xref: /openbmc/linux/fs/btrfs/inode.c (revision 961b6ffe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "ordered-data.h"
39 #include "xattr.h"
40 #include "tree-log.h"
41 #include "volumes.h"
42 #include "compression.h"
43 #include "locking.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "backref.h"
47 #include "props.h"
48 #include "qgroup.h"
49 #include "dedupe.h"
50 #include "delalloc-space.h"
51 
52 struct btrfs_iget_args {
53 	struct btrfs_key *location;
54 	struct btrfs_root *root;
55 };
56 
57 struct btrfs_dio_data {
58 	u64 reserve;
59 	u64 unsubmitted_oe_range_start;
60 	u64 unsubmitted_oe_range_end;
61 	int overwrite;
62 };
63 
64 static const struct inode_operations btrfs_dir_inode_operations;
65 static const struct inode_operations btrfs_symlink_inode_operations;
66 static const struct inode_operations btrfs_dir_ro_inode_operations;
67 static const struct inode_operations btrfs_special_inode_operations;
68 static const struct inode_operations btrfs_file_inode_operations;
69 static const struct address_space_operations btrfs_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static const struct extent_io_ops btrfs_extent_io_ops;
72 
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 
78 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
79 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
81 static noinline int cow_file_range(struct inode *inode,
82 				   struct page *locked_page,
83 				   u64 start, u64 end, u64 delalloc_end,
84 				   int *page_started, unsigned long *nr_written,
85 				   int unlock, struct btrfs_dedupe_hash *hash);
86 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
87 				       u64 orig_start, u64 block_start,
88 				       u64 block_len, u64 orig_block_len,
89 				       u64 ram_bytes, int compress_type,
90 				       int type);
91 
92 static void __endio_write_update_ordered(struct inode *inode,
93 					 const u64 offset, const u64 bytes,
94 					 const bool uptodate);
95 
96 /*
97  * Cleanup all submitted ordered extents in specified range to handle errors
98  * from the btrfs_run_delalloc_range() callback.
99  *
100  * NOTE: caller must ensure that when an error happens, it can not call
101  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
102  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
103  * to be released, which we want to happen only when finishing the ordered
104  * extent (btrfs_finish_ordered_io()).
105  */
106 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
107 						 struct page *locked_page,
108 						 u64 offset, u64 bytes)
109 {
110 	unsigned long index = offset >> PAGE_SHIFT;
111 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
112 	u64 page_start = page_offset(locked_page);
113 	u64 page_end = page_start + PAGE_SIZE - 1;
114 
115 	struct page *page;
116 
117 	while (index <= end_index) {
118 		page = find_get_page(inode->i_mapping, index);
119 		index++;
120 		if (!page)
121 			continue;
122 		ClearPagePrivate2(page);
123 		put_page(page);
124 	}
125 
126 	/*
127 	 * In case this page belongs to the delalloc range being instantiated
128 	 * then skip it, since the first page of a range is going to be
129 	 * properly cleaned up by the caller of run_delalloc_range
130 	 */
131 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
132 		offset += PAGE_SIZE;
133 		bytes -= PAGE_SIZE;
134 	}
135 
136 	return __endio_write_update_ordered(inode, offset, bytes, false);
137 }
138 
139 static int btrfs_dirty_inode(struct inode *inode);
140 
141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
142 void btrfs_test_inode_set_ops(struct inode *inode)
143 {
144 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
145 }
146 #endif
147 
148 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
149 				     struct inode *inode,  struct inode *dir,
150 				     const struct qstr *qstr)
151 {
152 	int err;
153 
154 	err = btrfs_init_acl(trans, inode, dir);
155 	if (!err)
156 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
157 	return err;
158 }
159 
160 /*
161  * this does all the hard work for inserting an inline extent into
162  * the btree.  The caller should have done a btrfs_drop_extents so that
163  * no overlapping inline items exist in the btree
164  */
165 static int insert_inline_extent(struct btrfs_trans_handle *trans,
166 				struct btrfs_path *path, int extent_inserted,
167 				struct btrfs_root *root, struct inode *inode,
168 				u64 start, size_t size, size_t compressed_size,
169 				int compress_type,
170 				struct page **compressed_pages)
171 {
172 	struct extent_buffer *leaf;
173 	struct page *page = NULL;
174 	char *kaddr;
175 	unsigned long ptr;
176 	struct btrfs_file_extent_item *ei;
177 	int ret;
178 	size_t cur_size = size;
179 	unsigned long offset;
180 
181 	if (compressed_size && compressed_pages)
182 		cur_size = compressed_size;
183 
184 	inode_add_bytes(inode, size);
185 
186 	if (!extent_inserted) {
187 		struct btrfs_key key;
188 		size_t datasize;
189 
190 		key.objectid = btrfs_ino(BTRFS_I(inode));
191 		key.offset = start;
192 		key.type = BTRFS_EXTENT_DATA_KEY;
193 
194 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
195 		path->leave_spinning = 1;
196 		ret = btrfs_insert_empty_item(trans, root, path, &key,
197 					      datasize);
198 		if (ret)
199 			goto fail;
200 	}
201 	leaf = path->nodes[0];
202 	ei = btrfs_item_ptr(leaf, path->slots[0],
203 			    struct btrfs_file_extent_item);
204 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
205 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
206 	btrfs_set_file_extent_encryption(leaf, ei, 0);
207 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
208 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
209 	ptr = btrfs_file_extent_inline_start(ei);
210 
211 	if (compress_type != BTRFS_COMPRESS_NONE) {
212 		struct page *cpage;
213 		int i = 0;
214 		while (compressed_size > 0) {
215 			cpage = compressed_pages[i];
216 			cur_size = min_t(unsigned long, compressed_size,
217 				       PAGE_SIZE);
218 
219 			kaddr = kmap_atomic(cpage);
220 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
221 			kunmap_atomic(kaddr);
222 
223 			i++;
224 			ptr += cur_size;
225 			compressed_size -= cur_size;
226 		}
227 		btrfs_set_file_extent_compression(leaf, ei,
228 						  compress_type);
229 	} else {
230 		page = find_get_page(inode->i_mapping,
231 				     start >> PAGE_SHIFT);
232 		btrfs_set_file_extent_compression(leaf, ei, 0);
233 		kaddr = kmap_atomic(page);
234 		offset = offset_in_page(start);
235 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
236 		kunmap_atomic(kaddr);
237 		put_page(page);
238 	}
239 	btrfs_mark_buffer_dirty(leaf);
240 	btrfs_release_path(path);
241 
242 	/*
243 	 * we're an inline extent, so nobody can
244 	 * extend the file past i_size without locking
245 	 * a page we already have locked.
246 	 *
247 	 * We must do any isize and inode updates
248 	 * before we unlock the pages.  Otherwise we
249 	 * could end up racing with unlink.
250 	 */
251 	BTRFS_I(inode)->disk_i_size = inode->i_size;
252 	ret = btrfs_update_inode(trans, root, inode);
253 
254 fail:
255 	return ret;
256 }
257 
258 
259 /*
260  * conditionally insert an inline extent into the file.  This
261  * does the checks required to make sure the data is small enough
262  * to fit as an inline extent.
263  */
264 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
265 					  u64 end, size_t compressed_size,
266 					  int compress_type,
267 					  struct page **compressed_pages)
268 {
269 	struct btrfs_root *root = BTRFS_I(inode)->root;
270 	struct btrfs_fs_info *fs_info = root->fs_info;
271 	struct btrfs_trans_handle *trans;
272 	u64 isize = i_size_read(inode);
273 	u64 actual_end = min(end + 1, isize);
274 	u64 inline_len = actual_end - start;
275 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
276 	u64 data_len = inline_len;
277 	int ret;
278 	struct btrfs_path *path;
279 	int extent_inserted = 0;
280 	u32 extent_item_size;
281 
282 	if (compressed_size)
283 		data_len = compressed_size;
284 
285 	if (start > 0 ||
286 	    actual_end > fs_info->sectorsize ||
287 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
288 	    (!compressed_size &&
289 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
290 	    end + 1 < isize ||
291 	    data_len > fs_info->max_inline) {
292 		return 1;
293 	}
294 
295 	path = btrfs_alloc_path();
296 	if (!path)
297 		return -ENOMEM;
298 
299 	trans = btrfs_join_transaction(root);
300 	if (IS_ERR(trans)) {
301 		btrfs_free_path(path);
302 		return PTR_ERR(trans);
303 	}
304 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
305 
306 	if (compressed_size && compressed_pages)
307 		extent_item_size = btrfs_file_extent_calc_inline_size(
308 		   compressed_size);
309 	else
310 		extent_item_size = btrfs_file_extent_calc_inline_size(
311 		    inline_len);
312 
313 	ret = __btrfs_drop_extents(trans, root, inode, path,
314 				   start, aligned_end, NULL,
315 				   1, 1, extent_item_size, &extent_inserted);
316 	if (ret) {
317 		btrfs_abort_transaction(trans, ret);
318 		goto out;
319 	}
320 
321 	if (isize > actual_end)
322 		inline_len = min_t(u64, isize, actual_end);
323 	ret = insert_inline_extent(trans, path, extent_inserted,
324 				   root, inode, start,
325 				   inline_len, compressed_size,
326 				   compress_type, compressed_pages);
327 	if (ret && ret != -ENOSPC) {
328 		btrfs_abort_transaction(trans, ret);
329 		goto out;
330 	} else if (ret == -ENOSPC) {
331 		ret = 1;
332 		goto out;
333 	}
334 
335 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
336 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
337 out:
338 	/*
339 	 * Don't forget to free the reserved space, as for inlined extent
340 	 * it won't count as data extent, free them directly here.
341 	 * And at reserve time, it's always aligned to page size, so
342 	 * just free one page here.
343 	 */
344 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
345 	btrfs_free_path(path);
346 	btrfs_end_transaction(trans);
347 	return ret;
348 }
349 
350 struct async_extent {
351 	u64 start;
352 	u64 ram_size;
353 	u64 compressed_size;
354 	struct page **pages;
355 	unsigned long nr_pages;
356 	int compress_type;
357 	struct list_head list;
358 };
359 
360 struct async_chunk {
361 	struct inode *inode;
362 	struct page *locked_page;
363 	u64 start;
364 	u64 end;
365 	unsigned int write_flags;
366 	struct list_head extents;
367 	struct btrfs_work work;
368 	atomic_t *pending;
369 };
370 
371 struct async_cow {
372 	/* Number of chunks in flight; must be first in the structure */
373 	atomic_t num_chunks;
374 	struct async_chunk chunks[];
375 };
376 
377 static noinline int add_async_extent(struct async_chunk *cow,
378 				     u64 start, u64 ram_size,
379 				     u64 compressed_size,
380 				     struct page **pages,
381 				     unsigned long nr_pages,
382 				     int compress_type)
383 {
384 	struct async_extent *async_extent;
385 
386 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
387 	BUG_ON(!async_extent); /* -ENOMEM */
388 	async_extent->start = start;
389 	async_extent->ram_size = ram_size;
390 	async_extent->compressed_size = compressed_size;
391 	async_extent->pages = pages;
392 	async_extent->nr_pages = nr_pages;
393 	async_extent->compress_type = compress_type;
394 	list_add_tail(&async_extent->list, &cow->extents);
395 	return 0;
396 }
397 
398 /*
399  * Check if the inode has flags compatible with compression
400  */
401 static inline bool inode_can_compress(struct inode *inode)
402 {
403 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
404 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
405 		return false;
406 	return true;
407 }
408 
409 /*
410  * Check if the inode needs to be submitted to compression, based on mount
411  * options, defragmentation, properties or heuristics.
412  */
413 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
414 {
415 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
416 
417 	if (!inode_can_compress(inode)) {
418 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
419 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
420 			btrfs_ino(BTRFS_I(inode)));
421 		return 0;
422 	}
423 	/* force compress */
424 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
425 		return 1;
426 	/* defrag ioctl */
427 	if (BTRFS_I(inode)->defrag_compress)
428 		return 1;
429 	/* bad compression ratios */
430 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
431 		return 0;
432 	if (btrfs_test_opt(fs_info, COMPRESS) ||
433 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
434 	    BTRFS_I(inode)->prop_compress)
435 		return btrfs_compress_heuristic(inode, start, end);
436 	return 0;
437 }
438 
439 static inline void inode_should_defrag(struct btrfs_inode *inode,
440 		u64 start, u64 end, u64 num_bytes, u64 small_write)
441 {
442 	/* If this is a small write inside eof, kick off a defrag */
443 	if (num_bytes < small_write &&
444 	    (start > 0 || end + 1 < inode->disk_i_size))
445 		btrfs_add_inode_defrag(NULL, inode);
446 }
447 
448 /*
449  * we create compressed extents in two phases.  The first
450  * phase compresses a range of pages that have already been
451  * locked (both pages and state bits are locked).
452  *
453  * This is done inside an ordered work queue, and the compression
454  * is spread across many cpus.  The actual IO submission is step
455  * two, and the ordered work queue takes care of making sure that
456  * happens in the same order things were put onto the queue by
457  * writepages and friends.
458  *
459  * If this code finds it can't get good compression, it puts an
460  * entry onto the work queue to write the uncompressed bytes.  This
461  * makes sure that both compressed inodes and uncompressed inodes
462  * are written in the same order that the flusher thread sent them
463  * down.
464  */
465 static noinline void compress_file_range(struct async_chunk *async_chunk,
466 					 int *num_added)
467 {
468 	struct inode *inode = async_chunk->inode;
469 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
470 	u64 blocksize = fs_info->sectorsize;
471 	u64 start = async_chunk->start;
472 	u64 end = async_chunk->end;
473 	u64 actual_end;
474 	int ret = 0;
475 	struct page **pages = NULL;
476 	unsigned long nr_pages;
477 	unsigned long total_compressed = 0;
478 	unsigned long total_in = 0;
479 	int i;
480 	int will_compress;
481 	int compress_type = fs_info->compress_type;
482 	int redirty = 0;
483 
484 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
485 			SZ_16K);
486 
487 	actual_end = min_t(u64, i_size_read(inode), end + 1);
488 again:
489 	will_compress = 0;
490 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
491 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
492 	nr_pages = min_t(unsigned long, nr_pages,
493 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
494 
495 	/*
496 	 * we don't want to send crud past the end of i_size through
497 	 * compression, that's just a waste of CPU time.  So, if the
498 	 * end of the file is before the start of our current
499 	 * requested range of bytes, we bail out to the uncompressed
500 	 * cleanup code that can deal with all of this.
501 	 *
502 	 * It isn't really the fastest way to fix things, but this is a
503 	 * very uncommon corner.
504 	 */
505 	if (actual_end <= start)
506 		goto cleanup_and_bail_uncompressed;
507 
508 	total_compressed = actual_end - start;
509 
510 	/*
511 	 * skip compression for a small file range(<=blocksize) that
512 	 * isn't an inline extent, since it doesn't save disk space at all.
513 	 */
514 	if (total_compressed <= blocksize &&
515 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
516 		goto cleanup_and_bail_uncompressed;
517 
518 	total_compressed = min_t(unsigned long, total_compressed,
519 			BTRFS_MAX_UNCOMPRESSED);
520 	total_in = 0;
521 	ret = 0;
522 
523 	/*
524 	 * we do compression for mount -o compress and when the
525 	 * inode has not been flagged as nocompress.  This flag can
526 	 * change at any time if we discover bad compression ratios.
527 	 */
528 	if (inode_need_compress(inode, start, end)) {
529 		WARN_ON(pages);
530 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
531 		if (!pages) {
532 			/* just bail out to the uncompressed code */
533 			nr_pages = 0;
534 			goto cont;
535 		}
536 
537 		if (BTRFS_I(inode)->defrag_compress)
538 			compress_type = BTRFS_I(inode)->defrag_compress;
539 		else if (BTRFS_I(inode)->prop_compress)
540 			compress_type = BTRFS_I(inode)->prop_compress;
541 
542 		/*
543 		 * we need to call clear_page_dirty_for_io on each
544 		 * page in the range.  Otherwise applications with the file
545 		 * mmap'd can wander in and change the page contents while
546 		 * we are compressing them.
547 		 *
548 		 * If the compression fails for any reason, we set the pages
549 		 * dirty again later on.
550 		 *
551 		 * Note that the remaining part is redirtied, the start pointer
552 		 * has moved, the end is the original one.
553 		 */
554 		if (!redirty) {
555 			extent_range_clear_dirty_for_io(inode, start, end);
556 			redirty = 1;
557 		}
558 
559 		/* Compression level is applied here and only here */
560 		ret = btrfs_compress_pages(
561 			compress_type | (fs_info->compress_level << 4),
562 					   inode->i_mapping, start,
563 					   pages,
564 					   &nr_pages,
565 					   &total_in,
566 					   &total_compressed);
567 
568 		if (!ret) {
569 			unsigned long offset = offset_in_page(total_compressed);
570 			struct page *page = pages[nr_pages - 1];
571 			char *kaddr;
572 
573 			/* zero the tail end of the last page, we might be
574 			 * sending it down to disk
575 			 */
576 			if (offset) {
577 				kaddr = kmap_atomic(page);
578 				memset(kaddr + offset, 0,
579 				       PAGE_SIZE - offset);
580 				kunmap_atomic(kaddr);
581 			}
582 			will_compress = 1;
583 		}
584 	}
585 cont:
586 	if (start == 0) {
587 		/* lets try to make an inline extent */
588 		if (ret || total_in < actual_end) {
589 			/* we didn't compress the entire range, try
590 			 * to make an uncompressed inline extent.
591 			 */
592 			ret = cow_file_range_inline(inode, start, end, 0,
593 						    BTRFS_COMPRESS_NONE, NULL);
594 		} else {
595 			/* try making a compressed inline extent */
596 			ret = cow_file_range_inline(inode, start, end,
597 						    total_compressed,
598 						    compress_type, pages);
599 		}
600 		if (ret <= 0) {
601 			unsigned long clear_flags = EXTENT_DELALLOC |
602 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
603 				EXTENT_DO_ACCOUNTING;
604 			unsigned long page_error_op;
605 
606 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
607 
608 			/*
609 			 * inline extent creation worked or returned error,
610 			 * we don't need to create any more async work items.
611 			 * Unlock and free up our temp pages.
612 			 *
613 			 * We use DO_ACCOUNTING here because we need the
614 			 * delalloc_release_metadata to be done _after_ we drop
615 			 * our outstanding extent for clearing delalloc for this
616 			 * range.
617 			 */
618 			extent_clear_unlock_delalloc(inode, start, end, end,
619 						     NULL, clear_flags,
620 						     PAGE_UNLOCK |
621 						     PAGE_CLEAR_DIRTY |
622 						     PAGE_SET_WRITEBACK |
623 						     page_error_op |
624 						     PAGE_END_WRITEBACK);
625 			goto free_pages_out;
626 		}
627 	}
628 
629 	if (will_compress) {
630 		/*
631 		 * we aren't doing an inline extent round the compressed size
632 		 * up to a block size boundary so the allocator does sane
633 		 * things
634 		 */
635 		total_compressed = ALIGN(total_compressed, blocksize);
636 
637 		/*
638 		 * one last check to make sure the compression is really a
639 		 * win, compare the page count read with the blocks on disk,
640 		 * compression must free at least one sector size
641 		 */
642 		total_in = ALIGN(total_in, PAGE_SIZE);
643 		if (total_compressed + blocksize <= total_in) {
644 			*num_added += 1;
645 
646 			/*
647 			 * The async work queues will take care of doing actual
648 			 * allocation on disk for these compressed pages, and
649 			 * will submit them to the elevator.
650 			 */
651 			add_async_extent(async_chunk, start, total_in,
652 					total_compressed, pages, nr_pages,
653 					compress_type);
654 
655 			if (start + total_in < end) {
656 				start += total_in;
657 				pages = NULL;
658 				cond_resched();
659 				goto again;
660 			}
661 			return;
662 		}
663 	}
664 	if (pages) {
665 		/*
666 		 * the compression code ran but failed to make things smaller,
667 		 * free any pages it allocated and our page pointer array
668 		 */
669 		for (i = 0; i < nr_pages; i++) {
670 			WARN_ON(pages[i]->mapping);
671 			put_page(pages[i]);
672 		}
673 		kfree(pages);
674 		pages = NULL;
675 		total_compressed = 0;
676 		nr_pages = 0;
677 
678 		/* flag the file so we don't compress in the future */
679 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
680 		    !(BTRFS_I(inode)->prop_compress)) {
681 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
682 		}
683 	}
684 cleanup_and_bail_uncompressed:
685 	/*
686 	 * No compression, but we still need to write the pages in the file
687 	 * we've been given so far.  redirty the locked page if it corresponds
688 	 * to our extent and set things up for the async work queue to run
689 	 * cow_file_range to do the normal delalloc dance.
690 	 */
691 	if (page_offset(async_chunk->locked_page) >= start &&
692 	    page_offset(async_chunk->locked_page) <= end)
693 		__set_page_dirty_nobuffers(async_chunk->locked_page);
694 		/* unlocked later on in the async handlers */
695 
696 	if (redirty)
697 		extent_range_redirty_for_io(inode, start, end);
698 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
699 			 BTRFS_COMPRESS_NONE);
700 	*num_added += 1;
701 
702 	return;
703 
704 free_pages_out:
705 	for (i = 0; i < nr_pages; i++) {
706 		WARN_ON(pages[i]->mapping);
707 		put_page(pages[i]);
708 	}
709 	kfree(pages);
710 }
711 
712 static void free_async_extent_pages(struct async_extent *async_extent)
713 {
714 	int i;
715 
716 	if (!async_extent->pages)
717 		return;
718 
719 	for (i = 0; i < async_extent->nr_pages; i++) {
720 		WARN_ON(async_extent->pages[i]->mapping);
721 		put_page(async_extent->pages[i]);
722 	}
723 	kfree(async_extent->pages);
724 	async_extent->nr_pages = 0;
725 	async_extent->pages = NULL;
726 }
727 
728 /*
729  * phase two of compressed writeback.  This is the ordered portion
730  * of the code, which only gets called in the order the work was
731  * queued.  We walk all the async extents created by compress_file_range
732  * and send them down to the disk.
733  */
734 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
735 {
736 	struct inode *inode = async_chunk->inode;
737 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
738 	struct async_extent *async_extent;
739 	u64 alloc_hint = 0;
740 	struct btrfs_key ins;
741 	struct extent_map *em;
742 	struct btrfs_root *root = BTRFS_I(inode)->root;
743 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
744 	int ret = 0;
745 
746 again:
747 	while (!list_empty(&async_chunk->extents)) {
748 		async_extent = list_entry(async_chunk->extents.next,
749 					  struct async_extent, list);
750 		list_del(&async_extent->list);
751 
752 retry:
753 		lock_extent(io_tree, async_extent->start,
754 			    async_extent->start + async_extent->ram_size - 1);
755 		/* did the compression code fall back to uncompressed IO? */
756 		if (!async_extent->pages) {
757 			int page_started = 0;
758 			unsigned long nr_written = 0;
759 
760 			/* allocate blocks */
761 			ret = cow_file_range(inode, async_chunk->locked_page,
762 					     async_extent->start,
763 					     async_extent->start +
764 					     async_extent->ram_size - 1,
765 					     async_extent->start +
766 					     async_extent->ram_size - 1,
767 					     &page_started, &nr_written, 0,
768 					     NULL);
769 
770 			/* JDM XXX */
771 
772 			/*
773 			 * if page_started, cow_file_range inserted an
774 			 * inline extent and took care of all the unlocking
775 			 * and IO for us.  Otherwise, we need to submit
776 			 * all those pages down to the drive.
777 			 */
778 			if (!page_started && !ret)
779 				extent_write_locked_range(inode,
780 						  async_extent->start,
781 						  async_extent->start +
782 						  async_extent->ram_size - 1,
783 						  WB_SYNC_ALL);
784 			else if (ret)
785 				unlock_page(async_chunk->locked_page);
786 			kfree(async_extent);
787 			cond_resched();
788 			continue;
789 		}
790 
791 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
792 					   async_extent->compressed_size,
793 					   async_extent->compressed_size,
794 					   0, alloc_hint, &ins, 1, 1);
795 		if (ret) {
796 			free_async_extent_pages(async_extent);
797 
798 			if (ret == -ENOSPC) {
799 				unlock_extent(io_tree, async_extent->start,
800 					      async_extent->start +
801 					      async_extent->ram_size - 1);
802 
803 				/*
804 				 * we need to redirty the pages if we decide to
805 				 * fallback to uncompressed IO, otherwise we
806 				 * will not submit these pages down to lower
807 				 * layers.
808 				 */
809 				extent_range_redirty_for_io(inode,
810 						async_extent->start,
811 						async_extent->start +
812 						async_extent->ram_size - 1);
813 
814 				goto retry;
815 			}
816 			goto out_free;
817 		}
818 		/*
819 		 * here we're doing allocation and writeback of the
820 		 * compressed pages
821 		 */
822 		em = create_io_em(inode, async_extent->start,
823 				  async_extent->ram_size, /* len */
824 				  async_extent->start, /* orig_start */
825 				  ins.objectid, /* block_start */
826 				  ins.offset, /* block_len */
827 				  ins.offset, /* orig_block_len */
828 				  async_extent->ram_size, /* ram_bytes */
829 				  async_extent->compress_type,
830 				  BTRFS_ORDERED_COMPRESSED);
831 		if (IS_ERR(em))
832 			/* ret value is not necessary due to void function */
833 			goto out_free_reserve;
834 		free_extent_map(em);
835 
836 		ret = btrfs_add_ordered_extent_compress(inode,
837 						async_extent->start,
838 						ins.objectid,
839 						async_extent->ram_size,
840 						ins.offset,
841 						BTRFS_ORDERED_COMPRESSED,
842 						async_extent->compress_type);
843 		if (ret) {
844 			btrfs_drop_extent_cache(BTRFS_I(inode),
845 						async_extent->start,
846 						async_extent->start +
847 						async_extent->ram_size - 1, 0);
848 			goto out_free_reserve;
849 		}
850 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
851 
852 		/*
853 		 * clear dirty, set writeback and unlock the pages.
854 		 */
855 		extent_clear_unlock_delalloc(inode, async_extent->start,
856 				async_extent->start +
857 				async_extent->ram_size - 1,
858 				async_extent->start +
859 				async_extent->ram_size - 1,
860 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
861 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
862 				PAGE_SET_WRITEBACK);
863 		if (btrfs_submit_compressed_write(inode,
864 				    async_extent->start,
865 				    async_extent->ram_size,
866 				    ins.objectid,
867 				    ins.offset, async_extent->pages,
868 				    async_extent->nr_pages,
869 				    async_chunk->write_flags)) {
870 			struct page *p = async_extent->pages[0];
871 			const u64 start = async_extent->start;
872 			const u64 end = start + async_extent->ram_size - 1;
873 
874 			p->mapping = inode->i_mapping;
875 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
876 
877 			p->mapping = NULL;
878 			extent_clear_unlock_delalloc(inode, start, end, end,
879 						     NULL, 0,
880 						     PAGE_END_WRITEBACK |
881 						     PAGE_SET_ERROR);
882 			free_async_extent_pages(async_extent);
883 		}
884 		alloc_hint = ins.objectid + ins.offset;
885 		kfree(async_extent);
886 		cond_resched();
887 	}
888 	return;
889 out_free_reserve:
890 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
891 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
892 out_free:
893 	extent_clear_unlock_delalloc(inode, async_extent->start,
894 				     async_extent->start +
895 				     async_extent->ram_size - 1,
896 				     async_extent->start +
897 				     async_extent->ram_size - 1,
898 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
899 				     EXTENT_DELALLOC_NEW |
900 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
901 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
902 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
903 				     PAGE_SET_ERROR);
904 	free_async_extent_pages(async_extent);
905 	kfree(async_extent);
906 	goto again;
907 }
908 
909 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
910 				      u64 num_bytes)
911 {
912 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
913 	struct extent_map *em;
914 	u64 alloc_hint = 0;
915 
916 	read_lock(&em_tree->lock);
917 	em = search_extent_mapping(em_tree, start, num_bytes);
918 	if (em) {
919 		/*
920 		 * if block start isn't an actual block number then find the
921 		 * first block in this inode and use that as a hint.  If that
922 		 * block is also bogus then just don't worry about it.
923 		 */
924 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
925 			free_extent_map(em);
926 			em = search_extent_mapping(em_tree, 0, 0);
927 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
928 				alloc_hint = em->block_start;
929 			if (em)
930 				free_extent_map(em);
931 		} else {
932 			alloc_hint = em->block_start;
933 			free_extent_map(em);
934 		}
935 	}
936 	read_unlock(&em_tree->lock);
937 
938 	return alloc_hint;
939 }
940 
941 /*
942  * when extent_io.c finds a delayed allocation range in the file,
943  * the call backs end up in this code.  The basic idea is to
944  * allocate extents on disk for the range, and create ordered data structs
945  * in ram to track those extents.
946  *
947  * locked_page is the page that writepage had locked already.  We use
948  * it to make sure we don't do extra locks or unlocks.
949  *
950  * *page_started is set to one if we unlock locked_page and do everything
951  * required to start IO on it.  It may be clean and already done with
952  * IO when we return.
953  */
954 static noinline int cow_file_range(struct inode *inode,
955 				   struct page *locked_page,
956 				   u64 start, u64 end, u64 delalloc_end,
957 				   int *page_started, unsigned long *nr_written,
958 				   int unlock, struct btrfs_dedupe_hash *hash)
959 {
960 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
961 	struct btrfs_root *root = BTRFS_I(inode)->root;
962 	u64 alloc_hint = 0;
963 	u64 num_bytes;
964 	unsigned long ram_size;
965 	u64 cur_alloc_size = 0;
966 	u64 blocksize = fs_info->sectorsize;
967 	struct btrfs_key ins;
968 	struct extent_map *em;
969 	unsigned clear_bits;
970 	unsigned long page_ops;
971 	bool extent_reserved = false;
972 	int ret = 0;
973 
974 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
975 		WARN_ON_ONCE(1);
976 		ret = -EINVAL;
977 		goto out_unlock;
978 	}
979 
980 	num_bytes = ALIGN(end - start + 1, blocksize);
981 	num_bytes = max(blocksize,  num_bytes);
982 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
983 
984 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
985 
986 	if (start == 0) {
987 		/* lets try to make an inline extent */
988 		ret = cow_file_range_inline(inode, start, end, 0,
989 					    BTRFS_COMPRESS_NONE, NULL);
990 		if (ret == 0) {
991 			/*
992 			 * We use DO_ACCOUNTING here because we need the
993 			 * delalloc_release_metadata to be run _after_ we drop
994 			 * our outstanding extent for clearing delalloc for this
995 			 * range.
996 			 */
997 			extent_clear_unlock_delalloc(inode, start, end,
998 				     delalloc_end, NULL,
999 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1000 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1001 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1002 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1003 				     PAGE_END_WRITEBACK);
1004 			*nr_written = *nr_written +
1005 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1006 			*page_started = 1;
1007 			goto out;
1008 		} else if (ret < 0) {
1009 			goto out_unlock;
1010 		}
1011 	}
1012 
1013 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1014 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1015 			start + num_bytes - 1, 0);
1016 
1017 	while (num_bytes > 0) {
1018 		cur_alloc_size = num_bytes;
1019 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1020 					   fs_info->sectorsize, 0, alloc_hint,
1021 					   &ins, 1, 1);
1022 		if (ret < 0)
1023 			goto out_unlock;
1024 		cur_alloc_size = ins.offset;
1025 		extent_reserved = true;
1026 
1027 		ram_size = ins.offset;
1028 		em = create_io_em(inode, start, ins.offset, /* len */
1029 				  start, /* orig_start */
1030 				  ins.objectid, /* block_start */
1031 				  ins.offset, /* block_len */
1032 				  ins.offset, /* orig_block_len */
1033 				  ram_size, /* ram_bytes */
1034 				  BTRFS_COMPRESS_NONE, /* compress_type */
1035 				  BTRFS_ORDERED_REGULAR /* type */);
1036 		if (IS_ERR(em)) {
1037 			ret = PTR_ERR(em);
1038 			goto out_reserve;
1039 		}
1040 		free_extent_map(em);
1041 
1042 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1043 					       ram_size, cur_alloc_size, 0);
1044 		if (ret)
1045 			goto out_drop_extent_cache;
1046 
1047 		if (root->root_key.objectid ==
1048 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1049 			ret = btrfs_reloc_clone_csums(inode, start,
1050 						      cur_alloc_size);
1051 			/*
1052 			 * Only drop cache here, and process as normal.
1053 			 *
1054 			 * We must not allow extent_clear_unlock_delalloc()
1055 			 * at out_unlock label to free meta of this ordered
1056 			 * extent, as its meta should be freed by
1057 			 * btrfs_finish_ordered_io().
1058 			 *
1059 			 * So we must continue until @start is increased to
1060 			 * skip current ordered extent.
1061 			 */
1062 			if (ret)
1063 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1064 						start + ram_size - 1, 0);
1065 		}
1066 
1067 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1068 
1069 		/* we're not doing compressed IO, don't unlock the first
1070 		 * page (which the caller expects to stay locked), don't
1071 		 * clear any dirty bits and don't set any writeback bits
1072 		 *
1073 		 * Do set the Private2 bit so we know this page was properly
1074 		 * setup for writepage
1075 		 */
1076 		page_ops = unlock ? PAGE_UNLOCK : 0;
1077 		page_ops |= PAGE_SET_PRIVATE2;
1078 
1079 		extent_clear_unlock_delalloc(inode, start,
1080 					     start + ram_size - 1,
1081 					     delalloc_end, locked_page,
1082 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1083 					     page_ops);
1084 		if (num_bytes < cur_alloc_size)
1085 			num_bytes = 0;
1086 		else
1087 			num_bytes -= cur_alloc_size;
1088 		alloc_hint = ins.objectid + ins.offset;
1089 		start += cur_alloc_size;
1090 		extent_reserved = false;
1091 
1092 		/*
1093 		 * btrfs_reloc_clone_csums() error, since start is increased
1094 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1095 		 * free metadata of current ordered extent, we're OK to exit.
1096 		 */
1097 		if (ret)
1098 			goto out_unlock;
1099 	}
1100 out:
1101 	return ret;
1102 
1103 out_drop_extent_cache:
1104 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1105 out_reserve:
1106 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1107 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1108 out_unlock:
1109 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1110 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1111 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1112 		PAGE_END_WRITEBACK;
1113 	/*
1114 	 * If we reserved an extent for our delalloc range (or a subrange) and
1115 	 * failed to create the respective ordered extent, then it means that
1116 	 * when we reserved the extent we decremented the extent's size from
1117 	 * the data space_info's bytes_may_use counter and incremented the
1118 	 * space_info's bytes_reserved counter by the same amount. We must make
1119 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1120 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1121 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1122 	 */
1123 	if (extent_reserved) {
1124 		extent_clear_unlock_delalloc(inode, start,
1125 					     start + cur_alloc_size,
1126 					     start + cur_alloc_size,
1127 					     locked_page,
1128 					     clear_bits,
1129 					     page_ops);
1130 		start += cur_alloc_size;
1131 		if (start >= end)
1132 			goto out;
1133 	}
1134 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1135 				     locked_page,
1136 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1137 				     page_ops);
1138 	goto out;
1139 }
1140 
1141 /*
1142  * work queue call back to started compression on a file and pages
1143  */
1144 static noinline void async_cow_start(struct btrfs_work *work)
1145 {
1146 	struct async_chunk *async_chunk;
1147 	int num_added = 0;
1148 
1149 	async_chunk = container_of(work, struct async_chunk, work);
1150 
1151 	compress_file_range(async_chunk, &num_added);
1152 	if (num_added == 0) {
1153 		btrfs_add_delayed_iput(async_chunk->inode);
1154 		async_chunk->inode = NULL;
1155 	}
1156 }
1157 
1158 /*
1159  * work queue call back to submit previously compressed pages
1160  */
1161 static noinline void async_cow_submit(struct btrfs_work *work)
1162 {
1163 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1164 						     work);
1165 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1166 	unsigned long nr_pages;
1167 
1168 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1169 		PAGE_SHIFT;
1170 
1171 	/* atomic_sub_return implies a barrier */
1172 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1173 	    5 * SZ_1M)
1174 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1175 
1176 	/*
1177 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1178 	 * in which case we don't have anything to submit, yet we need to
1179 	 * always adjust ->async_delalloc_pages as its paired with the init
1180 	 * happening in cow_file_range_async
1181 	 */
1182 	if (async_chunk->inode)
1183 		submit_compressed_extents(async_chunk);
1184 }
1185 
1186 static noinline void async_cow_free(struct btrfs_work *work)
1187 {
1188 	struct async_chunk *async_chunk;
1189 
1190 	async_chunk = container_of(work, struct async_chunk, work);
1191 	if (async_chunk->inode)
1192 		btrfs_add_delayed_iput(async_chunk->inode);
1193 	/*
1194 	 * Since the pointer to 'pending' is at the beginning of the array of
1195 	 * async_chunk's, freeing it ensures the whole array has been freed.
1196 	 */
1197 	if (atomic_dec_and_test(async_chunk->pending))
1198 		kvfree(async_chunk->pending);
1199 }
1200 
1201 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1202 				u64 start, u64 end, int *page_started,
1203 				unsigned long *nr_written,
1204 				unsigned int write_flags)
1205 {
1206 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1207 	struct async_cow *ctx;
1208 	struct async_chunk *async_chunk;
1209 	unsigned long nr_pages;
1210 	u64 cur_end;
1211 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1212 	int i;
1213 	bool should_compress;
1214 	unsigned nofs_flag;
1215 
1216 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1217 
1218 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1219 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1220 		num_chunks = 1;
1221 		should_compress = false;
1222 	} else {
1223 		should_compress = true;
1224 	}
1225 
1226 	nofs_flag = memalloc_nofs_save();
1227 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1228 	memalloc_nofs_restore(nofs_flag);
1229 
1230 	if (!ctx) {
1231 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1232 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1233 			EXTENT_DO_ACCOUNTING;
1234 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1235 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1236 			PAGE_SET_ERROR;
1237 
1238 		extent_clear_unlock_delalloc(inode, start, end, 0, locked_page,
1239 					     clear_bits, page_ops);
1240 		return -ENOMEM;
1241 	}
1242 
1243 	async_chunk = ctx->chunks;
1244 	atomic_set(&ctx->num_chunks, num_chunks);
1245 
1246 	for (i = 0; i < num_chunks; i++) {
1247 		if (should_compress)
1248 			cur_end = min(end, start + SZ_512K - 1);
1249 		else
1250 			cur_end = end;
1251 
1252 		/*
1253 		 * igrab is called higher up in the call chain, take only the
1254 		 * lightweight reference for the callback lifetime
1255 		 */
1256 		ihold(inode);
1257 		async_chunk[i].pending = &ctx->num_chunks;
1258 		async_chunk[i].inode = inode;
1259 		async_chunk[i].start = start;
1260 		async_chunk[i].end = cur_end;
1261 		async_chunk[i].locked_page = locked_page;
1262 		async_chunk[i].write_flags = write_flags;
1263 		INIT_LIST_HEAD(&async_chunk[i].extents);
1264 
1265 		btrfs_init_work(&async_chunk[i].work,
1266 				btrfs_delalloc_helper,
1267 				async_cow_start, async_cow_submit,
1268 				async_cow_free);
1269 
1270 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1271 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1272 
1273 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1274 
1275 		*nr_written += nr_pages;
1276 		start = cur_end + 1;
1277 	}
1278 	*page_started = 1;
1279 	return 0;
1280 }
1281 
1282 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1283 					u64 bytenr, u64 num_bytes)
1284 {
1285 	int ret;
1286 	struct btrfs_ordered_sum *sums;
1287 	LIST_HEAD(list);
1288 
1289 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1290 				       bytenr + num_bytes - 1, &list, 0);
1291 	if (ret == 0 && list_empty(&list))
1292 		return 0;
1293 
1294 	while (!list_empty(&list)) {
1295 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1296 		list_del(&sums->list);
1297 		kfree(sums);
1298 	}
1299 	if (ret < 0)
1300 		return ret;
1301 	return 1;
1302 }
1303 
1304 /*
1305  * when nowcow writeback call back.  This checks for snapshots or COW copies
1306  * of the extents that exist in the file, and COWs the file as required.
1307  *
1308  * If no cow copies or snapshots exist, we write directly to the existing
1309  * blocks on disk
1310  */
1311 static noinline int run_delalloc_nocow(struct inode *inode,
1312 				       struct page *locked_page,
1313 			      u64 start, u64 end, int *page_started, int force,
1314 			      unsigned long *nr_written)
1315 {
1316 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1317 	struct btrfs_root *root = BTRFS_I(inode)->root;
1318 	struct extent_buffer *leaf;
1319 	struct btrfs_path *path;
1320 	struct btrfs_file_extent_item *fi;
1321 	struct btrfs_key found_key;
1322 	struct extent_map *em;
1323 	u64 cow_start;
1324 	u64 cur_offset;
1325 	u64 extent_end;
1326 	u64 extent_offset;
1327 	u64 disk_bytenr;
1328 	u64 num_bytes;
1329 	u64 disk_num_bytes;
1330 	u64 ram_bytes;
1331 	int extent_type;
1332 	int ret;
1333 	int type;
1334 	int nocow;
1335 	int check_prev = 1;
1336 	bool nolock;
1337 	u64 ino = btrfs_ino(BTRFS_I(inode));
1338 
1339 	path = btrfs_alloc_path();
1340 	if (!path) {
1341 		extent_clear_unlock_delalloc(inode, start, end, end,
1342 					     locked_page,
1343 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1344 					     EXTENT_DO_ACCOUNTING |
1345 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1346 					     PAGE_CLEAR_DIRTY |
1347 					     PAGE_SET_WRITEBACK |
1348 					     PAGE_END_WRITEBACK);
1349 		return -ENOMEM;
1350 	}
1351 
1352 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1353 
1354 	cow_start = (u64)-1;
1355 	cur_offset = start;
1356 	while (1) {
1357 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1358 					       cur_offset, 0);
1359 		if (ret < 0)
1360 			goto error;
1361 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1362 			leaf = path->nodes[0];
1363 			btrfs_item_key_to_cpu(leaf, &found_key,
1364 					      path->slots[0] - 1);
1365 			if (found_key.objectid == ino &&
1366 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1367 				path->slots[0]--;
1368 		}
1369 		check_prev = 0;
1370 next_slot:
1371 		leaf = path->nodes[0];
1372 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1373 			ret = btrfs_next_leaf(root, path);
1374 			if (ret < 0) {
1375 				if (cow_start != (u64)-1)
1376 					cur_offset = cow_start;
1377 				goto error;
1378 			}
1379 			if (ret > 0)
1380 				break;
1381 			leaf = path->nodes[0];
1382 		}
1383 
1384 		nocow = 0;
1385 		disk_bytenr = 0;
1386 		num_bytes = 0;
1387 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1388 
1389 		if (found_key.objectid > ino)
1390 			break;
1391 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1392 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1393 			path->slots[0]++;
1394 			goto next_slot;
1395 		}
1396 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1397 		    found_key.offset > end)
1398 			break;
1399 
1400 		if (found_key.offset > cur_offset) {
1401 			extent_end = found_key.offset;
1402 			extent_type = 0;
1403 			goto out_check;
1404 		}
1405 
1406 		fi = btrfs_item_ptr(leaf, path->slots[0],
1407 				    struct btrfs_file_extent_item);
1408 		extent_type = btrfs_file_extent_type(leaf, fi);
1409 
1410 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1411 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1412 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1413 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1414 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1415 			extent_end = found_key.offset +
1416 				btrfs_file_extent_num_bytes(leaf, fi);
1417 			disk_num_bytes =
1418 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1419 			if (extent_end <= start) {
1420 				path->slots[0]++;
1421 				goto next_slot;
1422 			}
1423 			if (disk_bytenr == 0)
1424 				goto out_check;
1425 			if (btrfs_file_extent_compression(leaf, fi) ||
1426 			    btrfs_file_extent_encryption(leaf, fi) ||
1427 			    btrfs_file_extent_other_encoding(leaf, fi))
1428 				goto out_check;
1429 			/*
1430 			 * Do the same check as in btrfs_cross_ref_exist but
1431 			 * without the unnecessary search.
1432 			 */
1433 			if (!nolock &&
1434 			    btrfs_file_extent_generation(leaf, fi) <=
1435 			    btrfs_root_last_snapshot(&root->root_item))
1436 				goto out_check;
1437 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1438 				goto out_check;
1439 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1440 				goto out_check;
1441 			ret = btrfs_cross_ref_exist(root, ino,
1442 						    found_key.offset -
1443 						    extent_offset, disk_bytenr);
1444 			if (ret) {
1445 				/*
1446 				 * ret could be -EIO if the above fails to read
1447 				 * metadata.
1448 				 */
1449 				if (ret < 0) {
1450 					if (cow_start != (u64)-1)
1451 						cur_offset = cow_start;
1452 					goto error;
1453 				}
1454 
1455 				WARN_ON_ONCE(nolock);
1456 				goto out_check;
1457 			}
1458 			disk_bytenr += extent_offset;
1459 			disk_bytenr += cur_offset - found_key.offset;
1460 			num_bytes = min(end + 1, extent_end) - cur_offset;
1461 			/*
1462 			 * if there are pending snapshots for this root,
1463 			 * we fall into common COW way.
1464 			 */
1465 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1466 				goto out_check;
1467 			/*
1468 			 * force cow if csum exists in the range.
1469 			 * this ensure that csum for a given extent are
1470 			 * either valid or do not exist.
1471 			 */
1472 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1473 						  num_bytes);
1474 			if (ret) {
1475 				/*
1476 				 * ret could be -EIO if the above fails to read
1477 				 * metadata.
1478 				 */
1479 				if (ret < 0) {
1480 					if (cow_start != (u64)-1)
1481 						cur_offset = cow_start;
1482 					goto error;
1483 				}
1484 				WARN_ON_ONCE(nolock);
1485 				goto out_check;
1486 			}
1487 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1488 				goto out_check;
1489 			nocow = 1;
1490 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1491 			extent_end = found_key.offset +
1492 				btrfs_file_extent_ram_bytes(leaf, fi);
1493 			extent_end = ALIGN(extent_end,
1494 					   fs_info->sectorsize);
1495 		} else {
1496 			BUG();
1497 		}
1498 out_check:
1499 		if (extent_end <= start) {
1500 			path->slots[0]++;
1501 			if (nocow)
1502 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1503 			goto next_slot;
1504 		}
1505 		if (!nocow) {
1506 			if (cow_start == (u64)-1)
1507 				cow_start = cur_offset;
1508 			cur_offset = extent_end;
1509 			if (cur_offset > end)
1510 				break;
1511 			path->slots[0]++;
1512 			goto next_slot;
1513 		}
1514 
1515 		btrfs_release_path(path);
1516 		if (cow_start != (u64)-1) {
1517 			ret = cow_file_range(inode, locked_page,
1518 					     cow_start, found_key.offset - 1,
1519 					     end, page_started, nr_written, 1,
1520 					     NULL);
1521 			if (ret) {
1522 				if (nocow)
1523 					btrfs_dec_nocow_writers(fs_info,
1524 								disk_bytenr);
1525 				goto error;
1526 			}
1527 			cow_start = (u64)-1;
1528 		}
1529 
1530 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1531 			u64 orig_start = found_key.offset - extent_offset;
1532 
1533 			em = create_io_em(inode, cur_offset, num_bytes,
1534 					  orig_start,
1535 					  disk_bytenr, /* block_start */
1536 					  num_bytes, /* block_len */
1537 					  disk_num_bytes, /* orig_block_len */
1538 					  ram_bytes, BTRFS_COMPRESS_NONE,
1539 					  BTRFS_ORDERED_PREALLOC);
1540 			if (IS_ERR(em)) {
1541 				if (nocow)
1542 					btrfs_dec_nocow_writers(fs_info,
1543 								disk_bytenr);
1544 				ret = PTR_ERR(em);
1545 				goto error;
1546 			}
1547 			free_extent_map(em);
1548 		}
1549 
1550 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1551 			type = BTRFS_ORDERED_PREALLOC;
1552 		} else {
1553 			type = BTRFS_ORDERED_NOCOW;
1554 		}
1555 
1556 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1557 					       num_bytes, num_bytes, type);
1558 		if (nocow)
1559 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1560 		BUG_ON(ret); /* -ENOMEM */
1561 
1562 		if (root->root_key.objectid ==
1563 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1564 			/*
1565 			 * Error handled later, as we must prevent
1566 			 * extent_clear_unlock_delalloc() in error handler
1567 			 * from freeing metadata of created ordered extent.
1568 			 */
1569 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1570 						      num_bytes);
1571 
1572 		extent_clear_unlock_delalloc(inode, cur_offset,
1573 					     cur_offset + num_bytes - 1, end,
1574 					     locked_page, EXTENT_LOCKED |
1575 					     EXTENT_DELALLOC |
1576 					     EXTENT_CLEAR_DATA_RESV,
1577 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1578 
1579 		cur_offset = extent_end;
1580 
1581 		/*
1582 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1583 		 * handler, as metadata for created ordered extent will only
1584 		 * be freed by btrfs_finish_ordered_io().
1585 		 */
1586 		if (ret)
1587 			goto error;
1588 		if (cur_offset > end)
1589 			break;
1590 	}
1591 	btrfs_release_path(path);
1592 
1593 	if (cur_offset <= end && cow_start == (u64)-1)
1594 		cow_start = cur_offset;
1595 
1596 	if (cow_start != (u64)-1) {
1597 		cur_offset = end;
1598 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1599 				     page_started, nr_written, 1, NULL);
1600 		if (ret)
1601 			goto error;
1602 	}
1603 
1604 error:
1605 	if (ret && cur_offset < end)
1606 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1607 					     locked_page, EXTENT_LOCKED |
1608 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1609 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1610 					     PAGE_CLEAR_DIRTY |
1611 					     PAGE_SET_WRITEBACK |
1612 					     PAGE_END_WRITEBACK);
1613 	btrfs_free_path(path);
1614 	return ret;
1615 }
1616 
1617 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1618 {
1619 
1620 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1621 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1622 		return 0;
1623 
1624 	/*
1625 	 * @defrag_bytes is a hint value, no spinlock held here,
1626 	 * if is not zero, it means the file is defragging.
1627 	 * Force cow if given extent needs to be defragged.
1628 	 */
1629 	if (BTRFS_I(inode)->defrag_bytes &&
1630 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1631 			   EXTENT_DEFRAG, 0, NULL))
1632 		return 1;
1633 
1634 	return 0;
1635 }
1636 
1637 /*
1638  * Function to process delayed allocation (create CoW) for ranges which are
1639  * being touched for the first time.
1640  */
1641 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1642 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1643 		struct writeback_control *wbc)
1644 {
1645 	int ret;
1646 	int force_cow = need_force_cow(inode, start, end);
1647 	unsigned int write_flags = wbc_to_write_flags(wbc);
1648 
1649 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1650 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1651 					 page_started, 1, nr_written);
1652 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1653 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1654 					 page_started, 0, nr_written);
1655 	} else if (!inode_can_compress(inode) ||
1656 		   !inode_need_compress(inode, start, end)) {
1657 		ret = cow_file_range(inode, locked_page, start, end, end,
1658 				      page_started, nr_written, 1, NULL);
1659 	} else {
1660 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1661 			&BTRFS_I(inode)->runtime_flags);
1662 		ret = cow_file_range_async(inode, locked_page, start, end,
1663 					   page_started, nr_written,
1664 					   write_flags);
1665 	}
1666 	if (ret)
1667 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1668 					      end - start + 1);
1669 	return ret;
1670 }
1671 
1672 void btrfs_split_delalloc_extent(struct inode *inode,
1673 				 struct extent_state *orig, u64 split)
1674 {
1675 	u64 size;
1676 
1677 	/* not delalloc, ignore it */
1678 	if (!(orig->state & EXTENT_DELALLOC))
1679 		return;
1680 
1681 	size = orig->end - orig->start + 1;
1682 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1683 		u32 num_extents;
1684 		u64 new_size;
1685 
1686 		/*
1687 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1688 		 * applies here, just in reverse.
1689 		 */
1690 		new_size = orig->end - split + 1;
1691 		num_extents = count_max_extents(new_size);
1692 		new_size = split - orig->start;
1693 		num_extents += count_max_extents(new_size);
1694 		if (count_max_extents(size) >= num_extents)
1695 			return;
1696 	}
1697 
1698 	spin_lock(&BTRFS_I(inode)->lock);
1699 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1700 	spin_unlock(&BTRFS_I(inode)->lock);
1701 }
1702 
1703 /*
1704  * Handle merged delayed allocation extents so we can keep track of new extents
1705  * that are just merged onto old extents, such as when we are doing sequential
1706  * writes, so we can properly account for the metadata space we'll need.
1707  */
1708 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1709 				 struct extent_state *other)
1710 {
1711 	u64 new_size, old_size;
1712 	u32 num_extents;
1713 
1714 	/* not delalloc, ignore it */
1715 	if (!(other->state & EXTENT_DELALLOC))
1716 		return;
1717 
1718 	if (new->start > other->start)
1719 		new_size = new->end - other->start + 1;
1720 	else
1721 		new_size = other->end - new->start + 1;
1722 
1723 	/* we're not bigger than the max, unreserve the space and go */
1724 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1725 		spin_lock(&BTRFS_I(inode)->lock);
1726 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1727 		spin_unlock(&BTRFS_I(inode)->lock);
1728 		return;
1729 	}
1730 
1731 	/*
1732 	 * We have to add up either side to figure out how many extents were
1733 	 * accounted for before we merged into one big extent.  If the number of
1734 	 * extents we accounted for is <= the amount we need for the new range
1735 	 * then we can return, otherwise drop.  Think of it like this
1736 	 *
1737 	 * [ 4k][MAX_SIZE]
1738 	 *
1739 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1740 	 * need 2 outstanding extents, on one side we have 1 and the other side
1741 	 * we have 1 so they are == and we can return.  But in this case
1742 	 *
1743 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1744 	 *
1745 	 * Each range on their own accounts for 2 extents, but merged together
1746 	 * they are only 3 extents worth of accounting, so we need to drop in
1747 	 * this case.
1748 	 */
1749 	old_size = other->end - other->start + 1;
1750 	num_extents = count_max_extents(old_size);
1751 	old_size = new->end - new->start + 1;
1752 	num_extents += count_max_extents(old_size);
1753 	if (count_max_extents(new_size) >= num_extents)
1754 		return;
1755 
1756 	spin_lock(&BTRFS_I(inode)->lock);
1757 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1758 	spin_unlock(&BTRFS_I(inode)->lock);
1759 }
1760 
1761 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1762 				      struct inode *inode)
1763 {
1764 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1765 
1766 	spin_lock(&root->delalloc_lock);
1767 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1768 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1769 			      &root->delalloc_inodes);
1770 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1771 			&BTRFS_I(inode)->runtime_flags);
1772 		root->nr_delalloc_inodes++;
1773 		if (root->nr_delalloc_inodes == 1) {
1774 			spin_lock(&fs_info->delalloc_root_lock);
1775 			BUG_ON(!list_empty(&root->delalloc_root));
1776 			list_add_tail(&root->delalloc_root,
1777 				      &fs_info->delalloc_roots);
1778 			spin_unlock(&fs_info->delalloc_root_lock);
1779 		}
1780 	}
1781 	spin_unlock(&root->delalloc_lock);
1782 }
1783 
1784 
1785 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1786 				struct btrfs_inode *inode)
1787 {
1788 	struct btrfs_fs_info *fs_info = root->fs_info;
1789 
1790 	if (!list_empty(&inode->delalloc_inodes)) {
1791 		list_del_init(&inode->delalloc_inodes);
1792 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1793 			  &inode->runtime_flags);
1794 		root->nr_delalloc_inodes--;
1795 		if (!root->nr_delalloc_inodes) {
1796 			ASSERT(list_empty(&root->delalloc_inodes));
1797 			spin_lock(&fs_info->delalloc_root_lock);
1798 			BUG_ON(list_empty(&root->delalloc_root));
1799 			list_del_init(&root->delalloc_root);
1800 			spin_unlock(&fs_info->delalloc_root_lock);
1801 		}
1802 	}
1803 }
1804 
1805 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1806 				     struct btrfs_inode *inode)
1807 {
1808 	spin_lock(&root->delalloc_lock);
1809 	__btrfs_del_delalloc_inode(root, inode);
1810 	spin_unlock(&root->delalloc_lock);
1811 }
1812 
1813 /*
1814  * Properly track delayed allocation bytes in the inode and to maintain the
1815  * list of inodes that have pending delalloc work to be done.
1816  */
1817 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1818 			       unsigned *bits)
1819 {
1820 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1821 
1822 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1823 		WARN_ON(1);
1824 	/*
1825 	 * set_bit and clear bit hooks normally require _irqsave/restore
1826 	 * but in this case, we are only testing for the DELALLOC
1827 	 * bit, which is only set or cleared with irqs on
1828 	 */
1829 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1830 		struct btrfs_root *root = BTRFS_I(inode)->root;
1831 		u64 len = state->end + 1 - state->start;
1832 		u32 num_extents = count_max_extents(len);
1833 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1834 
1835 		spin_lock(&BTRFS_I(inode)->lock);
1836 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1837 		spin_unlock(&BTRFS_I(inode)->lock);
1838 
1839 		/* For sanity tests */
1840 		if (btrfs_is_testing(fs_info))
1841 			return;
1842 
1843 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1844 					 fs_info->delalloc_batch);
1845 		spin_lock(&BTRFS_I(inode)->lock);
1846 		BTRFS_I(inode)->delalloc_bytes += len;
1847 		if (*bits & EXTENT_DEFRAG)
1848 			BTRFS_I(inode)->defrag_bytes += len;
1849 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1850 					 &BTRFS_I(inode)->runtime_flags))
1851 			btrfs_add_delalloc_inodes(root, inode);
1852 		spin_unlock(&BTRFS_I(inode)->lock);
1853 	}
1854 
1855 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1856 	    (*bits & EXTENT_DELALLOC_NEW)) {
1857 		spin_lock(&BTRFS_I(inode)->lock);
1858 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1859 			state->start;
1860 		spin_unlock(&BTRFS_I(inode)->lock);
1861 	}
1862 }
1863 
1864 /*
1865  * Once a range is no longer delalloc this function ensures that proper
1866  * accounting happens.
1867  */
1868 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1869 				 struct extent_state *state, unsigned *bits)
1870 {
1871 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1872 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1873 	u64 len = state->end + 1 - state->start;
1874 	u32 num_extents = count_max_extents(len);
1875 
1876 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1877 		spin_lock(&inode->lock);
1878 		inode->defrag_bytes -= len;
1879 		spin_unlock(&inode->lock);
1880 	}
1881 
1882 	/*
1883 	 * set_bit and clear bit hooks normally require _irqsave/restore
1884 	 * but in this case, we are only testing for the DELALLOC
1885 	 * bit, which is only set or cleared with irqs on
1886 	 */
1887 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1888 		struct btrfs_root *root = inode->root;
1889 		bool do_list = !btrfs_is_free_space_inode(inode);
1890 
1891 		spin_lock(&inode->lock);
1892 		btrfs_mod_outstanding_extents(inode, -num_extents);
1893 		spin_unlock(&inode->lock);
1894 
1895 		/*
1896 		 * We don't reserve metadata space for space cache inodes so we
1897 		 * don't need to call delalloc_release_metadata if there is an
1898 		 * error.
1899 		 */
1900 		if (*bits & EXTENT_CLEAR_META_RESV &&
1901 		    root != fs_info->tree_root)
1902 			btrfs_delalloc_release_metadata(inode, len, false);
1903 
1904 		/* For sanity tests. */
1905 		if (btrfs_is_testing(fs_info))
1906 			return;
1907 
1908 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1909 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1910 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1911 			btrfs_free_reserved_data_space_noquota(
1912 					&inode->vfs_inode,
1913 					state->start, len);
1914 
1915 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1916 					 fs_info->delalloc_batch);
1917 		spin_lock(&inode->lock);
1918 		inode->delalloc_bytes -= len;
1919 		if (do_list && inode->delalloc_bytes == 0 &&
1920 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1921 					&inode->runtime_flags))
1922 			btrfs_del_delalloc_inode(root, inode);
1923 		spin_unlock(&inode->lock);
1924 	}
1925 
1926 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1927 	    (*bits & EXTENT_DELALLOC_NEW)) {
1928 		spin_lock(&inode->lock);
1929 		ASSERT(inode->new_delalloc_bytes >= len);
1930 		inode->new_delalloc_bytes -= len;
1931 		spin_unlock(&inode->lock);
1932 	}
1933 }
1934 
1935 /*
1936  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1937  * in a chunk's stripe. This function ensures that bios do not span a
1938  * stripe/chunk
1939  *
1940  * @page - The page we are about to add to the bio
1941  * @size - size we want to add to the bio
1942  * @bio - bio we want to ensure is smaller than a stripe
1943  * @bio_flags - flags of the bio
1944  *
1945  * return 1 if page cannot be added to the bio
1946  * return 0 if page can be added to the bio
1947  * return error otherwise
1948  */
1949 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1950 			     unsigned long bio_flags)
1951 {
1952 	struct inode *inode = page->mapping->host;
1953 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1954 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1955 	u64 length = 0;
1956 	u64 map_length;
1957 	int ret;
1958 	struct btrfs_io_geometry geom;
1959 
1960 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1961 		return 0;
1962 
1963 	length = bio->bi_iter.bi_size;
1964 	map_length = length;
1965 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
1966 				    &geom);
1967 	if (ret < 0)
1968 		return ret;
1969 
1970 	if (geom.len < length + size)
1971 		return 1;
1972 	return 0;
1973 }
1974 
1975 /*
1976  * in order to insert checksums into the metadata in large chunks,
1977  * we wait until bio submission time.   All the pages in the bio are
1978  * checksummed and sums are attached onto the ordered extent record.
1979  *
1980  * At IO completion time the cums attached on the ordered extent record
1981  * are inserted into the btree
1982  */
1983 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1984 				    u64 bio_offset)
1985 {
1986 	struct inode *inode = private_data;
1987 	blk_status_t ret = 0;
1988 
1989 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1990 	BUG_ON(ret); /* -ENOMEM */
1991 	return 0;
1992 }
1993 
1994 /*
1995  * extent_io.c submission hook. This does the right thing for csum calculation
1996  * on write, or reading the csums from the tree before a read.
1997  *
1998  * Rules about async/sync submit,
1999  * a) read:				sync submit
2000  *
2001  * b) write without checksum:		sync submit
2002  *
2003  * c) write with checksum:
2004  *    c-1) if bio is issued by fsync:	sync submit
2005  *         (sync_writers != 0)
2006  *
2007  *    c-2) if root is reloc root:	sync submit
2008  *         (only in case of buffered IO)
2009  *
2010  *    c-3) otherwise:			async submit
2011  */
2012 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2013 					  int mirror_num,
2014 					  unsigned long bio_flags)
2015 
2016 {
2017 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2018 	struct btrfs_root *root = BTRFS_I(inode)->root;
2019 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2020 	blk_status_t ret = 0;
2021 	int skip_sum;
2022 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2023 
2024 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2025 
2026 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2027 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2028 
2029 	if (bio_op(bio) != REQ_OP_WRITE) {
2030 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2031 		if (ret)
2032 			goto out;
2033 
2034 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2035 			ret = btrfs_submit_compressed_read(inode, bio,
2036 							   mirror_num,
2037 							   bio_flags);
2038 			goto out;
2039 		} else if (!skip_sum) {
2040 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2041 			if (ret)
2042 				goto out;
2043 		}
2044 		goto mapit;
2045 	} else if (async && !skip_sum) {
2046 		/* csum items have already been cloned */
2047 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2048 			goto mapit;
2049 		/* we're doing a write, do the async checksumming */
2050 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2051 					  0, inode, btrfs_submit_bio_start);
2052 		goto out;
2053 	} else if (!skip_sum) {
2054 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2055 		if (ret)
2056 			goto out;
2057 	}
2058 
2059 mapit:
2060 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2061 
2062 out:
2063 	if (ret) {
2064 		bio->bi_status = ret;
2065 		bio_endio(bio);
2066 	}
2067 	return ret;
2068 }
2069 
2070 /*
2071  * given a list of ordered sums record them in the inode.  This happens
2072  * at IO completion time based on sums calculated at bio submission time.
2073  */
2074 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2075 			     struct inode *inode, struct list_head *list)
2076 {
2077 	struct btrfs_ordered_sum *sum;
2078 	int ret;
2079 
2080 	list_for_each_entry(sum, list, list) {
2081 		trans->adding_csums = true;
2082 		ret = btrfs_csum_file_blocks(trans,
2083 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2084 		trans->adding_csums = false;
2085 		if (ret)
2086 			return ret;
2087 	}
2088 	return 0;
2089 }
2090 
2091 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2092 			      unsigned int extra_bits,
2093 			      struct extent_state **cached_state, int dedupe)
2094 {
2095 	WARN_ON(PAGE_ALIGNED(end));
2096 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2097 				   extra_bits, cached_state);
2098 }
2099 
2100 /* see btrfs_writepage_start_hook for details on why this is required */
2101 struct btrfs_writepage_fixup {
2102 	struct page *page;
2103 	struct btrfs_work work;
2104 };
2105 
2106 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2107 {
2108 	struct btrfs_writepage_fixup *fixup;
2109 	struct btrfs_ordered_extent *ordered;
2110 	struct extent_state *cached_state = NULL;
2111 	struct extent_changeset *data_reserved = NULL;
2112 	struct page *page;
2113 	struct inode *inode;
2114 	u64 page_start;
2115 	u64 page_end;
2116 	int ret;
2117 
2118 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2119 	page = fixup->page;
2120 again:
2121 	lock_page(page);
2122 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2123 		ClearPageChecked(page);
2124 		goto out_page;
2125 	}
2126 
2127 	inode = page->mapping->host;
2128 	page_start = page_offset(page);
2129 	page_end = page_offset(page) + PAGE_SIZE - 1;
2130 
2131 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2132 			 &cached_state);
2133 
2134 	/* already ordered? We're done */
2135 	if (PagePrivate2(page))
2136 		goto out;
2137 
2138 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2139 					PAGE_SIZE);
2140 	if (ordered) {
2141 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2142 				     page_end, &cached_state);
2143 		unlock_page(page);
2144 		btrfs_start_ordered_extent(inode, ordered, 1);
2145 		btrfs_put_ordered_extent(ordered);
2146 		goto again;
2147 	}
2148 
2149 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2150 					   PAGE_SIZE);
2151 	if (ret) {
2152 		mapping_set_error(page->mapping, ret);
2153 		end_extent_writepage(page, ret, page_start, page_end);
2154 		ClearPageChecked(page);
2155 		goto out;
2156 	 }
2157 
2158 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2159 					&cached_state, 0);
2160 	if (ret) {
2161 		mapping_set_error(page->mapping, ret);
2162 		end_extent_writepage(page, ret, page_start, page_end);
2163 		ClearPageChecked(page);
2164 		goto out;
2165 	}
2166 
2167 	ClearPageChecked(page);
2168 	set_page_dirty(page);
2169 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2170 out:
2171 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2172 			     &cached_state);
2173 out_page:
2174 	unlock_page(page);
2175 	put_page(page);
2176 	kfree(fixup);
2177 	extent_changeset_free(data_reserved);
2178 }
2179 
2180 /*
2181  * There are a few paths in the higher layers of the kernel that directly
2182  * set the page dirty bit without asking the filesystem if it is a
2183  * good idea.  This causes problems because we want to make sure COW
2184  * properly happens and the data=ordered rules are followed.
2185  *
2186  * In our case any range that doesn't have the ORDERED bit set
2187  * hasn't been properly setup for IO.  We kick off an async process
2188  * to fix it up.  The async helper will wait for ordered extents, set
2189  * the delalloc bit and make it safe to write the page.
2190  */
2191 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2192 {
2193 	struct inode *inode = page->mapping->host;
2194 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2195 	struct btrfs_writepage_fixup *fixup;
2196 
2197 	/* this page is properly in the ordered list */
2198 	if (TestClearPagePrivate2(page))
2199 		return 0;
2200 
2201 	if (PageChecked(page))
2202 		return -EAGAIN;
2203 
2204 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2205 	if (!fixup)
2206 		return -EAGAIN;
2207 
2208 	SetPageChecked(page);
2209 	get_page(page);
2210 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2211 			btrfs_writepage_fixup_worker, NULL, NULL);
2212 	fixup->page = page;
2213 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2214 	return -EBUSY;
2215 }
2216 
2217 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2218 				       struct inode *inode, u64 file_pos,
2219 				       u64 disk_bytenr, u64 disk_num_bytes,
2220 				       u64 num_bytes, u64 ram_bytes,
2221 				       u8 compression, u8 encryption,
2222 				       u16 other_encoding, int extent_type)
2223 {
2224 	struct btrfs_root *root = BTRFS_I(inode)->root;
2225 	struct btrfs_file_extent_item *fi;
2226 	struct btrfs_path *path;
2227 	struct extent_buffer *leaf;
2228 	struct btrfs_key ins;
2229 	u64 qg_released;
2230 	int extent_inserted = 0;
2231 	int ret;
2232 
2233 	path = btrfs_alloc_path();
2234 	if (!path)
2235 		return -ENOMEM;
2236 
2237 	/*
2238 	 * we may be replacing one extent in the tree with another.
2239 	 * The new extent is pinned in the extent map, and we don't want
2240 	 * to drop it from the cache until it is completely in the btree.
2241 	 *
2242 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2243 	 * the caller is expected to unpin it and allow it to be merged
2244 	 * with the others.
2245 	 */
2246 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2247 				   file_pos + num_bytes, NULL, 0,
2248 				   1, sizeof(*fi), &extent_inserted);
2249 	if (ret)
2250 		goto out;
2251 
2252 	if (!extent_inserted) {
2253 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2254 		ins.offset = file_pos;
2255 		ins.type = BTRFS_EXTENT_DATA_KEY;
2256 
2257 		path->leave_spinning = 1;
2258 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2259 					      sizeof(*fi));
2260 		if (ret)
2261 			goto out;
2262 	}
2263 	leaf = path->nodes[0];
2264 	fi = btrfs_item_ptr(leaf, path->slots[0],
2265 			    struct btrfs_file_extent_item);
2266 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2267 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2268 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2269 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2270 	btrfs_set_file_extent_offset(leaf, fi, 0);
2271 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2272 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2273 	btrfs_set_file_extent_compression(leaf, fi, compression);
2274 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2275 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2276 
2277 	btrfs_mark_buffer_dirty(leaf);
2278 	btrfs_release_path(path);
2279 
2280 	inode_add_bytes(inode, num_bytes);
2281 
2282 	ins.objectid = disk_bytenr;
2283 	ins.offset = disk_num_bytes;
2284 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 
2286 	/*
2287 	 * Release the reserved range from inode dirty range map, as it is
2288 	 * already moved into delayed_ref_head
2289 	 */
2290 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2291 	if (ret < 0)
2292 		goto out;
2293 	qg_released = ret;
2294 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2295 					       btrfs_ino(BTRFS_I(inode)),
2296 					       file_pos, qg_released, &ins);
2297 out:
2298 	btrfs_free_path(path);
2299 
2300 	return ret;
2301 }
2302 
2303 /* snapshot-aware defrag */
2304 struct sa_defrag_extent_backref {
2305 	struct rb_node node;
2306 	struct old_sa_defrag_extent *old;
2307 	u64 root_id;
2308 	u64 inum;
2309 	u64 file_pos;
2310 	u64 extent_offset;
2311 	u64 num_bytes;
2312 	u64 generation;
2313 };
2314 
2315 struct old_sa_defrag_extent {
2316 	struct list_head list;
2317 	struct new_sa_defrag_extent *new;
2318 
2319 	u64 extent_offset;
2320 	u64 bytenr;
2321 	u64 offset;
2322 	u64 len;
2323 	int count;
2324 };
2325 
2326 struct new_sa_defrag_extent {
2327 	struct rb_root root;
2328 	struct list_head head;
2329 	struct btrfs_path *path;
2330 	struct inode *inode;
2331 	u64 file_pos;
2332 	u64 len;
2333 	u64 bytenr;
2334 	u64 disk_len;
2335 	u8 compress_type;
2336 };
2337 
2338 static int backref_comp(struct sa_defrag_extent_backref *b1,
2339 			struct sa_defrag_extent_backref *b2)
2340 {
2341 	if (b1->root_id < b2->root_id)
2342 		return -1;
2343 	else if (b1->root_id > b2->root_id)
2344 		return 1;
2345 
2346 	if (b1->inum < b2->inum)
2347 		return -1;
2348 	else if (b1->inum > b2->inum)
2349 		return 1;
2350 
2351 	if (b1->file_pos < b2->file_pos)
2352 		return -1;
2353 	else if (b1->file_pos > b2->file_pos)
2354 		return 1;
2355 
2356 	/*
2357 	 * [------------------------------] ===> (a range of space)
2358 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2359 	 * |<---------------------------->| ===> (fs/file tree B)
2360 	 *
2361 	 * A range of space can refer to two file extents in one tree while
2362 	 * refer to only one file extent in another tree.
2363 	 *
2364 	 * So we may process a disk offset more than one time(two extents in A)
2365 	 * and locate at the same extent(one extent in B), then insert two same
2366 	 * backrefs(both refer to the extent in B).
2367 	 */
2368 	return 0;
2369 }
2370 
2371 static void backref_insert(struct rb_root *root,
2372 			   struct sa_defrag_extent_backref *backref)
2373 {
2374 	struct rb_node **p = &root->rb_node;
2375 	struct rb_node *parent = NULL;
2376 	struct sa_defrag_extent_backref *entry;
2377 	int ret;
2378 
2379 	while (*p) {
2380 		parent = *p;
2381 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2382 
2383 		ret = backref_comp(backref, entry);
2384 		if (ret < 0)
2385 			p = &(*p)->rb_left;
2386 		else
2387 			p = &(*p)->rb_right;
2388 	}
2389 
2390 	rb_link_node(&backref->node, parent, p);
2391 	rb_insert_color(&backref->node, root);
2392 }
2393 
2394 /*
2395  * Note the backref might has changed, and in this case we just return 0.
2396  */
2397 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2398 				       void *ctx)
2399 {
2400 	struct btrfs_file_extent_item *extent;
2401 	struct old_sa_defrag_extent *old = ctx;
2402 	struct new_sa_defrag_extent *new = old->new;
2403 	struct btrfs_path *path = new->path;
2404 	struct btrfs_key key;
2405 	struct btrfs_root *root;
2406 	struct sa_defrag_extent_backref *backref;
2407 	struct extent_buffer *leaf;
2408 	struct inode *inode = new->inode;
2409 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2410 	int slot;
2411 	int ret;
2412 	u64 extent_offset;
2413 	u64 num_bytes;
2414 
2415 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2416 	    inum == btrfs_ino(BTRFS_I(inode)))
2417 		return 0;
2418 
2419 	key.objectid = root_id;
2420 	key.type = BTRFS_ROOT_ITEM_KEY;
2421 	key.offset = (u64)-1;
2422 
2423 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2424 	if (IS_ERR(root)) {
2425 		if (PTR_ERR(root) == -ENOENT)
2426 			return 0;
2427 		WARN_ON(1);
2428 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2429 			 inum, offset, root_id);
2430 		return PTR_ERR(root);
2431 	}
2432 
2433 	key.objectid = inum;
2434 	key.type = BTRFS_EXTENT_DATA_KEY;
2435 	if (offset > (u64)-1 << 32)
2436 		key.offset = 0;
2437 	else
2438 		key.offset = offset;
2439 
2440 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2441 	if (WARN_ON(ret < 0))
2442 		return ret;
2443 	ret = 0;
2444 
2445 	while (1) {
2446 		cond_resched();
2447 
2448 		leaf = path->nodes[0];
2449 		slot = path->slots[0];
2450 
2451 		if (slot >= btrfs_header_nritems(leaf)) {
2452 			ret = btrfs_next_leaf(root, path);
2453 			if (ret < 0) {
2454 				goto out;
2455 			} else if (ret > 0) {
2456 				ret = 0;
2457 				goto out;
2458 			}
2459 			continue;
2460 		}
2461 
2462 		path->slots[0]++;
2463 
2464 		btrfs_item_key_to_cpu(leaf, &key, slot);
2465 
2466 		if (key.objectid > inum)
2467 			goto out;
2468 
2469 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2470 			continue;
2471 
2472 		extent = btrfs_item_ptr(leaf, slot,
2473 					struct btrfs_file_extent_item);
2474 
2475 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2476 			continue;
2477 
2478 		/*
2479 		 * 'offset' refers to the exact key.offset,
2480 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2481 		 * (key.offset - extent_offset).
2482 		 */
2483 		if (key.offset != offset)
2484 			continue;
2485 
2486 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2487 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2488 
2489 		if (extent_offset >= old->extent_offset + old->offset +
2490 		    old->len || extent_offset + num_bytes <=
2491 		    old->extent_offset + old->offset)
2492 			continue;
2493 		break;
2494 	}
2495 
2496 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2497 	if (!backref) {
2498 		ret = -ENOENT;
2499 		goto out;
2500 	}
2501 
2502 	backref->root_id = root_id;
2503 	backref->inum = inum;
2504 	backref->file_pos = offset;
2505 	backref->num_bytes = num_bytes;
2506 	backref->extent_offset = extent_offset;
2507 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2508 	backref->old = old;
2509 	backref_insert(&new->root, backref);
2510 	old->count++;
2511 out:
2512 	btrfs_release_path(path);
2513 	WARN_ON(ret);
2514 	return ret;
2515 }
2516 
2517 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2518 				   struct new_sa_defrag_extent *new)
2519 {
2520 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2521 	struct old_sa_defrag_extent *old, *tmp;
2522 	int ret;
2523 
2524 	new->path = path;
2525 
2526 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2527 		ret = iterate_inodes_from_logical(old->bytenr +
2528 						  old->extent_offset, fs_info,
2529 						  path, record_one_backref,
2530 						  old, false);
2531 		if (ret < 0 && ret != -ENOENT)
2532 			return false;
2533 
2534 		/* no backref to be processed for this extent */
2535 		if (!old->count) {
2536 			list_del(&old->list);
2537 			kfree(old);
2538 		}
2539 	}
2540 
2541 	if (list_empty(&new->head))
2542 		return false;
2543 
2544 	return true;
2545 }
2546 
2547 static int relink_is_mergable(struct extent_buffer *leaf,
2548 			      struct btrfs_file_extent_item *fi,
2549 			      struct new_sa_defrag_extent *new)
2550 {
2551 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2552 		return 0;
2553 
2554 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2555 		return 0;
2556 
2557 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2558 		return 0;
2559 
2560 	if (btrfs_file_extent_encryption(leaf, fi) ||
2561 	    btrfs_file_extent_other_encoding(leaf, fi))
2562 		return 0;
2563 
2564 	return 1;
2565 }
2566 
2567 /*
2568  * Note the backref might has changed, and in this case we just return 0.
2569  */
2570 static noinline int relink_extent_backref(struct btrfs_path *path,
2571 				 struct sa_defrag_extent_backref *prev,
2572 				 struct sa_defrag_extent_backref *backref)
2573 {
2574 	struct btrfs_file_extent_item *extent;
2575 	struct btrfs_file_extent_item *item;
2576 	struct btrfs_ordered_extent *ordered;
2577 	struct btrfs_trans_handle *trans;
2578 	struct btrfs_ref ref = { 0 };
2579 	struct btrfs_root *root;
2580 	struct btrfs_key key;
2581 	struct extent_buffer *leaf;
2582 	struct old_sa_defrag_extent *old = backref->old;
2583 	struct new_sa_defrag_extent *new = old->new;
2584 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2585 	struct inode *inode;
2586 	struct extent_state *cached = NULL;
2587 	int ret = 0;
2588 	u64 start;
2589 	u64 len;
2590 	u64 lock_start;
2591 	u64 lock_end;
2592 	bool merge = false;
2593 	int index;
2594 
2595 	if (prev && prev->root_id == backref->root_id &&
2596 	    prev->inum == backref->inum &&
2597 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2598 		merge = true;
2599 
2600 	/* step 1: get root */
2601 	key.objectid = backref->root_id;
2602 	key.type = BTRFS_ROOT_ITEM_KEY;
2603 	key.offset = (u64)-1;
2604 
2605 	index = srcu_read_lock(&fs_info->subvol_srcu);
2606 
2607 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2608 	if (IS_ERR(root)) {
2609 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2610 		if (PTR_ERR(root) == -ENOENT)
2611 			return 0;
2612 		return PTR_ERR(root);
2613 	}
2614 
2615 	if (btrfs_root_readonly(root)) {
2616 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2617 		return 0;
2618 	}
2619 
2620 	/* step 2: get inode */
2621 	key.objectid = backref->inum;
2622 	key.type = BTRFS_INODE_ITEM_KEY;
2623 	key.offset = 0;
2624 
2625 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2626 	if (IS_ERR(inode)) {
2627 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2628 		return 0;
2629 	}
2630 
2631 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2632 
2633 	/* step 3: relink backref */
2634 	lock_start = backref->file_pos;
2635 	lock_end = backref->file_pos + backref->num_bytes - 1;
2636 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2637 			 &cached);
2638 
2639 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2640 	if (ordered) {
2641 		btrfs_put_ordered_extent(ordered);
2642 		goto out_unlock;
2643 	}
2644 
2645 	trans = btrfs_join_transaction(root);
2646 	if (IS_ERR(trans)) {
2647 		ret = PTR_ERR(trans);
2648 		goto out_unlock;
2649 	}
2650 
2651 	key.objectid = backref->inum;
2652 	key.type = BTRFS_EXTENT_DATA_KEY;
2653 	key.offset = backref->file_pos;
2654 
2655 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2656 	if (ret < 0) {
2657 		goto out_free_path;
2658 	} else if (ret > 0) {
2659 		ret = 0;
2660 		goto out_free_path;
2661 	}
2662 
2663 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2664 				struct btrfs_file_extent_item);
2665 
2666 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2667 	    backref->generation)
2668 		goto out_free_path;
2669 
2670 	btrfs_release_path(path);
2671 
2672 	start = backref->file_pos;
2673 	if (backref->extent_offset < old->extent_offset + old->offset)
2674 		start += old->extent_offset + old->offset -
2675 			 backref->extent_offset;
2676 
2677 	len = min(backref->extent_offset + backref->num_bytes,
2678 		  old->extent_offset + old->offset + old->len);
2679 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2680 
2681 	ret = btrfs_drop_extents(trans, root, inode, start,
2682 				 start + len, 1);
2683 	if (ret)
2684 		goto out_free_path;
2685 again:
2686 	key.objectid = btrfs_ino(BTRFS_I(inode));
2687 	key.type = BTRFS_EXTENT_DATA_KEY;
2688 	key.offset = start;
2689 
2690 	path->leave_spinning = 1;
2691 	if (merge) {
2692 		struct btrfs_file_extent_item *fi;
2693 		u64 extent_len;
2694 		struct btrfs_key found_key;
2695 
2696 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2697 		if (ret < 0)
2698 			goto out_free_path;
2699 
2700 		path->slots[0]--;
2701 		leaf = path->nodes[0];
2702 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2703 
2704 		fi = btrfs_item_ptr(leaf, path->slots[0],
2705 				    struct btrfs_file_extent_item);
2706 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2707 
2708 		if (extent_len + found_key.offset == start &&
2709 		    relink_is_mergable(leaf, fi, new)) {
2710 			btrfs_set_file_extent_num_bytes(leaf, fi,
2711 							extent_len + len);
2712 			btrfs_mark_buffer_dirty(leaf);
2713 			inode_add_bytes(inode, len);
2714 
2715 			ret = 1;
2716 			goto out_free_path;
2717 		} else {
2718 			merge = false;
2719 			btrfs_release_path(path);
2720 			goto again;
2721 		}
2722 	}
2723 
2724 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2725 					sizeof(*extent));
2726 	if (ret) {
2727 		btrfs_abort_transaction(trans, ret);
2728 		goto out_free_path;
2729 	}
2730 
2731 	leaf = path->nodes[0];
2732 	item = btrfs_item_ptr(leaf, path->slots[0],
2733 				struct btrfs_file_extent_item);
2734 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2735 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2736 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2737 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2738 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2739 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2740 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2741 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2742 	btrfs_set_file_extent_encryption(leaf, item, 0);
2743 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2744 
2745 	btrfs_mark_buffer_dirty(leaf);
2746 	inode_add_bytes(inode, len);
2747 	btrfs_release_path(path);
2748 
2749 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2750 			       new->disk_len, 0);
2751 	btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2752 			    new->file_pos);  /* start - extent_offset */
2753 	ret = btrfs_inc_extent_ref(trans, &ref);
2754 	if (ret) {
2755 		btrfs_abort_transaction(trans, ret);
2756 		goto out_free_path;
2757 	}
2758 
2759 	ret = 1;
2760 out_free_path:
2761 	btrfs_release_path(path);
2762 	path->leave_spinning = 0;
2763 	btrfs_end_transaction(trans);
2764 out_unlock:
2765 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2766 			     &cached);
2767 	iput(inode);
2768 	return ret;
2769 }
2770 
2771 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2772 {
2773 	struct old_sa_defrag_extent *old, *tmp;
2774 
2775 	if (!new)
2776 		return;
2777 
2778 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2779 		kfree(old);
2780 	}
2781 	kfree(new);
2782 }
2783 
2784 static void relink_file_extents(struct new_sa_defrag_extent *new)
2785 {
2786 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2787 	struct btrfs_path *path;
2788 	struct sa_defrag_extent_backref *backref;
2789 	struct sa_defrag_extent_backref *prev = NULL;
2790 	struct rb_node *node;
2791 	int ret;
2792 
2793 	path = btrfs_alloc_path();
2794 	if (!path)
2795 		return;
2796 
2797 	if (!record_extent_backrefs(path, new)) {
2798 		btrfs_free_path(path);
2799 		goto out;
2800 	}
2801 	btrfs_release_path(path);
2802 
2803 	while (1) {
2804 		node = rb_first(&new->root);
2805 		if (!node)
2806 			break;
2807 		rb_erase(node, &new->root);
2808 
2809 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2810 
2811 		ret = relink_extent_backref(path, prev, backref);
2812 		WARN_ON(ret < 0);
2813 
2814 		kfree(prev);
2815 
2816 		if (ret == 1)
2817 			prev = backref;
2818 		else
2819 			prev = NULL;
2820 		cond_resched();
2821 	}
2822 	kfree(prev);
2823 
2824 	btrfs_free_path(path);
2825 out:
2826 	free_sa_defrag_extent(new);
2827 
2828 	atomic_dec(&fs_info->defrag_running);
2829 	wake_up(&fs_info->transaction_wait);
2830 }
2831 
2832 static struct new_sa_defrag_extent *
2833 record_old_file_extents(struct inode *inode,
2834 			struct btrfs_ordered_extent *ordered)
2835 {
2836 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2837 	struct btrfs_root *root = BTRFS_I(inode)->root;
2838 	struct btrfs_path *path;
2839 	struct btrfs_key key;
2840 	struct old_sa_defrag_extent *old;
2841 	struct new_sa_defrag_extent *new;
2842 	int ret;
2843 
2844 	new = kmalloc(sizeof(*new), GFP_NOFS);
2845 	if (!new)
2846 		return NULL;
2847 
2848 	new->inode = inode;
2849 	new->file_pos = ordered->file_offset;
2850 	new->len = ordered->len;
2851 	new->bytenr = ordered->start;
2852 	new->disk_len = ordered->disk_len;
2853 	new->compress_type = ordered->compress_type;
2854 	new->root = RB_ROOT;
2855 	INIT_LIST_HEAD(&new->head);
2856 
2857 	path = btrfs_alloc_path();
2858 	if (!path)
2859 		goto out_kfree;
2860 
2861 	key.objectid = btrfs_ino(BTRFS_I(inode));
2862 	key.type = BTRFS_EXTENT_DATA_KEY;
2863 	key.offset = new->file_pos;
2864 
2865 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2866 	if (ret < 0)
2867 		goto out_free_path;
2868 	if (ret > 0 && path->slots[0] > 0)
2869 		path->slots[0]--;
2870 
2871 	/* find out all the old extents for the file range */
2872 	while (1) {
2873 		struct btrfs_file_extent_item *extent;
2874 		struct extent_buffer *l;
2875 		int slot;
2876 		u64 num_bytes;
2877 		u64 offset;
2878 		u64 end;
2879 		u64 disk_bytenr;
2880 		u64 extent_offset;
2881 
2882 		l = path->nodes[0];
2883 		slot = path->slots[0];
2884 
2885 		if (slot >= btrfs_header_nritems(l)) {
2886 			ret = btrfs_next_leaf(root, path);
2887 			if (ret < 0)
2888 				goto out_free_path;
2889 			else if (ret > 0)
2890 				break;
2891 			continue;
2892 		}
2893 
2894 		btrfs_item_key_to_cpu(l, &key, slot);
2895 
2896 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2897 			break;
2898 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2899 			break;
2900 		if (key.offset >= new->file_pos + new->len)
2901 			break;
2902 
2903 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2904 
2905 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2906 		if (key.offset + num_bytes < new->file_pos)
2907 			goto next;
2908 
2909 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2910 		if (!disk_bytenr)
2911 			goto next;
2912 
2913 		extent_offset = btrfs_file_extent_offset(l, extent);
2914 
2915 		old = kmalloc(sizeof(*old), GFP_NOFS);
2916 		if (!old)
2917 			goto out_free_path;
2918 
2919 		offset = max(new->file_pos, key.offset);
2920 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2921 
2922 		old->bytenr = disk_bytenr;
2923 		old->extent_offset = extent_offset;
2924 		old->offset = offset - key.offset;
2925 		old->len = end - offset;
2926 		old->new = new;
2927 		old->count = 0;
2928 		list_add_tail(&old->list, &new->head);
2929 next:
2930 		path->slots[0]++;
2931 		cond_resched();
2932 	}
2933 
2934 	btrfs_free_path(path);
2935 	atomic_inc(&fs_info->defrag_running);
2936 
2937 	return new;
2938 
2939 out_free_path:
2940 	btrfs_free_path(path);
2941 out_kfree:
2942 	free_sa_defrag_extent(new);
2943 	return NULL;
2944 }
2945 
2946 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2947 					 u64 start, u64 len)
2948 {
2949 	struct btrfs_block_group_cache *cache;
2950 
2951 	cache = btrfs_lookup_block_group(fs_info, start);
2952 	ASSERT(cache);
2953 
2954 	spin_lock(&cache->lock);
2955 	cache->delalloc_bytes -= len;
2956 	spin_unlock(&cache->lock);
2957 
2958 	btrfs_put_block_group(cache);
2959 }
2960 
2961 /* as ordered data IO finishes, this gets called so we can finish
2962  * an ordered extent if the range of bytes in the file it covers are
2963  * fully written.
2964  */
2965 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2966 {
2967 	struct inode *inode = ordered_extent->inode;
2968 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2969 	struct btrfs_root *root = BTRFS_I(inode)->root;
2970 	struct btrfs_trans_handle *trans = NULL;
2971 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2972 	struct extent_state *cached_state = NULL;
2973 	struct new_sa_defrag_extent *new = NULL;
2974 	int compress_type = 0;
2975 	int ret = 0;
2976 	u64 logical_len = ordered_extent->len;
2977 	bool nolock;
2978 	bool truncated = false;
2979 	bool range_locked = false;
2980 	bool clear_new_delalloc_bytes = false;
2981 	bool clear_reserved_extent = true;
2982 
2983 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2984 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2985 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2986 		clear_new_delalloc_bytes = true;
2987 
2988 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2989 
2990 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2991 		ret = -EIO;
2992 		goto out;
2993 	}
2994 
2995 	btrfs_free_io_failure_record(BTRFS_I(inode),
2996 			ordered_extent->file_offset,
2997 			ordered_extent->file_offset +
2998 			ordered_extent->len - 1);
2999 
3000 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3001 		truncated = true;
3002 		logical_len = ordered_extent->truncated_len;
3003 		/* Truncated the entire extent, don't bother adding */
3004 		if (!logical_len)
3005 			goto out;
3006 	}
3007 
3008 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3009 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3010 
3011 		/*
3012 		 * For mwrite(mmap + memset to write) case, we still reserve
3013 		 * space for NOCOW range.
3014 		 * As NOCOW won't cause a new delayed ref, just free the space
3015 		 */
3016 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3017 				       ordered_extent->len);
3018 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3019 		if (nolock)
3020 			trans = btrfs_join_transaction_nolock(root);
3021 		else
3022 			trans = btrfs_join_transaction(root);
3023 		if (IS_ERR(trans)) {
3024 			ret = PTR_ERR(trans);
3025 			trans = NULL;
3026 			goto out;
3027 		}
3028 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3029 		ret = btrfs_update_inode_fallback(trans, root, inode);
3030 		if (ret) /* -ENOMEM or corruption */
3031 			btrfs_abort_transaction(trans, ret);
3032 		goto out;
3033 	}
3034 
3035 	range_locked = true;
3036 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3037 			 ordered_extent->file_offset + ordered_extent->len - 1,
3038 			 &cached_state);
3039 
3040 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3041 			ordered_extent->file_offset + ordered_extent->len - 1,
3042 			EXTENT_DEFRAG, 0, cached_state);
3043 	if (ret) {
3044 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3045 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3046 			/* the inode is shared */
3047 			new = record_old_file_extents(inode, ordered_extent);
3048 
3049 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3050 			ordered_extent->file_offset + ordered_extent->len - 1,
3051 			EXTENT_DEFRAG, 0, 0, &cached_state);
3052 	}
3053 
3054 	if (nolock)
3055 		trans = btrfs_join_transaction_nolock(root);
3056 	else
3057 		trans = btrfs_join_transaction(root);
3058 	if (IS_ERR(trans)) {
3059 		ret = PTR_ERR(trans);
3060 		trans = NULL;
3061 		goto out;
3062 	}
3063 
3064 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3065 
3066 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3067 		compress_type = ordered_extent->compress_type;
3068 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3069 		BUG_ON(compress_type);
3070 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3071 				       ordered_extent->len);
3072 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3073 						ordered_extent->file_offset,
3074 						ordered_extent->file_offset +
3075 						logical_len);
3076 	} else {
3077 		BUG_ON(root == fs_info->tree_root);
3078 		ret = insert_reserved_file_extent(trans, inode,
3079 						ordered_extent->file_offset,
3080 						ordered_extent->start,
3081 						ordered_extent->disk_len,
3082 						logical_len, logical_len,
3083 						compress_type, 0, 0,
3084 						BTRFS_FILE_EXTENT_REG);
3085 		if (!ret) {
3086 			clear_reserved_extent = false;
3087 			btrfs_release_delalloc_bytes(fs_info,
3088 						     ordered_extent->start,
3089 						     ordered_extent->disk_len);
3090 		}
3091 	}
3092 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3093 			   ordered_extent->file_offset, ordered_extent->len,
3094 			   trans->transid);
3095 	if (ret < 0) {
3096 		btrfs_abort_transaction(trans, ret);
3097 		goto out;
3098 	}
3099 
3100 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3101 	if (ret) {
3102 		btrfs_abort_transaction(trans, ret);
3103 		goto out;
3104 	}
3105 
3106 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3107 	ret = btrfs_update_inode_fallback(trans, root, inode);
3108 	if (ret) { /* -ENOMEM or corruption */
3109 		btrfs_abort_transaction(trans, ret);
3110 		goto out;
3111 	}
3112 	ret = 0;
3113 out:
3114 	if (range_locked || clear_new_delalloc_bytes) {
3115 		unsigned int clear_bits = 0;
3116 
3117 		if (range_locked)
3118 			clear_bits |= EXTENT_LOCKED;
3119 		if (clear_new_delalloc_bytes)
3120 			clear_bits |= EXTENT_DELALLOC_NEW;
3121 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3122 				 ordered_extent->file_offset,
3123 				 ordered_extent->file_offset +
3124 				 ordered_extent->len - 1,
3125 				 clear_bits,
3126 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3127 				 0, &cached_state);
3128 	}
3129 
3130 	if (trans)
3131 		btrfs_end_transaction(trans);
3132 
3133 	if (ret || truncated) {
3134 		u64 start, end;
3135 
3136 		if (truncated)
3137 			start = ordered_extent->file_offset + logical_len;
3138 		else
3139 			start = ordered_extent->file_offset;
3140 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3141 		clear_extent_uptodate(io_tree, start, end, NULL);
3142 
3143 		/* Drop the cache for the part of the extent we didn't write. */
3144 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3145 
3146 		/*
3147 		 * If the ordered extent had an IOERR or something else went
3148 		 * wrong we need to return the space for this ordered extent
3149 		 * back to the allocator.  We only free the extent in the
3150 		 * truncated case if we didn't write out the extent at all.
3151 		 *
3152 		 * If we made it past insert_reserved_file_extent before we
3153 		 * errored out then we don't need to do this as the accounting
3154 		 * has already been done.
3155 		 */
3156 		if ((ret || !logical_len) &&
3157 		    clear_reserved_extent &&
3158 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3159 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3160 			btrfs_free_reserved_extent(fs_info,
3161 						   ordered_extent->start,
3162 						   ordered_extent->disk_len, 1);
3163 	}
3164 
3165 
3166 	/*
3167 	 * This needs to be done to make sure anybody waiting knows we are done
3168 	 * updating everything for this ordered extent.
3169 	 */
3170 	btrfs_remove_ordered_extent(inode, ordered_extent);
3171 
3172 	/* for snapshot-aware defrag */
3173 	if (new) {
3174 		if (ret) {
3175 			free_sa_defrag_extent(new);
3176 			atomic_dec(&fs_info->defrag_running);
3177 		} else {
3178 			relink_file_extents(new);
3179 		}
3180 	}
3181 
3182 	/* once for us */
3183 	btrfs_put_ordered_extent(ordered_extent);
3184 	/* once for the tree */
3185 	btrfs_put_ordered_extent(ordered_extent);
3186 
3187 	return ret;
3188 }
3189 
3190 static void finish_ordered_fn(struct btrfs_work *work)
3191 {
3192 	struct btrfs_ordered_extent *ordered_extent;
3193 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3194 	btrfs_finish_ordered_io(ordered_extent);
3195 }
3196 
3197 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3198 					  u64 end, int uptodate)
3199 {
3200 	struct inode *inode = page->mapping->host;
3201 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3202 	struct btrfs_ordered_extent *ordered_extent = NULL;
3203 	struct btrfs_workqueue *wq;
3204 	btrfs_work_func_t func;
3205 
3206 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3207 
3208 	ClearPagePrivate2(page);
3209 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3210 					    end - start + 1, uptodate))
3211 		return;
3212 
3213 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3214 		wq = fs_info->endio_freespace_worker;
3215 		func = btrfs_freespace_write_helper;
3216 	} else {
3217 		wq = fs_info->endio_write_workers;
3218 		func = btrfs_endio_write_helper;
3219 	}
3220 
3221 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3222 			NULL);
3223 	btrfs_queue_work(wq, &ordered_extent->work);
3224 }
3225 
3226 static int __readpage_endio_check(struct inode *inode,
3227 				  struct btrfs_io_bio *io_bio,
3228 				  int icsum, struct page *page,
3229 				  int pgoff, u64 start, size_t len)
3230 {
3231 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3232 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3233 	char *kaddr;
3234 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3235 	u8 *csum_expected;
3236 	u8 csum[BTRFS_CSUM_SIZE];
3237 
3238 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3239 
3240 	kaddr = kmap_atomic(page);
3241 	shash->tfm = fs_info->csum_shash;
3242 
3243 	crypto_shash_init(shash);
3244 	crypto_shash_update(shash, kaddr + pgoff, len);
3245 	crypto_shash_final(shash, csum);
3246 
3247 	if (memcmp(csum, csum_expected, csum_size))
3248 		goto zeroit;
3249 
3250 	kunmap_atomic(kaddr);
3251 	return 0;
3252 zeroit:
3253 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3254 				    io_bio->mirror_num);
3255 	memset(kaddr + pgoff, 1, len);
3256 	flush_dcache_page(page);
3257 	kunmap_atomic(kaddr);
3258 	return -EIO;
3259 }
3260 
3261 /*
3262  * when reads are done, we need to check csums to verify the data is correct
3263  * if there's a match, we allow the bio to finish.  If not, the code in
3264  * extent_io.c will try to find good copies for us.
3265  */
3266 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3267 				      u64 phy_offset, struct page *page,
3268 				      u64 start, u64 end, int mirror)
3269 {
3270 	size_t offset = start - page_offset(page);
3271 	struct inode *inode = page->mapping->host;
3272 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3273 	struct btrfs_root *root = BTRFS_I(inode)->root;
3274 
3275 	if (PageChecked(page)) {
3276 		ClearPageChecked(page);
3277 		return 0;
3278 	}
3279 
3280 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3281 		return 0;
3282 
3283 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3284 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3285 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3286 		return 0;
3287 	}
3288 
3289 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3290 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3291 				      start, (size_t)(end - start + 1));
3292 }
3293 
3294 /*
3295  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3296  *
3297  * @inode: The inode we want to perform iput on
3298  *
3299  * This function uses the generic vfs_inode::i_count to track whether we should
3300  * just decrement it (in case it's > 1) or if this is the last iput then link
3301  * the inode to the delayed iput machinery. Delayed iputs are processed at
3302  * transaction commit time/superblock commit/cleaner kthread.
3303  */
3304 void btrfs_add_delayed_iput(struct inode *inode)
3305 {
3306 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3307 	struct btrfs_inode *binode = BTRFS_I(inode);
3308 
3309 	if (atomic_add_unless(&inode->i_count, -1, 1))
3310 		return;
3311 
3312 	atomic_inc(&fs_info->nr_delayed_iputs);
3313 	spin_lock(&fs_info->delayed_iput_lock);
3314 	ASSERT(list_empty(&binode->delayed_iput));
3315 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3316 	spin_unlock(&fs_info->delayed_iput_lock);
3317 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3318 		wake_up_process(fs_info->cleaner_kthread);
3319 }
3320 
3321 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3322 				    struct btrfs_inode *inode)
3323 {
3324 	list_del_init(&inode->delayed_iput);
3325 	spin_unlock(&fs_info->delayed_iput_lock);
3326 	iput(&inode->vfs_inode);
3327 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3328 		wake_up(&fs_info->delayed_iputs_wait);
3329 	spin_lock(&fs_info->delayed_iput_lock);
3330 }
3331 
3332 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3333 				   struct btrfs_inode *inode)
3334 {
3335 	if (!list_empty(&inode->delayed_iput)) {
3336 		spin_lock(&fs_info->delayed_iput_lock);
3337 		if (!list_empty(&inode->delayed_iput))
3338 			run_delayed_iput_locked(fs_info, inode);
3339 		spin_unlock(&fs_info->delayed_iput_lock);
3340 	}
3341 }
3342 
3343 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3344 {
3345 
3346 	spin_lock(&fs_info->delayed_iput_lock);
3347 	while (!list_empty(&fs_info->delayed_iputs)) {
3348 		struct btrfs_inode *inode;
3349 
3350 		inode = list_first_entry(&fs_info->delayed_iputs,
3351 				struct btrfs_inode, delayed_iput);
3352 		run_delayed_iput_locked(fs_info, inode);
3353 	}
3354 	spin_unlock(&fs_info->delayed_iput_lock);
3355 }
3356 
3357 /**
3358  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3359  * @fs_info - the fs_info for this fs
3360  * @return - EINTR if we were killed, 0 if nothing's pending
3361  *
3362  * This will wait on any delayed iputs that are currently running with KILLABLE
3363  * set.  Once they are all done running we will return, unless we are killed in
3364  * which case we return EINTR. This helps in user operations like fallocate etc
3365  * that might get blocked on the iputs.
3366  */
3367 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3368 {
3369 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3370 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3371 	if (ret)
3372 		return -EINTR;
3373 	return 0;
3374 }
3375 
3376 /*
3377  * This creates an orphan entry for the given inode in case something goes wrong
3378  * in the middle of an unlink.
3379  */
3380 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3381 		     struct btrfs_inode *inode)
3382 {
3383 	int ret;
3384 
3385 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3386 	if (ret && ret != -EEXIST) {
3387 		btrfs_abort_transaction(trans, ret);
3388 		return ret;
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 /*
3395  * We have done the delete so we can go ahead and remove the orphan item for
3396  * this particular inode.
3397  */
3398 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3399 			    struct btrfs_inode *inode)
3400 {
3401 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3402 }
3403 
3404 /*
3405  * this cleans up any orphans that may be left on the list from the last use
3406  * of this root.
3407  */
3408 int btrfs_orphan_cleanup(struct btrfs_root *root)
3409 {
3410 	struct btrfs_fs_info *fs_info = root->fs_info;
3411 	struct btrfs_path *path;
3412 	struct extent_buffer *leaf;
3413 	struct btrfs_key key, found_key;
3414 	struct btrfs_trans_handle *trans;
3415 	struct inode *inode;
3416 	u64 last_objectid = 0;
3417 	int ret = 0, nr_unlink = 0;
3418 
3419 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3420 		return 0;
3421 
3422 	path = btrfs_alloc_path();
3423 	if (!path) {
3424 		ret = -ENOMEM;
3425 		goto out;
3426 	}
3427 	path->reada = READA_BACK;
3428 
3429 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3430 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3431 	key.offset = (u64)-1;
3432 
3433 	while (1) {
3434 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3435 		if (ret < 0)
3436 			goto out;
3437 
3438 		/*
3439 		 * if ret == 0 means we found what we were searching for, which
3440 		 * is weird, but possible, so only screw with path if we didn't
3441 		 * find the key and see if we have stuff that matches
3442 		 */
3443 		if (ret > 0) {
3444 			ret = 0;
3445 			if (path->slots[0] == 0)
3446 				break;
3447 			path->slots[0]--;
3448 		}
3449 
3450 		/* pull out the item */
3451 		leaf = path->nodes[0];
3452 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3453 
3454 		/* make sure the item matches what we want */
3455 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3456 			break;
3457 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3458 			break;
3459 
3460 		/* release the path since we're done with it */
3461 		btrfs_release_path(path);
3462 
3463 		/*
3464 		 * this is where we are basically btrfs_lookup, without the
3465 		 * crossing root thing.  we store the inode number in the
3466 		 * offset of the orphan item.
3467 		 */
3468 
3469 		if (found_key.offset == last_objectid) {
3470 			btrfs_err(fs_info,
3471 				  "Error removing orphan entry, stopping orphan cleanup");
3472 			ret = -EINVAL;
3473 			goto out;
3474 		}
3475 
3476 		last_objectid = found_key.offset;
3477 
3478 		found_key.objectid = found_key.offset;
3479 		found_key.type = BTRFS_INODE_ITEM_KEY;
3480 		found_key.offset = 0;
3481 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3482 		ret = PTR_ERR_OR_ZERO(inode);
3483 		if (ret && ret != -ENOENT)
3484 			goto out;
3485 
3486 		if (ret == -ENOENT && root == fs_info->tree_root) {
3487 			struct btrfs_root *dead_root;
3488 			struct btrfs_fs_info *fs_info = root->fs_info;
3489 			int is_dead_root = 0;
3490 
3491 			/*
3492 			 * this is an orphan in the tree root. Currently these
3493 			 * could come from 2 sources:
3494 			 *  a) a snapshot deletion in progress
3495 			 *  b) a free space cache inode
3496 			 * We need to distinguish those two, as the snapshot
3497 			 * orphan must not get deleted.
3498 			 * find_dead_roots already ran before us, so if this
3499 			 * is a snapshot deletion, we should find the root
3500 			 * in the dead_roots list
3501 			 */
3502 			spin_lock(&fs_info->trans_lock);
3503 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3504 					    root_list) {
3505 				if (dead_root->root_key.objectid ==
3506 				    found_key.objectid) {
3507 					is_dead_root = 1;
3508 					break;
3509 				}
3510 			}
3511 			spin_unlock(&fs_info->trans_lock);
3512 			if (is_dead_root) {
3513 				/* prevent this orphan from being found again */
3514 				key.offset = found_key.objectid - 1;
3515 				continue;
3516 			}
3517 
3518 		}
3519 
3520 		/*
3521 		 * If we have an inode with links, there are a couple of
3522 		 * possibilities. Old kernels (before v3.12) used to create an
3523 		 * orphan item for truncate indicating that there were possibly
3524 		 * extent items past i_size that needed to be deleted. In v3.12,
3525 		 * truncate was changed to update i_size in sync with the extent
3526 		 * items, but the (useless) orphan item was still created. Since
3527 		 * v4.18, we don't create the orphan item for truncate at all.
3528 		 *
3529 		 * So, this item could mean that we need to do a truncate, but
3530 		 * only if this filesystem was last used on a pre-v3.12 kernel
3531 		 * and was not cleanly unmounted. The odds of that are quite
3532 		 * slim, and it's a pain to do the truncate now, so just delete
3533 		 * the orphan item.
3534 		 *
3535 		 * It's also possible that this orphan item was supposed to be
3536 		 * deleted but wasn't. The inode number may have been reused,
3537 		 * but either way, we can delete the orphan item.
3538 		 */
3539 		if (ret == -ENOENT || inode->i_nlink) {
3540 			if (!ret)
3541 				iput(inode);
3542 			trans = btrfs_start_transaction(root, 1);
3543 			if (IS_ERR(trans)) {
3544 				ret = PTR_ERR(trans);
3545 				goto out;
3546 			}
3547 			btrfs_debug(fs_info, "auto deleting %Lu",
3548 				    found_key.objectid);
3549 			ret = btrfs_del_orphan_item(trans, root,
3550 						    found_key.objectid);
3551 			btrfs_end_transaction(trans);
3552 			if (ret)
3553 				goto out;
3554 			continue;
3555 		}
3556 
3557 		nr_unlink++;
3558 
3559 		/* this will do delete_inode and everything for us */
3560 		iput(inode);
3561 	}
3562 	/* release the path since we're done with it */
3563 	btrfs_release_path(path);
3564 
3565 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3566 
3567 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3568 		trans = btrfs_join_transaction(root);
3569 		if (!IS_ERR(trans))
3570 			btrfs_end_transaction(trans);
3571 	}
3572 
3573 	if (nr_unlink)
3574 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3575 
3576 out:
3577 	if (ret)
3578 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3579 	btrfs_free_path(path);
3580 	return ret;
3581 }
3582 
3583 /*
3584  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3585  * don't find any xattrs, we know there can't be any acls.
3586  *
3587  * slot is the slot the inode is in, objectid is the objectid of the inode
3588  */
3589 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3590 					  int slot, u64 objectid,
3591 					  int *first_xattr_slot)
3592 {
3593 	u32 nritems = btrfs_header_nritems(leaf);
3594 	struct btrfs_key found_key;
3595 	static u64 xattr_access = 0;
3596 	static u64 xattr_default = 0;
3597 	int scanned = 0;
3598 
3599 	if (!xattr_access) {
3600 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3601 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3602 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3603 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3604 	}
3605 
3606 	slot++;
3607 	*first_xattr_slot = -1;
3608 	while (slot < nritems) {
3609 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3610 
3611 		/* we found a different objectid, there must not be acls */
3612 		if (found_key.objectid != objectid)
3613 			return 0;
3614 
3615 		/* we found an xattr, assume we've got an acl */
3616 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3617 			if (*first_xattr_slot == -1)
3618 				*first_xattr_slot = slot;
3619 			if (found_key.offset == xattr_access ||
3620 			    found_key.offset == xattr_default)
3621 				return 1;
3622 		}
3623 
3624 		/*
3625 		 * we found a key greater than an xattr key, there can't
3626 		 * be any acls later on
3627 		 */
3628 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3629 			return 0;
3630 
3631 		slot++;
3632 		scanned++;
3633 
3634 		/*
3635 		 * it goes inode, inode backrefs, xattrs, extents,
3636 		 * so if there are a ton of hard links to an inode there can
3637 		 * be a lot of backrefs.  Don't waste time searching too hard,
3638 		 * this is just an optimization
3639 		 */
3640 		if (scanned >= 8)
3641 			break;
3642 	}
3643 	/* we hit the end of the leaf before we found an xattr or
3644 	 * something larger than an xattr.  We have to assume the inode
3645 	 * has acls
3646 	 */
3647 	if (*first_xattr_slot == -1)
3648 		*first_xattr_slot = slot;
3649 	return 1;
3650 }
3651 
3652 /*
3653  * read an inode from the btree into the in-memory inode
3654  */
3655 static int btrfs_read_locked_inode(struct inode *inode,
3656 				   struct btrfs_path *in_path)
3657 {
3658 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3659 	struct btrfs_path *path = in_path;
3660 	struct extent_buffer *leaf;
3661 	struct btrfs_inode_item *inode_item;
3662 	struct btrfs_root *root = BTRFS_I(inode)->root;
3663 	struct btrfs_key location;
3664 	unsigned long ptr;
3665 	int maybe_acls;
3666 	u32 rdev;
3667 	int ret;
3668 	bool filled = false;
3669 	int first_xattr_slot;
3670 
3671 	ret = btrfs_fill_inode(inode, &rdev);
3672 	if (!ret)
3673 		filled = true;
3674 
3675 	if (!path) {
3676 		path = btrfs_alloc_path();
3677 		if (!path)
3678 			return -ENOMEM;
3679 	}
3680 
3681 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3682 
3683 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3684 	if (ret) {
3685 		if (path != in_path)
3686 			btrfs_free_path(path);
3687 		return ret;
3688 	}
3689 
3690 	leaf = path->nodes[0];
3691 
3692 	if (filled)
3693 		goto cache_index;
3694 
3695 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3696 				    struct btrfs_inode_item);
3697 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3698 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3699 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3700 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3701 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3702 
3703 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3704 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3705 
3706 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3707 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3708 
3709 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3710 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3711 
3712 	BTRFS_I(inode)->i_otime.tv_sec =
3713 		btrfs_timespec_sec(leaf, &inode_item->otime);
3714 	BTRFS_I(inode)->i_otime.tv_nsec =
3715 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3716 
3717 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3718 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3719 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3720 
3721 	inode_set_iversion_queried(inode,
3722 				   btrfs_inode_sequence(leaf, inode_item));
3723 	inode->i_generation = BTRFS_I(inode)->generation;
3724 	inode->i_rdev = 0;
3725 	rdev = btrfs_inode_rdev(leaf, inode_item);
3726 
3727 	BTRFS_I(inode)->index_cnt = (u64)-1;
3728 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3729 
3730 cache_index:
3731 	/*
3732 	 * If we were modified in the current generation and evicted from memory
3733 	 * and then re-read we need to do a full sync since we don't have any
3734 	 * idea about which extents were modified before we were evicted from
3735 	 * cache.
3736 	 *
3737 	 * This is required for both inode re-read from disk and delayed inode
3738 	 * in delayed_nodes_tree.
3739 	 */
3740 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3741 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3742 			&BTRFS_I(inode)->runtime_flags);
3743 
3744 	/*
3745 	 * We don't persist the id of the transaction where an unlink operation
3746 	 * against the inode was last made. So here we assume the inode might
3747 	 * have been evicted, and therefore the exact value of last_unlink_trans
3748 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3749 	 * between the inode and its parent if the inode is fsync'ed and the log
3750 	 * replayed. For example, in the scenario:
3751 	 *
3752 	 * touch mydir/foo
3753 	 * ln mydir/foo mydir/bar
3754 	 * sync
3755 	 * unlink mydir/bar
3756 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3757 	 * xfs_io -c fsync mydir/foo
3758 	 * <power failure>
3759 	 * mount fs, triggers fsync log replay
3760 	 *
3761 	 * We must make sure that when we fsync our inode foo we also log its
3762 	 * parent inode, otherwise after log replay the parent still has the
3763 	 * dentry with the "bar" name but our inode foo has a link count of 1
3764 	 * and doesn't have an inode ref with the name "bar" anymore.
3765 	 *
3766 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3767 	 * but it guarantees correctness at the expense of occasional full
3768 	 * transaction commits on fsync if our inode is a directory, or if our
3769 	 * inode is not a directory, logging its parent unnecessarily.
3770 	 */
3771 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3772 
3773 	path->slots[0]++;
3774 	if (inode->i_nlink != 1 ||
3775 	    path->slots[0] >= btrfs_header_nritems(leaf))
3776 		goto cache_acl;
3777 
3778 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3779 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3780 		goto cache_acl;
3781 
3782 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3783 	if (location.type == BTRFS_INODE_REF_KEY) {
3784 		struct btrfs_inode_ref *ref;
3785 
3786 		ref = (struct btrfs_inode_ref *)ptr;
3787 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3788 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3789 		struct btrfs_inode_extref *extref;
3790 
3791 		extref = (struct btrfs_inode_extref *)ptr;
3792 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3793 								     extref);
3794 	}
3795 cache_acl:
3796 	/*
3797 	 * try to precache a NULL acl entry for files that don't have
3798 	 * any xattrs or acls
3799 	 */
3800 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3801 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3802 	if (first_xattr_slot != -1) {
3803 		path->slots[0] = first_xattr_slot;
3804 		ret = btrfs_load_inode_props(inode, path);
3805 		if (ret)
3806 			btrfs_err(fs_info,
3807 				  "error loading props for ino %llu (root %llu): %d",
3808 				  btrfs_ino(BTRFS_I(inode)),
3809 				  root->root_key.objectid, ret);
3810 	}
3811 	if (path != in_path)
3812 		btrfs_free_path(path);
3813 
3814 	if (!maybe_acls)
3815 		cache_no_acl(inode);
3816 
3817 	switch (inode->i_mode & S_IFMT) {
3818 	case S_IFREG:
3819 		inode->i_mapping->a_ops = &btrfs_aops;
3820 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3821 		inode->i_fop = &btrfs_file_operations;
3822 		inode->i_op = &btrfs_file_inode_operations;
3823 		break;
3824 	case S_IFDIR:
3825 		inode->i_fop = &btrfs_dir_file_operations;
3826 		inode->i_op = &btrfs_dir_inode_operations;
3827 		break;
3828 	case S_IFLNK:
3829 		inode->i_op = &btrfs_symlink_inode_operations;
3830 		inode_nohighmem(inode);
3831 		inode->i_mapping->a_ops = &btrfs_aops;
3832 		break;
3833 	default:
3834 		inode->i_op = &btrfs_special_inode_operations;
3835 		init_special_inode(inode, inode->i_mode, rdev);
3836 		break;
3837 	}
3838 
3839 	btrfs_sync_inode_flags_to_i_flags(inode);
3840 	return 0;
3841 }
3842 
3843 /*
3844  * given a leaf and an inode, copy the inode fields into the leaf
3845  */
3846 static void fill_inode_item(struct btrfs_trans_handle *trans,
3847 			    struct extent_buffer *leaf,
3848 			    struct btrfs_inode_item *item,
3849 			    struct inode *inode)
3850 {
3851 	struct btrfs_map_token token;
3852 
3853 	btrfs_init_map_token(&token);
3854 
3855 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3856 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3857 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3858 				   &token);
3859 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3860 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3861 
3862 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3863 				     inode->i_atime.tv_sec, &token);
3864 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3865 				      inode->i_atime.tv_nsec, &token);
3866 
3867 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3868 				     inode->i_mtime.tv_sec, &token);
3869 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3870 				      inode->i_mtime.tv_nsec, &token);
3871 
3872 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3873 				     inode->i_ctime.tv_sec, &token);
3874 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3875 				      inode->i_ctime.tv_nsec, &token);
3876 
3877 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3878 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3879 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3880 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3881 
3882 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3883 				     &token);
3884 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3885 					 &token);
3886 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3887 				       &token);
3888 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3889 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3890 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3891 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3892 }
3893 
3894 /*
3895  * copy everything in the in-memory inode into the btree.
3896  */
3897 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3898 				struct btrfs_root *root, struct inode *inode)
3899 {
3900 	struct btrfs_inode_item *inode_item;
3901 	struct btrfs_path *path;
3902 	struct extent_buffer *leaf;
3903 	int ret;
3904 
3905 	path = btrfs_alloc_path();
3906 	if (!path)
3907 		return -ENOMEM;
3908 
3909 	path->leave_spinning = 1;
3910 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3911 				 1);
3912 	if (ret) {
3913 		if (ret > 0)
3914 			ret = -ENOENT;
3915 		goto failed;
3916 	}
3917 
3918 	leaf = path->nodes[0];
3919 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3920 				    struct btrfs_inode_item);
3921 
3922 	fill_inode_item(trans, leaf, inode_item, inode);
3923 	btrfs_mark_buffer_dirty(leaf);
3924 	btrfs_set_inode_last_trans(trans, inode);
3925 	ret = 0;
3926 failed:
3927 	btrfs_free_path(path);
3928 	return ret;
3929 }
3930 
3931 /*
3932  * copy everything in the in-memory inode into the btree.
3933  */
3934 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3935 				struct btrfs_root *root, struct inode *inode)
3936 {
3937 	struct btrfs_fs_info *fs_info = root->fs_info;
3938 	int ret;
3939 
3940 	/*
3941 	 * If the inode is a free space inode, we can deadlock during commit
3942 	 * if we put it into the delayed code.
3943 	 *
3944 	 * The data relocation inode should also be directly updated
3945 	 * without delay
3946 	 */
3947 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3948 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3949 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3950 		btrfs_update_root_times(trans, root);
3951 
3952 		ret = btrfs_delayed_update_inode(trans, root, inode);
3953 		if (!ret)
3954 			btrfs_set_inode_last_trans(trans, inode);
3955 		return ret;
3956 	}
3957 
3958 	return btrfs_update_inode_item(trans, root, inode);
3959 }
3960 
3961 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3962 					 struct btrfs_root *root,
3963 					 struct inode *inode)
3964 {
3965 	int ret;
3966 
3967 	ret = btrfs_update_inode(trans, root, inode);
3968 	if (ret == -ENOSPC)
3969 		return btrfs_update_inode_item(trans, root, inode);
3970 	return ret;
3971 }
3972 
3973 /*
3974  * unlink helper that gets used here in inode.c and in the tree logging
3975  * recovery code.  It remove a link in a directory with a given name, and
3976  * also drops the back refs in the inode to the directory
3977  */
3978 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3979 				struct btrfs_root *root,
3980 				struct btrfs_inode *dir,
3981 				struct btrfs_inode *inode,
3982 				const char *name, int name_len)
3983 {
3984 	struct btrfs_fs_info *fs_info = root->fs_info;
3985 	struct btrfs_path *path;
3986 	int ret = 0;
3987 	struct btrfs_dir_item *di;
3988 	u64 index;
3989 	u64 ino = btrfs_ino(inode);
3990 	u64 dir_ino = btrfs_ino(dir);
3991 
3992 	path = btrfs_alloc_path();
3993 	if (!path) {
3994 		ret = -ENOMEM;
3995 		goto out;
3996 	}
3997 
3998 	path->leave_spinning = 1;
3999 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4000 				    name, name_len, -1);
4001 	if (IS_ERR_OR_NULL(di)) {
4002 		ret = di ? PTR_ERR(di) : -ENOENT;
4003 		goto err;
4004 	}
4005 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4006 	if (ret)
4007 		goto err;
4008 	btrfs_release_path(path);
4009 
4010 	/*
4011 	 * If we don't have dir index, we have to get it by looking up
4012 	 * the inode ref, since we get the inode ref, remove it directly,
4013 	 * it is unnecessary to do delayed deletion.
4014 	 *
4015 	 * But if we have dir index, needn't search inode ref to get it.
4016 	 * Since the inode ref is close to the inode item, it is better
4017 	 * that we delay to delete it, and just do this deletion when
4018 	 * we update the inode item.
4019 	 */
4020 	if (inode->dir_index) {
4021 		ret = btrfs_delayed_delete_inode_ref(inode);
4022 		if (!ret) {
4023 			index = inode->dir_index;
4024 			goto skip_backref;
4025 		}
4026 	}
4027 
4028 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4029 				  dir_ino, &index);
4030 	if (ret) {
4031 		btrfs_info(fs_info,
4032 			"failed to delete reference to %.*s, inode %llu parent %llu",
4033 			name_len, name, ino, dir_ino);
4034 		btrfs_abort_transaction(trans, ret);
4035 		goto err;
4036 	}
4037 skip_backref:
4038 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4039 	if (ret) {
4040 		btrfs_abort_transaction(trans, ret);
4041 		goto err;
4042 	}
4043 
4044 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4045 			dir_ino);
4046 	if (ret != 0 && ret != -ENOENT) {
4047 		btrfs_abort_transaction(trans, ret);
4048 		goto err;
4049 	}
4050 
4051 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4052 			index);
4053 	if (ret == -ENOENT)
4054 		ret = 0;
4055 	else if (ret)
4056 		btrfs_abort_transaction(trans, ret);
4057 
4058 	/*
4059 	 * If we have a pending delayed iput we could end up with the final iput
4060 	 * being run in btrfs-cleaner context.  If we have enough of these built
4061 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4062 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4063 	 * the inode we can run the delayed iput here without any issues as the
4064 	 * final iput won't be done until after we drop the ref we're currently
4065 	 * holding.
4066 	 */
4067 	btrfs_run_delayed_iput(fs_info, inode);
4068 err:
4069 	btrfs_free_path(path);
4070 	if (ret)
4071 		goto out;
4072 
4073 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4074 	inode_inc_iversion(&inode->vfs_inode);
4075 	inode_inc_iversion(&dir->vfs_inode);
4076 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4077 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4078 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4079 out:
4080 	return ret;
4081 }
4082 
4083 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4084 		       struct btrfs_root *root,
4085 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4086 		       const char *name, int name_len)
4087 {
4088 	int ret;
4089 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4090 	if (!ret) {
4091 		drop_nlink(&inode->vfs_inode);
4092 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4093 	}
4094 	return ret;
4095 }
4096 
4097 /*
4098  * helper to start transaction for unlink and rmdir.
4099  *
4100  * unlink and rmdir are special in btrfs, they do not always free space, so
4101  * if we cannot make our reservations the normal way try and see if there is
4102  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4103  * allow the unlink to occur.
4104  */
4105 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4106 {
4107 	struct btrfs_root *root = BTRFS_I(dir)->root;
4108 
4109 	/*
4110 	 * 1 for the possible orphan item
4111 	 * 1 for the dir item
4112 	 * 1 for the dir index
4113 	 * 1 for the inode ref
4114 	 * 1 for the inode
4115 	 */
4116 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4117 }
4118 
4119 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4120 {
4121 	struct btrfs_root *root = BTRFS_I(dir)->root;
4122 	struct btrfs_trans_handle *trans;
4123 	struct inode *inode = d_inode(dentry);
4124 	int ret;
4125 
4126 	trans = __unlink_start_trans(dir);
4127 	if (IS_ERR(trans))
4128 		return PTR_ERR(trans);
4129 
4130 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4131 			0);
4132 
4133 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4134 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4135 			dentry->d_name.len);
4136 	if (ret)
4137 		goto out;
4138 
4139 	if (inode->i_nlink == 0) {
4140 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4141 		if (ret)
4142 			goto out;
4143 	}
4144 
4145 out:
4146 	btrfs_end_transaction(trans);
4147 	btrfs_btree_balance_dirty(root->fs_info);
4148 	return ret;
4149 }
4150 
4151 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4152 			       struct inode *dir, u64 objectid,
4153 			       const char *name, int name_len)
4154 {
4155 	struct btrfs_root *root = BTRFS_I(dir)->root;
4156 	struct btrfs_path *path;
4157 	struct extent_buffer *leaf;
4158 	struct btrfs_dir_item *di;
4159 	struct btrfs_key key;
4160 	u64 index;
4161 	int ret;
4162 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4163 
4164 	path = btrfs_alloc_path();
4165 	if (!path)
4166 		return -ENOMEM;
4167 
4168 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4169 				   name, name_len, -1);
4170 	if (IS_ERR_OR_NULL(di)) {
4171 		ret = di ? PTR_ERR(di) : -ENOENT;
4172 		goto out;
4173 	}
4174 
4175 	leaf = path->nodes[0];
4176 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4177 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4178 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4179 	if (ret) {
4180 		btrfs_abort_transaction(trans, ret);
4181 		goto out;
4182 	}
4183 	btrfs_release_path(path);
4184 
4185 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4186 				 dir_ino, &index, name, name_len);
4187 	if (ret < 0) {
4188 		if (ret != -ENOENT) {
4189 			btrfs_abort_transaction(trans, ret);
4190 			goto out;
4191 		}
4192 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4193 						 name, name_len);
4194 		if (IS_ERR_OR_NULL(di)) {
4195 			if (!di)
4196 				ret = -ENOENT;
4197 			else
4198 				ret = PTR_ERR(di);
4199 			btrfs_abort_transaction(trans, ret);
4200 			goto out;
4201 		}
4202 
4203 		leaf = path->nodes[0];
4204 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4205 		index = key.offset;
4206 	}
4207 	btrfs_release_path(path);
4208 
4209 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4210 	if (ret) {
4211 		btrfs_abort_transaction(trans, ret);
4212 		goto out;
4213 	}
4214 
4215 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4216 	inode_inc_iversion(dir);
4217 	dir->i_mtime = dir->i_ctime = current_time(dir);
4218 	ret = btrfs_update_inode_fallback(trans, root, dir);
4219 	if (ret)
4220 		btrfs_abort_transaction(trans, ret);
4221 out:
4222 	btrfs_free_path(path);
4223 	return ret;
4224 }
4225 
4226 /*
4227  * Helper to check if the subvolume references other subvolumes or if it's
4228  * default.
4229  */
4230 static noinline int may_destroy_subvol(struct btrfs_root *root)
4231 {
4232 	struct btrfs_fs_info *fs_info = root->fs_info;
4233 	struct btrfs_path *path;
4234 	struct btrfs_dir_item *di;
4235 	struct btrfs_key key;
4236 	u64 dir_id;
4237 	int ret;
4238 
4239 	path = btrfs_alloc_path();
4240 	if (!path)
4241 		return -ENOMEM;
4242 
4243 	/* Make sure this root isn't set as the default subvol */
4244 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4245 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4246 				   dir_id, "default", 7, 0);
4247 	if (di && !IS_ERR(di)) {
4248 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4249 		if (key.objectid == root->root_key.objectid) {
4250 			ret = -EPERM;
4251 			btrfs_err(fs_info,
4252 				  "deleting default subvolume %llu is not allowed",
4253 				  key.objectid);
4254 			goto out;
4255 		}
4256 		btrfs_release_path(path);
4257 	}
4258 
4259 	key.objectid = root->root_key.objectid;
4260 	key.type = BTRFS_ROOT_REF_KEY;
4261 	key.offset = (u64)-1;
4262 
4263 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4264 	if (ret < 0)
4265 		goto out;
4266 	BUG_ON(ret == 0);
4267 
4268 	ret = 0;
4269 	if (path->slots[0] > 0) {
4270 		path->slots[0]--;
4271 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4272 		if (key.objectid == root->root_key.objectid &&
4273 		    key.type == BTRFS_ROOT_REF_KEY)
4274 			ret = -ENOTEMPTY;
4275 	}
4276 out:
4277 	btrfs_free_path(path);
4278 	return ret;
4279 }
4280 
4281 /* Delete all dentries for inodes belonging to the root */
4282 static void btrfs_prune_dentries(struct btrfs_root *root)
4283 {
4284 	struct btrfs_fs_info *fs_info = root->fs_info;
4285 	struct rb_node *node;
4286 	struct rb_node *prev;
4287 	struct btrfs_inode *entry;
4288 	struct inode *inode;
4289 	u64 objectid = 0;
4290 
4291 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4292 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4293 
4294 	spin_lock(&root->inode_lock);
4295 again:
4296 	node = root->inode_tree.rb_node;
4297 	prev = NULL;
4298 	while (node) {
4299 		prev = node;
4300 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4301 
4302 		if (objectid < btrfs_ino(entry))
4303 			node = node->rb_left;
4304 		else if (objectid > btrfs_ino(entry))
4305 			node = node->rb_right;
4306 		else
4307 			break;
4308 	}
4309 	if (!node) {
4310 		while (prev) {
4311 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4312 			if (objectid <= btrfs_ino(entry)) {
4313 				node = prev;
4314 				break;
4315 			}
4316 			prev = rb_next(prev);
4317 		}
4318 	}
4319 	while (node) {
4320 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4321 		objectid = btrfs_ino(entry) + 1;
4322 		inode = igrab(&entry->vfs_inode);
4323 		if (inode) {
4324 			spin_unlock(&root->inode_lock);
4325 			if (atomic_read(&inode->i_count) > 1)
4326 				d_prune_aliases(inode);
4327 			/*
4328 			 * btrfs_drop_inode will have it removed from the inode
4329 			 * cache when its usage count hits zero.
4330 			 */
4331 			iput(inode);
4332 			cond_resched();
4333 			spin_lock(&root->inode_lock);
4334 			goto again;
4335 		}
4336 
4337 		if (cond_resched_lock(&root->inode_lock))
4338 			goto again;
4339 
4340 		node = rb_next(node);
4341 	}
4342 	spin_unlock(&root->inode_lock);
4343 }
4344 
4345 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4346 {
4347 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4348 	struct btrfs_root *root = BTRFS_I(dir)->root;
4349 	struct inode *inode = d_inode(dentry);
4350 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4351 	struct btrfs_trans_handle *trans;
4352 	struct btrfs_block_rsv block_rsv;
4353 	u64 root_flags;
4354 	int ret;
4355 	int err;
4356 
4357 	/*
4358 	 * Don't allow to delete a subvolume with send in progress. This is
4359 	 * inside the inode lock so the error handling that has to drop the bit
4360 	 * again is not run concurrently.
4361 	 */
4362 	spin_lock(&dest->root_item_lock);
4363 	if (dest->send_in_progress) {
4364 		spin_unlock(&dest->root_item_lock);
4365 		btrfs_warn(fs_info,
4366 			   "attempt to delete subvolume %llu during send",
4367 			   dest->root_key.objectid);
4368 		return -EPERM;
4369 	}
4370 	root_flags = btrfs_root_flags(&dest->root_item);
4371 	btrfs_set_root_flags(&dest->root_item,
4372 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4373 	spin_unlock(&dest->root_item_lock);
4374 
4375 	down_write(&fs_info->subvol_sem);
4376 
4377 	err = may_destroy_subvol(dest);
4378 	if (err)
4379 		goto out_up_write;
4380 
4381 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4382 	/*
4383 	 * One for dir inode,
4384 	 * two for dir entries,
4385 	 * two for root ref/backref.
4386 	 */
4387 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4388 	if (err)
4389 		goto out_up_write;
4390 
4391 	trans = btrfs_start_transaction(root, 0);
4392 	if (IS_ERR(trans)) {
4393 		err = PTR_ERR(trans);
4394 		goto out_release;
4395 	}
4396 	trans->block_rsv = &block_rsv;
4397 	trans->bytes_reserved = block_rsv.size;
4398 
4399 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4400 
4401 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4402 				  dentry->d_name.name, dentry->d_name.len);
4403 	if (ret) {
4404 		err = ret;
4405 		btrfs_abort_transaction(trans, ret);
4406 		goto out_end_trans;
4407 	}
4408 
4409 	btrfs_record_root_in_trans(trans, dest);
4410 
4411 	memset(&dest->root_item.drop_progress, 0,
4412 		sizeof(dest->root_item.drop_progress));
4413 	dest->root_item.drop_level = 0;
4414 	btrfs_set_root_refs(&dest->root_item, 0);
4415 
4416 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4417 		ret = btrfs_insert_orphan_item(trans,
4418 					fs_info->tree_root,
4419 					dest->root_key.objectid);
4420 		if (ret) {
4421 			btrfs_abort_transaction(trans, ret);
4422 			err = ret;
4423 			goto out_end_trans;
4424 		}
4425 	}
4426 
4427 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4428 				  BTRFS_UUID_KEY_SUBVOL,
4429 				  dest->root_key.objectid);
4430 	if (ret && ret != -ENOENT) {
4431 		btrfs_abort_transaction(trans, ret);
4432 		err = ret;
4433 		goto out_end_trans;
4434 	}
4435 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4436 		ret = btrfs_uuid_tree_remove(trans,
4437 					  dest->root_item.received_uuid,
4438 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4439 					  dest->root_key.objectid);
4440 		if (ret && ret != -ENOENT) {
4441 			btrfs_abort_transaction(trans, ret);
4442 			err = ret;
4443 			goto out_end_trans;
4444 		}
4445 	}
4446 
4447 out_end_trans:
4448 	trans->block_rsv = NULL;
4449 	trans->bytes_reserved = 0;
4450 	ret = btrfs_end_transaction(trans);
4451 	if (ret && !err)
4452 		err = ret;
4453 	inode->i_flags |= S_DEAD;
4454 out_release:
4455 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4456 out_up_write:
4457 	up_write(&fs_info->subvol_sem);
4458 	if (err) {
4459 		spin_lock(&dest->root_item_lock);
4460 		root_flags = btrfs_root_flags(&dest->root_item);
4461 		btrfs_set_root_flags(&dest->root_item,
4462 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4463 		spin_unlock(&dest->root_item_lock);
4464 	} else {
4465 		d_invalidate(dentry);
4466 		btrfs_prune_dentries(dest);
4467 		ASSERT(dest->send_in_progress == 0);
4468 
4469 		/* the last ref */
4470 		if (dest->ino_cache_inode) {
4471 			iput(dest->ino_cache_inode);
4472 			dest->ino_cache_inode = NULL;
4473 		}
4474 	}
4475 
4476 	return err;
4477 }
4478 
4479 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4480 {
4481 	struct inode *inode = d_inode(dentry);
4482 	int err = 0;
4483 	struct btrfs_root *root = BTRFS_I(dir)->root;
4484 	struct btrfs_trans_handle *trans;
4485 	u64 last_unlink_trans;
4486 
4487 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4488 		return -ENOTEMPTY;
4489 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4490 		return btrfs_delete_subvolume(dir, dentry);
4491 
4492 	trans = __unlink_start_trans(dir);
4493 	if (IS_ERR(trans))
4494 		return PTR_ERR(trans);
4495 
4496 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4497 		err = btrfs_unlink_subvol(trans, dir,
4498 					  BTRFS_I(inode)->location.objectid,
4499 					  dentry->d_name.name,
4500 					  dentry->d_name.len);
4501 		goto out;
4502 	}
4503 
4504 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4505 	if (err)
4506 		goto out;
4507 
4508 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4509 
4510 	/* now the directory is empty */
4511 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4512 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4513 			dentry->d_name.len);
4514 	if (!err) {
4515 		btrfs_i_size_write(BTRFS_I(inode), 0);
4516 		/*
4517 		 * Propagate the last_unlink_trans value of the deleted dir to
4518 		 * its parent directory. This is to prevent an unrecoverable
4519 		 * log tree in the case we do something like this:
4520 		 * 1) create dir foo
4521 		 * 2) create snapshot under dir foo
4522 		 * 3) delete the snapshot
4523 		 * 4) rmdir foo
4524 		 * 5) mkdir foo
4525 		 * 6) fsync foo or some file inside foo
4526 		 */
4527 		if (last_unlink_trans >= trans->transid)
4528 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4529 	}
4530 out:
4531 	btrfs_end_transaction(trans);
4532 	btrfs_btree_balance_dirty(root->fs_info);
4533 
4534 	return err;
4535 }
4536 
4537 /*
4538  * Return this if we need to call truncate_block for the last bit of the
4539  * truncate.
4540  */
4541 #define NEED_TRUNCATE_BLOCK 1
4542 
4543 /*
4544  * this can truncate away extent items, csum items and directory items.
4545  * It starts at a high offset and removes keys until it can't find
4546  * any higher than new_size
4547  *
4548  * csum items that cross the new i_size are truncated to the new size
4549  * as well.
4550  *
4551  * min_type is the minimum key type to truncate down to.  If set to 0, this
4552  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4553  */
4554 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4555 			       struct btrfs_root *root,
4556 			       struct inode *inode,
4557 			       u64 new_size, u32 min_type)
4558 {
4559 	struct btrfs_fs_info *fs_info = root->fs_info;
4560 	struct btrfs_path *path;
4561 	struct extent_buffer *leaf;
4562 	struct btrfs_file_extent_item *fi;
4563 	struct btrfs_key key;
4564 	struct btrfs_key found_key;
4565 	u64 extent_start = 0;
4566 	u64 extent_num_bytes = 0;
4567 	u64 extent_offset = 0;
4568 	u64 item_end = 0;
4569 	u64 last_size = new_size;
4570 	u32 found_type = (u8)-1;
4571 	int found_extent;
4572 	int del_item;
4573 	int pending_del_nr = 0;
4574 	int pending_del_slot = 0;
4575 	int extent_type = -1;
4576 	int ret;
4577 	u64 ino = btrfs_ino(BTRFS_I(inode));
4578 	u64 bytes_deleted = 0;
4579 	bool be_nice = false;
4580 	bool should_throttle = false;
4581 
4582 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4583 
4584 	/*
4585 	 * for non-free space inodes and ref cows, we want to back off from
4586 	 * time to time
4587 	 */
4588 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4589 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4590 		be_nice = true;
4591 
4592 	path = btrfs_alloc_path();
4593 	if (!path)
4594 		return -ENOMEM;
4595 	path->reada = READA_BACK;
4596 
4597 	/*
4598 	 * We want to drop from the next block forward in case this new size is
4599 	 * not block aligned since we will be keeping the last block of the
4600 	 * extent just the way it is.
4601 	 */
4602 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4603 	    root == fs_info->tree_root)
4604 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4605 					fs_info->sectorsize),
4606 					(u64)-1, 0);
4607 
4608 	/*
4609 	 * This function is also used to drop the items in the log tree before
4610 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4611 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4612 	 * items.
4613 	 */
4614 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4615 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4616 
4617 	key.objectid = ino;
4618 	key.offset = (u64)-1;
4619 	key.type = (u8)-1;
4620 
4621 search_again:
4622 	/*
4623 	 * with a 16K leaf size and 128MB extents, you can actually queue
4624 	 * up a huge file in a single leaf.  Most of the time that
4625 	 * bytes_deleted is > 0, it will be huge by the time we get here
4626 	 */
4627 	if (be_nice && bytes_deleted > SZ_32M &&
4628 	    btrfs_should_end_transaction(trans)) {
4629 		ret = -EAGAIN;
4630 		goto out;
4631 	}
4632 
4633 	path->leave_spinning = 1;
4634 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4635 	if (ret < 0)
4636 		goto out;
4637 
4638 	if (ret > 0) {
4639 		ret = 0;
4640 		/* there are no items in the tree for us to truncate, we're
4641 		 * done
4642 		 */
4643 		if (path->slots[0] == 0)
4644 			goto out;
4645 		path->slots[0]--;
4646 	}
4647 
4648 	while (1) {
4649 		fi = NULL;
4650 		leaf = path->nodes[0];
4651 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4652 		found_type = found_key.type;
4653 
4654 		if (found_key.objectid != ino)
4655 			break;
4656 
4657 		if (found_type < min_type)
4658 			break;
4659 
4660 		item_end = found_key.offset;
4661 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4662 			fi = btrfs_item_ptr(leaf, path->slots[0],
4663 					    struct btrfs_file_extent_item);
4664 			extent_type = btrfs_file_extent_type(leaf, fi);
4665 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4666 				item_end +=
4667 				    btrfs_file_extent_num_bytes(leaf, fi);
4668 
4669 				trace_btrfs_truncate_show_fi_regular(
4670 					BTRFS_I(inode), leaf, fi,
4671 					found_key.offset);
4672 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4673 				item_end += btrfs_file_extent_ram_bytes(leaf,
4674 									fi);
4675 
4676 				trace_btrfs_truncate_show_fi_inline(
4677 					BTRFS_I(inode), leaf, fi, path->slots[0],
4678 					found_key.offset);
4679 			}
4680 			item_end--;
4681 		}
4682 		if (found_type > min_type) {
4683 			del_item = 1;
4684 		} else {
4685 			if (item_end < new_size)
4686 				break;
4687 			if (found_key.offset >= new_size)
4688 				del_item = 1;
4689 			else
4690 				del_item = 0;
4691 		}
4692 		found_extent = 0;
4693 		/* FIXME, shrink the extent if the ref count is only 1 */
4694 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4695 			goto delete;
4696 
4697 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4698 			u64 num_dec;
4699 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4700 			if (!del_item) {
4701 				u64 orig_num_bytes =
4702 					btrfs_file_extent_num_bytes(leaf, fi);
4703 				extent_num_bytes = ALIGN(new_size -
4704 						found_key.offset,
4705 						fs_info->sectorsize);
4706 				btrfs_set_file_extent_num_bytes(leaf, fi,
4707 							 extent_num_bytes);
4708 				num_dec = (orig_num_bytes -
4709 					   extent_num_bytes);
4710 				if (test_bit(BTRFS_ROOT_REF_COWS,
4711 					     &root->state) &&
4712 				    extent_start != 0)
4713 					inode_sub_bytes(inode, num_dec);
4714 				btrfs_mark_buffer_dirty(leaf);
4715 			} else {
4716 				extent_num_bytes =
4717 					btrfs_file_extent_disk_num_bytes(leaf,
4718 									 fi);
4719 				extent_offset = found_key.offset -
4720 					btrfs_file_extent_offset(leaf, fi);
4721 
4722 				/* FIXME blocksize != 4096 */
4723 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4724 				if (extent_start != 0) {
4725 					found_extent = 1;
4726 					if (test_bit(BTRFS_ROOT_REF_COWS,
4727 						     &root->state))
4728 						inode_sub_bytes(inode, num_dec);
4729 				}
4730 			}
4731 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4732 			/*
4733 			 * we can't truncate inline items that have had
4734 			 * special encodings
4735 			 */
4736 			if (!del_item &&
4737 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4738 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4739 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4740 				u32 size = (u32)(new_size - found_key.offset);
4741 
4742 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4743 				size = btrfs_file_extent_calc_inline_size(size);
4744 				btrfs_truncate_item(path, size, 1);
4745 			} else if (!del_item) {
4746 				/*
4747 				 * We have to bail so the last_size is set to
4748 				 * just before this extent.
4749 				 */
4750 				ret = NEED_TRUNCATE_BLOCK;
4751 				break;
4752 			}
4753 
4754 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4755 				inode_sub_bytes(inode, item_end + 1 - new_size);
4756 		}
4757 delete:
4758 		if (del_item)
4759 			last_size = found_key.offset;
4760 		else
4761 			last_size = new_size;
4762 		if (del_item) {
4763 			if (!pending_del_nr) {
4764 				/* no pending yet, add ourselves */
4765 				pending_del_slot = path->slots[0];
4766 				pending_del_nr = 1;
4767 			} else if (pending_del_nr &&
4768 				   path->slots[0] + 1 == pending_del_slot) {
4769 				/* hop on the pending chunk */
4770 				pending_del_nr++;
4771 				pending_del_slot = path->slots[0];
4772 			} else {
4773 				BUG();
4774 			}
4775 		} else {
4776 			break;
4777 		}
4778 		should_throttle = false;
4779 
4780 		if (found_extent &&
4781 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4782 		     root == fs_info->tree_root)) {
4783 			struct btrfs_ref ref = { 0 };
4784 
4785 			btrfs_set_path_blocking(path);
4786 			bytes_deleted += extent_num_bytes;
4787 
4788 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4789 					extent_start, extent_num_bytes, 0);
4790 			ref.real_root = root->root_key.objectid;
4791 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4792 					ino, extent_offset);
4793 			ret = btrfs_free_extent(trans, &ref);
4794 			if (ret) {
4795 				btrfs_abort_transaction(trans, ret);
4796 				break;
4797 			}
4798 			if (be_nice) {
4799 				if (btrfs_should_throttle_delayed_refs(trans))
4800 					should_throttle = true;
4801 			}
4802 		}
4803 
4804 		if (found_type == BTRFS_INODE_ITEM_KEY)
4805 			break;
4806 
4807 		if (path->slots[0] == 0 ||
4808 		    path->slots[0] != pending_del_slot ||
4809 		    should_throttle) {
4810 			if (pending_del_nr) {
4811 				ret = btrfs_del_items(trans, root, path,
4812 						pending_del_slot,
4813 						pending_del_nr);
4814 				if (ret) {
4815 					btrfs_abort_transaction(trans, ret);
4816 					break;
4817 				}
4818 				pending_del_nr = 0;
4819 			}
4820 			btrfs_release_path(path);
4821 
4822 			/*
4823 			 * We can generate a lot of delayed refs, so we need to
4824 			 * throttle every once and a while and make sure we're
4825 			 * adding enough space to keep up with the work we are
4826 			 * generating.  Since we hold a transaction here we
4827 			 * can't flush, and we don't want to FLUSH_LIMIT because
4828 			 * we could have generated too many delayed refs to
4829 			 * actually allocate, so just bail if we're short and
4830 			 * let the normal reservation dance happen higher up.
4831 			 */
4832 			if (should_throttle) {
4833 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4834 							BTRFS_RESERVE_NO_FLUSH);
4835 				if (ret) {
4836 					ret = -EAGAIN;
4837 					break;
4838 				}
4839 			}
4840 			goto search_again;
4841 		} else {
4842 			path->slots[0]--;
4843 		}
4844 	}
4845 out:
4846 	if (ret >= 0 && pending_del_nr) {
4847 		int err;
4848 
4849 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4850 				      pending_del_nr);
4851 		if (err) {
4852 			btrfs_abort_transaction(trans, err);
4853 			ret = err;
4854 		}
4855 	}
4856 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4857 		ASSERT(last_size >= new_size);
4858 		if (!ret && last_size > new_size)
4859 			last_size = new_size;
4860 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4861 	}
4862 
4863 	btrfs_free_path(path);
4864 	return ret;
4865 }
4866 
4867 /*
4868  * btrfs_truncate_block - read, zero a chunk and write a block
4869  * @inode - inode that we're zeroing
4870  * @from - the offset to start zeroing
4871  * @len - the length to zero, 0 to zero the entire range respective to the
4872  *	offset
4873  * @front - zero up to the offset instead of from the offset on
4874  *
4875  * This will find the block for the "from" offset and cow the block and zero the
4876  * part we want to zero.  This is used with truncate and hole punching.
4877  */
4878 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4879 			int front)
4880 {
4881 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4882 	struct address_space *mapping = inode->i_mapping;
4883 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4884 	struct btrfs_ordered_extent *ordered;
4885 	struct extent_state *cached_state = NULL;
4886 	struct extent_changeset *data_reserved = NULL;
4887 	char *kaddr;
4888 	u32 blocksize = fs_info->sectorsize;
4889 	pgoff_t index = from >> PAGE_SHIFT;
4890 	unsigned offset = from & (blocksize - 1);
4891 	struct page *page;
4892 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4893 	int ret = 0;
4894 	u64 block_start;
4895 	u64 block_end;
4896 
4897 	if (IS_ALIGNED(offset, blocksize) &&
4898 	    (!len || IS_ALIGNED(len, blocksize)))
4899 		goto out;
4900 
4901 	block_start = round_down(from, blocksize);
4902 	block_end = block_start + blocksize - 1;
4903 
4904 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4905 					   block_start, blocksize);
4906 	if (ret)
4907 		goto out;
4908 
4909 again:
4910 	page = find_or_create_page(mapping, index, mask);
4911 	if (!page) {
4912 		btrfs_delalloc_release_space(inode, data_reserved,
4913 					     block_start, blocksize, true);
4914 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4915 		ret = -ENOMEM;
4916 		goto out;
4917 	}
4918 
4919 	if (!PageUptodate(page)) {
4920 		ret = btrfs_readpage(NULL, page);
4921 		lock_page(page);
4922 		if (page->mapping != mapping) {
4923 			unlock_page(page);
4924 			put_page(page);
4925 			goto again;
4926 		}
4927 		if (!PageUptodate(page)) {
4928 			ret = -EIO;
4929 			goto out_unlock;
4930 		}
4931 	}
4932 	wait_on_page_writeback(page);
4933 
4934 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4935 	set_page_extent_mapped(page);
4936 
4937 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4938 	if (ordered) {
4939 		unlock_extent_cached(io_tree, block_start, block_end,
4940 				     &cached_state);
4941 		unlock_page(page);
4942 		put_page(page);
4943 		btrfs_start_ordered_extent(inode, ordered, 1);
4944 		btrfs_put_ordered_extent(ordered);
4945 		goto again;
4946 	}
4947 
4948 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4949 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4950 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4951 			  0, 0, &cached_state);
4952 
4953 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4954 					&cached_state, 0);
4955 	if (ret) {
4956 		unlock_extent_cached(io_tree, block_start, block_end,
4957 				     &cached_state);
4958 		goto out_unlock;
4959 	}
4960 
4961 	if (offset != blocksize) {
4962 		if (!len)
4963 			len = blocksize - offset;
4964 		kaddr = kmap(page);
4965 		if (front)
4966 			memset(kaddr + (block_start - page_offset(page)),
4967 				0, offset);
4968 		else
4969 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4970 				0, len);
4971 		flush_dcache_page(page);
4972 		kunmap(page);
4973 	}
4974 	ClearPageChecked(page);
4975 	set_page_dirty(page);
4976 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4977 
4978 out_unlock:
4979 	if (ret)
4980 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4981 					     blocksize, true);
4982 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4983 	unlock_page(page);
4984 	put_page(page);
4985 out:
4986 	extent_changeset_free(data_reserved);
4987 	return ret;
4988 }
4989 
4990 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4991 			     u64 offset, u64 len)
4992 {
4993 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4994 	struct btrfs_trans_handle *trans;
4995 	int ret;
4996 
4997 	/*
4998 	 * Still need to make sure the inode looks like it's been updated so
4999 	 * that any holes get logged if we fsync.
5000 	 */
5001 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5002 		BTRFS_I(inode)->last_trans = fs_info->generation;
5003 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
5004 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5005 		return 0;
5006 	}
5007 
5008 	/*
5009 	 * 1 - for the one we're dropping
5010 	 * 1 - for the one we're adding
5011 	 * 1 - for updating the inode.
5012 	 */
5013 	trans = btrfs_start_transaction(root, 3);
5014 	if (IS_ERR(trans))
5015 		return PTR_ERR(trans);
5016 
5017 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5018 	if (ret) {
5019 		btrfs_abort_transaction(trans, ret);
5020 		btrfs_end_transaction(trans);
5021 		return ret;
5022 	}
5023 
5024 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5025 			offset, 0, 0, len, 0, len, 0, 0, 0);
5026 	if (ret)
5027 		btrfs_abort_transaction(trans, ret);
5028 	else
5029 		btrfs_update_inode(trans, root, inode);
5030 	btrfs_end_transaction(trans);
5031 	return ret;
5032 }
5033 
5034 /*
5035  * This function puts in dummy file extents for the area we're creating a hole
5036  * for.  So if we are truncating this file to a larger size we need to insert
5037  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5038  * the range between oldsize and size
5039  */
5040 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5041 {
5042 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5043 	struct btrfs_root *root = BTRFS_I(inode)->root;
5044 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5045 	struct extent_map *em = NULL;
5046 	struct extent_state *cached_state = NULL;
5047 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5048 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5049 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5050 	u64 last_byte;
5051 	u64 cur_offset;
5052 	u64 hole_size;
5053 	int err = 0;
5054 
5055 	/*
5056 	 * If our size started in the middle of a block we need to zero out the
5057 	 * rest of the block before we expand the i_size, otherwise we could
5058 	 * expose stale data.
5059 	 */
5060 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5061 	if (err)
5062 		return err;
5063 
5064 	if (size <= hole_start)
5065 		return 0;
5066 
5067 	btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5068 					   block_end - 1, &cached_state);
5069 	cur_offset = hole_start;
5070 	while (1) {
5071 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5072 				block_end - cur_offset, 0);
5073 		if (IS_ERR(em)) {
5074 			err = PTR_ERR(em);
5075 			em = NULL;
5076 			break;
5077 		}
5078 		last_byte = min(extent_map_end(em), block_end);
5079 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5080 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5081 			struct extent_map *hole_em;
5082 			hole_size = last_byte - cur_offset;
5083 
5084 			err = maybe_insert_hole(root, inode, cur_offset,
5085 						hole_size);
5086 			if (err)
5087 				break;
5088 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5089 						cur_offset + hole_size - 1, 0);
5090 			hole_em = alloc_extent_map();
5091 			if (!hole_em) {
5092 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5093 					&BTRFS_I(inode)->runtime_flags);
5094 				goto next;
5095 			}
5096 			hole_em->start = cur_offset;
5097 			hole_em->len = hole_size;
5098 			hole_em->orig_start = cur_offset;
5099 
5100 			hole_em->block_start = EXTENT_MAP_HOLE;
5101 			hole_em->block_len = 0;
5102 			hole_em->orig_block_len = 0;
5103 			hole_em->ram_bytes = hole_size;
5104 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5105 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5106 			hole_em->generation = fs_info->generation;
5107 
5108 			while (1) {
5109 				write_lock(&em_tree->lock);
5110 				err = add_extent_mapping(em_tree, hole_em, 1);
5111 				write_unlock(&em_tree->lock);
5112 				if (err != -EEXIST)
5113 					break;
5114 				btrfs_drop_extent_cache(BTRFS_I(inode),
5115 							cur_offset,
5116 							cur_offset +
5117 							hole_size - 1, 0);
5118 			}
5119 			free_extent_map(hole_em);
5120 		}
5121 next:
5122 		free_extent_map(em);
5123 		em = NULL;
5124 		cur_offset = last_byte;
5125 		if (cur_offset >= block_end)
5126 			break;
5127 	}
5128 	free_extent_map(em);
5129 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5130 	return err;
5131 }
5132 
5133 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5134 {
5135 	struct btrfs_root *root = BTRFS_I(inode)->root;
5136 	struct btrfs_trans_handle *trans;
5137 	loff_t oldsize = i_size_read(inode);
5138 	loff_t newsize = attr->ia_size;
5139 	int mask = attr->ia_valid;
5140 	int ret;
5141 
5142 	/*
5143 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5144 	 * special case where we need to update the times despite not having
5145 	 * these flags set.  For all other operations the VFS set these flags
5146 	 * explicitly if it wants a timestamp update.
5147 	 */
5148 	if (newsize != oldsize) {
5149 		inode_inc_iversion(inode);
5150 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5151 			inode->i_ctime = inode->i_mtime =
5152 				current_time(inode);
5153 	}
5154 
5155 	if (newsize > oldsize) {
5156 		/*
5157 		 * Don't do an expanding truncate while snapshotting is ongoing.
5158 		 * This is to ensure the snapshot captures a fully consistent
5159 		 * state of this file - if the snapshot captures this expanding
5160 		 * truncation, it must capture all writes that happened before
5161 		 * this truncation.
5162 		 */
5163 		btrfs_wait_for_snapshot_creation(root);
5164 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5165 		if (ret) {
5166 			btrfs_end_write_no_snapshotting(root);
5167 			return ret;
5168 		}
5169 
5170 		trans = btrfs_start_transaction(root, 1);
5171 		if (IS_ERR(trans)) {
5172 			btrfs_end_write_no_snapshotting(root);
5173 			return PTR_ERR(trans);
5174 		}
5175 
5176 		i_size_write(inode, newsize);
5177 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5178 		pagecache_isize_extended(inode, oldsize, newsize);
5179 		ret = btrfs_update_inode(trans, root, inode);
5180 		btrfs_end_write_no_snapshotting(root);
5181 		btrfs_end_transaction(trans);
5182 	} else {
5183 
5184 		/*
5185 		 * We're truncating a file that used to have good data down to
5186 		 * zero. Make sure it gets into the ordered flush list so that
5187 		 * any new writes get down to disk quickly.
5188 		 */
5189 		if (newsize == 0)
5190 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5191 				&BTRFS_I(inode)->runtime_flags);
5192 
5193 		truncate_setsize(inode, newsize);
5194 
5195 		/* Disable nonlocked read DIO to avoid the endless truncate */
5196 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5197 		inode_dio_wait(inode);
5198 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5199 
5200 		ret = btrfs_truncate(inode, newsize == oldsize);
5201 		if (ret && inode->i_nlink) {
5202 			int err;
5203 
5204 			/*
5205 			 * Truncate failed, so fix up the in-memory size. We
5206 			 * adjusted disk_i_size down as we removed extents, so
5207 			 * wait for disk_i_size to be stable and then update the
5208 			 * in-memory size to match.
5209 			 */
5210 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5211 			if (err)
5212 				return err;
5213 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5214 		}
5215 	}
5216 
5217 	return ret;
5218 }
5219 
5220 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5221 {
5222 	struct inode *inode = d_inode(dentry);
5223 	struct btrfs_root *root = BTRFS_I(inode)->root;
5224 	int err;
5225 
5226 	if (btrfs_root_readonly(root))
5227 		return -EROFS;
5228 
5229 	err = setattr_prepare(dentry, attr);
5230 	if (err)
5231 		return err;
5232 
5233 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5234 		err = btrfs_setsize(inode, attr);
5235 		if (err)
5236 			return err;
5237 	}
5238 
5239 	if (attr->ia_valid) {
5240 		setattr_copy(inode, attr);
5241 		inode_inc_iversion(inode);
5242 		err = btrfs_dirty_inode(inode);
5243 
5244 		if (!err && attr->ia_valid & ATTR_MODE)
5245 			err = posix_acl_chmod(inode, inode->i_mode);
5246 	}
5247 
5248 	return err;
5249 }
5250 
5251 /*
5252  * While truncating the inode pages during eviction, we get the VFS calling
5253  * btrfs_invalidatepage() against each page of the inode. This is slow because
5254  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5255  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5256  * extent_state structures over and over, wasting lots of time.
5257  *
5258  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5259  * those expensive operations on a per page basis and do only the ordered io
5260  * finishing, while we release here the extent_map and extent_state structures,
5261  * without the excessive merging and splitting.
5262  */
5263 static void evict_inode_truncate_pages(struct inode *inode)
5264 {
5265 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5266 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5267 	struct rb_node *node;
5268 
5269 	ASSERT(inode->i_state & I_FREEING);
5270 	truncate_inode_pages_final(&inode->i_data);
5271 
5272 	write_lock(&map_tree->lock);
5273 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5274 		struct extent_map *em;
5275 
5276 		node = rb_first_cached(&map_tree->map);
5277 		em = rb_entry(node, struct extent_map, rb_node);
5278 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5279 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5280 		remove_extent_mapping(map_tree, em);
5281 		free_extent_map(em);
5282 		if (need_resched()) {
5283 			write_unlock(&map_tree->lock);
5284 			cond_resched();
5285 			write_lock(&map_tree->lock);
5286 		}
5287 	}
5288 	write_unlock(&map_tree->lock);
5289 
5290 	/*
5291 	 * Keep looping until we have no more ranges in the io tree.
5292 	 * We can have ongoing bios started by readpages (called from readahead)
5293 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5294 	 * still in progress (unlocked the pages in the bio but did not yet
5295 	 * unlocked the ranges in the io tree). Therefore this means some
5296 	 * ranges can still be locked and eviction started because before
5297 	 * submitting those bios, which are executed by a separate task (work
5298 	 * queue kthread), inode references (inode->i_count) were not taken
5299 	 * (which would be dropped in the end io callback of each bio).
5300 	 * Therefore here we effectively end up waiting for those bios and
5301 	 * anyone else holding locked ranges without having bumped the inode's
5302 	 * reference count - if we don't do it, when they access the inode's
5303 	 * io_tree to unlock a range it may be too late, leading to an
5304 	 * use-after-free issue.
5305 	 */
5306 	spin_lock(&io_tree->lock);
5307 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5308 		struct extent_state *state;
5309 		struct extent_state *cached_state = NULL;
5310 		u64 start;
5311 		u64 end;
5312 		unsigned state_flags;
5313 
5314 		node = rb_first(&io_tree->state);
5315 		state = rb_entry(node, struct extent_state, rb_node);
5316 		start = state->start;
5317 		end = state->end;
5318 		state_flags = state->state;
5319 		spin_unlock(&io_tree->lock);
5320 
5321 		lock_extent_bits(io_tree, start, end, &cached_state);
5322 
5323 		/*
5324 		 * If still has DELALLOC flag, the extent didn't reach disk,
5325 		 * and its reserved space won't be freed by delayed_ref.
5326 		 * So we need to free its reserved space here.
5327 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5328 		 *
5329 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5330 		 */
5331 		if (state_flags & EXTENT_DELALLOC)
5332 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5333 
5334 		clear_extent_bit(io_tree, start, end,
5335 				 EXTENT_LOCKED | EXTENT_DIRTY |
5336 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5337 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5338 
5339 		cond_resched();
5340 		spin_lock(&io_tree->lock);
5341 	}
5342 	spin_unlock(&io_tree->lock);
5343 }
5344 
5345 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5346 							struct btrfs_block_rsv *rsv)
5347 {
5348 	struct btrfs_fs_info *fs_info = root->fs_info;
5349 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5350 	u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1);
5351 	int failures = 0;
5352 
5353 	for (;;) {
5354 		struct btrfs_trans_handle *trans;
5355 		int ret;
5356 
5357 		ret = btrfs_block_rsv_refill(root, rsv,
5358 					     rsv->size + delayed_refs_extra,
5359 					     BTRFS_RESERVE_FLUSH_LIMIT);
5360 
5361 		if (ret && ++failures > 2) {
5362 			btrfs_warn(fs_info,
5363 				   "could not allocate space for a delete; will truncate on mount");
5364 			return ERR_PTR(-ENOSPC);
5365 		}
5366 
5367 		/*
5368 		 * Evict can generate a large amount of delayed refs without
5369 		 * having a way to add space back since we exhaust our temporary
5370 		 * block rsv.  We aren't allowed to do FLUSH_ALL in this case
5371 		 * because we could deadlock with so many things in the flushing
5372 		 * code, so we have to try and hold some extra space to
5373 		 * compensate for our delayed ref generation.  If we can't get
5374 		 * that space then we need see if we can steal our minimum from
5375 		 * the global reserve.  We will be ratelimited by the amount of
5376 		 * space we have for the delayed refs rsv, so we'll end up
5377 		 * committing and trying again.
5378 		 */
5379 		trans = btrfs_join_transaction(root);
5380 		if (IS_ERR(trans) || !ret) {
5381 			if (!IS_ERR(trans)) {
5382 				trans->block_rsv = &fs_info->trans_block_rsv;
5383 				trans->bytes_reserved = delayed_refs_extra;
5384 				btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5385 							delayed_refs_extra, 1);
5386 			}
5387 			return trans;
5388 		}
5389 
5390 		/*
5391 		 * Try to steal from the global reserve if there is space for
5392 		 * it.
5393 		 */
5394 		if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5395 		    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
5396 			return trans;
5397 
5398 		/* If not, commit and try again. */
5399 		ret = btrfs_commit_transaction(trans);
5400 		if (ret)
5401 			return ERR_PTR(ret);
5402 	}
5403 }
5404 
5405 void btrfs_evict_inode(struct inode *inode)
5406 {
5407 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5408 	struct btrfs_trans_handle *trans;
5409 	struct btrfs_root *root = BTRFS_I(inode)->root;
5410 	struct btrfs_block_rsv *rsv;
5411 	int ret;
5412 
5413 	trace_btrfs_inode_evict(inode);
5414 
5415 	if (!root) {
5416 		clear_inode(inode);
5417 		return;
5418 	}
5419 
5420 	evict_inode_truncate_pages(inode);
5421 
5422 	if (inode->i_nlink &&
5423 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5424 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5425 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5426 		goto no_delete;
5427 
5428 	if (is_bad_inode(inode))
5429 		goto no_delete;
5430 
5431 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5432 
5433 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5434 		goto no_delete;
5435 
5436 	if (inode->i_nlink > 0) {
5437 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5438 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5439 		goto no_delete;
5440 	}
5441 
5442 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5443 	if (ret)
5444 		goto no_delete;
5445 
5446 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5447 	if (!rsv)
5448 		goto no_delete;
5449 	rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5450 	rsv->failfast = 1;
5451 
5452 	btrfs_i_size_write(BTRFS_I(inode), 0);
5453 
5454 	while (1) {
5455 		trans = evict_refill_and_join(root, rsv);
5456 		if (IS_ERR(trans))
5457 			goto free_rsv;
5458 
5459 		trans->block_rsv = rsv;
5460 
5461 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5462 		trans->block_rsv = &fs_info->trans_block_rsv;
5463 		btrfs_end_transaction(trans);
5464 		btrfs_btree_balance_dirty(fs_info);
5465 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5466 			goto free_rsv;
5467 		else if (!ret)
5468 			break;
5469 	}
5470 
5471 	/*
5472 	 * Errors here aren't a big deal, it just means we leave orphan items in
5473 	 * the tree. They will be cleaned up on the next mount. If the inode
5474 	 * number gets reused, cleanup deletes the orphan item without doing
5475 	 * anything, and unlink reuses the existing orphan item.
5476 	 *
5477 	 * If it turns out that we are dropping too many of these, we might want
5478 	 * to add a mechanism for retrying these after a commit.
5479 	 */
5480 	trans = evict_refill_and_join(root, rsv);
5481 	if (!IS_ERR(trans)) {
5482 		trans->block_rsv = rsv;
5483 		btrfs_orphan_del(trans, BTRFS_I(inode));
5484 		trans->block_rsv = &fs_info->trans_block_rsv;
5485 		btrfs_end_transaction(trans);
5486 	}
5487 
5488 	if (!(root == fs_info->tree_root ||
5489 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5490 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5491 
5492 free_rsv:
5493 	btrfs_free_block_rsv(fs_info, rsv);
5494 no_delete:
5495 	/*
5496 	 * If we didn't successfully delete, the orphan item will still be in
5497 	 * the tree and we'll retry on the next mount. Again, we might also want
5498 	 * to retry these periodically in the future.
5499 	 */
5500 	btrfs_remove_delayed_node(BTRFS_I(inode));
5501 	clear_inode(inode);
5502 }
5503 
5504 /*
5505  * Return the key found in the dir entry in the location pointer, fill @type
5506  * with BTRFS_FT_*, and return 0.
5507  *
5508  * If no dir entries were found, returns -ENOENT.
5509  * If found a corrupted location in dir entry, returns -EUCLEAN.
5510  */
5511 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5512 			       struct btrfs_key *location, u8 *type)
5513 {
5514 	const char *name = dentry->d_name.name;
5515 	int namelen = dentry->d_name.len;
5516 	struct btrfs_dir_item *di;
5517 	struct btrfs_path *path;
5518 	struct btrfs_root *root = BTRFS_I(dir)->root;
5519 	int ret = 0;
5520 
5521 	path = btrfs_alloc_path();
5522 	if (!path)
5523 		return -ENOMEM;
5524 
5525 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5526 			name, namelen, 0);
5527 	if (IS_ERR_OR_NULL(di)) {
5528 		ret = di ? PTR_ERR(di) : -ENOENT;
5529 		goto out;
5530 	}
5531 
5532 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5533 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5534 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5535 		ret = -EUCLEAN;
5536 		btrfs_warn(root->fs_info,
5537 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5538 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5539 			   location->objectid, location->type, location->offset);
5540 	}
5541 	if (!ret)
5542 		*type = btrfs_dir_type(path->nodes[0], di);
5543 out:
5544 	btrfs_free_path(path);
5545 	return ret;
5546 }
5547 
5548 /*
5549  * when we hit a tree root in a directory, the btrfs part of the inode
5550  * needs to be changed to reflect the root directory of the tree root.  This
5551  * is kind of like crossing a mount point.
5552  */
5553 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5554 				    struct inode *dir,
5555 				    struct dentry *dentry,
5556 				    struct btrfs_key *location,
5557 				    struct btrfs_root **sub_root)
5558 {
5559 	struct btrfs_path *path;
5560 	struct btrfs_root *new_root;
5561 	struct btrfs_root_ref *ref;
5562 	struct extent_buffer *leaf;
5563 	struct btrfs_key key;
5564 	int ret;
5565 	int err = 0;
5566 
5567 	path = btrfs_alloc_path();
5568 	if (!path) {
5569 		err = -ENOMEM;
5570 		goto out;
5571 	}
5572 
5573 	err = -ENOENT;
5574 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5575 	key.type = BTRFS_ROOT_REF_KEY;
5576 	key.offset = location->objectid;
5577 
5578 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5579 	if (ret) {
5580 		if (ret < 0)
5581 			err = ret;
5582 		goto out;
5583 	}
5584 
5585 	leaf = path->nodes[0];
5586 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5587 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5588 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5589 		goto out;
5590 
5591 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5592 				   (unsigned long)(ref + 1),
5593 				   dentry->d_name.len);
5594 	if (ret)
5595 		goto out;
5596 
5597 	btrfs_release_path(path);
5598 
5599 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5600 	if (IS_ERR(new_root)) {
5601 		err = PTR_ERR(new_root);
5602 		goto out;
5603 	}
5604 
5605 	*sub_root = new_root;
5606 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5607 	location->type = BTRFS_INODE_ITEM_KEY;
5608 	location->offset = 0;
5609 	err = 0;
5610 out:
5611 	btrfs_free_path(path);
5612 	return err;
5613 }
5614 
5615 static void inode_tree_add(struct inode *inode)
5616 {
5617 	struct btrfs_root *root = BTRFS_I(inode)->root;
5618 	struct btrfs_inode *entry;
5619 	struct rb_node **p;
5620 	struct rb_node *parent;
5621 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5622 	u64 ino = btrfs_ino(BTRFS_I(inode));
5623 
5624 	if (inode_unhashed(inode))
5625 		return;
5626 	parent = NULL;
5627 	spin_lock(&root->inode_lock);
5628 	p = &root->inode_tree.rb_node;
5629 	while (*p) {
5630 		parent = *p;
5631 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5632 
5633 		if (ino < btrfs_ino(entry))
5634 			p = &parent->rb_left;
5635 		else if (ino > btrfs_ino(entry))
5636 			p = &parent->rb_right;
5637 		else {
5638 			WARN_ON(!(entry->vfs_inode.i_state &
5639 				  (I_WILL_FREE | I_FREEING)));
5640 			rb_replace_node(parent, new, &root->inode_tree);
5641 			RB_CLEAR_NODE(parent);
5642 			spin_unlock(&root->inode_lock);
5643 			return;
5644 		}
5645 	}
5646 	rb_link_node(new, parent, p);
5647 	rb_insert_color(new, &root->inode_tree);
5648 	spin_unlock(&root->inode_lock);
5649 }
5650 
5651 static void inode_tree_del(struct inode *inode)
5652 {
5653 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5654 	struct btrfs_root *root = BTRFS_I(inode)->root;
5655 	int empty = 0;
5656 
5657 	spin_lock(&root->inode_lock);
5658 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5659 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5660 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5661 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5662 	}
5663 	spin_unlock(&root->inode_lock);
5664 
5665 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5666 		synchronize_srcu(&fs_info->subvol_srcu);
5667 		spin_lock(&root->inode_lock);
5668 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5669 		spin_unlock(&root->inode_lock);
5670 		if (empty)
5671 			btrfs_add_dead_root(root);
5672 	}
5673 }
5674 
5675 
5676 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5677 {
5678 	struct btrfs_iget_args *args = p;
5679 	inode->i_ino = args->location->objectid;
5680 	memcpy(&BTRFS_I(inode)->location, args->location,
5681 	       sizeof(*args->location));
5682 	BTRFS_I(inode)->root = args->root;
5683 	return 0;
5684 }
5685 
5686 static int btrfs_find_actor(struct inode *inode, void *opaque)
5687 {
5688 	struct btrfs_iget_args *args = opaque;
5689 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5690 		args->root == BTRFS_I(inode)->root;
5691 }
5692 
5693 static struct inode *btrfs_iget_locked(struct super_block *s,
5694 				       struct btrfs_key *location,
5695 				       struct btrfs_root *root)
5696 {
5697 	struct inode *inode;
5698 	struct btrfs_iget_args args;
5699 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5700 
5701 	args.location = location;
5702 	args.root = root;
5703 
5704 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5705 			     btrfs_init_locked_inode,
5706 			     (void *)&args);
5707 	return inode;
5708 }
5709 
5710 /* Get an inode object given its location and corresponding root.
5711  * Returns in *is_new if the inode was read from disk
5712  */
5713 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5714 			      struct btrfs_root *root, int *new,
5715 			      struct btrfs_path *path)
5716 {
5717 	struct inode *inode;
5718 
5719 	inode = btrfs_iget_locked(s, location, root);
5720 	if (!inode)
5721 		return ERR_PTR(-ENOMEM);
5722 
5723 	if (inode->i_state & I_NEW) {
5724 		int ret;
5725 
5726 		ret = btrfs_read_locked_inode(inode, path);
5727 		if (!ret) {
5728 			inode_tree_add(inode);
5729 			unlock_new_inode(inode);
5730 			if (new)
5731 				*new = 1;
5732 		} else {
5733 			iget_failed(inode);
5734 			/*
5735 			 * ret > 0 can come from btrfs_search_slot called by
5736 			 * btrfs_read_locked_inode, this means the inode item
5737 			 * was not found.
5738 			 */
5739 			if (ret > 0)
5740 				ret = -ENOENT;
5741 			inode = ERR_PTR(ret);
5742 		}
5743 	}
5744 
5745 	return inode;
5746 }
5747 
5748 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5749 			 struct btrfs_root *root, int *new)
5750 {
5751 	return btrfs_iget_path(s, location, root, new, NULL);
5752 }
5753 
5754 static struct inode *new_simple_dir(struct super_block *s,
5755 				    struct btrfs_key *key,
5756 				    struct btrfs_root *root)
5757 {
5758 	struct inode *inode = new_inode(s);
5759 
5760 	if (!inode)
5761 		return ERR_PTR(-ENOMEM);
5762 
5763 	BTRFS_I(inode)->root = root;
5764 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5765 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5766 
5767 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5768 	inode->i_op = &btrfs_dir_ro_inode_operations;
5769 	inode->i_opflags &= ~IOP_XATTR;
5770 	inode->i_fop = &simple_dir_operations;
5771 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5772 	inode->i_mtime = current_time(inode);
5773 	inode->i_atime = inode->i_mtime;
5774 	inode->i_ctime = inode->i_mtime;
5775 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5776 
5777 	return inode;
5778 }
5779 
5780 static inline u8 btrfs_inode_type(struct inode *inode)
5781 {
5782 	/*
5783 	 * Compile-time asserts that generic FT_* types still match
5784 	 * BTRFS_FT_* types
5785 	 */
5786 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5787 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5788 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5789 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5790 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5791 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5792 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5793 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5794 
5795 	return fs_umode_to_ftype(inode->i_mode);
5796 }
5797 
5798 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5799 {
5800 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5801 	struct inode *inode;
5802 	struct btrfs_root *root = BTRFS_I(dir)->root;
5803 	struct btrfs_root *sub_root = root;
5804 	struct btrfs_key location;
5805 	u8 di_type = 0;
5806 	int index;
5807 	int ret = 0;
5808 
5809 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5810 		return ERR_PTR(-ENAMETOOLONG);
5811 
5812 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5813 	if (ret < 0)
5814 		return ERR_PTR(ret);
5815 
5816 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5817 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5818 		if (IS_ERR(inode))
5819 			return inode;
5820 
5821 		/* Do extra check against inode mode with di_type */
5822 		if (btrfs_inode_type(inode) != di_type) {
5823 			btrfs_crit(fs_info,
5824 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5825 				  inode->i_mode, btrfs_inode_type(inode),
5826 				  di_type);
5827 			iput(inode);
5828 			return ERR_PTR(-EUCLEAN);
5829 		}
5830 		return inode;
5831 	}
5832 
5833 	index = srcu_read_lock(&fs_info->subvol_srcu);
5834 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5835 				       &location, &sub_root);
5836 	if (ret < 0) {
5837 		if (ret != -ENOENT)
5838 			inode = ERR_PTR(ret);
5839 		else
5840 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5841 	} else {
5842 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5843 	}
5844 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5845 
5846 	if (!IS_ERR(inode) && root != sub_root) {
5847 		down_read(&fs_info->cleanup_work_sem);
5848 		if (!sb_rdonly(inode->i_sb))
5849 			ret = btrfs_orphan_cleanup(sub_root);
5850 		up_read(&fs_info->cleanup_work_sem);
5851 		if (ret) {
5852 			iput(inode);
5853 			inode = ERR_PTR(ret);
5854 		}
5855 	}
5856 
5857 	return inode;
5858 }
5859 
5860 static int btrfs_dentry_delete(const struct dentry *dentry)
5861 {
5862 	struct btrfs_root *root;
5863 	struct inode *inode = d_inode(dentry);
5864 
5865 	if (!inode && !IS_ROOT(dentry))
5866 		inode = d_inode(dentry->d_parent);
5867 
5868 	if (inode) {
5869 		root = BTRFS_I(inode)->root;
5870 		if (btrfs_root_refs(&root->root_item) == 0)
5871 			return 1;
5872 
5873 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5874 			return 1;
5875 	}
5876 	return 0;
5877 }
5878 
5879 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5880 				   unsigned int flags)
5881 {
5882 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5883 
5884 	if (inode == ERR_PTR(-ENOENT))
5885 		inode = NULL;
5886 	return d_splice_alias(inode, dentry);
5887 }
5888 
5889 /*
5890  * All this infrastructure exists because dir_emit can fault, and we are holding
5891  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5892  * our information into that, and then dir_emit from the buffer.  This is
5893  * similar to what NFS does, only we don't keep the buffer around in pagecache
5894  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5895  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5896  * tree lock.
5897  */
5898 static int btrfs_opendir(struct inode *inode, struct file *file)
5899 {
5900 	struct btrfs_file_private *private;
5901 
5902 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5903 	if (!private)
5904 		return -ENOMEM;
5905 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5906 	if (!private->filldir_buf) {
5907 		kfree(private);
5908 		return -ENOMEM;
5909 	}
5910 	file->private_data = private;
5911 	return 0;
5912 }
5913 
5914 struct dir_entry {
5915 	u64 ino;
5916 	u64 offset;
5917 	unsigned type;
5918 	int name_len;
5919 };
5920 
5921 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5922 {
5923 	while (entries--) {
5924 		struct dir_entry *entry = addr;
5925 		char *name = (char *)(entry + 1);
5926 
5927 		ctx->pos = get_unaligned(&entry->offset);
5928 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5929 					 get_unaligned(&entry->ino),
5930 					 get_unaligned(&entry->type)))
5931 			return 1;
5932 		addr += sizeof(struct dir_entry) +
5933 			get_unaligned(&entry->name_len);
5934 		ctx->pos++;
5935 	}
5936 	return 0;
5937 }
5938 
5939 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5940 {
5941 	struct inode *inode = file_inode(file);
5942 	struct btrfs_root *root = BTRFS_I(inode)->root;
5943 	struct btrfs_file_private *private = file->private_data;
5944 	struct btrfs_dir_item *di;
5945 	struct btrfs_key key;
5946 	struct btrfs_key found_key;
5947 	struct btrfs_path *path;
5948 	void *addr;
5949 	struct list_head ins_list;
5950 	struct list_head del_list;
5951 	int ret;
5952 	struct extent_buffer *leaf;
5953 	int slot;
5954 	char *name_ptr;
5955 	int name_len;
5956 	int entries = 0;
5957 	int total_len = 0;
5958 	bool put = false;
5959 	struct btrfs_key location;
5960 
5961 	if (!dir_emit_dots(file, ctx))
5962 		return 0;
5963 
5964 	path = btrfs_alloc_path();
5965 	if (!path)
5966 		return -ENOMEM;
5967 
5968 	addr = private->filldir_buf;
5969 	path->reada = READA_FORWARD;
5970 
5971 	INIT_LIST_HEAD(&ins_list);
5972 	INIT_LIST_HEAD(&del_list);
5973 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5974 
5975 again:
5976 	key.type = BTRFS_DIR_INDEX_KEY;
5977 	key.offset = ctx->pos;
5978 	key.objectid = btrfs_ino(BTRFS_I(inode));
5979 
5980 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5981 	if (ret < 0)
5982 		goto err;
5983 
5984 	while (1) {
5985 		struct dir_entry *entry;
5986 
5987 		leaf = path->nodes[0];
5988 		slot = path->slots[0];
5989 		if (slot >= btrfs_header_nritems(leaf)) {
5990 			ret = btrfs_next_leaf(root, path);
5991 			if (ret < 0)
5992 				goto err;
5993 			else if (ret > 0)
5994 				break;
5995 			continue;
5996 		}
5997 
5998 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5999 
6000 		if (found_key.objectid != key.objectid)
6001 			break;
6002 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6003 			break;
6004 		if (found_key.offset < ctx->pos)
6005 			goto next;
6006 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6007 			goto next;
6008 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6009 		name_len = btrfs_dir_name_len(leaf, di);
6010 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6011 		    PAGE_SIZE) {
6012 			btrfs_release_path(path);
6013 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6014 			if (ret)
6015 				goto nopos;
6016 			addr = private->filldir_buf;
6017 			entries = 0;
6018 			total_len = 0;
6019 			goto again;
6020 		}
6021 
6022 		entry = addr;
6023 		put_unaligned(name_len, &entry->name_len);
6024 		name_ptr = (char *)(entry + 1);
6025 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6026 				   name_len);
6027 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6028 				&entry->type);
6029 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6030 		put_unaligned(location.objectid, &entry->ino);
6031 		put_unaligned(found_key.offset, &entry->offset);
6032 		entries++;
6033 		addr += sizeof(struct dir_entry) + name_len;
6034 		total_len += sizeof(struct dir_entry) + name_len;
6035 next:
6036 		path->slots[0]++;
6037 	}
6038 	btrfs_release_path(path);
6039 
6040 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6041 	if (ret)
6042 		goto nopos;
6043 
6044 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6045 	if (ret)
6046 		goto nopos;
6047 
6048 	/*
6049 	 * Stop new entries from being returned after we return the last
6050 	 * entry.
6051 	 *
6052 	 * New directory entries are assigned a strictly increasing
6053 	 * offset.  This means that new entries created during readdir
6054 	 * are *guaranteed* to be seen in the future by that readdir.
6055 	 * This has broken buggy programs which operate on names as
6056 	 * they're returned by readdir.  Until we re-use freed offsets
6057 	 * we have this hack to stop new entries from being returned
6058 	 * under the assumption that they'll never reach this huge
6059 	 * offset.
6060 	 *
6061 	 * This is being careful not to overflow 32bit loff_t unless the
6062 	 * last entry requires it because doing so has broken 32bit apps
6063 	 * in the past.
6064 	 */
6065 	if (ctx->pos >= INT_MAX)
6066 		ctx->pos = LLONG_MAX;
6067 	else
6068 		ctx->pos = INT_MAX;
6069 nopos:
6070 	ret = 0;
6071 err:
6072 	if (put)
6073 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6074 	btrfs_free_path(path);
6075 	return ret;
6076 }
6077 
6078 /*
6079  * This is somewhat expensive, updating the tree every time the
6080  * inode changes.  But, it is most likely to find the inode in cache.
6081  * FIXME, needs more benchmarking...there are no reasons other than performance
6082  * to keep or drop this code.
6083  */
6084 static int btrfs_dirty_inode(struct inode *inode)
6085 {
6086 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6087 	struct btrfs_root *root = BTRFS_I(inode)->root;
6088 	struct btrfs_trans_handle *trans;
6089 	int ret;
6090 
6091 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6092 		return 0;
6093 
6094 	trans = btrfs_join_transaction(root);
6095 	if (IS_ERR(trans))
6096 		return PTR_ERR(trans);
6097 
6098 	ret = btrfs_update_inode(trans, root, inode);
6099 	if (ret && ret == -ENOSPC) {
6100 		/* whoops, lets try again with the full transaction */
6101 		btrfs_end_transaction(trans);
6102 		trans = btrfs_start_transaction(root, 1);
6103 		if (IS_ERR(trans))
6104 			return PTR_ERR(trans);
6105 
6106 		ret = btrfs_update_inode(trans, root, inode);
6107 	}
6108 	btrfs_end_transaction(trans);
6109 	if (BTRFS_I(inode)->delayed_node)
6110 		btrfs_balance_delayed_items(fs_info);
6111 
6112 	return ret;
6113 }
6114 
6115 /*
6116  * This is a copy of file_update_time.  We need this so we can return error on
6117  * ENOSPC for updating the inode in the case of file write and mmap writes.
6118  */
6119 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6120 			     int flags)
6121 {
6122 	struct btrfs_root *root = BTRFS_I(inode)->root;
6123 	bool dirty = flags & ~S_VERSION;
6124 
6125 	if (btrfs_root_readonly(root))
6126 		return -EROFS;
6127 
6128 	if (flags & S_VERSION)
6129 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6130 	if (flags & S_CTIME)
6131 		inode->i_ctime = *now;
6132 	if (flags & S_MTIME)
6133 		inode->i_mtime = *now;
6134 	if (flags & S_ATIME)
6135 		inode->i_atime = *now;
6136 	return dirty ? btrfs_dirty_inode(inode) : 0;
6137 }
6138 
6139 /*
6140  * find the highest existing sequence number in a directory
6141  * and then set the in-memory index_cnt variable to reflect
6142  * free sequence numbers
6143  */
6144 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6145 {
6146 	struct btrfs_root *root = inode->root;
6147 	struct btrfs_key key, found_key;
6148 	struct btrfs_path *path;
6149 	struct extent_buffer *leaf;
6150 	int ret;
6151 
6152 	key.objectid = btrfs_ino(inode);
6153 	key.type = BTRFS_DIR_INDEX_KEY;
6154 	key.offset = (u64)-1;
6155 
6156 	path = btrfs_alloc_path();
6157 	if (!path)
6158 		return -ENOMEM;
6159 
6160 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6161 	if (ret < 0)
6162 		goto out;
6163 	/* FIXME: we should be able to handle this */
6164 	if (ret == 0)
6165 		goto out;
6166 	ret = 0;
6167 
6168 	/*
6169 	 * MAGIC NUMBER EXPLANATION:
6170 	 * since we search a directory based on f_pos we have to start at 2
6171 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6172 	 * else has to start at 2
6173 	 */
6174 	if (path->slots[0] == 0) {
6175 		inode->index_cnt = 2;
6176 		goto out;
6177 	}
6178 
6179 	path->slots[0]--;
6180 
6181 	leaf = path->nodes[0];
6182 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6183 
6184 	if (found_key.objectid != btrfs_ino(inode) ||
6185 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6186 		inode->index_cnt = 2;
6187 		goto out;
6188 	}
6189 
6190 	inode->index_cnt = found_key.offset + 1;
6191 out:
6192 	btrfs_free_path(path);
6193 	return ret;
6194 }
6195 
6196 /*
6197  * helper to find a free sequence number in a given directory.  This current
6198  * code is very simple, later versions will do smarter things in the btree
6199  */
6200 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6201 {
6202 	int ret = 0;
6203 
6204 	if (dir->index_cnt == (u64)-1) {
6205 		ret = btrfs_inode_delayed_dir_index_count(dir);
6206 		if (ret) {
6207 			ret = btrfs_set_inode_index_count(dir);
6208 			if (ret)
6209 				return ret;
6210 		}
6211 	}
6212 
6213 	*index = dir->index_cnt;
6214 	dir->index_cnt++;
6215 
6216 	return ret;
6217 }
6218 
6219 static int btrfs_insert_inode_locked(struct inode *inode)
6220 {
6221 	struct btrfs_iget_args args;
6222 	args.location = &BTRFS_I(inode)->location;
6223 	args.root = BTRFS_I(inode)->root;
6224 
6225 	return insert_inode_locked4(inode,
6226 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6227 		   btrfs_find_actor, &args);
6228 }
6229 
6230 /*
6231  * Inherit flags from the parent inode.
6232  *
6233  * Currently only the compression flags and the cow flags are inherited.
6234  */
6235 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6236 {
6237 	unsigned int flags;
6238 
6239 	if (!dir)
6240 		return;
6241 
6242 	flags = BTRFS_I(dir)->flags;
6243 
6244 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6245 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6246 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6247 	} else if (flags & BTRFS_INODE_COMPRESS) {
6248 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6249 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6250 	}
6251 
6252 	if (flags & BTRFS_INODE_NODATACOW) {
6253 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6254 		if (S_ISREG(inode->i_mode))
6255 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6256 	}
6257 
6258 	btrfs_sync_inode_flags_to_i_flags(inode);
6259 }
6260 
6261 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6262 				     struct btrfs_root *root,
6263 				     struct inode *dir,
6264 				     const char *name, int name_len,
6265 				     u64 ref_objectid, u64 objectid,
6266 				     umode_t mode, u64 *index)
6267 {
6268 	struct btrfs_fs_info *fs_info = root->fs_info;
6269 	struct inode *inode;
6270 	struct btrfs_inode_item *inode_item;
6271 	struct btrfs_key *location;
6272 	struct btrfs_path *path;
6273 	struct btrfs_inode_ref *ref;
6274 	struct btrfs_key key[2];
6275 	u32 sizes[2];
6276 	int nitems = name ? 2 : 1;
6277 	unsigned long ptr;
6278 	int ret;
6279 
6280 	path = btrfs_alloc_path();
6281 	if (!path)
6282 		return ERR_PTR(-ENOMEM);
6283 
6284 	inode = new_inode(fs_info->sb);
6285 	if (!inode) {
6286 		btrfs_free_path(path);
6287 		return ERR_PTR(-ENOMEM);
6288 	}
6289 
6290 	/*
6291 	 * O_TMPFILE, set link count to 0, so that after this point,
6292 	 * we fill in an inode item with the correct link count.
6293 	 */
6294 	if (!name)
6295 		set_nlink(inode, 0);
6296 
6297 	/*
6298 	 * we have to initialize this early, so we can reclaim the inode
6299 	 * number if we fail afterwards in this function.
6300 	 */
6301 	inode->i_ino = objectid;
6302 
6303 	if (dir && name) {
6304 		trace_btrfs_inode_request(dir);
6305 
6306 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6307 		if (ret) {
6308 			btrfs_free_path(path);
6309 			iput(inode);
6310 			return ERR_PTR(ret);
6311 		}
6312 	} else if (dir) {
6313 		*index = 0;
6314 	}
6315 	/*
6316 	 * index_cnt is ignored for everything but a dir,
6317 	 * btrfs_set_inode_index_count has an explanation for the magic
6318 	 * number
6319 	 */
6320 	BTRFS_I(inode)->index_cnt = 2;
6321 	BTRFS_I(inode)->dir_index = *index;
6322 	BTRFS_I(inode)->root = root;
6323 	BTRFS_I(inode)->generation = trans->transid;
6324 	inode->i_generation = BTRFS_I(inode)->generation;
6325 
6326 	/*
6327 	 * We could have gotten an inode number from somebody who was fsynced
6328 	 * and then removed in this same transaction, so let's just set full
6329 	 * sync since it will be a full sync anyway and this will blow away the
6330 	 * old info in the log.
6331 	 */
6332 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6333 
6334 	key[0].objectid = objectid;
6335 	key[0].type = BTRFS_INODE_ITEM_KEY;
6336 	key[0].offset = 0;
6337 
6338 	sizes[0] = sizeof(struct btrfs_inode_item);
6339 
6340 	if (name) {
6341 		/*
6342 		 * Start new inodes with an inode_ref. This is slightly more
6343 		 * efficient for small numbers of hard links since they will
6344 		 * be packed into one item. Extended refs will kick in if we
6345 		 * add more hard links than can fit in the ref item.
6346 		 */
6347 		key[1].objectid = objectid;
6348 		key[1].type = BTRFS_INODE_REF_KEY;
6349 		key[1].offset = ref_objectid;
6350 
6351 		sizes[1] = name_len + sizeof(*ref);
6352 	}
6353 
6354 	location = &BTRFS_I(inode)->location;
6355 	location->objectid = objectid;
6356 	location->offset = 0;
6357 	location->type = BTRFS_INODE_ITEM_KEY;
6358 
6359 	ret = btrfs_insert_inode_locked(inode);
6360 	if (ret < 0) {
6361 		iput(inode);
6362 		goto fail;
6363 	}
6364 
6365 	path->leave_spinning = 1;
6366 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6367 	if (ret != 0)
6368 		goto fail_unlock;
6369 
6370 	inode_init_owner(inode, dir, mode);
6371 	inode_set_bytes(inode, 0);
6372 
6373 	inode->i_mtime = current_time(inode);
6374 	inode->i_atime = inode->i_mtime;
6375 	inode->i_ctime = inode->i_mtime;
6376 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6377 
6378 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6379 				  struct btrfs_inode_item);
6380 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6381 			     sizeof(*inode_item));
6382 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6383 
6384 	if (name) {
6385 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6386 				     struct btrfs_inode_ref);
6387 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6388 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6389 		ptr = (unsigned long)(ref + 1);
6390 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6391 	}
6392 
6393 	btrfs_mark_buffer_dirty(path->nodes[0]);
6394 	btrfs_free_path(path);
6395 
6396 	btrfs_inherit_iflags(inode, dir);
6397 
6398 	if (S_ISREG(mode)) {
6399 		if (btrfs_test_opt(fs_info, NODATASUM))
6400 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6401 		if (btrfs_test_opt(fs_info, NODATACOW))
6402 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6403 				BTRFS_INODE_NODATASUM;
6404 	}
6405 
6406 	inode_tree_add(inode);
6407 
6408 	trace_btrfs_inode_new(inode);
6409 	btrfs_set_inode_last_trans(trans, inode);
6410 
6411 	btrfs_update_root_times(trans, root);
6412 
6413 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6414 	if (ret)
6415 		btrfs_err(fs_info,
6416 			  "error inheriting props for ino %llu (root %llu): %d",
6417 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6418 
6419 	return inode;
6420 
6421 fail_unlock:
6422 	discard_new_inode(inode);
6423 fail:
6424 	if (dir && name)
6425 		BTRFS_I(dir)->index_cnt--;
6426 	btrfs_free_path(path);
6427 	return ERR_PTR(ret);
6428 }
6429 
6430 /*
6431  * utility function to add 'inode' into 'parent_inode' with
6432  * a give name and a given sequence number.
6433  * if 'add_backref' is true, also insert a backref from the
6434  * inode to the parent directory.
6435  */
6436 int btrfs_add_link(struct btrfs_trans_handle *trans,
6437 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6438 		   const char *name, int name_len, int add_backref, u64 index)
6439 {
6440 	int ret = 0;
6441 	struct btrfs_key key;
6442 	struct btrfs_root *root = parent_inode->root;
6443 	u64 ino = btrfs_ino(inode);
6444 	u64 parent_ino = btrfs_ino(parent_inode);
6445 
6446 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6447 		memcpy(&key, &inode->root->root_key, sizeof(key));
6448 	} else {
6449 		key.objectid = ino;
6450 		key.type = BTRFS_INODE_ITEM_KEY;
6451 		key.offset = 0;
6452 	}
6453 
6454 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6455 		ret = btrfs_add_root_ref(trans, key.objectid,
6456 					 root->root_key.objectid, parent_ino,
6457 					 index, name, name_len);
6458 	} else if (add_backref) {
6459 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6460 					     parent_ino, index);
6461 	}
6462 
6463 	/* Nothing to clean up yet */
6464 	if (ret)
6465 		return ret;
6466 
6467 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6468 				    btrfs_inode_type(&inode->vfs_inode), index);
6469 	if (ret == -EEXIST || ret == -EOVERFLOW)
6470 		goto fail_dir_item;
6471 	else if (ret) {
6472 		btrfs_abort_transaction(trans, ret);
6473 		return ret;
6474 	}
6475 
6476 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6477 			   name_len * 2);
6478 	inode_inc_iversion(&parent_inode->vfs_inode);
6479 	/*
6480 	 * If we are replaying a log tree, we do not want to update the mtime
6481 	 * and ctime of the parent directory with the current time, since the
6482 	 * log replay procedure is responsible for setting them to their correct
6483 	 * values (the ones it had when the fsync was done).
6484 	 */
6485 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6486 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6487 
6488 		parent_inode->vfs_inode.i_mtime = now;
6489 		parent_inode->vfs_inode.i_ctime = now;
6490 	}
6491 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6492 	if (ret)
6493 		btrfs_abort_transaction(trans, ret);
6494 	return ret;
6495 
6496 fail_dir_item:
6497 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6498 		u64 local_index;
6499 		int err;
6500 		err = btrfs_del_root_ref(trans, key.objectid,
6501 					 root->root_key.objectid, parent_ino,
6502 					 &local_index, name, name_len);
6503 		if (err)
6504 			btrfs_abort_transaction(trans, err);
6505 	} else if (add_backref) {
6506 		u64 local_index;
6507 		int err;
6508 
6509 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6510 					  ino, parent_ino, &local_index);
6511 		if (err)
6512 			btrfs_abort_transaction(trans, err);
6513 	}
6514 
6515 	/* Return the original error code */
6516 	return ret;
6517 }
6518 
6519 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6520 			    struct btrfs_inode *dir, struct dentry *dentry,
6521 			    struct btrfs_inode *inode, int backref, u64 index)
6522 {
6523 	int err = btrfs_add_link(trans, dir, inode,
6524 				 dentry->d_name.name, dentry->d_name.len,
6525 				 backref, index);
6526 	if (err > 0)
6527 		err = -EEXIST;
6528 	return err;
6529 }
6530 
6531 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6532 			umode_t mode, dev_t rdev)
6533 {
6534 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6535 	struct btrfs_trans_handle *trans;
6536 	struct btrfs_root *root = BTRFS_I(dir)->root;
6537 	struct inode *inode = NULL;
6538 	int err;
6539 	u64 objectid;
6540 	u64 index = 0;
6541 
6542 	/*
6543 	 * 2 for inode item and ref
6544 	 * 2 for dir items
6545 	 * 1 for xattr if selinux is on
6546 	 */
6547 	trans = btrfs_start_transaction(root, 5);
6548 	if (IS_ERR(trans))
6549 		return PTR_ERR(trans);
6550 
6551 	err = btrfs_find_free_ino(root, &objectid);
6552 	if (err)
6553 		goto out_unlock;
6554 
6555 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6556 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6557 			mode, &index);
6558 	if (IS_ERR(inode)) {
6559 		err = PTR_ERR(inode);
6560 		inode = NULL;
6561 		goto out_unlock;
6562 	}
6563 
6564 	/*
6565 	* If the active LSM wants to access the inode during
6566 	* d_instantiate it needs these. Smack checks to see
6567 	* if the filesystem supports xattrs by looking at the
6568 	* ops vector.
6569 	*/
6570 	inode->i_op = &btrfs_special_inode_operations;
6571 	init_special_inode(inode, inode->i_mode, rdev);
6572 
6573 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6574 	if (err)
6575 		goto out_unlock;
6576 
6577 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6578 			0, index);
6579 	if (err)
6580 		goto out_unlock;
6581 
6582 	btrfs_update_inode(trans, root, inode);
6583 	d_instantiate_new(dentry, inode);
6584 
6585 out_unlock:
6586 	btrfs_end_transaction(trans);
6587 	btrfs_btree_balance_dirty(fs_info);
6588 	if (err && inode) {
6589 		inode_dec_link_count(inode);
6590 		discard_new_inode(inode);
6591 	}
6592 	return err;
6593 }
6594 
6595 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6596 			umode_t mode, bool excl)
6597 {
6598 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6599 	struct btrfs_trans_handle *trans;
6600 	struct btrfs_root *root = BTRFS_I(dir)->root;
6601 	struct inode *inode = NULL;
6602 	int err;
6603 	u64 objectid;
6604 	u64 index = 0;
6605 
6606 	/*
6607 	 * 2 for inode item and ref
6608 	 * 2 for dir items
6609 	 * 1 for xattr if selinux is on
6610 	 */
6611 	trans = btrfs_start_transaction(root, 5);
6612 	if (IS_ERR(trans))
6613 		return PTR_ERR(trans);
6614 
6615 	err = btrfs_find_free_ino(root, &objectid);
6616 	if (err)
6617 		goto out_unlock;
6618 
6619 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6620 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6621 			mode, &index);
6622 	if (IS_ERR(inode)) {
6623 		err = PTR_ERR(inode);
6624 		inode = NULL;
6625 		goto out_unlock;
6626 	}
6627 	/*
6628 	* If the active LSM wants to access the inode during
6629 	* d_instantiate it needs these. Smack checks to see
6630 	* if the filesystem supports xattrs by looking at the
6631 	* ops vector.
6632 	*/
6633 	inode->i_fop = &btrfs_file_operations;
6634 	inode->i_op = &btrfs_file_inode_operations;
6635 	inode->i_mapping->a_ops = &btrfs_aops;
6636 
6637 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6638 	if (err)
6639 		goto out_unlock;
6640 
6641 	err = btrfs_update_inode(trans, root, inode);
6642 	if (err)
6643 		goto out_unlock;
6644 
6645 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6646 			0, index);
6647 	if (err)
6648 		goto out_unlock;
6649 
6650 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6651 	d_instantiate_new(dentry, inode);
6652 
6653 out_unlock:
6654 	btrfs_end_transaction(trans);
6655 	if (err && inode) {
6656 		inode_dec_link_count(inode);
6657 		discard_new_inode(inode);
6658 	}
6659 	btrfs_btree_balance_dirty(fs_info);
6660 	return err;
6661 }
6662 
6663 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6664 		      struct dentry *dentry)
6665 {
6666 	struct btrfs_trans_handle *trans = NULL;
6667 	struct btrfs_root *root = BTRFS_I(dir)->root;
6668 	struct inode *inode = d_inode(old_dentry);
6669 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6670 	u64 index;
6671 	int err;
6672 	int drop_inode = 0;
6673 
6674 	/* do not allow sys_link's with other subvols of the same device */
6675 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6676 		return -EXDEV;
6677 
6678 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6679 		return -EMLINK;
6680 
6681 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6682 	if (err)
6683 		goto fail;
6684 
6685 	/*
6686 	 * 2 items for inode and inode ref
6687 	 * 2 items for dir items
6688 	 * 1 item for parent inode
6689 	 * 1 item for orphan item deletion if O_TMPFILE
6690 	 */
6691 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6692 	if (IS_ERR(trans)) {
6693 		err = PTR_ERR(trans);
6694 		trans = NULL;
6695 		goto fail;
6696 	}
6697 
6698 	/* There are several dir indexes for this inode, clear the cache. */
6699 	BTRFS_I(inode)->dir_index = 0ULL;
6700 	inc_nlink(inode);
6701 	inode_inc_iversion(inode);
6702 	inode->i_ctime = current_time(inode);
6703 	ihold(inode);
6704 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6705 
6706 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6707 			1, index);
6708 
6709 	if (err) {
6710 		drop_inode = 1;
6711 	} else {
6712 		struct dentry *parent = dentry->d_parent;
6713 		int ret;
6714 
6715 		err = btrfs_update_inode(trans, root, inode);
6716 		if (err)
6717 			goto fail;
6718 		if (inode->i_nlink == 1) {
6719 			/*
6720 			 * If new hard link count is 1, it's a file created
6721 			 * with open(2) O_TMPFILE flag.
6722 			 */
6723 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6724 			if (err)
6725 				goto fail;
6726 		}
6727 		d_instantiate(dentry, inode);
6728 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6729 					 true, NULL);
6730 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6731 			err = btrfs_commit_transaction(trans);
6732 			trans = NULL;
6733 		}
6734 	}
6735 
6736 fail:
6737 	if (trans)
6738 		btrfs_end_transaction(trans);
6739 	if (drop_inode) {
6740 		inode_dec_link_count(inode);
6741 		iput(inode);
6742 	}
6743 	btrfs_btree_balance_dirty(fs_info);
6744 	return err;
6745 }
6746 
6747 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6748 {
6749 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6750 	struct inode *inode = NULL;
6751 	struct btrfs_trans_handle *trans;
6752 	struct btrfs_root *root = BTRFS_I(dir)->root;
6753 	int err = 0;
6754 	u64 objectid = 0;
6755 	u64 index = 0;
6756 
6757 	/*
6758 	 * 2 items for inode and ref
6759 	 * 2 items for dir items
6760 	 * 1 for xattr if selinux is on
6761 	 */
6762 	trans = btrfs_start_transaction(root, 5);
6763 	if (IS_ERR(trans))
6764 		return PTR_ERR(trans);
6765 
6766 	err = btrfs_find_free_ino(root, &objectid);
6767 	if (err)
6768 		goto out_fail;
6769 
6770 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6771 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6772 			S_IFDIR | mode, &index);
6773 	if (IS_ERR(inode)) {
6774 		err = PTR_ERR(inode);
6775 		inode = NULL;
6776 		goto out_fail;
6777 	}
6778 
6779 	/* these must be set before we unlock the inode */
6780 	inode->i_op = &btrfs_dir_inode_operations;
6781 	inode->i_fop = &btrfs_dir_file_operations;
6782 
6783 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6784 	if (err)
6785 		goto out_fail;
6786 
6787 	btrfs_i_size_write(BTRFS_I(inode), 0);
6788 	err = btrfs_update_inode(trans, root, inode);
6789 	if (err)
6790 		goto out_fail;
6791 
6792 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6793 			dentry->d_name.name,
6794 			dentry->d_name.len, 0, index);
6795 	if (err)
6796 		goto out_fail;
6797 
6798 	d_instantiate_new(dentry, inode);
6799 
6800 out_fail:
6801 	btrfs_end_transaction(trans);
6802 	if (err && inode) {
6803 		inode_dec_link_count(inode);
6804 		discard_new_inode(inode);
6805 	}
6806 	btrfs_btree_balance_dirty(fs_info);
6807 	return err;
6808 }
6809 
6810 static noinline int uncompress_inline(struct btrfs_path *path,
6811 				      struct page *page,
6812 				      size_t pg_offset, u64 extent_offset,
6813 				      struct btrfs_file_extent_item *item)
6814 {
6815 	int ret;
6816 	struct extent_buffer *leaf = path->nodes[0];
6817 	char *tmp;
6818 	size_t max_size;
6819 	unsigned long inline_size;
6820 	unsigned long ptr;
6821 	int compress_type;
6822 
6823 	WARN_ON(pg_offset != 0);
6824 	compress_type = btrfs_file_extent_compression(leaf, item);
6825 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6826 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6827 					btrfs_item_nr(path->slots[0]));
6828 	tmp = kmalloc(inline_size, GFP_NOFS);
6829 	if (!tmp)
6830 		return -ENOMEM;
6831 	ptr = btrfs_file_extent_inline_start(item);
6832 
6833 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6834 
6835 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6836 	ret = btrfs_decompress(compress_type, tmp, page,
6837 			       extent_offset, inline_size, max_size);
6838 
6839 	/*
6840 	 * decompression code contains a memset to fill in any space between the end
6841 	 * of the uncompressed data and the end of max_size in case the decompressed
6842 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6843 	 * the end of an inline extent and the beginning of the next block, so we
6844 	 * cover that region here.
6845 	 */
6846 
6847 	if (max_size + pg_offset < PAGE_SIZE) {
6848 		char *map = kmap(page);
6849 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6850 		kunmap(page);
6851 	}
6852 	kfree(tmp);
6853 	return ret;
6854 }
6855 
6856 /*
6857  * a bit scary, this does extent mapping from logical file offset to the disk.
6858  * the ugly parts come from merging extents from the disk with the in-ram
6859  * representation.  This gets more complex because of the data=ordered code,
6860  * where the in-ram extents might be locked pending data=ordered completion.
6861  *
6862  * This also copies inline extents directly into the page.
6863  */
6864 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6865 				    struct page *page,
6866 				    size_t pg_offset, u64 start, u64 len,
6867 				    int create)
6868 {
6869 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6870 	int ret;
6871 	int err = 0;
6872 	u64 extent_start = 0;
6873 	u64 extent_end = 0;
6874 	u64 objectid = btrfs_ino(inode);
6875 	int extent_type = -1;
6876 	struct btrfs_path *path = NULL;
6877 	struct btrfs_root *root = inode->root;
6878 	struct btrfs_file_extent_item *item;
6879 	struct extent_buffer *leaf;
6880 	struct btrfs_key found_key;
6881 	struct extent_map *em = NULL;
6882 	struct extent_map_tree *em_tree = &inode->extent_tree;
6883 	struct extent_io_tree *io_tree = &inode->io_tree;
6884 	const bool new_inline = !page || create;
6885 
6886 	read_lock(&em_tree->lock);
6887 	em = lookup_extent_mapping(em_tree, start, len);
6888 	if (em)
6889 		em->bdev = fs_info->fs_devices->latest_bdev;
6890 	read_unlock(&em_tree->lock);
6891 
6892 	if (em) {
6893 		if (em->start > start || em->start + em->len <= start)
6894 			free_extent_map(em);
6895 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6896 			free_extent_map(em);
6897 		else
6898 			goto out;
6899 	}
6900 	em = alloc_extent_map();
6901 	if (!em) {
6902 		err = -ENOMEM;
6903 		goto out;
6904 	}
6905 	em->bdev = fs_info->fs_devices->latest_bdev;
6906 	em->start = EXTENT_MAP_HOLE;
6907 	em->orig_start = EXTENT_MAP_HOLE;
6908 	em->len = (u64)-1;
6909 	em->block_len = (u64)-1;
6910 
6911 	path = btrfs_alloc_path();
6912 	if (!path) {
6913 		err = -ENOMEM;
6914 		goto out;
6915 	}
6916 
6917 	/* Chances are we'll be called again, so go ahead and do readahead */
6918 	path->reada = READA_FORWARD;
6919 
6920 	/*
6921 	 * Unless we're going to uncompress the inline extent, no sleep would
6922 	 * happen.
6923 	 */
6924 	path->leave_spinning = 1;
6925 
6926 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6927 	if (ret < 0) {
6928 		err = ret;
6929 		goto out;
6930 	} else if (ret > 0) {
6931 		if (path->slots[0] == 0)
6932 			goto not_found;
6933 		path->slots[0]--;
6934 	}
6935 
6936 	leaf = path->nodes[0];
6937 	item = btrfs_item_ptr(leaf, path->slots[0],
6938 			      struct btrfs_file_extent_item);
6939 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6940 	if (found_key.objectid != objectid ||
6941 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6942 		/*
6943 		 * If we backup past the first extent we want to move forward
6944 		 * and see if there is an extent in front of us, otherwise we'll
6945 		 * say there is a hole for our whole search range which can
6946 		 * cause problems.
6947 		 */
6948 		extent_end = start;
6949 		goto next;
6950 	}
6951 
6952 	extent_type = btrfs_file_extent_type(leaf, item);
6953 	extent_start = found_key.offset;
6954 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6955 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6956 		/* Only regular file could have regular/prealloc extent */
6957 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6958 			ret = -EUCLEAN;
6959 			btrfs_crit(fs_info,
6960 		"regular/prealloc extent found for non-regular inode %llu",
6961 				   btrfs_ino(inode));
6962 			goto out;
6963 		}
6964 		extent_end = extent_start +
6965 		       btrfs_file_extent_num_bytes(leaf, item);
6966 
6967 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6968 						       extent_start);
6969 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6970 		size_t size;
6971 
6972 		size = btrfs_file_extent_ram_bytes(leaf, item);
6973 		extent_end = ALIGN(extent_start + size,
6974 				   fs_info->sectorsize);
6975 
6976 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6977 						      path->slots[0],
6978 						      extent_start);
6979 	}
6980 next:
6981 	if (start >= extent_end) {
6982 		path->slots[0]++;
6983 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6984 			ret = btrfs_next_leaf(root, path);
6985 			if (ret < 0) {
6986 				err = ret;
6987 				goto out;
6988 			} else if (ret > 0) {
6989 				goto not_found;
6990 			}
6991 			leaf = path->nodes[0];
6992 		}
6993 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6994 		if (found_key.objectid != objectid ||
6995 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6996 			goto not_found;
6997 		if (start + len <= found_key.offset)
6998 			goto not_found;
6999 		if (start > found_key.offset)
7000 			goto next;
7001 
7002 		/* New extent overlaps with existing one */
7003 		em->start = start;
7004 		em->orig_start = start;
7005 		em->len = found_key.offset - start;
7006 		em->block_start = EXTENT_MAP_HOLE;
7007 		goto insert;
7008 	}
7009 
7010 	btrfs_extent_item_to_extent_map(inode, path, item,
7011 			new_inline, em);
7012 
7013 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7014 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7015 		goto insert;
7016 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7017 		unsigned long ptr;
7018 		char *map;
7019 		size_t size;
7020 		size_t extent_offset;
7021 		size_t copy_size;
7022 
7023 		if (new_inline)
7024 			goto out;
7025 
7026 		size = btrfs_file_extent_ram_bytes(leaf, item);
7027 		extent_offset = page_offset(page) + pg_offset - extent_start;
7028 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7029 				  size - extent_offset);
7030 		em->start = extent_start + extent_offset;
7031 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7032 		em->orig_block_len = em->len;
7033 		em->orig_start = em->start;
7034 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7035 
7036 		btrfs_set_path_blocking(path);
7037 		if (!PageUptodate(page)) {
7038 			if (btrfs_file_extent_compression(leaf, item) !=
7039 			    BTRFS_COMPRESS_NONE) {
7040 				ret = uncompress_inline(path, page, pg_offset,
7041 							extent_offset, item);
7042 				if (ret) {
7043 					err = ret;
7044 					goto out;
7045 				}
7046 			} else {
7047 				map = kmap(page);
7048 				read_extent_buffer(leaf, map + pg_offset, ptr,
7049 						   copy_size);
7050 				if (pg_offset + copy_size < PAGE_SIZE) {
7051 					memset(map + pg_offset + copy_size, 0,
7052 					       PAGE_SIZE - pg_offset -
7053 					       copy_size);
7054 				}
7055 				kunmap(page);
7056 			}
7057 			flush_dcache_page(page);
7058 		}
7059 		set_extent_uptodate(io_tree, em->start,
7060 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7061 		goto insert;
7062 	}
7063 not_found:
7064 	em->start = start;
7065 	em->orig_start = start;
7066 	em->len = len;
7067 	em->block_start = EXTENT_MAP_HOLE;
7068 insert:
7069 	btrfs_release_path(path);
7070 	if (em->start > start || extent_map_end(em) <= start) {
7071 		btrfs_err(fs_info,
7072 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7073 			  em->start, em->len, start, len);
7074 		err = -EIO;
7075 		goto out;
7076 	}
7077 
7078 	err = 0;
7079 	write_lock(&em_tree->lock);
7080 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7081 	write_unlock(&em_tree->lock);
7082 out:
7083 	btrfs_free_path(path);
7084 
7085 	trace_btrfs_get_extent(root, inode, em);
7086 
7087 	if (err) {
7088 		free_extent_map(em);
7089 		return ERR_PTR(err);
7090 	}
7091 	BUG_ON(!em); /* Error is always set */
7092 	return em;
7093 }
7094 
7095 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7096 					   u64 start, u64 len)
7097 {
7098 	struct extent_map *em;
7099 	struct extent_map *hole_em = NULL;
7100 	u64 delalloc_start = start;
7101 	u64 end;
7102 	u64 delalloc_len;
7103 	u64 delalloc_end;
7104 	int err = 0;
7105 
7106 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7107 	if (IS_ERR(em))
7108 		return em;
7109 	/*
7110 	 * If our em maps to:
7111 	 * - a hole or
7112 	 * - a pre-alloc extent,
7113 	 * there might actually be delalloc bytes behind it.
7114 	 */
7115 	if (em->block_start != EXTENT_MAP_HOLE &&
7116 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7117 		return em;
7118 	else
7119 		hole_em = em;
7120 
7121 	/* check to see if we've wrapped (len == -1 or similar) */
7122 	end = start + len;
7123 	if (end < start)
7124 		end = (u64)-1;
7125 	else
7126 		end -= 1;
7127 
7128 	em = NULL;
7129 
7130 	/* ok, we didn't find anything, lets look for delalloc */
7131 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7132 				 end, len, EXTENT_DELALLOC, 1);
7133 	delalloc_end = delalloc_start + delalloc_len;
7134 	if (delalloc_end < delalloc_start)
7135 		delalloc_end = (u64)-1;
7136 
7137 	/*
7138 	 * We didn't find anything useful, return the original results from
7139 	 * get_extent()
7140 	 */
7141 	if (delalloc_start > end || delalloc_end <= start) {
7142 		em = hole_em;
7143 		hole_em = NULL;
7144 		goto out;
7145 	}
7146 
7147 	/*
7148 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7149 	 * the start they passed in
7150 	 */
7151 	delalloc_start = max(start, delalloc_start);
7152 	delalloc_len = delalloc_end - delalloc_start;
7153 
7154 	if (delalloc_len > 0) {
7155 		u64 hole_start;
7156 		u64 hole_len;
7157 		const u64 hole_end = extent_map_end(hole_em);
7158 
7159 		em = alloc_extent_map();
7160 		if (!em) {
7161 			err = -ENOMEM;
7162 			goto out;
7163 		}
7164 		em->bdev = NULL;
7165 
7166 		ASSERT(hole_em);
7167 		/*
7168 		 * When btrfs_get_extent can't find anything it returns one
7169 		 * huge hole
7170 		 *
7171 		 * Make sure what it found really fits our range, and adjust to
7172 		 * make sure it is based on the start from the caller
7173 		 */
7174 		if (hole_end <= start || hole_em->start > end) {
7175 		       free_extent_map(hole_em);
7176 		       hole_em = NULL;
7177 		} else {
7178 		       hole_start = max(hole_em->start, start);
7179 		       hole_len = hole_end - hole_start;
7180 		}
7181 
7182 		if (hole_em && delalloc_start > hole_start) {
7183 			/*
7184 			 * Our hole starts before our delalloc, so we have to
7185 			 * return just the parts of the hole that go until the
7186 			 * delalloc starts
7187 			 */
7188 			em->len = min(hole_len, delalloc_start - hole_start);
7189 			em->start = hole_start;
7190 			em->orig_start = hole_start;
7191 			/*
7192 			 * Don't adjust block start at all, it is fixed at
7193 			 * EXTENT_MAP_HOLE
7194 			 */
7195 			em->block_start = hole_em->block_start;
7196 			em->block_len = hole_len;
7197 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7198 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7199 		} else {
7200 			/*
7201 			 * Hole is out of passed range or it starts after
7202 			 * delalloc range
7203 			 */
7204 			em->start = delalloc_start;
7205 			em->len = delalloc_len;
7206 			em->orig_start = delalloc_start;
7207 			em->block_start = EXTENT_MAP_DELALLOC;
7208 			em->block_len = delalloc_len;
7209 		}
7210 	} else {
7211 		return hole_em;
7212 	}
7213 out:
7214 
7215 	free_extent_map(hole_em);
7216 	if (err) {
7217 		free_extent_map(em);
7218 		return ERR_PTR(err);
7219 	}
7220 	return em;
7221 }
7222 
7223 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7224 						  const u64 start,
7225 						  const u64 len,
7226 						  const u64 orig_start,
7227 						  const u64 block_start,
7228 						  const u64 block_len,
7229 						  const u64 orig_block_len,
7230 						  const u64 ram_bytes,
7231 						  const int type)
7232 {
7233 	struct extent_map *em = NULL;
7234 	int ret;
7235 
7236 	if (type != BTRFS_ORDERED_NOCOW) {
7237 		em = create_io_em(inode, start, len, orig_start,
7238 				  block_start, block_len, orig_block_len,
7239 				  ram_bytes,
7240 				  BTRFS_COMPRESS_NONE, /* compress_type */
7241 				  type);
7242 		if (IS_ERR(em))
7243 			goto out;
7244 	}
7245 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7246 					   len, block_len, type);
7247 	if (ret) {
7248 		if (em) {
7249 			free_extent_map(em);
7250 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7251 						start + len - 1, 0);
7252 		}
7253 		em = ERR_PTR(ret);
7254 	}
7255  out:
7256 
7257 	return em;
7258 }
7259 
7260 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7261 						  u64 start, u64 len)
7262 {
7263 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7264 	struct btrfs_root *root = BTRFS_I(inode)->root;
7265 	struct extent_map *em;
7266 	struct btrfs_key ins;
7267 	u64 alloc_hint;
7268 	int ret;
7269 
7270 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7271 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7272 				   0, alloc_hint, &ins, 1, 1);
7273 	if (ret)
7274 		return ERR_PTR(ret);
7275 
7276 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7277 				     ins.objectid, ins.offset, ins.offset,
7278 				     ins.offset, BTRFS_ORDERED_REGULAR);
7279 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7280 	if (IS_ERR(em))
7281 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7282 					   ins.offset, 1);
7283 
7284 	return em;
7285 }
7286 
7287 /*
7288  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7289  * block must be cow'd
7290  */
7291 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7292 			      u64 *orig_start, u64 *orig_block_len,
7293 			      u64 *ram_bytes)
7294 {
7295 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7296 	struct btrfs_path *path;
7297 	int ret;
7298 	struct extent_buffer *leaf;
7299 	struct btrfs_root *root = BTRFS_I(inode)->root;
7300 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7301 	struct btrfs_file_extent_item *fi;
7302 	struct btrfs_key key;
7303 	u64 disk_bytenr;
7304 	u64 backref_offset;
7305 	u64 extent_end;
7306 	u64 num_bytes;
7307 	int slot;
7308 	int found_type;
7309 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7310 
7311 	path = btrfs_alloc_path();
7312 	if (!path)
7313 		return -ENOMEM;
7314 
7315 	ret = btrfs_lookup_file_extent(NULL, root, path,
7316 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7317 	if (ret < 0)
7318 		goto out;
7319 
7320 	slot = path->slots[0];
7321 	if (ret == 1) {
7322 		if (slot == 0) {
7323 			/* can't find the item, must cow */
7324 			ret = 0;
7325 			goto out;
7326 		}
7327 		slot--;
7328 	}
7329 	ret = 0;
7330 	leaf = path->nodes[0];
7331 	btrfs_item_key_to_cpu(leaf, &key, slot);
7332 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7333 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7334 		/* not our file or wrong item type, must cow */
7335 		goto out;
7336 	}
7337 
7338 	if (key.offset > offset) {
7339 		/* Wrong offset, must cow */
7340 		goto out;
7341 	}
7342 
7343 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7344 	found_type = btrfs_file_extent_type(leaf, fi);
7345 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7346 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7347 		/* not a regular extent, must cow */
7348 		goto out;
7349 	}
7350 
7351 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7352 		goto out;
7353 
7354 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7355 	if (extent_end <= offset)
7356 		goto out;
7357 
7358 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7359 	if (disk_bytenr == 0)
7360 		goto out;
7361 
7362 	if (btrfs_file_extent_compression(leaf, fi) ||
7363 	    btrfs_file_extent_encryption(leaf, fi) ||
7364 	    btrfs_file_extent_other_encoding(leaf, fi))
7365 		goto out;
7366 
7367 	/*
7368 	 * Do the same check as in btrfs_cross_ref_exist but without the
7369 	 * unnecessary search.
7370 	 */
7371 	if (btrfs_file_extent_generation(leaf, fi) <=
7372 	    btrfs_root_last_snapshot(&root->root_item))
7373 		goto out;
7374 
7375 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7376 
7377 	if (orig_start) {
7378 		*orig_start = key.offset - backref_offset;
7379 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7380 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7381 	}
7382 
7383 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7384 		goto out;
7385 
7386 	num_bytes = min(offset + *len, extent_end) - offset;
7387 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7388 		u64 range_end;
7389 
7390 		range_end = round_up(offset + num_bytes,
7391 				     root->fs_info->sectorsize) - 1;
7392 		ret = test_range_bit(io_tree, offset, range_end,
7393 				     EXTENT_DELALLOC, 0, NULL);
7394 		if (ret) {
7395 			ret = -EAGAIN;
7396 			goto out;
7397 		}
7398 	}
7399 
7400 	btrfs_release_path(path);
7401 
7402 	/*
7403 	 * look for other files referencing this extent, if we
7404 	 * find any we must cow
7405 	 */
7406 
7407 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7408 				    key.offset - backref_offset, disk_bytenr);
7409 	if (ret) {
7410 		ret = 0;
7411 		goto out;
7412 	}
7413 
7414 	/*
7415 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7416 	 * in this extent we are about to write.  If there
7417 	 * are any csums in that range we have to cow in order
7418 	 * to keep the csums correct
7419 	 */
7420 	disk_bytenr += backref_offset;
7421 	disk_bytenr += offset - key.offset;
7422 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7423 		goto out;
7424 	/*
7425 	 * all of the above have passed, it is safe to overwrite this extent
7426 	 * without cow
7427 	 */
7428 	*len = num_bytes;
7429 	ret = 1;
7430 out:
7431 	btrfs_free_path(path);
7432 	return ret;
7433 }
7434 
7435 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7436 			      struct extent_state **cached_state, int writing)
7437 {
7438 	struct btrfs_ordered_extent *ordered;
7439 	int ret = 0;
7440 
7441 	while (1) {
7442 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7443 				 cached_state);
7444 		/*
7445 		 * We're concerned with the entire range that we're going to be
7446 		 * doing DIO to, so we need to make sure there's no ordered
7447 		 * extents in this range.
7448 		 */
7449 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7450 						     lockend - lockstart + 1);
7451 
7452 		/*
7453 		 * We need to make sure there are no buffered pages in this
7454 		 * range either, we could have raced between the invalidate in
7455 		 * generic_file_direct_write and locking the extent.  The
7456 		 * invalidate needs to happen so that reads after a write do not
7457 		 * get stale data.
7458 		 */
7459 		if (!ordered &&
7460 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7461 							 lockstart, lockend)))
7462 			break;
7463 
7464 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7465 				     cached_state);
7466 
7467 		if (ordered) {
7468 			/*
7469 			 * If we are doing a DIO read and the ordered extent we
7470 			 * found is for a buffered write, we can not wait for it
7471 			 * to complete and retry, because if we do so we can
7472 			 * deadlock with concurrent buffered writes on page
7473 			 * locks. This happens only if our DIO read covers more
7474 			 * than one extent map, if at this point has already
7475 			 * created an ordered extent for a previous extent map
7476 			 * and locked its range in the inode's io tree, and a
7477 			 * concurrent write against that previous extent map's
7478 			 * range and this range started (we unlock the ranges
7479 			 * in the io tree only when the bios complete and
7480 			 * buffered writes always lock pages before attempting
7481 			 * to lock range in the io tree).
7482 			 */
7483 			if (writing ||
7484 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7485 				btrfs_start_ordered_extent(inode, ordered, 1);
7486 			else
7487 				ret = -ENOTBLK;
7488 			btrfs_put_ordered_extent(ordered);
7489 		} else {
7490 			/*
7491 			 * We could trigger writeback for this range (and wait
7492 			 * for it to complete) and then invalidate the pages for
7493 			 * this range (through invalidate_inode_pages2_range()),
7494 			 * but that can lead us to a deadlock with a concurrent
7495 			 * call to readpages() (a buffered read or a defrag call
7496 			 * triggered a readahead) on a page lock due to an
7497 			 * ordered dio extent we created before but did not have
7498 			 * yet a corresponding bio submitted (whence it can not
7499 			 * complete), which makes readpages() wait for that
7500 			 * ordered extent to complete while holding a lock on
7501 			 * that page.
7502 			 */
7503 			ret = -ENOTBLK;
7504 		}
7505 
7506 		if (ret)
7507 			break;
7508 
7509 		cond_resched();
7510 	}
7511 
7512 	return ret;
7513 }
7514 
7515 /* The callers of this must take lock_extent() */
7516 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7517 				       u64 orig_start, u64 block_start,
7518 				       u64 block_len, u64 orig_block_len,
7519 				       u64 ram_bytes, int compress_type,
7520 				       int type)
7521 {
7522 	struct extent_map_tree *em_tree;
7523 	struct extent_map *em;
7524 	struct btrfs_root *root = BTRFS_I(inode)->root;
7525 	int ret;
7526 
7527 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7528 	       type == BTRFS_ORDERED_COMPRESSED ||
7529 	       type == BTRFS_ORDERED_NOCOW ||
7530 	       type == BTRFS_ORDERED_REGULAR);
7531 
7532 	em_tree = &BTRFS_I(inode)->extent_tree;
7533 	em = alloc_extent_map();
7534 	if (!em)
7535 		return ERR_PTR(-ENOMEM);
7536 
7537 	em->start = start;
7538 	em->orig_start = orig_start;
7539 	em->len = len;
7540 	em->block_len = block_len;
7541 	em->block_start = block_start;
7542 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7543 	em->orig_block_len = orig_block_len;
7544 	em->ram_bytes = ram_bytes;
7545 	em->generation = -1;
7546 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7547 	if (type == BTRFS_ORDERED_PREALLOC) {
7548 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7549 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7550 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7551 		em->compress_type = compress_type;
7552 	}
7553 
7554 	do {
7555 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7556 				em->start + em->len - 1, 0);
7557 		write_lock(&em_tree->lock);
7558 		ret = add_extent_mapping(em_tree, em, 1);
7559 		write_unlock(&em_tree->lock);
7560 		/*
7561 		 * The caller has taken lock_extent(), who could race with us
7562 		 * to add em?
7563 		 */
7564 	} while (ret == -EEXIST);
7565 
7566 	if (ret) {
7567 		free_extent_map(em);
7568 		return ERR_PTR(ret);
7569 	}
7570 
7571 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7572 	return em;
7573 }
7574 
7575 
7576 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7577 					struct buffer_head *bh_result,
7578 					struct inode *inode,
7579 					u64 start, u64 len)
7580 {
7581 	if (em->block_start == EXTENT_MAP_HOLE ||
7582 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7583 		return -ENOENT;
7584 
7585 	len = min(len, em->len - (start - em->start));
7586 
7587 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7588 		inode->i_blkbits;
7589 	bh_result->b_size = len;
7590 	bh_result->b_bdev = em->bdev;
7591 	set_buffer_mapped(bh_result);
7592 
7593 	return 0;
7594 }
7595 
7596 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7597 					 struct buffer_head *bh_result,
7598 					 struct inode *inode,
7599 					 struct btrfs_dio_data *dio_data,
7600 					 u64 start, u64 len)
7601 {
7602 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7603 	struct extent_map *em = *map;
7604 	int ret = 0;
7605 
7606 	/*
7607 	 * We don't allocate a new extent in the following cases
7608 	 *
7609 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7610 	 * existing extent.
7611 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7612 	 * just use the extent.
7613 	 *
7614 	 */
7615 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7616 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7617 	     em->block_start != EXTENT_MAP_HOLE)) {
7618 		int type;
7619 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7620 
7621 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7622 			type = BTRFS_ORDERED_PREALLOC;
7623 		else
7624 			type = BTRFS_ORDERED_NOCOW;
7625 		len = min(len, em->len - (start - em->start));
7626 		block_start = em->block_start + (start - em->start);
7627 
7628 		if (can_nocow_extent(inode, start, &len, &orig_start,
7629 				     &orig_block_len, &ram_bytes) == 1 &&
7630 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7631 			struct extent_map *em2;
7632 
7633 			em2 = btrfs_create_dio_extent(inode, start, len,
7634 						      orig_start, block_start,
7635 						      len, orig_block_len,
7636 						      ram_bytes, type);
7637 			btrfs_dec_nocow_writers(fs_info, block_start);
7638 			if (type == BTRFS_ORDERED_PREALLOC) {
7639 				free_extent_map(em);
7640 				*map = em = em2;
7641 			}
7642 
7643 			if (em2 && IS_ERR(em2)) {
7644 				ret = PTR_ERR(em2);
7645 				goto out;
7646 			}
7647 			/*
7648 			 * For inode marked NODATACOW or extent marked PREALLOC,
7649 			 * use the existing or preallocated extent, so does not
7650 			 * need to adjust btrfs_space_info's bytes_may_use.
7651 			 */
7652 			btrfs_free_reserved_data_space_noquota(inode, start,
7653 							       len);
7654 			goto skip_cow;
7655 		}
7656 	}
7657 
7658 	/* this will cow the extent */
7659 	len = bh_result->b_size;
7660 	free_extent_map(em);
7661 	*map = em = btrfs_new_extent_direct(inode, start, len);
7662 	if (IS_ERR(em)) {
7663 		ret = PTR_ERR(em);
7664 		goto out;
7665 	}
7666 
7667 	len = min(len, em->len - (start - em->start));
7668 
7669 skip_cow:
7670 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7671 		inode->i_blkbits;
7672 	bh_result->b_size = len;
7673 	bh_result->b_bdev = em->bdev;
7674 	set_buffer_mapped(bh_result);
7675 
7676 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7677 		set_buffer_new(bh_result);
7678 
7679 	/*
7680 	 * Need to update the i_size under the extent lock so buffered
7681 	 * readers will get the updated i_size when we unlock.
7682 	 */
7683 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7684 		i_size_write(inode, start + len);
7685 
7686 	WARN_ON(dio_data->reserve < len);
7687 	dio_data->reserve -= len;
7688 	dio_data->unsubmitted_oe_range_end = start + len;
7689 	current->journal_info = dio_data;
7690 out:
7691 	return ret;
7692 }
7693 
7694 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7695 				   struct buffer_head *bh_result, int create)
7696 {
7697 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7698 	struct extent_map *em;
7699 	struct extent_state *cached_state = NULL;
7700 	struct btrfs_dio_data *dio_data = NULL;
7701 	u64 start = iblock << inode->i_blkbits;
7702 	u64 lockstart, lockend;
7703 	u64 len = bh_result->b_size;
7704 	int unlock_bits = EXTENT_LOCKED;
7705 	int ret = 0;
7706 
7707 	if (create)
7708 		unlock_bits |= EXTENT_DIRTY;
7709 	else
7710 		len = min_t(u64, len, fs_info->sectorsize);
7711 
7712 	lockstart = start;
7713 	lockend = start + len - 1;
7714 
7715 	if (current->journal_info) {
7716 		/*
7717 		 * Need to pull our outstanding extents and set journal_info to NULL so
7718 		 * that anything that needs to check if there's a transaction doesn't get
7719 		 * confused.
7720 		 */
7721 		dio_data = current->journal_info;
7722 		current->journal_info = NULL;
7723 	}
7724 
7725 	/*
7726 	 * If this errors out it's because we couldn't invalidate pagecache for
7727 	 * this range and we need to fallback to buffered.
7728 	 */
7729 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7730 			       create)) {
7731 		ret = -ENOTBLK;
7732 		goto err;
7733 	}
7734 
7735 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7736 	if (IS_ERR(em)) {
7737 		ret = PTR_ERR(em);
7738 		goto unlock_err;
7739 	}
7740 
7741 	/*
7742 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7743 	 * io.  INLINE is special, and we could probably kludge it in here, but
7744 	 * it's still buffered so for safety lets just fall back to the generic
7745 	 * buffered path.
7746 	 *
7747 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7748 	 * decompress it, so there will be buffering required no matter what we
7749 	 * do, so go ahead and fallback to buffered.
7750 	 *
7751 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7752 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7753 	 * the generic code.
7754 	 */
7755 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7756 	    em->block_start == EXTENT_MAP_INLINE) {
7757 		free_extent_map(em);
7758 		ret = -ENOTBLK;
7759 		goto unlock_err;
7760 	}
7761 
7762 	if (create) {
7763 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7764 						    dio_data, start, len);
7765 		if (ret < 0)
7766 			goto unlock_err;
7767 
7768 		/* clear and unlock the entire range */
7769 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7770 				 unlock_bits, 1, 0, &cached_state);
7771 	} else {
7772 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7773 						   start, len);
7774 		/* Can be negative only if we read from a hole */
7775 		if (ret < 0) {
7776 			ret = 0;
7777 			free_extent_map(em);
7778 			goto unlock_err;
7779 		}
7780 		/*
7781 		 * We need to unlock only the end area that we aren't using.
7782 		 * The rest is going to be unlocked by the endio routine.
7783 		 */
7784 		lockstart = start + bh_result->b_size;
7785 		if (lockstart < lockend) {
7786 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7787 					 lockend, unlock_bits, 1, 0,
7788 					 &cached_state);
7789 		} else {
7790 			free_extent_state(cached_state);
7791 		}
7792 	}
7793 
7794 	free_extent_map(em);
7795 
7796 	return 0;
7797 
7798 unlock_err:
7799 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7800 			 unlock_bits, 1, 0, &cached_state);
7801 err:
7802 	if (dio_data)
7803 		current->journal_info = dio_data;
7804 	return ret;
7805 }
7806 
7807 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7808 						 struct bio *bio,
7809 						 int mirror_num)
7810 {
7811 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7812 	blk_status_t ret;
7813 
7814 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7815 
7816 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7817 	if (ret)
7818 		return ret;
7819 
7820 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7821 
7822 	return ret;
7823 }
7824 
7825 static int btrfs_check_dio_repairable(struct inode *inode,
7826 				      struct bio *failed_bio,
7827 				      struct io_failure_record *failrec,
7828 				      int failed_mirror)
7829 {
7830 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7831 	int num_copies;
7832 
7833 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7834 	if (num_copies == 1) {
7835 		/*
7836 		 * we only have a single copy of the data, so don't bother with
7837 		 * all the retry and error correction code that follows. no
7838 		 * matter what the error is, it is very likely to persist.
7839 		 */
7840 		btrfs_debug(fs_info,
7841 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7842 			num_copies, failrec->this_mirror, failed_mirror);
7843 		return 0;
7844 	}
7845 
7846 	failrec->failed_mirror = failed_mirror;
7847 	failrec->this_mirror++;
7848 	if (failrec->this_mirror == failed_mirror)
7849 		failrec->this_mirror++;
7850 
7851 	if (failrec->this_mirror > num_copies) {
7852 		btrfs_debug(fs_info,
7853 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7854 			num_copies, failrec->this_mirror, failed_mirror);
7855 		return 0;
7856 	}
7857 
7858 	return 1;
7859 }
7860 
7861 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7862 				   struct page *page, unsigned int pgoff,
7863 				   u64 start, u64 end, int failed_mirror,
7864 				   bio_end_io_t *repair_endio, void *repair_arg)
7865 {
7866 	struct io_failure_record *failrec;
7867 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7868 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7869 	struct bio *bio;
7870 	int isector;
7871 	unsigned int read_mode = 0;
7872 	int segs;
7873 	int ret;
7874 	blk_status_t status;
7875 	struct bio_vec bvec;
7876 
7877 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7878 
7879 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7880 	if (ret)
7881 		return errno_to_blk_status(ret);
7882 
7883 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7884 					 failed_mirror);
7885 	if (!ret) {
7886 		free_io_failure(failure_tree, io_tree, failrec);
7887 		return BLK_STS_IOERR;
7888 	}
7889 
7890 	segs = bio_segments(failed_bio);
7891 	bio_get_first_bvec(failed_bio, &bvec);
7892 	if (segs > 1 ||
7893 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7894 		read_mode |= REQ_FAILFAST_DEV;
7895 
7896 	isector = start - btrfs_io_bio(failed_bio)->logical;
7897 	isector >>= inode->i_sb->s_blocksize_bits;
7898 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7899 				pgoff, isector, repair_endio, repair_arg);
7900 	bio->bi_opf = REQ_OP_READ | read_mode;
7901 
7902 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7903 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7904 		    read_mode, failrec->this_mirror, failrec->in_validation);
7905 
7906 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7907 	if (status) {
7908 		free_io_failure(failure_tree, io_tree, failrec);
7909 		bio_put(bio);
7910 	}
7911 
7912 	return status;
7913 }
7914 
7915 struct btrfs_retry_complete {
7916 	struct completion done;
7917 	struct inode *inode;
7918 	u64 start;
7919 	int uptodate;
7920 };
7921 
7922 static void btrfs_retry_endio_nocsum(struct bio *bio)
7923 {
7924 	struct btrfs_retry_complete *done = bio->bi_private;
7925 	struct inode *inode = done->inode;
7926 	struct bio_vec *bvec;
7927 	struct extent_io_tree *io_tree, *failure_tree;
7928 	struct bvec_iter_all iter_all;
7929 
7930 	if (bio->bi_status)
7931 		goto end;
7932 
7933 	ASSERT(bio->bi_vcnt == 1);
7934 	io_tree = &BTRFS_I(inode)->io_tree;
7935 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7936 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7937 
7938 	done->uptodate = 1;
7939 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7940 	bio_for_each_segment_all(bvec, bio, iter_all)
7941 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7942 				 io_tree, done->start, bvec->bv_page,
7943 				 btrfs_ino(BTRFS_I(inode)), 0);
7944 end:
7945 	complete(&done->done);
7946 	bio_put(bio);
7947 }
7948 
7949 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7950 						struct btrfs_io_bio *io_bio)
7951 {
7952 	struct btrfs_fs_info *fs_info;
7953 	struct bio_vec bvec;
7954 	struct bvec_iter iter;
7955 	struct btrfs_retry_complete done;
7956 	u64 start;
7957 	unsigned int pgoff;
7958 	u32 sectorsize;
7959 	int nr_sectors;
7960 	blk_status_t ret;
7961 	blk_status_t err = BLK_STS_OK;
7962 
7963 	fs_info = BTRFS_I(inode)->root->fs_info;
7964 	sectorsize = fs_info->sectorsize;
7965 
7966 	start = io_bio->logical;
7967 	done.inode = inode;
7968 	io_bio->bio.bi_iter = io_bio->iter;
7969 
7970 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7971 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7972 		pgoff = bvec.bv_offset;
7973 
7974 next_block_or_try_again:
7975 		done.uptodate = 0;
7976 		done.start = start;
7977 		init_completion(&done.done);
7978 
7979 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7980 				pgoff, start, start + sectorsize - 1,
7981 				io_bio->mirror_num,
7982 				btrfs_retry_endio_nocsum, &done);
7983 		if (ret) {
7984 			err = ret;
7985 			goto next;
7986 		}
7987 
7988 		wait_for_completion_io(&done.done);
7989 
7990 		if (!done.uptodate) {
7991 			/* We might have another mirror, so try again */
7992 			goto next_block_or_try_again;
7993 		}
7994 
7995 next:
7996 		start += sectorsize;
7997 
7998 		nr_sectors--;
7999 		if (nr_sectors) {
8000 			pgoff += sectorsize;
8001 			ASSERT(pgoff < PAGE_SIZE);
8002 			goto next_block_or_try_again;
8003 		}
8004 	}
8005 
8006 	return err;
8007 }
8008 
8009 static void btrfs_retry_endio(struct bio *bio)
8010 {
8011 	struct btrfs_retry_complete *done = bio->bi_private;
8012 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8013 	struct extent_io_tree *io_tree, *failure_tree;
8014 	struct inode *inode = done->inode;
8015 	struct bio_vec *bvec;
8016 	int uptodate;
8017 	int ret;
8018 	int i = 0;
8019 	struct bvec_iter_all iter_all;
8020 
8021 	if (bio->bi_status)
8022 		goto end;
8023 
8024 	uptodate = 1;
8025 
8026 	ASSERT(bio->bi_vcnt == 1);
8027 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8028 
8029 	io_tree = &BTRFS_I(inode)->io_tree;
8030 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8031 
8032 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8033 	bio_for_each_segment_all(bvec, bio, iter_all) {
8034 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8035 					     bvec->bv_offset, done->start,
8036 					     bvec->bv_len);
8037 		if (!ret)
8038 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8039 					 failure_tree, io_tree, done->start,
8040 					 bvec->bv_page,
8041 					 btrfs_ino(BTRFS_I(inode)),
8042 					 bvec->bv_offset);
8043 		else
8044 			uptodate = 0;
8045 		i++;
8046 	}
8047 
8048 	done->uptodate = uptodate;
8049 end:
8050 	complete(&done->done);
8051 	bio_put(bio);
8052 }
8053 
8054 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8055 		struct btrfs_io_bio *io_bio, blk_status_t err)
8056 {
8057 	struct btrfs_fs_info *fs_info;
8058 	struct bio_vec bvec;
8059 	struct bvec_iter iter;
8060 	struct btrfs_retry_complete done;
8061 	u64 start;
8062 	u64 offset = 0;
8063 	u32 sectorsize;
8064 	int nr_sectors;
8065 	unsigned int pgoff;
8066 	int csum_pos;
8067 	bool uptodate = (err == 0);
8068 	int ret;
8069 	blk_status_t status;
8070 
8071 	fs_info = BTRFS_I(inode)->root->fs_info;
8072 	sectorsize = fs_info->sectorsize;
8073 
8074 	err = BLK_STS_OK;
8075 	start = io_bio->logical;
8076 	done.inode = inode;
8077 	io_bio->bio.bi_iter = io_bio->iter;
8078 
8079 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8080 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8081 
8082 		pgoff = bvec.bv_offset;
8083 next_block:
8084 		if (uptodate) {
8085 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8086 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8087 					bvec.bv_page, pgoff, start, sectorsize);
8088 			if (likely(!ret))
8089 				goto next;
8090 		}
8091 try_again:
8092 		done.uptodate = 0;
8093 		done.start = start;
8094 		init_completion(&done.done);
8095 
8096 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8097 					pgoff, start, start + sectorsize - 1,
8098 					io_bio->mirror_num, btrfs_retry_endio,
8099 					&done);
8100 		if (status) {
8101 			err = status;
8102 			goto next;
8103 		}
8104 
8105 		wait_for_completion_io(&done.done);
8106 
8107 		if (!done.uptodate) {
8108 			/* We might have another mirror, so try again */
8109 			goto try_again;
8110 		}
8111 next:
8112 		offset += sectorsize;
8113 		start += sectorsize;
8114 
8115 		ASSERT(nr_sectors);
8116 
8117 		nr_sectors--;
8118 		if (nr_sectors) {
8119 			pgoff += sectorsize;
8120 			ASSERT(pgoff < PAGE_SIZE);
8121 			goto next_block;
8122 		}
8123 	}
8124 
8125 	return err;
8126 }
8127 
8128 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8129 		struct btrfs_io_bio *io_bio, blk_status_t err)
8130 {
8131 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8132 
8133 	if (skip_csum) {
8134 		if (unlikely(err))
8135 			return __btrfs_correct_data_nocsum(inode, io_bio);
8136 		else
8137 			return BLK_STS_OK;
8138 	} else {
8139 		return __btrfs_subio_endio_read(inode, io_bio, err);
8140 	}
8141 }
8142 
8143 static void btrfs_endio_direct_read(struct bio *bio)
8144 {
8145 	struct btrfs_dio_private *dip = bio->bi_private;
8146 	struct inode *inode = dip->inode;
8147 	struct bio *dio_bio;
8148 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8149 	blk_status_t err = bio->bi_status;
8150 
8151 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8152 		err = btrfs_subio_endio_read(inode, io_bio, err);
8153 
8154 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8155 		      dip->logical_offset + dip->bytes - 1);
8156 	dio_bio = dip->dio_bio;
8157 
8158 	kfree(dip);
8159 
8160 	dio_bio->bi_status = err;
8161 	dio_end_io(dio_bio);
8162 	btrfs_io_bio_free_csum(io_bio);
8163 	bio_put(bio);
8164 }
8165 
8166 static void __endio_write_update_ordered(struct inode *inode,
8167 					 const u64 offset, const u64 bytes,
8168 					 const bool uptodate)
8169 {
8170 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8171 	struct btrfs_ordered_extent *ordered = NULL;
8172 	struct btrfs_workqueue *wq;
8173 	btrfs_work_func_t func;
8174 	u64 ordered_offset = offset;
8175 	u64 ordered_bytes = bytes;
8176 	u64 last_offset;
8177 
8178 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8179 		wq = fs_info->endio_freespace_worker;
8180 		func = btrfs_freespace_write_helper;
8181 	} else {
8182 		wq = fs_info->endio_write_workers;
8183 		func = btrfs_endio_write_helper;
8184 	}
8185 
8186 	while (ordered_offset < offset + bytes) {
8187 		last_offset = ordered_offset;
8188 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8189 							   &ordered_offset,
8190 							   ordered_bytes,
8191 							   uptodate)) {
8192 			btrfs_init_work(&ordered->work, func,
8193 					finish_ordered_fn,
8194 					NULL, NULL);
8195 			btrfs_queue_work(wq, &ordered->work);
8196 		}
8197 		/*
8198 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8199 		 * extent in the range, we can exit.
8200 		 */
8201 		if (ordered_offset == last_offset)
8202 			return;
8203 		/*
8204 		 * Our bio might span multiple ordered extents. In this case
8205 		 * we keep going until we have accounted the whole dio.
8206 		 */
8207 		if (ordered_offset < offset + bytes) {
8208 			ordered_bytes = offset + bytes - ordered_offset;
8209 			ordered = NULL;
8210 		}
8211 	}
8212 }
8213 
8214 static void btrfs_endio_direct_write(struct bio *bio)
8215 {
8216 	struct btrfs_dio_private *dip = bio->bi_private;
8217 	struct bio *dio_bio = dip->dio_bio;
8218 
8219 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8220 				     dip->bytes, !bio->bi_status);
8221 
8222 	kfree(dip);
8223 
8224 	dio_bio->bi_status = bio->bi_status;
8225 	dio_end_io(dio_bio);
8226 	bio_put(bio);
8227 }
8228 
8229 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8230 				    struct bio *bio, u64 offset)
8231 {
8232 	struct inode *inode = private_data;
8233 	blk_status_t ret;
8234 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8235 	BUG_ON(ret); /* -ENOMEM */
8236 	return 0;
8237 }
8238 
8239 static void btrfs_end_dio_bio(struct bio *bio)
8240 {
8241 	struct btrfs_dio_private *dip = bio->bi_private;
8242 	blk_status_t err = bio->bi_status;
8243 
8244 	if (err)
8245 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8246 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8247 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8248 			   bio->bi_opf,
8249 			   (unsigned long long)bio->bi_iter.bi_sector,
8250 			   bio->bi_iter.bi_size, err);
8251 
8252 	if (dip->subio_endio)
8253 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8254 
8255 	if (err) {
8256 		/*
8257 		 * We want to perceive the errors flag being set before
8258 		 * decrementing the reference count. We don't need a barrier
8259 		 * since atomic operations with a return value are fully
8260 		 * ordered as per atomic_t.txt
8261 		 */
8262 		dip->errors = 1;
8263 	}
8264 
8265 	/* if there are more bios still pending for this dio, just exit */
8266 	if (!atomic_dec_and_test(&dip->pending_bios))
8267 		goto out;
8268 
8269 	if (dip->errors) {
8270 		bio_io_error(dip->orig_bio);
8271 	} else {
8272 		dip->dio_bio->bi_status = BLK_STS_OK;
8273 		bio_endio(dip->orig_bio);
8274 	}
8275 out:
8276 	bio_put(bio);
8277 }
8278 
8279 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8280 						 struct btrfs_dio_private *dip,
8281 						 struct bio *bio,
8282 						 u64 file_offset)
8283 {
8284 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8285 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8286 	blk_status_t ret;
8287 
8288 	/*
8289 	 * We load all the csum data we need when we submit
8290 	 * the first bio to reduce the csum tree search and
8291 	 * contention.
8292 	 */
8293 	if (dip->logical_offset == file_offset) {
8294 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8295 						file_offset);
8296 		if (ret)
8297 			return ret;
8298 	}
8299 
8300 	if (bio == dip->orig_bio)
8301 		return 0;
8302 
8303 	file_offset -= dip->logical_offset;
8304 	file_offset >>= inode->i_sb->s_blocksize_bits;
8305 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8306 
8307 	return 0;
8308 }
8309 
8310 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8311 		struct inode *inode, u64 file_offset, int async_submit)
8312 {
8313 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8314 	struct btrfs_dio_private *dip = bio->bi_private;
8315 	bool write = bio_op(bio) == REQ_OP_WRITE;
8316 	blk_status_t ret;
8317 
8318 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8319 	if (async_submit)
8320 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8321 
8322 	if (!write) {
8323 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8324 		if (ret)
8325 			goto err;
8326 	}
8327 
8328 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8329 		goto map;
8330 
8331 	if (write && async_submit) {
8332 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8333 					  file_offset, inode,
8334 					  btrfs_submit_bio_start_direct_io);
8335 		goto err;
8336 	} else if (write) {
8337 		/*
8338 		 * If we aren't doing async submit, calculate the csum of the
8339 		 * bio now.
8340 		 */
8341 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8342 		if (ret)
8343 			goto err;
8344 	} else {
8345 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8346 						     file_offset);
8347 		if (ret)
8348 			goto err;
8349 	}
8350 map:
8351 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8352 err:
8353 	return ret;
8354 }
8355 
8356 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8357 {
8358 	struct inode *inode = dip->inode;
8359 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8360 	struct bio *bio;
8361 	struct bio *orig_bio = dip->orig_bio;
8362 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8363 	u64 file_offset = dip->logical_offset;
8364 	int async_submit = 0;
8365 	u64 submit_len;
8366 	int clone_offset = 0;
8367 	int clone_len;
8368 	int ret;
8369 	blk_status_t status;
8370 	struct btrfs_io_geometry geom;
8371 
8372 	submit_len = orig_bio->bi_iter.bi_size;
8373 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8374 				    start_sector << 9, submit_len, &geom);
8375 	if (ret)
8376 		return -EIO;
8377 
8378 	if (geom.len >= submit_len) {
8379 		bio = orig_bio;
8380 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8381 		goto submit;
8382 	}
8383 
8384 	/* async crcs make it difficult to collect full stripe writes. */
8385 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8386 		async_submit = 0;
8387 	else
8388 		async_submit = 1;
8389 
8390 	/* bio split */
8391 	ASSERT(geom.len <= INT_MAX);
8392 	atomic_inc(&dip->pending_bios);
8393 	do {
8394 		clone_len = min_t(int, submit_len, geom.len);
8395 
8396 		/*
8397 		 * This will never fail as it's passing GPF_NOFS and
8398 		 * the allocation is backed by btrfs_bioset.
8399 		 */
8400 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8401 					      clone_len);
8402 		bio->bi_private = dip;
8403 		bio->bi_end_io = btrfs_end_dio_bio;
8404 		btrfs_io_bio(bio)->logical = file_offset;
8405 
8406 		ASSERT(submit_len >= clone_len);
8407 		submit_len -= clone_len;
8408 		if (submit_len == 0)
8409 			break;
8410 
8411 		/*
8412 		 * Increase the count before we submit the bio so we know
8413 		 * the end IO handler won't happen before we increase the
8414 		 * count. Otherwise, the dip might get freed before we're
8415 		 * done setting it up.
8416 		 */
8417 		atomic_inc(&dip->pending_bios);
8418 
8419 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8420 						async_submit);
8421 		if (status) {
8422 			bio_put(bio);
8423 			atomic_dec(&dip->pending_bios);
8424 			goto out_err;
8425 		}
8426 
8427 		clone_offset += clone_len;
8428 		start_sector += clone_len >> 9;
8429 		file_offset += clone_len;
8430 
8431 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8432 				      start_sector << 9, submit_len, &geom);
8433 		if (ret)
8434 			goto out_err;
8435 	} while (submit_len > 0);
8436 
8437 submit:
8438 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8439 	if (!status)
8440 		return 0;
8441 
8442 	bio_put(bio);
8443 out_err:
8444 	dip->errors = 1;
8445 	/*
8446 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8447 	 * perceived to be set. This ordering is ensured by the fact that an
8448 	 * atomic operations with a return value are fully ordered as per
8449 	 * atomic_t.txt
8450 	 */
8451 	if (atomic_dec_and_test(&dip->pending_bios))
8452 		bio_io_error(dip->orig_bio);
8453 
8454 	/* bio_end_io() will handle error, so we needn't return it */
8455 	return 0;
8456 }
8457 
8458 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8459 				loff_t file_offset)
8460 {
8461 	struct btrfs_dio_private *dip = NULL;
8462 	struct bio *bio = NULL;
8463 	struct btrfs_io_bio *io_bio;
8464 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8465 	int ret = 0;
8466 
8467 	bio = btrfs_bio_clone(dio_bio);
8468 
8469 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8470 	if (!dip) {
8471 		ret = -ENOMEM;
8472 		goto free_ordered;
8473 	}
8474 
8475 	dip->private = dio_bio->bi_private;
8476 	dip->inode = inode;
8477 	dip->logical_offset = file_offset;
8478 	dip->bytes = dio_bio->bi_iter.bi_size;
8479 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8480 	bio->bi_private = dip;
8481 	dip->orig_bio = bio;
8482 	dip->dio_bio = dio_bio;
8483 	atomic_set(&dip->pending_bios, 0);
8484 	io_bio = btrfs_io_bio(bio);
8485 	io_bio->logical = file_offset;
8486 
8487 	if (write) {
8488 		bio->bi_end_io = btrfs_endio_direct_write;
8489 	} else {
8490 		bio->bi_end_io = btrfs_endio_direct_read;
8491 		dip->subio_endio = btrfs_subio_endio_read;
8492 	}
8493 
8494 	/*
8495 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8496 	 * even if we fail to submit a bio, because in such case we do the
8497 	 * corresponding error handling below and it must not be done a second
8498 	 * time by btrfs_direct_IO().
8499 	 */
8500 	if (write) {
8501 		struct btrfs_dio_data *dio_data = current->journal_info;
8502 
8503 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8504 			dip->bytes;
8505 		dio_data->unsubmitted_oe_range_start =
8506 			dio_data->unsubmitted_oe_range_end;
8507 	}
8508 
8509 	ret = btrfs_submit_direct_hook(dip);
8510 	if (!ret)
8511 		return;
8512 
8513 	btrfs_io_bio_free_csum(io_bio);
8514 
8515 free_ordered:
8516 	/*
8517 	 * If we arrived here it means either we failed to submit the dip
8518 	 * or we either failed to clone the dio_bio or failed to allocate the
8519 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8520 	 * call bio_endio against our io_bio so that we get proper resource
8521 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8522 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8523 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8524 	 */
8525 	if (bio && dip) {
8526 		bio_io_error(bio);
8527 		/*
8528 		 * The end io callbacks free our dip, do the final put on bio
8529 		 * and all the cleanup and final put for dio_bio (through
8530 		 * dio_end_io()).
8531 		 */
8532 		dip = NULL;
8533 		bio = NULL;
8534 	} else {
8535 		if (write)
8536 			__endio_write_update_ordered(inode,
8537 						file_offset,
8538 						dio_bio->bi_iter.bi_size,
8539 						false);
8540 		else
8541 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8542 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8543 
8544 		dio_bio->bi_status = BLK_STS_IOERR;
8545 		/*
8546 		 * Releases and cleans up our dio_bio, no need to bio_put()
8547 		 * nor bio_endio()/bio_io_error() against dio_bio.
8548 		 */
8549 		dio_end_io(dio_bio);
8550 	}
8551 	if (bio)
8552 		bio_put(bio);
8553 	kfree(dip);
8554 }
8555 
8556 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8557 			       const struct iov_iter *iter, loff_t offset)
8558 {
8559 	int seg;
8560 	int i;
8561 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8562 	ssize_t retval = -EINVAL;
8563 
8564 	if (offset & blocksize_mask)
8565 		goto out;
8566 
8567 	if (iov_iter_alignment(iter) & blocksize_mask)
8568 		goto out;
8569 
8570 	/* If this is a write we don't need to check anymore */
8571 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8572 		return 0;
8573 	/*
8574 	 * Check to make sure we don't have duplicate iov_base's in this
8575 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8576 	 * when reading back.
8577 	 */
8578 	for (seg = 0; seg < iter->nr_segs; seg++) {
8579 		for (i = seg + 1; i < iter->nr_segs; i++) {
8580 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8581 				goto out;
8582 		}
8583 	}
8584 	retval = 0;
8585 out:
8586 	return retval;
8587 }
8588 
8589 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8590 {
8591 	struct file *file = iocb->ki_filp;
8592 	struct inode *inode = file->f_mapping->host;
8593 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8594 	struct btrfs_dio_data dio_data = { 0 };
8595 	struct extent_changeset *data_reserved = NULL;
8596 	loff_t offset = iocb->ki_pos;
8597 	size_t count = 0;
8598 	int flags = 0;
8599 	bool wakeup = true;
8600 	bool relock = false;
8601 	ssize_t ret;
8602 
8603 	if (check_direct_IO(fs_info, iter, offset))
8604 		return 0;
8605 
8606 	inode_dio_begin(inode);
8607 
8608 	/*
8609 	 * The generic stuff only does filemap_write_and_wait_range, which
8610 	 * isn't enough if we've written compressed pages to this area, so
8611 	 * we need to flush the dirty pages again to make absolutely sure
8612 	 * that any outstanding dirty pages are on disk.
8613 	 */
8614 	count = iov_iter_count(iter);
8615 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8616 		     &BTRFS_I(inode)->runtime_flags))
8617 		filemap_fdatawrite_range(inode->i_mapping, offset,
8618 					 offset + count - 1);
8619 
8620 	if (iov_iter_rw(iter) == WRITE) {
8621 		/*
8622 		 * If the write DIO is beyond the EOF, we need update
8623 		 * the isize, but it is protected by i_mutex. So we can
8624 		 * not unlock the i_mutex at this case.
8625 		 */
8626 		if (offset + count <= inode->i_size) {
8627 			dio_data.overwrite = 1;
8628 			inode_unlock(inode);
8629 			relock = true;
8630 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8631 			ret = -EAGAIN;
8632 			goto out;
8633 		}
8634 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8635 						   offset, count);
8636 		if (ret)
8637 			goto out;
8638 
8639 		/*
8640 		 * We need to know how many extents we reserved so that we can
8641 		 * do the accounting properly if we go over the number we
8642 		 * originally calculated.  Abuse current->journal_info for this.
8643 		 */
8644 		dio_data.reserve = round_up(count,
8645 					    fs_info->sectorsize);
8646 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8647 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8648 		current->journal_info = &dio_data;
8649 		down_read(&BTRFS_I(inode)->dio_sem);
8650 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8651 				     &BTRFS_I(inode)->runtime_flags)) {
8652 		inode_dio_end(inode);
8653 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8654 		wakeup = false;
8655 	}
8656 
8657 	ret = __blockdev_direct_IO(iocb, inode,
8658 				   fs_info->fs_devices->latest_bdev,
8659 				   iter, btrfs_get_blocks_direct, NULL,
8660 				   btrfs_submit_direct, flags);
8661 	if (iov_iter_rw(iter) == WRITE) {
8662 		up_read(&BTRFS_I(inode)->dio_sem);
8663 		current->journal_info = NULL;
8664 		if (ret < 0 && ret != -EIOCBQUEUED) {
8665 			if (dio_data.reserve)
8666 				btrfs_delalloc_release_space(inode, data_reserved,
8667 					offset, dio_data.reserve, true);
8668 			/*
8669 			 * On error we might have left some ordered extents
8670 			 * without submitting corresponding bios for them, so
8671 			 * cleanup them up to avoid other tasks getting them
8672 			 * and waiting for them to complete forever.
8673 			 */
8674 			if (dio_data.unsubmitted_oe_range_start <
8675 			    dio_data.unsubmitted_oe_range_end)
8676 				__endio_write_update_ordered(inode,
8677 					dio_data.unsubmitted_oe_range_start,
8678 					dio_data.unsubmitted_oe_range_end -
8679 					dio_data.unsubmitted_oe_range_start,
8680 					false);
8681 		} else if (ret >= 0 && (size_t)ret < count)
8682 			btrfs_delalloc_release_space(inode, data_reserved,
8683 					offset, count - (size_t)ret, true);
8684 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8685 	}
8686 out:
8687 	if (wakeup)
8688 		inode_dio_end(inode);
8689 	if (relock)
8690 		inode_lock(inode);
8691 
8692 	extent_changeset_free(data_reserved);
8693 	return ret;
8694 }
8695 
8696 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8697 
8698 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8699 		__u64 start, __u64 len)
8700 {
8701 	int	ret;
8702 
8703 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8704 	if (ret)
8705 		return ret;
8706 
8707 	return extent_fiemap(inode, fieinfo, start, len);
8708 }
8709 
8710 int btrfs_readpage(struct file *file, struct page *page)
8711 {
8712 	struct extent_io_tree *tree;
8713 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8714 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8715 }
8716 
8717 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8718 {
8719 	struct inode *inode = page->mapping->host;
8720 	int ret;
8721 
8722 	if (current->flags & PF_MEMALLOC) {
8723 		redirty_page_for_writepage(wbc, page);
8724 		unlock_page(page);
8725 		return 0;
8726 	}
8727 
8728 	/*
8729 	 * If we are under memory pressure we will call this directly from the
8730 	 * VM, we need to make sure we have the inode referenced for the ordered
8731 	 * extent.  If not just return like we didn't do anything.
8732 	 */
8733 	if (!igrab(inode)) {
8734 		redirty_page_for_writepage(wbc, page);
8735 		return AOP_WRITEPAGE_ACTIVATE;
8736 	}
8737 	ret = extent_write_full_page(page, wbc);
8738 	btrfs_add_delayed_iput(inode);
8739 	return ret;
8740 }
8741 
8742 static int btrfs_writepages(struct address_space *mapping,
8743 			    struct writeback_control *wbc)
8744 {
8745 	return extent_writepages(mapping, wbc);
8746 }
8747 
8748 static int
8749 btrfs_readpages(struct file *file, struct address_space *mapping,
8750 		struct list_head *pages, unsigned nr_pages)
8751 {
8752 	return extent_readpages(mapping, pages, nr_pages);
8753 }
8754 
8755 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8756 {
8757 	int ret = try_release_extent_mapping(page, gfp_flags);
8758 	if (ret == 1) {
8759 		ClearPagePrivate(page);
8760 		set_page_private(page, 0);
8761 		put_page(page);
8762 	}
8763 	return ret;
8764 }
8765 
8766 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8767 {
8768 	if (PageWriteback(page) || PageDirty(page))
8769 		return 0;
8770 	return __btrfs_releasepage(page, gfp_flags);
8771 }
8772 
8773 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8774 				 unsigned int length)
8775 {
8776 	struct inode *inode = page->mapping->host;
8777 	struct extent_io_tree *tree;
8778 	struct btrfs_ordered_extent *ordered;
8779 	struct extent_state *cached_state = NULL;
8780 	u64 page_start = page_offset(page);
8781 	u64 page_end = page_start + PAGE_SIZE - 1;
8782 	u64 start;
8783 	u64 end;
8784 	int inode_evicting = inode->i_state & I_FREEING;
8785 
8786 	/*
8787 	 * we have the page locked, so new writeback can't start,
8788 	 * and the dirty bit won't be cleared while we are here.
8789 	 *
8790 	 * Wait for IO on this page so that we can safely clear
8791 	 * the PagePrivate2 bit and do ordered accounting
8792 	 */
8793 	wait_on_page_writeback(page);
8794 
8795 	tree = &BTRFS_I(inode)->io_tree;
8796 	if (offset) {
8797 		btrfs_releasepage(page, GFP_NOFS);
8798 		return;
8799 	}
8800 
8801 	if (!inode_evicting)
8802 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8803 again:
8804 	start = page_start;
8805 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8806 					page_end - start + 1);
8807 	if (ordered) {
8808 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8809 		/*
8810 		 * IO on this page will never be started, so we need
8811 		 * to account for any ordered extents now
8812 		 */
8813 		if (!inode_evicting)
8814 			clear_extent_bit(tree, start, end,
8815 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8816 					 EXTENT_DELALLOC_NEW |
8817 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8818 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8819 		/*
8820 		 * whoever cleared the private bit is responsible
8821 		 * for the finish_ordered_io
8822 		 */
8823 		if (TestClearPagePrivate2(page)) {
8824 			struct btrfs_ordered_inode_tree *tree;
8825 			u64 new_len;
8826 
8827 			tree = &BTRFS_I(inode)->ordered_tree;
8828 
8829 			spin_lock_irq(&tree->lock);
8830 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8831 			new_len = start - ordered->file_offset;
8832 			if (new_len < ordered->truncated_len)
8833 				ordered->truncated_len = new_len;
8834 			spin_unlock_irq(&tree->lock);
8835 
8836 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8837 							   start,
8838 							   end - start + 1, 1))
8839 				btrfs_finish_ordered_io(ordered);
8840 		}
8841 		btrfs_put_ordered_extent(ordered);
8842 		if (!inode_evicting) {
8843 			cached_state = NULL;
8844 			lock_extent_bits(tree, start, end,
8845 					 &cached_state);
8846 		}
8847 
8848 		start = end + 1;
8849 		if (start < page_end)
8850 			goto again;
8851 	}
8852 
8853 	/*
8854 	 * Qgroup reserved space handler
8855 	 * Page here will be either
8856 	 * 1) Already written to disk
8857 	 *    In this case, its reserved space is released from data rsv map
8858 	 *    and will be freed by delayed_ref handler finally.
8859 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8860 	 *    space.
8861 	 * 2) Not written to disk
8862 	 *    This means the reserved space should be freed here. However,
8863 	 *    if a truncate invalidates the page (by clearing PageDirty)
8864 	 *    and the page is accounted for while allocating extent
8865 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8866 	 *    free the entire extent.
8867 	 */
8868 	if (PageDirty(page))
8869 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8870 	if (!inode_evicting) {
8871 		clear_extent_bit(tree, page_start, page_end,
8872 				 EXTENT_LOCKED | EXTENT_DIRTY |
8873 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8874 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8875 				 &cached_state);
8876 
8877 		__btrfs_releasepage(page, GFP_NOFS);
8878 	}
8879 
8880 	ClearPageChecked(page);
8881 	if (PagePrivate(page)) {
8882 		ClearPagePrivate(page);
8883 		set_page_private(page, 0);
8884 		put_page(page);
8885 	}
8886 }
8887 
8888 /*
8889  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8890  * called from a page fault handler when a page is first dirtied. Hence we must
8891  * be careful to check for EOF conditions here. We set the page up correctly
8892  * for a written page which means we get ENOSPC checking when writing into
8893  * holes and correct delalloc and unwritten extent mapping on filesystems that
8894  * support these features.
8895  *
8896  * We are not allowed to take the i_mutex here so we have to play games to
8897  * protect against truncate races as the page could now be beyond EOF.  Because
8898  * truncate_setsize() writes the inode size before removing pages, once we have
8899  * the page lock we can determine safely if the page is beyond EOF. If it is not
8900  * beyond EOF, then the page is guaranteed safe against truncation until we
8901  * unlock the page.
8902  */
8903 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8904 {
8905 	struct page *page = vmf->page;
8906 	struct inode *inode = file_inode(vmf->vma->vm_file);
8907 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8908 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8909 	struct btrfs_ordered_extent *ordered;
8910 	struct extent_state *cached_state = NULL;
8911 	struct extent_changeset *data_reserved = NULL;
8912 	char *kaddr;
8913 	unsigned long zero_start;
8914 	loff_t size;
8915 	vm_fault_t ret;
8916 	int ret2;
8917 	int reserved = 0;
8918 	u64 reserved_space;
8919 	u64 page_start;
8920 	u64 page_end;
8921 	u64 end;
8922 
8923 	reserved_space = PAGE_SIZE;
8924 
8925 	sb_start_pagefault(inode->i_sb);
8926 	page_start = page_offset(page);
8927 	page_end = page_start + PAGE_SIZE - 1;
8928 	end = page_end;
8929 
8930 	/*
8931 	 * Reserving delalloc space after obtaining the page lock can lead to
8932 	 * deadlock. For example, if a dirty page is locked by this function
8933 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8934 	 * dirty page write out, then the btrfs_writepage() function could
8935 	 * end up waiting indefinitely to get a lock on the page currently
8936 	 * being processed by btrfs_page_mkwrite() function.
8937 	 */
8938 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8939 					   reserved_space);
8940 	if (!ret2) {
8941 		ret2 = file_update_time(vmf->vma->vm_file);
8942 		reserved = 1;
8943 	}
8944 	if (ret2) {
8945 		ret = vmf_error(ret2);
8946 		if (reserved)
8947 			goto out;
8948 		goto out_noreserve;
8949 	}
8950 
8951 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8952 again:
8953 	lock_page(page);
8954 	size = i_size_read(inode);
8955 
8956 	if ((page->mapping != inode->i_mapping) ||
8957 	    (page_start >= size)) {
8958 		/* page got truncated out from underneath us */
8959 		goto out_unlock;
8960 	}
8961 	wait_on_page_writeback(page);
8962 
8963 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8964 	set_page_extent_mapped(page);
8965 
8966 	/*
8967 	 * we can't set the delalloc bits if there are pending ordered
8968 	 * extents.  Drop our locks and wait for them to finish
8969 	 */
8970 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8971 			PAGE_SIZE);
8972 	if (ordered) {
8973 		unlock_extent_cached(io_tree, page_start, page_end,
8974 				     &cached_state);
8975 		unlock_page(page);
8976 		btrfs_start_ordered_extent(inode, ordered, 1);
8977 		btrfs_put_ordered_extent(ordered);
8978 		goto again;
8979 	}
8980 
8981 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8982 		reserved_space = round_up(size - page_start,
8983 					  fs_info->sectorsize);
8984 		if (reserved_space < PAGE_SIZE) {
8985 			end = page_start + reserved_space - 1;
8986 			btrfs_delalloc_release_space(inode, data_reserved,
8987 					page_start, PAGE_SIZE - reserved_space,
8988 					true);
8989 		}
8990 	}
8991 
8992 	/*
8993 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8994 	 * faulted in, but write(2) could also dirty a page and set delalloc
8995 	 * bits, thus in this case for space account reason, we still need to
8996 	 * clear any delalloc bits within this page range since we have to
8997 	 * reserve data&meta space before lock_page() (see above comments).
8998 	 */
8999 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9000 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9001 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9002 			  0, 0, &cached_state);
9003 
9004 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9005 					&cached_state, 0);
9006 	if (ret2) {
9007 		unlock_extent_cached(io_tree, page_start, page_end,
9008 				     &cached_state);
9009 		ret = VM_FAULT_SIGBUS;
9010 		goto out_unlock;
9011 	}
9012 	ret2 = 0;
9013 
9014 	/* page is wholly or partially inside EOF */
9015 	if (page_start + PAGE_SIZE > size)
9016 		zero_start = offset_in_page(size);
9017 	else
9018 		zero_start = PAGE_SIZE;
9019 
9020 	if (zero_start != PAGE_SIZE) {
9021 		kaddr = kmap(page);
9022 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9023 		flush_dcache_page(page);
9024 		kunmap(page);
9025 	}
9026 	ClearPageChecked(page);
9027 	set_page_dirty(page);
9028 	SetPageUptodate(page);
9029 
9030 	BTRFS_I(inode)->last_trans = fs_info->generation;
9031 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9032 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9033 
9034 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9035 
9036 	if (!ret2) {
9037 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9038 		sb_end_pagefault(inode->i_sb);
9039 		extent_changeset_free(data_reserved);
9040 		return VM_FAULT_LOCKED;
9041 	}
9042 
9043 out_unlock:
9044 	unlock_page(page);
9045 out:
9046 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9047 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9048 				     reserved_space, (ret != 0));
9049 out_noreserve:
9050 	sb_end_pagefault(inode->i_sb);
9051 	extent_changeset_free(data_reserved);
9052 	return ret;
9053 }
9054 
9055 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9056 {
9057 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9058 	struct btrfs_root *root = BTRFS_I(inode)->root;
9059 	struct btrfs_block_rsv *rsv;
9060 	int ret;
9061 	struct btrfs_trans_handle *trans;
9062 	u64 mask = fs_info->sectorsize - 1;
9063 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9064 
9065 	if (!skip_writeback) {
9066 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9067 					       (u64)-1);
9068 		if (ret)
9069 			return ret;
9070 	}
9071 
9072 	/*
9073 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9074 	 * things going on here:
9075 	 *
9076 	 * 1) We need to reserve space to update our inode.
9077 	 *
9078 	 * 2) We need to have something to cache all the space that is going to
9079 	 * be free'd up by the truncate operation, but also have some slack
9080 	 * space reserved in case it uses space during the truncate (thank you
9081 	 * very much snapshotting).
9082 	 *
9083 	 * And we need these to be separate.  The fact is we can use a lot of
9084 	 * space doing the truncate, and we have no earthly idea how much space
9085 	 * we will use, so we need the truncate reservation to be separate so it
9086 	 * doesn't end up using space reserved for updating the inode.  We also
9087 	 * need to be able to stop the transaction and start a new one, which
9088 	 * means we need to be able to update the inode several times, and we
9089 	 * have no idea of knowing how many times that will be, so we can't just
9090 	 * reserve 1 item for the entirety of the operation, so that has to be
9091 	 * done separately as well.
9092 	 *
9093 	 * So that leaves us with
9094 	 *
9095 	 * 1) rsv - for the truncate reservation, which we will steal from the
9096 	 * transaction reservation.
9097 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9098 	 * updating the inode.
9099 	 */
9100 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9101 	if (!rsv)
9102 		return -ENOMEM;
9103 	rsv->size = min_size;
9104 	rsv->failfast = 1;
9105 
9106 	/*
9107 	 * 1 for the truncate slack space
9108 	 * 1 for updating the inode.
9109 	 */
9110 	trans = btrfs_start_transaction(root, 2);
9111 	if (IS_ERR(trans)) {
9112 		ret = PTR_ERR(trans);
9113 		goto out;
9114 	}
9115 
9116 	/* Migrate the slack space for the truncate to our reserve */
9117 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9118 				      min_size, false);
9119 	BUG_ON(ret);
9120 
9121 	/*
9122 	 * So if we truncate and then write and fsync we normally would just
9123 	 * write the extents that changed, which is a problem if we need to
9124 	 * first truncate that entire inode.  So set this flag so we write out
9125 	 * all of the extents in the inode to the sync log so we're completely
9126 	 * safe.
9127 	 */
9128 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9129 	trans->block_rsv = rsv;
9130 
9131 	while (1) {
9132 		ret = btrfs_truncate_inode_items(trans, root, inode,
9133 						 inode->i_size,
9134 						 BTRFS_EXTENT_DATA_KEY);
9135 		trans->block_rsv = &fs_info->trans_block_rsv;
9136 		if (ret != -ENOSPC && ret != -EAGAIN)
9137 			break;
9138 
9139 		ret = btrfs_update_inode(trans, root, inode);
9140 		if (ret)
9141 			break;
9142 
9143 		btrfs_end_transaction(trans);
9144 		btrfs_btree_balance_dirty(fs_info);
9145 
9146 		trans = btrfs_start_transaction(root, 2);
9147 		if (IS_ERR(trans)) {
9148 			ret = PTR_ERR(trans);
9149 			trans = NULL;
9150 			break;
9151 		}
9152 
9153 		btrfs_block_rsv_release(fs_info, rsv, -1);
9154 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9155 					      rsv, min_size, false);
9156 		BUG_ON(ret);	/* shouldn't happen */
9157 		trans->block_rsv = rsv;
9158 	}
9159 
9160 	/*
9161 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9162 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9163 	 * we've truncated everything except the last little bit, and can do
9164 	 * btrfs_truncate_block and then update the disk_i_size.
9165 	 */
9166 	if (ret == NEED_TRUNCATE_BLOCK) {
9167 		btrfs_end_transaction(trans);
9168 		btrfs_btree_balance_dirty(fs_info);
9169 
9170 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9171 		if (ret)
9172 			goto out;
9173 		trans = btrfs_start_transaction(root, 1);
9174 		if (IS_ERR(trans)) {
9175 			ret = PTR_ERR(trans);
9176 			goto out;
9177 		}
9178 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9179 	}
9180 
9181 	if (trans) {
9182 		int ret2;
9183 
9184 		trans->block_rsv = &fs_info->trans_block_rsv;
9185 		ret2 = btrfs_update_inode(trans, root, inode);
9186 		if (ret2 && !ret)
9187 			ret = ret2;
9188 
9189 		ret2 = btrfs_end_transaction(trans);
9190 		if (ret2 && !ret)
9191 			ret = ret2;
9192 		btrfs_btree_balance_dirty(fs_info);
9193 	}
9194 out:
9195 	btrfs_free_block_rsv(fs_info, rsv);
9196 
9197 	return ret;
9198 }
9199 
9200 /*
9201  * create a new subvolume directory/inode (helper for the ioctl).
9202  */
9203 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9204 			     struct btrfs_root *new_root,
9205 			     struct btrfs_root *parent_root,
9206 			     u64 new_dirid)
9207 {
9208 	struct inode *inode;
9209 	int err;
9210 	u64 index = 0;
9211 
9212 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9213 				new_dirid, new_dirid,
9214 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9215 				&index);
9216 	if (IS_ERR(inode))
9217 		return PTR_ERR(inode);
9218 	inode->i_op = &btrfs_dir_inode_operations;
9219 	inode->i_fop = &btrfs_dir_file_operations;
9220 
9221 	set_nlink(inode, 1);
9222 	btrfs_i_size_write(BTRFS_I(inode), 0);
9223 	unlock_new_inode(inode);
9224 
9225 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9226 	if (err)
9227 		btrfs_err(new_root->fs_info,
9228 			  "error inheriting subvolume %llu properties: %d",
9229 			  new_root->root_key.objectid, err);
9230 
9231 	err = btrfs_update_inode(trans, new_root, inode);
9232 
9233 	iput(inode);
9234 	return err;
9235 }
9236 
9237 struct inode *btrfs_alloc_inode(struct super_block *sb)
9238 {
9239 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9240 	struct btrfs_inode *ei;
9241 	struct inode *inode;
9242 
9243 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9244 	if (!ei)
9245 		return NULL;
9246 
9247 	ei->root = NULL;
9248 	ei->generation = 0;
9249 	ei->last_trans = 0;
9250 	ei->last_sub_trans = 0;
9251 	ei->logged_trans = 0;
9252 	ei->delalloc_bytes = 0;
9253 	ei->new_delalloc_bytes = 0;
9254 	ei->defrag_bytes = 0;
9255 	ei->disk_i_size = 0;
9256 	ei->flags = 0;
9257 	ei->csum_bytes = 0;
9258 	ei->index_cnt = (u64)-1;
9259 	ei->dir_index = 0;
9260 	ei->last_unlink_trans = 0;
9261 	ei->last_log_commit = 0;
9262 
9263 	spin_lock_init(&ei->lock);
9264 	ei->outstanding_extents = 0;
9265 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9266 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9267 					      BTRFS_BLOCK_RSV_DELALLOC);
9268 	ei->runtime_flags = 0;
9269 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9270 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9271 
9272 	ei->delayed_node = NULL;
9273 
9274 	ei->i_otime.tv_sec = 0;
9275 	ei->i_otime.tv_nsec = 0;
9276 
9277 	inode = &ei->vfs_inode;
9278 	extent_map_tree_init(&ei->extent_tree);
9279 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9280 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9281 			    IO_TREE_INODE_IO_FAILURE, inode);
9282 	ei->io_tree.track_uptodate = true;
9283 	ei->io_failure_tree.track_uptodate = true;
9284 	atomic_set(&ei->sync_writers, 0);
9285 	mutex_init(&ei->log_mutex);
9286 	mutex_init(&ei->delalloc_mutex);
9287 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9288 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9289 	INIT_LIST_HEAD(&ei->delayed_iput);
9290 	RB_CLEAR_NODE(&ei->rb_node);
9291 	init_rwsem(&ei->dio_sem);
9292 
9293 	return inode;
9294 }
9295 
9296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9297 void btrfs_test_destroy_inode(struct inode *inode)
9298 {
9299 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9300 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9301 }
9302 #endif
9303 
9304 void btrfs_free_inode(struct inode *inode)
9305 {
9306 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9307 }
9308 
9309 void btrfs_destroy_inode(struct inode *inode)
9310 {
9311 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9312 	struct btrfs_ordered_extent *ordered;
9313 	struct btrfs_root *root = BTRFS_I(inode)->root;
9314 
9315 	WARN_ON(!hlist_empty(&inode->i_dentry));
9316 	WARN_ON(inode->i_data.nrpages);
9317 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9318 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9319 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9320 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9321 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9322 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9323 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9324 
9325 	/*
9326 	 * This can happen where we create an inode, but somebody else also
9327 	 * created the same inode and we need to destroy the one we already
9328 	 * created.
9329 	 */
9330 	if (!root)
9331 		return;
9332 
9333 	while (1) {
9334 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9335 		if (!ordered)
9336 			break;
9337 		else {
9338 			btrfs_err(fs_info,
9339 				  "found ordered extent %llu %llu on inode cleanup",
9340 				  ordered->file_offset, ordered->len);
9341 			btrfs_remove_ordered_extent(inode, ordered);
9342 			btrfs_put_ordered_extent(ordered);
9343 			btrfs_put_ordered_extent(ordered);
9344 		}
9345 	}
9346 	btrfs_qgroup_check_reserved_leak(inode);
9347 	inode_tree_del(inode);
9348 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9349 }
9350 
9351 int btrfs_drop_inode(struct inode *inode)
9352 {
9353 	struct btrfs_root *root = BTRFS_I(inode)->root;
9354 
9355 	if (root == NULL)
9356 		return 1;
9357 
9358 	/* the snap/subvol tree is on deleting */
9359 	if (btrfs_root_refs(&root->root_item) == 0)
9360 		return 1;
9361 	else
9362 		return generic_drop_inode(inode);
9363 }
9364 
9365 static void init_once(void *foo)
9366 {
9367 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9368 
9369 	inode_init_once(&ei->vfs_inode);
9370 }
9371 
9372 void __cold btrfs_destroy_cachep(void)
9373 {
9374 	/*
9375 	 * Make sure all delayed rcu free inodes are flushed before we
9376 	 * destroy cache.
9377 	 */
9378 	rcu_barrier();
9379 	kmem_cache_destroy(btrfs_inode_cachep);
9380 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9381 	kmem_cache_destroy(btrfs_path_cachep);
9382 	kmem_cache_destroy(btrfs_free_space_cachep);
9383 }
9384 
9385 int __init btrfs_init_cachep(void)
9386 {
9387 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9388 			sizeof(struct btrfs_inode), 0,
9389 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9390 			init_once);
9391 	if (!btrfs_inode_cachep)
9392 		goto fail;
9393 
9394 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9395 			sizeof(struct btrfs_trans_handle), 0,
9396 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9397 	if (!btrfs_trans_handle_cachep)
9398 		goto fail;
9399 
9400 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9401 			sizeof(struct btrfs_path), 0,
9402 			SLAB_MEM_SPREAD, NULL);
9403 	if (!btrfs_path_cachep)
9404 		goto fail;
9405 
9406 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9407 			sizeof(struct btrfs_free_space), 0,
9408 			SLAB_MEM_SPREAD, NULL);
9409 	if (!btrfs_free_space_cachep)
9410 		goto fail;
9411 
9412 	return 0;
9413 fail:
9414 	btrfs_destroy_cachep();
9415 	return -ENOMEM;
9416 }
9417 
9418 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9419 			 u32 request_mask, unsigned int flags)
9420 {
9421 	u64 delalloc_bytes;
9422 	struct inode *inode = d_inode(path->dentry);
9423 	u32 blocksize = inode->i_sb->s_blocksize;
9424 	u32 bi_flags = BTRFS_I(inode)->flags;
9425 
9426 	stat->result_mask |= STATX_BTIME;
9427 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9428 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9429 	if (bi_flags & BTRFS_INODE_APPEND)
9430 		stat->attributes |= STATX_ATTR_APPEND;
9431 	if (bi_flags & BTRFS_INODE_COMPRESS)
9432 		stat->attributes |= STATX_ATTR_COMPRESSED;
9433 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9434 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9435 	if (bi_flags & BTRFS_INODE_NODUMP)
9436 		stat->attributes |= STATX_ATTR_NODUMP;
9437 
9438 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9439 				  STATX_ATTR_COMPRESSED |
9440 				  STATX_ATTR_IMMUTABLE |
9441 				  STATX_ATTR_NODUMP);
9442 
9443 	generic_fillattr(inode, stat);
9444 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9445 
9446 	spin_lock(&BTRFS_I(inode)->lock);
9447 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9448 	spin_unlock(&BTRFS_I(inode)->lock);
9449 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9450 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9451 	return 0;
9452 }
9453 
9454 static int btrfs_rename_exchange(struct inode *old_dir,
9455 			      struct dentry *old_dentry,
9456 			      struct inode *new_dir,
9457 			      struct dentry *new_dentry)
9458 {
9459 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9460 	struct btrfs_trans_handle *trans;
9461 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9462 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9463 	struct inode *new_inode = new_dentry->d_inode;
9464 	struct inode *old_inode = old_dentry->d_inode;
9465 	struct timespec64 ctime = current_time(old_inode);
9466 	struct dentry *parent;
9467 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9468 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9469 	u64 old_idx = 0;
9470 	u64 new_idx = 0;
9471 	u64 root_objectid;
9472 	int ret;
9473 	bool root_log_pinned = false;
9474 	bool dest_log_pinned = false;
9475 	struct btrfs_log_ctx ctx_root;
9476 	struct btrfs_log_ctx ctx_dest;
9477 	bool sync_log_root = false;
9478 	bool sync_log_dest = false;
9479 	bool commit_transaction = false;
9480 
9481 	/* we only allow rename subvolume link between subvolumes */
9482 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9483 		return -EXDEV;
9484 
9485 	btrfs_init_log_ctx(&ctx_root, old_inode);
9486 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9487 
9488 	/* close the race window with snapshot create/destroy ioctl */
9489 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9490 		down_read(&fs_info->subvol_sem);
9491 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9492 		down_read(&fs_info->subvol_sem);
9493 
9494 	/*
9495 	 * We want to reserve the absolute worst case amount of items.  So if
9496 	 * both inodes are subvols and we need to unlink them then that would
9497 	 * require 4 item modifications, but if they are both normal inodes it
9498 	 * would require 5 item modifications, so we'll assume their normal
9499 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9500 	 * should cover the worst case number of items we'll modify.
9501 	 */
9502 	trans = btrfs_start_transaction(root, 12);
9503 	if (IS_ERR(trans)) {
9504 		ret = PTR_ERR(trans);
9505 		goto out_notrans;
9506 	}
9507 
9508 	/*
9509 	 * We need to find a free sequence number both in the source and
9510 	 * in the destination directory for the exchange.
9511 	 */
9512 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9513 	if (ret)
9514 		goto out_fail;
9515 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9516 	if (ret)
9517 		goto out_fail;
9518 
9519 	BTRFS_I(old_inode)->dir_index = 0ULL;
9520 	BTRFS_I(new_inode)->dir_index = 0ULL;
9521 
9522 	/* Reference for the source. */
9523 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9524 		/* force full log commit if subvolume involved. */
9525 		btrfs_set_log_full_commit(trans);
9526 	} else {
9527 		btrfs_pin_log_trans(root);
9528 		root_log_pinned = true;
9529 		ret = btrfs_insert_inode_ref(trans, dest,
9530 					     new_dentry->d_name.name,
9531 					     new_dentry->d_name.len,
9532 					     old_ino,
9533 					     btrfs_ino(BTRFS_I(new_dir)),
9534 					     old_idx);
9535 		if (ret)
9536 			goto out_fail;
9537 	}
9538 
9539 	/* And now for the dest. */
9540 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9541 		/* force full log commit if subvolume involved. */
9542 		btrfs_set_log_full_commit(trans);
9543 	} else {
9544 		btrfs_pin_log_trans(dest);
9545 		dest_log_pinned = true;
9546 		ret = btrfs_insert_inode_ref(trans, root,
9547 					     old_dentry->d_name.name,
9548 					     old_dentry->d_name.len,
9549 					     new_ino,
9550 					     btrfs_ino(BTRFS_I(old_dir)),
9551 					     new_idx);
9552 		if (ret)
9553 			goto out_fail;
9554 	}
9555 
9556 	/* Update inode version and ctime/mtime. */
9557 	inode_inc_iversion(old_dir);
9558 	inode_inc_iversion(new_dir);
9559 	inode_inc_iversion(old_inode);
9560 	inode_inc_iversion(new_inode);
9561 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9562 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9563 	old_inode->i_ctime = ctime;
9564 	new_inode->i_ctime = ctime;
9565 
9566 	if (old_dentry->d_parent != new_dentry->d_parent) {
9567 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9568 				BTRFS_I(old_inode), 1);
9569 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9570 				BTRFS_I(new_inode), 1);
9571 	}
9572 
9573 	/* src is a subvolume */
9574 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9575 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9576 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9577 					  old_dentry->d_name.name,
9578 					  old_dentry->d_name.len);
9579 	} else { /* src is an inode */
9580 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9581 					   BTRFS_I(old_dentry->d_inode),
9582 					   old_dentry->d_name.name,
9583 					   old_dentry->d_name.len);
9584 		if (!ret)
9585 			ret = btrfs_update_inode(trans, root, old_inode);
9586 	}
9587 	if (ret) {
9588 		btrfs_abort_transaction(trans, ret);
9589 		goto out_fail;
9590 	}
9591 
9592 	/* dest is a subvolume */
9593 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9594 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9595 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9596 					  new_dentry->d_name.name,
9597 					  new_dentry->d_name.len);
9598 	} else { /* dest is an inode */
9599 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9600 					   BTRFS_I(new_dentry->d_inode),
9601 					   new_dentry->d_name.name,
9602 					   new_dentry->d_name.len);
9603 		if (!ret)
9604 			ret = btrfs_update_inode(trans, dest, new_inode);
9605 	}
9606 	if (ret) {
9607 		btrfs_abort_transaction(trans, ret);
9608 		goto out_fail;
9609 	}
9610 
9611 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9612 			     new_dentry->d_name.name,
9613 			     new_dentry->d_name.len, 0, old_idx);
9614 	if (ret) {
9615 		btrfs_abort_transaction(trans, ret);
9616 		goto out_fail;
9617 	}
9618 
9619 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9620 			     old_dentry->d_name.name,
9621 			     old_dentry->d_name.len, 0, new_idx);
9622 	if (ret) {
9623 		btrfs_abort_transaction(trans, ret);
9624 		goto out_fail;
9625 	}
9626 
9627 	if (old_inode->i_nlink == 1)
9628 		BTRFS_I(old_inode)->dir_index = old_idx;
9629 	if (new_inode->i_nlink == 1)
9630 		BTRFS_I(new_inode)->dir_index = new_idx;
9631 
9632 	if (root_log_pinned) {
9633 		parent = new_dentry->d_parent;
9634 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9635 					 BTRFS_I(old_dir), parent,
9636 					 false, &ctx_root);
9637 		if (ret == BTRFS_NEED_LOG_SYNC)
9638 			sync_log_root = true;
9639 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9640 			commit_transaction = true;
9641 		ret = 0;
9642 		btrfs_end_log_trans(root);
9643 		root_log_pinned = false;
9644 	}
9645 	if (dest_log_pinned) {
9646 		if (!commit_transaction) {
9647 			parent = old_dentry->d_parent;
9648 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9649 						 BTRFS_I(new_dir), parent,
9650 						 false, &ctx_dest);
9651 			if (ret == BTRFS_NEED_LOG_SYNC)
9652 				sync_log_dest = true;
9653 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9654 				commit_transaction = true;
9655 			ret = 0;
9656 		}
9657 		btrfs_end_log_trans(dest);
9658 		dest_log_pinned = false;
9659 	}
9660 out_fail:
9661 	/*
9662 	 * If we have pinned a log and an error happened, we unpin tasks
9663 	 * trying to sync the log and force them to fallback to a transaction
9664 	 * commit if the log currently contains any of the inodes involved in
9665 	 * this rename operation (to ensure we do not persist a log with an
9666 	 * inconsistent state for any of these inodes or leading to any
9667 	 * inconsistencies when replayed). If the transaction was aborted, the
9668 	 * abortion reason is propagated to userspace when attempting to commit
9669 	 * the transaction. If the log does not contain any of these inodes, we
9670 	 * allow the tasks to sync it.
9671 	 */
9672 	if (ret && (root_log_pinned || dest_log_pinned)) {
9673 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9674 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9675 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9676 		    (new_inode &&
9677 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9678 			btrfs_set_log_full_commit(trans);
9679 
9680 		if (root_log_pinned) {
9681 			btrfs_end_log_trans(root);
9682 			root_log_pinned = false;
9683 		}
9684 		if (dest_log_pinned) {
9685 			btrfs_end_log_trans(dest);
9686 			dest_log_pinned = false;
9687 		}
9688 	}
9689 	if (!ret && sync_log_root && !commit_transaction) {
9690 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9691 				     &ctx_root);
9692 		if (ret)
9693 			commit_transaction = true;
9694 	}
9695 	if (!ret && sync_log_dest && !commit_transaction) {
9696 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9697 				     &ctx_dest);
9698 		if (ret)
9699 			commit_transaction = true;
9700 	}
9701 	if (commit_transaction) {
9702 		ret = btrfs_commit_transaction(trans);
9703 	} else {
9704 		int ret2;
9705 
9706 		ret2 = btrfs_end_transaction(trans);
9707 		ret = ret ? ret : ret2;
9708 	}
9709 out_notrans:
9710 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9711 		up_read(&fs_info->subvol_sem);
9712 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9713 		up_read(&fs_info->subvol_sem);
9714 
9715 	return ret;
9716 }
9717 
9718 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9719 				     struct btrfs_root *root,
9720 				     struct inode *dir,
9721 				     struct dentry *dentry)
9722 {
9723 	int ret;
9724 	struct inode *inode;
9725 	u64 objectid;
9726 	u64 index;
9727 
9728 	ret = btrfs_find_free_ino(root, &objectid);
9729 	if (ret)
9730 		return ret;
9731 
9732 	inode = btrfs_new_inode(trans, root, dir,
9733 				dentry->d_name.name,
9734 				dentry->d_name.len,
9735 				btrfs_ino(BTRFS_I(dir)),
9736 				objectid,
9737 				S_IFCHR | WHITEOUT_MODE,
9738 				&index);
9739 
9740 	if (IS_ERR(inode)) {
9741 		ret = PTR_ERR(inode);
9742 		return ret;
9743 	}
9744 
9745 	inode->i_op = &btrfs_special_inode_operations;
9746 	init_special_inode(inode, inode->i_mode,
9747 		WHITEOUT_DEV);
9748 
9749 	ret = btrfs_init_inode_security(trans, inode, dir,
9750 				&dentry->d_name);
9751 	if (ret)
9752 		goto out;
9753 
9754 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9755 				BTRFS_I(inode), 0, index);
9756 	if (ret)
9757 		goto out;
9758 
9759 	ret = btrfs_update_inode(trans, root, inode);
9760 out:
9761 	unlock_new_inode(inode);
9762 	if (ret)
9763 		inode_dec_link_count(inode);
9764 	iput(inode);
9765 
9766 	return ret;
9767 }
9768 
9769 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9770 			   struct inode *new_dir, struct dentry *new_dentry,
9771 			   unsigned int flags)
9772 {
9773 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9774 	struct btrfs_trans_handle *trans;
9775 	unsigned int trans_num_items;
9776 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9777 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9778 	struct inode *new_inode = d_inode(new_dentry);
9779 	struct inode *old_inode = d_inode(old_dentry);
9780 	u64 index = 0;
9781 	u64 root_objectid;
9782 	int ret;
9783 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9784 	bool log_pinned = false;
9785 	struct btrfs_log_ctx ctx;
9786 	bool sync_log = false;
9787 	bool commit_transaction = false;
9788 
9789 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9790 		return -EPERM;
9791 
9792 	/* we only allow rename subvolume link between subvolumes */
9793 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9794 		return -EXDEV;
9795 
9796 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9797 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9798 		return -ENOTEMPTY;
9799 
9800 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9801 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9802 		return -ENOTEMPTY;
9803 
9804 
9805 	/* check for collisions, even if the  name isn't there */
9806 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9807 			     new_dentry->d_name.name,
9808 			     new_dentry->d_name.len);
9809 
9810 	if (ret) {
9811 		if (ret == -EEXIST) {
9812 			/* we shouldn't get
9813 			 * eexist without a new_inode */
9814 			if (WARN_ON(!new_inode)) {
9815 				return ret;
9816 			}
9817 		} else {
9818 			/* maybe -EOVERFLOW */
9819 			return ret;
9820 		}
9821 	}
9822 	ret = 0;
9823 
9824 	/*
9825 	 * we're using rename to replace one file with another.  Start IO on it
9826 	 * now so  we don't add too much work to the end of the transaction
9827 	 */
9828 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9829 		filemap_flush(old_inode->i_mapping);
9830 
9831 	/* close the racy window with snapshot create/destroy ioctl */
9832 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9833 		down_read(&fs_info->subvol_sem);
9834 	/*
9835 	 * We want to reserve the absolute worst case amount of items.  So if
9836 	 * both inodes are subvols and we need to unlink them then that would
9837 	 * require 4 item modifications, but if they are both normal inodes it
9838 	 * would require 5 item modifications, so we'll assume they are normal
9839 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9840 	 * should cover the worst case number of items we'll modify.
9841 	 * If our rename has the whiteout flag, we need more 5 units for the
9842 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9843 	 * when selinux is enabled).
9844 	 */
9845 	trans_num_items = 11;
9846 	if (flags & RENAME_WHITEOUT)
9847 		trans_num_items += 5;
9848 	trans = btrfs_start_transaction(root, trans_num_items);
9849 	if (IS_ERR(trans)) {
9850 		ret = PTR_ERR(trans);
9851 		goto out_notrans;
9852 	}
9853 
9854 	if (dest != root)
9855 		btrfs_record_root_in_trans(trans, dest);
9856 
9857 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9858 	if (ret)
9859 		goto out_fail;
9860 
9861 	BTRFS_I(old_inode)->dir_index = 0ULL;
9862 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9863 		/* force full log commit if subvolume involved. */
9864 		btrfs_set_log_full_commit(trans);
9865 	} else {
9866 		btrfs_pin_log_trans(root);
9867 		log_pinned = true;
9868 		ret = btrfs_insert_inode_ref(trans, dest,
9869 					     new_dentry->d_name.name,
9870 					     new_dentry->d_name.len,
9871 					     old_ino,
9872 					     btrfs_ino(BTRFS_I(new_dir)), index);
9873 		if (ret)
9874 			goto out_fail;
9875 	}
9876 
9877 	inode_inc_iversion(old_dir);
9878 	inode_inc_iversion(new_dir);
9879 	inode_inc_iversion(old_inode);
9880 	old_dir->i_ctime = old_dir->i_mtime =
9881 	new_dir->i_ctime = new_dir->i_mtime =
9882 	old_inode->i_ctime = current_time(old_dir);
9883 
9884 	if (old_dentry->d_parent != new_dentry->d_parent)
9885 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9886 				BTRFS_I(old_inode), 1);
9887 
9888 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9889 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9890 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9891 					old_dentry->d_name.name,
9892 					old_dentry->d_name.len);
9893 	} else {
9894 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9895 					BTRFS_I(d_inode(old_dentry)),
9896 					old_dentry->d_name.name,
9897 					old_dentry->d_name.len);
9898 		if (!ret)
9899 			ret = btrfs_update_inode(trans, root, old_inode);
9900 	}
9901 	if (ret) {
9902 		btrfs_abort_transaction(trans, ret);
9903 		goto out_fail;
9904 	}
9905 
9906 	if (new_inode) {
9907 		inode_inc_iversion(new_inode);
9908 		new_inode->i_ctime = current_time(new_inode);
9909 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9910 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9911 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9912 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9913 						new_dentry->d_name.name,
9914 						new_dentry->d_name.len);
9915 			BUG_ON(new_inode->i_nlink == 0);
9916 		} else {
9917 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9918 						 BTRFS_I(d_inode(new_dentry)),
9919 						 new_dentry->d_name.name,
9920 						 new_dentry->d_name.len);
9921 		}
9922 		if (!ret && new_inode->i_nlink == 0)
9923 			ret = btrfs_orphan_add(trans,
9924 					BTRFS_I(d_inode(new_dentry)));
9925 		if (ret) {
9926 			btrfs_abort_transaction(trans, ret);
9927 			goto out_fail;
9928 		}
9929 	}
9930 
9931 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9932 			     new_dentry->d_name.name,
9933 			     new_dentry->d_name.len, 0, index);
9934 	if (ret) {
9935 		btrfs_abort_transaction(trans, ret);
9936 		goto out_fail;
9937 	}
9938 
9939 	if (old_inode->i_nlink == 1)
9940 		BTRFS_I(old_inode)->dir_index = index;
9941 
9942 	if (log_pinned) {
9943 		struct dentry *parent = new_dentry->d_parent;
9944 
9945 		btrfs_init_log_ctx(&ctx, old_inode);
9946 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9947 					 BTRFS_I(old_dir), parent,
9948 					 false, &ctx);
9949 		if (ret == BTRFS_NEED_LOG_SYNC)
9950 			sync_log = true;
9951 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9952 			commit_transaction = true;
9953 		ret = 0;
9954 		btrfs_end_log_trans(root);
9955 		log_pinned = false;
9956 	}
9957 
9958 	if (flags & RENAME_WHITEOUT) {
9959 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9960 						old_dentry);
9961 
9962 		if (ret) {
9963 			btrfs_abort_transaction(trans, ret);
9964 			goto out_fail;
9965 		}
9966 	}
9967 out_fail:
9968 	/*
9969 	 * If we have pinned the log and an error happened, we unpin tasks
9970 	 * trying to sync the log and force them to fallback to a transaction
9971 	 * commit if the log currently contains any of the inodes involved in
9972 	 * this rename operation (to ensure we do not persist a log with an
9973 	 * inconsistent state for any of these inodes or leading to any
9974 	 * inconsistencies when replayed). If the transaction was aborted, the
9975 	 * abortion reason is propagated to userspace when attempting to commit
9976 	 * the transaction. If the log does not contain any of these inodes, we
9977 	 * allow the tasks to sync it.
9978 	 */
9979 	if (ret && log_pinned) {
9980 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9981 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9982 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9983 		    (new_inode &&
9984 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9985 			btrfs_set_log_full_commit(trans);
9986 
9987 		btrfs_end_log_trans(root);
9988 		log_pinned = false;
9989 	}
9990 	if (!ret && sync_log) {
9991 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9992 		if (ret)
9993 			commit_transaction = true;
9994 	}
9995 	if (commit_transaction) {
9996 		ret = btrfs_commit_transaction(trans);
9997 	} else {
9998 		int ret2;
9999 
10000 		ret2 = btrfs_end_transaction(trans);
10001 		ret = ret ? ret : ret2;
10002 	}
10003 out_notrans:
10004 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10005 		up_read(&fs_info->subvol_sem);
10006 
10007 	return ret;
10008 }
10009 
10010 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10011 			 struct inode *new_dir, struct dentry *new_dentry,
10012 			 unsigned int flags)
10013 {
10014 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10015 		return -EINVAL;
10016 
10017 	if (flags & RENAME_EXCHANGE)
10018 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10019 					  new_dentry);
10020 
10021 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10022 }
10023 
10024 struct btrfs_delalloc_work {
10025 	struct inode *inode;
10026 	struct completion completion;
10027 	struct list_head list;
10028 	struct btrfs_work work;
10029 };
10030 
10031 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10032 {
10033 	struct btrfs_delalloc_work *delalloc_work;
10034 	struct inode *inode;
10035 
10036 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10037 				     work);
10038 	inode = delalloc_work->inode;
10039 	filemap_flush(inode->i_mapping);
10040 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10041 				&BTRFS_I(inode)->runtime_flags))
10042 		filemap_flush(inode->i_mapping);
10043 
10044 	iput(inode);
10045 	complete(&delalloc_work->completion);
10046 }
10047 
10048 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10049 {
10050 	struct btrfs_delalloc_work *work;
10051 
10052 	work = kmalloc(sizeof(*work), GFP_NOFS);
10053 	if (!work)
10054 		return NULL;
10055 
10056 	init_completion(&work->completion);
10057 	INIT_LIST_HEAD(&work->list);
10058 	work->inode = inode;
10059 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10060 			btrfs_run_delalloc_work, NULL, NULL);
10061 
10062 	return work;
10063 }
10064 
10065 /*
10066  * some fairly slow code that needs optimization. This walks the list
10067  * of all the inodes with pending delalloc and forces them to disk.
10068  */
10069 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10070 {
10071 	struct btrfs_inode *binode;
10072 	struct inode *inode;
10073 	struct btrfs_delalloc_work *work, *next;
10074 	struct list_head works;
10075 	struct list_head splice;
10076 	int ret = 0;
10077 
10078 	INIT_LIST_HEAD(&works);
10079 	INIT_LIST_HEAD(&splice);
10080 
10081 	mutex_lock(&root->delalloc_mutex);
10082 	spin_lock(&root->delalloc_lock);
10083 	list_splice_init(&root->delalloc_inodes, &splice);
10084 	while (!list_empty(&splice)) {
10085 		binode = list_entry(splice.next, struct btrfs_inode,
10086 				    delalloc_inodes);
10087 
10088 		list_move_tail(&binode->delalloc_inodes,
10089 			       &root->delalloc_inodes);
10090 		inode = igrab(&binode->vfs_inode);
10091 		if (!inode) {
10092 			cond_resched_lock(&root->delalloc_lock);
10093 			continue;
10094 		}
10095 		spin_unlock(&root->delalloc_lock);
10096 
10097 		if (snapshot)
10098 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10099 				&binode->runtime_flags);
10100 		work = btrfs_alloc_delalloc_work(inode);
10101 		if (!work) {
10102 			iput(inode);
10103 			ret = -ENOMEM;
10104 			goto out;
10105 		}
10106 		list_add_tail(&work->list, &works);
10107 		btrfs_queue_work(root->fs_info->flush_workers,
10108 				 &work->work);
10109 		ret++;
10110 		if (nr != -1 && ret >= nr)
10111 			goto out;
10112 		cond_resched();
10113 		spin_lock(&root->delalloc_lock);
10114 	}
10115 	spin_unlock(&root->delalloc_lock);
10116 
10117 out:
10118 	list_for_each_entry_safe(work, next, &works, list) {
10119 		list_del_init(&work->list);
10120 		wait_for_completion(&work->completion);
10121 		kfree(work);
10122 	}
10123 
10124 	if (!list_empty(&splice)) {
10125 		spin_lock(&root->delalloc_lock);
10126 		list_splice_tail(&splice, &root->delalloc_inodes);
10127 		spin_unlock(&root->delalloc_lock);
10128 	}
10129 	mutex_unlock(&root->delalloc_mutex);
10130 	return ret;
10131 }
10132 
10133 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10134 {
10135 	struct btrfs_fs_info *fs_info = root->fs_info;
10136 	int ret;
10137 
10138 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10139 		return -EROFS;
10140 
10141 	ret = start_delalloc_inodes(root, -1, true);
10142 	if (ret > 0)
10143 		ret = 0;
10144 	return ret;
10145 }
10146 
10147 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10148 {
10149 	struct btrfs_root *root;
10150 	struct list_head splice;
10151 	int ret;
10152 
10153 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10154 		return -EROFS;
10155 
10156 	INIT_LIST_HEAD(&splice);
10157 
10158 	mutex_lock(&fs_info->delalloc_root_mutex);
10159 	spin_lock(&fs_info->delalloc_root_lock);
10160 	list_splice_init(&fs_info->delalloc_roots, &splice);
10161 	while (!list_empty(&splice) && nr) {
10162 		root = list_first_entry(&splice, struct btrfs_root,
10163 					delalloc_root);
10164 		root = btrfs_grab_fs_root(root);
10165 		BUG_ON(!root);
10166 		list_move_tail(&root->delalloc_root,
10167 			       &fs_info->delalloc_roots);
10168 		spin_unlock(&fs_info->delalloc_root_lock);
10169 
10170 		ret = start_delalloc_inodes(root, nr, false);
10171 		btrfs_put_fs_root(root);
10172 		if (ret < 0)
10173 			goto out;
10174 
10175 		if (nr != -1) {
10176 			nr -= ret;
10177 			WARN_ON(nr < 0);
10178 		}
10179 		spin_lock(&fs_info->delalloc_root_lock);
10180 	}
10181 	spin_unlock(&fs_info->delalloc_root_lock);
10182 
10183 	ret = 0;
10184 out:
10185 	if (!list_empty(&splice)) {
10186 		spin_lock(&fs_info->delalloc_root_lock);
10187 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10188 		spin_unlock(&fs_info->delalloc_root_lock);
10189 	}
10190 	mutex_unlock(&fs_info->delalloc_root_mutex);
10191 	return ret;
10192 }
10193 
10194 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10195 			 const char *symname)
10196 {
10197 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10198 	struct btrfs_trans_handle *trans;
10199 	struct btrfs_root *root = BTRFS_I(dir)->root;
10200 	struct btrfs_path *path;
10201 	struct btrfs_key key;
10202 	struct inode *inode = NULL;
10203 	int err;
10204 	u64 objectid;
10205 	u64 index = 0;
10206 	int name_len;
10207 	int datasize;
10208 	unsigned long ptr;
10209 	struct btrfs_file_extent_item *ei;
10210 	struct extent_buffer *leaf;
10211 
10212 	name_len = strlen(symname);
10213 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10214 		return -ENAMETOOLONG;
10215 
10216 	/*
10217 	 * 2 items for inode item and ref
10218 	 * 2 items for dir items
10219 	 * 1 item for updating parent inode item
10220 	 * 1 item for the inline extent item
10221 	 * 1 item for xattr if selinux is on
10222 	 */
10223 	trans = btrfs_start_transaction(root, 7);
10224 	if (IS_ERR(trans))
10225 		return PTR_ERR(trans);
10226 
10227 	err = btrfs_find_free_ino(root, &objectid);
10228 	if (err)
10229 		goto out_unlock;
10230 
10231 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10232 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10233 				objectid, S_IFLNK|S_IRWXUGO, &index);
10234 	if (IS_ERR(inode)) {
10235 		err = PTR_ERR(inode);
10236 		inode = NULL;
10237 		goto out_unlock;
10238 	}
10239 
10240 	/*
10241 	* If the active LSM wants to access the inode during
10242 	* d_instantiate it needs these. Smack checks to see
10243 	* if the filesystem supports xattrs by looking at the
10244 	* ops vector.
10245 	*/
10246 	inode->i_fop = &btrfs_file_operations;
10247 	inode->i_op = &btrfs_file_inode_operations;
10248 	inode->i_mapping->a_ops = &btrfs_aops;
10249 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10250 
10251 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10252 	if (err)
10253 		goto out_unlock;
10254 
10255 	path = btrfs_alloc_path();
10256 	if (!path) {
10257 		err = -ENOMEM;
10258 		goto out_unlock;
10259 	}
10260 	key.objectid = btrfs_ino(BTRFS_I(inode));
10261 	key.offset = 0;
10262 	key.type = BTRFS_EXTENT_DATA_KEY;
10263 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10264 	err = btrfs_insert_empty_item(trans, root, path, &key,
10265 				      datasize);
10266 	if (err) {
10267 		btrfs_free_path(path);
10268 		goto out_unlock;
10269 	}
10270 	leaf = path->nodes[0];
10271 	ei = btrfs_item_ptr(leaf, path->slots[0],
10272 			    struct btrfs_file_extent_item);
10273 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10274 	btrfs_set_file_extent_type(leaf, ei,
10275 				   BTRFS_FILE_EXTENT_INLINE);
10276 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10277 	btrfs_set_file_extent_compression(leaf, ei, 0);
10278 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10279 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10280 
10281 	ptr = btrfs_file_extent_inline_start(ei);
10282 	write_extent_buffer(leaf, symname, ptr, name_len);
10283 	btrfs_mark_buffer_dirty(leaf);
10284 	btrfs_free_path(path);
10285 
10286 	inode->i_op = &btrfs_symlink_inode_operations;
10287 	inode_nohighmem(inode);
10288 	inode_set_bytes(inode, name_len);
10289 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10290 	err = btrfs_update_inode(trans, root, inode);
10291 	/*
10292 	 * Last step, add directory indexes for our symlink inode. This is the
10293 	 * last step to avoid extra cleanup of these indexes if an error happens
10294 	 * elsewhere above.
10295 	 */
10296 	if (!err)
10297 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10298 				BTRFS_I(inode), 0, index);
10299 	if (err)
10300 		goto out_unlock;
10301 
10302 	d_instantiate_new(dentry, inode);
10303 
10304 out_unlock:
10305 	btrfs_end_transaction(trans);
10306 	if (err && inode) {
10307 		inode_dec_link_count(inode);
10308 		discard_new_inode(inode);
10309 	}
10310 	btrfs_btree_balance_dirty(fs_info);
10311 	return err;
10312 }
10313 
10314 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10315 				       u64 start, u64 num_bytes, u64 min_size,
10316 				       loff_t actual_len, u64 *alloc_hint,
10317 				       struct btrfs_trans_handle *trans)
10318 {
10319 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10320 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10321 	struct extent_map *em;
10322 	struct btrfs_root *root = BTRFS_I(inode)->root;
10323 	struct btrfs_key ins;
10324 	u64 cur_offset = start;
10325 	u64 i_size;
10326 	u64 cur_bytes;
10327 	u64 last_alloc = (u64)-1;
10328 	int ret = 0;
10329 	bool own_trans = true;
10330 	u64 end = start + num_bytes - 1;
10331 
10332 	if (trans)
10333 		own_trans = false;
10334 	while (num_bytes > 0) {
10335 		if (own_trans) {
10336 			trans = btrfs_start_transaction(root, 3);
10337 			if (IS_ERR(trans)) {
10338 				ret = PTR_ERR(trans);
10339 				break;
10340 			}
10341 		}
10342 
10343 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10344 		cur_bytes = max(cur_bytes, min_size);
10345 		/*
10346 		 * If we are severely fragmented we could end up with really
10347 		 * small allocations, so if the allocator is returning small
10348 		 * chunks lets make its job easier by only searching for those
10349 		 * sized chunks.
10350 		 */
10351 		cur_bytes = min(cur_bytes, last_alloc);
10352 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10353 				min_size, 0, *alloc_hint, &ins, 1, 0);
10354 		if (ret) {
10355 			if (own_trans)
10356 				btrfs_end_transaction(trans);
10357 			break;
10358 		}
10359 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10360 
10361 		last_alloc = ins.offset;
10362 		ret = insert_reserved_file_extent(trans, inode,
10363 						  cur_offset, ins.objectid,
10364 						  ins.offset, ins.offset,
10365 						  ins.offset, 0, 0, 0,
10366 						  BTRFS_FILE_EXTENT_PREALLOC);
10367 		if (ret) {
10368 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10369 						   ins.offset, 0);
10370 			btrfs_abort_transaction(trans, ret);
10371 			if (own_trans)
10372 				btrfs_end_transaction(trans);
10373 			break;
10374 		}
10375 
10376 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10377 					cur_offset + ins.offset -1, 0);
10378 
10379 		em = alloc_extent_map();
10380 		if (!em) {
10381 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10382 				&BTRFS_I(inode)->runtime_flags);
10383 			goto next;
10384 		}
10385 
10386 		em->start = cur_offset;
10387 		em->orig_start = cur_offset;
10388 		em->len = ins.offset;
10389 		em->block_start = ins.objectid;
10390 		em->block_len = ins.offset;
10391 		em->orig_block_len = ins.offset;
10392 		em->ram_bytes = ins.offset;
10393 		em->bdev = fs_info->fs_devices->latest_bdev;
10394 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10395 		em->generation = trans->transid;
10396 
10397 		while (1) {
10398 			write_lock(&em_tree->lock);
10399 			ret = add_extent_mapping(em_tree, em, 1);
10400 			write_unlock(&em_tree->lock);
10401 			if (ret != -EEXIST)
10402 				break;
10403 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10404 						cur_offset + ins.offset - 1,
10405 						0);
10406 		}
10407 		free_extent_map(em);
10408 next:
10409 		num_bytes -= ins.offset;
10410 		cur_offset += ins.offset;
10411 		*alloc_hint = ins.objectid + ins.offset;
10412 
10413 		inode_inc_iversion(inode);
10414 		inode->i_ctime = current_time(inode);
10415 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10416 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10417 		    (actual_len > inode->i_size) &&
10418 		    (cur_offset > inode->i_size)) {
10419 			if (cur_offset > actual_len)
10420 				i_size = actual_len;
10421 			else
10422 				i_size = cur_offset;
10423 			i_size_write(inode, i_size);
10424 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10425 		}
10426 
10427 		ret = btrfs_update_inode(trans, root, inode);
10428 
10429 		if (ret) {
10430 			btrfs_abort_transaction(trans, ret);
10431 			if (own_trans)
10432 				btrfs_end_transaction(trans);
10433 			break;
10434 		}
10435 
10436 		if (own_trans)
10437 			btrfs_end_transaction(trans);
10438 	}
10439 	if (cur_offset < end)
10440 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10441 			end - cur_offset + 1);
10442 	return ret;
10443 }
10444 
10445 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10446 			      u64 start, u64 num_bytes, u64 min_size,
10447 			      loff_t actual_len, u64 *alloc_hint)
10448 {
10449 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10450 					   min_size, actual_len, alloc_hint,
10451 					   NULL);
10452 }
10453 
10454 int btrfs_prealloc_file_range_trans(struct inode *inode,
10455 				    struct btrfs_trans_handle *trans, int mode,
10456 				    u64 start, u64 num_bytes, u64 min_size,
10457 				    loff_t actual_len, u64 *alloc_hint)
10458 {
10459 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10460 					   min_size, actual_len, alloc_hint, trans);
10461 }
10462 
10463 static int btrfs_set_page_dirty(struct page *page)
10464 {
10465 	return __set_page_dirty_nobuffers(page);
10466 }
10467 
10468 static int btrfs_permission(struct inode *inode, int mask)
10469 {
10470 	struct btrfs_root *root = BTRFS_I(inode)->root;
10471 	umode_t mode = inode->i_mode;
10472 
10473 	if (mask & MAY_WRITE &&
10474 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10475 		if (btrfs_root_readonly(root))
10476 			return -EROFS;
10477 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10478 			return -EACCES;
10479 	}
10480 	return generic_permission(inode, mask);
10481 }
10482 
10483 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10484 {
10485 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10486 	struct btrfs_trans_handle *trans;
10487 	struct btrfs_root *root = BTRFS_I(dir)->root;
10488 	struct inode *inode = NULL;
10489 	u64 objectid;
10490 	u64 index;
10491 	int ret = 0;
10492 
10493 	/*
10494 	 * 5 units required for adding orphan entry
10495 	 */
10496 	trans = btrfs_start_transaction(root, 5);
10497 	if (IS_ERR(trans))
10498 		return PTR_ERR(trans);
10499 
10500 	ret = btrfs_find_free_ino(root, &objectid);
10501 	if (ret)
10502 		goto out;
10503 
10504 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10505 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10506 	if (IS_ERR(inode)) {
10507 		ret = PTR_ERR(inode);
10508 		inode = NULL;
10509 		goto out;
10510 	}
10511 
10512 	inode->i_fop = &btrfs_file_operations;
10513 	inode->i_op = &btrfs_file_inode_operations;
10514 
10515 	inode->i_mapping->a_ops = &btrfs_aops;
10516 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10517 
10518 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10519 	if (ret)
10520 		goto out;
10521 
10522 	ret = btrfs_update_inode(trans, root, inode);
10523 	if (ret)
10524 		goto out;
10525 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10526 	if (ret)
10527 		goto out;
10528 
10529 	/*
10530 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10531 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10532 	 * through:
10533 	 *
10534 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10535 	 */
10536 	set_nlink(inode, 1);
10537 	d_tmpfile(dentry, inode);
10538 	unlock_new_inode(inode);
10539 	mark_inode_dirty(inode);
10540 out:
10541 	btrfs_end_transaction(trans);
10542 	if (ret && inode)
10543 		discard_new_inode(inode);
10544 	btrfs_btree_balance_dirty(fs_info);
10545 	return ret;
10546 }
10547 
10548 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10549 {
10550 	struct inode *inode = tree->private_data;
10551 	unsigned long index = start >> PAGE_SHIFT;
10552 	unsigned long end_index = end >> PAGE_SHIFT;
10553 	struct page *page;
10554 
10555 	while (index <= end_index) {
10556 		page = find_get_page(inode->i_mapping, index);
10557 		ASSERT(page); /* Pages should be in the extent_io_tree */
10558 		set_page_writeback(page);
10559 		put_page(page);
10560 		index++;
10561 	}
10562 }
10563 
10564 #ifdef CONFIG_SWAP
10565 /*
10566  * Add an entry indicating a block group or device which is pinned by a
10567  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10568  * negative errno on failure.
10569  */
10570 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10571 				  bool is_block_group)
10572 {
10573 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10574 	struct btrfs_swapfile_pin *sp, *entry;
10575 	struct rb_node **p;
10576 	struct rb_node *parent = NULL;
10577 
10578 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10579 	if (!sp)
10580 		return -ENOMEM;
10581 	sp->ptr = ptr;
10582 	sp->inode = inode;
10583 	sp->is_block_group = is_block_group;
10584 
10585 	spin_lock(&fs_info->swapfile_pins_lock);
10586 	p = &fs_info->swapfile_pins.rb_node;
10587 	while (*p) {
10588 		parent = *p;
10589 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10590 		if (sp->ptr < entry->ptr ||
10591 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10592 			p = &(*p)->rb_left;
10593 		} else if (sp->ptr > entry->ptr ||
10594 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10595 			p = &(*p)->rb_right;
10596 		} else {
10597 			spin_unlock(&fs_info->swapfile_pins_lock);
10598 			kfree(sp);
10599 			return 1;
10600 		}
10601 	}
10602 	rb_link_node(&sp->node, parent, p);
10603 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10604 	spin_unlock(&fs_info->swapfile_pins_lock);
10605 	return 0;
10606 }
10607 
10608 /* Free all of the entries pinned by this swapfile. */
10609 static void btrfs_free_swapfile_pins(struct inode *inode)
10610 {
10611 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10612 	struct btrfs_swapfile_pin *sp;
10613 	struct rb_node *node, *next;
10614 
10615 	spin_lock(&fs_info->swapfile_pins_lock);
10616 	node = rb_first(&fs_info->swapfile_pins);
10617 	while (node) {
10618 		next = rb_next(node);
10619 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10620 		if (sp->inode == inode) {
10621 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10622 			if (sp->is_block_group)
10623 				btrfs_put_block_group(sp->ptr);
10624 			kfree(sp);
10625 		}
10626 		node = next;
10627 	}
10628 	spin_unlock(&fs_info->swapfile_pins_lock);
10629 }
10630 
10631 struct btrfs_swap_info {
10632 	u64 start;
10633 	u64 block_start;
10634 	u64 block_len;
10635 	u64 lowest_ppage;
10636 	u64 highest_ppage;
10637 	unsigned long nr_pages;
10638 	int nr_extents;
10639 };
10640 
10641 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10642 				 struct btrfs_swap_info *bsi)
10643 {
10644 	unsigned long nr_pages;
10645 	u64 first_ppage, first_ppage_reported, next_ppage;
10646 	int ret;
10647 
10648 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10649 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10650 				PAGE_SIZE) >> PAGE_SHIFT;
10651 
10652 	if (first_ppage >= next_ppage)
10653 		return 0;
10654 	nr_pages = next_ppage - first_ppage;
10655 
10656 	first_ppage_reported = first_ppage;
10657 	if (bsi->start == 0)
10658 		first_ppage_reported++;
10659 	if (bsi->lowest_ppage > first_ppage_reported)
10660 		bsi->lowest_ppage = first_ppage_reported;
10661 	if (bsi->highest_ppage < (next_ppage - 1))
10662 		bsi->highest_ppage = next_ppage - 1;
10663 
10664 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10665 	if (ret < 0)
10666 		return ret;
10667 	bsi->nr_extents += ret;
10668 	bsi->nr_pages += nr_pages;
10669 	return 0;
10670 }
10671 
10672 static void btrfs_swap_deactivate(struct file *file)
10673 {
10674 	struct inode *inode = file_inode(file);
10675 
10676 	btrfs_free_swapfile_pins(inode);
10677 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10678 }
10679 
10680 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10681 			       sector_t *span)
10682 {
10683 	struct inode *inode = file_inode(file);
10684 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10685 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10686 	struct extent_state *cached_state = NULL;
10687 	struct extent_map *em = NULL;
10688 	struct btrfs_device *device = NULL;
10689 	struct btrfs_swap_info bsi = {
10690 		.lowest_ppage = (sector_t)-1ULL,
10691 	};
10692 	int ret = 0;
10693 	u64 isize;
10694 	u64 start;
10695 
10696 	/*
10697 	 * If the swap file was just created, make sure delalloc is done. If the
10698 	 * file changes again after this, the user is doing something stupid and
10699 	 * we don't really care.
10700 	 */
10701 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10702 	if (ret)
10703 		return ret;
10704 
10705 	/*
10706 	 * The inode is locked, so these flags won't change after we check them.
10707 	 */
10708 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10709 		btrfs_warn(fs_info, "swapfile must not be compressed");
10710 		return -EINVAL;
10711 	}
10712 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10713 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10714 		return -EINVAL;
10715 	}
10716 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10717 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10718 		return -EINVAL;
10719 	}
10720 
10721 	/*
10722 	 * Balance or device remove/replace/resize can move stuff around from
10723 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10724 	 * concurrently while we are mapping the swap extents, and
10725 	 * fs_info->swapfile_pins prevents them from running while the swap file
10726 	 * is active and moving the extents. Note that this also prevents a
10727 	 * concurrent device add which isn't actually necessary, but it's not
10728 	 * really worth the trouble to allow it.
10729 	 */
10730 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10731 		btrfs_warn(fs_info,
10732 	   "cannot activate swapfile while exclusive operation is running");
10733 		return -EBUSY;
10734 	}
10735 	/*
10736 	 * Snapshots can create extents which require COW even if NODATACOW is
10737 	 * set. We use this counter to prevent snapshots. We must increment it
10738 	 * before walking the extents because we don't want a concurrent
10739 	 * snapshot to run after we've already checked the extents.
10740 	 */
10741 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10742 
10743 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10744 
10745 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10746 	start = 0;
10747 	while (start < isize) {
10748 		u64 logical_block_start, physical_block_start;
10749 		struct btrfs_block_group_cache *bg;
10750 		u64 len = isize - start;
10751 
10752 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10753 		if (IS_ERR(em)) {
10754 			ret = PTR_ERR(em);
10755 			goto out;
10756 		}
10757 
10758 		if (em->block_start == EXTENT_MAP_HOLE) {
10759 			btrfs_warn(fs_info, "swapfile must not have holes");
10760 			ret = -EINVAL;
10761 			goto out;
10762 		}
10763 		if (em->block_start == EXTENT_MAP_INLINE) {
10764 			/*
10765 			 * It's unlikely we'll ever actually find ourselves
10766 			 * here, as a file small enough to fit inline won't be
10767 			 * big enough to store more than the swap header, but in
10768 			 * case something changes in the future, let's catch it
10769 			 * here rather than later.
10770 			 */
10771 			btrfs_warn(fs_info, "swapfile must not be inline");
10772 			ret = -EINVAL;
10773 			goto out;
10774 		}
10775 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10776 			btrfs_warn(fs_info, "swapfile must not be compressed");
10777 			ret = -EINVAL;
10778 			goto out;
10779 		}
10780 
10781 		logical_block_start = em->block_start + (start - em->start);
10782 		len = min(len, em->len - (start - em->start));
10783 		free_extent_map(em);
10784 		em = NULL;
10785 
10786 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10787 		if (ret < 0) {
10788 			goto out;
10789 		} else if (ret) {
10790 			ret = 0;
10791 		} else {
10792 			btrfs_warn(fs_info,
10793 				   "swapfile must not be copy-on-write");
10794 			ret = -EINVAL;
10795 			goto out;
10796 		}
10797 
10798 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10799 		if (IS_ERR(em)) {
10800 			ret = PTR_ERR(em);
10801 			goto out;
10802 		}
10803 
10804 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10805 			btrfs_warn(fs_info,
10806 				   "swapfile must have single data profile");
10807 			ret = -EINVAL;
10808 			goto out;
10809 		}
10810 
10811 		if (device == NULL) {
10812 			device = em->map_lookup->stripes[0].dev;
10813 			ret = btrfs_add_swapfile_pin(inode, device, false);
10814 			if (ret == 1)
10815 				ret = 0;
10816 			else if (ret)
10817 				goto out;
10818 		} else if (device != em->map_lookup->stripes[0].dev) {
10819 			btrfs_warn(fs_info, "swapfile must be on one device");
10820 			ret = -EINVAL;
10821 			goto out;
10822 		}
10823 
10824 		physical_block_start = (em->map_lookup->stripes[0].physical +
10825 					(logical_block_start - em->start));
10826 		len = min(len, em->len - (logical_block_start - em->start));
10827 		free_extent_map(em);
10828 		em = NULL;
10829 
10830 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10831 		if (!bg) {
10832 			btrfs_warn(fs_info,
10833 			   "could not find block group containing swapfile");
10834 			ret = -EINVAL;
10835 			goto out;
10836 		}
10837 
10838 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10839 		if (ret) {
10840 			btrfs_put_block_group(bg);
10841 			if (ret == 1)
10842 				ret = 0;
10843 			else
10844 				goto out;
10845 		}
10846 
10847 		if (bsi.block_len &&
10848 		    bsi.block_start + bsi.block_len == physical_block_start) {
10849 			bsi.block_len += len;
10850 		} else {
10851 			if (bsi.block_len) {
10852 				ret = btrfs_add_swap_extent(sis, &bsi);
10853 				if (ret)
10854 					goto out;
10855 			}
10856 			bsi.start = start;
10857 			bsi.block_start = physical_block_start;
10858 			bsi.block_len = len;
10859 		}
10860 
10861 		start += len;
10862 	}
10863 
10864 	if (bsi.block_len)
10865 		ret = btrfs_add_swap_extent(sis, &bsi);
10866 
10867 out:
10868 	if (!IS_ERR_OR_NULL(em))
10869 		free_extent_map(em);
10870 
10871 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10872 
10873 	if (ret)
10874 		btrfs_swap_deactivate(file);
10875 
10876 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10877 
10878 	if (ret)
10879 		return ret;
10880 
10881 	if (device)
10882 		sis->bdev = device->bdev;
10883 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10884 	sis->max = bsi.nr_pages;
10885 	sis->pages = bsi.nr_pages - 1;
10886 	sis->highest_bit = bsi.nr_pages - 1;
10887 	return bsi.nr_extents;
10888 }
10889 #else
10890 static void btrfs_swap_deactivate(struct file *file)
10891 {
10892 }
10893 
10894 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10895 			       sector_t *span)
10896 {
10897 	return -EOPNOTSUPP;
10898 }
10899 #endif
10900 
10901 static const struct inode_operations btrfs_dir_inode_operations = {
10902 	.getattr	= btrfs_getattr,
10903 	.lookup		= btrfs_lookup,
10904 	.create		= btrfs_create,
10905 	.unlink		= btrfs_unlink,
10906 	.link		= btrfs_link,
10907 	.mkdir		= btrfs_mkdir,
10908 	.rmdir		= btrfs_rmdir,
10909 	.rename		= btrfs_rename2,
10910 	.symlink	= btrfs_symlink,
10911 	.setattr	= btrfs_setattr,
10912 	.mknod		= btrfs_mknod,
10913 	.listxattr	= btrfs_listxattr,
10914 	.permission	= btrfs_permission,
10915 	.get_acl	= btrfs_get_acl,
10916 	.set_acl	= btrfs_set_acl,
10917 	.update_time	= btrfs_update_time,
10918 	.tmpfile        = btrfs_tmpfile,
10919 };
10920 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10921 	.lookup		= btrfs_lookup,
10922 	.permission	= btrfs_permission,
10923 	.update_time	= btrfs_update_time,
10924 };
10925 
10926 static const struct file_operations btrfs_dir_file_operations = {
10927 	.llseek		= generic_file_llseek,
10928 	.read		= generic_read_dir,
10929 	.iterate_shared	= btrfs_real_readdir,
10930 	.open		= btrfs_opendir,
10931 	.unlocked_ioctl	= btrfs_ioctl,
10932 #ifdef CONFIG_COMPAT
10933 	.compat_ioctl	= btrfs_compat_ioctl,
10934 #endif
10935 	.release        = btrfs_release_file,
10936 	.fsync		= btrfs_sync_file,
10937 };
10938 
10939 static const struct extent_io_ops btrfs_extent_io_ops = {
10940 	/* mandatory callbacks */
10941 	.submit_bio_hook = btrfs_submit_bio_hook,
10942 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10943 };
10944 
10945 /*
10946  * btrfs doesn't support the bmap operation because swapfiles
10947  * use bmap to make a mapping of extents in the file.  They assume
10948  * these extents won't change over the life of the file and they
10949  * use the bmap result to do IO directly to the drive.
10950  *
10951  * the btrfs bmap call would return logical addresses that aren't
10952  * suitable for IO and they also will change frequently as COW
10953  * operations happen.  So, swapfile + btrfs == corruption.
10954  *
10955  * For now we're avoiding this by dropping bmap.
10956  */
10957 static const struct address_space_operations btrfs_aops = {
10958 	.readpage	= btrfs_readpage,
10959 	.writepage	= btrfs_writepage,
10960 	.writepages	= btrfs_writepages,
10961 	.readpages	= btrfs_readpages,
10962 	.direct_IO	= btrfs_direct_IO,
10963 	.invalidatepage = btrfs_invalidatepage,
10964 	.releasepage	= btrfs_releasepage,
10965 	.set_page_dirty	= btrfs_set_page_dirty,
10966 	.error_remove_page = generic_error_remove_page,
10967 	.swap_activate	= btrfs_swap_activate,
10968 	.swap_deactivate = btrfs_swap_deactivate,
10969 };
10970 
10971 static const struct inode_operations btrfs_file_inode_operations = {
10972 	.getattr	= btrfs_getattr,
10973 	.setattr	= btrfs_setattr,
10974 	.listxattr      = btrfs_listxattr,
10975 	.permission	= btrfs_permission,
10976 	.fiemap		= btrfs_fiemap,
10977 	.get_acl	= btrfs_get_acl,
10978 	.set_acl	= btrfs_set_acl,
10979 	.update_time	= btrfs_update_time,
10980 };
10981 static const struct inode_operations btrfs_special_inode_operations = {
10982 	.getattr	= btrfs_getattr,
10983 	.setattr	= btrfs_setattr,
10984 	.permission	= btrfs_permission,
10985 	.listxattr	= btrfs_listxattr,
10986 	.get_acl	= btrfs_get_acl,
10987 	.set_acl	= btrfs_set_acl,
10988 	.update_time	= btrfs_update_time,
10989 };
10990 static const struct inode_operations btrfs_symlink_inode_operations = {
10991 	.get_link	= page_get_link,
10992 	.getattr	= btrfs_getattr,
10993 	.setattr	= btrfs_setattr,
10994 	.permission	= btrfs_permission,
10995 	.listxattr	= btrfs_listxattr,
10996 	.update_time	= btrfs_update_time,
10997 };
10998 
10999 const struct dentry_operations btrfs_dentry_operations = {
11000 	.d_delete	= btrfs_dentry_delete,
11001 };
11002