xref: /openbmc/linux/fs/btrfs/inode.c (revision a09d2831)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52 
53 struct btrfs_iget_args {
54 	u64 ino;
55 	struct btrfs_root *root;
56 };
57 
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67 
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72 
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
76 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
77 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
78 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
79 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
80 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
81 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
82 };
83 
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 				   struct page *locked_page,
88 				   u64 start, u64 end, int *page_started,
89 				   unsigned long *nr_written, int unlock);
90 
91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92 				     struct inode *inode,  struct inode *dir)
93 {
94 	int err;
95 
96 	err = btrfs_init_acl(trans, inode, dir);
97 	if (!err)
98 		err = btrfs_xattr_security_init(trans, inode, dir);
99 	return err;
100 }
101 
102 /*
103  * this does all the hard work for inserting an inline extent into
104  * the btree.  The caller should have done a btrfs_drop_extents so that
105  * no overlapping inline items exist in the btree
106  */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108 				struct btrfs_root *root, struct inode *inode,
109 				u64 start, size_t size, size_t compressed_size,
110 				struct page **compressed_pages)
111 {
112 	struct btrfs_key key;
113 	struct btrfs_path *path;
114 	struct extent_buffer *leaf;
115 	struct page *page = NULL;
116 	char *kaddr;
117 	unsigned long ptr;
118 	struct btrfs_file_extent_item *ei;
119 	int err = 0;
120 	int ret;
121 	size_t cur_size = size;
122 	size_t datasize;
123 	unsigned long offset;
124 	int use_compress = 0;
125 
126 	if (compressed_size && compressed_pages) {
127 		use_compress = 1;
128 		cur_size = compressed_size;
129 	}
130 
131 	path = btrfs_alloc_path();
132 	if (!path)
133 		return -ENOMEM;
134 
135 	path->leave_spinning = 1;
136 	btrfs_set_trans_block_group(trans, inode);
137 
138 	key.objectid = inode->i_ino;
139 	key.offset = start;
140 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
142 
143 	inode_add_bytes(inode, size);
144 	ret = btrfs_insert_empty_item(trans, root, path, &key,
145 				      datasize);
146 	BUG_ON(ret);
147 	if (ret) {
148 		err = ret;
149 		goto fail;
150 	}
151 	leaf = path->nodes[0];
152 	ei = btrfs_item_ptr(leaf, path->slots[0],
153 			    struct btrfs_file_extent_item);
154 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 	btrfs_set_file_extent_encryption(leaf, ei, 0);
157 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 	ptr = btrfs_file_extent_inline_start(ei);
160 
161 	if (use_compress) {
162 		struct page *cpage;
163 		int i = 0;
164 		while (compressed_size > 0) {
165 			cpage = compressed_pages[i];
166 			cur_size = min_t(unsigned long, compressed_size,
167 				       PAGE_CACHE_SIZE);
168 
169 			kaddr = kmap_atomic(cpage, KM_USER0);
170 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
171 			kunmap_atomic(kaddr, KM_USER0);
172 
173 			i++;
174 			ptr += cur_size;
175 			compressed_size -= cur_size;
176 		}
177 		btrfs_set_file_extent_compression(leaf, ei,
178 						  BTRFS_COMPRESS_ZLIB);
179 	} else {
180 		page = find_get_page(inode->i_mapping,
181 				     start >> PAGE_CACHE_SHIFT);
182 		btrfs_set_file_extent_compression(leaf, ei, 0);
183 		kaddr = kmap_atomic(page, KM_USER0);
184 		offset = start & (PAGE_CACHE_SIZE - 1);
185 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 		kunmap_atomic(kaddr, KM_USER0);
187 		page_cache_release(page);
188 	}
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_free_path(path);
191 
192 	/*
193 	 * we're an inline extent, so nobody can
194 	 * extend the file past i_size without locking
195 	 * a page we already have locked.
196 	 *
197 	 * We must do any isize and inode updates
198 	 * before we unlock the pages.  Otherwise we
199 	 * could end up racing with unlink.
200 	 */
201 	BTRFS_I(inode)->disk_i_size = inode->i_size;
202 	btrfs_update_inode(trans, root, inode);
203 
204 	return 0;
205 fail:
206 	btrfs_free_path(path);
207 	return err;
208 }
209 
210 
211 /*
212  * conditionally insert an inline extent into the file.  This
213  * does the checks required to make sure the data is small enough
214  * to fit as an inline extent.
215  */
216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
217 				 struct btrfs_root *root,
218 				 struct inode *inode, u64 start, u64 end,
219 				 size_t compressed_size,
220 				 struct page **compressed_pages)
221 {
222 	u64 isize = i_size_read(inode);
223 	u64 actual_end = min(end + 1, isize);
224 	u64 inline_len = actual_end - start;
225 	u64 aligned_end = (end + root->sectorsize - 1) &
226 			~((u64)root->sectorsize - 1);
227 	u64 hint_byte;
228 	u64 data_len = inline_len;
229 	int ret;
230 
231 	if (compressed_size)
232 		data_len = compressed_size;
233 
234 	if (start > 0 ||
235 	    actual_end >= PAGE_CACHE_SIZE ||
236 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237 	    (!compressed_size &&
238 	    (actual_end & (root->sectorsize - 1)) == 0) ||
239 	    end + 1 < isize ||
240 	    data_len > root->fs_info->max_inline) {
241 		return 1;
242 	}
243 
244 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
245 				 &hint_byte, 1);
246 	BUG_ON(ret);
247 
248 	if (isize > actual_end)
249 		inline_len = min_t(u64, isize, actual_end);
250 	ret = insert_inline_extent(trans, root, inode, start,
251 				   inline_len, compressed_size,
252 				   compressed_pages);
253 	BUG_ON(ret);
254 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
255 	return 0;
256 }
257 
258 struct async_extent {
259 	u64 start;
260 	u64 ram_size;
261 	u64 compressed_size;
262 	struct page **pages;
263 	unsigned long nr_pages;
264 	struct list_head list;
265 };
266 
267 struct async_cow {
268 	struct inode *inode;
269 	struct btrfs_root *root;
270 	struct page *locked_page;
271 	u64 start;
272 	u64 end;
273 	struct list_head extents;
274 	struct btrfs_work work;
275 };
276 
277 static noinline int add_async_extent(struct async_cow *cow,
278 				     u64 start, u64 ram_size,
279 				     u64 compressed_size,
280 				     struct page **pages,
281 				     unsigned long nr_pages)
282 {
283 	struct async_extent *async_extent;
284 
285 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286 	async_extent->start = start;
287 	async_extent->ram_size = ram_size;
288 	async_extent->compressed_size = compressed_size;
289 	async_extent->pages = pages;
290 	async_extent->nr_pages = nr_pages;
291 	list_add_tail(&async_extent->list, &cow->extents);
292 	return 0;
293 }
294 
295 /*
296  * we create compressed extents in two phases.  The first
297  * phase compresses a range of pages that have already been
298  * locked (both pages and state bits are locked).
299  *
300  * This is done inside an ordered work queue, and the compression
301  * is spread across many cpus.  The actual IO submission is step
302  * two, and the ordered work queue takes care of making sure that
303  * happens in the same order things were put onto the queue by
304  * writepages and friends.
305  *
306  * If this code finds it can't get good compression, it puts an
307  * entry onto the work queue to write the uncompressed bytes.  This
308  * makes sure that both compressed inodes and uncompressed inodes
309  * are written in the same order that pdflush sent them down.
310  */
311 static noinline int compress_file_range(struct inode *inode,
312 					struct page *locked_page,
313 					u64 start, u64 end,
314 					struct async_cow *async_cow,
315 					int *num_added)
316 {
317 	struct btrfs_root *root = BTRFS_I(inode)->root;
318 	struct btrfs_trans_handle *trans;
319 	u64 num_bytes;
320 	u64 orig_start;
321 	u64 disk_num_bytes;
322 	u64 blocksize = root->sectorsize;
323 	u64 actual_end;
324 	u64 isize = i_size_read(inode);
325 	int ret = 0;
326 	struct page **pages = NULL;
327 	unsigned long nr_pages;
328 	unsigned long nr_pages_ret = 0;
329 	unsigned long total_compressed = 0;
330 	unsigned long total_in = 0;
331 	unsigned long max_compressed = 128 * 1024;
332 	unsigned long max_uncompressed = 128 * 1024;
333 	int i;
334 	int will_compress;
335 
336 	orig_start = start;
337 
338 	actual_end = min_t(u64, isize, end + 1);
339 again:
340 	will_compress = 0;
341 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343 
344 	/*
345 	 * we don't want to send crud past the end of i_size through
346 	 * compression, that's just a waste of CPU time.  So, if the
347 	 * end of the file is before the start of our current
348 	 * requested range of bytes, we bail out to the uncompressed
349 	 * cleanup code that can deal with all of this.
350 	 *
351 	 * It isn't really the fastest way to fix things, but this is a
352 	 * very uncommon corner.
353 	 */
354 	if (actual_end <= start)
355 		goto cleanup_and_bail_uncompressed;
356 
357 	total_compressed = actual_end - start;
358 
359 	/* we want to make sure that amount of ram required to uncompress
360 	 * an extent is reasonable, so we limit the total size in ram
361 	 * of a compressed extent to 128k.  This is a crucial number
362 	 * because it also controls how easily we can spread reads across
363 	 * cpus for decompression.
364 	 *
365 	 * We also want to make sure the amount of IO required to do
366 	 * a random read is reasonably small, so we limit the size of
367 	 * a compressed extent to 128k.
368 	 */
369 	total_compressed = min(total_compressed, max_uncompressed);
370 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
371 	num_bytes = max(blocksize,  num_bytes);
372 	disk_num_bytes = num_bytes;
373 	total_in = 0;
374 	ret = 0;
375 
376 	/*
377 	 * we do compression for mount -o compress and when the
378 	 * inode has not been flagged as nocompress.  This flag can
379 	 * change at any time if we discover bad compression ratios.
380 	 */
381 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
382 	    btrfs_test_opt(root, COMPRESS)) {
383 		WARN_ON(pages);
384 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
385 
386 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387 						total_compressed, pages,
388 						nr_pages, &nr_pages_ret,
389 						&total_in,
390 						&total_compressed,
391 						max_compressed);
392 
393 		if (!ret) {
394 			unsigned long offset = total_compressed &
395 				(PAGE_CACHE_SIZE - 1);
396 			struct page *page = pages[nr_pages_ret - 1];
397 			char *kaddr;
398 
399 			/* zero the tail end of the last page, we might be
400 			 * sending it down to disk
401 			 */
402 			if (offset) {
403 				kaddr = kmap_atomic(page, KM_USER0);
404 				memset(kaddr + offset, 0,
405 				       PAGE_CACHE_SIZE - offset);
406 				kunmap_atomic(kaddr, KM_USER0);
407 			}
408 			will_compress = 1;
409 		}
410 	}
411 	if (start == 0) {
412 		trans = btrfs_join_transaction(root, 1);
413 		BUG_ON(!trans);
414 		btrfs_set_trans_block_group(trans, inode);
415 
416 		/* lets try to make an inline extent */
417 		if (ret || total_in < (actual_end - start)) {
418 			/* we didn't compress the entire range, try
419 			 * to make an uncompressed inline extent.
420 			 */
421 			ret = cow_file_range_inline(trans, root, inode,
422 						    start, end, 0, NULL);
423 		} else {
424 			/* try making a compressed inline extent */
425 			ret = cow_file_range_inline(trans, root, inode,
426 						    start, end,
427 						    total_compressed, pages);
428 		}
429 		if (ret == 0) {
430 			/*
431 			 * inline extent creation worked, we don't need
432 			 * to create any more async work items.  Unlock
433 			 * and free up our temp pages.
434 			 */
435 			extent_clear_unlock_delalloc(inode,
436 			     &BTRFS_I(inode)->io_tree,
437 			     start, end, NULL,
438 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
439 			     EXTENT_CLEAR_DELALLOC |
440 			     EXTENT_CLEAR_ACCOUNTING |
441 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
442 
443 			btrfs_end_transaction(trans, root);
444 			goto free_pages_out;
445 		}
446 		btrfs_end_transaction(trans, root);
447 	}
448 
449 	if (will_compress) {
450 		/*
451 		 * we aren't doing an inline extent round the compressed size
452 		 * up to a block size boundary so the allocator does sane
453 		 * things
454 		 */
455 		total_compressed = (total_compressed + blocksize - 1) &
456 			~(blocksize - 1);
457 
458 		/*
459 		 * one last check to make sure the compression is really a
460 		 * win, compare the page count read with the blocks on disk
461 		 */
462 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463 			~(PAGE_CACHE_SIZE - 1);
464 		if (total_compressed >= total_in) {
465 			will_compress = 0;
466 		} else {
467 			disk_num_bytes = total_compressed;
468 			num_bytes = total_in;
469 		}
470 	}
471 	if (!will_compress && pages) {
472 		/*
473 		 * the compression code ran but failed to make things smaller,
474 		 * free any pages it allocated and our page pointer array
475 		 */
476 		for (i = 0; i < nr_pages_ret; i++) {
477 			WARN_ON(pages[i]->mapping);
478 			page_cache_release(pages[i]);
479 		}
480 		kfree(pages);
481 		pages = NULL;
482 		total_compressed = 0;
483 		nr_pages_ret = 0;
484 
485 		/* flag the file so we don't compress in the future */
486 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
487 	}
488 	if (will_compress) {
489 		*num_added += 1;
490 
491 		/* the async work queues will take care of doing actual
492 		 * allocation on disk for these compressed pages,
493 		 * and will submit them to the elevator.
494 		 */
495 		add_async_extent(async_cow, start, num_bytes,
496 				 total_compressed, pages, nr_pages_ret);
497 
498 		if (start + num_bytes < end && start + num_bytes < actual_end) {
499 			start += num_bytes;
500 			pages = NULL;
501 			cond_resched();
502 			goto again;
503 		}
504 	} else {
505 cleanup_and_bail_uncompressed:
506 		/*
507 		 * No compression, but we still need to write the pages in
508 		 * the file we've been given so far.  redirty the locked
509 		 * page if it corresponds to our extent and set things up
510 		 * for the async work queue to run cow_file_range to do
511 		 * the normal delalloc dance
512 		 */
513 		if (page_offset(locked_page) >= start &&
514 		    page_offset(locked_page) <= end) {
515 			__set_page_dirty_nobuffers(locked_page);
516 			/* unlocked later on in the async handlers */
517 		}
518 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
519 		*num_added += 1;
520 	}
521 
522 out:
523 	return 0;
524 
525 free_pages_out:
526 	for (i = 0; i < nr_pages_ret; i++) {
527 		WARN_ON(pages[i]->mapping);
528 		page_cache_release(pages[i]);
529 	}
530 	kfree(pages);
531 
532 	goto out;
533 }
534 
535 /*
536  * phase two of compressed writeback.  This is the ordered portion
537  * of the code, which only gets called in the order the work was
538  * queued.  We walk all the async extents created by compress_file_range
539  * and send them down to the disk.
540  */
541 static noinline int submit_compressed_extents(struct inode *inode,
542 					      struct async_cow *async_cow)
543 {
544 	struct async_extent *async_extent;
545 	u64 alloc_hint = 0;
546 	struct btrfs_trans_handle *trans;
547 	struct btrfs_key ins;
548 	struct extent_map *em;
549 	struct btrfs_root *root = BTRFS_I(inode)->root;
550 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
551 	struct extent_io_tree *io_tree;
552 	int ret = 0;
553 
554 	if (list_empty(&async_cow->extents))
555 		return 0;
556 
557 
558 	while (!list_empty(&async_cow->extents)) {
559 		async_extent = list_entry(async_cow->extents.next,
560 					  struct async_extent, list);
561 		list_del(&async_extent->list);
562 
563 		io_tree = &BTRFS_I(inode)->io_tree;
564 
565 retry:
566 		/* did the compression code fall back to uncompressed IO? */
567 		if (!async_extent->pages) {
568 			int page_started = 0;
569 			unsigned long nr_written = 0;
570 
571 			lock_extent(io_tree, async_extent->start,
572 				    async_extent->start +
573 				    async_extent->ram_size - 1, GFP_NOFS);
574 
575 			/* allocate blocks */
576 			ret = cow_file_range(inode, async_cow->locked_page,
577 					     async_extent->start,
578 					     async_extent->start +
579 					     async_extent->ram_size - 1,
580 					     &page_started, &nr_written, 0);
581 
582 			/*
583 			 * if page_started, cow_file_range inserted an
584 			 * inline extent and took care of all the unlocking
585 			 * and IO for us.  Otherwise, we need to submit
586 			 * all those pages down to the drive.
587 			 */
588 			if (!page_started && !ret)
589 				extent_write_locked_range(io_tree,
590 						  inode, async_extent->start,
591 						  async_extent->start +
592 						  async_extent->ram_size - 1,
593 						  btrfs_get_extent,
594 						  WB_SYNC_ALL);
595 			kfree(async_extent);
596 			cond_resched();
597 			continue;
598 		}
599 
600 		lock_extent(io_tree, async_extent->start,
601 			    async_extent->start + async_extent->ram_size - 1,
602 			    GFP_NOFS);
603 
604 		trans = btrfs_join_transaction(root, 1);
605 		ret = btrfs_reserve_extent(trans, root,
606 					   async_extent->compressed_size,
607 					   async_extent->compressed_size,
608 					   0, alloc_hint,
609 					   (u64)-1, &ins, 1);
610 		btrfs_end_transaction(trans, root);
611 
612 		if (ret) {
613 			int i;
614 			for (i = 0; i < async_extent->nr_pages; i++) {
615 				WARN_ON(async_extent->pages[i]->mapping);
616 				page_cache_release(async_extent->pages[i]);
617 			}
618 			kfree(async_extent->pages);
619 			async_extent->nr_pages = 0;
620 			async_extent->pages = NULL;
621 			unlock_extent(io_tree, async_extent->start,
622 				      async_extent->start +
623 				      async_extent->ram_size - 1, GFP_NOFS);
624 			goto retry;
625 		}
626 
627 		/*
628 		 * here we're doing allocation and writeback of the
629 		 * compressed pages
630 		 */
631 		btrfs_drop_extent_cache(inode, async_extent->start,
632 					async_extent->start +
633 					async_extent->ram_size - 1, 0);
634 
635 		em = alloc_extent_map(GFP_NOFS);
636 		em->start = async_extent->start;
637 		em->len = async_extent->ram_size;
638 		em->orig_start = em->start;
639 
640 		em->block_start = ins.objectid;
641 		em->block_len = ins.offset;
642 		em->bdev = root->fs_info->fs_devices->latest_bdev;
643 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
644 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
645 
646 		while (1) {
647 			write_lock(&em_tree->lock);
648 			ret = add_extent_mapping(em_tree, em);
649 			write_unlock(&em_tree->lock);
650 			if (ret != -EEXIST) {
651 				free_extent_map(em);
652 				break;
653 			}
654 			btrfs_drop_extent_cache(inode, async_extent->start,
655 						async_extent->start +
656 						async_extent->ram_size - 1, 0);
657 		}
658 
659 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
660 					       ins.objectid,
661 					       async_extent->ram_size,
662 					       ins.offset,
663 					       BTRFS_ORDERED_COMPRESSED);
664 		BUG_ON(ret);
665 
666 		/*
667 		 * clear dirty, set writeback and unlock the pages.
668 		 */
669 		extent_clear_unlock_delalloc(inode,
670 				&BTRFS_I(inode)->io_tree,
671 				async_extent->start,
672 				async_extent->start +
673 				async_extent->ram_size - 1,
674 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
675 				EXTENT_CLEAR_UNLOCK |
676 				EXTENT_CLEAR_DELALLOC |
677 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
678 
679 		ret = btrfs_submit_compressed_write(inode,
680 				    async_extent->start,
681 				    async_extent->ram_size,
682 				    ins.objectid,
683 				    ins.offset, async_extent->pages,
684 				    async_extent->nr_pages);
685 
686 		BUG_ON(ret);
687 		alloc_hint = ins.objectid + ins.offset;
688 		kfree(async_extent);
689 		cond_resched();
690 	}
691 
692 	return 0;
693 }
694 
695 /*
696  * when extent_io.c finds a delayed allocation range in the file,
697  * the call backs end up in this code.  The basic idea is to
698  * allocate extents on disk for the range, and create ordered data structs
699  * in ram to track those extents.
700  *
701  * locked_page is the page that writepage had locked already.  We use
702  * it to make sure we don't do extra locks or unlocks.
703  *
704  * *page_started is set to one if we unlock locked_page and do everything
705  * required to start IO on it.  It may be clean and already done with
706  * IO when we return.
707  */
708 static noinline int cow_file_range(struct inode *inode,
709 				   struct page *locked_page,
710 				   u64 start, u64 end, int *page_started,
711 				   unsigned long *nr_written,
712 				   int unlock)
713 {
714 	struct btrfs_root *root = BTRFS_I(inode)->root;
715 	struct btrfs_trans_handle *trans;
716 	u64 alloc_hint = 0;
717 	u64 num_bytes;
718 	unsigned long ram_size;
719 	u64 disk_num_bytes;
720 	u64 cur_alloc_size;
721 	u64 blocksize = root->sectorsize;
722 	u64 actual_end;
723 	u64 isize = i_size_read(inode);
724 	struct btrfs_key ins;
725 	struct extent_map *em;
726 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
727 	int ret = 0;
728 
729 	trans = btrfs_join_transaction(root, 1);
730 	BUG_ON(!trans);
731 	btrfs_set_trans_block_group(trans, inode);
732 
733 	actual_end = min_t(u64, isize, end + 1);
734 
735 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
736 	num_bytes = max(blocksize,  num_bytes);
737 	disk_num_bytes = num_bytes;
738 	ret = 0;
739 
740 	if (start == 0) {
741 		/* lets try to make an inline extent */
742 		ret = cow_file_range_inline(trans, root, inode,
743 					    start, end, 0, NULL);
744 		if (ret == 0) {
745 			extent_clear_unlock_delalloc(inode,
746 				     &BTRFS_I(inode)->io_tree,
747 				     start, end, NULL,
748 				     EXTENT_CLEAR_UNLOCK_PAGE |
749 				     EXTENT_CLEAR_UNLOCK |
750 				     EXTENT_CLEAR_DELALLOC |
751 				     EXTENT_CLEAR_ACCOUNTING |
752 				     EXTENT_CLEAR_DIRTY |
753 				     EXTENT_SET_WRITEBACK |
754 				     EXTENT_END_WRITEBACK);
755 
756 			*nr_written = *nr_written +
757 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
758 			*page_started = 1;
759 			ret = 0;
760 			goto out;
761 		}
762 	}
763 
764 	BUG_ON(disk_num_bytes >
765 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
766 
767 
768 	read_lock(&BTRFS_I(inode)->extent_tree.lock);
769 	em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
770 				   start, num_bytes);
771 	if (em) {
772 		/*
773 		 * if block start isn't an actual block number then find the
774 		 * first block in this inode and use that as a hint.  If that
775 		 * block is also bogus then just don't worry about it.
776 		 */
777 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 			free_extent_map(em);
779 			em = search_extent_mapping(em_tree, 0, 0);
780 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 				alloc_hint = em->block_start;
782 			if (em)
783 				free_extent_map(em);
784 		} else {
785 			alloc_hint = em->block_start;
786 			free_extent_map(em);
787 		}
788 	}
789 	read_unlock(&BTRFS_I(inode)->extent_tree.lock);
790 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
791 
792 	while (disk_num_bytes > 0) {
793 		unsigned long op;
794 
795 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
796 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
797 					   root->sectorsize, 0, alloc_hint,
798 					   (u64)-1, &ins, 1);
799 		BUG_ON(ret);
800 
801 		em = alloc_extent_map(GFP_NOFS);
802 		em->start = start;
803 		em->orig_start = em->start;
804 		ram_size = ins.offset;
805 		em->len = ins.offset;
806 
807 		em->block_start = ins.objectid;
808 		em->block_len = ins.offset;
809 		em->bdev = root->fs_info->fs_devices->latest_bdev;
810 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
811 
812 		while (1) {
813 			write_lock(&em_tree->lock);
814 			ret = add_extent_mapping(em_tree, em);
815 			write_unlock(&em_tree->lock);
816 			if (ret != -EEXIST) {
817 				free_extent_map(em);
818 				break;
819 			}
820 			btrfs_drop_extent_cache(inode, start,
821 						start + ram_size - 1, 0);
822 		}
823 
824 		cur_alloc_size = ins.offset;
825 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
826 					       ram_size, cur_alloc_size, 0);
827 		BUG_ON(ret);
828 
829 		if (root->root_key.objectid ==
830 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
831 			ret = btrfs_reloc_clone_csums(inode, start,
832 						      cur_alloc_size);
833 			BUG_ON(ret);
834 		}
835 
836 		if (disk_num_bytes < cur_alloc_size)
837 			break;
838 
839 		/* we're not doing compressed IO, don't unlock the first
840 		 * page (which the caller expects to stay locked), don't
841 		 * clear any dirty bits and don't set any writeback bits
842 		 *
843 		 * Do set the Private2 bit so we know this page was properly
844 		 * setup for writepage
845 		 */
846 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
847 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
848 			EXTENT_SET_PRIVATE2;
849 
850 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
851 					     start, start + ram_size - 1,
852 					     locked_page, op);
853 		disk_num_bytes -= cur_alloc_size;
854 		num_bytes -= cur_alloc_size;
855 		alloc_hint = ins.objectid + ins.offset;
856 		start += cur_alloc_size;
857 	}
858 out:
859 	ret = 0;
860 	btrfs_end_transaction(trans, root);
861 
862 	return ret;
863 }
864 
865 /*
866  * work queue call back to started compression on a file and pages
867  */
868 static noinline void async_cow_start(struct btrfs_work *work)
869 {
870 	struct async_cow *async_cow;
871 	int num_added = 0;
872 	async_cow = container_of(work, struct async_cow, work);
873 
874 	compress_file_range(async_cow->inode, async_cow->locked_page,
875 			    async_cow->start, async_cow->end, async_cow,
876 			    &num_added);
877 	if (num_added == 0)
878 		async_cow->inode = NULL;
879 }
880 
881 /*
882  * work queue call back to submit previously compressed pages
883  */
884 static noinline void async_cow_submit(struct btrfs_work *work)
885 {
886 	struct async_cow *async_cow;
887 	struct btrfs_root *root;
888 	unsigned long nr_pages;
889 
890 	async_cow = container_of(work, struct async_cow, work);
891 
892 	root = async_cow->root;
893 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
894 		PAGE_CACHE_SHIFT;
895 
896 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
897 
898 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
899 	    5 * 1042 * 1024 &&
900 	    waitqueue_active(&root->fs_info->async_submit_wait))
901 		wake_up(&root->fs_info->async_submit_wait);
902 
903 	if (async_cow->inode)
904 		submit_compressed_extents(async_cow->inode, async_cow);
905 }
906 
907 static noinline void async_cow_free(struct btrfs_work *work)
908 {
909 	struct async_cow *async_cow;
910 	async_cow = container_of(work, struct async_cow, work);
911 	kfree(async_cow);
912 }
913 
914 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
915 				u64 start, u64 end, int *page_started,
916 				unsigned long *nr_written)
917 {
918 	struct async_cow *async_cow;
919 	struct btrfs_root *root = BTRFS_I(inode)->root;
920 	unsigned long nr_pages;
921 	u64 cur_end;
922 	int limit = 10 * 1024 * 1042;
923 
924 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
925 			 1, 0, NULL, GFP_NOFS);
926 	while (start < end) {
927 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
928 		async_cow->inode = inode;
929 		async_cow->root = root;
930 		async_cow->locked_page = locked_page;
931 		async_cow->start = start;
932 
933 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
934 			cur_end = end;
935 		else
936 			cur_end = min(end, start + 512 * 1024 - 1);
937 
938 		async_cow->end = cur_end;
939 		INIT_LIST_HEAD(&async_cow->extents);
940 
941 		async_cow->work.func = async_cow_start;
942 		async_cow->work.ordered_func = async_cow_submit;
943 		async_cow->work.ordered_free = async_cow_free;
944 		async_cow->work.flags = 0;
945 
946 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
947 			PAGE_CACHE_SHIFT;
948 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
949 
950 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
951 				   &async_cow->work);
952 
953 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
954 			wait_event(root->fs_info->async_submit_wait,
955 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
956 			    limit));
957 		}
958 
959 		while (atomic_read(&root->fs_info->async_submit_draining) &&
960 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
961 			wait_event(root->fs_info->async_submit_wait,
962 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
963 			   0));
964 		}
965 
966 		*nr_written += nr_pages;
967 		start = cur_end + 1;
968 	}
969 	*page_started = 1;
970 	return 0;
971 }
972 
973 static noinline int csum_exist_in_range(struct btrfs_root *root,
974 					u64 bytenr, u64 num_bytes)
975 {
976 	int ret;
977 	struct btrfs_ordered_sum *sums;
978 	LIST_HEAD(list);
979 
980 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
981 				       bytenr + num_bytes - 1, &list);
982 	if (ret == 0 && list_empty(&list))
983 		return 0;
984 
985 	while (!list_empty(&list)) {
986 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
987 		list_del(&sums->list);
988 		kfree(sums);
989 	}
990 	return 1;
991 }
992 
993 /*
994  * when nowcow writeback call back.  This checks for snapshots or COW copies
995  * of the extents that exist in the file, and COWs the file as required.
996  *
997  * If no cow copies or snapshots exist, we write directly to the existing
998  * blocks on disk
999  */
1000 static noinline int run_delalloc_nocow(struct inode *inode,
1001 				       struct page *locked_page,
1002 			      u64 start, u64 end, int *page_started, int force,
1003 			      unsigned long *nr_written)
1004 {
1005 	struct btrfs_root *root = BTRFS_I(inode)->root;
1006 	struct btrfs_trans_handle *trans;
1007 	struct extent_buffer *leaf;
1008 	struct btrfs_path *path;
1009 	struct btrfs_file_extent_item *fi;
1010 	struct btrfs_key found_key;
1011 	u64 cow_start;
1012 	u64 cur_offset;
1013 	u64 extent_end;
1014 	u64 extent_offset;
1015 	u64 disk_bytenr;
1016 	u64 num_bytes;
1017 	int extent_type;
1018 	int ret;
1019 	int type;
1020 	int nocow;
1021 	int check_prev = 1;
1022 
1023 	path = btrfs_alloc_path();
1024 	BUG_ON(!path);
1025 	trans = btrfs_join_transaction(root, 1);
1026 	BUG_ON(!trans);
1027 
1028 	cow_start = (u64)-1;
1029 	cur_offset = start;
1030 	while (1) {
1031 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1032 					       cur_offset, 0);
1033 		BUG_ON(ret < 0);
1034 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1035 			leaf = path->nodes[0];
1036 			btrfs_item_key_to_cpu(leaf, &found_key,
1037 					      path->slots[0] - 1);
1038 			if (found_key.objectid == inode->i_ino &&
1039 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1040 				path->slots[0]--;
1041 		}
1042 		check_prev = 0;
1043 next_slot:
1044 		leaf = path->nodes[0];
1045 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1046 			ret = btrfs_next_leaf(root, path);
1047 			if (ret < 0)
1048 				BUG_ON(1);
1049 			if (ret > 0)
1050 				break;
1051 			leaf = path->nodes[0];
1052 		}
1053 
1054 		nocow = 0;
1055 		disk_bytenr = 0;
1056 		num_bytes = 0;
1057 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1058 
1059 		if (found_key.objectid > inode->i_ino ||
1060 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1061 		    found_key.offset > end)
1062 			break;
1063 
1064 		if (found_key.offset > cur_offset) {
1065 			extent_end = found_key.offset;
1066 			extent_type = 0;
1067 			goto out_check;
1068 		}
1069 
1070 		fi = btrfs_item_ptr(leaf, path->slots[0],
1071 				    struct btrfs_file_extent_item);
1072 		extent_type = btrfs_file_extent_type(leaf, fi);
1073 
1074 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1075 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1076 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1077 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1078 			extent_end = found_key.offset +
1079 				btrfs_file_extent_num_bytes(leaf, fi);
1080 			if (extent_end <= start) {
1081 				path->slots[0]++;
1082 				goto next_slot;
1083 			}
1084 			if (disk_bytenr == 0)
1085 				goto out_check;
1086 			if (btrfs_file_extent_compression(leaf, fi) ||
1087 			    btrfs_file_extent_encryption(leaf, fi) ||
1088 			    btrfs_file_extent_other_encoding(leaf, fi))
1089 				goto out_check;
1090 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1091 				goto out_check;
1092 			if (btrfs_extent_readonly(root, disk_bytenr))
1093 				goto out_check;
1094 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1095 						  found_key.offset -
1096 						  extent_offset, disk_bytenr))
1097 				goto out_check;
1098 			disk_bytenr += extent_offset;
1099 			disk_bytenr += cur_offset - found_key.offset;
1100 			num_bytes = min(end + 1, extent_end) - cur_offset;
1101 			/*
1102 			 * force cow if csum exists in the range.
1103 			 * this ensure that csum for a given extent are
1104 			 * either valid or do not exist.
1105 			 */
1106 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1107 				goto out_check;
1108 			nocow = 1;
1109 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1110 			extent_end = found_key.offset +
1111 				btrfs_file_extent_inline_len(leaf, fi);
1112 			extent_end = ALIGN(extent_end, root->sectorsize);
1113 		} else {
1114 			BUG_ON(1);
1115 		}
1116 out_check:
1117 		if (extent_end <= start) {
1118 			path->slots[0]++;
1119 			goto next_slot;
1120 		}
1121 		if (!nocow) {
1122 			if (cow_start == (u64)-1)
1123 				cow_start = cur_offset;
1124 			cur_offset = extent_end;
1125 			if (cur_offset > end)
1126 				break;
1127 			path->slots[0]++;
1128 			goto next_slot;
1129 		}
1130 
1131 		btrfs_release_path(root, path);
1132 		if (cow_start != (u64)-1) {
1133 			ret = cow_file_range(inode, locked_page, cow_start,
1134 					found_key.offset - 1, page_started,
1135 					nr_written, 1);
1136 			BUG_ON(ret);
1137 			cow_start = (u64)-1;
1138 		}
1139 
1140 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1141 			struct extent_map *em;
1142 			struct extent_map_tree *em_tree;
1143 			em_tree = &BTRFS_I(inode)->extent_tree;
1144 			em = alloc_extent_map(GFP_NOFS);
1145 			em->start = cur_offset;
1146 			em->orig_start = em->start;
1147 			em->len = num_bytes;
1148 			em->block_len = num_bytes;
1149 			em->block_start = disk_bytenr;
1150 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1151 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1152 			while (1) {
1153 				write_lock(&em_tree->lock);
1154 				ret = add_extent_mapping(em_tree, em);
1155 				write_unlock(&em_tree->lock);
1156 				if (ret != -EEXIST) {
1157 					free_extent_map(em);
1158 					break;
1159 				}
1160 				btrfs_drop_extent_cache(inode, em->start,
1161 						em->start + em->len - 1, 0);
1162 			}
1163 			type = BTRFS_ORDERED_PREALLOC;
1164 		} else {
1165 			type = BTRFS_ORDERED_NOCOW;
1166 		}
1167 
1168 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1169 					       num_bytes, num_bytes, type);
1170 		BUG_ON(ret);
1171 
1172 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1173 				cur_offset, cur_offset + num_bytes - 1,
1174 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1175 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1176 				EXTENT_SET_PRIVATE2);
1177 		cur_offset = extent_end;
1178 		if (cur_offset > end)
1179 			break;
1180 	}
1181 	btrfs_release_path(root, path);
1182 
1183 	if (cur_offset <= end && cow_start == (u64)-1)
1184 		cow_start = cur_offset;
1185 	if (cow_start != (u64)-1) {
1186 		ret = cow_file_range(inode, locked_page, cow_start, end,
1187 				     page_started, nr_written, 1);
1188 		BUG_ON(ret);
1189 	}
1190 
1191 	ret = btrfs_end_transaction(trans, root);
1192 	BUG_ON(ret);
1193 	btrfs_free_path(path);
1194 	return 0;
1195 }
1196 
1197 /*
1198  * extent_io.c call back to do delayed allocation processing
1199  */
1200 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1201 			      u64 start, u64 end, int *page_started,
1202 			      unsigned long *nr_written)
1203 {
1204 	int ret;
1205 	struct btrfs_root *root = BTRFS_I(inode)->root;
1206 
1207 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1208 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1209 					 page_started, 1, nr_written);
1210 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1211 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1212 					 page_started, 0, nr_written);
1213 	else if (!btrfs_test_opt(root, COMPRESS))
1214 		ret = cow_file_range(inode, locked_page, start, end,
1215 				      page_started, nr_written, 1);
1216 	else
1217 		ret = cow_file_range_async(inode, locked_page, start, end,
1218 					   page_started, nr_written);
1219 	return ret;
1220 }
1221 
1222 static int btrfs_split_extent_hook(struct inode *inode,
1223 				    struct extent_state *orig, u64 split)
1224 {
1225 	struct btrfs_root *root = BTRFS_I(inode)->root;
1226 	u64 size;
1227 
1228 	if (!(orig->state & EXTENT_DELALLOC))
1229 		return 0;
1230 
1231 	size = orig->end - orig->start + 1;
1232 	if (size > root->fs_info->max_extent) {
1233 		u64 num_extents;
1234 		u64 new_size;
1235 
1236 		new_size = orig->end - split + 1;
1237 		num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1238 					root->fs_info->max_extent);
1239 
1240 		/*
1241 		 * if we break a large extent up then leave oustanding_extents
1242 		 * be, since we've already accounted for the large extent.
1243 		 */
1244 		if (div64_u64(new_size + root->fs_info->max_extent - 1,
1245 			      root->fs_info->max_extent) < num_extents)
1246 			return 0;
1247 	}
1248 
1249 	spin_lock(&BTRFS_I(inode)->accounting_lock);
1250 	BTRFS_I(inode)->outstanding_extents++;
1251 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1258  * extents so we can keep track of new extents that are just merged onto old
1259  * extents, such as when we are doing sequential writes, so we can properly
1260  * account for the metadata space we'll need.
1261  */
1262 static int btrfs_merge_extent_hook(struct inode *inode,
1263 				   struct extent_state *new,
1264 				   struct extent_state *other)
1265 {
1266 	struct btrfs_root *root = BTRFS_I(inode)->root;
1267 	u64 new_size, old_size;
1268 	u64 num_extents;
1269 
1270 	/* not delalloc, ignore it */
1271 	if (!(other->state & EXTENT_DELALLOC))
1272 		return 0;
1273 
1274 	old_size = other->end - other->start + 1;
1275 	if (new->start < other->start)
1276 		new_size = other->end - new->start + 1;
1277 	else
1278 		new_size = new->end - other->start + 1;
1279 
1280 	/* we're not bigger than the max, unreserve the space and go */
1281 	if (new_size <= root->fs_info->max_extent) {
1282 		spin_lock(&BTRFS_I(inode)->accounting_lock);
1283 		BTRFS_I(inode)->outstanding_extents--;
1284 		spin_unlock(&BTRFS_I(inode)->accounting_lock);
1285 		return 0;
1286 	}
1287 
1288 	/*
1289 	 * If we grew by another max_extent, just return, we want to keep that
1290 	 * reserved amount.
1291 	 */
1292 	num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1293 				root->fs_info->max_extent);
1294 	if (div64_u64(new_size + root->fs_info->max_extent - 1,
1295 		      root->fs_info->max_extent) > num_extents)
1296 		return 0;
1297 
1298 	spin_lock(&BTRFS_I(inode)->accounting_lock);
1299 	BTRFS_I(inode)->outstanding_extents--;
1300 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
1301 
1302 	return 0;
1303 }
1304 
1305 /*
1306  * extent_io.c set_bit_hook, used to track delayed allocation
1307  * bytes in this file, and to maintain the list of inodes that
1308  * have pending delalloc work to be done.
1309  */
1310 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1311 		       unsigned long old, unsigned long bits)
1312 {
1313 
1314 	/*
1315 	 * set_bit and clear bit hooks normally require _irqsave/restore
1316 	 * but in this case, we are only testeing for the DELALLOC
1317 	 * bit, which is only set or cleared with irqs on
1318 	 */
1319 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1320 		struct btrfs_root *root = BTRFS_I(inode)->root;
1321 
1322 		spin_lock(&BTRFS_I(inode)->accounting_lock);
1323 		BTRFS_I(inode)->outstanding_extents++;
1324 		spin_unlock(&BTRFS_I(inode)->accounting_lock);
1325 		btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1326 		spin_lock(&root->fs_info->delalloc_lock);
1327 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1328 		root->fs_info->delalloc_bytes += end - start + 1;
1329 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 				      &root->fs_info->delalloc_inodes);
1332 		}
1333 		spin_unlock(&root->fs_info->delalloc_lock);
1334 	}
1335 	return 0;
1336 }
1337 
1338 /*
1339  * extent_io.c clear_bit_hook, see set_bit_hook for why
1340  */
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342 				struct extent_state *state, unsigned long bits)
1343 {
1344 	/*
1345 	 * set_bit and clear bit hooks normally require _irqsave/restore
1346 	 * but in this case, we are only testeing for the DELALLOC
1347 	 * bit, which is only set or cleared with irqs on
1348 	 */
1349 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1350 		struct btrfs_root *root = BTRFS_I(inode)->root;
1351 
1352 		if (bits & EXTENT_DO_ACCOUNTING) {
1353 			spin_lock(&BTRFS_I(inode)->accounting_lock);
1354 			BTRFS_I(inode)->outstanding_extents--;
1355 			spin_unlock(&BTRFS_I(inode)->accounting_lock);
1356 			btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1357 		}
1358 
1359 		spin_lock(&root->fs_info->delalloc_lock);
1360 		if (state->end - state->start + 1 >
1361 		    root->fs_info->delalloc_bytes) {
1362 			printk(KERN_INFO "btrfs warning: delalloc account "
1363 			       "%llu %llu\n",
1364 			       (unsigned long long)
1365 			       state->end - state->start + 1,
1366 			       (unsigned long long)
1367 			       root->fs_info->delalloc_bytes);
1368 			btrfs_delalloc_free_space(root, inode, (u64)-1);
1369 			root->fs_info->delalloc_bytes = 0;
1370 			BTRFS_I(inode)->delalloc_bytes = 0;
1371 		} else {
1372 			btrfs_delalloc_free_space(root, inode,
1373 						  state->end -
1374 						  state->start + 1);
1375 			root->fs_info->delalloc_bytes -= state->end -
1376 				state->start + 1;
1377 			BTRFS_I(inode)->delalloc_bytes -= state->end -
1378 				state->start + 1;
1379 		}
1380 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1381 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1382 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1383 		}
1384 		spin_unlock(&root->fs_info->delalloc_lock);
1385 	}
1386 	return 0;
1387 }
1388 
1389 /*
1390  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1391  * we don't create bios that span stripes or chunks
1392  */
1393 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1394 			 size_t size, struct bio *bio,
1395 			 unsigned long bio_flags)
1396 {
1397 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1398 	struct btrfs_mapping_tree *map_tree;
1399 	u64 logical = (u64)bio->bi_sector << 9;
1400 	u64 length = 0;
1401 	u64 map_length;
1402 	int ret;
1403 
1404 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1405 		return 0;
1406 
1407 	length = bio->bi_size;
1408 	map_tree = &root->fs_info->mapping_tree;
1409 	map_length = length;
1410 	ret = btrfs_map_block(map_tree, READ, logical,
1411 			      &map_length, NULL, 0);
1412 
1413 	if (map_length < length + size)
1414 		return 1;
1415 	return 0;
1416 }
1417 
1418 /*
1419  * in order to insert checksums into the metadata in large chunks,
1420  * we wait until bio submission time.   All the pages in the bio are
1421  * checksummed and sums are attached onto the ordered extent record.
1422  *
1423  * At IO completion time the cums attached on the ordered extent record
1424  * are inserted into the btree
1425  */
1426 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1427 				    struct bio *bio, int mirror_num,
1428 				    unsigned long bio_flags)
1429 {
1430 	struct btrfs_root *root = BTRFS_I(inode)->root;
1431 	int ret = 0;
1432 
1433 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1434 	BUG_ON(ret);
1435 	return 0;
1436 }
1437 
1438 /*
1439  * in order to insert checksums into the metadata in large chunks,
1440  * we wait until bio submission time.   All the pages in the bio are
1441  * checksummed and sums are attached onto the ordered extent record.
1442  *
1443  * At IO completion time the cums attached on the ordered extent record
1444  * are inserted into the btree
1445  */
1446 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1447 			  int mirror_num, unsigned long bio_flags)
1448 {
1449 	struct btrfs_root *root = BTRFS_I(inode)->root;
1450 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1451 }
1452 
1453 /*
1454  * extent_io.c submission hook. This does the right thing for csum calculation
1455  * on write, or reading the csums from the tree before a read
1456  */
1457 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1458 			  int mirror_num, unsigned long bio_flags)
1459 {
1460 	struct btrfs_root *root = BTRFS_I(inode)->root;
1461 	int ret = 0;
1462 	int skip_sum;
1463 
1464 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1465 
1466 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1467 	BUG_ON(ret);
1468 
1469 	if (!(rw & (1 << BIO_RW))) {
1470 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1471 			return btrfs_submit_compressed_read(inode, bio,
1472 						    mirror_num, bio_flags);
1473 		} else if (!skip_sum)
1474 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1475 		goto mapit;
1476 	} else if (!skip_sum) {
1477 		/* csum items have already been cloned */
1478 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479 			goto mapit;
1480 		/* we're doing a write, do the async checksumming */
1481 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482 				   inode, rw, bio, mirror_num,
1483 				   bio_flags, __btrfs_submit_bio_start,
1484 				   __btrfs_submit_bio_done);
1485 	}
1486 
1487 mapit:
1488 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1489 }
1490 
1491 /*
1492  * given a list of ordered sums record them in the inode.  This happens
1493  * at IO completion time based on sums calculated at bio submission time.
1494  */
1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1496 			     struct inode *inode, u64 file_offset,
1497 			     struct list_head *list)
1498 {
1499 	struct btrfs_ordered_sum *sum;
1500 
1501 	btrfs_set_trans_block_group(trans, inode);
1502 
1503 	list_for_each_entry(sum, list, list) {
1504 		btrfs_csum_file_blocks(trans,
1505 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1506 	}
1507 	return 0;
1508 }
1509 
1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1511 {
1512 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1513 		WARN_ON(1);
1514 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1515 				   GFP_NOFS);
1516 }
1517 
1518 /* see btrfs_writepage_start_hook for details on why this is required */
1519 struct btrfs_writepage_fixup {
1520 	struct page *page;
1521 	struct btrfs_work work;
1522 };
1523 
1524 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1525 {
1526 	struct btrfs_writepage_fixup *fixup;
1527 	struct btrfs_ordered_extent *ordered;
1528 	struct page *page;
1529 	struct inode *inode;
1530 	u64 page_start;
1531 	u64 page_end;
1532 
1533 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1534 	page = fixup->page;
1535 again:
1536 	lock_page(page);
1537 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1538 		ClearPageChecked(page);
1539 		goto out_page;
1540 	}
1541 
1542 	inode = page->mapping->host;
1543 	page_start = page_offset(page);
1544 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1545 
1546 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1547 
1548 	/* already ordered? We're done */
1549 	if (PagePrivate2(page))
1550 		goto out;
1551 
1552 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1553 	if (ordered) {
1554 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1555 			      page_end, GFP_NOFS);
1556 		unlock_page(page);
1557 		btrfs_start_ordered_extent(inode, ordered, 1);
1558 		goto again;
1559 	}
1560 
1561 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1562 	ClearPageChecked(page);
1563 out:
1564 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1565 out_page:
1566 	unlock_page(page);
1567 	page_cache_release(page);
1568 }
1569 
1570 /*
1571  * There are a few paths in the higher layers of the kernel that directly
1572  * set the page dirty bit without asking the filesystem if it is a
1573  * good idea.  This causes problems because we want to make sure COW
1574  * properly happens and the data=ordered rules are followed.
1575  *
1576  * In our case any range that doesn't have the ORDERED bit set
1577  * hasn't been properly setup for IO.  We kick off an async process
1578  * to fix it up.  The async helper will wait for ordered extents, set
1579  * the delalloc bit and make it safe to write the page.
1580  */
1581 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1582 {
1583 	struct inode *inode = page->mapping->host;
1584 	struct btrfs_writepage_fixup *fixup;
1585 	struct btrfs_root *root = BTRFS_I(inode)->root;
1586 
1587 	/* this page is properly in the ordered list */
1588 	if (TestClearPagePrivate2(page))
1589 		return 0;
1590 
1591 	if (PageChecked(page))
1592 		return -EAGAIN;
1593 
1594 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595 	if (!fixup)
1596 		return -EAGAIN;
1597 
1598 	SetPageChecked(page);
1599 	page_cache_get(page);
1600 	fixup->work.func = btrfs_writepage_fixup_worker;
1601 	fixup->page = page;
1602 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603 	return -EAGAIN;
1604 }
1605 
1606 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607 				       struct inode *inode, u64 file_pos,
1608 				       u64 disk_bytenr, u64 disk_num_bytes,
1609 				       u64 num_bytes, u64 ram_bytes,
1610 				       u8 compression, u8 encryption,
1611 				       u16 other_encoding, int extent_type)
1612 {
1613 	struct btrfs_root *root = BTRFS_I(inode)->root;
1614 	struct btrfs_file_extent_item *fi;
1615 	struct btrfs_path *path;
1616 	struct extent_buffer *leaf;
1617 	struct btrfs_key ins;
1618 	u64 hint;
1619 	int ret;
1620 
1621 	path = btrfs_alloc_path();
1622 	BUG_ON(!path);
1623 
1624 	path->leave_spinning = 1;
1625 
1626 	/*
1627 	 * we may be replacing one extent in the tree with another.
1628 	 * The new extent is pinned in the extent map, and we don't want
1629 	 * to drop it from the cache until it is completely in the btree.
1630 	 *
1631 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1632 	 * the caller is expected to unpin it and allow it to be merged
1633 	 * with the others.
1634 	 */
1635 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636 				 &hint, 0);
1637 	BUG_ON(ret);
1638 
1639 	ins.objectid = inode->i_ino;
1640 	ins.offset = file_pos;
1641 	ins.type = BTRFS_EXTENT_DATA_KEY;
1642 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643 	BUG_ON(ret);
1644 	leaf = path->nodes[0];
1645 	fi = btrfs_item_ptr(leaf, path->slots[0],
1646 			    struct btrfs_file_extent_item);
1647 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1649 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651 	btrfs_set_file_extent_offset(leaf, fi, 0);
1652 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654 	btrfs_set_file_extent_compression(leaf, fi, compression);
1655 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1657 
1658 	btrfs_unlock_up_safe(path, 1);
1659 	btrfs_set_lock_blocking(leaf);
1660 
1661 	btrfs_mark_buffer_dirty(leaf);
1662 
1663 	inode_add_bytes(inode, num_bytes);
1664 
1665 	ins.objectid = disk_bytenr;
1666 	ins.offset = disk_num_bytes;
1667 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1668 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1669 					root->root_key.objectid,
1670 					inode->i_ino, file_pos, &ins);
1671 	BUG_ON(ret);
1672 	btrfs_free_path(path);
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678  * helper function for btrfs_finish_ordered_io, this
1679  * just reads in some of the csum leaves to prime them into ram
1680  * before we start the transaction.  It limits the amount of btree
1681  * reads required while inside the transaction.
1682  */
1683 static noinline void reada_csum(struct btrfs_root *root,
1684 				struct btrfs_path *path,
1685 				struct btrfs_ordered_extent *ordered_extent)
1686 {
1687 	struct btrfs_ordered_sum *sum;
1688 	u64 bytenr;
1689 
1690 	sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1691 			 list);
1692 	bytenr = sum->sums[0].bytenr;
1693 
1694 	/*
1695 	 * we don't care about the results, the point of this search is
1696 	 * just to get the btree leaves into ram
1697 	 */
1698 	btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1699 }
1700 
1701 /* as ordered data IO finishes, this gets called so we can finish
1702  * an ordered extent if the range of bytes in the file it covers are
1703  * fully written.
1704  */
1705 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1706 {
1707 	struct btrfs_root *root = BTRFS_I(inode)->root;
1708 	struct btrfs_trans_handle *trans;
1709 	struct btrfs_ordered_extent *ordered_extent = NULL;
1710 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1711 	struct btrfs_path *path;
1712 	int compressed = 0;
1713 	int ret;
1714 
1715 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1716 	if (!ret)
1717 		return 0;
1718 
1719 	/*
1720 	 * before we join the transaction, try to do some of our IO.
1721 	 * This will limit the amount of IO that we have to do with
1722 	 * the transaction running.  We're unlikely to need to do any
1723 	 * IO if the file extents are new, the disk_i_size checks
1724 	 * covers the most common case.
1725 	 */
1726 	if (start < BTRFS_I(inode)->disk_i_size) {
1727 		path = btrfs_alloc_path();
1728 		if (path) {
1729 			ret = btrfs_lookup_file_extent(NULL, root, path,
1730 						       inode->i_ino,
1731 						       start, 0);
1732 			ordered_extent = btrfs_lookup_ordered_extent(inode,
1733 								     start);
1734 			if (!list_empty(&ordered_extent->list)) {
1735 				btrfs_release_path(root, path);
1736 				reada_csum(root, path, ordered_extent);
1737 			}
1738 			btrfs_free_path(path);
1739 		}
1740 	}
1741 
1742 	if (!ordered_extent)
1743 		ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1744 	BUG_ON(!ordered_extent);
1745 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1746 		BUG_ON(!list_empty(&ordered_extent->list));
1747 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1748 		if (!ret) {
1749 			trans = btrfs_join_transaction(root, 1);
1750 			ret = btrfs_update_inode(trans, root, inode);
1751 			BUG_ON(ret);
1752 			btrfs_end_transaction(trans, root);
1753 		}
1754 		goto out;
1755 	}
1756 
1757 	lock_extent(io_tree, ordered_extent->file_offset,
1758 		    ordered_extent->file_offset + ordered_extent->len - 1,
1759 		    GFP_NOFS);
1760 
1761 	trans = btrfs_join_transaction(root, 1);
1762 
1763 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1764 		compressed = 1;
1765 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1766 		BUG_ON(compressed);
1767 		ret = btrfs_mark_extent_written(trans, inode,
1768 						ordered_extent->file_offset,
1769 						ordered_extent->file_offset +
1770 						ordered_extent->len);
1771 		BUG_ON(ret);
1772 	} else {
1773 		ret = insert_reserved_file_extent(trans, inode,
1774 						ordered_extent->file_offset,
1775 						ordered_extent->start,
1776 						ordered_extent->disk_len,
1777 						ordered_extent->len,
1778 						ordered_extent->len,
1779 						compressed, 0, 0,
1780 						BTRFS_FILE_EXTENT_REG);
1781 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1782 				   ordered_extent->file_offset,
1783 				   ordered_extent->len);
1784 		BUG_ON(ret);
1785 	}
1786 	unlock_extent(io_tree, ordered_extent->file_offset,
1787 		    ordered_extent->file_offset + ordered_extent->len - 1,
1788 		    GFP_NOFS);
1789 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1790 			  &ordered_extent->list);
1791 
1792 	/* this also removes the ordered extent from the tree */
1793 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1794 	ret = btrfs_update_inode(trans, root, inode);
1795 	BUG_ON(ret);
1796 	btrfs_end_transaction(trans, root);
1797 out:
1798 	/* once for us */
1799 	btrfs_put_ordered_extent(ordered_extent);
1800 	/* once for the tree */
1801 	btrfs_put_ordered_extent(ordered_extent);
1802 
1803 	return 0;
1804 }
1805 
1806 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1807 				struct extent_state *state, int uptodate)
1808 {
1809 	ClearPagePrivate2(page);
1810 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1811 }
1812 
1813 /*
1814  * When IO fails, either with EIO or csum verification fails, we
1815  * try other mirrors that might have a good copy of the data.  This
1816  * io_failure_record is used to record state as we go through all the
1817  * mirrors.  If another mirror has good data, the page is set up to date
1818  * and things continue.  If a good mirror can't be found, the original
1819  * bio end_io callback is called to indicate things have failed.
1820  */
1821 struct io_failure_record {
1822 	struct page *page;
1823 	u64 start;
1824 	u64 len;
1825 	u64 logical;
1826 	unsigned long bio_flags;
1827 	int last_mirror;
1828 };
1829 
1830 static int btrfs_io_failed_hook(struct bio *failed_bio,
1831 			 struct page *page, u64 start, u64 end,
1832 			 struct extent_state *state)
1833 {
1834 	struct io_failure_record *failrec = NULL;
1835 	u64 private;
1836 	struct extent_map *em;
1837 	struct inode *inode = page->mapping->host;
1838 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1839 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1840 	struct bio *bio;
1841 	int num_copies;
1842 	int ret;
1843 	int rw;
1844 	u64 logical;
1845 
1846 	ret = get_state_private(failure_tree, start, &private);
1847 	if (ret) {
1848 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1849 		if (!failrec)
1850 			return -ENOMEM;
1851 		failrec->start = start;
1852 		failrec->len = end - start + 1;
1853 		failrec->last_mirror = 0;
1854 		failrec->bio_flags = 0;
1855 
1856 		read_lock(&em_tree->lock);
1857 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1858 		if (em->start > start || em->start + em->len < start) {
1859 			free_extent_map(em);
1860 			em = NULL;
1861 		}
1862 		read_unlock(&em_tree->lock);
1863 
1864 		if (!em || IS_ERR(em)) {
1865 			kfree(failrec);
1866 			return -EIO;
1867 		}
1868 		logical = start - em->start;
1869 		logical = em->block_start + logical;
1870 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1871 			logical = em->block_start;
1872 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1873 		}
1874 		failrec->logical = logical;
1875 		free_extent_map(em);
1876 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1877 				EXTENT_DIRTY, GFP_NOFS);
1878 		set_state_private(failure_tree, start,
1879 				 (u64)(unsigned long)failrec);
1880 	} else {
1881 		failrec = (struct io_failure_record *)(unsigned long)private;
1882 	}
1883 	num_copies = btrfs_num_copies(
1884 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1885 			      failrec->logical, failrec->len);
1886 	failrec->last_mirror++;
1887 	if (!state) {
1888 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1889 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1890 						    failrec->start,
1891 						    EXTENT_LOCKED);
1892 		if (state && state->start != failrec->start)
1893 			state = NULL;
1894 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1895 	}
1896 	if (!state || failrec->last_mirror > num_copies) {
1897 		set_state_private(failure_tree, failrec->start, 0);
1898 		clear_extent_bits(failure_tree, failrec->start,
1899 				  failrec->start + failrec->len - 1,
1900 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1901 		kfree(failrec);
1902 		return -EIO;
1903 	}
1904 	bio = bio_alloc(GFP_NOFS, 1);
1905 	bio->bi_private = state;
1906 	bio->bi_end_io = failed_bio->bi_end_io;
1907 	bio->bi_sector = failrec->logical >> 9;
1908 	bio->bi_bdev = failed_bio->bi_bdev;
1909 	bio->bi_size = 0;
1910 
1911 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1912 	if (failed_bio->bi_rw & (1 << BIO_RW))
1913 		rw = WRITE;
1914 	else
1915 		rw = READ;
1916 
1917 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1918 						      failrec->last_mirror,
1919 						      failrec->bio_flags);
1920 	return 0;
1921 }
1922 
1923 /*
1924  * each time an IO finishes, we do a fast check in the IO failure tree
1925  * to see if we need to process or clean up an io_failure_record
1926  */
1927 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1928 {
1929 	u64 private;
1930 	u64 private_failure;
1931 	struct io_failure_record *failure;
1932 	int ret;
1933 
1934 	private = 0;
1935 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1936 			     (u64)-1, 1, EXTENT_DIRTY)) {
1937 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1938 					start, &private_failure);
1939 		if (ret == 0) {
1940 			failure = (struct io_failure_record *)(unsigned long)
1941 				   private_failure;
1942 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1943 					  failure->start, 0);
1944 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1945 					  failure->start,
1946 					  failure->start + failure->len - 1,
1947 					  EXTENT_DIRTY | EXTENT_LOCKED,
1948 					  GFP_NOFS);
1949 			kfree(failure);
1950 		}
1951 	}
1952 	return 0;
1953 }
1954 
1955 /*
1956  * when reads are done, we need to check csums to verify the data is correct
1957  * if there's a match, we allow the bio to finish.  If not, we go through
1958  * the io_failure_record routines to find good copies
1959  */
1960 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1961 			       struct extent_state *state)
1962 {
1963 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1964 	struct inode *inode = page->mapping->host;
1965 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1966 	char *kaddr;
1967 	u64 private = ~(u32)0;
1968 	int ret;
1969 	struct btrfs_root *root = BTRFS_I(inode)->root;
1970 	u32 csum = ~(u32)0;
1971 
1972 	if (PageChecked(page)) {
1973 		ClearPageChecked(page);
1974 		goto good;
1975 	}
1976 
1977 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1978 		return 0;
1979 
1980 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1981 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1982 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1983 				  GFP_NOFS);
1984 		return 0;
1985 	}
1986 
1987 	if (state && state->start == start) {
1988 		private = state->private;
1989 		ret = 0;
1990 	} else {
1991 		ret = get_state_private(io_tree, start, &private);
1992 	}
1993 	kaddr = kmap_atomic(page, KM_USER0);
1994 	if (ret)
1995 		goto zeroit;
1996 
1997 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1998 	btrfs_csum_final(csum, (char *)&csum);
1999 	if (csum != private)
2000 		goto zeroit;
2001 
2002 	kunmap_atomic(kaddr, KM_USER0);
2003 good:
2004 	/* if the io failure tree for this inode is non-empty,
2005 	 * check to see if we've recovered from a failed IO
2006 	 */
2007 	btrfs_clean_io_failures(inode, start);
2008 	return 0;
2009 
2010 zeroit:
2011 	if (printk_ratelimit()) {
2012 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2013 		       "private %llu\n", page->mapping->host->i_ino,
2014 		       (unsigned long long)start, csum,
2015 		       (unsigned long long)private);
2016 	}
2017 	memset(kaddr + offset, 1, end - start + 1);
2018 	flush_dcache_page(page);
2019 	kunmap_atomic(kaddr, KM_USER0);
2020 	if (private == 0)
2021 		return 0;
2022 	return -EIO;
2023 }
2024 
2025 struct delayed_iput {
2026 	struct list_head list;
2027 	struct inode *inode;
2028 };
2029 
2030 void btrfs_add_delayed_iput(struct inode *inode)
2031 {
2032 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2033 	struct delayed_iput *delayed;
2034 
2035 	if (atomic_add_unless(&inode->i_count, -1, 1))
2036 		return;
2037 
2038 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2039 	delayed->inode = inode;
2040 
2041 	spin_lock(&fs_info->delayed_iput_lock);
2042 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2043 	spin_unlock(&fs_info->delayed_iput_lock);
2044 }
2045 
2046 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2047 {
2048 	LIST_HEAD(list);
2049 	struct btrfs_fs_info *fs_info = root->fs_info;
2050 	struct delayed_iput *delayed;
2051 	int empty;
2052 
2053 	spin_lock(&fs_info->delayed_iput_lock);
2054 	empty = list_empty(&fs_info->delayed_iputs);
2055 	spin_unlock(&fs_info->delayed_iput_lock);
2056 	if (empty)
2057 		return;
2058 
2059 	down_read(&root->fs_info->cleanup_work_sem);
2060 	spin_lock(&fs_info->delayed_iput_lock);
2061 	list_splice_init(&fs_info->delayed_iputs, &list);
2062 	spin_unlock(&fs_info->delayed_iput_lock);
2063 
2064 	while (!list_empty(&list)) {
2065 		delayed = list_entry(list.next, struct delayed_iput, list);
2066 		list_del(&delayed->list);
2067 		iput(delayed->inode);
2068 		kfree(delayed);
2069 	}
2070 	up_read(&root->fs_info->cleanup_work_sem);
2071 }
2072 
2073 /*
2074  * This creates an orphan entry for the given inode in case something goes
2075  * wrong in the middle of an unlink/truncate.
2076  */
2077 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2078 {
2079 	struct btrfs_root *root = BTRFS_I(inode)->root;
2080 	int ret = 0;
2081 
2082 	spin_lock(&root->list_lock);
2083 
2084 	/* already on the orphan list, we're good */
2085 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2086 		spin_unlock(&root->list_lock);
2087 		return 0;
2088 	}
2089 
2090 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2091 
2092 	spin_unlock(&root->list_lock);
2093 
2094 	/*
2095 	 * insert an orphan item to track this unlinked/truncated file
2096 	 */
2097 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2098 
2099 	return ret;
2100 }
2101 
2102 /*
2103  * We have done the truncate/delete so we can go ahead and remove the orphan
2104  * item for this particular inode.
2105  */
2106 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2107 {
2108 	struct btrfs_root *root = BTRFS_I(inode)->root;
2109 	int ret = 0;
2110 
2111 	spin_lock(&root->list_lock);
2112 
2113 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2114 		spin_unlock(&root->list_lock);
2115 		return 0;
2116 	}
2117 
2118 	list_del_init(&BTRFS_I(inode)->i_orphan);
2119 	if (!trans) {
2120 		spin_unlock(&root->list_lock);
2121 		return 0;
2122 	}
2123 
2124 	spin_unlock(&root->list_lock);
2125 
2126 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2127 
2128 	return ret;
2129 }
2130 
2131 /*
2132  * this cleans up any orphans that may be left on the list from the last use
2133  * of this root.
2134  */
2135 void btrfs_orphan_cleanup(struct btrfs_root *root)
2136 {
2137 	struct btrfs_path *path;
2138 	struct extent_buffer *leaf;
2139 	struct btrfs_item *item;
2140 	struct btrfs_key key, found_key;
2141 	struct btrfs_trans_handle *trans;
2142 	struct inode *inode;
2143 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2144 
2145 	if (!xchg(&root->clean_orphans, 0))
2146 		return;
2147 
2148 	path = btrfs_alloc_path();
2149 	BUG_ON(!path);
2150 	path->reada = -1;
2151 
2152 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2153 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2154 	key.offset = (u64)-1;
2155 
2156 	while (1) {
2157 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2158 		if (ret < 0) {
2159 			printk(KERN_ERR "Error searching slot for orphan: %d"
2160 			       "\n", ret);
2161 			break;
2162 		}
2163 
2164 		/*
2165 		 * if ret == 0 means we found what we were searching for, which
2166 		 * is weird, but possible, so only screw with path if we didnt
2167 		 * find the key and see if we have stuff that matches
2168 		 */
2169 		if (ret > 0) {
2170 			if (path->slots[0] == 0)
2171 				break;
2172 			path->slots[0]--;
2173 		}
2174 
2175 		/* pull out the item */
2176 		leaf = path->nodes[0];
2177 		item = btrfs_item_nr(leaf, path->slots[0]);
2178 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2179 
2180 		/* make sure the item matches what we want */
2181 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2182 			break;
2183 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2184 			break;
2185 
2186 		/* release the path since we're done with it */
2187 		btrfs_release_path(root, path);
2188 
2189 		/*
2190 		 * this is where we are basically btrfs_lookup, without the
2191 		 * crossing root thing.  we store the inode number in the
2192 		 * offset of the orphan item.
2193 		 */
2194 		found_key.objectid = found_key.offset;
2195 		found_key.type = BTRFS_INODE_ITEM_KEY;
2196 		found_key.offset = 0;
2197 		inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2198 		if (IS_ERR(inode))
2199 			break;
2200 
2201 		/*
2202 		 * add this inode to the orphan list so btrfs_orphan_del does
2203 		 * the proper thing when we hit it
2204 		 */
2205 		spin_lock(&root->list_lock);
2206 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2207 		spin_unlock(&root->list_lock);
2208 
2209 		/*
2210 		 * if this is a bad inode, means we actually succeeded in
2211 		 * removing the inode, but not the orphan record, which means
2212 		 * we need to manually delete the orphan since iput will just
2213 		 * do a destroy_inode
2214 		 */
2215 		if (is_bad_inode(inode)) {
2216 			trans = btrfs_start_transaction(root, 1);
2217 			btrfs_orphan_del(trans, inode);
2218 			btrfs_end_transaction(trans, root);
2219 			iput(inode);
2220 			continue;
2221 		}
2222 
2223 		/* if we have links, this was a truncate, lets do that */
2224 		if (inode->i_nlink) {
2225 			nr_truncate++;
2226 			btrfs_truncate(inode);
2227 		} else {
2228 			nr_unlink++;
2229 		}
2230 
2231 		/* this will do delete_inode and everything for us */
2232 		iput(inode);
2233 	}
2234 
2235 	if (nr_unlink)
2236 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2237 	if (nr_truncate)
2238 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2239 
2240 	btrfs_free_path(path);
2241 }
2242 
2243 /*
2244  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2245  * don't find any xattrs, we know there can't be any acls.
2246  *
2247  * slot is the slot the inode is in, objectid is the objectid of the inode
2248  */
2249 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2250 					  int slot, u64 objectid)
2251 {
2252 	u32 nritems = btrfs_header_nritems(leaf);
2253 	struct btrfs_key found_key;
2254 	int scanned = 0;
2255 
2256 	slot++;
2257 	while (slot < nritems) {
2258 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2259 
2260 		/* we found a different objectid, there must not be acls */
2261 		if (found_key.objectid != objectid)
2262 			return 0;
2263 
2264 		/* we found an xattr, assume we've got an acl */
2265 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2266 			return 1;
2267 
2268 		/*
2269 		 * we found a key greater than an xattr key, there can't
2270 		 * be any acls later on
2271 		 */
2272 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2273 			return 0;
2274 
2275 		slot++;
2276 		scanned++;
2277 
2278 		/*
2279 		 * it goes inode, inode backrefs, xattrs, extents,
2280 		 * so if there are a ton of hard links to an inode there can
2281 		 * be a lot of backrefs.  Don't waste time searching too hard,
2282 		 * this is just an optimization
2283 		 */
2284 		if (scanned >= 8)
2285 			break;
2286 	}
2287 	/* we hit the end of the leaf before we found an xattr or
2288 	 * something larger than an xattr.  We have to assume the inode
2289 	 * has acls
2290 	 */
2291 	return 1;
2292 }
2293 
2294 /*
2295  * read an inode from the btree into the in-memory inode
2296  */
2297 static void btrfs_read_locked_inode(struct inode *inode)
2298 {
2299 	struct btrfs_path *path;
2300 	struct extent_buffer *leaf;
2301 	struct btrfs_inode_item *inode_item;
2302 	struct btrfs_timespec *tspec;
2303 	struct btrfs_root *root = BTRFS_I(inode)->root;
2304 	struct btrfs_key location;
2305 	int maybe_acls;
2306 	u64 alloc_group_block;
2307 	u32 rdev;
2308 	int ret;
2309 
2310 	path = btrfs_alloc_path();
2311 	BUG_ON(!path);
2312 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2313 
2314 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2315 	if (ret)
2316 		goto make_bad;
2317 
2318 	leaf = path->nodes[0];
2319 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2320 				    struct btrfs_inode_item);
2321 
2322 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2323 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2324 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2325 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2326 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2327 
2328 	tspec = btrfs_inode_atime(inode_item);
2329 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2330 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2331 
2332 	tspec = btrfs_inode_mtime(inode_item);
2333 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2334 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2335 
2336 	tspec = btrfs_inode_ctime(inode_item);
2337 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2338 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2339 
2340 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2341 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2342 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2343 	inode->i_generation = BTRFS_I(inode)->generation;
2344 	inode->i_rdev = 0;
2345 	rdev = btrfs_inode_rdev(leaf, inode_item);
2346 
2347 	BTRFS_I(inode)->index_cnt = (u64)-1;
2348 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2349 
2350 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2351 
2352 	/*
2353 	 * try to precache a NULL acl entry for files that don't have
2354 	 * any xattrs or acls
2355 	 */
2356 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2357 	if (!maybe_acls)
2358 		cache_no_acl(inode);
2359 
2360 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2361 						alloc_group_block, 0);
2362 	btrfs_free_path(path);
2363 	inode_item = NULL;
2364 
2365 	switch (inode->i_mode & S_IFMT) {
2366 	case S_IFREG:
2367 		inode->i_mapping->a_ops = &btrfs_aops;
2368 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2369 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2370 		inode->i_fop = &btrfs_file_operations;
2371 		inode->i_op = &btrfs_file_inode_operations;
2372 		break;
2373 	case S_IFDIR:
2374 		inode->i_fop = &btrfs_dir_file_operations;
2375 		if (root == root->fs_info->tree_root)
2376 			inode->i_op = &btrfs_dir_ro_inode_operations;
2377 		else
2378 			inode->i_op = &btrfs_dir_inode_operations;
2379 		break;
2380 	case S_IFLNK:
2381 		inode->i_op = &btrfs_symlink_inode_operations;
2382 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2383 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2384 		break;
2385 	default:
2386 		inode->i_op = &btrfs_special_inode_operations;
2387 		init_special_inode(inode, inode->i_mode, rdev);
2388 		break;
2389 	}
2390 
2391 	btrfs_update_iflags(inode);
2392 	return;
2393 
2394 make_bad:
2395 	btrfs_free_path(path);
2396 	make_bad_inode(inode);
2397 }
2398 
2399 /*
2400  * given a leaf and an inode, copy the inode fields into the leaf
2401  */
2402 static void fill_inode_item(struct btrfs_trans_handle *trans,
2403 			    struct extent_buffer *leaf,
2404 			    struct btrfs_inode_item *item,
2405 			    struct inode *inode)
2406 {
2407 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2408 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2409 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2410 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2411 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2412 
2413 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2414 			       inode->i_atime.tv_sec);
2415 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2416 				inode->i_atime.tv_nsec);
2417 
2418 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2419 			       inode->i_mtime.tv_sec);
2420 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2421 				inode->i_mtime.tv_nsec);
2422 
2423 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2424 			       inode->i_ctime.tv_sec);
2425 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2426 				inode->i_ctime.tv_nsec);
2427 
2428 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2429 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2430 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2431 	btrfs_set_inode_transid(leaf, item, trans->transid);
2432 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2433 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2434 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2435 }
2436 
2437 /*
2438  * copy everything in the in-memory inode into the btree.
2439  */
2440 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2441 				struct btrfs_root *root, struct inode *inode)
2442 {
2443 	struct btrfs_inode_item *inode_item;
2444 	struct btrfs_path *path;
2445 	struct extent_buffer *leaf;
2446 	int ret;
2447 
2448 	path = btrfs_alloc_path();
2449 	BUG_ON(!path);
2450 	path->leave_spinning = 1;
2451 	ret = btrfs_lookup_inode(trans, root, path,
2452 				 &BTRFS_I(inode)->location, 1);
2453 	if (ret) {
2454 		if (ret > 0)
2455 			ret = -ENOENT;
2456 		goto failed;
2457 	}
2458 
2459 	btrfs_unlock_up_safe(path, 1);
2460 	leaf = path->nodes[0];
2461 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2462 				  struct btrfs_inode_item);
2463 
2464 	fill_inode_item(trans, leaf, inode_item, inode);
2465 	btrfs_mark_buffer_dirty(leaf);
2466 	btrfs_set_inode_last_trans(trans, inode);
2467 	ret = 0;
2468 failed:
2469 	btrfs_free_path(path);
2470 	return ret;
2471 }
2472 
2473 
2474 /*
2475  * unlink helper that gets used here in inode.c and in the tree logging
2476  * recovery code.  It remove a link in a directory with a given name, and
2477  * also drops the back refs in the inode to the directory
2478  */
2479 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2480 		       struct btrfs_root *root,
2481 		       struct inode *dir, struct inode *inode,
2482 		       const char *name, int name_len)
2483 {
2484 	struct btrfs_path *path;
2485 	int ret = 0;
2486 	struct extent_buffer *leaf;
2487 	struct btrfs_dir_item *di;
2488 	struct btrfs_key key;
2489 	u64 index;
2490 
2491 	path = btrfs_alloc_path();
2492 	if (!path) {
2493 		ret = -ENOMEM;
2494 		goto err;
2495 	}
2496 
2497 	path->leave_spinning = 1;
2498 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2499 				    name, name_len, -1);
2500 	if (IS_ERR(di)) {
2501 		ret = PTR_ERR(di);
2502 		goto err;
2503 	}
2504 	if (!di) {
2505 		ret = -ENOENT;
2506 		goto err;
2507 	}
2508 	leaf = path->nodes[0];
2509 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2510 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2511 	if (ret)
2512 		goto err;
2513 	btrfs_release_path(root, path);
2514 
2515 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2516 				  inode->i_ino,
2517 				  dir->i_ino, &index);
2518 	if (ret) {
2519 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2520 		       "inode %lu parent %lu\n", name_len, name,
2521 		       inode->i_ino, dir->i_ino);
2522 		goto err;
2523 	}
2524 
2525 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2526 					 index, name, name_len, -1);
2527 	if (IS_ERR(di)) {
2528 		ret = PTR_ERR(di);
2529 		goto err;
2530 	}
2531 	if (!di) {
2532 		ret = -ENOENT;
2533 		goto err;
2534 	}
2535 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2536 	btrfs_release_path(root, path);
2537 
2538 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2539 					 inode, dir->i_ino);
2540 	BUG_ON(ret != 0 && ret != -ENOENT);
2541 
2542 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2543 					   dir, index);
2544 	BUG_ON(ret);
2545 err:
2546 	btrfs_free_path(path);
2547 	if (ret)
2548 		goto out;
2549 
2550 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2551 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2552 	btrfs_update_inode(trans, root, dir);
2553 	btrfs_drop_nlink(inode);
2554 	ret = btrfs_update_inode(trans, root, inode);
2555 out:
2556 	return ret;
2557 }
2558 
2559 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2560 {
2561 	struct btrfs_root *root;
2562 	struct btrfs_trans_handle *trans;
2563 	struct inode *inode = dentry->d_inode;
2564 	int ret;
2565 	unsigned long nr = 0;
2566 
2567 	root = BTRFS_I(dir)->root;
2568 
2569 	/*
2570 	 * 5 items for unlink inode
2571 	 * 1 for orphan
2572 	 */
2573 	ret = btrfs_reserve_metadata_space(root, 6);
2574 	if (ret)
2575 		return ret;
2576 
2577 	trans = btrfs_start_transaction(root, 1);
2578 	if (IS_ERR(trans)) {
2579 		btrfs_unreserve_metadata_space(root, 6);
2580 		return PTR_ERR(trans);
2581 	}
2582 
2583 	btrfs_set_trans_block_group(trans, dir);
2584 
2585 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2586 
2587 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2588 				 dentry->d_name.name, dentry->d_name.len);
2589 
2590 	if (inode->i_nlink == 0)
2591 		ret = btrfs_orphan_add(trans, inode);
2592 
2593 	nr = trans->blocks_used;
2594 
2595 	btrfs_end_transaction_throttle(trans, root);
2596 	btrfs_unreserve_metadata_space(root, 6);
2597 	btrfs_btree_balance_dirty(root, nr);
2598 	return ret;
2599 }
2600 
2601 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2602 			struct btrfs_root *root,
2603 			struct inode *dir, u64 objectid,
2604 			const char *name, int name_len)
2605 {
2606 	struct btrfs_path *path;
2607 	struct extent_buffer *leaf;
2608 	struct btrfs_dir_item *di;
2609 	struct btrfs_key key;
2610 	u64 index;
2611 	int ret;
2612 
2613 	path = btrfs_alloc_path();
2614 	if (!path)
2615 		return -ENOMEM;
2616 
2617 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2618 				   name, name_len, -1);
2619 	BUG_ON(!di || IS_ERR(di));
2620 
2621 	leaf = path->nodes[0];
2622 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2623 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2624 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2625 	BUG_ON(ret);
2626 	btrfs_release_path(root, path);
2627 
2628 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2629 				 objectid, root->root_key.objectid,
2630 				 dir->i_ino, &index, name, name_len);
2631 	if (ret < 0) {
2632 		BUG_ON(ret != -ENOENT);
2633 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2634 						 name, name_len);
2635 		BUG_ON(!di || IS_ERR(di));
2636 
2637 		leaf = path->nodes[0];
2638 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2639 		btrfs_release_path(root, path);
2640 		index = key.offset;
2641 	}
2642 
2643 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2644 					 index, name, name_len, -1);
2645 	BUG_ON(!di || IS_ERR(di));
2646 
2647 	leaf = path->nodes[0];
2648 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2649 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2650 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2651 	BUG_ON(ret);
2652 	btrfs_release_path(root, path);
2653 
2654 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2655 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2656 	ret = btrfs_update_inode(trans, root, dir);
2657 	BUG_ON(ret);
2658 	dir->i_sb->s_dirt = 1;
2659 
2660 	btrfs_free_path(path);
2661 	return 0;
2662 }
2663 
2664 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2665 {
2666 	struct inode *inode = dentry->d_inode;
2667 	int err = 0;
2668 	int ret;
2669 	struct btrfs_root *root = BTRFS_I(dir)->root;
2670 	struct btrfs_trans_handle *trans;
2671 	unsigned long nr = 0;
2672 
2673 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2674 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2675 		return -ENOTEMPTY;
2676 
2677 	ret = btrfs_reserve_metadata_space(root, 5);
2678 	if (ret)
2679 		return ret;
2680 
2681 	trans = btrfs_start_transaction(root, 1);
2682 	if (IS_ERR(trans)) {
2683 		btrfs_unreserve_metadata_space(root, 5);
2684 		return PTR_ERR(trans);
2685 	}
2686 
2687 	btrfs_set_trans_block_group(trans, dir);
2688 
2689 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2690 		err = btrfs_unlink_subvol(trans, root, dir,
2691 					  BTRFS_I(inode)->location.objectid,
2692 					  dentry->d_name.name,
2693 					  dentry->d_name.len);
2694 		goto out;
2695 	}
2696 
2697 	err = btrfs_orphan_add(trans, inode);
2698 	if (err)
2699 		goto out;
2700 
2701 	/* now the directory is empty */
2702 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2703 				 dentry->d_name.name, dentry->d_name.len);
2704 	if (!err)
2705 		btrfs_i_size_write(inode, 0);
2706 out:
2707 	nr = trans->blocks_used;
2708 	ret = btrfs_end_transaction_throttle(trans, root);
2709 	btrfs_unreserve_metadata_space(root, 5);
2710 	btrfs_btree_balance_dirty(root, nr);
2711 
2712 	if (ret && !err)
2713 		err = ret;
2714 	return err;
2715 }
2716 
2717 #if 0
2718 /*
2719  * when truncating bytes in a file, it is possible to avoid reading
2720  * the leaves that contain only checksum items.  This can be the
2721  * majority of the IO required to delete a large file, but it must
2722  * be done carefully.
2723  *
2724  * The keys in the level just above the leaves are checked to make sure
2725  * the lowest key in a given leaf is a csum key, and starts at an offset
2726  * after the new  size.
2727  *
2728  * Then the key for the next leaf is checked to make sure it also has
2729  * a checksum item for the same file.  If it does, we know our target leaf
2730  * contains only checksum items, and it can be safely freed without reading
2731  * it.
2732  *
2733  * This is just an optimization targeted at large files.  It may do
2734  * nothing.  It will return 0 unless things went badly.
2735  */
2736 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2737 				     struct btrfs_root *root,
2738 				     struct btrfs_path *path,
2739 				     struct inode *inode, u64 new_size)
2740 {
2741 	struct btrfs_key key;
2742 	int ret;
2743 	int nritems;
2744 	struct btrfs_key found_key;
2745 	struct btrfs_key other_key;
2746 	struct btrfs_leaf_ref *ref;
2747 	u64 leaf_gen;
2748 	u64 leaf_start;
2749 
2750 	path->lowest_level = 1;
2751 	key.objectid = inode->i_ino;
2752 	key.type = BTRFS_CSUM_ITEM_KEY;
2753 	key.offset = new_size;
2754 again:
2755 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2756 	if (ret < 0)
2757 		goto out;
2758 
2759 	if (path->nodes[1] == NULL) {
2760 		ret = 0;
2761 		goto out;
2762 	}
2763 	ret = 0;
2764 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2765 	nritems = btrfs_header_nritems(path->nodes[1]);
2766 
2767 	if (!nritems)
2768 		goto out;
2769 
2770 	if (path->slots[1] >= nritems)
2771 		goto next_node;
2772 
2773 	/* did we find a key greater than anything we want to delete? */
2774 	if (found_key.objectid > inode->i_ino ||
2775 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2776 		goto out;
2777 
2778 	/* we check the next key in the node to make sure the leave contains
2779 	 * only checksum items.  This comparison doesn't work if our
2780 	 * leaf is the last one in the node
2781 	 */
2782 	if (path->slots[1] + 1 >= nritems) {
2783 next_node:
2784 		/* search forward from the last key in the node, this
2785 		 * will bring us into the next node in the tree
2786 		 */
2787 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2788 
2789 		/* unlikely, but we inc below, so check to be safe */
2790 		if (found_key.offset == (u64)-1)
2791 			goto out;
2792 
2793 		/* search_forward needs a path with locks held, do the
2794 		 * search again for the original key.  It is possible
2795 		 * this will race with a balance and return a path that
2796 		 * we could modify, but this drop is just an optimization
2797 		 * and is allowed to miss some leaves.
2798 		 */
2799 		btrfs_release_path(root, path);
2800 		found_key.offset++;
2801 
2802 		/* setup a max key for search_forward */
2803 		other_key.offset = (u64)-1;
2804 		other_key.type = key.type;
2805 		other_key.objectid = key.objectid;
2806 
2807 		path->keep_locks = 1;
2808 		ret = btrfs_search_forward(root, &found_key, &other_key,
2809 					   path, 0, 0);
2810 		path->keep_locks = 0;
2811 		if (ret || found_key.objectid != key.objectid ||
2812 		    found_key.type != key.type) {
2813 			ret = 0;
2814 			goto out;
2815 		}
2816 
2817 		key.offset = found_key.offset;
2818 		btrfs_release_path(root, path);
2819 		cond_resched();
2820 		goto again;
2821 	}
2822 
2823 	/* we know there's one more slot after us in the tree,
2824 	 * read that key so we can verify it is also a checksum item
2825 	 */
2826 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2827 
2828 	if (found_key.objectid < inode->i_ino)
2829 		goto next_key;
2830 
2831 	if (found_key.type != key.type || found_key.offset < new_size)
2832 		goto next_key;
2833 
2834 	/*
2835 	 * if the key for the next leaf isn't a csum key from this objectid,
2836 	 * we can't be sure there aren't good items inside this leaf.
2837 	 * Bail out
2838 	 */
2839 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2840 		goto out;
2841 
2842 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2843 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2844 	/*
2845 	 * it is safe to delete this leaf, it contains only
2846 	 * csum items from this inode at an offset >= new_size
2847 	 */
2848 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2849 	BUG_ON(ret);
2850 
2851 	if (root->ref_cows && leaf_gen < trans->transid) {
2852 		ref = btrfs_alloc_leaf_ref(root, 0);
2853 		if (ref) {
2854 			ref->root_gen = root->root_key.offset;
2855 			ref->bytenr = leaf_start;
2856 			ref->owner = 0;
2857 			ref->generation = leaf_gen;
2858 			ref->nritems = 0;
2859 
2860 			btrfs_sort_leaf_ref(ref);
2861 
2862 			ret = btrfs_add_leaf_ref(root, ref, 0);
2863 			WARN_ON(ret);
2864 			btrfs_free_leaf_ref(root, ref);
2865 		} else {
2866 			WARN_ON(1);
2867 		}
2868 	}
2869 next_key:
2870 	btrfs_release_path(root, path);
2871 
2872 	if (other_key.objectid == inode->i_ino &&
2873 	    other_key.type == key.type && other_key.offset > key.offset) {
2874 		key.offset = other_key.offset;
2875 		cond_resched();
2876 		goto again;
2877 	}
2878 	ret = 0;
2879 out:
2880 	/* fixup any changes we've made to the path */
2881 	path->lowest_level = 0;
2882 	path->keep_locks = 0;
2883 	btrfs_release_path(root, path);
2884 	return ret;
2885 }
2886 
2887 #endif
2888 
2889 /*
2890  * this can truncate away extent items, csum items and directory items.
2891  * It starts at a high offset and removes keys until it can't find
2892  * any higher than new_size
2893  *
2894  * csum items that cross the new i_size are truncated to the new size
2895  * as well.
2896  *
2897  * min_type is the minimum key type to truncate down to.  If set to 0, this
2898  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2899  */
2900 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2901 			       struct btrfs_root *root,
2902 			       struct inode *inode,
2903 			       u64 new_size, u32 min_type)
2904 {
2905 	struct btrfs_path *path;
2906 	struct extent_buffer *leaf;
2907 	struct btrfs_file_extent_item *fi;
2908 	struct btrfs_key key;
2909 	struct btrfs_key found_key;
2910 	u64 extent_start = 0;
2911 	u64 extent_num_bytes = 0;
2912 	u64 extent_offset = 0;
2913 	u64 item_end = 0;
2914 	u64 mask = root->sectorsize - 1;
2915 	u32 found_type = (u8)-1;
2916 	int found_extent;
2917 	int del_item;
2918 	int pending_del_nr = 0;
2919 	int pending_del_slot = 0;
2920 	int extent_type = -1;
2921 	int encoding;
2922 	int ret;
2923 	int err = 0;
2924 
2925 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2926 
2927 	if (root->ref_cows)
2928 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2929 
2930 	path = btrfs_alloc_path();
2931 	BUG_ON(!path);
2932 	path->reada = -1;
2933 
2934 	key.objectid = inode->i_ino;
2935 	key.offset = (u64)-1;
2936 	key.type = (u8)-1;
2937 
2938 search_again:
2939 	path->leave_spinning = 1;
2940 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2941 	if (ret < 0) {
2942 		err = ret;
2943 		goto out;
2944 	}
2945 
2946 	if (ret > 0) {
2947 		/* there are no items in the tree for us to truncate, we're
2948 		 * done
2949 		 */
2950 		if (path->slots[0] == 0)
2951 			goto out;
2952 		path->slots[0]--;
2953 	}
2954 
2955 	while (1) {
2956 		fi = NULL;
2957 		leaf = path->nodes[0];
2958 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2959 		found_type = btrfs_key_type(&found_key);
2960 		encoding = 0;
2961 
2962 		if (found_key.objectid != inode->i_ino)
2963 			break;
2964 
2965 		if (found_type < min_type)
2966 			break;
2967 
2968 		item_end = found_key.offset;
2969 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2970 			fi = btrfs_item_ptr(leaf, path->slots[0],
2971 					    struct btrfs_file_extent_item);
2972 			extent_type = btrfs_file_extent_type(leaf, fi);
2973 			encoding = btrfs_file_extent_compression(leaf, fi);
2974 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2975 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2976 
2977 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2978 				item_end +=
2979 				    btrfs_file_extent_num_bytes(leaf, fi);
2980 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2981 				item_end += btrfs_file_extent_inline_len(leaf,
2982 									 fi);
2983 			}
2984 			item_end--;
2985 		}
2986 		if (found_type > min_type) {
2987 			del_item = 1;
2988 		} else {
2989 			if (item_end < new_size)
2990 				break;
2991 			if (found_key.offset >= new_size)
2992 				del_item = 1;
2993 			else
2994 				del_item = 0;
2995 		}
2996 		found_extent = 0;
2997 		/* FIXME, shrink the extent if the ref count is only 1 */
2998 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2999 			goto delete;
3000 
3001 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3002 			u64 num_dec;
3003 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3004 			if (!del_item && !encoding) {
3005 				u64 orig_num_bytes =
3006 					btrfs_file_extent_num_bytes(leaf, fi);
3007 				extent_num_bytes = new_size -
3008 					found_key.offset + root->sectorsize - 1;
3009 				extent_num_bytes = extent_num_bytes &
3010 					~((u64)root->sectorsize - 1);
3011 				btrfs_set_file_extent_num_bytes(leaf, fi,
3012 							 extent_num_bytes);
3013 				num_dec = (orig_num_bytes -
3014 					   extent_num_bytes);
3015 				if (root->ref_cows && extent_start != 0)
3016 					inode_sub_bytes(inode, num_dec);
3017 				btrfs_mark_buffer_dirty(leaf);
3018 			} else {
3019 				extent_num_bytes =
3020 					btrfs_file_extent_disk_num_bytes(leaf,
3021 									 fi);
3022 				extent_offset = found_key.offset -
3023 					btrfs_file_extent_offset(leaf, fi);
3024 
3025 				/* FIXME blocksize != 4096 */
3026 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3027 				if (extent_start != 0) {
3028 					found_extent = 1;
3029 					if (root->ref_cows)
3030 						inode_sub_bytes(inode, num_dec);
3031 				}
3032 			}
3033 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3034 			/*
3035 			 * we can't truncate inline items that have had
3036 			 * special encodings
3037 			 */
3038 			if (!del_item &&
3039 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3040 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3041 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3042 				u32 size = new_size - found_key.offset;
3043 
3044 				if (root->ref_cows) {
3045 					inode_sub_bytes(inode, item_end + 1 -
3046 							new_size);
3047 				}
3048 				size =
3049 				    btrfs_file_extent_calc_inline_size(size);
3050 				ret = btrfs_truncate_item(trans, root, path,
3051 							  size, 1);
3052 				BUG_ON(ret);
3053 			} else if (root->ref_cows) {
3054 				inode_sub_bytes(inode, item_end + 1 -
3055 						found_key.offset);
3056 			}
3057 		}
3058 delete:
3059 		if (del_item) {
3060 			if (!pending_del_nr) {
3061 				/* no pending yet, add ourselves */
3062 				pending_del_slot = path->slots[0];
3063 				pending_del_nr = 1;
3064 			} else if (pending_del_nr &&
3065 				   path->slots[0] + 1 == pending_del_slot) {
3066 				/* hop on the pending chunk */
3067 				pending_del_nr++;
3068 				pending_del_slot = path->slots[0];
3069 			} else {
3070 				BUG();
3071 			}
3072 		} else {
3073 			break;
3074 		}
3075 		if (found_extent && root->ref_cows) {
3076 			btrfs_set_path_blocking(path);
3077 			ret = btrfs_free_extent(trans, root, extent_start,
3078 						extent_num_bytes, 0,
3079 						btrfs_header_owner(leaf),
3080 						inode->i_ino, extent_offset);
3081 			BUG_ON(ret);
3082 		}
3083 
3084 		if (found_type == BTRFS_INODE_ITEM_KEY)
3085 			break;
3086 
3087 		if (path->slots[0] == 0 ||
3088 		    path->slots[0] != pending_del_slot) {
3089 			if (root->ref_cows) {
3090 				err = -EAGAIN;
3091 				goto out;
3092 			}
3093 			if (pending_del_nr) {
3094 				ret = btrfs_del_items(trans, root, path,
3095 						pending_del_slot,
3096 						pending_del_nr);
3097 				BUG_ON(ret);
3098 				pending_del_nr = 0;
3099 			}
3100 			btrfs_release_path(root, path);
3101 			goto search_again;
3102 		} else {
3103 			path->slots[0]--;
3104 		}
3105 	}
3106 out:
3107 	if (pending_del_nr) {
3108 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3109 				      pending_del_nr);
3110 	}
3111 	btrfs_free_path(path);
3112 	return err;
3113 }
3114 
3115 /*
3116  * taken from block_truncate_page, but does cow as it zeros out
3117  * any bytes left in the last page in the file.
3118  */
3119 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3120 {
3121 	struct inode *inode = mapping->host;
3122 	struct btrfs_root *root = BTRFS_I(inode)->root;
3123 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3124 	struct btrfs_ordered_extent *ordered;
3125 	char *kaddr;
3126 	u32 blocksize = root->sectorsize;
3127 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3128 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3129 	struct page *page;
3130 	int ret = 0;
3131 	u64 page_start;
3132 	u64 page_end;
3133 
3134 	if ((offset & (blocksize - 1)) == 0)
3135 		goto out;
3136 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3137 	if (ret)
3138 		goto out;
3139 
3140 	ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3141 	if (ret)
3142 		goto out;
3143 
3144 	ret = -ENOMEM;
3145 again:
3146 	page = grab_cache_page(mapping, index);
3147 	if (!page) {
3148 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3149 		btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3150 		goto out;
3151 	}
3152 
3153 	page_start = page_offset(page);
3154 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3155 
3156 	if (!PageUptodate(page)) {
3157 		ret = btrfs_readpage(NULL, page);
3158 		lock_page(page);
3159 		if (page->mapping != mapping) {
3160 			unlock_page(page);
3161 			page_cache_release(page);
3162 			goto again;
3163 		}
3164 		if (!PageUptodate(page)) {
3165 			ret = -EIO;
3166 			goto out_unlock;
3167 		}
3168 	}
3169 	wait_on_page_writeback(page);
3170 
3171 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3172 	set_page_extent_mapped(page);
3173 
3174 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3175 	if (ordered) {
3176 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3177 		unlock_page(page);
3178 		page_cache_release(page);
3179 		btrfs_start_ordered_extent(inode, ordered, 1);
3180 		btrfs_put_ordered_extent(ordered);
3181 		goto again;
3182 	}
3183 
3184 	clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3185 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3186 			  GFP_NOFS);
3187 
3188 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3189 	if (ret) {
3190 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3191 		goto out_unlock;
3192 	}
3193 
3194 	ret = 0;
3195 	if (offset != PAGE_CACHE_SIZE) {
3196 		kaddr = kmap(page);
3197 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3198 		flush_dcache_page(page);
3199 		kunmap(page);
3200 	}
3201 	ClearPageChecked(page);
3202 	set_page_dirty(page);
3203 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3204 
3205 out_unlock:
3206 	if (ret)
3207 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3208 	btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3209 	unlock_page(page);
3210 	page_cache_release(page);
3211 out:
3212 	return ret;
3213 }
3214 
3215 int btrfs_cont_expand(struct inode *inode, loff_t size)
3216 {
3217 	struct btrfs_trans_handle *trans;
3218 	struct btrfs_root *root = BTRFS_I(inode)->root;
3219 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3220 	struct extent_map *em;
3221 	u64 mask = root->sectorsize - 1;
3222 	u64 hole_start = (inode->i_size + mask) & ~mask;
3223 	u64 block_end = (size + mask) & ~mask;
3224 	u64 last_byte;
3225 	u64 cur_offset;
3226 	u64 hole_size;
3227 	int err = 0;
3228 
3229 	if (size <= hole_start)
3230 		return 0;
3231 
3232 	while (1) {
3233 		struct btrfs_ordered_extent *ordered;
3234 		btrfs_wait_ordered_range(inode, hole_start,
3235 					 block_end - hole_start);
3236 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3237 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3238 		if (!ordered)
3239 			break;
3240 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3241 		btrfs_put_ordered_extent(ordered);
3242 	}
3243 
3244 	cur_offset = hole_start;
3245 	while (1) {
3246 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3247 				block_end - cur_offset, 0);
3248 		BUG_ON(IS_ERR(em) || !em);
3249 		last_byte = min(extent_map_end(em), block_end);
3250 		last_byte = (last_byte + mask) & ~mask;
3251 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3252 			u64 hint_byte = 0;
3253 			hole_size = last_byte - cur_offset;
3254 
3255 			err = btrfs_reserve_metadata_space(root, 2);
3256 			if (err)
3257 				break;
3258 
3259 			trans = btrfs_start_transaction(root, 1);
3260 			btrfs_set_trans_block_group(trans, inode);
3261 
3262 			err = btrfs_drop_extents(trans, inode, cur_offset,
3263 						 cur_offset + hole_size,
3264 						 &hint_byte, 1);
3265 			BUG_ON(err);
3266 
3267 			err = btrfs_insert_file_extent(trans, root,
3268 					inode->i_ino, cur_offset, 0,
3269 					0, hole_size, 0, hole_size,
3270 					0, 0, 0);
3271 			BUG_ON(err);
3272 
3273 			btrfs_drop_extent_cache(inode, hole_start,
3274 					last_byte - 1, 0);
3275 
3276 			btrfs_end_transaction(trans, root);
3277 			btrfs_unreserve_metadata_space(root, 2);
3278 		}
3279 		free_extent_map(em);
3280 		cur_offset = last_byte;
3281 		if (cur_offset >= block_end)
3282 			break;
3283 	}
3284 
3285 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3286 	return err;
3287 }
3288 
3289 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3290 {
3291 	struct btrfs_root *root = BTRFS_I(inode)->root;
3292 	struct btrfs_trans_handle *trans;
3293 	unsigned long nr;
3294 	int ret;
3295 
3296 	if (attr->ia_size == inode->i_size)
3297 		return 0;
3298 
3299 	if (attr->ia_size > inode->i_size) {
3300 		unsigned long limit;
3301 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3302 		if (attr->ia_size > inode->i_sb->s_maxbytes)
3303 			return -EFBIG;
3304 		if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3305 			send_sig(SIGXFSZ, current, 0);
3306 			return -EFBIG;
3307 		}
3308 	}
3309 
3310 	ret = btrfs_reserve_metadata_space(root, 1);
3311 	if (ret)
3312 		return ret;
3313 
3314 	trans = btrfs_start_transaction(root, 1);
3315 	btrfs_set_trans_block_group(trans, inode);
3316 
3317 	ret = btrfs_orphan_add(trans, inode);
3318 	BUG_ON(ret);
3319 
3320 	nr = trans->blocks_used;
3321 	btrfs_end_transaction(trans, root);
3322 	btrfs_unreserve_metadata_space(root, 1);
3323 	btrfs_btree_balance_dirty(root, nr);
3324 
3325 	if (attr->ia_size > inode->i_size) {
3326 		ret = btrfs_cont_expand(inode, attr->ia_size);
3327 		if (ret) {
3328 			btrfs_truncate(inode);
3329 			return ret;
3330 		}
3331 
3332 		i_size_write(inode, attr->ia_size);
3333 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3334 
3335 		trans = btrfs_start_transaction(root, 1);
3336 		btrfs_set_trans_block_group(trans, inode);
3337 
3338 		ret = btrfs_update_inode(trans, root, inode);
3339 		BUG_ON(ret);
3340 		if (inode->i_nlink > 0) {
3341 			ret = btrfs_orphan_del(trans, inode);
3342 			BUG_ON(ret);
3343 		}
3344 		nr = trans->blocks_used;
3345 		btrfs_end_transaction(trans, root);
3346 		btrfs_btree_balance_dirty(root, nr);
3347 		return 0;
3348 	}
3349 
3350 	/*
3351 	 * We're truncating a file that used to have good data down to
3352 	 * zero. Make sure it gets into the ordered flush list so that
3353 	 * any new writes get down to disk quickly.
3354 	 */
3355 	if (attr->ia_size == 0)
3356 		BTRFS_I(inode)->ordered_data_close = 1;
3357 
3358 	/* we don't support swapfiles, so vmtruncate shouldn't fail */
3359 	ret = vmtruncate(inode, attr->ia_size);
3360 	BUG_ON(ret);
3361 
3362 	return 0;
3363 }
3364 
3365 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3366 {
3367 	struct inode *inode = dentry->d_inode;
3368 	int err;
3369 
3370 	err = inode_change_ok(inode, attr);
3371 	if (err)
3372 		return err;
3373 
3374 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3375 		err = btrfs_setattr_size(inode, attr);
3376 		if (err)
3377 			return err;
3378 	}
3379 	attr->ia_valid &= ~ATTR_SIZE;
3380 
3381 	if (attr->ia_valid)
3382 		err = inode_setattr(inode, attr);
3383 
3384 	if (!err && ((attr->ia_valid & ATTR_MODE)))
3385 		err = btrfs_acl_chmod(inode);
3386 	return err;
3387 }
3388 
3389 void btrfs_delete_inode(struct inode *inode)
3390 {
3391 	struct btrfs_trans_handle *trans;
3392 	struct btrfs_root *root = BTRFS_I(inode)->root;
3393 	unsigned long nr;
3394 	int ret;
3395 
3396 	truncate_inode_pages(&inode->i_data, 0);
3397 	if (is_bad_inode(inode)) {
3398 		btrfs_orphan_del(NULL, inode);
3399 		goto no_delete;
3400 	}
3401 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3402 
3403 	if (root->fs_info->log_root_recovering) {
3404 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3405 		goto no_delete;
3406 	}
3407 
3408 	if (inode->i_nlink > 0) {
3409 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3410 		goto no_delete;
3411 	}
3412 
3413 	btrfs_i_size_write(inode, 0);
3414 
3415 	while (1) {
3416 		trans = btrfs_start_transaction(root, 1);
3417 		btrfs_set_trans_block_group(trans, inode);
3418 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3419 
3420 		if (ret != -EAGAIN)
3421 			break;
3422 
3423 		nr = trans->blocks_used;
3424 		btrfs_end_transaction(trans, root);
3425 		trans = NULL;
3426 		btrfs_btree_balance_dirty(root, nr);
3427 	}
3428 
3429 	if (ret == 0) {
3430 		ret = btrfs_orphan_del(trans, inode);
3431 		BUG_ON(ret);
3432 	}
3433 
3434 	nr = trans->blocks_used;
3435 	btrfs_end_transaction(trans, root);
3436 	btrfs_btree_balance_dirty(root, nr);
3437 no_delete:
3438 	clear_inode(inode);
3439 	return;
3440 }
3441 
3442 /*
3443  * this returns the key found in the dir entry in the location pointer.
3444  * If no dir entries were found, location->objectid is 0.
3445  */
3446 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3447 			       struct btrfs_key *location)
3448 {
3449 	const char *name = dentry->d_name.name;
3450 	int namelen = dentry->d_name.len;
3451 	struct btrfs_dir_item *di;
3452 	struct btrfs_path *path;
3453 	struct btrfs_root *root = BTRFS_I(dir)->root;
3454 	int ret = 0;
3455 
3456 	path = btrfs_alloc_path();
3457 	BUG_ON(!path);
3458 
3459 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3460 				    namelen, 0);
3461 	if (IS_ERR(di))
3462 		ret = PTR_ERR(di);
3463 
3464 	if (!di || IS_ERR(di))
3465 		goto out_err;
3466 
3467 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3468 out:
3469 	btrfs_free_path(path);
3470 	return ret;
3471 out_err:
3472 	location->objectid = 0;
3473 	goto out;
3474 }
3475 
3476 /*
3477  * when we hit a tree root in a directory, the btrfs part of the inode
3478  * needs to be changed to reflect the root directory of the tree root.  This
3479  * is kind of like crossing a mount point.
3480  */
3481 static int fixup_tree_root_location(struct btrfs_root *root,
3482 				    struct inode *dir,
3483 				    struct dentry *dentry,
3484 				    struct btrfs_key *location,
3485 				    struct btrfs_root **sub_root)
3486 {
3487 	struct btrfs_path *path;
3488 	struct btrfs_root *new_root;
3489 	struct btrfs_root_ref *ref;
3490 	struct extent_buffer *leaf;
3491 	int ret;
3492 	int err = 0;
3493 
3494 	path = btrfs_alloc_path();
3495 	if (!path) {
3496 		err = -ENOMEM;
3497 		goto out;
3498 	}
3499 
3500 	err = -ENOENT;
3501 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3502 				  BTRFS_I(dir)->root->root_key.objectid,
3503 				  location->objectid);
3504 	if (ret) {
3505 		if (ret < 0)
3506 			err = ret;
3507 		goto out;
3508 	}
3509 
3510 	leaf = path->nodes[0];
3511 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3512 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3513 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3514 		goto out;
3515 
3516 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3517 				   (unsigned long)(ref + 1),
3518 				   dentry->d_name.len);
3519 	if (ret)
3520 		goto out;
3521 
3522 	btrfs_release_path(root->fs_info->tree_root, path);
3523 
3524 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3525 	if (IS_ERR(new_root)) {
3526 		err = PTR_ERR(new_root);
3527 		goto out;
3528 	}
3529 
3530 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3531 		err = -ENOENT;
3532 		goto out;
3533 	}
3534 
3535 	*sub_root = new_root;
3536 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3537 	location->type = BTRFS_INODE_ITEM_KEY;
3538 	location->offset = 0;
3539 	err = 0;
3540 out:
3541 	btrfs_free_path(path);
3542 	return err;
3543 }
3544 
3545 static void inode_tree_add(struct inode *inode)
3546 {
3547 	struct btrfs_root *root = BTRFS_I(inode)->root;
3548 	struct btrfs_inode *entry;
3549 	struct rb_node **p;
3550 	struct rb_node *parent;
3551 again:
3552 	p = &root->inode_tree.rb_node;
3553 	parent = NULL;
3554 
3555 	if (hlist_unhashed(&inode->i_hash))
3556 		return;
3557 
3558 	spin_lock(&root->inode_lock);
3559 	while (*p) {
3560 		parent = *p;
3561 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3562 
3563 		if (inode->i_ino < entry->vfs_inode.i_ino)
3564 			p = &parent->rb_left;
3565 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3566 			p = &parent->rb_right;
3567 		else {
3568 			WARN_ON(!(entry->vfs_inode.i_state &
3569 				  (I_WILL_FREE | I_FREEING | I_CLEAR)));
3570 			rb_erase(parent, &root->inode_tree);
3571 			RB_CLEAR_NODE(parent);
3572 			spin_unlock(&root->inode_lock);
3573 			goto again;
3574 		}
3575 	}
3576 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3577 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3578 	spin_unlock(&root->inode_lock);
3579 }
3580 
3581 static void inode_tree_del(struct inode *inode)
3582 {
3583 	struct btrfs_root *root = BTRFS_I(inode)->root;
3584 	int empty = 0;
3585 
3586 	spin_lock(&root->inode_lock);
3587 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3588 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3589 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3590 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3591 	}
3592 	spin_unlock(&root->inode_lock);
3593 
3594 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
3595 		synchronize_srcu(&root->fs_info->subvol_srcu);
3596 		spin_lock(&root->inode_lock);
3597 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3598 		spin_unlock(&root->inode_lock);
3599 		if (empty)
3600 			btrfs_add_dead_root(root);
3601 	}
3602 }
3603 
3604 int btrfs_invalidate_inodes(struct btrfs_root *root)
3605 {
3606 	struct rb_node *node;
3607 	struct rb_node *prev;
3608 	struct btrfs_inode *entry;
3609 	struct inode *inode;
3610 	u64 objectid = 0;
3611 
3612 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3613 
3614 	spin_lock(&root->inode_lock);
3615 again:
3616 	node = root->inode_tree.rb_node;
3617 	prev = NULL;
3618 	while (node) {
3619 		prev = node;
3620 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3621 
3622 		if (objectid < entry->vfs_inode.i_ino)
3623 			node = node->rb_left;
3624 		else if (objectid > entry->vfs_inode.i_ino)
3625 			node = node->rb_right;
3626 		else
3627 			break;
3628 	}
3629 	if (!node) {
3630 		while (prev) {
3631 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3632 			if (objectid <= entry->vfs_inode.i_ino) {
3633 				node = prev;
3634 				break;
3635 			}
3636 			prev = rb_next(prev);
3637 		}
3638 	}
3639 	while (node) {
3640 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3641 		objectid = entry->vfs_inode.i_ino + 1;
3642 		inode = igrab(&entry->vfs_inode);
3643 		if (inode) {
3644 			spin_unlock(&root->inode_lock);
3645 			if (atomic_read(&inode->i_count) > 1)
3646 				d_prune_aliases(inode);
3647 			/*
3648 			 * btrfs_drop_inode will remove it from
3649 			 * the inode cache when its usage count
3650 			 * hits zero.
3651 			 */
3652 			iput(inode);
3653 			cond_resched();
3654 			spin_lock(&root->inode_lock);
3655 			goto again;
3656 		}
3657 
3658 		if (cond_resched_lock(&root->inode_lock))
3659 			goto again;
3660 
3661 		node = rb_next(node);
3662 	}
3663 	spin_unlock(&root->inode_lock);
3664 	return 0;
3665 }
3666 
3667 static noinline void init_btrfs_i(struct inode *inode)
3668 {
3669 	struct btrfs_inode *bi = BTRFS_I(inode);
3670 
3671 	bi->generation = 0;
3672 	bi->sequence = 0;
3673 	bi->last_trans = 0;
3674 	bi->last_sub_trans = 0;
3675 	bi->logged_trans = 0;
3676 	bi->delalloc_bytes = 0;
3677 	bi->reserved_bytes = 0;
3678 	bi->disk_i_size = 0;
3679 	bi->flags = 0;
3680 	bi->index_cnt = (u64)-1;
3681 	bi->last_unlink_trans = 0;
3682 	bi->ordered_data_close = 0;
3683 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3684 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3685 			     inode->i_mapping, GFP_NOFS);
3686 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3687 			     inode->i_mapping, GFP_NOFS);
3688 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3689 	INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3690 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3691 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3692 	mutex_init(&BTRFS_I(inode)->log_mutex);
3693 }
3694 
3695 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3696 {
3697 	struct btrfs_iget_args *args = p;
3698 	inode->i_ino = args->ino;
3699 	init_btrfs_i(inode);
3700 	BTRFS_I(inode)->root = args->root;
3701 	btrfs_set_inode_space_info(args->root, inode);
3702 	return 0;
3703 }
3704 
3705 static int btrfs_find_actor(struct inode *inode, void *opaque)
3706 {
3707 	struct btrfs_iget_args *args = opaque;
3708 	return args->ino == inode->i_ino &&
3709 		args->root == BTRFS_I(inode)->root;
3710 }
3711 
3712 static struct inode *btrfs_iget_locked(struct super_block *s,
3713 				       u64 objectid,
3714 				       struct btrfs_root *root)
3715 {
3716 	struct inode *inode;
3717 	struct btrfs_iget_args args;
3718 	args.ino = objectid;
3719 	args.root = root;
3720 
3721 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3722 			     btrfs_init_locked_inode,
3723 			     (void *)&args);
3724 	return inode;
3725 }
3726 
3727 /* Get an inode object given its location and corresponding root.
3728  * Returns in *is_new if the inode was read from disk
3729  */
3730 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3731 			 struct btrfs_root *root)
3732 {
3733 	struct inode *inode;
3734 
3735 	inode = btrfs_iget_locked(s, location->objectid, root);
3736 	if (!inode)
3737 		return ERR_PTR(-ENOMEM);
3738 
3739 	if (inode->i_state & I_NEW) {
3740 		BTRFS_I(inode)->root = root;
3741 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3742 		btrfs_read_locked_inode(inode);
3743 
3744 		inode_tree_add(inode);
3745 		unlock_new_inode(inode);
3746 	}
3747 
3748 	return inode;
3749 }
3750 
3751 static struct inode *new_simple_dir(struct super_block *s,
3752 				    struct btrfs_key *key,
3753 				    struct btrfs_root *root)
3754 {
3755 	struct inode *inode = new_inode(s);
3756 
3757 	if (!inode)
3758 		return ERR_PTR(-ENOMEM);
3759 
3760 	init_btrfs_i(inode);
3761 
3762 	BTRFS_I(inode)->root = root;
3763 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3764 	BTRFS_I(inode)->dummy_inode = 1;
3765 
3766 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3767 	inode->i_op = &simple_dir_inode_operations;
3768 	inode->i_fop = &simple_dir_operations;
3769 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3770 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3771 
3772 	return inode;
3773 }
3774 
3775 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3776 {
3777 	struct inode *inode;
3778 	struct btrfs_root *root = BTRFS_I(dir)->root;
3779 	struct btrfs_root *sub_root = root;
3780 	struct btrfs_key location;
3781 	int index;
3782 	int ret;
3783 
3784 	dentry->d_op = &btrfs_dentry_operations;
3785 
3786 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3787 		return ERR_PTR(-ENAMETOOLONG);
3788 
3789 	ret = btrfs_inode_by_name(dir, dentry, &location);
3790 
3791 	if (ret < 0)
3792 		return ERR_PTR(ret);
3793 
3794 	if (location.objectid == 0)
3795 		return NULL;
3796 
3797 	if (location.type == BTRFS_INODE_ITEM_KEY) {
3798 		inode = btrfs_iget(dir->i_sb, &location, root);
3799 		return inode;
3800 	}
3801 
3802 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3803 
3804 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
3805 	ret = fixup_tree_root_location(root, dir, dentry,
3806 				       &location, &sub_root);
3807 	if (ret < 0) {
3808 		if (ret != -ENOENT)
3809 			inode = ERR_PTR(ret);
3810 		else
3811 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
3812 	} else {
3813 		inode = btrfs_iget(dir->i_sb, &location, sub_root);
3814 	}
3815 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3816 
3817 	if (root != sub_root) {
3818 		down_read(&root->fs_info->cleanup_work_sem);
3819 		if (!(inode->i_sb->s_flags & MS_RDONLY))
3820 			btrfs_orphan_cleanup(sub_root);
3821 		up_read(&root->fs_info->cleanup_work_sem);
3822 	}
3823 
3824 	return inode;
3825 }
3826 
3827 static int btrfs_dentry_delete(struct dentry *dentry)
3828 {
3829 	struct btrfs_root *root;
3830 
3831 	if (!dentry->d_inode && !IS_ROOT(dentry))
3832 		dentry = dentry->d_parent;
3833 
3834 	if (dentry->d_inode) {
3835 		root = BTRFS_I(dentry->d_inode)->root;
3836 		if (btrfs_root_refs(&root->root_item) == 0)
3837 			return 1;
3838 	}
3839 	return 0;
3840 }
3841 
3842 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3843 				   struct nameidata *nd)
3844 {
3845 	struct inode *inode;
3846 
3847 	inode = btrfs_lookup_dentry(dir, dentry);
3848 	if (IS_ERR(inode))
3849 		return ERR_CAST(inode);
3850 
3851 	return d_splice_alias(inode, dentry);
3852 }
3853 
3854 static unsigned char btrfs_filetype_table[] = {
3855 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3856 };
3857 
3858 static int btrfs_real_readdir(struct file *filp, void *dirent,
3859 			      filldir_t filldir)
3860 {
3861 	struct inode *inode = filp->f_dentry->d_inode;
3862 	struct btrfs_root *root = BTRFS_I(inode)->root;
3863 	struct btrfs_item *item;
3864 	struct btrfs_dir_item *di;
3865 	struct btrfs_key key;
3866 	struct btrfs_key found_key;
3867 	struct btrfs_path *path;
3868 	int ret;
3869 	u32 nritems;
3870 	struct extent_buffer *leaf;
3871 	int slot;
3872 	int advance;
3873 	unsigned char d_type;
3874 	int over = 0;
3875 	u32 di_cur;
3876 	u32 di_total;
3877 	u32 di_len;
3878 	int key_type = BTRFS_DIR_INDEX_KEY;
3879 	char tmp_name[32];
3880 	char *name_ptr;
3881 	int name_len;
3882 
3883 	/* FIXME, use a real flag for deciding about the key type */
3884 	if (root->fs_info->tree_root == root)
3885 		key_type = BTRFS_DIR_ITEM_KEY;
3886 
3887 	/* special case for "." */
3888 	if (filp->f_pos == 0) {
3889 		over = filldir(dirent, ".", 1,
3890 			       1, inode->i_ino,
3891 			       DT_DIR);
3892 		if (over)
3893 			return 0;
3894 		filp->f_pos = 1;
3895 	}
3896 	/* special case for .., just use the back ref */
3897 	if (filp->f_pos == 1) {
3898 		u64 pino = parent_ino(filp->f_path.dentry);
3899 		over = filldir(dirent, "..", 2,
3900 			       2, pino, DT_DIR);
3901 		if (over)
3902 			return 0;
3903 		filp->f_pos = 2;
3904 	}
3905 	path = btrfs_alloc_path();
3906 	path->reada = 2;
3907 
3908 	btrfs_set_key_type(&key, key_type);
3909 	key.offset = filp->f_pos;
3910 	key.objectid = inode->i_ino;
3911 
3912 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3913 	if (ret < 0)
3914 		goto err;
3915 	advance = 0;
3916 
3917 	while (1) {
3918 		leaf = path->nodes[0];
3919 		nritems = btrfs_header_nritems(leaf);
3920 		slot = path->slots[0];
3921 		if (advance || slot >= nritems) {
3922 			if (slot >= nritems - 1) {
3923 				ret = btrfs_next_leaf(root, path);
3924 				if (ret)
3925 					break;
3926 				leaf = path->nodes[0];
3927 				nritems = btrfs_header_nritems(leaf);
3928 				slot = path->slots[0];
3929 			} else {
3930 				slot++;
3931 				path->slots[0]++;
3932 			}
3933 		}
3934 
3935 		advance = 1;
3936 		item = btrfs_item_nr(leaf, slot);
3937 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3938 
3939 		if (found_key.objectid != key.objectid)
3940 			break;
3941 		if (btrfs_key_type(&found_key) != key_type)
3942 			break;
3943 		if (found_key.offset < filp->f_pos)
3944 			continue;
3945 
3946 		filp->f_pos = found_key.offset;
3947 
3948 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3949 		di_cur = 0;
3950 		di_total = btrfs_item_size(leaf, item);
3951 
3952 		while (di_cur < di_total) {
3953 			struct btrfs_key location;
3954 
3955 			name_len = btrfs_dir_name_len(leaf, di);
3956 			if (name_len <= sizeof(tmp_name)) {
3957 				name_ptr = tmp_name;
3958 			} else {
3959 				name_ptr = kmalloc(name_len, GFP_NOFS);
3960 				if (!name_ptr) {
3961 					ret = -ENOMEM;
3962 					goto err;
3963 				}
3964 			}
3965 			read_extent_buffer(leaf, name_ptr,
3966 					   (unsigned long)(di + 1), name_len);
3967 
3968 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3969 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3970 
3971 			/* is this a reference to our own snapshot? If so
3972 			 * skip it
3973 			 */
3974 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3975 			    location.objectid == root->root_key.objectid) {
3976 				over = 0;
3977 				goto skip;
3978 			}
3979 			over = filldir(dirent, name_ptr, name_len,
3980 				       found_key.offset, location.objectid,
3981 				       d_type);
3982 
3983 skip:
3984 			if (name_ptr != tmp_name)
3985 				kfree(name_ptr);
3986 
3987 			if (over)
3988 				goto nopos;
3989 			di_len = btrfs_dir_name_len(leaf, di) +
3990 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3991 			di_cur += di_len;
3992 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3993 		}
3994 	}
3995 
3996 	/* Reached end of directory/root. Bump pos past the last item. */
3997 	if (key_type == BTRFS_DIR_INDEX_KEY)
3998 		filp->f_pos = INT_LIMIT(off_t);
3999 	else
4000 		filp->f_pos++;
4001 nopos:
4002 	ret = 0;
4003 err:
4004 	btrfs_free_path(path);
4005 	return ret;
4006 }
4007 
4008 int btrfs_write_inode(struct inode *inode, int wait)
4009 {
4010 	struct btrfs_root *root = BTRFS_I(inode)->root;
4011 	struct btrfs_trans_handle *trans;
4012 	int ret = 0;
4013 
4014 	if (root->fs_info->btree_inode == inode)
4015 		return 0;
4016 
4017 	if (wait) {
4018 		trans = btrfs_join_transaction(root, 1);
4019 		btrfs_set_trans_block_group(trans, inode);
4020 		ret = btrfs_commit_transaction(trans, root);
4021 	}
4022 	return ret;
4023 }
4024 
4025 /*
4026  * This is somewhat expensive, updating the tree every time the
4027  * inode changes.  But, it is most likely to find the inode in cache.
4028  * FIXME, needs more benchmarking...there are no reasons other than performance
4029  * to keep or drop this code.
4030  */
4031 void btrfs_dirty_inode(struct inode *inode)
4032 {
4033 	struct btrfs_root *root = BTRFS_I(inode)->root;
4034 	struct btrfs_trans_handle *trans;
4035 
4036 	trans = btrfs_join_transaction(root, 1);
4037 	btrfs_set_trans_block_group(trans, inode);
4038 	btrfs_update_inode(trans, root, inode);
4039 	btrfs_end_transaction(trans, root);
4040 }
4041 
4042 /*
4043  * find the highest existing sequence number in a directory
4044  * and then set the in-memory index_cnt variable to reflect
4045  * free sequence numbers
4046  */
4047 static int btrfs_set_inode_index_count(struct inode *inode)
4048 {
4049 	struct btrfs_root *root = BTRFS_I(inode)->root;
4050 	struct btrfs_key key, found_key;
4051 	struct btrfs_path *path;
4052 	struct extent_buffer *leaf;
4053 	int ret;
4054 
4055 	key.objectid = inode->i_ino;
4056 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4057 	key.offset = (u64)-1;
4058 
4059 	path = btrfs_alloc_path();
4060 	if (!path)
4061 		return -ENOMEM;
4062 
4063 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4064 	if (ret < 0)
4065 		goto out;
4066 	/* FIXME: we should be able to handle this */
4067 	if (ret == 0)
4068 		goto out;
4069 	ret = 0;
4070 
4071 	/*
4072 	 * MAGIC NUMBER EXPLANATION:
4073 	 * since we search a directory based on f_pos we have to start at 2
4074 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4075 	 * else has to start at 2
4076 	 */
4077 	if (path->slots[0] == 0) {
4078 		BTRFS_I(inode)->index_cnt = 2;
4079 		goto out;
4080 	}
4081 
4082 	path->slots[0]--;
4083 
4084 	leaf = path->nodes[0];
4085 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4086 
4087 	if (found_key.objectid != inode->i_ino ||
4088 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4089 		BTRFS_I(inode)->index_cnt = 2;
4090 		goto out;
4091 	}
4092 
4093 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4094 out:
4095 	btrfs_free_path(path);
4096 	return ret;
4097 }
4098 
4099 /*
4100  * helper to find a free sequence number in a given directory.  This current
4101  * code is very simple, later versions will do smarter things in the btree
4102  */
4103 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4104 {
4105 	int ret = 0;
4106 
4107 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4108 		ret = btrfs_set_inode_index_count(dir);
4109 		if (ret)
4110 			return ret;
4111 	}
4112 
4113 	*index = BTRFS_I(dir)->index_cnt;
4114 	BTRFS_I(dir)->index_cnt++;
4115 
4116 	return ret;
4117 }
4118 
4119 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4120 				     struct btrfs_root *root,
4121 				     struct inode *dir,
4122 				     const char *name, int name_len,
4123 				     u64 ref_objectid, u64 objectid,
4124 				     u64 alloc_hint, int mode, u64 *index)
4125 {
4126 	struct inode *inode;
4127 	struct btrfs_inode_item *inode_item;
4128 	struct btrfs_key *location;
4129 	struct btrfs_path *path;
4130 	struct btrfs_inode_ref *ref;
4131 	struct btrfs_key key[2];
4132 	u32 sizes[2];
4133 	unsigned long ptr;
4134 	int ret;
4135 	int owner;
4136 
4137 	path = btrfs_alloc_path();
4138 	BUG_ON(!path);
4139 
4140 	inode = new_inode(root->fs_info->sb);
4141 	if (!inode)
4142 		return ERR_PTR(-ENOMEM);
4143 
4144 	if (dir) {
4145 		ret = btrfs_set_inode_index(dir, index);
4146 		if (ret) {
4147 			iput(inode);
4148 			return ERR_PTR(ret);
4149 		}
4150 	}
4151 	/*
4152 	 * index_cnt is ignored for everything but a dir,
4153 	 * btrfs_get_inode_index_count has an explanation for the magic
4154 	 * number
4155 	 */
4156 	init_btrfs_i(inode);
4157 	BTRFS_I(inode)->index_cnt = 2;
4158 	BTRFS_I(inode)->root = root;
4159 	BTRFS_I(inode)->generation = trans->transid;
4160 	btrfs_set_inode_space_info(root, inode);
4161 
4162 	if (mode & S_IFDIR)
4163 		owner = 0;
4164 	else
4165 		owner = 1;
4166 	BTRFS_I(inode)->block_group =
4167 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4168 
4169 	key[0].objectid = objectid;
4170 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4171 	key[0].offset = 0;
4172 
4173 	key[1].objectid = objectid;
4174 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4175 	key[1].offset = ref_objectid;
4176 
4177 	sizes[0] = sizeof(struct btrfs_inode_item);
4178 	sizes[1] = name_len + sizeof(*ref);
4179 
4180 	path->leave_spinning = 1;
4181 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4182 	if (ret != 0)
4183 		goto fail;
4184 
4185 	inode->i_uid = current_fsuid();
4186 
4187 	if (dir && (dir->i_mode & S_ISGID)) {
4188 		inode->i_gid = dir->i_gid;
4189 		if (S_ISDIR(mode))
4190 			mode |= S_ISGID;
4191 	} else
4192 		inode->i_gid = current_fsgid();
4193 
4194 	inode->i_mode = mode;
4195 	inode->i_ino = objectid;
4196 	inode_set_bytes(inode, 0);
4197 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4198 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4199 				  struct btrfs_inode_item);
4200 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4201 
4202 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4203 			     struct btrfs_inode_ref);
4204 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4205 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4206 	ptr = (unsigned long)(ref + 1);
4207 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4208 
4209 	btrfs_mark_buffer_dirty(path->nodes[0]);
4210 	btrfs_free_path(path);
4211 
4212 	location = &BTRFS_I(inode)->location;
4213 	location->objectid = objectid;
4214 	location->offset = 0;
4215 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4216 
4217 	btrfs_inherit_iflags(inode, dir);
4218 
4219 	if ((mode & S_IFREG)) {
4220 		if (btrfs_test_opt(root, NODATASUM))
4221 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4222 		if (btrfs_test_opt(root, NODATACOW))
4223 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4224 	}
4225 
4226 	insert_inode_hash(inode);
4227 	inode_tree_add(inode);
4228 	return inode;
4229 fail:
4230 	if (dir)
4231 		BTRFS_I(dir)->index_cnt--;
4232 	btrfs_free_path(path);
4233 	iput(inode);
4234 	return ERR_PTR(ret);
4235 }
4236 
4237 static inline u8 btrfs_inode_type(struct inode *inode)
4238 {
4239 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4240 }
4241 
4242 /*
4243  * utility function to add 'inode' into 'parent_inode' with
4244  * a give name and a given sequence number.
4245  * if 'add_backref' is true, also insert a backref from the
4246  * inode to the parent directory.
4247  */
4248 int btrfs_add_link(struct btrfs_trans_handle *trans,
4249 		   struct inode *parent_inode, struct inode *inode,
4250 		   const char *name, int name_len, int add_backref, u64 index)
4251 {
4252 	int ret = 0;
4253 	struct btrfs_key key;
4254 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4255 
4256 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4257 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4258 	} else {
4259 		key.objectid = inode->i_ino;
4260 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4261 		key.offset = 0;
4262 	}
4263 
4264 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4265 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4266 					 key.objectid, root->root_key.objectid,
4267 					 parent_inode->i_ino,
4268 					 index, name, name_len);
4269 	} else if (add_backref) {
4270 		ret = btrfs_insert_inode_ref(trans, root,
4271 					     name, name_len, inode->i_ino,
4272 					     parent_inode->i_ino, index);
4273 	}
4274 
4275 	if (ret == 0) {
4276 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4277 					    parent_inode->i_ino, &key,
4278 					    btrfs_inode_type(inode), index);
4279 		BUG_ON(ret);
4280 
4281 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4282 				   name_len * 2);
4283 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4284 		ret = btrfs_update_inode(trans, root, parent_inode);
4285 	}
4286 	return ret;
4287 }
4288 
4289 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4290 			    struct dentry *dentry, struct inode *inode,
4291 			    int backref, u64 index)
4292 {
4293 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4294 				 inode, dentry->d_name.name,
4295 				 dentry->d_name.len, backref, index);
4296 	if (!err) {
4297 		d_instantiate(dentry, inode);
4298 		return 0;
4299 	}
4300 	if (err > 0)
4301 		err = -EEXIST;
4302 	return err;
4303 }
4304 
4305 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4306 			int mode, dev_t rdev)
4307 {
4308 	struct btrfs_trans_handle *trans;
4309 	struct btrfs_root *root = BTRFS_I(dir)->root;
4310 	struct inode *inode = NULL;
4311 	int err;
4312 	int drop_inode = 0;
4313 	u64 objectid;
4314 	unsigned long nr = 0;
4315 	u64 index = 0;
4316 
4317 	if (!new_valid_dev(rdev))
4318 		return -EINVAL;
4319 
4320 	/*
4321 	 * 2 for inode item and ref
4322 	 * 2 for dir items
4323 	 * 1 for xattr if selinux is on
4324 	 */
4325 	err = btrfs_reserve_metadata_space(root, 5);
4326 	if (err)
4327 		return err;
4328 
4329 	trans = btrfs_start_transaction(root, 1);
4330 	if (!trans)
4331 		goto fail;
4332 	btrfs_set_trans_block_group(trans, dir);
4333 
4334 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4335 	if (err) {
4336 		err = -ENOSPC;
4337 		goto out_unlock;
4338 	}
4339 
4340 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4341 				dentry->d_name.len,
4342 				dentry->d_parent->d_inode->i_ino, objectid,
4343 				BTRFS_I(dir)->block_group, mode, &index);
4344 	err = PTR_ERR(inode);
4345 	if (IS_ERR(inode))
4346 		goto out_unlock;
4347 
4348 	err = btrfs_init_inode_security(trans, inode, dir);
4349 	if (err) {
4350 		drop_inode = 1;
4351 		goto out_unlock;
4352 	}
4353 
4354 	btrfs_set_trans_block_group(trans, inode);
4355 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4356 	if (err)
4357 		drop_inode = 1;
4358 	else {
4359 		inode->i_op = &btrfs_special_inode_operations;
4360 		init_special_inode(inode, inode->i_mode, rdev);
4361 		btrfs_update_inode(trans, root, inode);
4362 	}
4363 	btrfs_update_inode_block_group(trans, inode);
4364 	btrfs_update_inode_block_group(trans, dir);
4365 out_unlock:
4366 	nr = trans->blocks_used;
4367 	btrfs_end_transaction_throttle(trans, root);
4368 fail:
4369 	btrfs_unreserve_metadata_space(root, 5);
4370 	if (drop_inode) {
4371 		inode_dec_link_count(inode);
4372 		iput(inode);
4373 	}
4374 	btrfs_btree_balance_dirty(root, nr);
4375 	return err;
4376 }
4377 
4378 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4379 			int mode, struct nameidata *nd)
4380 {
4381 	struct btrfs_trans_handle *trans;
4382 	struct btrfs_root *root = BTRFS_I(dir)->root;
4383 	struct inode *inode = NULL;
4384 	int err;
4385 	int drop_inode = 0;
4386 	unsigned long nr = 0;
4387 	u64 objectid;
4388 	u64 index = 0;
4389 
4390 	/*
4391 	 * 2 for inode item and ref
4392 	 * 2 for dir items
4393 	 * 1 for xattr if selinux is on
4394 	 */
4395 	err = btrfs_reserve_metadata_space(root, 5);
4396 	if (err)
4397 		return err;
4398 
4399 	trans = btrfs_start_transaction(root, 1);
4400 	if (!trans)
4401 		goto fail;
4402 	btrfs_set_trans_block_group(trans, dir);
4403 
4404 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4405 	if (err) {
4406 		err = -ENOSPC;
4407 		goto out_unlock;
4408 	}
4409 
4410 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4411 				dentry->d_name.len,
4412 				dentry->d_parent->d_inode->i_ino,
4413 				objectid, BTRFS_I(dir)->block_group, mode,
4414 				&index);
4415 	err = PTR_ERR(inode);
4416 	if (IS_ERR(inode))
4417 		goto out_unlock;
4418 
4419 	err = btrfs_init_inode_security(trans, inode, dir);
4420 	if (err) {
4421 		drop_inode = 1;
4422 		goto out_unlock;
4423 	}
4424 
4425 	btrfs_set_trans_block_group(trans, inode);
4426 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4427 	if (err)
4428 		drop_inode = 1;
4429 	else {
4430 		inode->i_mapping->a_ops = &btrfs_aops;
4431 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4432 		inode->i_fop = &btrfs_file_operations;
4433 		inode->i_op = &btrfs_file_inode_operations;
4434 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4435 	}
4436 	btrfs_update_inode_block_group(trans, inode);
4437 	btrfs_update_inode_block_group(trans, dir);
4438 out_unlock:
4439 	nr = trans->blocks_used;
4440 	btrfs_end_transaction_throttle(trans, root);
4441 fail:
4442 	btrfs_unreserve_metadata_space(root, 5);
4443 	if (drop_inode) {
4444 		inode_dec_link_count(inode);
4445 		iput(inode);
4446 	}
4447 	btrfs_btree_balance_dirty(root, nr);
4448 	return err;
4449 }
4450 
4451 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4452 		      struct dentry *dentry)
4453 {
4454 	struct btrfs_trans_handle *trans;
4455 	struct btrfs_root *root = BTRFS_I(dir)->root;
4456 	struct inode *inode = old_dentry->d_inode;
4457 	u64 index;
4458 	unsigned long nr = 0;
4459 	int err;
4460 	int drop_inode = 0;
4461 
4462 	if (inode->i_nlink == 0)
4463 		return -ENOENT;
4464 
4465 	/* do not allow sys_link's with other subvols of the same device */
4466 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4467 		return -EPERM;
4468 
4469 	/*
4470 	 * 1 item for inode ref
4471 	 * 2 items for dir items
4472 	 */
4473 	err = btrfs_reserve_metadata_space(root, 3);
4474 	if (err)
4475 		return err;
4476 
4477 	btrfs_inc_nlink(inode);
4478 
4479 	err = btrfs_set_inode_index(dir, &index);
4480 	if (err)
4481 		goto fail;
4482 
4483 	trans = btrfs_start_transaction(root, 1);
4484 
4485 	btrfs_set_trans_block_group(trans, dir);
4486 	atomic_inc(&inode->i_count);
4487 
4488 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4489 
4490 	if (err) {
4491 		drop_inode = 1;
4492 	} else {
4493 		btrfs_update_inode_block_group(trans, dir);
4494 		err = btrfs_update_inode(trans, root, inode);
4495 		BUG_ON(err);
4496 		btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4497 	}
4498 
4499 	nr = trans->blocks_used;
4500 	btrfs_end_transaction_throttle(trans, root);
4501 fail:
4502 	btrfs_unreserve_metadata_space(root, 3);
4503 	if (drop_inode) {
4504 		inode_dec_link_count(inode);
4505 		iput(inode);
4506 	}
4507 	btrfs_btree_balance_dirty(root, nr);
4508 	return err;
4509 }
4510 
4511 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4512 {
4513 	struct inode *inode = NULL;
4514 	struct btrfs_trans_handle *trans;
4515 	struct btrfs_root *root = BTRFS_I(dir)->root;
4516 	int err = 0;
4517 	int drop_on_err = 0;
4518 	u64 objectid = 0;
4519 	u64 index = 0;
4520 	unsigned long nr = 1;
4521 
4522 	/*
4523 	 * 2 items for inode and ref
4524 	 * 2 items for dir items
4525 	 * 1 for xattr if selinux is on
4526 	 */
4527 	err = btrfs_reserve_metadata_space(root, 5);
4528 	if (err)
4529 		return err;
4530 
4531 	trans = btrfs_start_transaction(root, 1);
4532 	if (!trans) {
4533 		err = -ENOMEM;
4534 		goto out_unlock;
4535 	}
4536 	btrfs_set_trans_block_group(trans, dir);
4537 
4538 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4539 	if (err) {
4540 		err = -ENOSPC;
4541 		goto out_unlock;
4542 	}
4543 
4544 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4545 				dentry->d_name.len,
4546 				dentry->d_parent->d_inode->i_ino, objectid,
4547 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4548 				&index);
4549 	if (IS_ERR(inode)) {
4550 		err = PTR_ERR(inode);
4551 		goto out_fail;
4552 	}
4553 
4554 	drop_on_err = 1;
4555 
4556 	err = btrfs_init_inode_security(trans, inode, dir);
4557 	if (err)
4558 		goto out_fail;
4559 
4560 	inode->i_op = &btrfs_dir_inode_operations;
4561 	inode->i_fop = &btrfs_dir_file_operations;
4562 	btrfs_set_trans_block_group(trans, inode);
4563 
4564 	btrfs_i_size_write(inode, 0);
4565 	err = btrfs_update_inode(trans, root, inode);
4566 	if (err)
4567 		goto out_fail;
4568 
4569 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4570 				 inode, dentry->d_name.name,
4571 				 dentry->d_name.len, 0, index);
4572 	if (err)
4573 		goto out_fail;
4574 
4575 	d_instantiate(dentry, inode);
4576 	drop_on_err = 0;
4577 	btrfs_update_inode_block_group(trans, inode);
4578 	btrfs_update_inode_block_group(trans, dir);
4579 
4580 out_fail:
4581 	nr = trans->blocks_used;
4582 	btrfs_end_transaction_throttle(trans, root);
4583 
4584 out_unlock:
4585 	btrfs_unreserve_metadata_space(root, 5);
4586 	if (drop_on_err)
4587 		iput(inode);
4588 	btrfs_btree_balance_dirty(root, nr);
4589 	return err;
4590 }
4591 
4592 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4593  * and an extent that you want to insert, deal with overlap and insert
4594  * the new extent into the tree.
4595  */
4596 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4597 				struct extent_map *existing,
4598 				struct extent_map *em,
4599 				u64 map_start, u64 map_len)
4600 {
4601 	u64 start_diff;
4602 
4603 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4604 	start_diff = map_start - em->start;
4605 	em->start = map_start;
4606 	em->len = map_len;
4607 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4608 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4609 		em->block_start += start_diff;
4610 		em->block_len -= start_diff;
4611 	}
4612 	return add_extent_mapping(em_tree, em);
4613 }
4614 
4615 static noinline int uncompress_inline(struct btrfs_path *path,
4616 				      struct inode *inode, struct page *page,
4617 				      size_t pg_offset, u64 extent_offset,
4618 				      struct btrfs_file_extent_item *item)
4619 {
4620 	int ret;
4621 	struct extent_buffer *leaf = path->nodes[0];
4622 	char *tmp;
4623 	size_t max_size;
4624 	unsigned long inline_size;
4625 	unsigned long ptr;
4626 
4627 	WARN_ON(pg_offset != 0);
4628 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4629 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4630 					btrfs_item_nr(leaf, path->slots[0]));
4631 	tmp = kmalloc(inline_size, GFP_NOFS);
4632 	ptr = btrfs_file_extent_inline_start(item);
4633 
4634 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4635 
4636 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4637 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4638 				    inline_size, max_size);
4639 	if (ret) {
4640 		char *kaddr = kmap_atomic(page, KM_USER0);
4641 		unsigned long copy_size = min_t(u64,
4642 				  PAGE_CACHE_SIZE - pg_offset,
4643 				  max_size - extent_offset);
4644 		memset(kaddr + pg_offset, 0, copy_size);
4645 		kunmap_atomic(kaddr, KM_USER0);
4646 	}
4647 	kfree(tmp);
4648 	return 0;
4649 }
4650 
4651 /*
4652  * a bit scary, this does extent mapping from logical file offset to the disk.
4653  * the ugly parts come from merging extents from the disk with the in-ram
4654  * representation.  This gets more complex because of the data=ordered code,
4655  * where the in-ram extents might be locked pending data=ordered completion.
4656  *
4657  * This also copies inline extents directly into the page.
4658  */
4659 
4660 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4661 				    size_t pg_offset, u64 start, u64 len,
4662 				    int create)
4663 {
4664 	int ret;
4665 	int err = 0;
4666 	u64 bytenr;
4667 	u64 extent_start = 0;
4668 	u64 extent_end = 0;
4669 	u64 objectid = inode->i_ino;
4670 	u32 found_type;
4671 	struct btrfs_path *path = NULL;
4672 	struct btrfs_root *root = BTRFS_I(inode)->root;
4673 	struct btrfs_file_extent_item *item;
4674 	struct extent_buffer *leaf;
4675 	struct btrfs_key found_key;
4676 	struct extent_map *em = NULL;
4677 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4678 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4679 	struct btrfs_trans_handle *trans = NULL;
4680 	int compressed;
4681 
4682 again:
4683 	read_lock(&em_tree->lock);
4684 	em = lookup_extent_mapping(em_tree, start, len);
4685 	if (em)
4686 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4687 	read_unlock(&em_tree->lock);
4688 
4689 	if (em) {
4690 		if (em->start > start || em->start + em->len <= start)
4691 			free_extent_map(em);
4692 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4693 			free_extent_map(em);
4694 		else
4695 			goto out;
4696 	}
4697 	em = alloc_extent_map(GFP_NOFS);
4698 	if (!em) {
4699 		err = -ENOMEM;
4700 		goto out;
4701 	}
4702 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4703 	em->start = EXTENT_MAP_HOLE;
4704 	em->orig_start = EXTENT_MAP_HOLE;
4705 	em->len = (u64)-1;
4706 	em->block_len = (u64)-1;
4707 
4708 	if (!path) {
4709 		path = btrfs_alloc_path();
4710 		BUG_ON(!path);
4711 	}
4712 
4713 	ret = btrfs_lookup_file_extent(trans, root, path,
4714 				       objectid, start, trans != NULL);
4715 	if (ret < 0) {
4716 		err = ret;
4717 		goto out;
4718 	}
4719 
4720 	if (ret != 0) {
4721 		if (path->slots[0] == 0)
4722 			goto not_found;
4723 		path->slots[0]--;
4724 	}
4725 
4726 	leaf = path->nodes[0];
4727 	item = btrfs_item_ptr(leaf, path->slots[0],
4728 			      struct btrfs_file_extent_item);
4729 	/* are we inside the extent that was found? */
4730 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4731 	found_type = btrfs_key_type(&found_key);
4732 	if (found_key.objectid != objectid ||
4733 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4734 		goto not_found;
4735 	}
4736 
4737 	found_type = btrfs_file_extent_type(leaf, item);
4738 	extent_start = found_key.offset;
4739 	compressed = btrfs_file_extent_compression(leaf, item);
4740 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4741 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4742 		extent_end = extent_start +
4743 		       btrfs_file_extent_num_bytes(leaf, item);
4744 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4745 		size_t size;
4746 		size = btrfs_file_extent_inline_len(leaf, item);
4747 		extent_end = (extent_start + size + root->sectorsize - 1) &
4748 			~((u64)root->sectorsize - 1);
4749 	}
4750 
4751 	if (start >= extent_end) {
4752 		path->slots[0]++;
4753 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4754 			ret = btrfs_next_leaf(root, path);
4755 			if (ret < 0) {
4756 				err = ret;
4757 				goto out;
4758 			}
4759 			if (ret > 0)
4760 				goto not_found;
4761 			leaf = path->nodes[0];
4762 		}
4763 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4764 		if (found_key.objectid != objectid ||
4765 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4766 			goto not_found;
4767 		if (start + len <= found_key.offset)
4768 			goto not_found;
4769 		em->start = start;
4770 		em->len = found_key.offset - start;
4771 		goto not_found_em;
4772 	}
4773 
4774 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4775 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4776 		em->start = extent_start;
4777 		em->len = extent_end - extent_start;
4778 		em->orig_start = extent_start -
4779 				 btrfs_file_extent_offset(leaf, item);
4780 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4781 		if (bytenr == 0) {
4782 			em->block_start = EXTENT_MAP_HOLE;
4783 			goto insert;
4784 		}
4785 		if (compressed) {
4786 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4787 			em->block_start = bytenr;
4788 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4789 									 item);
4790 		} else {
4791 			bytenr += btrfs_file_extent_offset(leaf, item);
4792 			em->block_start = bytenr;
4793 			em->block_len = em->len;
4794 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4795 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4796 		}
4797 		goto insert;
4798 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4799 		unsigned long ptr;
4800 		char *map;
4801 		size_t size;
4802 		size_t extent_offset;
4803 		size_t copy_size;
4804 
4805 		em->block_start = EXTENT_MAP_INLINE;
4806 		if (!page || create) {
4807 			em->start = extent_start;
4808 			em->len = extent_end - extent_start;
4809 			goto out;
4810 		}
4811 
4812 		size = btrfs_file_extent_inline_len(leaf, item);
4813 		extent_offset = page_offset(page) + pg_offset - extent_start;
4814 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4815 				size - extent_offset);
4816 		em->start = extent_start + extent_offset;
4817 		em->len = (copy_size + root->sectorsize - 1) &
4818 			~((u64)root->sectorsize - 1);
4819 		em->orig_start = EXTENT_MAP_INLINE;
4820 		if (compressed)
4821 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4822 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4823 		if (create == 0 && !PageUptodate(page)) {
4824 			if (btrfs_file_extent_compression(leaf, item) ==
4825 			    BTRFS_COMPRESS_ZLIB) {
4826 				ret = uncompress_inline(path, inode, page,
4827 							pg_offset,
4828 							extent_offset, item);
4829 				BUG_ON(ret);
4830 			} else {
4831 				map = kmap(page);
4832 				read_extent_buffer(leaf, map + pg_offset, ptr,
4833 						   copy_size);
4834 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4835 					memset(map + pg_offset + copy_size, 0,
4836 					       PAGE_CACHE_SIZE - pg_offset -
4837 					       copy_size);
4838 				}
4839 				kunmap(page);
4840 			}
4841 			flush_dcache_page(page);
4842 		} else if (create && PageUptodate(page)) {
4843 			if (!trans) {
4844 				kunmap(page);
4845 				free_extent_map(em);
4846 				em = NULL;
4847 				btrfs_release_path(root, path);
4848 				trans = btrfs_join_transaction(root, 1);
4849 				goto again;
4850 			}
4851 			map = kmap(page);
4852 			write_extent_buffer(leaf, map + pg_offset, ptr,
4853 					    copy_size);
4854 			kunmap(page);
4855 			btrfs_mark_buffer_dirty(leaf);
4856 		}
4857 		set_extent_uptodate(io_tree, em->start,
4858 				    extent_map_end(em) - 1, GFP_NOFS);
4859 		goto insert;
4860 	} else {
4861 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4862 		WARN_ON(1);
4863 	}
4864 not_found:
4865 	em->start = start;
4866 	em->len = len;
4867 not_found_em:
4868 	em->block_start = EXTENT_MAP_HOLE;
4869 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4870 insert:
4871 	btrfs_release_path(root, path);
4872 	if (em->start > start || extent_map_end(em) <= start) {
4873 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4874 		       "[%llu %llu]\n", (unsigned long long)em->start,
4875 		       (unsigned long long)em->len,
4876 		       (unsigned long long)start,
4877 		       (unsigned long long)len);
4878 		err = -EIO;
4879 		goto out;
4880 	}
4881 
4882 	err = 0;
4883 	write_lock(&em_tree->lock);
4884 	ret = add_extent_mapping(em_tree, em);
4885 	/* it is possible that someone inserted the extent into the tree
4886 	 * while we had the lock dropped.  It is also possible that
4887 	 * an overlapping map exists in the tree
4888 	 */
4889 	if (ret == -EEXIST) {
4890 		struct extent_map *existing;
4891 
4892 		ret = 0;
4893 
4894 		existing = lookup_extent_mapping(em_tree, start, len);
4895 		if (existing && (existing->start > start ||
4896 		    existing->start + existing->len <= start)) {
4897 			free_extent_map(existing);
4898 			existing = NULL;
4899 		}
4900 		if (!existing) {
4901 			existing = lookup_extent_mapping(em_tree, em->start,
4902 							 em->len);
4903 			if (existing) {
4904 				err = merge_extent_mapping(em_tree, existing,
4905 							   em, start,
4906 							   root->sectorsize);
4907 				free_extent_map(existing);
4908 				if (err) {
4909 					free_extent_map(em);
4910 					em = NULL;
4911 				}
4912 			} else {
4913 				err = -EIO;
4914 				free_extent_map(em);
4915 				em = NULL;
4916 			}
4917 		} else {
4918 			free_extent_map(em);
4919 			em = existing;
4920 			err = 0;
4921 		}
4922 	}
4923 	write_unlock(&em_tree->lock);
4924 out:
4925 	if (path)
4926 		btrfs_free_path(path);
4927 	if (trans) {
4928 		ret = btrfs_end_transaction(trans, root);
4929 		if (!err)
4930 			err = ret;
4931 	}
4932 	if (err) {
4933 		free_extent_map(em);
4934 		return ERR_PTR(err);
4935 	}
4936 	return em;
4937 }
4938 
4939 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4940 			const struct iovec *iov, loff_t offset,
4941 			unsigned long nr_segs)
4942 {
4943 	return -EINVAL;
4944 }
4945 
4946 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4947 		__u64 start, __u64 len)
4948 {
4949 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4950 }
4951 
4952 int btrfs_readpage(struct file *file, struct page *page)
4953 {
4954 	struct extent_io_tree *tree;
4955 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4956 	return extent_read_full_page(tree, page, btrfs_get_extent);
4957 }
4958 
4959 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4960 {
4961 	struct extent_io_tree *tree;
4962 
4963 
4964 	if (current->flags & PF_MEMALLOC) {
4965 		redirty_page_for_writepage(wbc, page);
4966 		unlock_page(page);
4967 		return 0;
4968 	}
4969 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4970 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4971 }
4972 
4973 int btrfs_writepages(struct address_space *mapping,
4974 		     struct writeback_control *wbc)
4975 {
4976 	struct extent_io_tree *tree;
4977 
4978 	tree = &BTRFS_I(mapping->host)->io_tree;
4979 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4980 }
4981 
4982 static int
4983 btrfs_readpages(struct file *file, struct address_space *mapping,
4984 		struct list_head *pages, unsigned nr_pages)
4985 {
4986 	struct extent_io_tree *tree;
4987 	tree = &BTRFS_I(mapping->host)->io_tree;
4988 	return extent_readpages(tree, mapping, pages, nr_pages,
4989 				btrfs_get_extent);
4990 }
4991 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4992 {
4993 	struct extent_io_tree *tree;
4994 	struct extent_map_tree *map;
4995 	int ret;
4996 
4997 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4998 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4999 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5000 	if (ret == 1) {
5001 		ClearPagePrivate(page);
5002 		set_page_private(page, 0);
5003 		page_cache_release(page);
5004 	}
5005 	return ret;
5006 }
5007 
5008 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5009 {
5010 	if (PageWriteback(page) || PageDirty(page))
5011 		return 0;
5012 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5013 }
5014 
5015 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5016 {
5017 	struct extent_io_tree *tree;
5018 	struct btrfs_ordered_extent *ordered;
5019 	u64 page_start = page_offset(page);
5020 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5021 
5022 
5023 	/*
5024 	 * we have the page locked, so new writeback can't start,
5025 	 * and the dirty bit won't be cleared while we are here.
5026 	 *
5027 	 * Wait for IO on this page so that we can safely clear
5028 	 * the PagePrivate2 bit and do ordered accounting
5029 	 */
5030 	wait_on_page_writeback(page);
5031 
5032 	tree = &BTRFS_I(page->mapping->host)->io_tree;
5033 	if (offset) {
5034 		btrfs_releasepage(page, GFP_NOFS);
5035 		return;
5036 	}
5037 	lock_extent(tree, page_start, page_end, GFP_NOFS);
5038 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5039 					   page_offset(page));
5040 	if (ordered) {
5041 		/*
5042 		 * IO on this page will never be started, so we need
5043 		 * to account for any ordered extents now
5044 		 */
5045 		clear_extent_bit(tree, page_start, page_end,
5046 				 EXTENT_DIRTY | EXTENT_DELALLOC |
5047 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5048 				 NULL, GFP_NOFS);
5049 		/*
5050 		 * whoever cleared the private bit is responsible
5051 		 * for the finish_ordered_io
5052 		 */
5053 		if (TestClearPagePrivate2(page)) {
5054 			btrfs_finish_ordered_io(page->mapping->host,
5055 						page_start, page_end);
5056 		}
5057 		btrfs_put_ordered_extent(ordered);
5058 		lock_extent(tree, page_start, page_end, GFP_NOFS);
5059 	}
5060 	clear_extent_bit(tree, page_start, page_end,
5061 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5062 		 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
5063 	__btrfs_releasepage(page, GFP_NOFS);
5064 
5065 	ClearPageChecked(page);
5066 	if (PagePrivate(page)) {
5067 		ClearPagePrivate(page);
5068 		set_page_private(page, 0);
5069 		page_cache_release(page);
5070 	}
5071 }
5072 
5073 /*
5074  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5075  * called from a page fault handler when a page is first dirtied. Hence we must
5076  * be careful to check for EOF conditions here. We set the page up correctly
5077  * for a written page which means we get ENOSPC checking when writing into
5078  * holes and correct delalloc and unwritten extent mapping on filesystems that
5079  * support these features.
5080  *
5081  * We are not allowed to take the i_mutex here so we have to play games to
5082  * protect against truncate races as the page could now be beyond EOF.  Because
5083  * vmtruncate() writes the inode size before removing pages, once we have the
5084  * page lock we can determine safely if the page is beyond EOF. If it is not
5085  * beyond EOF, then the page is guaranteed safe against truncation until we
5086  * unlock the page.
5087  */
5088 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5089 {
5090 	struct page *page = vmf->page;
5091 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
5092 	struct btrfs_root *root = BTRFS_I(inode)->root;
5093 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5094 	struct btrfs_ordered_extent *ordered;
5095 	char *kaddr;
5096 	unsigned long zero_start;
5097 	loff_t size;
5098 	int ret;
5099 	u64 page_start;
5100 	u64 page_end;
5101 
5102 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5103 	if (ret) {
5104 		if (ret == -ENOMEM)
5105 			ret = VM_FAULT_OOM;
5106 		else /* -ENOSPC, -EIO, etc */
5107 			ret = VM_FAULT_SIGBUS;
5108 		goto out;
5109 	}
5110 
5111 	ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5112 	if (ret) {
5113 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5114 		ret = VM_FAULT_SIGBUS;
5115 		goto out;
5116 	}
5117 
5118 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5119 again:
5120 	lock_page(page);
5121 	size = i_size_read(inode);
5122 	page_start = page_offset(page);
5123 	page_end = page_start + PAGE_CACHE_SIZE - 1;
5124 
5125 	if ((page->mapping != inode->i_mapping) ||
5126 	    (page_start >= size)) {
5127 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5128 		/* page got truncated out from underneath us */
5129 		goto out_unlock;
5130 	}
5131 	wait_on_page_writeback(page);
5132 
5133 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5134 	set_page_extent_mapped(page);
5135 
5136 	/*
5137 	 * we can't set the delalloc bits if there are pending ordered
5138 	 * extents.  Drop our locks and wait for them to finish
5139 	 */
5140 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
5141 	if (ordered) {
5142 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5143 		unlock_page(page);
5144 		btrfs_start_ordered_extent(inode, ordered, 1);
5145 		btrfs_put_ordered_extent(ordered);
5146 		goto again;
5147 	}
5148 
5149 	/*
5150 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
5151 	 * if it was already dirty, so for space accounting reasons we need to
5152 	 * clear any delalloc bits for the range we are fixing to save.  There
5153 	 * is probably a better way to do this, but for now keep consistent with
5154 	 * prepare_pages in the normal write path.
5155 	 */
5156 	clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5157 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5158 			  GFP_NOFS);
5159 
5160 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5161 	if (ret) {
5162 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5163 		ret = VM_FAULT_SIGBUS;
5164 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5165 		goto out_unlock;
5166 	}
5167 	ret = 0;
5168 
5169 	/* page is wholly or partially inside EOF */
5170 	if (page_start + PAGE_CACHE_SIZE > size)
5171 		zero_start = size & ~PAGE_CACHE_MASK;
5172 	else
5173 		zero_start = PAGE_CACHE_SIZE;
5174 
5175 	if (zero_start != PAGE_CACHE_SIZE) {
5176 		kaddr = kmap(page);
5177 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5178 		flush_dcache_page(page);
5179 		kunmap(page);
5180 	}
5181 	ClearPageChecked(page);
5182 	set_page_dirty(page);
5183 	SetPageUptodate(page);
5184 
5185 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
5186 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5187 
5188 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5189 
5190 out_unlock:
5191 	btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5192 	if (!ret)
5193 		return VM_FAULT_LOCKED;
5194 	unlock_page(page);
5195 out:
5196 	return ret;
5197 }
5198 
5199 static void btrfs_truncate(struct inode *inode)
5200 {
5201 	struct btrfs_root *root = BTRFS_I(inode)->root;
5202 	int ret;
5203 	struct btrfs_trans_handle *trans;
5204 	unsigned long nr;
5205 	u64 mask = root->sectorsize - 1;
5206 
5207 	if (!S_ISREG(inode->i_mode)) {
5208 		WARN_ON(1);
5209 		return;
5210 	}
5211 
5212 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5213 	if (ret)
5214 		return;
5215 
5216 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5217 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5218 
5219 	trans = btrfs_start_transaction(root, 1);
5220 	btrfs_set_trans_block_group(trans, inode);
5221 
5222 	/*
5223 	 * setattr is responsible for setting the ordered_data_close flag,
5224 	 * but that is only tested during the last file release.  That
5225 	 * could happen well after the next commit, leaving a great big
5226 	 * window where new writes may get lost if someone chooses to write
5227 	 * to this file after truncating to zero
5228 	 *
5229 	 * The inode doesn't have any dirty data here, and so if we commit
5230 	 * this is a noop.  If someone immediately starts writing to the inode
5231 	 * it is very likely we'll catch some of their writes in this
5232 	 * transaction, and the commit will find this file on the ordered
5233 	 * data list with good things to send down.
5234 	 *
5235 	 * This is a best effort solution, there is still a window where
5236 	 * using truncate to replace the contents of the file will
5237 	 * end up with a zero length file after a crash.
5238 	 */
5239 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5240 		btrfs_add_ordered_operation(trans, root, inode);
5241 
5242 	while (1) {
5243 		ret = btrfs_truncate_inode_items(trans, root, inode,
5244 						 inode->i_size,
5245 						 BTRFS_EXTENT_DATA_KEY);
5246 		if (ret != -EAGAIN)
5247 			break;
5248 
5249 		ret = btrfs_update_inode(trans, root, inode);
5250 		BUG_ON(ret);
5251 
5252 		nr = trans->blocks_used;
5253 		btrfs_end_transaction(trans, root);
5254 		btrfs_btree_balance_dirty(root, nr);
5255 
5256 		trans = btrfs_start_transaction(root, 1);
5257 		btrfs_set_trans_block_group(trans, inode);
5258 	}
5259 
5260 	if (ret == 0 && inode->i_nlink > 0) {
5261 		ret = btrfs_orphan_del(trans, inode);
5262 		BUG_ON(ret);
5263 	}
5264 
5265 	ret = btrfs_update_inode(trans, root, inode);
5266 	BUG_ON(ret);
5267 
5268 	nr = trans->blocks_used;
5269 	ret = btrfs_end_transaction_throttle(trans, root);
5270 	BUG_ON(ret);
5271 	btrfs_btree_balance_dirty(root, nr);
5272 }
5273 
5274 /*
5275  * create a new subvolume directory/inode (helper for the ioctl).
5276  */
5277 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5278 			     struct btrfs_root *new_root,
5279 			     u64 new_dirid, u64 alloc_hint)
5280 {
5281 	struct inode *inode;
5282 	int err;
5283 	u64 index = 0;
5284 
5285 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5286 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5287 	if (IS_ERR(inode))
5288 		return PTR_ERR(inode);
5289 	inode->i_op = &btrfs_dir_inode_operations;
5290 	inode->i_fop = &btrfs_dir_file_operations;
5291 
5292 	inode->i_nlink = 1;
5293 	btrfs_i_size_write(inode, 0);
5294 
5295 	err = btrfs_update_inode(trans, new_root, inode);
5296 	BUG_ON(err);
5297 
5298 	iput(inode);
5299 	return 0;
5300 }
5301 
5302 /* helper function for file defrag and space balancing.  This
5303  * forces readahead on a given range of bytes in an inode
5304  */
5305 unsigned long btrfs_force_ra(struct address_space *mapping,
5306 			      struct file_ra_state *ra, struct file *file,
5307 			      pgoff_t offset, pgoff_t last_index)
5308 {
5309 	pgoff_t req_size = last_index - offset + 1;
5310 
5311 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5312 	return offset + req_size;
5313 }
5314 
5315 struct inode *btrfs_alloc_inode(struct super_block *sb)
5316 {
5317 	struct btrfs_inode *ei;
5318 
5319 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5320 	if (!ei)
5321 		return NULL;
5322 	ei->last_trans = 0;
5323 	ei->last_sub_trans = 0;
5324 	ei->logged_trans = 0;
5325 	ei->outstanding_extents = 0;
5326 	ei->reserved_extents = 0;
5327 	ei->root = NULL;
5328 	spin_lock_init(&ei->accounting_lock);
5329 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5330 	INIT_LIST_HEAD(&ei->i_orphan);
5331 	INIT_LIST_HEAD(&ei->ordered_operations);
5332 	return &ei->vfs_inode;
5333 }
5334 
5335 void btrfs_destroy_inode(struct inode *inode)
5336 {
5337 	struct btrfs_ordered_extent *ordered;
5338 	struct btrfs_root *root = BTRFS_I(inode)->root;
5339 
5340 	WARN_ON(!list_empty(&inode->i_dentry));
5341 	WARN_ON(inode->i_data.nrpages);
5342 
5343 	/*
5344 	 * This can happen where we create an inode, but somebody else also
5345 	 * created the same inode and we need to destroy the one we already
5346 	 * created.
5347 	 */
5348 	if (!root)
5349 		goto free;
5350 
5351 	/*
5352 	 * Make sure we're properly removed from the ordered operation
5353 	 * lists.
5354 	 */
5355 	smp_mb();
5356 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5357 		spin_lock(&root->fs_info->ordered_extent_lock);
5358 		list_del_init(&BTRFS_I(inode)->ordered_operations);
5359 		spin_unlock(&root->fs_info->ordered_extent_lock);
5360 	}
5361 
5362 	spin_lock(&root->list_lock);
5363 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5364 		printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5365 		       inode->i_ino);
5366 		list_del_init(&BTRFS_I(inode)->i_orphan);
5367 	}
5368 	spin_unlock(&root->list_lock);
5369 
5370 	while (1) {
5371 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5372 		if (!ordered)
5373 			break;
5374 		else {
5375 			printk(KERN_ERR "btrfs found ordered "
5376 			       "extent %llu %llu on inode cleanup\n",
5377 			       (unsigned long long)ordered->file_offset,
5378 			       (unsigned long long)ordered->len);
5379 			btrfs_remove_ordered_extent(inode, ordered);
5380 			btrfs_put_ordered_extent(ordered);
5381 			btrfs_put_ordered_extent(ordered);
5382 		}
5383 	}
5384 	inode_tree_del(inode);
5385 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5386 free:
5387 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5388 }
5389 
5390 void btrfs_drop_inode(struct inode *inode)
5391 {
5392 	struct btrfs_root *root = BTRFS_I(inode)->root;
5393 
5394 	if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5395 		generic_delete_inode(inode);
5396 	else
5397 		generic_drop_inode(inode);
5398 }
5399 
5400 static void init_once(void *foo)
5401 {
5402 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5403 
5404 	inode_init_once(&ei->vfs_inode);
5405 }
5406 
5407 void btrfs_destroy_cachep(void)
5408 {
5409 	if (btrfs_inode_cachep)
5410 		kmem_cache_destroy(btrfs_inode_cachep);
5411 	if (btrfs_trans_handle_cachep)
5412 		kmem_cache_destroy(btrfs_trans_handle_cachep);
5413 	if (btrfs_transaction_cachep)
5414 		kmem_cache_destroy(btrfs_transaction_cachep);
5415 	if (btrfs_path_cachep)
5416 		kmem_cache_destroy(btrfs_path_cachep);
5417 }
5418 
5419 int btrfs_init_cachep(void)
5420 {
5421 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5422 			sizeof(struct btrfs_inode), 0,
5423 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5424 	if (!btrfs_inode_cachep)
5425 		goto fail;
5426 
5427 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5428 			sizeof(struct btrfs_trans_handle), 0,
5429 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5430 	if (!btrfs_trans_handle_cachep)
5431 		goto fail;
5432 
5433 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5434 			sizeof(struct btrfs_transaction), 0,
5435 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5436 	if (!btrfs_transaction_cachep)
5437 		goto fail;
5438 
5439 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5440 			sizeof(struct btrfs_path), 0,
5441 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5442 	if (!btrfs_path_cachep)
5443 		goto fail;
5444 
5445 	return 0;
5446 fail:
5447 	btrfs_destroy_cachep();
5448 	return -ENOMEM;
5449 }
5450 
5451 static int btrfs_getattr(struct vfsmount *mnt,
5452 			 struct dentry *dentry, struct kstat *stat)
5453 {
5454 	struct inode *inode = dentry->d_inode;
5455 	generic_fillattr(inode, stat);
5456 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5457 	stat->blksize = PAGE_CACHE_SIZE;
5458 	stat->blocks = (inode_get_bytes(inode) +
5459 			BTRFS_I(inode)->delalloc_bytes) >> 9;
5460 	return 0;
5461 }
5462 
5463 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5464 			   struct inode *new_dir, struct dentry *new_dentry)
5465 {
5466 	struct btrfs_trans_handle *trans;
5467 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
5468 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5469 	struct inode *new_inode = new_dentry->d_inode;
5470 	struct inode *old_inode = old_dentry->d_inode;
5471 	struct timespec ctime = CURRENT_TIME;
5472 	u64 index = 0;
5473 	u64 root_objectid;
5474 	int ret;
5475 
5476 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5477 		return -EPERM;
5478 
5479 	/* we only allow rename subvolume link between subvolumes */
5480 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5481 		return -EXDEV;
5482 
5483 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5484 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5485 		return -ENOTEMPTY;
5486 
5487 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
5488 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5489 		return -ENOTEMPTY;
5490 
5491 	/*
5492 	 * We want to reserve the absolute worst case amount of items.  So if
5493 	 * both inodes are subvols and we need to unlink them then that would
5494 	 * require 4 item modifications, but if they are both normal inodes it
5495 	 * would require 5 item modifications, so we'll assume their normal
5496 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5497 	 * should cover the worst case number of items we'll modify.
5498 	 */
5499 	ret = btrfs_reserve_metadata_space(root, 11);
5500 	if (ret)
5501 		return ret;
5502 
5503 	/*
5504 	 * we're using rename to replace one file with another.
5505 	 * and the replacement file is large.  Start IO on it now so
5506 	 * we don't add too much work to the end of the transaction
5507 	 */
5508 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5509 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5510 		filemap_flush(old_inode->i_mapping);
5511 
5512 	/* close the racy window with snapshot create/destroy ioctl */
5513 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5514 		down_read(&root->fs_info->subvol_sem);
5515 
5516 	trans = btrfs_start_transaction(root, 1);
5517 	btrfs_set_trans_block_group(trans, new_dir);
5518 
5519 	if (dest != root)
5520 		btrfs_record_root_in_trans(trans, dest);
5521 
5522 	ret = btrfs_set_inode_index(new_dir, &index);
5523 	if (ret)
5524 		goto out_fail;
5525 
5526 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5527 		/* force full log commit if subvolume involved. */
5528 		root->fs_info->last_trans_log_full_commit = trans->transid;
5529 	} else {
5530 		ret = btrfs_insert_inode_ref(trans, dest,
5531 					     new_dentry->d_name.name,
5532 					     new_dentry->d_name.len,
5533 					     old_inode->i_ino,
5534 					     new_dir->i_ino, index);
5535 		if (ret)
5536 			goto out_fail;
5537 		/*
5538 		 * this is an ugly little race, but the rename is required
5539 		 * to make sure that if we crash, the inode is either at the
5540 		 * old name or the new one.  pinning the log transaction lets
5541 		 * us make sure we don't allow a log commit to come in after
5542 		 * we unlink the name but before we add the new name back in.
5543 		 */
5544 		btrfs_pin_log_trans(root);
5545 	}
5546 	/*
5547 	 * make sure the inode gets flushed if it is replacing
5548 	 * something.
5549 	 */
5550 	if (new_inode && new_inode->i_size &&
5551 	    old_inode && S_ISREG(old_inode->i_mode)) {
5552 		btrfs_add_ordered_operation(trans, root, old_inode);
5553 	}
5554 
5555 	old_dir->i_ctime = old_dir->i_mtime = ctime;
5556 	new_dir->i_ctime = new_dir->i_mtime = ctime;
5557 	old_inode->i_ctime = ctime;
5558 
5559 	if (old_dentry->d_parent != new_dentry->d_parent)
5560 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5561 
5562 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5563 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5564 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5565 					old_dentry->d_name.name,
5566 					old_dentry->d_name.len);
5567 	} else {
5568 		btrfs_inc_nlink(old_dentry->d_inode);
5569 		ret = btrfs_unlink_inode(trans, root, old_dir,
5570 					 old_dentry->d_inode,
5571 					 old_dentry->d_name.name,
5572 					 old_dentry->d_name.len);
5573 	}
5574 	BUG_ON(ret);
5575 
5576 	if (new_inode) {
5577 		new_inode->i_ctime = CURRENT_TIME;
5578 		if (unlikely(new_inode->i_ino ==
5579 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5580 			root_objectid = BTRFS_I(new_inode)->location.objectid;
5581 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
5582 						root_objectid,
5583 						new_dentry->d_name.name,
5584 						new_dentry->d_name.len);
5585 			BUG_ON(new_inode->i_nlink == 0);
5586 		} else {
5587 			ret = btrfs_unlink_inode(trans, dest, new_dir,
5588 						 new_dentry->d_inode,
5589 						 new_dentry->d_name.name,
5590 						 new_dentry->d_name.len);
5591 		}
5592 		BUG_ON(ret);
5593 		if (new_inode->i_nlink == 0) {
5594 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5595 			BUG_ON(ret);
5596 		}
5597 	}
5598 
5599 	ret = btrfs_add_link(trans, new_dir, old_inode,
5600 			     new_dentry->d_name.name,
5601 			     new_dentry->d_name.len, 0, index);
5602 	BUG_ON(ret);
5603 
5604 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5605 		btrfs_log_new_name(trans, old_inode, old_dir,
5606 				   new_dentry->d_parent);
5607 		btrfs_end_log_trans(root);
5608 	}
5609 out_fail:
5610 	btrfs_end_transaction_throttle(trans, root);
5611 
5612 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5613 		up_read(&root->fs_info->subvol_sem);
5614 
5615 	btrfs_unreserve_metadata_space(root, 11);
5616 	return ret;
5617 }
5618 
5619 /*
5620  * some fairly slow code that needs optimization. This walks the list
5621  * of all the inodes with pending delalloc and forces them to disk.
5622  */
5623 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5624 {
5625 	struct list_head *head = &root->fs_info->delalloc_inodes;
5626 	struct btrfs_inode *binode;
5627 	struct inode *inode;
5628 
5629 	if (root->fs_info->sb->s_flags & MS_RDONLY)
5630 		return -EROFS;
5631 
5632 	spin_lock(&root->fs_info->delalloc_lock);
5633 	while (!list_empty(head)) {
5634 		binode = list_entry(head->next, struct btrfs_inode,
5635 				    delalloc_inodes);
5636 		inode = igrab(&binode->vfs_inode);
5637 		if (!inode)
5638 			list_del_init(&binode->delalloc_inodes);
5639 		spin_unlock(&root->fs_info->delalloc_lock);
5640 		if (inode) {
5641 			filemap_flush(inode->i_mapping);
5642 			if (delay_iput)
5643 				btrfs_add_delayed_iput(inode);
5644 			else
5645 				iput(inode);
5646 		}
5647 		cond_resched();
5648 		spin_lock(&root->fs_info->delalloc_lock);
5649 	}
5650 	spin_unlock(&root->fs_info->delalloc_lock);
5651 
5652 	/* the filemap_flush will queue IO into the worker threads, but
5653 	 * we have to make sure the IO is actually started and that
5654 	 * ordered extents get created before we return
5655 	 */
5656 	atomic_inc(&root->fs_info->async_submit_draining);
5657 	while (atomic_read(&root->fs_info->nr_async_submits) ||
5658 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
5659 		wait_event(root->fs_info->async_submit_wait,
5660 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5661 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5662 	}
5663 	atomic_dec(&root->fs_info->async_submit_draining);
5664 	return 0;
5665 }
5666 
5667 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5668 			 const char *symname)
5669 {
5670 	struct btrfs_trans_handle *trans;
5671 	struct btrfs_root *root = BTRFS_I(dir)->root;
5672 	struct btrfs_path *path;
5673 	struct btrfs_key key;
5674 	struct inode *inode = NULL;
5675 	int err;
5676 	int drop_inode = 0;
5677 	u64 objectid;
5678 	u64 index = 0 ;
5679 	int name_len;
5680 	int datasize;
5681 	unsigned long ptr;
5682 	struct btrfs_file_extent_item *ei;
5683 	struct extent_buffer *leaf;
5684 	unsigned long nr = 0;
5685 
5686 	name_len = strlen(symname) + 1;
5687 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5688 		return -ENAMETOOLONG;
5689 
5690 	/*
5691 	 * 2 items for inode item and ref
5692 	 * 2 items for dir items
5693 	 * 1 item for xattr if selinux is on
5694 	 */
5695 	err = btrfs_reserve_metadata_space(root, 5);
5696 	if (err)
5697 		return err;
5698 
5699 	trans = btrfs_start_transaction(root, 1);
5700 	if (!trans)
5701 		goto out_fail;
5702 	btrfs_set_trans_block_group(trans, dir);
5703 
5704 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5705 	if (err) {
5706 		err = -ENOSPC;
5707 		goto out_unlock;
5708 	}
5709 
5710 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5711 				dentry->d_name.len,
5712 				dentry->d_parent->d_inode->i_ino, objectid,
5713 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5714 				&index);
5715 	err = PTR_ERR(inode);
5716 	if (IS_ERR(inode))
5717 		goto out_unlock;
5718 
5719 	err = btrfs_init_inode_security(trans, inode, dir);
5720 	if (err) {
5721 		drop_inode = 1;
5722 		goto out_unlock;
5723 	}
5724 
5725 	btrfs_set_trans_block_group(trans, inode);
5726 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5727 	if (err)
5728 		drop_inode = 1;
5729 	else {
5730 		inode->i_mapping->a_ops = &btrfs_aops;
5731 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5732 		inode->i_fop = &btrfs_file_operations;
5733 		inode->i_op = &btrfs_file_inode_operations;
5734 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5735 	}
5736 	btrfs_update_inode_block_group(trans, inode);
5737 	btrfs_update_inode_block_group(trans, dir);
5738 	if (drop_inode)
5739 		goto out_unlock;
5740 
5741 	path = btrfs_alloc_path();
5742 	BUG_ON(!path);
5743 	key.objectid = inode->i_ino;
5744 	key.offset = 0;
5745 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5746 	datasize = btrfs_file_extent_calc_inline_size(name_len);
5747 	err = btrfs_insert_empty_item(trans, root, path, &key,
5748 				      datasize);
5749 	if (err) {
5750 		drop_inode = 1;
5751 		goto out_unlock;
5752 	}
5753 	leaf = path->nodes[0];
5754 	ei = btrfs_item_ptr(leaf, path->slots[0],
5755 			    struct btrfs_file_extent_item);
5756 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5757 	btrfs_set_file_extent_type(leaf, ei,
5758 				   BTRFS_FILE_EXTENT_INLINE);
5759 	btrfs_set_file_extent_encryption(leaf, ei, 0);
5760 	btrfs_set_file_extent_compression(leaf, ei, 0);
5761 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5762 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5763 
5764 	ptr = btrfs_file_extent_inline_start(ei);
5765 	write_extent_buffer(leaf, symname, ptr, name_len);
5766 	btrfs_mark_buffer_dirty(leaf);
5767 	btrfs_free_path(path);
5768 
5769 	inode->i_op = &btrfs_symlink_inode_operations;
5770 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
5771 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5772 	inode_set_bytes(inode, name_len);
5773 	btrfs_i_size_write(inode, name_len - 1);
5774 	err = btrfs_update_inode(trans, root, inode);
5775 	if (err)
5776 		drop_inode = 1;
5777 
5778 out_unlock:
5779 	nr = trans->blocks_used;
5780 	btrfs_end_transaction_throttle(trans, root);
5781 out_fail:
5782 	btrfs_unreserve_metadata_space(root, 5);
5783 	if (drop_inode) {
5784 		inode_dec_link_count(inode);
5785 		iput(inode);
5786 	}
5787 	btrfs_btree_balance_dirty(root, nr);
5788 	return err;
5789 }
5790 
5791 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5792 			       u64 alloc_hint, int mode)
5793 {
5794 	struct btrfs_trans_handle *trans;
5795 	struct btrfs_root *root = BTRFS_I(inode)->root;
5796 	struct btrfs_key ins;
5797 	u64 alloc_size;
5798 	u64 cur_offset = start;
5799 	u64 num_bytes = end - start;
5800 	int ret = 0;
5801 
5802 	while (num_bytes > 0) {
5803 		alloc_size = min(num_bytes, root->fs_info->max_extent);
5804 
5805 		trans = btrfs_start_transaction(root, 1);
5806 
5807 		ret = btrfs_reserve_extent(trans, root, alloc_size,
5808 					   root->sectorsize, 0, alloc_hint,
5809 					   (u64)-1, &ins, 1);
5810 		if (ret) {
5811 			WARN_ON(1);
5812 			goto stop_trans;
5813 		}
5814 
5815 		ret = btrfs_reserve_metadata_space(root, 3);
5816 		if (ret) {
5817 			btrfs_free_reserved_extent(root, ins.objectid,
5818 						   ins.offset);
5819 			goto stop_trans;
5820 		}
5821 
5822 		ret = insert_reserved_file_extent(trans, inode,
5823 						  cur_offset, ins.objectid,
5824 						  ins.offset, ins.offset,
5825 						  ins.offset, 0, 0, 0,
5826 						  BTRFS_FILE_EXTENT_PREALLOC);
5827 		BUG_ON(ret);
5828 		btrfs_drop_extent_cache(inode, cur_offset,
5829 					cur_offset + ins.offset -1, 0);
5830 
5831 		num_bytes -= ins.offset;
5832 		cur_offset += ins.offset;
5833 		alloc_hint = ins.objectid + ins.offset;
5834 
5835 		inode->i_ctime = CURRENT_TIME;
5836 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5837 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5838 		    cur_offset > inode->i_size) {
5839 			i_size_write(inode, cur_offset);
5840 			btrfs_ordered_update_i_size(inode, cur_offset, NULL);
5841 		}
5842 
5843 		ret = btrfs_update_inode(trans, root, inode);
5844 		BUG_ON(ret);
5845 
5846 		btrfs_end_transaction(trans, root);
5847 		btrfs_unreserve_metadata_space(root, 3);
5848 	}
5849 	return ret;
5850 
5851 stop_trans:
5852 	btrfs_end_transaction(trans, root);
5853 	return ret;
5854 
5855 }
5856 
5857 static long btrfs_fallocate(struct inode *inode, int mode,
5858 			    loff_t offset, loff_t len)
5859 {
5860 	u64 cur_offset;
5861 	u64 last_byte;
5862 	u64 alloc_start;
5863 	u64 alloc_end;
5864 	u64 alloc_hint = 0;
5865 	u64 locked_end;
5866 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5867 	struct extent_map *em;
5868 	int ret;
5869 
5870 	alloc_start = offset & ~mask;
5871 	alloc_end =  (offset + len + mask) & ~mask;
5872 
5873 	/*
5874 	 * wait for ordered IO before we have any locks.  We'll loop again
5875 	 * below with the locks held.
5876 	 */
5877 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5878 
5879 	mutex_lock(&inode->i_mutex);
5880 	if (alloc_start > inode->i_size) {
5881 		ret = btrfs_cont_expand(inode, alloc_start);
5882 		if (ret)
5883 			goto out;
5884 	}
5885 
5886 	ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5887 					  alloc_end - alloc_start);
5888 	if (ret)
5889 		goto out;
5890 
5891 	locked_end = alloc_end - 1;
5892 	while (1) {
5893 		struct btrfs_ordered_extent *ordered;
5894 
5895 		/* the extent lock is ordered inside the running
5896 		 * transaction
5897 		 */
5898 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5899 			    GFP_NOFS);
5900 		ordered = btrfs_lookup_first_ordered_extent(inode,
5901 							    alloc_end - 1);
5902 		if (ordered &&
5903 		    ordered->file_offset + ordered->len > alloc_start &&
5904 		    ordered->file_offset < alloc_end) {
5905 			btrfs_put_ordered_extent(ordered);
5906 			unlock_extent(&BTRFS_I(inode)->io_tree,
5907 				      alloc_start, locked_end, GFP_NOFS);
5908 			/*
5909 			 * we can't wait on the range with the transaction
5910 			 * running or with the extent lock held
5911 			 */
5912 			btrfs_wait_ordered_range(inode, alloc_start,
5913 						 alloc_end - alloc_start);
5914 		} else {
5915 			if (ordered)
5916 				btrfs_put_ordered_extent(ordered);
5917 			break;
5918 		}
5919 	}
5920 
5921 	cur_offset = alloc_start;
5922 	while (1) {
5923 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5924 				      alloc_end - cur_offset, 0);
5925 		BUG_ON(IS_ERR(em) || !em);
5926 		last_byte = min(extent_map_end(em), alloc_end);
5927 		last_byte = (last_byte + mask) & ~mask;
5928 		if (em->block_start == EXTENT_MAP_HOLE ||
5929 		    (cur_offset >= inode->i_size &&
5930 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5931 			ret = prealloc_file_range(inode,
5932 						  cur_offset, last_byte,
5933 						  alloc_hint, mode);
5934 			if (ret < 0) {
5935 				free_extent_map(em);
5936 				break;
5937 			}
5938 		}
5939 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5940 			alloc_hint = em->block_start;
5941 		free_extent_map(em);
5942 
5943 		cur_offset = last_byte;
5944 		if (cur_offset >= alloc_end) {
5945 			ret = 0;
5946 			break;
5947 		}
5948 	}
5949 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5950 		      GFP_NOFS);
5951 
5952 	btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5953 				       alloc_end - alloc_start);
5954 out:
5955 	mutex_unlock(&inode->i_mutex);
5956 	return ret;
5957 }
5958 
5959 static int btrfs_set_page_dirty(struct page *page)
5960 {
5961 	return __set_page_dirty_nobuffers(page);
5962 }
5963 
5964 static int btrfs_permission(struct inode *inode, int mask)
5965 {
5966 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5967 		return -EACCES;
5968 	return generic_permission(inode, mask, btrfs_check_acl);
5969 }
5970 
5971 static const struct inode_operations btrfs_dir_inode_operations = {
5972 	.getattr	= btrfs_getattr,
5973 	.lookup		= btrfs_lookup,
5974 	.create		= btrfs_create,
5975 	.unlink		= btrfs_unlink,
5976 	.link		= btrfs_link,
5977 	.mkdir		= btrfs_mkdir,
5978 	.rmdir		= btrfs_rmdir,
5979 	.rename		= btrfs_rename,
5980 	.symlink	= btrfs_symlink,
5981 	.setattr	= btrfs_setattr,
5982 	.mknod		= btrfs_mknod,
5983 	.setxattr	= btrfs_setxattr,
5984 	.getxattr	= btrfs_getxattr,
5985 	.listxattr	= btrfs_listxattr,
5986 	.removexattr	= btrfs_removexattr,
5987 	.permission	= btrfs_permission,
5988 };
5989 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5990 	.lookup		= btrfs_lookup,
5991 	.permission	= btrfs_permission,
5992 };
5993 
5994 static const struct file_operations btrfs_dir_file_operations = {
5995 	.llseek		= generic_file_llseek,
5996 	.read		= generic_read_dir,
5997 	.readdir	= btrfs_real_readdir,
5998 	.unlocked_ioctl	= btrfs_ioctl,
5999 #ifdef CONFIG_COMPAT
6000 	.compat_ioctl	= btrfs_ioctl,
6001 #endif
6002 	.release        = btrfs_release_file,
6003 	.fsync		= btrfs_sync_file,
6004 };
6005 
6006 static struct extent_io_ops btrfs_extent_io_ops = {
6007 	.fill_delalloc = run_delalloc_range,
6008 	.submit_bio_hook = btrfs_submit_bio_hook,
6009 	.merge_bio_hook = btrfs_merge_bio_hook,
6010 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
6011 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
6012 	.writepage_start_hook = btrfs_writepage_start_hook,
6013 	.readpage_io_failed_hook = btrfs_io_failed_hook,
6014 	.set_bit_hook = btrfs_set_bit_hook,
6015 	.clear_bit_hook = btrfs_clear_bit_hook,
6016 	.merge_extent_hook = btrfs_merge_extent_hook,
6017 	.split_extent_hook = btrfs_split_extent_hook,
6018 };
6019 
6020 /*
6021  * btrfs doesn't support the bmap operation because swapfiles
6022  * use bmap to make a mapping of extents in the file.  They assume
6023  * these extents won't change over the life of the file and they
6024  * use the bmap result to do IO directly to the drive.
6025  *
6026  * the btrfs bmap call would return logical addresses that aren't
6027  * suitable for IO and they also will change frequently as COW
6028  * operations happen.  So, swapfile + btrfs == corruption.
6029  *
6030  * For now we're avoiding this by dropping bmap.
6031  */
6032 static const struct address_space_operations btrfs_aops = {
6033 	.readpage	= btrfs_readpage,
6034 	.writepage	= btrfs_writepage,
6035 	.writepages	= btrfs_writepages,
6036 	.readpages	= btrfs_readpages,
6037 	.sync_page	= block_sync_page,
6038 	.direct_IO	= btrfs_direct_IO,
6039 	.invalidatepage = btrfs_invalidatepage,
6040 	.releasepage	= btrfs_releasepage,
6041 	.set_page_dirty	= btrfs_set_page_dirty,
6042 	.error_remove_page = generic_error_remove_page,
6043 };
6044 
6045 static const struct address_space_operations btrfs_symlink_aops = {
6046 	.readpage	= btrfs_readpage,
6047 	.writepage	= btrfs_writepage,
6048 	.invalidatepage = btrfs_invalidatepage,
6049 	.releasepage	= btrfs_releasepage,
6050 };
6051 
6052 static const struct inode_operations btrfs_file_inode_operations = {
6053 	.truncate	= btrfs_truncate,
6054 	.getattr	= btrfs_getattr,
6055 	.setattr	= btrfs_setattr,
6056 	.setxattr	= btrfs_setxattr,
6057 	.getxattr	= btrfs_getxattr,
6058 	.listxattr      = btrfs_listxattr,
6059 	.removexattr	= btrfs_removexattr,
6060 	.permission	= btrfs_permission,
6061 	.fallocate	= btrfs_fallocate,
6062 	.fiemap		= btrfs_fiemap,
6063 };
6064 static const struct inode_operations btrfs_special_inode_operations = {
6065 	.getattr	= btrfs_getattr,
6066 	.setattr	= btrfs_setattr,
6067 	.permission	= btrfs_permission,
6068 	.setxattr	= btrfs_setxattr,
6069 	.getxattr	= btrfs_getxattr,
6070 	.listxattr	= btrfs_listxattr,
6071 	.removexattr	= btrfs_removexattr,
6072 };
6073 static const struct inode_operations btrfs_symlink_inode_operations = {
6074 	.readlink	= generic_readlink,
6075 	.follow_link	= page_follow_link_light,
6076 	.put_link	= page_put_link,
6077 	.permission	= btrfs_permission,
6078 	.setxattr	= btrfs_setxattr,
6079 	.getxattr	= btrfs_getxattr,
6080 	.listxattr	= btrfs_listxattr,
6081 	.removexattr	= btrfs_removexattr,
6082 };
6083 
6084 const struct dentry_operations btrfs_dentry_operations = {
6085 	.d_delete	= btrfs_dentry_delete,
6086 };
6087