1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/posix_acl_xattr.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 63 struct btrfs_iget_args { 64 struct btrfs_key *location; 65 struct btrfs_root *root; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_dir_ro_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct address_space_operations btrfs_symlink_aops; 75 static const struct file_operations btrfs_dir_file_operations; 76 static struct extent_io_ops btrfs_extent_io_ops; 77 78 static struct kmem_cache *btrfs_inode_cachep; 79 static struct kmem_cache *btrfs_delalloc_work_cachep; 80 struct kmem_cache *btrfs_trans_handle_cachep; 81 struct kmem_cache *btrfs_transaction_cachep; 82 struct kmem_cache *btrfs_path_cachep; 83 struct kmem_cache *btrfs_free_space_cachep; 84 85 #define S_SHIFT 12 86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 94 }; 95 96 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 97 static int btrfs_truncate(struct inode *inode); 98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 99 static noinline int cow_file_range(struct inode *inode, 100 struct page *locked_page, 101 u64 start, u64 end, int *page_started, 102 unsigned long *nr_written, int unlock); 103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 104 u64 len, u64 orig_start, 105 u64 block_start, u64 block_len, 106 u64 orig_block_len, u64 ram_bytes, 107 int type); 108 109 static int btrfs_dirty_inode(struct inode *inode); 110 111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 112 struct inode *inode, struct inode *dir, 113 const struct qstr *qstr) 114 { 115 int err; 116 117 err = btrfs_init_acl(trans, inode, dir); 118 if (!err) 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 120 return err; 121 } 122 123 /* 124 * this does all the hard work for inserting an inline extent into 125 * the btree. The caller should have done a btrfs_drop_extents so that 126 * no overlapping inline items exist in the btree 127 */ 128 static int insert_inline_extent(struct btrfs_trans_handle *trans, 129 struct btrfs_path *path, int extent_inserted, 130 struct btrfs_root *root, struct inode *inode, 131 u64 start, size_t size, size_t compressed_size, 132 int compress_type, 133 struct page **compressed_pages) 134 { 135 struct extent_buffer *leaf; 136 struct page *page = NULL; 137 char *kaddr; 138 unsigned long ptr; 139 struct btrfs_file_extent_item *ei; 140 int err = 0; 141 int ret; 142 size_t cur_size = size; 143 unsigned long offset; 144 145 if (compressed_size && compressed_pages) 146 cur_size = compressed_size; 147 148 inode_add_bytes(inode, size); 149 150 if (!extent_inserted) { 151 struct btrfs_key key; 152 size_t datasize; 153 154 key.objectid = btrfs_ino(inode); 155 key.offset = start; 156 key.type = BTRFS_EXTENT_DATA_KEY; 157 158 datasize = btrfs_file_extent_calc_inline_size(cur_size); 159 path->leave_spinning = 1; 160 ret = btrfs_insert_empty_item(trans, root, path, &key, 161 datasize); 162 if (ret) { 163 err = ret; 164 goto fail; 165 } 166 } 167 leaf = path->nodes[0]; 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_file_extent_item); 170 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 172 btrfs_set_file_extent_encryption(leaf, ei, 0); 173 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 174 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 175 ptr = btrfs_file_extent_inline_start(ei); 176 177 if (compress_type != BTRFS_COMPRESS_NONE) { 178 struct page *cpage; 179 int i = 0; 180 while (compressed_size > 0) { 181 cpage = compressed_pages[i]; 182 cur_size = min_t(unsigned long, compressed_size, 183 PAGE_CACHE_SIZE); 184 185 kaddr = kmap_atomic(cpage); 186 write_extent_buffer(leaf, kaddr, ptr, cur_size); 187 kunmap_atomic(kaddr); 188 189 i++; 190 ptr += cur_size; 191 compressed_size -= cur_size; 192 } 193 btrfs_set_file_extent_compression(leaf, ei, 194 compress_type); 195 } else { 196 page = find_get_page(inode->i_mapping, 197 start >> PAGE_CACHE_SHIFT); 198 btrfs_set_file_extent_compression(leaf, ei, 0); 199 kaddr = kmap_atomic(page); 200 offset = start & (PAGE_CACHE_SIZE - 1); 201 write_extent_buffer(leaf, kaddr + offset, ptr, size); 202 kunmap_atomic(kaddr); 203 page_cache_release(page); 204 } 205 btrfs_mark_buffer_dirty(leaf); 206 btrfs_release_path(path); 207 208 /* 209 * we're an inline extent, so nobody can 210 * extend the file past i_size without locking 211 * a page we already have locked. 212 * 213 * We must do any isize and inode updates 214 * before we unlock the pages. Otherwise we 215 * could end up racing with unlink. 216 */ 217 BTRFS_I(inode)->disk_i_size = inode->i_size; 218 ret = btrfs_update_inode(trans, root, inode); 219 220 return ret; 221 fail: 222 return err; 223 } 224 225 226 /* 227 * conditionally insert an inline extent into the file. This 228 * does the checks required to make sure the data is small enough 229 * to fit as an inline extent. 230 */ 231 static noinline int cow_file_range_inline(struct btrfs_root *root, 232 struct inode *inode, u64 start, 233 u64 end, size_t compressed_size, 234 int compress_type, 235 struct page **compressed_pages) 236 { 237 struct btrfs_trans_handle *trans; 238 u64 isize = i_size_read(inode); 239 u64 actual_end = min(end + 1, isize); 240 u64 inline_len = actual_end - start; 241 u64 aligned_end = ALIGN(end, root->sectorsize); 242 u64 data_len = inline_len; 243 int ret; 244 struct btrfs_path *path; 245 int extent_inserted = 0; 246 u32 extent_item_size; 247 248 if (compressed_size) 249 data_len = compressed_size; 250 251 if (start > 0 || 252 actual_end > PAGE_CACHE_SIZE || 253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 254 (!compressed_size && 255 (actual_end & (root->sectorsize - 1)) == 0) || 256 end + 1 < isize || 257 data_len > root->fs_info->max_inline) { 258 return 1; 259 } 260 261 path = btrfs_alloc_path(); 262 if (!path) 263 return -ENOMEM; 264 265 trans = btrfs_join_transaction(root); 266 if (IS_ERR(trans)) { 267 btrfs_free_path(path); 268 return PTR_ERR(trans); 269 } 270 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 271 272 if (compressed_size && compressed_pages) 273 extent_item_size = btrfs_file_extent_calc_inline_size( 274 compressed_size); 275 else 276 extent_item_size = btrfs_file_extent_calc_inline_size( 277 inline_len); 278 279 ret = __btrfs_drop_extents(trans, root, inode, path, 280 start, aligned_end, NULL, 281 1, 1, extent_item_size, &extent_inserted); 282 if (ret) { 283 btrfs_abort_transaction(trans, root, ret); 284 goto out; 285 } 286 287 if (isize > actual_end) 288 inline_len = min_t(u64, isize, actual_end); 289 ret = insert_inline_extent(trans, path, extent_inserted, 290 root, inode, start, 291 inline_len, compressed_size, 292 compress_type, compressed_pages); 293 if (ret && ret != -ENOSPC) { 294 btrfs_abort_transaction(trans, root, ret); 295 goto out; 296 } else if (ret == -ENOSPC) { 297 ret = 1; 298 goto out; 299 } 300 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 302 btrfs_delalloc_release_metadata(inode, end + 1 - start); 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 304 out: 305 btrfs_free_path(path); 306 btrfs_end_transaction(trans, root); 307 return ret; 308 } 309 310 struct async_extent { 311 u64 start; 312 u64 ram_size; 313 u64 compressed_size; 314 struct page **pages; 315 unsigned long nr_pages; 316 int compress_type; 317 struct list_head list; 318 }; 319 320 struct async_cow { 321 struct inode *inode; 322 struct btrfs_root *root; 323 struct page *locked_page; 324 u64 start; 325 u64 end; 326 struct list_head extents; 327 struct btrfs_work work; 328 }; 329 330 static noinline int add_async_extent(struct async_cow *cow, 331 u64 start, u64 ram_size, 332 u64 compressed_size, 333 struct page **pages, 334 unsigned long nr_pages, 335 int compress_type) 336 { 337 struct async_extent *async_extent; 338 339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 340 BUG_ON(!async_extent); /* -ENOMEM */ 341 async_extent->start = start; 342 async_extent->ram_size = ram_size; 343 async_extent->compressed_size = compressed_size; 344 async_extent->pages = pages; 345 async_extent->nr_pages = nr_pages; 346 async_extent->compress_type = compress_type; 347 list_add_tail(&async_extent->list, &cow->extents); 348 return 0; 349 } 350 351 static inline int inode_need_compress(struct inode *inode) 352 { 353 struct btrfs_root *root = BTRFS_I(inode)->root; 354 355 /* force compress */ 356 if (btrfs_test_opt(root, FORCE_COMPRESS)) 357 return 1; 358 /* bad compression ratios */ 359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 360 return 0; 361 if (btrfs_test_opt(root, COMPRESS) || 362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 363 BTRFS_I(inode)->force_compress) 364 return 1; 365 return 0; 366 } 367 368 /* 369 * we create compressed extents in two phases. The first 370 * phase compresses a range of pages that have already been 371 * locked (both pages and state bits are locked). 372 * 373 * This is done inside an ordered work queue, and the compression 374 * is spread across many cpus. The actual IO submission is step 375 * two, and the ordered work queue takes care of making sure that 376 * happens in the same order things were put onto the queue by 377 * writepages and friends. 378 * 379 * If this code finds it can't get good compression, it puts an 380 * entry onto the work queue to write the uncompressed bytes. This 381 * makes sure that both compressed inodes and uncompressed inodes 382 * are written in the same order that the flusher thread sent them 383 * down. 384 */ 385 static noinline void compress_file_range(struct inode *inode, 386 struct page *locked_page, 387 u64 start, u64 end, 388 struct async_cow *async_cow, 389 int *num_added) 390 { 391 struct btrfs_root *root = BTRFS_I(inode)->root; 392 u64 num_bytes; 393 u64 blocksize = root->sectorsize; 394 u64 actual_end; 395 u64 isize = i_size_read(inode); 396 int ret = 0; 397 struct page **pages = NULL; 398 unsigned long nr_pages; 399 unsigned long nr_pages_ret = 0; 400 unsigned long total_compressed = 0; 401 unsigned long total_in = 0; 402 unsigned long max_compressed = 128 * 1024; 403 unsigned long max_uncompressed = 128 * 1024; 404 int i; 405 int will_compress; 406 int compress_type = root->fs_info->compress_type; 407 int redirty = 0; 408 409 /* if this is a small write inside eof, kick off a defrag */ 410 if ((end - start + 1) < 16 * 1024 && 411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 412 btrfs_add_inode_defrag(NULL, inode); 413 414 actual_end = min_t(u64, isize, end + 1); 415 again: 416 will_compress = 0; 417 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 418 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 419 420 /* 421 * we don't want to send crud past the end of i_size through 422 * compression, that's just a waste of CPU time. So, if the 423 * end of the file is before the start of our current 424 * requested range of bytes, we bail out to the uncompressed 425 * cleanup code that can deal with all of this. 426 * 427 * It isn't really the fastest way to fix things, but this is a 428 * very uncommon corner. 429 */ 430 if (actual_end <= start) 431 goto cleanup_and_bail_uncompressed; 432 433 total_compressed = actual_end - start; 434 435 /* 436 * skip compression for a small file range(<=blocksize) that 437 * isn't an inline extent, since it dosen't save disk space at all. 438 */ 439 if (total_compressed <= blocksize && 440 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 441 goto cleanup_and_bail_uncompressed; 442 443 /* we want to make sure that amount of ram required to uncompress 444 * an extent is reasonable, so we limit the total size in ram 445 * of a compressed extent to 128k. This is a crucial number 446 * because it also controls how easily we can spread reads across 447 * cpus for decompression. 448 * 449 * We also want to make sure the amount of IO required to do 450 * a random read is reasonably small, so we limit the size of 451 * a compressed extent to 128k. 452 */ 453 total_compressed = min(total_compressed, max_uncompressed); 454 num_bytes = ALIGN(end - start + 1, blocksize); 455 num_bytes = max(blocksize, num_bytes); 456 total_in = 0; 457 ret = 0; 458 459 /* 460 * we do compression for mount -o compress and when the 461 * inode has not been flagged as nocompress. This flag can 462 * change at any time if we discover bad compression ratios. 463 */ 464 if (inode_need_compress(inode)) { 465 WARN_ON(pages); 466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 467 if (!pages) { 468 /* just bail out to the uncompressed code */ 469 goto cont; 470 } 471 472 if (BTRFS_I(inode)->force_compress) 473 compress_type = BTRFS_I(inode)->force_compress; 474 475 /* 476 * we need to call clear_page_dirty_for_io on each 477 * page in the range. Otherwise applications with the file 478 * mmap'd can wander in and change the page contents while 479 * we are compressing them. 480 * 481 * If the compression fails for any reason, we set the pages 482 * dirty again later on. 483 */ 484 extent_range_clear_dirty_for_io(inode, start, end); 485 redirty = 1; 486 ret = btrfs_compress_pages(compress_type, 487 inode->i_mapping, start, 488 total_compressed, pages, 489 nr_pages, &nr_pages_ret, 490 &total_in, 491 &total_compressed, 492 max_compressed); 493 494 if (!ret) { 495 unsigned long offset = total_compressed & 496 (PAGE_CACHE_SIZE - 1); 497 struct page *page = pages[nr_pages_ret - 1]; 498 char *kaddr; 499 500 /* zero the tail end of the last page, we might be 501 * sending it down to disk 502 */ 503 if (offset) { 504 kaddr = kmap_atomic(page); 505 memset(kaddr + offset, 0, 506 PAGE_CACHE_SIZE - offset); 507 kunmap_atomic(kaddr); 508 } 509 will_compress = 1; 510 } 511 } 512 cont: 513 if (start == 0) { 514 /* lets try to make an inline extent */ 515 if (ret || total_in < (actual_end - start)) { 516 /* we didn't compress the entire range, try 517 * to make an uncompressed inline extent. 518 */ 519 ret = cow_file_range_inline(root, inode, start, end, 520 0, 0, NULL); 521 } else { 522 /* try making a compressed inline extent */ 523 ret = cow_file_range_inline(root, inode, start, end, 524 total_compressed, 525 compress_type, pages); 526 } 527 if (ret <= 0) { 528 unsigned long clear_flags = EXTENT_DELALLOC | 529 EXTENT_DEFRAG; 530 unsigned long page_error_op; 531 532 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 533 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 534 535 /* 536 * inline extent creation worked or returned error, 537 * we don't need to create any more async work items. 538 * Unlock and free up our temp pages. 539 */ 540 extent_clear_unlock_delalloc(inode, start, end, NULL, 541 clear_flags, PAGE_UNLOCK | 542 PAGE_CLEAR_DIRTY | 543 PAGE_SET_WRITEBACK | 544 page_error_op | 545 PAGE_END_WRITEBACK); 546 goto free_pages_out; 547 } 548 } 549 550 if (will_compress) { 551 /* 552 * we aren't doing an inline extent round the compressed size 553 * up to a block size boundary so the allocator does sane 554 * things 555 */ 556 total_compressed = ALIGN(total_compressed, blocksize); 557 558 /* 559 * one last check to make sure the compression is really a 560 * win, compare the page count read with the blocks on disk 561 */ 562 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 563 if (total_compressed >= total_in) { 564 will_compress = 0; 565 } else { 566 num_bytes = total_in; 567 } 568 } 569 if (!will_compress && pages) { 570 /* 571 * the compression code ran but failed to make things smaller, 572 * free any pages it allocated and our page pointer array 573 */ 574 for (i = 0; i < nr_pages_ret; i++) { 575 WARN_ON(pages[i]->mapping); 576 page_cache_release(pages[i]); 577 } 578 kfree(pages); 579 pages = NULL; 580 total_compressed = 0; 581 nr_pages_ret = 0; 582 583 /* flag the file so we don't compress in the future */ 584 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 585 !(BTRFS_I(inode)->force_compress)) { 586 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 587 } 588 } 589 if (will_compress) { 590 *num_added += 1; 591 592 /* the async work queues will take care of doing actual 593 * allocation on disk for these compressed pages, 594 * and will submit them to the elevator. 595 */ 596 add_async_extent(async_cow, start, num_bytes, 597 total_compressed, pages, nr_pages_ret, 598 compress_type); 599 600 if (start + num_bytes < end) { 601 start += num_bytes; 602 pages = NULL; 603 cond_resched(); 604 goto again; 605 } 606 } else { 607 cleanup_and_bail_uncompressed: 608 /* 609 * No compression, but we still need to write the pages in 610 * the file we've been given so far. redirty the locked 611 * page if it corresponds to our extent and set things up 612 * for the async work queue to run cow_file_range to do 613 * the normal delalloc dance 614 */ 615 if (page_offset(locked_page) >= start && 616 page_offset(locked_page) <= end) { 617 __set_page_dirty_nobuffers(locked_page); 618 /* unlocked later on in the async handlers */ 619 } 620 if (redirty) 621 extent_range_redirty_for_io(inode, start, end); 622 add_async_extent(async_cow, start, end - start + 1, 623 0, NULL, 0, BTRFS_COMPRESS_NONE); 624 *num_added += 1; 625 } 626 627 return; 628 629 free_pages_out: 630 for (i = 0; i < nr_pages_ret; i++) { 631 WARN_ON(pages[i]->mapping); 632 page_cache_release(pages[i]); 633 } 634 kfree(pages); 635 } 636 637 static void free_async_extent_pages(struct async_extent *async_extent) 638 { 639 int i; 640 641 if (!async_extent->pages) 642 return; 643 644 for (i = 0; i < async_extent->nr_pages; i++) { 645 WARN_ON(async_extent->pages[i]->mapping); 646 page_cache_release(async_extent->pages[i]); 647 } 648 kfree(async_extent->pages); 649 async_extent->nr_pages = 0; 650 async_extent->pages = NULL; 651 } 652 653 /* 654 * phase two of compressed writeback. This is the ordered portion 655 * of the code, which only gets called in the order the work was 656 * queued. We walk all the async extents created by compress_file_range 657 * and send them down to the disk. 658 */ 659 static noinline void submit_compressed_extents(struct inode *inode, 660 struct async_cow *async_cow) 661 { 662 struct async_extent *async_extent; 663 u64 alloc_hint = 0; 664 struct btrfs_key ins; 665 struct extent_map *em; 666 struct btrfs_root *root = BTRFS_I(inode)->root; 667 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 668 struct extent_io_tree *io_tree; 669 int ret = 0; 670 671 again: 672 while (!list_empty(&async_cow->extents)) { 673 async_extent = list_entry(async_cow->extents.next, 674 struct async_extent, list); 675 list_del(&async_extent->list); 676 677 io_tree = &BTRFS_I(inode)->io_tree; 678 679 retry: 680 /* did the compression code fall back to uncompressed IO? */ 681 if (!async_extent->pages) { 682 int page_started = 0; 683 unsigned long nr_written = 0; 684 685 lock_extent(io_tree, async_extent->start, 686 async_extent->start + 687 async_extent->ram_size - 1); 688 689 /* allocate blocks */ 690 ret = cow_file_range(inode, async_cow->locked_page, 691 async_extent->start, 692 async_extent->start + 693 async_extent->ram_size - 1, 694 &page_started, &nr_written, 0); 695 696 /* JDM XXX */ 697 698 /* 699 * if page_started, cow_file_range inserted an 700 * inline extent and took care of all the unlocking 701 * and IO for us. Otherwise, we need to submit 702 * all those pages down to the drive. 703 */ 704 if (!page_started && !ret) 705 extent_write_locked_range(io_tree, 706 inode, async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1, 709 btrfs_get_extent, 710 WB_SYNC_ALL); 711 else if (ret) 712 unlock_page(async_cow->locked_page); 713 kfree(async_extent); 714 cond_resched(); 715 continue; 716 } 717 718 lock_extent(io_tree, async_extent->start, 719 async_extent->start + async_extent->ram_size - 1); 720 721 ret = btrfs_reserve_extent(root, 722 async_extent->compressed_size, 723 async_extent->compressed_size, 724 0, alloc_hint, &ins, 1, 1); 725 if (ret) { 726 free_async_extent_pages(async_extent); 727 728 if (ret == -ENOSPC) { 729 unlock_extent(io_tree, async_extent->start, 730 async_extent->start + 731 async_extent->ram_size - 1); 732 733 /* 734 * we need to redirty the pages if we decide to 735 * fallback to uncompressed IO, otherwise we 736 * will not submit these pages down to lower 737 * layers. 738 */ 739 extent_range_redirty_for_io(inode, 740 async_extent->start, 741 async_extent->start + 742 async_extent->ram_size - 1); 743 744 goto retry; 745 } 746 goto out_free; 747 } 748 749 /* 750 * here we're doing allocation and writeback of the 751 * compressed pages 752 */ 753 btrfs_drop_extent_cache(inode, async_extent->start, 754 async_extent->start + 755 async_extent->ram_size - 1, 0); 756 757 em = alloc_extent_map(); 758 if (!em) { 759 ret = -ENOMEM; 760 goto out_free_reserve; 761 } 762 em->start = async_extent->start; 763 em->len = async_extent->ram_size; 764 em->orig_start = em->start; 765 em->mod_start = em->start; 766 em->mod_len = em->len; 767 768 em->block_start = ins.objectid; 769 em->block_len = ins.offset; 770 em->orig_block_len = ins.offset; 771 em->ram_bytes = async_extent->ram_size; 772 em->bdev = root->fs_info->fs_devices->latest_bdev; 773 em->compress_type = async_extent->compress_type; 774 set_bit(EXTENT_FLAG_PINNED, &em->flags); 775 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 776 em->generation = -1; 777 778 while (1) { 779 write_lock(&em_tree->lock); 780 ret = add_extent_mapping(em_tree, em, 1); 781 write_unlock(&em_tree->lock); 782 if (ret != -EEXIST) { 783 free_extent_map(em); 784 break; 785 } 786 btrfs_drop_extent_cache(inode, async_extent->start, 787 async_extent->start + 788 async_extent->ram_size - 1, 0); 789 } 790 791 if (ret) 792 goto out_free_reserve; 793 794 ret = btrfs_add_ordered_extent_compress(inode, 795 async_extent->start, 796 ins.objectid, 797 async_extent->ram_size, 798 ins.offset, 799 BTRFS_ORDERED_COMPRESSED, 800 async_extent->compress_type); 801 if (ret) { 802 btrfs_drop_extent_cache(inode, async_extent->start, 803 async_extent->start + 804 async_extent->ram_size - 1, 0); 805 goto out_free_reserve; 806 } 807 808 /* 809 * clear dirty, set writeback and unlock the pages. 810 */ 811 extent_clear_unlock_delalloc(inode, async_extent->start, 812 async_extent->start + 813 async_extent->ram_size - 1, 814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 815 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 816 PAGE_SET_WRITEBACK); 817 ret = btrfs_submit_compressed_write(inode, 818 async_extent->start, 819 async_extent->ram_size, 820 ins.objectid, 821 ins.offset, async_extent->pages, 822 async_extent->nr_pages); 823 if (ret) { 824 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 825 struct page *p = async_extent->pages[0]; 826 const u64 start = async_extent->start; 827 const u64 end = start + async_extent->ram_size - 1; 828 829 p->mapping = inode->i_mapping; 830 tree->ops->writepage_end_io_hook(p, start, end, 831 NULL, 0); 832 p->mapping = NULL; 833 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 834 PAGE_END_WRITEBACK | 835 PAGE_SET_ERROR); 836 free_async_extent_pages(async_extent); 837 } 838 alloc_hint = ins.objectid + ins.offset; 839 kfree(async_extent); 840 cond_resched(); 841 } 842 return; 843 out_free_reserve: 844 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 845 out_free: 846 extent_clear_unlock_delalloc(inode, async_extent->start, 847 async_extent->start + 848 async_extent->ram_size - 1, 849 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 850 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 852 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 853 PAGE_SET_ERROR); 854 free_async_extent_pages(async_extent); 855 kfree(async_extent); 856 goto again; 857 } 858 859 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 860 u64 num_bytes) 861 { 862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 863 struct extent_map *em; 864 u64 alloc_hint = 0; 865 866 read_lock(&em_tree->lock); 867 em = search_extent_mapping(em_tree, start, num_bytes); 868 if (em) { 869 /* 870 * if block start isn't an actual block number then find the 871 * first block in this inode and use that as a hint. If that 872 * block is also bogus then just don't worry about it. 873 */ 874 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 875 free_extent_map(em); 876 em = search_extent_mapping(em_tree, 0, 0); 877 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 878 alloc_hint = em->block_start; 879 if (em) 880 free_extent_map(em); 881 } else { 882 alloc_hint = em->block_start; 883 free_extent_map(em); 884 } 885 } 886 read_unlock(&em_tree->lock); 887 888 return alloc_hint; 889 } 890 891 /* 892 * when extent_io.c finds a delayed allocation range in the file, 893 * the call backs end up in this code. The basic idea is to 894 * allocate extents on disk for the range, and create ordered data structs 895 * in ram to track those extents. 896 * 897 * locked_page is the page that writepage had locked already. We use 898 * it to make sure we don't do extra locks or unlocks. 899 * 900 * *page_started is set to one if we unlock locked_page and do everything 901 * required to start IO on it. It may be clean and already done with 902 * IO when we return. 903 */ 904 static noinline int cow_file_range(struct inode *inode, 905 struct page *locked_page, 906 u64 start, u64 end, int *page_started, 907 unsigned long *nr_written, 908 int unlock) 909 { 910 struct btrfs_root *root = BTRFS_I(inode)->root; 911 u64 alloc_hint = 0; 912 u64 num_bytes; 913 unsigned long ram_size; 914 u64 disk_num_bytes; 915 u64 cur_alloc_size; 916 u64 blocksize = root->sectorsize; 917 struct btrfs_key ins; 918 struct extent_map *em; 919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 920 int ret = 0; 921 922 if (btrfs_is_free_space_inode(inode)) { 923 WARN_ON_ONCE(1); 924 ret = -EINVAL; 925 goto out_unlock; 926 } 927 928 num_bytes = ALIGN(end - start + 1, blocksize); 929 num_bytes = max(blocksize, num_bytes); 930 disk_num_bytes = num_bytes; 931 932 /* if this is a small write inside eof, kick off defrag */ 933 if (num_bytes < 64 * 1024 && 934 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 935 btrfs_add_inode_defrag(NULL, inode); 936 937 if (start == 0) { 938 /* lets try to make an inline extent */ 939 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 940 NULL); 941 if (ret == 0) { 942 extent_clear_unlock_delalloc(inode, start, end, NULL, 943 EXTENT_LOCKED | EXTENT_DELALLOC | 944 EXTENT_DEFRAG, PAGE_UNLOCK | 945 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 946 PAGE_END_WRITEBACK); 947 948 *nr_written = *nr_written + 949 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 950 *page_started = 1; 951 goto out; 952 } else if (ret < 0) { 953 goto out_unlock; 954 } 955 } 956 957 BUG_ON(disk_num_bytes > 958 btrfs_super_total_bytes(root->fs_info->super_copy)); 959 960 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 961 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 962 963 while (disk_num_bytes > 0) { 964 unsigned long op; 965 966 cur_alloc_size = disk_num_bytes; 967 ret = btrfs_reserve_extent(root, cur_alloc_size, 968 root->sectorsize, 0, alloc_hint, 969 &ins, 1, 1); 970 if (ret < 0) 971 goto out_unlock; 972 973 em = alloc_extent_map(); 974 if (!em) { 975 ret = -ENOMEM; 976 goto out_reserve; 977 } 978 em->start = start; 979 em->orig_start = em->start; 980 ram_size = ins.offset; 981 em->len = ins.offset; 982 em->mod_start = em->start; 983 em->mod_len = em->len; 984 985 em->block_start = ins.objectid; 986 em->block_len = ins.offset; 987 em->orig_block_len = ins.offset; 988 em->ram_bytes = ram_size; 989 em->bdev = root->fs_info->fs_devices->latest_bdev; 990 set_bit(EXTENT_FLAG_PINNED, &em->flags); 991 em->generation = -1; 992 993 while (1) { 994 write_lock(&em_tree->lock); 995 ret = add_extent_mapping(em_tree, em, 1); 996 write_unlock(&em_tree->lock); 997 if (ret != -EEXIST) { 998 free_extent_map(em); 999 break; 1000 } 1001 btrfs_drop_extent_cache(inode, start, 1002 start + ram_size - 1, 0); 1003 } 1004 if (ret) 1005 goto out_reserve; 1006 1007 cur_alloc_size = ins.offset; 1008 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1009 ram_size, cur_alloc_size, 0); 1010 if (ret) 1011 goto out_drop_extent_cache; 1012 1013 if (root->root_key.objectid == 1014 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1015 ret = btrfs_reloc_clone_csums(inode, start, 1016 cur_alloc_size); 1017 if (ret) 1018 goto out_drop_extent_cache; 1019 } 1020 1021 if (disk_num_bytes < cur_alloc_size) 1022 break; 1023 1024 /* we're not doing compressed IO, don't unlock the first 1025 * page (which the caller expects to stay locked), don't 1026 * clear any dirty bits and don't set any writeback bits 1027 * 1028 * Do set the Private2 bit so we know this page was properly 1029 * setup for writepage 1030 */ 1031 op = unlock ? PAGE_UNLOCK : 0; 1032 op |= PAGE_SET_PRIVATE2; 1033 1034 extent_clear_unlock_delalloc(inode, start, 1035 start + ram_size - 1, locked_page, 1036 EXTENT_LOCKED | EXTENT_DELALLOC, 1037 op); 1038 disk_num_bytes -= cur_alloc_size; 1039 num_bytes -= cur_alloc_size; 1040 alloc_hint = ins.objectid + ins.offset; 1041 start += cur_alloc_size; 1042 } 1043 out: 1044 return ret; 1045 1046 out_drop_extent_cache: 1047 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1048 out_reserve: 1049 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1050 out_unlock: 1051 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1053 EXTENT_DELALLOC | EXTENT_DEFRAG, 1054 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1055 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1056 goto out; 1057 } 1058 1059 /* 1060 * work queue call back to started compression on a file and pages 1061 */ 1062 static noinline void async_cow_start(struct btrfs_work *work) 1063 { 1064 struct async_cow *async_cow; 1065 int num_added = 0; 1066 async_cow = container_of(work, struct async_cow, work); 1067 1068 compress_file_range(async_cow->inode, async_cow->locked_page, 1069 async_cow->start, async_cow->end, async_cow, 1070 &num_added); 1071 if (num_added == 0) { 1072 btrfs_add_delayed_iput(async_cow->inode); 1073 async_cow->inode = NULL; 1074 } 1075 } 1076 1077 /* 1078 * work queue call back to submit previously compressed pages 1079 */ 1080 static noinline void async_cow_submit(struct btrfs_work *work) 1081 { 1082 struct async_cow *async_cow; 1083 struct btrfs_root *root; 1084 unsigned long nr_pages; 1085 1086 async_cow = container_of(work, struct async_cow, work); 1087 1088 root = async_cow->root; 1089 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1090 PAGE_CACHE_SHIFT; 1091 1092 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1093 5 * 1024 * 1024 && 1094 waitqueue_active(&root->fs_info->async_submit_wait)) 1095 wake_up(&root->fs_info->async_submit_wait); 1096 1097 if (async_cow->inode) 1098 submit_compressed_extents(async_cow->inode, async_cow); 1099 } 1100 1101 static noinline void async_cow_free(struct btrfs_work *work) 1102 { 1103 struct async_cow *async_cow; 1104 async_cow = container_of(work, struct async_cow, work); 1105 if (async_cow->inode) 1106 btrfs_add_delayed_iput(async_cow->inode); 1107 kfree(async_cow); 1108 } 1109 1110 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1111 u64 start, u64 end, int *page_started, 1112 unsigned long *nr_written) 1113 { 1114 struct async_cow *async_cow; 1115 struct btrfs_root *root = BTRFS_I(inode)->root; 1116 unsigned long nr_pages; 1117 u64 cur_end; 1118 int limit = 10 * 1024 * 1024; 1119 1120 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1121 1, 0, NULL, GFP_NOFS); 1122 while (start < end) { 1123 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1124 BUG_ON(!async_cow); /* -ENOMEM */ 1125 async_cow->inode = igrab(inode); 1126 async_cow->root = root; 1127 async_cow->locked_page = locked_page; 1128 async_cow->start = start; 1129 1130 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1131 !btrfs_test_opt(root, FORCE_COMPRESS)) 1132 cur_end = end; 1133 else 1134 cur_end = min(end, start + 512 * 1024 - 1); 1135 1136 async_cow->end = cur_end; 1137 INIT_LIST_HEAD(&async_cow->extents); 1138 1139 btrfs_init_work(&async_cow->work, 1140 btrfs_delalloc_helper, 1141 async_cow_start, async_cow_submit, 1142 async_cow_free); 1143 1144 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1145 PAGE_CACHE_SHIFT; 1146 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1147 1148 btrfs_queue_work(root->fs_info->delalloc_workers, 1149 &async_cow->work); 1150 1151 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1152 wait_event(root->fs_info->async_submit_wait, 1153 (atomic_read(&root->fs_info->async_delalloc_pages) < 1154 limit)); 1155 } 1156 1157 while (atomic_read(&root->fs_info->async_submit_draining) && 1158 atomic_read(&root->fs_info->async_delalloc_pages)) { 1159 wait_event(root->fs_info->async_submit_wait, 1160 (atomic_read(&root->fs_info->async_delalloc_pages) == 1161 0)); 1162 } 1163 1164 *nr_written += nr_pages; 1165 start = cur_end + 1; 1166 } 1167 *page_started = 1; 1168 return 0; 1169 } 1170 1171 static noinline int csum_exist_in_range(struct btrfs_root *root, 1172 u64 bytenr, u64 num_bytes) 1173 { 1174 int ret; 1175 struct btrfs_ordered_sum *sums; 1176 LIST_HEAD(list); 1177 1178 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1179 bytenr + num_bytes - 1, &list, 0); 1180 if (ret == 0 && list_empty(&list)) 1181 return 0; 1182 1183 while (!list_empty(&list)) { 1184 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1185 list_del(&sums->list); 1186 kfree(sums); 1187 } 1188 return 1; 1189 } 1190 1191 /* 1192 * when nowcow writeback call back. This checks for snapshots or COW copies 1193 * of the extents that exist in the file, and COWs the file as required. 1194 * 1195 * If no cow copies or snapshots exist, we write directly to the existing 1196 * blocks on disk 1197 */ 1198 static noinline int run_delalloc_nocow(struct inode *inode, 1199 struct page *locked_page, 1200 u64 start, u64 end, int *page_started, int force, 1201 unsigned long *nr_written) 1202 { 1203 struct btrfs_root *root = BTRFS_I(inode)->root; 1204 struct btrfs_trans_handle *trans; 1205 struct extent_buffer *leaf; 1206 struct btrfs_path *path; 1207 struct btrfs_file_extent_item *fi; 1208 struct btrfs_key found_key; 1209 u64 cow_start; 1210 u64 cur_offset; 1211 u64 extent_end; 1212 u64 extent_offset; 1213 u64 disk_bytenr; 1214 u64 num_bytes; 1215 u64 disk_num_bytes; 1216 u64 ram_bytes; 1217 int extent_type; 1218 int ret, err; 1219 int type; 1220 int nocow; 1221 int check_prev = 1; 1222 bool nolock; 1223 u64 ino = btrfs_ino(inode); 1224 1225 path = btrfs_alloc_path(); 1226 if (!path) { 1227 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1228 EXTENT_LOCKED | EXTENT_DELALLOC | 1229 EXTENT_DO_ACCOUNTING | 1230 EXTENT_DEFRAG, PAGE_UNLOCK | 1231 PAGE_CLEAR_DIRTY | 1232 PAGE_SET_WRITEBACK | 1233 PAGE_END_WRITEBACK); 1234 return -ENOMEM; 1235 } 1236 1237 nolock = btrfs_is_free_space_inode(inode); 1238 1239 if (nolock) 1240 trans = btrfs_join_transaction_nolock(root); 1241 else 1242 trans = btrfs_join_transaction(root); 1243 1244 if (IS_ERR(trans)) { 1245 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1246 EXTENT_LOCKED | EXTENT_DELALLOC | 1247 EXTENT_DO_ACCOUNTING | 1248 EXTENT_DEFRAG, PAGE_UNLOCK | 1249 PAGE_CLEAR_DIRTY | 1250 PAGE_SET_WRITEBACK | 1251 PAGE_END_WRITEBACK); 1252 btrfs_free_path(path); 1253 return PTR_ERR(trans); 1254 } 1255 1256 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1257 1258 cow_start = (u64)-1; 1259 cur_offset = start; 1260 while (1) { 1261 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1262 cur_offset, 0); 1263 if (ret < 0) 1264 goto error; 1265 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1266 leaf = path->nodes[0]; 1267 btrfs_item_key_to_cpu(leaf, &found_key, 1268 path->slots[0] - 1); 1269 if (found_key.objectid == ino && 1270 found_key.type == BTRFS_EXTENT_DATA_KEY) 1271 path->slots[0]--; 1272 } 1273 check_prev = 0; 1274 next_slot: 1275 leaf = path->nodes[0]; 1276 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1277 ret = btrfs_next_leaf(root, path); 1278 if (ret < 0) 1279 goto error; 1280 if (ret > 0) 1281 break; 1282 leaf = path->nodes[0]; 1283 } 1284 1285 nocow = 0; 1286 disk_bytenr = 0; 1287 num_bytes = 0; 1288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1289 1290 if (found_key.objectid > ino || 1291 found_key.type > BTRFS_EXTENT_DATA_KEY || 1292 found_key.offset > end) 1293 break; 1294 1295 if (found_key.offset > cur_offset) { 1296 extent_end = found_key.offset; 1297 extent_type = 0; 1298 goto out_check; 1299 } 1300 1301 fi = btrfs_item_ptr(leaf, path->slots[0], 1302 struct btrfs_file_extent_item); 1303 extent_type = btrfs_file_extent_type(leaf, fi); 1304 1305 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1306 if (extent_type == BTRFS_FILE_EXTENT_REG || 1307 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1308 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1309 extent_offset = btrfs_file_extent_offset(leaf, fi); 1310 extent_end = found_key.offset + 1311 btrfs_file_extent_num_bytes(leaf, fi); 1312 disk_num_bytes = 1313 btrfs_file_extent_disk_num_bytes(leaf, fi); 1314 if (extent_end <= start) { 1315 path->slots[0]++; 1316 goto next_slot; 1317 } 1318 if (disk_bytenr == 0) 1319 goto out_check; 1320 if (btrfs_file_extent_compression(leaf, fi) || 1321 btrfs_file_extent_encryption(leaf, fi) || 1322 btrfs_file_extent_other_encoding(leaf, fi)) 1323 goto out_check; 1324 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1325 goto out_check; 1326 if (btrfs_extent_readonly(root, disk_bytenr)) 1327 goto out_check; 1328 if (btrfs_cross_ref_exist(trans, root, ino, 1329 found_key.offset - 1330 extent_offset, disk_bytenr)) 1331 goto out_check; 1332 disk_bytenr += extent_offset; 1333 disk_bytenr += cur_offset - found_key.offset; 1334 num_bytes = min(end + 1, extent_end) - cur_offset; 1335 /* 1336 * if there are pending snapshots for this root, 1337 * we fall into common COW way. 1338 */ 1339 if (!nolock) { 1340 err = btrfs_start_write_no_snapshoting(root); 1341 if (!err) 1342 goto out_check; 1343 } 1344 /* 1345 * force cow if csum exists in the range. 1346 * this ensure that csum for a given extent are 1347 * either valid or do not exist. 1348 */ 1349 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1350 goto out_check; 1351 nocow = 1; 1352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1353 extent_end = found_key.offset + 1354 btrfs_file_extent_inline_len(leaf, 1355 path->slots[0], fi); 1356 extent_end = ALIGN(extent_end, root->sectorsize); 1357 } else { 1358 BUG_ON(1); 1359 } 1360 out_check: 1361 if (extent_end <= start) { 1362 path->slots[0]++; 1363 if (!nolock && nocow) 1364 btrfs_end_write_no_snapshoting(root); 1365 goto next_slot; 1366 } 1367 if (!nocow) { 1368 if (cow_start == (u64)-1) 1369 cow_start = cur_offset; 1370 cur_offset = extent_end; 1371 if (cur_offset > end) 1372 break; 1373 path->slots[0]++; 1374 goto next_slot; 1375 } 1376 1377 btrfs_release_path(path); 1378 if (cow_start != (u64)-1) { 1379 ret = cow_file_range(inode, locked_page, 1380 cow_start, found_key.offset - 1, 1381 page_started, nr_written, 1); 1382 if (ret) { 1383 if (!nolock && nocow) 1384 btrfs_end_write_no_snapshoting(root); 1385 goto error; 1386 } 1387 cow_start = (u64)-1; 1388 } 1389 1390 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1391 struct extent_map *em; 1392 struct extent_map_tree *em_tree; 1393 em_tree = &BTRFS_I(inode)->extent_tree; 1394 em = alloc_extent_map(); 1395 BUG_ON(!em); /* -ENOMEM */ 1396 em->start = cur_offset; 1397 em->orig_start = found_key.offset - extent_offset; 1398 em->len = num_bytes; 1399 em->block_len = num_bytes; 1400 em->block_start = disk_bytenr; 1401 em->orig_block_len = disk_num_bytes; 1402 em->ram_bytes = ram_bytes; 1403 em->bdev = root->fs_info->fs_devices->latest_bdev; 1404 em->mod_start = em->start; 1405 em->mod_len = em->len; 1406 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1407 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1408 em->generation = -1; 1409 while (1) { 1410 write_lock(&em_tree->lock); 1411 ret = add_extent_mapping(em_tree, em, 1); 1412 write_unlock(&em_tree->lock); 1413 if (ret != -EEXIST) { 1414 free_extent_map(em); 1415 break; 1416 } 1417 btrfs_drop_extent_cache(inode, em->start, 1418 em->start + em->len - 1, 0); 1419 } 1420 type = BTRFS_ORDERED_PREALLOC; 1421 } else { 1422 type = BTRFS_ORDERED_NOCOW; 1423 } 1424 1425 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1426 num_bytes, num_bytes, type); 1427 BUG_ON(ret); /* -ENOMEM */ 1428 1429 if (root->root_key.objectid == 1430 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1431 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1432 num_bytes); 1433 if (ret) { 1434 if (!nolock && nocow) 1435 btrfs_end_write_no_snapshoting(root); 1436 goto error; 1437 } 1438 } 1439 1440 extent_clear_unlock_delalloc(inode, cur_offset, 1441 cur_offset + num_bytes - 1, 1442 locked_page, EXTENT_LOCKED | 1443 EXTENT_DELALLOC, PAGE_UNLOCK | 1444 PAGE_SET_PRIVATE2); 1445 if (!nolock && nocow) 1446 btrfs_end_write_no_snapshoting(root); 1447 cur_offset = extent_end; 1448 if (cur_offset > end) 1449 break; 1450 } 1451 btrfs_release_path(path); 1452 1453 if (cur_offset <= end && cow_start == (u64)-1) { 1454 cow_start = cur_offset; 1455 cur_offset = end; 1456 } 1457 1458 if (cow_start != (u64)-1) { 1459 ret = cow_file_range(inode, locked_page, cow_start, end, 1460 page_started, nr_written, 1); 1461 if (ret) 1462 goto error; 1463 } 1464 1465 error: 1466 err = btrfs_end_transaction(trans, root); 1467 if (!ret) 1468 ret = err; 1469 1470 if (ret && cur_offset < end) 1471 extent_clear_unlock_delalloc(inode, cur_offset, end, 1472 locked_page, EXTENT_LOCKED | 1473 EXTENT_DELALLOC | EXTENT_DEFRAG | 1474 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1475 PAGE_CLEAR_DIRTY | 1476 PAGE_SET_WRITEBACK | 1477 PAGE_END_WRITEBACK); 1478 btrfs_free_path(path); 1479 return ret; 1480 } 1481 1482 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1483 { 1484 1485 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1486 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1487 return 0; 1488 1489 /* 1490 * @defrag_bytes is a hint value, no spinlock held here, 1491 * if is not zero, it means the file is defragging. 1492 * Force cow if given extent needs to be defragged. 1493 */ 1494 if (BTRFS_I(inode)->defrag_bytes && 1495 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1496 EXTENT_DEFRAG, 0, NULL)) 1497 return 1; 1498 1499 return 0; 1500 } 1501 1502 /* 1503 * extent_io.c call back to do delayed allocation processing 1504 */ 1505 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1506 u64 start, u64 end, int *page_started, 1507 unsigned long *nr_written) 1508 { 1509 int ret; 1510 int force_cow = need_force_cow(inode, start, end); 1511 1512 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1513 ret = run_delalloc_nocow(inode, locked_page, start, end, 1514 page_started, 1, nr_written); 1515 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1516 ret = run_delalloc_nocow(inode, locked_page, start, end, 1517 page_started, 0, nr_written); 1518 } else if (!inode_need_compress(inode)) { 1519 ret = cow_file_range(inode, locked_page, start, end, 1520 page_started, nr_written, 1); 1521 } else { 1522 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1523 &BTRFS_I(inode)->runtime_flags); 1524 ret = cow_file_range_async(inode, locked_page, start, end, 1525 page_started, nr_written); 1526 } 1527 return ret; 1528 } 1529 1530 static void btrfs_split_extent_hook(struct inode *inode, 1531 struct extent_state *orig, u64 split) 1532 { 1533 u64 size; 1534 1535 /* not delalloc, ignore it */ 1536 if (!(orig->state & EXTENT_DELALLOC)) 1537 return; 1538 1539 size = orig->end - orig->start + 1; 1540 if (size > BTRFS_MAX_EXTENT_SIZE) { 1541 u64 num_extents; 1542 u64 new_size; 1543 1544 /* 1545 * We need the largest size of the remaining extent to see if we 1546 * need to add a new outstanding extent. Think of the following 1547 * case 1548 * 1549 * [MEAX_EXTENT_SIZEx2 - 4k][4k] 1550 * 1551 * The new_size would just be 4k and we'd think we had enough 1552 * outstanding extents for this if we only took one side of the 1553 * split, same goes for the other direction. We need to see if 1554 * the larger size still is the same amount of extents as the 1555 * original size, because if it is we need to add a new 1556 * outstanding extent. But if we split up and the larger size 1557 * is less than the original then we are good to go since we've 1558 * already accounted for the extra extent in our original 1559 * accounting. 1560 */ 1561 new_size = orig->end - split + 1; 1562 if ((split - orig->start) > new_size) 1563 new_size = split - orig->start; 1564 1565 num_extents = div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1566 BTRFS_MAX_EXTENT_SIZE); 1567 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1568 BTRFS_MAX_EXTENT_SIZE) < num_extents) 1569 return; 1570 } 1571 1572 spin_lock(&BTRFS_I(inode)->lock); 1573 BTRFS_I(inode)->outstanding_extents++; 1574 spin_unlock(&BTRFS_I(inode)->lock); 1575 } 1576 1577 /* 1578 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1579 * extents so we can keep track of new extents that are just merged onto old 1580 * extents, such as when we are doing sequential writes, so we can properly 1581 * account for the metadata space we'll need. 1582 */ 1583 static void btrfs_merge_extent_hook(struct inode *inode, 1584 struct extent_state *new, 1585 struct extent_state *other) 1586 { 1587 u64 new_size, old_size; 1588 u64 num_extents; 1589 1590 /* not delalloc, ignore it */ 1591 if (!(other->state & EXTENT_DELALLOC)) 1592 return; 1593 1594 old_size = other->end - other->start + 1; 1595 new_size = old_size + (new->end - new->start + 1); 1596 1597 /* we're not bigger than the max, unreserve the space and go */ 1598 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1599 spin_lock(&BTRFS_I(inode)->lock); 1600 BTRFS_I(inode)->outstanding_extents--; 1601 spin_unlock(&BTRFS_I(inode)->lock); 1602 return; 1603 } 1604 1605 /* 1606 * If we grew by another max_extent, just return, we want to keep that 1607 * reserved amount. 1608 */ 1609 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1610 BTRFS_MAX_EXTENT_SIZE); 1611 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1612 BTRFS_MAX_EXTENT_SIZE) > num_extents) 1613 return; 1614 1615 spin_lock(&BTRFS_I(inode)->lock); 1616 BTRFS_I(inode)->outstanding_extents--; 1617 spin_unlock(&BTRFS_I(inode)->lock); 1618 } 1619 1620 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1621 struct inode *inode) 1622 { 1623 spin_lock(&root->delalloc_lock); 1624 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1625 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1626 &root->delalloc_inodes); 1627 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1628 &BTRFS_I(inode)->runtime_flags); 1629 root->nr_delalloc_inodes++; 1630 if (root->nr_delalloc_inodes == 1) { 1631 spin_lock(&root->fs_info->delalloc_root_lock); 1632 BUG_ON(!list_empty(&root->delalloc_root)); 1633 list_add_tail(&root->delalloc_root, 1634 &root->fs_info->delalloc_roots); 1635 spin_unlock(&root->fs_info->delalloc_root_lock); 1636 } 1637 } 1638 spin_unlock(&root->delalloc_lock); 1639 } 1640 1641 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1642 struct inode *inode) 1643 { 1644 spin_lock(&root->delalloc_lock); 1645 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1646 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1647 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1648 &BTRFS_I(inode)->runtime_flags); 1649 root->nr_delalloc_inodes--; 1650 if (!root->nr_delalloc_inodes) { 1651 spin_lock(&root->fs_info->delalloc_root_lock); 1652 BUG_ON(list_empty(&root->delalloc_root)); 1653 list_del_init(&root->delalloc_root); 1654 spin_unlock(&root->fs_info->delalloc_root_lock); 1655 } 1656 } 1657 spin_unlock(&root->delalloc_lock); 1658 } 1659 1660 /* 1661 * extent_io.c set_bit_hook, used to track delayed allocation 1662 * bytes in this file, and to maintain the list of inodes that 1663 * have pending delalloc work to be done. 1664 */ 1665 static void btrfs_set_bit_hook(struct inode *inode, 1666 struct extent_state *state, unsigned *bits) 1667 { 1668 1669 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1670 WARN_ON(1); 1671 /* 1672 * set_bit and clear bit hooks normally require _irqsave/restore 1673 * but in this case, we are only testing for the DELALLOC 1674 * bit, which is only set or cleared with irqs on 1675 */ 1676 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1677 struct btrfs_root *root = BTRFS_I(inode)->root; 1678 u64 len = state->end + 1 - state->start; 1679 bool do_list = !btrfs_is_free_space_inode(inode); 1680 1681 if (*bits & EXTENT_FIRST_DELALLOC) { 1682 *bits &= ~EXTENT_FIRST_DELALLOC; 1683 } else { 1684 spin_lock(&BTRFS_I(inode)->lock); 1685 BTRFS_I(inode)->outstanding_extents++; 1686 spin_unlock(&BTRFS_I(inode)->lock); 1687 } 1688 1689 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1690 root->fs_info->delalloc_batch); 1691 spin_lock(&BTRFS_I(inode)->lock); 1692 BTRFS_I(inode)->delalloc_bytes += len; 1693 if (*bits & EXTENT_DEFRAG) 1694 BTRFS_I(inode)->defrag_bytes += len; 1695 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1696 &BTRFS_I(inode)->runtime_flags)) 1697 btrfs_add_delalloc_inodes(root, inode); 1698 spin_unlock(&BTRFS_I(inode)->lock); 1699 } 1700 } 1701 1702 /* 1703 * extent_io.c clear_bit_hook, see set_bit_hook for why 1704 */ 1705 static void btrfs_clear_bit_hook(struct inode *inode, 1706 struct extent_state *state, 1707 unsigned *bits) 1708 { 1709 u64 len = state->end + 1 - state->start; 1710 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1711 BTRFS_MAX_EXTENT_SIZE); 1712 1713 spin_lock(&BTRFS_I(inode)->lock); 1714 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1715 BTRFS_I(inode)->defrag_bytes -= len; 1716 spin_unlock(&BTRFS_I(inode)->lock); 1717 1718 /* 1719 * set_bit and clear bit hooks normally require _irqsave/restore 1720 * but in this case, we are only testing for the DELALLOC 1721 * bit, which is only set or cleared with irqs on 1722 */ 1723 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1724 struct btrfs_root *root = BTRFS_I(inode)->root; 1725 bool do_list = !btrfs_is_free_space_inode(inode); 1726 1727 if (*bits & EXTENT_FIRST_DELALLOC) { 1728 *bits &= ~EXTENT_FIRST_DELALLOC; 1729 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1730 spin_lock(&BTRFS_I(inode)->lock); 1731 BTRFS_I(inode)->outstanding_extents -= num_extents; 1732 spin_unlock(&BTRFS_I(inode)->lock); 1733 } 1734 1735 /* 1736 * We don't reserve metadata space for space cache inodes so we 1737 * don't need to call dellalloc_release_metadata if there is an 1738 * error. 1739 */ 1740 if (*bits & EXTENT_DO_ACCOUNTING && 1741 root != root->fs_info->tree_root) 1742 btrfs_delalloc_release_metadata(inode, len); 1743 1744 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1745 && do_list && !(state->state & EXTENT_NORESERVE)) 1746 btrfs_free_reserved_data_space(inode, len); 1747 1748 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1749 root->fs_info->delalloc_batch); 1750 spin_lock(&BTRFS_I(inode)->lock); 1751 BTRFS_I(inode)->delalloc_bytes -= len; 1752 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1753 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1754 &BTRFS_I(inode)->runtime_flags)) 1755 btrfs_del_delalloc_inode(root, inode); 1756 spin_unlock(&BTRFS_I(inode)->lock); 1757 } 1758 } 1759 1760 /* 1761 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1762 * we don't create bios that span stripes or chunks 1763 */ 1764 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1765 size_t size, struct bio *bio, 1766 unsigned long bio_flags) 1767 { 1768 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1769 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1770 u64 length = 0; 1771 u64 map_length; 1772 int ret; 1773 1774 if (bio_flags & EXTENT_BIO_COMPRESSED) 1775 return 0; 1776 1777 length = bio->bi_iter.bi_size; 1778 map_length = length; 1779 ret = btrfs_map_block(root->fs_info, rw, logical, 1780 &map_length, NULL, 0); 1781 /* Will always return 0 with map_multi == NULL */ 1782 BUG_ON(ret < 0); 1783 if (map_length < length + size) 1784 return 1; 1785 return 0; 1786 } 1787 1788 /* 1789 * in order to insert checksums into the metadata in large chunks, 1790 * we wait until bio submission time. All the pages in the bio are 1791 * checksummed and sums are attached onto the ordered extent record. 1792 * 1793 * At IO completion time the cums attached on the ordered extent record 1794 * are inserted into the btree 1795 */ 1796 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1797 struct bio *bio, int mirror_num, 1798 unsigned long bio_flags, 1799 u64 bio_offset) 1800 { 1801 struct btrfs_root *root = BTRFS_I(inode)->root; 1802 int ret = 0; 1803 1804 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1805 BUG_ON(ret); /* -ENOMEM */ 1806 return 0; 1807 } 1808 1809 /* 1810 * in order to insert checksums into the metadata in large chunks, 1811 * we wait until bio submission time. All the pages in the bio are 1812 * checksummed and sums are attached onto the ordered extent record. 1813 * 1814 * At IO completion time the cums attached on the ordered extent record 1815 * are inserted into the btree 1816 */ 1817 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1818 int mirror_num, unsigned long bio_flags, 1819 u64 bio_offset) 1820 { 1821 struct btrfs_root *root = BTRFS_I(inode)->root; 1822 int ret; 1823 1824 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1825 if (ret) 1826 bio_endio(bio, ret); 1827 return ret; 1828 } 1829 1830 /* 1831 * extent_io.c submission hook. This does the right thing for csum calculation 1832 * on write, or reading the csums from the tree before a read 1833 */ 1834 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1835 int mirror_num, unsigned long bio_flags, 1836 u64 bio_offset) 1837 { 1838 struct btrfs_root *root = BTRFS_I(inode)->root; 1839 int ret = 0; 1840 int skip_sum; 1841 int metadata = 0; 1842 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1843 1844 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1845 1846 if (btrfs_is_free_space_inode(inode)) 1847 metadata = 2; 1848 1849 if (!(rw & REQ_WRITE)) { 1850 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1851 if (ret) 1852 goto out; 1853 1854 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1855 ret = btrfs_submit_compressed_read(inode, bio, 1856 mirror_num, 1857 bio_flags); 1858 goto out; 1859 } else if (!skip_sum) { 1860 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1861 if (ret) 1862 goto out; 1863 } 1864 goto mapit; 1865 } else if (async && !skip_sum) { 1866 /* csum items have already been cloned */ 1867 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1868 goto mapit; 1869 /* we're doing a write, do the async checksumming */ 1870 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1871 inode, rw, bio, mirror_num, 1872 bio_flags, bio_offset, 1873 __btrfs_submit_bio_start, 1874 __btrfs_submit_bio_done); 1875 goto out; 1876 } else if (!skip_sum) { 1877 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1878 if (ret) 1879 goto out; 1880 } 1881 1882 mapit: 1883 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1884 1885 out: 1886 if (ret < 0) 1887 bio_endio(bio, ret); 1888 return ret; 1889 } 1890 1891 /* 1892 * given a list of ordered sums record them in the inode. This happens 1893 * at IO completion time based on sums calculated at bio submission time. 1894 */ 1895 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1896 struct inode *inode, u64 file_offset, 1897 struct list_head *list) 1898 { 1899 struct btrfs_ordered_sum *sum; 1900 1901 list_for_each_entry(sum, list, list) { 1902 trans->adding_csums = 1; 1903 btrfs_csum_file_blocks(trans, 1904 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1905 trans->adding_csums = 0; 1906 } 1907 return 0; 1908 } 1909 1910 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1911 struct extent_state **cached_state) 1912 { 1913 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1914 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1915 cached_state, GFP_NOFS); 1916 } 1917 1918 /* see btrfs_writepage_start_hook for details on why this is required */ 1919 struct btrfs_writepage_fixup { 1920 struct page *page; 1921 struct btrfs_work work; 1922 }; 1923 1924 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1925 { 1926 struct btrfs_writepage_fixup *fixup; 1927 struct btrfs_ordered_extent *ordered; 1928 struct extent_state *cached_state = NULL; 1929 struct page *page; 1930 struct inode *inode; 1931 u64 page_start; 1932 u64 page_end; 1933 int ret; 1934 1935 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1936 page = fixup->page; 1937 again: 1938 lock_page(page); 1939 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1940 ClearPageChecked(page); 1941 goto out_page; 1942 } 1943 1944 inode = page->mapping->host; 1945 page_start = page_offset(page); 1946 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1947 1948 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1949 &cached_state); 1950 1951 /* already ordered? We're done */ 1952 if (PagePrivate2(page)) 1953 goto out; 1954 1955 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1956 if (ordered) { 1957 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1958 page_end, &cached_state, GFP_NOFS); 1959 unlock_page(page); 1960 btrfs_start_ordered_extent(inode, ordered, 1); 1961 btrfs_put_ordered_extent(ordered); 1962 goto again; 1963 } 1964 1965 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1966 if (ret) { 1967 mapping_set_error(page->mapping, ret); 1968 end_extent_writepage(page, ret, page_start, page_end); 1969 ClearPageChecked(page); 1970 goto out; 1971 } 1972 1973 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1974 ClearPageChecked(page); 1975 set_page_dirty(page); 1976 out: 1977 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1978 &cached_state, GFP_NOFS); 1979 out_page: 1980 unlock_page(page); 1981 page_cache_release(page); 1982 kfree(fixup); 1983 } 1984 1985 /* 1986 * There are a few paths in the higher layers of the kernel that directly 1987 * set the page dirty bit without asking the filesystem if it is a 1988 * good idea. This causes problems because we want to make sure COW 1989 * properly happens and the data=ordered rules are followed. 1990 * 1991 * In our case any range that doesn't have the ORDERED bit set 1992 * hasn't been properly setup for IO. We kick off an async process 1993 * to fix it up. The async helper will wait for ordered extents, set 1994 * the delalloc bit and make it safe to write the page. 1995 */ 1996 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1997 { 1998 struct inode *inode = page->mapping->host; 1999 struct btrfs_writepage_fixup *fixup; 2000 struct btrfs_root *root = BTRFS_I(inode)->root; 2001 2002 /* this page is properly in the ordered list */ 2003 if (TestClearPagePrivate2(page)) 2004 return 0; 2005 2006 if (PageChecked(page)) 2007 return -EAGAIN; 2008 2009 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2010 if (!fixup) 2011 return -EAGAIN; 2012 2013 SetPageChecked(page); 2014 page_cache_get(page); 2015 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2016 btrfs_writepage_fixup_worker, NULL, NULL); 2017 fixup->page = page; 2018 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2019 return -EBUSY; 2020 } 2021 2022 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2023 struct inode *inode, u64 file_pos, 2024 u64 disk_bytenr, u64 disk_num_bytes, 2025 u64 num_bytes, u64 ram_bytes, 2026 u8 compression, u8 encryption, 2027 u16 other_encoding, int extent_type) 2028 { 2029 struct btrfs_root *root = BTRFS_I(inode)->root; 2030 struct btrfs_file_extent_item *fi; 2031 struct btrfs_path *path; 2032 struct extent_buffer *leaf; 2033 struct btrfs_key ins; 2034 int extent_inserted = 0; 2035 int ret; 2036 2037 path = btrfs_alloc_path(); 2038 if (!path) 2039 return -ENOMEM; 2040 2041 /* 2042 * we may be replacing one extent in the tree with another. 2043 * The new extent is pinned in the extent map, and we don't want 2044 * to drop it from the cache until it is completely in the btree. 2045 * 2046 * So, tell btrfs_drop_extents to leave this extent in the cache. 2047 * the caller is expected to unpin it and allow it to be merged 2048 * with the others. 2049 */ 2050 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2051 file_pos + num_bytes, NULL, 0, 2052 1, sizeof(*fi), &extent_inserted); 2053 if (ret) 2054 goto out; 2055 2056 if (!extent_inserted) { 2057 ins.objectid = btrfs_ino(inode); 2058 ins.offset = file_pos; 2059 ins.type = BTRFS_EXTENT_DATA_KEY; 2060 2061 path->leave_spinning = 1; 2062 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2063 sizeof(*fi)); 2064 if (ret) 2065 goto out; 2066 } 2067 leaf = path->nodes[0]; 2068 fi = btrfs_item_ptr(leaf, path->slots[0], 2069 struct btrfs_file_extent_item); 2070 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2071 btrfs_set_file_extent_type(leaf, fi, extent_type); 2072 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2073 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2074 btrfs_set_file_extent_offset(leaf, fi, 0); 2075 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2076 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2077 btrfs_set_file_extent_compression(leaf, fi, compression); 2078 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2079 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2080 2081 btrfs_mark_buffer_dirty(leaf); 2082 btrfs_release_path(path); 2083 2084 inode_add_bytes(inode, num_bytes); 2085 2086 ins.objectid = disk_bytenr; 2087 ins.offset = disk_num_bytes; 2088 ins.type = BTRFS_EXTENT_ITEM_KEY; 2089 ret = btrfs_alloc_reserved_file_extent(trans, root, 2090 root->root_key.objectid, 2091 btrfs_ino(inode), file_pos, &ins); 2092 out: 2093 btrfs_free_path(path); 2094 2095 return ret; 2096 } 2097 2098 /* snapshot-aware defrag */ 2099 struct sa_defrag_extent_backref { 2100 struct rb_node node; 2101 struct old_sa_defrag_extent *old; 2102 u64 root_id; 2103 u64 inum; 2104 u64 file_pos; 2105 u64 extent_offset; 2106 u64 num_bytes; 2107 u64 generation; 2108 }; 2109 2110 struct old_sa_defrag_extent { 2111 struct list_head list; 2112 struct new_sa_defrag_extent *new; 2113 2114 u64 extent_offset; 2115 u64 bytenr; 2116 u64 offset; 2117 u64 len; 2118 int count; 2119 }; 2120 2121 struct new_sa_defrag_extent { 2122 struct rb_root root; 2123 struct list_head head; 2124 struct btrfs_path *path; 2125 struct inode *inode; 2126 u64 file_pos; 2127 u64 len; 2128 u64 bytenr; 2129 u64 disk_len; 2130 u8 compress_type; 2131 }; 2132 2133 static int backref_comp(struct sa_defrag_extent_backref *b1, 2134 struct sa_defrag_extent_backref *b2) 2135 { 2136 if (b1->root_id < b2->root_id) 2137 return -1; 2138 else if (b1->root_id > b2->root_id) 2139 return 1; 2140 2141 if (b1->inum < b2->inum) 2142 return -1; 2143 else if (b1->inum > b2->inum) 2144 return 1; 2145 2146 if (b1->file_pos < b2->file_pos) 2147 return -1; 2148 else if (b1->file_pos > b2->file_pos) 2149 return 1; 2150 2151 /* 2152 * [------------------------------] ===> (a range of space) 2153 * |<--->| |<---->| =============> (fs/file tree A) 2154 * |<---------------------------->| ===> (fs/file tree B) 2155 * 2156 * A range of space can refer to two file extents in one tree while 2157 * refer to only one file extent in another tree. 2158 * 2159 * So we may process a disk offset more than one time(two extents in A) 2160 * and locate at the same extent(one extent in B), then insert two same 2161 * backrefs(both refer to the extent in B). 2162 */ 2163 return 0; 2164 } 2165 2166 static void backref_insert(struct rb_root *root, 2167 struct sa_defrag_extent_backref *backref) 2168 { 2169 struct rb_node **p = &root->rb_node; 2170 struct rb_node *parent = NULL; 2171 struct sa_defrag_extent_backref *entry; 2172 int ret; 2173 2174 while (*p) { 2175 parent = *p; 2176 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2177 2178 ret = backref_comp(backref, entry); 2179 if (ret < 0) 2180 p = &(*p)->rb_left; 2181 else 2182 p = &(*p)->rb_right; 2183 } 2184 2185 rb_link_node(&backref->node, parent, p); 2186 rb_insert_color(&backref->node, root); 2187 } 2188 2189 /* 2190 * Note the backref might has changed, and in this case we just return 0. 2191 */ 2192 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2193 void *ctx) 2194 { 2195 struct btrfs_file_extent_item *extent; 2196 struct btrfs_fs_info *fs_info; 2197 struct old_sa_defrag_extent *old = ctx; 2198 struct new_sa_defrag_extent *new = old->new; 2199 struct btrfs_path *path = new->path; 2200 struct btrfs_key key; 2201 struct btrfs_root *root; 2202 struct sa_defrag_extent_backref *backref; 2203 struct extent_buffer *leaf; 2204 struct inode *inode = new->inode; 2205 int slot; 2206 int ret; 2207 u64 extent_offset; 2208 u64 num_bytes; 2209 2210 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2211 inum == btrfs_ino(inode)) 2212 return 0; 2213 2214 key.objectid = root_id; 2215 key.type = BTRFS_ROOT_ITEM_KEY; 2216 key.offset = (u64)-1; 2217 2218 fs_info = BTRFS_I(inode)->root->fs_info; 2219 root = btrfs_read_fs_root_no_name(fs_info, &key); 2220 if (IS_ERR(root)) { 2221 if (PTR_ERR(root) == -ENOENT) 2222 return 0; 2223 WARN_ON(1); 2224 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2225 inum, offset, root_id); 2226 return PTR_ERR(root); 2227 } 2228 2229 key.objectid = inum; 2230 key.type = BTRFS_EXTENT_DATA_KEY; 2231 if (offset > (u64)-1 << 32) 2232 key.offset = 0; 2233 else 2234 key.offset = offset; 2235 2236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2237 if (WARN_ON(ret < 0)) 2238 return ret; 2239 ret = 0; 2240 2241 while (1) { 2242 cond_resched(); 2243 2244 leaf = path->nodes[0]; 2245 slot = path->slots[0]; 2246 2247 if (slot >= btrfs_header_nritems(leaf)) { 2248 ret = btrfs_next_leaf(root, path); 2249 if (ret < 0) { 2250 goto out; 2251 } else if (ret > 0) { 2252 ret = 0; 2253 goto out; 2254 } 2255 continue; 2256 } 2257 2258 path->slots[0]++; 2259 2260 btrfs_item_key_to_cpu(leaf, &key, slot); 2261 2262 if (key.objectid > inum) 2263 goto out; 2264 2265 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2266 continue; 2267 2268 extent = btrfs_item_ptr(leaf, slot, 2269 struct btrfs_file_extent_item); 2270 2271 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2272 continue; 2273 2274 /* 2275 * 'offset' refers to the exact key.offset, 2276 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2277 * (key.offset - extent_offset). 2278 */ 2279 if (key.offset != offset) 2280 continue; 2281 2282 extent_offset = btrfs_file_extent_offset(leaf, extent); 2283 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2284 2285 if (extent_offset >= old->extent_offset + old->offset + 2286 old->len || extent_offset + num_bytes <= 2287 old->extent_offset + old->offset) 2288 continue; 2289 break; 2290 } 2291 2292 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2293 if (!backref) { 2294 ret = -ENOENT; 2295 goto out; 2296 } 2297 2298 backref->root_id = root_id; 2299 backref->inum = inum; 2300 backref->file_pos = offset; 2301 backref->num_bytes = num_bytes; 2302 backref->extent_offset = extent_offset; 2303 backref->generation = btrfs_file_extent_generation(leaf, extent); 2304 backref->old = old; 2305 backref_insert(&new->root, backref); 2306 old->count++; 2307 out: 2308 btrfs_release_path(path); 2309 WARN_ON(ret); 2310 return ret; 2311 } 2312 2313 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2314 struct new_sa_defrag_extent *new) 2315 { 2316 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2317 struct old_sa_defrag_extent *old, *tmp; 2318 int ret; 2319 2320 new->path = path; 2321 2322 list_for_each_entry_safe(old, tmp, &new->head, list) { 2323 ret = iterate_inodes_from_logical(old->bytenr + 2324 old->extent_offset, fs_info, 2325 path, record_one_backref, 2326 old); 2327 if (ret < 0 && ret != -ENOENT) 2328 return false; 2329 2330 /* no backref to be processed for this extent */ 2331 if (!old->count) { 2332 list_del(&old->list); 2333 kfree(old); 2334 } 2335 } 2336 2337 if (list_empty(&new->head)) 2338 return false; 2339 2340 return true; 2341 } 2342 2343 static int relink_is_mergable(struct extent_buffer *leaf, 2344 struct btrfs_file_extent_item *fi, 2345 struct new_sa_defrag_extent *new) 2346 { 2347 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2348 return 0; 2349 2350 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2351 return 0; 2352 2353 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2354 return 0; 2355 2356 if (btrfs_file_extent_encryption(leaf, fi) || 2357 btrfs_file_extent_other_encoding(leaf, fi)) 2358 return 0; 2359 2360 return 1; 2361 } 2362 2363 /* 2364 * Note the backref might has changed, and in this case we just return 0. 2365 */ 2366 static noinline int relink_extent_backref(struct btrfs_path *path, 2367 struct sa_defrag_extent_backref *prev, 2368 struct sa_defrag_extent_backref *backref) 2369 { 2370 struct btrfs_file_extent_item *extent; 2371 struct btrfs_file_extent_item *item; 2372 struct btrfs_ordered_extent *ordered; 2373 struct btrfs_trans_handle *trans; 2374 struct btrfs_fs_info *fs_info; 2375 struct btrfs_root *root; 2376 struct btrfs_key key; 2377 struct extent_buffer *leaf; 2378 struct old_sa_defrag_extent *old = backref->old; 2379 struct new_sa_defrag_extent *new = old->new; 2380 struct inode *src_inode = new->inode; 2381 struct inode *inode; 2382 struct extent_state *cached = NULL; 2383 int ret = 0; 2384 u64 start; 2385 u64 len; 2386 u64 lock_start; 2387 u64 lock_end; 2388 bool merge = false; 2389 int index; 2390 2391 if (prev && prev->root_id == backref->root_id && 2392 prev->inum == backref->inum && 2393 prev->file_pos + prev->num_bytes == backref->file_pos) 2394 merge = true; 2395 2396 /* step 1: get root */ 2397 key.objectid = backref->root_id; 2398 key.type = BTRFS_ROOT_ITEM_KEY; 2399 key.offset = (u64)-1; 2400 2401 fs_info = BTRFS_I(src_inode)->root->fs_info; 2402 index = srcu_read_lock(&fs_info->subvol_srcu); 2403 2404 root = btrfs_read_fs_root_no_name(fs_info, &key); 2405 if (IS_ERR(root)) { 2406 srcu_read_unlock(&fs_info->subvol_srcu, index); 2407 if (PTR_ERR(root) == -ENOENT) 2408 return 0; 2409 return PTR_ERR(root); 2410 } 2411 2412 if (btrfs_root_readonly(root)) { 2413 srcu_read_unlock(&fs_info->subvol_srcu, index); 2414 return 0; 2415 } 2416 2417 /* step 2: get inode */ 2418 key.objectid = backref->inum; 2419 key.type = BTRFS_INODE_ITEM_KEY; 2420 key.offset = 0; 2421 2422 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2423 if (IS_ERR(inode)) { 2424 srcu_read_unlock(&fs_info->subvol_srcu, index); 2425 return 0; 2426 } 2427 2428 srcu_read_unlock(&fs_info->subvol_srcu, index); 2429 2430 /* step 3: relink backref */ 2431 lock_start = backref->file_pos; 2432 lock_end = backref->file_pos + backref->num_bytes - 1; 2433 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2434 0, &cached); 2435 2436 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2437 if (ordered) { 2438 btrfs_put_ordered_extent(ordered); 2439 goto out_unlock; 2440 } 2441 2442 trans = btrfs_join_transaction(root); 2443 if (IS_ERR(trans)) { 2444 ret = PTR_ERR(trans); 2445 goto out_unlock; 2446 } 2447 2448 key.objectid = backref->inum; 2449 key.type = BTRFS_EXTENT_DATA_KEY; 2450 key.offset = backref->file_pos; 2451 2452 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2453 if (ret < 0) { 2454 goto out_free_path; 2455 } else if (ret > 0) { 2456 ret = 0; 2457 goto out_free_path; 2458 } 2459 2460 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2461 struct btrfs_file_extent_item); 2462 2463 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2464 backref->generation) 2465 goto out_free_path; 2466 2467 btrfs_release_path(path); 2468 2469 start = backref->file_pos; 2470 if (backref->extent_offset < old->extent_offset + old->offset) 2471 start += old->extent_offset + old->offset - 2472 backref->extent_offset; 2473 2474 len = min(backref->extent_offset + backref->num_bytes, 2475 old->extent_offset + old->offset + old->len); 2476 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2477 2478 ret = btrfs_drop_extents(trans, root, inode, start, 2479 start + len, 1); 2480 if (ret) 2481 goto out_free_path; 2482 again: 2483 key.objectid = btrfs_ino(inode); 2484 key.type = BTRFS_EXTENT_DATA_KEY; 2485 key.offset = start; 2486 2487 path->leave_spinning = 1; 2488 if (merge) { 2489 struct btrfs_file_extent_item *fi; 2490 u64 extent_len; 2491 struct btrfs_key found_key; 2492 2493 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2494 if (ret < 0) 2495 goto out_free_path; 2496 2497 path->slots[0]--; 2498 leaf = path->nodes[0]; 2499 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2500 2501 fi = btrfs_item_ptr(leaf, path->slots[0], 2502 struct btrfs_file_extent_item); 2503 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2504 2505 if (extent_len + found_key.offset == start && 2506 relink_is_mergable(leaf, fi, new)) { 2507 btrfs_set_file_extent_num_bytes(leaf, fi, 2508 extent_len + len); 2509 btrfs_mark_buffer_dirty(leaf); 2510 inode_add_bytes(inode, len); 2511 2512 ret = 1; 2513 goto out_free_path; 2514 } else { 2515 merge = false; 2516 btrfs_release_path(path); 2517 goto again; 2518 } 2519 } 2520 2521 ret = btrfs_insert_empty_item(trans, root, path, &key, 2522 sizeof(*extent)); 2523 if (ret) { 2524 btrfs_abort_transaction(trans, root, ret); 2525 goto out_free_path; 2526 } 2527 2528 leaf = path->nodes[0]; 2529 item = btrfs_item_ptr(leaf, path->slots[0], 2530 struct btrfs_file_extent_item); 2531 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2532 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2533 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2534 btrfs_set_file_extent_num_bytes(leaf, item, len); 2535 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2536 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2537 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2538 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2539 btrfs_set_file_extent_encryption(leaf, item, 0); 2540 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2541 2542 btrfs_mark_buffer_dirty(leaf); 2543 inode_add_bytes(inode, len); 2544 btrfs_release_path(path); 2545 2546 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2547 new->disk_len, 0, 2548 backref->root_id, backref->inum, 2549 new->file_pos, 0); /* start - extent_offset */ 2550 if (ret) { 2551 btrfs_abort_transaction(trans, root, ret); 2552 goto out_free_path; 2553 } 2554 2555 ret = 1; 2556 out_free_path: 2557 btrfs_release_path(path); 2558 path->leave_spinning = 0; 2559 btrfs_end_transaction(trans, root); 2560 out_unlock: 2561 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2562 &cached, GFP_NOFS); 2563 iput(inode); 2564 return ret; 2565 } 2566 2567 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2568 { 2569 struct old_sa_defrag_extent *old, *tmp; 2570 2571 if (!new) 2572 return; 2573 2574 list_for_each_entry_safe(old, tmp, &new->head, list) { 2575 list_del(&old->list); 2576 kfree(old); 2577 } 2578 kfree(new); 2579 } 2580 2581 static void relink_file_extents(struct new_sa_defrag_extent *new) 2582 { 2583 struct btrfs_path *path; 2584 struct sa_defrag_extent_backref *backref; 2585 struct sa_defrag_extent_backref *prev = NULL; 2586 struct inode *inode; 2587 struct btrfs_root *root; 2588 struct rb_node *node; 2589 int ret; 2590 2591 inode = new->inode; 2592 root = BTRFS_I(inode)->root; 2593 2594 path = btrfs_alloc_path(); 2595 if (!path) 2596 return; 2597 2598 if (!record_extent_backrefs(path, new)) { 2599 btrfs_free_path(path); 2600 goto out; 2601 } 2602 btrfs_release_path(path); 2603 2604 while (1) { 2605 node = rb_first(&new->root); 2606 if (!node) 2607 break; 2608 rb_erase(node, &new->root); 2609 2610 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2611 2612 ret = relink_extent_backref(path, prev, backref); 2613 WARN_ON(ret < 0); 2614 2615 kfree(prev); 2616 2617 if (ret == 1) 2618 prev = backref; 2619 else 2620 prev = NULL; 2621 cond_resched(); 2622 } 2623 kfree(prev); 2624 2625 btrfs_free_path(path); 2626 out: 2627 free_sa_defrag_extent(new); 2628 2629 atomic_dec(&root->fs_info->defrag_running); 2630 wake_up(&root->fs_info->transaction_wait); 2631 } 2632 2633 static struct new_sa_defrag_extent * 2634 record_old_file_extents(struct inode *inode, 2635 struct btrfs_ordered_extent *ordered) 2636 { 2637 struct btrfs_root *root = BTRFS_I(inode)->root; 2638 struct btrfs_path *path; 2639 struct btrfs_key key; 2640 struct old_sa_defrag_extent *old; 2641 struct new_sa_defrag_extent *new; 2642 int ret; 2643 2644 new = kmalloc(sizeof(*new), GFP_NOFS); 2645 if (!new) 2646 return NULL; 2647 2648 new->inode = inode; 2649 new->file_pos = ordered->file_offset; 2650 new->len = ordered->len; 2651 new->bytenr = ordered->start; 2652 new->disk_len = ordered->disk_len; 2653 new->compress_type = ordered->compress_type; 2654 new->root = RB_ROOT; 2655 INIT_LIST_HEAD(&new->head); 2656 2657 path = btrfs_alloc_path(); 2658 if (!path) 2659 goto out_kfree; 2660 2661 key.objectid = btrfs_ino(inode); 2662 key.type = BTRFS_EXTENT_DATA_KEY; 2663 key.offset = new->file_pos; 2664 2665 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2666 if (ret < 0) 2667 goto out_free_path; 2668 if (ret > 0 && path->slots[0] > 0) 2669 path->slots[0]--; 2670 2671 /* find out all the old extents for the file range */ 2672 while (1) { 2673 struct btrfs_file_extent_item *extent; 2674 struct extent_buffer *l; 2675 int slot; 2676 u64 num_bytes; 2677 u64 offset; 2678 u64 end; 2679 u64 disk_bytenr; 2680 u64 extent_offset; 2681 2682 l = path->nodes[0]; 2683 slot = path->slots[0]; 2684 2685 if (slot >= btrfs_header_nritems(l)) { 2686 ret = btrfs_next_leaf(root, path); 2687 if (ret < 0) 2688 goto out_free_path; 2689 else if (ret > 0) 2690 break; 2691 continue; 2692 } 2693 2694 btrfs_item_key_to_cpu(l, &key, slot); 2695 2696 if (key.objectid != btrfs_ino(inode)) 2697 break; 2698 if (key.type != BTRFS_EXTENT_DATA_KEY) 2699 break; 2700 if (key.offset >= new->file_pos + new->len) 2701 break; 2702 2703 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2704 2705 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2706 if (key.offset + num_bytes < new->file_pos) 2707 goto next; 2708 2709 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2710 if (!disk_bytenr) 2711 goto next; 2712 2713 extent_offset = btrfs_file_extent_offset(l, extent); 2714 2715 old = kmalloc(sizeof(*old), GFP_NOFS); 2716 if (!old) 2717 goto out_free_path; 2718 2719 offset = max(new->file_pos, key.offset); 2720 end = min(new->file_pos + new->len, key.offset + num_bytes); 2721 2722 old->bytenr = disk_bytenr; 2723 old->extent_offset = extent_offset; 2724 old->offset = offset - key.offset; 2725 old->len = end - offset; 2726 old->new = new; 2727 old->count = 0; 2728 list_add_tail(&old->list, &new->head); 2729 next: 2730 path->slots[0]++; 2731 cond_resched(); 2732 } 2733 2734 btrfs_free_path(path); 2735 atomic_inc(&root->fs_info->defrag_running); 2736 2737 return new; 2738 2739 out_free_path: 2740 btrfs_free_path(path); 2741 out_kfree: 2742 free_sa_defrag_extent(new); 2743 return NULL; 2744 } 2745 2746 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2747 u64 start, u64 len) 2748 { 2749 struct btrfs_block_group_cache *cache; 2750 2751 cache = btrfs_lookup_block_group(root->fs_info, start); 2752 ASSERT(cache); 2753 2754 spin_lock(&cache->lock); 2755 cache->delalloc_bytes -= len; 2756 spin_unlock(&cache->lock); 2757 2758 btrfs_put_block_group(cache); 2759 } 2760 2761 /* as ordered data IO finishes, this gets called so we can finish 2762 * an ordered extent if the range of bytes in the file it covers are 2763 * fully written. 2764 */ 2765 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2766 { 2767 struct inode *inode = ordered_extent->inode; 2768 struct btrfs_root *root = BTRFS_I(inode)->root; 2769 struct btrfs_trans_handle *trans = NULL; 2770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2771 struct extent_state *cached_state = NULL; 2772 struct new_sa_defrag_extent *new = NULL; 2773 int compress_type = 0; 2774 int ret = 0; 2775 u64 logical_len = ordered_extent->len; 2776 bool nolock; 2777 bool truncated = false; 2778 2779 nolock = btrfs_is_free_space_inode(inode); 2780 2781 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2782 ret = -EIO; 2783 goto out; 2784 } 2785 2786 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2787 ordered_extent->file_offset + 2788 ordered_extent->len - 1); 2789 2790 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2791 truncated = true; 2792 logical_len = ordered_extent->truncated_len; 2793 /* Truncated the entire extent, don't bother adding */ 2794 if (!logical_len) 2795 goto out; 2796 } 2797 2798 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2799 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2800 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2801 if (nolock) 2802 trans = btrfs_join_transaction_nolock(root); 2803 else 2804 trans = btrfs_join_transaction(root); 2805 if (IS_ERR(trans)) { 2806 ret = PTR_ERR(trans); 2807 trans = NULL; 2808 goto out; 2809 } 2810 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2811 ret = btrfs_update_inode_fallback(trans, root, inode); 2812 if (ret) /* -ENOMEM or corruption */ 2813 btrfs_abort_transaction(trans, root, ret); 2814 goto out; 2815 } 2816 2817 lock_extent_bits(io_tree, ordered_extent->file_offset, 2818 ordered_extent->file_offset + ordered_extent->len - 1, 2819 0, &cached_state); 2820 2821 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2822 ordered_extent->file_offset + ordered_extent->len - 1, 2823 EXTENT_DEFRAG, 1, cached_state); 2824 if (ret) { 2825 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2826 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2827 /* the inode is shared */ 2828 new = record_old_file_extents(inode, ordered_extent); 2829 2830 clear_extent_bit(io_tree, ordered_extent->file_offset, 2831 ordered_extent->file_offset + ordered_extent->len - 1, 2832 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2833 } 2834 2835 if (nolock) 2836 trans = btrfs_join_transaction_nolock(root); 2837 else 2838 trans = btrfs_join_transaction(root); 2839 if (IS_ERR(trans)) { 2840 ret = PTR_ERR(trans); 2841 trans = NULL; 2842 goto out_unlock; 2843 } 2844 2845 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2846 2847 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2848 compress_type = ordered_extent->compress_type; 2849 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2850 BUG_ON(compress_type); 2851 ret = btrfs_mark_extent_written(trans, inode, 2852 ordered_extent->file_offset, 2853 ordered_extent->file_offset + 2854 logical_len); 2855 } else { 2856 BUG_ON(root == root->fs_info->tree_root); 2857 ret = insert_reserved_file_extent(trans, inode, 2858 ordered_extent->file_offset, 2859 ordered_extent->start, 2860 ordered_extent->disk_len, 2861 logical_len, logical_len, 2862 compress_type, 0, 0, 2863 BTRFS_FILE_EXTENT_REG); 2864 if (!ret) 2865 btrfs_release_delalloc_bytes(root, 2866 ordered_extent->start, 2867 ordered_extent->disk_len); 2868 } 2869 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2870 ordered_extent->file_offset, ordered_extent->len, 2871 trans->transid); 2872 if (ret < 0) { 2873 btrfs_abort_transaction(trans, root, ret); 2874 goto out_unlock; 2875 } 2876 2877 add_pending_csums(trans, inode, ordered_extent->file_offset, 2878 &ordered_extent->list); 2879 2880 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2881 ret = btrfs_update_inode_fallback(trans, root, inode); 2882 if (ret) { /* -ENOMEM or corruption */ 2883 btrfs_abort_transaction(trans, root, ret); 2884 goto out_unlock; 2885 } 2886 ret = 0; 2887 out_unlock: 2888 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2889 ordered_extent->file_offset + 2890 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2891 out: 2892 if (root != root->fs_info->tree_root) 2893 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2894 if (trans) 2895 btrfs_end_transaction(trans, root); 2896 2897 if (ret || truncated) { 2898 u64 start, end; 2899 2900 if (truncated) 2901 start = ordered_extent->file_offset + logical_len; 2902 else 2903 start = ordered_extent->file_offset; 2904 end = ordered_extent->file_offset + ordered_extent->len - 1; 2905 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2906 2907 /* Drop the cache for the part of the extent we didn't write. */ 2908 btrfs_drop_extent_cache(inode, start, end, 0); 2909 2910 /* 2911 * If the ordered extent had an IOERR or something else went 2912 * wrong we need to return the space for this ordered extent 2913 * back to the allocator. We only free the extent in the 2914 * truncated case if we didn't write out the extent at all. 2915 */ 2916 if ((ret || !logical_len) && 2917 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2918 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2919 btrfs_free_reserved_extent(root, ordered_extent->start, 2920 ordered_extent->disk_len, 1); 2921 } 2922 2923 2924 /* 2925 * This needs to be done to make sure anybody waiting knows we are done 2926 * updating everything for this ordered extent. 2927 */ 2928 btrfs_remove_ordered_extent(inode, ordered_extent); 2929 2930 /* for snapshot-aware defrag */ 2931 if (new) { 2932 if (ret) { 2933 free_sa_defrag_extent(new); 2934 atomic_dec(&root->fs_info->defrag_running); 2935 } else { 2936 relink_file_extents(new); 2937 } 2938 } 2939 2940 /* once for us */ 2941 btrfs_put_ordered_extent(ordered_extent); 2942 /* once for the tree */ 2943 btrfs_put_ordered_extent(ordered_extent); 2944 2945 return ret; 2946 } 2947 2948 static void finish_ordered_fn(struct btrfs_work *work) 2949 { 2950 struct btrfs_ordered_extent *ordered_extent; 2951 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2952 btrfs_finish_ordered_io(ordered_extent); 2953 } 2954 2955 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2956 struct extent_state *state, int uptodate) 2957 { 2958 struct inode *inode = page->mapping->host; 2959 struct btrfs_root *root = BTRFS_I(inode)->root; 2960 struct btrfs_ordered_extent *ordered_extent = NULL; 2961 struct btrfs_workqueue *wq; 2962 btrfs_work_func_t func; 2963 2964 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2965 2966 ClearPagePrivate2(page); 2967 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2968 end - start + 1, uptodate)) 2969 return 0; 2970 2971 if (btrfs_is_free_space_inode(inode)) { 2972 wq = root->fs_info->endio_freespace_worker; 2973 func = btrfs_freespace_write_helper; 2974 } else { 2975 wq = root->fs_info->endio_write_workers; 2976 func = btrfs_endio_write_helper; 2977 } 2978 2979 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 2980 NULL); 2981 btrfs_queue_work(wq, &ordered_extent->work); 2982 2983 return 0; 2984 } 2985 2986 static int __readpage_endio_check(struct inode *inode, 2987 struct btrfs_io_bio *io_bio, 2988 int icsum, struct page *page, 2989 int pgoff, u64 start, size_t len) 2990 { 2991 char *kaddr; 2992 u32 csum_expected; 2993 u32 csum = ~(u32)0; 2994 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2995 DEFAULT_RATELIMIT_BURST); 2996 2997 csum_expected = *(((u32 *)io_bio->csum) + icsum); 2998 2999 kaddr = kmap_atomic(page); 3000 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3001 btrfs_csum_final(csum, (char *)&csum); 3002 if (csum != csum_expected) 3003 goto zeroit; 3004 3005 kunmap_atomic(kaddr); 3006 return 0; 3007 zeroit: 3008 if (__ratelimit(&_rs)) 3009 btrfs_warn(BTRFS_I(inode)->root->fs_info, 3010 "csum failed ino %llu off %llu csum %u expected csum %u", 3011 btrfs_ino(inode), start, csum, csum_expected); 3012 memset(kaddr + pgoff, 1, len); 3013 flush_dcache_page(page); 3014 kunmap_atomic(kaddr); 3015 if (csum_expected == 0) 3016 return 0; 3017 return -EIO; 3018 } 3019 3020 /* 3021 * when reads are done, we need to check csums to verify the data is correct 3022 * if there's a match, we allow the bio to finish. If not, the code in 3023 * extent_io.c will try to find good copies for us. 3024 */ 3025 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3026 u64 phy_offset, struct page *page, 3027 u64 start, u64 end, int mirror) 3028 { 3029 size_t offset = start - page_offset(page); 3030 struct inode *inode = page->mapping->host; 3031 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3032 struct btrfs_root *root = BTRFS_I(inode)->root; 3033 3034 if (PageChecked(page)) { 3035 ClearPageChecked(page); 3036 return 0; 3037 } 3038 3039 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3040 return 0; 3041 3042 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3043 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3044 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3045 GFP_NOFS); 3046 return 0; 3047 } 3048 3049 phy_offset >>= inode->i_sb->s_blocksize_bits; 3050 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3051 start, (size_t)(end - start + 1)); 3052 } 3053 3054 struct delayed_iput { 3055 struct list_head list; 3056 struct inode *inode; 3057 }; 3058 3059 /* JDM: If this is fs-wide, why can't we add a pointer to 3060 * btrfs_inode instead and avoid the allocation? */ 3061 void btrfs_add_delayed_iput(struct inode *inode) 3062 { 3063 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3064 struct delayed_iput *delayed; 3065 3066 if (atomic_add_unless(&inode->i_count, -1, 1)) 3067 return; 3068 3069 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 3070 delayed->inode = inode; 3071 3072 spin_lock(&fs_info->delayed_iput_lock); 3073 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 3074 spin_unlock(&fs_info->delayed_iput_lock); 3075 } 3076 3077 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3078 { 3079 LIST_HEAD(list); 3080 struct btrfs_fs_info *fs_info = root->fs_info; 3081 struct delayed_iput *delayed; 3082 int empty; 3083 3084 spin_lock(&fs_info->delayed_iput_lock); 3085 empty = list_empty(&fs_info->delayed_iputs); 3086 spin_unlock(&fs_info->delayed_iput_lock); 3087 if (empty) 3088 return; 3089 3090 spin_lock(&fs_info->delayed_iput_lock); 3091 list_splice_init(&fs_info->delayed_iputs, &list); 3092 spin_unlock(&fs_info->delayed_iput_lock); 3093 3094 while (!list_empty(&list)) { 3095 delayed = list_entry(list.next, struct delayed_iput, list); 3096 list_del(&delayed->list); 3097 iput(delayed->inode); 3098 kfree(delayed); 3099 } 3100 } 3101 3102 /* 3103 * This is called in transaction commit time. If there are no orphan 3104 * files in the subvolume, it removes orphan item and frees block_rsv 3105 * structure. 3106 */ 3107 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3108 struct btrfs_root *root) 3109 { 3110 struct btrfs_block_rsv *block_rsv; 3111 int ret; 3112 3113 if (atomic_read(&root->orphan_inodes) || 3114 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3115 return; 3116 3117 spin_lock(&root->orphan_lock); 3118 if (atomic_read(&root->orphan_inodes)) { 3119 spin_unlock(&root->orphan_lock); 3120 return; 3121 } 3122 3123 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3124 spin_unlock(&root->orphan_lock); 3125 return; 3126 } 3127 3128 block_rsv = root->orphan_block_rsv; 3129 root->orphan_block_rsv = NULL; 3130 spin_unlock(&root->orphan_lock); 3131 3132 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3133 btrfs_root_refs(&root->root_item) > 0) { 3134 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3135 root->root_key.objectid); 3136 if (ret) 3137 btrfs_abort_transaction(trans, root, ret); 3138 else 3139 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3140 &root->state); 3141 } 3142 3143 if (block_rsv) { 3144 WARN_ON(block_rsv->size > 0); 3145 btrfs_free_block_rsv(root, block_rsv); 3146 } 3147 } 3148 3149 /* 3150 * This creates an orphan entry for the given inode in case something goes 3151 * wrong in the middle of an unlink/truncate. 3152 * 3153 * NOTE: caller of this function should reserve 5 units of metadata for 3154 * this function. 3155 */ 3156 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3157 { 3158 struct btrfs_root *root = BTRFS_I(inode)->root; 3159 struct btrfs_block_rsv *block_rsv = NULL; 3160 int reserve = 0; 3161 int insert = 0; 3162 int ret; 3163 3164 if (!root->orphan_block_rsv) { 3165 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3166 if (!block_rsv) 3167 return -ENOMEM; 3168 } 3169 3170 spin_lock(&root->orphan_lock); 3171 if (!root->orphan_block_rsv) { 3172 root->orphan_block_rsv = block_rsv; 3173 } else if (block_rsv) { 3174 btrfs_free_block_rsv(root, block_rsv); 3175 block_rsv = NULL; 3176 } 3177 3178 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3179 &BTRFS_I(inode)->runtime_flags)) { 3180 #if 0 3181 /* 3182 * For proper ENOSPC handling, we should do orphan 3183 * cleanup when mounting. But this introduces backward 3184 * compatibility issue. 3185 */ 3186 if (!xchg(&root->orphan_item_inserted, 1)) 3187 insert = 2; 3188 else 3189 insert = 1; 3190 #endif 3191 insert = 1; 3192 atomic_inc(&root->orphan_inodes); 3193 } 3194 3195 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3196 &BTRFS_I(inode)->runtime_flags)) 3197 reserve = 1; 3198 spin_unlock(&root->orphan_lock); 3199 3200 /* grab metadata reservation from transaction handle */ 3201 if (reserve) { 3202 ret = btrfs_orphan_reserve_metadata(trans, inode); 3203 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3204 } 3205 3206 /* insert an orphan item to track this unlinked/truncated file */ 3207 if (insert >= 1) { 3208 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3209 if (ret) { 3210 atomic_dec(&root->orphan_inodes); 3211 if (reserve) { 3212 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3213 &BTRFS_I(inode)->runtime_flags); 3214 btrfs_orphan_release_metadata(inode); 3215 } 3216 if (ret != -EEXIST) { 3217 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3218 &BTRFS_I(inode)->runtime_flags); 3219 btrfs_abort_transaction(trans, root, ret); 3220 return ret; 3221 } 3222 } 3223 ret = 0; 3224 } 3225 3226 /* insert an orphan item to track subvolume contains orphan files */ 3227 if (insert >= 2) { 3228 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3229 root->root_key.objectid); 3230 if (ret && ret != -EEXIST) { 3231 btrfs_abort_transaction(trans, root, ret); 3232 return ret; 3233 } 3234 } 3235 return 0; 3236 } 3237 3238 /* 3239 * We have done the truncate/delete so we can go ahead and remove the orphan 3240 * item for this particular inode. 3241 */ 3242 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3243 struct inode *inode) 3244 { 3245 struct btrfs_root *root = BTRFS_I(inode)->root; 3246 int delete_item = 0; 3247 int release_rsv = 0; 3248 int ret = 0; 3249 3250 spin_lock(&root->orphan_lock); 3251 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3252 &BTRFS_I(inode)->runtime_flags)) 3253 delete_item = 1; 3254 3255 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3256 &BTRFS_I(inode)->runtime_flags)) 3257 release_rsv = 1; 3258 spin_unlock(&root->orphan_lock); 3259 3260 if (delete_item) { 3261 atomic_dec(&root->orphan_inodes); 3262 if (trans) 3263 ret = btrfs_del_orphan_item(trans, root, 3264 btrfs_ino(inode)); 3265 } 3266 3267 if (release_rsv) 3268 btrfs_orphan_release_metadata(inode); 3269 3270 return ret; 3271 } 3272 3273 /* 3274 * this cleans up any orphans that may be left on the list from the last use 3275 * of this root. 3276 */ 3277 int btrfs_orphan_cleanup(struct btrfs_root *root) 3278 { 3279 struct btrfs_path *path; 3280 struct extent_buffer *leaf; 3281 struct btrfs_key key, found_key; 3282 struct btrfs_trans_handle *trans; 3283 struct inode *inode; 3284 u64 last_objectid = 0; 3285 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3286 3287 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3288 return 0; 3289 3290 path = btrfs_alloc_path(); 3291 if (!path) { 3292 ret = -ENOMEM; 3293 goto out; 3294 } 3295 path->reada = -1; 3296 3297 key.objectid = BTRFS_ORPHAN_OBJECTID; 3298 key.type = BTRFS_ORPHAN_ITEM_KEY; 3299 key.offset = (u64)-1; 3300 3301 while (1) { 3302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3303 if (ret < 0) 3304 goto out; 3305 3306 /* 3307 * if ret == 0 means we found what we were searching for, which 3308 * is weird, but possible, so only screw with path if we didn't 3309 * find the key and see if we have stuff that matches 3310 */ 3311 if (ret > 0) { 3312 ret = 0; 3313 if (path->slots[0] == 0) 3314 break; 3315 path->slots[0]--; 3316 } 3317 3318 /* pull out the item */ 3319 leaf = path->nodes[0]; 3320 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3321 3322 /* make sure the item matches what we want */ 3323 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3324 break; 3325 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3326 break; 3327 3328 /* release the path since we're done with it */ 3329 btrfs_release_path(path); 3330 3331 /* 3332 * this is where we are basically btrfs_lookup, without the 3333 * crossing root thing. we store the inode number in the 3334 * offset of the orphan item. 3335 */ 3336 3337 if (found_key.offset == last_objectid) { 3338 btrfs_err(root->fs_info, 3339 "Error removing orphan entry, stopping orphan cleanup"); 3340 ret = -EINVAL; 3341 goto out; 3342 } 3343 3344 last_objectid = found_key.offset; 3345 3346 found_key.objectid = found_key.offset; 3347 found_key.type = BTRFS_INODE_ITEM_KEY; 3348 found_key.offset = 0; 3349 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3350 ret = PTR_ERR_OR_ZERO(inode); 3351 if (ret && ret != -ESTALE) 3352 goto out; 3353 3354 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3355 struct btrfs_root *dead_root; 3356 struct btrfs_fs_info *fs_info = root->fs_info; 3357 int is_dead_root = 0; 3358 3359 /* 3360 * this is an orphan in the tree root. Currently these 3361 * could come from 2 sources: 3362 * a) a snapshot deletion in progress 3363 * b) a free space cache inode 3364 * We need to distinguish those two, as the snapshot 3365 * orphan must not get deleted. 3366 * find_dead_roots already ran before us, so if this 3367 * is a snapshot deletion, we should find the root 3368 * in the dead_roots list 3369 */ 3370 spin_lock(&fs_info->trans_lock); 3371 list_for_each_entry(dead_root, &fs_info->dead_roots, 3372 root_list) { 3373 if (dead_root->root_key.objectid == 3374 found_key.objectid) { 3375 is_dead_root = 1; 3376 break; 3377 } 3378 } 3379 spin_unlock(&fs_info->trans_lock); 3380 if (is_dead_root) { 3381 /* prevent this orphan from being found again */ 3382 key.offset = found_key.objectid - 1; 3383 continue; 3384 } 3385 } 3386 /* 3387 * Inode is already gone but the orphan item is still there, 3388 * kill the orphan item. 3389 */ 3390 if (ret == -ESTALE) { 3391 trans = btrfs_start_transaction(root, 1); 3392 if (IS_ERR(trans)) { 3393 ret = PTR_ERR(trans); 3394 goto out; 3395 } 3396 btrfs_debug(root->fs_info, "auto deleting %Lu", 3397 found_key.objectid); 3398 ret = btrfs_del_orphan_item(trans, root, 3399 found_key.objectid); 3400 btrfs_end_transaction(trans, root); 3401 if (ret) 3402 goto out; 3403 continue; 3404 } 3405 3406 /* 3407 * add this inode to the orphan list so btrfs_orphan_del does 3408 * the proper thing when we hit it 3409 */ 3410 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3411 &BTRFS_I(inode)->runtime_flags); 3412 atomic_inc(&root->orphan_inodes); 3413 3414 /* if we have links, this was a truncate, lets do that */ 3415 if (inode->i_nlink) { 3416 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3417 iput(inode); 3418 continue; 3419 } 3420 nr_truncate++; 3421 3422 /* 1 for the orphan item deletion. */ 3423 trans = btrfs_start_transaction(root, 1); 3424 if (IS_ERR(trans)) { 3425 iput(inode); 3426 ret = PTR_ERR(trans); 3427 goto out; 3428 } 3429 ret = btrfs_orphan_add(trans, inode); 3430 btrfs_end_transaction(trans, root); 3431 if (ret) { 3432 iput(inode); 3433 goto out; 3434 } 3435 3436 ret = btrfs_truncate(inode); 3437 if (ret) 3438 btrfs_orphan_del(NULL, inode); 3439 } else { 3440 nr_unlink++; 3441 } 3442 3443 /* this will do delete_inode and everything for us */ 3444 iput(inode); 3445 if (ret) 3446 goto out; 3447 } 3448 /* release the path since we're done with it */ 3449 btrfs_release_path(path); 3450 3451 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3452 3453 if (root->orphan_block_rsv) 3454 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3455 (u64)-1); 3456 3457 if (root->orphan_block_rsv || 3458 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3459 trans = btrfs_join_transaction(root); 3460 if (!IS_ERR(trans)) 3461 btrfs_end_transaction(trans, root); 3462 } 3463 3464 if (nr_unlink) 3465 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3466 if (nr_truncate) 3467 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3468 3469 out: 3470 if (ret) 3471 btrfs_err(root->fs_info, 3472 "could not do orphan cleanup %d", ret); 3473 btrfs_free_path(path); 3474 return ret; 3475 } 3476 3477 /* 3478 * very simple check to peek ahead in the leaf looking for xattrs. If we 3479 * don't find any xattrs, we know there can't be any acls. 3480 * 3481 * slot is the slot the inode is in, objectid is the objectid of the inode 3482 */ 3483 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3484 int slot, u64 objectid, 3485 int *first_xattr_slot) 3486 { 3487 u32 nritems = btrfs_header_nritems(leaf); 3488 struct btrfs_key found_key; 3489 static u64 xattr_access = 0; 3490 static u64 xattr_default = 0; 3491 int scanned = 0; 3492 3493 if (!xattr_access) { 3494 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3495 strlen(POSIX_ACL_XATTR_ACCESS)); 3496 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3497 strlen(POSIX_ACL_XATTR_DEFAULT)); 3498 } 3499 3500 slot++; 3501 *first_xattr_slot = -1; 3502 while (slot < nritems) { 3503 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3504 3505 /* we found a different objectid, there must not be acls */ 3506 if (found_key.objectid != objectid) 3507 return 0; 3508 3509 /* we found an xattr, assume we've got an acl */ 3510 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3511 if (*first_xattr_slot == -1) 3512 *first_xattr_slot = slot; 3513 if (found_key.offset == xattr_access || 3514 found_key.offset == xattr_default) 3515 return 1; 3516 } 3517 3518 /* 3519 * we found a key greater than an xattr key, there can't 3520 * be any acls later on 3521 */ 3522 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3523 return 0; 3524 3525 slot++; 3526 scanned++; 3527 3528 /* 3529 * it goes inode, inode backrefs, xattrs, extents, 3530 * so if there are a ton of hard links to an inode there can 3531 * be a lot of backrefs. Don't waste time searching too hard, 3532 * this is just an optimization 3533 */ 3534 if (scanned >= 8) 3535 break; 3536 } 3537 /* we hit the end of the leaf before we found an xattr or 3538 * something larger than an xattr. We have to assume the inode 3539 * has acls 3540 */ 3541 if (*first_xattr_slot == -1) 3542 *first_xattr_slot = slot; 3543 return 1; 3544 } 3545 3546 /* 3547 * read an inode from the btree into the in-memory inode 3548 */ 3549 static void btrfs_read_locked_inode(struct inode *inode) 3550 { 3551 struct btrfs_path *path; 3552 struct extent_buffer *leaf; 3553 struct btrfs_inode_item *inode_item; 3554 struct btrfs_root *root = BTRFS_I(inode)->root; 3555 struct btrfs_key location; 3556 unsigned long ptr; 3557 int maybe_acls; 3558 u32 rdev; 3559 int ret; 3560 bool filled = false; 3561 int first_xattr_slot; 3562 3563 ret = btrfs_fill_inode(inode, &rdev); 3564 if (!ret) 3565 filled = true; 3566 3567 path = btrfs_alloc_path(); 3568 if (!path) 3569 goto make_bad; 3570 3571 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3572 3573 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3574 if (ret) 3575 goto make_bad; 3576 3577 leaf = path->nodes[0]; 3578 3579 if (filled) 3580 goto cache_index; 3581 3582 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3583 struct btrfs_inode_item); 3584 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3585 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3586 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3587 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3588 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3589 3590 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3591 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3592 3593 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3594 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3595 3596 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3597 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3598 3599 BTRFS_I(inode)->i_otime.tv_sec = 3600 btrfs_timespec_sec(leaf, &inode_item->otime); 3601 BTRFS_I(inode)->i_otime.tv_nsec = 3602 btrfs_timespec_nsec(leaf, &inode_item->otime); 3603 3604 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3605 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3606 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3607 3608 /* 3609 * If we were modified in the current generation and evicted from memory 3610 * and then re-read we need to do a full sync since we don't have any 3611 * idea about which extents were modified before we were evicted from 3612 * cache. 3613 */ 3614 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3615 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3616 &BTRFS_I(inode)->runtime_flags); 3617 3618 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3619 inode->i_generation = BTRFS_I(inode)->generation; 3620 inode->i_rdev = 0; 3621 rdev = btrfs_inode_rdev(leaf, inode_item); 3622 3623 BTRFS_I(inode)->index_cnt = (u64)-1; 3624 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3625 3626 cache_index: 3627 path->slots[0]++; 3628 if (inode->i_nlink != 1 || 3629 path->slots[0] >= btrfs_header_nritems(leaf)) 3630 goto cache_acl; 3631 3632 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3633 if (location.objectid != btrfs_ino(inode)) 3634 goto cache_acl; 3635 3636 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3637 if (location.type == BTRFS_INODE_REF_KEY) { 3638 struct btrfs_inode_ref *ref; 3639 3640 ref = (struct btrfs_inode_ref *)ptr; 3641 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3642 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3643 struct btrfs_inode_extref *extref; 3644 3645 extref = (struct btrfs_inode_extref *)ptr; 3646 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3647 extref); 3648 } 3649 cache_acl: 3650 /* 3651 * try to precache a NULL acl entry for files that don't have 3652 * any xattrs or acls 3653 */ 3654 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3655 btrfs_ino(inode), &first_xattr_slot); 3656 if (first_xattr_slot != -1) { 3657 path->slots[0] = first_xattr_slot; 3658 ret = btrfs_load_inode_props(inode, path); 3659 if (ret) 3660 btrfs_err(root->fs_info, 3661 "error loading props for ino %llu (root %llu): %d", 3662 btrfs_ino(inode), 3663 root->root_key.objectid, ret); 3664 } 3665 btrfs_free_path(path); 3666 3667 if (!maybe_acls) 3668 cache_no_acl(inode); 3669 3670 switch (inode->i_mode & S_IFMT) { 3671 case S_IFREG: 3672 inode->i_mapping->a_ops = &btrfs_aops; 3673 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3674 inode->i_fop = &btrfs_file_operations; 3675 inode->i_op = &btrfs_file_inode_operations; 3676 break; 3677 case S_IFDIR: 3678 inode->i_fop = &btrfs_dir_file_operations; 3679 if (root == root->fs_info->tree_root) 3680 inode->i_op = &btrfs_dir_ro_inode_operations; 3681 else 3682 inode->i_op = &btrfs_dir_inode_operations; 3683 break; 3684 case S_IFLNK: 3685 inode->i_op = &btrfs_symlink_inode_operations; 3686 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3687 break; 3688 default: 3689 inode->i_op = &btrfs_special_inode_operations; 3690 init_special_inode(inode, inode->i_mode, rdev); 3691 break; 3692 } 3693 3694 btrfs_update_iflags(inode); 3695 return; 3696 3697 make_bad: 3698 btrfs_free_path(path); 3699 make_bad_inode(inode); 3700 } 3701 3702 /* 3703 * given a leaf and an inode, copy the inode fields into the leaf 3704 */ 3705 static void fill_inode_item(struct btrfs_trans_handle *trans, 3706 struct extent_buffer *leaf, 3707 struct btrfs_inode_item *item, 3708 struct inode *inode) 3709 { 3710 struct btrfs_map_token token; 3711 3712 btrfs_init_map_token(&token); 3713 3714 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3715 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3716 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3717 &token); 3718 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3719 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3720 3721 btrfs_set_token_timespec_sec(leaf, &item->atime, 3722 inode->i_atime.tv_sec, &token); 3723 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3724 inode->i_atime.tv_nsec, &token); 3725 3726 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3727 inode->i_mtime.tv_sec, &token); 3728 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3729 inode->i_mtime.tv_nsec, &token); 3730 3731 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3732 inode->i_ctime.tv_sec, &token); 3733 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3734 inode->i_ctime.tv_nsec, &token); 3735 3736 btrfs_set_token_timespec_sec(leaf, &item->otime, 3737 BTRFS_I(inode)->i_otime.tv_sec, &token); 3738 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3739 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3740 3741 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3742 &token); 3743 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3744 &token); 3745 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3746 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3747 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3748 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3749 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3750 } 3751 3752 /* 3753 * copy everything in the in-memory inode into the btree. 3754 */ 3755 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3756 struct btrfs_root *root, struct inode *inode) 3757 { 3758 struct btrfs_inode_item *inode_item; 3759 struct btrfs_path *path; 3760 struct extent_buffer *leaf; 3761 int ret; 3762 3763 path = btrfs_alloc_path(); 3764 if (!path) 3765 return -ENOMEM; 3766 3767 path->leave_spinning = 1; 3768 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3769 1); 3770 if (ret) { 3771 if (ret > 0) 3772 ret = -ENOENT; 3773 goto failed; 3774 } 3775 3776 leaf = path->nodes[0]; 3777 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3778 struct btrfs_inode_item); 3779 3780 fill_inode_item(trans, leaf, inode_item, inode); 3781 btrfs_mark_buffer_dirty(leaf); 3782 btrfs_set_inode_last_trans(trans, inode); 3783 ret = 0; 3784 failed: 3785 btrfs_free_path(path); 3786 return ret; 3787 } 3788 3789 /* 3790 * copy everything in the in-memory inode into the btree. 3791 */ 3792 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3793 struct btrfs_root *root, struct inode *inode) 3794 { 3795 int ret; 3796 3797 /* 3798 * If the inode is a free space inode, we can deadlock during commit 3799 * if we put it into the delayed code. 3800 * 3801 * The data relocation inode should also be directly updated 3802 * without delay 3803 */ 3804 if (!btrfs_is_free_space_inode(inode) 3805 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3806 && !root->fs_info->log_root_recovering) { 3807 btrfs_update_root_times(trans, root); 3808 3809 ret = btrfs_delayed_update_inode(trans, root, inode); 3810 if (!ret) 3811 btrfs_set_inode_last_trans(trans, inode); 3812 return ret; 3813 } 3814 3815 return btrfs_update_inode_item(trans, root, inode); 3816 } 3817 3818 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3819 struct btrfs_root *root, 3820 struct inode *inode) 3821 { 3822 int ret; 3823 3824 ret = btrfs_update_inode(trans, root, inode); 3825 if (ret == -ENOSPC) 3826 return btrfs_update_inode_item(trans, root, inode); 3827 return ret; 3828 } 3829 3830 /* 3831 * unlink helper that gets used here in inode.c and in the tree logging 3832 * recovery code. It remove a link in a directory with a given name, and 3833 * also drops the back refs in the inode to the directory 3834 */ 3835 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3836 struct btrfs_root *root, 3837 struct inode *dir, struct inode *inode, 3838 const char *name, int name_len) 3839 { 3840 struct btrfs_path *path; 3841 int ret = 0; 3842 struct extent_buffer *leaf; 3843 struct btrfs_dir_item *di; 3844 struct btrfs_key key; 3845 u64 index; 3846 u64 ino = btrfs_ino(inode); 3847 u64 dir_ino = btrfs_ino(dir); 3848 3849 path = btrfs_alloc_path(); 3850 if (!path) { 3851 ret = -ENOMEM; 3852 goto out; 3853 } 3854 3855 path->leave_spinning = 1; 3856 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3857 name, name_len, -1); 3858 if (IS_ERR(di)) { 3859 ret = PTR_ERR(di); 3860 goto err; 3861 } 3862 if (!di) { 3863 ret = -ENOENT; 3864 goto err; 3865 } 3866 leaf = path->nodes[0]; 3867 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3868 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3869 if (ret) 3870 goto err; 3871 btrfs_release_path(path); 3872 3873 /* 3874 * If we don't have dir index, we have to get it by looking up 3875 * the inode ref, since we get the inode ref, remove it directly, 3876 * it is unnecessary to do delayed deletion. 3877 * 3878 * But if we have dir index, needn't search inode ref to get it. 3879 * Since the inode ref is close to the inode item, it is better 3880 * that we delay to delete it, and just do this deletion when 3881 * we update the inode item. 3882 */ 3883 if (BTRFS_I(inode)->dir_index) { 3884 ret = btrfs_delayed_delete_inode_ref(inode); 3885 if (!ret) { 3886 index = BTRFS_I(inode)->dir_index; 3887 goto skip_backref; 3888 } 3889 } 3890 3891 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3892 dir_ino, &index); 3893 if (ret) { 3894 btrfs_info(root->fs_info, 3895 "failed to delete reference to %.*s, inode %llu parent %llu", 3896 name_len, name, ino, dir_ino); 3897 btrfs_abort_transaction(trans, root, ret); 3898 goto err; 3899 } 3900 skip_backref: 3901 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3902 if (ret) { 3903 btrfs_abort_transaction(trans, root, ret); 3904 goto err; 3905 } 3906 3907 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3908 inode, dir_ino); 3909 if (ret != 0 && ret != -ENOENT) { 3910 btrfs_abort_transaction(trans, root, ret); 3911 goto err; 3912 } 3913 3914 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3915 dir, index); 3916 if (ret == -ENOENT) 3917 ret = 0; 3918 else if (ret) 3919 btrfs_abort_transaction(trans, root, ret); 3920 err: 3921 btrfs_free_path(path); 3922 if (ret) 3923 goto out; 3924 3925 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3926 inode_inc_iversion(inode); 3927 inode_inc_iversion(dir); 3928 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3929 ret = btrfs_update_inode(trans, root, dir); 3930 out: 3931 return ret; 3932 } 3933 3934 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3935 struct btrfs_root *root, 3936 struct inode *dir, struct inode *inode, 3937 const char *name, int name_len) 3938 { 3939 int ret; 3940 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3941 if (!ret) { 3942 drop_nlink(inode); 3943 ret = btrfs_update_inode(trans, root, inode); 3944 } 3945 return ret; 3946 } 3947 3948 /* 3949 * helper to start transaction for unlink and rmdir. 3950 * 3951 * unlink and rmdir are special in btrfs, they do not always free space, so 3952 * if we cannot make our reservations the normal way try and see if there is 3953 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3954 * allow the unlink to occur. 3955 */ 3956 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3957 { 3958 struct btrfs_trans_handle *trans; 3959 struct btrfs_root *root = BTRFS_I(dir)->root; 3960 int ret; 3961 3962 /* 3963 * 1 for the possible orphan item 3964 * 1 for the dir item 3965 * 1 for the dir index 3966 * 1 for the inode ref 3967 * 1 for the inode 3968 */ 3969 trans = btrfs_start_transaction(root, 5); 3970 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3971 return trans; 3972 3973 if (PTR_ERR(trans) == -ENOSPC) { 3974 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3975 3976 trans = btrfs_start_transaction(root, 0); 3977 if (IS_ERR(trans)) 3978 return trans; 3979 ret = btrfs_cond_migrate_bytes(root->fs_info, 3980 &root->fs_info->trans_block_rsv, 3981 num_bytes, 5); 3982 if (ret) { 3983 btrfs_end_transaction(trans, root); 3984 return ERR_PTR(ret); 3985 } 3986 trans->block_rsv = &root->fs_info->trans_block_rsv; 3987 trans->bytes_reserved = num_bytes; 3988 } 3989 return trans; 3990 } 3991 3992 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3993 { 3994 struct btrfs_root *root = BTRFS_I(dir)->root; 3995 struct btrfs_trans_handle *trans; 3996 struct inode *inode = dentry->d_inode; 3997 int ret; 3998 3999 trans = __unlink_start_trans(dir); 4000 if (IS_ERR(trans)) 4001 return PTR_ERR(trans); 4002 4003 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 4004 4005 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 4006 dentry->d_name.name, dentry->d_name.len); 4007 if (ret) 4008 goto out; 4009 4010 if (inode->i_nlink == 0) { 4011 ret = btrfs_orphan_add(trans, inode); 4012 if (ret) 4013 goto out; 4014 } 4015 4016 out: 4017 btrfs_end_transaction(trans, root); 4018 btrfs_btree_balance_dirty(root); 4019 return ret; 4020 } 4021 4022 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4023 struct btrfs_root *root, 4024 struct inode *dir, u64 objectid, 4025 const char *name, int name_len) 4026 { 4027 struct btrfs_path *path; 4028 struct extent_buffer *leaf; 4029 struct btrfs_dir_item *di; 4030 struct btrfs_key key; 4031 u64 index; 4032 int ret; 4033 u64 dir_ino = btrfs_ino(dir); 4034 4035 path = btrfs_alloc_path(); 4036 if (!path) 4037 return -ENOMEM; 4038 4039 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4040 name, name_len, -1); 4041 if (IS_ERR_OR_NULL(di)) { 4042 if (!di) 4043 ret = -ENOENT; 4044 else 4045 ret = PTR_ERR(di); 4046 goto out; 4047 } 4048 4049 leaf = path->nodes[0]; 4050 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4051 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4052 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4053 if (ret) { 4054 btrfs_abort_transaction(trans, root, ret); 4055 goto out; 4056 } 4057 btrfs_release_path(path); 4058 4059 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4060 objectid, root->root_key.objectid, 4061 dir_ino, &index, name, name_len); 4062 if (ret < 0) { 4063 if (ret != -ENOENT) { 4064 btrfs_abort_transaction(trans, root, ret); 4065 goto out; 4066 } 4067 di = btrfs_search_dir_index_item(root, path, dir_ino, 4068 name, name_len); 4069 if (IS_ERR_OR_NULL(di)) { 4070 if (!di) 4071 ret = -ENOENT; 4072 else 4073 ret = PTR_ERR(di); 4074 btrfs_abort_transaction(trans, root, ret); 4075 goto out; 4076 } 4077 4078 leaf = path->nodes[0]; 4079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4080 btrfs_release_path(path); 4081 index = key.offset; 4082 } 4083 btrfs_release_path(path); 4084 4085 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4086 if (ret) { 4087 btrfs_abort_transaction(trans, root, ret); 4088 goto out; 4089 } 4090 4091 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4092 inode_inc_iversion(dir); 4093 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4094 ret = btrfs_update_inode_fallback(trans, root, dir); 4095 if (ret) 4096 btrfs_abort_transaction(trans, root, ret); 4097 out: 4098 btrfs_free_path(path); 4099 return ret; 4100 } 4101 4102 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4103 { 4104 struct inode *inode = dentry->d_inode; 4105 int err = 0; 4106 struct btrfs_root *root = BTRFS_I(dir)->root; 4107 struct btrfs_trans_handle *trans; 4108 4109 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4110 return -ENOTEMPTY; 4111 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4112 return -EPERM; 4113 4114 trans = __unlink_start_trans(dir); 4115 if (IS_ERR(trans)) 4116 return PTR_ERR(trans); 4117 4118 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4119 err = btrfs_unlink_subvol(trans, root, dir, 4120 BTRFS_I(inode)->location.objectid, 4121 dentry->d_name.name, 4122 dentry->d_name.len); 4123 goto out; 4124 } 4125 4126 err = btrfs_orphan_add(trans, inode); 4127 if (err) 4128 goto out; 4129 4130 /* now the directory is empty */ 4131 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 4132 dentry->d_name.name, dentry->d_name.len); 4133 if (!err) 4134 btrfs_i_size_write(inode, 0); 4135 out: 4136 btrfs_end_transaction(trans, root); 4137 btrfs_btree_balance_dirty(root); 4138 4139 return err; 4140 } 4141 4142 /* 4143 * this can truncate away extent items, csum items and directory items. 4144 * It starts at a high offset and removes keys until it can't find 4145 * any higher than new_size 4146 * 4147 * csum items that cross the new i_size are truncated to the new size 4148 * as well. 4149 * 4150 * min_type is the minimum key type to truncate down to. If set to 0, this 4151 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4152 */ 4153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4154 struct btrfs_root *root, 4155 struct inode *inode, 4156 u64 new_size, u32 min_type) 4157 { 4158 struct btrfs_path *path; 4159 struct extent_buffer *leaf; 4160 struct btrfs_file_extent_item *fi; 4161 struct btrfs_key key; 4162 struct btrfs_key found_key; 4163 u64 extent_start = 0; 4164 u64 extent_num_bytes = 0; 4165 u64 extent_offset = 0; 4166 u64 item_end = 0; 4167 u64 last_size = (u64)-1; 4168 u32 found_type = (u8)-1; 4169 int found_extent; 4170 int del_item; 4171 int pending_del_nr = 0; 4172 int pending_del_slot = 0; 4173 int extent_type = -1; 4174 int ret; 4175 int err = 0; 4176 u64 ino = btrfs_ino(inode); 4177 4178 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4179 4180 path = btrfs_alloc_path(); 4181 if (!path) 4182 return -ENOMEM; 4183 path->reada = -1; 4184 4185 /* 4186 * We want to drop from the next block forward in case this new size is 4187 * not block aligned since we will be keeping the last block of the 4188 * extent just the way it is. 4189 */ 4190 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4191 root == root->fs_info->tree_root) 4192 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4193 root->sectorsize), (u64)-1, 0); 4194 4195 /* 4196 * This function is also used to drop the items in the log tree before 4197 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4198 * it is used to drop the loged items. So we shouldn't kill the delayed 4199 * items. 4200 */ 4201 if (min_type == 0 && root == BTRFS_I(inode)->root) 4202 btrfs_kill_delayed_inode_items(inode); 4203 4204 key.objectid = ino; 4205 key.offset = (u64)-1; 4206 key.type = (u8)-1; 4207 4208 search_again: 4209 path->leave_spinning = 1; 4210 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4211 if (ret < 0) { 4212 err = ret; 4213 goto out; 4214 } 4215 4216 if (ret > 0) { 4217 /* there are no items in the tree for us to truncate, we're 4218 * done 4219 */ 4220 if (path->slots[0] == 0) 4221 goto out; 4222 path->slots[0]--; 4223 } 4224 4225 while (1) { 4226 fi = NULL; 4227 leaf = path->nodes[0]; 4228 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4229 found_type = found_key.type; 4230 4231 if (found_key.objectid != ino) 4232 break; 4233 4234 if (found_type < min_type) 4235 break; 4236 4237 item_end = found_key.offset; 4238 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4239 fi = btrfs_item_ptr(leaf, path->slots[0], 4240 struct btrfs_file_extent_item); 4241 extent_type = btrfs_file_extent_type(leaf, fi); 4242 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4243 item_end += 4244 btrfs_file_extent_num_bytes(leaf, fi); 4245 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4246 item_end += btrfs_file_extent_inline_len(leaf, 4247 path->slots[0], fi); 4248 } 4249 item_end--; 4250 } 4251 if (found_type > min_type) { 4252 del_item = 1; 4253 } else { 4254 if (item_end < new_size) 4255 break; 4256 if (found_key.offset >= new_size) 4257 del_item = 1; 4258 else 4259 del_item = 0; 4260 } 4261 found_extent = 0; 4262 /* FIXME, shrink the extent if the ref count is only 1 */ 4263 if (found_type != BTRFS_EXTENT_DATA_KEY) 4264 goto delete; 4265 4266 if (del_item) 4267 last_size = found_key.offset; 4268 else 4269 last_size = new_size; 4270 4271 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4272 u64 num_dec; 4273 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4274 if (!del_item) { 4275 u64 orig_num_bytes = 4276 btrfs_file_extent_num_bytes(leaf, fi); 4277 extent_num_bytes = ALIGN(new_size - 4278 found_key.offset, 4279 root->sectorsize); 4280 btrfs_set_file_extent_num_bytes(leaf, fi, 4281 extent_num_bytes); 4282 num_dec = (orig_num_bytes - 4283 extent_num_bytes); 4284 if (test_bit(BTRFS_ROOT_REF_COWS, 4285 &root->state) && 4286 extent_start != 0) 4287 inode_sub_bytes(inode, num_dec); 4288 btrfs_mark_buffer_dirty(leaf); 4289 } else { 4290 extent_num_bytes = 4291 btrfs_file_extent_disk_num_bytes(leaf, 4292 fi); 4293 extent_offset = found_key.offset - 4294 btrfs_file_extent_offset(leaf, fi); 4295 4296 /* FIXME blocksize != 4096 */ 4297 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4298 if (extent_start != 0) { 4299 found_extent = 1; 4300 if (test_bit(BTRFS_ROOT_REF_COWS, 4301 &root->state)) 4302 inode_sub_bytes(inode, num_dec); 4303 } 4304 } 4305 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4306 /* 4307 * we can't truncate inline items that have had 4308 * special encodings 4309 */ 4310 if (!del_item && 4311 btrfs_file_extent_compression(leaf, fi) == 0 && 4312 btrfs_file_extent_encryption(leaf, fi) == 0 && 4313 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4314 u32 size = new_size - found_key.offset; 4315 4316 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4317 inode_sub_bytes(inode, item_end + 1 - 4318 new_size); 4319 4320 /* 4321 * update the ram bytes to properly reflect 4322 * the new size of our item 4323 */ 4324 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4325 size = 4326 btrfs_file_extent_calc_inline_size(size); 4327 btrfs_truncate_item(root, path, size, 1); 4328 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4329 &root->state)) { 4330 inode_sub_bytes(inode, item_end + 1 - 4331 found_key.offset); 4332 } 4333 } 4334 delete: 4335 if (del_item) { 4336 if (!pending_del_nr) { 4337 /* no pending yet, add ourselves */ 4338 pending_del_slot = path->slots[0]; 4339 pending_del_nr = 1; 4340 } else if (pending_del_nr && 4341 path->slots[0] + 1 == pending_del_slot) { 4342 /* hop on the pending chunk */ 4343 pending_del_nr++; 4344 pending_del_slot = path->slots[0]; 4345 } else { 4346 BUG(); 4347 } 4348 } else { 4349 break; 4350 } 4351 if (found_extent && 4352 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4353 root == root->fs_info->tree_root)) { 4354 btrfs_set_path_blocking(path); 4355 ret = btrfs_free_extent(trans, root, extent_start, 4356 extent_num_bytes, 0, 4357 btrfs_header_owner(leaf), 4358 ino, extent_offset, 0); 4359 BUG_ON(ret); 4360 } 4361 4362 if (found_type == BTRFS_INODE_ITEM_KEY) 4363 break; 4364 4365 if (path->slots[0] == 0 || 4366 path->slots[0] != pending_del_slot) { 4367 if (pending_del_nr) { 4368 ret = btrfs_del_items(trans, root, path, 4369 pending_del_slot, 4370 pending_del_nr); 4371 if (ret) { 4372 btrfs_abort_transaction(trans, 4373 root, ret); 4374 goto error; 4375 } 4376 pending_del_nr = 0; 4377 } 4378 btrfs_release_path(path); 4379 goto search_again; 4380 } else { 4381 path->slots[0]--; 4382 } 4383 } 4384 out: 4385 if (pending_del_nr) { 4386 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4387 pending_del_nr); 4388 if (ret) 4389 btrfs_abort_transaction(trans, root, ret); 4390 } 4391 error: 4392 if (last_size != (u64)-1 && 4393 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4394 btrfs_ordered_update_i_size(inode, last_size, NULL); 4395 btrfs_free_path(path); 4396 return err; 4397 } 4398 4399 /* 4400 * btrfs_truncate_page - read, zero a chunk and write a page 4401 * @inode - inode that we're zeroing 4402 * @from - the offset to start zeroing 4403 * @len - the length to zero, 0 to zero the entire range respective to the 4404 * offset 4405 * @front - zero up to the offset instead of from the offset on 4406 * 4407 * This will find the page for the "from" offset and cow the page and zero the 4408 * part we want to zero. This is used with truncate and hole punching. 4409 */ 4410 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4411 int front) 4412 { 4413 struct address_space *mapping = inode->i_mapping; 4414 struct btrfs_root *root = BTRFS_I(inode)->root; 4415 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4416 struct btrfs_ordered_extent *ordered; 4417 struct extent_state *cached_state = NULL; 4418 char *kaddr; 4419 u32 blocksize = root->sectorsize; 4420 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4421 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4422 struct page *page; 4423 gfp_t mask = btrfs_alloc_write_mask(mapping); 4424 int ret = 0; 4425 u64 page_start; 4426 u64 page_end; 4427 4428 if ((offset & (blocksize - 1)) == 0 && 4429 (!len || ((len & (blocksize - 1)) == 0))) 4430 goto out; 4431 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4432 if (ret) 4433 goto out; 4434 4435 again: 4436 page = find_or_create_page(mapping, index, mask); 4437 if (!page) { 4438 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4439 ret = -ENOMEM; 4440 goto out; 4441 } 4442 4443 page_start = page_offset(page); 4444 page_end = page_start + PAGE_CACHE_SIZE - 1; 4445 4446 if (!PageUptodate(page)) { 4447 ret = btrfs_readpage(NULL, page); 4448 lock_page(page); 4449 if (page->mapping != mapping) { 4450 unlock_page(page); 4451 page_cache_release(page); 4452 goto again; 4453 } 4454 if (!PageUptodate(page)) { 4455 ret = -EIO; 4456 goto out_unlock; 4457 } 4458 } 4459 wait_on_page_writeback(page); 4460 4461 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4462 set_page_extent_mapped(page); 4463 4464 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4465 if (ordered) { 4466 unlock_extent_cached(io_tree, page_start, page_end, 4467 &cached_state, GFP_NOFS); 4468 unlock_page(page); 4469 page_cache_release(page); 4470 btrfs_start_ordered_extent(inode, ordered, 1); 4471 btrfs_put_ordered_extent(ordered); 4472 goto again; 4473 } 4474 4475 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4476 EXTENT_DIRTY | EXTENT_DELALLOC | 4477 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4478 0, 0, &cached_state, GFP_NOFS); 4479 4480 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4481 &cached_state); 4482 if (ret) { 4483 unlock_extent_cached(io_tree, page_start, page_end, 4484 &cached_state, GFP_NOFS); 4485 goto out_unlock; 4486 } 4487 4488 if (offset != PAGE_CACHE_SIZE) { 4489 if (!len) 4490 len = PAGE_CACHE_SIZE - offset; 4491 kaddr = kmap(page); 4492 if (front) 4493 memset(kaddr, 0, offset); 4494 else 4495 memset(kaddr + offset, 0, len); 4496 flush_dcache_page(page); 4497 kunmap(page); 4498 } 4499 ClearPageChecked(page); 4500 set_page_dirty(page); 4501 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4502 GFP_NOFS); 4503 4504 out_unlock: 4505 if (ret) 4506 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4507 unlock_page(page); 4508 page_cache_release(page); 4509 out: 4510 return ret; 4511 } 4512 4513 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4514 u64 offset, u64 len) 4515 { 4516 struct btrfs_trans_handle *trans; 4517 int ret; 4518 4519 /* 4520 * Still need to make sure the inode looks like it's been updated so 4521 * that any holes get logged if we fsync. 4522 */ 4523 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4524 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4525 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4526 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4527 return 0; 4528 } 4529 4530 /* 4531 * 1 - for the one we're dropping 4532 * 1 - for the one we're adding 4533 * 1 - for updating the inode. 4534 */ 4535 trans = btrfs_start_transaction(root, 3); 4536 if (IS_ERR(trans)) 4537 return PTR_ERR(trans); 4538 4539 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4540 if (ret) { 4541 btrfs_abort_transaction(trans, root, ret); 4542 btrfs_end_transaction(trans, root); 4543 return ret; 4544 } 4545 4546 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4547 0, 0, len, 0, len, 0, 0, 0); 4548 if (ret) 4549 btrfs_abort_transaction(trans, root, ret); 4550 else 4551 btrfs_update_inode(trans, root, inode); 4552 btrfs_end_transaction(trans, root); 4553 return ret; 4554 } 4555 4556 /* 4557 * This function puts in dummy file extents for the area we're creating a hole 4558 * for. So if we are truncating this file to a larger size we need to insert 4559 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4560 * the range between oldsize and size 4561 */ 4562 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4563 { 4564 struct btrfs_root *root = BTRFS_I(inode)->root; 4565 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4566 struct extent_map *em = NULL; 4567 struct extent_state *cached_state = NULL; 4568 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4569 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4570 u64 block_end = ALIGN(size, root->sectorsize); 4571 u64 last_byte; 4572 u64 cur_offset; 4573 u64 hole_size; 4574 int err = 0; 4575 4576 /* 4577 * If our size started in the middle of a page we need to zero out the 4578 * rest of the page before we expand the i_size, otherwise we could 4579 * expose stale data. 4580 */ 4581 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4582 if (err) 4583 return err; 4584 4585 if (size <= hole_start) 4586 return 0; 4587 4588 while (1) { 4589 struct btrfs_ordered_extent *ordered; 4590 4591 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4592 &cached_state); 4593 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4594 block_end - hole_start); 4595 if (!ordered) 4596 break; 4597 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4598 &cached_state, GFP_NOFS); 4599 btrfs_start_ordered_extent(inode, ordered, 1); 4600 btrfs_put_ordered_extent(ordered); 4601 } 4602 4603 cur_offset = hole_start; 4604 while (1) { 4605 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4606 block_end - cur_offset, 0); 4607 if (IS_ERR(em)) { 4608 err = PTR_ERR(em); 4609 em = NULL; 4610 break; 4611 } 4612 last_byte = min(extent_map_end(em), block_end); 4613 last_byte = ALIGN(last_byte , root->sectorsize); 4614 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4615 struct extent_map *hole_em; 4616 hole_size = last_byte - cur_offset; 4617 4618 err = maybe_insert_hole(root, inode, cur_offset, 4619 hole_size); 4620 if (err) 4621 break; 4622 btrfs_drop_extent_cache(inode, cur_offset, 4623 cur_offset + hole_size - 1, 0); 4624 hole_em = alloc_extent_map(); 4625 if (!hole_em) { 4626 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4627 &BTRFS_I(inode)->runtime_flags); 4628 goto next; 4629 } 4630 hole_em->start = cur_offset; 4631 hole_em->len = hole_size; 4632 hole_em->orig_start = cur_offset; 4633 4634 hole_em->block_start = EXTENT_MAP_HOLE; 4635 hole_em->block_len = 0; 4636 hole_em->orig_block_len = 0; 4637 hole_em->ram_bytes = hole_size; 4638 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4639 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4640 hole_em->generation = root->fs_info->generation; 4641 4642 while (1) { 4643 write_lock(&em_tree->lock); 4644 err = add_extent_mapping(em_tree, hole_em, 1); 4645 write_unlock(&em_tree->lock); 4646 if (err != -EEXIST) 4647 break; 4648 btrfs_drop_extent_cache(inode, cur_offset, 4649 cur_offset + 4650 hole_size - 1, 0); 4651 } 4652 free_extent_map(hole_em); 4653 } 4654 next: 4655 free_extent_map(em); 4656 em = NULL; 4657 cur_offset = last_byte; 4658 if (cur_offset >= block_end) 4659 break; 4660 } 4661 free_extent_map(em); 4662 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4663 GFP_NOFS); 4664 return err; 4665 } 4666 4667 static int wait_snapshoting_atomic_t(atomic_t *a) 4668 { 4669 schedule(); 4670 return 0; 4671 } 4672 4673 static void wait_for_snapshot_creation(struct btrfs_root *root) 4674 { 4675 while (true) { 4676 int ret; 4677 4678 ret = btrfs_start_write_no_snapshoting(root); 4679 if (ret) 4680 break; 4681 wait_on_atomic_t(&root->will_be_snapshoted, 4682 wait_snapshoting_atomic_t, 4683 TASK_UNINTERRUPTIBLE); 4684 } 4685 } 4686 4687 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4688 { 4689 struct btrfs_root *root = BTRFS_I(inode)->root; 4690 struct btrfs_trans_handle *trans; 4691 loff_t oldsize = i_size_read(inode); 4692 loff_t newsize = attr->ia_size; 4693 int mask = attr->ia_valid; 4694 int ret; 4695 4696 /* 4697 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4698 * special case where we need to update the times despite not having 4699 * these flags set. For all other operations the VFS set these flags 4700 * explicitly if it wants a timestamp update. 4701 */ 4702 if (newsize != oldsize) { 4703 inode_inc_iversion(inode); 4704 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4705 inode->i_ctime = inode->i_mtime = 4706 current_fs_time(inode->i_sb); 4707 } 4708 4709 if (newsize > oldsize) { 4710 truncate_pagecache(inode, newsize); 4711 /* 4712 * Don't do an expanding truncate while snapshoting is ongoing. 4713 * This is to ensure the snapshot captures a fully consistent 4714 * state of this file - if the snapshot captures this expanding 4715 * truncation, it must capture all writes that happened before 4716 * this truncation. 4717 */ 4718 wait_for_snapshot_creation(root); 4719 ret = btrfs_cont_expand(inode, oldsize, newsize); 4720 if (ret) { 4721 btrfs_end_write_no_snapshoting(root); 4722 return ret; 4723 } 4724 4725 trans = btrfs_start_transaction(root, 1); 4726 if (IS_ERR(trans)) { 4727 btrfs_end_write_no_snapshoting(root); 4728 return PTR_ERR(trans); 4729 } 4730 4731 i_size_write(inode, newsize); 4732 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4733 ret = btrfs_update_inode(trans, root, inode); 4734 btrfs_end_write_no_snapshoting(root); 4735 btrfs_end_transaction(trans, root); 4736 } else { 4737 4738 /* 4739 * We're truncating a file that used to have good data down to 4740 * zero. Make sure it gets into the ordered flush list so that 4741 * any new writes get down to disk quickly. 4742 */ 4743 if (newsize == 0) 4744 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4745 &BTRFS_I(inode)->runtime_flags); 4746 4747 /* 4748 * 1 for the orphan item we're going to add 4749 * 1 for the orphan item deletion. 4750 */ 4751 trans = btrfs_start_transaction(root, 2); 4752 if (IS_ERR(trans)) 4753 return PTR_ERR(trans); 4754 4755 /* 4756 * We need to do this in case we fail at _any_ point during the 4757 * actual truncate. Once we do the truncate_setsize we could 4758 * invalidate pages which forces any outstanding ordered io to 4759 * be instantly completed which will give us extents that need 4760 * to be truncated. If we fail to get an orphan inode down we 4761 * could have left over extents that were never meant to live, 4762 * so we need to garuntee from this point on that everything 4763 * will be consistent. 4764 */ 4765 ret = btrfs_orphan_add(trans, inode); 4766 btrfs_end_transaction(trans, root); 4767 if (ret) 4768 return ret; 4769 4770 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4771 truncate_setsize(inode, newsize); 4772 4773 /* Disable nonlocked read DIO to avoid the end less truncate */ 4774 btrfs_inode_block_unlocked_dio(inode); 4775 inode_dio_wait(inode); 4776 btrfs_inode_resume_unlocked_dio(inode); 4777 4778 ret = btrfs_truncate(inode); 4779 if (ret && inode->i_nlink) { 4780 int err; 4781 4782 /* 4783 * failed to truncate, disk_i_size is only adjusted down 4784 * as we remove extents, so it should represent the true 4785 * size of the inode, so reset the in memory size and 4786 * delete our orphan entry. 4787 */ 4788 trans = btrfs_join_transaction(root); 4789 if (IS_ERR(trans)) { 4790 btrfs_orphan_del(NULL, inode); 4791 return ret; 4792 } 4793 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4794 err = btrfs_orphan_del(trans, inode); 4795 if (err) 4796 btrfs_abort_transaction(trans, root, err); 4797 btrfs_end_transaction(trans, root); 4798 } 4799 } 4800 4801 return ret; 4802 } 4803 4804 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4805 { 4806 struct inode *inode = dentry->d_inode; 4807 struct btrfs_root *root = BTRFS_I(inode)->root; 4808 int err; 4809 4810 if (btrfs_root_readonly(root)) 4811 return -EROFS; 4812 4813 err = inode_change_ok(inode, attr); 4814 if (err) 4815 return err; 4816 4817 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4818 err = btrfs_setsize(inode, attr); 4819 if (err) 4820 return err; 4821 } 4822 4823 if (attr->ia_valid) { 4824 setattr_copy(inode, attr); 4825 inode_inc_iversion(inode); 4826 err = btrfs_dirty_inode(inode); 4827 4828 if (!err && attr->ia_valid & ATTR_MODE) 4829 err = posix_acl_chmod(inode, inode->i_mode); 4830 } 4831 4832 return err; 4833 } 4834 4835 /* 4836 * While truncating the inode pages during eviction, we get the VFS calling 4837 * btrfs_invalidatepage() against each page of the inode. This is slow because 4838 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4839 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4840 * extent_state structures over and over, wasting lots of time. 4841 * 4842 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4843 * those expensive operations on a per page basis and do only the ordered io 4844 * finishing, while we release here the extent_map and extent_state structures, 4845 * without the excessive merging and splitting. 4846 */ 4847 static void evict_inode_truncate_pages(struct inode *inode) 4848 { 4849 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4850 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4851 struct rb_node *node; 4852 4853 ASSERT(inode->i_state & I_FREEING); 4854 truncate_inode_pages_final(&inode->i_data); 4855 4856 write_lock(&map_tree->lock); 4857 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4858 struct extent_map *em; 4859 4860 node = rb_first(&map_tree->map); 4861 em = rb_entry(node, struct extent_map, rb_node); 4862 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4863 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4864 remove_extent_mapping(map_tree, em); 4865 free_extent_map(em); 4866 if (need_resched()) { 4867 write_unlock(&map_tree->lock); 4868 cond_resched(); 4869 write_lock(&map_tree->lock); 4870 } 4871 } 4872 write_unlock(&map_tree->lock); 4873 4874 spin_lock(&io_tree->lock); 4875 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4876 struct extent_state *state; 4877 struct extent_state *cached_state = NULL; 4878 4879 node = rb_first(&io_tree->state); 4880 state = rb_entry(node, struct extent_state, rb_node); 4881 atomic_inc(&state->refs); 4882 spin_unlock(&io_tree->lock); 4883 4884 lock_extent_bits(io_tree, state->start, state->end, 4885 0, &cached_state); 4886 clear_extent_bit(io_tree, state->start, state->end, 4887 EXTENT_LOCKED | EXTENT_DIRTY | 4888 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 4889 EXTENT_DEFRAG, 1, 1, 4890 &cached_state, GFP_NOFS); 4891 free_extent_state(state); 4892 4893 cond_resched(); 4894 spin_lock(&io_tree->lock); 4895 } 4896 spin_unlock(&io_tree->lock); 4897 } 4898 4899 void btrfs_evict_inode(struct inode *inode) 4900 { 4901 struct btrfs_trans_handle *trans; 4902 struct btrfs_root *root = BTRFS_I(inode)->root; 4903 struct btrfs_block_rsv *rsv, *global_rsv; 4904 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4905 int ret; 4906 4907 trace_btrfs_inode_evict(inode); 4908 4909 evict_inode_truncate_pages(inode); 4910 4911 if (inode->i_nlink && 4912 ((btrfs_root_refs(&root->root_item) != 0 && 4913 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4914 btrfs_is_free_space_inode(inode))) 4915 goto no_delete; 4916 4917 if (is_bad_inode(inode)) { 4918 btrfs_orphan_del(NULL, inode); 4919 goto no_delete; 4920 } 4921 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4922 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4923 4924 btrfs_free_io_failure_record(inode, 0, (u64)-1); 4925 4926 if (root->fs_info->log_root_recovering) { 4927 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4928 &BTRFS_I(inode)->runtime_flags)); 4929 goto no_delete; 4930 } 4931 4932 if (inode->i_nlink > 0) { 4933 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4934 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4935 goto no_delete; 4936 } 4937 4938 ret = btrfs_commit_inode_delayed_inode(inode); 4939 if (ret) { 4940 btrfs_orphan_del(NULL, inode); 4941 goto no_delete; 4942 } 4943 4944 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4945 if (!rsv) { 4946 btrfs_orphan_del(NULL, inode); 4947 goto no_delete; 4948 } 4949 rsv->size = min_size; 4950 rsv->failfast = 1; 4951 global_rsv = &root->fs_info->global_block_rsv; 4952 4953 btrfs_i_size_write(inode, 0); 4954 4955 /* 4956 * This is a bit simpler than btrfs_truncate since we've already 4957 * reserved our space for our orphan item in the unlink, so we just 4958 * need to reserve some slack space in case we add bytes and update 4959 * inode item when doing the truncate. 4960 */ 4961 while (1) { 4962 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4963 BTRFS_RESERVE_FLUSH_LIMIT); 4964 4965 /* 4966 * Try and steal from the global reserve since we will 4967 * likely not use this space anyway, we want to try as 4968 * hard as possible to get this to work. 4969 */ 4970 if (ret) 4971 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4972 4973 if (ret) { 4974 btrfs_warn(root->fs_info, 4975 "Could not get space for a delete, will truncate on mount %d", 4976 ret); 4977 btrfs_orphan_del(NULL, inode); 4978 btrfs_free_block_rsv(root, rsv); 4979 goto no_delete; 4980 } 4981 4982 trans = btrfs_join_transaction(root); 4983 if (IS_ERR(trans)) { 4984 btrfs_orphan_del(NULL, inode); 4985 btrfs_free_block_rsv(root, rsv); 4986 goto no_delete; 4987 } 4988 4989 trans->block_rsv = rsv; 4990 4991 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4992 if (ret != -ENOSPC) 4993 break; 4994 4995 trans->block_rsv = &root->fs_info->trans_block_rsv; 4996 btrfs_end_transaction(trans, root); 4997 trans = NULL; 4998 btrfs_btree_balance_dirty(root); 4999 } 5000 5001 btrfs_free_block_rsv(root, rsv); 5002 5003 /* 5004 * Errors here aren't a big deal, it just means we leave orphan items 5005 * in the tree. They will be cleaned up on the next mount. 5006 */ 5007 if (ret == 0) { 5008 trans->block_rsv = root->orphan_block_rsv; 5009 btrfs_orphan_del(trans, inode); 5010 } else { 5011 btrfs_orphan_del(NULL, inode); 5012 } 5013 5014 trans->block_rsv = &root->fs_info->trans_block_rsv; 5015 if (!(root == root->fs_info->tree_root || 5016 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5017 btrfs_return_ino(root, btrfs_ino(inode)); 5018 5019 btrfs_end_transaction(trans, root); 5020 btrfs_btree_balance_dirty(root); 5021 no_delete: 5022 btrfs_remove_delayed_node(inode); 5023 clear_inode(inode); 5024 return; 5025 } 5026 5027 /* 5028 * this returns the key found in the dir entry in the location pointer. 5029 * If no dir entries were found, location->objectid is 0. 5030 */ 5031 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5032 struct btrfs_key *location) 5033 { 5034 const char *name = dentry->d_name.name; 5035 int namelen = dentry->d_name.len; 5036 struct btrfs_dir_item *di; 5037 struct btrfs_path *path; 5038 struct btrfs_root *root = BTRFS_I(dir)->root; 5039 int ret = 0; 5040 5041 path = btrfs_alloc_path(); 5042 if (!path) 5043 return -ENOMEM; 5044 5045 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5046 namelen, 0); 5047 if (IS_ERR(di)) 5048 ret = PTR_ERR(di); 5049 5050 if (IS_ERR_OR_NULL(di)) 5051 goto out_err; 5052 5053 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5054 out: 5055 btrfs_free_path(path); 5056 return ret; 5057 out_err: 5058 location->objectid = 0; 5059 goto out; 5060 } 5061 5062 /* 5063 * when we hit a tree root in a directory, the btrfs part of the inode 5064 * needs to be changed to reflect the root directory of the tree root. This 5065 * is kind of like crossing a mount point. 5066 */ 5067 static int fixup_tree_root_location(struct btrfs_root *root, 5068 struct inode *dir, 5069 struct dentry *dentry, 5070 struct btrfs_key *location, 5071 struct btrfs_root **sub_root) 5072 { 5073 struct btrfs_path *path; 5074 struct btrfs_root *new_root; 5075 struct btrfs_root_ref *ref; 5076 struct extent_buffer *leaf; 5077 struct btrfs_key key; 5078 int ret; 5079 int err = 0; 5080 5081 path = btrfs_alloc_path(); 5082 if (!path) { 5083 err = -ENOMEM; 5084 goto out; 5085 } 5086 5087 err = -ENOENT; 5088 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5089 key.type = BTRFS_ROOT_REF_KEY; 5090 key.offset = location->objectid; 5091 5092 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5093 0, 0); 5094 if (ret) { 5095 if (ret < 0) 5096 err = ret; 5097 goto out; 5098 } 5099 5100 leaf = path->nodes[0]; 5101 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5102 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5103 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5104 goto out; 5105 5106 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5107 (unsigned long)(ref + 1), 5108 dentry->d_name.len); 5109 if (ret) 5110 goto out; 5111 5112 btrfs_release_path(path); 5113 5114 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5115 if (IS_ERR(new_root)) { 5116 err = PTR_ERR(new_root); 5117 goto out; 5118 } 5119 5120 *sub_root = new_root; 5121 location->objectid = btrfs_root_dirid(&new_root->root_item); 5122 location->type = BTRFS_INODE_ITEM_KEY; 5123 location->offset = 0; 5124 err = 0; 5125 out: 5126 btrfs_free_path(path); 5127 return err; 5128 } 5129 5130 static void inode_tree_add(struct inode *inode) 5131 { 5132 struct btrfs_root *root = BTRFS_I(inode)->root; 5133 struct btrfs_inode *entry; 5134 struct rb_node **p; 5135 struct rb_node *parent; 5136 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5137 u64 ino = btrfs_ino(inode); 5138 5139 if (inode_unhashed(inode)) 5140 return; 5141 parent = NULL; 5142 spin_lock(&root->inode_lock); 5143 p = &root->inode_tree.rb_node; 5144 while (*p) { 5145 parent = *p; 5146 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5147 5148 if (ino < btrfs_ino(&entry->vfs_inode)) 5149 p = &parent->rb_left; 5150 else if (ino > btrfs_ino(&entry->vfs_inode)) 5151 p = &parent->rb_right; 5152 else { 5153 WARN_ON(!(entry->vfs_inode.i_state & 5154 (I_WILL_FREE | I_FREEING))); 5155 rb_replace_node(parent, new, &root->inode_tree); 5156 RB_CLEAR_NODE(parent); 5157 spin_unlock(&root->inode_lock); 5158 return; 5159 } 5160 } 5161 rb_link_node(new, parent, p); 5162 rb_insert_color(new, &root->inode_tree); 5163 spin_unlock(&root->inode_lock); 5164 } 5165 5166 static void inode_tree_del(struct inode *inode) 5167 { 5168 struct btrfs_root *root = BTRFS_I(inode)->root; 5169 int empty = 0; 5170 5171 spin_lock(&root->inode_lock); 5172 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5173 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5174 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5175 empty = RB_EMPTY_ROOT(&root->inode_tree); 5176 } 5177 spin_unlock(&root->inode_lock); 5178 5179 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5180 synchronize_srcu(&root->fs_info->subvol_srcu); 5181 spin_lock(&root->inode_lock); 5182 empty = RB_EMPTY_ROOT(&root->inode_tree); 5183 spin_unlock(&root->inode_lock); 5184 if (empty) 5185 btrfs_add_dead_root(root); 5186 } 5187 } 5188 5189 void btrfs_invalidate_inodes(struct btrfs_root *root) 5190 { 5191 struct rb_node *node; 5192 struct rb_node *prev; 5193 struct btrfs_inode *entry; 5194 struct inode *inode; 5195 u64 objectid = 0; 5196 5197 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5198 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5199 5200 spin_lock(&root->inode_lock); 5201 again: 5202 node = root->inode_tree.rb_node; 5203 prev = NULL; 5204 while (node) { 5205 prev = node; 5206 entry = rb_entry(node, struct btrfs_inode, rb_node); 5207 5208 if (objectid < btrfs_ino(&entry->vfs_inode)) 5209 node = node->rb_left; 5210 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5211 node = node->rb_right; 5212 else 5213 break; 5214 } 5215 if (!node) { 5216 while (prev) { 5217 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5218 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5219 node = prev; 5220 break; 5221 } 5222 prev = rb_next(prev); 5223 } 5224 } 5225 while (node) { 5226 entry = rb_entry(node, struct btrfs_inode, rb_node); 5227 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5228 inode = igrab(&entry->vfs_inode); 5229 if (inode) { 5230 spin_unlock(&root->inode_lock); 5231 if (atomic_read(&inode->i_count) > 1) 5232 d_prune_aliases(inode); 5233 /* 5234 * btrfs_drop_inode will have it removed from 5235 * the inode cache when its usage count 5236 * hits zero. 5237 */ 5238 iput(inode); 5239 cond_resched(); 5240 spin_lock(&root->inode_lock); 5241 goto again; 5242 } 5243 5244 if (cond_resched_lock(&root->inode_lock)) 5245 goto again; 5246 5247 node = rb_next(node); 5248 } 5249 spin_unlock(&root->inode_lock); 5250 } 5251 5252 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5253 { 5254 struct btrfs_iget_args *args = p; 5255 inode->i_ino = args->location->objectid; 5256 memcpy(&BTRFS_I(inode)->location, args->location, 5257 sizeof(*args->location)); 5258 BTRFS_I(inode)->root = args->root; 5259 return 0; 5260 } 5261 5262 static int btrfs_find_actor(struct inode *inode, void *opaque) 5263 { 5264 struct btrfs_iget_args *args = opaque; 5265 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5266 args->root == BTRFS_I(inode)->root; 5267 } 5268 5269 static struct inode *btrfs_iget_locked(struct super_block *s, 5270 struct btrfs_key *location, 5271 struct btrfs_root *root) 5272 { 5273 struct inode *inode; 5274 struct btrfs_iget_args args; 5275 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5276 5277 args.location = location; 5278 args.root = root; 5279 5280 inode = iget5_locked(s, hashval, btrfs_find_actor, 5281 btrfs_init_locked_inode, 5282 (void *)&args); 5283 return inode; 5284 } 5285 5286 /* Get an inode object given its location and corresponding root. 5287 * Returns in *is_new if the inode was read from disk 5288 */ 5289 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5290 struct btrfs_root *root, int *new) 5291 { 5292 struct inode *inode; 5293 5294 inode = btrfs_iget_locked(s, location, root); 5295 if (!inode) 5296 return ERR_PTR(-ENOMEM); 5297 5298 if (inode->i_state & I_NEW) { 5299 btrfs_read_locked_inode(inode); 5300 if (!is_bad_inode(inode)) { 5301 inode_tree_add(inode); 5302 unlock_new_inode(inode); 5303 if (new) 5304 *new = 1; 5305 } else { 5306 unlock_new_inode(inode); 5307 iput(inode); 5308 inode = ERR_PTR(-ESTALE); 5309 } 5310 } 5311 5312 return inode; 5313 } 5314 5315 static struct inode *new_simple_dir(struct super_block *s, 5316 struct btrfs_key *key, 5317 struct btrfs_root *root) 5318 { 5319 struct inode *inode = new_inode(s); 5320 5321 if (!inode) 5322 return ERR_PTR(-ENOMEM); 5323 5324 BTRFS_I(inode)->root = root; 5325 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5326 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5327 5328 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5329 inode->i_op = &btrfs_dir_ro_inode_operations; 5330 inode->i_fop = &simple_dir_operations; 5331 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5332 inode->i_mtime = CURRENT_TIME; 5333 inode->i_atime = inode->i_mtime; 5334 inode->i_ctime = inode->i_mtime; 5335 BTRFS_I(inode)->i_otime = inode->i_mtime; 5336 5337 return inode; 5338 } 5339 5340 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5341 { 5342 struct inode *inode; 5343 struct btrfs_root *root = BTRFS_I(dir)->root; 5344 struct btrfs_root *sub_root = root; 5345 struct btrfs_key location; 5346 int index; 5347 int ret = 0; 5348 5349 if (dentry->d_name.len > BTRFS_NAME_LEN) 5350 return ERR_PTR(-ENAMETOOLONG); 5351 5352 ret = btrfs_inode_by_name(dir, dentry, &location); 5353 if (ret < 0) 5354 return ERR_PTR(ret); 5355 5356 if (location.objectid == 0) 5357 return ERR_PTR(-ENOENT); 5358 5359 if (location.type == BTRFS_INODE_ITEM_KEY) { 5360 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5361 return inode; 5362 } 5363 5364 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5365 5366 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5367 ret = fixup_tree_root_location(root, dir, dentry, 5368 &location, &sub_root); 5369 if (ret < 0) { 5370 if (ret != -ENOENT) 5371 inode = ERR_PTR(ret); 5372 else 5373 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5374 } else { 5375 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5376 } 5377 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5378 5379 if (!IS_ERR(inode) && root != sub_root) { 5380 down_read(&root->fs_info->cleanup_work_sem); 5381 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5382 ret = btrfs_orphan_cleanup(sub_root); 5383 up_read(&root->fs_info->cleanup_work_sem); 5384 if (ret) { 5385 iput(inode); 5386 inode = ERR_PTR(ret); 5387 } 5388 } 5389 5390 return inode; 5391 } 5392 5393 static int btrfs_dentry_delete(const struct dentry *dentry) 5394 { 5395 struct btrfs_root *root; 5396 struct inode *inode = dentry->d_inode; 5397 5398 if (!inode && !IS_ROOT(dentry)) 5399 inode = dentry->d_parent->d_inode; 5400 5401 if (inode) { 5402 root = BTRFS_I(inode)->root; 5403 if (btrfs_root_refs(&root->root_item) == 0) 5404 return 1; 5405 5406 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5407 return 1; 5408 } 5409 return 0; 5410 } 5411 5412 static void btrfs_dentry_release(struct dentry *dentry) 5413 { 5414 kfree(dentry->d_fsdata); 5415 } 5416 5417 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5418 unsigned int flags) 5419 { 5420 struct inode *inode; 5421 5422 inode = btrfs_lookup_dentry(dir, dentry); 5423 if (IS_ERR(inode)) { 5424 if (PTR_ERR(inode) == -ENOENT) 5425 inode = NULL; 5426 else 5427 return ERR_CAST(inode); 5428 } 5429 5430 return d_splice_alias(inode, dentry); 5431 } 5432 5433 unsigned char btrfs_filetype_table[] = { 5434 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5435 }; 5436 5437 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5438 { 5439 struct inode *inode = file_inode(file); 5440 struct btrfs_root *root = BTRFS_I(inode)->root; 5441 struct btrfs_item *item; 5442 struct btrfs_dir_item *di; 5443 struct btrfs_key key; 5444 struct btrfs_key found_key; 5445 struct btrfs_path *path; 5446 struct list_head ins_list; 5447 struct list_head del_list; 5448 int ret; 5449 struct extent_buffer *leaf; 5450 int slot; 5451 unsigned char d_type; 5452 int over = 0; 5453 u32 di_cur; 5454 u32 di_total; 5455 u32 di_len; 5456 int key_type = BTRFS_DIR_INDEX_KEY; 5457 char tmp_name[32]; 5458 char *name_ptr; 5459 int name_len; 5460 int is_curr = 0; /* ctx->pos points to the current index? */ 5461 5462 /* FIXME, use a real flag for deciding about the key type */ 5463 if (root->fs_info->tree_root == root) 5464 key_type = BTRFS_DIR_ITEM_KEY; 5465 5466 if (!dir_emit_dots(file, ctx)) 5467 return 0; 5468 5469 path = btrfs_alloc_path(); 5470 if (!path) 5471 return -ENOMEM; 5472 5473 path->reada = 1; 5474 5475 if (key_type == BTRFS_DIR_INDEX_KEY) { 5476 INIT_LIST_HEAD(&ins_list); 5477 INIT_LIST_HEAD(&del_list); 5478 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5479 } 5480 5481 key.type = key_type; 5482 key.offset = ctx->pos; 5483 key.objectid = btrfs_ino(inode); 5484 5485 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5486 if (ret < 0) 5487 goto err; 5488 5489 while (1) { 5490 leaf = path->nodes[0]; 5491 slot = path->slots[0]; 5492 if (slot >= btrfs_header_nritems(leaf)) { 5493 ret = btrfs_next_leaf(root, path); 5494 if (ret < 0) 5495 goto err; 5496 else if (ret > 0) 5497 break; 5498 continue; 5499 } 5500 5501 item = btrfs_item_nr(slot); 5502 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5503 5504 if (found_key.objectid != key.objectid) 5505 break; 5506 if (found_key.type != key_type) 5507 break; 5508 if (found_key.offset < ctx->pos) 5509 goto next; 5510 if (key_type == BTRFS_DIR_INDEX_KEY && 5511 btrfs_should_delete_dir_index(&del_list, 5512 found_key.offset)) 5513 goto next; 5514 5515 ctx->pos = found_key.offset; 5516 is_curr = 1; 5517 5518 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5519 di_cur = 0; 5520 di_total = btrfs_item_size(leaf, item); 5521 5522 while (di_cur < di_total) { 5523 struct btrfs_key location; 5524 5525 if (verify_dir_item(root, leaf, di)) 5526 break; 5527 5528 name_len = btrfs_dir_name_len(leaf, di); 5529 if (name_len <= sizeof(tmp_name)) { 5530 name_ptr = tmp_name; 5531 } else { 5532 name_ptr = kmalloc(name_len, GFP_NOFS); 5533 if (!name_ptr) { 5534 ret = -ENOMEM; 5535 goto err; 5536 } 5537 } 5538 read_extent_buffer(leaf, name_ptr, 5539 (unsigned long)(di + 1), name_len); 5540 5541 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5542 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5543 5544 5545 /* is this a reference to our own snapshot? If so 5546 * skip it. 5547 * 5548 * In contrast to old kernels, we insert the snapshot's 5549 * dir item and dir index after it has been created, so 5550 * we won't find a reference to our own snapshot. We 5551 * still keep the following code for backward 5552 * compatibility. 5553 */ 5554 if (location.type == BTRFS_ROOT_ITEM_KEY && 5555 location.objectid == root->root_key.objectid) { 5556 over = 0; 5557 goto skip; 5558 } 5559 over = !dir_emit(ctx, name_ptr, name_len, 5560 location.objectid, d_type); 5561 5562 skip: 5563 if (name_ptr != tmp_name) 5564 kfree(name_ptr); 5565 5566 if (over) 5567 goto nopos; 5568 di_len = btrfs_dir_name_len(leaf, di) + 5569 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5570 di_cur += di_len; 5571 di = (struct btrfs_dir_item *)((char *)di + di_len); 5572 } 5573 next: 5574 path->slots[0]++; 5575 } 5576 5577 if (key_type == BTRFS_DIR_INDEX_KEY) { 5578 if (is_curr) 5579 ctx->pos++; 5580 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5581 if (ret) 5582 goto nopos; 5583 } 5584 5585 /* Reached end of directory/root. Bump pos past the last item. */ 5586 ctx->pos++; 5587 5588 /* 5589 * Stop new entries from being returned after we return the last 5590 * entry. 5591 * 5592 * New directory entries are assigned a strictly increasing 5593 * offset. This means that new entries created during readdir 5594 * are *guaranteed* to be seen in the future by that readdir. 5595 * This has broken buggy programs which operate on names as 5596 * they're returned by readdir. Until we re-use freed offsets 5597 * we have this hack to stop new entries from being returned 5598 * under the assumption that they'll never reach this huge 5599 * offset. 5600 * 5601 * This is being careful not to overflow 32bit loff_t unless the 5602 * last entry requires it because doing so has broken 32bit apps 5603 * in the past. 5604 */ 5605 if (key_type == BTRFS_DIR_INDEX_KEY) { 5606 if (ctx->pos >= INT_MAX) 5607 ctx->pos = LLONG_MAX; 5608 else 5609 ctx->pos = INT_MAX; 5610 } 5611 nopos: 5612 ret = 0; 5613 err: 5614 if (key_type == BTRFS_DIR_INDEX_KEY) 5615 btrfs_put_delayed_items(&ins_list, &del_list); 5616 btrfs_free_path(path); 5617 return ret; 5618 } 5619 5620 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5621 { 5622 struct btrfs_root *root = BTRFS_I(inode)->root; 5623 struct btrfs_trans_handle *trans; 5624 int ret = 0; 5625 bool nolock = false; 5626 5627 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5628 return 0; 5629 5630 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5631 nolock = true; 5632 5633 if (wbc->sync_mode == WB_SYNC_ALL) { 5634 if (nolock) 5635 trans = btrfs_join_transaction_nolock(root); 5636 else 5637 trans = btrfs_join_transaction(root); 5638 if (IS_ERR(trans)) 5639 return PTR_ERR(trans); 5640 ret = btrfs_commit_transaction(trans, root); 5641 } 5642 return ret; 5643 } 5644 5645 /* 5646 * This is somewhat expensive, updating the tree every time the 5647 * inode changes. But, it is most likely to find the inode in cache. 5648 * FIXME, needs more benchmarking...there are no reasons other than performance 5649 * to keep or drop this code. 5650 */ 5651 static int btrfs_dirty_inode(struct inode *inode) 5652 { 5653 struct btrfs_root *root = BTRFS_I(inode)->root; 5654 struct btrfs_trans_handle *trans; 5655 int ret; 5656 5657 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5658 return 0; 5659 5660 trans = btrfs_join_transaction(root); 5661 if (IS_ERR(trans)) 5662 return PTR_ERR(trans); 5663 5664 ret = btrfs_update_inode(trans, root, inode); 5665 if (ret && ret == -ENOSPC) { 5666 /* whoops, lets try again with the full transaction */ 5667 btrfs_end_transaction(trans, root); 5668 trans = btrfs_start_transaction(root, 1); 5669 if (IS_ERR(trans)) 5670 return PTR_ERR(trans); 5671 5672 ret = btrfs_update_inode(trans, root, inode); 5673 } 5674 btrfs_end_transaction(trans, root); 5675 if (BTRFS_I(inode)->delayed_node) 5676 btrfs_balance_delayed_items(root); 5677 5678 return ret; 5679 } 5680 5681 /* 5682 * This is a copy of file_update_time. We need this so we can return error on 5683 * ENOSPC for updating the inode in the case of file write and mmap writes. 5684 */ 5685 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5686 int flags) 5687 { 5688 struct btrfs_root *root = BTRFS_I(inode)->root; 5689 5690 if (btrfs_root_readonly(root)) 5691 return -EROFS; 5692 5693 if (flags & S_VERSION) 5694 inode_inc_iversion(inode); 5695 if (flags & S_CTIME) 5696 inode->i_ctime = *now; 5697 if (flags & S_MTIME) 5698 inode->i_mtime = *now; 5699 if (flags & S_ATIME) 5700 inode->i_atime = *now; 5701 return btrfs_dirty_inode(inode); 5702 } 5703 5704 /* 5705 * find the highest existing sequence number in a directory 5706 * and then set the in-memory index_cnt variable to reflect 5707 * free sequence numbers 5708 */ 5709 static int btrfs_set_inode_index_count(struct inode *inode) 5710 { 5711 struct btrfs_root *root = BTRFS_I(inode)->root; 5712 struct btrfs_key key, found_key; 5713 struct btrfs_path *path; 5714 struct extent_buffer *leaf; 5715 int ret; 5716 5717 key.objectid = btrfs_ino(inode); 5718 key.type = BTRFS_DIR_INDEX_KEY; 5719 key.offset = (u64)-1; 5720 5721 path = btrfs_alloc_path(); 5722 if (!path) 5723 return -ENOMEM; 5724 5725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5726 if (ret < 0) 5727 goto out; 5728 /* FIXME: we should be able to handle this */ 5729 if (ret == 0) 5730 goto out; 5731 ret = 0; 5732 5733 /* 5734 * MAGIC NUMBER EXPLANATION: 5735 * since we search a directory based on f_pos we have to start at 2 5736 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5737 * else has to start at 2 5738 */ 5739 if (path->slots[0] == 0) { 5740 BTRFS_I(inode)->index_cnt = 2; 5741 goto out; 5742 } 5743 5744 path->slots[0]--; 5745 5746 leaf = path->nodes[0]; 5747 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5748 5749 if (found_key.objectid != btrfs_ino(inode) || 5750 found_key.type != BTRFS_DIR_INDEX_KEY) { 5751 BTRFS_I(inode)->index_cnt = 2; 5752 goto out; 5753 } 5754 5755 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5756 out: 5757 btrfs_free_path(path); 5758 return ret; 5759 } 5760 5761 /* 5762 * helper to find a free sequence number in a given directory. This current 5763 * code is very simple, later versions will do smarter things in the btree 5764 */ 5765 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5766 { 5767 int ret = 0; 5768 5769 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5770 ret = btrfs_inode_delayed_dir_index_count(dir); 5771 if (ret) { 5772 ret = btrfs_set_inode_index_count(dir); 5773 if (ret) 5774 return ret; 5775 } 5776 } 5777 5778 *index = BTRFS_I(dir)->index_cnt; 5779 BTRFS_I(dir)->index_cnt++; 5780 5781 return ret; 5782 } 5783 5784 static int btrfs_insert_inode_locked(struct inode *inode) 5785 { 5786 struct btrfs_iget_args args; 5787 args.location = &BTRFS_I(inode)->location; 5788 args.root = BTRFS_I(inode)->root; 5789 5790 return insert_inode_locked4(inode, 5791 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5792 btrfs_find_actor, &args); 5793 } 5794 5795 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5796 struct btrfs_root *root, 5797 struct inode *dir, 5798 const char *name, int name_len, 5799 u64 ref_objectid, u64 objectid, 5800 umode_t mode, u64 *index) 5801 { 5802 struct inode *inode; 5803 struct btrfs_inode_item *inode_item; 5804 struct btrfs_key *location; 5805 struct btrfs_path *path; 5806 struct btrfs_inode_ref *ref; 5807 struct btrfs_key key[2]; 5808 u32 sizes[2]; 5809 int nitems = name ? 2 : 1; 5810 unsigned long ptr; 5811 int ret; 5812 5813 path = btrfs_alloc_path(); 5814 if (!path) 5815 return ERR_PTR(-ENOMEM); 5816 5817 inode = new_inode(root->fs_info->sb); 5818 if (!inode) { 5819 btrfs_free_path(path); 5820 return ERR_PTR(-ENOMEM); 5821 } 5822 5823 /* 5824 * O_TMPFILE, set link count to 0, so that after this point, 5825 * we fill in an inode item with the correct link count. 5826 */ 5827 if (!name) 5828 set_nlink(inode, 0); 5829 5830 /* 5831 * we have to initialize this early, so we can reclaim the inode 5832 * number if we fail afterwards in this function. 5833 */ 5834 inode->i_ino = objectid; 5835 5836 if (dir && name) { 5837 trace_btrfs_inode_request(dir); 5838 5839 ret = btrfs_set_inode_index(dir, index); 5840 if (ret) { 5841 btrfs_free_path(path); 5842 iput(inode); 5843 return ERR_PTR(ret); 5844 } 5845 } else if (dir) { 5846 *index = 0; 5847 } 5848 /* 5849 * index_cnt is ignored for everything but a dir, 5850 * btrfs_get_inode_index_count has an explanation for the magic 5851 * number 5852 */ 5853 BTRFS_I(inode)->index_cnt = 2; 5854 BTRFS_I(inode)->dir_index = *index; 5855 BTRFS_I(inode)->root = root; 5856 BTRFS_I(inode)->generation = trans->transid; 5857 inode->i_generation = BTRFS_I(inode)->generation; 5858 5859 /* 5860 * We could have gotten an inode number from somebody who was fsynced 5861 * and then removed in this same transaction, so let's just set full 5862 * sync since it will be a full sync anyway and this will blow away the 5863 * old info in the log. 5864 */ 5865 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5866 5867 key[0].objectid = objectid; 5868 key[0].type = BTRFS_INODE_ITEM_KEY; 5869 key[0].offset = 0; 5870 5871 sizes[0] = sizeof(struct btrfs_inode_item); 5872 5873 if (name) { 5874 /* 5875 * Start new inodes with an inode_ref. This is slightly more 5876 * efficient for small numbers of hard links since they will 5877 * be packed into one item. Extended refs will kick in if we 5878 * add more hard links than can fit in the ref item. 5879 */ 5880 key[1].objectid = objectid; 5881 key[1].type = BTRFS_INODE_REF_KEY; 5882 key[1].offset = ref_objectid; 5883 5884 sizes[1] = name_len + sizeof(*ref); 5885 } 5886 5887 location = &BTRFS_I(inode)->location; 5888 location->objectid = objectid; 5889 location->offset = 0; 5890 location->type = BTRFS_INODE_ITEM_KEY; 5891 5892 ret = btrfs_insert_inode_locked(inode); 5893 if (ret < 0) 5894 goto fail; 5895 5896 path->leave_spinning = 1; 5897 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5898 if (ret != 0) 5899 goto fail_unlock; 5900 5901 inode_init_owner(inode, dir, mode); 5902 inode_set_bytes(inode, 0); 5903 5904 inode->i_mtime = CURRENT_TIME; 5905 inode->i_atime = inode->i_mtime; 5906 inode->i_ctime = inode->i_mtime; 5907 BTRFS_I(inode)->i_otime = inode->i_mtime; 5908 5909 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5910 struct btrfs_inode_item); 5911 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5912 sizeof(*inode_item)); 5913 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5914 5915 if (name) { 5916 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5917 struct btrfs_inode_ref); 5918 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5919 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5920 ptr = (unsigned long)(ref + 1); 5921 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5922 } 5923 5924 btrfs_mark_buffer_dirty(path->nodes[0]); 5925 btrfs_free_path(path); 5926 5927 btrfs_inherit_iflags(inode, dir); 5928 5929 if (S_ISREG(mode)) { 5930 if (btrfs_test_opt(root, NODATASUM)) 5931 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5932 if (btrfs_test_opt(root, NODATACOW)) 5933 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5934 BTRFS_INODE_NODATASUM; 5935 } 5936 5937 inode_tree_add(inode); 5938 5939 trace_btrfs_inode_new(inode); 5940 btrfs_set_inode_last_trans(trans, inode); 5941 5942 btrfs_update_root_times(trans, root); 5943 5944 ret = btrfs_inode_inherit_props(trans, inode, dir); 5945 if (ret) 5946 btrfs_err(root->fs_info, 5947 "error inheriting props for ino %llu (root %llu): %d", 5948 btrfs_ino(inode), root->root_key.objectid, ret); 5949 5950 return inode; 5951 5952 fail_unlock: 5953 unlock_new_inode(inode); 5954 fail: 5955 if (dir && name) 5956 BTRFS_I(dir)->index_cnt--; 5957 btrfs_free_path(path); 5958 iput(inode); 5959 return ERR_PTR(ret); 5960 } 5961 5962 static inline u8 btrfs_inode_type(struct inode *inode) 5963 { 5964 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5965 } 5966 5967 /* 5968 * utility function to add 'inode' into 'parent_inode' with 5969 * a give name and a given sequence number. 5970 * if 'add_backref' is true, also insert a backref from the 5971 * inode to the parent directory. 5972 */ 5973 int btrfs_add_link(struct btrfs_trans_handle *trans, 5974 struct inode *parent_inode, struct inode *inode, 5975 const char *name, int name_len, int add_backref, u64 index) 5976 { 5977 int ret = 0; 5978 struct btrfs_key key; 5979 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5980 u64 ino = btrfs_ino(inode); 5981 u64 parent_ino = btrfs_ino(parent_inode); 5982 5983 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5984 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5985 } else { 5986 key.objectid = ino; 5987 key.type = BTRFS_INODE_ITEM_KEY; 5988 key.offset = 0; 5989 } 5990 5991 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5992 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5993 key.objectid, root->root_key.objectid, 5994 parent_ino, index, name, name_len); 5995 } else if (add_backref) { 5996 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5997 parent_ino, index); 5998 } 5999 6000 /* Nothing to clean up yet */ 6001 if (ret) 6002 return ret; 6003 6004 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6005 parent_inode, &key, 6006 btrfs_inode_type(inode), index); 6007 if (ret == -EEXIST || ret == -EOVERFLOW) 6008 goto fail_dir_item; 6009 else if (ret) { 6010 btrfs_abort_transaction(trans, root, ret); 6011 return ret; 6012 } 6013 6014 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6015 name_len * 2); 6016 inode_inc_iversion(parent_inode); 6017 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 6018 ret = btrfs_update_inode(trans, root, parent_inode); 6019 if (ret) 6020 btrfs_abort_transaction(trans, root, ret); 6021 return ret; 6022 6023 fail_dir_item: 6024 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6025 u64 local_index; 6026 int err; 6027 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6028 key.objectid, root->root_key.objectid, 6029 parent_ino, &local_index, name, name_len); 6030 6031 } else if (add_backref) { 6032 u64 local_index; 6033 int err; 6034 6035 err = btrfs_del_inode_ref(trans, root, name, name_len, 6036 ino, parent_ino, &local_index); 6037 } 6038 return ret; 6039 } 6040 6041 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6042 struct inode *dir, struct dentry *dentry, 6043 struct inode *inode, int backref, u64 index) 6044 { 6045 int err = btrfs_add_link(trans, dir, inode, 6046 dentry->d_name.name, dentry->d_name.len, 6047 backref, index); 6048 if (err > 0) 6049 err = -EEXIST; 6050 return err; 6051 } 6052 6053 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6054 umode_t mode, dev_t rdev) 6055 { 6056 struct btrfs_trans_handle *trans; 6057 struct btrfs_root *root = BTRFS_I(dir)->root; 6058 struct inode *inode = NULL; 6059 int err; 6060 int drop_inode = 0; 6061 u64 objectid; 6062 u64 index = 0; 6063 6064 if (!new_valid_dev(rdev)) 6065 return -EINVAL; 6066 6067 /* 6068 * 2 for inode item and ref 6069 * 2 for dir items 6070 * 1 for xattr if selinux is on 6071 */ 6072 trans = btrfs_start_transaction(root, 5); 6073 if (IS_ERR(trans)) 6074 return PTR_ERR(trans); 6075 6076 err = btrfs_find_free_ino(root, &objectid); 6077 if (err) 6078 goto out_unlock; 6079 6080 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6081 dentry->d_name.len, btrfs_ino(dir), objectid, 6082 mode, &index); 6083 if (IS_ERR(inode)) { 6084 err = PTR_ERR(inode); 6085 goto out_unlock; 6086 } 6087 6088 /* 6089 * If the active LSM wants to access the inode during 6090 * d_instantiate it needs these. Smack checks to see 6091 * if the filesystem supports xattrs by looking at the 6092 * ops vector. 6093 */ 6094 inode->i_op = &btrfs_special_inode_operations; 6095 init_special_inode(inode, inode->i_mode, rdev); 6096 6097 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6098 if (err) 6099 goto out_unlock_inode; 6100 6101 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6102 if (err) { 6103 goto out_unlock_inode; 6104 } else { 6105 btrfs_update_inode(trans, root, inode); 6106 unlock_new_inode(inode); 6107 d_instantiate(dentry, inode); 6108 } 6109 6110 out_unlock: 6111 btrfs_end_transaction(trans, root); 6112 btrfs_balance_delayed_items(root); 6113 btrfs_btree_balance_dirty(root); 6114 if (drop_inode) { 6115 inode_dec_link_count(inode); 6116 iput(inode); 6117 } 6118 return err; 6119 6120 out_unlock_inode: 6121 drop_inode = 1; 6122 unlock_new_inode(inode); 6123 goto out_unlock; 6124 6125 } 6126 6127 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6128 umode_t mode, bool excl) 6129 { 6130 struct btrfs_trans_handle *trans; 6131 struct btrfs_root *root = BTRFS_I(dir)->root; 6132 struct inode *inode = NULL; 6133 int drop_inode_on_err = 0; 6134 int err; 6135 u64 objectid; 6136 u64 index = 0; 6137 6138 /* 6139 * 2 for inode item and ref 6140 * 2 for dir items 6141 * 1 for xattr if selinux is on 6142 */ 6143 trans = btrfs_start_transaction(root, 5); 6144 if (IS_ERR(trans)) 6145 return PTR_ERR(trans); 6146 6147 err = btrfs_find_free_ino(root, &objectid); 6148 if (err) 6149 goto out_unlock; 6150 6151 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6152 dentry->d_name.len, btrfs_ino(dir), objectid, 6153 mode, &index); 6154 if (IS_ERR(inode)) { 6155 err = PTR_ERR(inode); 6156 goto out_unlock; 6157 } 6158 drop_inode_on_err = 1; 6159 /* 6160 * If the active LSM wants to access the inode during 6161 * d_instantiate it needs these. Smack checks to see 6162 * if the filesystem supports xattrs by looking at the 6163 * ops vector. 6164 */ 6165 inode->i_fop = &btrfs_file_operations; 6166 inode->i_op = &btrfs_file_inode_operations; 6167 inode->i_mapping->a_ops = &btrfs_aops; 6168 6169 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6170 if (err) 6171 goto out_unlock_inode; 6172 6173 err = btrfs_update_inode(trans, root, inode); 6174 if (err) 6175 goto out_unlock_inode; 6176 6177 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6178 if (err) 6179 goto out_unlock_inode; 6180 6181 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6182 unlock_new_inode(inode); 6183 d_instantiate(dentry, inode); 6184 6185 out_unlock: 6186 btrfs_end_transaction(trans, root); 6187 if (err && drop_inode_on_err) { 6188 inode_dec_link_count(inode); 6189 iput(inode); 6190 } 6191 btrfs_balance_delayed_items(root); 6192 btrfs_btree_balance_dirty(root); 6193 return err; 6194 6195 out_unlock_inode: 6196 unlock_new_inode(inode); 6197 goto out_unlock; 6198 6199 } 6200 6201 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6202 struct dentry *dentry) 6203 { 6204 struct btrfs_trans_handle *trans; 6205 struct btrfs_root *root = BTRFS_I(dir)->root; 6206 struct inode *inode = old_dentry->d_inode; 6207 u64 index; 6208 int err; 6209 int drop_inode = 0; 6210 6211 /* do not allow sys_link's with other subvols of the same device */ 6212 if (root->objectid != BTRFS_I(inode)->root->objectid) 6213 return -EXDEV; 6214 6215 if (inode->i_nlink >= BTRFS_LINK_MAX) 6216 return -EMLINK; 6217 6218 err = btrfs_set_inode_index(dir, &index); 6219 if (err) 6220 goto fail; 6221 6222 /* 6223 * 2 items for inode and inode ref 6224 * 2 items for dir items 6225 * 1 item for parent inode 6226 */ 6227 trans = btrfs_start_transaction(root, 5); 6228 if (IS_ERR(trans)) { 6229 err = PTR_ERR(trans); 6230 goto fail; 6231 } 6232 6233 /* There are several dir indexes for this inode, clear the cache. */ 6234 BTRFS_I(inode)->dir_index = 0ULL; 6235 inc_nlink(inode); 6236 inode_inc_iversion(inode); 6237 inode->i_ctime = CURRENT_TIME; 6238 ihold(inode); 6239 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6240 6241 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6242 6243 if (err) { 6244 drop_inode = 1; 6245 } else { 6246 struct dentry *parent = dentry->d_parent; 6247 err = btrfs_update_inode(trans, root, inode); 6248 if (err) 6249 goto fail; 6250 if (inode->i_nlink == 1) { 6251 /* 6252 * If new hard link count is 1, it's a file created 6253 * with open(2) O_TMPFILE flag. 6254 */ 6255 err = btrfs_orphan_del(trans, inode); 6256 if (err) 6257 goto fail; 6258 } 6259 d_instantiate(dentry, inode); 6260 btrfs_log_new_name(trans, inode, NULL, parent); 6261 } 6262 6263 btrfs_end_transaction(trans, root); 6264 btrfs_balance_delayed_items(root); 6265 fail: 6266 if (drop_inode) { 6267 inode_dec_link_count(inode); 6268 iput(inode); 6269 } 6270 btrfs_btree_balance_dirty(root); 6271 return err; 6272 } 6273 6274 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6275 { 6276 struct inode *inode = NULL; 6277 struct btrfs_trans_handle *trans; 6278 struct btrfs_root *root = BTRFS_I(dir)->root; 6279 int err = 0; 6280 int drop_on_err = 0; 6281 u64 objectid = 0; 6282 u64 index = 0; 6283 6284 /* 6285 * 2 items for inode and ref 6286 * 2 items for dir items 6287 * 1 for xattr if selinux is on 6288 */ 6289 trans = btrfs_start_transaction(root, 5); 6290 if (IS_ERR(trans)) 6291 return PTR_ERR(trans); 6292 6293 err = btrfs_find_free_ino(root, &objectid); 6294 if (err) 6295 goto out_fail; 6296 6297 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6298 dentry->d_name.len, btrfs_ino(dir), objectid, 6299 S_IFDIR | mode, &index); 6300 if (IS_ERR(inode)) { 6301 err = PTR_ERR(inode); 6302 goto out_fail; 6303 } 6304 6305 drop_on_err = 1; 6306 /* these must be set before we unlock the inode */ 6307 inode->i_op = &btrfs_dir_inode_operations; 6308 inode->i_fop = &btrfs_dir_file_operations; 6309 6310 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6311 if (err) 6312 goto out_fail_inode; 6313 6314 btrfs_i_size_write(inode, 0); 6315 err = btrfs_update_inode(trans, root, inode); 6316 if (err) 6317 goto out_fail_inode; 6318 6319 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6320 dentry->d_name.len, 0, index); 6321 if (err) 6322 goto out_fail_inode; 6323 6324 d_instantiate(dentry, inode); 6325 /* 6326 * mkdir is special. We're unlocking after we call d_instantiate 6327 * to avoid a race with nfsd calling d_instantiate. 6328 */ 6329 unlock_new_inode(inode); 6330 drop_on_err = 0; 6331 6332 out_fail: 6333 btrfs_end_transaction(trans, root); 6334 if (drop_on_err) { 6335 inode_dec_link_count(inode); 6336 iput(inode); 6337 } 6338 btrfs_balance_delayed_items(root); 6339 btrfs_btree_balance_dirty(root); 6340 return err; 6341 6342 out_fail_inode: 6343 unlock_new_inode(inode); 6344 goto out_fail; 6345 } 6346 6347 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6348 static struct extent_map *next_extent_map(struct extent_map *em) 6349 { 6350 struct rb_node *next; 6351 6352 next = rb_next(&em->rb_node); 6353 if (!next) 6354 return NULL; 6355 return container_of(next, struct extent_map, rb_node); 6356 } 6357 6358 static struct extent_map *prev_extent_map(struct extent_map *em) 6359 { 6360 struct rb_node *prev; 6361 6362 prev = rb_prev(&em->rb_node); 6363 if (!prev) 6364 return NULL; 6365 return container_of(prev, struct extent_map, rb_node); 6366 } 6367 6368 /* helper for btfs_get_extent. Given an existing extent in the tree, 6369 * the existing extent is the nearest extent to map_start, 6370 * and an extent that you want to insert, deal with overlap and insert 6371 * the best fitted new extent into the tree. 6372 */ 6373 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6374 struct extent_map *existing, 6375 struct extent_map *em, 6376 u64 map_start) 6377 { 6378 struct extent_map *prev; 6379 struct extent_map *next; 6380 u64 start; 6381 u64 end; 6382 u64 start_diff; 6383 6384 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6385 6386 if (existing->start > map_start) { 6387 next = existing; 6388 prev = prev_extent_map(next); 6389 } else { 6390 prev = existing; 6391 next = next_extent_map(prev); 6392 } 6393 6394 start = prev ? extent_map_end(prev) : em->start; 6395 start = max_t(u64, start, em->start); 6396 end = next ? next->start : extent_map_end(em); 6397 end = min_t(u64, end, extent_map_end(em)); 6398 start_diff = start - em->start; 6399 em->start = start; 6400 em->len = end - start; 6401 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6402 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6403 em->block_start += start_diff; 6404 em->block_len -= start_diff; 6405 } 6406 return add_extent_mapping(em_tree, em, 0); 6407 } 6408 6409 static noinline int uncompress_inline(struct btrfs_path *path, 6410 struct inode *inode, struct page *page, 6411 size_t pg_offset, u64 extent_offset, 6412 struct btrfs_file_extent_item *item) 6413 { 6414 int ret; 6415 struct extent_buffer *leaf = path->nodes[0]; 6416 char *tmp; 6417 size_t max_size; 6418 unsigned long inline_size; 6419 unsigned long ptr; 6420 int compress_type; 6421 6422 WARN_ON(pg_offset != 0); 6423 compress_type = btrfs_file_extent_compression(leaf, item); 6424 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6425 inline_size = btrfs_file_extent_inline_item_len(leaf, 6426 btrfs_item_nr(path->slots[0])); 6427 tmp = kmalloc(inline_size, GFP_NOFS); 6428 if (!tmp) 6429 return -ENOMEM; 6430 ptr = btrfs_file_extent_inline_start(item); 6431 6432 read_extent_buffer(leaf, tmp, ptr, inline_size); 6433 6434 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6435 ret = btrfs_decompress(compress_type, tmp, page, 6436 extent_offset, inline_size, max_size); 6437 kfree(tmp); 6438 return ret; 6439 } 6440 6441 /* 6442 * a bit scary, this does extent mapping from logical file offset to the disk. 6443 * the ugly parts come from merging extents from the disk with the in-ram 6444 * representation. This gets more complex because of the data=ordered code, 6445 * where the in-ram extents might be locked pending data=ordered completion. 6446 * 6447 * This also copies inline extents directly into the page. 6448 */ 6449 6450 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6451 size_t pg_offset, u64 start, u64 len, 6452 int create) 6453 { 6454 int ret; 6455 int err = 0; 6456 u64 extent_start = 0; 6457 u64 extent_end = 0; 6458 u64 objectid = btrfs_ino(inode); 6459 u32 found_type; 6460 struct btrfs_path *path = NULL; 6461 struct btrfs_root *root = BTRFS_I(inode)->root; 6462 struct btrfs_file_extent_item *item; 6463 struct extent_buffer *leaf; 6464 struct btrfs_key found_key; 6465 struct extent_map *em = NULL; 6466 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6467 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6468 struct btrfs_trans_handle *trans = NULL; 6469 const bool new_inline = !page || create; 6470 6471 again: 6472 read_lock(&em_tree->lock); 6473 em = lookup_extent_mapping(em_tree, start, len); 6474 if (em) 6475 em->bdev = root->fs_info->fs_devices->latest_bdev; 6476 read_unlock(&em_tree->lock); 6477 6478 if (em) { 6479 if (em->start > start || em->start + em->len <= start) 6480 free_extent_map(em); 6481 else if (em->block_start == EXTENT_MAP_INLINE && page) 6482 free_extent_map(em); 6483 else 6484 goto out; 6485 } 6486 em = alloc_extent_map(); 6487 if (!em) { 6488 err = -ENOMEM; 6489 goto out; 6490 } 6491 em->bdev = root->fs_info->fs_devices->latest_bdev; 6492 em->start = EXTENT_MAP_HOLE; 6493 em->orig_start = EXTENT_MAP_HOLE; 6494 em->len = (u64)-1; 6495 em->block_len = (u64)-1; 6496 6497 if (!path) { 6498 path = btrfs_alloc_path(); 6499 if (!path) { 6500 err = -ENOMEM; 6501 goto out; 6502 } 6503 /* 6504 * Chances are we'll be called again, so go ahead and do 6505 * readahead 6506 */ 6507 path->reada = 1; 6508 } 6509 6510 ret = btrfs_lookup_file_extent(trans, root, path, 6511 objectid, start, trans != NULL); 6512 if (ret < 0) { 6513 err = ret; 6514 goto out; 6515 } 6516 6517 if (ret != 0) { 6518 if (path->slots[0] == 0) 6519 goto not_found; 6520 path->slots[0]--; 6521 } 6522 6523 leaf = path->nodes[0]; 6524 item = btrfs_item_ptr(leaf, path->slots[0], 6525 struct btrfs_file_extent_item); 6526 /* are we inside the extent that was found? */ 6527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6528 found_type = found_key.type; 6529 if (found_key.objectid != objectid || 6530 found_type != BTRFS_EXTENT_DATA_KEY) { 6531 /* 6532 * If we backup past the first extent we want to move forward 6533 * and see if there is an extent in front of us, otherwise we'll 6534 * say there is a hole for our whole search range which can 6535 * cause problems. 6536 */ 6537 extent_end = start; 6538 goto next; 6539 } 6540 6541 found_type = btrfs_file_extent_type(leaf, item); 6542 extent_start = found_key.offset; 6543 if (found_type == BTRFS_FILE_EXTENT_REG || 6544 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6545 extent_end = extent_start + 6546 btrfs_file_extent_num_bytes(leaf, item); 6547 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6548 size_t size; 6549 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6550 extent_end = ALIGN(extent_start + size, root->sectorsize); 6551 } 6552 next: 6553 if (start >= extent_end) { 6554 path->slots[0]++; 6555 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6556 ret = btrfs_next_leaf(root, path); 6557 if (ret < 0) { 6558 err = ret; 6559 goto out; 6560 } 6561 if (ret > 0) 6562 goto not_found; 6563 leaf = path->nodes[0]; 6564 } 6565 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6566 if (found_key.objectid != objectid || 6567 found_key.type != BTRFS_EXTENT_DATA_KEY) 6568 goto not_found; 6569 if (start + len <= found_key.offset) 6570 goto not_found; 6571 if (start > found_key.offset) 6572 goto next; 6573 em->start = start; 6574 em->orig_start = start; 6575 em->len = found_key.offset - start; 6576 goto not_found_em; 6577 } 6578 6579 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6580 6581 if (found_type == BTRFS_FILE_EXTENT_REG || 6582 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6583 goto insert; 6584 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6585 unsigned long ptr; 6586 char *map; 6587 size_t size; 6588 size_t extent_offset; 6589 size_t copy_size; 6590 6591 if (new_inline) 6592 goto out; 6593 6594 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6595 extent_offset = page_offset(page) + pg_offset - extent_start; 6596 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6597 size - extent_offset); 6598 em->start = extent_start + extent_offset; 6599 em->len = ALIGN(copy_size, root->sectorsize); 6600 em->orig_block_len = em->len; 6601 em->orig_start = em->start; 6602 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6603 if (create == 0 && !PageUptodate(page)) { 6604 if (btrfs_file_extent_compression(leaf, item) != 6605 BTRFS_COMPRESS_NONE) { 6606 ret = uncompress_inline(path, inode, page, 6607 pg_offset, 6608 extent_offset, item); 6609 if (ret) { 6610 err = ret; 6611 goto out; 6612 } 6613 } else { 6614 map = kmap(page); 6615 read_extent_buffer(leaf, map + pg_offset, ptr, 6616 copy_size); 6617 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6618 memset(map + pg_offset + copy_size, 0, 6619 PAGE_CACHE_SIZE - pg_offset - 6620 copy_size); 6621 } 6622 kunmap(page); 6623 } 6624 flush_dcache_page(page); 6625 } else if (create && PageUptodate(page)) { 6626 BUG(); 6627 if (!trans) { 6628 kunmap(page); 6629 free_extent_map(em); 6630 em = NULL; 6631 6632 btrfs_release_path(path); 6633 trans = btrfs_join_transaction(root); 6634 6635 if (IS_ERR(trans)) 6636 return ERR_CAST(trans); 6637 goto again; 6638 } 6639 map = kmap(page); 6640 write_extent_buffer(leaf, map + pg_offset, ptr, 6641 copy_size); 6642 kunmap(page); 6643 btrfs_mark_buffer_dirty(leaf); 6644 } 6645 set_extent_uptodate(io_tree, em->start, 6646 extent_map_end(em) - 1, NULL, GFP_NOFS); 6647 goto insert; 6648 } 6649 not_found: 6650 em->start = start; 6651 em->orig_start = start; 6652 em->len = len; 6653 not_found_em: 6654 em->block_start = EXTENT_MAP_HOLE; 6655 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6656 insert: 6657 btrfs_release_path(path); 6658 if (em->start > start || extent_map_end(em) <= start) { 6659 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6660 em->start, em->len, start, len); 6661 err = -EIO; 6662 goto out; 6663 } 6664 6665 err = 0; 6666 write_lock(&em_tree->lock); 6667 ret = add_extent_mapping(em_tree, em, 0); 6668 /* it is possible that someone inserted the extent into the tree 6669 * while we had the lock dropped. It is also possible that 6670 * an overlapping map exists in the tree 6671 */ 6672 if (ret == -EEXIST) { 6673 struct extent_map *existing; 6674 6675 ret = 0; 6676 6677 existing = search_extent_mapping(em_tree, start, len); 6678 /* 6679 * existing will always be non-NULL, since there must be 6680 * extent causing the -EEXIST. 6681 */ 6682 if (start >= extent_map_end(existing) || 6683 start <= existing->start) { 6684 /* 6685 * The existing extent map is the one nearest to 6686 * the [start, start + len) range which overlaps 6687 */ 6688 err = merge_extent_mapping(em_tree, existing, 6689 em, start); 6690 free_extent_map(existing); 6691 if (err) { 6692 free_extent_map(em); 6693 em = NULL; 6694 } 6695 } else { 6696 free_extent_map(em); 6697 em = existing; 6698 err = 0; 6699 } 6700 } 6701 write_unlock(&em_tree->lock); 6702 out: 6703 6704 trace_btrfs_get_extent(root, em); 6705 6706 if (path) 6707 btrfs_free_path(path); 6708 if (trans) { 6709 ret = btrfs_end_transaction(trans, root); 6710 if (!err) 6711 err = ret; 6712 } 6713 if (err) { 6714 free_extent_map(em); 6715 return ERR_PTR(err); 6716 } 6717 BUG_ON(!em); /* Error is always set */ 6718 return em; 6719 } 6720 6721 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6722 size_t pg_offset, u64 start, u64 len, 6723 int create) 6724 { 6725 struct extent_map *em; 6726 struct extent_map *hole_em = NULL; 6727 u64 range_start = start; 6728 u64 end; 6729 u64 found; 6730 u64 found_end; 6731 int err = 0; 6732 6733 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6734 if (IS_ERR(em)) 6735 return em; 6736 if (em) { 6737 /* 6738 * if our em maps to 6739 * - a hole or 6740 * - a pre-alloc extent, 6741 * there might actually be delalloc bytes behind it. 6742 */ 6743 if (em->block_start != EXTENT_MAP_HOLE && 6744 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6745 return em; 6746 else 6747 hole_em = em; 6748 } 6749 6750 /* check to see if we've wrapped (len == -1 or similar) */ 6751 end = start + len; 6752 if (end < start) 6753 end = (u64)-1; 6754 else 6755 end -= 1; 6756 6757 em = NULL; 6758 6759 /* ok, we didn't find anything, lets look for delalloc */ 6760 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6761 end, len, EXTENT_DELALLOC, 1); 6762 found_end = range_start + found; 6763 if (found_end < range_start) 6764 found_end = (u64)-1; 6765 6766 /* 6767 * we didn't find anything useful, return 6768 * the original results from get_extent() 6769 */ 6770 if (range_start > end || found_end <= start) { 6771 em = hole_em; 6772 hole_em = NULL; 6773 goto out; 6774 } 6775 6776 /* adjust the range_start to make sure it doesn't 6777 * go backwards from the start they passed in 6778 */ 6779 range_start = max(start, range_start); 6780 found = found_end - range_start; 6781 6782 if (found > 0) { 6783 u64 hole_start = start; 6784 u64 hole_len = len; 6785 6786 em = alloc_extent_map(); 6787 if (!em) { 6788 err = -ENOMEM; 6789 goto out; 6790 } 6791 /* 6792 * when btrfs_get_extent can't find anything it 6793 * returns one huge hole 6794 * 6795 * make sure what it found really fits our range, and 6796 * adjust to make sure it is based on the start from 6797 * the caller 6798 */ 6799 if (hole_em) { 6800 u64 calc_end = extent_map_end(hole_em); 6801 6802 if (calc_end <= start || (hole_em->start > end)) { 6803 free_extent_map(hole_em); 6804 hole_em = NULL; 6805 } else { 6806 hole_start = max(hole_em->start, start); 6807 hole_len = calc_end - hole_start; 6808 } 6809 } 6810 em->bdev = NULL; 6811 if (hole_em && range_start > hole_start) { 6812 /* our hole starts before our delalloc, so we 6813 * have to return just the parts of the hole 6814 * that go until the delalloc starts 6815 */ 6816 em->len = min(hole_len, 6817 range_start - hole_start); 6818 em->start = hole_start; 6819 em->orig_start = hole_start; 6820 /* 6821 * don't adjust block start at all, 6822 * it is fixed at EXTENT_MAP_HOLE 6823 */ 6824 em->block_start = hole_em->block_start; 6825 em->block_len = hole_len; 6826 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6827 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6828 } else { 6829 em->start = range_start; 6830 em->len = found; 6831 em->orig_start = range_start; 6832 em->block_start = EXTENT_MAP_DELALLOC; 6833 em->block_len = found; 6834 } 6835 } else if (hole_em) { 6836 return hole_em; 6837 } 6838 out: 6839 6840 free_extent_map(hole_em); 6841 if (err) { 6842 free_extent_map(em); 6843 return ERR_PTR(err); 6844 } 6845 return em; 6846 } 6847 6848 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6849 u64 start, u64 len) 6850 { 6851 struct btrfs_root *root = BTRFS_I(inode)->root; 6852 struct extent_map *em; 6853 struct btrfs_key ins; 6854 u64 alloc_hint; 6855 int ret; 6856 6857 alloc_hint = get_extent_allocation_hint(inode, start, len); 6858 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 6859 alloc_hint, &ins, 1, 1); 6860 if (ret) 6861 return ERR_PTR(ret); 6862 6863 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6864 ins.offset, ins.offset, ins.offset, 0); 6865 if (IS_ERR(em)) { 6866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 6867 return em; 6868 } 6869 6870 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6871 ins.offset, ins.offset, 0); 6872 if (ret) { 6873 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 6874 free_extent_map(em); 6875 return ERR_PTR(ret); 6876 } 6877 6878 return em; 6879 } 6880 6881 /* 6882 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6883 * block must be cow'd 6884 */ 6885 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6886 u64 *orig_start, u64 *orig_block_len, 6887 u64 *ram_bytes) 6888 { 6889 struct btrfs_trans_handle *trans; 6890 struct btrfs_path *path; 6891 int ret; 6892 struct extent_buffer *leaf; 6893 struct btrfs_root *root = BTRFS_I(inode)->root; 6894 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6895 struct btrfs_file_extent_item *fi; 6896 struct btrfs_key key; 6897 u64 disk_bytenr; 6898 u64 backref_offset; 6899 u64 extent_end; 6900 u64 num_bytes; 6901 int slot; 6902 int found_type; 6903 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6904 6905 path = btrfs_alloc_path(); 6906 if (!path) 6907 return -ENOMEM; 6908 6909 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 6910 offset, 0); 6911 if (ret < 0) 6912 goto out; 6913 6914 slot = path->slots[0]; 6915 if (ret == 1) { 6916 if (slot == 0) { 6917 /* can't find the item, must cow */ 6918 ret = 0; 6919 goto out; 6920 } 6921 slot--; 6922 } 6923 ret = 0; 6924 leaf = path->nodes[0]; 6925 btrfs_item_key_to_cpu(leaf, &key, slot); 6926 if (key.objectid != btrfs_ino(inode) || 6927 key.type != BTRFS_EXTENT_DATA_KEY) { 6928 /* not our file or wrong item type, must cow */ 6929 goto out; 6930 } 6931 6932 if (key.offset > offset) { 6933 /* Wrong offset, must cow */ 6934 goto out; 6935 } 6936 6937 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6938 found_type = btrfs_file_extent_type(leaf, fi); 6939 if (found_type != BTRFS_FILE_EXTENT_REG && 6940 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6941 /* not a regular extent, must cow */ 6942 goto out; 6943 } 6944 6945 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6946 goto out; 6947 6948 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6949 if (extent_end <= offset) 6950 goto out; 6951 6952 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6953 if (disk_bytenr == 0) 6954 goto out; 6955 6956 if (btrfs_file_extent_compression(leaf, fi) || 6957 btrfs_file_extent_encryption(leaf, fi) || 6958 btrfs_file_extent_other_encoding(leaf, fi)) 6959 goto out; 6960 6961 backref_offset = btrfs_file_extent_offset(leaf, fi); 6962 6963 if (orig_start) { 6964 *orig_start = key.offset - backref_offset; 6965 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6966 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6967 } 6968 6969 if (btrfs_extent_readonly(root, disk_bytenr)) 6970 goto out; 6971 6972 num_bytes = min(offset + *len, extent_end) - offset; 6973 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6974 u64 range_end; 6975 6976 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 6977 ret = test_range_bit(io_tree, offset, range_end, 6978 EXTENT_DELALLOC, 0, NULL); 6979 if (ret) { 6980 ret = -EAGAIN; 6981 goto out; 6982 } 6983 } 6984 6985 btrfs_release_path(path); 6986 6987 /* 6988 * look for other files referencing this extent, if we 6989 * find any we must cow 6990 */ 6991 trans = btrfs_join_transaction(root); 6992 if (IS_ERR(trans)) { 6993 ret = 0; 6994 goto out; 6995 } 6996 6997 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6998 key.offset - backref_offset, disk_bytenr); 6999 btrfs_end_transaction(trans, root); 7000 if (ret) { 7001 ret = 0; 7002 goto out; 7003 } 7004 7005 /* 7006 * adjust disk_bytenr and num_bytes to cover just the bytes 7007 * in this extent we are about to write. If there 7008 * are any csums in that range we have to cow in order 7009 * to keep the csums correct 7010 */ 7011 disk_bytenr += backref_offset; 7012 disk_bytenr += offset - key.offset; 7013 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7014 goto out; 7015 /* 7016 * all of the above have passed, it is safe to overwrite this extent 7017 * without cow 7018 */ 7019 *len = num_bytes; 7020 ret = 1; 7021 out: 7022 btrfs_free_path(path); 7023 return ret; 7024 } 7025 7026 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7027 { 7028 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7029 int found = false; 7030 void **pagep = NULL; 7031 struct page *page = NULL; 7032 int start_idx; 7033 int end_idx; 7034 7035 start_idx = start >> PAGE_CACHE_SHIFT; 7036 7037 /* 7038 * end is the last byte in the last page. end == start is legal 7039 */ 7040 end_idx = end >> PAGE_CACHE_SHIFT; 7041 7042 rcu_read_lock(); 7043 7044 /* Most of the code in this while loop is lifted from 7045 * find_get_page. It's been modified to begin searching from a 7046 * page and return just the first page found in that range. If the 7047 * found idx is less than or equal to the end idx then we know that 7048 * a page exists. If no pages are found or if those pages are 7049 * outside of the range then we're fine (yay!) */ 7050 while (page == NULL && 7051 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7052 page = radix_tree_deref_slot(pagep); 7053 if (unlikely(!page)) 7054 break; 7055 7056 if (radix_tree_exception(page)) { 7057 if (radix_tree_deref_retry(page)) { 7058 page = NULL; 7059 continue; 7060 } 7061 /* 7062 * Otherwise, shmem/tmpfs must be storing a swap entry 7063 * here as an exceptional entry: so return it without 7064 * attempting to raise page count. 7065 */ 7066 page = NULL; 7067 break; /* TODO: Is this relevant for this use case? */ 7068 } 7069 7070 if (!page_cache_get_speculative(page)) { 7071 page = NULL; 7072 continue; 7073 } 7074 7075 /* 7076 * Has the page moved? 7077 * This is part of the lockless pagecache protocol. See 7078 * include/linux/pagemap.h for details. 7079 */ 7080 if (unlikely(page != *pagep)) { 7081 page_cache_release(page); 7082 page = NULL; 7083 } 7084 } 7085 7086 if (page) { 7087 if (page->index <= end_idx) 7088 found = true; 7089 page_cache_release(page); 7090 } 7091 7092 rcu_read_unlock(); 7093 return found; 7094 } 7095 7096 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7097 struct extent_state **cached_state, int writing) 7098 { 7099 struct btrfs_ordered_extent *ordered; 7100 int ret = 0; 7101 7102 while (1) { 7103 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7104 0, cached_state); 7105 /* 7106 * We're concerned with the entire range that we're going to be 7107 * doing DIO to, so we need to make sure theres no ordered 7108 * extents in this range. 7109 */ 7110 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7111 lockend - lockstart + 1); 7112 7113 /* 7114 * We need to make sure there are no buffered pages in this 7115 * range either, we could have raced between the invalidate in 7116 * generic_file_direct_write and locking the extent. The 7117 * invalidate needs to happen so that reads after a write do not 7118 * get stale data. 7119 */ 7120 if (!ordered && 7121 (!writing || 7122 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7123 break; 7124 7125 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7126 cached_state, GFP_NOFS); 7127 7128 if (ordered) { 7129 btrfs_start_ordered_extent(inode, ordered, 1); 7130 btrfs_put_ordered_extent(ordered); 7131 } else { 7132 /* Screw you mmap */ 7133 ret = btrfs_fdatawrite_range(inode, lockstart, lockend); 7134 if (ret) 7135 break; 7136 ret = filemap_fdatawait_range(inode->i_mapping, 7137 lockstart, 7138 lockend); 7139 if (ret) 7140 break; 7141 7142 /* 7143 * If we found a page that couldn't be invalidated just 7144 * fall back to buffered. 7145 */ 7146 ret = invalidate_inode_pages2_range(inode->i_mapping, 7147 lockstart >> PAGE_CACHE_SHIFT, 7148 lockend >> PAGE_CACHE_SHIFT); 7149 if (ret) 7150 break; 7151 } 7152 7153 cond_resched(); 7154 } 7155 7156 return ret; 7157 } 7158 7159 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7160 u64 len, u64 orig_start, 7161 u64 block_start, u64 block_len, 7162 u64 orig_block_len, u64 ram_bytes, 7163 int type) 7164 { 7165 struct extent_map_tree *em_tree; 7166 struct extent_map *em; 7167 struct btrfs_root *root = BTRFS_I(inode)->root; 7168 int ret; 7169 7170 em_tree = &BTRFS_I(inode)->extent_tree; 7171 em = alloc_extent_map(); 7172 if (!em) 7173 return ERR_PTR(-ENOMEM); 7174 7175 em->start = start; 7176 em->orig_start = orig_start; 7177 em->mod_start = start; 7178 em->mod_len = len; 7179 em->len = len; 7180 em->block_len = block_len; 7181 em->block_start = block_start; 7182 em->bdev = root->fs_info->fs_devices->latest_bdev; 7183 em->orig_block_len = orig_block_len; 7184 em->ram_bytes = ram_bytes; 7185 em->generation = -1; 7186 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7187 if (type == BTRFS_ORDERED_PREALLOC) 7188 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7189 7190 do { 7191 btrfs_drop_extent_cache(inode, em->start, 7192 em->start + em->len - 1, 0); 7193 write_lock(&em_tree->lock); 7194 ret = add_extent_mapping(em_tree, em, 1); 7195 write_unlock(&em_tree->lock); 7196 } while (ret == -EEXIST); 7197 7198 if (ret) { 7199 free_extent_map(em); 7200 return ERR_PTR(ret); 7201 } 7202 7203 return em; 7204 } 7205 7206 7207 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7208 struct buffer_head *bh_result, int create) 7209 { 7210 struct extent_map *em; 7211 struct btrfs_root *root = BTRFS_I(inode)->root; 7212 struct extent_state *cached_state = NULL; 7213 u64 start = iblock << inode->i_blkbits; 7214 u64 lockstart, lockend; 7215 u64 len = bh_result->b_size; 7216 u64 orig_len = len; 7217 int unlock_bits = EXTENT_LOCKED; 7218 int ret = 0; 7219 7220 if (create) 7221 unlock_bits |= EXTENT_DIRTY; 7222 else 7223 len = min_t(u64, len, root->sectorsize); 7224 7225 lockstart = start; 7226 lockend = start + len - 1; 7227 7228 /* 7229 * If this errors out it's because we couldn't invalidate pagecache for 7230 * this range and we need to fallback to buffered. 7231 */ 7232 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 7233 return -ENOTBLK; 7234 7235 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7236 if (IS_ERR(em)) { 7237 ret = PTR_ERR(em); 7238 goto unlock_err; 7239 } 7240 7241 /* 7242 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7243 * io. INLINE is special, and we could probably kludge it in here, but 7244 * it's still buffered so for safety lets just fall back to the generic 7245 * buffered path. 7246 * 7247 * For COMPRESSED we _have_ to read the entire extent in so we can 7248 * decompress it, so there will be buffering required no matter what we 7249 * do, so go ahead and fallback to buffered. 7250 * 7251 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7252 * to buffered IO. Don't blame me, this is the price we pay for using 7253 * the generic code. 7254 */ 7255 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7256 em->block_start == EXTENT_MAP_INLINE) { 7257 free_extent_map(em); 7258 ret = -ENOTBLK; 7259 goto unlock_err; 7260 } 7261 7262 /* Just a good old fashioned hole, return */ 7263 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7264 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7265 free_extent_map(em); 7266 goto unlock_err; 7267 } 7268 7269 /* 7270 * We don't allocate a new extent in the following cases 7271 * 7272 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7273 * existing extent. 7274 * 2) The extent is marked as PREALLOC. We're good to go here and can 7275 * just use the extent. 7276 * 7277 */ 7278 if (!create) { 7279 len = min(len, em->len - (start - em->start)); 7280 lockstart = start + len; 7281 goto unlock; 7282 } 7283 7284 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7285 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7286 em->block_start != EXTENT_MAP_HOLE)) { 7287 int type; 7288 int ret; 7289 u64 block_start, orig_start, orig_block_len, ram_bytes; 7290 7291 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7292 type = BTRFS_ORDERED_PREALLOC; 7293 else 7294 type = BTRFS_ORDERED_NOCOW; 7295 len = min(len, em->len - (start - em->start)); 7296 block_start = em->block_start + (start - em->start); 7297 7298 if (can_nocow_extent(inode, start, &len, &orig_start, 7299 &orig_block_len, &ram_bytes) == 1) { 7300 if (type == BTRFS_ORDERED_PREALLOC) { 7301 free_extent_map(em); 7302 em = create_pinned_em(inode, start, len, 7303 orig_start, 7304 block_start, len, 7305 orig_block_len, 7306 ram_bytes, type); 7307 if (IS_ERR(em)) { 7308 ret = PTR_ERR(em); 7309 goto unlock_err; 7310 } 7311 } 7312 7313 ret = btrfs_add_ordered_extent_dio(inode, start, 7314 block_start, len, len, type); 7315 if (ret) { 7316 free_extent_map(em); 7317 goto unlock_err; 7318 } 7319 goto unlock; 7320 } 7321 } 7322 7323 /* 7324 * this will cow the extent, reset the len in case we changed 7325 * it above 7326 */ 7327 len = bh_result->b_size; 7328 free_extent_map(em); 7329 em = btrfs_new_extent_direct(inode, start, len); 7330 if (IS_ERR(em)) { 7331 ret = PTR_ERR(em); 7332 goto unlock_err; 7333 } 7334 len = min(len, em->len - (start - em->start)); 7335 unlock: 7336 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7337 inode->i_blkbits; 7338 bh_result->b_size = len; 7339 bh_result->b_bdev = em->bdev; 7340 set_buffer_mapped(bh_result); 7341 if (create) { 7342 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7343 set_buffer_new(bh_result); 7344 7345 /* 7346 * Need to update the i_size under the extent lock so buffered 7347 * readers will get the updated i_size when we unlock. 7348 */ 7349 if (start + len > i_size_read(inode)) 7350 i_size_write(inode, start + len); 7351 7352 if (len < orig_len) { 7353 spin_lock(&BTRFS_I(inode)->lock); 7354 BTRFS_I(inode)->outstanding_extents++; 7355 spin_unlock(&BTRFS_I(inode)->lock); 7356 } 7357 btrfs_free_reserved_data_space(inode, len); 7358 } 7359 7360 /* 7361 * In the case of write we need to clear and unlock the entire range, 7362 * in the case of read we need to unlock only the end area that we 7363 * aren't using if there is any left over space. 7364 */ 7365 if (lockstart < lockend) { 7366 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7367 lockend, unlock_bits, 1, 0, 7368 &cached_state, GFP_NOFS); 7369 } else { 7370 free_extent_state(cached_state); 7371 } 7372 7373 free_extent_map(em); 7374 7375 return 0; 7376 7377 unlock_err: 7378 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7379 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7380 return ret; 7381 } 7382 7383 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7384 int rw, int mirror_num) 7385 { 7386 struct btrfs_root *root = BTRFS_I(inode)->root; 7387 int ret; 7388 7389 BUG_ON(rw & REQ_WRITE); 7390 7391 bio_get(bio); 7392 7393 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7394 BTRFS_WQ_ENDIO_DIO_REPAIR); 7395 if (ret) 7396 goto err; 7397 7398 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7399 err: 7400 bio_put(bio); 7401 return ret; 7402 } 7403 7404 static int btrfs_check_dio_repairable(struct inode *inode, 7405 struct bio *failed_bio, 7406 struct io_failure_record *failrec, 7407 int failed_mirror) 7408 { 7409 int num_copies; 7410 7411 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7412 failrec->logical, failrec->len); 7413 if (num_copies == 1) { 7414 /* 7415 * we only have a single copy of the data, so don't bother with 7416 * all the retry and error correction code that follows. no 7417 * matter what the error is, it is very likely to persist. 7418 */ 7419 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7420 num_copies, failrec->this_mirror, failed_mirror); 7421 return 0; 7422 } 7423 7424 failrec->failed_mirror = failed_mirror; 7425 failrec->this_mirror++; 7426 if (failrec->this_mirror == failed_mirror) 7427 failrec->this_mirror++; 7428 7429 if (failrec->this_mirror > num_copies) { 7430 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7431 num_copies, failrec->this_mirror, failed_mirror); 7432 return 0; 7433 } 7434 7435 return 1; 7436 } 7437 7438 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7439 struct page *page, u64 start, u64 end, 7440 int failed_mirror, bio_end_io_t *repair_endio, 7441 void *repair_arg) 7442 { 7443 struct io_failure_record *failrec; 7444 struct bio *bio; 7445 int isector; 7446 int read_mode; 7447 int ret; 7448 7449 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7450 7451 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7452 if (ret) 7453 return ret; 7454 7455 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7456 failed_mirror); 7457 if (!ret) { 7458 free_io_failure(inode, failrec); 7459 return -EIO; 7460 } 7461 7462 if (failed_bio->bi_vcnt > 1) 7463 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7464 else 7465 read_mode = READ_SYNC; 7466 7467 isector = start - btrfs_io_bio(failed_bio)->logical; 7468 isector >>= inode->i_sb->s_blocksize_bits; 7469 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7470 0, isector, repair_endio, repair_arg); 7471 if (!bio) { 7472 free_io_failure(inode, failrec); 7473 return -EIO; 7474 } 7475 7476 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7477 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7478 read_mode, failrec->this_mirror, failrec->in_validation); 7479 7480 ret = submit_dio_repair_bio(inode, bio, read_mode, 7481 failrec->this_mirror); 7482 if (ret) { 7483 free_io_failure(inode, failrec); 7484 bio_put(bio); 7485 } 7486 7487 return ret; 7488 } 7489 7490 struct btrfs_retry_complete { 7491 struct completion done; 7492 struct inode *inode; 7493 u64 start; 7494 int uptodate; 7495 }; 7496 7497 static void btrfs_retry_endio_nocsum(struct bio *bio, int err) 7498 { 7499 struct btrfs_retry_complete *done = bio->bi_private; 7500 struct bio_vec *bvec; 7501 int i; 7502 7503 if (err) 7504 goto end; 7505 7506 done->uptodate = 1; 7507 bio_for_each_segment_all(bvec, bio, i) 7508 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7509 end: 7510 complete(&done->done); 7511 bio_put(bio); 7512 } 7513 7514 static int __btrfs_correct_data_nocsum(struct inode *inode, 7515 struct btrfs_io_bio *io_bio) 7516 { 7517 struct bio_vec *bvec; 7518 struct btrfs_retry_complete done; 7519 u64 start; 7520 int i; 7521 int ret; 7522 7523 start = io_bio->logical; 7524 done.inode = inode; 7525 7526 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7527 try_again: 7528 done.uptodate = 0; 7529 done.start = start; 7530 init_completion(&done.done); 7531 7532 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7533 start + bvec->bv_len - 1, 7534 io_bio->mirror_num, 7535 btrfs_retry_endio_nocsum, &done); 7536 if (ret) 7537 return ret; 7538 7539 wait_for_completion(&done.done); 7540 7541 if (!done.uptodate) { 7542 /* We might have another mirror, so try again */ 7543 goto try_again; 7544 } 7545 7546 start += bvec->bv_len; 7547 } 7548 7549 return 0; 7550 } 7551 7552 static void btrfs_retry_endio(struct bio *bio, int err) 7553 { 7554 struct btrfs_retry_complete *done = bio->bi_private; 7555 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7556 struct bio_vec *bvec; 7557 int uptodate; 7558 int ret; 7559 int i; 7560 7561 if (err) 7562 goto end; 7563 7564 uptodate = 1; 7565 bio_for_each_segment_all(bvec, bio, i) { 7566 ret = __readpage_endio_check(done->inode, io_bio, i, 7567 bvec->bv_page, 0, 7568 done->start, bvec->bv_len); 7569 if (!ret) 7570 clean_io_failure(done->inode, done->start, 7571 bvec->bv_page, 0); 7572 else 7573 uptodate = 0; 7574 } 7575 7576 done->uptodate = uptodate; 7577 end: 7578 complete(&done->done); 7579 bio_put(bio); 7580 } 7581 7582 static int __btrfs_subio_endio_read(struct inode *inode, 7583 struct btrfs_io_bio *io_bio, int err) 7584 { 7585 struct bio_vec *bvec; 7586 struct btrfs_retry_complete done; 7587 u64 start; 7588 u64 offset = 0; 7589 int i; 7590 int ret; 7591 7592 err = 0; 7593 start = io_bio->logical; 7594 done.inode = inode; 7595 7596 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7597 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7598 0, start, bvec->bv_len); 7599 if (likely(!ret)) 7600 goto next; 7601 try_again: 7602 done.uptodate = 0; 7603 done.start = start; 7604 init_completion(&done.done); 7605 7606 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7607 start + bvec->bv_len - 1, 7608 io_bio->mirror_num, 7609 btrfs_retry_endio, &done); 7610 if (ret) { 7611 err = ret; 7612 goto next; 7613 } 7614 7615 wait_for_completion(&done.done); 7616 7617 if (!done.uptodate) { 7618 /* We might have another mirror, so try again */ 7619 goto try_again; 7620 } 7621 next: 7622 offset += bvec->bv_len; 7623 start += bvec->bv_len; 7624 } 7625 7626 return err; 7627 } 7628 7629 static int btrfs_subio_endio_read(struct inode *inode, 7630 struct btrfs_io_bio *io_bio, int err) 7631 { 7632 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7633 7634 if (skip_csum) { 7635 if (unlikely(err)) 7636 return __btrfs_correct_data_nocsum(inode, io_bio); 7637 else 7638 return 0; 7639 } else { 7640 return __btrfs_subio_endio_read(inode, io_bio, err); 7641 } 7642 } 7643 7644 static void btrfs_endio_direct_read(struct bio *bio, int err) 7645 { 7646 struct btrfs_dio_private *dip = bio->bi_private; 7647 struct inode *inode = dip->inode; 7648 struct bio *dio_bio; 7649 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7650 7651 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7652 err = btrfs_subio_endio_read(inode, io_bio, err); 7653 7654 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7655 dip->logical_offset + dip->bytes - 1); 7656 dio_bio = dip->dio_bio; 7657 7658 kfree(dip); 7659 7660 /* If we had a csum failure make sure to clear the uptodate flag */ 7661 if (err) 7662 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7663 dio_end_io(dio_bio, err); 7664 7665 if (io_bio->end_io) 7666 io_bio->end_io(io_bio, err); 7667 bio_put(bio); 7668 } 7669 7670 static void btrfs_endio_direct_write(struct bio *bio, int err) 7671 { 7672 struct btrfs_dio_private *dip = bio->bi_private; 7673 struct inode *inode = dip->inode; 7674 struct btrfs_root *root = BTRFS_I(inode)->root; 7675 struct btrfs_ordered_extent *ordered = NULL; 7676 u64 ordered_offset = dip->logical_offset; 7677 u64 ordered_bytes = dip->bytes; 7678 struct bio *dio_bio; 7679 int ret; 7680 7681 if (err) 7682 goto out_done; 7683 again: 7684 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7685 &ordered_offset, 7686 ordered_bytes, !err); 7687 if (!ret) 7688 goto out_test; 7689 7690 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 7691 finish_ordered_fn, NULL, NULL); 7692 btrfs_queue_work(root->fs_info->endio_write_workers, 7693 &ordered->work); 7694 out_test: 7695 /* 7696 * our bio might span multiple ordered extents. If we haven't 7697 * completed the accounting for the whole dio, go back and try again 7698 */ 7699 if (ordered_offset < dip->logical_offset + dip->bytes) { 7700 ordered_bytes = dip->logical_offset + dip->bytes - 7701 ordered_offset; 7702 ordered = NULL; 7703 goto again; 7704 } 7705 out_done: 7706 dio_bio = dip->dio_bio; 7707 7708 kfree(dip); 7709 7710 /* If we had an error make sure to clear the uptodate flag */ 7711 if (err) 7712 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7713 dio_end_io(dio_bio, err); 7714 bio_put(bio); 7715 } 7716 7717 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7718 struct bio *bio, int mirror_num, 7719 unsigned long bio_flags, u64 offset) 7720 { 7721 int ret; 7722 struct btrfs_root *root = BTRFS_I(inode)->root; 7723 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7724 BUG_ON(ret); /* -ENOMEM */ 7725 return 0; 7726 } 7727 7728 static void btrfs_end_dio_bio(struct bio *bio, int err) 7729 { 7730 struct btrfs_dio_private *dip = bio->bi_private; 7731 7732 if (err) 7733 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7734 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7735 btrfs_ino(dip->inode), bio->bi_rw, 7736 (unsigned long long)bio->bi_iter.bi_sector, 7737 bio->bi_iter.bi_size, err); 7738 7739 if (dip->subio_endio) 7740 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7741 7742 if (err) { 7743 dip->errors = 1; 7744 7745 /* 7746 * before atomic variable goto zero, we must make sure 7747 * dip->errors is perceived to be set. 7748 */ 7749 smp_mb__before_atomic(); 7750 } 7751 7752 /* if there are more bios still pending for this dio, just exit */ 7753 if (!atomic_dec_and_test(&dip->pending_bios)) 7754 goto out; 7755 7756 if (dip->errors) { 7757 bio_io_error(dip->orig_bio); 7758 } else { 7759 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7760 bio_endio(dip->orig_bio, 0); 7761 } 7762 out: 7763 bio_put(bio); 7764 } 7765 7766 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7767 u64 first_sector, gfp_t gfp_flags) 7768 { 7769 int nr_vecs = bio_get_nr_vecs(bdev); 7770 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7771 } 7772 7773 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 7774 struct inode *inode, 7775 struct btrfs_dio_private *dip, 7776 struct bio *bio, 7777 u64 file_offset) 7778 { 7779 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7780 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7781 int ret; 7782 7783 /* 7784 * We load all the csum data we need when we submit 7785 * the first bio to reduce the csum tree search and 7786 * contention. 7787 */ 7788 if (dip->logical_offset == file_offset) { 7789 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 7790 file_offset); 7791 if (ret) 7792 return ret; 7793 } 7794 7795 if (bio == dip->orig_bio) 7796 return 0; 7797 7798 file_offset -= dip->logical_offset; 7799 file_offset >>= inode->i_sb->s_blocksize_bits; 7800 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7801 7802 return 0; 7803 } 7804 7805 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7806 int rw, u64 file_offset, int skip_sum, 7807 int async_submit) 7808 { 7809 struct btrfs_dio_private *dip = bio->bi_private; 7810 int write = rw & REQ_WRITE; 7811 struct btrfs_root *root = BTRFS_I(inode)->root; 7812 int ret; 7813 7814 if (async_submit) 7815 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7816 7817 bio_get(bio); 7818 7819 if (!write) { 7820 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7821 BTRFS_WQ_ENDIO_DATA); 7822 if (ret) 7823 goto err; 7824 } 7825 7826 if (skip_sum) 7827 goto map; 7828 7829 if (write && async_submit) { 7830 ret = btrfs_wq_submit_bio(root->fs_info, 7831 inode, rw, bio, 0, 0, 7832 file_offset, 7833 __btrfs_submit_bio_start_direct_io, 7834 __btrfs_submit_bio_done); 7835 goto err; 7836 } else if (write) { 7837 /* 7838 * If we aren't doing async submit, calculate the csum of the 7839 * bio now. 7840 */ 7841 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7842 if (ret) 7843 goto err; 7844 } else { 7845 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 7846 file_offset); 7847 if (ret) 7848 goto err; 7849 } 7850 map: 7851 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7852 err: 7853 bio_put(bio); 7854 return ret; 7855 } 7856 7857 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7858 int skip_sum) 7859 { 7860 struct inode *inode = dip->inode; 7861 struct btrfs_root *root = BTRFS_I(inode)->root; 7862 struct bio *bio; 7863 struct bio *orig_bio = dip->orig_bio; 7864 struct bio_vec *bvec = orig_bio->bi_io_vec; 7865 u64 start_sector = orig_bio->bi_iter.bi_sector; 7866 u64 file_offset = dip->logical_offset; 7867 u64 submit_len = 0; 7868 u64 map_length; 7869 int nr_pages = 0; 7870 int ret; 7871 int async_submit = 0; 7872 7873 map_length = orig_bio->bi_iter.bi_size; 7874 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7875 &map_length, NULL, 0); 7876 if (ret) 7877 return -EIO; 7878 7879 if (map_length >= orig_bio->bi_iter.bi_size) { 7880 bio = orig_bio; 7881 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 7882 goto submit; 7883 } 7884 7885 /* async crcs make it difficult to collect full stripe writes. */ 7886 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 7887 async_submit = 0; 7888 else 7889 async_submit = 1; 7890 7891 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7892 if (!bio) 7893 return -ENOMEM; 7894 7895 bio->bi_private = dip; 7896 bio->bi_end_io = btrfs_end_dio_bio; 7897 btrfs_io_bio(bio)->logical = file_offset; 7898 atomic_inc(&dip->pending_bios); 7899 7900 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7901 if (map_length < submit_len + bvec->bv_len || 7902 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7903 bvec->bv_offset) < bvec->bv_len) { 7904 /* 7905 * inc the count before we submit the bio so 7906 * we know the end IO handler won't happen before 7907 * we inc the count. Otherwise, the dip might get freed 7908 * before we're done setting it up 7909 */ 7910 atomic_inc(&dip->pending_bios); 7911 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7912 file_offset, skip_sum, 7913 async_submit); 7914 if (ret) { 7915 bio_put(bio); 7916 atomic_dec(&dip->pending_bios); 7917 goto out_err; 7918 } 7919 7920 start_sector += submit_len >> 9; 7921 file_offset += submit_len; 7922 7923 submit_len = 0; 7924 nr_pages = 0; 7925 7926 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7927 start_sector, GFP_NOFS); 7928 if (!bio) 7929 goto out_err; 7930 bio->bi_private = dip; 7931 bio->bi_end_io = btrfs_end_dio_bio; 7932 btrfs_io_bio(bio)->logical = file_offset; 7933 7934 map_length = orig_bio->bi_iter.bi_size; 7935 ret = btrfs_map_block(root->fs_info, rw, 7936 start_sector << 9, 7937 &map_length, NULL, 0); 7938 if (ret) { 7939 bio_put(bio); 7940 goto out_err; 7941 } 7942 } else { 7943 submit_len += bvec->bv_len; 7944 nr_pages++; 7945 bvec++; 7946 } 7947 } 7948 7949 submit: 7950 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7951 async_submit); 7952 if (!ret) 7953 return 0; 7954 7955 bio_put(bio); 7956 out_err: 7957 dip->errors = 1; 7958 /* 7959 * before atomic variable goto zero, we must 7960 * make sure dip->errors is perceived to be set. 7961 */ 7962 smp_mb__before_atomic(); 7963 if (atomic_dec_and_test(&dip->pending_bios)) 7964 bio_io_error(dip->orig_bio); 7965 7966 /* bio_end_io() will handle error, so we needn't return it */ 7967 return 0; 7968 } 7969 7970 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7971 struct inode *inode, loff_t file_offset) 7972 { 7973 struct btrfs_root *root = BTRFS_I(inode)->root; 7974 struct btrfs_dio_private *dip; 7975 struct bio *io_bio; 7976 struct btrfs_io_bio *btrfs_bio; 7977 int skip_sum; 7978 int write = rw & REQ_WRITE; 7979 int ret = 0; 7980 7981 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7982 7983 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7984 if (!io_bio) { 7985 ret = -ENOMEM; 7986 goto free_ordered; 7987 } 7988 7989 dip = kzalloc(sizeof(*dip), GFP_NOFS); 7990 if (!dip) { 7991 ret = -ENOMEM; 7992 goto free_io_bio; 7993 } 7994 7995 dip->private = dio_bio->bi_private; 7996 dip->inode = inode; 7997 dip->logical_offset = file_offset; 7998 dip->bytes = dio_bio->bi_iter.bi_size; 7999 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8000 io_bio->bi_private = dip; 8001 dip->orig_bio = io_bio; 8002 dip->dio_bio = dio_bio; 8003 atomic_set(&dip->pending_bios, 0); 8004 btrfs_bio = btrfs_io_bio(io_bio); 8005 btrfs_bio->logical = file_offset; 8006 8007 if (write) { 8008 io_bio->bi_end_io = btrfs_endio_direct_write; 8009 } else { 8010 io_bio->bi_end_io = btrfs_endio_direct_read; 8011 dip->subio_endio = btrfs_subio_endio_read; 8012 } 8013 8014 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8015 if (!ret) 8016 return; 8017 8018 if (btrfs_bio->end_io) 8019 btrfs_bio->end_io(btrfs_bio, ret); 8020 free_io_bio: 8021 bio_put(io_bio); 8022 8023 free_ordered: 8024 /* 8025 * If this is a write, we need to clean up the reserved space and kill 8026 * the ordered extent. 8027 */ 8028 if (write) { 8029 struct btrfs_ordered_extent *ordered; 8030 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 8031 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 8032 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 8033 btrfs_free_reserved_extent(root, ordered->start, 8034 ordered->disk_len, 1); 8035 btrfs_put_ordered_extent(ordered); 8036 btrfs_put_ordered_extent(ordered); 8037 } 8038 bio_endio(dio_bio, ret); 8039 } 8040 8041 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 8042 const struct iov_iter *iter, loff_t offset) 8043 { 8044 int seg; 8045 int i; 8046 unsigned blocksize_mask = root->sectorsize - 1; 8047 ssize_t retval = -EINVAL; 8048 8049 if (offset & blocksize_mask) 8050 goto out; 8051 8052 if (iov_iter_alignment(iter) & blocksize_mask) 8053 goto out; 8054 8055 /* If this is a write we don't need to check anymore */ 8056 if (rw & WRITE) 8057 return 0; 8058 /* 8059 * Check to make sure we don't have duplicate iov_base's in this 8060 * iovec, if so return EINVAL, otherwise we'll get csum errors 8061 * when reading back. 8062 */ 8063 for (seg = 0; seg < iter->nr_segs; seg++) { 8064 for (i = seg + 1; i < iter->nr_segs; i++) { 8065 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8066 goto out; 8067 } 8068 } 8069 retval = 0; 8070 out: 8071 return retval; 8072 } 8073 8074 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 8075 struct iov_iter *iter, loff_t offset) 8076 { 8077 struct file *file = iocb->ki_filp; 8078 struct inode *inode = file->f_mapping->host; 8079 size_t count = 0; 8080 int flags = 0; 8081 bool wakeup = true; 8082 bool relock = false; 8083 ssize_t ret; 8084 8085 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset)) 8086 return 0; 8087 8088 atomic_inc(&inode->i_dio_count); 8089 smp_mb__after_atomic(); 8090 8091 /* 8092 * The generic stuff only does filemap_write_and_wait_range, which 8093 * isn't enough if we've written compressed pages to this area, so 8094 * we need to flush the dirty pages again to make absolutely sure 8095 * that any outstanding dirty pages are on disk. 8096 */ 8097 count = iov_iter_count(iter); 8098 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8099 &BTRFS_I(inode)->runtime_flags)) 8100 filemap_fdatawrite_range(inode->i_mapping, offset, 8101 offset + count - 1); 8102 8103 if (rw & WRITE) { 8104 /* 8105 * If the write DIO is beyond the EOF, we need update 8106 * the isize, but it is protected by i_mutex. So we can 8107 * not unlock the i_mutex at this case. 8108 */ 8109 if (offset + count <= inode->i_size) { 8110 mutex_unlock(&inode->i_mutex); 8111 relock = true; 8112 } 8113 ret = btrfs_delalloc_reserve_space(inode, count); 8114 if (ret) 8115 goto out; 8116 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8117 &BTRFS_I(inode)->runtime_flags)) { 8118 inode_dio_done(inode); 8119 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8120 wakeup = false; 8121 } 8122 8123 ret = __blockdev_direct_IO(rw, iocb, inode, 8124 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8125 iter, offset, btrfs_get_blocks_direct, NULL, 8126 btrfs_submit_direct, flags); 8127 if (rw & WRITE) { 8128 if (ret < 0 && ret != -EIOCBQUEUED) 8129 btrfs_delalloc_release_space(inode, count); 8130 else if (ret >= 0 && (size_t)ret < count) 8131 btrfs_delalloc_release_space(inode, 8132 count - (size_t)ret); 8133 } 8134 out: 8135 if (wakeup) 8136 inode_dio_done(inode); 8137 if (relock) 8138 mutex_lock(&inode->i_mutex); 8139 8140 return ret; 8141 } 8142 8143 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8144 8145 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8146 __u64 start, __u64 len) 8147 { 8148 int ret; 8149 8150 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8151 if (ret) 8152 return ret; 8153 8154 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8155 } 8156 8157 int btrfs_readpage(struct file *file, struct page *page) 8158 { 8159 struct extent_io_tree *tree; 8160 tree = &BTRFS_I(page->mapping->host)->io_tree; 8161 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8162 } 8163 8164 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8165 { 8166 struct extent_io_tree *tree; 8167 8168 8169 if (current->flags & PF_MEMALLOC) { 8170 redirty_page_for_writepage(wbc, page); 8171 unlock_page(page); 8172 return 0; 8173 } 8174 tree = &BTRFS_I(page->mapping->host)->io_tree; 8175 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8176 } 8177 8178 static int btrfs_writepages(struct address_space *mapping, 8179 struct writeback_control *wbc) 8180 { 8181 struct extent_io_tree *tree; 8182 8183 tree = &BTRFS_I(mapping->host)->io_tree; 8184 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8185 } 8186 8187 static int 8188 btrfs_readpages(struct file *file, struct address_space *mapping, 8189 struct list_head *pages, unsigned nr_pages) 8190 { 8191 struct extent_io_tree *tree; 8192 tree = &BTRFS_I(mapping->host)->io_tree; 8193 return extent_readpages(tree, mapping, pages, nr_pages, 8194 btrfs_get_extent); 8195 } 8196 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8197 { 8198 struct extent_io_tree *tree; 8199 struct extent_map_tree *map; 8200 int ret; 8201 8202 tree = &BTRFS_I(page->mapping->host)->io_tree; 8203 map = &BTRFS_I(page->mapping->host)->extent_tree; 8204 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8205 if (ret == 1) { 8206 ClearPagePrivate(page); 8207 set_page_private(page, 0); 8208 page_cache_release(page); 8209 } 8210 return ret; 8211 } 8212 8213 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8214 { 8215 if (PageWriteback(page) || PageDirty(page)) 8216 return 0; 8217 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8218 } 8219 8220 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8221 unsigned int length) 8222 { 8223 struct inode *inode = page->mapping->host; 8224 struct extent_io_tree *tree; 8225 struct btrfs_ordered_extent *ordered; 8226 struct extent_state *cached_state = NULL; 8227 u64 page_start = page_offset(page); 8228 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 8229 int inode_evicting = inode->i_state & I_FREEING; 8230 8231 /* 8232 * we have the page locked, so new writeback can't start, 8233 * and the dirty bit won't be cleared while we are here. 8234 * 8235 * Wait for IO on this page so that we can safely clear 8236 * the PagePrivate2 bit and do ordered accounting 8237 */ 8238 wait_on_page_writeback(page); 8239 8240 tree = &BTRFS_I(inode)->io_tree; 8241 if (offset) { 8242 btrfs_releasepage(page, GFP_NOFS); 8243 return; 8244 } 8245 8246 if (!inode_evicting) 8247 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 8248 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8249 if (ordered) { 8250 /* 8251 * IO on this page will never be started, so we need 8252 * to account for any ordered extents now 8253 */ 8254 if (!inode_evicting) 8255 clear_extent_bit(tree, page_start, page_end, 8256 EXTENT_DIRTY | EXTENT_DELALLOC | 8257 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8258 EXTENT_DEFRAG, 1, 0, &cached_state, 8259 GFP_NOFS); 8260 /* 8261 * whoever cleared the private bit is responsible 8262 * for the finish_ordered_io 8263 */ 8264 if (TestClearPagePrivate2(page)) { 8265 struct btrfs_ordered_inode_tree *tree; 8266 u64 new_len; 8267 8268 tree = &BTRFS_I(inode)->ordered_tree; 8269 8270 spin_lock_irq(&tree->lock); 8271 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8272 new_len = page_start - ordered->file_offset; 8273 if (new_len < ordered->truncated_len) 8274 ordered->truncated_len = new_len; 8275 spin_unlock_irq(&tree->lock); 8276 8277 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8278 page_start, 8279 PAGE_CACHE_SIZE, 1)) 8280 btrfs_finish_ordered_io(ordered); 8281 } 8282 btrfs_put_ordered_extent(ordered); 8283 if (!inode_evicting) { 8284 cached_state = NULL; 8285 lock_extent_bits(tree, page_start, page_end, 0, 8286 &cached_state); 8287 } 8288 } 8289 8290 if (!inode_evicting) { 8291 clear_extent_bit(tree, page_start, page_end, 8292 EXTENT_LOCKED | EXTENT_DIRTY | 8293 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8294 EXTENT_DEFRAG, 1, 1, 8295 &cached_state, GFP_NOFS); 8296 8297 __btrfs_releasepage(page, GFP_NOFS); 8298 } 8299 8300 ClearPageChecked(page); 8301 if (PagePrivate(page)) { 8302 ClearPagePrivate(page); 8303 set_page_private(page, 0); 8304 page_cache_release(page); 8305 } 8306 } 8307 8308 /* 8309 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8310 * called from a page fault handler when a page is first dirtied. Hence we must 8311 * be careful to check for EOF conditions here. We set the page up correctly 8312 * for a written page which means we get ENOSPC checking when writing into 8313 * holes and correct delalloc and unwritten extent mapping on filesystems that 8314 * support these features. 8315 * 8316 * We are not allowed to take the i_mutex here so we have to play games to 8317 * protect against truncate races as the page could now be beyond EOF. Because 8318 * vmtruncate() writes the inode size before removing pages, once we have the 8319 * page lock we can determine safely if the page is beyond EOF. If it is not 8320 * beyond EOF, then the page is guaranteed safe against truncation until we 8321 * unlock the page. 8322 */ 8323 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8324 { 8325 struct page *page = vmf->page; 8326 struct inode *inode = file_inode(vma->vm_file); 8327 struct btrfs_root *root = BTRFS_I(inode)->root; 8328 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8329 struct btrfs_ordered_extent *ordered; 8330 struct extent_state *cached_state = NULL; 8331 char *kaddr; 8332 unsigned long zero_start; 8333 loff_t size; 8334 int ret; 8335 int reserved = 0; 8336 u64 page_start; 8337 u64 page_end; 8338 8339 sb_start_pagefault(inode->i_sb); 8340 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 8341 if (!ret) { 8342 ret = file_update_time(vma->vm_file); 8343 reserved = 1; 8344 } 8345 if (ret) { 8346 if (ret == -ENOMEM) 8347 ret = VM_FAULT_OOM; 8348 else /* -ENOSPC, -EIO, etc */ 8349 ret = VM_FAULT_SIGBUS; 8350 if (reserved) 8351 goto out; 8352 goto out_noreserve; 8353 } 8354 8355 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8356 again: 8357 lock_page(page); 8358 size = i_size_read(inode); 8359 page_start = page_offset(page); 8360 page_end = page_start + PAGE_CACHE_SIZE - 1; 8361 8362 if ((page->mapping != inode->i_mapping) || 8363 (page_start >= size)) { 8364 /* page got truncated out from underneath us */ 8365 goto out_unlock; 8366 } 8367 wait_on_page_writeback(page); 8368 8369 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 8370 set_page_extent_mapped(page); 8371 8372 /* 8373 * we can't set the delalloc bits if there are pending ordered 8374 * extents. Drop our locks and wait for them to finish 8375 */ 8376 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8377 if (ordered) { 8378 unlock_extent_cached(io_tree, page_start, page_end, 8379 &cached_state, GFP_NOFS); 8380 unlock_page(page); 8381 btrfs_start_ordered_extent(inode, ordered, 1); 8382 btrfs_put_ordered_extent(ordered); 8383 goto again; 8384 } 8385 8386 /* 8387 * XXX - page_mkwrite gets called every time the page is dirtied, even 8388 * if it was already dirty, so for space accounting reasons we need to 8389 * clear any delalloc bits for the range we are fixing to save. There 8390 * is probably a better way to do this, but for now keep consistent with 8391 * prepare_pages in the normal write path. 8392 */ 8393 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 8394 EXTENT_DIRTY | EXTENT_DELALLOC | 8395 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8396 0, 0, &cached_state, GFP_NOFS); 8397 8398 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 8399 &cached_state); 8400 if (ret) { 8401 unlock_extent_cached(io_tree, page_start, page_end, 8402 &cached_state, GFP_NOFS); 8403 ret = VM_FAULT_SIGBUS; 8404 goto out_unlock; 8405 } 8406 ret = 0; 8407 8408 /* page is wholly or partially inside EOF */ 8409 if (page_start + PAGE_CACHE_SIZE > size) 8410 zero_start = size & ~PAGE_CACHE_MASK; 8411 else 8412 zero_start = PAGE_CACHE_SIZE; 8413 8414 if (zero_start != PAGE_CACHE_SIZE) { 8415 kaddr = kmap(page); 8416 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 8417 flush_dcache_page(page); 8418 kunmap(page); 8419 } 8420 ClearPageChecked(page); 8421 set_page_dirty(page); 8422 SetPageUptodate(page); 8423 8424 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8425 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8426 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8427 8428 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8429 8430 out_unlock: 8431 if (!ret) { 8432 sb_end_pagefault(inode->i_sb); 8433 return VM_FAULT_LOCKED; 8434 } 8435 unlock_page(page); 8436 out: 8437 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 8438 out_noreserve: 8439 sb_end_pagefault(inode->i_sb); 8440 return ret; 8441 } 8442 8443 static int btrfs_truncate(struct inode *inode) 8444 { 8445 struct btrfs_root *root = BTRFS_I(inode)->root; 8446 struct btrfs_block_rsv *rsv; 8447 int ret = 0; 8448 int err = 0; 8449 struct btrfs_trans_handle *trans; 8450 u64 mask = root->sectorsize - 1; 8451 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 8452 8453 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8454 (u64)-1); 8455 if (ret) 8456 return ret; 8457 8458 /* 8459 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 8460 * 3 things going on here 8461 * 8462 * 1) We need to reserve space for our orphan item and the space to 8463 * delete our orphan item. Lord knows we don't want to have a dangling 8464 * orphan item because we didn't reserve space to remove it. 8465 * 8466 * 2) We need to reserve space to update our inode. 8467 * 8468 * 3) We need to have something to cache all the space that is going to 8469 * be free'd up by the truncate operation, but also have some slack 8470 * space reserved in case it uses space during the truncate (thank you 8471 * very much snapshotting). 8472 * 8473 * And we need these to all be seperate. The fact is we can use alot of 8474 * space doing the truncate, and we have no earthly idea how much space 8475 * we will use, so we need the truncate reservation to be seperate so it 8476 * doesn't end up using space reserved for updating the inode or 8477 * removing the orphan item. We also need to be able to stop the 8478 * transaction and start a new one, which means we need to be able to 8479 * update the inode several times, and we have no idea of knowing how 8480 * many times that will be, so we can't just reserve 1 item for the 8481 * entirety of the opration, so that has to be done seperately as well. 8482 * Then there is the orphan item, which does indeed need to be held on 8483 * to for the whole operation, and we need nobody to touch this reserved 8484 * space except the orphan code. 8485 * 8486 * So that leaves us with 8487 * 8488 * 1) root->orphan_block_rsv - for the orphan deletion. 8489 * 2) rsv - for the truncate reservation, which we will steal from the 8490 * transaction reservation. 8491 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 8492 * updating the inode. 8493 */ 8494 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 8495 if (!rsv) 8496 return -ENOMEM; 8497 rsv->size = min_size; 8498 rsv->failfast = 1; 8499 8500 /* 8501 * 1 for the truncate slack space 8502 * 1 for updating the inode. 8503 */ 8504 trans = btrfs_start_transaction(root, 2); 8505 if (IS_ERR(trans)) { 8506 err = PTR_ERR(trans); 8507 goto out; 8508 } 8509 8510 /* Migrate the slack space for the truncate to our reserve */ 8511 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 8512 min_size); 8513 BUG_ON(ret); 8514 8515 /* 8516 * So if we truncate and then write and fsync we normally would just 8517 * write the extents that changed, which is a problem if we need to 8518 * first truncate that entire inode. So set this flag so we write out 8519 * all of the extents in the inode to the sync log so we're completely 8520 * safe. 8521 */ 8522 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8523 trans->block_rsv = rsv; 8524 8525 while (1) { 8526 ret = btrfs_truncate_inode_items(trans, root, inode, 8527 inode->i_size, 8528 BTRFS_EXTENT_DATA_KEY); 8529 if (ret != -ENOSPC) { 8530 err = ret; 8531 break; 8532 } 8533 8534 trans->block_rsv = &root->fs_info->trans_block_rsv; 8535 ret = btrfs_update_inode(trans, root, inode); 8536 if (ret) { 8537 err = ret; 8538 break; 8539 } 8540 8541 btrfs_end_transaction(trans, root); 8542 btrfs_btree_balance_dirty(root); 8543 8544 trans = btrfs_start_transaction(root, 2); 8545 if (IS_ERR(trans)) { 8546 ret = err = PTR_ERR(trans); 8547 trans = NULL; 8548 break; 8549 } 8550 8551 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 8552 rsv, min_size); 8553 BUG_ON(ret); /* shouldn't happen */ 8554 trans->block_rsv = rsv; 8555 } 8556 8557 if (ret == 0 && inode->i_nlink > 0) { 8558 trans->block_rsv = root->orphan_block_rsv; 8559 ret = btrfs_orphan_del(trans, inode); 8560 if (ret) 8561 err = ret; 8562 } 8563 8564 if (trans) { 8565 trans->block_rsv = &root->fs_info->trans_block_rsv; 8566 ret = btrfs_update_inode(trans, root, inode); 8567 if (ret && !err) 8568 err = ret; 8569 8570 ret = btrfs_end_transaction(trans, root); 8571 btrfs_btree_balance_dirty(root); 8572 } 8573 8574 out: 8575 btrfs_free_block_rsv(root, rsv); 8576 8577 if (ret && !err) 8578 err = ret; 8579 8580 return err; 8581 } 8582 8583 /* 8584 * create a new subvolume directory/inode (helper for the ioctl). 8585 */ 8586 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8587 struct btrfs_root *new_root, 8588 struct btrfs_root *parent_root, 8589 u64 new_dirid) 8590 { 8591 struct inode *inode; 8592 int err; 8593 u64 index = 0; 8594 8595 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8596 new_dirid, new_dirid, 8597 S_IFDIR | (~current_umask() & S_IRWXUGO), 8598 &index); 8599 if (IS_ERR(inode)) 8600 return PTR_ERR(inode); 8601 inode->i_op = &btrfs_dir_inode_operations; 8602 inode->i_fop = &btrfs_dir_file_operations; 8603 8604 set_nlink(inode, 1); 8605 btrfs_i_size_write(inode, 0); 8606 unlock_new_inode(inode); 8607 8608 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8609 if (err) 8610 btrfs_err(new_root->fs_info, 8611 "error inheriting subvolume %llu properties: %d", 8612 new_root->root_key.objectid, err); 8613 8614 err = btrfs_update_inode(trans, new_root, inode); 8615 8616 iput(inode); 8617 return err; 8618 } 8619 8620 struct inode *btrfs_alloc_inode(struct super_block *sb) 8621 { 8622 struct btrfs_inode *ei; 8623 struct inode *inode; 8624 8625 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8626 if (!ei) 8627 return NULL; 8628 8629 ei->root = NULL; 8630 ei->generation = 0; 8631 ei->last_trans = 0; 8632 ei->last_sub_trans = 0; 8633 ei->logged_trans = 0; 8634 ei->delalloc_bytes = 0; 8635 ei->defrag_bytes = 0; 8636 ei->disk_i_size = 0; 8637 ei->flags = 0; 8638 ei->csum_bytes = 0; 8639 ei->index_cnt = (u64)-1; 8640 ei->dir_index = 0; 8641 ei->last_unlink_trans = 0; 8642 ei->last_log_commit = 0; 8643 8644 spin_lock_init(&ei->lock); 8645 ei->outstanding_extents = 0; 8646 ei->reserved_extents = 0; 8647 8648 ei->runtime_flags = 0; 8649 ei->force_compress = BTRFS_COMPRESS_NONE; 8650 8651 ei->delayed_node = NULL; 8652 8653 ei->i_otime.tv_sec = 0; 8654 ei->i_otime.tv_nsec = 0; 8655 8656 inode = &ei->vfs_inode; 8657 extent_map_tree_init(&ei->extent_tree); 8658 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8659 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8660 ei->io_tree.track_uptodate = 1; 8661 ei->io_failure_tree.track_uptodate = 1; 8662 atomic_set(&ei->sync_writers, 0); 8663 mutex_init(&ei->log_mutex); 8664 mutex_init(&ei->delalloc_mutex); 8665 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8666 INIT_LIST_HEAD(&ei->delalloc_inodes); 8667 RB_CLEAR_NODE(&ei->rb_node); 8668 8669 return inode; 8670 } 8671 8672 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8673 void btrfs_test_destroy_inode(struct inode *inode) 8674 { 8675 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8676 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8677 } 8678 #endif 8679 8680 static void btrfs_i_callback(struct rcu_head *head) 8681 { 8682 struct inode *inode = container_of(head, struct inode, i_rcu); 8683 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8684 } 8685 8686 void btrfs_destroy_inode(struct inode *inode) 8687 { 8688 struct btrfs_ordered_extent *ordered; 8689 struct btrfs_root *root = BTRFS_I(inode)->root; 8690 8691 WARN_ON(!hlist_empty(&inode->i_dentry)); 8692 WARN_ON(inode->i_data.nrpages); 8693 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8694 WARN_ON(BTRFS_I(inode)->reserved_extents); 8695 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8696 WARN_ON(BTRFS_I(inode)->csum_bytes); 8697 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8698 8699 /* 8700 * This can happen where we create an inode, but somebody else also 8701 * created the same inode and we need to destroy the one we already 8702 * created. 8703 */ 8704 if (!root) 8705 goto free; 8706 8707 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8708 &BTRFS_I(inode)->runtime_flags)) { 8709 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8710 btrfs_ino(inode)); 8711 atomic_dec(&root->orphan_inodes); 8712 } 8713 8714 while (1) { 8715 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8716 if (!ordered) 8717 break; 8718 else { 8719 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8720 ordered->file_offset, ordered->len); 8721 btrfs_remove_ordered_extent(inode, ordered); 8722 btrfs_put_ordered_extent(ordered); 8723 btrfs_put_ordered_extent(ordered); 8724 } 8725 } 8726 inode_tree_del(inode); 8727 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8728 free: 8729 call_rcu(&inode->i_rcu, btrfs_i_callback); 8730 } 8731 8732 int btrfs_drop_inode(struct inode *inode) 8733 { 8734 struct btrfs_root *root = BTRFS_I(inode)->root; 8735 8736 if (root == NULL) 8737 return 1; 8738 8739 /* the snap/subvol tree is on deleting */ 8740 if (btrfs_root_refs(&root->root_item) == 0) 8741 return 1; 8742 else 8743 return generic_drop_inode(inode); 8744 } 8745 8746 static void init_once(void *foo) 8747 { 8748 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8749 8750 inode_init_once(&ei->vfs_inode); 8751 } 8752 8753 void btrfs_destroy_cachep(void) 8754 { 8755 /* 8756 * Make sure all delayed rcu free inodes are flushed before we 8757 * destroy cache. 8758 */ 8759 rcu_barrier(); 8760 if (btrfs_inode_cachep) 8761 kmem_cache_destroy(btrfs_inode_cachep); 8762 if (btrfs_trans_handle_cachep) 8763 kmem_cache_destroy(btrfs_trans_handle_cachep); 8764 if (btrfs_transaction_cachep) 8765 kmem_cache_destroy(btrfs_transaction_cachep); 8766 if (btrfs_path_cachep) 8767 kmem_cache_destroy(btrfs_path_cachep); 8768 if (btrfs_free_space_cachep) 8769 kmem_cache_destroy(btrfs_free_space_cachep); 8770 if (btrfs_delalloc_work_cachep) 8771 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8772 } 8773 8774 int btrfs_init_cachep(void) 8775 { 8776 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8777 sizeof(struct btrfs_inode), 0, 8778 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8779 if (!btrfs_inode_cachep) 8780 goto fail; 8781 8782 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8783 sizeof(struct btrfs_trans_handle), 0, 8784 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8785 if (!btrfs_trans_handle_cachep) 8786 goto fail; 8787 8788 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8789 sizeof(struct btrfs_transaction), 0, 8790 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8791 if (!btrfs_transaction_cachep) 8792 goto fail; 8793 8794 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8795 sizeof(struct btrfs_path), 0, 8796 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8797 if (!btrfs_path_cachep) 8798 goto fail; 8799 8800 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8801 sizeof(struct btrfs_free_space), 0, 8802 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8803 if (!btrfs_free_space_cachep) 8804 goto fail; 8805 8806 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8807 sizeof(struct btrfs_delalloc_work), 0, 8808 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8809 NULL); 8810 if (!btrfs_delalloc_work_cachep) 8811 goto fail; 8812 8813 return 0; 8814 fail: 8815 btrfs_destroy_cachep(); 8816 return -ENOMEM; 8817 } 8818 8819 static int btrfs_getattr(struct vfsmount *mnt, 8820 struct dentry *dentry, struct kstat *stat) 8821 { 8822 u64 delalloc_bytes; 8823 struct inode *inode = dentry->d_inode; 8824 u32 blocksize = inode->i_sb->s_blocksize; 8825 8826 generic_fillattr(inode, stat); 8827 stat->dev = BTRFS_I(inode)->root->anon_dev; 8828 stat->blksize = PAGE_CACHE_SIZE; 8829 8830 spin_lock(&BTRFS_I(inode)->lock); 8831 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8832 spin_unlock(&BTRFS_I(inode)->lock); 8833 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8834 ALIGN(delalloc_bytes, blocksize)) >> 9; 8835 return 0; 8836 } 8837 8838 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8839 struct inode *new_dir, struct dentry *new_dentry) 8840 { 8841 struct btrfs_trans_handle *trans; 8842 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8843 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8844 struct inode *new_inode = new_dentry->d_inode; 8845 struct inode *old_inode = old_dentry->d_inode; 8846 struct timespec ctime = CURRENT_TIME; 8847 u64 index = 0; 8848 u64 root_objectid; 8849 int ret; 8850 u64 old_ino = btrfs_ino(old_inode); 8851 8852 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8853 return -EPERM; 8854 8855 /* we only allow rename subvolume link between subvolumes */ 8856 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8857 return -EXDEV; 8858 8859 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8860 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8861 return -ENOTEMPTY; 8862 8863 if (S_ISDIR(old_inode->i_mode) && new_inode && 8864 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8865 return -ENOTEMPTY; 8866 8867 8868 /* check for collisions, even if the name isn't there */ 8869 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 8870 new_dentry->d_name.name, 8871 new_dentry->d_name.len); 8872 8873 if (ret) { 8874 if (ret == -EEXIST) { 8875 /* we shouldn't get 8876 * eexist without a new_inode */ 8877 if (WARN_ON(!new_inode)) { 8878 return ret; 8879 } 8880 } else { 8881 /* maybe -EOVERFLOW */ 8882 return ret; 8883 } 8884 } 8885 ret = 0; 8886 8887 /* 8888 * we're using rename to replace one file with another. Start IO on it 8889 * now so we don't add too much work to the end of the transaction 8890 */ 8891 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8892 filemap_flush(old_inode->i_mapping); 8893 8894 /* close the racy window with snapshot create/destroy ioctl */ 8895 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8896 down_read(&root->fs_info->subvol_sem); 8897 /* 8898 * We want to reserve the absolute worst case amount of items. So if 8899 * both inodes are subvols and we need to unlink them then that would 8900 * require 4 item modifications, but if they are both normal inodes it 8901 * would require 5 item modifications, so we'll assume their normal 8902 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8903 * should cover the worst case number of items we'll modify. 8904 */ 8905 trans = btrfs_start_transaction(root, 11); 8906 if (IS_ERR(trans)) { 8907 ret = PTR_ERR(trans); 8908 goto out_notrans; 8909 } 8910 8911 if (dest != root) 8912 btrfs_record_root_in_trans(trans, dest); 8913 8914 ret = btrfs_set_inode_index(new_dir, &index); 8915 if (ret) 8916 goto out_fail; 8917 8918 BTRFS_I(old_inode)->dir_index = 0ULL; 8919 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8920 /* force full log commit if subvolume involved. */ 8921 btrfs_set_log_full_commit(root->fs_info, trans); 8922 } else { 8923 ret = btrfs_insert_inode_ref(trans, dest, 8924 new_dentry->d_name.name, 8925 new_dentry->d_name.len, 8926 old_ino, 8927 btrfs_ino(new_dir), index); 8928 if (ret) 8929 goto out_fail; 8930 /* 8931 * this is an ugly little race, but the rename is required 8932 * to make sure that if we crash, the inode is either at the 8933 * old name or the new one. pinning the log transaction lets 8934 * us make sure we don't allow a log commit to come in after 8935 * we unlink the name but before we add the new name back in. 8936 */ 8937 btrfs_pin_log_trans(root); 8938 } 8939 8940 inode_inc_iversion(old_dir); 8941 inode_inc_iversion(new_dir); 8942 inode_inc_iversion(old_inode); 8943 old_dir->i_ctime = old_dir->i_mtime = ctime; 8944 new_dir->i_ctime = new_dir->i_mtime = ctime; 8945 old_inode->i_ctime = ctime; 8946 8947 if (old_dentry->d_parent != new_dentry->d_parent) 8948 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8949 8950 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8951 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8952 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8953 old_dentry->d_name.name, 8954 old_dentry->d_name.len); 8955 } else { 8956 ret = __btrfs_unlink_inode(trans, root, old_dir, 8957 old_dentry->d_inode, 8958 old_dentry->d_name.name, 8959 old_dentry->d_name.len); 8960 if (!ret) 8961 ret = btrfs_update_inode(trans, root, old_inode); 8962 } 8963 if (ret) { 8964 btrfs_abort_transaction(trans, root, ret); 8965 goto out_fail; 8966 } 8967 8968 if (new_inode) { 8969 inode_inc_iversion(new_inode); 8970 new_inode->i_ctime = CURRENT_TIME; 8971 if (unlikely(btrfs_ino(new_inode) == 8972 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8973 root_objectid = BTRFS_I(new_inode)->location.objectid; 8974 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8975 root_objectid, 8976 new_dentry->d_name.name, 8977 new_dentry->d_name.len); 8978 BUG_ON(new_inode->i_nlink == 0); 8979 } else { 8980 ret = btrfs_unlink_inode(trans, dest, new_dir, 8981 new_dentry->d_inode, 8982 new_dentry->d_name.name, 8983 new_dentry->d_name.len); 8984 } 8985 if (!ret && new_inode->i_nlink == 0) 8986 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8987 if (ret) { 8988 btrfs_abort_transaction(trans, root, ret); 8989 goto out_fail; 8990 } 8991 } 8992 8993 ret = btrfs_add_link(trans, new_dir, old_inode, 8994 new_dentry->d_name.name, 8995 new_dentry->d_name.len, 0, index); 8996 if (ret) { 8997 btrfs_abort_transaction(trans, root, ret); 8998 goto out_fail; 8999 } 9000 9001 if (old_inode->i_nlink == 1) 9002 BTRFS_I(old_inode)->dir_index = index; 9003 9004 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9005 struct dentry *parent = new_dentry->d_parent; 9006 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9007 btrfs_end_log_trans(root); 9008 } 9009 out_fail: 9010 btrfs_end_transaction(trans, root); 9011 out_notrans: 9012 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9013 up_read(&root->fs_info->subvol_sem); 9014 9015 return ret; 9016 } 9017 9018 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9019 struct inode *new_dir, struct dentry *new_dentry, 9020 unsigned int flags) 9021 { 9022 if (flags & ~RENAME_NOREPLACE) 9023 return -EINVAL; 9024 9025 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9026 } 9027 9028 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9029 { 9030 struct btrfs_delalloc_work *delalloc_work; 9031 struct inode *inode; 9032 9033 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9034 work); 9035 inode = delalloc_work->inode; 9036 if (delalloc_work->wait) { 9037 btrfs_wait_ordered_range(inode, 0, (u64)-1); 9038 } else { 9039 filemap_flush(inode->i_mapping); 9040 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9041 &BTRFS_I(inode)->runtime_flags)) 9042 filemap_flush(inode->i_mapping); 9043 } 9044 9045 if (delalloc_work->delay_iput) 9046 btrfs_add_delayed_iput(inode); 9047 else 9048 iput(inode); 9049 complete(&delalloc_work->completion); 9050 } 9051 9052 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9053 int wait, int delay_iput) 9054 { 9055 struct btrfs_delalloc_work *work; 9056 9057 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 9058 if (!work) 9059 return NULL; 9060 9061 init_completion(&work->completion); 9062 INIT_LIST_HEAD(&work->list); 9063 work->inode = inode; 9064 work->wait = wait; 9065 work->delay_iput = delay_iput; 9066 WARN_ON_ONCE(!inode); 9067 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9068 btrfs_run_delalloc_work, NULL, NULL); 9069 9070 return work; 9071 } 9072 9073 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9074 { 9075 wait_for_completion(&work->completion); 9076 kmem_cache_free(btrfs_delalloc_work_cachep, work); 9077 } 9078 9079 /* 9080 * some fairly slow code that needs optimization. This walks the list 9081 * of all the inodes with pending delalloc and forces them to disk. 9082 */ 9083 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9084 int nr) 9085 { 9086 struct btrfs_inode *binode; 9087 struct inode *inode; 9088 struct btrfs_delalloc_work *work, *next; 9089 struct list_head works; 9090 struct list_head splice; 9091 int ret = 0; 9092 9093 INIT_LIST_HEAD(&works); 9094 INIT_LIST_HEAD(&splice); 9095 9096 mutex_lock(&root->delalloc_mutex); 9097 spin_lock(&root->delalloc_lock); 9098 list_splice_init(&root->delalloc_inodes, &splice); 9099 while (!list_empty(&splice)) { 9100 binode = list_entry(splice.next, struct btrfs_inode, 9101 delalloc_inodes); 9102 9103 list_move_tail(&binode->delalloc_inodes, 9104 &root->delalloc_inodes); 9105 inode = igrab(&binode->vfs_inode); 9106 if (!inode) { 9107 cond_resched_lock(&root->delalloc_lock); 9108 continue; 9109 } 9110 spin_unlock(&root->delalloc_lock); 9111 9112 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 9113 if (!work) { 9114 if (delay_iput) 9115 btrfs_add_delayed_iput(inode); 9116 else 9117 iput(inode); 9118 ret = -ENOMEM; 9119 goto out; 9120 } 9121 list_add_tail(&work->list, &works); 9122 btrfs_queue_work(root->fs_info->flush_workers, 9123 &work->work); 9124 ret++; 9125 if (nr != -1 && ret >= nr) 9126 goto out; 9127 cond_resched(); 9128 spin_lock(&root->delalloc_lock); 9129 } 9130 spin_unlock(&root->delalloc_lock); 9131 9132 out: 9133 list_for_each_entry_safe(work, next, &works, list) { 9134 list_del_init(&work->list); 9135 btrfs_wait_and_free_delalloc_work(work); 9136 } 9137 9138 if (!list_empty_careful(&splice)) { 9139 spin_lock(&root->delalloc_lock); 9140 list_splice_tail(&splice, &root->delalloc_inodes); 9141 spin_unlock(&root->delalloc_lock); 9142 } 9143 mutex_unlock(&root->delalloc_mutex); 9144 return ret; 9145 } 9146 9147 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9148 { 9149 int ret; 9150 9151 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9152 return -EROFS; 9153 9154 ret = __start_delalloc_inodes(root, delay_iput, -1); 9155 if (ret > 0) 9156 ret = 0; 9157 /* 9158 * the filemap_flush will queue IO into the worker threads, but 9159 * we have to make sure the IO is actually started and that 9160 * ordered extents get created before we return 9161 */ 9162 atomic_inc(&root->fs_info->async_submit_draining); 9163 while (atomic_read(&root->fs_info->nr_async_submits) || 9164 atomic_read(&root->fs_info->async_delalloc_pages)) { 9165 wait_event(root->fs_info->async_submit_wait, 9166 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9167 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9168 } 9169 atomic_dec(&root->fs_info->async_submit_draining); 9170 return ret; 9171 } 9172 9173 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9174 int nr) 9175 { 9176 struct btrfs_root *root; 9177 struct list_head splice; 9178 int ret; 9179 9180 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9181 return -EROFS; 9182 9183 INIT_LIST_HEAD(&splice); 9184 9185 mutex_lock(&fs_info->delalloc_root_mutex); 9186 spin_lock(&fs_info->delalloc_root_lock); 9187 list_splice_init(&fs_info->delalloc_roots, &splice); 9188 while (!list_empty(&splice) && nr) { 9189 root = list_first_entry(&splice, struct btrfs_root, 9190 delalloc_root); 9191 root = btrfs_grab_fs_root(root); 9192 BUG_ON(!root); 9193 list_move_tail(&root->delalloc_root, 9194 &fs_info->delalloc_roots); 9195 spin_unlock(&fs_info->delalloc_root_lock); 9196 9197 ret = __start_delalloc_inodes(root, delay_iput, nr); 9198 btrfs_put_fs_root(root); 9199 if (ret < 0) 9200 goto out; 9201 9202 if (nr != -1) { 9203 nr -= ret; 9204 WARN_ON(nr < 0); 9205 } 9206 spin_lock(&fs_info->delalloc_root_lock); 9207 } 9208 spin_unlock(&fs_info->delalloc_root_lock); 9209 9210 ret = 0; 9211 atomic_inc(&fs_info->async_submit_draining); 9212 while (atomic_read(&fs_info->nr_async_submits) || 9213 atomic_read(&fs_info->async_delalloc_pages)) { 9214 wait_event(fs_info->async_submit_wait, 9215 (atomic_read(&fs_info->nr_async_submits) == 0 && 9216 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9217 } 9218 atomic_dec(&fs_info->async_submit_draining); 9219 out: 9220 if (!list_empty_careful(&splice)) { 9221 spin_lock(&fs_info->delalloc_root_lock); 9222 list_splice_tail(&splice, &fs_info->delalloc_roots); 9223 spin_unlock(&fs_info->delalloc_root_lock); 9224 } 9225 mutex_unlock(&fs_info->delalloc_root_mutex); 9226 return ret; 9227 } 9228 9229 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9230 const char *symname) 9231 { 9232 struct btrfs_trans_handle *trans; 9233 struct btrfs_root *root = BTRFS_I(dir)->root; 9234 struct btrfs_path *path; 9235 struct btrfs_key key; 9236 struct inode *inode = NULL; 9237 int err; 9238 int drop_inode = 0; 9239 u64 objectid; 9240 u64 index = 0; 9241 int name_len; 9242 int datasize; 9243 unsigned long ptr; 9244 struct btrfs_file_extent_item *ei; 9245 struct extent_buffer *leaf; 9246 9247 name_len = strlen(symname); 9248 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9249 return -ENAMETOOLONG; 9250 9251 /* 9252 * 2 items for inode item and ref 9253 * 2 items for dir items 9254 * 1 item for xattr if selinux is on 9255 */ 9256 trans = btrfs_start_transaction(root, 5); 9257 if (IS_ERR(trans)) 9258 return PTR_ERR(trans); 9259 9260 err = btrfs_find_free_ino(root, &objectid); 9261 if (err) 9262 goto out_unlock; 9263 9264 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9265 dentry->d_name.len, btrfs_ino(dir), objectid, 9266 S_IFLNK|S_IRWXUGO, &index); 9267 if (IS_ERR(inode)) { 9268 err = PTR_ERR(inode); 9269 goto out_unlock; 9270 } 9271 9272 /* 9273 * If the active LSM wants to access the inode during 9274 * d_instantiate it needs these. Smack checks to see 9275 * if the filesystem supports xattrs by looking at the 9276 * ops vector. 9277 */ 9278 inode->i_fop = &btrfs_file_operations; 9279 inode->i_op = &btrfs_file_inode_operations; 9280 inode->i_mapping->a_ops = &btrfs_aops; 9281 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9282 9283 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9284 if (err) 9285 goto out_unlock_inode; 9286 9287 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9288 if (err) 9289 goto out_unlock_inode; 9290 9291 path = btrfs_alloc_path(); 9292 if (!path) { 9293 err = -ENOMEM; 9294 goto out_unlock_inode; 9295 } 9296 key.objectid = btrfs_ino(inode); 9297 key.offset = 0; 9298 key.type = BTRFS_EXTENT_DATA_KEY; 9299 datasize = btrfs_file_extent_calc_inline_size(name_len); 9300 err = btrfs_insert_empty_item(trans, root, path, &key, 9301 datasize); 9302 if (err) { 9303 btrfs_free_path(path); 9304 goto out_unlock_inode; 9305 } 9306 leaf = path->nodes[0]; 9307 ei = btrfs_item_ptr(leaf, path->slots[0], 9308 struct btrfs_file_extent_item); 9309 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9310 btrfs_set_file_extent_type(leaf, ei, 9311 BTRFS_FILE_EXTENT_INLINE); 9312 btrfs_set_file_extent_encryption(leaf, ei, 0); 9313 btrfs_set_file_extent_compression(leaf, ei, 0); 9314 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9315 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9316 9317 ptr = btrfs_file_extent_inline_start(ei); 9318 write_extent_buffer(leaf, symname, ptr, name_len); 9319 btrfs_mark_buffer_dirty(leaf); 9320 btrfs_free_path(path); 9321 9322 inode->i_op = &btrfs_symlink_inode_operations; 9323 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9324 inode_set_bytes(inode, name_len); 9325 btrfs_i_size_write(inode, name_len); 9326 err = btrfs_update_inode(trans, root, inode); 9327 if (err) { 9328 drop_inode = 1; 9329 goto out_unlock_inode; 9330 } 9331 9332 unlock_new_inode(inode); 9333 d_instantiate(dentry, inode); 9334 9335 out_unlock: 9336 btrfs_end_transaction(trans, root); 9337 if (drop_inode) { 9338 inode_dec_link_count(inode); 9339 iput(inode); 9340 } 9341 btrfs_btree_balance_dirty(root); 9342 return err; 9343 9344 out_unlock_inode: 9345 drop_inode = 1; 9346 unlock_new_inode(inode); 9347 goto out_unlock; 9348 } 9349 9350 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9351 u64 start, u64 num_bytes, u64 min_size, 9352 loff_t actual_len, u64 *alloc_hint, 9353 struct btrfs_trans_handle *trans) 9354 { 9355 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9356 struct extent_map *em; 9357 struct btrfs_root *root = BTRFS_I(inode)->root; 9358 struct btrfs_key ins; 9359 u64 cur_offset = start; 9360 u64 i_size; 9361 u64 cur_bytes; 9362 int ret = 0; 9363 bool own_trans = true; 9364 9365 if (trans) 9366 own_trans = false; 9367 while (num_bytes > 0) { 9368 if (own_trans) { 9369 trans = btrfs_start_transaction(root, 3); 9370 if (IS_ERR(trans)) { 9371 ret = PTR_ERR(trans); 9372 break; 9373 } 9374 } 9375 9376 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 9377 cur_bytes = max(cur_bytes, min_size); 9378 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9379 *alloc_hint, &ins, 1, 0); 9380 if (ret) { 9381 if (own_trans) 9382 btrfs_end_transaction(trans, root); 9383 break; 9384 } 9385 9386 ret = insert_reserved_file_extent(trans, inode, 9387 cur_offset, ins.objectid, 9388 ins.offset, ins.offset, 9389 ins.offset, 0, 0, 0, 9390 BTRFS_FILE_EXTENT_PREALLOC); 9391 if (ret) { 9392 btrfs_free_reserved_extent(root, ins.objectid, 9393 ins.offset, 0); 9394 btrfs_abort_transaction(trans, root, ret); 9395 if (own_trans) 9396 btrfs_end_transaction(trans, root); 9397 break; 9398 } 9399 btrfs_drop_extent_cache(inode, cur_offset, 9400 cur_offset + ins.offset -1, 0); 9401 9402 em = alloc_extent_map(); 9403 if (!em) { 9404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9405 &BTRFS_I(inode)->runtime_flags); 9406 goto next; 9407 } 9408 9409 em->start = cur_offset; 9410 em->orig_start = cur_offset; 9411 em->len = ins.offset; 9412 em->block_start = ins.objectid; 9413 em->block_len = ins.offset; 9414 em->orig_block_len = ins.offset; 9415 em->ram_bytes = ins.offset; 9416 em->bdev = root->fs_info->fs_devices->latest_bdev; 9417 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9418 em->generation = trans->transid; 9419 9420 while (1) { 9421 write_lock(&em_tree->lock); 9422 ret = add_extent_mapping(em_tree, em, 1); 9423 write_unlock(&em_tree->lock); 9424 if (ret != -EEXIST) 9425 break; 9426 btrfs_drop_extent_cache(inode, cur_offset, 9427 cur_offset + ins.offset - 1, 9428 0); 9429 } 9430 free_extent_map(em); 9431 next: 9432 num_bytes -= ins.offset; 9433 cur_offset += ins.offset; 9434 *alloc_hint = ins.objectid + ins.offset; 9435 9436 inode_inc_iversion(inode); 9437 inode->i_ctime = CURRENT_TIME; 9438 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9439 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9440 (actual_len > inode->i_size) && 9441 (cur_offset > inode->i_size)) { 9442 if (cur_offset > actual_len) 9443 i_size = actual_len; 9444 else 9445 i_size = cur_offset; 9446 i_size_write(inode, i_size); 9447 btrfs_ordered_update_i_size(inode, i_size, NULL); 9448 } 9449 9450 ret = btrfs_update_inode(trans, root, inode); 9451 9452 if (ret) { 9453 btrfs_abort_transaction(trans, root, ret); 9454 if (own_trans) 9455 btrfs_end_transaction(trans, root); 9456 break; 9457 } 9458 9459 if (own_trans) 9460 btrfs_end_transaction(trans, root); 9461 } 9462 return ret; 9463 } 9464 9465 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9466 u64 start, u64 num_bytes, u64 min_size, 9467 loff_t actual_len, u64 *alloc_hint) 9468 { 9469 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9470 min_size, actual_len, alloc_hint, 9471 NULL); 9472 } 9473 9474 int btrfs_prealloc_file_range_trans(struct inode *inode, 9475 struct btrfs_trans_handle *trans, int mode, 9476 u64 start, u64 num_bytes, u64 min_size, 9477 loff_t actual_len, u64 *alloc_hint) 9478 { 9479 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9480 min_size, actual_len, alloc_hint, trans); 9481 } 9482 9483 static int btrfs_set_page_dirty(struct page *page) 9484 { 9485 return __set_page_dirty_nobuffers(page); 9486 } 9487 9488 static int btrfs_permission(struct inode *inode, int mask) 9489 { 9490 struct btrfs_root *root = BTRFS_I(inode)->root; 9491 umode_t mode = inode->i_mode; 9492 9493 if (mask & MAY_WRITE && 9494 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9495 if (btrfs_root_readonly(root)) 9496 return -EROFS; 9497 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9498 return -EACCES; 9499 } 9500 return generic_permission(inode, mask); 9501 } 9502 9503 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9504 { 9505 struct btrfs_trans_handle *trans; 9506 struct btrfs_root *root = BTRFS_I(dir)->root; 9507 struct inode *inode = NULL; 9508 u64 objectid; 9509 u64 index; 9510 int ret = 0; 9511 9512 /* 9513 * 5 units required for adding orphan entry 9514 */ 9515 trans = btrfs_start_transaction(root, 5); 9516 if (IS_ERR(trans)) 9517 return PTR_ERR(trans); 9518 9519 ret = btrfs_find_free_ino(root, &objectid); 9520 if (ret) 9521 goto out; 9522 9523 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9524 btrfs_ino(dir), objectid, mode, &index); 9525 if (IS_ERR(inode)) { 9526 ret = PTR_ERR(inode); 9527 inode = NULL; 9528 goto out; 9529 } 9530 9531 inode->i_fop = &btrfs_file_operations; 9532 inode->i_op = &btrfs_file_inode_operations; 9533 9534 inode->i_mapping->a_ops = &btrfs_aops; 9535 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9536 9537 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9538 if (ret) 9539 goto out_inode; 9540 9541 ret = btrfs_update_inode(trans, root, inode); 9542 if (ret) 9543 goto out_inode; 9544 ret = btrfs_orphan_add(trans, inode); 9545 if (ret) 9546 goto out_inode; 9547 9548 /* 9549 * We set number of links to 0 in btrfs_new_inode(), and here we set 9550 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9551 * through: 9552 * 9553 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9554 */ 9555 set_nlink(inode, 1); 9556 unlock_new_inode(inode); 9557 d_tmpfile(dentry, inode); 9558 mark_inode_dirty(inode); 9559 9560 out: 9561 btrfs_end_transaction(trans, root); 9562 if (ret) 9563 iput(inode); 9564 btrfs_balance_delayed_items(root); 9565 btrfs_btree_balance_dirty(root); 9566 return ret; 9567 9568 out_inode: 9569 unlock_new_inode(inode); 9570 goto out; 9571 9572 } 9573 9574 /* Inspired by filemap_check_errors() */ 9575 int btrfs_inode_check_errors(struct inode *inode) 9576 { 9577 int ret = 0; 9578 9579 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 9580 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 9581 ret = -ENOSPC; 9582 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 9583 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 9584 ret = -EIO; 9585 9586 return ret; 9587 } 9588 9589 static const struct inode_operations btrfs_dir_inode_operations = { 9590 .getattr = btrfs_getattr, 9591 .lookup = btrfs_lookup, 9592 .create = btrfs_create, 9593 .unlink = btrfs_unlink, 9594 .link = btrfs_link, 9595 .mkdir = btrfs_mkdir, 9596 .rmdir = btrfs_rmdir, 9597 .rename2 = btrfs_rename2, 9598 .symlink = btrfs_symlink, 9599 .setattr = btrfs_setattr, 9600 .mknod = btrfs_mknod, 9601 .setxattr = btrfs_setxattr, 9602 .getxattr = btrfs_getxattr, 9603 .listxattr = btrfs_listxattr, 9604 .removexattr = btrfs_removexattr, 9605 .permission = btrfs_permission, 9606 .get_acl = btrfs_get_acl, 9607 .set_acl = btrfs_set_acl, 9608 .update_time = btrfs_update_time, 9609 .tmpfile = btrfs_tmpfile, 9610 }; 9611 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9612 .lookup = btrfs_lookup, 9613 .permission = btrfs_permission, 9614 .get_acl = btrfs_get_acl, 9615 .set_acl = btrfs_set_acl, 9616 .update_time = btrfs_update_time, 9617 }; 9618 9619 static const struct file_operations btrfs_dir_file_operations = { 9620 .llseek = generic_file_llseek, 9621 .read = generic_read_dir, 9622 .iterate = btrfs_real_readdir, 9623 .unlocked_ioctl = btrfs_ioctl, 9624 #ifdef CONFIG_COMPAT 9625 .compat_ioctl = btrfs_ioctl, 9626 #endif 9627 .release = btrfs_release_file, 9628 .fsync = btrfs_sync_file, 9629 }; 9630 9631 static struct extent_io_ops btrfs_extent_io_ops = { 9632 .fill_delalloc = run_delalloc_range, 9633 .submit_bio_hook = btrfs_submit_bio_hook, 9634 .merge_bio_hook = btrfs_merge_bio_hook, 9635 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9636 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9637 .writepage_start_hook = btrfs_writepage_start_hook, 9638 .set_bit_hook = btrfs_set_bit_hook, 9639 .clear_bit_hook = btrfs_clear_bit_hook, 9640 .merge_extent_hook = btrfs_merge_extent_hook, 9641 .split_extent_hook = btrfs_split_extent_hook, 9642 }; 9643 9644 /* 9645 * btrfs doesn't support the bmap operation because swapfiles 9646 * use bmap to make a mapping of extents in the file. They assume 9647 * these extents won't change over the life of the file and they 9648 * use the bmap result to do IO directly to the drive. 9649 * 9650 * the btrfs bmap call would return logical addresses that aren't 9651 * suitable for IO and they also will change frequently as COW 9652 * operations happen. So, swapfile + btrfs == corruption. 9653 * 9654 * For now we're avoiding this by dropping bmap. 9655 */ 9656 static const struct address_space_operations btrfs_aops = { 9657 .readpage = btrfs_readpage, 9658 .writepage = btrfs_writepage, 9659 .writepages = btrfs_writepages, 9660 .readpages = btrfs_readpages, 9661 .direct_IO = btrfs_direct_IO, 9662 .invalidatepage = btrfs_invalidatepage, 9663 .releasepage = btrfs_releasepage, 9664 .set_page_dirty = btrfs_set_page_dirty, 9665 .error_remove_page = generic_error_remove_page, 9666 }; 9667 9668 static const struct address_space_operations btrfs_symlink_aops = { 9669 .readpage = btrfs_readpage, 9670 .writepage = btrfs_writepage, 9671 .invalidatepage = btrfs_invalidatepage, 9672 .releasepage = btrfs_releasepage, 9673 }; 9674 9675 static const struct inode_operations btrfs_file_inode_operations = { 9676 .getattr = btrfs_getattr, 9677 .setattr = btrfs_setattr, 9678 .setxattr = btrfs_setxattr, 9679 .getxattr = btrfs_getxattr, 9680 .listxattr = btrfs_listxattr, 9681 .removexattr = btrfs_removexattr, 9682 .permission = btrfs_permission, 9683 .fiemap = btrfs_fiemap, 9684 .get_acl = btrfs_get_acl, 9685 .set_acl = btrfs_set_acl, 9686 .update_time = btrfs_update_time, 9687 }; 9688 static const struct inode_operations btrfs_special_inode_operations = { 9689 .getattr = btrfs_getattr, 9690 .setattr = btrfs_setattr, 9691 .permission = btrfs_permission, 9692 .setxattr = btrfs_setxattr, 9693 .getxattr = btrfs_getxattr, 9694 .listxattr = btrfs_listxattr, 9695 .removexattr = btrfs_removexattr, 9696 .get_acl = btrfs_get_acl, 9697 .set_acl = btrfs_set_acl, 9698 .update_time = btrfs_update_time, 9699 }; 9700 static const struct inode_operations btrfs_symlink_inode_operations = { 9701 .readlink = generic_readlink, 9702 .follow_link = page_follow_link_light, 9703 .put_link = page_put_link, 9704 .getattr = btrfs_getattr, 9705 .setattr = btrfs_setattr, 9706 .permission = btrfs_permission, 9707 .setxattr = btrfs_setxattr, 9708 .getxattr = btrfs_getxattr, 9709 .listxattr = btrfs_listxattr, 9710 .removexattr = btrfs_removexattr, 9711 .update_time = btrfs_update_time, 9712 }; 9713 9714 const struct dentry_operations btrfs_dentry_operations = { 9715 .d_delete = btrfs_dentry_delete, 9716 .d_release = btrfs_dentry_release, 9717 }; 9718