1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include "compat.h" 42 #include "ctree.h" 43 #include "disk-io.h" 44 #include "transaction.h" 45 #include "btrfs_inode.h" 46 #include "ioctl.h" 47 #include "print-tree.h" 48 #include "volumes.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "compression.h" 53 #include "locking.h" 54 #include "free-space-cache.h" 55 #include "inode-map.h" 56 57 struct btrfs_iget_args { 58 u64 ino; 59 struct btrfs_root *root; 60 }; 61 62 static const struct inode_operations btrfs_dir_inode_operations; 63 static const struct inode_operations btrfs_symlink_inode_operations; 64 static const struct inode_operations btrfs_dir_ro_inode_operations; 65 static const struct inode_operations btrfs_special_inode_operations; 66 static const struct inode_operations btrfs_file_inode_operations; 67 static const struct address_space_operations btrfs_aops; 68 static const struct address_space_operations btrfs_symlink_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_transaction_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 78 #define S_SHIFT 12 79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 87 }; 88 89 static int btrfs_setsize(struct inode *inode, loff_t newsize); 90 static int btrfs_truncate(struct inode *inode); 91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 92 static noinline int cow_file_range(struct inode *inode, 93 struct page *locked_page, 94 u64 start, u64 end, int *page_started, 95 unsigned long *nr_written, int unlock); 96 97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 98 struct inode *inode, struct inode *dir, 99 const struct qstr *qstr) 100 { 101 int err; 102 103 err = btrfs_init_acl(trans, inode, dir); 104 if (!err) 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 106 return err; 107 } 108 109 /* 110 * this does all the hard work for inserting an inline extent into 111 * the btree. The caller should have done a btrfs_drop_extents so that 112 * no overlapping inline items exist in the btree 113 */ 114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 115 struct btrfs_root *root, struct inode *inode, 116 u64 start, size_t size, size_t compressed_size, 117 int compress_type, 118 struct page **compressed_pages) 119 { 120 struct btrfs_key key; 121 struct btrfs_path *path; 122 struct extent_buffer *leaf; 123 struct page *page = NULL; 124 char *kaddr; 125 unsigned long ptr; 126 struct btrfs_file_extent_item *ei; 127 int err = 0; 128 int ret; 129 size_t cur_size = size; 130 size_t datasize; 131 unsigned long offset; 132 133 if (compressed_size && compressed_pages) 134 cur_size = compressed_size; 135 136 path = btrfs_alloc_path(); 137 if (!path) 138 return -ENOMEM; 139 140 path->leave_spinning = 1; 141 142 key.objectid = btrfs_ino(inode); 143 key.offset = start; 144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 145 datasize = btrfs_file_extent_calc_inline_size(cur_size); 146 147 inode_add_bytes(inode, size); 148 ret = btrfs_insert_empty_item(trans, root, path, &key, 149 datasize); 150 BUG_ON(ret); 151 if (ret) { 152 err = ret; 153 goto fail; 154 } 155 leaf = path->nodes[0]; 156 ei = btrfs_item_ptr(leaf, path->slots[0], 157 struct btrfs_file_extent_item); 158 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 160 btrfs_set_file_extent_encryption(leaf, ei, 0); 161 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 162 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 163 ptr = btrfs_file_extent_inline_start(ei); 164 165 if (compress_type != BTRFS_COMPRESS_NONE) { 166 struct page *cpage; 167 int i = 0; 168 while (compressed_size > 0) { 169 cpage = compressed_pages[i]; 170 cur_size = min_t(unsigned long, compressed_size, 171 PAGE_CACHE_SIZE); 172 173 kaddr = kmap_atomic(cpage, KM_USER0); 174 write_extent_buffer(leaf, kaddr, ptr, cur_size); 175 kunmap_atomic(kaddr, KM_USER0); 176 177 i++; 178 ptr += cur_size; 179 compressed_size -= cur_size; 180 } 181 btrfs_set_file_extent_compression(leaf, ei, 182 compress_type); 183 } else { 184 page = find_get_page(inode->i_mapping, 185 start >> PAGE_CACHE_SHIFT); 186 btrfs_set_file_extent_compression(leaf, ei, 0); 187 kaddr = kmap_atomic(page, KM_USER0); 188 offset = start & (PAGE_CACHE_SIZE - 1); 189 write_extent_buffer(leaf, kaddr + offset, ptr, size); 190 kunmap_atomic(kaddr, KM_USER0); 191 page_cache_release(page); 192 } 193 btrfs_mark_buffer_dirty(leaf); 194 btrfs_free_path(path); 195 196 /* 197 * we're an inline extent, so nobody can 198 * extend the file past i_size without locking 199 * a page we already have locked. 200 * 201 * We must do any isize and inode updates 202 * before we unlock the pages. Otherwise we 203 * could end up racing with unlink. 204 */ 205 BTRFS_I(inode)->disk_i_size = inode->i_size; 206 btrfs_update_inode(trans, root, inode); 207 208 return 0; 209 fail: 210 btrfs_free_path(path); 211 return err; 212 } 213 214 215 /* 216 * conditionally insert an inline extent into the file. This 217 * does the checks required to make sure the data is small enough 218 * to fit as an inline extent. 219 */ 220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 221 struct btrfs_root *root, 222 struct inode *inode, u64 start, u64 end, 223 size_t compressed_size, int compress_type, 224 struct page **compressed_pages) 225 { 226 u64 isize = i_size_read(inode); 227 u64 actual_end = min(end + 1, isize); 228 u64 inline_len = actual_end - start; 229 u64 aligned_end = (end + root->sectorsize - 1) & 230 ~((u64)root->sectorsize - 1); 231 u64 hint_byte; 232 u64 data_len = inline_len; 233 int ret; 234 235 if (compressed_size) 236 data_len = compressed_size; 237 238 if (start > 0 || 239 actual_end >= PAGE_CACHE_SIZE || 240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 241 (!compressed_size && 242 (actual_end & (root->sectorsize - 1)) == 0) || 243 end + 1 < isize || 244 data_len > root->fs_info->max_inline) { 245 return 1; 246 } 247 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 249 &hint_byte, 1); 250 BUG_ON(ret); 251 252 if (isize > actual_end) 253 inline_len = min_t(u64, isize, actual_end); 254 ret = insert_inline_extent(trans, root, inode, start, 255 inline_len, compressed_size, 256 compress_type, compressed_pages); 257 BUG_ON(ret); 258 btrfs_delalloc_release_metadata(inode, end + 1 - start); 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 260 return 0; 261 } 262 263 struct async_extent { 264 u64 start; 265 u64 ram_size; 266 u64 compressed_size; 267 struct page **pages; 268 unsigned long nr_pages; 269 int compress_type; 270 struct list_head list; 271 }; 272 273 struct async_cow { 274 struct inode *inode; 275 struct btrfs_root *root; 276 struct page *locked_page; 277 u64 start; 278 u64 end; 279 struct list_head extents; 280 struct btrfs_work work; 281 }; 282 283 static noinline int add_async_extent(struct async_cow *cow, 284 u64 start, u64 ram_size, 285 u64 compressed_size, 286 struct page **pages, 287 unsigned long nr_pages, 288 int compress_type) 289 { 290 struct async_extent *async_extent; 291 292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 293 BUG_ON(!async_extent); 294 async_extent->start = start; 295 async_extent->ram_size = ram_size; 296 async_extent->compressed_size = compressed_size; 297 async_extent->pages = pages; 298 async_extent->nr_pages = nr_pages; 299 async_extent->compress_type = compress_type; 300 list_add_tail(&async_extent->list, &cow->extents); 301 return 0; 302 } 303 304 /* 305 * we create compressed extents in two phases. The first 306 * phase compresses a range of pages that have already been 307 * locked (both pages and state bits are locked). 308 * 309 * This is done inside an ordered work queue, and the compression 310 * is spread across many cpus. The actual IO submission is step 311 * two, and the ordered work queue takes care of making sure that 312 * happens in the same order things were put onto the queue by 313 * writepages and friends. 314 * 315 * If this code finds it can't get good compression, it puts an 316 * entry onto the work queue to write the uncompressed bytes. This 317 * makes sure that both compressed inodes and uncompressed inodes 318 * are written in the same order that pdflush sent them down. 319 */ 320 static noinline int compress_file_range(struct inode *inode, 321 struct page *locked_page, 322 u64 start, u64 end, 323 struct async_cow *async_cow, 324 int *num_added) 325 { 326 struct btrfs_root *root = BTRFS_I(inode)->root; 327 struct btrfs_trans_handle *trans; 328 u64 num_bytes; 329 u64 blocksize = root->sectorsize; 330 u64 actual_end; 331 u64 isize = i_size_read(inode); 332 int ret = 0; 333 struct page **pages = NULL; 334 unsigned long nr_pages; 335 unsigned long nr_pages_ret = 0; 336 unsigned long total_compressed = 0; 337 unsigned long total_in = 0; 338 unsigned long max_compressed = 128 * 1024; 339 unsigned long max_uncompressed = 128 * 1024; 340 int i; 341 int will_compress; 342 int compress_type = root->fs_info->compress_type; 343 344 /* if this is a small write inside eof, kick off a defragbot */ 345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024) 346 btrfs_add_inode_defrag(NULL, inode); 347 348 actual_end = min_t(u64, isize, end + 1); 349 again: 350 will_compress = 0; 351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 353 354 /* 355 * we don't want to send crud past the end of i_size through 356 * compression, that's just a waste of CPU time. So, if the 357 * end of the file is before the start of our current 358 * requested range of bytes, we bail out to the uncompressed 359 * cleanup code that can deal with all of this. 360 * 361 * It isn't really the fastest way to fix things, but this is a 362 * very uncommon corner. 363 */ 364 if (actual_end <= start) 365 goto cleanup_and_bail_uncompressed; 366 367 total_compressed = actual_end - start; 368 369 /* we want to make sure that amount of ram required to uncompress 370 * an extent is reasonable, so we limit the total size in ram 371 * of a compressed extent to 128k. This is a crucial number 372 * because it also controls how easily we can spread reads across 373 * cpus for decompression. 374 * 375 * We also want to make sure the amount of IO required to do 376 * a random read is reasonably small, so we limit the size of 377 * a compressed extent to 128k. 378 */ 379 total_compressed = min(total_compressed, max_uncompressed); 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 381 num_bytes = max(blocksize, num_bytes); 382 total_in = 0; 383 ret = 0; 384 385 /* 386 * we do compression for mount -o compress and when the 387 * inode has not been flagged as nocompress. This flag can 388 * change at any time if we discover bad compression ratios. 389 */ 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 391 (btrfs_test_opt(root, COMPRESS) || 392 (BTRFS_I(inode)->force_compress) || 393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 394 WARN_ON(pages); 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 396 BUG_ON(!pages); 397 398 if (BTRFS_I(inode)->force_compress) 399 compress_type = BTRFS_I(inode)->force_compress; 400 401 ret = btrfs_compress_pages(compress_type, 402 inode->i_mapping, start, 403 total_compressed, pages, 404 nr_pages, &nr_pages_ret, 405 &total_in, 406 &total_compressed, 407 max_compressed); 408 409 if (!ret) { 410 unsigned long offset = total_compressed & 411 (PAGE_CACHE_SIZE - 1); 412 struct page *page = pages[nr_pages_ret - 1]; 413 char *kaddr; 414 415 /* zero the tail end of the last page, we might be 416 * sending it down to disk 417 */ 418 if (offset) { 419 kaddr = kmap_atomic(page, KM_USER0); 420 memset(kaddr + offset, 0, 421 PAGE_CACHE_SIZE - offset); 422 kunmap_atomic(kaddr, KM_USER0); 423 } 424 will_compress = 1; 425 } 426 } 427 if (start == 0) { 428 trans = btrfs_join_transaction(root); 429 BUG_ON(IS_ERR(trans)); 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 431 432 /* lets try to make an inline extent */ 433 if (ret || total_in < (actual_end - start)) { 434 /* we didn't compress the entire range, try 435 * to make an uncompressed inline extent. 436 */ 437 ret = cow_file_range_inline(trans, root, inode, 438 start, end, 0, 0, NULL); 439 } else { 440 /* try making a compressed inline extent */ 441 ret = cow_file_range_inline(trans, root, inode, 442 start, end, 443 total_compressed, 444 compress_type, pages); 445 } 446 if (ret == 0) { 447 /* 448 * inline extent creation worked, we don't need 449 * to create any more async work items. Unlock 450 * and free up our temp pages. 451 */ 452 extent_clear_unlock_delalloc(inode, 453 &BTRFS_I(inode)->io_tree, 454 start, end, NULL, 455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 456 EXTENT_CLEAR_DELALLOC | 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 458 459 btrfs_end_transaction(trans, root); 460 goto free_pages_out; 461 } 462 btrfs_end_transaction(trans, root); 463 } 464 465 if (will_compress) { 466 /* 467 * we aren't doing an inline extent round the compressed size 468 * up to a block size boundary so the allocator does sane 469 * things 470 */ 471 total_compressed = (total_compressed + blocksize - 1) & 472 ~(blocksize - 1); 473 474 /* 475 * one last check to make sure the compression is really a 476 * win, compare the page count read with the blocks on disk 477 */ 478 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 479 ~(PAGE_CACHE_SIZE - 1); 480 if (total_compressed >= total_in) { 481 will_compress = 0; 482 } else { 483 num_bytes = total_in; 484 } 485 } 486 if (!will_compress && pages) { 487 /* 488 * the compression code ran but failed to make things smaller, 489 * free any pages it allocated and our page pointer array 490 */ 491 for (i = 0; i < nr_pages_ret; i++) { 492 WARN_ON(pages[i]->mapping); 493 page_cache_release(pages[i]); 494 } 495 kfree(pages); 496 pages = NULL; 497 total_compressed = 0; 498 nr_pages_ret = 0; 499 500 /* flag the file so we don't compress in the future */ 501 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 502 !(BTRFS_I(inode)->force_compress)) { 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 504 } 505 } 506 if (will_compress) { 507 *num_added += 1; 508 509 /* the async work queues will take care of doing actual 510 * allocation on disk for these compressed pages, 511 * and will submit them to the elevator. 512 */ 513 add_async_extent(async_cow, start, num_bytes, 514 total_compressed, pages, nr_pages_ret, 515 compress_type); 516 517 if (start + num_bytes < end) { 518 start += num_bytes; 519 pages = NULL; 520 cond_resched(); 521 goto again; 522 } 523 } else { 524 cleanup_and_bail_uncompressed: 525 /* 526 * No compression, but we still need to write the pages in 527 * the file we've been given so far. redirty the locked 528 * page if it corresponds to our extent and set things up 529 * for the async work queue to run cow_file_range to do 530 * the normal delalloc dance 531 */ 532 if (page_offset(locked_page) >= start && 533 page_offset(locked_page) <= end) { 534 __set_page_dirty_nobuffers(locked_page); 535 /* unlocked later on in the async handlers */ 536 } 537 add_async_extent(async_cow, start, end - start + 1, 538 0, NULL, 0, BTRFS_COMPRESS_NONE); 539 *num_added += 1; 540 } 541 542 out: 543 return 0; 544 545 free_pages_out: 546 for (i = 0; i < nr_pages_ret; i++) { 547 WARN_ON(pages[i]->mapping); 548 page_cache_release(pages[i]); 549 } 550 kfree(pages); 551 552 goto out; 553 } 554 555 /* 556 * phase two of compressed writeback. This is the ordered portion 557 * of the code, which only gets called in the order the work was 558 * queued. We walk all the async extents created by compress_file_range 559 * and send them down to the disk. 560 */ 561 static noinline int submit_compressed_extents(struct inode *inode, 562 struct async_cow *async_cow) 563 { 564 struct async_extent *async_extent; 565 u64 alloc_hint = 0; 566 struct btrfs_trans_handle *trans; 567 struct btrfs_key ins; 568 struct extent_map *em; 569 struct btrfs_root *root = BTRFS_I(inode)->root; 570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 571 struct extent_io_tree *io_tree; 572 int ret = 0; 573 574 if (list_empty(&async_cow->extents)) 575 return 0; 576 577 578 while (!list_empty(&async_cow->extents)) { 579 async_extent = list_entry(async_cow->extents.next, 580 struct async_extent, list); 581 list_del(&async_extent->list); 582 583 io_tree = &BTRFS_I(inode)->io_tree; 584 585 retry: 586 /* did the compression code fall back to uncompressed IO? */ 587 if (!async_extent->pages) { 588 int page_started = 0; 589 unsigned long nr_written = 0; 590 591 lock_extent(io_tree, async_extent->start, 592 async_extent->start + 593 async_extent->ram_size - 1, GFP_NOFS); 594 595 /* allocate blocks */ 596 ret = cow_file_range(inode, async_cow->locked_page, 597 async_extent->start, 598 async_extent->start + 599 async_extent->ram_size - 1, 600 &page_started, &nr_written, 0); 601 602 /* 603 * if page_started, cow_file_range inserted an 604 * inline extent and took care of all the unlocking 605 * and IO for us. Otherwise, we need to submit 606 * all those pages down to the drive. 607 */ 608 if (!page_started && !ret) 609 extent_write_locked_range(io_tree, 610 inode, async_extent->start, 611 async_extent->start + 612 async_extent->ram_size - 1, 613 btrfs_get_extent, 614 WB_SYNC_ALL); 615 kfree(async_extent); 616 cond_resched(); 617 continue; 618 } 619 620 lock_extent(io_tree, async_extent->start, 621 async_extent->start + async_extent->ram_size - 1, 622 GFP_NOFS); 623 624 trans = btrfs_join_transaction(root); 625 BUG_ON(IS_ERR(trans)); 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 627 ret = btrfs_reserve_extent(trans, root, 628 async_extent->compressed_size, 629 async_extent->compressed_size, 630 0, alloc_hint, 631 (u64)-1, &ins, 1); 632 btrfs_end_transaction(trans, root); 633 634 if (ret) { 635 int i; 636 for (i = 0; i < async_extent->nr_pages; i++) { 637 WARN_ON(async_extent->pages[i]->mapping); 638 page_cache_release(async_extent->pages[i]); 639 } 640 kfree(async_extent->pages); 641 async_extent->nr_pages = 0; 642 async_extent->pages = NULL; 643 unlock_extent(io_tree, async_extent->start, 644 async_extent->start + 645 async_extent->ram_size - 1, GFP_NOFS); 646 goto retry; 647 } 648 649 /* 650 * here we're doing allocation and writeback of the 651 * compressed pages 652 */ 653 btrfs_drop_extent_cache(inode, async_extent->start, 654 async_extent->start + 655 async_extent->ram_size - 1, 0); 656 657 em = alloc_extent_map(); 658 BUG_ON(!em); 659 em->start = async_extent->start; 660 em->len = async_extent->ram_size; 661 em->orig_start = em->start; 662 663 em->block_start = ins.objectid; 664 em->block_len = ins.offset; 665 em->bdev = root->fs_info->fs_devices->latest_bdev; 666 em->compress_type = async_extent->compress_type; 667 set_bit(EXTENT_FLAG_PINNED, &em->flags); 668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 669 670 while (1) { 671 write_lock(&em_tree->lock); 672 ret = add_extent_mapping(em_tree, em); 673 write_unlock(&em_tree->lock); 674 if (ret != -EEXIST) { 675 free_extent_map(em); 676 break; 677 } 678 btrfs_drop_extent_cache(inode, async_extent->start, 679 async_extent->start + 680 async_extent->ram_size - 1, 0); 681 } 682 683 ret = btrfs_add_ordered_extent_compress(inode, 684 async_extent->start, 685 ins.objectid, 686 async_extent->ram_size, 687 ins.offset, 688 BTRFS_ORDERED_COMPRESSED, 689 async_extent->compress_type); 690 BUG_ON(ret); 691 692 /* 693 * clear dirty, set writeback and unlock the pages. 694 */ 695 extent_clear_unlock_delalloc(inode, 696 &BTRFS_I(inode)->io_tree, 697 async_extent->start, 698 async_extent->start + 699 async_extent->ram_size - 1, 700 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 701 EXTENT_CLEAR_UNLOCK | 702 EXTENT_CLEAR_DELALLOC | 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 704 705 ret = btrfs_submit_compressed_write(inode, 706 async_extent->start, 707 async_extent->ram_size, 708 ins.objectid, 709 ins.offset, async_extent->pages, 710 async_extent->nr_pages); 711 712 BUG_ON(ret); 713 alloc_hint = ins.objectid + ins.offset; 714 kfree(async_extent); 715 cond_resched(); 716 } 717 718 return 0; 719 } 720 721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 722 u64 num_bytes) 723 { 724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 725 struct extent_map *em; 726 u64 alloc_hint = 0; 727 728 read_lock(&em_tree->lock); 729 em = search_extent_mapping(em_tree, start, num_bytes); 730 if (em) { 731 /* 732 * if block start isn't an actual block number then find the 733 * first block in this inode and use that as a hint. If that 734 * block is also bogus then just don't worry about it. 735 */ 736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 737 free_extent_map(em); 738 em = search_extent_mapping(em_tree, 0, 0); 739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 740 alloc_hint = em->block_start; 741 if (em) 742 free_extent_map(em); 743 } else { 744 alloc_hint = em->block_start; 745 free_extent_map(em); 746 } 747 } 748 read_unlock(&em_tree->lock); 749 750 return alloc_hint; 751 } 752 753 /* 754 * when extent_io.c finds a delayed allocation range in the file, 755 * the call backs end up in this code. The basic idea is to 756 * allocate extents on disk for the range, and create ordered data structs 757 * in ram to track those extents. 758 * 759 * locked_page is the page that writepage had locked already. We use 760 * it to make sure we don't do extra locks or unlocks. 761 * 762 * *page_started is set to one if we unlock locked_page and do everything 763 * required to start IO on it. It may be clean and already done with 764 * IO when we return. 765 */ 766 static noinline int cow_file_range(struct inode *inode, 767 struct page *locked_page, 768 u64 start, u64 end, int *page_started, 769 unsigned long *nr_written, 770 int unlock) 771 { 772 struct btrfs_root *root = BTRFS_I(inode)->root; 773 struct btrfs_trans_handle *trans; 774 u64 alloc_hint = 0; 775 u64 num_bytes; 776 unsigned long ram_size; 777 u64 disk_num_bytes; 778 u64 cur_alloc_size; 779 u64 blocksize = root->sectorsize; 780 struct btrfs_key ins; 781 struct extent_map *em; 782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 783 int ret = 0; 784 785 BUG_ON(btrfs_is_free_space_inode(root, inode)); 786 trans = btrfs_join_transaction(root); 787 BUG_ON(IS_ERR(trans)); 788 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 789 790 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 791 num_bytes = max(blocksize, num_bytes); 792 disk_num_bytes = num_bytes; 793 ret = 0; 794 795 /* if this is a small write inside eof, kick off defrag */ 796 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024) 797 btrfs_add_inode_defrag(trans, inode); 798 799 if (start == 0) { 800 /* lets try to make an inline extent */ 801 ret = cow_file_range_inline(trans, root, inode, 802 start, end, 0, 0, NULL); 803 if (ret == 0) { 804 extent_clear_unlock_delalloc(inode, 805 &BTRFS_I(inode)->io_tree, 806 start, end, NULL, 807 EXTENT_CLEAR_UNLOCK_PAGE | 808 EXTENT_CLEAR_UNLOCK | 809 EXTENT_CLEAR_DELALLOC | 810 EXTENT_CLEAR_DIRTY | 811 EXTENT_SET_WRITEBACK | 812 EXTENT_END_WRITEBACK); 813 814 *nr_written = *nr_written + 815 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 816 *page_started = 1; 817 ret = 0; 818 goto out; 819 } 820 } 821 822 BUG_ON(disk_num_bytes > 823 btrfs_super_total_bytes(&root->fs_info->super_copy)); 824 825 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 826 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 827 828 while (disk_num_bytes > 0) { 829 unsigned long op; 830 831 cur_alloc_size = disk_num_bytes; 832 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 833 root->sectorsize, 0, alloc_hint, 834 (u64)-1, &ins, 1); 835 BUG_ON(ret); 836 837 em = alloc_extent_map(); 838 BUG_ON(!em); 839 em->start = start; 840 em->orig_start = em->start; 841 ram_size = ins.offset; 842 em->len = ins.offset; 843 844 em->block_start = ins.objectid; 845 em->block_len = ins.offset; 846 em->bdev = root->fs_info->fs_devices->latest_bdev; 847 set_bit(EXTENT_FLAG_PINNED, &em->flags); 848 849 while (1) { 850 write_lock(&em_tree->lock); 851 ret = add_extent_mapping(em_tree, em); 852 write_unlock(&em_tree->lock); 853 if (ret != -EEXIST) { 854 free_extent_map(em); 855 break; 856 } 857 btrfs_drop_extent_cache(inode, start, 858 start + ram_size - 1, 0); 859 } 860 861 cur_alloc_size = ins.offset; 862 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 863 ram_size, cur_alloc_size, 0); 864 BUG_ON(ret); 865 866 if (root->root_key.objectid == 867 BTRFS_DATA_RELOC_TREE_OBJECTID) { 868 ret = btrfs_reloc_clone_csums(inode, start, 869 cur_alloc_size); 870 BUG_ON(ret); 871 } 872 873 if (disk_num_bytes < cur_alloc_size) 874 break; 875 876 /* we're not doing compressed IO, don't unlock the first 877 * page (which the caller expects to stay locked), don't 878 * clear any dirty bits and don't set any writeback bits 879 * 880 * Do set the Private2 bit so we know this page was properly 881 * setup for writepage 882 */ 883 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 884 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 885 EXTENT_SET_PRIVATE2; 886 887 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 888 start, start + ram_size - 1, 889 locked_page, op); 890 disk_num_bytes -= cur_alloc_size; 891 num_bytes -= cur_alloc_size; 892 alloc_hint = ins.objectid + ins.offset; 893 start += cur_alloc_size; 894 } 895 out: 896 ret = 0; 897 btrfs_end_transaction(trans, root); 898 899 return ret; 900 } 901 902 /* 903 * work queue call back to started compression on a file and pages 904 */ 905 static noinline void async_cow_start(struct btrfs_work *work) 906 { 907 struct async_cow *async_cow; 908 int num_added = 0; 909 async_cow = container_of(work, struct async_cow, work); 910 911 compress_file_range(async_cow->inode, async_cow->locked_page, 912 async_cow->start, async_cow->end, async_cow, 913 &num_added); 914 if (num_added == 0) 915 async_cow->inode = NULL; 916 } 917 918 /* 919 * work queue call back to submit previously compressed pages 920 */ 921 static noinline void async_cow_submit(struct btrfs_work *work) 922 { 923 struct async_cow *async_cow; 924 struct btrfs_root *root; 925 unsigned long nr_pages; 926 927 async_cow = container_of(work, struct async_cow, work); 928 929 root = async_cow->root; 930 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 931 PAGE_CACHE_SHIFT; 932 933 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 934 935 if (atomic_read(&root->fs_info->async_delalloc_pages) < 936 5 * 1042 * 1024 && 937 waitqueue_active(&root->fs_info->async_submit_wait)) 938 wake_up(&root->fs_info->async_submit_wait); 939 940 if (async_cow->inode) 941 submit_compressed_extents(async_cow->inode, async_cow); 942 } 943 944 static noinline void async_cow_free(struct btrfs_work *work) 945 { 946 struct async_cow *async_cow; 947 async_cow = container_of(work, struct async_cow, work); 948 kfree(async_cow); 949 } 950 951 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 952 u64 start, u64 end, int *page_started, 953 unsigned long *nr_written) 954 { 955 struct async_cow *async_cow; 956 struct btrfs_root *root = BTRFS_I(inode)->root; 957 unsigned long nr_pages; 958 u64 cur_end; 959 int limit = 10 * 1024 * 1042; 960 961 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 962 1, 0, NULL, GFP_NOFS); 963 while (start < end) { 964 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 965 BUG_ON(!async_cow); 966 async_cow->inode = inode; 967 async_cow->root = root; 968 async_cow->locked_page = locked_page; 969 async_cow->start = start; 970 971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 972 cur_end = end; 973 else 974 cur_end = min(end, start + 512 * 1024 - 1); 975 976 async_cow->end = cur_end; 977 INIT_LIST_HEAD(&async_cow->extents); 978 979 async_cow->work.func = async_cow_start; 980 async_cow->work.ordered_func = async_cow_submit; 981 async_cow->work.ordered_free = async_cow_free; 982 async_cow->work.flags = 0; 983 984 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 985 PAGE_CACHE_SHIFT; 986 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 987 988 btrfs_queue_worker(&root->fs_info->delalloc_workers, 989 &async_cow->work); 990 991 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 992 wait_event(root->fs_info->async_submit_wait, 993 (atomic_read(&root->fs_info->async_delalloc_pages) < 994 limit)); 995 } 996 997 while (atomic_read(&root->fs_info->async_submit_draining) && 998 atomic_read(&root->fs_info->async_delalloc_pages)) { 999 wait_event(root->fs_info->async_submit_wait, 1000 (atomic_read(&root->fs_info->async_delalloc_pages) == 1001 0)); 1002 } 1003 1004 *nr_written += nr_pages; 1005 start = cur_end + 1; 1006 } 1007 *page_started = 1; 1008 return 0; 1009 } 1010 1011 static noinline int csum_exist_in_range(struct btrfs_root *root, 1012 u64 bytenr, u64 num_bytes) 1013 { 1014 int ret; 1015 struct btrfs_ordered_sum *sums; 1016 LIST_HEAD(list); 1017 1018 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1019 bytenr + num_bytes - 1, &list, 0); 1020 if (ret == 0 && list_empty(&list)) 1021 return 0; 1022 1023 while (!list_empty(&list)) { 1024 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1025 list_del(&sums->list); 1026 kfree(sums); 1027 } 1028 return 1; 1029 } 1030 1031 /* 1032 * when nowcow writeback call back. This checks for snapshots or COW copies 1033 * of the extents that exist in the file, and COWs the file as required. 1034 * 1035 * If no cow copies or snapshots exist, we write directly to the existing 1036 * blocks on disk 1037 */ 1038 static noinline int run_delalloc_nocow(struct inode *inode, 1039 struct page *locked_page, 1040 u64 start, u64 end, int *page_started, int force, 1041 unsigned long *nr_written) 1042 { 1043 struct btrfs_root *root = BTRFS_I(inode)->root; 1044 struct btrfs_trans_handle *trans; 1045 struct extent_buffer *leaf; 1046 struct btrfs_path *path; 1047 struct btrfs_file_extent_item *fi; 1048 struct btrfs_key found_key; 1049 u64 cow_start; 1050 u64 cur_offset; 1051 u64 extent_end; 1052 u64 extent_offset; 1053 u64 disk_bytenr; 1054 u64 num_bytes; 1055 int extent_type; 1056 int ret; 1057 int type; 1058 int nocow; 1059 int check_prev = 1; 1060 bool nolock; 1061 u64 ino = btrfs_ino(inode); 1062 1063 path = btrfs_alloc_path(); 1064 if (!path) 1065 return -ENOMEM; 1066 1067 nolock = btrfs_is_free_space_inode(root, inode); 1068 1069 if (nolock) 1070 trans = btrfs_join_transaction_nolock(root); 1071 else 1072 trans = btrfs_join_transaction(root); 1073 1074 BUG_ON(IS_ERR(trans)); 1075 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1076 1077 cow_start = (u64)-1; 1078 cur_offset = start; 1079 while (1) { 1080 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1081 cur_offset, 0); 1082 BUG_ON(ret < 0); 1083 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1084 leaf = path->nodes[0]; 1085 btrfs_item_key_to_cpu(leaf, &found_key, 1086 path->slots[0] - 1); 1087 if (found_key.objectid == ino && 1088 found_key.type == BTRFS_EXTENT_DATA_KEY) 1089 path->slots[0]--; 1090 } 1091 check_prev = 0; 1092 next_slot: 1093 leaf = path->nodes[0]; 1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1095 ret = btrfs_next_leaf(root, path); 1096 if (ret < 0) 1097 BUG_ON(1); 1098 if (ret > 0) 1099 break; 1100 leaf = path->nodes[0]; 1101 } 1102 1103 nocow = 0; 1104 disk_bytenr = 0; 1105 num_bytes = 0; 1106 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1107 1108 if (found_key.objectid > ino || 1109 found_key.type > BTRFS_EXTENT_DATA_KEY || 1110 found_key.offset > end) 1111 break; 1112 1113 if (found_key.offset > cur_offset) { 1114 extent_end = found_key.offset; 1115 extent_type = 0; 1116 goto out_check; 1117 } 1118 1119 fi = btrfs_item_ptr(leaf, path->slots[0], 1120 struct btrfs_file_extent_item); 1121 extent_type = btrfs_file_extent_type(leaf, fi); 1122 1123 if (extent_type == BTRFS_FILE_EXTENT_REG || 1124 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1125 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1126 extent_offset = btrfs_file_extent_offset(leaf, fi); 1127 extent_end = found_key.offset + 1128 btrfs_file_extent_num_bytes(leaf, fi); 1129 if (extent_end <= start) { 1130 path->slots[0]++; 1131 goto next_slot; 1132 } 1133 if (disk_bytenr == 0) 1134 goto out_check; 1135 if (btrfs_file_extent_compression(leaf, fi) || 1136 btrfs_file_extent_encryption(leaf, fi) || 1137 btrfs_file_extent_other_encoding(leaf, fi)) 1138 goto out_check; 1139 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1140 goto out_check; 1141 if (btrfs_extent_readonly(root, disk_bytenr)) 1142 goto out_check; 1143 if (btrfs_cross_ref_exist(trans, root, ino, 1144 found_key.offset - 1145 extent_offset, disk_bytenr)) 1146 goto out_check; 1147 disk_bytenr += extent_offset; 1148 disk_bytenr += cur_offset - found_key.offset; 1149 num_bytes = min(end + 1, extent_end) - cur_offset; 1150 /* 1151 * force cow if csum exists in the range. 1152 * this ensure that csum for a given extent are 1153 * either valid or do not exist. 1154 */ 1155 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1156 goto out_check; 1157 nocow = 1; 1158 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1159 extent_end = found_key.offset + 1160 btrfs_file_extent_inline_len(leaf, fi); 1161 extent_end = ALIGN(extent_end, root->sectorsize); 1162 } else { 1163 BUG_ON(1); 1164 } 1165 out_check: 1166 if (extent_end <= start) { 1167 path->slots[0]++; 1168 goto next_slot; 1169 } 1170 if (!nocow) { 1171 if (cow_start == (u64)-1) 1172 cow_start = cur_offset; 1173 cur_offset = extent_end; 1174 if (cur_offset > end) 1175 break; 1176 path->slots[0]++; 1177 goto next_slot; 1178 } 1179 1180 btrfs_release_path(path); 1181 if (cow_start != (u64)-1) { 1182 ret = cow_file_range(inode, locked_page, cow_start, 1183 found_key.offset - 1, page_started, 1184 nr_written, 1); 1185 BUG_ON(ret); 1186 cow_start = (u64)-1; 1187 } 1188 1189 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1190 struct extent_map *em; 1191 struct extent_map_tree *em_tree; 1192 em_tree = &BTRFS_I(inode)->extent_tree; 1193 em = alloc_extent_map(); 1194 BUG_ON(!em); 1195 em->start = cur_offset; 1196 em->orig_start = em->start; 1197 em->len = num_bytes; 1198 em->block_len = num_bytes; 1199 em->block_start = disk_bytenr; 1200 em->bdev = root->fs_info->fs_devices->latest_bdev; 1201 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1202 while (1) { 1203 write_lock(&em_tree->lock); 1204 ret = add_extent_mapping(em_tree, em); 1205 write_unlock(&em_tree->lock); 1206 if (ret != -EEXIST) { 1207 free_extent_map(em); 1208 break; 1209 } 1210 btrfs_drop_extent_cache(inode, em->start, 1211 em->start + em->len - 1, 0); 1212 } 1213 type = BTRFS_ORDERED_PREALLOC; 1214 } else { 1215 type = BTRFS_ORDERED_NOCOW; 1216 } 1217 1218 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1219 num_bytes, num_bytes, type); 1220 BUG_ON(ret); 1221 1222 if (root->root_key.objectid == 1223 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1224 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1225 num_bytes); 1226 BUG_ON(ret); 1227 } 1228 1229 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1230 cur_offset, cur_offset + num_bytes - 1, 1231 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1232 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1233 EXTENT_SET_PRIVATE2); 1234 cur_offset = extent_end; 1235 if (cur_offset > end) 1236 break; 1237 } 1238 btrfs_release_path(path); 1239 1240 if (cur_offset <= end && cow_start == (u64)-1) 1241 cow_start = cur_offset; 1242 if (cow_start != (u64)-1) { 1243 ret = cow_file_range(inode, locked_page, cow_start, end, 1244 page_started, nr_written, 1); 1245 BUG_ON(ret); 1246 } 1247 1248 if (nolock) { 1249 ret = btrfs_end_transaction_nolock(trans, root); 1250 BUG_ON(ret); 1251 } else { 1252 ret = btrfs_end_transaction(trans, root); 1253 BUG_ON(ret); 1254 } 1255 btrfs_free_path(path); 1256 return 0; 1257 } 1258 1259 /* 1260 * extent_io.c call back to do delayed allocation processing 1261 */ 1262 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1263 u64 start, u64 end, int *page_started, 1264 unsigned long *nr_written) 1265 { 1266 int ret; 1267 struct btrfs_root *root = BTRFS_I(inode)->root; 1268 1269 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1270 ret = run_delalloc_nocow(inode, locked_page, start, end, 1271 page_started, 1, nr_written); 1272 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1273 ret = run_delalloc_nocow(inode, locked_page, start, end, 1274 page_started, 0, nr_written); 1275 else if (!btrfs_test_opt(root, COMPRESS) && 1276 !(BTRFS_I(inode)->force_compress) && 1277 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) 1278 ret = cow_file_range(inode, locked_page, start, end, 1279 page_started, nr_written, 1); 1280 else 1281 ret = cow_file_range_async(inode, locked_page, start, end, 1282 page_started, nr_written); 1283 return ret; 1284 } 1285 1286 static void btrfs_split_extent_hook(struct inode *inode, 1287 struct extent_state *orig, u64 split) 1288 { 1289 /* not delalloc, ignore it */ 1290 if (!(orig->state & EXTENT_DELALLOC)) 1291 return; 1292 1293 spin_lock(&BTRFS_I(inode)->lock); 1294 BTRFS_I(inode)->outstanding_extents++; 1295 spin_unlock(&BTRFS_I(inode)->lock); 1296 } 1297 1298 /* 1299 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1300 * extents so we can keep track of new extents that are just merged onto old 1301 * extents, such as when we are doing sequential writes, so we can properly 1302 * account for the metadata space we'll need. 1303 */ 1304 static void btrfs_merge_extent_hook(struct inode *inode, 1305 struct extent_state *new, 1306 struct extent_state *other) 1307 { 1308 /* not delalloc, ignore it */ 1309 if (!(other->state & EXTENT_DELALLOC)) 1310 return; 1311 1312 spin_lock(&BTRFS_I(inode)->lock); 1313 BTRFS_I(inode)->outstanding_extents--; 1314 spin_unlock(&BTRFS_I(inode)->lock); 1315 } 1316 1317 /* 1318 * extent_io.c set_bit_hook, used to track delayed allocation 1319 * bytes in this file, and to maintain the list of inodes that 1320 * have pending delalloc work to be done. 1321 */ 1322 static void btrfs_set_bit_hook(struct inode *inode, 1323 struct extent_state *state, int *bits) 1324 { 1325 1326 /* 1327 * set_bit and clear bit hooks normally require _irqsave/restore 1328 * but in this case, we are only testing for the DELALLOC 1329 * bit, which is only set or cleared with irqs on 1330 */ 1331 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1332 struct btrfs_root *root = BTRFS_I(inode)->root; 1333 u64 len = state->end + 1 - state->start; 1334 bool do_list = !btrfs_is_free_space_inode(root, inode); 1335 1336 if (*bits & EXTENT_FIRST_DELALLOC) { 1337 *bits &= ~EXTENT_FIRST_DELALLOC; 1338 } else { 1339 spin_lock(&BTRFS_I(inode)->lock); 1340 BTRFS_I(inode)->outstanding_extents++; 1341 spin_unlock(&BTRFS_I(inode)->lock); 1342 } 1343 1344 spin_lock(&root->fs_info->delalloc_lock); 1345 BTRFS_I(inode)->delalloc_bytes += len; 1346 root->fs_info->delalloc_bytes += len; 1347 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1348 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1349 &root->fs_info->delalloc_inodes); 1350 } 1351 spin_unlock(&root->fs_info->delalloc_lock); 1352 } 1353 } 1354 1355 /* 1356 * extent_io.c clear_bit_hook, see set_bit_hook for why 1357 */ 1358 static void btrfs_clear_bit_hook(struct inode *inode, 1359 struct extent_state *state, int *bits) 1360 { 1361 /* 1362 * set_bit and clear bit hooks normally require _irqsave/restore 1363 * but in this case, we are only testing for the DELALLOC 1364 * bit, which is only set or cleared with irqs on 1365 */ 1366 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1367 struct btrfs_root *root = BTRFS_I(inode)->root; 1368 u64 len = state->end + 1 - state->start; 1369 bool do_list = !btrfs_is_free_space_inode(root, inode); 1370 1371 if (*bits & EXTENT_FIRST_DELALLOC) { 1372 *bits &= ~EXTENT_FIRST_DELALLOC; 1373 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1374 spin_lock(&BTRFS_I(inode)->lock); 1375 BTRFS_I(inode)->outstanding_extents--; 1376 spin_unlock(&BTRFS_I(inode)->lock); 1377 } 1378 1379 if (*bits & EXTENT_DO_ACCOUNTING) 1380 btrfs_delalloc_release_metadata(inode, len); 1381 1382 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1383 && do_list) 1384 btrfs_free_reserved_data_space(inode, len); 1385 1386 spin_lock(&root->fs_info->delalloc_lock); 1387 root->fs_info->delalloc_bytes -= len; 1388 BTRFS_I(inode)->delalloc_bytes -= len; 1389 1390 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1391 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1392 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1393 } 1394 spin_unlock(&root->fs_info->delalloc_lock); 1395 } 1396 } 1397 1398 /* 1399 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1400 * we don't create bios that span stripes or chunks 1401 */ 1402 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1403 size_t size, struct bio *bio, 1404 unsigned long bio_flags) 1405 { 1406 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1407 struct btrfs_mapping_tree *map_tree; 1408 u64 logical = (u64)bio->bi_sector << 9; 1409 u64 length = 0; 1410 u64 map_length; 1411 int ret; 1412 1413 if (bio_flags & EXTENT_BIO_COMPRESSED) 1414 return 0; 1415 1416 length = bio->bi_size; 1417 map_tree = &root->fs_info->mapping_tree; 1418 map_length = length; 1419 ret = btrfs_map_block(map_tree, READ, logical, 1420 &map_length, NULL, 0); 1421 1422 if (map_length < length + size) 1423 return 1; 1424 return ret; 1425 } 1426 1427 /* 1428 * in order to insert checksums into the metadata in large chunks, 1429 * we wait until bio submission time. All the pages in the bio are 1430 * checksummed and sums are attached onto the ordered extent record. 1431 * 1432 * At IO completion time the cums attached on the ordered extent record 1433 * are inserted into the btree 1434 */ 1435 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1436 struct bio *bio, int mirror_num, 1437 unsigned long bio_flags, 1438 u64 bio_offset) 1439 { 1440 struct btrfs_root *root = BTRFS_I(inode)->root; 1441 int ret = 0; 1442 1443 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1444 BUG_ON(ret); 1445 return 0; 1446 } 1447 1448 /* 1449 * in order to insert checksums into the metadata in large chunks, 1450 * we wait until bio submission time. All the pages in the bio are 1451 * checksummed and sums are attached onto the ordered extent record. 1452 * 1453 * At IO completion time the cums attached on the ordered extent record 1454 * are inserted into the btree 1455 */ 1456 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1457 int mirror_num, unsigned long bio_flags, 1458 u64 bio_offset) 1459 { 1460 struct btrfs_root *root = BTRFS_I(inode)->root; 1461 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1462 } 1463 1464 /* 1465 * extent_io.c submission hook. This does the right thing for csum calculation 1466 * on write, or reading the csums from the tree before a read 1467 */ 1468 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1469 int mirror_num, unsigned long bio_flags, 1470 u64 bio_offset) 1471 { 1472 struct btrfs_root *root = BTRFS_I(inode)->root; 1473 int ret = 0; 1474 int skip_sum; 1475 1476 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1477 1478 if (btrfs_is_free_space_inode(root, inode)) 1479 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1480 else 1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1482 BUG_ON(ret); 1483 1484 if (!(rw & REQ_WRITE)) { 1485 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1486 return btrfs_submit_compressed_read(inode, bio, 1487 mirror_num, bio_flags); 1488 } else if (!skip_sum) { 1489 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1490 if (ret) 1491 return ret; 1492 } 1493 goto mapit; 1494 } else if (!skip_sum) { 1495 /* csum items have already been cloned */ 1496 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1497 goto mapit; 1498 /* we're doing a write, do the async checksumming */ 1499 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1500 inode, rw, bio, mirror_num, 1501 bio_flags, bio_offset, 1502 __btrfs_submit_bio_start, 1503 __btrfs_submit_bio_done); 1504 } 1505 1506 mapit: 1507 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1508 } 1509 1510 /* 1511 * given a list of ordered sums record them in the inode. This happens 1512 * at IO completion time based on sums calculated at bio submission time. 1513 */ 1514 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1515 struct inode *inode, u64 file_offset, 1516 struct list_head *list) 1517 { 1518 struct btrfs_ordered_sum *sum; 1519 1520 list_for_each_entry(sum, list, list) { 1521 btrfs_csum_file_blocks(trans, 1522 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1523 } 1524 return 0; 1525 } 1526 1527 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1528 struct extent_state **cached_state) 1529 { 1530 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1531 WARN_ON(1); 1532 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1533 cached_state, GFP_NOFS); 1534 } 1535 1536 /* see btrfs_writepage_start_hook for details on why this is required */ 1537 struct btrfs_writepage_fixup { 1538 struct page *page; 1539 struct btrfs_work work; 1540 }; 1541 1542 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1543 { 1544 struct btrfs_writepage_fixup *fixup; 1545 struct btrfs_ordered_extent *ordered; 1546 struct extent_state *cached_state = NULL; 1547 struct page *page; 1548 struct inode *inode; 1549 u64 page_start; 1550 u64 page_end; 1551 1552 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1553 page = fixup->page; 1554 again: 1555 lock_page(page); 1556 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1557 ClearPageChecked(page); 1558 goto out_page; 1559 } 1560 1561 inode = page->mapping->host; 1562 page_start = page_offset(page); 1563 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1564 1565 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1566 &cached_state, GFP_NOFS); 1567 1568 /* already ordered? We're done */ 1569 if (PagePrivate2(page)) 1570 goto out; 1571 1572 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1573 if (ordered) { 1574 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1575 page_end, &cached_state, GFP_NOFS); 1576 unlock_page(page); 1577 btrfs_start_ordered_extent(inode, ordered, 1); 1578 goto again; 1579 } 1580 1581 BUG(); 1582 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1583 ClearPageChecked(page); 1584 out: 1585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1586 &cached_state, GFP_NOFS); 1587 out_page: 1588 unlock_page(page); 1589 page_cache_release(page); 1590 kfree(fixup); 1591 } 1592 1593 /* 1594 * There are a few paths in the higher layers of the kernel that directly 1595 * set the page dirty bit without asking the filesystem if it is a 1596 * good idea. This causes problems because we want to make sure COW 1597 * properly happens and the data=ordered rules are followed. 1598 * 1599 * In our case any range that doesn't have the ORDERED bit set 1600 * hasn't been properly setup for IO. We kick off an async process 1601 * to fix it up. The async helper will wait for ordered extents, set 1602 * the delalloc bit and make it safe to write the page. 1603 */ 1604 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1605 { 1606 struct inode *inode = page->mapping->host; 1607 struct btrfs_writepage_fixup *fixup; 1608 struct btrfs_root *root = BTRFS_I(inode)->root; 1609 1610 /* this page is properly in the ordered list */ 1611 if (TestClearPagePrivate2(page)) 1612 return 0; 1613 1614 if (PageChecked(page)) 1615 return -EAGAIN; 1616 1617 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1618 if (!fixup) 1619 return -EAGAIN; 1620 1621 SetPageChecked(page); 1622 page_cache_get(page); 1623 fixup->work.func = btrfs_writepage_fixup_worker; 1624 fixup->page = page; 1625 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1626 return -EAGAIN; 1627 } 1628 1629 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1630 struct inode *inode, u64 file_pos, 1631 u64 disk_bytenr, u64 disk_num_bytes, 1632 u64 num_bytes, u64 ram_bytes, 1633 u8 compression, u8 encryption, 1634 u16 other_encoding, int extent_type) 1635 { 1636 struct btrfs_root *root = BTRFS_I(inode)->root; 1637 struct btrfs_file_extent_item *fi; 1638 struct btrfs_path *path; 1639 struct extent_buffer *leaf; 1640 struct btrfs_key ins; 1641 u64 hint; 1642 int ret; 1643 1644 path = btrfs_alloc_path(); 1645 if (!path) 1646 return -ENOMEM; 1647 1648 path->leave_spinning = 1; 1649 1650 /* 1651 * we may be replacing one extent in the tree with another. 1652 * The new extent is pinned in the extent map, and we don't want 1653 * to drop it from the cache until it is completely in the btree. 1654 * 1655 * So, tell btrfs_drop_extents to leave this extent in the cache. 1656 * the caller is expected to unpin it and allow it to be merged 1657 * with the others. 1658 */ 1659 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1660 &hint, 0); 1661 BUG_ON(ret); 1662 1663 ins.objectid = btrfs_ino(inode); 1664 ins.offset = file_pos; 1665 ins.type = BTRFS_EXTENT_DATA_KEY; 1666 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1667 BUG_ON(ret); 1668 leaf = path->nodes[0]; 1669 fi = btrfs_item_ptr(leaf, path->slots[0], 1670 struct btrfs_file_extent_item); 1671 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1672 btrfs_set_file_extent_type(leaf, fi, extent_type); 1673 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1674 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1675 btrfs_set_file_extent_offset(leaf, fi, 0); 1676 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1677 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1678 btrfs_set_file_extent_compression(leaf, fi, compression); 1679 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1680 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1681 1682 btrfs_unlock_up_safe(path, 1); 1683 btrfs_set_lock_blocking(leaf); 1684 1685 btrfs_mark_buffer_dirty(leaf); 1686 1687 inode_add_bytes(inode, num_bytes); 1688 1689 ins.objectid = disk_bytenr; 1690 ins.offset = disk_num_bytes; 1691 ins.type = BTRFS_EXTENT_ITEM_KEY; 1692 ret = btrfs_alloc_reserved_file_extent(trans, root, 1693 root->root_key.objectid, 1694 btrfs_ino(inode), file_pos, &ins); 1695 BUG_ON(ret); 1696 btrfs_free_path(path); 1697 1698 return 0; 1699 } 1700 1701 /* 1702 * helper function for btrfs_finish_ordered_io, this 1703 * just reads in some of the csum leaves to prime them into ram 1704 * before we start the transaction. It limits the amount of btree 1705 * reads required while inside the transaction. 1706 */ 1707 /* as ordered data IO finishes, this gets called so we can finish 1708 * an ordered extent if the range of bytes in the file it covers are 1709 * fully written. 1710 */ 1711 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1712 { 1713 struct btrfs_root *root = BTRFS_I(inode)->root; 1714 struct btrfs_trans_handle *trans = NULL; 1715 struct btrfs_ordered_extent *ordered_extent = NULL; 1716 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1717 struct extent_state *cached_state = NULL; 1718 int compress_type = 0; 1719 int ret; 1720 bool nolock; 1721 1722 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1723 end - start + 1); 1724 if (!ret) 1725 return 0; 1726 BUG_ON(!ordered_extent); 1727 1728 nolock = btrfs_is_free_space_inode(root, inode); 1729 1730 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1731 BUG_ON(!list_empty(&ordered_extent->list)); 1732 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1733 if (!ret) { 1734 if (nolock) 1735 trans = btrfs_join_transaction_nolock(root); 1736 else 1737 trans = btrfs_join_transaction(root); 1738 BUG_ON(IS_ERR(trans)); 1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1740 ret = btrfs_update_inode(trans, root, inode); 1741 BUG_ON(ret); 1742 } 1743 goto out; 1744 } 1745 1746 lock_extent_bits(io_tree, ordered_extent->file_offset, 1747 ordered_extent->file_offset + ordered_extent->len - 1, 1748 0, &cached_state, GFP_NOFS); 1749 1750 if (nolock) 1751 trans = btrfs_join_transaction_nolock(root); 1752 else 1753 trans = btrfs_join_transaction(root); 1754 BUG_ON(IS_ERR(trans)); 1755 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1756 1757 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1758 compress_type = ordered_extent->compress_type; 1759 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1760 BUG_ON(compress_type); 1761 ret = btrfs_mark_extent_written(trans, inode, 1762 ordered_extent->file_offset, 1763 ordered_extent->file_offset + 1764 ordered_extent->len); 1765 BUG_ON(ret); 1766 } else { 1767 BUG_ON(root == root->fs_info->tree_root); 1768 ret = insert_reserved_file_extent(trans, inode, 1769 ordered_extent->file_offset, 1770 ordered_extent->start, 1771 ordered_extent->disk_len, 1772 ordered_extent->len, 1773 ordered_extent->len, 1774 compress_type, 0, 0, 1775 BTRFS_FILE_EXTENT_REG); 1776 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1777 ordered_extent->file_offset, 1778 ordered_extent->len); 1779 BUG_ON(ret); 1780 } 1781 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1782 ordered_extent->file_offset + 1783 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1784 1785 add_pending_csums(trans, inode, ordered_extent->file_offset, 1786 &ordered_extent->list); 1787 1788 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1789 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1790 ret = btrfs_update_inode(trans, root, inode); 1791 BUG_ON(ret); 1792 } 1793 ret = 0; 1794 out: 1795 if (nolock) { 1796 if (trans) 1797 btrfs_end_transaction_nolock(trans, root); 1798 } else { 1799 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1800 if (trans) 1801 btrfs_end_transaction(trans, root); 1802 } 1803 1804 /* once for us */ 1805 btrfs_put_ordered_extent(ordered_extent); 1806 /* once for the tree */ 1807 btrfs_put_ordered_extent(ordered_extent); 1808 1809 return 0; 1810 } 1811 1812 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1813 struct extent_state *state, int uptodate) 1814 { 1815 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1816 1817 ClearPagePrivate2(page); 1818 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1819 } 1820 1821 /* 1822 * When IO fails, either with EIO or csum verification fails, we 1823 * try other mirrors that might have a good copy of the data. This 1824 * io_failure_record is used to record state as we go through all the 1825 * mirrors. If another mirror has good data, the page is set up to date 1826 * and things continue. If a good mirror can't be found, the original 1827 * bio end_io callback is called to indicate things have failed. 1828 */ 1829 struct io_failure_record { 1830 struct page *page; 1831 u64 start; 1832 u64 len; 1833 u64 logical; 1834 unsigned long bio_flags; 1835 int last_mirror; 1836 }; 1837 1838 static int btrfs_io_failed_hook(struct bio *failed_bio, 1839 struct page *page, u64 start, u64 end, 1840 struct extent_state *state) 1841 { 1842 struct io_failure_record *failrec = NULL; 1843 u64 private; 1844 struct extent_map *em; 1845 struct inode *inode = page->mapping->host; 1846 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1847 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1848 struct bio *bio; 1849 int num_copies; 1850 int ret; 1851 int rw; 1852 u64 logical; 1853 1854 ret = get_state_private(failure_tree, start, &private); 1855 if (ret) { 1856 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1857 if (!failrec) 1858 return -ENOMEM; 1859 failrec->start = start; 1860 failrec->len = end - start + 1; 1861 failrec->last_mirror = 0; 1862 failrec->bio_flags = 0; 1863 1864 read_lock(&em_tree->lock); 1865 em = lookup_extent_mapping(em_tree, start, failrec->len); 1866 if (em->start > start || em->start + em->len < start) { 1867 free_extent_map(em); 1868 em = NULL; 1869 } 1870 read_unlock(&em_tree->lock); 1871 1872 if (IS_ERR_OR_NULL(em)) { 1873 kfree(failrec); 1874 return -EIO; 1875 } 1876 logical = start - em->start; 1877 logical = em->block_start + logical; 1878 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1879 logical = em->block_start; 1880 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1881 extent_set_compress_type(&failrec->bio_flags, 1882 em->compress_type); 1883 } 1884 failrec->logical = logical; 1885 free_extent_map(em); 1886 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1887 EXTENT_DIRTY, GFP_NOFS); 1888 set_state_private(failure_tree, start, 1889 (u64)(unsigned long)failrec); 1890 } else { 1891 failrec = (struct io_failure_record *)(unsigned long)private; 1892 } 1893 num_copies = btrfs_num_copies( 1894 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1895 failrec->logical, failrec->len); 1896 failrec->last_mirror++; 1897 if (!state) { 1898 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1899 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1900 failrec->start, 1901 EXTENT_LOCKED); 1902 if (state && state->start != failrec->start) 1903 state = NULL; 1904 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1905 } 1906 if (!state || failrec->last_mirror > num_copies) { 1907 set_state_private(failure_tree, failrec->start, 0); 1908 clear_extent_bits(failure_tree, failrec->start, 1909 failrec->start + failrec->len - 1, 1910 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1911 kfree(failrec); 1912 return -EIO; 1913 } 1914 bio = bio_alloc(GFP_NOFS, 1); 1915 bio->bi_private = state; 1916 bio->bi_end_io = failed_bio->bi_end_io; 1917 bio->bi_sector = failrec->logical >> 9; 1918 bio->bi_bdev = failed_bio->bi_bdev; 1919 bio->bi_size = 0; 1920 1921 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1922 if (failed_bio->bi_rw & REQ_WRITE) 1923 rw = WRITE; 1924 else 1925 rw = READ; 1926 1927 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1928 failrec->last_mirror, 1929 failrec->bio_flags, 0); 1930 return ret; 1931 } 1932 1933 /* 1934 * each time an IO finishes, we do a fast check in the IO failure tree 1935 * to see if we need to process or clean up an io_failure_record 1936 */ 1937 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1938 { 1939 u64 private; 1940 u64 private_failure; 1941 struct io_failure_record *failure; 1942 int ret; 1943 1944 private = 0; 1945 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1946 (u64)-1, 1, EXTENT_DIRTY, 0)) { 1947 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1948 start, &private_failure); 1949 if (ret == 0) { 1950 failure = (struct io_failure_record *)(unsigned long) 1951 private_failure; 1952 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1953 failure->start, 0); 1954 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1955 failure->start, 1956 failure->start + failure->len - 1, 1957 EXTENT_DIRTY | EXTENT_LOCKED, 1958 GFP_NOFS); 1959 kfree(failure); 1960 } 1961 } 1962 return 0; 1963 } 1964 1965 /* 1966 * when reads are done, we need to check csums to verify the data is correct 1967 * if there's a match, we allow the bio to finish. If not, we go through 1968 * the io_failure_record routines to find good copies 1969 */ 1970 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1971 struct extent_state *state) 1972 { 1973 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1974 struct inode *inode = page->mapping->host; 1975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1976 char *kaddr; 1977 u64 private = ~(u32)0; 1978 int ret; 1979 struct btrfs_root *root = BTRFS_I(inode)->root; 1980 u32 csum = ~(u32)0; 1981 1982 if (PageChecked(page)) { 1983 ClearPageChecked(page); 1984 goto good; 1985 } 1986 1987 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1988 goto good; 1989 1990 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1991 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1992 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1993 GFP_NOFS); 1994 return 0; 1995 } 1996 1997 if (state && state->start == start) { 1998 private = state->private; 1999 ret = 0; 2000 } else { 2001 ret = get_state_private(io_tree, start, &private); 2002 } 2003 kaddr = kmap_atomic(page, KM_USER0); 2004 if (ret) 2005 goto zeroit; 2006 2007 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2008 btrfs_csum_final(csum, (char *)&csum); 2009 if (csum != private) 2010 goto zeroit; 2011 2012 kunmap_atomic(kaddr, KM_USER0); 2013 good: 2014 /* if the io failure tree for this inode is non-empty, 2015 * check to see if we've recovered from a failed IO 2016 */ 2017 btrfs_clean_io_failures(inode, start); 2018 return 0; 2019 2020 zeroit: 2021 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2022 "private %llu\n", 2023 (unsigned long long)btrfs_ino(page->mapping->host), 2024 (unsigned long long)start, csum, 2025 (unsigned long long)private); 2026 memset(kaddr + offset, 1, end - start + 1); 2027 flush_dcache_page(page); 2028 kunmap_atomic(kaddr, KM_USER0); 2029 if (private == 0) 2030 return 0; 2031 return -EIO; 2032 } 2033 2034 struct delayed_iput { 2035 struct list_head list; 2036 struct inode *inode; 2037 }; 2038 2039 void btrfs_add_delayed_iput(struct inode *inode) 2040 { 2041 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2042 struct delayed_iput *delayed; 2043 2044 if (atomic_add_unless(&inode->i_count, -1, 1)) 2045 return; 2046 2047 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2048 delayed->inode = inode; 2049 2050 spin_lock(&fs_info->delayed_iput_lock); 2051 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2052 spin_unlock(&fs_info->delayed_iput_lock); 2053 } 2054 2055 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2056 { 2057 LIST_HEAD(list); 2058 struct btrfs_fs_info *fs_info = root->fs_info; 2059 struct delayed_iput *delayed; 2060 int empty; 2061 2062 spin_lock(&fs_info->delayed_iput_lock); 2063 empty = list_empty(&fs_info->delayed_iputs); 2064 spin_unlock(&fs_info->delayed_iput_lock); 2065 if (empty) 2066 return; 2067 2068 down_read(&root->fs_info->cleanup_work_sem); 2069 spin_lock(&fs_info->delayed_iput_lock); 2070 list_splice_init(&fs_info->delayed_iputs, &list); 2071 spin_unlock(&fs_info->delayed_iput_lock); 2072 2073 while (!list_empty(&list)) { 2074 delayed = list_entry(list.next, struct delayed_iput, list); 2075 list_del(&delayed->list); 2076 iput(delayed->inode); 2077 kfree(delayed); 2078 } 2079 up_read(&root->fs_info->cleanup_work_sem); 2080 } 2081 2082 /* 2083 * calculate extra metadata reservation when snapshotting a subvolume 2084 * contains orphan files. 2085 */ 2086 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2087 struct btrfs_pending_snapshot *pending, 2088 u64 *bytes_to_reserve) 2089 { 2090 struct btrfs_root *root; 2091 struct btrfs_block_rsv *block_rsv; 2092 u64 num_bytes; 2093 int index; 2094 2095 root = pending->root; 2096 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2097 return; 2098 2099 block_rsv = root->orphan_block_rsv; 2100 2101 /* orphan block reservation for the snapshot */ 2102 num_bytes = block_rsv->size; 2103 2104 /* 2105 * after the snapshot is created, COWing tree blocks may use more 2106 * space than it frees. So we should make sure there is enough 2107 * reserved space. 2108 */ 2109 index = trans->transid & 0x1; 2110 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2111 num_bytes += block_rsv->size - 2112 (block_rsv->reserved + block_rsv->freed[index]); 2113 } 2114 2115 *bytes_to_reserve += num_bytes; 2116 } 2117 2118 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2119 struct btrfs_pending_snapshot *pending) 2120 { 2121 struct btrfs_root *root = pending->root; 2122 struct btrfs_root *snap = pending->snap; 2123 struct btrfs_block_rsv *block_rsv; 2124 u64 num_bytes; 2125 int index; 2126 int ret; 2127 2128 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2129 return; 2130 2131 /* refill source subvolume's orphan block reservation */ 2132 block_rsv = root->orphan_block_rsv; 2133 index = trans->transid & 0x1; 2134 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2135 num_bytes = block_rsv->size - 2136 (block_rsv->reserved + block_rsv->freed[index]); 2137 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2138 root->orphan_block_rsv, 2139 num_bytes); 2140 BUG_ON(ret); 2141 } 2142 2143 /* setup orphan block reservation for the snapshot */ 2144 block_rsv = btrfs_alloc_block_rsv(snap); 2145 BUG_ON(!block_rsv); 2146 2147 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2148 snap->orphan_block_rsv = block_rsv; 2149 2150 num_bytes = root->orphan_block_rsv->size; 2151 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2152 block_rsv, num_bytes); 2153 BUG_ON(ret); 2154 2155 #if 0 2156 /* insert orphan item for the snapshot */ 2157 WARN_ON(!root->orphan_item_inserted); 2158 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2159 snap->root_key.objectid); 2160 BUG_ON(ret); 2161 snap->orphan_item_inserted = 1; 2162 #endif 2163 } 2164 2165 enum btrfs_orphan_cleanup_state { 2166 ORPHAN_CLEANUP_STARTED = 1, 2167 ORPHAN_CLEANUP_DONE = 2, 2168 }; 2169 2170 /* 2171 * This is called in transaction commmit time. If there are no orphan 2172 * files in the subvolume, it removes orphan item and frees block_rsv 2173 * structure. 2174 */ 2175 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2176 struct btrfs_root *root) 2177 { 2178 int ret; 2179 2180 if (!list_empty(&root->orphan_list) || 2181 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2182 return; 2183 2184 if (root->orphan_item_inserted && 2185 btrfs_root_refs(&root->root_item) > 0) { 2186 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2187 root->root_key.objectid); 2188 BUG_ON(ret); 2189 root->orphan_item_inserted = 0; 2190 } 2191 2192 if (root->orphan_block_rsv) { 2193 WARN_ON(root->orphan_block_rsv->size > 0); 2194 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2195 root->orphan_block_rsv = NULL; 2196 } 2197 } 2198 2199 /* 2200 * This creates an orphan entry for the given inode in case something goes 2201 * wrong in the middle of an unlink/truncate. 2202 * 2203 * NOTE: caller of this function should reserve 5 units of metadata for 2204 * this function. 2205 */ 2206 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2207 { 2208 struct btrfs_root *root = BTRFS_I(inode)->root; 2209 struct btrfs_block_rsv *block_rsv = NULL; 2210 int reserve = 0; 2211 int insert = 0; 2212 int ret; 2213 2214 if (!root->orphan_block_rsv) { 2215 block_rsv = btrfs_alloc_block_rsv(root); 2216 if (!block_rsv) 2217 return -ENOMEM; 2218 } 2219 2220 spin_lock(&root->orphan_lock); 2221 if (!root->orphan_block_rsv) { 2222 root->orphan_block_rsv = block_rsv; 2223 } else if (block_rsv) { 2224 btrfs_free_block_rsv(root, block_rsv); 2225 block_rsv = NULL; 2226 } 2227 2228 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2229 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2230 #if 0 2231 /* 2232 * For proper ENOSPC handling, we should do orphan 2233 * cleanup when mounting. But this introduces backward 2234 * compatibility issue. 2235 */ 2236 if (!xchg(&root->orphan_item_inserted, 1)) 2237 insert = 2; 2238 else 2239 insert = 1; 2240 #endif 2241 insert = 1; 2242 } 2243 2244 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2245 BTRFS_I(inode)->orphan_meta_reserved = 1; 2246 reserve = 1; 2247 } 2248 spin_unlock(&root->orphan_lock); 2249 2250 if (block_rsv) 2251 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2252 2253 /* grab metadata reservation from transaction handle */ 2254 if (reserve) { 2255 ret = btrfs_orphan_reserve_metadata(trans, inode); 2256 BUG_ON(ret); 2257 } 2258 2259 /* insert an orphan item to track this unlinked/truncated file */ 2260 if (insert >= 1) { 2261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2262 BUG_ON(ret); 2263 } 2264 2265 /* insert an orphan item to track subvolume contains orphan files */ 2266 if (insert >= 2) { 2267 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2268 root->root_key.objectid); 2269 BUG_ON(ret); 2270 } 2271 return 0; 2272 } 2273 2274 /* 2275 * We have done the truncate/delete so we can go ahead and remove the orphan 2276 * item for this particular inode. 2277 */ 2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2279 { 2280 struct btrfs_root *root = BTRFS_I(inode)->root; 2281 int delete_item = 0; 2282 int release_rsv = 0; 2283 int ret = 0; 2284 2285 spin_lock(&root->orphan_lock); 2286 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2287 list_del_init(&BTRFS_I(inode)->i_orphan); 2288 delete_item = 1; 2289 } 2290 2291 if (BTRFS_I(inode)->orphan_meta_reserved) { 2292 BTRFS_I(inode)->orphan_meta_reserved = 0; 2293 release_rsv = 1; 2294 } 2295 spin_unlock(&root->orphan_lock); 2296 2297 if (trans && delete_item) { 2298 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2299 BUG_ON(ret); 2300 } 2301 2302 if (release_rsv) 2303 btrfs_orphan_release_metadata(inode); 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * this cleans up any orphans that may be left on the list from the last use 2310 * of this root. 2311 */ 2312 int btrfs_orphan_cleanup(struct btrfs_root *root) 2313 { 2314 struct btrfs_path *path; 2315 struct extent_buffer *leaf; 2316 struct btrfs_key key, found_key; 2317 struct btrfs_trans_handle *trans; 2318 struct inode *inode; 2319 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2320 2321 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2322 return 0; 2323 2324 path = btrfs_alloc_path(); 2325 if (!path) { 2326 ret = -ENOMEM; 2327 goto out; 2328 } 2329 path->reada = -1; 2330 2331 key.objectid = BTRFS_ORPHAN_OBJECTID; 2332 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2333 key.offset = (u64)-1; 2334 2335 while (1) { 2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2337 if (ret < 0) 2338 goto out; 2339 2340 /* 2341 * if ret == 0 means we found what we were searching for, which 2342 * is weird, but possible, so only screw with path if we didn't 2343 * find the key and see if we have stuff that matches 2344 */ 2345 if (ret > 0) { 2346 ret = 0; 2347 if (path->slots[0] == 0) 2348 break; 2349 path->slots[0]--; 2350 } 2351 2352 /* pull out the item */ 2353 leaf = path->nodes[0]; 2354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2355 2356 /* make sure the item matches what we want */ 2357 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2358 break; 2359 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2360 break; 2361 2362 /* release the path since we're done with it */ 2363 btrfs_release_path(path); 2364 2365 /* 2366 * this is where we are basically btrfs_lookup, without the 2367 * crossing root thing. we store the inode number in the 2368 * offset of the orphan item. 2369 */ 2370 found_key.objectid = found_key.offset; 2371 found_key.type = BTRFS_INODE_ITEM_KEY; 2372 found_key.offset = 0; 2373 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2374 if (IS_ERR(inode)) { 2375 ret = PTR_ERR(inode); 2376 goto out; 2377 } 2378 2379 /* 2380 * add this inode to the orphan list so btrfs_orphan_del does 2381 * the proper thing when we hit it 2382 */ 2383 spin_lock(&root->orphan_lock); 2384 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2385 spin_unlock(&root->orphan_lock); 2386 2387 /* 2388 * if this is a bad inode, means we actually succeeded in 2389 * removing the inode, but not the orphan record, which means 2390 * we need to manually delete the orphan since iput will just 2391 * do a destroy_inode 2392 */ 2393 if (is_bad_inode(inode)) { 2394 trans = btrfs_start_transaction(root, 0); 2395 if (IS_ERR(trans)) { 2396 ret = PTR_ERR(trans); 2397 goto out; 2398 } 2399 btrfs_orphan_del(trans, inode); 2400 btrfs_end_transaction(trans, root); 2401 iput(inode); 2402 continue; 2403 } 2404 2405 /* if we have links, this was a truncate, lets do that */ 2406 if (inode->i_nlink) { 2407 if (!S_ISREG(inode->i_mode)) { 2408 WARN_ON(1); 2409 iput(inode); 2410 continue; 2411 } 2412 nr_truncate++; 2413 ret = btrfs_truncate(inode); 2414 } else { 2415 nr_unlink++; 2416 } 2417 2418 /* this will do delete_inode and everything for us */ 2419 iput(inode); 2420 if (ret) 2421 goto out; 2422 } 2423 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2424 2425 if (root->orphan_block_rsv) 2426 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2427 (u64)-1); 2428 2429 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2430 trans = btrfs_join_transaction(root); 2431 if (!IS_ERR(trans)) 2432 btrfs_end_transaction(trans, root); 2433 } 2434 2435 if (nr_unlink) 2436 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2437 if (nr_truncate) 2438 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2439 2440 out: 2441 if (ret) 2442 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2443 btrfs_free_path(path); 2444 return ret; 2445 } 2446 2447 /* 2448 * very simple check to peek ahead in the leaf looking for xattrs. If we 2449 * don't find any xattrs, we know there can't be any acls. 2450 * 2451 * slot is the slot the inode is in, objectid is the objectid of the inode 2452 */ 2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2454 int slot, u64 objectid) 2455 { 2456 u32 nritems = btrfs_header_nritems(leaf); 2457 struct btrfs_key found_key; 2458 int scanned = 0; 2459 2460 slot++; 2461 while (slot < nritems) { 2462 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2463 2464 /* we found a different objectid, there must not be acls */ 2465 if (found_key.objectid != objectid) 2466 return 0; 2467 2468 /* we found an xattr, assume we've got an acl */ 2469 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2470 return 1; 2471 2472 /* 2473 * we found a key greater than an xattr key, there can't 2474 * be any acls later on 2475 */ 2476 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2477 return 0; 2478 2479 slot++; 2480 scanned++; 2481 2482 /* 2483 * it goes inode, inode backrefs, xattrs, extents, 2484 * so if there are a ton of hard links to an inode there can 2485 * be a lot of backrefs. Don't waste time searching too hard, 2486 * this is just an optimization 2487 */ 2488 if (scanned >= 8) 2489 break; 2490 } 2491 /* we hit the end of the leaf before we found an xattr or 2492 * something larger than an xattr. We have to assume the inode 2493 * has acls 2494 */ 2495 return 1; 2496 } 2497 2498 /* 2499 * read an inode from the btree into the in-memory inode 2500 */ 2501 static void btrfs_read_locked_inode(struct inode *inode) 2502 { 2503 struct btrfs_path *path; 2504 struct extent_buffer *leaf; 2505 struct btrfs_inode_item *inode_item; 2506 struct btrfs_timespec *tspec; 2507 struct btrfs_root *root = BTRFS_I(inode)->root; 2508 struct btrfs_key location; 2509 int maybe_acls; 2510 u32 rdev; 2511 int ret; 2512 bool filled = false; 2513 2514 ret = btrfs_fill_inode(inode, &rdev); 2515 if (!ret) 2516 filled = true; 2517 2518 path = btrfs_alloc_path(); 2519 if (!path) 2520 goto make_bad; 2521 2522 path->leave_spinning = 1; 2523 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2524 2525 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2526 if (ret) 2527 goto make_bad; 2528 2529 leaf = path->nodes[0]; 2530 2531 if (filled) 2532 goto cache_acl; 2533 2534 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2535 struct btrfs_inode_item); 2536 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2537 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2538 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2539 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2540 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2541 2542 tspec = btrfs_inode_atime(inode_item); 2543 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2544 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2545 2546 tspec = btrfs_inode_mtime(inode_item); 2547 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2548 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2549 2550 tspec = btrfs_inode_ctime(inode_item); 2551 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2552 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2553 2554 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2555 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2556 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2557 inode->i_generation = BTRFS_I(inode)->generation; 2558 inode->i_rdev = 0; 2559 rdev = btrfs_inode_rdev(leaf, inode_item); 2560 2561 BTRFS_I(inode)->index_cnt = (u64)-1; 2562 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2563 cache_acl: 2564 /* 2565 * try to precache a NULL acl entry for files that don't have 2566 * any xattrs or acls 2567 */ 2568 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2569 btrfs_ino(inode)); 2570 if (!maybe_acls) 2571 cache_no_acl(inode); 2572 2573 btrfs_free_path(path); 2574 2575 switch (inode->i_mode & S_IFMT) { 2576 case S_IFREG: 2577 inode->i_mapping->a_ops = &btrfs_aops; 2578 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2579 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2580 inode->i_fop = &btrfs_file_operations; 2581 inode->i_op = &btrfs_file_inode_operations; 2582 break; 2583 case S_IFDIR: 2584 inode->i_fop = &btrfs_dir_file_operations; 2585 if (root == root->fs_info->tree_root) 2586 inode->i_op = &btrfs_dir_ro_inode_operations; 2587 else 2588 inode->i_op = &btrfs_dir_inode_operations; 2589 break; 2590 case S_IFLNK: 2591 inode->i_op = &btrfs_symlink_inode_operations; 2592 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2593 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2594 break; 2595 default: 2596 inode->i_op = &btrfs_special_inode_operations; 2597 init_special_inode(inode, inode->i_mode, rdev); 2598 break; 2599 } 2600 2601 btrfs_update_iflags(inode); 2602 return; 2603 2604 make_bad: 2605 btrfs_free_path(path); 2606 make_bad_inode(inode); 2607 } 2608 2609 /* 2610 * given a leaf and an inode, copy the inode fields into the leaf 2611 */ 2612 static void fill_inode_item(struct btrfs_trans_handle *trans, 2613 struct extent_buffer *leaf, 2614 struct btrfs_inode_item *item, 2615 struct inode *inode) 2616 { 2617 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2618 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2619 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2620 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2621 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2622 2623 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2624 inode->i_atime.tv_sec); 2625 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2626 inode->i_atime.tv_nsec); 2627 2628 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2629 inode->i_mtime.tv_sec); 2630 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2631 inode->i_mtime.tv_nsec); 2632 2633 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2634 inode->i_ctime.tv_sec); 2635 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2636 inode->i_ctime.tv_nsec); 2637 2638 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2639 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2640 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2641 btrfs_set_inode_transid(leaf, item, trans->transid); 2642 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2643 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2644 btrfs_set_inode_block_group(leaf, item, 0); 2645 } 2646 2647 /* 2648 * copy everything in the in-memory inode into the btree. 2649 */ 2650 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2651 struct btrfs_root *root, struct inode *inode) 2652 { 2653 struct btrfs_inode_item *inode_item; 2654 struct btrfs_path *path; 2655 struct extent_buffer *leaf; 2656 int ret; 2657 2658 /* 2659 * If the inode is a free space inode, we can deadlock during commit 2660 * if we put it into the delayed code. 2661 * 2662 * The data relocation inode should also be directly updated 2663 * without delay 2664 */ 2665 if (!btrfs_is_free_space_inode(root, inode) 2666 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2667 ret = btrfs_delayed_update_inode(trans, root, inode); 2668 if (!ret) 2669 btrfs_set_inode_last_trans(trans, inode); 2670 return ret; 2671 } 2672 2673 path = btrfs_alloc_path(); 2674 if (!path) 2675 return -ENOMEM; 2676 2677 path->leave_spinning = 1; 2678 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2679 1); 2680 if (ret) { 2681 if (ret > 0) 2682 ret = -ENOENT; 2683 goto failed; 2684 } 2685 2686 btrfs_unlock_up_safe(path, 1); 2687 leaf = path->nodes[0]; 2688 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2689 struct btrfs_inode_item); 2690 2691 fill_inode_item(trans, leaf, inode_item, inode); 2692 btrfs_mark_buffer_dirty(leaf); 2693 btrfs_set_inode_last_trans(trans, inode); 2694 ret = 0; 2695 failed: 2696 btrfs_free_path(path); 2697 return ret; 2698 } 2699 2700 /* 2701 * unlink helper that gets used here in inode.c and in the tree logging 2702 * recovery code. It remove a link in a directory with a given name, and 2703 * also drops the back refs in the inode to the directory 2704 */ 2705 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2706 struct btrfs_root *root, 2707 struct inode *dir, struct inode *inode, 2708 const char *name, int name_len) 2709 { 2710 struct btrfs_path *path; 2711 int ret = 0; 2712 struct extent_buffer *leaf; 2713 struct btrfs_dir_item *di; 2714 struct btrfs_key key; 2715 u64 index; 2716 u64 ino = btrfs_ino(inode); 2717 u64 dir_ino = btrfs_ino(dir); 2718 2719 path = btrfs_alloc_path(); 2720 if (!path) { 2721 ret = -ENOMEM; 2722 goto out; 2723 } 2724 2725 path->leave_spinning = 1; 2726 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2727 name, name_len, -1); 2728 if (IS_ERR(di)) { 2729 ret = PTR_ERR(di); 2730 goto err; 2731 } 2732 if (!di) { 2733 ret = -ENOENT; 2734 goto err; 2735 } 2736 leaf = path->nodes[0]; 2737 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2738 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2739 if (ret) 2740 goto err; 2741 btrfs_release_path(path); 2742 2743 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2744 dir_ino, &index); 2745 if (ret) { 2746 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2747 "inode %llu parent %llu\n", name_len, name, 2748 (unsigned long long)ino, (unsigned long long)dir_ino); 2749 goto err; 2750 } 2751 2752 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2753 if (ret) 2754 goto err; 2755 2756 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2757 inode, dir_ino); 2758 BUG_ON(ret != 0 && ret != -ENOENT); 2759 2760 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2761 dir, index); 2762 if (ret == -ENOENT) 2763 ret = 0; 2764 err: 2765 btrfs_free_path(path); 2766 if (ret) 2767 goto out; 2768 2769 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2770 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2771 btrfs_update_inode(trans, root, dir); 2772 out: 2773 return ret; 2774 } 2775 2776 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2777 struct btrfs_root *root, 2778 struct inode *dir, struct inode *inode, 2779 const char *name, int name_len) 2780 { 2781 int ret; 2782 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2783 if (!ret) { 2784 btrfs_drop_nlink(inode); 2785 ret = btrfs_update_inode(trans, root, inode); 2786 } 2787 return ret; 2788 } 2789 2790 2791 /* helper to check if there is any shared block in the path */ 2792 static int check_path_shared(struct btrfs_root *root, 2793 struct btrfs_path *path) 2794 { 2795 struct extent_buffer *eb; 2796 int level; 2797 u64 refs = 1; 2798 2799 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2800 int ret; 2801 2802 if (!path->nodes[level]) 2803 break; 2804 eb = path->nodes[level]; 2805 if (!btrfs_block_can_be_shared(root, eb)) 2806 continue; 2807 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2808 &refs, NULL); 2809 if (refs > 1) 2810 return 1; 2811 } 2812 return 0; 2813 } 2814 2815 /* 2816 * helper to start transaction for unlink and rmdir. 2817 * 2818 * unlink and rmdir are special in btrfs, they do not always free space. 2819 * so in enospc case, we should make sure they will free space before 2820 * allowing them to use the global metadata reservation. 2821 */ 2822 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2823 struct dentry *dentry) 2824 { 2825 struct btrfs_trans_handle *trans; 2826 struct btrfs_root *root = BTRFS_I(dir)->root; 2827 struct btrfs_path *path; 2828 struct btrfs_inode_ref *ref; 2829 struct btrfs_dir_item *di; 2830 struct inode *inode = dentry->d_inode; 2831 u64 index; 2832 int check_link = 1; 2833 int err = -ENOSPC; 2834 int ret; 2835 u64 ino = btrfs_ino(inode); 2836 u64 dir_ino = btrfs_ino(dir); 2837 2838 trans = btrfs_start_transaction(root, 10); 2839 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2840 return trans; 2841 2842 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2843 return ERR_PTR(-ENOSPC); 2844 2845 /* check if there is someone else holds reference */ 2846 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2847 return ERR_PTR(-ENOSPC); 2848 2849 if (atomic_read(&inode->i_count) > 2) 2850 return ERR_PTR(-ENOSPC); 2851 2852 if (xchg(&root->fs_info->enospc_unlink, 1)) 2853 return ERR_PTR(-ENOSPC); 2854 2855 path = btrfs_alloc_path(); 2856 if (!path) { 2857 root->fs_info->enospc_unlink = 0; 2858 return ERR_PTR(-ENOMEM); 2859 } 2860 2861 trans = btrfs_start_transaction(root, 0); 2862 if (IS_ERR(trans)) { 2863 btrfs_free_path(path); 2864 root->fs_info->enospc_unlink = 0; 2865 return trans; 2866 } 2867 2868 path->skip_locking = 1; 2869 path->search_commit_root = 1; 2870 2871 ret = btrfs_lookup_inode(trans, root, path, 2872 &BTRFS_I(dir)->location, 0); 2873 if (ret < 0) { 2874 err = ret; 2875 goto out; 2876 } 2877 if (ret == 0) { 2878 if (check_path_shared(root, path)) 2879 goto out; 2880 } else { 2881 check_link = 0; 2882 } 2883 btrfs_release_path(path); 2884 2885 ret = btrfs_lookup_inode(trans, root, path, 2886 &BTRFS_I(inode)->location, 0); 2887 if (ret < 0) { 2888 err = ret; 2889 goto out; 2890 } 2891 if (ret == 0) { 2892 if (check_path_shared(root, path)) 2893 goto out; 2894 } else { 2895 check_link = 0; 2896 } 2897 btrfs_release_path(path); 2898 2899 if (ret == 0 && S_ISREG(inode->i_mode)) { 2900 ret = btrfs_lookup_file_extent(trans, root, path, 2901 ino, (u64)-1, 0); 2902 if (ret < 0) { 2903 err = ret; 2904 goto out; 2905 } 2906 BUG_ON(ret == 0); 2907 if (check_path_shared(root, path)) 2908 goto out; 2909 btrfs_release_path(path); 2910 } 2911 2912 if (!check_link) { 2913 err = 0; 2914 goto out; 2915 } 2916 2917 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2918 dentry->d_name.name, dentry->d_name.len, 0); 2919 if (IS_ERR(di)) { 2920 err = PTR_ERR(di); 2921 goto out; 2922 } 2923 if (di) { 2924 if (check_path_shared(root, path)) 2925 goto out; 2926 } else { 2927 err = 0; 2928 goto out; 2929 } 2930 btrfs_release_path(path); 2931 2932 ref = btrfs_lookup_inode_ref(trans, root, path, 2933 dentry->d_name.name, dentry->d_name.len, 2934 ino, dir_ino, 0); 2935 if (IS_ERR(ref)) { 2936 err = PTR_ERR(ref); 2937 goto out; 2938 } 2939 BUG_ON(!ref); 2940 if (check_path_shared(root, path)) 2941 goto out; 2942 index = btrfs_inode_ref_index(path->nodes[0], ref); 2943 btrfs_release_path(path); 2944 2945 /* 2946 * This is a commit root search, if we can lookup inode item and other 2947 * relative items in the commit root, it means the transaction of 2948 * dir/file creation has been committed, and the dir index item that we 2949 * delay to insert has also been inserted into the commit root. So 2950 * we needn't worry about the delayed insertion of the dir index item 2951 * here. 2952 */ 2953 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 2954 dentry->d_name.name, dentry->d_name.len, 0); 2955 if (IS_ERR(di)) { 2956 err = PTR_ERR(di); 2957 goto out; 2958 } 2959 BUG_ON(ret == -ENOENT); 2960 if (check_path_shared(root, path)) 2961 goto out; 2962 2963 err = 0; 2964 out: 2965 btrfs_free_path(path); 2966 if (err) { 2967 btrfs_end_transaction(trans, root); 2968 root->fs_info->enospc_unlink = 0; 2969 return ERR_PTR(err); 2970 } 2971 2972 trans->block_rsv = &root->fs_info->global_block_rsv; 2973 return trans; 2974 } 2975 2976 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2977 struct btrfs_root *root) 2978 { 2979 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2980 BUG_ON(!root->fs_info->enospc_unlink); 2981 root->fs_info->enospc_unlink = 0; 2982 } 2983 btrfs_end_transaction_throttle(trans, root); 2984 } 2985 2986 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2987 { 2988 struct btrfs_root *root = BTRFS_I(dir)->root; 2989 struct btrfs_trans_handle *trans; 2990 struct inode *inode = dentry->d_inode; 2991 int ret; 2992 unsigned long nr = 0; 2993 2994 trans = __unlink_start_trans(dir, dentry); 2995 if (IS_ERR(trans)) 2996 return PTR_ERR(trans); 2997 2998 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2999 3000 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3001 dentry->d_name.name, dentry->d_name.len); 3002 if (ret) 3003 goto out; 3004 3005 if (inode->i_nlink == 0) { 3006 ret = btrfs_orphan_add(trans, inode); 3007 if (ret) 3008 goto out; 3009 } 3010 3011 out: 3012 nr = trans->blocks_used; 3013 __unlink_end_trans(trans, root); 3014 btrfs_btree_balance_dirty(root, nr); 3015 return ret; 3016 } 3017 3018 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3019 struct btrfs_root *root, 3020 struct inode *dir, u64 objectid, 3021 const char *name, int name_len) 3022 { 3023 struct btrfs_path *path; 3024 struct extent_buffer *leaf; 3025 struct btrfs_dir_item *di; 3026 struct btrfs_key key; 3027 u64 index; 3028 int ret; 3029 u64 dir_ino = btrfs_ino(dir); 3030 3031 path = btrfs_alloc_path(); 3032 if (!path) 3033 return -ENOMEM; 3034 3035 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3036 name, name_len, -1); 3037 BUG_ON(IS_ERR_OR_NULL(di)); 3038 3039 leaf = path->nodes[0]; 3040 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3041 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3042 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3043 BUG_ON(ret); 3044 btrfs_release_path(path); 3045 3046 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3047 objectid, root->root_key.objectid, 3048 dir_ino, &index, name, name_len); 3049 if (ret < 0) { 3050 BUG_ON(ret != -ENOENT); 3051 di = btrfs_search_dir_index_item(root, path, dir_ino, 3052 name, name_len); 3053 BUG_ON(IS_ERR_OR_NULL(di)); 3054 3055 leaf = path->nodes[0]; 3056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3057 btrfs_release_path(path); 3058 index = key.offset; 3059 } 3060 btrfs_release_path(path); 3061 3062 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3063 BUG_ON(ret); 3064 3065 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3066 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3067 ret = btrfs_update_inode(trans, root, dir); 3068 BUG_ON(ret); 3069 3070 btrfs_free_path(path); 3071 return 0; 3072 } 3073 3074 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3075 { 3076 struct inode *inode = dentry->d_inode; 3077 int err = 0; 3078 struct btrfs_root *root = BTRFS_I(dir)->root; 3079 struct btrfs_trans_handle *trans; 3080 unsigned long nr = 0; 3081 3082 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 3083 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3084 return -ENOTEMPTY; 3085 3086 trans = __unlink_start_trans(dir, dentry); 3087 if (IS_ERR(trans)) 3088 return PTR_ERR(trans); 3089 3090 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3091 err = btrfs_unlink_subvol(trans, root, dir, 3092 BTRFS_I(inode)->location.objectid, 3093 dentry->d_name.name, 3094 dentry->d_name.len); 3095 goto out; 3096 } 3097 3098 err = btrfs_orphan_add(trans, inode); 3099 if (err) 3100 goto out; 3101 3102 /* now the directory is empty */ 3103 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3104 dentry->d_name.name, dentry->d_name.len); 3105 if (!err) 3106 btrfs_i_size_write(inode, 0); 3107 out: 3108 nr = trans->blocks_used; 3109 __unlink_end_trans(trans, root); 3110 btrfs_btree_balance_dirty(root, nr); 3111 3112 return err; 3113 } 3114 3115 /* 3116 * this can truncate away extent items, csum items and directory items. 3117 * It starts at a high offset and removes keys until it can't find 3118 * any higher than new_size 3119 * 3120 * csum items that cross the new i_size are truncated to the new size 3121 * as well. 3122 * 3123 * min_type is the minimum key type to truncate down to. If set to 0, this 3124 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3125 */ 3126 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3127 struct btrfs_root *root, 3128 struct inode *inode, 3129 u64 new_size, u32 min_type) 3130 { 3131 struct btrfs_path *path; 3132 struct extent_buffer *leaf; 3133 struct btrfs_file_extent_item *fi; 3134 struct btrfs_key key; 3135 struct btrfs_key found_key; 3136 u64 extent_start = 0; 3137 u64 extent_num_bytes = 0; 3138 u64 extent_offset = 0; 3139 u64 item_end = 0; 3140 u64 mask = root->sectorsize - 1; 3141 u32 found_type = (u8)-1; 3142 int found_extent; 3143 int del_item; 3144 int pending_del_nr = 0; 3145 int pending_del_slot = 0; 3146 int extent_type = -1; 3147 int encoding; 3148 int ret; 3149 int err = 0; 3150 u64 ino = btrfs_ino(inode); 3151 3152 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3153 3154 path = btrfs_alloc_path(); 3155 if (!path) 3156 return -ENOMEM; 3157 path->reada = -1; 3158 3159 if (root->ref_cows || root == root->fs_info->tree_root) 3160 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3161 3162 /* 3163 * This function is also used to drop the items in the log tree before 3164 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3165 * it is used to drop the loged items. So we shouldn't kill the delayed 3166 * items. 3167 */ 3168 if (min_type == 0 && root == BTRFS_I(inode)->root) 3169 btrfs_kill_delayed_inode_items(inode); 3170 3171 key.objectid = ino; 3172 key.offset = (u64)-1; 3173 key.type = (u8)-1; 3174 3175 search_again: 3176 path->leave_spinning = 1; 3177 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3178 if (ret < 0) { 3179 err = ret; 3180 goto out; 3181 } 3182 3183 if (ret > 0) { 3184 /* there are no items in the tree for us to truncate, we're 3185 * done 3186 */ 3187 if (path->slots[0] == 0) 3188 goto out; 3189 path->slots[0]--; 3190 } 3191 3192 while (1) { 3193 fi = NULL; 3194 leaf = path->nodes[0]; 3195 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3196 found_type = btrfs_key_type(&found_key); 3197 encoding = 0; 3198 3199 if (found_key.objectid != ino) 3200 break; 3201 3202 if (found_type < min_type) 3203 break; 3204 3205 item_end = found_key.offset; 3206 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3207 fi = btrfs_item_ptr(leaf, path->slots[0], 3208 struct btrfs_file_extent_item); 3209 extent_type = btrfs_file_extent_type(leaf, fi); 3210 encoding = btrfs_file_extent_compression(leaf, fi); 3211 encoding |= btrfs_file_extent_encryption(leaf, fi); 3212 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3213 3214 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3215 item_end += 3216 btrfs_file_extent_num_bytes(leaf, fi); 3217 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3218 item_end += btrfs_file_extent_inline_len(leaf, 3219 fi); 3220 } 3221 item_end--; 3222 } 3223 if (found_type > min_type) { 3224 del_item = 1; 3225 } else { 3226 if (item_end < new_size) 3227 break; 3228 if (found_key.offset >= new_size) 3229 del_item = 1; 3230 else 3231 del_item = 0; 3232 } 3233 found_extent = 0; 3234 /* FIXME, shrink the extent if the ref count is only 1 */ 3235 if (found_type != BTRFS_EXTENT_DATA_KEY) 3236 goto delete; 3237 3238 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3239 u64 num_dec; 3240 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3241 if (!del_item && !encoding) { 3242 u64 orig_num_bytes = 3243 btrfs_file_extent_num_bytes(leaf, fi); 3244 extent_num_bytes = new_size - 3245 found_key.offset + root->sectorsize - 1; 3246 extent_num_bytes = extent_num_bytes & 3247 ~((u64)root->sectorsize - 1); 3248 btrfs_set_file_extent_num_bytes(leaf, fi, 3249 extent_num_bytes); 3250 num_dec = (orig_num_bytes - 3251 extent_num_bytes); 3252 if (root->ref_cows && extent_start != 0) 3253 inode_sub_bytes(inode, num_dec); 3254 btrfs_mark_buffer_dirty(leaf); 3255 } else { 3256 extent_num_bytes = 3257 btrfs_file_extent_disk_num_bytes(leaf, 3258 fi); 3259 extent_offset = found_key.offset - 3260 btrfs_file_extent_offset(leaf, fi); 3261 3262 /* FIXME blocksize != 4096 */ 3263 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3264 if (extent_start != 0) { 3265 found_extent = 1; 3266 if (root->ref_cows) 3267 inode_sub_bytes(inode, num_dec); 3268 } 3269 } 3270 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3271 /* 3272 * we can't truncate inline items that have had 3273 * special encodings 3274 */ 3275 if (!del_item && 3276 btrfs_file_extent_compression(leaf, fi) == 0 && 3277 btrfs_file_extent_encryption(leaf, fi) == 0 && 3278 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3279 u32 size = new_size - found_key.offset; 3280 3281 if (root->ref_cows) { 3282 inode_sub_bytes(inode, item_end + 1 - 3283 new_size); 3284 } 3285 size = 3286 btrfs_file_extent_calc_inline_size(size); 3287 ret = btrfs_truncate_item(trans, root, path, 3288 size, 1); 3289 } else if (root->ref_cows) { 3290 inode_sub_bytes(inode, item_end + 1 - 3291 found_key.offset); 3292 } 3293 } 3294 delete: 3295 if (del_item) { 3296 if (!pending_del_nr) { 3297 /* no pending yet, add ourselves */ 3298 pending_del_slot = path->slots[0]; 3299 pending_del_nr = 1; 3300 } else if (pending_del_nr && 3301 path->slots[0] + 1 == pending_del_slot) { 3302 /* hop on the pending chunk */ 3303 pending_del_nr++; 3304 pending_del_slot = path->slots[0]; 3305 } else { 3306 BUG(); 3307 } 3308 } else { 3309 break; 3310 } 3311 if (found_extent && (root->ref_cows || 3312 root == root->fs_info->tree_root)) { 3313 btrfs_set_path_blocking(path); 3314 ret = btrfs_free_extent(trans, root, extent_start, 3315 extent_num_bytes, 0, 3316 btrfs_header_owner(leaf), 3317 ino, extent_offset); 3318 BUG_ON(ret); 3319 } 3320 3321 if (found_type == BTRFS_INODE_ITEM_KEY) 3322 break; 3323 3324 if (path->slots[0] == 0 || 3325 path->slots[0] != pending_del_slot) { 3326 if (root->ref_cows && 3327 BTRFS_I(inode)->location.objectid != 3328 BTRFS_FREE_INO_OBJECTID) { 3329 err = -EAGAIN; 3330 goto out; 3331 } 3332 if (pending_del_nr) { 3333 ret = btrfs_del_items(trans, root, path, 3334 pending_del_slot, 3335 pending_del_nr); 3336 BUG_ON(ret); 3337 pending_del_nr = 0; 3338 } 3339 btrfs_release_path(path); 3340 goto search_again; 3341 } else { 3342 path->slots[0]--; 3343 } 3344 } 3345 out: 3346 if (pending_del_nr) { 3347 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3348 pending_del_nr); 3349 BUG_ON(ret); 3350 } 3351 btrfs_free_path(path); 3352 return err; 3353 } 3354 3355 /* 3356 * taken from block_truncate_page, but does cow as it zeros out 3357 * any bytes left in the last page in the file. 3358 */ 3359 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3360 { 3361 struct inode *inode = mapping->host; 3362 struct btrfs_root *root = BTRFS_I(inode)->root; 3363 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3364 struct btrfs_ordered_extent *ordered; 3365 struct extent_state *cached_state = NULL; 3366 char *kaddr; 3367 u32 blocksize = root->sectorsize; 3368 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3369 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3370 struct page *page; 3371 int ret = 0; 3372 u64 page_start; 3373 u64 page_end; 3374 3375 if ((offset & (blocksize - 1)) == 0) 3376 goto out; 3377 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3378 if (ret) 3379 goto out; 3380 3381 ret = -ENOMEM; 3382 again: 3383 page = find_or_create_page(mapping, index, GFP_NOFS); 3384 if (!page) { 3385 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3386 goto out; 3387 } 3388 3389 page_start = page_offset(page); 3390 page_end = page_start + PAGE_CACHE_SIZE - 1; 3391 3392 if (!PageUptodate(page)) { 3393 ret = btrfs_readpage(NULL, page); 3394 lock_page(page); 3395 if (page->mapping != mapping) { 3396 unlock_page(page); 3397 page_cache_release(page); 3398 goto again; 3399 } 3400 if (!PageUptodate(page)) { 3401 ret = -EIO; 3402 goto out_unlock; 3403 } 3404 } 3405 wait_on_page_writeback(page); 3406 3407 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3408 GFP_NOFS); 3409 set_page_extent_mapped(page); 3410 3411 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3412 if (ordered) { 3413 unlock_extent_cached(io_tree, page_start, page_end, 3414 &cached_state, GFP_NOFS); 3415 unlock_page(page); 3416 page_cache_release(page); 3417 btrfs_start_ordered_extent(inode, ordered, 1); 3418 btrfs_put_ordered_extent(ordered); 3419 goto again; 3420 } 3421 3422 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3423 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3424 0, 0, &cached_state, GFP_NOFS); 3425 3426 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3427 &cached_state); 3428 if (ret) { 3429 unlock_extent_cached(io_tree, page_start, page_end, 3430 &cached_state, GFP_NOFS); 3431 goto out_unlock; 3432 } 3433 3434 ret = 0; 3435 if (offset != PAGE_CACHE_SIZE) { 3436 kaddr = kmap(page); 3437 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3438 flush_dcache_page(page); 3439 kunmap(page); 3440 } 3441 ClearPageChecked(page); 3442 set_page_dirty(page); 3443 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3444 GFP_NOFS); 3445 3446 out_unlock: 3447 if (ret) 3448 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3449 unlock_page(page); 3450 page_cache_release(page); 3451 out: 3452 return ret; 3453 } 3454 3455 /* 3456 * This function puts in dummy file extents for the area we're creating a hole 3457 * for. So if we are truncating this file to a larger size we need to insert 3458 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3459 * the range between oldsize and size 3460 */ 3461 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3462 { 3463 struct btrfs_trans_handle *trans; 3464 struct btrfs_root *root = BTRFS_I(inode)->root; 3465 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3466 struct extent_map *em = NULL; 3467 struct extent_state *cached_state = NULL; 3468 u64 mask = root->sectorsize - 1; 3469 u64 hole_start = (oldsize + mask) & ~mask; 3470 u64 block_end = (size + mask) & ~mask; 3471 u64 last_byte; 3472 u64 cur_offset; 3473 u64 hole_size; 3474 int err = 0; 3475 3476 if (size <= hole_start) 3477 return 0; 3478 3479 while (1) { 3480 struct btrfs_ordered_extent *ordered; 3481 btrfs_wait_ordered_range(inode, hole_start, 3482 block_end - hole_start); 3483 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3484 &cached_state, GFP_NOFS); 3485 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3486 if (!ordered) 3487 break; 3488 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3489 &cached_state, GFP_NOFS); 3490 btrfs_put_ordered_extent(ordered); 3491 } 3492 3493 cur_offset = hole_start; 3494 while (1) { 3495 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3496 block_end - cur_offset, 0); 3497 BUG_ON(IS_ERR_OR_NULL(em)); 3498 last_byte = min(extent_map_end(em), block_end); 3499 last_byte = (last_byte + mask) & ~mask; 3500 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3501 u64 hint_byte = 0; 3502 hole_size = last_byte - cur_offset; 3503 3504 trans = btrfs_start_transaction(root, 2); 3505 if (IS_ERR(trans)) { 3506 err = PTR_ERR(trans); 3507 break; 3508 } 3509 3510 err = btrfs_drop_extents(trans, inode, cur_offset, 3511 cur_offset + hole_size, 3512 &hint_byte, 1); 3513 if (err) { 3514 btrfs_end_transaction(trans, root); 3515 break; 3516 } 3517 3518 err = btrfs_insert_file_extent(trans, root, 3519 btrfs_ino(inode), cur_offset, 0, 3520 0, hole_size, 0, hole_size, 3521 0, 0, 0); 3522 if (err) { 3523 btrfs_end_transaction(trans, root); 3524 break; 3525 } 3526 3527 btrfs_drop_extent_cache(inode, hole_start, 3528 last_byte - 1, 0); 3529 3530 btrfs_end_transaction(trans, root); 3531 } 3532 free_extent_map(em); 3533 em = NULL; 3534 cur_offset = last_byte; 3535 if (cur_offset >= block_end) 3536 break; 3537 } 3538 3539 free_extent_map(em); 3540 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3541 GFP_NOFS); 3542 return err; 3543 } 3544 3545 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3546 { 3547 loff_t oldsize = i_size_read(inode); 3548 int ret; 3549 3550 if (newsize == oldsize) 3551 return 0; 3552 3553 if (newsize > oldsize) { 3554 i_size_write(inode, newsize); 3555 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3556 truncate_pagecache(inode, oldsize, newsize); 3557 ret = btrfs_cont_expand(inode, oldsize, newsize); 3558 if (ret) { 3559 btrfs_setsize(inode, oldsize); 3560 return ret; 3561 } 3562 3563 mark_inode_dirty(inode); 3564 } else { 3565 3566 /* 3567 * We're truncating a file that used to have good data down to 3568 * zero. Make sure it gets into the ordered flush list so that 3569 * any new writes get down to disk quickly. 3570 */ 3571 if (newsize == 0) 3572 BTRFS_I(inode)->ordered_data_close = 1; 3573 3574 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3575 truncate_setsize(inode, newsize); 3576 ret = btrfs_truncate(inode); 3577 } 3578 3579 return ret; 3580 } 3581 3582 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3583 { 3584 struct inode *inode = dentry->d_inode; 3585 struct btrfs_root *root = BTRFS_I(inode)->root; 3586 int err; 3587 3588 if (btrfs_root_readonly(root)) 3589 return -EROFS; 3590 3591 err = inode_change_ok(inode, attr); 3592 if (err) 3593 return err; 3594 3595 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3596 err = btrfs_setsize(inode, attr->ia_size); 3597 if (err) 3598 return err; 3599 } 3600 3601 if (attr->ia_valid) { 3602 setattr_copy(inode, attr); 3603 mark_inode_dirty(inode); 3604 3605 if (attr->ia_valid & ATTR_MODE) 3606 err = btrfs_acl_chmod(inode); 3607 } 3608 3609 return err; 3610 } 3611 3612 void btrfs_evict_inode(struct inode *inode) 3613 { 3614 struct btrfs_trans_handle *trans; 3615 struct btrfs_root *root = BTRFS_I(inode)->root; 3616 unsigned long nr; 3617 int ret; 3618 3619 trace_btrfs_inode_evict(inode); 3620 3621 truncate_inode_pages(&inode->i_data, 0); 3622 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3623 btrfs_is_free_space_inode(root, inode))) 3624 goto no_delete; 3625 3626 if (is_bad_inode(inode)) { 3627 btrfs_orphan_del(NULL, inode); 3628 goto no_delete; 3629 } 3630 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3631 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3632 3633 if (root->fs_info->log_root_recovering) { 3634 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3635 goto no_delete; 3636 } 3637 3638 if (inode->i_nlink > 0) { 3639 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3640 goto no_delete; 3641 } 3642 3643 btrfs_i_size_write(inode, 0); 3644 3645 while (1) { 3646 trans = btrfs_join_transaction(root); 3647 BUG_ON(IS_ERR(trans)); 3648 trans->block_rsv = root->orphan_block_rsv; 3649 3650 ret = btrfs_block_rsv_check(trans, root, 3651 root->orphan_block_rsv, 0, 5); 3652 if (ret) { 3653 BUG_ON(ret != -EAGAIN); 3654 ret = btrfs_commit_transaction(trans, root); 3655 BUG_ON(ret); 3656 continue; 3657 } 3658 3659 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3660 if (ret != -EAGAIN) 3661 break; 3662 3663 nr = trans->blocks_used; 3664 btrfs_end_transaction(trans, root); 3665 trans = NULL; 3666 btrfs_btree_balance_dirty(root, nr); 3667 3668 } 3669 3670 if (ret == 0) { 3671 ret = btrfs_orphan_del(trans, inode); 3672 BUG_ON(ret); 3673 } 3674 3675 if (!(root == root->fs_info->tree_root || 3676 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3677 btrfs_return_ino(root, btrfs_ino(inode)); 3678 3679 nr = trans->blocks_used; 3680 btrfs_end_transaction(trans, root); 3681 btrfs_btree_balance_dirty(root, nr); 3682 no_delete: 3683 end_writeback(inode); 3684 return; 3685 } 3686 3687 /* 3688 * this returns the key found in the dir entry in the location pointer. 3689 * If no dir entries were found, location->objectid is 0. 3690 */ 3691 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3692 struct btrfs_key *location) 3693 { 3694 const char *name = dentry->d_name.name; 3695 int namelen = dentry->d_name.len; 3696 struct btrfs_dir_item *di; 3697 struct btrfs_path *path; 3698 struct btrfs_root *root = BTRFS_I(dir)->root; 3699 int ret = 0; 3700 3701 path = btrfs_alloc_path(); 3702 if (!path) 3703 return -ENOMEM; 3704 3705 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3706 namelen, 0); 3707 if (IS_ERR(di)) 3708 ret = PTR_ERR(di); 3709 3710 if (IS_ERR_OR_NULL(di)) 3711 goto out_err; 3712 3713 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3714 out: 3715 btrfs_free_path(path); 3716 return ret; 3717 out_err: 3718 location->objectid = 0; 3719 goto out; 3720 } 3721 3722 /* 3723 * when we hit a tree root in a directory, the btrfs part of the inode 3724 * needs to be changed to reflect the root directory of the tree root. This 3725 * is kind of like crossing a mount point. 3726 */ 3727 static int fixup_tree_root_location(struct btrfs_root *root, 3728 struct inode *dir, 3729 struct dentry *dentry, 3730 struct btrfs_key *location, 3731 struct btrfs_root **sub_root) 3732 { 3733 struct btrfs_path *path; 3734 struct btrfs_root *new_root; 3735 struct btrfs_root_ref *ref; 3736 struct extent_buffer *leaf; 3737 int ret; 3738 int err = 0; 3739 3740 path = btrfs_alloc_path(); 3741 if (!path) { 3742 err = -ENOMEM; 3743 goto out; 3744 } 3745 3746 err = -ENOENT; 3747 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3748 BTRFS_I(dir)->root->root_key.objectid, 3749 location->objectid); 3750 if (ret) { 3751 if (ret < 0) 3752 err = ret; 3753 goto out; 3754 } 3755 3756 leaf = path->nodes[0]; 3757 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3758 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3759 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3760 goto out; 3761 3762 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3763 (unsigned long)(ref + 1), 3764 dentry->d_name.len); 3765 if (ret) 3766 goto out; 3767 3768 btrfs_release_path(path); 3769 3770 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3771 if (IS_ERR(new_root)) { 3772 err = PTR_ERR(new_root); 3773 goto out; 3774 } 3775 3776 if (btrfs_root_refs(&new_root->root_item) == 0) { 3777 err = -ENOENT; 3778 goto out; 3779 } 3780 3781 *sub_root = new_root; 3782 location->objectid = btrfs_root_dirid(&new_root->root_item); 3783 location->type = BTRFS_INODE_ITEM_KEY; 3784 location->offset = 0; 3785 err = 0; 3786 out: 3787 btrfs_free_path(path); 3788 return err; 3789 } 3790 3791 static void inode_tree_add(struct inode *inode) 3792 { 3793 struct btrfs_root *root = BTRFS_I(inode)->root; 3794 struct btrfs_inode *entry; 3795 struct rb_node **p; 3796 struct rb_node *parent; 3797 u64 ino = btrfs_ino(inode); 3798 again: 3799 p = &root->inode_tree.rb_node; 3800 parent = NULL; 3801 3802 if (inode_unhashed(inode)) 3803 return; 3804 3805 spin_lock(&root->inode_lock); 3806 while (*p) { 3807 parent = *p; 3808 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3809 3810 if (ino < btrfs_ino(&entry->vfs_inode)) 3811 p = &parent->rb_left; 3812 else if (ino > btrfs_ino(&entry->vfs_inode)) 3813 p = &parent->rb_right; 3814 else { 3815 WARN_ON(!(entry->vfs_inode.i_state & 3816 (I_WILL_FREE | I_FREEING))); 3817 rb_erase(parent, &root->inode_tree); 3818 RB_CLEAR_NODE(parent); 3819 spin_unlock(&root->inode_lock); 3820 goto again; 3821 } 3822 } 3823 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3824 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3825 spin_unlock(&root->inode_lock); 3826 } 3827 3828 static void inode_tree_del(struct inode *inode) 3829 { 3830 struct btrfs_root *root = BTRFS_I(inode)->root; 3831 int empty = 0; 3832 3833 spin_lock(&root->inode_lock); 3834 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3835 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3836 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3837 empty = RB_EMPTY_ROOT(&root->inode_tree); 3838 } 3839 spin_unlock(&root->inode_lock); 3840 3841 /* 3842 * Free space cache has inodes in the tree root, but the tree root has a 3843 * root_refs of 0, so this could end up dropping the tree root as a 3844 * snapshot, so we need the extra !root->fs_info->tree_root check to 3845 * make sure we don't drop it. 3846 */ 3847 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3848 root != root->fs_info->tree_root) { 3849 synchronize_srcu(&root->fs_info->subvol_srcu); 3850 spin_lock(&root->inode_lock); 3851 empty = RB_EMPTY_ROOT(&root->inode_tree); 3852 spin_unlock(&root->inode_lock); 3853 if (empty) 3854 btrfs_add_dead_root(root); 3855 } 3856 } 3857 3858 int btrfs_invalidate_inodes(struct btrfs_root *root) 3859 { 3860 struct rb_node *node; 3861 struct rb_node *prev; 3862 struct btrfs_inode *entry; 3863 struct inode *inode; 3864 u64 objectid = 0; 3865 3866 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3867 3868 spin_lock(&root->inode_lock); 3869 again: 3870 node = root->inode_tree.rb_node; 3871 prev = NULL; 3872 while (node) { 3873 prev = node; 3874 entry = rb_entry(node, struct btrfs_inode, rb_node); 3875 3876 if (objectid < btrfs_ino(&entry->vfs_inode)) 3877 node = node->rb_left; 3878 else if (objectid > btrfs_ino(&entry->vfs_inode)) 3879 node = node->rb_right; 3880 else 3881 break; 3882 } 3883 if (!node) { 3884 while (prev) { 3885 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3886 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 3887 node = prev; 3888 break; 3889 } 3890 prev = rb_next(prev); 3891 } 3892 } 3893 while (node) { 3894 entry = rb_entry(node, struct btrfs_inode, rb_node); 3895 objectid = btrfs_ino(&entry->vfs_inode) + 1; 3896 inode = igrab(&entry->vfs_inode); 3897 if (inode) { 3898 spin_unlock(&root->inode_lock); 3899 if (atomic_read(&inode->i_count) > 1) 3900 d_prune_aliases(inode); 3901 /* 3902 * btrfs_drop_inode will have it removed from 3903 * the inode cache when its usage count 3904 * hits zero. 3905 */ 3906 iput(inode); 3907 cond_resched(); 3908 spin_lock(&root->inode_lock); 3909 goto again; 3910 } 3911 3912 if (cond_resched_lock(&root->inode_lock)) 3913 goto again; 3914 3915 node = rb_next(node); 3916 } 3917 spin_unlock(&root->inode_lock); 3918 return 0; 3919 } 3920 3921 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3922 { 3923 struct btrfs_iget_args *args = p; 3924 inode->i_ino = args->ino; 3925 BTRFS_I(inode)->root = args->root; 3926 btrfs_set_inode_space_info(args->root, inode); 3927 return 0; 3928 } 3929 3930 static int btrfs_find_actor(struct inode *inode, void *opaque) 3931 { 3932 struct btrfs_iget_args *args = opaque; 3933 return args->ino == btrfs_ino(inode) && 3934 args->root == BTRFS_I(inode)->root; 3935 } 3936 3937 static struct inode *btrfs_iget_locked(struct super_block *s, 3938 u64 objectid, 3939 struct btrfs_root *root) 3940 { 3941 struct inode *inode; 3942 struct btrfs_iget_args args; 3943 args.ino = objectid; 3944 args.root = root; 3945 3946 inode = iget5_locked(s, objectid, btrfs_find_actor, 3947 btrfs_init_locked_inode, 3948 (void *)&args); 3949 return inode; 3950 } 3951 3952 /* Get an inode object given its location and corresponding root. 3953 * Returns in *is_new if the inode was read from disk 3954 */ 3955 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3956 struct btrfs_root *root, int *new) 3957 { 3958 struct inode *inode; 3959 3960 inode = btrfs_iget_locked(s, location->objectid, root); 3961 if (!inode) 3962 return ERR_PTR(-ENOMEM); 3963 3964 if (inode->i_state & I_NEW) { 3965 BTRFS_I(inode)->root = root; 3966 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3967 btrfs_read_locked_inode(inode); 3968 if (!is_bad_inode(inode)) { 3969 inode_tree_add(inode); 3970 unlock_new_inode(inode); 3971 if (new) 3972 *new = 1; 3973 } else { 3974 unlock_new_inode(inode); 3975 iput(inode); 3976 inode = ERR_PTR(-ESTALE); 3977 } 3978 } 3979 3980 return inode; 3981 } 3982 3983 static struct inode *new_simple_dir(struct super_block *s, 3984 struct btrfs_key *key, 3985 struct btrfs_root *root) 3986 { 3987 struct inode *inode = new_inode(s); 3988 3989 if (!inode) 3990 return ERR_PTR(-ENOMEM); 3991 3992 BTRFS_I(inode)->root = root; 3993 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3994 BTRFS_I(inode)->dummy_inode = 1; 3995 3996 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3997 inode->i_op = &simple_dir_inode_operations; 3998 inode->i_fop = &simple_dir_operations; 3999 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4000 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4001 4002 return inode; 4003 } 4004 4005 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4006 { 4007 struct inode *inode; 4008 struct btrfs_root *root = BTRFS_I(dir)->root; 4009 struct btrfs_root *sub_root = root; 4010 struct btrfs_key location; 4011 int index; 4012 int ret = 0; 4013 4014 if (dentry->d_name.len > BTRFS_NAME_LEN) 4015 return ERR_PTR(-ENAMETOOLONG); 4016 4017 if (unlikely(d_need_lookup(dentry))) { 4018 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key)); 4019 kfree(dentry->d_fsdata); 4020 dentry->d_fsdata = NULL; 4021 /* This thing is hashed, drop it for now */ 4022 d_drop(dentry); 4023 } else { 4024 ret = btrfs_inode_by_name(dir, dentry, &location); 4025 } 4026 4027 if (ret < 0) 4028 return ERR_PTR(ret); 4029 4030 if (location.objectid == 0) 4031 return NULL; 4032 4033 if (location.type == BTRFS_INODE_ITEM_KEY) { 4034 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4035 return inode; 4036 } 4037 4038 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4039 4040 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4041 ret = fixup_tree_root_location(root, dir, dentry, 4042 &location, &sub_root); 4043 if (ret < 0) { 4044 if (ret != -ENOENT) 4045 inode = ERR_PTR(ret); 4046 else 4047 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4048 } else { 4049 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4050 } 4051 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4052 4053 if (!IS_ERR(inode) && root != sub_root) { 4054 down_read(&root->fs_info->cleanup_work_sem); 4055 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4056 ret = btrfs_orphan_cleanup(sub_root); 4057 up_read(&root->fs_info->cleanup_work_sem); 4058 if (ret) 4059 inode = ERR_PTR(ret); 4060 } 4061 4062 return inode; 4063 } 4064 4065 static int btrfs_dentry_delete(const struct dentry *dentry) 4066 { 4067 struct btrfs_root *root; 4068 4069 if (!dentry->d_inode && !IS_ROOT(dentry)) 4070 dentry = dentry->d_parent; 4071 4072 if (dentry->d_inode) { 4073 root = BTRFS_I(dentry->d_inode)->root; 4074 if (btrfs_root_refs(&root->root_item) == 0) 4075 return 1; 4076 } 4077 return 0; 4078 } 4079 4080 static void btrfs_dentry_release(struct dentry *dentry) 4081 { 4082 if (dentry->d_fsdata) 4083 kfree(dentry->d_fsdata); 4084 } 4085 4086 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4087 struct nameidata *nd) 4088 { 4089 struct dentry *ret; 4090 4091 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4092 if (unlikely(d_need_lookup(dentry))) { 4093 spin_lock(&dentry->d_lock); 4094 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 4095 spin_unlock(&dentry->d_lock); 4096 } 4097 return ret; 4098 } 4099 4100 unsigned char btrfs_filetype_table[] = { 4101 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4102 }; 4103 4104 static int btrfs_real_readdir(struct file *filp, void *dirent, 4105 filldir_t filldir) 4106 { 4107 struct inode *inode = filp->f_dentry->d_inode; 4108 struct btrfs_root *root = BTRFS_I(inode)->root; 4109 struct btrfs_item *item; 4110 struct btrfs_dir_item *di; 4111 struct btrfs_key key; 4112 struct btrfs_key found_key; 4113 struct btrfs_path *path; 4114 struct list_head ins_list; 4115 struct list_head del_list; 4116 struct qstr q; 4117 int ret; 4118 struct extent_buffer *leaf; 4119 int slot; 4120 unsigned char d_type; 4121 int over = 0; 4122 u32 di_cur; 4123 u32 di_total; 4124 u32 di_len; 4125 int key_type = BTRFS_DIR_INDEX_KEY; 4126 char tmp_name[32]; 4127 char *name_ptr; 4128 int name_len; 4129 int is_curr = 0; /* filp->f_pos points to the current index? */ 4130 4131 /* FIXME, use a real flag for deciding about the key type */ 4132 if (root->fs_info->tree_root == root) 4133 key_type = BTRFS_DIR_ITEM_KEY; 4134 4135 /* special case for "." */ 4136 if (filp->f_pos == 0) { 4137 over = filldir(dirent, ".", 1, 4138 filp->f_pos, btrfs_ino(inode), DT_DIR); 4139 if (over) 4140 return 0; 4141 filp->f_pos = 1; 4142 } 4143 /* special case for .., just use the back ref */ 4144 if (filp->f_pos == 1) { 4145 u64 pino = parent_ino(filp->f_path.dentry); 4146 over = filldir(dirent, "..", 2, 4147 filp->f_pos, pino, DT_DIR); 4148 if (over) 4149 return 0; 4150 filp->f_pos = 2; 4151 } 4152 path = btrfs_alloc_path(); 4153 if (!path) 4154 return -ENOMEM; 4155 4156 path->reada = 1; 4157 4158 if (key_type == BTRFS_DIR_INDEX_KEY) { 4159 INIT_LIST_HEAD(&ins_list); 4160 INIT_LIST_HEAD(&del_list); 4161 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4162 } 4163 4164 btrfs_set_key_type(&key, key_type); 4165 key.offset = filp->f_pos; 4166 key.objectid = btrfs_ino(inode); 4167 4168 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4169 if (ret < 0) 4170 goto err; 4171 4172 while (1) { 4173 leaf = path->nodes[0]; 4174 slot = path->slots[0]; 4175 if (slot >= btrfs_header_nritems(leaf)) { 4176 ret = btrfs_next_leaf(root, path); 4177 if (ret < 0) 4178 goto err; 4179 else if (ret > 0) 4180 break; 4181 continue; 4182 } 4183 4184 item = btrfs_item_nr(leaf, slot); 4185 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4186 4187 if (found_key.objectid != key.objectid) 4188 break; 4189 if (btrfs_key_type(&found_key) != key_type) 4190 break; 4191 if (found_key.offset < filp->f_pos) 4192 goto next; 4193 if (key_type == BTRFS_DIR_INDEX_KEY && 4194 btrfs_should_delete_dir_index(&del_list, 4195 found_key.offset)) 4196 goto next; 4197 4198 filp->f_pos = found_key.offset; 4199 is_curr = 1; 4200 4201 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4202 di_cur = 0; 4203 di_total = btrfs_item_size(leaf, item); 4204 4205 while (di_cur < di_total) { 4206 struct btrfs_key location; 4207 struct dentry *tmp; 4208 4209 if (verify_dir_item(root, leaf, di)) 4210 break; 4211 4212 name_len = btrfs_dir_name_len(leaf, di); 4213 if (name_len <= sizeof(tmp_name)) { 4214 name_ptr = tmp_name; 4215 } else { 4216 name_ptr = kmalloc(name_len, GFP_NOFS); 4217 if (!name_ptr) { 4218 ret = -ENOMEM; 4219 goto err; 4220 } 4221 } 4222 read_extent_buffer(leaf, name_ptr, 4223 (unsigned long)(di + 1), name_len); 4224 4225 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4226 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4227 4228 q.name = name_ptr; 4229 q.len = name_len; 4230 q.hash = full_name_hash(q.name, q.len); 4231 tmp = d_lookup(filp->f_dentry, &q); 4232 if (!tmp) { 4233 struct btrfs_key *newkey; 4234 4235 newkey = kzalloc(sizeof(struct btrfs_key), 4236 GFP_NOFS); 4237 if (!newkey) 4238 goto no_dentry; 4239 tmp = d_alloc(filp->f_dentry, &q); 4240 if (!tmp) { 4241 kfree(newkey); 4242 dput(tmp); 4243 goto no_dentry; 4244 } 4245 memcpy(newkey, &location, 4246 sizeof(struct btrfs_key)); 4247 tmp->d_fsdata = newkey; 4248 tmp->d_flags |= DCACHE_NEED_LOOKUP; 4249 d_rehash(tmp); 4250 dput(tmp); 4251 } else { 4252 dput(tmp); 4253 } 4254 no_dentry: 4255 /* is this a reference to our own snapshot? If so 4256 * skip it 4257 */ 4258 if (location.type == BTRFS_ROOT_ITEM_KEY && 4259 location.objectid == root->root_key.objectid) { 4260 over = 0; 4261 goto skip; 4262 } 4263 over = filldir(dirent, name_ptr, name_len, 4264 found_key.offset, location.objectid, 4265 d_type); 4266 4267 skip: 4268 if (name_ptr != tmp_name) 4269 kfree(name_ptr); 4270 4271 if (over) 4272 goto nopos; 4273 di_len = btrfs_dir_name_len(leaf, di) + 4274 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4275 di_cur += di_len; 4276 di = (struct btrfs_dir_item *)((char *)di + di_len); 4277 } 4278 next: 4279 path->slots[0]++; 4280 } 4281 4282 if (key_type == BTRFS_DIR_INDEX_KEY) { 4283 if (is_curr) 4284 filp->f_pos++; 4285 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4286 &ins_list); 4287 if (ret) 4288 goto nopos; 4289 } 4290 4291 /* Reached end of directory/root. Bump pos past the last item. */ 4292 if (key_type == BTRFS_DIR_INDEX_KEY) 4293 /* 4294 * 32-bit glibc will use getdents64, but then strtol - 4295 * so the last number we can serve is this. 4296 */ 4297 filp->f_pos = 0x7fffffff; 4298 else 4299 filp->f_pos++; 4300 nopos: 4301 ret = 0; 4302 err: 4303 if (key_type == BTRFS_DIR_INDEX_KEY) 4304 btrfs_put_delayed_items(&ins_list, &del_list); 4305 btrfs_free_path(path); 4306 return ret; 4307 } 4308 4309 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4310 { 4311 struct btrfs_root *root = BTRFS_I(inode)->root; 4312 struct btrfs_trans_handle *trans; 4313 int ret = 0; 4314 bool nolock = false; 4315 4316 if (BTRFS_I(inode)->dummy_inode) 4317 return 0; 4318 4319 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode)) 4320 nolock = true; 4321 4322 if (wbc->sync_mode == WB_SYNC_ALL) { 4323 if (nolock) 4324 trans = btrfs_join_transaction_nolock(root); 4325 else 4326 trans = btrfs_join_transaction(root); 4327 if (IS_ERR(trans)) 4328 return PTR_ERR(trans); 4329 if (nolock) 4330 ret = btrfs_end_transaction_nolock(trans, root); 4331 else 4332 ret = btrfs_commit_transaction(trans, root); 4333 } 4334 return ret; 4335 } 4336 4337 /* 4338 * This is somewhat expensive, updating the tree every time the 4339 * inode changes. But, it is most likely to find the inode in cache. 4340 * FIXME, needs more benchmarking...there are no reasons other than performance 4341 * to keep or drop this code. 4342 */ 4343 void btrfs_dirty_inode(struct inode *inode, int flags) 4344 { 4345 struct btrfs_root *root = BTRFS_I(inode)->root; 4346 struct btrfs_trans_handle *trans; 4347 int ret; 4348 4349 if (BTRFS_I(inode)->dummy_inode) 4350 return; 4351 4352 trans = btrfs_join_transaction(root); 4353 BUG_ON(IS_ERR(trans)); 4354 4355 ret = btrfs_update_inode(trans, root, inode); 4356 if (ret && ret == -ENOSPC) { 4357 /* whoops, lets try again with the full transaction */ 4358 btrfs_end_transaction(trans, root); 4359 trans = btrfs_start_transaction(root, 1); 4360 if (IS_ERR(trans)) { 4361 printk_ratelimited(KERN_ERR "btrfs: fail to " 4362 "dirty inode %llu error %ld\n", 4363 (unsigned long long)btrfs_ino(inode), 4364 PTR_ERR(trans)); 4365 return; 4366 } 4367 4368 ret = btrfs_update_inode(trans, root, inode); 4369 if (ret) { 4370 printk_ratelimited(KERN_ERR "btrfs: fail to " 4371 "dirty inode %llu error %d\n", 4372 (unsigned long long)btrfs_ino(inode), 4373 ret); 4374 } 4375 } 4376 btrfs_end_transaction(trans, root); 4377 if (BTRFS_I(inode)->delayed_node) 4378 btrfs_balance_delayed_items(root); 4379 } 4380 4381 /* 4382 * find the highest existing sequence number in a directory 4383 * and then set the in-memory index_cnt variable to reflect 4384 * free sequence numbers 4385 */ 4386 static int btrfs_set_inode_index_count(struct inode *inode) 4387 { 4388 struct btrfs_root *root = BTRFS_I(inode)->root; 4389 struct btrfs_key key, found_key; 4390 struct btrfs_path *path; 4391 struct extent_buffer *leaf; 4392 int ret; 4393 4394 key.objectid = btrfs_ino(inode); 4395 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4396 key.offset = (u64)-1; 4397 4398 path = btrfs_alloc_path(); 4399 if (!path) 4400 return -ENOMEM; 4401 4402 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4403 if (ret < 0) 4404 goto out; 4405 /* FIXME: we should be able to handle this */ 4406 if (ret == 0) 4407 goto out; 4408 ret = 0; 4409 4410 /* 4411 * MAGIC NUMBER EXPLANATION: 4412 * since we search a directory based on f_pos we have to start at 2 4413 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4414 * else has to start at 2 4415 */ 4416 if (path->slots[0] == 0) { 4417 BTRFS_I(inode)->index_cnt = 2; 4418 goto out; 4419 } 4420 4421 path->slots[0]--; 4422 4423 leaf = path->nodes[0]; 4424 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4425 4426 if (found_key.objectid != btrfs_ino(inode) || 4427 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4428 BTRFS_I(inode)->index_cnt = 2; 4429 goto out; 4430 } 4431 4432 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4433 out: 4434 btrfs_free_path(path); 4435 return ret; 4436 } 4437 4438 /* 4439 * helper to find a free sequence number in a given directory. This current 4440 * code is very simple, later versions will do smarter things in the btree 4441 */ 4442 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4443 { 4444 int ret = 0; 4445 4446 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4447 ret = btrfs_inode_delayed_dir_index_count(dir); 4448 if (ret) { 4449 ret = btrfs_set_inode_index_count(dir); 4450 if (ret) 4451 return ret; 4452 } 4453 } 4454 4455 *index = BTRFS_I(dir)->index_cnt; 4456 BTRFS_I(dir)->index_cnt++; 4457 4458 return ret; 4459 } 4460 4461 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4462 struct btrfs_root *root, 4463 struct inode *dir, 4464 const char *name, int name_len, 4465 u64 ref_objectid, u64 objectid, int mode, 4466 u64 *index) 4467 { 4468 struct inode *inode; 4469 struct btrfs_inode_item *inode_item; 4470 struct btrfs_key *location; 4471 struct btrfs_path *path; 4472 struct btrfs_inode_ref *ref; 4473 struct btrfs_key key[2]; 4474 u32 sizes[2]; 4475 unsigned long ptr; 4476 int ret; 4477 int owner; 4478 4479 path = btrfs_alloc_path(); 4480 if (!path) 4481 return ERR_PTR(-ENOMEM); 4482 4483 inode = new_inode(root->fs_info->sb); 4484 if (!inode) { 4485 btrfs_free_path(path); 4486 return ERR_PTR(-ENOMEM); 4487 } 4488 4489 /* 4490 * we have to initialize this early, so we can reclaim the inode 4491 * number if we fail afterwards in this function. 4492 */ 4493 inode->i_ino = objectid; 4494 4495 if (dir) { 4496 trace_btrfs_inode_request(dir); 4497 4498 ret = btrfs_set_inode_index(dir, index); 4499 if (ret) { 4500 btrfs_free_path(path); 4501 iput(inode); 4502 return ERR_PTR(ret); 4503 } 4504 } 4505 /* 4506 * index_cnt is ignored for everything but a dir, 4507 * btrfs_get_inode_index_count has an explanation for the magic 4508 * number 4509 */ 4510 BTRFS_I(inode)->index_cnt = 2; 4511 BTRFS_I(inode)->root = root; 4512 BTRFS_I(inode)->generation = trans->transid; 4513 inode->i_generation = BTRFS_I(inode)->generation; 4514 btrfs_set_inode_space_info(root, inode); 4515 4516 if (S_ISDIR(mode)) 4517 owner = 0; 4518 else 4519 owner = 1; 4520 4521 key[0].objectid = objectid; 4522 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4523 key[0].offset = 0; 4524 4525 key[1].objectid = objectid; 4526 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4527 key[1].offset = ref_objectid; 4528 4529 sizes[0] = sizeof(struct btrfs_inode_item); 4530 sizes[1] = name_len + sizeof(*ref); 4531 4532 path->leave_spinning = 1; 4533 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4534 if (ret != 0) 4535 goto fail; 4536 4537 inode_init_owner(inode, dir, mode); 4538 inode_set_bytes(inode, 0); 4539 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4540 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4541 struct btrfs_inode_item); 4542 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4543 4544 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4545 struct btrfs_inode_ref); 4546 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4547 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4548 ptr = (unsigned long)(ref + 1); 4549 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4550 4551 btrfs_mark_buffer_dirty(path->nodes[0]); 4552 btrfs_free_path(path); 4553 4554 location = &BTRFS_I(inode)->location; 4555 location->objectid = objectid; 4556 location->offset = 0; 4557 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4558 4559 btrfs_inherit_iflags(inode, dir); 4560 4561 if (S_ISREG(mode)) { 4562 if (btrfs_test_opt(root, NODATASUM)) 4563 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4564 if (btrfs_test_opt(root, NODATACOW) || 4565 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4566 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4567 } 4568 4569 insert_inode_hash(inode); 4570 inode_tree_add(inode); 4571 4572 trace_btrfs_inode_new(inode); 4573 btrfs_set_inode_last_trans(trans, inode); 4574 4575 return inode; 4576 fail: 4577 if (dir) 4578 BTRFS_I(dir)->index_cnt--; 4579 btrfs_free_path(path); 4580 iput(inode); 4581 return ERR_PTR(ret); 4582 } 4583 4584 static inline u8 btrfs_inode_type(struct inode *inode) 4585 { 4586 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4587 } 4588 4589 /* 4590 * utility function to add 'inode' into 'parent_inode' with 4591 * a give name and a given sequence number. 4592 * if 'add_backref' is true, also insert a backref from the 4593 * inode to the parent directory. 4594 */ 4595 int btrfs_add_link(struct btrfs_trans_handle *trans, 4596 struct inode *parent_inode, struct inode *inode, 4597 const char *name, int name_len, int add_backref, u64 index) 4598 { 4599 int ret = 0; 4600 struct btrfs_key key; 4601 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4602 u64 ino = btrfs_ino(inode); 4603 u64 parent_ino = btrfs_ino(parent_inode); 4604 4605 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4606 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4607 } else { 4608 key.objectid = ino; 4609 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4610 key.offset = 0; 4611 } 4612 4613 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4614 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4615 key.objectid, root->root_key.objectid, 4616 parent_ino, index, name, name_len); 4617 } else if (add_backref) { 4618 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4619 parent_ino, index); 4620 } 4621 4622 if (ret == 0) { 4623 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4624 parent_inode, &key, 4625 btrfs_inode_type(inode), index); 4626 BUG_ON(ret); 4627 4628 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4629 name_len * 2); 4630 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4631 ret = btrfs_update_inode(trans, root, parent_inode); 4632 } 4633 return ret; 4634 } 4635 4636 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4637 struct inode *dir, struct dentry *dentry, 4638 struct inode *inode, int backref, u64 index) 4639 { 4640 int err = btrfs_add_link(trans, dir, inode, 4641 dentry->d_name.name, dentry->d_name.len, 4642 backref, index); 4643 if (!err) { 4644 d_instantiate(dentry, inode); 4645 return 0; 4646 } 4647 if (err > 0) 4648 err = -EEXIST; 4649 return err; 4650 } 4651 4652 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4653 int mode, dev_t rdev) 4654 { 4655 struct btrfs_trans_handle *trans; 4656 struct btrfs_root *root = BTRFS_I(dir)->root; 4657 struct inode *inode = NULL; 4658 int err; 4659 int drop_inode = 0; 4660 u64 objectid; 4661 unsigned long nr = 0; 4662 u64 index = 0; 4663 4664 if (!new_valid_dev(rdev)) 4665 return -EINVAL; 4666 4667 /* 4668 * 2 for inode item and ref 4669 * 2 for dir items 4670 * 1 for xattr if selinux is on 4671 */ 4672 trans = btrfs_start_transaction(root, 5); 4673 if (IS_ERR(trans)) 4674 return PTR_ERR(trans); 4675 4676 err = btrfs_find_free_ino(root, &objectid); 4677 if (err) 4678 goto out_unlock; 4679 4680 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4681 dentry->d_name.len, btrfs_ino(dir), objectid, 4682 mode, &index); 4683 if (IS_ERR(inode)) { 4684 err = PTR_ERR(inode); 4685 goto out_unlock; 4686 } 4687 4688 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4689 if (err) { 4690 drop_inode = 1; 4691 goto out_unlock; 4692 } 4693 4694 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4695 if (err) 4696 drop_inode = 1; 4697 else { 4698 inode->i_op = &btrfs_special_inode_operations; 4699 init_special_inode(inode, inode->i_mode, rdev); 4700 btrfs_update_inode(trans, root, inode); 4701 } 4702 out_unlock: 4703 nr = trans->blocks_used; 4704 btrfs_end_transaction_throttle(trans, root); 4705 btrfs_btree_balance_dirty(root, nr); 4706 if (drop_inode) { 4707 inode_dec_link_count(inode); 4708 iput(inode); 4709 } 4710 return err; 4711 } 4712 4713 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4714 int mode, struct nameidata *nd) 4715 { 4716 struct btrfs_trans_handle *trans; 4717 struct btrfs_root *root = BTRFS_I(dir)->root; 4718 struct inode *inode = NULL; 4719 int drop_inode = 0; 4720 int err; 4721 unsigned long nr = 0; 4722 u64 objectid; 4723 u64 index = 0; 4724 4725 /* 4726 * 2 for inode item and ref 4727 * 2 for dir items 4728 * 1 for xattr if selinux is on 4729 */ 4730 trans = btrfs_start_transaction(root, 5); 4731 if (IS_ERR(trans)) 4732 return PTR_ERR(trans); 4733 4734 err = btrfs_find_free_ino(root, &objectid); 4735 if (err) 4736 goto out_unlock; 4737 4738 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4739 dentry->d_name.len, btrfs_ino(dir), objectid, 4740 mode, &index); 4741 if (IS_ERR(inode)) { 4742 err = PTR_ERR(inode); 4743 goto out_unlock; 4744 } 4745 4746 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4747 if (err) { 4748 drop_inode = 1; 4749 goto out_unlock; 4750 } 4751 4752 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4753 if (err) 4754 drop_inode = 1; 4755 else { 4756 inode->i_mapping->a_ops = &btrfs_aops; 4757 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4758 inode->i_fop = &btrfs_file_operations; 4759 inode->i_op = &btrfs_file_inode_operations; 4760 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4761 } 4762 out_unlock: 4763 nr = trans->blocks_used; 4764 btrfs_end_transaction_throttle(trans, root); 4765 if (drop_inode) { 4766 inode_dec_link_count(inode); 4767 iput(inode); 4768 } 4769 btrfs_btree_balance_dirty(root, nr); 4770 return err; 4771 } 4772 4773 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4774 struct dentry *dentry) 4775 { 4776 struct btrfs_trans_handle *trans; 4777 struct btrfs_root *root = BTRFS_I(dir)->root; 4778 struct inode *inode = old_dentry->d_inode; 4779 u64 index; 4780 unsigned long nr = 0; 4781 int err; 4782 int drop_inode = 0; 4783 4784 /* do not allow sys_link's with other subvols of the same device */ 4785 if (root->objectid != BTRFS_I(inode)->root->objectid) 4786 return -EXDEV; 4787 4788 if (inode->i_nlink == ~0U) 4789 return -EMLINK; 4790 4791 err = btrfs_set_inode_index(dir, &index); 4792 if (err) 4793 goto fail; 4794 4795 /* 4796 * 2 items for inode and inode ref 4797 * 2 items for dir items 4798 * 1 item for parent inode 4799 */ 4800 trans = btrfs_start_transaction(root, 5); 4801 if (IS_ERR(trans)) { 4802 err = PTR_ERR(trans); 4803 goto fail; 4804 } 4805 4806 btrfs_inc_nlink(inode); 4807 inode->i_ctime = CURRENT_TIME; 4808 ihold(inode); 4809 4810 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4811 4812 if (err) { 4813 drop_inode = 1; 4814 } else { 4815 struct dentry *parent = dentry->d_parent; 4816 err = btrfs_update_inode(trans, root, inode); 4817 BUG_ON(err); 4818 btrfs_log_new_name(trans, inode, NULL, parent); 4819 } 4820 4821 nr = trans->blocks_used; 4822 btrfs_end_transaction_throttle(trans, root); 4823 fail: 4824 if (drop_inode) { 4825 inode_dec_link_count(inode); 4826 iput(inode); 4827 } 4828 btrfs_btree_balance_dirty(root, nr); 4829 return err; 4830 } 4831 4832 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4833 { 4834 struct inode *inode = NULL; 4835 struct btrfs_trans_handle *trans; 4836 struct btrfs_root *root = BTRFS_I(dir)->root; 4837 int err = 0; 4838 int drop_on_err = 0; 4839 u64 objectid = 0; 4840 u64 index = 0; 4841 unsigned long nr = 1; 4842 4843 /* 4844 * 2 items for inode and ref 4845 * 2 items for dir items 4846 * 1 for xattr if selinux is on 4847 */ 4848 trans = btrfs_start_transaction(root, 5); 4849 if (IS_ERR(trans)) 4850 return PTR_ERR(trans); 4851 4852 err = btrfs_find_free_ino(root, &objectid); 4853 if (err) 4854 goto out_fail; 4855 4856 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4857 dentry->d_name.len, btrfs_ino(dir), objectid, 4858 S_IFDIR | mode, &index); 4859 if (IS_ERR(inode)) { 4860 err = PTR_ERR(inode); 4861 goto out_fail; 4862 } 4863 4864 drop_on_err = 1; 4865 4866 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4867 if (err) 4868 goto out_fail; 4869 4870 inode->i_op = &btrfs_dir_inode_operations; 4871 inode->i_fop = &btrfs_dir_file_operations; 4872 4873 btrfs_i_size_write(inode, 0); 4874 err = btrfs_update_inode(trans, root, inode); 4875 if (err) 4876 goto out_fail; 4877 4878 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4879 dentry->d_name.len, 0, index); 4880 if (err) 4881 goto out_fail; 4882 4883 d_instantiate(dentry, inode); 4884 drop_on_err = 0; 4885 4886 out_fail: 4887 nr = trans->blocks_used; 4888 btrfs_end_transaction_throttle(trans, root); 4889 if (drop_on_err) 4890 iput(inode); 4891 btrfs_btree_balance_dirty(root, nr); 4892 return err; 4893 } 4894 4895 /* helper for btfs_get_extent. Given an existing extent in the tree, 4896 * and an extent that you want to insert, deal with overlap and insert 4897 * the new extent into the tree. 4898 */ 4899 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4900 struct extent_map *existing, 4901 struct extent_map *em, 4902 u64 map_start, u64 map_len) 4903 { 4904 u64 start_diff; 4905 4906 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4907 start_diff = map_start - em->start; 4908 em->start = map_start; 4909 em->len = map_len; 4910 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4911 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4912 em->block_start += start_diff; 4913 em->block_len -= start_diff; 4914 } 4915 return add_extent_mapping(em_tree, em); 4916 } 4917 4918 static noinline int uncompress_inline(struct btrfs_path *path, 4919 struct inode *inode, struct page *page, 4920 size_t pg_offset, u64 extent_offset, 4921 struct btrfs_file_extent_item *item) 4922 { 4923 int ret; 4924 struct extent_buffer *leaf = path->nodes[0]; 4925 char *tmp; 4926 size_t max_size; 4927 unsigned long inline_size; 4928 unsigned long ptr; 4929 int compress_type; 4930 4931 WARN_ON(pg_offset != 0); 4932 compress_type = btrfs_file_extent_compression(leaf, item); 4933 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4934 inline_size = btrfs_file_extent_inline_item_len(leaf, 4935 btrfs_item_nr(leaf, path->slots[0])); 4936 tmp = kmalloc(inline_size, GFP_NOFS); 4937 if (!tmp) 4938 return -ENOMEM; 4939 ptr = btrfs_file_extent_inline_start(item); 4940 4941 read_extent_buffer(leaf, tmp, ptr, inline_size); 4942 4943 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4944 ret = btrfs_decompress(compress_type, tmp, page, 4945 extent_offset, inline_size, max_size); 4946 if (ret) { 4947 char *kaddr = kmap_atomic(page, KM_USER0); 4948 unsigned long copy_size = min_t(u64, 4949 PAGE_CACHE_SIZE - pg_offset, 4950 max_size - extent_offset); 4951 memset(kaddr + pg_offset, 0, copy_size); 4952 kunmap_atomic(kaddr, KM_USER0); 4953 } 4954 kfree(tmp); 4955 return 0; 4956 } 4957 4958 /* 4959 * a bit scary, this does extent mapping from logical file offset to the disk. 4960 * the ugly parts come from merging extents from the disk with the in-ram 4961 * representation. This gets more complex because of the data=ordered code, 4962 * where the in-ram extents might be locked pending data=ordered completion. 4963 * 4964 * This also copies inline extents directly into the page. 4965 */ 4966 4967 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4968 size_t pg_offset, u64 start, u64 len, 4969 int create) 4970 { 4971 int ret; 4972 int err = 0; 4973 u64 bytenr; 4974 u64 extent_start = 0; 4975 u64 extent_end = 0; 4976 u64 objectid = btrfs_ino(inode); 4977 u32 found_type; 4978 struct btrfs_path *path = NULL; 4979 struct btrfs_root *root = BTRFS_I(inode)->root; 4980 struct btrfs_file_extent_item *item; 4981 struct extent_buffer *leaf; 4982 struct btrfs_key found_key; 4983 struct extent_map *em = NULL; 4984 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4985 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4986 struct btrfs_trans_handle *trans = NULL; 4987 int compress_type; 4988 4989 again: 4990 read_lock(&em_tree->lock); 4991 em = lookup_extent_mapping(em_tree, start, len); 4992 if (em) 4993 em->bdev = root->fs_info->fs_devices->latest_bdev; 4994 read_unlock(&em_tree->lock); 4995 4996 if (em) { 4997 if (em->start > start || em->start + em->len <= start) 4998 free_extent_map(em); 4999 else if (em->block_start == EXTENT_MAP_INLINE && page) 5000 free_extent_map(em); 5001 else 5002 goto out; 5003 } 5004 em = alloc_extent_map(); 5005 if (!em) { 5006 err = -ENOMEM; 5007 goto out; 5008 } 5009 em->bdev = root->fs_info->fs_devices->latest_bdev; 5010 em->start = EXTENT_MAP_HOLE; 5011 em->orig_start = EXTENT_MAP_HOLE; 5012 em->len = (u64)-1; 5013 em->block_len = (u64)-1; 5014 5015 if (!path) { 5016 path = btrfs_alloc_path(); 5017 if (!path) { 5018 err = -ENOMEM; 5019 goto out; 5020 } 5021 /* 5022 * Chances are we'll be called again, so go ahead and do 5023 * readahead 5024 */ 5025 path->reada = 1; 5026 } 5027 5028 ret = btrfs_lookup_file_extent(trans, root, path, 5029 objectid, start, trans != NULL); 5030 if (ret < 0) { 5031 err = ret; 5032 goto out; 5033 } 5034 5035 if (ret != 0) { 5036 if (path->slots[0] == 0) 5037 goto not_found; 5038 path->slots[0]--; 5039 } 5040 5041 leaf = path->nodes[0]; 5042 item = btrfs_item_ptr(leaf, path->slots[0], 5043 struct btrfs_file_extent_item); 5044 /* are we inside the extent that was found? */ 5045 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5046 found_type = btrfs_key_type(&found_key); 5047 if (found_key.objectid != objectid || 5048 found_type != BTRFS_EXTENT_DATA_KEY) { 5049 goto not_found; 5050 } 5051 5052 found_type = btrfs_file_extent_type(leaf, item); 5053 extent_start = found_key.offset; 5054 compress_type = btrfs_file_extent_compression(leaf, item); 5055 if (found_type == BTRFS_FILE_EXTENT_REG || 5056 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5057 extent_end = extent_start + 5058 btrfs_file_extent_num_bytes(leaf, item); 5059 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5060 size_t size; 5061 size = btrfs_file_extent_inline_len(leaf, item); 5062 extent_end = (extent_start + size + root->sectorsize - 1) & 5063 ~((u64)root->sectorsize - 1); 5064 } 5065 5066 if (start >= extent_end) { 5067 path->slots[0]++; 5068 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5069 ret = btrfs_next_leaf(root, path); 5070 if (ret < 0) { 5071 err = ret; 5072 goto out; 5073 } 5074 if (ret > 0) 5075 goto not_found; 5076 leaf = path->nodes[0]; 5077 } 5078 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5079 if (found_key.objectid != objectid || 5080 found_key.type != BTRFS_EXTENT_DATA_KEY) 5081 goto not_found; 5082 if (start + len <= found_key.offset) 5083 goto not_found; 5084 em->start = start; 5085 em->len = found_key.offset - start; 5086 goto not_found_em; 5087 } 5088 5089 if (found_type == BTRFS_FILE_EXTENT_REG || 5090 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5091 em->start = extent_start; 5092 em->len = extent_end - extent_start; 5093 em->orig_start = extent_start - 5094 btrfs_file_extent_offset(leaf, item); 5095 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5096 if (bytenr == 0) { 5097 em->block_start = EXTENT_MAP_HOLE; 5098 goto insert; 5099 } 5100 if (compress_type != BTRFS_COMPRESS_NONE) { 5101 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5102 em->compress_type = compress_type; 5103 em->block_start = bytenr; 5104 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5105 item); 5106 } else { 5107 bytenr += btrfs_file_extent_offset(leaf, item); 5108 em->block_start = bytenr; 5109 em->block_len = em->len; 5110 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5111 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5112 } 5113 goto insert; 5114 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5115 unsigned long ptr; 5116 char *map; 5117 size_t size; 5118 size_t extent_offset; 5119 size_t copy_size; 5120 5121 em->block_start = EXTENT_MAP_INLINE; 5122 if (!page || create) { 5123 em->start = extent_start; 5124 em->len = extent_end - extent_start; 5125 goto out; 5126 } 5127 5128 size = btrfs_file_extent_inline_len(leaf, item); 5129 extent_offset = page_offset(page) + pg_offset - extent_start; 5130 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5131 size - extent_offset); 5132 em->start = extent_start + extent_offset; 5133 em->len = (copy_size + root->sectorsize - 1) & 5134 ~((u64)root->sectorsize - 1); 5135 em->orig_start = EXTENT_MAP_INLINE; 5136 if (compress_type) { 5137 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5138 em->compress_type = compress_type; 5139 } 5140 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5141 if (create == 0 && !PageUptodate(page)) { 5142 if (btrfs_file_extent_compression(leaf, item) != 5143 BTRFS_COMPRESS_NONE) { 5144 ret = uncompress_inline(path, inode, page, 5145 pg_offset, 5146 extent_offset, item); 5147 BUG_ON(ret); 5148 } else { 5149 map = kmap(page); 5150 read_extent_buffer(leaf, map + pg_offset, ptr, 5151 copy_size); 5152 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5153 memset(map + pg_offset + copy_size, 0, 5154 PAGE_CACHE_SIZE - pg_offset - 5155 copy_size); 5156 } 5157 kunmap(page); 5158 } 5159 flush_dcache_page(page); 5160 } else if (create && PageUptodate(page)) { 5161 WARN_ON(1); 5162 if (!trans) { 5163 kunmap(page); 5164 free_extent_map(em); 5165 em = NULL; 5166 5167 btrfs_release_path(path); 5168 trans = btrfs_join_transaction(root); 5169 5170 if (IS_ERR(trans)) 5171 return ERR_CAST(trans); 5172 goto again; 5173 } 5174 map = kmap(page); 5175 write_extent_buffer(leaf, map + pg_offset, ptr, 5176 copy_size); 5177 kunmap(page); 5178 btrfs_mark_buffer_dirty(leaf); 5179 } 5180 set_extent_uptodate(io_tree, em->start, 5181 extent_map_end(em) - 1, NULL, GFP_NOFS); 5182 goto insert; 5183 } else { 5184 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5185 WARN_ON(1); 5186 } 5187 not_found: 5188 em->start = start; 5189 em->len = len; 5190 not_found_em: 5191 em->block_start = EXTENT_MAP_HOLE; 5192 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5193 insert: 5194 btrfs_release_path(path); 5195 if (em->start > start || extent_map_end(em) <= start) { 5196 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5197 "[%llu %llu]\n", (unsigned long long)em->start, 5198 (unsigned long long)em->len, 5199 (unsigned long long)start, 5200 (unsigned long long)len); 5201 err = -EIO; 5202 goto out; 5203 } 5204 5205 err = 0; 5206 write_lock(&em_tree->lock); 5207 ret = add_extent_mapping(em_tree, em); 5208 /* it is possible that someone inserted the extent into the tree 5209 * while we had the lock dropped. It is also possible that 5210 * an overlapping map exists in the tree 5211 */ 5212 if (ret == -EEXIST) { 5213 struct extent_map *existing; 5214 5215 ret = 0; 5216 5217 existing = lookup_extent_mapping(em_tree, start, len); 5218 if (existing && (existing->start > start || 5219 existing->start + existing->len <= start)) { 5220 free_extent_map(existing); 5221 existing = NULL; 5222 } 5223 if (!existing) { 5224 existing = lookup_extent_mapping(em_tree, em->start, 5225 em->len); 5226 if (existing) { 5227 err = merge_extent_mapping(em_tree, existing, 5228 em, start, 5229 root->sectorsize); 5230 free_extent_map(existing); 5231 if (err) { 5232 free_extent_map(em); 5233 em = NULL; 5234 } 5235 } else { 5236 err = -EIO; 5237 free_extent_map(em); 5238 em = NULL; 5239 } 5240 } else { 5241 free_extent_map(em); 5242 em = existing; 5243 err = 0; 5244 } 5245 } 5246 write_unlock(&em_tree->lock); 5247 out: 5248 5249 trace_btrfs_get_extent(root, em); 5250 5251 if (path) 5252 btrfs_free_path(path); 5253 if (trans) { 5254 ret = btrfs_end_transaction(trans, root); 5255 if (!err) 5256 err = ret; 5257 } 5258 if (err) { 5259 free_extent_map(em); 5260 return ERR_PTR(err); 5261 } 5262 return em; 5263 } 5264 5265 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5266 size_t pg_offset, u64 start, u64 len, 5267 int create) 5268 { 5269 struct extent_map *em; 5270 struct extent_map *hole_em = NULL; 5271 u64 range_start = start; 5272 u64 end; 5273 u64 found; 5274 u64 found_end; 5275 int err = 0; 5276 5277 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5278 if (IS_ERR(em)) 5279 return em; 5280 if (em) { 5281 /* 5282 * if our em maps to a hole, there might 5283 * actually be delalloc bytes behind it 5284 */ 5285 if (em->block_start != EXTENT_MAP_HOLE) 5286 return em; 5287 else 5288 hole_em = em; 5289 } 5290 5291 /* check to see if we've wrapped (len == -1 or similar) */ 5292 end = start + len; 5293 if (end < start) 5294 end = (u64)-1; 5295 else 5296 end -= 1; 5297 5298 em = NULL; 5299 5300 /* ok, we didn't find anything, lets look for delalloc */ 5301 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5302 end, len, EXTENT_DELALLOC, 1); 5303 found_end = range_start + found; 5304 if (found_end < range_start) 5305 found_end = (u64)-1; 5306 5307 /* 5308 * we didn't find anything useful, return 5309 * the original results from get_extent() 5310 */ 5311 if (range_start > end || found_end <= start) { 5312 em = hole_em; 5313 hole_em = NULL; 5314 goto out; 5315 } 5316 5317 /* adjust the range_start to make sure it doesn't 5318 * go backwards from the start they passed in 5319 */ 5320 range_start = max(start,range_start); 5321 found = found_end - range_start; 5322 5323 if (found > 0) { 5324 u64 hole_start = start; 5325 u64 hole_len = len; 5326 5327 em = alloc_extent_map(); 5328 if (!em) { 5329 err = -ENOMEM; 5330 goto out; 5331 } 5332 /* 5333 * when btrfs_get_extent can't find anything it 5334 * returns one huge hole 5335 * 5336 * make sure what it found really fits our range, and 5337 * adjust to make sure it is based on the start from 5338 * the caller 5339 */ 5340 if (hole_em) { 5341 u64 calc_end = extent_map_end(hole_em); 5342 5343 if (calc_end <= start || (hole_em->start > end)) { 5344 free_extent_map(hole_em); 5345 hole_em = NULL; 5346 } else { 5347 hole_start = max(hole_em->start, start); 5348 hole_len = calc_end - hole_start; 5349 } 5350 } 5351 em->bdev = NULL; 5352 if (hole_em && range_start > hole_start) { 5353 /* our hole starts before our delalloc, so we 5354 * have to return just the parts of the hole 5355 * that go until the delalloc starts 5356 */ 5357 em->len = min(hole_len, 5358 range_start - hole_start); 5359 em->start = hole_start; 5360 em->orig_start = hole_start; 5361 /* 5362 * don't adjust block start at all, 5363 * it is fixed at EXTENT_MAP_HOLE 5364 */ 5365 em->block_start = hole_em->block_start; 5366 em->block_len = hole_len; 5367 } else { 5368 em->start = range_start; 5369 em->len = found; 5370 em->orig_start = range_start; 5371 em->block_start = EXTENT_MAP_DELALLOC; 5372 em->block_len = found; 5373 } 5374 } else if (hole_em) { 5375 return hole_em; 5376 } 5377 out: 5378 5379 free_extent_map(hole_em); 5380 if (err) { 5381 free_extent_map(em); 5382 return ERR_PTR(err); 5383 } 5384 return em; 5385 } 5386 5387 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5388 struct extent_map *em, 5389 u64 start, u64 len) 5390 { 5391 struct btrfs_root *root = BTRFS_I(inode)->root; 5392 struct btrfs_trans_handle *trans; 5393 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5394 struct btrfs_key ins; 5395 u64 alloc_hint; 5396 int ret; 5397 bool insert = false; 5398 5399 /* 5400 * Ok if the extent map we looked up is a hole and is for the exact 5401 * range we want, there is no reason to allocate a new one, however if 5402 * it is not right then we need to free this one and drop the cache for 5403 * our range. 5404 */ 5405 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5406 em->len != len) { 5407 free_extent_map(em); 5408 em = NULL; 5409 insert = true; 5410 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5411 } 5412 5413 trans = btrfs_join_transaction(root); 5414 if (IS_ERR(trans)) 5415 return ERR_CAST(trans); 5416 5417 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5418 btrfs_add_inode_defrag(trans, inode); 5419 5420 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5421 5422 alloc_hint = get_extent_allocation_hint(inode, start, len); 5423 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5424 alloc_hint, (u64)-1, &ins, 1); 5425 if (ret) { 5426 em = ERR_PTR(ret); 5427 goto out; 5428 } 5429 5430 if (!em) { 5431 em = alloc_extent_map(); 5432 if (!em) { 5433 em = ERR_PTR(-ENOMEM); 5434 goto out; 5435 } 5436 } 5437 5438 em->start = start; 5439 em->orig_start = em->start; 5440 em->len = ins.offset; 5441 5442 em->block_start = ins.objectid; 5443 em->block_len = ins.offset; 5444 em->bdev = root->fs_info->fs_devices->latest_bdev; 5445 5446 /* 5447 * We need to do this because if we're using the original em we searched 5448 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5449 */ 5450 em->flags = 0; 5451 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5452 5453 while (insert) { 5454 write_lock(&em_tree->lock); 5455 ret = add_extent_mapping(em_tree, em); 5456 write_unlock(&em_tree->lock); 5457 if (ret != -EEXIST) 5458 break; 5459 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5460 } 5461 5462 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5463 ins.offset, ins.offset, 0); 5464 if (ret) { 5465 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5466 em = ERR_PTR(ret); 5467 } 5468 out: 5469 btrfs_end_transaction(trans, root); 5470 return em; 5471 } 5472 5473 /* 5474 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5475 * block must be cow'd 5476 */ 5477 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5478 struct inode *inode, u64 offset, u64 len) 5479 { 5480 struct btrfs_path *path; 5481 int ret; 5482 struct extent_buffer *leaf; 5483 struct btrfs_root *root = BTRFS_I(inode)->root; 5484 struct btrfs_file_extent_item *fi; 5485 struct btrfs_key key; 5486 u64 disk_bytenr; 5487 u64 backref_offset; 5488 u64 extent_end; 5489 u64 num_bytes; 5490 int slot; 5491 int found_type; 5492 5493 path = btrfs_alloc_path(); 5494 if (!path) 5495 return -ENOMEM; 5496 5497 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5498 offset, 0); 5499 if (ret < 0) 5500 goto out; 5501 5502 slot = path->slots[0]; 5503 if (ret == 1) { 5504 if (slot == 0) { 5505 /* can't find the item, must cow */ 5506 ret = 0; 5507 goto out; 5508 } 5509 slot--; 5510 } 5511 ret = 0; 5512 leaf = path->nodes[0]; 5513 btrfs_item_key_to_cpu(leaf, &key, slot); 5514 if (key.objectid != btrfs_ino(inode) || 5515 key.type != BTRFS_EXTENT_DATA_KEY) { 5516 /* not our file or wrong item type, must cow */ 5517 goto out; 5518 } 5519 5520 if (key.offset > offset) { 5521 /* Wrong offset, must cow */ 5522 goto out; 5523 } 5524 5525 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5526 found_type = btrfs_file_extent_type(leaf, fi); 5527 if (found_type != BTRFS_FILE_EXTENT_REG && 5528 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5529 /* not a regular extent, must cow */ 5530 goto out; 5531 } 5532 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5533 backref_offset = btrfs_file_extent_offset(leaf, fi); 5534 5535 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5536 if (extent_end < offset + len) { 5537 /* extent doesn't include our full range, must cow */ 5538 goto out; 5539 } 5540 5541 if (btrfs_extent_readonly(root, disk_bytenr)) 5542 goto out; 5543 5544 /* 5545 * look for other files referencing this extent, if we 5546 * find any we must cow 5547 */ 5548 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5549 key.offset - backref_offset, disk_bytenr)) 5550 goto out; 5551 5552 /* 5553 * adjust disk_bytenr and num_bytes to cover just the bytes 5554 * in this extent we are about to write. If there 5555 * are any csums in that range we have to cow in order 5556 * to keep the csums correct 5557 */ 5558 disk_bytenr += backref_offset; 5559 disk_bytenr += offset - key.offset; 5560 num_bytes = min(offset + len, extent_end) - offset; 5561 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5562 goto out; 5563 /* 5564 * all of the above have passed, it is safe to overwrite this extent 5565 * without cow 5566 */ 5567 ret = 1; 5568 out: 5569 btrfs_free_path(path); 5570 return ret; 5571 } 5572 5573 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5574 struct buffer_head *bh_result, int create) 5575 { 5576 struct extent_map *em; 5577 struct btrfs_root *root = BTRFS_I(inode)->root; 5578 u64 start = iblock << inode->i_blkbits; 5579 u64 len = bh_result->b_size; 5580 struct btrfs_trans_handle *trans; 5581 5582 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5583 if (IS_ERR(em)) 5584 return PTR_ERR(em); 5585 5586 /* 5587 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5588 * io. INLINE is special, and we could probably kludge it in here, but 5589 * it's still buffered so for safety lets just fall back to the generic 5590 * buffered path. 5591 * 5592 * For COMPRESSED we _have_ to read the entire extent in so we can 5593 * decompress it, so there will be buffering required no matter what we 5594 * do, so go ahead and fallback to buffered. 5595 * 5596 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5597 * to buffered IO. Don't blame me, this is the price we pay for using 5598 * the generic code. 5599 */ 5600 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5601 em->block_start == EXTENT_MAP_INLINE) { 5602 free_extent_map(em); 5603 return -ENOTBLK; 5604 } 5605 5606 /* Just a good old fashioned hole, return */ 5607 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5608 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5609 free_extent_map(em); 5610 /* DIO will do one hole at a time, so just unlock a sector */ 5611 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5612 start + root->sectorsize - 1, GFP_NOFS); 5613 return 0; 5614 } 5615 5616 /* 5617 * We don't allocate a new extent in the following cases 5618 * 5619 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5620 * existing extent. 5621 * 2) The extent is marked as PREALLOC. We're good to go here and can 5622 * just use the extent. 5623 * 5624 */ 5625 if (!create) { 5626 len = em->len - (start - em->start); 5627 goto map; 5628 } 5629 5630 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5631 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5632 em->block_start != EXTENT_MAP_HOLE)) { 5633 int type; 5634 int ret; 5635 u64 block_start; 5636 5637 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5638 type = BTRFS_ORDERED_PREALLOC; 5639 else 5640 type = BTRFS_ORDERED_NOCOW; 5641 len = min(len, em->len - (start - em->start)); 5642 block_start = em->block_start + (start - em->start); 5643 5644 /* 5645 * we're not going to log anything, but we do need 5646 * to make sure the current transaction stays open 5647 * while we look for nocow cross refs 5648 */ 5649 trans = btrfs_join_transaction(root); 5650 if (IS_ERR(trans)) 5651 goto must_cow; 5652 5653 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5654 ret = btrfs_add_ordered_extent_dio(inode, start, 5655 block_start, len, len, type); 5656 btrfs_end_transaction(trans, root); 5657 if (ret) { 5658 free_extent_map(em); 5659 return ret; 5660 } 5661 goto unlock; 5662 } 5663 btrfs_end_transaction(trans, root); 5664 } 5665 must_cow: 5666 /* 5667 * this will cow the extent, reset the len in case we changed 5668 * it above 5669 */ 5670 len = bh_result->b_size; 5671 em = btrfs_new_extent_direct(inode, em, start, len); 5672 if (IS_ERR(em)) 5673 return PTR_ERR(em); 5674 len = min(len, em->len - (start - em->start)); 5675 unlock: 5676 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5677 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5678 0, NULL, GFP_NOFS); 5679 map: 5680 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5681 inode->i_blkbits; 5682 bh_result->b_size = len; 5683 bh_result->b_bdev = em->bdev; 5684 set_buffer_mapped(bh_result); 5685 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5686 set_buffer_new(bh_result); 5687 5688 free_extent_map(em); 5689 5690 return 0; 5691 } 5692 5693 struct btrfs_dio_private { 5694 struct inode *inode; 5695 u64 logical_offset; 5696 u64 disk_bytenr; 5697 u64 bytes; 5698 u32 *csums; 5699 void *private; 5700 5701 /* number of bios pending for this dio */ 5702 atomic_t pending_bios; 5703 5704 /* IO errors */ 5705 int errors; 5706 5707 struct bio *orig_bio; 5708 }; 5709 5710 static void btrfs_endio_direct_read(struct bio *bio, int err) 5711 { 5712 struct btrfs_dio_private *dip = bio->bi_private; 5713 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5714 struct bio_vec *bvec = bio->bi_io_vec; 5715 struct inode *inode = dip->inode; 5716 struct btrfs_root *root = BTRFS_I(inode)->root; 5717 u64 start; 5718 u32 *private = dip->csums; 5719 5720 start = dip->logical_offset; 5721 do { 5722 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5723 struct page *page = bvec->bv_page; 5724 char *kaddr; 5725 u32 csum = ~(u32)0; 5726 unsigned long flags; 5727 5728 local_irq_save(flags); 5729 kaddr = kmap_atomic(page, KM_IRQ0); 5730 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5731 csum, bvec->bv_len); 5732 btrfs_csum_final(csum, (char *)&csum); 5733 kunmap_atomic(kaddr, KM_IRQ0); 5734 local_irq_restore(flags); 5735 5736 flush_dcache_page(bvec->bv_page); 5737 if (csum != *private) { 5738 printk(KERN_ERR "btrfs csum failed ino %llu off" 5739 " %llu csum %u private %u\n", 5740 (unsigned long long)btrfs_ino(inode), 5741 (unsigned long long)start, 5742 csum, *private); 5743 err = -EIO; 5744 } 5745 } 5746 5747 start += bvec->bv_len; 5748 private++; 5749 bvec++; 5750 } while (bvec <= bvec_end); 5751 5752 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5753 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5754 bio->bi_private = dip->private; 5755 5756 kfree(dip->csums); 5757 kfree(dip); 5758 5759 /* If we had a csum failure make sure to clear the uptodate flag */ 5760 if (err) 5761 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5762 dio_end_io(bio, err); 5763 } 5764 5765 static void btrfs_endio_direct_write(struct bio *bio, int err) 5766 { 5767 struct btrfs_dio_private *dip = bio->bi_private; 5768 struct inode *inode = dip->inode; 5769 struct btrfs_root *root = BTRFS_I(inode)->root; 5770 struct btrfs_trans_handle *trans; 5771 struct btrfs_ordered_extent *ordered = NULL; 5772 struct extent_state *cached_state = NULL; 5773 u64 ordered_offset = dip->logical_offset; 5774 u64 ordered_bytes = dip->bytes; 5775 int ret; 5776 5777 if (err) 5778 goto out_done; 5779 again: 5780 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5781 &ordered_offset, 5782 ordered_bytes); 5783 if (!ret) 5784 goto out_test; 5785 5786 BUG_ON(!ordered); 5787 5788 trans = btrfs_join_transaction(root); 5789 if (IS_ERR(trans)) { 5790 err = -ENOMEM; 5791 goto out; 5792 } 5793 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5794 5795 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5796 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5797 if (!ret) 5798 ret = btrfs_update_inode(trans, root, inode); 5799 err = ret; 5800 goto out; 5801 } 5802 5803 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5804 ordered->file_offset + ordered->len - 1, 0, 5805 &cached_state, GFP_NOFS); 5806 5807 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5808 ret = btrfs_mark_extent_written(trans, inode, 5809 ordered->file_offset, 5810 ordered->file_offset + 5811 ordered->len); 5812 if (ret) { 5813 err = ret; 5814 goto out_unlock; 5815 } 5816 } else { 5817 ret = insert_reserved_file_extent(trans, inode, 5818 ordered->file_offset, 5819 ordered->start, 5820 ordered->disk_len, 5821 ordered->len, 5822 ordered->len, 5823 0, 0, 0, 5824 BTRFS_FILE_EXTENT_REG); 5825 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5826 ordered->file_offset, ordered->len); 5827 if (ret) { 5828 err = ret; 5829 WARN_ON(1); 5830 goto out_unlock; 5831 } 5832 } 5833 5834 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5835 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5836 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 5837 btrfs_update_inode(trans, root, inode); 5838 ret = 0; 5839 out_unlock: 5840 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5841 ordered->file_offset + ordered->len - 1, 5842 &cached_state, GFP_NOFS); 5843 out: 5844 btrfs_delalloc_release_metadata(inode, ordered->len); 5845 btrfs_end_transaction(trans, root); 5846 ordered_offset = ordered->file_offset + ordered->len; 5847 btrfs_put_ordered_extent(ordered); 5848 btrfs_put_ordered_extent(ordered); 5849 5850 out_test: 5851 /* 5852 * our bio might span multiple ordered extents. If we haven't 5853 * completed the accounting for the whole dio, go back and try again 5854 */ 5855 if (ordered_offset < dip->logical_offset + dip->bytes) { 5856 ordered_bytes = dip->logical_offset + dip->bytes - 5857 ordered_offset; 5858 goto again; 5859 } 5860 out_done: 5861 bio->bi_private = dip->private; 5862 5863 kfree(dip->csums); 5864 kfree(dip); 5865 5866 /* If we had an error make sure to clear the uptodate flag */ 5867 if (err) 5868 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5869 dio_end_io(bio, err); 5870 } 5871 5872 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5873 struct bio *bio, int mirror_num, 5874 unsigned long bio_flags, u64 offset) 5875 { 5876 int ret; 5877 struct btrfs_root *root = BTRFS_I(inode)->root; 5878 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5879 BUG_ON(ret); 5880 return 0; 5881 } 5882 5883 static void btrfs_end_dio_bio(struct bio *bio, int err) 5884 { 5885 struct btrfs_dio_private *dip = bio->bi_private; 5886 5887 if (err) { 5888 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 5889 "sector %#Lx len %u err no %d\n", 5890 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 5891 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5892 dip->errors = 1; 5893 5894 /* 5895 * before atomic variable goto zero, we must make sure 5896 * dip->errors is perceived to be set. 5897 */ 5898 smp_mb__before_atomic_dec(); 5899 } 5900 5901 /* if there are more bios still pending for this dio, just exit */ 5902 if (!atomic_dec_and_test(&dip->pending_bios)) 5903 goto out; 5904 5905 if (dip->errors) 5906 bio_io_error(dip->orig_bio); 5907 else { 5908 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5909 bio_endio(dip->orig_bio, 0); 5910 } 5911 out: 5912 bio_put(bio); 5913 } 5914 5915 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5916 u64 first_sector, gfp_t gfp_flags) 5917 { 5918 int nr_vecs = bio_get_nr_vecs(bdev); 5919 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5920 } 5921 5922 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5923 int rw, u64 file_offset, int skip_sum, 5924 u32 *csums, int async_submit) 5925 { 5926 int write = rw & REQ_WRITE; 5927 struct btrfs_root *root = BTRFS_I(inode)->root; 5928 int ret; 5929 5930 bio_get(bio); 5931 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5932 if (ret) 5933 goto err; 5934 5935 if (skip_sum) 5936 goto map; 5937 5938 if (write && async_submit) { 5939 ret = btrfs_wq_submit_bio(root->fs_info, 5940 inode, rw, bio, 0, 0, 5941 file_offset, 5942 __btrfs_submit_bio_start_direct_io, 5943 __btrfs_submit_bio_done); 5944 goto err; 5945 } else if (write) { 5946 /* 5947 * If we aren't doing async submit, calculate the csum of the 5948 * bio now. 5949 */ 5950 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 5951 if (ret) 5952 goto err; 5953 } else if (!skip_sum) { 5954 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 5955 file_offset, csums); 5956 if (ret) 5957 goto err; 5958 } 5959 5960 map: 5961 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 5962 err: 5963 bio_put(bio); 5964 return ret; 5965 } 5966 5967 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5968 int skip_sum) 5969 { 5970 struct inode *inode = dip->inode; 5971 struct btrfs_root *root = BTRFS_I(inode)->root; 5972 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5973 struct bio *bio; 5974 struct bio *orig_bio = dip->orig_bio; 5975 struct bio_vec *bvec = orig_bio->bi_io_vec; 5976 u64 start_sector = orig_bio->bi_sector; 5977 u64 file_offset = dip->logical_offset; 5978 u64 submit_len = 0; 5979 u64 map_length; 5980 int nr_pages = 0; 5981 u32 *csums = dip->csums; 5982 int ret = 0; 5983 int async_submit = 0; 5984 int write = rw & REQ_WRITE; 5985 5986 map_length = orig_bio->bi_size; 5987 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5988 &map_length, NULL, 0); 5989 if (ret) { 5990 bio_put(orig_bio); 5991 return -EIO; 5992 } 5993 5994 if (map_length >= orig_bio->bi_size) { 5995 bio = orig_bio; 5996 goto submit; 5997 } 5998 5999 async_submit = 1; 6000 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 6001 if (!bio) 6002 return -ENOMEM; 6003 bio->bi_private = dip; 6004 bio->bi_end_io = btrfs_end_dio_bio; 6005 atomic_inc(&dip->pending_bios); 6006 6007 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 6008 if (unlikely(map_length < submit_len + bvec->bv_len || 6009 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 6010 bvec->bv_offset) < bvec->bv_len)) { 6011 /* 6012 * inc the count before we submit the bio so 6013 * we know the end IO handler won't happen before 6014 * we inc the count. Otherwise, the dip might get freed 6015 * before we're done setting it up 6016 */ 6017 atomic_inc(&dip->pending_bios); 6018 ret = __btrfs_submit_dio_bio(bio, inode, rw, 6019 file_offset, skip_sum, 6020 csums, async_submit); 6021 if (ret) { 6022 bio_put(bio); 6023 atomic_dec(&dip->pending_bios); 6024 goto out_err; 6025 } 6026 6027 /* Write's use the ordered csums */ 6028 if (!write && !skip_sum) 6029 csums = csums + nr_pages; 6030 start_sector += submit_len >> 9; 6031 file_offset += submit_len; 6032 6033 submit_len = 0; 6034 nr_pages = 0; 6035 6036 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6037 start_sector, GFP_NOFS); 6038 if (!bio) 6039 goto out_err; 6040 bio->bi_private = dip; 6041 bio->bi_end_io = btrfs_end_dio_bio; 6042 6043 map_length = orig_bio->bi_size; 6044 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6045 &map_length, NULL, 0); 6046 if (ret) { 6047 bio_put(bio); 6048 goto out_err; 6049 } 6050 } else { 6051 submit_len += bvec->bv_len; 6052 nr_pages ++; 6053 bvec++; 6054 } 6055 } 6056 6057 submit: 6058 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6059 csums, async_submit); 6060 if (!ret) 6061 return 0; 6062 6063 bio_put(bio); 6064 out_err: 6065 dip->errors = 1; 6066 /* 6067 * before atomic variable goto zero, we must 6068 * make sure dip->errors is perceived to be set. 6069 */ 6070 smp_mb__before_atomic_dec(); 6071 if (atomic_dec_and_test(&dip->pending_bios)) 6072 bio_io_error(dip->orig_bio); 6073 6074 /* bio_end_io() will handle error, so we needn't return it */ 6075 return 0; 6076 } 6077 6078 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6079 loff_t file_offset) 6080 { 6081 struct btrfs_root *root = BTRFS_I(inode)->root; 6082 struct btrfs_dio_private *dip; 6083 struct bio_vec *bvec = bio->bi_io_vec; 6084 int skip_sum; 6085 int write = rw & REQ_WRITE; 6086 int ret = 0; 6087 6088 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6089 6090 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6091 if (!dip) { 6092 ret = -ENOMEM; 6093 goto free_ordered; 6094 } 6095 dip->csums = NULL; 6096 6097 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 6098 if (!write && !skip_sum) { 6099 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6100 if (!dip->csums) { 6101 kfree(dip); 6102 ret = -ENOMEM; 6103 goto free_ordered; 6104 } 6105 } 6106 6107 dip->private = bio->bi_private; 6108 dip->inode = inode; 6109 dip->logical_offset = file_offset; 6110 6111 dip->bytes = 0; 6112 do { 6113 dip->bytes += bvec->bv_len; 6114 bvec++; 6115 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6116 6117 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6118 bio->bi_private = dip; 6119 dip->errors = 0; 6120 dip->orig_bio = bio; 6121 atomic_set(&dip->pending_bios, 0); 6122 6123 if (write) 6124 bio->bi_end_io = btrfs_endio_direct_write; 6125 else 6126 bio->bi_end_io = btrfs_endio_direct_read; 6127 6128 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6129 if (!ret) 6130 return; 6131 free_ordered: 6132 /* 6133 * If this is a write, we need to clean up the reserved space and kill 6134 * the ordered extent. 6135 */ 6136 if (write) { 6137 struct btrfs_ordered_extent *ordered; 6138 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6139 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6140 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6141 btrfs_free_reserved_extent(root, ordered->start, 6142 ordered->disk_len); 6143 btrfs_put_ordered_extent(ordered); 6144 btrfs_put_ordered_extent(ordered); 6145 } 6146 bio_endio(bio, ret); 6147 } 6148 6149 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6150 const struct iovec *iov, loff_t offset, 6151 unsigned long nr_segs) 6152 { 6153 int seg; 6154 int i; 6155 size_t size; 6156 unsigned long addr; 6157 unsigned blocksize_mask = root->sectorsize - 1; 6158 ssize_t retval = -EINVAL; 6159 loff_t end = offset; 6160 6161 if (offset & blocksize_mask) 6162 goto out; 6163 6164 /* Check the memory alignment. Blocks cannot straddle pages */ 6165 for (seg = 0; seg < nr_segs; seg++) { 6166 addr = (unsigned long)iov[seg].iov_base; 6167 size = iov[seg].iov_len; 6168 end += size; 6169 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6170 goto out; 6171 6172 /* If this is a write we don't need to check anymore */ 6173 if (rw & WRITE) 6174 continue; 6175 6176 /* 6177 * Check to make sure we don't have duplicate iov_base's in this 6178 * iovec, if so return EINVAL, otherwise we'll get csum errors 6179 * when reading back. 6180 */ 6181 for (i = seg + 1; i < nr_segs; i++) { 6182 if (iov[seg].iov_base == iov[i].iov_base) 6183 goto out; 6184 } 6185 } 6186 retval = 0; 6187 out: 6188 return retval; 6189 } 6190 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6191 const struct iovec *iov, loff_t offset, 6192 unsigned long nr_segs) 6193 { 6194 struct file *file = iocb->ki_filp; 6195 struct inode *inode = file->f_mapping->host; 6196 struct btrfs_ordered_extent *ordered; 6197 struct extent_state *cached_state = NULL; 6198 u64 lockstart, lockend; 6199 ssize_t ret; 6200 int writing = rw & WRITE; 6201 int write_bits = 0; 6202 size_t count = iov_length(iov, nr_segs); 6203 6204 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6205 offset, nr_segs)) { 6206 return 0; 6207 } 6208 6209 lockstart = offset; 6210 lockend = offset + count - 1; 6211 6212 if (writing) { 6213 ret = btrfs_delalloc_reserve_space(inode, count); 6214 if (ret) 6215 goto out; 6216 } 6217 6218 while (1) { 6219 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6220 0, &cached_state, GFP_NOFS); 6221 /* 6222 * We're concerned with the entire range that we're going to be 6223 * doing DIO to, so we need to make sure theres no ordered 6224 * extents in this range. 6225 */ 6226 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6227 lockend - lockstart + 1); 6228 if (!ordered) 6229 break; 6230 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6231 &cached_state, GFP_NOFS); 6232 btrfs_start_ordered_extent(inode, ordered, 1); 6233 btrfs_put_ordered_extent(ordered); 6234 cond_resched(); 6235 } 6236 6237 /* 6238 * we don't use btrfs_set_extent_delalloc because we don't want 6239 * the dirty or uptodate bits 6240 */ 6241 if (writing) { 6242 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6243 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6244 EXTENT_DELALLOC, 0, NULL, &cached_state, 6245 GFP_NOFS); 6246 if (ret) { 6247 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6248 lockend, EXTENT_LOCKED | write_bits, 6249 1, 0, &cached_state, GFP_NOFS); 6250 goto out; 6251 } 6252 } 6253 6254 free_extent_state(cached_state); 6255 cached_state = NULL; 6256 6257 ret = __blockdev_direct_IO(rw, iocb, inode, 6258 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6259 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6260 btrfs_submit_direct, 0); 6261 6262 if (ret < 0 && ret != -EIOCBQUEUED) { 6263 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6264 offset + iov_length(iov, nr_segs) - 1, 6265 EXTENT_LOCKED | write_bits, 1, 0, 6266 &cached_state, GFP_NOFS); 6267 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6268 /* 6269 * We're falling back to buffered, unlock the section we didn't 6270 * do IO on. 6271 */ 6272 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6273 offset + iov_length(iov, nr_segs) - 1, 6274 EXTENT_LOCKED | write_bits, 1, 0, 6275 &cached_state, GFP_NOFS); 6276 } 6277 out: 6278 free_extent_state(cached_state); 6279 return ret; 6280 } 6281 6282 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6283 __u64 start, __u64 len) 6284 { 6285 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6286 } 6287 6288 int btrfs_readpage(struct file *file, struct page *page) 6289 { 6290 struct extent_io_tree *tree; 6291 tree = &BTRFS_I(page->mapping->host)->io_tree; 6292 return extent_read_full_page(tree, page, btrfs_get_extent); 6293 } 6294 6295 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6296 { 6297 struct extent_io_tree *tree; 6298 6299 6300 if (current->flags & PF_MEMALLOC) { 6301 redirty_page_for_writepage(wbc, page); 6302 unlock_page(page); 6303 return 0; 6304 } 6305 tree = &BTRFS_I(page->mapping->host)->io_tree; 6306 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6307 } 6308 6309 int btrfs_writepages(struct address_space *mapping, 6310 struct writeback_control *wbc) 6311 { 6312 struct extent_io_tree *tree; 6313 6314 tree = &BTRFS_I(mapping->host)->io_tree; 6315 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6316 } 6317 6318 static int 6319 btrfs_readpages(struct file *file, struct address_space *mapping, 6320 struct list_head *pages, unsigned nr_pages) 6321 { 6322 struct extent_io_tree *tree; 6323 tree = &BTRFS_I(mapping->host)->io_tree; 6324 return extent_readpages(tree, mapping, pages, nr_pages, 6325 btrfs_get_extent); 6326 } 6327 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6328 { 6329 struct extent_io_tree *tree; 6330 struct extent_map_tree *map; 6331 int ret; 6332 6333 tree = &BTRFS_I(page->mapping->host)->io_tree; 6334 map = &BTRFS_I(page->mapping->host)->extent_tree; 6335 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6336 if (ret == 1) { 6337 ClearPagePrivate(page); 6338 set_page_private(page, 0); 6339 page_cache_release(page); 6340 } 6341 return ret; 6342 } 6343 6344 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6345 { 6346 if (PageWriteback(page) || PageDirty(page)) 6347 return 0; 6348 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6349 } 6350 6351 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6352 { 6353 struct extent_io_tree *tree; 6354 struct btrfs_ordered_extent *ordered; 6355 struct extent_state *cached_state = NULL; 6356 u64 page_start = page_offset(page); 6357 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6358 6359 6360 /* 6361 * we have the page locked, so new writeback can't start, 6362 * and the dirty bit won't be cleared while we are here. 6363 * 6364 * Wait for IO on this page so that we can safely clear 6365 * the PagePrivate2 bit and do ordered accounting 6366 */ 6367 wait_on_page_writeback(page); 6368 6369 tree = &BTRFS_I(page->mapping->host)->io_tree; 6370 if (offset) { 6371 btrfs_releasepage(page, GFP_NOFS); 6372 return; 6373 } 6374 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6375 GFP_NOFS); 6376 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6377 page_offset(page)); 6378 if (ordered) { 6379 /* 6380 * IO on this page will never be started, so we need 6381 * to account for any ordered extents now 6382 */ 6383 clear_extent_bit(tree, page_start, page_end, 6384 EXTENT_DIRTY | EXTENT_DELALLOC | 6385 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6386 &cached_state, GFP_NOFS); 6387 /* 6388 * whoever cleared the private bit is responsible 6389 * for the finish_ordered_io 6390 */ 6391 if (TestClearPagePrivate2(page)) { 6392 btrfs_finish_ordered_io(page->mapping->host, 6393 page_start, page_end); 6394 } 6395 btrfs_put_ordered_extent(ordered); 6396 cached_state = NULL; 6397 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6398 GFP_NOFS); 6399 } 6400 clear_extent_bit(tree, page_start, page_end, 6401 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6402 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6403 __btrfs_releasepage(page, GFP_NOFS); 6404 6405 ClearPageChecked(page); 6406 if (PagePrivate(page)) { 6407 ClearPagePrivate(page); 6408 set_page_private(page, 0); 6409 page_cache_release(page); 6410 } 6411 } 6412 6413 /* 6414 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6415 * called from a page fault handler when a page is first dirtied. Hence we must 6416 * be careful to check for EOF conditions here. We set the page up correctly 6417 * for a written page which means we get ENOSPC checking when writing into 6418 * holes and correct delalloc and unwritten extent mapping on filesystems that 6419 * support these features. 6420 * 6421 * We are not allowed to take the i_mutex here so we have to play games to 6422 * protect against truncate races as the page could now be beyond EOF. Because 6423 * vmtruncate() writes the inode size before removing pages, once we have the 6424 * page lock we can determine safely if the page is beyond EOF. If it is not 6425 * beyond EOF, then the page is guaranteed safe against truncation until we 6426 * unlock the page. 6427 */ 6428 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6429 { 6430 struct page *page = vmf->page; 6431 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6432 struct btrfs_root *root = BTRFS_I(inode)->root; 6433 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6434 struct btrfs_ordered_extent *ordered; 6435 struct extent_state *cached_state = NULL; 6436 char *kaddr; 6437 unsigned long zero_start; 6438 loff_t size; 6439 int ret; 6440 u64 page_start; 6441 u64 page_end; 6442 6443 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6444 if (ret) { 6445 if (ret == -ENOMEM) 6446 ret = VM_FAULT_OOM; 6447 else /* -ENOSPC, -EIO, etc */ 6448 ret = VM_FAULT_SIGBUS; 6449 goto out; 6450 } 6451 6452 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6453 again: 6454 lock_page(page); 6455 size = i_size_read(inode); 6456 page_start = page_offset(page); 6457 page_end = page_start + PAGE_CACHE_SIZE - 1; 6458 6459 if ((page->mapping != inode->i_mapping) || 6460 (page_start >= size)) { 6461 /* page got truncated out from underneath us */ 6462 goto out_unlock; 6463 } 6464 wait_on_page_writeback(page); 6465 6466 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6467 GFP_NOFS); 6468 set_page_extent_mapped(page); 6469 6470 /* 6471 * we can't set the delalloc bits if there are pending ordered 6472 * extents. Drop our locks and wait for them to finish 6473 */ 6474 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6475 if (ordered) { 6476 unlock_extent_cached(io_tree, page_start, page_end, 6477 &cached_state, GFP_NOFS); 6478 unlock_page(page); 6479 btrfs_start_ordered_extent(inode, ordered, 1); 6480 btrfs_put_ordered_extent(ordered); 6481 goto again; 6482 } 6483 6484 /* 6485 * XXX - page_mkwrite gets called every time the page is dirtied, even 6486 * if it was already dirty, so for space accounting reasons we need to 6487 * clear any delalloc bits for the range we are fixing to save. There 6488 * is probably a better way to do this, but for now keep consistent with 6489 * prepare_pages in the normal write path. 6490 */ 6491 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6492 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6493 0, 0, &cached_state, GFP_NOFS); 6494 6495 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6496 &cached_state); 6497 if (ret) { 6498 unlock_extent_cached(io_tree, page_start, page_end, 6499 &cached_state, GFP_NOFS); 6500 ret = VM_FAULT_SIGBUS; 6501 goto out_unlock; 6502 } 6503 ret = 0; 6504 6505 /* page is wholly or partially inside EOF */ 6506 if (page_start + PAGE_CACHE_SIZE > size) 6507 zero_start = size & ~PAGE_CACHE_MASK; 6508 else 6509 zero_start = PAGE_CACHE_SIZE; 6510 6511 if (zero_start != PAGE_CACHE_SIZE) { 6512 kaddr = kmap(page); 6513 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6514 flush_dcache_page(page); 6515 kunmap(page); 6516 } 6517 ClearPageChecked(page); 6518 set_page_dirty(page); 6519 SetPageUptodate(page); 6520 6521 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6522 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6523 6524 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6525 6526 out_unlock: 6527 if (!ret) 6528 return VM_FAULT_LOCKED; 6529 unlock_page(page); 6530 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6531 out: 6532 return ret; 6533 } 6534 6535 static int btrfs_truncate(struct inode *inode) 6536 { 6537 struct btrfs_root *root = BTRFS_I(inode)->root; 6538 struct btrfs_block_rsv *rsv; 6539 int ret; 6540 int err = 0; 6541 struct btrfs_trans_handle *trans; 6542 unsigned long nr; 6543 u64 mask = root->sectorsize - 1; 6544 6545 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6546 if (ret) 6547 return ret; 6548 6549 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6550 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6551 6552 /* 6553 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6554 * 3 things going on here 6555 * 6556 * 1) We need to reserve space for our orphan item and the space to 6557 * delete our orphan item. Lord knows we don't want to have a dangling 6558 * orphan item because we didn't reserve space to remove it. 6559 * 6560 * 2) We need to reserve space to update our inode. 6561 * 6562 * 3) We need to have something to cache all the space that is going to 6563 * be free'd up by the truncate operation, but also have some slack 6564 * space reserved in case it uses space during the truncate (thank you 6565 * very much snapshotting). 6566 * 6567 * And we need these to all be seperate. The fact is we can use alot of 6568 * space doing the truncate, and we have no earthly idea how much space 6569 * we will use, so we need the truncate reservation to be seperate so it 6570 * doesn't end up using space reserved for updating the inode or 6571 * removing the orphan item. We also need to be able to stop the 6572 * transaction and start a new one, which means we need to be able to 6573 * update the inode several times, and we have no idea of knowing how 6574 * many times that will be, so we can't just reserve 1 item for the 6575 * entirety of the opration, so that has to be done seperately as well. 6576 * Then there is the orphan item, which does indeed need to be held on 6577 * to for the whole operation, and we need nobody to touch this reserved 6578 * space except the orphan code. 6579 * 6580 * So that leaves us with 6581 * 6582 * 1) root->orphan_block_rsv - for the orphan deletion. 6583 * 2) rsv - for the truncate reservation, which we will steal from the 6584 * transaction reservation. 6585 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6586 * updating the inode. 6587 */ 6588 rsv = btrfs_alloc_block_rsv(root); 6589 if (!rsv) 6590 return -ENOMEM; 6591 btrfs_add_durable_block_rsv(root->fs_info, rsv); 6592 6593 trans = btrfs_start_transaction(root, 4); 6594 if (IS_ERR(trans)) { 6595 err = PTR_ERR(trans); 6596 goto out; 6597 } 6598 6599 /* 6600 * Reserve space for the truncate process. Truncate should be adding 6601 * space, but if there are snapshots it may end up using space. 6602 */ 6603 ret = btrfs_truncate_reserve_metadata(trans, root, rsv); 6604 BUG_ON(ret); 6605 6606 ret = btrfs_orphan_add(trans, inode); 6607 if (ret) { 6608 btrfs_end_transaction(trans, root); 6609 goto out; 6610 } 6611 6612 nr = trans->blocks_used; 6613 btrfs_end_transaction(trans, root); 6614 btrfs_btree_balance_dirty(root, nr); 6615 6616 /* 6617 * Ok so we've already migrated our bytes over for the truncate, so here 6618 * just reserve the one slot we need for updating the inode. 6619 */ 6620 trans = btrfs_start_transaction(root, 1); 6621 if (IS_ERR(trans)) { 6622 err = PTR_ERR(trans); 6623 goto out; 6624 } 6625 trans->block_rsv = rsv; 6626 6627 /* 6628 * setattr is responsible for setting the ordered_data_close flag, 6629 * but that is only tested during the last file release. That 6630 * could happen well after the next commit, leaving a great big 6631 * window where new writes may get lost if someone chooses to write 6632 * to this file after truncating to zero 6633 * 6634 * The inode doesn't have any dirty data here, and so if we commit 6635 * this is a noop. If someone immediately starts writing to the inode 6636 * it is very likely we'll catch some of their writes in this 6637 * transaction, and the commit will find this file on the ordered 6638 * data list with good things to send down. 6639 * 6640 * This is a best effort solution, there is still a window where 6641 * using truncate to replace the contents of the file will 6642 * end up with a zero length file after a crash. 6643 */ 6644 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6645 btrfs_add_ordered_operation(trans, root, inode); 6646 6647 while (1) { 6648 if (!trans) { 6649 trans = btrfs_start_transaction(root, 3); 6650 if (IS_ERR(trans)) { 6651 err = PTR_ERR(trans); 6652 goto out; 6653 } 6654 6655 ret = btrfs_truncate_reserve_metadata(trans, root, 6656 rsv); 6657 BUG_ON(ret); 6658 6659 trans->block_rsv = rsv; 6660 } 6661 6662 ret = btrfs_truncate_inode_items(trans, root, inode, 6663 inode->i_size, 6664 BTRFS_EXTENT_DATA_KEY); 6665 if (ret != -EAGAIN) { 6666 err = ret; 6667 break; 6668 } 6669 6670 trans->block_rsv = &root->fs_info->trans_block_rsv; 6671 ret = btrfs_update_inode(trans, root, inode); 6672 if (ret) { 6673 err = ret; 6674 break; 6675 } 6676 6677 nr = trans->blocks_used; 6678 btrfs_end_transaction(trans, root); 6679 trans = NULL; 6680 btrfs_btree_balance_dirty(root, nr); 6681 } 6682 6683 if (ret == 0 && inode->i_nlink > 0) { 6684 trans->block_rsv = root->orphan_block_rsv; 6685 ret = btrfs_orphan_del(trans, inode); 6686 if (ret) 6687 err = ret; 6688 } else if (ret && inode->i_nlink > 0) { 6689 /* 6690 * Failed to do the truncate, remove us from the in memory 6691 * orphan list. 6692 */ 6693 ret = btrfs_orphan_del(NULL, inode); 6694 } 6695 6696 trans->block_rsv = &root->fs_info->trans_block_rsv; 6697 ret = btrfs_update_inode(trans, root, inode); 6698 if (ret && !err) 6699 err = ret; 6700 6701 nr = trans->blocks_used; 6702 ret = btrfs_end_transaction_throttle(trans, root); 6703 btrfs_btree_balance_dirty(root, nr); 6704 6705 out: 6706 btrfs_free_block_rsv(root, rsv); 6707 6708 if (ret && !err) 6709 err = ret; 6710 6711 return err; 6712 } 6713 6714 /* 6715 * create a new subvolume directory/inode (helper for the ioctl). 6716 */ 6717 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6718 struct btrfs_root *new_root, u64 new_dirid) 6719 { 6720 struct inode *inode; 6721 int err; 6722 u64 index = 0; 6723 6724 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6725 new_dirid, S_IFDIR | 0700, &index); 6726 if (IS_ERR(inode)) 6727 return PTR_ERR(inode); 6728 inode->i_op = &btrfs_dir_inode_operations; 6729 inode->i_fop = &btrfs_dir_file_operations; 6730 6731 inode->i_nlink = 1; 6732 btrfs_i_size_write(inode, 0); 6733 6734 err = btrfs_update_inode(trans, new_root, inode); 6735 BUG_ON(err); 6736 6737 iput(inode); 6738 return 0; 6739 } 6740 6741 struct inode *btrfs_alloc_inode(struct super_block *sb) 6742 { 6743 struct btrfs_inode *ei; 6744 struct inode *inode; 6745 6746 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6747 if (!ei) 6748 return NULL; 6749 6750 ei->root = NULL; 6751 ei->space_info = NULL; 6752 ei->generation = 0; 6753 ei->sequence = 0; 6754 ei->last_trans = 0; 6755 ei->last_sub_trans = 0; 6756 ei->logged_trans = 0; 6757 ei->delalloc_bytes = 0; 6758 ei->reserved_bytes = 0; 6759 ei->disk_i_size = 0; 6760 ei->flags = 0; 6761 ei->index_cnt = (u64)-1; 6762 ei->last_unlink_trans = 0; 6763 6764 spin_lock_init(&ei->lock); 6765 ei->outstanding_extents = 0; 6766 ei->reserved_extents = 0; 6767 6768 ei->ordered_data_close = 0; 6769 ei->orphan_meta_reserved = 0; 6770 ei->dummy_inode = 0; 6771 ei->in_defrag = 0; 6772 ei->force_compress = BTRFS_COMPRESS_NONE; 6773 6774 ei->delayed_node = NULL; 6775 6776 inode = &ei->vfs_inode; 6777 extent_map_tree_init(&ei->extent_tree); 6778 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6779 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6780 mutex_init(&ei->log_mutex); 6781 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6782 INIT_LIST_HEAD(&ei->i_orphan); 6783 INIT_LIST_HEAD(&ei->delalloc_inodes); 6784 INIT_LIST_HEAD(&ei->ordered_operations); 6785 RB_CLEAR_NODE(&ei->rb_node); 6786 6787 return inode; 6788 } 6789 6790 static void btrfs_i_callback(struct rcu_head *head) 6791 { 6792 struct inode *inode = container_of(head, struct inode, i_rcu); 6793 INIT_LIST_HEAD(&inode->i_dentry); 6794 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6795 } 6796 6797 void btrfs_destroy_inode(struct inode *inode) 6798 { 6799 struct btrfs_ordered_extent *ordered; 6800 struct btrfs_root *root = BTRFS_I(inode)->root; 6801 6802 WARN_ON(!list_empty(&inode->i_dentry)); 6803 WARN_ON(inode->i_data.nrpages); 6804 WARN_ON(BTRFS_I(inode)->outstanding_extents); 6805 WARN_ON(BTRFS_I(inode)->reserved_extents); 6806 6807 /* 6808 * This can happen where we create an inode, but somebody else also 6809 * created the same inode and we need to destroy the one we already 6810 * created. 6811 */ 6812 if (!root) 6813 goto free; 6814 6815 /* 6816 * Make sure we're properly removed from the ordered operation 6817 * lists. 6818 */ 6819 smp_mb(); 6820 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6821 spin_lock(&root->fs_info->ordered_extent_lock); 6822 list_del_init(&BTRFS_I(inode)->ordered_operations); 6823 spin_unlock(&root->fs_info->ordered_extent_lock); 6824 } 6825 6826 spin_lock(&root->orphan_lock); 6827 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6828 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 6829 (unsigned long long)btrfs_ino(inode)); 6830 list_del_init(&BTRFS_I(inode)->i_orphan); 6831 } 6832 spin_unlock(&root->orphan_lock); 6833 6834 while (1) { 6835 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6836 if (!ordered) 6837 break; 6838 else { 6839 printk(KERN_ERR "btrfs found ordered " 6840 "extent %llu %llu on inode cleanup\n", 6841 (unsigned long long)ordered->file_offset, 6842 (unsigned long long)ordered->len); 6843 btrfs_remove_ordered_extent(inode, ordered); 6844 btrfs_put_ordered_extent(ordered); 6845 btrfs_put_ordered_extent(ordered); 6846 } 6847 } 6848 inode_tree_del(inode); 6849 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6850 free: 6851 btrfs_remove_delayed_node(inode); 6852 call_rcu(&inode->i_rcu, btrfs_i_callback); 6853 } 6854 6855 int btrfs_drop_inode(struct inode *inode) 6856 { 6857 struct btrfs_root *root = BTRFS_I(inode)->root; 6858 6859 if (btrfs_root_refs(&root->root_item) == 0 && 6860 !btrfs_is_free_space_inode(root, inode)) 6861 return 1; 6862 else 6863 return generic_drop_inode(inode); 6864 } 6865 6866 static void init_once(void *foo) 6867 { 6868 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6869 6870 inode_init_once(&ei->vfs_inode); 6871 } 6872 6873 void btrfs_destroy_cachep(void) 6874 { 6875 if (btrfs_inode_cachep) 6876 kmem_cache_destroy(btrfs_inode_cachep); 6877 if (btrfs_trans_handle_cachep) 6878 kmem_cache_destroy(btrfs_trans_handle_cachep); 6879 if (btrfs_transaction_cachep) 6880 kmem_cache_destroy(btrfs_transaction_cachep); 6881 if (btrfs_path_cachep) 6882 kmem_cache_destroy(btrfs_path_cachep); 6883 if (btrfs_free_space_cachep) 6884 kmem_cache_destroy(btrfs_free_space_cachep); 6885 } 6886 6887 int btrfs_init_cachep(void) 6888 { 6889 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6890 sizeof(struct btrfs_inode), 0, 6891 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6892 if (!btrfs_inode_cachep) 6893 goto fail; 6894 6895 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6896 sizeof(struct btrfs_trans_handle), 0, 6897 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6898 if (!btrfs_trans_handle_cachep) 6899 goto fail; 6900 6901 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6902 sizeof(struct btrfs_transaction), 0, 6903 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6904 if (!btrfs_transaction_cachep) 6905 goto fail; 6906 6907 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6908 sizeof(struct btrfs_path), 0, 6909 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6910 if (!btrfs_path_cachep) 6911 goto fail; 6912 6913 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 6914 sizeof(struct btrfs_free_space), 0, 6915 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6916 if (!btrfs_free_space_cachep) 6917 goto fail; 6918 6919 return 0; 6920 fail: 6921 btrfs_destroy_cachep(); 6922 return -ENOMEM; 6923 } 6924 6925 static int btrfs_getattr(struct vfsmount *mnt, 6926 struct dentry *dentry, struct kstat *stat) 6927 { 6928 struct inode *inode = dentry->d_inode; 6929 generic_fillattr(inode, stat); 6930 stat->dev = BTRFS_I(inode)->root->anon_dev; 6931 stat->blksize = PAGE_CACHE_SIZE; 6932 stat->blocks = (inode_get_bytes(inode) + 6933 BTRFS_I(inode)->delalloc_bytes) >> 9; 6934 return 0; 6935 } 6936 6937 /* 6938 * If a file is moved, it will inherit the cow and compression flags of the new 6939 * directory. 6940 */ 6941 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 6942 { 6943 struct btrfs_inode *b_dir = BTRFS_I(dir); 6944 struct btrfs_inode *b_inode = BTRFS_I(inode); 6945 6946 if (b_dir->flags & BTRFS_INODE_NODATACOW) 6947 b_inode->flags |= BTRFS_INODE_NODATACOW; 6948 else 6949 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 6950 6951 if (b_dir->flags & BTRFS_INODE_COMPRESS) 6952 b_inode->flags |= BTRFS_INODE_COMPRESS; 6953 else 6954 b_inode->flags &= ~BTRFS_INODE_COMPRESS; 6955 } 6956 6957 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6958 struct inode *new_dir, struct dentry *new_dentry) 6959 { 6960 struct btrfs_trans_handle *trans; 6961 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6962 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6963 struct inode *new_inode = new_dentry->d_inode; 6964 struct inode *old_inode = old_dentry->d_inode; 6965 struct timespec ctime = CURRENT_TIME; 6966 u64 index = 0; 6967 u64 root_objectid; 6968 int ret; 6969 u64 old_ino = btrfs_ino(old_inode); 6970 6971 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6972 return -EPERM; 6973 6974 /* we only allow rename subvolume link between subvolumes */ 6975 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6976 return -EXDEV; 6977 6978 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6979 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 6980 return -ENOTEMPTY; 6981 6982 if (S_ISDIR(old_inode->i_mode) && new_inode && 6983 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6984 return -ENOTEMPTY; 6985 /* 6986 * we're using rename to replace one file with another. 6987 * and the replacement file is large. Start IO on it now so 6988 * we don't add too much work to the end of the transaction 6989 */ 6990 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6991 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6992 filemap_flush(old_inode->i_mapping); 6993 6994 /* close the racy window with snapshot create/destroy ioctl */ 6995 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6996 down_read(&root->fs_info->subvol_sem); 6997 /* 6998 * We want to reserve the absolute worst case amount of items. So if 6999 * both inodes are subvols and we need to unlink them then that would 7000 * require 4 item modifications, but if they are both normal inodes it 7001 * would require 5 item modifications, so we'll assume their normal 7002 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 7003 * should cover the worst case number of items we'll modify. 7004 */ 7005 trans = btrfs_start_transaction(root, 20); 7006 if (IS_ERR(trans)) { 7007 ret = PTR_ERR(trans); 7008 goto out_notrans; 7009 } 7010 7011 if (dest != root) 7012 btrfs_record_root_in_trans(trans, dest); 7013 7014 ret = btrfs_set_inode_index(new_dir, &index); 7015 if (ret) 7016 goto out_fail; 7017 7018 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7019 /* force full log commit if subvolume involved. */ 7020 root->fs_info->last_trans_log_full_commit = trans->transid; 7021 } else { 7022 ret = btrfs_insert_inode_ref(trans, dest, 7023 new_dentry->d_name.name, 7024 new_dentry->d_name.len, 7025 old_ino, 7026 btrfs_ino(new_dir), index); 7027 if (ret) 7028 goto out_fail; 7029 /* 7030 * this is an ugly little race, but the rename is required 7031 * to make sure that if we crash, the inode is either at the 7032 * old name or the new one. pinning the log transaction lets 7033 * us make sure we don't allow a log commit to come in after 7034 * we unlink the name but before we add the new name back in. 7035 */ 7036 btrfs_pin_log_trans(root); 7037 } 7038 /* 7039 * make sure the inode gets flushed if it is replacing 7040 * something. 7041 */ 7042 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7043 btrfs_add_ordered_operation(trans, root, old_inode); 7044 7045 old_dir->i_ctime = old_dir->i_mtime = ctime; 7046 new_dir->i_ctime = new_dir->i_mtime = ctime; 7047 old_inode->i_ctime = ctime; 7048 7049 if (old_dentry->d_parent != new_dentry->d_parent) 7050 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7051 7052 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7053 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7054 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7055 old_dentry->d_name.name, 7056 old_dentry->d_name.len); 7057 } else { 7058 ret = __btrfs_unlink_inode(trans, root, old_dir, 7059 old_dentry->d_inode, 7060 old_dentry->d_name.name, 7061 old_dentry->d_name.len); 7062 if (!ret) 7063 ret = btrfs_update_inode(trans, root, old_inode); 7064 } 7065 BUG_ON(ret); 7066 7067 if (new_inode) { 7068 new_inode->i_ctime = CURRENT_TIME; 7069 if (unlikely(btrfs_ino(new_inode) == 7070 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7071 root_objectid = BTRFS_I(new_inode)->location.objectid; 7072 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7073 root_objectid, 7074 new_dentry->d_name.name, 7075 new_dentry->d_name.len); 7076 BUG_ON(new_inode->i_nlink == 0); 7077 } else { 7078 ret = btrfs_unlink_inode(trans, dest, new_dir, 7079 new_dentry->d_inode, 7080 new_dentry->d_name.name, 7081 new_dentry->d_name.len); 7082 } 7083 BUG_ON(ret); 7084 if (new_inode->i_nlink == 0) { 7085 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7086 BUG_ON(ret); 7087 } 7088 } 7089 7090 fixup_inode_flags(new_dir, old_inode); 7091 7092 ret = btrfs_add_link(trans, new_dir, old_inode, 7093 new_dentry->d_name.name, 7094 new_dentry->d_name.len, 0, index); 7095 BUG_ON(ret); 7096 7097 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7098 struct dentry *parent = new_dentry->d_parent; 7099 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7100 btrfs_end_log_trans(root); 7101 } 7102 out_fail: 7103 btrfs_end_transaction_throttle(trans, root); 7104 out_notrans: 7105 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7106 up_read(&root->fs_info->subvol_sem); 7107 7108 return ret; 7109 } 7110 7111 /* 7112 * some fairly slow code that needs optimization. This walks the list 7113 * of all the inodes with pending delalloc and forces them to disk. 7114 */ 7115 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7116 { 7117 struct list_head *head = &root->fs_info->delalloc_inodes; 7118 struct btrfs_inode *binode; 7119 struct inode *inode; 7120 7121 if (root->fs_info->sb->s_flags & MS_RDONLY) 7122 return -EROFS; 7123 7124 spin_lock(&root->fs_info->delalloc_lock); 7125 while (!list_empty(head)) { 7126 binode = list_entry(head->next, struct btrfs_inode, 7127 delalloc_inodes); 7128 inode = igrab(&binode->vfs_inode); 7129 if (!inode) 7130 list_del_init(&binode->delalloc_inodes); 7131 spin_unlock(&root->fs_info->delalloc_lock); 7132 if (inode) { 7133 filemap_flush(inode->i_mapping); 7134 if (delay_iput) 7135 btrfs_add_delayed_iput(inode); 7136 else 7137 iput(inode); 7138 } 7139 cond_resched(); 7140 spin_lock(&root->fs_info->delalloc_lock); 7141 } 7142 spin_unlock(&root->fs_info->delalloc_lock); 7143 7144 /* the filemap_flush will queue IO into the worker threads, but 7145 * we have to make sure the IO is actually started and that 7146 * ordered extents get created before we return 7147 */ 7148 atomic_inc(&root->fs_info->async_submit_draining); 7149 while (atomic_read(&root->fs_info->nr_async_submits) || 7150 atomic_read(&root->fs_info->async_delalloc_pages)) { 7151 wait_event(root->fs_info->async_submit_wait, 7152 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7153 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7154 } 7155 atomic_dec(&root->fs_info->async_submit_draining); 7156 return 0; 7157 } 7158 7159 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7160 const char *symname) 7161 { 7162 struct btrfs_trans_handle *trans; 7163 struct btrfs_root *root = BTRFS_I(dir)->root; 7164 struct btrfs_path *path; 7165 struct btrfs_key key; 7166 struct inode *inode = NULL; 7167 int err; 7168 int drop_inode = 0; 7169 u64 objectid; 7170 u64 index = 0 ; 7171 int name_len; 7172 int datasize; 7173 unsigned long ptr; 7174 struct btrfs_file_extent_item *ei; 7175 struct extent_buffer *leaf; 7176 unsigned long nr = 0; 7177 7178 name_len = strlen(symname) + 1; 7179 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7180 return -ENAMETOOLONG; 7181 7182 /* 7183 * 2 items for inode item and ref 7184 * 2 items for dir items 7185 * 1 item for xattr if selinux is on 7186 */ 7187 trans = btrfs_start_transaction(root, 5); 7188 if (IS_ERR(trans)) 7189 return PTR_ERR(trans); 7190 7191 err = btrfs_find_free_ino(root, &objectid); 7192 if (err) 7193 goto out_unlock; 7194 7195 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7196 dentry->d_name.len, btrfs_ino(dir), objectid, 7197 S_IFLNK|S_IRWXUGO, &index); 7198 if (IS_ERR(inode)) { 7199 err = PTR_ERR(inode); 7200 goto out_unlock; 7201 } 7202 7203 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7204 if (err) { 7205 drop_inode = 1; 7206 goto out_unlock; 7207 } 7208 7209 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7210 if (err) 7211 drop_inode = 1; 7212 else { 7213 inode->i_mapping->a_ops = &btrfs_aops; 7214 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7215 inode->i_fop = &btrfs_file_operations; 7216 inode->i_op = &btrfs_file_inode_operations; 7217 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7218 } 7219 if (drop_inode) 7220 goto out_unlock; 7221 7222 path = btrfs_alloc_path(); 7223 if (!path) { 7224 err = -ENOMEM; 7225 drop_inode = 1; 7226 goto out_unlock; 7227 } 7228 key.objectid = btrfs_ino(inode); 7229 key.offset = 0; 7230 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7231 datasize = btrfs_file_extent_calc_inline_size(name_len); 7232 err = btrfs_insert_empty_item(trans, root, path, &key, 7233 datasize); 7234 if (err) { 7235 drop_inode = 1; 7236 btrfs_free_path(path); 7237 goto out_unlock; 7238 } 7239 leaf = path->nodes[0]; 7240 ei = btrfs_item_ptr(leaf, path->slots[0], 7241 struct btrfs_file_extent_item); 7242 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7243 btrfs_set_file_extent_type(leaf, ei, 7244 BTRFS_FILE_EXTENT_INLINE); 7245 btrfs_set_file_extent_encryption(leaf, ei, 0); 7246 btrfs_set_file_extent_compression(leaf, ei, 0); 7247 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7248 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7249 7250 ptr = btrfs_file_extent_inline_start(ei); 7251 write_extent_buffer(leaf, symname, ptr, name_len); 7252 btrfs_mark_buffer_dirty(leaf); 7253 btrfs_free_path(path); 7254 7255 inode->i_op = &btrfs_symlink_inode_operations; 7256 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7257 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7258 inode_set_bytes(inode, name_len); 7259 btrfs_i_size_write(inode, name_len - 1); 7260 err = btrfs_update_inode(trans, root, inode); 7261 if (err) 7262 drop_inode = 1; 7263 7264 out_unlock: 7265 nr = trans->blocks_used; 7266 btrfs_end_transaction_throttle(trans, root); 7267 if (drop_inode) { 7268 inode_dec_link_count(inode); 7269 iput(inode); 7270 } 7271 btrfs_btree_balance_dirty(root, nr); 7272 return err; 7273 } 7274 7275 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7276 u64 start, u64 num_bytes, u64 min_size, 7277 loff_t actual_len, u64 *alloc_hint, 7278 struct btrfs_trans_handle *trans) 7279 { 7280 struct btrfs_root *root = BTRFS_I(inode)->root; 7281 struct btrfs_key ins; 7282 u64 cur_offset = start; 7283 u64 i_size; 7284 int ret = 0; 7285 bool own_trans = true; 7286 7287 if (trans) 7288 own_trans = false; 7289 while (num_bytes > 0) { 7290 if (own_trans) { 7291 trans = btrfs_start_transaction(root, 3); 7292 if (IS_ERR(trans)) { 7293 ret = PTR_ERR(trans); 7294 break; 7295 } 7296 } 7297 7298 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7299 0, *alloc_hint, (u64)-1, &ins, 1); 7300 if (ret) { 7301 if (own_trans) 7302 btrfs_end_transaction(trans, root); 7303 break; 7304 } 7305 7306 ret = insert_reserved_file_extent(trans, inode, 7307 cur_offset, ins.objectid, 7308 ins.offset, ins.offset, 7309 ins.offset, 0, 0, 0, 7310 BTRFS_FILE_EXTENT_PREALLOC); 7311 BUG_ON(ret); 7312 btrfs_drop_extent_cache(inode, cur_offset, 7313 cur_offset + ins.offset -1, 0); 7314 7315 num_bytes -= ins.offset; 7316 cur_offset += ins.offset; 7317 *alloc_hint = ins.objectid + ins.offset; 7318 7319 inode->i_ctime = CURRENT_TIME; 7320 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7321 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7322 (actual_len > inode->i_size) && 7323 (cur_offset > inode->i_size)) { 7324 if (cur_offset > actual_len) 7325 i_size = actual_len; 7326 else 7327 i_size = cur_offset; 7328 i_size_write(inode, i_size); 7329 btrfs_ordered_update_i_size(inode, i_size, NULL); 7330 } 7331 7332 ret = btrfs_update_inode(trans, root, inode); 7333 BUG_ON(ret); 7334 7335 if (own_trans) 7336 btrfs_end_transaction(trans, root); 7337 } 7338 return ret; 7339 } 7340 7341 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7342 u64 start, u64 num_bytes, u64 min_size, 7343 loff_t actual_len, u64 *alloc_hint) 7344 { 7345 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7346 min_size, actual_len, alloc_hint, 7347 NULL); 7348 } 7349 7350 int btrfs_prealloc_file_range_trans(struct inode *inode, 7351 struct btrfs_trans_handle *trans, int mode, 7352 u64 start, u64 num_bytes, u64 min_size, 7353 loff_t actual_len, u64 *alloc_hint) 7354 { 7355 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7356 min_size, actual_len, alloc_hint, trans); 7357 } 7358 7359 static int btrfs_set_page_dirty(struct page *page) 7360 { 7361 return __set_page_dirty_nobuffers(page); 7362 } 7363 7364 static int btrfs_permission(struct inode *inode, int mask) 7365 { 7366 struct btrfs_root *root = BTRFS_I(inode)->root; 7367 umode_t mode = inode->i_mode; 7368 7369 if (mask & MAY_WRITE && 7370 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7371 if (btrfs_root_readonly(root)) 7372 return -EROFS; 7373 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7374 return -EACCES; 7375 } 7376 return generic_permission(inode, mask); 7377 } 7378 7379 static const struct inode_operations btrfs_dir_inode_operations = { 7380 .getattr = btrfs_getattr, 7381 .lookup = btrfs_lookup, 7382 .create = btrfs_create, 7383 .unlink = btrfs_unlink, 7384 .link = btrfs_link, 7385 .mkdir = btrfs_mkdir, 7386 .rmdir = btrfs_rmdir, 7387 .rename = btrfs_rename, 7388 .symlink = btrfs_symlink, 7389 .setattr = btrfs_setattr, 7390 .mknod = btrfs_mknod, 7391 .setxattr = btrfs_setxattr, 7392 .getxattr = btrfs_getxattr, 7393 .listxattr = btrfs_listxattr, 7394 .removexattr = btrfs_removexattr, 7395 .permission = btrfs_permission, 7396 .get_acl = btrfs_get_acl, 7397 }; 7398 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7399 .lookup = btrfs_lookup, 7400 .permission = btrfs_permission, 7401 .get_acl = btrfs_get_acl, 7402 }; 7403 7404 static const struct file_operations btrfs_dir_file_operations = { 7405 .llseek = generic_file_llseek, 7406 .read = generic_read_dir, 7407 .readdir = btrfs_real_readdir, 7408 .unlocked_ioctl = btrfs_ioctl, 7409 #ifdef CONFIG_COMPAT 7410 .compat_ioctl = btrfs_ioctl, 7411 #endif 7412 .release = btrfs_release_file, 7413 .fsync = btrfs_sync_file, 7414 }; 7415 7416 static struct extent_io_ops btrfs_extent_io_ops = { 7417 .fill_delalloc = run_delalloc_range, 7418 .submit_bio_hook = btrfs_submit_bio_hook, 7419 .merge_bio_hook = btrfs_merge_bio_hook, 7420 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7421 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7422 .writepage_start_hook = btrfs_writepage_start_hook, 7423 .readpage_io_failed_hook = btrfs_io_failed_hook, 7424 .set_bit_hook = btrfs_set_bit_hook, 7425 .clear_bit_hook = btrfs_clear_bit_hook, 7426 .merge_extent_hook = btrfs_merge_extent_hook, 7427 .split_extent_hook = btrfs_split_extent_hook, 7428 }; 7429 7430 /* 7431 * btrfs doesn't support the bmap operation because swapfiles 7432 * use bmap to make a mapping of extents in the file. They assume 7433 * these extents won't change over the life of the file and they 7434 * use the bmap result to do IO directly to the drive. 7435 * 7436 * the btrfs bmap call would return logical addresses that aren't 7437 * suitable for IO and they also will change frequently as COW 7438 * operations happen. So, swapfile + btrfs == corruption. 7439 * 7440 * For now we're avoiding this by dropping bmap. 7441 */ 7442 static const struct address_space_operations btrfs_aops = { 7443 .readpage = btrfs_readpage, 7444 .writepage = btrfs_writepage, 7445 .writepages = btrfs_writepages, 7446 .readpages = btrfs_readpages, 7447 .direct_IO = btrfs_direct_IO, 7448 .invalidatepage = btrfs_invalidatepage, 7449 .releasepage = btrfs_releasepage, 7450 .set_page_dirty = btrfs_set_page_dirty, 7451 .error_remove_page = generic_error_remove_page, 7452 }; 7453 7454 static const struct address_space_operations btrfs_symlink_aops = { 7455 .readpage = btrfs_readpage, 7456 .writepage = btrfs_writepage, 7457 .invalidatepage = btrfs_invalidatepage, 7458 .releasepage = btrfs_releasepage, 7459 }; 7460 7461 static const struct inode_operations btrfs_file_inode_operations = { 7462 .getattr = btrfs_getattr, 7463 .setattr = btrfs_setattr, 7464 .setxattr = btrfs_setxattr, 7465 .getxattr = btrfs_getxattr, 7466 .listxattr = btrfs_listxattr, 7467 .removexattr = btrfs_removexattr, 7468 .permission = btrfs_permission, 7469 .fiemap = btrfs_fiemap, 7470 .get_acl = btrfs_get_acl, 7471 }; 7472 static const struct inode_operations btrfs_special_inode_operations = { 7473 .getattr = btrfs_getattr, 7474 .setattr = btrfs_setattr, 7475 .permission = btrfs_permission, 7476 .setxattr = btrfs_setxattr, 7477 .getxattr = btrfs_getxattr, 7478 .listxattr = btrfs_listxattr, 7479 .removexattr = btrfs_removexattr, 7480 .get_acl = btrfs_get_acl, 7481 }; 7482 static const struct inode_operations btrfs_symlink_inode_operations = { 7483 .readlink = generic_readlink, 7484 .follow_link = page_follow_link_light, 7485 .put_link = page_put_link, 7486 .getattr = btrfs_getattr, 7487 .permission = btrfs_permission, 7488 .setxattr = btrfs_setxattr, 7489 .getxattr = btrfs_getxattr, 7490 .listxattr = btrfs_listxattr, 7491 .removexattr = btrfs_removexattr, 7492 .get_acl = btrfs_get_acl, 7493 }; 7494 7495 const struct dentry_operations btrfs_dentry_operations = { 7496 .d_delete = btrfs_dentry_delete, 7497 .d_release = btrfs_dentry_release, 7498 }; 7499