1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include "compat.h" 40 #include "ctree.h" 41 #include "disk-io.h" 42 #include "transaction.h" 43 #include "btrfs_inode.h" 44 #include "ioctl.h" 45 #include "print-tree.h" 46 #include "volumes.h" 47 #include "ordered-data.h" 48 #include "xattr.h" 49 #include "tree-log.h" 50 #include "compression.h" 51 #include "locking.h" 52 53 struct btrfs_iget_args { 54 u64 ino; 55 struct btrfs_root *root; 56 }; 57 58 static const struct inode_operations btrfs_dir_inode_operations; 59 static const struct inode_operations btrfs_symlink_inode_operations; 60 static const struct inode_operations btrfs_dir_ro_inode_operations; 61 static const struct inode_operations btrfs_special_inode_operations; 62 static const struct inode_operations btrfs_file_inode_operations; 63 static const struct address_space_operations btrfs_aops; 64 static const struct address_space_operations btrfs_symlink_aops; 65 static const struct file_operations btrfs_dir_file_operations; 66 static struct extent_io_ops btrfs_extent_io_ops; 67 68 static struct kmem_cache *btrfs_inode_cachep; 69 struct kmem_cache *btrfs_trans_handle_cachep; 70 struct kmem_cache *btrfs_transaction_cachep; 71 struct kmem_cache *btrfs_path_cachep; 72 73 #define S_SHIFT 12 74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 82 }; 83 84 static void btrfs_truncate(struct inode *inode); 85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 86 static noinline int cow_file_range(struct inode *inode, 87 struct page *locked_page, 88 u64 start, u64 end, int *page_started, 89 unsigned long *nr_written, int unlock); 90 91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 92 struct inode *inode, struct inode *dir) 93 { 94 int err; 95 96 err = btrfs_init_acl(trans, inode, dir); 97 if (!err) 98 err = btrfs_xattr_security_init(trans, inode, dir); 99 return err; 100 } 101 102 /* 103 * this does all the hard work for inserting an inline extent into 104 * the btree. The caller should have done a btrfs_drop_extents so that 105 * no overlapping inline items exist in the btree 106 */ 107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 108 struct btrfs_root *root, struct inode *inode, 109 u64 start, size_t size, size_t compressed_size, 110 struct page **compressed_pages) 111 { 112 struct btrfs_key key; 113 struct btrfs_path *path; 114 struct extent_buffer *leaf; 115 struct page *page = NULL; 116 char *kaddr; 117 unsigned long ptr; 118 struct btrfs_file_extent_item *ei; 119 int err = 0; 120 int ret; 121 size_t cur_size = size; 122 size_t datasize; 123 unsigned long offset; 124 int use_compress = 0; 125 126 if (compressed_size && compressed_pages) { 127 use_compress = 1; 128 cur_size = compressed_size; 129 } 130 131 path = btrfs_alloc_path(); 132 if (!path) 133 return -ENOMEM; 134 135 path->leave_spinning = 1; 136 btrfs_set_trans_block_group(trans, inode); 137 138 key.objectid = inode->i_ino; 139 key.offset = start; 140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 141 datasize = btrfs_file_extent_calc_inline_size(cur_size); 142 143 inode_add_bytes(inode, size); 144 ret = btrfs_insert_empty_item(trans, root, path, &key, 145 datasize); 146 BUG_ON(ret); 147 if (ret) { 148 err = ret; 149 goto fail; 150 } 151 leaf = path->nodes[0]; 152 ei = btrfs_item_ptr(leaf, path->slots[0], 153 struct btrfs_file_extent_item); 154 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 156 btrfs_set_file_extent_encryption(leaf, ei, 0); 157 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 158 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 159 ptr = btrfs_file_extent_inline_start(ei); 160 161 if (use_compress) { 162 struct page *cpage; 163 int i = 0; 164 while (compressed_size > 0) { 165 cpage = compressed_pages[i]; 166 cur_size = min_t(unsigned long, compressed_size, 167 PAGE_CACHE_SIZE); 168 169 kaddr = kmap_atomic(cpage, KM_USER0); 170 write_extent_buffer(leaf, kaddr, ptr, cur_size); 171 kunmap_atomic(kaddr, KM_USER0); 172 173 i++; 174 ptr += cur_size; 175 compressed_size -= cur_size; 176 } 177 btrfs_set_file_extent_compression(leaf, ei, 178 BTRFS_COMPRESS_ZLIB); 179 } else { 180 page = find_get_page(inode->i_mapping, 181 start >> PAGE_CACHE_SHIFT); 182 btrfs_set_file_extent_compression(leaf, ei, 0); 183 kaddr = kmap_atomic(page, KM_USER0); 184 offset = start & (PAGE_CACHE_SIZE - 1); 185 write_extent_buffer(leaf, kaddr + offset, ptr, size); 186 kunmap_atomic(kaddr, KM_USER0); 187 page_cache_release(page); 188 } 189 btrfs_mark_buffer_dirty(leaf); 190 btrfs_free_path(path); 191 192 /* 193 * we're an inline extent, so nobody can 194 * extend the file past i_size without locking 195 * a page we already have locked. 196 * 197 * We must do any isize and inode updates 198 * before we unlock the pages. Otherwise we 199 * could end up racing with unlink. 200 */ 201 BTRFS_I(inode)->disk_i_size = inode->i_size; 202 btrfs_update_inode(trans, root, inode); 203 204 return 0; 205 fail: 206 btrfs_free_path(path); 207 return err; 208 } 209 210 211 /* 212 * conditionally insert an inline extent into the file. This 213 * does the checks required to make sure the data is small enough 214 * to fit as an inline extent. 215 */ 216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 217 struct btrfs_root *root, 218 struct inode *inode, u64 start, u64 end, 219 size_t compressed_size, 220 struct page **compressed_pages) 221 { 222 u64 isize = i_size_read(inode); 223 u64 actual_end = min(end + 1, isize); 224 u64 inline_len = actual_end - start; 225 u64 aligned_end = (end + root->sectorsize - 1) & 226 ~((u64)root->sectorsize - 1); 227 u64 hint_byte; 228 u64 data_len = inline_len; 229 int ret; 230 231 if (compressed_size) 232 data_len = compressed_size; 233 234 if (start > 0 || 235 actual_end >= PAGE_CACHE_SIZE || 236 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 237 (!compressed_size && 238 (actual_end & (root->sectorsize - 1)) == 0) || 239 end + 1 < isize || 240 data_len > root->fs_info->max_inline) { 241 return 1; 242 } 243 244 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 245 &hint_byte, 1); 246 BUG_ON(ret); 247 248 if (isize > actual_end) 249 inline_len = min_t(u64, isize, actual_end); 250 ret = insert_inline_extent(trans, root, inode, start, 251 inline_len, compressed_size, 252 compressed_pages); 253 BUG_ON(ret); 254 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 255 return 0; 256 } 257 258 struct async_extent { 259 u64 start; 260 u64 ram_size; 261 u64 compressed_size; 262 struct page **pages; 263 unsigned long nr_pages; 264 struct list_head list; 265 }; 266 267 struct async_cow { 268 struct inode *inode; 269 struct btrfs_root *root; 270 struct page *locked_page; 271 u64 start; 272 u64 end; 273 struct list_head extents; 274 struct btrfs_work work; 275 }; 276 277 static noinline int add_async_extent(struct async_cow *cow, 278 u64 start, u64 ram_size, 279 u64 compressed_size, 280 struct page **pages, 281 unsigned long nr_pages) 282 { 283 struct async_extent *async_extent; 284 285 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 286 async_extent->start = start; 287 async_extent->ram_size = ram_size; 288 async_extent->compressed_size = compressed_size; 289 async_extent->pages = pages; 290 async_extent->nr_pages = nr_pages; 291 list_add_tail(&async_extent->list, &cow->extents); 292 return 0; 293 } 294 295 /* 296 * we create compressed extents in two phases. The first 297 * phase compresses a range of pages that have already been 298 * locked (both pages and state bits are locked). 299 * 300 * This is done inside an ordered work queue, and the compression 301 * is spread across many cpus. The actual IO submission is step 302 * two, and the ordered work queue takes care of making sure that 303 * happens in the same order things were put onto the queue by 304 * writepages and friends. 305 * 306 * If this code finds it can't get good compression, it puts an 307 * entry onto the work queue to write the uncompressed bytes. This 308 * makes sure that both compressed inodes and uncompressed inodes 309 * are written in the same order that pdflush sent them down. 310 */ 311 static noinline int compress_file_range(struct inode *inode, 312 struct page *locked_page, 313 u64 start, u64 end, 314 struct async_cow *async_cow, 315 int *num_added) 316 { 317 struct btrfs_root *root = BTRFS_I(inode)->root; 318 struct btrfs_trans_handle *trans; 319 u64 num_bytes; 320 u64 orig_start; 321 u64 disk_num_bytes; 322 u64 blocksize = root->sectorsize; 323 u64 actual_end; 324 u64 isize = i_size_read(inode); 325 int ret = 0; 326 struct page **pages = NULL; 327 unsigned long nr_pages; 328 unsigned long nr_pages_ret = 0; 329 unsigned long total_compressed = 0; 330 unsigned long total_in = 0; 331 unsigned long max_compressed = 128 * 1024; 332 unsigned long max_uncompressed = 128 * 1024; 333 int i; 334 int will_compress; 335 336 orig_start = start; 337 338 actual_end = min_t(u64, isize, end + 1); 339 again: 340 will_compress = 0; 341 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 342 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 343 344 /* 345 * we don't want to send crud past the end of i_size through 346 * compression, that's just a waste of CPU time. So, if the 347 * end of the file is before the start of our current 348 * requested range of bytes, we bail out to the uncompressed 349 * cleanup code that can deal with all of this. 350 * 351 * It isn't really the fastest way to fix things, but this is a 352 * very uncommon corner. 353 */ 354 if (actual_end <= start) 355 goto cleanup_and_bail_uncompressed; 356 357 total_compressed = actual_end - start; 358 359 /* we want to make sure that amount of ram required to uncompress 360 * an extent is reasonable, so we limit the total size in ram 361 * of a compressed extent to 128k. This is a crucial number 362 * because it also controls how easily we can spread reads across 363 * cpus for decompression. 364 * 365 * We also want to make sure the amount of IO required to do 366 * a random read is reasonably small, so we limit the size of 367 * a compressed extent to 128k. 368 */ 369 total_compressed = min(total_compressed, max_uncompressed); 370 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 371 num_bytes = max(blocksize, num_bytes); 372 disk_num_bytes = num_bytes; 373 total_in = 0; 374 ret = 0; 375 376 /* 377 * we do compression for mount -o compress and when the 378 * inode has not been flagged as nocompress. This flag can 379 * change at any time if we discover bad compression ratios. 380 */ 381 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 382 btrfs_test_opt(root, COMPRESS)) { 383 WARN_ON(pages); 384 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 385 386 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 387 total_compressed, pages, 388 nr_pages, &nr_pages_ret, 389 &total_in, 390 &total_compressed, 391 max_compressed); 392 393 if (!ret) { 394 unsigned long offset = total_compressed & 395 (PAGE_CACHE_SIZE - 1); 396 struct page *page = pages[nr_pages_ret - 1]; 397 char *kaddr; 398 399 /* zero the tail end of the last page, we might be 400 * sending it down to disk 401 */ 402 if (offset) { 403 kaddr = kmap_atomic(page, KM_USER0); 404 memset(kaddr + offset, 0, 405 PAGE_CACHE_SIZE - offset); 406 kunmap_atomic(kaddr, KM_USER0); 407 } 408 will_compress = 1; 409 } 410 } 411 if (start == 0) { 412 trans = btrfs_join_transaction(root, 1); 413 BUG_ON(!trans); 414 btrfs_set_trans_block_group(trans, inode); 415 416 /* lets try to make an inline extent */ 417 if (ret || total_in < (actual_end - start)) { 418 /* we didn't compress the entire range, try 419 * to make an uncompressed inline extent. 420 */ 421 ret = cow_file_range_inline(trans, root, inode, 422 start, end, 0, NULL); 423 } else { 424 /* try making a compressed inline extent */ 425 ret = cow_file_range_inline(trans, root, inode, 426 start, end, 427 total_compressed, pages); 428 } 429 if (ret == 0) { 430 /* 431 * inline extent creation worked, we don't need 432 * to create any more async work items. Unlock 433 * and free up our temp pages. 434 */ 435 extent_clear_unlock_delalloc(inode, 436 &BTRFS_I(inode)->io_tree, 437 start, end, NULL, 438 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 439 EXTENT_CLEAR_DELALLOC | 440 EXTENT_CLEAR_ACCOUNTING | 441 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 442 443 btrfs_end_transaction(trans, root); 444 goto free_pages_out; 445 } 446 btrfs_end_transaction(trans, root); 447 } 448 449 if (will_compress) { 450 /* 451 * we aren't doing an inline extent round the compressed size 452 * up to a block size boundary so the allocator does sane 453 * things 454 */ 455 total_compressed = (total_compressed + blocksize - 1) & 456 ~(blocksize - 1); 457 458 /* 459 * one last check to make sure the compression is really a 460 * win, compare the page count read with the blocks on disk 461 */ 462 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 463 ~(PAGE_CACHE_SIZE - 1); 464 if (total_compressed >= total_in) { 465 will_compress = 0; 466 } else { 467 disk_num_bytes = total_compressed; 468 num_bytes = total_in; 469 } 470 } 471 if (!will_compress && pages) { 472 /* 473 * the compression code ran but failed to make things smaller, 474 * free any pages it allocated and our page pointer array 475 */ 476 for (i = 0; i < nr_pages_ret; i++) { 477 WARN_ON(pages[i]->mapping); 478 page_cache_release(pages[i]); 479 } 480 kfree(pages); 481 pages = NULL; 482 total_compressed = 0; 483 nr_pages_ret = 0; 484 485 /* flag the file so we don't compress in the future */ 486 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 487 } 488 if (will_compress) { 489 *num_added += 1; 490 491 /* the async work queues will take care of doing actual 492 * allocation on disk for these compressed pages, 493 * and will submit them to the elevator. 494 */ 495 add_async_extent(async_cow, start, num_bytes, 496 total_compressed, pages, nr_pages_ret); 497 498 if (start + num_bytes < end && start + num_bytes < actual_end) { 499 start += num_bytes; 500 pages = NULL; 501 cond_resched(); 502 goto again; 503 } 504 } else { 505 cleanup_and_bail_uncompressed: 506 /* 507 * No compression, but we still need to write the pages in 508 * the file we've been given so far. redirty the locked 509 * page if it corresponds to our extent and set things up 510 * for the async work queue to run cow_file_range to do 511 * the normal delalloc dance 512 */ 513 if (page_offset(locked_page) >= start && 514 page_offset(locked_page) <= end) { 515 __set_page_dirty_nobuffers(locked_page); 516 /* unlocked later on in the async handlers */ 517 } 518 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 519 *num_added += 1; 520 } 521 522 out: 523 return 0; 524 525 free_pages_out: 526 for (i = 0; i < nr_pages_ret; i++) { 527 WARN_ON(pages[i]->mapping); 528 page_cache_release(pages[i]); 529 } 530 kfree(pages); 531 532 goto out; 533 } 534 535 /* 536 * phase two of compressed writeback. This is the ordered portion 537 * of the code, which only gets called in the order the work was 538 * queued. We walk all the async extents created by compress_file_range 539 * and send them down to the disk. 540 */ 541 static noinline int submit_compressed_extents(struct inode *inode, 542 struct async_cow *async_cow) 543 { 544 struct async_extent *async_extent; 545 u64 alloc_hint = 0; 546 struct btrfs_trans_handle *trans; 547 struct btrfs_key ins; 548 struct extent_map *em; 549 struct btrfs_root *root = BTRFS_I(inode)->root; 550 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 551 struct extent_io_tree *io_tree; 552 int ret = 0; 553 554 if (list_empty(&async_cow->extents)) 555 return 0; 556 557 558 while (!list_empty(&async_cow->extents)) { 559 async_extent = list_entry(async_cow->extents.next, 560 struct async_extent, list); 561 list_del(&async_extent->list); 562 563 io_tree = &BTRFS_I(inode)->io_tree; 564 565 retry: 566 /* did the compression code fall back to uncompressed IO? */ 567 if (!async_extent->pages) { 568 int page_started = 0; 569 unsigned long nr_written = 0; 570 571 lock_extent(io_tree, async_extent->start, 572 async_extent->start + 573 async_extent->ram_size - 1, GFP_NOFS); 574 575 /* allocate blocks */ 576 ret = cow_file_range(inode, async_cow->locked_page, 577 async_extent->start, 578 async_extent->start + 579 async_extent->ram_size - 1, 580 &page_started, &nr_written, 0); 581 582 /* 583 * if page_started, cow_file_range inserted an 584 * inline extent and took care of all the unlocking 585 * and IO for us. Otherwise, we need to submit 586 * all those pages down to the drive. 587 */ 588 if (!page_started && !ret) 589 extent_write_locked_range(io_tree, 590 inode, async_extent->start, 591 async_extent->start + 592 async_extent->ram_size - 1, 593 btrfs_get_extent, 594 WB_SYNC_ALL); 595 kfree(async_extent); 596 cond_resched(); 597 continue; 598 } 599 600 lock_extent(io_tree, async_extent->start, 601 async_extent->start + async_extent->ram_size - 1, 602 GFP_NOFS); 603 604 trans = btrfs_join_transaction(root, 1); 605 ret = btrfs_reserve_extent(trans, root, 606 async_extent->compressed_size, 607 async_extent->compressed_size, 608 0, alloc_hint, 609 (u64)-1, &ins, 1); 610 btrfs_end_transaction(trans, root); 611 612 if (ret) { 613 int i; 614 for (i = 0; i < async_extent->nr_pages; i++) { 615 WARN_ON(async_extent->pages[i]->mapping); 616 page_cache_release(async_extent->pages[i]); 617 } 618 kfree(async_extent->pages); 619 async_extent->nr_pages = 0; 620 async_extent->pages = NULL; 621 unlock_extent(io_tree, async_extent->start, 622 async_extent->start + 623 async_extent->ram_size - 1, GFP_NOFS); 624 goto retry; 625 } 626 627 /* 628 * here we're doing allocation and writeback of the 629 * compressed pages 630 */ 631 btrfs_drop_extent_cache(inode, async_extent->start, 632 async_extent->start + 633 async_extent->ram_size - 1, 0); 634 635 em = alloc_extent_map(GFP_NOFS); 636 em->start = async_extent->start; 637 em->len = async_extent->ram_size; 638 em->orig_start = em->start; 639 640 em->block_start = ins.objectid; 641 em->block_len = ins.offset; 642 em->bdev = root->fs_info->fs_devices->latest_bdev; 643 set_bit(EXTENT_FLAG_PINNED, &em->flags); 644 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 645 646 while (1) { 647 write_lock(&em_tree->lock); 648 ret = add_extent_mapping(em_tree, em); 649 write_unlock(&em_tree->lock); 650 if (ret != -EEXIST) { 651 free_extent_map(em); 652 break; 653 } 654 btrfs_drop_extent_cache(inode, async_extent->start, 655 async_extent->start + 656 async_extent->ram_size - 1, 0); 657 } 658 659 ret = btrfs_add_ordered_extent(inode, async_extent->start, 660 ins.objectid, 661 async_extent->ram_size, 662 ins.offset, 663 BTRFS_ORDERED_COMPRESSED); 664 BUG_ON(ret); 665 666 /* 667 * clear dirty, set writeback and unlock the pages. 668 */ 669 extent_clear_unlock_delalloc(inode, 670 &BTRFS_I(inode)->io_tree, 671 async_extent->start, 672 async_extent->start + 673 async_extent->ram_size - 1, 674 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 675 EXTENT_CLEAR_UNLOCK | 676 EXTENT_CLEAR_DELALLOC | 677 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 678 679 ret = btrfs_submit_compressed_write(inode, 680 async_extent->start, 681 async_extent->ram_size, 682 ins.objectid, 683 ins.offset, async_extent->pages, 684 async_extent->nr_pages); 685 686 BUG_ON(ret); 687 alloc_hint = ins.objectid + ins.offset; 688 kfree(async_extent); 689 cond_resched(); 690 } 691 692 return 0; 693 } 694 695 /* 696 * when extent_io.c finds a delayed allocation range in the file, 697 * the call backs end up in this code. The basic idea is to 698 * allocate extents on disk for the range, and create ordered data structs 699 * in ram to track those extents. 700 * 701 * locked_page is the page that writepage had locked already. We use 702 * it to make sure we don't do extra locks or unlocks. 703 * 704 * *page_started is set to one if we unlock locked_page and do everything 705 * required to start IO on it. It may be clean and already done with 706 * IO when we return. 707 */ 708 static noinline int cow_file_range(struct inode *inode, 709 struct page *locked_page, 710 u64 start, u64 end, int *page_started, 711 unsigned long *nr_written, 712 int unlock) 713 { 714 struct btrfs_root *root = BTRFS_I(inode)->root; 715 struct btrfs_trans_handle *trans; 716 u64 alloc_hint = 0; 717 u64 num_bytes; 718 unsigned long ram_size; 719 u64 disk_num_bytes; 720 u64 cur_alloc_size; 721 u64 blocksize = root->sectorsize; 722 u64 actual_end; 723 u64 isize = i_size_read(inode); 724 struct btrfs_key ins; 725 struct extent_map *em; 726 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 727 int ret = 0; 728 729 trans = btrfs_join_transaction(root, 1); 730 BUG_ON(!trans); 731 btrfs_set_trans_block_group(trans, inode); 732 733 actual_end = min_t(u64, isize, end + 1); 734 735 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 736 num_bytes = max(blocksize, num_bytes); 737 disk_num_bytes = num_bytes; 738 ret = 0; 739 740 if (start == 0) { 741 /* lets try to make an inline extent */ 742 ret = cow_file_range_inline(trans, root, inode, 743 start, end, 0, NULL); 744 if (ret == 0) { 745 extent_clear_unlock_delalloc(inode, 746 &BTRFS_I(inode)->io_tree, 747 start, end, NULL, 748 EXTENT_CLEAR_UNLOCK_PAGE | 749 EXTENT_CLEAR_UNLOCK | 750 EXTENT_CLEAR_DELALLOC | 751 EXTENT_CLEAR_ACCOUNTING | 752 EXTENT_CLEAR_DIRTY | 753 EXTENT_SET_WRITEBACK | 754 EXTENT_END_WRITEBACK); 755 756 *nr_written = *nr_written + 757 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 758 *page_started = 1; 759 ret = 0; 760 goto out; 761 } 762 } 763 764 BUG_ON(disk_num_bytes > 765 btrfs_super_total_bytes(&root->fs_info->super_copy)); 766 767 768 read_lock(&BTRFS_I(inode)->extent_tree.lock); 769 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree, 770 start, num_bytes); 771 if (em) { 772 /* 773 * if block start isn't an actual block number then find the 774 * first block in this inode and use that as a hint. If that 775 * block is also bogus then just don't worry about it. 776 */ 777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 778 free_extent_map(em); 779 em = search_extent_mapping(em_tree, 0, 0); 780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 781 alloc_hint = em->block_start; 782 if (em) 783 free_extent_map(em); 784 } else { 785 alloc_hint = em->block_start; 786 free_extent_map(em); 787 } 788 } 789 read_unlock(&BTRFS_I(inode)->extent_tree.lock); 790 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 791 792 while (disk_num_bytes > 0) { 793 unsigned long op; 794 795 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 796 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 797 root->sectorsize, 0, alloc_hint, 798 (u64)-1, &ins, 1); 799 BUG_ON(ret); 800 801 em = alloc_extent_map(GFP_NOFS); 802 em->start = start; 803 em->orig_start = em->start; 804 ram_size = ins.offset; 805 em->len = ins.offset; 806 807 em->block_start = ins.objectid; 808 em->block_len = ins.offset; 809 em->bdev = root->fs_info->fs_devices->latest_bdev; 810 set_bit(EXTENT_FLAG_PINNED, &em->flags); 811 812 while (1) { 813 write_lock(&em_tree->lock); 814 ret = add_extent_mapping(em_tree, em); 815 write_unlock(&em_tree->lock); 816 if (ret != -EEXIST) { 817 free_extent_map(em); 818 break; 819 } 820 btrfs_drop_extent_cache(inode, start, 821 start + ram_size - 1, 0); 822 } 823 824 cur_alloc_size = ins.offset; 825 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 826 ram_size, cur_alloc_size, 0); 827 BUG_ON(ret); 828 829 if (root->root_key.objectid == 830 BTRFS_DATA_RELOC_TREE_OBJECTID) { 831 ret = btrfs_reloc_clone_csums(inode, start, 832 cur_alloc_size); 833 BUG_ON(ret); 834 } 835 836 if (disk_num_bytes < cur_alloc_size) 837 break; 838 839 /* we're not doing compressed IO, don't unlock the first 840 * page (which the caller expects to stay locked), don't 841 * clear any dirty bits and don't set any writeback bits 842 * 843 * Do set the Private2 bit so we know this page was properly 844 * setup for writepage 845 */ 846 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 847 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 848 EXTENT_SET_PRIVATE2; 849 850 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 851 start, start + ram_size - 1, 852 locked_page, op); 853 disk_num_bytes -= cur_alloc_size; 854 num_bytes -= cur_alloc_size; 855 alloc_hint = ins.objectid + ins.offset; 856 start += cur_alloc_size; 857 } 858 out: 859 ret = 0; 860 btrfs_end_transaction(trans, root); 861 862 return ret; 863 } 864 865 /* 866 * work queue call back to started compression on a file and pages 867 */ 868 static noinline void async_cow_start(struct btrfs_work *work) 869 { 870 struct async_cow *async_cow; 871 int num_added = 0; 872 async_cow = container_of(work, struct async_cow, work); 873 874 compress_file_range(async_cow->inode, async_cow->locked_page, 875 async_cow->start, async_cow->end, async_cow, 876 &num_added); 877 if (num_added == 0) 878 async_cow->inode = NULL; 879 } 880 881 /* 882 * work queue call back to submit previously compressed pages 883 */ 884 static noinline void async_cow_submit(struct btrfs_work *work) 885 { 886 struct async_cow *async_cow; 887 struct btrfs_root *root; 888 unsigned long nr_pages; 889 890 async_cow = container_of(work, struct async_cow, work); 891 892 root = async_cow->root; 893 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 894 PAGE_CACHE_SHIFT; 895 896 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 897 898 if (atomic_read(&root->fs_info->async_delalloc_pages) < 899 5 * 1042 * 1024 && 900 waitqueue_active(&root->fs_info->async_submit_wait)) 901 wake_up(&root->fs_info->async_submit_wait); 902 903 if (async_cow->inode) 904 submit_compressed_extents(async_cow->inode, async_cow); 905 } 906 907 static noinline void async_cow_free(struct btrfs_work *work) 908 { 909 struct async_cow *async_cow; 910 async_cow = container_of(work, struct async_cow, work); 911 kfree(async_cow); 912 } 913 914 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 915 u64 start, u64 end, int *page_started, 916 unsigned long *nr_written) 917 { 918 struct async_cow *async_cow; 919 struct btrfs_root *root = BTRFS_I(inode)->root; 920 unsigned long nr_pages; 921 u64 cur_end; 922 int limit = 10 * 1024 * 1042; 923 924 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 925 1, 0, NULL, GFP_NOFS); 926 while (start < end) { 927 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 928 async_cow->inode = inode; 929 async_cow->root = root; 930 async_cow->locked_page = locked_page; 931 async_cow->start = start; 932 933 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 934 cur_end = end; 935 else 936 cur_end = min(end, start + 512 * 1024 - 1); 937 938 async_cow->end = cur_end; 939 INIT_LIST_HEAD(&async_cow->extents); 940 941 async_cow->work.func = async_cow_start; 942 async_cow->work.ordered_func = async_cow_submit; 943 async_cow->work.ordered_free = async_cow_free; 944 async_cow->work.flags = 0; 945 946 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 947 PAGE_CACHE_SHIFT; 948 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 949 950 btrfs_queue_worker(&root->fs_info->delalloc_workers, 951 &async_cow->work); 952 953 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 954 wait_event(root->fs_info->async_submit_wait, 955 (atomic_read(&root->fs_info->async_delalloc_pages) < 956 limit)); 957 } 958 959 while (atomic_read(&root->fs_info->async_submit_draining) && 960 atomic_read(&root->fs_info->async_delalloc_pages)) { 961 wait_event(root->fs_info->async_submit_wait, 962 (atomic_read(&root->fs_info->async_delalloc_pages) == 963 0)); 964 } 965 966 *nr_written += nr_pages; 967 start = cur_end + 1; 968 } 969 *page_started = 1; 970 return 0; 971 } 972 973 static noinline int csum_exist_in_range(struct btrfs_root *root, 974 u64 bytenr, u64 num_bytes) 975 { 976 int ret; 977 struct btrfs_ordered_sum *sums; 978 LIST_HEAD(list); 979 980 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 981 bytenr + num_bytes - 1, &list); 982 if (ret == 0 && list_empty(&list)) 983 return 0; 984 985 while (!list_empty(&list)) { 986 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 987 list_del(&sums->list); 988 kfree(sums); 989 } 990 return 1; 991 } 992 993 /* 994 * when nowcow writeback call back. This checks for snapshots or COW copies 995 * of the extents that exist in the file, and COWs the file as required. 996 * 997 * If no cow copies or snapshots exist, we write directly to the existing 998 * blocks on disk 999 */ 1000 static noinline int run_delalloc_nocow(struct inode *inode, 1001 struct page *locked_page, 1002 u64 start, u64 end, int *page_started, int force, 1003 unsigned long *nr_written) 1004 { 1005 struct btrfs_root *root = BTRFS_I(inode)->root; 1006 struct btrfs_trans_handle *trans; 1007 struct extent_buffer *leaf; 1008 struct btrfs_path *path; 1009 struct btrfs_file_extent_item *fi; 1010 struct btrfs_key found_key; 1011 u64 cow_start; 1012 u64 cur_offset; 1013 u64 extent_end; 1014 u64 extent_offset; 1015 u64 disk_bytenr; 1016 u64 num_bytes; 1017 int extent_type; 1018 int ret; 1019 int type; 1020 int nocow; 1021 int check_prev = 1; 1022 1023 path = btrfs_alloc_path(); 1024 BUG_ON(!path); 1025 trans = btrfs_join_transaction(root, 1); 1026 BUG_ON(!trans); 1027 1028 cow_start = (u64)-1; 1029 cur_offset = start; 1030 while (1) { 1031 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 1032 cur_offset, 0); 1033 BUG_ON(ret < 0); 1034 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1035 leaf = path->nodes[0]; 1036 btrfs_item_key_to_cpu(leaf, &found_key, 1037 path->slots[0] - 1); 1038 if (found_key.objectid == inode->i_ino && 1039 found_key.type == BTRFS_EXTENT_DATA_KEY) 1040 path->slots[0]--; 1041 } 1042 check_prev = 0; 1043 next_slot: 1044 leaf = path->nodes[0]; 1045 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1046 ret = btrfs_next_leaf(root, path); 1047 if (ret < 0) 1048 BUG_ON(1); 1049 if (ret > 0) 1050 break; 1051 leaf = path->nodes[0]; 1052 } 1053 1054 nocow = 0; 1055 disk_bytenr = 0; 1056 num_bytes = 0; 1057 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1058 1059 if (found_key.objectid > inode->i_ino || 1060 found_key.type > BTRFS_EXTENT_DATA_KEY || 1061 found_key.offset > end) 1062 break; 1063 1064 if (found_key.offset > cur_offset) { 1065 extent_end = found_key.offset; 1066 extent_type = 0; 1067 goto out_check; 1068 } 1069 1070 fi = btrfs_item_ptr(leaf, path->slots[0], 1071 struct btrfs_file_extent_item); 1072 extent_type = btrfs_file_extent_type(leaf, fi); 1073 1074 if (extent_type == BTRFS_FILE_EXTENT_REG || 1075 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1076 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1077 extent_offset = btrfs_file_extent_offset(leaf, fi); 1078 extent_end = found_key.offset + 1079 btrfs_file_extent_num_bytes(leaf, fi); 1080 if (extent_end <= start) { 1081 path->slots[0]++; 1082 goto next_slot; 1083 } 1084 if (disk_bytenr == 0) 1085 goto out_check; 1086 if (btrfs_file_extent_compression(leaf, fi) || 1087 btrfs_file_extent_encryption(leaf, fi) || 1088 btrfs_file_extent_other_encoding(leaf, fi)) 1089 goto out_check; 1090 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1091 goto out_check; 1092 if (btrfs_extent_readonly(root, disk_bytenr)) 1093 goto out_check; 1094 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1095 found_key.offset - 1096 extent_offset, disk_bytenr)) 1097 goto out_check; 1098 disk_bytenr += extent_offset; 1099 disk_bytenr += cur_offset - found_key.offset; 1100 num_bytes = min(end + 1, extent_end) - cur_offset; 1101 /* 1102 * force cow if csum exists in the range. 1103 * this ensure that csum for a given extent are 1104 * either valid or do not exist. 1105 */ 1106 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1107 goto out_check; 1108 nocow = 1; 1109 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1110 extent_end = found_key.offset + 1111 btrfs_file_extent_inline_len(leaf, fi); 1112 extent_end = ALIGN(extent_end, root->sectorsize); 1113 } else { 1114 BUG_ON(1); 1115 } 1116 out_check: 1117 if (extent_end <= start) { 1118 path->slots[0]++; 1119 goto next_slot; 1120 } 1121 if (!nocow) { 1122 if (cow_start == (u64)-1) 1123 cow_start = cur_offset; 1124 cur_offset = extent_end; 1125 if (cur_offset > end) 1126 break; 1127 path->slots[0]++; 1128 goto next_slot; 1129 } 1130 1131 btrfs_release_path(root, path); 1132 if (cow_start != (u64)-1) { 1133 ret = cow_file_range(inode, locked_page, cow_start, 1134 found_key.offset - 1, page_started, 1135 nr_written, 1); 1136 BUG_ON(ret); 1137 cow_start = (u64)-1; 1138 } 1139 1140 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1141 struct extent_map *em; 1142 struct extent_map_tree *em_tree; 1143 em_tree = &BTRFS_I(inode)->extent_tree; 1144 em = alloc_extent_map(GFP_NOFS); 1145 em->start = cur_offset; 1146 em->orig_start = em->start; 1147 em->len = num_bytes; 1148 em->block_len = num_bytes; 1149 em->block_start = disk_bytenr; 1150 em->bdev = root->fs_info->fs_devices->latest_bdev; 1151 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1152 while (1) { 1153 write_lock(&em_tree->lock); 1154 ret = add_extent_mapping(em_tree, em); 1155 write_unlock(&em_tree->lock); 1156 if (ret != -EEXIST) { 1157 free_extent_map(em); 1158 break; 1159 } 1160 btrfs_drop_extent_cache(inode, em->start, 1161 em->start + em->len - 1, 0); 1162 } 1163 type = BTRFS_ORDERED_PREALLOC; 1164 } else { 1165 type = BTRFS_ORDERED_NOCOW; 1166 } 1167 1168 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1169 num_bytes, num_bytes, type); 1170 BUG_ON(ret); 1171 1172 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1173 cur_offset, cur_offset + num_bytes - 1, 1174 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1175 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1176 EXTENT_SET_PRIVATE2); 1177 cur_offset = extent_end; 1178 if (cur_offset > end) 1179 break; 1180 } 1181 btrfs_release_path(root, path); 1182 1183 if (cur_offset <= end && cow_start == (u64)-1) 1184 cow_start = cur_offset; 1185 if (cow_start != (u64)-1) { 1186 ret = cow_file_range(inode, locked_page, cow_start, end, 1187 page_started, nr_written, 1); 1188 BUG_ON(ret); 1189 } 1190 1191 ret = btrfs_end_transaction(trans, root); 1192 BUG_ON(ret); 1193 btrfs_free_path(path); 1194 return 0; 1195 } 1196 1197 /* 1198 * extent_io.c call back to do delayed allocation processing 1199 */ 1200 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1201 u64 start, u64 end, int *page_started, 1202 unsigned long *nr_written) 1203 { 1204 int ret; 1205 struct btrfs_root *root = BTRFS_I(inode)->root; 1206 1207 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1208 ret = run_delalloc_nocow(inode, locked_page, start, end, 1209 page_started, 1, nr_written); 1210 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1211 ret = run_delalloc_nocow(inode, locked_page, start, end, 1212 page_started, 0, nr_written); 1213 else if (!btrfs_test_opt(root, COMPRESS)) 1214 ret = cow_file_range(inode, locked_page, start, end, 1215 page_started, nr_written, 1); 1216 else 1217 ret = cow_file_range_async(inode, locked_page, start, end, 1218 page_started, nr_written); 1219 return ret; 1220 } 1221 1222 static int btrfs_split_extent_hook(struct inode *inode, 1223 struct extent_state *orig, u64 split) 1224 { 1225 struct btrfs_root *root = BTRFS_I(inode)->root; 1226 u64 size; 1227 1228 if (!(orig->state & EXTENT_DELALLOC)) 1229 return 0; 1230 1231 size = orig->end - orig->start + 1; 1232 if (size > root->fs_info->max_extent) { 1233 u64 num_extents; 1234 u64 new_size; 1235 1236 new_size = orig->end - split + 1; 1237 num_extents = div64_u64(size + root->fs_info->max_extent - 1, 1238 root->fs_info->max_extent); 1239 1240 /* 1241 * if we break a large extent up then leave oustanding_extents 1242 * be, since we've already accounted for the large extent. 1243 */ 1244 if (div64_u64(new_size + root->fs_info->max_extent - 1, 1245 root->fs_info->max_extent) < num_extents) 1246 return 0; 1247 } 1248 1249 spin_lock(&BTRFS_I(inode)->accounting_lock); 1250 BTRFS_I(inode)->outstanding_extents++; 1251 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1252 1253 return 0; 1254 } 1255 1256 /* 1257 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1258 * extents so we can keep track of new extents that are just merged onto old 1259 * extents, such as when we are doing sequential writes, so we can properly 1260 * account for the metadata space we'll need. 1261 */ 1262 static int btrfs_merge_extent_hook(struct inode *inode, 1263 struct extent_state *new, 1264 struct extent_state *other) 1265 { 1266 struct btrfs_root *root = BTRFS_I(inode)->root; 1267 u64 new_size, old_size; 1268 u64 num_extents; 1269 1270 /* not delalloc, ignore it */ 1271 if (!(other->state & EXTENT_DELALLOC)) 1272 return 0; 1273 1274 old_size = other->end - other->start + 1; 1275 if (new->start < other->start) 1276 new_size = other->end - new->start + 1; 1277 else 1278 new_size = new->end - other->start + 1; 1279 1280 /* we're not bigger than the max, unreserve the space and go */ 1281 if (new_size <= root->fs_info->max_extent) { 1282 spin_lock(&BTRFS_I(inode)->accounting_lock); 1283 BTRFS_I(inode)->outstanding_extents--; 1284 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1285 return 0; 1286 } 1287 1288 /* 1289 * If we grew by another max_extent, just return, we want to keep that 1290 * reserved amount. 1291 */ 1292 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1, 1293 root->fs_info->max_extent); 1294 if (div64_u64(new_size + root->fs_info->max_extent - 1, 1295 root->fs_info->max_extent) > num_extents) 1296 return 0; 1297 1298 spin_lock(&BTRFS_I(inode)->accounting_lock); 1299 BTRFS_I(inode)->outstanding_extents--; 1300 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1301 1302 return 0; 1303 } 1304 1305 /* 1306 * extent_io.c set_bit_hook, used to track delayed allocation 1307 * bytes in this file, and to maintain the list of inodes that 1308 * have pending delalloc work to be done. 1309 */ 1310 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1311 unsigned long old, unsigned long bits) 1312 { 1313 1314 /* 1315 * set_bit and clear bit hooks normally require _irqsave/restore 1316 * but in this case, we are only testeing for the DELALLOC 1317 * bit, which is only set or cleared with irqs on 1318 */ 1319 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1320 struct btrfs_root *root = BTRFS_I(inode)->root; 1321 1322 spin_lock(&BTRFS_I(inode)->accounting_lock); 1323 BTRFS_I(inode)->outstanding_extents++; 1324 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1325 btrfs_delalloc_reserve_space(root, inode, end - start + 1); 1326 spin_lock(&root->fs_info->delalloc_lock); 1327 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1328 root->fs_info->delalloc_bytes += end - start + 1; 1329 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1331 &root->fs_info->delalloc_inodes); 1332 } 1333 spin_unlock(&root->fs_info->delalloc_lock); 1334 } 1335 return 0; 1336 } 1337 1338 /* 1339 * extent_io.c clear_bit_hook, see set_bit_hook for why 1340 */ 1341 static int btrfs_clear_bit_hook(struct inode *inode, 1342 struct extent_state *state, unsigned long bits) 1343 { 1344 /* 1345 * set_bit and clear bit hooks normally require _irqsave/restore 1346 * but in this case, we are only testeing for the DELALLOC 1347 * bit, which is only set or cleared with irqs on 1348 */ 1349 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1350 struct btrfs_root *root = BTRFS_I(inode)->root; 1351 1352 if (bits & EXTENT_DO_ACCOUNTING) { 1353 spin_lock(&BTRFS_I(inode)->accounting_lock); 1354 BTRFS_I(inode)->outstanding_extents--; 1355 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1356 btrfs_unreserve_metadata_for_delalloc(root, inode, 1); 1357 } 1358 1359 spin_lock(&root->fs_info->delalloc_lock); 1360 if (state->end - state->start + 1 > 1361 root->fs_info->delalloc_bytes) { 1362 printk(KERN_INFO "btrfs warning: delalloc account " 1363 "%llu %llu\n", 1364 (unsigned long long) 1365 state->end - state->start + 1, 1366 (unsigned long long) 1367 root->fs_info->delalloc_bytes); 1368 btrfs_delalloc_free_space(root, inode, (u64)-1); 1369 root->fs_info->delalloc_bytes = 0; 1370 BTRFS_I(inode)->delalloc_bytes = 0; 1371 } else { 1372 btrfs_delalloc_free_space(root, inode, 1373 state->end - 1374 state->start + 1); 1375 root->fs_info->delalloc_bytes -= state->end - 1376 state->start + 1; 1377 BTRFS_I(inode)->delalloc_bytes -= state->end - 1378 state->start + 1; 1379 } 1380 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1381 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1382 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1383 } 1384 spin_unlock(&root->fs_info->delalloc_lock); 1385 } 1386 return 0; 1387 } 1388 1389 /* 1390 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1391 * we don't create bios that span stripes or chunks 1392 */ 1393 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1394 size_t size, struct bio *bio, 1395 unsigned long bio_flags) 1396 { 1397 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1398 struct btrfs_mapping_tree *map_tree; 1399 u64 logical = (u64)bio->bi_sector << 9; 1400 u64 length = 0; 1401 u64 map_length; 1402 int ret; 1403 1404 if (bio_flags & EXTENT_BIO_COMPRESSED) 1405 return 0; 1406 1407 length = bio->bi_size; 1408 map_tree = &root->fs_info->mapping_tree; 1409 map_length = length; 1410 ret = btrfs_map_block(map_tree, READ, logical, 1411 &map_length, NULL, 0); 1412 1413 if (map_length < length + size) 1414 return 1; 1415 return 0; 1416 } 1417 1418 /* 1419 * in order to insert checksums into the metadata in large chunks, 1420 * we wait until bio submission time. All the pages in the bio are 1421 * checksummed and sums are attached onto the ordered extent record. 1422 * 1423 * At IO completion time the cums attached on the ordered extent record 1424 * are inserted into the btree 1425 */ 1426 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1427 struct bio *bio, int mirror_num, 1428 unsigned long bio_flags) 1429 { 1430 struct btrfs_root *root = BTRFS_I(inode)->root; 1431 int ret = 0; 1432 1433 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1434 BUG_ON(ret); 1435 return 0; 1436 } 1437 1438 /* 1439 * in order to insert checksums into the metadata in large chunks, 1440 * we wait until bio submission time. All the pages in the bio are 1441 * checksummed and sums are attached onto the ordered extent record. 1442 * 1443 * At IO completion time the cums attached on the ordered extent record 1444 * are inserted into the btree 1445 */ 1446 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1447 int mirror_num, unsigned long bio_flags) 1448 { 1449 struct btrfs_root *root = BTRFS_I(inode)->root; 1450 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1451 } 1452 1453 /* 1454 * extent_io.c submission hook. This does the right thing for csum calculation 1455 * on write, or reading the csums from the tree before a read 1456 */ 1457 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1458 int mirror_num, unsigned long bio_flags) 1459 { 1460 struct btrfs_root *root = BTRFS_I(inode)->root; 1461 int ret = 0; 1462 int skip_sum; 1463 1464 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1465 1466 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1467 BUG_ON(ret); 1468 1469 if (!(rw & (1 << BIO_RW))) { 1470 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1471 return btrfs_submit_compressed_read(inode, bio, 1472 mirror_num, bio_flags); 1473 } else if (!skip_sum) 1474 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1475 goto mapit; 1476 } else if (!skip_sum) { 1477 /* csum items have already been cloned */ 1478 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1479 goto mapit; 1480 /* we're doing a write, do the async checksumming */ 1481 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1482 inode, rw, bio, mirror_num, 1483 bio_flags, __btrfs_submit_bio_start, 1484 __btrfs_submit_bio_done); 1485 } 1486 1487 mapit: 1488 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1489 } 1490 1491 /* 1492 * given a list of ordered sums record them in the inode. This happens 1493 * at IO completion time based on sums calculated at bio submission time. 1494 */ 1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1496 struct inode *inode, u64 file_offset, 1497 struct list_head *list) 1498 { 1499 struct btrfs_ordered_sum *sum; 1500 1501 btrfs_set_trans_block_group(trans, inode); 1502 1503 list_for_each_entry(sum, list, list) { 1504 btrfs_csum_file_blocks(trans, 1505 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1506 } 1507 return 0; 1508 } 1509 1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1511 { 1512 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1513 WARN_ON(1); 1514 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1515 GFP_NOFS); 1516 } 1517 1518 /* see btrfs_writepage_start_hook for details on why this is required */ 1519 struct btrfs_writepage_fixup { 1520 struct page *page; 1521 struct btrfs_work work; 1522 }; 1523 1524 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1525 { 1526 struct btrfs_writepage_fixup *fixup; 1527 struct btrfs_ordered_extent *ordered; 1528 struct page *page; 1529 struct inode *inode; 1530 u64 page_start; 1531 u64 page_end; 1532 1533 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1534 page = fixup->page; 1535 again: 1536 lock_page(page); 1537 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1538 ClearPageChecked(page); 1539 goto out_page; 1540 } 1541 1542 inode = page->mapping->host; 1543 page_start = page_offset(page); 1544 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1545 1546 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1547 1548 /* already ordered? We're done */ 1549 if (PagePrivate2(page)) 1550 goto out; 1551 1552 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1553 if (ordered) { 1554 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1555 page_end, GFP_NOFS); 1556 unlock_page(page); 1557 btrfs_start_ordered_extent(inode, ordered, 1); 1558 goto again; 1559 } 1560 1561 btrfs_set_extent_delalloc(inode, page_start, page_end); 1562 ClearPageChecked(page); 1563 out: 1564 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1565 out_page: 1566 unlock_page(page); 1567 page_cache_release(page); 1568 } 1569 1570 /* 1571 * There are a few paths in the higher layers of the kernel that directly 1572 * set the page dirty bit without asking the filesystem if it is a 1573 * good idea. This causes problems because we want to make sure COW 1574 * properly happens and the data=ordered rules are followed. 1575 * 1576 * In our case any range that doesn't have the ORDERED bit set 1577 * hasn't been properly setup for IO. We kick off an async process 1578 * to fix it up. The async helper will wait for ordered extents, set 1579 * the delalloc bit and make it safe to write the page. 1580 */ 1581 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1582 { 1583 struct inode *inode = page->mapping->host; 1584 struct btrfs_writepage_fixup *fixup; 1585 struct btrfs_root *root = BTRFS_I(inode)->root; 1586 1587 /* this page is properly in the ordered list */ 1588 if (TestClearPagePrivate2(page)) 1589 return 0; 1590 1591 if (PageChecked(page)) 1592 return -EAGAIN; 1593 1594 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1595 if (!fixup) 1596 return -EAGAIN; 1597 1598 SetPageChecked(page); 1599 page_cache_get(page); 1600 fixup->work.func = btrfs_writepage_fixup_worker; 1601 fixup->page = page; 1602 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1603 return -EAGAIN; 1604 } 1605 1606 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1607 struct inode *inode, u64 file_pos, 1608 u64 disk_bytenr, u64 disk_num_bytes, 1609 u64 num_bytes, u64 ram_bytes, 1610 u8 compression, u8 encryption, 1611 u16 other_encoding, int extent_type) 1612 { 1613 struct btrfs_root *root = BTRFS_I(inode)->root; 1614 struct btrfs_file_extent_item *fi; 1615 struct btrfs_path *path; 1616 struct extent_buffer *leaf; 1617 struct btrfs_key ins; 1618 u64 hint; 1619 int ret; 1620 1621 path = btrfs_alloc_path(); 1622 BUG_ON(!path); 1623 1624 path->leave_spinning = 1; 1625 1626 /* 1627 * we may be replacing one extent in the tree with another. 1628 * The new extent is pinned in the extent map, and we don't want 1629 * to drop it from the cache until it is completely in the btree. 1630 * 1631 * So, tell btrfs_drop_extents to leave this extent in the cache. 1632 * the caller is expected to unpin it and allow it to be merged 1633 * with the others. 1634 */ 1635 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1636 &hint, 0); 1637 BUG_ON(ret); 1638 1639 ins.objectid = inode->i_ino; 1640 ins.offset = file_pos; 1641 ins.type = BTRFS_EXTENT_DATA_KEY; 1642 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1643 BUG_ON(ret); 1644 leaf = path->nodes[0]; 1645 fi = btrfs_item_ptr(leaf, path->slots[0], 1646 struct btrfs_file_extent_item); 1647 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1648 btrfs_set_file_extent_type(leaf, fi, extent_type); 1649 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1650 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1651 btrfs_set_file_extent_offset(leaf, fi, 0); 1652 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1653 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1654 btrfs_set_file_extent_compression(leaf, fi, compression); 1655 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1656 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1657 1658 btrfs_unlock_up_safe(path, 1); 1659 btrfs_set_lock_blocking(leaf); 1660 1661 btrfs_mark_buffer_dirty(leaf); 1662 1663 inode_add_bytes(inode, num_bytes); 1664 1665 ins.objectid = disk_bytenr; 1666 ins.offset = disk_num_bytes; 1667 ins.type = BTRFS_EXTENT_ITEM_KEY; 1668 ret = btrfs_alloc_reserved_file_extent(trans, root, 1669 root->root_key.objectid, 1670 inode->i_ino, file_pos, &ins); 1671 BUG_ON(ret); 1672 btrfs_free_path(path); 1673 1674 return 0; 1675 } 1676 1677 /* 1678 * helper function for btrfs_finish_ordered_io, this 1679 * just reads in some of the csum leaves to prime them into ram 1680 * before we start the transaction. It limits the amount of btree 1681 * reads required while inside the transaction. 1682 */ 1683 static noinline void reada_csum(struct btrfs_root *root, 1684 struct btrfs_path *path, 1685 struct btrfs_ordered_extent *ordered_extent) 1686 { 1687 struct btrfs_ordered_sum *sum; 1688 u64 bytenr; 1689 1690 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum, 1691 list); 1692 bytenr = sum->sums[0].bytenr; 1693 1694 /* 1695 * we don't care about the results, the point of this search is 1696 * just to get the btree leaves into ram 1697 */ 1698 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0); 1699 } 1700 1701 /* as ordered data IO finishes, this gets called so we can finish 1702 * an ordered extent if the range of bytes in the file it covers are 1703 * fully written. 1704 */ 1705 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1706 { 1707 struct btrfs_root *root = BTRFS_I(inode)->root; 1708 struct btrfs_trans_handle *trans; 1709 struct btrfs_ordered_extent *ordered_extent = NULL; 1710 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1711 struct btrfs_path *path; 1712 int compressed = 0; 1713 int ret; 1714 1715 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1716 if (!ret) 1717 return 0; 1718 1719 /* 1720 * before we join the transaction, try to do some of our IO. 1721 * This will limit the amount of IO that we have to do with 1722 * the transaction running. We're unlikely to need to do any 1723 * IO if the file extents are new, the disk_i_size checks 1724 * covers the most common case. 1725 */ 1726 if (start < BTRFS_I(inode)->disk_i_size) { 1727 path = btrfs_alloc_path(); 1728 if (path) { 1729 ret = btrfs_lookup_file_extent(NULL, root, path, 1730 inode->i_ino, 1731 start, 0); 1732 ordered_extent = btrfs_lookup_ordered_extent(inode, 1733 start); 1734 if (!list_empty(&ordered_extent->list)) { 1735 btrfs_release_path(root, path); 1736 reada_csum(root, path, ordered_extent); 1737 } 1738 btrfs_free_path(path); 1739 } 1740 } 1741 1742 if (!ordered_extent) 1743 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1744 BUG_ON(!ordered_extent); 1745 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1746 BUG_ON(!list_empty(&ordered_extent->list)); 1747 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1748 if (!ret) { 1749 trans = btrfs_join_transaction(root, 1); 1750 ret = btrfs_update_inode(trans, root, inode); 1751 BUG_ON(ret); 1752 btrfs_end_transaction(trans, root); 1753 } 1754 goto out; 1755 } 1756 1757 lock_extent(io_tree, ordered_extent->file_offset, 1758 ordered_extent->file_offset + ordered_extent->len - 1, 1759 GFP_NOFS); 1760 1761 trans = btrfs_join_transaction(root, 1); 1762 1763 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1764 compressed = 1; 1765 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1766 BUG_ON(compressed); 1767 ret = btrfs_mark_extent_written(trans, inode, 1768 ordered_extent->file_offset, 1769 ordered_extent->file_offset + 1770 ordered_extent->len); 1771 BUG_ON(ret); 1772 } else { 1773 ret = insert_reserved_file_extent(trans, inode, 1774 ordered_extent->file_offset, 1775 ordered_extent->start, 1776 ordered_extent->disk_len, 1777 ordered_extent->len, 1778 ordered_extent->len, 1779 compressed, 0, 0, 1780 BTRFS_FILE_EXTENT_REG); 1781 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1782 ordered_extent->file_offset, 1783 ordered_extent->len); 1784 BUG_ON(ret); 1785 } 1786 unlock_extent(io_tree, ordered_extent->file_offset, 1787 ordered_extent->file_offset + ordered_extent->len - 1, 1788 GFP_NOFS); 1789 add_pending_csums(trans, inode, ordered_extent->file_offset, 1790 &ordered_extent->list); 1791 1792 /* this also removes the ordered extent from the tree */ 1793 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1794 ret = btrfs_update_inode(trans, root, inode); 1795 BUG_ON(ret); 1796 btrfs_end_transaction(trans, root); 1797 out: 1798 /* once for us */ 1799 btrfs_put_ordered_extent(ordered_extent); 1800 /* once for the tree */ 1801 btrfs_put_ordered_extent(ordered_extent); 1802 1803 return 0; 1804 } 1805 1806 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1807 struct extent_state *state, int uptodate) 1808 { 1809 ClearPagePrivate2(page); 1810 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1811 } 1812 1813 /* 1814 * When IO fails, either with EIO or csum verification fails, we 1815 * try other mirrors that might have a good copy of the data. This 1816 * io_failure_record is used to record state as we go through all the 1817 * mirrors. If another mirror has good data, the page is set up to date 1818 * and things continue. If a good mirror can't be found, the original 1819 * bio end_io callback is called to indicate things have failed. 1820 */ 1821 struct io_failure_record { 1822 struct page *page; 1823 u64 start; 1824 u64 len; 1825 u64 logical; 1826 unsigned long bio_flags; 1827 int last_mirror; 1828 }; 1829 1830 static int btrfs_io_failed_hook(struct bio *failed_bio, 1831 struct page *page, u64 start, u64 end, 1832 struct extent_state *state) 1833 { 1834 struct io_failure_record *failrec = NULL; 1835 u64 private; 1836 struct extent_map *em; 1837 struct inode *inode = page->mapping->host; 1838 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1839 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1840 struct bio *bio; 1841 int num_copies; 1842 int ret; 1843 int rw; 1844 u64 logical; 1845 1846 ret = get_state_private(failure_tree, start, &private); 1847 if (ret) { 1848 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1849 if (!failrec) 1850 return -ENOMEM; 1851 failrec->start = start; 1852 failrec->len = end - start + 1; 1853 failrec->last_mirror = 0; 1854 failrec->bio_flags = 0; 1855 1856 read_lock(&em_tree->lock); 1857 em = lookup_extent_mapping(em_tree, start, failrec->len); 1858 if (em->start > start || em->start + em->len < start) { 1859 free_extent_map(em); 1860 em = NULL; 1861 } 1862 read_unlock(&em_tree->lock); 1863 1864 if (!em || IS_ERR(em)) { 1865 kfree(failrec); 1866 return -EIO; 1867 } 1868 logical = start - em->start; 1869 logical = em->block_start + logical; 1870 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1871 logical = em->block_start; 1872 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1873 } 1874 failrec->logical = logical; 1875 free_extent_map(em); 1876 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1877 EXTENT_DIRTY, GFP_NOFS); 1878 set_state_private(failure_tree, start, 1879 (u64)(unsigned long)failrec); 1880 } else { 1881 failrec = (struct io_failure_record *)(unsigned long)private; 1882 } 1883 num_copies = btrfs_num_copies( 1884 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1885 failrec->logical, failrec->len); 1886 failrec->last_mirror++; 1887 if (!state) { 1888 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1889 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1890 failrec->start, 1891 EXTENT_LOCKED); 1892 if (state && state->start != failrec->start) 1893 state = NULL; 1894 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1895 } 1896 if (!state || failrec->last_mirror > num_copies) { 1897 set_state_private(failure_tree, failrec->start, 0); 1898 clear_extent_bits(failure_tree, failrec->start, 1899 failrec->start + failrec->len - 1, 1900 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1901 kfree(failrec); 1902 return -EIO; 1903 } 1904 bio = bio_alloc(GFP_NOFS, 1); 1905 bio->bi_private = state; 1906 bio->bi_end_io = failed_bio->bi_end_io; 1907 bio->bi_sector = failrec->logical >> 9; 1908 bio->bi_bdev = failed_bio->bi_bdev; 1909 bio->bi_size = 0; 1910 1911 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1912 if (failed_bio->bi_rw & (1 << BIO_RW)) 1913 rw = WRITE; 1914 else 1915 rw = READ; 1916 1917 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1918 failrec->last_mirror, 1919 failrec->bio_flags); 1920 return 0; 1921 } 1922 1923 /* 1924 * each time an IO finishes, we do a fast check in the IO failure tree 1925 * to see if we need to process or clean up an io_failure_record 1926 */ 1927 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1928 { 1929 u64 private; 1930 u64 private_failure; 1931 struct io_failure_record *failure; 1932 int ret; 1933 1934 private = 0; 1935 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1936 (u64)-1, 1, EXTENT_DIRTY)) { 1937 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1938 start, &private_failure); 1939 if (ret == 0) { 1940 failure = (struct io_failure_record *)(unsigned long) 1941 private_failure; 1942 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1943 failure->start, 0); 1944 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1945 failure->start, 1946 failure->start + failure->len - 1, 1947 EXTENT_DIRTY | EXTENT_LOCKED, 1948 GFP_NOFS); 1949 kfree(failure); 1950 } 1951 } 1952 return 0; 1953 } 1954 1955 /* 1956 * when reads are done, we need to check csums to verify the data is correct 1957 * if there's a match, we allow the bio to finish. If not, we go through 1958 * the io_failure_record routines to find good copies 1959 */ 1960 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1961 struct extent_state *state) 1962 { 1963 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1964 struct inode *inode = page->mapping->host; 1965 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1966 char *kaddr; 1967 u64 private = ~(u32)0; 1968 int ret; 1969 struct btrfs_root *root = BTRFS_I(inode)->root; 1970 u32 csum = ~(u32)0; 1971 1972 if (PageChecked(page)) { 1973 ClearPageChecked(page); 1974 goto good; 1975 } 1976 1977 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1978 return 0; 1979 1980 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1981 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1982 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1983 GFP_NOFS); 1984 return 0; 1985 } 1986 1987 if (state && state->start == start) { 1988 private = state->private; 1989 ret = 0; 1990 } else { 1991 ret = get_state_private(io_tree, start, &private); 1992 } 1993 kaddr = kmap_atomic(page, KM_USER0); 1994 if (ret) 1995 goto zeroit; 1996 1997 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1998 btrfs_csum_final(csum, (char *)&csum); 1999 if (csum != private) 2000 goto zeroit; 2001 2002 kunmap_atomic(kaddr, KM_USER0); 2003 good: 2004 /* if the io failure tree for this inode is non-empty, 2005 * check to see if we've recovered from a failed IO 2006 */ 2007 btrfs_clean_io_failures(inode, start); 2008 return 0; 2009 2010 zeroit: 2011 if (printk_ratelimit()) { 2012 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 2013 "private %llu\n", page->mapping->host->i_ino, 2014 (unsigned long long)start, csum, 2015 (unsigned long long)private); 2016 } 2017 memset(kaddr + offset, 1, end - start + 1); 2018 flush_dcache_page(page); 2019 kunmap_atomic(kaddr, KM_USER0); 2020 if (private == 0) 2021 return 0; 2022 return -EIO; 2023 } 2024 2025 struct delayed_iput { 2026 struct list_head list; 2027 struct inode *inode; 2028 }; 2029 2030 void btrfs_add_delayed_iput(struct inode *inode) 2031 { 2032 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2033 struct delayed_iput *delayed; 2034 2035 if (atomic_add_unless(&inode->i_count, -1, 1)) 2036 return; 2037 2038 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2039 delayed->inode = inode; 2040 2041 spin_lock(&fs_info->delayed_iput_lock); 2042 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2043 spin_unlock(&fs_info->delayed_iput_lock); 2044 } 2045 2046 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2047 { 2048 LIST_HEAD(list); 2049 struct btrfs_fs_info *fs_info = root->fs_info; 2050 struct delayed_iput *delayed; 2051 int empty; 2052 2053 spin_lock(&fs_info->delayed_iput_lock); 2054 empty = list_empty(&fs_info->delayed_iputs); 2055 spin_unlock(&fs_info->delayed_iput_lock); 2056 if (empty) 2057 return; 2058 2059 down_read(&root->fs_info->cleanup_work_sem); 2060 spin_lock(&fs_info->delayed_iput_lock); 2061 list_splice_init(&fs_info->delayed_iputs, &list); 2062 spin_unlock(&fs_info->delayed_iput_lock); 2063 2064 while (!list_empty(&list)) { 2065 delayed = list_entry(list.next, struct delayed_iput, list); 2066 list_del(&delayed->list); 2067 iput(delayed->inode); 2068 kfree(delayed); 2069 } 2070 up_read(&root->fs_info->cleanup_work_sem); 2071 } 2072 2073 /* 2074 * This creates an orphan entry for the given inode in case something goes 2075 * wrong in the middle of an unlink/truncate. 2076 */ 2077 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2078 { 2079 struct btrfs_root *root = BTRFS_I(inode)->root; 2080 int ret = 0; 2081 2082 spin_lock(&root->list_lock); 2083 2084 /* already on the orphan list, we're good */ 2085 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2086 spin_unlock(&root->list_lock); 2087 return 0; 2088 } 2089 2090 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2091 2092 spin_unlock(&root->list_lock); 2093 2094 /* 2095 * insert an orphan item to track this unlinked/truncated file 2096 */ 2097 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 2098 2099 return ret; 2100 } 2101 2102 /* 2103 * We have done the truncate/delete so we can go ahead and remove the orphan 2104 * item for this particular inode. 2105 */ 2106 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2107 { 2108 struct btrfs_root *root = BTRFS_I(inode)->root; 2109 int ret = 0; 2110 2111 spin_lock(&root->list_lock); 2112 2113 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2114 spin_unlock(&root->list_lock); 2115 return 0; 2116 } 2117 2118 list_del_init(&BTRFS_I(inode)->i_orphan); 2119 if (!trans) { 2120 spin_unlock(&root->list_lock); 2121 return 0; 2122 } 2123 2124 spin_unlock(&root->list_lock); 2125 2126 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 2127 2128 return ret; 2129 } 2130 2131 /* 2132 * this cleans up any orphans that may be left on the list from the last use 2133 * of this root. 2134 */ 2135 void btrfs_orphan_cleanup(struct btrfs_root *root) 2136 { 2137 struct btrfs_path *path; 2138 struct extent_buffer *leaf; 2139 struct btrfs_item *item; 2140 struct btrfs_key key, found_key; 2141 struct btrfs_trans_handle *trans; 2142 struct inode *inode; 2143 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2144 2145 if (!xchg(&root->clean_orphans, 0)) 2146 return; 2147 2148 path = btrfs_alloc_path(); 2149 BUG_ON(!path); 2150 path->reada = -1; 2151 2152 key.objectid = BTRFS_ORPHAN_OBJECTID; 2153 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2154 key.offset = (u64)-1; 2155 2156 while (1) { 2157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2158 if (ret < 0) { 2159 printk(KERN_ERR "Error searching slot for orphan: %d" 2160 "\n", ret); 2161 break; 2162 } 2163 2164 /* 2165 * if ret == 0 means we found what we were searching for, which 2166 * is weird, but possible, so only screw with path if we didnt 2167 * find the key and see if we have stuff that matches 2168 */ 2169 if (ret > 0) { 2170 if (path->slots[0] == 0) 2171 break; 2172 path->slots[0]--; 2173 } 2174 2175 /* pull out the item */ 2176 leaf = path->nodes[0]; 2177 item = btrfs_item_nr(leaf, path->slots[0]); 2178 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2179 2180 /* make sure the item matches what we want */ 2181 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2182 break; 2183 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2184 break; 2185 2186 /* release the path since we're done with it */ 2187 btrfs_release_path(root, path); 2188 2189 /* 2190 * this is where we are basically btrfs_lookup, without the 2191 * crossing root thing. we store the inode number in the 2192 * offset of the orphan item. 2193 */ 2194 found_key.objectid = found_key.offset; 2195 found_key.type = BTRFS_INODE_ITEM_KEY; 2196 found_key.offset = 0; 2197 inode = btrfs_iget(root->fs_info->sb, &found_key, root); 2198 if (IS_ERR(inode)) 2199 break; 2200 2201 /* 2202 * add this inode to the orphan list so btrfs_orphan_del does 2203 * the proper thing when we hit it 2204 */ 2205 spin_lock(&root->list_lock); 2206 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2207 spin_unlock(&root->list_lock); 2208 2209 /* 2210 * if this is a bad inode, means we actually succeeded in 2211 * removing the inode, but not the orphan record, which means 2212 * we need to manually delete the orphan since iput will just 2213 * do a destroy_inode 2214 */ 2215 if (is_bad_inode(inode)) { 2216 trans = btrfs_start_transaction(root, 1); 2217 btrfs_orphan_del(trans, inode); 2218 btrfs_end_transaction(trans, root); 2219 iput(inode); 2220 continue; 2221 } 2222 2223 /* if we have links, this was a truncate, lets do that */ 2224 if (inode->i_nlink) { 2225 nr_truncate++; 2226 btrfs_truncate(inode); 2227 } else { 2228 nr_unlink++; 2229 } 2230 2231 /* this will do delete_inode and everything for us */ 2232 iput(inode); 2233 } 2234 2235 if (nr_unlink) 2236 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2237 if (nr_truncate) 2238 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2239 2240 btrfs_free_path(path); 2241 } 2242 2243 /* 2244 * very simple check to peek ahead in the leaf looking for xattrs. If we 2245 * don't find any xattrs, we know there can't be any acls. 2246 * 2247 * slot is the slot the inode is in, objectid is the objectid of the inode 2248 */ 2249 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2250 int slot, u64 objectid) 2251 { 2252 u32 nritems = btrfs_header_nritems(leaf); 2253 struct btrfs_key found_key; 2254 int scanned = 0; 2255 2256 slot++; 2257 while (slot < nritems) { 2258 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2259 2260 /* we found a different objectid, there must not be acls */ 2261 if (found_key.objectid != objectid) 2262 return 0; 2263 2264 /* we found an xattr, assume we've got an acl */ 2265 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2266 return 1; 2267 2268 /* 2269 * we found a key greater than an xattr key, there can't 2270 * be any acls later on 2271 */ 2272 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2273 return 0; 2274 2275 slot++; 2276 scanned++; 2277 2278 /* 2279 * it goes inode, inode backrefs, xattrs, extents, 2280 * so if there are a ton of hard links to an inode there can 2281 * be a lot of backrefs. Don't waste time searching too hard, 2282 * this is just an optimization 2283 */ 2284 if (scanned >= 8) 2285 break; 2286 } 2287 /* we hit the end of the leaf before we found an xattr or 2288 * something larger than an xattr. We have to assume the inode 2289 * has acls 2290 */ 2291 return 1; 2292 } 2293 2294 /* 2295 * read an inode from the btree into the in-memory inode 2296 */ 2297 static void btrfs_read_locked_inode(struct inode *inode) 2298 { 2299 struct btrfs_path *path; 2300 struct extent_buffer *leaf; 2301 struct btrfs_inode_item *inode_item; 2302 struct btrfs_timespec *tspec; 2303 struct btrfs_root *root = BTRFS_I(inode)->root; 2304 struct btrfs_key location; 2305 int maybe_acls; 2306 u64 alloc_group_block; 2307 u32 rdev; 2308 int ret; 2309 2310 path = btrfs_alloc_path(); 2311 BUG_ON(!path); 2312 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2313 2314 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2315 if (ret) 2316 goto make_bad; 2317 2318 leaf = path->nodes[0]; 2319 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2320 struct btrfs_inode_item); 2321 2322 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2323 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2324 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2325 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2326 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2327 2328 tspec = btrfs_inode_atime(inode_item); 2329 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2330 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2331 2332 tspec = btrfs_inode_mtime(inode_item); 2333 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2334 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2335 2336 tspec = btrfs_inode_ctime(inode_item); 2337 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2338 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2339 2340 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2341 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2342 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2343 inode->i_generation = BTRFS_I(inode)->generation; 2344 inode->i_rdev = 0; 2345 rdev = btrfs_inode_rdev(leaf, inode_item); 2346 2347 BTRFS_I(inode)->index_cnt = (u64)-1; 2348 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2349 2350 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2351 2352 /* 2353 * try to precache a NULL acl entry for files that don't have 2354 * any xattrs or acls 2355 */ 2356 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2357 if (!maybe_acls) 2358 cache_no_acl(inode); 2359 2360 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2361 alloc_group_block, 0); 2362 btrfs_free_path(path); 2363 inode_item = NULL; 2364 2365 switch (inode->i_mode & S_IFMT) { 2366 case S_IFREG: 2367 inode->i_mapping->a_ops = &btrfs_aops; 2368 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2369 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2370 inode->i_fop = &btrfs_file_operations; 2371 inode->i_op = &btrfs_file_inode_operations; 2372 break; 2373 case S_IFDIR: 2374 inode->i_fop = &btrfs_dir_file_operations; 2375 if (root == root->fs_info->tree_root) 2376 inode->i_op = &btrfs_dir_ro_inode_operations; 2377 else 2378 inode->i_op = &btrfs_dir_inode_operations; 2379 break; 2380 case S_IFLNK: 2381 inode->i_op = &btrfs_symlink_inode_operations; 2382 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2383 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2384 break; 2385 default: 2386 inode->i_op = &btrfs_special_inode_operations; 2387 init_special_inode(inode, inode->i_mode, rdev); 2388 break; 2389 } 2390 2391 btrfs_update_iflags(inode); 2392 return; 2393 2394 make_bad: 2395 btrfs_free_path(path); 2396 make_bad_inode(inode); 2397 } 2398 2399 /* 2400 * given a leaf and an inode, copy the inode fields into the leaf 2401 */ 2402 static void fill_inode_item(struct btrfs_trans_handle *trans, 2403 struct extent_buffer *leaf, 2404 struct btrfs_inode_item *item, 2405 struct inode *inode) 2406 { 2407 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2408 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2409 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2410 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2411 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2412 2413 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2414 inode->i_atime.tv_sec); 2415 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2416 inode->i_atime.tv_nsec); 2417 2418 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2419 inode->i_mtime.tv_sec); 2420 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2421 inode->i_mtime.tv_nsec); 2422 2423 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2424 inode->i_ctime.tv_sec); 2425 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2426 inode->i_ctime.tv_nsec); 2427 2428 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2429 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2430 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2431 btrfs_set_inode_transid(leaf, item, trans->transid); 2432 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2433 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2434 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2435 } 2436 2437 /* 2438 * copy everything in the in-memory inode into the btree. 2439 */ 2440 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2441 struct btrfs_root *root, struct inode *inode) 2442 { 2443 struct btrfs_inode_item *inode_item; 2444 struct btrfs_path *path; 2445 struct extent_buffer *leaf; 2446 int ret; 2447 2448 path = btrfs_alloc_path(); 2449 BUG_ON(!path); 2450 path->leave_spinning = 1; 2451 ret = btrfs_lookup_inode(trans, root, path, 2452 &BTRFS_I(inode)->location, 1); 2453 if (ret) { 2454 if (ret > 0) 2455 ret = -ENOENT; 2456 goto failed; 2457 } 2458 2459 btrfs_unlock_up_safe(path, 1); 2460 leaf = path->nodes[0]; 2461 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2462 struct btrfs_inode_item); 2463 2464 fill_inode_item(trans, leaf, inode_item, inode); 2465 btrfs_mark_buffer_dirty(leaf); 2466 btrfs_set_inode_last_trans(trans, inode); 2467 ret = 0; 2468 failed: 2469 btrfs_free_path(path); 2470 return ret; 2471 } 2472 2473 2474 /* 2475 * unlink helper that gets used here in inode.c and in the tree logging 2476 * recovery code. It remove a link in a directory with a given name, and 2477 * also drops the back refs in the inode to the directory 2478 */ 2479 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2480 struct btrfs_root *root, 2481 struct inode *dir, struct inode *inode, 2482 const char *name, int name_len) 2483 { 2484 struct btrfs_path *path; 2485 int ret = 0; 2486 struct extent_buffer *leaf; 2487 struct btrfs_dir_item *di; 2488 struct btrfs_key key; 2489 u64 index; 2490 2491 path = btrfs_alloc_path(); 2492 if (!path) { 2493 ret = -ENOMEM; 2494 goto err; 2495 } 2496 2497 path->leave_spinning = 1; 2498 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2499 name, name_len, -1); 2500 if (IS_ERR(di)) { 2501 ret = PTR_ERR(di); 2502 goto err; 2503 } 2504 if (!di) { 2505 ret = -ENOENT; 2506 goto err; 2507 } 2508 leaf = path->nodes[0]; 2509 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2510 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2511 if (ret) 2512 goto err; 2513 btrfs_release_path(root, path); 2514 2515 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2516 inode->i_ino, 2517 dir->i_ino, &index); 2518 if (ret) { 2519 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2520 "inode %lu parent %lu\n", name_len, name, 2521 inode->i_ino, dir->i_ino); 2522 goto err; 2523 } 2524 2525 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2526 index, name, name_len, -1); 2527 if (IS_ERR(di)) { 2528 ret = PTR_ERR(di); 2529 goto err; 2530 } 2531 if (!di) { 2532 ret = -ENOENT; 2533 goto err; 2534 } 2535 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2536 btrfs_release_path(root, path); 2537 2538 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2539 inode, dir->i_ino); 2540 BUG_ON(ret != 0 && ret != -ENOENT); 2541 2542 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2543 dir, index); 2544 BUG_ON(ret); 2545 err: 2546 btrfs_free_path(path); 2547 if (ret) 2548 goto out; 2549 2550 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2551 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2552 btrfs_update_inode(trans, root, dir); 2553 btrfs_drop_nlink(inode); 2554 ret = btrfs_update_inode(trans, root, inode); 2555 out: 2556 return ret; 2557 } 2558 2559 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2560 { 2561 struct btrfs_root *root; 2562 struct btrfs_trans_handle *trans; 2563 struct inode *inode = dentry->d_inode; 2564 int ret; 2565 unsigned long nr = 0; 2566 2567 root = BTRFS_I(dir)->root; 2568 2569 /* 2570 * 5 items for unlink inode 2571 * 1 for orphan 2572 */ 2573 ret = btrfs_reserve_metadata_space(root, 6); 2574 if (ret) 2575 return ret; 2576 2577 trans = btrfs_start_transaction(root, 1); 2578 if (IS_ERR(trans)) { 2579 btrfs_unreserve_metadata_space(root, 6); 2580 return PTR_ERR(trans); 2581 } 2582 2583 btrfs_set_trans_block_group(trans, dir); 2584 2585 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2586 2587 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2588 dentry->d_name.name, dentry->d_name.len); 2589 2590 if (inode->i_nlink == 0) 2591 ret = btrfs_orphan_add(trans, inode); 2592 2593 nr = trans->blocks_used; 2594 2595 btrfs_end_transaction_throttle(trans, root); 2596 btrfs_unreserve_metadata_space(root, 6); 2597 btrfs_btree_balance_dirty(root, nr); 2598 return ret; 2599 } 2600 2601 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2602 struct btrfs_root *root, 2603 struct inode *dir, u64 objectid, 2604 const char *name, int name_len) 2605 { 2606 struct btrfs_path *path; 2607 struct extent_buffer *leaf; 2608 struct btrfs_dir_item *di; 2609 struct btrfs_key key; 2610 u64 index; 2611 int ret; 2612 2613 path = btrfs_alloc_path(); 2614 if (!path) 2615 return -ENOMEM; 2616 2617 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2618 name, name_len, -1); 2619 BUG_ON(!di || IS_ERR(di)); 2620 2621 leaf = path->nodes[0]; 2622 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2623 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2624 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2625 BUG_ON(ret); 2626 btrfs_release_path(root, path); 2627 2628 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2629 objectid, root->root_key.objectid, 2630 dir->i_ino, &index, name, name_len); 2631 if (ret < 0) { 2632 BUG_ON(ret != -ENOENT); 2633 di = btrfs_search_dir_index_item(root, path, dir->i_ino, 2634 name, name_len); 2635 BUG_ON(!di || IS_ERR(di)); 2636 2637 leaf = path->nodes[0]; 2638 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2639 btrfs_release_path(root, path); 2640 index = key.offset; 2641 } 2642 2643 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2644 index, name, name_len, -1); 2645 BUG_ON(!di || IS_ERR(di)); 2646 2647 leaf = path->nodes[0]; 2648 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2649 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2650 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2651 BUG_ON(ret); 2652 btrfs_release_path(root, path); 2653 2654 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2655 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2656 ret = btrfs_update_inode(trans, root, dir); 2657 BUG_ON(ret); 2658 dir->i_sb->s_dirt = 1; 2659 2660 btrfs_free_path(path); 2661 return 0; 2662 } 2663 2664 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2665 { 2666 struct inode *inode = dentry->d_inode; 2667 int err = 0; 2668 int ret; 2669 struct btrfs_root *root = BTRFS_I(dir)->root; 2670 struct btrfs_trans_handle *trans; 2671 unsigned long nr = 0; 2672 2673 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2674 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 2675 return -ENOTEMPTY; 2676 2677 ret = btrfs_reserve_metadata_space(root, 5); 2678 if (ret) 2679 return ret; 2680 2681 trans = btrfs_start_transaction(root, 1); 2682 if (IS_ERR(trans)) { 2683 btrfs_unreserve_metadata_space(root, 5); 2684 return PTR_ERR(trans); 2685 } 2686 2687 btrfs_set_trans_block_group(trans, dir); 2688 2689 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2690 err = btrfs_unlink_subvol(trans, root, dir, 2691 BTRFS_I(inode)->location.objectid, 2692 dentry->d_name.name, 2693 dentry->d_name.len); 2694 goto out; 2695 } 2696 2697 err = btrfs_orphan_add(trans, inode); 2698 if (err) 2699 goto out; 2700 2701 /* now the directory is empty */ 2702 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2703 dentry->d_name.name, dentry->d_name.len); 2704 if (!err) 2705 btrfs_i_size_write(inode, 0); 2706 out: 2707 nr = trans->blocks_used; 2708 ret = btrfs_end_transaction_throttle(trans, root); 2709 btrfs_unreserve_metadata_space(root, 5); 2710 btrfs_btree_balance_dirty(root, nr); 2711 2712 if (ret && !err) 2713 err = ret; 2714 return err; 2715 } 2716 2717 #if 0 2718 /* 2719 * when truncating bytes in a file, it is possible to avoid reading 2720 * the leaves that contain only checksum items. This can be the 2721 * majority of the IO required to delete a large file, but it must 2722 * be done carefully. 2723 * 2724 * The keys in the level just above the leaves are checked to make sure 2725 * the lowest key in a given leaf is a csum key, and starts at an offset 2726 * after the new size. 2727 * 2728 * Then the key for the next leaf is checked to make sure it also has 2729 * a checksum item for the same file. If it does, we know our target leaf 2730 * contains only checksum items, and it can be safely freed without reading 2731 * it. 2732 * 2733 * This is just an optimization targeted at large files. It may do 2734 * nothing. It will return 0 unless things went badly. 2735 */ 2736 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2737 struct btrfs_root *root, 2738 struct btrfs_path *path, 2739 struct inode *inode, u64 new_size) 2740 { 2741 struct btrfs_key key; 2742 int ret; 2743 int nritems; 2744 struct btrfs_key found_key; 2745 struct btrfs_key other_key; 2746 struct btrfs_leaf_ref *ref; 2747 u64 leaf_gen; 2748 u64 leaf_start; 2749 2750 path->lowest_level = 1; 2751 key.objectid = inode->i_ino; 2752 key.type = BTRFS_CSUM_ITEM_KEY; 2753 key.offset = new_size; 2754 again: 2755 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2756 if (ret < 0) 2757 goto out; 2758 2759 if (path->nodes[1] == NULL) { 2760 ret = 0; 2761 goto out; 2762 } 2763 ret = 0; 2764 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2765 nritems = btrfs_header_nritems(path->nodes[1]); 2766 2767 if (!nritems) 2768 goto out; 2769 2770 if (path->slots[1] >= nritems) 2771 goto next_node; 2772 2773 /* did we find a key greater than anything we want to delete? */ 2774 if (found_key.objectid > inode->i_ino || 2775 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2776 goto out; 2777 2778 /* we check the next key in the node to make sure the leave contains 2779 * only checksum items. This comparison doesn't work if our 2780 * leaf is the last one in the node 2781 */ 2782 if (path->slots[1] + 1 >= nritems) { 2783 next_node: 2784 /* search forward from the last key in the node, this 2785 * will bring us into the next node in the tree 2786 */ 2787 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2788 2789 /* unlikely, but we inc below, so check to be safe */ 2790 if (found_key.offset == (u64)-1) 2791 goto out; 2792 2793 /* search_forward needs a path with locks held, do the 2794 * search again for the original key. It is possible 2795 * this will race with a balance and return a path that 2796 * we could modify, but this drop is just an optimization 2797 * and is allowed to miss some leaves. 2798 */ 2799 btrfs_release_path(root, path); 2800 found_key.offset++; 2801 2802 /* setup a max key for search_forward */ 2803 other_key.offset = (u64)-1; 2804 other_key.type = key.type; 2805 other_key.objectid = key.objectid; 2806 2807 path->keep_locks = 1; 2808 ret = btrfs_search_forward(root, &found_key, &other_key, 2809 path, 0, 0); 2810 path->keep_locks = 0; 2811 if (ret || found_key.objectid != key.objectid || 2812 found_key.type != key.type) { 2813 ret = 0; 2814 goto out; 2815 } 2816 2817 key.offset = found_key.offset; 2818 btrfs_release_path(root, path); 2819 cond_resched(); 2820 goto again; 2821 } 2822 2823 /* we know there's one more slot after us in the tree, 2824 * read that key so we can verify it is also a checksum item 2825 */ 2826 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2827 2828 if (found_key.objectid < inode->i_ino) 2829 goto next_key; 2830 2831 if (found_key.type != key.type || found_key.offset < new_size) 2832 goto next_key; 2833 2834 /* 2835 * if the key for the next leaf isn't a csum key from this objectid, 2836 * we can't be sure there aren't good items inside this leaf. 2837 * Bail out 2838 */ 2839 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2840 goto out; 2841 2842 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2843 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2844 /* 2845 * it is safe to delete this leaf, it contains only 2846 * csum items from this inode at an offset >= new_size 2847 */ 2848 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2849 BUG_ON(ret); 2850 2851 if (root->ref_cows && leaf_gen < trans->transid) { 2852 ref = btrfs_alloc_leaf_ref(root, 0); 2853 if (ref) { 2854 ref->root_gen = root->root_key.offset; 2855 ref->bytenr = leaf_start; 2856 ref->owner = 0; 2857 ref->generation = leaf_gen; 2858 ref->nritems = 0; 2859 2860 btrfs_sort_leaf_ref(ref); 2861 2862 ret = btrfs_add_leaf_ref(root, ref, 0); 2863 WARN_ON(ret); 2864 btrfs_free_leaf_ref(root, ref); 2865 } else { 2866 WARN_ON(1); 2867 } 2868 } 2869 next_key: 2870 btrfs_release_path(root, path); 2871 2872 if (other_key.objectid == inode->i_ino && 2873 other_key.type == key.type && other_key.offset > key.offset) { 2874 key.offset = other_key.offset; 2875 cond_resched(); 2876 goto again; 2877 } 2878 ret = 0; 2879 out: 2880 /* fixup any changes we've made to the path */ 2881 path->lowest_level = 0; 2882 path->keep_locks = 0; 2883 btrfs_release_path(root, path); 2884 return ret; 2885 } 2886 2887 #endif 2888 2889 /* 2890 * this can truncate away extent items, csum items and directory items. 2891 * It starts at a high offset and removes keys until it can't find 2892 * any higher than new_size 2893 * 2894 * csum items that cross the new i_size are truncated to the new size 2895 * as well. 2896 * 2897 * min_type is the minimum key type to truncate down to. If set to 0, this 2898 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2899 */ 2900 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2901 struct btrfs_root *root, 2902 struct inode *inode, 2903 u64 new_size, u32 min_type) 2904 { 2905 struct btrfs_path *path; 2906 struct extent_buffer *leaf; 2907 struct btrfs_file_extent_item *fi; 2908 struct btrfs_key key; 2909 struct btrfs_key found_key; 2910 u64 extent_start = 0; 2911 u64 extent_num_bytes = 0; 2912 u64 extent_offset = 0; 2913 u64 item_end = 0; 2914 u64 mask = root->sectorsize - 1; 2915 u32 found_type = (u8)-1; 2916 int found_extent; 2917 int del_item; 2918 int pending_del_nr = 0; 2919 int pending_del_slot = 0; 2920 int extent_type = -1; 2921 int encoding; 2922 int ret; 2923 int err = 0; 2924 2925 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 2926 2927 if (root->ref_cows) 2928 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2929 2930 path = btrfs_alloc_path(); 2931 BUG_ON(!path); 2932 path->reada = -1; 2933 2934 key.objectid = inode->i_ino; 2935 key.offset = (u64)-1; 2936 key.type = (u8)-1; 2937 2938 search_again: 2939 path->leave_spinning = 1; 2940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2941 if (ret < 0) { 2942 err = ret; 2943 goto out; 2944 } 2945 2946 if (ret > 0) { 2947 /* there are no items in the tree for us to truncate, we're 2948 * done 2949 */ 2950 if (path->slots[0] == 0) 2951 goto out; 2952 path->slots[0]--; 2953 } 2954 2955 while (1) { 2956 fi = NULL; 2957 leaf = path->nodes[0]; 2958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2959 found_type = btrfs_key_type(&found_key); 2960 encoding = 0; 2961 2962 if (found_key.objectid != inode->i_ino) 2963 break; 2964 2965 if (found_type < min_type) 2966 break; 2967 2968 item_end = found_key.offset; 2969 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2970 fi = btrfs_item_ptr(leaf, path->slots[0], 2971 struct btrfs_file_extent_item); 2972 extent_type = btrfs_file_extent_type(leaf, fi); 2973 encoding = btrfs_file_extent_compression(leaf, fi); 2974 encoding |= btrfs_file_extent_encryption(leaf, fi); 2975 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2976 2977 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2978 item_end += 2979 btrfs_file_extent_num_bytes(leaf, fi); 2980 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2981 item_end += btrfs_file_extent_inline_len(leaf, 2982 fi); 2983 } 2984 item_end--; 2985 } 2986 if (found_type > min_type) { 2987 del_item = 1; 2988 } else { 2989 if (item_end < new_size) 2990 break; 2991 if (found_key.offset >= new_size) 2992 del_item = 1; 2993 else 2994 del_item = 0; 2995 } 2996 found_extent = 0; 2997 /* FIXME, shrink the extent if the ref count is only 1 */ 2998 if (found_type != BTRFS_EXTENT_DATA_KEY) 2999 goto delete; 3000 3001 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3002 u64 num_dec; 3003 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3004 if (!del_item && !encoding) { 3005 u64 orig_num_bytes = 3006 btrfs_file_extent_num_bytes(leaf, fi); 3007 extent_num_bytes = new_size - 3008 found_key.offset + root->sectorsize - 1; 3009 extent_num_bytes = extent_num_bytes & 3010 ~((u64)root->sectorsize - 1); 3011 btrfs_set_file_extent_num_bytes(leaf, fi, 3012 extent_num_bytes); 3013 num_dec = (orig_num_bytes - 3014 extent_num_bytes); 3015 if (root->ref_cows && extent_start != 0) 3016 inode_sub_bytes(inode, num_dec); 3017 btrfs_mark_buffer_dirty(leaf); 3018 } else { 3019 extent_num_bytes = 3020 btrfs_file_extent_disk_num_bytes(leaf, 3021 fi); 3022 extent_offset = found_key.offset - 3023 btrfs_file_extent_offset(leaf, fi); 3024 3025 /* FIXME blocksize != 4096 */ 3026 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3027 if (extent_start != 0) { 3028 found_extent = 1; 3029 if (root->ref_cows) 3030 inode_sub_bytes(inode, num_dec); 3031 } 3032 } 3033 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3034 /* 3035 * we can't truncate inline items that have had 3036 * special encodings 3037 */ 3038 if (!del_item && 3039 btrfs_file_extent_compression(leaf, fi) == 0 && 3040 btrfs_file_extent_encryption(leaf, fi) == 0 && 3041 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3042 u32 size = new_size - found_key.offset; 3043 3044 if (root->ref_cows) { 3045 inode_sub_bytes(inode, item_end + 1 - 3046 new_size); 3047 } 3048 size = 3049 btrfs_file_extent_calc_inline_size(size); 3050 ret = btrfs_truncate_item(trans, root, path, 3051 size, 1); 3052 BUG_ON(ret); 3053 } else if (root->ref_cows) { 3054 inode_sub_bytes(inode, item_end + 1 - 3055 found_key.offset); 3056 } 3057 } 3058 delete: 3059 if (del_item) { 3060 if (!pending_del_nr) { 3061 /* no pending yet, add ourselves */ 3062 pending_del_slot = path->slots[0]; 3063 pending_del_nr = 1; 3064 } else if (pending_del_nr && 3065 path->slots[0] + 1 == pending_del_slot) { 3066 /* hop on the pending chunk */ 3067 pending_del_nr++; 3068 pending_del_slot = path->slots[0]; 3069 } else { 3070 BUG(); 3071 } 3072 } else { 3073 break; 3074 } 3075 if (found_extent && root->ref_cows) { 3076 btrfs_set_path_blocking(path); 3077 ret = btrfs_free_extent(trans, root, extent_start, 3078 extent_num_bytes, 0, 3079 btrfs_header_owner(leaf), 3080 inode->i_ino, extent_offset); 3081 BUG_ON(ret); 3082 } 3083 3084 if (found_type == BTRFS_INODE_ITEM_KEY) 3085 break; 3086 3087 if (path->slots[0] == 0 || 3088 path->slots[0] != pending_del_slot) { 3089 if (root->ref_cows) { 3090 err = -EAGAIN; 3091 goto out; 3092 } 3093 if (pending_del_nr) { 3094 ret = btrfs_del_items(trans, root, path, 3095 pending_del_slot, 3096 pending_del_nr); 3097 BUG_ON(ret); 3098 pending_del_nr = 0; 3099 } 3100 btrfs_release_path(root, path); 3101 goto search_again; 3102 } else { 3103 path->slots[0]--; 3104 } 3105 } 3106 out: 3107 if (pending_del_nr) { 3108 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3109 pending_del_nr); 3110 } 3111 btrfs_free_path(path); 3112 return err; 3113 } 3114 3115 /* 3116 * taken from block_truncate_page, but does cow as it zeros out 3117 * any bytes left in the last page in the file. 3118 */ 3119 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3120 { 3121 struct inode *inode = mapping->host; 3122 struct btrfs_root *root = BTRFS_I(inode)->root; 3123 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3124 struct btrfs_ordered_extent *ordered; 3125 char *kaddr; 3126 u32 blocksize = root->sectorsize; 3127 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3128 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3129 struct page *page; 3130 int ret = 0; 3131 u64 page_start; 3132 u64 page_end; 3133 3134 if ((offset & (blocksize - 1)) == 0) 3135 goto out; 3136 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 3137 if (ret) 3138 goto out; 3139 3140 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1); 3141 if (ret) 3142 goto out; 3143 3144 ret = -ENOMEM; 3145 again: 3146 page = grab_cache_page(mapping, index); 3147 if (!page) { 3148 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 3149 btrfs_unreserve_metadata_for_delalloc(root, inode, 1); 3150 goto out; 3151 } 3152 3153 page_start = page_offset(page); 3154 page_end = page_start + PAGE_CACHE_SIZE - 1; 3155 3156 if (!PageUptodate(page)) { 3157 ret = btrfs_readpage(NULL, page); 3158 lock_page(page); 3159 if (page->mapping != mapping) { 3160 unlock_page(page); 3161 page_cache_release(page); 3162 goto again; 3163 } 3164 if (!PageUptodate(page)) { 3165 ret = -EIO; 3166 goto out_unlock; 3167 } 3168 } 3169 wait_on_page_writeback(page); 3170 3171 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 3172 set_page_extent_mapped(page); 3173 3174 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3175 if (ordered) { 3176 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 3177 unlock_page(page); 3178 page_cache_release(page); 3179 btrfs_start_ordered_extent(inode, ordered, 1); 3180 btrfs_put_ordered_extent(ordered); 3181 goto again; 3182 } 3183 3184 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 3185 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3186 GFP_NOFS); 3187 3188 ret = btrfs_set_extent_delalloc(inode, page_start, page_end); 3189 if (ret) { 3190 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 3191 goto out_unlock; 3192 } 3193 3194 ret = 0; 3195 if (offset != PAGE_CACHE_SIZE) { 3196 kaddr = kmap(page); 3197 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3198 flush_dcache_page(page); 3199 kunmap(page); 3200 } 3201 ClearPageChecked(page); 3202 set_page_dirty(page); 3203 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 3204 3205 out_unlock: 3206 if (ret) 3207 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 3208 btrfs_unreserve_metadata_for_delalloc(root, inode, 1); 3209 unlock_page(page); 3210 page_cache_release(page); 3211 out: 3212 return ret; 3213 } 3214 3215 int btrfs_cont_expand(struct inode *inode, loff_t size) 3216 { 3217 struct btrfs_trans_handle *trans; 3218 struct btrfs_root *root = BTRFS_I(inode)->root; 3219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3220 struct extent_map *em; 3221 u64 mask = root->sectorsize - 1; 3222 u64 hole_start = (inode->i_size + mask) & ~mask; 3223 u64 block_end = (size + mask) & ~mask; 3224 u64 last_byte; 3225 u64 cur_offset; 3226 u64 hole_size; 3227 int err = 0; 3228 3229 if (size <= hole_start) 3230 return 0; 3231 3232 while (1) { 3233 struct btrfs_ordered_extent *ordered; 3234 btrfs_wait_ordered_range(inode, hole_start, 3235 block_end - hole_start); 3236 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 3237 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3238 if (!ordered) 3239 break; 3240 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 3241 btrfs_put_ordered_extent(ordered); 3242 } 3243 3244 cur_offset = hole_start; 3245 while (1) { 3246 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3247 block_end - cur_offset, 0); 3248 BUG_ON(IS_ERR(em) || !em); 3249 last_byte = min(extent_map_end(em), block_end); 3250 last_byte = (last_byte + mask) & ~mask; 3251 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3252 u64 hint_byte = 0; 3253 hole_size = last_byte - cur_offset; 3254 3255 err = btrfs_reserve_metadata_space(root, 2); 3256 if (err) 3257 break; 3258 3259 trans = btrfs_start_transaction(root, 1); 3260 btrfs_set_trans_block_group(trans, inode); 3261 3262 err = btrfs_drop_extents(trans, inode, cur_offset, 3263 cur_offset + hole_size, 3264 &hint_byte, 1); 3265 BUG_ON(err); 3266 3267 err = btrfs_insert_file_extent(trans, root, 3268 inode->i_ino, cur_offset, 0, 3269 0, hole_size, 0, hole_size, 3270 0, 0, 0); 3271 BUG_ON(err); 3272 3273 btrfs_drop_extent_cache(inode, hole_start, 3274 last_byte - 1, 0); 3275 3276 btrfs_end_transaction(trans, root); 3277 btrfs_unreserve_metadata_space(root, 2); 3278 } 3279 free_extent_map(em); 3280 cur_offset = last_byte; 3281 if (cur_offset >= block_end) 3282 break; 3283 } 3284 3285 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 3286 return err; 3287 } 3288 3289 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr) 3290 { 3291 struct btrfs_root *root = BTRFS_I(inode)->root; 3292 struct btrfs_trans_handle *trans; 3293 unsigned long nr; 3294 int ret; 3295 3296 if (attr->ia_size == inode->i_size) 3297 return 0; 3298 3299 if (attr->ia_size > inode->i_size) { 3300 unsigned long limit; 3301 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 3302 if (attr->ia_size > inode->i_sb->s_maxbytes) 3303 return -EFBIG; 3304 if (limit != RLIM_INFINITY && attr->ia_size > limit) { 3305 send_sig(SIGXFSZ, current, 0); 3306 return -EFBIG; 3307 } 3308 } 3309 3310 ret = btrfs_reserve_metadata_space(root, 1); 3311 if (ret) 3312 return ret; 3313 3314 trans = btrfs_start_transaction(root, 1); 3315 btrfs_set_trans_block_group(trans, inode); 3316 3317 ret = btrfs_orphan_add(trans, inode); 3318 BUG_ON(ret); 3319 3320 nr = trans->blocks_used; 3321 btrfs_end_transaction(trans, root); 3322 btrfs_unreserve_metadata_space(root, 1); 3323 btrfs_btree_balance_dirty(root, nr); 3324 3325 if (attr->ia_size > inode->i_size) { 3326 ret = btrfs_cont_expand(inode, attr->ia_size); 3327 if (ret) { 3328 btrfs_truncate(inode); 3329 return ret; 3330 } 3331 3332 i_size_write(inode, attr->ia_size); 3333 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 3334 3335 trans = btrfs_start_transaction(root, 1); 3336 btrfs_set_trans_block_group(trans, inode); 3337 3338 ret = btrfs_update_inode(trans, root, inode); 3339 BUG_ON(ret); 3340 if (inode->i_nlink > 0) { 3341 ret = btrfs_orphan_del(trans, inode); 3342 BUG_ON(ret); 3343 } 3344 nr = trans->blocks_used; 3345 btrfs_end_transaction(trans, root); 3346 btrfs_btree_balance_dirty(root, nr); 3347 return 0; 3348 } 3349 3350 /* 3351 * We're truncating a file that used to have good data down to 3352 * zero. Make sure it gets into the ordered flush list so that 3353 * any new writes get down to disk quickly. 3354 */ 3355 if (attr->ia_size == 0) 3356 BTRFS_I(inode)->ordered_data_close = 1; 3357 3358 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3359 ret = vmtruncate(inode, attr->ia_size); 3360 BUG_ON(ret); 3361 3362 return 0; 3363 } 3364 3365 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3366 { 3367 struct inode *inode = dentry->d_inode; 3368 int err; 3369 3370 err = inode_change_ok(inode, attr); 3371 if (err) 3372 return err; 3373 3374 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3375 err = btrfs_setattr_size(inode, attr); 3376 if (err) 3377 return err; 3378 } 3379 attr->ia_valid &= ~ATTR_SIZE; 3380 3381 if (attr->ia_valid) 3382 err = inode_setattr(inode, attr); 3383 3384 if (!err && ((attr->ia_valid & ATTR_MODE))) 3385 err = btrfs_acl_chmod(inode); 3386 return err; 3387 } 3388 3389 void btrfs_delete_inode(struct inode *inode) 3390 { 3391 struct btrfs_trans_handle *trans; 3392 struct btrfs_root *root = BTRFS_I(inode)->root; 3393 unsigned long nr; 3394 int ret; 3395 3396 truncate_inode_pages(&inode->i_data, 0); 3397 if (is_bad_inode(inode)) { 3398 btrfs_orphan_del(NULL, inode); 3399 goto no_delete; 3400 } 3401 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3402 3403 if (root->fs_info->log_root_recovering) { 3404 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3405 goto no_delete; 3406 } 3407 3408 if (inode->i_nlink > 0) { 3409 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3410 goto no_delete; 3411 } 3412 3413 btrfs_i_size_write(inode, 0); 3414 3415 while (1) { 3416 trans = btrfs_start_transaction(root, 1); 3417 btrfs_set_trans_block_group(trans, inode); 3418 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3419 3420 if (ret != -EAGAIN) 3421 break; 3422 3423 nr = trans->blocks_used; 3424 btrfs_end_transaction(trans, root); 3425 trans = NULL; 3426 btrfs_btree_balance_dirty(root, nr); 3427 } 3428 3429 if (ret == 0) { 3430 ret = btrfs_orphan_del(trans, inode); 3431 BUG_ON(ret); 3432 } 3433 3434 nr = trans->blocks_used; 3435 btrfs_end_transaction(trans, root); 3436 btrfs_btree_balance_dirty(root, nr); 3437 no_delete: 3438 clear_inode(inode); 3439 return; 3440 } 3441 3442 /* 3443 * this returns the key found in the dir entry in the location pointer. 3444 * If no dir entries were found, location->objectid is 0. 3445 */ 3446 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3447 struct btrfs_key *location) 3448 { 3449 const char *name = dentry->d_name.name; 3450 int namelen = dentry->d_name.len; 3451 struct btrfs_dir_item *di; 3452 struct btrfs_path *path; 3453 struct btrfs_root *root = BTRFS_I(dir)->root; 3454 int ret = 0; 3455 3456 path = btrfs_alloc_path(); 3457 BUG_ON(!path); 3458 3459 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3460 namelen, 0); 3461 if (IS_ERR(di)) 3462 ret = PTR_ERR(di); 3463 3464 if (!di || IS_ERR(di)) 3465 goto out_err; 3466 3467 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3468 out: 3469 btrfs_free_path(path); 3470 return ret; 3471 out_err: 3472 location->objectid = 0; 3473 goto out; 3474 } 3475 3476 /* 3477 * when we hit a tree root in a directory, the btrfs part of the inode 3478 * needs to be changed to reflect the root directory of the tree root. This 3479 * is kind of like crossing a mount point. 3480 */ 3481 static int fixup_tree_root_location(struct btrfs_root *root, 3482 struct inode *dir, 3483 struct dentry *dentry, 3484 struct btrfs_key *location, 3485 struct btrfs_root **sub_root) 3486 { 3487 struct btrfs_path *path; 3488 struct btrfs_root *new_root; 3489 struct btrfs_root_ref *ref; 3490 struct extent_buffer *leaf; 3491 int ret; 3492 int err = 0; 3493 3494 path = btrfs_alloc_path(); 3495 if (!path) { 3496 err = -ENOMEM; 3497 goto out; 3498 } 3499 3500 err = -ENOENT; 3501 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3502 BTRFS_I(dir)->root->root_key.objectid, 3503 location->objectid); 3504 if (ret) { 3505 if (ret < 0) 3506 err = ret; 3507 goto out; 3508 } 3509 3510 leaf = path->nodes[0]; 3511 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3512 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino || 3513 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3514 goto out; 3515 3516 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3517 (unsigned long)(ref + 1), 3518 dentry->d_name.len); 3519 if (ret) 3520 goto out; 3521 3522 btrfs_release_path(root->fs_info->tree_root, path); 3523 3524 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3525 if (IS_ERR(new_root)) { 3526 err = PTR_ERR(new_root); 3527 goto out; 3528 } 3529 3530 if (btrfs_root_refs(&new_root->root_item) == 0) { 3531 err = -ENOENT; 3532 goto out; 3533 } 3534 3535 *sub_root = new_root; 3536 location->objectid = btrfs_root_dirid(&new_root->root_item); 3537 location->type = BTRFS_INODE_ITEM_KEY; 3538 location->offset = 0; 3539 err = 0; 3540 out: 3541 btrfs_free_path(path); 3542 return err; 3543 } 3544 3545 static void inode_tree_add(struct inode *inode) 3546 { 3547 struct btrfs_root *root = BTRFS_I(inode)->root; 3548 struct btrfs_inode *entry; 3549 struct rb_node **p; 3550 struct rb_node *parent; 3551 again: 3552 p = &root->inode_tree.rb_node; 3553 parent = NULL; 3554 3555 if (hlist_unhashed(&inode->i_hash)) 3556 return; 3557 3558 spin_lock(&root->inode_lock); 3559 while (*p) { 3560 parent = *p; 3561 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3562 3563 if (inode->i_ino < entry->vfs_inode.i_ino) 3564 p = &parent->rb_left; 3565 else if (inode->i_ino > entry->vfs_inode.i_ino) 3566 p = &parent->rb_right; 3567 else { 3568 WARN_ON(!(entry->vfs_inode.i_state & 3569 (I_WILL_FREE | I_FREEING | I_CLEAR))); 3570 rb_erase(parent, &root->inode_tree); 3571 RB_CLEAR_NODE(parent); 3572 spin_unlock(&root->inode_lock); 3573 goto again; 3574 } 3575 } 3576 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3577 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3578 spin_unlock(&root->inode_lock); 3579 } 3580 3581 static void inode_tree_del(struct inode *inode) 3582 { 3583 struct btrfs_root *root = BTRFS_I(inode)->root; 3584 int empty = 0; 3585 3586 spin_lock(&root->inode_lock); 3587 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3588 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3589 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3590 empty = RB_EMPTY_ROOT(&root->inode_tree); 3591 } 3592 spin_unlock(&root->inode_lock); 3593 3594 if (empty && btrfs_root_refs(&root->root_item) == 0) { 3595 synchronize_srcu(&root->fs_info->subvol_srcu); 3596 spin_lock(&root->inode_lock); 3597 empty = RB_EMPTY_ROOT(&root->inode_tree); 3598 spin_unlock(&root->inode_lock); 3599 if (empty) 3600 btrfs_add_dead_root(root); 3601 } 3602 } 3603 3604 int btrfs_invalidate_inodes(struct btrfs_root *root) 3605 { 3606 struct rb_node *node; 3607 struct rb_node *prev; 3608 struct btrfs_inode *entry; 3609 struct inode *inode; 3610 u64 objectid = 0; 3611 3612 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3613 3614 spin_lock(&root->inode_lock); 3615 again: 3616 node = root->inode_tree.rb_node; 3617 prev = NULL; 3618 while (node) { 3619 prev = node; 3620 entry = rb_entry(node, struct btrfs_inode, rb_node); 3621 3622 if (objectid < entry->vfs_inode.i_ino) 3623 node = node->rb_left; 3624 else if (objectid > entry->vfs_inode.i_ino) 3625 node = node->rb_right; 3626 else 3627 break; 3628 } 3629 if (!node) { 3630 while (prev) { 3631 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3632 if (objectid <= entry->vfs_inode.i_ino) { 3633 node = prev; 3634 break; 3635 } 3636 prev = rb_next(prev); 3637 } 3638 } 3639 while (node) { 3640 entry = rb_entry(node, struct btrfs_inode, rb_node); 3641 objectid = entry->vfs_inode.i_ino + 1; 3642 inode = igrab(&entry->vfs_inode); 3643 if (inode) { 3644 spin_unlock(&root->inode_lock); 3645 if (atomic_read(&inode->i_count) > 1) 3646 d_prune_aliases(inode); 3647 /* 3648 * btrfs_drop_inode will remove it from 3649 * the inode cache when its usage count 3650 * hits zero. 3651 */ 3652 iput(inode); 3653 cond_resched(); 3654 spin_lock(&root->inode_lock); 3655 goto again; 3656 } 3657 3658 if (cond_resched_lock(&root->inode_lock)) 3659 goto again; 3660 3661 node = rb_next(node); 3662 } 3663 spin_unlock(&root->inode_lock); 3664 return 0; 3665 } 3666 3667 static noinline void init_btrfs_i(struct inode *inode) 3668 { 3669 struct btrfs_inode *bi = BTRFS_I(inode); 3670 3671 bi->generation = 0; 3672 bi->sequence = 0; 3673 bi->last_trans = 0; 3674 bi->last_sub_trans = 0; 3675 bi->logged_trans = 0; 3676 bi->delalloc_bytes = 0; 3677 bi->reserved_bytes = 0; 3678 bi->disk_i_size = 0; 3679 bi->flags = 0; 3680 bi->index_cnt = (u64)-1; 3681 bi->last_unlink_trans = 0; 3682 bi->ordered_data_close = 0; 3683 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 3684 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 3685 inode->i_mapping, GFP_NOFS); 3686 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3687 inode->i_mapping, GFP_NOFS); 3688 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3689 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations); 3690 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3691 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3692 mutex_init(&BTRFS_I(inode)->log_mutex); 3693 } 3694 3695 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3696 { 3697 struct btrfs_iget_args *args = p; 3698 inode->i_ino = args->ino; 3699 init_btrfs_i(inode); 3700 BTRFS_I(inode)->root = args->root; 3701 btrfs_set_inode_space_info(args->root, inode); 3702 return 0; 3703 } 3704 3705 static int btrfs_find_actor(struct inode *inode, void *opaque) 3706 { 3707 struct btrfs_iget_args *args = opaque; 3708 return args->ino == inode->i_ino && 3709 args->root == BTRFS_I(inode)->root; 3710 } 3711 3712 static struct inode *btrfs_iget_locked(struct super_block *s, 3713 u64 objectid, 3714 struct btrfs_root *root) 3715 { 3716 struct inode *inode; 3717 struct btrfs_iget_args args; 3718 args.ino = objectid; 3719 args.root = root; 3720 3721 inode = iget5_locked(s, objectid, btrfs_find_actor, 3722 btrfs_init_locked_inode, 3723 (void *)&args); 3724 return inode; 3725 } 3726 3727 /* Get an inode object given its location and corresponding root. 3728 * Returns in *is_new if the inode was read from disk 3729 */ 3730 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3731 struct btrfs_root *root) 3732 { 3733 struct inode *inode; 3734 3735 inode = btrfs_iget_locked(s, location->objectid, root); 3736 if (!inode) 3737 return ERR_PTR(-ENOMEM); 3738 3739 if (inode->i_state & I_NEW) { 3740 BTRFS_I(inode)->root = root; 3741 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3742 btrfs_read_locked_inode(inode); 3743 3744 inode_tree_add(inode); 3745 unlock_new_inode(inode); 3746 } 3747 3748 return inode; 3749 } 3750 3751 static struct inode *new_simple_dir(struct super_block *s, 3752 struct btrfs_key *key, 3753 struct btrfs_root *root) 3754 { 3755 struct inode *inode = new_inode(s); 3756 3757 if (!inode) 3758 return ERR_PTR(-ENOMEM); 3759 3760 init_btrfs_i(inode); 3761 3762 BTRFS_I(inode)->root = root; 3763 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3764 BTRFS_I(inode)->dummy_inode = 1; 3765 3766 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3767 inode->i_op = &simple_dir_inode_operations; 3768 inode->i_fop = &simple_dir_operations; 3769 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 3770 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3771 3772 return inode; 3773 } 3774 3775 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3776 { 3777 struct inode *inode; 3778 struct btrfs_root *root = BTRFS_I(dir)->root; 3779 struct btrfs_root *sub_root = root; 3780 struct btrfs_key location; 3781 int index; 3782 int ret; 3783 3784 dentry->d_op = &btrfs_dentry_operations; 3785 3786 if (dentry->d_name.len > BTRFS_NAME_LEN) 3787 return ERR_PTR(-ENAMETOOLONG); 3788 3789 ret = btrfs_inode_by_name(dir, dentry, &location); 3790 3791 if (ret < 0) 3792 return ERR_PTR(ret); 3793 3794 if (location.objectid == 0) 3795 return NULL; 3796 3797 if (location.type == BTRFS_INODE_ITEM_KEY) { 3798 inode = btrfs_iget(dir->i_sb, &location, root); 3799 return inode; 3800 } 3801 3802 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 3803 3804 index = srcu_read_lock(&root->fs_info->subvol_srcu); 3805 ret = fixup_tree_root_location(root, dir, dentry, 3806 &location, &sub_root); 3807 if (ret < 0) { 3808 if (ret != -ENOENT) 3809 inode = ERR_PTR(ret); 3810 else 3811 inode = new_simple_dir(dir->i_sb, &location, sub_root); 3812 } else { 3813 inode = btrfs_iget(dir->i_sb, &location, sub_root); 3814 } 3815 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 3816 3817 if (root != sub_root) { 3818 down_read(&root->fs_info->cleanup_work_sem); 3819 if (!(inode->i_sb->s_flags & MS_RDONLY)) 3820 btrfs_orphan_cleanup(sub_root); 3821 up_read(&root->fs_info->cleanup_work_sem); 3822 } 3823 3824 return inode; 3825 } 3826 3827 static int btrfs_dentry_delete(struct dentry *dentry) 3828 { 3829 struct btrfs_root *root; 3830 3831 if (!dentry->d_inode && !IS_ROOT(dentry)) 3832 dentry = dentry->d_parent; 3833 3834 if (dentry->d_inode) { 3835 root = BTRFS_I(dentry->d_inode)->root; 3836 if (btrfs_root_refs(&root->root_item) == 0) 3837 return 1; 3838 } 3839 return 0; 3840 } 3841 3842 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3843 struct nameidata *nd) 3844 { 3845 struct inode *inode; 3846 3847 inode = btrfs_lookup_dentry(dir, dentry); 3848 if (IS_ERR(inode)) 3849 return ERR_CAST(inode); 3850 3851 return d_splice_alias(inode, dentry); 3852 } 3853 3854 static unsigned char btrfs_filetype_table[] = { 3855 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3856 }; 3857 3858 static int btrfs_real_readdir(struct file *filp, void *dirent, 3859 filldir_t filldir) 3860 { 3861 struct inode *inode = filp->f_dentry->d_inode; 3862 struct btrfs_root *root = BTRFS_I(inode)->root; 3863 struct btrfs_item *item; 3864 struct btrfs_dir_item *di; 3865 struct btrfs_key key; 3866 struct btrfs_key found_key; 3867 struct btrfs_path *path; 3868 int ret; 3869 u32 nritems; 3870 struct extent_buffer *leaf; 3871 int slot; 3872 int advance; 3873 unsigned char d_type; 3874 int over = 0; 3875 u32 di_cur; 3876 u32 di_total; 3877 u32 di_len; 3878 int key_type = BTRFS_DIR_INDEX_KEY; 3879 char tmp_name[32]; 3880 char *name_ptr; 3881 int name_len; 3882 3883 /* FIXME, use a real flag for deciding about the key type */ 3884 if (root->fs_info->tree_root == root) 3885 key_type = BTRFS_DIR_ITEM_KEY; 3886 3887 /* special case for "." */ 3888 if (filp->f_pos == 0) { 3889 over = filldir(dirent, ".", 1, 3890 1, inode->i_ino, 3891 DT_DIR); 3892 if (over) 3893 return 0; 3894 filp->f_pos = 1; 3895 } 3896 /* special case for .., just use the back ref */ 3897 if (filp->f_pos == 1) { 3898 u64 pino = parent_ino(filp->f_path.dentry); 3899 over = filldir(dirent, "..", 2, 3900 2, pino, DT_DIR); 3901 if (over) 3902 return 0; 3903 filp->f_pos = 2; 3904 } 3905 path = btrfs_alloc_path(); 3906 path->reada = 2; 3907 3908 btrfs_set_key_type(&key, key_type); 3909 key.offset = filp->f_pos; 3910 key.objectid = inode->i_ino; 3911 3912 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3913 if (ret < 0) 3914 goto err; 3915 advance = 0; 3916 3917 while (1) { 3918 leaf = path->nodes[0]; 3919 nritems = btrfs_header_nritems(leaf); 3920 slot = path->slots[0]; 3921 if (advance || slot >= nritems) { 3922 if (slot >= nritems - 1) { 3923 ret = btrfs_next_leaf(root, path); 3924 if (ret) 3925 break; 3926 leaf = path->nodes[0]; 3927 nritems = btrfs_header_nritems(leaf); 3928 slot = path->slots[0]; 3929 } else { 3930 slot++; 3931 path->slots[0]++; 3932 } 3933 } 3934 3935 advance = 1; 3936 item = btrfs_item_nr(leaf, slot); 3937 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3938 3939 if (found_key.objectid != key.objectid) 3940 break; 3941 if (btrfs_key_type(&found_key) != key_type) 3942 break; 3943 if (found_key.offset < filp->f_pos) 3944 continue; 3945 3946 filp->f_pos = found_key.offset; 3947 3948 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3949 di_cur = 0; 3950 di_total = btrfs_item_size(leaf, item); 3951 3952 while (di_cur < di_total) { 3953 struct btrfs_key location; 3954 3955 name_len = btrfs_dir_name_len(leaf, di); 3956 if (name_len <= sizeof(tmp_name)) { 3957 name_ptr = tmp_name; 3958 } else { 3959 name_ptr = kmalloc(name_len, GFP_NOFS); 3960 if (!name_ptr) { 3961 ret = -ENOMEM; 3962 goto err; 3963 } 3964 } 3965 read_extent_buffer(leaf, name_ptr, 3966 (unsigned long)(di + 1), name_len); 3967 3968 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3969 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3970 3971 /* is this a reference to our own snapshot? If so 3972 * skip it 3973 */ 3974 if (location.type == BTRFS_ROOT_ITEM_KEY && 3975 location.objectid == root->root_key.objectid) { 3976 over = 0; 3977 goto skip; 3978 } 3979 over = filldir(dirent, name_ptr, name_len, 3980 found_key.offset, location.objectid, 3981 d_type); 3982 3983 skip: 3984 if (name_ptr != tmp_name) 3985 kfree(name_ptr); 3986 3987 if (over) 3988 goto nopos; 3989 di_len = btrfs_dir_name_len(leaf, di) + 3990 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3991 di_cur += di_len; 3992 di = (struct btrfs_dir_item *)((char *)di + di_len); 3993 } 3994 } 3995 3996 /* Reached end of directory/root. Bump pos past the last item. */ 3997 if (key_type == BTRFS_DIR_INDEX_KEY) 3998 filp->f_pos = INT_LIMIT(off_t); 3999 else 4000 filp->f_pos++; 4001 nopos: 4002 ret = 0; 4003 err: 4004 btrfs_free_path(path); 4005 return ret; 4006 } 4007 4008 int btrfs_write_inode(struct inode *inode, int wait) 4009 { 4010 struct btrfs_root *root = BTRFS_I(inode)->root; 4011 struct btrfs_trans_handle *trans; 4012 int ret = 0; 4013 4014 if (root->fs_info->btree_inode == inode) 4015 return 0; 4016 4017 if (wait) { 4018 trans = btrfs_join_transaction(root, 1); 4019 btrfs_set_trans_block_group(trans, inode); 4020 ret = btrfs_commit_transaction(trans, root); 4021 } 4022 return ret; 4023 } 4024 4025 /* 4026 * This is somewhat expensive, updating the tree every time the 4027 * inode changes. But, it is most likely to find the inode in cache. 4028 * FIXME, needs more benchmarking...there are no reasons other than performance 4029 * to keep or drop this code. 4030 */ 4031 void btrfs_dirty_inode(struct inode *inode) 4032 { 4033 struct btrfs_root *root = BTRFS_I(inode)->root; 4034 struct btrfs_trans_handle *trans; 4035 4036 trans = btrfs_join_transaction(root, 1); 4037 btrfs_set_trans_block_group(trans, inode); 4038 btrfs_update_inode(trans, root, inode); 4039 btrfs_end_transaction(trans, root); 4040 } 4041 4042 /* 4043 * find the highest existing sequence number in a directory 4044 * and then set the in-memory index_cnt variable to reflect 4045 * free sequence numbers 4046 */ 4047 static int btrfs_set_inode_index_count(struct inode *inode) 4048 { 4049 struct btrfs_root *root = BTRFS_I(inode)->root; 4050 struct btrfs_key key, found_key; 4051 struct btrfs_path *path; 4052 struct extent_buffer *leaf; 4053 int ret; 4054 4055 key.objectid = inode->i_ino; 4056 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4057 key.offset = (u64)-1; 4058 4059 path = btrfs_alloc_path(); 4060 if (!path) 4061 return -ENOMEM; 4062 4063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4064 if (ret < 0) 4065 goto out; 4066 /* FIXME: we should be able to handle this */ 4067 if (ret == 0) 4068 goto out; 4069 ret = 0; 4070 4071 /* 4072 * MAGIC NUMBER EXPLANATION: 4073 * since we search a directory based on f_pos we have to start at 2 4074 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4075 * else has to start at 2 4076 */ 4077 if (path->slots[0] == 0) { 4078 BTRFS_I(inode)->index_cnt = 2; 4079 goto out; 4080 } 4081 4082 path->slots[0]--; 4083 4084 leaf = path->nodes[0]; 4085 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4086 4087 if (found_key.objectid != inode->i_ino || 4088 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4089 BTRFS_I(inode)->index_cnt = 2; 4090 goto out; 4091 } 4092 4093 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4094 out: 4095 btrfs_free_path(path); 4096 return ret; 4097 } 4098 4099 /* 4100 * helper to find a free sequence number in a given directory. This current 4101 * code is very simple, later versions will do smarter things in the btree 4102 */ 4103 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4104 { 4105 int ret = 0; 4106 4107 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4108 ret = btrfs_set_inode_index_count(dir); 4109 if (ret) 4110 return ret; 4111 } 4112 4113 *index = BTRFS_I(dir)->index_cnt; 4114 BTRFS_I(dir)->index_cnt++; 4115 4116 return ret; 4117 } 4118 4119 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4120 struct btrfs_root *root, 4121 struct inode *dir, 4122 const char *name, int name_len, 4123 u64 ref_objectid, u64 objectid, 4124 u64 alloc_hint, int mode, u64 *index) 4125 { 4126 struct inode *inode; 4127 struct btrfs_inode_item *inode_item; 4128 struct btrfs_key *location; 4129 struct btrfs_path *path; 4130 struct btrfs_inode_ref *ref; 4131 struct btrfs_key key[2]; 4132 u32 sizes[2]; 4133 unsigned long ptr; 4134 int ret; 4135 int owner; 4136 4137 path = btrfs_alloc_path(); 4138 BUG_ON(!path); 4139 4140 inode = new_inode(root->fs_info->sb); 4141 if (!inode) 4142 return ERR_PTR(-ENOMEM); 4143 4144 if (dir) { 4145 ret = btrfs_set_inode_index(dir, index); 4146 if (ret) { 4147 iput(inode); 4148 return ERR_PTR(ret); 4149 } 4150 } 4151 /* 4152 * index_cnt is ignored for everything but a dir, 4153 * btrfs_get_inode_index_count has an explanation for the magic 4154 * number 4155 */ 4156 init_btrfs_i(inode); 4157 BTRFS_I(inode)->index_cnt = 2; 4158 BTRFS_I(inode)->root = root; 4159 BTRFS_I(inode)->generation = trans->transid; 4160 btrfs_set_inode_space_info(root, inode); 4161 4162 if (mode & S_IFDIR) 4163 owner = 0; 4164 else 4165 owner = 1; 4166 BTRFS_I(inode)->block_group = 4167 btrfs_find_block_group(root, 0, alloc_hint, owner); 4168 4169 key[0].objectid = objectid; 4170 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4171 key[0].offset = 0; 4172 4173 key[1].objectid = objectid; 4174 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4175 key[1].offset = ref_objectid; 4176 4177 sizes[0] = sizeof(struct btrfs_inode_item); 4178 sizes[1] = name_len + sizeof(*ref); 4179 4180 path->leave_spinning = 1; 4181 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4182 if (ret != 0) 4183 goto fail; 4184 4185 inode->i_uid = current_fsuid(); 4186 4187 if (dir && (dir->i_mode & S_ISGID)) { 4188 inode->i_gid = dir->i_gid; 4189 if (S_ISDIR(mode)) 4190 mode |= S_ISGID; 4191 } else 4192 inode->i_gid = current_fsgid(); 4193 4194 inode->i_mode = mode; 4195 inode->i_ino = objectid; 4196 inode_set_bytes(inode, 0); 4197 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4198 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4199 struct btrfs_inode_item); 4200 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4201 4202 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4203 struct btrfs_inode_ref); 4204 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4205 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4206 ptr = (unsigned long)(ref + 1); 4207 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4208 4209 btrfs_mark_buffer_dirty(path->nodes[0]); 4210 btrfs_free_path(path); 4211 4212 location = &BTRFS_I(inode)->location; 4213 location->objectid = objectid; 4214 location->offset = 0; 4215 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4216 4217 btrfs_inherit_iflags(inode, dir); 4218 4219 if ((mode & S_IFREG)) { 4220 if (btrfs_test_opt(root, NODATASUM)) 4221 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4222 if (btrfs_test_opt(root, NODATACOW)) 4223 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4224 } 4225 4226 insert_inode_hash(inode); 4227 inode_tree_add(inode); 4228 return inode; 4229 fail: 4230 if (dir) 4231 BTRFS_I(dir)->index_cnt--; 4232 btrfs_free_path(path); 4233 iput(inode); 4234 return ERR_PTR(ret); 4235 } 4236 4237 static inline u8 btrfs_inode_type(struct inode *inode) 4238 { 4239 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4240 } 4241 4242 /* 4243 * utility function to add 'inode' into 'parent_inode' with 4244 * a give name and a given sequence number. 4245 * if 'add_backref' is true, also insert a backref from the 4246 * inode to the parent directory. 4247 */ 4248 int btrfs_add_link(struct btrfs_trans_handle *trans, 4249 struct inode *parent_inode, struct inode *inode, 4250 const char *name, int name_len, int add_backref, u64 index) 4251 { 4252 int ret = 0; 4253 struct btrfs_key key; 4254 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4255 4256 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4257 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4258 } else { 4259 key.objectid = inode->i_ino; 4260 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4261 key.offset = 0; 4262 } 4263 4264 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4265 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4266 key.objectid, root->root_key.objectid, 4267 parent_inode->i_ino, 4268 index, name, name_len); 4269 } else if (add_backref) { 4270 ret = btrfs_insert_inode_ref(trans, root, 4271 name, name_len, inode->i_ino, 4272 parent_inode->i_ino, index); 4273 } 4274 4275 if (ret == 0) { 4276 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4277 parent_inode->i_ino, &key, 4278 btrfs_inode_type(inode), index); 4279 BUG_ON(ret); 4280 4281 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4282 name_len * 2); 4283 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4284 ret = btrfs_update_inode(trans, root, parent_inode); 4285 } 4286 return ret; 4287 } 4288 4289 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4290 struct dentry *dentry, struct inode *inode, 4291 int backref, u64 index) 4292 { 4293 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 4294 inode, dentry->d_name.name, 4295 dentry->d_name.len, backref, index); 4296 if (!err) { 4297 d_instantiate(dentry, inode); 4298 return 0; 4299 } 4300 if (err > 0) 4301 err = -EEXIST; 4302 return err; 4303 } 4304 4305 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4306 int mode, dev_t rdev) 4307 { 4308 struct btrfs_trans_handle *trans; 4309 struct btrfs_root *root = BTRFS_I(dir)->root; 4310 struct inode *inode = NULL; 4311 int err; 4312 int drop_inode = 0; 4313 u64 objectid; 4314 unsigned long nr = 0; 4315 u64 index = 0; 4316 4317 if (!new_valid_dev(rdev)) 4318 return -EINVAL; 4319 4320 /* 4321 * 2 for inode item and ref 4322 * 2 for dir items 4323 * 1 for xattr if selinux is on 4324 */ 4325 err = btrfs_reserve_metadata_space(root, 5); 4326 if (err) 4327 return err; 4328 4329 trans = btrfs_start_transaction(root, 1); 4330 if (!trans) 4331 goto fail; 4332 btrfs_set_trans_block_group(trans, dir); 4333 4334 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4335 if (err) { 4336 err = -ENOSPC; 4337 goto out_unlock; 4338 } 4339 4340 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4341 dentry->d_name.len, 4342 dentry->d_parent->d_inode->i_ino, objectid, 4343 BTRFS_I(dir)->block_group, mode, &index); 4344 err = PTR_ERR(inode); 4345 if (IS_ERR(inode)) 4346 goto out_unlock; 4347 4348 err = btrfs_init_inode_security(trans, inode, dir); 4349 if (err) { 4350 drop_inode = 1; 4351 goto out_unlock; 4352 } 4353 4354 btrfs_set_trans_block_group(trans, inode); 4355 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4356 if (err) 4357 drop_inode = 1; 4358 else { 4359 inode->i_op = &btrfs_special_inode_operations; 4360 init_special_inode(inode, inode->i_mode, rdev); 4361 btrfs_update_inode(trans, root, inode); 4362 } 4363 btrfs_update_inode_block_group(trans, inode); 4364 btrfs_update_inode_block_group(trans, dir); 4365 out_unlock: 4366 nr = trans->blocks_used; 4367 btrfs_end_transaction_throttle(trans, root); 4368 fail: 4369 btrfs_unreserve_metadata_space(root, 5); 4370 if (drop_inode) { 4371 inode_dec_link_count(inode); 4372 iput(inode); 4373 } 4374 btrfs_btree_balance_dirty(root, nr); 4375 return err; 4376 } 4377 4378 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4379 int mode, struct nameidata *nd) 4380 { 4381 struct btrfs_trans_handle *trans; 4382 struct btrfs_root *root = BTRFS_I(dir)->root; 4383 struct inode *inode = NULL; 4384 int err; 4385 int drop_inode = 0; 4386 unsigned long nr = 0; 4387 u64 objectid; 4388 u64 index = 0; 4389 4390 /* 4391 * 2 for inode item and ref 4392 * 2 for dir items 4393 * 1 for xattr if selinux is on 4394 */ 4395 err = btrfs_reserve_metadata_space(root, 5); 4396 if (err) 4397 return err; 4398 4399 trans = btrfs_start_transaction(root, 1); 4400 if (!trans) 4401 goto fail; 4402 btrfs_set_trans_block_group(trans, dir); 4403 4404 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4405 if (err) { 4406 err = -ENOSPC; 4407 goto out_unlock; 4408 } 4409 4410 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4411 dentry->d_name.len, 4412 dentry->d_parent->d_inode->i_ino, 4413 objectid, BTRFS_I(dir)->block_group, mode, 4414 &index); 4415 err = PTR_ERR(inode); 4416 if (IS_ERR(inode)) 4417 goto out_unlock; 4418 4419 err = btrfs_init_inode_security(trans, inode, dir); 4420 if (err) { 4421 drop_inode = 1; 4422 goto out_unlock; 4423 } 4424 4425 btrfs_set_trans_block_group(trans, inode); 4426 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4427 if (err) 4428 drop_inode = 1; 4429 else { 4430 inode->i_mapping->a_ops = &btrfs_aops; 4431 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4432 inode->i_fop = &btrfs_file_operations; 4433 inode->i_op = &btrfs_file_inode_operations; 4434 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4435 } 4436 btrfs_update_inode_block_group(trans, inode); 4437 btrfs_update_inode_block_group(trans, dir); 4438 out_unlock: 4439 nr = trans->blocks_used; 4440 btrfs_end_transaction_throttle(trans, root); 4441 fail: 4442 btrfs_unreserve_metadata_space(root, 5); 4443 if (drop_inode) { 4444 inode_dec_link_count(inode); 4445 iput(inode); 4446 } 4447 btrfs_btree_balance_dirty(root, nr); 4448 return err; 4449 } 4450 4451 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4452 struct dentry *dentry) 4453 { 4454 struct btrfs_trans_handle *trans; 4455 struct btrfs_root *root = BTRFS_I(dir)->root; 4456 struct inode *inode = old_dentry->d_inode; 4457 u64 index; 4458 unsigned long nr = 0; 4459 int err; 4460 int drop_inode = 0; 4461 4462 if (inode->i_nlink == 0) 4463 return -ENOENT; 4464 4465 /* do not allow sys_link's with other subvols of the same device */ 4466 if (root->objectid != BTRFS_I(inode)->root->objectid) 4467 return -EPERM; 4468 4469 /* 4470 * 1 item for inode ref 4471 * 2 items for dir items 4472 */ 4473 err = btrfs_reserve_metadata_space(root, 3); 4474 if (err) 4475 return err; 4476 4477 btrfs_inc_nlink(inode); 4478 4479 err = btrfs_set_inode_index(dir, &index); 4480 if (err) 4481 goto fail; 4482 4483 trans = btrfs_start_transaction(root, 1); 4484 4485 btrfs_set_trans_block_group(trans, dir); 4486 atomic_inc(&inode->i_count); 4487 4488 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 4489 4490 if (err) { 4491 drop_inode = 1; 4492 } else { 4493 btrfs_update_inode_block_group(trans, dir); 4494 err = btrfs_update_inode(trans, root, inode); 4495 BUG_ON(err); 4496 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent); 4497 } 4498 4499 nr = trans->blocks_used; 4500 btrfs_end_transaction_throttle(trans, root); 4501 fail: 4502 btrfs_unreserve_metadata_space(root, 3); 4503 if (drop_inode) { 4504 inode_dec_link_count(inode); 4505 iput(inode); 4506 } 4507 btrfs_btree_balance_dirty(root, nr); 4508 return err; 4509 } 4510 4511 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4512 { 4513 struct inode *inode = NULL; 4514 struct btrfs_trans_handle *trans; 4515 struct btrfs_root *root = BTRFS_I(dir)->root; 4516 int err = 0; 4517 int drop_on_err = 0; 4518 u64 objectid = 0; 4519 u64 index = 0; 4520 unsigned long nr = 1; 4521 4522 /* 4523 * 2 items for inode and ref 4524 * 2 items for dir items 4525 * 1 for xattr if selinux is on 4526 */ 4527 err = btrfs_reserve_metadata_space(root, 5); 4528 if (err) 4529 return err; 4530 4531 trans = btrfs_start_transaction(root, 1); 4532 if (!trans) { 4533 err = -ENOMEM; 4534 goto out_unlock; 4535 } 4536 btrfs_set_trans_block_group(trans, dir); 4537 4538 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4539 if (err) { 4540 err = -ENOSPC; 4541 goto out_unlock; 4542 } 4543 4544 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4545 dentry->d_name.len, 4546 dentry->d_parent->d_inode->i_ino, objectid, 4547 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4548 &index); 4549 if (IS_ERR(inode)) { 4550 err = PTR_ERR(inode); 4551 goto out_fail; 4552 } 4553 4554 drop_on_err = 1; 4555 4556 err = btrfs_init_inode_security(trans, inode, dir); 4557 if (err) 4558 goto out_fail; 4559 4560 inode->i_op = &btrfs_dir_inode_operations; 4561 inode->i_fop = &btrfs_dir_file_operations; 4562 btrfs_set_trans_block_group(trans, inode); 4563 4564 btrfs_i_size_write(inode, 0); 4565 err = btrfs_update_inode(trans, root, inode); 4566 if (err) 4567 goto out_fail; 4568 4569 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 4570 inode, dentry->d_name.name, 4571 dentry->d_name.len, 0, index); 4572 if (err) 4573 goto out_fail; 4574 4575 d_instantiate(dentry, inode); 4576 drop_on_err = 0; 4577 btrfs_update_inode_block_group(trans, inode); 4578 btrfs_update_inode_block_group(trans, dir); 4579 4580 out_fail: 4581 nr = trans->blocks_used; 4582 btrfs_end_transaction_throttle(trans, root); 4583 4584 out_unlock: 4585 btrfs_unreserve_metadata_space(root, 5); 4586 if (drop_on_err) 4587 iput(inode); 4588 btrfs_btree_balance_dirty(root, nr); 4589 return err; 4590 } 4591 4592 /* helper for btfs_get_extent. Given an existing extent in the tree, 4593 * and an extent that you want to insert, deal with overlap and insert 4594 * the new extent into the tree. 4595 */ 4596 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4597 struct extent_map *existing, 4598 struct extent_map *em, 4599 u64 map_start, u64 map_len) 4600 { 4601 u64 start_diff; 4602 4603 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4604 start_diff = map_start - em->start; 4605 em->start = map_start; 4606 em->len = map_len; 4607 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4608 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4609 em->block_start += start_diff; 4610 em->block_len -= start_diff; 4611 } 4612 return add_extent_mapping(em_tree, em); 4613 } 4614 4615 static noinline int uncompress_inline(struct btrfs_path *path, 4616 struct inode *inode, struct page *page, 4617 size_t pg_offset, u64 extent_offset, 4618 struct btrfs_file_extent_item *item) 4619 { 4620 int ret; 4621 struct extent_buffer *leaf = path->nodes[0]; 4622 char *tmp; 4623 size_t max_size; 4624 unsigned long inline_size; 4625 unsigned long ptr; 4626 4627 WARN_ON(pg_offset != 0); 4628 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4629 inline_size = btrfs_file_extent_inline_item_len(leaf, 4630 btrfs_item_nr(leaf, path->slots[0])); 4631 tmp = kmalloc(inline_size, GFP_NOFS); 4632 ptr = btrfs_file_extent_inline_start(item); 4633 4634 read_extent_buffer(leaf, tmp, ptr, inline_size); 4635 4636 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4637 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4638 inline_size, max_size); 4639 if (ret) { 4640 char *kaddr = kmap_atomic(page, KM_USER0); 4641 unsigned long copy_size = min_t(u64, 4642 PAGE_CACHE_SIZE - pg_offset, 4643 max_size - extent_offset); 4644 memset(kaddr + pg_offset, 0, copy_size); 4645 kunmap_atomic(kaddr, KM_USER0); 4646 } 4647 kfree(tmp); 4648 return 0; 4649 } 4650 4651 /* 4652 * a bit scary, this does extent mapping from logical file offset to the disk. 4653 * the ugly parts come from merging extents from the disk with the in-ram 4654 * representation. This gets more complex because of the data=ordered code, 4655 * where the in-ram extents might be locked pending data=ordered completion. 4656 * 4657 * This also copies inline extents directly into the page. 4658 */ 4659 4660 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4661 size_t pg_offset, u64 start, u64 len, 4662 int create) 4663 { 4664 int ret; 4665 int err = 0; 4666 u64 bytenr; 4667 u64 extent_start = 0; 4668 u64 extent_end = 0; 4669 u64 objectid = inode->i_ino; 4670 u32 found_type; 4671 struct btrfs_path *path = NULL; 4672 struct btrfs_root *root = BTRFS_I(inode)->root; 4673 struct btrfs_file_extent_item *item; 4674 struct extent_buffer *leaf; 4675 struct btrfs_key found_key; 4676 struct extent_map *em = NULL; 4677 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4678 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4679 struct btrfs_trans_handle *trans = NULL; 4680 int compressed; 4681 4682 again: 4683 read_lock(&em_tree->lock); 4684 em = lookup_extent_mapping(em_tree, start, len); 4685 if (em) 4686 em->bdev = root->fs_info->fs_devices->latest_bdev; 4687 read_unlock(&em_tree->lock); 4688 4689 if (em) { 4690 if (em->start > start || em->start + em->len <= start) 4691 free_extent_map(em); 4692 else if (em->block_start == EXTENT_MAP_INLINE && page) 4693 free_extent_map(em); 4694 else 4695 goto out; 4696 } 4697 em = alloc_extent_map(GFP_NOFS); 4698 if (!em) { 4699 err = -ENOMEM; 4700 goto out; 4701 } 4702 em->bdev = root->fs_info->fs_devices->latest_bdev; 4703 em->start = EXTENT_MAP_HOLE; 4704 em->orig_start = EXTENT_MAP_HOLE; 4705 em->len = (u64)-1; 4706 em->block_len = (u64)-1; 4707 4708 if (!path) { 4709 path = btrfs_alloc_path(); 4710 BUG_ON(!path); 4711 } 4712 4713 ret = btrfs_lookup_file_extent(trans, root, path, 4714 objectid, start, trans != NULL); 4715 if (ret < 0) { 4716 err = ret; 4717 goto out; 4718 } 4719 4720 if (ret != 0) { 4721 if (path->slots[0] == 0) 4722 goto not_found; 4723 path->slots[0]--; 4724 } 4725 4726 leaf = path->nodes[0]; 4727 item = btrfs_item_ptr(leaf, path->slots[0], 4728 struct btrfs_file_extent_item); 4729 /* are we inside the extent that was found? */ 4730 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4731 found_type = btrfs_key_type(&found_key); 4732 if (found_key.objectid != objectid || 4733 found_type != BTRFS_EXTENT_DATA_KEY) { 4734 goto not_found; 4735 } 4736 4737 found_type = btrfs_file_extent_type(leaf, item); 4738 extent_start = found_key.offset; 4739 compressed = btrfs_file_extent_compression(leaf, item); 4740 if (found_type == BTRFS_FILE_EXTENT_REG || 4741 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4742 extent_end = extent_start + 4743 btrfs_file_extent_num_bytes(leaf, item); 4744 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4745 size_t size; 4746 size = btrfs_file_extent_inline_len(leaf, item); 4747 extent_end = (extent_start + size + root->sectorsize - 1) & 4748 ~((u64)root->sectorsize - 1); 4749 } 4750 4751 if (start >= extent_end) { 4752 path->slots[0]++; 4753 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4754 ret = btrfs_next_leaf(root, path); 4755 if (ret < 0) { 4756 err = ret; 4757 goto out; 4758 } 4759 if (ret > 0) 4760 goto not_found; 4761 leaf = path->nodes[0]; 4762 } 4763 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4764 if (found_key.objectid != objectid || 4765 found_key.type != BTRFS_EXTENT_DATA_KEY) 4766 goto not_found; 4767 if (start + len <= found_key.offset) 4768 goto not_found; 4769 em->start = start; 4770 em->len = found_key.offset - start; 4771 goto not_found_em; 4772 } 4773 4774 if (found_type == BTRFS_FILE_EXTENT_REG || 4775 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4776 em->start = extent_start; 4777 em->len = extent_end - extent_start; 4778 em->orig_start = extent_start - 4779 btrfs_file_extent_offset(leaf, item); 4780 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4781 if (bytenr == 0) { 4782 em->block_start = EXTENT_MAP_HOLE; 4783 goto insert; 4784 } 4785 if (compressed) { 4786 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4787 em->block_start = bytenr; 4788 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4789 item); 4790 } else { 4791 bytenr += btrfs_file_extent_offset(leaf, item); 4792 em->block_start = bytenr; 4793 em->block_len = em->len; 4794 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4795 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4796 } 4797 goto insert; 4798 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4799 unsigned long ptr; 4800 char *map; 4801 size_t size; 4802 size_t extent_offset; 4803 size_t copy_size; 4804 4805 em->block_start = EXTENT_MAP_INLINE; 4806 if (!page || create) { 4807 em->start = extent_start; 4808 em->len = extent_end - extent_start; 4809 goto out; 4810 } 4811 4812 size = btrfs_file_extent_inline_len(leaf, item); 4813 extent_offset = page_offset(page) + pg_offset - extent_start; 4814 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4815 size - extent_offset); 4816 em->start = extent_start + extent_offset; 4817 em->len = (copy_size + root->sectorsize - 1) & 4818 ~((u64)root->sectorsize - 1); 4819 em->orig_start = EXTENT_MAP_INLINE; 4820 if (compressed) 4821 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4822 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4823 if (create == 0 && !PageUptodate(page)) { 4824 if (btrfs_file_extent_compression(leaf, item) == 4825 BTRFS_COMPRESS_ZLIB) { 4826 ret = uncompress_inline(path, inode, page, 4827 pg_offset, 4828 extent_offset, item); 4829 BUG_ON(ret); 4830 } else { 4831 map = kmap(page); 4832 read_extent_buffer(leaf, map + pg_offset, ptr, 4833 copy_size); 4834 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 4835 memset(map + pg_offset + copy_size, 0, 4836 PAGE_CACHE_SIZE - pg_offset - 4837 copy_size); 4838 } 4839 kunmap(page); 4840 } 4841 flush_dcache_page(page); 4842 } else if (create && PageUptodate(page)) { 4843 if (!trans) { 4844 kunmap(page); 4845 free_extent_map(em); 4846 em = NULL; 4847 btrfs_release_path(root, path); 4848 trans = btrfs_join_transaction(root, 1); 4849 goto again; 4850 } 4851 map = kmap(page); 4852 write_extent_buffer(leaf, map + pg_offset, ptr, 4853 copy_size); 4854 kunmap(page); 4855 btrfs_mark_buffer_dirty(leaf); 4856 } 4857 set_extent_uptodate(io_tree, em->start, 4858 extent_map_end(em) - 1, GFP_NOFS); 4859 goto insert; 4860 } else { 4861 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4862 WARN_ON(1); 4863 } 4864 not_found: 4865 em->start = start; 4866 em->len = len; 4867 not_found_em: 4868 em->block_start = EXTENT_MAP_HOLE; 4869 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4870 insert: 4871 btrfs_release_path(root, path); 4872 if (em->start > start || extent_map_end(em) <= start) { 4873 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4874 "[%llu %llu]\n", (unsigned long long)em->start, 4875 (unsigned long long)em->len, 4876 (unsigned long long)start, 4877 (unsigned long long)len); 4878 err = -EIO; 4879 goto out; 4880 } 4881 4882 err = 0; 4883 write_lock(&em_tree->lock); 4884 ret = add_extent_mapping(em_tree, em); 4885 /* it is possible that someone inserted the extent into the tree 4886 * while we had the lock dropped. It is also possible that 4887 * an overlapping map exists in the tree 4888 */ 4889 if (ret == -EEXIST) { 4890 struct extent_map *existing; 4891 4892 ret = 0; 4893 4894 existing = lookup_extent_mapping(em_tree, start, len); 4895 if (existing && (existing->start > start || 4896 existing->start + existing->len <= start)) { 4897 free_extent_map(existing); 4898 existing = NULL; 4899 } 4900 if (!existing) { 4901 existing = lookup_extent_mapping(em_tree, em->start, 4902 em->len); 4903 if (existing) { 4904 err = merge_extent_mapping(em_tree, existing, 4905 em, start, 4906 root->sectorsize); 4907 free_extent_map(existing); 4908 if (err) { 4909 free_extent_map(em); 4910 em = NULL; 4911 } 4912 } else { 4913 err = -EIO; 4914 free_extent_map(em); 4915 em = NULL; 4916 } 4917 } else { 4918 free_extent_map(em); 4919 em = existing; 4920 err = 0; 4921 } 4922 } 4923 write_unlock(&em_tree->lock); 4924 out: 4925 if (path) 4926 btrfs_free_path(path); 4927 if (trans) { 4928 ret = btrfs_end_transaction(trans, root); 4929 if (!err) 4930 err = ret; 4931 } 4932 if (err) { 4933 free_extent_map(em); 4934 return ERR_PTR(err); 4935 } 4936 return em; 4937 } 4938 4939 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4940 const struct iovec *iov, loff_t offset, 4941 unsigned long nr_segs) 4942 { 4943 return -EINVAL; 4944 } 4945 4946 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4947 __u64 start, __u64 len) 4948 { 4949 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4950 } 4951 4952 int btrfs_readpage(struct file *file, struct page *page) 4953 { 4954 struct extent_io_tree *tree; 4955 tree = &BTRFS_I(page->mapping->host)->io_tree; 4956 return extent_read_full_page(tree, page, btrfs_get_extent); 4957 } 4958 4959 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4960 { 4961 struct extent_io_tree *tree; 4962 4963 4964 if (current->flags & PF_MEMALLOC) { 4965 redirty_page_for_writepage(wbc, page); 4966 unlock_page(page); 4967 return 0; 4968 } 4969 tree = &BTRFS_I(page->mapping->host)->io_tree; 4970 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4971 } 4972 4973 int btrfs_writepages(struct address_space *mapping, 4974 struct writeback_control *wbc) 4975 { 4976 struct extent_io_tree *tree; 4977 4978 tree = &BTRFS_I(mapping->host)->io_tree; 4979 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4980 } 4981 4982 static int 4983 btrfs_readpages(struct file *file, struct address_space *mapping, 4984 struct list_head *pages, unsigned nr_pages) 4985 { 4986 struct extent_io_tree *tree; 4987 tree = &BTRFS_I(mapping->host)->io_tree; 4988 return extent_readpages(tree, mapping, pages, nr_pages, 4989 btrfs_get_extent); 4990 } 4991 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4992 { 4993 struct extent_io_tree *tree; 4994 struct extent_map_tree *map; 4995 int ret; 4996 4997 tree = &BTRFS_I(page->mapping->host)->io_tree; 4998 map = &BTRFS_I(page->mapping->host)->extent_tree; 4999 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 5000 if (ret == 1) { 5001 ClearPagePrivate(page); 5002 set_page_private(page, 0); 5003 page_cache_release(page); 5004 } 5005 return ret; 5006 } 5007 5008 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 5009 { 5010 if (PageWriteback(page) || PageDirty(page)) 5011 return 0; 5012 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 5013 } 5014 5015 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 5016 { 5017 struct extent_io_tree *tree; 5018 struct btrfs_ordered_extent *ordered; 5019 u64 page_start = page_offset(page); 5020 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 5021 5022 5023 /* 5024 * we have the page locked, so new writeback can't start, 5025 * and the dirty bit won't be cleared while we are here. 5026 * 5027 * Wait for IO on this page so that we can safely clear 5028 * the PagePrivate2 bit and do ordered accounting 5029 */ 5030 wait_on_page_writeback(page); 5031 5032 tree = &BTRFS_I(page->mapping->host)->io_tree; 5033 if (offset) { 5034 btrfs_releasepage(page, GFP_NOFS); 5035 return; 5036 } 5037 lock_extent(tree, page_start, page_end, GFP_NOFS); 5038 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 5039 page_offset(page)); 5040 if (ordered) { 5041 /* 5042 * IO on this page will never be started, so we need 5043 * to account for any ordered extents now 5044 */ 5045 clear_extent_bit(tree, page_start, page_end, 5046 EXTENT_DIRTY | EXTENT_DELALLOC | 5047 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 5048 NULL, GFP_NOFS); 5049 /* 5050 * whoever cleared the private bit is responsible 5051 * for the finish_ordered_io 5052 */ 5053 if (TestClearPagePrivate2(page)) { 5054 btrfs_finish_ordered_io(page->mapping->host, 5055 page_start, page_end); 5056 } 5057 btrfs_put_ordered_extent(ordered); 5058 lock_extent(tree, page_start, page_end, GFP_NOFS); 5059 } 5060 clear_extent_bit(tree, page_start, page_end, 5061 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 5062 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS); 5063 __btrfs_releasepage(page, GFP_NOFS); 5064 5065 ClearPageChecked(page); 5066 if (PagePrivate(page)) { 5067 ClearPagePrivate(page); 5068 set_page_private(page, 0); 5069 page_cache_release(page); 5070 } 5071 } 5072 5073 /* 5074 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 5075 * called from a page fault handler when a page is first dirtied. Hence we must 5076 * be careful to check for EOF conditions here. We set the page up correctly 5077 * for a written page which means we get ENOSPC checking when writing into 5078 * holes and correct delalloc and unwritten extent mapping on filesystems that 5079 * support these features. 5080 * 5081 * We are not allowed to take the i_mutex here so we have to play games to 5082 * protect against truncate races as the page could now be beyond EOF. Because 5083 * vmtruncate() writes the inode size before removing pages, once we have the 5084 * page lock we can determine safely if the page is beyond EOF. If it is not 5085 * beyond EOF, then the page is guaranteed safe against truncation until we 5086 * unlock the page. 5087 */ 5088 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5089 { 5090 struct page *page = vmf->page; 5091 struct inode *inode = fdentry(vma->vm_file)->d_inode; 5092 struct btrfs_root *root = BTRFS_I(inode)->root; 5093 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5094 struct btrfs_ordered_extent *ordered; 5095 char *kaddr; 5096 unsigned long zero_start; 5097 loff_t size; 5098 int ret; 5099 u64 page_start; 5100 u64 page_end; 5101 5102 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 5103 if (ret) { 5104 if (ret == -ENOMEM) 5105 ret = VM_FAULT_OOM; 5106 else /* -ENOSPC, -EIO, etc */ 5107 ret = VM_FAULT_SIGBUS; 5108 goto out; 5109 } 5110 5111 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1); 5112 if (ret) { 5113 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 5114 ret = VM_FAULT_SIGBUS; 5115 goto out; 5116 } 5117 5118 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 5119 again: 5120 lock_page(page); 5121 size = i_size_read(inode); 5122 page_start = page_offset(page); 5123 page_end = page_start + PAGE_CACHE_SIZE - 1; 5124 5125 if ((page->mapping != inode->i_mapping) || 5126 (page_start >= size)) { 5127 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 5128 /* page got truncated out from underneath us */ 5129 goto out_unlock; 5130 } 5131 wait_on_page_writeback(page); 5132 5133 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 5134 set_page_extent_mapped(page); 5135 5136 /* 5137 * we can't set the delalloc bits if there are pending ordered 5138 * extents. Drop our locks and wait for them to finish 5139 */ 5140 ordered = btrfs_lookup_ordered_extent(inode, page_start); 5141 if (ordered) { 5142 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 5143 unlock_page(page); 5144 btrfs_start_ordered_extent(inode, ordered, 1); 5145 btrfs_put_ordered_extent(ordered); 5146 goto again; 5147 } 5148 5149 /* 5150 * XXX - page_mkwrite gets called every time the page is dirtied, even 5151 * if it was already dirty, so for space accounting reasons we need to 5152 * clear any delalloc bits for the range we are fixing to save. There 5153 * is probably a better way to do this, but for now keep consistent with 5154 * prepare_pages in the normal write path. 5155 */ 5156 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 5157 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 5158 GFP_NOFS); 5159 5160 ret = btrfs_set_extent_delalloc(inode, page_start, page_end); 5161 if (ret) { 5162 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 5163 ret = VM_FAULT_SIGBUS; 5164 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 5165 goto out_unlock; 5166 } 5167 ret = 0; 5168 5169 /* page is wholly or partially inside EOF */ 5170 if (page_start + PAGE_CACHE_SIZE > size) 5171 zero_start = size & ~PAGE_CACHE_MASK; 5172 else 5173 zero_start = PAGE_CACHE_SIZE; 5174 5175 if (zero_start != PAGE_CACHE_SIZE) { 5176 kaddr = kmap(page); 5177 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 5178 flush_dcache_page(page); 5179 kunmap(page); 5180 } 5181 ClearPageChecked(page); 5182 set_page_dirty(page); 5183 SetPageUptodate(page); 5184 5185 BTRFS_I(inode)->last_trans = root->fs_info->generation; 5186 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 5187 5188 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 5189 5190 out_unlock: 5191 btrfs_unreserve_metadata_for_delalloc(root, inode, 1); 5192 if (!ret) 5193 return VM_FAULT_LOCKED; 5194 unlock_page(page); 5195 out: 5196 return ret; 5197 } 5198 5199 static void btrfs_truncate(struct inode *inode) 5200 { 5201 struct btrfs_root *root = BTRFS_I(inode)->root; 5202 int ret; 5203 struct btrfs_trans_handle *trans; 5204 unsigned long nr; 5205 u64 mask = root->sectorsize - 1; 5206 5207 if (!S_ISREG(inode->i_mode)) { 5208 WARN_ON(1); 5209 return; 5210 } 5211 5212 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 5213 if (ret) 5214 return; 5215 5216 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 5217 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 5218 5219 trans = btrfs_start_transaction(root, 1); 5220 btrfs_set_trans_block_group(trans, inode); 5221 5222 /* 5223 * setattr is responsible for setting the ordered_data_close flag, 5224 * but that is only tested during the last file release. That 5225 * could happen well after the next commit, leaving a great big 5226 * window where new writes may get lost if someone chooses to write 5227 * to this file after truncating to zero 5228 * 5229 * The inode doesn't have any dirty data here, and so if we commit 5230 * this is a noop. If someone immediately starts writing to the inode 5231 * it is very likely we'll catch some of their writes in this 5232 * transaction, and the commit will find this file on the ordered 5233 * data list with good things to send down. 5234 * 5235 * This is a best effort solution, there is still a window where 5236 * using truncate to replace the contents of the file will 5237 * end up with a zero length file after a crash. 5238 */ 5239 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 5240 btrfs_add_ordered_operation(trans, root, inode); 5241 5242 while (1) { 5243 ret = btrfs_truncate_inode_items(trans, root, inode, 5244 inode->i_size, 5245 BTRFS_EXTENT_DATA_KEY); 5246 if (ret != -EAGAIN) 5247 break; 5248 5249 ret = btrfs_update_inode(trans, root, inode); 5250 BUG_ON(ret); 5251 5252 nr = trans->blocks_used; 5253 btrfs_end_transaction(trans, root); 5254 btrfs_btree_balance_dirty(root, nr); 5255 5256 trans = btrfs_start_transaction(root, 1); 5257 btrfs_set_trans_block_group(trans, inode); 5258 } 5259 5260 if (ret == 0 && inode->i_nlink > 0) { 5261 ret = btrfs_orphan_del(trans, inode); 5262 BUG_ON(ret); 5263 } 5264 5265 ret = btrfs_update_inode(trans, root, inode); 5266 BUG_ON(ret); 5267 5268 nr = trans->blocks_used; 5269 ret = btrfs_end_transaction_throttle(trans, root); 5270 BUG_ON(ret); 5271 btrfs_btree_balance_dirty(root, nr); 5272 } 5273 5274 /* 5275 * create a new subvolume directory/inode (helper for the ioctl). 5276 */ 5277 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 5278 struct btrfs_root *new_root, 5279 u64 new_dirid, u64 alloc_hint) 5280 { 5281 struct inode *inode; 5282 int err; 5283 u64 index = 0; 5284 5285 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 5286 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 5287 if (IS_ERR(inode)) 5288 return PTR_ERR(inode); 5289 inode->i_op = &btrfs_dir_inode_operations; 5290 inode->i_fop = &btrfs_dir_file_operations; 5291 5292 inode->i_nlink = 1; 5293 btrfs_i_size_write(inode, 0); 5294 5295 err = btrfs_update_inode(trans, new_root, inode); 5296 BUG_ON(err); 5297 5298 iput(inode); 5299 return 0; 5300 } 5301 5302 /* helper function for file defrag and space balancing. This 5303 * forces readahead on a given range of bytes in an inode 5304 */ 5305 unsigned long btrfs_force_ra(struct address_space *mapping, 5306 struct file_ra_state *ra, struct file *file, 5307 pgoff_t offset, pgoff_t last_index) 5308 { 5309 pgoff_t req_size = last_index - offset + 1; 5310 5311 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 5312 return offset + req_size; 5313 } 5314 5315 struct inode *btrfs_alloc_inode(struct super_block *sb) 5316 { 5317 struct btrfs_inode *ei; 5318 5319 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 5320 if (!ei) 5321 return NULL; 5322 ei->last_trans = 0; 5323 ei->last_sub_trans = 0; 5324 ei->logged_trans = 0; 5325 ei->outstanding_extents = 0; 5326 ei->reserved_extents = 0; 5327 ei->root = NULL; 5328 spin_lock_init(&ei->accounting_lock); 5329 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 5330 INIT_LIST_HEAD(&ei->i_orphan); 5331 INIT_LIST_HEAD(&ei->ordered_operations); 5332 return &ei->vfs_inode; 5333 } 5334 5335 void btrfs_destroy_inode(struct inode *inode) 5336 { 5337 struct btrfs_ordered_extent *ordered; 5338 struct btrfs_root *root = BTRFS_I(inode)->root; 5339 5340 WARN_ON(!list_empty(&inode->i_dentry)); 5341 WARN_ON(inode->i_data.nrpages); 5342 5343 /* 5344 * This can happen where we create an inode, but somebody else also 5345 * created the same inode and we need to destroy the one we already 5346 * created. 5347 */ 5348 if (!root) 5349 goto free; 5350 5351 /* 5352 * Make sure we're properly removed from the ordered operation 5353 * lists. 5354 */ 5355 smp_mb(); 5356 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 5357 spin_lock(&root->fs_info->ordered_extent_lock); 5358 list_del_init(&BTRFS_I(inode)->ordered_operations); 5359 spin_unlock(&root->fs_info->ordered_extent_lock); 5360 } 5361 5362 spin_lock(&root->list_lock); 5363 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 5364 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n", 5365 inode->i_ino); 5366 list_del_init(&BTRFS_I(inode)->i_orphan); 5367 } 5368 spin_unlock(&root->list_lock); 5369 5370 while (1) { 5371 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 5372 if (!ordered) 5373 break; 5374 else { 5375 printk(KERN_ERR "btrfs found ordered " 5376 "extent %llu %llu on inode cleanup\n", 5377 (unsigned long long)ordered->file_offset, 5378 (unsigned long long)ordered->len); 5379 btrfs_remove_ordered_extent(inode, ordered); 5380 btrfs_put_ordered_extent(ordered); 5381 btrfs_put_ordered_extent(ordered); 5382 } 5383 } 5384 inode_tree_del(inode); 5385 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 5386 free: 5387 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5388 } 5389 5390 void btrfs_drop_inode(struct inode *inode) 5391 { 5392 struct btrfs_root *root = BTRFS_I(inode)->root; 5393 5394 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0) 5395 generic_delete_inode(inode); 5396 else 5397 generic_drop_inode(inode); 5398 } 5399 5400 static void init_once(void *foo) 5401 { 5402 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 5403 5404 inode_init_once(&ei->vfs_inode); 5405 } 5406 5407 void btrfs_destroy_cachep(void) 5408 { 5409 if (btrfs_inode_cachep) 5410 kmem_cache_destroy(btrfs_inode_cachep); 5411 if (btrfs_trans_handle_cachep) 5412 kmem_cache_destroy(btrfs_trans_handle_cachep); 5413 if (btrfs_transaction_cachep) 5414 kmem_cache_destroy(btrfs_transaction_cachep); 5415 if (btrfs_path_cachep) 5416 kmem_cache_destroy(btrfs_path_cachep); 5417 } 5418 5419 int btrfs_init_cachep(void) 5420 { 5421 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 5422 sizeof(struct btrfs_inode), 0, 5423 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 5424 if (!btrfs_inode_cachep) 5425 goto fail; 5426 5427 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 5428 sizeof(struct btrfs_trans_handle), 0, 5429 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 5430 if (!btrfs_trans_handle_cachep) 5431 goto fail; 5432 5433 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 5434 sizeof(struct btrfs_transaction), 0, 5435 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 5436 if (!btrfs_transaction_cachep) 5437 goto fail; 5438 5439 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 5440 sizeof(struct btrfs_path), 0, 5441 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 5442 if (!btrfs_path_cachep) 5443 goto fail; 5444 5445 return 0; 5446 fail: 5447 btrfs_destroy_cachep(); 5448 return -ENOMEM; 5449 } 5450 5451 static int btrfs_getattr(struct vfsmount *mnt, 5452 struct dentry *dentry, struct kstat *stat) 5453 { 5454 struct inode *inode = dentry->d_inode; 5455 generic_fillattr(inode, stat); 5456 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 5457 stat->blksize = PAGE_CACHE_SIZE; 5458 stat->blocks = (inode_get_bytes(inode) + 5459 BTRFS_I(inode)->delalloc_bytes) >> 9; 5460 return 0; 5461 } 5462 5463 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 5464 struct inode *new_dir, struct dentry *new_dentry) 5465 { 5466 struct btrfs_trans_handle *trans; 5467 struct btrfs_root *root = BTRFS_I(old_dir)->root; 5468 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 5469 struct inode *new_inode = new_dentry->d_inode; 5470 struct inode *old_inode = old_dentry->d_inode; 5471 struct timespec ctime = CURRENT_TIME; 5472 u64 index = 0; 5473 u64 root_objectid; 5474 int ret; 5475 5476 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5477 return -EPERM; 5478 5479 /* we only allow rename subvolume link between subvolumes */ 5480 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 5481 return -EXDEV; 5482 5483 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 5484 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) 5485 return -ENOTEMPTY; 5486 5487 if (S_ISDIR(old_inode->i_mode) && new_inode && 5488 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 5489 return -ENOTEMPTY; 5490 5491 /* 5492 * We want to reserve the absolute worst case amount of items. So if 5493 * both inodes are subvols and we need to unlink them then that would 5494 * require 4 item modifications, but if they are both normal inodes it 5495 * would require 5 item modifications, so we'll assume their normal 5496 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 5497 * should cover the worst case number of items we'll modify. 5498 */ 5499 ret = btrfs_reserve_metadata_space(root, 11); 5500 if (ret) 5501 return ret; 5502 5503 /* 5504 * we're using rename to replace one file with another. 5505 * and the replacement file is large. Start IO on it now so 5506 * we don't add too much work to the end of the transaction 5507 */ 5508 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 5509 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 5510 filemap_flush(old_inode->i_mapping); 5511 5512 /* close the racy window with snapshot create/destroy ioctl */ 5513 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 5514 down_read(&root->fs_info->subvol_sem); 5515 5516 trans = btrfs_start_transaction(root, 1); 5517 btrfs_set_trans_block_group(trans, new_dir); 5518 5519 if (dest != root) 5520 btrfs_record_root_in_trans(trans, dest); 5521 5522 ret = btrfs_set_inode_index(new_dir, &index); 5523 if (ret) 5524 goto out_fail; 5525 5526 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 5527 /* force full log commit if subvolume involved. */ 5528 root->fs_info->last_trans_log_full_commit = trans->transid; 5529 } else { 5530 ret = btrfs_insert_inode_ref(trans, dest, 5531 new_dentry->d_name.name, 5532 new_dentry->d_name.len, 5533 old_inode->i_ino, 5534 new_dir->i_ino, index); 5535 if (ret) 5536 goto out_fail; 5537 /* 5538 * this is an ugly little race, but the rename is required 5539 * to make sure that if we crash, the inode is either at the 5540 * old name or the new one. pinning the log transaction lets 5541 * us make sure we don't allow a log commit to come in after 5542 * we unlink the name but before we add the new name back in. 5543 */ 5544 btrfs_pin_log_trans(root); 5545 } 5546 /* 5547 * make sure the inode gets flushed if it is replacing 5548 * something. 5549 */ 5550 if (new_inode && new_inode->i_size && 5551 old_inode && S_ISREG(old_inode->i_mode)) { 5552 btrfs_add_ordered_operation(trans, root, old_inode); 5553 } 5554 5555 old_dir->i_ctime = old_dir->i_mtime = ctime; 5556 new_dir->i_ctime = new_dir->i_mtime = ctime; 5557 old_inode->i_ctime = ctime; 5558 5559 if (old_dentry->d_parent != new_dentry->d_parent) 5560 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 5561 5562 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 5563 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 5564 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 5565 old_dentry->d_name.name, 5566 old_dentry->d_name.len); 5567 } else { 5568 btrfs_inc_nlink(old_dentry->d_inode); 5569 ret = btrfs_unlink_inode(trans, root, old_dir, 5570 old_dentry->d_inode, 5571 old_dentry->d_name.name, 5572 old_dentry->d_name.len); 5573 } 5574 BUG_ON(ret); 5575 5576 if (new_inode) { 5577 new_inode->i_ctime = CURRENT_TIME; 5578 if (unlikely(new_inode->i_ino == 5579 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 5580 root_objectid = BTRFS_I(new_inode)->location.objectid; 5581 ret = btrfs_unlink_subvol(trans, dest, new_dir, 5582 root_objectid, 5583 new_dentry->d_name.name, 5584 new_dentry->d_name.len); 5585 BUG_ON(new_inode->i_nlink == 0); 5586 } else { 5587 ret = btrfs_unlink_inode(trans, dest, new_dir, 5588 new_dentry->d_inode, 5589 new_dentry->d_name.name, 5590 new_dentry->d_name.len); 5591 } 5592 BUG_ON(ret); 5593 if (new_inode->i_nlink == 0) { 5594 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 5595 BUG_ON(ret); 5596 } 5597 } 5598 5599 ret = btrfs_add_link(trans, new_dir, old_inode, 5600 new_dentry->d_name.name, 5601 new_dentry->d_name.len, 0, index); 5602 BUG_ON(ret); 5603 5604 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 5605 btrfs_log_new_name(trans, old_inode, old_dir, 5606 new_dentry->d_parent); 5607 btrfs_end_log_trans(root); 5608 } 5609 out_fail: 5610 btrfs_end_transaction_throttle(trans, root); 5611 5612 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 5613 up_read(&root->fs_info->subvol_sem); 5614 5615 btrfs_unreserve_metadata_space(root, 11); 5616 return ret; 5617 } 5618 5619 /* 5620 * some fairly slow code that needs optimization. This walks the list 5621 * of all the inodes with pending delalloc and forces them to disk. 5622 */ 5623 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 5624 { 5625 struct list_head *head = &root->fs_info->delalloc_inodes; 5626 struct btrfs_inode *binode; 5627 struct inode *inode; 5628 5629 if (root->fs_info->sb->s_flags & MS_RDONLY) 5630 return -EROFS; 5631 5632 spin_lock(&root->fs_info->delalloc_lock); 5633 while (!list_empty(head)) { 5634 binode = list_entry(head->next, struct btrfs_inode, 5635 delalloc_inodes); 5636 inode = igrab(&binode->vfs_inode); 5637 if (!inode) 5638 list_del_init(&binode->delalloc_inodes); 5639 spin_unlock(&root->fs_info->delalloc_lock); 5640 if (inode) { 5641 filemap_flush(inode->i_mapping); 5642 if (delay_iput) 5643 btrfs_add_delayed_iput(inode); 5644 else 5645 iput(inode); 5646 } 5647 cond_resched(); 5648 spin_lock(&root->fs_info->delalloc_lock); 5649 } 5650 spin_unlock(&root->fs_info->delalloc_lock); 5651 5652 /* the filemap_flush will queue IO into the worker threads, but 5653 * we have to make sure the IO is actually started and that 5654 * ordered extents get created before we return 5655 */ 5656 atomic_inc(&root->fs_info->async_submit_draining); 5657 while (atomic_read(&root->fs_info->nr_async_submits) || 5658 atomic_read(&root->fs_info->async_delalloc_pages)) { 5659 wait_event(root->fs_info->async_submit_wait, 5660 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 5661 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 5662 } 5663 atomic_dec(&root->fs_info->async_submit_draining); 5664 return 0; 5665 } 5666 5667 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 5668 const char *symname) 5669 { 5670 struct btrfs_trans_handle *trans; 5671 struct btrfs_root *root = BTRFS_I(dir)->root; 5672 struct btrfs_path *path; 5673 struct btrfs_key key; 5674 struct inode *inode = NULL; 5675 int err; 5676 int drop_inode = 0; 5677 u64 objectid; 5678 u64 index = 0 ; 5679 int name_len; 5680 int datasize; 5681 unsigned long ptr; 5682 struct btrfs_file_extent_item *ei; 5683 struct extent_buffer *leaf; 5684 unsigned long nr = 0; 5685 5686 name_len = strlen(symname) + 1; 5687 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 5688 return -ENAMETOOLONG; 5689 5690 /* 5691 * 2 items for inode item and ref 5692 * 2 items for dir items 5693 * 1 item for xattr if selinux is on 5694 */ 5695 err = btrfs_reserve_metadata_space(root, 5); 5696 if (err) 5697 return err; 5698 5699 trans = btrfs_start_transaction(root, 1); 5700 if (!trans) 5701 goto out_fail; 5702 btrfs_set_trans_block_group(trans, dir); 5703 5704 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 5705 if (err) { 5706 err = -ENOSPC; 5707 goto out_unlock; 5708 } 5709 5710 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5711 dentry->d_name.len, 5712 dentry->d_parent->d_inode->i_ino, objectid, 5713 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 5714 &index); 5715 err = PTR_ERR(inode); 5716 if (IS_ERR(inode)) 5717 goto out_unlock; 5718 5719 err = btrfs_init_inode_security(trans, inode, dir); 5720 if (err) { 5721 drop_inode = 1; 5722 goto out_unlock; 5723 } 5724 5725 btrfs_set_trans_block_group(trans, inode); 5726 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 5727 if (err) 5728 drop_inode = 1; 5729 else { 5730 inode->i_mapping->a_ops = &btrfs_aops; 5731 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5732 inode->i_fop = &btrfs_file_operations; 5733 inode->i_op = &btrfs_file_inode_operations; 5734 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5735 } 5736 btrfs_update_inode_block_group(trans, inode); 5737 btrfs_update_inode_block_group(trans, dir); 5738 if (drop_inode) 5739 goto out_unlock; 5740 5741 path = btrfs_alloc_path(); 5742 BUG_ON(!path); 5743 key.objectid = inode->i_ino; 5744 key.offset = 0; 5745 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 5746 datasize = btrfs_file_extent_calc_inline_size(name_len); 5747 err = btrfs_insert_empty_item(trans, root, path, &key, 5748 datasize); 5749 if (err) { 5750 drop_inode = 1; 5751 goto out_unlock; 5752 } 5753 leaf = path->nodes[0]; 5754 ei = btrfs_item_ptr(leaf, path->slots[0], 5755 struct btrfs_file_extent_item); 5756 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 5757 btrfs_set_file_extent_type(leaf, ei, 5758 BTRFS_FILE_EXTENT_INLINE); 5759 btrfs_set_file_extent_encryption(leaf, ei, 0); 5760 btrfs_set_file_extent_compression(leaf, ei, 0); 5761 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 5762 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 5763 5764 ptr = btrfs_file_extent_inline_start(ei); 5765 write_extent_buffer(leaf, symname, ptr, name_len); 5766 btrfs_mark_buffer_dirty(leaf); 5767 btrfs_free_path(path); 5768 5769 inode->i_op = &btrfs_symlink_inode_operations; 5770 inode->i_mapping->a_ops = &btrfs_symlink_aops; 5771 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5772 inode_set_bytes(inode, name_len); 5773 btrfs_i_size_write(inode, name_len - 1); 5774 err = btrfs_update_inode(trans, root, inode); 5775 if (err) 5776 drop_inode = 1; 5777 5778 out_unlock: 5779 nr = trans->blocks_used; 5780 btrfs_end_transaction_throttle(trans, root); 5781 out_fail: 5782 btrfs_unreserve_metadata_space(root, 5); 5783 if (drop_inode) { 5784 inode_dec_link_count(inode); 5785 iput(inode); 5786 } 5787 btrfs_btree_balance_dirty(root, nr); 5788 return err; 5789 } 5790 5791 static int prealloc_file_range(struct inode *inode, u64 start, u64 end, 5792 u64 alloc_hint, int mode) 5793 { 5794 struct btrfs_trans_handle *trans; 5795 struct btrfs_root *root = BTRFS_I(inode)->root; 5796 struct btrfs_key ins; 5797 u64 alloc_size; 5798 u64 cur_offset = start; 5799 u64 num_bytes = end - start; 5800 int ret = 0; 5801 5802 while (num_bytes > 0) { 5803 alloc_size = min(num_bytes, root->fs_info->max_extent); 5804 5805 trans = btrfs_start_transaction(root, 1); 5806 5807 ret = btrfs_reserve_extent(trans, root, alloc_size, 5808 root->sectorsize, 0, alloc_hint, 5809 (u64)-1, &ins, 1); 5810 if (ret) { 5811 WARN_ON(1); 5812 goto stop_trans; 5813 } 5814 5815 ret = btrfs_reserve_metadata_space(root, 3); 5816 if (ret) { 5817 btrfs_free_reserved_extent(root, ins.objectid, 5818 ins.offset); 5819 goto stop_trans; 5820 } 5821 5822 ret = insert_reserved_file_extent(trans, inode, 5823 cur_offset, ins.objectid, 5824 ins.offset, ins.offset, 5825 ins.offset, 0, 0, 0, 5826 BTRFS_FILE_EXTENT_PREALLOC); 5827 BUG_ON(ret); 5828 btrfs_drop_extent_cache(inode, cur_offset, 5829 cur_offset + ins.offset -1, 0); 5830 5831 num_bytes -= ins.offset; 5832 cur_offset += ins.offset; 5833 alloc_hint = ins.objectid + ins.offset; 5834 5835 inode->i_ctime = CURRENT_TIME; 5836 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 5837 if (!(mode & FALLOC_FL_KEEP_SIZE) && 5838 cur_offset > inode->i_size) { 5839 i_size_write(inode, cur_offset); 5840 btrfs_ordered_update_i_size(inode, cur_offset, NULL); 5841 } 5842 5843 ret = btrfs_update_inode(trans, root, inode); 5844 BUG_ON(ret); 5845 5846 btrfs_end_transaction(trans, root); 5847 btrfs_unreserve_metadata_space(root, 3); 5848 } 5849 return ret; 5850 5851 stop_trans: 5852 btrfs_end_transaction(trans, root); 5853 return ret; 5854 5855 } 5856 5857 static long btrfs_fallocate(struct inode *inode, int mode, 5858 loff_t offset, loff_t len) 5859 { 5860 u64 cur_offset; 5861 u64 last_byte; 5862 u64 alloc_start; 5863 u64 alloc_end; 5864 u64 alloc_hint = 0; 5865 u64 locked_end; 5866 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 5867 struct extent_map *em; 5868 int ret; 5869 5870 alloc_start = offset & ~mask; 5871 alloc_end = (offset + len + mask) & ~mask; 5872 5873 /* 5874 * wait for ordered IO before we have any locks. We'll loop again 5875 * below with the locks held. 5876 */ 5877 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 5878 5879 mutex_lock(&inode->i_mutex); 5880 if (alloc_start > inode->i_size) { 5881 ret = btrfs_cont_expand(inode, alloc_start); 5882 if (ret) 5883 goto out; 5884 } 5885 5886 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode, 5887 alloc_end - alloc_start); 5888 if (ret) 5889 goto out; 5890 5891 locked_end = alloc_end - 1; 5892 while (1) { 5893 struct btrfs_ordered_extent *ordered; 5894 5895 /* the extent lock is ordered inside the running 5896 * transaction 5897 */ 5898 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5899 GFP_NOFS); 5900 ordered = btrfs_lookup_first_ordered_extent(inode, 5901 alloc_end - 1); 5902 if (ordered && 5903 ordered->file_offset + ordered->len > alloc_start && 5904 ordered->file_offset < alloc_end) { 5905 btrfs_put_ordered_extent(ordered); 5906 unlock_extent(&BTRFS_I(inode)->io_tree, 5907 alloc_start, locked_end, GFP_NOFS); 5908 /* 5909 * we can't wait on the range with the transaction 5910 * running or with the extent lock held 5911 */ 5912 btrfs_wait_ordered_range(inode, alloc_start, 5913 alloc_end - alloc_start); 5914 } else { 5915 if (ordered) 5916 btrfs_put_ordered_extent(ordered); 5917 break; 5918 } 5919 } 5920 5921 cur_offset = alloc_start; 5922 while (1) { 5923 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5924 alloc_end - cur_offset, 0); 5925 BUG_ON(IS_ERR(em) || !em); 5926 last_byte = min(extent_map_end(em), alloc_end); 5927 last_byte = (last_byte + mask) & ~mask; 5928 if (em->block_start == EXTENT_MAP_HOLE || 5929 (cur_offset >= inode->i_size && 5930 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5931 ret = prealloc_file_range(inode, 5932 cur_offset, last_byte, 5933 alloc_hint, mode); 5934 if (ret < 0) { 5935 free_extent_map(em); 5936 break; 5937 } 5938 } 5939 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 5940 alloc_hint = em->block_start; 5941 free_extent_map(em); 5942 5943 cur_offset = last_byte; 5944 if (cur_offset >= alloc_end) { 5945 ret = 0; 5946 break; 5947 } 5948 } 5949 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5950 GFP_NOFS); 5951 5952 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode, 5953 alloc_end - alloc_start); 5954 out: 5955 mutex_unlock(&inode->i_mutex); 5956 return ret; 5957 } 5958 5959 static int btrfs_set_page_dirty(struct page *page) 5960 { 5961 return __set_page_dirty_nobuffers(page); 5962 } 5963 5964 static int btrfs_permission(struct inode *inode, int mask) 5965 { 5966 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 5967 return -EACCES; 5968 return generic_permission(inode, mask, btrfs_check_acl); 5969 } 5970 5971 static const struct inode_operations btrfs_dir_inode_operations = { 5972 .getattr = btrfs_getattr, 5973 .lookup = btrfs_lookup, 5974 .create = btrfs_create, 5975 .unlink = btrfs_unlink, 5976 .link = btrfs_link, 5977 .mkdir = btrfs_mkdir, 5978 .rmdir = btrfs_rmdir, 5979 .rename = btrfs_rename, 5980 .symlink = btrfs_symlink, 5981 .setattr = btrfs_setattr, 5982 .mknod = btrfs_mknod, 5983 .setxattr = btrfs_setxattr, 5984 .getxattr = btrfs_getxattr, 5985 .listxattr = btrfs_listxattr, 5986 .removexattr = btrfs_removexattr, 5987 .permission = btrfs_permission, 5988 }; 5989 static const struct inode_operations btrfs_dir_ro_inode_operations = { 5990 .lookup = btrfs_lookup, 5991 .permission = btrfs_permission, 5992 }; 5993 5994 static const struct file_operations btrfs_dir_file_operations = { 5995 .llseek = generic_file_llseek, 5996 .read = generic_read_dir, 5997 .readdir = btrfs_real_readdir, 5998 .unlocked_ioctl = btrfs_ioctl, 5999 #ifdef CONFIG_COMPAT 6000 .compat_ioctl = btrfs_ioctl, 6001 #endif 6002 .release = btrfs_release_file, 6003 .fsync = btrfs_sync_file, 6004 }; 6005 6006 static struct extent_io_ops btrfs_extent_io_ops = { 6007 .fill_delalloc = run_delalloc_range, 6008 .submit_bio_hook = btrfs_submit_bio_hook, 6009 .merge_bio_hook = btrfs_merge_bio_hook, 6010 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 6011 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 6012 .writepage_start_hook = btrfs_writepage_start_hook, 6013 .readpage_io_failed_hook = btrfs_io_failed_hook, 6014 .set_bit_hook = btrfs_set_bit_hook, 6015 .clear_bit_hook = btrfs_clear_bit_hook, 6016 .merge_extent_hook = btrfs_merge_extent_hook, 6017 .split_extent_hook = btrfs_split_extent_hook, 6018 }; 6019 6020 /* 6021 * btrfs doesn't support the bmap operation because swapfiles 6022 * use bmap to make a mapping of extents in the file. They assume 6023 * these extents won't change over the life of the file and they 6024 * use the bmap result to do IO directly to the drive. 6025 * 6026 * the btrfs bmap call would return logical addresses that aren't 6027 * suitable for IO and they also will change frequently as COW 6028 * operations happen. So, swapfile + btrfs == corruption. 6029 * 6030 * For now we're avoiding this by dropping bmap. 6031 */ 6032 static const struct address_space_operations btrfs_aops = { 6033 .readpage = btrfs_readpage, 6034 .writepage = btrfs_writepage, 6035 .writepages = btrfs_writepages, 6036 .readpages = btrfs_readpages, 6037 .sync_page = block_sync_page, 6038 .direct_IO = btrfs_direct_IO, 6039 .invalidatepage = btrfs_invalidatepage, 6040 .releasepage = btrfs_releasepage, 6041 .set_page_dirty = btrfs_set_page_dirty, 6042 .error_remove_page = generic_error_remove_page, 6043 }; 6044 6045 static const struct address_space_operations btrfs_symlink_aops = { 6046 .readpage = btrfs_readpage, 6047 .writepage = btrfs_writepage, 6048 .invalidatepage = btrfs_invalidatepage, 6049 .releasepage = btrfs_releasepage, 6050 }; 6051 6052 static const struct inode_operations btrfs_file_inode_operations = { 6053 .truncate = btrfs_truncate, 6054 .getattr = btrfs_getattr, 6055 .setattr = btrfs_setattr, 6056 .setxattr = btrfs_setxattr, 6057 .getxattr = btrfs_getxattr, 6058 .listxattr = btrfs_listxattr, 6059 .removexattr = btrfs_removexattr, 6060 .permission = btrfs_permission, 6061 .fallocate = btrfs_fallocate, 6062 .fiemap = btrfs_fiemap, 6063 }; 6064 static const struct inode_operations btrfs_special_inode_operations = { 6065 .getattr = btrfs_getattr, 6066 .setattr = btrfs_setattr, 6067 .permission = btrfs_permission, 6068 .setxattr = btrfs_setxattr, 6069 .getxattr = btrfs_getxattr, 6070 .listxattr = btrfs_listxattr, 6071 .removexattr = btrfs_removexattr, 6072 }; 6073 static const struct inode_operations btrfs_symlink_inode_operations = { 6074 .readlink = generic_readlink, 6075 .follow_link = page_follow_link_light, 6076 .put_link = page_put_link, 6077 .permission = btrfs_permission, 6078 .setxattr = btrfs_setxattr, 6079 .getxattr = btrfs_getxattr, 6080 .listxattr = btrfs_listxattr, 6081 .removexattr = btrfs_removexattr, 6082 }; 6083 6084 const struct dentry_operations btrfs_dentry_operations = { 6085 .d_delete = btrfs_dentry_delete, 6086 }; 6087