1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "volumes.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 59 struct btrfs_iget_args { 60 u64 ino; 61 struct btrfs_root *root; 62 }; 63 64 struct btrfs_dio_data { 65 ssize_t submitted; 66 struct extent_changeset *data_reserved; 67 bool data_space_reserved; 68 bool nocow_done; 69 }; 70 71 struct btrfs_dio_private { 72 struct inode *inode; 73 74 /* 75 * Since DIO can use anonymous page, we cannot use page_offset() to 76 * grab the file offset, thus need a dedicated member for file offset. 77 */ 78 u64 file_offset; 79 /* Used for bio::bi_size */ 80 u32 bytes; 81 82 /* 83 * References to this structure. There is one reference per in-flight 84 * bio plus one while we're still setting up. 85 */ 86 refcount_t refs; 87 88 /* Array of checksums */ 89 u8 *csums; 90 91 /* This must be last */ 92 struct bio bio; 93 }; 94 95 static struct bio_set btrfs_dio_bioset; 96 97 struct btrfs_rename_ctx { 98 /* Output field. Stores the index number of the old directory entry. */ 99 u64 index; 100 }; 101 102 static const struct inode_operations btrfs_dir_inode_operations; 103 static const struct inode_operations btrfs_symlink_inode_operations; 104 static const struct inode_operations btrfs_special_inode_operations; 105 static const struct inode_operations btrfs_file_inode_operations; 106 static const struct address_space_operations btrfs_aops; 107 static const struct file_operations btrfs_dir_file_operations; 108 109 static struct kmem_cache *btrfs_inode_cachep; 110 struct kmem_cache *btrfs_trans_handle_cachep; 111 struct kmem_cache *btrfs_path_cachep; 112 struct kmem_cache *btrfs_free_space_cachep; 113 struct kmem_cache *btrfs_free_space_bitmap_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 117 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 118 static noinline int cow_file_range(struct btrfs_inode *inode, 119 struct page *locked_page, 120 u64 start, u64 end, int *page_started, 121 unsigned long *nr_written, int unlock); 122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 123 u64 len, u64 orig_start, u64 block_start, 124 u64 block_len, u64 orig_block_len, 125 u64 ram_bytes, int compress_type, 126 int type); 127 128 static void __endio_write_update_ordered(struct btrfs_inode *inode, 129 const u64 offset, const u64 bytes, 130 const bool uptodate); 131 132 /* 133 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 134 * 135 * ilock_flags can have the following bit set: 136 * 137 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 138 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 139 * return -EAGAIN 140 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 141 */ 142 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 143 { 144 if (ilock_flags & BTRFS_ILOCK_SHARED) { 145 if (ilock_flags & BTRFS_ILOCK_TRY) { 146 if (!inode_trylock_shared(inode)) 147 return -EAGAIN; 148 else 149 return 0; 150 } 151 inode_lock_shared(inode); 152 } else { 153 if (ilock_flags & BTRFS_ILOCK_TRY) { 154 if (!inode_trylock(inode)) 155 return -EAGAIN; 156 else 157 return 0; 158 } 159 inode_lock(inode); 160 } 161 if (ilock_flags & BTRFS_ILOCK_MMAP) 162 down_write(&BTRFS_I(inode)->i_mmap_lock); 163 return 0; 164 } 165 166 /* 167 * btrfs_inode_unlock - unock inode i_rwsem 168 * 169 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 170 * to decide whether the lock acquired is shared or exclusive. 171 */ 172 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 173 { 174 if (ilock_flags & BTRFS_ILOCK_MMAP) 175 up_write(&BTRFS_I(inode)->i_mmap_lock); 176 if (ilock_flags & BTRFS_ILOCK_SHARED) 177 inode_unlock_shared(inode); 178 else 179 inode_unlock(inode); 180 } 181 182 /* 183 * Cleanup all submitted ordered extents in specified range to handle errors 184 * from the btrfs_run_delalloc_range() callback. 185 * 186 * NOTE: caller must ensure that when an error happens, it can not call 187 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 188 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 189 * to be released, which we want to happen only when finishing the ordered 190 * extent (btrfs_finish_ordered_io()). 191 */ 192 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 193 struct page *locked_page, 194 u64 offset, u64 bytes) 195 { 196 unsigned long index = offset >> PAGE_SHIFT; 197 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 198 u64 page_start = page_offset(locked_page); 199 u64 page_end = page_start + PAGE_SIZE - 1; 200 201 struct page *page; 202 203 while (index <= end_index) { 204 /* 205 * For locked page, we will call end_extent_writepage() on it 206 * in run_delalloc_range() for the error handling. That 207 * end_extent_writepage() function will call 208 * btrfs_mark_ordered_io_finished() to clear page Ordered and 209 * run the ordered extent accounting. 210 * 211 * Here we can't just clear the Ordered bit, or 212 * btrfs_mark_ordered_io_finished() would skip the accounting 213 * for the page range, and the ordered extent will never finish. 214 */ 215 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) { 216 index++; 217 continue; 218 } 219 page = find_get_page(inode->vfs_inode.i_mapping, index); 220 index++; 221 if (!page) 222 continue; 223 224 /* 225 * Here we just clear all Ordered bits for every page in the 226 * range, then __endio_write_update_ordered() will handle 227 * the ordered extent accounting for the range. 228 */ 229 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 230 offset, bytes); 231 put_page(page); 232 } 233 234 /* The locked page covers the full range, nothing needs to be done */ 235 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE) 236 return; 237 /* 238 * In case this page belongs to the delalloc range being instantiated 239 * then skip it, since the first page of a range is going to be 240 * properly cleaned up by the caller of run_delalloc_range 241 */ 242 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 243 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 244 offset = page_offset(locked_page) + PAGE_SIZE; 245 } 246 247 return __endio_write_update_ordered(inode, offset, bytes, false); 248 } 249 250 static int btrfs_dirty_inode(struct inode *inode); 251 252 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 253 struct btrfs_new_inode_args *args) 254 { 255 int err; 256 257 if (args->default_acl) { 258 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 259 ACL_TYPE_DEFAULT); 260 if (err) 261 return err; 262 } 263 if (args->acl) { 264 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 265 if (err) 266 return err; 267 } 268 if (!args->default_acl && !args->acl) 269 cache_no_acl(args->inode); 270 return btrfs_xattr_security_init(trans, args->inode, args->dir, 271 &args->dentry->d_name); 272 } 273 274 /* 275 * this does all the hard work for inserting an inline extent into 276 * the btree. The caller should have done a btrfs_drop_extents so that 277 * no overlapping inline items exist in the btree 278 */ 279 static int insert_inline_extent(struct btrfs_trans_handle *trans, 280 struct btrfs_path *path, 281 struct btrfs_inode *inode, bool extent_inserted, 282 size_t size, size_t compressed_size, 283 int compress_type, 284 struct page **compressed_pages, 285 bool update_i_size) 286 { 287 struct btrfs_root *root = inode->root; 288 struct extent_buffer *leaf; 289 struct page *page = NULL; 290 char *kaddr; 291 unsigned long ptr; 292 struct btrfs_file_extent_item *ei; 293 int ret; 294 size_t cur_size = size; 295 u64 i_size; 296 297 ASSERT((compressed_size > 0 && compressed_pages) || 298 (compressed_size == 0 && !compressed_pages)); 299 300 if (compressed_size && compressed_pages) 301 cur_size = compressed_size; 302 303 if (!extent_inserted) { 304 struct btrfs_key key; 305 size_t datasize; 306 307 key.objectid = btrfs_ino(inode); 308 key.offset = 0; 309 key.type = BTRFS_EXTENT_DATA_KEY; 310 311 datasize = btrfs_file_extent_calc_inline_size(cur_size); 312 ret = btrfs_insert_empty_item(trans, root, path, &key, 313 datasize); 314 if (ret) 315 goto fail; 316 } 317 leaf = path->nodes[0]; 318 ei = btrfs_item_ptr(leaf, path->slots[0], 319 struct btrfs_file_extent_item); 320 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 321 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 322 btrfs_set_file_extent_encryption(leaf, ei, 0); 323 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 324 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 325 ptr = btrfs_file_extent_inline_start(ei); 326 327 if (compress_type != BTRFS_COMPRESS_NONE) { 328 struct page *cpage; 329 int i = 0; 330 while (compressed_size > 0) { 331 cpage = compressed_pages[i]; 332 cur_size = min_t(unsigned long, compressed_size, 333 PAGE_SIZE); 334 335 kaddr = kmap_atomic(cpage); 336 write_extent_buffer(leaf, kaddr, ptr, cur_size); 337 kunmap_atomic(kaddr); 338 339 i++; 340 ptr += cur_size; 341 compressed_size -= cur_size; 342 } 343 btrfs_set_file_extent_compression(leaf, ei, 344 compress_type); 345 } else { 346 page = find_get_page(inode->vfs_inode.i_mapping, 0); 347 btrfs_set_file_extent_compression(leaf, ei, 0); 348 kaddr = kmap_atomic(page); 349 write_extent_buffer(leaf, kaddr, ptr, size); 350 kunmap_atomic(kaddr); 351 put_page(page); 352 } 353 btrfs_mark_buffer_dirty(leaf); 354 btrfs_release_path(path); 355 356 /* 357 * We align size to sectorsize for inline extents just for simplicity 358 * sake. 359 */ 360 ret = btrfs_inode_set_file_extent_range(inode, 0, 361 ALIGN(size, root->fs_info->sectorsize)); 362 if (ret) 363 goto fail; 364 365 /* 366 * We're an inline extent, so nobody can extend the file past i_size 367 * without locking a page we already have locked. 368 * 369 * We must do any i_size and inode updates before we unlock the pages. 370 * Otherwise we could end up racing with unlink. 371 */ 372 i_size = i_size_read(&inode->vfs_inode); 373 if (update_i_size && size > i_size) { 374 i_size_write(&inode->vfs_inode, size); 375 i_size = size; 376 } 377 inode->disk_i_size = i_size; 378 379 fail: 380 return ret; 381 } 382 383 384 /* 385 * conditionally insert an inline extent into the file. This 386 * does the checks required to make sure the data is small enough 387 * to fit as an inline extent. 388 */ 389 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 390 size_t compressed_size, 391 int compress_type, 392 struct page **compressed_pages, 393 bool update_i_size) 394 { 395 struct btrfs_drop_extents_args drop_args = { 0 }; 396 struct btrfs_root *root = inode->root; 397 struct btrfs_fs_info *fs_info = root->fs_info; 398 struct btrfs_trans_handle *trans; 399 u64 data_len = (compressed_size ?: size); 400 int ret; 401 struct btrfs_path *path; 402 403 /* 404 * We can create an inline extent if it ends at or beyond the current 405 * i_size, is no larger than a sector (decompressed), and the (possibly 406 * compressed) data fits in a leaf and the configured maximum inline 407 * size. 408 */ 409 if (size < i_size_read(&inode->vfs_inode) || 410 size > fs_info->sectorsize || 411 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 412 data_len > fs_info->max_inline) 413 return 1; 414 415 path = btrfs_alloc_path(); 416 if (!path) 417 return -ENOMEM; 418 419 trans = btrfs_join_transaction(root); 420 if (IS_ERR(trans)) { 421 btrfs_free_path(path); 422 return PTR_ERR(trans); 423 } 424 trans->block_rsv = &inode->block_rsv; 425 426 drop_args.path = path; 427 drop_args.start = 0; 428 drop_args.end = fs_info->sectorsize; 429 drop_args.drop_cache = true; 430 drop_args.replace_extent = true; 431 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 432 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 433 if (ret) { 434 btrfs_abort_transaction(trans, ret); 435 goto out; 436 } 437 438 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 439 size, compressed_size, compress_type, 440 compressed_pages, update_i_size); 441 if (ret && ret != -ENOSPC) { 442 btrfs_abort_transaction(trans, ret); 443 goto out; 444 } else if (ret == -ENOSPC) { 445 ret = 1; 446 goto out; 447 } 448 449 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 450 ret = btrfs_update_inode(trans, root, inode); 451 if (ret && ret != -ENOSPC) { 452 btrfs_abort_transaction(trans, ret); 453 goto out; 454 } else if (ret == -ENOSPC) { 455 ret = 1; 456 goto out; 457 } 458 459 btrfs_set_inode_full_sync(inode); 460 out: 461 /* 462 * Don't forget to free the reserved space, as for inlined extent 463 * it won't count as data extent, free them directly here. 464 * And at reserve time, it's always aligned to page size, so 465 * just free one page here. 466 */ 467 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 468 btrfs_free_path(path); 469 btrfs_end_transaction(trans); 470 return ret; 471 } 472 473 struct async_extent { 474 u64 start; 475 u64 ram_size; 476 u64 compressed_size; 477 struct page **pages; 478 unsigned long nr_pages; 479 int compress_type; 480 struct list_head list; 481 }; 482 483 struct async_chunk { 484 struct inode *inode; 485 struct page *locked_page; 486 u64 start; 487 u64 end; 488 unsigned int write_flags; 489 struct list_head extents; 490 struct cgroup_subsys_state *blkcg_css; 491 struct btrfs_work work; 492 struct async_cow *async_cow; 493 }; 494 495 struct async_cow { 496 atomic_t num_chunks; 497 struct async_chunk chunks[]; 498 }; 499 500 static noinline int add_async_extent(struct async_chunk *cow, 501 u64 start, u64 ram_size, 502 u64 compressed_size, 503 struct page **pages, 504 unsigned long nr_pages, 505 int compress_type) 506 { 507 struct async_extent *async_extent; 508 509 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 510 BUG_ON(!async_extent); /* -ENOMEM */ 511 async_extent->start = start; 512 async_extent->ram_size = ram_size; 513 async_extent->compressed_size = compressed_size; 514 async_extent->pages = pages; 515 async_extent->nr_pages = nr_pages; 516 async_extent->compress_type = compress_type; 517 list_add_tail(&async_extent->list, &cow->extents); 518 return 0; 519 } 520 521 /* 522 * Check if the inode needs to be submitted to compression, based on mount 523 * options, defragmentation, properties or heuristics. 524 */ 525 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 526 u64 end) 527 { 528 struct btrfs_fs_info *fs_info = inode->root->fs_info; 529 530 if (!btrfs_inode_can_compress(inode)) { 531 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 532 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 533 btrfs_ino(inode)); 534 return 0; 535 } 536 /* 537 * Special check for subpage. 538 * 539 * We lock the full page then run each delalloc range in the page, thus 540 * for the following case, we will hit some subpage specific corner case: 541 * 542 * 0 32K 64K 543 * | |///////| |///////| 544 * \- A \- B 545 * 546 * In above case, both range A and range B will try to unlock the full 547 * page [0, 64K), causing the one finished later will have page 548 * unlocked already, triggering various page lock requirement BUG_ON()s. 549 * 550 * So here we add an artificial limit that subpage compression can only 551 * if the range is fully page aligned. 552 * 553 * In theory we only need to ensure the first page is fully covered, but 554 * the tailing partial page will be locked until the full compression 555 * finishes, delaying the write of other range. 556 * 557 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 558 * first to prevent any submitted async extent to unlock the full page. 559 * By this, we can ensure for subpage case that only the last async_cow 560 * will unlock the full page. 561 */ 562 if (fs_info->sectorsize < PAGE_SIZE) { 563 if (!IS_ALIGNED(start, PAGE_SIZE) || 564 !IS_ALIGNED(end + 1, PAGE_SIZE)) 565 return 0; 566 } 567 568 /* force compress */ 569 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 570 return 1; 571 /* defrag ioctl */ 572 if (inode->defrag_compress) 573 return 1; 574 /* bad compression ratios */ 575 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 576 return 0; 577 if (btrfs_test_opt(fs_info, COMPRESS) || 578 inode->flags & BTRFS_INODE_COMPRESS || 579 inode->prop_compress) 580 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 581 return 0; 582 } 583 584 static inline void inode_should_defrag(struct btrfs_inode *inode, 585 u64 start, u64 end, u64 num_bytes, u32 small_write) 586 { 587 /* If this is a small write inside eof, kick off a defrag */ 588 if (num_bytes < small_write && 589 (start > 0 || end + 1 < inode->disk_i_size)) 590 btrfs_add_inode_defrag(NULL, inode, small_write); 591 } 592 593 /* 594 * we create compressed extents in two phases. The first 595 * phase compresses a range of pages that have already been 596 * locked (both pages and state bits are locked). 597 * 598 * This is done inside an ordered work queue, and the compression 599 * is spread across many cpus. The actual IO submission is step 600 * two, and the ordered work queue takes care of making sure that 601 * happens in the same order things were put onto the queue by 602 * writepages and friends. 603 * 604 * If this code finds it can't get good compression, it puts an 605 * entry onto the work queue to write the uncompressed bytes. This 606 * makes sure that both compressed inodes and uncompressed inodes 607 * are written in the same order that the flusher thread sent them 608 * down. 609 */ 610 static noinline int compress_file_range(struct async_chunk *async_chunk) 611 { 612 struct inode *inode = async_chunk->inode; 613 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 614 u64 blocksize = fs_info->sectorsize; 615 u64 start = async_chunk->start; 616 u64 end = async_chunk->end; 617 u64 actual_end; 618 u64 i_size; 619 int ret = 0; 620 struct page **pages = NULL; 621 unsigned long nr_pages; 622 unsigned long total_compressed = 0; 623 unsigned long total_in = 0; 624 int i; 625 int will_compress; 626 int compress_type = fs_info->compress_type; 627 int compressed_extents = 0; 628 int redirty = 0; 629 630 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 631 SZ_16K); 632 633 /* 634 * We need to save i_size before now because it could change in between 635 * us evaluating the size and assigning it. This is because we lock and 636 * unlock the page in truncate and fallocate, and then modify the i_size 637 * later on. 638 * 639 * The barriers are to emulate READ_ONCE, remove that once i_size_read 640 * does that for us. 641 */ 642 barrier(); 643 i_size = i_size_read(inode); 644 barrier(); 645 actual_end = min_t(u64, i_size, end + 1); 646 again: 647 will_compress = 0; 648 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 649 nr_pages = min_t(unsigned long, nr_pages, 650 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 651 652 /* 653 * we don't want to send crud past the end of i_size through 654 * compression, that's just a waste of CPU time. So, if the 655 * end of the file is before the start of our current 656 * requested range of bytes, we bail out to the uncompressed 657 * cleanup code that can deal with all of this. 658 * 659 * It isn't really the fastest way to fix things, but this is a 660 * very uncommon corner. 661 */ 662 if (actual_end <= start) 663 goto cleanup_and_bail_uncompressed; 664 665 total_compressed = actual_end - start; 666 667 /* 668 * Skip compression for a small file range(<=blocksize) that 669 * isn't an inline extent, since it doesn't save disk space at all. 670 */ 671 if (total_compressed <= blocksize && 672 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 673 goto cleanup_and_bail_uncompressed; 674 675 /* 676 * For subpage case, we require full page alignment for the sector 677 * aligned range. 678 * Thus we must also check against @actual_end, not just @end. 679 */ 680 if (blocksize < PAGE_SIZE) { 681 if (!IS_ALIGNED(start, PAGE_SIZE) || 682 !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE)) 683 goto cleanup_and_bail_uncompressed; 684 } 685 686 total_compressed = min_t(unsigned long, total_compressed, 687 BTRFS_MAX_UNCOMPRESSED); 688 total_in = 0; 689 ret = 0; 690 691 /* 692 * we do compression for mount -o compress and when the 693 * inode has not been flagged as nocompress. This flag can 694 * change at any time if we discover bad compression ratios. 695 */ 696 if (inode_need_compress(BTRFS_I(inode), start, end)) { 697 WARN_ON(pages); 698 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 699 if (!pages) { 700 /* just bail out to the uncompressed code */ 701 nr_pages = 0; 702 goto cont; 703 } 704 705 if (BTRFS_I(inode)->defrag_compress) 706 compress_type = BTRFS_I(inode)->defrag_compress; 707 else if (BTRFS_I(inode)->prop_compress) 708 compress_type = BTRFS_I(inode)->prop_compress; 709 710 /* 711 * we need to call clear_page_dirty_for_io on each 712 * page in the range. Otherwise applications with the file 713 * mmap'd can wander in and change the page contents while 714 * we are compressing them. 715 * 716 * If the compression fails for any reason, we set the pages 717 * dirty again later on. 718 * 719 * Note that the remaining part is redirtied, the start pointer 720 * has moved, the end is the original one. 721 */ 722 if (!redirty) { 723 extent_range_clear_dirty_for_io(inode, start, end); 724 redirty = 1; 725 } 726 727 /* Compression level is applied here and only here */ 728 ret = btrfs_compress_pages( 729 compress_type | (fs_info->compress_level << 4), 730 inode->i_mapping, start, 731 pages, 732 &nr_pages, 733 &total_in, 734 &total_compressed); 735 736 if (!ret) { 737 unsigned long offset = offset_in_page(total_compressed); 738 struct page *page = pages[nr_pages - 1]; 739 740 /* zero the tail end of the last page, we might be 741 * sending it down to disk 742 */ 743 if (offset) 744 memzero_page(page, offset, PAGE_SIZE - offset); 745 will_compress = 1; 746 } 747 } 748 cont: 749 /* 750 * Check cow_file_range() for why we don't even try to create inline 751 * extent for subpage case. 752 */ 753 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 754 /* lets try to make an inline extent */ 755 if (ret || total_in < actual_end) { 756 /* we didn't compress the entire range, try 757 * to make an uncompressed inline extent. 758 */ 759 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 760 0, BTRFS_COMPRESS_NONE, 761 NULL, false); 762 } else { 763 /* try making a compressed inline extent */ 764 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 765 total_compressed, 766 compress_type, pages, 767 false); 768 } 769 if (ret <= 0) { 770 unsigned long clear_flags = EXTENT_DELALLOC | 771 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 772 EXTENT_DO_ACCOUNTING; 773 unsigned long page_error_op; 774 775 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 776 777 /* 778 * inline extent creation worked or returned error, 779 * we don't need to create any more async work items. 780 * Unlock and free up our temp pages. 781 * 782 * We use DO_ACCOUNTING here because we need the 783 * delalloc_release_metadata to be done _after_ we drop 784 * our outstanding extent for clearing delalloc for this 785 * range. 786 */ 787 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 788 NULL, 789 clear_flags, 790 PAGE_UNLOCK | 791 PAGE_START_WRITEBACK | 792 page_error_op | 793 PAGE_END_WRITEBACK); 794 795 /* 796 * Ensure we only free the compressed pages if we have 797 * them allocated, as we can still reach here with 798 * inode_need_compress() == false. 799 */ 800 if (pages) { 801 for (i = 0; i < nr_pages; i++) { 802 WARN_ON(pages[i]->mapping); 803 put_page(pages[i]); 804 } 805 kfree(pages); 806 } 807 return 0; 808 } 809 } 810 811 if (will_compress) { 812 /* 813 * we aren't doing an inline extent round the compressed size 814 * up to a block size boundary so the allocator does sane 815 * things 816 */ 817 total_compressed = ALIGN(total_compressed, blocksize); 818 819 /* 820 * one last check to make sure the compression is really a 821 * win, compare the page count read with the blocks on disk, 822 * compression must free at least one sector size 823 */ 824 total_in = round_up(total_in, fs_info->sectorsize); 825 if (total_compressed + blocksize <= total_in) { 826 compressed_extents++; 827 828 /* 829 * The async work queues will take care of doing actual 830 * allocation on disk for these compressed pages, and 831 * will submit them to the elevator. 832 */ 833 add_async_extent(async_chunk, start, total_in, 834 total_compressed, pages, nr_pages, 835 compress_type); 836 837 if (start + total_in < end) { 838 start += total_in; 839 pages = NULL; 840 cond_resched(); 841 goto again; 842 } 843 return compressed_extents; 844 } 845 } 846 if (pages) { 847 /* 848 * the compression code ran but failed to make things smaller, 849 * free any pages it allocated and our page pointer array 850 */ 851 for (i = 0; i < nr_pages; i++) { 852 WARN_ON(pages[i]->mapping); 853 put_page(pages[i]); 854 } 855 kfree(pages); 856 pages = NULL; 857 total_compressed = 0; 858 nr_pages = 0; 859 860 /* flag the file so we don't compress in the future */ 861 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 862 !(BTRFS_I(inode)->prop_compress)) { 863 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 864 } 865 } 866 cleanup_and_bail_uncompressed: 867 /* 868 * No compression, but we still need to write the pages in the file 869 * we've been given so far. redirty the locked page if it corresponds 870 * to our extent and set things up for the async work queue to run 871 * cow_file_range to do the normal delalloc dance. 872 */ 873 if (async_chunk->locked_page && 874 (page_offset(async_chunk->locked_page) >= start && 875 page_offset(async_chunk->locked_page)) <= end) { 876 __set_page_dirty_nobuffers(async_chunk->locked_page); 877 /* unlocked later on in the async handlers */ 878 } 879 880 if (redirty) 881 extent_range_redirty_for_io(inode, start, end); 882 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 883 BTRFS_COMPRESS_NONE); 884 compressed_extents++; 885 886 return compressed_extents; 887 } 888 889 static void free_async_extent_pages(struct async_extent *async_extent) 890 { 891 int i; 892 893 if (!async_extent->pages) 894 return; 895 896 for (i = 0; i < async_extent->nr_pages; i++) { 897 WARN_ON(async_extent->pages[i]->mapping); 898 put_page(async_extent->pages[i]); 899 } 900 kfree(async_extent->pages); 901 async_extent->nr_pages = 0; 902 async_extent->pages = NULL; 903 } 904 905 static int submit_uncompressed_range(struct btrfs_inode *inode, 906 struct async_extent *async_extent, 907 struct page *locked_page) 908 { 909 u64 start = async_extent->start; 910 u64 end = async_extent->start + async_extent->ram_size - 1; 911 unsigned long nr_written = 0; 912 int page_started = 0; 913 int ret; 914 915 /* 916 * Call cow_file_range() to run the delalloc range directly, since we 917 * won't go to NOCOW or async path again. 918 * 919 * Also we call cow_file_range() with @unlock_page == 0, so that we 920 * can directly submit them without interruption. 921 */ 922 ret = cow_file_range(inode, locked_page, start, end, &page_started, 923 &nr_written, 0); 924 /* Inline extent inserted, page gets unlocked and everything is done */ 925 if (page_started) { 926 ret = 0; 927 goto out; 928 } 929 if (ret < 0) { 930 if (locked_page) 931 unlock_page(locked_page); 932 goto out; 933 } 934 935 ret = extent_write_locked_range(&inode->vfs_inode, start, end); 936 /* All pages will be unlocked, including @locked_page */ 937 out: 938 kfree(async_extent); 939 return ret; 940 } 941 942 static int submit_one_async_extent(struct btrfs_inode *inode, 943 struct async_chunk *async_chunk, 944 struct async_extent *async_extent, 945 u64 *alloc_hint) 946 { 947 struct extent_io_tree *io_tree = &inode->io_tree; 948 struct btrfs_root *root = inode->root; 949 struct btrfs_fs_info *fs_info = root->fs_info; 950 struct btrfs_key ins; 951 struct page *locked_page = NULL; 952 struct extent_map *em; 953 int ret = 0; 954 u64 start = async_extent->start; 955 u64 end = async_extent->start + async_extent->ram_size - 1; 956 957 /* 958 * If async_chunk->locked_page is in the async_extent range, we need to 959 * handle it. 960 */ 961 if (async_chunk->locked_page) { 962 u64 locked_page_start = page_offset(async_chunk->locked_page); 963 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 964 965 if (!(start >= locked_page_end || end <= locked_page_start)) 966 locked_page = async_chunk->locked_page; 967 } 968 lock_extent(io_tree, start, end); 969 970 /* We have fall back to uncompressed write */ 971 if (!async_extent->pages) 972 return submit_uncompressed_range(inode, async_extent, locked_page); 973 974 ret = btrfs_reserve_extent(root, async_extent->ram_size, 975 async_extent->compressed_size, 976 async_extent->compressed_size, 977 0, *alloc_hint, &ins, 1, 1); 978 if (ret) { 979 free_async_extent_pages(async_extent); 980 /* 981 * Here we used to try again by going back to non-compressed 982 * path for ENOSPC. But we can't reserve space even for 983 * compressed size, how could it work for uncompressed size 984 * which requires larger size? So here we directly go error 985 * path. 986 */ 987 goto out_free; 988 } 989 990 /* Here we're doing allocation and writeback of the compressed pages */ 991 em = create_io_em(inode, start, 992 async_extent->ram_size, /* len */ 993 start, /* orig_start */ 994 ins.objectid, /* block_start */ 995 ins.offset, /* block_len */ 996 ins.offset, /* orig_block_len */ 997 async_extent->ram_size, /* ram_bytes */ 998 async_extent->compress_type, 999 BTRFS_ORDERED_COMPRESSED); 1000 if (IS_ERR(em)) { 1001 ret = PTR_ERR(em); 1002 goto out_free_reserve; 1003 } 1004 free_extent_map(em); 1005 1006 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ 1007 async_extent->ram_size, /* num_bytes */ 1008 async_extent->ram_size, /* ram_bytes */ 1009 ins.objectid, /* disk_bytenr */ 1010 ins.offset, /* disk_num_bytes */ 1011 0, /* offset */ 1012 1 << BTRFS_ORDERED_COMPRESSED, 1013 async_extent->compress_type); 1014 if (ret) { 1015 btrfs_drop_extent_cache(inode, start, end, 0); 1016 goto out_free_reserve; 1017 } 1018 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1019 1020 /* Clear dirty, set writeback and unlock the pages. */ 1021 extent_clear_unlock_delalloc(inode, start, end, 1022 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1023 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1024 if (btrfs_submit_compressed_write(inode, start, /* file_offset */ 1025 async_extent->ram_size, /* num_bytes */ 1026 ins.objectid, /* disk_bytenr */ 1027 ins.offset, /* compressed_len */ 1028 async_extent->pages, /* compressed_pages */ 1029 async_extent->nr_pages, 1030 async_chunk->write_flags, 1031 async_chunk->blkcg_css, true)) { 1032 const u64 start = async_extent->start; 1033 const u64 end = start + async_extent->ram_size - 1; 1034 1035 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0); 1036 1037 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 1038 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1039 free_async_extent_pages(async_extent); 1040 } 1041 *alloc_hint = ins.objectid + ins.offset; 1042 kfree(async_extent); 1043 return ret; 1044 1045 out_free_reserve: 1046 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1047 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1048 out_free: 1049 extent_clear_unlock_delalloc(inode, start, end, 1050 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1051 EXTENT_DELALLOC_NEW | 1052 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1053 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1054 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1055 free_async_extent_pages(async_extent); 1056 kfree(async_extent); 1057 return ret; 1058 } 1059 1060 /* 1061 * Phase two of compressed writeback. This is the ordered portion of the code, 1062 * which only gets called in the order the work was queued. We walk all the 1063 * async extents created by compress_file_range and send them down to the disk. 1064 */ 1065 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 1066 { 1067 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 1068 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1069 struct async_extent *async_extent; 1070 u64 alloc_hint = 0; 1071 int ret = 0; 1072 1073 while (!list_empty(&async_chunk->extents)) { 1074 u64 extent_start; 1075 u64 ram_size; 1076 1077 async_extent = list_entry(async_chunk->extents.next, 1078 struct async_extent, list); 1079 list_del(&async_extent->list); 1080 extent_start = async_extent->start; 1081 ram_size = async_extent->ram_size; 1082 1083 ret = submit_one_async_extent(inode, async_chunk, async_extent, 1084 &alloc_hint); 1085 btrfs_debug(fs_info, 1086 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1087 inode->root->root_key.objectid, 1088 btrfs_ino(inode), extent_start, ram_size, ret); 1089 } 1090 } 1091 1092 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1093 u64 num_bytes) 1094 { 1095 struct extent_map_tree *em_tree = &inode->extent_tree; 1096 struct extent_map *em; 1097 u64 alloc_hint = 0; 1098 1099 read_lock(&em_tree->lock); 1100 em = search_extent_mapping(em_tree, start, num_bytes); 1101 if (em) { 1102 /* 1103 * if block start isn't an actual block number then find the 1104 * first block in this inode and use that as a hint. If that 1105 * block is also bogus then just don't worry about it. 1106 */ 1107 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1108 free_extent_map(em); 1109 em = search_extent_mapping(em_tree, 0, 0); 1110 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1111 alloc_hint = em->block_start; 1112 if (em) 1113 free_extent_map(em); 1114 } else { 1115 alloc_hint = em->block_start; 1116 free_extent_map(em); 1117 } 1118 } 1119 read_unlock(&em_tree->lock); 1120 1121 return alloc_hint; 1122 } 1123 1124 /* 1125 * when extent_io.c finds a delayed allocation range in the file, 1126 * the call backs end up in this code. The basic idea is to 1127 * allocate extents on disk for the range, and create ordered data structs 1128 * in ram to track those extents. 1129 * 1130 * locked_page is the page that writepage had locked already. We use 1131 * it to make sure we don't do extra locks or unlocks. 1132 * 1133 * *page_started is set to one if we unlock locked_page and do everything 1134 * required to start IO on it. It may be clean and already done with 1135 * IO when we return. 1136 */ 1137 static noinline int cow_file_range(struct btrfs_inode *inode, 1138 struct page *locked_page, 1139 u64 start, u64 end, int *page_started, 1140 unsigned long *nr_written, int unlock) 1141 { 1142 struct btrfs_root *root = inode->root; 1143 struct btrfs_fs_info *fs_info = root->fs_info; 1144 u64 alloc_hint = 0; 1145 u64 num_bytes; 1146 unsigned long ram_size; 1147 u64 cur_alloc_size = 0; 1148 u64 min_alloc_size; 1149 u64 blocksize = fs_info->sectorsize; 1150 struct btrfs_key ins; 1151 struct extent_map *em; 1152 unsigned clear_bits; 1153 unsigned long page_ops; 1154 bool extent_reserved = false; 1155 int ret = 0; 1156 1157 if (btrfs_is_free_space_inode(inode)) { 1158 ret = -EINVAL; 1159 goto out_unlock; 1160 } 1161 1162 num_bytes = ALIGN(end - start + 1, blocksize); 1163 num_bytes = max(blocksize, num_bytes); 1164 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1165 1166 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1167 1168 /* 1169 * Due to the page size limit, for subpage we can only trigger the 1170 * writeback for the dirty sectors of page, that means data writeback 1171 * is doing more writeback than what we want. 1172 * 1173 * This is especially unexpected for some call sites like fallocate, 1174 * where we only increase i_size after everything is done. 1175 * This means we can trigger inline extent even if we didn't want to. 1176 * So here we skip inline extent creation completely. 1177 */ 1178 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1179 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1180 end + 1); 1181 1182 /* lets try to make an inline extent */ 1183 ret = cow_file_range_inline(inode, actual_end, 0, 1184 BTRFS_COMPRESS_NONE, NULL, false); 1185 if (ret == 0) { 1186 /* 1187 * We use DO_ACCOUNTING here because we need the 1188 * delalloc_release_metadata to be run _after_ we drop 1189 * our outstanding extent for clearing delalloc for this 1190 * range. 1191 */ 1192 extent_clear_unlock_delalloc(inode, start, end, 1193 locked_page, 1194 EXTENT_LOCKED | EXTENT_DELALLOC | 1195 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1196 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1197 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1198 *nr_written = *nr_written + 1199 (end - start + PAGE_SIZE) / PAGE_SIZE; 1200 *page_started = 1; 1201 /* 1202 * locked_page is locked by the caller of 1203 * writepage_delalloc(), not locked by 1204 * __process_pages_contig(). 1205 * 1206 * We can't let __process_pages_contig() to unlock it, 1207 * as it doesn't have any subpage::writers recorded. 1208 * 1209 * Here we manually unlock the page, since the caller 1210 * can't use page_started to determine if it's an 1211 * inline extent or a compressed extent. 1212 */ 1213 unlock_page(locked_page); 1214 goto out; 1215 } else if (ret < 0) { 1216 goto out_unlock; 1217 } 1218 } 1219 1220 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1221 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1222 1223 /* 1224 * Relocation relies on the relocated extents to have exactly the same 1225 * size as the original extents. Normally writeback for relocation data 1226 * extents follows a NOCOW path because relocation preallocates the 1227 * extents. However, due to an operation such as scrub turning a block 1228 * group to RO mode, it may fallback to COW mode, so we must make sure 1229 * an extent allocated during COW has exactly the requested size and can 1230 * not be split into smaller extents, otherwise relocation breaks and 1231 * fails during the stage where it updates the bytenr of file extent 1232 * items. 1233 */ 1234 if (btrfs_is_data_reloc_root(root)) 1235 min_alloc_size = num_bytes; 1236 else 1237 min_alloc_size = fs_info->sectorsize; 1238 1239 while (num_bytes > 0) { 1240 cur_alloc_size = num_bytes; 1241 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1242 min_alloc_size, 0, alloc_hint, 1243 &ins, 1, 1); 1244 if (ret < 0) 1245 goto out_unlock; 1246 cur_alloc_size = ins.offset; 1247 extent_reserved = true; 1248 1249 ram_size = ins.offset; 1250 em = create_io_em(inode, start, ins.offset, /* len */ 1251 start, /* orig_start */ 1252 ins.objectid, /* block_start */ 1253 ins.offset, /* block_len */ 1254 ins.offset, /* orig_block_len */ 1255 ram_size, /* ram_bytes */ 1256 BTRFS_COMPRESS_NONE, /* compress_type */ 1257 BTRFS_ORDERED_REGULAR /* type */); 1258 if (IS_ERR(em)) { 1259 ret = PTR_ERR(em); 1260 goto out_reserve; 1261 } 1262 free_extent_map(em); 1263 1264 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, 1265 ins.objectid, cur_alloc_size, 0, 1266 1 << BTRFS_ORDERED_REGULAR, 1267 BTRFS_COMPRESS_NONE); 1268 if (ret) 1269 goto out_drop_extent_cache; 1270 1271 if (btrfs_is_data_reloc_root(root)) { 1272 ret = btrfs_reloc_clone_csums(inode, start, 1273 cur_alloc_size); 1274 /* 1275 * Only drop cache here, and process as normal. 1276 * 1277 * We must not allow extent_clear_unlock_delalloc() 1278 * at out_unlock label to free meta of this ordered 1279 * extent, as its meta should be freed by 1280 * btrfs_finish_ordered_io(). 1281 * 1282 * So we must continue until @start is increased to 1283 * skip current ordered extent. 1284 */ 1285 if (ret) 1286 btrfs_drop_extent_cache(inode, start, 1287 start + ram_size - 1, 0); 1288 } 1289 1290 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1291 1292 /* 1293 * We're not doing compressed IO, don't unlock the first page 1294 * (which the caller expects to stay locked), don't clear any 1295 * dirty bits and don't set any writeback bits 1296 * 1297 * Do set the Ordered (Private2) bit so we know this page was 1298 * properly setup for writepage. 1299 */ 1300 page_ops = unlock ? PAGE_UNLOCK : 0; 1301 page_ops |= PAGE_SET_ORDERED; 1302 1303 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1304 locked_page, 1305 EXTENT_LOCKED | EXTENT_DELALLOC, 1306 page_ops); 1307 if (num_bytes < cur_alloc_size) 1308 num_bytes = 0; 1309 else 1310 num_bytes -= cur_alloc_size; 1311 alloc_hint = ins.objectid + ins.offset; 1312 start += cur_alloc_size; 1313 extent_reserved = false; 1314 1315 /* 1316 * btrfs_reloc_clone_csums() error, since start is increased 1317 * extent_clear_unlock_delalloc() at out_unlock label won't 1318 * free metadata of current ordered extent, we're OK to exit. 1319 */ 1320 if (ret) 1321 goto out_unlock; 1322 } 1323 out: 1324 return ret; 1325 1326 out_drop_extent_cache: 1327 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1328 out_reserve: 1329 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1330 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1331 out_unlock: 1332 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1333 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1334 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1335 /* 1336 * If we reserved an extent for our delalloc range (or a subrange) and 1337 * failed to create the respective ordered extent, then it means that 1338 * when we reserved the extent we decremented the extent's size from 1339 * the data space_info's bytes_may_use counter and incremented the 1340 * space_info's bytes_reserved counter by the same amount. We must make 1341 * sure extent_clear_unlock_delalloc() does not try to decrement again 1342 * the data space_info's bytes_may_use counter, therefore we do not pass 1343 * it the flag EXTENT_CLEAR_DATA_RESV. 1344 */ 1345 if (extent_reserved) { 1346 extent_clear_unlock_delalloc(inode, start, 1347 start + cur_alloc_size - 1, 1348 locked_page, 1349 clear_bits, 1350 page_ops); 1351 start += cur_alloc_size; 1352 if (start >= end) 1353 goto out; 1354 } 1355 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1356 clear_bits | EXTENT_CLEAR_DATA_RESV, 1357 page_ops); 1358 goto out; 1359 } 1360 1361 /* 1362 * work queue call back to started compression on a file and pages 1363 */ 1364 static noinline void async_cow_start(struct btrfs_work *work) 1365 { 1366 struct async_chunk *async_chunk; 1367 int compressed_extents; 1368 1369 async_chunk = container_of(work, struct async_chunk, work); 1370 1371 compressed_extents = compress_file_range(async_chunk); 1372 if (compressed_extents == 0) { 1373 btrfs_add_delayed_iput(async_chunk->inode); 1374 async_chunk->inode = NULL; 1375 } 1376 } 1377 1378 /* 1379 * work queue call back to submit previously compressed pages 1380 */ 1381 static noinline void async_cow_submit(struct btrfs_work *work) 1382 { 1383 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1384 work); 1385 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1386 unsigned long nr_pages; 1387 1388 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1389 PAGE_SHIFT; 1390 1391 /* 1392 * ->inode could be NULL if async_chunk_start has failed to compress, 1393 * in which case we don't have anything to submit, yet we need to 1394 * always adjust ->async_delalloc_pages as its paired with the init 1395 * happening in cow_file_range_async 1396 */ 1397 if (async_chunk->inode) 1398 submit_compressed_extents(async_chunk); 1399 1400 /* atomic_sub_return implies a barrier */ 1401 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1402 5 * SZ_1M) 1403 cond_wake_up_nomb(&fs_info->async_submit_wait); 1404 } 1405 1406 static noinline void async_cow_free(struct btrfs_work *work) 1407 { 1408 struct async_chunk *async_chunk; 1409 struct async_cow *async_cow; 1410 1411 async_chunk = container_of(work, struct async_chunk, work); 1412 if (async_chunk->inode) 1413 btrfs_add_delayed_iput(async_chunk->inode); 1414 if (async_chunk->blkcg_css) 1415 css_put(async_chunk->blkcg_css); 1416 1417 async_cow = async_chunk->async_cow; 1418 if (atomic_dec_and_test(&async_cow->num_chunks)) 1419 kvfree(async_cow); 1420 } 1421 1422 static int cow_file_range_async(struct btrfs_inode *inode, 1423 struct writeback_control *wbc, 1424 struct page *locked_page, 1425 u64 start, u64 end, int *page_started, 1426 unsigned long *nr_written) 1427 { 1428 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1429 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1430 struct async_cow *ctx; 1431 struct async_chunk *async_chunk; 1432 unsigned long nr_pages; 1433 u64 cur_end; 1434 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1435 int i; 1436 bool should_compress; 1437 unsigned nofs_flag; 1438 const unsigned int write_flags = wbc_to_write_flags(wbc); 1439 1440 unlock_extent(&inode->io_tree, start, end); 1441 1442 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1443 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1444 num_chunks = 1; 1445 should_compress = false; 1446 } else { 1447 should_compress = true; 1448 } 1449 1450 nofs_flag = memalloc_nofs_save(); 1451 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1452 memalloc_nofs_restore(nofs_flag); 1453 1454 if (!ctx) { 1455 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1456 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1457 EXTENT_DO_ACCOUNTING; 1458 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1459 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1460 1461 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1462 clear_bits, page_ops); 1463 return -ENOMEM; 1464 } 1465 1466 async_chunk = ctx->chunks; 1467 atomic_set(&ctx->num_chunks, num_chunks); 1468 1469 for (i = 0; i < num_chunks; i++) { 1470 if (should_compress) 1471 cur_end = min(end, start + SZ_512K - 1); 1472 else 1473 cur_end = end; 1474 1475 /* 1476 * igrab is called higher up in the call chain, take only the 1477 * lightweight reference for the callback lifetime 1478 */ 1479 ihold(&inode->vfs_inode); 1480 async_chunk[i].async_cow = ctx; 1481 async_chunk[i].inode = &inode->vfs_inode; 1482 async_chunk[i].start = start; 1483 async_chunk[i].end = cur_end; 1484 async_chunk[i].write_flags = write_flags; 1485 INIT_LIST_HEAD(&async_chunk[i].extents); 1486 1487 /* 1488 * The locked_page comes all the way from writepage and its 1489 * the original page we were actually given. As we spread 1490 * this large delalloc region across multiple async_chunk 1491 * structs, only the first struct needs a pointer to locked_page 1492 * 1493 * This way we don't need racey decisions about who is supposed 1494 * to unlock it. 1495 */ 1496 if (locked_page) { 1497 /* 1498 * Depending on the compressibility, the pages might or 1499 * might not go through async. We want all of them to 1500 * be accounted against wbc once. Let's do it here 1501 * before the paths diverge. wbc accounting is used 1502 * only for foreign writeback detection and doesn't 1503 * need full accuracy. Just account the whole thing 1504 * against the first page. 1505 */ 1506 wbc_account_cgroup_owner(wbc, locked_page, 1507 cur_end - start); 1508 async_chunk[i].locked_page = locked_page; 1509 locked_page = NULL; 1510 } else { 1511 async_chunk[i].locked_page = NULL; 1512 } 1513 1514 if (blkcg_css != blkcg_root_css) { 1515 css_get(blkcg_css); 1516 async_chunk[i].blkcg_css = blkcg_css; 1517 } else { 1518 async_chunk[i].blkcg_css = NULL; 1519 } 1520 1521 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1522 async_cow_submit, async_cow_free); 1523 1524 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1525 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1526 1527 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1528 1529 *nr_written += nr_pages; 1530 start = cur_end + 1; 1531 } 1532 *page_started = 1; 1533 return 0; 1534 } 1535 1536 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1537 struct page *locked_page, u64 start, 1538 u64 end, int *page_started, 1539 unsigned long *nr_written) 1540 { 1541 int ret; 1542 1543 ret = cow_file_range(inode, locked_page, start, end, page_started, 1544 nr_written, 0); 1545 if (ret) 1546 return ret; 1547 1548 if (*page_started) 1549 return 0; 1550 1551 __set_page_dirty_nobuffers(locked_page); 1552 account_page_redirty(locked_page); 1553 extent_write_locked_range(&inode->vfs_inode, start, end); 1554 *page_started = 1; 1555 1556 return 0; 1557 } 1558 1559 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1560 u64 bytenr, u64 num_bytes) 1561 { 1562 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1563 struct btrfs_ordered_sum *sums; 1564 int ret; 1565 LIST_HEAD(list); 1566 1567 ret = btrfs_lookup_csums_range(csum_root, bytenr, 1568 bytenr + num_bytes - 1, &list, 0); 1569 if (ret == 0 && list_empty(&list)) 1570 return 0; 1571 1572 while (!list_empty(&list)) { 1573 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1574 list_del(&sums->list); 1575 kfree(sums); 1576 } 1577 if (ret < 0) 1578 return ret; 1579 return 1; 1580 } 1581 1582 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1583 const u64 start, const u64 end, 1584 int *page_started, unsigned long *nr_written) 1585 { 1586 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1587 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1588 const u64 range_bytes = end + 1 - start; 1589 struct extent_io_tree *io_tree = &inode->io_tree; 1590 u64 range_start = start; 1591 u64 count; 1592 1593 /* 1594 * If EXTENT_NORESERVE is set it means that when the buffered write was 1595 * made we had not enough available data space and therefore we did not 1596 * reserve data space for it, since we though we could do NOCOW for the 1597 * respective file range (either there is prealloc extent or the inode 1598 * has the NOCOW bit set). 1599 * 1600 * However when we need to fallback to COW mode (because for example the 1601 * block group for the corresponding extent was turned to RO mode by a 1602 * scrub or relocation) we need to do the following: 1603 * 1604 * 1) We increment the bytes_may_use counter of the data space info. 1605 * If COW succeeds, it allocates a new data extent and after doing 1606 * that it decrements the space info's bytes_may_use counter and 1607 * increments its bytes_reserved counter by the same amount (we do 1608 * this at btrfs_add_reserved_bytes()). So we need to increment the 1609 * bytes_may_use counter to compensate (when space is reserved at 1610 * buffered write time, the bytes_may_use counter is incremented); 1611 * 1612 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1613 * that if the COW path fails for any reason, it decrements (through 1614 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1615 * data space info, which we incremented in the step above. 1616 * 1617 * If we need to fallback to cow and the inode corresponds to a free 1618 * space cache inode or an inode of the data relocation tree, we must 1619 * also increment bytes_may_use of the data space_info for the same 1620 * reason. Space caches and relocated data extents always get a prealloc 1621 * extent for them, however scrub or balance may have set the block 1622 * group that contains that extent to RO mode and therefore force COW 1623 * when starting writeback. 1624 */ 1625 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1626 EXTENT_NORESERVE, 0); 1627 if (count > 0 || is_space_ino || is_reloc_ino) { 1628 u64 bytes = count; 1629 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1630 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1631 1632 if (is_space_ino || is_reloc_ino) 1633 bytes = range_bytes; 1634 1635 spin_lock(&sinfo->lock); 1636 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1637 spin_unlock(&sinfo->lock); 1638 1639 if (count > 0) 1640 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1641 0, 0, NULL); 1642 } 1643 1644 return cow_file_range(inode, locked_page, start, end, page_started, 1645 nr_written, 1); 1646 } 1647 1648 struct can_nocow_file_extent_args { 1649 /* Input fields. */ 1650 1651 /* Start file offset of the range we want to NOCOW. */ 1652 u64 start; 1653 /* End file offset (inclusive) of the range we want to NOCOW. */ 1654 u64 end; 1655 bool writeback_path; 1656 bool strict; 1657 /* 1658 * Free the path passed to can_nocow_file_extent() once it's not needed 1659 * anymore. 1660 */ 1661 bool free_path; 1662 1663 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1664 1665 u64 disk_bytenr; 1666 u64 disk_num_bytes; 1667 u64 extent_offset; 1668 /* Number of bytes that can be written to in NOCOW mode. */ 1669 u64 num_bytes; 1670 }; 1671 1672 /* 1673 * Check if we can NOCOW the file extent that the path points to. 1674 * This function may return with the path released, so the caller should check 1675 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1676 * 1677 * Returns: < 0 on error 1678 * 0 if we can not NOCOW 1679 * 1 if we can NOCOW 1680 */ 1681 static int can_nocow_file_extent(struct btrfs_path *path, 1682 struct btrfs_key *key, 1683 struct btrfs_inode *inode, 1684 struct can_nocow_file_extent_args *args) 1685 { 1686 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1687 struct extent_buffer *leaf = path->nodes[0]; 1688 struct btrfs_root *root = inode->root; 1689 struct btrfs_file_extent_item *fi; 1690 u64 extent_end; 1691 u8 extent_type; 1692 int can_nocow = 0; 1693 int ret = 0; 1694 1695 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1696 extent_type = btrfs_file_extent_type(leaf, fi); 1697 1698 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1699 goto out; 1700 1701 /* Can't access these fields unless we know it's not an inline extent. */ 1702 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1703 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1704 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1705 1706 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1707 extent_type == BTRFS_FILE_EXTENT_REG) 1708 goto out; 1709 1710 /* 1711 * If the extent was created before the generation where the last snapshot 1712 * for its subvolume was created, then this implies the extent is shared, 1713 * hence we must COW. 1714 */ 1715 if (!args->strict && 1716 btrfs_file_extent_generation(leaf, fi) <= 1717 btrfs_root_last_snapshot(&root->root_item)) 1718 goto out; 1719 1720 /* An explicit hole, must COW. */ 1721 if (args->disk_bytenr == 0) 1722 goto out; 1723 1724 /* Compressed/encrypted/encoded extents must be COWed. */ 1725 if (btrfs_file_extent_compression(leaf, fi) || 1726 btrfs_file_extent_encryption(leaf, fi) || 1727 btrfs_file_extent_other_encoding(leaf, fi)) 1728 goto out; 1729 1730 extent_end = btrfs_file_extent_end(path); 1731 1732 /* 1733 * The following checks can be expensive, as they need to take other 1734 * locks and do btree or rbtree searches, so release the path to avoid 1735 * blocking other tasks for too long. 1736 */ 1737 btrfs_release_path(path); 1738 1739 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1740 key->offset - args->extent_offset, 1741 args->disk_bytenr, false, path); 1742 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1743 if (ret != 0) 1744 goto out; 1745 1746 if (args->free_path) { 1747 /* 1748 * We don't need the path anymore, plus through the 1749 * csum_exist_in_range() call below we will end up allocating 1750 * another path. So free the path to avoid unnecessary extra 1751 * memory usage. 1752 */ 1753 btrfs_free_path(path); 1754 path = NULL; 1755 } 1756 1757 /* If there are pending snapshots for this root, we must COW. */ 1758 if (args->writeback_path && !is_freespace_inode && 1759 atomic_read(&root->snapshot_force_cow)) 1760 goto out; 1761 1762 args->disk_bytenr += args->extent_offset; 1763 args->disk_bytenr += args->start - key->offset; 1764 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1765 1766 /* 1767 * Force COW if csums exist in the range. This ensures that csums for a 1768 * given extent are either valid or do not exist. 1769 */ 1770 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes); 1771 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1772 if (ret != 0) 1773 goto out; 1774 1775 can_nocow = 1; 1776 out: 1777 if (args->free_path && path) 1778 btrfs_free_path(path); 1779 1780 return ret < 0 ? ret : can_nocow; 1781 } 1782 1783 /* 1784 * when nowcow writeback call back. This checks for snapshots or COW copies 1785 * of the extents that exist in the file, and COWs the file as required. 1786 * 1787 * If no cow copies or snapshots exist, we write directly to the existing 1788 * blocks on disk 1789 */ 1790 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1791 struct page *locked_page, 1792 const u64 start, const u64 end, 1793 int *page_started, 1794 unsigned long *nr_written) 1795 { 1796 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1797 struct btrfs_root *root = inode->root; 1798 struct btrfs_path *path; 1799 u64 cow_start = (u64)-1; 1800 u64 cur_offset = start; 1801 int ret; 1802 bool check_prev = true; 1803 u64 ino = btrfs_ino(inode); 1804 struct btrfs_block_group *bg; 1805 bool nocow = false; 1806 struct can_nocow_file_extent_args nocow_args = { 0 }; 1807 1808 path = btrfs_alloc_path(); 1809 if (!path) { 1810 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1811 EXTENT_LOCKED | EXTENT_DELALLOC | 1812 EXTENT_DO_ACCOUNTING | 1813 EXTENT_DEFRAG, PAGE_UNLOCK | 1814 PAGE_START_WRITEBACK | 1815 PAGE_END_WRITEBACK); 1816 return -ENOMEM; 1817 } 1818 1819 nocow_args.end = end; 1820 nocow_args.writeback_path = true; 1821 1822 while (1) { 1823 struct btrfs_key found_key; 1824 struct btrfs_file_extent_item *fi; 1825 struct extent_buffer *leaf; 1826 u64 extent_end; 1827 u64 ram_bytes; 1828 u64 nocow_end; 1829 int extent_type; 1830 1831 nocow = false; 1832 1833 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1834 cur_offset, 0); 1835 if (ret < 0) 1836 goto error; 1837 1838 /* 1839 * If there is no extent for our range when doing the initial 1840 * search, then go back to the previous slot as it will be the 1841 * one containing the search offset 1842 */ 1843 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1844 leaf = path->nodes[0]; 1845 btrfs_item_key_to_cpu(leaf, &found_key, 1846 path->slots[0] - 1); 1847 if (found_key.objectid == ino && 1848 found_key.type == BTRFS_EXTENT_DATA_KEY) 1849 path->slots[0]--; 1850 } 1851 check_prev = false; 1852 next_slot: 1853 /* Go to next leaf if we have exhausted the current one */ 1854 leaf = path->nodes[0]; 1855 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1856 ret = btrfs_next_leaf(root, path); 1857 if (ret < 0) { 1858 if (cow_start != (u64)-1) 1859 cur_offset = cow_start; 1860 goto error; 1861 } 1862 if (ret > 0) 1863 break; 1864 leaf = path->nodes[0]; 1865 } 1866 1867 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1868 1869 /* Didn't find anything for our INO */ 1870 if (found_key.objectid > ino) 1871 break; 1872 /* 1873 * Keep searching until we find an EXTENT_ITEM or there are no 1874 * more extents for this inode 1875 */ 1876 if (WARN_ON_ONCE(found_key.objectid < ino) || 1877 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1878 path->slots[0]++; 1879 goto next_slot; 1880 } 1881 1882 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1883 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1884 found_key.offset > end) 1885 break; 1886 1887 /* 1888 * If the found extent starts after requested offset, then 1889 * adjust extent_end to be right before this extent begins 1890 */ 1891 if (found_key.offset > cur_offset) { 1892 extent_end = found_key.offset; 1893 extent_type = 0; 1894 goto out_check; 1895 } 1896 1897 /* 1898 * Found extent which begins before our range and potentially 1899 * intersect it 1900 */ 1901 fi = btrfs_item_ptr(leaf, path->slots[0], 1902 struct btrfs_file_extent_item); 1903 extent_type = btrfs_file_extent_type(leaf, fi); 1904 /* If this is triggered then we have a memory corruption. */ 1905 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 1906 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 1907 ret = -EUCLEAN; 1908 goto error; 1909 } 1910 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1911 extent_end = btrfs_file_extent_end(path); 1912 1913 /* 1914 * If the extent we got ends before our current offset, skip to 1915 * the next extent. 1916 */ 1917 if (extent_end <= cur_offset) { 1918 path->slots[0]++; 1919 goto next_slot; 1920 } 1921 1922 nocow_args.start = cur_offset; 1923 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 1924 if (ret < 0) { 1925 if (cow_start != (u64)-1) 1926 cur_offset = cow_start; 1927 goto error; 1928 } else if (ret == 0) { 1929 goto out_check; 1930 } 1931 1932 ret = 0; 1933 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 1934 if (bg) 1935 nocow = true; 1936 out_check: 1937 /* 1938 * If nocow is false then record the beginning of the range 1939 * that needs to be COWed 1940 */ 1941 if (!nocow) { 1942 if (cow_start == (u64)-1) 1943 cow_start = cur_offset; 1944 cur_offset = extent_end; 1945 if (cur_offset > end) 1946 break; 1947 if (!path->nodes[0]) 1948 continue; 1949 path->slots[0]++; 1950 goto next_slot; 1951 } 1952 1953 /* 1954 * COW range from cow_start to found_key.offset - 1. As the key 1955 * will contain the beginning of the first extent that can be 1956 * NOCOW, following one which needs to be COW'ed 1957 */ 1958 if (cow_start != (u64)-1) { 1959 ret = fallback_to_cow(inode, locked_page, 1960 cow_start, found_key.offset - 1, 1961 page_started, nr_written); 1962 if (ret) 1963 goto error; 1964 cow_start = (u64)-1; 1965 } 1966 1967 nocow_end = cur_offset + nocow_args.num_bytes - 1; 1968 1969 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1970 u64 orig_start = found_key.offset - nocow_args.extent_offset; 1971 struct extent_map *em; 1972 1973 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 1974 orig_start, 1975 nocow_args.disk_bytenr, /* block_start */ 1976 nocow_args.num_bytes, /* block_len */ 1977 nocow_args.disk_num_bytes, /* orig_block_len */ 1978 ram_bytes, BTRFS_COMPRESS_NONE, 1979 BTRFS_ORDERED_PREALLOC); 1980 if (IS_ERR(em)) { 1981 ret = PTR_ERR(em); 1982 goto error; 1983 } 1984 free_extent_map(em); 1985 ret = btrfs_add_ordered_extent(inode, 1986 cur_offset, nocow_args.num_bytes, 1987 nocow_args.num_bytes, 1988 nocow_args.disk_bytenr, 1989 nocow_args.num_bytes, 0, 1990 1 << BTRFS_ORDERED_PREALLOC, 1991 BTRFS_COMPRESS_NONE); 1992 if (ret) { 1993 btrfs_drop_extent_cache(inode, cur_offset, 1994 nocow_end, 0); 1995 goto error; 1996 } 1997 } else { 1998 ret = btrfs_add_ordered_extent(inode, cur_offset, 1999 nocow_args.num_bytes, 2000 nocow_args.num_bytes, 2001 nocow_args.disk_bytenr, 2002 nocow_args.num_bytes, 2003 0, 2004 1 << BTRFS_ORDERED_NOCOW, 2005 BTRFS_COMPRESS_NONE); 2006 if (ret) 2007 goto error; 2008 } 2009 2010 if (nocow) { 2011 btrfs_dec_nocow_writers(bg); 2012 nocow = false; 2013 } 2014 2015 if (btrfs_is_data_reloc_root(root)) 2016 /* 2017 * Error handled later, as we must prevent 2018 * extent_clear_unlock_delalloc() in error handler 2019 * from freeing metadata of created ordered extent. 2020 */ 2021 ret = btrfs_reloc_clone_csums(inode, cur_offset, 2022 nocow_args.num_bytes); 2023 2024 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2025 locked_page, EXTENT_LOCKED | 2026 EXTENT_DELALLOC | 2027 EXTENT_CLEAR_DATA_RESV, 2028 PAGE_UNLOCK | PAGE_SET_ORDERED); 2029 2030 cur_offset = extent_end; 2031 2032 /* 2033 * btrfs_reloc_clone_csums() error, now we're OK to call error 2034 * handler, as metadata for created ordered extent will only 2035 * be freed by btrfs_finish_ordered_io(). 2036 */ 2037 if (ret) 2038 goto error; 2039 if (cur_offset > end) 2040 break; 2041 } 2042 btrfs_release_path(path); 2043 2044 if (cur_offset <= end && cow_start == (u64)-1) 2045 cow_start = cur_offset; 2046 2047 if (cow_start != (u64)-1) { 2048 cur_offset = end; 2049 ret = fallback_to_cow(inode, locked_page, cow_start, end, 2050 page_started, nr_written); 2051 if (ret) 2052 goto error; 2053 } 2054 2055 error: 2056 if (nocow) 2057 btrfs_dec_nocow_writers(bg); 2058 2059 if (ret && cur_offset < end) 2060 extent_clear_unlock_delalloc(inode, cur_offset, end, 2061 locked_page, EXTENT_LOCKED | 2062 EXTENT_DELALLOC | EXTENT_DEFRAG | 2063 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2064 PAGE_START_WRITEBACK | 2065 PAGE_END_WRITEBACK); 2066 btrfs_free_path(path); 2067 return ret; 2068 } 2069 2070 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2071 { 2072 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2073 if (inode->defrag_bytes && 2074 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 2075 0, NULL)) 2076 return false; 2077 return true; 2078 } 2079 return false; 2080 } 2081 2082 /* 2083 * Function to process delayed allocation (create CoW) for ranges which are 2084 * being touched for the first time. 2085 */ 2086 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2087 u64 start, u64 end, int *page_started, unsigned long *nr_written, 2088 struct writeback_control *wbc) 2089 { 2090 int ret; 2091 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2092 2093 /* 2094 * The range must cover part of the @locked_page, or the returned 2095 * @page_started can confuse the caller. 2096 */ 2097 ASSERT(!(end <= page_offset(locked_page) || 2098 start >= page_offset(locked_page) + PAGE_SIZE)); 2099 2100 if (should_nocow(inode, start, end)) { 2101 /* 2102 * Normally on a zoned device we're only doing COW writes, but 2103 * in case of relocation on a zoned filesystem we have taken 2104 * precaution, that we're only writing sequentially. It's safe 2105 * to use run_delalloc_nocow() here, like for regular 2106 * preallocated inodes. 2107 */ 2108 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); 2109 ret = run_delalloc_nocow(inode, locked_page, start, end, 2110 page_started, nr_written); 2111 } else if (!btrfs_inode_can_compress(inode) || 2112 !inode_need_compress(inode, start, end)) { 2113 if (zoned) 2114 ret = run_delalloc_zoned(inode, locked_page, start, end, 2115 page_started, nr_written); 2116 else 2117 ret = cow_file_range(inode, locked_page, start, end, 2118 page_started, nr_written, 1); 2119 } else { 2120 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 2121 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 2122 page_started, nr_written); 2123 } 2124 ASSERT(ret <= 0); 2125 if (ret) 2126 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2127 end - start + 1); 2128 return ret; 2129 } 2130 2131 void btrfs_split_delalloc_extent(struct inode *inode, 2132 struct extent_state *orig, u64 split) 2133 { 2134 u64 size; 2135 2136 /* not delalloc, ignore it */ 2137 if (!(orig->state & EXTENT_DELALLOC)) 2138 return; 2139 2140 size = orig->end - orig->start + 1; 2141 if (size > BTRFS_MAX_EXTENT_SIZE) { 2142 u32 num_extents; 2143 u64 new_size; 2144 2145 /* 2146 * See the explanation in btrfs_merge_delalloc_extent, the same 2147 * applies here, just in reverse. 2148 */ 2149 new_size = orig->end - split + 1; 2150 num_extents = count_max_extents(new_size); 2151 new_size = split - orig->start; 2152 num_extents += count_max_extents(new_size); 2153 if (count_max_extents(size) >= num_extents) 2154 return; 2155 } 2156 2157 spin_lock(&BTRFS_I(inode)->lock); 2158 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 2159 spin_unlock(&BTRFS_I(inode)->lock); 2160 } 2161 2162 /* 2163 * Handle merged delayed allocation extents so we can keep track of new extents 2164 * that are just merged onto old extents, such as when we are doing sequential 2165 * writes, so we can properly account for the metadata space we'll need. 2166 */ 2167 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 2168 struct extent_state *other) 2169 { 2170 u64 new_size, old_size; 2171 u32 num_extents; 2172 2173 /* not delalloc, ignore it */ 2174 if (!(other->state & EXTENT_DELALLOC)) 2175 return; 2176 2177 if (new->start > other->start) 2178 new_size = new->end - other->start + 1; 2179 else 2180 new_size = other->end - new->start + 1; 2181 2182 /* we're not bigger than the max, unreserve the space and go */ 2183 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 2184 spin_lock(&BTRFS_I(inode)->lock); 2185 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2186 spin_unlock(&BTRFS_I(inode)->lock); 2187 return; 2188 } 2189 2190 /* 2191 * We have to add up either side to figure out how many extents were 2192 * accounted for before we merged into one big extent. If the number of 2193 * extents we accounted for is <= the amount we need for the new range 2194 * then we can return, otherwise drop. Think of it like this 2195 * 2196 * [ 4k][MAX_SIZE] 2197 * 2198 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2199 * need 2 outstanding extents, on one side we have 1 and the other side 2200 * we have 1 so they are == and we can return. But in this case 2201 * 2202 * [MAX_SIZE+4k][MAX_SIZE+4k] 2203 * 2204 * Each range on their own accounts for 2 extents, but merged together 2205 * they are only 3 extents worth of accounting, so we need to drop in 2206 * this case. 2207 */ 2208 old_size = other->end - other->start + 1; 2209 num_extents = count_max_extents(old_size); 2210 old_size = new->end - new->start + 1; 2211 num_extents += count_max_extents(old_size); 2212 if (count_max_extents(new_size) >= num_extents) 2213 return; 2214 2215 spin_lock(&BTRFS_I(inode)->lock); 2216 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2217 spin_unlock(&BTRFS_I(inode)->lock); 2218 } 2219 2220 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2221 struct inode *inode) 2222 { 2223 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2224 2225 spin_lock(&root->delalloc_lock); 2226 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2227 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2228 &root->delalloc_inodes); 2229 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2230 &BTRFS_I(inode)->runtime_flags); 2231 root->nr_delalloc_inodes++; 2232 if (root->nr_delalloc_inodes == 1) { 2233 spin_lock(&fs_info->delalloc_root_lock); 2234 BUG_ON(!list_empty(&root->delalloc_root)); 2235 list_add_tail(&root->delalloc_root, 2236 &fs_info->delalloc_roots); 2237 spin_unlock(&fs_info->delalloc_root_lock); 2238 } 2239 } 2240 spin_unlock(&root->delalloc_lock); 2241 } 2242 2243 2244 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2245 struct btrfs_inode *inode) 2246 { 2247 struct btrfs_fs_info *fs_info = root->fs_info; 2248 2249 if (!list_empty(&inode->delalloc_inodes)) { 2250 list_del_init(&inode->delalloc_inodes); 2251 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2252 &inode->runtime_flags); 2253 root->nr_delalloc_inodes--; 2254 if (!root->nr_delalloc_inodes) { 2255 ASSERT(list_empty(&root->delalloc_inodes)); 2256 spin_lock(&fs_info->delalloc_root_lock); 2257 BUG_ON(list_empty(&root->delalloc_root)); 2258 list_del_init(&root->delalloc_root); 2259 spin_unlock(&fs_info->delalloc_root_lock); 2260 } 2261 } 2262 } 2263 2264 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2265 struct btrfs_inode *inode) 2266 { 2267 spin_lock(&root->delalloc_lock); 2268 __btrfs_del_delalloc_inode(root, inode); 2269 spin_unlock(&root->delalloc_lock); 2270 } 2271 2272 /* 2273 * Properly track delayed allocation bytes in the inode and to maintain the 2274 * list of inodes that have pending delalloc work to be done. 2275 */ 2276 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2277 unsigned *bits) 2278 { 2279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2280 2281 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2282 WARN_ON(1); 2283 /* 2284 * set_bit and clear bit hooks normally require _irqsave/restore 2285 * but in this case, we are only testing for the DELALLOC 2286 * bit, which is only set or cleared with irqs on 2287 */ 2288 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2289 struct btrfs_root *root = BTRFS_I(inode)->root; 2290 u64 len = state->end + 1 - state->start; 2291 u32 num_extents = count_max_extents(len); 2292 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2293 2294 spin_lock(&BTRFS_I(inode)->lock); 2295 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2296 spin_unlock(&BTRFS_I(inode)->lock); 2297 2298 /* For sanity tests */ 2299 if (btrfs_is_testing(fs_info)) 2300 return; 2301 2302 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2303 fs_info->delalloc_batch); 2304 spin_lock(&BTRFS_I(inode)->lock); 2305 BTRFS_I(inode)->delalloc_bytes += len; 2306 if (*bits & EXTENT_DEFRAG) 2307 BTRFS_I(inode)->defrag_bytes += len; 2308 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2309 &BTRFS_I(inode)->runtime_flags)) 2310 btrfs_add_delalloc_inodes(root, inode); 2311 spin_unlock(&BTRFS_I(inode)->lock); 2312 } 2313 2314 if (!(state->state & EXTENT_DELALLOC_NEW) && 2315 (*bits & EXTENT_DELALLOC_NEW)) { 2316 spin_lock(&BTRFS_I(inode)->lock); 2317 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2318 state->start; 2319 spin_unlock(&BTRFS_I(inode)->lock); 2320 } 2321 } 2322 2323 /* 2324 * Once a range is no longer delalloc this function ensures that proper 2325 * accounting happens. 2326 */ 2327 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2328 struct extent_state *state, unsigned *bits) 2329 { 2330 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2331 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2332 u64 len = state->end + 1 - state->start; 2333 u32 num_extents = count_max_extents(len); 2334 2335 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2336 spin_lock(&inode->lock); 2337 inode->defrag_bytes -= len; 2338 spin_unlock(&inode->lock); 2339 } 2340 2341 /* 2342 * set_bit and clear bit hooks normally require _irqsave/restore 2343 * but in this case, we are only testing for the DELALLOC 2344 * bit, which is only set or cleared with irqs on 2345 */ 2346 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2347 struct btrfs_root *root = inode->root; 2348 bool do_list = !btrfs_is_free_space_inode(inode); 2349 2350 spin_lock(&inode->lock); 2351 btrfs_mod_outstanding_extents(inode, -num_extents); 2352 spin_unlock(&inode->lock); 2353 2354 /* 2355 * We don't reserve metadata space for space cache inodes so we 2356 * don't need to call delalloc_release_metadata if there is an 2357 * error. 2358 */ 2359 if (*bits & EXTENT_CLEAR_META_RESV && 2360 root != fs_info->tree_root) 2361 btrfs_delalloc_release_metadata(inode, len, false); 2362 2363 /* For sanity tests. */ 2364 if (btrfs_is_testing(fs_info)) 2365 return; 2366 2367 if (!btrfs_is_data_reloc_root(root) && 2368 do_list && !(state->state & EXTENT_NORESERVE) && 2369 (*bits & EXTENT_CLEAR_DATA_RESV)) 2370 btrfs_free_reserved_data_space_noquota(fs_info, len); 2371 2372 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2373 fs_info->delalloc_batch); 2374 spin_lock(&inode->lock); 2375 inode->delalloc_bytes -= len; 2376 if (do_list && inode->delalloc_bytes == 0 && 2377 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2378 &inode->runtime_flags)) 2379 btrfs_del_delalloc_inode(root, inode); 2380 spin_unlock(&inode->lock); 2381 } 2382 2383 if ((state->state & EXTENT_DELALLOC_NEW) && 2384 (*bits & EXTENT_DELALLOC_NEW)) { 2385 spin_lock(&inode->lock); 2386 ASSERT(inode->new_delalloc_bytes >= len); 2387 inode->new_delalloc_bytes -= len; 2388 if (*bits & EXTENT_ADD_INODE_BYTES) 2389 inode_add_bytes(&inode->vfs_inode, len); 2390 spin_unlock(&inode->lock); 2391 } 2392 } 2393 2394 /* 2395 * in order to insert checksums into the metadata in large chunks, 2396 * we wait until bio submission time. All the pages in the bio are 2397 * checksummed and sums are attached onto the ordered extent record. 2398 * 2399 * At IO completion time the cums attached on the ordered extent record 2400 * are inserted into the btree 2401 */ 2402 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2403 u64 dio_file_offset) 2404 { 2405 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2406 } 2407 2408 /* 2409 * Split an extent_map at [start, start + len] 2410 * 2411 * This function is intended to be used only for extract_ordered_extent(). 2412 */ 2413 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, 2414 u64 pre, u64 post) 2415 { 2416 struct extent_map_tree *em_tree = &inode->extent_tree; 2417 struct extent_map *em; 2418 struct extent_map *split_pre = NULL; 2419 struct extent_map *split_mid = NULL; 2420 struct extent_map *split_post = NULL; 2421 int ret = 0; 2422 unsigned long flags; 2423 2424 /* Sanity check */ 2425 if (pre == 0 && post == 0) 2426 return 0; 2427 2428 split_pre = alloc_extent_map(); 2429 if (pre) 2430 split_mid = alloc_extent_map(); 2431 if (post) 2432 split_post = alloc_extent_map(); 2433 if (!split_pre || (pre && !split_mid) || (post && !split_post)) { 2434 ret = -ENOMEM; 2435 goto out; 2436 } 2437 2438 ASSERT(pre + post < len); 2439 2440 lock_extent(&inode->io_tree, start, start + len - 1); 2441 write_lock(&em_tree->lock); 2442 em = lookup_extent_mapping(em_tree, start, len); 2443 if (!em) { 2444 ret = -EIO; 2445 goto out_unlock; 2446 } 2447 2448 ASSERT(em->len == len); 2449 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2450 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2451 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); 2452 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); 2453 ASSERT(!list_empty(&em->list)); 2454 2455 flags = em->flags; 2456 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2457 2458 /* First, replace the em with a new extent_map starting from * em->start */ 2459 split_pre->start = em->start; 2460 split_pre->len = (pre ? pre : em->len - post); 2461 split_pre->orig_start = split_pre->start; 2462 split_pre->block_start = em->block_start; 2463 split_pre->block_len = split_pre->len; 2464 split_pre->orig_block_len = split_pre->block_len; 2465 split_pre->ram_bytes = split_pre->len; 2466 split_pre->flags = flags; 2467 split_pre->compress_type = em->compress_type; 2468 split_pre->generation = em->generation; 2469 2470 replace_extent_mapping(em_tree, em, split_pre, 1); 2471 2472 /* 2473 * Now we only have an extent_map at: 2474 * [em->start, em->start + pre] if pre != 0 2475 * [em->start, em->start + em->len - post] if pre == 0 2476 */ 2477 2478 if (pre) { 2479 /* Insert the middle extent_map */ 2480 split_mid->start = em->start + pre; 2481 split_mid->len = em->len - pre - post; 2482 split_mid->orig_start = split_mid->start; 2483 split_mid->block_start = em->block_start + pre; 2484 split_mid->block_len = split_mid->len; 2485 split_mid->orig_block_len = split_mid->block_len; 2486 split_mid->ram_bytes = split_mid->len; 2487 split_mid->flags = flags; 2488 split_mid->compress_type = em->compress_type; 2489 split_mid->generation = em->generation; 2490 add_extent_mapping(em_tree, split_mid, 1); 2491 } 2492 2493 if (post) { 2494 split_post->start = em->start + em->len - post; 2495 split_post->len = post; 2496 split_post->orig_start = split_post->start; 2497 split_post->block_start = em->block_start + em->len - post; 2498 split_post->block_len = split_post->len; 2499 split_post->orig_block_len = split_post->block_len; 2500 split_post->ram_bytes = split_post->len; 2501 split_post->flags = flags; 2502 split_post->compress_type = em->compress_type; 2503 split_post->generation = em->generation; 2504 add_extent_mapping(em_tree, split_post, 1); 2505 } 2506 2507 /* Once for us */ 2508 free_extent_map(em); 2509 /* Once for the tree */ 2510 free_extent_map(em); 2511 2512 out_unlock: 2513 write_unlock(&em_tree->lock); 2514 unlock_extent(&inode->io_tree, start, start + len - 1); 2515 out: 2516 free_extent_map(split_pre); 2517 free_extent_map(split_mid); 2518 free_extent_map(split_post); 2519 2520 return ret; 2521 } 2522 2523 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2524 struct bio *bio, loff_t file_offset) 2525 { 2526 struct btrfs_ordered_extent *ordered; 2527 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2528 u64 file_len; 2529 u64 len = bio->bi_iter.bi_size; 2530 u64 end = start + len; 2531 u64 ordered_end; 2532 u64 pre, post; 2533 int ret = 0; 2534 2535 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2536 if (WARN_ON_ONCE(!ordered)) 2537 return BLK_STS_IOERR; 2538 2539 /* No need to split */ 2540 if (ordered->disk_num_bytes == len) 2541 goto out; 2542 2543 /* We cannot split once end_bio'd ordered extent */ 2544 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2545 ret = -EINVAL; 2546 goto out; 2547 } 2548 2549 /* We cannot split a compressed ordered extent */ 2550 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2551 ret = -EINVAL; 2552 goto out; 2553 } 2554 2555 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2556 /* bio must be in one ordered extent */ 2557 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2558 ret = -EINVAL; 2559 goto out; 2560 } 2561 2562 /* Checksum list should be empty */ 2563 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2564 ret = -EINVAL; 2565 goto out; 2566 } 2567 2568 file_len = ordered->num_bytes; 2569 pre = start - ordered->disk_bytenr; 2570 post = ordered_end - end; 2571 2572 ret = btrfs_split_ordered_extent(ordered, pre, post); 2573 if (ret) 2574 goto out; 2575 ret = split_zoned_em(inode, file_offset, file_len, pre, post); 2576 2577 out: 2578 btrfs_put_ordered_extent(ordered); 2579 2580 return errno_to_blk_status(ret); 2581 } 2582 2583 /* 2584 * extent_io.c submission hook. This does the right thing for csum calculation 2585 * on write, or reading the csums from the tree before a read. 2586 * 2587 * Rules about async/sync submit, 2588 * a) read: sync submit 2589 * 2590 * b) write without checksum: sync submit 2591 * 2592 * c) write with checksum: 2593 * c-1) if bio is issued by fsync: sync submit 2594 * (sync_writers != 0) 2595 * 2596 * c-2) if root is reloc root: sync submit 2597 * (only in case of buffered IO) 2598 * 2599 * c-3) otherwise: async submit 2600 */ 2601 void btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2602 int mirror_num, enum btrfs_compression_type compress_type) 2603 { 2604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2605 struct btrfs_root *root = BTRFS_I(inode)->root; 2606 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2607 blk_status_t ret = 0; 2608 int skip_sum; 2609 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2610 2611 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2612 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2613 2614 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2615 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2616 2617 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2618 struct page *page = bio_first_bvec_all(bio)->bv_page; 2619 loff_t file_offset = page_offset(page); 2620 2621 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2622 if (ret) 2623 goto out; 2624 } 2625 2626 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2627 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2628 if (ret) 2629 goto out; 2630 2631 if (compress_type != BTRFS_COMPRESS_NONE) { 2632 /* 2633 * btrfs_submit_compressed_read will handle completing 2634 * the bio if there were any errors, so just return 2635 * here. 2636 */ 2637 btrfs_submit_compressed_read(inode, bio, mirror_num); 2638 return; 2639 } else { 2640 /* 2641 * Lookup bio sums does extra checks around whether we 2642 * need to csum or not, which is why we ignore skip_sum 2643 * here. 2644 */ 2645 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2646 if (ret) 2647 goto out; 2648 } 2649 goto mapit; 2650 } else if (async && !skip_sum) { 2651 /* csum items have already been cloned */ 2652 if (btrfs_is_data_reloc_root(root)) 2653 goto mapit; 2654 /* we're doing a write, do the async checksumming */ 2655 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 2656 0, btrfs_submit_bio_start); 2657 goto out; 2658 } else if (!skip_sum) { 2659 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2660 if (ret) 2661 goto out; 2662 } 2663 2664 mapit: 2665 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2666 2667 out: 2668 if (ret) { 2669 bio->bi_status = ret; 2670 bio_endio(bio); 2671 } 2672 } 2673 2674 /* 2675 * given a list of ordered sums record them in the inode. This happens 2676 * at IO completion time based on sums calculated at bio submission time. 2677 */ 2678 static int add_pending_csums(struct btrfs_trans_handle *trans, 2679 struct list_head *list) 2680 { 2681 struct btrfs_ordered_sum *sum; 2682 struct btrfs_root *csum_root = NULL; 2683 int ret; 2684 2685 list_for_each_entry(sum, list, list) { 2686 trans->adding_csums = true; 2687 if (!csum_root) 2688 csum_root = btrfs_csum_root(trans->fs_info, 2689 sum->bytenr); 2690 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2691 trans->adding_csums = false; 2692 if (ret) 2693 return ret; 2694 } 2695 return 0; 2696 } 2697 2698 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2699 const u64 start, 2700 const u64 len, 2701 struct extent_state **cached_state) 2702 { 2703 u64 search_start = start; 2704 const u64 end = start + len - 1; 2705 2706 while (search_start < end) { 2707 const u64 search_len = end - search_start + 1; 2708 struct extent_map *em; 2709 u64 em_len; 2710 int ret = 0; 2711 2712 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2713 if (IS_ERR(em)) 2714 return PTR_ERR(em); 2715 2716 if (em->block_start != EXTENT_MAP_HOLE) 2717 goto next; 2718 2719 em_len = em->len; 2720 if (em->start < search_start) 2721 em_len -= search_start - em->start; 2722 if (em_len > search_len) 2723 em_len = search_len; 2724 2725 ret = set_extent_bit(&inode->io_tree, search_start, 2726 search_start + em_len - 1, 2727 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2728 GFP_NOFS, NULL); 2729 next: 2730 search_start = extent_map_end(em); 2731 free_extent_map(em); 2732 if (ret) 2733 return ret; 2734 } 2735 return 0; 2736 } 2737 2738 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2739 unsigned int extra_bits, 2740 struct extent_state **cached_state) 2741 { 2742 WARN_ON(PAGE_ALIGNED(end)); 2743 2744 if (start >= i_size_read(&inode->vfs_inode) && 2745 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2746 /* 2747 * There can't be any extents following eof in this case so just 2748 * set the delalloc new bit for the range directly. 2749 */ 2750 extra_bits |= EXTENT_DELALLOC_NEW; 2751 } else { 2752 int ret; 2753 2754 ret = btrfs_find_new_delalloc_bytes(inode, start, 2755 end + 1 - start, 2756 cached_state); 2757 if (ret) 2758 return ret; 2759 } 2760 2761 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2762 cached_state); 2763 } 2764 2765 /* see btrfs_writepage_start_hook for details on why this is required */ 2766 struct btrfs_writepage_fixup { 2767 struct page *page; 2768 struct inode *inode; 2769 struct btrfs_work work; 2770 }; 2771 2772 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2773 { 2774 struct btrfs_writepage_fixup *fixup; 2775 struct btrfs_ordered_extent *ordered; 2776 struct extent_state *cached_state = NULL; 2777 struct extent_changeset *data_reserved = NULL; 2778 struct page *page; 2779 struct btrfs_inode *inode; 2780 u64 page_start; 2781 u64 page_end; 2782 int ret = 0; 2783 bool free_delalloc_space = true; 2784 2785 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2786 page = fixup->page; 2787 inode = BTRFS_I(fixup->inode); 2788 page_start = page_offset(page); 2789 page_end = page_offset(page) + PAGE_SIZE - 1; 2790 2791 /* 2792 * This is similar to page_mkwrite, we need to reserve the space before 2793 * we take the page lock. 2794 */ 2795 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2796 PAGE_SIZE); 2797 again: 2798 lock_page(page); 2799 2800 /* 2801 * Before we queued this fixup, we took a reference on the page. 2802 * page->mapping may go NULL, but it shouldn't be moved to a different 2803 * address space. 2804 */ 2805 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2806 /* 2807 * Unfortunately this is a little tricky, either 2808 * 2809 * 1) We got here and our page had already been dealt with and 2810 * we reserved our space, thus ret == 0, so we need to just 2811 * drop our space reservation and bail. This can happen the 2812 * first time we come into the fixup worker, or could happen 2813 * while waiting for the ordered extent. 2814 * 2) Our page was already dealt with, but we happened to get an 2815 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2816 * this case we obviously don't have anything to release, but 2817 * because the page was already dealt with we don't want to 2818 * mark the page with an error, so make sure we're resetting 2819 * ret to 0. This is why we have this check _before_ the ret 2820 * check, because we do not want to have a surprise ENOSPC 2821 * when the page was already properly dealt with. 2822 */ 2823 if (!ret) { 2824 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2825 btrfs_delalloc_release_space(inode, data_reserved, 2826 page_start, PAGE_SIZE, 2827 true); 2828 } 2829 ret = 0; 2830 goto out_page; 2831 } 2832 2833 /* 2834 * We can't mess with the page state unless it is locked, so now that 2835 * it is locked bail if we failed to make our space reservation. 2836 */ 2837 if (ret) 2838 goto out_page; 2839 2840 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2841 2842 /* already ordered? We're done */ 2843 if (PageOrdered(page)) 2844 goto out_reserved; 2845 2846 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2847 if (ordered) { 2848 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2849 &cached_state); 2850 unlock_page(page); 2851 btrfs_start_ordered_extent(ordered, 1); 2852 btrfs_put_ordered_extent(ordered); 2853 goto again; 2854 } 2855 2856 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2857 &cached_state); 2858 if (ret) 2859 goto out_reserved; 2860 2861 /* 2862 * Everything went as planned, we're now the owner of a dirty page with 2863 * delayed allocation bits set and space reserved for our COW 2864 * destination. 2865 * 2866 * The page was dirty when we started, nothing should have cleaned it. 2867 */ 2868 BUG_ON(!PageDirty(page)); 2869 free_delalloc_space = false; 2870 out_reserved: 2871 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2872 if (free_delalloc_space) 2873 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2874 PAGE_SIZE, true); 2875 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2876 &cached_state); 2877 out_page: 2878 if (ret) { 2879 /* 2880 * We hit ENOSPC or other errors. Update the mapping and page 2881 * to reflect the errors and clean the page. 2882 */ 2883 mapping_set_error(page->mapping, ret); 2884 end_extent_writepage(page, ret, page_start, page_end); 2885 clear_page_dirty_for_io(page); 2886 SetPageError(page); 2887 } 2888 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); 2889 unlock_page(page); 2890 put_page(page); 2891 kfree(fixup); 2892 extent_changeset_free(data_reserved); 2893 /* 2894 * As a precaution, do a delayed iput in case it would be the last iput 2895 * that could need flushing space. Recursing back to fixup worker would 2896 * deadlock. 2897 */ 2898 btrfs_add_delayed_iput(&inode->vfs_inode); 2899 } 2900 2901 /* 2902 * There are a few paths in the higher layers of the kernel that directly 2903 * set the page dirty bit without asking the filesystem if it is a 2904 * good idea. This causes problems because we want to make sure COW 2905 * properly happens and the data=ordered rules are followed. 2906 * 2907 * In our case any range that doesn't have the ORDERED bit set 2908 * hasn't been properly setup for IO. We kick off an async process 2909 * to fix it up. The async helper will wait for ordered extents, set 2910 * the delalloc bit and make it safe to write the page. 2911 */ 2912 int btrfs_writepage_cow_fixup(struct page *page) 2913 { 2914 struct inode *inode = page->mapping->host; 2915 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2916 struct btrfs_writepage_fixup *fixup; 2917 2918 /* This page has ordered extent covering it already */ 2919 if (PageOrdered(page)) 2920 return 0; 2921 2922 /* 2923 * PageChecked is set below when we create a fixup worker for this page, 2924 * don't try to create another one if we're already PageChecked() 2925 * 2926 * The extent_io writepage code will redirty the page if we send back 2927 * EAGAIN. 2928 */ 2929 if (PageChecked(page)) 2930 return -EAGAIN; 2931 2932 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2933 if (!fixup) 2934 return -EAGAIN; 2935 2936 /* 2937 * We are already holding a reference to this inode from 2938 * write_cache_pages. We need to hold it because the space reservation 2939 * takes place outside of the page lock, and we can't trust 2940 * page->mapping outside of the page lock. 2941 */ 2942 ihold(inode); 2943 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2944 get_page(page); 2945 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2946 fixup->page = page; 2947 fixup->inode = inode; 2948 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2949 2950 return -EAGAIN; 2951 } 2952 2953 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2954 struct btrfs_inode *inode, u64 file_pos, 2955 struct btrfs_file_extent_item *stack_fi, 2956 const bool update_inode_bytes, 2957 u64 qgroup_reserved) 2958 { 2959 struct btrfs_root *root = inode->root; 2960 const u64 sectorsize = root->fs_info->sectorsize; 2961 struct btrfs_path *path; 2962 struct extent_buffer *leaf; 2963 struct btrfs_key ins; 2964 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2965 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2966 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2967 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2968 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2969 struct btrfs_drop_extents_args drop_args = { 0 }; 2970 int ret; 2971 2972 path = btrfs_alloc_path(); 2973 if (!path) 2974 return -ENOMEM; 2975 2976 /* 2977 * we may be replacing one extent in the tree with another. 2978 * The new extent is pinned in the extent map, and we don't want 2979 * to drop it from the cache until it is completely in the btree. 2980 * 2981 * So, tell btrfs_drop_extents to leave this extent in the cache. 2982 * the caller is expected to unpin it and allow it to be merged 2983 * with the others. 2984 */ 2985 drop_args.path = path; 2986 drop_args.start = file_pos; 2987 drop_args.end = file_pos + num_bytes; 2988 drop_args.replace_extent = true; 2989 drop_args.extent_item_size = sizeof(*stack_fi); 2990 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2991 if (ret) 2992 goto out; 2993 2994 if (!drop_args.extent_inserted) { 2995 ins.objectid = btrfs_ino(inode); 2996 ins.offset = file_pos; 2997 ins.type = BTRFS_EXTENT_DATA_KEY; 2998 2999 ret = btrfs_insert_empty_item(trans, root, path, &ins, 3000 sizeof(*stack_fi)); 3001 if (ret) 3002 goto out; 3003 } 3004 leaf = path->nodes[0]; 3005 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3006 write_extent_buffer(leaf, stack_fi, 3007 btrfs_item_ptr_offset(leaf, path->slots[0]), 3008 sizeof(struct btrfs_file_extent_item)); 3009 3010 btrfs_mark_buffer_dirty(leaf); 3011 btrfs_release_path(path); 3012 3013 /* 3014 * If we dropped an inline extent here, we know the range where it is 3015 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3016 * number of bytes only for that range containing the inline extent. 3017 * The remaining of the range will be processed when clearning the 3018 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3019 */ 3020 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3021 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3022 3023 inline_size = drop_args.bytes_found - inline_size; 3024 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3025 drop_args.bytes_found -= inline_size; 3026 num_bytes -= sectorsize; 3027 } 3028 3029 if (update_inode_bytes) 3030 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3031 3032 ins.objectid = disk_bytenr; 3033 ins.offset = disk_num_bytes; 3034 ins.type = BTRFS_EXTENT_ITEM_KEY; 3035 3036 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3037 if (ret) 3038 goto out; 3039 3040 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3041 file_pos - offset, 3042 qgroup_reserved, &ins); 3043 out: 3044 btrfs_free_path(path); 3045 3046 return ret; 3047 } 3048 3049 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3050 u64 start, u64 len) 3051 { 3052 struct btrfs_block_group *cache; 3053 3054 cache = btrfs_lookup_block_group(fs_info, start); 3055 ASSERT(cache); 3056 3057 spin_lock(&cache->lock); 3058 cache->delalloc_bytes -= len; 3059 spin_unlock(&cache->lock); 3060 3061 btrfs_put_block_group(cache); 3062 } 3063 3064 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3065 struct btrfs_ordered_extent *oe) 3066 { 3067 struct btrfs_file_extent_item stack_fi; 3068 bool update_inode_bytes; 3069 u64 num_bytes = oe->num_bytes; 3070 u64 ram_bytes = oe->ram_bytes; 3071 3072 memset(&stack_fi, 0, sizeof(stack_fi)); 3073 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3074 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3075 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3076 oe->disk_num_bytes); 3077 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3078 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3079 num_bytes = ram_bytes = oe->truncated_len; 3080 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3081 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3082 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3083 /* Encryption and other encoding is reserved and all 0 */ 3084 3085 /* 3086 * For delalloc, when completing an ordered extent we update the inode's 3087 * bytes when clearing the range in the inode's io tree, so pass false 3088 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3089 * except if the ordered extent was truncated. 3090 */ 3091 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3092 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3093 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3094 3095 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3096 oe->file_offset, &stack_fi, 3097 update_inode_bytes, oe->qgroup_rsv); 3098 } 3099 3100 /* 3101 * As ordered data IO finishes, this gets called so we can finish 3102 * an ordered extent if the range of bytes in the file it covers are 3103 * fully written. 3104 */ 3105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3106 { 3107 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3108 struct btrfs_root *root = inode->root; 3109 struct btrfs_fs_info *fs_info = root->fs_info; 3110 struct btrfs_trans_handle *trans = NULL; 3111 struct extent_io_tree *io_tree = &inode->io_tree; 3112 struct extent_state *cached_state = NULL; 3113 u64 start, end; 3114 int compress_type = 0; 3115 int ret = 0; 3116 u64 logical_len = ordered_extent->num_bytes; 3117 bool freespace_inode; 3118 bool truncated = false; 3119 bool clear_reserved_extent = true; 3120 unsigned int clear_bits = EXTENT_DEFRAG; 3121 3122 start = ordered_extent->file_offset; 3123 end = start + ordered_extent->num_bytes - 1; 3124 3125 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3126 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3127 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3128 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3129 clear_bits |= EXTENT_DELALLOC_NEW; 3130 3131 freespace_inode = btrfs_is_free_space_inode(inode); 3132 3133 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3134 ret = -EIO; 3135 goto out; 3136 } 3137 3138 /* A valid bdev implies a write on a sequential zone */ 3139 if (ordered_extent->bdev) { 3140 btrfs_rewrite_logical_zoned(ordered_extent); 3141 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3142 ordered_extent->disk_num_bytes); 3143 } 3144 3145 btrfs_free_io_failure_record(inode, start, end); 3146 3147 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3148 truncated = true; 3149 logical_len = ordered_extent->truncated_len; 3150 /* Truncated the entire extent, don't bother adding */ 3151 if (!logical_len) 3152 goto out; 3153 } 3154 3155 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3156 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3157 3158 btrfs_inode_safe_disk_i_size_write(inode, 0); 3159 if (freespace_inode) 3160 trans = btrfs_join_transaction_spacecache(root); 3161 else 3162 trans = btrfs_join_transaction(root); 3163 if (IS_ERR(trans)) { 3164 ret = PTR_ERR(trans); 3165 trans = NULL; 3166 goto out; 3167 } 3168 trans->block_rsv = &inode->block_rsv; 3169 ret = btrfs_update_inode_fallback(trans, root, inode); 3170 if (ret) /* -ENOMEM or corruption */ 3171 btrfs_abort_transaction(trans, ret); 3172 goto out; 3173 } 3174 3175 clear_bits |= EXTENT_LOCKED; 3176 lock_extent_bits(io_tree, start, end, &cached_state); 3177 3178 if (freespace_inode) 3179 trans = btrfs_join_transaction_spacecache(root); 3180 else 3181 trans = btrfs_join_transaction(root); 3182 if (IS_ERR(trans)) { 3183 ret = PTR_ERR(trans); 3184 trans = NULL; 3185 goto out; 3186 } 3187 3188 trans->block_rsv = &inode->block_rsv; 3189 3190 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3191 compress_type = ordered_extent->compress_type; 3192 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3193 BUG_ON(compress_type); 3194 ret = btrfs_mark_extent_written(trans, inode, 3195 ordered_extent->file_offset, 3196 ordered_extent->file_offset + 3197 logical_len); 3198 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3199 ordered_extent->disk_num_bytes); 3200 } else { 3201 BUG_ON(root == fs_info->tree_root); 3202 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3203 if (!ret) { 3204 clear_reserved_extent = false; 3205 btrfs_release_delalloc_bytes(fs_info, 3206 ordered_extent->disk_bytenr, 3207 ordered_extent->disk_num_bytes); 3208 } 3209 } 3210 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3211 ordered_extent->num_bytes, trans->transid); 3212 if (ret < 0) { 3213 btrfs_abort_transaction(trans, ret); 3214 goto out; 3215 } 3216 3217 ret = add_pending_csums(trans, &ordered_extent->list); 3218 if (ret) { 3219 btrfs_abort_transaction(trans, ret); 3220 goto out; 3221 } 3222 3223 /* 3224 * If this is a new delalloc range, clear its new delalloc flag to 3225 * update the inode's number of bytes. This needs to be done first 3226 * before updating the inode item. 3227 */ 3228 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3229 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3230 clear_extent_bit(&inode->io_tree, start, end, 3231 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3232 0, 0, &cached_state); 3233 3234 btrfs_inode_safe_disk_i_size_write(inode, 0); 3235 ret = btrfs_update_inode_fallback(trans, root, inode); 3236 if (ret) { /* -ENOMEM or corruption */ 3237 btrfs_abort_transaction(trans, ret); 3238 goto out; 3239 } 3240 ret = 0; 3241 out: 3242 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3243 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3244 &cached_state); 3245 3246 if (trans) 3247 btrfs_end_transaction(trans); 3248 3249 if (ret || truncated) { 3250 u64 unwritten_start = start; 3251 3252 /* 3253 * If we failed to finish this ordered extent for any reason we 3254 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3255 * extent, and mark the inode with the error if it wasn't 3256 * already set. Any error during writeback would have already 3257 * set the mapping error, so we need to set it if we're the ones 3258 * marking this ordered extent as failed. 3259 */ 3260 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3261 &ordered_extent->flags)) 3262 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3263 3264 if (truncated) 3265 unwritten_start += logical_len; 3266 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3267 3268 /* Drop the cache for the part of the extent we didn't write. */ 3269 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3270 3271 /* 3272 * If the ordered extent had an IOERR or something else went 3273 * wrong we need to return the space for this ordered extent 3274 * back to the allocator. We only free the extent in the 3275 * truncated case if we didn't write out the extent at all. 3276 * 3277 * If we made it past insert_reserved_file_extent before we 3278 * errored out then we don't need to do this as the accounting 3279 * has already been done. 3280 */ 3281 if ((ret || !logical_len) && 3282 clear_reserved_extent && 3283 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3284 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3285 /* 3286 * Discard the range before returning it back to the 3287 * free space pool 3288 */ 3289 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3290 btrfs_discard_extent(fs_info, 3291 ordered_extent->disk_bytenr, 3292 ordered_extent->disk_num_bytes, 3293 NULL); 3294 btrfs_free_reserved_extent(fs_info, 3295 ordered_extent->disk_bytenr, 3296 ordered_extent->disk_num_bytes, 1); 3297 } 3298 } 3299 3300 /* 3301 * This needs to be done to make sure anybody waiting knows we are done 3302 * updating everything for this ordered extent. 3303 */ 3304 btrfs_remove_ordered_extent(inode, ordered_extent); 3305 3306 /* once for us */ 3307 btrfs_put_ordered_extent(ordered_extent); 3308 /* once for the tree */ 3309 btrfs_put_ordered_extent(ordered_extent); 3310 3311 return ret; 3312 } 3313 3314 static void finish_ordered_fn(struct btrfs_work *work) 3315 { 3316 struct btrfs_ordered_extent *ordered_extent; 3317 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3318 btrfs_finish_ordered_io(ordered_extent); 3319 } 3320 3321 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3322 struct page *page, u64 start, 3323 u64 end, bool uptodate) 3324 { 3325 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3326 3327 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, 3328 finish_ordered_fn, uptodate); 3329 } 3330 3331 /* 3332 * check_data_csum - verify checksum of one sector of uncompressed data 3333 * @inode: inode 3334 * @io_bio: btrfs_io_bio which contains the csum 3335 * @bio_offset: offset to the beginning of the bio (in bytes) 3336 * @page: page where is the data to be verified 3337 * @pgoff: offset inside the page 3338 * @start: logical offset in the file 3339 * 3340 * The length of such check is always one sector size. 3341 */ 3342 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3343 u32 bio_offset, struct page *page, u32 pgoff, 3344 u64 start) 3345 { 3346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3347 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3348 char *kaddr; 3349 u32 len = fs_info->sectorsize; 3350 const u32 csum_size = fs_info->csum_size; 3351 unsigned int offset_sectors; 3352 u8 *csum_expected; 3353 u8 csum[BTRFS_CSUM_SIZE]; 3354 3355 ASSERT(pgoff + len <= PAGE_SIZE); 3356 3357 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3358 csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size; 3359 3360 kaddr = kmap_atomic(page); 3361 shash->tfm = fs_info->csum_shash; 3362 3363 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3364 kunmap_atomic(kaddr); 3365 3366 if (memcmp(csum, csum_expected, csum_size)) 3367 goto zeroit; 3368 3369 return 0; 3370 zeroit: 3371 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3372 bbio->mirror_num); 3373 if (bbio->device) 3374 btrfs_dev_stat_inc_and_print(bbio->device, 3375 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3376 memzero_page(page, pgoff, len); 3377 return -EIO; 3378 } 3379 3380 /* 3381 * When reads are done, we need to check csums to verify the data is correct. 3382 * if there's a match, we allow the bio to finish. If not, the code in 3383 * extent_io.c will try to find good copies for us. 3384 * 3385 * @bio_offset: offset to the beginning of the bio (in bytes) 3386 * @start: file offset of the range start 3387 * @end: file offset of the range end (inclusive) 3388 * 3389 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3390 * csum match. 3391 */ 3392 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3393 u32 bio_offset, struct page *page, 3394 u64 start, u64 end) 3395 { 3396 struct inode *inode = page->mapping->host; 3397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3398 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3399 struct btrfs_root *root = BTRFS_I(inode)->root; 3400 const u32 sectorsize = root->fs_info->sectorsize; 3401 u32 pg_off; 3402 unsigned int result = 0; 3403 3404 if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) { 3405 btrfs_page_clear_checked(fs_info, page, start, end + 1 - start); 3406 return 0; 3407 } 3408 3409 /* 3410 * This only happens for NODATASUM or compressed read. 3411 * Normally this should be covered by above check for compressed read 3412 * or the next check for NODATASUM. Just do a quicker exit here. 3413 */ 3414 if (bbio->csum == NULL) 3415 return 0; 3416 3417 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3418 return 0; 3419 3420 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))) 3421 return 0; 3422 3423 ASSERT(page_offset(page) <= start && 3424 end <= page_offset(page) + PAGE_SIZE - 1); 3425 for (pg_off = offset_in_page(start); 3426 pg_off < offset_in_page(end); 3427 pg_off += sectorsize, bio_offset += sectorsize) { 3428 u64 file_offset = pg_off + page_offset(page); 3429 int ret; 3430 3431 if (btrfs_is_data_reloc_root(root) && 3432 test_range_bit(io_tree, file_offset, 3433 file_offset + sectorsize - 1, 3434 EXTENT_NODATASUM, 1, NULL)) { 3435 /* Skip the range without csum for data reloc inode */ 3436 clear_extent_bits(io_tree, file_offset, 3437 file_offset + sectorsize - 1, 3438 EXTENT_NODATASUM); 3439 continue; 3440 } 3441 ret = check_data_csum(inode, bbio, bio_offset, page, pg_off, 3442 page_offset(page) + pg_off); 3443 if (ret < 0) { 3444 const int nr_bit = (pg_off - offset_in_page(start)) >> 3445 root->fs_info->sectorsize_bits; 3446 3447 result |= (1U << nr_bit); 3448 } 3449 } 3450 return result; 3451 } 3452 3453 /* 3454 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3455 * 3456 * @inode: The inode we want to perform iput on 3457 * 3458 * This function uses the generic vfs_inode::i_count to track whether we should 3459 * just decrement it (in case it's > 1) or if this is the last iput then link 3460 * the inode to the delayed iput machinery. Delayed iputs are processed at 3461 * transaction commit time/superblock commit/cleaner kthread. 3462 */ 3463 void btrfs_add_delayed_iput(struct inode *inode) 3464 { 3465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3466 struct btrfs_inode *binode = BTRFS_I(inode); 3467 3468 if (atomic_add_unless(&inode->i_count, -1, 1)) 3469 return; 3470 3471 atomic_inc(&fs_info->nr_delayed_iputs); 3472 spin_lock(&fs_info->delayed_iput_lock); 3473 ASSERT(list_empty(&binode->delayed_iput)); 3474 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3475 spin_unlock(&fs_info->delayed_iput_lock); 3476 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3477 wake_up_process(fs_info->cleaner_kthread); 3478 } 3479 3480 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3481 struct btrfs_inode *inode) 3482 { 3483 list_del_init(&inode->delayed_iput); 3484 spin_unlock(&fs_info->delayed_iput_lock); 3485 iput(&inode->vfs_inode); 3486 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3487 wake_up(&fs_info->delayed_iputs_wait); 3488 spin_lock(&fs_info->delayed_iput_lock); 3489 } 3490 3491 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3492 struct btrfs_inode *inode) 3493 { 3494 if (!list_empty(&inode->delayed_iput)) { 3495 spin_lock(&fs_info->delayed_iput_lock); 3496 if (!list_empty(&inode->delayed_iput)) 3497 run_delayed_iput_locked(fs_info, inode); 3498 spin_unlock(&fs_info->delayed_iput_lock); 3499 } 3500 } 3501 3502 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3503 { 3504 3505 spin_lock(&fs_info->delayed_iput_lock); 3506 while (!list_empty(&fs_info->delayed_iputs)) { 3507 struct btrfs_inode *inode; 3508 3509 inode = list_first_entry(&fs_info->delayed_iputs, 3510 struct btrfs_inode, delayed_iput); 3511 run_delayed_iput_locked(fs_info, inode); 3512 cond_resched_lock(&fs_info->delayed_iput_lock); 3513 } 3514 spin_unlock(&fs_info->delayed_iput_lock); 3515 } 3516 3517 /** 3518 * Wait for flushing all delayed iputs 3519 * 3520 * @fs_info: the filesystem 3521 * 3522 * This will wait on any delayed iputs that are currently running with KILLABLE 3523 * set. Once they are all done running we will return, unless we are killed in 3524 * which case we return EINTR. This helps in user operations like fallocate etc 3525 * that might get blocked on the iputs. 3526 * 3527 * Return EINTR if we were killed, 0 if nothing's pending 3528 */ 3529 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3530 { 3531 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3532 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3533 if (ret) 3534 return -EINTR; 3535 return 0; 3536 } 3537 3538 /* 3539 * This creates an orphan entry for the given inode in case something goes wrong 3540 * in the middle of an unlink. 3541 */ 3542 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3543 struct btrfs_inode *inode) 3544 { 3545 int ret; 3546 3547 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3548 if (ret && ret != -EEXIST) { 3549 btrfs_abort_transaction(trans, ret); 3550 return ret; 3551 } 3552 3553 return 0; 3554 } 3555 3556 /* 3557 * We have done the delete so we can go ahead and remove the orphan item for 3558 * this particular inode. 3559 */ 3560 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3561 struct btrfs_inode *inode) 3562 { 3563 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3564 } 3565 3566 /* 3567 * this cleans up any orphans that may be left on the list from the last use 3568 * of this root. 3569 */ 3570 int btrfs_orphan_cleanup(struct btrfs_root *root) 3571 { 3572 struct btrfs_fs_info *fs_info = root->fs_info; 3573 struct btrfs_path *path; 3574 struct extent_buffer *leaf; 3575 struct btrfs_key key, found_key; 3576 struct btrfs_trans_handle *trans; 3577 struct inode *inode; 3578 u64 last_objectid = 0; 3579 int ret = 0, nr_unlink = 0; 3580 3581 /* Bail out if the cleanup is already running. */ 3582 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3583 return 0; 3584 3585 path = btrfs_alloc_path(); 3586 if (!path) { 3587 ret = -ENOMEM; 3588 goto out; 3589 } 3590 path->reada = READA_BACK; 3591 3592 key.objectid = BTRFS_ORPHAN_OBJECTID; 3593 key.type = BTRFS_ORPHAN_ITEM_KEY; 3594 key.offset = (u64)-1; 3595 3596 while (1) { 3597 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3598 if (ret < 0) 3599 goto out; 3600 3601 /* 3602 * if ret == 0 means we found what we were searching for, which 3603 * is weird, but possible, so only screw with path if we didn't 3604 * find the key and see if we have stuff that matches 3605 */ 3606 if (ret > 0) { 3607 ret = 0; 3608 if (path->slots[0] == 0) 3609 break; 3610 path->slots[0]--; 3611 } 3612 3613 /* pull out the item */ 3614 leaf = path->nodes[0]; 3615 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3616 3617 /* make sure the item matches what we want */ 3618 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3619 break; 3620 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3621 break; 3622 3623 /* release the path since we're done with it */ 3624 btrfs_release_path(path); 3625 3626 /* 3627 * this is where we are basically btrfs_lookup, without the 3628 * crossing root thing. we store the inode number in the 3629 * offset of the orphan item. 3630 */ 3631 3632 if (found_key.offset == last_objectid) { 3633 btrfs_err(fs_info, 3634 "Error removing orphan entry, stopping orphan cleanup"); 3635 ret = -EINVAL; 3636 goto out; 3637 } 3638 3639 last_objectid = found_key.offset; 3640 3641 found_key.objectid = found_key.offset; 3642 found_key.type = BTRFS_INODE_ITEM_KEY; 3643 found_key.offset = 0; 3644 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3645 ret = PTR_ERR_OR_ZERO(inode); 3646 if (ret && ret != -ENOENT) 3647 goto out; 3648 3649 if (ret == -ENOENT && root == fs_info->tree_root) { 3650 struct btrfs_root *dead_root; 3651 int is_dead_root = 0; 3652 3653 /* 3654 * This is an orphan in the tree root. Currently these 3655 * could come from 2 sources: 3656 * a) a root (snapshot/subvolume) deletion in progress 3657 * b) a free space cache inode 3658 * We need to distinguish those two, as the orphan item 3659 * for a root must not get deleted before the deletion 3660 * of the snapshot/subvolume's tree completes. 3661 * 3662 * btrfs_find_orphan_roots() ran before us, which has 3663 * found all deleted roots and loaded them into 3664 * fs_info->fs_roots. So here we can find if an 3665 * orphan item corresponds to a deleted root by looking 3666 * up the root from that xarray. 3667 */ 3668 3669 spin_lock(&fs_info->fs_roots_lock); 3670 dead_root = xa_load(&fs_info->fs_roots, 3671 (unsigned long)found_key.objectid); 3672 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3673 is_dead_root = 1; 3674 spin_unlock(&fs_info->fs_roots_lock); 3675 3676 if (is_dead_root) { 3677 /* prevent this orphan from being found again */ 3678 key.offset = found_key.objectid - 1; 3679 continue; 3680 } 3681 3682 } 3683 3684 /* 3685 * If we have an inode with links, there are a couple of 3686 * possibilities: 3687 * 3688 * 1. We were halfway through creating fsverity metadata for the 3689 * file. In that case, the orphan item represents incomplete 3690 * fsverity metadata which must be cleaned up with 3691 * btrfs_drop_verity_items and deleting the orphan item. 3692 3693 * 2. Old kernels (before v3.12) used to create an 3694 * orphan item for truncate indicating that there were possibly 3695 * extent items past i_size that needed to be deleted. In v3.12, 3696 * truncate was changed to update i_size in sync with the extent 3697 * items, but the (useless) orphan item was still created. Since 3698 * v4.18, we don't create the orphan item for truncate at all. 3699 * 3700 * So, this item could mean that we need to do a truncate, but 3701 * only if this filesystem was last used on a pre-v3.12 kernel 3702 * and was not cleanly unmounted. The odds of that are quite 3703 * slim, and it's a pain to do the truncate now, so just delete 3704 * the orphan item. 3705 * 3706 * It's also possible that this orphan item was supposed to be 3707 * deleted but wasn't. The inode number may have been reused, 3708 * but either way, we can delete the orphan item. 3709 */ 3710 if (ret == -ENOENT || inode->i_nlink) { 3711 if (!ret) { 3712 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3713 iput(inode); 3714 if (ret) 3715 goto out; 3716 } 3717 trans = btrfs_start_transaction(root, 1); 3718 if (IS_ERR(trans)) { 3719 ret = PTR_ERR(trans); 3720 goto out; 3721 } 3722 btrfs_debug(fs_info, "auto deleting %Lu", 3723 found_key.objectid); 3724 ret = btrfs_del_orphan_item(trans, root, 3725 found_key.objectid); 3726 btrfs_end_transaction(trans); 3727 if (ret) 3728 goto out; 3729 continue; 3730 } 3731 3732 nr_unlink++; 3733 3734 /* this will do delete_inode and everything for us */ 3735 iput(inode); 3736 } 3737 /* release the path since we're done with it */ 3738 btrfs_release_path(path); 3739 3740 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3741 trans = btrfs_join_transaction(root); 3742 if (!IS_ERR(trans)) 3743 btrfs_end_transaction(trans); 3744 } 3745 3746 if (nr_unlink) 3747 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3748 3749 out: 3750 if (ret) 3751 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3752 btrfs_free_path(path); 3753 return ret; 3754 } 3755 3756 /* 3757 * very simple check to peek ahead in the leaf looking for xattrs. If we 3758 * don't find any xattrs, we know there can't be any acls. 3759 * 3760 * slot is the slot the inode is in, objectid is the objectid of the inode 3761 */ 3762 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3763 int slot, u64 objectid, 3764 int *first_xattr_slot) 3765 { 3766 u32 nritems = btrfs_header_nritems(leaf); 3767 struct btrfs_key found_key; 3768 static u64 xattr_access = 0; 3769 static u64 xattr_default = 0; 3770 int scanned = 0; 3771 3772 if (!xattr_access) { 3773 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3774 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3775 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3776 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3777 } 3778 3779 slot++; 3780 *first_xattr_slot = -1; 3781 while (slot < nritems) { 3782 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3783 3784 /* we found a different objectid, there must not be acls */ 3785 if (found_key.objectid != objectid) 3786 return 0; 3787 3788 /* we found an xattr, assume we've got an acl */ 3789 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3790 if (*first_xattr_slot == -1) 3791 *first_xattr_slot = slot; 3792 if (found_key.offset == xattr_access || 3793 found_key.offset == xattr_default) 3794 return 1; 3795 } 3796 3797 /* 3798 * we found a key greater than an xattr key, there can't 3799 * be any acls later on 3800 */ 3801 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3802 return 0; 3803 3804 slot++; 3805 scanned++; 3806 3807 /* 3808 * it goes inode, inode backrefs, xattrs, extents, 3809 * so if there are a ton of hard links to an inode there can 3810 * be a lot of backrefs. Don't waste time searching too hard, 3811 * this is just an optimization 3812 */ 3813 if (scanned >= 8) 3814 break; 3815 } 3816 /* we hit the end of the leaf before we found an xattr or 3817 * something larger than an xattr. We have to assume the inode 3818 * has acls 3819 */ 3820 if (*first_xattr_slot == -1) 3821 *first_xattr_slot = slot; 3822 return 1; 3823 } 3824 3825 /* 3826 * read an inode from the btree into the in-memory inode 3827 */ 3828 static int btrfs_read_locked_inode(struct inode *inode, 3829 struct btrfs_path *in_path) 3830 { 3831 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3832 struct btrfs_path *path = in_path; 3833 struct extent_buffer *leaf; 3834 struct btrfs_inode_item *inode_item; 3835 struct btrfs_root *root = BTRFS_I(inode)->root; 3836 struct btrfs_key location; 3837 unsigned long ptr; 3838 int maybe_acls; 3839 u32 rdev; 3840 int ret; 3841 bool filled = false; 3842 int first_xattr_slot; 3843 3844 ret = btrfs_fill_inode(inode, &rdev); 3845 if (!ret) 3846 filled = true; 3847 3848 if (!path) { 3849 path = btrfs_alloc_path(); 3850 if (!path) 3851 return -ENOMEM; 3852 } 3853 3854 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3855 3856 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3857 if (ret) { 3858 if (path != in_path) 3859 btrfs_free_path(path); 3860 return ret; 3861 } 3862 3863 leaf = path->nodes[0]; 3864 3865 if (filled) 3866 goto cache_index; 3867 3868 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3869 struct btrfs_inode_item); 3870 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3871 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3872 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3873 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3874 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3875 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3876 round_up(i_size_read(inode), fs_info->sectorsize)); 3877 3878 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3879 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3880 3881 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3882 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3883 3884 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3885 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3886 3887 BTRFS_I(inode)->i_otime.tv_sec = 3888 btrfs_timespec_sec(leaf, &inode_item->otime); 3889 BTRFS_I(inode)->i_otime.tv_nsec = 3890 btrfs_timespec_nsec(leaf, &inode_item->otime); 3891 3892 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3893 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3894 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3895 3896 inode_set_iversion_queried(inode, 3897 btrfs_inode_sequence(leaf, inode_item)); 3898 inode->i_generation = BTRFS_I(inode)->generation; 3899 inode->i_rdev = 0; 3900 rdev = btrfs_inode_rdev(leaf, inode_item); 3901 3902 BTRFS_I(inode)->index_cnt = (u64)-1; 3903 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3904 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3905 3906 cache_index: 3907 /* 3908 * If we were modified in the current generation and evicted from memory 3909 * and then re-read we need to do a full sync since we don't have any 3910 * idea about which extents were modified before we were evicted from 3911 * cache. 3912 * 3913 * This is required for both inode re-read from disk and delayed inode 3914 * in the delayed_nodes xarray. 3915 */ 3916 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3917 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3918 &BTRFS_I(inode)->runtime_flags); 3919 3920 /* 3921 * We don't persist the id of the transaction where an unlink operation 3922 * against the inode was last made. So here we assume the inode might 3923 * have been evicted, and therefore the exact value of last_unlink_trans 3924 * lost, and set it to last_trans to avoid metadata inconsistencies 3925 * between the inode and its parent if the inode is fsync'ed and the log 3926 * replayed. For example, in the scenario: 3927 * 3928 * touch mydir/foo 3929 * ln mydir/foo mydir/bar 3930 * sync 3931 * unlink mydir/bar 3932 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3933 * xfs_io -c fsync mydir/foo 3934 * <power failure> 3935 * mount fs, triggers fsync log replay 3936 * 3937 * We must make sure that when we fsync our inode foo we also log its 3938 * parent inode, otherwise after log replay the parent still has the 3939 * dentry with the "bar" name but our inode foo has a link count of 1 3940 * and doesn't have an inode ref with the name "bar" anymore. 3941 * 3942 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3943 * but it guarantees correctness at the expense of occasional full 3944 * transaction commits on fsync if our inode is a directory, or if our 3945 * inode is not a directory, logging its parent unnecessarily. 3946 */ 3947 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3948 3949 /* 3950 * Same logic as for last_unlink_trans. We don't persist the generation 3951 * of the last transaction where this inode was used for a reflink 3952 * operation, so after eviction and reloading the inode we must be 3953 * pessimistic and assume the last transaction that modified the inode. 3954 */ 3955 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3956 3957 path->slots[0]++; 3958 if (inode->i_nlink != 1 || 3959 path->slots[0] >= btrfs_header_nritems(leaf)) 3960 goto cache_acl; 3961 3962 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3963 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3964 goto cache_acl; 3965 3966 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3967 if (location.type == BTRFS_INODE_REF_KEY) { 3968 struct btrfs_inode_ref *ref; 3969 3970 ref = (struct btrfs_inode_ref *)ptr; 3971 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3972 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3973 struct btrfs_inode_extref *extref; 3974 3975 extref = (struct btrfs_inode_extref *)ptr; 3976 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3977 extref); 3978 } 3979 cache_acl: 3980 /* 3981 * try to precache a NULL acl entry for files that don't have 3982 * any xattrs or acls 3983 */ 3984 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3985 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3986 if (first_xattr_slot != -1) { 3987 path->slots[0] = first_xattr_slot; 3988 ret = btrfs_load_inode_props(inode, path); 3989 if (ret) 3990 btrfs_err(fs_info, 3991 "error loading props for ino %llu (root %llu): %d", 3992 btrfs_ino(BTRFS_I(inode)), 3993 root->root_key.objectid, ret); 3994 } 3995 if (path != in_path) 3996 btrfs_free_path(path); 3997 3998 if (!maybe_acls) 3999 cache_no_acl(inode); 4000 4001 switch (inode->i_mode & S_IFMT) { 4002 case S_IFREG: 4003 inode->i_mapping->a_ops = &btrfs_aops; 4004 inode->i_fop = &btrfs_file_operations; 4005 inode->i_op = &btrfs_file_inode_operations; 4006 break; 4007 case S_IFDIR: 4008 inode->i_fop = &btrfs_dir_file_operations; 4009 inode->i_op = &btrfs_dir_inode_operations; 4010 break; 4011 case S_IFLNK: 4012 inode->i_op = &btrfs_symlink_inode_operations; 4013 inode_nohighmem(inode); 4014 inode->i_mapping->a_ops = &btrfs_aops; 4015 break; 4016 default: 4017 inode->i_op = &btrfs_special_inode_operations; 4018 init_special_inode(inode, inode->i_mode, rdev); 4019 break; 4020 } 4021 4022 btrfs_sync_inode_flags_to_i_flags(inode); 4023 return 0; 4024 } 4025 4026 /* 4027 * given a leaf and an inode, copy the inode fields into the leaf 4028 */ 4029 static void fill_inode_item(struct btrfs_trans_handle *trans, 4030 struct extent_buffer *leaf, 4031 struct btrfs_inode_item *item, 4032 struct inode *inode) 4033 { 4034 struct btrfs_map_token token; 4035 u64 flags; 4036 4037 btrfs_init_map_token(&token, leaf); 4038 4039 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4040 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4041 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4042 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4043 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4044 4045 btrfs_set_token_timespec_sec(&token, &item->atime, 4046 inode->i_atime.tv_sec); 4047 btrfs_set_token_timespec_nsec(&token, &item->atime, 4048 inode->i_atime.tv_nsec); 4049 4050 btrfs_set_token_timespec_sec(&token, &item->mtime, 4051 inode->i_mtime.tv_sec); 4052 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4053 inode->i_mtime.tv_nsec); 4054 4055 btrfs_set_token_timespec_sec(&token, &item->ctime, 4056 inode->i_ctime.tv_sec); 4057 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4058 inode->i_ctime.tv_nsec); 4059 4060 btrfs_set_token_timespec_sec(&token, &item->otime, 4061 BTRFS_I(inode)->i_otime.tv_sec); 4062 btrfs_set_token_timespec_nsec(&token, &item->otime, 4063 BTRFS_I(inode)->i_otime.tv_nsec); 4064 4065 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4066 btrfs_set_token_inode_generation(&token, item, 4067 BTRFS_I(inode)->generation); 4068 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4069 btrfs_set_token_inode_transid(&token, item, trans->transid); 4070 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4071 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4072 BTRFS_I(inode)->ro_flags); 4073 btrfs_set_token_inode_flags(&token, item, flags); 4074 btrfs_set_token_inode_block_group(&token, item, 0); 4075 } 4076 4077 /* 4078 * copy everything in the in-memory inode into the btree. 4079 */ 4080 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4081 struct btrfs_root *root, 4082 struct btrfs_inode *inode) 4083 { 4084 struct btrfs_inode_item *inode_item; 4085 struct btrfs_path *path; 4086 struct extent_buffer *leaf; 4087 int ret; 4088 4089 path = btrfs_alloc_path(); 4090 if (!path) 4091 return -ENOMEM; 4092 4093 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 4094 if (ret) { 4095 if (ret > 0) 4096 ret = -ENOENT; 4097 goto failed; 4098 } 4099 4100 leaf = path->nodes[0]; 4101 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4102 struct btrfs_inode_item); 4103 4104 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4105 btrfs_mark_buffer_dirty(leaf); 4106 btrfs_set_inode_last_trans(trans, inode); 4107 ret = 0; 4108 failed: 4109 btrfs_free_path(path); 4110 return ret; 4111 } 4112 4113 /* 4114 * copy everything in the in-memory inode into the btree. 4115 */ 4116 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4117 struct btrfs_root *root, 4118 struct btrfs_inode *inode) 4119 { 4120 struct btrfs_fs_info *fs_info = root->fs_info; 4121 int ret; 4122 4123 /* 4124 * If the inode is a free space inode, we can deadlock during commit 4125 * if we put it into the delayed code. 4126 * 4127 * The data relocation inode should also be directly updated 4128 * without delay 4129 */ 4130 if (!btrfs_is_free_space_inode(inode) 4131 && !btrfs_is_data_reloc_root(root) 4132 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4133 btrfs_update_root_times(trans, root); 4134 4135 ret = btrfs_delayed_update_inode(trans, root, inode); 4136 if (!ret) 4137 btrfs_set_inode_last_trans(trans, inode); 4138 return ret; 4139 } 4140 4141 return btrfs_update_inode_item(trans, root, inode); 4142 } 4143 4144 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4145 struct btrfs_root *root, struct btrfs_inode *inode) 4146 { 4147 int ret; 4148 4149 ret = btrfs_update_inode(trans, root, inode); 4150 if (ret == -ENOSPC) 4151 return btrfs_update_inode_item(trans, root, inode); 4152 return ret; 4153 } 4154 4155 /* 4156 * unlink helper that gets used here in inode.c and in the tree logging 4157 * recovery code. It remove a link in a directory with a given name, and 4158 * also drops the back refs in the inode to the directory 4159 */ 4160 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4161 struct btrfs_inode *dir, 4162 struct btrfs_inode *inode, 4163 const char *name, int name_len, 4164 struct btrfs_rename_ctx *rename_ctx) 4165 { 4166 struct btrfs_root *root = dir->root; 4167 struct btrfs_fs_info *fs_info = root->fs_info; 4168 struct btrfs_path *path; 4169 int ret = 0; 4170 struct btrfs_dir_item *di; 4171 u64 index; 4172 u64 ino = btrfs_ino(inode); 4173 u64 dir_ino = btrfs_ino(dir); 4174 4175 path = btrfs_alloc_path(); 4176 if (!path) { 4177 ret = -ENOMEM; 4178 goto out; 4179 } 4180 4181 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4182 name, name_len, -1); 4183 if (IS_ERR_OR_NULL(di)) { 4184 ret = di ? PTR_ERR(di) : -ENOENT; 4185 goto err; 4186 } 4187 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4188 if (ret) 4189 goto err; 4190 btrfs_release_path(path); 4191 4192 /* 4193 * If we don't have dir index, we have to get it by looking up 4194 * the inode ref, since we get the inode ref, remove it directly, 4195 * it is unnecessary to do delayed deletion. 4196 * 4197 * But if we have dir index, needn't search inode ref to get it. 4198 * Since the inode ref is close to the inode item, it is better 4199 * that we delay to delete it, and just do this deletion when 4200 * we update the inode item. 4201 */ 4202 if (inode->dir_index) { 4203 ret = btrfs_delayed_delete_inode_ref(inode); 4204 if (!ret) { 4205 index = inode->dir_index; 4206 goto skip_backref; 4207 } 4208 } 4209 4210 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4211 dir_ino, &index); 4212 if (ret) { 4213 btrfs_info(fs_info, 4214 "failed to delete reference to %.*s, inode %llu parent %llu", 4215 name_len, name, ino, dir_ino); 4216 btrfs_abort_transaction(trans, ret); 4217 goto err; 4218 } 4219 skip_backref: 4220 if (rename_ctx) 4221 rename_ctx->index = index; 4222 4223 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4224 if (ret) { 4225 btrfs_abort_transaction(trans, ret); 4226 goto err; 4227 } 4228 4229 /* 4230 * If we are in a rename context, we don't need to update anything in the 4231 * log. That will be done later during the rename by btrfs_log_new_name(). 4232 * Besides that, doing it here would only cause extra unncessary btree 4233 * operations on the log tree, increasing latency for applications. 4234 */ 4235 if (!rename_ctx) { 4236 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4237 dir_ino); 4238 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4239 index); 4240 } 4241 4242 /* 4243 * If we have a pending delayed iput we could end up with the final iput 4244 * being run in btrfs-cleaner context. If we have enough of these built 4245 * up we can end up burning a lot of time in btrfs-cleaner without any 4246 * way to throttle the unlinks. Since we're currently holding a ref on 4247 * the inode we can run the delayed iput here without any issues as the 4248 * final iput won't be done until after we drop the ref we're currently 4249 * holding. 4250 */ 4251 btrfs_run_delayed_iput(fs_info, inode); 4252 err: 4253 btrfs_free_path(path); 4254 if (ret) 4255 goto out; 4256 4257 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4258 inode_inc_iversion(&inode->vfs_inode); 4259 inode_inc_iversion(&dir->vfs_inode); 4260 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4261 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4262 ret = btrfs_update_inode(trans, root, dir); 4263 out: 4264 return ret; 4265 } 4266 4267 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4268 struct btrfs_inode *dir, struct btrfs_inode *inode, 4269 const char *name, int name_len) 4270 { 4271 int ret; 4272 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL); 4273 if (!ret) { 4274 drop_nlink(&inode->vfs_inode); 4275 ret = btrfs_update_inode(trans, inode->root, inode); 4276 } 4277 return ret; 4278 } 4279 4280 /* 4281 * helper to start transaction for unlink and rmdir. 4282 * 4283 * unlink and rmdir are special in btrfs, they do not always free space, so 4284 * if we cannot make our reservations the normal way try and see if there is 4285 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4286 * allow the unlink to occur. 4287 */ 4288 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4289 { 4290 struct btrfs_root *root = BTRFS_I(dir)->root; 4291 4292 /* 4293 * 1 for the possible orphan item 4294 * 1 for the dir item 4295 * 1 for the dir index 4296 * 1 for the inode ref 4297 * 1 for the inode 4298 * 1 for the parent inode 4299 */ 4300 return btrfs_start_transaction_fallback_global_rsv(root, 6); 4301 } 4302 4303 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4304 { 4305 struct btrfs_trans_handle *trans; 4306 struct inode *inode = d_inode(dentry); 4307 int ret; 4308 4309 trans = __unlink_start_trans(dir); 4310 if (IS_ERR(trans)) 4311 return PTR_ERR(trans); 4312 4313 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4314 0); 4315 4316 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 4317 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4318 dentry->d_name.len); 4319 if (ret) 4320 goto out; 4321 4322 if (inode->i_nlink == 0) { 4323 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4324 if (ret) 4325 goto out; 4326 } 4327 4328 out: 4329 btrfs_end_transaction(trans); 4330 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4331 return ret; 4332 } 4333 4334 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4335 struct inode *dir, struct dentry *dentry) 4336 { 4337 struct btrfs_root *root = BTRFS_I(dir)->root; 4338 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4339 struct btrfs_path *path; 4340 struct extent_buffer *leaf; 4341 struct btrfs_dir_item *di; 4342 struct btrfs_key key; 4343 const char *name = dentry->d_name.name; 4344 int name_len = dentry->d_name.len; 4345 u64 index; 4346 int ret; 4347 u64 objectid; 4348 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4349 4350 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4351 objectid = inode->root->root_key.objectid; 4352 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4353 objectid = inode->location.objectid; 4354 } else { 4355 WARN_ON(1); 4356 return -EINVAL; 4357 } 4358 4359 path = btrfs_alloc_path(); 4360 if (!path) 4361 return -ENOMEM; 4362 4363 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4364 name, name_len, -1); 4365 if (IS_ERR_OR_NULL(di)) { 4366 ret = di ? PTR_ERR(di) : -ENOENT; 4367 goto out; 4368 } 4369 4370 leaf = path->nodes[0]; 4371 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4372 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4373 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4374 if (ret) { 4375 btrfs_abort_transaction(trans, ret); 4376 goto out; 4377 } 4378 btrfs_release_path(path); 4379 4380 /* 4381 * This is a placeholder inode for a subvolume we didn't have a 4382 * reference to at the time of the snapshot creation. In the meantime 4383 * we could have renamed the real subvol link into our snapshot, so 4384 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4385 * Instead simply lookup the dir_index_item for this entry so we can 4386 * remove it. Otherwise we know we have a ref to the root and we can 4387 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4388 */ 4389 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4390 di = btrfs_search_dir_index_item(root, path, dir_ino, 4391 name, name_len); 4392 if (IS_ERR_OR_NULL(di)) { 4393 if (!di) 4394 ret = -ENOENT; 4395 else 4396 ret = PTR_ERR(di); 4397 btrfs_abort_transaction(trans, ret); 4398 goto out; 4399 } 4400 4401 leaf = path->nodes[0]; 4402 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4403 index = key.offset; 4404 btrfs_release_path(path); 4405 } else { 4406 ret = btrfs_del_root_ref(trans, objectid, 4407 root->root_key.objectid, dir_ino, 4408 &index, name, name_len); 4409 if (ret) { 4410 btrfs_abort_transaction(trans, ret); 4411 goto out; 4412 } 4413 } 4414 4415 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4416 if (ret) { 4417 btrfs_abort_transaction(trans, ret); 4418 goto out; 4419 } 4420 4421 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4422 inode_inc_iversion(dir); 4423 dir->i_mtime = dir->i_ctime = current_time(dir); 4424 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4425 if (ret) 4426 btrfs_abort_transaction(trans, ret); 4427 out: 4428 btrfs_free_path(path); 4429 return ret; 4430 } 4431 4432 /* 4433 * Helper to check if the subvolume references other subvolumes or if it's 4434 * default. 4435 */ 4436 static noinline int may_destroy_subvol(struct btrfs_root *root) 4437 { 4438 struct btrfs_fs_info *fs_info = root->fs_info; 4439 struct btrfs_path *path; 4440 struct btrfs_dir_item *di; 4441 struct btrfs_key key; 4442 u64 dir_id; 4443 int ret; 4444 4445 path = btrfs_alloc_path(); 4446 if (!path) 4447 return -ENOMEM; 4448 4449 /* Make sure this root isn't set as the default subvol */ 4450 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4451 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4452 dir_id, "default", 7, 0); 4453 if (di && !IS_ERR(di)) { 4454 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4455 if (key.objectid == root->root_key.objectid) { 4456 ret = -EPERM; 4457 btrfs_err(fs_info, 4458 "deleting default subvolume %llu is not allowed", 4459 key.objectid); 4460 goto out; 4461 } 4462 btrfs_release_path(path); 4463 } 4464 4465 key.objectid = root->root_key.objectid; 4466 key.type = BTRFS_ROOT_REF_KEY; 4467 key.offset = (u64)-1; 4468 4469 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4470 if (ret < 0) 4471 goto out; 4472 BUG_ON(ret == 0); 4473 4474 ret = 0; 4475 if (path->slots[0] > 0) { 4476 path->slots[0]--; 4477 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4478 if (key.objectid == root->root_key.objectid && 4479 key.type == BTRFS_ROOT_REF_KEY) 4480 ret = -ENOTEMPTY; 4481 } 4482 out: 4483 btrfs_free_path(path); 4484 return ret; 4485 } 4486 4487 /* Delete all dentries for inodes belonging to the root */ 4488 static void btrfs_prune_dentries(struct btrfs_root *root) 4489 { 4490 struct btrfs_fs_info *fs_info = root->fs_info; 4491 struct rb_node *node; 4492 struct rb_node *prev; 4493 struct btrfs_inode *entry; 4494 struct inode *inode; 4495 u64 objectid = 0; 4496 4497 if (!BTRFS_FS_ERROR(fs_info)) 4498 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4499 4500 spin_lock(&root->inode_lock); 4501 again: 4502 node = root->inode_tree.rb_node; 4503 prev = NULL; 4504 while (node) { 4505 prev = node; 4506 entry = rb_entry(node, struct btrfs_inode, rb_node); 4507 4508 if (objectid < btrfs_ino(entry)) 4509 node = node->rb_left; 4510 else if (objectid > btrfs_ino(entry)) 4511 node = node->rb_right; 4512 else 4513 break; 4514 } 4515 if (!node) { 4516 while (prev) { 4517 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4518 if (objectid <= btrfs_ino(entry)) { 4519 node = prev; 4520 break; 4521 } 4522 prev = rb_next(prev); 4523 } 4524 } 4525 while (node) { 4526 entry = rb_entry(node, struct btrfs_inode, rb_node); 4527 objectid = btrfs_ino(entry) + 1; 4528 inode = igrab(&entry->vfs_inode); 4529 if (inode) { 4530 spin_unlock(&root->inode_lock); 4531 if (atomic_read(&inode->i_count) > 1) 4532 d_prune_aliases(inode); 4533 /* 4534 * btrfs_drop_inode will have it removed from the inode 4535 * cache when its usage count hits zero. 4536 */ 4537 iput(inode); 4538 cond_resched(); 4539 spin_lock(&root->inode_lock); 4540 goto again; 4541 } 4542 4543 if (cond_resched_lock(&root->inode_lock)) 4544 goto again; 4545 4546 node = rb_next(node); 4547 } 4548 spin_unlock(&root->inode_lock); 4549 } 4550 4551 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4552 { 4553 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4554 struct btrfs_root *root = BTRFS_I(dir)->root; 4555 struct inode *inode = d_inode(dentry); 4556 struct btrfs_root *dest = BTRFS_I(inode)->root; 4557 struct btrfs_trans_handle *trans; 4558 struct btrfs_block_rsv block_rsv; 4559 u64 root_flags; 4560 int ret; 4561 4562 /* 4563 * Don't allow to delete a subvolume with send in progress. This is 4564 * inside the inode lock so the error handling that has to drop the bit 4565 * again is not run concurrently. 4566 */ 4567 spin_lock(&dest->root_item_lock); 4568 if (dest->send_in_progress) { 4569 spin_unlock(&dest->root_item_lock); 4570 btrfs_warn(fs_info, 4571 "attempt to delete subvolume %llu during send", 4572 dest->root_key.objectid); 4573 return -EPERM; 4574 } 4575 if (atomic_read(&dest->nr_swapfiles)) { 4576 spin_unlock(&dest->root_item_lock); 4577 btrfs_warn(fs_info, 4578 "attempt to delete subvolume %llu with active swapfile", 4579 root->root_key.objectid); 4580 return -EPERM; 4581 } 4582 root_flags = btrfs_root_flags(&dest->root_item); 4583 btrfs_set_root_flags(&dest->root_item, 4584 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4585 spin_unlock(&dest->root_item_lock); 4586 4587 down_write(&fs_info->subvol_sem); 4588 4589 ret = may_destroy_subvol(dest); 4590 if (ret) 4591 goto out_up_write; 4592 4593 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4594 /* 4595 * One for dir inode, 4596 * two for dir entries, 4597 * two for root ref/backref. 4598 */ 4599 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4600 if (ret) 4601 goto out_up_write; 4602 4603 trans = btrfs_start_transaction(root, 0); 4604 if (IS_ERR(trans)) { 4605 ret = PTR_ERR(trans); 4606 goto out_release; 4607 } 4608 trans->block_rsv = &block_rsv; 4609 trans->bytes_reserved = block_rsv.size; 4610 4611 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4612 4613 ret = btrfs_unlink_subvol(trans, dir, dentry); 4614 if (ret) { 4615 btrfs_abort_transaction(trans, ret); 4616 goto out_end_trans; 4617 } 4618 4619 ret = btrfs_record_root_in_trans(trans, dest); 4620 if (ret) { 4621 btrfs_abort_transaction(trans, ret); 4622 goto out_end_trans; 4623 } 4624 4625 memset(&dest->root_item.drop_progress, 0, 4626 sizeof(dest->root_item.drop_progress)); 4627 btrfs_set_root_drop_level(&dest->root_item, 0); 4628 btrfs_set_root_refs(&dest->root_item, 0); 4629 4630 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4631 ret = btrfs_insert_orphan_item(trans, 4632 fs_info->tree_root, 4633 dest->root_key.objectid); 4634 if (ret) { 4635 btrfs_abort_transaction(trans, ret); 4636 goto out_end_trans; 4637 } 4638 } 4639 4640 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4641 BTRFS_UUID_KEY_SUBVOL, 4642 dest->root_key.objectid); 4643 if (ret && ret != -ENOENT) { 4644 btrfs_abort_transaction(trans, ret); 4645 goto out_end_trans; 4646 } 4647 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4648 ret = btrfs_uuid_tree_remove(trans, 4649 dest->root_item.received_uuid, 4650 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4651 dest->root_key.objectid); 4652 if (ret && ret != -ENOENT) { 4653 btrfs_abort_transaction(trans, ret); 4654 goto out_end_trans; 4655 } 4656 } 4657 4658 free_anon_bdev(dest->anon_dev); 4659 dest->anon_dev = 0; 4660 out_end_trans: 4661 trans->block_rsv = NULL; 4662 trans->bytes_reserved = 0; 4663 ret = btrfs_end_transaction(trans); 4664 inode->i_flags |= S_DEAD; 4665 out_release: 4666 btrfs_subvolume_release_metadata(root, &block_rsv); 4667 out_up_write: 4668 up_write(&fs_info->subvol_sem); 4669 if (ret) { 4670 spin_lock(&dest->root_item_lock); 4671 root_flags = btrfs_root_flags(&dest->root_item); 4672 btrfs_set_root_flags(&dest->root_item, 4673 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4674 spin_unlock(&dest->root_item_lock); 4675 } else { 4676 d_invalidate(dentry); 4677 btrfs_prune_dentries(dest); 4678 ASSERT(dest->send_in_progress == 0); 4679 } 4680 4681 return ret; 4682 } 4683 4684 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4685 { 4686 struct inode *inode = d_inode(dentry); 4687 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4688 int err = 0; 4689 struct btrfs_trans_handle *trans; 4690 u64 last_unlink_trans; 4691 4692 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4693 return -ENOTEMPTY; 4694 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4695 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4696 btrfs_err(fs_info, 4697 "extent tree v2 doesn't support snapshot deletion yet"); 4698 return -EOPNOTSUPP; 4699 } 4700 return btrfs_delete_subvolume(dir, dentry); 4701 } 4702 4703 trans = __unlink_start_trans(dir); 4704 if (IS_ERR(trans)) 4705 return PTR_ERR(trans); 4706 4707 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4708 err = btrfs_unlink_subvol(trans, dir, dentry); 4709 goto out; 4710 } 4711 4712 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4713 if (err) 4714 goto out; 4715 4716 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4717 4718 /* now the directory is empty */ 4719 err = btrfs_unlink_inode(trans, BTRFS_I(dir), 4720 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4721 dentry->d_name.len); 4722 if (!err) { 4723 btrfs_i_size_write(BTRFS_I(inode), 0); 4724 /* 4725 * Propagate the last_unlink_trans value of the deleted dir to 4726 * its parent directory. This is to prevent an unrecoverable 4727 * log tree in the case we do something like this: 4728 * 1) create dir foo 4729 * 2) create snapshot under dir foo 4730 * 3) delete the snapshot 4731 * 4) rmdir foo 4732 * 5) mkdir foo 4733 * 6) fsync foo or some file inside foo 4734 */ 4735 if (last_unlink_trans >= trans->transid) 4736 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4737 } 4738 out: 4739 btrfs_end_transaction(trans); 4740 btrfs_btree_balance_dirty(fs_info); 4741 4742 return err; 4743 } 4744 4745 /* 4746 * btrfs_truncate_block - read, zero a chunk and write a block 4747 * @inode - inode that we're zeroing 4748 * @from - the offset to start zeroing 4749 * @len - the length to zero, 0 to zero the entire range respective to the 4750 * offset 4751 * @front - zero up to the offset instead of from the offset on 4752 * 4753 * This will find the block for the "from" offset and cow the block and zero the 4754 * part we want to zero. This is used with truncate and hole punching. 4755 */ 4756 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4757 int front) 4758 { 4759 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4760 struct address_space *mapping = inode->vfs_inode.i_mapping; 4761 struct extent_io_tree *io_tree = &inode->io_tree; 4762 struct btrfs_ordered_extent *ordered; 4763 struct extent_state *cached_state = NULL; 4764 struct extent_changeset *data_reserved = NULL; 4765 bool only_release_metadata = false; 4766 u32 blocksize = fs_info->sectorsize; 4767 pgoff_t index = from >> PAGE_SHIFT; 4768 unsigned offset = from & (blocksize - 1); 4769 struct page *page; 4770 gfp_t mask = btrfs_alloc_write_mask(mapping); 4771 size_t write_bytes = blocksize; 4772 int ret = 0; 4773 u64 block_start; 4774 u64 block_end; 4775 4776 if (IS_ALIGNED(offset, blocksize) && 4777 (!len || IS_ALIGNED(len, blocksize))) 4778 goto out; 4779 4780 block_start = round_down(from, blocksize); 4781 block_end = block_start + blocksize - 1; 4782 4783 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4784 blocksize); 4785 if (ret < 0) { 4786 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4787 /* For nocow case, no need to reserve data space */ 4788 only_release_metadata = true; 4789 } else { 4790 goto out; 4791 } 4792 } 4793 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4794 if (ret < 0) { 4795 if (!only_release_metadata) 4796 btrfs_free_reserved_data_space(inode, data_reserved, 4797 block_start, blocksize); 4798 goto out; 4799 } 4800 again: 4801 page = find_or_create_page(mapping, index, mask); 4802 if (!page) { 4803 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4804 blocksize, true); 4805 btrfs_delalloc_release_extents(inode, blocksize); 4806 ret = -ENOMEM; 4807 goto out; 4808 } 4809 ret = set_page_extent_mapped(page); 4810 if (ret < 0) 4811 goto out_unlock; 4812 4813 if (!PageUptodate(page)) { 4814 ret = btrfs_read_folio(NULL, page_folio(page)); 4815 lock_page(page); 4816 if (page->mapping != mapping) { 4817 unlock_page(page); 4818 put_page(page); 4819 goto again; 4820 } 4821 if (!PageUptodate(page)) { 4822 ret = -EIO; 4823 goto out_unlock; 4824 } 4825 } 4826 wait_on_page_writeback(page); 4827 4828 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4829 4830 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4831 if (ordered) { 4832 unlock_extent_cached(io_tree, block_start, block_end, 4833 &cached_state); 4834 unlock_page(page); 4835 put_page(page); 4836 btrfs_start_ordered_extent(ordered, 1); 4837 btrfs_put_ordered_extent(ordered); 4838 goto again; 4839 } 4840 4841 clear_extent_bit(&inode->io_tree, block_start, block_end, 4842 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4843 0, 0, &cached_state); 4844 4845 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4846 &cached_state); 4847 if (ret) { 4848 unlock_extent_cached(io_tree, block_start, block_end, 4849 &cached_state); 4850 goto out_unlock; 4851 } 4852 4853 if (offset != blocksize) { 4854 if (!len) 4855 len = blocksize - offset; 4856 if (front) 4857 memzero_page(page, (block_start - page_offset(page)), 4858 offset); 4859 else 4860 memzero_page(page, (block_start - page_offset(page)) + offset, 4861 len); 4862 flush_dcache_page(page); 4863 } 4864 btrfs_page_clear_checked(fs_info, page, block_start, 4865 block_end + 1 - block_start); 4866 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4867 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4868 4869 if (only_release_metadata) 4870 set_extent_bit(&inode->io_tree, block_start, block_end, 4871 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4872 4873 out_unlock: 4874 if (ret) { 4875 if (only_release_metadata) 4876 btrfs_delalloc_release_metadata(inode, blocksize, true); 4877 else 4878 btrfs_delalloc_release_space(inode, data_reserved, 4879 block_start, blocksize, true); 4880 } 4881 btrfs_delalloc_release_extents(inode, blocksize); 4882 unlock_page(page); 4883 put_page(page); 4884 out: 4885 if (only_release_metadata) 4886 btrfs_check_nocow_unlock(inode); 4887 extent_changeset_free(data_reserved); 4888 return ret; 4889 } 4890 4891 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4892 u64 offset, u64 len) 4893 { 4894 struct btrfs_fs_info *fs_info = root->fs_info; 4895 struct btrfs_trans_handle *trans; 4896 struct btrfs_drop_extents_args drop_args = { 0 }; 4897 int ret; 4898 4899 /* 4900 * If NO_HOLES is enabled, we don't need to do anything. 4901 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4902 * or btrfs_update_inode() will be called, which guarantee that the next 4903 * fsync will know this inode was changed and needs to be logged. 4904 */ 4905 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4906 return 0; 4907 4908 /* 4909 * 1 - for the one we're dropping 4910 * 1 - for the one we're adding 4911 * 1 - for updating the inode. 4912 */ 4913 trans = btrfs_start_transaction(root, 3); 4914 if (IS_ERR(trans)) 4915 return PTR_ERR(trans); 4916 4917 drop_args.start = offset; 4918 drop_args.end = offset + len; 4919 drop_args.drop_cache = true; 4920 4921 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4922 if (ret) { 4923 btrfs_abort_transaction(trans, ret); 4924 btrfs_end_transaction(trans); 4925 return ret; 4926 } 4927 4928 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 4929 offset, 0, 0, len, 0, len, 0, 0, 0); 4930 if (ret) { 4931 btrfs_abort_transaction(trans, ret); 4932 } else { 4933 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4934 btrfs_update_inode(trans, root, inode); 4935 } 4936 btrfs_end_transaction(trans); 4937 return ret; 4938 } 4939 4940 /* 4941 * This function puts in dummy file extents for the area we're creating a hole 4942 * for. So if we are truncating this file to a larger size we need to insert 4943 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4944 * the range between oldsize and size 4945 */ 4946 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4947 { 4948 struct btrfs_root *root = inode->root; 4949 struct btrfs_fs_info *fs_info = root->fs_info; 4950 struct extent_io_tree *io_tree = &inode->io_tree; 4951 struct extent_map *em = NULL; 4952 struct extent_state *cached_state = NULL; 4953 struct extent_map_tree *em_tree = &inode->extent_tree; 4954 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4955 u64 block_end = ALIGN(size, fs_info->sectorsize); 4956 u64 last_byte; 4957 u64 cur_offset; 4958 u64 hole_size; 4959 int err = 0; 4960 4961 /* 4962 * If our size started in the middle of a block we need to zero out the 4963 * rest of the block before we expand the i_size, otherwise we could 4964 * expose stale data. 4965 */ 4966 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4967 if (err) 4968 return err; 4969 4970 if (size <= hole_start) 4971 return 0; 4972 4973 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4974 &cached_state); 4975 cur_offset = hole_start; 4976 while (1) { 4977 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4978 block_end - cur_offset); 4979 if (IS_ERR(em)) { 4980 err = PTR_ERR(em); 4981 em = NULL; 4982 break; 4983 } 4984 last_byte = min(extent_map_end(em), block_end); 4985 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4986 hole_size = last_byte - cur_offset; 4987 4988 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4989 struct extent_map *hole_em; 4990 4991 err = maybe_insert_hole(root, inode, cur_offset, 4992 hole_size); 4993 if (err) 4994 break; 4995 4996 err = btrfs_inode_set_file_extent_range(inode, 4997 cur_offset, hole_size); 4998 if (err) 4999 break; 5000 5001 btrfs_drop_extent_cache(inode, cur_offset, 5002 cur_offset + hole_size - 1, 0); 5003 hole_em = alloc_extent_map(); 5004 if (!hole_em) { 5005 btrfs_set_inode_full_sync(inode); 5006 goto next; 5007 } 5008 hole_em->start = cur_offset; 5009 hole_em->len = hole_size; 5010 hole_em->orig_start = cur_offset; 5011 5012 hole_em->block_start = EXTENT_MAP_HOLE; 5013 hole_em->block_len = 0; 5014 hole_em->orig_block_len = 0; 5015 hole_em->ram_bytes = hole_size; 5016 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5017 hole_em->generation = fs_info->generation; 5018 5019 while (1) { 5020 write_lock(&em_tree->lock); 5021 err = add_extent_mapping(em_tree, hole_em, 1); 5022 write_unlock(&em_tree->lock); 5023 if (err != -EEXIST) 5024 break; 5025 btrfs_drop_extent_cache(inode, cur_offset, 5026 cur_offset + 5027 hole_size - 1, 0); 5028 } 5029 free_extent_map(hole_em); 5030 } else { 5031 err = btrfs_inode_set_file_extent_range(inode, 5032 cur_offset, hole_size); 5033 if (err) 5034 break; 5035 } 5036 next: 5037 free_extent_map(em); 5038 em = NULL; 5039 cur_offset = last_byte; 5040 if (cur_offset >= block_end) 5041 break; 5042 } 5043 free_extent_map(em); 5044 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5045 return err; 5046 } 5047 5048 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5049 { 5050 struct btrfs_root *root = BTRFS_I(inode)->root; 5051 struct btrfs_trans_handle *trans; 5052 loff_t oldsize = i_size_read(inode); 5053 loff_t newsize = attr->ia_size; 5054 int mask = attr->ia_valid; 5055 int ret; 5056 5057 /* 5058 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5059 * special case where we need to update the times despite not having 5060 * these flags set. For all other operations the VFS set these flags 5061 * explicitly if it wants a timestamp update. 5062 */ 5063 if (newsize != oldsize) { 5064 inode_inc_iversion(inode); 5065 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5066 inode->i_ctime = inode->i_mtime = 5067 current_time(inode); 5068 } 5069 5070 if (newsize > oldsize) { 5071 /* 5072 * Don't do an expanding truncate while snapshotting is ongoing. 5073 * This is to ensure the snapshot captures a fully consistent 5074 * state of this file - if the snapshot captures this expanding 5075 * truncation, it must capture all writes that happened before 5076 * this truncation. 5077 */ 5078 btrfs_drew_write_lock(&root->snapshot_lock); 5079 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5080 if (ret) { 5081 btrfs_drew_write_unlock(&root->snapshot_lock); 5082 return ret; 5083 } 5084 5085 trans = btrfs_start_transaction(root, 1); 5086 if (IS_ERR(trans)) { 5087 btrfs_drew_write_unlock(&root->snapshot_lock); 5088 return PTR_ERR(trans); 5089 } 5090 5091 i_size_write(inode, newsize); 5092 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5093 pagecache_isize_extended(inode, oldsize, newsize); 5094 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5095 btrfs_drew_write_unlock(&root->snapshot_lock); 5096 btrfs_end_transaction(trans); 5097 } else { 5098 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5099 5100 if (btrfs_is_zoned(fs_info)) { 5101 ret = btrfs_wait_ordered_range(inode, 5102 ALIGN(newsize, fs_info->sectorsize), 5103 (u64)-1); 5104 if (ret) 5105 return ret; 5106 } 5107 5108 /* 5109 * We're truncating a file that used to have good data down to 5110 * zero. Make sure any new writes to the file get on disk 5111 * on close. 5112 */ 5113 if (newsize == 0) 5114 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5115 &BTRFS_I(inode)->runtime_flags); 5116 5117 truncate_setsize(inode, newsize); 5118 5119 inode_dio_wait(inode); 5120 5121 ret = btrfs_truncate(inode, newsize == oldsize); 5122 if (ret && inode->i_nlink) { 5123 int err; 5124 5125 /* 5126 * Truncate failed, so fix up the in-memory size. We 5127 * adjusted disk_i_size down as we removed extents, so 5128 * wait for disk_i_size to be stable and then update the 5129 * in-memory size to match. 5130 */ 5131 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5132 if (err) 5133 return err; 5134 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5135 } 5136 } 5137 5138 return ret; 5139 } 5140 5141 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5142 struct iattr *attr) 5143 { 5144 struct inode *inode = d_inode(dentry); 5145 struct btrfs_root *root = BTRFS_I(inode)->root; 5146 int err; 5147 5148 if (btrfs_root_readonly(root)) 5149 return -EROFS; 5150 5151 err = setattr_prepare(mnt_userns, dentry, attr); 5152 if (err) 5153 return err; 5154 5155 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5156 err = btrfs_setsize(inode, attr); 5157 if (err) 5158 return err; 5159 } 5160 5161 if (attr->ia_valid) { 5162 setattr_copy(mnt_userns, inode, attr); 5163 inode_inc_iversion(inode); 5164 err = btrfs_dirty_inode(inode); 5165 5166 if (!err && attr->ia_valid & ATTR_MODE) 5167 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5168 } 5169 5170 return err; 5171 } 5172 5173 /* 5174 * While truncating the inode pages during eviction, we get the VFS 5175 * calling btrfs_invalidate_folio() against each folio of the inode. This 5176 * is slow because the calls to btrfs_invalidate_folio() result in a 5177 * huge amount of calls to lock_extent_bits() and clear_extent_bit(), 5178 * which keep merging and splitting extent_state structures over and over, 5179 * wasting lots of time. 5180 * 5181 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5182 * skip all those expensive operations on a per folio basis and do only 5183 * the ordered io finishing, while we release here the extent_map and 5184 * extent_state structures, without the excessive merging and splitting. 5185 */ 5186 static void evict_inode_truncate_pages(struct inode *inode) 5187 { 5188 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5189 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5190 struct rb_node *node; 5191 5192 ASSERT(inode->i_state & I_FREEING); 5193 truncate_inode_pages_final(&inode->i_data); 5194 5195 write_lock(&map_tree->lock); 5196 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5197 struct extent_map *em; 5198 5199 node = rb_first_cached(&map_tree->map); 5200 em = rb_entry(node, struct extent_map, rb_node); 5201 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5202 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5203 remove_extent_mapping(map_tree, em); 5204 free_extent_map(em); 5205 if (need_resched()) { 5206 write_unlock(&map_tree->lock); 5207 cond_resched(); 5208 write_lock(&map_tree->lock); 5209 } 5210 } 5211 write_unlock(&map_tree->lock); 5212 5213 /* 5214 * Keep looping until we have no more ranges in the io tree. 5215 * We can have ongoing bios started by readahead that have 5216 * their endio callback (extent_io.c:end_bio_extent_readpage) 5217 * still in progress (unlocked the pages in the bio but did not yet 5218 * unlocked the ranges in the io tree). Therefore this means some 5219 * ranges can still be locked and eviction started because before 5220 * submitting those bios, which are executed by a separate task (work 5221 * queue kthread), inode references (inode->i_count) were not taken 5222 * (which would be dropped in the end io callback of each bio). 5223 * Therefore here we effectively end up waiting for those bios and 5224 * anyone else holding locked ranges without having bumped the inode's 5225 * reference count - if we don't do it, when they access the inode's 5226 * io_tree to unlock a range it may be too late, leading to an 5227 * use-after-free issue. 5228 */ 5229 spin_lock(&io_tree->lock); 5230 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5231 struct extent_state *state; 5232 struct extent_state *cached_state = NULL; 5233 u64 start; 5234 u64 end; 5235 unsigned state_flags; 5236 5237 node = rb_first(&io_tree->state); 5238 state = rb_entry(node, struct extent_state, rb_node); 5239 start = state->start; 5240 end = state->end; 5241 state_flags = state->state; 5242 spin_unlock(&io_tree->lock); 5243 5244 lock_extent_bits(io_tree, start, end, &cached_state); 5245 5246 /* 5247 * If still has DELALLOC flag, the extent didn't reach disk, 5248 * and its reserved space won't be freed by delayed_ref. 5249 * So we need to free its reserved space here. 5250 * (Refer to comment in btrfs_invalidate_folio, case 2) 5251 * 5252 * Note, end is the bytenr of last byte, so we need + 1 here. 5253 */ 5254 if (state_flags & EXTENT_DELALLOC) 5255 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5256 end - start + 1); 5257 5258 clear_extent_bit(io_tree, start, end, 5259 EXTENT_LOCKED | EXTENT_DELALLOC | 5260 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5261 &cached_state); 5262 5263 cond_resched(); 5264 spin_lock(&io_tree->lock); 5265 } 5266 spin_unlock(&io_tree->lock); 5267 } 5268 5269 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5270 struct btrfs_block_rsv *rsv) 5271 { 5272 struct btrfs_fs_info *fs_info = root->fs_info; 5273 struct btrfs_trans_handle *trans; 5274 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5275 int ret; 5276 5277 /* 5278 * Eviction should be taking place at some place safe because of our 5279 * delayed iputs. However the normal flushing code will run delayed 5280 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5281 * 5282 * We reserve the delayed_refs_extra here again because we can't use 5283 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5284 * above. We reserve our extra bit here because we generate a ton of 5285 * delayed refs activity by truncating. 5286 * 5287 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5288 * if we fail to make this reservation we can re-try without the 5289 * delayed_refs_extra so we can make some forward progress. 5290 */ 5291 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5292 BTRFS_RESERVE_FLUSH_EVICT); 5293 if (ret) { 5294 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5295 BTRFS_RESERVE_FLUSH_EVICT); 5296 if (ret) { 5297 btrfs_warn(fs_info, 5298 "could not allocate space for delete; will truncate on mount"); 5299 return ERR_PTR(-ENOSPC); 5300 } 5301 delayed_refs_extra = 0; 5302 } 5303 5304 trans = btrfs_join_transaction(root); 5305 if (IS_ERR(trans)) 5306 return trans; 5307 5308 if (delayed_refs_extra) { 5309 trans->block_rsv = &fs_info->trans_block_rsv; 5310 trans->bytes_reserved = delayed_refs_extra; 5311 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5312 delayed_refs_extra, 1); 5313 } 5314 return trans; 5315 } 5316 5317 void btrfs_evict_inode(struct inode *inode) 5318 { 5319 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5320 struct btrfs_trans_handle *trans; 5321 struct btrfs_root *root = BTRFS_I(inode)->root; 5322 struct btrfs_block_rsv *rsv; 5323 int ret; 5324 5325 trace_btrfs_inode_evict(inode); 5326 5327 if (!root) { 5328 fsverity_cleanup_inode(inode); 5329 clear_inode(inode); 5330 return; 5331 } 5332 5333 evict_inode_truncate_pages(inode); 5334 5335 if (inode->i_nlink && 5336 ((btrfs_root_refs(&root->root_item) != 0 && 5337 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5338 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5339 goto no_delete; 5340 5341 if (is_bad_inode(inode)) 5342 goto no_delete; 5343 5344 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5345 5346 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5347 goto no_delete; 5348 5349 if (inode->i_nlink > 0) { 5350 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5351 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5352 goto no_delete; 5353 } 5354 5355 /* 5356 * This makes sure the inode item in tree is uptodate and the space for 5357 * the inode update is released. 5358 */ 5359 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5360 if (ret) 5361 goto no_delete; 5362 5363 /* 5364 * This drops any pending insert or delete operations we have for this 5365 * inode. We could have a delayed dir index deletion queued up, but 5366 * we're removing the inode completely so that'll be taken care of in 5367 * the truncate. 5368 */ 5369 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5370 5371 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5372 if (!rsv) 5373 goto no_delete; 5374 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5375 rsv->failfast = 1; 5376 5377 btrfs_i_size_write(BTRFS_I(inode), 0); 5378 5379 while (1) { 5380 struct btrfs_truncate_control control = { 5381 .inode = BTRFS_I(inode), 5382 .ino = btrfs_ino(BTRFS_I(inode)), 5383 .new_size = 0, 5384 .min_type = 0, 5385 }; 5386 5387 trans = evict_refill_and_join(root, rsv); 5388 if (IS_ERR(trans)) 5389 goto free_rsv; 5390 5391 trans->block_rsv = rsv; 5392 5393 ret = btrfs_truncate_inode_items(trans, root, &control); 5394 trans->block_rsv = &fs_info->trans_block_rsv; 5395 btrfs_end_transaction(trans); 5396 btrfs_btree_balance_dirty(fs_info); 5397 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5398 goto free_rsv; 5399 else if (!ret) 5400 break; 5401 } 5402 5403 /* 5404 * Errors here aren't a big deal, it just means we leave orphan items in 5405 * the tree. They will be cleaned up on the next mount. If the inode 5406 * number gets reused, cleanup deletes the orphan item without doing 5407 * anything, and unlink reuses the existing orphan item. 5408 * 5409 * If it turns out that we are dropping too many of these, we might want 5410 * to add a mechanism for retrying these after a commit. 5411 */ 5412 trans = evict_refill_and_join(root, rsv); 5413 if (!IS_ERR(trans)) { 5414 trans->block_rsv = rsv; 5415 btrfs_orphan_del(trans, BTRFS_I(inode)); 5416 trans->block_rsv = &fs_info->trans_block_rsv; 5417 btrfs_end_transaction(trans); 5418 } 5419 5420 free_rsv: 5421 btrfs_free_block_rsv(fs_info, rsv); 5422 no_delete: 5423 /* 5424 * If we didn't successfully delete, the orphan item will still be in 5425 * the tree and we'll retry on the next mount. Again, we might also want 5426 * to retry these periodically in the future. 5427 */ 5428 btrfs_remove_delayed_node(BTRFS_I(inode)); 5429 fsverity_cleanup_inode(inode); 5430 clear_inode(inode); 5431 } 5432 5433 /* 5434 * Return the key found in the dir entry in the location pointer, fill @type 5435 * with BTRFS_FT_*, and return 0. 5436 * 5437 * If no dir entries were found, returns -ENOENT. 5438 * If found a corrupted location in dir entry, returns -EUCLEAN. 5439 */ 5440 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5441 struct btrfs_key *location, u8 *type) 5442 { 5443 const char *name = dentry->d_name.name; 5444 int namelen = dentry->d_name.len; 5445 struct btrfs_dir_item *di; 5446 struct btrfs_path *path; 5447 struct btrfs_root *root = BTRFS_I(dir)->root; 5448 int ret = 0; 5449 5450 path = btrfs_alloc_path(); 5451 if (!path) 5452 return -ENOMEM; 5453 5454 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5455 name, namelen, 0); 5456 if (IS_ERR_OR_NULL(di)) { 5457 ret = di ? PTR_ERR(di) : -ENOENT; 5458 goto out; 5459 } 5460 5461 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5462 if (location->type != BTRFS_INODE_ITEM_KEY && 5463 location->type != BTRFS_ROOT_ITEM_KEY) { 5464 ret = -EUCLEAN; 5465 btrfs_warn(root->fs_info, 5466 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5467 __func__, name, btrfs_ino(BTRFS_I(dir)), 5468 location->objectid, location->type, location->offset); 5469 } 5470 if (!ret) 5471 *type = btrfs_dir_type(path->nodes[0], di); 5472 out: 5473 btrfs_free_path(path); 5474 return ret; 5475 } 5476 5477 /* 5478 * when we hit a tree root in a directory, the btrfs part of the inode 5479 * needs to be changed to reflect the root directory of the tree root. This 5480 * is kind of like crossing a mount point. 5481 */ 5482 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5483 struct inode *dir, 5484 struct dentry *dentry, 5485 struct btrfs_key *location, 5486 struct btrfs_root **sub_root) 5487 { 5488 struct btrfs_path *path; 5489 struct btrfs_root *new_root; 5490 struct btrfs_root_ref *ref; 5491 struct extent_buffer *leaf; 5492 struct btrfs_key key; 5493 int ret; 5494 int err = 0; 5495 5496 path = btrfs_alloc_path(); 5497 if (!path) { 5498 err = -ENOMEM; 5499 goto out; 5500 } 5501 5502 err = -ENOENT; 5503 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5504 key.type = BTRFS_ROOT_REF_KEY; 5505 key.offset = location->objectid; 5506 5507 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5508 if (ret) { 5509 if (ret < 0) 5510 err = ret; 5511 goto out; 5512 } 5513 5514 leaf = path->nodes[0]; 5515 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5516 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5517 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5518 goto out; 5519 5520 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5521 (unsigned long)(ref + 1), 5522 dentry->d_name.len); 5523 if (ret) 5524 goto out; 5525 5526 btrfs_release_path(path); 5527 5528 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5529 if (IS_ERR(new_root)) { 5530 err = PTR_ERR(new_root); 5531 goto out; 5532 } 5533 5534 *sub_root = new_root; 5535 location->objectid = btrfs_root_dirid(&new_root->root_item); 5536 location->type = BTRFS_INODE_ITEM_KEY; 5537 location->offset = 0; 5538 err = 0; 5539 out: 5540 btrfs_free_path(path); 5541 return err; 5542 } 5543 5544 static void inode_tree_add(struct inode *inode) 5545 { 5546 struct btrfs_root *root = BTRFS_I(inode)->root; 5547 struct btrfs_inode *entry; 5548 struct rb_node **p; 5549 struct rb_node *parent; 5550 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5551 u64 ino = btrfs_ino(BTRFS_I(inode)); 5552 5553 if (inode_unhashed(inode)) 5554 return; 5555 parent = NULL; 5556 spin_lock(&root->inode_lock); 5557 p = &root->inode_tree.rb_node; 5558 while (*p) { 5559 parent = *p; 5560 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5561 5562 if (ino < btrfs_ino(entry)) 5563 p = &parent->rb_left; 5564 else if (ino > btrfs_ino(entry)) 5565 p = &parent->rb_right; 5566 else { 5567 WARN_ON(!(entry->vfs_inode.i_state & 5568 (I_WILL_FREE | I_FREEING))); 5569 rb_replace_node(parent, new, &root->inode_tree); 5570 RB_CLEAR_NODE(parent); 5571 spin_unlock(&root->inode_lock); 5572 return; 5573 } 5574 } 5575 rb_link_node(new, parent, p); 5576 rb_insert_color(new, &root->inode_tree); 5577 spin_unlock(&root->inode_lock); 5578 } 5579 5580 static void inode_tree_del(struct btrfs_inode *inode) 5581 { 5582 struct btrfs_root *root = inode->root; 5583 int empty = 0; 5584 5585 spin_lock(&root->inode_lock); 5586 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5587 rb_erase(&inode->rb_node, &root->inode_tree); 5588 RB_CLEAR_NODE(&inode->rb_node); 5589 empty = RB_EMPTY_ROOT(&root->inode_tree); 5590 } 5591 spin_unlock(&root->inode_lock); 5592 5593 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5594 spin_lock(&root->inode_lock); 5595 empty = RB_EMPTY_ROOT(&root->inode_tree); 5596 spin_unlock(&root->inode_lock); 5597 if (empty) 5598 btrfs_add_dead_root(root); 5599 } 5600 } 5601 5602 5603 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5604 { 5605 struct btrfs_iget_args *args = p; 5606 5607 inode->i_ino = args->ino; 5608 BTRFS_I(inode)->location.objectid = args->ino; 5609 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5610 BTRFS_I(inode)->location.offset = 0; 5611 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5612 BUG_ON(args->root && !BTRFS_I(inode)->root); 5613 return 0; 5614 } 5615 5616 static int btrfs_find_actor(struct inode *inode, void *opaque) 5617 { 5618 struct btrfs_iget_args *args = opaque; 5619 5620 return args->ino == BTRFS_I(inode)->location.objectid && 5621 args->root == BTRFS_I(inode)->root; 5622 } 5623 5624 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5625 struct btrfs_root *root) 5626 { 5627 struct inode *inode; 5628 struct btrfs_iget_args args; 5629 unsigned long hashval = btrfs_inode_hash(ino, root); 5630 5631 args.ino = ino; 5632 args.root = root; 5633 5634 inode = iget5_locked(s, hashval, btrfs_find_actor, 5635 btrfs_init_locked_inode, 5636 (void *)&args); 5637 return inode; 5638 } 5639 5640 /* 5641 * Get an inode object given its inode number and corresponding root. 5642 * Path can be preallocated to prevent recursing back to iget through 5643 * allocator. NULL is also valid but may require an additional allocation 5644 * later. 5645 */ 5646 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5647 struct btrfs_root *root, struct btrfs_path *path) 5648 { 5649 struct inode *inode; 5650 5651 inode = btrfs_iget_locked(s, ino, root); 5652 if (!inode) 5653 return ERR_PTR(-ENOMEM); 5654 5655 if (inode->i_state & I_NEW) { 5656 int ret; 5657 5658 ret = btrfs_read_locked_inode(inode, path); 5659 if (!ret) { 5660 inode_tree_add(inode); 5661 unlock_new_inode(inode); 5662 } else { 5663 iget_failed(inode); 5664 /* 5665 * ret > 0 can come from btrfs_search_slot called by 5666 * btrfs_read_locked_inode, this means the inode item 5667 * was not found. 5668 */ 5669 if (ret > 0) 5670 ret = -ENOENT; 5671 inode = ERR_PTR(ret); 5672 } 5673 } 5674 5675 return inode; 5676 } 5677 5678 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5679 { 5680 return btrfs_iget_path(s, ino, root, NULL); 5681 } 5682 5683 static struct inode *new_simple_dir(struct super_block *s, 5684 struct btrfs_key *key, 5685 struct btrfs_root *root) 5686 { 5687 struct inode *inode = new_inode(s); 5688 5689 if (!inode) 5690 return ERR_PTR(-ENOMEM); 5691 5692 BTRFS_I(inode)->root = btrfs_grab_root(root); 5693 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5694 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5695 5696 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5697 /* 5698 * We only need lookup, the rest is read-only and there's no inode 5699 * associated with the dentry 5700 */ 5701 inode->i_op = &simple_dir_inode_operations; 5702 inode->i_opflags &= ~IOP_XATTR; 5703 inode->i_fop = &simple_dir_operations; 5704 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5705 inode->i_mtime = current_time(inode); 5706 inode->i_atime = inode->i_mtime; 5707 inode->i_ctime = inode->i_mtime; 5708 BTRFS_I(inode)->i_otime = inode->i_mtime; 5709 5710 return inode; 5711 } 5712 5713 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5714 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5715 static_assert(BTRFS_FT_DIR == FT_DIR); 5716 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5717 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5718 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5719 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5720 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5721 5722 static inline u8 btrfs_inode_type(struct inode *inode) 5723 { 5724 return fs_umode_to_ftype(inode->i_mode); 5725 } 5726 5727 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5728 { 5729 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5730 struct inode *inode; 5731 struct btrfs_root *root = BTRFS_I(dir)->root; 5732 struct btrfs_root *sub_root = root; 5733 struct btrfs_key location; 5734 u8 di_type = 0; 5735 int ret = 0; 5736 5737 if (dentry->d_name.len > BTRFS_NAME_LEN) 5738 return ERR_PTR(-ENAMETOOLONG); 5739 5740 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5741 if (ret < 0) 5742 return ERR_PTR(ret); 5743 5744 if (location.type == BTRFS_INODE_ITEM_KEY) { 5745 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5746 if (IS_ERR(inode)) 5747 return inode; 5748 5749 /* Do extra check against inode mode with di_type */ 5750 if (btrfs_inode_type(inode) != di_type) { 5751 btrfs_crit(fs_info, 5752 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5753 inode->i_mode, btrfs_inode_type(inode), 5754 di_type); 5755 iput(inode); 5756 return ERR_PTR(-EUCLEAN); 5757 } 5758 return inode; 5759 } 5760 5761 ret = fixup_tree_root_location(fs_info, dir, dentry, 5762 &location, &sub_root); 5763 if (ret < 0) { 5764 if (ret != -ENOENT) 5765 inode = ERR_PTR(ret); 5766 else 5767 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5768 } else { 5769 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5770 } 5771 if (root != sub_root) 5772 btrfs_put_root(sub_root); 5773 5774 if (!IS_ERR(inode) && root != sub_root) { 5775 down_read(&fs_info->cleanup_work_sem); 5776 if (!sb_rdonly(inode->i_sb)) 5777 ret = btrfs_orphan_cleanup(sub_root); 5778 up_read(&fs_info->cleanup_work_sem); 5779 if (ret) { 5780 iput(inode); 5781 inode = ERR_PTR(ret); 5782 } 5783 } 5784 5785 return inode; 5786 } 5787 5788 static int btrfs_dentry_delete(const struct dentry *dentry) 5789 { 5790 struct btrfs_root *root; 5791 struct inode *inode = d_inode(dentry); 5792 5793 if (!inode && !IS_ROOT(dentry)) 5794 inode = d_inode(dentry->d_parent); 5795 5796 if (inode) { 5797 root = BTRFS_I(inode)->root; 5798 if (btrfs_root_refs(&root->root_item) == 0) 5799 return 1; 5800 5801 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5802 return 1; 5803 } 5804 return 0; 5805 } 5806 5807 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5808 unsigned int flags) 5809 { 5810 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5811 5812 if (inode == ERR_PTR(-ENOENT)) 5813 inode = NULL; 5814 return d_splice_alias(inode, dentry); 5815 } 5816 5817 /* 5818 * All this infrastructure exists because dir_emit can fault, and we are holding 5819 * the tree lock when doing readdir. For now just allocate a buffer and copy 5820 * our information into that, and then dir_emit from the buffer. This is 5821 * similar to what NFS does, only we don't keep the buffer around in pagecache 5822 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5823 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5824 * tree lock. 5825 */ 5826 static int btrfs_opendir(struct inode *inode, struct file *file) 5827 { 5828 struct btrfs_file_private *private; 5829 5830 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5831 if (!private) 5832 return -ENOMEM; 5833 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5834 if (!private->filldir_buf) { 5835 kfree(private); 5836 return -ENOMEM; 5837 } 5838 file->private_data = private; 5839 return 0; 5840 } 5841 5842 struct dir_entry { 5843 u64 ino; 5844 u64 offset; 5845 unsigned type; 5846 int name_len; 5847 }; 5848 5849 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5850 { 5851 while (entries--) { 5852 struct dir_entry *entry = addr; 5853 char *name = (char *)(entry + 1); 5854 5855 ctx->pos = get_unaligned(&entry->offset); 5856 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5857 get_unaligned(&entry->ino), 5858 get_unaligned(&entry->type))) 5859 return 1; 5860 addr += sizeof(struct dir_entry) + 5861 get_unaligned(&entry->name_len); 5862 ctx->pos++; 5863 } 5864 return 0; 5865 } 5866 5867 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5868 { 5869 struct inode *inode = file_inode(file); 5870 struct btrfs_root *root = BTRFS_I(inode)->root; 5871 struct btrfs_file_private *private = file->private_data; 5872 struct btrfs_dir_item *di; 5873 struct btrfs_key key; 5874 struct btrfs_key found_key; 5875 struct btrfs_path *path; 5876 void *addr; 5877 struct list_head ins_list; 5878 struct list_head del_list; 5879 int ret; 5880 char *name_ptr; 5881 int name_len; 5882 int entries = 0; 5883 int total_len = 0; 5884 bool put = false; 5885 struct btrfs_key location; 5886 5887 if (!dir_emit_dots(file, ctx)) 5888 return 0; 5889 5890 path = btrfs_alloc_path(); 5891 if (!path) 5892 return -ENOMEM; 5893 5894 addr = private->filldir_buf; 5895 path->reada = READA_FORWARD; 5896 5897 INIT_LIST_HEAD(&ins_list); 5898 INIT_LIST_HEAD(&del_list); 5899 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5900 5901 again: 5902 key.type = BTRFS_DIR_INDEX_KEY; 5903 key.offset = ctx->pos; 5904 key.objectid = btrfs_ino(BTRFS_I(inode)); 5905 5906 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5907 struct dir_entry *entry; 5908 struct extent_buffer *leaf = path->nodes[0]; 5909 5910 if (found_key.objectid != key.objectid) 5911 break; 5912 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5913 break; 5914 if (found_key.offset < ctx->pos) 5915 continue; 5916 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5917 continue; 5918 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5919 name_len = btrfs_dir_name_len(leaf, di); 5920 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5921 PAGE_SIZE) { 5922 btrfs_release_path(path); 5923 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5924 if (ret) 5925 goto nopos; 5926 addr = private->filldir_buf; 5927 entries = 0; 5928 total_len = 0; 5929 goto again; 5930 } 5931 5932 entry = addr; 5933 put_unaligned(name_len, &entry->name_len); 5934 name_ptr = (char *)(entry + 1); 5935 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5936 name_len); 5937 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5938 &entry->type); 5939 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5940 put_unaligned(location.objectid, &entry->ino); 5941 put_unaligned(found_key.offset, &entry->offset); 5942 entries++; 5943 addr += sizeof(struct dir_entry) + name_len; 5944 total_len += sizeof(struct dir_entry) + name_len; 5945 } 5946 /* Catch error encountered during iteration */ 5947 if (ret < 0) 5948 goto err; 5949 5950 btrfs_release_path(path); 5951 5952 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5953 if (ret) 5954 goto nopos; 5955 5956 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5957 if (ret) 5958 goto nopos; 5959 5960 /* 5961 * Stop new entries from being returned after we return the last 5962 * entry. 5963 * 5964 * New directory entries are assigned a strictly increasing 5965 * offset. This means that new entries created during readdir 5966 * are *guaranteed* to be seen in the future by that readdir. 5967 * This has broken buggy programs which operate on names as 5968 * they're returned by readdir. Until we re-use freed offsets 5969 * we have this hack to stop new entries from being returned 5970 * under the assumption that they'll never reach this huge 5971 * offset. 5972 * 5973 * This is being careful not to overflow 32bit loff_t unless the 5974 * last entry requires it because doing so has broken 32bit apps 5975 * in the past. 5976 */ 5977 if (ctx->pos >= INT_MAX) 5978 ctx->pos = LLONG_MAX; 5979 else 5980 ctx->pos = INT_MAX; 5981 nopos: 5982 ret = 0; 5983 err: 5984 if (put) 5985 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5986 btrfs_free_path(path); 5987 return ret; 5988 } 5989 5990 /* 5991 * This is somewhat expensive, updating the tree every time the 5992 * inode changes. But, it is most likely to find the inode in cache. 5993 * FIXME, needs more benchmarking...there are no reasons other than performance 5994 * to keep or drop this code. 5995 */ 5996 static int btrfs_dirty_inode(struct inode *inode) 5997 { 5998 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5999 struct btrfs_root *root = BTRFS_I(inode)->root; 6000 struct btrfs_trans_handle *trans; 6001 int ret; 6002 6003 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6004 return 0; 6005 6006 trans = btrfs_join_transaction(root); 6007 if (IS_ERR(trans)) 6008 return PTR_ERR(trans); 6009 6010 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6011 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6012 /* whoops, lets try again with the full transaction */ 6013 btrfs_end_transaction(trans); 6014 trans = btrfs_start_transaction(root, 1); 6015 if (IS_ERR(trans)) 6016 return PTR_ERR(trans); 6017 6018 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6019 } 6020 btrfs_end_transaction(trans); 6021 if (BTRFS_I(inode)->delayed_node) 6022 btrfs_balance_delayed_items(fs_info); 6023 6024 return ret; 6025 } 6026 6027 /* 6028 * This is a copy of file_update_time. We need this so we can return error on 6029 * ENOSPC for updating the inode in the case of file write and mmap writes. 6030 */ 6031 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6032 int flags) 6033 { 6034 struct btrfs_root *root = BTRFS_I(inode)->root; 6035 bool dirty = flags & ~S_VERSION; 6036 6037 if (btrfs_root_readonly(root)) 6038 return -EROFS; 6039 6040 if (flags & S_VERSION) 6041 dirty |= inode_maybe_inc_iversion(inode, dirty); 6042 if (flags & S_CTIME) 6043 inode->i_ctime = *now; 6044 if (flags & S_MTIME) 6045 inode->i_mtime = *now; 6046 if (flags & S_ATIME) 6047 inode->i_atime = *now; 6048 return dirty ? btrfs_dirty_inode(inode) : 0; 6049 } 6050 6051 /* 6052 * find the highest existing sequence number in a directory 6053 * and then set the in-memory index_cnt variable to reflect 6054 * free sequence numbers 6055 */ 6056 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6057 { 6058 struct btrfs_root *root = inode->root; 6059 struct btrfs_key key, found_key; 6060 struct btrfs_path *path; 6061 struct extent_buffer *leaf; 6062 int ret; 6063 6064 key.objectid = btrfs_ino(inode); 6065 key.type = BTRFS_DIR_INDEX_KEY; 6066 key.offset = (u64)-1; 6067 6068 path = btrfs_alloc_path(); 6069 if (!path) 6070 return -ENOMEM; 6071 6072 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6073 if (ret < 0) 6074 goto out; 6075 /* FIXME: we should be able to handle this */ 6076 if (ret == 0) 6077 goto out; 6078 ret = 0; 6079 6080 if (path->slots[0] == 0) { 6081 inode->index_cnt = BTRFS_DIR_START_INDEX; 6082 goto out; 6083 } 6084 6085 path->slots[0]--; 6086 6087 leaf = path->nodes[0]; 6088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6089 6090 if (found_key.objectid != btrfs_ino(inode) || 6091 found_key.type != BTRFS_DIR_INDEX_KEY) { 6092 inode->index_cnt = BTRFS_DIR_START_INDEX; 6093 goto out; 6094 } 6095 6096 inode->index_cnt = found_key.offset + 1; 6097 out: 6098 btrfs_free_path(path); 6099 return ret; 6100 } 6101 6102 /* 6103 * helper to find a free sequence number in a given directory. This current 6104 * code is very simple, later versions will do smarter things in the btree 6105 */ 6106 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6107 { 6108 int ret = 0; 6109 6110 if (dir->index_cnt == (u64)-1) { 6111 ret = btrfs_inode_delayed_dir_index_count(dir); 6112 if (ret) { 6113 ret = btrfs_set_inode_index_count(dir); 6114 if (ret) 6115 return ret; 6116 } 6117 } 6118 6119 *index = dir->index_cnt; 6120 dir->index_cnt++; 6121 6122 return ret; 6123 } 6124 6125 static int btrfs_insert_inode_locked(struct inode *inode) 6126 { 6127 struct btrfs_iget_args args; 6128 6129 args.ino = BTRFS_I(inode)->location.objectid; 6130 args.root = BTRFS_I(inode)->root; 6131 6132 return insert_inode_locked4(inode, 6133 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6134 btrfs_find_actor, &args); 6135 } 6136 6137 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6138 unsigned int *trans_num_items) 6139 { 6140 struct inode *dir = args->dir; 6141 struct inode *inode = args->inode; 6142 int ret; 6143 6144 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6145 if (ret) 6146 return ret; 6147 6148 /* 1 to add inode item */ 6149 *trans_num_items = 1; 6150 /* 1 to add compression property */ 6151 if (BTRFS_I(dir)->prop_compress) 6152 (*trans_num_items)++; 6153 /* 1 to add default ACL xattr */ 6154 if (args->default_acl) 6155 (*trans_num_items)++; 6156 /* 1 to add access ACL xattr */ 6157 if (args->acl) 6158 (*trans_num_items)++; 6159 #ifdef CONFIG_SECURITY 6160 /* 1 to add LSM xattr */ 6161 if (dir->i_security) 6162 (*trans_num_items)++; 6163 #endif 6164 if (args->orphan) { 6165 /* 1 to add orphan item */ 6166 (*trans_num_items)++; 6167 } else { 6168 /* 6169 * 1 to add dir item 6170 * 1 to add dir index 6171 * 1 to update parent inode item 6172 * 6173 * No need for 1 unit for the inode ref item because it is 6174 * inserted in a batch together with the inode item at 6175 * btrfs_create_new_inode(). 6176 */ 6177 *trans_num_items += 3; 6178 } 6179 return 0; 6180 } 6181 6182 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6183 { 6184 posix_acl_release(args->acl); 6185 posix_acl_release(args->default_acl); 6186 } 6187 6188 /* 6189 * Inherit flags from the parent inode. 6190 * 6191 * Currently only the compression flags and the cow flags are inherited. 6192 */ 6193 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6194 { 6195 unsigned int flags; 6196 6197 flags = BTRFS_I(dir)->flags; 6198 6199 if (flags & BTRFS_INODE_NOCOMPRESS) { 6200 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6201 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6202 } else if (flags & BTRFS_INODE_COMPRESS) { 6203 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6204 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6205 } 6206 6207 if (flags & BTRFS_INODE_NODATACOW) { 6208 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6209 if (S_ISREG(inode->i_mode)) 6210 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6211 } 6212 6213 btrfs_sync_inode_flags_to_i_flags(inode); 6214 } 6215 6216 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6217 struct btrfs_new_inode_args *args) 6218 { 6219 struct inode *dir = args->dir; 6220 struct inode *inode = args->inode; 6221 const char *name = args->orphan ? NULL : args->dentry->d_name.name; 6222 int name_len = args->orphan ? 0 : args->dentry->d_name.len; 6223 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6224 struct btrfs_root *root; 6225 struct btrfs_inode_item *inode_item; 6226 struct btrfs_key *location; 6227 struct btrfs_path *path; 6228 u64 objectid; 6229 struct btrfs_inode_ref *ref; 6230 struct btrfs_key key[2]; 6231 u32 sizes[2]; 6232 struct btrfs_item_batch batch; 6233 unsigned long ptr; 6234 int ret; 6235 6236 path = btrfs_alloc_path(); 6237 if (!path) 6238 return -ENOMEM; 6239 6240 if (!args->subvol) 6241 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6242 root = BTRFS_I(inode)->root; 6243 6244 ret = btrfs_get_free_objectid(root, &objectid); 6245 if (ret) 6246 goto out; 6247 inode->i_ino = objectid; 6248 6249 if (args->orphan) { 6250 /* 6251 * O_TMPFILE, set link count to 0, so that after this point, we 6252 * fill in an inode item with the correct link count. 6253 */ 6254 set_nlink(inode, 0); 6255 } else { 6256 trace_btrfs_inode_request(dir); 6257 6258 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6259 if (ret) 6260 goto out; 6261 } 6262 /* index_cnt is ignored for everything but a dir. */ 6263 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6264 BTRFS_I(inode)->generation = trans->transid; 6265 inode->i_generation = BTRFS_I(inode)->generation; 6266 6267 /* 6268 * Subvolumes don't inherit flags from their parent directory. 6269 * Originally this was probably by accident, but we probably can't 6270 * change it now without compatibility issues. 6271 */ 6272 if (!args->subvol) 6273 btrfs_inherit_iflags(inode, dir); 6274 6275 if (S_ISREG(inode->i_mode)) { 6276 if (btrfs_test_opt(fs_info, NODATASUM)) 6277 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6278 if (btrfs_test_opt(fs_info, NODATACOW)) 6279 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6280 BTRFS_INODE_NODATASUM; 6281 } 6282 6283 location = &BTRFS_I(inode)->location; 6284 location->objectid = objectid; 6285 location->offset = 0; 6286 location->type = BTRFS_INODE_ITEM_KEY; 6287 6288 ret = btrfs_insert_inode_locked(inode); 6289 if (ret < 0) { 6290 if (!args->orphan) 6291 BTRFS_I(dir)->index_cnt--; 6292 goto out; 6293 } 6294 6295 /* 6296 * We could have gotten an inode number from somebody who was fsynced 6297 * and then removed in this same transaction, so let's just set full 6298 * sync since it will be a full sync anyway and this will blow away the 6299 * old info in the log. 6300 */ 6301 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6302 6303 key[0].objectid = objectid; 6304 key[0].type = BTRFS_INODE_ITEM_KEY; 6305 key[0].offset = 0; 6306 6307 sizes[0] = sizeof(struct btrfs_inode_item); 6308 6309 if (!args->orphan) { 6310 /* 6311 * Start new inodes with an inode_ref. This is slightly more 6312 * efficient for small numbers of hard links since they will 6313 * be packed into one item. Extended refs will kick in if we 6314 * add more hard links than can fit in the ref item. 6315 */ 6316 key[1].objectid = objectid; 6317 key[1].type = BTRFS_INODE_REF_KEY; 6318 if (args->subvol) { 6319 key[1].offset = objectid; 6320 sizes[1] = 2 + sizeof(*ref); 6321 } else { 6322 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6323 sizes[1] = name_len + sizeof(*ref); 6324 } 6325 } 6326 6327 batch.keys = &key[0]; 6328 batch.data_sizes = &sizes[0]; 6329 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6330 batch.nr = args->orphan ? 1 : 2; 6331 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6332 if (ret != 0) { 6333 btrfs_abort_transaction(trans, ret); 6334 goto discard; 6335 } 6336 6337 inode->i_mtime = current_time(inode); 6338 inode->i_atime = inode->i_mtime; 6339 inode->i_ctime = inode->i_mtime; 6340 BTRFS_I(inode)->i_otime = inode->i_mtime; 6341 6342 /* 6343 * We're going to fill the inode item now, so at this point the inode 6344 * must be fully initialized. 6345 */ 6346 6347 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6348 struct btrfs_inode_item); 6349 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6350 sizeof(*inode_item)); 6351 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6352 6353 if (!args->orphan) { 6354 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6355 struct btrfs_inode_ref); 6356 ptr = (unsigned long)(ref + 1); 6357 if (args->subvol) { 6358 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6359 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6360 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6361 } else { 6362 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6363 btrfs_set_inode_ref_index(path->nodes[0], ref, 6364 BTRFS_I(inode)->dir_index); 6365 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6366 } 6367 } 6368 6369 btrfs_mark_buffer_dirty(path->nodes[0]); 6370 btrfs_release_path(path); 6371 6372 if (args->subvol) { 6373 struct inode *parent; 6374 6375 /* 6376 * Subvolumes inherit properties from their parent subvolume, 6377 * not the directory they were created in. 6378 */ 6379 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6380 BTRFS_I(dir)->root); 6381 if (IS_ERR(parent)) { 6382 ret = PTR_ERR(parent); 6383 } else { 6384 ret = btrfs_inode_inherit_props(trans, inode, parent); 6385 iput(parent); 6386 } 6387 } else { 6388 ret = btrfs_inode_inherit_props(trans, inode, dir); 6389 } 6390 if (ret) { 6391 btrfs_err(fs_info, 6392 "error inheriting props for ino %llu (root %llu): %d", 6393 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6394 ret); 6395 } 6396 6397 /* 6398 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6399 * probably a bug. 6400 */ 6401 if (!args->subvol) { 6402 ret = btrfs_init_inode_security(trans, args); 6403 if (ret) { 6404 btrfs_abort_transaction(trans, ret); 6405 goto discard; 6406 } 6407 } 6408 6409 inode_tree_add(inode); 6410 6411 trace_btrfs_inode_new(inode); 6412 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6413 6414 btrfs_update_root_times(trans, root); 6415 6416 if (args->orphan) { 6417 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6418 } else { 6419 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6420 name_len, 0, BTRFS_I(inode)->dir_index); 6421 } 6422 if (ret) { 6423 btrfs_abort_transaction(trans, ret); 6424 goto discard; 6425 } 6426 6427 ret = 0; 6428 goto out; 6429 6430 discard: 6431 /* 6432 * discard_new_inode() calls iput(), but the caller owns the reference 6433 * to the inode. 6434 */ 6435 ihold(inode); 6436 discard_new_inode(inode); 6437 out: 6438 btrfs_free_path(path); 6439 return ret; 6440 } 6441 6442 /* 6443 * utility function to add 'inode' into 'parent_inode' with 6444 * a give name and a given sequence number. 6445 * if 'add_backref' is true, also insert a backref from the 6446 * inode to the parent directory. 6447 */ 6448 int btrfs_add_link(struct btrfs_trans_handle *trans, 6449 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6450 const char *name, int name_len, int add_backref, u64 index) 6451 { 6452 int ret = 0; 6453 struct btrfs_key key; 6454 struct btrfs_root *root = parent_inode->root; 6455 u64 ino = btrfs_ino(inode); 6456 u64 parent_ino = btrfs_ino(parent_inode); 6457 6458 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6459 memcpy(&key, &inode->root->root_key, sizeof(key)); 6460 } else { 6461 key.objectid = ino; 6462 key.type = BTRFS_INODE_ITEM_KEY; 6463 key.offset = 0; 6464 } 6465 6466 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6467 ret = btrfs_add_root_ref(trans, key.objectid, 6468 root->root_key.objectid, parent_ino, 6469 index, name, name_len); 6470 } else if (add_backref) { 6471 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6472 parent_ino, index); 6473 } 6474 6475 /* Nothing to clean up yet */ 6476 if (ret) 6477 return ret; 6478 6479 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6480 btrfs_inode_type(&inode->vfs_inode), index); 6481 if (ret == -EEXIST || ret == -EOVERFLOW) 6482 goto fail_dir_item; 6483 else if (ret) { 6484 btrfs_abort_transaction(trans, ret); 6485 return ret; 6486 } 6487 6488 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6489 name_len * 2); 6490 inode_inc_iversion(&parent_inode->vfs_inode); 6491 /* 6492 * If we are replaying a log tree, we do not want to update the mtime 6493 * and ctime of the parent directory with the current time, since the 6494 * log replay procedure is responsible for setting them to their correct 6495 * values (the ones it had when the fsync was done). 6496 */ 6497 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6498 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6499 6500 parent_inode->vfs_inode.i_mtime = now; 6501 parent_inode->vfs_inode.i_ctime = now; 6502 } 6503 ret = btrfs_update_inode(trans, root, parent_inode); 6504 if (ret) 6505 btrfs_abort_transaction(trans, ret); 6506 return ret; 6507 6508 fail_dir_item: 6509 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6510 u64 local_index; 6511 int err; 6512 err = btrfs_del_root_ref(trans, key.objectid, 6513 root->root_key.objectid, parent_ino, 6514 &local_index, name, name_len); 6515 if (err) 6516 btrfs_abort_transaction(trans, err); 6517 } else if (add_backref) { 6518 u64 local_index; 6519 int err; 6520 6521 err = btrfs_del_inode_ref(trans, root, name, name_len, 6522 ino, parent_ino, &local_index); 6523 if (err) 6524 btrfs_abort_transaction(trans, err); 6525 } 6526 6527 /* Return the original error code */ 6528 return ret; 6529 } 6530 6531 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6532 struct inode *inode) 6533 { 6534 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6535 struct btrfs_root *root = BTRFS_I(dir)->root; 6536 struct btrfs_new_inode_args new_inode_args = { 6537 .dir = dir, 6538 .dentry = dentry, 6539 .inode = inode, 6540 }; 6541 unsigned int trans_num_items; 6542 struct btrfs_trans_handle *trans; 6543 int err; 6544 6545 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6546 if (err) 6547 goto out_inode; 6548 6549 trans = btrfs_start_transaction(root, trans_num_items); 6550 if (IS_ERR(trans)) { 6551 err = PTR_ERR(trans); 6552 goto out_new_inode_args; 6553 } 6554 6555 err = btrfs_create_new_inode(trans, &new_inode_args); 6556 if (!err) 6557 d_instantiate_new(dentry, inode); 6558 6559 btrfs_end_transaction(trans); 6560 btrfs_btree_balance_dirty(fs_info); 6561 out_new_inode_args: 6562 btrfs_new_inode_args_destroy(&new_inode_args); 6563 out_inode: 6564 if (err) 6565 iput(inode); 6566 return err; 6567 } 6568 6569 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6570 struct dentry *dentry, umode_t mode, dev_t rdev) 6571 { 6572 struct inode *inode; 6573 6574 inode = new_inode(dir->i_sb); 6575 if (!inode) 6576 return -ENOMEM; 6577 inode_init_owner(mnt_userns, inode, dir, mode); 6578 inode->i_op = &btrfs_special_inode_operations; 6579 init_special_inode(inode, inode->i_mode, rdev); 6580 return btrfs_create_common(dir, dentry, inode); 6581 } 6582 6583 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6584 struct dentry *dentry, umode_t mode, bool excl) 6585 { 6586 struct inode *inode; 6587 6588 inode = new_inode(dir->i_sb); 6589 if (!inode) 6590 return -ENOMEM; 6591 inode_init_owner(mnt_userns, inode, dir, mode); 6592 inode->i_fop = &btrfs_file_operations; 6593 inode->i_op = &btrfs_file_inode_operations; 6594 inode->i_mapping->a_ops = &btrfs_aops; 6595 return btrfs_create_common(dir, dentry, inode); 6596 } 6597 6598 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6599 struct dentry *dentry) 6600 { 6601 struct btrfs_trans_handle *trans = NULL; 6602 struct btrfs_root *root = BTRFS_I(dir)->root; 6603 struct inode *inode = d_inode(old_dentry); 6604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6605 u64 index; 6606 int err; 6607 int drop_inode = 0; 6608 6609 /* do not allow sys_link's with other subvols of the same device */ 6610 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6611 return -EXDEV; 6612 6613 if (inode->i_nlink >= BTRFS_LINK_MAX) 6614 return -EMLINK; 6615 6616 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6617 if (err) 6618 goto fail; 6619 6620 /* 6621 * 2 items for inode and inode ref 6622 * 2 items for dir items 6623 * 1 item for parent inode 6624 * 1 item for orphan item deletion if O_TMPFILE 6625 */ 6626 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6627 if (IS_ERR(trans)) { 6628 err = PTR_ERR(trans); 6629 trans = NULL; 6630 goto fail; 6631 } 6632 6633 /* There are several dir indexes for this inode, clear the cache. */ 6634 BTRFS_I(inode)->dir_index = 0ULL; 6635 inc_nlink(inode); 6636 inode_inc_iversion(inode); 6637 inode->i_ctime = current_time(inode); 6638 ihold(inode); 6639 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6640 6641 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6642 dentry->d_name.name, dentry->d_name.len, 1, index); 6643 6644 if (err) { 6645 drop_inode = 1; 6646 } else { 6647 struct dentry *parent = dentry->d_parent; 6648 6649 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6650 if (err) 6651 goto fail; 6652 if (inode->i_nlink == 1) { 6653 /* 6654 * If new hard link count is 1, it's a file created 6655 * with open(2) O_TMPFILE flag. 6656 */ 6657 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6658 if (err) 6659 goto fail; 6660 } 6661 d_instantiate(dentry, inode); 6662 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6663 } 6664 6665 fail: 6666 if (trans) 6667 btrfs_end_transaction(trans); 6668 if (drop_inode) { 6669 inode_dec_link_count(inode); 6670 iput(inode); 6671 } 6672 btrfs_btree_balance_dirty(fs_info); 6673 return err; 6674 } 6675 6676 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6677 struct dentry *dentry, umode_t mode) 6678 { 6679 struct inode *inode; 6680 6681 inode = new_inode(dir->i_sb); 6682 if (!inode) 6683 return -ENOMEM; 6684 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode); 6685 inode->i_op = &btrfs_dir_inode_operations; 6686 inode->i_fop = &btrfs_dir_file_operations; 6687 return btrfs_create_common(dir, dentry, inode); 6688 } 6689 6690 static noinline int uncompress_inline(struct btrfs_path *path, 6691 struct page *page, 6692 size_t pg_offset, u64 extent_offset, 6693 struct btrfs_file_extent_item *item) 6694 { 6695 int ret; 6696 struct extent_buffer *leaf = path->nodes[0]; 6697 char *tmp; 6698 size_t max_size; 6699 unsigned long inline_size; 6700 unsigned long ptr; 6701 int compress_type; 6702 6703 WARN_ON(pg_offset != 0); 6704 compress_type = btrfs_file_extent_compression(leaf, item); 6705 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6706 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6707 tmp = kmalloc(inline_size, GFP_NOFS); 6708 if (!tmp) 6709 return -ENOMEM; 6710 ptr = btrfs_file_extent_inline_start(item); 6711 6712 read_extent_buffer(leaf, tmp, ptr, inline_size); 6713 6714 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6715 ret = btrfs_decompress(compress_type, tmp, page, 6716 extent_offset, inline_size, max_size); 6717 6718 /* 6719 * decompression code contains a memset to fill in any space between the end 6720 * of the uncompressed data and the end of max_size in case the decompressed 6721 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6722 * the end of an inline extent and the beginning of the next block, so we 6723 * cover that region here. 6724 */ 6725 6726 if (max_size + pg_offset < PAGE_SIZE) 6727 memzero_page(page, pg_offset + max_size, 6728 PAGE_SIZE - max_size - pg_offset); 6729 kfree(tmp); 6730 return ret; 6731 } 6732 6733 /** 6734 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6735 * @inode: file to search in 6736 * @page: page to read extent data into if the extent is inline 6737 * @pg_offset: offset into @page to copy to 6738 * @start: file offset 6739 * @len: length of range starting at @start 6740 * 6741 * This returns the first &struct extent_map which overlaps with the given 6742 * range, reading it from the B-tree and caching it if necessary. Note that 6743 * there may be more extents which overlap the given range after the returned 6744 * extent_map. 6745 * 6746 * If @page is not NULL and the extent is inline, this also reads the extent 6747 * data directly into the page and marks the extent up to date in the io_tree. 6748 * 6749 * Return: ERR_PTR on error, non-NULL extent_map on success. 6750 */ 6751 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6752 struct page *page, size_t pg_offset, 6753 u64 start, u64 len) 6754 { 6755 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6756 int ret = 0; 6757 u64 extent_start = 0; 6758 u64 extent_end = 0; 6759 u64 objectid = btrfs_ino(inode); 6760 int extent_type = -1; 6761 struct btrfs_path *path = NULL; 6762 struct btrfs_root *root = inode->root; 6763 struct btrfs_file_extent_item *item; 6764 struct extent_buffer *leaf; 6765 struct btrfs_key found_key; 6766 struct extent_map *em = NULL; 6767 struct extent_map_tree *em_tree = &inode->extent_tree; 6768 struct extent_io_tree *io_tree = &inode->io_tree; 6769 6770 read_lock(&em_tree->lock); 6771 em = lookup_extent_mapping(em_tree, start, len); 6772 read_unlock(&em_tree->lock); 6773 6774 if (em) { 6775 if (em->start > start || em->start + em->len <= start) 6776 free_extent_map(em); 6777 else if (em->block_start == EXTENT_MAP_INLINE && page) 6778 free_extent_map(em); 6779 else 6780 goto out; 6781 } 6782 em = alloc_extent_map(); 6783 if (!em) { 6784 ret = -ENOMEM; 6785 goto out; 6786 } 6787 em->start = EXTENT_MAP_HOLE; 6788 em->orig_start = EXTENT_MAP_HOLE; 6789 em->len = (u64)-1; 6790 em->block_len = (u64)-1; 6791 6792 path = btrfs_alloc_path(); 6793 if (!path) { 6794 ret = -ENOMEM; 6795 goto out; 6796 } 6797 6798 /* Chances are we'll be called again, so go ahead and do readahead */ 6799 path->reada = READA_FORWARD; 6800 6801 /* 6802 * The same explanation in load_free_space_cache applies here as well, 6803 * we only read when we're loading the free space cache, and at that 6804 * point the commit_root has everything we need. 6805 */ 6806 if (btrfs_is_free_space_inode(inode)) { 6807 path->search_commit_root = 1; 6808 path->skip_locking = 1; 6809 } 6810 6811 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6812 if (ret < 0) { 6813 goto out; 6814 } else if (ret > 0) { 6815 if (path->slots[0] == 0) 6816 goto not_found; 6817 path->slots[0]--; 6818 ret = 0; 6819 } 6820 6821 leaf = path->nodes[0]; 6822 item = btrfs_item_ptr(leaf, path->slots[0], 6823 struct btrfs_file_extent_item); 6824 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6825 if (found_key.objectid != objectid || 6826 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6827 /* 6828 * If we backup past the first extent we want to move forward 6829 * and see if there is an extent in front of us, otherwise we'll 6830 * say there is a hole for our whole search range which can 6831 * cause problems. 6832 */ 6833 extent_end = start; 6834 goto next; 6835 } 6836 6837 extent_type = btrfs_file_extent_type(leaf, item); 6838 extent_start = found_key.offset; 6839 extent_end = btrfs_file_extent_end(path); 6840 if (extent_type == BTRFS_FILE_EXTENT_REG || 6841 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6842 /* Only regular file could have regular/prealloc extent */ 6843 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6844 ret = -EUCLEAN; 6845 btrfs_crit(fs_info, 6846 "regular/prealloc extent found for non-regular inode %llu", 6847 btrfs_ino(inode)); 6848 goto out; 6849 } 6850 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6851 extent_start); 6852 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6853 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6854 path->slots[0], 6855 extent_start); 6856 } 6857 next: 6858 if (start >= extent_end) { 6859 path->slots[0]++; 6860 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6861 ret = btrfs_next_leaf(root, path); 6862 if (ret < 0) 6863 goto out; 6864 else if (ret > 0) 6865 goto not_found; 6866 6867 leaf = path->nodes[0]; 6868 } 6869 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6870 if (found_key.objectid != objectid || 6871 found_key.type != BTRFS_EXTENT_DATA_KEY) 6872 goto not_found; 6873 if (start + len <= found_key.offset) 6874 goto not_found; 6875 if (start > found_key.offset) 6876 goto next; 6877 6878 /* New extent overlaps with existing one */ 6879 em->start = start; 6880 em->orig_start = start; 6881 em->len = found_key.offset - start; 6882 em->block_start = EXTENT_MAP_HOLE; 6883 goto insert; 6884 } 6885 6886 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6887 6888 if (extent_type == BTRFS_FILE_EXTENT_REG || 6889 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6890 goto insert; 6891 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6892 unsigned long ptr; 6893 char *map; 6894 size_t size; 6895 size_t extent_offset; 6896 size_t copy_size; 6897 6898 if (!page) 6899 goto out; 6900 6901 size = btrfs_file_extent_ram_bytes(leaf, item); 6902 extent_offset = page_offset(page) + pg_offset - extent_start; 6903 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6904 size - extent_offset); 6905 em->start = extent_start + extent_offset; 6906 em->len = ALIGN(copy_size, fs_info->sectorsize); 6907 em->orig_block_len = em->len; 6908 em->orig_start = em->start; 6909 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6910 6911 if (!PageUptodate(page)) { 6912 if (btrfs_file_extent_compression(leaf, item) != 6913 BTRFS_COMPRESS_NONE) { 6914 ret = uncompress_inline(path, page, pg_offset, 6915 extent_offset, item); 6916 if (ret) 6917 goto out; 6918 } else { 6919 map = kmap_local_page(page); 6920 read_extent_buffer(leaf, map + pg_offset, ptr, 6921 copy_size); 6922 if (pg_offset + copy_size < PAGE_SIZE) { 6923 memset(map + pg_offset + copy_size, 0, 6924 PAGE_SIZE - pg_offset - 6925 copy_size); 6926 } 6927 kunmap_local(map); 6928 } 6929 flush_dcache_page(page); 6930 } 6931 set_extent_uptodate(io_tree, em->start, 6932 extent_map_end(em) - 1, NULL, GFP_NOFS); 6933 goto insert; 6934 } 6935 not_found: 6936 em->start = start; 6937 em->orig_start = start; 6938 em->len = len; 6939 em->block_start = EXTENT_MAP_HOLE; 6940 insert: 6941 ret = 0; 6942 btrfs_release_path(path); 6943 if (em->start > start || extent_map_end(em) <= start) { 6944 btrfs_err(fs_info, 6945 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6946 em->start, em->len, start, len); 6947 ret = -EIO; 6948 goto out; 6949 } 6950 6951 write_lock(&em_tree->lock); 6952 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6953 write_unlock(&em_tree->lock); 6954 out: 6955 btrfs_free_path(path); 6956 6957 trace_btrfs_get_extent(root, inode, em); 6958 6959 if (ret) { 6960 free_extent_map(em); 6961 return ERR_PTR(ret); 6962 } 6963 return em; 6964 } 6965 6966 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6967 u64 start, u64 len) 6968 { 6969 struct extent_map *em; 6970 struct extent_map *hole_em = NULL; 6971 u64 delalloc_start = start; 6972 u64 end; 6973 u64 delalloc_len; 6974 u64 delalloc_end; 6975 int err = 0; 6976 6977 em = btrfs_get_extent(inode, NULL, 0, start, len); 6978 if (IS_ERR(em)) 6979 return em; 6980 /* 6981 * If our em maps to: 6982 * - a hole or 6983 * - a pre-alloc extent, 6984 * there might actually be delalloc bytes behind it. 6985 */ 6986 if (em->block_start != EXTENT_MAP_HOLE && 6987 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6988 return em; 6989 else 6990 hole_em = em; 6991 6992 /* check to see if we've wrapped (len == -1 or similar) */ 6993 end = start + len; 6994 if (end < start) 6995 end = (u64)-1; 6996 else 6997 end -= 1; 6998 6999 em = NULL; 7000 7001 /* ok, we didn't find anything, lets look for delalloc */ 7002 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7003 end, len, EXTENT_DELALLOC, 1); 7004 delalloc_end = delalloc_start + delalloc_len; 7005 if (delalloc_end < delalloc_start) 7006 delalloc_end = (u64)-1; 7007 7008 /* 7009 * We didn't find anything useful, return the original results from 7010 * get_extent() 7011 */ 7012 if (delalloc_start > end || delalloc_end <= start) { 7013 em = hole_em; 7014 hole_em = NULL; 7015 goto out; 7016 } 7017 7018 /* 7019 * Adjust the delalloc_start to make sure it doesn't go backwards from 7020 * the start they passed in 7021 */ 7022 delalloc_start = max(start, delalloc_start); 7023 delalloc_len = delalloc_end - delalloc_start; 7024 7025 if (delalloc_len > 0) { 7026 u64 hole_start; 7027 u64 hole_len; 7028 const u64 hole_end = extent_map_end(hole_em); 7029 7030 em = alloc_extent_map(); 7031 if (!em) { 7032 err = -ENOMEM; 7033 goto out; 7034 } 7035 7036 ASSERT(hole_em); 7037 /* 7038 * When btrfs_get_extent can't find anything it returns one 7039 * huge hole 7040 * 7041 * Make sure what it found really fits our range, and adjust to 7042 * make sure it is based on the start from the caller 7043 */ 7044 if (hole_end <= start || hole_em->start > end) { 7045 free_extent_map(hole_em); 7046 hole_em = NULL; 7047 } else { 7048 hole_start = max(hole_em->start, start); 7049 hole_len = hole_end - hole_start; 7050 } 7051 7052 if (hole_em && delalloc_start > hole_start) { 7053 /* 7054 * Our hole starts before our delalloc, so we have to 7055 * return just the parts of the hole that go until the 7056 * delalloc starts 7057 */ 7058 em->len = min(hole_len, delalloc_start - hole_start); 7059 em->start = hole_start; 7060 em->orig_start = hole_start; 7061 /* 7062 * Don't adjust block start at all, it is fixed at 7063 * EXTENT_MAP_HOLE 7064 */ 7065 em->block_start = hole_em->block_start; 7066 em->block_len = hole_len; 7067 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7068 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7069 } else { 7070 /* 7071 * Hole is out of passed range or it starts after 7072 * delalloc range 7073 */ 7074 em->start = delalloc_start; 7075 em->len = delalloc_len; 7076 em->orig_start = delalloc_start; 7077 em->block_start = EXTENT_MAP_DELALLOC; 7078 em->block_len = delalloc_len; 7079 } 7080 } else { 7081 return hole_em; 7082 } 7083 out: 7084 7085 free_extent_map(hole_em); 7086 if (err) { 7087 free_extent_map(em); 7088 return ERR_PTR(err); 7089 } 7090 return em; 7091 } 7092 7093 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7094 const u64 start, 7095 const u64 len, 7096 const u64 orig_start, 7097 const u64 block_start, 7098 const u64 block_len, 7099 const u64 orig_block_len, 7100 const u64 ram_bytes, 7101 const int type) 7102 { 7103 struct extent_map *em = NULL; 7104 int ret; 7105 7106 if (type != BTRFS_ORDERED_NOCOW) { 7107 em = create_io_em(inode, start, len, orig_start, block_start, 7108 block_len, orig_block_len, ram_bytes, 7109 BTRFS_COMPRESS_NONE, /* compress_type */ 7110 type); 7111 if (IS_ERR(em)) 7112 goto out; 7113 } 7114 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start, 7115 block_len, 0, 7116 (1 << type) | 7117 (1 << BTRFS_ORDERED_DIRECT), 7118 BTRFS_COMPRESS_NONE); 7119 if (ret) { 7120 if (em) { 7121 free_extent_map(em); 7122 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7123 } 7124 em = ERR_PTR(ret); 7125 } 7126 out: 7127 7128 return em; 7129 } 7130 7131 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7132 u64 start, u64 len) 7133 { 7134 struct btrfs_root *root = inode->root; 7135 struct btrfs_fs_info *fs_info = root->fs_info; 7136 struct extent_map *em; 7137 struct btrfs_key ins; 7138 u64 alloc_hint; 7139 int ret; 7140 7141 alloc_hint = get_extent_allocation_hint(inode, start, len); 7142 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7143 0, alloc_hint, &ins, 1, 1); 7144 if (ret) 7145 return ERR_PTR(ret); 7146 7147 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7148 ins.objectid, ins.offset, ins.offset, 7149 ins.offset, BTRFS_ORDERED_REGULAR); 7150 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7151 if (IS_ERR(em)) 7152 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7153 1); 7154 7155 return em; 7156 } 7157 7158 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7159 { 7160 struct btrfs_block_group *block_group; 7161 bool readonly = false; 7162 7163 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7164 if (!block_group || block_group->ro) 7165 readonly = true; 7166 if (block_group) 7167 btrfs_put_block_group(block_group); 7168 return readonly; 7169 } 7170 7171 /* 7172 * Check if we can do nocow write into the range [@offset, @offset + @len) 7173 * 7174 * @offset: File offset 7175 * @len: The length to write, will be updated to the nocow writeable 7176 * range 7177 * @orig_start: (optional) Return the original file offset of the file extent 7178 * @orig_len: (optional) Return the original on-disk length of the file extent 7179 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7180 * @strict: if true, omit optimizations that might force us into unnecessary 7181 * cow. e.g., don't trust generation number. 7182 * 7183 * Return: 7184 * >0 and update @len if we can do nocow write 7185 * 0 if we can't do nocow write 7186 * <0 if error happened 7187 * 7188 * NOTE: This only checks the file extents, caller is responsible to wait for 7189 * any ordered extents. 7190 */ 7191 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7192 u64 *orig_start, u64 *orig_block_len, 7193 u64 *ram_bytes, bool strict) 7194 { 7195 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7196 struct can_nocow_file_extent_args nocow_args = { 0 }; 7197 struct btrfs_path *path; 7198 int ret; 7199 struct extent_buffer *leaf; 7200 struct btrfs_root *root = BTRFS_I(inode)->root; 7201 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7202 struct btrfs_file_extent_item *fi; 7203 struct btrfs_key key; 7204 int found_type; 7205 7206 path = btrfs_alloc_path(); 7207 if (!path) 7208 return -ENOMEM; 7209 7210 ret = btrfs_lookup_file_extent(NULL, root, path, 7211 btrfs_ino(BTRFS_I(inode)), offset, 0); 7212 if (ret < 0) 7213 goto out; 7214 7215 if (ret == 1) { 7216 if (path->slots[0] == 0) { 7217 /* can't find the item, must cow */ 7218 ret = 0; 7219 goto out; 7220 } 7221 path->slots[0]--; 7222 } 7223 ret = 0; 7224 leaf = path->nodes[0]; 7225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7226 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7227 key.type != BTRFS_EXTENT_DATA_KEY) { 7228 /* not our file or wrong item type, must cow */ 7229 goto out; 7230 } 7231 7232 if (key.offset > offset) { 7233 /* Wrong offset, must cow */ 7234 goto out; 7235 } 7236 7237 if (btrfs_file_extent_end(path) <= offset) 7238 goto out; 7239 7240 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7241 found_type = btrfs_file_extent_type(leaf, fi); 7242 if (ram_bytes) 7243 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7244 7245 nocow_args.start = offset; 7246 nocow_args.end = offset + *len - 1; 7247 nocow_args.strict = strict; 7248 nocow_args.free_path = true; 7249 7250 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7251 /* can_nocow_file_extent() has freed the path. */ 7252 path = NULL; 7253 7254 if (ret != 1) { 7255 /* Treat errors as not being able to NOCOW. */ 7256 ret = 0; 7257 goto out; 7258 } 7259 7260 ret = 0; 7261 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7262 goto out; 7263 7264 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7265 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7266 u64 range_end; 7267 7268 range_end = round_up(offset + nocow_args.num_bytes, 7269 root->fs_info->sectorsize) - 1; 7270 ret = test_range_bit(io_tree, offset, range_end, 7271 EXTENT_DELALLOC, 0, NULL); 7272 if (ret) { 7273 ret = -EAGAIN; 7274 goto out; 7275 } 7276 } 7277 7278 if (orig_start) 7279 *orig_start = key.offset - nocow_args.extent_offset; 7280 if (orig_block_len) 7281 *orig_block_len = nocow_args.disk_num_bytes; 7282 7283 *len = nocow_args.num_bytes; 7284 ret = 1; 7285 out: 7286 btrfs_free_path(path); 7287 return ret; 7288 } 7289 7290 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7291 struct extent_state **cached_state, 7292 unsigned int iomap_flags) 7293 { 7294 const bool writing = (iomap_flags & IOMAP_WRITE); 7295 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7296 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7297 struct btrfs_ordered_extent *ordered; 7298 int ret = 0; 7299 7300 while (1) { 7301 if (nowait) { 7302 if (!try_lock_extent(io_tree, lockstart, lockend)) 7303 return -EAGAIN; 7304 } else { 7305 lock_extent_bits(io_tree, lockstart, lockend, cached_state); 7306 } 7307 /* 7308 * We're concerned with the entire range that we're going to be 7309 * doing DIO to, so we need to make sure there's no ordered 7310 * extents in this range. 7311 */ 7312 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7313 lockend - lockstart + 1); 7314 7315 /* 7316 * We need to make sure there are no buffered pages in this 7317 * range either, we could have raced between the invalidate in 7318 * generic_file_direct_write and locking the extent. The 7319 * invalidate needs to happen so that reads after a write do not 7320 * get stale data. 7321 */ 7322 if (!ordered && 7323 (!writing || !filemap_range_has_page(inode->i_mapping, 7324 lockstart, lockend))) 7325 break; 7326 7327 unlock_extent_cached(io_tree, lockstart, lockend, cached_state); 7328 7329 if (ordered) { 7330 if (nowait) { 7331 btrfs_put_ordered_extent(ordered); 7332 ret = -EAGAIN; 7333 break; 7334 } 7335 /* 7336 * If we are doing a DIO read and the ordered extent we 7337 * found is for a buffered write, we can not wait for it 7338 * to complete and retry, because if we do so we can 7339 * deadlock with concurrent buffered writes on page 7340 * locks. This happens only if our DIO read covers more 7341 * than one extent map, if at this point has already 7342 * created an ordered extent for a previous extent map 7343 * and locked its range in the inode's io tree, and a 7344 * concurrent write against that previous extent map's 7345 * range and this range started (we unlock the ranges 7346 * in the io tree only when the bios complete and 7347 * buffered writes always lock pages before attempting 7348 * to lock range in the io tree). 7349 */ 7350 if (writing || 7351 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7352 btrfs_start_ordered_extent(ordered, 1); 7353 else 7354 ret = nowait ? -EAGAIN : -ENOTBLK; 7355 btrfs_put_ordered_extent(ordered); 7356 } else { 7357 /* 7358 * We could trigger writeback for this range (and wait 7359 * for it to complete) and then invalidate the pages for 7360 * this range (through invalidate_inode_pages2_range()), 7361 * but that can lead us to a deadlock with a concurrent 7362 * call to readahead (a buffered read or a defrag call 7363 * triggered a readahead) on a page lock due to an 7364 * ordered dio extent we created before but did not have 7365 * yet a corresponding bio submitted (whence it can not 7366 * complete), which makes readahead wait for that 7367 * ordered extent to complete while holding a lock on 7368 * that page. 7369 */ 7370 ret = nowait ? -EAGAIN : -ENOTBLK; 7371 } 7372 7373 if (ret) 7374 break; 7375 7376 cond_resched(); 7377 } 7378 7379 return ret; 7380 } 7381 7382 /* The callers of this must take lock_extent() */ 7383 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7384 u64 len, u64 orig_start, u64 block_start, 7385 u64 block_len, u64 orig_block_len, 7386 u64 ram_bytes, int compress_type, 7387 int type) 7388 { 7389 struct extent_map_tree *em_tree; 7390 struct extent_map *em; 7391 int ret; 7392 7393 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7394 type == BTRFS_ORDERED_COMPRESSED || 7395 type == BTRFS_ORDERED_NOCOW || 7396 type == BTRFS_ORDERED_REGULAR); 7397 7398 em_tree = &inode->extent_tree; 7399 em = alloc_extent_map(); 7400 if (!em) 7401 return ERR_PTR(-ENOMEM); 7402 7403 em->start = start; 7404 em->orig_start = orig_start; 7405 em->len = len; 7406 em->block_len = block_len; 7407 em->block_start = block_start; 7408 em->orig_block_len = orig_block_len; 7409 em->ram_bytes = ram_bytes; 7410 em->generation = -1; 7411 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7412 if (type == BTRFS_ORDERED_PREALLOC) { 7413 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7414 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7415 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7416 em->compress_type = compress_type; 7417 } 7418 7419 do { 7420 btrfs_drop_extent_cache(inode, em->start, 7421 em->start + em->len - 1, 0); 7422 write_lock(&em_tree->lock); 7423 ret = add_extent_mapping(em_tree, em, 1); 7424 write_unlock(&em_tree->lock); 7425 /* 7426 * The caller has taken lock_extent(), who could race with us 7427 * to add em? 7428 */ 7429 } while (ret == -EEXIST); 7430 7431 if (ret) { 7432 free_extent_map(em); 7433 return ERR_PTR(ret); 7434 } 7435 7436 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7437 return em; 7438 } 7439 7440 7441 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7442 struct inode *inode, 7443 struct btrfs_dio_data *dio_data, 7444 u64 start, u64 len, 7445 unsigned int iomap_flags) 7446 { 7447 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7449 struct extent_map *em = *map; 7450 int type; 7451 u64 block_start, orig_start, orig_block_len, ram_bytes; 7452 struct btrfs_block_group *bg; 7453 bool can_nocow = false; 7454 bool space_reserved = false; 7455 u64 prev_len; 7456 int ret = 0; 7457 7458 /* 7459 * We don't allocate a new extent in the following cases 7460 * 7461 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7462 * existing extent. 7463 * 2) The extent is marked as PREALLOC. We're good to go here and can 7464 * just use the extent. 7465 * 7466 */ 7467 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7468 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7469 em->block_start != EXTENT_MAP_HOLE)) { 7470 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7471 type = BTRFS_ORDERED_PREALLOC; 7472 else 7473 type = BTRFS_ORDERED_NOCOW; 7474 len = min(len, em->len - (start - em->start)); 7475 block_start = em->block_start + (start - em->start); 7476 7477 if (can_nocow_extent(inode, start, &len, &orig_start, 7478 &orig_block_len, &ram_bytes, false) == 1) { 7479 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7480 if (bg) 7481 can_nocow = true; 7482 } 7483 } 7484 7485 prev_len = len; 7486 if (can_nocow) { 7487 struct extent_map *em2; 7488 7489 /* We can NOCOW, so only need to reserve metadata space. */ 7490 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7491 nowait); 7492 if (ret < 0) { 7493 /* Our caller expects us to free the input extent map. */ 7494 free_extent_map(em); 7495 *map = NULL; 7496 btrfs_dec_nocow_writers(bg); 7497 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7498 ret = -EAGAIN; 7499 goto out; 7500 } 7501 space_reserved = true; 7502 7503 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7504 orig_start, block_start, 7505 len, orig_block_len, 7506 ram_bytes, type); 7507 btrfs_dec_nocow_writers(bg); 7508 if (type == BTRFS_ORDERED_PREALLOC) { 7509 free_extent_map(em); 7510 *map = em = em2; 7511 } 7512 7513 if (IS_ERR(em2)) { 7514 ret = PTR_ERR(em2); 7515 goto out; 7516 } 7517 7518 dio_data->nocow_done = true; 7519 } else { 7520 /* Our caller expects us to free the input extent map. */ 7521 free_extent_map(em); 7522 *map = NULL; 7523 7524 if (nowait) 7525 return -EAGAIN; 7526 7527 /* 7528 * If we could not allocate data space before locking the file 7529 * range and we can't do a NOCOW write, then we have to fail. 7530 */ 7531 if (!dio_data->data_space_reserved) 7532 return -ENOSPC; 7533 7534 /* 7535 * We have to COW and we have already reserved data space before, 7536 * so now we reserve only metadata. 7537 */ 7538 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7539 false); 7540 if (ret < 0) 7541 goto out; 7542 space_reserved = true; 7543 7544 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7545 if (IS_ERR(em)) { 7546 ret = PTR_ERR(em); 7547 goto out; 7548 } 7549 *map = em; 7550 len = min(len, em->len - (start - em->start)); 7551 if (len < prev_len) 7552 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7553 prev_len - len, true); 7554 } 7555 7556 /* 7557 * We have created our ordered extent, so we can now release our reservation 7558 * for an outstanding extent. 7559 */ 7560 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7561 7562 /* 7563 * Need to update the i_size under the extent lock so buffered 7564 * readers will get the updated i_size when we unlock. 7565 */ 7566 if (start + len > i_size_read(inode)) 7567 i_size_write(inode, start + len); 7568 out: 7569 if (ret && space_reserved) { 7570 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7571 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7572 } 7573 return ret; 7574 } 7575 7576 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7577 loff_t length, unsigned int flags, struct iomap *iomap, 7578 struct iomap *srcmap) 7579 { 7580 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7581 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7582 struct extent_map *em; 7583 struct extent_state *cached_state = NULL; 7584 struct btrfs_dio_data *dio_data = iter->private; 7585 u64 lockstart, lockend; 7586 const bool write = !!(flags & IOMAP_WRITE); 7587 int ret = 0; 7588 u64 len = length; 7589 const u64 data_alloc_len = length; 7590 bool unlock_extents = false; 7591 7592 if (!write) 7593 len = min_t(u64, len, fs_info->sectorsize); 7594 7595 lockstart = start; 7596 lockend = start + len - 1; 7597 7598 /* 7599 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7600 * enough if we've written compressed pages to this area, so we need to 7601 * flush the dirty pages again to make absolutely sure that any 7602 * outstanding dirty pages are on disk - the first flush only starts 7603 * compression on the data, while keeping the pages locked, so by the 7604 * time the second flush returns we know bios for the compressed pages 7605 * were submitted and finished, and the pages no longer under writeback. 7606 * 7607 * If we have a NOWAIT request and we have any pages in the range that 7608 * are locked, likely due to compression still in progress, we don't want 7609 * to block on page locks. We also don't want to block on pages marked as 7610 * dirty or under writeback (same as for the non-compression case). 7611 * iomap_dio_rw() did the same check, but after that and before we got 7612 * here, mmap'ed writes may have happened or buffered reads started 7613 * (readpage() and readahead(), which lock pages), as we haven't locked 7614 * the file range yet. 7615 */ 7616 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7617 &BTRFS_I(inode)->runtime_flags)) { 7618 if (flags & IOMAP_NOWAIT) { 7619 if (filemap_range_needs_writeback(inode->i_mapping, 7620 lockstart, lockend)) 7621 return -EAGAIN; 7622 } else { 7623 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7624 start + length - 1); 7625 if (ret) 7626 return ret; 7627 } 7628 } 7629 7630 memset(dio_data, 0, sizeof(*dio_data)); 7631 7632 /* 7633 * We always try to allocate data space and must do it before locking 7634 * the file range, to avoid deadlocks with concurrent writes to the same 7635 * range if the range has several extents and the writes don't expand the 7636 * current i_size (the inode lock is taken in shared mode). If we fail to 7637 * allocate data space here we continue and later, after locking the 7638 * file range, we fail with ENOSPC only if we figure out we can not do a 7639 * NOCOW write. 7640 */ 7641 if (write && !(flags & IOMAP_NOWAIT)) { 7642 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7643 &dio_data->data_reserved, 7644 start, data_alloc_len); 7645 if (!ret) 7646 dio_data->data_space_reserved = true; 7647 else if (ret && !(BTRFS_I(inode)->flags & 7648 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7649 goto err; 7650 } 7651 7652 /* 7653 * If this errors out it's because we couldn't invalidate pagecache for 7654 * this range and we need to fallback to buffered IO, or we are doing a 7655 * NOWAIT read/write and we need to block. 7656 */ 7657 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7658 if (ret < 0) 7659 goto err; 7660 7661 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7662 if (IS_ERR(em)) { 7663 ret = PTR_ERR(em); 7664 goto unlock_err; 7665 } 7666 7667 /* 7668 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7669 * io. INLINE is special, and we could probably kludge it in here, but 7670 * it's still buffered so for safety lets just fall back to the generic 7671 * buffered path. 7672 * 7673 * For COMPRESSED we _have_ to read the entire extent in so we can 7674 * decompress it, so there will be buffering required no matter what we 7675 * do, so go ahead and fallback to buffered. 7676 * 7677 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7678 * to buffered IO. Don't blame me, this is the price we pay for using 7679 * the generic code. 7680 */ 7681 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7682 em->block_start == EXTENT_MAP_INLINE) { 7683 free_extent_map(em); 7684 ret = -ENOTBLK; 7685 goto unlock_err; 7686 } 7687 7688 len = min(len, em->len - (start - em->start)); 7689 7690 /* 7691 * If we have a NOWAIT request and the range contains multiple extents 7692 * (or a mix of extents and holes), then we return -EAGAIN to make the 7693 * caller fallback to a context where it can do a blocking (without 7694 * NOWAIT) request. This way we avoid doing partial IO and returning 7695 * success to the caller, which is not optimal for writes and for reads 7696 * it can result in unexpected behaviour for an application. 7697 * 7698 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7699 * iomap_dio_rw(), we can end up returning less data then what the caller 7700 * asked for, resulting in an unexpected, and incorrect, short read. 7701 * That is, the caller asked to read N bytes and we return less than that, 7702 * which is wrong unless we are crossing EOF. This happens if we get a 7703 * page fault error when trying to fault in pages for the buffer that is 7704 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7705 * have previously submitted bios for other extents in the range, in 7706 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7707 * those bios have completed by the time we get the page fault error, 7708 * which we return back to our caller - we should only return EIOCBQUEUED 7709 * after we have submitted bios for all the extents in the range. 7710 */ 7711 if ((flags & IOMAP_NOWAIT) && len < length) { 7712 free_extent_map(em); 7713 ret = -EAGAIN; 7714 goto unlock_err; 7715 } 7716 7717 if (write) { 7718 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7719 start, len, flags); 7720 if (ret < 0) 7721 goto unlock_err; 7722 unlock_extents = true; 7723 /* Recalc len in case the new em is smaller than requested */ 7724 len = min(len, em->len - (start - em->start)); 7725 if (dio_data->data_space_reserved) { 7726 u64 release_offset; 7727 u64 release_len = 0; 7728 7729 if (dio_data->nocow_done) { 7730 release_offset = start; 7731 release_len = data_alloc_len; 7732 } else if (len < data_alloc_len) { 7733 release_offset = start + len; 7734 release_len = data_alloc_len - len; 7735 } 7736 7737 if (release_len > 0) 7738 btrfs_free_reserved_data_space(BTRFS_I(inode), 7739 dio_data->data_reserved, 7740 release_offset, 7741 release_len); 7742 } 7743 } else { 7744 /* 7745 * We need to unlock only the end area that we aren't using. 7746 * The rest is going to be unlocked by the endio routine. 7747 */ 7748 lockstart = start + len; 7749 if (lockstart < lockend) 7750 unlock_extents = true; 7751 } 7752 7753 if (unlock_extents) 7754 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7755 lockstart, lockend, &cached_state); 7756 else 7757 free_extent_state(cached_state); 7758 7759 /* 7760 * Translate extent map information to iomap. 7761 * We trim the extents (and move the addr) even though iomap code does 7762 * that, since we have locked only the parts we are performing I/O in. 7763 */ 7764 if ((em->block_start == EXTENT_MAP_HOLE) || 7765 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7766 iomap->addr = IOMAP_NULL_ADDR; 7767 iomap->type = IOMAP_HOLE; 7768 } else { 7769 iomap->addr = em->block_start + (start - em->start); 7770 iomap->type = IOMAP_MAPPED; 7771 } 7772 iomap->offset = start; 7773 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7774 iomap->length = len; 7775 7776 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7777 iomap->flags |= IOMAP_F_ZONE_APPEND; 7778 7779 free_extent_map(em); 7780 7781 return 0; 7782 7783 unlock_err: 7784 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7785 &cached_state); 7786 err: 7787 if (dio_data->data_space_reserved) { 7788 btrfs_free_reserved_data_space(BTRFS_I(inode), 7789 dio_data->data_reserved, 7790 start, data_alloc_len); 7791 extent_changeset_free(dio_data->data_reserved); 7792 } 7793 7794 return ret; 7795 } 7796 7797 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7798 ssize_t written, unsigned int flags, struct iomap *iomap) 7799 { 7800 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7801 struct btrfs_dio_data *dio_data = iter->private; 7802 size_t submitted = dio_data->submitted; 7803 const bool write = !!(flags & IOMAP_WRITE); 7804 int ret = 0; 7805 7806 if (!write && (iomap->type == IOMAP_HOLE)) { 7807 /* If reading from a hole, unlock and return */ 7808 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7809 return 0; 7810 } 7811 7812 if (submitted < length) { 7813 pos += submitted; 7814 length -= submitted; 7815 if (write) 7816 __endio_write_update_ordered(BTRFS_I(inode), pos, 7817 length, false); 7818 else 7819 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7820 pos + length - 1); 7821 ret = -ENOTBLK; 7822 } 7823 7824 if (write) 7825 extent_changeset_free(dio_data->data_reserved); 7826 return ret; 7827 } 7828 7829 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7830 { 7831 /* 7832 * This implies a barrier so that stores to dio_bio->bi_status before 7833 * this and loads of dio_bio->bi_status after this are fully ordered. 7834 */ 7835 if (!refcount_dec_and_test(&dip->refs)) 7836 return; 7837 7838 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) { 7839 __endio_write_update_ordered(BTRFS_I(dip->inode), 7840 dip->file_offset, 7841 dip->bytes, 7842 !dip->bio.bi_status); 7843 } else { 7844 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7845 dip->file_offset, 7846 dip->file_offset + dip->bytes - 1); 7847 } 7848 7849 kfree(dip->csums); 7850 bio_endio(&dip->bio); 7851 } 7852 7853 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7854 int mirror_num, 7855 enum btrfs_compression_type compress_type) 7856 { 7857 struct btrfs_dio_private *dip = bio->bi_private; 7858 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7859 7860 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7861 7862 if (btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA)) 7863 return; 7864 7865 refcount_inc(&dip->refs); 7866 if (btrfs_map_bio(fs_info, bio, mirror_num)) 7867 refcount_dec(&dip->refs); 7868 } 7869 7870 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip, 7871 struct btrfs_bio *bbio, 7872 const bool uptodate) 7873 { 7874 struct inode *inode = dip->inode; 7875 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7876 const u32 sectorsize = fs_info->sectorsize; 7877 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7878 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7879 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7880 struct bio_vec bvec; 7881 struct bvec_iter iter; 7882 u32 bio_offset = 0; 7883 blk_status_t err = BLK_STS_OK; 7884 7885 __bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) { 7886 unsigned int i, nr_sectors, pgoff; 7887 7888 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7889 pgoff = bvec.bv_offset; 7890 for (i = 0; i < nr_sectors; i++) { 7891 u64 start = bbio->file_offset + bio_offset; 7892 7893 ASSERT(pgoff < PAGE_SIZE); 7894 if (uptodate && 7895 (!csum || !check_data_csum(inode, bbio, 7896 bio_offset, bvec.bv_page, 7897 pgoff, start))) { 7898 clean_io_failure(fs_info, failure_tree, io_tree, 7899 start, bvec.bv_page, 7900 btrfs_ino(BTRFS_I(inode)), 7901 pgoff); 7902 } else { 7903 int ret; 7904 7905 ret = btrfs_repair_one_sector(inode, &bbio->bio, 7906 bio_offset, bvec.bv_page, pgoff, 7907 start, bbio->mirror_num, 7908 submit_dio_repair_bio); 7909 if (ret) 7910 err = errno_to_blk_status(ret); 7911 } 7912 ASSERT(bio_offset + sectorsize > bio_offset); 7913 bio_offset += sectorsize; 7914 pgoff += sectorsize; 7915 } 7916 } 7917 return err; 7918 } 7919 7920 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7921 const u64 offset, const u64 bytes, 7922 const bool uptodate) 7923 { 7924 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, 7925 finish_ordered_fn, uptodate); 7926 } 7927 7928 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7929 struct bio *bio, 7930 u64 dio_file_offset) 7931 { 7932 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false); 7933 } 7934 7935 static void btrfs_end_dio_bio(struct bio *bio) 7936 { 7937 struct btrfs_dio_private *dip = bio->bi_private; 7938 struct btrfs_bio *bbio = btrfs_bio(bio); 7939 blk_status_t err = bio->bi_status; 7940 7941 if (err) 7942 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7943 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7944 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7945 bio->bi_opf, bio->bi_iter.bi_sector, 7946 bio->bi_iter.bi_size, err); 7947 7948 if (bio_op(bio) == REQ_OP_READ) 7949 err = btrfs_check_read_dio_bio(dip, bbio, !err); 7950 7951 if (err) 7952 dip->bio.bi_status = err; 7953 7954 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio); 7955 7956 bio_put(bio); 7957 btrfs_dio_private_put(dip); 7958 } 7959 7960 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7961 struct inode *inode, u64 file_offset, int async_submit) 7962 { 7963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7964 struct btrfs_dio_private *dip = bio->bi_private; 7965 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 7966 blk_status_t ret; 7967 7968 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7969 if (async_submit) 7970 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7971 7972 if (!write) { 7973 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7974 if (ret) 7975 goto err; 7976 } 7977 7978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7979 goto map; 7980 7981 if (write && async_submit) { 7982 ret = btrfs_wq_submit_bio(inode, bio, 0, file_offset, 7983 btrfs_submit_bio_start_direct_io); 7984 goto err; 7985 } else if (write) { 7986 /* 7987 * If we aren't doing async submit, calculate the csum of the 7988 * bio now. 7989 */ 7990 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false); 7991 if (ret) 7992 goto err; 7993 } else { 7994 u64 csum_offset; 7995 7996 csum_offset = file_offset - dip->file_offset; 7997 csum_offset >>= fs_info->sectorsize_bits; 7998 csum_offset *= fs_info->csum_size; 7999 btrfs_bio(bio)->csum = dip->csums + csum_offset; 8000 } 8001 map: 8002 ret = btrfs_map_bio(fs_info, bio, 0); 8003 err: 8004 return ret; 8005 } 8006 8007 static void btrfs_submit_direct(const struct iomap_iter *iter, 8008 struct bio *dio_bio, loff_t file_offset) 8009 { 8010 struct btrfs_dio_private *dip = 8011 container_of(dio_bio, struct btrfs_dio_private, bio); 8012 struct inode *inode = iter->inode; 8013 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8014 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8015 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8016 BTRFS_BLOCK_GROUP_RAID56_MASK); 8017 struct bio *bio; 8018 u64 start_sector; 8019 int async_submit = 0; 8020 u64 submit_len; 8021 u64 clone_offset = 0; 8022 u64 clone_len; 8023 u64 logical; 8024 int ret; 8025 blk_status_t status; 8026 struct btrfs_io_geometry geom; 8027 struct btrfs_dio_data *dio_data = iter->private; 8028 struct extent_map *em = NULL; 8029 8030 dip->inode = inode; 8031 dip->file_offset = file_offset; 8032 dip->bytes = dio_bio->bi_iter.bi_size; 8033 refcount_set(&dip->refs, 1); 8034 dip->csums = NULL; 8035 8036 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 8037 unsigned int nr_sectors = 8038 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits); 8039 8040 /* 8041 * Load the csums up front to reduce csum tree searches and 8042 * contention when submitting bios. 8043 */ 8044 status = BLK_STS_RESOURCE; 8045 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS); 8046 if (!dip) 8047 goto out_err; 8048 8049 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8050 if (status != BLK_STS_OK) 8051 goto out_err; 8052 } 8053 8054 start_sector = dio_bio->bi_iter.bi_sector; 8055 submit_len = dio_bio->bi_iter.bi_size; 8056 8057 do { 8058 logical = start_sector << 9; 8059 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8060 if (IS_ERR(em)) { 8061 status = errno_to_blk_status(PTR_ERR(em)); 8062 em = NULL; 8063 goto out_err_em; 8064 } 8065 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8066 logical, &geom); 8067 if (ret) { 8068 status = errno_to_blk_status(ret); 8069 goto out_err_em; 8070 } 8071 8072 clone_len = min(submit_len, geom.len); 8073 ASSERT(clone_len <= UINT_MAX); 8074 8075 /* 8076 * This will never fail as it's passing GPF_NOFS and 8077 * the allocation is backed by btrfs_bioset. 8078 */ 8079 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8080 bio->bi_private = dip; 8081 bio->bi_end_io = btrfs_end_dio_bio; 8082 btrfs_bio(bio)->file_offset = file_offset; 8083 8084 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8085 status = extract_ordered_extent(BTRFS_I(inode), bio, 8086 file_offset); 8087 if (status) { 8088 bio_put(bio); 8089 goto out_err; 8090 } 8091 } 8092 8093 ASSERT(submit_len >= clone_len); 8094 submit_len -= clone_len; 8095 8096 /* 8097 * Increase the count before we submit the bio so we know 8098 * the end IO handler won't happen before we increase the 8099 * count. Otherwise, the dip might get freed before we're 8100 * done setting it up. 8101 * 8102 * We transfer the initial reference to the last bio, so we 8103 * don't need to increment the reference count for the last one. 8104 */ 8105 if (submit_len > 0) { 8106 refcount_inc(&dip->refs); 8107 /* 8108 * If we are submitting more than one bio, submit them 8109 * all asynchronously. The exception is RAID 5 or 6, as 8110 * asynchronous checksums make it difficult to collect 8111 * full stripe writes. 8112 */ 8113 if (!raid56) 8114 async_submit = 1; 8115 } 8116 8117 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8118 async_submit); 8119 if (status) { 8120 bio_put(bio); 8121 if (submit_len > 0) 8122 refcount_dec(&dip->refs); 8123 goto out_err_em; 8124 } 8125 8126 dio_data->submitted += clone_len; 8127 clone_offset += clone_len; 8128 start_sector += clone_len >> 9; 8129 file_offset += clone_len; 8130 8131 free_extent_map(em); 8132 } while (submit_len > 0); 8133 return; 8134 8135 out_err_em: 8136 free_extent_map(em); 8137 out_err: 8138 dio_bio->bi_status = status; 8139 btrfs_dio_private_put(dip); 8140 } 8141 8142 static const struct iomap_ops btrfs_dio_iomap_ops = { 8143 .iomap_begin = btrfs_dio_iomap_begin, 8144 .iomap_end = btrfs_dio_iomap_end, 8145 }; 8146 8147 static const struct iomap_dio_ops btrfs_dio_ops = { 8148 .submit_io = btrfs_submit_direct, 8149 .bio_set = &btrfs_dio_bioset, 8150 }; 8151 8152 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 8153 { 8154 struct btrfs_dio_data data; 8155 8156 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 8157 IOMAP_DIO_PARTIAL, &data, done_before); 8158 } 8159 8160 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8161 u64 start, u64 len) 8162 { 8163 int ret; 8164 8165 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8166 if (ret) 8167 return ret; 8168 8169 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8170 } 8171 8172 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8173 { 8174 struct inode *inode = page->mapping->host; 8175 int ret; 8176 8177 if (current->flags & PF_MEMALLOC) { 8178 redirty_page_for_writepage(wbc, page); 8179 unlock_page(page); 8180 return 0; 8181 } 8182 8183 /* 8184 * If we are under memory pressure we will call this directly from the 8185 * VM, we need to make sure we have the inode referenced for the ordered 8186 * extent. If not just return like we didn't do anything. 8187 */ 8188 if (!igrab(inode)) { 8189 redirty_page_for_writepage(wbc, page); 8190 return AOP_WRITEPAGE_ACTIVATE; 8191 } 8192 ret = extent_write_full_page(page, wbc); 8193 btrfs_add_delayed_iput(inode); 8194 return ret; 8195 } 8196 8197 static int btrfs_writepages(struct address_space *mapping, 8198 struct writeback_control *wbc) 8199 { 8200 return extent_writepages(mapping, wbc); 8201 } 8202 8203 static void btrfs_readahead(struct readahead_control *rac) 8204 { 8205 extent_readahead(rac); 8206 } 8207 8208 /* 8209 * For release_folio() and invalidate_folio() we have a race window where 8210 * folio_end_writeback() is called but the subpage spinlock is not yet released. 8211 * If we continue to release/invalidate the page, we could cause use-after-free 8212 * for subpage spinlock. So this function is to spin and wait for subpage 8213 * spinlock. 8214 */ 8215 static void wait_subpage_spinlock(struct page *page) 8216 { 8217 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 8218 struct btrfs_subpage *subpage; 8219 8220 if (!btrfs_is_subpage(fs_info, page)) 8221 return; 8222 8223 ASSERT(PagePrivate(page) && page->private); 8224 subpage = (struct btrfs_subpage *)page->private; 8225 8226 /* 8227 * This may look insane as we just acquire the spinlock and release it, 8228 * without doing anything. But we just want to make sure no one is 8229 * still holding the subpage spinlock. 8230 * And since the page is not dirty nor writeback, and we have page 8231 * locked, the only possible way to hold a spinlock is from the endio 8232 * function to clear page writeback. 8233 * 8234 * Here we just acquire the spinlock so that all existing callers 8235 * should exit and we're safe to release/invalidate the page. 8236 */ 8237 spin_lock_irq(&subpage->lock); 8238 spin_unlock_irq(&subpage->lock); 8239 } 8240 8241 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 8242 { 8243 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 8244 8245 if (ret == 1) { 8246 wait_subpage_spinlock(&folio->page); 8247 clear_page_extent_mapped(&folio->page); 8248 } 8249 return ret; 8250 } 8251 8252 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 8253 { 8254 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 8255 return false; 8256 return __btrfs_release_folio(folio, gfp_flags); 8257 } 8258 8259 #ifdef CONFIG_MIGRATION 8260 static int btrfs_migratepage(struct address_space *mapping, 8261 struct page *newpage, struct page *page, 8262 enum migrate_mode mode) 8263 { 8264 int ret; 8265 8266 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8267 if (ret != MIGRATEPAGE_SUCCESS) 8268 return ret; 8269 8270 if (page_has_private(page)) 8271 attach_page_private(newpage, detach_page_private(page)); 8272 8273 if (PageOrdered(page)) { 8274 ClearPageOrdered(page); 8275 SetPageOrdered(newpage); 8276 } 8277 8278 if (mode != MIGRATE_SYNC_NO_COPY) 8279 migrate_page_copy(newpage, page); 8280 else 8281 migrate_page_states(newpage, page); 8282 return MIGRATEPAGE_SUCCESS; 8283 } 8284 #endif 8285 8286 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8287 size_t length) 8288 { 8289 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 8290 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8291 struct extent_io_tree *tree = &inode->io_tree; 8292 struct extent_state *cached_state = NULL; 8293 u64 page_start = folio_pos(folio); 8294 u64 page_end = page_start + folio_size(folio) - 1; 8295 u64 cur; 8296 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8297 8298 /* 8299 * We have folio locked so no new ordered extent can be created on this 8300 * page, nor bio can be submitted for this folio. 8301 * 8302 * But already submitted bio can still be finished on this folio. 8303 * Furthermore, endio function won't skip folio which has Ordered 8304 * (Private2) already cleared, so it's possible for endio and 8305 * invalidate_folio to do the same ordered extent accounting twice 8306 * on one folio. 8307 * 8308 * So here we wait for any submitted bios to finish, so that we won't 8309 * do double ordered extent accounting on the same folio. 8310 */ 8311 folio_wait_writeback(folio); 8312 wait_subpage_spinlock(&folio->page); 8313 8314 /* 8315 * For subpage case, we have call sites like 8316 * btrfs_punch_hole_lock_range() which passes range not aligned to 8317 * sectorsize. 8318 * If the range doesn't cover the full folio, we don't need to and 8319 * shouldn't clear page extent mapped, as folio->private can still 8320 * record subpage dirty bits for other part of the range. 8321 * 8322 * For cases that invalidate the full folio even the range doesn't 8323 * cover the full folio, like invalidating the last folio, we're 8324 * still safe to wait for ordered extent to finish. 8325 */ 8326 if (!(offset == 0 && length == folio_size(folio))) { 8327 btrfs_release_folio(folio, GFP_NOFS); 8328 return; 8329 } 8330 8331 if (!inode_evicting) 8332 lock_extent_bits(tree, page_start, page_end, &cached_state); 8333 8334 cur = page_start; 8335 while (cur < page_end) { 8336 struct btrfs_ordered_extent *ordered; 8337 bool delete_states; 8338 u64 range_end; 8339 u32 range_len; 8340 8341 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8342 page_end + 1 - cur); 8343 if (!ordered) { 8344 range_end = page_end; 8345 /* 8346 * No ordered extent covering this range, we are safe 8347 * to delete all extent states in the range. 8348 */ 8349 delete_states = true; 8350 goto next; 8351 } 8352 if (ordered->file_offset > cur) { 8353 /* 8354 * There is a range between [cur, oe->file_offset) not 8355 * covered by any ordered extent. 8356 * We are safe to delete all extent states, and handle 8357 * the ordered extent in the next iteration. 8358 */ 8359 range_end = ordered->file_offset - 1; 8360 delete_states = true; 8361 goto next; 8362 } 8363 8364 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8365 page_end); 8366 ASSERT(range_end + 1 - cur < U32_MAX); 8367 range_len = range_end + 1 - cur; 8368 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8369 /* 8370 * If Ordered (Private2) is cleared, it means endio has 8371 * already been executed for the range. 8372 * We can't delete the extent states as 8373 * btrfs_finish_ordered_io() may still use some of them. 8374 */ 8375 delete_states = false; 8376 goto next; 8377 } 8378 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8379 8380 /* 8381 * IO on this page will never be started, so we need to account 8382 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8383 * here, must leave that up for the ordered extent completion. 8384 * 8385 * This will also unlock the range for incoming 8386 * btrfs_finish_ordered_io(). 8387 */ 8388 if (!inode_evicting) 8389 clear_extent_bit(tree, cur, range_end, 8390 EXTENT_DELALLOC | 8391 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8392 EXTENT_DEFRAG, 1, 0, &cached_state); 8393 8394 spin_lock_irq(&inode->ordered_tree.lock); 8395 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8396 ordered->truncated_len = min(ordered->truncated_len, 8397 cur - ordered->file_offset); 8398 spin_unlock_irq(&inode->ordered_tree.lock); 8399 8400 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8401 cur, range_end + 1 - cur)) { 8402 btrfs_finish_ordered_io(ordered); 8403 /* 8404 * The ordered extent has finished, now we're again 8405 * safe to delete all extent states of the range. 8406 */ 8407 delete_states = true; 8408 } else { 8409 /* 8410 * btrfs_finish_ordered_io() will get executed by endio 8411 * of other pages, thus we can't delete extent states 8412 * anymore 8413 */ 8414 delete_states = false; 8415 } 8416 next: 8417 if (ordered) 8418 btrfs_put_ordered_extent(ordered); 8419 /* 8420 * Qgroup reserved space handler 8421 * Sector(s) here will be either: 8422 * 8423 * 1) Already written to disk or bio already finished 8424 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8425 * Qgroup will be handled by its qgroup_record then. 8426 * btrfs_qgroup_free_data() call will do nothing here. 8427 * 8428 * 2) Not written to disk yet 8429 * Then btrfs_qgroup_free_data() call will clear the 8430 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8431 * reserved data space. 8432 * Since the IO will never happen for this page. 8433 */ 8434 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8435 if (!inode_evicting) { 8436 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8437 EXTENT_DELALLOC | EXTENT_UPTODATE | 8438 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8439 delete_states, &cached_state); 8440 } 8441 cur = range_end + 1; 8442 } 8443 /* 8444 * We have iterated through all ordered extents of the page, the page 8445 * should not have Ordered (Private2) anymore, or the above iteration 8446 * did something wrong. 8447 */ 8448 ASSERT(!folio_test_ordered(folio)); 8449 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8450 if (!inode_evicting) 8451 __btrfs_release_folio(folio, GFP_NOFS); 8452 clear_page_extent_mapped(&folio->page); 8453 } 8454 8455 /* 8456 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8457 * called from a page fault handler when a page is first dirtied. Hence we must 8458 * be careful to check for EOF conditions here. We set the page up correctly 8459 * for a written page which means we get ENOSPC checking when writing into 8460 * holes and correct delalloc and unwritten extent mapping on filesystems that 8461 * support these features. 8462 * 8463 * We are not allowed to take the i_mutex here so we have to play games to 8464 * protect against truncate races as the page could now be beyond EOF. Because 8465 * truncate_setsize() writes the inode size before removing pages, once we have 8466 * the page lock we can determine safely if the page is beyond EOF. If it is not 8467 * beyond EOF, then the page is guaranteed safe against truncation until we 8468 * unlock the page. 8469 */ 8470 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8471 { 8472 struct page *page = vmf->page; 8473 struct inode *inode = file_inode(vmf->vma->vm_file); 8474 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8475 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8476 struct btrfs_ordered_extent *ordered; 8477 struct extent_state *cached_state = NULL; 8478 struct extent_changeset *data_reserved = NULL; 8479 unsigned long zero_start; 8480 loff_t size; 8481 vm_fault_t ret; 8482 int ret2; 8483 int reserved = 0; 8484 u64 reserved_space; 8485 u64 page_start; 8486 u64 page_end; 8487 u64 end; 8488 8489 reserved_space = PAGE_SIZE; 8490 8491 sb_start_pagefault(inode->i_sb); 8492 page_start = page_offset(page); 8493 page_end = page_start + PAGE_SIZE - 1; 8494 end = page_end; 8495 8496 /* 8497 * Reserving delalloc space after obtaining the page lock can lead to 8498 * deadlock. For example, if a dirty page is locked by this function 8499 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8500 * dirty page write out, then the btrfs_writepage() function could 8501 * end up waiting indefinitely to get a lock on the page currently 8502 * being processed by btrfs_page_mkwrite() function. 8503 */ 8504 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8505 page_start, reserved_space); 8506 if (!ret2) { 8507 ret2 = file_update_time(vmf->vma->vm_file); 8508 reserved = 1; 8509 } 8510 if (ret2) { 8511 ret = vmf_error(ret2); 8512 if (reserved) 8513 goto out; 8514 goto out_noreserve; 8515 } 8516 8517 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8518 again: 8519 down_read(&BTRFS_I(inode)->i_mmap_lock); 8520 lock_page(page); 8521 size = i_size_read(inode); 8522 8523 if ((page->mapping != inode->i_mapping) || 8524 (page_start >= size)) { 8525 /* page got truncated out from underneath us */ 8526 goto out_unlock; 8527 } 8528 wait_on_page_writeback(page); 8529 8530 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8531 ret2 = set_page_extent_mapped(page); 8532 if (ret2 < 0) { 8533 ret = vmf_error(ret2); 8534 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8535 goto out_unlock; 8536 } 8537 8538 /* 8539 * we can't set the delalloc bits if there are pending ordered 8540 * extents. Drop our locks and wait for them to finish 8541 */ 8542 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8543 PAGE_SIZE); 8544 if (ordered) { 8545 unlock_extent_cached(io_tree, page_start, page_end, 8546 &cached_state); 8547 unlock_page(page); 8548 up_read(&BTRFS_I(inode)->i_mmap_lock); 8549 btrfs_start_ordered_extent(ordered, 1); 8550 btrfs_put_ordered_extent(ordered); 8551 goto again; 8552 } 8553 8554 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8555 reserved_space = round_up(size - page_start, 8556 fs_info->sectorsize); 8557 if (reserved_space < PAGE_SIZE) { 8558 end = page_start + reserved_space - 1; 8559 btrfs_delalloc_release_space(BTRFS_I(inode), 8560 data_reserved, page_start, 8561 PAGE_SIZE - reserved_space, true); 8562 } 8563 } 8564 8565 /* 8566 * page_mkwrite gets called when the page is firstly dirtied after it's 8567 * faulted in, but write(2) could also dirty a page and set delalloc 8568 * bits, thus in this case for space account reason, we still need to 8569 * clear any delalloc bits within this page range since we have to 8570 * reserve data&meta space before lock_page() (see above comments). 8571 */ 8572 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8573 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8574 EXTENT_DEFRAG, 0, 0, &cached_state); 8575 8576 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8577 &cached_state); 8578 if (ret2) { 8579 unlock_extent_cached(io_tree, page_start, page_end, 8580 &cached_state); 8581 ret = VM_FAULT_SIGBUS; 8582 goto out_unlock; 8583 } 8584 8585 /* page is wholly or partially inside EOF */ 8586 if (page_start + PAGE_SIZE > size) 8587 zero_start = offset_in_page(size); 8588 else 8589 zero_start = PAGE_SIZE; 8590 8591 if (zero_start != PAGE_SIZE) { 8592 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8593 flush_dcache_page(page); 8594 } 8595 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8596 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8597 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8598 8599 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8600 8601 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8602 up_read(&BTRFS_I(inode)->i_mmap_lock); 8603 8604 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8605 sb_end_pagefault(inode->i_sb); 8606 extent_changeset_free(data_reserved); 8607 return VM_FAULT_LOCKED; 8608 8609 out_unlock: 8610 unlock_page(page); 8611 up_read(&BTRFS_I(inode)->i_mmap_lock); 8612 out: 8613 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8614 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8615 reserved_space, (ret != 0)); 8616 out_noreserve: 8617 sb_end_pagefault(inode->i_sb); 8618 extent_changeset_free(data_reserved); 8619 return ret; 8620 } 8621 8622 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8623 { 8624 struct btrfs_truncate_control control = { 8625 .inode = BTRFS_I(inode), 8626 .ino = btrfs_ino(BTRFS_I(inode)), 8627 .min_type = BTRFS_EXTENT_DATA_KEY, 8628 .clear_extent_range = true, 8629 }; 8630 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8631 struct btrfs_root *root = BTRFS_I(inode)->root; 8632 struct btrfs_block_rsv *rsv; 8633 int ret; 8634 struct btrfs_trans_handle *trans; 8635 u64 mask = fs_info->sectorsize - 1; 8636 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8637 8638 if (!skip_writeback) { 8639 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8640 (u64)-1); 8641 if (ret) 8642 return ret; 8643 } 8644 8645 /* 8646 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8647 * things going on here: 8648 * 8649 * 1) We need to reserve space to update our inode. 8650 * 8651 * 2) We need to have something to cache all the space that is going to 8652 * be free'd up by the truncate operation, but also have some slack 8653 * space reserved in case it uses space during the truncate (thank you 8654 * very much snapshotting). 8655 * 8656 * And we need these to be separate. The fact is we can use a lot of 8657 * space doing the truncate, and we have no earthly idea how much space 8658 * we will use, so we need the truncate reservation to be separate so it 8659 * doesn't end up using space reserved for updating the inode. We also 8660 * need to be able to stop the transaction and start a new one, which 8661 * means we need to be able to update the inode several times, and we 8662 * have no idea of knowing how many times that will be, so we can't just 8663 * reserve 1 item for the entirety of the operation, so that has to be 8664 * done separately as well. 8665 * 8666 * So that leaves us with 8667 * 8668 * 1) rsv - for the truncate reservation, which we will steal from the 8669 * transaction reservation. 8670 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8671 * updating the inode. 8672 */ 8673 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8674 if (!rsv) 8675 return -ENOMEM; 8676 rsv->size = min_size; 8677 rsv->failfast = 1; 8678 8679 /* 8680 * 1 for the truncate slack space 8681 * 1 for updating the inode. 8682 */ 8683 trans = btrfs_start_transaction(root, 2); 8684 if (IS_ERR(trans)) { 8685 ret = PTR_ERR(trans); 8686 goto out; 8687 } 8688 8689 /* Migrate the slack space for the truncate to our reserve */ 8690 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8691 min_size, false); 8692 BUG_ON(ret); 8693 8694 trans->block_rsv = rsv; 8695 8696 while (1) { 8697 struct extent_state *cached_state = NULL; 8698 const u64 new_size = inode->i_size; 8699 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8700 8701 control.new_size = new_size; 8702 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 8703 &cached_state); 8704 /* 8705 * We want to drop from the next block forward in case this new 8706 * size is not block aligned since we will be keeping the last 8707 * block of the extent just the way it is. 8708 */ 8709 btrfs_drop_extent_cache(BTRFS_I(inode), 8710 ALIGN(new_size, fs_info->sectorsize), 8711 (u64)-1, 0); 8712 8713 ret = btrfs_truncate_inode_items(trans, root, &control); 8714 8715 inode_sub_bytes(inode, control.sub_bytes); 8716 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size); 8717 8718 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 8719 (u64)-1, &cached_state); 8720 8721 trans->block_rsv = &fs_info->trans_block_rsv; 8722 if (ret != -ENOSPC && ret != -EAGAIN) 8723 break; 8724 8725 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8726 if (ret) 8727 break; 8728 8729 btrfs_end_transaction(trans); 8730 btrfs_btree_balance_dirty(fs_info); 8731 8732 trans = btrfs_start_transaction(root, 2); 8733 if (IS_ERR(trans)) { 8734 ret = PTR_ERR(trans); 8735 trans = NULL; 8736 break; 8737 } 8738 8739 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8740 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8741 rsv, min_size, false); 8742 BUG_ON(ret); /* shouldn't happen */ 8743 trans->block_rsv = rsv; 8744 } 8745 8746 /* 8747 * We can't call btrfs_truncate_block inside a trans handle as we could 8748 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8749 * know we've truncated everything except the last little bit, and can 8750 * do btrfs_truncate_block and then update the disk_i_size. 8751 */ 8752 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8753 btrfs_end_transaction(trans); 8754 btrfs_btree_balance_dirty(fs_info); 8755 8756 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8757 if (ret) 8758 goto out; 8759 trans = btrfs_start_transaction(root, 1); 8760 if (IS_ERR(trans)) { 8761 ret = PTR_ERR(trans); 8762 goto out; 8763 } 8764 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8765 } 8766 8767 if (trans) { 8768 int ret2; 8769 8770 trans->block_rsv = &fs_info->trans_block_rsv; 8771 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8772 if (ret2 && !ret) 8773 ret = ret2; 8774 8775 ret2 = btrfs_end_transaction(trans); 8776 if (ret2 && !ret) 8777 ret = ret2; 8778 btrfs_btree_balance_dirty(fs_info); 8779 } 8780 out: 8781 btrfs_free_block_rsv(fs_info, rsv); 8782 /* 8783 * So if we truncate and then write and fsync we normally would just 8784 * write the extents that changed, which is a problem if we need to 8785 * first truncate that entire inode. So set this flag so we write out 8786 * all of the extents in the inode to the sync log so we're completely 8787 * safe. 8788 * 8789 * If no extents were dropped or trimmed we don't need to force the next 8790 * fsync to truncate all the inode's items from the log and re-log them 8791 * all. This means the truncate operation did not change the file size, 8792 * or changed it to a smaller size but there was only an implicit hole 8793 * between the old i_size and the new i_size, and there were no prealloc 8794 * extents beyond i_size to drop. 8795 */ 8796 if (control.extents_found > 0) 8797 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8798 8799 return ret; 8800 } 8801 8802 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 8803 struct inode *dir) 8804 { 8805 struct inode *inode; 8806 8807 inode = new_inode(dir->i_sb); 8808 if (inode) { 8809 /* 8810 * Subvolumes don't inherit the sgid bit or the parent's gid if 8811 * the parent's sgid bit is set. This is probably a bug. 8812 */ 8813 inode_init_owner(mnt_userns, inode, NULL, 8814 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8815 inode->i_op = &btrfs_dir_inode_operations; 8816 inode->i_fop = &btrfs_dir_file_operations; 8817 } 8818 return inode; 8819 } 8820 8821 struct inode *btrfs_alloc_inode(struct super_block *sb) 8822 { 8823 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8824 struct btrfs_inode *ei; 8825 struct inode *inode; 8826 8827 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8828 if (!ei) 8829 return NULL; 8830 8831 ei->root = NULL; 8832 ei->generation = 0; 8833 ei->last_trans = 0; 8834 ei->last_sub_trans = 0; 8835 ei->logged_trans = 0; 8836 ei->delalloc_bytes = 0; 8837 ei->new_delalloc_bytes = 0; 8838 ei->defrag_bytes = 0; 8839 ei->disk_i_size = 0; 8840 ei->flags = 0; 8841 ei->ro_flags = 0; 8842 ei->csum_bytes = 0; 8843 ei->index_cnt = (u64)-1; 8844 ei->dir_index = 0; 8845 ei->last_unlink_trans = 0; 8846 ei->last_reflink_trans = 0; 8847 ei->last_log_commit = 0; 8848 8849 spin_lock_init(&ei->lock); 8850 ei->outstanding_extents = 0; 8851 if (sb->s_magic != BTRFS_TEST_MAGIC) 8852 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8853 BTRFS_BLOCK_RSV_DELALLOC); 8854 ei->runtime_flags = 0; 8855 ei->prop_compress = BTRFS_COMPRESS_NONE; 8856 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8857 8858 ei->delayed_node = NULL; 8859 8860 ei->i_otime.tv_sec = 0; 8861 ei->i_otime.tv_nsec = 0; 8862 8863 inode = &ei->vfs_inode; 8864 extent_map_tree_init(&ei->extent_tree); 8865 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8866 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8867 IO_TREE_INODE_IO_FAILURE, inode); 8868 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8869 IO_TREE_INODE_FILE_EXTENT, inode); 8870 ei->io_tree.track_uptodate = true; 8871 ei->io_failure_tree.track_uptodate = true; 8872 atomic_set(&ei->sync_writers, 0); 8873 mutex_init(&ei->log_mutex); 8874 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8875 INIT_LIST_HEAD(&ei->delalloc_inodes); 8876 INIT_LIST_HEAD(&ei->delayed_iput); 8877 RB_CLEAR_NODE(&ei->rb_node); 8878 init_rwsem(&ei->i_mmap_lock); 8879 8880 return inode; 8881 } 8882 8883 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8884 void btrfs_test_destroy_inode(struct inode *inode) 8885 { 8886 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8887 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8888 } 8889 #endif 8890 8891 void btrfs_free_inode(struct inode *inode) 8892 { 8893 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8894 } 8895 8896 void btrfs_destroy_inode(struct inode *vfs_inode) 8897 { 8898 struct btrfs_ordered_extent *ordered; 8899 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8900 struct btrfs_root *root = inode->root; 8901 8902 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8903 WARN_ON(vfs_inode->i_data.nrpages); 8904 WARN_ON(inode->block_rsv.reserved); 8905 WARN_ON(inode->block_rsv.size); 8906 WARN_ON(inode->outstanding_extents); 8907 if (!S_ISDIR(vfs_inode->i_mode)) { 8908 WARN_ON(inode->delalloc_bytes); 8909 WARN_ON(inode->new_delalloc_bytes); 8910 } 8911 WARN_ON(inode->csum_bytes); 8912 WARN_ON(inode->defrag_bytes); 8913 8914 /* 8915 * This can happen where we create an inode, but somebody else also 8916 * created the same inode and we need to destroy the one we already 8917 * created. 8918 */ 8919 if (!root) 8920 return; 8921 8922 while (1) { 8923 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8924 if (!ordered) 8925 break; 8926 else { 8927 btrfs_err(root->fs_info, 8928 "found ordered extent %llu %llu on inode cleanup", 8929 ordered->file_offset, ordered->num_bytes); 8930 btrfs_remove_ordered_extent(inode, ordered); 8931 btrfs_put_ordered_extent(ordered); 8932 btrfs_put_ordered_extent(ordered); 8933 } 8934 } 8935 btrfs_qgroup_check_reserved_leak(inode); 8936 inode_tree_del(inode); 8937 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8938 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8939 btrfs_put_root(inode->root); 8940 } 8941 8942 int btrfs_drop_inode(struct inode *inode) 8943 { 8944 struct btrfs_root *root = BTRFS_I(inode)->root; 8945 8946 if (root == NULL) 8947 return 1; 8948 8949 /* the snap/subvol tree is on deleting */ 8950 if (btrfs_root_refs(&root->root_item) == 0) 8951 return 1; 8952 else 8953 return generic_drop_inode(inode); 8954 } 8955 8956 static void init_once(void *foo) 8957 { 8958 struct btrfs_inode *ei = foo; 8959 8960 inode_init_once(&ei->vfs_inode); 8961 } 8962 8963 void __cold btrfs_destroy_cachep(void) 8964 { 8965 /* 8966 * Make sure all delayed rcu free inodes are flushed before we 8967 * destroy cache. 8968 */ 8969 rcu_barrier(); 8970 bioset_exit(&btrfs_dio_bioset); 8971 kmem_cache_destroy(btrfs_inode_cachep); 8972 kmem_cache_destroy(btrfs_trans_handle_cachep); 8973 kmem_cache_destroy(btrfs_path_cachep); 8974 kmem_cache_destroy(btrfs_free_space_cachep); 8975 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8976 } 8977 8978 int __init btrfs_init_cachep(void) 8979 { 8980 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8981 sizeof(struct btrfs_inode), 0, 8982 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8983 init_once); 8984 if (!btrfs_inode_cachep) 8985 goto fail; 8986 8987 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8988 sizeof(struct btrfs_trans_handle), 0, 8989 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8990 if (!btrfs_trans_handle_cachep) 8991 goto fail; 8992 8993 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8994 sizeof(struct btrfs_path), 0, 8995 SLAB_MEM_SPREAD, NULL); 8996 if (!btrfs_path_cachep) 8997 goto fail; 8998 8999 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9000 sizeof(struct btrfs_free_space), 0, 9001 SLAB_MEM_SPREAD, NULL); 9002 if (!btrfs_free_space_cachep) 9003 goto fail; 9004 9005 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9006 PAGE_SIZE, PAGE_SIZE, 9007 SLAB_MEM_SPREAD, NULL); 9008 if (!btrfs_free_space_bitmap_cachep) 9009 goto fail; 9010 9011 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 9012 offsetof(struct btrfs_dio_private, bio), 9013 BIOSET_NEED_BVECS)) 9014 goto fail; 9015 9016 return 0; 9017 fail: 9018 btrfs_destroy_cachep(); 9019 return -ENOMEM; 9020 } 9021 9022 static int btrfs_getattr(struct user_namespace *mnt_userns, 9023 const struct path *path, struct kstat *stat, 9024 u32 request_mask, unsigned int flags) 9025 { 9026 u64 delalloc_bytes; 9027 u64 inode_bytes; 9028 struct inode *inode = d_inode(path->dentry); 9029 u32 blocksize = inode->i_sb->s_blocksize; 9030 u32 bi_flags = BTRFS_I(inode)->flags; 9031 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 9032 9033 stat->result_mask |= STATX_BTIME; 9034 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9035 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9036 if (bi_flags & BTRFS_INODE_APPEND) 9037 stat->attributes |= STATX_ATTR_APPEND; 9038 if (bi_flags & BTRFS_INODE_COMPRESS) 9039 stat->attributes |= STATX_ATTR_COMPRESSED; 9040 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9041 stat->attributes |= STATX_ATTR_IMMUTABLE; 9042 if (bi_flags & BTRFS_INODE_NODUMP) 9043 stat->attributes |= STATX_ATTR_NODUMP; 9044 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 9045 stat->attributes |= STATX_ATTR_VERITY; 9046 9047 stat->attributes_mask |= (STATX_ATTR_APPEND | 9048 STATX_ATTR_COMPRESSED | 9049 STATX_ATTR_IMMUTABLE | 9050 STATX_ATTR_NODUMP); 9051 9052 generic_fillattr(mnt_userns, inode, stat); 9053 stat->dev = BTRFS_I(inode)->root->anon_dev; 9054 9055 spin_lock(&BTRFS_I(inode)->lock); 9056 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9057 inode_bytes = inode_get_bytes(inode); 9058 spin_unlock(&BTRFS_I(inode)->lock); 9059 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9060 ALIGN(delalloc_bytes, blocksize)) >> 9; 9061 return 0; 9062 } 9063 9064 static int btrfs_rename_exchange(struct inode *old_dir, 9065 struct dentry *old_dentry, 9066 struct inode *new_dir, 9067 struct dentry *new_dentry) 9068 { 9069 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9070 struct btrfs_trans_handle *trans; 9071 unsigned int trans_num_items; 9072 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9073 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9074 struct inode *new_inode = new_dentry->d_inode; 9075 struct inode *old_inode = old_dentry->d_inode; 9076 struct timespec64 ctime = current_time(old_inode); 9077 struct btrfs_rename_ctx old_rename_ctx; 9078 struct btrfs_rename_ctx new_rename_ctx; 9079 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9080 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9081 u64 old_idx = 0; 9082 u64 new_idx = 0; 9083 int ret; 9084 int ret2; 9085 bool need_abort = false; 9086 9087 /* 9088 * For non-subvolumes allow exchange only within one subvolume, in the 9089 * same inode namespace. Two subvolumes (represented as directory) can 9090 * be exchanged as they're a logical link and have a fixed inode number. 9091 */ 9092 if (root != dest && 9093 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 9094 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 9095 return -EXDEV; 9096 9097 /* close the race window with snapshot create/destroy ioctl */ 9098 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9099 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9100 down_read(&fs_info->subvol_sem); 9101 9102 /* 9103 * For each inode: 9104 * 1 to remove old dir item 9105 * 1 to remove old dir index 9106 * 1 to add new dir item 9107 * 1 to add new dir index 9108 * 1 to update parent inode 9109 * 9110 * If the parents are the same, we only need to account for one 9111 */ 9112 trans_num_items = (old_dir == new_dir ? 9 : 10); 9113 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9114 /* 9115 * 1 to remove old root ref 9116 * 1 to remove old root backref 9117 * 1 to add new root ref 9118 * 1 to add new root backref 9119 */ 9120 trans_num_items += 4; 9121 } else { 9122 /* 9123 * 1 to update inode item 9124 * 1 to remove old inode ref 9125 * 1 to add new inode ref 9126 */ 9127 trans_num_items += 3; 9128 } 9129 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9130 trans_num_items += 4; 9131 else 9132 trans_num_items += 3; 9133 trans = btrfs_start_transaction(root, trans_num_items); 9134 if (IS_ERR(trans)) { 9135 ret = PTR_ERR(trans); 9136 goto out_notrans; 9137 } 9138 9139 if (dest != root) { 9140 ret = btrfs_record_root_in_trans(trans, dest); 9141 if (ret) 9142 goto out_fail; 9143 } 9144 9145 /* 9146 * We need to find a free sequence number both in the source and 9147 * in the destination directory for the exchange. 9148 */ 9149 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9150 if (ret) 9151 goto out_fail; 9152 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9153 if (ret) 9154 goto out_fail; 9155 9156 BTRFS_I(old_inode)->dir_index = 0ULL; 9157 BTRFS_I(new_inode)->dir_index = 0ULL; 9158 9159 /* Reference for the source. */ 9160 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9161 /* force full log commit if subvolume involved. */ 9162 btrfs_set_log_full_commit(trans); 9163 } else { 9164 ret = btrfs_insert_inode_ref(trans, dest, 9165 new_dentry->d_name.name, 9166 new_dentry->d_name.len, 9167 old_ino, 9168 btrfs_ino(BTRFS_I(new_dir)), 9169 old_idx); 9170 if (ret) 9171 goto out_fail; 9172 need_abort = true; 9173 } 9174 9175 /* And now for the dest. */ 9176 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9177 /* force full log commit if subvolume involved. */ 9178 btrfs_set_log_full_commit(trans); 9179 } else { 9180 ret = btrfs_insert_inode_ref(trans, root, 9181 old_dentry->d_name.name, 9182 old_dentry->d_name.len, 9183 new_ino, 9184 btrfs_ino(BTRFS_I(old_dir)), 9185 new_idx); 9186 if (ret) { 9187 if (need_abort) 9188 btrfs_abort_transaction(trans, ret); 9189 goto out_fail; 9190 } 9191 } 9192 9193 /* Update inode version and ctime/mtime. */ 9194 inode_inc_iversion(old_dir); 9195 inode_inc_iversion(new_dir); 9196 inode_inc_iversion(old_inode); 9197 inode_inc_iversion(new_inode); 9198 old_dir->i_ctime = old_dir->i_mtime = ctime; 9199 new_dir->i_ctime = new_dir->i_mtime = ctime; 9200 old_inode->i_ctime = ctime; 9201 new_inode->i_ctime = ctime; 9202 9203 if (old_dentry->d_parent != new_dentry->d_parent) { 9204 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9205 BTRFS_I(old_inode), 1); 9206 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9207 BTRFS_I(new_inode), 1); 9208 } 9209 9210 /* src is a subvolume */ 9211 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9212 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9213 } else { /* src is an inode */ 9214 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9215 BTRFS_I(old_dentry->d_inode), 9216 old_dentry->d_name.name, 9217 old_dentry->d_name.len, 9218 &old_rename_ctx); 9219 if (!ret) 9220 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9221 } 9222 if (ret) { 9223 btrfs_abort_transaction(trans, ret); 9224 goto out_fail; 9225 } 9226 9227 /* dest is a subvolume */ 9228 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9229 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9230 } else { /* dest is an inode */ 9231 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9232 BTRFS_I(new_dentry->d_inode), 9233 new_dentry->d_name.name, 9234 new_dentry->d_name.len, 9235 &new_rename_ctx); 9236 if (!ret) 9237 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9238 } 9239 if (ret) { 9240 btrfs_abort_transaction(trans, ret); 9241 goto out_fail; 9242 } 9243 9244 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9245 new_dentry->d_name.name, 9246 new_dentry->d_name.len, 0, old_idx); 9247 if (ret) { 9248 btrfs_abort_transaction(trans, ret); 9249 goto out_fail; 9250 } 9251 9252 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9253 old_dentry->d_name.name, 9254 old_dentry->d_name.len, 0, new_idx); 9255 if (ret) { 9256 btrfs_abort_transaction(trans, ret); 9257 goto out_fail; 9258 } 9259 9260 if (old_inode->i_nlink == 1) 9261 BTRFS_I(old_inode)->dir_index = old_idx; 9262 if (new_inode->i_nlink == 1) 9263 BTRFS_I(new_inode)->dir_index = new_idx; 9264 9265 /* 9266 * Now pin the logs of the roots. We do it to ensure that no other task 9267 * can sync the logs while we are in progress with the rename, because 9268 * that could result in an inconsistency in case any of the inodes that 9269 * are part of this rename operation were logged before. 9270 */ 9271 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9272 btrfs_pin_log_trans(root); 9273 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9274 btrfs_pin_log_trans(dest); 9275 9276 /* Do the log updates for all inodes. */ 9277 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9278 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9279 old_rename_ctx.index, new_dentry->d_parent); 9280 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9281 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 9282 new_rename_ctx.index, old_dentry->d_parent); 9283 9284 /* Now unpin the logs. */ 9285 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9286 btrfs_end_log_trans(root); 9287 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9288 btrfs_end_log_trans(dest); 9289 out_fail: 9290 ret2 = btrfs_end_transaction(trans); 9291 ret = ret ? ret : ret2; 9292 out_notrans: 9293 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9294 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9295 up_read(&fs_info->subvol_sem); 9296 9297 return ret; 9298 } 9299 9300 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns, 9301 struct inode *dir) 9302 { 9303 struct inode *inode; 9304 9305 inode = new_inode(dir->i_sb); 9306 if (inode) { 9307 inode_init_owner(mnt_userns, inode, dir, 9308 S_IFCHR | WHITEOUT_MODE); 9309 inode->i_op = &btrfs_special_inode_operations; 9310 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 9311 } 9312 return inode; 9313 } 9314 9315 static int btrfs_rename(struct user_namespace *mnt_userns, 9316 struct inode *old_dir, struct dentry *old_dentry, 9317 struct inode *new_dir, struct dentry *new_dentry, 9318 unsigned int flags) 9319 { 9320 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9321 struct btrfs_new_inode_args whiteout_args = { 9322 .dir = old_dir, 9323 .dentry = old_dentry, 9324 }; 9325 struct btrfs_trans_handle *trans; 9326 unsigned int trans_num_items; 9327 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9328 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9329 struct inode *new_inode = d_inode(new_dentry); 9330 struct inode *old_inode = d_inode(old_dentry); 9331 struct btrfs_rename_ctx rename_ctx; 9332 u64 index = 0; 9333 int ret; 9334 int ret2; 9335 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9336 9337 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9338 return -EPERM; 9339 9340 /* we only allow rename subvolume link between subvolumes */ 9341 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9342 return -EXDEV; 9343 9344 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9345 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9346 return -ENOTEMPTY; 9347 9348 if (S_ISDIR(old_inode->i_mode) && new_inode && 9349 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9350 return -ENOTEMPTY; 9351 9352 9353 /* check for collisions, even if the name isn't there */ 9354 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9355 new_dentry->d_name.name, 9356 new_dentry->d_name.len); 9357 9358 if (ret) { 9359 if (ret == -EEXIST) { 9360 /* we shouldn't get 9361 * eexist without a new_inode */ 9362 if (WARN_ON(!new_inode)) { 9363 return ret; 9364 } 9365 } else { 9366 /* maybe -EOVERFLOW */ 9367 return ret; 9368 } 9369 } 9370 ret = 0; 9371 9372 /* 9373 * we're using rename to replace one file with another. Start IO on it 9374 * now so we don't add too much work to the end of the transaction 9375 */ 9376 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9377 filemap_flush(old_inode->i_mapping); 9378 9379 if (flags & RENAME_WHITEOUT) { 9380 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir); 9381 if (!whiteout_args.inode) 9382 return -ENOMEM; 9383 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9384 if (ret) 9385 goto out_whiteout_inode; 9386 } else { 9387 /* 1 to update the old parent inode. */ 9388 trans_num_items = 1; 9389 } 9390 9391 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9392 /* Close the race window with snapshot create/destroy ioctl */ 9393 down_read(&fs_info->subvol_sem); 9394 /* 9395 * 1 to remove old root ref 9396 * 1 to remove old root backref 9397 * 1 to add new root ref 9398 * 1 to add new root backref 9399 */ 9400 trans_num_items += 4; 9401 } else { 9402 /* 9403 * 1 to update inode 9404 * 1 to remove old inode ref 9405 * 1 to add new inode ref 9406 */ 9407 trans_num_items += 3; 9408 } 9409 /* 9410 * 1 to remove old dir item 9411 * 1 to remove old dir index 9412 * 1 to add new dir item 9413 * 1 to add new dir index 9414 */ 9415 trans_num_items += 4; 9416 /* 1 to update new parent inode if it's not the same as the old parent */ 9417 if (new_dir != old_dir) 9418 trans_num_items++; 9419 if (new_inode) { 9420 /* 9421 * 1 to update inode 9422 * 1 to remove inode ref 9423 * 1 to remove dir item 9424 * 1 to remove dir index 9425 * 1 to possibly add orphan item 9426 */ 9427 trans_num_items += 5; 9428 } 9429 trans = btrfs_start_transaction(root, trans_num_items); 9430 if (IS_ERR(trans)) { 9431 ret = PTR_ERR(trans); 9432 goto out_notrans; 9433 } 9434 9435 if (dest != root) { 9436 ret = btrfs_record_root_in_trans(trans, dest); 9437 if (ret) 9438 goto out_fail; 9439 } 9440 9441 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9442 if (ret) 9443 goto out_fail; 9444 9445 BTRFS_I(old_inode)->dir_index = 0ULL; 9446 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9447 /* force full log commit if subvolume involved. */ 9448 btrfs_set_log_full_commit(trans); 9449 } else { 9450 ret = btrfs_insert_inode_ref(trans, dest, 9451 new_dentry->d_name.name, 9452 new_dentry->d_name.len, 9453 old_ino, 9454 btrfs_ino(BTRFS_I(new_dir)), index); 9455 if (ret) 9456 goto out_fail; 9457 } 9458 9459 inode_inc_iversion(old_dir); 9460 inode_inc_iversion(new_dir); 9461 inode_inc_iversion(old_inode); 9462 old_dir->i_ctime = old_dir->i_mtime = 9463 new_dir->i_ctime = new_dir->i_mtime = 9464 old_inode->i_ctime = current_time(old_dir); 9465 9466 if (old_dentry->d_parent != new_dentry->d_parent) 9467 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9468 BTRFS_I(old_inode), 1); 9469 9470 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9471 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9472 } else { 9473 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9474 BTRFS_I(d_inode(old_dentry)), 9475 old_dentry->d_name.name, 9476 old_dentry->d_name.len, 9477 &rename_ctx); 9478 if (!ret) 9479 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9480 } 9481 if (ret) { 9482 btrfs_abort_transaction(trans, ret); 9483 goto out_fail; 9484 } 9485 9486 if (new_inode) { 9487 inode_inc_iversion(new_inode); 9488 new_inode->i_ctime = current_time(new_inode); 9489 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9490 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9491 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9492 BUG_ON(new_inode->i_nlink == 0); 9493 } else { 9494 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9495 BTRFS_I(d_inode(new_dentry)), 9496 new_dentry->d_name.name, 9497 new_dentry->d_name.len); 9498 } 9499 if (!ret && new_inode->i_nlink == 0) 9500 ret = btrfs_orphan_add(trans, 9501 BTRFS_I(d_inode(new_dentry))); 9502 if (ret) { 9503 btrfs_abort_transaction(trans, ret); 9504 goto out_fail; 9505 } 9506 } 9507 9508 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9509 new_dentry->d_name.name, 9510 new_dentry->d_name.len, 0, index); 9511 if (ret) { 9512 btrfs_abort_transaction(trans, ret); 9513 goto out_fail; 9514 } 9515 9516 if (old_inode->i_nlink == 1) 9517 BTRFS_I(old_inode)->dir_index = index; 9518 9519 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9520 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9521 rename_ctx.index, new_dentry->d_parent); 9522 9523 if (flags & RENAME_WHITEOUT) { 9524 ret = btrfs_create_new_inode(trans, &whiteout_args); 9525 if (ret) { 9526 btrfs_abort_transaction(trans, ret); 9527 goto out_fail; 9528 } else { 9529 unlock_new_inode(whiteout_args.inode); 9530 iput(whiteout_args.inode); 9531 whiteout_args.inode = NULL; 9532 } 9533 } 9534 out_fail: 9535 ret2 = btrfs_end_transaction(trans); 9536 ret = ret ? ret : ret2; 9537 out_notrans: 9538 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9539 up_read(&fs_info->subvol_sem); 9540 if (flags & RENAME_WHITEOUT) 9541 btrfs_new_inode_args_destroy(&whiteout_args); 9542 out_whiteout_inode: 9543 if (flags & RENAME_WHITEOUT) 9544 iput(whiteout_args.inode); 9545 return ret; 9546 } 9547 9548 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9549 struct dentry *old_dentry, struct inode *new_dir, 9550 struct dentry *new_dentry, unsigned int flags) 9551 { 9552 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9553 return -EINVAL; 9554 9555 if (flags & RENAME_EXCHANGE) 9556 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9557 new_dentry); 9558 9559 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, 9560 new_dentry, flags); 9561 } 9562 9563 struct btrfs_delalloc_work { 9564 struct inode *inode; 9565 struct completion completion; 9566 struct list_head list; 9567 struct btrfs_work work; 9568 }; 9569 9570 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9571 { 9572 struct btrfs_delalloc_work *delalloc_work; 9573 struct inode *inode; 9574 9575 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9576 work); 9577 inode = delalloc_work->inode; 9578 filemap_flush(inode->i_mapping); 9579 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9580 &BTRFS_I(inode)->runtime_flags)) 9581 filemap_flush(inode->i_mapping); 9582 9583 iput(inode); 9584 complete(&delalloc_work->completion); 9585 } 9586 9587 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9588 { 9589 struct btrfs_delalloc_work *work; 9590 9591 work = kmalloc(sizeof(*work), GFP_NOFS); 9592 if (!work) 9593 return NULL; 9594 9595 init_completion(&work->completion); 9596 INIT_LIST_HEAD(&work->list); 9597 work->inode = inode; 9598 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9599 9600 return work; 9601 } 9602 9603 /* 9604 * some fairly slow code that needs optimization. This walks the list 9605 * of all the inodes with pending delalloc and forces them to disk. 9606 */ 9607 static int start_delalloc_inodes(struct btrfs_root *root, 9608 struct writeback_control *wbc, bool snapshot, 9609 bool in_reclaim_context) 9610 { 9611 struct btrfs_inode *binode; 9612 struct inode *inode; 9613 struct btrfs_delalloc_work *work, *next; 9614 struct list_head works; 9615 struct list_head splice; 9616 int ret = 0; 9617 bool full_flush = wbc->nr_to_write == LONG_MAX; 9618 9619 INIT_LIST_HEAD(&works); 9620 INIT_LIST_HEAD(&splice); 9621 9622 mutex_lock(&root->delalloc_mutex); 9623 spin_lock(&root->delalloc_lock); 9624 list_splice_init(&root->delalloc_inodes, &splice); 9625 while (!list_empty(&splice)) { 9626 binode = list_entry(splice.next, struct btrfs_inode, 9627 delalloc_inodes); 9628 9629 list_move_tail(&binode->delalloc_inodes, 9630 &root->delalloc_inodes); 9631 9632 if (in_reclaim_context && 9633 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9634 continue; 9635 9636 inode = igrab(&binode->vfs_inode); 9637 if (!inode) { 9638 cond_resched_lock(&root->delalloc_lock); 9639 continue; 9640 } 9641 spin_unlock(&root->delalloc_lock); 9642 9643 if (snapshot) 9644 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9645 &binode->runtime_flags); 9646 if (full_flush) { 9647 work = btrfs_alloc_delalloc_work(inode); 9648 if (!work) { 9649 iput(inode); 9650 ret = -ENOMEM; 9651 goto out; 9652 } 9653 list_add_tail(&work->list, &works); 9654 btrfs_queue_work(root->fs_info->flush_workers, 9655 &work->work); 9656 } else { 9657 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9658 btrfs_add_delayed_iput(inode); 9659 if (ret || wbc->nr_to_write <= 0) 9660 goto out; 9661 } 9662 cond_resched(); 9663 spin_lock(&root->delalloc_lock); 9664 } 9665 spin_unlock(&root->delalloc_lock); 9666 9667 out: 9668 list_for_each_entry_safe(work, next, &works, list) { 9669 list_del_init(&work->list); 9670 wait_for_completion(&work->completion); 9671 kfree(work); 9672 } 9673 9674 if (!list_empty(&splice)) { 9675 spin_lock(&root->delalloc_lock); 9676 list_splice_tail(&splice, &root->delalloc_inodes); 9677 spin_unlock(&root->delalloc_lock); 9678 } 9679 mutex_unlock(&root->delalloc_mutex); 9680 return ret; 9681 } 9682 9683 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9684 { 9685 struct writeback_control wbc = { 9686 .nr_to_write = LONG_MAX, 9687 .sync_mode = WB_SYNC_NONE, 9688 .range_start = 0, 9689 .range_end = LLONG_MAX, 9690 }; 9691 struct btrfs_fs_info *fs_info = root->fs_info; 9692 9693 if (BTRFS_FS_ERROR(fs_info)) 9694 return -EROFS; 9695 9696 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9697 } 9698 9699 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9700 bool in_reclaim_context) 9701 { 9702 struct writeback_control wbc = { 9703 .nr_to_write = nr, 9704 .sync_mode = WB_SYNC_NONE, 9705 .range_start = 0, 9706 .range_end = LLONG_MAX, 9707 }; 9708 struct btrfs_root *root; 9709 struct list_head splice; 9710 int ret; 9711 9712 if (BTRFS_FS_ERROR(fs_info)) 9713 return -EROFS; 9714 9715 INIT_LIST_HEAD(&splice); 9716 9717 mutex_lock(&fs_info->delalloc_root_mutex); 9718 spin_lock(&fs_info->delalloc_root_lock); 9719 list_splice_init(&fs_info->delalloc_roots, &splice); 9720 while (!list_empty(&splice)) { 9721 /* 9722 * Reset nr_to_write here so we know that we're doing a full 9723 * flush. 9724 */ 9725 if (nr == LONG_MAX) 9726 wbc.nr_to_write = LONG_MAX; 9727 9728 root = list_first_entry(&splice, struct btrfs_root, 9729 delalloc_root); 9730 root = btrfs_grab_root(root); 9731 BUG_ON(!root); 9732 list_move_tail(&root->delalloc_root, 9733 &fs_info->delalloc_roots); 9734 spin_unlock(&fs_info->delalloc_root_lock); 9735 9736 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9737 btrfs_put_root(root); 9738 if (ret < 0 || wbc.nr_to_write <= 0) 9739 goto out; 9740 spin_lock(&fs_info->delalloc_root_lock); 9741 } 9742 spin_unlock(&fs_info->delalloc_root_lock); 9743 9744 ret = 0; 9745 out: 9746 if (!list_empty(&splice)) { 9747 spin_lock(&fs_info->delalloc_root_lock); 9748 list_splice_tail(&splice, &fs_info->delalloc_roots); 9749 spin_unlock(&fs_info->delalloc_root_lock); 9750 } 9751 mutex_unlock(&fs_info->delalloc_root_mutex); 9752 return ret; 9753 } 9754 9755 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9756 struct dentry *dentry, const char *symname) 9757 { 9758 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9759 struct btrfs_trans_handle *trans; 9760 struct btrfs_root *root = BTRFS_I(dir)->root; 9761 struct btrfs_path *path; 9762 struct btrfs_key key; 9763 struct inode *inode; 9764 struct btrfs_new_inode_args new_inode_args = { 9765 .dir = dir, 9766 .dentry = dentry, 9767 }; 9768 unsigned int trans_num_items; 9769 int err; 9770 int name_len; 9771 int datasize; 9772 unsigned long ptr; 9773 struct btrfs_file_extent_item *ei; 9774 struct extent_buffer *leaf; 9775 9776 name_len = strlen(symname); 9777 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9778 return -ENAMETOOLONG; 9779 9780 inode = new_inode(dir->i_sb); 9781 if (!inode) 9782 return -ENOMEM; 9783 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO); 9784 inode->i_op = &btrfs_symlink_inode_operations; 9785 inode_nohighmem(inode); 9786 inode->i_mapping->a_ops = &btrfs_aops; 9787 btrfs_i_size_write(BTRFS_I(inode), name_len); 9788 inode_set_bytes(inode, name_len); 9789 9790 new_inode_args.inode = inode; 9791 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9792 if (err) 9793 goto out_inode; 9794 /* 1 additional item for the inline extent */ 9795 trans_num_items++; 9796 9797 trans = btrfs_start_transaction(root, trans_num_items); 9798 if (IS_ERR(trans)) { 9799 err = PTR_ERR(trans); 9800 goto out_new_inode_args; 9801 } 9802 9803 err = btrfs_create_new_inode(trans, &new_inode_args); 9804 if (err) 9805 goto out; 9806 9807 path = btrfs_alloc_path(); 9808 if (!path) { 9809 err = -ENOMEM; 9810 btrfs_abort_transaction(trans, err); 9811 discard_new_inode(inode); 9812 inode = NULL; 9813 goto out; 9814 } 9815 key.objectid = btrfs_ino(BTRFS_I(inode)); 9816 key.offset = 0; 9817 key.type = BTRFS_EXTENT_DATA_KEY; 9818 datasize = btrfs_file_extent_calc_inline_size(name_len); 9819 err = btrfs_insert_empty_item(trans, root, path, &key, 9820 datasize); 9821 if (err) { 9822 btrfs_abort_transaction(trans, err); 9823 btrfs_free_path(path); 9824 discard_new_inode(inode); 9825 inode = NULL; 9826 goto out; 9827 } 9828 leaf = path->nodes[0]; 9829 ei = btrfs_item_ptr(leaf, path->slots[0], 9830 struct btrfs_file_extent_item); 9831 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9832 btrfs_set_file_extent_type(leaf, ei, 9833 BTRFS_FILE_EXTENT_INLINE); 9834 btrfs_set_file_extent_encryption(leaf, ei, 0); 9835 btrfs_set_file_extent_compression(leaf, ei, 0); 9836 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9837 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9838 9839 ptr = btrfs_file_extent_inline_start(ei); 9840 write_extent_buffer(leaf, symname, ptr, name_len); 9841 btrfs_mark_buffer_dirty(leaf); 9842 btrfs_free_path(path); 9843 9844 d_instantiate_new(dentry, inode); 9845 err = 0; 9846 out: 9847 btrfs_end_transaction(trans); 9848 btrfs_btree_balance_dirty(fs_info); 9849 out_new_inode_args: 9850 btrfs_new_inode_args_destroy(&new_inode_args); 9851 out_inode: 9852 if (err) 9853 iput(inode); 9854 return err; 9855 } 9856 9857 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9858 struct btrfs_trans_handle *trans_in, 9859 struct btrfs_inode *inode, 9860 struct btrfs_key *ins, 9861 u64 file_offset) 9862 { 9863 struct btrfs_file_extent_item stack_fi; 9864 struct btrfs_replace_extent_info extent_info; 9865 struct btrfs_trans_handle *trans = trans_in; 9866 struct btrfs_path *path; 9867 u64 start = ins->objectid; 9868 u64 len = ins->offset; 9869 int qgroup_released; 9870 int ret; 9871 9872 memset(&stack_fi, 0, sizeof(stack_fi)); 9873 9874 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9875 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9876 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9877 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9878 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9879 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9880 /* Encryption and other encoding is reserved and all 0 */ 9881 9882 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9883 if (qgroup_released < 0) 9884 return ERR_PTR(qgroup_released); 9885 9886 if (trans) { 9887 ret = insert_reserved_file_extent(trans, inode, 9888 file_offset, &stack_fi, 9889 true, qgroup_released); 9890 if (ret) 9891 goto free_qgroup; 9892 return trans; 9893 } 9894 9895 extent_info.disk_offset = start; 9896 extent_info.disk_len = len; 9897 extent_info.data_offset = 0; 9898 extent_info.data_len = len; 9899 extent_info.file_offset = file_offset; 9900 extent_info.extent_buf = (char *)&stack_fi; 9901 extent_info.is_new_extent = true; 9902 extent_info.update_times = true; 9903 extent_info.qgroup_reserved = qgroup_released; 9904 extent_info.insertions = 0; 9905 9906 path = btrfs_alloc_path(); 9907 if (!path) { 9908 ret = -ENOMEM; 9909 goto free_qgroup; 9910 } 9911 9912 ret = btrfs_replace_file_extents(inode, path, file_offset, 9913 file_offset + len - 1, &extent_info, 9914 &trans); 9915 btrfs_free_path(path); 9916 if (ret) 9917 goto free_qgroup; 9918 return trans; 9919 9920 free_qgroup: 9921 /* 9922 * We have released qgroup data range at the beginning of the function, 9923 * and normally qgroup_released bytes will be freed when committing 9924 * transaction. 9925 * But if we error out early, we have to free what we have released 9926 * or we leak qgroup data reservation. 9927 */ 9928 btrfs_qgroup_free_refroot(inode->root->fs_info, 9929 inode->root->root_key.objectid, qgroup_released, 9930 BTRFS_QGROUP_RSV_DATA); 9931 return ERR_PTR(ret); 9932 } 9933 9934 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9935 u64 start, u64 num_bytes, u64 min_size, 9936 loff_t actual_len, u64 *alloc_hint, 9937 struct btrfs_trans_handle *trans) 9938 { 9939 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9940 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9941 struct extent_map *em; 9942 struct btrfs_root *root = BTRFS_I(inode)->root; 9943 struct btrfs_key ins; 9944 u64 cur_offset = start; 9945 u64 clear_offset = start; 9946 u64 i_size; 9947 u64 cur_bytes; 9948 u64 last_alloc = (u64)-1; 9949 int ret = 0; 9950 bool own_trans = true; 9951 u64 end = start + num_bytes - 1; 9952 9953 if (trans) 9954 own_trans = false; 9955 while (num_bytes > 0) { 9956 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9957 cur_bytes = max(cur_bytes, min_size); 9958 /* 9959 * If we are severely fragmented we could end up with really 9960 * small allocations, so if the allocator is returning small 9961 * chunks lets make its job easier by only searching for those 9962 * sized chunks. 9963 */ 9964 cur_bytes = min(cur_bytes, last_alloc); 9965 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9966 min_size, 0, *alloc_hint, &ins, 1, 0); 9967 if (ret) 9968 break; 9969 9970 /* 9971 * We've reserved this space, and thus converted it from 9972 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9973 * from here on out we will only need to clear our reservation 9974 * for the remaining unreserved area, so advance our 9975 * clear_offset by our extent size. 9976 */ 9977 clear_offset += ins.offset; 9978 9979 last_alloc = ins.offset; 9980 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9981 &ins, cur_offset); 9982 /* 9983 * Now that we inserted the prealloc extent we can finally 9984 * decrement the number of reservations in the block group. 9985 * If we did it before, we could race with relocation and have 9986 * relocation miss the reserved extent, making it fail later. 9987 */ 9988 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9989 if (IS_ERR(trans)) { 9990 ret = PTR_ERR(trans); 9991 btrfs_free_reserved_extent(fs_info, ins.objectid, 9992 ins.offset, 0); 9993 break; 9994 } 9995 9996 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9997 cur_offset + ins.offset -1, 0); 9998 9999 em = alloc_extent_map(); 10000 if (!em) { 10001 btrfs_set_inode_full_sync(BTRFS_I(inode)); 10002 goto next; 10003 } 10004 10005 em->start = cur_offset; 10006 em->orig_start = cur_offset; 10007 em->len = ins.offset; 10008 em->block_start = ins.objectid; 10009 em->block_len = ins.offset; 10010 em->orig_block_len = ins.offset; 10011 em->ram_bytes = ins.offset; 10012 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10013 em->generation = trans->transid; 10014 10015 while (1) { 10016 write_lock(&em_tree->lock); 10017 ret = add_extent_mapping(em_tree, em, 1); 10018 write_unlock(&em_tree->lock); 10019 if (ret != -EEXIST) 10020 break; 10021 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10022 cur_offset + ins.offset - 1, 10023 0); 10024 } 10025 free_extent_map(em); 10026 next: 10027 num_bytes -= ins.offset; 10028 cur_offset += ins.offset; 10029 *alloc_hint = ins.objectid + ins.offset; 10030 10031 inode_inc_iversion(inode); 10032 inode->i_ctime = current_time(inode); 10033 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10034 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10035 (actual_len > inode->i_size) && 10036 (cur_offset > inode->i_size)) { 10037 if (cur_offset > actual_len) 10038 i_size = actual_len; 10039 else 10040 i_size = cur_offset; 10041 i_size_write(inode, i_size); 10042 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10043 } 10044 10045 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10046 10047 if (ret) { 10048 btrfs_abort_transaction(trans, ret); 10049 if (own_trans) 10050 btrfs_end_transaction(trans); 10051 break; 10052 } 10053 10054 if (own_trans) { 10055 btrfs_end_transaction(trans); 10056 trans = NULL; 10057 } 10058 } 10059 if (clear_offset < end) 10060 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10061 end - clear_offset + 1); 10062 return ret; 10063 } 10064 10065 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10066 u64 start, u64 num_bytes, u64 min_size, 10067 loff_t actual_len, u64 *alloc_hint) 10068 { 10069 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10070 min_size, actual_len, alloc_hint, 10071 NULL); 10072 } 10073 10074 int btrfs_prealloc_file_range_trans(struct inode *inode, 10075 struct btrfs_trans_handle *trans, int mode, 10076 u64 start, u64 num_bytes, u64 min_size, 10077 loff_t actual_len, u64 *alloc_hint) 10078 { 10079 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10080 min_size, actual_len, alloc_hint, trans); 10081 } 10082 10083 static int btrfs_permission(struct user_namespace *mnt_userns, 10084 struct inode *inode, int mask) 10085 { 10086 struct btrfs_root *root = BTRFS_I(inode)->root; 10087 umode_t mode = inode->i_mode; 10088 10089 if (mask & MAY_WRITE && 10090 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10091 if (btrfs_root_readonly(root)) 10092 return -EROFS; 10093 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10094 return -EACCES; 10095 } 10096 return generic_permission(mnt_userns, inode, mask); 10097 } 10098 10099 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10100 struct dentry *dentry, umode_t mode) 10101 { 10102 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10103 struct btrfs_trans_handle *trans; 10104 struct btrfs_root *root = BTRFS_I(dir)->root; 10105 struct inode *inode; 10106 struct btrfs_new_inode_args new_inode_args = { 10107 .dir = dir, 10108 .dentry = dentry, 10109 .orphan = true, 10110 }; 10111 unsigned int trans_num_items; 10112 int ret; 10113 10114 inode = new_inode(dir->i_sb); 10115 if (!inode) 10116 return -ENOMEM; 10117 inode_init_owner(mnt_userns, inode, dir, mode); 10118 inode->i_fop = &btrfs_file_operations; 10119 inode->i_op = &btrfs_file_inode_operations; 10120 inode->i_mapping->a_ops = &btrfs_aops; 10121 10122 new_inode_args.inode = inode; 10123 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 10124 if (ret) 10125 goto out_inode; 10126 10127 trans = btrfs_start_transaction(root, trans_num_items); 10128 if (IS_ERR(trans)) { 10129 ret = PTR_ERR(trans); 10130 goto out_new_inode_args; 10131 } 10132 10133 ret = btrfs_create_new_inode(trans, &new_inode_args); 10134 10135 /* 10136 * We set number of links to 0 in btrfs_create_new_inode(), and here we 10137 * set it to 1 because d_tmpfile() will issue a warning if the count is 10138 * 0, through: 10139 * 10140 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10141 */ 10142 set_nlink(inode, 1); 10143 10144 if (!ret) { 10145 d_tmpfile(dentry, inode); 10146 unlock_new_inode(inode); 10147 mark_inode_dirty(inode); 10148 } 10149 10150 btrfs_end_transaction(trans); 10151 btrfs_btree_balance_dirty(fs_info); 10152 out_new_inode_args: 10153 btrfs_new_inode_args_destroy(&new_inode_args); 10154 out_inode: 10155 if (ret) 10156 iput(inode); 10157 return ret; 10158 } 10159 10160 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10161 { 10162 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10163 unsigned long index = start >> PAGE_SHIFT; 10164 unsigned long end_index = end >> PAGE_SHIFT; 10165 struct page *page; 10166 u32 len; 10167 10168 ASSERT(end + 1 - start <= U32_MAX); 10169 len = end + 1 - start; 10170 while (index <= end_index) { 10171 page = find_get_page(inode->vfs_inode.i_mapping, index); 10172 ASSERT(page); /* Pages should be in the extent_io_tree */ 10173 10174 btrfs_page_set_writeback(fs_info, page, start, len); 10175 put_page(page); 10176 index++; 10177 } 10178 } 10179 10180 static int btrfs_encoded_io_compression_from_extent( 10181 struct btrfs_fs_info *fs_info, 10182 int compress_type) 10183 { 10184 switch (compress_type) { 10185 case BTRFS_COMPRESS_NONE: 10186 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 10187 case BTRFS_COMPRESS_ZLIB: 10188 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 10189 case BTRFS_COMPRESS_LZO: 10190 /* 10191 * The LZO format depends on the sector size. 64K is the maximum 10192 * sector size that we support. 10193 */ 10194 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 10195 return -EINVAL; 10196 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 10197 (fs_info->sectorsize_bits - 12); 10198 case BTRFS_COMPRESS_ZSTD: 10199 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 10200 default: 10201 return -EUCLEAN; 10202 } 10203 } 10204 10205 static ssize_t btrfs_encoded_read_inline( 10206 struct kiocb *iocb, 10207 struct iov_iter *iter, u64 start, 10208 u64 lockend, 10209 struct extent_state **cached_state, 10210 u64 extent_start, size_t count, 10211 struct btrfs_ioctl_encoded_io_args *encoded, 10212 bool *unlocked) 10213 { 10214 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10215 struct btrfs_root *root = inode->root; 10216 struct btrfs_fs_info *fs_info = root->fs_info; 10217 struct extent_io_tree *io_tree = &inode->io_tree; 10218 struct btrfs_path *path; 10219 struct extent_buffer *leaf; 10220 struct btrfs_file_extent_item *item; 10221 u64 ram_bytes; 10222 unsigned long ptr; 10223 void *tmp; 10224 ssize_t ret; 10225 10226 path = btrfs_alloc_path(); 10227 if (!path) { 10228 ret = -ENOMEM; 10229 goto out; 10230 } 10231 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 10232 extent_start, 0); 10233 if (ret) { 10234 if (ret > 0) { 10235 /* The extent item disappeared? */ 10236 ret = -EIO; 10237 } 10238 goto out; 10239 } 10240 leaf = path->nodes[0]; 10241 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10242 10243 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 10244 ptr = btrfs_file_extent_inline_start(item); 10245 10246 encoded->len = min_t(u64, extent_start + ram_bytes, 10247 inode->vfs_inode.i_size) - iocb->ki_pos; 10248 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10249 btrfs_file_extent_compression(leaf, item)); 10250 if (ret < 0) 10251 goto out; 10252 encoded->compression = ret; 10253 if (encoded->compression) { 10254 size_t inline_size; 10255 10256 inline_size = btrfs_file_extent_inline_item_len(leaf, 10257 path->slots[0]); 10258 if (inline_size > count) { 10259 ret = -ENOBUFS; 10260 goto out; 10261 } 10262 count = inline_size; 10263 encoded->unencoded_len = ram_bytes; 10264 encoded->unencoded_offset = iocb->ki_pos - extent_start; 10265 } else { 10266 count = min_t(u64, count, encoded->len); 10267 encoded->len = count; 10268 encoded->unencoded_len = count; 10269 ptr += iocb->ki_pos - extent_start; 10270 } 10271 10272 tmp = kmalloc(count, GFP_NOFS); 10273 if (!tmp) { 10274 ret = -ENOMEM; 10275 goto out; 10276 } 10277 read_extent_buffer(leaf, tmp, ptr, count); 10278 btrfs_release_path(path); 10279 unlock_extent_cached(io_tree, start, lockend, cached_state); 10280 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10281 *unlocked = true; 10282 10283 ret = copy_to_iter(tmp, count, iter); 10284 if (ret != count) 10285 ret = -EFAULT; 10286 kfree(tmp); 10287 out: 10288 btrfs_free_path(path); 10289 return ret; 10290 } 10291 10292 struct btrfs_encoded_read_private { 10293 struct btrfs_inode *inode; 10294 u64 file_offset; 10295 wait_queue_head_t wait; 10296 atomic_t pending; 10297 blk_status_t status; 10298 bool skip_csum; 10299 }; 10300 10301 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode, 10302 struct bio *bio, int mirror_num) 10303 { 10304 struct btrfs_encoded_read_private *priv = bio->bi_private; 10305 struct btrfs_bio *bbio = btrfs_bio(bio); 10306 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10307 blk_status_t ret; 10308 10309 if (!priv->skip_csum) { 10310 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL); 10311 if (ret) 10312 return ret; 10313 } 10314 10315 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 10316 if (ret) { 10317 btrfs_bio_free_csum(bbio); 10318 return ret; 10319 } 10320 10321 atomic_inc(&priv->pending); 10322 ret = btrfs_map_bio(fs_info, bio, mirror_num); 10323 if (ret) { 10324 atomic_dec(&priv->pending); 10325 btrfs_bio_free_csum(bbio); 10326 } 10327 return ret; 10328 } 10329 10330 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio) 10331 { 10332 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK); 10333 struct btrfs_encoded_read_private *priv = bbio->bio.bi_private; 10334 struct btrfs_inode *inode = priv->inode; 10335 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10336 u32 sectorsize = fs_info->sectorsize; 10337 struct bio_vec *bvec; 10338 struct bvec_iter_all iter_all; 10339 u64 start = priv->file_offset; 10340 u32 bio_offset = 0; 10341 10342 if (priv->skip_csum || !uptodate) 10343 return bbio->bio.bi_status; 10344 10345 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 10346 unsigned int i, nr_sectors, pgoff; 10347 10348 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 10349 pgoff = bvec->bv_offset; 10350 for (i = 0; i < nr_sectors; i++) { 10351 ASSERT(pgoff < PAGE_SIZE); 10352 if (check_data_csum(&inode->vfs_inode, bbio, bio_offset, 10353 bvec->bv_page, pgoff, start)) 10354 return BLK_STS_IOERR; 10355 start += sectorsize; 10356 bio_offset += sectorsize; 10357 pgoff += sectorsize; 10358 } 10359 } 10360 return BLK_STS_OK; 10361 } 10362 10363 static void btrfs_encoded_read_endio(struct bio *bio) 10364 { 10365 struct btrfs_encoded_read_private *priv = bio->bi_private; 10366 struct btrfs_bio *bbio = btrfs_bio(bio); 10367 blk_status_t status; 10368 10369 status = btrfs_encoded_read_verify_csum(bbio); 10370 if (status) { 10371 /* 10372 * The memory barrier implied by the atomic_dec_return() here 10373 * pairs with the memory barrier implied by the 10374 * atomic_dec_return() or io_wait_event() in 10375 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10376 * write is observed before the load of status in 10377 * btrfs_encoded_read_regular_fill_pages(). 10378 */ 10379 WRITE_ONCE(priv->status, status); 10380 } 10381 if (!atomic_dec_return(&priv->pending)) 10382 wake_up(&priv->wait); 10383 btrfs_bio_free_csum(bbio); 10384 bio_put(bio); 10385 } 10386 10387 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10388 u64 file_offset, 10389 u64 disk_bytenr, 10390 u64 disk_io_size, 10391 struct page **pages) 10392 { 10393 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10394 struct btrfs_encoded_read_private priv = { 10395 .inode = inode, 10396 .file_offset = file_offset, 10397 .pending = ATOMIC_INIT(1), 10398 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM), 10399 }; 10400 unsigned long i = 0; 10401 u64 cur = 0; 10402 int ret; 10403 10404 init_waitqueue_head(&priv.wait); 10405 /* 10406 * Submit bios for the extent, splitting due to bio or stripe limits as 10407 * necessary. 10408 */ 10409 while (cur < disk_io_size) { 10410 struct extent_map *em; 10411 struct btrfs_io_geometry geom; 10412 struct bio *bio = NULL; 10413 u64 remaining; 10414 10415 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur, 10416 disk_io_size - cur); 10417 if (IS_ERR(em)) { 10418 ret = PTR_ERR(em); 10419 } else { 10420 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ, 10421 disk_bytenr + cur, &geom); 10422 free_extent_map(em); 10423 } 10424 if (ret) { 10425 WRITE_ONCE(priv.status, errno_to_blk_status(ret)); 10426 break; 10427 } 10428 remaining = min(geom.len, disk_io_size - cur); 10429 while (bio || remaining) { 10430 size_t bytes = min_t(u64, remaining, PAGE_SIZE); 10431 10432 if (!bio) { 10433 bio = btrfs_bio_alloc(BIO_MAX_VECS); 10434 bio->bi_iter.bi_sector = 10435 (disk_bytenr + cur) >> SECTOR_SHIFT; 10436 bio->bi_end_io = btrfs_encoded_read_endio; 10437 bio->bi_private = &priv; 10438 bio->bi_opf = REQ_OP_READ; 10439 } 10440 10441 if (!bytes || 10442 bio_add_page(bio, pages[i], bytes, 0) < bytes) { 10443 blk_status_t status; 10444 10445 status = submit_encoded_read_bio(inode, bio, 0); 10446 if (status) { 10447 WRITE_ONCE(priv.status, status); 10448 bio_put(bio); 10449 goto out; 10450 } 10451 bio = NULL; 10452 continue; 10453 } 10454 10455 i++; 10456 cur += bytes; 10457 remaining -= bytes; 10458 } 10459 } 10460 10461 out: 10462 if (atomic_dec_return(&priv.pending)) 10463 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10464 /* See btrfs_encoded_read_endio() for ordering. */ 10465 return blk_status_to_errno(READ_ONCE(priv.status)); 10466 } 10467 10468 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10469 struct iov_iter *iter, 10470 u64 start, u64 lockend, 10471 struct extent_state **cached_state, 10472 u64 disk_bytenr, u64 disk_io_size, 10473 size_t count, bool compressed, 10474 bool *unlocked) 10475 { 10476 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10477 struct extent_io_tree *io_tree = &inode->io_tree; 10478 struct page **pages; 10479 unsigned long nr_pages, i; 10480 u64 cur; 10481 size_t page_offset; 10482 ssize_t ret; 10483 10484 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10485 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10486 if (!pages) 10487 return -ENOMEM; 10488 ret = btrfs_alloc_page_array(nr_pages, pages); 10489 if (ret) { 10490 ret = -ENOMEM; 10491 goto out; 10492 } 10493 10494 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10495 disk_io_size, pages); 10496 if (ret) 10497 goto out; 10498 10499 unlock_extent_cached(io_tree, start, lockend, cached_state); 10500 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10501 *unlocked = true; 10502 10503 if (compressed) { 10504 i = 0; 10505 page_offset = 0; 10506 } else { 10507 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10508 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10509 } 10510 cur = 0; 10511 while (cur < count) { 10512 size_t bytes = min_t(size_t, count - cur, 10513 PAGE_SIZE - page_offset); 10514 10515 if (copy_page_to_iter(pages[i], page_offset, bytes, 10516 iter) != bytes) { 10517 ret = -EFAULT; 10518 goto out; 10519 } 10520 i++; 10521 cur += bytes; 10522 page_offset = 0; 10523 } 10524 ret = count; 10525 out: 10526 for (i = 0; i < nr_pages; i++) { 10527 if (pages[i]) 10528 __free_page(pages[i]); 10529 } 10530 kfree(pages); 10531 return ret; 10532 } 10533 10534 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10535 struct btrfs_ioctl_encoded_io_args *encoded) 10536 { 10537 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10538 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10539 struct extent_io_tree *io_tree = &inode->io_tree; 10540 ssize_t ret; 10541 size_t count = iov_iter_count(iter); 10542 u64 start, lockend, disk_bytenr, disk_io_size; 10543 struct extent_state *cached_state = NULL; 10544 struct extent_map *em; 10545 bool unlocked = false; 10546 10547 file_accessed(iocb->ki_filp); 10548 10549 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10550 10551 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10552 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10553 return 0; 10554 } 10555 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10556 /* 10557 * We don't know how long the extent containing iocb->ki_pos is, but if 10558 * it's compressed we know that it won't be longer than this. 10559 */ 10560 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10561 10562 for (;;) { 10563 struct btrfs_ordered_extent *ordered; 10564 10565 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10566 lockend - start + 1); 10567 if (ret) 10568 goto out_unlock_inode; 10569 lock_extent_bits(io_tree, start, lockend, &cached_state); 10570 ordered = btrfs_lookup_ordered_range(inode, start, 10571 lockend - start + 1); 10572 if (!ordered) 10573 break; 10574 btrfs_put_ordered_extent(ordered); 10575 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10576 cond_resched(); 10577 } 10578 10579 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10580 if (IS_ERR(em)) { 10581 ret = PTR_ERR(em); 10582 goto out_unlock_extent; 10583 } 10584 10585 if (em->block_start == EXTENT_MAP_INLINE) { 10586 u64 extent_start = em->start; 10587 10588 /* 10589 * For inline extents we get everything we need out of the 10590 * extent item. 10591 */ 10592 free_extent_map(em); 10593 em = NULL; 10594 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10595 &cached_state, extent_start, 10596 count, encoded, &unlocked); 10597 goto out; 10598 } 10599 10600 /* 10601 * We only want to return up to EOF even if the extent extends beyond 10602 * that. 10603 */ 10604 encoded->len = min_t(u64, extent_map_end(em), 10605 inode->vfs_inode.i_size) - iocb->ki_pos; 10606 if (em->block_start == EXTENT_MAP_HOLE || 10607 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10608 disk_bytenr = EXTENT_MAP_HOLE; 10609 count = min_t(u64, count, encoded->len); 10610 encoded->len = count; 10611 encoded->unencoded_len = count; 10612 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10613 disk_bytenr = em->block_start; 10614 /* 10615 * Bail if the buffer isn't large enough to return the whole 10616 * compressed extent. 10617 */ 10618 if (em->block_len > count) { 10619 ret = -ENOBUFS; 10620 goto out_em; 10621 } 10622 disk_io_size = count = em->block_len; 10623 encoded->unencoded_len = em->ram_bytes; 10624 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10625 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10626 em->compress_type); 10627 if (ret < 0) 10628 goto out_em; 10629 encoded->compression = ret; 10630 } else { 10631 disk_bytenr = em->block_start + (start - em->start); 10632 if (encoded->len > count) 10633 encoded->len = count; 10634 /* 10635 * Don't read beyond what we locked. This also limits the page 10636 * allocations that we'll do. 10637 */ 10638 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10639 count = start + disk_io_size - iocb->ki_pos; 10640 encoded->len = count; 10641 encoded->unencoded_len = count; 10642 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10643 } 10644 free_extent_map(em); 10645 em = NULL; 10646 10647 if (disk_bytenr == EXTENT_MAP_HOLE) { 10648 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10649 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10650 unlocked = true; 10651 ret = iov_iter_zero(count, iter); 10652 if (ret != count) 10653 ret = -EFAULT; 10654 } else { 10655 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10656 &cached_state, disk_bytenr, 10657 disk_io_size, count, 10658 encoded->compression, 10659 &unlocked); 10660 } 10661 10662 out: 10663 if (ret >= 0) 10664 iocb->ki_pos += encoded->len; 10665 out_em: 10666 free_extent_map(em); 10667 out_unlock_extent: 10668 if (!unlocked) 10669 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10670 out_unlock_inode: 10671 if (!unlocked) 10672 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10673 return ret; 10674 } 10675 10676 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10677 const struct btrfs_ioctl_encoded_io_args *encoded) 10678 { 10679 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10680 struct btrfs_root *root = inode->root; 10681 struct btrfs_fs_info *fs_info = root->fs_info; 10682 struct extent_io_tree *io_tree = &inode->io_tree; 10683 struct extent_changeset *data_reserved = NULL; 10684 struct extent_state *cached_state = NULL; 10685 int compression; 10686 size_t orig_count; 10687 u64 start, end; 10688 u64 num_bytes, ram_bytes, disk_num_bytes; 10689 unsigned long nr_pages, i; 10690 struct page **pages; 10691 struct btrfs_key ins; 10692 bool extent_reserved = false; 10693 struct extent_map *em; 10694 ssize_t ret; 10695 10696 switch (encoded->compression) { 10697 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10698 compression = BTRFS_COMPRESS_ZLIB; 10699 break; 10700 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10701 compression = BTRFS_COMPRESS_ZSTD; 10702 break; 10703 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10704 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10705 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10706 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10707 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10708 /* The sector size must match for LZO. */ 10709 if (encoded->compression - 10710 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10711 fs_info->sectorsize_bits) 10712 return -EINVAL; 10713 compression = BTRFS_COMPRESS_LZO; 10714 break; 10715 default: 10716 return -EINVAL; 10717 } 10718 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10719 return -EINVAL; 10720 10721 orig_count = iov_iter_count(from); 10722 10723 /* The extent size must be sane. */ 10724 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10725 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10726 return -EINVAL; 10727 10728 /* 10729 * The compressed data must be smaller than the decompressed data. 10730 * 10731 * It's of course possible for data to compress to larger or the same 10732 * size, but the buffered I/O path falls back to no compression for such 10733 * data, and we don't want to break any assumptions by creating these 10734 * extents. 10735 * 10736 * Note that this is less strict than the current check we have that the 10737 * compressed data must be at least one sector smaller than the 10738 * decompressed data. We only want to enforce the weaker requirement 10739 * from old kernels that it is at least one byte smaller. 10740 */ 10741 if (orig_count >= encoded->unencoded_len) 10742 return -EINVAL; 10743 10744 /* The extent must start on a sector boundary. */ 10745 start = iocb->ki_pos; 10746 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10747 return -EINVAL; 10748 10749 /* 10750 * The extent must end on a sector boundary. However, we allow a write 10751 * which ends at or extends i_size to have an unaligned length; we round 10752 * up the extent size and set i_size to the unaligned end. 10753 */ 10754 if (start + encoded->len < inode->vfs_inode.i_size && 10755 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10756 return -EINVAL; 10757 10758 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10759 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10760 return -EINVAL; 10761 10762 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10763 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10764 end = start + num_bytes - 1; 10765 10766 /* 10767 * If the extent cannot be inline, the compressed data on disk must be 10768 * sector-aligned. For convenience, we extend it with zeroes if it 10769 * isn't. 10770 */ 10771 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10772 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10773 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10774 if (!pages) 10775 return -ENOMEM; 10776 for (i = 0; i < nr_pages; i++) { 10777 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10778 char *kaddr; 10779 10780 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10781 if (!pages[i]) { 10782 ret = -ENOMEM; 10783 goto out_pages; 10784 } 10785 kaddr = kmap(pages[i]); 10786 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10787 kunmap(pages[i]); 10788 ret = -EFAULT; 10789 goto out_pages; 10790 } 10791 if (bytes < PAGE_SIZE) 10792 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10793 kunmap(pages[i]); 10794 } 10795 10796 for (;;) { 10797 struct btrfs_ordered_extent *ordered; 10798 10799 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10800 if (ret) 10801 goto out_pages; 10802 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10803 start >> PAGE_SHIFT, 10804 end >> PAGE_SHIFT); 10805 if (ret) 10806 goto out_pages; 10807 lock_extent_bits(io_tree, start, end, &cached_state); 10808 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10809 if (!ordered && 10810 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10811 break; 10812 if (ordered) 10813 btrfs_put_ordered_extent(ordered); 10814 unlock_extent_cached(io_tree, start, end, &cached_state); 10815 cond_resched(); 10816 } 10817 10818 /* 10819 * We don't use the higher-level delalloc space functions because our 10820 * num_bytes and disk_num_bytes are different. 10821 */ 10822 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10823 if (ret) 10824 goto out_unlock; 10825 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10826 if (ret) 10827 goto out_free_data_space; 10828 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10829 false); 10830 if (ret) 10831 goto out_qgroup_free_data; 10832 10833 /* Try an inline extent first. */ 10834 if (start == 0 && encoded->unencoded_len == encoded->len && 10835 encoded->unencoded_offset == 0) { 10836 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10837 compression, pages, true); 10838 if (ret <= 0) { 10839 if (ret == 0) 10840 ret = orig_count; 10841 goto out_delalloc_release; 10842 } 10843 } 10844 10845 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10846 disk_num_bytes, 0, 0, &ins, 1, 1); 10847 if (ret) 10848 goto out_delalloc_release; 10849 extent_reserved = true; 10850 10851 em = create_io_em(inode, start, num_bytes, 10852 start - encoded->unencoded_offset, ins.objectid, 10853 ins.offset, ins.offset, ram_bytes, compression, 10854 BTRFS_ORDERED_COMPRESSED); 10855 if (IS_ERR(em)) { 10856 ret = PTR_ERR(em); 10857 goto out_free_reserved; 10858 } 10859 free_extent_map(em); 10860 10861 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, 10862 ins.objectid, ins.offset, 10863 encoded->unencoded_offset, 10864 (1 << BTRFS_ORDERED_ENCODED) | 10865 (1 << BTRFS_ORDERED_COMPRESSED), 10866 compression); 10867 if (ret) { 10868 btrfs_drop_extent_cache(inode, start, end, 0); 10869 goto out_free_reserved; 10870 } 10871 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10872 10873 if (start + encoded->len > inode->vfs_inode.i_size) 10874 i_size_write(&inode->vfs_inode, start + encoded->len); 10875 10876 unlock_extent_cached(io_tree, start, end, &cached_state); 10877 10878 btrfs_delalloc_release_extents(inode, num_bytes); 10879 10880 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, 10881 ins.offset, pages, nr_pages, 0, NULL, 10882 false)) { 10883 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0); 10884 ret = -EIO; 10885 goto out_pages; 10886 } 10887 ret = orig_count; 10888 goto out; 10889 10890 out_free_reserved: 10891 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10892 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10893 out_delalloc_release: 10894 btrfs_delalloc_release_extents(inode, num_bytes); 10895 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10896 out_qgroup_free_data: 10897 if (ret < 0) 10898 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10899 out_free_data_space: 10900 /* 10901 * If btrfs_reserve_extent() succeeded, then we already decremented 10902 * bytes_may_use. 10903 */ 10904 if (!extent_reserved) 10905 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10906 out_unlock: 10907 unlock_extent_cached(io_tree, start, end, &cached_state); 10908 out_pages: 10909 for (i = 0; i < nr_pages; i++) { 10910 if (pages[i]) 10911 __free_page(pages[i]); 10912 } 10913 kvfree(pages); 10914 out: 10915 if (ret >= 0) 10916 iocb->ki_pos += encoded->len; 10917 return ret; 10918 } 10919 10920 #ifdef CONFIG_SWAP 10921 /* 10922 * Add an entry indicating a block group or device which is pinned by a 10923 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10924 * negative errno on failure. 10925 */ 10926 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10927 bool is_block_group) 10928 { 10929 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10930 struct btrfs_swapfile_pin *sp, *entry; 10931 struct rb_node **p; 10932 struct rb_node *parent = NULL; 10933 10934 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10935 if (!sp) 10936 return -ENOMEM; 10937 sp->ptr = ptr; 10938 sp->inode = inode; 10939 sp->is_block_group = is_block_group; 10940 sp->bg_extent_count = 1; 10941 10942 spin_lock(&fs_info->swapfile_pins_lock); 10943 p = &fs_info->swapfile_pins.rb_node; 10944 while (*p) { 10945 parent = *p; 10946 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10947 if (sp->ptr < entry->ptr || 10948 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10949 p = &(*p)->rb_left; 10950 } else if (sp->ptr > entry->ptr || 10951 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10952 p = &(*p)->rb_right; 10953 } else { 10954 if (is_block_group) 10955 entry->bg_extent_count++; 10956 spin_unlock(&fs_info->swapfile_pins_lock); 10957 kfree(sp); 10958 return 1; 10959 } 10960 } 10961 rb_link_node(&sp->node, parent, p); 10962 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10963 spin_unlock(&fs_info->swapfile_pins_lock); 10964 return 0; 10965 } 10966 10967 /* Free all of the entries pinned by this swapfile. */ 10968 static void btrfs_free_swapfile_pins(struct inode *inode) 10969 { 10970 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10971 struct btrfs_swapfile_pin *sp; 10972 struct rb_node *node, *next; 10973 10974 spin_lock(&fs_info->swapfile_pins_lock); 10975 node = rb_first(&fs_info->swapfile_pins); 10976 while (node) { 10977 next = rb_next(node); 10978 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10979 if (sp->inode == inode) { 10980 rb_erase(&sp->node, &fs_info->swapfile_pins); 10981 if (sp->is_block_group) { 10982 btrfs_dec_block_group_swap_extents(sp->ptr, 10983 sp->bg_extent_count); 10984 btrfs_put_block_group(sp->ptr); 10985 } 10986 kfree(sp); 10987 } 10988 node = next; 10989 } 10990 spin_unlock(&fs_info->swapfile_pins_lock); 10991 } 10992 10993 struct btrfs_swap_info { 10994 u64 start; 10995 u64 block_start; 10996 u64 block_len; 10997 u64 lowest_ppage; 10998 u64 highest_ppage; 10999 unsigned long nr_pages; 11000 int nr_extents; 11001 }; 11002 11003 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 11004 struct btrfs_swap_info *bsi) 11005 { 11006 unsigned long nr_pages; 11007 unsigned long max_pages; 11008 u64 first_ppage, first_ppage_reported, next_ppage; 11009 int ret; 11010 11011 /* 11012 * Our swapfile may have had its size extended after the swap header was 11013 * written. In that case activating the swapfile should not go beyond 11014 * the max size set in the swap header. 11015 */ 11016 if (bsi->nr_pages >= sis->max) 11017 return 0; 11018 11019 max_pages = sis->max - bsi->nr_pages; 11020 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 11021 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 11022 PAGE_SIZE) >> PAGE_SHIFT; 11023 11024 if (first_ppage >= next_ppage) 11025 return 0; 11026 nr_pages = next_ppage - first_ppage; 11027 nr_pages = min(nr_pages, max_pages); 11028 11029 first_ppage_reported = first_ppage; 11030 if (bsi->start == 0) 11031 first_ppage_reported++; 11032 if (bsi->lowest_ppage > first_ppage_reported) 11033 bsi->lowest_ppage = first_ppage_reported; 11034 if (bsi->highest_ppage < (next_ppage - 1)) 11035 bsi->highest_ppage = next_ppage - 1; 11036 11037 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 11038 if (ret < 0) 11039 return ret; 11040 bsi->nr_extents += ret; 11041 bsi->nr_pages += nr_pages; 11042 return 0; 11043 } 11044 11045 static void btrfs_swap_deactivate(struct file *file) 11046 { 11047 struct inode *inode = file_inode(file); 11048 11049 btrfs_free_swapfile_pins(inode); 11050 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 11051 } 11052 11053 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11054 sector_t *span) 11055 { 11056 struct inode *inode = file_inode(file); 11057 struct btrfs_root *root = BTRFS_I(inode)->root; 11058 struct btrfs_fs_info *fs_info = root->fs_info; 11059 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 11060 struct extent_state *cached_state = NULL; 11061 struct extent_map *em = NULL; 11062 struct btrfs_device *device = NULL; 11063 struct btrfs_swap_info bsi = { 11064 .lowest_ppage = (sector_t)-1ULL, 11065 }; 11066 int ret = 0; 11067 u64 isize; 11068 u64 start; 11069 11070 /* 11071 * If the swap file was just created, make sure delalloc is done. If the 11072 * file changes again after this, the user is doing something stupid and 11073 * we don't really care. 11074 */ 11075 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 11076 if (ret) 11077 return ret; 11078 11079 /* 11080 * The inode is locked, so these flags won't change after we check them. 11081 */ 11082 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 11083 btrfs_warn(fs_info, "swapfile must not be compressed"); 11084 return -EINVAL; 11085 } 11086 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 11087 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 11088 return -EINVAL; 11089 } 11090 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 11091 btrfs_warn(fs_info, "swapfile must not be checksummed"); 11092 return -EINVAL; 11093 } 11094 11095 /* 11096 * Balance or device remove/replace/resize can move stuff around from 11097 * under us. The exclop protection makes sure they aren't running/won't 11098 * run concurrently while we are mapping the swap extents, and 11099 * fs_info->swapfile_pins prevents them from running while the swap 11100 * file is active and moving the extents. Note that this also prevents 11101 * a concurrent device add which isn't actually necessary, but it's not 11102 * really worth the trouble to allow it. 11103 */ 11104 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 11105 btrfs_warn(fs_info, 11106 "cannot activate swapfile while exclusive operation is running"); 11107 return -EBUSY; 11108 } 11109 11110 /* 11111 * Prevent snapshot creation while we are activating the swap file. 11112 * We do not want to race with snapshot creation. If snapshot creation 11113 * already started before we bumped nr_swapfiles from 0 to 1 and 11114 * completes before the first write into the swap file after it is 11115 * activated, than that write would fallback to COW. 11116 */ 11117 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 11118 btrfs_exclop_finish(fs_info); 11119 btrfs_warn(fs_info, 11120 "cannot activate swapfile because snapshot creation is in progress"); 11121 return -EINVAL; 11122 } 11123 /* 11124 * Snapshots can create extents which require COW even if NODATACOW is 11125 * set. We use this counter to prevent snapshots. We must increment it 11126 * before walking the extents because we don't want a concurrent 11127 * snapshot to run after we've already checked the extents. 11128 * 11129 * It is possible that subvolume is marked for deletion but still not 11130 * removed yet. To prevent this race, we check the root status before 11131 * activating the swapfile. 11132 */ 11133 spin_lock(&root->root_item_lock); 11134 if (btrfs_root_dead(root)) { 11135 spin_unlock(&root->root_item_lock); 11136 11137 btrfs_exclop_finish(fs_info); 11138 btrfs_warn(fs_info, 11139 "cannot activate swapfile because subvolume %llu is being deleted", 11140 root->root_key.objectid); 11141 return -EPERM; 11142 } 11143 atomic_inc(&root->nr_swapfiles); 11144 spin_unlock(&root->root_item_lock); 11145 11146 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 11147 11148 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 11149 start = 0; 11150 while (start < isize) { 11151 u64 logical_block_start, physical_block_start; 11152 struct btrfs_block_group *bg; 11153 u64 len = isize - start; 11154 11155 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 11156 if (IS_ERR(em)) { 11157 ret = PTR_ERR(em); 11158 goto out; 11159 } 11160 11161 if (em->block_start == EXTENT_MAP_HOLE) { 11162 btrfs_warn(fs_info, "swapfile must not have holes"); 11163 ret = -EINVAL; 11164 goto out; 11165 } 11166 if (em->block_start == EXTENT_MAP_INLINE) { 11167 /* 11168 * It's unlikely we'll ever actually find ourselves 11169 * here, as a file small enough to fit inline won't be 11170 * big enough to store more than the swap header, but in 11171 * case something changes in the future, let's catch it 11172 * here rather than later. 11173 */ 11174 btrfs_warn(fs_info, "swapfile must not be inline"); 11175 ret = -EINVAL; 11176 goto out; 11177 } 11178 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 11179 btrfs_warn(fs_info, "swapfile must not be compressed"); 11180 ret = -EINVAL; 11181 goto out; 11182 } 11183 11184 logical_block_start = em->block_start + (start - em->start); 11185 len = min(len, em->len - (start - em->start)); 11186 free_extent_map(em); 11187 em = NULL; 11188 11189 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 11190 if (ret < 0) { 11191 goto out; 11192 } else if (ret) { 11193 ret = 0; 11194 } else { 11195 btrfs_warn(fs_info, 11196 "swapfile must not be copy-on-write"); 11197 ret = -EINVAL; 11198 goto out; 11199 } 11200 11201 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 11202 if (IS_ERR(em)) { 11203 ret = PTR_ERR(em); 11204 goto out; 11205 } 11206 11207 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 11208 btrfs_warn(fs_info, 11209 "swapfile must have single data profile"); 11210 ret = -EINVAL; 11211 goto out; 11212 } 11213 11214 if (device == NULL) { 11215 device = em->map_lookup->stripes[0].dev; 11216 ret = btrfs_add_swapfile_pin(inode, device, false); 11217 if (ret == 1) 11218 ret = 0; 11219 else if (ret) 11220 goto out; 11221 } else if (device != em->map_lookup->stripes[0].dev) { 11222 btrfs_warn(fs_info, "swapfile must be on one device"); 11223 ret = -EINVAL; 11224 goto out; 11225 } 11226 11227 physical_block_start = (em->map_lookup->stripes[0].physical + 11228 (logical_block_start - em->start)); 11229 len = min(len, em->len - (logical_block_start - em->start)); 11230 free_extent_map(em); 11231 em = NULL; 11232 11233 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 11234 if (!bg) { 11235 btrfs_warn(fs_info, 11236 "could not find block group containing swapfile"); 11237 ret = -EINVAL; 11238 goto out; 11239 } 11240 11241 if (!btrfs_inc_block_group_swap_extents(bg)) { 11242 btrfs_warn(fs_info, 11243 "block group for swapfile at %llu is read-only%s", 11244 bg->start, 11245 atomic_read(&fs_info->scrubs_running) ? 11246 " (scrub running)" : ""); 11247 btrfs_put_block_group(bg); 11248 ret = -EINVAL; 11249 goto out; 11250 } 11251 11252 ret = btrfs_add_swapfile_pin(inode, bg, true); 11253 if (ret) { 11254 btrfs_put_block_group(bg); 11255 if (ret == 1) 11256 ret = 0; 11257 else 11258 goto out; 11259 } 11260 11261 if (bsi.block_len && 11262 bsi.block_start + bsi.block_len == physical_block_start) { 11263 bsi.block_len += len; 11264 } else { 11265 if (bsi.block_len) { 11266 ret = btrfs_add_swap_extent(sis, &bsi); 11267 if (ret) 11268 goto out; 11269 } 11270 bsi.start = start; 11271 bsi.block_start = physical_block_start; 11272 bsi.block_len = len; 11273 } 11274 11275 start += len; 11276 } 11277 11278 if (bsi.block_len) 11279 ret = btrfs_add_swap_extent(sis, &bsi); 11280 11281 out: 11282 if (!IS_ERR_OR_NULL(em)) 11283 free_extent_map(em); 11284 11285 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 11286 11287 if (ret) 11288 btrfs_swap_deactivate(file); 11289 11290 btrfs_drew_write_unlock(&root->snapshot_lock); 11291 11292 btrfs_exclop_finish(fs_info); 11293 11294 if (ret) 11295 return ret; 11296 11297 if (device) 11298 sis->bdev = device->bdev; 11299 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 11300 sis->max = bsi.nr_pages; 11301 sis->pages = bsi.nr_pages - 1; 11302 sis->highest_bit = bsi.nr_pages - 1; 11303 return bsi.nr_extents; 11304 } 11305 #else 11306 static void btrfs_swap_deactivate(struct file *file) 11307 { 11308 } 11309 11310 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11311 sector_t *span) 11312 { 11313 return -EOPNOTSUPP; 11314 } 11315 #endif 11316 11317 /* 11318 * Update the number of bytes used in the VFS' inode. When we replace extents in 11319 * a range (clone, dedupe, fallocate's zero range), we must update the number of 11320 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 11321 * always get a correct value. 11322 */ 11323 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 11324 const u64 add_bytes, 11325 const u64 del_bytes) 11326 { 11327 if (add_bytes == del_bytes) 11328 return; 11329 11330 spin_lock(&inode->lock); 11331 if (del_bytes > 0) 11332 inode_sub_bytes(&inode->vfs_inode, del_bytes); 11333 if (add_bytes > 0) 11334 inode_add_bytes(&inode->vfs_inode, add_bytes); 11335 spin_unlock(&inode->lock); 11336 } 11337 11338 /** 11339 * Verify that there are no ordered extents for a given file range. 11340 * 11341 * @inode: The target inode. 11342 * @start: Start offset of the file range, should be sector size aligned. 11343 * @end: End offset (inclusive) of the file range, its value +1 should be 11344 * sector size aligned. 11345 * 11346 * This should typically be used for cases where we locked an inode's VFS lock in 11347 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 11348 * we have flushed all delalloc in the range, we have waited for all ordered 11349 * extents in the range to complete and finally we have locked the file range in 11350 * the inode's io_tree. 11351 */ 11352 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 11353 { 11354 struct btrfs_root *root = inode->root; 11355 struct btrfs_ordered_extent *ordered; 11356 11357 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 11358 return; 11359 11360 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 11361 if (ordered) { 11362 btrfs_err(root->fs_info, 11363 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 11364 start, end, btrfs_ino(inode), root->root_key.objectid, 11365 ordered->file_offset, 11366 ordered->file_offset + ordered->num_bytes - 1); 11367 btrfs_put_ordered_extent(ordered); 11368 } 11369 11370 ASSERT(ordered == NULL); 11371 } 11372 11373 static const struct inode_operations btrfs_dir_inode_operations = { 11374 .getattr = btrfs_getattr, 11375 .lookup = btrfs_lookup, 11376 .create = btrfs_create, 11377 .unlink = btrfs_unlink, 11378 .link = btrfs_link, 11379 .mkdir = btrfs_mkdir, 11380 .rmdir = btrfs_rmdir, 11381 .rename = btrfs_rename2, 11382 .symlink = btrfs_symlink, 11383 .setattr = btrfs_setattr, 11384 .mknod = btrfs_mknod, 11385 .listxattr = btrfs_listxattr, 11386 .permission = btrfs_permission, 11387 .get_acl = btrfs_get_acl, 11388 .set_acl = btrfs_set_acl, 11389 .update_time = btrfs_update_time, 11390 .tmpfile = btrfs_tmpfile, 11391 .fileattr_get = btrfs_fileattr_get, 11392 .fileattr_set = btrfs_fileattr_set, 11393 }; 11394 11395 static const struct file_operations btrfs_dir_file_operations = { 11396 .llseek = generic_file_llseek, 11397 .read = generic_read_dir, 11398 .iterate_shared = btrfs_real_readdir, 11399 .open = btrfs_opendir, 11400 .unlocked_ioctl = btrfs_ioctl, 11401 #ifdef CONFIG_COMPAT 11402 .compat_ioctl = btrfs_compat_ioctl, 11403 #endif 11404 .release = btrfs_release_file, 11405 .fsync = btrfs_sync_file, 11406 }; 11407 11408 /* 11409 * btrfs doesn't support the bmap operation because swapfiles 11410 * use bmap to make a mapping of extents in the file. They assume 11411 * these extents won't change over the life of the file and they 11412 * use the bmap result to do IO directly to the drive. 11413 * 11414 * the btrfs bmap call would return logical addresses that aren't 11415 * suitable for IO and they also will change frequently as COW 11416 * operations happen. So, swapfile + btrfs == corruption. 11417 * 11418 * For now we're avoiding this by dropping bmap. 11419 */ 11420 static const struct address_space_operations btrfs_aops = { 11421 .read_folio = btrfs_read_folio, 11422 .writepage = btrfs_writepage, 11423 .writepages = btrfs_writepages, 11424 .readahead = btrfs_readahead, 11425 .direct_IO = noop_direct_IO, 11426 .invalidate_folio = btrfs_invalidate_folio, 11427 .release_folio = btrfs_release_folio, 11428 #ifdef CONFIG_MIGRATION 11429 .migratepage = btrfs_migratepage, 11430 #endif 11431 .dirty_folio = filemap_dirty_folio, 11432 .error_remove_page = generic_error_remove_page, 11433 .swap_activate = btrfs_swap_activate, 11434 .swap_deactivate = btrfs_swap_deactivate, 11435 }; 11436 11437 static const struct inode_operations btrfs_file_inode_operations = { 11438 .getattr = btrfs_getattr, 11439 .setattr = btrfs_setattr, 11440 .listxattr = btrfs_listxattr, 11441 .permission = btrfs_permission, 11442 .fiemap = btrfs_fiemap, 11443 .get_acl = btrfs_get_acl, 11444 .set_acl = btrfs_set_acl, 11445 .update_time = btrfs_update_time, 11446 .fileattr_get = btrfs_fileattr_get, 11447 .fileattr_set = btrfs_fileattr_set, 11448 }; 11449 static const struct inode_operations btrfs_special_inode_operations = { 11450 .getattr = btrfs_getattr, 11451 .setattr = btrfs_setattr, 11452 .permission = btrfs_permission, 11453 .listxattr = btrfs_listxattr, 11454 .get_acl = btrfs_get_acl, 11455 .set_acl = btrfs_set_acl, 11456 .update_time = btrfs_update_time, 11457 }; 11458 static const struct inode_operations btrfs_symlink_inode_operations = { 11459 .get_link = page_get_link, 11460 .getattr = btrfs_getattr, 11461 .setattr = btrfs_setattr, 11462 .permission = btrfs_permission, 11463 .listxattr = btrfs_listxattr, 11464 .update_time = btrfs_update_time, 11465 }; 11466 11467 const struct dentry_operations btrfs_dentry_operations = { 11468 .d_delete = btrfs_dentry_delete, 11469 }; 11470