xref: /openbmc/linux/fs/btrfs/inode.c (revision 95e9fd10)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57 
58 struct btrfs_iget_args {
59 	u64 ino;
60 	struct btrfs_root *root;
61 };
62 
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72 
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
82 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
83 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
84 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
85 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
86 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
87 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
88 };
89 
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
93 static noinline int cow_file_range(struct inode *inode,
94 				   struct page *locked_page,
95 				   u64 start, u64 end, int *page_started,
96 				   unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 				struct btrfs_root *root, struct inode *inode);
99 
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 				     struct inode *inode,  struct inode *dir,
102 				     const struct qstr *qstr)
103 {
104 	int err;
105 
106 	err = btrfs_init_acl(trans, inode, dir);
107 	if (!err)
108 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 	return err;
110 }
111 
112 /*
113  * this does all the hard work for inserting an inline extent into
114  * the btree.  The caller should have done a btrfs_drop_extents so that
115  * no overlapping inline items exist in the btree
116  */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 				struct btrfs_root *root, struct inode *inode,
119 				u64 start, size_t size, size_t compressed_size,
120 				int compress_type,
121 				struct page **compressed_pages)
122 {
123 	struct btrfs_key key;
124 	struct btrfs_path *path;
125 	struct extent_buffer *leaf;
126 	struct page *page = NULL;
127 	char *kaddr;
128 	unsigned long ptr;
129 	struct btrfs_file_extent_item *ei;
130 	int err = 0;
131 	int ret;
132 	size_t cur_size = size;
133 	size_t datasize;
134 	unsigned long offset;
135 
136 	if (compressed_size && compressed_pages)
137 		cur_size = compressed_size;
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	path->leave_spinning = 1;
144 
145 	key.objectid = btrfs_ino(inode);
146 	key.offset = start;
147 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
149 
150 	inode_add_bytes(inode, size);
151 	ret = btrfs_insert_empty_item(trans, root, path, &key,
152 				      datasize);
153 	if (ret) {
154 		err = ret;
155 		goto fail;
156 	}
157 	leaf = path->nodes[0];
158 	ei = btrfs_item_ptr(leaf, path->slots[0],
159 			    struct btrfs_file_extent_item);
160 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 	btrfs_set_file_extent_encryption(leaf, ei, 0);
163 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 	ptr = btrfs_file_extent_inline_start(ei);
166 
167 	if (compress_type != BTRFS_COMPRESS_NONE) {
168 		struct page *cpage;
169 		int i = 0;
170 		while (compressed_size > 0) {
171 			cpage = compressed_pages[i];
172 			cur_size = min_t(unsigned long, compressed_size,
173 				       PAGE_CACHE_SIZE);
174 
175 			kaddr = kmap_atomic(cpage);
176 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 			kunmap_atomic(kaddr);
178 
179 			i++;
180 			ptr += cur_size;
181 			compressed_size -= cur_size;
182 		}
183 		btrfs_set_file_extent_compression(leaf, ei,
184 						  compress_type);
185 	} else {
186 		page = find_get_page(inode->i_mapping,
187 				     start >> PAGE_CACHE_SHIFT);
188 		btrfs_set_file_extent_compression(leaf, ei, 0);
189 		kaddr = kmap_atomic(page);
190 		offset = start & (PAGE_CACHE_SIZE - 1);
191 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 		kunmap_atomic(kaddr);
193 		page_cache_release(page);
194 	}
195 	btrfs_mark_buffer_dirty(leaf);
196 	btrfs_free_path(path);
197 
198 	/*
199 	 * we're an inline extent, so nobody can
200 	 * extend the file past i_size without locking
201 	 * a page we already have locked.
202 	 *
203 	 * We must do any isize and inode updates
204 	 * before we unlock the pages.  Otherwise we
205 	 * could end up racing with unlink.
206 	 */
207 	BTRFS_I(inode)->disk_i_size = inode->i_size;
208 	ret = btrfs_update_inode(trans, root, inode);
209 
210 	return ret;
211 fail:
212 	btrfs_free_path(path);
213 	return err;
214 }
215 
216 
217 /*
218  * conditionally insert an inline extent into the file.  This
219  * does the checks required to make sure the data is small enough
220  * to fit as an inline extent.
221  */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 				 struct btrfs_root *root,
224 				 struct inode *inode, u64 start, u64 end,
225 				 size_t compressed_size, int compress_type,
226 				 struct page **compressed_pages)
227 {
228 	u64 isize = i_size_read(inode);
229 	u64 actual_end = min(end + 1, isize);
230 	u64 inline_len = actual_end - start;
231 	u64 aligned_end = (end + root->sectorsize - 1) &
232 			~((u64)root->sectorsize - 1);
233 	u64 hint_byte;
234 	u64 data_len = inline_len;
235 	int ret;
236 
237 	if (compressed_size)
238 		data_len = compressed_size;
239 
240 	if (start > 0 ||
241 	    actual_end >= PAGE_CACHE_SIZE ||
242 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 	    (!compressed_size &&
244 	    (actual_end & (root->sectorsize - 1)) == 0) ||
245 	    end + 1 < isize ||
246 	    data_len > root->fs_info->max_inline) {
247 		return 1;
248 	}
249 
250 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251 				 &hint_byte, 1);
252 	if (ret)
253 		return ret;
254 
255 	if (isize > actual_end)
256 		inline_len = min_t(u64, isize, actual_end);
257 	ret = insert_inline_extent(trans, root, inode, start,
258 				   inline_len, compressed_size,
259 				   compress_type, compressed_pages);
260 	if (ret && ret != -ENOSPC) {
261 		btrfs_abort_transaction(trans, root, ret);
262 		return ret;
263 	} else if (ret == -ENOSPC) {
264 		return 1;
265 	}
266 
267 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
268 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
269 	return 0;
270 }
271 
272 struct async_extent {
273 	u64 start;
274 	u64 ram_size;
275 	u64 compressed_size;
276 	struct page **pages;
277 	unsigned long nr_pages;
278 	int compress_type;
279 	struct list_head list;
280 };
281 
282 struct async_cow {
283 	struct inode *inode;
284 	struct btrfs_root *root;
285 	struct page *locked_page;
286 	u64 start;
287 	u64 end;
288 	struct list_head extents;
289 	struct btrfs_work work;
290 };
291 
292 static noinline int add_async_extent(struct async_cow *cow,
293 				     u64 start, u64 ram_size,
294 				     u64 compressed_size,
295 				     struct page **pages,
296 				     unsigned long nr_pages,
297 				     int compress_type)
298 {
299 	struct async_extent *async_extent;
300 
301 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
302 	BUG_ON(!async_extent); /* -ENOMEM */
303 	async_extent->start = start;
304 	async_extent->ram_size = ram_size;
305 	async_extent->compressed_size = compressed_size;
306 	async_extent->pages = pages;
307 	async_extent->nr_pages = nr_pages;
308 	async_extent->compress_type = compress_type;
309 	list_add_tail(&async_extent->list, &cow->extents);
310 	return 0;
311 }
312 
313 /*
314  * we create compressed extents in two phases.  The first
315  * phase compresses a range of pages that have already been
316  * locked (both pages and state bits are locked).
317  *
318  * This is done inside an ordered work queue, and the compression
319  * is spread across many cpus.  The actual IO submission is step
320  * two, and the ordered work queue takes care of making sure that
321  * happens in the same order things were put onto the queue by
322  * writepages and friends.
323  *
324  * If this code finds it can't get good compression, it puts an
325  * entry onto the work queue to write the uncompressed bytes.  This
326  * makes sure that both compressed inodes and uncompressed inodes
327  * are written in the same order that the flusher thread sent them
328  * down.
329  */
330 static noinline int compress_file_range(struct inode *inode,
331 					struct page *locked_page,
332 					u64 start, u64 end,
333 					struct async_cow *async_cow,
334 					int *num_added)
335 {
336 	struct btrfs_root *root = BTRFS_I(inode)->root;
337 	struct btrfs_trans_handle *trans;
338 	u64 num_bytes;
339 	u64 blocksize = root->sectorsize;
340 	u64 actual_end;
341 	u64 isize = i_size_read(inode);
342 	int ret = 0;
343 	struct page **pages = NULL;
344 	unsigned long nr_pages;
345 	unsigned long nr_pages_ret = 0;
346 	unsigned long total_compressed = 0;
347 	unsigned long total_in = 0;
348 	unsigned long max_compressed = 128 * 1024;
349 	unsigned long max_uncompressed = 128 * 1024;
350 	int i;
351 	int will_compress;
352 	int compress_type = root->fs_info->compress_type;
353 
354 	/* if this is a small write inside eof, kick off a defrag */
355 	if ((end - start + 1) < 16 * 1024 &&
356 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
357 		btrfs_add_inode_defrag(NULL, inode);
358 
359 	actual_end = min_t(u64, isize, end + 1);
360 again:
361 	will_compress = 0;
362 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
363 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
364 
365 	/*
366 	 * we don't want to send crud past the end of i_size through
367 	 * compression, that's just a waste of CPU time.  So, if the
368 	 * end of the file is before the start of our current
369 	 * requested range of bytes, we bail out to the uncompressed
370 	 * cleanup code that can deal with all of this.
371 	 *
372 	 * It isn't really the fastest way to fix things, but this is a
373 	 * very uncommon corner.
374 	 */
375 	if (actual_end <= start)
376 		goto cleanup_and_bail_uncompressed;
377 
378 	total_compressed = actual_end - start;
379 
380 	/* we want to make sure that amount of ram required to uncompress
381 	 * an extent is reasonable, so we limit the total size in ram
382 	 * of a compressed extent to 128k.  This is a crucial number
383 	 * because it also controls how easily we can spread reads across
384 	 * cpus for decompression.
385 	 *
386 	 * We also want to make sure the amount of IO required to do
387 	 * a random read is reasonably small, so we limit the size of
388 	 * a compressed extent to 128k.
389 	 */
390 	total_compressed = min(total_compressed, max_uncompressed);
391 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
392 	num_bytes = max(blocksize,  num_bytes);
393 	total_in = 0;
394 	ret = 0;
395 
396 	/*
397 	 * we do compression for mount -o compress and when the
398 	 * inode has not been flagged as nocompress.  This flag can
399 	 * change at any time if we discover bad compression ratios.
400 	 */
401 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
402 	    (btrfs_test_opt(root, COMPRESS) ||
403 	     (BTRFS_I(inode)->force_compress) ||
404 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
405 		WARN_ON(pages);
406 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
407 		if (!pages) {
408 			/* just bail out to the uncompressed code */
409 			goto cont;
410 		}
411 
412 		if (BTRFS_I(inode)->force_compress)
413 			compress_type = BTRFS_I(inode)->force_compress;
414 
415 		ret = btrfs_compress_pages(compress_type,
416 					   inode->i_mapping, start,
417 					   total_compressed, pages,
418 					   nr_pages, &nr_pages_ret,
419 					   &total_in,
420 					   &total_compressed,
421 					   max_compressed);
422 
423 		if (!ret) {
424 			unsigned long offset = total_compressed &
425 				(PAGE_CACHE_SIZE - 1);
426 			struct page *page = pages[nr_pages_ret - 1];
427 			char *kaddr;
428 
429 			/* zero the tail end of the last page, we might be
430 			 * sending it down to disk
431 			 */
432 			if (offset) {
433 				kaddr = kmap_atomic(page);
434 				memset(kaddr + offset, 0,
435 				       PAGE_CACHE_SIZE - offset);
436 				kunmap_atomic(kaddr);
437 			}
438 			will_compress = 1;
439 		}
440 	}
441 cont:
442 	if (start == 0) {
443 		trans = btrfs_join_transaction(root);
444 		if (IS_ERR(trans)) {
445 			ret = PTR_ERR(trans);
446 			trans = NULL;
447 			goto cleanup_and_out;
448 		}
449 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
450 
451 		/* lets try to make an inline extent */
452 		if (ret || total_in < (actual_end - start)) {
453 			/* we didn't compress the entire range, try
454 			 * to make an uncompressed inline extent.
455 			 */
456 			ret = cow_file_range_inline(trans, root, inode,
457 						    start, end, 0, 0, NULL);
458 		} else {
459 			/* try making a compressed inline extent */
460 			ret = cow_file_range_inline(trans, root, inode,
461 						    start, end,
462 						    total_compressed,
463 						    compress_type, pages);
464 		}
465 		if (ret <= 0) {
466 			/*
467 			 * inline extent creation worked or returned error,
468 			 * we don't need to create any more async work items.
469 			 * Unlock and free up our temp pages.
470 			 */
471 			extent_clear_unlock_delalloc(inode,
472 			     &BTRFS_I(inode)->io_tree,
473 			     start, end, NULL,
474 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
475 			     EXTENT_CLEAR_DELALLOC |
476 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
477 
478 			btrfs_end_transaction(trans, root);
479 			goto free_pages_out;
480 		}
481 		btrfs_end_transaction(trans, root);
482 	}
483 
484 	if (will_compress) {
485 		/*
486 		 * we aren't doing an inline extent round the compressed size
487 		 * up to a block size boundary so the allocator does sane
488 		 * things
489 		 */
490 		total_compressed = (total_compressed + blocksize - 1) &
491 			~(blocksize - 1);
492 
493 		/*
494 		 * one last check to make sure the compression is really a
495 		 * win, compare the page count read with the blocks on disk
496 		 */
497 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
498 			~(PAGE_CACHE_SIZE - 1);
499 		if (total_compressed >= total_in) {
500 			will_compress = 0;
501 		} else {
502 			num_bytes = total_in;
503 		}
504 	}
505 	if (!will_compress && pages) {
506 		/*
507 		 * the compression code ran but failed to make things smaller,
508 		 * free any pages it allocated and our page pointer array
509 		 */
510 		for (i = 0; i < nr_pages_ret; i++) {
511 			WARN_ON(pages[i]->mapping);
512 			page_cache_release(pages[i]);
513 		}
514 		kfree(pages);
515 		pages = NULL;
516 		total_compressed = 0;
517 		nr_pages_ret = 0;
518 
519 		/* flag the file so we don't compress in the future */
520 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
521 		    !(BTRFS_I(inode)->force_compress)) {
522 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
523 		}
524 	}
525 	if (will_compress) {
526 		*num_added += 1;
527 
528 		/* the async work queues will take care of doing actual
529 		 * allocation on disk for these compressed pages,
530 		 * and will submit them to the elevator.
531 		 */
532 		add_async_extent(async_cow, start, num_bytes,
533 				 total_compressed, pages, nr_pages_ret,
534 				 compress_type);
535 
536 		if (start + num_bytes < end) {
537 			start += num_bytes;
538 			pages = NULL;
539 			cond_resched();
540 			goto again;
541 		}
542 	} else {
543 cleanup_and_bail_uncompressed:
544 		/*
545 		 * No compression, but we still need to write the pages in
546 		 * the file we've been given so far.  redirty the locked
547 		 * page if it corresponds to our extent and set things up
548 		 * for the async work queue to run cow_file_range to do
549 		 * the normal delalloc dance
550 		 */
551 		if (page_offset(locked_page) >= start &&
552 		    page_offset(locked_page) <= end) {
553 			__set_page_dirty_nobuffers(locked_page);
554 			/* unlocked later on in the async handlers */
555 		}
556 		add_async_extent(async_cow, start, end - start + 1,
557 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
558 		*num_added += 1;
559 	}
560 
561 out:
562 	return ret;
563 
564 free_pages_out:
565 	for (i = 0; i < nr_pages_ret; i++) {
566 		WARN_ON(pages[i]->mapping);
567 		page_cache_release(pages[i]);
568 	}
569 	kfree(pages);
570 
571 	goto out;
572 
573 cleanup_and_out:
574 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
575 				     start, end, NULL,
576 				     EXTENT_CLEAR_UNLOCK_PAGE |
577 				     EXTENT_CLEAR_DIRTY |
578 				     EXTENT_CLEAR_DELALLOC |
579 				     EXTENT_SET_WRITEBACK |
580 				     EXTENT_END_WRITEBACK);
581 	if (!trans || IS_ERR(trans))
582 		btrfs_error(root->fs_info, ret, "Failed to join transaction");
583 	else
584 		btrfs_abort_transaction(trans, root, ret);
585 	goto free_pages_out;
586 }
587 
588 /*
589  * phase two of compressed writeback.  This is the ordered portion
590  * of the code, which only gets called in the order the work was
591  * queued.  We walk all the async extents created by compress_file_range
592  * and send them down to the disk.
593  */
594 static noinline int submit_compressed_extents(struct inode *inode,
595 					      struct async_cow *async_cow)
596 {
597 	struct async_extent *async_extent;
598 	u64 alloc_hint = 0;
599 	struct btrfs_trans_handle *trans;
600 	struct btrfs_key ins;
601 	struct extent_map *em;
602 	struct btrfs_root *root = BTRFS_I(inode)->root;
603 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
604 	struct extent_io_tree *io_tree;
605 	int ret = 0;
606 
607 	if (list_empty(&async_cow->extents))
608 		return 0;
609 
610 
611 	while (!list_empty(&async_cow->extents)) {
612 		async_extent = list_entry(async_cow->extents.next,
613 					  struct async_extent, list);
614 		list_del(&async_extent->list);
615 
616 		io_tree = &BTRFS_I(inode)->io_tree;
617 
618 retry:
619 		/* did the compression code fall back to uncompressed IO? */
620 		if (!async_extent->pages) {
621 			int page_started = 0;
622 			unsigned long nr_written = 0;
623 
624 			lock_extent(io_tree, async_extent->start,
625 					 async_extent->start +
626 					 async_extent->ram_size - 1);
627 
628 			/* allocate blocks */
629 			ret = cow_file_range(inode, async_cow->locked_page,
630 					     async_extent->start,
631 					     async_extent->start +
632 					     async_extent->ram_size - 1,
633 					     &page_started, &nr_written, 0);
634 
635 			/* JDM XXX */
636 
637 			/*
638 			 * if page_started, cow_file_range inserted an
639 			 * inline extent and took care of all the unlocking
640 			 * and IO for us.  Otherwise, we need to submit
641 			 * all those pages down to the drive.
642 			 */
643 			if (!page_started && !ret)
644 				extent_write_locked_range(io_tree,
645 						  inode, async_extent->start,
646 						  async_extent->start +
647 						  async_extent->ram_size - 1,
648 						  btrfs_get_extent,
649 						  WB_SYNC_ALL);
650 			kfree(async_extent);
651 			cond_resched();
652 			continue;
653 		}
654 
655 		lock_extent(io_tree, async_extent->start,
656 			    async_extent->start + async_extent->ram_size - 1);
657 
658 		trans = btrfs_join_transaction(root);
659 		if (IS_ERR(trans)) {
660 			ret = PTR_ERR(trans);
661 		} else {
662 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
663 			ret = btrfs_reserve_extent(trans, root,
664 					   async_extent->compressed_size,
665 					   async_extent->compressed_size,
666 					   0, alloc_hint, &ins, 1);
667 			if (ret)
668 				btrfs_abort_transaction(trans, root, ret);
669 			btrfs_end_transaction(trans, root);
670 		}
671 
672 		if (ret) {
673 			int i;
674 			for (i = 0; i < async_extent->nr_pages; i++) {
675 				WARN_ON(async_extent->pages[i]->mapping);
676 				page_cache_release(async_extent->pages[i]);
677 			}
678 			kfree(async_extent->pages);
679 			async_extent->nr_pages = 0;
680 			async_extent->pages = NULL;
681 			unlock_extent(io_tree, async_extent->start,
682 				      async_extent->start +
683 				      async_extent->ram_size - 1);
684 			if (ret == -ENOSPC)
685 				goto retry;
686 			goto out_free; /* JDM: Requeue? */
687 		}
688 
689 		/*
690 		 * here we're doing allocation and writeback of the
691 		 * compressed pages
692 		 */
693 		btrfs_drop_extent_cache(inode, async_extent->start,
694 					async_extent->start +
695 					async_extent->ram_size - 1, 0);
696 
697 		em = alloc_extent_map();
698 		BUG_ON(!em); /* -ENOMEM */
699 		em->start = async_extent->start;
700 		em->len = async_extent->ram_size;
701 		em->orig_start = em->start;
702 
703 		em->block_start = ins.objectid;
704 		em->block_len = ins.offset;
705 		em->bdev = root->fs_info->fs_devices->latest_bdev;
706 		em->compress_type = async_extent->compress_type;
707 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
708 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
709 
710 		while (1) {
711 			write_lock(&em_tree->lock);
712 			ret = add_extent_mapping(em_tree, em);
713 			write_unlock(&em_tree->lock);
714 			if (ret != -EEXIST) {
715 				free_extent_map(em);
716 				break;
717 			}
718 			btrfs_drop_extent_cache(inode, async_extent->start,
719 						async_extent->start +
720 						async_extent->ram_size - 1, 0);
721 		}
722 
723 		ret = btrfs_add_ordered_extent_compress(inode,
724 						async_extent->start,
725 						ins.objectid,
726 						async_extent->ram_size,
727 						ins.offset,
728 						BTRFS_ORDERED_COMPRESSED,
729 						async_extent->compress_type);
730 		BUG_ON(ret); /* -ENOMEM */
731 
732 		/*
733 		 * clear dirty, set writeback and unlock the pages.
734 		 */
735 		extent_clear_unlock_delalloc(inode,
736 				&BTRFS_I(inode)->io_tree,
737 				async_extent->start,
738 				async_extent->start +
739 				async_extent->ram_size - 1,
740 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
741 				EXTENT_CLEAR_UNLOCK |
742 				EXTENT_CLEAR_DELALLOC |
743 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
744 
745 		ret = btrfs_submit_compressed_write(inode,
746 				    async_extent->start,
747 				    async_extent->ram_size,
748 				    ins.objectid,
749 				    ins.offset, async_extent->pages,
750 				    async_extent->nr_pages);
751 
752 		BUG_ON(ret); /* -ENOMEM */
753 		alloc_hint = ins.objectid + ins.offset;
754 		kfree(async_extent);
755 		cond_resched();
756 	}
757 	ret = 0;
758 out:
759 	return ret;
760 out_free:
761 	kfree(async_extent);
762 	goto out;
763 }
764 
765 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
766 				      u64 num_bytes)
767 {
768 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
769 	struct extent_map *em;
770 	u64 alloc_hint = 0;
771 
772 	read_lock(&em_tree->lock);
773 	em = search_extent_mapping(em_tree, start, num_bytes);
774 	if (em) {
775 		/*
776 		 * if block start isn't an actual block number then find the
777 		 * first block in this inode and use that as a hint.  If that
778 		 * block is also bogus then just don't worry about it.
779 		 */
780 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
781 			free_extent_map(em);
782 			em = search_extent_mapping(em_tree, 0, 0);
783 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
784 				alloc_hint = em->block_start;
785 			if (em)
786 				free_extent_map(em);
787 		} else {
788 			alloc_hint = em->block_start;
789 			free_extent_map(em);
790 		}
791 	}
792 	read_unlock(&em_tree->lock);
793 
794 	return alloc_hint;
795 }
796 
797 /*
798  * when extent_io.c finds a delayed allocation range in the file,
799  * the call backs end up in this code.  The basic idea is to
800  * allocate extents on disk for the range, and create ordered data structs
801  * in ram to track those extents.
802  *
803  * locked_page is the page that writepage had locked already.  We use
804  * it to make sure we don't do extra locks or unlocks.
805  *
806  * *page_started is set to one if we unlock locked_page and do everything
807  * required to start IO on it.  It may be clean and already done with
808  * IO when we return.
809  */
810 static noinline int cow_file_range(struct inode *inode,
811 				   struct page *locked_page,
812 				   u64 start, u64 end, int *page_started,
813 				   unsigned long *nr_written,
814 				   int unlock)
815 {
816 	struct btrfs_root *root = BTRFS_I(inode)->root;
817 	struct btrfs_trans_handle *trans;
818 	u64 alloc_hint = 0;
819 	u64 num_bytes;
820 	unsigned long ram_size;
821 	u64 disk_num_bytes;
822 	u64 cur_alloc_size;
823 	u64 blocksize = root->sectorsize;
824 	struct btrfs_key ins;
825 	struct extent_map *em;
826 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
827 	int ret = 0;
828 
829 	BUG_ON(btrfs_is_free_space_inode(inode));
830 	trans = btrfs_join_transaction(root);
831 	if (IS_ERR(trans)) {
832 		extent_clear_unlock_delalloc(inode,
833 			     &BTRFS_I(inode)->io_tree,
834 			     start, end, locked_page,
835 			     EXTENT_CLEAR_UNLOCK_PAGE |
836 			     EXTENT_CLEAR_UNLOCK |
837 			     EXTENT_CLEAR_DELALLOC |
838 			     EXTENT_CLEAR_DIRTY |
839 			     EXTENT_SET_WRITEBACK |
840 			     EXTENT_END_WRITEBACK);
841 		return PTR_ERR(trans);
842 	}
843 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
844 
845 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
846 	num_bytes = max(blocksize,  num_bytes);
847 	disk_num_bytes = num_bytes;
848 	ret = 0;
849 
850 	/* if this is a small write inside eof, kick off defrag */
851 	if (num_bytes < 64 * 1024 &&
852 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
853 		btrfs_add_inode_defrag(trans, inode);
854 
855 	if (start == 0) {
856 		/* lets try to make an inline extent */
857 		ret = cow_file_range_inline(trans, root, inode,
858 					    start, end, 0, 0, NULL);
859 		if (ret == 0) {
860 			extent_clear_unlock_delalloc(inode,
861 				     &BTRFS_I(inode)->io_tree,
862 				     start, end, NULL,
863 				     EXTENT_CLEAR_UNLOCK_PAGE |
864 				     EXTENT_CLEAR_UNLOCK |
865 				     EXTENT_CLEAR_DELALLOC |
866 				     EXTENT_CLEAR_DIRTY |
867 				     EXTENT_SET_WRITEBACK |
868 				     EXTENT_END_WRITEBACK);
869 
870 			*nr_written = *nr_written +
871 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
872 			*page_started = 1;
873 			goto out;
874 		} else if (ret < 0) {
875 			btrfs_abort_transaction(trans, root, ret);
876 			goto out_unlock;
877 		}
878 	}
879 
880 	BUG_ON(disk_num_bytes >
881 	       btrfs_super_total_bytes(root->fs_info->super_copy));
882 
883 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
884 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
885 
886 	while (disk_num_bytes > 0) {
887 		unsigned long op;
888 
889 		cur_alloc_size = disk_num_bytes;
890 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
891 					   root->sectorsize, 0, alloc_hint,
892 					   &ins, 1);
893 		if (ret < 0) {
894 			btrfs_abort_transaction(trans, root, ret);
895 			goto out_unlock;
896 		}
897 
898 		em = alloc_extent_map();
899 		BUG_ON(!em); /* -ENOMEM */
900 		em->start = start;
901 		em->orig_start = em->start;
902 		ram_size = ins.offset;
903 		em->len = ins.offset;
904 
905 		em->block_start = ins.objectid;
906 		em->block_len = ins.offset;
907 		em->bdev = root->fs_info->fs_devices->latest_bdev;
908 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
909 
910 		while (1) {
911 			write_lock(&em_tree->lock);
912 			ret = add_extent_mapping(em_tree, em);
913 			write_unlock(&em_tree->lock);
914 			if (ret != -EEXIST) {
915 				free_extent_map(em);
916 				break;
917 			}
918 			btrfs_drop_extent_cache(inode, start,
919 						start + ram_size - 1, 0);
920 		}
921 
922 		cur_alloc_size = ins.offset;
923 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
924 					       ram_size, cur_alloc_size, 0);
925 		BUG_ON(ret); /* -ENOMEM */
926 
927 		if (root->root_key.objectid ==
928 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
929 			ret = btrfs_reloc_clone_csums(inode, start,
930 						      cur_alloc_size);
931 			if (ret) {
932 				btrfs_abort_transaction(trans, root, ret);
933 				goto out_unlock;
934 			}
935 		}
936 
937 		if (disk_num_bytes < cur_alloc_size)
938 			break;
939 
940 		/* we're not doing compressed IO, don't unlock the first
941 		 * page (which the caller expects to stay locked), don't
942 		 * clear any dirty bits and don't set any writeback bits
943 		 *
944 		 * Do set the Private2 bit so we know this page was properly
945 		 * setup for writepage
946 		 */
947 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
948 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
949 			EXTENT_SET_PRIVATE2;
950 
951 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
952 					     start, start + ram_size - 1,
953 					     locked_page, op);
954 		disk_num_bytes -= cur_alloc_size;
955 		num_bytes -= cur_alloc_size;
956 		alloc_hint = ins.objectid + ins.offset;
957 		start += cur_alloc_size;
958 	}
959 	ret = 0;
960 out:
961 	btrfs_end_transaction(trans, root);
962 
963 	return ret;
964 out_unlock:
965 	extent_clear_unlock_delalloc(inode,
966 		     &BTRFS_I(inode)->io_tree,
967 		     start, end, locked_page,
968 		     EXTENT_CLEAR_UNLOCK_PAGE |
969 		     EXTENT_CLEAR_UNLOCK |
970 		     EXTENT_CLEAR_DELALLOC |
971 		     EXTENT_CLEAR_DIRTY |
972 		     EXTENT_SET_WRITEBACK |
973 		     EXTENT_END_WRITEBACK);
974 
975 	goto out;
976 }
977 
978 /*
979  * work queue call back to started compression on a file and pages
980  */
981 static noinline void async_cow_start(struct btrfs_work *work)
982 {
983 	struct async_cow *async_cow;
984 	int num_added = 0;
985 	async_cow = container_of(work, struct async_cow, work);
986 
987 	compress_file_range(async_cow->inode, async_cow->locked_page,
988 			    async_cow->start, async_cow->end, async_cow,
989 			    &num_added);
990 	if (num_added == 0) {
991 		btrfs_add_delayed_iput(async_cow->inode);
992 		async_cow->inode = NULL;
993 	}
994 }
995 
996 /*
997  * work queue call back to submit previously compressed pages
998  */
999 static noinline void async_cow_submit(struct btrfs_work *work)
1000 {
1001 	struct async_cow *async_cow;
1002 	struct btrfs_root *root;
1003 	unsigned long nr_pages;
1004 
1005 	async_cow = container_of(work, struct async_cow, work);
1006 
1007 	root = async_cow->root;
1008 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1009 		PAGE_CACHE_SHIFT;
1010 
1011 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1012 	    5 * 1024 * 1024 &&
1013 	    waitqueue_active(&root->fs_info->async_submit_wait))
1014 		wake_up(&root->fs_info->async_submit_wait);
1015 
1016 	if (async_cow->inode)
1017 		submit_compressed_extents(async_cow->inode, async_cow);
1018 }
1019 
1020 static noinline void async_cow_free(struct btrfs_work *work)
1021 {
1022 	struct async_cow *async_cow;
1023 	async_cow = container_of(work, struct async_cow, work);
1024 	if (async_cow->inode)
1025 		btrfs_add_delayed_iput(async_cow->inode);
1026 	kfree(async_cow);
1027 }
1028 
1029 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1030 				u64 start, u64 end, int *page_started,
1031 				unsigned long *nr_written)
1032 {
1033 	struct async_cow *async_cow;
1034 	struct btrfs_root *root = BTRFS_I(inode)->root;
1035 	unsigned long nr_pages;
1036 	u64 cur_end;
1037 	int limit = 10 * 1024 * 1024;
1038 
1039 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1040 			 1, 0, NULL, GFP_NOFS);
1041 	while (start < end) {
1042 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1043 		BUG_ON(!async_cow); /* -ENOMEM */
1044 		async_cow->inode = igrab(inode);
1045 		async_cow->root = root;
1046 		async_cow->locked_page = locked_page;
1047 		async_cow->start = start;
1048 
1049 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1050 			cur_end = end;
1051 		else
1052 			cur_end = min(end, start + 512 * 1024 - 1);
1053 
1054 		async_cow->end = cur_end;
1055 		INIT_LIST_HEAD(&async_cow->extents);
1056 
1057 		async_cow->work.func = async_cow_start;
1058 		async_cow->work.ordered_func = async_cow_submit;
1059 		async_cow->work.ordered_free = async_cow_free;
1060 		async_cow->work.flags = 0;
1061 
1062 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1063 			PAGE_CACHE_SHIFT;
1064 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1065 
1066 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
1067 				   &async_cow->work);
1068 
1069 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1070 			wait_event(root->fs_info->async_submit_wait,
1071 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1072 			    limit));
1073 		}
1074 
1075 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1076 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1077 			wait_event(root->fs_info->async_submit_wait,
1078 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1079 			   0));
1080 		}
1081 
1082 		*nr_written += nr_pages;
1083 		start = cur_end + 1;
1084 	}
1085 	*page_started = 1;
1086 	return 0;
1087 }
1088 
1089 static noinline int csum_exist_in_range(struct btrfs_root *root,
1090 					u64 bytenr, u64 num_bytes)
1091 {
1092 	int ret;
1093 	struct btrfs_ordered_sum *sums;
1094 	LIST_HEAD(list);
1095 
1096 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1097 				       bytenr + num_bytes - 1, &list, 0);
1098 	if (ret == 0 && list_empty(&list))
1099 		return 0;
1100 
1101 	while (!list_empty(&list)) {
1102 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1103 		list_del(&sums->list);
1104 		kfree(sums);
1105 	}
1106 	return 1;
1107 }
1108 
1109 /*
1110  * when nowcow writeback call back.  This checks for snapshots or COW copies
1111  * of the extents that exist in the file, and COWs the file as required.
1112  *
1113  * If no cow copies or snapshots exist, we write directly to the existing
1114  * blocks on disk
1115  */
1116 static noinline int run_delalloc_nocow(struct inode *inode,
1117 				       struct page *locked_page,
1118 			      u64 start, u64 end, int *page_started, int force,
1119 			      unsigned long *nr_written)
1120 {
1121 	struct btrfs_root *root = BTRFS_I(inode)->root;
1122 	struct btrfs_trans_handle *trans;
1123 	struct extent_buffer *leaf;
1124 	struct btrfs_path *path;
1125 	struct btrfs_file_extent_item *fi;
1126 	struct btrfs_key found_key;
1127 	u64 cow_start;
1128 	u64 cur_offset;
1129 	u64 extent_end;
1130 	u64 extent_offset;
1131 	u64 disk_bytenr;
1132 	u64 num_bytes;
1133 	int extent_type;
1134 	int ret, err;
1135 	int type;
1136 	int nocow;
1137 	int check_prev = 1;
1138 	bool nolock;
1139 	u64 ino = btrfs_ino(inode);
1140 
1141 	path = btrfs_alloc_path();
1142 	if (!path) {
1143 		extent_clear_unlock_delalloc(inode,
1144 			     &BTRFS_I(inode)->io_tree,
1145 			     start, end, locked_page,
1146 			     EXTENT_CLEAR_UNLOCK_PAGE |
1147 			     EXTENT_CLEAR_UNLOCK |
1148 			     EXTENT_CLEAR_DELALLOC |
1149 			     EXTENT_CLEAR_DIRTY |
1150 			     EXTENT_SET_WRITEBACK |
1151 			     EXTENT_END_WRITEBACK);
1152 		return -ENOMEM;
1153 	}
1154 
1155 	nolock = btrfs_is_free_space_inode(inode);
1156 
1157 	if (nolock)
1158 		trans = btrfs_join_transaction_nolock(root);
1159 	else
1160 		trans = btrfs_join_transaction(root);
1161 
1162 	if (IS_ERR(trans)) {
1163 		extent_clear_unlock_delalloc(inode,
1164 			     &BTRFS_I(inode)->io_tree,
1165 			     start, end, locked_page,
1166 			     EXTENT_CLEAR_UNLOCK_PAGE |
1167 			     EXTENT_CLEAR_UNLOCK |
1168 			     EXTENT_CLEAR_DELALLOC |
1169 			     EXTENT_CLEAR_DIRTY |
1170 			     EXTENT_SET_WRITEBACK |
1171 			     EXTENT_END_WRITEBACK);
1172 		btrfs_free_path(path);
1173 		return PTR_ERR(trans);
1174 	}
1175 
1176 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1177 
1178 	cow_start = (u64)-1;
1179 	cur_offset = start;
1180 	while (1) {
1181 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1182 					       cur_offset, 0);
1183 		if (ret < 0) {
1184 			btrfs_abort_transaction(trans, root, ret);
1185 			goto error;
1186 		}
1187 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1188 			leaf = path->nodes[0];
1189 			btrfs_item_key_to_cpu(leaf, &found_key,
1190 					      path->slots[0] - 1);
1191 			if (found_key.objectid == ino &&
1192 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1193 				path->slots[0]--;
1194 		}
1195 		check_prev = 0;
1196 next_slot:
1197 		leaf = path->nodes[0];
1198 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1199 			ret = btrfs_next_leaf(root, path);
1200 			if (ret < 0) {
1201 				btrfs_abort_transaction(trans, root, ret);
1202 				goto error;
1203 			}
1204 			if (ret > 0)
1205 				break;
1206 			leaf = path->nodes[0];
1207 		}
1208 
1209 		nocow = 0;
1210 		disk_bytenr = 0;
1211 		num_bytes = 0;
1212 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1213 
1214 		if (found_key.objectid > ino ||
1215 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1216 		    found_key.offset > end)
1217 			break;
1218 
1219 		if (found_key.offset > cur_offset) {
1220 			extent_end = found_key.offset;
1221 			extent_type = 0;
1222 			goto out_check;
1223 		}
1224 
1225 		fi = btrfs_item_ptr(leaf, path->slots[0],
1226 				    struct btrfs_file_extent_item);
1227 		extent_type = btrfs_file_extent_type(leaf, fi);
1228 
1229 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1230 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1231 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1232 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1233 			extent_end = found_key.offset +
1234 				btrfs_file_extent_num_bytes(leaf, fi);
1235 			if (extent_end <= start) {
1236 				path->slots[0]++;
1237 				goto next_slot;
1238 			}
1239 			if (disk_bytenr == 0)
1240 				goto out_check;
1241 			if (btrfs_file_extent_compression(leaf, fi) ||
1242 			    btrfs_file_extent_encryption(leaf, fi) ||
1243 			    btrfs_file_extent_other_encoding(leaf, fi))
1244 				goto out_check;
1245 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1246 				goto out_check;
1247 			if (btrfs_extent_readonly(root, disk_bytenr))
1248 				goto out_check;
1249 			if (btrfs_cross_ref_exist(trans, root, ino,
1250 						  found_key.offset -
1251 						  extent_offset, disk_bytenr))
1252 				goto out_check;
1253 			disk_bytenr += extent_offset;
1254 			disk_bytenr += cur_offset - found_key.offset;
1255 			num_bytes = min(end + 1, extent_end) - cur_offset;
1256 			/*
1257 			 * force cow if csum exists in the range.
1258 			 * this ensure that csum for a given extent are
1259 			 * either valid or do not exist.
1260 			 */
1261 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1262 				goto out_check;
1263 			nocow = 1;
1264 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1265 			extent_end = found_key.offset +
1266 				btrfs_file_extent_inline_len(leaf, fi);
1267 			extent_end = ALIGN(extent_end, root->sectorsize);
1268 		} else {
1269 			BUG_ON(1);
1270 		}
1271 out_check:
1272 		if (extent_end <= start) {
1273 			path->slots[0]++;
1274 			goto next_slot;
1275 		}
1276 		if (!nocow) {
1277 			if (cow_start == (u64)-1)
1278 				cow_start = cur_offset;
1279 			cur_offset = extent_end;
1280 			if (cur_offset > end)
1281 				break;
1282 			path->slots[0]++;
1283 			goto next_slot;
1284 		}
1285 
1286 		btrfs_release_path(path);
1287 		if (cow_start != (u64)-1) {
1288 			ret = cow_file_range(inode, locked_page, cow_start,
1289 					found_key.offset - 1, page_started,
1290 					nr_written, 1);
1291 			if (ret) {
1292 				btrfs_abort_transaction(trans, root, ret);
1293 				goto error;
1294 			}
1295 			cow_start = (u64)-1;
1296 		}
1297 
1298 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1299 			struct extent_map *em;
1300 			struct extent_map_tree *em_tree;
1301 			em_tree = &BTRFS_I(inode)->extent_tree;
1302 			em = alloc_extent_map();
1303 			BUG_ON(!em); /* -ENOMEM */
1304 			em->start = cur_offset;
1305 			em->orig_start = em->start;
1306 			em->len = num_bytes;
1307 			em->block_len = num_bytes;
1308 			em->block_start = disk_bytenr;
1309 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1310 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1311 			while (1) {
1312 				write_lock(&em_tree->lock);
1313 				ret = add_extent_mapping(em_tree, em);
1314 				write_unlock(&em_tree->lock);
1315 				if (ret != -EEXIST) {
1316 					free_extent_map(em);
1317 					break;
1318 				}
1319 				btrfs_drop_extent_cache(inode, em->start,
1320 						em->start + em->len - 1, 0);
1321 			}
1322 			type = BTRFS_ORDERED_PREALLOC;
1323 		} else {
1324 			type = BTRFS_ORDERED_NOCOW;
1325 		}
1326 
1327 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1328 					       num_bytes, num_bytes, type);
1329 		BUG_ON(ret); /* -ENOMEM */
1330 
1331 		if (root->root_key.objectid ==
1332 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1333 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1334 						      num_bytes);
1335 			if (ret) {
1336 				btrfs_abort_transaction(trans, root, ret);
1337 				goto error;
1338 			}
1339 		}
1340 
1341 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1342 				cur_offset, cur_offset + num_bytes - 1,
1343 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1344 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1345 				EXTENT_SET_PRIVATE2);
1346 		cur_offset = extent_end;
1347 		if (cur_offset > end)
1348 			break;
1349 	}
1350 	btrfs_release_path(path);
1351 
1352 	if (cur_offset <= end && cow_start == (u64)-1) {
1353 		cow_start = cur_offset;
1354 		cur_offset = end;
1355 	}
1356 
1357 	if (cow_start != (u64)-1) {
1358 		ret = cow_file_range(inode, locked_page, cow_start, end,
1359 				     page_started, nr_written, 1);
1360 		if (ret) {
1361 			btrfs_abort_transaction(trans, root, ret);
1362 			goto error;
1363 		}
1364 	}
1365 
1366 error:
1367 	if (nolock) {
1368 		err = btrfs_end_transaction_nolock(trans, root);
1369 	} else {
1370 		err = btrfs_end_transaction(trans, root);
1371 	}
1372 	if (!ret)
1373 		ret = err;
1374 
1375 	if (ret && cur_offset < end)
1376 		extent_clear_unlock_delalloc(inode,
1377 			     &BTRFS_I(inode)->io_tree,
1378 			     cur_offset, end, locked_page,
1379 			     EXTENT_CLEAR_UNLOCK_PAGE |
1380 			     EXTENT_CLEAR_UNLOCK |
1381 			     EXTENT_CLEAR_DELALLOC |
1382 			     EXTENT_CLEAR_DIRTY |
1383 			     EXTENT_SET_WRITEBACK |
1384 			     EXTENT_END_WRITEBACK);
1385 
1386 	btrfs_free_path(path);
1387 	return ret;
1388 }
1389 
1390 /*
1391  * extent_io.c call back to do delayed allocation processing
1392  */
1393 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1394 			      u64 start, u64 end, int *page_started,
1395 			      unsigned long *nr_written)
1396 {
1397 	int ret;
1398 	struct btrfs_root *root = BTRFS_I(inode)->root;
1399 
1400 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1401 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1402 					 page_started, 1, nr_written);
1403 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1404 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1405 					 page_started, 0, nr_written);
1406 	} else if (!btrfs_test_opt(root, COMPRESS) &&
1407 		   !(BTRFS_I(inode)->force_compress) &&
1408 		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1409 		ret = cow_file_range(inode, locked_page, start, end,
1410 				      page_started, nr_written, 1);
1411 	} else {
1412 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1413 			&BTRFS_I(inode)->runtime_flags);
1414 		ret = cow_file_range_async(inode, locked_page, start, end,
1415 					   page_started, nr_written);
1416 	}
1417 	return ret;
1418 }
1419 
1420 static void btrfs_split_extent_hook(struct inode *inode,
1421 				    struct extent_state *orig, u64 split)
1422 {
1423 	/* not delalloc, ignore it */
1424 	if (!(orig->state & EXTENT_DELALLOC))
1425 		return;
1426 
1427 	spin_lock(&BTRFS_I(inode)->lock);
1428 	BTRFS_I(inode)->outstanding_extents++;
1429 	spin_unlock(&BTRFS_I(inode)->lock);
1430 }
1431 
1432 /*
1433  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1434  * extents so we can keep track of new extents that are just merged onto old
1435  * extents, such as when we are doing sequential writes, so we can properly
1436  * account for the metadata space we'll need.
1437  */
1438 static void btrfs_merge_extent_hook(struct inode *inode,
1439 				    struct extent_state *new,
1440 				    struct extent_state *other)
1441 {
1442 	/* not delalloc, ignore it */
1443 	if (!(other->state & EXTENT_DELALLOC))
1444 		return;
1445 
1446 	spin_lock(&BTRFS_I(inode)->lock);
1447 	BTRFS_I(inode)->outstanding_extents--;
1448 	spin_unlock(&BTRFS_I(inode)->lock);
1449 }
1450 
1451 /*
1452  * extent_io.c set_bit_hook, used to track delayed allocation
1453  * bytes in this file, and to maintain the list of inodes that
1454  * have pending delalloc work to be done.
1455  */
1456 static void btrfs_set_bit_hook(struct inode *inode,
1457 			       struct extent_state *state, int *bits)
1458 {
1459 
1460 	/*
1461 	 * set_bit and clear bit hooks normally require _irqsave/restore
1462 	 * but in this case, we are only testing for the DELALLOC
1463 	 * bit, which is only set or cleared with irqs on
1464 	 */
1465 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1466 		struct btrfs_root *root = BTRFS_I(inode)->root;
1467 		u64 len = state->end + 1 - state->start;
1468 		bool do_list = !btrfs_is_free_space_inode(inode);
1469 
1470 		if (*bits & EXTENT_FIRST_DELALLOC) {
1471 			*bits &= ~EXTENT_FIRST_DELALLOC;
1472 		} else {
1473 			spin_lock(&BTRFS_I(inode)->lock);
1474 			BTRFS_I(inode)->outstanding_extents++;
1475 			spin_unlock(&BTRFS_I(inode)->lock);
1476 		}
1477 
1478 		spin_lock(&root->fs_info->delalloc_lock);
1479 		BTRFS_I(inode)->delalloc_bytes += len;
1480 		root->fs_info->delalloc_bytes += len;
1481 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1482 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1483 				      &root->fs_info->delalloc_inodes);
1484 		}
1485 		spin_unlock(&root->fs_info->delalloc_lock);
1486 	}
1487 }
1488 
1489 /*
1490  * extent_io.c clear_bit_hook, see set_bit_hook for why
1491  */
1492 static void btrfs_clear_bit_hook(struct inode *inode,
1493 				 struct extent_state *state, int *bits)
1494 {
1495 	/*
1496 	 * set_bit and clear bit hooks normally require _irqsave/restore
1497 	 * but in this case, we are only testing for the DELALLOC
1498 	 * bit, which is only set or cleared with irqs on
1499 	 */
1500 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1501 		struct btrfs_root *root = BTRFS_I(inode)->root;
1502 		u64 len = state->end + 1 - state->start;
1503 		bool do_list = !btrfs_is_free_space_inode(inode);
1504 
1505 		if (*bits & EXTENT_FIRST_DELALLOC) {
1506 			*bits &= ~EXTENT_FIRST_DELALLOC;
1507 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1508 			spin_lock(&BTRFS_I(inode)->lock);
1509 			BTRFS_I(inode)->outstanding_extents--;
1510 			spin_unlock(&BTRFS_I(inode)->lock);
1511 		}
1512 
1513 		if (*bits & EXTENT_DO_ACCOUNTING)
1514 			btrfs_delalloc_release_metadata(inode, len);
1515 
1516 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1517 		    && do_list)
1518 			btrfs_free_reserved_data_space(inode, len);
1519 
1520 		spin_lock(&root->fs_info->delalloc_lock);
1521 		root->fs_info->delalloc_bytes -= len;
1522 		BTRFS_I(inode)->delalloc_bytes -= len;
1523 
1524 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1525 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1526 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1527 		}
1528 		spin_unlock(&root->fs_info->delalloc_lock);
1529 	}
1530 }
1531 
1532 /*
1533  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1534  * we don't create bios that span stripes or chunks
1535  */
1536 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1537 			 size_t size, struct bio *bio,
1538 			 unsigned long bio_flags)
1539 {
1540 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1541 	struct btrfs_mapping_tree *map_tree;
1542 	u64 logical = (u64)bio->bi_sector << 9;
1543 	u64 length = 0;
1544 	u64 map_length;
1545 	int ret;
1546 
1547 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1548 		return 0;
1549 
1550 	length = bio->bi_size;
1551 	map_tree = &root->fs_info->mapping_tree;
1552 	map_length = length;
1553 	ret = btrfs_map_block(map_tree, READ, logical,
1554 			      &map_length, NULL, 0);
1555 	/* Will always return 0 or 1 with map_multi == NULL */
1556 	BUG_ON(ret < 0);
1557 	if (map_length < length + size)
1558 		return 1;
1559 	return 0;
1560 }
1561 
1562 /*
1563  * in order to insert checksums into the metadata in large chunks,
1564  * we wait until bio submission time.   All the pages in the bio are
1565  * checksummed and sums are attached onto the ordered extent record.
1566  *
1567  * At IO completion time the cums attached on the ordered extent record
1568  * are inserted into the btree
1569  */
1570 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1571 				    struct bio *bio, int mirror_num,
1572 				    unsigned long bio_flags,
1573 				    u64 bio_offset)
1574 {
1575 	struct btrfs_root *root = BTRFS_I(inode)->root;
1576 	int ret = 0;
1577 
1578 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1579 	BUG_ON(ret); /* -ENOMEM */
1580 	return 0;
1581 }
1582 
1583 /*
1584  * in order to insert checksums into the metadata in large chunks,
1585  * we wait until bio submission time.   All the pages in the bio are
1586  * checksummed and sums are attached onto the ordered extent record.
1587  *
1588  * At IO completion time the cums attached on the ordered extent record
1589  * are inserted into the btree
1590  */
1591 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1592 			  int mirror_num, unsigned long bio_flags,
1593 			  u64 bio_offset)
1594 {
1595 	struct btrfs_root *root = BTRFS_I(inode)->root;
1596 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1597 }
1598 
1599 /*
1600  * extent_io.c submission hook. This does the right thing for csum calculation
1601  * on write, or reading the csums from the tree before a read
1602  */
1603 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1604 			  int mirror_num, unsigned long bio_flags,
1605 			  u64 bio_offset)
1606 {
1607 	struct btrfs_root *root = BTRFS_I(inode)->root;
1608 	int ret = 0;
1609 	int skip_sum;
1610 	int metadata = 0;
1611 
1612 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1613 
1614 	if (btrfs_is_free_space_inode(inode))
1615 		metadata = 2;
1616 
1617 	if (!(rw & REQ_WRITE)) {
1618 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1619 		if (ret)
1620 			return ret;
1621 
1622 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1623 			return btrfs_submit_compressed_read(inode, bio,
1624 						    mirror_num, bio_flags);
1625 		} else if (!skip_sum) {
1626 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1627 			if (ret)
1628 				return ret;
1629 		}
1630 		goto mapit;
1631 	} else if (!skip_sum) {
1632 		/* csum items have already been cloned */
1633 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1634 			goto mapit;
1635 		/* we're doing a write, do the async checksumming */
1636 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1637 				   inode, rw, bio, mirror_num,
1638 				   bio_flags, bio_offset,
1639 				   __btrfs_submit_bio_start,
1640 				   __btrfs_submit_bio_done);
1641 	}
1642 
1643 mapit:
1644 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1645 }
1646 
1647 /*
1648  * given a list of ordered sums record them in the inode.  This happens
1649  * at IO completion time based on sums calculated at bio submission time.
1650  */
1651 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1652 			     struct inode *inode, u64 file_offset,
1653 			     struct list_head *list)
1654 {
1655 	struct btrfs_ordered_sum *sum;
1656 
1657 	list_for_each_entry(sum, list, list) {
1658 		btrfs_csum_file_blocks(trans,
1659 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1660 	}
1661 	return 0;
1662 }
1663 
1664 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1665 			      struct extent_state **cached_state)
1666 {
1667 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1668 		WARN_ON(1);
1669 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1670 				   cached_state, GFP_NOFS);
1671 }
1672 
1673 /* see btrfs_writepage_start_hook for details on why this is required */
1674 struct btrfs_writepage_fixup {
1675 	struct page *page;
1676 	struct btrfs_work work;
1677 };
1678 
1679 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1680 {
1681 	struct btrfs_writepage_fixup *fixup;
1682 	struct btrfs_ordered_extent *ordered;
1683 	struct extent_state *cached_state = NULL;
1684 	struct page *page;
1685 	struct inode *inode;
1686 	u64 page_start;
1687 	u64 page_end;
1688 	int ret;
1689 
1690 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1691 	page = fixup->page;
1692 again:
1693 	lock_page(page);
1694 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1695 		ClearPageChecked(page);
1696 		goto out_page;
1697 	}
1698 
1699 	inode = page->mapping->host;
1700 	page_start = page_offset(page);
1701 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1702 
1703 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1704 			 &cached_state);
1705 
1706 	/* already ordered? We're done */
1707 	if (PagePrivate2(page))
1708 		goto out;
1709 
1710 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1711 	if (ordered) {
1712 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1713 				     page_end, &cached_state, GFP_NOFS);
1714 		unlock_page(page);
1715 		btrfs_start_ordered_extent(inode, ordered, 1);
1716 		btrfs_put_ordered_extent(ordered);
1717 		goto again;
1718 	}
1719 
1720 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1721 	if (ret) {
1722 		mapping_set_error(page->mapping, ret);
1723 		end_extent_writepage(page, ret, page_start, page_end);
1724 		ClearPageChecked(page);
1725 		goto out;
1726 	 }
1727 
1728 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1729 	ClearPageChecked(page);
1730 	set_page_dirty(page);
1731 out:
1732 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1733 			     &cached_state, GFP_NOFS);
1734 out_page:
1735 	unlock_page(page);
1736 	page_cache_release(page);
1737 	kfree(fixup);
1738 }
1739 
1740 /*
1741  * There are a few paths in the higher layers of the kernel that directly
1742  * set the page dirty bit without asking the filesystem if it is a
1743  * good idea.  This causes problems because we want to make sure COW
1744  * properly happens and the data=ordered rules are followed.
1745  *
1746  * In our case any range that doesn't have the ORDERED bit set
1747  * hasn't been properly setup for IO.  We kick off an async process
1748  * to fix it up.  The async helper will wait for ordered extents, set
1749  * the delalloc bit and make it safe to write the page.
1750  */
1751 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1752 {
1753 	struct inode *inode = page->mapping->host;
1754 	struct btrfs_writepage_fixup *fixup;
1755 	struct btrfs_root *root = BTRFS_I(inode)->root;
1756 
1757 	/* this page is properly in the ordered list */
1758 	if (TestClearPagePrivate2(page))
1759 		return 0;
1760 
1761 	if (PageChecked(page))
1762 		return -EAGAIN;
1763 
1764 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1765 	if (!fixup)
1766 		return -EAGAIN;
1767 
1768 	SetPageChecked(page);
1769 	page_cache_get(page);
1770 	fixup->work.func = btrfs_writepage_fixup_worker;
1771 	fixup->page = page;
1772 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1773 	return -EBUSY;
1774 }
1775 
1776 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1777 				       struct inode *inode, u64 file_pos,
1778 				       u64 disk_bytenr, u64 disk_num_bytes,
1779 				       u64 num_bytes, u64 ram_bytes,
1780 				       u8 compression, u8 encryption,
1781 				       u16 other_encoding, int extent_type)
1782 {
1783 	struct btrfs_root *root = BTRFS_I(inode)->root;
1784 	struct btrfs_file_extent_item *fi;
1785 	struct btrfs_path *path;
1786 	struct extent_buffer *leaf;
1787 	struct btrfs_key ins;
1788 	u64 hint;
1789 	int ret;
1790 
1791 	path = btrfs_alloc_path();
1792 	if (!path)
1793 		return -ENOMEM;
1794 
1795 	path->leave_spinning = 1;
1796 
1797 	/*
1798 	 * we may be replacing one extent in the tree with another.
1799 	 * The new extent is pinned in the extent map, and we don't want
1800 	 * to drop it from the cache until it is completely in the btree.
1801 	 *
1802 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1803 	 * the caller is expected to unpin it and allow it to be merged
1804 	 * with the others.
1805 	 */
1806 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1807 				 &hint, 0);
1808 	if (ret)
1809 		goto out;
1810 
1811 	ins.objectid = btrfs_ino(inode);
1812 	ins.offset = file_pos;
1813 	ins.type = BTRFS_EXTENT_DATA_KEY;
1814 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1815 	if (ret)
1816 		goto out;
1817 	leaf = path->nodes[0];
1818 	fi = btrfs_item_ptr(leaf, path->slots[0],
1819 			    struct btrfs_file_extent_item);
1820 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1821 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1822 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1823 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1824 	btrfs_set_file_extent_offset(leaf, fi, 0);
1825 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1826 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1827 	btrfs_set_file_extent_compression(leaf, fi, compression);
1828 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1829 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1830 
1831 	btrfs_unlock_up_safe(path, 1);
1832 	btrfs_set_lock_blocking(leaf);
1833 
1834 	btrfs_mark_buffer_dirty(leaf);
1835 
1836 	inode_add_bytes(inode, num_bytes);
1837 
1838 	ins.objectid = disk_bytenr;
1839 	ins.offset = disk_num_bytes;
1840 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1841 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1842 					root->root_key.objectid,
1843 					btrfs_ino(inode), file_pos, &ins);
1844 out:
1845 	btrfs_free_path(path);
1846 
1847 	return ret;
1848 }
1849 
1850 /*
1851  * helper function for btrfs_finish_ordered_io, this
1852  * just reads in some of the csum leaves to prime them into ram
1853  * before we start the transaction.  It limits the amount of btree
1854  * reads required while inside the transaction.
1855  */
1856 /* as ordered data IO finishes, this gets called so we can finish
1857  * an ordered extent if the range of bytes in the file it covers are
1858  * fully written.
1859  */
1860 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1861 {
1862 	struct inode *inode = ordered_extent->inode;
1863 	struct btrfs_root *root = BTRFS_I(inode)->root;
1864 	struct btrfs_trans_handle *trans = NULL;
1865 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1866 	struct extent_state *cached_state = NULL;
1867 	int compress_type = 0;
1868 	int ret;
1869 	bool nolock;
1870 
1871 	nolock = btrfs_is_free_space_inode(inode);
1872 
1873 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1874 		ret = -EIO;
1875 		goto out;
1876 	}
1877 
1878 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1879 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1880 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1881 		if (!ret) {
1882 			if (nolock)
1883 				trans = btrfs_join_transaction_nolock(root);
1884 			else
1885 				trans = btrfs_join_transaction(root);
1886 			if (IS_ERR(trans)) {
1887 				ret = PTR_ERR(trans);
1888 				trans = NULL;
1889 				goto out;
1890 			}
1891 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1892 			ret = btrfs_update_inode_fallback(trans, root, inode);
1893 			if (ret) /* -ENOMEM or corruption */
1894 				btrfs_abort_transaction(trans, root, ret);
1895 		}
1896 		goto out;
1897 	}
1898 
1899 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1900 			 ordered_extent->file_offset + ordered_extent->len - 1,
1901 			 0, &cached_state);
1902 
1903 	if (nolock)
1904 		trans = btrfs_join_transaction_nolock(root);
1905 	else
1906 		trans = btrfs_join_transaction(root);
1907 	if (IS_ERR(trans)) {
1908 		ret = PTR_ERR(trans);
1909 		trans = NULL;
1910 		goto out_unlock;
1911 	}
1912 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1913 
1914 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1915 		compress_type = ordered_extent->compress_type;
1916 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1917 		BUG_ON(compress_type);
1918 		ret = btrfs_mark_extent_written(trans, inode,
1919 						ordered_extent->file_offset,
1920 						ordered_extent->file_offset +
1921 						ordered_extent->len);
1922 	} else {
1923 		BUG_ON(root == root->fs_info->tree_root);
1924 		ret = insert_reserved_file_extent(trans, inode,
1925 						ordered_extent->file_offset,
1926 						ordered_extent->start,
1927 						ordered_extent->disk_len,
1928 						ordered_extent->len,
1929 						ordered_extent->len,
1930 						compress_type, 0, 0,
1931 						BTRFS_FILE_EXTENT_REG);
1932 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1933 				   ordered_extent->file_offset,
1934 				   ordered_extent->len);
1935 	}
1936 
1937 	if (ret < 0) {
1938 		btrfs_abort_transaction(trans, root, ret);
1939 		goto out_unlock;
1940 	}
1941 
1942 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1943 			  &ordered_extent->list);
1944 
1945 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1946 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1947 		ret = btrfs_update_inode_fallback(trans, root, inode);
1948 		if (ret) { /* -ENOMEM or corruption */
1949 			btrfs_abort_transaction(trans, root, ret);
1950 			goto out_unlock;
1951 		}
1952 	}
1953 	ret = 0;
1954 out_unlock:
1955 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1956 			     ordered_extent->file_offset +
1957 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1958 out:
1959 	if (root != root->fs_info->tree_root)
1960 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1961 	if (trans) {
1962 		if (nolock)
1963 			btrfs_end_transaction_nolock(trans, root);
1964 		else
1965 			btrfs_end_transaction(trans, root);
1966 	}
1967 
1968 	if (ret)
1969 		clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1970 				      ordered_extent->file_offset +
1971 				      ordered_extent->len - 1, NULL, GFP_NOFS);
1972 
1973 	/*
1974 	 * This needs to be dont to make sure anybody waiting knows we are done
1975 	 * upating everything for this ordered extent.
1976 	 */
1977 	btrfs_remove_ordered_extent(inode, ordered_extent);
1978 
1979 	/* once for us */
1980 	btrfs_put_ordered_extent(ordered_extent);
1981 	/* once for the tree */
1982 	btrfs_put_ordered_extent(ordered_extent);
1983 
1984 	return ret;
1985 }
1986 
1987 static void finish_ordered_fn(struct btrfs_work *work)
1988 {
1989 	struct btrfs_ordered_extent *ordered_extent;
1990 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1991 	btrfs_finish_ordered_io(ordered_extent);
1992 }
1993 
1994 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1995 				struct extent_state *state, int uptodate)
1996 {
1997 	struct inode *inode = page->mapping->host;
1998 	struct btrfs_root *root = BTRFS_I(inode)->root;
1999 	struct btrfs_ordered_extent *ordered_extent = NULL;
2000 	struct btrfs_workers *workers;
2001 
2002 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2003 
2004 	ClearPagePrivate2(page);
2005 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2006 					    end - start + 1, uptodate))
2007 		return 0;
2008 
2009 	ordered_extent->work.func = finish_ordered_fn;
2010 	ordered_extent->work.flags = 0;
2011 
2012 	if (btrfs_is_free_space_inode(inode))
2013 		workers = &root->fs_info->endio_freespace_worker;
2014 	else
2015 		workers = &root->fs_info->endio_write_workers;
2016 	btrfs_queue_worker(workers, &ordered_extent->work);
2017 
2018 	return 0;
2019 }
2020 
2021 /*
2022  * when reads are done, we need to check csums to verify the data is correct
2023  * if there's a match, we allow the bio to finish.  If not, the code in
2024  * extent_io.c will try to find good copies for us.
2025  */
2026 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2027 			       struct extent_state *state, int mirror)
2028 {
2029 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2030 	struct inode *inode = page->mapping->host;
2031 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2032 	char *kaddr;
2033 	u64 private = ~(u32)0;
2034 	int ret;
2035 	struct btrfs_root *root = BTRFS_I(inode)->root;
2036 	u32 csum = ~(u32)0;
2037 
2038 	if (PageChecked(page)) {
2039 		ClearPageChecked(page);
2040 		goto good;
2041 	}
2042 
2043 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2044 		goto good;
2045 
2046 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2047 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2048 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2049 				  GFP_NOFS);
2050 		return 0;
2051 	}
2052 
2053 	if (state && state->start == start) {
2054 		private = state->private;
2055 		ret = 0;
2056 	} else {
2057 		ret = get_state_private(io_tree, start, &private);
2058 	}
2059 	kaddr = kmap_atomic(page);
2060 	if (ret)
2061 		goto zeroit;
2062 
2063 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2064 	btrfs_csum_final(csum, (char *)&csum);
2065 	if (csum != private)
2066 		goto zeroit;
2067 
2068 	kunmap_atomic(kaddr);
2069 good:
2070 	return 0;
2071 
2072 zeroit:
2073 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2074 		       "private %llu\n",
2075 		       (unsigned long long)btrfs_ino(page->mapping->host),
2076 		       (unsigned long long)start, csum,
2077 		       (unsigned long long)private);
2078 	memset(kaddr + offset, 1, end - start + 1);
2079 	flush_dcache_page(page);
2080 	kunmap_atomic(kaddr);
2081 	if (private == 0)
2082 		return 0;
2083 	return -EIO;
2084 }
2085 
2086 struct delayed_iput {
2087 	struct list_head list;
2088 	struct inode *inode;
2089 };
2090 
2091 /* JDM: If this is fs-wide, why can't we add a pointer to
2092  * btrfs_inode instead and avoid the allocation? */
2093 void btrfs_add_delayed_iput(struct inode *inode)
2094 {
2095 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2096 	struct delayed_iput *delayed;
2097 
2098 	if (atomic_add_unless(&inode->i_count, -1, 1))
2099 		return;
2100 
2101 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2102 	delayed->inode = inode;
2103 
2104 	spin_lock(&fs_info->delayed_iput_lock);
2105 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2106 	spin_unlock(&fs_info->delayed_iput_lock);
2107 }
2108 
2109 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2110 {
2111 	LIST_HEAD(list);
2112 	struct btrfs_fs_info *fs_info = root->fs_info;
2113 	struct delayed_iput *delayed;
2114 	int empty;
2115 
2116 	spin_lock(&fs_info->delayed_iput_lock);
2117 	empty = list_empty(&fs_info->delayed_iputs);
2118 	spin_unlock(&fs_info->delayed_iput_lock);
2119 	if (empty)
2120 		return;
2121 
2122 	down_read(&root->fs_info->cleanup_work_sem);
2123 	spin_lock(&fs_info->delayed_iput_lock);
2124 	list_splice_init(&fs_info->delayed_iputs, &list);
2125 	spin_unlock(&fs_info->delayed_iput_lock);
2126 
2127 	while (!list_empty(&list)) {
2128 		delayed = list_entry(list.next, struct delayed_iput, list);
2129 		list_del(&delayed->list);
2130 		iput(delayed->inode);
2131 		kfree(delayed);
2132 	}
2133 	up_read(&root->fs_info->cleanup_work_sem);
2134 }
2135 
2136 enum btrfs_orphan_cleanup_state {
2137 	ORPHAN_CLEANUP_STARTED	= 1,
2138 	ORPHAN_CLEANUP_DONE	= 2,
2139 };
2140 
2141 /*
2142  * This is called in transaction commit time. If there are no orphan
2143  * files in the subvolume, it removes orphan item and frees block_rsv
2144  * structure.
2145  */
2146 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2147 			      struct btrfs_root *root)
2148 {
2149 	struct btrfs_block_rsv *block_rsv;
2150 	int ret;
2151 
2152 	if (atomic_read(&root->orphan_inodes) ||
2153 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2154 		return;
2155 
2156 	spin_lock(&root->orphan_lock);
2157 	if (atomic_read(&root->orphan_inodes)) {
2158 		spin_unlock(&root->orphan_lock);
2159 		return;
2160 	}
2161 
2162 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2163 		spin_unlock(&root->orphan_lock);
2164 		return;
2165 	}
2166 
2167 	block_rsv = root->orphan_block_rsv;
2168 	root->orphan_block_rsv = NULL;
2169 	spin_unlock(&root->orphan_lock);
2170 
2171 	if (root->orphan_item_inserted &&
2172 	    btrfs_root_refs(&root->root_item) > 0) {
2173 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2174 					    root->root_key.objectid);
2175 		BUG_ON(ret);
2176 		root->orphan_item_inserted = 0;
2177 	}
2178 
2179 	if (block_rsv) {
2180 		WARN_ON(block_rsv->size > 0);
2181 		btrfs_free_block_rsv(root, block_rsv);
2182 	}
2183 }
2184 
2185 /*
2186  * This creates an orphan entry for the given inode in case something goes
2187  * wrong in the middle of an unlink/truncate.
2188  *
2189  * NOTE: caller of this function should reserve 5 units of metadata for
2190  *	 this function.
2191  */
2192 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2193 {
2194 	struct btrfs_root *root = BTRFS_I(inode)->root;
2195 	struct btrfs_block_rsv *block_rsv = NULL;
2196 	int reserve = 0;
2197 	int insert = 0;
2198 	int ret;
2199 
2200 	if (!root->orphan_block_rsv) {
2201 		block_rsv = btrfs_alloc_block_rsv(root);
2202 		if (!block_rsv)
2203 			return -ENOMEM;
2204 	}
2205 
2206 	spin_lock(&root->orphan_lock);
2207 	if (!root->orphan_block_rsv) {
2208 		root->orphan_block_rsv = block_rsv;
2209 	} else if (block_rsv) {
2210 		btrfs_free_block_rsv(root, block_rsv);
2211 		block_rsv = NULL;
2212 	}
2213 
2214 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2215 			      &BTRFS_I(inode)->runtime_flags)) {
2216 #if 0
2217 		/*
2218 		 * For proper ENOSPC handling, we should do orphan
2219 		 * cleanup when mounting. But this introduces backward
2220 		 * compatibility issue.
2221 		 */
2222 		if (!xchg(&root->orphan_item_inserted, 1))
2223 			insert = 2;
2224 		else
2225 			insert = 1;
2226 #endif
2227 		insert = 1;
2228 		atomic_dec(&root->orphan_inodes);
2229 	}
2230 
2231 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2232 			      &BTRFS_I(inode)->runtime_flags))
2233 		reserve = 1;
2234 	spin_unlock(&root->orphan_lock);
2235 
2236 	/* grab metadata reservation from transaction handle */
2237 	if (reserve) {
2238 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2239 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2240 	}
2241 
2242 	/* insert an orphan item to track this unlinked/truncated file */
2243 	if (insert >= 1) {
2244 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2245 		if (ret && ret != -EEXIST) {
2246 			clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2247 				  &BTRFS_I(inode)->runtime_flags);
2248 			btrfs_abort_transaction(trans, root, ret);
2249 			return ret;
2250 		}
2251 		ret = 0;
2252 	}
2253 
2254 	/* insert an orphan item to track subvolume contains orphan files */
2255 	if (insert >= 2) {
2256 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2257 					       root->root_key.objectid);
2258 		if (ret && ret != -EEXIST) {
2259 			btrfs_abort_transaction(trans, root, ret);
2260 			return ret;
2261 		}
2262 	}
2263 	return 0;
2264 }
2265 
2266 /*
2267  * We have done the truncate/delete so we can go ahead and remove the orphan
2268  * item for this particular inode.
2269  */
2270 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2271 {
2272 	struct btrfs_root *root = BTRFS_I(inode)->root;
2273 	int delete_item = 0;
2274 	int release_rsv = 0;
2275 	int ret = 0;
2276 
2277 	spin_lock(&root->orphan_lock);
2278 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2279 			       &BTRFS_I(inode)->runtime_flags))
2280 		delete_item = 1;
2281 
2282 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2283 			       &BTRFS_I(inode)->runtime_flags))
2284 		release_rsv = 1;
2285 	spin_unlock(&root->orphan_lock);
2286 
2287 	if (trans && delete_item) {
2288 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2289 		BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2290 	}
2291 
2292 	if (release_rsv) {
2293 		btrfs_orphan_release_metadata(inode);
2294 		atomic_dec(&root->orphan_inodes);
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 /*
2301  * this cleans up any orphans that may be left on the list from the last use
2302  * of this root.
2303  */
2304 int btrfs_orphan_cleanup(struct btrfs_root *root)
2305 {
2306 	struct btrfs_path *path;
2307 	struct extent_buffer *leaf;
2308 	struct btrfs_key key, found_key;
2309 	struct btrfs_trans_handle *trans;
2310 	struct inode *inode;
2311 	u64 last_objectid = 0;
2312 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2313 
2314 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2315 		return 0;
2316 
2317 	path = btrfs_alloc_path();
2318 	if (!path) {
2319 		ret = -ENOMEM;
2320 		goto out;
2321 	}
2322 	path->reada = -1;
2323 
2324 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2325 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2326 	key.offset = (u64)-1;
2327 
2328 	while (1) {
2329 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2330 		if (ret < 0)
2331 			goto out;
2332 
2333 		/*
2334 		 * if ret == 0 means we found what we were searching for, which
2335 		 * is weird, but possible, so only screw with path if we didn't
2336 		 * find the key and see if we have stuff that matches
2337 		 */
2338 		if (ret > 0) {
2339 			ret = 0;
2340 			if (path->slots[0] == 0)
2341 				break;
2342 			path->slots[0]--;
2343 		}
2344 
2345 		/* pull out the item */
2346 		leaf = path->nodes[0];
2347 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2348 
2349 		/* make sure the item matches what we want */
2350 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2351 			break;
2352 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2353 			break;
2354 
2355 		/* release the path since we're done with it */
2356 		btrfs_release_path(path);
2357 
2358 		/*
2359 		 * this is where we are basically btrfs_lookup, without the
2360 		 * crossing root thing.  we store the inode number in the
2361 		 * offset of the orphan item.
2362 		 */
2363 
2364 		if (found_key.offset == last_objectid) {
2365 			printk(KERN_ERR "btrfs: Error removing orphan entry, "
2366 			       "stopping orphan cleanup\n");
2367 			ret = -EINVAL;
2368 			goto out;
2369 		}
2370 
2371 		last_objectid = found_key.offset;
2372 
2373 		found_key.objectid = found_key.offset;
2374 		found_key.type = BTRFS_INODE_ITEM_KEY;
2375 		found_key.offset = 0;
2376 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2377 		ret = PTR_RET(inode);
2378 		if (ret && ret != -ESTALE)
2379 			goto out;
2380 
2381 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
2382 			struct btrfs_root *dead_root;
2383 			struct btrfs_fs_info *fs_info = root->fs_info;
2384 			int is_dead_root = 0;
2385 
2386 			/*
2387 			 * this is an orphan in the tree root. Currently these
2388 			 * could come from 2 sources:
2389 			 *  a) a snapshot deletion in progress
2390 			 *  b) a free space cache inode
2391 			 * We need to distinguish those two, as the snapshot
2392 			 * orphan must not get deleted.
2393 			 * find_dead_roots already ran before us, so if this
2394 			 * is a snapshot deletion, we should find the root
2395 			 * in the dead_roots list
2396 			 */
2397 			spin_lock(&fs_info->trans_lock);
2398 			list_for_each_entry(dead_root, &fs_info->dead_roots,
2399 					    root_list) {
2400 				if (dead_root->root_key.objectid ==
2401 				    found_key.objectid) {
2402 					is_dead_root = 1;
2403 					break;
2404 				}
2405 			}
2406 			spin_unlock(&fs_info->trans_lock);
2407 			if (is_dead_root) {
2408 				/* prevent this orphan from being found again */
2409 				key.offset = found_key.objectid - 1;
2410 				continue;
2411 			}
2412 		}
2413 		/*
2414 		 * Inode is already gone but the orphan item is still there,
2415 		 * kill the orphan item.
2416 		 */
2417 		if (ret == -ESTALE) {
2418 			trans = btrfs_start_transaction(root, 1);
2419 			if (IS_ERR(trans)) {
2420 				ret = PTR_ERR(trans);
2421 				goto out;
2422 			}
2423 			printk(KERN_ERR "auto deleting %Lu\n",
2424 			       found_key.objectid);
2425 			ret = btrfs_del_orphan_item(trans, root,
2426 						    found_key.objectid);
2427 			BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2428 			btrfs_end_transaction(trans, root);
2429 			continue;
2430 		}
2431 
2432 		/*
2433 		 * add this inode to the orphan list so btrfs_orphan_del does
2434 		 * the proper thing when we hit it
2435 		 */
2436 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2437 			&BTRFS_I(inode)->runtime_flags);
2438 
2439 		/* if we have links, this was a truncate, lets do that */
2440 		if (inode->i_nlink) {
2441 			if (!S_ISREG(inode->i_mode)) {
2442 				WARN_ON(1);
2443 				iput(inode);
2444 				continue;
2445 			}
2446 			nr_truncate++;
2447 			ret = btrfs_truncate(inode);
2448 		} else {
2449 			nr_unlink++;
2450 		}
2451 
2452 		/* this will do delete_inode and everything for us */
2453 		iput(inode);
2454 		if (ret)
2455 			goto out;
2456 	}
2457 	/* release the path since we're done with it */
2458 	btrfs_release_path(path);
2459 
2460 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2461 
2462 	if (root->orphan_block_rsv)
2463 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2464 					(u64)-1);
2465 
2466 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2467 		trans = btrfs_join_transaction(root);
2468 		if (!IS_ERR(trans))
2469 			btrfs_end_transaction(trans, root);
2470 	}
2471 
2472 	if (nr_unlink)
2473 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2474 	if (nr_truncate)
2475 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2476 
2477 out:
2478 	if (ret)
2479 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2480 	btrfs_free_path(path);
2481 	return ret;
2482 }
2483 
2484 /*
2485  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2486  * don't find any xattrs, we know there can't be any acls.
2487  *
2488  * slot is the slot the inode is in, objectid is the objectid of the inode
2489  */
2490 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2491 					  int slot, u64 objectid)
2492 {
2493 	u32 nritems = btrfs_header_nritems(leaf);
2494 	struct btrfs_key found_key;
2495 	int scanned = 0;
2496 
2497 	slot++;
2498 	while (slot < nritems) {
2499 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2500 
2501 		/* we found a different objectid, there must not be acls */
2502 		if (found_key.objectid != objectid)
2503 			return 0;
2504 
2505 		/* we found an xattr, assume we've got an acl */
2506 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2507 			return 1;
2508 
2509 		/*
2510 		 * we found a key greater than an xattr key, there can't
2511 		 * be any acls later on
2512 		 */
2513 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2514 			return 0;
2515 
2516 		slot++;
2517 		scanned++;
2518 
2519 		/*
2520 		 * it goes inode, inode backrefs, xattrs, extents,
2521 		 * so if there are a ton of hard links to an inode there can
2522 		 * be a lot of backrefs.  Don't waste time searching too hard,
2523 		 * this is just an optimization
2524 		 */
2525 		if (scanned >= 8)
2526 			break;
2527 	}
2528 	/* we hit the end of the leaf before we found an xattr or
2529 	 * something larger than an xattr.  We have to assume the inode
2530 	 * has acls
2531 	 */
2532 	return 1;
2533 }
2534 
2535 /*
2536  * read an inode from the btree into the in-memory inode
2537  */
2538 static void btrfs_read_locked_inode(struct inode *inode)
2539 {
2540 	struct btrfs_path *path;
2541 	struct extent_buffer *leaf;
2542 	struct btrfs_inode_item *inode_item;
2543 	struct btrfs_timespec *tspec;
2544 	struct btrfs_root *root = BTRFS_I(inode)->root;
2545 	struct btrfs_key location;
2546 	int maybe_acls;
2547 	u32 rdev;
2548 	int ret;
2549 	bool filled = false;
2550 
2551 	ret = btrfs_fill_inode(inode, &rdev);
2552 	if (!ret)
2553 		filled = true;
2554 
2555 	path = btrfs_alloc_path();
2556 	if (!path)
2557 		goto make_bad;
2558 
2559 	path->leave_spinning = 1;
2560 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2561 
2562 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2563 	if (ret)
2564 		goto make_bad;
2565 
2566 	leaf = path->nodes[0];
2567 
2568 	if (filled)
2569 		goto cache_acl;
2570 
2571 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2572 				    struct btrfs_inode_item);
2573 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2574 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2575 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2576 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2577 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2578 
2579 	tspec = btrfs_inode_atime(inode_item);
2580 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2581 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2582 
2583 	tspec = btrfs_inode_mtime(inode_item);
2584 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2585 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2586 
2587 	tspec = btrfs_inode_ctime(inode_item);
2588 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2589 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2590 
2591 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2592 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2593 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2594 	inode->i_generation = BTRFS_I(inode)->generation;
2595 	inode->i_rdev = 0;
2596 	rdev = btrfs_inode_rdev(leaf, inode_item);
2597 
2598 	BTRFS_I(inode)->index_cnt = (u64)-1;
2599 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2600 cache_acl:
2601 	/*
2602 	 * try to precache a NULL acl entry for files that don't have
2603 	 * any xattrs or acls
2604 	 */
2605 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2606 					   btrfs_ino(inode));
2607 	if (!maybe_acls)
2608 		cache_no_acl(inode);
2609 
2610 	btrfs_free_path(path);
2611 
2612 	switch (inode->i_mode & S_IFMT) {
2613 	case S_IFREG:
2614 		inode->i_mapping->a_ops = &btrfs_aops;
2615 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2616 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2617 		inode->i_fop = &btrfs_file_operations;
2618 		inode->i_op = &btrfs_file_inode_operations;
2619 		break;
2620 	case S_IFDIR:
2621 		inode->i_fop = &btrfs_dir_file_operations;
2622 		if (root == root->fs_info->tree_root)
2623 			inode->i_op = &btrfs_dir_ro_inode_operations;
2624 		else
2625 			inode->i_op = &btrfs_dir_inode_operations;
2626 		break;
2627 	case S_IFLNK:
2628 		inode->i_op = &btrfs_symlink_inode_operations;
2629 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2630 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2631 		break;
2632 	default:
2633 		inode->i_op = &btrfs_special_inode_operations;
2634 		init_special_inode(inode, inode->i_mode, rdev);
2635 		break;
2636 	}
2637 
2638 	btrfs_update_iflags(inode);
2639 	return;
2640 
2641 make_bad:
2642 	btrfs_free_path(path);
2643 	make_bad_inode(inode);
2644 }
2645 
2646 /*
2647  * given a leaf and an inode, copy the inode fields into the leaf
2648  */
2649 static void fill_inode_item(struct btrfs_trans_handle *trans,
2650 			    struct extent_buffer *leaf,
2651 			    struct btrfs_inode_item *item,
2652 			    struct inode *inode)
2653 {
2654 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2655 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2656 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2657 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2658 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2659 
2660 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2661 			       inode->i_atime.tv_sec);
2662 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2663 				inode->i_atime.tv_nsec);
2664 
2665 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2666 			       inode->i_mtime.tv_sec);
2667 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2668 				inode->i_mtime.tv_nsec);
2669 
2670 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2671 			       inode->i_ctime.tv_sec);
2672 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2673 				inode->i_ctime.tv_nsec);
2674 
2675 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2676 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2677 	btrfs_set_inode_sequence(leaf, item, inode->i_version);
2678 	btrfs_set_inode_transid(leaf, item, trans->transid);
2679 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2680 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2681 	btrfs_set_inode_block_group(leaf, item, 0);
2682 }
2683 
2684 /*
2685  * copy everything in the in-memory inode into the btree.
2686  */
2687 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2688 				struct btrfs_root *root, struct inode *inode)
2689 {
2690 	struct btrfs_inode_item *inode_item;
2691 	struct btrfs_path *path;
2692 	struct extent_buffer *leaf;
2693 	int ret;
2694 
2695 	path = btrfs_alloc_path();
2696 	if (!path)
2697 		return -ENOMEM;
2698 
2699 	path->leave_spinning = 1;
2700 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2701 				 1);
2702 	if (ret) {
2703 		if (ret > 0)
2704 			ret = -ENOENT;
2705 		goto failed;
2706 	}
2707 
2708 	btrfs_unlock_up_safe(path, 1);
2709 	leaf = path->nodes[0];
2710 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2711 				    struct btrfs_inode_item);
2712 
2713 	fill_inode_item(trans, leaf, inode_item, inode);
2714 	btrfs_mark_buffer_dirty(leaf);
2715 	btrfs_set_inode_last_trans(trans, inode);
2716 	ret = 0;
2717 failed:
2718 	btrfs_free_path(path);
2719 	return ret;
2720 }
2721 
2722 /*
2723  * copy everything in the in-memory inode into the btree.
2724  */
2725 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2726 				struct btrfs_root *root, struct inode *inode)
2727 {
2728 	int ret;
2729 
2730 	/*
2731 	 * If the inode is a free space inode, we can deadlock during commit
2732 	 * if we put it into the delayed code.
2733 	 *
2734 	 * The data relocation inode should also be directly updated
2735 	 * without delay
2736 	 */
2737 	if (!btrfs_is_free_space_inode(inode)
2738 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2739 		btrfs_update_root_times(trans, root);
2740 
2741 		ret = btrfs_delayed_update_inode(trans, root, inode);
2742 		if (!ret)
2743 			btrfs_set_inode_last_trans(trans, inode);
2744 		return ret;
2745 	}
2746 
2747 	return btrfs_update_inode_item(trans, root, inode);
2748 }
2749 
2750 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2751 				struct btrfs_root *root, struct inode *inode)
2752 {
2753 	int ret;
2754 
2755 	ret = btrfs_update_inode(trans, root, inode);
2756 	if (ret == -ENOSPC)
2757 		return btrfs_update_inode_item(trans, root, inode);
2758 	return ret;
2759 }
2760 
2761 /*
2762  * unlink helper that gets used here in inode.c and in the tree logging
2763  * recovery code.  It remove a link in a directory with a given name, and
2764  * also drops the back refs in the inode to the directory
2765  */
2766 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2767 				struct btrfs_root *root,
2768 				struct inode *dir, struct inode *inode,
2769 				const char *name, int name_len)
2770 {
2771 	struct btrfs_path *path;
2772 	int ret = 0;
2773 	struct extent_buffer *leaf;
2774 	struct btrfs_dir_item *di;
2775 	struct btrfs_key key;
2776 	u64 index;
2777 	u64 ino = btrfs_ino(inode);
2778 	u64 dir_ino = btrfs_ino(dir);
2779 
2780 	path = btrfs_alloc_path();
2781 	if (!path) {
2782 		ret = -ENOMEM;
2783 		goto out;
2784 	}
2785 
2786 	path->leave_spinning = 1;
2787 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2788 				    name, name_len, -1);
2789 	if (IS_ERR(di)) {
2790 		ret = PTR_ERR(di);
2791 		goto err;
2792 	}
2793 	if (!di) {
2794 		ret = -ENOENT;
2795 		goto err;
2796 	}
2797 	leaf = path->nodes[0];
2798 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2799 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2800 	if (ret)
2801 		goto err;
2802 	btrfs_release_path(path);
2803 
2804 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2805 				  dir_ino, &index);
2806 	if (ret) {
2807 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2808 		       "inode %llu parent %llu\n", name_len, name,
2809 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2810 		btrfs_abort_transaction(trans, root, ret);
2811 		goto err;
2812 	}
2813 
2814 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2815 	if (ret) {
2816 		btrfs_abort_transaction(trans, root, ret);
2817 		goto err;
2818 	}
2819 
2820 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2821 					 inode, dir_ino);
2822 	if (ret != 0 && ret != -ENOENT) {
2823 		btrfs_abort_transaction(trans, root, ret);
2824 		goto err;
2825 	}
2826 
2827 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2828 					   dir, index);
2829 	if (ret == -ENOENT)
2830 		ret = 0;
2831 err:
2832 	btrfs_free_path(path);
2833 	if (ret)
2834 		goto out;
2835 
2836 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2837 	inode_inc_iversion(inode);
2838 	inode_inc_iversion(dir);
2839 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2840 	ret = btrfs_update_inode(trans, root, dir);
2841 out:
2842 	return ret;
2843 }
2844 
2845 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2846 		       struct btrfs_root *root,
2847 		       struct inode *dir, struct inode *inode,
2848 		       const char *name, int name_len)
2849 {
2850 	int ret;
2851 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2852 	if (!ret) {
2853 		btrfs_drop_nlink(inode);
2854 		ret = btrfs_update_inode(trans, root, inode);
2855 	}
2856 	return ret;
2857 }
2858 
2859 
2860 /* helper to check if there is any shared block in the path */
2861 static int check_path_shared(struct btrfs_root *root,
2862 			     struct btrfs_path *path)
2863 {
2864 	struct extent_buffer *eb;
2865 	int level;
2866 	u64 refs = 1;
2867 
2868 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2869 		int ret;
2870 
2871 		if (!path->nodes[level])
2872 			break;
2873 		eb = path->nodes[level];
2874 		if (!btrfs_block_can_be_shared(root, eb))
2875 			continue;
2876 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2877 					       &refs, NULL);
2878 		if (refs > 1)
2879 			return 1;
2880 	}
2881 	return 0;
2882 }
2883 
2884 /*
2885  * helper to start transaction for unlink and rmdir.
2886  *
2887  * unlink and rmdir are special in btrfs, they do not always free space.
2888  * so in enospc case, we should make sure they will free space before
2889  * allowing them to use the global metadata reservation.
2890  */
2891 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2892 						       struct dentry *dentry)
2893 {
2894 	struct btrfs_trans_handle *trans;
2895 	struct btrfs_root *root = BTRFS_I(dir)->root;
2896 	struct btrfs_path *path;
2897 	struct btrfs_inode_ref *ref;
2898 	struct btrfs_dir_item *di;
2899 	struct inode *inode = dentry->d_inode;
2900 	u64 index;
2901 	int check_link = 1;
2902 	int err = -ENOSPC;
2903 	int ret;
2904 	u64 ino = btrfs_ino(inode);
2905 	u64 dir_ino = btrfs_ino(dir);
2906 
2907 	/*
2908 	 * 1 for the possible orphan item
2909 	 * 1 for the dir item
2910 	 * 1 for the dir index
2911 	 * 1 for the inode ref
2912 	 * 1 for the inode ref in the tree log
2913 	 * 2 for the dir entries in the log
2914 	 * 1 for the inode
2915 	 */
2916 	trans = btrfs_start_transaction(root, 8);
2917 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2918 		return trans;
2919 
2920 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2921 		return ERR_PTR(-ENOSPC);
2922 
2923 	/* check if there is someone else holds reference */
2924 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2925 		return ERR_PTR(-ENOSPC);
2926 
2927 	if (atomic_read(&inode->i_count) > 2)
2928 		return ERR_PTR(-ENOSPC);
2929 
2930 	if (xchg(&root->fs_info->enospc_unlink, 1))
2931 		return ERR_PTR(-ENOSPC);
2932 
2933 	path = btrfs_alloc_path();
2934 	if (!path) {
2935 		root->fs_info->enospc_unlink = 0;
2936 		return ERR_PTR(-ENOMEM);
2937 	}
2938 
2939 	/* 1 for the orphan item */
2940 	trans = btrfs_start_transaction(root, 1);
2941 	if (IS_ERR(trans)) {
2942 		btrfs_free_path(path);
2943 		root->fs_info->enospc_unlink = 0;
2944 		return trans;
2945 	}
2946 
2947 	path->skip_locking = 1;
2948 	path->search_commit_root = 1;
2949 
2950 	ret = btrfs_lookup_inode(trans, root, path,
2951 				&BTRFS_I(dir)->location, 0);
2952 	if (ret < 0) {
2953 		err = ret;
2954 		goto out;
2955 	}
2956 	if (ret == 0) {
2957 		if (check_path_shared(root, path))
2958 			goto out;
2959 	} else {
2960 		check_link = 0;
2961 	}
2962 	btrfs_release_path(path);
2963 
2964 	ret = btrfs_lookup_inode(trans, root, path,
2965 				&BTRFS_I(inode)->location, 0);
2966 	if (ret < 0) {
2967 		err = ret;
2968 		goto out;
2969 	}
2970 	if (ret == 0) {
2971 		if (check_path_shared(root, path))
2972 			goto out;
2973 	} else {
2974 		check_link = 0;
2975 	}
2976 	btrfs_release_path(path);
2977 
2978 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2979 		ret = btrfs_lookup_file_extent(trans, root, path,
2980 					       ino, (u64)-1, 0);
2981 		if (ret < 0) {
2982 			err = ret;
2983 			goto out;
2984 		}
2985 		BUG_ON(ret == 0); /* Corruption */
2986 		if (check_path_shared(root, path))
2987 			goto out;
2988 		btrfs_release_path(path);
2989 	}
2990 
2991 	if (!check_link) {
2992 		err = 0;
2993 		goto out;
2994 	}
2995 
2996 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2997 				dentry->d_name.name, dentry->d_name.len, 0);
2998 	if (IS_ERR(di)) {
2999 		err = PTR_ERR(di);
3000 		goto out;
3001 	}
3002 	if (di) {
3003 		if (check_path_shared(root, path))
3004 			goto out;
3005 	} else {
3006 		err = 0;
3007 		goto out;
3008 	}
3009 	btrfs_release_path(path);
3010 
3011 	ref = btrfs_lookup_inode_ref(trans, root, path,
3012 				dentry->d_name.name, dentry->d_name.len,
3013 				ino, dir_ino, 0);
3014 	if (IS_ERR(ref)) {
3015 		err = PTR_ERR(ref);
3016 		goto out;
3017 	}
3018 	BUG_ON(!ref); /* Logic error */
3019 	if (check_path_shared(root, path))
3020 		goto out;
3021 	index = btrfs_inode_ref_index(path->nodes[0], ref);
3022 	btrfs_release_path(path);
3023 
3024 	/*
3025 	 * This is a commit root search, if we can lookup inode item and other
3026 	 * relative items in the commit root, it means the transaction of
3027 	 * dir/file creation has been committed, and the dir index item that we
3028 	 * delay to insert has also been inserted into the commit root. So
3029 	 * we needn't worry about the delayed insertion of the dir index item
3030 	 * here.
3031 	 */
3032 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3033 				dentry->d_name.name, dentry->d_name.len, 0);
3034 	if (IS_ERR(di)) {
3035 		err = PTR_ERR(di);
3036 		goto out;
3037 	}
3038 	BUG_ON(ret == -ENOENT);
3039 	if (check_path_shared(root, path))
3040 		goto out;
3041 
3042 	err = 0;
3043 out:
3044 	btrfs_free_path(path);
3045 	/* Migrate the orphan reservation over */
3046 	if (!err)
3047 		err = btrfs_block_rsv_migrate(trans->block_rsv,
3048 				&root->fs_info->global_block_rsv,
3049 				trans->bytes_reserved);
3050 
3051 	if (err) {
3052 		btrfs_end_transaction(trans, root);
3053 		root->fs_info->enospc_unlink = 0;
3054 		return ERR_PTR(err);
3055 	}
3056 
3057 	trans->block_rsv = &root->fs_info->global_block_rsv;
3058 	return trans;
3059 }
3060 
3061 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3062 			       struct btrfs_root *root)
3063 {
3064 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
3065 		btrfs_block_rsv_release(root, trans->block_rsv,
3066 					trans->bytes_reserved);
3067 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3068 		BUG_ON(!root->fs_info->enospc_unlink);
3069 		root->fs_info->enospc_unlink = 0;
3070 	}
3071 	btrfs_end_transaction(trans, root);
3072 }
3073 
3074 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3075 {
3076 	struct btrfs_root *root = BTRFS_I(dir)->root;
3077 	struct btrfs_trans_handle *trans;
3078 	struct inode *inode = dentry->d_inode;
3079 	int ret;
3080 	unsigned long nr = 0;
3081 
3082 	trans = __unlink_start_trans(dir, dentry);
3083 	if (IS_ERR(trans))
3084 		return PTR_ERR(trans);
3085 
3086 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3087 
3088 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3089 				 dentry->d_name.name, dentry->d_name.len);
3090 	if (ret)
3091 		goto out;
3092 
3093 	if (inode->i_nlink == 0) {
3094 		ret = btrfs_orphan_add(trans, inode);
3095 		if (ret)
3096 			goto out;
3097 	}
3098 
3099 out:
3100 	nr = trans->blocks_used;
3101 	__unlink_end_trans(trans, root);
3102 	btrfs_btree_balance_dirty(root, nr);
3103 	return ret;
3104 }
3105 
3106 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3107 			struct btrfs_root *root,
3108 			struct inode *dir, u64 objectid,
3109 			const char *name, int name_len)
3110 {
3111 	struct btrfs_path *path;
3112 	struct extent_buffer *leaf;
3113 	struct btrfs_dir_item *di;
3114 	struct btrfs_key key;
3115 	u64 index;
3116 	int ret;
3117 	u64 dir_ino = btrfs_ino(dir);
3118 
3119 	path = btrfs_alloc_path();
3120 	if (!path)
3121 		return -ENOMEM;
3122 
3123 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3124 				   name, name_len, -1);
3125 	if (IS_ERR_OR_NULL(di)) {
3126 		if (!di)
3127 			ret = -ENOENT;
3128 		else
3129 			ret = PTR_ERR(di);
3130 		goto out;
3131 	}
3132 
3133 	leaf = path->nodes[0];
3134 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3135 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3136 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3137 	if (ret) {
3138 		btrfs_abort_transaction(trans, root, ret);
3139 		goto out;
3140 	}
3141 	btrfs_release_path(path);
3142 
3143 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3144 				 objectid, root->root_key.objectid,
3145 				 dir_ino, &index, name, name_len);
3146 	if (ret < 0) {
3147 		if (ret != -ENOENT) {
3148 			btrfs_abort_transaction(trans, root, ret);
3149 			goto out;
3150 		}
3151 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3152 						 name, name_len);
3153 		if (IS_ERR_OR_NULL(di)) {
3154 			if (!di)
3155 				ret = -ENOENT;
3156 			else
3157 				ret = PTR_ERR(di);
3158 			btrfs_abort_transaction(trans, root, ret);
3159 			goto out;
3160 		}
3161 
3162 		leaf = path->nodes[0];
3163 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3164 		btrfs_release_path(path);
3165 		index = key.offset;
3166 	}
3167 	btrfs_release_path(path);
3168 
3169 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3170 	if (ret) {
3171 		btrfs_abort_transaction(trans, root, ret);
3172 		goto out;
3173 	}
3174 
3175 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3176 	inode_inc_iversion(dir);
3177 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3178 	ret = btrfs_update_inode_fallback(trans, root, dir);
3179 	if (ret)
3180 		btrfs_abort_transaction(trans, root, ret);
3181 out:
3182 	btrfs_free_path(path);
3183 	return ret;
3184 }
3185 
3186 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3187 {
3188 	struct inode *inode = dentry->d_inode;
3189 	int err = 0;
3190 	struct btrfs_root *root = BTRFS_I(dir)->root;
3191 	struct btrfs_trans_handle *trans;
3192 	unsigned long nr = 0;
3193 
3194 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3195 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3196 		return -ENOTEMPTY;
3197 
3198 	trans = __unlink_start_trans(dir, dentry);
3199 	if (IS_ERR(trans))
3200 		return PTR_ERR(trans);
3201 
3202 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3203 		err = btrfs_unlink_subvol(trans, root, dir,
3204 					  BTRFS_I(inode)->location.objectid,
3205 					  dentry->d_name.name,
3206 					  dentry->d_name.len);
3207 		goto out;
3208 	}
3209 
3210 	err = btrfs_orphan_add(trans, inode);
3211 	if (err)
3212 		goto out;
3213 
3214 	/* now the directory is empty */
3215 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3216 				 dentry->d_name.name, dentry->d_name.len);
3217 	if (!err)
3218 		btrfs_i_size_write(inode, 0);
3219 out:
3220 	nr = trans->blocks_used;
3221 	__unlink_end_trans(trans, root);
3222 	btrfs_btree_balance_dirty(root, nr);
3223 
3224 	return err;
3225 }
3226 
3227 /*
3228  * this can truncate away extent items, csum items and directory items.
3229  * It starts at a high offset and removes keys until it can't find
3230  * any higher than new_size
3231  *
3232  * csum items that cross the new i_size are truncated to the new size
3233  * as well.
3234  *
3235  * min_type is the minimum key type to truncate down to.  If set to 0, this
3236  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3237  */
3238 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3239 			       struct btrfs_root *root,
3240 			       struct inode *inode,
3241 			       u64 new_size, u32 min_type)
3242 {
3243 	struct btrfs_path *path;
3244 	struct extent_buffer *leaf;
3245 	struct btrfs_file_extent_item *fi;
3246 	struct btrfs_key key;
3247 	struct btrfs_key found_key;
3248 	u64 extent_start = 0;
3249 	u64 extent_num_bytes = 0;
3250 	u64 extent_offset = 0;
3251 	u64 item_end = 0;
3252 	u64 mask = root->sectorsize - 1;
3253 	u32 found_type = (u8)-1;
3254 	int found_extent;
3255 	int del_item;
3256 	int pending_del_nr = 0;
3257 	int pending_del_slot = 0;
3258 	int extent_type = -1;
3259 	int ret;
3260 	int err = 0;
3261 	u64 ino = btrfs_ino(inode);
3262 
3263 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3264 
3265 	path = btrfs_alloc_path();
3266 	if (!path)
3267 		return -ENOMEM;
3268 	path->reada = -1;
3269 
3270 	if (root->ref_cows || root == root->fs_info->tree_root)
3271 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3272 
3273 	/*
3274 	 * This function is also used to drop the items in the log tree before
3275 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3276 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3277 	 * items.
3278 	 */
3279 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3280 		btrfs_kill_delayed_inode_items(inode);
3281 
3282 	key.objectid = ino;
3283 	key.offset = (u64)-1;
3284 	key.type = (u8)-1;
3285 
3286 search_again:
3287 	path->leave_spinning = 1;
3288 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3289 	if (ret < 0) {
3290 		err = ret;
3291 		goto out;
3292 	}
3293 
3294 	if (ret > 0) {
3295 		/* there are no items in the tree for us to truncate, we're
3296 		 * done
3297 		 */
3298 		if (path->slots[0] == 0)
3299 			goto out;
3300 		path->slots[0]--;
3301 	}
3302 
3303 	while (1) {
3304 		fi = NULL;
3305 		leaf = path->nodes[0];
3306 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3307 		found_type = btrfs_key_type(&found_key);
3308 
3309 		if (found_key.objectid != ino)
3310 			break;
3311 
3312 		if (found_type < min_type)
3313 			break;
3314 
3315 		item_end = found_key.offset;
3316 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3317 			fi = btrfs_item_ptr(leaf, path->slots[0],
3318 					    struct btrfs_file_extent_item);
3319 			extent_type = btrfs_file_extent_type(leaf, fi);
3320 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3321 				item_end +=
3322 				    btrfs_file_extent_num_bytes(leaf, fi);
3323 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3324 				item_end += btrfs_file_extent_inline_len(leaf,
3325 									 fi);
3326 			}
3327 			item_end--;
3328 		}
3329 		if (found_type > min_type) {
3330 			del_item = 1;
3331 		} else {
3332 			if (item_end < new_size)
3333 				break;
3334 			if (found_key.offset >= new_size)
3335 				del_item = 1;
3336 			else
3337 				del_item = 0;
3338 		}
3339 		found_extent = 0;
3340 		/* FIXME, shrink the extent if the ref count is only 1 */
3341 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3342 			goto delete;
3343 
3344 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3345 			u64 num_dec;
3346 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3347 			if (!del_item) {
3348 				u64 orig_num_bytes =
3349 					btrfs_file_extent_num_bytes(leaf, fi);
3350 				extent_num_bytes = new_size -
3351 					found_key.offset + root->sectorsize - 1;
3352 				extent_num_bytes = extent_num_bytes &
3353 					~((u64)root->sectorsize - 1);
3354 				btrfs_set_file_extent_num_bytes(leaf, fi,
3355 							 extent_num_bytes);
3356 				num_dec = (orig_num_bytes -
3357 					   extent_num_bytes);
3358 				if (root->ref_cows && extent_start != 0)
3359 					inode_sub_bytes(inode, num_dec);
3360 				btrfs_mark_buffer_dirty(leaf);
3361 			} else {
3362 				extent_num_bytes =
3363 					btrfs_file_extent_disk_num_bytes(leaf,
3364 									 fi);
3365 				extent_offset = found_key.offset -
3366 					btrfs_file_extent_offset(leaf, fi);
3367 
3368 				/* FIXME blocksize != 4096 */
3369 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3370 				if (extent_start != 0) {
3371 					found_extent = 1;
3372 					if (root->ref_cows)
3373 						inode_sub_bytes(inode, num_dec);
3374 				}
3375 			}
3376 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3377 			/*
3378 			 * we can't truncate inline items that have had
3379 			 * special encodings
3380 			 */
3381 			if (!del_item &&
3382 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3383 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3384 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3385 				u32 size = new_size - found_key.offset;
3386 
3387 				if (root->ref_cows) {
3388 					inode_sub_bytes(inode, item_end + 1 -
3389 							new_size);
3390 				}
3391 				size =
3392 				    btrfs_file_extent_calc_inline_size(size);
3393 				btrfs_truncate_item(trans, root, path,
3394 						    size, 1);
3395 			} else if (root->ref_cows) {
3396 				inode_sub_bytes(inode, item_end + 1 -
3397 						found_key.offset);
3398 			}
3399 		}
3400 delete:
3401 		if (del_item) {
3402 			if (!pending_del_nr) {
3403 				/* no pending yet, add ourselves */
3404 				pending_del_slot = path->slots[0];
3405 				pending_del_nr = 1;
3406 			} else if (pending_del_nr &&
3407 				   path->slots[0] + 1 == pending_del_slot) {
3408 				/* hop on the pending chunk */
3409 				pending_del_nr++;
3410 				pending_del_slot = path->slots[0];
3411 			} else {
3412 				BUG();
3413 			}
3414 		} else {
3415 			break;
3416 		}
3417 		if (found_extent && (root->ref_cows ||
3418 				     root == root->fs_info->tree_root)) {
3419 			btrfs_set_path_blocking(path);
3420 			ret = btrfs_free_extent(trans, root, extent_start,
3421 						extent_num_bytes, 0,
3422 						btrfs_header_owner(leaf),
3423 						ino, extent_offset, 0);
3424 			BUG_ON(ret);
3425 		}
3426 
3427 		if (found_type == BTRFS_INODE_ITEM_KEY)
3428 			break;
3429 
3430 		if (path->slots[0] == 0 ||
3431 		    path->slots[0] != pending_del_slot) {
3432 			if (root->ref_cows &&
3433 			    BTRFS_I(inode)->location.objectid !=
3434 						BTRFS_FREE_INO_OBJECTID) {
3435 				err = -EAGAIN;
3436 				goto out;
3437 			}
3438 			if (pending_del_nr) {
3439 				ret = btrfs_del_items(trans, root, path,
3440 						pending_del_slot,
3441 						pending_del_nr);
3442 				if (ret) {
3443 					btrfs_abort_transaction(trans,
3444 								root, ret);
3445 					goto error;
3446 				}
3447 				pending_del_nr = 0;
3448 			}
3449 			btrfs_release_path(path);
3450 			goto search_again;
3451 		} else {
3452 			path->slots[0]--;
3453 		}
3454 	}
3455 out:
3456 	if (pending_del_nr) {
3457 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3458 				      pending_del_nr);
3459 		if (ret)
3460 			btrfs_abort_transaction(trans, root, ret);
3461 	}
3462 error:
3463 	btrfs_free_path(path);
3464 	return err;
3465 }
3466 
3467 /*
3468  * taken from block_truncate_page, but does cow as it zeros out
3469  * any bytes left in the last page in the file.
3470  */
3471 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3472 {
3473 	struct inode *inode = mapping->host;
3474 	struct btrfs_root *root = BTRFS_I(inode)->root;
3475 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3476 	struct btrfs_ordered_extent *ordered;
3477 	struct extent_state *cached_state = NULL;
3478 	char *kaddr;
3479 	u32 blocksize = root->sectorsize;
3480 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3481 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3482 	struct page *page;
3483 	gfp_t mask = btrfs_alloc_write_mask(mapping);
3484 	int ret = 0;
3485 	u64 page_start;
3486 	u64 page_end;
3487 
3488 	if ((offset & (blocksize - 1)) == 0)
3489 		goto out;
3490 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3491 	if (ret)
3492 		goto out;
3493 
3494 	ret = -ENOMEM;
3495 again:
3496 	page = find_or_create_page(mapping, index, mask);
3497 	if (!page) {
3498 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3499 		goto out;
3500 	}
3501 
3502 	page_start = page_offset(page);
3503 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3504 
3505 	if (!PageUptodate(page)) {
3506 		ret = btrfs_readpage(NULL, page);
3507 		lock_page(page);
3508 		if (page->mapping != mapping) {
3509 			unlock_page(page);
3510 			page_cache_release(page);
3511 			goto again;
3512 		}
3513 		if (!PageUptodate(page)) {
3514 			ret = -EIO;
3515 			goto out_unlock;
3516 		}
3517 	}
3518 	wait_on_page_writeback(page);
3519 
3520 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3521 	set_page_extent_mapped(page);
3522 
3523 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3524 	if (ordered) {
3525 		unlock_extent_cached(io_tree, page_start, page_end,
3526 				     &cached_state, GFP_NOFS);
3527 		unlock_page(page);
3528 		page_cache_release(page);
3529 		btrfs_start_ordered_extent(inode, ordered, 1);
3530 		btrfs_put_ordered_extent(ordered);
3531 		goto again;
3532 	}
3533 
3534 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3535 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3536 			  0, 0, &cached_state, GFP_NOFS);
3537 
3538 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3539 					&cached_state);
3540 	if (ret) {
3541 		unlock_extent_cached(io_tree, page_start, page_end,
3542 				     &cached_state, GFP_NOFS);
3543 		goto out_unlock;
3544 	}
3545 
3546 	ret = 0;
3547 	if (offset != PAGE_CACHE_SIZE) {
3548 		kaddr = kmap(page);
3549 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3550 		flush_dcache_page(page);
3551 		kunmap(page);
3552 	}
3553 	ClearPageChecked(page);
3554 	set_page_dirty(page);
3555 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3556 			     GFP_NOFS);
3557 
3558 out_unlock:
3559 	if (ret)
3560 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3561 	unlock_page(page);
3562 	page_cache_release(page);
3563 out:
3564 	return ret;
3565 }
3566 
3567 /*
3568  * This function puts in dummy file extents for the area we're creating a hole
3569  * for.  So if we are truncating this file to a larger size we need to insert
3570  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3571  * the range between oldsize and size
3572  */
3573 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3574 {
3575 	struct btrfs_trans_handle *trans;
3576 	struct btrfs_root *root = BTRFS_I(inode)->root;
3577 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3578 	struct extent_map *em = NULL;
3579 	struct extent_state *cached_state = NULL;
3580 	u64 mask = root->sectorsize - 1;
3581 	u64 hole_start = (oldsize + mask) & ~mask;
3582 	u64 block_end = (size + mask) & ~mask;
3583 	u64 last_byte;
3584 	u64 cur_offset;
3585 	u64 hole_size;
3586 	int err = 0;
3587 
3588 	if (size <= hole_start)
3589 		return 0;
3590 
3591 	while (1) {
3592 		struct btrfs_ordered_extent *ordered;
3593 		btrfs_wait_ordered_range(inode, hole_start,
3594 					 block_end - hole_start);
3595 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3596 				 &cached_state);
3597 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3598 		if (!ordered)
3599 			break;
3600 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3601 				     &cached_state, GFP_NOFS);
3602 		btrfs_put_ordered_extent(ordered);
3603 	}
3604 
3605 	cur_offset = hole_start;
3606 	while (1) {
3607 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3608 				block_end - cur_offset, 0);
3609 		if (IS_ERR(em)) {
3610 			err = PTR_ERR(em);
3611 			break;
3612 		}
3613 		last_byte = min(extent_map_end(em), block_end);
3614 		last_byte = (last_byte + mask) & ~mask;
3615 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3616 			u64 hint_byte = 0;
3617 			hole_size = last_byte - cur_offset;
3618 
3619 			trans = btrfs_start_transaction(root, 3);
3620 			if (IS_ERR(trans)) {
3621 				err = PTR_ERR(trans);
3622 				break;
3623 			}
3624 
3625 			err = btrfs_drop_extents(trans, inode, cur_offset,
3626 						 cur_offset + hole_size,
3627 						 &hint_byte, 1);
3628 			if (err) {
3629 				btrfs_abort_transaction(trans, root, err);
3630 				btrfs_end_transaction(trans, root);
3631 				break;
3632 			}
3633 
3634 			err = btrfs_insert_file_extent(trans, root,
3635 					btrfs_ino(inode), cur_offset, 0,
3636 					0, hole_size, 0, hole_size,
3637 					0, 0, 0);
3638 			if (err) {
3639 				btrfs_abort_transaction(trans, root, err);
3640 				btrfs_end_transaction(trans, root);
3641 				break;
3642 			}
3643 
3644 			btrfs_drop_extent_cache(inode, hole_start,
3645 					last_byte - 1, 0);
3646 
3647 			btrfs_update_inode(trans, root, inode);
3648 			btrfs_end_transaction(trans, root);
3649 		}
3650 		free_extent_map(em);
3651 		em = NULL;
3652 		cur_offset = last_byte;
3653 		if (cur_offset >= block_end)
3654 			break;
3655 	}
3656 
3657 	free_extent_map(em);
3658 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3659 			     GFP_NOFS);
3660 	return err;
3661 }
3662 
3663 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3664 {
3665 	struct btrfs_root *root = BTRFS_I(inode)->root;
3666 	struct btrfs_trans_handle *trans;
3667 	loff_t oldsize = i_size_read(inode);
3668 	int ret;
3669 
3670 	if (newsize == oldsize)
3671 		return 0;
3672 
3673 	if (newsize > oldsize) {
3674 		truncate_pagecache(inode, oldsize, newsize);
3675 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3676 		if (ret)
3677 			return ret;
3678 
3679 		trans = btrfs_start_transaction(root, 1);
3680 		if (IS_ERR(trans))
3681 			return PTR_ERR(trans);
3682 
3683 		i_size_write(inode, newsize);
3684 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3685 		ret = btrfs_update_inode(trans, root, inode);
3686 		btrfs_end_transaction(trans, root);
3687 	} else {
3688 
3689 		/*
3690 		 * We're truncating a file that used to have good data down to
3691 		 * zero. Make sure it gets into the ordered flush list so that
3692 		 * any new writes get down to disk quickly.
3693 		 */
3694 		if (newsize == 0)
3695 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3696 				&BTRFS_I(inode)->runtime_flags);
3697 
3698 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3699 		truncate_setsize(inode, newsize);
3700 		ret = btrfs_truncate(inode);
3701 	}
3702 
3703 	return ret;
3704 }
3705 
3706 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3707 {
3708 	struct inode *inode = dentry->d_inode;
3709 	struct btrfs_root *root = BTRFS_I(inode)->root;
3710 	int err;
3711 
3712 	if (btrfs_root_readonly(root))
3713 		return -EROFS;
3714 
3715 	err = inode_change_ok(inode, attr);
3716 	if (err)
3717 		return err;
3718 
3719 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3720 		err = btrfs_setsize(inode, attr->ia_size);
3721 		if (err)
3722 			return err;
3723 	}
3724 
3725 	if (attr->ia_valid) {
3726 		setattr_copy(inode, attr);
3727 		inode_inc_iversion(inode);
3728 		err = btrfs_dirty_inode(inode);
3729 
3730 		if (!err && attr->ia_valid & ATTR_MODE)
3731 			err = btrfs_acl_chmod(inode);
3732 	}
3733 
3734 	return err;
3735 }
3736 
3737 void btrfs_evict_inode(struct inode *inode)
3738 {
3739 	struct btrfs_trans_handle *trans;
3740 	struct btrfs_root *root = BTRFS_I(inode)->root;
3741 	struct btrfs_block_rsv *rsv, *global_rsv;
3742 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3743 	unsigned long nr;
3744 	int ret;
3745 
3746 	trace_btrfs_inode_evict(inode);
3747 
3748 	truncate_inode_pages(&inode->i_data, 0);
3749 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3750 			       btrfs_is_free_space_inode(inode)))
3751 		goto no_delete;
3752 
3753 	if (is_bad_inode(inode)) {
3754 		btrfs_orphan_del(NULL, inode);
3755 		goto no_delete;
3756 	}
3757 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3758 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3759 
3760 	if (root->fs_info->log_root_recovering) {
3761 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3762 				 &BTRFS_I(inode)->runtime_flags));
3763 		goto no_delete;
3764 	}
3765 
3766 	if (inode->i_nlink > 0) {
3767 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3768 		goto no_delete;
3769 	}
3770 
3771 	rsv = btrfs_alloc_block_rsv(root);
3772 	if (!rsv) {
3773 		btrfs_orphan_del(NULL, inode);
3774 		goto no_delete;
3775 	}
3776 	rsv->size = min_size;
3777 	global_rsv = &root->fs_info->global_block_rsv;
3778 
3779 	btrfs_i_size_write(inode, 0);
3780 
3781 	/*
3782 	 * This is a bit simpler than btrfs_truncate since
3783 	 *
3784 	 * 1) We've already reserved our space for our orphan item in the
3785 	 *    unlink.
3786 	 * 2) We're going to delete the inode item, so we don't need to update
3787 	 *    it at all.
3788 	 *
3789 	 * So we just need to reserve some slack space in case we add bytes when
3790 	 * doing the truncate.
3791 	 */
3792 	while (1) {
3793 		ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3794 
3795 		/*
3796 		 * Try and steal from the global reserve since we will
3797 		 * likely not use this space anyway, we want to try as
3798 		 * hard as possible to get this to work.
3799 		 */
3800 		if (ret)
3801 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3802 
3803 		if (ret) {
3804 			printk(KERN_WARNING "Could not get space for a "
3805 			       "delete, will truncate on mount %d\n", ret);
3806 			btrfs_orphan_del(NULL, inode);
3807 			btrfs_free_block_rsv(root, rsv);
3808 			goto no_delete;
3809 		}
3810 
3811 		trans = btrfs_start_transaction(root, 0);
3812 		if (IS_ERR(trans)) {
3813 			btrfs_orphan_del(NULL, inode);
3814 			btrfs_free_block_rsv(root, rsv);
3815 			goto no_delete;
3816 		}
3817 
3818 		trans->block_rsv = rsv;
3819 
3820 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3821 		if (ret != -EAGAIN)
3822 			break;
3823 
3824 		nr = trans->blocks_used;
3825 		btrfs_end_transaction(trans, root);
3826 		trans = NULL;
3827 		btrfs_btree_balance_dirty(root, nr);
3828 	}
3829 
3830 	btrfs_free_block_rsv(root, rsv);
3831 
3832 	if (ret == 0) {
3833 		trans->block_rsv = root->orphan_block_rsv;
3834 		ret = btrfs_orphan_del(trans, inode);
3835 		BUG_ON(ret);
3836 	}
3837 
3838 	trans->block_rsv = &root->fs_info->trans_block_rsv;
3839 	if (!(root == root->fs_info->tree_root ||
3840 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3841 		btrfs_return_ino(root, btrfs_ino(inode));
3842 
3843 	nr = trans->blocks_used;
3844 	btrfs_end_transaction(trans, root);
3845 	btrfs_btree_balance_dirty(root, nr);
3846 no_delete:
3847 	clear_inode(inode);
3848 	return;
3849 }
3850 
3851 /*
3852  * this returns the key found in the dir entry in the location pointer.
3853  * If no dir entries were found, location->objectid is 0.
3854  */
3855 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3856 			       struct btrfs_key *location)
3857 {
3858 	const char *name = dentry->d_name.name;
3859 	int namelen = dentry->d_name.len;
3860 	struct btrfs_dir_item *di;
3861 	struct btrfs_path *path;
3862 	struct btrfs_root *root = BTRFS_I(dir)->root;
3863 	int ret = 0;
3864 
3865 	path = btrfs_alloc_path();
3866 	if (!path)
3867 		return -ENOMEM;
3868 
3869 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3870 				    namelen, 0);
3871 	if (IS_ERR(di))
3872 		ret = PTR_ERR(di);
3873 
3874 	if (IS_ERR_OR_NULL(di))
3875 		goto out_err;
3876 
3877 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3878 out:
3879 	btrfs_free_path(path);
3880 	return ret;
3881 out_err:
3882 	location->objectid = 0;
3883 	goto out;
3884 }
3885 
3886 /*
3887  * when we hit a tree root in a directory, the btrfs part of the inode
3888  * needs to be changed to reflect the root directory of the tree root.  This
3889  * is kind of like crossing a mount point.
3890  */
3891 static int fixup_tree_root_location(struct btrfs_root *root,
3892 				    struct inode *dir,
3893 				    struct dentry *dentry,
3894 				    struct btrfs_key *location,
3895 				    struct btrfs_root **sub_root)
3896 {
3897 	struct btrfs_path *path;
3898 	struct btrfs_root *new_root;
3899 	struct btrfs_root_ref *ref;
3900 	struct extent_buffer *leaf;
3901 	int ret;
3902 	int err = 0;
3903 
3904 	path = btrfs_alloc_path();
3905 	if (!path) {
3906 		err = -ENOMEM;
3907 		goto out;
3908 	}
3909 
3910 	err = -ENOENT;
3911 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3912 				  BTRFS_I(dir)->root->root_key.objectid,
3913 				  location->objectid);
3914 	if (ret) {
3915 		if (ret < 0)
3916 			err = ret;
3917 		goto out;
3918 	}
3919 
3920 	leaf = path->nodes[0];
3921 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3922 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3923 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3924 		goto out;
3925 
3926 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3927 				   (unsigned long)(ref + 1),
3928 				   dentry->d_name.len);
3929 	if (ret)
3930 		goto out;
3931 
3932 	btrfs_release_path(path);
3933 
3934 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3935 	if (IS_ERR(new_root)) {
3936 		err = PTR_ERR(new_root);
3937 		goto out;
3938 	}
3939 
3940 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3941 		err = -ENOENT;
3942 		goto out;
3943 	}
3944 
3945 	*sub_root = new_root;
3946 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3947 	location->type = BTRFS_INODE_ITEM_KEY;
3948 	location->offset = 0;
3949 	err = 0;
3950 out:
3951 	btrfs_free_path(path);
3952 	return err;
3953 }
3954 
3955 static void inode_tree_add(struct inode *inode)
3956 {
3957 	struct btrfs_root *root = BTRFS_I(inode)->root;
3958 	struct btrfs_inode *entry;
3959 	struct rb_node **p;
3960 	struct rb_node *parent;
3961 	u64 ino = btrfs_ino(inode);
3962 again:
3963 	p = &root->inode_tree.rb_node;
3964 	parent = NULL;
3965 
3966 	if (inode_unhashed(inode))
3967 		return;
3968 
3969 	spin_lock(&root->inode_lock);
3970 	while (*p) {
3971 		parent = *p;
3972 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3973 
3974 		if (ino < btrfs_ino(&entry->vfs_inode))
3975 			p = &parent->rb_left;
3976 		else if (ino > btrfs_ino(&entry->vfs_inode))
3977 			p = &parent->rb_right;
3978 		else {
3979 			WARN_ON(!(entry->vfs_inode.i_state &
3980 				  (I_WILL_FREE | I_FREEING)));
3981 			rb_erase(parent, &root->inode_tree);
3982 			RB_CLEAR_NODE(parent);
3983 			spin_unlock(&root->inode_lock);
3984 			goto again;
3985 		}
3986 	}
3987 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3988 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3989 	spin_unlock(&root->inode_lock);
3990 }
3991 
3992 static void inode_tree_del(struct inode *inode)
3993 {
3994 	struct btrfs_root *root = BTRFS_I(inode)->root;
3995 	int empty = 0;
3996 
3997 	spin_lock(&root->inode_lock);
3998 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3999 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4000 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4001 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4002 	}
4003 	spin_unlock(&root->inode_lock);
4004 
4005 	/*
4006 	 * Free space cache has inodes in the tree root, but the tree root has a
4007 	 * root_refs of 0, so this could end up dropping the tree root as a
4008 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
4009 	 * make sure we don't drop it.
4010 	 */
4011 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4012 	    root != root->fs_info->tree_root) {
4013 		synchronize_srcu(&root->fs_info->subvol_srcu);
4014 		spin_lock(&root->inode_lock);
4015 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4016 		spin_unlock(&root->inode_lock);
4017 		if (empty)
4018 			btrfs_add_dead_root(root);
4019 	}
4020 }
4021 
4022 void btrfs_invalidate_inodes(struct btrfs_root *root)
4023 {
4024 	struct rb_node *node;
4025 	struct rb_node *prev;
4026 	struct btrfs_inode *entry;
4027 	struct inode *inode;
4028 	u64 objectid = 0;
4029 
4030 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4031 
4032 	spin_lock(&root->inode_lock);
4033 again:
4034 	node = root->inode_tree.rb_node;
4035 	prev = NULL;
4036 	while (node) {
4037 		prev = node;
4038 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4039 
4040 		if (objectid < btrfs_ino(&entry->vfs_inode))
4041 			node = node->rb_left;
4042 		else if (objectid > btrfs_ino(&entry->vfs_inode))
4043 			node = node->rb_right;
4044 		else
4045 			break;
4046 	}
4047 	if (!node) {
4048 		while (prev) {
4049 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4050 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4051 				node = prev;
4052 				break;
4053 			}
4054 			prev = rb_next(prev);
4055 		}
4056 	}
4057 	while (node) {
4058 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4059 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
4060 		inode = igrab(&entry->vfs_inode);
4061 		if (inode) {
4062 			spin_unlock(&root->inode_lock);
4063 			if (atomic_read(&inode->i_count) > 1)
4064 				d_prune_aliases(inode);
4065 			/*
4066 			 * btrfs_drop_inode will have it removed from
4067 			 * the inode cache when its usage count
4068 			 * hits zero.
4069 			 */
4070 			iput(inode);
4071 			cond_resched();
4072 			spin_lock(&root->inode_lock);
4073 			goto again;
4074 		}
4075 
4076 		if (cond_resched_lock(&root->inode_lock))
4077 			goto again;
4078 
4079 		node = rb_next(node);
4080 	}
4081 	spin_unlock(&root->inode_lock);
4082 }
4083 
4084 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4085 {
4086 	struct btrfs_iget_args *args = p;
4087 	inode->i_ino = args->ino;
4088 	BTRFS_I(inode)->root = args->root;
4089 	return 0;
4090 }
4091 
4092 static int btrfs_find_actor(struct inode *inode, void *opaque)
4093 {
4094 	struct btrfs_iget_args *args = opaque;
4095 	return args->ino == btrfs_ino(inode) &&
4096 		args->root == BTRFS_I(inode)->root;
4097 }
4098 
4099 static struct inode *btrfs_iget_locked(struct super_block *s,
4100 				       u64 objectid,
4101 				       struct btrfs_root *root)
4102 {
4103 	struct inode *inode;
4104 	struct btrfs_iget_args args;
4105 	args.ino = objectid;
4106 	args.root = root;
4107 
4108 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4109 			     btrfs_init_locked_inode,
4110 			     (void *)&args);
4111 	return inode;
4112 }
4113 
4114 /* Get an inode object given its location and corresponding root.
4115  * Returns in *is_new if the inode was read from disk
4116  */
4117 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4118 			 struct btrfs_root *root, int *new)
4119 {
4120 	struct inode *inode;
4121 
4122 	inode = btrfs_iget_locked(s, location->objectid, root);
4123 	if (!inode)
4124 		return ERR_PTR(-ENOMEM);
4125 
4126 	if (inode->i_state & I_NEW) {
4127 		BTRFS_I(inode)->root = root;
4128 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4129 		btrfs_read_locked_inode(inode);
4130 		if (!is_bad_inode(inode)) {
4131 			inode_tree_add(inode);
4132 			unlock_new_inode(inode);
4133 			if (new)
4134 				*new = 1;
4135 		} else {
4136 			unlock_new_inode(inode);
4137 			iput(inode);
4138 			inode = ERR_PTR(-ESTALE);
4139 		}
4140 	}
4141 
4142 	return inode;
4143 }
4144 
4145 static struct inode *new_simple_dir(struct super_block *s,
4146 				    struct btrfs_key *key,
4147 				    struct btrfs_root *root)
4148 {
4149 	struct inode *inode = new_inode(s);
4150 
4151 	if (!inode)
4152 		return ERR_PTR(-ENOMEM);
4153 
4154 	BTRFS_I(inode)->root = root;
4155 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4156 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4157 
4158 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4159 	inode->i_op = &btrfs_dir_ro_inode_operations;
4160 	inode->i_fop = &simple_dir_operations;
4161 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4162 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4163 
4164 	return inode;
4165 }
4166 
4167 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4168 {
4169 	struct inode *inode;
4170 	struct btrfs_root *root = BTRFS_I(dir)->root;
4171 	struct btrfs_root *sub_root = root;
4172 	struct btrfs_key location;
4173 	int index;
4174 	int ret = 0;
4175 
4176 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4177 		return ERR_PTR(-ENAMETOOLONG);
4178 
4179 	if (unlikely(d_need_lookup(dentry))) {
4180 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4181 		kfree(dentry->d_fsdata);
4182 		dentry->d_fsdata = NULL;
4183 		/* This thing is hashed, drop it for now */
4184 		d_drop(dentry);
4185 	} else {
4186 		ret = btrfs_inode_by_name(dir, dentry, &location);
4187 	}
4188 
4189 	if (ret < 0)
4190 		return ERR_PTR(ret);
4191 
4192 	if (location.objectid == 0)
4193 		return NULL;
4194 
4195 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4196 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4197 		return inode;
4198 	}
4199 
4200 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4201 
4202 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4203 	ret = fixup_tree_root_location(root, dir, dentry,
4204 				       &location, &sub_root);
4205 	if (ret < 0) {
4206 		if (ret != -ENOENT)
4207 			inode = ERR_PTR(ret);
4208 		else
4209 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4210 	} else {
4211 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4212 	}
4213 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4214 
4215 	if (!IS_ERR(inode) && root != sub_root) {
4216 		down_read(&root->fs_info->cleanup_work_sem);
4217 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4218 			ret = btrfs_orphan_cleanup(sub_root);
4219 		up_read(&root->fs_info->cleanup_work_sem);
4220 		if (ret)
4221 			inode = ERR_PTR(ret);
4222 	}
4223 
4224 	return inode;
4225 }
4226 
4227 static int btrfs_dentry_delete(const struct dentry *dentry)
4228 {
4229 	struct btrfs_root *root;
4230 	struct inode *inode = dentry->d_inode;
4231 
4232 	if (!inode && !IS_ROOT(dentry))
4233 		inode = dentry->d_parent->d_inode;
4234 
4235 	if (inode) {
4236 		root = BTRFS_I(inode)->root;
4237 		if (btrfs_root_refs(&root->root_item) == 0)
4238 			return 1;
4239 
4240 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4241 			return 1;
4242 	}
4243 	return 0;
4244 }
4245 
4246 static void btrfs_dentry_release(struct dentry *dentry)
4247 {
4248 	if (dentry->d_fsdata)
4249 		kfree(dentry->d_fsdata);
4250 }
4251 
4252 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4253 				   unsigned int flags)
4254 {
4255 	struct dentry *ret;
4256 
4257 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4258 	if (unlikely(d_need_lookup(dentry))) {
4259 		spin_lock(&dentry->d_lock);
4260 		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4261 		spin_unlock(&dentry->d_lock);
4262 	}
4263 	return ret;
4264 }
4265 
4266 unsigned char btrfs_filetype_table[] = {
4267 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4268 };
4269 
4270 static int btrfs_real_readdir(struct file *filp, void *dirent,
4271 			      filldir_t filldir)
4272 {
4273 	struct inode *inode = filp->f_dentry->d_inode;
4274 	struct btrfs_root *root = BTRFS_I(inode)->root;
4275 	struct btrfs_item *item;
4276 	struct btrfs_dir_item *di;
4277 	struct btrfs_key key;
4278 	struct btrfs_key found_key;
4279 	struct btrfs_path *path;
4280 	struct list_head ins_list;
4281 	struct list_head del_list;
4282 	int ret;
4283 	struct extent_buffer *leaf;
4284 	int slot;
4285 	unsigned char d_type;
4286 	int over = 0;
4287 	u32 di_cur;
4288 	u32 di_total;
4289 	u32 di_len;
4290 	int key_type = BTRFS_DIR_INDEX_KEY;
4291 	char tmp_name[32];
4292 	char *name_ptr;
4293 	int name_len;
4294 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4295 
4296 	/* FIXME, use a real flag for deciding about the key type */
4297 	if (root->fs_info->tree_root == root)
4298 		key_type = BTRFS_DIR_ITEM_KEY;
4299 
4300 	/* special case for "." */
4301 	if (filp->f_pos == 0) {
4302 		over = filldir(dirent, ".", 1,
4303 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
4304 		if (over)
4305 			return 0;
4306 		filp->f_pos = 1;
4307 	}
4308 	/* special case for .., just use the back ref */
4309 	if (filp->f_pos == 1) {
4310 		u64 pino = parent_ino(filp->f_path.dentry);
4311 		over = filldir(dirent, "..", 2,
4312 			       filp->f_pos, pino, DT_DIR);
4313 		if (over)
4314 			return 0;
4315 		filp->f_pos = 2;
4316 	}
4317 	path = btrfs_alloc_path();
4318 	if (!path)
4319 		return -ENOMEM;
4320 
4321 	path->reada = 1;
4322 
4323 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4324 		INIT_LIST_HEAD(&ins_list);
4325 		INIT_LIST_HEAD(&del_list);
4326 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4327 	}
4328 
4329 	btrfs_set_key_type(&key, key_type);
4330 	key.offset = filp->f_pos;
4331 	key.objectid = btrfs_ino(inode);
4332 
4333 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4334 	if (ret < 0)
4335 		goto err;
4336 
4337 	while (1) {
4338 		leaf = path->nodes[0];
4339 		slot = path->slots[0];
4340 		if (slot >= btrfs_header_nritems(leaf)) {
4341 			ret = btrfs_next_leaf(root, path);
4342 			if (ret < 0)
4343 				goto err;
4344 			else if (ret > 0)
4345 				break;
4346 			continue;
4347 		}
4348 
4349 		item = btrfs_item_nr(leaf, slot);
4350 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4351 
4352 		if (found_key.objectid != key.objectid)
4353 			break;
4354 		if (btrfs_key_type(&found_key) != key_type)
4355 			break;
4356 		if (found_key.offset < filp->f_pos)
4357 			goto next;
4358 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4359 		    btrfs_should_delete_dir_index(&del_list,
4360 						  found_key.offset))
4361 			goto next;
4362 
4363 		filp->f_pos = found_key.offset;
4364 		is_curr = 1;
4365 
4366 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4367 		di_cur = 0;
4368 		di_total = btrfs_item_size(leaf, item);
4369 
4370 		while (di_cur < di_total) {
4371 			struct btrfs_key location;
4372 
4373 			if (verify_dir_item(root, leaf, di))
4374 				break;
4375 
4376 			name_len = btrfs_dir_name_len(leaf, di);
4377 			if (name_len <= sizeof(tmp_name)) {
4378 				name_ptr = tmp_name;
4379 			} else {
4380 				name_ptr = kmalloc(name_len, GFP_NOFS);
4381 				if (!name_ptr) {
4382 					ret = -ENOMEM;
4383 					goto err;
4384 				}
4385 			}
4386 			read_extent_buffer(leaf, name_ptr,
4387 					   (unsigned long)(di + 1), name_len);
4388 
4389 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4390 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4391 
4392 
4393 			/* is this a reference to our own snapshot? If so
4394 			 * skip it.
4395 			 *
4396 			 * In contrast to old kernels, we insert the snapshot's
4397 			 * dir item and dir index after it has been created, so
4398 			 * we won't find a reference to our own snapshot. We
4399 			 * still keep the following code for backward
4400 			 * compatibility.
4401 			 */
4402 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4403 			    location.objectid == root->root_key.objectid) {
4404 				over = 0;
4405 				goto skip;
4406 			}
4407 			over = filldir(dirent, name_ptr, name_len,
4408 				       found_key.offset, location.objectid,
4409 				       d_type);
4410 
4411 skip:
4412 			if (name_ptr != tmp_name)
4413 				kfree(name_ptr);
4414 
4415 			if (over)
4416 				goto nopos;
4417 			di_len = btrfs_dir_name_len(leaf, di) +
4418 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4419 			di_cur += di_len;
4420 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4421 		}
4422 next:
4423 		path->slots[0]++;
4424 	}
4425 
4426 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4427 		if (is_curr)
4428 			filp->f_pos++;
4429 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4430 						      &ins_list);
4431 		if (ret)
4432 			goto nopos;
4433 	}
4434 
4435 	/* Reached end of directory/root. Bump pos past the last item. */
4436 	if (key_type == BTRFS_DIR_INDEX_KEY)
4437 		/*
4438 		 * 32-bit glibc will use getdents64, but then strtol -
4439 		 * so the last number we can serve is this.
4440 		 */
4441 		filp->f_pos = 0x7fffffff;
4442 	else
4443 		filp->f_pos++;
4444 nopos:
4445 	ret = 0;
4446 err:
4447 	if (key_type == BTRFS_DIR_INDEX_KEY)
4448 		btrfs_put_delayed_items(&ins_list, &del_list);
4449 	btrfs_free_path(path);
4450 	return ret;
4451 }
4452 
4453 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4454 {
4455 	struct btrfs_root *root = BTRFS_I(inode)->root;
4456 	struct btrfs_trans_handle *trans;
4457 	int ret = 0;
4458 	bool nolock = false;
4459 
4460 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4461 		return 0;
4462 
4463 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4464 		nolock = true;
4465 
4466 	if (wbc->sync_mode == WB_SYNC_ALL) {
4467 		if (nolock)
4468 			trans = btrfs_join_transaction_nolock(root);
4469 		else
4470 			trans = btrfs_join_transaction(root);
4471 		if (IS_ERR(trans))
4472 			return PTR_ERR(trans);
4473 		if (nolock)
4474 			ret = btrfs_end_transaction_nolock(trans, root);
4475 		else
4476 			ret = btrfs_commit_transaction(trans, root);
4477 	}
4478 	return ret;
4479 }
4480 
4481 /*
4482  * This is somewhat expensive, updating the tree every time the
4483  * inode changes.  But, it is most likely to find the inode in cache.
4484  * FIXME, needs more benchmarking...there are no reasons other than performance
4485  * to keep or drop this code.
4486  */
4487 int btrfs_dirty_inode(struct inode *inode)
4488 {
4489 	struct btrfs_root *root = BTRFS_I(inode)->root;
4490 	struct btrfs_trans_handle *trans;
4491 	int ret;
4492 
4493 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4494 		return 0;
4495 
4496 	trans = btrfs_join_transaction(root);
4497 	if (IS_ERR(trans))
4498 		return PTR_ERR(trans);
4499 
4500 	ret = btrfs_update_inode(trans, root, inode);
4501 	if (ret && ret == -ENOSPC) {
4502 		/* whoops, lets try again with the full transaction */
4503 		btrfs_end_transaction(trans, root);
4504 		trans = btrfs_start_transaction(root, 1);
4505 		if (IS_ERR(trans))
4506 			return PTR_ERR(trans);
4507 
4508 		ret = btrfs_update_inode(trans, root, inode);
4509 	}
4510 	btrfs_end_transaction(trans, root);
4511 	if (BTRFS_I(inode)->delayed_node)
4512 		btrfs_balance_delayed_items(root);
4513 
4514 	return ret;
4515 }
4516 
4517 /*
4518  * This is a copy of file_update_time.  We need this so we can return error on
4519  * ENOSPC for updating the inode in the case of file write and mmap writes.
4520  */
4521 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4522 			     int flags)
4523 {
4524 	struct btrfs_root *root = BTRFS_I(inode)->root;
4525 
4526 	if (btrfs_root_readonly(root))
4527 		return -EROFS;
4528 
4529 	if (flags & S_VERSION)
4530 		inode_inc_iversion(inode);
4531 	if (flags & S_CTIME)
4532 		inode->i_ctime = *now;
4533 	if (flags & S_MTIME)
4534 		inode->i_mtime = *now;
4535 	if (flags & S_ATIME)
4536 		inode->i_atime = *now;
4537 	return btrfs_dirty_inode(inode);
4538 }
4539 
4540 /*
4541  * find the highest existing sequence number in a directory
4542  * and then set the in-memory index_cnt variable to reflect
4543  * free sequence numbers
4544  */
4545 static int btrfs_set_inode_index_count(struct inode *inode)
4546 {
4547 	struct btrfs_root *root = BTRFS_I(inode)->root;
4548 	struct btrfs_key key, found_key;
4549 	struct btrfs_path *path;
4550 	struct extent_buffer *leaf;
4551 	int ret;
4552 
4553 	key.objectid = btrfs_ino(inode);
4554 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4555 	key.offset = (u64)-1;
4556 
4557 	path = btrfs_alloc_path();
4558 	if (!path)
4559 		return -ENOMEM;
4560 
4561 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4562 	if (ret < 0)
4563 		goto out;
4564 	/* FIXME: we should be able to handle this */
4565 	if (ret == 0)
4566 		goto out;
4567 	ret = 0;
4568 
4569 	/*
4570 	 * MAGIC NUMBER EXPLANATION:
4571 	 * since we search a directory based on f_pos we have to start at 2
4572 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4573 	 * else has to start at 2
4574 	 */
4575 	if (path->slots[0] == 0) {
4576 		BTRFS_I(inode)->index_cnt = 2;
4577 		goto out;
4578 	}
4579 
4580 	path->slots[0]--;
4581 
4582 	leaf = path->nodes[0];
4583 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4584 
4585 	if (found_key.objectid != btrfs_ino(inode) ||
4586 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4587 		BTRFS_I(inode)->index_cnt = 2;
4588 		goto out;
4589 	}
4590 
4591 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4592 out:
4593 	btrfs_free_path(path);
4594 	return ret;
4595 }
4596 
4597 /*
4598  * helper to find a free sequence number in a given directory.  This current
4599  * code is very simple, later versions will do smarter things in the btree
4600  */
4601 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4602 {
4603 	int ret = 0;
4604 
4605 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4606 		ret = btrfs_inode_delayed_dir_index_count(dir);
4607 		if (ret) {
4608 			ret = btrfs_set_inode_index_count(dir);
4609 			if (ret)
4610 				return ret;
4611 		}
4612 	}
4613 
4614 	*index = BTRFS_I(dir)->index_cnt;
4615 	BTRFS_I(dir)->index_cnt++;
4616 
4617 	return ret;
4618 }
4619 
4620 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4621 				     struct btrfs_root *root,
4622 				     struct inode *dir,
4623 				     const char *name, int name_len,
4624 				     u64 ref_objectid, u64 objectid,
4625 				     umode_t mode, u64 *index)
4626 {
4627 	struct inode *inode;
4628 	struct btrfs_inode_item *inode_item;
4629 	struct btrfs_key *location;
4630 	struct btrfs_path *path;
4631 	struct btrfs_inode_ref *ref;
4632 	struct btrfs_key key[2];
4633 	u32 sizes[2];
4634 	unsigned long ptr;
4635 	int ret;
4636 	int owner;
4637 
4638 	path = btrfs_alloc_path();
4639 	if (!path)
4640 		return ERR_PTR(-ENOMEM);
4641 
4642 	inode = new_inode(root->fs_info->sb);
4643 	if (!inode) {
4644 		btrfs_free_path(path);
4645 		return ERR_PTR(-ENOMEM);
4646 	}
4647 
4648 	/*
4649 	 * we have to initialize this early, so we can reclaim the inode
4650 	 * number if we fail afterwards in this function.
4651 	 */
4652 	inode->i_ino = objectid;
4653 
4654 	if (dir) {
4655 		trace_btrfs_inode_request(dir);
4656 
4657 		ret = btrfs_set_inode_index(dir, index);
4658 		if (ret) {
4659 			btrfs_free_path(path);
4660 			iput(inode);
4661 			return ERR_PTR(ret);
4662 		}
4663 	}
4664 	/*
4665 	 * index_cnt is ignored for everything but a dir,
4666 	 * btrfs_get_inode_index_count has an explanation for the magic
4667 	 * number
4668 	 */
4669 	BTRFS_I(inode)->index_cnt = 2;
4670 	BTRFS_I(inode)->root = root;
4671 	BTRFS_I(inode)->generation = trans->transid;
4672 	inode->i_generation = BTRFS_I(inode)->generation;
4673 
4674 	if (S_ISDIR(mode))
4675 		owner = 0;
4676 	else
4677 		owner = 1;
4678 
4679 	key[0].objectid = objectid;
4680 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4681 	key[0].offset = 0;
4682 
4683 	key[1].objectid = objectid;
4684 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4685 	key[1].offset = ref_objectid;
4686 
4687 	sizes[0] = sizeof(struct btrfs_inode_item);
4688 	sizes[1] = name_len + sizeof(*ref);
4689 
4690 	path->leave_spinning = 1;
4691 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4692 	if (ret != 0)
4693 		goto fail;
4694 
4695 	inode_init_owner(inode, dir, mode);
4696 	inode_set_bytes(inode, 0);
4697 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4698 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4699 				  struct btrfs_inode_item);
4700 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4701 			     sizeof(*inode_item));
4702 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4703 
4704 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4705 			     struct btrfs_inode_ref);
4706 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4707 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4708 	ptr = (unsigned long)(ref + 1);
4709 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4710 
4711 	btrfs_mark_buffer_dirty(path->nodes[0]);
4712 	btrfs_free_path(path);
4713 
4714 	location = &BTRFS_I(inode)->location;
4715 	location->objectid = objectid;
4716 	location->offset = 0;
4717 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4718 
4719 	btrfs_inherit_iflags(inode, dir);
4720 
4721 	if (S_ISREG(mode)) {
4722 		if (btrfs_test_opt(root, NODATASUM))
4723 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4724 		if (btrfs_test_opt(root, NODATACOW) ||
4725 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4726 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4727 	}
4728 
4729 	insert_inode_hash(inode);
4730 	inode_tree_add(inode);
4731 
4732 	trace_btrfs_inode_new(inode);
4733 	btrfs_set_inode_last_trans(trans, inode);
4734 
4735 	btrfs_update_root_times(trans, root);
4736 
4737 	return inode;
4738 fail:
4739 	if (dir)
4740 		BTRFS_I(dir)->index_cnt--;
4741 	btrfs_free_path(path);
4742 	iput(inode);
4743 	return ERR_PTR(ret);
4744 }
4745 
4746 static inline u8 btrfs_inode_type(struct inode *inode)
4747 {
4748 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4749 }
4750 
4751 /*
4752  * utility function to add 'inode' into 'parent_inode' with
4753  * a give name and a given sequence number.
4754  * if 'add_backref' is true, also insert a backref from the
4755  * inode to the parent directory.
4756  */
4757 int btrfs_add_link(struct btrfs_trans_handle *trans,
4758 		   struct inode *parent_inode, struct inode *inode,
4759 		   const char *name, int name_len, int add_backref, u64 index)
4760 {
4761 	int ret = 0;
4762 	struct btrfs_key key;
4763 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4764 	u64 ino = btrfs_ino(inode);
4765 	u64 parent_ino = btrfs_ino(parent_inode);
4766 
4767 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4768 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4769 	} else {
4770 		key.objectid = ino;
4771 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4772 		key.offset = 0;
4773 	}
4774 
4775 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4776 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4777 					 key.objectid, root->root_key.objectid,
4778 					 parent_ino, index, name, name_len);
4779 	} else if (add_backref) {
4780 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4781 					     parent_ino, index);
4782 	}
4783 
4784 	/* Nothing to clean up yet */
4785 	if (ret)
4786 		return ret;
4787 
4788 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
4789 				    parent_inode, &key,
4790 				    btrfs_inode_type(inode), index);
4791 	if (ret == -EEXIST)
4792 		goto fail_dir_item;
4793 	else if (ret) {
4794 		btrfs_abort_transaction(trans, root, ret);
4795 		return ret;
4796 	}
4797 
4798 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
4799 			   name_len * 2);
4800 	inode_inc_iversion(parent_inode);
4801 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4802 	ret = btrfs_update_inode(trans, root, parent_inode);
4803 	if (ret)
4804 		btrfs_abort_transaction(trans, root, ret);
4805 	return ret;
4806 
4807 fail_dir_item:
4808 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4809 		u64 local_index;
4810 		int err;
4811 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4812 				 key.objectid, root->root_key.objectid,
4813 				 parent_ino, &local_index, name, name_len);
4814 
4815 	} else if (add_backref) {
4816 		u64 local_index;
4817 		int err;
4818 
4819 		err = btrfs_del_inode_ref(trans, root, name, name_len,
4820 					  ino, parent_ino, &local_index);
4821 	}
4822 	return ret;
4823 }
4824 
4825 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4826 			    struct inode *dir, struct dentry *dentry,
4827 			    struct inode *inode, int backref, u64 index)
4828 {
4829 	int err = btrfs_add_link(trans, dir, inode,
4830 				 dentry->d_name.name, dentry->d_name.len,
4831 				 backref, index);
4832 	if (err > 0)
4833 		err = -EEXIST;
4834 	return err;
4835 }
4836 
4837 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4838 			umode_t mode, dev_t rdev)
4839 {
4840 	struct btrfs_trans_handle *trans;
4841 	struct btrfs_root *root = BTRFS_I(dir)->root;
4842 	struct inode *inode = NULL;
4843 	int err;
4844 	int drop_inode = 0;
4845 	u64 objectid;
4846 	unsigned long nr = 0;
4847 	u64 index = 0;
4848 
4849 	if (!new_valid_dev(rdev))
4850 		return -EINVAL;
4851 
4852 	/*
4853 	 * 2 for inode item and ref
4854 	 * 2 for dir items
4855 	 * 1 for xattr if selinux is on
4856 	 */
4857 	trans = btrfs_start_transaction(root, 5);
4858 	if (IS_ERR(trans))
4859 		return PTR_ERR(trans);
4860 
4861 	err = btrfs_find_free_ino(root, &objectid);
4862 	if (err)
4863 		goto out_unlock;
4864 
4865 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4866 				dentry->d_name.len, btrfs_ino(dir), objectid,
4867 				mode, &index);
4868 	if (IS_ERR(inode)) {
4869 		err = PTR_ERR(inode);
4870 		goto out_unlock;
4871 	}
4872 
4873 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4874 	if (err) {
4875 		drop_inode = 1;
4876 		goto out_unlock;
4877 	}
4878 
4879 	/*
4880 	* If the active LSM wants to access the inode during
4881 	* d_instantiate it needs these. Smack checks to see
4882 	* if the filesystem supports xattrs by looking at the
4883 	* ops vector.
4884 	*/
4885 
4886 	inode->i_op = &btrfs_special_inode_operations;
4887 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4888 	if (err)
4889 		drop_inode = 1;
4890 	else {
4891 		init_special_inode(inode, inode->i_mode, rdev);
4892 		btrfs_update_inode(trans, root, inode);
4893 		d_instantiate(dentry, inode);
4894 	}
4895 out_unlock:
4896 	nr = trans->blocks_used;
4897 	btrfs_end_transaction(trans, root);
4898 	btrfs_btree_balance_dirty(root, nr);
4899 	if (drop_inode) {
4900 		inode_dec_link_count(inode);
4901 		iput(inode);
4902 	}
4903 	return err;
4904 }
4905 
4906 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4907 			umode_t mode, bool excl)
4908 {
4909 	struct btrfs_trans_handle *trans;
4910 	struct btrfs_root *root = BTRFS_I(dir)->root;
4911 	struct inode *inode = NULL;
4912 	int drop_inode = 0;
4913 	int err;
4914 	unsigned long nr = 0;
4915 	u64 objectid;
4916 	u64 index = 0;
4917 
4918 	/*
4919 	 * 2 for inode item and ref
4920 	 * 2 for dir items
4921 	 * 1 for xattr if selinux is on
4922 	 */
4923 	trans = btrfs_start_transaction(root, 5);
4924 	if (IS_ERR(trans))
4925 		return PTR_ERR(trans);
4926 
4927 	err = btrfs_find_free_ino(root, &objectid);
4928 	if (err)
4929 		goto out_unlock;
4930 
4931 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4932 				dentry->d_name.len, btrfs_ino(dir), objectid,
4933 				mode, &index);
4934 	if (IS_ERR(inode)) {
4935 		err = PTR_ERR(inode);
4936 		goto out_unlock;
4937 	}
4938 
4939 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4940 	if (err) {
4941 		drop_inode = 1;
4942 		goto out_unlock;
4943 	}
4944 
4945 	/*
4946 	* If the active LSM wants to access the inode during
4947 	* d_instantiate it needs these. Smack checks to see
4948 	* if the filesystem supports xattrs by looking at the
4949 	* ops vector.
4950 	*/
4951 	inode->i_fop = &btrfs_file_operations;
4952 	inode->i_op = &btrfs_file_inode_operations;
4953 
4954 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4955 	if (err)
4956 		drop_inode = 1;
4957 	else {
4958 		inode->i_mapping->a_ops = &btrfs_aops;
4959 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4960 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4961 		d_instantiate(dentry, inode);
4962 	}
4963 out_unlock:
4964 	nr = trans->blocks_used;
4965 	btrfs_end_transaction(trans, root);
4966 	if (drop_inode) {
4967 		inode_dec_link_count(inode);
4968 		iput(inode);
4969 	}
4970 	btrfs_btree_balance_dirty(root, nr);
4971 	return err;
4972 }
4973 
4974 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4975 		      struct dentry *dentry)
4976 {
4977 	struct btrfs_trans_handle *trans;
4978 	struct btrfs_root *root = BTRFS_I(dir)->root;
4979 	struct inode *inode = old_dentry->d_inode;
4980 	u64 index;
4981 	unsigned long nr = 0;
4982 	int err;
4983 	int drop_inode = 0;
4984 
4985 	/* do not allow sys_link's with other subvols of the same device */
4986 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4987 		return -EXDEV;
4988 
4989 	if (inode->i_nlink == ~0U)
4990 		return -EMLINK;
4991 
4992 	err = btrfs_set_inode_index(dir, &index);
4993 	if (err)
4994 		goto fail;
4995 
4996 	/*
4997 	 * 2 items for inode and inode ref
4998 	 * 2 items for dir items
4999 	 * 1 item for parent inode
5000 	 */
5001 	trans = btrfs_start_transaction(root, 5);
5002 	if (IS_ERR(trans)) {
5003 		err = PTR_ERR(trans);
5004 		goto fail;
5005 	}
5006 
5007 	btrfs_inc_nlink(inode);
5008 	inode_inc_iversion(inode);
5009 	inode->i_ctime = CURRENT_TIME;
5010 	ihold(inode);
5011 
5012 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5013 
5014 	if (err) {
5015 		drop_inode = 1;
5016 	} else {
5017 		struct dentry *parent = dentry->d_parent;
5018 		err = btrfs_update_inode(trans, root, inode);
5019 		if (err)
5020 			goto fail;
5021 		d_instantiate(dentry, inode);
5022 		btrfs_log_new_name(trans, inode, NULL, parent);
5023 	}
5024 
5025 	nr = trans->blocks_used;
5026 	btrfs_end_transaction(trans, root);
5027 fail:
5028 	if (drop_inode) {
5029 		inode_dec_link_count(inode);
5030 		iput(inode);
5031 	}
5032 	btrfs_btree_balance_dirty(root, nr);
5033 	return err;
5034 }
5035 
5036 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5037 {
5038 	struct inode *inode = NULL;
5039 	struct btrfs_trans_handle *trans;
5040 	struct btrfs_root *root = BTRFS_I(dir)->root;
5041 	int err = 0;
5042 	int drop_on_err = 0;
5043 	u64 objectid = 0;
5044 	u64 index = 0;
5045 	unsigned long nr = 1;
5046 
5047 	/*
5048 	 * 2 items for inode and ref
5049 	 * 2 items for dir items
5050 	 * 1 for xattr if selinux is on
5051 	 */
5052 	trans = btrfs_start_transaction(root, 5);
5053 	if (IS_ERR(trans))
5054 		return PTR_ERR(trans);
5055 
5056 	err = btrfs_find_free_ino(root, &objectid);
5057 	if (err)
5058 		goto out_fail;
5059 
5060 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5061 				dentry->d_name.len, btrfs_ino(dir), objectid,
5062 				S_IFDIR | mode, &index);
5063 	if (IS_ERR(inode)) {
5064 		err = PTR_ERR(inode);
5065 		goto out_fail;
5066 	}
5067 
5068 	drop_on_err = 1;
5069 
5070 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5071 	if (err)
5072 		goto out_fail;
5073 
5074 	inode->i_op = &btrfs_dir_inode_operations;
5075 	inode->i_fop = &btrfs_dir_file_operations;
5076 
5077 	btrfs_i_size_write(inode, 0);
5078 	err = btrfs_update_inode(trans, root, inode);
5079 	if (err)
5080 		goto out_fail;
5081 
5082 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5083 			     dentry->d_name.len, 0, index);
5084 	if (err)
5085 		goto out_fail;
5086 
5087 	d_instantiate(dentry, inode);
5088 	drop_on_err = 0;
5089 
5090 out_fail:
5091 	nr = trans->blocks_used;
5092 	btrfs_end_transaction(trans, root);
5093 	if (drop_on_err)
5094 		iput(inode);
5095 	btrfs_btree_balance_dirty(root, nr);
5096 	return err;
5097 }
5098 
5099 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5100  * and an extent that you want to insert, deal with overlap and insert
5101  * the new extent into the tree.
5102  */
5103 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5104 				struct extent_map *existing,
5105 				struct extent_map *em,
5106 				u64 map_start, u64 map_len)
5107 {
5108 	u64 start_diff;
5109 
5110 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5111 	start_diff = map_start - em->start;
5112 	em->start = map_start;
5113 	em->len = map_len;
5114 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5115 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5116 		em->block_start += start_diff;
5117 		em->block_len -= start_diff;
5118 	}
5119 	return add_extent_mapping(em_tree, em);
5120 }
5121 
5122 static noinline int uncompress_inline(struct btrfs_path *path,
5123 				      struct inode *inode, struct page *page,
5124 				      size_t pg_offset, u64 extent_offset,
5125 				      struct btrfs_file_extent_item *item)
5126 {
5127 	int ret;
5128 	struct extent_buffer *leaf = path->nodes[0];
5129 	char *tmp;
5130 	size_t max_size;
5131 	unsigned long inline_size;
5132 	unsigned long ptr;
5133 	int compress_type;
5134 
5135 	WARN_ON(pg_offset != 0);
5136 	compress_type = btrfs_file_extent_compression(leaf, item);
5137 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
5138 	inline_size = btrfs_file_extent_inline_item_len(leaf,
5139 					btrfs_item_nr(leaf, path->slots[0]));
5140 	tmp = kmalloc(inline_size, GFP_NOFS);
5141 	if (!tmp)
5142 		return -ENOMEM;
5143 	ptr = btrfs_file_extent_inline_start(item);
5144 
5145 	read_extent_buffer(leaf, tmp, ptr, inline_size);
5146 
5147 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5148 	ret = btrfs_decompress(compress_type, tmp, page,
5149 			       extent_offset, inline_size, max_size);
5150 	if (ret) {
5151 		char *kaddr = kmap_atomic(page);
5152 		unsigned long copy_size = min_t(u64,
5153 				  PAGE_CACHE_SIZE - pg_offset,
5154 				  max_size - extent_offset);
5155 		memset(kaddr + pg_offset, 0, copy_size);
5156 		kunmap_atomic(kaddr);
5157 	}
5158 	kfree(tmp);
5159 	return 0;
5160 }
5161 
5162 /*
5163  * a bit scary, this does extent mapping from logical file offset to the disk.
5164  * the ugly parts come from merging extents from the disk with the in-ram
5165  * representation.  This gets more complex because of the data=ordered code,
5166  * where the in-ram extents might be locked pending data=ordered completion.
5167  *
5168  * This also copies inline extents directly into the page.
5169  */
5170 
5171 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5172 				    size_t pg_offset, u64 start, u64 len,
5173 				    int create)
5174 {
5175 	int ret;
5176 	int err = 0;
5177 	u64 bytenr;
5178 	u64 extent_start = 0;
5179 	u64 extent_end = 0;
5180 	u64 objectid = btrfs_ino(inode);
5181 	u32 found_type;
5182 	struct btrfs_path *path = NULL;
5183 	struct btrfs_root *root = BTRFS_I(inode)->root;
5184 	struct btrfs_file_extent_item *item;
5185 	struct extent_buffer *leaf;
5186 	struct btrfs_key found_key;
5187 	struct extent_map *em = NULL;
5188 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5189 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5190 	struct btrfs_trans_handle *trans = NULL;
5191 	int compress_type;
5192 
5193 again:
5194 	read_lock(&em_tree->lock);
5195 	em = lookup_extent_mapping(em_tree, start, len);
5196 	if (em)
5197 		em->bdev = root->fs_info->fs_devices->latest_bdev;
5198 	read_unlock(&em_tree->lock);
5199 
5200 	if (em) {
5201 		if (em->start > start || em->start + em->len <= start)
5202 			free_extent_map(em);
5203 		else if (em->block_start == EXTENT_MAP_INLINE && page)
5204 			free_extent_map(em);
5205 		else
5206 			goto out;
5207 	}
5208 	em = alloc_extent_map();
5209 	if (!em) {
5210 		err = -ENOMEM;
5211 		goto out;
5212 	}
5213 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5214 	em->start = EXTENT_MAP_HOLE;
5215 	em->orig_start = EXTENT_MAP_HOLE;
5216 	em->len = (u64)-1;
5217 	em->block_len = (u64)-1;
5218 
5219 	if (!path) {
5220 		path = btrfs_alloc_path();
5221 		if (!path) {
5222 			err = -ENOMEM;
5223 			goto out;
5224 		}
5225 		/*
5226 		 * Chances are we'll be called again, so go ahead and do
5227 		 * readahead
5228 		 */
5229 		path->reada = 1;
5230 	}
5231 
5232 	ret = btrfs_lookup_file_extent(trans, root, path,
5233 				       objectid, start, trans != NULL);
5234 	if (ret < 0) {
5235 		err = ret;
5236 		goto out;
5237 	}
5238 
5239 	if (ret != 0) {
5240 		if (path->slots[0] == 0)
5241 			goto not_found;
5242 		path->slots[0]--;
5243 	}
5244 
5245 	leaf = path->nodes[0];
5246 	item = btrfs_item_ptr(leaf, path->slots[0],
5247 			      struct btrfs_file_extent_item);
5248 	/* are we inside the extent that was found? */
5249 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5250 	found_type = btrfs_key_type(&found_key);
5251 	if (found_key.objectid != objectid ||
5252 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5253 		goto not_found;
5254 	}
5255 
5256 	found_type = btrfs_file_extent_type(leaf, item);
5257 	extent_start = found_key.offset;
5258 	compress_type = btrfs_file_extent_compression(leaf, item);
5259 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5260 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5261 		extent_end = extent_start +
5262 		       btrfs_file_extent_num_bytes(leaf, item);
5263 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5264 		size_t size;
5265 		size = btrfs_file_extent_inline_len(leaf, item);
5266 		extent_end = (extent_start + size + root->sectorsize - 1) &
5267 			~((u64)root->sectorsize - 1);
5268 	}
5269 
5270 	if (start >= extent_end) {
5271 		path->slots[0]++;
5272 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5273 			ret = btrfs_next_leaf(root, path);
5274 			if (ret < 0) {
5275 				err = ret;
5276 				goto out;
5277 			}
5278 			if (ret > 0)
5279 				goto not_found;
5280 			leaf = path->nodes[0];
5281 		}
5282 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5283 		if (found_key.objectid != objectid ||
5284 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5285 			goto not_found;
5286 		if (start + len <= found_key.offset)
5287 			goto not_found;
5288 		em->start = start;
5289 		em->len = found_key.offset - start;
5290 		goto not_found_em;
5291 	}
5292 
5293 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5294 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5295 		em->start = extent_start;
5296 		em->len = extent_end - extent_start;
5297 		em->orig_start = extent_start -
5298 				 btrfs_file_extent_offset(leaf, item);
5299 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5300 		if (bytenr == 0) {
5301 			em->block_start = EXTENT_MAP_HOLE;
5302 			goto insert;
5303 		}
5304 		if (compress_type != BTRFS_COMPRESS_NONE) {
5305 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5306 			em->compress_type = compress_type;
5307 			em->block_start = bytenr;
5308 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5309 									 item);
5310 		} else {
5311 			bytenr += btrfs_file_extent_offset(leaf, item);
5312 			em->block_start = bytenr;
5313 			em->block_len = em->len;
5314 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5315 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5316 		}
5317 		goto insert;
5318 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5319 		unsigned long ptr;
5320 		char *map;
5321 		size_t size;
5322 		size_t extent_offset;
5323 		size_t copy_size;
5324 
5325 		em->block_start = EXTENT_MAP_INLINE;
5326 		if (!page || create) {
5327 			em->start = extent_start;
5328 			em->len = extent_end - extent_start;
5329 			goto out;
5330 		}
5331 
5332 		size = btrfs_file_extent_inline_len(leaf, item);
5333 		extent_offset = page_offset(page) + pg_offset - extent_start;
5334 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5335 				size - extent_offset);
5336 		em->start = extent_start + extent_offset;
5337 		em->len = (copy_size + root->sectorsize - 1) &
5338 			~((u64)root->sectorsize - 1);
5339 		em->orig_start = EXTENT_MAP_INLINE;
5340 		if (compress_type) {
5341 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5342 			em->compress_type = compress_type;
5343 		}
5344 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5345 		if (create == 0 && !PageUptodate(page)) {
5346 			if (btrfs_file_extent_compression(leaf, item) !=
5347 			    BTRFS_COMPRESS_NONE) {
5348 				ret = uncompress_inline(path, inode, page,
5349 							pg_offset,
5350 							extent_offset, item);
5351 				BUG_ON(ret); /* -ENOMEM */
5352 			} else {
5353 				map = kmap(page);
5354 				read_extent_buffer(leaf, map + pg_offset, ptr,
5355 						   copy_size);
5356 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5357 					memset(map + pg_offset + copy_size, 0,
5358 					       PAGE_CACHE_SIZE - pg_offset -
5359 					       copy_size);
5360 				}
5361 				kunmap(page);
5362 			}
5363 			flush_dcache_page(page);
5364 		} else if (create && PageUptodate(page)) {
5365 			BUG();
5366 			if (!trans) {
5367 				kunmap(page);
5368 				free_extent_map(em);
5369 				em = NULL;
5370 
5371 				btrfs_release_path(path);
5372 				trans = btrfs_join_transaction(root);
5373 
5374 				if (IS_ERR(trans))
5375 					return ERR_CAST(trans);
5376 				goto again;
5377 			}
5378 			map = kmap(page);
5379 			write_extent_buffer(leaf, map + pg_offset, ptr,
5380 					    copy_size);
5381 			kunmap(page);
5382 			btrfs_mark_buffer_dirty(leaf);
5383 		}
5384 		set_extent_uptodate(io_tree, em->start,
5385 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5386 		goto insert;
5387 	} else {
5388 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5389 		WARN_ON(1);
5390 	}
5391 not_found:
5392 	em->start = start;
5393 	em->len = len;
5394 not_found_em:
5395 	em->block_start = EXTENT_MAP_HOLE;
5396 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5397 insert:
5398 	btrfs_release_path(path);
5399 	if (em->start > start || extent_map_end(em) <= start) {
5400 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5401 		       "[%llu %llu]\n", (unsigned long long)em->start,
5402 		       (unsigned long long)em->len,
5403 		       (unsigned long long)start,
5404 		       (unsigned long long)len);
5405 		err = -EIO;
5406 		goto out;
5407 	}
5408 
5409 	err = 0;
5410 	write_lock(&em_tree->lock);
5411 	ret = add_extent_mapping(em_tree, em);
5412 	/* it is possible that someone inserted the extent into the tree
5413 	 * while we had the lock dropped.  It is also possible that
5414 	 * an overlapping map exists in the tree
5415 	 */
5416 	if (ret == -EEXIST) {
5417 		struct extent_map *existing;
5418 
5419 		ret = 0;
5420 
5421 		existing = lookup_extent_mapping(em_tree, start, len);
5422 		if (existing && (existing->start > start ||
5423 		    existing->start + existing->len <= start)) {
5424 			free_extent_map(existing);
5425 			existing = NULL;
5426 		}
5427 		if (!existing) {
5428 			existing = lookup_extent_mapping(em_tree, em->start,
5429 							 em->len);
5430 			if (existing) {
5431 				err = merge_extent_mapping(em_tree, existing,
5432 							   em, start,
5433 							   root->sectorsize);
5434 				free_extent_map(existing);
5435 				if (err) {
5436 					free_extent_map(em);
5437 					em = NULL;
5438 				}
5439 			} else {
5440 				err = -EIO;
5441 				free_extent_map(em);
5442 				em = NULL;
5443 			}
5444 		} else {
5445 			free_extent_map(em);
5446 			em = existing;
5447 			err = 0;
5448 		}
5449 	}
5450 	write_unlock(&em_tree->lock);
5451 out:
5452 
5453 	trace_btrfs_get_extent(root, em);
5454 
5455 	if (path)
5456 		btrfs_free_path(path);
5457 	if (trans) {
5458 		ret = btrfs_end_transaction(trans, root);
5459 		if (!err)
5460 			err = ret;
5461 	}
5462 	if (err) {
5463 		free_extent_map(em);
5464 		return ERR_PTR(err);
5465 	}
5466 	BUG_ON(!em); /* Error is always set */
5467 	return em;
5468 }
5469 
5470 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5471 					   size_t pg_offset, u64 start, u64 len,
5472 					   int create)
5473 {
5474 	struct extent_map *em;
5475 	struct extent_map *hole_em = NULL;
5476 	u64 range_start = start;
5477 	u64 end;
5478 	u64 found;
5479 	u64 found_end;
5480 	int err = 0;
5481 
5482 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5483 	if (IS_ERR(em))
5484 		return em;
5485 	if (em) {
5486 		/*
5487 		 * if our em maps to a hole, there might
5488 		 * actually be delalloc bytes behind it
5489 		 */
5490 		if (em->block_start != EXTENT_MAP_HOLE)
5491 			return em;
5492 		else
5493 			hole_em = em;
5494 	}
5495 
5496 	/* check to see if we've wrapped (len == -1 or similar) */
5497 	end = start + len;
5498 	if (end < start)
5499 		end = (u64)-1;
5500 	else
5501 		end -= 1;
5502 
5503 	em = NULL;
5504 
5505 	/* ok, we didn't find anything, lets look for delalloc */
5506 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5507 				 end, len, EXTENT_DELALLOC, 1);
5508 	found_end = range_start + found;
5509 	if (found_end < range_start)
5510 		found_end = (u64)-1;
5511 
5512 	/*
5513 	 * we didn't find anything useful, return
5514 	 * the original results from get_extent()
5515 	 */
5516 	if (range_start > end || found_end <= start) {
5517 		em = hole_em;
5518 		hole_em = NULL;
5519 		goto out;
5520 	}
5521 
5522 	/* adjust the range_start to make sure it doesn't
5523 	 * go backwards from the start they passed in
5524 	 */
5525 	range_start = max(start,range_start);
5526 	found = found_end - range_start;
5527 
5528 	if (found > 0) {
5529 		u64 hole_start = start;
5530 		u64 hole_len = len;
5531 
5532 		em = alloc_extent_map();
5533 		if (!em) {
5534 			err = -ENOMEM;
5535 			goto out;
5536 		}
5537 		/*
5538 		 * when btrfs_get_extent can't find anything it
5539 		 * returns one huge hole
5540 		 *
5541 		 * make sure what it found really fits our range, and
5542 		 * adjust to make sure it is based on the start from
5543 		 * the caller
5544 		 */
5545 		if (hole_em) {
5546 			u64 calc_end = extent_map_end(hole_em);
5547 
5548 			if (calc_end <= start || (hole_em->start > end)) {
5549 				free_extent_map(hole_em);
5550 				hole_em = NULL;
5551 			} else {
5552 				hole_start = max(hole_em->start, start);
5553 				hole_len = calc_end - hole_start;
5554 			}
5555 		}
5556 		em->bdev = NULL;
5557 		if (hole_em && range_start > hole_start) {
5558 			/* our hole starts before our delalloc, so we
5559 			 * have to return just the parts of the hole
5560 			 * that go until  the delalloc starts
5561 			 */
5562 			em->len = min(hole_len,
5563 				      range_start - hole_start);
5564 			em->start = hole_start;
5565 			em->orig_start = hole_start;
5566 			/*
5567 			 * don't adjust block start at all,
5568 			 * it is fixed at EXTENT_MAP_HOLE
5569 			 */
5570 			em->block_start = hole_em->block_start;
5571 			em->block_len = hole_len;
5572 		} else {
5573 			em->start = range_start;
5574 			em->len = found;
5575 			em->orig_start = range_start;
5576 			em->block_start = EXTENT_MAP_DELALLOC;
5577 			em->block_len = found;
5578 		}
5579 	} else if (hole_em) {
5580 		return hole_em;
5581 	}
5582 out:
5583 
5584 	free_extent_map(hole_em);
5585 	if (err) {
5586 		free_extent_map(em);
5587 		return ERR_PTR(err);
5588 	}
5589 	return em;
5590 }
5591 
5592 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5593 						  struct extent_map *em,
5594 						  u64 start, u64 len)
5595 {
5596 	struct btrfs_root *root = BTRFS_I(inode)->root;
5597 	struct btrfs_trans_handle *trans;
5598 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5599 	struct btrfs_key ins;
5600 	u64 alloc_hint;
5601 	int ret;
5602 	bool insert = false;
5603 
5604 	/*
5605 	 * Ok if the extent map we looked up is a hole and is for the exact
5606 	 * range we want, there is no reason to allocate a new one, however if
5607 	 * it is not right then we need to free this one and drop the cache for
5608 	 * our range.
5609 	 */
5610 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5611 	    em->len != len) {
5612 		free_extent_map(em);
5613 		em = NULL;
5614 		insert = true;
5615 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5616 	}
5617 
5618 	trans = btrfs_join_transaction(root);
5619 	if (IS_ERR(trans))
5620 		return ERR_CAST(trans);
5621 
5622 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5623 		btrfs_add_inode_defrag(trans, inode);
5624 
5625 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5626 
5627 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5628 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5629 				   alloc_hint, &ins, 1);
5630 	if (ret) {
5631 		em = ERR_PTR(ret);
5632 		goto out;
5633 	}
5634 
5635 	if (!em) {
5636 		em = alloc_extent_map();
5637 		if (!em) {
5638 			em = ERR_PTR(-ENOMEM);
5639 			goto out;
5640 		}
5641 	}
5642 
5643 	em->start = start;
5644 	em->orig_start = em->start;
5645 	em->len = ins.offset;
5646 
5647 	em->block_start = ins.objectid;
5648 	em->block_len = ins.offset;
5649 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5650 
5651 	/*
5652 	 * We need to do this because if we're using the original em we searched
5653 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5654 	 */
5655 	em->flags = 0;
5656 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5657 
5658 	while (insert) {
5659 		write_lock(&em_tree->lock);
5660 		ret = add_extent_mapping(em_tree, em);
5661 		write_unlock(&em_tree->lock);
5662 		if (ret != -EEXIST)
5663 			break;
5664 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5665 	}
5666 
5667 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5668 					   ins.offset, ins.offset, 0);
5669 	if (ret) {
5670 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5671 		em = ERR_PTR(ret);
5672 	}
5673 out:
5674 	btrfs_end_transaction(trans, root);
5675 	return em;
5676 }
5677 
5678 /*
5679  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5680  * block must be cow'd
5681  */
5682 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5683 				      struct inode *inode, u64 offset, u64 len)
5684 {
5685 	struct btrfs_path *path;
5686 	int ret;
5687 	struct extent_buffer *leaf;
5688 	struct btrfs_root *root = BTRFS_I(inode)->root;
5689 	struct btrfs_file_extent_item *fi;
5690 	struct btrfs_key key;
5691 	u64 disk_bytenr;
5692 	u64 backref_offset;
5693 	u64 extent_end;
5694 	u64 num_bytes;
5695 	int slot;
5696 	int found_type;
5697 
5698 	path = btrfs_alloc_path();
5699 	if (!path)
5700 		return -ENOMEM;
5701 
5702 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5703 				       offset, 0);
5704 	if (ret < 0)
5705 		goto out;
5706 
5707 	slot = path->slots[0];
5708 	if (ret == 1) {
5709 		if (slot == 0) {
5710 			/* can't find the item, must cow */
5711 			ret = 0;
5712 			goto out;
5713 		}
5714 		slot--;
5715 	}
5716 	ret = 0;
5717 	leaf = path->nodes[0];
5718 	btrfs_item_key_to_cpu(leaf, &key, slot);
5719 	if (key.objectid != btrfs_ino(inode) ||
5720 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5721 		/* not our file or wrong item type, must cow */
5722 		goto out;
5723 	}
5724 
5725 	if (key.offset > offset) {
5726 		/* Wrong offset, must cow */
5727 		goto out;
5728 	}
5729 
5730 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5731 	found_type = btrfs_file_extent_type(leaf, fi);
5732 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5733 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5734 		/* not a regular extent, must cow */
5735 		goto out;
5736 	}
5737 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5738 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5739 
5740 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5741 	if (extent_end < offset + len) {
5742 		/* extent doesn't include our full range, must cow */
5743 		goto out;
5744 	}
5745 
5746 	if (btrfs_extent_readonly(root, disk_bytenr))
5747 		goto out;
5748 
5749 	/*
5750 	 * look for other files referencing this extent, if we
5751 	 * find any we must cow
5752 	 */
5753 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5754 				  key.offset - backref_offset, disk_bytenr))
5755 		goto out;
5756 
5757 	/*
5758 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5759 	 * in this extent we are about to write.  If there
5760 	 * are any csums in that range we have to cow in order
5761 	 * to keep the csums correct
5762 	 */
5763 	disk_bytenr += backref_offset;
5764 	disk_bytenr += offset - key.offset;
5765 	num_bytes = min(offset + len, extent_end) - offset;
5766 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5767 				goto out;
5768 	/*
5769 	 * all of the above have passed, it is safe to overwrite this extent
5770 	 * without cow
5771 	 */
5772 	ret = 1;
5773 out:
5774 	btrfs_free_path(path);
5775 	return ret;
5776 }
5777 
5778 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5779 			      struct extent_state **cached_state, int writing)
5780 {
5781 	struct btrfs_ordered_extent *ordered;
5782 	int ret = 0;
5783 
5784 	while (1) {
5785 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5786 				 0, cached_state);
5787 		/*
5788 		 * We're concerned with the entire range that we're going to be
5789 		 * doing DIO to, so we need to make sure theres no ordered
5790 		 * extents in this range.
5791 		 */
5792 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
5793 						     lockend - lockstart + 1);
5794 
5795 		/*
5796 		 * We need to make sure there are no buffered pages in this
5797 		 * range either, we could have raced between the invalidate in
5798 		 * generic_file_direct_write and locking the extent.  The
5799 		 * invalidate needs to happen so that reads after a write do not
5800 		 * get stale data.
5801 		 */
5802 		if (!ordered && (!writing ||
5803 		    !test_range_bit(&BTRFS_I(inode)->io_tree,
5804 				    lockstart, lockend, EXTENT_UPTODATE, 0,
5805 				    *cached_state)))
5806 			break;
5807 
5808 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5809 				     cached_state, GFP_NOFS);
5810 
5811 		if (ordered) {
5812 			btrfs_start_ordered_extent(inode, ordered, 1);
5813 			btrfs_put_ordered_extent(ordered);
5814 		} else {
5815 			/* Screw you mmap */
5816 			ret = filemap_write_and_wait_range(inode->i_mapping,
5817 							   lockstart,
5818 							   lockend);
5819 			if (ret)
5820 				break;
5821 
5822 			/*
5823 			 * If we found a page that couldn't be invalidated just
5824 			 * fall back to buffered.
5825 			 */
5826 			ret = invalidate_inode_pages2_range(inode->i_mapping,
5827 					lockstart >> PAGE_CACHE_SHIFT,
5828 					lockend >> PAGE_CACHE_SHIFT);
5829 			if (ret)
5830 				break;
5831 		}
5832 
5833 		cond_resched();
5834 	}
5835 
5836 	return ret;
5837 }
5838 
5839 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5840 				   struct buffer_head *bh_result, int create)
5841 {
5842 	struct extent_map *em;
5843 	struct btrfs_root *root = BTRFS_I(inode)->root;
5844 	struct extent_state *cached_state = NULL;
5845 	u64 start = iblock << inode->i_blkbits;
5846 	u64 lockstart, lockend;
5847 	u64 len = bh_result->b_size;
5848 	struct btrfs_trans_handle *trans;
5849 	int unlock_bits = EXTENT_LOCKED;
5850 	int ret;
5851 
5852 	if (create) {
5853 		ret = btrfs_delalloc_reserve_space(inode, len);
5854 		if (ret)
5855 			return ret;
5856 		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5857 	} else {
5858 		len = min_t(u64, len, root->sectorsize);
5859 	}
5860 
5861 	lockstart = start;
5862 	lockend = start + len - 1;
5863 
5864 	/*
5865 	 * If this errors out it's because we couldn't invalidate pagecache for
5866 	 * this range and we need to fallback to buffered.
5867 	 */
5868 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5869 		return -ENOTBLK;
5870 
5871 	if (create) {
5872 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5873 				     lockend, EXTENT_DELALLOC, NULL,
5874 				     &cached_state, GFP_NOFS);
5875 		if (ret)
5876 			goto unlock_err;
5877 	}
5878 
5879 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5880 	if (IS_ERR(em)) {
5881 		ret = PTR_ERR(em);
5882 		goto unlock_err;
5883 	}
5884 
5885 	/*
5886 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5887 	 * io.  INLINE is special, and we could probably kludge it in here, but
5888 	 * it's still buffered so for safety lets just fall back to the generic
5889 	 * buffered path.
5890 	 *
5891 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5892 	 * decompress it, so there will be buffering required no matter what we
5893 	 * do, so go ahead and fallback to buffered.
5894 	 *
5895 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5896 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5897 	 * the generic code.
5898 	 */
5899 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5900 	    em->block_start == EXTENT_MAP_INLINE) {
5901 		free_extent_map(em);
5902 		ret = -ENOTBLK;
5903 		goto unlock_err;
5904 	}
5905 
5906 	/* Just a good old fashioned hole, return */
5907 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5908 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5909 		free_extent_map(em);
5910 		ret = 0;
5911 		goto unlock_err;
5912 	}
5913 
5914 	/*
5915 	 * We don't allocate a new extent in the following cases
5916 	 *
5917 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5918 	 * existing extent.
5919 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5920 	 * just use the extent.
5921 	 *
5922 	 */
5923 	if (!create) {
5924 		len = min(len, em->len - (start - em->start));
5925 		lockstart = start + len;
5926 		goto unlock;
5927 	}
5928 
5929 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5930 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5931 	     em->block_start != EXTENT_MAP_HOLE)) {
5932 		int type;
5933 		int ret;
5934 		u64 block_start;
5935 
5936 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5937 			type = BTRFS_ORDERED_PREALLOC;
5938 		else
5939 			type = BTRFS_ORDERED_NOCOW;
5940 		len = min(len, em->len - (start - em->start));
5941 		block_start = em->block_start + (start - em->start);
5942 
5943 		/*
5944 		 * we're not going to log anything, but we do need
5945 		 * to make sure the current transaction stays open
5946 		 * while we look for nocow cross refs
5947 		 */
5948 		trans = btrfs_join_transaction(root);
5949 		if (IS_ERR(trans))
5950 			goto must_cow;
5951 
5952 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5953 			ret = btrfs_add_ordered_extent_dio(inode, start,
5954 					   block_start, len, len, type);
5955 			btrfs_end_transaction(trans, root);
5956 			if (ret) {
5957 				free_extent_map(em);
5958 				goto unlock_err;
5959 			}
5960 			goto unlock;
5961 		}
5962 		btrfs_end_transaction(trans, root);
5963 	}
5964 must_cow:
5965 	/*
5966 	 * this will cow the extent, reset the len in case we changed
5967 	 * it above
5968 	 */
5969 	len = bh_result->b_size;
5970 	em = btrfs_new_extent_direct(inode, em, start, len);
5971 	if (IS_ERR(em)) {
5972 		ret = PTR_ERR(em);
5973 		goto unlock_err;
5974 	}
5975 	len = min(len, em->len - (start - em->start));
5976 unlock:
5977 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5978 		inode->i_blkbits;
5979 	bh_result->b_size = len;
5980 	bh_result->b_bdev = em->bdev;
5981 	set_buffer_mapped(bh_result);
5982 	if (create) {
5983 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5984 			set_buffer_new(bh_result);
5985 
5986 		/*
5987 		 * Need to update the i_size under the extent lock so buffered
5988 		 * readers will get the updated i_size when we unlock.
5989 		 */
5990 		if (start + len > i_size_read(inode))
5991 			i_size_write(inode, start + len);
5992 	}
5993 
5994 	/*
5995 	 * In the case of write we need to clear and unlock the entire range,
5996 	 * in the case of read we need to unlock only the end area that we
5997 	 * aren't using if there is any left over space.
5998 	 */
5999 	if (lockstart < lockend) {
6000 		if (create && len < lockend - lockstart) {
6001 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6002 					 lockstart + len - 1, unlock_bits, 1, 0,
6003 					 &cached_state, GFP_NOFS);
6004 			/*
6005 			 * Beside unlock, we also need to cleanup reserved space
6006 			 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6007 			 */
6008 			clear_extent_bit(&BTRFS_I(inode)->io_tree,
6009 					 lockstart + len, lockend,
6010 					 unlock_bits | EXTENT_DO_ACCOUNTING,
6011 					 1, 0, NULL, GFP_NOFS);
6012 		} else {
6013 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6014 					 lockend, unlock_bits, 1, 0,
6015 					 &cached_state, GFP_NOFS);
6016 		}
6017 	} else {
6018 		free_extent_state(cached_state);
6019 	}
6020 
6021 	free_extent_map(em);
6022 
6023 	return 0;
6024 
6025 unlock_err:
6026 	if (create)
6027 		unlock_bits |= EXTENT_DO_ACCOUNTING;
6028 
6029 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6030 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6031 	return ret;
6032 }
6033 
6034 struct btrfs_dio_private {
6035 	struct inode *inode;
6036 	u64 logical_offset;
6037 	u64 disk_bytenr;
6038 	u64 bytes;
6039 	void *private;
6040 
6041 	/* number of bios pending for this dio */
6042 	atomic_t pending_bios;
6043 
6044 	/* IO errors */
6045 	int errors;
6046 
6047 	struct bio *orig_bio;
6048 };
6049 
6050 static void btrfs_endio_direct_read(struct bio *bio, int err)
6051 {
6052 	struct btrfs_dio_private *dip = bio->bi_private;
6053 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6054 	struct bio_vec *bvec = bio->bi_io_vec;
6055 	struct inode *inode = dip->inode;
6056 	struct btrfs_root *root = BTRFS_I(inode)->root;
6057 	u64 start;
6058 
6059 	start = dip->logical_offset;
6060 	do {
6061 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6062 			struct page *page = bvec->bv_page;
6063 			char *kaddr;
6064 			u32 csum = ~(u32)0;
6065 			u64 private = ~(u32)0;
6066 			unsigned long flags;
6067 
6068 			if (get_state_private(&BTRFS_I(inode)->io_tree,
6069 					      start, &private))
6070 				goto failed;
6071 			local_irq_save(flags);
6072 			kaddr = kmap_atomic(page);
6073 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6074 					       csum, bvec->bv_len);
6075 			btrfs_csum_final(csum, (char *)&csum);
6076 			kunmap_atomic(kaddr);
6077 			local_irq_restore(flags);
6078 
6079 			flush_dcache_page(bvec->bv_page);
6080 			if (csum != private) {
6081 failed:
6082 				printk(KERN_ERR "btrfs csum failed ino %llu off"
6083 				      " %llu csum %u private %u\n",
6084 				      (unsigned long long)btrfs_ino(inode),
6085 				      (unsigned long long)start,
6086 				      csum, (unsigned)private);
6087 				err = -EIO;
6088 			}
6089 		}
6090 
6091 		start += bvec->bv_len;
6092 		bvec++;
6093 	} while (bvec <= bvec_end);
6094 
6095 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6096 		      dip->logical_offset + dip->bytes - 1);
6097 	bio->bi_private = dip->private;
6098 
6099 	kfree(dip);
6100 
6101 	/* If we had a csum failure make sure to clear the uptodate flag */
6102 	if (err)
6103 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
6104 	dio_end_io(bio, err);
6105 }
6106 
6107 static void btrfs_endio_direct_write(struct bio *bio, int err)
6108 {
6109 	struct btrfs_dio_private *dip = bio->bi_private;
6110 	struct inode *inode = dip->inode;
6111 	struct btrfs_root *root = BTRFS_I(inode)->root;
6112 	struct btrfs_ordered_extent *ordered = NULL;
6113 	u64 ordered_offset = dip->logical_offset;
6114 	u64 ordered_bytes = dip->bytes;
6115 	int ret;
6116 
6117 	if (err)
6118 		goto out_done;
6119 again:
6120 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6121 						   &ordered_offset,
6122 						   ordered_bytes, !err);
6123 	if (!ret)
6124 		goto out_test;
6125 
6126 	ordered->work.func = finish_ordered_fn;
6127 	ordered->work.flags = 0;
6128 	btrfs_queue_worker(&root->fs_info->endio_write_workers,
6129 			   &ordered->work);
6130 out_test:
6131 	/*
6132 	 * our bio might span multiple ordered extents.  If we haven't
6133 	 * completed the accounting for the whole dio, go back and try again
6134 	 */
6135 	if (ordered_offset < dip->logical_offset + dip->bytes) {
6136 		ordered_bytes = dip->logical_offset + dip->bytes -
6137 			ordered_offset;
6138 		ordered = NULL;
6139 		goto again;
6140 	}
6141 out_done:
6142 	bio->bi_private = dip->private;
6143 
6144 	kfree(dip);
6145 
6146 	/* If we had an error make sure to clear the uptodate flag */
6147 	if (err)
6148 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
6149 	dio_end_io(bio, err);
6150 }
6151 
6152 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6153 				    struct bio *bio, int mirror_num,
6154 				    unsigned long bio_flags, u64 offset)
6155 {
6156 	int ret;
6157 	struct btrfs_root *root = BTRFS_I(inode)->root;
6158 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6159 	BUG_ON(ret); /* -ENOMEM */
6160 	return 0;
6161 }
6162 
6163 static void btrfs_end_dio_bio(struct bio *bio, int err)
6164 {
6165 	struct btrfs_dio_private *dip = bio->bi_private;
6166 
6167 	if (err) {
6168 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6169 		      "sector %#Lx len %u err no %d\n",
6170 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6171 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
6172 		dip->errors = 1;
6173 
6174 		/*
6175 		 * before atomic variable goto zero, we must make sure
6176 		 * dip->errors is perceived to be set.
6177 		 */
6178 		smp_mb__before_atomic_dec();
6179 	}
6180 
6181 	/* if there are more bios still pending for this dio, just exit */
6182 	if (!atomic_dec_and_test(&dip->pending_bios))
6183 		goto out;
6184 
6185 	if (dip->errors)
6186 		bio_io_error(dip->orig_bio);
6187 	else {
6188 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6189 		bio_endio(dip->orig_bio, 0);
6190 	}
6191 out:
6192 	bio_put(bio);
6193 }
6194 
6195 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6196 				       u64 first_sector, gfp_t gfp_flags)
6197 {
6198 	int nr_vecs = bio_get_nr_vecs(bdev);
6199 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6200 }
6201 
6202 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6203 					 int rw, u64 file_offset, int skip_sum,
6204 					 int async_submit)
6205 {
6206 	int write = rw & REQ_WRITE;
6207 	struct btrfs_root *root = BTRFS_I(inode)->root;
6208 	int ret;
6209 
6210 	bio_get(bio);
6211 
6212 	if (!write) {
6213 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6214 		if (ret)
6215 			goto err;
6216 	}
6217 
6218 	if (skip_sum)
6219 		goto map;
6220 
6221 	if (write && async_submit) {
6222 		ret = btrfs_wq_submit_bio(root->fs_info,
6223 				   inode, rw, bio, 0, 0,
6224 				   file_offset,
6225 				   __btrfs_submit_bio_start_direct_io,
6226 				   __btrfs_submit_bio_done);
6227 		goto err;
6228 	} else if (write) {
6229 		/*
6230 		 * If we aren't doing async submit, calculate the csum of the
6231 		 * bio now.
6232 		 */
6233 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6234 		if (ret)
6235 			goto err;
6236 	} else if (!skip_sum) {
6237 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6238 		if (ret)
6239 			goto err;
6240 	}
6241 
6242 map:
6243 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6244 err:
6245 	bio_put(bio);
6246 	return ret;
6247 }
6248 
6249 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6250 				    int skip_sum)
6251 {
6252 	struct inode *inode = dip->inode;
6253 	struct btrfs_root *root = BTRFS_I(inode)->root;
6254 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6255 	struct bio *bio;
6256 	struct bio *orig_bio = dip->orig_bio;
6257 	struct bio_vec *bvec = orig_bio->bi_io_vec;
6258 	u64 start_sector = orig_bio->bi_sector;
6259 	u64 file_offset = dip->logical_offset;
6260 	u64 submit_len = 0;
6261 	u64 map_length;
6262 	int nr_pages = 0;
6263 	int ret = 0;
6264 	int async_submit = 0;
6265 
6266 	map_length = orig_bio->bi_size;
6267 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6268 			      &map_length, NULL, 0);
6269 	if (ret) {
6270 		bio_put(orig_bio);
6271 		return -EIO;
6272 	}
6273 
6274 	if (map_length >= orig_bio->bi_size) {
6275 		bio = orig_bio;
6276 		goto submit;
6277 	}
6278 
6279 	async_submit = 1;
6280 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6281 	if (!bio)
6282 		return -ENOMEM;
6283 	bio->bi_private = dip;
6284 	bio->bi_end_io = btrfs_end_dio_bio;
6285 	atomic_inc(&dip->pending_bios);
6286 
6287 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6288 		if (unlikely(map_length < submit_len + bvec->bv_len ||
6289 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6290 				 bvec->bv_offset) < bvec->bv_len)) {
6291 			/*
6292 			 * inc the count before we submit the bio so
6293 			 * we know the end IO handler won't happen before
6294 			 * we inc the count. Otherwise, the dip might get freed
6295 			 * before we're done setting it up
6296 			 */
6297 			atomic_inc(&dip->pending_bios);
6298 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
6299 						     file_offset, skip_sum,
6300 						     async_submit);
6301 			if (ret) {
6302 				bio_put(bio);
6303 				atomic_dec(&dip->pending_bios);
6304 				goto out_err;
6305 			}
6306 
6307 			start_sector += submit_len >> 9;
6308 			file_offset += submit_len;
6309 
6310 			submit_len = 0;
6311 			nr_pages = 0;
6312 
6313 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6314 						  start_sector, GFP_NOFS);
6315 			if (!bio)
6316 				goto out_err;
6317 			bio->bi_private = dip;
6318 			bio->bi_end_io = btrfs_end_dio_bio;
6319 
6320 			map_length = orig_bio->bi_size;
6321 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6322 					      &map_length, NULL, 0);
6323 			if (ret) {
6324 				bio_put(bio);
6325 				goto out_err;
6326 			}
6327 		} else {
6328 			submit_len += bvec->bv_len;
6329 			nr_pages ++;
6330 			bvec++;
6331 		}
6332 	}
6333 
6334 submit:
6335 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6336 				     async_submit);
6337 	if (!ret)
6338 		return 0;
6339 
6340 	bio_put(bio);
6341 out_err:
6342 	dip->errors = 1;
6343 	/*
6344 	 * before atomic variable goto zero, we must
6345 	 * make sure dip->errors is perceived to be set.
6346 	 */
6347 	smp_mb__before_atomic_dec();
6348 	if (atomic_dec_and_test(&dip->pending_bios))
6349 		bio_io_error(dip->orig_bio);
6350 
6351 	/* bio_end_io() will handle error, so we needn't return it */
6352 	return 0;
6353 }
6354 
6355 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6356 				loff_t file_offset)
6357 {
6358 	struct btrfs_root *root = BTRFS_I(inode)->root;
6359 	struct btrfs_dio_private *dip;
6360 	struct bio_vec *bvec = bio->bi_io_vec;
6361 	int skip_sum;
6362 	int write = rw & REQ_WRITE;
6363 	int ret = 0;
6364 
6365 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6366 
6367 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6368 	if (!dip) {
6369 		ret = -ENOMEM;
6370 		goto free_ordered;
6371 	}
6372 
6373 	dip->private = bio->bi_private;
6374 	dip->inode = inode;
6375 	dip->logical_offset = file_offset;
6376 
6377 	dip->bytes = 0;
6378 	do {
6379 		dip->bytes += bvec->bv_len;
6380 		bvec++;
6381 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6382 
6383 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6384 	bio->bi_private = dip;
6385 	dip->errors = 0;
6386 	dip->orig_bio = bio;
6387 	atomic_set(&dip->pending_bios, 0);
6388 
6389 	if (write)
6390 		bio->bi_end_io = btrfs_endio_direct_write;
6391 	else
6392 		bio->bi_end_io = btrfs_endio_direct_read;
6393 
6394 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6395 	if (!ret)
6396 		return;
6397 free_ordered:
6398 	/*
6399 	 * If this is a write, we need to clean up the reserved space and kill
6400 	 * the ordered extent.
6401 	 */
6402 	if (write) {
6403 		struct btrfs_ordered_extent *ordered;
6404 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6405 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6406 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6407 			btrfs_free_reserved_extent(root, ordered->start,
6408 						   ordered->disk_len);
6409 		btrfs_put_ordered_extent(ordered);
6410 		btrfs_put_ordered_extent(ordered);
6411 	}
6412 	bio_endio(bio, ret);
6413 }
6414 
6415 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6416 			const struct iovec *iov, loff_t offset,
6417 			unsigned long nr_segs)
6418 {
6419 	int seg;
6420 	int i;
6421 	size_t size;
6422 	unsigned long addr;
6423 	unsigned blocksize_mask = root->sectorsize - 1;
6424 	ssize_t retval = -EINVAL;
6425 	loff_t end = offset;
6426 
6427 	if (offset & blocksize_mask)
6428 		goto out;
6429 
6430 	/* Check the memory alignment.  Blocks cannot straddle pages */
6431 	for (seg = 0; seg < nr_segs; seg++) {
6432 		addr = (unsigned long)iov[seg].iov_base;
6433 		size = iov[seg].iov_len;
6434 		end += size;
6435 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6436 			goto out;
6437 
6438 		/* If this is a write we don't need to check anymore */
6439 		if (rw & WRITE)
6440 			continue;
6441 
6442 		/*
6443 		 * Check to make sure we don't have duplicate iov_base's in this
6444 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6445 		 * when reading back.
6446 		 */
6447 		for (i = seg + 1; i < nr_segs; i++) {
6448 			if (iov[seg].iov_base == iov[i].iov_base)
6449 				goto out;
6450 		}
6451 	}
6452 	retval = 0;
6453 out:
6454 	return retval;
6455 }
6456 
6457 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6458 			const struct iovec *iov, loff_t offset,
6459 			unsigned long nr_segs)
6460 {
6461 	struct file *file = iocb->ki_filp;
6462 	struct inode *inode = file->f_mapping->host;
6463 
6464 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6465 			    offset, nr_segs))
6466 		return 0;
6467 
6468 	return __blockdev_direct_IO(rw, iocb, inode,
6469 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6470 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6471 		   btrfs_submit_direct, 0);
6472 }
6473 
6474 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6475 		__u64 start, __u64 len)
6476 {
6477 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6478 }
6479 
6480 int btrfs_readpage(struct file *file, struct page *page)
6481 {
6482 	struct extent_io_tree *tree;
6483 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6484 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6485 }
6486 
6487 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6488 {
6489 	struct extent_io_tree *tree;
6490 
6491 
6492 	if (current->flags & PF_MEMALLOC) {
6493 		redirty_page_for_writepage(wbc, page);
6494 		unlock_page(page);
6495 		return 0;
6496 	}
6497 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6498 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6499 }
6500 
6501 int btrfs_writepages(struct address_space *mapping,
6502 		     struct writeback_control *wbc)
6503 {
6504 	struct extent_io_tree *tree;
6505 
6506 	tree = &BTRFS_I(mapping->host)->io_tree;
6507 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6508 }
6509 
6510 static int
6511 btrfs_readpages(struct file *file, struct address_space *mapping,
6512 		struct list_head *pages, unsigned nr_pages)
6513 {
6514 	struct extent_io_tree *tree;
6515 	tree = &BTRFS_I(mapping->host)->io_tree;
6516 	return extent_readpages(tree, mapping, pages, nr_pages,
6517 				btrfs_get_extent);
6518 }
6519 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6520 {
6521 	struct extent_io_tree *tree;
6522 	struct extent_map_tree *map;
6523 	int ret;
6524 
6525 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6526 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6527 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6528 	if (ret == 1) {
6529 		ClearPagePrivate(page);
6530 		set_page_private(page, 0);
6531 		page_cache_release(page);
6532 	}
6533 	return ret;
6534 }
6535 
6536 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6537 {
6538 	if (PageWriteback(page) || PageDirty(page))
6539 		return 0;
6540 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6541 }
6542 
6543 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6544 {
6545 	struct inode *inode = page->mapping->host;
6546 	struct extent_io_tree *tree;
6547 	struct btrfs_ordered_extent *ordered;
6548 	struct extent_state *cached_state = NULL;
6549 	u64 page_start = page_offset(page);
6550 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6551 
6552 	/*
6553 	 * we have the page locked, so new writeback can't start,
6554 	 * and the dirty bit won't be cleared while we are here.
6555 	 *
6556 	 * Wait for IO on this page so that we can safely clear
6557 	 * the PagePrivate2 bit and do ordered accounting
6558 	 */
6559 	wait_on_page_writeback(page);
6560 
6561 	tree = &BTRFS_I(inode)->io_tree;
6562 	if (offset) {
6563 		btrfs_releasepage(page, GFP_NOFS);
6564 		return;
6565 	}
6566 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6567 	ordered = btrfs_lookup_ordered_extent(inode,
6568 					   page_offset(page));
6569 	if (ordered) {
6570 		/*
6571 		 * IO on this page will never be started, so we need
6572 		 * to account for any ordered extents now
6573 		 */
6574 		clear_extent_bit(tree, page_start, page_end,
6575 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6576 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6577 				 &cached_state, GFP_NOFS);
6578 		/*
6579 		 * whoever cleared the private bit is responsible
6580 		 * for the finish_ordered_io
6581 		 */
6582 		if (TestClearPagePrivate2(page) &&
6583 		    btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6584 						   PAGE_CACHE_SIZE, 1)) {
6585 			btrfs_finish_ordered_io(ordered);
6586 		}
6587 		btrfs_put_ordered_extent(ordered);
6588 		cached_state = NULL;
6589 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6590 	}
6591 	clear_extent_bit(tree, page_start, page_end,
6592 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6593 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6594 	__btrfs_releasepage(page, GFP_NOFS);
6595 
6596 	ClearPageChecked(page);
6597 	if (PagePrivate(page)) {
6598 		ClearPagePrivate(page);
6599 		set_page_private(page, 0);
6600 		page_cache_release(page);
6601 	}
6602 }
6603 
6604 /*
6605  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6606  * called from a page fault handler when a page is first dirtied. Hence we must
6607  * be careful to check for EOF conditions here. We set the page up correctly
6608  * for a written page which means we get ENOSPC checking when writing into
6609  * holes and correct delalloc and unwritten extent mapping on filesystems that
6610  * support these features.
6611  *
6612  * We are not allowed to take the i_mutex here so we have to play games to
6613  * protect against truncate races as the page could now be beyond EOF.  Because
6614  * vmtruncate() writes the inode size before removing pages, once we have the
6615  * page lock we can determine safely if the page is beyond EOF. If it is not
6616  * beyond EOF, then the page is guaranteed safe against truncation until we
6617  * unlock the page.
6618  */
6619 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6620 {
6621 	struct page *page = vmf->page;
6622 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6623 	struct btrfs_root *root = BTRFS_I(inode)->root;
6624 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6625 	struct btrfs_ordered_extent *ordered;
6626 	struct extent_state *cached_state = NULL;
6627 	char *kaddr;
6628 	unsigned long zero_start;
6629 	loff_t size;
6630 	int ret;
6631 	int reserved = 0;
6632 	u64 page_start;
6633 	u64 page_end;
6634 
6635 	sb_start_pagefault(inode->i_sb);
6636 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6637 	if (!ret) {
6638 		ret = file_update_time(vma->vm_file);
6639 		reserved = 1;
6640 	}
6641 	if (ret) {
6642 		if (ret == -ENOMEM)
6643 			ret = VM_FAULT_OOM;
6644 		else /* -ENOSPC, -EIO, etc */
6645 			ret = VM_FAULT_SIGBUS;
6646 		if (reserved)
6647 			goto out;
6648 		goto out_noreserve;
6649 	}
6650 
6651 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6652 again:
6653 	lock_page(page);
6654 	size = i_size_read(inode);
6655 	page_start = page_offset(page);
6656 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6657 
6658 	if ((page->mapping != inode->i_mapping) ||
6659 	    (page_start >= size)) {
6660 		/* page got truncated out from underneath us */
6661 		goto out_unlock;
6662 	}
6663 	wait_on_page_writeback(page);
6664 
6665 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6666 	set_page_extent_mapped(page);
6667 
6668 	/*
6669 	 * we can't set the delalloc bits if there are pending ordered
6670 	 * extents.  Drop our locks and wait for them to finish
6671 	 */
6672 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6673 	if (ordered) {
6674 		unlock_extent_cached(io_tree, page_start, page_end,
6675 				     &cached_state, GFP_NOFS);
6676 		unlock_page(page);
6677 		btrfs_start_ordered_extent(inode, ordered, 1);
6678 		btrfs_put_ordered_extent(ordered);
6679 		goto again;
6680 	}
6681 
6682 	/*
6683 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6684 	 * if it was already dirty, so for space accounting reasons we need to
6685 	 * clear any delalloc bits for the range we are fixing to save.  There
6686 	 * is probably a better way to do this, but for now keep consistent with
6687 	 * prepare_pages in the normal write path.
6688 	 */
6689 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6690 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6691 			  0, 0, &cached_state, GFP_NOFS);
6692 
6693 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6694 					&cached_state);
6695 	if (ret) {
6696 		unlock_extent_cached(io_tree, page_start, page_end,
6697 				     &cached_state, GFP_NOFS);
6698 		ret = VM_FAULT_SIGBUS;
6699 		goto out_unlock;
6700 	}
6701 	ret = 0;
6702 
6703 	/* page is wholly or partially inside EOF */
6704 	if (page_start + PAGE_CACHE_SIZE > size)
6705 		zero_start = size & ~PAGE_CACHE_MASK;
6706 	else
6707 		zero_start = PAGE_CACHE_SIZE;
6708 
6709 	if (zero_start != PAGE_CACHE_SIZE) {
6710 		kaddr = kmap(page);
6711 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6712 		flush_dcache_page(page);
6713 		kunmap(page);
6714 	}
6715 	ClearPageChecked(page);
6716 	set_page_dirty(page);
6717 	SetPageUptodate(page);
6718 
6719 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6720 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6721 
6722 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6723 
6724 out_unlock:
6725 	if (!ret) {
6726 		sb_end_pagefault(inode->i_sb);
6727 		return VM_FAULT_LOCKED;
6728 	}
6729 	unlock_page(page);
6730 out:
6731 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6732 out_noreserve:
6733 	sb_end_pagefault(inode->i_sb);
6734 	return ret;
6735 }
6736 
6737 static int btrfs_truncate(struct inode *inode)
6738 {
6739 	struct btrfs_root *root = BTRFS_I(inode)->root;
6740 	struct btrfs_block_rsv *rsv;
6741 	int ret;
6742 	int err = 0;
6743 	struct btrfs_trans_handle *trans;
6744 	unsigned long nr;
6745 	u64 mask = root->sectorsize - 1;
6746 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6747 
6748 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6749 	if (ret)
6750 		return ret;
6751 
6752 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6753 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6754 
6755 	/*
6756 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6757 	 * 3 things going on here
6758 	 *
6759 	 * 1) We need to reserve space for our orphan item and the space to
6760 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6761 	 * orphan item because we didn't reserve space to remove it.
6762 	 *
6763 	 * 2) We need to reserve space to update our inode.
6764 	 *
6765 	 * 3) We need to have something to cache all the space that is going to
6766 	 * be free'd up by the truncate operation, but also have some slack
6767 	 * space reserved in case it uses space during the truncate (thank you
6768 	 * very much snapshotting).
6769 	 *
6770 	 * And we need these to all be seperate.  The fact is we can use alot of
6771 	 * space doing the truncate, and we have no earthly idea how much space
6772 	 * we will use, so we need the truncate reservation to be seperate so it
6773 	 * doesn't end up using space reserved for updating the inode or
6774 	 * removing the orphan item.  We also need to be able to stop the
6775 	 * transaction and start a new one, which means we need to be able to
6776 	 * update the inode several times, and we have no idea of knowing how
6777 	 * many times that will be, so we can't just reserve 1 item for the
6778 	 * entirety of the opration, so that has to be done seperately as well.
6779 	 * Then there is the orphan item, which does indeed need to be held on
6780 	 * to for the whole operation, and we need nobody to touch this reserved
6781 	 * space except the orphan code.
6782 	 *
6783 	 * So that leaves us with
6784 	 *
6785 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6786 	 * 2) rsv - for the truncate reservation, which we will steal from the
6787 	 * transaction reservation.
6788 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6789 	 * updating the inode.
6790 	 */
6791 	rsv = btrfs_alloc_block_rsv(root);
6792 	if (!rsv)
6793 		return -ENOMEM;
6794 	rsv->size = min_size;
6795 
6796 	/*
6797 	 * 1 for the truncate slack space
6798 	 * 1 for the orphan item we're going to add
6799 	 * 1 for the orphan item deletion
6800 	 * 1 for updating the inode.
6801 	 */
6802 	trans = btrfs_start_transaction(root, 4);
6803 	if (IS_ERR(trans)) {
6804 		err = PTR_ERR(trans);
6805 		goto out;
6806 	}
6807 
6808 	/* Migrate the slack space for the truncate to our reserve */
6809 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6810 				      min_size);
6811 	BUG_ON(ret);
6812 
6813 	ret = btrfs_orphan_add(trans, inode);
6814 	if (ret) {
6815 		btrfs_end_transaction(trans, root);
6816 		goto out;
6817 	}
6818 
6819 	/*
6820 	 * setattr is responsible for setting the ordered_data_close flag,
6821 	 * but that is only tested during the last file release.  That
6822 	 * could happen well after the next commit, leaving a great big
6823 	 * window where new writes may get lost if someone chooses to write
6824 	 * to this file after truncating to zero
6825 	 *
6826 	 * The inode doesn't have any dirty data here, and so if we commit
6827 	 * this is a noop.  If someone immediately starts writing to the inode
6828 	 * it is very likely we'll catch some of their writes in this
6829 	 * transaction, and the commit will find this file on the ordered
6830 	 * data list with good things to send down.
6831 	 *
6832 	 * This is a best effort solution, there is still a window where
6833 	 * using truncate to replace the contents of the file will
6834 	 * end up with a zero length file after a crash.
6835 	 */
6836 	if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6837 					   &BTRFS_I(inode)->runtime_flags))
6838 		btrfs_add_ordered_operation(trans, root, inode);
6839 
6840 	while (1) {
6841 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
6842 		if (ret) {
6843 			/*
6844 			 * This can only happen with the original transaction we
6845 			 * started above, every other time we shouldn't have a
6846 			 * transaction started yet.
6847 			 */
6848 			if (ret == -EAGAIN)
6849 				goto end_trans;
6850 			err = ret;
6851 			break;
6852 		}
6853 
6854 		if (!trans) {
6855 			/* Just need the 1 for updating the inode */
6856 			trans = btrfs_start_transaction(root, 1);
6857 			if (IS_ERR(trans)) {
6858 				ret = err = PTR_ERR(trans);
6859 				trans = NULL;
6860 				break;
6861 			}
6862 		}
6863 
6864 		trans->block_rsv = rsv;
6865 
6866 		ret = btrfs_truncate_inode_items(trans, root, inode,
6867 						 inode->i_size,
6868 						 BTRFS_EXTENT_DATA_KEY);
6869 		if (ret != -EAGAIN) {
6870 			err = ret;
6871 			break;
6872 		}
6873 
6874 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6875 		ret = btrfs_update_inode(trans, root, inode);
6876 		if (ret) {
6877 			err = ret;
6878 			break;
6879 		}
6880 end_trans:
6881 		nr = trans->blocks_used;
6882 		btrfs_end_transaction(trans, root);
6883 		trans = NULL;
6884 		btrfs_btree_balance_dirty(root, nr);
6885 	}
6886 
6887 	if (ret == 0 && inode->i_nlink > 0) {
6888 		trans->block_rsv = root->orphan_block_rsv;
6889 		ret = btrfs_orphan_del(trans, inode);
6890 		if (ret)
6891 			err = ret;
6892 	} else if (ret && inode->i_nlink > 0) {
6893 		/*
6894 		 * Failed to do the truncate, remove us from the in memory
6895 		 * orphan list.
6896 		 */
6897 		ret = btrfs_orphan_del(NULL, inode);
6898 	}
6899 
6900 	if (trans) {
6901 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6902 		ret = btrfs_update_inode(trans, root, inode);
6903 		if (ret && !err)
6904 			err = ret;
6905 
6906 		nr = trans->blocks_used;
6907 		ret = btrfs_end_transaction(trans, root);
6908 		btrfs_btree_balance_dirty(root, nr);
6909 	}
6910 
6911 out:
6912 	btrfs_free_block_rsv(root, rsv);
6913 
6914 	if (ret && !err)
6915 		err = ret;
6916 
6917 	return err;
6918 }
6919 
6920 /*
6921  * create a new subvolume directory/inode (helper for the ioctl).
6922  */
6923 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6924 			     struct btrfs_root *new_root, u64 new_dirid)
6925 {
6926 	struct inode *inode;
6927 	int err;
6928 	u64 index = 0;
6929 
6930 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6931 				new_dirid, new_dirid,
6932 				S_IFDIR | (~current_umask() & S_IRWXUGO),
6933 				&index);
6934 	if (IS_ERR(inode))
6935 		return PTR_ERR(inode);
6936 	inode->i_op = &btrfs_dir_inode_operations;
6937 	inode->i_fop = &btrfs_dir_file_operations;
6938 
6939 	set_nlink(inode, 1);
6940 	btrfs_i_size_write(inode, 0);
6941 
6942 	err = btrfs_update_inode(trans, new_root, inode);
6943 
6944 	iput(inode);
6945 	return err;
6946 }
6947 
6948 struct inode *btrfs_alloc_inode(struct super_block *sb)
6949 {
6950 	struct btrfs_inode *ei;
6951 	struct inode *inode;
6952 
6953 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6954 	if (!ei)
6955 		return NULL;
6956 
6957 	ei->root = NULL;
6958 	ei->generation = 0;
6959 	ei->last_trans = 0;
6960 	ei->last_sub_trans = 0;
6961 	ei->logged_trans = 0;
6962 	ei->delalloc_bytes = 0;
6963 	ei->disk_i_size = 0;
6964 	ei->flags = 0;
6965 	ei->csum_bytes = 0;
6966 	ei->index_cnt = (u64)-1;
6967 	ei->last_unlink_trans = 0;
6968 
6969 	spin_lock_init(&ei->lock);
6970 	ei->outstanding_extents = 0;
6971 	ei->reserved_extents = 0;
6972 
6973 	ei->runtime_flags = 0;
6974 	ei->force_compress = BTRFS_COMPRESS_NONE;
6975 
6976 	ei->delayed_node = NULL;
6977 
6978 	inode = &ei->vfs_inode;
6979 	extent_map_tree_init(&ei->extent_tree);
6980 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6981 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6982 	ei->io_tree.track_uptodate = 1;
6983 	ei->io_failure_tree.track_uptodate = 1;
6984 	mutex_init(&ei->log_mutex);
6985 	mutex_init(&ei->delalloc_mutex);
6986 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6987 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6988 	INIT_LIST_HEAD(&ei->ordered_operations);
6989 	RB_CLEAR_NODE(&ei->rb_node);
6990 
6991 	return inode;
6992 }
6993 
6994 static void btrfs_i_callback(struct rcu_head *head)
6995 {
6996 	struct inode *inode = container_of(head, struct inode, i_rcu);
6997 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6998 }
6999 
7000 void btrfs_destroy_inode(struct inode *inode)
7001 {
7002 	struct btrfs_ordered_extent *ordered;
7003 	struct btrfs_root *root = BTRFS_I(inode)->root;
7004 
7005 	WARN_ON(!hlist_empty(&inode->i_dentry));
7006 	WARN_ON(inode->i_data.nrpages);
7007 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
7008 	WARN_ON(BTRFS_I(inode)->reserved_extents);
7009 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7010 	WARN_ON(BTRFS_I(inode)->csum_bytes);
7011 
7012 	/*
7013 	 * This can happen where we create an inode, but somebody else also
7014 	 * created the same inode and we need to destroy the one we already
7015 	 * created.
7016 	 */
7017 	if (!root)
7018 		goto free;
7019 
7020 	/*
7021 	 * Make sure we're properly removed from the ordered operation
7022 	 * lists.
7023 	 */
7024 	smp_mb();
7025 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7026 		spin_lock(&root->fs_info->ordered_extent_lock);
7027 		list_del_init(&BTRFS_I(inode)->ordered_operations);
7028 		spin_unlock(&root->fs_info->ordered_extent_lock);
7029 	}
7030 
7031 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7032 		     &BTRFS_I(inode)->runtime_flags)) {
7033 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7034 		       (unsigned long long)btrfs_ino(inode));
7035 		atomic_dec(&root->orphan_inodes);
7036 	}
7037 
7038 	while (1) {
7039 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7040 		if (!ordered)
7041 			break;
7042 		else {
7043 			printk(KERN_ERR "btrfs found ordered "
7044 			       "extent %llu %llu on inode cleanup\n",
7045 			       (unsigned long long)ordered->file_offset,
7046 			       (unsigned long long)ordered->len);
7047 			btrfs_remove_ordered_extent(inode, ordered);
7048 			btrfs_put_ordered_extent(ordered);
7049 			btrfs_put_ordered_extent(ordered);
7050 		}
7051 	}
7052 	inode_tree_del(inode);
7053 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7054 free:
7055 	btrfs_remove_delayed_node(inode);
7056 	call_rcu(&inode->i_rcu, btrfs_i_callback);
7057 }
7058 
7059 int btrfs_drop_inode(struct inode *inode)
7060 {
7061 	struct btrfs_root *root = BTRFS_I(inode)->root;
7062 
7063 	if (btrfs_root_refs(&root->root_item) == 0 &&
7064 	    !btrfs_is_free_space_inode(inode))
7065 		return 1;
7066 	else
7067 		return generic_drop_inode(inode);
7068 }
7069 
7070 static void init_once(void *foo)
7071 {
7072 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7073 
7074 	inode_init_once(&ei->vfs_inode);
7075 }
7076 
7077 void btrfs_destroy_cachep(void)
7078 {
7079 	if (btrfs_inode_cachep)
7080 		kmem_cache_destroy(btrfs_inode_cachep);
7081 	if (btrfs_trans_handle_cachep)
7082 		kmem_cache_destroy(btrfs_trans_handle_cachep);
7083 	if (btrfs_transaction_cachep)
7084 		kmem_cache_destroy(btrfs_transaction_cachep);
7085 	if (btrfs_path_cachep)
7086 		kmem_cache_destroy(btrfs_path_cachep);
7087 	if (btrfs_free_space_cachep)
7088 		kmem_cache_destroy(btrfs_free_space_cachep);
7089 }
7090 
7091 int btrfs_init_cachep(void)
7092 {
7093 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7094 			sizeof(struct btrfs_inode), 0,
7095 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7096 	if (!btrfs_inode_cachep)
7097 		goto fail;
7098 
7099 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7100 			sizeof(struct btrfs_trans_handle), 0,
7101 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7102 	if (!btrfs_trans_handle_cachep)
7103 		goto fail;
7104 
7105 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7106 			sizeof(struct btrfs_transaction), 0,
7107 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7108 	if (!btrfs_transaction_cachep)
7109 		goto fail;
7110 
7111 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7112 			sizeof(struct btrfs_path), 0,
7113 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7114 	if (!btrfs_path_cachep)
7115 		goto fail;
7116 
7117 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7118 			sizeof(struct btrfs_free_space), 0,
7119 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7120 	if (!btrfs_free_space_cachep)
7121 		goto fail;
7122 
7123 	return 0;
7124 fail:
7125 	btrfs_destroy_cachep();
7126 	return -ENOMEM;
7127 }
7128 
7129 static int btrfs_getattr(struct vfsmount *mnt,
7130 			 struct dentry *dentry, struct kstat *stat)
7131 {
7132 	struct inode *inode = dentry->d_inode;
7133 	u32 blocksize = inode->i_sb->s_blocksize;
7134 
7135 	generic_fillattr(inode, stat);
7136 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7137 	stat->blksize = PAGE_CACHE_SIZE;
7138 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7139 		ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7140 	return 0;
7141 }
7142 
7143 /*
7144  * If a file is moved, it will inherit the cow and compression flags of the new
7145  * directory.
7146  */
7147 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7148 {
7149 	struct btrfs_inode *b_dir = BTRFS_I(dir);
7150 	struct btrfs_inode *b_inode = BTRFS_I(inode);
7151 
7152 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
7153 		b_inode->flags |= BTRFS_INODE_NODATACOW;
7154 	else
7155 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7156 
7157 	if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7158 		b_inode->flags |= BTRFS_INODE_COMPRESS;
7159 		b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7160 	} else {
7161 		b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7162 				    BTRFS_INODE_NOCOMPRESS);
7163 	}
7164 }
7165 
7166 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7167 			   struct inode *new_dir, struct dentry *new_dentry)
7168 {
7169 	struct btrfs_trans_handle *trans;
7170 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7171 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7172 	struct inode *new_inode = new_dentry->d_inode;
7173 	struct inode *old_inode = old_dentry->d_inode;
7174 	struct timespec ctime = CURRENT_TIME;
7175 	u64 index = 0;
7176 	u64 root_objectid;
7177 	int ret;
7178 	u64 old_ino = btrfs_ino(old_inode);
7179 
7180 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7181 		return -EPERM;
7182 
7183 	/* we only allow rename subvolume link between subvolumes */
7184 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7185 		return -EXDEV;
7186 
7187 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7188 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7189 		return -ENOTEMPTY;
7190 
7191 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
7192 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7193 		return -ENOTEMPTY;
7194 	/*
7195 	 * we're using rename to replace one file with another.
7196 	 * and the replacement file is large.  Start IO on it now so
7197 	 * we don't add too much work to the end of the transaction
7198 	 */
7199 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7200 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7201 		filemap_flush(old_inode->i_mapping);
7202 
7203 	/* close the racy window with snapshot create/destroy ioctl */
7204 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7205 		down_read(&root->fs_info->subvol_sem);
7206 	/*
7207 	 * We want to reserve the absolute worst case amount of items.  So if
7208 	 * both inodes are subvols and we need to unlink them then that would
7209 	 * require 4 item modifications, but if they are both normal inodes it
7210 	 * would require 5 item modifications, so we'll assume their normal
7211 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7212 	 * should cover the worst case number of items we'll modify.
7213 	 */
7214 	trans = btrfs_start_transaction(root, 20);
7215 	if (IS_ERR(trans)) {
7216                 ret = PTR_ERR(trans);
7217                 goto out_notrans;
7218         }
7219 
7220 	if (dest != root)
7221 		btrfs_record_root_in_trans(trans, dest);
7222 
7223 	ret = btrfs_set_inode_index(new_dir, &index);
7224 	if (ret)
7225 		goto out_fail;
7226 
7227 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7228 		/* force full log commit if subvolume involved. */
7229 		root->fs_info->last_trans_log_full_commit = trans->transid;
7230 	} else {
7231 		ret = btrfs_insert_inode_ref(trans, dest,
7232 					     new_dentry->d_name.name,
7233 					     new_dentry->d_name.len,
7234 					     old_ino,
7235 					     btrfs_ino(new_dir), index);
7236 		if (ret)
7237 			goto out_fail;
7238 		/*
7239 		 * this is an ugly little race, but the rename is required
7240 		 * to make sure that if we crash, the inode is either at the
7241 		 * old name or the new one.  pinning the log transaction lets
7242 		 * us make sure we don't allow a log commit to come in after
7243 		 * we unlink the name but before we add the new name back in.
7244 		 */
7245 		btrfs_pin_log_trans(root);
7246 	}
7247 	/*
7248 	 * make sure the inode gets flushed if it is replacing
7249 	 * something.
7250 	 */
7251 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7252 		btrfs_add_ordered_operation(trans, root, old_inode);
7253 
7254 	inode_inc_iversion(old_dir);
7255 	inode_inc_iversion(new_dir);
7256 	inode_inc_iversion(old_inode);
7257 	old_dir->i_ctime = old_dir->i_mtime = ctime;
7258 	new_dir->i_ctime = new_dir->i_mtime = ctime;
7259 	old_inode->i_ctime = ctime;
7260 
7261 	if (old_dentry->d_parent != new_dentry->d_parent)
7262 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7263 
7264 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7265 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7266 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7267 					old_dentry->d_name.name,
7268 					old_dentry->d_name.len);
7269 	} else {
7270 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7271 					old_dentry->d_inode,
7272 					old_dentry->d_name.name,
7273 					old_dentry->d_name.len);
7274 		if (!ret)
7275 			ret = btrfs_update_inode(trans, root, old_inode);
7276 	}
7277 	if (ret) {
7278 		btrfs_abort_transaction(trans, root, ret);
7279 		goto out_fail;
7280 	}
7281 
7282 	if (new_inode) {
7283 		inode_inc_iversion(new_inode);
7284 		new_inode->i_ctime = CURRENT_TIME;
7285 		if (unlikely(btrfs_ino(new_inode) ==
7286 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7287 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7288 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7289 						root_objectid,
7290 						new_dentry->d_name.name,
7291 						new_dentry->d_name.len);
7292 			BUG_ON(new_inode->i_nlink == 0);
7293 		} else {
7294 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7295 						 new_dentry->d_inode,
7296 						 new_dentry->d_name.name,
7297 						 new_dentry->d_name.len);
7298 		}
7299 		if (!ret && new_inode->i_nlink == 0) {
7300 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7301 			BUG_ON(ret);
7302 		}
7303 		if (ret) {
7304 			btrfs_abort_transaction(trans, root, ret);
7305 			goto out_fail;
7306 		}
7307 	}
7308 
7309 	fixup_inode_flags(new_dir, old_inode);
7310 
7311 	ret = btrfs_add_link(trans, new_dir, old_inode,
7312 			     new_dentry->d_name.name,
7313 			     new_dentry->d_name.len, 0, index);
7314 	if (ret) {
7315 		btrfs_abort_transaction(trans, root, ret);
7316 		goto out_fail;
7317 	}
7318 
7319 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7320 		struct dentry *parent = new_dentry->d_parent;
7321 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7322 		btrfs_end_log_trans(root);
7323 	}
7324 out_fail:
7325 	btrfs_end_transaction(trans, root);
7326 out_notrans:
7327 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7328 		up_read(&root->fs_info->subvol_sem);
7329 
7330 	return ret;
7331 }
7332 
7333 /*
7334  * some fairly slow code that needs optimization. This walks the list
7335  * of all the inodes with pending delalloc and forces them to disk.
7336  */
7337 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7338 {
7339 	struct list_head *head = &root->fs_info->delalloc_inodes;
7340 	struct btrfs_inode *binode;
7341 	struct inode *inode;
7342 
7343 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7344 		return -EROFS;
7345 
7346 	spin_lock(&root->fs_info->delalloc_lock);
7347 	while (!list_empty(head)) {
7348 		binode = list_entry(head->next, struct btrfs_inode,
7349 				    delalloc_inodes);
7350 		inode = igrab(&binode->vfs_inode);
7351 		if (!inode)
7352 			list_del_init(&binode->delalloc_inodes);
7353 		spin_unlock(&root->fs_info->delalloc_lock);
7354 		if (inode) {
7355 			filemap_flush(inode->i_mapping);
7356 			if (delay_iput)
7357 				btrfs_add_delayed_iput(inode);
7358 			else
7359 				iput(inode);
7360 		}
7361 		cond_resched();
7362 		spin_lock(&root->fs_info->delalloc_lock);
7363 	}
7364 	spin_unlock(&root->fs_info->delalloc_lock);
7365 
7366 	/* the filemap_flush will queue IO into the worker threads, but
7367 	 * we have to make sure the IO is actually started and that
7368 	 * ordered extents get created before we return
7369 	 */
7370 	atomic_inc(&root->fs_info->async_submit_draining);
7371 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7372 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7373 		wait_event(root->fs_info->async_submit_wait,
7374 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7375 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7376 	}
7377 	atomic_dec(&root->fs_info->async_submit_draining);
7378 	return 0;
7379 }
7380 
7381 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7382 			 const char *symname)
7383 {
7384 	struct btrfs_trans_handle *trans;
7385 	struct btrfs_root *root = BTRFS_I(dir)->root;
7386 	struct btrfs_path *path;
7387 	struct btrfs_key key;
7388 	struct inode *inode = NULL;
7389 	int err;
7390 	int drop_inode = 0;
7391 	u64 objectid;
7392 	u64 index = 0 ;
7393 	int name_len;
7394 	int datasize;
7395 	unsigned long ptr;
7396 	struct btrfs_file_extent_item *ei;
7397 	struct extent_buffer *leaf;
7398 	unsigned long nr = 0;
7399 
7400 	name_len = strlen(symname) + 1;
7401 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7402 		return -ENAMETOOLONG;
7403 
7404 	/*
7405 	 * 2 items for inode item and ref
7406 	 * 2 items for dir items
7407 	 * 1 item for xattr if selinux is on
7408 	 */
7409 	trans = btrfs_start_transaction(root, 5);
7410 	if (IS_ERR(trans))
7411 		return PTR_ERR(trans);
7412 
7413 	err = btrfs_find_free_ino(root, &objectid);
7414 	if (err)
7415 		goto out_unlock;
7416 
7417 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7418 				dentry->d_name.len, btrfs_ino(dir), objectid,
7419 				S_IFLNK|S_IRWXUGO, &index);
7420 	if (IS_ERR(inode)) {
7421 		err = PTR_ERR(inode);
7422 		goto out_unlock;
7423 	}
7424 
7425 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7426 	if (err) {
7427 		drop_inode = 1;
7428 		goto out_unlock;
7429 	}
7430 
7431 	/*
7432 	* If the active LSM wants to access the inode during
7433 	* d_instantiate it needs these. Smack checks to see
7434 	* if the filesystem supports xattrs by looking at the
7435 	* ops vector.
7436 	*/
7437 	inode->i_fop = &btrfs_file_operations;
7438 	inode->i_op = &btrfs_file_inode_operations;
7439 
7440 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7441 	if (err)
7442 		drop_inode = 1;
7443 	else {
7444 		inode->i_mapping->a_ops = &btrfs_aops;
7445 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7446 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7447 	}
7448 	if (drop_inode)
7449 		goto out_unlock;
7450 
7451 	path = btrfs_alloc_path();
7452 	if (!path) {
7453 		err = -ENOMEM;
7454 		drop_inode = 1;
7455 		goto out_unlock;
7456 	}
7457 	key.objectid = btrfs_ino(inode);
7458 	key.offset = 0;
7459 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7460 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7461 	err = btrfs_insert_empty_item(trans, root, path, &key,
7462 				      datasize);
7463 	if (err) {
7464 		drop_inode = 1;
7465 		btrfs_free_path(path);
7466 		goto out_unlock;
7467 	}
7468 	leaf = path->nodes[0];
7469 	ei = btrfs_item_ptr(leaf, path->slots[0],
7470 			    struct btrfs_file_extent_item);
7471 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7472 	btrfs_set_file_extent_type(leaf, ei,
7473 				   BTRFS_FILE_EXTENT_INLINE);
7474 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7475 	btrfs_set_file_extent_compression(leaf, ei, 0);
7476 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7477 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7478 
7479 	ptr = btrfs_file_extent_inline_start(ei);
7480 	write_extent_buffer(leaf, symname, ptr, name_len);
7481 	btrfs_mark_buffer_dirty(leaf);
7482 	btrfs_free_path(path);
7483 
7484 	inode->i_op = &btrfs_symlink_inode_operations;
7485 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7486 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7487 	inode_set_bytes(inode, name_len);
7488 	btrfs_i_size_write(inode, name_len - 1);
7489 	err = btrfs_update_inode(trans, root, inode);
7490 	if (err)
7491 		drop_inode = 1;
7492 
7493 out_unlock:
7494 	if (!err)
7495 		d_instantiate(dentry, inode);
7496 	nr = trans->blocks_used;
7497 	btrfs_end_transaction(trans, root);
7498 	if (drop_inode) {
7499 		inode_dec_link_count(inode);
7500 		iput(inode);
7501 	}
7502 	btrfs_btree_balance_dirty(root, nr);
7503 	return err;
7504 }
7505 
7506 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7507 				       u64 start, u64 num_bytes, u64 min_size,
7508 				       loff_t actual_len, u64 *alloc_hint,
7509 				       struct btrfs_trans_handle *trans)
7510 {
7511 	struct btrfs_root *root = BTRFS_I(inode)->root;
7512 	struct btrfs_key ins;
7513 	u64 cur_offset = start;
7514 	u64 i_size;
7515 	int ret = 0;
7516 	bool own_trans = true;
7517 
7518 	if (trans)
7519 		own_trans = false;
7520 	while (num_bytes > 0) {
7521 		if (own_trans) {
7522 			trans = btrfs_start_transaction(root, 3);
7523 			if (IS_ERR(trans)) {
7524 				ret = PTR_ERR(trans);
7525 				break;
7526 			}
7527 		}
7528 
7529 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7530 					   0, *alloc_hint, &ins, 1);
7531 		if (ret) {
7532 			if (own_trans)
7533 				btrfs_end_transaction(trans, root);
7534 			break;
7535 		}
7536 
7537 		ret = insert_reserved_file_extent(trans, inode,
7538 						  cur_offset, ins.objectid,
7539 						  ins.offset, ins.offset,
7540 						  ins.offset, 0, 0, 0,
7541 						  BTRFS_FILE_EXTENT_PREALLOC);
7542 		if (ret) {
7543 			btrfs_abort_transaction(trans, root, ret);
7544 			if (own_trans)
7545 				btrfs_end_transaction(trans, root);
7546 			break;
7547 		}
7548 		btrfs_drop_extent_cache(inode, cur_offset,
7549 					cur_offset + ins.offset -1, 0);
7550 
7551 		num_bytes -= ins.offset;
7552 		cur_offset += ins.offset;
7553 		*alloc_hint = ins.objectid + ins.offset;
7554 
7555 		inode_inc_iversion(inode);
7556 		inode->i_ctime = CURRENT_TIME;
7557 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7558 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7559 		    (actual_len > inode->i_size) &&
7560 		    (cur_offset > inode->i_size)) {
7561 			if (cur_offset > actual_len)
7562 				i_size = actual_len;
7563 			else
7564 				i_size = cur_offset;
7565 			i_size_write(inode, i_size);
7566 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7567 		}
7568 
7569 		ret = btrfs_update_inode(trans, root, inode);
7570 
7571 		if (ret) {
7572 			btrfs_abort_transaction(trans, root, ret);
7573 			if (own_trans)
7574 				btrfs_end_transaction(trans, root);
7575 			break;
7576 		}
7577 
7578 		if (own_trans)
7579 			btrfs_end_transaction(trans, root);
7580 	}
7581 	return ret;
7582 }
7583 
7584 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7585 			      u64 start, u64 num_bytes, u64 min_size,
7586 			      loff_t actual_len, u64 *alloc_hint)
7587 {
7588 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7589 					   min_size, actual_len, alloc_hint,
7590 					   NULL);
7591 }
7592 
7593 int btrfs_prealloc_file_range_trans(struct inode *inode,
7594 				    struct btrfs_trans_handle *trans, int mode,
7595 				    u64 start, u64 num_bytes, u64 min_size,
7596 				    loff_t actual_len, u64 *alloc_hint)
7597 {
7598 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7599 					   min_size, actual_len, alloc_hint, trans);
7600 }
7601 
7602 static int btrfs_set_page_dirty(struct page *page)
7603 {
7604 	return __set_page_dirty_nobuffers(page);
7605 }
7606 
7607 static int btrfs_permission(struct inode *inode, int mask)
7608 {
7609 	struct btrfs_root *root = BTRFS_I(inode)->root;
7610 	umode_t mode = inode->i_mode;
7611 
7612 	if (mask & MAY_WRITE &&
7613 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7614 		if (btrfs_root_readonly(root))
7615 			return -EROFS;
7616 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7617 			return -EACCES;
7618 	}
7619 	return generic_permission(inode, mask);
7620 }
7621 
7622 static const struct inode_operations btrfs_dir_inode_operations = {
7623 	.getattr	= btrfs_getattr,
7624 	.lookup		= btrfs_lookup,
7625 	.create		= btrfs_create,
7626 	.unlink		= btrfs_unlink,
7627 	.link		= btrfs_link,
7628 	.mkdir		= btrfs_mkdir,
7629 	.rmdir		= btrfs_rmdir,
7630 	.rename		= btrfs_rename,
7631 	.symlink	= btrfs_symlink,
7632 	.setattr	= btrfs_setattr,
7633 	.mknod		= btrfs_mknod,
7634 	.setxattr	= btrfs_setxattr,
7635 	.getxattr	= btrfs_getxattr,
7636 	.listxattr	= btrfs_listxattr,
7637 	.removexattr	= btrfs_removexattr,
7638 	.permission	= btrfs_permission,
7639 	.get_acl	= btrfs_get_acl,
7640 };
7641 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7642 	.lookup		= btrfs_lookup,
7643 	.permission	= btrfs_permission,
7644 	.get_acl	= btrfs_get_acl,
7645 };
7646 
7647 static const struct file_operations btrfs_dir_file_operations = {
7648 	.llseek		= generic_file_llseek,
7649 	.read		= generic_read_dir,
7650 	.readdir	= btrfs_real_readdir,
7651 	.unlocked_ioctl	= btrfs_ioctl,
7652 #ifdef CONFIG_COMPAT
7653 	.compat_ioctl	= btrfs_ioctl,
7654 #endif
7655 	.release        = btrfs_release_file,
7656 	.fsync		= btrfs_sync_file,
7657 };
7658 
7659 static struct extent_io_ops btrfs_extent_io_ops = {
7660 	.fill_delalloc = run_delalloc_range,
7661 	.submit_bio_hook = btrfs_submit_bio_hook,
7662 	.merge_bio_hook = btrfs_merge_bio_hook,
7663 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7664 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7665 	.writepage_start_hook = btrfs_writepage_start_hook,
7666 	.set_bit_hook = btrfs_set_bit_hook,
7667 	.clear_bit_hook = btrfs_clear_bit_hook,
7668 	.merge_extent_hook = btrfs_merge_extent_hook,
7669 	.split_extent_hook = btrfs_split_extent_hook,
7670 };
7671 
7672 /*
7673  * btrfs doesn't support the bmap operation because swapfiles
7674  * use bmap to make a mapping of extents in the file.  They assume
7675  * these extents won't change over the life of the file and they
7676  * use the bmap result to do IO directly to the drive.
7677  *
7678  * the btrfs bmap call would return logical addresses that aren't
7679  * suitable for IO and they also will change frequently as COW
7680  * operations happen.  So, swapfile + btrfs == corruption.
7681  *
7682  * For now we're avoiding this by dropping bmap.
7683  */
7684 static const struct address_space_operations btrfs_aops = {
7685 	.readpage	= btrfs_readpage,
7686 	.writepage	= btrfs_writepage,
7687 	.writepages	= btrfs_writepages,
7688 	.readpages	= btrfs_readpages,
7689 	.direct_IO	= btrfs_direct_IO,
7690 	.invalidatepage = btrfs_invalidatepage,
7691 	.releasepage	= btrfs_releasepage,
7692 	.set_page_dirty	= btrfs_set_page_dirty,
7693 	.error_remove_page = generic_error_remove_page,
7694 };
7695 
7696 static const struct address_space_operations btrfs_symlink_aops = {
7697 	.readpage	= btrfs_readpage,
7698 	.writepage	= btrfs_writepage,
7699 	.invalidatepage = btrfs_invalidatepage,
7700 	.releasepage	= btrfs_releasepage,
7701 };
7702 
7703 static const struct inode_operations btrfs_file_inode_operations = {
7704 	.getattr	= btrfs_getattr,
7705 	.setattr	= btrfs_setattr,
7706 	.setxattr	= btrfs_setxattr,
7707 	.getxattr	= btrfs_getxattr,
7708 	.listxattr      = btrfs_listxattr,
7709 	.removexattr	= btrfs_removexattr,
7710 	.permission	= btrfs_permission,
7711 	.fiemap		= btrfs_fiemap,
7712 	.get_acl	= btrfs_get_acl,
7713 	.update_time	= btrfs_update_time,
7714 };
7715 static const struct inode_operations btrfs_special_inode_operations = {
7716 	.getattr	= btrfs_getattr,
7717 	.setattr	= btrfs_setattr,
7718 	.permission	= btrfs_permission,
7719 	.setxattr	= btrfs_setxattr,
7720 	.getxattr	= btrfs_getxattr,
7721 	.listxattr	= btrfs_listxattr,
7722 	.removexattr	= btrfs_removexattr,
7723 	.get_acl	= btrfs_get_acl,
7724 	.update_time	= btrfs_update_time,
7725 };
7726 static const struct inode_operations btrfs_symlink_inode_operations = {
7727 	.readlink	= generic_readlink,
7728 	.follow_link	= page_follow_link_light,
7729 	.put_link	= page_put_link,
7730 	.getattr	= btrfs_getattr,
7731 	.setattr	= btrfs_setattr,
7732 	.permission	= btrfs_permission,
7733 	.setxattr	= btrfs_setxattr,
7734 	.getxattr	= btrfs_getxattr,
7735 	.listxattr	= btrfs_listxattr,
7736 	.removexattr	= btrfs_removexattr,
7737 	.get_acl	= btrfs_get_acl,
7738 	.update_time	= btrfs_update_time,
7739 };
7740 
7741 const struct dentry_operations btrfs_dentry_operations = {
7742 	.d_delete	= btrfs_dentry_delete,
7743 	.d_release	= btrfs_dentry_release,
7744 };
7745