xref: /openbmc/linux/fs/btrfs/inode.c (revision 9c1f8594)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56 
57 struct btrfs_iget_args {
58 	u64 ino;
59 	struct btrfs_root *root;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71 
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
81 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
82 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
83 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
84 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
85 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
86 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
87 };
88 
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 				   struct page *locked_page,
94 				   u64 start, u64 end, int *page_started,
95 				   unsigned long *nr_written, int unlock);
96 
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 				     struct inode *inode,  struct inode *dir,
99 				     const struct qstr *qstr)
100 {
101 	int err;
102 
103 	err = btrfs_init_acl(trans, inode, dir);
104 	if (!err)
105 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106 	return err;
107 }
108 
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 				struct btrfs_root *root, struct inode *inode,
116 				u64 start, size_t size, size_t compressed_size,
117 				int compress_type,
118 				struct page **compressed_pages)
119 {
120 	struct btrfs_key key;
121 	struct btrfs_path *path;
122 	struct extent_buffer *leaf;
123 	struct page *page = NULL;
124 	char *kaddr;
125 	unsigned long ptr;
126 	struct btrfs_file_extent_item *ei;
127 	int err = 0;
128 	int ret;
129 	size_t cur_size = size;
130 	size_t datasize;
131 	unsigned long offset;
132 
133 	if (compressed_size && compressed_pages)
134 		cur_size = compressed_size;
135 
136 	path = btrfs_alloc_path();
137 	if (!path)
138 		return -ENOMEM;
139 
140 	path->leave_spinning = 1;
141 
142 	key.objectid = btrfs_ino(inode);
143 	key.offset = start;
144 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
146 
147 	inode_add_bytes(inode, size);
148 	ret = btrfs_insert_empty_item(trans, root, path, &key,
149 				      datasize);
150 	BUG_ON(ret);
151 	if (ret) {
152 		err = ret;
153 		goto fail;
154 	}
155 	leaf = path->nodes[0];
156 	ei = btrfs_item_ptr(leaf, path->slots[0],
157 			    struct btrfs_file_extent_item);
158 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 	btrfs_set_file_extent_encryption(leaf, ei, 0);
161 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 	ptr = btrfs_file_extent_inline_start(ei);
164 
165 	if (compress_type != BTRFS_COMPRESS_NONE) {
166 		struct page *cpage;
167 		int i = 0;
168 		while (compressed_size > 0) {
169 			cpage = compressed_pages[i];
170 			cur_size = min_t(unsigned long, compressed_size,
171 				       PAGE_CACHE_SIZE);
172 
173 			kaddr = kmap_atomic(cpage, KM_USER0);
174 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 			kunmap_atomic(kaddr, KM_USER0);
176 
177 			i++;
178 			ptr += cur_size;
179 			compressed_size -= cur_size;
180 		}
181 		btrfs_set_file_extent_compression(leaf, ei,
182 						  compress_type);
183 	} else {
184 		page = find_get_page(inode->i_mapping,
185 				     start >> PAGE_CACHE_SHIFT);
186 		btrfs_set_file_extent_compression(leaf, ei, 0);
187 		kaddr = kmap_atomic(page, KM_USER0);
188 		offset = start & (PAGE_CACHE_SIZE - 1);
189 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 		kunmap_atomic(kaddr, KM_USER0);
191 		page_cache_release(page);
192 	}
193 	btrfs_mark_buffer_dirty(leaf);
194 	btrfs_free_path(path);
195 
196 	/*
197 	 * we're an inline extent, so nobody can
198 	 * extend the file past i_size without locking
199 	 * a page we already have locked.
200 	 *
201 	 * We must do any isize and inode updates
202 	 * before we unlock the pages.  Otherwise we
203 	 * could end up racing with unlink.
204 	 */
205 	BTRFS_I(inode)->disk_i_size = inode->i_size;
206 	btrfs_update_inode(trans, root, inode);
207 
208 	return 0;
209 fail:
210 	btrfs_free_path(path);
211 	return err;
212 }
213 
214 
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 				 struct btrfs_root *root,
222 				 struct inode *inode, u64 start, u64 end,
223 				 size_t compressed_size, int compress_type,
224 				 struct page **compressed_pages)
225 {
226 	u64 isize = i_size_read(inode);
227 	u64 actual_end = min(end + 1, isize);
228 	u64 inline_len = actual_end - start;
229 	u64 aligned_end = (end + root->sectorsize - 1) &
230 			~((u64)root->sectorsize - 1);
231 	u64 hint_byte;
232 	u64 data_len = inline_len;
233 	int ret;
234 
235 	if (compressed_size)
236 		data_len = compressed_size;
237 
238 	if (start > 0 ||
239 	    actual_end >= PAGE_CACHE_SIZE ||
240 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 	    (!compressed_size &&
242 	    (actual_end & (root->sectorsize - 1)) == 0) ||
243 	    end + 1 < isize ||
244 	    data_len > root->fs_info->max_inline) {
245 		return 1;
246 	}
247 
248 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 				 &hint_byte, 1);
250 	BUG_ON(ret);
251 
252 	if (isize > actual_end)
253 		inline_len = min_t(u64, isize, actual_end);
254 	ret = insert_inline_extent(trans, root, inode, start,
255 				   inline_len, compressed_size,
256 				   compress_type, compressed_pages);
257 	BUG_ON(ret);
258 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 	return 0;
261 }
262 
263 struct async_extent {
264 	u64 start;
265 	u64 ram_size;
266 	u64 compressed_size;
267 	struct page **pages;
268 	unsigned long nr_pages;
269 	int compress_type;
270 	struct list_head list;
271 };
272 
273 struct async_cow {
274 	struct inode *inode;
275 	struct btrfs_root *root;
276 	struct page *locked_page;
277 	u64 start;
278 	u64 end;
279 	struct list_head extents;
280 	struct btrfs_work work;
281 };
282 
283 static noinline int add_async_extent(struct async_cow *cow,
284 				     u64 start, u64 ram_size,
285 				     u64 compressed_size,
286 				     struct page **pages,
287 				     unsigned long nr_pages,
288 				     int compress_type)
289 {
290 	struct async_extent *async_extent;
291 
292 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 	BUG_ON(!async_extent);
294 	async_extent->start = start;
295 	async_extent->ram_size = ram_size;
296 	async_extent->compressed_size = compressed_size;
297 	async_extent->pages = pages;
298 	async_extent->nr_pages = nr_pages;
299 	async_extent->compress_type = compress_type;
300 	list_add_tail(&async_extent->list, &cow->extents);
301 	return 0;
302 }
303 
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321 					struct page *locked_page,
322 					u64 start, u64 end,
323 					struct async_cow *async_cow,
324 					int *num_added)
325 {
326 	struct btrfs_root *root = BTRFS_I(inode)->root;
327 	struct btrfs_trans_handle *trans;
328 	u64 num_bytes;
329 	u64 blocksize = root->sectorsize;
330 	u64 actual_end;
331 	u64 isize = i_size_read(inode);
332 	int ret = 0;
333 	struct page **pages = NULL;
334 	unsigned long nr_pages;
335 	unsigned long nr_pages_ret = 0;
336 	unsigned long total_compressed = 0;
337 	unsigned long total_in = 0;
338 	unsigned long max_compressed = 128 * 1024;
339 	unsigned long max_uncompressed = 128 * 1024;
340 	int i;
341 	int will_compress;
342 	int compress_type = root->fs_info->compress_type;
343 
344 	/* if this is a small write inside eof, kick off a defragbot */
345 	if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 		btrfs_add_inode_defrag(NULL, inode);
347 
348 	actual_end = min_t(u64, isize, end + 1);
349 again:
350 	will_compress = 0;
351 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353 
354 	/*
355 	 * we don't want to send crud past the end of i_size through
356 	 * compression, that's just a waste of CPU time.  So, if the
357 	 * end of the file is before the start of our current
358 	 * requested range of bytes, we bail out to the uncompressed
359 	 * cleanup code that can deal with all of this.
360 	 *
361 	 * It isn't really the fastest way to fix things, but this is a
362 	 * very uncommon corner.
363 	 */
364 	if (actual_end <= start)
365 		goto cleanup_and_bail_uncompressed;
366 
367 	total_compressed = actual_end - start;
368 
369 	/* we want to make sure that amount of ram required to uncompress
370 	 * an extent is reasonable, so we limit the total size in ram
371 	 * of a compressed extent to 128k.  This is a crucial number
372 	 * because it also controls how easily we can spread reads across
373 	 * cpus for decompression.
374 	 *
375 	 * We also want to make sure the amount of IO required to do
376 	 * a random read is reasonably small, so we limit the size of
377 	 * a compressed extent to 128k.
378 	 */
379 	total_compressed = min(total_compressed, max_uncompressed);
380 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381 	num_bytes = max(blocksize,  num_bytes);
382 	total_in = 0;
383 	ret = 0;
384 
385 	/*
386 	 * we do compression for mount -o compress and when the
387 	 * inode has not been flagged as nocompress.  This flag can
388 	 * change at any time if we discover bad compression ratios.
389 	 */
390 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391 	    (btrfs_test_opt(root, COMPRESS) ||
392 	     (BTRFS_I(inode)->force_compress) ||
393 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394 		WARN_ON(pages);
395 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396 		BUG_ON(!pages);
397 
398 		if (BTRFS_I(inode)->force_compress)
399 			compress_type = BTRFS_I(inode)->force_compress;
400 
401 		ret = btrfs_compress_pages(compress_type,
402 					   inode->i_mapping, start,
403 					   total_compressed, pages,
404 					   nr_pages, &nr_pages_ret,
405 					   &total_in,
406 					   &total_compressed,
407 					   max_compressed);
408 
409 		if (!ret) {
410 			unsigned long offset = total_compressed &
411 				(PAGE_CACHE_SIZE - 1);
412 			struct page *page = pages[nr_pages_ret - 1];
413 			char *kaddr;
414 
415 			/* zero the tail end of the last page, we might be
416 			 * sending it down to disk
417 			 */
418 			if (offset) {
419 				kaddr = kmap_atomic(page, KM_USER0);
420 				memset(kaddr + offset, 0,
421 				       PAGE_CACHE_SIZE - offset);
422 				kunmap_atomic(kaddr, KM_USER0);
423 			}
424 			will_compress = 1;
425 		}
426 	}
427 	if (start == 0) {
428 		trans = btrfs_join_transaction(root);
429 		BUG_ON(IS_ERR(trans));
430 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
431 
432 		/* lets try to make an inline extent */
433 		if (ret || total_in < (actual_end - start)) {
434 			/* we didn't compress the entire range, try
435 			 * to make an uncompressed inline extent.
436 			 */
437 			ret = cow_file_range_inline(trans, root, inode,
438 						    start, end, 0, 0, NULL);
439 		} else {
440 			/* try making a compressed inline extent */
441 			ret = cow_file_range_inline(trans, root, inode,
442 						    start, end,
443 						    total_compressed,
444 						    compress_type, pages);
445 		}
446 		if (ret == 0) {
447 			/*
448 			 * inline extent creation worked, we don't need
449 			 * to create any more async work items.  Unlock
450 			 * and free up our temp pages.
451 			 */
452 			extent_clear_unlock_delalloc(inode,
453 			     &BTRFS_I(inode)->io_tree,
454 			     start, end, NULL,
455 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456 			     EXTENT_CLEAR_DELALLOC |
457 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
458 
459 			btrfs_end_transaction(trans, root);
460 			goto free_pages_out;
461 		}
462 		btrfs_end_transaction(trans, root);
463 	}
464 
465 	if (will_compress) {
466 		/*
467 		 * we aren't doing an inline extent round the compressed size
468 		 * up to a block size boundary so the allocator does sane
469 		 * things
470 		 */
471 		total_compressed = (total_compressed + blocksize - 1) &
472 			~(blocksize - 1);
473 
474 		/*
475 		 * one last check to make sure the compression is really a
476 		 * win, compare the page count read with the blocks on disk
477 		 */
478 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 			~(PAGE_CACHE_SIZE - 1);
480 		if (total_compressed >= total_in) {
481 			will_compress = 0;
482 		} else {
483 			num_bytes = total_in;
484 		}
485 	}
486 	if (!will_compress && pages) {
487 		/*
488 		 * the compression code ran but failed to make things smaller,
489 		 * free any pages it allocated and our page pointer array
490 		 */
491 		for (i = 0; i < nr_pages_ret; i++) {
492 			WARN_ON(pages[i]->mapping);
493 			page_cache_release(pages[i]);
494 		}
495 		kfree(pages);
496 		pages = NULL;
497 		total_compressed = 0;
498 		nr_pages_ret = 0;
499 
500 		/* flag the file so we don't compress in the future */
501 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 		    !(BTRFS_I(inode)->force_compress)) {
503 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
504 		}
505 	}
506 	if (will_compress) {
507 		*num_added += 1;
508 
509 		/* the async work queues will take care of doing actual
510 		 * allocation on disk for these compressed pages,
511 		 * and will submit them to the elevator.
512 		 */
513 		add_async_extent(async_cow, start, num_bytes,
514 				 total_compressed, pages, nr_pages_ret,
515 				 compress_type);
516 
517 		if (start + num_bytes < end) {
518 			start += num_bytes;
519 			pages = NULL;
520 			cond_resched();
521 			goto again;
522 		}
523 	} else {
524 cleanup_and_bail_uncompressed:
525 		/*
526 		 * No compression, but we still need to write the pages in
527 		 * the file we've been given so far.  redirty the locked
528 		 * page if it corresponds to our extent and set things up
529 		 * for the async work queue to run cow_file_range to do
530 		 * the normal delalloc dance
531 		 */
532 		if (page_offset(locked_page) >= start &&
533 		    page_offset(locked_page) <= end) {
534 			__set_page_dirty_nobuffers(locked_page);
535 			/* unlocked later on in the async handlers */
536 		}
537 		add_async_extent(async_cow, start, end - start + 1,
538 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
539 		*num_added += 1;
540 	}
541 
542 out:
543 	return 0;
544 
545 free_pages_out:
546 	for (i = 0; i < nr_pages_ret; i++) {
547 		WARN_ON(pages[i]->mapping);
548 		page_cache_release(pages[i]);
549 	}
550 	kfree(pages);
551 
552 	goto out;
553 }
554 
555 /*
556  * phase two of compressed writeback.  This is the ordered portion
557  * of the code, which only gets called in the order the work was
558  * queued.  We walk all the async extents created by compress_file_range
559  * and send them down to the disk.
560  */
561 static noinline int submit_compressed_extents(struct inode *inode,
562 					      struct async_cow *async_cow)
563 {
564 	struct async_extent *async_extent;
565 	u64 alloc_hint = 0;
566 	struct btrfs_trans_handle *trans;
567 	struct btrfs_key ins;
568 	struct extent_map *em;
569 	struct btrfs_root *root = BTRFS_I(inode)->root;
570 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 	struct extent_io_tree *io_tree;
572 	int ret = 0;
573 
574 	if (list_empty(&async_cow->extents))
575 		return 0;
576 
577 
578 	while (!list_empty(&async_cow->extents)) {
579 		async_extent = list_entry(async_cow->extents.next,
580 					  struct async_extent, list);
581 		list_del(&async_extent->list);
582 
583 		io_tree = &BTRFS_I(inode)->io_tree;
584 
585 retry:
586 		/* did the compression code fall back to uncompressed IO? */
587 		if (!async_extent->pages) {
588 			int page_started = 0;
589 			unsigned long nr_written = 0;
590 
591 			lock_extent(io_tree, async_extent->start,
592 					 async_extent->start +
593 					 async_extent->ram_size - 1, GFP_NOFS);
594 
595 			/* allocate blocks */
596 			ret = cow_file_range(inode, async_cow->locked_page,
597 					     async_extent->start,
598 					     async_extent->start +
599 					     async_extent->ram_size - 1,
600 					     &page_started, &nr_written, 0);
601 
602 			/*
603 			 * if page_started, cow_file_range inserted an
604 			 * inline extent and took care of all the unlocking
605 			 * and IO for us.  Otherwise, we need to submit
606 			 * all those pages down to the drive.
607 			 */
608 			if (!page_started && !ret)
609 				extent_write_locked_range(io_tree,
610 						  inode, async_extent->start,
611 						  async_extent->start +
612 						  async_extent->ram_size - 1,
613 						  btrfs_get_extent,
614 						  WB_SYNC_ALL);
615 			kfree(async_extent);
616 			cond_resched();
617 			continue;
618 		}
619 
620 		lock_extent(io_tree, async_extent->start,
621 			    async_extent->start + async_extent->ram_size - 1,
622 			    GFP_NOFS);
623 
624 		trans = btrfs_join_transaction(root);
625 		BUG_ON(IS_ERR(trans));
626 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627 		ret = btrfs_reserve_extent(trans, root,
628 					   async_extent->compressed_size,
629 					   async_extent->compressed_size,
630 					   0, alloc_hint,
631 					   (u64)-1, &ins, 1);
632 		btrfs_end_transaction(trans, root);
633 
634 		if (ret) {
635 			int i;
636 			for (i = 0; i < async_extent->nr_pages; i++) {
637 				WARN_ON(async_extent->pages[i]->mapping);
638 				page_cache_release(async_extent->pages[i]);
639 			}
640 			kfree(async_extent->pages);
641 			async_extent->nr_pages = 0;
642 			async_extent->pages = NULL;
643 			unlock_extent(io_tree, async_extent->start,
644 				      async_extent->start +
645 				      async_extent->ram_size - 1, GFP_NOFS);
646 			goto retry;
647 		}
648 
649 		/*
650 		 * here we're doing allocation and writeback of the
651 		 * compressed pages
652 		 */
653 		btrfs_drop_extent_cache(inode, async_extent->start,
654 					async_extent->start +
655 					async_extent->ram_size - 1, 0);
656 
657 		em = alloc_extent_map();
658 		BUG_ON(!em);
659 		em->start = async_extent->start;
660 		em->len = async_extent->ram_size;
661 		em->orig_start = em->start;
662 
663 		em->block_start = ins.objectid;
664 		em->block_len = ins.offset;
665 		em->bdev = root->fs_info->fs_devices->latest_bdev;
666 		em->compress_type = async_extent->compress_type;
667 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669 
670 		while (1) {
671 			write_lock(&em_tree->lock);
672 			ret = add_extent_mapping(em_tree, em);
673 			write_unlock(&em_tree->lock);
674 			if (ret != -EEXIST) {
675 				free_extent_map(em);
676 				break;
677 			}
678 			btrfs_drop_extent_cache(inode, async_extent->start,
679 						async_extent->start +
680 						async_extent->ram_size - 1, 0);
681 		}
682 
683 		ret = btrfs_add_ordered_extent_compress(inode,
684 						async_extent->start,
685 						ins.objectid,
686 						async_extent->ram_size,
687 						ins.offset,
688 						BTRFS_ORDERED_COMPRESSED,
689 						async_extent->compress_type);
690 		BUG_ON(ret);
691 
692 		/*
693 		 * clear dirty, set writeback and unlock the pages.
694 		 */
695 		extent_clear_unlock_delalloc(inode,
696 				&BTRFS_I(inode)->io_tree,
697 				async_extent->start,
698 				async_extent->start +
699 				async_extent->ram_size - 1,
700 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 				EXTENT_CLEAR_UNLOCK |
702 				EXTENT_CLEAR_DELALLOC |
703 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
704 
705 		ret = btrfs_submit_compressed_write(inode,
706 				    async_extent->start,
707 				    async_extent->ram_size,
708 				    ins.objectid,
709 				    ins.offset, async_extent->pages,
710 				    async_extent->nr_pages);
711 
712 		BUG_ON(ret);
713 		alloc_hint = ins.objectid + ins.offset;
714 		kfree(async_extent);
715 		cond_resched();
716 	}
717 
718 	return 0;
719 }
720 
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 				      u64 num_bytes)
723 {
724 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 	struct extent_map *em;
726 	u64 alloc_hint = 0;
727 
728 	read_lock(&em_tree->lock);
729 	em = search_extent_mapping(em_tree, start, num_bytes);
730 	if (em) {
731 		/*
732 		 * if block start isn't an actual block number then find the
733 		 * first block in this inode and use that as a hint.  If that
734 		 * block is also bogus then just don't worry about it.
735 		 */
736 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 			free_extent_map(em);
738 			em = search_extent_mapping(em_tree, 0, 0);
739 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 				alloc_hint = em->block_start;
741 			if (em)
742 				free_extent_map(em);
743 		} else {
744 			alloc_hint = em->block_start;
745 			free_extent_map(em);
746 		}
747 	}
748 	read_unlock(&em_tree->lock);
749 
750 	return alloc_hint;
751 }
752 
753 /*
754  * when extent_io.c finds a delayed allocation range in the file,
755  * the call backs end up in this code.  The basic idea is to
756  * allocate extents on disk for the range, and create ordered data structs
757  * in ram to track those extents.
758  *
759  * locked_page is the page that writepage had locked already.  We use
760  * it to make sure we don't do extra locks or unlocks.
761  *
762  * *page_started is set to one if we unlock locked_page and do everything
763  * required to start IO on it.  It may be clean and already done with
764  * IO when we return.
765  */
766 static noinline int cow_file_range(struct inode *inode,
767 				   struct page *locked_page,
768 				   u64 start, u64 end, int *page_started,
769 				   unsigned long *nr_written,
770 				   int unlock)
771 {
772 	struct btrfs_root *root = BTRFS_I(inode)->root;
773 	struct btrfs_trans_handle *trans;
774 	u64 alloc_hint = 0;
775 	u64 num_bytes;
776 	unsigned long ram_size;
777 	u64 disk_num_bytes;
778 	u64 cur_alloc_size;
779 	u64 blocksize = root->sectorsize;
780 	struct btrfs_key ins;
781 	struct extent_map *em;
782 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783 	int ret = 0;
784 
785 	BUG_ON(btrfs_is_free_space_inode(root, inode));
786 	trans = btrfs_join_transaction(root);
787 	BUG_ON(IS_ERR(trans));
788 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
789 
790 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791 	num_bytes = max(blocksize,  num_bytes);
792 	disk_num_bytes = num_bytes;
793 	ret = 0;
794 
795 	/* if this is a small write inside eof, kick off defrag */
796 	if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797 		btrfs_add_inode_defrag(trans, inode);
798 
799 	if (start == 0) {
800 		/* lets try to make an inline extent */
801 		ret = cow_file_range_inline(trans, root, inode,
802 					    start, end, 0, 0, NULL);
803 		if (ret == 0) {
804 			extent_clear_unlock_delalloc(inode,
805 				     &BTRFS_I(inode)->io_tree,
806 				     start, end, NULL,
807 				     EXTENT_CLEAR_UNLOCK_PAGE |
808 				     EXTENT_CLEAR_UNLOCK |
809 				     EXTENT_CLEAR_DELALLOC |
810 				     EXTENT_CLEAR_DIRTY |
811 				     EXTENT_SET_WRITEBACK |
812 				     EXTENT_END_WRITEBACK);
813 
814 			*nr_written = *nr_written +
815 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816 			*page_started = 1;
817 			ret = 0;
818 			goto out;
819 		}
820 	}
821 
822 	BUG_ON(disk_num_bytes >
823 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
824 
825 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
826 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
827 
828 	while (disk_num_bytes > 0) {
829 		unsigned long op;
830 
831 		cur_alloc_size = disk_num_bytes;
832 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
833 					   root->sectorsize, 0, alloc_hint,
834 					   (u64)-1, &ins, 1);
835 		BUG_ON(ret);
836 
837 		em = alloc_extent_map();
838 		BUG_ON(!em);
839 		em->start = start;
840 		em->orig_start = em->start;
841 		ram_size = ins.offset;
842 		em->len = ins.offset;
843 
844 		em->block_start = ins.objectid;
845 		em->block_len = ins.offset;
846 		em->bdev = root->fs_info->fs_devices->latest_bdev;
847 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
848 
849 		while (1) {
850 			write_lock(&em_tree->lock);
851 			ret = add_extent_mapping(em_tree, em);
852 			write_unlock(&em_tree->lock);
853 			if (ret != -EEXIST) {
854 				free_extent_map(em);
855 				break;
856 			}
857 			btrfs_drop_extent_cache(inode, start,
858 						start + ram_size - 1, 0);
859 		}
860 
861 		cur_alloc_size = ins.offset;
862 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
863 					       ram_size, cur_alloc_size, 0);
864 		BUG_ON(ret);
865 
866 		if (root->root_key.objectid ==
867 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
868 			ret = btrfs_reloc_clone_csums(inode, start,
869 						      cur_alloc_size);
870 			BUG_ON(ret);
871 		}
872 
873 		if (disk_num_bytes < cur_alloc_size)
874 			break;
875 
876 		/* we're not doing compressed IO, don't unlock the first
877 		 * page (which the caller expects to stay locked), don't
878 		 * clear any dirty bits and don't set any writeback bits
879 		 *
880 		 * Do set the Private2 bit so we know this page was properly
881 		 * setup for writepage
882 		 */
883 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885 			EXTENT_SET_PRIVATE2;
886 
887 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888 					     start, start + ram_size - 1,
889 					     locked_page, op);
890 		disk_num_bytes -= cur_alloc_size;
891 		num_bytes -= cur_alloc_size;
892 		alloc_hint = ins.objectid + ins.offset;
893 		start += cur_alloc_size;
894 	}
895 out:
896 	ret = 0;
897 	btrfs_end_transaction(trans, root);
898 
899 	return ret;
900 }
901 
902 /*
903  * work queue call back to started compression on a file and pages
904  */
905 static noinline void async_cow_start(struct btrfs_work *work)
906 {
907 	struct async_cow *async_cow;
908 	int num_added = 0;
909 	async_cow = container_of(work, struct async_cow, work);
910 
911 	compress_file_range(async_cow->inode, async_cow->locked_page,
912 			    async_cow->start, async_cow->end, async_cow,
913 			    &num_added);
914 	if (num_added == 0)
915 		async_cow->inode = NULL;
916 }
917 
918 /*
919  * work queue call back to submit previously compressed pages
920  */
921 static noinline void async_cow_submit(struct btrfs_work *work)
922 {
923 	struct async_cow *async_cow;
924 	struct btrfs_root *root;
925 	unsigned long nr_pages;
926 
927 	async_cow = container_of(work, struct async_cow, work);
928 
929 	root = async_cow->root;
930 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931 		PAGE_CACHE_SHIFT;
932 
933 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
934 
935 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
936 	    5 * 1042 * 1024 &&
937 	    waitqueue_active(&root->fs_info->async_submit_wait))
938 		wake_up(&root->fs_info->async_submit_wait);
939 
940 	if (async_cow->inode)
941 		submit_compressed_extents(async_cow->inode, async_cow);
942 }
943 
944 static noinline void async_cow_free(struct btrfs_work *work)
945 {
946 	struct async_cow *async_cow;
947 	async_cow = container_of(work, struct async_cow, work);
948 	kfree(async_cow);
949 }
950 
951 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952 				u64 start, u64 end, int *page_started,
953 				unsigned long *nr_written)
954 {
955 	struct async_cow *async_cow;
956 	struct btrfs_root *root = BTRFS_I(inode)->root;
957 	unsigned long nr_pages;
958 	u64 cur_end;
959 	int limit = 10 * 1024 * 1042;
960 
961 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962 			 1, 0, NULL, GFP_NOFS);
963 	while (start < end) {
964 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
965 		BUG_ON(!async_cow);
966 		async_cow->inode = inode;
967 		async_cow->root = root;
968 		async_cow->locked_page = locked_page;
969 		async_cow->start = start;
970 
971 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
972 			cur_end = end;
973 		else
974 			cur_end = min(end, start + 512 * 1024 - 1);
975 
976 		async_cow->end = cur_end;
977 		INIT_LIST_HEAD(&async_cow->extents);
978 
979 		async_cow->work.func = async_cow_start;
980 		async_cow->work.ordered_func = async_cow_submit;
981 		async_cow->work.ordered_free = async_cow_free;
982 		async_cow->work.flags = 0;
983 
984 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985 			PAGE_CACHE_SHIFT;
986 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
987 
988 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
989 				   &async_cow->work);
990 
991 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992 			wait_event(root->fs_info->async_submit_wait,
993 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
994 			    limit));
995 		}
996 
997 		while (atomic_read(&root->fs_info->async_submit_draining) &&
998 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
999 			wait_event(root->fs_info->async_submit_wait,
1000 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001 			   0));
1002 		}
1003 
1004 		*nr_written += nr_pages;
1005 		start = cur_end + 1;
1006 	}
1007 	*page_started = 1;
1008 	return 0;
1009 }
1010 
1011 static noinline int csum_exist_in_range(struct btrfs_root *root,
1012 					u64 bytenr, u64 num_bytes)
1013 {
1014 	int ret;
1015 	struct btrfs_ordered_sum *sums;
1016 	LIST_HEAD(list);
1017 
1018 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1019 				       bytenr + num_bytes - 1, &list, 0);
1020 	if (ret == 0 && list_empty(&list))
1021 		return 0;
1022 
1023 	while (!list_empty(&list)) {
1024 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025 		list_del(&sums->list);
1026 		kfree(sums);
1027 	}
1028 	return 1;
1029 }
1030 
1031 /*
1032  * when nowcow writeback call back.  This checks for snapshots or COW copies
1033  * of the extents that exist in the file, and COWs the file as required.
1034  *
1035  * If no cow copies or snapshots exist, we write directly to the existing
1036  * blocks on disk
1037  */
1038 static noinline int run_delalloc_nocow(struct inode *inode,
1039 				       struct page *locked_page,
1040 			      u64 start, u64 end, int *page_started, int force,
1041 			      unsigned long *nr_written)
1042 {
1043 	struct btrfs_root *root = BTRFS_I(inode)->root;
1044 	struct btrfs_trans_handle *trans;
1045 	struct extent_buffer *leaf;
1046 	struct btrfs_path *path;
1047 	struct btrfs_file_extent_item *fi;
1048 	struct btrfs_key found_key;
1049 	u64 cow_start;
1050 	u64 cur_offset;
1051 	u64 extent_end;
1052 	u64 extent_offset;
1053 	u64 disk_bytenr;
1054 	u64 num_bytes;
1055 	int extent_type;
1056 	int ret;
1057 	int type;
1058 	int nocow;
1059 	int check_prev = 1;
1060 	bool nolock;
1061 	u64 ino = btrfs_ino(inode);
1062 
1063 	path = btrfs_alloc_path();
1064 	if (!path)
1065 		return -ENOMEM;
1066 
1067 	nolock = btrfs_is_free_space_inode(root, inode);
1068 
1069 	if (nolock)
1070 		trans = btrfs_join_transaction_nolock(root);
1071 	else
1072 		trans = btrfs_join_transaction(root);
1073 
1074 	BUG_ON(IS_ERR(trans));
1075 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1076 
1077 	cow_start = (u64)-1;
1078 	cur_offset = start;
1079 	while (1) {
1080 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1081 					       cur_offset, 0);
1082 		BUG_ON(ret < 0);
1083 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1084 			leaf = path->nodes[0];
1085 			btrfs_item_key_to_cpu(leaf, &found_key,
1086 					      path->slots[0] - 1);
1087 			if (found_key.objectid == ino &&
1088 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1089 				path->slots[0]--;
1090 		}
1091 		check_prev = 0;
1092 next_slot:
1093 		leaf = path->nodes[0];
1094 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 			ret = btrfs_next_leaf(root, path);
1096 			if (ret < 0)
1097 				BUG_ON(1);
1098 			if (ret > 0)
1099 				break;
1100 			leaf = path->nodes[0];
1101 		}
1102 
1103 		nocow = 0;
1104 		disk_bytenr = 0;
1105 		num_bytes = 0;
1106 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1107 
1108 		if (found_key.objectid > ino ||
1109 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1110 		    found_key.offset > end)
1111 			break;
1112 
1113 		if (found_key.offset > cur_offset) {
1114 			extent_end = found_key.offset;
1115 			extent_type = 0;
1116 			goto out_check;
1117 		}
1118 
1119 		fi = btrfs_item_ptr(leaf, path->slots[0],
1120 				    struct btrfs_file_extent_item);
1121 		extent_type = btrfs_file_extent_type(leaf, fi);
1122 
1123 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1124 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1125 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1126 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1127 			extent_end = found_key.offset +
1128 				btrfs_file_extent_num_bytes(leaf, fi);
1129 			if (extent_end <= start) {
1130 				path->slots[0]++;
1131 				goto next_slot;
1132 			}
1133 			if (disk_bytenr == 0)
1134 				goto out_check;
1135 			if (btrfs_file_extent_compression(leaf, fi) ||
1136 			    btrfs_file_extent_encryption(leaf, fi) ||
1137 			    btrfs_file_extent_other_encoding(leaf, fi))
1138 				goto out_check;
1139 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1140 				goto out_check;
1141 			if (btrfs_extent_readonly(root, disk_bytenr))
1142 				goto out_check;
1143 			if (btrfs_cross_ref_exist(trans, root, ino,
1144 						  found_key.offset -
1145 						  extent_offset, disk_bytenr))
1146 				goto out_check;
1147 			disk_bytenr += extent_offset;
1148 			disk_bytenr += cur_offset - found_key.offset;
1149 			num_bytes = min(end + 1, extent_end) - cur_offset;
1150 			/*
1151 			 * force cow if csum exists in the range.
1152 			 * this ensure that csum for a given extent are
1153 			 * either valid or do not exist.
1154 			 */
1155 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1156 				goto out_check;
1157 			nocow = 1;
1158 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1159 			extent_end = found_key.offset +
1160 				btrfs_file_extent_inline_len(leaf, fi);
1161 			extent_end = ALIGN(extent_end, root->sectorsize);
1162 		} else {
1163 			BUG_ON(1);
1164 		}
1165 out_check:
1166 		if (extent_end <= start) {
1167 			path->slots[0]++;
1168 			goto next_slot;
1169 		}
1170 		if (!nocow) {
1171 			if (cow_start == (u64)-1)
1172 				cow_start = cur_offset;
1173 			cur_offset = extent_end;
1174 			if (cur_offset > end)
1175 				break;
1176 			path->slots[0]++;
1177 			goto next_slot;
1178 		}
1179 
1180 		btrfs_release_path(path);
1181 		if (cow_start != (u64)-1) {
1182 			ret = cow_file_range(inode, locked_page, cow_start,
1183 					found_key.offset - 1, page_started,
1184 					nr_written, 1);
1185 			BUG_ON(ret);
1186 			cow_start = (u64)-1;
1187 		}
1188 
1189 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1190 			struct extent_map *em;
1191 			struct extent_map_tree *em_tree;
1192 			em_tree = &BTRFS_I(inode)->extent_tree;
1193 			em = alloc_extent_map();
1194 			BUG_ON(!em);
1195 			em->start = cur_offset;
1196 			em->orig_start = em->start;
1197 			em->len = num_bytes;
1198 			em->block_len = num_bytes;
1199 			em->block_start = disk_bytenr;
1200 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1201 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1202 			while (1) {
1203 				write_lock(&em_tree->lock);
1204 				ret = add_extent_mapping(em_tree, em);
1205 				write_unlock(&em_tree->lock);
1206 				if (ret != -EEXIST) {
1207 					free_extent_map(em);
1208 					break;
1209 				}
1210 				btrfs_drop_extent_cache(inode, em->start,
1211 						em->start + em->len - 1, 0);
1212 			}
1213 			type = BTRFS_ORDERED_PREALLOC;
1214 		} else {
1215 			type = BTRFS_ORDERED_NOCOW;
1216 		}
1217 
1218 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1219 					       num_bytes, num_bytes, type);
1220 		BUG_ON(ret);
1221 
1222 		if (root->root_key.objectid ==
1223 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1224 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1225 						      num_bytes);
1226 			BUG_ON(ret);
1227 		}
1228 
1229 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1230 				cur_offset, cur_offset + num_bytes - 1,
1231 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1232 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1233 				EXTENT_SET_PRIVATE2);
1234 		cur_offset = extent_end;
1235 		if (cur_offset > end)
1236 			break;
1237 	}
1238 	btrfs_release_path(path);
1239 
1240 	if (cur_offset <= end && cow_start == (u64)-1)
1241 		cow_start = cur_offset;
1242 	if (cow_start != (u64)-1) {
1243 		ret = cow_file_range(inode, locked_page, cow_start, end,
1244 				     page_started, nr_written, 1);
1245 		BUG_ON(ret);
1246 	}
1247 
1248 	if (nolock) {
1249 		ret = btrfs_end_transaction_nolock(trans, root);
1250 		BUG_ON(ret);
1251 	} else {
1252 		ret = btrfs_end_transaction(trans, root);
1253 		BUG_ON(ret);
1254 	}
1255 	btrfs_free_path(path);
1256 	return 0;
1257 }
1258 
1259 /*
1260  * extent_io.c call back to do delayed allocation processing
1261  */
1262 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1263 			      u64 start, u64 end, int *page_started,
1264 			      unsigned long *nr_written)
1265 {
1266 	int ret;
1267 	struct btrfs_root *root = BTRFS_I(inode)->root;
1268 
1269 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1270 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1271 					 page_started, 1, nr_written);
1272 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1273 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1274 					 page_started, 0, nr_written);
1275 	else if (!btrfs_test_opt(root, COMPRESS) &&
1276 		 !(BTRFS_I(inode)->force_compress) &&
1277 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1278 		ret = cow_file_range(inode, locked_page, start, end,
1279 				      page_started, nr_written, 1);
1280 	else
1281 		ret = cow_file_range_async(inode, locked_page, start, end,
1282 					   page_started, nr_written);
1283 	return ret;
1284 }
1285 
1286 static void btrfs_split_extent_hook(struct inode *inode,
1287 				    struct extent_state *orig, u64 split)
1288 {
1289 	/* not delalloc, ignore it */
1290 	if (!(orig->state & EXTENT_DELALLOC))
1291 		return;
1292 
1293 	spin_lock(&BTRFS_I(inode)->lock);
1294 	BTRFS_I(inode)->outstanding_extents++;
1295 	spin_unlock(&BTRFS_I(inode)->lock);
1296 }
1297 
1298 /*
1299  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300  * extents so we can keep track of new extents that are just merged onto old
1301  * extents, such as when we are doing sequential writes, so we can properly
1302  * account for the metadata space we'll need.
1303  */
1304 static void btrfs_merge_extent_hook(struct inode *inode,
1305 				    struct extent_state *new,
1306 				    struct extent_state *other)
1307 {
1308 	/* not delalloc, ignore it */
1309 	if (!(other->state & EXTENT_DELALLOC))
1310 		return;
1311 
1312 	spin_lock(&BTRFS_I(inode)->lock);
1313 	BTRFS_I(inode)->outstanding_extents--;
1314 	spin_unlock(&BTRFS_I(inode)->lock);
1315 }
1316 
1317 /*
1318  * extent_io.c set_bit_hook, used to track delayed allocation
1319  * bytes in this file, and to maintain the list of inodes that
1320  * have pending delalloc work to be done.
1321  */
1322 static void btrfs_set_bit_hook(struct inode *inode,
1323 			       struct extent_state *state, int *bits)
1324 {
1325 
1326 	/*
1327 	 * set_bit and clear bit hooks normally require _irqsave/restore
1328 	 * but in this case, we are only testing for the DELALLOC
1329 	 * bit, which is only set or cleared with irqs on
1330 	 */
1331 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1332 		struct btrfs_root *root = BTRFS_I(inode)->root;
1333 		u64 len = state->end + 1 - state->start;
1334 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1335 
1336 		if (*bits & EXTENT_FIRST_DELALLOC) {
1337 			*bits &= ~EXTENT_FIRST_DELALLOC;
1338 		} else {
1339 			spin_lock(&BTRFS_I(inode)->lock);
1340 			BTRFS_I(inode)->outstanding_extents++;
1341 			spin_unlock(&BTRFS_I(inode)->lock);
1342 		}
1343 
1344 		spin_lock(&root->fs_info->delalloc_lock);
1345 		BTRFS_I(inode)->delalloc_bytes += len;
1346 		root->fs_info->delalloc_bytes += len;
1347 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1348 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1349 				      &root->fs_info->delalloc_inodes);
1350 		}
1351 		spin_unlock(&root->fs_info->delalloc_lock);
1352 	}
1353 }
1354 
1355 /*
1356  * extent_io.c clear_bit_hook, see set_bit_hook for why
1357  */
1358 static void btrfs_clear_bit_hook(struct inode *inode,
1359 				 struct extent_state *state, int *bits)
1360 {
1361 	/*
1362 	 * set_bit and clear bit hooks normally require _irqsave/restore
1363 	 * but in this case, we are only testing for the DELALLOC
1364 	 * bit, which is only set or cleared with irqs on
1365 	 */
1366 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1367 		struct btrfs_root *root = BTRFS_I(inode)->root;
1368 		u64 len = state->end + 1 - state->start;
1369 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1370 
1371 		if (*bits & EXTENT_FIRST_DELALLOC) {
1372 			*bits &= ~EXTENT_FIRST_DELALLOC;
1373 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1374 			spin_lock(&BTRFS_I(inode)->lock);
1375 			BTRFS_I(inode)->outstanding_extents--;
1376 			spin_unlock(&BTRFS_I(inode)->lock);
1377 		}
1378 
1379 		if (*bits & EXTENT_DO_ACCOUNTING)
1380 			btrfs_delalloc_release_metadata(inode, len);
1381 
1382 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1383 		    && do_list)
1384 			btrfs_free_reserved_data_space(inode, len);
1385 
1386 		spin_lock(&root->fs_info->delalloc_lock);
1387 		root->fs_info->delalloc_bytes -= len;
1388 		BTRFS_I(inode)->delalloc_bytes -= len;
1389 
1390 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1391 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1392 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1393 		}
1394 		spin_unlock(&root->fs_info->delalloc_lock);
1395 	}
1396 }
1397 
1398 /*
1399  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1400  * we don't create bios that span stripes or chunks
1401  */
1402 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1403 			 size_t size, struct bio *bio,
1404 			 unsigned long bio_flags)
1405 {
1406 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1407 	struct btrfs_mapping_tree *map_tree;
1408 	u64 logical = (u64)bio->bi_sector << 9;
1409 	u64 length = 0;
1410 	u64 map_length;
1411 	int ret;
1412 
1413 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1414 		return 0;
1415 
1416 	length = bio->bi_size;
1417 	map_tree = &root->fs_info->mapping_tree;
1418 	map_length = length;
1419 	ret = btrfs_map_block(map_tree, READ, logical,
1420 			      &map_length, NULL, 0);
1421 
1422 	if (map_length < length + size)
1423 		return 1;
1424 	return ret;
1425 }
1426 
1427 /*
1428  * in order to insert checksums into the metadata in large chunks,
1429  * we wait until bio submission time.   All the pages in the bio are
1430  * checksummed and sums are attached onto the ordered extent record.
1431  *
1432  * At IO completion time the cums attached on the ordered extent record
1433  * are inserted into the btree
1434  */
1435 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1436 				    struct bio *bio, int mirror_num,
1437 				    unsigned long bio_flags,
1438 				    u64 bio_offset)
1439 {
1440 	struct btrfs_root *root = BTRFS_I(inode)->root;
1441 	int ret = 0;
1442 
1443 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1444 	BUG_ON(ret);
1445 	return 0;
1446 }
1447 
1448 /*
1449  * in order to insert checksums into the metadata in large chunks,
1450  * we wait until bio submission time.   All the pages in the bio are
1451  * checksummed and sums are attached onto the ordered extent record.
1452  *
1453  * At IO completion time the cums attached on the ordered extent record
1454  * are inserted into the btree
1455  */
1456 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1457 			  int mirror_num, unsigned long bio_flags,
1458 			  u64 bio_offset)
1459 {
1460 	struct btrfs_root *root = BTRFS_I(inode)->root;
1461 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1462 }
1463 
1464 /*
1465  * extent_io.c submission hook. This does the right thing for csum calculation
1466  * on write, or reading the csums from the tree before a read
1467  */
1468 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1469 			  int mirror_num, unsigned long bio_flags,
1470 			  u64 bio_offset)
1471 {
1472 	struct btrfs_root *root = BTRFS_I(inode)->root;
1473 	int ret = 0;
1474 	int skip_sum;
1475 
1476 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1477 
1478 	if (btrfs_is_free_space_inode(root, inode))
1479 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1480 	else
1481 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1482 	BUG_ON(ret);
1483 
1484 	if (!(rw & REQ_WRITE)) {
1485 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1486 			return btrfs_submit_compressed_read(inode, bio,
1487 						    mirror_num, bio_flags);
1488 		} else if (!skip_sum) {
1489 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1490 			if (ret)
1491 				return ret;
1492 		}
1493 		goto mapit;
1494 	} else if (!skip_sum) {
1495 		/* csum items have already been cloned */
1496 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1497 			goto mapit;
1498 		/* we're doing a write, do the async checksumming */
1499 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1500 				   inode, rw, bio, mirror_num,
1501 				   bio_flags, bio_offset,
1502 				   __btrfs_submit_bio_start,
1503 				   __btrfs_submit_bio_done);
1504 	}
1505 
1506 mapit:
1507 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1508 }
1509 
1510 /*
1511  * given a list of ordered sums record them in the inode.  This happens
1512  * at IO completion time based on sums calculated at bio submission time.
1513  */
1514 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1515 			     struct inode *inode, u64 file_offset,
1516 			     struct list_head *list)
1517 {
1518 	struct btrfs_ordered_sum *sum;
1519 
1520 	list_for_each_entry(sum, list, list) {
1521 		btrfs_csum_file_blocks(trans,
1522 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1523 	}
1524 	return 0;
1525 }
1526 
1527 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1528 			      struct extent_state **cached_state)
1529 {
1530 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1531 		WARN_ON(1);
1532 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1533 				   cached_state, GFP_NOFS);
1534 }
1535 
1536 /* see btrfs_writepage_start_hook for details on why this is required */
1537 struct btrfs_writepage_fixup {
1538 	struct page *page;
1539 	struct btrfs_work work;
1540 };
1541 
1542 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1543 {
1544 	struct btrfs_writepage_fixup *fixup;
1545 	struct btrfs_ordered_extent *ordered;
1546 	struct extent_state *cached_state = NULL;
1547 	struct page *page;
1548 	struct inode *inode;
1549 	u64 page_start;
1550 	u64 page_end;
1551 
1552 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1553 	page = fixup->page;
1554 again:
1555 	lock_page(page);
1556 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1557 		ClearPageChecked(page);
1558 		goto out_page;
1559 	}
1560 
1561 	inode = page->mapping->host;
1562 	page_start = page_offset(page);
1563 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1564 
1565 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1566 			 &cached_state, GFP_NOFS);
1567 
1568 	/* already ordered? We're done */
1569 	if (PagePrivate2(page))
1570 		goto out;
1571 
1572 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1573 	if (ordered) {
1574 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1575 				     page_end, &cached_state, GFP_NOFS);
1576 		unlock_page(page);
1577 		btrfs_start_ordered_extent(inode, ordered, 1);
1578 		goto again;
1579 	}
1580 
1581 	BUG();
1582 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1583 	ClearPageChecked(page);
1584 out:
1585 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1586 			     &cached_state, GFP_NOFS);
1587 out_page:
1588 	unlock_page(page);
1589 	page_cache_release(page);
1590 	kfree(fixup);
1591 }
1592 
1593 /*
1594  * There are a few paths in the higher layers of the kernel that directly
1595  * set the page dirty bit without asking the filesystem if it is a
1596  * good idea.  This causes problems because we want to make sure COW
1597  * properly happens and the data=ordered rules are followed.
1598  *
1599  * In our case any range that doesn't have the ORDERED bit set
1600  * hasn't been properly setup for IO.  We kick off an async process
1601  * to fix it up.  The async helper will wait for ordered extents, set
1602  * the delalloc bit and make it safe to write the page.
1603  */
1604 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1605 {
1606 	struct inode *inode = page->mapping->host;
1607 	struct btrfs_writepage_fixup *fixup;
1608 	struct btrfs_root *root = BTRFS_I(inode)->root;
1609 
1610 	/* this page is properly in the ordered list */
1611 	if (TestClearPagePrivate2(page))
1612 		return 0;
1613 
1614 	if (PageChecked(page))
1615 		return -EAGAIN;
1616 
1617 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1618 	if (!fixup)
1619 		return -EAGAIN;
1620 
1621 	SetPageChecked(page);
1622 	page_cache_get(page);
1623 	fixup->work.func = btrfs_writepage_fixup_worker;
1624 	fixup->page = page;
1625 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1626 	return -EAGAIN;
1627 }
1628 
1629 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1630 				       struct inode *inode, u64 file_pos,
1631 				       u64 disk_bytenr, u64 disk_num_bytes,
1632 				       u64 num_bytes, u64 ram_bytes,
1633 				       u8 compression, u8 encryption,
1634 				       u16 other_encoding, int extent_type)
1635 {
1636 	struct btrfs_root *root = BTRFS_I(inode)->root;
1637 	struct btrfs_file_extent_item *fi;
1638 	struct btrfs_path *path;
1639 	struct extent_buffer *leaf;
1640 	struct btrfs_key ins;
1641 	u64 hint;
1642 	int ret;
1643 
1644 	path = btrfs_alloc_path();
1645 	if (!path)
1646 		return -ENOMEM;
1647 
1648 	path->leave_spinning = 1;
1649 
1650 	/*
1651 	 * we may be replacing one extent in the tree with another.
1652 	 * The new extent is pinned in the extent map, and we don't want
1653 	 * to drop it from the cache until it is completely in the btree.
1654 	 *
1655 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1656 	 * the caller is expected to unpin it and allow it to be merged
1657 	 * with the others.
1658 	 */
1659 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1660 				 &hint, 0);
1661 	BUG_ON(ret);
1662 
1663 	ins.objectid = btrfs_ino(inode);
1664 	ins.offset = file_pos;
1665 	ins.type = BTRFS_EXTENT_DATA_KEY;
1666 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1667 	BUG_ON(ret);
1668 	leaf = path->nodes[0];
1669 	fi = btrfs_item_ptr(leaf, path->slots[0],
1670 			    struct btrfs_file_extent_item);
1671 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1672 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1673 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1674 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1675 	btrfs_set_file_extent_offset(leaf, fi, 0);
1676 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1677 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1678 	btrfs_set_file_extent_compression(leaf, fi, compression);
1679 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1680 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1681 
1682 	btrfs_unlock_up_safe(path, 1);
1683 	btrfs_set_lock_blocking(leaf);
1684 
1685 	btrfs_mark_buffer_dirty(leaf);
1686 
1687 	inode_add_bytes(inode, num_bytes);
1688 
1689 	ins.objectid = disk_bytenr;
1690 	ins.offset = disk_num_bytes;
1691 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1692 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1693 					root->root_key.objectid,
1694 					btrfs_ino(inode), file_pos, &ins);
1695 	BUG_ON(ret);
1696 	btrfs_free_path(path);
1697 
1698 	return 0;
1699 }
1700 
1701 /*
1702  * helper function for btrfs_finish_ordered_io, this
1703  * just reads in some of the csum leaves to prime them into ram
1704  * before we start the transaction.  It limits the amount of btree
1705  * reads required while inside the transaction.
1706  */
1707 /* as ordered data IO finishes, this gets called so we can finish
1708  * an ordered extent if the range of bytes in the file it covers are
1709  * fully written.
1710  */
1711 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1712 {
1713 	struct btrfs_root *root = BTRFS_I(inode)->root;
1714 	struct btrfs_trans_handle *trans = NULL;
1715 	struct btrfs_ordered_extent *ordered_extent = NULL;
1716 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1717 	struct extent_state *cached_state = NULL;
1718 	int compress_type = 0;
1719 	int ret;
1720 	bool nolock;
1721 
1722 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1723 					     end - start + 1);
1724 	if (!ret)
1725 		return 0;
1726 	BUG_ON(!ordered_extent);
1727 
1728 	nolock = btrfs_is_free_space_inode(root, inode);
1729 
1730 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1731 		BUG_ON(!list_empty(&ordered_extent->list));
1732 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1733 		if (!ret) {
1734 			if (nolock)
1735 				trans = btrfs_join_transaction_nolock(root);
1736 			else
1737 				trans = btrfs_join_transaction(root);
1738 			BUG_ON(IS_ERR(trans));
1739 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1740 			ret = btrfs_update_inode(trans, root, inode);
1741 			BUG_ON(ret);
1742 		}
1743 		goto out;
1744 	}
1745 
1746 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1747 			 ordered_extent->file_offset + ordered_extent->len - 1,
1748 			 0, &cached_state, GFP_NOFS);
1749 
1750 	if (nolock)
1751 		trans = btrfs_join_transaction_nolock(root);
1752 	else
1753 		trans = btrfs_join_transaction(root);
1754 	BUG_ON(IS_ERR(trans));
1755 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1756 
1757 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1758 		compress_type = ordered_extent->compress_type;
1759 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1760 		BUG_ON(compress_type);
1761 		ret = btrfs_mark_extent_written(trans, inode,
1762 						ordered_extent->file_offset,
1763 						ordered_extent->file_offset +
1764 						ordered_extent->len);
1765 		BUG_ON(ret);
1766 	} else {
1767 		BUG_ON(root == root->fs_info->tree_root);
1768 		ret = insert_reserved_file_extent(trans, inode,
1769 						ordered_extent->file_offset,
1770 						ordered_extent->start,
1771 						ordered_extent->disk_len,
1772 						ordered_extent->len,
1773 						ordered_extent->len,
1774 						compress_type, 0, 0,
1775 						BTRFS_FILE_EXTENT_REG);
1776 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1777 				   ordered_extent->file_offset,
1778 				   ordered_extent->len);
1779 		BUG_ON(ret);
1780 	}
1781 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1782 			     ordered_extent->file_offset +
1783 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1784 
1785 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1786 			  &ordered_extent->list);
1787 
1788 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1789 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1790 		ret = btrfs_update_inode(trans, root, inode);
1791 		BUG_ON(ret);
1792 	}
1793 	ret = 0;
1794 out:
1795 	if (nolock) {
1796 		if (trans)
1797 			btrfs_end_transaction_nolock(trans, root);
1798 	} else {
1799 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1800 		if (trans)
1801 			btrfs_end_transaction(trans, root);
1802 	}
1803 
1804 	/* once for us */
1805 	btrfs_put_ordered_extent(ordered_extent);
1806 	/* once for the tree */
1807 	btrfs_put_ordered_extent(ordered_extent);
1808 
1809 	return 0;
1810 }
1811 
1812 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1813 				struct extent_state *state, int uptodate)
1814 {
1815 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1816 
1817 	ClearPagePrivate2(page);
1818 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1819 }
1820 
1821 /*
1822  * When IO fails, either with EIO or csum verification fails, we
1823  * try other mirrors that might have a good copy of the data.  This
1824  * io_failure_record is used to record state as we go through all the
1825  * mirrors.  If another mirror has good data, the page is set up to date
1826  * and things continue.  If a good mirror can't be found, the original
1827  * bio end_io callback is called to indicate things have failed.
1828  */
1829 struct io_failure_record {
1830 	struct page *page;
1831 	u64 start;
1832 	u64 len;
1833 	u64 logical;
1834 	unsigned long bio_flags;
1835 	int last_mirror;
1836 };
1837 
1838 static int btrfs_io_failed_hook(struct bio *failed_bio,
1839 			 struct page *page, u64 start, u64 end,
1840 			 struct extent_state *state)
1841 {
1842 	struct io_failure_record *failrec = NULL;
1843 	u64 private;
1844 	struct extent_map *em;
1845 	struct inode *inode = page->mapping->host;
1846 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1847 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1848 	struct bio *bio;
1849 	int num_copies;
1850 	int ret;
1851 	int rw;
1852 	u64 logical;
1853 
1854 	ret = get_state_private(failure_tree, start, &private);
1855 	if (ret) {
1856 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1857 		if (!failrec)
1858 			return -ENOMEM;
1859 		failrec->start = start;
1860 		failrec->len = end - start + 1;
1861 		failrec->last_mirror = 0;
1862 		failrec->bio_flags = 0;
1863 
1864 		read_lock(&em_tree->lock);
1865 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1866 		if (em->start > start || em->start + em->len < start) {
1867 			free_extent_map(em);
1868 			em = NULL;
1869 		}
1870 		read_unlock(&em_tree->lock);
1871 
1872 		if (IS_ERR_OR_NULL(em)) {
1873 			kfree(failrec);
1874 			return -EIO;
1875 		}
1876 		logical = start - em->start;
1877 		logical = em->block_start + logical;
1878 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1879 			logical = em->block_start;
1880 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1881 			extent_set_compress_type(&failrec->bio_flags,
1882 						 em->compress_type);
1883 		}
1884 		failrec->logical = logical;
1885 		free_extent_map(em);
1886 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1887 				EXTENT_DIRTY, GFP_NOFS);
1888 		set_state_private(failure_tree, start,
1889 				 (u64)(unsigned long)failrec);
1890 	} else {
1891 		failrec = (struct io_failure_record *)(unsigned long)private;
1892 	}
1893 	num_copies = btrfs_num_copies(
1894 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1895 			      failrec->logical, failrec->len);
1896 	failrec->last_mirror++;
1897 	if (!state) {
1898 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1899 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1900 						    failrec->start,
1901 						    EXTENT_LOCKED);
1902 		if (state && state->start != failrec->start)
1903 			state = NULL;
1904 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1905 	}
1906 	if (!state || failrec->last_mirror > num_copies) {
1907 		set_state_private(failure_tree, failrec->start, 0);
1908 		clear_extent_bits(failure_tree, failrec->start,
1909 				  failrec->start + failrec->len - 1,
1910 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1911 		kfree(failrec);
1912 		return -EIO;
1913 	}
1914 	bio = bio_alloc(GFP_NOFS, 1);
1915 	bio->bi_private = state;
1916 	bio->bi_end_io = failed_bio->bi_end_io;
1917 	bio->bi_sector = failrec->logical >> 9;
1918 	bio->bi_bdev = failed_bio->bi_bdev;
1919 	bio->bi_size = 0;
1920 
1921 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1922 	if (failed_bio->bi_rw & REQ_WRITE)
1923 		rw = WRITE;
1924 	else
1925 		rw = READ;
1926 
1927 	ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1928 						      failrec->last_mirror,
1929 						      failrec->bio_flags, 0);
1930 	return ret;
1931 }
1932 
1933 /*
1934  * each time an IO finishes, we do a fast check in the IO failure tree
1935  * to see if we need to process or clean up an io_failure_record
1936  */
1937 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1938 {
1939 	u64 private;
1940 	u64 private_failure;
1941 	struct io_failure_record *failure;
1942 	int ret;
1943 
1944 	private = 0;
1945 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1946 			     (u64)-1, 1, EXTENT_DIRTY, 0)) {
1947 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1948 					start, &private_failure);
1949 		if (ret == 0) {
1950 			failure = (struct io_failure_record *)(unsigned long)
1951 				   private_failure;
1952 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1953 					  failure->start, 0);
1954 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1955 					  failure->start,
1956 					  failure->start + failure->len - 1,
1957 					  EXTENT_DIRTY | EXTENT_LOCKED,
1958 					  GFP_NOFS);
1959 			kfree(failure);
1960 		}
1961 	}
1962 	return 0;
1963 }
1964 
1965 /*
1966  * when reads are done, we need to check csums to verify the data is correct
1967  * if there's a match, we allow the bio to finish.  If not, we go through
1968  * the io_failure_record routines to find good copies
1969  */
1970 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1971 			       struct extent_state *state)
1972 {
1973 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1974 	struct inode *inode = page->mapping->host;
1975 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1976 	char *kaddr;
1977 	u64 private = ~(u32)0;
1978 	int ret;
1979 	struct btrfs_root *root = BTRFS_I(inode)->root;
1980 	u32 csum = ~(u32)0;
1981 
1982 	if (PageChecked(page)) {
1983 		ClearPageChecked(page);
1984 		goto good;
1985 	}
1986 
1987 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1988 		goto good;
1989 
1990 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1991 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1992 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1993 				  GFP_NOFS);
1994 		return 0;
1995 	}
1996 
1997 	if (state && state->start == start) {
1998 		private = state->private;
1999 		ret = 0;
2000 	} else {
2001 		ret = get_state_private(io_tree, start, &private);
2002 	}
2003 	kaddr = kmap_atomic(page, KM_USER0);
2004 	if (ret)
2005 		goto zeroit;
2006 
2007 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2008 	btrfs_csum_final(csum, (char *)&csum);
2009 	if (csum != private)
2010 		goto zeroit;
2011 
2012 	kunmap_atomic(kaddr, KM_USER0);
2013 good:
2014 	/* if the io failure tree for this inode is non-empty,
2015 	 * check to see if we've recovered from a failed IO
2016 	 */
2017 	btrfs_clean_io_failures(inode, start);
2018 	return 0;
2019 
2020 zeroit:
2021 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2022 		       "private %llu\n",
2023 		       (unsigned long long)btrfs_ino(page->mapping->host),
2024 		       (unsigned long long)start, csum,
2025 		       (unsigned long long)private);
2026 	memset(kaddr + offset, 1, end - start + 1);
2027 	flush_dcache_page(page);
2028 	kunmap_atomic(kaddr, KM_USER0);
2029 	if (private == 0)
2030 		return 0;
2031 	return -EIO;
2032 }
2033 
2034 struct delayed_iput {
2035 	struct list_head list;
2036 	struct inode *inode;
2037 };
2038 
2039 void btrfs_add_delayed_iput(struct inode *inode)
2040 {
2041 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2042 	struct delayed_iput *delayed;
2043 
2044 	if (atomic_add_unless(&inode->i_count, -1, 1))
2045 		return;
2046 
2047 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2048 	delayed->inode = inode;
2049 
2050 	spin_lock(&fs_info->delayed_iput_lock);
2051 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2052 	spin_unlock(&fs_info->delayed_iput_lock);
2053 }
2054 
2055 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2056 {
2057 	LIST_HEAD(list);
2058 	struct btrfs_fs_info *fs_info = root->fs_info;
2059 	struct delayed_iput *delayed;
2060 	int empty;
2061 
2062 	spin_lock(&fs_info->delayed_iput_lock);
2063 	empty = list_empty(&fs_info->delayed_iputs);
2064 	spin_unlock(&fs_info->delayed_iput_lock);
2065 	if (empty)
2066 		return;
2067 
2068 	down_read(&root->fs_info->cleanup_work_sem);
2069 	spin_lock(&fs_info->delayed_iput_lock);
2070 	list_splice_init(&fs_info->delayed_iputs, &list);
2071 	spin_unlock(&fs_info->delayed_iput_lock);
2072 
2073 	while (!list_empty(&list)) {
2074 		delayed = list_entry(list.next, struct delayed_iput, list);
2075 		list_del(&delayed->list);
2076 		iput(delayed->inode);
2077 		kfree(delayed);
2078 	}
2079 	up_read(&root->fs_info->cleanup_work_sem);
2080 }
2081 
2082 /*
2083  * calculate extra metadata reservation when snapshotting a subvolume
2084  * contains orphan files.
2085  */
2086 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2087 				struct btrfs_pending_snapshot *pending,
2088 				u64 *bytes_to_reserve)
2089 {
2090 	struct btrfs_root *root;
2091 	struct btrfs_block_rsv *block_rsv;
2092 	u64 num_bytes;
2093 	int index;
2094 
2095 	root = pending->root;
2096 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2097 		return;
2098 
2099 	block_rsv = root->orphan_block_rsv;
2100 
2101 	/* orphan block reservation for the snapshot */
2102 	num_bytes = block_rsv->size;
2103 
2104 	/*
2105 	 * after the snapshot is created, COWing tree blocks may use more
2106 	 * space than it frees. So we should make sure there is enough
2107 	 * reserved space.
2108 	 */
2109 	index = trans->transid & 0x1;
2110 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2111 		num_bytes += block_rsv->size -
2112 			     (block_rsv->reserved + block_rsv->freed[index]);
2113 	}
2114 
2115 	*bytes_to_reserve += num_bytes;
2116 }
2117 
2118 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2119 				struct btrfs_pending_snapshot *pending)
2120 {
2121 	struct btrfs_root *root = pending->root;
2122 	struct btrfs_root *snap = pending->snap;
2123 	struct btrfs_block_rsv *block_rsv;
2124 	u64 num_bytes;
2125 	int index;
2126 	int ret;
2127 
2128 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2129 		return;
2130 
2131 	/* refill source subvolume's orphan block reservation */
2132 	block_rsv = root->orphan_block_rsv;
2133 	index = trans->transid & 0x1;
2134 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2135 		num_bytes = block_rsv->size -
2136 			    (block_rsv->reserved + block_rsv->freed[index]);
2137 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2138 					      root->orphan_block_rsv,
2139 					      num_bytes);
2140 		BUG_ON(ret);
2141 	}
2142 
2143 	/* setup orphan block reservation for the snapshot */
2144 	block_rsv = btrfs_alloc_block_rsv(snap);
2145 	BUG_ON(!block_rsv);
2146 
2147 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2148 	snap->orphan_block_rsv = block_rsv;
2149 
2150 	num_bytes = root->orphan_block_rsv->size;
2151 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2152 				      block_rsv, num_bytes);
2153 	BUG_ON(ret);
2154 
2155 #if 0
2156 	/* insert orphan item for the snapshot */
2157 	WARN_ON(!root->orphan_item_inserted);
2158 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2159 				       snap->root_key.objectid);
2160 	BUG_ON(ret);
2161 	snap->orphan_item_inserted = 1;
2162 #endif
2163 }
2164 
2165 enum btrfs_orphan_cleanup_state {
2166 	ORPHAN_CLEANUP_STARTED	= 1,
2167 	ORPHAN_CLEANUP_DONE	= 2,
2168 };
2169 
2170 /*
2171  * This is called in transaction commmit time. If there are no orphan
2172  * files in the subvolume, it removes orphan item and frees block_rsv
2173  * structure.
2174  */
2175 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2176 			      struct btrfs_root *root)
2177 {
2178 	int ret;
2179 
2180 	if (!list_empty(&root->orphan_list) ||
2181 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2182 		return;
2183 
2184 	if (root->orphan_item_inserted &&
2185 	    btrfs_root_refs(&root->root_item) > 0) {
2186 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2187 					    root->root_key.objectid);
2188 		BUG_ON(ret);
2189 		root->orphan_item_inserted = 0;
2190 	}
2191 
2192 	if (root->orphan_block_rsv) {
2193 		WARN_ON(root->orphan_block_rsv->size > 0);
2194 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2195 		root->orphan_block_rsv = NULL;
2196 	}
2197 }
2198 
2199 /*
2200  * This creates an orphan entry for the given inode in case something goes
2201  * wrong in the middle of an unlink/truncate.
2202  *
2203  * NOTE: caller of this function should reserve 5 units of metadata for
2204  *	 this function.
2205  */
2206 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2207 {
2208 	struct btrfs_root *root = BTRFS_I(inode)->root;
2209 	struct btrfs_block_rsv *block_rsv = NULL;
2210 	int reserve = 0;
2211 	int insert = 0;
2212 	int ret;
2213 
2214 	if (!root->orphan_block_rsv) {
2215 		block_rsv = btrfs_alloc_block_rsv(root);
2216 		if (!block_rsv)
2217 			return -ENOMEM;
2218 	}
2219 
2220 	spin_lock(&root->orphan_lock);
2221 	if (!root->orphan_block_rsv) {
2222 		root->orphan_block_rsv = block_rsv;
2223 	} else if (block_rsv) {
2224 		btrfs_free_block_rsv(root, block_rsv);
2225 		block_rsv = NULL;
2226 	}
2227 
2228 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2229 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2230 #if 0
2231 		/*
2232 		 * For proper ENOSPC handling, we should do orphan
2233 		 * cleanup when mounting. But this introduces backward
2234 		 * compatibility issue.
2235 		 */
2236 		if (!xchg(&root->orphan_item_inserted, 1))
2237 			insert = 2;
2238 		else
2239 			insert = 1;
2240 #endif
2241 		insert = 1;
2242 	}
2243 
2244 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2245 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2246 		reserve = 1;
2247 	}
2248 	spin_unlock(&root->orphan_lock);
2249 
2250 	if (block_rsv)
2251 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2252 
2253 	/* grab metadata reservation from transaction handle */
2254 	if (reserve) {
2255 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2256 		BUG_ON(ret);
2257 	}
2258 
2259 	/* insert an orphan item to track this unlinked/truncated file */
2260 	if (insert >= 1) {
2261 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2262 		BUG_ON(ret);
2263 	}
2264 
2265 	/* insert an orphan item to track subvolume contains orphan files */
2266 	if (insert >= 2) {
2267 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2268 					       root->root_key.objectid);
2269 		BUG_ON(ret);
2270 	}
2271 	return 0;
2272 }
2273 
2274 /*
2275  * We have done the truncate/delete so we can go ahead and remove the orphan
2276  * item for this particular inode.
2277  */
2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2279 {
2280 	struct btrfs_root *root = BTRFS_I(inode)->root;
2281 	int delete_item = 0;
2282 	int release_rsv = 0;
2283 	int ret = 0;
2284 
2285 	spin_lock(&root->orphan_lock);
2286 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2287 		list_del_init(&BTRFS_I(inode)->i_orphan);
2288 		delete_item = 1;
2289 	}
2290 
2291 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2292 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2293 		release_rsv = 1;
2294 	}
2295 	spin_unlock(&root->orphan_lock);
2296 
2297 	if (trans && delete_item) {
2298 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2299 		BUG_ON(ret);
2300 	}
2301 
2302 	if (release_rsv)
2303 		btrfs_orphan_release_metadata(inode);
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * this cleans up any orphans that may be left on the list from the last use
2310  * of this root.
2311  */
2312 int btrfs_orphan_cleanup(struct btrfs_root *root)
2313 {
2314 	struct btrfs_path *path;
2315 	struct extent_buffer *leaf;
2316 	struct btrfs_key key, found_key;
2317 	struct btrfs_trans_handle *trans;
2318 	struct inode *inode;
2319 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2320 
2321 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2322 		return 0;
2323 
2324 	path = btrfs_alloc_path();
2325 	if (!path) {
2326 		ret = -ENOMEM;
2327 		goto out;
2328 	}
2329 	path->reada = -1;
2330 
2331 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2332 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2333 	key.offset = (u64)-1;
2334 
2335 	while (1) {
2336 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2337 		if (ret < 0)
2338 			goto out;
2339 
2340 		/*
2341 		 * if ret == 0 means we found what we were searching for, which
2342 		 * is weird, but possible, so only screw with path if we didn't
2343 		 * find the key and see if we have stuff that matches
2344 		 */
2345 		if (ret > 0) {
2346 			ret = 0;
2347 			if (path->slots[0] == 0)
2348 				break;
2349 			path->slots[0]--;
2350 		}
2351 
2352 		/* pull out the item */
2353 		leaf = path->nodes[0];
2354 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355 
2356 		/* make sure the item matches what we want */
2357 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2358 			break;
2359 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2360 			break;
2361 
2362 		/* release the path since we're done with it */
2363 		btrfs_release_path(path);
2364 
2365 		/*
2366 		 * this is where we are basically btrfs_lookup, without the
2367 		 * crossing root thing.  we store the inode number in the
2368 		 * offset of the orphan item.
2369 		 */
2370 		found_key.objectid = found_key.offset;
2371 		found_key.type = BTRFS_INODE_ITEM_KEY;
2372 		found_key.offset = 0;
2373 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2374 		if (IS_ERR(inode)) {
2375 			ret = PTR_ERR(inode);
2376 			goto out;
2377 		}
2378 
2379 		/*
2380 		 * add this inode to the orphan list so btrfs_orphan_del does
2381 		 * the proper thing when we hit it
2382 		 */
2383 		spin_lock(&root->orphan_lock);
2384 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2385 		spin_unlock(&root->orphan_lock);
2386 
2387 		/*
2388 		 * if this is a bad inode, means we actually succeeded in
2389 		 * removing the inode, but not the orphan record, which means
2390 		 * we need to manually delete the orphan since iput will just
2391 		 * do a destroy_inode
2392 		 */
2393 		if (is_bad_inode(inode)) {
2394 			trans = btrfs_start_transaction(root, 0);
2395 			if (IS_ERR(trans)) {
2396 				ret = PTR_ERR(trans);
2397 				goto out;
2398 			}
2399 			btrfs_orphan_del(trans, inode);
2400 			btrfs_end_transaction(trans, root);
2401 			iput(inode);
2402 			continue;
2403 		}
2404 
2405 		/* if we have links, this was a truncate, lets do that */
2406 		if (inode->i_nlink) {
2407 			if (!S_ISREG(inode->i_mode)) {
2408 				WARN_ON(1);
2409 				iput(inode);
2410 				continue;
2411 			}
2412 			nr_truncate++;
2413 			ret = btrfs_truncate(inode);
2414 		} else {
2415 			nr_unlink++;
2416 		}
2417 
2418 		/* this will do delete_inode and everything for us */
2419 		iput(inode);
2420 		if (ret)
2421 			goto out;
2422 	}
2423 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2424 
2425 	if (root->orphan_block_rsv)
2426 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2427 					(u64)-1);
2428 
2429 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2430 		trans = btrfs_join_transaction(root);
2431 		if (!IS_ERR(trans))
2432 			btrfs_end_transaction(trans, root);
2433 	}
2434 
2435 	if (nr_unlink)
2436 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2437 	if (nr_truncate)
2438 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2439 
2440 out:
2441 	if (ret)
2442 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2443 	btrfs_free_path(path);
2444 	return ret;
2445 }
2446 
2447 /*
2448  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2449  * don't find any xattrs, we know there can't be any acls.
2450  *
2451  * slot is the slot the inode is in, objectid is the objectid of the inode
2452  */
2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2454 					  int slot, u64 objectid)
2455 {
2456 	u32 nritems = btrfs_header_nritems(leaf);
2457 	struct btrfs_key found_key;
2458 	int scanned = 0;
2459 
2460 	slot++;
2461 	while (slot < nritems) {
2462 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2463 
2464 		/* we found a different objectid, there must not be acls */
2465 		if (found_key.objectid != objectid)
2466 			return 0;
2467 
2468 		/* we found an xattr, assume we've got an acl */
2469 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2470 			return 1;
2471 
2472 		/*
2473 		 * we found a key greater than an xattr key, there can't
2474 		 * be any acls later on
2475 		 */
2476 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2477 			return 0;
2478 
2479 		slot++;
2480 		scanned++;
2481 
2482 		/*
2483 		 * it goes inode, inode backrefs, xattrs, extents,
2484 		 * so if there are a ton of hard links to an inode there can
2485 		 * be a lot of backrefs.  Don't waste time searching too hard,
2486 		 * this is just an optimization
2487 		 */
2488 		if (scanned >= 8)
2489 			break;
2490 	}
2491 	/* we hit the end of the leaf before we found an xattr or
2492 	 * something larger than an xattr.  We have to assume the inode
2493 	 * has acls
2494 	 */
2495 	return 1;
2496 }
2497 
2498 /*
2499  * read an inode from the btree into the in-memory inode
2500  */
2501 static void btrfs_read_locked_inode(struct inode *inode)
2502 {
2503 	struct btrfs_path *path;
2504 	struct extent_buffer *leaf;
2505 	struct btrfs_inode_item *inode_item;
2506 	struct btrfs_timespec *tspec;
2507 	struct btrfs_root *root = BTRFS_I(inode)->root;
2508 	struct btrfs_key location;
2509 	int maybe_acls;
2510 	u32 rdev;
2511 	int ret;
2512 	bool filled = false;
2513 
2514 	ret = btrfs_fill_inode(inode, &rdev);
2515 	if (!ret)
2516 		filled = true;
2517 
2518 	path = btrfs_alloc_path();
2519 	if (!path)
2520 		goto make_bad;
2521 
2522 	path->leave_spinning = 1;
2523 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2524 
2525 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2526 	if (ret)
2527 		goto make_bad;
2528 
2529 	leaf = path->nodes[0];
2530 
2531 	if (filled)
2532 		goto cache_acl;
2533 
2534 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2535 				    struct btrfs_inode_item);
2536 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2537 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2538 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2539 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2540 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2541 
2542 	tspec = btrfs_inode_atime(inode_item);
2543 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2544 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2545 
2546 	tspec = btrfs_inode_mtime(inode_item);
2547 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2548 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2549 
2550 	tspec = btrfs_inode_ctime(inode_item);
2551 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2552 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2553 
2554 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2555 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2556 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2557 	inode->i_generation = BTRFS_I(inode)->generation;
2558 	inode->i_rdev = 0;
2559 	rdev = btrfs_inode_rdev(leaf, inode_item);
2560 
2561 	BTRFS_I(inode)->index_cnt = (u64)-1;
2562 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2563 cache_acl:
2564 	/*
2565 	 * try to precache a NULL acl entry for files that don't have
2566 	 * any xattrs or acls
2567 	 */
2568 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2569 					   btrfs_ino(inode));
2570 	if (!maybe_acls)
2571 		cache_no_acl(inode);
2572 
2573 	btrfs_free_path(path);
2574 
2575 	switch (inode->i_mode & S_IFMT) {
2576 	case S_IFREG:
2577 		inode->i_mapping->a_ops = &btrfs_aops;
2578 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2579 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2580 		inode->i_fop = &btrfs_file_operations;
2581 		inode->i_op = &btrfs_file_inode_operations;
2582 		break;
2583 	case S_IFDIR:
2584 		inode->i_fop = &btrfs_dir_file_operations;
2585 		if (root == root->fs_info->tree_root)
2586 			inode->i_op = &btrfs_dir_ro_inode_operations;
2587 		else
2588 			inode->i_op = &btrfs_dir_inode_operations;
2589 		break;
2590 	case S_IFLNK:
2591 		inode->i_op = &btrfs_symlink_inode_operations;
2592 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2593 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2594 		break;
2595 	default:
2596 		inode->i_op = &btrfs_special_inode_operations;
2597 		init_special_inode(inode, inode->i_mode, rdev);
2598 		break;
2599 	}
2600 
2601 	btrfs_update_iflags(inode);
2602 	return;
2603 
2604 make_bad:
2605 	btrfs_free_path(path);
2606 	make_bad_inode(inode);
2607 }
2608 
2609 /*
2610  * given a leaf and an inode, copy the inode fields into the leaf
2611  */
2612 static void fill_inode_item(struct btrfs_trans_handle *trans,
2613 			    struct extent_buffer *leaf,
2614 			    struct btrfs_inode_item *item,
2615 			    struct inode *inode)
2616 {
2617 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2618 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2619 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2620 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2621 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2622 
2623 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2624 			       inode->i_atime.tv_sec);
2625 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2626 				inode->i_atime.tv_nsec);
2627 
2628 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2629 			       inode->i_mtime.tv_sec);
2630 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2631 				inode->i_mtime.tv_nsec);
2632 
2633 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2634 			       inode->i_ctime.tv_sec);
2635 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2636 				inode->i_ctime.tv_nsec);
2637 
2638 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2639 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2640 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2641 	btrfs_set_inode_transid(leaf, item, trans->transid);
2642 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2643 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2644 	btrfs_set_inode_block_group(leaf, item, 0);
2645 }
2646 
2647 /*
2648  * copy everything in the in-memory inode into the btree.
2649  */
2650 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2651 				struct btrfs_root *root, struct inode *inode)
2652 {
2653 	struct btrfs_inode_item *inode_item;
2654 	struct btrfs_path *path;
2655 	struct extent_buffer *leaf;
2656 	int ret;
2657 
2658 	/*
2659 	 * If the inode is a free space inode, we can deadlock during commit
2660 	 * if we put it into the delayed code.
2661 	 *
2662 	 * The data relocation inode should also be directly updated
2663 	 * without delay
2664 	 */
2665 	if (!btrfs_is_free_space_inode(root, inode)
2666 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2667 		ret = btrfs_delayed_update_inode(trans, root, inode);
2668 		if (!ret)
2669 			btrfs_set_inode_last_trans(trans, inode);
2670 		return ret;
2671 	}
2672 
2673 	path = btrfs_alloc_path();
2674 	if (!path)
2675 		return -ENOMEM;
2676 
2677 	path->leave_spinning = 1;
2678 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2679 				 1);
2680 	if (ret) {
2681 		if (ret > 0)
2682 			ret = -ENOENT;
2683 		goto failed;
2684 	}
2685 
2686 	btrfs_unlock_up_safe(path, 1);
2687 	leaf = path->nodes[0];
2688 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2689 				    struct btrfs_inode_item);
2690 
2691 	fill_inode_item(trans, leaf, inode_item, inode);
2692 	btrfs_mark_buffer_dirty(leaf);
2693 	btrfs_set_inode_last_trans(trans, inode);
2694 	ret = 0;
2695 failed:
2696 	btrfs_free_path(path);
2697 	return ret;
2698 }
2699 
2700 /*
2701  * unlink helper that gets used here in inode.c and in the tree logging
2702  * recovery code.  It remove a link in a directory with a given name, and
2703  * also drops the back refs in the inode to the directory
2704  */
2705 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2706 				struct btrfs_root *root,
2707 				struct inode *dir, struct inode *inode,
2708 				const char *name, int name_len)
2709 {
2710 	struct btrfs_path *path;
2711 	int ret = 0;
2712 	struct extent_buffer *leaf;
2713 	struct btrfs_dir_item *di;
2714 	struct btrfs_key key;
2715 	u64 index;
2716 	u64 ino = btrfs_ino(inode);
2717 	u64 dir_ino = btrfs_ino(dir);
2718 
2719 	path = btrfs_alloc_path();
2720 	if (!path) {
2721 		ret = -ENOMEM;
2722 		goto out;
2723 	}
2724 
2725 	path->leave_spinning = 1;
2726 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2727 				    name, name_len, -1);
2728 	if (IS_ERR(di)) {
2729 		ret = PTR_ERR(di);
2730 		goto err;
2731 	}
2732 	if (!di) {
2733 		ret = -ENOENT;
2734 		goto err;
2735 	}
2736 	leaf = path->nodes[0];
2737 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2738 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2739 	if (ret)
2740 		goto err;
2741 	btrfs_release_path(path);
2742 
2743 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2744 				  dir_ino, &index);
2745 	if (ret) {
2746 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2747 		       "inode %llu parent %llu\n", name_len, name,
2748 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2749 		goto err;
2750 	}
2751 
2752 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2753 	if (ret)
2754 		goto err;
2755 
2756 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2757 					 inode, dir_ino);
2758 	BUG_ON(ret != 0 && ret != -ENOENT);
2759 
2760 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2761 					   dir, index);
2762 	if (ret == -ENOENT)
2763 		ret = 0;
2764 err:
2765 	btrfs_free_path(path);
2766 	if (ret)
2767 		goto out;
2768 
2769 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2770 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2771 	btrfs_update_inode(trans, root, dir);
2772 out:
2773 	return ret;
2774 }
2775 
2776 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2777 		       struct btrfs_root *root,
2778 		       struct inode *dir, struct inode *inode,
2779 		       const char *name, int name_len)
2780 {
2781 	int ret;
2782 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2783 	if (!ret) {
2784 		btrfs_drop_nlink(inode);
2785 		ret = btrfs_update_inode(trans, root, inode);
2786 	}
2787 	return ret;
2788 }
2789 
2790 
2791 /* helper to check if there is any shared block in the path */
2792 static int check_path_shared(struct btrfs_root *root,
2793 			     struct btrfs_path *path)
2794 {
2795 	struct extent_buffer *eb;
2796 	int level;
2797 	u64 refs = 1;
2798 
2799 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2800 		int ret;
2801 
2802 		if (!path->nodes[level])
2803 			break;
2804 		eb = path->nodes[level];
2805 		if (!btrfs_block_can_be_shared(root, eb))
2806 			continue;
2807 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2808 					       &refs, NULL);
2809 		if (refs > 1)
2810 			return 1;
2811 	}
2812 	return 0;
2813 }
2814 
2815 /*
2816  * helper to start transaction for unlink and rmdir.
2817  *
2818  * unlink and rmdir are special in btrfs, they do not always free space.
2819  * so in enospc case, we should make sure they will free space before
2820  * allowing them to use the global metadata reservation.
2821  */
2822 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2823 						       struct dentry *dentry)
2824 {
2825 	struct btrfs_trans_handle *trans;
2826 	struct btrfs_root *root = BTRFS_I(dir)->root;
2827 	struct btrfs_path *path;
2828 	struct btrfs_inode_ref *ref;
2829 	struct btrfs_dir_item *di;
2830 	struct inode *inode = dentry->d_inode;
2831 	u64 index;
2832 	int check_link = 1;
2833 	int err = -ENOSPC;
2834 	int ret;
2835 	u64 ino = btrfs_ino(inode);
2836 	u64 dir_ino = btrfs_ino(dir);
2837 
2838 	trans = btrfs_start_transaction(root, 10);
2839 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2840 		return trans;
2841 
2842 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2843 		return ERR_PTR(-ENOSPC);
2844 
2845 	/* check if there is someone else holds reference */
2846 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2847 		return ERR_PTR(-ENOSPC);
2848 
2849 	if (atomic_read(&inode->i_count) > 2)
2850 		return ERR_PTR(-ENOSPC);
2851 
2852 	if (xchg(&root->fs_info->enospc_unlink, 1))
2853 		return ERR_PTR(-ENOSPC);
2854 
2855 	path = btrfs_alloc_path();
2856 	if (!path) {
2857 		root->fs_info->enospc_unlink = 0;
2858 		return ERR_PTR(-ENOMEM);
2859 	}
2860 
2861 	trans = btrfs_start_transaction(root, 0);
2862 	if (IS_ERR(trans)) {
2863 		btrfs_free_path(path);
2864 		root->fs_info->enospc_unlink = 0;
2865 		return trans;
2866 	}
2867 
2868 	path->skip_locking = 1;
2869 	path->search_commit_root = 1;
2870 
2871 	ret = btrfs_lookup_inode(trans, root, path,
2872 				&BTRFS_I(dir)->location, 0);
2873 	if (ret < 0) {
2874 		err = ret;
2875 		goto out;
2876 	}
2877 	if (ret == 0) {
2878 		if (check_path_shared(root, path))
2879 			goto out;
2880 	} else {
2881 		check_link = 0;
2882 	}
2883 	btrfs_release_path(path);
2884 
2885 	ret = btrfs_lookup_inode(trans, root, path,
2886 				&BTRFS_I(inode)->location, 0);
2887 	if (ret < 0) {
2888 		err = ret;
2889 		goto out;
2890 	}
2891 	if (ret == 0) {
2892 		if (check_path_shared(root, path))
2893 			goto out;
2894 	} else {
2895 		check_link = 0;
2896 	}
2897 	btrfs_release_path(path);
2898 
2899 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2900 		ret = btrfs_lookup_file_extent(trans, root, path,
2901 					       ino, (u64)-1, 0);
2902 		if (ret < 0) {
2903 			err = ret;
2904 			goto out;
2905 		}
2906 		BUG_ON(ret == 0);
2907 		if (check_path_shared(root, path))
2908 			goto out;
2909 		btrfs_release_path(path);
2910 	}
2911 
2912 	if (!check_link) {
2913 		err = 0;
2914 		goto out;
2915 	}
2916 
2917 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2918 				dentry->d_name.name, dentry->d_name.len, 0);
2919 	if (IS_ERR(di)) {
2920 		err = PTR_ERR(di);
2921 		goto out;
2922 	}
2923 	if (di) {
2924 		if (check_path_shared(root, path))
2925 			goto out;
2926 	} else {
2927 		err = 0;
2928 		goto out;
2929 	}
2930 	btrfs_release_path(path);
2931 
2932 	ref = btrfs_lookup_inode_ref(trans, root, path,
2933 				dentry->d_name.name, dentry->d_name.len,
2934 				ino, dir_ino, 0);
2935 	if (IS_ERR(ref)) {
2936 		err = PTR_ERR(ref);
2937 		goto out;
2938 	}
2939 	BUG_ON(!ref);
2940 	if (check_path_shared(root, path))
2941 		goto out;
2942 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2943 	btrfs_release_path(path);
2944 
2945 	/*
2946 	 * This is a commit root search, if we can lookup inode item and other
2947 	 * relative items in the commit root, it means the transaction of
2948 	 * dir/file creation has been committed, and the dir index item that we
2949 	 * delay to insert has also been inserted into the commit root. So
2950 	 * we needn't worry about the delayed insertion of the dir index item
2951 	 * here.
2952 	 */
2953 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2954 				dentry->d_name.name, dentry->d_name.len, 0);
2955 	if (IS_ERR(di)) {
2956 		err = PTR_ERR(di);
2957 		goto out;
2958 	}
2959 	BUG_ON(ret == -ENOENT);
2960 	if (check_path_shared(root, path))
2961 		goto out;
2962 
2963 	err = 0;
2964 out:
2965 	btrfs_free_path(path);
2966 	if (err) {
2967 		btrfs_end_transaction(trans, root);
2968 		root->fs_info->enospc_unlink = 0;
2969 		return ERR_PTR(err);
2970 	}
2971 
2972 	trans->block_rsv = &root->fs_info->global_block_rsv;
2973 	return trans;
2974 }
2975 
2976 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2977 			       struct btrfs_root *root)
2978 {
2979 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2980 		BUG_ON(!root->fs_info->enospc_unlink);
2981 		root->fs_info->enospc_unlink = 0;
2982 	}
2983 	btrfs_end_transaction_throttle(trans, root);
2984 }
2985 
2986 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2987 {
2988 	struct btrfs_root *root = BTRFS_I(dir)->root;
2989 	struct btrfs_trans_handle *trans;
2990 	struct inode *inode = dentry->d_inode;
2991 	int ret;
2992 	unsigned long nr = 0;
2993 
2994 	trans = __unlink_start_trans(dir, dentry);
2995 	if (IS_ERR(trans))
2996 		return PTR_ERR(trans);
2997 
2998 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2999 
3000 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3001 				 dentry->d_name.name, dentry->d_name.len);
3002 	if (ret)
3003 		goto out;
3004 
3005 	if (inode->i_nlink == 0) {
3006 		ret = btrfs_orphan_add(trans, inode);
3007 		if (ret)
3008 			goto out;
3009 	}
3010 
3011 out:
3012 	nr = trans->blocks_used;
3013 	__unlink_end_trans(trans, root);
3014 	btrfs_btree_balance_dirty(root, nr);
3015 	return ret;
3016 }
3017 
3018 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3019 			struct btrfs_root *root,
3020 			struct inode *dir, u64 objectid,
3021 			const char *name, int name_len)
3022 {
3023 	struct btrfs_path *path;
3024 	struct extent_buffer *leaf;
3025 	struct btrfs_dir_item *di;
3026 	struct btrfs_key key;
3027 	u64 index;
3028 	int ret;
3029 	u64 dir_ino = btrfs_ino(dir);
3030 
3031 	path = btrfs_alloc_path();
3032 	if (!path)
3033 		return -ENOMEM;
3034 
3035 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3036 				   name, name_len, -1);
3037 	BUG_ON(IS_ERR_OR_NULL(di));
3038 
3039 	leaf = path->nodes[0];
3040 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3041 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3042 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3043 	BUG_ON(ret);
3044 	btrfs_release_path(path);
3045 
3046 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3047 				 objectid, root->root_key.objectid,
3048 				 dir_ino, &index, name, name_len);
3049 	if (ret < 0) {
3050 		BUG_ON(ret != -ENOENT);
3051 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3052 						 name, name_len);
3053 		BUG_ON(IS_ERR_OR_NULL(di));
3054 
3055 		leaf = path->nodes[0];
3056 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3057 		btrfs_release_path(path);
3058 		index = key.offset;
3059 	}
3060 	btrfs_release_path(path);
3061 
3062 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3063 	BUG_ON(ret);
3064 
3065 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3066 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3067 	ret = btrfs_update_inode(trans, root, dir);
3068 	BUG_ON(ret);
3069 
3070 	btrfs_free_path(path);
3071 	return 0;
3072 }
3073 
3074 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3075 {
3076 	struct inode *inode = dentry->d_inode;
3077 	int err = 0;
3078 	struct btrfs_root *root = BTRFS_I(dir)->root;
3079 	struct btrfs_trans_handle *trans;
3080 	unsigned long nr = 0;
3081 
3082 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3083 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3084 		return -ENOTEMPTY;
3085 
3086 	trans = __unlink_start_trans(dir, dentry);
3087 	if (IS_ERR(trans))
3088 		return PTR_ERR(trans);
3089 
3090 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3091 		err = btrfs_unlink_subvol(trans, root, dir,
3092 					  BTRFS_I(inode)->location.objectid,
3093 					  dentry->d_name.name,
3094 					  dentry->d_name.len);
3095 		goto out;
3096 	}
3097 
3098 	err = btrfs_orphan_add(trans, inode);
3099 	if (err)
3100 		goto out;
3101 
3102 	/* now the directory is empty */
3103 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3104 				 dentry->d_name.name, dentry->d_name.len);
3105 	if (!err)
3106 		btrfs_i_size_write(inode, 0);
3107 out:
3108 	nr = trans->blocks_used;
3109 	__unlink_end_trans(trans, root);
3110 	btrfs_btree_balance_dirty(root, nr);
3111 
3112 	return err;
3113 }
3114 
3115 /*
3116  * this can truncate away extent items, csum items and directory items.
3117  * It starts at a high offset and removes keys until it can't find
3118  * any higher than new_size
3119  *
3120  * csum items that cross the new i_size are truncated to the new size
3121  * as well.
3122  *
3123  * min_type is the minimum key type to truncate down to.  If set to 0, this
3124  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3125  */
3126 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3127 			       struct btrfs_root *root,
3128 			       struct inode *inode,
3129 			       u64 new_size, u32 min_type)
3130 {
3131 	struct btrfs_path *path;
3132 	struct extent_buffer *leaf;
3133 	struct btrfs_file_extent_item *fi;
3134 	struct btrfs_key key;
3135 	struct btrfs_key found_key;
3136 	u64 extent_start = 0;
3137 	u64 extent_num_bytes = 0;
3138 	u64 extent_offset = 0;
3139 	u64 item_end = 0;
3140 	u64 mask = root->sectorsize - 1;
3141 	u32 found_type = (u8)-1;
3142 	int found_extent;
3143 	int del_item;
3144 	int pending_del_nr = 0;
3145 	int pending_del_slot = 0;
3146 	int extent_type = -1;
3147 	int encoding;
3148 	int ret;
3149 	int err = 0;
3150 	u64 ino = btrfs_ino(inode);
3151 
3152 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3153 
3154 	path = btrfs_alloc_path();
3155 	if (!path)
3156 		return -ENOMEM;
3157 	path->reada = -1;
3158 
3159 	if (root->ref_cows || root == root->fs_info->tree_root)
3160 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3161 
3162 	/*
3163 	 * This function is also used to drop the items in the log tree before
3164 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3165 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3166 	 * items.
3167 	 */
3168 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3169 		btrfs_kill_delayed_inode_items(inode);
3170 
3171 	key.objectid = ino;
3172 	key.offset = (u64)-1;
3173 	key.type = (u8)-1;
3174 
3175 search_again:
3176 	path->leave_spinning = 1;
3177 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3178 	if (ret < 0) {
3179 		err = ret;
3180 		goto out;
3181 	}
3182 
3183 	if (ret > 0) {
3184 		/* there are no items in the tree for us to truncate, we're
3185 		 * done
3186 		 */
3187 		if (path->slots[0] == 0)
3188 			goto out;
3189 		path->slots[0]--;
3190 	}
3191 
3192 	while (1) {
3193 		fi = NULL;
3194 		leaf = path->nodes[0];
3195 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3196 		found_type = btrfs_key_type(&found_key);
3197 		encoding = 0;
3198 
3199 		if (found_key.objectid != ino)
3200 			break;
3201 
3202 		if (found_type < min_type)
3203 			break;
3204 
3205 		item_end = found_key.offset;
3206 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3207 			fi = btrfs_item_ptr(leaf, path->slots[0],
3208 					    struct btrfs_file_extent_item);
3209 			extent_type = btrfs_file_extent_type(leaf, fi);
3210 			encoding = btrfs_file_extent_compression(leaf, fi);
3211 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3212 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3213 
3214 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3215 				item_end +=
3216 				    btrfs_file_extent_num_bytes(leaf, fi);
3217 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3218 				item_end += btrfs_file_extent_inline_len(leaf,
3219 									 fi);
3220 			}
3221 			item_end--;
3222 		}
3223 		if (found_type > min_type) {
3224 			del_item = 1;
3225 		} else {
3226 			if (item_end < new_size)
3227 				break;
3228 			if (found_key.offset >= new_size)
3229 				del_item = 1;
3230 			else
3231 				del_item = 0;
3232 		}
3233 		found_extent = 0;
3234 		/* FIXME, shrink the extent if the ref count is only 1 */
3235 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3236 			goto delete;
3237 
3238 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3239 			u64 num_dec;
3240 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3241 			if (!del_item && !encoding) {
3242 				u64 orig_num_bytes =
3243 					btrfs_file_extent_num_bytes(leaf, fi);
3244 				extent_num_bytes = new_size -
3245 					found_key.offset + root->sectorsize - 1;
3246 				extent_num_bytes = extent_num_bytes &
3247 					~((u64)root->sectorsize - 1);
3248 				btrfs_set_file_extent_num_bytes(leaf, fi,
3249 							 extent_num_bytes);
3250 				num_dec = (orig_num_bytes -
3251 					   extent_num_bytes);
3252 				if (root->ref_cows && extent_start != 0)
3253 					inode_sub_bytes(inode, num_dec);
3254 				btrfs_mark_buffer_dirty(leaf);
3255 			} else {
3256 				extent_num_bytes =
3257 					btrfs_file_extent_disk_num_bytes(leaf,
3258 									 fi);
3259 				extent_offset = found_key.offset -
3260 					btrfs_file_extent_offset(leaf, fi);
3261 
3262 				/* FIXME blocksize != 4096 */
3263 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3264 				if (extent_start != 0) {
3265 					found_extent = 1;
3266 					if (root->ref_cows)
3267 						inode_sub_bytes(inode, num_dec);
3268 				}
3269 			}
3270 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3271 			/*
3272 			 * we can't truncate inline items that have had
3273 			 * special encodings
3274 			 */
3275 			if (!del_item &&
3276 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3277 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3278 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3279 				u32 size = new_size - found_key.offset;
3280 
3281 				if (root->ref_cows) {
3282 					inode_sub_bytes(inode, item_end + 1 -
3283 							new_size);
3284 				}
3285 				size =
3286 				    btrfs_file_extent_calc_inline_size(size);
3287 				ret = btrfs_truncate_item(trans, root, path,
3288 							  size, 1);
3289 			} else if (root->ref_cows) {
3290 				inode_sub_bytes(inode, item_end + 1 -
3291 						found_key.offset);
3292 			}
3293 		}
3294 delete:
3295 		if (del_item) {
3296 			if (!pending_del_nr) {
3297 				/* no pending yet, add ourselves */
3298 				pending_del_slot = path->slots[0];
3299 				pending_del_nr = 1;
3300 			} else if (pending_del_nr &&
3301 				   path->slots[0] + 1 == pending_del_slot) {
3302 				/* hop on the pending chunk */
3303 				pending_del_nr++;
3304 				pending_del_slot = path->slots[0];
3305 			} else {
3306 				BUG();
3307 			}
3308 		} else {
3309 			break;
3310 		}
3311 		if (found_extent && (root->ref_cows ||
3312 				     root == root->fs_info->tree_root)) {
3313 			btrfs_set_path_blocking(path);
3314 			ret = btrfs_free_extent(trans, root, extent_start,
3315 						extent_num_bytes, 0,
3316 						btrfs_header_owner(leaf),
3317 						ino, extent_offset);
3318 			BUG_ON(ret);
3319 		}
3320 
3321 		if (found_type == BTRFS_INODE_ITEM_KEY)
3322 			break;
3323 
3324 		if (path->slots[0] == 0 ||
3325 		    path->slots[0] != pending_del_slot) {
3326 			if (root->ref_cows &&
3327 			    BTRFS_I(inode)->location.objectid !=
3328 						BTRFS_FREE_INO_OBJECTID) {
3329 				err = -EAGAIN;
3330 				goto out;
3331 			}
3332 			if (pending_del_nr) {
3333 				ret = btrfs_del_items(trans, root, path,
3334 						pending_del_slot,
3335 						pending_del_nr);
3336 				BUG_ON(ret);
3337 				pending_del_nr = 0;
3338 			}
3339 			btrfs_release_path(path);
3340 			goto search_again;
3341 		} else {
3342 			path->slots[0]--;
3343 		}
3344 	}
3345 out:
3346 	if (pending_del_nr) {
3347 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3348 				      pending_del_nr);
3349 		BUG_ON(ret);
3350 	}
3351 	btrfs_free_path(path);
3352 	return err;
3353 }
3354 
3355 /*
3356  * taken from block_truncate_page, but does cow as it zeros out
3357  * any bytes left in the last page in the file.
3358  */
3359 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3360 {
3361 	struct inode *inode = mapping->host;
3362 	struct btrfs_root *root = BTRFS_I(inode)->root;
3363 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3364 	struct btrfs_ordered_extent *ordered;
3365 	struct extent_state *cached_state = NULL;
3366 	char *kaddr;
3367 	u32 blocksize = root->sectorsize;
3368 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3369 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3370 	struct page *page;
3371 	int ret = 0;
3372 	u64 page_start;
3373 	u64 page_end;
3374 
3375 	if ((offset & (blocksize - 1)) == 0)
3376 		goto out;
3377 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3378 	if (ret)
3379 		goto out;
3380 
3381 	ret = -ENOMEM;
3382 again:
3383 	page = find_or_create_page(mapping, index, GFP_NOFS);
3384 	if (!page) {
3385 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3386 		goto out;
3387 	}
3388 
3389 	page_start = page_offset(page);
3390 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3391 
3392 	if (!PageUptodate(page)) {
3393 		ret = btrfs_readpage(NULL, page);
3394 		lock_page(page);
3395 		if (page->mapping != mapping) {
3396 			unlock_page(page);
3397 			page_cache_release(page);
3398 			goto again;
3399 		}
3400 		if (!PageUptodate(page)) {
3401 			ret = -EIO;
3402 			goto out_unlock;
3403 		}
3404 	}
3405 	wait_on_page_writeback(page);
3406 
3407 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3408 			 GFP_NOFS);
3409 	set_page_extent_mapped(page);
3410 
3411 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3412 	if (ordered) {
3413 		unlock_extent_cached(io_tree, page_start, page_end,
3414 				     &cached_state, GFP_NOFS);
3415 		unlock_page(page);
3416 		page_cache_release(page);
3417 		btrfs_start_ordered_extent(inode, ordered, 1);
3418 		btrfs_put_ordered_extent(ordered);
3419 		goto again;
3420 	}
3421 
3422 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3423 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3424 			  0, 0, &cached_state, GFP_NOFS);
3425 
3426 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3427 					&cached_state);
3428 	if (ret) {
3429 		unlock_extent_cached(io_tree, page_start, page_end,
3430 				     &cached_state, GFP_NOFS);
3431 		goto out_unlock;
3432 	}
3433 
3434 	ret = 0;
3435 	if (offset != PAGE_CACHE_SIZE) {
3436 		kaddr = kmap(page);
3437 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3438 		flush_dcache_page(page);
3439 		kunmap(page);
3440 	}
3441 	ClearPageChecked(page);
3442 	set_page_dirty(page);
3443 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3444 			     GFP_NOFS);
3445 
3446 out_unlock:
3447 	if (ret)
3448 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3449 	unlock_page(page);
3450 	page_cache_release(page);
3451 out:
3452 	return ret;
3453 }
3454 
3455 /*
3456  * This function puts in dummy file extents for the area we're creating a hole
3457  * for.  So if we are truncating this file to a larger size we need to insert
3458  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3459  * the range between oldsize and size
3460  */
3461 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3462 {
3463 	struct btrfs_trans_handle *trans;
3464 	struct btrfs_root *root = BTRFS_I(inode)->root;
3465 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3466 	struct extent_map *em = NULL;
3467 	struct extent_state *cached_state = NULL;
3468 	u64 mask = root->sectorsize - 1;
3469 	u64 hole_start = (oldsize + mask) & ~mask;
3470 	u64 block_end = (size + mask) & ~mask;
3471 	u64 last_byte;
3472 	u64 cur_offset;
3473 	u64 hole_size;
3474 	int err = 0;
3475 
3476 	if (size <= hole_start)
3477 		return 0;
3478 
3479 	while (1) {
3480 		struct btrfs_ordered_extent *ordered;
3481 		btrfs_wait_ordered_range(inode, hole_start,
3482 					 block_end - hole_start);
3483 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3484 				 &cached_state, GFP_NOFS);
3485 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3486 		if (!ordered)
3487 			break;
3488 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3489 				     &cached_state, GFP_NOFS);
3490 		btrfs_put_ordered_extent(ordered);
3491 	}
3492 
3493 	cur_offset = hole_start;
3494 	while (1) {
3495 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3496 				block_end - cur_offset, 0);
3497 		BUG_ON(IS_ERR_OR_NULL(em));
3498 		last_byte = min(extent_map_end(em), block_end);
3499 		last_byte = (last_byte + mask) & ~mask;
3500 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3501 			u64 hint_byte = 0;
3502 			hole_size = last_byte - cur_offset;
3503 
3504 			trans = btrfs_start_transaction(root, 2);
3505 			if (IS_ERR(trans)) {
3506 				err = PTR_ERR(trans);
3507 				break;
3508 			}
3509 
3510 			err = btrfs_drop_extents(trans, inode, cur_offset,
3511 						 cur_offset + hole_size,
3512 						 &hint_byte, 1);
3513 			if (err) {
3514 				btrfs_end_transaction(trans, root);
3515 				break;
3516 			}
3517 
3518 			err = btrfs_insert_file_extent(trans, root,
3519 					btrfs_ino(inode), cur_offset, 0,
3520 					0, hole_size, 0, hole_size,
3521 					0, 0, 0);
3522 			if (err) {
3523 				btrfs_end_transaction(trans, root);
3524 				break;
3525 			}
3526 
3527 			btrfs_drop_extent_cache(inode, hole_start,
3528 					last_byte - 1, 0);
3529 
3530 			btrfs_end_transaction(trans, root);
3531 		}
3532 		free_extent_map(em);
3533 		em = NULL;
3534 		cur_offset = last_byte;
3535 		if (cur_offset >= block_end)
3536 			break;
3537 	}
3538 
3539 	free_extent_map(em);
3540 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3541 			     GFP_NOFS);
3542 	return err;
3543 }
3544 
3545 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3546 {
3547 	loff_t oldsize = i_size_read(inode);
3548 	int ret;
3549 
3550 	if (newsize == oldsize)
3551 		return 0;
3552 
3553 	if (newsize > oldsize) {
3554 		i_size_write(inode, newsize);
3555 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3556 		truncate_pagecache(inode, oldsize, newsize);
3557 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3558 		if (ret) {
3559 			btrfs_setsize(inode, oldsize);
3560 			return ret;
3561 		}
3562 
3563 		mark_inode_dirty(inode);
3564 	} else {
3565 
3566 		/*
3567 		 * We're truncating a file that used to have good data down to
3568 		 * zero. Make sure it gets into the ordered flush list so that
3569 		 * any new writes get down to disk quickly.
3570 		 */
3571 		if (newsize == 0)
3572 			BTRFS_I(inode)->ordered_data_close = 1;
3573 
3574 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3575 		truncate_setsize(inode, newsize);
3576 		ret = btrfs_truncate(inode);
3577 	}
3578 
3579 	return ret;
3580 }
3581 
3582 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3583 {
3584 	struct inode *inode = dentry->d_inode;
3585 	struct btrfs_root *root = BTRFS_I(inode)->root;
3586 	int err;
3587 
3588 	if (btrfs_root_readonly(root))
3589 		return -EROFS;
3590 
3591 	err = inode_change_ok(inode, attr);
3592 	if (err)
3593 		return err;
3594 
3595 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3596 		err = btrfs_setsize(inode, attr->ia_size);
3597 		if (err)
3598 			return err;
3599 	}
3600 
3601 	if (attr->ia_valid) {
3602 		setattr_copy(inode, attr);
3603 		mark_inode_dirty(inode);
3604 
3605 		if (attr->ia_valid & ATTR_MODE)
3606 			err = btrfs_acl_chmod(inode);
3607 	}
3608 
3609 	return err;
3610 }
3611 
3612 void btrfs_evict_inode(struct inode *inode)
3613 {
3614 	struct btrfs_trans_handle *trans;
3615 	struct btrfs_root *root = BTRFS_I(inode)->root;
3616 	unsigned long nr;
3617 	int ret;
3618 
3619 	trace_btrfs_inode_evict(inode);
3620 
3621 	truncate_inode_pages(&inode->i_data, 0);
3622 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3623 			       btrfs_is_free_space_inode(root, inode)))
3624 		goto no_delete;
3625 
3626 	if (is_bad_inode(inode)) {
3627 		btrfs_orphan_del(NULL, inode);
3628 		goto no_delete;
3629 	}
3630 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3631 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3632 
3633 	if (root->fs_info->log_root_recovering) {
3634 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3635 		goto no_delete;
3636 	}
3637 
3638 	if (inode->i_nlink > 0) {
3639 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3640 		goto no_delete;
3641 	}
3642 
3643 	btrfs_i_size_write(inode, 0);
3644 
3645 	while (1) {
3646 		trans = btrfs_join_transaction(root);
3647 		BUG_ON(IS_ERR(trans));
3648 		trans->block_rsv = root->orphan_block_rsv;
3649 
3650 		ret = btrfs_block_rsv_check(trans, root,
3651 					    root->orphan_block_rsv, 0, 5);
3652 		if (ret) {
3653 			BUG_ON(ret != -EAGAIN);
3654 			ret = btrfs_commit_transaction(trans, root);
3655 			BUG_ON(ret);
3656 			continue;
3657 		}
3658 
3659 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3660 		if (ret != -EAGAIN)
3661 			break;
3662 
3663 		nr = trans->blocks_used;
3664 		btrfs_end_transaction(trans, root);
3665 		trans = NULL;
3666 		btrfs_btree_balance_dirty(root, nr);
3667 
3668 	}
3669 
3670 	if (ret == 0) {
3671 		ret = btrfs_orphan_del(trans, inode);
3672 		BUG_ON(ret);
3673 	}
3674 
3675 	if (!(root == root->fs_info->tree_root ||
3676 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3677 		btrfs_return_ino(root, btrfs_ino(inode));
3678 
3679 	nr = trans->blocks_used;
3680 	btrfs_end_transaction(trans, root);
3681 	btrfs_btree_balance_dirty(root, nr);
3682 no_delete:
3683 	end_writeback(inode);
3684 	return;
3685 }
3686 
3687 /*
3688  * this returns the key found in the dir entry in the location pointer.
3689  * If no dir entries were found, location->objectid is 0.
3690  */
3691 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3692 			       struct btrfs_key *location)
3693 {
3694 	const char *name = dentry->d_name.name;
3695 	int namelen = dentry->d_name.len;
3696 	struct btrfs_dir_item *di;
3697 	struct btrfs_path *path;
3698 	struct btrfs_root *root = BTRFS_I(dir)->root;
3699 	int ret = 0;
3700 
3701 	path = btrfs_alloc_path();
3702 	if (!path)
3703 		return -ENOMEM;
3704 
3705 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3706 				    namelen, 0);
3707 	if (IS_ERR(di))
3708 		ret = PTR_ERR(di);
3709 
3710 	if (IS_ERR_OR_NULL(di))
3711 		goto out_err;
3712 
3713 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3714 out:
3715 	btrfs_free_path(path);
3716 	return ret;
3717 out_err:
3718 	location->objectid = 0;
3719 	goto out;
3720 }
3721 
3722 /*
3723  * when we hit a tree root in a directory, the btrfs part of the inode
3724  * needs to be changed to reflect the root directory of the tree root.  This
3725  * is kind of like crossing a mount point.
3726  */
3727 static int fixup_tree_root_location(struct btrfs_root *root,
3728 				    struct inode *dir,
3729 				    struct dentry *dentry,
3730 				    struct btrfs_key *location,
3731 				    struct btrfs_root **sub_root)
3732 {
3733 	struct btrfs_path *path;
3734 	struct btrfs_root *new_root;
3735 	struct btrfs_root_ref *ref;
3736 	struct extent_buffer *leaf;
3737 	int ret;
3738 	int err = 0;
3739 
3740 	path = btrfs_alloc_path();
3741 	if (!path) {
3742 		err = -ENOMEM;
3743 		goto out;
3744 	}
3745 
3746 	err = -ENOENT;
3747 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3748 				  BTRFS_I(dir)->root->root_key.objectid,
3749 				  location->objectid);
3750 	if (ret) {
3751 		if (ret < 0)
3752 			err = ret;
3753 		goto out;
3754 	}
3755 
3756 	leaf = path->nodes[0];
3757 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3758 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3759 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3760 		goto out;
3761 
3762 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3763 				   (unsigned long)(ref + 1),
3764 				   dentry->d_name.len);
3765 	if (ret)
3766 		goto out;
3767 
3768 	btrfs_release_path(path);
3769 
3770 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3771 	if (IS_ERR(new_root)) {
3772 		err = PTR_ERR(new_root);
3773 		goto out;
3774 	}
3775 
3776 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3777 		err = -ENOENT;
3778 		goto out;
3779 	}
3780 
3781 	*sub_root = new_root;
3782 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3783 	location->type = BTRFS_INODE_ITEM_KEY;
3784 	location->offset = 0;
3785 	err = 0;
3786 out:
3787 	btrfs_free_path(path);
3788 	return err;
3789 }
3790 
3791 static void inode_tree_add(struct inode *inode)
3792 {
3793 	struct btrfs_root *root = BTRFS_I(inode)->root;
3794 	struct btrfs_inode *entry;
3795 	struct rb_node **p;
3796 	struct rb_node *parent;
3797 	u64 ino = btrfs_ino(inode);
3798 again:
3799 	p = &root->inode_tree.rb_node;
3800 	parent = NULL;
3801 
3802 	if (inode_unhashed(inode))
3803 		return;
3804 
3805 	spin_lock(&root->inode_lock);
3806 	while (*p) {
3807 		parent = *p;
3808 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3809 
3810 		if (ino < btrfs_ino(&entry->vfs_inode))
3811 			p = &parent->rb_left;
3812 		else if (ino > btrfs_ino(&entry->vfs_inode))
3813 			p = &parent->rb_right;
3814 		else {
3815 			WARN_ON(!(entry->vfs_inode.i_state &
3816 				  (I_WILL_FREE | I_FREEING)));
3817 			rb_erase(parent, &root->inode_tree);
3818 			RB_CLEAR_NODE(parent);
3819 			spin_unlock(&root->inode_lock);
3820 			goto again;
3821 		}
3822 	}
3823 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3824 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3825 	spin_unlock(&root->inode_lock);
3826 }
3827 
3828 static void inode_tree_del(struct inode *inode)
3829 {
3830 	struct btrfs_root *root = BTRFS_I(inode)->root;
3831 	int empty = 0;
3832 
3833 	spin_lock(&root->inode_lock);
3834 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3835 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3836 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3837 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3838 	}
3839 	spin_unlock(&root->inode_lock);
3840 
3841 	/*
3842 	 * Free space cache has inodes in the tree root, but the tree root has a
3843 	 * root_refs of 0, so this could end up dropping the tree root as a
3844 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3845 	 * make sure we don't drop it.
3846 	 */
3847 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3848 	    root != root->fs_info->tree_root) {
3849 		synchronize_srcu(&root->fs_info->subvol_srcu);
3850 		spin_lock(&root->inode_lock);
3851 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3852 		spin_unlock(&root->inode_lock);
3853 		if (empty)
3854 			btrfs_add_dead_root(root);
3855 	}
3856 }
3857 
3858 int btrfs_invalidate_inodes(struct btrfs_root *root)
3859 {
3860 	struct rb_node *node;
3861 	struct rb_node *prev;
3862 	struct btrfs_inode *entry;
3863 	struct inode *inode;
3864 	u64 objectid = 0;
3865 
3866 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3867 
3868 	spin_lock(&root->inode_lock);
3869 again:
3870 	node = root->inode_tree.rb_node;
3871 	prev = NULL;
3872 	while (node) {
3873 		prev = node;
3874 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3875 
3876 		if (objectid < btrfs_ino(&entry->vfs_inode))
3877 			node = node->rb_left;
3878 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3879 			node = node->rb_right;
3880 		else
3881 			break;
3882 	}
3883 	if (!node) {
3884 		while (prev) {
3885 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3886 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3887 				node = prev;
3888 				break;
3889 			}
3890 			prev = rb_next(prev);
3891 		}
3892 	}
3893 	while (node) {
3894 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3895 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3896 		inode = igrab(&entry->vfs_inode);
3897 		if (inode) {
3898 			spin_unlock(&root->inode_lock);
3899 			if (atomic_read(&inode->i_count) > 1)
3900 				d_prune_aliases(inode);
3901 			/*
3902 			 * btrfs_drop_inode will have it removed from
3903 			 * the inode cache when its usage count
3904 			 * hits zero.
3905 			 */
3906 			iput(inode);
3907 			cond_resched();
3908 			spin_lock(&root->inode_lock);
3909 			goto again;
3910 		}
3911 
3912 		if (cond_resched_lock(&root->inode_lock))
3913 			goto again;
3914 
3915 		node = rb_next(node);
3916 	}
3917 	spin_unlock(&root->inode_lock);
3918 	return 0;
3919 }
3920 
3921 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3922 {
3923 	struct btrfs_iget_args *args = p;
3924 	inode->i_ino = args->ino;
3925 	BTRFS_I(inode)->root = args->root;
3926 	btrfs_set_inode_space_info(args->root, inode);
3927 	return 0;
3928 }
3929 
3930 static int btrfs_find_actor(struct inode *inode, void *opaque)
3931 {
3932 	struct btrfs_iget_args *args = opaque;
3933 	return args->ino == btrfs_ino(inode) &&
3934 		args->root == BTRFS_I(inode)->root;
3935 }
3936 
3937 static struct inode *btrfs_iget_locked(struct super_block *s,
3938 				       u64 objectid,
3939 				       struct btrfs_root *root)
3940 {
3941 	struct inode *inode;
3942 	struct btrfs_iget_args args;
3943 	args.ino = objectid;
3944 	args.root = root;
3945 
3946 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3947 			     btrfs_init_locked_inode,
3948 			     (void *)&args);
3949 	return inode;
3950 }
3951 
3952 /* Get an inode object given its location and corresponding root.
3953  * Returns in *is_new if the inode was read from disk
3954  */
3955 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3956 			 struct btrfs_root *root, int *new)
3957 {
3958 	struct inode *inode;
3959 
3960 	inode = btrfs_iget_locked(s, location->objectid, root);
3961 	if (!inode)
3962 		return ERR_PTR(-ENOMEM);
3963 
3964 	if (inode->i_state & I_NEW) {
3965 		BTRFS_I(inode)->root = root;
3966 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3967 		btrfs_read_locked_inode(inode);
3968 		if (!is_bad_inode(inode)) {
3969 			inode_tree_add(inode);
3970 			unlock_new_inode(inode);
3971 			if (new)
3972 				*new = 1;
3973 		} else {
3974 			unlock_new_inode(inode);
3975 			iput(inode);
3976 			inode = ERR_PTR(-ESTALE);
3977 		}
3978 	}
3979 
3980 	return inode;
3981 }
3982 
3983 static struct inode *new_simple_dir(struct super_block *s,
3984 				    struct btrfs_key *key,
3985 				    struct btrfs_root *root)
3986 {
3987 	struct inode *inode = new_inode(s);
3988 
3989 	if (!inode)
3990 		return ERR_PTR(-ENOMEM);
3991 
3992 	BTRFS_I(inode)->root = root;
3993 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3994 	BTRFS_I(inode)->dummy_inode = 1;
3995 
3996 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3997 	inode->i_op = &simple_dir_inode_operations;
3998 	inode->i_fop = &simple_dir_operations;
3999 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4000 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4001 
4002 	return inode;
4003 }
4004 
4005 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4006 {
4007 	struct inode *inode;
4008 	struct btrfs_root *root = BTRFS_I(dir)->root;
4009 	struct btrfs_root *sub_root = root;
4010 	struct btrfs_key location;
4011 	int index;
4012 	int ret = 0;
4013 
4014 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4015 		return ERR_PTR(-ENAMETOOLONG);
4016 
4017 	if (unlikely(d_need_lookup(dentry))) {
4018 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4019 		kfree(dentry->d_fsdata);
4020 		dentry->d_fsdata = NULL;
4021 		/* This thing is hashed, drop it for now */
4022 		d_drop(dentry);
4023 	} else {
4024 		ret = btrfs_inode_by_name(dir, dentry, &location);
4025 	}
4026 
4027 	if (ret < 0)
4028 		return ERR_PTR(ret);
4029 
4030 	if (location.objectid == 0)
4031 		return NULL;
4032 
4033 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4034 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4035 		return inode;
4036 	}
4037 
4038 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4039 
4040 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4041 	ret = fixup_tree_root_location(root, dir, dentry,
4042 				       &location, &sub_root);
4043 	if (ret < 0) {
4044 		if (ret != -ENOENT)
4045 			inode = ERR_PTR(ret);
4046 		else
4047 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4048 	} else {
4049 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4050 	}
4051 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4052 
4053 	if (!IS_ERR(inode) && root != sub_root) {
4054 		down_read(&root->fs_info->cleanup_work_sem);
4055 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4056 			ret = btrfs_orphan_cleanup(sub_root);
4057 		up_read(&root->fs_info->cleanup_work_sem);
4058 		if (ret)
4059 			inode = ERR_PTR(ret);
4060 	}
4061 
4062 	return inode;
4063 }
4064 
4065 static int btrfs_dentry_delete(const struct dentry *dentry)
4066 {
4067 	struct btrfs_root *root;
4068 
4069 	if (!dentry->d_inode && !IS_ROOT(dentry))
4070 		dentry = dentry->d_parent;
4071 
4072 	if (dentry->d_inode) {
4073 		root = BTRFS_I(dentry->d_inode)->root;
4074 		if (btrfs_root_refs(&root->root_item) == 0)
4075 			return 1;
4076 	}
4077 	return 0;
4078 }
4079 
4080 static void btrfs_dentry_release(struct dentry *dentry)
4081 {
4082 	if (dentry->d_fsdata)
4083 		kfree(dentry->d_fsdata);
4084 }
4085 
4086 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4087 				   struct nameidata *nd)
4088 {
4089 	struct dentry *ret;
4090 
4091 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4092 	if (unlikely(d_need_lookup(dentry))) {
4093 		spin_lock(&dentry->d_lock);
4094 		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4095 		spin_unlock(&dentry->d_lock);
4096 	}
4097 	return ret;
4098 }
4099 
4100 unsigned char btrfs_filetype_table[] = {
4101 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4102 };
4103 
4104 static int btrfs_real_readdir(struct file *filp, void *dirent,
4105 			      filldir_t filldir)
4106 {
4107 	struct inode *inode = filp->f_dentry->d_inode;
4108 	struct btrfs_root *root = BTRFS_I(inode)->root;
4109 	struct btrfs_item *item;
4110 	struct btrfs_dir_item *di;
4111 	struct btrfs_key key;
4112 	struct btrfs_key found_key;
4113 	struct btrfs_path *path;
4114 	struct list_head ins_list;
4115 	struct list_head del_list;
4116 	struct qstr q;
4117 	int ret;
4118 	struct extent_buffer *leaf;
4119 	int slot;
4120 	unsigned char d_type;
4121 	int over = 0;
4122 	u32 di_cur;
4123 	u32 di_total;
4124 	u32 di_len;
4125 	int key_type = BTRFS_DIR_INDEX_KEY;
4126 	char tmp_name[32];
4127 	char *name_ptr;
4128 	int name_len;
4129 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4130 
4131 	/* FIXME, use a real flag for deciding about the key type */
4132 	if (root->fs_info->tree_root == root)
4133 		key_type = BTRFS_DIR_ITEM_KEY;
4134 
4135 	/* special case for "." */
4136 	if (filp->f_pos == 0) {
4137 		over = filldir(dirent, ".", 1,
4138 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
4139 		if (over)
4140 			return 0;
4141 		filp->f_pos = 1;
4142 	}
4143 	/* special case for .., just use the back ref */
4144 	if (filp->f_pos == 1) {
4145 		u64 pino = parent_ino(filp->f_path.dentry);
4146 		over = filldir(dirent, "..", 2,
4147 			       filp->f_pos, pino, DT_DIR);
4148 		if (over)
4149 			return 0;
4150 		filp->f_pos = 2;
4151 	}
4152 	path = btrfs_alloc_path();
4153 	if (!path)
4154 		return -ENOMEM;
4155 
4156 	path->reada = 1;
4157 
4158 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4159 		INIT_LIST_HEAD(&ins_list);
4160 		INIT_LIST_HEAD(&del_list);
4161 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4162 	}
4163 
4164 	btrfs_set_key_type(&key, key_type);
4165 	key.offset = filp->f_pos;
4166 	key.objectid = btrfs_ino(inode);
4167 
4168 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4169 	if (ret < 0)
4170 		goto err;
4171 
4172 	while (1) {
4173 		leaf = path->nodes[0];
4174 		slot = path->slots[0];
4175 		if (slot >= btrfs_header_nritems(leaf)) {
4176 			ret = btrfs_next_leaf(root, path);
4177 			if (ret < 0)
4178 				goto err;
4179 			else if (ret > 0)
4180 				break;
4181 			continue;
4182 		}
4183 
4184 		item = btrfs_item_nr(leaf, slot);
4185 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4186 
4187 		if (found_key.objectid != key.objectid)
4188 			break;
4189 		if (btrfs_key_type(&found_key) != key_type)
4190 			break;
4191 		if (found_key.offset < filp->f_pos)
4192 			goto next;
4193 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4194 		    btrfs_should_delete_dir_index(&del_list,
4195 						  found_key.offset))
4196 			goto next;
4197 
4198 		filp->f_pos = found_key.offset;
4199 		is_curr = 1;
4200 
4201 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4202 		di_cur = 0;
4203 		di_total = btrfs_item_size(leaf, item);
4204 
4205 		while (di_cur < di_total) {
4206 			struct btrfs_key location;
4207 			struct dentry *tmp;
4208 
4209 			if (verify_dir_item(root, leaf, di))
4210 				break;
4211 
4212 			name_len = btrfs_dir_name_len(leaf, di);
4213 			if (name_len <= sizeof(tmp_name)) {
4214 				name_ptr = tmp_name;
4215 			} else {
4216 				name_ptr = kmalloc(name_len, GFP_NOFS);
4217 				if (!name_ptr) {
4218 					ret = -ENOMEM;
4219 					goto err;
4220 				}
4221 			}
4222 			read_extent_buffer(leaf, name_ptr,
4223 					   (unsigned long)(di + 1), name_len);
4224 
4225 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4226 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4227 
4228 			q.name = name_ptr;
4229 			q.len = name_len;
4230 			q.hash = full_name_hash(q.name, q.len);
4231 			tmp = d_lookup(filp->f_dentry, &q);
4232 			if (!tmp) {
4233 				struct btrfs_key *newkey;
4234 
4235 				newkey = kzalloc(sizeof(struct btrfs_key),
4236 						 GFP_NOFS);
4237 				if (!newkey)
4238 					goto no_dentry;
4239 				tmp = d_alloc(filp->f_dentry, &q);
4240 				if (!tmp) {
4241 					kfree(newkey);
4242 					dput(tmp);
4243 					goto no_dentry;
4244 				}
4245 				memcpy(newkey, &location,
4246 				       sizeof(struct btrfs_key));
4247 				tmp->d_fsdata = newkey;
4248 				tmp->d_flags |= DCACHE_NEED_LOOKUP;
4249 				d_rehash(tmp);
4250 				dput(tmp);
4251 			} else {
4252 				dput(tmp);
4253 			}
4254 no_dentry:
4255 			/* is this a reference to our own snapshot? If so
4256 			 * skip it
4257 			 */
4258 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4259 			    location.objectid == root->root_key.objectid) {
4260 				over = 0;
4261 				goto skip;
4262 			}
4263 			over = filldir(dirent, name_ptr, name_len,
4264 				       found_key.offset, location.objectid,
4265 				       d_type);
4266 
4267 skip:
4268 			if (name_ptr != tmp_name)
4269 				kfree(name_ptr);
4270 
4271 			if (over)
4272 				goto nopos;
4273 			di_len = btrfs_dir_name_len(leaf, di) +
4274 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4275 			di_cur += di_len;
4276 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4277 		}
4278 next:
4279 		path->slots[0]++;
4280 	}
4281 
4282 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4283 		if (is_curr)
4284 			filp->f_pos++;
4285 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4286 						      &ins_list);
4287 		if (ret)
4288 			goto nopos;
4289 	}
4290 
4291 	/* Reached end of directory/root. Bump pos past the last item. */
4292 	if (key_type == BTRFS_DIR_INDEX_KEY)
4293 		/*
4294 		 * 32-bit glibc will use getdents64, but then strtol -
4295 		 * so the last number we can serve is this.
4296 		 */
4297 		filp->f_pos = 0x7fffffff;
4298 	else
4299 		filp->f_pos++;
4300 nopos:
4301 	ret = 0;
4302 err:
4303 	if (key_type == BTRFS_DIR_INDEX_KEY)
4304 		btrfs_put_delayed_items(&ins_list, &del_list);
4305 	btrfs_free_path(path);
4306 	return ret;
4307 }
4308 
4309 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4310 {
4311 	struct btrfs_root *root = BTRFS_I(inode)->root;
4312 	struct btrfs_trans_handle *trans;
4313 	int ret = 0;
4314 	bool nolock = false;
4315 
4316 	if (BTRFS_I(inode)->dummy_inode)
4317 		return 0;
4318 
4319 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4320 		nolock = true;
4321 
4322 	if (wbc->sync_mode == WB_SYNC_ALL) {
4323 		if (nolock)
4324 			trans = btrfs_join_transaction_nolock(root);
4325 		else
4326 			trans = btrfs_join_transaction(root);
4327 		if (IS_ERR(trans))
4328 			return PTR_ERR(trans);
4329 		if (nolock)
4330 			ret = btrfs_end_transaction_nolock(trans, root);
4331 		else
4332 			ret = btrfs_commit_transaction(trans, root);
4333 	}
4334 	return ret;
4335 }
4336 
4337 /*
4338  * This is somewhat expensive, updating the tree every time the
4339  * inode changes.  But, it is most likely to find the inode in cache.
4340  * FIXME, needs more benchmarking...there are no reasons other than performance
4341  * to keep or drop this code.
4342  */
4343 void btrfs_dirty_inode(struct inode *inode, int flags)
4344 {
4345 	struct btrfs_root *root = BTRFS_I(inode)->root;
4346 	struct btrfs_trans_handle *trans;
4347 	int ret;
4348 
4349 	if (BTRFS_I(inode)->dummy_inode)
4350 		return;
4351 
4352 	trans = btrfs_join_transaction(root);
4353 	BUG_ON(IS_ERR(trans));
4354 
4355 	ret = btrfs_update_inode(trans, root, inode);
4356 	if (ret && ret == -ENOSPC) {
4357 		/* whoops, lets try again with the full transaction */
4358 		btrfs_end_transaction(trans, root);
4359 		trans = btrfs_start_transaction(root, 1);
4360 		if (IS_ERR(trans)) {
4361 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4362 				       "dirty  inode %llu error %ld\n",
4363 				       (unsigned long long)btrfs_ino(inode),
4364 				       PTR_ERR(trans));
4365 			return;
4366 		}
4367 
4368 		ret = btrfs_update_inode(trans, root, inode);
4369 		if (ret) {
4370 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4371 				       "dirty  inode %llu error %d\n",
4372 				       (unsigned long long)btrfs_ino(inode),
4373 				       ret);
4374 		}
4375 	}
4376 	btrfs_end_transaction(trans, root);
4377 	if (BTRFS_I(inode)->delayed_node)
4378 		btrfs_balance_delayed_items(root);
4379 }
4380 
4381 /*
4382  * find the highest existing sequence number in a directory
4383  * and then set the in-memory index_cnt variable to reflect
4384  * free sequence numbers
4385  */
4386 static int btrfs_set_inode_index_count(struct inode *inode)
4387 {
4388 	struct btrfs_root *root = BTRFS_I(inode)->root;
4389 	struct btrfs_key key, found_key;
4390 	struct btrfs_path *path;
4391 	struct extent_buffer *leaf;
4392 	int ret;
4393 
4394 	key.objectid = btrfs_ino(inode);
4395 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4396 	key.offset = (u64)-1;
4397 
4398 	path = btrfs_alloc_path();
4399 	if (!path)
4400 		return -ENOMEM;
4401 
4402 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4403 	if (ret < 0)
4404 		goto out;
4405 	/* FIXME: we should be able to handle this */
4406 	if (ret == 0)
4407 		goto out;
4408 	ret = 0;
4409 
4410 	/*
4411 	 * MAGIC NUMBER EXPLANATION:
4412 	 * since we search a directory based on f_pos we have to start at 2
4413 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4414 	 * else has to start at 2
4415 	 */
4416 	if (path->slots[0] == 0) {
4417 		BTRFS_I(inode)->index_cnt = 2;
4418 		goto out;
4419 	}
4420 
4421 	path->slots[0]--;
4422 
4423 	leaf = path->nodes[0];
4424 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4425 
4426 	if (found_key.objectid != btrfs_ino(inode) ||
4427 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4428 		BTRFS_I(inode)->index_cnt = 2;
4429 		goto out;
4430 	}
4431 
4432 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4433 out:
4434 	btrfs_free_path(path);
4435 	return ret;
4436 }
4437 
4438 /*
4439  * helper to find a free sequence number in a given directory.  This current
4440  * code is very simple, later versions will do smarter things in the btree
4441  */
4442 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4443 {
4444 	int ret = 0;
4445 
4446 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4447 		ret = btrfs_inode_delayed_dir_index_count(dir);
4448 		if (ret) {
4449 			ret = btrfs_set_inode_index_count(dir);
4450 			if (ret)
4451 				return ret;
4452 		}
4453 	}
4454 
4455 	*index = BTRFS_I(dir)->index_cnt;
4456 	BTRFS_I(dir)->index_cnt++;
4457 
4458 	return ret;
4459 }
4460 
4461 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4462 				     struct btrfs_root *root,
4463 				     struct inode *dir,
4464 				     const char *name, int name_len,
4465 				     u64 ref_objectid, u64 objectid, int mode,
4466 				     u64 *index)
4467 {
4468 	struct inode *inode;
4469 	struct btrfs_inode_item *inode_item;
4470 	struct btrfs_key *location;
4471 	struct btrfs_path *path;
4472 	struct btrfs_inode_ref *ref;
4473 	struct btrfs_key key[2];
4474 	u32 sizes[2];
4475 	unsigned long ptr;
4476 	int ret;
4477 	int owner;
4478 
4479 	path = btrfs_alloc_path();
4480 	if (!path)
4481 		return ERR_PTR(-ENOMEM);
4482 
4483 	inode = new_inode(root->fs_info->sb);
4484 	if (!inode) {
4485 		btrfs_free_path(path);
4486 		return ERR_PTR(-ENOMEM);
4487 	}
4488 
4489 	/*
4490 	 * we have to initialize this early, so we can reclaim the inode
4491 	 * number if we fail afterwards in this function.
4492 	 */
4493 	inode->i_ino = objectid;
4494 
4495 	if (dir) {
4496 		trace_btrfs_inode_request(dir);
4497 
4498 		ret = btrfs_set_inode_index(dir, index);
4499 		if (ret) {
4500 			btrfs_free_path(path);
4501 			iput(inode);
4502 			return ERR_PTR(ret);
4503 		}
4504 	}
4505 	/*
4506 	 * index_cnt is ignored for everything but a dir,
4507 	 * btrfs_get_inode_index_count has an explanation for the magic
4508 	 * number
4509 	 */
4510 	BTRFS_I(inode)->index_cnt = 2;
4511 	BTRFS_I(inode)->root = root;
4512 	BTRFS_I(inode)->generation = trans->transid;
4513 	inode->i_generation = BTRFS_I(inode)->generation;
4514 	btrfs_set_inode_space_info(root, inode);
4515 
4516 	if (S_ISDIR(mode))
4517 		owner = 0;
4518 	else
4519 		owner = 1;
4520 
4521 	key[0].objectid = objectid;
4522 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4523 	key[0].offset = 0;
4524 
4525 	key[1].objectid = objectid;
4526 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4527 	key[1].offset = ref_objectid;
4528 
4529 	sizes[0] = sizeof(struct btrfs_inode_item);
4530 	sizes[1] = name_len + sizeof(*ref);
4531 
4532 	path->leave_spinning = 1;
4533 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4534 	if (ret != 0)
4535 		goto fail;
4536 
4537 	inode_init_owner(inode, dir, mode);
4538 	inode_set_bytes(inode, 0);
4539 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4540 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4541 				  struct btrfs_inode_item);
4542 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4543 
4544 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4545 			     struct btrfs_inode_ref);
4546 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4547 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4548 	ptr = (unsigned long)(ref + 1);
4549 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4550 
4551 	btrfs_mark_buffer_dirty(path->nodes[0]);
4552 	btrfs_free_path(path);
4553 
4554 	location = &BTRFS_I(inode)->location;
4555 	location->objectid = objectid;
4556 	location->offset = 0;
4557 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4558 
4559 	btrfs_inherit_iflags(inode, dir);
4560 
4561 	if (S_ISREG(mode)) {
4562 		if (btrfs_test_opt(root, NODATASUM))
4563 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4564 		if (btrfs_test_opt(root, NODATACOW) ||
4565 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4566 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4567 	}
4568 
4569 	insert_inode_hash(inode);
4570 	inode_tree_add(inode);
4571 
4572 	trace_btrfs_inode_new(inode);
4573 	btrfs_set_inode_last_trans(trans, inode);
4574 
4575 	return inode;
4576 fail:
4577 	if (dir)
4578 		BTRFS_I(dir)->index_cnt--;
4579 	btrfs_free_path(path);
4580 	iput(inode);
4581 	return ERR_PTR(ret);
4582 }
4583 
4584 static inline u8 btrfs_inode_type(struct inode *inode)
4585 {
4586 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4587 }
4588 
4589 /*
4590  * utility function to add 'inode' into 'parent_inode' with
4591  * a give name and a given sequence number.
4592  * if 'add_backref' is true, also insert a backref from the
4593  * inode to the parent directory.
4594  */
4595 int btrfs_add_link(struct btrfs_trans_handle *trans,
4596 		   struct inode *parent_inode, struct inode *inode,
4597 		   const char *name, int name_len, int add_backref, u64 index)
4598 {
4599 	int ret = 0;
4600 	struct btrfs_key key;
4601 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4602 	u64 ino = btrfs_ino(inode);
4603 	u64 parent_ino = btrfs_ino(parent_inode);
4604 
4605 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4606 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4607 	} else {
4608 		key.objectid = ino;
4609 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4610 		key.offset = 0;
4611 	}
4612 
4613 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4614 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4615 					 key.objectid, root->root_key.objectid,
4616 					 parent_ino, index, name, name_len);
4617 	} else if (add_backref) {
4618 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4619 					     parent_ino, index);
4620 	}
4621 
4622 	if (ret == 0) {
4623 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4624 					    parent_inode, &key,
4625 					    btrfs_inode_type(inode), index);
4626 		BUG_ON(ret);
4627 
4628 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4629 				   name_len * 2);
4630 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4631 		ret = btrfs_update_inode(trans, root, parent_inode);
4632 	}
4633 	return ret;
4634 }
4635 
4636 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4637 			    struct inode *dir, struct dentry *dentry,
4638 			    struct inode *inode, int backref, u64 index)
4639 {
4640 	int err = btrfs_add_link(trans, dir, inode,
4641 				 dentry->d_name.name, dentry->d_name.len,
4642 				 backref, index);
4643 	if (!err) {
4644 		d_instantiate(dentry, inode);
4645 		return 0;
4646 	}
4647 	if (err > 0)
4648 		err = -EEXIST;
4649 	return err;
4650 }
4651 
4652 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4653 			int mode, dev_t rdev)
4654 {
4655 	struct btrfs_trans_handle *trans;
4656 	struct btrfs_root *root = BTRFS_I(dir)->root;
4657 	struct inode *inode = NULL;
4658 	int err;
4659 	int drop_inode = 0;
4660 	u64 objectid;
4661 	unsigned long nr = 0;
4662 	u64 index = 0;
4663 
4664 	if (!new_valid_dev(rdev))
4665 		return -EINVAL;
4666 
4667 	/*
4668 	 * 2 for inode item and ref
4669 	 * 2 for dir items
4670 	 * 1 for xattr if selinux is on
4671 	 */
4672 	trans = btrfs_start_transaction(root, 5);
4673 	if (IS_ERR(trans))
4674 		return PTR_ERR(trans);
4675 
4676 	err = btrfs_find_free_ino(root, &objectid);
4677 	if (err)
4678 		goto out_unlock;
4679 
4680 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4681 				dentry->d_name.len, btrfs_ino(dir), objectid,
4682 				mode, &index);
4683 	if (IS_ERR(inode)) {
4684 		err = PTR_ERR(inode);
4685 		goto out_unlock;
4686 	}
4687 
4688 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4689 	if (err) {
4690 		drop_inode = 1;
4691 		goto out_unlock;
4692 	}
4693 
4694 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4695 	if (err)
4696 		drop_inode = 1;
4697 	else {
4698 		inode->i_op = &btrfs_special_inode_operations;
4699 		init_special_inode(inode, inode->i_mode, rdev);
4700 		btrfs_update_inode(trans, root, inode);
4701 	}
4702 out_unlock:
4703 	nr = trans->blocks_used;
4704 	btrfs_end_transaction_throttle(trans, root);
4705 	btrfs_btree_balance_dirty(root, nr);
4706 	if (drop_inode) {
4707 		inode_dec_link_count(inode);
4708 		iput(inode);
4709 	}
4710 	return err;
4711 }
4712 
4713 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4714 			int mode, struct nameidata *nd)
4715 {
4716 	struct btrfs_trans_handle *trans;
4717 	struct btrfs_root *root = BTRFS_I(dir)->root;
4718 	struct inode *inode = NULL;
4719 	int drop_inode = 0;
4720 	int err;
4721 	unsigned long nr = 0;
4722 	u64 objectid;
4723 	u64 index = 0;
4724 
4725 	/*
4726 	 * 2 for inode item and ref
4727 	 * 2 for dir items
4728 	 * 1 for xattr if selinux is on
4729 	 */
4730 	trans = btrfs_start_transaction(root, 5);
4731 	if (IS_ERR(trans))
4732 		return PTR_ERR(trans);
4733 
4734 	err = btrfs_find_free_ino(root, &objectid);
4735 	if (err)
4736 		goto out_unlock;
4737 
4738 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4739 				dentry->d_name.len, btrfs_ino(dir), objectid,
4740 				mode, &index);
4741 	if (IS_ERR(inode)) {
4742 		err = PTR_ERR(inode);
4743 		goto out_unlock;
4744 	}
4745 
4746 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4747 	if (err) {
4748 		drop_inode = 1;
4749 		goto out_unlock;
4750 	}
4751 
4752 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4753 	if (err)
4754 		drop_inode = 1;
4755 	else {
4756 		inode->i_mapping->a_ops = &btrfs_aops;
4757 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4758 		inode->i_fop = &btrfs_file_operations;
4759 		inode->i_op = &btrfs_file_inode_operations;
4760 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4761 	}
4762 out_unlock:
4763 	nr = trans->blocks_used;
4764 	btrfs_end_transaction_throttle(trans, root);
4765 	if (drop_inode) {
4766 		inode_dec_link_count(inode);
4767 		iput(inode);
4768 	}
4769 	btrfs_btree_balance_dirty(root, nr);
4770 	return err;
4771 }
4772 
4773 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4774 		      struct dentry *dentry)
4775 {
4776 	struct btrfs_trans_handle *trans;
4777 	struct btrfs_root *root = BTRFS_I(dir)->root;
4778 	struct inode *inode = old_dentry->d_inode;
4779 	u64 index;
4780 	unsigned long nr = 0;
4781 	int err;
4782 	int drop_inode = 0;
4783 
4784 	/* do not allow sys_link's with other subvols of the same device */
4785 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4786 		return -EXDEV;
4787 
4788 	if (inode->i_nlink == ~0U)
4789 		return -EMLINK;
4790 
4791 	err = btrfs_set_inode_index(dir, &index);
4792 	if (err)
4793 		goto fail;
4794 
4795 	/*
4796 	 * 2 items for inode and inode ref
4797 	 * 2 items for dir items
4798 	 * 1 item for parent inode
4799 	 */
4800 	trans = btrfs_start_transaction(root, 5);
4801 	if (IS_ERR(trans)) {
4802 		err = PTR_ERR(trans);
4803 		goto fail;
4804 	}
4805 
4806 	btrfs_inc_nlink(inode);
4807 	inode->i_ctime = CURRENT_TIME;
4808 	ihold(inode);
4809 
4810 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4811 
4812 	if (err) {
4813 		drop_inode = 1;
4814 	} else {
4815 		struct dentry *parent = dentry->d_parent;
4816 		err = btrfs_update_inode(trans, root, inode);
4817 		BUG_ON(err);
4818 		btrfs_log_new_name(trans, inode, NULL, parent);
4819 	}
4820 
4821 	nr = trans->blocks_used;
4822 	btrfs_end_transaction_throttle(trans, root);
4823 fail:
4824 	if (drop_inode) {
4825 		inode_dec_link_count(inode);
4826 		iput(inode);
4827 	}
4828 	btrfs_btree_balance_dirty(root, nr);
4829 	return err;
4830 }
4831 
4832 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4833 {
4834 	struct inode *inode = NULL;
4835 	struct btrfs_trans_handle *trans;
4836 	struct btrfs_root *root = BTRFS_I(dir)->root;
4837 	int err = 0;
4838 	int drop_on_err = 0;
4839 	u64 objectid = 0;
4840 	u64 index = 0;
4841 	unsigned long nr = 1;
4842 
4843 	/*
4844 	 * 2 items for inode and ref
4845 	 * 2 items for dir items
4846 	 * 1 for xattr if selinux is on
4847 	 */
4848 	trans = btrfs_start_transaction(root, 5);
4849 	if (IS_ERR(trans))
4850 		return PTR_ERR(trans);
4851 
4852 	err = btrfs_find_free_ino(root, &objectid);
4853 	if (err)
4854 		goto out_fail;
4855 
4856 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4857 				dentry->d_name.len, btrfs_ino(dir), objectid,
4858 				S_IFDIR | mode, &index);
4859 	if (IS_ERR(inode)) {
4860 		err = PTR_ERR(inode);
4861 		goto out_fail;
4862 	}
4863 
4864 	drop_on_err = 1;
4865 
4866 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4867 	if (err)
4868 		goto out_fail;
4869 
4870 	inode->i_op = &btrfs_dir_inode_operations;
4871 	inode->i_fop = &btrfs_dir_file_operations;
4872 
4873 	btrfs_i_size_write(inode, 0);
4874 	err = btrfs_update_inode(trans, root, inode);
4875 	if (err)
4876 		goto out_fail;
4877 
4878 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4879 			     dentry->d_name.len, 0, index);
4880 	if (err)
4881 		goto out_fail;
4882 
4883 	d_instantiate(dentry, inode);
4884 	drop_on_err = 0;
4885 
4886 out_fail:
4887 	nr = trans->blocks_used;
4888 	btrfs_end_transaction_throttle(trans, root);
4889 	if (drop_on_err)
4890 		iput(inode);
4891 	btrfs_btree_balance_dirty(root, nr);
4892 	return err;
4893 }
4894 
4895 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4896  * and an extent that you want to insert, deal with overlap and insert
4897  * the new extent into the tree.
4898  */
4899 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4900 				struct extent_map *existing,
4901 				struct extent_map *em,
4902 				u64 map_start, u64 map_len)
4903 {
4904 	u64 start_diff;
4905 
4906 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4907 	start_diff = map_start - em->start;
4908 	em->start = map_start;
4909 	em->len = map_len;
4910 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4911 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4912 		em->block_start += start_diff;
4913 		em->block_len -= start_diff;
4914 	}
4915 	return add_extent_mapping(em_tree, em);
4916 }
4917 
4918 static noinline int uncompress_inline(struct btrfs_path *path,
4919 				      struct inode *inode, struct page *page,
4920 				      size_t pg_offset, u64 extent_offset,
4921 				      struct btrfs_file_extent_item *item)
4922 {
4923 	int ret;
4924 	struct extent_buffer *leaf = path->nodes[0];
4925 	char *tmp;
4926 	size_t max_size;
4927 	unsigned long inline_size;
4928 	unsigned long ptr;
4929 	int compress_type;
4930 
4931 	WARN_ON(pg_offset != 0);
4932 	compress_type = btrfs_file_extent_compression(leaf, item);
4933 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4934 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4935 					btrfs_item_nr(leaf, path->slots[0]));
4936 	tmp = kmalloc(inline_size, GFP_NOFS);
4937 	if (!tmp)
4938 		return -ENOMEM;
4939 	ptr = btrfs_file_extent_inline_start(item);
4940 
4941 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4942 
4943 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4944 	ret = btrfs_decompress(compress_type, tmp, page,
4945 			       extent_offset, inline_size, max_size);
4946 	if (ret) {
4947 		char *kaddr = kmap_atomic(page, KM_USER0);
4948 		unsigned long copy_size = min_t(u64,
4949 				  PAGE_CACHE_SIZE - pg_offset,
4950 				  max_size - extent_offset);
4951 		memset(kaddr + pg_offset, 0, copy_size);
4952 		kunmap_atomic(kaddr, KM_USER0);
4953 	}
4954 	kfree(tmp);
4955 	return 0;
4956 }
4957 
4958 /*
4959  * a bit scary, this does extent mapping from logical file offset to the disk.
4960  * the ugly parts come from merging extents from the disk with the in-ram
4961  * representation.  This gets more complex because of the data=ordered code,
4962  * where the in-ram extents might be locked pending data=ordered completion.
4963  *
4964  * This also copies inline extents directly into the page.
4965  */
4966 
4967 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4968 				    size_t pg_offset, u64 start, u64 len,
4969 				    int create)
4970 {
4971 	int ret;
4972 	int err = 0;
4973 	u64 bytenr;
4974 	u64 extent_start = 0;
4975 	u64 extent_end = 0;
4976 	u64 objectid = btrfs_ino(inode);
4977 	u32 found_type;
4978 	struct btrfs_path *path = NULL;
4979 	struct btrfs_root *root = BTRFS_I(inode)->root;
4980 	struct btrfs_file_extent_item *item;
4981 	struct extent_buffer *leaf;
4982 	struct btrfs_key found_key;
4983 	struct extent_map *em = NULL;
4984 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4985 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4986 	struct btrfs_trans_handle *trans = NULL;
4987 	int compress_type;
4988 
4989 again:
4990 	read_lock(&em_tree->lock);
4991 	em = lookup_extent_mapping(em_tree, start, len);
4992 	if (em)
4993 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4994 	read_unlock(&em_tree->lock);
4995 
4996 	if (em) {
4997 		if (em->start > start || em->start + em->len <= start)
4998 			free_extent_map(em);
4999 		else if (em->block_start == EXTENT_MAP_INLINE && page)
5000 			free_extent_map(em);
5001 		else
5002 			goto out;
5003 	}
5004 	em = alloc_extent_map();
5005 	if (!em) {
5006 		err = -ENOMEM;
5007 		goto out;
5008 	}
5009 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5010 	em->start = EXTENT_MAP_HOLE;
5011 	em->orig_start = EXTENT_MAP_HOLE;
5012 	em->len = (u64)-1;
5013 	em->block_len = (u64)-1;
5014 
5015 	if (!path) {
5016 		path = btrfs_alloc_path();
5017 		if (!path) {
5018 			err = -ENOMEM;
5019 			goto out;
5020 		}
5021 		/*
5022 		 * Chances are we'll be called again, so go ahead and do
5023 		 * readahead
5024 		 */
5025 		path->reada = 1;
5026 	}
5027 
5028 	ret = btrfs_lookup_file_extent(trans, root, path,
5029 				       objectid, start, trans != NULL);
5030 	if (ret < 0) {
5031 		err = ret;
5032 		goto out;
5033 	}
5034 
5035 	if (ret != 0) {
5036 		if (path->slots[0] == 0)
5037 			goto not_found;
5038 		path->slots[0]--;
5039 	}
5040 
5041 	leaf = path->nodes[0];
5042 	item = btrfs_item_ptr(leaf, path->slots[0],
5043 			      struct btrfs_file_extent_item);
5044 	/* are we inside the extent that was found? */
5045 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5046 	found_type = btrfs_key_type(&found_key);
5047 	if (found_key.objectid != objectid ||
5048 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5049 		goto not_found;
5050 	}
5051 
5052 	found_type = btrfs_file_extent_type(leaf, item);
5053 	extent_start = found_key.offset;
5054 	compress_type = btrfs_file_extent_compression(leaf, item);
5055 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5056 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5057 		extent_end = extent_start +
5058 		       btrfs_file_extent_num_bytes(leaf, item);
5059 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5060 		size_t size;
5061 		size = btrfs_file_extent_inline_len(leaf, item);
5062 		extent_end = (extent_start + size + root->sectorsize - 1) &
5063 			~((u64)root->sectorsize - 1);
5064 	}
5065 
5066 	if (start >= extent_end) {
5067 		path->slots[0]++;
5068 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5069 			ret = btrfs_next_leaf(root, path);
5070 			if (ret < 0) {
5071 				err = ret;
5072 				goto out;
5073 			}
5074 			if (ret > 0)
5075 				goto not_found;
5076 			leaf = path->nodes[0];
5077 		}
5078 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5079 		if (found_key.objectid != objectid ||
5080 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5081 			goto not_found;
5082 		if (start + len <= found_key.offset)
5083 			goto not_found;
5084 		em->start = start;
5085 		em->len = found_key.offset - start;
5086 		goto not_found_em;
5087 	}
5088 
5089 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5090 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5091 		em->start = extent_start;
5092 		em->len = extent_end - extent_start;
5093 		em->orig_start = extent_start -
5094 				 btrfs_file_extent_offset(leaf, item);
5095 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5096 		if (bytenr == 0) {
5097 			em->block_start = EXTENT_MAP_HOLE;
5098 			goto insert;
5099 		}
5100 		if (compress_type != BTRFS_COMPRESS_NONE) {
5101 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5102 			em->compress_type = compress_type;
5103 			em->block_start = bytenr;
5104 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5105 									 item);
5106 		} else {
5107 			bytenr += btrfs_file_extent_offset(leaf, item);
5108 			em->block_start = bytenr;
5109 			em->block_len = em->len;
5110 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5111 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5112 		}
5113 		goto insert;
5114 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5115 		unsigned long ptr;
5116 		char *map;
5117 		size_t size;
5118 		size_t extent_offset;
5119 		size_t copy_size;
5120 
5121 		em->block_start = EXTENT_MAP_INLINE;
5122 		if (!page || create) {
5123 			em->start = extent_start;
5124 			em->len = extent_end - extent_start;
5125 			goto out;
5126 		}
5127 
5128 		size = btrfs_file_extent_inline_len(leaf, item);
5129 		extent_offset = page_offset(page) + pg_offset - extent_start;
5130 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5131 				size - extent_offset);
5132 		em->start = extent_start + extent_offset;
5133 		em->len = (copy_size + root->sectorsize - 1) &
5134 			~((u64)root->sectorsize - 1);
5135 		em->orig_start = EXTENT_MAP_INLINE;
5136 		if (compress_type) {
5137 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5138 			em->compress_type = compress_type;
5139 		}
5140 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5141 		if (create == 0 && !PageUptodate(page)) {
5142 			if (btrfs_file_extent_compression(leaf, item) !=
5143 			    BTRFS_COMPRESS_NONE) {
5144 				ret = uncompress_inline(path, inode, page,
5145 							pg_offset,
5146 							extent_offset, item);
5147 				BUG_ON(ret);
5148 			} else {
5149 				map = kmap(page);
5150 				read_extent_buffer(leaf, map + pg_offset, ptr,
5151 						   copy_size);
5152 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5153 					memset(map + pg_offset + copy_size, 0,
5154 					       PAGE_CACHE_SIZE - pg_offset -
5155 					       copy_size);
5156 				}
5157 				kunmap(page);
5158 			}
5159 			flush_dcache_page(page);
5160 		} else if (create && PageUptodate(page)) {
5161 			WARN_ON(1);
5162 			if (!trans) {
5163 				kunmap(page);
5164 				free_extent_map(em);
5165 				em = NULL;
5166 
5167 				btrfs_release_path(path);
5168 				trans = btrfs_join_transaction(root);
5169 
5170 				if (IS_ERR(trans))
5171 					return ERR_CAST(trans);
5172 				goto again;
5173 			}
5174 			map = kmap(page);
5175 			write_extent_buffer(leaf, map + pg_offset, ptr,
5176 					    copy_size);
5177 			kunmap(page);
5178 			btrfs_mark_buffer_dirty(leaf);
5179 		}
5180 		set_extent_uptodate(io_tree, em->start,
5181 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5182 		goto insert;
5183 	} else {
5184 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5185 		WARN_ON(1);
5186 	}
5187 not_found:
5188 	em->start = start;
5189 	em->len = len;
5190 not_found_em:
5191 	em->block_start = EXTENT_MAP_HOLE;
5192 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5193 insert:
5194 	btrfs_release_path(path);
5195 	if (em->start > start || extent_map_end(em) <= start) {
5196 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5197 		       "[%llu %llu]\n", (unsigned long long)em->start,
5198 		       (unsigned long long)em->len,
5199 		       (unsigned long long)start,
5200 		       (unsigned long long)len);
5201 		err = -EIO;
5202 		goto out;
5203 	}
5204 
5205 	err = 0;
5206 	write_lock(&em_tree->lock);
5207 	ret = add_extent_mapping(em_tree, em);
5208 	/* it is possible that someone inserted the extent into the tree
5209 	 * while we had the lock dropped.  It is also possible that
5210 	 * an overlapping map exists in the tree
5211 	 */
5212 	if (ret == -EEXIST) {
5213 		struct extent_map *existing;
5214 
5215 		ret = 0;
5216 
5217 		existing = lookup_extent_mapping(em_tree, start, len);
5218 		if (existing && (existing->start > start ||
5219 		    existing->start + existing->len <= start)) {
5220 			free_extent_map(existing);
5221 			existing = NULL;
5222 		}
5223 		if (!existing) {
5224 			existing = lookup_extent_mapping(em_tree, em->start,
5225 							 em->len);
5226 			if (existing) {
5227 				err = merge_extent_mapping(em_tree, existing,
5228 							   em, start,
5229 							   root->sectorsize);
5230 				free_extent_map(existing);
5231 				if (err) {
5232 					free_extent_map(em);
5233 					em = NULL;
5234 				}
5235 			} else {
5236 				err = -EIO;
5237 				free_extent_map(em);
5238 				em = NULL;
5239 			}
5240 		} else {
5241 			free_extent_map(em);
5242 			em = existing;
5243 			err = 0;
5244 		}
5245 	}
5246 	write_unlock(&em_tree->lock);
5247 out:
5248 
5249 	trace_btrfs_get_extent(root, em);
5250 
5251 	if (path)
5252 		btrfs_free_path(path);
5253 	if (trans) {
5254 		ret = btrfs_end_transaction(trans, root);
5255 		if (!err)
5256 			err = ret;
5257 	}
5258 	if (err) {
5259 		free_extent_map(em);
5260 		return ERR_PTR(err);
5261 	}
5262 	return em;
5263 }
5264 
5265 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5266 					   size_t pg_offset, u64 start, u64 len,
5267 					   int create)
5268 {
5269 	struct extent_map *em;
5270 	struct extent_map *hole_em = NULL;
5271 	u64 range_start = start;
5272 	u64 end;
5273 	u64 found;
5274 	u64 found_end;
5275 	int err = 0;
5276 
5277 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5278 	if (IS_ERR(em))
5279 		return em;
5280 	if (em) {
5281 		/*
5282 		 * if our em maps to a hole, there might
5283 		 * actually be delalloc bytes behind it
5284 		 */
5285 		if (em->block_start != EXTENT_MAP_HOLE)
5286 			return em;
5287 		else
5288 			hole_em = em;
5289 	}
5290 
5291 	/* check to see if we've wrapped (len == -1 or similar) */
5292 	end = start + len;
5293 	if (end < start)
5294 		end = (u64)-1;
5295 	else
5296 		end -= 1;
5297 
5298 	em = NULL;
5299 
5300 	/* ok, we didn't find anything, lets look for delalloc */
5301 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5302 				 end, len, EXTENT_DELALLOC, 1);
5303 	found_end = range_start + found;
5304 	if (found_end < range_start)
5305 		found_end = (u64)-1;
5306 
5307 	/*
5308 	 * we didn't find anything useful, return
5309 	 * the original results from get_extent()
5310 	 */
5311 	if (range_start > end || found_end <= start) {
5312 		em = hole_em;
5313 		hole_em = NULL;
5314 		goto out;
5315 	}
5316 
5317 	/* adjust the range_start to make sure it doesn't
5318 	 * go backwards from the start they passed in
5319 	 */
5320 	range_start = max(start,range_start);
5321 	found = found_end - range_start;
5322 
5323 	if (found > 0) {
5324 		u64 hole_start = start;
5325 		u64 hole_len = len;
5326 
5327 		em = alloc_extent_map();
5328 		if (!em) {
5329 			err = -ENOMEM;
5330 			goto out;
5331 		}
5332 		/*
5333 		 * when btrfs_get_extent can't find anything it
5334 		 * returns one huge hole
5335 		 *
5336 		 * make sure what it found really fits our range, and
5337 		 * adjust to make sure it is based on the start from
5338 		 * the caller
5339 		 */
5340 		if (hole_em) {
5341 			u64 calc_end = extent_map_end(hole_em);
5342 
5343 			if (calc_end <= start || (hole_em->start > end)) {
5344 				free_extent_map(hole_em);
5345 				hole_em = NULL;
5346 			} else {
5347 				hole_start = max(hole_em->start, start);
5348 				hole_len = calc_end - hole_start;
5349 			}
5350 		}
5351 		em->bdev = NULL;
5352 		if (hole_em && range_start > hole_start) {
5353 			/* our hole starts before our delalloc, so we
5354 			 * have to return just the parts of the hole
5355 			 * that go until  the delalloc starts
5356 			 */
5357 			em->len = min(hole_len,
5358 				      range_start - hole_start);
5359 			em->start = hole_start;
5360 			em->orig_start = hole_start;
5361 			/*
5362 			 * don't adjust block start at all,
5363 			 * it is fixed at EXTENT_MAP_HOLE
5364 			 */
5365 			em->block_start = hole_em->block_start;
5366 			em->block_len = hole_len;
5367 		} else {
5368 			em->start = range_start;
5369 			em->len = found;
5370 			em->orig_start = range_start;
5371 			em->block_start = EXTENT_MAP_DELALLOC;
5372 			em->block_len = found;
5373 		}
5374 	} else if (hole_em) {
5375 		return hole_em;
5376 	}
5377 out:
5378 
5379 	free_extent_map(hole_em);
5380 	if (err) {
5381 		free_extent_map(em);
5382 		return ERR_PTR(err);
5383 	}
5384 	return em;
5385 }
5386 
5387 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5388 						  struct extent_map *em,
5389 						  u64 start, u64 len)
5390 {
5391 	struct btrfs_root *root = BTRFS_I(inode)->root;
5392 	struct btrfs_trans_handle *trans;
5393 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5394 	struct btrfs_key ins;
5395 	u64 alloc_hint;
5396 	int ret;
5397 	bool insert = false;
5398 
5399 	/*
5400 	 * Ok if the extent map we looked up is a hole and is for the exact
5401 	 * range we want, there is no reason to allocate a new one, however if
5402 	 * it is not right then we need to free this one and drop the cache for
5403 	 * our range.
5404 	 */
5405 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5406 	    em->len != len) {
5407 		free_extent_map(em);
5408 		em = NULL;
5409 		insert = true;
5410 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5411 	}
5412 
5413 	trans = btrfs_join_transaction(root);
5414 	if (IS_ERR(trans))
5415 		return ERR_CAST(trans);
5416 
5417 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5418 		btrfs_add_inode_defrag(trans, inode);
5419 
5420 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5421 
5422 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5423 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5424 				   alloc_hint, (u64)-1, &ins, 1);
5425 	if (ret) {
5426 		em = ERR_PTR(ret);
5427 		goto out;
5428 	}
5429 
5430 	if (!em) {
5431 		em = alloc_extent_map();
5432 		if (!em) {
5433 			em = ERR_PTR(-ENOMEM);
5434 			goto out;
5435 		}
5436 	}
5437 
5438 	em->start = start;
5439 	em->orig_start = em->start;
5440 	em->len = ins.offset;
5441 
5442 	em->block_start = ins.objectid;
5443 	em->block_len = ins.offset;
5444 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5445 
5446 	/*
5447 	 * We need to do this because if we're using the original em we searched
5448 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5449 	 */
5450 	em->flags = 0;
5451 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5452 
5453 	while (insert) {
5454 		write_lock(&em_tree->lock);
5455 		ret = add_extent_mapping(em_tree, em);
5456 		write_unlock(&em_tree->lock);
5457 		if (ret != -EEXIST)
5458 			break;
5459 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5460 	}
5461 
5462 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5463 					   ins.offset, ins.offset, 0);
5464 	if (ret) {
5465 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5466 		em = ERR_PTR(ret);
5467 	}
5468 out:
5469 	btrfs_end_transaction(trans, root);
5470 	return em;
5471 }
5472 
5473 /*
5474  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5475  * block must be cow'd
5476  */
5477 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5478 				      struct inode *inode, u64 offset, u64 len)
5479 {
5480 	struct btrfs_path *path;
5481 	int ret;
5482 	struct extent_buffer *leaf;
5483 	struct btrfs_root *root = BTRFS_I(inode)->root;
5484 	struct btrfs_file_extent_item *fi;
5485 	struct btrfs_key key;
5486 	u64 disk_bytenr;
5487 	u64 backref_offset;
5488 	u64 extent_end;
5489 	u64 num_bytes;
5490 	int slot;
5491 	int found_type;
5492 
5493 	path = btrfs_alloc_path();
5494 	if (!path)
5495 		return -ENOMEM;
5496 
5497 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5498 				       offset, 0);
5499 	if (ret < 0)
5500 		goto out;
5501 
5502 	slot = path->slots[0];
5503 	if (ret == 1) {
5504 		if (slot == 0) {
5505 			/* can't find the item, must cow */
5506 			ret = 0;
5507 			goto out;
5508 		}
5509 		slot--;
5510 	}
5511 	ret = 0;
5512 	leaf = path->nodes[0];
5513 	btrfs_item_key_to_cpu(leaf, &key, slot);
5514 	if (key.objectid != btrfs_ino(inode) ||
5515 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5516 		/* not our file or wrong item type, must cow */
5517 		goto out;
5518 	}
5519 
5520 	if (key.offset > offset) {
5521 		/* Wrong offset, must cow */
5522 		goto out;
5523 	}
5524 
5525 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5526 	found_type = btrfs_file_extent_type(leaf, fi);
5527 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5528 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5529 		/* not a regular extent, must cow */
5530 		goto out;
5531 	}
5532 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5533 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5534 
5535 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5536 	if (extent_end < offset + len) {
5537 		/* extent doesn't include our full range, must cow */
5538 		goto out;
5539 	}
5540 
5541 	if (btrfs_extent_readonly(root, disk_bytenr))
5542 		goto out;
5543 
5544 	/*
5545 	 * look for other files referencing this extent, if we
5546 	 * find any we must cow
5547 	 */
5548 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5549 				  key.offset - backref_offset, disk_bytenr))
5550 		goto out;
5551 
5552 	/*
5553 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5554 	 * in this extent we are about to write.  If there
5555 	 * are any csums in that range we have to cow in order
5556 	 * to keep the csums correct
5557 	 */
5558 	disk_bytenr += backref_offset;
5559 	disk_bytenr += offset - key.offset;
5560 	num_bytes = min(offset + len, extent_end) - offset;
5561 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5562 				goto out;
5563 	/*
5564 	 * all of the above have passed, it is safe to overwrite this extent
5565 	 * without cow
5566 	 */
5567 	ret = 1;
5568 out:
5569 	btrfs_free_path(path);
5570 	return ret;
5571 }
5572 
5573 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5574 				   struct buffer_head *bh_result, int create)
5575 {
5576 	struct extent_map *em;
5577 	struct btrfs_root *root = BTRFS_I(inode)->root;
5578 	u64 start = iblock << inode->i_blkbits;
5579 	u64 len = bh_result->b_size;
5580 	struct btrfs_trans_handle *trans;
5581 
5582 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5583 	if (IS_ERR(em))
5584 		return PTR_ERR(em);
5585 
5586 	/*
5587 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5588 	 * io.  INLINE is special, and we could probably kludge it in here, but
5589 	 * it's still buffered so for safety lets just fall back to the generic
5590 	 * buffered path.
5591 	 *
5592 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5593 	 * decompress it, so there will be buffering required no matter what we
5594 	 * do, so go ahead and fallback to buffered.
5595 	 *
5596 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5597 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5598 	 * the generic code.
5599 	 */
5600 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5601 	    em->block_start == EXTENT_MAP_INLINE) {
5602 		free_extent_map(em);
5603 		return -ENOTBLK;
5604 	}
5605 
5606 	/* Just a good old fashioned hole, return */
5607 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5608 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5609 		free_extent_map(em);
5610 		/* DIO will do one hole at a time, so just unlock a sector */
5611 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5612 			      start + root->sectorsize - 1, GFP_NOFS);
5613 		return 0;
5614 	}
5615 
5616 	/*
5617 	 * We don't allocate a new extent in the following cases
5618 	 *
5619 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5620 	 * existing extent.
5621 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5622 	 * just use the extent.
5623 	 *
5624 	 */
5625 	if (!create) {
5626 		len = em->len - (start - em->start);
5627 		goto map;
5628 	}
5629 
5630 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5631 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5632 	     em->block_start != EXTENT_MAP_HOLE)) {
5633 		int type;
5634 		int ret;
5635 		u64 block_start;
5636 
5637 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5638 			type = BTRFS_ORDERED_PREALLOC;
5639 		else
5640 			type = BTRFS_ORDERED_NOCOW;
5641 		len = min(len, em->len - (start - em->start));
5642 		block_start = em->block_start + (start - em->start);
5643 
5644 		/*
5645 		 * we're not going to log anything, but we do need
5646 		 * to make sure the current transaction stays open
5647 		 * while we look for nocow cross refs
5648 		 */
5649 		trans = btrfs_join_transaction(root);
5650 		if (IS_ERR(trans))
5651 			goto must_cow;
5652 
5653 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5654 			ret = btrfs_add_ordered_extent_dio(inode, start,
5655 					   block_start, len, len, type);
5656 			btrfs_end_transaction(trans, root);
5657 			if (ret) {
5658 				free_extent_map(em);
5659 				return ret;
5660 			}
5661 			goto unlock;
5662 		}
5663 		btrfs_end_transaction(trans, root);
5664 	}
5665 must_cow:
5666 	/*
5667 	 * this will cow the extent, reset the len in case we changed
5668 	 * it above
5669 	 */
5670 	len = bh_result->b_size;
5671 	em = btrfs_new_extent_direct(inode, em, start, len);
5672 	if (IS_ERR(em))
5673 		return PTR_ERR(em);
5674 	len = min(len, em->len - (start - em->start));
5675 unlock:
5676 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5677 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5678 			  0, NULL, GFP_NOFS);
5679 map:
5680 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5681 		inode->i_blkbits;
5682 	bh_result->b_size = len;
5683 	bh_result->b_bdev = em->bdev;
5684 	set_buffer_mapped(bh_result);
5685 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5686 		set_buffer_new(bh_result);
5687 
5688 	free_extent_map(em);
5689 
5690 	return 0;
5691 }
5692 
5693 struct btrfs_dio_private {
5694 	struct inode *inode;
5695 	u64 logical_offset;
5696 	u64 disk_bytenr;
5697 	u64 bytes;
5698 	u32 *csums;
5699 	void *private;
5700 
5701 	/* number of bios pending for this dio */
5702 	atomic_t pending_bios;
5703 
5704 	/* IO errors */
5705 	int errors;
5706 
5707 	struct bio *orig_bio;
5708 };
5709 
5710 static void btrfs_endio_direct_read(struct bio *bio, int err)
5711 {
5712 	struct btrfs_dio_private *dip = bio->bi_private;
5713 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5714 	struct bio_vec *bvec = bio->bi_io_vec;
5715 	struct inode *inode = dip->inode;
5716 	struct btrfs_root *root = BTRFS_I(inode)->root;
5717 	u64 start;
5718 	u32 *private = dip->csums;
5719 
5720 	start = dip->logical_offset;
5721 	do {
5722 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5723 			struct page *page = bvec->bv_page;
5724 			char *kaddr;
5725 			u32 csum = ~(u32)0;
5726 			unsigned long flags;
5727 
5728 			local_irq_save(flags);
5729 			kaddr = kmap_atomic(page, KM_IRQ0);
5730 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5731 					       csum, bvec->bv_len);
5732 			btrfs_csum_final(csum, (char *)&csum);
5733 			kunmap_atomic(kaddr, KM_IRQ0);
5734 			local_irq_restore(flags);
5735 
5736 			flush_dcache_page(bvec->bv_page);
5737 			if (csum != *private) {
5738 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5739 				      " %llu csum %u private %u\n",
5740 				      (unsigned long long)btrfs_ino(inode),
5741 				      (unsigned long long)start,
5742 				      csum, *private);
5743 				err = -EIO;
5744 			}
5745 		}
5746 
5747 		start += bvec->bv_len;
5748 		private++;
5749 		bvec++;
5750 	} while (bvec <= bvec_end);
5751 
5752 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5753 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5754 	bio->bi_private = dip->private;
5755 
5756 	kfree(dip->csums);
5757 	kfree(dip);
5758 
5759 	/* If we had a csum failure make sure to clear the uptodate flag */
5760 	if (err)
5761 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5762 	dio_end_io(bio, err);
5763 }
5764 
5765 static void btrfs_endio_direct_write(struct bio *bio, int err)
5766 {
5767 	struct btrfs_dio_private *dip = bio->bi_private;
5768 	struct inode *inode = dip->inode;
5769 	struct btrfs_root *root = BTRFS_I(inode)->root;
5770 	struct btrfs_trans_handle *trans;
5771 	struct btrfs_ordered_extent *ordered = NULL;
5772 	struct extent_state *cached_state = NULL;
5773 	u64 ordered_offset = dip->logical_offset;
5774 	u64 ordered_bytes = dip->bytes;
5775 	int ret;
5776 
5777 	if (err)
5778 		goto out_done;
5779 again:
5780 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5781 						   &ordered_offset,
5782 						   ordered_bytes);
5783 	if (!ret)
5784 		goto out_test;
5785 
5786 	BUG_ON(!ordered);
5787 
5788 	trans = btrfs_join_transaction(root);
5789 	if (IS_ERR(trans)) {
5790 		err = -ENOMEM;
5791 		goto out;
5792 	}
5793 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5794 
5795 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5796 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5797 		if (!ret)
5798 			ret = btrfs_update_inode(trans, root, inode);
5799 		err = ret;
5800 		goto out;
5801 	}
5802 
5803 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5804 			 ordered->file_offset + ordered->len - 1, 0,
5805 			 &cached_state, GFP_NOFS);
5806 
5807 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5808 		ret = btrfs_mark_extent_written(trans, inode,
5809 						ordered->file_offset,
5810 						ordered->file_offset +
5811 						ordered->len);
5812 		if (ret) {
5813 			err = ret;
5814 			goto out_unlock;
5815 		}
5816 	} else {
5817 		ret = insert_reserved_file_extent(trans, inode,
5818 						  ordered->file_offset,
5819 						  ordered->start,
5820 						  ordered->disk_len,
5821 						  ordered->len,
5822 						  ordered->len,
5823 						  0, 0, 0,
5824 						  BTRFS_FILE_EXTENT_REG);
5825 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5826 				   ordered->file_offset, ordered->len);
5827 		if (ret) {
5828 			err = ret;
5829 			WARN_ON(1);
5830 			goto out_unlock;
5831 		}
5832 	}
5833 
5834 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5835 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5836 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5837 		btrfs_update_inode(trans, root, inode);
5838 	ret = 0;
5839 out_unlock:
5840 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5841 			     ordered->file_offset + ordered->len - 1,
5842 			     &cached_state, GFP_NOFS);
5843 out:
5844 	btrfs_delalloc_release_metadata(inode, ordered->len);
5845 	btrfs_end_transaction(trans, root);
5846 	ordered_offset = ordered->file_offset + ordered->len;
5847 	btrfs_put_ordered_extent(ordered);
5848 	btrfs_put_ordered_extent(ordered);
5849 
5850 out_test:
5851 	/*
5852 	 * our bio might span multiple ordered extents.  If we haven't
5853 	 * completed the accounting for the whole dio, go back and try again
5854 	 */
5855 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5856 		ordered_bytes = dip->logical_offset + dip->bytes -
5857 			ordered_offset;
5858 		goto again;
5859 	}
5860 out_done:
5861 	bio->bi_private = dip->private;
5862 
5863 	kfree(dip->csums);
5864 	kfree(dip);
5865 
5866 	/* If we had an error make sure to clear the uptodate flag */
5867 	if (err)
5868 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5869 	dio_end_io(bio, err);
5870 }
5871 
5872 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5873 				    struct bio *bio, int mirror_num,
5874 				    unsigned long bio_flags, u64 offset)
5875 {
5876 	int ret;
5877 	struct btrfs_root *root = BTRFS_I(inode)->root;
5878 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5879 	BUG_ON(ret);
5880 	return 0;
5881 }
5882 
5883 static void btrfs_end_dio_bio(struct bio *bio, int err)
5884 {
5885 	struct btrfs_dio_private *dip = bio->bi_private;
5886 
5887 	if (err) {
5888 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5889 		      "sector %#Lx len %u err no %d\n",
5890 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5891 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5892 		dip->errors = 1;
5893 
5894 		/*
5895 		 * before atomic variable goto zero, we must make sure
5896 		 * dip->errors is perceived to be set.
5897 		 */
5898 		smp_mb__before_atomic_dec();
5899 	}
5900 
5901 	/* if there are more bios still pending for this dio, just exit */
5902 	if (!atomic_dec_and_test(&dip->pending_bios))
5903 		goto out;
5904 
5905 	if (dip->errors)
5906 		bio_io_error(dip->orig_bio);
5907 	else {
5908 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5909 		bio_endio(dip->orig_bio, 0);
5910 	}
5911 out:
5912 	bio_put(bio);
5913 }
5914 
5915 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5916 				       u64 first_sector, gfp_t gfp_flags)
5917 {
5918 	int nr_vecs = bio_get_nr_vecs(bdev);
5919 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5920 }
5921 
5922 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5923 					 int rw, u64 file_offset, int skip_sum,
5924 					 u32 *csums, int async_submit)
5925 {
5926 	int write = rw & REQ_WRITE;
5927 	struct btrfs_root *root = BTRFS_I(inode)->root;
5928 	int ret;
5929 
5930 	bio_get(bio);
5931 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5932 	if (ret)
5933 		goto err;
5934 
5935 	if (skip_sum)
5936 		goto map;
5937 
5938 	if (write && async_submit) {
5939 		ret = btrfs_wq_submit_bio(root->fs_info,
5940 				   inode, rw, bio, 0, 0,
5941 				   file_offset,
5942 				   __btrfs_submit_bio_start_direct_io,
5943 				   __btrfs_submit_bio_done);
5944 		goto err;
5945 	} else if (write) {
5946 		/*
5947 		 * If we aren't doing async submit, calculate the csum of the
5948 		 * bio now.
5949 		 */
5950 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5951 		if (ret)
5952 			goto err;
5953 	} else if (!skip_sum) {
5954 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5955 					  file_offset, csums);
5956 		if (ret)
5957 			goto err;
5958 	}
5959 
5960 map:
5961 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5962 err:
5963 	bio_put(bio);
5964 	return ret;
5965 }
5966 
5967 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5968 				    int skip_sum)
5969 {
5970 	struct inode *inode = dip->inode;
5971 	struct btrfs_root *root = BTRFS_I(inode)->root;
5972 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5973 	struct bio *bio;
5974 	struct bio *orig_bio = dip->orig_bio;
5975 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5976 	u64 start_sector = orig_bio->bi_sector;
5977 	u64 file_offset = dip->logical_offset;
5978 	u64 submit_len = 0;
5979 	u64 map_length;
5980 	int nr_pages = 0;
5981 	u32 *csums = dip->csums;
5982 	int ret = 0;
5983 	int async_submit = 0;
5984 	int write = rw & REQ_WRITE;
5985 
5986 	map_length = orig_bio->bi_size;
5987 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5988 			      &map_length, NULL, 0);
5989 	if (ret) {
5990 		bio_put(orig_bio);
5991 		return -EIO;
5992 	}
5993 
5994 	if (map_length >= orig_bio->bi_size) {
5995 		bio = orig_bio;
5996 		goto submit;
5997 	}
5998 
5999 	async_submit = 1;
6000 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6001 	if (!bio)
6002 		return -ENOMEM;
6003 	bio->bi_private = dip;
6004 	bio->bi_end_io = btrfs_end_dio_bio;
6005 	atomic_inc(&dip->pending_bios);
6006 
6007 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6008 		if (unlikely(map_length < submit_len + bvec->bv_len ||
6009 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6010 				 bvec->bv_offset) < bvec->bv_len)) {
6011 			/*
6012 			 * inc the count before we submit the bio so
6013 			 * we know the end IO handler won't happen before
6014 			 * we inc the count. Otherwise, the dip might get freed
6015 			 * before we're done setting it up
6016 			 */
6017 			atomic_inc(&dip->pending_bios);
6018 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
6019 						     file_offset, skip_sum,
6020 						     csums, async_submit);
6021 			if (ret) {
6022 				bio_put(bio);
6023 				atomic_dec(&dip->pending_bios);
6024 				goto out_err;
6025 			}
6026 
6027 			/* Write's use the ordered csums */
6028 			if (!write && !skip_sum)
6029 				csums = csums + nr_pages;
6030 			start_sector += submit_len >> 9;
6031 			file_offset += submit_len;
6032 
6033 			submit_len = 0;
6034 			nr_pages = 0;
6035 
6036 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6037 						  start_sector, GFP_NOFS);
6038 			if (!bio)
6039 				goto out_err;
6040 			bio->bi_private = dip;
6041 			bio->bi_end_io = btrfs_end_dio_bio;
6042 
6043 			map_length = orig_bio->bi_size;
6044 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6045 					      &map_length, NULL, 0);
6046 			if (ret) {
6047 				bio_put(bio);
6048 				goto out_err;
6049 			}
6050 		} else {
6051 			submit_len += bvec->bv_len;
6052 			nr_pages ++;
6053 			bvec++;
6054 		}
6055 	}
6056 
6057 submit:
6058 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6059 				     csums, async_submit);
6060 	if (!ret)
6061 		return 0;
6062 
6063 	bio_put(bio);
6064 out_err:
6065 	dip->errors = 1;
6066 	/*
6067 	 * before atomic variable goto zero, we must
6068 	 * make sure dip->errors is perceived to be set.
6069 	 */
6070 	smp_mb__before_atomic_dec();
6071 	if (atomic_dec_and_test(&dip->pending_bios))
6072 		bio_io_error(dip->orig_bio);
6073 
6074 	/* bio_end_io() will handle error, so we needn't return it */
6075 	return 0;
6076 }
6077 
6078 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6079 				loff_t file_offset)
6080 {
6081 	struct btrfs_root *root = BTRFS_I(inode)->root;
6082 	struct btrfs_dio_private *dip;
6083 	struct bio_vec *bvec = bio->bi_io_vec;
6084 	int skip_sum;
6085 	int write = rw & REQ_WRITE;
6086 	int ret = 0;
6087 
6088 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6089 
6090 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6091 	if (!dip) {
6092 		ret = -ENOMEM;
6093 		goto free_ordered;
6094 	}
6095 	dip->csums = NULL;
6096 
6097 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
6098 	if (!write && !skip_sum) {
6099 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6100 		if (!dip->csums) {
6101 			kfree(dip);
6102 			ret = -ENOMEM;
6103 			goto free_ordered;
6104 		}
6105 	}
6106 
6107 	dip->private = bio->bi_private;
6108 	dip->inode = inode;
6109 	dip->logical_offset = file_offset;
6110 
6111 	dip->bytes = 0;
6112 	do {
6113 		dip->bytes += bvec->bv_len;
6114 		bvec++;
6115 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6116 
6117 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6118 	bio->bi_private = dip;
6119 	dip->errors = 0;
6120 	dip->orig_bio = bio;
6121 	atomic_set(&dip->pending_bios, 0);
6122 
6123 	if (write)
6124 		bio->bi_end_io = btrfs_endio_direct_write;
6125 	else
6126 		bio->bi_end_io = btrfs_endio_direct_read;
6127 
6128 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6129 	if (!ret)
6130 		return;
6131 free_ordered:
6132 	/*
6133 	 * If this is a write, we need to clean up the reserved space and kill
6134 	 * the ordered extent.
6135 	 */
6136 	if (write) {
6137 		struct btrfs_ordered_extent *ordered;
6138 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6139 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6140 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6141 			btrfs_free_reserved_extent(root, ordered->start,
6142 						   ordered->disk_len);
6143 		btrfs_put_ordered_extent(ordered);
6144 		btrfs_put_ordered_extent(ordered);
6145 	}
6146 	bio_endio(bio, ret);
6147 }
6148 
6149 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6150 			const struct iovec *iov, loff_t offset,
6151 			unsigned long nr_segs)
6152 {
6153 	int seg;
6154 	int i;
6155 	size_t size;
6156 	unsigned long addr;
6157 	unsigned blocksize_mask = root->sectorsize - 1;
6158 	ssize_t retval = -EINVAL;
6159 	loff_t end = offset;
6160 
6161 	if (offset & blocksize_mask)
6162 		goto out;
6163 
6164 	/* Check the memory alignment.  Blocks cannot straddle pages */
6165 	for (seg = 0; seg < nr_segs; seg++) {
6166 		addr = (unsigned long)iov[seg].iov_base;
6167 		size = iov[seg].iov_len;
6168 		end += size;
6169 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6170 			goto out;
6171 
6172 		/* If this is a write we don't need to check anymore */
6173 		if (rw & WRITE)
6174 			continue;
6175 
6176 		/*
6177 		 * Check to make sure we don't have duplicate iov_base's in this
6178 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6179 		 * when reading back.
6180 		 */
6181 		for (i = seg + 1; i < nr_segs; i++) {
6182 			if (iov[seg].iov_base == iov[i].iov_base)
6183 				goto out;
6184 		}
6185 	}
6186 	retval = 0;
6187 out:
6188 	return retval;
6189 }
6190 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6191 			const struct iovec *iov, loff_t offset,
6192 			unsigned long nr_segs)
6193 {
6194 	struct file *file = iocb->ki_filp;
6195 	struct inode *inode = file->f_mapping->host;
6196 	struct btrfs_ordered_extent *ordered;
6197 	struct extent_state *cached_state = NULL;
6198 	u64 lockstart, lockend;
6199 	ssize_t ret;
6200 	int writing = rw & WRITE;
6201 	int write_bits = 0;
6202 	size_t count = iov_length(iov, nr_segs);
6203 
6204 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6205 			    offset, nr_segs)) {
6206 		return 0;
6207 	}
6208 
6209 	lockstart = offset;
6210 	lockend = offset + count - 1;
6211 
6212 	if (writing) {
6213 		ret = btrfs_delalloc_reserve_space(inode, count);
6214 		if (ret)
6215 			goto out;
6216 	}
6217 
6218 	while (1) {
6219 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6220 				 0, &cached_state, GFP_NOFS);
6221 		/*
6222 		 * We're concerned with the entire range that we're going to be
6223 		 * doing DIO to, so we need to make sure theres no ordered
6224 		 * extents in this range.
6225 		 */
6226 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6227 						     lockend - lockstart + 1);
6228 		if (!ordered)
6229 			break;
6230 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6231 				     &cached_state, GFP_NOFS);
6232 		btrfs_start_ordered_extent(inode, ordered, 1);
6233 		btrfs_put_ordered_extent(ordered);
6234 		cond_resched();
6235 	}
6236 
6237 	/*
6238 	 * we don't use btrfs_set_extent_delalloc because we don't want
6239 	 * the dirty or uptodate bits
6240 	 */
6241 	if (writing) {
6242 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6243 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6244 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6245 				     GFP_NOFS);
6246 		if (ret) {
6247 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6248 					 lockend, EXTENT_LOCKED | write_bits,
6249 					 1, 0, &cached_state, GFP_NOFS);
6250 			goto out;
6251 		}
6252 	}
6253 
6254 	free_extent_state(cached_state);
6255 	cached_state = NULL;
6256 
6257 	ret = __blockdev_direct_IO(rw, iocb, inode,
6258 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6259 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6260 		   btrfs_submit_direct, 0);
6261 
6262 	if (ret < 0 && ret != -EIOCBQUEUED) {
6263 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6264 			      offset + iov_length(iov, nr_segs) - 1,
6265 			      EXTENT_LOCKED | write_bits, 1, 0,
6266 			      &cached_state, GFP_NOFS);
6267 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6268 		/*
6269 		 * We're falling back to buffered, unlock the section we didn't
6270 		 * do IO on.
6271 		 */
6272 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6273 			      offset + iov_length(iov, nr_segs) - 1,
6274 			      EXTENT_LOCKED | write_bits, 1, 0,
6275 			      &cached_state, GFP_NOFS);
6276 	}
6277 out:
6278 	free_extent_state(cached_state);
6279 	return ret;
6280 }
6281 
6282 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6283 		__u64 start, __u64 len)
6284 {
6285 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6286 }
6287 
6288 int btrfs_readpage(struct file *file, struct page *page)
6289 {
6290 	struct extent_io_tree *tree;
6291 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6292 	return extent_read_full_page(tree, page, btrfs_get_extent);
6293 }
6294 
6295 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6296 {
6297 	struct extent_io_tree *tree;
6298 
6299 
6300 	if (current->flags & PF_MEMALLOC) {
6301 		redirty_page_for_writepage(wbc, page);
6302 		unlock_page(page);
6303 		return 0;
6304 	}
6305 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6306 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6307 }
6308 
6309 int btrfs_writepages(struct address_space *mapping,
6310 		     struct writeback_control *wbc)
6311 {
6312 	struct extent_io_tree *tree;
6313 
6314 	tree = &BTRFS_I(mapping->host)->io_tree;
6315 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6316 }
6317 
6318 static int
6319 btrfs_readpages(struct file *file, struct address_space *mapping,
6320 		struct list_head *pages, unsigned nr_pages)
6321 {
6322 	struct extent_io_tree *tree;
6323 	tree = &BTRFS_I(mapping->host)->io_tree;
6324 	return extent_readpages(tree, mapping, pages, nr_pages,
6325 				btrfs_get_extent);
6326 }
6327 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6328 {
6329 	struct extent_io_tree *tree;
6330 	struct extent_map_tree *map;
6331 	int ret;
6332 
6333 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6334 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6335 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6336 	if (ret == 1) {
6337 		ClearPagePrivate(page);
6338 		set_page_private(page, 0);
6339 		page_cache_release(page);
6340 	}
6341 	return ret;
6342 }
6343 
6344 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6345 {
6346 	if (PageWriteback(page) || PageDirty(page))
6347 		return 0;
6348 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6349 }
6350 
6351 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6352 {
6353 	struct extent_io_tree *tree;
6354 	struct btrfs_ordered_extent *ordered;
6355 	struct extent_state *cached_state = NULL;
6356 	u64 page_start = page_offset(page);
6357 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6358 
6359 
6360 	/*
6361 	 * we have the page locked, so new writeback can't start,
6362 	 * and the dirty bit won't be cleared while we are here.
6363 	 *
6364 	 * Wait for IO on this page so that we can safely clear
6365 	 * the PagePrivate2 bit and do ordered accounting
6366 	 */
6367 	wait_on_page_writeback(page);
6368 
6369 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6370 	if (offset) {
6371 		btrfs_releasepage(page, GFP_NOFS);
6372 		return;
6373 	}
6374 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6375 			 GFP_NOFS);
6376 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6377 					   page_offset(page));
6378 	if (ordered) {
6379 		/*
6380 		 * IO on this page will never be started, so we need
6381 		 * to account for any ordered extents now
6382 		 */
6383 		clear_extent_bit(tree, page_start, page_end,
6384 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6385 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6386 				 &cached_state, GFP_NOFS);
6387 		/*
6388 		 * whoever cleared the private bit is responsible
6389 		 * for the finish_ordered_io
6390 		 */
6391 		if (TestClearPagePrivate2(page)) {
6392 			btrfs_finish_ordered_io(page->mapping->host,
6393 						page_start, page_end);
6394 		}
6395 		btrfs_put_ordered_extent(ordered);
6396 		cached_state = NULL;
6397 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6398 				 GFP_NOFS);
6399 	}
6400 	clear_extent_bit(tree, page_start, page_end,
6401 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6402 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6403 	__btrfs_releasepage(page, GFP_NOFS);
6404 
6405 	ClearPageChecked(page);
6406 	if (PagePrivate(page)) {
6407 		ClearPagePrivate(page);
6408 		set_page_private(page, 0);
6409 		page_cache_release(page);
6410 	}
6411 }
6412 
6413 /*
6414  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6415  * called from a page fault handler when a page is first dirtied. Hence we must
6416  * be careful to check for EOF conditions here. We set the page up correctly
6417  * for a written page which means we get ENOSPC checking when writing into
6418  * holes and correct delalloc and unwritten extent mapping on filesystems that
6419  * support these features.
6420  *
6421  * We are not allowed to take the i_mutex here so we have to play games to
6422  * protect against truncate races as the page could now be beyond EOF.  Because
6423  * vmtruncate() writes the inode size before removing pages, once we have the
6424  * page lock we can determine safely if the page is beyond EOF. If it is not
6425  * beyond EOF, then the page is guaranteed safe against truncation until we
6426  * unlock the page.
6427  */
6428 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6429 {
6430 	struct page *page = vmf->page;
6431 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6432 	struct btrfs_root *root = BTRFS_I(inode)->root;
6433 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6434 	struct btrfs_ordered_extent *ordered;
6435 	struct extent_state *cached_state = NULL;
6436 	char *kaddr;
6437 	unsigned long zero_start;
6438 	loff_t size;
6439 	int ret;
6440 	u64 page_start;
6441 	u64 page_end;
6442 
6443 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6444 	if (ret) {
6445 		if (ret == -ENOMEM)
6446 			ret = VM_FAULT_OOM;
6447 		else /* -ENOSPC, -EIO, etc */
6448 			ret = VM_FAULT_SIGBUS;
6449 		goto out;
6450 	}
6451 
6452 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6453 again:
6454 	lock_page(page);
6455 	size = i_size_read(inode);
6456 	page_start = page_offset(page);
6457 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6458 
6459 	if ((page->mapping != inode->i_mapping) ||
6460 	    (page_start >= size)) {
6461 		/* page got truncated out from underneath us */
6462 		goto out_unlock;
6463 	}
6464 	wait_on_page_writeback(page);
6465 
6466 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6467 			 GFP_NOFS);
6468 	set_page_extent_mapped(page);
6469 
6470 	/*
6471 	 * we can't set the delalloc bits if there are pending ordered
6472 	 * extents.  Drop our locks and wait for them to finish
6473 	 */
6474 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6475 	if (ordered) {
6476 		unlock_extent_cached(io_tree, page_start, page_end,
6477 				     &cached_state, GFP_NOFS);
6478 		unlock_page(page);
6479 		btrfs_start_ordered_extent(inode, ordered, 1);
6480 		btrfs_put_ordered_extent(ordered);
6481 		goto again;
6482 	}
6483 
6484 	/*
6485 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6486 	 * if it was already dirty, so for space accounting reasons we need to
6487 	 * clear any delalloc bits for the range we are fixing to save.  There
6488 	 * is probably a better way to do this, but for now keep consistent with
6489 	 * prepare_pages in the normal write path.
6490 	 */
6491 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6492 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6493 			  0, 0, &cached_state, GFP_NOFS);
6494 
6495 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6496 					&cached_state);
6497 	if (ret) {
6498 		unlock_extent_cached(io_tree, page_start, page_end,
6499 				     &cached_state, GFP_NOFS);
6500 		ret = VM_FAULT_SIGBUS;
6501 		goto out_unlock;
6502 	}
6503 	ret = 0;
6504 
6505 	/* page is wholly or partially inside EOF */
6506 	if (page_start + PAGE_CACHE_SIZE > size)
6507 		zero_start = size & ~PAGE_CACHE_MASK;
6508 	else
6509 		zero_start = PAGE_CACHE_SIZE;
6510 
6511 	if (zero_start != PAGE_CACHE_SIZE) {
6512 		kaddr = kmap(page);
6513 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6514 		flush_dcache_page(page);
6515 		kunmap(page);
6516 	}
6517 	ClearPageChecked(page);
6518 	set_page_dirty(page);
6519 	SetPageUptodate(page);
6520 
6521 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6522 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6523 
6524 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6525 
6526 out_unlock:
6527 	if (!ret)
6528 		return VM_FAULT_LOCKED;
6529 	unlock_page(page);
6530 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6531 out:
6532 	return ret;
6533 }
6534 
6535 static int btrfs_truncate(struct inode *inode)
6536 {
6537 	struct btrfs_root *root = BTRFS_I(inode)->root;
6538 	struct btrfs_block_rsv *rsv;
6539 	int ret;
6540 	int err = 0;
6541 	struct btrfs_trans_handle *trans;
6542 	unsigned long nr;
6543 	u64 mask = root->sectorsize - 1;
6544 
6545 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6546 	if (ret)
6547 		return ret;
6548 
6549 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6550 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6551 
6552 	/*
6553 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6554 	 * 3 things going on here
6555 	 *
6556 	 * 1) We need to reserve space for our orphan item and the space to
6557 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6558 	 * orphan item because we didn't reserve space to remove it.
6559 	 *
6560 	 * 2) We need to reserve space to update our inode.
6561 	 *
6562 	 * 3) We need to have something to cache all the space that is going to
6563 	 * be free'd up by the truncate operation, but also have some slack
6564 	 * space reserved in case it uses space during the truncate (thank you
6565 	 * very much snapshotting).
6566 	 *
6567 	 * And we need these to all be seperate.  The fact is we can use alot of
6568 	 * space doing the truncate, and we have no earthly idea how much space
6569 	 * we will use, so we need the truncate reservation to be seperate so it
6570 	 * doesn't end up using space reserved for updating the inode or
6571 	 * removing the orphan item.  We also need to be able to stop the
6572 	 * transaction and start a new one, which means we need to be able to
6573 	 * update the inode several times, and we have no idea of knowing how
6574 	 * many times that will be, so we can't just reserve 1 item for the
6575 	 * entirety of the opration, so that has to be done seperately as well.
6576 	 * Then there is the orphan item, which does indeed need to be held on
6577 	 * to for the whole operation, and we need nobody to touch this reserved
6578 	 * space except the orphan code.
6579 	 *
6580 	 * So that leaves us with
6581 	 *
6582 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6583 	 * 2) rsv - for the truncate reservation, which we will steal from the
6584 	 * transaction reservation.
6585 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6586 	 * updating the inode.
6587 	 */
6588 	rsv = btrfs_alloc_block_rsv(root);
6589 	if (!rsv)
6590 		return -ENOMEM;
6591 	btrfs_add_durable_block_rsv(root->fs_info, rsv);
6592 
6593 	trans = btrfs_start_transaction(root, 4);
6594 	if (IS_ERR(trans)) {
6595 		err = PTR_ERR(trans);
6596 		goto out;
6597 	}
6598 
6599 	/*
6600 	 * Reserve space for the truncate process.  Truncate should be adding
6601 	 * space, but if there are snapshots it may end up using space.
6602 	 */
6603 	ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6604 	BUG_ON(ret);
6605 
6606 	ret = btrfs_orphan_add(trans, inode);
6607 	if (ret) {
6608 		btrfs_end_transaction(trans, root);
6609 		goto out;
6610 	}
6611 
6612 	nr = trans->blocks_used;
6613 	btrfs_end_transaction(trans, root);
6614 	btrfs_btree_balance_dirty(root, nr);
6615 
6616 	/*
6617 	 * Ok so we've already migrated our bytes over for the truncate, so here
6618 	 * just reserve the one slot we need for updating the inode.
6619 	 */
6620 	trans = btrfs_start_transaction(root, 1);
6621 	if (IS_ERR(trans)) {
6622 		err = PTR_ERR(trans);
6623 		goto out;
6624 	}
6625 	trans->block_rsv = rsv;
6626 
6627 	/*
6628 	 * setattr is responsible for setting the ordered_data_close flag,
6629 	 * but that is only tested during the last file release.  That
6630 	 * could happen well after the next commit, leaving a great big
6631 	 * window where new writes may get lost if someone chooses to write
6632 	 * to this file after truncating to zero
6633 	 *
6634 	 * The inode doesn't have any dirty data here, and so if we commit
6635 	 * this is a noop.  If someone immediately starts writing to the inode
6636 	 * it is very likely we'll catch some of their writes in this
6637 	 * transaction, and the commit will find this file on the ordered
6638 	 * data list with good things to send down.
6639 	 *
6640 	 * This is a best effort solution, there is still a window where
6641 	 * using truncate to replace the contents of the file will
6642 	 * end up with a zero length file after a crash.
6643 	 */
6644 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6645 		btrfs_add_ordered_operation(trans, root, inode);
6646 
6647 	while (1) {
6648 		if (!trans) {
6649 			trans = btrfs_start_transaction(root, 3);
6650 			if (IS_ERR(trans)) {
6651 				err = PTR_ERR(trans);
6652 				goto out;
6653 			}
6654 
6655 			ret = btrfs_truncate_reserve_metadata(trans, root,
6656 							      rsv);
6657 			BUG_ON(ret);
6658 
6659 			trans->block_rsv = rsv;
6660 		}
6661 
6662 		ret = btrfs_truncate_inode_items(trans, root, inode,
6663 						 inode->i_size,
6664 						 BTRFS_EXTENT_DATA_KEY);
6665 		if (ret != -EAGAIN) {
6666 			err = ret;
6667 			break;
6668 		}
6669 
6670 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6671 		ret = btrfs_update_inode(trans, root, inode);
6672 		if (ret) {
6673 			err = ret;
6674 			break;
6675 		}
6676 
6677 		nr = trans->blocks_used;
6678 		btrfs_end_transaction(trans, root);
6679 		trans = NULL;
6680 		btrfs_btree_balance_dirty(root, nr);
6681 	}
6682 
6683 	if (ret == 0 && inode->i_nlink > 0) {
6684 		trans->block_rsv = root->orphan_block_rsv;
6685 		ret = btrfs_orphan_del(trans, inode);
6686 		if (ret)
6687 			err = ret;
6688 	} else if (ret && inode->i_nlink > 0) {
6689 		/*
6690 		 * Failed to do the truncate, remove us from the in memory
6691 		 * orphan list.
6692 		 */
6693 		ret = btrfs_orphan_del(NULL, inode);
6694 	}
6695 
6696 	trans->block_rsv = &root->fs_info->trans_block_rsv;
6697 	ret = btrfs_update_inode(trans, root, inode);
6698 	if (ret && !err)
6699 		err = ret;
6700 
6701 	nr = trans->blocks_used;
6702 	ret = btrfs_end_transaction_throttle(trans, root);
6703 	btrfs_btree_balance_dirty(root, nr);
6704 
6705 out:
6706 	btrfs_free_block_rsv(root, rsv);
6707 
6708 	if (ret && !err)
6709 		err = ret;
6710 
6711 	return err;
6712 }
6713 
6714 /*
6715  * create a new subvolume directory/inode (helper for the ioctl).
6716  */
6717 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6718 			     struct btrfs_root *new_root, u64 new_dirid)
6719 {
6720 	struct inode *inode;
6721 	int err;
6722 	u64 index = 0;
6723 
6724 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6725 				new_dirid, S_IFDIR | 0700, &index);
6726 	if (IS_ERR(inode))
6727 		return PTR_ERR(inode);
6728 	inode->i_op = &btrfs_dir_inode_operations;
6729 	inode->i_fop = &btrfs_dir_file_operations;
6730 
6731 	inode->i_nlink = 1;
6732 	btrfs_i_size_write(inode, 0);
6733 
6734 	err = btrfs_update_inode(trans, new_root, inode);
6735 	BUG_ON(err);
6736 
6737 	iput(inode);
6738 	return 0;
6739 }
6740 
6741 struct inode *btrfs_alloc_inode(struct super_block *sb)
6742 {
6743 	struct btrfs_inode *ei;
6744 	struct inode *inode;
6745 
6746 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6747 	if (!ei)
6748 		return NULL;
6749 
6750 	ei->root = NULL;
6751 	ei->space_info = NULL;
6752 	ei->generation = 0;
6753 	ei->sequence = 0;
6754 	ei->last_trans = 0;
6755 	ei->last_sub_trans = 0;
6756 	ei->logged_trans = 0;
6757 	ei->delalloc_bytes = 0;
6758 	ei->reserved_bytes = 0;
6759 	ei->disk_i_size = 0;
6760 	ei->flags = 0;
6761 	ei->index_cnt = (u64)-1;
6762 	ei->last_unlink_trans = 0;
6763 
6764 	spin_lock_init(&ei->lock);
6765 	ei->outstanding_extents = 0;
6766 	ei->reserved_extents = 0;
6767 
6768 	ei->ordered_data_close = 0;
6769 	ei->orphan_meta_reserved = 0;
6770 	ei->dummy_inode = 0;
6771 	ei->in_defrag = 0;
6772 	ei->force_compress = BTRFS_COMPRESS_NONE;
6773 
6774 	ei->delayed_node = NULL;
6775 
6776 	inode = &ei->vfs_inode;
6777 	extent_map_tree_init(&ei->extent_tree);
6778 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6779 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6780 	mutex_init(&ei->log_mutex);
6781 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6782 	INIT_LIST_HEAD(&ei->i_orphan);
6783 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6784 	INIT_LIST_HEAD(&ei->ordered_operations);
6785 	RB_CLEAR_NODE(&ei->rb_node);
6786 
6787 	return inode;
6788 }
6789 
6790 static void btrfs_i_callback(struct rcu_head *head)
6791 {
6792 	struct inode *inode = container_of(head, struct inode, i_rcu);
6793 	INIT_LIST_HEAD(&inode->i_dentry);
6794 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6795 }
6796 
6797 void btrfs_destroy_inode(struct inode *inode)
6798 {
6799 	struct btrfs_ordered_extent *ordered;
6800 	struct btrfs_root *root = BTRFS_I(inode)->root;
6801 
6802 	WARN_ON(!list_empty(&inode->i_dentry));
6803 	WARN_ON(inode->i_data.nrpages);
6804 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
6805 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6806 
6807 	/*
6808 	 * This can happen where we create an inode, but somebody else also
6809 	 * created the same inode and we need to destroy the one we already
6810 	 * created.
6811 	 */
6812 	if (!root)
6813 		goto free;
6814 
6815 	/*
6816 	 * Make sure we're properly removed from the ordered operation
6817 	 * lists.
6818 	 */
6819 	smp_mb();
6820 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6821 		spin_lock(&root->fs_info->ordered_extent_lock);
6822 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6823 		spin_unlock(&root->fs_info->ordered_extent_lock);
6824 	}
6825 
6826 	spin_lock(&root->orphan_lock);
6827 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6828 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6829 		       (unsigned long long)btrfs_ino(inode));
6830 		list_del_init(&BTRFS_I(inode)->i_orphan);
6831 	}
6832 	spin_unlock(&root->orphan_lock);
6833 
6834 	while (1) {
6835 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6836 		if (!ordered)
6837 			break;
6838 		else {
6839 			printk(KERN_ERR "btrfs found ordered "
6840 			       "extent %llu %llu on inode cleanup\n",
6841 			       (unsigned long long)ordered->file_offset,
6842 			       (unsigned long long)ordered->len);
6843 			btrfs_remove_ordered_extent(inode, ordered);
6844 			btrfs_put_ordered_extent(ordered);
6845 			btrfs_put_ordered_extent(ordered);
6846 		}
6847 	}
6848 	inode_tree_del(inode);
6849 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6850 free:
6851 	btrfs_remove_delayed_node(inode);
6852 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6853 }
6854 
6855 int btrfs_drop_inode(struct inode *inode)
6856 {
6857 	struct btrfs_root *root = BTRFS_I(inode)->root;
6858 
6859 	if (btrfs_root_refs(&root->root_item) == 0 &&
6860 	    !btrfs_is_free_space_inode(root, inode))
6861 		return 1;
6862 	else
6863 		return generic_drop_inode(inode);
6864 }
6865 
6866 static void init_once(void *foo)
6867 {
6868 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6869 
6870 	inode_init_once(&ei->vfs_inode);
6871 }
6872 
6873 void btrfs_destroy_cachep(void)
6874 {
6875 	if (btrfs_inode_cachep)
6876 		kmem_cache_destroy(btrfs_inode_cachep);
6877 	if (btrfs_trans_handle_cachep)
6878 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6879 	if (btrfs_transaction_cachep)
6880 		kmem_cache_destroy(btrfs_transaction_cachep);
6881 	if (btrfs_path_cachep)
6882 		kmem_cache_destroy(btrfs_path_cachep);
6883 	if (btrfs_free_space_cachep)
6884 		kmem_cache_destroy(btrfs_free_space_cachep);
6885 }
6886 
6887 int btrfs_init_cachep(void)
6888 {
6889 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6890 			sizeof(struct btrfs_inode), 0,
6891 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6892 	if (!btrfs_inode_cachep)
6893 		goto fail;
6894 
6895 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6896 			sizeof(struct btrfs_trans_handle), 0,
6897 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6898 	if (!btrfs_trans_handle_cachep)
6899 		goto fail;
6900 
6901 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6902 			sizeof(struct btrfs_transaction), 0,
6903 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6904 	if (!btrfs_transaction_cachep)
6905 		goto fail;
6906 
6907 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6908 			sizeof(struct btrfs_path), 0,
6909 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6910 	if (!btrfs_path_cachep)
6911 		goto fail;
6912 
6913 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6914 			sizeof(struct btrfs_free_space), 0,
6915 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6916 	if (!btrfs_free_space_cachep)
6917 		goto fail;
6918 
6919 	return 0;
6920 fail:
6921 	btrfs_destroy_cachep();
6922 	return -ENOMEM;
6923 }
6924 
6925 static int btrfs_getattr(struct vfsmount *mnt,
6926 			 struct dentry *dentry, struct kstat *stat)
6927 {
6928 	struct inode *inode = dentry->d_inode;
6929 	generic_fillattr(inode, stat);
6930 	stat->dev = BTRFS_I(inode)->root->anon_dev;
6931 	stat->blksize = PAGE_CACHE_SIZE;
6932 	stat->blocks = (inode_get_bytes(inode) +
6933 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6934 	return 0;
6935 }
6936 
6937 /*
6938  * If a file is moved, it will inherit the cow and compression flags of the new
6939  * directory.
6940  */
6941 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6942 {
6943 	struct btrfs_inode *b_dir = BTRFS_I(dir);
6944 	struct btrfs_inode *b_inode = BTRFS_I(inode);
6945 
6946 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
6947 		b_inode->flags |= BTRFS_INODE_NODATACOW;
6948 	else
6949 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6950 
6951 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
6952 		b_inode->flags |= BTRFS_INODE_COMPRESS;
6953 	else
6954 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6955 }
6956 
6957 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6958 			   struct inode *new_dir, struct dentry *new_dentry)
6959 {
6960 	struct btrfs_trans_handle *trans;
6961 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6962 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6963 	struct inode *new_inode = new_dentry->d_inode;
6964 	struct inode *old_inode = old_dentry->d_inode;
6965 	struct timespec ctime = CURRENT_TIME;
6966 	u64 index = 0;
6967 	u64 root_objectid;
6968 	int ret;
6969 	u64 old_ino = btrfs_ino(old_inode);
6970 
6971 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6972 		return -EPERM;
6973 
6974 	/* we only allow rename subvolume link between subvolumes */
6975 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6976 		return -EXDEV;
6977 
6978 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6979 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6980 		return -ENOTEMPTY;
6981 
6982 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6983 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6984 		return -ENOTEMPTY;
6985 	/*
6986 	 * we're using rename to replace one file with another.
6987 	 * and the replacement file is large.  Start IO on it now so
6988 	 * we don't add too much work to the end of the transaction
6989 	 */
6990 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6991 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6992 		filemap_flush(old_inode->i_mapping);
6993 
6994 	/* close the racy window with snapshot create/destroy ioctl */
6995 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6996 		down_read(&root->fs_info->subvol_sem);
6997 	/*
6998 	 * We want to reserve the absolute worst case amount of items.  So if
6999 	 * both inodes are subvols and we need to unlink them then that would
7000 	 * require 4 item modifications, but if they are both normal inodes it
7001 	 * would require 5 item modifications, so we'll assume their normal
7002 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7003 	 * should cover the worst case number of items we'll modify.
7004 	 */
7005 	trans = btrfs_start_transaction(root, 20);
7006 	if (IS_ERR(trans)) {
7007                 ret = PTR_ERR(trans);
7008                 goto out_notrans;
7009         }
7010 
7011 	if (dest != root)
7012 		btrfs_record_root_in_trans(trans, dest);
7013 
7014 	ret = btrfs_set_inode_index(new_dir, &index);
7015 	if (ret)
7016 		goto out_fail;
7017 
7018 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7019 		/* force full log commit if subvolume involved. */
7020 		root->fs_info->last_trans_log_full_commit = trans->transid;
7021 	} else {
7022 		ret = btrfs_insert_inode_ref(trans, dest,
7023 					     new_dentry->d_name.name,
7024 					     new_dentry->d_name.len,
7025 					     old_ino,
7026 					     btrfs_ino(new_dir), index);
7027 		if (ret)
7028 			goto out_fail;
7029 		/*
7030 		 * this is an ugly little race, but the rename is required
7031 		 * to make sure that if we crash, the inode is either at the
7032 		 * old name or the new one.  pinning the log transaction lets
7033 		 * us make sure we don't allow a log commit to come in after
7034 		 * we unlink the name but before we add the new name back in.
7035 		 */
7036 		btrfs_pin_log_trans(root);
7037 	}
7038 	/*
7039 	 * make sure the inode gets flushed if it is replacing
7040 	 * something.
7041 	 */
7042 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7043 		btrfs_add_ordered_operation(trans, root, old_inode);
7044 
7045 	old_dir->i_ctime = old_dir->i_mtime = ctime;
7046 	new_dir->i_ctime = new_dir->i_mtime = ctime;
7047 	old_inode->i_ctime = ctime;
7048 
7049 	if (old_dentry->d_parent != new_dentry->d_parent)
7050 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7051 
7052 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7053 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7054 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7055 					old_dentry->d_name.name,
7056 					old_dentry->d_name.len);
7057 	} else {
7058 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7059 					old_dentry->d_inode,
7060 					old_dentry->d_name.name,
7061 					old_dentry->d_name.len);
7062 		if (!ret)
7063 			ret = btrfs_update_inode(trans, root, old_inode);
7064 	}
7065 	BUG_ON(ret);
7066 
7067 	if (new_inode) {
7068 		new_inode->i_ctime = CURRENT_TIME;
7069 		if (unlikely(btrfs_ino(new_inode) ==
7070 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7071 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7072 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7073 						root_objectid,
7074 						new_dentry->d_name.name,
7075 						new_dentry->d_name.len);
7076 			BUG_ON(new_inode->i_nlink == 0);
7077 		} else {
7078 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7079 						 new_dentry->d_inode,
7080 						 new_dentry->d_name.name,
7081 						 new_dentry->d_name.len);
7082 		}
7083 		BUG_ON(ret);
7084 		if (new_inode->i_nlink == 0) {
7085 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7086 			BUG_ON(ret);
7087 		}
7088 	}
7089 
7090 	fixup_inode_flags(new_dir, old_inode);
7091 
7092 	ret = btrfs_add_link(trans, new_dir, old_inode,
7093 			     new_dentry->d_name.name,
7094 			     new_dentry->d_name.len, 0, index);
7095 	BUG_ON(ret);
7096 
7097 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7098 		struct dentry *parent = new_dentry->d_parent;
7099 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7100 		btrfs_end_log_trans(root);
7101 	}
7102 out_fail:
7103 	btrfs_end_transaction_throttle(trans, root);
7104 out_notrans:
7105 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7106 		up_read(&root->fs_info->subvol_sem);
7107 
7108 	return ret;
7109 }
7110 
7111 /*
7112  * some fairly slow code that needs optimization. This walks the list
7113  * of all the inodes with pending delalloc and forces them to disk.
7114  */
7115 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7116 {
7117 	struct list_head *head = &root->fs_info->delalloc_inodes;
7118 	struct btrfs_inode *binode;
7119 	struct inode *inode;
7120 
7121 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7122 		return -EROFS;
7123 
7124 	spin_lock(&root->fs_info->delalloc_lock);
7125 	while (!list_empty(head)) {
7126 		binode = list_entry(head->next, struct btrfs_inode,
7127 				    delalloc_inodes);
7128 		inode = igrab(&binode->vfs_inode);
7129 		if (!inode)
7130 			list_del_init(&binode->delalloc_inodes);
7131 		spin_unlock(&root->fs_info->delalloc_lock);
7132 		if (inode) {
7133 			filemap_flush(inode->i_mapping);
7134 			if (delay_iput)
7135 				btrfs_add_delayed_iput(inode);
7136 			else
7137 				iput(inode);
7138 		}
7139 		cond_resched();
7140 		spin_lock(&root->fs_info->delalloc_lock);
7141 	}
7142 	spin_unlock(&root->fs_info->delalloc_lock);
7143 
7144 	/* the filemap_flush will queue IO into the worker threads, but
7145 	 * we have to make sure the IO is actually started and that
7146 	 * ordered extents get created before we return
7147 	 */
7148 	atomic_inc(&root->fs_info->async_submit_draining);
7149 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7150 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7151 		wait_event(root->fs_info->async_submit_wait,
7152 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7153 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7154 	}
7155 	atomic_dec(&root->fs_info->async_submit_draining);
7156 	return 0;
7157 }
7158 
7159 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7160 			 const char *symname)
7161 {
7162 	struct btrfs_trans_handle *trans;
7163 	struct btrfs_root *root = BTRFS_I(dir)->root;
7164 	struct btrfs_path *path;
7165 	struct btrfs_key key;
7166 	struct inode *inode = NULL;
7167 	int err;
7168 	int drop_inode = 0;
7169 	u64 objectid;
7170 	u64 index = 0 ;
7171 	int name_len;
7172 	int datasize;
7173 	unsigned long ptr;
7174 	struct btrfs_file_extent_item *ei;
7175 	struct extent_buffer *leaf;
7176 	unsigned long nr = 0;
7177 
7178 	name_len = strlen(symname) + 1;
7179 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7180 		return -ENAMETOOLONG;
7181 
7182 	/*
7183 	 * 2 items for inode item and ref
7184 	 * 2 items for dir items
7185 	 * 1 item for xattr if selinux is on
7186 	 */
7187 	trans = btrfs_start_transaction(root, 5);
7188 	if (IS_ERR(trans))
7189 		return PTR_ERR(trans);
7190 
7191 	err = btrfs_find_free_ino(root, &objectid);
7192 	if (err)
7193 		goto out_unlock;
7194 
7195 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7196 				dentry->d_name.len, btrfs_ino(dir), objectid,
7197 				S_IFLNK|S_IRWXUGO, &index);
7198 	if (IS_ERR(inode)) {
7199 		err = PTR_ERR(inode);
7200 		goto out_unlock;
7201 	}
7202 
7203 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7204 	if (err) {
7205 		drop_inode = 1;
7206 		goto out_unlock;
7207 	}
7208 
7209 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7210 	if (err)
7211 		drop_inode = 1;
7212 	else {
7213 		inode->i_mapping->a_ops = &btrfs_aops;
7214 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7215 		inode->i_fop = &btrfs_file_operations;
7216 		inode->i_op = &btrfs_file_inode_operations;
7217 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7218 	}
7219 	if (drop_inode)
7220 		goto out_unlock;
7221 
7222 	path = btrfs_alloc_path();
7223 	if (!path) {
7224 		err = -ENOMEM;
7225 		drop_inode = 1;
7226 		goto out_unlock;
7227 	}
7228 	key.objectid = btrfs_ino(inode);
7229 	key.offset = 0;
7230 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7231 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7232 	err = btrfs_insert_empty_item(trans, root, path, &key,
7233 				      datasize);
7234 	if (err) {
7235 		drop_inode = 1;
7236 		btrfs_free_path(path);
7237 		goto out_unlock;
7238 	}
7239 	leaf = path->nodes[0];
7240 	ei = btrfs_item_ptr(leaf, path->slots[0],
7241 			    struct btrfs_file_extent_item);
7242 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7243 	btrfs_set_file_extent_type(leaf, ei,
7244 				   BTRFS_FILE_EXTENT_INLINE);
7245 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7246 	btrfs_set_file_extent_compression(leaf, ei, 0);
7247 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7248 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7249 
7250 	ptr = btrfs_file_extent_inline_start(ei);
7251 	write_extent_buffer(leaf, symname, ptr, name_len);
7252 	btrfs_mark_buffer_dirty(leaf);
7253 	btrfs_free_path(path);
7254 
7255 	inode->i_op = &btrfs_symlink_inode_operations;
7256 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7257 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7258 	inode_set_bytes(inode, name_len);
7259 	btrfs_i_size_write(inode, name_len - 1);
7260 	err = btrfs_update_inode(trans, root, inode);
7261 	if (err)
7262 		drop_inode = 1;
7263 
7264 out_unlock:
7265 	nr = trans->blocks_used;
7266 	btrfs_end_transaction_throttle(trans, root);
7267 	if (drop_inode) {
7268 		inode_dec_link_count(inode);
7269 		iput(inode);
7270 	}
7271 	btrfs_btree_balance_dirty(root, nr);
7272 	return err;
7273 }
7274 
7275 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7276 				       u64 start, u64 num_bytes, u64 min_size,
7277 				       loff_t actual_len, u64 *alloc_hint,
7278 				       struct btrfs_trans_handle *trans)
7279 {
7280 	struct btrfs_root *root = BTRFS_I(inode)->root;
7281 	struct btrfs_key ins;
7282 	u64 cur_offset = start;
7283 	u64 i_size;
7284 	int ret = 0;
7285 	bool own_trans = true;
7286 
7287 	if (trans)
7288 		own_trans = false;
7289 	while (num_bytes > 0) {
7290 		if (own_trans) {
7291 			trans = btrfs_start_transaction(root, 3);
7292 			if (IS_ERR(trans)) {
7293 				ret = PTR_ERR(trans);
7294 				break;
7295 			}
7296 		}
7297 
7298 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7299 					   0, *alloc_hint, (u64)-1, &ins, 1);
7300 		if (ret) {
7301 			if (own_trans)
7302 				btrfs_end_transaction(trans, root);
7303 			break;
7304 		}
7305 
7306 		ret = insert_reserved_file_extent(trans, inode,
7307 						  cur_offset, ins.objectid,
7308 						  ins.offset, ins.offset,
7309 						  ins.offset, 0, 0, 0,
7310 						  BTRFS_FILE_EXTENT_PREALLOC);
7311 		BUG_ON(ret);
7312 		btrfs_drop_extent_cache(inode, cur_offset,
7313 					cur_offset + ins.offset -1, 0);
7314 
7315 		num_bytes -= ins.offset;
7316 		cur_offset += ins.offset;
7317 		*alloc_hint = ins.objectid + ins.offset;
7318 
7319 		inode->i_ctime = CURRENT_TIME;
7320 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7321 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7322 		    (actual_len > inode->i_size) &&
7323 		    (cur_offset > inode->i_size)) {
7324 			if (cur_offset > actual_len)
7325 				i_size = actual_len;
7326 			else
7327 				i_size = cur_offset;
7328 			i_size_write(inode, i_size);
7329 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7330 		}
7331 
7332 		ret = btrfs_update_inode(trans, root, inode);
7333 		BUG_ON(ret);
7334 
7335 		if (own_trans)
7336 			btrfs_end_transaction(trans, root);
7337 	}
7338 	return ret;
7339 }
7340 
7341 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7342 			      u64 start, u64 num_bytes, u64 min_size,
7343 			      loff_t actual_len, u64 *alloc_hint)
7344 {
7345 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7346 					   min_size, actual_len, alloc_hint,
7347 					   NULL);
7348 }
7349 
7350 int btrfs_prealloc_file_range_trans(struct inode *inode,
7351 				    struct btrfs_trans_handle *trans, int mode,
7352 				    u64 start, u64 num_bytes, u64 min_size,
7353 				    loff_t actual_len, u64 *alloc_hint)
7354 {
7355 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7356 					   min_size, actual_len, alloc_hint, trans);
7357 }
7358 
7359 static int btrfs_set_page_dirty(struct page *page)
7360 {
7361 	return __set_page_dirty_nobuffers(page);
7362 }
7363 
7364 static int btrfs_permission(struct inode *inode, int mask)
7365 {
7366 	struct btrfs_root *root = BTRFS_I(inode)->root;
7367 	umode_t mode = inode->i_mode;
7368 
7369 	if (mask & MAY_WRITE &&
7370 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7371 		if (btrfs_root_readonly(root))
7372 			return -EROFS;
7373 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7374 			return -EACCES;
7375 	}
7376 	return generic_permission(inode, mask);
7377 }
7378 
7379 static const struct inode_operations btrfs_dir_inode_operations = {
7380 	.getattr	= btrfs_getattr,
7381 	.lookup		= btrfs_lookup,
7382 	.create		= btrfs_create,
7383 	.unlink		= btrfs_unlink,
7384 	.link		= btrfs_link,
7385 	.mkdir		= btrfs_mkdir,
7386 	.rmdir		= btrfs_rmdir,
7387 	.rename		= btrfs_rename,
7388 	.symlink	= btrfs_symlink,
7389 	.setattr	= btrfs_setattr,
7390 	.mknod		= btrfs_mknod,
7391 	.setxattr	= btrfs_setxattr,
7392 	.getxattr	= btrfs_getxattr,
7393 	.listxattr	= btrfs_listxattr,
7394 	.removexattr	= btrfs_removexattr,
7395 	.permission	= btrfs_permission,
7396 	.get_acl	= btrfs_get_acl,
7397 };
7398 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7399 	.lookup		= btrfs_lookup,
7400 	.permission	= btrfs_permission,
7401 	.get_acl	= btrfs_get_acl,
7402 };
7403 
7404 static const struct file_operations btrfs_dir_file_operations = {
7405 	.llseek		= generic_file_llseek,
7406 	.read		= generic_read_dir,
7407 	.readdir	= btrfs_real_readdir,
7408 	.unlocked_ioctl	= btrfs_ioctl,
7409 #ifdef CONFIG_COMPAT
7410 	.compat_ioctl	= btrfs_ioctl,
7411 #endif
7412 	.release        = btrfs_release_file,
7413 	.fsync		= btrfs_sync_file,
7414 };
7415 
7416 static struct extent_io_ops btrfs_extent_io_ops = {
7417 	.fill_delalloc = run_delalloc_range,
7418 	.submit_bio_hook = btrfs_submit_bio_hook,
7419 	.merge_bio_hook = btrfs_merge_bio_hook,
7420 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7421 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7422 	.writepage_start_hook = btrfs_writepage_start_hook,
7423 	.readpage_io_failed_hook = btrfs_io_failed_hook,
7424 	.set_bit_hook = btrfs_set_bit_hook,
7425 	.clear_bit_hook = btrfs_clear_bit_hook,
7426 	.merge_extent_hook = btrfs_merge_extent_hook,
7427 	.split_extent_hook = btrfs_split_extent_hook,
7428 };
7429 
7430 /*
7431  * btrfs doesn't support the bmap operation because swapfiles
7432  * use bmap to make a mapping of extents in the file.  They assume
7433  * these extents won't change over the life of the file and they
7434  * use the bmap result to do IO directly to the drive.
7435  *
7436  * the btrfs bmap call would return logical addresses that aren't
7437  * suitable for IO and they also will change frequently as COW
7438  * operations happen.  So, swapfile + btrfs == corruption.
7439  *
7440  * For now we're avoiding this by dropping bmap.
7441  */
7442 static const struct address_space_operations btrfs_aops = {
7443 	.readpage	= btrfs_readpage,
7444 	.writepage	= btrfs_writepage,
7445 	.writepages	= btrfs_writepages,
7446 	.readpages	= btrfs_readpages,
7447 	.direct_IO	= btrfs_direct_IO,
7448 	.invalidatepage = btrfs_invalidatepage,
7449 	.releasepage	= btrfs_releasepage,
7450 	.set_page_dirty	= btrfs_set_page_dirty,
7451 	.error_remove_page = generic_error_remove_page,
7452 };
7453 
7454 static const struct address_space_operations btrfs_symlink_aops = {
7455 	.readpage	= btrfs_readpage,
7456 	.writepage	= btrfs_writepage,
7457 	.invalidatepage = btrfs_invalidatepage,
7458 	.releasepage	= btrfs_releasepage,
7459 };
7460 
7461 static const struct inode_operations btrfs_file_inode_operations = {
7462 	.getattr	= btrfs_getattr,
7463 	.setattr	= btrfs_setattr,
7464 	.setxattr	= btrfs_setxattr,
7465 	.getxattr	= btrfs_getxattr,
7466 	.listxattr      = btrfs_listxattr,
7467 	.removexattr	= btrfs_removexattr,
7468 	.permission	= btrfs_permission,
7469 	.fiemap		= btrfs_fiemap,
7470 	.get_acl	= btrfs_get_acl,
7471 };
7472 static const struct inode_operations btrfs_special_inode_operations = {
7473 	.getattr	= btrfs_getattr,
7474 	.setattr	= btrfs_setattr,
7475 	.permission	= btrfs_permission,
7476 	.setxattr	= btrfs_setxattr,
7477 	.getxattr	= btrfs_getxattr,
7478 	.listxattr	= btrfs_listxattr,
7479 	.removexattr	= btrfs_removexattr,
7480 	.get_acl	= btrfs_get_acl,
7481 };
7482 static const struct inode_operations btrfs_symlink_inode_operations = {
7483 	.readlink	= generic_readlink,
7484 	.follow_link	= page_follow_link_light,
7485 	.put_link	= page_put_link,
7486 	.getattr	= btrfs_getattr,
7487 	.permission	= btrfs_permission,
7488 	.setxattr	= btrfs_setxattr,
7489 	.getxattr	= btrfs_getxattr,
7490 	.listxattr	= btrfs_listxattr,
7491 	.removexattr	= btrfs_removexattr,
7492 	.get_acl	= btrfs_get_acl,
7493 };
7494 
7495 const struct dentry_operations btrfs_dentry_operations = {
7496 	.d_delete	= btrfs_dentry_delete,
7497 	.d_release	= btrfs_dentry_release,
7498 };
7499