently as COW 10116 * operations happen. So, swapfile + btrfs == corruption. 10117 * 10118 * For now we're avoiding this by dropping bmap. 10119 */ 10120 static const struct address_space_operations btrfs_aops = { 10121 .readpage = btrfs_readpage, 10122 .writepage = btrfs_writepage, 10123 .writepages = btrfs_writepages, 10124 .readahead = btrfs_readahead, 10125 .direct_IO = noop_direct_IO, 10126 .invalidatepage = btrfs_invalidatepage, 10127 .releasepage = btrfs_releasepage, 10128 #ifdef CONFIG_MIGRATION 10129 .migratepage = btrfs_migratepage, 10130 #endif 10131 .set_page_dirty = btrfs_set_page_dirty, 10132 .error_remove_page = generic_error_remove_page, 10133 .swap_activate = btrfs_swap_activate, 10134 .swap_deactivate = btrfs_swap_deactivate, 10135 }; 10136 10137 static const struct inode_operations btrfs_file_inode_operations = { 10138 .getattr = btrfs_getattr, 10139 .setattr = btrfs_setattr, 10140 .listxattr = btrfs_listxattr, 10141 .permission = btrfs_permission, 10142 .fiemap = btrfs_fiemap, 10143 .get_acl = btrfs_get_acl, 10144 .set_acl = btrfs_set_acl, 10145 .update_time = btrfs_update_time, 10146 }; 10147 static const struct inode_operations btrfs_special_inode_operations = { 10148 .getattr = btrfs_getattr, 10149 .setattr = btrfs_setattr, 10150 .permission = btrfs_permission, 10151 .listxattr = btrfs_listxattr, 10152 .get_acl = btrfs_get_acl, 10153 .set_acl = btrfs_set_acl, 10154 .update_time = btrfs_update_time, 10155 }; 10156 static const struct inode_operations btrfs_symlink_inode_operations = { 10157 .get_link = page_get_link, 10158 .getattr = btrfs_getattr, 10159 .setattr = btrfs_setattr, 10160 .permission = btrfs_permission, 10161 .listxattr = btrfs_listxattr, 10162 .update_time = btrfs_update_time, 10163 }; 10164 10165 const struct dentry_operations btrfs_dentry_operations = { 10166 .d_delete = btrfs_dentry_delete, 10167 }; 10168