xref: /openbmc/linux/fs/btrfs/inode.c (revision 965f22bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
37 #include "xattr.h"
38 #include "tree-log.h"
39 #include "volumes.h"
40 #include "compression.h"
41 #include "locking.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
44 #include "backref.h"
45 #include "props.h"
46 #include "qgroup.h"
47 #include "dedupe.h"
48 
49 struct btrfs_iget_args {
50 	struct btrfs_key *location;
51 	struct btrfs_root *root;
52 };
53 
54 struct btrfs_dio_data {
55 	u64 reserve;
56 	u64 unsubmitted_oe_range_start;
57 	u64 unsubmitted_oe_range_end;
58 	int overwrite;
59 };
60 
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70 
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75 
76 #define S_SHIFT 12
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91 				   struct page *locked_page,
92 				   u64 start, u64 end, u64 delalloc_end,
93 				   int *page_started, unsigned long *nr_written,
94 				   int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 				       u64 orig_start, u64 block_start,
97 				       u64 block_len, u64 orig_block_len,
98 				       u64 ram_bytes, int compress_type,
99 				       int type);
100 
101 static void __endio_write_update_ordered(struct inode *inode,
102 					 const u64 offset, const u64 bytes,
103 					 const bool uptodate);
104 
105 /*
106  * Cleanup all submitted ordered extents in specified range to handle errors
107  * from the fill_dellaloc() callback.
108  *
109  * NOTE: caller must ensure that when an error happens, it can not call
110  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112  * to be released, which we want to happen only when finishing the ordered
113  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
114  * fill_delalloc() callback already does proper cleanup for the first page of
115  * the range, that is, it invokes the callback writepage_end_io_hook() for the
116  * range of the first page.
117  */
118 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
119 						 const u64 offset,
120 						 const u64 bytes)
121 {
122 	unsigned long index = offset >> PAGE_SHIFT;
123 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
124 	struct page *page;
125 
126 	while (index <= end_index) {
127 		page = find_get_page(inode->i_mapping, index);
128 		index++;
129 		if (!page)
130 			continue;
131 		ClearPagePrivate2(page);
132 		put_page(page);
133 	}
134 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
135 					    bytes - PAGE_SIZE, false);
136 }
137 
138 static int btrfs_dirty_inode(struct inode *inode);
139 
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode *inode)
142 {
143 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
144 }
145 #endif
146 
147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 				     struct inode *inode,  struct inode *dir,
149 				     const struct qstr *qstr)
150 {
151 	int err;
152 
153 	err = btrfs_init_acl(trans, inode, dir);
154 	if (!err)
155 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
156 	return err;
157 }
158 
159 /*
160  * this does all the hard work for inserting an inline extent into
161  * the btree.  The caller should have done a btrfs_drop_extents so that
162  * no overlapping inline items exist in the btree
163  */
164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 				struct btrfs_path *path, int extent_inserted,
166 				struct btrfs_root *root, struct inode *inode,
167 				u64 start, size_t size, size_t compressed_size,
168 				int compress_type,
169 				struct page **compressed_pages)
170 {
171 	struct extent_buffer *leaf;
172 	struct page *page = NULL;
173 	char *kaddr;
174 	unsigned long ptr;
175 	struct btrfs_file_extent_item *ei;
176 	int ret;
177 	size_t cur_size = size;
178 	unsigned long offset;
179 
180 	if (compressed_size && compressed_pages)
181 		cur_size = compressed_size;
182 
183 	inode_add_bytes(inode, size);
184 
185 	if (!extent_inserted) {
186 		struct btrfs_key key;
187 		size_t datasize;
188 
189 		key.objectid = btrfs_ino(BTRFS_I(inode));
190 		key.offset = start;
191 		key.type = BTRFS_EXTENT_DATA_KEY;
192 
193 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 		path->leave_spinning = 1;
195 		ret = btrfs_insert_empty_item(trans, root, path, &key,
196 					      datasize);
197 		if (ret)
198 			goto fail;
199 	}
200 	leaf = path->nodes[0];
201 	ei = btrfs_item_ptr(leaf, path->slots[0],
202 			    struct btrfs_file_extent_item);
203 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 	btrfs_set_file_extent_encryption(leaf, ei, 0);
206 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 	ptr = btrfs_file_extent_inline_start(ei);
209 
210 	if (compress_type != BTRFS_COMPRESS_NONE) {
211 		struct page *cpage;
212 		int i = 0;
213 		while (compressed_size > 0) {
214 			cpage = compressed_pages[i];
215 			cur_size = min_t(unsigned long, compressed_size,
216 				       PAGE_SIZE);
217 
218 			kaddr = kmap_atomic(cpage);
219 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
220 			kunmap_atomic(kaddr);
221 
222 			i++;
223 			ptr += cur_size;
224 			compressed_size -= cur_size;
225 		}
226 		btrfs_set_file_extent_compression(leaf, ei,
227 						  compress_type);
228 	} else {
229 		page = find_get_page(inode->i_mapping,
230 				     start >> PAGE_SHIFT);
231 		btrfs_set_file_extent_compression(leaf, ei, 0);
232 		kaddr = kmap_atomic(page);
233 		offset = start & (PAGE_SIZE - 1);
234 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
235 		kunmap_atomic(kaddr);
236 		put_page(page);
237 	}
238 	btrfs_mark_buffer_dirty(leaf);
239 	btrfs_release_path(path);
240 
241 	/*
242 	 * we're an inline extent, so nobody can
243 	 * extend the file past i_size without locking
244 	 * a page we already have locked.
245 	 *
246 	 * We must do any isize and inode updates
247 	 * before we unlock the pages.  Otherwise we
248 	 * could end up racing with unlink.
249 	 */
250 	BTRFS_I(inode)->disk_i_size = inode->i_size;
251 	ret = btrfs_update_inode(trans, root, inode);
252 
253 fail:
254 	return ret;
255 }
256 
257 
258 /*
259  * conditionally insert an inline extent into the file.  This
260  * does the checks required to make sure the data is small enough
261  * to fit as an inline extent.
262  */
263 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
264 					  u64 end, size_t compressed_size,
265 					  int compress_type,
266 					  struct page **compressed_pages)
267 {
268 	struct btrfs_root *root = BTRFS_I(inode)->root;
269 	struct btrfs_fs_info *fs_info = root->fs_info;
270 	struct btrfs_trans_handle *trans;
271 	u64 isize = i_size_read(inode);
272 	u64 actual_end = min(end + 1, isize);
273 	u64 inline_len = actual_end - start;
274 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
275 	u64 data_len = inline_len;
276 	int ret;
277 	struct btrfs_path *path;
278 	int extent_inserted = 0;
279 	u32 extent_item_size;
280 
281 	if (compressed_size)
282 		data_len = compressed_size;
283 
284 	if (start > 0 ||
285 	    actual_end > fs_info->sectorsize ||
286 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
287 	    (!compressed_size &&
288 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
289 	    end + 1 < isize ||
290 	    data_len > fs_info->max_inline) {
291 		return 1;
292 	}
293 
294 	path = btrfs_alloc_path();
295 	if (!path)
296 		return -ENOMEM;
297 
298 	trans = btrfs_join_transaction(root);
299 	if (IS_ERR(trans)) {
300 		btrfs_free_path(path);
301 		return PTR_ERR(trans);
302 	}
303 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
304 
305 	if (compressed_size && compressed_pages)
306 		extent_item_size = btrfs_file_extent_calc_inline_size(
307 		   compressed_size);
308 	else
309 		extent_item_size = btrfs_file_extent_calc_inline_size(
310 		    inline_len);
311 
312 	ret = __btrfs_drop_extents(trans, root, inode, path,
313 				   start, aligned_end, NULL,
314 				   1, 1, extent_item_size, &extent_inserted);
315 	if (ret) {
316 		btrfs_abort_transaction(trans, ret);
317 		goto out;
318 	}
319 
320 	if (isize > actual_end)
321 		inline_len = min_t(u64, isize, actual_end);
322 	ret = insert_inline_extent(trans, path, extent_inserted,
323 				   root, inode, start,
324 				   inline_len, compressed_size,
325 				   compress_type, compressed_pages);
326 	if (ret && ret != -ENOSPC) {
327 		btrfs_abort_transaction(trans, ret);
328 		goto out;
329 	} else if (ret == -ENOSPC) {
330 		ret = 1;
331 		goto out;
332 	}
333 
334 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
335 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
336 out:
337 	/*
338 	 * Don't forget to free the reserved space, as for inlined extent
339 	 * it won't count as data extent, free them directly here.
340 	 * And at reserve time, it's always aligned to page size, so
341 	 * just free one page here.
342 	 */
343 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
344 	btrfs_free_path(path);
345 	btrfs_end_transaction(trans);
346 	return ret;
347 }
348 
349 struct async_extent {
350 	u64 start;
351 	u64 ram_size;
352 	u64 compressed_size;
353 	struct page **pages;
354 	unsigned long nr_pages;
355 	int compress_type;
356 	struct list_head list;
357 };
358 
359 struct async_cow {
360 	struct inode *inode;
361 	struct btrfs_root *root;
362 	struct page *locked_page;
363 	u64 start;
364 	u64 end;
365 	unsigned int write_flags;
366 	struct list_head extents;
367 	struct btrfs_work work;
368 };
369 
370 static noinline int add_async_extent(struct async_cow *cow,
371 				     u64 start, u64 ram_size,
372 				     u64 compressed_size,
373 				     struct page **pages,
374 				     unsigned long nr_pages,
375 				     int compress_type)
376 {
377 	struct async_extent *async_extent;
378 
379 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
380 	BUG_ON(!async_extent); /* -ENOMEM */
381 	async_extent->start = start;
382 	async_extent->ram_size = ram_size;
383 	async_extent->compressed_size = compressed_size;
384 	async_extent->pages = pages;
385 	async_extent->nr_pages = nr_pages;
386 	async_extent->compress_type = compress_type;
387 	list_add_tail(&async_extent->list, &cow->extents);
388 	return 0;
389 }
390 
391 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
392 {
393 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
394 
395 	/* force compress */
396 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
397 		return 1;
398 	/* defrag ioctl */
399 	if (BTRFS_I(inode)->defrag_compress)
400 		return 1;
401 	/* bad compression ratios */
402 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
403 		return 0;
404 	if (btrfs_test_opt(fs_info, COMPRESS) ||
405 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
406 	    BTRFS_I(inode)->prop_compress)
407 		return btrfs_compress_heuristic(inode, start, end);
408 	return 0;
409 }
410 
411 static inline void inode_should_defrag(struct btrfs_inode *inode,
412 		u64 start, u64 end, u64 num_bytes, u64 small_write)
413 {
414 	/* If this is a small write inside eof, kick off a defrag */
415 	if (num_bytes < small_write &&
416 	    (start > 0 || end + 1 < inode->disk_i_size))
417 		btrfs_add_inode_defrag(NULL, inode);
418 }
419 
420 /*
421  * we create compressed extents in two phases.  The first
422  * phase compresses a range of pages that have already been
423  * locked (both pages and state bits are locked).
424  *
425  * This is done inside an ordered work queue, and the compression
426  * is spread across many cpus.  The actual IO submission is step
427  * two, and the ordered work queue takes care of making sure that
428  * happens in the same order things were put onto the queue by
429  * writepages and friends.
430  *
431  * If this code finds it can't get good compression, it puts an
432  * entry onto the work queue to write the uncompressed bytes.  This
433  * makes sure that both compressed inodes and uncompressed inodes
434  * are written in the same order that the flusher thread sent them
435  * down.
436  */
437 static noinline void compress_file_range(struct inode *inode,
438 					struct page *locked_page,
439 					u64 start, u64 end,
440 					struct async_cow *async_cow,
441 					int *num_added)
442 {
443 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
444 	u64 blocksize = fs_info->sectorsize;
445 	u64 actual_end;
446 	u64 isize = i_size_read(inode);
447 	int ret = 0;
448 	struct page **pages = NULL;
449 	unsigned long nr_pages;
450 	unsigned long total_compressed = 0;
451 	unsigned long total_in = 0;
452 	int i;
453 	int will_compress;
454 	int compress_type = fs_info->compress_type;
455 	int redirty = 0;
456 
457 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
458 			SZ_16K);
459 
460 	actual_end = min_t(u64, isize, end + 1);
461 again:
462 	will_compress = 0;
463 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
464 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
465 	nr_pages = min_t(unsigned long, nr_pages,
466 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
467 
468 	/*
469 	 * we don't want to send crud past the end of i_size through
470 	 * compression, that's just a waste of CPU time.  So, if the
471 	 * end of the file is before the start of our current
472 	 * requested range of bytes, we bail out to the uncompressed
473 	 * cleanup code that can deal with all of this.
474 	 *
475 	 * It isn't really the fastest way to fix things, but this is a
476 	 * very uncommon corner.
477 	 */
478 	if (actual_end <= start)
479 		goto cleanup_and_bail_uncompressed;
480 
481 	total_compressed = actual_end - start;
482 
483 	/*
484 	 * skip compression for a small file range(<=blocksize) that
485 	 * isn't an inline extent, since it doesn't save disk space at all.
486 	 */
487 	if (total_compressed <= blocksize &&
488 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
489 		goto cleanup_and_bail_uncompressed;
490 
491 	total_compressed = min_t(unsigned long, total_compressed,
492 			BTRFS_MAX_UNCOMPRESSED);
493 	total_in = 0;
494 	ret = 0;
495 
496 	/*
497 	 * we do compression for mount -o compress and when the
498 	 * inode has not been flagged as nocompress.  This flag can
499 	 * change at any time if we discover bad compression ratios.
500 	 */
501 	if (inode_need_compress(inode, start, end)) {
502 		WARN_ON(pages);
503 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
504 		if (!pages) {
505 			/* just bail out to the uncompressed code */
506 			goto cont;
507 		}
508 
509 		if (BTRFS_I(inode)->defrag_compress)
510 			compress_type = BTRFS_I(inode)->defrag_compress;
511 		else if (BTRFS_I(inode)->prop_compress)
512 			compress_type = BTRFS_I(inode)->prop_compress;
513 
514 		/*
515 		 * we need to call clear_page_dirty_for_io on each
516 		 * page in the range.  Otherwise applications with the file
517 		 * mmap'd can wander in and change the page contents while
518 		 * we are compressing them.
519 		 *
520 		 * If the compression fails for any reason, we set the pages
521 		 * dirty again later on.
522 		 *
523 		 * Note that the remaining part is redirtied, the start pointer
524 		 * has moved, the end is the original one.
525 		 */
526 		if (!redirty) {
527 			extent_range_clear_dirty_for_io(inode, start, end);
528 			redirty = 1;
529 		}
530 
531 		/* Compression level is applied here and only here */
532 		ret = btrfs_compress_pages(
533 			compress_type | (fs_info->compress_level << 4),
534 					   inode->i_mapping, start,
535 					   pages,
536 					   &nr_pages,
537 					   &total_in,
538 					   &total_compressed);
539 
540 		if (!ret) {
541 			unsigned long offset = total_compressed &
542 				(PAGE_SIZE - 1);
543 			struct page *page = pages[nr_pages - 1];
544 			char *kaddr;
545 
546 			/* zero the tail end of the last page, we might be
547 			 * sending it down to disk
548 			 */
549 			if (offset) {
550 				kaddr = kmap_atomic(page);
551 				memset(kaddr + offset, 0,
552 				       PAGE_SIZE - offset);
553 				kunmap_atomic(kaddr);
554 			}
555 			will_compress = 1;
556 		}
557 	}
558 cont:
559 	if (start == 0) {
560 		/* lets try to make an inline extent */
561 		if (ret || total_in < actual_end) {
562 			/* we didn't compress the entire range, try
563 			 * to make an uncompressed inline extent.
564 			 */
565 			ret = cow_file_range_inline(inode, start, end, 0,
566 						    BTRFS_COMPRESS_NONE, NULL);
567 		} else {
568 			/* try making a compressed inline extent */
569 			ret = cow_file_range_inline(inode, start, end,
570 						    total_compressed,
571 						    compress_type, pages);
572 		}
573 		if (ret <= 0) {
574 			unsigned long clear_flags = EXTENT_DELALLOC |
575 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
576 				EXTENT_DO_ACCOUNTING;
577 			unsigned long page_error_op;
578 
579 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
580 
581 			/*
582 			 * inline extent creation worked or returned error,
583 			 * we don't need to create any more async work items.
584 			 * Unlock and free up our temp pages.
585 			 *
586 			 * We use DO_ACCOUNTING here because we need the
587 			 * delalloc_release_metadata to be done _after_ we drop
588 			 * our outstanding extent for clearing delalloc for this
589 			 * range.
590 			 */
591 			extent_clear_unlock_delalloc(inode, start, end, end,
592 						     NULL, clear_flags,
593 						     PAGE_UNLOCK |
594 						     PAGE_CLEAR_DIRTY |
595 						     PAGE_SET_WRITEBACK |
596 						     page_error_op |
597 						     PAGE_END_WRITEBACK);
598 			goto free_pages_out;
599 		}
600 	}
601 
602 	if (will_compress) {
603 		/*
604 		 * we aren't doing an inline extent round the compressed size
605 		 * up to a block size boundary so the allocator does sane
606 		 * things
607 		 */
608 		total_compressed = ALIGN(total_compressed, blocksize);
609 
610 		/*
611 		 * one last check to make sure the compression is really a
612 		 * win, compare the page count read with the blocks on disk,
613 		 * compression must free at least one sector size
614 		 */
615 		total_in = ALIGN(total_in, PAGE_SIZE);
616 		if (total_compressed + blocksize <= total_in) {
617 			*num_added += 1;
618 
619 			/*
620 			 * The async work queues will take care of doing actual
621 			 * allocation on disk for these compressed pages, and
622 			 * will submit them to the elevator.
623 			 */
624 			add_async_extent(async_cow, start, total_in,
625 					total_compressed, pages, nr_pages,
626 					compress_type);
627 
628 			if (start + total_in < end) {
629 				start += total_in;
630 				pages = NULL;
631 				cond_resched();
632 				goto again;
633 			}
634 			return;
635 		}
636 	}
637 	if (pages) {
638 		/*
639 		 * the compression code ran but failed to make things smaller,
640 		 * free any pages it allocated and our page pointer array
641 		 */
642 		for (i = 0; i < nr_pages; i++) {
643 			WARN_ON(pages[i]->mapping);
644 			put_page(pages[i]);
645 		}
646 		kfree(pages);
647 		pages = NULL;
648 		total_compressed = 0;
649 		nr_pages = 0;
650 
651 		/* flag the file so we don't compress in the future */
652 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
653 		    !(BTRFS_I(inode)->prop_compress)) {
654 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
655 		}
656 	}
657 cleanup_and_bail_uncompressed:
658 	/*
659 	 * No compression, but we still need to write the pages in the file
660 	 * we've been given so far.  redirty the locked page if it corresponds
661 	 * to our extent and set things up for the async work queue to run
662 	 * cow_file_range to do the normal delalloc dance.
663 	 */
664 	if (page_offset(locked_page) >= start &&
665 	    page_offset(locked_page) <= end)
666 		__set_page_dirty_nobuffers(locked_page);
667 		/* unlocked later on in the async handlers */
668 
669 	if (redirty)
670 		extent_range_redirty_for_io(inode, start, end);
671 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 			 BTRFS_COMPRESS_NONE);
673 	*num_added += 1;
674 
675 	return;
676 
677 free_pages_out:
678 	for (i = 0; i < nr_pages; i++) {
679 		WARN_ON(pages[i]->mapping);
680 		put_page(pages[i]);
681 	}
682 	kfree(pages);
683 }
684 
685 static void free_async_extent_pages(struct async_extent *async_extent)
686 {
687 	int i;
688 
689 	if (!async_extent->pages)
690 		return;
691 
692 	for (i = 0; i < async_extent->nr_pages; i++) {
693 		WARN_ON(async_extent->pages[i]->mapping);
694 		put_page(async_extent->pages[i]);
695 	}
696 	kfree(async_extent->pages);
697 	async_extent->nr_pages = 0;
698 	async_extent->pages = NULL;
699 }
700 
701 /*
702  * phase two of compressed writeback.  This is the ordered portion
703  * of the code, which only gets called in the order the work was
704  * queued.  We walk all the async extents created by compress_file_range
705  * and send them down to the disk.
706  */
707 static noinline void submit_compressed_extents(struct inode *inode,
708 					      struct async_cow *async_cow)
709 {
710 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
711 	struct async_extent *async_extent;
712 	u64 alloc_hint = 0;
713 	struct btrfs_key ins;
714 	struct extent_map *em;
715 	struct btrfs_root *root = BTRFS_I(inode)->root;
716 	struct extent_io_tree *io_tree;
717 	int ret = 0;
718 
719 again:
720 	while (!list_empty(&async_cow->extents)) {
721 		async_extent = list_entry(async_cow->extents.next,
722 					  struct async_extent, list);
723 		list_del(&async_extent->list);
724 
725 		io_tree = &BTRFS_I(inode)->io_tree;
726 
727 retry:
728 		/* did the compression code fall back to uncompressed IO? */
729 		if (!async_extent->pages) {
730 			int page_started = 0;
731 			unsigned long nr_written = 0;
732 
733 			lock_extent(io_tree, async_extent->start,
734 					 async_extent->start +
735 					 async_extent->ram_size - 1);
736 
737 			/* allocate blocks */
738 			ret = cow_file_range(inode, async_cow->locked_page,
739 					     async_extent->start,
740 					     async_extent->start +
741 					     async_extent->ram_size - 1,
742 					     async_extent->start +
743 					     async_extent->ram_size - 1,
744 					     &page_started, &nr_written, 0,
745 					     NULL);
746 
747 			/* JDM XXX */
748 
749 			/*
750 			 * if page_started, cow_file_range inserted an
751 			 * inline extent and took care of all the unlocking
752 			 * and IO for us.  Otherwise, we need to submit
753 			 * all those pages down to the drive.
754 			 */
755 			if (!page_started && !ret)
756 				extent_write_locked_range(inode,
757 						  async_extent->start,
758 						  async_extent->start +
759 						  async_extent->ram_size - 1,
760 						  WB_SYNC_ALL);
761 			else if (ret)
762 				unlock_page(async_cow->locked_page);
763 			kfree(async_extent);
764 			cond_resched();
765 			continue;
766 		}
767 
768 		lock_extent(io_tree, async_extent->start,
769 			    async_extent->start + async_extent->ram_size - 1);
770 
771 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
772 					   async_extent->compressed_size,
773 					   async_extent->compressed_size,
774 					   0, alloc_hint, &ins, 1, 1);
775 		if (ret) {
776 			free_async_extent_pages(async_extent);
777 
778 			if (ret == -ENOSPC) {
779 				unlock_extent(io_tree, async_extent->start,
780 					      async_extent->start +
781 					      async_extent->ram_size - 1);
782 
783 				/*
784 				 * we need to redirty the pages if we decide to
785 				 * fallback to uncompressed IO, otherwise we
786 				 * will not submit these pages down to lower
787 				 * layers.
788 				 */
789 				extent_range_redirty_for_io(inode,
790 						async_extent->start,
791 						async_extent->start +
792 						async_extent->ram_size - 1);
793 
794 				goto retry;
795 			}
796 			goto out_free;
797 		}
798 		/*
799 		 * here we're doing allocation and writeback of the
800 		 * compressed pages
801 		 */
802 		em = create_io_em(inode, async_extent->start,
803 				  async_extent->ram_size, /* len */
804 				  async_extent->start, /* orig_start */
805 				  ins.objectid, /* block_start */
806 				  ins.offset, /* block_len */
807 				  ins.offset, /* orig_block_len */
808 				  async_extent->ram_size, /* ram_bytes */
809 				  async_extent->compress_type,
810 				  BTRFS_ORDERED_COMPRESSED);
811 		if (IS_ERR(em))
812 			/* ret value is not necessary due to void function */
813 			goto out_free_reserve;
814 		free_extent_map(em);
815 
816 		ret = btrfs_add_ordered_extent_compress(inode,
817 						async_extent->start,
818 						ins.objectid,
819 						async_extent->ram_size,
820 						ins.offset,
821 						BTRFS_ORDERED_COMPRESSED,
822 						async_extent->compress_type);
823 		if (ret) {
824 			btrfs_drop_extent_cache(BTRFS_I(inode),
825 						async_extent->start,
826 						async_extent->start +
827 						async_extent->ram_size - 1, 0);
828 			goto out_free_reserve;
829 		}
830 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
831 
832 		/*
833 		 * clear dirty, set writeback and unlock the pages.
834 		 */
835 		extent_clear_unlock_delalloc(inode, async_extent->start,
836 				async_extent->start +
837 				async_extent->ram_size - 1,
838 				async_extent->start +
839 				async_extent->ram_size - 1,
840 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
842 				PAGE_SET_WRITEBACK);
843 		if (btrfs_submit_compressed_write(inode,
844 				    async_extent->start,
845 				    async_extent->ram_size,
846 				    ins.objectid,
847 				    ins.offset, async_extent->pages,
848 				    async_extent->nr_pages,
849 				    async_cow->write_flags)) {
850 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 			struct page *p = async_extent->pages[0];
852 			const u64 start = async_extent->start;
853 			const u64 end = start + async_extent->ram_size - 1;
854 
855 			p->mapping = inode->i_mapping;
856 			tree->ops->writepage_end_io_hook(p, start, end,
857 							 NULL, 0);
858 			p->mapping = NULL;
859 			extent_clear_unlock_delalloc(inode, start, end, end,
860 						     NULL, 0,
861 						     PAGE_END_WRITEBACK |
862 						     PAGE_SET_ERROR);
863 			free_async_extent_pages(async_extent);
864 		}
865 		alloc_hint = ins.objectid + ins.offset;
866 		kfree(async_extent);
867 		cond_resched();
868 	}
869 	return;
870 out_free_reserve:
871 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
873 out_free:
874 	extent_clear_unlock_delalloc(inode, async_extent->start,
875 				     async_extent->start +
876 				     async_extent->ram_size - 1,
877 				     async_extent->start +
878 				     async_extent->ram_size - 1,
879 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880 				     EXTENT_DELALLOC_NEW |
881 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
884 				     PAGE_SET_ERROR);
885 	free_async_extent_pages(async_extent);
886 	kfree(async_extent);
887 	goto again;
888 }
889 
890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
891 				      u64 num_bytes)
892 {
893 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 	struct extent_map *em;
895 	u64 alloc_hint = 0;
896 
897 	read_lock(&em_tree->lock);
898 	em = search_extent_mapping(em_tree, start, num_bytes);
899 	if (em) {
900 		/*
901 		 * if block start isn't an actual block number then find the
902 		 * first block in this inode and use that as a hint.  If that
903 		 * block is also bogus then just don't worry about it.
904 		 */
905 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
906 			free_extent_map(em);
907 			em = search_extent_mapping(em_tree, 0, 0);
908 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 				alloc_hint = em->block_start;
910 			if (em)
911 				free_extent_map(em);
912 		} else {
913 			alloc_hint = em->block_start;
914 			free_extent_map(em);
915 		}
916 	}
917 	read_unlock(&em_tree->lock);
918 
919 	return alloc_hint;
920 }
921 
922 /*
923  * when extent_io.c finds a delayed allocation range in the file,
924  * the call backs end up in this code.  The basic idea is to
925  * allocate extents on disk for the range, and create ordered data structs
926  * in ram to track those extents.
927  *
928  * locked_page is the page that writepage had locked already.  We use
929  * it to make sure we don't do extra locks or unlocks.
930  *
931  * *page_started is set to one if we unlock locked_page and do everything
932  * required to start IO on it.  It may be clean and already done with
933  * IO when we return.
934  */
935 static noinline int cow_file_range(struct inode *inode,
936 				   struct page *locked_page,
937 				   u64 start, u64 end, u64 delalloc_end,
938 				   int *page_started, unsigned long *nr_written,
939 				   int unlock, struct btrfs_dedupe_hash *hash)
940 {
941 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942 	struct btrfs_root *root = BTRFS_I(inode)->root;
943 	u64 alloc_hint = 0;
944 	u64 num_bytes;
945 	unsigned long ram_size;
946 	u64 cur_alloc_size = 0;
947 	u64 blocksize = fs_info->sectorsize;
948 	struct btrfs_key ins;
949 	struct extent_map *em;
950 	unsigned clear_bits;
951 	unsigned long page_ops;
952 	bool extent_reserved = false;
953 	int ret = 0;
954 
955 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
956 		WARN_ON_ONCE(1);
957 		ret = -EINVAL;
958 		goto out_unlock;
959 	}
960 
961 	num_bytes = ALIGN(end - start + 1, blocksize);
962 	num_bytes = max(blocksize,  num_bytes);
963 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
964 
965 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
966 
967 	if (start == 0) {
968 		/* lets try to make an inline extent */
969 		ret = cow_file_range_inline(inode, start, end, 0,
970 					    BTRFS_COMPRESS_NONE, NULL);
971 		if (ret == 0) {
972 			/*
973 			 * We use DO_ACCOUNTING here because we need the
974 			 * delalloc_release_metadata to be run _after_ we drop
975 			 * our outstanding extent for clearing delalloc for this
976 			 * range.
977 			 */
978 			extent_clear_unlock_delalloc(inode, start, end,
979 				     delalloc_end, NULL,
980 				     EXTENT_LOCKED | EXTENT_DELALLOC |
981 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
983 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
984 				     PAGE_END_WRITEBACK);
985 			*nr_written = *nr_written +
986 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
987 			*page_started = 1;
988 			goto out;
989 		} else if (ret < 0) {
990 			goto out_unlock;
991 		}
992 	}
993 
994 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 			start + num_bytes - 1, 0);
997 
998 	while (num_bytes > 0) {
999 		cur_alloc_size = num_bytes;
1000 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001 					   fs_info->sectorsize, 0, alloc_hint,
1002 					   &ins, 1, 1);
1003 		if (ret < 0)
1004 			goto out_unlock;
1005 		cur_alloc_size = ins.offset;
1006 		extent_reserved = true;
1007 
1008 		ram_size = ins.offset;
1009 		em = create_io_em(inode, start, ins.offset, /* len */
1010 				  start, /* orig_start */
1011 				  ins.objectid, /* block_start */
1012 				  ins.offset, /* block_len */
1013 				  ins.offset, /* orig_block_len */
1014 				  ram_size, /* ram_bytes */
1015 				  BTRFS_COMPRESS_NONE, /* compress_type */
1016 				  BTRFS_ORDERED_REGULAR /* type */);
1017 		if (IS_ERR(em)) {
1018 			ret = PTR_ERR(em);
1019 			goto out_reserve;
1020 		}
1021 		free_extent_map(em);
1022 
1023 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 					       ram_size, cur_alloc_size, 0);
1025 		if (ret)
1026 			goto out_drop_extent_cache;
1027 
1028 		if (root->root_key.objectid ==
1029 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 			ret = btrfs_reloc_clone_csums(inode, start,
1031 						      cur_alloc_size);
1032 			/*
1033 			 * Only drop cache here, and process as normal.
1034 			 *
1035 			 * We must not allow extent_clear_unlock_delalloc()
1036 			 * at out_unlock label to free meta of this ordered
1037 			 * extent, as its meta should be freed by
1038 			 * btrfs_finish_ordered_io().
1039 			 *
1040 			 * So we must continue until @start is increased to
1041 			 * skip current ordered extent.
1042 			 */
1043 			if (ret)
1044 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 						start + ram_size - 1, 0);
1046 		}
1047 
1048 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1049 
1050 		/* we're not doing compressed IO, don't unlock the first
1051 		 * page (which the caller expects to stay locked), don't
1052 		 * clear any dirty bits and don't set any writeback bits
1053 		 *
1054 		 * Do set the Private2 bit so we know this page was properly
1055 		 * setup for writepage
1056 		 */
1057 		page_ops = unlock ? PAGE_UNLOCK : 0;
1058 		page_ops |= PAGE_SET_PRIVATE2;
1059 
1060 		extent_clear_unlock_delalloc(inode, start,
1061 					     start + ram_size - 1,
1062 					     delalloc_end, locked_page,
1063 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1064 					     page_ops);
1065 		if (num_bytes < cur_alloc_size)
1066 			num_bytes = 0;
1067 		else
1068 			num_bytes -= cur_alloc_size;
1069 		alloc_hint = ins.objectid + ins.offset;
1070 		start += cur_alloc_size;
1071 		extent_reserved = false;
1072 
1073 		/*
1074 		 * btrfs_reloc_clone_csums() error, since start is increased
1075 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 		 * free metadata of current ordered extent, we're OK to exit.
1077 		 */
1078 		if (ret)
1079 			goto out_unlock;
1080 	}
1081 out:
1082 	return ret;
1083 
1084 out_drop_extent_cache:
1085 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1086 out_reserve:
1087 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1089 out_unlock:
1090 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1093 		PAGE_END_WRITEBACK;
1094 	/*
1095 	 * If we reserved an extent for our delalloc range (or a subrange) and
1096 	 * failed to create the respective ordered extent, then it means that
1097 	 * when we reserved the extent we decremented the extent's size from
1098 	 * the data space_info's bytes_may_use counter and incremented the
1099 	 * space_info's bytes_reserved counter by the same amount. We must make
1100 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1103 	 */
1104 	if (extent_reserved) {
1105 		extent_clear_unlock_delalloc(inode, start,
1106 					     start + cur_alloc_size,
1107 					     start + cur_alloc_size,
1108 					     locked_page,
1109 					     clear_bits,
1110 					     page_ops);
1111 		start += cur_alloc_size;
1112 		if (start >= end)
1113 			goto out;
1114 	}
1115 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1116 				     locked_page,
1117 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1118 				     page_ops);
1119 	goto out;
1120 }
1121 
1122 /*
1123  * work queue call back to started compression on a file and pages
1124  */
1125 static noinline void async_cow_start(struct btrfs_work *work)
1126 {
1127 	struct async_cow *async_cow;
1128 	int num_added = 0;
1129 	async_cow = container_of(work, struct async_cow, work);
1130 
1131 	compress_file_range(async_cow->inode, async_cow->locked_page,
1132 			    async_cow->start, async_cow->end, async_cow,
1133 			    &num_added);
1134 	if (num_added == 0) {
1135 		btrfs_add_delayed_iput(async_cow->inode);
1136 		async_cow->inode = NULL;
1137 	}
1138 }
1139 
1140 /*
1141  * work queue call back to submit previously compressed pages
1142  */
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1144 {
1145 	struct btrfs_fs_info *fs_info;
1146 	struct async_cow *async_cow;
1147 	struct btrfs_root *root;
1148 	unsigned long nr_pages;
1149 
1150 	async_cow = container_of(work, struct async_cow, work);
1151 
1152 	root = async_cow->root;
1153 	fs_info = root->fs_info;
1154 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1155 		PAGE_SHIFT;
1156 
1157 	/* atomic_sub_return implies a barrier */
1158 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1159 	    5 * SZ_1M)
1160 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1161 
1162 	if (async_cow->inode)
1163 		submit_compressed_extents(async_cow->inode, async_cow);
1164 }
1165 
1166 static noinline void async_cow_free(struct btrfs_work *work)
1167 {
1168 	struct async_cow *async_cow;
1169 	async_cow = container_of(work, struct async_cow, work);
1170 	if (async_cow->inode)
1171 		btrfs_add_delayed_iput(async_cow->inode);
1172 	kfree(async_cow);
1173 }
1174 
1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176 				u64 start, u64 end, int *page_started,
1177 				unsigned long *nr_written,
1178 				unsigned int write_flags)
1179 {
1180 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181 	struct async_cow *async_cow;
1182 	struct btrfs_root *root = BTRFS_I(inode)->root;
1183 	unsigned long nr_pages;
1184 	u64 cur_end;
1185 
1186 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1187 			 1, 0, NULL);
1188 	while (start < end) {
1189 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1190 		BUG_ON(!async_cow); /* -ENOMEM */
1191 		async_cow->inode = igrab(inode);
1192 		async_cow->root = root;
1193 		async_cow->locked_page = locked_page;
1194 		async_cow->start = start;
1195 		async_cow->write_flags = write_flags;
1196 
1197 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1199 			cur_end = end;
1200 		else
1201 			cur_end = min(end, start + SZ_512K - 1);
1202 
1203 		async_cow->end = cur_end;
1204 		INIT_LIST_HEAD(&async_cow->extents);
1205 
1206 		btrfs_init_work(&async_cow->work,
1207 				btrfs_delalloc_helper,
1208 				async_cow_start, async_cow_submit,
1209 				async_cow_free);
1210 
1211 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1212 			PAGE_SHIFT;
1213 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1214 
1215 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1216 
1217 		*nr_written += nr_pages;
1218 		start = cur_end + 1;
1219 	}
1220 	*page_started = 1;
1221 	return 0;
1222 }
1223 
1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1225 					u64 bytenr, u64 num_bytes)
1226 {
1227 	int ret;
1228 	struct btrfs_ordered_sum *sums;
1229 	LIST_HEAD(list);
1230 
1231 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1232 				       bytenr + num_bytes - 1, &list, 0);
1233 	if (ret == 0 && list_empty(&list))
1234 		return 0;
1235 
1236 	while (!list_empty(&list)) {
1237 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238 		list_del(&sums->list);
1239 		kfree(sums);
1240 	}
1241 	if (ret < 0)
1242 		return ret;
1243 	return 1;
1244 }
1245 
1246 /*
1247  * when nowcow writeback call back.  This checks for snapshots or COW copies
1248  * of the extents that exist in the file, and COWs the file as required.
1249  *
1250  * If no cow copies or snapshots exist, we write directly to the existing
1251  * blocks on disk
1252  */
1253 static noinline int run_delalloc_nocow(struct inode *inode,
1254 				       struct page *locked_page,
1255 			      u64 start, u64 end, int *page_started, int force,
1256 			      unsigned long *nr_written)
1257 {
1258 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1259 	struct btrfs_root *root = BTRFS_I(inode)->root;
1260 	struct extent_buffer *leaf;
1261 	struct btrfs_path *path;
1262 	struct btrfs_file_extent_item *fi;
1263 	struct btrfs_key found_key;
1264 	struct extent_map *em;
1265 	u64 cow_start;
1266 	u64 cur_offset;
1267 	u64 extent_end;
1268 	u64 extent_offset;
1269 	u64 disk_bytenr;
1270 	u64 num_bytes;
1271 	u64 disk_num_bytes;
1272 	u64 ram_bytes;
1273 	int extent_type;
1274 	int ret, err;
1275 	int type;
1276 	int nocow;
1277 	int check_prev = 1;
1278 	bool nolock;
1279 	u64 ino = btrfs_ino(BTRFS_I(inode));
1280 
1281 	path = btrfs_alloc_path();
1282 	if (!path) {
1283 		extent_clear_unlock_delalloc(inode, start, end, end,
1284 					     locked_page,
1285 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1286 					     EXTENT_DO_ACCOUNTING |
1287 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1288 					     PAGE_CLEAR_DIRTY |
1289 					     PAGE_SET_WRITEBACK |
1290 					     PAGE_END_WRITEBACK);
1291 		return -ENOMEM;
1292 	}
1293 
1294 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1295 
1296 	cow_start = (u64)-1;
1297 	cur_offset = start;
1298 	while (1) {
1299 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1300 					       cur_offset, 0);
1301 		if (ret < 0)
1302 			goto error;
1303 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 			leaf = path->nodes[0];
1305 			btrfs_item_key_to_cpu(leaf, &found_key,
1306 					      path->slots[0] - 1);
1307 			if (found_key.objectid == ino &&
1308 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1309 				path->slots[0]--;
1310 		}
1311 		check_prev = 0;
1312 next_slot:
1313 		leaf = path->nodes[0];
1314 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 			ret = btrfs_next_leaf(root, path);
1316 			if (ret < 0) {
1317 				if (cow_start != (u64)-1)
1318 					cur_offset = cow_start;
1319 				goto error;
1320 			}
1321 			if (ret > 0)
1322 				break;
1323 			leaf = path->nodes[0];
1324 		}
1325 
1326 		nocow = 0;
1327 		disk_bytenr = 0;
1328 		num_bytes = 0;
1329 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1330 
1331 		if (found_key.objectid > ino)
1332 			break;
1333 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1335 			path->slots[0]++;
1336 			goto next_slot;
1337 		}
1338 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1339 		    found_key.offset > end)
1340 			break;
1341 
1342 		if (found_key.offset > cur_offset) {
1343 			extent_end = found_key.offset;
1344 			extent_type = 0;
1345 			goto out_check;
1346 		}
1347 
1348 		fi = btrfs_item_ptr(leaf, path->slots[0],
1349 				    struct btrfs_file_extent_item);
1350 		extent_type = btrfs_file_extent_type(leaf, fi);
1351 
1352 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1353 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1355 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1356 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1357 			extent_end = found_key.offset +
1358 				btrfs_file_extent_num_bytes(leaf, fi);
1359 			disk_num_bytes =
1360 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1361 			if (extent_end <= start) {
1362 				path->slots[0]++;
1363 				goto next_slot;
1364 			}
1365 			if (disk_bytenr == 0)
1366 				goto out_check;
1367 			if (btrfs_file_extent_compression(leaf, fi) ||
1368 			    btrfs_file_extent_encryption(leaf, fi) ||
1369 			    btrfs_file_extent_other_encoding(leaf, fi))
1370 				goto out_check;
1371 			/*
1372 			 * Do the same check as in btrfs_cross_ref_exist but
1373 			 * without the unnecessary search.
1374 			 */
1375 			if (btrfs_file_extent_generation(leaf, fi) <=
1376 			    btrfs_root_last_snapshot(&root->root_item))
1377 				goto out_check;
1378 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1379 				goto out_check;
1380 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1381 				goto out_check;
1382 			ret = btrfs_cross_ref_exist(root, ino,
1383 						    found_key.offset -
1384 						    extent_offset, disk_bytenr);
1385 			if (ret) {
1386 				/*
1387 				 * ret could be -EIO if the above fails to read
1388 				 * metadata.
1389 				 */
1390 				if (ret < 0) {
1391 					if (cow_start != (u64)-1)
1392 						cur_offset = cow_start;
1393 					goto error;
1394 				}
1395 
1396 				WARN_ON_ONCE(nolock);
1397 				goto out_check;
1398 			}
1399 			disk_bytenr += extent_offset;
1400 			disk_bytenr += cur_offset - found_key.offset;
1401 			num_bytes = min(end + 1, extent_end) - cur_offset;
1402 			/*
1403 			 * if there are pending snapshots for this root,
1404 			 * we fall into common COW way.
1405 			 */
1406 			if (!nolock) {
1407 				err = btrfs_start_write_no_snapshotting(root);
1408 				if (!err)
1409 					goto out_check;
1410 			}
1411 			/*
1412 			 * force cow if csum exists in the range.
1413 			 * this ensure that csum for a given extent are
1414 			 * either valid or do not exist.
1415 			 */
1416 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1417 						  num_bytes);
1418 			if (ret) {
1419 				if (!nolock)
1420 					btrfs_end_write_no_snapshotting(root);
1421 
1422 				/*
1423 				 * ret could be -EIO if the above fails to read
1424 				 * metadata.
1425 				 */
1426 				if (ret < 0) {
1427 					if (cow_start != (u64)-1)
1428 						cur_offset = cow_start;
1429 					goto error;
1430 				}
1431 				WARN_ON_ONCE(nolock);
1432 				goto out_check;
1433 			}
1434 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1435 				if (!nolock)
1436 					btrfs_end_write_no_snapshotting(root);
1437 				goto out_check;
1438 			}
1439 			nocow = 1;
1440 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1441 			extent_end = found_key.offset +
1442 				btrfs_file_extent_ram_bytes(leaf, fi);
1443 			extent_end = ALIGN(extent_end,
1444 					   fs_info->sectorsize);
1445 		} else {
1446 			BUG_ON(1);
1447 		}
1448 out_check:
1449 		if (extent_end <= start) {
1450 			path->slots[0]++;
1451 			if (!nolock && nocow)
1452 				btrfs_end_write_no_snapshotting(root);
1453 			if (nocow)
1454 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1455 			goto next_slot;
1456 		}
1457 		if (!nocow) {
1458 			if (cow_start == (u64)-1)
1459 				cow_start = cur_offset;
1460 			cur_offset = extent_end;
1461 			if (cur_offset > end)
1462 				break;
1463 			path->slots[0]++;
1464 			goto next_slot;
1465 		}
1466 
1467 		btrfs_release_path(path);
1468 		if (cow_start != (u64)-1) {
1469 			ret = cow_file_range(inode, locked_page,
1470 					     cow_start, found_key.offset - 1,
1471 					     end, page_started, nr_written, 1,
1472 					     NULL);
1473 			if (ret) {
1474 				if (!nolock && nocow)
1475 					btrfs_end_write_no_snapshotting(root);
1476 				if (nocow)
1477 					btrfs_dec_nocow_writers(fs_info,
1478 								disk_bytenr);
1479 				goto error;
1480 			}
1481 			cow_start = (u64)-1;
1482 		}
1483 
1484 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1485 			u64 orig_start = found_key.offset - extent_offset;
1486 
1487 			em = create_io_em(inode, cur_offset, num_bytes,
1488 					  orig_start,
1489 					  disk_bytenr, /* block_start */
1490 					  num_bytes, /* block_len */
1491 					  disk_num_bytes, /* orig_block_len */
1492 					  ram_bytes, BTRFS_COMPRESS_NONE,
1493 					  BTRFS_ORDERED_PREALLOC);
1494 			if (IS_ERR(em)) {
1495 				if (!nolock && nocow)
1496 					btrfs_end_write_no_snapshotting(root);
1497 				if (nocow)
1498 					btrfs_dec_nocow_writers(fs_info,
1499 								disk_bytenr);
1500 				ret = PTR_ERR(em);
1501 				goto error;
1502 			}
1503 			free_extent_map(em);
1504 		}
1505 
1506 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1507 			type = BTRFS_ORDERED_PREALLOC;
1508 		} else {
1509 			type = BTRFS_ORDERED_NOCOW;
1510 		}
1511 
1512 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1513 					       num_bytes, num_bytes, type);
1514 		if (nocow)
1515 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1516 		BUG_ON(ret); /* -ENOMEM */
1517 
1518 		if (root->root_key.objectid ==
1519 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1520 			/*
1521 			 * Error handled later, as we must prevent
1522 			 * extent_clear_unlock_delalloc() in error handler
1523 			 * from freeing metadata of created ordered extent.
1524 			 */
1525 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1526 						      num_bytes);
1527 
1528 		extent_clear_unlock_delalloc(inode, cur_offset,
1529 					     cur_offset + num_bytes - 1, end,
1530 					     locked_page, EXTENT_LOCKED |
1531 					     EXTENT_DELALLOC |
1532 					     EXTENT_CLEAR_DATA_RESV,
1533 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1534 
1535 		if (!nolock && nocow)
1536 			btrfs_end_write_no_snapshotting(root);
1537 		cur_offset = extent_end;
1538 
1539 		/*
1540 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1541 		 * handler, as metadata for created ordered extent will only
1542 		 * be freed by btrfs_finish_ordered_io().
1543 		 */
1544 		if (ret)
1545 			goto error;
1546 		if (cur_offset > end)
1547 			break;
1548 	}
1549 	btrfs_release_path(path);
1550 
1551 	if (cur_offset <= end && cow_start == (u64)-1) {
1552 		cow_start = cur_offset;
1553 		cur_offset = end;
1554 	}
1555 
1556 	if (cow_start != (u64)-1) {
1557 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1558 				     page_started, nr_written, 1, NULL);
1559 		if (ret)
1560 			goto error;
1561 	}
1562 
1563 error:
1564 	if (ret && cur_offset < end)
1565 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1566 					     locked_page, EXTENT_LOCKED |
1567 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1568 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1569 					     PAGE_CLEAR_DIRTY |
1570 					     PAGE_SET_WRITEBACK |
1571 					     PAGE_END_WRITEBACK);
1572 	btrfs_free_path(path);
1573 	return ret;
1574 }
1575 
1576 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1577 {
1578 
1579 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1580 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1581 		return 0;
1582 
1583 	/*
1584 	 * @defrag_bytes is a hint value, no spinlock held here,
1585 	 * if is not zero, it means the file is defragging.
1586 	 * Force cow if given extent needs to be defragged.
1587 	 */
1588 	if (BTRFS_I(inode)->defrag_bytes &&
1589 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1590 			   EXTENT_DEFRAG, 0, NULL))
1591 		return 1;
1592 
1593 	return 0;
1594 }
1595 
1596 /*
1597  * extent_io.c call back to do delayed allocation processing
1598  */
1599 static int run_delalloc_range(void *private_data, struct page *locked_page,
1600 			      u64 start, u64 end, int *page_started,
1601 			      unsigned long *nr_written,
1602 			      struct writeback_control *wbc)
1603 {
1604 	struct inode *inode = private_data;
1605 	int ret;
1606 	int force_cow = need_force_cow(inode, start, end);
1607 	unsigned int write_flags = wbc_to_write_flags(wbc);
1608 
1609 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1610 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1611 					 page_started, 1, nr_written);
1612 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1613 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1614 					 page_started, 0, nr_written);
1615 	} else if (!inode_need_compress(inode, start, end)) {
1616 		ret = cow_file_range(inode, locked_page, start, end, end,
1617 				      page_started, nr_written, 1, NULL);
1618 	} else {
1619 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1620 			&BTRFS_I(inode)->runtime_flags);
1621 		ret = cow_file_range_async(inode, locked_page, start, end,
1622 					   page_started, nr_written,
1623 					   write_flags);
1624 	}
1625 	if (ret)
1626 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1627 	return ret;
1628 }
1629 
1630 static void btrfs_split_extent_hook(void *private_data,
1631 				    struct extent_state *orig, u64 split)
1632 {
1633 	struct inode *inode = private_data;
1634 	u64 size;
1635 
1636 	/* not delalloc, ignore it */
1637 	if (!(orig->state & EXTENT_DELALLOC))
1638 		return;
1639 
1640 	size = orig->end - orig->start + 1;
1641 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1642 		u32 num_extents;
1643 		u64 new_size;
1644 
1645 		/*
1646 		 * See the explanation in btrfs_merge_extent_hook, the same
1647 		 * applies here, just in reverse.
1648 		 */
1649 		new_size = orig->end - split + 1;
1650 		num_extents = count_max_extents(new_size);
1651 		new_size = split - orig->start;
1652 		num_extents += count_max_extents(new_size);
1653 		if (count_max_extents(size) >= num_extents)
1654 			return;
1655 	}
1656 
1657 	spin_lock(&BTRFS_I(inode)->lock);
1658 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1659 	spin_unlock(&BTRFS_I(inode)->lock);
1660 }
1661 
1662 /*
1663  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1664  * extents so we can keep track of new extents that are just merged onto old
1665  * extents, such as when we are doing sequential writes, so we can properly
1666  * account for the metadata space we'll need.
1667  */
1668 static void btrfs_merge_extent_hook(void *private_data,
1669 				    struct extent_state *new,
1670 				    struct extent_state *other)
1671 {
1672 	struct inode *inode = private_data;
1673 	u64 new_size, old_size;
1674 	u32 num_extents;
1675 
1676 	/* not delalloc, ignore it */
1677 	if (!(other->state & EXTENT_DELALLOC))
1678 		return;
1679 
1680 	if (new->start > other->start)
1681 		new_size = new->end - other->start + 1;
1682 	else
1683 		new_size = other->end - new->start + 1;
1684 
1685 	/* we're not bigger than the max, unreserve the space and go */
1686 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1687 		spin_lock(&BTRFS_I(inode)->lock);
1688 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1689 		spin_unlock(&BTRFS_I(inode)->lock);
1690 		return;
1691 	}
1692 
1693 	/*
1694 	 * We have to add up either side to figure out how many extents were
1695 	 * accounted for before we merged into one big extent.  If the number of
1696 	 * extents we accounted for is <= the amount we need for the new range
1697 	 * then we can return, otherwise drop.  Think of it like this
1698 	 *
1699 	 * [ 4k][MAX_SIZE]
1700 	 *
1701 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1702 	 * need 2 outstanding extents, on one side we have 1 and the other side
1703 	 * we have 1 so they are == and we can return.  But in this case
1704 	 *
1705 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1706 	 *
1707 	 * Each range on their own accounts for 2 extents, but merged together
1708 	 * they are only 3 extents worth of accounting, so we need to drop in
1709 	 * this case.
1710 	 */
1711 	old_size = other->end - other->start + 1;
1712 	num_extents = count_max_extents(old_size);
1713 	old_size = new->end - new->start + 1;
1714 	num_extents += count_max_extents(old_size);
1715 	if (count_max_extents(new_size) >= num_extents)
1716 		return;
1717 
1718 	spin_lock(&BTRFS_I(inode)->lock);
1719 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1720 	spin_unlock(&BTRFS_I(inode)->lock);
1721 }
1722 
1723 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1724 				      struct inode *inode)
1725 {
1726 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1727 
1728 	spin_lock(&root->delalloc_lock);
1729 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1730 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1731 			      &root->delalloc_inodes);
1732 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1733 			&BTRFS_I(inode)->runtime_flags);
1734 		root->nr_delalloc_inodes++;
1735 		if (root->nr_delalloc_inodes == 1) {
1736 			spin_lock(&fs_info->delalloc_root_lock);
1737 			BUG_ON(!list_empty(&root->delalloc_root));
1738 			list_add_tail(&root->delalloc_root,
1739 				      &fs_info->delalloc_roots);
1740 			spin_unlock(&fs_info->delalloc_root_lock);
1741 		}
1742 	}
1743 	spin_unlock(&root->delalloc_lock);
1744 }
1745 
1746 
1747 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1748 				struct btrfs_inode *inode)
1749 {
1750 	struct btrfs_fs_info *fs_info = root->fs_info;
1751 
1752 	if (!list_empty(&inode->delalloc_inodes)) {
1753 		list_del_init(&inode->delalloc_inodes);
1754 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1755 			  &inode->runtime_flags);
1756 		root->nr_delalloc_inodes--;
1757 		if (!root->nr_delalloc_inodes) {
1758 			ASSERT(list_empty(&root->delalloc_inodes));
1759 			spin_lock(&fs_info->delalloc_root_lock);
1760 			BUG_ON(list_empty(&root->delalloc_root));
1761 			list_del_init(&root->delalloc_root);
1762 			spin_unlock(&fs_info->delalloc_root_lock);
1763 		}
1764 	}
1765 }
1766 
1767 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1768 				     struct btrfs_inode *inode)
1769 {
1770 	spin_lock(&root->delalloc_lock);
1771 	__btrfs_del_delalloc_inode(root, inode);
1772 	spin_unlock(&root->delalloc_lock);
1773 }
1774 
1775 /*
1776  * extent_io.c set_bit_hook, used to track delayed allocation
1777  * bytes in this file, and to maintain the list of inodes that
1778  * have pending delalloc work to be done.
1779  */
1780 static void btrfs_set_bit_hook(void *private_data,
1781 			       struct extent_state *state, unsigned *bits)
1782 {
1783 	struct inode *inode = private_data;
1784 
1785 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1786 
1787 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1788 		WARN_ON(1);
1789 	/*
1790 	 * set_bit and clear bit hooks normally require _irqsave/restore
1791 	 * but in this case, we are only testing for the DELALLOC
1792 	 * bit, which is only set or cleared with irqs on
1793 	 */
1794 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1795 		struct btrfs_root *root = BTRFS_I(inode)->root;
1796 		u64 len = state->end + 1 - state->start;
1797 		u32 num_extents = count_max_extents(len);
1798 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1799 
1800 		spin_lock(&BTRFS_I(inode)->lock);
1801 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1802 		spin_unlock(&BTRFS_I(inode)->lock);
1803 
1804 		/* For sanity tests */
1805 		if (btrfs_is_testing(fs_info))
1806 			return;
1807 
1808 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1809 					 fs_info->delalloc_batch);
1810 		spin_lock(&BTRFS_I(inode)->lock);
1811 		BTRFS_I(inode)->delalloc_bytes += len;
1812 		if (*bits & EXTENT_DEFRAG)
1813 			BTRFS_I(inode)->defrag_bytes += len;
1814 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1815 					 &BTRFS_I(inode)->runtime_flags))
1816 			btrfs_add_delalloc_inodes(root, inode);
1817 		spin_unlock(&BTRFS_I(inode)->lock);
1818 	}
1819 
1820 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1821 	    (*bits & EXTENT_DELALLOC_NEW)) {
1822 		spin_lock(&BTRFS_I(inode)->lock);
1823 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1824 			state->start;
1825 		spin_unlock(&BTRFS_I(inode)->lock);
1826 	}
1827 }
1828 
1829 /*
1830  * extent_io.c clear_bit_hook, see set_bit_hook for why
1831  */
1832 static void btrfs_clear_bit_hook(void *private_data,
1833 				 struct extent_state *state,
1834 				 unsigned *bits)
1835 {
1836 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1837 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1838 	u64 len = state->end + 1 - state->start;
1839 	u32 num_extents = count_max_extents(len);
1840 
1841 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1842 		spin_lock(&inode->lock);
1843 		inode->defrag_bytes -= len;
1844 		spin_unlock(&inode->lock);
1845 	}
1846 
1847 	/*
1848 	 * set_bit and clear bit hooks normally require _irqsave/restore
1849 	 * but in this case, we are only testing for the DELALLOC
1850 	 * bit, which is only set or cleared with irqs on
1851 	 */
1852 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1853 		struct btrfs_root *root = inode->root;
1854 		bool do_list = !btrfs_is_free_space_inode(inode);
1855 
1856 		spin_lock(&inode->lock);
1857 		btrfs_mod_outstanding_extents(inode, -num_extents);
1858 		spin_unlock(&inode->lock);
1859 
1860 		/*
1861 		 * We don't reserve metadata space for space cache inodes so we
1862 		 * don't need to call dellalloc_release_metadata if there is an
1863 		 * error.
1864 		 */
1865 		if (*bits & EXTENT_CLEAR_META_RESV &&
1866 		    root != fs_info->tree_root)
1867 			btrfs_delalloc_release_metadata(inode, len, false);
1868 
1869 		/* For sanity tests. */
1870 		if (btrfs_is_testing(fs_info))
1871 			return;
1872 
1873 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1874 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1875 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1876 			btrfs_free_reserved_data_space_noquota(
1877 					&inode->vfs_inode,
1878 					state->start, len);
1879 
1880 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1881 					 fs_info->delalloc_batch);
1882 		spin_lock(&inode->lock);
1883 		inode->delalloc_bytes -= len;
1884 		if (do_list && inode->delalloc_bytes == 0 &&
1885 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1886 					&inode->runtime_flags))
1887 			btrfs_del_delalloc_inode(root, inode);
1888 		spin_unlock(&inode->lock);
1889 	}
1890 
1891 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1892 	    (*bits & EXTENT_DELALLOC_NEW)) {
1893 		spin_lock(&inode->lock);
1894 		ASSERT(inode->new_delalloc_bytes >= len);
1895 		inode->new_delalloc_bytes -= len;
1896 		spin_unlock(&inode->lock);
1897 	}
1898 }
1899 
1900 /*
1901  * Merge bio hook, this must check the chunk tree to make sure we don't create
1902  * bios that span stripes or chunks
1903  *
1904  * return 1 if page cannot be merged to bio
1905  * return 0 if page can be merged to bio
1906  * return error otherwise
1907  */
1908 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1909 			 size_t size, struct bio *bio,
1910 			 unsigned long bio_flags)
1911 {
1912 	struct inode *inode = page->mapping->host;
1913 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1914 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1915 	u64 length = 0;
1916 	u64 map_length;
1917 	int ret;
1918 
1919 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1920 		return 0;
1921 
1922 	length = bio->bi_iter.bi_size;
1923 	map_length = length;
1924 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1925 			      NULL, 0);
1926 	if (ret < 0)
1927 		return ret;
1928 	if (map_length < length + size)
1929 		return 1;
1930 	return 0;
1931 }
1932 
1933 /*
1934  * in order to insert checksums into the metadata in large chunks,
1935  * we wait until bio submission time.   All the pages in the bio are
1936  * checksummed and sums are attached onto the ordered extent record.
1937  *
1938  * At IO completion time the cums attached on the ordered extent record
1939  * are inserted into the btree
1940  */
1941 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1942 				    u64 bio_offset)
1943 {
1944 	struct inode *inode = private_data;
1945 	blk_status_t ret = 0;
1946 
1947 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1948 	BUG_ON(ret); /* -ENOMEM */
1949 	return 0;
1950 }
1951 
1952 /*
1953  * in order to insert checksums into the metadata in large chunks,
1954  * we wait until bio submission time.   All the pages in the bio are
1955  * checksummed and sums are attached onto the ordered extent record.
1956  *
1957  * At IO completion time the cums attached on the ordered extent record
1958  * are inserted into the btree
1959  */
1960 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1961 			  int mirror_num)
1962 {
1963 	struct inode *inode = private_data;
1964 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1965 	blk_status_t ret;
1966 
1967 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1968 	if (ret) {
1969 		bio->bi_status = ret;
1970 		bio_endio(bio);
1971 	}
1972 	return ret;
1973 }
1974 
1975 /*
1976  * extent_io.c submission hook. This does the right thing for csum calculation
1977  * on write, or reading the csums from the tree before a read.
1978  *
1979  * Rules about async/sync submit,
1980  * a) read:				sync submit
1981  *
1982  * b) write without checksum:		sync submit
1983  *
1984  * c) write with checksum:
1985  *    c-1) if bio is issued by fsync:	sync submit
1986  *         (sync_writers != 0)
1987  *
1988  *    c-2) if root is reloc root:	sync submit
1989  *         (only in case of buffered IO)
1990  *
1991  *    c-3) otherwise:			async submit
1992  */
1993 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1994 				 int mirror_num, unsigned long bio_flags,
1995 				 u64 bio_offset)
1996 {
1997 	struct inode *inode = private_data;
1998 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1999 	struct btrfs_root *root = BTRFS_I(inode)->root;
2000 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2001 	blk_status_t ret = 0;
2002 	int skip_sum;
2003 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2004 
2005 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2006 
2007 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2008 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2009 
2010 	if (bio_op(bio) != REQ_OP_WRITE) {
2011 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2012 		if (ret)
2013 			goto out;
2014 
2015 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2016 			ret = btrfs_submit_compressed_read(inode, bio,
2017 							   mirror_num,
2018 							   bio_flags);
2019 			goto out;
2020 		} else if (!skip_sum) {
2021 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2022 			if (ret)
2023 				goto out;
2024 		}
2025 		goto mapit;
2026 	} else if (async && !skip_sum) {
2027 		/* csum items have already been cloned */
2028 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2029 			goto mapit;
2030 		/* we're doing a write, do the async checksumming */
2031 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2032 					  bio_offset, inode,
2033 					  btrfs_submit_bio_start);
2034 		goto out;
2035 	} else if (!skip_sum) {
2036 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2037 		if (ret)
2038 			goto out;
2039 	}
2040 
2041 mapit:
2042 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2043 
2044 out:
2045 	if (ret) {
2046 		bio->bi_status = ret;
2047 		bio_endio(bio);
2048 	}
2049 	return ret;
2050 }
2051 
2052 /*
2053  * given a list of ordered sums record them in the inode.  This happens
2054  * at IO completion time based on sums calculated at bio submission time.
2055  */
2056 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2057 			     struct inode *inode, struct list_head *list)
2058 {
2059 	struct btrfs_ordered_sum *sum;
2060 	int ret;
2061 
2062 	list_for_each_entry(sum, list, list) {
2063 		trans->adding_csums = true;
2064 		ret = btrfs_csum_file_blocks(trans,
2065 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2066 		trans->adding_csums = false;
2067 		if (ret)
2068 			return ret;
2069 	}
2070 	return 0;
2071 }
2072 
2073 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2074 			      unsigned int extra_bits,
2075 			      struct extent_state **cached_state, int dedupe)
2076 {
2077 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2078 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2079 				   extra_bits, cached_state);
2080 }
2081 
2082 /* see btrfs_writepage_start_hook for details on why this is required */
2083 struct btrfs_writepage_fixup {
2084 	struct page *page;
2085 	struct btrfs_work work;
2086 };
2087 
2088 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2089 {
2090 	struct btrfs_writepage_fixup *fixup;
2091 	struct btrfs_ordered_extent *ordered;
2092 	struct extent_state *cached_state = NULL;
2093 	struct extent_changeset *data_reserved = NULL;
2094 	struct page *page;
2095 	struct inode *inode;
2096 	u64 page_start;
2097 	u64 page_end;
2098 	int ret;
2099 
2100 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2101 	page = fixup->page;
2102 again:
2103 	lock_page(page);
2104 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2105 		ClearPageChecked(page);
2106 		goto out_page;
2107 	}
2108 
2109 	inode = page->mapping->host;
2110 	page_start = page_offset(page);
2111 	page_end = page_offset(page) + PAGE_SIZE - 1;
2112 
2113 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2114 			 &cached_state);
2115 
2116 	/* already ordered? We're done */
2117 	if (PagePrivate2(page))
2118 		goto out;
2119 
2120 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2121 					PAGE_SIZE);
2122 	if (ordered) {
2123 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2124 				     page_end, &cached_state);
2125 		unlock_page(page);
2126 		btrfs_start_ordered_extent(inode, ordered, 1);
2127 		btrfs_put_ordered_extent(ordered);
2128 		goto again;
2129 	}
2130 
2131 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2132 					   PAGE_SIZE);
2133 	if (ret) {
2134 		mapping_set_error(page->mapping, ret);
2135 		end_extent_writepage(page, ret, page_start, page_end);
2136 		ClearPageChecked(page);
2137 		goto out;
2138 	 }
2139 
2140 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2141 					&cached_state, 0);
2142 	if (ret) {
2143 		mapping_set_error(page->mapping, ret);
2144 		end_extent_writepage(page, ret, page_start, page_end);
2145 		ClearPageChecked(page);
2146 		goto out;
2147 	}
2148 
2149 	ClearPageChecked(page);
2150 	set_page_dirty(page);
2151 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2152 out:
2153 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2154 			     &cached_state);
2155 out_page:
2156 	unlock_page(page);
2157 	put_page(page);
2158 	kfree(fixup);
2159 	extent_changeset_free(data_reserved);
2160 }
2161 
2162 /*
2163  * There are a few paths in the higher layers of the kernel that directly
2164  * set the page dirty bit without asking the filesystem if it is a
2165  * good idea.  This causes problems because we want to make sure COW
2166  * properly happens and the data=ordered rules are followed.
2167  *
2168  * In our case any range that doesn't have the ORDERED bit set
2169  * hasn't been properly setup for IO.  We kick off an async process
2170  * to fix it up.  The async helper will wait for ordered extents, set
2171  * the delalloc bit and make it safe to write the page.
2172  */
2173 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2174 {
2175 	struct inode *inode = page->mapping->host;
2176 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2177 	struct btrfs_writepage_fixup *fixup;
2178 
2179 	/* this page is properly in the ordered list */
2180 	if (TestClearPagePrivate2(page))
2181 		return 0;
2182 
2183 	if (PageChecked(page))
2184 		return -EAGAIN;
2185 
2186 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2187 	if (!fixup)
2188 		return -EAGAIN;
2189 
2190 	SetPageChecked(page);
2191 	get_page(page);
2192 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2193 			btrfs_writepage_fixup_worker, NULL, NULL);
2194 	fixup->page = page;
2195 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2196 	return -EBUSY;
2197 }
2198 
2199 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2200 				       struct inode *inode, u64 file_pos,
2201 				       u64 disk_bytenr, u64 disk_num_bytes,
2202 				       u64 num_bytes, u64 ram_bytes,
2203 				       u8 compression, u8 encryption,
2204 				       u16 other_encoding, int extent_type)
2205 {
2206 	struct btrfs_root *root = BTRFS_I(inode)->root;
2207 	struct btrfs_file_extent_item *fi;
2208 	struct btrfs_path *path;
2209 	struct extent_buffer *leaf;
2210 	struct btrfs_key ins;
2211 	u64 qg_released;
2212 	int extent_inserted = 0;
2213 	int ret;
2214 
2215 	path = btrfs_alloc_path();
2216 	if (!path)
2217 		return -ENOMEM;
2218 
2219 	/*
2220 	 * we may be replacing one extent in the tree with another.
2221 	 * The new extent is pinned in the extent map, and we don't want
2222 	 * to drop it from the cache until it is completely in the btree.
2223 	 *
2224 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2225 	 * the caller is expected to unpin it and allow it to be merged
2226 	 * with the others.
2227 	 */
2228 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2229 				   file_pos + num_bytes, NULL, 0,
2230 				   1, sizeof(*fi), &extent_inserted);
2231 	if (ret)
2232 		goto out;
2233 
2234 	if (!extent_inserted) {
2235 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2236 		ins.offset = file_pos;
2237 		ins.type = BTRFS_EXTENT_DATA_KEY;
2238 
2239 		path->leave_spinning = 1;
2240 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2241 					      sizeof(*fi));
2242 		if (ret)
2243 			goto out;
2244 	}
2245 	leaf = path->nodes[0];
2246 	fi = btrfs_item_ptr(leaf, path->slots[0],
2247 			    struct btrfs_file_extent_item);
2248 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2249 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2250 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2251 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2252 	btrfs_set_file_extent_offset(leaf, fi, 0);
2253 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2254 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2255 	btrfs_set_file_extent_compression(leaf, fi, compression);
2256 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2257 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2258 
2259 	btrfs_mark_buffer_dirty(leaf);
2260 	btrfs_release_path(path);
2261 
2262 	inode_add_bytes(inode, num_bytes);
2263 
2264 	ins.objectid = disk_bytenr;
2265 	ins.offset = disk_num_bytes;
2266 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2267 
2268 	/*
2269 	 * Release the reserved range from inode dirty range map, as it is
2270 	 * already moved into delayed_ref_head
2271 	 */
2272 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2273 	if (ret < 0)
2274 		goto out;
2275 	qg_released = ret;
2276 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2277 					       btrfs_ino(BTRFS_I(inode)),
2278 					       file_pos, qg_released, &ins);
2279 out:
2280 	btrfs_free_path(path);
2281 
2282 	return ret;
2283 }
2284 
2285 /* snapshot-aware defrag */
2286 struct sa_defrag_extent_backref {
2287 	struct rb_node node;
2288 	struct old_sa_defrag_extent *old;
2289 	u64 root_id;
2290 	u64 inum;
2291 	u64 file_pos;
2292 	u64 extent_offset;
2293 	u64 num_bytes;
2294 	u64 generation;
2295 };
2296 
2297 struct old_sa_defrag_extent {
2298 	struct list_head list;
2299 	struct new_sa_defrag_extent *new;
2300 
2301 	u64 extent_offset;
2302 	u64 bytenr;
2303 	u64 offset;
2304 	u64 len;
2305 	int count;
2306 };
2307 
2308 struct new_sa_defrag_extent {
2309 	struct rb_root root;
2310 	struct list_head head;
2311 	struct btrfs_path *path;
2312 	struct inode *inode;
2313 	u64 file_pos;
2314 	u64 len;
2315 	u64 bytenr;
2316 	u64 disk_len;
2317 	u8 compress_type;
2318 };
2319 
2320 static int backref_comp(struct sa_defrag_extent_backref *b1,
2321 			struct sa_defrag_extent_backref *b2)
2322 {
2323 	if (b1->root_id < b2->root_id)
2324 		return -1;
2325 	else if (b1->root_id > b2->root_id)
2326 		return 1;
2327 
2328 	if (b1->inum < b2->inum)
2329 		return -1;
2330 	else if (b1->inum > b2->inum)
2331 		return 1;
2332 
2333 	if (b1->file_pos < b2->file_pos)
2334 		return -1;
2335 	else if (b1->file_pos > b2->file_pos)
2336 		return 1;
2337 
2338 	/*
2339 	 * [------------------------------] ===> (a range of space)
2340 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2341 	 * |<---------------------------->| ===> (fs/file tree B)
2342 	 *
2343 	 * A range of space can refer to two file extents in one tree while
2344 	 * refer to only one file extent in another tree.
2345 	 *
2346 	 * So we may process a disk offset more than one time(two extents in A)
2347 	 * and locate at the same extent(one extent in B), then insert two same
2348 	 * backrefs(both refer to the extent in B).
2349 	 */
2350 	return 0;
2351 }
2352 
2353 static void backref_insert(struct rb_root *root,
2354 			   struct sa_defrag_extent_backref *backref)
2355 {
2356 	struct rb_node **p = &root->rb_node;
2357 	struct rb_node *parent = NULL;
2358 	struct sa_defrag_extent_backref *entry;
2359 	int ret;
2360 
2361 	while (*p) {
2362 		parent = *p;
2363 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2364 
2365 		ret = backref_comp(backref, entry);
2366 		if (ret < 0)
2367 			p = &(*p)->rb_left;
2368 		else
2369 			p = &(*p)->rb_right;
2370 	}
2371 
2372 	rb_link_node(&backref->node, parent, p);
2373 	rb_insert_color(&backref->node, root);
2374 }
2375 
2376 /*
2377  * Note the backref might has changed, and in this case we just return 0.
2378  */
2379 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2380 				       void *ctx)
2381 {
2382 	struct btrfs_file_extent_item *extent;
2383 	struct old_sa_defrag_extent *old = ctx;
2384 	struct new_sa_defrag_extent *new = old->new;
2385 	struct btrfs_path *path = new->path;
2386 	struct btrfs_key key;
2387 	struct btrfs_root *root;
2388 	struct sa_defrag_extent_backref *backref;
2389 	struct extent_buffer *leaf;
2390 	struct inode *inode = new->inode;
2391 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2392 	int slot;
2393 	int ret;
2394 	u64 extent_offset;
2395 	u64 num_bytes;
2396 
2397 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2398 	    inum == btrfs_ino(BTRFS_I(inode)))
2399 		return 0;
2400 
2401 	key.objectid = root_id;
2402 	key.type = BTRFS_ROOT_ITEM_KEY;
2403 	key.offset = (u64)-1;
2404 
2405 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2406 	if (IS_ERR(root)) {
2407 		if (PTR_ERR(root) == -ENOENT)
2408 			return 0;
2409 		WARN_ON(1);
2410 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2411 			 inum, offset, root_id);
2412 		return PTR_ERR(root);
2413 	}
2414 
2415 	key.objectid = inum;
2416 	key.type = BTRFS_EXTENT_DATA_KEY;
2417 	if (offset > (u64)-1 << 32)
2418 		key.offset = 0;
2419 	else
2420 		key.offset = offset;
2421 
2422 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2423 	if (WARN_ON(ret < 0))
2424 		return ret;
2425 	ret = 0;
2426 
2427 	while (1) {
2428 		cond_resched();
2429 
2430 		leaf = path->nodes[0];
2431 		slot = path->slots[0];
2432 
2433 		if (slot >= btrfs_header_nritems(leaf)) {
2434 			ret = btrfs_next_leaf(root, path);
2435 			if (ret < 0) {
2436 				goto out;
2437 			} else if (ret > 0) {
2438 				ret = 0;
2439 				goto out;
2440 			}
2441 			continue;
2442 		}
2443 
2444 		path->slots[0]++;
2445 
2446 		btrfs_item_key_to_cpu(leaf, &key, slot);
2447 
2448 		if (key.objectid > inum)
2449 			goto out;
2450 
2451 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2452 			continue;
2453 
2454 		extent = btrfs_item_ptr(leaf, slot,
2455 					struct btrfs_file_extent_item);
2456 
2457 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2458 			continue;
2459 
2460 		/*
2461 		 * 'offset' refers to the exact key.offset,
2462 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2463 		 * (key.offset - extent_offset).
2464 		 */
2465 		if (key.offset != offset)
2466 			continue;
2467 
2468 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2469 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2470 
2471 		if (extent_offset >= old->extent_offset + old->offset +
2472 		    old->len || extent_offset + num_bytes <=
2473 		    old->extent_offset + old->offset)
2474 			continue;
2475 		break;
2476 	}
2477 
2478 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2479 	if (!backref) {
2480 		ret = -ENOENT;
2481 		goto out;
2482 	}
2483 
2484 	backref->root_id = root_id;
2485 	backref->inum = inum;
2486 	backref->file_pos = offset;
2487 	backref->num_bytes = num_bytes;
2488 	backref->extent_offset = extent_offset;
2489 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2490 	backref->old = old;
2491 	backref_insert(&new->root, backref);
2492 	old->count++;
2493 out:
2494 	btrfs_release_path(path);
2495 	WARN_ON(ret);
2496 	return ret;
2497 }
2498 
2499 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2500 				   struct new_sa_defrag_extent *new)
2501 {
2502 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2503 	struct old_sa_defrag_extent *old, *tmp;
2504 	int ret;
2505 
2506 	new->path = path;
2507 
2508 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2509 		ret = iterate_inodes_from_logical(old->bytenr +
2510 						  old->extent_offset, fs_info,
2511 						  path, record_one_backref,
2512 						  old, false);
2513 		if (ret < 0 && ret != -ENOENT)
2514 			return false;
2515 
2516 		/* no backref to be processed for this extent */
2517 		if (!old->count) {
2518 			list_del(&old->list);
2519 			kfree(old);
2520 		}
2521 	}
2522 
2523 	if (list_empty(&new->head))
2524 		return false;
2525 
2526 	return true;
2527 }
2528 
2529 static int relink_is_mergable(struct extent_buffer *leaf,
2530 			      struct btrfs_file_extent_item *fi,
2531 			      struct new_sa_defrag_extent *new)
2532 {
2533 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2534 		return 0;
2535 
2536 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2537 		return 0;
2538 
2539 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2540 		return 0;
2541 
2542 	if (btrfs_file_extent_encryption(leaf, fi) ||
2543 	    btrfs_file_extent_other_encoding(leaf, fi))
2544 		return 0;
2545 
2546 	return 1;
2547 }
2548 
2549 /*
2550  * Note the backref might has changed, and in this case we just return 0.
2551  */
2552 static noinline int relink_extent_backref(struct btrfs_path *path,
2553 				 struct sa_defrag_extent_backref *prev,
2554 				 struct sa_defrag_extent_backref *backref)
2555 {
2556 	struct btrfs_file_extent_item *extent;
2557 	struct btrfs_file_extent_item *item;
2558 	struct btrfs_ordered_extent *ordered;
2559 	struct btrfs_trans_handle *trans;
2560 	struct btrfs_root *root;
2561 	struct btrfs_key key;
2562 	struct extent_buffer *leaf;
2563 	struct old_sa_defrag_extent *old = backref->old;
2564 	struct new_sa_defrag_extent *new = old->new;
2565 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2566 	struct inode *inode;
2567 	struct extent_state *cached = NULL;
2568 	int ret = 0;
2569 	u64 start;
2570 	u64 len;
2571 	u64 lock_start;
2572 	u64 lock_end;
2573 	bool merge = false;
2574 	int index;
2575 
2576 	if (prev && prev->root_id == backref->root_id &&
2577 	    prev->inum == backref->inum &&
2578 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2579 		merge = true;
2580 
2581 	/* step 1: get root */
2582 	key.objectid = backref->root_id;
2583 	key.type = BTRFS_ROOT_ITEM_KEY;
2584 	key.offset = (u64)-1;
2585 
2586 	index = srcu_read_lock(&fs_info->subvol_srcu);
2587 
2588 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2589 	if (IS_ERR(root)) {
2590 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2591 		if (PTR_ERR(root) == -ENOENT)
2592 			return 0;
2593 		return PTR_ERR(root);
2594 	}
2595 
2596 	if (btrfs_root_readonly(root)) {
2597 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2598 		return 0;
2599 	}
2600 
2601 	/* step 2: get inode */
2602 	key.objectid = backref->inum;
2603 	key.type = BTRFS_INODE_ITEM_KEY;
2604 	key.offset = 0;
2605 
2606 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2607 	if (IS_ERR(inode)) {
2608 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2609 		return 0;
2610 	}
2611 
2612 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2613 
2614 	/* step 3: relink backref */
2615 	lock_start = backref->file_pos;
2616 	lock_end = backref->file_pos + backref->num_bytes - 1;
2617 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2618 			 &cached);
2619 
2620 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2621 	if (ordered) {
2622 		btrfs_put_ordered_extent(ordered);
2623 		goto out_unlock;
2624 	}
2625 
2626 	trans = btrfs_join_transaction(root);
2627 	if (IS_ERR(trans)) {
2628 		ret = PTR_ERR(trans);
2629 		goto out_unlock;
2630 	}
2631 
2632 	key.objectid = backref->inum;
2633 	key.type = BTRFS_EXTENT_DATA_KEY;
2634 	key.offset = backref->file_pos;
2635 
2636 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2637 	if (ret < 0) {
2638 		goto out_free_path;
2639 	} else if (ret > 0) {
2640 		ret = 0;
2641 		goto out_free_path;
2642 	}
2643 
2644 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2645 				struct btrfs_file_extent_item);
2646 
2647 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2648 	    backref->generation)
2649 		goto out_free_path;
2650 
2651 	btrfs_release_path(path);
2652 
2653 	start = backref->file_pos;
2654 	if (backref->extent_offset < old->extent_offset + old->offset)
2655 		start += old->extent_offset + old->offset -
2656 			 backref->extent_offset;
2657 
2658 	len = min(backref->extent_offset + backref->num_bytes,
2659 		  old->extent_offset + old->offset + old->len);
2660 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2661 
2662 	ret = btrfs_drop_extents(trans, root, inode, start,
2663 				 start + len, 1);
2664 	if (ret)
2665 		goto out_free_path;
2666 again:
2667 	key.objectid = btrfs_ino(BTRFS_I(inode));
2668 	key.type = BTRFS_EXTENT_DATA_KEY;
2669 	key.offset = start;
2670 
2671 	path->leave_spinning = 1;
2672 	if (merge) {
2673 		struct btrfs_file_extent_item *fi;
2674 		u64 extent_len;
2675 		struct btrfs_key found_key;
2676 
2677 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2678 		if (ret < 0)
2679 			goto out_free_path;
2680 
2681 		path->slots[0]--;
2682 		leaf = path->nodes[0];
2683 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2684 
2685 		fi = btrfs_item_ptr(leaf, path->slots[0],
2686 				    struct btrfs_file_extent_item);
2687 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2688 
2689 		if (extent_len + found_key.offset == start &&
2690 		    relink_is_mergable(leaf, fi, new)) {
2691 			btrfs_set_file_extent_num_bytes(leaf, fi,
2692 							extent_len + len);
2693 			btrfs_mark_buffer_dirty(leaf);
2694 			inode_add_bytes(inode, len);
2695 
2696 			ret = 1;
2697 			goto out_free_path;
2698 		} else {
2699 			merge = false;
2700 			btrfs_release_path(path);
2701 			goto again;
2702 		}
2703 	}
2704 
2705 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2706 					sizeof(*extent));
2707 	if (ret) {
2708 		btrfs_abort_transaction(trans, ret);
2709 		goto out_free_path;
2710 	}
2711 
2712 	leaf = path->nodes[0];
2713 	item = btrfs_item_ptr(leaf, path->slots[0],
2714 				struct btrfs_file_extent_item);
2715 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2716 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2717 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2718 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2719 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2720 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2721 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2722 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2723 	btrfs_set_file_extent_encryption(leaf, item, 0);
2724 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2725 
2726 	btrfs_mark_buffer_dirty(leaf);
2727 	inode_add_bytes(inode, len);
2728 	btrfs_release_path(path);
2729 
2730 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2731 			new->disk_len, 0,
2732 			backref->root_id, backref->inum,
2733 			new->file_pos);	/* start - extent_offset */
2734 	if (ret) {
2735 		btrfs_abort_transaction(trans, ret);
2736 		goto out_free_path;
2737 	}
2738 
2739 	ret = 1;
2740 out_free_path:
2741 	btrfs_release_path(path);
2742 	path->leave_spinning = 0;
2743 	btrfs_end_transaction(trans);
2744 out_unlock:
2745 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2746 			     &cached);
2747 	iput(inode);
2748 	return ret;
2749 }
2750 
2751 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2752 {
2753 	struct old_sa_defrag_extent *old, *tmp;
2754 
2755 	if (!new)
2756 		return;
2757 
2758 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2759 		kfree(old);
2760 	}
2761 	kfree(new);
2762 }
2763 
2764 static void relink_file_extents(struct new_sa_defrag_extent *new)
2765 {
2766 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2767 	struct btrfs_path *path;
2768 	struct sa_defrag_extent_backref *backref;
2769 	struct sa_defrag_extent_backref *prev = NULL;
2770 	struct inode *inode;
2771 	struct rb_node *node;
2772 	int ret;
2773 
2774 	inode = new->inode;
2775 
2776 	path = btrfs_alloc_path();
2777 	if (!path)
2778 		return;
2779 
2780 	if (!record_extent_backrefs(path, new)) {
2781 		btrfs_free_path(path);
2782 		goto out;
2783 	}
2784 	btrfs_release_path(path);
2785 
2786 	while (1) {
2787 		node = rb_first(&new->root);
2788 		if (!node)
2789 			break;
2790 		rb_erase(node, &new->root);
2791 
2792 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2793 
2794 		ret = relink_extent_backref(path, prev, backref);
2795 		WARN_ON(ret < 0);
2796 
2797 		kfree(prev);
2798 
2799 		if (ret == 1)
2800 			prev = backref;
2801 		else
2802 			prev = NULL;
2803 		cond_resched();
2804 	}
2805 	kfree(prev);
2806 
2807 	btrfs_free_path(path);
2808 out:
2809 	free_sa_defrag_extent(new);
2810 
2811 	atomic_dec(&fs_info->defrag_running);
2812 	wake_up(&fs_info->transaction_wait);
2813 }
2814 
2815 static struct new_sa_defrag_extent *
2816 record_old_file_extents(struct inode *inode,
2817 			struct btrfs_ordered_extent *ordered)
2818 {
2819 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820 	struct btrfs_root *root = BTRFS_I(inode)->root;
2821 	struct btrfs_path *path;
2822 	struct btrfs_key key;
2823 	struct old_sa_defrag_extent *old;
2824 	struct new_sa_defrag_extent *new;
2825 	int ret;
2826 
2827 	new = kmalloc(sizeof(*new), GFP_NOFS);
2828 	if (!new)
2829 		return NULL;
2830 
2831 	new->inode = inode;
2832 	new->file_pos = ordered->file_offset;
2833 	new->len = ordered->len;
2834 	new->bytenr = ordered->start;
2835 	new->disk_len = ordered->disk_len;
2836 	new->compress_type = ordered->compress_type;
2837 	new->root = RB_ROOT;
2838 	INIT_LIST_HEAD(&new->head);
2839 
2840 	path = btrfs_alloc_path();
2841 	if (!path)
2842 		goto out_kfree;
2843 
2844 	key.objectid = btrfs_ino(BTRFS_I(inode));
2845 	key.type = BTRFS_EXTENT_DATA_KEY;
2846 	key.offset = new->file_pos;
2847 
2848 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2849 	if (ret < 0)
2850 		goto out_free_path;
2851 	if (ret > 0 && path->slots[0] > 0)
2852 		path->slots[0]--;
2853 
2854 	/* find out all the old extents for the file range */
2855 	while (1) {
2856 		struct btrfs_file_extent_item *extent;
2857 		struct extent_buffer *l;
2858 		int slot;
2859 		u64 num_bytes;
2860 		u64 offset;
2861 		u64 end;
2862 		u64 disk_bytenr;
2863 		u64 extent_offset;
2864 
2865 		l = path->nodes[0];
2866 		slot = path->slots[0];
2867 
2868 		if (slot >= btrfs_header_nritems(l)) {
2869 			ret = btrfs_next_leaf(root, path);
2870 			if (ret < 0)
2871 				goto out_free_path;
2872 			else if (ret > 0)
2873 				break;
2874 			continue;
2875 		}
2876 
2877 		btrfs_item_key_to_cpu(l, &key, slot);
2878 
2879 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2880 			break;
2881 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2882 			break;
2883 		if (key.offset >= new->file_pos + new->len)
2884 			break;
2885 
2886 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2887 
2888 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2889 		if (key.offset + num_bytes < new->file_pos)
2890 			goto next;
2891 
2892 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2893 		if (!disk_bytenr)
2894 			goto next;
2895 
2896 		extent_offset = btrfs_file_extent_offset(l, extent);
2897 
2898 		old = kmalloc(sizeof(*old), GFP_NOFS);
2899 		if (!old)
2900 			goto out_free_path;
2901 
2902 		offset = max(new->file_pos, key.offset);
2903 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2904 
2905 		old->bytenr = disk_bytenr;
2906 		old->extent_offset = extent_offset;
2907 		old->offset = offset - key.offset;
2908 		old->len = end - offset;
2909 		old->new = new;
2910 		old->count = 0;
2911 		list_add_tail(&old->list, &new->head);
2912 next:
2913 		path->slots[0]++;
2914 		cond_resched();
2915 	}
2916 
2917 	btrfs_free_path(path);
2918 	atomic_inc(&fs_info->defrag_running);
2919 
2920 	return new;
2921 
2922 out_free_path:
2923 	btrfs_free_path(path);
2924 out_kfree:
2925 	free_sa_defrag_extent(new);
2926 	return NULL;
2927 }
2928 
2929 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2930 					 u64 start, u64 len)
2931 {
2932 	struct btrfs_block_group_cache *cache;
2933 
2934 	cache = btrfs_lookup_block_group(fs_info, start);
2935 	ASSERT(cache);
2936 
2937 	spin_lock(&cache->lock);
2938 	cache->delalloc_bytes -= len;
2939 	spin_unlock(&cache->lock);
2940 
2941 	btrfs_put_block_group(cache);
2942 }
2943 
2944 /* as ordered data IO finishes, this gets called so we can finish
2945  * an ordered extent if the range of bytes in the file it covers are
2946  * fully written.
2947  */
2948 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2949 {
2950 	struct inode *inode = ordered_extent->inode;
2951 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2952 	struct btrfs_root *root = BTRFS_I(inode)->root;
2953 	struct btrfs_trans_handle *trans = NULL;
2954 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2955 	struct extent_state *cached_state = NULL;
2956 	struct new_sa_defrag_extent *new = NULL;
2957 	int compress_type = 0;
2958 	int ret = 0;
2959 	u64 logical_len = ordered_extent->len;
2960 	bool nolock;
2961 	bool truncated = false;
2962 	bool range_locked = false;
2963 	bool clear_new_delalloc_bytes = false;
2964 
2965 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2966 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2967 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2968 		clear_new_delalloc_bytes = true;
2969 
2970 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2971 
2972 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2973 		ret = -EIO;
2974 		goto out;
2975 	}
2976 
2977 	btrfs_free_io_failure_record(BTRFS_I(inode),
2978 			ordered_extent->file_offset,
2979 			ordered_extent->file_offset +
2980 			ordered_extent->len - 1);
2981 
2982 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2983 		truncated = true;
2984 		logical_len = ordered_extent->truncated_len;
2985 		/* Truncated the entire extent, don't bother adding */
2986 		if (!logical_len)
2987 			goto out;
2988 	}
2989 
2990 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2991 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2992 
2993 		/*
2994 		 * For mwrite(mmap + memset to write) case, we still reserve
2995 		 * space for NOCOW range.
2996 		 * As NOCOW won't cause a new delayed ref, just free the space
2997 		 */
2998 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2999 				       ordered_extent->len);
3000 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3001 		if (nolock)
3002 			trans = btrfs_join_transaction_nolock(root);
3003 		else
3004 			trans = btrfs_join_transaction(root);
3005 		if (IS_ERR(trans)) {
3006 			ret = PTR_ERR(trans);
3007 			trans = NULL;
3008 			goto out;
3009 		}
3010 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3011 		ret = btrfs_update_inode_fallback(trans, root, inode);
3012 		if (ret) /* -ENOMEM or corruption */
3013 			btrfs_abort_transaction(trans, ret);
3014 		goto out;
3015 	}
3016 
3017 	range_locked = true;
3018 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3019 			 ordered_extent->file_offset + ordered_extent->len - 1,
3020 			 &cached_state);
3021 
3022 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3023 			ordered_extent->file_offset + ordered_extent->len - 1,
3024 			EXTENT_DEFRAG, 0, cached_state);
3025 	if (ret) {
3026 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3027 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3028 			/* the inode is shared */
3029 			new = record_old_file_extents(inode, ordered_extent);
3030 
3031 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3032 			ordered_extent->file_offset + ordered_extent->len - 1,
3033 			EXTENT_DEFRAG, 0, 0, &cached_state);
3034 	}
3035 
3036 	if (nolock)
3037 		trans = btrfs_join_transaction_nolock(root);
3038 	else
3039 		trans = btrfs_join_transaction(root);
3040 	if (IS_ERR(trans)) {
3041 		ret = PTR_ERR(trans);
3042 		trans = NULL;
3043 		goto out;
3044 	}
3045 
3046 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3047 
3048 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3049 		compress_type = ordered_extent->compress_type;
3050 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3051 		BUG_ON(compress_type);
3052 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3053 				       ordered_extent->len);
3054 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3055 						ordered_extent->file_offset,
3056 						ordered_extent->file_offset +
3057 						logical_len);
3058 	} else {
3059 		BUG_ON(root == fs_info->tree_root);
3060 		ret = insert_reserved_file_extent(trans, inode,
3061 						ordered_extent->file_offset,
3062 						ordered_extent->start,
3063 						ordered_extent->disk_len,
3064 						logical_len, logical_len,
3065 						compress_type, 0, 0,
3066 						BTRFS_FILE_EXTENT_REG);
3067 		if (!ret)
3068 			btrfs_release_delalloc_bytes(fs_info,
3069 						     ordered_extent->start,
3070 						     ordered_extent->disk_len);
3071 	}
3072 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3073 			   ordered_extent->file_offset, ordered_extent->len,
3074 			   trans->transid);
3075 	if (ret < 0) {
3076 		btrfs_abort_transaction(trans, ret);
3077 		goto out;
3078 	}
3079 
3080 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3081 	if (ret) {
3082 		btrfs_abort_transaction(trans, ret);
3083 		goto out;
3084 	}
3085 
3086 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3087 	ret = btrfs_update_inode_fallback(trans, root, inode);
3088 	if (ret) { /* -ENOMEM or corruption */
3089 		btrfs_abort_transaction(trans, ret);
3090 		goto out;
3091 	}
3092 	ret = 0;
3093 out:
3094 	if (range_locked || clear_new_delalloc_bytes) {
3095 		unsigned int clear_bits = 0;
3096 
3097 		if (range_locked)
3098 			clear_bits |= EXTENT_LOCKED;
3099 		if (clear_new_delalloc_bytes)
3100 			clear_bits |= EXTENT_DELALLOC_NEW;
3101 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3102 				 ordered_extent->file_offset,
3103 				 ordered_extent->file_offset +
3104 				 ordered_extent->len - 1,
3105 				 clear_bits,
3106 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3107 				 0, &cached_state);
3108 	}
3109 
3110 	if (trans)
3111 		btrfs_end_transaction(trans);
3112 
3113 	if (ret || truncated) {
3114 		u64 start, end;
3115 
3116 		if (truncated)
3117 			start = ordered_extent->file_offset + logical_len;
3118 		else
3119 			start = ordered_extent->file_offset;
3120 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3121 		clear_extent_uptodate(io_tree, start, end, NULL);
3122 
3123 		/* Drop the cache for the part of the extent we didn't write. */
3124 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3125 
3126 		/*
3127 		 * If the ordered extent had an IOERR or something else went
3128 		 * wrong we need to return the space for this ordered extent
3129 		 * back to the allocator.  We only free the extent in the
3130 		 * truncated case if we didn't write out the extent at all.
3131 		 */
3132 		if ((ret || !logical_len) &&
3133 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3134 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3135 			btrfs_free_reserved_extent(fs_info,
3136 						   ordered_extent->start,
3137 						   ordered_extent->disk_len, 1);
3138 	}
3139 
3140 
3141 	/*
3142 	 * This needs to be done to make sure anybody waiting knows we are done
3143 	 * updating everything for this ordered extent.
3144 	 */
3145 	btrfs_remove_ordered_extent(inode, ordered_extent);
3146 
3147 	/* for snapshot-aware defrag */
3148 	if (new) {
3149 		if (ret) {
3150 			free_sa_defrag_extent(new);
3151 			atomic_dec(&fs_info->defrag_running);
3152 		} else {
3153 			relink_file_extents(new);
3154 		}
3155 	}
3156 
3157 	/* once for us */
3158 	btrfs_put_ordered_extent(ordered_extent);
3159 	/* once for the tree */
3160 	btrfs_put_ordered_extent(ordered_extent);
3161 
3162 	/* Try to release some metadata so we don't get an OOM but don't wait */
3163 	btrfs_btree_balance_dirty_nodelay(fs_info);
3164 
3165 	return ret;
3166 }
3167 
3168 static void finish_ordered_fn(struct btrfs_work *work)
3169 {
3170 	struct btrfs_ordered_extent *ordered_extent;
3171 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3172 	btrfs_finish_ordered_io(ordered_extent);
3173 }
3174 
3175 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3176 				struct extent_state *state, int uptodate)
3177 {
3178 	struct inode *inode = page->mapping->host;
3179 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3180 	struct btrfs_ordered_extent *ordered_extent = NULL;
3181 	struct btrfs_workqueue *wq;
3182 	btrfs_work_func_t func;
3183 
3184 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3185 
3186 	ClearPagePrivate2(page);
3187 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3188 					    end - start + 1, uptodate))
3189 		return;
3190 
3191 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3192 		wq = fs_info->endio_freespace_worker;
3193 		func = btrfs_freespace_write_helper;
3194 	} else {
3195 		wq = fs_info->endio_write_workers;
3196 		func = btrfs_endio_write_helper;
3197 	}
3198 
3199 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3200 			NULL);
3201 	btrfs_queue_work(wq, &ordered_extent->work);
3202 }
3203 
3204 static int __readpage_endio_check(struct inode *inode,
3205 				  struct btrfs_io_bio *io_bio,
3206 				  int icsum, struct page *page,
3207 				  int pgoff, u64 start, size_t len)
3208 {
3209 	char *kaddr;
3210 	u32 csum_expected;
3211 	u32 csum = ~(u32)0;
3212 
3213 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3214 
3215 	kaddr = kmap_atomic(page);
3216 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3217 	btrfs_csum_final(csum, (u8 *)&csum);
3218 	if (csum != csum_expected)
3219 		goto zeroit;
3220 
3221 	kunmap_atomic(kaddr);
3222 	return 0;
3223 zeroit:
3224 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3225 				    io_bio->mirror_num);
3226 	memset(kaddr + pgoff, 1, len);
3227 	flush_dcache_page(page);
3228 	kunmap_atomic(kaddr);
3229 	return -EIO;
3230 }
3231 
3232 /*
3233  * when reads are done, we need to check csums to verify the data is correct
3234  * if there's a match, we allow the bio to finish.  If not, the code in
3235  * extent_io.c will try to find good copies for us.
3236  */
3237 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3238 				      u64 phy_offset, struct page *page,
3239 				      u64 start, u64 end, int mirror)
3240 {
3241 	size_t offset = start - page_offset(page);
3242 	struct inode *inode = page->mapping->host;
3243 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3244 	struct btrfs_root *root = BTRFS_I(inode)->root;
3245 
3246 	if (PageChecked(page)) {
3247 		ClearPageChecked(page);
3248 		return 0;
3249 	}
3250 
3251 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3252 		return 0;
3253 
3254 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3255 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3256 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3257 		return 0;
3258 	}
3259 
3260 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3261 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3262 				      start, (size_t)(end - start + 1));
3263 }
3264 
3265 /*
3266  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3267  *
3268  * @inode: The inode we want to perform iput on
3269  *
3270  * This function uses the generic vfs_inode::i_count to track whether we should
3271  * just decrement it (in case it's > 1) or if this is the last iput then link
3272  * the inode to the delayed iput machinery. Delayed iputs are processed at
3273  * transaction commit time/superblock commit/cleaner kthread.
3274  */
3275 void btrfs_add_delayed_iput(struct inode *inode)
3276 {
3277 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3278 	struct btrfs_inode *binode = BTRFS_I(inode);
3279 
3280 	if (atomic_add_unless(&inode->i_count, -1, 1))
3281 		return;
3282 
3283 	spin_lock(&fs_info->delayed_iput_lock);
3284 	ASSERT(list_empty(&binode->delayed_iput));
3285 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3286 	spin_unlock(&fs_info->delayed_iput_lock);
3287 }
3288 
3289 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3290 {
3291 
3292 	spin_lock(&fs_info->delayed_iput_lock);
3293 	while (!list_empty(&fs_info->delayed_iputs)) {
3294 		struct btrfs_inode *inode;
3295 
3296 		inode = list_first_entry(&fs_info->delayed_iputs,
3297 				struct btrfs_inode, delayed_iput);
3298 		list_del_init(&inode->delayed_iput);
3299 		spin_unlock(&fs_info->delayed_iput_lock);
3300 		iput(&inode->vfs_inode);
3301 		spin_lock(&fs_info->delayed_iput_lock);
3302 	}
3303 	spin_unlock(&fs_info->delayed_iput_lock);
3304 }
3305 
3306 /*
3307  * This creates an orphan entry for the given inode in case something goes wrong
3308  * in the middle of an unlink.
3309  */
3310 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3311 		     struct btrfs_inode *inode)
3312 {
3313 	int ret;
3314 
3315 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3316 	if (ret && ret != -EEXIST) {
3317 		btrfs_abort_transaction(trans, ret);
3318 		return ret;
3319 	}
3320 
3321 	return 0;
3322 }
3323 
3324 /*
3325  * We have done the delete so we can go ahead and remove the orphan item for
3326  * this particular inode.
3327  */
3328 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3329 			    struct btrfs_inode *inode)
3330 {
3331 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3332 }
3333 
3334 /*
3335  * this cleans up any orphans that may be left on the list from the last use
3336  * of this root.
3337  */
3338 int btrfs_orphan_cleanup(struct btrfs_root *root)
3339 {
3340 	struct btrfs_fs_info *fs_info = root->fs_info;
3341 	struct btrfs_path *path;
3342 	struct extent_buffer *leaf;
3343 	struct btrfs_key key, found_key;
3344 	struct btrfs_trans_handle *trans;
3345 	struct inode *inode;
3346 	u64 last_objectid = 0;
3347 	int ret = 0, nr_unlink = 0;
3348 
3349 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3350 		return 0;
3351 
3352 	path = btrfs_alloc_path();
3353 	if (!path) {
3354 		ret = -ENOMEM;
3355 		goto out;
3356 	}
3357 	path->reada = READA_BACK;
3358 
3359 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3360 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3361 	key.offset = (u64)-1;
3362 
3363 	while (1) {
3364 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3365 		if (ret < 0)
3366 			goto out;
3367 
3368 		/*
3369 		 * if ret == 0 means we found what we were searching for, which
3370 		 * is weird, but possible, so only screw with path if we didn't
3371 		 * find the key and see if we have stuff that matches
3372 		 */
3373 		if (ret > 0) {
3374 			ret = 0;
3375 			if (path->slots[0] == 0)
3376 				break;
3377 			path->slots[0]--;
3378 		}
3379 
3380 		/* pull out the item */
3381 		leaf = path->nodes[0];
3382 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3383 
3384 		/* make sure the item matches what we want */
3385 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3386 			break;
3387 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3388 			break;
3389 
3390 		/* release the path since we're done with it */
3391 		btrfs_release_path(path);
3392 
3393 		/*
3394 		 * this is where we are basically btrfs_lookup, without the
3395 		 * crossing root thing.  we store the inode number in the
3396 		 * offset of the orphan item.
3397 		 */
3398 
3399 		if (found_key.offset == last_objectid) {
3400 			btrfs_err(fs_info,
3401 				  "Error removing orphan entry, stopping orphan cleanup");
3402 			ret = -EINVAL;
3403 			goto out;
3404 		}
3405 
3406 		last_objectid = found_key.offset;
3407 
3408 		found_key.objectid = found_key.offset;
3409 		found_key.type = BTRFS_INODE_ITEM_KEY;
3410 		found_key.offset = 0;
3411 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3412 		ret = PTR_ERR_OR_ZERO(inode);
3413 		if (ret && ret != -ENOENT)
3414 			goto out;
3415 
3416 		if (ret == -ENOENT && root == fs_info->tree_root) {
3417 			struct btrfs_root *dead_root;
3418 			struct btrfs_fs_info *fs_info = root->fs_info;
3419 			int is_dead_root = 0;
3420 
3421 			/*
3422 			 * this is an orphan in the tree root. Currently these
3423 			 * could come from 2 sources:
3424 			 *  a) a snapshot deletion in progress
3425 			 *  b) a free space cache inode
3426 			 * We need to distinguish those two, as the snapshot
3427 			 * orphan must not get deleted.
3428 			 * find_dead_roots already ran before us, so if this
3429 			 * is a snapshot deletion, we should find the root
3430 			 * in the dead_roots list
3431 			 */
3432 			spin_lock(&fs_info->trans_lock);
3433 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3434 					    root_list) {
3435 				if (dead_root->root_key.objectid ==
3436 				    found_key.objectid) {
3437 					is_dead_root = 1;
3438 					break;
3439 				}
3440 			}
3441 			spin_unlock(&fs_info->trans_lock);
3442 			if (is_dead_root) {
3443 				/* prevent this orphan from being found again */
3444 				key.offset = found_key.objectid - 1;
3445 				continue;
3446 			}
3447 
3448 		}
3449 
3450 		/*
3451 		 * If we have an inode with links, there are a couple of
3452 		 * possibilities. Old kernels (before v3.12) used to create an
3453 		 * orphan item for truncate indicating that there were possibly
3454 		 * extent items past i_size that needed to be deleted. In v3.12,
3455 		 * truncate was changed to update i_size in sync with the extent
3456 		 * items, but the (useless) orphan item was still created. Since
3457 		 * v4.18, we don't create the orphan item for truncate at all.
3458 		 *
3459 		 * So, this item could mean that we need to do a truncate, but
3460 		 * only if this filesystem was last used on a pre-v3.12 kernel
3461 		 * and was not cleanly unmounted. The odds of that are quite
3462 		 * slim, and it's a pain to do the truncate now, so just delete
3463 		 * the orphan item.
3464 		 *
3465 		 * It's also possible that this orphan item was supposed to be
3466 		 * deleted but wasn't. The inode number may have been reused,
3467 		 * but either way, we can delete the orphan item.
3468 		 */
3469 		if (ret == -ENOENT || inode->i_nlink) {
3470 			if (!ret)
3471 				iput(inode);
3472 			trans = btrfs_start_transaction(root, 1);
3473 			if (IS_ERR(trans)) {
3474 				ret = PTR_ERR(trans);
3475 				goto out;
3476 			}
3477 			btrfs_debug(fs_info, "auto deleting %Lu",
3478 				    found_key.objectid);
3479 			ret = btrfs_del_orphan_item(trans, root,
3480 						    found_key.objectid);
3481 			btrfs_end_transaction(trans);
3482 			if (ret)
3483 				goto out;
3484 			continue;
3485 		}
3486 
3487 		nr_unlink++;
3488 
3489 		/* this will do delete_inode and everything for us */
3490 		iput(inode);
3491 		if (ret)
3492 			goto out;
3493 	}
3494 	/* release the path since we're done with it */
3495 	btrfs_release_path(path);
3496 
3497 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3498 
3499 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3500 		trans = btrfs_join_transaction(root);
3501 		if (!IS_ERR(trans))
3502 			btrfs_end_transaction(trans);
3503 	}
3504 
3505 	if (nr_unlink)
3506 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3507 
3508 out:
3509 	if (ret)
3510 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3511 	btrfs_free_path(path);
3512 	return ret;
3513 }
3514 
3515 /*
3516  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3517  * don't find any xattrs, we know there can't be any acls.
3518  *
3519  * slot is the slot the inode is in, objectid is the objectid of the inode
3520  */
3521 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3522 					  int slot, u64 objectid,
3523 					  int *first_xattr_slot)
3524 {
3525 	u32 nritems = btrfs_header_nritems(leaf);
3526 	struct btrfs_key found_key;
3527 	static u64 xattr_access = 0;
3528 	static u64 xattr_default = 0;
3529 	int scanned = 0;
3530 
3531 	if (!xattr_access) {
3532 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3533 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3534 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3535 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3536 	}
3537 
3538 	slot++;
3539 	*first_xattr_slot = -1;
3540 	while (slot < nritems) {
3541 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3542 
3543 		/* we found a different objectid, there must not be acls */
3544 		if (found_key.objectid != objectid)
3545 			return 0;
3546 
3547 		/* we found an xattr, assume we've got an acl */
3548 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3549 			if (*first_xattr_slot == -1)
3550 				*first_xattr_slot = slot;
3551 			if (found_key.offset == xattr_access ||
3552 			    found_key.offset == xattr_default)
3553 				return 1;
3554 		}
3555 
3556 		/*
3557 		 * we found a key greater than an xattr key, there can't
3558 		 * be any acls later on
3559 		 */
3560 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3561 			return 0;
3562 
3563 		slot++;
3564 		scanned++;
3565 
3566 		/*
3567 		 * it goes inode, inode backrefs, xattrs, extents,
3568 		 * so if there are a ton of hard links to an inode there can
3569 		 * be a lot of backrefs.  Don't waste time searching too hard,
3570 		 * this is just an optimization
3571 		 */
3572 		if (scanned >= 8)
3573 			break;
3574 	}
3575 	/* we hit the end of the leaf before we found an xattr or
3576 	 * something larger than an xattr.  We have to assume the inode
3577 	 * has acls
3578 	 */
3579 	if (*first_xattr_slot == -1)
3580 		*first_xattr_slot = slot;
3581 	return 1;
3582 }
3583 
3584 /*
3585  * read an inode from the btree into the in-memory inode
3586  */
3587 static int btrfs_read_locked_inode(struct inode *inode)
3588 {
3589 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3590 	struct btrfs_path *path;
3591 	struct extent_buffer *leaf;
3592 	struct btrfs_inode_item *inode_item;
3593 	struct btrfs_root *root = BTRFS_I(inode)->root;
3594 	struct btrfs_key location;
3595 	unsigned long ptr;
3596 	int maybe_acls;
3597 	u32 rdev;
3598 	int ret;
3599 	bool filled = false;
3600 	int first_xattr_slot;
3601 
3602 	ret = btrfs_fill_inode(inode, &rdev);
3603 	if (!ret)
3604 		filled = true;
3605 
3606 	path = btrfs_alloc_path();
3607 	if (!path)
3608 		return -ENOMEM;
3609 
3610 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3611 
3612 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3613 	if (ret) {
3614 		btrfs_free_path(path);
3615 		return ret;
3616 	}
3617 
3618 	leaf = path->nodes[0];
3619 
3620 	if (filled)
3621 		goto cache_index;
3622 
3623 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3624 				    struct btrfs_inode_item);
3625 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3626 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3627 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3628 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3629 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3630 
3631 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3632 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3633 
3634 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3635 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3636 
3637 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3638 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3639 
3640 	BTRFS_I(inode)->i_otime.tv_sec =
3641 		btrfs_timespec_sec(leaf, &inode_item->otime);
3642 	BTRFS_I(inode)->i_otime.tv_nsec =
3643 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3644 
3645 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3646 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3647 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3648 
3649 	inode_set_iversion_queried(inode,
3650 				   btrfs_inode_sequence(leaf, inode_item));
3651 	inode->i_generation = BTRFS_I(inode)->generation;
3652 	inode->i_rdev = 0;
3653 	rdev = btrfs_inode_rdev(leaf, inode_item);
3654 
3655 	BTRFS_I(inode)->index_cnt = (u64)-1;
3656 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3657 
3658 cache_index:
3659 	/*
3660 	 * If we were modified in the current generation and evicted from memory
3661 	 * and then re-read we need to do a full sync since we don't have any
3662 	 * idea about which extents were modified before we were evicted from
3663 	 * cache.
3664 	 *
3665 	 * This is required for both inode re-read from disk and delayed inode
3666 	 * in delayed_nodes_tree.
3667 	 */
3668 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3669 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3670 			&BTRFS_I(inode)->runtime_flags);
3671 
3672 	/*
3673 	 * We don't persist the id of the transaction where an unlink operation
3674 	 * against the inode was last made. So here we assume the inode might
3675 	 * have been evicted, and therefore the exact value of last_unlink_trans
3676 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3677 	 * between the inode and its parent if the inode is fsync'ed and the log
3678 	 * replayed. For example, in the scenario:
3679 	 *
3680 	 * touch mydir/foo
3681 	 * ln mydir/foo mydir/bar
3682 	 * sync
3683 	 * unlink mydir/bar
3684 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3685 	 * xfs_io -c fsync mydir/foo
3686 	 * <power failure>
3687 	 * mount fs, triggers fsync log replay
3688 	 *
3689 	 * We must make sure that when we fsync our inode foo we also log its
3690 	 * parent inode, otherwise after log replay the parent still has the
3691 	 * dentry with the "bar" name but our inode foo has a link count of 1
3692 	 * and doesn't have an inode ref with the name "bar" anymore.
3693 	 *
3694 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3695 	 * but it guarantees correctness at the expense of occasional full
3696 	 * transaction commits on fsync if our inode is a directory, or if our
3697 	 * inode is not a directory, logging its parent unnecessarily.
3698 	 */
3699 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3700 
3701 	path->slots[0]++;
3702 	if (inode->i_nlink != 1 ||
3703 	    path->slots[0] >= btrfs_header_nritems(leaf))
3704 		goto cache_acl;
3705 
3706 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3707 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3708 		goto cache_acl;
3709 
3710 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3711 	if (location.type == BTRFS_INODE_REF_KEY) {
3712 		struct btrfs_inode_ref *ref;
3713 
3714 		ref = (struct btrfs_inode_ref *)ptr;
3715 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3716 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3717 		struct btrfs_inode_extref *extref;
3718 
3719 		extref = (struct btrfs_inode_extref *)ptr;
3720 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3721 								     extref);
3722 	}
3723 cache_acl:
3724 	/*
3725 	 * try to precache a NULL acl entry for files that don't have
3726 	 * any xattrs or acls
3727 	 */
3728 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3729 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3730 	if (first_xattr_slot != -1) {
3731 		path->slots[0] = first_xattr_slot;
3732 		ret = btrfs_load_inode_props(inode, path);
3733 		if (ret)
3734 			btrfs_err(fs_info,
3735 				  "error loading props for ino %llu (root %llu): %d",
3736 				  btrfs_ino(BTRFS_I(inode)),
3737 				  root->root_key.objectid, ret);
3738 	}
3739 	btrfs_free_path(path);
3740 
3741 	if (!maybe_acls)
3742 		cache_no_acl(inode);
3743 
3744 	switch (inode->i_mode & S_IFMT) {
3745 	case S_IFREG:
3746 		inode->i_mapping->a_ops = &btrfs_aops;
3747 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3748 		inode->i_fop = &btrfs_file_operations;
3749 		inode->i_op = &btrfs_file_inode_operations;
3750 		break;
3751 	case S_IFDIR:
3752 		inode->i_fop = &btrfs_dir_file_operations;
3753 		inode->i_op = &btrfs_dir_inode_operations;
3754 		break;
3755 	case S_IFLNK:
3756 		inode->i_op = &btrfs_symlink_inode_operations;
3757 		inode_nohighmem(inode);
3758 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3759 		break;
3760 	default:
3761 		inode->i_op = &btrfs_special_inode_operations;
3762 		init_special_inode(inode, inode->i_mode, rdev);
3763 		break;
3764 	}
3765 
3766 	btrfs_sync_inode_flags_to_i_flags(inode);
3767 	return 0;
3768 }
3769 
3770 /*
3771  * given a leaf and an inode, copy the inode fields into the leaf
3772  */
3773 static void fill_inode_item(struct btrfs_trans_handle *trans,
3774 			    struct extent_buffer *leaf,
3775 			    struct btrfs_inode_item *item,
3776 			    struct inode *inode)
3777 {
3778 	struct btrfs_map_token token;
3779 
3780 	btrfs_init_map_token(&token);
3781 
3782 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3783 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3784 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3785 				   &token);
3786 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3787 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3788 
3789 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3790 				     inode->i_atime.tv_sec, &token);
3791 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3792 				      inode->i_atime.tv_nsec, &token);
3793 
3794 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3795 				     inode->i_mtime.tv_sec, &token);
3796 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3797 				      inode->i_mtime.tv_nsec, &token);
3798 
3799 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3800 				     inode->i_ctime.tv_sec, &token);
3801 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3802 				      inode->i_ctime.tv_nsec, &token);
3803 
3804 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3805 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3806 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3807 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3808 
3809 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3810 				     &token);
3811 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3812 					 &token);
3813 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3814 				       &token);
3815 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3816 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3817 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3818 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3819 }
3820 
3821 /*
3822  * copy everything in the in-memory inode into the btree.
3823  */
3824 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3825 				struct btrfs_root *root, struct inode *inode)
3826 {
3827 	struct btrfs_inode_item *inode_item;
3828 	struct btrfs_path *path;
3829 	struct extent_buffer *leaf;
3830 	int ret;
3831 
3832 	path = btrfs_alloc_path();
3833 	if (!path)
3834 		return -ENOMEM;
3835 
3836 	path->leave_spinning = 1;
3837 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3838 				 1);
3839 	if (ret) {
3840 		if (ret > 0)
3841 			ret = -ENOENT;
3842 		goto failed;
3843 	}
3844 
3845 	leaf = path->nodes[0];
3846 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3847 				    struct btrfs_inode_item);
3848 
3849 	fill_inode_item(trans, leaf, inode_item, inode);
3850 	btrfs_mark_buffer_dirty(leaf);
3851 	btrfs_set_inode_last_trans(trans, inode);
3852 	ret = 0;
3853 failed:
3854 	btrfs_free_path(path);
3855 	return ret;
3856 }
3857 
3858 /*
3859  * copy everything in the in-memory inode into the btree.
3860  */
3861 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3862 				struct btrfs_root *root, struct inode *inode)
3863 {
3864 	struct btrfs_fs_info *fs_info = root->fs_info;
3865 	int ret;
3866 
3867 	/*
3868 	 * If the inode is a free space inode, we can deadlock during commit
3869 	 * if we put it into the delayed code.
3870 	 *
3871 	 * The data relocation inode should also be directly updated
3872 	 * without delay
3873 	 */
3874 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3875 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3876 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3877 		btrfs_update_root_times(trans, root);
3878 
3879 		ret = btrfs_delayed_update_inode(trans, root, inode);
3880 		if (!ret)
3881 			btrfs_set_inode_last_trans(trans, inode);
3882 		return ret;
3883 	}
3884 
3885 	return btrfs_update_inode_item(trans, root, inode);
3886 }
3887 
3888 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3889 					 struct btrfs_root *root,
3890 					 struct inode *inode)
3891 {
3892 	int ret;
3893 
3894 	ret = btrfs_update_inode(trans, root, inode);
3895 	if (ret == -ENOSPC)
3896 		return btrfs_update_inode_item(trans, root, inode);
3897 	return ret;
3898 }
3899 
3900 /*
3901  * unlink helper that gets used here in inode.c and in the tree logging
3902  * recovery code.  It remove a link in a directory with a given name, and
3903  * also drops the back refs in the inode to the directory
3904  */
3905 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3906 				struct btrfs_root *root,
3907 				struct btrfs_inode *dir,
3908 				struct btrfs_inode *inode,
3909 				const char *name, int name_len)
3910 {
3911 	struct btrfs_fs_info *fs_info = root->fs_info;
3912 	struct btrfs_path *path;
3913 	int ret = 0;
3914 	struct extent_buffer *leaf;
3915 	struct btrfs_dir_item *di;
3916 	struct btrfs_key key;
3917 	u64 index;
3918 	u64 ino = btrfs_ino(inode);
3919 	u64 dir_ino = btrfs_ino(dir);
3920 
3921 	path = btrfs_alloc_path();
3922 	if (!path) {
3923 		ret = -ENOMEM;
3924 		goto out;
3925 	}
3926 
3927 	path->leave_spinning = 1;
3928 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3929 				    name, name_len, -1);
3930 	if (IS_ERR(di)) {
3931 		ret = PTR_ERR(di);
3932 		goto err;
3933 	}
3934 	if (!di) {
3935 		ret = -ENOENT;
3936 		goto err;
3937 	}
3938 	leaf = path->nodes[0];
3939 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3940 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3941 	if (ret)
3942 		goto err;
3943 	btrfs_release_path(path);
3944 
3945 	/*
3946 	 * If we don't have dir index, we have to get it by looking up
3947 	 * the inode ref, since we get the inode ref, remove it directly,
3948 	 * it is unnecessary to do delayed deletion.
3949 	 *
3950 	 * But if we have dir index, needn't search inode ref to get it.
3951 	 * Since the inode ref is close to the inode item, it is better
3952 	 * that we delay to delete it, and just do this deletion when
3953 	 * we update the inode item.
3954 	 */
3955 	if (inode->dir_index) {
3956 		ret = btrfs_delayed_delete_inode_ref(inode);
3957 		if (!ret) {
3958 			index = inode->dir_index;
3959 			goto skip_backref;
3960 		}
3961 	}
3962 
3963 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3964 				  dir_ino, &index);
3965 	if (ret) {
3966 		btrfs_info(fs_info,
3967 			"failed to delete reference to %.*s, inode %llu parent %llu",
3968 			name_len, name, ino, dir_ino);
3969 		btrfs_abort_transaction(trans, ret);
3970 		goto err;
3971 	}
3972 skip_backref:
3973 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3974 	if (ret) {
3975 		btrfs_abort_transaction(trans, ret);
3976 		goto err;
3977 	}
3978 
3979 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3980 			dir_ino);
3981 	if (ret != 0 && ret != -ENOENT) {
3982 		btrfs_abort_transaction(trans, ret);
3983 		goto err;
3984 	}
3985 
3986 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3987 			index);
3988 	if (ret == -ENOENT)
3989 		ret = 0;
3990 	else if (ret)
3991 		btrfs_abort_transaction(trans, ret);
3992 err:
3993 	btrfs_free_path(path);
3994 	if (ret)
3995 		goto out;
3996 
3997 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3998 	inode_inc_iversion(&inode->vfs_inode);
3999 	inode_inc_iversion(&dir->vfs_inode);
4000 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4001 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4002 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4003 out:
4004 	return ret;
4005 }
4006 
4007 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4008 		       struct btrfs_root *root,
4009 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4010 		       const char *name, int name_len)
4011 {
4012 	int ret;
4013 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4014 	if (!ret) {
4015 		drop_nlink(&inode->vfs_inode);
4016 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4017 	}
4018 	return ret;
4019 }
4020 
4021 /*
4022  * helper to start transaction for unlink and rmdir.
4023  *
4024  * unlink and rmdir are special in btrfs, they do not always free space, so
4025  * if we cannot make our reservations the normal way try and see if there is
4026  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4027  * allow the unlink to occur.
4028  */
4029 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4030 {
4031 	struct btrfs_root *root = BTRFS_I(dir)->root;
4032 
4033 	/*
4034 	 * 1 for the possible orphan item
4035 	 * 1 for the dir item
4036 	 * 1 for the dir index
4037 	 * 1 for the inode ref
4038 	 * 1 for the inode
4039 	 */
4040 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4041 }
4042 
4043 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4044 {
4045 	struct btrfs_root *root = BTRFS_I(dir)->root;
4046 	struct btrfs_trans_handle *trans;
4047 	struct inode *inode = d_inode(dentry);
4048 	int ret;
4049 
4050 	trans = __unlink_start_trans(dir);
4051 	if (IS_ERR(trans))
4052 		return PTR_ERR(trans);
4053 
4054 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4055 			0);
4056 
4057 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4058 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4059 			dentry->d_name.len);
4060 	if (ret)
4061 		goto out;
4062 
4063 	if (inode->i_nlink == 0) {
4064 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4065 		if (ret)
4066 			goto out;
4067 	}
4068 
4069 out:
4070 	btrfs_end_transaction(trans);
4071 	btrfs_btree_balance_dirty(root->fs_info);
4072 	return ret;
4073 }
4074 
4075 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4076 			       struct inode *dir, u64 objectid,
4077 			       const char *name, int name_len)
4078 {
4079 	struct btrfs_root *root = BTRFS_I(dir)->root;
4080 	struct btrfs_path *path;
4081 	struct extent_buffer *leaf;
4082 	struct btrfs_dir_item *di;
4083 	struct btrfs_key key;
4084 	u64 index;
4085 	int ret;
4086 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4087 
4088 	path = btrfs_alloc_path();
4089 	if (!path)
4090 		return -ENOMEM;
4091 
4092 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4093 				   name, name_len, -1);
4094 	if (IS_ERR_OR_NULL(di)) {
4095 		if (!di)
4096 			ret = -ENOENT;
4097 		else
4098 			ret = PTR_ERR(di);
4099 		goto out;
4100 	}
4101 
4102 	leaf = path->nodes[0];
4103 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4104 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4105 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4106 	if (ret) {
4107 		btrfs_abort_transaction(trans, ret);
4108 		goto out;
4109 	}
4110 	btrfs_release_path(path);
4111 
4112 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4113 				 dir_ino, &index, name, name_len);
4114 	if (ret < 0) {
4115 		if (ret != -ENOENT) {
4116 			btrfs_abort_transaction(trans, ret);
4117 			goto out;
4118 		}
4119 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4120 						 name, name_len);
4121 		if (IS_ERR_OR_NULL(di)) {
4122 			if (!di)
4123 				ret = -ENOENT;
4124 			else
4125 				ret = PTR_ERR(di);
4126 			btrfs_abort_transaction(trans, ret);
4127 			goto out;
4128 		}
4129 
4130 		leaf = path->nodes[0];
4131 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4132 		index = key.offset;
4133 	}
4134 	btrfs_release_path(path);
4135 
4136 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4137 	if (ret) {
4138 		btrfs_abort_transaction(trans, ret);
4139 		goto out;
4140 	}
4141 
4142 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4143 	inode_inc_iversion(dir);
4144 	dir->i_mtime = dir->i_ctime = current_time(dir);
4145 	ret = btrfs_update_inode_fallback(trans, root, dir);
4146 	if (ret)
4147 		btrfs_abort_transaction(trans, ret);
4148 out:
4149 	btrfs_free_path(path);
4150 	return ret;
4151 }
4152 
4153 /*
4154  * Helper to check if the subvolume references other subvolumes or if it's
4155  * default.
4156  */
4157 static noinline int may_destroy_subvol(struct btrfs_root *root)
4158 {
4159 	struct btrfs_fs_info *fs_info = root->fs_info;
4160 	struct btrfs_path *path;
4161 	struct btrfs_dir_item *di;
4162 	struct btrfs_key key;
4163 	u64 dir_id;
4164 	int ret;
4165 
4166 	path = btrfs_alloc_path();
4167 	if (!path)
4168 		return -ENOMEM;
4169 
4170 	/* Make sure this root isn't set as the default subvol */
4171 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4172 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4173 				   dir_id, "default", 7, 0);
4174 	if (di && !IS_ERR(di)) {
4175 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4176 		if (key.objectid == root->root_key.objectid) {
4177 			ret = -EPERM;
4178 			btrfs_err(fs_info,
4179 				  "deleting default subvolume %llu is not allowed",
4180 				  key.objectid);
4181 			goto out;
4182 		}
4183 		btrfs_release_path(path);
4184 	}
4185 
4186 	key.objectid = root->root_key.objectid;
4187 	key.type = BTRFS_ROOT_REF_KEY;
4188 	key.offset = (u64)-1;
4189 
4190 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4191 	if (ret < 0)
4192 		goto out;
4193 	BUG_ON(ret == 0);
4194 
4195 	ret = 0;
4196 	if (path->slots[0] > 0) {
4197 		path->slots[0]--;
4198 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4199 		if (key.objectid == root->root_key.objectid &&
4200 		    key.type == BTRFS_ROOT_REF_KEY)
4201 			ret = -ENOTEMPTY;
4202 	}
4203 out:
4204 	btrfs_free_path(path);
4205 	return ret;
4206 }
4207 
4208 /* Delete all dentries for inodes belonging to the root */
4209 static void btrfs_prune_dentries(struct btrfs_root *root)
4210 {
4211 	struct btrfs_fs_info *fs_info = root->fs_info;
4212 	struct rb_node *node;
4213 	struct rb_node *prev;
4214 	struct btrfs_inode *entry;
4215 	struct inode *inode;
4216 	u64 objectid = 0;
4217 
4218 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4219 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4220 
4221 	spin_lock(&root->inode_lock);
4222 again:
4223 	node = root->inode_tree.rb_node;
4224 	prev = NULL;
4225 	while (node) {
4226 		prev = node;
4227 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4228 
4229 		if (objectid < btrfs_ino(entry))
4230 			node = node->rb_left;
4231 		else if (objectid > btrfs_ino(entry))
4232 			node = node->rb_right;
4233 		else
4234 			break;
4235 	}
4236 	if (!node) {
4237 		while (prev) {
4238 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4239 			if (objectid <= btrfs_ino(entry)) {
4240 				node = prev;
4241 				break;
4242 			}
4243 			prev = rb_next(prev);
4244 		}
4245 	}
4246 	while (node) {
4247 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4248 		objectid = btrfs_ino(entry) + 1;
4249 		inode = igrab(&entry->vfs_inode);
4250 		if (inode) {
4251 			spin_unlock(&root->inode_lock);
4252 			if (atomic_read(&inode->i_count) > 1)
4253 				d_prune_aliases(inode);
4254 			/*
4255 			 * btrfs_drop_inode will have it removed from the inode
4256 			 * cache when its usage count hits zero.
4257 			 */
4258 			iput(inode);
4259 			cond_resched();
4260 			spin_lock(&root->inode_lock);
4261 			goto again;
4262 		}
4263 
4264 		if (cond_resched_lock(&root->inode_lock))
4265 			goto again;
4266 
4267 		node = rb_next(node);
4268 	}
4269 	spin_unlock(&root->inode_lock);
4270 }
4271 
4272 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4273 {
4274 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4275 	struct btrfs_root *root = BTRFS_I(dir)->root;
4276 	struct inode *inode = d_inode(dentry);
4277 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4278 	struct btrfs_trans_handle *trans;
4279 	struct btrfs_block_rsv block_rsv;
4280 	u64 root_flags;
4281 	int ret;
4282 	int err;
4283 
4284 	/*
4285 	 * Don't allow to delete a subvolume with send in progress. This is
4286 	 * inside the inode lock so the error handling that has to drop the bit
4287 	 * again is not run concurrently.
4288 	 */
4289 	spin_lock(&dest->root_item_lock);
4290 	root_flags = btrfs_root_flags(&dest->root_item);
4291 	if (dest->send_in_progress == 0) {
4292 		btrfs_set_root_flags(&dest->root_item,
4293 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4294 		spin_unlock(&dest->root_item_lock);
4295 	} else {
4296 		spin_unlock(&dest->root_item_lock);
4297 		btrfs_warn(fs_info,
4298 			   "attempt to delete subvolume %llu during send",
4299 			   dest->root_key.objectid);
4300 		return -EPERM;
4301 	}
4302 
4303 	down_write(&fs_info->subvol_sem);
4304 
4305 	err = may_destroy_subvol(dest);
4306 	if (err)
4307 		goto out_up_write;
4308 
4309 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4310 	/*
4311 	 * One for dir inode,
4312 	 * two for dir entries,
4313 	 * two for root ref/backref.
4314 	 */
4315 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4316 	if (err)
4317 		goto out_up_write;
4318 
4319 	trans = btrfs_start_transaction(root, 0);
4320 	if (IS_ERR(trans)) {
4321 		err = PTR_ERR(trans);
4322 		goto out_release;
4323 	}
4324 	trans->block_rsv = &block_rsv;
4325 	trans->bytes_reserved = block_rsv.size;
4326 
4327 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4328 
4329 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4330 				  dentry->d_name.name, dentry->d_name.len);
4331 	if (ret) {
4332 		err = ret;
4333 		btrfs_abort_transaction(trans, ret);
4334 		goto out_end_trans;
4335 	}
4336 
4337 	btrfs_record_root_in_trans(trans, dest);
4338 
4339 	memset(&dest->root_item.drop_progress, 0,
4340 		sizeof(dest->root_item.drop_progress));
4341 	dest->root_item.drop_level = 0;
4342 	btrfs_set_root_refs(&dest->root_item, 0);
4343 
4344 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4345 		ret = btrfs_insert_orphan_item(trans,
4346 					fs_info->tree_root,
4347 					dest->root_key.objectid);
4348 		if (ret) {
4349 			btrfs_abort_transaction(trans, ret);
4350 			err = ret;
4351 			goto out_end_trans;
4352 		}
4353 	}
4354 
4355 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4356 				  BTRFS_UUID_KEY_SUBVOL,
4357 				  dest->root_key.objectid);
4358 	if (ret && ret != -ENOENT) {
4359 		btrfs_abort_transaction(trans, ret);
4360 		err = ret;
4361 		goto out_end_trans;
4362 	}
4363 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4364 		ret = btrfs_uuid_tree_remove(trans,
4365 					  dest->root_item.received_uuid,
4366 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4367 					  dest->root_key.objectid);
4368 		if (ret && ret != -ENOENT) {
4369 			btrfs_abort_transaction(trans, ret);
4370 			err = ret;
4371 			goto out_end_trans;
4372 		}
4373 	}
4374 
4375 out_end_trans:
4376 	trans->block_rsv = NULL;
4377 	trans->bytes_reserved = 0;
4378 	ret = btrfs_end_transaction(trans);
4379 	if (ret && !err)
4380 		err = ret;
4381 	inode->i_flags |= S_DEAD;
4382 out_release:
4383 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4384 out_up_write:
4385 	up_write(&fs_info->subvol_sem);
4386 	if (err) {
4387 		spin_lock(&dest->root_item_lock);
4388 		root_flags = btrfs_root_flags(&dest->root_item);
4389 		btrfs_set_root_flags(&dest->root_item,
4390 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4391 		spin_unlock(&dest->root_item_lock);
4392 	} else {
4393 		d_invalidate(dentry);
4394 		btrfs_prune_dentries(dest);
4395 		ASSERT(dest->send_in_progress == 0);
4396 
4397 		/* the last ref */
4398 		if (dest->ino_cache_inode) {
4399 			iput(dest->ino_cache_inode);
4400 			dest->ino_cache_inode = NULL;
4401 		}
4402 	}
4403 
4404 	return err;
4405 }
4406 
4407 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4408 {
4409 	struct inode *inode = d_inode(dentry);
4410 	int err = 0;
4411 	struct btrfs_root *root = BTRFS_I(dir)->root;
4412 	struct btrfs_trans_handle *trans;
4413 	u64 last_unlink_trans;
4414 
4415 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4416 		return -ENOTEMPTY;
4417 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4418 		return btrfs_delete_subvolume(dir, dentry);
4419 
4420 	trans = __unlink_start_trans(dir);
4421 	if (IS_ERR(trans))
4422 		return PTR_ERR(trans);
4423 
4424 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4425 		err = btrfs_unlink_subvol(trans, dir,
4426 					  BTRFS_I(inode)->location.objectid,
4427 					  dentry->d_name.name,
4428 					  dentry->d_name.len);
4429 		goto out;
4430 	}
4431 
4432 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4433 	if (err)
4434 		goto out;
4435 
4436 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4437 
4438 	/* now the directory is empty */
4439 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4440 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4441 			dentry->d_name.len);
4442 	if (!err) {
4443 		btrfs_i_size_write(BTRFS_I(inode), 0);
4444 		/*
4445 		 * Propagate the last_unlink_trans value of the deleted dir to
4446 		 * its parent directory. This is to prevent an unrecoverable
4447 		 * log tree in the case we do something like this:
4448 		 * 1) create dir foo
4449 		 * 2) create snapshot under dir foo
4450 		 * 3) delete the snapshot
4451 		 * 4) rmdir foo
4452 		 * 5) mkdir foo
4453 		 * 6) fsync foo or some file inside foo
4454 		 */
4455 		if (last_unlink_trans >= trans->transid)
4456 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4457 	}
4458 out:
4459 	btrfs_end_transaction(trans);
4460 	btrfs_btree_balance_dirty(root->fs_info);
4461 
4462 	return err;
4463 }
4464 
4465 static int truncate_space_check(struct btrfs_trans_handle *trans,
4466 				struct btrfs_root *root,
4467 				u64 bytes_deleted)
4468 {
4469 	struct btrfs_fs_info *fs_info = root->fs_info;
4470 	int ret;
4471 
4472 	/*
4473 	 * This is only used to apply pressure to the enospc system, we don't
4474 	 * intend to use this reservation at all.
4475 	 */
4476 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4477 	bytes_deleted *= fs_info->nodesize;
4478 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4479 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4480 	if (!ret) {
4481 		trace_btrfs_space_reservation(fs_info, "transaction",
4482 					      trans->transid,
4483 					      bytes_deleted, 1);
4484 		trans->bytes_reserved += bytes_deleted;
4485 	}
4486 	return ret;
4487 
4488 }
4489 
4490 /*
4491  * Return this if we need to call truncate_block for the last bit of the
4492  * truncate.
4493  */
4494 #define NEED_TRUNCATE_BLOCK 1
4495 
4496 /*
4497  * this can truncate away extent items, csum items and directory items.
4498  * It starts at a high offset and removes keys until it can't find
4499  * any higher than new_size
4500  *
4501  * csum items that cross the new i_size are truncated to the new size
4502  * as well.
4503  *
4504  * min_type is the minimum key type to truncate down to.  If set to 0, this
4505  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4506  */
4507 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4508 			       struct btrfs_root *root,
4509 			       struct inode *inode,
4510 			       u64 new_size, u32 min_type)
4511 {
4512 	struct btrfs_fs_info *fs_info = root->fs_info;
4513 	struct btrfs_path *path;
4514 	struct extent_buffer *leaf;
4515 	struct btrfs_file_extent_item *fi;
4516 	struct btrfs_key key;
4517 	struct btrfs_key found_key;
4518 	u64 extent_start = 0;
4519 	u64 extent_num_bytes = 0;
4520 	u64 extent_offset = 0;
4521 	u64 item_end = 0;
4522 	u64 last_size = new_size;
4523 	u32 found_type = (u8)-1;
4524 	int found_extent;
4525 	int del_item;
4526 	int pending_del_nr = 0;
4527 	int pending_del_slot = 0;
4528 	int extent_type = -1;
4529 	int ret;
4530 	u64 ino = btrfs_ino(BTRFS_I(inode));
4531 	u64 bytes_deleted = 0;
4532 	bool be_nice = false;
4533 	bool should_throttle = false;
4534 	bool should_end = false;
4535 
4536 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4537 
4538 	/*
4539 	 * for non-free space inodes and ref cows, we want to back off from
4540 	 * time to time
4541 	 */
4542 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4543 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4544 		be_nice = true;
4545 
4546 	path = btrfs_alloc_path();
4547 	if (!path)
4548 		return -ENOMEM;
4549 	path->reada = READA_BACK;
4550 
4551 	/*
4552 	 * We want to drop from the next block forward in case this new size is
4553 	 * not block aligned since we will be keeping the last block of the
4554 	 * extent just the way it is.
4555 	 */
4556 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4557 	    root == fs_info->tree_root)
4558 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4559 					fs_info->sectorsize),
4560 					(u64)-1, 0);
4561 
4562 	/*
4563 	 * This function is also used to drop the items in the log tree before
4564 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4565 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4566 	 * items.
4567 	 */
4568 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4569 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4570 
4571 	key.objectid = ino;
4572 	key.offset = (u64)-1;
4573 	key.type = (u8)-1;
4574 
4575 search_again:
4576 	/*
4577 	 * with a 16K leaf size and 128MB extents, you can actually queue
4578 	 * up a huge file in a single leaf.  Most of the time that
4579 	 * bytes_deleted is > 0, it will be huge by the time we get here
4580 	 */
4581 	if (be_nice && bytes_deleted > SZ_32M &&
4582 	    btrfs_should_end_transaction(trans)) {
4583 		ret = -EAGAIN;
4584 		goto out;
4585 	}
4586 
4587 	path->leave_spinning = 1;
4588 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4589 	if (ret < 0)
4590 		goto out;
4591 
4592 	if (ret > 0) {
4593 		ret = 0;
4594 		/* there are no items in the tree for us to truncate, we're
4595 		 * done
4596 		 */
4597 		if (path->slots[0] == 0)
4598 			goto out;
4599 		path->slots[0]--;
4600 	}
4601 
4602 	while (1) {
4603 		fi = NULL;
4604 		leaf = path->nodes[0];
4605 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4606 		found_type = found_key.type;
4607 
4608 		if (found_key.objectid != ino)
4609 			break;
4610 
4611 		if (found_type < min_type)
4612 			break;
4613 
4614 		item_end = found_key.offset;
4615 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4616 			fi = btrfs_item_ptr(leaf, path->slots[0],
4617 					    struct btrfs_file_extent_item);
4618 			extent_type = btrfs_file_extent_type(leaf, fi);
4619 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4620 				item_end +=
4621 				    btrfs_file_extent_num_bytes(leaf, fi);
4622 
4623 				trace_btrfs_truncate_show_fi_regular(
4624 					BTRFS_I(inode), leaf, fi,
4625 					found_key.offset);
4626 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4627 				item_end += btrfs_file_extent_ram_bytes(leaf,
4628 									fi);
4629 
4630 				trace_btrfs_truncate_show_fi_inline(
4631 					BTRFS_I(inode), leaf, fi, path->slots[0],
4632 					found_key.offset);
4633 			}
4634 			item_end--;
4635 		}
4636 		if (found_type > min_type) {
4637 			del_item = 1;
4638 		} else {
4639 			if (item_end < new_size)
4640 				break;
4641 			if (found_key.offset >= new_size)
4642 				del_item = 1;
4643 			else
4644 				del_item = 0;
4645 		}
4646 		found_extent = 0;
4647 		/* FIXME, shrink the extent if the ref count is only 1 */
4648 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4649 			goto delete;
4650 
4651 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4652 			u64 num_dec;
4653 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4654 			if (!del_item) {
4655 				u64 orig_num_bytes =
4656 					btrfs_file_extent_num_bytes(leaf, fi);
4657 				extent_num_bytes = ALIGN(new_size -
4658 						found_key.offset,
4659 						fs_info->sectorsize);
4660 				btrfs_set_file_extent_num_bytes(leaf, fi,
4661 							 extent_num_bytes);
4662 				num_dec = (orig_num_bytes -
4663 					   extent_num_bytes);
4664 				if (test_bit(BTRFS_ROOT_REF_COWS,
4665 					     &root->state) &&
4666 				    extent_start != 0)
4667 					inode_sub_bytes(inode, num_dec);
4668 				btrfs_mark_buffer_dirty(leaf);
4669 			} else {
4670 				extent_num_bytes =
4671 					btrfs_file_extent_disk_num_bytes(leaf,
4672 									 fi);
4673 				extent_offset = found_key.offset -
4674 					btrfs_file_extent_offset(leaf, fi);
4675 
4676 				/* FIXME blocksize != 4096 */
4677 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4678 				if (extent_start != 0) {
4679 					found_extent = 1;
4680 					if (test_bit(BTRFS_ROOT_REF_COWS,
4681 						     &root->state))
4682 						inode_sub_bytes(inode, num_dec);
4683 				}
4684 			}
4685 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4686 			/*
4687 			 * we can't truncate inline items that have had
4688 			 * special encodings
4689 			 */
4690 			if (!del_item &&
4691 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4692 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4693 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4694 				u32 size = (u32)(new_size - found_key.offset);
4695 
4696 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4697 				size = btrfs_file_extent_calc_inline_size(size);
4698 				btrfs_truncate_item(root->fs_info, path, size, 1);
4699 			} else if (!del_item) {
4700 				/*
4701 				 * We have to bail so the last_size is set to
4702 				 * just before this extent.
4703 				 */
4704 				ret = NEED_TRUNCATE_BLOCK;
4705 				break;
4706 			}
4707 
4708 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4709 				inode_sub_bytes(inode, item_end + 1 - new_size);
4710 		}
4711 delete:
4712 		if (del_item)
4713 			last_size = found_key.offset;
4714 		else
4715 			last_size = new_size;
4716 		if (del_item) {
4717 			if (!pending_del_nr) {
4718 				/* no pending yet, add ourselves */
4719 				pending_del_slot = path->slots[0];
4720 				pending_del_nr = 1;
4721 			} else if (pending_del_nr &&
4722 				   path->slots[0] + 1 == pending_del_slot) {
4723 				/* hop on the pending chunk */
4724 				pending_del_nr++;
4725 				pending_del_slot = path->slots[0];
4726 			} else {
4727 				BUG();
4728 			}
4729 		} else {
4730 			break;
4731 		}
4732 		should_throttle = false;
4733 
4734 		if (found_extent &&
4735 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4736 		     root == fs_info->tree_root)) {
4737 			btrfs_set_path_blocking(path);
4738 			bytes_deleted += extent_num_bytes;
4739 			ret = btrfs_free_extent(trans, root, extent_start,
4740 						extent_num_bytes, 0,
4741 						btrfs_header_owner(leaf),
4742 						ino, extent_offset);
4743 			if (ret) {
4744 				btrfs_abort_transaction(trans, ret);
4745 				break;
4746 			}
4747 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4748 				btrfs_async_run_delayed_refs(fs_info,
4749 					trans->delayed_ref_updates * 2,
4750 					trans->transid, 0);
4751 			if (be_nice) {
4752 				if (truncate_space_check(trans, root,
4753 							 extent_num_bytes)) {
4754 					should_end = true;
4755 				}
4756 				if (btrfs_should_throttle_delayed_refs(trans,
4757 								       fs_info))
4758 					should_throttle = true;
4759 			}
4760 		}
4761 
4762 		if (found_type == BTRFS_INODE_ITEM_KEY)
4763 			break;
4764 
4765 		if (path->slots[0] == 0 ||
4766 		    path->slots[0] != pending_del_slot ||
4767 		    should_throttle || should_end) {
4768 			if (pending_del_nr) {
4769 				ret = btrfs_del_items(trans, root, path,
4770 						pending_del_slot,
4771 						pending_del_nr);
4772 				if (ret) {
4773 					btrfs_abort_transaction(trans, ret);
4774 					break;
4775 				}
4776 				pending_del_nr = 0;
4777 			}
4778 			btrfs_release_path(path);
4779 			if (should_throttle) {
4780 				unsigned long updates = trans->delayed_ref_updates;
4781 				if (updates) {
4782 					trans->delayed_ref_updates = 0;
4783 					ret = btrfs_run_delayed_refs(trans,
4784 								   updates * 2);
4785 					if (ret)
4786 						break;
4787 				}
4788 			}
4789 			/*
4790 			 * if we failed to refill our space rsv, bail out
4791 			 * and let the transaction restart
4792 			 */
4793 			if (should_end) {
4794 				ret = -EAGAIN;
4795 				break;
4796 			}
4797 			goto search_again;
4798 		} else {
4799 			path->slots[0]--;
4800 		}
4801 	}
4802 out:
4803 	if (ret >= 0 && pending_del_nr) {
4804 		int err;
4805 
4806 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4807 				      pending_del_nr);
4808 		if (err) {
4809 			btrfs_abort_transaction(trans, err);
4810 			ret = err;
4811 		}
4812 	}
4813 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4814 		ASSERT(last_size >= new_size);
4815 		if (!ret && last_size > new_size)
4816 			last_size = new_size;
4817 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4818 	}
4819 
4820 	btrfs_free_path(path);
4821 
4822 	if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4823 		unsigned long updates = trans->delayed_ref_updates;
4824 		int err;
4825 
4826 		if (updates) {
4827 			trans->delayed_ref_updates = 0;
4828 			err = btrfs_run_delayed_refs(trans, updates * 2);
4829 			if (err)
4830 				ret = err;
4831 		}
4832 	}
4833 	return ret;
4834 }
4835 
4836 /*
4837  * btrfs_truncate_block - read, zero a chunk and write a block
4838  * @inode - inode that we're zeroing
4839  * @from - the offset to start zeroing
4840  * @len - the length to zero, 0 to zero the entire range respective to the
4841  *	offset
4842  * @front - zero up to the offset instead of from the offset on
4843  *
4844  * This will find the block for the "from" offset and cow the block and zero the
4845  * part we want to zero.  This is used with truncate and hole punching.
4846  */
4847 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4848 			int front)
4849 {
4850 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4851 	struct address_space *mapping = inode->i_mapping;
4852 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4853 	struct btrfs_ordered_extent *ordered;
4854 	struct extent_state *cached_state = NULL;
4855 	struct extent_changeset *data_reserved = NULL;
4856 	char *kaddr;
4857 	u32 blocksize = fs_info->sectorsize;
4858 	pgoff_t index = from >> PAGE_SHIFT;
4859 	unsigned offset = from & (blocksize - 1);
4860 	struct page *page;
4861 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4862 	int ret = 0;
4863 	u64 block_start;
4864 	u64 block_end;
4865 
4866 	if (IS_ALIGNED(offset, blocksize) &&
4867 	    (!len || IS_ALIGNED(len, blocksize)))
4868 		goto out;
4869 
4870 	block_start = round_down(from, blocksize);
4871 	block_end = block_start + blocksize - 1;
4872 
4873 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4874 					   block_start, blocksize);
4875 	if (ret)
4876 		goto out;
4877 
4878 again:
4879 	page = find_or_create_page(mapping, index, mask);
4880 	if (!page) {
4881 		btrfs_delalloc_release_space(inode, data_reserved,
4882 					     block_start, blocksize, true);
4883 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4884 		ret = -ENOMEM;
4885 		goto out;
4886 	}
4887 
4888 	if (!PageUptodate(page)) {
4889 		ret = btrfs_readpage(NULL, page);
4890 		lock_page(page);
4891 		if (page->mapping != mapping) {
4892 			unlock_page(page);
4893 			put_page(page);
4894 			goto again;
4895 		}
4896 		if (!PageUptodate(page)) {
4897 			ret = -EIO;
4898 			goto out_unlock;
4899 		}
4900 	}
4901 	wait_on_page_writeback(page);
4902 
4903 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4904 	set_page_extent_mapped(page);
4905 
4906 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4907 	if (ordered) {
4908 		unlock_extent_cached(io_tree, block_start, block_end,
4909 				     &cached_state);
4910 		unlock_page(page);
4911 		put_page(page);
4912 		btrfs_start_ordered_extent(inode, ordered, 1);
4913 		btrfs_put_ordered_extent(ordered);
4914 		goto again;
4915 	}
4916 
4917 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4918 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4919 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4920 			  0, 0, &cached_state);
4921 
4922 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4923 					&cached_state, 0);
4924 	if (ret) {
4925 		unlock_extent_cached(io_tree, block_start, block_end,
4926 				     &cached_state);
4927 		goto out_unlock;
4928 	}
4929 
4930 	if (offset != blocksize) {
4931 		if (!len)
4932 			len = blocksize - offset;
4933 		kaddr = kmap(page);
4934 		if (front)
4935 			memset(kaddr + (block_start - page_offset(page)),
4936 				0, offset);
4937 		else
4938 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4939 				0, len);
4940 		flush_dcache_page(page);
4941 		kunmap(page);
4942 	}
4943 	ClearPageChecked(page);
4944 	set_page_dirty(page);
4945 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4946 
4947 out_unlock:
4948 	if (ret)
4949 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4950 					     blocksize, true);
4951 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4952 	unlock_page(page);
4953 	put_page(page);
4954 out:
4955 	extent_changeset_free(data_reserved);
4956 	return ret;
4957 }
4958 
4959 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4960 			     u64 offset, u64 len)
4961 {
4962 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4963 	struct btrfs_trans_handle *trans;
4964 	int ret;
4965 
4966 	/*
4967 	 * Still need to make sure the inode looks like it's been updated so
4968 	 * that any holes get logged if we fsync.
4969 	 */
4970 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4971 		BTRFS_I(inode)->last_trans = fs_info->generation;
4972 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4973 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4974 		return 0;
4975 	}
4976 
4977 	/*
4978 	 * 1 - for the one we're dropping
4979 	 * 1 - for the one we're adding
4980 	 * 1 - for updating the inode.
4981 	 */
4982 	trans = btrfs_start_transaction(root, 3);
4983 	if (IS_ERR(trans))
4984 		return PTR_ERR(trans);
4985 
4986 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4987 	if (ret) {
4988 		btrfs_abort_transaction(trans, ret);
4989 		btrfs_end_transaction(trans);
4990 		return ret;
4991 	}
4992 
4993 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4994 			offset, 0, 0, len, 0, len, 0, 0, 0);
4995 	if (ret)
4996 		btrfs_abort_transaction(trans, ret);
4997 	else
4998 		btrfs_update_inode(trans, root, inode);
4999 	btrfs_end_transaction(trans);
5000 	return ret;
5001 }
5002 
5003 /*
5004  * This function puts in dummy file extents for the area we're creating a hole
5005  * for.  So if we are truncating this file to a larger size we need to insert
5006  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5007  * the range between oldsize and size
5008  */
5009 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5010 {
5011 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5012 	struct btrfs_root *root = BTRFS_I(inode)->root;
5013 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5014 	struct extent_map *em = NULL;
5015 	struct extent_state *cached_state = NULL;
5016 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5017 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5018 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5019 	u64 last_byte;
5020 	u64 cur_offset;
5021 	u64 hole_size;
5022 	int err = 0;
5023 
5024 	/*
5025 	 * If our size started in the middle of a block we need to zero out the
5026 	 * rest of the block before we expand the i_size, otherwise we could
5027 	 * expose stale data.
5028 	 */
5029 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5030 	if (err)
5031 		return err;
5032 
5033 	if (size <= hole_start)
5034 		return 0;
5035 
5036 	while (1) {
5037 		struct btrfs_ordered_extent *ordered;
5038 
5039 		lock_extent_bits(io_tree, hole_start, block_end - 1,
5040 				 &cached_state);
5041 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5042 						     block_end - hole_start);
5043 		if (!ordered)
5044 			break;
5045 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
5046 				     &cached_state);
5047 		btrfs_start_ordered_extent(inode, ordered, 1);
5048 		btrfs_put_ordered_extent(ordered);
5049 	}
5050 
5051 	cur_offset = hole_start;
5052 	while (1) {
5053 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5054 				block_end - cur_offset, 0);
5055 		if (IS_ERR(em)) {
5056 			err = PTR_ERR(em);
5057 			em = NULL;
5058 			break;
5059 		}
5060 		last_byte = min(extent_map_end(em), block_end);
5061 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5062 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5063 			struct extent_map *hole_em;
5064 			hole_size = last_byte - cur_offset;
5065 
5066 			err = maybe_insert_hole(root, inode, cur_offset,
5067 						hole_size);
5068 			if (err)
5069 				break;
5070 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5071 						cur_offset + hole_size - 1, 0);
5072 			hole_em = alloc_extent_map();
5073 			if (!hole_em) {
5074 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5075 					&BTRFS_I(inode)->runtime_flags);
5076 				goto next;
5077 			}
5078 			hole_em->start = cur_offset;
5079 			hole_em->len = hole_size;
5080 			hole_em->orig_start = cur_offset;
5081 
5082 			hole_em->block_start = EXTENT_MAP_HOLE;
5083 			hole_em->block_len = 0;
5084 			hole_em->orig_block_len = 0;
5085 			hole_em->ram_bytes = hole_size;
5086 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5087 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5088 			hole_em->generation = fs_info->generation;
5089 
5090 			while (1) {
5091 				write_lock(&em_tree->lock);
5092 				err = add_extent_mapping(em_tree, hole_em, 1);
5093 				write_unlock(&em_tree->lock);
5094 				if (err != -EEXIST)
5095 					break;
5096 				btrfs_drop_extent_cache(BTRFS_I(inode),
5097 							cur_offset,
5098 							cur_offset +
5099 							hole_size - 1, 0);
5100 			}
5101 			free_extent_map(hole_em);
5102 		}
5103 next:
5104 		free_extent_map(em);
5105 		em = NULL;
5106 		cur_offset = last_byte;
5107 		if (cur_offset >= block_end)
5108 			break;
5109 	}
5110 	free_extent_map(em);
5111 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5112 	return err;
5113 }
5114 
5115 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5116 {
5117 	struct btrfs_root *root = BTRFS_I(inode)->root;
5118 	struct btrfs_trans_handle *trans;
5119 	loff_t oldsize = i_size_read(inode);
5120 	loff_t newsize = attr->ia_size;
5121 	int mask = attr->ia_valid;
5122 	int ret;
5123 
5124 	/*
5125 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5126 	 * special case where we need to update the times despite not having
5127 	 * these flags set.  For all other operations the VFS set these flags
5128 	 * explicitly if it wants a timestamp update.
5129 	 */
5130 	if (newsize != oldsize) {
5131 		inode_inc_iversion(inode);
5132 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5133 			inode->i_ctime = inode->i_mtime =
5134 				current_time(inode);
5135 	}
5136 
5137 	if (newsize > oldsize) {
5138 		/*
5139 		 * Don't do an expanding truncate while snapshotting is ongoing.
5140 		 * This is to ensure the snapshot captures a fully consistent
5141 		 * state of this file - if the snapshot captures this expanding
5142 		 * truncation, it must capture all writes that happened before
5143 		 * this truncation.
5144 		 */
5145 		btrfs_wait_for_snapshot_creation(root);
5146 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5147 		if (ret) {
5148 			btrfs_end_write_no_snapshotting(root);
5149 			return ret;
5150 		}
5151 
5152 		trans = btrfs_start_transaction(root, 1);
5153 		if (IS_ERR(trans)) {
5154 			btrfs_end_write_no_snapshotting(root);
5155 			return PTR_ERR(trans);
5156 		}
5157 
5158 		i_size_write(inode, newsize);
5159 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5160 		pagecache_isize_extended(inode, oldsize, newsize);
5161 		ret = btrfs_update_inode(trans, root, inode);
5162 		btrfs_end_write_no_snapshotting(root);
5163 		btrfs_end_transaction(trans);
5164 	} else {
5165 
5166 		/*
5167 		 * We're truncating a file that used to have good data down to
5168 		 * zero. Make sure it gets into the ordered flush list so that
5169 		 * any new writes get down to disk quickly.
5170 		 */
5171 		if (newsize == 0)
5172 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5173 				&BTRFS_I(inode)->runtime_flags);
5174 
5175 		truncate_setsize(inode, newsize);
5176 
5177 		/* Disable nonlocked read DIO to avoid the end less truncate */
5178 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5179 		inode_dio_wait(inode);
5180 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5181 
5182 		ret = btrfs_truncate(inode, newsize == oldsize);
5183 		if (ret && inode->i_nlink) {
5184 			int err;
5185 
5186 			/*
5187 			 * Truncate failed, so fix up the in-memory size. We
5188 			 * adjusted disk_i_size down as we removed extents, so
5189 			 * wait for disk_i_size to be stable and then update the
5190 			 * in-memory size to match.
5191 			 */
5192 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5193 			if (err)
5194 				return err;
5195 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5196 		}
5197 	}
5198 
5199 	return ret;
5200 }
5201 
5202 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5203 {
5204 	struct inode *inode = d_inode(dentry);
5205 	struct btrfs_root *root = BTRFS_I(inode)->root;
5206 	int err;
5207 
5208 	if (btrfs_root_readonly(root))
5209 		return -EROFS;
5210 
5211 	err = setattr_prepare(dentry, attr);
5212 	if (err)
5213 		return err;
5214 
5215 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5216 		err = btrfs_setsize(inode, attr);
5217 		if (err)
5218 			return err;
5219 	}
5220 
5221 	if (attr->ia_valid) {
5222 		setattr_copy(inode, attr);
5223 		inode_inc_iversion(inode);
5224 		err = btrfs_dirty_inode(inode);
5225 
5226 		if (!err && attr->ia_valid & ATTR_MODE)
5227 			err = posix_acl_chmod(inode, inode->i_mode);
5228 	}
5229 
5230 	return err;
5231 }
5232 
5233 /*
5234  * While truncating the inode pages during eviction, we get the VFS calling
5235  * btrfs_invalidatepage() against each page of the inode. This is slow because
5236  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5237  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5238  * extent_state structures over and over, wasting lots of time.
5239  *
5240  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5241  * those expensive operations on a per page basis and do only the ordered io
5242  * finishing, while we release here the extent_map and extent_state structures,
5243  * without the excessive merging and splitting.
5244  */
5245 static void evict_inode_truncate_pages(struct inode *inode)
5246 {
5247 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5248 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5249 	struct rb_node *node;
5250 
5251 	ASSERT(inode->i_state & I_FREEING);
5252 	truncate_inode_pages_final(&inode->i_data);
5253 
5254 	write_lock(&map_tree->lock);
5255 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5256 		struct extent_map *em;
5257 
5258 		node = rb_first(&map_tree->map);
5259 		em = rb_entry(node, struct extent_map, rb_node);
5260 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5261 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5262 		remove_extent_mapping(map_tree, em);
5263 		free_extent_map(em);
5264 		if (need_resched()) {
5265 			write_unlock(&map_tree->lock);
5266 			cond_resched();
5267 			write_lock(&map_tree->lock);
5268 		}
5269 	}
5270 	write_unlock(&map_tree->lock);
5271 
5272 	/*
5273 	 * Keep looping until we have no more ranges in the io tree.
5274 	 * We can have ongoing bios started by readpages (called from readahead)
5275 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5276 	 * still in progress (unlocked the pages in the bio but did not yet
5277 	 * unlocked the ranges in the io tree). Therefore this means some
5278 	 * ranges can still be locked and eviction started because before
5279 	 * submitting those bios, which are executed by a separate task (work
5280 	 * queue kthread), inode references (inode->i_count) were not taken
5281 	 * (which would be dropped in the end io callback of each bio).
5282 	 * Therefore here we effectively end up waiting for those bios and
5283 	 * anyone else holding locked ranges without having bumped the inode's
5284 	 * reference count - if we don't do it, when they access the inode's
5285 	 * io_tree to unlock a range it may be too late, leading to an
5286 	 * use-after-free issue.
5287 	 */
5288 	spin_lock(&io_tree->lock);
5289 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5290 		struct extent_state *state;
5291 		struct extent_state *cached_state = NULL;
5292 		u64 start;
5293 		u64 end;
5294 
5295 		node = rb_first(&io_tree->state);
5296 		state = rb_entry(node, struct extent_state, rb_node);
5297 		start = state->start;
5298 		end = state->end;
5299 		spin_unlock(&io_tree->lock);
5300 
5301 		lock_extent_bits(io_tree, start, end, &cached_state);
5302 
5303 		/*
5304 		 * If still has DELALLOC flag, the extent didn't reach disk,
5305 		 * and its reserved space won't be freed by delayed_ref.
5306 		 * So we need to free its reserved space here.
5307 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5308 		 *
5309 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5310 		 */
5311 		if (state->state & EXTENT_DELALLOC)
5312 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5313 
5314 		clear_extent_bit(io_tree, start, end,
5315 				 EXTENT_LOCKED | EXTENT_DIRTY |
5316 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5317 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5318 
5319 		cond_resched();
5320 		spin_lock(&io_tree->lock);
5321 	}
5322 	spin_unlock(&io_tree->lock);
5323 }
5324 
5325 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5326 							struct btrfs_block_rsv *rsv,
5327 							u64 min_size)
5328 {
5329 	struct btrfs_fs_info *fs_info = root->fs_info;
5330 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5331 	int failures = 0;
5332 
5333 	for (;;) {
5334 		struct btrfs_trans_handle *trans;
5335 		int ret;
5336 
5337 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5338 					     BTRFS_RESERVE_FLUSH_LIMIT);
5339 
5340 		if (ret && ++failures > 2) {
5341 			btrfs_warn(fs_info,
5342 				   "could not allocate space for a delete; will truncate on mount");
5343 			return ERR_PTR(-ENOSPC);
5344 		}
5345 
5346 		trans = btrfs_join_transaction(root);
5347 		if (IS_ERR(trans) || !ret)
5348 			return trans;
5349 
5350 		/*
5351 		 * Try to steal from the global reserve if there is space for
5352 		 * it.
5353 		 */
5354 		if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5355 		    !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5356 			return trans;
5357 
5358 		/* If not, commit and try again. */
5359 		ret = btrfs_commit_transaction(trans);
5360 		if (ret)
5361 			return ERR_PTR(ret);
5362 	}
5363 }
5364 
5365 void btrfs_evict_inode(struct inode *inode)
5366 {
5367 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5368 	struct btrfs_trans_handle *trans;
5369 	struct btrfs_root *root = BTRFS_I(inode)->root;
5370 	struct btrfs_block_rsv *rsv;
5371 	u64 min_size;
5372 	int ret;
5373 
5374 	trace_btrfs_inode_evict(inode);
5375 
5376 	if (!root) {
5377 		clear_inode(inode);
5378 		return;
5379 	}
5380 
5381 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5382 
5383 	evict_inode_truncate_pages(inode);
5384 
5385 	if (inode->i_nlink &&
5386 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5387 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5388 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5389 		goto no_delete;
5390 
5391 	if (is_bad_inode(inode))
5392 		goto no_delete;
5393 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5394 	if (!special_file(inode->i_mode))
5395 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5396 
5397 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5398 
5399 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5400 		goto no_delete;
5401 
5402 	if (inode->i_nlink > 0) {
5403 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5404 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5405 		goto no_delete;
5406 	}
5407 
5408 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5409 	if (ret)
5410 		goto no_delete;
5411 
5412 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5413 	if (!rsv)
5414 		goto no_delete;
5415 	rsv->size = min_size;
5416 	rsv->failfast = 1;
5417 
5418 	btrfs_i_size_write(BTRFS_I(inode), 0);
5419 
5420 	while (1) {
5421 		trans = evict_refill_and_join(root, rsv, min_size);
5422 		if (IS_ERR(trans))
5423 			goto free_rsv;
5424 
5425 		trans->block_rsv = rsv;
5426 
5427 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5428 		trans->block_rsv = &fs_info->trans_block_rsv;
5429 		btrfs_end_transaction(trans);
5430 		btrfs_btree_balance_dirty(fs_info);
5431 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5432 			goto free_rsv;
5433 		else if (!ret)
5434 			break;
5435 	}
5436 
5437 	/*
5438 	 * Errors here aren't a big deal, it just means we leave orphan items in
5439 	 * the tree. They will be cleaned up on the next mount. If the inode
5440 	 * number gets reused, cleanup deletes the orphan item without doing
5441 	 * anything, and unlink reuses the existing orphan item.
5442 	 *
5443 	 * If it turns out that we are dropping too many of these, we might want
5444 	 * to add a mechanism for retrying these after a commit.
5445 	 */
5446 	trans = evict_refill_and_join(root, rsv, min_size);
5447 	if (!IS_ERR(trans)) {
5448 		trans->block_rsv = rsv;
5449 		btrfs_orphan_del(trans, BTRFS_I(inode));
5450 		trans->block_rsv = &fs_info->trans_block_rsv;
5451 		btrfs_end_transaction(trans);
5452 	}
5453 
5454 	if (!(root == fs_info->tree_root ||
5455 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5456 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5457 
5458 free_rsv:
5459 	btrfs_free_block_rsv(fs_info, rsv);
5460 no_delete:
5461 	/*
5462 	 * If we didn't successfully delete, the orphan item will still be in
5463 	 * the tree and we'll retry on the next mount. Again, we might also want
5464 	 * to retry these periodically in the future.
5465 	 */
5466 	btrfs_remove_delayed_node(BTRFS_I(inode));
5467 	clear_inode(inode);
5468 }
5469 
5470 /*
5471  * this returns the key found in the dir entry in the location pointer.
5472  * If no dir entries were found, returns -ENOENT.
5473  * If found a corrupted location in dir entry, returns -EUCLEAN.
5474  */
5475 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5476 			       struct btrfs_key *location)
5477 {
5478 	const char *name = dentry->d_name.name;
5479 	int namelen = dentry->d_name.len;
5480 	struct btrfs_dir_item *di;
5481 	struct btrfs_path *path;
5482 	struct btrfs_root *root = BTRFS_I(dir)->root;
5483 	int ret = 0;
5484 
5485 	path = btrfs_alloc_path();
5486 	if (!path)
5487 		return -ENOMEM;
5488 
5489 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5490 			name, namelen, 0);
5491 	if (!di) {
5492 		ret = -ENOENT;
5493 		goto out;
5494 	}
5495 	if (IS_ERR(di)) {
5496 		ret = PTR_ERR(di);
5497 		goto out;
5498 	}
5499 
5500 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5501 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5502 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5503 		ret = -EUCLEAN;
5504 		btrfs_warn(root->fs_info,
5505 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5506 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5507 			   location->objectid, location->type, location->offset);
5508 	}
5509 out:
5510 	btrfs_free_path(path);
5511 	return ret;
5512 }
5513 
5514 /*
5515  * when we hit a tree root in a directory, the btrfs part of the inode
5516  * needs to be changed to reflect the root directory of the tree root.  This
5517  * is kind of like crossing a mount point.
5518  */
5519 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5520 				    struct inode *dir,
5521 				    struct dentry *dentry,
5522 				    struct btrfs_key *location,
5523 				    struct btrfs_root **sub_root)
5524 {
5525 	struct btrfs_path *path;
5526 	struct btrfs_root *new_root;
5527 	struct btrfs_root_ref *ref;
5528 	struct extent_buffer *leaf;
5529 	struct btrfs_key key;
5530 	int ret;
5531 	int err = 0;
5532 
5533 	path = btrfs_alloc_path();
5534 	if (!path) {
5535 		err = -ENOMEM;
5536 		goto out;
5537 	}
5538 
5539 	err = -ENOENT;
5540 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5541 	key.type = BTRFS_ROOT_REF_KEY;
5542 	key.offset = location->objectid;
5543 
5544 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5545 	if (ret) {
5546 		if (ret < 0)
5547 			err = ret;
5548 		goto out;
5549 	}
5550 
5551 	leaf = path->nodes[0];
5552 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5553 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5554 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5555 		goto out;
5556 
5557 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5558 				   (unsigned long)(ref + 1),
5559 				   dentry->d_name.len);
5560 	if (ret)
5561 		goto out;
5562 
5563 	btrfs_release_path(path);
5564 
5565 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5566 	if (IS_ERR(new_root)) {
5567 		err = PTR_ERR(new_root);
5568 		goto out;
5569 	}
5570 
5571 	*sub_root = new_root;
5572 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5573 	location->type = BTRFS_INODE_ITEM_KEY;
5574 	location->offset = 0;
5575 	err = 0;
5576 out:
5577 	btrfs_free_path(path);
5578 	return err;
5579 }
5580 
5581 static void inode_tree_add(struct inode *inode)
5582 {
5583 	struct btrfs_root *root = BTRFS_I(inode)->root;
5584 	struct btrfs_inode *entry;
5585 	struct rb_node **p;
5586 	struct rb_node *parent;
5587 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5588 	u64 ino = btrfs_ino(BTRFS_I(inode));
5589 
5590 	if (inode_unhashed(inode))
5591 		return;
5592 	parent = NULL;
5593 	spin_lock(&root->inode_lock);
5594 	p = &root->inode_tree.rb_node;
5595 	while (*p) {
5596 		parent = *p;
5597 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5598 
5599 		if (ino < btrfs_ino(entry))
5600 			p = &parent->rb_left;
5601 		else if (ino > btrfs_ino(entry))
5602 			p = &parent->rb_right;
5603 		else {
5604 			WARN_ON(!(entry->vfs_inode.i_state &
5605 				  (I_WILL_FREE | I_FREEING)));
5606 			rb_replace_node(parent, new, &root->inode_tree);
5607 			RB_CLEAR_NODE(parent);
5608 			spin_unlock(&root->inode_lock);
5609 			return;
5610 		}
5611 	}
5612 	rb_link_node(new, parent, p);
5613 	rb_insert_color(new, &root->inode_tree);
5614 	spin_unlock(&root->inode_lock);
5615 }
5616 
5617 static void inode_tree_del(struct inode *inode)
5618 {
5619 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5620 	struct btrfs_root *root = BTRFS_I(inode)->root;
5621 	int empty = 0;
5622 
5623 	spin_lock(&root->inode_lock);
5624 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5625 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5626 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5627 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5628 	}
5629 	spin_unlock(&root->inode_lock);
5630 
5631 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5632 		synchronize_srcu(&fs_info->subvol_srcu);
5633 		spin_lock(&root->inode_lock);
5634 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5635 		spin_unlock(&root->inode_lock);
5636 		if (empty)
5637 			btrfs_add_dead_root(root);
5638 	}
5639 }
5640 
5641 
5642 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5643 {
5644 	struct btrfs_iget_args *args = p;
5645 	inode->i_ino = args->location->objectid;
5646 	memcpy(&BTRFS_I(inode)->location, args->location,
5647 	       sizeof(*args->location));
5648 	BTRFS_I(inode)->root = args->root;
5649 	return 0;
5650 }
5651 
5652 static int btrfs_find_actor(struct inode *inode, void *opaque)
5653 {
5654 	struct btrfs_iget_args *args = opaque;
5655 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5656 		args->root == BTRFS_I(inode)->root;
5657 }
5658 
5659 static struct inode *btrfs_iget_locked(struct super_block *s,
5660 				       struct btrfs_key *location,
5661 				       struct btrfs_root *root)
5662 {
5663 	struct inode *inode;
5664 	struct btrfs_iget_args args;
5665 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5666 
5667 	args.location = location;
5668 	args.root = root;
5669 
5670 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5671 			     btrfs_init_locked_inode,
5672 			     (void *)&args);
5673 	return inode;
5674 }
5675 
5676 /* Get an inode object given its location and corresponding root.
5677  * Returns in *is_new if the inode was read from disk
5678  */
5679 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5680 			 struct btrfs_root *root, int *new)
5681 {
5682 	struct inode *inode;
5683 
5684 	inode = btrfs_iget_locked(s, location, root);
5685 	if (!inode)
5686 		return ERR_PTR(-ENOMEM);
5687 
5688 	if (inode->i_state & I_NEW) {
5689 		int ret;
5690 
5691 		ret = btrfs_read_locked_inode(inode);
5692 		if (!ret) {
5693 			inode_tree_add(inode);
5694 			unlock_new_inode(inode);
5695 			if (new)
5696 				*new = 1;
5697 		} else {
5698 			iget_failed(inode);
5699 			/*
5700 			 * ret > 0 can come from btrfs_search_slot called by
5701 			 * btrfs_read_locked_inode, this means the inode item
5702 			 * was not found.
5703 			 */
5704 			if (ret > 0)
5705 				ret = -ENOENT;
5706 			inode = ERR_PTR(ret);
5707 		}
5708 	}
5709 
5710 	return inode;
5711 }
5712 
5713 static struct inode *new_simple_dir(struct super_block *s,
5714 				    struct btrfs_key *key,
5715 				    struct btrfs_root *root)
5716 {
5717 	struct inode *inode = new_inode(s);
5718 
5719 	if (!inode)
5720 		return ERR_PTR(-ENOMEM);
5721 
5722 	BTRFS_I(inode)->root = root;
5723 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5724 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5725 
5726 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5727 	inode->i_op = &btrfs_dir_ro_inode_operations;
5728 	inode->i_opflags &= ~IOP_XATTR;
5729 	inode->i_fop = &simple_dir_operations;
5730 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5731 	inode->i_mtime = current_time(inode);
5732 	inode->i_atime = inode->i_mtime;
5733 	inode->i_ctime = inode->i_mtime;
5734 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5735 
5736 	return inode;
5737 }
5738 
5739 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5740 {
5741 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5742 	struct inode *inode;
5743 	struct btrfs_root *root = BTRFS_I(dir)->root;
5744 	struct btrfs_root *sub_root = root;
5745 	struct btrfs_key location;
5746 	int index;
5747 	int ret = 0;
5748 
5749 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5750 		return ERR_PTR(-ENAMETOOLONG);
5751 
5752 	ret = btrfs_inode_by_name(dir, dentry, &location);
5753 	if (ret < 0)
5754 		return ERR_PTR(ret);
5755 
5756 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5757 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5758 		return inode;
5759 	}
5760 
5761 	index = srcu_read_lock(&fs_info->subvol_srcu);
5762 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5763 				       &location, &sub_root);
5764 	if (ret < 0) {
5765 		if (ret != -ENOENT)
5766 			inode = ERR_PTR(ret);
5767 		else
5768 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5769 	} else {
5770 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5771 	}
5772 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5773 
5774 	if (!IS_ERR(inode) && root != sub_root) {
5775 		down_read(&fs_info->cleanup_work_sem);
5776 		if (!sb_rdonly(inode->i_sb))
5777 			ret = btrfs_orphan_cleanup(sub_root);
5778 		up_read(&fs_info->cleanup_work_sem);
5779 		if (ret) {
5780 			iput(inode);
5781 			inode = ERR_PTR(ret);
5782 		}
5783 	}
5784 
5785 	return inode;
5786 }
5787 
5788 static int btrfs_dentry_delete(const struct dentry *dentry)
5789 {
5790 	struct btrfs_root *root;
5791 	struct inode *inode = d_inode(dentry);
5792 
5793 	if (!inode && !IS_ROOT(dentry))
5794 		inode = d_inode(dentry->d_parent);
5795 
5796 	if (inode) {
5797 		root = BTRFS_I(inode)->root;
5798 		if (btrfs_root_refs(&root->root_item) == 0)
5799 			return 1;
5800 
5801 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5802 			return 1;
5803 	}
5804 	return 0;
5805 }
5806 
5807 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5808 				   unsigned int flags)
5809 {
5810 	struct inode *inode;
5811 
5812 	inode = btrfs_lookup_dentry(dir, dentry);
5813 	if (IS_ERR(inode)) {
5814 		if (PTR_ERR(inode) == -ENOENT)
5815 			inode = NULL;
5816 		else
5817 			return ERR_CAST(inode);
5818 	}
5819 
5820 	return d_splice_alias(inode, dentry);
5821 }
5822 
5823 unsigned char btrfs_filetype_table[] = {
5824 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5825 };
5826 
5827 /*
5828  * All this infrastructure exists because dir_emit can fault, and we are holding
5829  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5830  * our information into that, and then dir_emit from the buffer.  This is
5831  * similar to what NFS does, only we don't keep the buffer around in pagecache
5832  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5833  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5834  * tree lock.
5835  */
5836 static int btrfs_opendir(struct inode *inode, struct file *file)
5837 {
5838 	struct btrfs_file_private *private;
5839 
5840 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5841 	if (!private)
5842 		return -ENOMEM;
5843 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5844 	if (!private->filldir_buf) {
5845 		kfree(private);
5846 		return -ENOMEM;
5847 	}
5848 	file->private_data = private;
5849 	return 0;
5850 }
5851 
5852 struct dir_entry {
5853 	u64 ino;
5854 	u64 offset;
5855 	unsigned type;
5856 	int name_len;
5857 };
5858 
5859 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5860 {
5861 	while (entries--) {
5862 		struct dir_entry *entry = addr;
5863 		char *name = (char *)(entry + 1);
5864 
5865 		ctx->pos = get_unaligned(&entry->offset);
5866 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5867 					 get_unaligned(&entry->ino),
5868 					 get_unaligned(&entry->type)))
5869 			return 1;
5870 		addr += sizeof(struct dir_entry) +
5871 			get_unaligned(&entry->name_len);
5872 		ctx->pos++;
5873 	}
5874 	return 0;
5875 }
5876 
5877 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5878 {
5879 	struct inode *inode = file_inode(file);
5880 	struct btrfs_root *root = BTRFS_I(inode)->root;
5881 	struct btrfs_file_private *private = file->private_data;
5882 	struct btrfs_dir_item *di;
5883 	struct btrfs_key key;
5884 	struct btrfs_key found_key;
5885 	struct btrfs_path *path;
5886 	void *addr;
5887 	struct list_head ins_list;
5888 	struct list_head del_list;
5889 	int ret;
5890 	struct extent_buffer *leaf;
5891 	int slot;
5892 	char *name_ptr;
5893 	int name_len;
5894 	int entries = 0;
5895 	int total_len = 0;
5896 	bool put = false;
5897 	struct btrfs_key location;
5898 
5899 	if (!dir_emit_dots(file, ctx))
5900 		return 0;
5901 
5902 	path = btrfs_alloc_path();
5903 	if (!path)
5904 		return -ENOMEM;
5905 
5906 	addr = private->filldir_buf;
5907 	path->reada = READA_FORWARD;
5908 
5909 	INIT_LIST_HEAD(&ins_list);
5910 	INIT_LIST_HEAD(&del_list);
5911 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5912 
5913 again:
5914 	key.type = BTRFS_DIR_INDEX_KEY;
5915 	key.offset = ctx->pos;
5916 	key.objectid = btrfs_ino(BTRFS_I(inode));
5917 
5918 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5919 	if (ret < 0)
5920 		goto err;
5921 
5922 	while (1) {
5923 		struct dir_entry *entry;
5924 
5925 		leaf = path->nodes[0];
5926 		slot = path->slots[0];
5927 		if (slot >= btrfs_header_nritems(leaf)) {
5928 			ret = btrfs_next_leaf(root, path);
5929 			if (ret < 0)
5930 				goto err;
5931 			else if (ret > 0)
5932 				break;
5933 			continue;
5934 		}
5935 
5936 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5937 
5938 		if (found_key.objectid != key.objectid)
5939 			break;
5940 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5941 			break;
5942 		if (found_key.offset < ctx->pos)
5943 			goto next;
5944 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5945 			goto next;
5946 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5947 		name_len = btrfs_dir_name_len(leaf, di);
5948 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5949 		    PAGE_SIZE) {
5950 			btrfs_release_path(path);
5951 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5952 			if (ret)
5953 				goto nopos;
5954 			addr = private->filldir_buf;
5955 			entries = 0;
5956 			total_len = 0;
5957 			goto again;
5958 		}
5959 
5960 		entry = addr;
5961 		put_unaligned(name_len, &entry->name_len);
5962 		name_ptr = (char *)(entry + 1);
5963 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5964 				   name_len);
5965 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5966 				&entry->type);
5967 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5968 		put_unaligned(location.objectid, &entry->ino);
5969 		put_unaligned(found_key.offset, &entry->offset);
5970 		entries++;
5971 		addr += sizeof(struct dir_entry) + name_len;
5972 		total_len += sizeof(struct dir_entry) + name_len;
5973 next:
5974 		path->slots[0]++;
5975 	}
5976 	btrfs_release_path(path);
5977 
5978 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5979 	if (ret)
5980 		goto nopos;
5981 
5982 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5983 	if (ret)
5984 		goto nopos;
5985 
5986 	/*
5987 	 * Stop new entries from being returned after we return the last
5988 	 * entry.
5989 	 *
5990 	 * New directory entries are assigned a strictly increasing
5991 	 * offset.  This means that new entries created during readdir
5992 	 * are *guaranteed* to be seen in the future by that readdir.
5993 	 * This has broken buggy programs which operate on names as
5994 	 * they're returned by readdir.  Until we re-use freed offsets
5995 	 * we have this hack to stop new entries from being returned
5996 	 * under the assumption that they'll never reach this huge
5997 	 * offset.
5998 	 *
5999 	 * This is being careful not to overflow 32bit loff_t unless the
6000 	 * last entry requires it because doing so has broken 32bit apps
6001 	 * in the past.
6002 	 */
6003 	if (ctx->pos >= INT_MAX)
6004 		ctx->pos = LLONG_MAX;
6005 	else
6006 		ctx->pos = INT_MAX;
6007 nopos:
6008 	ret = 0;
6009 err:
6010 	if (put)
6011 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6012 	btrfs_free_path(path);
6013 	return ret;
6014 }
6015 
6016 /*
6017  * This is somewhat expensive, updating the tree every time the
6018  * inode changes.  But, it is most likely to find the inode in cache.
6019  * FIXME, needs more benchmarking...there are no reasons other than performance
6020  * to keep or drop this code.
6021  */
6022 static int btrfs_dirty_inode(struct inode *inode)
6023 {
6024 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6025 	struct btrfs_root *root = BTRFS_I(inode)->root;
6026 	struct btrfs_trans_handle *trans;
6027 	int ret;
6028 
6029 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6030 		return 0;
6031 
6032 	trans = btrfs_join_transaction(root);
6033 	if (IS_ERR(trans))
6034 		return PTR_ERR(trans);
6035 
6036 	ret = btrfs_update_inode(trans, root, inode);
6037 	if (ret && ret == -ENOSPC) {
6038 		/* whoops, lets try again with the full transaction */
6039 		btrfs_end_transaction(trans);
6040 		trans = btrfs_start_transaction(root, 1);
6041 		if (IS_ERR(trans))
6042 			return PTR_ERR(trans);
6043 
6044 		ret = btrfs_update_inode(trans, root, inode);
6045 	}
6046 	btrfs_end_transaction(trans);
6047 	if (BTRFS_I(inode)->delayed_node)
6048 		btrfs_balance_delayed_items(fs_info);
6049 
6050 	return ret;
6051 }
6052 
6053 /*
6054  * This is a copy of file_update_time.  We need this so we can return error on
6055  * ENOSPC for updating the inode in the case of file write and mmap writes.
6056  */
6057 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6058 			     int flags)
6059 {
6060 	struct btrfs_root *root = BTRFS_I(inode)->root;
6061 	bool dirty = flags & ~S_VERSION;
6062 
6063 	if (btrfs_root_readonly(root))
6064 		return -EROFS;
6065 
6066 	if (flags & S_VERSION)
6067 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6068 	if (flags & S_CTIME)
6069 		inode->i_ctime = *now;
6070 	if (flags & S_MTIME)
6071 		inode->i_mtime = *now;
6072 	if (flags & S_ATIME)
6073 		inode->i_atime = *now;
6074 	return dirty ? btrfs_dirty_inode(inode) : 0;
6075 }
6076 
6077 /*
6078  * find the highest existing sequence number in a directory
6079  * and then set the in-memory index_cnt variable to reflect
6080  * free sequence numbers
6081  */
6082 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6083 {
6084 	struct btrfs_root *root = inode->root;
6085 	struct btrfs_key key, found_key;
6086 	struct btrfs_path *path;
6087 	struct extent_buffer *leaf;
6088 	int ret;
6089 
6090 	key.objectid = btrfs_ino(inode);
6091 	key.type = BTRFS_DIR_INDEX_KEY;
6092 	key.offset = (u64)-1;
6093 
6094 	path = btrfs_alloc_path();
6095 	if (!path)
6096 		return -ENOMEM;
6097 
6098 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6099 	if (ret < 0)
6100 		goto out;
6101 	/* FIXME: we should be able to handle this */
6102 	if (ret == 0)
6103 		goto out;
6104 	ret = 0;
6105 
6106 	/*
6107 	 * MAGIC NUMBER EXPLANATION:
6108 	 * since we search a directory based on f_pos we have to start at 2
6109 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6110 	 * else has to start at 2
6111 	 */
6112 	if (path->slots[0] == 0) {
6113 		inode->index_cnt = 2;
6114 		goto out;
6115 	}
6116 
6117 	path->slots[0]--;
6118 
6119 	leaf = path->nodes[0];
6120 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6121 
6122 	if (found_key.objectid != btrfs_ino(inode) ||
6123 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6124 		inode->index_cnt = 2;
6125 		goto out;
6126 	}
6127 
6128 	inode->index_cnt = found_key.offset + 1;
6129 out:
6130 	btrfs_free_path(path);
6131 	return ret;
6132 }
6133 
6134 /*
6135  * helper to find a free sequence number in a given directory.  This current
6136  * code is very simple, later versions will do smarter things in the btree
6137  */
6138 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6139 {
6140 	int ret = 0;
6141 
6142 	if (dir->index_cnt == (u64)-1) {
6143 		ret = btrfs_inode_delayed_dir_index_count(dir);
6144 		if (ret) {
6145 			ret = btrfs_set_inode_index_count(dir);
6146 			if (ret)
6147 				return ret;
6148 		}
6149 	}
6150 
6151 	*index = dir->index_cnt;
6152 	dir->index_cnt++;
6153 
6154 	return ret;
6155 }
6156 
6157 static int btrfs_insert_inode_locked(struct inode *inode)
6158 {
6159 	struct btrfs_iget_args args;
6160 	args.location = &BTRFS_I(inode)->location;
6161 	args.root = BTRFS_I(inode)->root;
6162 
6163 	return insert_inode_locked4(inode,
6164 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6165 		   btrfs_find_actor, &args);
6166 }
6167 
6168 /*
6169  * Inherit flags from the parent inode.
6170  *
6171  * Currently only the compression flags and the cow flags are inherited.
6172  */
6173 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6174 {
6175 	unsigned int flags;
6176 
6177 	if (!dir)
6178 		return;
6179 
6180 	flags = BTRFS_I(dir)->flags;
6181 
6182 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6183 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6184 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6185 	} else if (flags & BTRFS_INODE_COMPRESS) {
6186 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6187 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6188 	}
6189 
6190 	if (flags & BTRFS_INODE_NODATACOW) {
6191 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6192 		if (S_ISREG(inode->i_mode))
6193 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6194 	}
6195 
6196 	btrfs_sync_inode_flags_to_i_flags(inode);
6197 }
6198 
6199 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6200 				     struct btrfs_root *root,
6201 				     struct inode *dir,
6202 				     const char *name, int name_len,
6203 				     u64 ref_objectid, u64 objectid,
6204 				     umode_t mode, u64 *index)
6205 {
6206 	struct btrfs_fs_info *fs_info = root->fs_info;
6207 	struct inode *inode;
6208 	struct btrfs_inode_item *inode_item;
6209 	struct btrfs_key *location;
6210 	struct btrfs_path *path;
6211 	struct btrfs_inode_ref *ref;
6212 	struct btrfs_key key[2];
6213 	u32 sizes[2];
6214 	int nitems = name ? 2 : 1;
6215 	unsigned long ptr;
6216 	int ret;
6217 
6218 	path = btrfs_alloc_path();
6219 	if (!path)
6220 		return ERR_PTR(-ENOMEM);
6221 
6222 	inode = new_inode(fs_info->sb);
6223 	if (!inode) {
6224 		btrfs_free_path(path);
6225 		return ERR_PTR(-ENOMEM);
6226 	}
6227 
6228 	/*
6229 	 * O_TMPFILE, set link count to 0, so that after this point,
6230 	 * we fill in an inode item with the correct link count.
6231 	 */
6232 	if (!name)
6233 		set_nlink(inode, 0);
6234 
6235 	/*
6236 	 * we have to initialize this early, so we can reclaim the inode
6237 	 * number if we fail afterwards in this function.
6238 	 */
6239 	inode->i_ino = objectid;
6240 
6241 	if (dir && name) {
6242 		trace_btrfs_inode_request(dir);
6243 
6244 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6245 		if (ret) {
6246 			btrfs_free_path(path);
6247 			iput(inode);
6248 			return ERR_PTR(ret);
6249 		}
6250 	} else if (dir) {
6251 		*index = 0;
6252 	}
6253 	/*
6254 	 * index_cnt is ignored for everything but a dir,
6255 	 * btrfs_set_inode_index_count has an explanation for the magic
6256 	 * number
6257 	 */
6258 	BTRFS_I(inode)->index_cnt = 2;
6259 	BTRFS_I(inode)->dir_index = *index;
6260 	BTRFS_I(inode)->root = root;
6261 	BTRFS_I(inode)->generation = trans->transid;
6262 	inode->i_generation = BTRFS_I(inode)->generation;
6263 
6264 	/*
6265 	 * We could have gotten an inode number from somebody who was fsynced
6266 	 * and then removed in this same transaction, so let's just set full
6267 	 * sync since it will be a full sync anyway and this will blow away the
6268 	 * old info in the log.
6269 	 */
6270 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6271 
6272 	key[0].objectid = objectid;
6273 	key[0].type = BTRFS_INODE_ITEM_KEY;
6274 	key[0].offset = 0;
6275 
6276 	sizes[0] = sizeof(struct btrfs_inode_item);
6277 
6278 	if (name) {
6279 		/*
6280 		 * Start new inodes with an inode_ref. This is slightly more
6281 		 * efficient for small numbers of hard links since they will
6282 		 * be packed into one item. Extended refs will kick in if we
6283 		 * add more hard links than can fit in the ref item.
6284 		 */
6285 		key[1].objectid = objectid;
6286 		key[1].type = BTRFS_INODE_REF_KEY;
6287 		key[1].offset = ref_objectid;
6288 
6289 		sizes[1] = name_len + sizeof(*ref);
6290 	}
6291 
6292 	location = &BTRFS_I(inode)->location;
6293 	location->objectid = objectid;
6294 	location->offset = 0;
6295 	location->type = BTRFS_INODE_ITEM_KEY;
6296 
6297 	ret = btrfs_insert_inode_locked(inode);
6298 	if (ret < 0) {
6299 		iput(inode);
6300 		goto fail;
6301 	}
6302 
6303 	path->leave_spinning = 1;
6304 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6305 	if (ret != 0)
6306 		goto fail_unlock;
6307 
6308 	inode_init_owner(inode, dir, mode);
6309 	inode_set_bytes(inode, 0);
6310 
6311 	inode->i_mtime = current_time(inode);
6312 	inode->i_atime = inode->i_mtime;
6313 	inode->i_ctime = inode->i_mtime;
6314 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6315 
6316 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6317 				  struct btrfs_inode_item);
6318 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6319 			     sizeof(*inode_item));
6320 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6321 
6322 	if (name) {
6323 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6324 				     struct btrfs_inode_ref);
6325 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6326 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6327 		ptr = (unsigned long)(ref + 1);
6328 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6329 	}
6330 
6331 	btrfs_mark_buffer_dirty(path->nodes[0]);
6332 	btrfs_free_path(path);
6333 
6334 	btrfs_inherit_iflags(inode, dir);
6335 
6336 	if (S_ISREG(mode)) {
6337 		if (btrfs_test_opt(fs_info, NODATASUM))
6338 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6339 		if (btrfs_test_opt(fs_info, NODATACOW))
6340 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6341 				BTRFS_INODE_NODATASUM;
6342 	}
6343 
6344 	inode_tree_add(inode);
6345 
6346 	trace_btrfs_inode_new(inode);
6347 	btrfs_set_inode_last_trans(trans, inode);
6348 
6349 	btrfs_update_root_times(trans, root);
6350 
6351 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6352 	if (ret)
6353 		btrfs_err(fs_info,
6354 			  "error inheriting props for ino %llu (root %llu): %d",
6355 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6356 
6357 	return inode;
6358 
6359 fail_unlock:
6360 	discard_new_inode(inode);
6361 fail:
6362 	if (dir && name)
6363 		BTRFS_I(dir)->index_cnt--;
6364 	btrfs_free_path(path);
6365 	return ERR_PTR(ret);
6366 }
6367 
6368 static inline u8 btrfs_inode_type(struct inode *inode)
6369 {
6370 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6371 }
6372 
6373 /*
6374  * utility function to add 'inode' into 'parent_inode' with
6375  * a give name and a given sequence number.
6376  * if 'add_backref' is true, also insert a backref from the
6377  * inode to the parent directory.
6378  */
6379 int btrfs_add_link(struct btrfs_trans_handle *trans,
6380 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6381 		   const char *name, int name_len, int add_backref, u64 index)
6382 {
6383 	int ret = 0;
6384 	struct btrfs_key key;
6385 	struct btrfs_root *root = parent_inode->root;
6386 	u64 ino = btrfs_ino(inode);
6387 	u64 parent_ino = btrfs_ino(parent_inode);
6388 
6389 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6390 		memcpy(&key, &inode->root->root_key, sizeof(key));
6391 	} else {
6392 		key.objectid = ino;
6393 		key.type = BTRFS_INODE_ITEM_KEY;
6394 		key.offset = 0;
6395 	}
6396 
6397 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6398 		ret = btrfs_add_root_ref(trans, key.objectid,
6399 					 root->root_key.objectid, parent_ino,
6400 					 index, name, name_len);
6401 	} else if (add_backref) {
6402 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6403 					     parent_ino, index);
6404 	}
6405 
6406 	/* Nothing to clean up yet */
6407 	if (ret)
6408 		return ret;
6409 
6410 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6411 				    parent_inode, &key,
6412 				    btrfs_inode_type(&inode->vfs_inode), index);
6413 	if (ret == -EEXIST || ret == -EOVERFLOW)
6414 		goto fail_dir_item;
6415 	else if (ret) {
6416 		btrfs_abort_transaction(trans, ret);
6417 		return ret;
6418 	}
6419 
6420 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6421 			   name_len * 2);
6422 	inode_inc_iversion(&parent_inode->vfs_inode);
6423 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6424 		current_time(&parent_inode->vfs_inode);
6425 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6426 	if (ret)
6427 		btrfs_abort_transaction(trans, ret);
6428 	return ret;
6429 
6430 fail_dir_item:
6431 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6432 		u64 local_index;
6433 		int err;
6434 		err = btrfs_del_root_ref(trans, key.objectid,
6435 					 root->root_key.objectid, parent_ino,
6436 					 &local_index, name, name_len);
6437 
6438 	} else if (add_backref) {
6439 		u64 local_index;
6440 		int err;
6441 
6442 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6443 					  ino, parent_ino, &local_index);
6444 	}
6445 	return ret;
6446 }
6447 
6448 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6449 			    struct btrfs_inode *dir, struct dentry *dentry,
6450 			    struct btrfs_inode *inode, int backref, u64 index)
6451 {
6452 	int err = btrfs_add_link(trans, dir, inode,
6453 				 dentry->d_name.name, dentry->d_name.len,
6454 				 backref, index);
6455 	if (err > 0)
6456 		err = -EEXIST;
6457 	return err;
6458 }
6459 
6460 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6461 			umode_t mode, dev_t rdev)
6462 {
6463 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6464 	struct btrfs_trans_handle *trans;
6465 	struct btrfs_root *root = BTRFS_I(dir)->root;
6466 	struct inode *inode = NULL;
6467 	int err;
6468 	u64 objectid;
6469 	u64 index = 0;
6470 
6471 	/*
6472 	 * 2 for inode item and ref
6473 	 * 2 for dir items
6474 	 * 1 for xattr if selinux is on
6475 	 */
6476 	trans = btrfs_start_transaction(root, 5);
6477 	if (IS_ERR(trans))
6478 		return PTR_ERR(trans);
6479 
6480 	err = btrfs_find_free_ino(root, &objectid);
6481 	if (err)
6482 		goto out_unlock;
6483 
6484 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6485 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6486 			mode, &index);
6487 	if (IS_ERR(inode)) {
6488 		err = PTR_ERR(inode);
6489 		inode = NULL;
6490 		goto out_unlock;
6491 	}
6492 
6493 	/*
6494 	* If the active LSM wants to access the inode during
6495 	* d_instantiate it needs these. Smack checks to see
6496 	* if the filesystem supports xattrs by looking at the
6497 	* ops vector.
6498 	*/
6499 	inode->i_op = &btrfs_special_inode_operations;
6500 	init_special_inode(inode, inode->i_mode, rdev);
6501 
6502 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6503 	if (err)
6504 		goto out_unlock;
6505 
6506 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6507 			0, index);
6508 	if (err)
6509 		goto out_unlock;
6510 
6511 	btrfs_update_inode(trans, root, inode);
6512 	d_instantiate_new(dentry, inode);
6513 
6514 out_unlock:
6515 	btrfs_end_transaction(trans);
6516 	btrfs_btree_balance_dirty(fs_info);
6517 	if (err && inode) {
6518 		inode_dec_link_count(inode);
6519 		discard_new_inode(inode);
6520 	}
6521 	return err;
6522 }
6523 
6524 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6525 			umode_t mode, bool excl)
6526 {
6527 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6528 	struct btrfs_trans_handle *trans;
6529 	struct btrfs_root *root = BTRFS_I(dir)->root;
6530 	struct inode *inode = NULL;
6531 	int err;
6532 	u64 objectid;
6533 	u64 index = 0;
6534 
6535 	/*
6536 	 * 2 for inode item and ref
6537 	 * 2 for dir items
6538 	 * 1 for xattr if selinux is on
6539 	 */
6540 	trans = btrfs_start_transaction(root, 5);
6541 	if (IS_ERR(trans))
6542 		return PTR_ERR(trans);
6543 
6544 	err = btrfs_find_free_ino(root, &objectid);
6545 	if (err)
6546 		goto out_unlock;
6547 
6548 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6549 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6550 			mode, &index);
6551 	if (IS_ERR(inode)) {
6552 		err = PTR_ERR(inode);
6553 		inode = NULL;
6554 		goto out_unlock;
6555 	}
6556 	/*
6557 	* If the active LSM wants to access the inode during
6558 	* d_instantiate it needs these. Smack checks to see
6559 	* if the filesystem supports xattrs by looking at the
6560 	* ops vector.
6561 	*/
6562 	inode->i_fop = &btrfs_file_operations;
6563 	inode->i_op = &btrfs_file_inode_operations;
6564 	inode->i_mapping->a_ops = &btrfs_aops;
6565 
6566 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6567 	if (err)
6568 		goto out_unlock;
6569 
6570 	err = btrfs_update_inode(trans, root, inode);
6571 	if (err)
6572 		goto out_unlock;
6573 
6574 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6575 			0, index);
6576 	if (err)
6577 		goto out_unlock;
6578 
6579 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6580 	d_instantiate_new(dentry, inode);
6581 
6582 out_unlock:
6583 	btrfs_end_transaction(trans);
6584 	if (err && inode) {
6585 		inode_dec_link_count(inode);
6586 		discard_new_inode(inode);
6587 	}
6588 	btrfs_btree_balance_dirty(fs_info);
6589 	return err;
6590 }
6591 
6592 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6593 		      struct dentry *dentry)
6594 {
6595 	struct btrfs_trans_handle *trans = NULL;
6596 	struct btrfs_root *root = BTRFS_I(dir)->root;
6597 	struct inode *inode = d_inode(old_dentry);
6598 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6599 	u64 index;
6600 	int err;
6601 	int drop_inode = 0;
6602 
6603 	/* do not allow sys_link's with other subvols of the same device */
6604 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6605 		return -EXDEV;
6606 
6607 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6608 		return -EMLINK;
6609 
6610 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6611 	if (err)
6612 		goto fail;
6613 
6614 	/*
6615 	 * 2 items for inode and inode ref
6616 	 * 2 items for dir items
6617 	 * 1 item for parent inode
6618 	 * 1 item for orphan item deletion if O_TMPFILE
6619 	 */
6620 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6621 	if (IS_ERR(trans)) {
6622 		err = PTR_ERR(trans);
6623 		trans = NULL;
6624 		goto fail;
6625 	}
6626 
6627 	/* There are several dir indexes for this inode, clear the cache. */
6628 	BTRFS_I(inode)->dir_index = 0ULL;
6629 	inc_nlink(inode);
6630 	inode_inc_iversion(inode);
6631 	inode->i_ctime = current_time(inode);
6632 	ihold(inode);
6633 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6634 
6635 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6636 			1, index);
6637 
6638 	if (err) {
6639 		drop_inode = 1;
6640 	} else {
6641 		struct dentry *parent = dentry->d_parent;
6642 		err = btrfs_update_inode(trans, root, inode);
6643 		if (err)
6644 			goto fail;
6645 		if (inode->i_nlink == 1) {
6646 			/*
6647 			 * If new hard link count is 1, it's a file created
6648 			 * with open(2) O_TMPFILE flag.
6649 			 */
6650 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6651 			if (err)
6652 				goto fail;
6653 		}
6654 		d_instantiate(dentry, inode);
6655 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6656 	}
6657 
6658 fail:
6659 	if (trans)
6660 		btrfs_end_transaction(trans);
6661 	if (drop_inode) {
6662 		inode_dec_link_count(inode);
6663 		iput(inode);
6664 	}
6665 	btrfs_btree_balance_dirty(fs_info);
6666 	return err;
6667 }
6668 
6669 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6670 {
6671 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6672 	struct inode *inode = NULL;
6673 	struct btrfs_trans_handle *trans;
6674 	struct btrfs_root *root = BTRFS_I(dir)->root;
6675 	int err = 0;
6676 	int drop_on_err = 0;
6677 	u64 objectid = 0;
6678 	u64 index = 0;
6679 
6680 	/*
6681 	 * 2 items for inode and ref
6682 	 * 2 items for dir items
6683 	 * 1 for xattr if selinux is on
6684 	 */
6685 	trans = btrfs_start_transaction(root, 5);
6686 	if (IS_ERR(trans))
6687 		return PTR_ERR(trans);
6688 
6689 	err = btrfs_find_free_ino(root, &objectid);
6690 	if (err)
6691 		goto out_fail;
6692 
6693 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6694 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6695 			S_IFDIR | mode, &index);
6696 	if (IS_ERR(inode)) {
6697 		err = PTR_ERR(inode);
6698 		inode = NULL;
6699 		goto out_fail;
6700 	}
6701 
6702 	drop_on_err = 1;
6703 	/* these must be set before we unlock the inode */
6704 	inode->i_op = &btrfs_dir_inode_operations;
6705 	inode->i_fop = &btrfs_dir_file_operations;
6706 
6707 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6708 	if (err)
6709 		goto out_fail;
6710 
6711 	btrfs_i_size_write(BTRFS_I(inode), 0);
6712 	err = btrfs_update_inode(trans, root, inode);
6713 	if (err)
6714 		goto out_fail;
6715 
6716 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6717 			dentry->d_name.name,
6718 			dentry->d_name.len, 0, index);
6719 	if (err)
6720 		goto out_fail;
6721 
6722 	d_instantiate_new(dentry, inode);
6723 	drop_on_err = 0;
6724 
6725 out_fail:
6726 	btrfs_end_transaction(trans);
6727 	if (err && inode) {
6728 		inode_dec_link_count(inode);
6729 		discard_new_inode(inode);
6730 	}
6731 	btrfs_btree_balance_dirty(fs_info);
6732 	return err;
6733 }
6734 
6735 static noinline int uncompress_inline(struct btrfs_path *path,
6736 				      struct page *page,
6737 				      size_t pg_offset, u64 extent_offset,
6738 				      struct btrfs_file_extent_item *item)
6739 {
6740 	int ret;
6741 	struct extent_buffer *leaf = path->nodes[0];
6742 	char *tmp;
6743 	size_t max_size;
6744 	unsigned long inline_size;
6745 	unsigned long ptr;
6746 	int compress_type;
6747 
6748 	WARN_ON(pg_offset != 0);
6749 	compress_type = btrfs_file_extent_compression(leaf, item);
6750 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6751 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6752 					btrfs_item_nr(path->slots[0]));
6753 	tmp = kmalloc(inline_size, GFP_NOFS);
6754 	if (!tmp)
6755 		return -ENOMEM;
6756 	ptr = btrfs_file_extent_inline_start(item);
6757 
6758 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6759 
6760 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6761 	ret = btrfs_decompress(compress_type, tmp, page,
6762 			       extent_offset, inline_size, max_size);
6763 
6764 	/*
6765 	 * decompression code contains a memset to fill in any space between the end
6766 	 * of the uncompressed data and the end of max_size in case the decompressed
6767 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6768 	 * the end of an inline extent and the beginning of the next block, so we
6769 	 * cover that region here.
6770 	 */
6771 
6772 	if (max_size + pg_offset < PAGE_SIZE) {
6773 		char *map = kmap(page);
6774 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6775 		kunmap(page);
6776 	}
6777 	kfree(tmp);
6778 	return ret;
6779 }
6780 
6781 /*
6782  * a bit scary, this does extent mapping from logical file offset to the disk.
6783  * the ugly parts come from merging extents from the disk with the in-ram
6784  * representation.  This gets more complex because of the data=ordered code,
6785  * where the in-ram extents might be locked pending data=ordered completion.
6786  *
6787  * This also copies inline extents directly into the page.
6788  */
6789 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6790 		struct page *page,
6791 	    size_t pg_offset, u64 start, u64 len,
6792 		int create)
6793 {
6794 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6795 	int ret;
6796 	int err = 0;
6797 	u64 extent_start = 0;
6798 	u64 extent_end = 0;
6799 	u64 objectid = btrfs_ino(inode);
6800 	u32 found_type;
6801 	struct btrfs_path *path = NULL;
6802 	struct btrfs_root *root = inode->root;
6803 	struct btrfs_file_extent_item *item;
6804 	struct extent_buffer *leaf;
6805 	struct btrfs_key found_key;
6806 	struct extent_map *em = NULL;
6807 	struct extent_map_tree *em_tree = &inode->extent_tree;
6808 	struct extent_io_tree *io_tree = &inode->io_tree;
6809 	const bool new_inline = !page || create;
6810 
6811 	read_lock(&em_tree->lock);
6812 	em = lookup_extent_mapping(em_tree, start, len);
6813 	if (em)
6814 		em->bdev = fs_info->fs_devices->latest_bdev;
6815 	read_unlock(&em_tree->lock);
6816 
6817 	if (em) {
6818 		if (em->start > start || em->start + em->len <= start)
6819 			free_extent_map(em);
6820 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6821 			free_extent_map(em);
6822 		else
6823 			goto out;
6824 	}
6825 	em = alloc_extent_map();
6826 	if (!em) {
6827 		err = -ENOMEM;
6828 		goto out;
6829 	}
6830 	em->bdev = fs_info->fs_devices->latest_bdev;
6831 	em->start = EXTENT_MAP_HOLE;
6832 	em->orig_start = EXTENT_MAP_HOLE;
6833 	em->len = (u64)-1;
6834 	em->block_len = (u64)-1;
6835 
6836 	if (!path) {
6837 		path = btrfs_alloc_path();
6838 		if (!path) {
6839 			err = -ENOMEM;
6840 			goto out;
6841 		}
6842 		/*
6843 		 * Chances are we'll be called again, so go ahead and do
6844 		 * readahead
6845 		 */
6846 		path->reada = READA_FORWARD;
6847 	}
6848 
6849 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6850 	if (ret < 0) {
6851 		err = ret;
6852 		goto out;
6853 	}
6854 
6855 	if (ret != 0) {
6856 		if (path->slots[0] == 0)
6857 			goto not_found;
6858 		path->slots[0]--;
6859 	}
6860 
6861 	leaf = path->nodes[0];
6862 	item = btrfs_item_ptr(leaf, path->slots[0],
6863 			      struct btrfs_file_extent_item);
6864 	/* are we inside the extent that was found? */
6865 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6866 	found_type = found_key.type;
6867 	if (found_key.objectid != objectid ||
6868 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6869 		/*
6870 		 * If we backup past the first extent we want to move forward
6871 		 * and see if there is an extent in front of us, otherwise we'll
6872 		 * say there is a hole for our whole search range which can
6873 		 * cause problems.
6874 		 */
6875 		extent_end = start;
6876 		goto next;
6877 	}
6878 
6879 	found_type = btrfs_file_extent_type(leaf, item);
6880 	extent_start = found_key.offset;
6881 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6882 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6883 		extent_end = extent_start +
6884 		       btrfs_file_extent_num_bytes(leaf, item);
6885 
6886 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6887 						       extent_start);
6888 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6889 		size_t size;
6890 
6891 		size = btrfs_file_extent_ram_bytes(leaf, item);
6892 		extent_end = ALIGN(extent_start + size,
6893 				   fs_info->sectorsize);
6894 
6895 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6896 						      path->slots[0],
6897 						      extent_start);
6898 	}
6899 next:
6900 	if (start >= extent_end) {
6901 		path->slots[0]++;
6902 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6903 			ret = btrfs_next_leaf(root, path);
6904 			if (ret < 0) {
6905 				err = ret;
6906 				goto out;
6907 			}
6908 			if (ret > 0)
6909 				goto not_found;
6910 			leaf = path->nodes[0];
6911 		}
6912 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6913 		if (found_key.objectid != objectid ||
6914 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6915 			goto not_found;
6916 		if (start + len <= found_key.offset)
6917 			goto not_found;
6918 		if (start > found_key.offset)
6919 			goto next;
6920 		em->start = start;
6921 		em->orig_start = start;
6922 		em->len = found_key.offset - start;
6923 		goto not_found_em;
6924 	}
6925 
6926 	btrfs_extent_item_to_extent_map(inode, path, item,
6927 			new_inline, em);
6928 
6929 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6930 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6931 		goto insert;
6932 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6933 		unsigned long ptr;
6934 		char *map;
6935 		size_t size;
6936 		size_t extent_offset;
6937 		size_t copy_size;
6938 
6939 		if (new_inline)
6940 			goto out;
6941 
6942 		size = btrfs_file_extent_ram_bytes(leaf, item);
6943 		extent_offset = page_offset(page) + pg_offset - extent_start;
6944 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6945 				  size - extent_offset);
6946 		em->start = extent_start + extent_offset;
6947 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6948 		em->orig_block_len = em->len;
6949 		em->orig_start = em->start;
6950 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6951 		if (!PageUptodate(page)) {
6952 			if (btrfs_file_extent_compression(leaf, item) !=
6953 			    BTRFS_COMPRESS_NONE) {
6954 				ret = uncompress_inline(path, page, pg_offset,
6955 							extent_offset, item);
6956 				if (ret) {
6957 					err = ret;
6958 					goto out;
6959 				}
6960 			} else {
6961 				map = kmap(page);
6962 				read_extent_buffer(leaf, map + pg_offset, ptr,
6963 						   copy_size);
6964 				if (pg_offset + copy_size < PAGE_SIZE) {
6965 					memset(map + pg_offset + copy_size, 0,
6966 					       PAGE_SIZE - pg_offset -
6967 					       copy_size);
6968 				}
6969 				kunmap(page);
6970 			}
6971 			flush_dcache_page(page);
6972 		}
6973 		set_extent_uptodate(io_tree, em->start,
6974 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6975 		goto insert;
6976 	}
6977 not_found:
6978 	em->start = start;
6979 	em->orig_start = start;
6980 	em->len = len;
6981 not_found_em:
6982 	em->block_start = EXTENT_MAP_HOLE;
6983 insert:
6984 	btrfs_release_path(path);
6985 	if (em->start > start || extent_map_end(em) <= start) {
6986 		btrfs_err(fs_info,
6987 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6988 			  em->start, em->len, start, len);
6989 		err = -EIO;
6990 		goto out;
6991 	}
6992 
6993 	err = 0;
6994 	write_lock(&em_tree->lock);
6995 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6996 	write_unlock(&em_tree->lock);
6997 out:
6998 
6999 	trace_btrfs_get_extent(root, inode, em);
7000 
7001 	btrfs_free_path(path);
7002 	if (err) {
7003 		free_extent_map(em);
7004 		return ERR_PTR(err);
7005 	}
7006 	BUG_ON(!em); /* Error is always set */
7007 	return em;
7008 }
7009 
7010 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7011 		struct page *page,
7012 		size_t pg_offset, u64 start, u64 len,
7013 		int create)
7014 {
7015 	struct extent_map *em;
7016 	struct extent_map *hole_em = NULL;
7017 	u64 range_start = start;
7018 	u64 end;
7019 	u64 found;
7020 	u64 found_end;
7021 	int err = 0;
7022 
7023 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7024 	if (IS_ERR(em))
7025 		return em;
7026 	/*
7027 	 * If our em maps to:
7028 	 * - a hole or
7029 	 * - a pre-alloc extent,
7030 	 * there might actually be delalloc bytes behind it.
7031 	 */
7032 	if (em->block_start != EXTENT_MAP_HOLE &&
7033 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7034 		return em;
7035 	else
7036 		hole_em = em;
7037 
7038 	/* check to see if we've wrapped (len == -1 or similar) */
7039 	end = start + len;
7040 	if (end < start)
7041 		end = (u64)-1;
7042 	else
7043 		end -= 1;
7044 
7045 	em = NULL;
7046 
7047 	/* ok, we didn't find anything, lets look for delalloc */
7048 	found = count_range_bits(&inode->io_tree, &range_start,
7049 				 end, len, EXTENT_DELALLOC, 1);
7050 	found_end = range_start + found;
7051 	if (found_end < range_start)
7052 		found_end = (u64)-1;
7053 
7054 	/*
7055 	 * we didn't find anything useful, return
7056 	 * the original results from get_extent()
7057 	 */
7058 	if (range_start > end || found_end <= start) {
7059 		em = hole_em;
7060 		hole_em = NULL;
7061 		goto out;
7062 	}
7063 
7064 	/* adjust the range_start to make sure it doesn't
7065 	 * go backwards from the start they passed in
7066 	 */
7067 	range_start = max(start, range_start);
7068 	found = found_end - range_start;
7069 
7070 	if (found > 0) {
7071 		u64 hole_start = start;
7072 		u64 hole_len = len;
7073 
7074 		em = alloc_extent_map();
7075 		if (!em) {
7076 			err = -ENOMEM;
7077 			goto out;
7078 		}
7079 		/*
7080 		 * when btrfs_get_extent can't find anything it
7081 		 * returns one huge hole
7082 		 *
7083 		 * make sure what it found really fits our range, and
7084 		 * adjust to make sure it is based on the start from
7085 		 * the caller
7086 		 */
7087 		if (hole_em) {
7088 			u64 calc_end = extent_map_end(hole_em);
7089 
7090 			if (calc_end <= start || (hole_em->start > end)) {
7091 				free_extent_map(hole_em);
7092 				hole_em = NULL;
7093 			} else {
7094 				hole_start = max(hole_em->start, start);
7095 				hole_len = calc_end - hole_start;
7096 			}
7097 		}
7098 		em->bdev = NULL;
7099 		if (hole_em && range_start > hole_start) {
7100 			/* our hole starts before our delalloc, so we
7101 			 * have to return just the parts of the hole
7102 			 * that go until  the delalloc starts
7103 			 */
7104 			em->len = min(hole_len,
7105 				      range_start - hole_start);
7106 			em->start = hole_start;
7107 			em->orig_start = hole_start;
7108 			/*
7109 			 * don't adjust block start at all,
7110 			 * it is fixed at EXTENT_MAP_HOLE
7111 			 */
7112 			em->block_start = hole_em->block_start;
7113 			em->block_len = hole_len;
7114 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7115 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7116 		} else {
7117 			em->start = range_start;
7118 			em->len = found;
7119 			em->orig_start = range_start;
7120 			em->block_start = EXTENT_MAP_DELALLOC;
7121 			em->block_len = found;
7122 		}
7123 	} else {
7124 		return hole_em;
7125 	}
7126 out:
7127 
7128 	free_extent_map(hole_em);
7129 	if (err) {
7130 		free_extent_map(em);
7131 		return ERR_PTR(err);
7132 	}
7133 	return em;
7134 }
7135 
7136 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7137 						  const u64 start,
7138 						  const u64 len,
7139 						  const u64 orig_start,
7140 						  const u64 block_start,
7141 						  const u64 block_len,
7142 						  const u64 orig_block_len,
7143 						  const u64 ram_bytes,
7144 						  const int type)
7145 {
7146 	struct extent_map *em = NULL;
7147 	int ret;
7148 
7149 	if (type != BTRFS_ORDERED_NOCOW) {
7150 		em = create_io_em(inode, start, len, orig_start,
7151 				  block_start, block_len, orig_block_len,
7152 				  ram_bytes,
7153 				  BTRFS_COMPRESS_NONE, /* compress_type */
7154 				  type);
7155 		if (IS_ERR(em))
7156 			goto out;
7157 	}
7158 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7159 					   len, block_len, type);
7160 	if (ret) {
7161 		if (em) {
7162 			free_extent_map(em);
7163 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7164 						start + len - 1, 0);
7165 		}
7166 		em = ERR_PTR(ret);
7167 	}
7168  out:
7169 
7170 	return em;
7171 }
7172 
7173 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7174 						  u64 start, u64 len)
7175 {
7176 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7177 	struct btrfs_root *root = BTRFS_I(inode)->root;
7178 	struct extent_map *em;
7179 	struct btrfs_key ins;
7180 	u64 alloc_hint;
7181 	int ret;
7182 
7183 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7184 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7185 				   0, alloc_hint, &ins, 1, 1);
7186 	if (ret)
7187 		return ERR_PTR(ret);
7188 
7189 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7190 				     ins.objectid, ins.offset, ins.offset,
7191 				     ins.offset, BTRFS_ORDERED_REGULAR);
7192 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7193 	if (IS_ERR(em))
7194 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7195 					   ins.offset, 1);
7196 
7197 	return em;
7198 }
7199 
7200 /*
7201  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7202  * block must be cow'd
7203  */
7204 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7205 			      u64 *orig_start, u64 *orig_block_len,
7206 			      u64 *ram_bytes)
7207 {
7208 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7209 	struct btrfs_path *path;
7210 	int ret;
7211 	struct extent_buffer *leaf;
7212 	struct btrfs_root *root = BTRFS_I(inode)->root;
7213 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7214 	struct btrfs_file_extent_item *fi;
7215 	struct btrfs_key key;
7216 	u64 disk_bytenr;
7217 	u64 backref_offset;
7218 	u64 extent_end;
7219 	u64 num_bytes;
7220 	int slot;
7221 	int found_type;
7222 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7223 
7224 	path = btrfs_alloc_path();
7225 	if (!path)
7226 		return -ENOMEM;
7227 
7228 	ret = btrfs_lookup_file_extent(NULL, root, path,
7229 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7230 	if (ret < 0)
7231 		goto out;
7232 
7233 	slot = path->slots[0];
7234 	if (ret == 1) {
7235 		if (slot == 0) {
7236 			/* can't find the item, must cow */
7237 			ret = 0;
7238 			goto out;
7239 		}
7240 		slot--;
7241 	}
7242 	ret = 0;
7243 	leaf = path->nodes[0];
7244 	btrfs_item_key_to_cpu(leaf, &key, slot);
7245 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7246 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7247 		/* not our file or wrong item type, must cow */
7248 		goto out;
7249 	}
7250 
7251 	if (key.offset > offset) {
7252 		/* Wrong offset, must cow */
7253 		goto out;
7254 	}
7255 
7256 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7257 	found_type = btrfs_file_extent_type(leaf, fi);
7258 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7259 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7260 		/* not a regular extent, must cow */
7261 		goto out;
7262 	}
7263 
7264 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7265 		goto out;
7266 
7267 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7268 	if (extent_end <= offset)
7269 		goto out;
7270 
7271 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7272 	if (disk_bytenr == 0)
7273 		goto out;
7274 
7275 	if (btrfs_file_extent_compression(leaf, fi) ||
7276 	    btrfs_file_extent_encryption(leaf, fi) ||
7277 	    btrfs_file_extent_other_encoding(leaf, fi))
7278 		goto out;
7279 
7280 	/*
7281 	 * Do the same check as in btrfs_cross_ref_exist but without the
7282 	 * unnecessary search.
7283 	 */
7284 	if (btrfs_file_extent_generation(leaf, fi) <=
7285 	    btrfs_root_last_snapshot(&root->root_item))
7286 		goto out;
7287 
7288 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7289 
7290 	if (orig_start) {
7291 		*orig_start = key.offset - backref_offset;
7292 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7293 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7294 	}
7295 
7296 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7297 		goto out;
7298 
7299 	num_bytes = min(offset + *len, extent_end) - offset;
7300 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7301 		u64 range_end;
7302 
7303 		range_end = round_up(offset + num_bytes,
7304 				     root->fs_info->sectorsize) - 1;
7305 		ret = test_range_bit(io_tree, offset, range_end,
7306 				     EXTENT_DELALLOC, 0, NULL);
7307 		if (ret) {
7308 			ret = -EAGAIN;
7309 			goto out;
7310 		}
7311 	}
7312 
7313 	btrfs_release_path(path);
7314 
7315 	/*
7316 	 * look for other files referencing this extent, if we
7317 	 * find any we must cow
7318 	 */
7319 
7320 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7321 				    key.offset - backref_offset, disk_bytenr);
7322 	if (ret) {
7323 		ret = 0;
7324 		goto out;
7325 	}
7326 
7327 	/*
7328 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7329 	 * in this extent we are about to write.  If there
7330 	 * are any csums in that range we have to cow in order
7331 	 * to keep the csums correct
7332 	 */
7333 	disk_bytenr += backref_offset;
7334 	disk_bytenr += offset - key.offset;
7335 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7336 		goto out;
7337 	/*
7338 	 * all of the above have passed, it is safe to overwrite this extent
7339 	 * without cow
7340 	 */
7341 	*len = num_bytes;
7342 	ret = 1;
7343 out:
7344 	btrfs_free_path(path);
7345 	return ret;
7346 }
7347 
7348 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7349 			      struct extent_state **cached_state, int writing)
7350 {
7351 	struct btrfs_ordered_extent *ordered;
7352 	int ret = 0;
7353 
7354 	while (1) {
7355 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7356 				 cached_state);
7357 		/*
7358 		 * We're concerned with the entire range that we're going to be
7359 		 * doing DIO to, so we need to make sure there's no ordered
7360 		 * extents in this range.
7361 		 */
7362 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7363 						     lockend - lockstart + 1);
7364 
7365 		/*
7366 		 * We need to make sure there are no buffered pages in this
7367 		 * range either, we could have raced between the invalidate in
7368 		 * generic_file_direct_write and locking the extent.  The
7369 		 * invalidate needs to happen so that reads after a write do not
7370 		 * get stale data.
7371 		 */
7372 		if (!ordered &&
7373 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7374 							 lockstart, lockend)))
7375 			break;
7376 
7377 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7378 				     cached_state);
7379 
7380 		if (ordered) {
7381 			/*
7382 			 * If we are doing a DIO read and the ordered extent we
7383 			 * found is for a buffered write, we can not wait for it
7384 			 * to complete and retry, because if we do so we can
7385 			 * deadlock with concurrent buffered writes on page
7386 			 * locks. This happens only if our DIO read covers more
7387 			 * than one extent map, if at this point has already
7388 			 * created an ordered extent for a previous extent map
7389 			 * and locked its range in the inode's io tree, and a
7390 			 * concurrent write against that previous extent map's
7391 			 * range and this range started (we unlock the ranges
7392 			 * in the io tree only when the bios complete and
7393 			 * buffered writes always lock pages before attempting
7394 			 * to lock range in the io tree).
7395 			 */
7396 			if (writing ||
7397 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7398 				btrfs_start_ordered_extent(inode, ordered, 1);
7399 			else
7400 				ret = -ENOTBLK;
7401 			btrfs_put_ordered_extent(ordered);
7402 		} else {
7403 			/*
7404 			 * We could trigger writeback for this range (and wait
7405 			 * for it to complete) and then invalidate the pages for
7406 			 * this range (through invalidate_inode_pages2_range()),
7407 			 * but that can lead us to a deadlock with a concurrent
7408 			 * call to readpages() (a buffered read or a defrag call
7409 			 * triggered a readahead) on a page lock due to an
7410 			 * ordered dio extent we created before but did not have
7411 			 * yet a corresponding bio submitted (whence it can not
7412 			 * complete), which makes readpages() wait for that
7413 			 * ordered extent to complete while holding a lock on
7414 			 * that page.
7415 			 */
7416 			ret = -ENOTBLK;
7417 		}
7418 
7419 		if (ret)
7420 			break;
7421 
7422 		cond_resched();
7423 	}
7424 
7425 	return ret;
7426 }
7427 
7428 /* The callers of this must take lock_extent() */
7429 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7430 				       u64 orig_start, u64 block_start,
7431 				       u64 block_len, u64 orig_block_len,
7432 				       u64 ram_bytes, int compress_type,
7433 				       int type)
7434 {
7435 	struct extent_map_tree *em_tree;
7436 	struct extent_map *em;
7437 	struct btrfs_root *root = BTRFS_I(inode)->root;
7438 	int ret;
7439 
7440 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7441 	       type == BTRFS_ORDERED_COMPRESSED ||
7442 	       type == BTRFS_ORDERED_NOCOW ||
7443 	       type == BTRFS_ORDERED_REGULAR);
7444 
7445 	em_tree = &BTRFS_I(inode)->extent_tree;
7446 	em = alloc_extent_map();
7447 	if (!em)
7448 		return ERR_PTR(-ENOMEM);
7449 
7450 	em->start = start;
7451 	em->orig_start = orig_start;
7452 	em->len = len;
7453 	em->block_len = block_len;
7454 	em->block_start = block_start;
7455 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7456 	em->orig_block_len = orig_block_len;
7457 	em->ram_bytes = ram_bytes;
7458 	em->generation = -1;
7459 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7460 	if (type == BTRFS_ORDERED_PREALLOC) {
7461 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7462 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7463 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7464 		em->compress_type = compress_type;
7465 	}
7466 
7467 	do {
7468 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7469 				em->start + em->len - 1, 0);
7470 		write_lock(&em_tree->lock);
7471 		ret = add_extent_mapping(em_tree, em, 1);
7472 		write_unlock(&em_tree->lock);
7473 		/*
7474 		 * The caller has taken lock_extent(), who could race with us
7475 		 * to add em?
7476 		 */
7477 	} while (ret == -EEXIST);
7478 
7479 	if (ret) {
7480 		free_extent_map(em);
7481 		return ERR_PTR(ret);
7482 	}
7483 
7484 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7485 	return em;
7486 }
7487 
7488 
7489 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7490 					struct buffer_head *bh_result,
7491 					struct inode *inode,
7492 					u64 start, u64 len)
7493 {
7494 	if (em->block_start == EXTENT_MAP_HOLE ||
7495 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7496 		return -ENOENT;
7497 
7498 	len = min(len, em->len - (start - em->start));
7499 
7500 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7501 		inode->i_blkbits;
7502 	bh_result->b_size = len;
7503 	bh_result->b_bdev = em->bdev;
7504 	set_buffer_mapped(bh_result);
7505 
7506 	return 0;
7507 }
7508 
7509 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7510 					 struct buffer_head *bh_result,
7511 					 struct inode *inode,
7512 					 struct btrfs_dio_data *dio_data,
7513 					 u64 start, u64 len)
7514 {
7515 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7516 	struct extent_map *em = *map;
7517 	int ret = 0;
7518 
7519 	/*
7520 	 * We don't allocate a new extent in the following cases
7521 	 *
7522 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7523 	 * existing extent.
7524 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7525 	 * just use the extent.
7526 	 *
7527 	 */
7528 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7529 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7530 	     em->block_start != EXTENT_MAP_HOLE)) {
7531 		int type;
7532 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7533 
7534 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7535 			type = BTRFS_ORDERED_PREALLOC;
7536 		else
7537 			type = BTRFS_ORDERED_NOCOW;
7538 		len = min(len, em->len - (start - em->start));
7539 		block_start = em->block_start + (start - em->start);
7540 
7541 		if (can_nocow_extent(inode, start, &len, &orig_start,
7542 				     &orig_block_len, &ram_bytes) == 1 &&
7543 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7544 			struct extent_map *em2;
7545 
7546 			em2 = btrfs_create_dio_extent(inode, start, len,
7547 						      orig_start, block_start,
7548 						      len, orig_block_len,
7549 						      ram_bytes, type);
7550 			btrfs_dec_nocow_writers(fs_info, block_start);
7551 			if (type == BTRFS_ORDERED_PREALLOC) {
7552 				free_extent_map(em);
7553 				*map = em = em2;
7554 			}
7555 
7556 			if (em2 && IS_ERR(em2)) {
7557 				ret = PTR_ERR(em2);
7558 				goto out;
7559 			}
7560 			/*
7561 			 * For inode marked NODATACOW or extent marked PREALLOC,
7562 			 * use the existing or preallocated extent, so does not
7563 			 * need to adjust btrfs_space_info's bytes_may_use.
7564 			 */
7565 			btrfs_free_reserved_data_space_noquota(inode, start,
7566 							       len);
7567 			goto skip_cow;
7568 		}
7569 	}
7570 
7571 	/* this will cow the extent */
7572 	len = bh_result->b_size;
7573 	free_extent_map(em);
7574 	*map = em = btrfs_new_extent_direct(inode, start, len);
7575 	if (IS_ERR(em)) {
7576 		ret = PTR_ERR(em);
7577 		goto out;
7578 	}
7579 
7580 	len = min(len, em->len - (start - em->start));
7581 
7582 skip_cow:
7583 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7584 		inode->i_blkbits;
7585 	bh_result->b_size = len;
7586 	bh_result->b_bdev = em->bdev;
7587 	set_buffer_mapped(bh_result);
7588 
7589 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7590 		set_buffer_new(bh_result);
7591 
7592 	/*
7593 	 * Need to update the i_size under the extent lock so buffered
7594 	 * readers will get the updated i_size when we unlock.
7595 	 */
7596 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7597 		i_size_write(inode, start + len);
7598 
7599 	WARN_ON(dio_data->reserve < len);
7600 	dio_data->reserve -= len;
7601 	dio_data->unsubmitted_oe_range_end = start + len;
7602 	current->journal_info = dio_data;
7603 out:
7604 	return ret;
7605 }
7606 
7607 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7608 				   struct buffer_head *bh_result, int create)
7609 {
7610 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7611 	struct extent_map *em;
7612 	struct extent_state *cached_state = NULL;
7613 	struct btrfs_dio_data *dio_data = NULL;
7614 	u64 start = iblock << inode->i_blkbits;
7615 	u64 lockstart, lockend;
7616 	u64 len = bh_result->b_size;
7617 	int unlock_bits = EXTENT_LOCKED;
7618 	int ret = 0;
7619 
7620 	if (create)
7621 		unlock_bits |= EXTENT_DIRTY;
7622 	else
7623 		len = min_t(u64, len, fs_info->sectorsize);
7624 
7625 	lockstart = start;
7626 	lockend = start + len - 1;
7627 
7628 	if (current->journal_info) {
7629 		/*
7630 		 * Need to pull our outstanding extents and set journal_info to NULL so
7631 		 * that anything that needs to check if there's a transaction doesn't get
7632 		 * confused.
7633 		 */
7634 		dio_data = current->journal_info;
7635 		current->journal_info = NULL;
7636 	}
7637 
7638 	/*
7639 	 * If this errors out it's because we couldn't invalidate pagecache for
7640 	 * this range and we need to fallback to buffered.
7641 	 */
7642 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7643 			       create)) {
7644 		ret = -ENOTBLK;
7645 		goto err;
7646 	}
7647 
7648 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7649 	if (IS_ERR(em)) {
7650 		ret = PTR_ERR(em);
7651 		goto unlock_err;
7652 	}
7653 
7654 	/*
7655 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7656 	 * io.  INLINE is special, and we could probably kludge it in here, but
7657 	 * it's still buffered so for safety lets just fall back to the generic
7658 	 * buffered path.
7659 	 *
7660 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7661 	 * decompress it, so there will be buffering required no matter what we
7662 	 * do, so go ahead and fallback to buffered.
7663 	 *
7664 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7665 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7666 	 * the generic code.
7667 	 */
7668 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7669 	    em->block_start == EXTENT_MAP_INLINE) {
7670 		free_extent_map(em);
7671 		ret = -ENOTBLK;
7672 		goto unlock_err;
7673 	}
7674 
7675 	if (create) {
7676 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7677 						    dio_data, start, len);
7678 		if (ret < 0)
7679 			goto unlock_err;
7680 
7681 		/* clear and unlock the entire range */
7682 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7683 				 unlock_bits, 1, 0, &cached_state);
7684 	} else {
7685 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7686 						   start, len);
7687 		/* Can be negative only if we read from a hole */
7688 		if (ret < 0) {
7689 			ret = 0;
7690 			free_extent_map(em);
7691 			goto unlock_err;
7692 		}
7693 		/*
7694 		 * We need to unlock only the end area that we aren't using.
7695 		 * The rest is going to be unlocked by the endio routine.
7696 		 */
7697 		lockstart = start + bh_result->b_size;
7698 		if (lockstart < lockend) {
7699 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7700 					 lockend, unlock_bits, 1, 0,
7701 					 &cached_state);
7702 		} else {
7703 			free_extent_state(cached_state);
7704 		}
7705 	}
7706 
7707 	free_extent_map(em);
7708 
7709 	return 0;
7710 
7711 unlock_err:
7712 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7713 			 unlock_bits, 1, 0, &cached_state);
7714 err:
7715 	if (dio_data)
7716 		current->journal_info = dio_data;
7717 	return ret;
7718 }
7719 
7720 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7721 						 struct bio *bio,
7722 						 int mirror_num)
7723 {
7724 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7725 	blk_status_t ret;
7726 
7727 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7728 
7729 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7730 	if (ret)
7731 		return ret;
7732 
7733 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7734 
7735 	return ret;
7736 }
7737 
7738 static int btrfs_check_dio_repairable(struct inode *inode,
7739 				      struct bio *failed_bio,
7740 				      struct io_failure_record *failrec,
7741 				      int failed_mirror)
7742 {
7743 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7744 	int num_copies;
7745 
7746 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7747 	if (num_copies == 1) {
7748 		/*
7749 		 * we only have a single copy of the data, so don't bother with
7750 		 * all the retry and error correction code that follows. no
7751 		 * matter what the error is, it is very likely to persist.
7752 		 */
7753 		btrfs_debug(fs_info,
7754 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7755 			num_copies, failrec->this_mirror, failed_mirror);
7756 		return 0;
7757 	}
7758 
7759 	failrec->failed_mirror = failed_mirror;
7760 	failrec->this_mirror++;
7761 	if (failrec->this_mirror == failed_mirror)
7762 		failrec->this_mirror++;
7763 
7764 	if (failrec->this_mirror > num_copies) {
7765 		btrfs_debug(fs_info,
7766 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7767 			num_copies, failrec->this_mirror, failed_mirror);
7768 		return 0;
7769 	}
7770 
7771 	return 1;
7772 }
7773 
7774 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7775 				   struct page *page, unsigned int pgoff,
7776 				   u64 start, u64 end, int failed_mirror,
7777 				   bio_end_io_t *repair_endio, void *repair_arg)
7778 {
7779 	struct io_failure_record *failrec;
7780 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7781 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7782 	struct bio *bio;
7783 	int isector;
7784 	unsigned int read_mode = 0;
7785 	int segs;
7786 	int ret;
7787 	blk_status_t status;
7788 	struct bio_vec bvec;
7789 
7790 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7791 
7792 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7793 	if (ret)
7794 		return errno_to_blk_status(ret);
7795 
7796 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7797 					 failed_mirror);
7798 	if (!ret) {
7799 		free_io_failure(failure_tree, io_tree, failrec);
7800 		return BLK_STS_IOERR;
7801 	}
7802 
7803 	segs = bio_segments(failed_bio);
7804 	bio_get_first_bvec(failed_bio, &bvec);
7805 	if (segs > 1 ||
7806 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7807 		read_mode |= REQ_FAILFAST_DEV;
7808 
7809 	isector = start - btrfs_io_bio(failed_bio)->logical;
7810 	isector >>= inode->i_sb->s_blocksize_bits;
7811 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7812 				pgoff, isector, repair_endio, repair_arg);
7813 	bio->bi_opf = REQ_OP_READ | read_mode;
7814 
7815 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7816 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7817 		    read_mode, failrec->this_mirror, failrec->in_validation);
7818 
7819 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7820 	if (status) {
7821 		free_io_failure(failure_tree, io_tree, failrec);
7822 		bio_put(bio);
7823 	}
7824 
7825 	return status;
7826 }
7827 
7828 struct btrfs_retry_complete {
7829 	struct completion done;
7830 	struct inode *inode;
7831 	u64 start;
7832 	int uptodate;
7833 };
7834 
7835 static void btrfs_retry_endio_nocsum(struct bio *bio)
7836 {
7837 	struct btrfs_retry_complete *done = bio->bi_private;
7838 	struct inode *inode = done->inode;
7839 	struct bio_vec *bvec;
7840 	struct extent_io_tree *io_tree, *failure_tree;
7841 	int i;
7842 
7843 	if (bio->bi_status)
7844 		goto end;
7845 
7846 	ASSERT(bio->bi_vcnt == 1);
7847 	io_tree = &BTRFS_I(inode)->io_tree;
7848 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7849 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7850 
7851 	done->uptodate = 1;
7852 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7853 	bio_for_each_segment_all(bvec, bio, i)
7854 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7855 				 io_tree, done->start, bvec->bv_page,
7856 				 btrfs_ino(BTRFS_I(inode)), 0);
7857 end:
7858 	complete(&done->done);
7859 	bio_put(bio);
7860 }
7861 
7862 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7863 						struct btrfs_io_bio *io_bio)
7864 {
7865 	struct btrfs_fs_info *fs_info;
7866 	struct bio_vec bvec;
7867 	struct bvec_iter iter;
7868 	struct btrfs_retry_complete done;
7869 	u64 start;
7870 	unsigned int pgoff;
7871 	u32 sectorsize;
7872 	int nr_sectors;
7873 	blk_status_t ret;
7874 	blk_status_t err = BLK_STS_OK;
7875 
7876 	fs_info = BTRFS_I(inode)->root->fs_info;
7877 	sectorsize = fs_info->sectorsize;
7878 
7879 	start = io_bio->logical;
7880 	done.inode = inode;
7881 	io_bio->bio.bi_iter = io_bio->iter;
7882 
7883 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7884 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7885 		pgoff = bvec.bv_offset;
7886 
7887 next_block_or_try_again:
7888 		done.uptodate = 0;
7889 		done.start = start;
7890 		init_completion(&done.done);
7891 
7892 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7893 				pgoff, start, start + sectorsize - 1,
7894 				io_bio->mirror_num,
7895 				btrfs_retry_endio_nocsum, &done);
7896 		if (ret) {
7897 			err = ret;
7898 			goto next;
7899 		}
7900 
7901 		wait_for_completion_io(&done.done);
7902 
7903 		if (!done.uptodate) {
7904 			/* We might have another mirror, so try again */
7905 			goto next_block_or_try_again;
7906 		}
7907 
7908 next:
7909 		start += sectorsize;
7910 
7911 		nr_sectors--;
7912 		if (nr_sectors) {
7913 			pgoff += sectorsize;
7914 			ASSERT(pgoff < PAGE_SIZE);
7915 			goto next_block_or_try_again;
7916 		}
7917 	}
7918 
7919 	return err;
7920 }
7921 
7922 static void btrfs_retry_endio(struct bio *bio)
7923 {
7924 	struct btrfs_retry_complete *done = bio->bi_private;
7925 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7926 	struct extent_io_tree *io_tree, *failure_tree;
7927 	struct inode *inode = done->inode;
7928 	struct bio_vec *bvec;
7929 	int uptodate;
7930 	int ret;
7931 	int i;
7932 
7933 	if (bio->bi_status)
7934 		goto end;
7935 
7936 	uptodate = 1;
7937 
7938 	ASSERT(bio->bi_vcnt == 1);
7939 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7940 
7941 	io_tree = &BTRFS_I(inode)->io_tree;
7942 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7943 
7944 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7945 	bio_for_each_segment_all(bvec, bio, i) {
7946 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7947 					     bvec->bv_offset, done->start,
7948 					     bvec->bv_len);
7949 		if (!ret)
7950 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7951 					 failure_tree, io_tree, done->start,
7952 					 bvec->bv_page,
7953 					 btrfs_ino(BTRFS_I(inode)),
7954 					 bvec->bv_offset);
7955 		else
7956 			uptodate = 0;
7957 	}
7958 
7959 	done->uptodate = uptodate;
7960 end:
7961 	complete(&done->done);
7962 	bio_put(bio);
7963 }
7964 
7965 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7966 		struct btrfs_io_bio *io_bio, blk_status_t err)
7967 {
7968 	struct btrfs_fs_info *fs_info;
7969 	struct bio_vec bvec;
7970 	struct bvec_iter iter;
7971 	struct btrfs_retry_complete done;
7972 	u64 start;
7973 	u64 offset = 0;
7974 	u32 sectorsize;
7975 	int nr_sectors;
7976 	unsigned int pgoff;
7977 	int csum_pos;
7978 	bool uptodate = (err == 0);
7979 	int ret;
7980 	blk_status_t status;
7981 
7982 	fs_info = BTRFS_I(inode)->root->fs_info;
7983 	sectorsize = fs_info->sectorsize;
7984 
7985 	err = BLK_STS_OK;
7986 	start = io_bio->logical;
7987 	done.inode = inode;
7988 	io_bio->bio.bi_iter = io_bio->iter;
7989 
7990 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7991 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7992 
7993 		pgoff = bvec.bv_offset;
7994 next_block:
7995 		if (uptodate) {
7996 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7997 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
7998 					bvec.bv_page, pgoff, start, sectorsize);
7999 			if (likely(!ret))
8000 				goto next;
8001 		}
8002 try_again:
8003 		done.uptodate = 0;
8004 		done.start = start;
8005 		init_completion(&done.done);
8006 
8007 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8008 					pgoff, start, start + sectorsize - 1,
8009 					io_bio->mirror_num, btrfs_retry_endio,
8010 					&done);
8011 		if (status) {
8012 			err = status;
8013 			goto next;
8014 		}
8015 
8016 		wait_for_completion_io(&done.done);
8017 
8018 		if (!done.uptodate) {
8019 			/* We might have another mirror, so try again */
8020 			goto try_again;
8021 		}
8022 next:
8023 		offset += sectorsize;
8024 		start += sectorsize;
8025 
8026 		ASSERT(nr_sectors);
8027 
8028 		nr_sectors--;
8029 		if (nr_sectors) {
8030 			pgoff += sectorsize;
8031 			ASSERT(pgoff < PAGE_SIZE);
8032 			goto next_block;
8033 		}
8034 	}
8035 
8036 	return err;
8037 }
8038 
8039 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8040 		struct btrfs_io_bio *io_bio, blk_status_t err)
8041 {
8042 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8043 
8044 	if (skip_csum) {
8045 		if (unlikely(err))
8046 			return __btrfs_correct_data_nocsum(inode, io_bio);
8047 		else
8048 			return BLK_STS_OK;
8049 	} else {
8050 		return __btrfs_subio_endio_read(inode, io_bio, err);
8051 	}
8052 }
8053 
8054 static void btrfs_endio_direct_read(struct bio *bio)
8055 {
8056 	struct btrfs_dio_private *dip = bio->bi_private;
8057 	struct inode *inode = dip->inode;
8058 	struct bio *dio_bio;
8059 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8060 	blk_status_t err = bio->bi_status;
8061 
8062 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8063 		err = btrfs_subio_endio_read(inode, io_bio, err);
8064 
8065 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8066 		      dip->logical_offset + dip->bytes - 1);
8067 	dio_bio = dip->dio_bio;
8068 
8069 	kfree(dip);
8070 
8071 	dio_bio->bi_status = err;
8072 	dio_end_io(dio_bio);
8073 
8074 	if (io_bio->end_io)
8075 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8076 	bio_put(bio);
8077 }
8078 
8079 static void __endio_write_update_ordered(struct inode *inode,
8080 					 const u64 offset, const u64 bytes,
8081 					 const bool uptodate)
8082 {
8083 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8084 	struct btrfs_ordered_extent *ordered = NULL;
8085 	struct btrfs_workqueue *wq;
8086 	btrfs_work_func_t func;
8087 	u64 ordered_offset = offset;
8088 	u64 ordered_bytes = bytes;
8089 	u64 last_offset;
8090 
8091 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8092 		wq = fs_info->endio_freespace_worker;
8093 		func = btrfs_freespace_write_helper;
8094 	} else {
8095 		wq = fs_info->endio_write_workers;
8096 		func = btrfs_endio_write_helper;
8097 	}
8098 
8099 	while (ordered_offset < offset + bytes) {
8100 		last_offset = ordered_offset;
8101 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8102 							   &ordered_offset,
8103 							   ordered_bytes,
8104 							   uptodate)) {
8105 			btrfs_init_work(&ordered->work, func,
8106 					finish_ordered_fn,
8107 					NULL, NULL);
8108 			btrfs_queue_work(wq, &ordered->work);
8109 		}
8110 		/*
8111 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8112 		 * extent in the range, we can exit.
8113 		 */
8114 		if (ordered_offset == last_offset)
8115 			return;
8116 		/*
8117 		 * Our bio might span multiple ordered extents. In this case
8118 		 * we keep goin until we have accounted the whole dio.
8119 		 */
8120 		if (ordered_offset < offset + bytes) {
8121 			ordered_bytes = offset + bytes - ordered_offset;
8122 			ordered = NULL;
8123 		}
8124 	}
8125 }
8126 
8127 static void btrfs_endio_direct_write(struct bio *bio)
8128 {
8129 	struct btrfs_dio_private *dip = bio->bi_private;
8130 	struct bio *dio_bio = dip->dio_bio;
8131 
8132 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8133 				     dip->bytes, !bio->bi_status);
8134 
8135 	kfree(dip);
8136 
8137 	dio_bio->bi_status = bio->bi_status;
8138 	dio_end_io(dio_bio);
8139 	bio_put(bio);
8140 }
8141 
8142 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8143 				    struct bio *bio, u64 offset)
8144 {
8145 	struct inode *inode = private_data;
8146 	blk_status_t ret;
8147 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8148 	BUG_ON(ret); /* -ENOMEM */
8149 	return 0;
8150 }
8151 
8152 static void btrfs_end_dio_bio(struct bio *bio)
8153 {
8154 	struct btrfs_dio_private *dip = bio->bi_private;
8155 	blk_status_t err = bio->bi_status;
8156 
8157 	if (err)
8158 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8159 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8160 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8161 			   bio->bi_opf,
8162 			   (unsigned long long)bio->bi_iter.bi_sector,
8163 			   bio->bi_iter.bi_size, err);
8164 
8165 	if (dip->subio_endio)
8166 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8167 
8168 	if (err) {
8169 		/*
8170 		 * We want to perceive the errors flag being set before
8171 		 * decrementing the reference count. We don't need a barrier
8172 		 * since atomic operations with a return value are fully
8173 		 * ordered as per atomic_t.txt
8174 		 */
8175 		dip->errors = 1;
8176 	}
8177 
8178 	/* if there are more bios still pending for this dio, just exit */
8179 	if (!atomic_dec_and_test(&dip->pending_bios))
8180 		goto out;
8181 
8182 	if (dip->errors) {
8183 		bio_io_error(dip->orig_bio);
8184 	} else {
8185 		dip->dio_bio->bi_status = BLK_STS_OK;
8186 		bio_endio(dip->orig_bio);
8187 	}
8188 out:
8189 	bio_put(bio);
8190 }
8191 
8192 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8193 						 struct btrfs_dio_private *dip,
8194 						 struct bio *bio,
8195 						 u64 file_offset)
8196 {
8197 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8198 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8199 	blk_status_t ret;
8200 
8201 	/*
8202 	 * We load all the csum data we need when we submit
8203 	 * the first bio to reduce the csum tree search and
8204 	 * contention.
8205 	 */
8206 	if (dip->logical_offset == file_offset) {
8207 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8208 						file_offset);
8209 		if (ret)
8210 			return ret;
8211 	}
8212 
8213 	if (bio == dip->orig_bio)
8214 		return 0;
8215 
8216 	file_offset -= dip->logical_offset;
8217 	file_offset >>= inode->i_sb->s_blocksize_bits;
8218 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8219 
8220 	return 0;
8221 }
8222 
8223 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8224 		struct inode *inode, u64 file_offset, int async_submit)
8225 {
8226 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8227 	struct btrfs_dio_private *dip = bio->bi_private;
8228 	bool write = bio_op(bio) == REQ_OP_WRITE;
8229 	blk_status_t ret;
8230 
8231 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8232 	if (async_submit)
8233 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8234 
8235 	if (!write) {
8236 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8237 		if (ret)
8238 			goto err;
8239 	}
8240 
8241 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8242 		goto map;
8243 
8244 	if (write && async_submit) {
8245 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8246 					  file_offset, inode,
8247 					  btrfs_submit_bio_start_direct_io);
8248 		goto err;
8249 	} else if (write) {
8250 		/*
8251 		 * If we aren't doing async submit, calculate the csum of the
8252 		 * bio now.
8253 		 */
8254 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8255 		if (ret)
8256 			goto err;
8257 	} else {
8258 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8259 						     file_offset);
8260 		if (ret)
8261 			goto err;
8262 	}
8263 map:
8264 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8265 err:
8266 	return ret;
8267 }
8268 
8269 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8270 {
8271 	struct inode *inode = dip->inode;
8272 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8273 	struct bio *bio;
8274 	struct bio *orig_bio = dip->orig_bio;
8275 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8276 	u64 file_offset = dip->logical_offset;
8277 	u64 map_length;
8278 	int async_submit = 0;
8279 	u64 submit_len;
8280 	int clone_offset = 0;
8281 	int clone_len;
8282 	int ret;
8283 	blk_status_t status;
8284 
8285 	map_length = orig_bio->bi_iter.bi_size;
8286 	submit_len = map_length;
8287 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8288 			      &map_length, NULL, 0);
8289 	if (ret)
8290 		return -EIO;
8291 
8292 	if (map_length >= submit_len) {
8293 		bio = orig_bio;
8294 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8295 		goto submit;
8296 	}
8297 
8298 	/* async crcs make it difficult to collect full stripe writes. */
8299 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8300 		async_submit = 0;
8301 	else
8302 		async_submit = 1;
8303 
8304 	/* bio split */
8305 	ASSERT(map_length <= INT_MAX);
8306 	atomic_inc(&dip->pending_bios);
8307 	do {
8308 		clone_len = min_t(int, submit_len, map_length);
8309 
8310 		/*
8311 		 * This will never fail as it's passing GPF_NOFS and
8312 		 * the allocation is backed by btrfs_bioset.
8313 		 */
8314 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8315 					      clone_len);
8316 		bio->bi_private = dip;
8317 		bio->bi_end_io = btrfs_end_dio_bio;
8318 		btrfs_io_bio(bio)->logical = file_offset;
8319 
8320 		ASSERT(submit_len >= clone_len);
8321 		submit_len -= clone_len;
8322 		if (submit_len == 0)
8323 			break;
8324 
8325 		/*
8326 		 * Increase the count before we submit the bio so we know
8327 		 * the end IO handler won't happen before we increase the
8328 		 * count. Otherwise, the dip might get freed before we're
8329 		 * done setting it up.
8330 		 */
8331 		atomic_inc(&dip->pending_bios);
8332 
8333 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8334 						async_submit);
8335 		if (status) {
8336 			bio_put(bio);
8337 			atomic_dec(&dip->pending_bios);
8338 			goto out_err;
8339 		}
8340 
8341 		clone_offset += clone_len;
8342 		start_sector += clone_len >> 9;
8343 		file_offset += clone_len;
8344 
8345 		map_length = submit_len;
8346 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8347 				      start_sector << 9, &map_length, NULL, 0);
8348 		if (ret)
8349 			goto out_err;
8350 	} while (submit_len > 0);
8351 
8352 submit:
8353 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8354 	if (!status)
8355 		return 0;
8356 
8357 	bio_put(bio);
8358 out_err:
8359 	dip->errors = 1;
8360 	/*
8361 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8362 	 * perceived to be set. This ordering is ensured by the fact that an
8363 	 * atomic operations with a return value are fully ordered as per
8364 	 * atomic_t.txt
8365 	 */
8366 	if (atomic_dec_and_test(&dip->pending_bios))
8367 		bio_io_error(dip->orig_bio);
8368 
8369 	/* bio_end_io() will handle error, so we needn't return it */
8370 	return 0;
8371 }
8372 
8373 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8374 				loff_t file_offset)
8375 {
8376 	struct btrfs_dio_private *dip = NULL;
8377 	struct bio *bio = NULL;
8378 	struct btrfs_io_bio *io_bio;
8379 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8380 	int ret = 0;
8381 
8382 	bio = btrfs_bio_clone(dio_bio);
8383 
8384 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8385 	if (!dip) {
8386 		ret = -ENOMEM;
8387 		goto free_ordered;
8388 	}
8389 
8390 	dip->private = dio_bio->bi_private;
8391 	dip->inode = inode;
8392 	dip->logical_offset = file_offset;
8393 	dip->bytes = dio_bio->bi_iter.bi_size;
8394 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8395 	bio->bi_private = dip;
8396 	dip->orig_bio = bio;
8397 	dip->dio_bio = dio_bio;
8398 	atomic_set(&dip->pending_bios, 0);
8399 	io_bio = btrfs_io_bio(bio);
8400 	io_bio->logical = file_offset;
8401 
8402 	if (write) {
8403 		bio->bi_end_io = btrfs_endio_direct_write;
8404 	} else {
8405 		bio->bi_end_io = btrfs_endio_direct_read;
8406 		dip->subio_endio = btrfs_subio_endio_read;
8407 	}
8408 
8409 	/*
8410 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8411 	 * even if we fail to submit a bio, because in such case we do the
8412 	 * corresponding error handling below and it must not be done a second
8413 	 * time by btrfs_direct_IO().
8414 	 */
8415 	if (write) {
8416 		struct btrfs_dio_data *dio_data = current->journal_info;
8417 
8418 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8419 			dip->bytes;
8420 		dio_data->unsubmitted_oe_range_start =
8421 			dio_data->unsubmitted_oe_range_end;
8422 	}
8423 
8424 	ret = btrfs_submit_direct_hook(dip);
8425 	if (!ret)
8426 		return;
8427 
8428 	if (io_bio->end_io)
8429 		io_bio->end_io(io_bio, ret);
8430 
8431 free_ordered:
8432 	/*
8433 	 * If we arrived here it means either we failed to submit the dip
8434 	 * or we either failed to clone the dio_bio or failed to allocate the
8435 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8436 	 * call bio_endio against our io_bio so that we get proper resource
8437 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8438 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8439 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8440 	 */
8441 	if (bio && dip) {
8442 		bio_io_error(bio);
8443 		/*
8444 		 * The end io callbacks free our dip, do the final put on bio
8445 		 * and all the cleanup and final put for dio_bio (through
8446 		 * dio_end_io()).
8447 		 */
8448 		dip = NULL;
8449 		bio = NULL;
8450 	} else {
8451 		if (write)
8452 			__endio_write_update_ordered(inode,
8453 						file_offset,
8454 						dio_bio->bi_iter.bi_size,
8455 						false);
8456 		else
8457 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8458 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8459 
8460 		dio_bio->bi_status = BLK_STS_IOERR;
8461 		/*
8462 		 * Releases and cleans up our dio_bio, no need to bio_put()
8463 		 * nor bio_endio()/bio_io_error() against dio_bio.
8464 		 */
8465 		dio_end_io(dio_bio);
8466 	}
8467 	if (bio)
8468 		bio_put(bio);
8469 	kfree(dip);
8470 }
8471 
8472 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8473 			       const struct iov_iter *iter, loff_t offset)
8474 {
8475 	int seg;
8476 	int i;
8477 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8478 	ssize_t retval = -EINVAL;
8479 
8480 	if (offset & blocksize_mask)
8481 		goto out;
8482 
8483 	if (iov_iter_alignment(iter) & blocksize_mask)
8484 		goto out;
8485 
8486 	/* If this is a write we don't need to check anymore */
8487 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8488 		return 0;
8489 	/*
8490 	 * Check to make sure we don't have duplicate iov_base's in this
8491 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8492 	 * when reading back.
8493 	 */
8494 	for (seg = 0; seg < iter->nr_segs; seg++) {
8495 		for (i = seg + 1; i < iter->nr_segs; i++) {
8496 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8497 				goto out;
8498 		}
8499 	}
8500 	retval = 0;
8501 out:
8502 	return retval;
8503 }
8504 
8505 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8506 {
8507 	struct file *file = iocb->ki_filp;
8508 	struct inode *inode = file->f_mapping->host;
8509 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8510 	struct btrfs_dio_data dio_data = { 0 };
8511 	struct extent_changeset *data_reserved = NULL;
8512 	loff_t offset = iocb->ki_pos;
8513 	size_t count = 0;
8514 	int flags = 0;
8515 	bool wakeup = true;
8516 	bool relock = false;
8517 	ssize_t ret;
8518 
8519 	if (check_direct_IO(fs_info, iter, offset))
8520 		return 0;
8521 
8522 	inode_dio_begin(inode);
8523 
8524 	/*
8525 	 * The generic stuff only does filemap_write_and_wait_range, which
8526 	 * isn't enough if we've written compressed pages to this area, so
8527 	 * we need to flush the dirty pages again to make absolutely sure
8528 	 * that any outstanding dirty pages are on disk.
8529 	 */
8530 	count = iov_iter_count(iter);
8531 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8532 		     &BTRFS_I(inode)->runtime_flags))
8533 		filemap_fdatawrite_range(inode->i_mapping, offset,
8534 					 offset + count - 1);
8535 
8536 	if (iov_iter_rw(iter) == WRITE) {
8537 		/*
8538 		 * If the write DIO is beyond the EOF, we need update
8539 		 * the isize, but it is protected by i_mutex. So we can
8540 		 * not unlock the i_mutex at this case.
8541 		 */
8542 		if (offset + count <= inode->i_size) {
8543 			dio_data.overwrite = 1;
8544 			inode_unlock(inode);
8545 			relock = true;
8546 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8547 			ret = -EAGAIN;
8548 			goto out;
8549 		}
8550 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8551 						   offset, count);
8552 		if (ret)
8553 			goto out;
8554 
8555 		/*
8556 		 * We need to know how many extents we reserved so that we can
8557 		 * do the accounting properly if we go over the number we
8558 		 * originally calculated.  Abuse current->journal_info for this.
8559 		 */
8560 		dio_data.reserve = round_up(count,
8561 					    fs_info->sectorsize);
8562 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8563 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8564 		current->journal_info = &dio_data;
8565 		down_read(&BTRFS_I(inode)->dio_sem);
8566 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8567 				     &BTRFS_I(inode)->runtime_flags)) {
8568 		inode_dio_end(inode);
8569 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8570 		wakeup = false;
8571 	}
8572 
8573 	ret = __blockdev_direct_IO(iocb, inode,
8574 				   fs_info->fs_devices->latest_bdev,
8575 				   iter, btrfs_get_blocks_direct, NULL,
8576 				   btrfs_submit_direct, flags);
8577 	if (iov_iter_rw(iter) == WRITE) {
8578 		up_read(&BTRFS_I(inode)->dio_sem);
8579 		current->journal_info = NULL;
8580 		if (ret < 0 && ret != -EIOCBQUEUED) {
8581 			if (dio_data.reserve)
8582 				btrfs_delalloc_release_space(inode, data_reserved,
8583 					offset, dio_data.reserve, true);
8584 			/*
8585 			 * On error we might have left some ordered extents
8586 			 * without submitting corresponding bios for them, so
8587 			 * cleanup them up to avoid other tasks getting them
8588 			 * and waiting for them to complete forever.
8589 			 */
8590 			if (dio_data.unsubmitted_oe_range_start <
8591 			    dio_data.unsubmitted_oe_range_end)
8592 				__endio_write_update_ordered(inode,
8593 					dio_data.unsubmitted_oe_range_start,
8594 					dio_data.unsubmitted_oe_range_end -
8595 					dio_data.unsubmitted_oe_range_start,
8596 					false);
8597 		} else if (ret >= 0 && (size_t)ret < count)
8598 			btrfs_delalloc_release_space(inode, data_reserved,
8599 					offset, count - (size_t)ret, true);
8600 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8601 	}
8602 out:
8603 	if (wakeup)
8604 		inode_dio_end(inode);
8605 	if (relock)
8606 		inode_lock(inode);
8607 
8608 	extent_changeset_free(data_reserved);
8609 	return ret;
8610 }
8611 
8612 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8613 
8614 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8615 		__u64 start, __u64 len)
8616 {
8617 	int	ret;
8618 
8619 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8620 	if (ret)
8621 		return ret;
8622 
8623 	return extent_fiemap(inode, fieinfo, start, len);
8624 }
8625 
8626 int btrfs_readpage(struct file *file, struct page *page)
8627 {
8628 	struct extent_io_tree *tree;
8629 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8630 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8631 }
8632 
8633 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8634 {
8635 	struct inode *inode = page->mapping->host;
8636 	int ret;
8637 
8638 	if (current->flags & PF_MEMALLOC) {
8639 		redirty_page_for_writepage(wbc, page);
8640 		unlock_page(page);
8641 		return 0;
8642 	}
8643 
8644 	/*
8645 	 * If we are under memory pressure we will call this directly from the
8646 	 * VM, we need to make sure we have the inode referenced for the ordered
8647 	 * extent.  If not just return like we didn't do anything.
8648 	 */
8649 	if (!igrab(inode)) {
8650 		redirty_page_for_writepage(wbc, page);
8651 		return AOP_WRITEPAGE_ACTIVATE;
8652 	}
8653 	ret = extent_write_full_page(page, wbc);
8654 	btrfs_add_delayed_iput(inode);
8655 	return ret;
8656 }
8657 
8658 static int btrfs_writepages(struct address_space *mapping,
8659 			    struct writeback_control *wbc)
8660 {
8661 	return extent_writepages(mapping, wbc);
8662 }
8663 
8664 static int
8665 btrfs_readpages(struct file *file, struct address_space *mapping,
8666 		struct list_head *pages, unsigned nr_pages)
8667 {
8668 	return extent_readpages(mapping, pages, nr_pages);
8669 }
8670 
8671 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8672 {
8673 	int ret = try_release_extent_mapping(page, gfp_flags);
8674 	if (ret == 1) {
8675 		ClearPagePrivate(page);
8676 		set_page_private(page, 0);
8677 		put_page(page);
8678 	}
8679 	return ret;
8680 }
8681 
8682 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8683 {
8684 	if (PageWriteback(page) || PageDirty(page))
8685 		return 0;
8686 	return __btrfs_releasepage(page, gfp_flags);
8687 }
8688 
8689 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8690 				 unsigned int length)
8691 {
8692 	struct inode *inode = page->mapping->host;
8693 	struct extent_io_tree *tree;
8694 	struct btrfs_ordered_extent *ordered;
8695 	struct extent_state *cached_state = NULL;
8696 	u64 page_start = page_offset(page);
8697 	u64 page_end = page_start + PAGE_SIZE - 1;
8698 	u64 start;
8699 	u64 end;
8700 	int inode_evicting = inode->i_state & I_FREEING;
8701 
8702 	/*
8703 	 * we have the page locked, so new writeback can't start,
8704 	 * and the dirty bit won't be cleared while we are here.
8705 	 *
8706 	 * Wait for IO on this page so that we can safely clear
8707 	 * the PagePrivate2 bit and do ordered accounting
8708 	 */
8709 	wait_on_page_writeback(page);
8710 
8711 	tree = &BTRFS_I(inode)->io_tree;
8712 	if (offset) {
8713 		btrfs_releasepage(page, GFP_NOFS);
8714 		return;
8715 	}
8716 
8717 	if (!inode_evicting)
8718 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8719 again:
8720 	start = page_start;
8721 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8722 					page_end - start + 1);
8723 	if (ordered) {
8724 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8725 		/*
8726 		 * IO on this page will never be started, so we need
8727 		 * to account for any ordered extents now
8728 		 */
8729 		if (!inode_evicting)
8730 			clear_extent_bit(tree, start, end,
8731 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8732 					 EXTENT_DELALLOC_NEW |
8733 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8734 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8735 		/*
8736 		 * whoever cleared the private bit is responsible
8737 		 * for the finish_ordered_io
8738 		 */
8739 		if (TestClearPagePrivate2(page)) {
8740 			struct btrfs_ordered_inode_tree *tree;
8741 			u64 new_len;
8742 
8743 			tree = &BTRFS_I(inode)->ordered_tree;
8744 
8745 			spin_lock_irq(&tree->lock);
8746 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8747 			new_len = start - ordered->file_offset;
8748 			if (new_len < ordered->truncated_len)
8749 				ordered->truncated_len = new_len;
8750 			spin_unlock_irq(&tree->lock);
8751 
8752 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8753 							   start,
8754 							   end - start + 1, 1))
8755 				btrfs_finish_ordered_io(ordered);
8756 		}
8757 		btrfs_put_ordered_extent(ordered);
8758 		if (!inode_evicting) {
8759 			cached_state = NULL;
8760 			lock_extent_bits(tree, start, end,
8761 					 &cached_state);
8762 		}
8763 
8764 		start = end + 1;
8765 		if (start < page_end)
8766 			goto again;
8767 	}
8768 
8769 	/*
8770 	 * Qgroup reserved space handler
8771 	 * Page here will be either
8772 	 * 1) Already written to disk
8773 	 *    In this case, its reserved space is released from data rsv map
8774 	 *    and will be freed by delayed_ref handler finally.
8775 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8776 	 *    space.
8777 	 * 2) Not written to disk
8778 	 *    This means the reserved space should be freed here. However,
8779 	 *    if a truncate invalidates the page (by clearing PageDirty)
8780 	 *    and the page is accounted for while allocating extent
8781 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8782 	 *    free the entire extent.
8783 	 */
8784 	if (PageDirty(page))
8785 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8786 	if (!inode_evicting) {
8787 		clear_extent_bit(tree, page_start, page_end,
8788 				 EXTENT_LOCKED | EXTENT_DIRTY |
8789 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8790 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8791 				 &cached_state);
8792 
8793 		__btrfs_releasepage(page, GFP_NOFS);
8794 	}
8795 
8796 	ClearPageChecked(page);
8797 	if (PagePrivate(page)) {
8798 		ClearPagePrivate(page);
8799 		set_page_private(page, 0);
8800 		put_page(page);
8801 	}
8802 }
8803 
8804 /*
8805  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8806  * called from a page fault handler when a page is first dirtied. Hence we must
8807  * be careful to check for EOF conditions here. We set the page up correctly
8808  * for a written page which means we get ENOSPC checking when writing into
8809  * holes and correct delalloc and unwritten extent mapping on filesystems that
8810  * support these features.
8811  *
8812  * We are not allowed to take the i_mutex here so we have to play games to
8813  * protect against truncate races as the page could now be beyond EOF.  Because
8814  * truncate_setsize() writes the inode size before removing pages, once we have
8815  * the page lock we can determine safely if the page is beyond EOF. If it is not
8816  * beyond EOF, then the page is guaranteed safe against truncation until we
8817  * unlock the page.
8818  */
8819 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8820 {
8821 	struct page *page = vmf->page;
8822 	struct inode *inode = file_inode(vmf->vma->vm_file);
8823 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8824 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8825 	struct btrfs_ordered_extent *ordered;
8826 	struct extent_state *cached_state = NULL;
8827 	struct extent_changeset *data_reserved = NULL;
8828 	char *kaddr;
8829 	unsigned long zero_start;
8830 	loff_t size;
8831 	vm_fault_t ret;
8832 	int ret2;
8833 	int reserved = 0;
8834 	u64 reserved_space;
8835 	u64 page_start;
8836 	u64 page_end;
8837 	u64 end;
8838 
8839 	reserved_space = PAGE_SIZE;
8840 
8841 	sb_start_pagefault(inode->i_sb);
8842 	page_start = page_offset(page);
8843 	page_end = page_start + PAGE_SIZE - 1;
8844 	end = page_end;
8845 
8846 	/*
8847 	 * Reserving delalloc space after obtaining the page lock can lead to
8848 	 * deadlock. For example, if a dirty page is locked by this function
8849 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8850 	 * dirty page write out, then the btrfs_writepage() function could
8851 	 * end up waiting indefinitely to get a lock on the page currently
8852 	 * being processed by btrfs_page_mkwrite() function.
8853 	 */
8854 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8855 					   reserved_space);
8856 	if (!ret2) {
8857 		ret2 = file_update_time(vmf->vma->vm_file);
8858 		reserved = 1;
8859 	}
8860 	if (ret2) {
8861 		ret = vmf_error(ret2);
8862 		if (reserved)
8863 			goto out;
8864 		goto out_noreserve;
8865 	}
8866 
8867 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8868 again:
8869 	lock_page(page);
8870 	size = i_size_read(inode);
8871 
8872 	if ((page->mapping != inode->i_mapping) ||
8873 	    (page_start >= size)) {
8874 		/* page got truncated out from underneath us */
8875 		goto out_unlock;
8876 	}
8877 	wait_on_page_writeback(page);
8878 
8879 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8880 	set_page_extent_mapped(page);
8881 
8882 	/*
8883 	 * we can't set the delalloc bits if there are pending ordered
8884 	 * extents.  Drop our locks and wait for them to finish
8885 	 */
8886 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8887 			PAGE_SIZE);
8888 	if (ordered) {
8889 		unlock_extent_cached(io_tree, page_start, page_end,
8890 				     &cached_state);
8891 		unlock_page(page);
8892 		btrfs_start_ordered_extent(inode, ordered, 1);
8893 		btrfs_put_ordered_extent(ordered);
8894 		goto again;
8895 	}
8896 
8897 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8898 		reserved_space = round_up(size - page_start,
8899 					  fs_info->sectorsize);
8900 		if (reserved_space < PAGE_SIZE) {
8901 			end = page_start + reserved_space - 1;
8902 			btrfs_delalloc_release_space(inode, data_reserved,
8903 					page_start, PAGE_SIZE - reserved_space,
8904 					true);
8905 		}
8906 	}
8907 
8908 	/*
8909 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8910 	 * faulted in, but write(2) could also dirty a page and set delalloc
8911 	 * bits, thus in this case for space account reason, we still need to
8912 	 * clear any delalloc bits within this page range since we have to
8913 	 * reserve data&meta space before lock_page() (see above comments).
8914 	 */
8915 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8916 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8917 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8918 			  0, 0, &cached_state);
8919 
8920 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8921 					&cached_state, 0);
8922 	if (ret2) {
8923 		unlock_extent_cached(io_tree, page_start, page_end,
8924 				     &cached_state);
8925 		ret = VM_FAULT_SIGBUS;
8926 		goto out_unlock;
8927 	}
8928 	ret2 = 0;
8929 
8930 	/* page is wholly or partially inside EOF */
8931 	if (page_start + PAGE_SIZE > size)
8932 		zero_start = size & ~PAGE_MASK;
8933 	else
8934 		zero_start = PAGE_SIZE;
8935 
8936 	if (zero_start != PAGE_SIZE) {
8937 		kaddr = kmap(page);
8938 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8939 		flush_dcache_page(page);
8940 		kunmap(page);
8941 	}
8942 	ClearPageChecked(page);
8943 	set_page_dirty(page);
8944 	SetPageUptodate(page);
8945 
8946 	BTRFS_I(inode)->last_trans = fs_info->generation;
8947 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8948 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8949 
8950 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8951 
8952 	if (!ret2) {
8953 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8954 		sb_end_pagefault(inode->i_sb);
8955 		extent_changeset_free(data_reserved);
8956 		return VM_FAULT_LOCKED;
8957 	}
8958 
8959 out_unlock:
8960 	unlock_page(page);
8961 out:
8962 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8963 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8964 				     reserved_space, (ret != 0));
8965 out_noreserve:
8966 	sb_end_pagefault(inode->i_sb);
8967 	extent_changeset_free(data_reserved);
8968 	return ret;
8969 }
8970 
8971 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8972 {
8973 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8974 	struct btrfs_root *root = BTRFS_I(inode)->root;
8975 	struct btrfs_block_rsv *rsv;
8976 	int ret;
8977 	struct btrfs_trans_handle *trans;
8978 	u64 mask = fs_info->sectorsize - 1;
8979 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8980 
8981 	if (!skip_writeback) {
8982 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8983 					       (u64)-1);
8984 		if (ret)
8985 			return ret;
8986 	}
8987 
8988 	/*
8989 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8990 	 * things going on here:
8991 	 *
8992 	 * 1) We need to reserve space to update our inode.
8993 	 *
8994 	 * 2) We need to have something to cache all the space that is going to
8995 	 * be free'd up by the truncate operation, but also have some slack
8996 	 * space reserved in case it uses space during the truncate (thank you
8997 	 * very much snapshotting).
8998 	 *
8999 	 * And we need these to be separate.  The fact is we can use a lot of
9000 	 * space doing the truncate, and we have no earthly idea how much space
9001 	 * we will use, so we need the truncate reservation to be separate so it
9002 	 * doesn't end up using space reserved for updating the inode.  We also
9003 	 * need to be able to stop the transaction and start a new one, which
9004 	 * means we need to be able to update the inode several times, and we
9005 	 * have no idea of knowing how many times that will be, so we can't just
9006 	 * reserve 1 item for the entirety of the operation, so that has to be
9007 	 * done separately as well.
9008 	 *
9009 	 * So that leaves us with
9010 	 *
9011 	 * 1) rsv - for the truncate reservation, which we will steal from the
9012 	 * transaction reservation.
9013 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9014 	 * updating the inode.
9015 	 */
9016 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9017 	if (!rsv)
9018 		return -ENOMEM;
9019 	rsv->size = min_size;
9020 	rsv->failfast = 1;
9021 
9022 	/*
9023 	 * 1 for the truncate slack space
9024 	 * 1 for updating the inode.
9025 	 */
9026 	trans = btrfs_start_transaction(root, 2);
9027 	if (IS_ERR(trans)) {
9028 		ret = PTR_ERR(trans);
9029 		goto out;
9030 	}
9031 
9032 	/* Migrate the slack space for the truncate to our reserve */
9033 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9034 				      min_size, 0);
9035 	BUG_ON(ret);
9036 
9037 	/*
9038 	 * So if we truncate and then write and fsync we normally would just
9039 	 * write the extents that changed, which is a problem if we need to
9040 	 * first truncate that entire inode.  So set this flag so we write out
9041 	 * all of the extents in the inode to the sync log so we're completely
9042 	 * safe.
9043 	 */
9044 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9045 	trans->block_rsv = rsv;
9046 
9047 	while (1) {
9048 		ret = btrfs_truncate_inode_items(trans, root, inode,
9049 						 inode->i_size,
9050 						 BTRFS_EXTENT_DATA_KEY);
9051 		trans->block_rsv = &fs_info->trans_block_rsv;
9052 		if (ret != -ENOSPC && ret != -EAGAIN)
9053 			break;
9054 
9055 		ret = btrfs_update_inode(trans, root, inode);
9056 		if (ret)
9057 			break;
9058 
9059 		btrfs_end_transaction(trans);
9060 		btrfs_btree_balance_dirty(fs_info);
9061 
9062 		trans = btrfs_start_transaction(root, 2);
9063 		if (IS_ERR(trans)) {
9064 			ret = PTR_ERR(trans);
9065 			trans = NULL;
9066 			break;
9067 		}
9068 
9069 		btrfs_block_rsv_release(fs_info, rsv, -1);
9070 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9071 					      rsv, min_size, 0);
9072 		BUG_ON(ret);	/* shouldn't happen */
9073 		trans->block_rsv = rsv;
9074 	}
9075 
9076 	/*
9077 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9078 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9079 	 * we've truncated everything except the last little bit, and can do
9080 	 * btrfs_truncate_block and then update the disk_i_size.
9081 	 */
9082 	if (ret == NEED_TRUNCATE_BLOCK) {
9083 		btrfs_end_transaction(trans);
9084 		btrfs_btree_balance_dirty(fs_info);
9085 
9086 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9087 		if (ret)
9088 			goto out;
9089 		trans = btrfs_start_transaction(root, 1);
9090 		if (IS_ERR(trans)) {
9091 			ret = PTR_ERR(trans);
9092 			goto out;
9093 		}
9094 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9095 	}
9096 
9097 	if (trans) {
9098 		int ret2;
9099 
9100 		trans->block_rsv = &fs_info->trans_block_rsv;
9101 		ret2 = btrfs_update_inode(trans, root, inode);
9102 		if (ret2 && !ret)
9103 			ret = ret2;
9104 
9105 		ret2 = btrfs_end_transaction(trans);
9106 		if (ret2 && !ret)
9107 			ret = ret2;
9108 		btrfs_btree_balance_dirty(fs_info);
9109 	}
9110 out:
9111 	btrfs_free_block_rsv(fs_info, rsv);
9112 
9113 	return ret;
9114 }
9115 
9116 /*
9117  * create a new subvolume directory/inode (helper for the ioctl).
9118  */
9119 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9120 			     struct btrfs_root *new_root,
9121 			     struct btrfs_root *parent_root,
9122 			     u64 new_dirid)
9123 {
9124 	struct inode *inode;
9125 	int err;
9126 	u64 index = 0;
9127 
9128 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9129 				new_dirid, new_dirid,
9130 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9131 				&index);
9132 	if (IS_ERR(inode))
9133 		return PTR_ERR(inode);
9134 	inode->i_op = &btrfs_dir_inode_operations;
9135 	inode->i_fop = &btrfs_dir_file_operations;
9136 
9137 	set_nlink(inode, 1);
9138 	btrfs_i_size_write(BTRFS_I(inode), 0);
9139 	unlock_new_inode(inode);
9140 
9141 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9142 	if (err)
9143 		btrfs_err(new_root->fs_info,
9144 			  "error inheriting subvolume %llu properties: %d",
9145 			  new_root->root_key.objectid, err);
9146 
9147 	err = btrfs_update_inode(trans, new_root, inode);
9148 
9149 	iput(inode);
9150 	return err;
9151 }
9152 
9153 struct inode *btrfs_alloc_inode(struct super_block *sb)
9154 {
9155 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9156 	struct btrfs_inode *ei;
9157 	struct inode *inode;
9158 
9159 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9160 	if (!ei)
9161 		return NULL;
9162 
9163 	ei->root = NULL;
9164 	ei->generation = 0;
9165 	ei->last_trans = 0;
9166 	ei->last_sub_trans = 0;
9167 	ei->logged_trans = 0;
9168 	ei->delalloc_bytes = 0;
9169 	ei->new_delalloc_bytes = 0;
9170 	ei->defrag_bytes = 0;
9171 	ei->disk_i_size = 0;
9172 	ei->flags = 0;
9173 	ei->csum_bytes = 0;
9174 	ei->index_cnt = (u64)-1;
9175 	ei->dir_index = 0;
9176 	ei->last_unlink_trans = 0;
9177 	ei->last_log_commit = 0;
9178 
9179 	spin_lock_init(&ei->lock);
9180 	ei->outstanding_extents = 0;
9181 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9182 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9183 					      BTRFS_BLOCK_RSV_DELALLOC);
9184 	ei->runtime_flags = 0;
9185 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9186 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9187 
9188 	ei->delayed_node = NULL;
9189 
9190 	ei->i_otime.tv_sec = 0;
9191 	ei->i_otime.tv_nsec = 0;
9192 
9193 	inode = &ei->vfs_inode;
9194 	extent_map_tree_init(&ei->extent_tree);
9195 	extent_io_tree_init(&ei->io_tree, inode);
9196 	extent_io_tree_init(&ei->io_failure_tree, inode);
9197 	ei->io_tree.track_uptodate = 1;
9198 	ei->io_failure_tree.track_uptodate = 1;
9199 	atomic_set(&ei->sync_writers, 0);
9200 	mutex_init(&ei->log_mutex);
9201 	mutex_init(&ei->delalloc_mutex);
9202 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9203 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9204 	INIT_LIST_HEAD(&ei->delayed_iput);
9205 	RB_CLEAR_NODE(&ei->rb_node);
9206 	init_rwsem(&ei->dio_sem);
9207 
9208 	return inode;
9209 }
9210 
9211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9212 void btrfs_test_destroy_inode(struct inode *inode)
9213 {
9214 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9215 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9216 }
9217 #endif
9218 
9219 static void btrfs_i_callback(struct rcu_head *head)
9220 {
9221 	struct inode *inode = container_of(head, struct inode, i_rcu);
9222 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9223 }
9224 
9225 void btrfs_destroy_inode(struct inode *inode)
9226 {
9227 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9228 	struct btrfs_ordered_extent *ordered;
9229 	struct btrfs_root *root = BTRFS_I(inode)->root;
9230 
9231 	WARN_ON(!hlist_empty(&inode->i_dentry));
9232 	WARN_ON(inode->i_data.nrpages);
9233 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9234 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9235 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9236 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9237 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9238 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9239 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9240 
9241 	/*
9242 	 * This can happen where we create an inode, but somebody else also
9243 	 * created the same inode and we need to destroy the one we already
9244 	 * created.
9245 	 */
9246 	if (!root)
9247 		goto free;
9248 
9249 	while (1) {
9250 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9251 		if (!ordered)
9252 			break;
9253 		else {
9254 			btrfs_err(fs_info,
9255 				  "found ordered extent %llu %llu on inode cleanup",
9256 				  ordered->file_offset, ordered->len);
9257 			btrfs_remove_ordered_extent(inode, ordered);
9258 			btrfs_put_ordered_extent(ordered);
9259 			btrfs_put_ordered_extent(ordered);
9260 		}
9261 	}
9262 	btrfs_qgroup_check_reserved_leak(inode);
9263 	inode_tree_del(inode);
9264 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9265 free:
9266 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9267 }
9268 
9269 int btrfs_drop_inode(struct inode *inode)
9270 {
9271 	struct btrfs_root *root = BTRFS_I(inode)->root;
9272 
9273 	if (root == NULL)
9274 		return 1;
9275 
9276 	/* the snap/subvol tree is on deleting */
9277 	if (btrfs_root_refs(&root->root_item) == 0)
9278 		return 1;
9279 	else
9280 		return generic_drop_inode(inode);
9281 }
9282 
9283 static void init_once(void *foo)
9284 {
9285 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9286 
9287 	inode_init_once(&ei->vfs_inode);
9288 }
9289 
9290 void __cold btrfs_destroy_cachep(void)
9291 {
9292 	/*
9293 	 * Make sure all delayed rcu free inodes are flushed before we
9294 	 * destroy cache.
9295 	 */
9296 	rcu_barrier();
9297 	kmem_cache_destroy(btrfs_inode_cachep);
9298 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9299 	kmem_cache_destroy(btrfs_path_cachep);
9300 	kmem_cache_destroy(btrfs_free_space_cachep);
9301 }
9302 
9303 int __init btrfs_init_cachep(void)
9304 {
9305 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9306 			sizeof(struct btrfs_inode), 0,
9307 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9308 			init_once);
9309 	if (!btrfs_inode_cachep)
9310 		goto fail;
9311 
9312 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9313 			sizeof(struct btrfs_trans_handle), 0,
9314 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9315 	if (!btrfs_trans_handle_cachep)
9316 		goto fail;
9317 
9318 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9319 			sizeof(struct btrfs_path), 0,
9320 			SLAB_MEM_SPREAD, NULL);
9321 	if (!btrfs_path_cachep)
9322 		goto fail;
9323 
9324 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9325 			sizeof(struct btrfs_free_space), 0,
9326 			SLAB_MEM_SPREAD, NULL);
9327 	if (!btrfs_free_space_cachep)
9328 		goto fail;
9329 
9330 	return 0;
9331 fail:
9332 	btrfs_destroy_cachep();
9333 	return -ENOMEM;
9334 }
9335 
9336 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9337 			 u32 request_mask, unsigned int flags)
9338 {
9339 	u64 delalloc_bytes;
9340 	struct inode *inode = d_inode(path->dentry);
9341 	u32 blocksize = inode->i_sb->s_blocksize;
9342 	u32 bi_flags = BTRFS_I(inode)->flags;
9343 
9344 	stat->result_mask |= STATX_BTIME;
9345 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9346 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9347 	if (bi_flags & BTRFS_INODE_APPEND)
9348 		stat->attributes |= STATX_ATTR_APPEND;
9349 	if (bi_flags & BTRFS_INODE_COMPRESS)
9350 		stat->attributes |= STATX_ATTR_COMPRESSED;
9351 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9352 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9353 	if (bi_flags & BTRFS_INODE_NODUMP)
9354 		stat->attributes |= STATX_ATTR_NODUMP;
9355 
9356 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9357 				  STATX_ATTR_COMPRESSED |
9358 				  STATX_ATTR_IMMUTABLE |
9359 				  STATX_ATTR_NODUMP);
9360 
9361 	generic_fillattr(inode, stat);
9362 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9363 
9364 	spin_lock(&BTRFS_I(inode)->lock);
9365 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9366 	spin_unlock(&BTRFS_I(inode)->lock);
9367 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9368 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9369 	return 0;
9370 }
9371 
9372 static int btrfs_rename_exchange(struct inode *old_dir,
9373 			      struct dentry *old_dentry,
9374 			      struct inode *new_dir,
9375 			      struct dentry *new_dentry)
9376 {
9377 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9378 	struct btrfs_trans_handle *trans;
9379 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9380 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9381 	struct inode *new_inode = new_dentry->d_inode;
9382 	struct inode *old_inode = old_dentry->d_inode;
9383 	struct timespec64 ctime = current_time(old_inode);
9384 	struct dentry *parent;
9385 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9386 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9387 	u64 old_idx = 0;
9388 	u64 new_idx = 0;
9389 	u64 root_objectid;
9390 	int ret;
9391 	int ret2;
9392 	bool root_log_pinned = false;
9393 	bool dest_log_pinned = false;
9394 
9395 	/* we only allow rename subvolume link between subvolumes */
9396 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9397 		return -EXDEV;
9398 
9399 	/* close the race window with snapshot create/destroy ioctl */
9400 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9401 		down_read(&fs_info->subvol_sem);
9402 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9403 		down_read(&fs_info->subvol_sem);
9404 
9405 	/*
9406 	 * We want to reserve the absolute worst case amount of items.  So if
9407 	 * both inodes are subvols and we need to unlink them then that would
9408 	 * require 4 item modifications, but if they are both normal inodes it
9409 	 * would require 5 item modifications, so we'll assume their normal
9410 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9411 	 * should cover the worst case number of items we'll modify.
9412 	 */
9413 	trans = btrfs_start_transaction(root, 12);
9414 	if (IS_ERR(trans)) {
9415 		ret = PTR_ERR(trans);
9416 		goto out_notrans;
9417 	}
9418 
9419 	/*
9420 	 * We need to find a free sequence number both in the source and
9421 	 * in the destination directory for the exchange.
9422 	 */
9423 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9424 	if (ret)
9425 		goto out_fail;
9426 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9427 	if (ret)
9428 		goto out_fail;
9429 
9430 	BTRFS_I(old_inode)->dir_index = 0ULL;
9431 	BTRFS_I(new_inode)->dir_index = 0ULL;
9432 
9433 	/* Reference for the source. */
9434 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9435 		/* force full log commit if subvolume involved. */
9436 		btrfs_set_log_full_commit(fs_info, trans);
9437 	} else {
9438 		btrfs_pin_log_trans(root);
9439 		root_log_pinned = true;
9440 		ret = btrfs_insert_inode_ref(trans, dest,
9441 					     new_dentry->d_name.name,
9442 					     new_dentry->d_name.len,
9443 					     old_ino,
9444 					     btrfs_ino(BTRFS_I(new_dir)),
9445 					     old_idx);
9446 		if (ret)
9447 			goto out_fail;
9448 	}
9449 
9450 	/* And now for the dest. */
9451 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9452 		/* force full log commit if subvolume involved. */
9453 		btrfs_set_log_full_commit(fs_info, trans);
9454 	} else {
9455 		btrfs_pin_log_trans(dest);
9456 		dest_log_pinned = true;
9457 		ret = btrfs_insert_inode_ref(trans, root,
9458 					     old_dentry->d_name.name,
9459 					     old_dentry->d_name.len,
9460 					     new_ino,
9461 					     btrfs_ino(BTRFS_I(old_dir)),
9462 					     new_idx);
9463 		if (ret)
9464 			goto out_fail;
9465 	}
9466 
9467 	/* Update inode version and ctime/mtime. */
9468 	inode_inc_iversion(old_dir);
9469 	inode_inc_iversion(new_dir);
9470 	inode_inc_iversion(old_inode);
9471 	inode_inc_iversion(new_inode);
9472 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9473 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9474 	old_inode->i_ctime = ctime;
9475 	new_inode->i_ctime = ctime;
9476 
9477 	if (old_dentry->d_parent != new_dentry->d_parent) {
9478 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9479 				BTRFS_I(old_inode), 1);
9480 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9481 				BTRFS_I(new_inode), 1);
9482 	}
9483 
9484 	/* src is a subvolume */
9485 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9486 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9487 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9488 					  old_dentry->d_name.name,
9489 					  old_dentry->d_name.len);
9490 	} else { /* src is an inode */
9491 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9492 					   BTRFS_I(old_dentry->d_inode),
9493 					   old_dentry->d_name.name,
9494 					   old_dentry->d_name.len);
9495 		if (!ret)
9496 			ret = btrfs_update_inode(trans, root, old_inode);
9497 	}
9498 	if (ret) {
9499 		btrfs_abort_transaction(trans, ret);
9500 		goto out_fail;
9501 	}
9502 
9503 	/* dest is a subvolume */
9504 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9505 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9506 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9507 					  new_dentry->d_name.name,
9508 					  new_dentry->d_name.len);
9509 	} else { /* dest is an inode */
9510 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9511 					   BTRFS_I(new_dentry->d_inode),
9512 					   new_dentry->d_name.name,
9513 					   new_dentry->d_name.len);
9514 		if (!ret)
9515 			ret = btrfs_update_inode(trans, dest, new_inode);
9516 	}
9517 	if (ret) {
9518 		btrfs_abort_transaction(trans, ret);
9519 		goto out_fail;
9520 	}
9521 
9522 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9523 			     new_dentry->d_name.name,
9524 			     new_dentry->d_name.len, 0, old_idx);
9525 	if (ret) {
9526 		btrfs_abort_transaction(trans, ret);
9527 		goto out_fail;
9528 	}
9529 
9530 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9531 			     old_dentry->d_name.name,
9532 			     old_dentry->d_name.len, 0, new_idx);
9533 	if (ret) {
9534 		btrfs_abort_transaction(trans, ret);
9535 		goto out_fail;
9536 	}
9537 
9538 	if (old_inode->i_nlink == 1)
9539 		BTRFS_I(old_inode)->dir_index = old_idx;
9540 	if (new_inode->i_nlink == 1)
9541 		BTRFS_I(new_inode)->dir_index = new_idx;
9542 
9543 	if (root_log_pinned) {
9544 		parent = new_dentry->d_parent;
9545 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9546 				parent);
9547 		btrfs_end_log_trans(root);
9548 		root_log_pinned = false;
9549 	}
9550 	if (dest_log_pinned) {
9551 		parent = old_dentry->d_parent;
9552 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9553 				parent);
9554 		btrfs_end_log_trans(dest);
9555 		dest_log_pinned = false;
9556 	}
9557 out_fail:
9558 	/*
9559 	 * If we have pinned a log and an error happened, we unpin tasks
9560 	 * trying to sync the log and force them to fallback to a transaction
9561 	 * commit if the log currently contains any of the inodes involved in
9562 	 * this rename operation (to ensure we do not persist a log with an
9563 	 * inconsistent state for any of these inodes or leading to any
9564 	 * inconsistencies when replayed). If the transaction was aborted, the
9565 	 * abortion reason is propagated to userspace when attempting to commit
9566 	 * the transaction. If the log does not contain any of these inodes, we
9567 	 * allow the tasks to sync it.
9568 	 */
9569 	if (ret && (root_log_pinned || dest_log_pinned)) {
9570 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9571 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9572 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9573 		    (new_inode &&
9574 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9575 			btrfs_set_log_full_commit(fs_info, trans);
9576 
9577 		if (root_log_pinned) {
9578 			btrfs_end_log_trans(root);
9579 			root_log_pinned = false;
9580 		}
9581 		if (dest_log_pinned) {
9582 			btrfs_end_log_trans(dest);
9583 			dest_log_pinned = false;
9584 		}
9585 	}
9586 	ret2 = btrfs_end_transaction(trans);
9587 	ret = ret ? ret : ret2;
9588 out_notrans:
9589 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9590 		up_read(&fs_info->subvol_sem);
9591 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9592 		up_read(&fs_info->subvol_sem);
9593 
9594 	return ret;
9595 }
9596 
9597 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9598 				     struct btrfs_root *root,
9599 				     struct inode *dir,
9600 				     struct dentry *dentry)
9601 {
9602 	int ret;
9603 	struct inode *inode;
9604 	u64 objectid;
9605 	u64 index;
9606 
9607 	ret = btrfs_find_free_ino(root, &objectid);
9608 	if (ret)
9609 		return ret;
9610 
9611 	inode = btrfs_new_inode(trans, root, dir,
9612 				dentry->d_name.name,
9613 				dentry->d_name.len,
9614 				btrfs_ino(BTRFS_I(dir)),
9615 				objectid,
9616 				S_IFCHR | WHITEOUT_MODE,
9617 				&index);
9618 
9619 	if (IS_ERR(inode)) {
9620 		ret = PTR_ERR(inode);
9621 		return ret;
9622 	}
9623 
9624 	inode->i_op = &btrfs_special_inode_operations;
9625 	init_special_inode(inode, inode->i_mode,
9626 		WHITEOUT_DEV);
9627 
9628 	ret = btrfs_init_inode_security(trans, inode, dir,
9629 				&dentry->d_name);
9630 	if (ret)
9631 		goto out;
9632 
9633 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9634 				BTRFS_I(inode), 0, index);
9635 	if (ret)
9636 		goto out;
9637 
9638 	ret = btrfs_update_inode(trans, root, inode);
9639 out:
9640 	unlock_new_inode(inode);
9641 	if (ret)
9642 		inode_dec_link_count(inode);
9643 	iput(inode);
9644 
9645 	return ret;
9646 }
9647 
9648 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9649 			   struct inode *new_dir, struct dentry *new_dentry,
9650 			   unsigned int flags)
9651 {
9652 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9653 	struct btrfs_trans_handle *trans;
9654 	unsigned int trans_num_items;
9655 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9656 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9657 	struct inode *new_inode = d_inode(new_dentry);
9658 	struct inode *old_inode = d_inode(old_dentry);
9659 	u64 index = 0;
9660 	u64 root_objectid;
9661 	int ret;
9662 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9663 	bool log_pinned = false;
9664 
9665 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9666 		return -EPERM;
9667 
9668 	/* we only allow rename subvolume link between subvolumes */
9669 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9670 		return -EXDEV;
9671 
9672 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9673 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9674 		return -ENOTEMPTY;
9675 
9676 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9677 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9678 		return -ENOTEMPTY;
9679 
9680 
9681 	/* check for collisions, even if the  name isn't there */
9682 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9683 			     new_dentry->d_name.name,
9684 			     new_dentry->d_name.len);
9685 
9686 	if (ret) {
9687 		if (ret == -EEXIST) {
9688 			/* we shouldn't get
9689 			 * eexist without a new_inode */
9690 			if (WARN_ON(!new_inode)) {
9691 				return ret;
9692 			}
9693 		} else {
9694 			/* maybe -EOVERFLOW */
9695 			return ret;
9696 		}
9697 	}
9698 	ret = 0;
9699 
9700 	/*
9701 	 * we're using rename to replace one file with another.  Start IO on it
9702 	 * now so  we don't add too much work to the end of the transaction
9703 	 */
9704 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9705 		filemap_flush(old_inode->i_mapping);
9706 
9707 	/* close the racy window with snapshot create/destroy ioctl */
9708 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9709 		down_read(&fs_info->subvol_sem);
9710 	/*
9711 	 * We want to reserve the absolute worst case amount of items.  So if
9712 	 * both inodes are subvols and we need to unlink them then that would
9713 	 * require 4 item modifications, but if they are both normal inodes it
9714 	 * would require 5 item modifications, so we'll assume they are normal
9715 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9716 	 * should cover the worst case number of items we'll modify.
9717 	 * If our rename has the whiteout flag, we need more 5 units for the
9718 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9719 	 * when selinux is enabled).
9720 	 */
9721 	trans_num_items = 11;
9722 	if (flags & RENAME_WHITEOUT)
9723 		trans_num_items += 5;
9724 	trans = btrfs_start_transaction(root, trans_num_items);
9725 	if (IS_ERR(trans)) {
9726 		ret = PTR_ERR(trans);
9727 		goto out_notrans;
9728 	}
9729 
9730 	if (dest != root)
9731 		btrfs_record_root_in_trans(trans, dest);
9732 
9733 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9734 	if (ret)
9735 		goto out_fail;
9736 
9737 	BTRFS_I(old_inode)->dir_index = 0ULL;
9738 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9739 		/* force full log commit if subvolume involved. */
9740 		btrfs_set_log_full_commit(fs_info, trans);
9741 	} else {
9742 		btrfs_pin_log_trans(root);
9743 		log_pinned = true;
9744 		ret = btrfs_insert_inode_ref(trans, dest,
9745 					     new_dentry->d_name.name,
9746 					     new_dentry->d_name.len,
9747 					     old_ino,
9748 					     btrfs_ino(BTRFS_I(new_dir)), index);
9749 		if (ret)
9750 			goto out_fail;
9751 	}
9752 
9753 	inode_inc_iversion(old_dir);
9754 	inode_inc_iversion(new_dir);
9755 	inode_inc_iversion(old_inode);
9756 	old_dir->i_ctime = old_dir->i_mtime =
9757 	new_dir->i_ctime = new_dir->i_mtime =
9758 	old_inode->i_ctime = current_time(old_dir);
9759 
9760 	if (old_dentry->d_parent != new_dentry->d_parent)
9761 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9762 				BTRFS_I(old_inode), 1);
9763 
9764 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9765 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9766 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9767 					old_dentry->d_name.name,
9768 					old_dentry->d_name.len);
9769 	} else {
9770 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9771 					BTRFS_I(d_inode(old_dentry)),
9772 					old_dentry->d_name.name,
9773 					old_dentry->d_name.len);
9774 		if (!ret)
9775 			ret = btrfs_update_inode(trans, root, old_inode);
9776 	}
9777 	if (ret) {
9778 		btrfs_abort_transaction(trans, ret);
9779 		goto out_fail;
9780 	}
9781 
9782 	if (new_inode) {
9783 		inode_inc_iversion(new_inode);
9784 		new_inode->i_ctime = current_time(new_inode);
9785 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9786 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9787 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9788 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9789 						new_dentry->d_name.name,
9790 						new_dentry->d_name.len);
9791 			BUG_ON(new_inode->i_nlink == 0);
9792 		} else {
9793 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9794 						 BTRFS_I(d_inode(new_dentry)),
9795 						 new_dentry->d_name.name,
9796 						 new_dentry->d_name.len);
9797 		}
9798 		if (!ret && new_inode->i_nlink == 0)
9799 			ret = btrfs_orphan_add(trans,
9800 					BTRFS_I(d_inode(new_dentry)));
9801 		if (ret) {
9802 			btrfs_abort_transaction(trans, ret);
9803 			goto out_fail;
9804 		}
9805 	}
9806 
9807 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9808 			     new_dentry->d_name.name,
9809 			     new_dentry->d_name.len, 0, index);
9810 	if (ret) {
9811 		btrfs_abort_transaction(trans, ret);
9812 		goto out_fail;
9813 	}
9814 
9815 	if (old_inode->i_nlink == 1)
9816 		BTRFS_I(old_inode)->dir_index = index;
9817 
9818 	if (log_pinned) {
9819 		struct dentry *parent = new_dentry->d_parent;
9820 
9821 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9822 				parent);
9823 		btrfs_end_log_trans(root);
9824 		log_pinned = false;
9825 	}
9826 
9827 	if (flags & RENAME_WHITEOUT) {
9828 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9829 						old_dentry);
9830 
9831 		if (ret) {
9832 			btrfs_abort_transaction(trans, ret);
9833 			goto out_fail;
9834 		}
9835 	}
9836 out_fail:
9837 	/*
9838 	 * If we have pinned the log and an error happened, we unpin tasks
9839 	 * trying to sync the log and force them to fallback to a transaction
9840 	 * commit if the log currently contains any of the inodes involved in
9841 	 * this rename operation (to ensure we do not persist a log with an
9842 	 * inconsistent state for any of these inodes or leading to any
9843 	 * inconsistencies when replayed). If the transaction was aborted, the
9844 	 * abortion reason is propagated to userspace when attempting to commit
9845 	 * the transaction. If the log does not contain any of these inodes, we
9846 	 * allow the tasks to sync it.
9847 	 */
9848 	if (ret && log_pinned) {
9849 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9850 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9851 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9852 		    (new_inode &&
9853 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9854 			btrfs_set_log_full_commit(fs_info, trans);
9855 
9856 		btrfs_end_log_trans(root);
9857 		log_pinned = false;
9858 	}
9859 	btrfs_end_transaction(trans);
9860 out_notrans:
9861 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9862 		up_read(&fs_info->subvol_sem);
9863 
9864 	return ret;
9865 }
9866 
9867 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9868 			 struct inode *new_dir, struct dentry *new_dentry,
9869 			 unsigned int flags)
9870 {
9871 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9872 		return -EINVAL;
9873 
9874 	if (flags & RENAME_EXCHANGE)
9875 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9876 					  new_dentry);
9877 
9878 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9879 }
9880 
9881 struct btrfs_delalloc_work {
9882 	struct inode *inode;
9883 	struct completion completion;
9884 	struct list_head list;
9885 	struct btrfs_work work;
9886 };
9887 
9888 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9889 {
9890 	struct btrfs_delalloc_work *delalloc_work;
9891 	struct inode *inode;
9892 
9893 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9894 				     work);
9895 	inode = delalloc_work->inode;
9896 	filemap_flush(inode->i_mapping);
9897 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9898 				&BTRFS_I(inode)->runtime_flags))
9899 		filemap_flush(inode->i_mapping);
9900 
9901 	iput(inode);
9902 	complete(&delalloc_work->completion);
9903 }
9904 
9905 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9906 {
9907 	struct btrfs_delalloc_work *work;
9908 
9909 	work = kmalloc(sizeof(*work), GFP_NOFS);
9910 	if (!work)
9911 		return NULL;
9912 
9913 	init_completion(&work->completion);
9914 	INIT_LIST_HEAD(&work->list);
9915 	work->inode = inode;
9916 	WARN_ON_ONCE(!inode);
9917 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9918 			btrfs_run_delalloc_work, NULL, NULL);
9919 
9920 	return work;
9921 }
9922 
9923 /*
9924  * some fairly slow code that needs optimization. This walks the list
9925  * of all the inodes with pending delalloc and forces them to disk.
9926  */
9927 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9928 {
9929 	struct btrfs_inode *binode;
9930 	struct inode *inode;
9931 	struct btrfs_delalloc_work *work, *next;
9932 	struct list_head works;
9933 	struct list_head splice;
9934 	int ret = 0;
9935 
9936 	INIT_LIST_HEAD(&works);
9937 	INIT_LIST_HEAD(&splice);
9938 
9939 	mutex_lock(&root->delalloc_mutex);
9940 	spin_lock(&root->delalloc_lock);
9941 	list_splice_init(&root->delalloc_inodes, &splice);
9942 	while (!list_empty(&splice)) {
9943 		binode = list_entry(splice.next, struct btrfs_inode,
9944 				    delalloc_inodes);
9945 
9946 		list_move_tail(&binode->delalloc_inodes,
9947 			       &root->delalloc_inodes);
9948 		inode = igrab(&binode->vfs_inode);
9949 		if (!inode) {
9950 			cond_resched_lock(&root->delalloc_lock);
9951 			continue;
9952 		}
9953 		spin_unlock(&root->delalloc_lock);
9954 
9955 		work = btrfs_alloc_delalloc_work(inode);
9956 		if (!work) {
9957 			iput(inode);
9958 			ret = -ENOMEM;
9959 			goto out;
9960 		}
9961 		list_add_tail(&work->list, &works);
9962 		btrfs_queue_work(root->fs_info->flush_workers,
9963 				 &work->work);
9964 		ret++;
9965 		if (nr != -1 && ret >= nr)
9966 			goto out;
9967 		cond_resched();
9968 		spin_lock(&root->delalloc_lock);
9969 	}
9970 	spin_unlock(&root->delalloc_lock);
9971 
9972 out:
9973 	list_for_each_entry_safe(work, next, &works, list) {
9974 		list_del_init(&work->list);
9975 		wait_for_completion(&work->completion);
9976 		kfree(work);
9977 	}
9978 
9979 	if (!list_empty(&splice)) {
9980 		spin_lock(&root->delalloc_lock);
9981 		list_splice_tail(&splice, &root->delalloc_inodes);
9982 		spin_unlock(&root->delalloc_lock);
9983 	}
9984 	mutex_unlock(&root->delalloc_mutex);
9985 	return ret;
9986 }
9987 
9988 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
9989 {
9990 	struct btrfs_fs_info *fs_info = root->fs_info;
9991 	int ret;
9992 
9993 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9994 		return -EROFS;
9995 
9996 	ret = start_delalloc_inodes(root, -1);
9997 	if (ret > 0)
9998 		ret = 0;
9999 	return ret;
10000 }
10001 
10002 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10003 {
10004 	struct btrfs_root *root;
10005 	struct list_head splice;
10006 	int ret;
10007 
10008 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10009 		return -EROFS;
10010 
10011 	INIT_LIST_HEAD(&splice);
10012 
10013 	mutex_lock(&fs_info->delalloc_root_mutex);
10014 	spin_lock(&fs_info->delalloc_root_lock);
10015 	list_splice_init(&fs_info->delalloc_roots, &splice);
10016 	while (!list_empty(&splice) && nr) {
10017 		root = list_first_entry(&splice, struct btrfs_root,
10018 					delalloc_root);
10019 		root = btrfs_grab_fs_root(root);
10020 		BUG_ON(!root);
10021 		list_move_tail(&root->delalloc_root,
10022 			       &fs_info->delalloc_roots);
10023 		spin_unlock(&fs_info->delalloc_root_lock);
10024 
10025 		ret = start_delalloc_inodes(root, nr);
10026 		btrfs_put_fs_root(root);
10027 		if (ret < 0)
10028 			goto out;
10029 
10030 		if (nr != -1) {
10031 			nr -= ret;
10032 			WARN_ON(nr < 0);
10033 		}
10034 		spin_lock(&fs_info->delalloc_root_lock);
10035 	}
10036 	spin_unlock(&fs_info->delalloc_root_lock);
10037 
10038 	ret = 0;
10039 out:
10040 	if (!list_empty(&splice)) {
10041 		spin_lock(&fs_info->delalloc_root_lock);
10042 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10043 		spin_unlock(&fs_info->delalloc_root_lock);
10044 	}
10045 	mutex_unlock(&fs_info->delalloc_root_mutex);
10046 	return ret;
10047 }
10048 
10049 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10050 			 const char *symname)
10051 {
10052 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10053 	struct btrfs_trans_handle *trans;
10054 	struct btrfs_root *root = BTRFS_I(dir)->root;
10055 	struct btrfs_path *path;
10056 	struct btrfs_key key;
10057 	struct inode *inode = NULL;
10058 	int err;
10059 	u64 objectid;
10060 	u64 index = 0;
10061 	int name_len;
10062 	int datasize;
10063 	unsigned long ptr;
10064 	struct btrfs_file_extent_item *ei;
10065 	struct extent_buffer *leaf;
10066 
10067 	name_len = strlen(symname);
10068 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10069 		return -ENAMETOOLONG;
10070 
10071 	/*
10072 	 * 2 items for inode item and ref
10073 	 * 2 items for dir items
10074 	 * 1 item for updating parent inode item
10075 	 * 1 item for the inline extent item
10076 	 * 1 item for xattr if selinux is on
10077 	 */
10078 	trans = btrfs_start_transaction(root, 7);
10079 	if (IS_ERR(trans))
10080 		return PTR_ERR(trans);
10081 
10082 	err = btrfs_find_free_ino(root, &objectid);
10083 	if (err)
10084 		goto out_unlock;
10085 
10086 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10087 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10088 				objectid, S_IFLNK|S_IRWXUGO, &index);
10089 	if (IS_ERR(inode)) {
10090 		err = PTR_ERR(inode);
10091 		inode = NULL;
10092 		goto out_unlock;
10093 	}
10094 
10095 	/*
10096 	* If the active LSM wants to access the inode during
10097 	* d_instantiate it needs these. Smack checks to see
10098 	* if the filesystem supports xattrs by looking at the
10099 	* ops vector.
10100 	*/
10101 	inode->i_fop = &btrfs_file_operations;
10102 	inode->i_op = &btrfs_file_inode_operations;
10103 	inode->i_mapping->a_ops = &btrfs_aops;
10104 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10105 
10106 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10107 	if (err)
10108 		goto out_unlock;
10109 
10110 	path = btrfs_alloc_path();
10111 	if (!path) {
10112 		err = -ENOMEM;
10113 		goto out_unlock;
10114 	}
10115 	key.objectid = btrfs_ino(BTRFS_I(inode));
10116 	key.offset = 0;
10117 	key.type = BTRFS_EXTENT_DATA_KEY;
10118 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10119 	err = btrfs_insert_empty_item(trans, root, path, &key,
10120 				      datasize);
10121 	if (err) {
10122 		btrfs_free_path(path);
10123 		goto out_unlock;
10124 	}
10125 	leaf = path->nodes[0];
10126 	ei = btrfs_item_ptr(leaf, path->slots[0],
10127 			    struct btrfs_file_extent_item);
10128 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10129 	btrfs_set_file_extent_type(leaf, ei,
10130 				   BTRFS_FILE_EXTENT_INLINE);
10131 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10132 	btrfs_set_file_extent_compression(leaf, ei, 0);
10133 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10134 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10135 
10136 	ptr = btrfs_file_extent_inline_start(ei);
10137 	write_extent_buffer(leaf, symname, ptr, name_len);
10138 	btrfs_mark_buffer_dirty(leaf);
10139 	btrfs_free_path(path);
10140 
10141 	inode->i_op = &btrfs_symlink_inode_operations;
10142 	inode_nohighmem(inode);
10143 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10144 	inode_set_bytes(inode, name_len);
10145 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10146 	err = btrfs_update_inode(trans, root, inode);
10147 	/*
10148 	 * Last step, add directory indexes for our symlink inode. This is the
10149 	 * last step to avoid extra cleanup of these indexes if an error happens
10150 	 * elsewhere above.
10151 	 */
10152 	if (!err)
10153 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10154 				BTRFS_I(inode), 0, index);
10155 	if (err)
10156 		goto out_unlock;
10157 
10158 	d_instantiate_new(dentry, inode);
10159 
10160 out_unlock:
10161 	btrfs_end_transaction(trans);
10162 	if (err && inode) {
10163 		inode_dec_link_count(inode);
10164 		discard_new_inode(inode);
10165 	}
10166 	btrfs_btree_balance_dirty(fs_info);
10167 	return err;
10168 }
10169 
10170 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10171 				       u64 start, u64 num_bytes, u64 min_size,
10172 				       loff_t actual_len, u64 *alloc_hint,
10173 				       struct btrfs_trans_handle *trans)
10174 {
10175 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10176 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10177 	struct extent_map *em;
10178 	struct btrfs_root *root = BTRFS_I(inode)->root;
10179 	struct btrfs_key ins;
10180 	u64 cur_offset = start;
10181 	u64 i_size;
10182 	u64 cur_bytes;
10183 	u64 last_alloc = (u64)-1;
10184 	int ret = 0;
10185 	bool own_trans = true;
10186 	u64 end = start + num_bytes - 1;
10187 
10188 	if (trans)
10189 		own_trans = false;
10190 	while (num_bytes > 0) {
10191 		if (own_trans) {
10192 			trans = btrfs_start_transaction(root, 3);
10193 			if (IS_ERR(trans)) {
10194 				ret = PTR_ERR(trans);
10195 				break;
10196 			}
10197 		}
10198 
10199 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10200 		cur_bytes = max(cur_bytes, min_size);
10201 		/*
10202 		 * If we are severely fragmented we could end up with really
10203 		 * small allocations, so if the allocator is returning small
10204 		 * chunks lets make its job easier by only searching for those
10205 		 * sized chunks.
10206 		 */
10207 		cur_bytes = min(cur_bytes, last_alloc);
10208 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10209 				min_size, 0, *alloc_hint, &ins, 1, 0);
10210 		if (ret) {
10211 			if (own_trans)
10212 				btrfs_end_transaction(trans);
10213 			break;
10214 		}
10215 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10216 
10217 		last_alloc = ins.offset;
10218 		ret = insert_reserved_file_extent(trans, inode,
10219 						  cur_offset, ins.objectid,
10220 						  ins.offset, ins.offset,
10221 						  ins.offset, 0, 0, 0,
10222 						  BTRFS_FILE_EXTENT_PREALLOC);
10223 		if (ret) {
10224 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10225 						   ins.offset, 0);
10226 			btrfs_abort_transaction(trans, ret);
10227 			if (own_trans)
10228 				btrfs_end_transaction(trans);
10229 			break;
10230 		}
10231 
10232 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10233 					cur_offset + ins.offset -1, 0);
10234 
10235 		em = alloc_extent_map();
10236 		if (!em) {
10237 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10238 				&BTRFS_I(inode)->runtime_flags);
10239 			goto next;
10240 		}
10241 
10242 		em->start = cur_offset;
10243 		em->orig_start = cur_offset;
10244 		em->len = ins.offset;
10245 		em->block_start = ins.objectid;
10246 		em->block_len = ins.offset;
10247 		em->orig_block_len = ins.offset;
10248 		em->ram_bytes = ins.offset;
10249 		em->bdev = fs_info->fs_devices->latest_bdev;
10250 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10251 		em->generation = trans->transid;
10252 
10253 		while (1) {
10254 			write_lock(&em_tree->lock);
10255 			ret = add_extent_mapping(em_tree, em, 1);
10256 			write_unlock(&em_tree->lock);
10257 			if (ret != -EEXIST)
10258 				break;
10259 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10260 						cur_offset + ins.offset - 1,
10261 						0);
10262 		}
10263 		free_extent_map(em);
10264 next:
10265 		num_bytes -= ins.offset;
10266 		cur_offset += ins.offset;
10267 		*alloc_hint = ins.objectid + ins.offset;
10268 
10269 		inode_inc_iversion(inode);
10270 		inode->i_ctime = current_time(inode);
10271 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10272 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10273 		    (actual_len > inode->i_size) &&
10274 		    (cur_offset > inode->i_size)) {
10275 			if (cur_offset > actual_len)
10276 				i_size = actual_len;
10277 			else
10278 				i_size = cur_offset;
10279 			i_size_write(inode, i_size);
10280 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10281 		}
10282 
10283 		ret = btrfs_update_inode(trans, root, inode);
10284 
10285 		if (ret) {
10286 			btrfs_abort_transaction(trans, ret);
10287 			if (own_trans)
10288 				btrfs_end_transaction(trans);
10289 			break;
10290 		}
10291 
10292 		if (own_trans)
10293 			btrfs_end_transaction(trans);
10294 	}
10295 	if (cur_offset < end)
10296 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10297 			end - cur_offset + 1);
10298 	return ret;
10299 }
10300 
10301 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10302 			      u64 start, u64 num_bytes, u64 min_size,
10303 			      loff_t actual_len, u64 *alloc_hint)
10304 {
10305 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10306 					   min_size, actual_len, alloc_hint,
10307 					   NULL);
10308 }
10309 
10310 int btrfs_prealloc_file_range_trans(struct inode *inode,
10311 				    struct btrfs_trans_handle *trans, int mode,
10312 				    u64 start, u64 num_bytes, u64 min_size,
10313 				    loff_t actual_len, u64 *alloc_hint)
10314 {
10315 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10316 					   min_size, actual_len, alloc_hint, trans);
10317 }
10318 
10319 static int btrfs_set_page_dirty(struct page *page)
10320 {
10321 	return __set_page_dirty_nobuffers(page);
10322 }
10323 
10324 static int btrfs_permission(struct inode *inode, int mask)
10325 {
10326 	struct btrfs_root *root = BTRFS_I(inode)->root;
10327 	umode_t mode = inode->i_mode;
10328 
10329 	if (mask & MAY_WRITE &&
10330 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10331 		if (btrfs_root_readonly(root))
10332 			return -EROFS;
10333 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10334 			return -EACCES;
10335 	}
10336 	return generic_permission(inode, mask);
10337 }
10338 
10339 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10340 {
10341 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10342 	struct btrfs_trans_handle *trans;
10343 	struct btrfs_root *root = BTRFS_I(dir)->root;
10344 	struct inode *inode = NULL;
10345 	u64 objectid;
10346 	u64 index;
10347 	int ret = 0;
10348 
10349 	/*
10350 	 * 5 units required for adding orphan entry
10351 	 */
10352 	trans = btrfs_start_transaction(root, 5);
10353 	if (IS_ERR(trans))
10354 		return PTR_ERR(trans);
10355 
10356 	ret = btrfs_find_free_ino(root, &objectid);
10357 	if (ret)
10358 		goto out;
10359 
10360 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10361 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10362 	if (IS_ERR(inode)) {
10363 		ret = PTR_ERR(inode);
10364 		inode = NULL;
10365 		goto out;
10366 	}
10367 
10368 	inode->i_fop = &btrfs_file_operations;
10369 	inode->i_op = &btrfs_file_inode_operations;
10370 
10371 	inode->i_mapping->a_ops = &btrfs_aops;
10372 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10373 
10374 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10375 	if (ret)
10376 		goto out;
10377 
10378 	ret = btrfs_update_inode(trans, root, inode);
10379 	if (ret)
10380 		goto out;
10381 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10382 	if (ret)
10383 		goto out;
10384 
10385 	/*
10386 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10387 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10388 	 * through:
10389 	 *
10390 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10391 	 */
10392 	set_nlink(inode, 1);
10393 	d_tmpfile(dentry, inode);
10394 	unlock_new_inode(inode);
10395 	mark_inode_dirty(inode);
10396 out:
10397 	btrfs_end_transaction(trans);
10398 	if (ret && inode)
10399 		discard_new_inode(inode);
10400 	btrfs_btree_balance_dirty(fs_info);
10401 	return ret;
10402 }
10403 
10404 __attribute__((const))
10405 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10406 {
10407 	return -EAGAIN;
10408 }
10409 
10410 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10411 					u64 start, u64 end)
10412 {
10413 	struct inode *inode = private_data;
10414 	u64 isize;
10415 
10416 	isize = i_size_read(inode);
10417 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10418 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10419 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10420 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10421 	}
10422 }
10423 
10424 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10425 {
10426 	struct inode *inode = tree->private_data;
10427 	unsigned long index = start >> PAGE_SHIFT;
10428 	unsigned long end_index = end >> PAGE_SHIFT;
10429 	struct page *page;
10430 
10431 	while (index <= end_index) {
10432 		page = find_get_page(inode->i_mapping, index);
10433 		ASSERT(page); /* Pages should be in the extent_io_tree */
10434 		set_page_writeback(page);
10435 		put_page(page);
10436 		index++;
10437 	}
10438 }
10439 
10440 static const struct inode_operations btrfs_dir_inode_operations = {
10441 	.getattr	= btrfs_getattr,
10442 	.lookup		= btrfs_lookup,
10443 	.create		= btrfs_create,
10444 	.unlink		= btrfs_unlink,
10445 	.link		= btrfs_link,
10446 	.mkdir		= btrfs_mkdir,
10447 	.rmdir		= btrfs_rmdir,
10448 	.rename		= btrfs_rename2,
10449 	.symlink	= btrfs_symlink,
10450 	.setattr	= btrfs_setattr,
10451 	.mknod		= btrfs_mknod,
10452 	.listxattr	= btrfs_listxattr,
10453 	.permission	= btrfs_permission,
10454 	.get_acl	= btrfs_get_acl,
10455 	.set_acl	= btrfs_set_acl,
10456 	.update_time	= btrfs_update_time,
10457 	.tmpfile        = btrfs_tmpfile,
10458 };
10459 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10460 	.lookup		= btrfs_lookup,
10461 	.permission	= btrfs_permission,
10462 	.update_time	= btrfs_update_time,
10463 };
10464 
10465 static const struct file_operations btrfs_dir_file_operations = {
10466 	.llseek		= generic_file_llseek,
10467 	.read		= generic_read_dir,
10468 	.iterate_shared	= btrfs_real_readdir,
10469 	.open		= btrfs_opendir,
10470 	.unlocked_ioctl	= btrfs_ioctl,
10471 #ifdef CONFIG_COMPAT
10472 	.compat_ioctl	= btrfs_compat_ioctl,
10473 #endif
10474 	.release        = btrfs_release_file,
10475 	.fsync		= btrfs_sync_file,
10476 };
10477 
10478 static const struct extent_io_ops btrfs_extent_io_ops = {
10479 	/* mandatory callbacks */
10480 	.submit_bio_hook = btrfs_submit_bio_hook,
10481 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10482 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10483 
10484 	/* optional callbacks */
10485 	.fill_delalloc = run_delalloc_range,
10486 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10487 	.writepage_start_hook = btrfs_writepage_start_hook,
10488 	.set_bit_hook = btrfs_set_bit_hook,
10489 	.clear_bit_hook = btrfs_clear_bit_hook,
10490 	.merge_extent_hook = btrfs_merge_extent_hook,
10491 	.split_extent_hook = btrfs_split_extent_hook,
10492 	.check_extent_io_range = btrfs_check_extent_io_range,
10493 };
10494 
10495 /*
10496  * btrfs doesn't support the bmap operation because swapfiles
10497  * use bmap to make a mapping of extents in the file.  They assume
10498  * these extents won't change over the life of the file and they
10499  * use the bmap result to do IO directly to the drive.
10500  *
10501  * the btrfs bmap call would return logical addresses that aren't
10502  * suitable for IO and they also will change frequently as COW
10503  * operations happen.  So, swapfile + btrfs == corruption.
10504  *
10505  * For now we're avoiding this by dropping bmap.
10506  */
10507 static const struct address_space_operations btrfs_aops = {
10508 	.readpage	= btrfs_readpage,
10509 	.writepage	= btrfs_writepage,
10510 	.writepages	= btrfs_writepages,
10511 	.readpages	= btrfs_readpages,
10512 	.direct_IO	= btrfs_direct_IO,
10513 	.invalidatepage = btrfs_invalidatepage,
10514 	.releasepage	= btrfs_releasepage,
10515 	.set_page_dirty	= btrfs_set_page_dirty,
10516 	.error_remove_page = generic_error_remove_page,
10517 };
10518 
10519 static const struct address_space_operations btrfs_symlink_aops = {
10520 	.readpage	= btrfs_readpage,
10521 	.writepage	= btrfs_writepage,
10522 	.invalidatepage = btrfs_invalidatepage,
10523 	.releasepage	= btrfs_releasepage,
10524 };
10525 
10526 static const struct inode_operations btrfs_file_inode_operations = {
10527 	.getattr	= btrfs_getattr,
10528 	.setattr	= btrfs_setattr,
10529 	.listxattr      = btrfs_listxattr,
10530 	.permission	= btrfs_permission,
10531 	.fiemap		= btrfs_fiemap,
10532 	.get_acl	= btrfs_get_acl,
10533 	.set_acl	= btrfs_set_acl,
10534 	.update_time	= btrfs_update_time,
10535 };
10536 static const struct inode_operations btrfs_special_inode_operations = {
10537 	.getattr	= btrfs_getattr,
10538 	.setattr	= btrfs_setattr,
10539 	.permission	= btrfs_permission,
10540 	.listxattr	= btrfs_listxattr,
10541 	.get_acl	= btrfs_get_acl,
10542 	.set_acl	= btrfs_set_acl,
10543 	.update_time	= btrfs_update_time,
10544 };
10545 static const struct inode_operations btrfs_symlink_inode_operations = {
10546 	.get_link	= page_get_link,
10547 	.getattr	= btrfs_getattr,
10548 	.setattr	= btrfs_setattr,
10549 	.permission	= btrfs_permission,
10550 	.listxattr	= btrfs_listxattr,
10551 	.update_time	= btrfs_update_time,
10552 };
10553 
10554 const struct dentry_operations btrfs_dentry_operations = {
10555 	.d_delete	= btrfs_dentry_delete,
10556 };
10557