1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "misc.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "ordered-data.h" 40 #include "xattr.h" 41 #include "tree-log.h" 42 #include "volumes.h" 43 #include "compression.h" 44 #include "locking.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "props.h" 48 #include "qgroup.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 52 struct btrfs_iget_args { 53 struct btrfs_key *location; 54 struct btrfs_root *root; 55 }; 56 57 struct btrfs_dio_data { 58 u64 reserve; 59 u64 unsubmitted_oe_range_start; 60 u64 unsubmitted_oe_range_end; 61 int overwrite; 62 }; 63 64 static const struct inode_operations btrfs_dir_inode_operations; 65 static const struct inode_operations btrfs_symlink_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static const struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 struct kmem_cache *btrfs_free_space_cachep; 76 struct kmem_cache *btrfs_free_space_bitmap_cachep; 77 78 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 79 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 81 static noinline int cow_file_range(struct inode *inode, 82 struct page *locked_page, 83 u64 start, u64 end, int *page_started, 84 unsigned long *nr_written, int unlock); 85 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 86 u64 orig_start, u64 block_start, 87 u64 block_len, u64 orig_block_len, 88 u64 ram_bytes, int compress_type, 89 int type); 90 91 static void __endio_write_update_ordered(struct inode *inode, 92 const u64 offset, const u64 bytes, 93 const bool uptodate); 94 95 /* 96 * Cleanup all submitted ordered extents in specified range to handle errors 97 * from the btrfs_run_delalloc_range() callback. 98 * 99 * NOTE: caller must ensure that when an error happens, it can not call 100 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 101 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 102 * to be released, which we want to happen only when finishing the ordered 103 * extent (btrfs_finish_ordered_io()). 104 */ 105 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 106 struct page *locked_page, 107 u64 offset, u64 bytes) 108 { 109 unsigned long index = offset >> PAGE_SHIFT; 110 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 111 u64 page_start = page_offset(locked_page); 112 u64 page_end = page_start + PAGE_SIZE - 1; 113 114 struct page *page; 115 116 while (index <= end_index) { 117 page = find_get_page(inode->i_mapping, index); 118 index++; 119 if (!page) 120 continue; 121 ClearPagePrivate2(page); 122 put_page(page); 123 } 124 125 /* 126 * In case this page belongs to the delalloc range being instantiated 127 * then skip it, since the first page of a range is going to be 128 * properly cleaned up by the caller of run_delalloc_range 129 */ 130 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 131 offset += PAGE_SIZE; 132 bytes -= PAGE_SIZE; 133 } 134 135 return __endio_write_update_ordered(inode, offset, bytes, false); 136 } 137 138 static int btrfs_dirty_inode(struct inode *inode); 139 140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 141 void btrfs_test_inode_set_ops(struct inode *inode) 142 { 143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 144 } 145 #endif 146 147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 148 struct inode *inode, struct inode *dir, 149 const struct qstr *qstr) 150 { 151 int err; 152 153 err = btrfs_init_acl(trans, inode, dir); 154 if (!err) 155 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 156 return err; 157 } 158 159 /* 160 * this does all the hard work for inserting an inline extent into 161 * the btree. The caller should have done a btrfs_drop_extents so that 162 * no overlapping inline items exist in the btree 163 */ 164 static int insert_inline_extent(struct btrfs_trans_handle *trans, 165 struct btrfs_path *path, int extent_inserted, 166 struct btrfs_root *root, struct inode *inode, 167 u64 start, size_t size, size_t compressed_size, 168 int compress_type, 169 struct page **compressed_pages) 170 { 171 struct extent_buffer *leaf; 172 struct page *page = NULL; 173 char *kaddr; 174 unsigned long ptr; 175 struct btrfs_file_extent_item *ei; 176 int ret; 177 size_t cur_size = size; 178 unsigned long offset; 179 180 ASSERT((compressed_size > 0 && compressed_pages) || 181 (compressed_size == 0 && !compressed_pages)); 182 183 if (compressed_size && compressed_pages) 184 cur_size = compressed_size; 185 186 inode_add_bytes(inode, size); 187 188 if (!extent_inserted) { 189 struct btrfs_key key; 190 size_t datasize; 191 192 key.objectid = btrfs_ino(BTRFS_I(inode)); 193 key.offset = start; 194 key.type = BTRFS_EXTENT_DATA_KEY; 195 196 datasize = btrfs_file_extent_calc_inline_size(cur_size); 197 path->leave_spinning = 1; 198 ret = btrfs_insert_empty_item(trans, root, path, &key, 199 datasize); 200 if (ret) 201 goto fail; 202 } 203 leaf = path->nodes[0]; 204 ei = btrfs_item_ptr(leaf, path->slots[0], 205 struct btrfs_file_extent_item); 206 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 207 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 208 btrfs_set_file_extent_encryption(leaf, ei, 0); 209 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 210 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 211 ptr = btrfs_file_extent_inline_start(ei); 212 213 if (compress_type != BTRFS_COMPRESS_NONE) { 214 struct page *cpage; 215 int i = 0; 216 while (compressed_size > 0) { 217 cpage = compressed_pages[i]; 218 cur_size = min_t(unsigned long, compressed_size, 219 PAGE_SIZE); 220 221 kaddr = kmap_atomic(cpage); 222 write_extent_buffer(leaf, kaddr, ptr, cur_size); 223 kunmap_atomic(kaddr); 224 225 i++; 226 ptr += cur_size; 227 compressed_size -= cur_size; 228 } 229 btrfs_set_file_extent_compression(leaf, ei, 230 compress_type); 231 } else { 232 page = find_get_page(inode->i_mapping, 233 start >> PAGE_SHIFT); 234 btrfs_set_file_extent_compression(leaf, ei, 0); 235 kaddr = kmap_atomic(page); 236 offset = offset_in_page(start); 237 write_extent_buffer(leaf, kaddr + offset, ptr, size); 238 kunmap_atomic(kaddr); 239 put_page(page); 240 } 241 btrfs_mark_buffer_dirty(leaf); 242 btrfs_release_path(path); 243 244 /* 245 * we're an inline extent, so nobody can 246 * extend the file past i_size without locking 247 * a page we already have locked. 248 * 249 * We must do any isize and inode updates 250 * before we unlock the pages. Otherwise we 251 * could end up racing with unlink. 252 */ 253 BTRFS_I(inode)->disk_i_size = inode->i_size; 254 ret = btrfs_update_inode(trans, root, inode); 255 256 fail: 257 return ret; 258 } 259 260 261 /* 262 * conditionally insert an inline extent into the file. This 263 * does the checks required to make sure the data is small enough 264 * to fit as an inline extent. 265 */ 266 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 267 u64 end, size_t compressed_size, 268 int compress_type, 269 struct page **compressed_pages) 270 { 271 struct btrfs_root *root = BTRFS_I(inode)->root; 272 struct btrfs_fs_info *fs_info = root->fs_info; 273 struct btrfs_trans_handle *trans; 274 u64 isize = i_size_read(inode); 275 u64 actual_end = min(end + 1, isize); 276 u64 inline_len = actual_end - start; 277 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 278 u64 data_len = inline_len; 279 int ret; 280 struct btrfs_path *path; 281 int extent_inserted = 0; 282 u32 extent_item_size; 283 284 if (compressed_size) 285 data_len = compressed_size; 286 287 if (start > 0 || 288 actual_end > fs_info->sectorsize || 289 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 290 (!compressed_size && 291 (actual_end & (fs_info->sectorsize - 1)) == 0) || 292 end + 1 < isize || 293 data_len > fs_info->max_inline) { 294 return 1; 295 } 296 297 path = btrfs_alloc_path(); 298 if (!path) 299 return -ENOMEM; 300 301 trans = btrfs_join_transaction(root); 302 if (IS_ERR(trans)) { 303 btrfs_free_path(path); 304 return PTR_ERR(trans); 305 } 306 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 307 308 if (compressed_size && compressed_pages) 309 extent_item_size = btrfs_file_extent_calc_inline_size( 310 compressed_size); 311 else 312 extent_item_size = btrfs_file_extent_calc_inline_size( 313 inline_len); 314 315 ret = __btrfs_drop_extents(trans, root, inode, path, 316 start, aligned_end, NULL, 317 1, 1, extent_item_size, &extent_inserted); 318 if (ret) { 319 btrfs_abort_transaction(trans, ret); 320 goto out; 321 } 322 323 if (isize > actual_end) 324 inline_len = min_t(u64, isize, actual_end); 325 ret = insert_inline_extent(trans, path, extent_inserted, 326 root, inode, start, 327 inline_len, compressed_size, 328 compress_type, compressed_pages); 329 if (ret && ret != -ENOSPC) { 330 btrfs_abort_transaction(trans, ret); 331 goto out; 332 } else if (ret == -ENOSPC) { 333 ret = 1; 334 goto out; 335 } 336 337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 338 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 339 out: 340 /* 341 * Don't forget to free the reserved space, as for inlined extent 342 * it won't count as data extent, free them directly here. 343 * And at reserve time, it's always aligned to page size, so 344 * just free one page here. 345 */ 346 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 347 btrfs_free_path(path); 348 btrfs_end_transaction(trans); 349 return ret; 350 } 351 352 struct async_extent { 353 u64 start; 354 u64 ram_size; 355 u64 compressed_size; 356 struct page **pages; 357 unsigned long nr_pages; 358 int compress_type; 359 struct list_head list; 360 }; 361 362 struct async_chunk { 363 struct inode *inode; 364 struct page *locked_page; 365 u64 start; 366 u64 end; 367 unsigned int write_flags; 368 struct list_head extents; 369 struct cgroup_subsys_state *blkcg_css; 370 struct btrfs_work work; 371 atomic_t *pending; 372 }; 373 374 struct async_cow { 375 /* Number of chunks in flight; must be first in the structure */ 376 atomic_t num_chunks; 377 struct async_chunk chunks[]; 378 }; 379 380 static noinline int add_async_extent(struct async_chunk *cow, 381 u64 start, u64 ram_size, 382 u64 compressed_size, 383 struct page **pages, 384 unsigned long nr_pages, 385 int compress_type) 386 { 387 struct async_extent *async_extent; 388 389 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 390 BUG_ON(!async_extent); /* -ENOMEM */ 391 async_extent->start = start; 392 async_extent->ram_size = ram_size; 393 async_extent->compressed_size = compressed_size; 394 async_extent->pages = pages; 395 async_extent->nr_pages = nr_pages; 396 async_extent->compress_type = compress_type; 397 list_add_tail(&async_extent->list, &cow->extents); 398 return 0; 399 } 400 401 /* 402 * Check if the inode has flags compatible with compression 403 */ 404 static inline bool inode_can_compress(struct inode *inode) 405 { 406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 407 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 408 return false; 409 return true; 410 } 411 412 /* 413 * Check if the inode needs to be submitted to compression, based on mount 414 * options, defragmentation, properties or heuristics. 415 */ 416 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 417 { 418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 419 420 if (!inode_can_compress(inode)) { 421 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 422 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 423 btrfs_ino(BTRFS_I(inode))); 424 return 0; 425 } 426 /* force compress */ 427 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 428 return 1; 429 /* defrag ioctl */ 430 if (BTRFS_I(inode)->defrag_compress) 431 return 1; 432 /* bad compression ratios */ 433 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 434 return 0; 435 if (btrfs_test_opt(fs_info, COMPRESS) || 436 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 437 BTRFS_I(inode)->prop_compress) 438 return btrfs_compress_heuristic(inode, start, end); 439 return 0; 440 } 441 442 static inline void inode_should_defrag(struct btrfs_inode *inode, 443 u64 start, u64 end, u64 num_bytes, u64 small_write) 444 { 445 /* If this is a small write inside eof, kick off a defrag */ 446 if (num_bytes < small_write && 447 (start > 0 || end + 1 < inode->disk_i_size)) 448 btrfs_add_inode_defrag(NULL, inode); 449 } 450 451 /* 452 * we create compressed extents in two phases. The first 453 * phase compresses a range of pages that have already been 454 * locked (both pages and state bits are locked). 455 * 456 * This is done inside an ordered work queue, and the compression 457 * is spread across many cpus. The actual IO submission is step 458 * two, and the ordered work queue takes care of making sure that 459 * happens in the same order things were put onto the queue by 460 * writepages and friends. 461 * 462 * If this code finds it can't get good compression, it puts an 463 * entry onto the work queue to write the uncompressed bytes. This 464 * makes sure that both compressed inodes and uncompressed inodes 465 * are written in the same order that the flusher thread sent them 466 * down. 467 */ 468 static noinline int compress_file_range(struct async_chunk *async_chunk) 469 { 470 struct inode *inode = async_chunk->inode; 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 472 u64 blocksize = fs_info->sectorsize; 473 u64 start = async_chunk->start; 474 u64 end = async_chunk->end; 475 u64 actual_end; 476 u64 i_size; 477 int ret = 0; 478 struct page **pages = NULL; 479 unsigned long nr_pages; 480 unsigned long total_compressed = 0; 481 unsigned long total_in = 0; 482 int i; 483 int will_compress; 484 int compress_type = fs_info->compress_type; 485 int compressed_extents = 0; 486 int redirty = 0; 487 488 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 489 SZ_16K); 490 491 /* 492 * We need to save i_size before now because it could change in between 493 * us evaluating the size and assigning it. This is because we lock and 494 * unlock the page in truncate and fallocate, and then modify the i_size 495 * later on. 496 * 497 * The barriers are to emulate READ_ONCE, remove that once i_size_read 498 * does that for us. 499 */ 500 barrier(); 501 i_size = i_size_read(inode); 502 barrier(); 503 actual_end = min_t(u64, i_size, end + 1); 504 again: 505 will_compress = 0; 506 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 507 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 508 nr_pages = min_t(unsigned long, nr_pages, 509 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 510 511 /* 512 * we don't want to send crud past the end of i_size through 513 * compression, that's just a waste of CPU time. So, if the 514 * end of the file is before the start of our current 515 * requested range of bytes, we bail out to the uncompressed 516 * cleanup code that can deal with all of this. 517 * 518 * It isn't really the fastest way to fix things, but this is a 519 * very uncommon corner. 520 */ 521 if (actual_end <= start) 522 goto cleanup_and_bail_uncompressed; 523 524 total_compressed = actual_end - start; 525 526 /* 527 * skip compression for a small file range(<=blocksize) that 528 * isn't an inline extent, since it doesn't save disk space at all. 529 */ 530 if (total_compressed <= blocksize && 531 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 532 goto cleanup_and_bail_uncompressed; 533 534 total_compressed = min_t(unsigned long, total_compressed, 535 BTRFS_MAX_UNCOMPRESSED); 536 total_in = 0; 537 ret = 0; 538 539 /* 540 * we do compression for mount -o compress and when the 541 * inode has not been flagged as nocompress. This flag can 542 * change at any time if we discover bad compression ratios. 543 */ 544 if (inode_need_compress(inode, start, end)) { 545 WARN_ON(pages); 546 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 547 if (!pages) { 548 /* just bail out to the uncompressed code */ 549 nr_pages = 0; 550 goto cont; 551 } 552 553 if (BTRFS_I(inode)->defrag_compress) 554 compress_type = BTRFS_I(inode)->defrag_compress; 555 else if (BTRFS_I(inode)->prop_compress) 556 compress_type = BTRFS_I(inode)->prop_compress; 557 558 /* 559 * we need to call clear_page_dirty_for_io on each 560 * page in the range. Otherwise applications with the file 561 * mmap'd can wander in and change the page contents while 562 * we are compressing them. 563 * 564 * If the compression fails for any reason, we set the pages 565 * dirty again later on. 566 * 567 * Note that the remaining part is redirtied, the start pointer 568 * has moved, the end is the original one. 569 */ 570 if (!redirty) { 571 extent_range_clear_dirty_for_io(inode, start, end); 572 redirty = 1; 573 } 574 575 /* Compression level is applied here and only here */ 576 ret = btrfs_compress_pages( 577 compress_type | (fs_info->compress_level << 4), 578 inode->i_mapping, start, 579 pages, 580 &nr_pages, 581 &total_in, 582 &total_compressed); 583 584 if (!ret) { 585 unsigned long offset = offset_in_page(total_compressed); 586 struct page *page = pages[nr_pages - 1]; 587 char *kaddr; 588 589 /* zero the tail end of the last page, we might be 590 * sending it down to disk 591 */ 592 if (offset) { 593 kaddr = kmap_atomic(page); 594 memset(kaddr + offset, 0, 595 PAGE_SIZE - offset); 596 kunmap_atomic(kaddr); 597 } 598 will_compress = 1; 599 } 600 } 601 cont: 602 if (start == 0) { 603 /* lets try to make an inline extent */ 604 if (ret || total_in < actual_end) { 605 /* we didn't compress the entire range, try 606 * to make an uncompressed inline extent. 607 */ 608 ret = cow_file_range_inline(inode, start, end, 0, 609 BTRFS_COMPRESS_NONE, NULL); 610 } else { 611 /* try making a compressed inline extent */ 612 ret = cow_file_range_inline(inode, start, end, 613 total_compressed, 614 compress_type, pages); 615 } 616 if (ret <= 0) { 617 unsigned long clear_flags = EXTENT_DELALLOC | 618 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 619 EXTENT_DO_ACCOUNTING; 620 unsigned long page_error_op; 621 622 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 623 624 /* 625 * inline extent creation worked or returned error, 626 * we don't need to create any more async work items. 627 * Unlock and free up our temp pages. 628 * 629 * We use DO_ACCOUNTING here because we need the 630 * delalloc_release_metadata to be done _after_ we drop 631 * our outstanding extent for clearing delalloc for this 632 * range. 633 */ 634 extent_clear_unlock_delalloc(inode, start, end, NULL, 635 clear_flags, 636 PAGE_UNLOCK | 637 PAGE_CLEAR_DIRTY | 638 PAGE_SET_WRITEBACK | 639 page_error_op | 640 PAGE_END_WRITEBACK); 641 642 for (i = 0; i < nr_pages; i++) { 643 WARN_ON(pages[i]->mapping); 644 put_page(pages[i]); 645 } 646 kfree(pages); 647 648 return 0; 649 } 650 } 651 652 if (will_compress) { 653 /* 654 * we aren't doing an inline extent round the compressed size 655 * up to a block size boundary so the allocator does sane 656 * things 657 */ 658 total_compressed = ALIGN(total_compressed, blocksize); 659 660 /* 661 * one last check to make sure the compression is really a 662 * win, compare the page count read with the blocks on disk, 663 * compression must free at least one sector size 664 */ 665 total_in = ALIGN(total_in, PAGE_SIZE); 666 if (total_compressed + blocksize <= total_in) { 667 compressed_extents++; 668 669 /* 670 * The async work queues will take care of doing actual 671 * allocation on disk for these compressed pages, and 672 * will submit them to the elevator. 673 */ 674 add_async_extent(async_chunk, start, total_in, 675 total_compressed, pages, nr_pages, 676 compress_type); 677 678 if (start + total_in < end) { 679 start += total_in; 680 pages = NULL; 681 cond_resched(); 682 goto again; 683 } 684 return compressed_extents; 685 } 686 } 687 if (pages) { 688 /* 689 * the compression code ran but failed to make things smaller, 690 * free any pages it allocated and our page pointer array 691 */ 692 for (i = 0; i < nr_pages; i++) { 693 WARN_ON(pages[i]->mapping); 694 put_page(pages[i]); 695 } 696 kfree(pages); 697 pages = NULL; 698 total_compressed = 0; 699 nr_pages = 0; 700 701 /* flag the file so we don't compress in the future */ 702 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 703 !(BTRFS_I(inode)->prop_compress)) { 704 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 705 } 706 } 707 cleanup_and_bail_uncompressed: 708 /* 709 * No compression, but we still need to write the pages in the file 710 * we've been given so far. redirty the locked page if it corresponds 711 * to our extent and set things up for the async work queue to run 712 * cow_file_range to do the normal delalloc dance. 713 */ 714 if (async_chunk->locked_page && 715 (page_offset(async_chunk->locked_page) >= start && 716 page_offset(async_chunk->locked_page)) <= end) { 717 __set_page_dirty_nobuffers(async_chunk->locked_page); 718 /* unlocked later on in the async handlers */ 719 } 720 721 if (redirty) 722 extent_range_redirty_for_io(inode, start, end); 723 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 724 BTRFS_COMPRESS_NONE); 725 compressed_extents++; 726 727 return compressed_extents; 728 } 729 730 static void free_async_extent_pages(struct async_extent *async_extent) 731 { 732 int i; 733 734 if (!async_extent->pages) 735 return; 736 737 for (i = 0; i < async_extent->nr_pages; i++) { 738 WARN_ON(async_extent->pages[i]->mapping); 739 put_page(async_extent->pages[i]); 740 } 741 kfree(async_extent->pages); 742 async_extent->nr_pages = 0; 743 async_extent->pages = NULL; 744 } 745 746 /* 747 * phase two of compressed writeback. This is the ordered portion 748 * of the code, which only gets called in the order the work was 749 * queued. We walk all the async extents created by compress_file_range 750 * and send them down to the disk. 751 */ 752 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 753 { 754 struct inode *inode = async_chunk->inode; 755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 756 struct async_extent *async_extent; 757 u64 alloc_hint = 0; 758 struct btrfs_key ins; 759 struct extent_map *em; 760 struct btrfs_root *root = BTRFS_I(inode)->root; 761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 762 int ret = 0; 763 764 again: 765 while (!list_empty(&async_chunk->extents)) { 766 async_extent = list_entry(async_chunk->extents.next, 767 struct async_extent, list); 768 list_del(&async_extent->list); 769 770 retry: 771 lock_extent(io_tree, async_extent->start, 772 async_extent->start + async_extent->ram_size - 1); 773 /* did the compression code fall back to uncompressed IO? */ 774 if (!async_extent->pages) { 775 int page_started = 0; 776 unsigned long nr_written = 0; 777 778 /* allocate blocks */ 779 ret = cow_file_range(inode, async_chunk->locked_page, 780 async_extent->start, 781 async_extent->start + 782 async_extent->ram_size - 1, 783 &page_started, &nr_written, 0); 784 785 /* JDM XXX */ 786 787 /* 788 * if page_started, cow_file_range inserted an 789 * inline extent and took care of all the unlocking 790 * and IO for us. Otherwise, we need to submit 791 * all those pages down to the drive. 792 */ 793 if (!page_started && !ret) 794 extent_write_locked_range(inode, 795 async_extent->start, 796 async_extent->start + 797 async_extent->ram_size - 1, 798 WB_SYNC_ALL); 799 else if (ret && async_chunk->locked_page) 800 unlock_page(async_chunk->locked_page); 801 kfree(async_extent); 802 cond_resched(); 803 continue; 804 } 805 806 ret = btrfs_reserve_extent(root, async_extent->ram_size, 807 async_extent->compressed_size, 808 async_extent->compressed_size, 809 0, alloc_hint, &ins, 1, 1); 810 if (ret) { 811 free_async_extent_pages(async_extent); 812 813 if (ret == -ENOSPC) { 814 unlock_extent(io_tree, async_extent->start, 815 async_extent->start + 816 async_extent->ram_size - 1); 817 818 /* 819 * we need to redirty the pages if we decide to 820 * fallback to uncompressed IO, otherwise we 821 * will not submit these pages down to lower 822 * layers. 823 */ 824 extent_range_redirty_for_io(inode, 825 async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1); 828 829 goto retry; 830 } 831 goto out_free; 832 } 833 /* 834 * here we're doing allocation and writeback of the 835 * compressed pages 836 */ 837 em = create_io_em(inode, async_extent->start, 838 async_extent->ram_size, /* len */ 839 async_extent->start, /* orig_start */ 840 ins.objectid, /* block_start */ 841 ins.offset, /* block_len */ 842 ins.offset, /* orig_block_len */ 843 async_extent->ram_size, /* ram_bytes */ 844 async_extent->compress_type, 845 BTRFS_ORDERED_COMPRESSED); 846 if (IS_ERR(em)) 847 /* ret value is not necessary due to void function */ 848 goto out_free_reserve; 849 free_extent_map(em); 850 851 ret = btrfs_add_ordered_extent_compress(inode, 852 async_extent->start, 853 ins.objectid, 854 async_extent->ram_size, 855 ins.offset, 856 BTRFS_ORDERED_COMPRESSED, 857 async_extent->compress_type); 858 if (ret) { 859 btrfs_drop_extent_cache(BTRFS_I(inode), 860 async_extent->start, 861 async_extent->start + 862 async_extent->ram_size - 1, 0); 863 goto out_free_reserve; 864 } 865 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 866 867 /* 868 * clear dirty, set writeback and unlock the pages. 869 */ 870 extent_clear_unlock_delalloc(inode, async_extent->start, 871 async_extent->start + 872 async_extent->ram_size - 1, 873 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 874 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 875 PAGE_SET_WRITEBACK); 876 if (btrfs_submit_compressed_write(inode, 877 async_extent->start, 878 async_extent->ram_size, 879 ins.objectid, 880 ins.offset, async_extent->pages, 881 async_extent->nr_pages, 882 async_chunk->write_flags, 883 async_chunk->blkcg_css)) { 884 struct page *p = async_extent->pages[0]; 885 const u64 start = async_extent->start; 886 const u64 end = start + async_extent->ram_size - 1; 887 888 p->mapping = inode->i_mapping; 889 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 890 891 p->mapping = NULL; 892 extent_clear_unlock_delalloc(inode, start, end, 893 NULL, 0, 894 PAGE_END_WRITEBACK | 895 PAGE_SET_ERROR); 896 free_async_extent_pages(async_extent); 897 } 898 alloc_hint = ins.objectid + ins.offset; 899 kfree(async_extent); 900 cond_resched(); 901 } 902 return; 903 out_free_reserve: 904 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 905 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 906 out_free: 907 extent_clear_unlock_delalloc(inode, async_extent->start, 908 async_extent->start + 909 async_extent->ram_size - 1, 910 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 911 EXTENT_DELALLOC_NEW | 912 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 913 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 914 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 915 PAGE_SET_ERROR); 916 free_async_extent_pages(async_extent); 917 kfree(async_extent); 918 goto again; 919 } 920 921 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 922 u64 num_bytes) 923 { 924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 925 struct extent_map *em; 926 u64 alloc_hint = 0; 927 928 read_lock(&em_tree->lock); 929 em = search_extent_mapping(em_tree, start, num_bytes); 930 if (em) { 931 /* 932 * if block start isn't an actual block number then find the 933 * first block in this inode and use that as a hint. If that 934 * block is also bogus then just don't worry about it. 935 */ 936 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 937 free_extent_map(em); 938 em = search_extent_mapping(em_tree, 0, 0); 939 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 940 alloc_hint = em->block_start; 941 if (em) 942 free_extent_map(em); 943 } else { 944 alloc_hint = em->block_start; 945 free_extent_map(em); 946 } 947 } 948 read_unlock(&em_tree->lock); 949 950 return alloc_hint; 951 } 952 953 /* 954 * when extent_io.c finds a delayed allocation range in the file, 955 * the call backs end up in this code. The basic idea is to 956 * allocate extents on disk for the range, and create ordered data structs 957 * in ram to track those extents. 958 * 959 * locked_page is the page that writepage had locked already. We use 960 * it to make sure we don't do extra locks or unlocks. 961 * 962 * *page_started is set to one if we unlock locked_page and do everything 963 * required to start IO on it. It may be clean and already done with 964 * IO when we return. 965 */ 966 static noinline int cow_file_range(struct inode *inode, 967 struct page *locked_page, 968 u64 start, u64 end, int *page_started, 969 unsigned long *nr_written, int unlock) 970 { 971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 972 struct btrfs_root *root = BTRFS_I(inode)->root; 973 u64 alloc_hint = 0; 974 u64 num_bytes; 975 unsigned long ram_size; 976 u64 cur_alloc_size = 0; 977 u64 blocksize = fs_info->sectorsize; 978 struct btrfs_key ins; 979 struct extent_map *em; 980 unsigned clear_bits; 981 unsigned long page_ops; 982 bool extent_reserved = false; 983 int ret = 0; 984 985 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 986 WARN_ON_ONCE(1); 987 ret = -EINVAL; 988 goto out_unlock; 989 } 990 991 num_bytes = ALIGN(end - start + 1, blocksize); 992 num_bytes = max(blocksize, num_bytes); 993 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 994 995 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 996 997 if (start == 0) { 998 /* lets try to make an inline extent */ 999 ret = cow_file_range_inline(inode, start, end, 0, 1000 BTRFS_COMPRESS_NONE, NULL); 1001 if (ret == 0) { 1002 /* 1003 * We use DO_ACCOUNTING here because we need the 1004 * delalloc_release_metadata to be run _after_ we drop 1005 * our outstanding extent for clearing delalloc for this 1006 * range. 1007 */ 1008 extent_clear_unlock_delalloc(inode, start, end, NULL, 1009 EXTENT_LOCKED | EXTENT_DELALLOC | 1010 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1011 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1012 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1013 PAGE_END_WRITEBACK); 1014 *nr_written = *nr_written + 1015 (end - start + PAGE_SIZE) / PAGE_SIZE; 1016 *page_started = 1; 1017 goto out; 1018 } else if (ret < 0) { 1019 goto out_unlock; 1020 } 1021 } 1022 1023 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1024 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1025 start + num_bytes - 1, 0); 1026 1027 while (num_bytes > 0) { 1028 cur_alloc_size = num_bytes; 1029 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1030 fs_info->sectorsize, 0, alloc_hint, 1031 &ins, 1, 1); 1032 if (ret < 0) 1033 goto out_unlock; 1034 cur_alloc_size = ins.offset; 1035 extent_reserved = true; 1036 1037 ram_size = ins.offset; 1038 em = create_io_em(inode, start, ins.offset, /* len */ 1039 start, /* orig_start */ 1040 ins.objectid, /* block_start */ 1041 ins.offset, /* block_len */ 1042 ins.offset, /* orig_block_len */ 1043 ram_size, /* ram_bytes */ 1044 BTRFS_COMPRESS_NONE, /* compress_type */ 1045 BTRFS_ORDERED_REGULAR /* type */); 1046 if (IS_ERR(em)) { 1047 ret = PTR_ERR(em); 1048 goto out_reserve; 1049 } 1050 free_extent_map(em); 1051 1052 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1053 ram_size, cur_alloc_size, 0); 1054 if (ret) 1055 goto out_drop_extent_cache; 1056 1057 if (root->root_key.objectid == 1058 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1059 ret = btrfs_reloc_clone_csums(inode, start, 1060 cur_alloc_size); 1061 /* 1062 * Only drop cache here, and process as normal. 1063 * 1064 * We must not allow extent_clear_unlock_delalloc() 1065 * at out_unlock label to free meta of this ordered 1066 * extent, as its meta should be freed by 1067 * btrfs_finish_ordered_io(). 1068 * 1069 * So we must continue until @start is increased to 1070 * skip current ordered extent. 1071 */ 1072 if (ret) 1073 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1074 start + ram_size - 1, 0); 1075 } 1076 1077 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1078 1079 /* we're not doing compressed IO, don't unlock the first 1080 * page (which the caller expects to stay locked), don't 1081 * clear any dirty bits and don't set any writeback bits 1082 * 1083 * Do set the Private2 bit so we know this page was properly 1084 * setup for writepage 1085 */ 1086 page_ops = unlock ? PAGE_UNLOCK : 0; 1087 page_ops |= PAGE_SET_PRIVATE2; 1088 1089 extent_clear_unlock_delalloc(inode, start, 1090 start + ram_size - 1, 1091 locked_page, 1092 EXTENT_LOCKED | EXTENT_DELALLOC, 1093 page_ops); 1094 if (num_bytes < cur_alloc_size) 1095 num_bytes = 0; 1096 else 1097 num_bytes -= cur_alloc_size; 1098 alloc_hint = ins.objectid + ins.offset; 1099 start += cur_alloc_size; 1100 extent_reserved = false; 1101 1102 /* 1103 * btrfs_reloc_clone_csums() error, since start is increased 1104 * extent_clear_unlock_delalloc() at out_unlock label won't 1105 * free metadata of current ordered extent, we're OK to exit. 1106 */ 1107 if (ret) 1108 goto out_unlock; 1109 } 1110 out: 1111 return ret; 1112 1113 out_drop_extent_cache: 1114 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1115 out_reserve: 1116 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1117 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1118 out_unlock: 1119 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1120 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1121 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1122 PAGE_END_WRITEBACK; 1123 /* 1124 * If we reserved an extent for our delalloc range (or a subrange) and 1125 * failed to create the respective ordered extent, then it means that 1126 * when we reserved the extent we decremented the extent's size from 1127 * the data space_info's bytes_may_use counter and incremented the 1128 * space_info's bytes_reserved counter by the same amount. We must make 1129 * sure extent_clear_unlock_delalloc() does not try to decrement again 1130 * the data space_info's bytes_may_use counter, therefore we do not pass 1131 * it the flag EXTENT_CLEAR_DATA_RESV. 1132 */ 1133 if (extent_reserved) { 1134 extent_clear_unlock_delalloc(inode, start, 1135 start + cur_alloc_size, 1136 locked_page, 1137 clear_bits, 1138 page_ops); 1139 start += cur_alloc_size; 1140 if (start >= end) 1141 goto out; 1142 } 1143 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1144 clear_bits | EXTENT_CLEAR_DATA_RESV, 1145 page_ops); 1146 goto out; 1147 } 1148 1149 /* 1150 * work queue call back to started compression on a file and pages 1151 */ 1152 static noinline void async_cow_start(struct btrfs_work *work) 1153 { 1154 struct async_chunk *async_chunk; 1155 int compressed_extents; 1156 1157 async_chunk = container_of(work, struct async_chunk, work); 1158 1159 compressed_extents = compress_file_range(async_chunk); 1160 if (compressed_extents == 0) { 1161 btrfs_add_delayed_iput(async_chunk->inode); 1162 async_chunk->inode = NULL; 1163 } 1164 } 1165 1166 /* 1167 * work queue call back to submit previously compressed pages 1168 */ 1169 static noinline void async_cow_submit(struct btrfs_work *work) 1170 { 1171 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1172 work); 1173 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1174 unsigned long nr_pages; 1175 1176 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1177 PAGE_SHIFT; 1178 1179 /* atomic_sub_return implies a barrier */ 1180 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1181 5 * SZ_1M) 1182 cond_wake_up_nomb(&fs_info->async_submit_wait); 1183 1184 /* 1185 * ->inode could be NULL if async_chunk_start has failed to compress, 1186 * in which case we don't have anything to submit, yet we need to 1187 * always adjust ->async_delalloc_pages as its paired with the init 1188 * happening in cow_file_range_async 1189 */ 1190 if (async_chunk->inode) 1191 submit_compressed_extents(async_chunk); 1192 } 1193 1194 static noinline void async_cow_free(struct btrfs_work *work) 1195 { 1196 struct async_chunk *async_chunk; 1197 1198 async_chunk = container_of(work, struct async_chunk, work); 1199 if (async_chunk->inode) 1200 btrfs_add_delayed_iput(async_chunk->inode); 1201 if (async_chunk->blkcg_css) 1202 css_put(async_chunk->blkcg_css); 1203 /* 1204 * Since the pointer to 'pending' is at the beginning of the array of 1205 * async_chunk's, freeing it ensures the whole array has been freed. 1206 */ 1207 if (atomic_dec_and_test(async_chunk->pending)) 1208 kvfree(async_chunk->pending); 1209 } 1210 1211 static int cow_file_range_async(struct inode *inode, 1212 struct writeback_control *wbc, 1213 struct page *locked_page, 1214 u64 start, u64 end, int *page_started, 1215 unsigned long *nr_written) 1216 { 1217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1218 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1219 struct async_cow *ctx; 1220 struct async_chunk *async_chunk; 1221 unsigned long nr_pages; 1222 u64 cur_end; 1223 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1224 int i; 1225 bool should_compress; 1226 unsigned nofs_flag; 1227 const unsigned int write_flags = wbc_to_write_flags(wbc); 1228 1229 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1230 1231 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1232 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1233 num_chunks = 1; 1234 should_compress = false; 1235 } else { 1236 should_compress = true; 1237 } 1238 1239 nofs_flag = memalloc_nofs_save(); 1240 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1241 memalloc_nofs_restore(nofs_flag); 1242 1243 if (!ctx) { 1244 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1245 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1246 EXTENT_DO_ACCOUNTING; 1247 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1248 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1249 PAGE_SET_ERROR; 1250 1251 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1252 clear_bits, page_ops); 1253 return -ENOMEM; 1254 } 1255 1256 async_chunk = ctx->chunks; 1257 atomic_set(&ctx->num_chunks, num_chunks); 1258 1259 for (i = 0; i < num_chunks; i++) { 1260 if (should_compress) 1261 cur_end = min(end, start + SZ_512K - 1); 1262 else 1263 cur_end = end; 1264 1265 /* 1266 * igrab is called higher up in the call chain, take only the 1267 * lightweight reference for the callback lifetime 1268 */ 1269 ihold(inode); 1270 async_chunk[i].pending = &ctx->num_chunks; 1271 async_chunk[i].inode = inode; 1272 async_chunk[i].start = start; 1273 async_chunk[i].end = cur_end; 1274 async_chunk[i].write_flags = write_flags; 1275 INIT_LIST_HEAD(&async_chunk[i].extents); 1276 1277 /* 1278 * The locked_page comes all the way from writepage and its 1279 * the original page we were actually given. As we spread 1280 * this large delalloc region across multiple async_chunk 1281 * structs, only the first struct needs a pointer to locked_page 1282 * 1283 * This way we don't need racey decisions about who is supposed 1284 * to unlock it. 1285 */ 1286 if (locked_page) { 1287 /* 1288 * Depending on the compressibility, the pages might or 1289 * might not go through async. We want all of them to 1290 * be accounted against wbc once. Let's do it here 1291 * before the paths diverge. wbc accounting is used 1292 * only for foreign writeback detection and doesn't 1293 * need full accuracy. Just account the whole thing 1294 * against the first page. 1295 */ 1296 wbc_account_cgroup_owner(wbc, locked_page, 1297 cur_end - start); 1298 async_chunk[i].locked_page = locked_page; 1299 locked_page = NULL; 1300 } else { 1301 async_chunk[i].locked_page = NULL; 1302 } 1303 1304 if (blkcg_css != blkcg_root_css) { 1305 css_get(blkcg_css); 1306 async_chunk[i].blkcg_css = blkcg_css; 1307 } else { 1308 async_chunk[i].blkcg_css = NULL; 1309 } 1310 1311 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1312 async_cow_submit, async_cow_free); 1313 1314 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1315 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1316 1317 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1318 1319 *nr_written += nr_pages; 1320 start = cur_end + 1; 1321 } 1322 *page_started = 1; 1323 return 0; 1324 } 1325 1326 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1327 u64 bytenr, u64 num_bytes) 1328 { 1329 int ret; 1330 struct btrfs_ordered_sum *sums; 1331 LIST_HEAD(list); 1332 1333 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1334 bytenr + num_bytes - 1, &list, 0); 1335 if (ret == 0 && list_empty(&list)) 1336 return 0; 1337 1338 while (!list_empty(&list)) { 1339 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1340 list_del(&sums->list); 1341 kfree(sums); 1342 } 1343 if (ret < 0) 1344 return ret; 1345 return 1; 1346 } 1347 1348 /* 1349 * when nowcow writeback call back. This checks for snapshots or COW copies 1350 * of the extents that exist in the file, and COWs the file as required. 1351 * 1352 * If no cow copies or snapshots exist, we write directly to the existing 1353 * blocks on disk 1354 */ 1355 static noinline int run_delalloc_nocow(struct inode *inode, 1356 struct page *locked_page, 1357 const u64 start, const u64 end, 1358 int *page_started, int force, 1359 unsigned long *nr_written) 1360 { 1361 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1362 struct btrfs_root *root = BTRFS_I(inode)->root; 1363 struct btrfs_path *path; 1364 u64 cow_start = (u64)-1; 1365 u64 cur_offset = start; 1366 int ret; 1367 bool check_prev = true; 1368 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1369 u64 ino = btrfs_ino(BTRFS_I(inode)); 1370 bool nocow = false; 1371 u64 disk_bytenr = 0; 1372 1373 path = btrfs_alloc_path(); 1374 if (!path) { 1375 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1376 EXTENT_LOCKED | EXTENT_DELALLOC | 1377 EXTENT_DO_ACCOUNTING | 1378 EXTENT_DEFRAG, PAGE_UNLOCK | 1379 PAGE_CLEAR_DIRTY | 1380 PAGE_SET_WRITEBACK | 1381 PAGE_END_WRITEBACK); 1382 return -ENOMEM; 1383 } 1384 1385 while (1) { 1386 struct btrfs_key found_key; 1387 struct btrfs_file_extent_item *fi; 1388 struct extent_buffer *leaf; 1389 u64 extent_end; 1390 u64 extent_offset; 1391 u64 num_bytes = 0; 1392 u64 disk_num_bytes; 1393 u64 ram_bytes; 1394 int extent_type; 1395 1396 nocow = false; 1397 1398 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1399 cur_offset, 0); 1400 if (ret < 0) 1401 goto error; 1402 1403 /* 1404 * If there is no extent for our range when doing the initial 1405 * search, then go back to the previous slot as it will be the 1406 * one containing the search offset 1407 */ 1408 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1409 leaf = path->nodes[0]; 1410 btrfs_item_key_to_cpu(leaf, &found_key, 1411 path->slots[0] - 1); 1412 if (found_key.objectid == ino && 1413 found_key.type == BTRFS_EXTENT_DATA_KEY) 1414 path->slots[0]--; 1415 } 1416 check_prev = false; 1417 next_slot: 1418 /* Go to next leaf if we have exhausted the current one */ 1419 leaf = path->nodes[0]; 1420 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1421 ret = btrfs_next_leaf(root, path); 1422 if (ret < 0) { 1423 if (cow_start != (u64)-1) 1424 cur_offset = cow_start; 1425 goto error; 1426 } 1427 if (ret > 0) 1428 break; 1429 leaf = path->nodes[0]; 1430 } 1431 1432 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1433 1434 /* Didn't find anything for our INO */ 1435 if (found_key.objectid > ino) 1436 break; 1437 /* 1438 * Keep searching until we find an EXTENT_ITEM or there are no 1439 * more extents for this inode 1440 */ 1441 if (WARN_ON_ONCE(found_key.objectid < ino) || 1442 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1443 path->slots[0]++; 1444 goto next_slot; 1445 } 1446 1447 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1448 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1449 found_key.offset > end) 1450 break; 1451 1452 /* 1453 * If the found extent starts after requested offset, then 1454 * adjust extent_end to be right before this extent begins 1455 */ 1456 if (found_key.offset > cur_offset) { 1457 extent_end = found_key.offset; 1458 extent_type = 0; 1459 goto out_check; 1460 } 1461 1462 /* 1463 * Found extent which begins before our range and potentially 1464 * intersect it 1465 */ 1466 fi = btrfs_item_ptr(leaf, path->slots[0], 1467 struct btrfs_file_extent_item); 1468 extent_type = btrfs_file_extent_type(leaf, fi); 1469 1470 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1471 if (extent_type == BTRFS_FILE_EXTENT_REG || 1472 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1473 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1474 extent_offset = btrfs_file_extent_offset(leaf, fi); 1475 extent_end = found_key.offset + 1476 btrfs_file_extent_num_bytes(leaf, fi); 1477 disk_num_bytes = 1478 btrfs_file_extent_disk_num_bytes(leaf, fi); 1479 /* 1480 * If the extent we got ends before our current offset, 1481 * skip to the next extent. 1482 */ 1483 if (extent_end <= cur_offset) { 1484 path->slots[0]++; 1485 goto next_slot; 1486 } 1487 /* Skip holes */ 1488 if (disk_bytenr == 0) 1489 goto out_check; 1490 /* Skip compressed/encrypted/encoded extents */ 1491 if (btrfs_file_extent_compression(leaf, fi) || 1492 btrfs_file_extent_encryption(leaf, fi) || 1493 btrfs_file_extent_other_encoding(leaf, fi)) 1494 goto out_check; 1495 /* 1496 * If extent is created before the last volume's snapshot 1497 * this implies the extent is shared, hence we can't do 1498 * nocow. This is the same check as in 1499 * btrfs_cross_ref_exist but without calling 1500 * btrfs_search_slot. 1501 */ 1502 if (!freespace_inode && 1503 btrfs_file_extent_generation(leaf, fi) <= 1504 btrfs_root_last_snapshot(&root->root_item)) 1505 goto out_check; 1506 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1507 goto out_check; 1508 /* If extent is RO, we must COW it */ 1509 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1510 goto out_check; 1511 ret = btrfs_cross_ref_exist(root, ino, 1512 found_key.offset - 1513 extent_offset, disk_bytenr); 1514 if (ret) { 1515 /* 1516 * ret could be -EIO if the above fails to read 1517 * metadata. 1518 */ 1519 if (ret < 0) { 1520 if (cow_start != (u64)-1) 1521 cur_offset = cow_start; 1522 goto error; 1523 } 1524 1525 WARN_ON_ONCE(freespace_inode); 1526 goto out_check; 1527 } 1528 disk_bytenr += extent_offset; 1529 disk_bytenr += cur_offset - found_key.offset; 1530 num_bytes = min(end + 1, extent_end) - cur_offset; 1531 /* 1532 * If there are pending snapshots for this root, we 1533 * fall into common COW way 1534 */ 1535 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1536 goto out_check; 1537 /* 1538 * force cow if csum exists in the range. 1539 * this ensure that csum for a given extent are 1540 * either valid or do not exist. 1541 */ 1542 ret = csum_exist_in_range(fs_info, disk_bytenr, 1543 num_bytes); 1544 if (ret) { 1545 /* 1546 * ret could be -EIO if the above fails to read 1547 * metadata. 1548 */ 1549 if (ret < 0) { 1550 if (cow_start != (u64)-1) 1551 cur_offset = cow_start; 1552 goto error; 1553 } 1554 WARN_ON_ONCE(freespace_inode); 1555 goto out_check; 1556 } 1557 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1558 goto out_check; 1559 nocow = true; 1560 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1561 extent_end = found_key.offset + ram_bytes; 1562 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1563 /* Skip extents outside of our requested range */ 1564 if (extent_end <= start) { 1565 path->slots[0]++; 1566 goto next_slot; 1567 } 1568 } else { 1569 /* If this triggers then we have a memory corruption */ 1570 BUG(); 1571 } 1572 out_check: 1573 /* 1574 * If nocow is false then record the beginning of the range 1575 * that needs to be COWed 1576 */ 1577 if (!nocow) { 1578 if (cow_start == (u64)-1) 1579 cow_start = cur_offset; 1580 cur_offset = extent_end; 1581 if (cur_offset > end) 1582 break; 1583 path->slots[0]++; 1584 goto next_slot; 1585 } 1586 1587 btrfs_release_path(path); 1588 1589 /* 1590 * COW range from cow_start to found_key.offset - 1. As the key 1591 * will contain the beginning of the first extent that can be 1592 * NOCOW, following one which needs to be COW'ed 1593 */ 1594 if (cow_start != (u64)-1) { 1595 ret = cow_file_range(inode, locked_page, 1596 cow_start, found_key.offset - 1, 1597 page_started, nr_written, 1); 1598 if (ret) { 1599 if (nocow) 1600 btrfs_dec_nocow_writers(fs_info, 1601 disk_bytenr); 1602 goto error; 1603 } 1604 cow_start = (u64)-1; 1605 } 1606 1607 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1608 u64 orig_start = found_key.offset - extent_offset; 1609 struct extent_map *em; 1610 1611 em = create_io_em(inode, cur_offset, num_bytes, 1612 orig_start, 1613 disk_bytenr, /* block_start */ 1614 num_bytes, /* block_len */ 1615 disk_num_bytes, /* orig_block_len */ 1616 ram_bytes, BTRFS_COMPRESS_NONE, 1617 BTRFS_ORDERED_PREALLOC); 1618 if (IS_ERR(em)) { 1619 if (nocow) 1620 btrfs_dec_nocow_writers(fs_info, 1621 disk_bytenr); 1622 ret = PTR_ERR(em); 1623 goto error; 1624 } 1625 free_extent_map(em); 1626 ret = btrfs_add_ordered_extent(inode, cur_offset, 1627 disk_bytenr, num_bytes, 1628 num_bytes, 1629 BTRFS_ORDERED_PREALLOC); 1630 if (ret) { 1631 btrfs_drop_extent_cache(BTRFS_I(inode), 1632 cur_offset, 1633 cur_offset + num_bytes - 1, 1634 0); 1635 goto error; 1636 } 1637 } else { 1638 ret = btrfs_add_ordered_extent(inode, cur_offset, 1639 disk_bytenr, num_bytes, 1640 num_bytes, 1641 BTRFS_ORDERED_NOCOW); 1642 if (ret) 1643 goto error; 1644 } 1645 1646 if (nocow) 1647 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1648 nocow = false; 1649 1650 if (root->root_key.objectid == 1651 BTRFS_DATA_RELOC_TREE_OBJECTID) 1652 /* 1653 * Error handled later, as we must prevent 1654 * extent_clear_unlock_delalloc() in error handler 1655 * from freeing metadata of created ordered extent. 1656 */ 1657 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1658 num_bytes); 1659 1660 extent_clear_unlock_delalloc(inode, cur_offset, 1661 cur_offset + num_bytes - 1, 1662 locked_page, EXTENT_LOCKED | 1663 EXTENT_DELALLOC | 1664 EXTENT_CLEAR_DATA_RESV, 1665 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1666 1667 cur_offset = extent_end; 1668 1669 /* 1670 * btrfs_reloc_clone_csums() error, now we're OK to call error 1671 * handler, as metadata for created ordered extent will only 1672 * be freed by btrfs_finish_ordered_io(). 1673 */ 1674 if (ret) 1675 goto error; 1676 if (cur_offset > end) 1677 break; 1678 } 1679 btrfs_release_path(path); 1680 1681 if (cur_offset <= end && cow_start == (u64)-1) 1682 cow_start = cur_offset; 1683 1684 if (cow_start != (u64)-1) { 1685 cur_offset = end; 1686 ret = cow_file_range(inode, locked_page, cow_start, end, 1687 page_started, nr_written, 1); 1688 if (ret) 1689 goto error; 1690 } 1691 1692 error: 1693 if (nocow) 1694 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1695 1696 if (ret && cur_offset < end) 1697 extent_clear_unlock_delalloc(inode, cur_offset, end, 1698 locked_page, EXTENT_LOCKED | 1699 EXTENT_DELALLOC | EXTENT_DEFRAG | 1700 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1701 PAGE_CLEAR_DIRTY | 1702 PAGE_SET_WRITEBACK | 1703 PAGE_END_WRITEBACK); 1704 btrfs_free_path(path); 1705 return ret; 1706 } 1707 1708 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1709 { 1710 1711 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1712 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1713 return 0; 1714 1715 /* 1716 * @defrag_bytes is a hint value, no spinlock held here, 1717 * if is not zero, it means the file is defragging. 1718 * Force cow if given extent needs to be defragged. 1719 */ 1720 if (BTRFS_I(inode)->defrag_bytes && 1721 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1722 EXTENT_DEFRAG, 0, NULL)) 1723 return 1; 1724 1725 return 0; 1726 } 1727 1728 /* 1729 * Function to process delayed allocation (create CoW) for ranges which are 1730 * being touched for the first time. 1731 */ 1732 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1733 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1734 struct writeback_control *wbc) 1735 { 1736 int ret; 1737 int force_cow = need_force_cow(inode, start, end); 1738 1739 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1740 ret = run_delalloc_nocow(inode, locked_page, start, end, 1741 page_started, 1, nr_written); 1742 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1743 ret = run_delalloc_nocow(inode, locked_page, start, end, 1744 page_started, 0, nr_written); 1745 } else if (!inode_can_compress(inode) || 1746 !inode_need_compress(inode, start, end)) { 1747 ret = cow_file_range(inode, locked_page, start, end, 1748 page_started, nr_written, 1); 1749 } else { 1750 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1751 &BTRFS_I(inode)->runtime_flags); 1752 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1753 page_started, nr_written); 1754 } 1755 if (ret) 1756 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1757 end - start + 1); 1758 return ret; 1759 } 1760 1761 void btrfs_split_delalloc_extent(struct inode *inode, 1762 struct extent_state *orig, u64 split) 1763 { 1764 u64 size; 1765 1766 /* not delalloc, ignore it */ 1767 if (!(orig->state & EXTENT_DELALLOC)) 1768 return; 1769 1770 size = orig->end - orig->start + 1; 1771 if (size > BTRFS_MAX_EXTENT_SIZE) { 1772 u32 num_extents; 1773 u64 new_size; 1774 1775 /* 1776 * See the explanation in btrfs_merge_delalloc_extent, the same 1777 * applies here, just in reverse. 1778 */ 1779 new_size = orig->end - split + 1; 1780 num_extents = count_max_extents(new_size); 1781 new_size = split - orig->start; 1782 num_extents += count_max_extents(new_size); 1783 if (count_max_extents(size) >= num_extents) 1784 return; 1785 } 1786 1787 spin_lock(&BTRFS_I(inode)->lock); 1788 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1789 spin_unlock(&BTRFS_I(inode)->lock); 1790 } 1791 1792 /* 1793 * Handle merged delayed allocation extents so we can keep track of new extents 1794 * that are just merged onto old extents, such as when we are doing sequential 1795 * writes, so we can properly account for the metadata space we'll need. 1796 */ 1797 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1798 struct extent_state *other) 1799 { 1800 u64 new_size, old_size; 1801 u32 num_extents; 1802 1803 /* not delalloc, ignore it */ 1804 if (!(other->state & EXTENT_DELALLOC)) 1805 return; 1806 1807 if (new->start > other->start) 1808 new_size = new->end - other->start + 1; 1809 else 1810 new_size = other->end - new->start + 1; 1811 1812 /* we're not bigger than the max, unreserve the space and go */ 1813 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1814 spin_lock(&BTRFS_I(inode)->lock); 1815 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1816 spin_unlock(&BTRFS_I(inode)->lock); 1817 return; 1818 } 1819 1820 /* 1821 * We have to add up either side to figure out how many extents were 1822 * accounted for before we merged into one big extent. If the number of 1823 * extents we accounted for is <= the amount we need for the new range 1824 * then we can return, otherwise drop. Think of it like this 1825 * 1826 * [ 4k][MAX_SIZE] 1827 * 1828 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1829 * need 2 outstanding extents, on one side we have 1 and the other side 1830 * we have 1 so they are == and we can return. But in this case 1831 * 1832 * [MAX_SIZE+4k][MAX_SIZE+4k] 1833 * 1834 * Each range on their own accounts for 2 extents, but merged together 1835 * they are only 3 extents worth of accounting, so we need to drop in 1836 * this case. 1837 */ 1838 old_size = other->end - other->start + 1; 1839 num_extents = count_max_extents(old_size); 1840 old_size = new->end - new->start + 1; 1841 num_extents += count_max_extents(old_size); 1842 if (count_max_extents(new_size) >= num_extents) 1843 return; 1844 1845 spin_lock(&BTRFS_I(inode)->lock); 1846 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1847 spin_unlock(&BTRFS_I(inode)->lock); 1848 } 1849 1850 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1851 struct inode *inode) 1852 { 1853 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1854 1855 spin_lock(&root->delalloc_lock); 1856 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1857 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1858 &root->delalloc_inodes); 1859 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1860 &BTRFS_I(inode)->runtime_flags); 1861 root->nr_delalloc_inodes++; 1862 if (root->nr_delalloc_inodes == 1) { 1863 spin_lock(&fs_info->delalloc_root_lock); 1864 BUG_ON(!list_empty(&root->delalloc_root)); 1865 list_add_tail(&root->delalloc_root, 1866 &fs_info->delalloc_roots); 1867 spin_unlock(&fs_info->delalloc_root_lock); 1868 } 1869 } 1870 spin_unlock(&root->delalloc_lock); 1871 } 1872 1873 1874 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1875 struct btrfs_inode *inode) 1876 { 1877 struct btrfs_fs_info *fs_info = root->fs_info; 1878 1879 if (!list_empty(&inode->delalloc_inodes)) { 1880 list_del_init(&inode->delalloc_inodes); 1881 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1882 &inode->runtime_flags); 1883 root->nr_delalloc_inodes--; 1884 if (!root->nr_delalloc_inodes) { 1885 ASSERT(list_empty(&root->delalloc_inodes)); 1886 spin_lock(&fs_info->delalloc_root_lock); 1887 BUG_ON(list_empty(&root->delalloc_root)); 1888 list_del_init(&root->delalloc_root); 1889 spin_unlock(&fs_info->delalloc_root_lock); 1890 } 1891 } 1892 } 1893 1894 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1895 struct btrfs_inode *inode) 1896 { 1897 spin_lock(&root->delalloc_lock); 1898 __btrfs_del_delalloc_inode(root, inode); 1899 spin_unlock(&root->delalloc_lock); 1900 } 1901 1902 /* 1903 * Properly track delayed allocation bytes in the inode and to maintain the 1904 * list of inodes that have pending delalloc work to be done. 1905 */ 1906 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1907 unsigned *bits) 1908 { 1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1910 1911 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1912 WARN_ON(1); 1913 /* 1914 * set_bit and clear bit hooks normally require _irqsave/restore 1915 * but in this case, we are only testing for the DELALLOC 1916 * bit, which is only set or cleared with irqs on 1917 */ 1918 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1919 struct btrfs_root *root = BTRFS_I(inode)->root; 1920 u64 len = state->end + 1 - state->start; 1921 u32 num_extents = count_max_extents(len); 1922 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1923 1924 spin_lock(&BTRFS_I(inode)->lock); 1925 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1926 spin_unlock(&BTRFS_I(inode)->lock); 1927 1928 /* For sanity tests */ 1929 if (btrfs_is_testing(fs_info)) 1930 return; 1931 1932 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1933 fs_info->delalloc_batch); 1934 spin_lock(&BTRFS_I(inode)->lock); 1935 BTRFS_I(inode)->delalloc_bytes += len; 1936 if (*bits & EXTENT_DEFRAG) 1937 BTRFS_I(inode)->defrag_bytes += len; 1938 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1939 &BTRFS_I(inode)->runtime_flags)) 1940 btrfs_add_delalloc_inodes(root, inode); 1941 spin_unlock(&BTRFS_I(inode)->lock); 1942 } 1943 1944 if (!(state->state & EXTENT_DELALLOC_NEW) && 1945 (*bits & EXTENT_DELALLOC_NEW)) { 1946 spin_lock(&BTRFS_I(inode)->lock); 1947 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1948 state->start; 1949 spin_unlock(&BTRFS_I(inode)->lock); 1950 } 1951 } 1952 1953 /* 1954 * Once a range is no longer delalloc this function ensures that proper 1955 * accounting happens. 1956 */ 1957 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1958 struct extent_state *state, unsigned *bits) 1959 { 1960 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1961 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1962 u64 len = state->end + 1 - state->start; 1963 u32 num_extents = count_max_extents(len); 1964 1965 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1966 spin_lock(&inode->lock); 1967 inode->defrag_bytes -= len; 1968 spin_unlock(&inode->lock); 1969 } 1970 1971 /* 1972 * set_bit and clear bit hooks normally require _irqsave/restore 1973 * but in this case, we are only testing for the DELALLOC 1974 * bit, which is only set or cleared with irqs on 1975 */ 1976 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1977 struct btrfs_root *root = inode->root; 1978 bool do_list = !btrfs_is_free_space_inode(inode); 1979 1980 spin_lock(&inode->lock); 1981 btrfs_mod_outstanding_extents(inode, -num_extents); 1982 spin_unlock(&inode->lock); 1983 1984 /* 1985 * We don't reserve metadata space for space cache inodes so we 1986 * don't need to call delalloc_release_metadata if there is an 1987 * error. 1988 */ 1989 if (*bits & EXTENT_CLEAR_META_RESV && 1990 root != fs_info->tree_root) 1991 btrfs_delalloc_release_metadata(inode, len, false); 1992 1993 /* For sanity tests. */ 1994 if (btrfs_is_testing(fs_info)) 1995 return; 1996 1997 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1998 do_list && !(state->state & EXTENT_NORESERVE) && 1999 (*bits & EXTENT_CLEAR_DATA_RESV)) 2000 btrfs_free_reserved_data_space_noquota( 2001 &inode->vfs_inode, 2002 state->start, len); 2003 2004 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2005 fs_info->delalloc_batch); 2006 spin_lock(&inode->lock); 2007 inode->delalloc_bytes -= len; 2008 if (do_list && inode->delalloc_bytes == 0 && 2009 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2010 &inode->runtime_flags)) 2011 btrfs_del_delalloc_inode(root, inode); 2012 spin_unlock(&inode->lock); 2013 } 2014 2015 if ((state->state & EXTENT_DELALLOC_NEW) && 2016 (*bits & EXTENT_DELALLOC_NEW)) { 2017 spin_lock(&inode->lock); 2018 ASSERT(inode->new_delalloc_bytes >= len); 2019 inode->new_delalloc_bytes -= len; 2020 spin_unlock(&inode->lock); 2021 } 2022 } 2023 2024 /* 2025 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2026 * in a chunk's stripe. This function ensures that bios do not span a 2027 * stripe/chunk 2028 * 2029 * @page - The page we are about to add to the bio 2030 * @size - size we want to add to the bio 2031 * @bio - bio we want to ensure is smaller than a stripe 2032 * @bio_flags - flags of the bio 2033 * 2034 * return 1 if page cannot be added to the bio 2035 * return 0 if page can be added to the bio 2036 * return error otherwise 2037 */ 2038 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2039 unsigned long bio_flags) 2040 { 2041 struct inode *inode = page->mapping->host; 2042 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2043 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2044 u64 length = 0; 2045 u64 map_length; 2046 int ret; 2047 struct btrfs_io_geometry geom; 2048 2049 if (bio_flags & EXTENT_BIO_COMPRESSED) 2050 return 0; 2051 2052 length = bio->bi_iter.bi_size; 2053 map_length = length; 2054 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2055 &geom); 2056 if (ret < 0) 2057 return ret; 2058 2059 if (geom.len < length + size) 2060 return 1; 2061 return 0; 2062 } 2063 2064 /* 2065 * in order to insert checksums into the metadata in large chunks, 2066 * we wait until bio submission time. All the pages in the bio are 2067 * checksummed and sums are attached onto the ordered extent record. 2068 * 2069 * At IO completion time the cums attached on the ordered extent record 2070 * are inserted into the btree 2071 */ 2072 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2073 u64 bio_offset) 2074 { 2075 struct inode *inode = private_data; 2076 blk_status_t ret = 0; 2077 2078 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2079 BUG_ON(ret); /* -ENOMEM */ 2080 return 0; 2081 } 2082 2083 /* 2084 * extent_io.c submission hook. This does the right thing for csum calculation 2085 * on write, or reading the csums from the tree before a read. 2086 * 2087 * Rules about async/sync submit, 2088 * a) read: sync submit 2089 * 2090 * b) write without checksum: sync submit 2091 * 2092 * c) write with checksum: 2093 * c-1) if bio is issued by fsync: sync submit 2094 * (sync_writers != 0) 2095 * 2096 * c-2) if root is reloc root: sync submit 2097 * (only in case of buffered IO) 2098 * 2099 * c-3) otherwise: async submit 2100 */ 2101 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2102 int mirror_num, 2103 unsigned long bio_flags) 2104 2105 { 2106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2107 struct btrfs_root *root = BTRFS_I(inode)->root; 2108 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2109 blk_status_t ret = 0; 2110 int skip_sum; 2111 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2112 2113 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2114 2115 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2116 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2117 2118 if (bio_op(bio) != REQ_OP_WRITE) { 2119 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2120 if (ret) 2121 goto out; 2122 2123 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2124 ret = btrfs_submit_compressed_read(inode, bio, 2125 mirror_num, 2126 bio_flags); 2127 goto out; 2128 } else if (!skip_sum) { 2129 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2130 if (ret) 2131 goto out; 2132 } 2133 goto mapit; 2134 } else if (async && !skip_sum) { 2135 /* csum items have already been cloned */ 2136 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2137 goto mapit; 2138 /* we're doing a write, do the async checksumming */ 2139 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2140 0, inode, btrfs_submit_bio_start); 2141 goto out; 2142 } else if (!skip_sum) { 2143 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2144 if (ret) 2145 goto out; 2146 } 2147 2148 mapit: 2149 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2150 2151 out: 2152 if (ret) { 2153 bio->bi_status = ret; 2154 bio_endio(bio); 2155 } 2156 return ret; 2157 } 2158 2159 /* 2160 * given a list of ordered sums record them in the inode. This happens 2161 * at IO completion time based on sums calculated at bio submission time. 2162 */ 2163 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2164 struct inode *inode, struct list_head *list) 2165 { 2166 struct btrfs_ordered_sum *sum; 2167 int ret; 2168 2169 list_for_each_entry(sum, list, list) { 2170 trans->adding_csums = true; 2171 ret = btrfs_csum_file_blocks(trans, 2172 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2173 trans->adding_csums = false; 2174 if (ret) 2175 return ret; 2176 } 2177 return 0; 2178 } 2179 2180 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2181 unsigned int extra_bits, 2182 struct extent_state **cached_state) 2183 { 2184 WARN_ON(PAGE_ALIGNED(end)); 2185 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2186 extra_bits, cached_state); 2187 } 2188 2189 /* see btrfs_writepage_start_hook for details on why this is required */ 2190 struct btrfs_writepage_fixup { 2191 struct page *page; 2192 struct inode *inode; 2193 struct btrfs_work work; 2194 }; 2195 2196 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2197 { 2198 struct btrfs_writepage_fixup *fixup; 2199 struct btrfs_ordered_extent *ordered; 2200 struct extent_state *cached_state = NULL; 2201 struct extent_changeset *data_reserved = NULL; 2202 struct page *page; 2203 struct inode *inode; 2204 u64 page_start; 2205 u64 page_end; 2206 int ret = 0; 2207 bool free_delalloc_space = true; 2208 2209 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2210 page = fixup->page; 2211 inode = fixup->inode; 2212 page_start = page_offset(page); 2213 page_end = page_offset(page) + PAGE_SIZE - 1; 2214 2215 /* 2216 * This is similar to page_mkwrite, we need to reserve the space before 2217 * we take the page lock. 2218 */ 2219 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2220 PAGE_SIZE); 2221 again: 2222 lock_page(page); 2223 2224 /* 2225 * Before we queued this fixup, we took a reference on the page. 2226 * page->mapping may go NULL, but it shouldn't be moved to a different 2227 * address space. 2228 */ 2229 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2230 /* 2231 * Unfortunately this is a little tricky, either 2232 * 2233 * 1) We got here and our page had already been dealt with and 2234 * we reserved our space, thus ret == 0, so we need to just 2235 * drop our space reservation and bail. This can happen the 2236 * first time we come into the fixup worker, or could happen 2237 * while waiting for the ordered extent. 2238 * 2) Our page was already dealt with, but we happened to get an 2239 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2240 * this case we obviously don't have anything to release, but 2241 * because the page was already dealt with we don't want to 2242 * mark the page with an error, so make sure we're resetting 2243 * ret to 0. This is why we have this check _before_ the ret 2244 * check, because we do not want to have a surprise ENOSPC 2245 * when the page was already properly dealt with. 2246 */ 2247 if (!ret) { 2248 btrfs_delalloc_release_extents(BTRFS_I(inode), 2249 PAGE_SIZE); 2250 btrfs_delalloc_release_space(inode, data_reserved, 2251 page_start, PAGE_SIZE, 2252 true); 2253 } 2254 ret = 0; 2255 goto out_page; 2256 } 2257 2258 /* 2259 * We can't mess with the page state unless it is locked, so now that 2260 * it is locked bail if we failed to make our space reservation. 2261 */ 2262 if (ret) 2263 goto out_page; 2264 2265 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2266 &cached_state); 2267 2268 /* already ordered? We're done */ 2269 if (PagePrivate2(page)) 2270 goto out_reserved; 2271 2272 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2273 PAGE_SIZE); 2274 if (ordered) { 2275 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2276 page_end, &cached_state); 2277 unlock_page(page); 2278 btrfs_start_ordered_extent(inode, ordered, 1); 2279 btrfs_put_ordered_extent(ordered); 2280 goto again; 2281 } 2282 2283 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2284 &cached_state); 2285 if (ret) 2286 goto out_reserved; 2287 2288 /* 2289 * Everything went as planned, we're now the owner of a dirty page with 2290 * delayed allocation bits set and space reserved for our COW 2291 * destination. 2292 * 2293 * The page was dirty when we started, nothing should have cleaned it. 2294 */ 2295 BUG_ON(!PageDirty(page)); 2296 free_delalloc_space = false; 2297 out_reserved: 2298 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2299 if (free_delalloc_space) 2300 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2301 PAGE_SIZE, true); 2302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2303 &cached_state); 2304 out_page: 2305 if (ret) { 2306 /* 2307 * We hit ENOSPC or other errors. Update the mapping and page 2308 * to reflect the errors and clean the page. 2309 */ 2310 mapping_set_error(page->mapping, ret); 2311 end_extent_writepage(page, ret, page_start, page_end); 2312 clear_page_dirty_for_io(page); 2313 SetPageError(page); 2314 } 2315 ClearPageChecked(page); 2316 unlock_page(page); 2317 put_page(page); 2318 kfree(fixup); 2319 extent_changeset_free(data_reserved); 2320 /* 2321 * As a precaution, do a delayed iput in case it would be the last iput 2322 * that could need flushing space. Recursing back to fixup worker would 2323 * deadlock. 2324 */ 2325 btrfs_add_delayed_iput(inode); 2326 } 2327 2328 /* 2329 * There are a few paths in the higher layers of the kernel that directly 2330 * set the page dirty bit without asking the filesystem if it is a 2331 * good idea. This causes problems because we want to make sure COW 2332 * properly happens and the data=ordered rules are followed. 2333 * 2334 * In our case any range that doesn't have the ORDERED bit set 2335 * hasn't been properly setup for IO. We kick off an async process 2336 * to fix it up. The async helper will wait for ordered extents, set 2337 * the delalloc bit and make it safe to write the page. 2338 */ 2339 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2340 { 2341 struct inode *inode = page->mapping->host; 2342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2343 struct btrfs_writepage_fixup *fixup; 2344 2345 /* this page is properly in the ordered list */ 2346 if (TestClearPagePrivate2(page)) 2347 return 0; 2348 2349 /* 2350 * PageChecked is set below when we create a fixup worker for this page, 2351 * don't try to create another one if we're already PageChecked() 2352 * 2353 * The extent_io writepage code will redirty the page if we send back 2354 * EAGAIN. 2355 */ 2356 if (PageChecked(page)) 2357 return -EAGAIN; 2358 2359 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2360 if (!fixup) 2361 return -EAGAIN; 2362 2363 /* 2364 * We are already holding a reference to this inode from 2365 * write_cache_pages. We need to hold it because the space reservation 2366 * takes place outside of the page lock, and we can't trust 2367 * page->mapping outside of the page lock. 2368 */ 2369 ihold(inode); 2370 SetPageChecked(page); 2371 get_page(page); 2372 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2373 fixup->page = page; 2374 fixup->inode = inode; 2375 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2376 2377 return -EAGAIN; 2378 } 2379 2380 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2381 struct inode *inode, u64 file_pos, 2382 u64 disk_bytenr, u64 disk_num_bytes, 2383 u64 num_bytes, u64 ram_bytes, 2384 u8 compression, u8 encryption, 2385 u16 other_encoding, int extent_type) 2386 { 2387 struct btrfs_root *root = BTRFS_I(inode)->root; 2388 struct btrfs_file_extent_item *fi; 2389 struct btrfs_path *path; 2390 struct extent_buffer *leaf; 2391 struct btrfs_key ins; 2392 u64 qg_released; 2393 int extent_inserted = 0; 2394 int ret; 2395 2396 path = btrfs_alloc_path(); 2397 if (!path) 2398 return -ENOMEM; 2399 2400 /* 2401 * we may be replacing one extent in the tree with another. 2402 * The new extent is pinned in the extent map, and we don't want 2403 * to drop it from the cache until it is completely in the btree. 2404 * 2405 * So, tell btrfs_drop_extents to leave this extent in the cache. 2406 * the caller is expected to unpin it and allow it to be merged 2407 * with the others. 2408 */ 2409 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2410 file_pos + num_bytes, NULL, 0, 2411 1, sizeof(*fi), &extent_inserted); 2412 if (ret) 2413 goto out; 2414 2415 if (!extent_inserted) { 2416 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2417 ins.offset = file_pos; 2418 ins.type = BTRFS_EXTENT_DATA_KEY; 2419 2420 path->leave_spinning = 1; 2421 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2422 sizeof(*fi)); 2423 if (ret) 2424 goto out; 2425 } 2426 leaf = path->nodes[0]; 2427 fi = btrfs_item_ptr(leaf, path->slots[0], 2428 struct btrfs_file_extent_item); 2429 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2430 btrfs_set_file_extent_type(leaf, fi, extent_type); 2431 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2432 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2433 btrfs_set_file_extent_offset(leaf, fi, 0); 2434 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2435 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2436 btrfs_set_file_extent_compression(leaf, fi, compression); 2437 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2438 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2439 2440 btrfs_mark_buffer_dirty(leaf); 2441 btrfs_release_path(path); 2442 2443 inode_add_bytes(inode, num_bytes); 2444 2445 ins.objectid = disk_bytenr; 2446 ins.offset = disk_num_bytes; 2447 ins.type = BTRFS_EXTENT_ITEM_KEY; 2448 2449 /* 2450 * Release the reserved range from inode dirty range map, as it is 2451 * already moved into delayed_ref_head 2452 */ 2453 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2454 if (ret < 0) 2455 goto out; 2456 qg_released = ret; 2457 ret = btrfs_alloc_reserved_file_extent(trans, root, 2458 btrfs_ino(BTRFS_I(inode)), 2459 file_pos, qg_released, &ins); 2460 out: 2461 btrfs_free_path(path); 2462 2463 return ret; 2464 } 2465 2466 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2467 u64 start, u64 len) 2468 { 2469 struct btrfs_block_group *cache; 2470 2471 cache = btrfs_lookup_block_group(fs_info, start); 2472 ASSERT(cache); 2473 2474 spin_lock(&cache->lock); 2475 cache->delalloc_bytes -= len; 2476 spin_unlock(&cache->lock); 2477 2478 btrfs_put_block_group(cache); 2479 } 2480 2481 /* as ordered data IO finishes, this gets called so we can finish 2482 * an ordered extent if the range of bytes in the file it covers are 2483 * fully written. 2484 */ 2485 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2486 { 2487 struct inode *inode = ordered_extent->inode; 2488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2489 struct btrfs_root *root = BTRFS_I(inode)->root; 2490 struct btrfs_trans_handle *trans = NULL; 2491 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2492 struct extent_state *cached_state = NULL; 2493 u64 start, end; 2494 int compress_type = 0; 2495 int ret = 0; 2496 u64 logical_len = ordered_extent->num_bytes; 2497 bool freespace_inode; 2498 bool truncated = false; 2499 bool range_locked = false; 2500 bool clear_new_delalloc_bytes = false; 2501 bool clear_reserved_extent = true; 2502 unsigned int clear_bits; 2503 2504 start = ordered_extent->file_offset; 2505 end = start + ordered_extent->num_bytes - 1; 2506 2507 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2508 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2509 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2510 clear_new_delalloc_bytes = true; 2511 2512 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2513 2514 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2515 ret = -EIO; 2516 goto out; 2517 } 2518 2519 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2520 2521 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2522 truncated = true; 2523 logical_len = ordered_extent->truncated_len; 2524 /* Truncated the entire extent, don't bother adding */ 2525 if (!logical_len) 2526 goto out; 2527 } 2528 2529 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2530 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2531 2532 /* 2533 * For mwrite(mmap + memset to write) case, we still reserve 2534 * space for NOCOW range. 2535 * As NOCOW won't cause a new delayed ref, just free the space 2536 */ 2537 btrfs_qgroup_free_data(inode, NULL, start, 2538 ordered_extent->num_bytes); 2539 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2540 if (freespace_inode) 2541 trans = btrfs_join_transaction_spacecache(root); 2542 else 2543 trans = btrfs_join_transaction(root); 2544 if (IS_ERR(trans)) { 2545 ret = PTR_ERR(trans); 2546 trans = NULL; 2547 goto out; 2548 } 2549 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2550 ret = btrfs_update_inode_fallback(trans, root, inode); 2551 if (ret) /* -ENOMEM or corruption */ 2552 btrfs_abort_transaction(trans, ret); 2553 goto out; 2554 } 2555 2556 range_locked = true; 2557 lock_extent_bits(io_tree, start, end, &cached_state); 2558 2559 if (freespace_inode) 2560 trans = btrfs_join_transaction_spacecache(root); 2561 else 2562 trans = btrfs_join_transaction(root); 2563 if (IS_ERR(trans)) { 2564 ret = PTR_ERR(trans); 2565 trans = NULL; 2566 goto out; 2567 } 2568 2569 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2570 2571 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2572 compress_type = ordered_extent->compress_type; 2573 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2574 BUG_ON(compress_type); 2575 btrfs_qgroup_free_data(inode, NULL, start, 2576 ordered_extent->num_bytes); 2577 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2578 ordered_extent->file_offset, 2579 ordered_extent->file_offset + 2580 logical_len); 2581 } else { 2582 BUG_ON(root == fs_info->tree_root); 2583 ret = insert_reserved_file_extent(trans, inode, start, 2584 ordered_extent->disk_bytenr, 2585 ordered_extent->disk_num_bytes, 2586 logical_len, logical_len, 2587 compress_type, 0, 0, 2588 BTRFS_FILE_EXTENT_REG); 2589 if (!ret) { 2590 clear_reserved_extent = false; 2591 btrfs_release_delalloc_bytes(fs_info, 2592 ordered_extent->disk_bytenr, 2593 ordered_extent->disk_num_bytes); 2594 } 2595 } 2596 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2597 ordered_extent->file_offset, 2598 ordered_extent->num_bytes, trans->transid); 2599 if (ret < 0) { 2600 btrfs_abort_transaction(trans, ret); 2601 goto out; 2602 } 2603 2604 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2605 if (ret) { 2606 btrfs_abort_transaction(trans, ret); 2607 goto out; 2608 } 2609 2610 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2611 ret = btrfs_update_inode_fallback(trans, root, inode); 2612 if (ret) { /* -ENOMEM or corruption */ 2613 btrfs_abort_transaction(trans, ret); 2614 goto out; 2615 } 2616 ret = 0; 2617 out: 2618 clear_bits = EXTENT_DEFRAG; 2619 if (range_locked) 2620 clear_bits |= EXTENT_LOCKED; 2621 if (clear_new_delalloc_bytes) 2622 clear_bits |= EXTENT_DELALLOC_NEW; 2623 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2624 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2625 &cached_state); 2626 2627 if (trans) 2628 btrfs_end_transaction(trans); 2629 2630 if (ret || truncated) { 2631 u64 unwritten_start = start; 2632 2633 if (truncated) 2634 unwritten_start += logical_len; 2635 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2636 2637 /* Drop the cache for the part of the extent we didn't write. */ 2638 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2639 2640 /* 2641 * If the ordered extent had an IOERR or something else went 2642 * wrong we need to return the space for this ordered extent 2643 * back to the allocator. We only free the extent in the 2644 * truncated case if we didn't write out the extent at all. 2645 * 2646 * If we made it past insert_reserved_file_extent before we 2647 * errored out then we don't need to do this as the accounting 2648 * has already been done. 2649 */ 2650 if ((ret || !logical_len) && 2651 clear_reserved_extent && 2652 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2653 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2654 /* 2655 * Discard the range before returning it back to the 2656 * free space pool 2657 */ 2658 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2659 btrfs_discard_extent(fs_info, 2660 ordered_extent->disk_bytenr, 2661 ordered_extent->disk_num_bytes, 2662 NULL); 2663 btrfs_free_reserved_extent(fs_info, 2664 ordered_extent->disk_bytenr, 2665 ordered_extent->disk_num_bytes, 1); 2666 } 2667 } 2668 2669 /* 2670 * This needs to be done to make sure anybody waiting knows we are done 2671 * updating everything for this ordered extent. 2672 */ 2673 btrfs_remove_ordered_extent(inode, ordered_extent); 2674 2675 /* once for us */ 2676 btrfs_put_ordered_extent(ordered_extent); 2677 /* once for the tree */ 2678 btrfs_put_ordered_extent(ordered_extent); 2679 2680 return ret; 2681 } 2682 2683 static void finish_ordered_fn(struct btrfs_work *work) 2684 { 2685 struct btrfs_ordered_extent *ordered_extent; 2686 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2687 btrfs_finish_ordered_io(ordered_extent); 2688 } 2689 2690 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2691 u64 end, int uptodate) 2692 { 2693 struct inode *inode = page->mapping->host; 2694 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2695 struct btrfs_ordered_extent *ordered_extent = NULL; 2696 struct btrfs_workqueue *wq; 2697 2698 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2699 2700 ClearPagePrivate2(page); 2701 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2702 end - start + 1, uptodate)) 2703 return; 2704 2705 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2706 wq = fs_info->endio_freespace_worker; 2707 else 2708 wq = fs_info->endio_write_workers; 2709 2710 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2711 btrfs_queue_work(wq, &ordered_extent->work); 2712 } 2713 2714 static int __readpage_endio_check(struct inode *inode, 2715 struct btrfs_io_bio *io_bio, 2716 int icsum, struct page *page, 2717 int pgoff, u64 start, size_t len) 2718 { 2719 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2720 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2721 char *kaddr; 2722 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2723 u8 *csum_expected; 2724 u8 csum[BTRFS_CSUM_SIZE]; 2725 2726 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2727 2728 kaddr = kmap_atomic(page); 2729 shash->tfm = fs_info->csum_shash; 2730 2731 crypto_shash_init(shash); 2732 crypto_shash_update(shash, kaddr + pgoff, len); 2733 crypto_shash_final(shash, csum); 2734 2735 if (memcmp(csum, csum_expected, csum_size)) 2736 goto zeroit; 2737 2738 kunmap_atomic(kaddr); 2739 return 0; 2740 zeroit: 2741 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2742 io_bio->mirror_num); 2743 memset(kaddr + pgoff, 1, len); 2744 flush_dcache_page(page); 2745 kunmap_atomic(kaddr); 2746 return -EIO; 2747 } 2748 2749 /* 2750 * when reads are done, we need to check csums to verify the data is correct 2751 * if there's a match, we allow the bio to finish. If not, the code in 2752 * extent_io.c will try to find good copies for us. 2753 */ 2754 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2755 u64 phy_offset, struct page *page, 2756 u64 start, u64 end, int mirror) 2757 { 2758 size_t offset = start - page_offset(page); 2759 struct inode *inode = page->mapping->host; 2760 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2761 struct btrfs_root *root = BTRFS_I(inode)->root; 2762 2763 if (PageChecked(page)) { 2764 ClearPageChecked(page); 2765 return 0; 2766 } 2767 2768 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2769 return 0; 2770 2771 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2772 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2773 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2774 return 0; 2775 } 2776 2777 phy_offset >>= inode->i_sb->s_blocksize_bits; 2778 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 2779 start, (size_t)(end - start + 1)); 2780 } 2781 2782 /* 2783 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2784 * 2785 * @inode: The inode we want to perform iput on 2786 * 2787 * This function uses the generic vfs_inode::i_count to track whether we should 2788 * just decrement it (in case it's > 1) or if this is the last iput then link 2789 * the inode to the delayed iput machinery. Delayed iputs are processed at 2790 * transaction commit time/superblock commit/cleaner kthread. 2791 */ 2792 void btrfs_add_delayed_iput(struct inode *inode) 2793 { 2794 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2795 struct btrfs_inode *binode = BTRFS_I(inode); 2796 2797 if (atomic_add_unless(&inode->i_count, -1, 1)) 2798 return; 2799 2800 atomic_inc(&fs_info->nr_delayed_iputs); 2801 spin_lock(&fs_info->delayed_iput_lock); 2802 ASSERT(list_empty(&binode->delayed_iput)); 2803 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2804 spin_unlock(&fs_info->delayed_iput_lock); 2805 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2806 wake_up_process(fs_info->cleaner_kthread); 2807 } 2808 2809 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2810 struct btrfs_inode *inode) 2811 { 2812 list_del_init(&inode->delayed_iput); 2813 spin_unlock(&fs_info->delayed_iput_lock); 2814 iput(&inode->vfs_inode); 2815 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2816 wake_up(&fs_info->delayed_iputs_wait); 2817 spin_lock(&fs_info->delayed_iput_lock); 2818 } 2819 2820 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2821 struct btrfs_inode *inode) 2822 { 2823 if (!list_empty(&inode->delayed_iput)) { 2824 spin_lock(&fs_info->delayed_iput_lock); 2825 if (!list_empty(&inode->delayed_iput)) 2826 run_delayed_iput_locked(fs_info, inode); 2827 spin_unlock(&fs_info->delayed_iput_lock); 2828 } 2829 } 2830 2831 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2832 { 2833 2834 spin_lock(&fs_info->delayed_iput_lock); 2835 while (!list_empty(&fs_info->delayed_iputs)) { 2836 struct btrfs_inode *inode; 2837 2838 inode = list_first_entry(&fs_info->delayed_iputs, 2839 struct btrfs_inode, delayed_iput); 2840 run_delayed_iput_locked(fs_info, inode); 2841 } 2842 spin_unlock(&fs_info->delayed_iput_lock); 2843 } 2844 2845 /** 2846 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2847 * @fs_info - the fs_info for this fs 2848 * @return - EINTR if we were killed, 0 if nothing's pending 2849 * 2850 * This will wait on any delayed iputs that are currently running with KILLABLE 2851 * set. Once they are all done running we will return, unless we are killed in 2852 * which case we return EINTR. This helps in user operations like fallocate etc 2853 * that might get blocked on the iputs. 2854 */ 2855 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2856 { 2857 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2858 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2859 if (ret) 2860 return -EINTR; 2861 return 0; 2862 } 2863 2864 /* 2865 * This creates an orphan entry for the given inode in case something goes wrong 2866 * in the middle of an unlink. 2867 */ 2868 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2869 struct btrfs_inode *inode) 2870 { 2871 int ret; 2872 2873 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2874 if (ret && ret != -EEXIST) { 2875 btrfs_abort_transaction(trans, ret); 2876 return ret; 2877 } 2878 2879 return 0; 2880 } 2881 2882 /* 2883 * We have done the delete so we can go ahead and remove the orphan item for 2884 * this particular inode. 2885 */ 2886 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2887 struct btrfs_inode *inode) 2888 { 2889 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2890 } 2891 2892 /* 2893 * this cleans up any orphans that may be left on the list from the last use 2894 * of this root. 2895 */ 2896 int btrfs_orphan_cleanup(struct btrfs_root *root) 2897 { 2898 struct btrfs_fs_info *fs_info = root->fs_info; 2899 struct btrfs_path *path; 2900 struct extent_buffer *leaf; 2901 struct btrfs_key key, found_key; 2902 struct btrfs_trans_handle *trans; 2903 struct inode *inode; 2904 u64 last_objectid = 0; 2905 int ret = 0, nr_unlink = 0; 2906 2907 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2908 return 0; 2909 2910 path = btrfs_alloc_path(); 2911 if (!path) { 2912 ret = -ENOMEM; 2913 goto out; 2914 } 2915 path->reada = READA_BACK; 2916 2917 key.objectid = BTRFS_ORPHAN_OBJECTID; 2918 key.type = BTRFS_ORPHAN_ITEM_KEY; 2919 key.offset = (u64)-1; 2920 2921 while (1) { 2922 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2923 if (ret < 0) 2924 goto out; 2925 2926 /* 2927 * if ret == 0 means we found what we were searching for, which 2928 * is weird, but possible, so only screw with path if we didn't 2929 * find the key and see if we have stuff that matches 2930 */ 2931 if (ret > 0) { 2932 ret = 0; 2933 if (path->slots[0] == 0) 2934 break; 2935 path->slots[0]--; 2936 } 2937 2938 /* pull out the item */ 2939 leaf = path->nodes[0]; 2940 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2941 2942 /* make sure the item matches what we want */ 2943 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2944 break; 2945 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 2946 break; 2947 2948 /* release the path since we're done with it */ 2949 btrfs_release_path(path); 2950 2951 /* 2952 * this is where we are basically btrfs_lookup, without the 2953 * crossing root thing. we store the inode number in the 2954 * offset of the orphan item. 2955 */ 2956 2957 if (found_key.offset == last_objectid) { 2958 btrfs_err(fs_info, 2959 "Error removing orphan entry, stopping orphan cleanup"); 2960 ret = -EINVAL; 2961 goto out; 2962 } 2963 2964 last_objectid = found_key.offset; 2965 2966 found_key.objectid = found_key.offset; 2967 found_key.type = BTRFS_INODE_ITEM_KEY; 2968 found_key.offset = 0; 2969 inode = btrfs_iget(fs_info->sb, &found_key, root); 2970 ret = PTR_ERR_OR_ZERO(inode); 2971 if (ret && ret != -ENOENT) 2972 goto out; 2973 2974 if (ret == -ENOENT && root == fs_info->tree_root) { 2975 struct btrfs_root *dead_root; 2976 struct btrfs_fs_info *fs_info = root->fs_info; 2977 int is_dead_root = 0; 2978 2979 /* 2980 * this is an orphan in the tree root. Currently these 2981 * could come from 2 sources: 2982 * a) a snapshot deletion in progress 2983 * b) a free space cache inode 2984 * We need to distinguish those two, as the snapshot 2985 * orphan must not get deleted. 2986 * find_dead_roots already ran before us, so if this 2987 * is a snapshot deletion, we should find the root 2988 * in the dead_roots list 2989 */ 2990 spin_lock(&fs_info->trans_lock); 2991 list_for_each_entry(dead_root, &fs_info->dead_roots, 2992 root_list) { 2993 if (dead_root->root_key.objectid == 2994 found_key.objectid) { 2995 is_dead_root = 1; 2996 break; 2997 } 2998 } 2999 spin_unlock(&fs_info->trans_lock); 3000 if (is_dead_root) { 3001 /* prevent this orphan from being found again */ 3002 key.offset = found_key.objectid - 1; 3003 continue; 3004 } 3005 3006 } 3007 3008 /* 3009 * If we have an inode with links, there are a couple of 3010 * possibilities. Old kernels (before v3.12) used to create an 3011 * orphan item for truncate indicating that there were possibly 3012 * extent items past i_size that needed to be deleted. In v3.12, 3013 * truncate was changed to update i_size in sync with the extent 3014 * items, but the (useless) orphan item was still created. Since 3015 * v4.18, we don't create the orphan item for truncate at all. 3016 * 3017 * So, this item could mean that we need to do a truncate, but 3018 * only if this filesystem was last used on a pre-v3.12 kernel 3019 * and was not cleanly unmounted. The odds of that are quite 3020 * slim, and it's a pain to do the truncate now, so just delete 3021 * the orphan item. 3022 * 3023 * It's also possible that this orphan item was supposed to be 3024 * deleted but wasn't. The inode number may have been reused, 3025 * but either way, we can delete the orphan item. 3026 */ 3027 if (ret == -ENOENT || inode->i_nlink) { 3028 if (!ret) 3029 iput(inode); 3030 trans = btrfs_start_transaction(root, 1); 3031 if (IS_ERR(trans)) { 3032 ret = PTR_ERR(trans); 3033 goto out; 3034 } 3035 btrfs_debug(fs_info, "auto deleting %Lu", 3036 found_key.objectid); 3037 ret = btrfs_del_orphan_item(trans, root, 3038 found_key.objectid); 3039 btrfs_end_transaction(trans); 3040 if (ret) 3041 goto out; 3042 continue; 3043 } 3044 3045 nr_unlink++; 3046 3047 /* this will do delete_inode and everything for us */ 3048 iput(inode); 3049 } 3050 /* release the path since we're done with it */ 3051 btrfs_release_path(path); 3052 3053 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3054 3055 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3056 trans = btrfs_join_transaction(root); 3057 if (!IS_ERR(trans)) 3058 btrfs_end_transaction(trans); 3059 } 3060 3061 if (nr_unlink) 3062 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3063 3064 out: 3065 if (ret) 3066 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3067 btrfs_free_path(path); 3068 return ret; 3069 } 3070 3071 /* 3072 * very simple check to peek ahead in the leaf looking for xattrs. If we 3073 * don't find any xattrs, we know there can't be any acls. 3074 * 3075 * slot is the slot the inode is in, objectid is the objectid of the inode 3076 */ 3077 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3078 int slot, u64 objectid, 3079 int *first_xattr_slot) 3080 { 3081 u32 nritems = btrfs_header_nritems(leaf); 3082 struct btrfs_key found_key; 3083 static u64 xattr_access = 0; 3084 static u64 xattr_default = 0; 3085 int scanned = 0; 3086 3087 if (!xattr_access) { 3088 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3089 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3090 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3091 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3092 } 3093 3094 slot++; 3095 *first_xattr_slot = -1; 3096 while (slot < nritems) { 3097 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3098 3099 /* we found a different objectid, there must not be acls */ 3100 if (found_key.objectid != objectid) 3101 return 0; 3102 3103 /* we found an xattr, assume we've got an acl */ 3104 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3105 if (*first_xattr_slot == -1) 3106 *first_xattr_slot = slot; 3107 if (found_key.offset == xattr_access || 3108 found_key.offset == xattr_default) 3109 return 1; 3110 } 3111 3112 /* 3113 * we found a key greater than an xattr key, there can't 3114 * be any acls later on 3115 */ 3116 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3117 return 0; 3118 3119 slot++; 3120 scanned++; 3121 3122 /* 3123 * it goes inode, inode backrefs, xattrs, extents, 3124 * so if there are a ton of hard links to an inode there can 3125 * be a lot of backrefs. Don't waste time searching too hard, 3126 * this is just an optimization 3127 */ 3128 if (scanned >= 8) 3129 break; 3130 } 3131 /* we hit the end of the leaf before we found an xattr or 3132 * something larger than an xattr. We have to assume the inode 3133 * has acls 3134 */ 3135 if (*first_xattr_slot == -1) 3136 *first_xattr_slot = slot; 3137 return 1; 3138 } 3139 3140 /* 3141 * read an inode from the btree into the in-memory inode 3142 */ 3143 static int btrfs_read_locked_inode(struct inode *inode, 3144 struct btrfs_path *in_path) 3145 { 3146 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3147 struct btrfs_path *path = in_path; 3148 struct extent_buffer *leaf; 3149 struct btrfs_inode_item *inode_item; 3150 struct btrfs_root *root = BTRFS_I(inode)->root; 3151 struct btrfs_key location; 3152 unsigned long ptr; 3153 int maybe_acls; 3154 u32 rdev; 3155 int ret; 3156 bool filled = false; 3157 int first_xattr_slot; 3158 3159 ret = btrfs_fill_inode(inode, &rdev); 3160 if (!ret) 3161 filled = true; 3162 3163 if (!path) { 3164 path = btrfs_alloc_path(); 3165 if (!path) 3166 return -ENOMEM; 3167 } 3168 3169 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3170 3171 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3172 if (ret) { 3173 if (path != in_path) 3174 btrfs_free_path(path); 3175 return ret; 3176 } 3177 3178 leaf = path->nodes[0]; 3179 3180 if (filled) 3181 goto cache_index; 3182 3183 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3184 struct btrfs_inode_item); 3185 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3186 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3187 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3188 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3189 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3190 3191 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3192 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3193 3194 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3195 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3196 3197 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3198 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3199 3200 BTRFS_I(inode)->i_otime.tv_sec = 3201 btrfs_timespec_sec(leaf, &inode_item->otime); 3202 BTRFS_I(inode)->i_otime.tv_nsec = 3203 btrfs_timespec_nsec(leaf, &inode_item->otime); 3204 3205 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3206 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3207 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3208 3209 inode_set_iversion_queried(inode, 3210 btrfs_inode_sequence(leaf, inode_item)); 3211 inode->i_generation = BTRFS_I(inode)->generation; 3212 inode->i_rdev = 0; 3213 rdev = btrfs_inode_rdev(leaf, inode_item); 3214 3215 BTRFS_I(inode)->index_cnt = (u64)-1; 3216 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3217 3218 cache_index: 3219 /* 3220 * If we were modified in the current generation and evicted from memory 3221 * and then re-read we need to do a full sync since we don't have any 3222 * idea about which extents were modified before we were evicted from 3223 * cache. 3224 * 3225 * This is required for both inode re-read from disk and delayed inode 3226 * in delayed_nodes_tree. 3227 */ 3228 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3229 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3230 &BTRFS_I(inode)->runtime_flags); 3231 3232 /* 3233 * We don't persist the id of the transaction where an unlink operation 3234 * against the inode was last made. So here we assume the inode might 3235 * have been evicted, and therefore the exact value of last_unlink_trans 3236 * lost, and set it to last_trans to avoid metadata inconsistencies 3237 * between the inode and its parent if the inode is fsync'ed and the log 3238 * replayed. For example, in the scenario: 3239 * 3240 * touch mydir/foo 3241 * ln mydir/foo mydir/bar 3242 * sync 3243 * unlink mydir/bar 3244 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3245 * xfs_io -c fsync mydir/foo 3246 * <power failure> 3247 * mount fs, triggers fsync log replay 3248 * 3249 * We must make sure that when we fsync our inode foo we also log its 3250 * parent inode, otherwise after log replay the parent still has the 3251 * dentry with the "bar" name but our inode foo has a link count of 1 3252 * and doesn't have an inode ref with the name "bar" anymore. 3253 * 3254 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3255 * but it guarantees correctness at the expense of occasional full 3256 * transaction commits on fsync if our inode is a directory, or if our 3257 * inode is not a directory, logging its parent unnecessarily. 3258 */ 3259 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3260 3261 path->slots[0]++; 3262 if (inode->i_nlink != 1 || 3263 path->slots[0] >= btrfs_header_nritems(leaf)) 3264 goto cache_acl; 3265 3266 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3267 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3268 goto cache_acl; 3269 3270 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3271 if (location.type == BTRFS_INODE_REF_KEY) { 3272 struct btrfs_inode_ref *ref; 3273 3274 ref = (struct btrfs_inode_ref *)ptr; 3275 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3276 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3277 struct btrfs_inode_extref *extref; 3278 3279 extref = (struct btrfs_inode_extref *)ptr; 3280 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3281 extref); 3282 } 3283 cache_acl: 3284 /* 3285 * try to precache a NULL acl entry for files that don't have 3286 * any xattrs or acls 3287 */ 3288 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3289 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3290 if (first_xattr_slot != -1) { 3291 path->slots[0] = first_xattr_slot; 3292 ret = btrfs_load_inode_props(inode, path); 3293 if (ret) 3294 btrfs_err(fs_info, 3295 "error loading props for ino %llu (root %llu): %d", 3296 btrfs_ino(BTRFS_I(inode)), 3297 root->root_key.objectid, ret); 3298 } 3299 if (path != in_path) 3300 btrfs_free_path(path); 3301 3302 if (!maybe_acls) 3303 cache_no_acl(inode); 3304 3305 switch (inode->i_mode & S_IFMT) { 3306 case S_IFREG: 3307 inode->i_mapping->a_ops = &btrfs_aops; 3308 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3309 inode->i_fop = &btrfs_file_operations; 3310 inode->i_op = &btrfs_file_inode_operations; 3311 break; 3312 case S_IFDIR: 3313 inode->i_fop = &btrfs_dir_file_operations; 3314 inode->i_op = &btrfs_dir_inode_operations; 3315 break; 3316 case S_IFLNK: 3317 inode->i_op = &btrfs_symlink_inode_operations; 3318 inode_nohighmem(inode); 3319 inode->i_mapping->a_ops = &btrfs_aops; 3320 break; 3321 default: 3322 inode->i_op = &btrfs_special_inode_operations; 3323 init_special_inode(inode, inode->i_mode, rdev); 3324 break; 3325 } 3326 3327 btrfs_sync_inode_flags_to_i_flags(inode); 3328 return 0; 3329 } 3330 3331 /* 3332 * given a leaf and an inode, copy the inode fields into the leaf 3333 */ 3334 static void fill_inode_item(struct btrfs_trans_handle *trans, 3335 struct extent_buffer *leaf, 3336 struct btrfs_inode_item *item, 3337 struct inode *inode) 3338 { 3339 struct btrfs_map_token token; 3340 3341 btrfs_init_map_token(&token, leaf); 3342 3343 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3344 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3345 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3346 &token); 3347 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3348 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3349 3350 btrfs_set_token_timespec_sec(leaf, &item->atime, 3351 inode->i_atime.tv_sec, &token); 3352 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3353 inode->i_atime.tv_nsec, &token); 3354 3355 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3356 inode->i_mtime.tv_sec, &token); 3357 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3358 inode->i_mtime.tv_nsec, &token); 3359 3360 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3361 inode->i_ctime.tv_sec, &token); 3362 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3363 inode->i_ctime.tv_nsec, &token); 3364 3365 btrfs_set_token_timespec_sec(leaf, &item->otime, 3366 BTRFS_I(inode)->i_otime.tv_sec, &token); 3367 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3368 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3369 3370 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3371 &token); 3372 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3373 &token); 3374 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3375 &token); 3376 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3377 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3378 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3379 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3380 } 3381 3382 /* 3383 * copy everything in the in-memory inode into the btree. 3384 */ 3385 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3386 struct btrfs_root *root, struct inode *inode) 3387 { 3388 struct btrfs_inode_item *inode_item; 3389 struct btrfs_path *path; 3390 struct extent_buffer *leaf; 3391 int ret; 3392 3393 path = btrfs_alloc_path(); 3394 if (!path) 3395 return -ENOMEM; 3396 3397 path->leave_spinning = 1; 3398 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3399 1); 3400 if (ret) { 3401 if (ret > 0) 3402 ret = -ENOENT; 3403 goto failed; 3404 } 3405 3406 leaf = path->nodes[0]; 3407 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3408 struct btrfs_inode_item); 3409 3410 fill_inode_item(trans, leaf, inode_item, inode); 3411 btrfs_mark_buffer_dirty(leaf); 3412 btrfs_set_inode_last_trans(trans, inode); 3413 ret = 0; 3414 failed: 3415 btrfs_free_path(path); 3416 return ret; 3417 } 3418 3419 /* 3420 * copy everything in the in-memory inode into the btree. 3421 */ 3422 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3423 struct btrfs_root *root, struct inode *inode) 3424 { 3425 struct btrfs_fs_info *fs_info = root->fs_info; 3426 int ret; 3427 3428 /* 3429 * If the inode is a free space inode, we can deadlock during commit 3430 * if we put it into the delayed code. 3431 * 3432 * The data relocation inode should also be directly updated 3433 * without delay 3434 */ 3435 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3436 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3437 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3438 btrfs_update_root_times(trans, root); 3439 3440 ret = btrfs_delayed_update_inode(trans, root, inode); 3441 if (!ret) 3442 btrfs_set_inode_last_trans(trans, inode); 3443 return ret; 3444 } 3445 3446 return btrfs_update_inode_item(trans, root, inode); 3447 } 3448 3449 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3450 struct btrfs_root *root, 3451 struct inode *inode) 3452 { 3453 int ret; 3454 3455 ret = btrfs_update_inode(trans, root, inode); 3456 if (ret == -ENOSPC) 3457 return btrfs_update_inode_item(trans, root, inode); 3458 return ret; 3459 } 3460 3461 /* 3462 * unlink helper that gets used here in inode.c and in the tree logging 3463 * recovery code. It remove a link in a directory with a given name, and 3464 * also drops the back refs in the inode to the directory 3465 */ 3466 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3467 struct btrfs_root *root, 3468 struct btrfs_inode *dir, 3469 struct btrfs_inode *inode, 3470 const char *name, int name_len) 3471 { 3472 struct btrfs_fs_info *fs_info = root->fs_info; 3473 struct btrfs_path *path; 3474 int ret = 0; 3475 struct btrfs_dir_item *di; 3476 u64 index; 3477 u64 ino = btrfs_ino(inode); 3478 u64 dir_ino = btrfs_ino(dir); 3479 3480 path = btrfs_alloc_path(); 3481 if (!path) { 3482 ret = -ENOMEM; 3483 goto out; 3484 } 3485 3486 path->leave_spinning = 1; 3487 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3488 name, name_len, -1); 3489 if (IS_ERR_OR_NULL(di)) { 3490 ret = di ? PTR_ERR(di) : -ENOENT; 3491 goto err; 3492 } 3493 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3494 if (ret) 3495 goto err; 3496 btrfs_release_path(path); 3497 3498 /* 3499 * If we don't have dir index, we have to get it by looking up 3500 * the inode ref, since we get the inode ref, remove it directly, 3501 * it is unnecessary to do delayed deletion. 3502 * 3503 * But if we have dir index, needn't search inode ref to get it. 3504 * Since the inode ref is close to the inode item, it is better 3505 * that we delay to delete it, and just do this deletion when 3506 * we update the inode item. 3507 */ 3508 if (inode->dir_index) { 3509 ret = btrfs_delayed_delete_inode_ref(inode); 3510 if (!ret) { 3511 index = inode->dir_index; 3512 goto skip_backref; 3513 } 3514 } 3515 3516 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3517 dir_ino, &index); 3518 if (ret) { 3519 btrfs_info(fs_info, 3520 "failed to delete reference to %.*s, inode %llu parent %llu", 3521 name_len, name, ino, dir_ino); 3522 btrfs_abort_transaction(trans, ret); 3523 goto err; 3524 } 3525 skip_backref: 3526 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3527 if (ret) { 3528 btrfs_abort_transaction(trans, ret); 3529 goto err; 3530 } 3531 3532 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3533 dir_ino); 3534 if (ret != 0 && ret != -ENOENT) { 3535 btrfs_abort_transaction(trans, ret); 3536 goto err; 3537 } 3538 3539 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3540 index); 3541 if (ret == -ENOENT) 3542 ret = 0; 3543 else if (ret) 3544 btrfs_abort_transaction(trans, ret); 3545 3546 /* 3547 * If we have a pending delayed iput we could end up with the final iput 3548 * being run in btrfs-cleaner context. If we have enough of these built 3549 * up we can end up burning a lot of time in btrfs-cleaner without any 3550 * way to throttle the unlinks. Since we're currently holding a ref on 3551 * the inode we can run the delayed iput here without any issues as the 3552 * final iput won't be done until after we drop the ref we're currently 3553 * holding. 3554 */ 3555 btrfs_run_delayed_iput(fs_info, inode); 3556 err: 3557 btrfs_free_path(path); 3558 if (ret) 3559 goto out; 3560 3561 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3562 inode_inc_iversion(&inode->vfs_inode); 3563 inode_inc_iversion(&dir->vfs_inode); 3564 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3565 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3566 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3567 out: 3568 return ret; 3569 } 3570 3571 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3572 struct btrfs_root *root, 3573 struct btrfs_inode *dir, struct btrfs_inode *inode, 3574 const char *name, int name_len) 3575 { 3576 int ret; 3577 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3578 if (!ret) { 3579 drop_nlink(&inode->vfs_inode); 3580 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3581 } 3582 return ret; 3583 } 3584 3585 /* 3586 * helper to start transaction for unlink and rmdir. 3587 * 3588 * unlink and rmdir are special in btrfs, they do not always free space, so 3589 * if we cannot make our reservations the normal way try and see if there is 3590 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3591 * allow the unlink to occur. 3592 */ 3593 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3594 { 3595 struct btrfs_root *root = BTRFS_I(dir)->root; 3596 3597 /* 3598 * 1 for the possible orphan item 3599 * 1 for the dir item 3600 * 1 for the dir index 3601 * 1 for the inode ref 3602 * 1 for the inode 3603 */ 3604 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 3605 } 3606 3607 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3608 { 3609 struct btrfs_root *root = BTRFS_I(dir)->root; 3610 struct btrfs_trans_handle *trans; 3611 struct inode *inode = d_inode(dentry); 3612 int ret; 3613 3614 trans = __unlink_start_trans(dir); 3615 if (IS_ERR(trans)) 3616 return PTR_ERR(trans); 3617 3618 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3619 0); 3620 3621 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3622 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3623 dentry->d_name.len); 3624 if (ret) 3625 goto out; 3626 3627 if (inode->i_nlink == 0) { 3628 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3629 if (ret) 3630 goto out; 3631 } 3632 3633 out: 3634 btrfs_end_transaction(trans); 3635 btrfs_btree_balance_dirty(root->fs_info); 3636 return ret; 3637 } 3638 3639 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3640 struct inode *dir, struct dentry *dentry) 3641 { 3642 struct btrfs_root *root = BTRFS_I(dir)->root; 3643 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3644 struct btrfs_path *path; 3645 struct extent_buffer *leaf; 3646 struct btrfs_dir_item *di; 3647 struct btrfs_key key; 3648 const char *name = dentry->d_name.name; 3649 int name_len = dentry->d_name.len; 3650 u64 index; 3651 int ret; 3652 u64 objectid; 3653 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3654 3655 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3656 objectid = inode->root->root_key.objectid; 3657 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3658 objectid = inode->location.objectid; 3659 } else { 3660 WARN_ON(1); 3661 return -EINVAL; 3662 } 3663 3664 path = btrfs_alloc_path(); 3665 if (!path) 3666 return -ENOMEM; 3667 3668 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3669 name, name_len, -1); 3670 if (IS_ERR_OR_NULL(di)) { 3671 ret = di ? PTR_ERR(di) : -ENOENT; 3672 goto out; 3673 } 3674 3675 leaf = path->nodes[0]; 3676 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3677 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3678 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3679 if (ret) { 3680 btrfs_abort_transaction(trans, ret); 3681 goto out; 3682 } 3683 btrfs_release_path(path); 3684 3685 /* 3686 * This is a placeholder inode for a subvolume we didn't have a 3687 * reference to at the time of the snapshot creation. In the meantime 3688 * we could have renamed the real subvol link into our snapshot, so 3689 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3690 * Instead simply lookup the dir_index_item for this entry so we can 3691 * remove it. Otherwise we know we have a ref to the root and we can 3692 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3693 */ 3694 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3695 di = btrfs_search_dir_index_item(root, path, dir_ino, 3696 name, name_len); 3697 if (IS_ERR_OR_NULL(di)) { 3698 if (!di) 3699 ret = -ENOENT; 3700 else 3701 ret = PTR_ERR(di); 3702 btrfs_abort_transaction(trans, ret); 3703 goto out; 3704 } 3705 3706 leaf = path->nodes[0]; 3707 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3708 index = key.offset; 3709 btrfs_release_path(path); 3710 } else { 3711 ret = btrfs_del_root_ref(trans, objectid, 3712 root->root_key.objectid, dir_ino, 3713 &index, name, name_len); 3714 if (ret) { 3715 btrfs_abort_transaction(trans, ret); 3716 goto out; 3717 } 3718 } 3719 3720 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3721 if (ret) { 3722 btrfs_abort_transaction(trans, ret); 3723 goto out; 3724 } 3725 3726 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3727 inode_inc_iversion(dir); 3728 dir->i_mtime = dir->i_ctime = current_time(dir); 3729 ret = btrfs_update_inode_fallback(trans, root, dir); 3730 if (ret) 3731 btrfs_abort_transaction(trans, ret); 3732 out: 3733 btrfs_free_path(path); 3734 return ret; 3735 } 3736 3737 /* 3738 * Helper to check if the subvolume references other subvolumes or if it's 3739 * default. 3740 */ 3741 static noinline int may_destroy_subvol(struct btrfs_root *root) 3742 { 3743 struct btrfs_fs_info *fs_info = root->fs_info; 3744 struct btrfs_path *path; 3745 struct btrfs_dir_item *di; 3746 struct btrfs_key key; 3747 u64 dir_id; 3748 int ret; 3749 3750 path = btrfs_alloc_path(); 3751 if (!path) 3752 return -ENOMEM; 3753 3754 /* Make sure this root isn't set as the default subvol */ 3755 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3756 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3757 dir_id, "default", 7, 0); 3758 if (di && !IS_ERR(di)) { 3759 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3760 if (key.objectid == root->root_key.objectid) { 3761 ret = -EPERM; 3762 btrfs_err(fs_info, 3763 "deleting default subvolume %llu is not allowed", 3764 key.objectid); 3765 goto out; 3766 } 3767 btrfs_release_path(path); 3768 } 3769 3770 key.objectid = root->root_key.objectid; 3771 key.type = BTRFS_ROOT_REF_KEY; 3772 key.offset = (u64)-1; 3773 3774 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3775 if (ret < 0) 3776 goto out; 3777 BUG_ON(ret == 0); 3778 3779 ret = 0; 3780 if (path->slots[0] > 0) { 3781 path->slots[0]--; 3782 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3783 if (key.objectid == root->root_key.objectid && 3784 key.type == BTRFS_ROOT_REF_KEY) 3785 ret = -ENOTEMPTY; 3786 } 3787 out: 3788 btrfs_free_path(path); 3789 return ret; 3790 } 3791 3792 /* Delete all dentries for inodes belonging to the root */ 3793 static void btrfs_prune_dentries(struct btrfs_root *root) 3794 { 3795 struct btrfs_fs_info *fs_info = root->fs_info; 3796 struct rb_node *node; 3797 struct rb_node *prev; 3798 struct btrfs_inode *entry; 3799 struct inode *inode; 3800 u64 objectid = 0; 3801 3802 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3803 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3804 3805 spin_lock(&root->inode_lock); 3806 again: 3807 node = root->inode_tree.rb_node; 3808 prev = NULL; 3809 while (node) { 3810 prev = node; 3811 entry = rb_entry(node, struct btrfs_inode, rb_node); 3812 3813 if (objectid < btrfs_ino(entry)) 3814 node = node->rb_left; 3815 else if (objectid > btrfs_ino(entry)) 3816 node = node->rb_right; 3817 else 3818 break; 3819 } 3820 if (!node) { 3821 while (prev) { 3822 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3823 if (objectid <= btrfs_ino(entry)) { 3824 node = prev; 3825 break; 3826 } 3827 prev = rb_next(prev); 3828 } 3829 } 3830 while (node) { 3831 entry = rb_entry(node, struct btrfs_inode, rb_node); 3832 objectid = btrfs_ino(entry) + 1; 3833 inode = igrab(&entry->vfs_inode); 3834 if (inode) { 3835 spin_unlock(&root->inode_lock); 3836 if (atomic_read(&inode->i_count) > 1) 3837 d_prune_aliases(inode); 3838 /* 3839 * btrfs_drop_inode will have it removed from the inode 3840 * cache when its usage count hits zero. 3841 */ 3842 iput(inode); 3843 cond_resched(); 3844 spin_lock(&root->inode_lock); 3845 goto again; 3846 } 3847 3848 if (cond_resched_lock(&root->inode_lock)) 3849 goto again; 3850 3851 node = rb_next(node); 3852 } 3853 spin_unlock(&root->inode_lock); 3854 } 3855 3856 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3857 { 3858 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3859 struct btrfs_root *root = BTRFS_I(dir)->root; 3860 struct inode *inode = d_inode(dentry); 3861 struct btrfs_root *dest = BTRFS_I(inode)->root; 3862 struct btrfs_trans_handle *trans; 3863 struct btrfs_block_rsv block_rsv; 3864 u64 root_flags; 3865 int ret; 3866 int err; 3867 3868 /* 3869 * Don't allow to delete a subvolume with send in progress. This is 3870 * inside the inode lock so the error handling that has to drop the bit 3871 * again is not run concurrently. 3872 */ 3873 spin_lock(&dest->root_item_lock); 3874 if (dest->send_in_progress) { 3875 spin_unlock(&dest->root_item_lock); 3876 btrfs_warn(fs_info, 3877 "attempt to delete subvolume %llu during send", 3878 dest->root_key.objectid); 3879 return -EPERM; 3880 } 3881 root_flags = btrfs_root_flags(&dest->root_item); 3882 btrfs_set_root_flags(&dest->root_item, 3883 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3884 spin_unlock(&dest->root_item_lock); 3885 3886 down_write(&fs_info->subvol_sem); 3887 3888 err = may_destroy_subvol(dest); 3889 if (err) 3890 goto out_up_write; 3891 3892 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3893 /* 3894 * One for dir inode, 3895 * two for dir entries, 3896 * two for root ref/backref. 3897 */ 3898 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3899 if (err) 3900 goto out_up_write; 3901 3902 trans = btrfs_start_transaction(root, 0); 3903 if (IS_ERR(trans)) { 3904 err = PTR_ERR(trans); 3905 goto out_release; 3906 } 3907 trans->block_rsv = &block_rsv; 3908 trans->bytes_reserved = block_rsv.size; 3909 3910 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 3911 3912 ret = btrfs_unlink_subvol(trans, dir, dentry); 3913 if (ret) { 3914 err = ret; 3915 btrfs_abort_transaction(trans, ret); 3916 goto out_end_trans; 3917 } 3918 3919 btrfs_record_root_in_trans(trans, dest); 3920 3921 memset(&dest->root_item.drop_progress, 0, 3922 sizeof(dest->root_item.drop_progress)); 3923 dest->root_item.drop_level = 0; 3924 btrfs_set_root_refs(&dest->root_item, 0); 3925 3926 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 3927 ret = btrfs_insert_orphan_item(trans, 3928 fs_info->tree_root, 3929 dest->root_key.objectid); 3930 if (ret) { 3931 btrfs_abort_transaction(trans, ret); 3932 err = ret; 3933 goto out_end_trans; 3934 } 3935 } 3936 3937 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 3938 BTRFS_UUID_KEY_SUBVOL, 3939 dest->root_key.objectid); 3940 if (ret && ret != -ENOENT) { 3941 btrfs_abort_transaction(trans, ret); 3942 err = ret; 3943 goto out_end_trans; 3944 } 3945 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 3946 ret = btrfs_uuid_tree_remove(trans, 3947 dest->root_item.received_uuid, 3948 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3949 dest->root_key.objectid); 3950 if (ret && ret != -ENOENT) { 3951 btrfs_abort_transaction(trans, ret); 3952 err = ret; 3953 goto out_end_trans; 3954 } 3955 } 3956 3957 out_end_trans: 3958 trans->block_rsv = NULL; 3959 trans->bytes_reserved = 0; 3960 ret = btrfs_end_transaction(trans); 3961 if (ret && !err) 3962 err = ret; 3963 inode->i_flags |= S_DEAD; 3964 out_release: 3965 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 3966 out_up_write: 3967 up_write(&fs_info->subvol_sem); 3968 if (err) { 3969 spin_lock(&dest->root_item_lock); 3970 root_flags = btrfs_root_flags(&dest->root_item); 3971 btrfs_set_root_flags(&dest->root_item, 3972 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 3973 spin_unlock(&dest->root_item_lock); 3974 } else { 3975 d_invalidate(dentry); 3976 btrfs_prune_dentries(dest); 3977 ASSERT(dest->send_in_progress == 0); 3978 3979 /* the last ref */ 3980 if (dest->ino_cache_inode) { 3981 iput(dest->ino_cache_inode); 3982 dest->ino_cache_inode = NULL; 3983 } 3984 } 3985 3986 return err; 3987 } 3988 3989 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3990 { 3991 struct inode *inode = d_inode(dentry); 3992 int err = 0; 3993 struct btrfs_root *root = BTRFS_I(dir)->root; 3994 struct btrfs_trans_handle *trans; 3995 u64 last_unlink_trans; 3996 3997 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3998 return -ENOTEMPTY; 3999 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4000 return btrfs_delete_subvolume(dir, dentry); 4001 4002 trans = __unlink_start_trans(dir); 4003 if (IS_ERR(trans)) 4004 return PTR_ERR(trans); 4005 4006 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4007 err = btrfs_unlink_subvol(trans, dir, dentry); 4008 goto out; 4009 } 4010 4011 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4012 if (err) 4013 goto out; 4014 4015 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4016 4017 /* now the directory is empty */ 4018 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4019 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4020 dentry->d_name.len); 4021 if (!err) { 4022 btrfs_i_size_write(BTRFS_I(inode), 0); 4023 /* 4024 * Propagate the last_unlink_trans value of the deleted dir to 4025 * its parent directory. This is to prevent an unrecoverable 4026 * log tree in the case we do something like this: 4027 * 1) create dir foo 4028 * 2) create snapshot under dir foo 4029 * 3) delete the snapshot 4030 * 4) rmdir foo 4031 * 5) mkdir foo 4032 * 6) fsync foo or some file inside foo 4033 */ 4034 if (last_unlink_trans >= trans->transid) 4035 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4036 } 4037 out: 4038 btrfs_end_transaction(trans); 4039 btrfs_btree_balance_dirty(root->fs_info); 4040 4041 return err; 4042 } 4043 4044 /* 4045 * Return this if we need to call truncate_block for the last bit of the 4046 * truncate. 4047 */ 4048 #define NEED_TRUNCATE_BLOCK 1 4049 4050 /* 4051 * this can truncate away extent items, csum items and directory items. 4052 * It starts at a high offset and removes keys until it can't find 4053 * any higher than new_size 4054 * 4055 * csum items that cross the new i_size are truncated to the new size 4056 * as well. 4057 * 4058 * min_type is the minimum key type to truncate down to. If set to 0, this 4059 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4060 */ 4061 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4062 struct btrfs_root *root, 4063 struct inode *inode, 4064 u64 new_size, u32 min_type) 4065 { 4066 struct btrfs_fs_info *fs_info = root->fs_info; 4067 struct btrfs_path *path; 4068 struct extent_buffer *leaf; 4069 struct btrfs_file_extent_item *fi; 4070 struct btrfs_key key; 4071 struct btrfs_key found_key; 4072 u64 extent_start = 0; 4073 u64 extent_num_bytes = 0; 4074 u64 extent_offset = 0; 4075 u64 item_end = 0; 4076 u64 last_size = new_size; 4077 u32 found_type = (u8)-1; 4078 int found_extent; 4079 int del_item; 4080 int pending_del_nr = 0; 4081 int pending_del_slot = 0; 4082 int extent_type = -1; 4083 int ret; 4084 u64 ino = btrfs_ino(BTRFS_I(inode)); 4085 u64 bytes_deleted = 0; 4086 bool be_nice = false; 4087 bool should_throttle = false; 4088 4089 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4090 4091 /* 4092 * for non-free space inodes and ref cows, we want to back off from 4093 * time to time 4094 */ 4095 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4096 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4097 be_nice = true; 4098 4099 path = btrfs_alloc_path(); 4100 if (!path) 4101 return -ENOMEM; 4102 path->reada = READA_BACK; 4103 4104 /* 4105 * We want to drop from the next block forward in case this new size is 4106 * not block aligned since we will be keeping the last block of the 4107 * extent just the way it is. 4108 */ 4109 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4110 root == fs_info->tree_root) 4111 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4112 fs_info->sectorsize), 4113 (u64)-1, 0); 4114 4115 /* 4116 * This function is also used to drop the items in the log tree before 4117 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4118 * it is used to drop the logged items. So we shouldn't kill the delayed 4119 * items. 4120 */ 4121 if (min_type == 0 && root == BTRFS_I(inode)->root) 4122 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4123 4124 key.objectid = ino; 4125 key.offset = (u64)-1; 4126 key.type = (u8)-1; 4127 4128 search_again: 4129 /* 4130 * with a 16K leaf size and 128MB extents, you can actually queue 4131 * up a huge file in a single leaf. Most of the time that 4132 * bytes_deleted is > 0, it will be huge by the time we get here 4133 */ 4134 if (be_nice && bytes_deleted > SZ_32M && 4135 btrfs_should_end_transaction(trans)) { 4136 ret = -EAGAIN; 4137 goto out; 4138 } 4139 4140 path->leave_spinning = 1; 4141 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4142 if (ret < 0) 4143 goto out; 4144 4145 if (ret > 0) { 4146 ret = 0; 4147 /* there are no items in the tree for us to truncate, we're 4148 * done 4149 */ 4150 if (path->slots[0] == 0) 4151 goto out; 4152 path->slots[0]--; 4153 } 4154 4155 while (1) { 4156 fi = NULL; 4157 leaf = path->nodes[0]; 4158 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4159 found_type = found_key.type; 4160 4161 if (found_key.objectid != ino) 4162 break; 4163 4164 if (found_type < min_type) 4165 break; 4166 4167 item_end = found_key.offset; 4168 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4169 fi = btrfs_item_ptr(leaf, path->slots[0], 4170 struct btrfs_file_extent_item); 4171 extent_type = btrfs_file_extent_type(leaf, fi); 4172 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4173 item_end += 4174 btrfs_file_extent_num_bytes(leaf, fi); 4175 4176 trace_btrfs_truncate_show_fi_regular( 4177 BTRFS_I(inode), leaf, fi, 4178 found_key.offset); 4179 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4180 item_end += btrfs_file_extent_ram_bytes(leaf, 4181 fi); 4182 4183 trace_btrfs_truncate_show_fi_inline( 4184 BTRFS_I(inode), leaf, fi, path->slots[0], 4185 found_key.offset); 4186 } 4187 item_end--; 4188 } 4189 if (found_type > min_type) { 4190 del_item = 1; 4191 } else { 4192 if (item_end < new_size) 4193 break; 4194 if (found_key.offset >= new_size) 4195 del_item = 1; 4196 else 4197 del_item = 0; 4198 } 4199 found_extent = 0; 4200 /* FIXME, shrink the extent if the ref count is only 1 */ 4201 if (found_type != BTRFS_EXTENT_DATA_KEY) 4202 goto delete; 4203 4204 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4205 u64 num_dec; 4206 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4207 if (!del_item) { 4208 u64 orig_num_bytes = 4209 btrfs_file_extent_num_bytes(leaf, fi); 4210 extent_num_bytes = ALIGN(new_size - 4211 found_key.offset, 4212 fs_info->sectorsize); 4213 btrfs_set_file_extent_num_bytes(leaf, fi, 4214 extent_num_bytes); 4215 num_dec = (orig_num_bytes - 4216 extent_num_bytes); 4217 if (test_bit(BTRFS_ROOT_REF_COWS, 4218 &root->state) && 4219 extent_start != 0) 4220 inode_sub_bytes(inode, num_dec); 4221 btrfs_mark_buffer_dirty(leaf); 4222 } else { 4223 extent_num_bytes = 4224 btrfs_file_extent_disk_num_bytes(leaf, 4225 fi); 4226 extent_offset = found_key.offset - 4227 btrfs_file_extent_offset(leaf, fi); 4228 4229 /* FIXME blocksize != 4096 */ 4230 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4231 if (extent_start != 0) { 4232 found_extent = 1; 4233 if (test_bit(BTRFS_ROOT_REF_COWS, 4234 &root->state)) 4235 inode_sub_bytes(inode, num_dec); 4236 } 4237 } 4238 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4239 /* 4240 * we can't truncate inline items that have had 4241 * special encodings 4242 */ 4243 if (!del_item && 4244 btrfs_file_extent_encryption(leaf, fi) == 0 && 4245 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4246 btrfs_file_extent_compression(leaf, fi) == 0) { 4247 u32 size = (u32)(new_size - found_key.offset); 4248 4249 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4250 size = btrfs_file_extent_calc_inline_size(size); 4251 btrfs_truncate_item(path, size, 1); 4252 } else if (!del_item) { 4253 /* 4254 * We have to bail so the last_size is set to 4255 * just before this extent. 4256 */ 4257 ret = NEED_TRUNCATE_BLOCK; 4258 break; 4259 } 4260 4261 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4262 inode_sub_bytes(inode, item_end + 1 - new_size); 4263 } 4264 delete: 4265 if (del_item) 4266 last_size = found_key.offset; 4267 else 4268 last_size = new_size; 4269 if (del_item) { 4270 if (!pending_del_nr) { 4271 /* no pending yet, add ourselves */ 4272 pending_del_slot = path->slots[0]; 4273 pending_del_nr = 1; 4274 } else if (pending_del_nr && 4275 path->slots[0] + 1 == pending_del_slot) { 4276 /* hop on the pending chunk */ 4277 pending_del_nr++; 4278 pending_del_slot = path->slots[0]; 4279 } else { 4280 BUG(); 4281 } 4282 } else { 4283 break; 4284 } 4285 should_throttle = false; 4286 4287 if (found_extent && 4288 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4289 root == fs_info->tree_root)) { 4290 struct btrfs_ref ref = { 0 }; 4291 4292 btrfs_set_path_blocking(path); 4293 bytes_deleted += extent_num_bytes; 4294 4295 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4296 extent_start, extent_num_bytes, 0); 4297 ref.real_root = root->root_key.objectid; 4298 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4299 ino, extent_offset); 4300 ret = btrfs_free_extent(trans, &ref); 4301 if (ret) { 4302 btrfs_abort_transaction(trans, ret); 4303 break; 4304 } 4305 if (be_nice) { 4306 if (btrfs_should_throttle_delayed_refs(trans)) 4307 should_throttle = true; 4308 } 4309 } 4310 4311 if (found_type == BTRFS_INODE_ITEM_KEY) 4312 break; 4313 4314 if (path->slots[0] == 0 || 4315 path->slots[0] != pending_del_slot || 4316 should_throttle) { 4317 if (pending_del_nr) { 4318 ret = btrfs_del_items(trans, root, path, 4319 pending_del_slot, 4320 pending_del_nr); 4321 if (ret) { 4322 btrfs_abort_transaction(trans, ret); 4323 break; 4324 } 4325 pending_del_nr = 0; 4326 } 4327 btrfs_release_path(path); 4328 4329 /* 4330 * We can generate a lot of delayed refs, so we need to 4331 * throttle every once and a while and make sure we're 4332 * adding enough space to keep up with the work we are 4333 * generating. Since we hold a transaction here we 4334 * can't flush, and we don't want to FLUSH_LIMIT because 4335 * we could have generated too many delayed refs to 4336 * actually allocate, so just bail if we're short and 4337 * let the normal reservation dance happen higher up. 4338 */ 4339 if (should_throttle) { 4340 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4341 BTRFS_RESERVE_NO_FLUSH); 4342 if (ret) { 4343 ret = -EAGAIN; 4344 break; 4345 } 4346 } 4347 goto search_again; 4348 } else { 4349 path->slots[0]--; 4350 } 4351 } 4352 out: 4353 if (ret >= 0 && pending_del_nr) { 4354 int err; 4355 4356 err = btrfs_del_items(trans, root, path, pending_del_slot, 4357 pending_del_nr); 4358 if (err) { 4359 btrfs_abort_transaction(trans, err); 4360 ret = err; 4361 } 4362 } 4363 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4364 ASSERT(last_size >= new_size); 4365 if (!ret && last_size > new_size) 4366 last_size = new_size; 4367 btrfs_ordered_update_i_size(inode, last_size, NULL); 4368 } 4369 4370 btrfs_free_path(path); 4371 return ret; 4372 } 4373 4374 /* 4375 * btrfs_truncate_block - read, zero a chunk and write a block 4376 * @inode - inode that we're zeroing 4377 * @from - the offset to start zeroing 4378 * @len - the length to zero, 0 to zero the entire range respective to the 4379 * offset 4380 * @front - zero up to the offset instead of from the offset on 4381 * 4382 * This will find the block for the "from" offset and cow the block and zero the 4383 * part we want to zero. This is used with truncate and hole punching. 4384 */ 4385 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4386 int front) 4387 { 4388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4389 struct address_space *mapping = inode->i_mapping; 4390 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4391 struct btrfs_ordered_extent *ordered; 4392 struct extent_state *cached_state = NULL; 4393 struct extent_changeset *data_reserved = NULL; 4394 char *kaddr; 4395 u32 blocksize = fs_info->sectorsize; 4396 pgoff_t index = from >> PAGE_SHIFT; 4397 unsigned offset = from & (blocksize - 1); 4398 struct page *page; 4399 gfp_t mask = btrfs_alloc_write_mask(mapping); 4400 int ret = 0; 4401 u64 block_start; 4402 u64 block_end; 4403 4404 if (IS_ALIGNED(offset, blocksize) && 4405 (!len || IS_ALIGNED(len, blocksize))) 4406 goto out; 4407 4408 block_start = round_down(from, blocksize); 4409 block_end = block_start + blocksize - 1; 4410 4411 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4412 block_start, blocksize); 4413 if (ret) 4414 goto out; 4415 4416 again: 4417 page = find_or_create_page(mapping, index, mask); 4418 if (!page) { 4419 btrfs_delalloc_release_space(inode, data_reserved, 4420 block_start, blocksize, true); 4421 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4422 ret = -ENOMEM; 4423 goto out; 4424 } 4425 4426 if (!PageUptodate(page)) { 4427 ret = btrfs_readpage(NULL, page); 4428 lock_page(page); 4429 if (page->mapping != mapping) { 4430 unlock_page(page); 4431 put_page(page); 4432 goto again; 4433 } 4434 if (!PageUptodate(page)) { 4435 ret = -EIO; 4436 goto out_unlock; 4437 } 4438 } 4439 wait_on_page_writeback(page); 4440 4441 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4442 set_page_extent_mapped(page); 4443 4444 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4445 if (ordered) { 4446 unlock_extent_cached(io_tree, block_start, block_end, 4447 &cached_state); 4448 unlock_page(page); 4449 put_page(page); 4450 btrfs_start_ordered_extent(inode, ordered, 1); 4451 btrfs_put_ordered_extent(ordered); 4452 goto again; 4453 } 4454 4455 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4456 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4457 0, 0, &cached_state); 4458 4459 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4460 &cached_state); 4461 if (ret) { 4462 unlock_extent_cached(io_tree, block_start, block_end, 4463 &cached_state); 4464 goto out_unlock; 4465 } 4466 4467 if (offset != blocksize) { 4468 if (!len) 4469 len = blocksize - offset; 4470 kaddr = kmap(page); 4471 if (front) 4472 memset(kaddr + (block_start - page_offset(page)), 4473 0, offset); 4474 else 4475 memset(kaddr + (block_start - page_offset(page)) + offset, 4476 0, len); 4477 flush_dcache_page(page); 4478 kunmap(page); 4479 } 4480 ClearPageChecked(page); 4481 set_page_dirty(page); 4482 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4483 4484 out_unlock: 4485 if (ret) 4486 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4487 blocksize, true); 4488 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4489 unlock_page(page); 4490 put_page(page); 4491 out: 4492 extent_changeset_free(data_reserved); 4493 return ret; 4494 } 4495 4496 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4497 u64 offset, u64 len) 4498 { 4499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4500 struct btrfs_trans_handle *trans; 4501 int ret; 4502 4503 /* 4504 * Still need to make sure the inode looks like it's been updated so 4505 * that any holes get logged if we fsync. 4506 */ 4507 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4508 BTRFS_I(inode)->last_trans = fs_info->generation; 4509 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4510 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4511 return 0; 4512 } 4513 4514 /* 4515 * 1 - for the one we're dropping 4516 * 1 - for the one we're adding 4517 * 1 - for updating the inode. 4518 */ 4519 trans = btrfs_start_transaction(root, 3); 4520 if (IS_ERR(trans)) 4521 return PTR_ERR(trans); 4522 4523 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4524 if (ret) { 4525 btrfs_abort_transaction(trans, ret); 4526 btrfs_end_transaction(trans); 4527 return ret; 4528 } 4529 4530 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4531 offset, 0, 0, len, 0, len, 0, 0, 0); 4532 if (ret) 4533 btrfs_abort_transaction(trans, ret); 4534 else 4535 btrfs_update_inode(trans, root, inode); 4536 btrfs_end_transaction(trans); 4537 return ret; 4538 } 4539 4540 /* 4541 * This function puts in dummy file extents for the area we're creating a hole 4542 * for. So if we are truncating this file to a larger size we need to insert 4543 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4544 * the range between oldsize and size 4545 */ 4546 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4547 { 4548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4549 struct btrfs_root *root = BTRFS_I(inode)->root; 4550 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4551 struct extent_map *em = NULL; 4552 struct extent_state *cached_state = NULL; 4553 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4554 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4555 u64 block_end = ALIGN(size, fs_info->sectorsize); 4556 u64 last_byte; 4557 u64 cur_offset; 4558 u64 hole_size; 4559 int err = 0; 4560 4561 /* 4562 * If our size started in the middle of a block we need to zero out the 4563 * rest of the block before we expand the i_size, otherwise we could 4564 * expose stale data. 4565 */ 4566 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4567 if (err) 4568 return err; 4569 4570 if (size <= hole_start) 4571 return 0; 4572 4573 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start, 4574 block_end - 1, &cached_state); 4575 cur_offset = hole_start; 4576 while (1) { 4577 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4578 block_end - cur_offset); 4579 if (IS_ERR(em)) { 4580 err = PTR_ERR(em); 4581 em = NULL; 4582 break; 4583 } 4584 last_byte = min(extent_map_end(em), block_end); 4585 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4586 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4587 struct extent_map *hole_em; 4588 hole_size = last_byte - cur_offset; 4589 4590 err = maybe_insert_hole(root, inode, cur_offset, 4591 hole_size); 4592 if (err) 4593 break; 4594 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4595 cur_offset + hole_size - 1, 0); 4596 hole_em = alloc_extent_map(); 4597 if (!hole_em) { 4598 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4599 &BTRFS_I(inode)->runtime_flags); 4600 goto next; 4601 } 4602 hole_em->start = cur_offset; 4603 hole_em->len = hole_size; 4604 hole_em->orig_start = cur_offset; 4605 4606 hole_em->block_start = EXTENT_MAP_HOLE; 4607 hole_em->block_len = 0; 4608 hole_em->orig_block_len = 0; 4609 hole_em->ram_bytes = hole_size; 4610 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4611 hole_em->generation = fs_info->generation; 4612 4613 while (1) { 4614 write_lock(&em_tree->lock); 4615 err = add_extent_mapping(em_tree, hole_em, 1); 4616 write_unlock(&em_tree->lock); 4617 if (err != -EEXIST) 4618 break; 4619 btrfs_drop_extent_cache(BTRFS_I(inode), 4620 cur_offset, 4621 cur_offset + 4622 hole_size - 1, 0); 4623 } 4624 free_extent_map(hole_em); 4625 } 4626 next: 4627 free_extent_map(em); 4628 em = NULL; 4629 cur_offset = last_byte; 4630 if (cur_offset >= block_end) 4631 break; 4632 } 4633 free_extent_map(em); 4634 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4635 return err; 4636 } 4637 4638 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4639 { 4640 struct btrfs_root *root = BTRFS_I(inode)->root; 4641 struct btrfs_trans_handle *trans; 4642 loff_t oldsize = i_size_read(inode); 4643 loff_t newsize = attr->ia_size; 4644 int mask = attr->ia_valid; 4645 int ret; 4646 4647 /* 4648 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4649 * special case where we need to update the times despite not having 4650 * these flags set. For all other operations the VFS set these flags 4651 * explicitly if it wants a timestamp update. 4652 */ 4653 if (newsize != oldsize) { 4654 inode_inc_iversion(inode); 4655 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4656 inode->i_ctime = inode->i_mtime = 4657 current_time(inode); 4658 } 4659 4660 if (newsize > oldsize) { 4661 /* 4662 * Don't do an expanding truncate while snapshotting is ongoing. 4663 * This is to ensure the snapshot captures a fully consistent 4664 * state of this file - if the snapshot captures this expanding 4665 * truncation, it must capture all writes that happened before 4666 * this truncation. 4667 */ 4668 btrfs_wait_for_snapshot_creation(root); 4669 ret = btrfs_cont_expand(inode, oldsize, newsize); 4670 if (ret) { 4671 btrfs_end_write_no_snapshotting(root); 4672 return ret; 4673 } 4674 4675 trans = btrfs_start_transaction(root, 1); 4676 if (IS_ERR(trans)) { 4677 btrfs_end_write_no_snapshotting(root); 4678 return PTR_ERR(trans); 4679 } 4680 4681 i_size_write(inode, newsize); 4682 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4683 pagecache_isize_extended(inode, oldsize, newsize); 4684 ret = btrfs_update_inode(trans, root, inode); 4685 btrfs_end_write_no_snapshotting(root); 4686 btrfs_end_transaction(trans); 4687 } else { 4688 4689 /* 4690 * We're truncating a file that used to have good data down to 4691 * zero. Make sure it gets into the ordered flush list so that 4692 * any new writes get down to disk quickly. 4693 */ 4694 if (newsize == 0) 4695 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4696 &BTRFS_I(inode)->runtime_flags); 4697 4698 truncate_setsize(inode, newsize); 4699 4700 /* Disable nonlocked read DIO to avoid the endless truncate */ 4701 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 4702 inode_dio_wait(inode); 4703 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 4704 4705 ret = btrfs_truncate(inode, newsize == oldsize); 4706 if (ret && inode->i_nlink) { 4707 int err; 4708 4709 /* 4710 * Truncate failed, so fix up the in-memory size. We 4711 * adjusted disk_i_size down as we removed extents, so 4712 * wait for disk_i_size to be stable and then update the 4713 * in-memory size to match. 4714 */ 4715 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4716 if (err) 4717 return err; 4718 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4719 } 4720 } 4721 4722 return ret; 4723 } 4724 4725 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4726 { 4727 struct inode *inode = d_inode(dentry); 4728 struct btrfs_root *root = BTRFS_I(inode)->root; 4729 int err; 4730 4731 if (btrfs_root_readonly(root)) 4732 return -EROFS; 4733 4734 err = setattr_prepare(dentry, attr); 4735 if (err) 4736 return err; 4737 4738 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4739 err = btrfs_setsize(inode, attr); 4740 if (err) 4741 return err; 4742 } 4743 4744 if (attr->ia_valid) { 4745 setattr_copy(inode, attr); 4746 inode_inc_iversion(inode); 4747 err = btrfs_dirty_inode(inode); 4748 4749 if (!err && attr->ia_valid & ATTR_MODE) 4750 err = posix_acl_chmod(inode, inode->i_mode); 4751 } 4752 4753 return err; 4754 } 4755 4756 /* 4757 * While truncating the inode pages during eviction, we get the VFS calling 4758 * btrfs_invalidatepage() against each page of the inode. This is slow because 4759 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4760 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4761 * extent_state structures over and over, wasting lots of time. 4762 * 4763 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4764 * those expensive operations on a per page basis and do only the ordered io 4765 * finishing, while we release here the extent_map and extent_state structures, 4766 * without the excessive merging and splitting. 4767 */ 4768 static void evict_inode_truncate_pages(struct inode *inode) 4769 { 4770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4771 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4772 struct rb_node *node; 4773 4774 ASSERT(inode->i_state & I_FREEING); 4775 truncate_inode_pages_final(&inode->i_data); 4776 4777 write_lock(&map_tree->lock); 4778 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4779 struct extent_map *em; 4780 4781 node = rb_first_cached(&map_tree->map); 4782 em = rb_entry(node, struct extent_map, rb_node); 4783 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4784 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4785 remove_extent_mapping(map_tree, em); 4786 free_extent_map(em); 4787 if (need_resched()) { 4788 write_unlock(&map_tree->lock); 4789 cond_resched(); 4790 write_lock(&map_tree->lock); 4791 } 4792 } 4793 write_unlock(&map_tree->lock); 4794 4795 /* 4796 * Keep looping until we have no more ranges in the io tree. 4797 * We can have ongoing bios started by readpages (called from readahead) 4798 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 4799 * still in progress (unlocked the pages in the bio but did not yet 4800 * unlocked the ranges in the io tree). Therefore this means some 4801 * ranges can still be locked and eviction started because before 4802 * submitting those bios, which are executed by a separate task (work 4803 * queue kthread), inode references (inode->i_count) were not taken 4804 * (which would be dropped in the end io callback of each bio). 4805 * Therefore here we effectively end up waiting for those bios and 4806 * anyone else holding locked ranges without having bumped the inode's 4807 * reference count - if we don't do it, when they access the inode's 4808 * io_tree to unlock a range it may be too late, leading to an 4809 * use-after-free issue. 4810 */ 4811 spin_lock(&io_tree->lock); 4812 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4813 struct extent_state *state; 4814 struct extent_state *cached_state = NULL; 4815 u64 start; 4816 u64 end; 4817 unsigned state_flags; 4818 4819 node = rb_first(&io_tree->state); 4820 state = rb_entry(node, struct extent_state, rb_node); 4821 start = state->start; 4822 end = state->end; 4823 state_flags = state->state; 4824 spin_unlock(&io_tree->lock); 4825 4826 lock_extent_bits(io_tree, start, end, &cached_state); 4827 4828 /* 4829 * If still has DELALLOC flag, the extent didn't reach disk, 4830 * and its reserved space won't be freed by delayed_ref. 4831 * So we need to free its reserved space here. 4832 * (Refer to comment in btrfs_invalidatepage, case 2) 4833 * 4834 * Note, end is the bytenr of last byte, so we need + 1 here. 4835 */ 4836 if (state_flags & EXTENT_DELALLOC) 4837 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 4838 4839 clear_extent_bit(io_tree, start, end, 4840 EXTENT_LOCKED | EXTENT_DELALLOC | 4841 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4842 &cached_state); 4843 4844 cond_resched(); 4845 spin_lock(&io_tree->lock); 4846 } 4847 spin_unlock(&io_tree->lock); 4848 } 4849 4850 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4851 struct btrfs_block_rsv *rsv) 4852 { 4853 struct btrfs_fs_info *fs_info = root->fs_info; 4854 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4855 struct btrfs_trans_handle *trans; 4856 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 4857 int ret; 4858 4859 /* 4860 * Eviction should be taking place at some place safe because of our 4861 * delayed iputs. However the normal flushing code will run delayed 4862 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 4863 * 4864 * We reserve the delayed_refs_extra here again because we can't use 4865 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 4866 * above. We reserve our extra bit here because we generate a ton of 4867 * delayed refs activity by truncating. 4868 * 4869 * If we cannot make our reservation we'll attempt to steal from the 4870 * global reserve, because we really want to be able to free up space. 4871 */ 4872 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 4873 BTRFS_RESERVE_FLUSH_EVICT); 4874 if (ret) { 4875 /* 4876 * Try to steal from the global reserve if there is space for 4877 * it. 4878 */ 4879 if (btrfs_check_space_for_delayed_refs(fs_info) || 4880 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 4881 btrfs_warn(fs_info, 4882 "could not allocate space for delete; will truncate on mount"); 4883 return ERR_PTR(-ENOSPC); 4884 } 4885 delayed_refs_extra = 0; 4886 } 4887 4888 trans = btrfs_join_transaction(root); 4889 if (IS_ERR(trans)) 4890 return trans; 4891 4892 if (delayed_refs_extra) { 4893 trans->block_rsv = &fs_info->trans_block_rsv; 4894 trans->bytes_reserved = delayed_refs_extra; 4895 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 4896 delayed_refs_extra, 1); 4897 } 4898 return trans; 4899 } 4900 4901 void btrfs_evict_inode(struct inode *inode) 4902 { 4903 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4904 struct btrfs_trans_handle *trans; 4905 struct btrfs_root *root = BTRFS_I(inode)->root; 4906 struct btrfs_block_rsv *rsv; 4907 int ret; 4908 4909 trace_btrfs_inode_evict(inode); 4910 4911 if (!root) { 4912 clear_inode(inode); 4913 return; 4914 } 4915 4916 evict_inode_truncate_pages(inode); 4917 4918 if (inode->i_nlink && 4919 ((btrfs_root_refs(&root->root_item) != 0 && 4920 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4921 btrfs_is_free_space_inode(BTRFS_I(inode)))) 4922 goto no_delete; 4923 4924 if (is_bad_inode(inode)) 4925 goto no_delete; 4926 4927 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 4928 4929 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 4930 goto no_delete; 4931 4932 if (inode->i_nlink > 0) { 4933 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4934 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4935 goto no_delete; 4936 } 4937 4938 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 4939 if (ret) 4940 goto no_delete; 4941 4942 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 4943 if (!rsv) 4944 goto no_delete; 4945 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 4946 rsv->failfast = 1; 4947 4948 btrfs_i_size_write(BTRFS_I(inode), 0); 4949 4950 while (1) { 4951 trans = evict_refill_and_join(root, rsv); 4952 if (IS_ERR(trans)) 4953 goto free_rsv; 4954 4955 trans->block_rsv = rsv; 4956 4957 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4958 trans->block_rsv = &fs_info->trans_block_rsv; 4959 btrfs_end_transaction(trans); 4960 btrfs_btree_balance_dirty(fs_info); 4961 if (ret && ret != -ENOSPC && ret != -EAGAIN) 4962 goto free_rsv; 4963 else if (!ret) 4964 break; 4965 } 4966 4967 /* 4968 * Errors here aren't a big deal, it just means we leave orphan items in 4969 * the tree. They will be cleaned up on the next mount. If the inode 4970 * number gets reused, cleanup deletes the orphan item without doing 4971 * anything, and unlink reuses the existing orphan item. 4972 * 4973 * If it turns out that we are dropping too many of these, we might want 4974 * to add a mechanism for retrying these after a commit. 4975 */ 4976 trans = evict_refill_and_join(root, rsv); 4977 if (!IS_ERR(trans)) { 4978 trans->block_rsv = rsv; 4979 btrfs_orphan_del(trans, BTRFS_I(inode)); 4980 trans->block_rsv = &fs_info->trans_block_rsv; 4981 btrfs_end_transaction(trans); 4982 } 4983 4984 if (!(root == fs_info->tree_root || 4985 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4986 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 4987 4988 free_rsv: 4989 btrfs_free_block_rsv(fs_info, rsv); 4990 no_delete: 4991 /* 4992 * If we didn't successfully delete, the orphan item will still be in 4993 * the tree and we'll retry on the next mount. Again, we might also want 4994 * to retry these periodically in the future. 4995 */ 4996 btrfs_remove_delayed_node(BTRFS_I(inode)); 4997 clear_inode(inode); 4998 } 4999 5000 /* 5001 * Return the key found in the dir entry in the location pointer, fill @type 5002 * with BTRFS_FT_*, and return 0. 5003 * 5004 * If no dir entries were found, returns -ENOENT. 5005 * If found a corrupted location in dir entry, returns -EUCLEAN. 5006 */ 5007 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5008 struct btrfs_key *location, u8 *type) 5009 { 5010 const char *name = dentry->d_name.name; 5011 int namelen = dentry->d_name.len; 5012 struct btrfs_dir_item *di; 5013 struct btrfs_path *path; 5014 struct btrfs_root *root = BTRFS_I(dir)->root; 5015 int ret = 0; 5016 5017 path = btrfs_alloc_path(); 5018 if (!path) 5019 return -ENOMEM; 5020 5021 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5022 name, namelen, 0); 5023 if (IS_ERR_OR_NULL(di)) { 5024 ret = di ? PTR_ERR(di) : -ENOENT; 5025 goto out; 5026 } 5027 5028 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5029 if (location->type != BTRFS_INODE_ITEM_KEY && 5030 location->type != BTRFS_ROOT_ITEM_KEY) { 5031 ret = -EUCLEAN; 5032 btrfs_warn(root->fs_info, 5033 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5034 __func__, name, btrfs_ino(BTRFS_I(dir)), 5035 location->objectid, location->type, location->offset); 5036 } 5037 if (!ret) 5038 *type = btrfs_dir_type(path->nodes[0], di); 5039 out: 5040 btrfs_free_path(path); 5041 return ret; 5042 } 5043 5044 /* 5045 * when we hit a tree root in a directory, the btrfs part of the inode 5046 * needs to be changed to reflect the root directory of the tree root. This 5047 * is kind of like crossing a mount point. 5048 */ 5049 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5050 struct inode *dir, 5051 struct dentry *dentry, 5052 struct btrfs_key *location, 5053 struct btrfs_root **sub_root) 5054 { 5055 struct btrfs_path *path; 5056 struct btrfs_root *new_root; 5057 struct btrfs_root_ref *ref; 5058 struct extent_buffer *leaf; 5059 struct btrfs_key key; 5060 int ret; 5061 int err = 0; 5062 5063 path = btrfs_alloc_path(); 5064 if (!path) { 5065 err = -ENOMEM; 5066 goto out; 5067 } 5068 5069 err = -ENOENT; 5070 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5071 key.type = BTRFS_ROOT_REF_KEY; 5072 key.offset = location->objectid; 5073 5074 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5075 if (ret) { 5076 if (ret < 0) 5077 err = ret; 5078 goto out; 5079 } 5080 5081 leaf = path->nodes[0]; 5082 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5083 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5084 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5085 goto out; 5086 5087 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5088 (unsigned long)(ref + 1), 5089 dentry->d_name.len); 5090 if (ret) 5091 goto out; 5092 5093 btrfs_release_path(path); 5094 5095 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5096 if (IS_ERR(new_root)) { 5097 err = PTR_ERR(new_root); 5098 goto out; 5099 } 5100 5101 *sub_root = new_root; 5102 location->objectid = btrfs_root_dirid(&new_root->root_item); 5103 location->type = BTRFS_INODE_ITEM_KEY; 5104 location->offset = 0; 5105 err = 0; 5106 out: 5107 btrfs_free_path(path); 5108 return err; 5109 } 5110 5111 static void inode_tree_add(struct inode *inode) 5112 { 5113 struct btrfs_root *root = BTRFS_I(inode)->root; 5114 struct btrfs_inode *entry; 5115 struct rb_node **p; 5116 struct rb_node *parent; 5117 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5118 u64 ino = btrfs_ino(BTRFS_I(inode)); 5119 5120 if (inode_unhashed(inode)) 5121 return; 5122 parent = NULL; 5123 spin_lock(&root->inode_lock); 5124 p = &root->inode_tree.rb_node; 5125 while (*p) { 5126 parent = *p; 5127 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5128 5129 if (ino < btrfs_ino(entry)) 5130 p = &parent->rb_left; 5131 else if (ino > btrfs_ino(entry)) 5132 p = &parent->rb_right; 5133 else { 5134 WARN_ON(!(entry->vfs_inode.i_state & 5135 (I_WILL_FREE | I_FREEING))); 5136 rb_replace_node(parent, new, &root->inode_tree); 5137 RB_CLEAR_NODE(parent); 5138 spin_unlock(&root->inode_lock); 5139 return; 5140 } 5141 } 5142 rb_link_node(new, parent, p); 5143 rb_insert_color(new, &root->inode_tree); 5144 spin_unlock(&root->inode_lock); 5145 } 5146 5147 static void inode_tree_del(struct inode *inode) 5148 { 5149 struct btrfs_root *root = BTRFS_I(inode)->root; 5150 int empty = 0; 5151 5152 spin_lock(&root->inode_lock); 5153 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5154 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5155 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5156 empty = RB_EMPTY_ROOT(&root->inode_tree); 5157 } 5158 spin_unlock(&root->inode_lock); 5159 5160 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5161 spin_lock(&root->inode_lock); 5162 empty = RB_EMPTY_ROOT(&root->inode_tree); 5163 spin_unlock(&root->inode_lock); 5164 if (empty) 5165 btrfs_add_dead_root(root); 5166 } 5167 } 5168 5169 5170 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5171 { 5172 struct btrfs_iget_args *args = p; 5173 inode->i_ino = args->location->objectid; 5174 memcpy(&BTRFS_I(inode)->location, args->location, 5175 sizeof(*args->location)); 5176 BTRFS_I(inode)->root = args->root; 5177 return 0; 5178 } 5179 5180 static int btrfs_find_actor(struct inode *inode, void *opaque) 5181 { 5182 struct btrfs_iget_args *args = opaque; 5183 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5184 args->root == BTRFS_I(inode)->root; 5185 } 5186 5187 static struct inode *btrfs_iget_locked(struct super_block *s, 5188 struct btrfs_key *location, 5189 struct btrfs_root *root) 5190 { 5191 struct inode *inode; 5192 struct btrfs_iget_args args; 5193 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5194 5195 args.location = location; 5196 args.root = root; 5197 5198 inode = iget5_locked(s, hashval, btrfs_find_actor, 5199 btrfs_init_locked_inode, 5200 (void *)&args); 5201 return inode; 5202 } 5203 5204 /* 5205 * Get an inode object given its location and corresponding root. 5206 * Path can be preallocated to prevent recursing back to iget through 5207 * allocator. NULL is also valid but may require an additional allocation 5208 * later. 5209 */ 5210 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5211 struct btrfs_root *root, struct btrfs_path *path) 5212 { 5213 struct inode *inode; 5214 5215 inode = btrfs_iget_locked(s, location, root); 5216 if (!inode) 5217 return ERR_PTR(-ENOMEM); 5218 5219 if (inode->i_state & I_NEW) { 5220 int ret; 5221 5222 ret = btrfs_read_locked_inode(inode, path); 5223 if (!ret) { 5224 inode_tree_add(inode); 5225 unlock_new_inode(inode); 5226 } else { 5227 iget_failed(inode); 5228 /* 5229 * ret > 0 can come from btrfs_search_slot called by 5230 * btrfs_read_locked_inode, this means the inode item 5231 * was not found. 5232 */ 5233 if (ret > 0) 5234 ret = -ENOENT; 5235 inode = ERR_PTR(ret); 5236 } 5237 } 5238 5239 return inode; 5240 } 5241 5242 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5243 struct btrfs_root *root) 5244 { 5245 return btrfs_iget_path(s, location, root, NULL); 5246 } 5247 5248 static struct inode *new_simple_dir(struct super_block *s, 5249 struct btrfs_key *key, 5250 struct btrfs_root *root) 5251 { 5252 struct inode *inode = new_inode(s); 5253 5254 if (!inode) 5255 return ERR_PTR(-ENOMEM); 5256 5257 BTRFS_I(inode)->root = root; 5258 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5259 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5260 5261 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5262 /* 5263 * We only need lookup, the rest is read-only and there's no inode 5264 * associated with the dentry 5265 */ 5266 inode->i_op = &simple_dir_inode_operations; 5267 inode->i_opflags &= ~IOP_XATTR; 5268 inode->i_fop = &simple_dir_operations; 5269 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5270 inode->i_mtime = current_time(inode); 5271 inode->i_atime = inode->i_mtime; 5272 inode->i_ctime = inode->i_mtime; 5273 BTRFS_I(inode)->i_otime = inode->i_mtime; 5274 5275 return inode; 5276 } 5277 5278 static inline u8 btrfs_inode_type(struct inode *inode) 5279 { 5280 /* 5281 * Compile-time asserts that generic FT_* types still match 5282 * BTRFS_FT_* types 5283 */ 5284 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5285 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5286 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5287 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5288 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5289 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5290 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5291 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5292 5293 return fs_umode_to_ftype(inode->i_mode); 5294 } 5295 5296 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5297 { 5298 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5299 struct inode *inode; 5300 struct btrfs_root *root = BTRFS_I(dir)->root; 5301 struct btrfs_root *sub_root = root; 5302 struct btrfs_key location; 5303 u8 di_type = 0; 5304 int index; 5305 int ret = 0; 5306 5307 if (dentry->d_name.len > BTRFS_NAME_LEN) 5308 return ERR_PTR(-ENAMETOOLONG); 5309 5310 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5311 if (ret < 0) 5312 return ERR_PTR(ret); 5313 5314 if (location.type == BTRFS_INODE_ITEM_KEY) { 5315 inode = btrfs_iget(dir->i_sb, &location, root); 5316 if (IS_ERR(inode)) 5317 return inode; 5318 5319 /* Do extra check against inode mode with di_type */ 5320 if (btrfs_inode_type(inode) != di_type) { 5321 btrfs_crit(fs_info, 5322 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5323 inode->i_mode, btrfs_inode_type(inode), 5324 di_type); 5325 iput(inode); 5326 return ERR_PTR(-EUCLEAN); 5327 } 5328 return inode; 5329 } 5330 5331 index = srcu_read_lock(&fs_info->subvol_srcu); 5332 ret = fixup_tree_root_location(fs_info, dir, dentry, 5333 &location, &sub_root); 5334 if (ret < 0) { 5335 if (ret != -ENOENT) 5336 inode = ERR_PTR(ret); 5337 else 5338 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5339 } else { 5340 inode = btrfs_iget(dir->i_sb, &location, sub_root); 5341 } 5342 srcu_read_unlock(&fs_info->subvol_srcu, index); 5343 5344 if (!IS_ERR(inode) && root != sub_root) { 5345 down_read(&fs_info->cleanup_work_sem); 5346 if (!sb_rdonly(inode->i_sb)) 5347 ret = btrfs_orphan_cleanup(sub_root); 5348 up_read(&fs_info->cleanup_work_sem); 5349 if (ret) { 5350 iput(inode); 5351 inode = ERR_PTR(ret); 5352 } 5353 } 5354 5355 return inode; 5356 } 5357 5358 static int btrfs_dentry_delete(const struct dentry *dentry) 5359 { 5360 struct btrfs_root *root; 5361 struct inode *inode = d_inode(dentry); 5362 5363 if (!inode && !IS_ROOT(dentry)) 5364 inode = d_inode(dentry->d_parent); 5365 5366 if (inode) { 5367 root = BTRFS_I(inode)->root; 5368 if (btrfs_root_refs(&root->root_item) == 0) 5369 return 1; 5370 5371 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5372 return 1; 5373 } 5374 return 0; 5375 } 5376 5377 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5378 unsigned int flags) 5379 { 5380 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5381 5382 if (inode == ERR_PTR(-ENOENT)) 5383 inode = NULL; 5384 return d_splice_alias(inode, dentry); 5385 } 5386 5387 /* 5388 * All this infrastructure exists because dir_emit can fault, and we are holding 5389 * the tree lock when doing readdir. For now just allocate a buffer and copy 5390 * our information into that, and then dir_emit from the buffer. This is 5391 * similar to what NFS does, only we don't keep the buffer around in pagecache 5392 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5393 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5394 * tree lock. 5395 */ 5396 static int btrfs_opendir(struct inode *inode, struct file *file) 5397 { 5398 struct btrfs_file_private *private; 5399 5400 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5401 if (!private) 5402 return -ENOMEM; 5403 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5404 if (!private->filldir_buf) { 5405 kfree(private); 5406 return -ENOMEM; 5407 } 5408 file->private_data = private; 5409 return 0; 5410 } 5411 5412 struct dir_entry { 5413 u64 ino; 5414 u64 offset; 5415 unsigned type; 5416 int name_len; 5417 }; 5418 5419 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5420 { 5421 while (entries--) { 5422 struct dir_entry *entry = addr; 5423 char *name = (char *)(entry + 1); 5424 5425 ctx->pos = get_unaligned(&entry->offset); 5426 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5427 get_unaligned(&entry->ino), 5428 get_unaligned(&entry->type))) 5429 return 1; 5430 addr += sizeof(struct dir_entry) + 5431 get_unaligned(&entry->name_len); 5432 ctx->pos++; 5433 } 5434 return 0; 5435 } 5436 5437 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5438 { 5439 struct inode *inode = file_inode(file); 5440 struct btrfs_root *root = BTRFS_I(inode)->root; 5441 struct btrfs_file_private *private = file->private_data; 5442 struct btrfs_dir_item *di; 5443 struct btrfs_key key; 5444 struct btrfs_key found_key; 5445 struct btrfs_path *path; 5446 void *addr; 5447 struct list_head ins_list; 5448 struct list_head del_list; 5449 int ret; 5450 struct extent_buffer *leaf; 5451 int slot; 5452 char *name_ptr; 5453 int name_len; 5454 int entries = 0; 5455 int total_len = 0; 5456 bool put = false; 5457 struct btrfs_key location; 5458 5459 if (!dir_emit_dots(file, ctx)) 5460 return 0; 5461 5462 path = btrfs_alloc_path(); 5463 if (!path) 5464 return -ENOMEM; 5465 5466 addr = private->filldir_buf; 5467 path->reada = READA_FORWARD; 5468 5469 INIT_LIST_HEAD(&ins_list); 5470 INIT_LIST_HEAD(&del_list); 5471 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5472 5473 again: 5474 key.type = BTRFS_DIR_INDEX_KEY; 5475 key.offset = ctx->pos; 5476 key.objectid = btrfs_ino(BTRFS_I(inode)); 5477 5478 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5479 if (ret < 0) 5480 goto err; 5481 5482 while (1) { 5483 struct dir_entry *entry; 5484 5485 leaf = path->nodes[0]; 5486 slot = path->slots[0]; 5487 if (slot >= btrfs_header_nritems(leaf)) { 5488 ret = btrfs_next_leaf(root, path); 5489 if (ret < 0) 5490 goto err; 5491 else if (ret > 0) 5492 break; 5493 continue; 5494 } 5495 5496 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5497 5498 if (found_key.objectid != key.objectid) 5499 break; 5500 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5501 break; 5502 if (found_key.offset < ctx->pos) 5503 goto next; 5504 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5505 goto next; 5506 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5507 name_len = btrfs_dir_name_len(leaf, di); 5508 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5509 PAGE_SIZE) { 5510 btrfs_release_path(path); 5511 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5512 if (ret) 5513 goto nopos; 5514 addr = private->filldir_buf; 5515 entries = 0; 5516 total_len = 0; 5517 goto again; 5518 } 5519 5520 entry = addr; 5521 put_unaligned(name_len, &entry->name_len); 5522 name_ptr = (char *)(entry + 1); 5523 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5524 name_len); 5525 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5526 &entry->type); 5527 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5528 put_unaligned(location.objectid, &entry->ino); 5529 put_unaligned(found_key.offset, &entry->offset); 5530 entries++; 5531 addr += sizeof(struct dir_entry) + name_len; 5532 total_len += sizeof(struct dir_entry) + name_len; 5533 next: 5534 path->slots[0]++; 5535 } 5536 btrfs_release_path(path); 5537 5538 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5539 if (ret) 5540 goto nopos; 5541 5542 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5543 if (ret) 5544 goto nopos; 5545 5546 /* 5547 * Stop new entries from being returned after we return the last 5548 * entry. 5549 * 5550 * New directory entries are assigned a strictly increasing 5551 * offset. This means that new entries created during readdir 5552 * are *guaranteed* to be seen in the future by that readdir. 5553 * This has broken buggy programs which operate on names as 5554 * they're returned by readdir. Until we re-use freed offsets 5555 * we have this hack to stop new entries from being returned 5556 * under the assumption that they'll never reach this huge 5557 * offset. 5558 * 5559 * This is being careful not to overflow 32bit loff_t unless the 5560 * last entry requires it because doing so has broken 32bit apps 5561 * in the past. 5562 */ 5563 if (ctx->pos >= INT_MAX) 5564 ctx->pos = LLONG_MAX; 5565 else 5566 ctx->pos = INT_MAX; 5567 nopos: 5568 ret = 0; 5569 err: 5570 if (put) 5571 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5572 btrfs_free_path(path); 5573 return ret; 5574 } 5575 5576 /* 5577 * This is somewhat expensive, updating the tree every time the 5578 * inode changes. But, it is most likely to find the inode in cache. 5579 * FIXME, needs more benchmarking...there are no reasons other than performance 5580 * to keep or drop this code. 5581 */ 5582 static int btrfs_dirty_inode(struct inode *inode) 5583 { 5584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5585 struct btrfs_root *root = BTRFS_I(inode)->root; 5586 struct btrfs_trans_handle *trans; 5587 int ret; 5588 5589 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5590 return 0; 5591 5592 trans = btrfs_join_transaction(root); 5593 if (IS_ERR(trans)) 5594 return PTR_ERR(trans); 5595 5596 ret = btrfs_update_inode(trans, root, inode); 5597 if (ret && ret == -ENOSPC) { 5598 /* whoops, lets try again with the full transaction */ 5599 btrfs_end_transaction(trans); 5600 trans = btrfs_start_transaction(root, 1); 5601 if (IS_ERR(trans)) 5602 return PTR_ERR(trans); 5603 5604 ret = btrfs_update_inode(trans, root, inode); 5605 } 5606 btrfs_end_transaction(trans); 5607 if (BTRFS_I(inode)->delayed_node) 5608 btrfs_balance_delayed_items(fs_info); 5609 5610 return ret; 5611 } 5612 5613 /* 5614 * This is a copy of file_update_time. We need this so we can return error on 5615 * ENOSPC for updating the inode in the case of file write and mmap writes. 5616 */ 5617 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5618 int flags) 5619 { 5620 struct btrfs_root *root = BTRFS_I(inode)->root; 5621 bool dirty = flags & ~S_VERSION; 5622 5623 if (btrfs_root_readonly(root)) 5624 return -EROFS; 5625 5626 if (flags & S_VERSION) 5627 dirty |= inode_maybe_inc_iversion(inode, dirty); 5628 if (flags & S_CTIME) 5629 inode->i_ctime = *now; 5630 if (flags & S_MTIME) 5631 inode->i_mtime = *now; 5632 if (flags & S_ATIME) 5633 inode->i_atime = *now; 5634 return dirty ? btrfs_dirty_inode(inode) : 0; 5635 } 5636 5637 /* 5638 * find the highest existing sequence number in a directory 5639 * and then set the in-memory index_cnt variable to reflect 5640 * free sequence numbers 5641 */ 5642 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5643 { 5644 struct btrfs_root *root = inode->root; 5645 struct btrfs_key key, found_key; 5646 struct btrfs_path *path; 5647 struct extent_buffer *leaf; 5648 int ret; 5649 5650 key.objectid = btrfs_ino(inode); 5651 key.type = BTRFS_DIR_INDEX_KEY; 5652 key.offset = (u64)-1; 5653 5654 path = btrfs_alloc_path(); 5655 if (!path) 5656 return -ENOMEM; 5657 5658 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5659 if (ret < 0) 5660 goto out; 5661 /* FIXME: we should be able to handle this */ 5662 if (ret == 0) 5663 goto out; 5664 ret = 0; 5665 5666 /* 5667 * MAGIC NUMBER EXPLANATION: 5668 * since we search a directory based on f_pos we have to start at 2 5669 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5670 * else has to start at 2 5671 */ 5672 if (path->slots[0] == 0) { 5673 inode->index_cnt = 2; 5674 goto out; 5675 } 5676 5677 path->slots[0]--; 5678 5679 leaf = path->nodes[0]; 5680 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5681 5682 if (found_key.objectid != btrfs_ino(inode) || 5683 found_key.type != BTRFS_DIR_INDEX_KEY) { 5684 inode->index_cnt = 2; 5685 goto out; 5686 } 5687 5688 inode->index_cnt = found_key.offset + 1; 5689 out: 5690 btrfs_free_path(path); 5691 return ret; 5692 } 5693 5694 /* 5695 * helper to find a free sequence number in a given directory. This current 5696 * code is very simple, later versions will do smarter things in the btree 5697 */ 5698 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5699 { 5700 int ret = 0; 5701 5702 if (dir->index_cnt == (u64)-1) { 5703 ret = btrfs_inode_delayed_dir_index_count(dir); 5704 if (ret) { 5705 ret = btrfs_set_inode_index_count(dir); 5706 if (ret) 5707 return ret; 5708 } 5709 } 5710 5711 *index = dir->index_cnt; 5712 dir->index_cnt++; 5713 5714 return ret; 5715 } 5716 5717 static int btrfs_insert_inode_locked(struct inode *inode) 5718 { 5719 struct btrfs_iget_args args; 5720 args.location = &BTRFS_I(inode)->location; 5721 args.root = BTRFS_I(inode)->root; 5722 5723 return insert_inode_locked4(inode, 5724 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5725 btrfs_find_actor, &args); 5726 } 5727 5728 /* 5729 * Inherit flags from the parent inode. 5730 * 5731 * Currently only the compression flags and the cow flags are inherited. 5732 */ 5733 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5734 { 5735 unsigned int flags; 5736 5737 if (!dir) 5738 return; 5739 5740 flags = BTRFS_I(dir)->flags; 5741 5742 if (flags & BTRFS_INODE_NOCOMPRESS) { 5743 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5744 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5745 } else if (flags & BTRFS_INODE_COMPRESS) { 5746 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5747 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5748 } 5749 5750 if (flags & BTRFS_INODE_NODATACOW) { 5751 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5752 if (S_ISREG(inode->i_mode)) 5753 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5754 } 5755 5756 btrfs_sync_inode_flags_to_i_flags(inode); 5757 } 5758 5759 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5760 struct btrfs_root *root, 5761 struct inode *dir, 5762 const char *name, int name_len, 5763 u64 ref_objectid, u64 objectid, 5764 umode_t mode, u64 *index) 5765 { 5766 struct btrfs_fs_info *fs_info = root->fs_info; 5767 struct inode *inode; 5768 struct btrfs_inode_item *inode_item; 5769 struct btrfs_key *location; 5770 struct btrfs_path *path; 5771 struct btrfs_inode_ref *ref; 5772 struct btrfs_key key[2]; 5773 u32 sizes[2]; 5774 int nitems = name ? 2 : 1; 5775 unsigned long ptr; 5776 unsigned int nofs_flag; 5777 int ret; 5778 5779 path = btrfs_alloc_path(); 5780 if (!path) 5781 return ERR_PTR(-ENOMEM); 5782 5783 nofs_flag = memalloc_nofs_save(); 5784 inode = new_inode(fs_info->sb); 5785 memalloc_nofs_restore(nofs_flag); 5786 if (!inode) { 5787 btrfs_free_path(path); 5788 return ERR_PTR(-ENOMEM); 5789 } 5790 5791 /* 5792 * O_TMPFILE, set link count to 0, so that after this point, 5793 * we fill in an inode item with the correct link count. 5794 */ 5795 if (!name) 5796 set_nlink(inode, 0); 5797 5798 /* 5799 * we have to initialize this early, so we can reclaim the inode 5800 * number if we fail afterwards in this function. 5801 */ 5802 inode->i_ino = objectid; 5803 5804 if (dir && name) { 5805 trace_btrfs_inode_request(dir); 5806 5807 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5808 if (ret) { 5809 btrfs_free_path(path); 5810 iput(inode); 5811 return ERR_PTR(ret); 5812 } 5813 } else if (dir) { 5814 *index = 0; 5815 } 5816 /* 5817 * index_cnt is ignored for everything but a dir, 5818 * btrfs_set_inode_index_count has an explanation for the magic 5819 * number 5820 */ 5821 BTRFS_I(inode)->index_cnt = 2; 5822 BTRFS_I(inode)->dir_index = *index; 5823 BTRFS_I(inode)->root = root; 5824 BTRFS_I(inode)->generation = trans->transid; 5825 inode->i_generation = BTRFS_I(inode)->generation; 5826 5827 /* 5828 * We could have gotten an inode number from somebody who was fsynced 5829 * and then removed in this same transaction, so let's just set full 5830 * sync since it will be a full sync anyway and this will blow away the 5831 * old info in the log. 5832 */ 5833 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5834 5835 key[0].objectid = objectid; 5836 key[0].type = BTRFS_INODE_ITEM_KEY; 5837 key[0].offset = 0; 5838 5839 sizes[0] = sizeof(struct btrfs_inode_item); 5840 5841 if (name) { 5842 /* 5843 * Start new inodes with an inode_ref. This is slightly more 5844 * efficient for small numbers of hard links since they will 5845 * be packed into one item. Extended refs will kick in if we 5846 * add more hard links than can fit in the ref item. 5847 */ 5848 key[1].objectid = objectid; 5849 key[1].type = BTRFS_INODE_REF_KEY; 5850 key[1].offset = ref_objectid; 5851 5852 sizes[1] = name_len + sizeof(*ref); 5853 } 5854 5855 location = &BTRFS_I(inode)->location; 5856 location->objectid = objectid; 5857 location->offset = 0; 5858 location->type = BTRFS_INODE_ITEM_KEY; 5859 5860 ret = btrfs_insert_inode_locked(inode); 5861 if (ret < 0) { 5862 iput(inode); 5863 goto fail; 5864 } 5865 5866 path->leave_spinning = 1; 5867 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5868 if (ret != 0) 5869 goto fail_unlock; 5870 5871 inode_init_owner(inode, dir, mode); 5872 inode_set_bytes(inode, 0); 5873 5874 inode->i_mtime = current_time(inode); 5875 inode->i_atime = inode->i_mtime; 5876 inode->i_ctime = inode->i_mtime; 5877 BTRFS_I(inode)->i_otime = inode->i_mtime; 5878 5879 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5880 struct btrfs_inode_item); 5881 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 5882 sizeof(*inode_item)); 5883 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5884 5885 if (name) { 5886 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5887 struct btrfs_inode_ref); 5888 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5889 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5890 ptr = (unsigned long)(ref + 1); 5891 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5892 } 5893 5894 btrfs_mark_buffer_dirty(path->nodes[0]); 5895 btrfs_free_path(path); 5896 5897 btrfs_inherit_iflags(inode, dir); 5898 5899 if (S_ISREG(mode)) { 5900 if (btrfs_test_opt(fs_info, NODATASUM)) 5901 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5902 if (btrfs_test_opt(fs_info, NODATACOW)) 5903 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5904 BTRFS_INODE_NODATASUM; 5905 } 5906 5907 inode_tree_add(inode); 5908 5909 trace_btrfs_inode_new(inode); 5910 btrfs_set_inode_last_trans(trans, inode); 5911 5912 btrfs_update_root_times(trans, root); 5913 5914 ret = btrfs_inode_inherit_props(trans, inode, dir); 5915 if (ret) 5916 btrfs_err(fs_info, 5917 "error inheriting props for ino %llu (root %llu): %d", 5918 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 5919 5920 return inode; 5921 5922 fail_unlock: 5923 discard_new_inode(inode); 5924 fail: 5925 if (dir && name) 5926 BTRFS_I(dir)->index_cnt--; 5927 btrfs_free_path(path); 5928 return ERR_PTR(ret); 5929 } 5930 5931 /* 5932 * utility function to add 'inode' into 'parent_inode' with 5933 * a give name and a given sequence number. 5934 * if 'add_backref' is true, also insert a backref from the 5935 * inode to the parent directory. 5936 */ 5937 int btrfs_add_link(struct btrfs_trans_handle *trans, 5938 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 5939 const char *name, int name_len, int add_backref, u64 index) 5940 { 5941 int ret = 0; 5942 struct btrfs_key key; 5943 struct btrfs_root *root = parent_inode->root; 5944 u64 ino = btrfs_ino(inode); 5945 u64 parent_ino = btrfs_ino(parent_inode); 5946 5947 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5948 memcpy(&key, &inode->root->root_key, sizeof(key)); 5949 } else { 5950 key.objectid = ino; 5951 key.type = BTRFS_INODE_ITEM_KEY; 5952 key.offset = 0; 5953 } 5954 5955 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5956 ret = btrfs_add_root_ref(trans, key.objectid, 5957 root->root_key.objectid, parent_ino, 5958 index, name, name_len); 5959 } else if (add_backref) { 5960 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5961 parent_ino, index); 5962 } 5963 5964 /* Nothing to clean up yet */ 5965 if (ret) 5966 return ret; 5967 5968 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 5969 btrfs_inode_type(&inode->vfs_inode), index); 5970 if (ret == -EEXIST || ret == -EOVERFLOW) 5971 goto fail_dir_item; 5972 else if (ret) { 5973 btrfs_abort_transaction(trans, ret); 5974 return ret; 5975 } 5976 5977 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 5978 name_len * 2); 5979 inode_inc_iversion(&parent_inode->vfs_inode); 5980 /* 5981 * If we are replaying a log tree, we do not want to update the mtime 5982 * and ctime of the parent directory with the current time, since the 5983 * log replay procedure is responsible for setting them to their correct 5984 * values (the ones it had when the fsync was done). 5985 */ 5986 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 5987 struct timespec64 now = current_time(&parent_inode->vfs_inode); 5988 5989 parent_inode->vfs_inode.i_mtime = now; 5990 parent_inode->vfs_inode.i_ctime = now; 5991 } 5992 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 5993 if (ret) 5994 btrfs_abort_transaction(trans, ret); 5995 return ret; 5996 5997 fail_dir_item: 5998 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5999 u64 local_index; 6000 int err; 6001 err = btrfs_del_root_ref(trans, key.objectid, 6002 root->root_key.objectid, parent_ino, 6003 &local_index, name, name_len); 6004 if (err) 6005 btrfs_abort_transaction(trans, err); 6006 } else if (add_backref) { 6007 u64 local_index; 6008 int err; 6009 6010 err = btrfs_del_inode_ref(trans, root, name, name_len, 6011 ino, parent_ino, &local_index); 6012 if (err) 6013 btrfs_abort_transaction(trans, err); 6014 } 6015 6016 /* Return the original error code */ 6017 return ret; 6018 } 6019 6020 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6021 struct btrfs_inode *dir, struct dentry *dentry, 6022 struct btrfs_inode *inode, int backref, u64 index) 6023 { 6024 int err = btrfs_add_link(trans, dir, inode, 6025 dentry->d_name.name, dentry->d_name.len, 6026 backref, index); 6027 if (err > 0) 6028 err = -EEXIST; 6029 return err; 6030 } 6031 6032 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6033 umode_t mode, dev_t rdev) 6034 { 6035 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6036 struct btrfs_trans_handle *trans; 6037 struct btrfs_root *root = BTRFS_I(dir)->root; 6038 struct inode *inode = NULL; 6039 int err; 6040 u64 objectid; 6041 u64 index = 0; 6042 6043 /* 6044 * 2 for inode item and ref 6045 * 2 for dir items 6046 * 1 for xattr if selinux is on 6047 */ 6048 trans = btrfs_start_transaction(root, 5); 6049 if (IS_ERR(trans)) 6050 return PTR_ERR(trans); 6051 6052 err = btrfs_find_free_ino(root, &objectid); 6053 if (err) 6054 goto out_unlock; 6055 6056 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6057 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6058 mode, &index); 6059 if (IS_ERR(inode)) { 6060 err = PTR_ERR(inode); 6061 inode = NULL; 6062 goto out_unlock; 6063 } 6064 6065 /* 6066 * If the active LSM wants to access the inode during 6067 * d_instantiate it needs these. Smack checks to see 6068 * if the filesystem supports xattrs by looking at the 6069 * ops vector. 6070 */ 6071 inode->i_op = &btrfs_special_inode_operations; 6072 init_special_inode(inode, inode->i_mode, rdev); 6073 6074 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6075 if (err) 6076 goto out_unlock; 6077 6078 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6079 0, index); 6080 if (err) 6081 goto out_unlock; 6082 6083 btrfs_update_inode(trans, root, inode); 6084 d_instantiate_new(dentry, inode); 6085 6086 out_unlock: 6087 btrfs_end_transaction(trans); 6088 btrfs_btree_balance_dirty(fs_info); 6089 if (err && inode) { 6090 inode_dec_link_count(inode); 6091 discard_new_inode(inode); 6092 } 6093 return err; 6094 } 6095 6096 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6097 umode_t mode, bool excl) 6098 { 6099 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6100 struct btrfs_trans_handle *trans; 6101 struct btrfs_root *root = BTRFS_I(dir)->root; 6102 struct inode *inode = NULL; 6103 int err; 6104 u64 objectid; 6105 u64 index = 0; 6106 6107 /* 6108 * 2 for inode item and ref 6109 * 2 for dir items 6110 * 1 for xattr if selinux is on 6111 */ 6112 trans = btrfs_start_transaction(root, 5); 6113 if (IS_ERR(trans)) 6114 return PTR_ERR(trans); 6115 6116 err = btrfs_find_free_ino(root, &objectid); 6117 if (err) 6118 goto out_unlock; 6119 6120 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6121 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6122 mode, &index); 6123 if (IS_ERR(inode)) { 6124 err = PTR_ERR(inode); 6125 inode = NULL; 6126 goto out_unlock; 6127 } 6128 /* 6129 * If the active LSM wants to access the inode during 6130 * d_instantiate it needs these. Smack checks to see 6131 * if the filesystem supports xattrs by looking at the 6132 * ops vector. 6133 */ 6134 inode->i_fop = &btrfs_file_operations; 6135 inode->i_op = &btrfs_file_inode_operations; 6136 inode->i_mapping->a_ops = &btrfs_aops; 6137 6138 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6139 if (err) 6140 goto out_unlock; 6141 6142 err = btrfs_update_inode(trans, root, inode); 6143 if (err) 6144 goto out_unlock; 6145 6146 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6147 0, index); 6148 if (err) 6149 goto out_unlock; 6150 6151 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6152 d_instantiate_new(dentry, inode); 6153 6154 out_unlock: 6155 btrfs_end_transaction(trans); 6156 if (err && inode) { 6157 inode_dec_link_count(inode); 6158 discard_new_inode(inode); 6159 } 6160 btrfs_btree_balance_dirty(fs_info); 6161 return err; 6162 } 6163 6164 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6165 struct dentry *dentry) 6166 { 6167 struct btrfs_trans_handle *trans = NULL; 6168 struct btrfs_root *root = BTRFS_I(dir)->root; 6169 struct inode *inode = d_inode(old_dentry); 6170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6171 u64 index; 6172 int err; 6173 int drop_inode = 0; 6174 6175 /* do not allow sys_link's with other subvols of the same device */ 6176 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6177 return -EXDEV; 6178 6179 if (inode->i_nlink >= BTRFS_LINK_MAX) 6180 return -EMLINK; 6181 6182 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6183 if (err) 6184 goto fail; 6185 6186 /* 6187 * 2 items for inode and inode ref 6188 * 2 items for dir items 6189 * 1 item for parent inode 6190 * 1 item for orphan item deletion if O_TMPFILE 6191 */ 6192 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6193 if (IS_ERR(trans)) { 6194 err = PTR_ERR(trans); 6195 trans = NULL; 6196 goto fail; 6197 } 6198 6199 /* There are several dir indexes for this inode, clear the cache. */ 6200 BTRFS_I(inode)->dir_index = 0ULL; 6201 inc_nlink(inode); 6202 inode_inc_iversion(inode); 6203 inode->i_ctime = current_time(inode); 6204 ihold(inode); 6205 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6206 6207 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6208 1, index); 6209 6210 if (err) { 6211 drop_inode = 1; 6212 } else { 6213 struct dentry *parent = dentry->d_parent; 6214 int ret; 6215 6216 err = btrfs_update_inode(trans, root, inode); 6217 if (err) 6218 goto fail; 6219 if (inode->i_nlink == 1) { 6220 /* 6221 * If new hard link count is 1, it's a file created 6222 * with open(2) O_TMPFILE flag. 6223 */ 6224 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6225 if (err) 6226 goto fail; 6227 } 6228 d_instantiate(dentry, inode); 6229 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6230 true, NULL); 6231 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6232 err = btrfs_commit_transaction(trans); 6233 trans = NULL; 6234 } 6235 } 6236 6237 fail: 6238 if (trans) 6239 btrfs_end_transaction(trans); 6240 if (drop_inode) { 6241 inode_dec_link_count(inode); 6242 iput(inode); 6243 } 6244 btrfs_btree_balance_dirty(fs_info); 6245 return err; 6246 } 6247 6248 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6249 { 6250 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6251 struct inode *inode = NULL; 6252 struct btrfs_trans_handle *trans; 6253 struct btrfs_root *root = BTRFS_I(dir)->root; 6254 int err = 0; 6255 u64 objectid = 0; 6256 u64 index = 0; 6257 6258 /* 6259 * 2 items for inode and ref 6260 * 2 items for dir items 6261 * 1 for xattr if selinux is on 6262 */ 6263 trans = btrfs_start_transaction(root, 5); 6264 if (IS_ERR(trans)) 6265 return PTR_ERR(trans); 6266 6267 err = btrfs_find_free_ino(root, &objectid); 6268 if (err) 6269 goto out_fail; 6270 6271 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6272 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6273 S_IFDIR | mode, &index); 6274 if (IS_ERR(inode)) { 6275 err = PTR_ERR(inode); 6276 inode = NULL; 6277 goto out_fail; 6278 } 6279 6280 /* these must be set before we unlock the inode */ 6281 inode->i_op = &btrfs_dir_inode_operations; 6282 inode->i_fop = &btrfs_dir_file_operations; 6283 6284 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6285 if (err) 6286 goto out_fail; 6287 6288 btrfs_i_size_write(BTRFS_I(inode), 0); 6289 err = btrfs_update_inode(trans, root, inode); 6290 if (err) 6291 goto out_fail; 6292 6293 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6294 dentry->d_name.name, 6295 dentry->d_name.len, 0, index); 6296 if (err) 6297 goto out_fail; 6298 6299 d_instantiate_new(dentry, inode); 6300 6301 out_fail: 6302 btrfs_end_transaction(trans); 6303 if (err && inode) { 6304 inode_dec_link_count(inode); 6305 discard_new_inode(inode); 6306 } 6307 btrfs_btree_balance_dirty(fs_info); 6308 return err; 6309 } 6310 6311 static noinline int uncompress_inline(struct btrfs_path *path, 6312 struct page *page, 6313 size_t pg_offset, u64 extent_offset, 6314 struct btrfs_file_extent_item *item) 6315 { 6316 int ret; 6317 struct extent_buffer *leaf = path->nodes[0]; 6318 char *tmp; 6319 size_t max_size; 6320 unsigned long inline_size; 6321 unsigned long ptr; 6322 int compress_type; 6323 6324 WARN_ON(pg_offset != 0); 6325 compress_type = btrfs_file_extent_compression(leaf, item); 6326 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6327 inline_size = btrfs_file_extent_inline_item_len(leaf, 6328 btrfs_item_nr(path->slots[0])); 6329 tmp = kmalloc(inline_size, GFP_NOFS); 6330 if (!tmp) 6331 return -ENOMEM; 6332 ptr = btrfs_file_extent_inline_start(item); 6333 6334 read_extent_buffer(leaf, tmp, ptr, inline_size); 6335 6336 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6337 ret = btrfs_decompress(compress_type, tmp, page, 6338 extent_offset, inline_size, max_size); 6339 6340 /* 6341 * decompression code contains a memset to fill in any space between the end 6342 * of the uncompressed data and the end of max_size in case the decompressed 6343 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6344 * the end of an inline extent and the beginning of the next block, so we 6345 * cover that region here. 6346 */ 6347 6348 if (max_size + pg_offset < PAGE_SIZE) { 6349 char *map = kmap(page); 6350 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6351 kunmap(page); 6352 } 6353 kfree(tmp); 6354 return ret; 6355 } 6356 6357 /** 6358 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6359 * @inode: file to search in 6360 * @page: page to read extent data into if the extent is inline 6361 * @pg_offset: offset into @page to copy to 6362 * @start: file offset 6363 * @len: length of range starting at @start 6364 * 6365 * This returns the first &struct extent_map which overlaps with the given 6366 * range, reading it from the B-tree and caching it if necessary. Note that 6367 * there may be more extents which overlap the given range after the returned 6368 * extent_map. 6369 * 6370 * If @page is not NULL and the extent is inline, this also reads the extent 6371 * data directly into the page and marks the extent up to date in the io_tree. 6372 * 6373 * Return: ERR_PTR on error, non-NULL extent_map on success. 6374 */ 6375 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6376 struct page *page, size_t pg_offset, 6377 u64 start, u64 len) 6378 { 6379 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6380 int ret; 6381 int err = 0; 6382 u64 extent_start = 0; 6383 u64 extent_end = 0; 6384 u64 objectid = btrfs_ino(inode); 6385 int extent_type = -1; 6386 struct btrfs_path *path = NULL; 6387 struct btrfs_root *root = inode->root; 6388 struct btrfs_file_extent_item *item; 6389 struct extent_buffer *leaf; 6390 struct btrfs_key found_key; 6391 struct extent_map *em = NULL; 6392 struct extent_map_tree *em_tree = &inode->extent_tree; 6393 struct extent_io_tree *io_tree = &inode->io_tree; 6394 6395 read_lock(&em_tree->lock); 6396 em = lookup_extent_mapping(em_tree, start, len); 6397 read_unlock(&em_tree->lock); 6398 6399 if (em) { 6400 if (em->start > start || em->start + em->len <= start) 6401 free_extent_map(em); 6402 else if (em->block_start == EXTENT_MAP_INLINE && page) 6403 free_extent_map(em); 6404 else 6405 goto out; 6406 } 6407 em = alloc_extent_map(); 6408 if (!em) { 6409 err = -ENOMEM; 6410 goto out; 6411 } 6412 em->start = EXTENT_MAP_HOLE; 6413 em->orig_start = EXTENT_MAP_HOLE; 6414 em->len = (u64)-1; 6415 em->block_len = (u64)-1; 6416 6417 path = btrfs_alloc_path(); 6418 if (!path) { 6419 err = -ENOMEM; 6420 goto out; 6421 } 6422 6423 /* Chances are we'll be called again, so go ahead and do readahead */ 6424 path->reada = READA_FORWARD; 6425 6426 /* 6427 * Unless we're going to uncompress the inline extent, no sleep would 6428 * happen. 6429 */ 6430 path->leave_spinning = 1; 6431 6432 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6433 if (ret < 0) { 6434 err = ret; 6435 goto out; 6436 } else if (ret > 0) { 6437 if (path->slots[0] == 0) 6438 goto not_found; 6439 path->slots[0]--; 6440 } 6441 6442 leaf = path->nodes[0]; 6443 item = btrfs_item_ptr(leaf, path->slots[0], 6444 struct btrfs_file_extent_item); 6445 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6446 if (found_key.objectid != objectid || 6447 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6448 /* 6449 * If we backup past the first extent we want to move forward 6450 * and see if there is an extent in front of us, otherwise we'll 6451 * say there is a hole for our whole search range which can 6452 * cause problems. 6453 */ 6454 extent_end = start; 6455 goto next; 6456 } 6457 6458 extent_type = btrfs_file_extent_type(leaf, item); 6459 extent_start = found_key.offset; 6460 if (extent_type == BTRFS_FILE_EXTENT_REG || 6461 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6462 /* Only regular file could have regular/prealloc extent */ 6463 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6464 ret = -EUCLEAN; 6465 btrfs_crit(fs_info, 6466 "regular/prealloc extent found for non-regular inode %llu", 6467 btrfs_ino(inode)); 6468 goto out; 6469 } 6470 extent_end = extent_start + 6471 btrfs_file_extent_num_bytes(leaf, item); 6472 6473 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6474 extent_start); 6475 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6476 size_t size; 6477 6478 size = btrfs_file_extent_ram_bytes(leaf, item); 6479 extent_end = ALIGN(extent_start + size, 6480 fs_info->sectorsize); 6481 6482 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6483 path->slots[0], 6484 extent_start); 6485 } 6486 next: 6487 if (start >= extent_end) { 6488 path->slots[0]++; 6489 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6490 ret = btrfs_next_leaf(root, path); 6491 if (ret < 0) { 6492 err = ret; 6493 goto out; 6494 } else if (ret > 0) { 6495 goto not_found; 6496 } 6497 leaf = path->nodes[0]; 6498 } 6499 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6500 if (found_key.objectid != objectid || 6501 found_key.type != BTRFS_EXTENT_DATA_KEY) 6502 goto not_found; 6503 if (start + len <= found_key.offset) 6504 goto not_found; 6505 if (start > found_key.offset) 6506 goto next; 6507 6508 /* New extent overlaps with existing one */ 6509 em->start = start; 6510 em->orig_start = start; 6511 em->len = found_key.offset - start; 6512 em->block_start = EXTENT_MAP_HOLE; 6513 goto insert; 6514 } 6515 6516 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6517 6518 if (extent_type == BTRFS_FILE_EXTENT_REG || 6519 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6520 goto insert; 6521 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6522 unsigned long ptr; 6523 char *map; 6524 size_t size; 6525 size_t extent_offset; 6526 size_t copy_size; 6527 6528 if (!page) 6529 goto out; 6530 6531 size = btrfs_file_extent_ram_bytes(leaf, item); 6532 extent_offset = page_offset(page) + pg_offset - extent_start; 6533 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6534 size - extent_offset); 6535 em->start = extent_start + extent_offset; 6536 em->len = ALIGN(copy_size, fs_info->sectorsize); 6537 em->orig_block_len = em->len; 6538 em->orig_start = em->start; 6539 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6540 6541 btrfs_set_path_blocking(path); 6542 if (!PageUptodate(page)) { 6543 if (btrfs_file_extent_compression(leaf, item) != 6544 BTRFS_COMPRESS_NONE) { 6545 ret = uncompress_inline(path, page, pg_offset, 6546 extent_offset, item); 6547 if (ret) { 6548 err = ret; 6549 goto out; 6550 } 6551 } else { 6552 map = kmap(page); 6553 read_extent_buffer(leaf, map + pg_offset, ptr, 6554 copy_size); 6555 if (pg_offset + copy_size < PAGE_SIZE) { 6556 memset(map + pg_offset + copy_size, 0, 6557 PAGE_SIZE - pg_offset - 6558 copy_size); 6559 } 6560 kunmap(page); 6561 } 6562 flush_dcache_page(page); 6563 } 6564 set_extent_uptodate(io_tree, em->start, 6565 extent_map_end(em) - 1, NULL, GFP_NOFS); 6566 goto insert; 6567 } 6568 not_found: 6569 em->start = start; 6570 em->orig_start = start; 6571 em->len = len; 6572 em->block_start = EXTENT_MAP_HOLE; 6573 insert: 6574 btrfs_release_path(path); 6575 if (em->start > start || extent_map_end(em) <= start) { 6576 btrfs_err(fs_info, 6577 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6578 em->start, em->len, start, len); 6579 err = -EIO; 6580 goto out; 6581 } 6582 6583 err = 0; 6584 write_lock(&em_tree->lock); 6585 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6586 write_unlock(&em_tree->lock); 6587 out: 6588 btrfs_free_path(path); 6589 6590 trace_btrfs_get_extent(root, inode, em); 6591 6592 if (err) { 6593 free_extent_map(em); 6594 return ERR_PTR(err); 6595 } 6596 BUG_ON(!em); /* Error is always set */ 6597 return em; 6598 } 6599 6600 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6601 u64 start, u64 len) 6602 { 6603 struct extent_map *em; 6604 struct extent_map *hole_em = NULL; 6605 u64 delalloc_start = start; 6606 u64 end; 6607 u64 delalloc_len; 6608 u64 delalloc_end; 6609 int err = 0; 6610 6611 em = btrfs_get_extent(inode, NULL, 0, start, len); 6612 if (IS_ERR(em)) 6613 return em; 6614 /* 6615 * If our em maps to: 6616 * - a hole or 6617 * - a pre-alloc extent, 6618 * there might actually be delalloc bytes behind it. 6619 */ 6620 if (em->block_start != EXTENT_MAP_HOLE && 6621 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6622 return em; 6623 else 6624 hole_em = em; 6625 6626 /* check to see if we've wrapped (len == -1 or similar) */ 6627 end = start + len; 6628 if (end < start) 6629 end = (u64)-1; 6630 else 6631 end -= 1; 6632 6633 em = NULL; 6634 6635 /* ok, we didn't find anything, lets look for delalloc */ 6636 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6637 end, len, EXTENT_DELALLOC, 1); 6638 delalloc_end = delalloc_start + delalloc_len; 6639 if (delalloc_end < delalloc_start) 6640 delalloc_end = (u64)-1; 6641 6642 /* 6643 * We didn't find anything useful, return the original results from 6644 * get_extent() 6645 */ 6646 if (delalloc_start > end || delalloc_end <= start) { 6647 em = hole_em; 6648 hole_em = NULL; 6649 goto out; 6650 } 6651 6652 /* 6653 * Adjust the delalloc_start to make sure it doesn't go backwards from 6654 * the start they passed in 6655 */ 6656 delalloc_start = max(start, delalloc_start); 6657 delalloc_len = delalloc_end - delalloc_start; 6658 6659 if (delalloc_len > 0) { 6660 u64 hole_start; 6661 u64 hole_len; 6662 const u64 hole_end = extent_map_end(hole_em); 6663 6664 em = alloc_extent_map(); 6665 if (!em) { 6666 err = -ENOMEM; 6667 goto out; 6668 } 6669 6670 ASSERT(hole_em); 6671 /* 6672 * When btrfs_get_extent can't find anything it returns one 6673 * huge hole 6674 * 6675 * Make sure what it found really fits our range, and adjust to 6676 * make sure it is based on the start from the caller 6677 */ 6678 if (hole_end <= start || hole_em->start > end) { 6679 free_extent_map(hole_em); 6680 hole_em = NULL; 6681 } else { 6682 hole_start = max(hole_em->start, start); 6683 hole_len = hole_end - hole_start; 6684 } 6685 6686 if (hole_em && delalloc_start > hole_start) { 6687 /* 6688 * Our hole starts before our delalloc, so we have to 6689 * return just the parts of the hole that go until the 6690 * delalloc starts 6691 */ 6692 em->len = min(hole_len, delalloc_start - hole_start); 6693 em->start = hole_start; 6694 em->orig_start = hole_start; 6695 /* 6696 * Don't adjust block start at all, it is fixed at 6697 * EXTENT_MAP_HOLE 6698 */ 6699 em->block_start = hole_em->block_start; 6700 em->block_len = hole_len; 6701 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6702 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6703 } else { 6704 /* 6705 * Hole is out of passed range or it starts after 6706 * delalloc range 6707 */ 6708 em->start = delalloc_start; 6709 em->len = delalloc_len; 6710 em->orig_start = delalloc_start; 6711 em->block_start = EXTENT_MAP_DELALLOC; 6712 em->block_len = delalloc_len; 6713 } 6714 } else { 6715 return hole_em; 6716 } 6717 out: 6718 6719 free_extent_map(hole_em); 6720 if (err) { 6721 free_extent_map(em); 6722 return ERR_PTR(err); 6723 } 6724 return em; 6725 } 6726 6727 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 6728 const u64 start, 6729 const u64 len, 6730 const u64 orig_start, 6731 const u64 block_start, 6732 const u64 block_len, 6733 const u64 orig_block_len, 6734 const u64 ram_bytes, 6735 const int type) 6736 { 6737 struct extent_map *em = NULL; 6738 int ret; 6739 6740 if (type != BTRFS_ORDERED_NOCOW) { 6741 em = create_io_em(inode, start, len, orig_start, 6742 block_start, block_len, orig_block_len, 6743 ram_bytes, 6744 BTRFS_COMPRESS_NONE, /* compress_type */ 6745 type); 6746 if (IS_ERR(em)) 6747 goto out; 6748 } 6749 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 6750 len, block_len, type); 6751 if (ret) { 6752 if (em) { 6753 free_extent_map(em); 6754 btrfs_drop_extent_cache(BTRFS_I(inode), start, 6755 start + len - 1, 0); 6756 } 6757 em = ERR_PTR(ret); 6758 } 6759 out: 6760 6761 return em; 6762 } 6763 6764 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6765 u64 start, u64 len) 6766 { 6767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6768 struct btrfs_root *root = BTRFS_I(inode)->root; 6769 struct extent_map *em; 6770 struct btrfs_key ins; 6771 u64 alloc_hint; 6772 int ret; 6773 6774 alloc_hint = get_extent_allocation_hint(inode, start, len); 6775 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6776 0, alloc_hint, &ins, 1, 1); 6777 if (ret) 6778 return ERR_PTR(ret); 6779 6780 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6781 ins.objectid, ins.offset, ins.offset, 6782 ins.offset, BTRFS_ORDERED_REGULAR); 6783 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6784 if (IS_ERR(em)) 6785 btrfs_free_reserved_extent(fs_info, ins.objectid, 6786 ins.offset, 1); 6787 6788 return em; 6789 } 6790 6791 /* 6792 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6793 * block must be cow'd 6794 */ 6795 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6796 u64 *orig_start, u64 *orig_block_len, 6797 u64 *ram_bytes) 6798 { 6799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6800 struct btrfs_path *path; 6801 int ret; 6802 struct extent_buffer *leaf; 6803 struct btrfs_root *root = BTRFS_I(inode)->root; 6804 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6805 struct btrfs_file_extent_item *fi; 6806 struct btrfs_key key; 6807 u64 disk_bytenr; 6808 u64 backref_offset; 6809 u64 extent_end; 6810 u64 num_bytes; 6811 int slot; 6812 int found_type; 6813 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6814 6815 path = btrfs_alloc_path(); 6816 if (!path) 6817 return -ENOMEM; 6818 6819 ret = btrfs_lookup_file_extent(NULL, root, path, 6820 btrfs_ino(BTRFS_I(inode)), offset, 0); 6821 if (ret < 0) 6822 goto out; 6823 6824 slot = path->slots[0]; 6825 if (ret == 1) { 6826 if (slot == 0) { 6827 /* can't find the item, must cow */ 6828 ret = 0; 6829 goto out; 6830 } 6831 slot--; 6832 } 6833 ret = 0; 6834 leaf = path->nodes[0]; 6835 btrfs_item_key_to_cpu(leaf, &key, slot); 6836 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6837 key.type != BTRFS_EXTENT_DATA_KEY) { 6838 /* not our file or wrong item type, must cow */ 6839 goto out; 6840 } 6841 6842 if (key.offset > offset) { 6843 /* Wrong offset, must cow */ 6844 goto out; 6845 } 6846 6847 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6848 found_type = btrfs_file_extent_type(leaf, fi); 6849 if (found_type != BTRFS_FILE_EXTENT_REG && 6850 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6851 /* not a regular extent, must cow */ 6852 goto out; 6853 } 6854 6855 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6856 goto out; 6857 6858 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6859 if (extent_end <= offset) 6860 goto out; 6861 6862 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6863 if (disk_bytenr == 0) 6864 goto out; 6865 6866 if (btrfs_file_extent_compression(leaf, fi) || 6867 btrfs_file_extent_encryption(leaf, fi) || 6868 btrfs_file_extent_other_encoding(leaf, fi)) 6869 goto out; 6870 6871 /* 6872 * Do the same check as in btrfs_cross_ref_exist but without the 6873 * unnecessary search. 6874 */ 6875 if (btrfs_file_extent_generation(leaf, fi) <= 6876 btrfs_root_last_snapshot(&root->root_item)) 6877 goto out; 6878 6879 backref_offset = btrfs_file_extent_offset(leaf, fi); 6880 6881 if (orig_start) { 6882 *orig_start = key.offset - backref_offset; 6883 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6884 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6885 } 6886 6887 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 6888 goto out; 6889 6890 num_bytes = min(offset + *len, extent_end) - offset; 6891 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6892 u64 range_end; 6893 6894 range_end = round_up(offset + num_bytes, 6895 root->fs_info->sectorsize) - 1; 6896 ret = test_range_bit(io_tree, offset, range_end, 6897 EXTENT_DELALLOC, 0, NULL); 6898 if (ret) { 6899 ret = -EAGAIN; 6900 goto out; 6901 } 6902 } 6903 6904 btrfs_release_path(path); 6905 6906 /* 6907 * look for other files referencing this extent, if we 6908 * find any we must cow 6909 */ 6910 6911 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 6912 key.offset - backref_offset, disk_bytenr); 6913 if (ret) { 6914 ret = 0; 6915 goto out; 6916 } 6917 6918 /* 6919 * adjust disk_bytenr and num_bytes to cover just the bytes 6920 * in this extent we are about to write. If there 6921 * are any csums in that range we have to cow in order 6922 * to keep the csums correct 6923 */ 6924 disk_bytenr += backref_offset; 6925 disk_bytenr += offset - key.offset; 6926 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 6927 goto out; 6928 /* 6929 * all of the above have passed, it is safe to overwrite this extent 6930 * without cow 6931 */ 6932 *len = num_bytes; 6933 ret = 1; 6934 out: 6935 btrfs_free_path(path); 6936 return ret; 6937 } 6938 6939 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6940 struct extent_state **cached_state, int writing) 6941 { 6942 struct btrfs_ordered_extent *ordered; 6943 int ret = 0; 6944 6945 while (1) { 6946 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6947 cached_state); 6948 /* 6949 * We're concerned with the entire range that we're going to be 6950 * doing DIO to, so we need to make sure there's no ordered 6951 * extents in this range. 6952 */ 6953 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 6954 lockend - lockstart + 1); 6955 6956 /* 6957 * We need to make sure there are no buffered pages in this 6958 * range either, we could have raced between the invalidate in 6959 * generic_file_direct_write and locking the extent. The 6960 * invalidate needs to happen so that reads after a write do not 6961 * get stale data. 6962 */ 6963 if (!ordered && 6964 (!writing || !filemap_range_has_page(inode->i_mapping, 6965 lockstart, lockend))) 6966 break; 6967 6968 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6969 cached_state); 6970 6971 if (ordered) { 6972 /* 6973 * If we are doing a DIO read and the ordered extent we 6974 * found is for a buffered write, we can not wait for it 6975 * to complete and retry, because if we do so we can 6976 * deadlock with concurrent buffered writes on page 6977 * locks. This happens only if our DIO read covers more 6978 * than one extent map, if at this point has already 6979 * created an ordered extent for a previous extent map 6980 * and locked its range in the inode's io tree, and a 6981 * concurrent write against that previous extent map's 6982 * range and this range started (we unlock the ranges 6983 * in the io tree only when the bios complete and 6984 * buffered writes always lock pages before attempting 6985 * to lock range in the io tree). 6986 */ 6987 if (writing || 6988 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 6989 btrfs_start_ordered_extent(inode, ordered, 1); 6990 else 6991 ret = -ENOTBLK; 6992 btrfs_put_ordered_extent(ordered); 6993 } else { 6994 /* 6995 * We could trigger writeback for this range (and wait 6996 * for it to complete) and then invalidate the pages for 6997 * this range (through invalidate_inode_pages2_range()), 6998 * but that can lead us to a deadlock with a concurrent 6999 * call to readpages() (a buffered read or a defrag call 7000 * triggered a readahead) on a page lock due to an 7001 * ordered dio extent we created before but did not have 7002 * yet a corresponding bio submitted (whence it can not 7003 * complete), which makes readpages() wait for that 7004 * ordered extent to complete while holding a lock on 7005 * that page. 7006 */ 7007 ret = -ENOTBLK; 7008 } 7009 7010 if (ret) 7011 break; 7012 7013 cond_resched(); 7014 } 7015 7016 return ret; 7017 } 7018 7019 /* The callers of this must take lock_extent() */ 7020 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7021 u64 orig_start, u64 block_start, 7022 u64 block_len, u64 orig_block_len, 7023 u64 ram_bytes, int compress_type, 7024 int type) 7025 { 7026 struct extent_map_tree *em_tree; 7027 struct extent_map *em; 7028 int ret; 7029 7030 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7031 type == BTRFS_ORDERED_COMPRESSED || 7032 type == BTRFS_ORDERED_NOCOW || 7033 type == BTRFS_ORDERED_REGULAR); 7034 7035 em_tree = &BTRFS_I(inode)->extent_tree; 7036 em = alloc_extent_map(); 7037 if (!em) 7038 return ERR_PTR(-ENOMEM); 7039 7040 em->start = start; 7041 em->orig_start = orig_start; 7042 em->len = len; 7043 em->block_len = block_len; 7044 em->block_start = block_start; 7045 em->orig_block_len = orig_block_len; 7046 em->ram_bytes = ram_bytes; 7047 em->generation = -1; 7048 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7049 if (type == BTRFS_ORDERED_PREALLOC) { 7050 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7051 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7052 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7053 em->compress_type = compress_type; 7054 } 7055 7056 do { 7057 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7058 em->start + em->len - 1, 0); 7059 write_lock(&em_tree->lock); 7060 ret = add_extent_mapping(em_tree, em, 1); 7061 write_unlock(&em_tree->lock); 7062 /* 7063 * The caller has taken lock_extent(), who could race with us 7064 * to add em? 7065 */ 7066 } while (ret == -EEXIST); 7067 7068 if (ret) { 7069 free_extent_map(em); 7070 return ERR_PTR(ret); 7071 } 7072 7073 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7074 return em; 7075 } 7076 7077 7078 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7079 struct buffer_head *bh_result, 7080 struct inode *inode, 7081 u64 start, u64 len) 7082 { 7083 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7084 7085 if (em->block_start == EXTENT_MAP_HOLE || 7086 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7087 return -ENOENT; 7088 7089 len = min(len, em->len - (start - em->start)); 7090 7091 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7092 inode->i_blkbits; 7093 bh_result->b_size = len; 7094 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7095 set_buffer_mapped(bh_result); 7096 7097 return 0; 7098 } 7099 7100 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7101 struct buffer_head *bh_result, 7102 struct inode *inode, 7103 struct btrfs_dio_data *dio_data, 7104 u64 start, u64 len) 7105 { 7106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7107 struct extent_map *em = *map; 7108 int ret = 0; 7109 7110 /* 7111 * We don't allocate a new extent in the following cases 7112 * 7113 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7114 * existing extent. 7115 * 2) The extent is marked as PREALLOC. We're good to go here and can 7116 * just use the extent. 7117 * 7118 */ 7119 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7120 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7121 em->block_start != EXTENT_MAP_HOLE)) { 7122 int type; 7123 u64 block_start, orig_start, orig_block_len, ram_bytes; 7124 7125 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7126 type = BTRFS_ORDERED_PREALLOC; 7127 else 7128 type = BTRFS_ORDERED_NOCOW; 7129 len = min(len, em->len - (start - em->start)); 7130 block_start = em->block_start + (start - em->start); 7131 7132 if (can_nocow_extent(inode, start, &len, &orig_start, 7133 &orig_block_len, &ram_bytes) == 1 && 7134 btrfs_inc_nocow_writers(fs_info, block_start)) { 7135 struct extent_map *em2; 7136 7137 em2 = btrfs_create_dio_extent(inode, start, len, 7138 orig_start, block_start, 7139 len, orig_block_len, 7140 ram_bytes, type); 7141 btrfs_dec_nocow_writers(fs_info, block_start); 7142 if (type == BTRFS_ORDERED_PREALLOC) { 7143 free_extent_map(em); 7144 *map = em = em2; 7145 } 7146 7147 if (em2 && IS_ERR(em2)) { 7148 ret = PTR_ERR(em2); 7149 goto out; 7150 } 7151 /* 7152 * For inode marked NODATACOW or extent marked PREALLOC, 7153 * use the existing or preallocated extent, so does not 7154 * need to adjust btrfs_space_info's bytes_may_use. 7155 */ 7156 btrfs_free_reserved_data_space_noquota(inode, start, 7157 len); 7158 goto skip_cow; 7159 } 7160 } 7161 7162 /* this will cow the extent */ 7163 len = bh_result->b_size; 7164 free_extent_map(em); 7165 *map = em = btrfs_new_extent_direct(inode, start, len); 7166 if (IS_ERR(em)) { 7167 ret = PTR_ERR(em); 7168 goto out; 7169 } 7170 7171 len = min(len, em->len - (start - em->start)); 7172 7173 skip_cow: 7174 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7175 inode->i_blkbits; 7176 bh_result->b_size = len; 7177 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7178 set_buffer_mapped(bh_result); 7179 7180 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7181 set_buffer_new(bh_result); 7182 7183 /* 7184 * Need to update the i_size under the extent lock so buffered 7185 * readers will get the updated i_size when we unlock. 7186 */ 7187 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7188 i_size_write(inode, start + len); 7189 7190 WARN_ON(dio_data->reserve < len); 7191 dio_data->reserve -= len; 7192 dio_data->unsubmitted_oe_range_end = start + len; 7193 current->journal_info = dio_data; 7194 out: 7195 return ret; 7196 } 7197 7198 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7199 struct buffer_head *bh_result, int create) 7200 { 7201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7202 struct extent_map *em; 7203 struct extent_state *cached_state = NULL; 7204 struct btrfs_dio_data *dio_data = NULL; 7205 u64 start = iblock << inode->i_blkbits; 7206 u64 lockstart, lockend; 7207 u64 len = bh_result->b_size; 7208 int ret = 0; 7209 7210 if (!create) 7211 len = min_t(u64, len, fs_info->sectorsize); 7212 7213 lockstart = start; 7214 lockend = start + len - 1; 7215 7216 if (current->journal_info) { 7217 /* 7218 * Need to pull our outstanding extents and set journal_info to NULL so 7219 * that anything that needs to check if there's a transaction doesn't get 7220 * confused. 7221 */ 7222 dio_data = current->journal_info; 7223 current->journal_info = NULL; 7224 } 7225 7226 /* 7227 * If this errors out it's because we couldn't invalidate pagecache for 7228 * this range and we need to fallback to buffered. 7229 */ 7230 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7231 create)) { 7232 ret = -ENOTBLK; 7233 goto err; 7234 } 7235 7236 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7237 if (IS_ERR(em)) { 7238 ret = PTR_ERR(em); 7239 goto unlock_err; 7240 } 7241 7242 /* 7243 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7244 * io. INLINE is special, and we could probably kludge it in here, but 7245 * it's still buffered so for safety lets just fall back to the generic 7246 * buffered path. 7247 * 7248 * For COMPRESSED we _have_ to read the entire extent in so we can 7249 * decompress it, so there will be buffering required no matter what we 7250 * do, so go ahead and fallback to buffered. 7251 * 7252 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7253 * to buffered IO. Don't blame me, this is the price we pay for using 7254 * the generic code. 7255 */ 7256 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7257 em->block_start == EXTENT_MAP_INLINE) { 7258 free_extent_map(em); 7259 ret = -ENOTBLK; 7260 goto unlock_err; 7261 } 7262 7263 if (create) { 7264 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7265 dio_data, start, len); 7266 if (ret < 0) 7267 goto unlock_err; 7268 7269 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7270 lockend, &cached_state); 7271 } else { 7272 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7273 start, len); 7274 /* Can be negative only if we read from a hole */ 7275 if (ret < 0) { 7276 ret = 0; 7277 free_extent_map(em); 7278 goto unlock_err; 7279 } 7280 /* 7281 * We need to unlock only the end area that we aren't using. 7282 * The rest is going to be unlocked by the endio routine. 7283 */ 7284 lockstart = start + bh_result->b_size; 7285 if (lockstart < lockend) { 7286 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7287 lockstart, lockend, &cached_state); 7288 } else { 7289 free_extent_state(cached_state); 7290 } 7291 } 7292 7293 free_extent_map(em); 7294 7295 return 0; 7296 7297 unlock_err: 7298 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7299 &cached_state); 7300 err: 7301 if (dio_data) 7302 current->journal_info = dio_data; 7303 return ret; 7304 } 7305 7306 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7307 struct bio *bio, 7308 int mirror_num) 7309 { 7310 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7311 blk_status_t ret; 7312 7313 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7314 7315 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7316 if (ret) 7317 return ret; 7318 7319 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7320 7321 return ret; 7322 } 7323 7324 static int btrfs_check_dio_repairable(struct inode *inode, 7325 struct bio *failed_bio, 7326 struct io_failure_record *failrec, 7327 int failed_mirror) 7328 { 7329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7330 int num_copies; 7331 7332 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7333 if (num_copies == 1) { 7334 /* 7335 * we only have a single copy of the data, so don't bother with 7336 * all the retry and error correction code that follows. no 7337 * matter what the error is, it is very likely to persist. 7338 */ 7339 btrfs_debug(fs_info, 7340 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7341 num_copies, failrec->this_mirror, failed_mirror); 7342 return 0; 7343 } 7344 7345 failrec->failed_mirror = failed_mirror; 7346 failrec->this_mirror++; 7347 if (failrec->this_mirror == failed_mirror) 7348 failrec->this_mirror++; 7349 7350 if (failrec->this_mirror > num_copies) { 7351 btrfs_debug(fs_info, 7352 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7353 num_copies, failrec->this_mirror, failed_mirror); 7354 return 0; 7355 } 7356 7357 return 1; 7358 } 7359 7360 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7361 struct page *page, unsigned int pgoff, 7362 u64 start, u64 end, int failed_mirror, 7363 bio_end_io_t *repair_endio, void *repair_arg) 7364 { 7365 struct io_failure_record *failrec; 7366 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7367 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7368 struct bio *bio; 7369 int isector; 7370 unsigned int read_mode = 0; 7371 int segs; 7372 int ret; 7373 blk_status_t status; 7374 struct bio_vec bvec; 7375 7376 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7377 7378 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7379 if (ret) 7380 return errno_to_blk_status(ret); 7381 7382 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7383 failed_mirror); 7384 if (!ret) { 7385 free_io_failure(failure_tree, io_tree, failrec); 7386 return BLK_STS_IOERR; 7387 } 7388 7389 segs = bio_segments(failed_bio); 7390 bio_get_first_bvec(failed_bio, &bvec); 7391 if (segs > 1 || 7392 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7393 read_mode |= REQ_FAILFAST_DEV; 7394 7395 isector = start - btrfs_io_bio(failed_bio)->logical; 7396 isector >>= inode->i_sb->s_blocksize_bits; 7397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7398 pgoff, isector, repair_endio, repair_arg); 7399 bio->bi_opf = REQ_OP_READ | read_mode; 7400 7401 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7402 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7403 read_mode, failrec->this_mirror, failrec->in_validation); 7404 7405 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7406 if (status) { 7407 free_io_failure(failure_tree, io_tree, failrec); 7408 bio_put(bio); 7409 } 7410 7411 return status; 7412 } 7413 7414 struct btrfs_retry_complete { 7415 struct completion done; 7416 struct inode *inode; 7417 u64 start; 7418 int uptodate; 7419 }; 7420 7421 static void btrfs_retry_endio_nocsum(struct bio *bio) 7422 { 7423 struct btrfs_retry_complete *done = bio->bi_private; 7424 struct inode *inode = done->inode; 7425 struct bio_vec *bvec; 7426 struct extent_io_tree *io_tree, *failure_tree; 7427 struct bvec_iter_all iter_all; 7428 7429 if (bio->bi_status) 7430 goto end; 7431 7432 ASSERT(bio->bi_vcnt == 1); 7433 io_tree = &BTRFS_I(inode)->io_tree; 7434 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7435 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7436 7437 done->uptodate = 1; 7438 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7439 bio_for_each_segment_all(bvec, bio, iter_all) 7440 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7441 io_tree, done->start, bvec->bv_page, 7442 btrfs_ino(BTRFS_I(inode)), 0); 7443 end: 7444 complete(&done->done); 7445 bio_put(bio); 7446 } 7447 7448 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7449 struct btrfs_io_bio *io_bio) 7450 { 7451 struct btrfs_fs_info *fs_info; 7452 struct bio_vec bvec; 7453 struct bvec_iter iter; 7454 struct btrfs_retry_complete done; 7455 u64 start; 7456 unsigned int pgoff; 7457 u32 sectorsize; 7458 int nr_sectors; 7459 blk_status_t ret; 7460 blk_status_t err = BLK_STS_OK; 7461 7462 fs_info = BTRFS_I(inode)->root->fs_info; 7463 sectorsize = fs_info->sectorsize; 7464 7465 start = io_bio->logical; 7466 done.inode = inode; 7467 io_bio->bio.bi_iter = io_bio->iter; 7468 7469 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7470 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7471 pgoff = bvec.bv_offset; 7472 7473 next_block_or_try_again: 7474 done.uptodate = 0; 7475 done.start = start; 7476 init_completion(&done.done); 7477 7478 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7479 pgoff, start, start + sectorsize - 1, 7480 io_bio->mirror_num, 7481 btrfs_retry_endio_nocsum, &done); 7482 if (ret) { 7483 err = ret; 7484 goto next; 7485 } 7486 7487 wait_for_completion_io(&done.done); 7488 7489 if (!done.uptodate) { 7490 /* We might have another mirror, so try again */ 7491 goto next_block_or_try_again; 7492 } 7493 7494 next: 7495 start += sectorsize; 7496 7497 nr_sectors--; 7498 if (nr_sectors) { 7499 pgoff += sectorsize; 7500 ASSERT(pgoff < PAGE_SIZE); 7501 goto next_block_or_try_again; 7502 } 7503 } 7504 7505 return err; 7506 } 7507 7508 static void btrfs_retry_endio(struct bio *bio) 7509 { 7510 struct btrfs_retry_complete *done = bio->bi_private; 7511 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7512 struct extent_io_tree *io_tree, *failure_tree; 7513 struct inode *inode = done->inode; 7514 struct bio_vec *bvec; 7515 int uptodate; 7516 int ret; 7517 int i = 0; 7518 struct bvec_iter_all iter_all; 7519 7520 if (bio->bi_status) 7521 goto end; 7522 7523 uptodate = 1; 7524 7525 ASSERT(bio->bi_vcnt == 1); 7526 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7527 7528 io_tree = &BTRFS_I(inode)->io_tree; 7529 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7530 7531 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7532 bio_for_each_segment_all(bvec, bio, iter_all) { 7533 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7534 bvec->bv_offset, done->start, 7535 bvec->bv_len); 7536 if (!ret) 7537 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7538 failure_tree, io_tree, done->start, 7539 bvec->bv_page, 7540 btrfs_ino(BTRFS_I(inode)), 7541 bvec->bv_offset); 7542 else 7543 uptodate = 0; 7544 i++; 7545 } 7546 7547 done->uptodate = uptodate; 7548 end: 7549 complete(&done->done); 7550 bio_put(bio); 7551 } 7552 7553 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7554 struct btrfs_io_bio *io_bio, blk_status_t err) 7555 { 7556 struct btrfs_fs_info *fs_info; 7557 struct bio_vec bvec; 7558 struct bvec_iter iter; 7559 struct btrfs_retry_complete done; 7560 u64 start; 7561 u64 offset = 0; 7562 u32 sectorsize; 7563 int nr_sectors; 7564 unsigned int pgoff; 7565 int csum_pos; 7566 bool uptodate = (err == 0); 7567 int ret; 7568 blk_status_t status; 7569 7570 fs_info = BTRFS_I(inode)->root->fs_info; 7571 sectorsize = fs_info->sectorsize; 7572 7573 err = BLK_STS_OK; 7574 start = io_bio->logical; 7575 done.inode = inode; 7576 io_bio->bio.bi_iter = io_bio->iter; 7577 7578 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7579 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7580 7581 pgoff = bvec.bv_offset; 7582 next_block: 7583 if (uptodate) { 7584 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7585 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7586 bvec.bv_page, pgoff, start, sectorsize); 7587 if (likely(!ret)) 7588 goto next; 7589 } 7590 try_again: 7591 done.uptodate = 0; 7592 done.start = start; 7593 init_completion(&done.done); 7594 7595 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7596 pgoff, start, start + sectorsize - 1, 7597 io_bio->mirror_num, btrfs_retry_endio, 7598 &done); 7599 if (status) { 7600 err = status; 7601 goto next; 7602 } 7603 7604 wait_for_completion_io(&done.done); 7605 7606 if (!done.uptodate) { 7607 /* We might have another mirror, so try again */ 7608 goto try_again; 7609 } 7610 next: 7611 offset += sectorsize; 7612 start += sectorsize; 7613 7614 ASSERT(nr_sectors); 7615 7616 nr_sectors--; 7617 if (nr_sectors) { 7618 pgoff += sectorsize; 7619 ASSERT(pgoff < PAGE_SIZE); 7620 goto next_block; 7621 } 7622 } 7623 7624 return err; 7625 } 7626 7627 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 7628 struct btrfs_io_bio *io_bio, blk_status_t err) 7629 { 7630 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7631 7632 if (skip_csum) { 7633 if (unlikely(err)) 7634 return __btrfs_correct_data_nocsum(inode, io_bio); 7635 else 7636 return BLK_STS_OK; 7637 } else { 7638 return __btrfs_subio_endio_read(inode, io_bio, err); 7639 } 7640 } 7641 7642 static void btrfs_endio_direct_read(struct bio *bio) 7643 { 7644 struct btrfs_dio_private *dip = bio->bi_private; 7645 struct inode *inode = dip->inode; 7646 struct bio *dio_bio; 7647 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7648 blk_status_t err = bio->bi_status; 7649 7650 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7651 err = btrfs_subio_endio_read(inode, io_bio, err); 7652 7653 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7654 dip->logical_offset + dip->bytes - 1); 7655 dio_bio = dip->dio_bio; 7656 7657 kfree(dip); 7658 7659 dio_bio->bi_status = err; 7660 dio_end_io(dio_bio); 7661 btrfs_io_bio_free_csum(io_bio); 7662 bio_put(bio); 7663 } 7664 7665 static void __endio_write_update_ordered(struct inode *inode, 7666 const u64 offset, const u64 bytes, 7667 const bool uptodate) 7668 { 7669 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7670 struct btrfs_ordered_extent *ordered = NULL; 7671 struct btrfs_workqueue *wq; 7672 u64 ordered_offset = offset; 7673 u64 ordered_bytes = bytes; 7674 u64 last_offset; 7675 7676 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 7677 wq = fs_info->endio_freespace_worker; 7678 else 7679 wq = fs_info->endio_write_workers; 7680 7681 while (ordered_offset < offset + bytes) { 7682 last_offset = ordered_offset; 7683 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7684 &ordered_offset, 7685 ordered_bytes, 7686 uptodate)) { 7687 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7688 NULL); 7689 btrfs_queue_work(wq, &ordered->work); 7690 } 7691 /* 7692 * If btrfs_dec_test_ordered_pending does not find any ordered 7693 * extent in the range, we can exit. 7694 */ 7695 if (ordered_offset == last_offset) 7696 return; 7697 /* 7698 * Our bio might span multiple ordered extents. In this case 7699 * we keep going until we have accounted the whole dio. 7700 */ 7701 if (ordered_offset < offset + bytes) { 7702 ordered_bytes = offset + bytes - ordered_offset; 7703 ordered = NULL; 7704 } 7705 } 7706 } 7707 7708 static void btrfs_endio_direct_write(struct bio *bio) 7709 { 7710 struct btrfs_dio_private *dip = bio->bi_private; 7711 struct bio *dio_bio = dip->dio_bio; 7712 7713 __endio_write_update_ordered(dip->inode, dip->logical_offset, 7714 dip->bytes, !bio->bi_status); 7715 7716 kfree(dip); 7717 7718 dio_bio->bi_status = bio->bi_status; 7719 dio_end_io(dio_bio); 7720 bio_put(bio); 7721 } 7722 7723 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7724 struct bio *bio, u64 offset) 7725 { 7726 struct inode *inode = private_data; 7727 blk_status_t ret; 7728 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 7729 BUG_ON(ret); /* -ENOMEM */ 7730 return 0; 7731 } 7732 7733 static void btrfs_end_dio_bio(struct bio *bio) 7734 { 7735 struct btrfs_dio_private *dip = bio->bi_private; 7736 blk_status_t err = bio->bi_status; 7737 7738 if (err) 7739 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7740 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7741 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7742 bio->bi_opf, 7743 (unsigned long long)bio->bi_iter.bi_sector, 7744 bio->bi_iter.bi_size, err); 7745 7746 if (dip->subio_endio) 7747 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7748 7749 if (err) { 7750 /* 7751 * We want to perceive the errors flag being set before 7752 * decrementing the reference count. We don't need a barrier 7753 * since atomic operations with a return value are fully 7754 * ordered as per atomic_t.txt 7755 */ 7756 dip->errors = 1; 7757 } 7758 7759 /* if there are more bios still pending for this dio, just exit */ 7760 if (!atomic_dec_and_test(&dip->pending_bios)) 7761 goto out; 7762 7763 if (dip->errors) { 7764 bio_io_error(dip->orig_bio); 7765 } else { 7766 dip->dio_bio->bi_status = BLK_STS_OK; 7767 bio_endio(dip->orig_bio); 7768 } 7769 out: 7770 bio_put(bio); 7771 } 7772 7773 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 7774 struct btrfs_dio_private *dip, 7775 struct bio *bio, 7776 u64 file_offset) 7777 { 7778 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7779 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7780 blk_status_t ret; 7781 7782 /* 7783 * We load all the csum data we need when we submit 7784 * the first bio to reduce the csum tree search and 7785 * contention. 7786 */ 7787 if (dip->logical_offset == file_offset) { 7788 ret = btrfs_lookup_bio_sums(inode, dip->orig_bio, file_offset, 7789 NULL); 7790 if (ret) 7791 return ret; 7792 } 7793 7794 if (bio == dip->orig_bio) 7795 return 0; 7796 7797 file_offset -= dip->logical_offset; 7798 file_offset >>= inode->i_sb->s_blocksize_bits; 7799 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7800 7801 return 0; 7802 } 7803 7804 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7805 struct inode *inode, u64 file_offset, int async_submit) 7806 { 7807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7808 struct btrfs_dio_private *dip = bio->bi_private; 7809 bool write = bio_op(bio) == REQ_OP_WRITE; 7810 blk_status_t ret; 7811 7812 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7813 if (async_submit) 7814 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7815 7816 if (!write) { 7817 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7818 if (ret) 7819 goto err; 7820 } 7821 7822 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7823 goto map; 7824 7825 if (write && async_submit) { 7826 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7827 file_offset, inode, 7828 btrfs_submit_bio_start_direct_io); 7829 goto err; 7830 } else if (write) { 7831 /* 7832 * If we aren't doing async submit, calculate the csum of the 7833 * bio now. 7834 */ 7835 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 7836 if (ret) 7837 goto err; 7838 } else { 7839 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 7840 file_offset); 7841 if (ret) 7842 goto err; 7843 } 7844 map: 7845 ret = btrfs_map_bio(fs_info, bio, 0); 7846 err: 7847 return ret; 7848 } 7849 7850 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 7851 { 7852 struct inode *inode = dip->inode; 7853 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7854 struct bio *bio; 7855 struct bio *orig_bio = dip->orig_bio; 7856 u64 start_sector = orig_bio->bi_iter.bi_sector; 7857 u64 file_offset = dip->logical_offset; 7858 int async_submit = 0; 7859 u64 submit_len; 7860 int clone_offset = 0; 7861 int clone_len; 7862 int ret; 7863 blk_status_t status; 7864 struct btrfs_io_geometry geom; 7865 7866 submit_len = orig_bio->bi_iter.bi_size; 7867 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 7868 start_sector << 9, submit_len, &geom); 7869 if (ret) 7870 return -EIO; 7871 7872 if (geom.len >= submit_len) { 7873 bio = orig_bio; 7874 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 7875 goto submit; 7876 } 7877 7878 /* async crcs make it difficult to collect full stripe writes. */ 7879 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 7880 async_submit = 0; 7881 else 7882 async_submit = 1; 7883 7884 /* bio split */ 7885 ASSERT(geom.len <= INT_MAX); 7886 atomic_inc(&dip->pending_bios); 7887 do { 7888 clone_len = min_t(int, submit_len, geom.len); 7889 7890 /* 7891 * This will never fail as it's passing GPF_NOFS and 7892 * the allocation is backed by btrfs_bioset. 7893 */ 7894 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 7895 clone_len); 7896 bio->bi_private = dip; 7897 bio->bi_end_io = btrfs_end_dio_bio; 7898 btrfs_io_bio(bio)->logical = file_offset; 7899 7900 ASSERT(submit_len >= clone_len); 7901 submit_len -= clone_len; 7902 if (submit_len == 0) 7903 break; 7904 7905 /* 7906 * Increase the count before we submit the bio so we know 7907 * the end IO handler won't happen before we increase the 7908 * count. Otherwise, the dip might get freed before we're 7909 * done setting it up. 7910 */ 7911 atomic_inc(&dip->pending_bios); 7912 7913 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7914 async_submit); 7915 if (status) { 7916 bio_put(bio); 7917 atomic_dec(&dip->pending_bios); 7918 goto out_err; 7919 } 7920 7921 clone_offset += clone_len; 7922 start_sector += clone_len >> 9; 7923 file_offset += clone_len; 7924 7925 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 7926 start_sector << 9, submit_len, &geom); 7927 if (ret) 7928 goto out_err; 7929 } while (submit_len > 0); 7930 7931 submit: 7932 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 7933 if (!status) 7934 return 0; 7935 7936 bio_put(bio); 7937 out_err: 7938 dip->errors = 1; 7939 /* 7940 * Before atomic variable goto zero, we must make sure dip->errors is 7941 * perceived to be set. This ordering is ensured by the fact that an 7942 * atomic operations with a return value are fully ordered as per 7943 * atomic_t.txt 7944 */ 7945 if (atomic_dec_and_test(&dip->pending_bios)) 7946 bio_io_error(dip->orig_bio); 7947 7948 /* bio_end_io() will handle error, so we needn't return it */ 7949 return 0; 7950 } 7951 7952 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 7953 loff_t file_offset) 7954 { 7955 struct btrfs_dio_private *dip = NULL; 7956 struct bio *bio = NULL; 7957 struct btrfs_io_bio *io_bio; 7958 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7959 int ret = 0; 7960 7961 bio = btrfs_bio_clone(dio_bio); 7962 7963 dip = kzalloc(sizeof(*dip), GFP_NOFS); 7964 if (!dip) { 7965 ret = -ENOMEM; 7966 goto free_ordered; 7967 } 7968 7969 dip->private = dio_bio->bi_private; 7970 dip->inode = inode; 7971 dip->logical_offset = file_offset; 7972 dip->bytes = dio_bio->bi_iter.bi_size; 7973 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7974 bio->bi_private = dip; 7975 dip->orig_bio = bio; 7976 dip->dio_bio = dio_bio; 7977 atomic_set(&dip->pending_bios, 0); 7978 io_bio = btrfs_io_bio(bio); 7979 io_bio->logical = file_offset; 7980 7981 if (write) { 7982 bio->bi_end_io = btrfs_endio_direct_write; 7983 } else { 7984 bio->bi_end_io = btrfs_endio_direct_read; 7985 dip->subio_endio = btrfs_subio_endio_read; 7986 } 7987 7988 /* 7989 * Reset the range for unsubmitted ordered extents (to a 0 length range) 7990 * even if we fail to submit a bio, because in such case we do the 7991 * corresponding error handling below and it must not be done a second 7992 * time by btrfs_direct_IO(). 7993 */ 7994 if (write) { 7995 struct btrfs_dio_data *dio_data = current->journal_info; 7996 7997 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 7998 dip->bytes; 7999 dio_data->unsubmitted_oe_range_start = 8000 dio_data->unsubmitted_oe_range_end; 8001 } 8002 8003 ret = btrfs_submit_direct_hook(dip); 8004 if (!ret) 8005 return; 8006 8007 btrfs_io_bio_free_csum(io_bio); 8008 8009 free_ordered: 8010 /* 8011 * If we arrived here it means either we failed to submit the dip 8012 * or we either failed to clone the dio_bio or failed to allocate the 8013 * dip. If we cloned the dio_bio and allocated the dip, we can just 8014 * call bio_endio against our io_bio so that we get proper resource 8015 * cleanup if we fail to submit the dip, otherwise, we must do the 8016 * same as btrfs_endio_direct_[write|read] because we can't call these 8017 * callbacks - they require an allocated dip and a clone of dio_bio. 8018 */ 8019 if (bio && dip) { 8020 bio_io_error(bio); 8021 /* 8022 * The end io callbacks free our dip, do the final put on bio 8023 * and all the cleanup and final put for dio_bio (through 8024 * dio_end_io()). 8025 */ 8026 dip = NULL; 8027 bio = NULL; 8028 } else { 8029 if (write) 8030 __endio_write_update_ordered(inode, 8031 file_offset, 8032 dio_bio->bi_iter.bi_size, 8033 false); 8034 else 8035 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8036 file_offset + dio_bio->bi_iter.bi_size - 1); 8037 8038 dio_bio->bi_status = BLK_STS_IOERR; 8039 /* 8040 * Releases and cleans up our dio_bio, no need to bio_put() 8041 * nor bio_endio()/bio_io_error() against dio_bio. 8042 */ 8043 dio_end_io(dio_bio); 8044 } 8045 if (bio) 8046 bio_put(bio); 8047 kfree(dip); 8048 } 8049 8050 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8051 const struct iov_iter *iter, loff_t offset) 8052 { 8053 int seg; 8054 int i; 8055 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8056 ssize_t retval = -EINVAL; 8057 8058 if (offset & blocksize_mask) 8059 goto out; 8060 8061 if (iov_iter_alignment(iter) & blocksize_mask) 8062 goto out; 8063 8064 /* If this is a write we don't need to check anymore */ 8065 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8066 return 0; 8067 /* 8068 * Check to make sure we don't have duplicate iov_base's in this 8069 * iovec, if so return EINVAL, otherwise we'll get csum errors 8070 * when reading back. 8071 */ 8072 for (seg = 0; seg < iter->nr_segs; seg++) { 8073 for (i = seg + 1; i < iter->nr_segs; i++) { 8074 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8075 goto out; 8076 } 8077 } 8078 retval = 0; 8079 out: 8080 return retval; 8081 } 8082 8083 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8084 { 8085 struct file *file = iocb->ki_filp; 8086 struct inode *inode = file->f_mapping->host; 8087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8088 struct btrfs_dio_data dio_data = { 0 }; 8089 struct extent_changeset *data_reserved = NULL; 8090 loff_t offset = iocb->ki_pos; 8091 size_t count = 0; 8092 int flags = 0; 8093 bool wakeup = true; 8094 bool relock = false; 8095 ssize_t ret; 8096 8097 if (check_direct_IO(fs_info, iter, offset)) 8098 return 0; 8099 8100 inode_dio_begin(inode); 8101 8102 /* 8103 * The generic stuff only does filemap_write_and_wait_range, which 8104 * isn't enough if we've written compressed pages to this area, so 8105 * we need to flush the dirty pages again to make absolutely sure 8106 * that any outstanding dirty pages are on disk. 8107 */ 8108 count = iov_iter_count(iter); 8109 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8110 &BTRFS_I(inode)->runtime_flags)) 8111 filemap_fdatawrite_range(inode->i_mapping, offset, 8112 offset + count - 1); 8113 8114 if (iov_iter_rw(iter) == WRITE) { 8115 /* 8116 * If the write DIO is beyond the EOF, we need update 8117 * the isize, but it is protected by i_mutex. So we can 8118 * not unlock the i_mutex at this case. 8119 */ 8120 if (offset + count <= inode->i_size) { 8121 dio_data.overwrite = 1; 8122 inode_unlock(inode); 8123 relock = true; 8124 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8125 ret = -EAGAIN; 8126 goto out; 8127 } 8128 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8129 offset, count); 8130 if (ret) 8131 goto out; 8132 8133 /* 8134 * We need to know how many extents we reserved so that we can 8135 * do the accounting properly if we go over the number we 8136 * originally calculated. Abuse current->journal_info for this. 8137 */ 8138 dio_data.reserve = round_up(count, 8139 fs_info->sectorsize); 8140 dio_data.unsubmitted_oe_range_start = (u64)offset; 8141 dio_data.unsubmitted_oe_range_end = (u64)offset; 8142 current->journal_info = &dio_data; 8143 down_read(&BTRFS_I(inode)->dio_sem); 8144 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8145 &BTRFS_I(inode)->runtime_flags)) { 8146 inode_dio_end(inode); 8147 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8148 wakeup = false; 8149 } 8150 8151 ret = __blockdev_direct_IO(iocb, inode, 8152 fs_info->fs_devices->latest_bdev, 8153 iter, btrfs_get_blocks_direct, NULL, 8154 btrfs_submit_direct, flags); 8155 if (iov_iter_rw(iter) == WRITE) { 8156 up_read(&BTRFS_I(inode)->dio_sem); 8157 current->journal_info = NULL; 8158 if (ret < 0 && ret != -EIOCBQUEUED) { 8159 if (dio_data.reserve) 8160 btrfs_delalloc_release_space(inode, data_reserved, 8161 offset, dio_data.reserve, true); 8162 /* 8163 * On error we might have left some ordered extents 8164 * without submitting corresponding bios for them, so 8165 * cleanup them up to avoid other tasks getting them 8166 * and waiting for them to complete forever. 8167 */ 8168 if (dio_data.unsubmitted_oe_range_start < 8169 dio_data.unsubmitted_oe_range_end) 8170 __endio_write_update_ordered(inode, 8171 dio_data.unsubmitted_oe_range_start, 8172 dio_data.unsubmitted_oe_range_end - 8173 dio_data.unsubmitted_oe_range_start, 8174 false); 8175 } else if (ret >= 0 && (size_t)ret < count) 8176 btrfs_delalloc_release_space(inode, data_reserved, 8177 offset, count - (size_t)ret, true); 8178 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8179 } 8180 out: 8181 if (wakeup) 8182 inode_dio_end(inode); 8183 if (relock) 8184 inode_lock(inode); 8185 8186 extent_changeset_free(data_reserved); 8187 return ret; 8188 } 8189 8190 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8191 8192 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8193 __u64 start, __u64 len) 8194 { 8195 int ret; 8196 8197 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8198 if (ret) 8199 return ret; 8200 8201 return extent_fiemap(inode, fieinfo, start, len); 8202 } 8203 8204 int btrfs_readpage(struct file *file, struct page *page) 8205 { 8206 struct extent_io_tree *tree; 8207 tree = &BTRFS_I(page->mapping->host)->io_tree; 8208 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8209 } 8210 8211 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8212 { 8213 struct inode *inode = page->mapping->host; 8214 int ret; 8215 8216 if (current->flags & PF_MEMALLOC) { 8217 redirty_page_for_writepage(wbc, page); 8218 unlock_page(page); 8219 return 0; 8220 } 8221 8222 /* 8223 * If we are under memory pressure we will call this directly from the 8224 * VM, we need to make sure we have the inode referenced for the ordered 8225 * extent. If not just return like we didn't do anything. 8226 */ 8227 if (!igrab(inode)) { 8228 redirty_page_for_writepage(wbc, page); 8229 return AOP_WRITEPAGE_ACTIVATE; 8230 } 8231 ret = extent_write_full_page(page, wbc); 8232 btrfs_add_delayed_iput(inode); 8233 return ret; 8234 } 8235 8236 static int btrfs_writepages(struct address_space *mapping, 8237 struct writeback_control *wbc) 8238 { 8239 return extent_writepages(mapping, wbc); 8240 } 8241 8242 static int 8243 btrfs_readpages(struct file *file, struct address_space *mapping, 8244 struct list_head *pages, unsigned nr_pages) 8245 { 8246 return extent_readpages(mapping, pages, nr_pages); 8247 } 8248 8249 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8250 { 8251 int ret = try_release_extent_mapping(page, gfp_flags); 8252 if (ret == 1) { 8253 ClearPagePrivate(page); 8254 set_page_private(page, 0); 8255 put_page(page); 8256 } 8257 return ret; 8258 } 8259 8260 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8261 { 8262 if (PageWriteback(page) || PageDirty(page)) 8263 return 0; 8264 return __btrfs_releasepage(page, gfp_flags); 8265 } 8266 8267 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8268 unsigned int length) 8269 { 8270 struct inode *inode = page->mapping->host; 8271 struct extent_io_tree *tree; 8272 struct btrfs_ordered_extent *ordered; 8273 struct extent_state *cached_state = NULL; 8274 u64 page_start = page_offset(page); 8275 u64 page_end = page_start + PAGE_SIZE - 1; 8276 u64 start; 8277 u64 end; 8278 int inode_evicting = inode->i_state & I_FREEING; 8279 8280 /* 8281 * we have the page locked, so new writeback can't start, 8282 * and the dirty bit won't be cleared while we are here. 8283 * 8284 * Wait for IO on this page so that we can safely clear 8285 * the PagePrivate2 bit and do ordered accounting 8286 */ 8287 wait_on_page_writeback(page); 8288 8289 tree = &BTRFS_I(inode)->io_tree; 8290 if (offset) { 8291 btrfs_releasepage(page, GFP_NOFS); 8292 return; 8293 } 8294 8295 if (!inode_evicting) 8296 lock_extent_bits(tree, page_start, page_end, &cached_state); 8297 again: 8298 start = page_start; 8299 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8300 page_end - start + 1); 8301 if (ordered) { 8302 end = min(page_end, 8303 ordered->file_offset + ordered->num_bytes - 1); 8304 /* 8305 * IO on this page will never be started, so we need 8306 * to account for any ordered extents now 8307 */ 8308 if (!inode_evicting) 8309 clear_extent_bit(tree, start, end, 8310 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8311 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8312 EXTENT_DEFRAG, 1, 0, &cached_state); 8313 /* 8314 * whoever cleared the private bit is responsible 8315 * for the finish_ordered_io 8316 */ 8317 if (TestClearPagePrivate2(page)) { 8318 struct btrfs_ordered_inode_tree *tree; 8319 u64 new_len; 8320 8321 tree = &BTRFS_I(inode)->ordered_tree; 8322 8323 spin_lock_irq(&tree->lock); 8324 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8325 new_len = start - ordered->file_offset; 8326 if (new_len < ordered->truncated_len) 8327 ordered->truncated_len = new_len; 8328 spin_unlock_irq(&tree->lock); 8329 8330 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8331 start, 8332 end - start + 1, 1)) 8333 btrfs_finish_ordered_io(ordered); 8334 } 8335 btrfs_put_ordered_extent(ordered); 8336 if (!inode_evicting) { 8337 cached_state = NULL; 8338 lock_extent_bits(tree, start, end, 8339 &cached_state); 8340 } 8341 8342 start = end + 1; 8343 if (start < page_end) 8344 goto again; 8345 } 8346 8347 /* 8348 * Qgroup reserved space handler 8349 * Page here will be either 8350 * 1) Already written to disk 8351 * In this case, its reserved space is released from data rsv map 8352 * and will be freed by delayed_ref handler finally. 8353 * So even we call qgroup_free_data(), it won't decrease reserved 8354 * space. 8355 * 2) Not written to disk 8356 * This means the reserved space should be freed here. However, 8357 * if a truncate invalidates the page (by clearing PageDirty) 8358 * and the page is accounted for while allocating extent 8359 * in btrfs_check_data_free_space() we let delayed_ref to 8360 * free the entire extent. 8361 */ 8362 if (PageDirty(page)) 8363 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8364 if (!inode_evicting) { 8365 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8366 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8367 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8368 &cached_state); 8369 8370 __btrfs_releasepage(page, GFP_NOFS); 8371 } 8372 8373 ClearPageChecked(page); 8374 if (PagePrivate(page)) { 8375 ClearPagePrivate(page); 8376 set_page_private(page, 0); 8377 put_page(page); 8378 } 8379 } 8380 8381 /* 8382 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8383 * called from a page fault handler when a page is first dirtied. Hence we must 8384 * be careful to check for EOF conditions here. We set the page up correctly 8385 * for a written page which means we get ENOSPC checking when writing into 8386 * holes and correct delalloc and unwritten extent mapping on filesystems that 8387 * support these features. 8388 * 8389 * We are not allowed to take the i_mutex here so we have to play games to 8390 * protect against truncate races as the page could now be beyond EOF. Because 8391 * truncate_setsize() writes the inode size before removing pages, once we have 8392 * the page lock we can determine safely if the page is beyond EOF. If it is not 8393 * beyond EOF, then the page is guaranteed safe against truncation until we 8394 * unlock the page. 8395 */ 8396 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8397 { 8398 struct page *page = vmf->page; 8399 struct inode *inode = file_inode(vmf->vma->vm_file); 8400 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8401 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8402 struct btrfs_ordered_extent *ordered; 8403 struct extent_state *cached_state = NULL; 8404 struct extent_changeset *data_reserved = NULL; 8405 char *kaddr; 8406 unsigned long zero_start; 8407 loff_t size; 8408 vm_fault_t ret; 8409 int ret2; 8410 int reserved = 0; 8411 u64 reserved_space; 8412 u64 page_start; 8413 u64 page_end; 8414 u64 end; 8415 8416 reserved_space = PAGE_SIZE; 8417 8418 sb_start_pagefault(inode->i_sb); 8419 page_start = page_offset(page); 8420 page_end = page_start + PAGE_SIZE - 1; 8421 end = page_end; 8422 8423 /* 8424 * Reserving delalloc space after obtaining the page lock can lead to 8425 * deadlock. For example, if a dirty page is locked by this function 8426 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8427 * dirty page write out, then the btrfs_writepage() function could 8428 * end up waiting indefinitely to get a lock on the page currently 8429 * being processed by btrfs_page_mkwrite() function. 8430 */ 8431 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8432 reserved_space); 8433 if (!ret2) { 8434 ret2 = file_update_time(vmf->vma->vm_file); 8435 reserved = 1; 8436 } 8437 if (ret2) { 8438 ret = vmf_error(ret2); 8439 if (reserved) 8440 goto out; 8441 goto out_noreserve; 8442 } 8443 8444 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8445 again: 8446 lock_page(page); 8447 size = i_size_read(inode); 8448 8449 if ((page->mapping != inode->i_mapping) || 8450 (page_start >= size)) { 8451 /* page got truncated out from underneath us */ 8452 goto out_unlock; 8453 } 8454 wait_on_page_writeback(page); 8455 8456 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8457 set_page_extent_mapped(page); 8458 8459 /* 8460 * we can't set the delalloc bits if there are pending ordered 8461 * extents. Drop our locks and wait for them to finish 8462 */ 8463 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8464 PAGE_SIZE); 8465 if (ordered) { 8466 unlock_extent_cached(io_tree, page_start, page_end, 8467 &cached_state); 8468 unlock_page(page); 8469 btrfs_start_ordered_extent(inode, ordered, 1); 8470 btrfs_put_ordered_extent(ordered); 8471 goto again; 8472 } 8473 8474 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8475 reserved_space = round_up(size - page_start, 8476 fs_info->sectorsize); 8477 if (reserved_space < PAGE_SIZE) { 8478 end = page_start + reserved_space - 1; 8479 btrfs_delalloc_release_space(inode, data_reserved, 8480 page_start, PAGE_SIZE - reserved_space, 8481 true); 8482 } 8483 } 8484 8485 /* 8486 * page_mkwrite gets called when the page is firstly dirtied after it's 8487 * faulted in, but write(2) could also dirty a page and set delalloc 8488 * bits, thus in this case for space account reason, we still need to 8489 * clear any delalloc bits within this page range since we have to 8490 * reserve data&meta space before lock_page() (see above comments). 8491 */ 8492 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8493 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8494 EXTENT_DEFRAG, 0, 0, &cached_state); 8495 8496 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8497 &cached_state); 8498 if (ret2) { 8499 unlock_extent_cached(io_tree, page_start, page_end, 8500 &cached_state); 8501 ret = VM_FAULT_SIGBUS; 8502 goto out_unlock; 8503 } 8504 8505 /* page is wholly or partially inside EOF */ 8506 if (page_start + PAGE_SIZE > size) 8507 zero_start = offset_in_page(size); 8508 else 8509 zero_start = PAGE_SIZE; 8510 8511 if (zero_start != PAGE_SIZE) { 8512 kaddr = kmap(page); 8513 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8514 flush_dcache_page(page); 8515 kunmap(page); 8516 } 8517 ClearPageChecked(page); 8518 set_page_dirty(page); 8519 SetPageUptodate(page); 8520 8521 BTRFS_I(inode)->last_trans = fs_info->generation; 8522 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8523 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8524 8525 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8526 8527 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8528 sb_end_pagefault(inode->i_sb); 8529 extent_changeset_free(data_reserved); 8530 return VM_FAULT_LOCKED; 8531 8532 out_unlock: 8533 unlock_page(page); 8534 out: 8535 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8536 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8537 reserved_space, (ret != 0)); 8538 out_noreserve: 8539 sb_end_pagefault(inode->i_sb); 8540 extent_changeset_free(data_reserved); 8541 return ret; 8542 } 8543 8544 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8545 { 8546 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8547 struct btrfs_root *root = BTRFS_I(inode)->root; 8548 struct btrfs_block_rsv *rsv; 8549 int ret; 8550 struct btrfs_trans_handle *trans; 8551 u64 mask = fs_info->sectorsize - 1; 8552 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8553 8554 if (!skip_writeback) { 8555 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8556 (u64)-1); 8557 if (ret) 8558 return ret; 8559 } 8560 8561 /* 8562 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8563 * things going on here: 8564 * 8565 * 1) We need to reserve space to update our inode. 8566 * 8567 * 2) We need to have something to cache all the space that is going to 8568 * be free'd up by the truncate operation, but also have some slack 8569 * space reserved in case it uses space during the truncate (thank you 8570 * very much snapshotting). 8571 * 8572 * And we need these to be separate. The fact is we can use a lot of 8573 * space doing the truncate, and we have no earthly idea how much space 8574 * we will use, so we need the truncate reservation to be separate so it 8575 * doesn't end up using space reserved for updating the inode. We also 8576 * need to be able to stop the transaction and start a new one, which 8577 * means we need to be able to update the inode several times, and we 8578 * have no idea of knowing how many times that will be, so we can't just 8579 * reserve 1 item for the entirety of the operation, so that has to be 8580 * done separately as well. 8581 * 8582 * So that leaves us with 8583 * 8584 * 1) rsv - for the truncate reservation, which we will steal from the 8585 * transaction reservation. 8586 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8587 * updating the inode. 8588 */ 8589 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8590 if (!rsv) 8591 return -ENOMEM; 8592 rsv->size = min_size; 8593 rsv->failfast = 1; 8594 8595 /* 8596 * 1 for the truncate slack space 8597 * 1 for updating the inode. 8598 */ 8599 trans = btrfs_start_transaction(root, 2); 8600 if (IS_ERR(trans)) { 8601 ret = PTR_ERR(trans); 8602 goto out; 8603 } 8604 8605 /* Migrate the slack space for the truncate to our reserve */ 8606 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8607 min_size, false); 8608 BUG_ON(ret); 8609 8610 /* 8611 * So if we truncate and then write and fsync we normally would just 8612 * write the extents that changed, which is a problem if we need to 8613 * first truncate that entire inode. So set this flag so we write out 8614 * all of the extents in the inode to the sync log so we're completely 8615 * safe. 8616 */ 8617 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8618 trans->block_rsv = rsv; 8619 8620 while (1) { 8621 ret = btrfs_truncate_inode_items(trans, root, inode, 8622 inode->i_size, 8623 BTRFS_EXTENT_DATA_KEY); 8624 trans->block_rsv = &fs_info->trans_block_rsv; 8625 if (ret != -ENOSPC && ret != -EAGAIN) 8626 break; 8627 8628 ret = btrfs_update_inode(trans, root, inode); 8629 if (ret) 8630 break; 8631 8632 btrfs_end_transaction(trans); 8633 btrfs_btree_balance_dirty(fs_info); 8634 8635 trans = btrfs_start_transaction(root, 2); 8636 if (IS_ERR(trans)) { 8637 ret = PTR_ERR(trans); 8638 trans = NULL; 8639 break; 8640 } 8641 8642 btrfs_block_rsv_release(fs_info, rsv, -1); 8643 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8644 rsv, min_size, false); 8645 BUG_ON(ret); /* shouldn't happen */ 8646 trans->block_rsv = rsv; 8647 } 8648 8649 /* 8650 * We can't call btrfs_truncate_block inside a trans handle as we could 8651 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8652 * we've truncated everything except the last little bit, and can do 8653 * btrfs_truncate_block and then update the disk_i_size. 8654 */ 8655 if (ret == NEED_TRUNCATE_BLOCK) { 8656 btrfs_end_transaction(trans); 8657 btrfs_btree_balance_dirty(fs_info); 8658 8659 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8660 if (ret) 8661 goto out; 8662 trans = btrfs_start_transaction(root, 1); 8663 if (IS_ERR(trans)) { 8664 ret = PTR_ERR(trans); 8665 goto out; 8666 } 8667 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 8668 } 8669 8670 if (trans) { 8671 int ret2; 8672 8673 trans->block_rsv = &fs_info->trans_block_rsv; 8674 ret2 = btrfs_update_inode(trans, root, inode); 8675 if (ret2 && !ret) 8676 ret = ret2; 8677 8678 ret2 = btrfs_end_transaction(trans); 8679 if (ret2 && !ret) 8680 ret = ret2; 8681 btrfs_btree_balance_dirty(fs_info); 8682 } 8683 out: 8684 btrfs_free_block_rsv(fs_info, rsv); 8685 8686 return ret; 8687 } 8688 8689 /* 8690 * create a new subvolume directory/inode (helper for the ioctl). 8691 */ 8692 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8693 struct btrfs_root *new_root, 8694 struct btrfs_root *parent_root, 8695 u64 new_dirid) 8696 { 8697 struct inode *inode; 8698 int err; 8699 u64 index = 0; 8700 8701 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8702 new_dirid, new_dirid, 8703 S_IFDIR | (~current_umask() & S_IRWXUGO), 8704 &index); 8705 if (IS_ERR(inode)) 8706 return PTR_ERR(inode); 8707 inode->i_op = &btrfs_dir_inode_operations; 8708 inode->i_fop = &btrfs_dir_file_operations; 8709 8710 set_nlink(inode, 1); 8711 btrfs_i_size_write(BTRFS_I(inode), 0); 8712 unlock_new_inode(inode); 8713 8714 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8715 if (err) 8716 btrfs_err(new_root->fs_info, 8717 "error inheriting subvolume %llu properties: %d", 8718 new_root->root_key.objectid, err); 8719 8720 err = btrfs_update_inode(trans, new_root, inode); 8721 8722 iput(inode); 8723 return err; 8724 } 8725 8726 struct inode *btrfs_alloc_inode(struct super_block *sb) 8727 { 8728 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8729 struct btrfs_inode *ei; 8730 struct inode *inode; 8731 8732 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8733 if (!ei) 8734 return NULL; 8735 8736 ei->root = NULL; 8737 ei->generation = 0; 8738 ei->last_trans = 0; 8739 ei->last_sub_trans = 0; 8740 ei->logged_trans = 0; 8741 ei->delalloc_bytes = 0; 8742 ei->new_delalloc_bytes = 0; 8743 ei->defrag_bytes = 0; 8744 ei->disk_i_size = 0; 8745 ei->flags = 0; 8746 ei->csum_bytes = 0; 8747 ei->index_cnt = (u64)-1; 8748 ei->dir_index = 0; 8749 ei->last_unlink_trans = 0; 8750 ei->last_log_commit = 0; 8751 8752 spin_lock_init(&ei->lock); 8753 ei->outstanding_extents = 0; 8754 if (sb->s_magic != BTRFS_TEST_MAGIC) 8755 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8756 BTRFS_BLOCK_RSV_DELALLOC); 8757 ei->runtime_flags = 0; 8758 ei->prop_compress = BTRFS_COMPRESS_NONE; 8759 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8760 8761 ei->delayed_node = NULL; 8762 8763 ei->i_otime.tv_sec = 0; 8764 ei->i_otime.tv_nsec = 0; 8765 8766 inode = &ei->vfs_inode; 8767 extent_map_tree_init(&ei->extent_tree); 8768 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8769 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8770 IO_TREE_INODE_IO_FAILURE, inode); 8771 ei->io_tree.track_uptodate = true; 8772 ei->io_failure_tree.track_uptodate = true; 8773 atomic_set(&ei->sync_writers, 0); 8774 mutex_init(&ei->log_mutex); 8775 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8776 INIT_LIST_HEAD(&ei->delalloc_inodes); 8777 INIT_LIST_HEAD(&ei->delayed_iput); 8778 RB_CLEAR_NODE(&ei->rb_node); 8779 init_rwsem(&ei->dio_sem); 8780 8781 return inode; 8782 } 8783 8784 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8785 void btrfs_test_destroy_inode(struct inode *inode) 8786 { 8787 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8788 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8789 } 8790 #endif 8791 8792 void btrfs_free_inode(struct inode *inode) 8793 { 8794 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8795 } 8796 8797 void btrfs_destroy_inode(struct inode *inode) 8798 { 8799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8800 struct btrfs_ordered_extent *ordered; 8801 struct btrfs_root *root = BTRFS_I(inode)->root; 8802 8803 WARN_ON(!hlist_empty(&inode->i_dentry)); 8804 WARN_ON(inode->i_data.nrpages); 8805 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8806 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8807 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8808 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8809 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8810 WARN_ON(BTRFS_I(inode)->csum_bytes); 8811 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8812 8813 /* 8814 * This can happen where we create an inode, but somebody else also 8815 * created the same inode and we need to destroy the one we already 8816 * created. 8817 */ 8818 if (!root) 8819 return; 8820 8821 while (1) { 8822 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8823 if (!ordered) 8824 break; 8825 else { 8826 btrfs_err(fs_info, 8827 "found ordered extent %llu %llu on inode cleanup", 8828 ordered->file_offset, ordered->num_bytes); 8829 btrfs_remove_ordered_extent(inode, ordered); 8830 btrfs_put_ordered_extent(ordered); 8831 btrfs_put_ordered_extent(ordered); 8832 } 8833 } 8834 btrfs_qgroup_check_reserved_leak(inode); 8835 inode_tree_del(inode); 8836 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8837 } 8838 8839 int btrfs_drop_inode(struct inode *inode) 8840 { 8841 struct btrfs_root *root = BTRFS_I(inode)->root; 8842 8843 if (root == NULL) 8844 return 1; 8845 8846 /* the snap/subvol tree is on deleting */ 8847 if (btrfs_root_refs(&root->root_item) == 0) 8848 return 1; 8849 else 8850 return generic_drop_inode(inode); 8851 } 8852 8853 static void init_once(void *foo) 8854 { 8855 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8856 8857 inode_init_once(&ei->vfs_inode); 8858 } 8859 8860 void __cold btrfs_destroy_cachep(void) 8861 { 8862 /* 8863 * Make sure all delayed rcu free inodes are flushed before we 8864 * destroy cache. 8865 */ 8866 rcu_barrier(); 8867 kmem_cache_destroy(btrfs_inode_cachep); 8868 kmem_cache_destroy(btrfs_trans_handle_cachep); 8869 kmem_cache_destroy(btrfs_path_cachep); 8870 kmem_cache_destroy(btrfs_free_space_cachep); 8871 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8872 } 8873 8874 int __init btrfs_init_cachep(void) 8875 { 8876 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8877 sizeof(struct btrfs_inode), 0, 8878 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8879 init_once); 8880 if (!btrfs_inode_cachep) 8881 goto fail; 8882 8883 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8884 sizeof(struct btrfs_trans_handle), 0, 8885 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8886 if (!btrfs_trans_handle_cachep) 8887 goto fail; 8888 8889 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8890 sizeof(struct btrfs_path), 0, 8891 SLAB_MEM_SPREAD, NULL); 8892 if (!btrfs_path_cachep) 8893 goto fail; 8894 8895 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8896 sizeof(struct btrfs_free_space), 0, 8897 SLAB_MEM_SPREAD, NULL); 8898 if (!btrfs_free_space_cachep) 8899 goto fail; 8900 8901 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8902 PAGE_SIZE, PAGE_SIZE, 8903 SLAB_RED_ZONE, NULL); 8904 if (!btrfs_free_space_bitmap_cachep) 8905 goto fail; 8906 8907 return 0; 8908 fail: 8909 btrfs_destroy_cachep(); 8910 return -ENOMEM; 8911 } 8912 8913 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8914 u32 request_mask, unsigned int flags) 8915 { 8916 u64 delalloc_bytes; 8917 struct inode *inode = d_inode(path->dentry); 8918 u32 blocksize = inode->i_sb->s_blocksize; 8919 u32 bi_flags = BTRFS_I(inode)->flags; 8920 8921 stat->result_mask |= STATX_BTIME; 8922 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8923 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8924 if (bi_flags & BTRFS_INODE_APPEND) 8925 stat->attributes |= STATX_ATTR_APPEND; 8926 if (bi_flags & BTRFS_INODE_COMPRESS) 8927 stat->attributes |= STATX_ATTR_COMPRESSED; 8928 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8929 stat->attributes |= STATX_ATTR_IMMUTABLE; 8930 if (bi_flags & BTRFS_INODE_NODUMP) 8931 stat->attributes |= STATX_ATTR_NODUMP; 8932 8933 stat->attributes_mask |= (STATX_ATTR_APPEND | 8934 STATX_ATTR_COMPRESSED | 8935 STATX_ATTR_IMMUTABLE | 8936 STATX_ATTR_NODUMP); 8937 8938 generic_fillattr(inode, stat); 8939 stat->dev = BTRFS_I(inode)->root->anon_dev; 8940 8941 spin_lock(&BTRFS_I(inode)->lock); 8942 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8943 spin_unlock(&BTRFS_I(inode)->lock); 8944 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8945 ALIGN(delalloc_bytes, blocksize)) >> 9; 8946 return 0; 8947 } 8948 8949 static int btrfs_rename_exchange(struct inode *old_dir, 8950 struct dentry *old_dentry, 8951 struct inode *new_dir, 8952 struct dentry *new_dentry) 8953 { 8954 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8955 struct btrfs_trans_handle *trans; 8956 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8957 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8958 struct inode *new_inode = new_dentry->d_inode; 8959 struct inode *old_inode = old_dentry->d_inode; 8960 struct timespec64 ctime = current_time(old_inode); 8961 struct dentry *parent; 8962 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8963 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8964 u64 old_idx = 0; 8965 u64 new_idx = 0; 8966 int ret; 8967 bool root_log_pinned = false; 8968 bool dest_log_pinned = false; 8969 struct btrfs_log_ctx ctx_root; 8970 struct btrfs_log_ctx ctx_dest; 8971 bool sync_log_root = false; 8972 bool sync_log_dest = false; 8973 bool commit_transaction = false; 8974 8975 /* we only allow rename subvolume link between subvolumes */ 8976 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8977 return -EXDEV; 8978 8979 btrfs_init_log_ctx(&ctx_root, old_inode); 8980 btrfs_init_log_ctx(&ctx_dest, new_inode); 8981 8982 /* close the race window with snapshot create/destroy ioctl */ 8983 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8984 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8985 down_read(&fs_info->subvol_sem); 8986 8987 /* 8988 * We want to reserve the absolute worst case amount of items. So if 8989 * both inodes are subvols and we need to unlink them then that would 8990 * require 4 item modifications, but if they are both normal inodes it 8991 * would require 5 item modifications, so we'll assume their normal 8992 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8993 * should cover the worst case number of items we'll modify. 8994 */ 8995 trans = btrfs_start_transaction(root, 12); 8996 if (IS_ERR(trans)) { 8997 ret = PTR_ERR(trans); 8998 goto out_notrans; 8999 } 9000 9001 if (dest != root) 9002 btrfs_record_root_in_trans(trans, dest); 9003 9004 /* 9005 * We need to find a free sequence number both in the source and 9006 * in the destination directory for the exchange. 9007 */ 9008 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9009 if (ret) 9010 goto out_fail; 9011 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9012 if (ret) 9013 goto out_fail; 9014 9015 BTRFS_I(old_inode)->dir_index = 0ULL; 9016 BTRFS_I(new_inode)->dir_index = 0ULL; 9017 9018 /* Reference for the source. */ 9019 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9020 /* force full log commit if subvolume involved. */ 9021 btrfs_set_log_full_commit(trans); 9022 } else { 9023 btrfs_pin_log_trans(root); 9024 root_log_pinned = true; 9025 ret = btrfs_insert_inode_ref(trans, dest, 9026 new_dentry->d_name.name, 9027 new_dentry->d_name.len, 9028 old_ino, 9029 btrfs_ino(BTRFS_I(new_dir)), 9030 old_idx); 9031 if (ret) 9032 goto out_fail; 9033 } 9034 9035 /* And now for the dest. */ 9036 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9037 /* force full log commit if subvolume involved. */ 9038 btrfs_set_log_full_commit(trans); 9039 } else { 9040 btrfs_pin_log_trans(dest); 9041 dest_log_pinned = true; 9042 ret = btrfs_insert_inode_ref(trans, root, 9043 old_dentry->d_name.name, 9044 old_dentry->d_name.len, 9045 new_ino, 9046 btrfs_ino(BTRFS_I(old_dir)), 9047 new_idx); 9048 if (ret) 9049 goto out_fail; 9050 } 9051 9052 /* Update inode version and ctime/mtime. */ 9053 inode_inc_iversion(old_dir); 9054 inode_inc_iversion(new_dir); 9055 inode_inc_iversion(old_inode); 9056 inode_inc_iversion(new_inode); 9057 old_dir->i_ctime = old_dir->i_mtime = ctime; 9058 new_dir->i_ctime = new_dir->i_mtime = ctime; 9059 old_inode->i_ctime = ctime; 9060 new_inode->i_ctime = ctime; 9061 9062 if (old_dentry->d_parent != new_dentry->d_parent) { 9063 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9064 BTRFS_I(old_inode), 1); 9065 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9066 BTRFS_I(new_inode), 1); 9067 } 9068 9069 /* src is a subvolume */ 9070 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9071 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9072 } else { /* src is an inode */ 9073 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9074 BTRFS_I(old_dentry->d_inode), 9075 old_dentry->d_name.name, 9076 old_dentry->d_name.len); 9077 if (!ret) 9078 ret = btrfs_update_inode(trans, root, old_inode); 9079 } 9080 if (ret) { 9081 btrfs_abort_transaction(trans, ret); 9082 goto out_fail; 9083 } 9084 9085 /* dest is a subvolume */ 9086 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9087 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9088 } else { /* dest is an inode */ 9089 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9090 BTRFS_I(new_dentry->d_inode), 9091 new_dentry->d_name.name, 9092 new_dentry->d_name.len); 9093 if (!ret) 9094 ret = btrfs_update_inode(trans, dest, new_inode); 9095 } 9096 if (ret) { 9097 btrfs_abort_transaction(trans, ret); 9098 goto out_fail; 9099 } 9100 9101 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9102 new_dentry->d_name.name, 9103 new_dentry->d_name.len, 0, old_idx); 9104 if (ret) { 9105 btrfs_abort_transaction(trans, ret); 9106 goto out_fail; 9107 } 9108 9109 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9110 old_dentry->d_name.name, 9111 old_dentry->d_name.len, 0, new_idx); 9112 if (ret) { 9113 btrfs_abort_transaction(trans, ret); 9114 goto out_fail; 9115 } 9116 9117 if (old_inode->i_nlink == 1) 9118 BTRFS_I(old_inode)->dir_index = old_idx; 9119 if (new_inode->i_nlink == 1) 9120 BTRFS_I(new_inode)->dir_index = new_idx; 9121 9122 if (root_log_pinned) { 9123 parent = new_dentry->d_parent; 9124 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9125 BTRFS_I(old_dir), parent, 9126 false, &ctx_root); 9127 if (ret == BTRFS_NEED_LOG_SYNC) 9128 sync_log_root = true; 9129 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9130 commit_transaction = true; 9131 ret = 0; 9132 btrfs_end_log_trans(root); 9133 root_log_pinned = false; 9134 } 9135 if (dest_log_pinned) { 9136 if (!commit_transaction) { 9137 parent = old_dentry->d_parent; 9138 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9139 BTRFS_I(new_dir), parent, 9140 false, &ctx_dest); 9141 if (ret == BTRFS_NEED_LOG_SYNC) 9142 sync_log_dest = true; 9143 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9144 commit_transaction = true; 9145 ret = 0; 9146 } 9147 btrfs_end_log_trans(dest); 9148 dest_log_pinned = false; 9149 } 9150 out_fail: 9151 /* 9152 * If we have pinned a log and an error happened, we unpin tasks 9153 * trying to sync the log and force them to fallback to a transaction 9154 * commit if the log currently contains any of the inodes involved in 9155 * this rename operation (to ensure we do not persist a log with an 9156 * inconsistent state for any of these inodes or leading to any 9157 * inconsistencies when replayed). If the transaction was aborted, the 9158 * abortion reason is propagated to userspace when attempting to commit 9159 * the transaction. If the log does not contain any of these inodes, we 9160 * allow the tasks to sync it. 9161 */ 9162 if (ret && (root_log_pinned || dest_log_pinned)) { 9163 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9164 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9165 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9166 (new_inode && 9167 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9168 btrfs_set_log_full_commit(trans); 9169 9170 if (root_log_pinned) { 9171 btrfs_end_log_trans(root); 9172 root_log_pinned = false; 9173 } 9174 if (dest_log_pinned) { 9175 btrfs_end_log_trans(dest); 9176 dest_log_pinned = false; 9177 } 9178 } 9179 if (!ret && sync_log_root && !commit_transaction) { 9180 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9181 &ctx_root); 9182 if (ret) 9183 commit_transaction = true; 9184 } 9185 if (!ret && sync_log_dest && !commit_transaction) { 9186 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9187 &ctx_dest); 9188 if (ret) 9189 commit_transaction = true; 9190 } 9191 if (commit_transaction) { 9192 /* 9193 * We may have set commit_transaction when logging the new name 9194 * in the destination root, in which case we left the source 9195 * root context in the list of log contextes. So make sure we 9196 * remove it to avoid invalid memory accesses, since the context 9197 * was allocated in our stack frame. 9198 */ 9199 if (sync_log_root) { 9200 mutex_lock(&root->log_mutex); 9201 list_del_init(&ctx_root.list); 9202 mutex_unlock(&root->log_mutex); 9203 } 9204 ret = btrfs_commit_transaction(trans); 9205 } else { 9206 int ret2; 9207 9208 ret2 = btrfs_end_transaction(trans); 9209 ret = ret ? ret : ret2; 9210 } 9211 out_notrans: 9212 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9213 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9214 up_read(&fs_info->subvol_sem); 9215 9216 ASSERT(list_empty(&ctx_root.list)); 9217 ASSERT(list_empty(&ctx_dest.list)); 9218 9219 return ret; 9220 } 9221 9222 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9223 struct btrfs_root *root, 9224 struct inode *dir, 9225 struct dentry *dentry) 9226 { 9227 int ret; 9228 struct inode *inode; 9229 u64 objectid; 9230 u64 index; 9231 9232 ret = btrfs_find_free_ino(root, &objectid); 9233 if (ret) 9234 return ret; 9235 9236 inode = btrfs_new_inode(trans, root, dir, 9237 dentry->d_name.name, 9238 dentry->d_name.len, 9239 btrfs_ino(BTRFS_I(dir)), 9240 objectid, 9241 S_IFCHR | WHITEOUT_MODE, 9242 &index); 9243 9244 if (IS_ERR(inode)) { 9245 ret = PTR_ERR(inode); 9246 return ret; 9247 } 9248 9249 inode->i_op = &btrfs_special_inode_operations; 9250 init_special_inode(inode, inode->i_mode, 9251 WHITEOUT_DEV); 9252 9253 ret = btrfs_init_inode_security(trans, inode, dir, 9254 &dentry->d_name); 9255 if (ret) 9256 goto out; 9257 9258 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9259 BTRFS_I(inode), 0, index); 9260 if (ret) 9261 goto out; 9262 9263 ret = btrfs_update_inode(trans, root, inode); 9264 out: 9265 unlock_new_inode(inode); 9266 if (ret) 9267 inode_dec_link_count(inode); 9268 iput(inode); 9269 9270 return ret; 9271 } 9272 9273 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9274 struct inode *new_dir, struct dentry *new_dentry, 9275 unsigned int flags) 9276 { 9277 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9278 struct btrfs_trans_handle *trans; 9279 unsigned int trans_num_items; 9280 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9281 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9282 struct inode *new_inode = d_inode(new_dentry); 9283 struct inode *old_inode = d_inode(old_dentry); 9284 u64 index = 0; 9285 int ret; 9286 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9287 bool log_pinned = false; 9288 struct btrfs_log_ctx ctx; 9289 bool sync_log = false; 9290 bool commit_transaction = false; 9291 9292 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9293 return -EPERM; 9294 9295 /* we only allow rename subvolume link between subvolumes */ 9296 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9297 return -EXDEV; 9298 9299 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9300 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9301 return -ENOTEMPTY; 9302 9303 if (S_ISDIR(old_inode->i_mode) && new_inode && 9304 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9305 return -ENOTEMPTY; 9306 9307 9308 /* check for collisions, even if the name isn't there */ 9309 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9310 new_dentry->d_name.name, 9311 new_dentry->d_name.len); 9312 9313 if (ret) { 9314 if (ret == -EEXIST) { 9315 /* we shouldn't get 9316 * eexist without a new_inode */ 9317 if (WARN_ON(!new_inode)) { 9318 return ret; 9319 } 9320 } else { 9321 /* maybe -EOVERFLOW */ 9322 return ret; 9323 } 9324 } 9325 ret = 0; 9326 9327 /* 9328 * we're using rename to replace one file with another. Start IO on it 9329 * now so we don't add too much work to the end of the transaction 9330 */ 9331 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9332 filemap_flush(old_inode->i_mapping); 9333 9334 /* close the racy window with snapshot create/destroy ioctl */ 9335 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9336 down_read(&fs_info->subvol_sem); 9337 /* 9338 * We want to reserve the absolute worst case amount of items. So if 9339 * both inodes are subvols and we need to unlink them then that would 9340 * require 4 item modifications, but if they are both normal inodes it 9341 * would require 5 item modifications, so we'll assume they are normal 9342 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9343 * should cover the worst case number of items we'll modify. 9344 * If our rename has the whiteout flag, we need more 5 units for the 9345 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9346 * when selinux is enabled). 9347 */ 9348 trans_num_items = 11; 9349 if (flags & RENAME_WHITEOUT) 9350 trans_num_items += 5; 9351 trans = btrfs_start_transaction(root, trans_num_items); 9352 if (IS_ERR(trans)) { 9353 ret = PTR_ERR(trans); 9354 goto out_notrans; 9355 } 9356 9357 if (dest != root) 9358 btrfs_record_root_in_trans(trans, dest); 9359 9360 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9361 if (ret) 9362 goto out_fail; 9363 9364 BTRFS_I(old_inode)->dir_index = 0ULL; 9365 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9366 /* force full log commit if subvolume involved. */ 9367 btrfs_set_log_full_commit(trans); 9368 } else { 9369 btrfs_pin_log_trans(root); 9370 log_pinned = true; 9371 ret = btrfs_insert_inode_ref(trans, dest, 9372 new_dentry->d_name.name, 9373 new_dentry->d_name.len, 9374 old_ino, 9375 btrfs_ino(BTRFS_I(new_dir)), index); 9376 if (ret) 9377 goto out_fail; 9378 } 9379 9380 inode_inc_iversion(old_dir); 9381 inode_inc_iversion(new_dir); 9382 inode_inc_iversion(old_inode); 9383 old_dir->i_ctime = old_dir->i_mtime = 9384 new_dir->i_ctime = new_dir->i_mtime = 9385 old_inode->i_ctime = current_time(old_dir); 9386 9387 if (old_dentry->d_parent != new_dentry->d_parent) 9388 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9389 BTRFS_I(old_inode), 1); 9390 9391 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9392 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9393 } else { 9394 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9395 BTRFS_I(d_inode(old_dentry)), 9396 old_dentry->d_name.name, 9397 old_dentry->d_name.len); 9398 if (!ret) 9399 ret = btrfs_update_inode(trans, root, old_inode); 9400 } 9401 if (ret) { 9402 btrfs_abort_transaction(trans, ret); 9403 goto out_fail; 9404 } 9405 9406 if (new_inode) { 9407 inode_inc_iversion(new_inode); 9408 new_inode->i_ctime = current_time(new_inode); 9409 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9410 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9411 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9412 BUG_ON(new_inode->i_nlink == 0); 9413 } else { 9414 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9415 BTRFS_I(d_inode(new_dentry)), 9416 new_dentry->d_name.name, 9417 new_dentry->d_name.len); 9418 } 9419 if (!ret && new_inode->i_nlink == 0) 9420 ret = btrfs_orphan_add(trans, 9421 BTRFS_I(d_inode(new_dentry))); 9422 if (ret) { 9423 btrfs_abort_transaction(trans, ret); 9424 goto out_fail; 9425 } 9426 } 9427 9428 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9429 new_dentry->d_name.name, 9430 new_dentry->d_name.len, 0, index); 9431 if (ret) { 9432 btrfs_abort_transaction(trans, ret); 9433 goto out_fail; 9434 } 9435 9436 if (old_inode->i_nlink == 1) 9437 BTRFS_I(old_inode)->dir_index = index; 9438 9439 if (log_pinned) { 9440 struct dentry *parent = new_dentry->d_parent; 9441 9442 btrfs_init_log_ctx(&ctx, old_inode); 9443 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9444 BTRFS_I(old_dir), parent, 9445 false, &ctx); 9446 if (ret == BTRFS_NEED_LOG_SYNC) 9447 sync_log = true; 9448 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9449 commit_transaction = true; 9450 ret = 0; 9451 btrfs_end_log_trans(root); 9452 log_pinned = false; 9453 } 9454 9455 if (flags & RENAME_WHITEOUT) { 9456 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9457 old_dentry); 9458 9459 if (ret) { 9460 btrfs_abort_transaction(trans, ret); 9461 goto out_fail; 9462 } 9463 } 9464 out_fail: 9465 /* 9466 * If we have pinned the log and an error happened, we unpin tasks 9467 * trying to sync the log and force them to fallback to a transaction 9468 * commit if the log currently contains any of the inodes involved in 9469 * this rename operation (to ensure we do not persist a log with an 9470 * inconsistent state for any of these inodes or leading to any 9471 * inconsistencies when replayed). If the transaction was aborted, the 9472 * abortion reason is propagated to userspace when attempting to commit 9473 * the transaction. If the log does not contain any of these inodes, we 9474 * allow the tasks to sync it. 9475 */ 9476 if (ret && log_pinned) { 9477 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9478 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9479 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9480 (new_inode && 9481 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9482 btrfs_set_log_full_commit(trans); 9483 9484 btrfs_end_log_trans(root); 9485 log_pinned = false; 9486 } 9487 if (!ret && sync_log) { 9488 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9489 if (ret) 9490 commit_transaction = true; 9491 } 9492 if (commit_transaction) { 9493 ret = btrfs_commit_transaction(trans); 9494 } else { 9495 int ret2; 9496 9497 ret2 = btrfs_end_transaction(trans); 9498 ret = ret ? ret : ret2; 9499 } 9500 out_notrans: 9501 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9502 up_read(&fs_info->subvol_sem); 9503 9504 return ret; 9505 } 9506 9507 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9508 struct inode *new_dir, struct dentry *new_dentry, 9509 unsigned int flags) 9510 { 9511 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9512 return -EINVAL; 9513 9514 if (flags & RENAME_EXCHANGE) 9515 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9516 new_dentry); 9517 9518 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9519 } 9520 9521 struct btrfs_delalloc_work { 9522 struct inode *inode; 9523 struct completion completion; 9524 struct list_head list; 9525 struct btrfs_work work; 9526 }; 9527 9528 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9529 { 9530 struct btrfs_delalloc_work *delalloc_work; 9531 struct inode *inode; 9532 9533 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9534 work); 9535 inode = delalloc_work->inode; 9536 filemap_flush(inode->i_mapping); 9537 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9538 &BTRFS_I(inode)->runtime_flags)) 9539 filemap_flush(inode->i_mapping); 9540 9541 iput(inode); 9542 complete(&delalloc_work->completion); 9543 } 9544 9545 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9546 { 9547 struct btrfs_delalloc_work *work; 9548 9549 work = kmalloc(sizeof(*work), GFP_NOFS); 9550 if (!work) 9551 return NULL; 9552 9553 init_completion(&work->completion); 9554 INIT_LIST_HEAD(&work->list); 9555 work->inode = inode; 9556 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9557 9558 return work; 9559 } 9560 9561 /* 9562 * some fairly slow code that needs optimization. This walks the list 9563 * of all the inodes with pending delalloc and forces them to disk. 9564 */ 9565 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9566 { 9567 struct btrfs_inode *binode; 9568 struct inode *inode; 9569 struct btrfs_delalloc_work *work, *next; 9570 struct list_head works; 9571 struct list_head splice; 9572 int ret = 0; 9573 9574 INIT_LIST_HEAD(&works); 9575 INIT_LIST_HEAD(&splice); 9576 9577 mutex_lock(&root->delalloc_mutex); 9578 spin_lock(&root->delalloc_lock); 9579 list_splice_init(&root->delalloc_inodes, &splice); 9580 while (!list_empty(&splice)) { 9581 binode = list_entry(splice.next, struct btrfs_inode, 9582 delalloc_inodes); 9583 9584 list_move_tail(&binode->delalloc_inodes, 9585 &root->delalloc_inodes); 9586 inode = igrab(&binode->vfs_inode); 9587 if (!inode) { 9588 cond_resched_lock(&root->delalloc_lock); 9589 continue; 9590 } 9591 spin_unlock(&root->delalloc_lock); 9592 9593 if (snapshot) 9594 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9595 &binode->runtime_flags); 9596 work = btrfs_alloc_delalloc_work(inode); 9597 if (!work) { 9598 iput(inode); 9599 ret = -ENOMEM; 9600 goto out; 9601 } 9602 list_add_tail(&work->list, &works); 9603 btrfs_queue_work(root->fs_info->flush_workers, 9604 &work->work); 9605 ret++; 9606 if (nr != -1 && ret >= nr) 9607 goto out; 9608 cond_resched(); 9609 spin_lock(&root->delalloc_lock); 9610 } 9611 spin_unlock(&root->delalloc_lock); 9612 9613 out: 9614 list_for_each_entry_safe(work, next, &works, list) { 9615 list_del_init(&work->list); 9616 wait_for_completion(&work->completion); 9617 kfree(work); 9618 } 9619 9620 if (!list_empty(&splice)) { 9621 spin_lock(&root->delalloc_lock); 9622 list_splice_tail(&splice, &root->delalloc_inodes); 9623 spin_unlock(&root->delalloc_lock); 9624 } 9625 mutex_unlock(&root->delalloc_mutex); 9626 return ret; 9627 } 9628 9629 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9630 { 9631 struct btrfs_fs_info *fs_info = root->fs_info; 9632 int ret; 9633 9634 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9635 return -EROFS; 9636 9637 ret = start_delalloc_inodes(root, -1, true); 9638 if (ret > 0) 9639 ret = 0; 9640 return ret; 9641 } 9642 9643 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9644 { 9645 struct btrfs_root *root; 9646 struct list_head splice; 9647 int ret; 9648 9649 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9650 return -EROFS; 9651 9652 INIT_LIST_HEAD(&splice); 9653 9654 mutex_lock(&fs_info->delalloc_root_mutex); 9655 spin_lock(&fs_info->delalloc_root_lock); 9656 list_splice_init(&fs_info->delalloc_roots, &splice); 9657 while (!list_empty(&splice) && nr) { 9658 root = list_first_entry(&splice, struct btrfs_root, 9659 delalloc_root); 9660 root = btrfs_grab_fs_root(root); 9661 BUG_ON(!root); 9662 list_move_tail(&root->delalloc_root, 9663 &fs_info->delalloc_roots); 9664 spin_unlock(&fs_info->delalloc_root_lock); 9665 9666 ret = start_delalloc_inodes(root, nr, false); 9667 btrfs_put_fs_root(root); 9668 if (ret < 0) 9669 goto out; 9670 9671 if (nr != -1) { 9672 nr -= ret; 9673 WARN_ON(nr < 0); 9674 } 9675 spin_lock(&fs_info->delalloc_root_lock); 9676 } 9677 spin_unlock(&fs_info->delalloc_root_lock); 9678 9679 ret = 0; 9680 out: 9681 if (!list_empty(&splice)) { 9682 spin_lock(&fs_info->delalloc_root_lock); 9683 list_splice_tail(&splice, &fs_info->delalloc_roots); 9684 spin_unlock(&fs_info->delalloc_root_lock); 9685 } 9686 mutex_unlock(&fs_info->delalloc_root_mutex); 9687 return ret; 9688 } 9689 9690 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9691 const char *symname) 9692 { 9693 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9694 struct btrfs_trans_handle *trans; 9695 struct btrfs_root *root = BTRFS_I(dir)->root; 9696 struct btrfs_path *path; 9697 struct btrfs_key key; 9698 struct inode *inode = NULL; 9699 int err; 9700 u64 objectid; 9701 u64 index = 0; 9702 int name_len; 9703 int datasize; 9704 unsigned long ptr; 9705 struct btrfs_file_extent_item *ei; 9706 struct extent_buffer *leaf; 9707 9708 name_len = strlen(symname); 9709 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9710 return -ENAMETOOLONG; 9711 9712 /* 9713 * 2 items for inode item and ref 9714 * 2 items for dir items 9715 * 1 item for updating parent inode item 9716 * 1 item for the inline extent item 9717 * 1 item for xattr if selinux is on 9718 */ 9719 trans = btrfs_start_transaction(root, 7); 9720 if (IS_ERR(trans)) 9721 return PTR_ERR(trans); 9722 9723 err = btrfs_find_free_ino(root, &objectid); 9724 if (err) 9725 goto out_unlock; 9726 9727 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9728 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9729 objectid, S_IFLNK|S_IRWXUGO, &index); 9730 if (IS_ERR(inode)) { 9731 err = PTR_ERR(inode); 9732 inode = NULL; 9733 goto out_unlock; 9734 } 9735 9736 /* 9737 * If the active LSM wants to access the inode during 9738 * d_instantiate it needs these. Smack checks to see 9739 * if the filesystem supports xattrs by looking at the 9740 * ops vector. 9741 */ 9742 inode->i_fop = &btrfs_file_operations; 9743 inode->i_op = &btrfs_file_inode_operations; 9744 inode->i_mapping->a_ops = &btrfs_aops; 9745 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9746 9747 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9748 if (err) 9749 goto out_unlock; 9750 9751 path = btrfs_alloc_path(); 9752 if (!path) { 9753 err = -ENOMEM; 9754 goto out_unlock; 9755 } 9756 key.objectid = btrfs_ino(BTRFS_I(inode)); 9757 key.offset = 0; 9758 key.type = BTRFS_EXTENT_DATA_KEY; 9759 datasize = btrfs_file_extent_calc_inline_size(name_len); 9760 err = btrfs_insert_empty_item(trans, root, path, &key, 9761 datasize); 9762 if (err) { 9763 btrfs_free_path(path); 9764 goto out_unlock; 9765 } 9766 leaf = path->nodes[0]; 9767 ei = btrfs_item_ptr(leaf, path->slots[0], 9768 struct btrfs_file_extent_item); 9769 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9770 btrfs_set_file_extent_type(leaf, ei, 9771 BTRFS_FILE_EXTENT_INLINE); 9772 btrfs_set_file_extent_encryption(leaf, ei, 0); 9773 btrfs_set_file_extent_compression(leaf, ei, 0); 9774 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9775 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9776 9777 ptr = btrfs_file_extent_inline_start(ei); 9778 write_extent_buffer(leaf, symname, ptr, name_len); 9779 btrfs_mark_buffer_dirty(leaf); 9780 btrfs_free_path(path); 9781 9782 inode->i_op = &btrfs_symlink_inode_operations; 9783 inode_nohighmem(inode); 9784 inode_set_bytes(inode, name_len); 9785 btrfs_i_size_write(BTRFS_I(inode), name_len); 9786 err = btrfs_update_inode(trans, root, inode); 9787 /* 9788 * Last step, add directory indexes for our symlink inode. This is the 9789 * last step to avoid extra cleanup of these indexes if an error happens 9790 * elsewhere above. 9791 */ 9792 if (!err) 9793 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9794 BTRFS_I(inode), 0, index); 9795 if (err) 9796 goto out_unlock; 9797 9798 d_instantiate_new(dentry, inode); 9799 9800 out_unlock: 9801 btrfs_end_transaction(trans); 9802 if (err && inode) { 9803 inode_dec_link_count(inode); 9804 discard_new_inode(inode); 9805 } 9806 btrfs_btree_balance_dirty(fs_info); 9807 return err; 9808 } 9809 9810 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9811 u64 start, u64 num_bytes, u64 min_size, 9812 loff_t actual_len, u64 *alloc_hint, 9813 struct btrfs_trans_handle *trans) 9814 { 9815 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9816 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9817 struct extent_map *em; 9818 struct btrfs_root *root = BTRFS_I(inode)->root; 9819 struct btrfs_key ins; 9820 u64 cur_offset = start; 9821 u64 i_size; 9822 u64 cur_bytes; 9823 u64 last_alloc = (u64)-1; 9824 int ret = 0; 9825 bool own_trans = true; 9826 u64 end = start + num_bytes - 1; 9827 9828 if (trans) 9829 own_trans = false; 9830 while (num_bytes > 0) { 9831 if (own_trans) { 9832 trans = btrfs_start_transaction(root, 3); 9833 if (IS_ERR(trans)) { 9834 ret = PTR_ERR(trans); 9835 break; 9836 } 9837 } 9838 9839 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9840 cur_bytes = max(cur_bytes, min_size); 9841 /* 9842 * If we are severely fragmented we could end up with really 9843 * small allocations, so if the allocator is returning small 9844 * chunks lets make its job easier by only searching for those 9845 * sized chunks. 9846 */ 9847 cur_bytes = min(cur_bytes, last_alloc); 9848 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9849 min_size, 0, *alloc_hint, &ins, 1, 0); 9850 if (ret) { 9851 if (own_trans) 9852 btrfs_end_transaction(trans); 9853 break; 9854 } 9855 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9856 9857 last_alloc = ins.offset; 9858 ret = insert_reserved_file_extent(trans, inode, 9859 cur_offset, ins.objectid, 9860 ins.offset, ins.offset, 9861 ins.offset, 0, 0, 0, 9862 BTRFS_FILE_EXTENT_PREALLOC); 9863 if (ret) { 9864 btrfs_free_reserved_extent(fs_info, ins.objectid, 9865 ins.offset, 0); 9866 btrfs_abort_transaction(trans, ret); 9867 if (own_trans) 9868 btrfs_end_transaction(trans); 9869 break; 9870 } 9871 9872 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9873 cur_offset + ins.offset -1, 0); 9874 9875 em = alloc_extent_map(); 9876 if (!em) { 9877 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9878 &BTRFS_I(inode)->runtime_flags); 9879 goto next; 9880 } 9881 9882 em->start = cur_offset; 9883 em->orig_start = cur_offset; 9884 em->len = ins.offset; 9885 em->block_start = ins.objectid; 9886 em->block_len = ins.offset; 9887 em->orig_block_len = ins.offset; 9888 em->ram_bytes = ins.offset; 9889 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9890 em->generation = trans->transid; 9891 9892 while (1) { 9893 write_lock(&em_tree->lock); 9894 ret = add_extent_mapping(em_tree, em, 1); 9895 write_unlock(&em_tree->lock); 9896 if (ret != -EEXIST) 9897 break; 9898 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9899 cur_offset + ins.offset - 1, 9900 0); 9901 } 9902 free_extent_map(em); 9903 next: 9904 num_bytes -= ins.offset; 9905 cur_offset += ins.offset; 9906 *alloc_hint = ins.objectid + ins.offset; 9907 9908 inode_inc_iversion(inode); 9909 inode->i_ctime = current_time(inode); 9910 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9911 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9912 (actual_len > inode->i_size) && 9913 (cur_offset > inode->i_size)) { 9914 if (cur_offset > actual_len) 9915 i_size = actual_len; 9916 else 9917 i_size = cur_offset; 9918 i_size_write(inode, i_size); 9919 btrfs_ordered_update_i_size(inode, i_size, NULL); 9920 } 9921 9922 ret = btrfs_update_inode(trans, root, inode); 9923 9924 if (ret) { 9925 btrfs_abort_transaction(trans, ret); 9926 if (own_trans) 9927 btrfs_end_transaction(trans); 9928 break; 9929 } 9930 9931 if (own_trans) 9932 btrfs_end_transaction(trans); 9933 } 9934 if (cur_offset < end) 9935 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 9936 end - cur_offset + 1); 9937 return ret; 9938 } 9939 9940 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9941 u64 start, u64 num_bytes, u64 min_size, 9942 loff_t actual_len, u64 *alloc_hint) 9943 { 9944 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9945 min_size, actual_len, alloc_hint, 9946 NULL); 9947 } 9948 9949 int btrfs_prealloc_file_range_trans(struct inode *inode, 9950 struct btrfs_trans_handle *trans, int mode, 9951 u64 start, u64 num_bytes, u64 min_size, 9952 loff_t actual_len, u64 *alloc_hint) 9953 { 9954 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9955 min_size, actual_len, alloc_hint, trans); 9956 } 9957 9958 static int btrfs_set_page_dirty(struct page *page) 9959 { 9960 return __set_page_dirty_nobuffers(page); 9961 } 9962 9963 static int btrfs_permission(struct inode *inode, int mask) 9964 { 9965 struct btrfs_root *root = BTRFS_I(inode)->root; 9966 umode_t mode = inode->i_mode; 9967 9968 if (mask & MAY_WRITE && 9969 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9970 if (btrfs_root_readonly(root)) 9971 return -EROFS; 9972 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9973 return -EACCES; 9974 } 9975 return generic_permission(inode, mask); 9976 } 9977 9978 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9979 { 9980 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9981 struct btrfs_trans_handle *trans; 9982 struct btrfs_root *root = BTRFS_I(dir)->root; 9983 struct inode *inode = NULL; 9984 u64 objectid; 9985 u64 index; 9986 int ret = 0; 9987 9988 /* 9989 * 5 units required for adding orphan entry 9990 */ 9991 trans = btrfs_start_transaction(root, 5); 9992 if (IS_ERR(trans)) 9993 return PTR_ERR(trans); 9994 9995 ret = btrfs_find_free_ino(root, &objectid); 9996 if (ret) 9997 goto out; 9998 9999 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10000 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10001 if (IS_ERR(inode)) { 10002 ret = PTR_ERR(inode); 10003 inode = NULL; 10004 goto out; 10005 } 10006 10007 inode->i_fop = &btrfs_file_operations; 10008 inode->i_op = &btrfs_file_inode_operations; 10009 10010 inode->i_mapping->a_ops = &btrfs_aops; 10011 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10012 10013 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10014 if (ret) 10015 goto out; 10016 10017 ret = btrfs_update_inode(trans, root, inode); 10018 if (ret) 10019 goto out; 10020 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10021 if (ret) 10022 goto out; 10023 10024 /* 10025 * We set number of links to 0 in btrfs_new_inode(), and here we set 10026 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10027 * through: 10028 * 10029 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10030 */ 10031 set_nlink(inode, 1); 10032 d_tmpfile(dentry, inode); 10033 unlock_new_inode(inode); 10034 mark_inode_dirty(inode); 10035 out: 10036 btrfs_end_transaction(trans); 10037 if (ret && inode) 10038 discard_new_inode(inode); 10039 btrfs_btree_balance_dirty(fs_info); 10040 return ret; 10041 } 10042 10043 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10044 { 10045 struct inode *inode = tree->private_data; 10046 unsigned long index = start >> PAGE_SHIFT; 10047 unsigned long end_index = end >> PAGE_SHIFT; 10048 struct page *page; 10049 10050 while (index <= end_index) { 10051 page = find_get_page(inode->i_mapping, index); 10052 ASSERT(page); /* Pages should be in the extent_io_tree */ 10053 set_page_writeback(page); 10054 put_page(page); 10055 index++; 10056 } 10057 } 10058 10059 #ifdef CONFIG_SWAP 10060 /* 10061 * Add an entry indicating a block group or device which is pinned by a 10062 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10063 * negative errno on failure. 10064 */ 10065 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10066 bool is_block_group) 10067 { 10068 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10069 struct btrfs_swapfile_pin *sp, *entry; 10070 struct rb_node **p; 10071 struct rb_node *parent = NULL; 10072 10073 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10074 if (!sp) 10075 return -ENOMEM; 10076 sp->ptr = ptr; 10077 sp->inode = inode; 10078 sp->is_block_group = is_block_group; 10079 10080 spin_lock(&fs_info->swapfile_pins_lock); 10081 p = &fs_info->swapfile_pins.rb_node; 10082 while (*p) { 10083 parent = *p; 10084 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10085 if (sp->ptr < entry->ptr || 10086 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10087 p = &(*p)->rb_left; 10088 } else if (sp->ptr > entry->ptr || 10089 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10090 p = &(*p)->rb_right; 10091 } else { 10092 spin_unlock(&fs_info->swapfile_pins_lock); 10093 kfree(sp); 10094 return 1; 10095 } 10096 } 10097 rb_link_node(&sp->node, parent, p); 10098 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10099 spin_unlock(&fs_info->swapfile_pins_lock); 10100 return 0; 10101 } 10102 10103 /* Free all of the entries pinned by this swapfile. */ 10104 static void btrfs_free_swapfile_pins(struct inode *inode) 10105 { 10106 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10107 struct btrfs_swapfile_pin *sp; 10108 struct rb_node *node, *next; 10109 10110 spin_lock(&fs_info->swapfile_pins_lock); 10111 node = rb_first(&fs_info->swapfile_pins); 10112 while (node) { 10113 next = rb_next(node); 10114 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10115 if (sp->inode == inode) { 10116 rb_erase(&sp->node, &fs_info->swapfile_pins); 10117 if (sp->is_block_group) 10118 btrfs_put_block_group(sp->ptr); 10119 kfree(sp); 10120 } 10121 node = next; 10122 } 10123 spin_unlock(&fs_info->swapfile_pins_lock); 10124 } 10125 10126 struct btrfs_swap_info { 10127 u64 start; 10128 u64 block_start; 10129 u64 block_len; 10130 u64 lowest_ppage; 10131 u64 highest_ppage; 10132 unsigned long nr_pages; 10133 int nr_extents; 10134 }; 10135 10136 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10137 struct btrfs_swap_info *bsi) 10138 { 10139 unsigned long nr_pages; 10140 u64 first_ppage, first_ppage_reported, next_ppage; 10141 int ret; 10142 10143 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10144 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10145 PAGE_SIZE) >> PAGE_SHIFT; 10146 10147 if (first_ppage >= next_ppage) 10148 return 0; 10149 nr_pages = next_ppage - first_ppage; 10150 10151 first_ppage_reported = first_ppage; 10152 if (bsi->start == 0) 10153 first_ppage_reported++; 10154 if (bsi->lowest_ppage > first_ppage_reported) 10155 bsi->lowest_ppage = first_ppage_reported; 10156 if (bsi->highest_ppage < (next_ppage - 1)) 10157 bsi->highest_ppage = next_ppage - 1; 10158 10159 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10160 if (ret < 0) 10161 return ret; 10162 bsi->nr_extents += ret; 10163 bsi->nr_pages += nr_pages; 10164 return 0; 10165 } 10166 10167 static void btrfs_swap_deactivate(struct file *file) 10168 { 10169 struct inode *inode = file_inode(file); 10170 10171 btrfs_free_swapfile_pins(inode); 10172 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10173 } 10174 10175 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10176 sector_t *span) 10177 { 10178 struct inode *inode = file_inode(file); 10179 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10180 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10181 struct extent_state *cached_state = NULL; 10182 struct extent_map *em = NULL; 10183 struct btrfs_device *device = NULL; 10184 struct btrfs_swap_info bsi = { 10185 .lowest_ppage = (sector_t)-1ULL, 10186 }; 10187 int ret = 0; 10188 u64 isize; 10189 u64 start; 10190 10191 /* 10192 * If the swap file was just created, make sure delalloc is done. If the 10193 * file changes again after this, the user is doing something stupid and 10194 * we don't really care. 10195 */ 10196 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10197 if (ret) 10198 return ret; 10199 10200 /* 10201 * The inode is locked, so these flags won't change after we check them. 10202 */ 10203 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10204 btrfs_warn(fs_info, "swapfile must not be compressed"); 10205 return -EINVAL; 10206 } 10207 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10208 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10209 return -EINVAL; 10210 } 10211 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10212 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10213 return -EINVAL; 10214 } 10215 10216 /* 10217 * Balance or device remove/replace/resize can move stuff around from 10218 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10219 * concurrently while we are mapping the swap extents, and 10220 * fs_info->swapfile_pins prevents them from running while the swap file 10221 * is active and moving the extents. Note that this also prevents a 10222 * concurrent device add which isn't actually necessary, but it's not 10223 * really worth the trouble to allow it. 10224 */ 10225 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10226 btrfs_warn(fs_info, 10227 "cannot activate swapfile while exclusive operation is running"); 10228 return -EBUSY; 10229 } 10230 /* 10231 * Snapshots can create extents which require COW even if NODATACOW is 10232 * set. We use this counter to prevent snapshots. We must increment it 10233 * before walking the extents because we don't want a concurrent 10234 * snapshot to run after we've already checked the extents. 10235 */ 10236 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10237 10238 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10239 10240 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10241 start = 0; 10242 while (start < isize) { 10243 u64 logical_block_start, physical_block_start; 10244 struct btrfs_block_group *bg; 10245 u64 len = isize - start; 10246 10247 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10248 if (IS_ERR(em)) { 10249 ret = PTR_ERR(em); 10250 goto out; 10251 } 10252 10253 if (em->block_start == EXTENT_MAP_HOLE) { 10254 btrfs_warn(fs_info, "swapfile must not have holes"); 10255 ret = -EINVAL; 10256 goto out; 10257 } 10258 if (em->block_start == EXTENT_MAP_INLINE) { 10259 /* 10260 * It's unlikely we'll ever actually find ourselves 10261 * here, as a file small enough to fit inline won't be 10262 * big enough to store more than the swap header, but in 10263 * case something changes in the future, let's catch it 10264 * here rather than later. 10265 */ 10266 btrfs_warn(fs_info, "swapfile must not be inline"); 10267 ret = -EINVAL; 10268 goto out; 10269 } 10270 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10271 btrfs_warn(fs_info, "swapfile must not be compressed"); 10272 ret = -EINVAL; 10273 goto out; 10274 } 10275 10276 logical_block_start = em->block_start + (start - em->start); 10277 len = min(len, em->len - (start - em->start)); 10278 free_extent_map(em); 10279 em = NULL; 10280 10281 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10282 if (ret < 0) { 10283 goto out; 10284 } else if (ret) { 10285 ret = 0; 10286 } else { 10287 btrfs_warn(fs_info, 10288 "swapfile must not be copy-on-write"); 10289 ret = -EINVAL; 10290 goto out; 10291 } 10292 10293 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10294 if (IS_ERR(em)) { 10295 ret = PTR_ERR(em); 10296 goto out; 10297 } 10298 10299 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10300 btrfs_warn(fs_info, 10301 "swapfile must have single data profile"); 10302 ret = -EINVAL; 10303 goto out; 10304 } 10305 10306 if (device == NULL) { 10307 device = em->map_lookup->stripes[0].dev; 10308 ret = btrfs_add_swapfile_pin(inode, device, false); 10309 if (ret == 1) 10310 ret = 0; 10311 else if (ret) 10312 goto out; 10313 } else if (device != em->map_lookup->stripes[0].dev) { 10314 btrfs_warn(fs_info, "swapfile must be on one device"); 10315 ret = -EINVAL; 10316 goto out; 10317 } 10318 10319 physical_block_start = (em->map_lookup->stripes[0].physical + 10320 (logical_block_start - em->start)); 10321 len = min(len, em->len - (logical_block_start - em->start)); 10322 free_extent_map(em); 10323 em = NULL; 10324 10325 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10326 if (!bg) { 10327 btrfs_warn(fs_info, 10328 "could not find block group containing swapfile"); 10329 ret = -EINVAL; 10330 goto out; 10331 } 10332 10333 ret = btrfs_add_swapfile_pin(inode, bg, true); 10334 if (ret) { 10335 btrfs_put_block_group(bg); 10336 if (ret == 1) 10337 ret = 0; 10338 else 10339 goto out; 10340 } 10341 10342 if (bsi.block_len && 10343 bsi.block_start + bsi.block_len == physical_block_start) { 10344 bsi.block_len += len; 10345 } else { 10346 if (bsi.block_len) { 10347 ret = btrfs_add_swap_extent(sis, &bsi); 10348 if (ret) 10349 goto out; 10350 } 10351 bsi.start = start; 10352 bsi.block_start = physical_block_start; 10353 bsi.block_len = len; 10354 } 10355 10356 start += len; 10357 } 10358 10359 if (bsi.block_len) 10360 ret = btrfs_add_swap_extent(sis, &bsi); 10361 10362 out: 10363 if (!IS_ERR_OR_NULL(em)) 10364 free_extent_map(em); 10365 10366 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10367 10368 if (ret) 10369 btrfs_swap_deactivate(file); 10370 10371 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10372 10373 if (ret) 10374 return ret; 10375 10376 if (device) 10377 sis->bdev = device->bdev; 10378 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10379 sis->max = bsi.nr_pages; 10380 sis->pages = bsi.nr_pages - 1; 10381 sis->highest_bit = bsi.nr_pages - 1; 10382 return bsi.nr_extents; 10383 } 10384 #else 10385 static void btrfs_swap_deactivate(struct file *file) 10386 { 10387 } 10388 10389 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10390 sector_t *span) 10391 { 10392 return -EOPNOTSUPP; 10393 } 10394 #endif 10395 10396 static const struct inode_operations btrfs_dir_inode_operations = { 10397 .getattr = btrfs_getattr, 10398 .lookup = btrfs_lookup, 10399 .create = btrfs_create, 10400 .unlink = btrfs_unlink, 10401 .link = btrfs_link, 10402 .mkdir = btrfs_mkdir, 10403 .rmdir = btrfs_rmdir, 10404 .rename = btrfs_rename2, 10405 .symlink = btrfs_symlink, 10406 .setattr = btrfs_setattr, 10407 .mknod = btrfs_mknod, 10408 .listxattr = btrfs_listxattr, 10409 .permission = btrfs_permission, 10410 .get_acl = btrfs_get_acl, 10411 .set_acl = btrfs_set_acl, 10412 .update_time = btrfs_update_time, 10413 .tmpfile = btrfs_tmpfile, 10414 }; 10415 10416 static const struct file_operations btrfs_dir_file_operations = { 10417 .llseek = generic_file_llseek, 10418 .read = generic_read_dir, 10419 .iterate_shared = btrfs_real_readdir, 10420 .open = btrfs_opendir, 10421 .unlocked_ioctl = btrfs_ioctl, 10422 #ifdef CONFIG_COMPAT 10423 .compat_ioctl = btrfs_compat_ioctl, 10424 #endif 10425 .release = btrfs_release_file, 10426 .fsync = btrfs_sync_file, 10427 }; 10428 10429 static const struct extent_io_ops btrfs_extent_io_ops = { 10430 /* mandatory callbacks */ 10431 .submit_bio_hook = btrfs_submit_bio_hook, 10432 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10433 }; 10434 10435 /* 10436 * btrfs doesn't support the bmap operation because swapfiles 10437 * use bmap to make a mapping of extents in the file. They assume 10438 * these extents won't change over the life of the file and they 10439 * use the bmap result to do IO directly to the drive. 10440 * 10441 * the btrfs bmap call would return logical addresses that aren't 10442 * suitable for IO and they also will change frequently as COW 10443 * operations happen. So, swapfile + btrfs == corruption. 10444 * 10445 * For now we're avoiding this by dropping bmap. 10446 */ 10447 static const struct address_space_operations btrfs_aops = { 10448 .readpage = btrfs_readpage, 10449 .writepage = btrfs_writepage, 10450 .writepages = btrfs_writepages, 10451 .readpages = btrfs_readpages, 10452 .direct_IO = btrfs_direct_IO, 10453 .invalidatepage = btrfs_invalidatepage, 10454 .releasepage = btrfs_releasepage, 10455 .set_page_dirty = btrfs_set_page_dirty, 10456 .error_remove_page = generic_error_remove_page, 10457 .swap_activate = btrfs_swap_activate, 10458 .swap_deactivate = btrfs_swap_deactivate, 10459 }; 10460 10461 static const struct inode_operations btrfs_file_inode_operations = { 10462 .getattr = btrfs_getattr, 10463 .setattr = btrfs_setattr, 10464 .listxattr = btrfs_listxattr, 10465 .permission = btrfs_permission, 10466 .fiemap = btrfs_fiemap, 10467 .get_acl = btrfs_get_acl, 10468 .set_acl = btrfs_set_acl, 10469 .update_time = btrfs_update_time, 10470 }; 10471 static const struct inode_operations btrfs_special_inode_operations = { 10472 .getattr = btrfs_getattr, 10473 .setattr = btrfs_setattr, 10474 .permission = btrfs_permission, 10475 .listxattr = btrfs_listxattr, 10476 .get_acl = btrfs_get_acl, 10477 .set_acl = btrfs_set_acl, 10478 .update_time = btrfs_update_time, 10479 }; 10480 static const struct inode_operations btrfs_symlink_inode_operations = { 10481 .get_link = page_get_link, 10482 .getattr = btrfs_getattr, 10483 .setattr = btrfs_setattr, 10484 .permission = btrfs_permission, 10485 .listxattr = btrfs_listxattr, 10486 .update_time = btrfs_update_time, 10487 }; 10488 10489 const struct dentry_operations btrfs_dentry_operations = { 10490 .d_delete = btrfs_dentry_delete, 10491 }; 10492