1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <asm/unaligned.h> 34 #include "misc.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "ordered-data.h" 41 #include "xattr.h" 42 #include "tree-log.h" 43 #include "volumes.h" 44 #include "compression.h" 45 #include "locking.h" 46 #include "free-space-cache.h" 47 #include "inode-map.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 struct btrfs_dio_data { 60 u64 reserve; 61 u64 unsubmitted_oe_range_start; 62 u64 unsubmitted_oe_range_end; 63 int overwrite; 64 }; 65 66 static const struct inode_operations btrfs_dir_inode_operations; 67 static const struct inode_operations btrfs_symlink_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct file_operations btrfs_dir_file_operations; 72 static const struct extent_io_ops btrfs_extent_io_ops; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 88 u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * Cleanup all submitted ordered extents in specified range to handle errors 99 * from the btrfs_run_delalloc_range() callback. 100 * 101 * NOTE: caller must ensure that when an error happens, it can not call 102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 104 * to be released, which we want to happen only when finishing the ordered 105 * extent (btrfs_finish_ordered_io()). 106 */ 107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 108 struct page *locked_page, 109 u64 offset, u64 bytes) 110 { 111 unsigned long index = offset >> PAGE_SHIFT; 112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 113 u64 page_start = page_offset(locked_page); 114 u64 page_end = page_start + PAGE_SIZE - 1; 115 116 struct page *page; 117 118 while (index <= end_index) { 119 page = find_get_page(inode->i_mapping, index); 120 index++; 121 if (!page) 122 continue; 123 ClearPagePrivate2(page); 124 put_page(page); 125 } 126 127 /* 128 * In case this page belongs to the delalloc range being instantiated 129 * then skip it, since the first page of a range is going to be 130 * properly cleaned up by the caller of run_delalloc_range 131 */ 132 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 133 offset += PAGE_SIZE; 134 bytes -= PAGE_SIZE; 135 } 136 137 return __endio_write_update_ordered(inode, offset, bytes, false); 138 } 139 140 static int btrfs_dirty_inode(struct inode *inode); 141 142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 143 void btrfs_test_inode_set_ops(struct inode *inode) 144 { 145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 146 } 147 #endif 148 149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 150 struct inode *inode, struct inode *dir, 151 const struct qstr *qstr) 152 { 153 int err; 154 155 err = btrfs_init_acl(trans, inode, dir); 156 if (!err) 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 158 return err; 159 } 160 161 /* 162 * this does all the hard work for inserting an inline extent into 163 * the btree. The caller should have done a btrfs_drop_extents so that 164 * no overlapping inline items exist in the btree 165 */ 166 static int insert_inline_extent(struct btrfs_trans_handle *trans, 167 struct btrfs_path *path, int extent_inserted, 168 struct btrfs_root *root, struct inode *inode, 169 u64 start, size_t size, size_t compressed_size, 170 int compress_type, 171 struct page **compressed_pages) 172 { 173 struct extent_buffer *leaf; 174 struct page *page = NULL; 175 char *kaddr; 176 unsigned long ptr; 177 struct btrfs_file_extent_item *ei; 178 int ret; 179 size_t cur_size = size; 180 unsigned long offset; 181 182 ASSERT((compressed_size > 0 && compressed_pages) || 183 (compressed_size == 0 && !compressed_pages)); 184 185 if (compressed_size && compressed_pages) 186 cur_size = compressed_size; 187 188 inode_add_bytes(inode, size); 189 190 if (!extent_inserted) { 191 struct btrfs_key key; 192 size_t datasize; 193 194 key.objectid = btrfs_ino(BTRFS_I(inode)); 195 key.offset = start; 196 key.type = BTRFS_EXTENT_DATA_KEY; 197 198 datasize = btrfs_file_extent_calc_inline_size(cur_size); 199 path->leave_spinning = 1; 200 ret = btrfs_insert_empty_item(trans, root, path, &key, 201 datasize); 202 if (ret) 203 goto fail; 204 } 205 leaf = path->nodes[0]; 206 ei = btrfs_item_ptr(leaf, path->slots[0], 207 struct btrfs_file_extent_item); 208 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 210 btrfs_set_file_extent_encryption(leaf, ei, 0); 211 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 212 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 213 ptr = btrfs_file_extent_inline_start(ei); 214 215 if (compress_type != BTRFS_COMPRESS_NONE) { 216 struct page *cpage; 217 int i = 0; 218 while (compressed_size > 0) { 219 cpage = compressed_pages[i]; 220 cur_size = min_t(unsigned long, compressed_size, 221 PAGE_SIZE); 222 223 kaddr = kmap_atomic(cpage); 224 write_extent_buffer(leaf, kaddr, ptr, cur_size); 225 kunmap_atomic(kaddr); 226 227 i++; 228 ptr += cur_size; 229 compressed_size -= cur_size; 230 } 231 btrfs_set_file_extent_compression(leaf, ei, 232 compress_type); 233 } else { 234 page = find_get_page(inode->i_mapping, 235 start >> PAGE_SHIFT); 236 btrfs_set_file_extent_compression(leaf, ei, 0); 237 kaddr = kmap_atomic(page); 238 offset = offset_in_page(start); 239 write_extent_buffer(leaf, kaddr + offset, ptr, size); 240 kunmap_atomic(kaddr); 241 put_page(page); 242 } 243 btrfs_mark_buffer_dirty(leaf); 244 btrfs_release_path(path); 245 246 /* 247 * We align size to sectorsize for inline extents just for simplicity 248 * sake. 249 */ 250 size = ALIGN(size, root->fs_info->sectorsize); 251 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 252 if (ret) 253 goto fail; 254 255 /* 256 * we're an inline extent, so nobody can 257 * extend the file past i_size without locking 258 * a page we already have locked. 259 * 260 * We must do any isize and inode updates 261 * before we unlock the pages. Otherwise we 262 * could end up racing with unlink. 263 */ 264 BTRFS_I(inode)->disk_i_size = inode->i_size; 265 ret = btrfs_update_inode(trans, root, inode); 266 267 fail: 268 return ret; 269 } 270 271 272 /* 273 * conditionally insert an inline extent into the file. This 274 * does the checks required to make sure the data is small enough 275 * to fit as an inline extent. 276 */ 277 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 278 u64 end, size_t compressed_size, 279 int compress_type, 280 struct page **compressed_pages) 281 { 282 struct btrfs_root *root = BTRFS_I(inode)->root; 283 struct btrfs_fs_info *fs_info = root->fs_info; 284 struct btrfs_trans_handle *trans; 285 u64 isize = i_size_read(inode); 286 u64 actual_end = min(end + 1, isize); 287 u64 inline_len = actual_end - start; 288 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 289 u64 data_len = inline_len; 290 int ret; 291 struct btrfs_path *path; 292 int extent_inserted = 0; 293 u32 extent_item_size; 294 295 if (compressed_size) 296 data_len = compressed_size; 297 298 if (start > 0 || 299 actual_end > fs_info->sectorsize || 300 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 301 (!compressed_size && 302 (actual_end & (fs_info->sectorsize - 1)) == 0) || 303 end + 1 < isize || 304 data_len > fs_info->max_inline) { 305 return 1; 306 } 307 308 path = btrfs_alloc_path(); 309 if (!path) 310 return -ENOMEM; 311 312 trans = btrfs_join_transaction(root); 313 if (IS_ERR(trans)) { 314 btrfs_free_path(path); 315 return PTR_ERR(trans); 316 } 317 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 318 319 if (compressed_size && compressed_pages) 320 extent_item_size = btrfs_file_extent_calc_inline_size( 321 compressed_size); 322 else 323 extent_item_size = btrfs_file_extent_calc_inline_size( 324 inline_len); 325 326 ret = __btrfs_drop_extents(trans, root, inode, path, 327 start, aligned_end, NULL, 328 1, 1, extent_item_size, &extent_inserted); 329 if (ret) { 330 btrfs_abort_transaction(trans, ret); 331 goto out; 332 } 333 334 if (isize > actual_end) 335 inline_len = min_t(u64, isize, actual_end); 336 ret = insert_inline_extent(trans, path, extent_inserted, 337 root, inode, start, 338 inline_len, compressed_size, 339 compress_type, compressed_pages); 340 if (ret && ret != -ENOSPC) { 341 btrfs_abort_transaction(trans, ret); 342 goto out; 343 } else if (ret == -ENOSPC) { 344 ret = 1; 345 goto out; 346 } 347 348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 349 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 350 out: 351 /* 352 * Don't forget to free the reserved space, as for inlined extent 353 * it won't count as data extent, free them directly here. 354 * And at reserve time, it's always aligned to page size, so 355 * just free one page here. 356 */ 357 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 358 btrfs_free_path(path); 359 btrfs_end_transaction(trans); 360 return ret; 361 } 362 363 struct async_extent { 364 u64 start; 365 u64 ram_size; 366 u64 compressed_size; 367 struct page **pages; 368 unsigned long nr_pages; 369 int compress_type; 370 struct list_head list; 371 }; 372 373 struct async_chunk { 374 struct inode *inode; 375 struct page *locked_page; 376 u64 start; 377 u64 end; 378 unsigned int write_flags; 379 struct list_head extents; 380 struct cgroup_subsys_state *blkcg_css; 381 struct btrfs_work work; 382 atomic_t *pending; 383 }; 384 385 struct async_cow { 386 /* Number of chunks in flight; must be first in the structure */ 387 atomic_t num_chunks; 388 struct async_chunk chunks[]; 389 }; 390 391 static noinline int add_async_extent(struct async_chunk *cow, 392 u64 start, u64 ram_size, 393 u64 compressed_size, 394 struct page **pages, 395 unsigned long nr_pages, 396 int compress_type) 397 { 398 struct async_extent *async_extent; 399 400 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 401 BUG_ON(!async_extent); /* -ENOMEM */ 402 async_extent->start = start; 403 async_extent->ram_size = ram_size; 404 async_extent->compressed_size = compressed_size; 405 async_extent->pages = pages; 406 async_extent->nr_pages = nr_pages; 407 async_extent->compress_type = compress_type; 408 list_add_tail(&async_extent->list, &cow->extents); 409 return 0; 410 } 411 412 /* 413 * Check if the inode has flags compatible with compression 414 */ 415 static inline bool inode_can_compress(struct inode *inode) 416 { 417 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 418 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 419 return false; 420 return true; 421 } 422 423 /* 424 * Check if the inode needs to be submitted to compression, based on mount 425 * options, defragmentation, properties or heuristics. 426 */ 427 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 428 { 429 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 430 431 if (!inode_can_compress(inode)) { 432 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 433 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 434 btrfs_ino(BTRFS_I(inode))); 435 return 0; 436 } 437 /* force compress */ 438 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 439 return 1; 440 /* defrag ioctl */ 441 if (BTRFS_I(inode)->defrag_compress) 442 return 1; 443 /* bad compression ratios */ 444 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 445 return 0; 446 if (btrfs_test_opt(fs_info, COMPRESS) || 447 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 448 BTRFS_I(inode)->prop_compress) 449 return btrfs_compress_heuristic(inode, start, end); 450 return 0; 451 } 452 453 static inline void inode_should_defrag(struct btrfs_inode *inode, 454 u64 start, u64 end, u64 num_bytes, u64 small_write) 455 { 456 /* If this is a small write inside eof, kick off a defrag */ 457 if (num_bytes < small_write && 458 (start > 0 || end + 1 < inode->disk_i_size)) 459 btrfs_add_inode_defrag(NULL, inode); 460 } 461 462 /* 463 * we create compressed extents in two phases. The first 464 * phase compresses a range of pages that have already been 465 * locked (both pages and state bits are locked). 466 * 467 * This is done inside an ordered work queue, and the compression 468 * is spread across many cpus. The actual IO submission is step 469 * two, and the ordered work queue takes care of making sure that 470 * happens in the same order things were put onto the queue by 471 * writepages and friends. 472 * 473 * If this code finds it can't get good compression, it puts an 474 * entry onto the work queue to write the uncompressed bytes. This 475 * makes sure that both compressed inodes and uncompressed inodes 476 * are written in the same order that the flusher thread sent them 477 * down. 478 */ 479 static noinline int compress_file_range(struct async_chunk *async_chunk) 480 { 481 struct inode *inode = async_chunk->inode; 482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 483 u64 blocksize = fs_info->sectorsize; 484 u64 start = async_chunk->start; 485 u64 end = async_chunk->end; 486 u64 actual_end; 487 u64 i_size; 488 int ret = 0; 489 struct page **pages = NULL; 490 unsigned long nr_pages; 491 unsigned long total_compressed = 0; 492 unsigned long total_in = 0; 493 int i; 494 int will_compress; 495 int compress_type = fs_info->compress_type; 496 int compressed_extents = 0; 497 int redirty = 0; 498 499 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 500 SZ_16K); 501 502 /* 503 * We need to save i_size before now because it could change in between 504 * us evaluating the size and assigning it. This is because we lock and 505 * unlock the page in truncate and fallocate, and then modify the i_size 506 * later on. 507 * 508 * The barriers are to emulate READ_ONCE, remove that once i_size_read 509 * does that for us. 510 */ 511 barrier(); 512 i_size = i_size_read(inode); 513 barrier(); 514 actual_end = min_t(u64, i_size, end + 1); 515 again: 516 will_compress = 0; 517 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 518 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 519 nr_pages = min_t(unsigned long, nr_pages, 520 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 521 522 /* 523 * we don't want to send crud past the end of i_size through 524 * compression, that's just a waste of CPU time. So, if the 525 * end of the file is before the start of our current 526 * requested range of bytes, we bail out to the uncompressed 527 * cleanup code that can deal with all of this. 528 * 529 * It isn't really the fastest way to fix things, but this is a 530 * very uncommon corner. 531 */ 532 if (actual_end <= start) 533 goto cleanup_and_bail_uncompressed; 534 535 total_compressed = actual_end - start; 536 537 /* 538 * skip compression for a small file range(<=blocksize) that 539 * isn't an inline extent, since it doesn't save disk space at all. 540 */ 541 if (total_compressed <= blocksize && 542 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 543 goto cleanup_and_bail_uncompressed; 544 545 total_compressed = min_t(unsigned long, total_compressed, 546 BTRFS_MAX_UNCOMPRESSED); 547 total_in = 0; 548 ret = 0; 549 550 /* 551 * we do compression for mount -o compress and when the 552 * inode has not been flagged as nocompress. This flag can 553 * change at any time if we discover bad compression ratios. 554 */ 555 if (inode_need_compress(inode, start, end)) { 556 WARN_ON(pages); 557 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 558 if (!pages) { 559 /* just bail out to the uncompressed code */ 560 nr_pages = 0; 561 goto cont; 562 } 563 564 if (BTRFS_I(inode)->defrag_compress) 565 compress_type = BTRFS_I(inode)->defrag_compress; 566 else if (BTRFS_I(inode)->prop_compress) 567 compress_type = BTRFS_I(inode)->prop_compress; 568 569 /* 570 * we need to call clear_page_dirty_for_io on each 571 * page in the range. Otherwise applications with the file 572 * mmap'd can wander in and change the page contents while 573 * we are compressing them. 574 * 575 * If the compression fails for any reason, we set the pages 576 * dirty again later on. 577 * 578 * Note that the remaining part is redirtied, the start pointer 579 * has moved, the end is the original one. 580 */ 581 if (!redirty) { 582 extent_range_clear_dirty_for_io(inode, start, end); 583 redirty = 1; 584 } 585 586 /* Compression level is applied here and only here */ 587 ret = btrfs_compress_pages( 588 compress_type | (fs_info->compress_level << 4), 589 inode->i_mapping, start, 590 pages, 591 &nr_pages, 592 &total_in, 593 &total_compressed); 594 595 if (!ret) { 596 unsigned long offset = offset_in_page(total_compressed); 597 struct page *page = pages[nr_pages - 1]; 598 char *kaddr; 599 600 /* zero the tail end of the last page, we might be 601 * sending it down to disk 602 */ 603 if (offset) { 604 kaddr = kmap_atomic(page); 605 memset(kaddr + offset, 0, 606 PAGE_SIZE - offset); 607 kunmap_atomic(kaddr); 608 } 609 will_compress = 1; 610 } 611 } 612 cont: 613 if (start == 0) { 614 /* lets try to make an inline extent */ 615 if (ret || total_in < actual_end) { 616 /* we didn't compress the entire range, try 617 * to make an uncompressed inline extent. 618 */ 619 ret = cow_file_range_inline(inode, start, end, 0, 620 BTRFS_COMPRESS_NONE, NULL); 621 } else { 622 /* try making a compressed inline extent */ 623 ret = cow_file_range_inline(inode, start, end, 624 total_compressed, 625 compress_type, pages); 626 } 627 if (ret <= 0) { 628 unsigned long clear_flags = EXTENT_DELALLOC | 629 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 630 EXTENT_DO_ACCOUNTING; 631 unsigned long page_error_op; 632 633 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 634 635 /* 636 * inline extent creation worked or returned error, 637 * we don't need to create any more async work items. 638 * Unlock and free up our temp pages. 639 * 640 * We use DO_ACCOUNTING here because we need the 641 * delalloc_release_metadata to be done _after_ we drop 642 * our outstanding extent for clearing delalloc for this 643 * range. 644 */ 645 extent_clear_unlock_delalloc(inode, start, end, NULL, 646 clear_flags, 647 PAGE_UNLOCK | 648 PAGE_CLEAR_DIRTY | 649 PAGE_SET_WRITEBACK | 650 page_error_op | 651 PAGE_END_WRITEBACK); 652 653 for (i = 0; i < nr_pages; i++) { 654 WARN_ON(pages[i]->mapping); 655 put_page(pages[i]); 656 } 657 kfree(pages); 658 659 return 0; 660 } 661 } 662 663 if (will_compress) { 664 /* 665 * we aren't doing an inline extent round the compressed size 666 * up to a block size boundary so the allocator does sane 667 * things 668 */ 669 total_compressed = ALIGN(total_compressed, blocksize); 670 671 /* 672 * one last check to make sure the compression is really a 673 * win, compare the page count read with the blocks on disk, 674 * compression must free at least one sector size 675 */ 676 total_in = ALIGN(total_in, PAGE_SIZE); 677 if (total_compressed + blocksize <= total_in) { 678 compressed_extents++; 679 680 /* 681 * The async work queues will take care of doing actual 682 * allocation on disk for these compressed pages, and 683 * will submit them to the elevator. 684 */ 685 add_async_extent(async_chunk, start, total_in, 686 total_compressed, pages, nr_pages, 687 compress_type); 688 689 if (start + total_in < end) { 690 start += total_in; 691 pages = NULL; 692 cond_resched(); 693 goto again; 694 } 695 return compressed_extents; 696 } 697 } 698 if (pages) { 699 /* 700 * the compression code ran but failed to make things smaller, 701 * free any pages it allocated and our page pointer array 702 */ 703 for (i = 0; i < nr_pages; i++) { 704 WARN_ON(pages[i]->mapping); 705 put_page(pages[i]); 706 } 707 kfree(pages); 708 pages = NULL; 709 total_compressed = 0; 710 nr_pages = 0; 711 712 /* flag the file so we don't compress in the future */ 713 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 714 !(BTRFS_I(inode)->prop_compress)) { 715 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 716 } 717 } 718 cleanup_and_bail_uncompressed: 719 /* 720 * No compression, but we still need to write the pages in the file 721 * we've been given so far. redirty the locked page if it corresponds 722 * to our extent and set things up for the async work queue to run 723 * cow_file_range to do the normal delalloc dance. 724 */ 725 if (async_chunk->locked_page && 726 (page_offset(async_chunk->locked_page) >= start && 727 page_offset(async_chunk->locked_page)) <= end) { 728 __set_page_dirty_nobuffers(async_chunk->locked_page); 729 /* unlocked later on in the async handlers */ 730 } 731 732 if (redirty) 733 extent_range_redirty_for_io(inode, start, end); 734 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 735 BTRFS_COMPRESS_NONE); 736 compressed_extents++; 737 738 return compressed_extents; 739 } 740 741 static void free_async_extent_pages(struct async_extent *async_extent) 742 { 743 int i; 744 745 if (!async_extent->pages) 746 return; 747 748 for (i = 0; i < async_extent->nr_pages; i++) { 749 WARN_ON(async_extent->pages[i]->mapping); 750 put_page(async_extent->pages[i]); 751 } 752 kfree(async_extent->pages); 753 async_extent->nr_pages = 0; 754 async_extent->pages = NULL; 755 } 756 757 /* 758 * phase two of compressed writeback. This is the ordered portion 759 * of the code, which only gets called in the order the work was 760 * queued. We walk all the async extents created by compress_file_range 761 * and send them down to the disk. 762 */ 763 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 764 { 765 struct inode *inode = async_chunk->inode; 766 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 767 struct async_extent *async_extent; 768 u64 alloc_hint = 0; 769 struct btrfs_key ins; 770 struct extent_map *em; 771 struct btrfs_root *root = BTRFS_I(inode)->root; 772 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 773 int ret = 0; 774 775 again: 776 while (!list_empty(&async_chunk->extents)) { 777 async_extent = list_entry(async_chunk->extents.next, 778 struct async_extent, list); 779 list_del(&async_extent->list); 780 781 retry: 782 lock_extent(io_tree, async_extent->start, 783 async_extent->start + async_extent->ram_size - 1); 784 /* did the compression code fall back to uncompressed IO? */ 785 if (!async_extent->pages) { 786 int page_started = 0; 787 unsigned long nr_written = 0; 788 789 /* allocate blocks */ 790 ret = cow_file_range(inode, async_chunk->locked_page, 791 async_extent->start, 792 async_extent->start + 793 async_extent->ram_size - 1, 794 &page_started, &nr_written, 0); 795 796 /* JDM XXX */ 797 798 /* 799 * if page_started, cow_file_range inserted an 800 * inline extent and took care of all the unlocking 801 * and IO for us. Otherwise, we need to submit 802 * all those pages down to the drive. 803 */ 804 if (!page_started && !ret) 805 extent_write_locked_range(inode, 806 async_extent->start, 807 async_extent->start + 808 async_extent->ram_size - 1, 809 WB_SYNC_ALL); 810 else if (ret && async_chunk->locked_page) 811 unlock_page(async_chunk->locked_page); 812 kfree(async_extent); 813 cond_resched(); 814 continue; 815 } 816 817 ret = btrfs_reserve_extent(root, async_extent->ram_size, 818 async_extent->compressed_size, 819 async_extent->compressed_size, 820 0, alloc_hint, &ins, 1, 1); 821 if (ret) { 822 free_async_extent_pages(async_extent); 823 824 if (ret == -ENOSPC) { 825 unlock_extent(io_tree, async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1); 828 829 /* 830 * we need to redirty the pages if we decide to 831 * fallback to uncompressed IO, otherwise we 832 * will not submit these pages down to lower 833 * layers. 834 */ 835 extent_range_redirty_for_io(inode, 836 async_extent->start, 837 async_extent->start + 838 async_extent->ram_size - 1); 839 840 goto retry; 841 } 842 goto out_free; 843 } 844 /* 845 * here we're doing allocation and writeback of the 846 * compressed pages 847 */ 848 em = create_io_em(inode, async_extent->start, 849 async_extent->ram_size, /* len */ 850 async_extent->start, /* orig_start */ 851 ins.objectid, /* block_start */ 852 ins.offset, /* block_len */ 853 ins.offset, /* orig_block_len */ 854 async_extent->ram_size, /* ram_bytes */ 855 async_extent->compress_type, 856 BTRFS_ORDERED_COMPRESSED); 857 if (IS_ERR(em)) 858 /* ret value is not necessary due to void function */ 859 goto out_free_reserve; 860 free_extent_map(em); 861 862 ret = btrfs_add_ordered_extent_compress(inode, 863 async_extent->start, 864 ins.objectid, 865 async_extent->ram_size, 866 ins.offset, 867 BTRFS_ORDERED_COMPRESSED, 868 async_extent->compress_type); 869 if (ret) { 870 btrfs_drop_extent_cache(BTRFS_I(inode), 871 async_extent->start, 872 async_extent->start + 873 async_extent->ram_size - 1, 0); 874 goto out_free_reserve; 875 } 876 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 877 878 /* 879 * clear dirty, set writeback and unlock the pages. 880 */ 881 extent_clear_unlock_delalloc(inode, async_extent->start, 882 async_extent->start + 883 async_extent->ram_size - 1, 884 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 885 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 886 PAGE_SET_WRITEBACK); 887 if (btrfs_submit_compressed_write(inode, 888 async_extent->start, 889 async_extent->ram_size, 890 ins.objectid, 891 ins.offset, async_extent->pages, 892 async_extent->nr_pages, 893 async_chunk->write_flags, 894 async_chunk->blkcg_css)) { 895 struct page *p = async_extent->pages[0]; 896 const u64 start = async_extent->start; 897 const u64 end = start + async_extent->ram_size - 1; 898 899 p->mapping = inode->i_mapping; 900 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 901 902 p->mapping = NULL; 903 extent_clear_unlock_delalloc(inode, start, end, 904 NULL, 0, 905 PAGE_END_WRITEBACK | 906 PAGE_SET_ERROR); 907 free_async_extent_pages(async_extent); 908 } 909 alloc_hint = ins.objectid + ins.offset; 910 kfree(async_extent); 911 cond_resched(); 912 } 913 return; 914 out_free_reserve: 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 917 out_free: 918 extent_clear_unlock_delalloc(inode, async_extent->start, 919 async_extent->start + 920 async_extent->ram_size - 1, 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 922 EXTENT_DELALLOC_NEW | 923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 926 PAGE_SET_ERROR); 927 free_async_extent_pages(async_extent); 928 kfree(async_extent); 929 goto again; 930 } 931 932 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 933 u64 num_bytes) 934 { 935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 936 struct extent_map *em; 937 u64 alloc_hint = 0; 938 939 read_lock(&em_tree->lock); 940 em = search_extent_mapping(em_tree, start, num_bytes); 941 if (em) { 942 /* 943 * if block start isn't an actual block number then find the 944 * first block in this inode and use that as a hint. If that 945 * block is also bogus then just don't worry about it. 946 */ 947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 948 free_extent_map(em); 949 em = search_extent_mapping(em_tree, 0, 0); 950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 951 alloc_hint = em->block_start; 952 if (em) 953 free_extent_map(em); 954 } else { 955 alloc_hint = em->block_start; 956 free_extent_map(em); 957 } 958 } 959 read_unlock(&em_tree->lock); 960 961 return alloc_hint; 962 } 963 964 /* 965 * when extent_io.c finds a delayed allocation range in the file, 966 * the call backs end up in this code. The basic idea is to 967 * allocate extents on disk for the range, and create ordered data structs 968 * in ram to track those extents. 969 * 970 * locked_page is the page that writepage had locked already. We use 971 * it to make sure we don't do extra locks or unlocks. 972 * 973 * *page_started is set to one if we unlock locked_page and do everything 974 * required to start IO on it. It may be clean and already done with 975 * IO when we return. 976 */ 977 static noinline int cow_file_range(struct inode *inode, 978 struct page *locked_page, 979 u64 start, u64 end, int *page_started, 980 unsigned long *nr_written, int unlock) 981 { 982 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 983 struct btrfs_root *root = BTRFS_I(inode)->root; 984 u64 alloc_hint = 0; 985 u64 num_bytes; 986 unsigned long ram_size; 987 u64 cur_alloc_size = 0; 988 u64 min_alloc_size; 989 u64 blocksize = fs_info->sectorsize; 990 struct btrfs_key ins; 991 struct extent_map *em; 992 unsigned clear_bits; 993 unsigned long page_ops; 994 bool extent_reserved = false; 995 int ret = 0; 996 997 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 998 WARN_ON_ONCE(1); 999 ret = -EINVAL; 1000 goto out_unlock; 1001 } 1002 1003 num_bytes = ALIGN(end - start + 1, blocksize); 1004 num_bytes = max(blocksize, num_bytes); 1005 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1006 1007 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 1008 1009 if (start == 0) { 1010 /* lets try to make an inline extent */ 1011 ret = cow_file_range_inline(inode, start, end, 0, 1012 BTRFS_COMPRESS_NONE, NULL); 1013 if (ret == 0) { 1014 /* 1015 * We use DO_ACCOUNTING here because we need the 1016 * delalloc_release_metadata to be run _after_ we drop 1017 * our outstanding extent for clearing delalloc for this 1018 * range. 1019 */ 1020 extent_clear_unlock_delalloc(inode, start, end, NULL, 1021 EXTENT_LOCKED | EXTENT_DELALLOC | 1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1025 PAGE_END_WRITEBACK); 1026 *nr_written = *nr_written + 1027 (end - start + PAGE_SIZE) / PAGE_SIZE; 1028 *page_started = 1; 1029 goto out; 1030 } else if (ret < 0) { 1031 goto out_unlock; 1032 } 1033 } 1034 1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1036 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1037 start + num_bytes - 1, 0); 1038 1039 /* 1040 * Relocation relies on the relocated extents to have exactly the same 1041 * size as the original extents. Normally writeback for relocation data 1042 * extents follows a NOCOW path because relocation preallocates the 1043 * extents. However, due to an operation such as scrub turning a block 1044 * group to RO mode, it may fallback to COW mode, so we must make sure 1045 * an extent allocated during COW has exactly the requested size and can 1046 * not be split into smaller extents, otherwise relocation breaks and 1047 * fails during the stage where it updates the bytenr of file extent 1048 * items. 1049 */ 1050 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1051 min_alloc_size = num_bytes; 1052 else 1053 min_alloc_size = fs_info->sectorsize; 1054 1055 while (num_bytes > 0) { 1056 cur_alloc_size = num_bytes; 1057 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1058 min_alloc_size, 0, alloc_hint, 1059 &ins, 1, 1); 1060 if (ret < 0) 1061 goto out_unlock; 1062 cur_alloc_size = ins.offset; 1063 extent_reserved = true; 1064 1065 ram_size = ins.offset; 1066 em = create_io_em(inode, start, ins.offset, /* len */ 1067 start, /* orig_start */ 1068 ins.objectid, /* block_start */ 1069 ins.offset, /* block_len */ 1070 ins.offset, /* orig_block_len */ 1071 ram_size, /* ram_bytes */ 1072 BTRFS_COMPRESS_NONE, /* compress_type */ 1073 BTRFS_ORDERED_REGULAR /* type */); 1074 if (IS_ERR(em)) { 1075 ret = PTR_ERR(em); 1076 goto out_reserve; 1077 } 1078 free_extent_map(em); 1079 1080 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1081 ram_size, cur_alloc_size, 0); 1082 if (ret) 1083 goto out_drop_extent_cache; 1084 1085 if (root->root_key.objectid == 1086 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1087 ret = btrfs_reloc_clone_csums(inode, start, 1088 cur_alloc_size); 1089 /* 1090 * Only drop cache here, and process as normal. 1091 * 1092 * We must not allow extent_clear_unlock_delalloc() 1093 * at out_unlock label to free meta of this ordered 1094 * extent, as its meta should be freed by 1095 * btrfs_finish_ordered_io(). 1096 * 1097 * So we must continue until @start is increased to 1098 * skip current ordered extent. 1099 */ 1100 if (ret) 1101 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1102 start + ram_size - 1, 0); 1103 } 1104 1105 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1106 1107 /* we're not doing compressed IO, don't unlock the first 1108 * page (which the caller expects to stay locked), don't 1109 * clear any dirty bits and don't set any writeback bits 1110 * 1111 * Do set the Private2 bit so we know this page was properly 1112 * setup for writepage 1113 */ 1114 page_ops = unlock ? PAGE_UNLOCK : 0; 1115 page_ops |= PAGE_SET_PRIVATE2; 1116 1117 extent_clear_unlock_delalloc(inode, start, 1118 start + ram_size - 1, 1119 locked_page, 1120 EXTENT_LOCKED | EXTENT_DELALLOC, 1121 page_ops); 1122 if (num_bytes < cur_alloc_size) 1123 num_bytes = 0; 1124 else 1125 num_bytes -= cur_alloc_size; 1126 alloc_hint = ins.objectid + ins.offset; 1127 start += cur_alloc_size; 1128 extent_reserved = false; 1129 1130 /* 1131 * btrfs_reloc_clone_csums() error, since start is increased 1132 * extent_clear_unlock_delalloc() at out_unlock label won't 1133 * free metadata of current ordered extent, we're OK to exit. 1134 */ 1135 if (ret) 1136 goto out_unlock; 1137 } 1138 out: 1139 return ret; 1140 1141 out_drop_extent_cache: 1142 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1143 out_reserve: 1144 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1145 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1146 out_unlock: 1147 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1148 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1149 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1150 PAGE_END_WRITEBACK; 1151 /* 1152 * If we reserved an extent for our delalloc range (or a subrange) and 1153 * failed to create the respective ordered extent, then it means that 1154 * when we reserved the extent we decremented the extent's size from 1155 * the data space_info's bytes_may_use counter and incremented the 1156 * space_info's bytes_reserved counter by the same amount. We must make 1157 * sure extent_clear_unlock_delalloc() does not try to decrement again 1158 * the data space_info's bytes_may_use counter, therefore we do not pass 1159 * it the flag EXTENT_CLEAR_DATA_RESV. 1160 */ 1161 if (extent_reserved) { 1162 extent_clear_unlock_delalloc(inode, start, 1163 start + cur_alloc_size - 1, 1164 locked_page, 1165 clear_bits, 1166 page_ops); 1167 start += cur_alloc_size; 1168 if (start >= end) 1169 goto out; 1170 } 1171 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1172 clear_bits | EXTENT_CLEAR_DATA_RESV, 1173 page_ops); 1174 goto out; 1175 } 1176 1177 /* 1178 * work queue call back to started compression on a file and pages 1179 */ 1180 static noinline void async_cow_start(struct btrfs_work *work) 1181 { 1182 struct async_chunk *async_chunk; 1183 int compressed_extents; 1184 1185 async_chunk = container_of(work, struct async_chunk, work); 1186 1187 compressed_extents = compress_file_range(async_chunk); 1188 if (compressed_extents == 0) { 1189 btrfs_add_delayed_iput(async_chunk->inode); 1190 async_chunk->inode = NULL; 1191 } 1192 } 1193 1194 /* 1195 * work queue call back to submit previously compressed pages 1196 */ 1197 static noinline void async_cow_submit(struct btrfs_work *work) 1198 { 1199 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1200 work); 1201 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1202 unsigned long nr_pages; 1203 1204 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1205 PAGE_SHIFT; 1206 1207 /* atomic_sub_return implies a barrier */ 1208 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1209 5 * SZ_1M) 1210 cond_wake_up_nomb(&fs_info->async_submit_wait); 1211 1212 /* 1213 * ->inode could be NULL if async_chunk_start has failed to compress, 1214 * in which case we don't have anything to submit, yet we need to 1215 * always adjust ->async_delalloc_pages as its paired with the init 1216 * happening in cow_file_range_async 1217 */ 1218 if (async_chunk->inode) 1219 submit_compressed_extents(async_chunk); 1220 } 1221 1222 static noinline void async_cow_free(struct btrfs_work *work) 1223 { 1224 struct async_chunk *async_chunk; 1225 1226 async_chunk = container_of(work, struct async_chunk, work); 1227 if (async_chunk->inode) 1228 btrfs_add_delayed_iput(async_chunk->inode); 1229 if (async_chunk->blkcg_css) 1230 css_put(async_chunk->blkcg_css); 1231 /* 1232 * Since the pointer to 'pending' is at the beginning of the array of 1233 * async_chunk's, freeing it ensures the whole array has been freed. 1234 */ 1235 if (atomic_dec_and_test(async_chunk->pending)) 1236 kvfree(async_chunk->pending); 1237 } 1238 1239 static int cow_file_range_async(struct inode *inode, 1240 struct writeback_control *wbc, 1241 struct page *locked_page, 1242 u64 start, u64 end, int *page_started, 1243 unsigned long *nr_written) 1244 { 1245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1246 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1247 struct async_cow *ctx; 1248 struct async_chunk *async_chunk; 1249 unsigned long nr_pages; 1250 u64 cur_end; 1251 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1252 int i; 1253 bool should_compress; 1254 unsigned nofs_flag; 1255 const unsigned int write_flags = wbc_to_write_flags(wbc); 1256 1257 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1258 1259 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1260 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1261 num_chunks = 1; 1262 should_compress = false; 1263 } else { 1264 should_compress = true; 1265 } 1266 1267 nofs_flag = memalloc_nofs_save(); 1268 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1269 memalloc_nofs_restore(nofs_flag); 1270 1271 if (!ctx) { 1272 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1273 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1274 EXTENT_DO_ACCOUNTING; 1275 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1276 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1277 PAGE_SET_ERROR; 1278 1279 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1280 clear_bits, page_ops); 1281 return -ENOMEM; 1282 } 1283 1284 async_chunk = ctx->chunks; 1285 atomic_set(&ctx->num_chunks, num_chunks); 1286 1287 for (i = 0; i < num_chunks; i++) { 1288 if (should_compress) 1289 cur_end = min(end, start + SZ_512K - 1); 1290 else 1291 cur_end = end; 1292 1293 /* 1294 * igrab is called higher up in the call chain, take only the 1295 * lightweight reference for the callback lifetime 1296 */ 1297 ihold(inode); 1298 async_chunk[i].pending = &ctx->num_chunks; 1299 async_chunk[i].inode = inode; 1300 async_chunk[i].start = start; 1301 async_chunk[i].end = cur_end; 1302 async_chunk[i].write_flags = write_flags; 1303 INIT_LIST_HEAD(&async_chunk[i].extents); 1304 1305 /* 1306 * The locked_page comes all the way from writepage and its 1307 * the original page we were actually given. As we spread 1308 * this large delalloc region across multiple async_chunk 1309 * structs, only the first struct needs a pointer to locked_page 1310 * 1311 * This way we don't need racey decisions about who is supposed 1312 * to unlock it. 1313 */ 1314 if (locked_page) { 1315 /* 1316 * Depending on the compressibility, the pages might or 1317 * might not go through async. We want all of them to 1318 * be accounted against wbc once. Let's do it here 1319 * before the paths diverge. wbc accounting is used 1320 * only for foreign writeback detection and doesn't 1321 * need full accuracy. Just account the whole thing 1322 * against the first page. 1323 */ 1324 wbc_account_cgroup_owner(wbc, locked_page, 1325 cur_end - start); 1326 async_chunk[i].locked_page = locked_page; 1327 locked_page = NULL; 1328 } else { 1329 async_chunk[i].locked_page = NULL; 1330 } 1331 1332 if (blkcg_css != blkcg_root_css) { 1333 css_get(blkcg_css); 1334 async_chunk[i].blkcg_css = blkcg_css; 1335 } else { 1336 async_chunk[i].blkcg_css = NULL; 1337 } 1338 1339 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1340 async_cow_submit, async_cow_free); 1341 1342 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1343 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1344 1345 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1346 1347 *nr_written += nr_pages; 1348 start = cur_end + 1; 1349 } 1350 *page_started = 1; 1351 return 0; 1352 } 1353 1354 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1355 u64 bytenr, u64 num_bytes) 1356 { 1357 int ret; 1358 struct btrfs_ordered_sum *sums; 1359 LIST_HEAD(list); 1360 1361 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1362 bytenr + num_bytes - 1, &list, 0); 1363 if (ret == 0 && list_empty(&list)) 1364 return 0; 1365 1366 while (!list_empty(&list)) { 1367 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1368 list_del(&sums->list); 1369 kfree(sums); 1370 } 1371 if (ret < 0) 1372 return ret; 1373 return 1; 1374 } 1375 1376 static int fallback_to_cow(struct inode *inode, struct page *locked_page, 1377 const u64 start, const u64 end, 1378 int *page_started, unsigned long *nr_written) 1379 { 1380 const bool is_space_ino = btrfs_is_free_space_inode(BTRFS_I(inode)); 1381 const bool is_reloc_ino = (BTRFS_I(inode)->root->root_key.objectid == 1382 BTRFS_DATA_RELOC_TREE_OBJECTID); 1383 const u64 range_bytes = end + 1 - start; 1384 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1385 u64 range_start = start; 1386 u64 count; 1387 1388 /* 1389 * If EXTENT_NORESERVE is set it means that when the buffered write was 1390 * made we had not enough available data space and therefore we did not 1391 * reserve data space for it, since we though we could do NOCOW for the 1392 * respective file range (either there is prealloc extent or the inode 1393 * has the NOCOW bit set). 1394 * 1395 * However when we need to fallback to COW mode (because for example the 1396 * block group for the corresponding extent was turned to RO mode by a 1397 * scrub or relocation) we need to do the following: 1398 * 1399 * 1) We increment the bytes_may_use counter of the data space info. 1400 * If COW succeeds, it allocates a new data extent and after doing 1401 * that it decrements the space info's bytes_may_use counter and 1402 * increments its bytes_reserved counter by the same amount (we do 1403 * this at btrfs_add_reserved_bytes()). So we need to increment the 1404 * bytes_may_use counter to compensate (when space is reserved at 1405 * buffered write time, the bytes_may_use counter is incremented); 1406 * 1407 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1408 * that if the COW path fails for any reason, it decrements (through 1409 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1410 * data space info, which we incremented in the step above. 1411 * 1412 * If we need to fallback to cow and the inode corresponds to a free 1413 * space cache inode or an inode of the data relocation tree, we must 1414 * also increment bytes_may_use of the data space_info for the same 1415 * reason. Space caches and relocated data extents always get a prealloc 1416 * extent for them, however scrub or balance may have set the block 1417 * group that contains that extent to RO mode and therefore force COW 1418 * when starting writeback. 1419 */ 1420 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1421 EXTENT_NORESERVE, 0); 1422 if (count > 0 || is_space_ino || is_reloc_ino) { 1423 u64 bytes = count; 1424 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1425 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1426 1427 if (is_space_ino || is_reloc_ino) 1428 bytes = range_bytes; 1429 1430 spin_lock(&sinfo->lock); 1431 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1432 spin_unlock(&sinfo->lock); 1433 1434 if (count > 0) 1435 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1436 0, 0, NULL); 1437 } 1438 1439 return cow_file_range(inode, locked_page, start, end, page_started, 1440 nr_written, 1); 1441 } 1442 1443 /* 1444 * when nowcow writeback call back. This checks for snapshots or COW copies 1445 * of the extents that exist in the file, and COWs the file as required. 1446 * 1447 * If no cow copies or snapshots exist, we write directly to the existing 1448 * blocks on disk 1449 */ 1450 static noinline int run_delalloc_nocow(struct inode *inode, 1451 struct page *locked_page, 1452 const u64 start, const u64 end, 1453 int *page_started, int force, 1454 unsigned long *nr_written) 1455 { 1456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1457 struct btrfs_root *root = BTRFS_I(inode)->root; 1458 struct btrfs_path *path; 1459 u64 cow_start = (u64)-1; 1460 u64 cur_offset = start; 1461 int ret; 1462 bool check_prev = true; 1463 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1464 u64 ino = btrfs_ino(BTRFS_I(inode)); 1465 bool nocow = false; 1466 u64 disk_bytenr = 0; 1467 1468 path = btrfs_alloc_path(); 1469 if (!path) { 1470 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1471 EXTENT_LOCKED | EXTENT_DELALLOC | 1472 EXTENT_DO_ACCOUNTING | 1473 EXTENT_DEFRAG, PAGE_UNLOCK | 1474 PAGE_CLEAR_DIRTY | 1475 PAGE_SET_WRITEBACK | 1476 PAGE_END_WRITEBACK); 1477 return -ENOMEM; 1478 } 1479 1480 while (1) { 1481 struct btrfs_key found_key; 1482 struct btrfs_file_extent_item *fi; 1483 struct extent_buffer *leaf; 1484 u64 extent_end; 1485 u64 extent_offset; 1486 u64 num_bytes = 0; 1487 u64 disk_num_bytes; 1488 u64 ram_bytes; 1489 int extent_type; 1490 1491 nocow = false; 1492 1493 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1494 cur_offset, 0); 1495 if (ret < 0) 1496 goto error; 1497 1498 /* 1499 * If there is no extent for our range when doing the initial 1500 * search, then go back to the previous slot as it will be the 1501 * one containing the search offset 1502 */ 1503 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1504 leaf = path->nodes[0]; 1505 btrfs_item_key_to_cpu(leaf, &found_key, 1506 path->slots[0] - 1); 1507 if (found_key.objectid == ino && 1508 found_key.type == BTRFS_EXTENT_DATA_KEY) 1509 path->slots[0]--; 1510 } 1511 check_prev = false; 1512 next_slot: 1513 /* Go to next leaf if we have exhausted the current one */ 1514 leaf = path->nodes[0]; 1515 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1516 ret = btrfs_next_leaf(root, path); 1517 if (ret < 0) { 1518 if (cow_start != (u64)-1) 1519 cur_offset = cow_start; 1520 goto error; 1521 } 1522 if (ret > 0) 1523 break; 1524 leaf = path->nodes[0]; 1525 } 1526 1527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1528 1529 /* Didn't find anything for our INO */ 1530 if (found_key.objectid > ino) 1531 break; 1532 /* 1533 * Keep searching until we find an EXTENT_ITEM or there are no 1534 * more extents for this inode 1535 */ 1536 if (WARN_ON_ONCE(found_key.objectid < ino) || 1537 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1538 path->slots[0]++; 1539 goto next_slot; 1540 } 1541 1542 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1543 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1544 found_key.offset > end) 1545 break; 1546 1547 /* 1548 * If the found extent starts after requested offset, then 1549 * adjust extent_end to be right before this extent begins 1550 */ 1551 if (found_key.offset > cur_offset) { 1552 extent_end = found_key.offset; 1553 extent_type = 0; 1554 goto out_check; 1555 } 1556 1557 /* 1558 * Found extent which begins before our range and potentially 1559 * intersect it 1560 */ 1561 fi = btrfs_item_ptr(leaf, path->slots[0], 1562 struct btrfs_file_extent_item); 1563 extent_type = btrfs_file_extent_type(leaf, fi); 1564 1565 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1566 if (extent_type == BTRFS_FILE_EXTENT_REG || 1567 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1568 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1569 extent_offset = btrfs_file_extent_offset(leaf, fi); 1570 extent_end = found_key.offset + 1571 btrfs_file_extent_num_bytes(leaf, fi); 1572 disk_num_bytes = 1573 btrfs_file_extent_disk_num_bytes(leaf, fi); 1574 /* 1575 * If the extent we got ends before our current offset, 1576 * skip to the next extent. 1577 */ 1578 if (extent_end <= cur_offset) { 1579 path->slots[0]++; 1580 goto next_slot; 1581 } 1582 /* Skip holes */ 1583 if (disk_bytenr == 0) 1584 goto out_check; 1585 /* Skip compressed/encrypted/encoded extents */ 1586 if (btrfs_file_extent_compression(leaf, fi) || 1587 btrfs_file_extent_encryption(leaf, fi) || 1588 btrfs_file_extent_other_encoding(leaf, fi)) 1589 goto out_check; 1590 /* 1591 * If extent is created before the last volume's snapshot 1592 * this implies the extent is shared, hence we can't do 1593 * nocow. This is the same check as in 1594 * btrfs_cross_ref_exist but without calling 1595 * btrfs_search_slot. 1596 */ 1597 if (!freespace_inode && 1598 btrfs_file_extent_generation(leaf, fi) <= 1599 btrfs_root_last_snapshot(&root->root_item)) 1600 goto out_check; 1601 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1602 goto out_check; 1603 /* If extent is RO, we must COW it */ 1604 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1605 goto out_check; 1606 ret = btrfs_cross_ref_exist(root, ino, 1607 found_key.offset - 1608 extent_offset, disk_bytenr); 1609 if (ret) { 1610 /* 1611 * ret could be -EIO if the above fails to read 1612 * metadata. 1613 */ 1614 if (ret < 0) { 1615 if (cow_start != (u64)-1) 1616 cur_offset = cow_start; 1617 goto error; 1618 } 1619 1620 WARN_ON_ONCE(freespace_inode); 1621 goto out_check; 1622 } 1623 disk_bytenr += extent_offset; 1624 disk_bytenr += cur_offset - found_key.offset; 1625 num_bytes = min(end + 1, extent_end) - cur_offset; 1626 /* 1627 * If there are pending snapshots for this root, we 1628 * fall into common COW way 1629 */ 1630 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1631 goto out_check; 1632 /* 1633 * force cow if csum exists in the range. 1634 * this ensure that csum for a given extent are 1635 * either valid or do not exist. 1636 */ 1637 ret = csum_exist_in_range(fs_info, disk_bytenr, 1638 num_bytes); 1639 if (ret) { 1640 /* 1641 * ret could be -EIO if the above fails to read 1642 * metadata. 1643 */ 1644 if (ret < 0) { 1645 if (cow_start != (u64)-1) 1646 cur_offset = cow_start; 1647 goto error; 1648 } 1649 WARN_ON_ONCE(freespace_inode); 1650 goto out_check; 1651 } 1652 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1653 goto out_check; 1654 nocow = true; 1655 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1656 extent_end = found_key.offset + ram_bytes; 1657 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1658 /* Skip extents outside of our requested range */ 1659 if (extent_end <= start) { 1660 path->slots[0]++; 1661 goto next_slot; 1662 } 1663 } else { 1664 /* If this triggers then we have a memory corruption */ 1665 BUG(); 1666 } 1667 out_check: 1668 /* 1669 * If nocow is false then record the beginning of the range 1670 * that needs to be COWed 1671 */ 1672 if (!nocow) { 1673 if (cow_start == (u64)-1) 1674 cow_start = cur_offset; 1675 cur_offset = extent_end; 1676 if (cur_offset > end) 1677 break; 1678 path->slots[0]++; 1679 goto next_slot; 1680 } 1681 1682 btrfs_release_path(path); 1683 1684 /* 1685 * COW range from cow_start to found_key.offset - 1. As the key 1686 * will contain the beginning of the first extent that can be 1687 * NOCOW, following one which needs to be COW'ed 1688 */ 1689 if (cow_start != (u64)-1) { 1690 ret = fallback_to_cow(inode, locked_page, cow_start, 1691 found_key.offset - 1, 1692 page_started, nr_written); 1693 if (ret) { 1694 if (nocow) 1695 btrfs_dec_nocow_writers(fs_info, 1696 disk_bytenr); 1697 goto error; 1698 } 1699 cow_start = (u64)-1; 1700 } 1701 1702 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1703 u64 orig_start = found_key.offset - extent_offset; 1704 struct extent_map *em; 1705 1706 em = create_io_em(inode, cur_offset, num_bytes, 1707 orig_start, 1708 disk_bytenr, /* block_start */ 1709 num_bytes, /* block_len */ 1710 disk_num_bytes, /* orig_block_len */ 1711 ram_bytes, BTRFS_COMPRESS_NONE, 1712 BTRFS_ORDERED_PREALLOC); 1713 if (IS_ERR(em)) { 1714 if (nocow) 1715 btrfs_dec_nocow_writers(fs_info, 1716 disk_bytenr); 1717 ret = PTR_ERR(em); 1718 goto error; 1719 } 1720 free_extent_map(em); 1721 ret = btrfs_add_ordered_extent(inode, cur_offset, 1722 disk_bytenr, num_bytes, 1723 num_bytes, 1724 BTRFS_ORDERED_PREALLOC); 1725 if (ret) { 1726 btrfs_drop_extent_cache(BTRFS_I(inode), 1727 cur_offset, 1728 cur_offset + num_bytes - 1, 1729 0); 1730 goto error; 1731 } 1732 } else { 1733 ret = btrfs_add_ordered_extent(inode, cur_offset, 1734 disk_bytenr, num_bytes, 1735 num_bytes, 1736 BTRFS_ORDERED_NOCOW); 1737 if (ret) 1738 goto error; 1739 } 1740 1741 if (nocow) 1742 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1743 nocow = false; 1744 1745 if (root->root_key.objectid == 1746 BTRFS_DATA_RELOC_TREE_OBJECTID) 1747 /* 1748 * Error handled later, as we must prevent 1749 * extent_clear_unlock_delalloc() in error handler 1750 * from freeing metadata of created ordered extent. 1751 */ 1752 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1753 num_bytes); 1754 1755 extent_clear_unlock_delalloc(inode, cur_offset, 1756 cur_offset + num_bytes - 1, 1757 locked_page, EXTENT_LOCKED | 1758 EXTENT_DELALLOC | 1759 EXTENT_CLEAR_DATA_RESV, 1760 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1761 1762 cur_offset = extent_end; 1763 1764 /* 1765 * btrfs_reloc_clone_csums() error, now we're OK to call error 1766 * handler, as metadata for created ordered extent will only 1767 * be freed by btrfs_finish_ordered_io(). 1768 */ 1769 if (ret) 1770 goto error; 1771 if (cur_offset > end) 1772 break; 1773 } 1774 btrfs_release_path(path); 1775 1776 if (cur_offset <= end && cow_start == (u64)-1) 1777 cow_start = cur_offset; 1778 1779 if (cow_start != (u64)-1) { 1780 cur_offset = end; 1781 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1782 page_started, nr_written); 1783 if (ret) 1784 goto error; 1785 } 1786 1787 error: 1788 if (nocow) 1789 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1790 1791 if (ret && cur_offset < end) 1792 extent_clear_unlock_delalloc(inode, cur_offset, end, 1793 locked_page, EXTENT_LOCKED | 1794 EXTENT_DELALLOC | EXTENT_DEFRAG | 1795 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1796 PAGE_CLEAR_DIRTY | 1797 PAGE_SET_WRITEBACK | 1798 PAGE_END_WRITEBACK); 1799 btrfs_free_path(path); 1800 return ret; 1801 } 1802 1803 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1804 { 1805 1806 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1807 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1808 return 0; 1809 1810 /* 1811 * @defrag_bytes is a hint value, no spinlock held here, 1812 * if is not zero, it means the file is defragging. 1813 * Force cow if given extent needs to be defragged. 1814 */ 1815 if (BTRFS_I(inode)->defrag_bytes && 1816 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1817 EXTENT_DEFRAG, 0, NULL)) 1818 return 1; 1819 1820 return 0; 1821 } 1822 1823 /* 1824 * Function to process delayed allocation (create CoW) for ranges which are 1825 * being touched for the first time. 1826 */ 1827 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1828 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1829 struct writeback_control *wbc) 1830 { 1831 int ret; 1832 int force_cow = need_force_cow(inode, start, end); 1833 1834 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1835 ret = run_delalloc_nocow(inode, locked_page, start, end, 1836 page_started, 1, nr_written); 1837 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1838 ret = run_delalloc_nocow(inode, locked_page, start, end, 1839 page_started, 0, nr_written); 1840 } else if (!inode_can_compress(inode) || 1841 !inode_need_compress(inode, start, end)) { 1842 ret = cow_file_range(inode, locked_page, start, end, 1843 page_started, nr_written, 1); 1844 } else { 1845 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1846 &BTRFS_I(inode)->runtime_flags); 1847 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1848 page_started, nr_written); 1849 } 1850 if (ret) 1851 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1852 end - start + 1); 1853 return ret; 1854 } 1855 1856 void btrfs_split_delalloc_extent(struct inode *inode, 1857 struct extent_state *orig, u64 split) 1858 { 1859 u64 size; 1860 1861 /* not delalloc, ignore it */ 1862 if (!(orig->state & EXTENT_DELALLOC)) 1863 return; 1864 1865 size = orig->end - orig->start + 1; 1866 if (size > BTRFS_MAX_EXTENT_SIZE) { 1867 u32 num_extents; 1868 u64 new_size; 1869 1870 /* 1871 * See the explanation in btrfs_merge_delalloc_extent, the same 1872 * applies here, just in reverse. 1873 */ 1874 new_size = orig->end - split + 1; 1875 num_extents = count_max_extents(new_size); 1876 new_size = split - orig->start; 1877 num_extents += count_max_extents(new_size); 1878 if (count_max_extents(size) >= num_extents) 1879 return; 1880 } 1881 1882 spin_lock(&BTRFS_I(inode)->lock); 1883 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1884 spin_unlock(&BTRFS_I(inode)->lock); 1885 } 1886 1887 /* 1888 * Handle merged delayed allocation extents so we can keep track of new extents 1889 * that are just merged onto old extents, such as when we are doing sequential 1890 * writes, so we can properly account for the metadata space we'll need. 1891 */ 1892 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1893 struct extent_state *other) 1894 { 1895 u64 new_size, old_size; 1896 u32 num_extents; 1897 1898 /* not delalloc, ignore it */ 1899 if (!(other->state & EXTENT_DELALLOC)) 1900 return; 1901 1902 if (new->start > other->start) 1903 new_size = new->end - other->start + 1; 1904 else 1905 new_size = other->end - new->start + 1; 1906 1907 /* we're not bigger than the max, unreserve the space and go */ 1908 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1909 spin_lock(&BTRFS_I(inode)->lock); 1910 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1911 spin_unlock(&BTRFS_I(inode)->lock); 1912 return; 1913 } 1914 1915 /* 1916 * We have to add up either side to figure out how many extents were 1917 * accounted for before we merged into one big extent. If the number of 1918 * extents we accounted for is <= the amount we need for the new range 1919 * then we can return, otherwise drop. Think of it like this 1920 * 1921 * [ 4k][MAX_SIZE] 1922 * 1923 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1924 * need 2 outstanding extents, on one side we have 1 and the other side 1925 * we have 1 so they are == and we can return. But in this case 1926 * 1927 * [MAX_SIZE+4k][MAX_SIZE+4k] 1928 * 1929 * Each range on their own accounts for 2 extents, but merged together 1930 * they are only 3 extents worth of accounting, so we need to drop in 1931 * this case. 1932 */ 1933 old_size = other->end - other->start + 1; 1934 num_extents = count_max_extents(old_size); 1935 old_size = new->end - new->start + 1; 1936 num_extents += count_max_extents(old_size); 1937 if (count_max_extents(new_size) >= num_extents) 1938 return; 1939 1940 spin_lock(&BTRFS_I(inode)->lock); 1941 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1942 spin_unlock(&BTRFS_I(inode)->lock); 1943 } 1944 1945 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1946 struct inode *inode) 1947 { 1948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1949 1950 spin_lock(&root->delalloc_lock); 1951 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1952 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1953 &root->delalloc_inodes); 1954 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1955 &BTRFS_I(inode)->runtime_flags); 1956 root->nr_delalloc_inodes++; 1957 if (root->nr_delalloc_inodes == 1) { 1958 spin_lock(&fs_info->delalloc_root_lock); 1959 BUG_ON(!list_empty(&root->delalloc_root)); 1960 list_add_tail(&root->delalloc_root, 1961 &fs_info->delalloc_roots); 1962 spin_unlock(&fs_info->delalloc_root_lock); 1963 } 1964 } 1965 spin_unlock(&root->delalloc_lock); 1966 } 1967 1968 1969 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1970 struct btrfs_inode *inode) 1971 { 1972 struct btrfs_fs_info *fs_info = root->fs_info; 1973 1974 if (!list_empty(&inode->delalloc_inodes)) { 1975 list_del_init(&inode->delalloc_inodes); 1976 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1977 &inode->runtime_flags); 1978 root->nr_delalloc_inodes--; 1979 if (!root->nr_delalloc_inodes) { 1980 ASSERT(list_empty(&root->delalloc_inodes)); 1981 spin_lock(&fs_info->delalloc_root_lock); 1982 BUG_ON(list_empty(&root->delalloc_root)); 1983 list_del_init(&root->delalloc_root); 1984 spin_unlock(&fs_info->delalloc_root_lock); 1985 } 1986 } 1987 } 1988 1989 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1990 struct btrfs_inode *inode) 1991 { 1992 spin_lock(&root->delalloc_lock); 1993 __btrfs_del_delalloc_inode(root, inode); 1994 spin_unlock(&root->delalloc_lock); 1995 } 1996 1997 /* 1998 * Properly track delayed allocation bytes in the inode and to maintain the 1999 * list of inodes that have pending delalloc work to be done. 2000 */ 2001 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2002 unsigned *bits) 2003 { 2004 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2005 2006 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2007 WARN_ON(1); 2008 /* 2009 * set_bit and clear bit hooks normally require _irqsave/restore 2010 * but in this case, we are only testing for the DELALLOC 2011 * bit, which is only set or cleared with irqs on 2012 */ 2013 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2014 struct btrfs_root *root = BTRFS_I(inode)->root; 2015 u64 len = state->end + 1 - state->start; 2016 u32 num_extents = count_max_extents(len); 2017 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2018 2019 spin_lock(&BTRFS_I(inode)->lock); 2020 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2021 spin_unlock(&BTRFS_I(inode)->lock); 2022 2023 /* For sanity tests */ 2024 if (btrfs_is_testing(fs_info)) 2025 return; 2026 2027 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2028 fs_info->delalloc_batch); 2029 spin_lock(&BTRFS_I(inode)->lock); 2030 BTRFS_I(inode)->delalloc_bytes += len; 2031 if (*bits & EXTENT_DEFRAG) 2032 BTRFS_I(inode)->defrag_bytes += len; 2033 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2034 &BTRFS_I(inode)->runtime_flags)) 2035 btrfs_add_delalloc_inodes(root, inode); 2036 spin_unlock(&BTRFS_I(inode)->lock); 2037 } 2038 2039 if (!(state->state & EXTENT_DELALLOC_NEW) && 2040 (*bits & EXTENT_DELALLOC_NEW)) { 2041 spin_lock(&BTRFS_I(inode)->lock); 2042 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2043 state->start; 2044 spin_unlock(&BTRFS_I(inode)->lock); 2045 } 2046 } 2047 2048 /* 2049 * Once a range is no longer delalloc this function ensures that proper 2050 * accounting happens. 2051 */ 2052 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2053 struct extent_state *state, unsigned *bits) 2054 { 2055 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2056 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2057 u64 len = state->end + 1 - state->start; 2058 u32 num_extents = count_max_extents(len); 2059 2060 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2061 spin_lock(&inode->lock); 2062 inode->defrag_bytes -= len; 2063 spin_unlock(&inode->lock); 2064 } 2065 2066 /* 2067 * set_bit and clear bit hooks normally require _irqsave/restore 2068 * but in this case, we are only testing for the DELALLOC 2069 * bit, which is only set or cleared with irqs on 2070 */ 2071 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2072 struct btrfs_root *root = inode->root; 2073 bool do_list = !btrfs_is_free_space_inode(inode); 2074 2075 spin_lock(&inode->lock); 2076 btrfs_mod_outstanding_extents(inode, -num_extents); 2077 spin_unlock(&inode->lock); 2078 2079 /* 2080 * We don't reserve metadata space for space cache inodes so we 2081 * don't need to call delalloc_release_metadata if there is an 2082 * error. 2083 */ 2084 if (*bits & EXTENT_CLEAR_META_RESV && 2085 root != fs_info->tree_root) 2086 btrfs_delalloc_release_metadata(inode, len, false); 2087 2088 /* For sanity tests. */ 2089 if (btrfs_is_testing(fs_info)) 2090 return; 2091 2092 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2093 do_list && !(state->state & EXTENT_NORESERVE) && 2094 (*bits & EXTENT_CLEAR_DATA_RESV)) 2095 btrfs_free_reserved_data_space_noquota( 2096 &inode->vfs_inode, 2097 state->start, len); 2098 2099 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2100 fs_info->delalloc_batch); 2101 spin_lock(&inode->lock); 2102 inode->delalloc_bytes -= len; 2103 if (do_list && inode->delalloc_bytes == 0 && 2104 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2105 &inode->runtime_flags)) 2106 btrfs_del_delalloc_inode(root, inode); 2107 spin_unlock(&inode->lock); 2108 } 2109 2110 if ((state->state & EXTENT_DELALLOC_NEW) && 2111 (*bits & EXTENT_DELALLOC_NEW)) { 2112 spin_lock(&inode->lock); 2113 ASSERT(inode->new_delalloc_bytes >= len); 2114 inode->new_delalloc_bytes -= len; 2115 spin_unlock(&inode->lock); 2116 } 2117 } 2118 2119 /* 2120 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2121 * in a chunk's stripe. This function ensures that bios do not span a 2122 * stripe/chunk 2123 * 2124 * @page - The page we are about to add to the bio 2125 * @size - size we want to add to the bio 2126 * @bio - bio we want to ensure is smaller than a stripe 2127 * @bio_flags - flags of the bio 2128 * 2129 * return 1 if page cannot be added to the bio 2130 * return 0 if page can be added to the bio 2131 * return error otherwise 2132 */ 2133 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2134 unsigned long bio_flags) 2135 { 2136 struct inode *inode = page->mapping->host; 2137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2138 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2139 u64 length = 0; 2140 u64 map_length; 2141 int ret; 2142 struct btrfs_io_geometry geom; 2143 2144 if (bio_flags & EXTENT_BIO_COMPRESSED) 2145 return 0; 2146 2147 length = bio->bi_iter.bi_size; 2148 map_length = length; 2149 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2150 &geom); 2151 if (ret < 0) 2152 return ret; 2153 2154 if (geom.len < length + size) 2155 return 1; 2156 return 0; 2157 } 2158 2159 /* 2160 * in order to insert checksums into the metadata in large chunks, 2161 * we wait until bio submission time. All the pages in the bio are 2162 * checksummed and sums are attached onto the ordered extent record. 2163 * 2164 * At IO completion time the cums attached on the ordered extent record 2165 * are inserted into the btree 2166 */ 2167 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2168 u64 bio_offset) 2169 { 2170 struct inode *inode = private_data; 2171 blk_status_t ret = 0; 2172 2173 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2174 BUG_ON(ret); /* -ENOMEM */ 2175 return 0; 2176 } 2177 2178 /* 2179 * extent_io.c submission hook. This does the right thing for csum calculation 2180 * on write, or reading the csums from the tree before a read. 2181 * 2182 * Rules about async/sync submit, 2183 * a) read: sync submit 2184 * 2185 * b) write without checksum: sync submit 2186 * 2187 * c) write with checksum: 2188 * c-1) if bio is issued by fsync: sync submit 2189 * (sync_writers != 0) 2190 * 2191 * c-2) if root is reloc root: sync submit 2192 * (only in case of buffered IO) 2193 * 2194 * c-3) otherwise: async submit 2195 */ 2196 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2197 int mirror_num, 2198 unsigned long bio_flags) 2199 2200 { 2201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2202 struct btrfs_root *root = BTRFS_I(inode)->root; 2203 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2204 blk_status_t ret = 0; 2205 int skip_sum; 2206 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2207 2208 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2209 2210 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2211 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2212 2213 if (bio_op(bio) != REQ_OP_WRITE) { 2214 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2215 if (ret) 2216 goto out; 2217 2218 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2219 ret = btrfs_submit_compressed_read(inode, bio, 2220 mirror_num, 2221 bio_flags); 2222 goto out; 2223 } else if (!skip_sum) { 2224 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2225 if (ret) 2226 goto out; 2227 } 2228 goto mapit; 2229 } else if (async && !skip_sum) { 2230 /* csum items have already been cloned */ 2231 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2232 goto mapit; 2233 /* we're doing a write, do the async checksumming */ 2234 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2235 0, inode, btrfs_submit_bio_start); 2236 goto out; 2237 } else if (!skip_sum) { 2238 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2239 if (ret) 2240 goto out; 2241 } 2242 2243 mapit: 2244 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2245 2246 out: 2247 if (ret) { 2248 bio->bi_status = ret; 2249 bio_endio(bio); 2250 } 2251 return ret; 2252 } 2253 2254 /* 2255 * given a list of ordered sums record them in the inode. This happens 2256 * at IO completion time based on sums calculated at bio submission time. 2257 */ 2258 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2259 struct inode *inode, struct list_head *list) 2260 { 2261 struct btrfs_ordered_sum *sum; 2262 int ret; 2263 2264 list_for_each_entry(sum, list, list) { 2265 trans->adding_csums = true; 2266 ret = btrfs_csum_file_blocks(trans, 2267 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2268 trans->adding_csums = false; 2269 if (ret) 2270 return ret; 2271 } 2272 return 0; 2273 } 2274 2275 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2276 unsigned int extra_bits, 2277 struct extent_state **cached_state) 2278 { 2279 WARN_ON(PAGE_ALIGNED(end)); 2280 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2281 extra_bits, cached_state); 2282 } 2283 2284 /* see btrfs_writepage_start_hook for details on why this is required */ 2285 struct btrfs_writepage_fixup { 2286 struct page *page; 2287 struct inode *inode; 2288 struct btrfs_work work; 2289 }; 2290 2291 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2292 { 2293 struct btrfs_writepage_fixup *fixup; 2294 struct btrfs_ordered_extent *ordered; 2295 struct extent_state *cached_state = NULL; 2296 struct extent_changeset *data_reserved = NULL; 2297 struct page *page; 2298 struct inode *inode; 2299 u64 page_start; 2300 u64 page_end; 2301 int ret = 0; 2302 bool free_delalloc_space = true; 2303 2304 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2305 page = fixup->page; 2306 inode = fixup->inode; 2307 page_start = page_offset(page); 2308 page_end = page_offset(page) + PAGE_SIZE - 1; 2309 2310 /* 2311 * This is similar to page_mkwrite, we need to reserve the space before 2312 * we take the page lock. 2313 */ 2314 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2315 PAGE_SIZE); 2316 again: 2317 lock_page(page); 2318 2319 /* 2320 * Before we queued this fixup, we took a reference on the page. 2321 * page->mapping may go NULL, but it shouldn't be moved to a different 2322 * address space. 2323 */ 2324 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2325 /* 2326 * Unfortunately this is a little tricky, either 2327 * 2328 * 1) We got here and our page had already been dealt with and 2329 * we reserved our space, thus ret == 0, so we need to just 2330 * drop our space reservation and bail. This can happen the 2331 * first time we come into the fixup worker, or could happen 2332 * while waiting for the ordered extent. 2333 * 2) Our page was already dealt with, but we happened to get an 2334 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2335 * this case we obviously don't have anything to release, but 2336 * because the page was already dealt with we don't want to 2337 * mark the page with an error, so make sure we're resetting 2338 * ret to 0. This is why we have this check _before_ the ret 2339 * check, because we do not want to have a surprise ENOSPC 2340 * when the page was already properly dealt with. 2341 */ 2342 if (!ret) { 2343 btrfs_delalloc_release_extents(BTRFS_I(inode), 2344 PAGE_SIZE); 2345 btrfs_delalloc_release_space(inode, data_reserved, 2346 page_start, PAGE_SIZE, 2347 true); 2348 } 2349 ret = 0; 2350 goto out_page; 2351 } 2352 2353 /* 2354 * We can't mess with the page state unless it is locked, so now that 2355 * it is locked bail if we failed to make our space reservation. 2356 */ 2357 if (ret) 2358 goto out_page; 2359 2360 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2361 &cached_state); 2362 2363 /* already ordered? We're done */ 2364 if (PagePrivate2(page)) 2365 goto out_reserved; 2366 2367 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2368 PAGE_SIZE); 2369 if (ordered) { 2370 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2371 page_end, &cached_state); 2372 unlock_page(page); 2373 btrfs_start_ordered_extent(inode, ordered, 1); 2374 btrfs_put_ordered_extent(ordered); 2375 goto again; 2376 } 2377 2378 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2379 &cached_state); 2380 if (ret) 2381 goto out_reserved; 2382 2383 /* 2384 * Everything went as planned, we're now the owner of a dirty page with 2385 * delayed allocation bits set and space reserved for our COW 2386 * destination. 2387 * 2388 * The page was dirty when we started, nothing should have cleaned it. 2389 */ 2390 BUG_ON(!PageDirty(page)); 2391 free_delalloc_space = false; 2392 out_reserved: 2393 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2394 if (free_delalloc_space) 2395 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2396 PAGE_SIZE, true); 2397 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2398 &cached_state); 2399 out_page: 2400 if (ret) { 2401 /* 2402 * We hit ENOSPC or other errors. Update the mapping and page 2403 * to reflect the errors and clean the page. 2404 */ 2405 mapping_set_error(page->mapping, ret); 2406 end_extent_writepage(page, ret, page_start, page_end); 2407 clear_page_dirty_for_io(page); 2408 SetPageError(page); 2409 } 2410 ClearPageChecked(page); 2411 unlock_page(page); 2412 put_page(page); 2413 kfree(fixup); 2414 extent_changeset_free(data_reserved); 2415 /* 2416 * As a precaution, do a delayed iput in case it would be the last iput 2417 * that could need flushing space. Recursing back to fixup worker would 2418 * deadlock. 2419 */ 2420 btrfs_add_delayed_iput(inode); 2421 } 2422 2423 /* 2424 * There are a few paths in the higher layers of the kernel that directly 2425 * set the page dirty bit without asking the filesystem if it is a 2426 * good idea. This causes problems because we want to make sure COW 2427 * properly happens and the data=ordered rules are followed. 2428 * 2429 * In our case any range that doesn't have the ORDERED bit set 2430 * hasn't been properly setup for IO. We kick off an async process 2431 * to fix it up. The async helper will wait for ordered extents, set 2432 * the delalloc bit and make it safe to write the page. 2433 */ 2434 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2435 { 2436 struct inode *inode = page->mapping->host; 2437 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2438 struct btrfs_writepage_fixup *fixup; 2439 2440 /* this page is properly in the ordered list */ 2441 if (TestClearPagePrivate2(page)) 2442 return 0; 2443 2444 /* 2445 * PageChecked is set below when we create a fixup worker for this page, 2446 * don't try to create another one if we're already PageChecked() 2447 * 2448 * The extent_io writepage code will redirty the page if we send back 2449 * EAGAIN. 2450 */ 2451 if (PageChecked(page)) 2452 return -EAGAIN; 2453 2454 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2455 if (!fixup) 2456 return -EAGAIN; 2457 2458 /* 2459 * We are already holding a reference to this inode from 2460 * write_cache_pages. We need to hold it because the space reservation 2461 * takes place outside of the page lock, and we can't trust 2462 * page->mapping outside of the page lock. 2463 */ 2464 ihold(inode); 2465 SetPageChecked(page); 2466 get_page(page); 2467 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2468 fixup->page = page; 2469 fixup->inode = inode; 2470 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2471 2472 return -EAGAIN; 2473 } 2474 2475 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2476 struct inode *inode, u64 file_pos, 2477 u64 disk_bytenr, u64 disk_num_bytes, 2478 u64 num_bytes, u64 ram_bytes, 2479 u8 compression, u8 encryption, 2480 u16 other_encoding, int extent_type) 2481 { 2482 struct btrfs_root *root = BTRFS_I(inode)->root; 2483 struct btrfs_file_extent_item *fi; 2484 struct btrfs_path *path; 2485 struct extent_buffer *leaf; 2486 struct btrfs_key ins; 2487 u64 qg_released; 2488 int extent_inserted = 0; 2489 int ret; 2490 2491 path = btrfs_alloc_path(); 2492 if (!path) 2493 return -ENOMEM; 2494 2495 /* 2496 * we may be replacing one extent in the tree with another. 2497 * The new extent is pinned in the extent map, and we don't want 2498 * to drop it from the cache until it is completely in the btree. 2499 * 2500 * So, tell btrfs_drop_extents to leave this extent in the cache. 2501 * the caller is expected to unpin it and allow it to be merged 2502 * with the others. 2503 */ 2504 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2505 file_pos + num_bytes, NULL, 0, 2506 1, sizeof(*fi), &extent_inserted); 2507 if (ret) 2508 goto out; 2509 2510 if (!extent_inserted) { 2511 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2512 ins.offset = file_pos; 2513 ins.type = BTRFS_EXTENT_DATA_KEY; 2514 2515 path->leave_spinning = 1; 2516 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2517 sizeof(*fi)); 2518 if (ret) 2519 goto out; 2520 } 2521 leaf = path->nodes[0]; 2522 fi = btrfs_item_ptr(leaf, path->slots[0], 2523 struct btrfs_file_extent_item); 2524 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2525 btrfs_set_file_extent_type(leaf, fi, extent_type); 2526 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2527 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2528 btrfs_set_file_extent_offset(leaf, fi, 0); 2529 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2530 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2531 btrfs_set_file_extent_compression(leaf, fi, compression); 2532 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2533 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2534 2535 btrfs_mark_buffer_dirty(leaf); 2536 btrfs_release_path(path); 2537 2538 inode_add_bytes(inode, num_bytes); 2539 2540 ins.objectid = disk_bytenr; 2541 ins.offset = disk_num_bytes; 2542 ins.type = BTRFS_EXTENT_ITEM_KEY; 2543 2544 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), file_pos, 2545 ram_bytes); 2546 if (ret) 2547 goto out; 2548 2549 /* 2550 * Release the reserved range from inode dirty range map, as it is 2551 * already moved into delayed_ref_head 2552 */ 2553 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2554 if (ret < 0) 2555 goto out; 2556 qg_released = ret; 2557 ret = btrfs_alloc_reserved_file_extent(trans, root, 2558 btrfs_ino(BTRFS_I(inode)), 2559 file_pos, qg_released, &ins); 2560 out: 2561 btrfs_free_path(path); 2562 2563 return ret; 2564 } 2565 2566 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2567 u64 start, u64 len) 2568 { 2569 struct btrfs_block_group *cache; 2570 2571 cache = btrfs_lookup_block_group(fs_info, start); 2572 ASSERT(cache); 2573 2574 spin_lock(&cache->lock); 2575 cache->delalloc_bytes -= len; 2576 spin_unlock(&cache->lock); 2577 2578 btrfs_put_block_group(cache); 2579 } 2580 2581 /* as ordered data IO finishes, this gets called so we can finish 2582 * an ordered extent if the range of bytes in the file it covers are 2583 * fully written. 2584 */ 2585 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2586 { 2587 struct inode *inode = ordered_extent->inode; 2588 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2589 struct btrfs_root *root = BTRFS_I(inode)->root; 2590 struct btrfs_trans_handle *trans = NULL; 2591 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2592 struct extent_state *cached_state = NULL; 2593 u64 start, end; 2594 int compress_type = 0; 2595 int ret = 0; 2596 u64 logical_len = ordered_extent->num_bytes; 2597 bool freespace_inode; 2598 bool truncated = false; 2599 bool range_locked = false; 2600 bool clear_new_delalloc_bytes = false; 2601 bool clear_reserved_extent = true; 2602 unsigned int clear_bits; 2603 2604 start = ordered_extent->file_offset; 2605 end = start + ordered_extent->num_bytes - 1; 2606 2607 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2608 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2609 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2610 clear_new_delalloc_bytes = true; 2611 2612 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2613 2614 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2615 ret = -EIO; 2616 goto out; 2617 } 2618 2619 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2620 2621 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2622 truncated = true; 2623 logical_len = ordered_extent->truncated_len; 2624 /* Truncated the entire extent, don't bother adding */ 2625 if (!logical_len) 2626 goto out; 2627 } 2628 2629 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2630 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2631 2632 /* 2633 * For mwrite(mmap + memset to write) case, we still reserve 2634 * space for NOCOW range. 2635 * As NOCOW won't cause a new delayed ref, just free the space 2636 */ 2637 btrfs_qgroup_free_data(inode, NULL, start, 2638 ordered_extent->num_bytes); 2639 btrfs_inode_safe_disk_i_size_write(inode, 0); 2640 if (freespace_inode) 2641 trans = btrfs_join_transaction_spacecache(root); 2642 else 2643 trans = btrfs_join_transaction(root); 2644 if (IS_ERR(trans)) { 2645 ret = PTR_ERR(trans); 2646 trans = NULL; 2647 goto out; 2648 } 2649 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2650 ret = btrfs_update_inode_fallback(trans, root, inode); 2651 if (ret) /* -ENOMEM or corruption */ 2652 btrfs_abort_transaction(trans, ret); 2653 goto out; 2654 } 2655 2656 range_locked = true; 2657 lock_extent_bits(io_tree, start, end, &cached_state); 2658 2659 if (freespace_inode) 2660 trans = btrfs_join_transaction_spacecache(root); 2661 else 2662 trans = btrfs_join_transaction(root); 2663 if (IS_ERR(trans)) { 2664 ret = PTR_ERR(trans); 2665 trans = NULL; 2666 goto out; 2667 } 2668 2669 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2670 2671 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2672 compress_type = ordered_extent->compress_type; 2673 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2674 BUG_ON(compress_type); 2675 btrfs_qgroup_free_data(inode, NULL, start, 2676 ordered_extent->num_bytes); 2677 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2678 ordered_extent->file_offset, 2679 ordered_extent->file_offset + 2680 logical_len); 2681 } else { 2682 BUG_ON(root == fs_info->tree_root); 2683 ret = insert_reserved_file_extent(trans, inode, start, 2684 ordered_extent->disk_bytenr, 2685 ordered_extent->disk_num_bytes, 2686 logical_len, logical_len, 2687 compress_type, 0, 0, 2688 BTRFS_FILE_EXTENT_REG); 2689 if (!ret) { 2690 clear_reserved_extent = false; 2691 btrfs_release_delalloc_bytes(fs_info, 2692 ordered_extent->disk_bytenr, 2693 ordered_extent->disk_num_bytes); 2694 } 2695 } 2696 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2697 ordered_extent->file_offset, 2698 ordered_extent->num_bytes, trans->transid); 2699 if (ret < 0) { 2700 btrfs_abort_transaction(trans, ret); 2701 goto out; 2702 } 2703 2704 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2705 if (ret) { 2706 btrfs_abort_transaction(trans, ret); 2707 goto out; 2708 } 2709 2710 btrfs_inode_safe_disk_i_size_write(inode, 0); 2711 ret = btrfs_update_inode_fallback(trans, root, inode); 2712 if (ret) { /* -ENOMEM or corruption */ 2713 btrfs_abort_transaction(trans, ret); 2714 goto out; 2715 } 2716 ret = 0; 2717 out: 2718 clear_bits = EXTENT_DEFRAG; 2719 if (range_locked) 2720 clear_bits |= EXTENT_LOCKED; 2721 if (clear_new_delalloc_bytes) 2722 clear_bits |= EXTENT_DELALLOC_NEW; 2723 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2724 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2725 &cached_state); 2726 2727 if (trans) 2728 btrfs_end_transaction(trans); 2729 2730 if (ret || truncated) { 2731 u64 unwritten_start = start; 2732 2733 if (truncated) 2734 unwritten_start += logical_len; 2735 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2736 2737 /* Drop the cache for the part of the extent we didn't write. */ 2738 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2739 2740 /* 2741 * If the ordered extent had an IOERR or something else went 2742 * wrong we need to return the space for this ordered extent 2743 * back to the allocator. We only free the extent in the 2744 * truncated case if we didn't write out the extent at all. 2745 * 2746 * If we made it past insert_reserved_file_extent before we 2747 * errored out then we don't need to do this as the accounting 2748 * has already been done. 2749 */ 2750 if ((ret || !logical_len) && 2751 clear_reserved_extent && 2752 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2753 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2754 /* 2755 * Discard the range before returning it back to the 2756 * free space pool 2757 */ 2758 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2759 btrfs_discard_extent(fs_info, 2760 ordered_extent->disk_bytenr, 2761 ordered_extent->disk_num_bytes, 2762 NULL); 2763 btrfs_free_reserved_extent(fs_info, 2764 ordered_extent->disk_bytenr, 2765 ordered_extent->disk_num_bytes, 1); 2766 } 2767 } 2768 2769 /* 2770 * This needs to be done to make sure anybody waiting knows we are done 2771 * updating everything for this ordered extent. 2772 */ 2773 btrfs_remove_ordered_extent(inode, ordered_extent); 2774 2775 /* once for us */ 2776 btrfs_put_ordered_extent(ordered_extent); 2777 /* once for the tree */ 2778 btrfs_put_ordered_extent(ordered_extent); 2779 2780 return ret; 2781 } 2782 2783 static void finish_ordered_fn(struct btrfs_work *work) 2784 { 2785 struct btrfs_ordered_extent *ordered_extent; 2786 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2787 btrfs_finish_ordered_io(ordered_extent); 2788 } 2789 2790 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2791 u64 end, int uptodate) 2792 { 2793 struct inode *inode = page->mapping->host; 2794 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2795 struct btrfs_ordered_extent *ordered_extent = NULL; 2796 struct btrfs_workqueue *wq; 2797 2798 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2799 2800 ClearPagePrivate2(page); 2801 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2802 end - start + 1, uptodate)) 2803 return; 2804 2805 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2806 wq = fs_info->endio_freespace_worker; 2807 else 2808 wq = fs_info->endio_write_workers; 2809 2810 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2811 btrfs_queue_work(wq, &ordered_extent->work); 2812 } 2813 2814 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 2815 int icsum, struct page *page, int pgoff, u64 start, 2816 size_t len) 2817 { 2818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2819 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2820 char *kaddr; 2821 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2822 u8 *csum_expected; 2823 u8 csum[BTRFS_CSUM_SIZE]; 2824 2825 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2826 2827 kaddr = kmap_atomic(page); 2828 shash->tfm = fs_info->csum_shash; 2829 2830 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 2831 2832 if (memcmp(csum, csum_expected, csum_size)) 2833 goto zeroit; 2834 2835 kunmap_atomic(kaddr); 2836 return 0; 2837 zeroit: 2838 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2839 io_bio->mirror_num); 2840 memset(kaddr + pgoff, 1, len); 2841 flush_dcache_page(page); 2842 kunmap_atomic(kaddr); 2843 return -EIO; 2844 } 2845 2846 /* 2847 * when reads are done, we need to check csums to verify the data is correct 2848 * if there's a match, we allow the bio to finish. If not, the code in 2849 * extent_io.c will try to find good copies for us. 2850 */ 2851 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2852 u64 phy_offset, struct page *page, 2853 u64 start, u64 end, int mirror) 2854 { 2855 size_t offset = start - page_offset(page); 2856 struct inode *inode = page->mapping->host; 2857 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2858 struct btrfs_root *root = BTRFS_I(inode)->root; 2859 2860 if (PageChecked(page)) { 2861 ClearPageChecked(page); 2862 return 0; 2863 } 2864 2865 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2866 return 0; 2867 2868 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2869 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2870 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2871 return 0; 2872 } 2873 2874 phy_offset >>= inode->i_sb->s_blocksize_bits; 2875 return check_data_csum(inode, io_bio, phy_offset, page, offset, start, 2876 (size_t)(end - start + 1)); 2877 } 2878 2879 /* 2880 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2881 * 2882 * @inode: The inode we want to perform iput on 2883 * 2884 * This function uses the generic vfs_inode::i_count to track whether we should 2885 * just decrement it (in case it's > 1) or if this is the last iput then link 2886 * the inode to the delayed iput machinery. Delayed iputs are processed at 2887 * transaction commit time/superblock commit/cleaner kthread. 2888 */ 2889 void btrfs_add_delayed_iput(struct inode *inode) 2890 { 2891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2892 struct btrfs_inode *binode = BTRFS_I(inode); 2893 2894 if (atomic_add_unless(&inode->i_count, -1, 1)) 2895 return; 2896 2897 atomic_inc(&fs_info->nr_delayed_iputs); 2898 spin_lock(&fs_info->delayed_iput_lock); 2899 ASSERT(list_empty(&binode->delayed_iput)); 2900 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2901 spin_unlock(&fs_info->delayed_iput_lock); 2902 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2903 wake_up_process(fs_info->cleaner_kthread); 2904 } 2905 2906 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2907 struct btrfs_inode *inode) 2908 { 2909 list_del_init(&inode->delayed_iput); 2910 spin_unlock(&fs_info->delayed_iput_lock); 2911 iput(&inode->vfs_inode); 2912 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2913 wake_up(&fs_info->delayed_iputs_wait); 2914 spin_lock(&fs_info->delayed_iput_lock); 2915 } 2916 2917 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2918 struct btrfs_inode *inode) 2919 { 2920 if (!list_empty(&inode->delayed_iput)) { 2921 spin_lock(&fs_info->delayed_iput_lock); 2922 if (!list_empty(&inode->delayed_iput)) 2923 run_delayed_iput_locked(fs_info, inode); 2924 spin_unlock(&fs_info->delayed_iput_lock); 2925 } 2926 } 2927 2928 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2929 { 2930 2931 spin_lock(&fs_info->delayed_iput_lock); 2932 while (!list_empty(&fs_info->delayed_iputs)) { 2933 struct btrfs_inode *inode; 2934 2935 inode = list_first_entry(&fs_info->delayed_iputs, 2936 struct btrfs_inode, delayed_iput); 2937 run_delayed_iput_locked(fs_info, inode); 2938 } 2939 spin_unlock(&fs_info->delayed_iput_lock); 2940 } 2941 2942 /** 2943 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2944 * @fs_info - the fs_info for this fs 2945 * @return - EINTR if we were killed, 0 if nothing's pending 2946 * 2947 * This will wait on any delayed iputs that are currently running with KILLABLE 2948 * set. Once they are all done running we will return, unless we are killed in 2949 * which case we return EINTR. This helps in user operations like fallocate etc 2950 * that might get blocked on the iputs. 2951 */ 2952 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2953 { 2954 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2955 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2956 if (ret) 2957 return -EINTR; 2958 return 0; 2959 } 2960 2961 /* 2962 * This creates an orphan entry for the given inode in case something goes wrong 2963 * in the middle of an unlink. 2964 */ 2965 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2966 struct btrfs_inode *inode) 2967 { 2968 int ret; 2969 2970 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2971 if (ret && ret != -EEXIST) { 2972 btrfs_abort_transaction(trans, ret); 2973 return ret; 2974 } 2975 2976 return 0; 2977 } 2978 2979 /* 2980 * We have done the delete so we can go ahead and remove the orphan item for 2981 * this particular inode. 2982 */ 2983 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2984 struct btrfs_inode *inode) 2985 { 2986 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2987 } 2988 2989 /* 2990 * this cleans up any orphans that may be left on the list from the last use 2991 * of this root. 2992 */ 2993 int btrfs_orphan_cleanup(struct btrfs_root *root) 2994 { 2995 struct btrfs_fs_info *fs_info = root->fs_info; 2996 struct btrfs_path *path; 2997 struct extent_buffer *leaf; 2998 struct btrfs_key key, found_key; 2999 struct btrfs_trans_handle *trans; 3000 struct inode *inode; 3001 u64 last_objectid = 0; 3002 int ret = 0, nr_unlink = 0; 3003 3004 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3005 return 0; 3006 3007 path = btrfs_alloc_path(); 3008 if (!path) { 3009 ret = -ENOMEM; 3010 goto out; 3011 } 3012 path->reada = READA_BACK; 3013 3014 key.objectid = BTRFS_ORPHAN_OBJECTID; 3015 key.type = BTRFS_ORPHAN_ITEM_KEY; 3016 key.offset = (u64)-1; 3017 3018 while (1) { 3019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3020 if (ret < 0) 3021 goto out; 3022 3023 /* 3024 * if ret == 0 means we found what we were searching for, which 3025 * is weird, but possible, so only screw with path if we didn't 3026 * find the key and see if we have stuff that matches 3027 */ 3028 if (ret > 0) { 3029 ret = 0; 3030 if (path->slots[0] == 0) 3031 break; 3032 path->slots[0]--; 3033 } 3034 3035 /* pull out the item */ 3036 leaf = path->nodes[0]; 3037 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3038 3039 /* make sure the item matches what we want */ 3040 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3041 break; 3042 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3043 break; 3044 3045 /* release the path since we're done with it */ 3046 btrfs_release_path(path); 3047 3048 /* 3049 * this is where we are basically btrfs_lookup, without the 3050 * crossing root thing. we store the inode number in the 3051 * offset of the orphan item. 3052 */ 3053 3054 if (found_key.offset == last_objectid) { 3055 btrfs_err(fs_info, 3056 "Error removing orphan entry, stopping orphan cleanup"); 3057 ret = -EINVAL; 3058 goto out; 3059 } 3060 3061 last_objectid = found_key.offset; 3062 3063 found_key.objectid = found_key.offset; 3064 found_key.type = BTRFS_INODE_ITEM_KEY; 3065 found_key.offset = 0; 3066 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3067 ret = PTR_ERR_OR_ZERO(inode); 3068 if (ret && ret != -ENOENT) 3069 goto out; 3070 3071 if (ret == -ENOENT && root == fs_info->tree_root) { 3072 struct btrfs_root *dead_root; 3073 struct btrfs_fs_info *fs_info = root->fs_info; 3074 int is_dead_root = 0; 3075 3076 /* 3077 * this is an orphan in the tree root. Currently these 3078 * could come from 2 sources: 3079 * a) a snapshot deletion in progress 3080 * b) a free space cache inode 3081 * We need to distinguish those two, as the snapshot 3082 * orphan must not get deleted. 3083 * find_dead_roots already ran before us, so if this 3084 * is a snapshot deletion, we should find the root 3085 * in the fs_roots radix tree. 3086 */ 3087 3088 spin_lock(&fs_info->fs_roots_radix_lock); 3089 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3090 (unsigned long)found_key.objectid); 3091 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3092 is_dead_root = 1; 3093 spin_unlock(&fs_info->fs_roots_radix_lock); 3094 3095 if (is_dead_root) { 3096 /* prevent this orphan from being found again */ 3097 key.offset = found_key.objectid - 1; 3098 continue; 3099 } 3100 3101 } 3102 3103 /* 3104 * If we have an inode with links, there are a couple of 3105 * possibilities. Old kernels (before v3.12) used to create an 3106 * orphan item for truncate indicating that there were possibly 3107 * extent items past i_size that needed to be deleted. In v3.12, 3108 * truncate was changed to update i_size in sync with the extent 3109 * items, but the (useless) orphan item was still created. Since 3110 * v4.18, we don't create the orphan item for truncate at all. 3111 * 3112 * So, this item could mean that we need to do a truncate, but 3113 * only if this filesystem was last used on a pre-v3.12 kernel 3114 * and was not cleanly unmounted. The odds of that are quite 3115 * slim, and it's a pain to do the truncate now, so just delete 3116 * the orphan item. 3117 * 3118 * It's also possible that this orphan item was supposed to be 3119 * deleted but wasn't. The inode number may have been reused, 3120 * but either way, we can delete the orphan item. 3121 */ 3122 if (ret == -ENOENT || inode->i_nlink) { 3123 if (!ret) 3124 iput(inode); 3125 trans = btrfs_start_transaction(root, 1); 3126 if (IS_ERR(trans)) { 3127 ret = PTR_ERR(trans); 3128 goto out; 3129 } 3130 btrfs_debug(fs_info, "auto deleting %Lu", 3131 found_key.objectid); 3132 ret = btrfs_del_orphan_item(trans, root, 3133 found_key.objectid); 3134 btrfs_end_transaction(trans); 3135 if (ret) 3136 goto out; 3137 continue; 3138 } 3139 3140 nr_unlink++; 3141 3142 /* this will do delete_inode and everything for us */ 3143 iput(inode); 3144 } 3145 /* release the path since we're done with it */ 3146 btrfs_release_path(path); 3147 3148 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3149 3150 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3151 trans = btrfs_join_transaction(root); 3152 if (!IS_ERR(trans)) 3153 btrfs_end_transaction(trans); 3154 } 3155 3156 if (nr_unlink) 3157 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3158 3159 out: 3160 if (ret) 3161 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3162 btrfs_free_path(path); 3163 return ret; 3164 } 3165 3166 /* 3167 * very simple check to peek ahead in the leaf looking for xattrs. If we 3168 * don't find any xattrs, we know there can't be any acls. 3169 * 3170 * slot is the slot the inode is in, objectid is the objectid of the inode 3171 */ 3172 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3173 int slot, u64 objectid, 3174 int *first_xattr_slot) 3175 { 3176 u32 nritems = btrfs_header_nritems(leaf); 3177 struct btrfs_key found_key; 3178 static u64 xattr_access = 0; 3179 static u64 xattr_default = 0; 3180 int scanned = 0; 3181 3182 if (!xattr_access) { 3183 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3184 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3185 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3186 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3187 } 3188 3189 slot++; 3190 *first_xattr_slot = -1; 3191 while (slot < nritems) { 3192 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3193 3194 /* we found a different objectid, there must not be acls */ 3195 if (found_key.objectid != objectid) 3196 return 0; 3197 3198 /* we found an xattr, assume we've got an acl */ 3199 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3200 if (*first_xattr_slot == -1) 3201 *first_xattr_slot = slot; 3202 if (found_key.offset == xattr_access || 3203 found_key.offset == xattr_default) 3204 return 1; 3205 } 3206 3207 /* 3208 * we found a key greater than an xattr key, there can't 3209 * be any acls later on 3210 */ 3211 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3212 return 0; 3213 3214 slot++; 3215 scanned++; 3216 3217 /* 3218 * it goes inode, inode backrefs, xattrs, extents, 3219 * so if there are a ton of hard links to an inode there can 3220 * be a lot of backrefs. Don't waste time searching too hard, 3221 * this is just an optimization 3222 */ 3223 if (scanned >= 8) 3224 break; 3225 } 3226 /* we hit the end of the leaf before we found an xattr or 3227 * something larger than an xattr. We have to assume the inode 3228 * has acls 3229 */ 3230 if (*first_xattr_slot == -1) 3231 *first_xattr_slot = slot; 3232 return 1; 3233 } 3234 3235 /* 3236 * read an inode from the btree into the in-memory inode 3237 */ 3238 static int btrfs_read_locked_inode(struct inode *inode, 3239 struct btrfs_path *in_path) 3240 { 3241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3242 struct btrfs_path *path = in_path; 3243 struct extent_buffer *leaf; 3244 struct btrfs_inode_item *inode_item; 3245 struct btrfs_root *root = BTRFS_I(inode)->root; 3246 struct btrfs_key location; 3247 unsigned long ptr; 3248 int maybe_acls; 3249 u32 rdev; 3250 int ret; 3251 bool filled = false; 3252 int first_xattr_slot; 3253 3254 ret = btrfs_fill_inode(inode, &rdev); 3255 if (!ret) 3256 filled = true; 3257 3258 if (!path) { 3259 path = btrfs_alloc_path(); 3260 if (!path) 3261 return -ENOMEM; 3262 } 3263 3264 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3265 3266 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3267 if (ret) { 3268 if (path != in_path) 3269 btrfs_free_path(path); 3270 return ret; 3271 } 3272 3273 leaf = path->nodes[0]; 3274 3275 if (filled) 3276 goto cache_index; 3277 3278 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3279 struct btrfs_inode_item); 3280 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3281 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3282 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3283 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3284 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3285 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3286 round_up(i_size_read(inode), fs_info->sectorsize)); 3287 3288 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3289 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3290 3291 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3292 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3293 3294 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3295 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3296 3297 BTRFS_I(inode)->i_otime.tv_sec = 3298 btrfs_timespec_sec(leaf, &inode_item->otime); 3299 BTRFS_I(inode)->i_otime.tv_nsec = 3300 btrfs_timespec_nsec(leaf, &inode_item->otime); 3301 3302 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3303 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3304 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3305 3306 inode_set_iversion_queried(inode, 3307 btrfs_inode_sequence(leaf, inode_item)); 3308 inode->i_generation = BTRFS_I(inode)->generation; 3309 inode->i_rdev = 0; 3310 rdev = btrfs_inode_rdev(leaf, inode_item); 3311 3312 BTRFS_I(inode)->index_cnt = (u64)-1; 3313 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3314 3315 cache_index: 3316 /* 3317 * If we were modified in the current generation and evicted from memory 3318 * and then re-read we need to do a full sync since we don't have any 3319 * idea about which extents were modified before we were evicted from 3320 * cache. 3321 * 3322 * This is required for both inode re-read from disk and delayed inode 3323 * in delayed_nodes_tree. 3324 */ 3325 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3326 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3327 &BTRFS_I(inode)->runtime_flags); 3328 3329 /* 3330 * We don't persist the id of the transaction where an unlink operation 3331 * against the inode was last made. So here we assume the inode might 3332 * have been evicted, and therefore the exact value of last_unlink_trans 3333 * lost, and set it to last_trans to avoid metadata inconsistencies 3334 * between the inode and its parent if the inode is fsync'ed and the log 3335 * replayed. For example, in the scenario: 3336 * 3337 * touch mydir/foo 3338 * ln mydir/foo mydir/bar 3339 * sync 3340 * unlink mydir/bar 3341 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3342 * xfs_io -c fsync mydir/foo 3343 * <power failure> 3344 * mount fs, triggers fsync log replay 3345 * 3346 * We must make sure that when we fsync our inode foo we also log its 3347 * parent inode, otherwise after log replay the parent still has the 3348 * dentry with the "bar" name but our inode foo has a link count of 1 3349 * and doesn't have an inode ref with the name "bar" anymore. 3350 * 3351 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3352 * but it guarantees correctness at the expense of occasional full 3353 * transaction commits on fsync if our inode is a directory, or if our 3354 * inode is not a directory, logging its parent unnecessarily. 3355 */ 3356 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3357 3358 path->slots[0]++; 3359 if (inode->i_nlink != 1 || 3360 path->slots[0] >= btrfs_header_nritems(leaf)) 3361 goto cache_acl; 3362 3363 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3364 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3365 goto cache_acl; 3366 3367 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3368 if (location.type == BTRFS_INODE_REF_KEY) { 3369 struct btrfs_inode_ref *ref; 3370 3371 ref = (struct btrfs_inode_ref *)ptr; 3372 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3373 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3374 struct btrfs_inode_extref *extref; 3375 3376 extref = (struct btrfs_inode_extref *)ptr; 3377 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3378 extref); 3379 } 3380 cache_acl: 3381 /* 3382 * try to precache a NULL acl entry for files that don't have 3383 * any xattrs or acls 3384 */ 3385 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3386 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3387 if (first_xattr_slot != -1) { 3388 path->slots[0] = first_xattr_slot; 3389 ret = btrfs_load_inode_props(inode, path); 3390 if (ret) 3391 btrfs_err(fs_info, 3392 "error loading props for ino %llu (root %llu): %d", 3393 btrfs_ino(BTRFS_I(inode)), 3394 root->root_key.objectid, ret); 3395 } 3396 if (path != in_path) 3397 btrfs_free_path(path); 3398 3399 if (!maybe_acls) 3400 cache_no_acl(inode); 3401 3402 switch (inode->i_mode & S_IFMT) { 3403 case S_IFREG: 3404 inode->i_mapping->a_ops = &btrfs_aops; 3405 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3406 inode->i_fop = &btrfs_file_operations; 3407 inode->i_op = &btrfs_file_inode_operations; 3408 break; 3409 case S_IFDIR: 3410 inode->i_fop = &btrfs_dir_file_operations; 3411 inode->i_op = &btrfs_dir_inode_operations; 3412 break; 3413 case S_IFLNK: 3414 inode->i_op = &btrfs_symlink_inode_operations; 3415 inode_nohighmem(inode); 3416 inode->i_mapping->a_ops = &btrfs_aops; 3417 break; 3418 default: 3419 inode->i_op = &btrfs_special_inode_operations; 3420 init_special_inode(inode, inode->i_mode, rdev); 3421 break; 3422 } 3423 3424 btrfs_sync_inode_flags_to_i_flags(inode); 3425 return 0; 3426 } 3427 3428 /* 3429 * given a leaf and an inode, copy the inode fields into the leaf 3430 */ 3431 static void fill_inode_item(struct btrfs_trans_handle *trans, 3432 struct extent_buffer *leaf, 3433 struct btrfs_inode_item *item, 3434 struct inode *inode) 3435 { 3436 struct btrfs_map_token token; 3437 3438 btrfs_init_map_token(&token, leaf); 3439 3440 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3441 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3442 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3443 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3444 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3445 3446 btrfs_set_token_timespec_sec(&token, &item->atime, 3447 inode->i_atime.tv_sec); 3448 btrfs_set_token_timespec_nsec(&token, &item->atime, 3449 inode->i_atime.tv_nsec); 3450 3451 btrfs_set_token_timespec_sec(&token, &item->mtime, 3452 inode->i_mtime.tv_sec); 3453 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3454 inode->i_mtime.tv_nsec); 3455 3456 btrfs_set_token_timespec_sec(&token, &item->ctime, 3457 inode->i_ctime.tv_sec); 3458 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3459 inode->i_ctime.tv_nsec); 3460 3461 btrfs_set_token_timespec_sec(&token, &item->otime, 3462 BTRFS_I(inode)->i_otime.tv_sec); 3463 btrfs_set_token_timespec_nsec(&token, &item->otime, 3464 BTRFS_I(inode)->i_otime.tv_nsec); 3465 3466 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3467 btrfs_set_token_inode_generation(&token, item, 3468 BTRFS_I(inode)->generation); 3469 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3470 btrfs_set_token_inode_transid(&token, item, trans->transid); 3471 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3472 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3473 btrfs_set_token_inode_block_group(&token, item, 0); 3474 } 3475 3476 /* 3477 * copy everything in the in-memory inode into the btree. 3478 */ 3479 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3480 struct btrfs_root *root, struct inode *inode) 3481 { 3482 struct btrfs_inode_item *inode_item; 3483 struct btrfs_path *path; 3484 struct extent_buffer *leaf; 3485 int ret; 3486 3487 path = btrfs_alloc_path(); 3488 if (!path) 3489 return -ENOMEM; 3490 3491 path->leave_spinning = 1; 3492 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3493 1); 3494 if (ret) { 3495 if (ret > 0) 3496 ret = -ENOENT; 3497 goto failed; 3498 } 3499 3500 leaf = path->nodes[0]; 3501 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3502 struct btrfs_inode_item); 3503 3504 fill_inode_item(trans, leaf, inode_item, inode); 3505 btrfs_mark_buffer_dirty(leaf); 3506 btrfs_set_inode_last_trans(trans, inode); 3507 ret = 0; 3508 failed: 3509 btrfs_free_path(path); 3510 return ret; 3511 } 3512 3513 /* 3514 * copy everything in the in-memory inode into the btree. 3515 */ 3516 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3517 struct btrfs_root *root, struct inode *inode) 3518 { 3519 struct btrfs_fs_info *fs_info = root->fs_info; 3520 int ret; 3521 3522 /* 3523 * If the inode is a free space inode, we can deadlock during commit 3524 * if we put it into the delayed code. 3525 * 3526 * The data relocation inode should also be directly updated 3527 * without delay 3528 */ 3529 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3530 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3531 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3532 btrfs_update_root_times(trans, root); 3533 3534 ret = btrfs_delayed_update_inode(trans, root, inode); 3535 if (!ret) 3536 btrfs_set_inode_last_trans(trans, inode); 3537 return ret; 3538 } 3539 3540 return btrfs_update_inode_item(trans, root, inode); 3541 } 3542 3543 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3544 struct btrfs_root *root, 3545 struct inode *inode) 3546 { 3547 int ret; 3548 3549 ret = btrfs_update_inode(trans, root, inode); 3550 if (ret == -ENOSPC) 3551 return btrfs_update_inode_item(trans, root, inode); 3552 return ret; 3553 } 3554 3555 /* 3556 * unlink helper that gets used here in inode.c and in the tree logging 3557 * recovery code. It remove a link in a directory with a given name, and 3558 * also drops the back refs in the inode to the directory 3559 */ 3560 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3561 struct btrfs_root *root, 3562 struct btrfs_inode *dir, 3563 struct btrfs_inode *inode, 3564 const char *name, int name_len) 3565 { 3566 struct btrfs_fs_info *fs_info = root->fs_info; 3567 struct btrfs_path *path; 3568 int ret = 0; 3569 struct btrfs_dir_item *di; 3570 u64 index; 3571 u64 ino = btrfs_ino(inode); 3572 u64 dir_ino = btrfs_ino(dir); 3573 3574 path = btrfs_alloc_path(); 3575 if (!path) { 3576 ret = -ENOMEM; 3577 goto out; 3578 } 3579 3580 path->leave_spinning = 1; 3581 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3582 name, name_len, -1); 3583 if (IS_ERR_OR_NULL(di)) { 3584 ret = di ? PTR_ERR(di) : -ENOENT; 3585 goto err; 3586 } 3587 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3588 if (ret) 3589 goto err; 3590 btrfs_release_path(path); 3591 3592 /* 3593 * If we don't have dir index, we have to get it by looking up 3594 * the inode ref, since we get the inode ref, remove it directly, 3595 * it is unnecessary to do delayed deletion. 3596 * 3597 * But if we have dir index, needn't search inode ref to get it. 3598 * Since the inode ref is close to the inode item, it is better 3599 * that we delay to delete it, and just do this deletion when 3600 * we update the inode item. 3601 */ 3602 if (inode->dir_index) { 3603 ret = btrfs_delayed_delete_inode_ref(inode); 3604 if (!ret) { 3605 index = inode->dir_index; 3606 goto skip_backref; 3607 } 3608 } 3609 3610 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3611 dir_ino, &index); 3612 if (ret) { 3613 btrfs_info(fs_info, 3614 "failed to delete reference to %.*s, inode %llu parent %llu", 3615 name_len, name, ino, dir_ino); 3616 btrfs_abort_transaction(trans, ret); 3617 goto err; 3618 } 3619 skip_backref: 3620 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3621 if (ret) { 3622 btrfs_abort_transaction(trans, ret); 3623 goto err; 3624 } 3625 3626 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3627 dir_ino); 3628 if (ret != 0 && ret != -ENOENT) { 3629 btrfs_abort_transaction(trans, ret); 3630 goto err; 3631 } 3632 3633 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3634 index); 3635 if (ret == -ENOENT) 3636 ret = 0; 3637 else if (ret) 3638 btrfs_abort_transaction(trans, ret); 3639 3640 /* 3641 * If we have a pending delayed iput we could end up with the final iput 3642 * being run in btrfs-cleaner context. If we have enough of these built 3643 * up we can end up burning a lot of time in btrfs-cleaner without any 3644 * way to throttle the unlinks. Since we're currently holding a ref on 3645 * the inode we can run the delayed iput here without any issues as the 3646 * final iput won't be done until after we drop the ref we're currently 3647 * holding. 3648 */ 3649 btrfs_run_delayed_iput(fs_info, inode); 3650 err: 3651 btrfs_free_path(path); 3652 if (ret) 3653 goto out; 3654 3655 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3656 inode_inc_iversion(&inode->vfs_inode); 3657 inode_inc_iversion(&dir->vfs_inode); 3658 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3659 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3660 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3661 out: 3662 return ret; 3663 } 3664 3665 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3666 struct btrfs_root *root, 3667 struct btrfs_inode *dir, struct btrfs_inode *inode, 3668 const char *name, int name_len) 3669 { 3670 int ret; 3671 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3672 if (!ret) { 3673 drop_nlink(&inode->vfs_inode); 3674 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3675 } 3676 return ret; 3677 } 3678 3679 /* 3680 * helper to start transaction for unlink and rmdir. 3681 * 3682 * unlink and rmdir are special in btrfs, they do not always free space, so 3683 * if we cannot make our reservations the normal way try and see if there is 3684 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3685 * allow the unlink to occur. 3686 */ 3687 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3688 { 3689 struct btrfs_root *root = BTRFS_I(dir)->root; 3690 3691 /* 3692 * 1 for the possible orphan item 3693 * 1 for the dir item 3694 * 1 for the dir index 3695 * 1 for the inode ref 3696 * 1 for the inode 3697 */ 3698 return btrfs_start_transaction_fallback_global_rsv(root, 5); 3699 } 3700 3701 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3702 { 3703 struct btrfs_root *root = BTRFS_I(dir)->root; 3704 struct btrfs_trans_handle *trans; 3705 struct inode *inode = d_inode(dentry); 3706 int ret; 3707 3708 trans = __unlink_start_trans(dir); 3709 if (IS_ERR(trans)) 3710 return PTR_ERR(trans); 3711 3712 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3713 0); 3714 3715 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3716 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3717 dentry->d_name.len); 3718 if (ret) 3719 goto out; 3720 3721 if (inode->i_nlink == 0) { 3722 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3723 if (ret) 3724 goto out; 3725 } 3726 3727 out: 3728 btrfs_end_transaction(trans); 3729 btrfs_btree_balance_dirty(root->fs_info); 3730 return ret; 3731 } 3732 3733 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3734 struct inode *dir, struct dentry *dentry) 3735 { 3736 struct btrfs_root *root = BTRFS_I(dir)->root; 3737 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3738 struct btrfs_path *path; 3739 struct extent_buffer *leaf; 3740 struct btrfs_dir_item *di; 3741 struct btrfs_key key; 3742 const char *name = dentry->d_name.name; 3743 int name_len = dentry->d_name.len; 3744 u64 index; 3745 int ret; 3746 u64 objectid; 3747 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3748 3749 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3750 objectid = inode->root->root_key.objectid; 3751 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3752 objectid = inode->location.objectid; 3753 } else { 3754 WARN_ON(1); 3755 return -EINVAL; 3756 } 3757 3758 path = btrfs_alloc_path(); 3759 if (!path) 3760 return -ENOMEM; 3761 3762 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3763 name, name_len, -1); 3764 if (IS_ERR_OR_NULL(di)) { 3765 ret = di ? PTR_ERR(di) : -ENOENT; 3766 goto out; 3767 } 3768 3769 leaf = path->nodes[0]; 3770 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3771 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3772 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3773 if (ret) { 3774 btrfs_abort_transaction(trans, ret); 3775 goto out; 3776 } 3777 btrfs_release_path(path); 3778 3779 /* 3780 * This is a placeholder inode for a subvolume we didn't have a 3781 * reference to at the time of the snapshot creation. In the meantime 3782 * we could have renamed the real subvol link into our snapshot, so 3783 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3784 * Instead simply lookup the dir_index_item for this entry so we can 3785 * remove it. Otherwise we know we have a ref to the root and we can 3786 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3787 */ 3788 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3789 di = btrfs_search_dir_index_item(root, path, dir_ino, 3790 name, name_len); 3791 if (IS_ERR_OR_NULL(di)) { 3792 if (!di) 3793 ret = -ENOENT; 3794 else 3795 ret = PTR_ERR(di); 3796 btrfs_abort_transaction(trans, ret); 3797 goto out; 3798 } 3799 3800 leaf = path->nodes[0]; 3801 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3802 index = key.offset; 3803 btrfs_release_path(path); 3804 } else { 3805 ret = btrfs_del_root_ref(trans, objectid, 3806 root->root_key.objectid, dir_ino, 3807 &index, name, name_len); 3808 if (ret) { 3809 btrfs_abort_transaction(trans, ret); 3810 goto out; 3811 } 3812 } 3813 3814 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3815 if (ret) { 3816 btrfs_abort_transaction(trans, ret); 3817 goto out; 3818 } 3819 3820 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3821 inode_inc_iversion(dir); 3822 dir->i_mtime = dir->i_ctime = current_time(dir); 3823 ret = btrfs_update_inode_fallback(trans, root, dir); 3824 if (ret) 3825 btrfs_abort_transaction(trans, ret); 3826 out: 3827 btrfs_free_path(path); 3828 return ret; 3829 } 3830 3831 /* 3832 * Helper to check if the subvolume references other subvolumes or if it's 3833 * default. 3834 */ 3835 static noinline int may_destroy_subvol(struct btrfs_root *root) 3836 { 3837 struct btrfs_fs_info *fs_info = root->fs_info; 3838 struct btrfs_path *path; 3839 struct btrfs_dir_item *di; 3840 struct btrfs_key key; 3841 u64 dir_id; 3842 int ret; 3843 3844 path = btrfs_alloc_path(); 3845 if (!path) 3846 return -ENOMEM; 3847 3848 /* Make sure this root isn't set as the default subvol */ 3849 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3850 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3851 dir_id, "default", 7, 0); 3852 if (di && !IS_ERR(di)) { 3853 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3854 if (key.objectid == root->root_key.objectid) { 3855 ret = -EPERM; 3856 btrfs_err(fs_info, 3857 "deleting default subvolume %llu is not allowed", 3858 key.objectid); 3859 goto out; 3860 } 3861 btrfs_release_path(path); 3862 } 3863 3864 key.objectid = root->root_key.objectid; 3865 key.type = BTRFS_ROOT_REF_KEY; 3866 key.offset = (u64)-1; 3867 3868 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3869 if (ret < 0) 3870 goto out; 3871 BUG_ON(ret == 0); 3872 3873 ret = 0; 3874 if (path->slots[0] > 0) { 3875 path->slots[0]--; 3876 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3877 if (key.objectid == root->root_key.objectid && 3878 key.type == BTRFS_ROOT_REF_KEY) 3879 ret = -ENOTEMPTY; 3880 } 3881 out: 3882 btrfs_free_path(path); 3883 return ret; 3884 } 3885 3886 /* Delete all dentries for inodes belonging to the root */ 3887 static void btrfs_prune_dentries(struct btrfs_root *root) 3888 { 3889 struct btrfs_fs_info *fs_info = root->fs_info; 3890 struct rb_node *node; 3891 struct rb_node *prev; 3892 struct btrfs_inode *entry; 3893 struct inode *inode; 3894 u64 objectid = 0; 3895 3896 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3897 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3898 3899 spin_lock(&root->inode_lock); 3900 again: 3901 node = root->inode_tree.rb_node; 3902 prev = NULL; 3903 while (node) { 3904 prev = node; 3905 entry = rb_entry(node, struct btrfs_inode, rb_node); 3906 3907 if (objectid < btrfs_ino(entry)) 3908 node = node->rb_left; 3909 else if (objectid > btrfs_ino(entry)) 3910 node = node->rb_right; 3911 else 3912 break; 3913 } 3914 if (!node) { 3915 while (prev) { 3916 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3917 if (objectid <= btrfs_ino(entry)) { 3918 node = prev; 3919 break; 3920 } 3921 prev = rb_next(prev); 3922 } 3923 } 3924 while (node) { 3925 entry = rb_entry(node, struct btrfs_inode, rb_node); 3926 objectid = btrfs_ino(entry) + 1; 3927 inode = igrab(&entry->vfs_inode); 3928 if (inode) { 3929 spin_unlock(&root->inode_lock); 3930 if (atomic_read(&inode->i_count) > 1) 3931 d_prune_aliases(inode); 3932 /* 3933 * btrfs_drop_inode will have it removed from the inode 3934 * cache when its usage count hits zero. 3935 */ 3936 iput(inode); 3937 cond_resched(); 3938 spin_lock(&root->inode_lock); 3939 goto again; 3940 } 3941 3942 if (cond_resched_lock(&root->inode_lock)) 3943 goto again; 3944 3945 node = rb_next(node); 3946 } 3947 spin_unlock(&root->inode_lock); 3948 } 3949 3950 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3951 { 3952 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3953 struct btrfs_root *root = BTRFS_I(dir)->root; 3954 struct inode *inode = d_inode(dentry); 3955 struct btrfs_root *dest = BTRFS_I(inode)->root; 3956 struct btrfs_trans_handle *trans; 3957 struct btrfs_block_rsv block_rsv; 3958 u64 root_flags; 3959 int ret; 3960 int err; 3961 3962 /* 3963 * Don't allow to delete a subvolume with send in progress. This is 3964 * inside the inode lock so the error handling that has to drop the bit 3965 * again is not run concurrently. 3966 */ 3967 spin_lock(&dest->root_item_lock); 3968 if (dest->send_in_progress) { 3969 spin_unlock(&dest->root_item_lock); 3970 btrfs_warn(fs_info, 3971 "attempt to delete subvolume %llu during send", 3972 dest->root_key.objectid); 3973 return -EPERM; 3974 } 3975 root_flags = btrfs_root_flags(&dest->root_item); 3976 btrfs_set_root_flags(&dest->root_item, 3977 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3978 spin_unlock(&dest->root_item_lock); 3979 3980 down_write(&fs_info->subvol_sem); 3981 3982 err = may_destroy_subvol(dest); 3983 if (err) 3984 goto out_up_write; 3985 3986 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3987 /* 3988 * One for dir inode, 3989 * two for dir entries, 3990 * two for root ref/backref. 3991 */ 3992 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3993 if (err) 3994 goto out_up_write; 3995 3996 trans = btrfs_start_transaction(root, 0); 3997 if (IS_ERR(trans)) { 3998 err = PTR_ERR(trans); 3999 goto out_release; 4000 } 4001 trans->block_rsv = &block_rsv; 4002 trans->bytes_reserved = block_rsv.size; 4003 4004 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4005 4006 ret = btrfs_unlink_subvol(trans, dir, dentry); 4007 if (ret) { 4008 err = ret; 4009 btrfs_abort_transaction(trans, ret); 4010 goto out_end_trans; 4011 } 4012 4013 btrfs_record_root_in_trans(trans, dest); 4014 4015 memset(&dest->root_item.drop_progress, 0, 4016 sizeof(dest->root_item.drop_progress)); 4017 dest->root_item.drop_level = 0; 4018 btrfs_set_root_refs(&dest->root_item, 0); 4019 4020 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4021 ret = btrfs_insert_orphan_item(trans, 4022 fs_info->tree_root, 4023 dest->root_key.objectid); 4024 if (ret) { 4025 btrfs_abort_transaction(trans, ret); 4026 err = ret; 4027 goto out_end_trans; 4028 } 4029 } 4030 4031 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4032 BTRFS_UUID_KEY_SUBVOL, 4033 dest->root_key.objectid); 4034 if (ret && ret != -ENOENT) { 4035 btrfs_abort_transaction(trans, ret); 4036 err = ret; 4037 goto out_end_trans; 4038 } 4039 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4040 ret = btrfs_uuid_tree_remove(trans, 4041 dest->root_item.received_uuid, 4042 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4043 dest->root_key.objectid); 4044 if (ret && ret != -ENOENT) { 4045 btrfs_abort_transaction(trans, ret); 4046 err = ret; 4047 goto out_end_trans; 4048 } 4049 } 4050 4051 out_end_trans: 4052 trans->block_rsv = NULL; 4053 trans->bytes_reserved = 0; 4054 ret = btrfs_end_transaction(trans); 4055 if (ret && !err) 4056 err = ret; 4057 inode->i_flags |= S_DEAD; 4058 out_release: 4059 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4060 out_up_write: 4061 up_write(&fs_info->subvol_sem); 4062 if (err) { 4063 spin_lock(&dest->root_item_lock); 4064 root_flags = btrfs_root_flags(&dest->root_item); 4065 btrfs_set_root_flags(&dest->root_item, 4066 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4067 spin_unlock(&dest->root_item_lock); 4068 } else { 4069 d_invalidate(dentry); 4070 btrfs_prune_dentries(dest); 4071 ASSERT(dest->send_in_progress == 0); 4072 4073 /* the last ref */ 4074 if (dest->ino_cache_inode) { 4075 iput(dest->ino_cache_inode); 4076 dest->ino_cache_inode = NULL; 4077 } 4078 } 4079 4080 return err; 4081 } 4082 4083 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4084 { 4085 struct inode *inode = d_inode(dentry); 4086 int err = 0; 4087 struct btrfs_root *root = BTRFS_I(dir)->root; 4088 struct btrfs_trans_handle *trans; 4089 u64 last_unlink_trans; 4090 4091 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4092 return -ENOTEMPTY; 4093 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4094 return btrfs_delete_subvolume(dir, dentry); 4095 4096 trans = __unlink_start_trans(dir); 4097 if (IS_ERR(trans)) 4098 return PTR_ERR(trans); 4099 4100 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4101 err = btrfs_unlink_subvol(trans, dir, dentry); 4102 goto out; 4103 } 4104 4105 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4106 if (err) 4107 goto out; 4108 4109 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4110 4111 /* now the directory is empty */ 4112 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4113 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4114 dentry->d_name.len); 4115 if (!err) { 4116 btrfs_i_size_write(BTRFS_I(inode), 0); 4117 /* 4118 * Propagate the last_unlink_trans value of the deleted dir to 4119 * its parent directory. This is to prevent an unrecoverable 4120 * log tree in the case we do something like this: 4121 * 1) create dir foo 4122 * 2) create snapshot under dir foo 4123 * 3) delete the snapshot 4124 * 4) rmdir foo 4125 * 5) mkdir foo 4126 * 6) fsync foo or some file inside foo 4127 */ 4128 if (last_unlink_trans >= trans->transid) 4129 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4130 } 4131 out: 4132 btrfs_end_transaction(trans); 4133 btrfs_btree_balance_dirty(root->fs_info); 4134 4135 return err; 4136 } 4137 4138 /* 4139 * Return this if we need to call truncate_block for the last bit of the 4140 * truncate. 4141 */ 4142 #define NEED_TRUNCATE_BLOCK 1 4143 4144 /* 4145 * this can truncate away extent items, csum items and directory items. 4146 * It starts at a high offset and removes keys until it can't find 4147 * any higher than new_size 4148 * 4149 * csum items that cross the new i_size are truncated to the new size 4150 * as well. 4151 * 4152 * min_type is the minimum key type to truncate down to. If set to 0, this 4153 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4154 */ 4155 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4156 struct btrfs_root *root, 4157 struct inode *inode, 4158 u64 new_size, u32 min_type) 4159 { 4160 struct btrfs_fs_info *fs_info = root->fs_info; 4161 struct btrfs_path *path; 4162 struct extent_buffer *leaf; 4163 struct btrfs_file_extent_item *fi; 4164 struct btrfs_key key; 4165 struct btrfs_key found_key; 4166 u64 extent_start = 0; 4167 u64 extent_num_bytes = 0; 4168 u64 extent_offset = 0; 4169 u64 item_end = 0; 4170 u64 last_size = new_size; 4171 u32 found_type = (u8)-1; 4172 int found_extent; 4173 int del_item; 4174 int pending_del_nr = 0; 4175 int pending_del_slot = 0; 4176 int extent_type = -1; 4177 int ret; 4178 u64 ino = btrfs_ino(BTRFS_I(inode)); 4179 u64 bytes_deleted = 0; 4180 bool be_nice = false; 4181 bool should_throttle = false; 4182 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4183 struct extent_state *cached_state = NULL; 4184 4185 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4186 4187 /* 4188 * For non-free space inodes and non-shareable roots, we want to back 4189 * off from time to time. This means all inodes in subvolume roots, 4190 * reloc roots, and data reloc roots. 4191 */ 4192 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4193 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4194 be_nice = true; 4195 4196 path = btrfs_alloc_path(); 4197 if (!path) 4198 return -ENOMEM; 4199 path->reada = READA_BACK; 4200 4201 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4202 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4203 &cached_state); 4204 4205 /* 4206 * We want to drop from the next block forward in case this 4207 * new size is not block aligned since we will be keeping the 4208 * last block of the extent just the way it is. 4209 */ 4210 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4211 fs_info->sectorsize), 4212 (u64)-1, 0); 4213 } 4214 4215 /* 4216 * This function is also used to drop the items in the log tree before 4217 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4218 * it is used to drop the logged items. So we shouldn't kill the delayed 4219 * items. 4220 */ 4221 if (min_type == 0 && root == BTRFS_I(inode)->root) 4222 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4223 4224 key.objectid = ino; 4225 key.offset = (u64)-1; 4226 key.type = (u8)-1; 4227 4228 search_again: 4229 /* 4230 * with a 16K leaf size and 128MB extents, you can actually queue 4231 * up a huge file in a single leaf. Most of the time that 4232 * bytes_deleted is > 0, it will be huge by the time we get here 4233 */ 4234 if (be_nice && bytes_deleted > SZ_32M && 4235 btrfs_should_end_transaction(trans)) { 4236 ret = -EAGAIN; 4237 goto out; 4238 } 4239 4240 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4241 if (ret < 0) 4242 goto out; 4243 4244 if (ret > 0) { 4245 ret = 0; 4246 /* there are no items in the tree for us to truncate, we're 4247 * done 4248 */ 4249 if (path->slots[0] == 0) 4250 goto out; 4251 path->slots[0]--; 4252 } 4253 4254 while (1) { 4255 u64 clear_start = 0, clear_len = 0; 4256 4257 fi = NULL; 4258 leaf = path->nodes[0]; 4259 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4260 found_type = found_key.type; 4261 4262 if (found_key.objectid != ino) 4263 break; 4264 4265 if (found_type < min_type) 4266 break; 4267 4268 item_end = found_key.offset; 4269 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4270 fi = btrfs_item_ptr(leaf, path->slots[0], 4271 struct btrfs_file_extent_item); 4272 extent_type = btrfs_file_extent_type(leaf, fi); 4273 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4274 item_end += 4275 btrfs_file_extent_num_bytes(leaf, fi); 4276 4277 trace_btrfs_truncate_show_fi_regular( 4278 BTRFS_I(inode), leaf, fi, 4279 found_key.offset); 4280 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4281 item_end += btrfs_file_extent_ram_bytes(leaf, 4282 fi); 4283 4284 trace_btrfs_truncate_show_fi_inline( 4285 BTRFS_I(inode), leaf, fi, path->slots[0], 4286 found_key.offset); 4287 } 4288 item_end--; 4289 } 4290 if (found_type > min_type) { 4291 del_item = 1; 4292 } else { 4293 if (item_end < new_size) 4294 break; 4295 if (found_key.offset >= new_size) 4296 del_item = 1; 4297 else 4298 del_item = 0; 4299 } 4300 found_extent = 0; 4301 /* FIXME, shrink the extent if the ref count is only 1 */ 4302 if (found_type != BTRFS_EXTENT_DATA_KEY) 4303 goto delete; 4304 4305 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4306 u64 num_dec; 4307 4308 clear_start = found_key.offset; 4309 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4310 if (!del_item) { 4311 u64 orig_num_bytes = 4312 btrfs_file_extent_num_bytes(leaf, fi); 4313 extent_num_bytes = ALIGN(new_size - 4314 found_key.offset, 4315 fs_info->sectorsize); 4316 clear_start = ALIGN(new_size, fs_info->sectorsize); 4317 btrfs_set_file_extent_num_bytes(leaf, fi, 4318 extent_num_bytes); 4319 num_dec = (orig_num_bytes - 4320 extent_num_bytes); 4321 if (test_bit(BTRFS_ROOT_SHAREABLE, 4322 &root->state) && 4323 extent_start != 0) 4324 inode_sub_bytes(inode, num_dec); 4325 btrfs_mark_buffer_dirty(leaf); 4326 } else { 4327 extent_num_bytes = 4328 btrfs_file_extent_disk_num_bytes(leaf, 4329 fi); 4330 extent_offset = found_key.offset - 4331 btrfs_file_extent_offset(leaf, fi); 4332 4333 /* FIXME blocksize != 4096 */ 4334 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4335 if (extent_start != 0) { 4336 found_extent = 1; 4337 if (test_bit(BTRFS_ROOT_SHAREABLE, 4338 &root->state)) 4339 inode_sub_bytes(inode, num_dec); 4340 } 4341 } 4342 clear_len = num_dec; 4343 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4344 /* 4345 * we can't truncate inline items that have had 4346 * special encodings 4347 */ 4348 if (!del_item && 4349 btrfs_file_extent_encryption(leaf, fi) == 0 && 4350 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4351 btrfs_file_extent_compression(leaf, fi) == 0) { 4352 u32 size = (u32)(new_size - found_key.offset); 4353 4354 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4355 size = btrfs_file_extent_calc_inline_size(size); 4356 btrfs_truncate_item(path, size, 1); 4357 } else if (!del_item) { 4358 /* 4359 * We have to bail so the last_size is set to 4360 * just before this extent. 4361 */ 4362 ret = NEED_TRUNCATE_BLOCK; 4363 break; 4364 } else { 4365 /* 4366 * Inline extents are special, we just treat 4367 * them as a full sector worth in the file 4368 * extent tree just for simplicity sake. 4369 */ 4370 clear_len = fs_info->sectorsize; 4371 } 4372 4373 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4374 inode_sub_bytes(inode, item_end + 1 - new_size); 4375 } 4376 delete: 4377 /* 4378 * We use btrfs_truncate_inode_items() to clean up log trees for 4379 * multiple fsyncs, and in this case we don't want to clear the 4380 * file extent range because it's just the log. 4381 */ 4382 if (root == BTRFS_I(inode)->root) { 4383 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 4384 clear_start, clear_len); 4385 if (ret) { 4386 btrfs_abort_transaction(trans, ret); 4387 break; 4388 } 4389 } 4390 4391 if (del_item) 4392 last_size = found_key.offset; 4393 else 4394 last_size = new_size; 4395 if (del_item) { 4396 if (!pending_del_nr) { 4397 /* no pending yet, add ourselves */ 4398 pending_del_slot = path->slots[0]; 4399 pending_del_nr = 1; 4400 } else if (pending_del_nr && 4401 path->slots[0] + 1 == pending_del_slot) { 4402 /* hop on the pending chunk */ 4403 pending_del_nr++; 4404 pending_del_slot = path->slots[0]; 4405 } else { 4406 BUG(); 4407 } 4408 } else { 4409 break; 4410 } 4411 should_throttle = false; 4412 4413 if (found_extent && 4414 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4415 struct btrfs_ref ref = { 0 }; 4416 4417 bytes_deleted += extent_num_bytes; 4418 4419 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4420 extent_start, extent_num_bytes, 0); 4421 ref.real_root = root->root_key.objectid; 4422 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4423 ino, extent_offset); 4424 ret = btrfs_free_extent(trans, &ref); 4425 if (ret) { 4426 btrfs_abort_transaction(trans, ret); 4427 break; 4428 } 4429 if (be_nice) { 4430 if (btrfs_should_throttle_delayed_refs(trans)) 4431 should_throttle = true; 4432 } 4433 } 4434 4435 if (found_type == BTRFS_INODE_ITEM_KEY) 4436 break; 4437 4438 if (path->slots[0] == 0 || 4439 path->slots[0] != pending_del_slot || 4440 should_throttle) { 4441 if (pending_del_nr) { 4442 ret = btrfs_del_items(trans, root, path, 4443 pending_del_slot, 4444 pending_del_nr); 4445 if (ret) { 4446 btrfs_abort_transaction(trans, ret); 4447 break; 4448 } 4449 pending_del_nr = 0; 4450 } 4451 btrfs_release_path(path); 4452 4453 /* 4454 * We can generate a lot of delayed refs, so we need to 4455 * throttle every once and a while and make sure we're 4456 * adding enough space to keep up with the work we are 4457 * generating. Since we hold a transaction here we 4458 * can't flush, and we don't want to FLUSH_LIMIT because 4459 * we could have generated too many delayed refs to 4460 * actually allocate, so just bail if we're short and 4461 * let the normal reservation dance happen higher up. 4462 */ 4463 if (should_throttle) { 4464 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4465 BTRFS_RESERVE_NO_FLUSH); 4466 if (ret) { 4467 ret = -EAGAIN; 4468 break; 4469 } 4470 } 4471 goto search_again; 4472 } else { 4473 path->slots[0]--; 4474 } 4475 } 4476 out: 4477 if (ret >= 0 && pending_del_nr) { 4478 int err; 4479 4480 err = btrfs_del_items(trans, root, path, pending_del_slot, 4481 pending_del_nr); 4482 if (err) { 4483 btrfs_abort_transaction(trans, err); 4484 ret = err; 4485 } 4486 } 4487 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4488 ASSERT(last_size >= new_size); 4489 if (!ret && last_size > new_size) 4490 last_size = new_size; 4491 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4492 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4493 (u64)-1, &cached_state); 4494 } 4495 4496 btrfs_free_path(path); 4497 return ret; 4498 } 4499 4500 /* 4501 * btrfs_truncate_block - read, zero a chunk and write a block 4502 * @inode - inode that we're zeroing 4503 * @from - the offset to start zeroing 4504 * @len - the length to zero, 0 to zero the entire range respective to the 4505 * offset 4506 * @front - zero up to the offset instead of from the offset on 4507 * 4508 * This will find the block for the "from" offset and cow the block and zero the 4509 * part we want to zero. This is used with truncate and hole punching. 4510 */ 4511 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4512 int front) 4513 { 4514 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4515 struct address_space *mapping = inode->i_mapping; 4516 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4517 struct btrfs_ordered_extent *ordered; 4518 struct extent_state *cached_state = NULL; 4519 struct extent_changeset *data_reserved = NULL; 4520 char *kaddr; 4521 u32 blocksize = fs_info->sectorsize; 4522 pgoff_t index = from >> PAGE_SHIFT; 4523 unsigned offset = from & (blocksize - 1); 4524 struct page *page; 4525 gfp_t mask = btrfs_alloc_write_mask(mapping); 4526 int ret = 0; 4527 u64 block_start; 4528 u64 block_end; 4529 4530 if (IS_ALIGNED(offset, blocksize) && 4531 (!len || IS_ALIGNED(len, blocksize))) 4532 goto out; 4533 4534 block_start = round_down(from, blocksize); 4535 block_end = block_start + blocksize - 1; 4536 4537 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4538 block_start, blocksize); 4539 if (ret) 4540 goto out; 4541 4542 again: 4543 page = find_or_create_page(mapping, index, mask); 4544 if (!page) { 4545 btrfs_delalloc_release_space(inode, data_reserved, 4546 block_start, blocksize, true); 4547 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4548 ret = -ENOMEM; 4549 goto out; 4550 } 4551 4552 if (!PageUptodate(page)) { 4553 ret = btrfs_readpage(NULL, page); 4554 lock_page(page); 4555 if (page->mapping != mapping) { 4556 unlock_page(page); 4557 put_page(page); 4558 goto again; 4559 } 4560 if (!PageUptodate(page)) { 4561 ret = -EIO; 4562 goto out_unlock; 4563 } 4564 } 4565 wait_on_page_writeback(page); 4566 4567 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4568 set_page_extent_mapped(page); 4569 4570 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4571 if (ordered) { 4572 unlock_extent_cached(io_tree, block_start, block_end, 4573 &cached_state); 4574 unlock_page(page); 4575 put_page(page); 4576 btrfs_start_ordered_extent(inode, ordered, 1); 4577 btrfs_put_ordered_extent(ordered); 4578 goto again; 4579 } 4580 4581 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4582 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4583 0, 0, &cached_state); 4584 4585 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4586 &cached_state); 4587 if (ret) { 4588 unlock_extent_cached(io_tree, block_start, block_end, 4589 &cached_state); 4590 goto out_unlock; 4591 } 4592 4593 if (offset != blocksize) { 4594 if (!len) 4595 len = blocksize - offset; 4596 kaddr = kmap(page); 4597 if (front) 4598 memset(kaddr + (block_start - page_offset(page)), 4599 0, offset); 4600 else 4601 memset(kaddr + (block_start - page_offset(page)) + offset, 4602 0, len); 4603 flush_dcache_page(page); 4604 kunmap(page); 4605 } 4606 ClearPageChecked(page); 4607 set_page_dirty(page); 4608 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4609 4610 out_unlock: 4611 if (ret) 4612 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4613 blocksize, true); 4614 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4615 unlock_page(page); 4616 put_page(page); 4617 out: 4618 extent_changeset_free(data_reserved); 4619 return ret; 4620 } 4621 4622 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4623 u64 offset, u64 len) 4624 { 4625 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4626 struct btrfs_trans_handle *trans; 4627 int ret; 4628 4629 /* 4630 * Still need to make sure the inode looks like it's been updated so 4631 * that any holes get logged if we fsync. 4632 */ 4633 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4634 BTRFS_I(inode)->last_trans = fs_info->generation; 4635 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4636 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4637 return 0; 4638 } 4639 4640 /* 4641 * 1 - for the one we're dropping 4642 * 1 - for the one we're adding 4643 * 1 - for updating the inode. 4644 */ 4645 trans = btrfs_start_transaction(root, 3); 4646 if (IS_ERR(trans)) 4647 return PTR_ERR(trans); 4648 4649 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4650 if (ret) { 4651 btrfs_abort_transaction(trans, ret); 4652 btrfs_end_transaction(trans); 4653 return ret; 4654 } 4655 4656 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4657 offset, 0, 0, len, 0, len, 0, 0, 0); 4658 if (ret) 4659 btrfs_abort_transaction(trans, ret); 4660 else 4661 btrfs_update_inode(trans, root, inode); 4662 btrfs_end_transaction(trans); 4663 return ret; 4664 } 4665 4666 /* 4667 * This function puts in dummy file extents for the area we're creating a hole 4668 * for. So if we are truncating this file to a larger size we need to insert 4669 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4670 * the range between oldsize and size 4671 */ 4672 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4673 { 4674 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4675 struct btrfs_root *root = BTRFS_I(inode)->root; 4676 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4677 struct extent_map *em = NULL; 4678 struct extent_state *cached_state = NULL; 4679 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4680 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4681 u64 block_end = ALIGN(size, fs_info->sectorsize); 4682 u64 last_byte; 4683 u64 cur_offset; 4684 u64 hole_size; 4685 int err = 0; 4686 4687 /* 4688 * If our size started in the middle of a block we need to zero out the 4689 * rest of the block before we expand the i_size, otherwise we could 4690 * expose stale data. 4691 */ 4692 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4693 if (err) 4694 return err; 4695 4696 if (size <= hole_start) 4697 return 0; 4698 4699 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, 4700 block_end - 1, &cached_state); 4701 cur_offset = hole_start; 4702 while (1) { 4703 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4704 block_end - cur_offset); 4705 if (IS_ERR(em)) { 4706 err = PTR_ERR(em); 4707 em = NULL; 4708 break; 4709 } 4710 last_byte = min(extent_map_end(em), block_end); 4711 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4712 hole_size = last_byte - cur_offset; 4713 4714 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4715 struct extent_map *hole_em; 4716 4717 err = maybe_insert_hole(root, inode, cur_offset, 4718 hole_size); 4719 if (err) 4720 break; 4721 4722 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4723 cur_offset, hole_size); 4724 if (err) 4725 break; 4726 4727 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4728 cur_offset + hole_size - 1, 0); 4729 hole_em = alloc_extent_map(); 4730 if (!hole_em) { 4731 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4732 &BTRFS_I(inode)->runtime_flags); 4733 goto next; 4734 } 4735 hole_em->start = cur_offset; 4736 hole_em->len = hole_size; 4737 hole_em->orig_start = cur_offset; 4738 4739 hole_em->block_start = EXTENT_MAP_HOLE; 4740 hole_em->block_len = 0; 4741 hole_em->orig_block_len = 0; 4742 hole_em->ram_bytes = hole_size; 4743 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4744 hole_em->generation = fs_info->generation; 4745 4746 while (1) { 4747 write_lock(&em_tree->lock); 4748 err = add_extent_mapping(em_tree, hole_em, 1); 4749 write_unlock(&em_tree->lock); 4750 if (err != -EEXIST) 4751 break; 4752 btrfs_drop_extent_cache(BTRFS_I(inode), 4753 cur_offset, 4754 cur_offset + 4755 hole_size - 1, 0); 4756 } 4757 free_extent_map(hole_em); 4758 } else { 4759 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4760 cur_offset, hole_size); 4761 if (err) 4762 break; 4763 } 4764 next: 4765 free_extent_map(em); 4766 em = NULL; 4767 cur_offset = last_byte; 4768 if (cur_offset >= block_end) 4769 break; 4770 } 4771 free_extent_map(em); 4772 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4773 return err; 4774 } 4775 4776 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4777 { 4778 struct btrfs_root *root = BTRFS_I(inode)->root; 4779 struct btrfs_trans_handle *trans; 4780 loff_t oldsize = i_size_read(inode); 4781 loff_t newsize = attr->ia_size; 4782 int mask = attr->ia_valid; 4783 int ret; 4784 4785 /* 4786 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4787 * special case where we need to update the times despite not having 4788 * these flags set. For all other operations the VFS set these flags 4789 * explicitly if it wants a timestamp update. 4790 */ 4791 if (newsize != oldsize) { 4792 inode_inc_iversion(inode); 4793 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4794 inode->i_ctime = inode->i_mtime = 4795 current_time(inode); 4796 } 4797 4798 if (newsize > oldsize) { 4799 /* 4800 * Don't do an expanding truncate while snapshotting is ongoing. 4801 * This is to ensure the snapshot captures a fully consistent 4802 * state of this file - if the snapshot captures this expanding 4803 * truncation, it must capture all writes that happened before 4804 * this truncation. 4805 */ 4806 btrfs_drew_write_lock(&root->snapshot_lock); 4807 ret = btrfs_cont_expand(inode, oldsize, newsize); 4808 if (ret) { 4809 btrfs_drew_write_unlock(&root->snapshot_lock); 4810 return ret; 4811 } 4812 4813 trans = btrfs_start_transaction(root, 1); 4814 if (IS_ERR(trans)) { 4815 btrfs_drew_write_unlock(&root->snapshot_lock); 4816 return PTR_ERR(trans); 4817 } 4818 4819 i_size_write(inode, newsize); 4820 btrfs_inode_safe_disk_i_size_write(inode, 0); 4821 pagecache_isize_extended(inode, oldsize, newsize); 4822 ret = btrfs_update_inode(trans, root, inode); 4823 btrfs_drew_write_unlock(&root->snapshot_lock); 4824 btrfs_end_transaction(trans); 4825 } else { 4826 4827 /* 4828 * We're truncating a file that used to have good data down to 4829 * zero. Make sure it gets into the ordered flush list so that 4830 * any new writes get down to disk quickly. 4831 */ 4832 if (newsize == 0) 4833 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4834 &BTRFS_I(inode)->runtime_flags); 4835 4836 truncate_setsize(inode, newsize); 4837 4838 /* Disable nonlocked read DIO to avoid the endless truncate */ 4839 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 4840 inode_dio_wait(inode); 4841 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 4842 4843 ret = btrfs_truncate(inode, newsize == oldsize); 4844 if (ret && inode->i_nlink) { 4845 int err; 4846 4847 /* 4848 * Truncate failed, so fix up the in-memory size. We 4849 * adjusted disk_i_size down as we removed extents, so 4850 * wait for disk_i_size to be stable and then update the 4851 * in-memory size to match. 4852 */ 4853 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4854 if (err) 4855 return err; 4856 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4857 } 4858 } 4859 4860 return ret; 4861 } 4862 4863 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4864 { 4865 struct inode *inode = d_inode(dentry); 4866 struct btrfs_root *root = BTRFS_I(inode)->root; 4867 int err; 4868 4869 if (btrfs_root_readonly(root)) 4870 return -EROFS; 4871 4872 err = setattr_prepare(dentry, attr); 4873 if (err) 4874 return err; 4875 4876 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4877 err = btrfs_setsize(inode, attr); 4878 if (err) 4879 return err; 4880 } 4881 4882 if (attr->ia_valid) { 4883 setattr_copy(inode, attr); 4884 inode_inc_iversion(inode); 4885 err = btrfs_dirty_inode(inode); 4886 4887 if (!err && attr->ia_valid & ATTR_MODE) 4888 err = posix_acl_chmod(inode, inode->i_mode); 4889 } 4890 4891 return err; 4892 } 4893 4894 /* 4895 * While truncating the inode pages during eviction, we get the VFS calling 4896 * btrfs_invalidatepage() against each page of the inode. This is slow because 4897 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4898 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4899 * extent_state structures over and over, wasting lots of time. 4900 * 4901 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4902 * those expensive operations on a per page basis and do only the ordered io 4903 * finishing, while we release here the extent_map and extent_state structures, 4904 * without the excessive merging and splitting. 4905 */ 4906 static void evict_inode_truncate_pages(struct inode *inode) 4907 { 4908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4909 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4910 struct rb_node *node; 4911 4912 ASSERT(inode->i_state & I_FREEING); 4913 truncate_inode_pages_final(&inode->i_data); 4914 4915 write_lock(&map_tree->lock); 4916 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4917 struct extent_map *em; 4918 4919 node = rb_first_cached(&map_tree->map); 4920 em = rb_entry(node, struct extent_map, rb_node); 4921 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4922 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4923 remove_extent_mapping(map_tree, em); 4924 free_extent_map(em); 4925 if (need_resched()) { 4926 write_unlock(&map_tree->lock); 4927 cond_resched(); 4928 write_lock(&map_tree->lock); 4929 } 4930 } 4931 write_unlock(&map_tree->lock); 4932 4933 /* 4934 * Keep looping until we have no more ranges in the io tree. 4935 * We can have ongoing bios started by readahead that have 4936 * their endio callback (extent_io.c:end_bio_extent_readpage) 4937 * still in progress (unlocked the pages in the bio but did not yet 4938 * unlocked the ranges in the io tree). Therefore this means some 4939 * ranges can still be locked and eviction started because before 4940 * submitting those bios, which are executed by a separate task (work 4941 * queue kthread), inode references (inode->i_count) were not taken 4942 * (which would be dropped in the end io callback of each bio). 4943 * Therefore here we effectively end up waiting for those bios and 4944 * anyone else holding locked ranges without having bumped the inode's 4945 * reference count - if we don't do it, when they access the inode's 4946 * io_tree to unlock a range it may be too late, leading to an 4947 * use-after-free issue. 4948 */ 4949 spin_lock(&io_tree->lock); 4950 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4951 struct extent_state *state; 4952 struct extent_state *cached_state = NULL; 4953 u64 start; 4954 u64 end; 4955 unsigned state_flags; 4956 4957 node = rb_first(&io_tree->state); 4958 state = rb_entry(node, struct extent_state, rb_node); 4959 start = state->start; 4960 end = state->end; 4961 state_flags = state->state; 4962 spin_unlock(&io_tree->lock); 4963 4964 lock_extent_bits(io_tree, start, end, &cached_state); 4965 4966 /* 4967 * If still has DELALLOC flag, the extent didn't reach disk, 4968 * and its reserved space won't be freed by delayed_ref. 4969 * So we need to free its reserved space here. 4970 * (Refer to comment in btrfs_invalidatepage, case 2) 4971 * 4972 * Note, end is the bytenr of last byte, so we need + 1 here. 4973 */ 4974 if (state_flags & EXTENT_DELALLOC) 4975 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 4976 4977 clear_extent_bit(io_tree, start, end, 4978 EXTENT_LOCKED | EXTENT_DELALLOC | 4979 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4980 &cached_state); 4981 4982 cond_resched(); 4983 spin_lock(&io_tree->lock); 4984 } 4985 spin_unlock(&io_tree->lock); 4986 } 4987 4988 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4989 struct btrfs_block_rsv *rsv) 4990 { 4991 struct btrfs_fs_info *fs_info = root->fs_info; 4992 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4993 struct btrfs_trans_handle *trans; 4994 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 4995 int ret; 4996 4997 /* 4998 * Eviction should be taking place at some place safe because of our 4999 * delayed iputs. However the normal flushing code will run delayed 5000 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5001 * 5002 * We reserve the delayed_refs_extra here again because we can't use 5003 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5004 * above. We reserve our extra bit here because we generate a ton of 5005 * delayed refs activity by truncating. 5006 * 5007 * If we cannot make our reservation we'll attempt to steal from the 5008 * global reserve, because we really want to be able to free up space. 5009 */ 5010 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5011 BTRFS_RESERVE_FLUSH_EVICT); 5012 if (ret) { 5013 /* 5014 * Try to steal from the global reserve if there is space for 5015 * it. 5016 */ 5017 if (btrfs_check_space_for_delayed_refs(fs_info) || 5018 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5019 btrfs_warn(fs_info, 5020 "could not allocate space for delete; will truncate on mount"); 5021 return ERR_PTR(-ENOSPC); 5022 } 5023 delayed_refs_extra = 0; 5024 } 5025 5026 trans = btrfs_join_transaction(root); 5027 if (IS_ERR(trans)) 5028 return trans; 5029 5030 if (delayed_refs_extra) { 5031 trans->block_rsv = &fs_info->trans_block_rsv; 5032 trans->bytes_reserved = delayed_refs_extra; 5033 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5034 delayed_refs_extra, 1); 5035 } 5036 return trans; 5037 } 5038 5039 void btrfs_evict_inode(struct inode *inode) 5040 { 5041 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5042 struct btrfs_trans_handle *trans; 5043 struct btrfs_root *root = BTRFS_I(inode)->root; 5044 struct btrfs_block_rsv *rsv; 5045 int ret; 5046 5047 trace_btrfs_inode_evict(inode); 5048 5049 if (!root) { 5050 clear_inode(inode); 5051 return; 5052 } 5053 5054 evict_inode_truncate_pages(inode); 5055 5056 if (inode->i_nlink && 5057 ((btrfs_root_refs(&root->root_item) != 0 && 5058 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5059 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5060 goto no_delete; 5061 5062 if (is_bad_inode(inode)) 5063 goto no_delete; 5064 5065 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5066 5067 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5068 goto no_delete; 5069 5070 if (inode->i_nlink > 0) { 5071 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5072 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5073 goto no_delete; 5074 } 5075 5076 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5077 if (ret) 5078 goto no_delete; 5079 5080 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5081 if (!rsv) 5082 goto no_delete; 5083 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5084 rsv->failfast = 1; 5085 5086 btrfs_i_size_write(BTRFS_I(inode), 0); 5087 5088 while (1) { 5089 trans = evict_refill_and_join(root, rsv); 5090 if (IS_ERR(trans)) 5091 goto free_rsv; 5092 5093 trans->block_rsv = rsv; 5094 5095 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5096 trans->block_rsv = &fs_info->trans_block_rsv; 5097 btrfs_end_transaction(trans); 5098 btrfs_btree_balance_dirty(fs_info); 5099 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5100 goto free_rsv; 5101 else if (!ret) 5102 break; 5103 } 5104 5105 /* 5106 * Errors here aren't a big deal, it just means we leave orphan items in 5107 * the tree. They will be cleaned up on the next mount. If the inode 5108 * number gets reused, cleanup deletes the orphan item without doing 5109 * anything, and unlink reuses the existing orphan item. 5110 * 5111 * If it turns out that we are dropping too many of these, we might want 5112 * to add a mechanism for retrying these after a commit. 5113 */ 5114 trans = evict_refill_and_join(root, rsv); 5115 if (!IS_ERR(trans)) { 5116 trans->block_rsv = rsv; 5117 btrfs_orphan_del(trans, BTRFS_I(inode)); 5118 trans->block_rsv = &fs_info->trans_block_rsv; 5119 btrfs_end_transaction(trans); 5120 } 5121 5122 if (!(root == fs_info->tree_root || 5123 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5124 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5125 5126 free_rsv: 5127 btrfs_free_block_rsv(fs_info, rsv); 5128 no_delete: 5129 /* 5130 * If we didn't successfully delete, the orphan item will still be in 5131 * the tree and we'll retry on the next mount. Again, we might also want 5132 * to retry these periodically in the future. 5133 */ 5134 btrfs_remove_delayed_node(BTRFS_I(inode)); 5135 clear_inode(inode); 5136 } 5137 5138 /* 5139 * Return the key found in the dir entry in the location pointer, fill @type 5140 * with BTRFS_FT_*, and return 0. 5141 * 5142 * If no dir entries were found, returns -ENOENT. 5143 * If found a corrupted location in dir entry, returns -EUCLEAN. 5144 */ 5145 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5146 struct btrfs_key *location, u8 *type) 5147 { 5148 const char *name = dentry->d_name.name; 5149 int namelen = dentry->d_name.len; 5150 struct btrfs_dir_item *di; 5151 struct btrfs_path *path; 5152 struct btrfs_root *root = BTRFS_I(dir)->root; 5153 int ret = 0; 5154 5155 path = btrfs_alloc_path(); 5156 if (!path) 5157 return -ENOMEM; 5158 5159 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5160 name, namelen, 0); 5161 if (IS_ERR_OR_NULL(di)) { 5162 ret = di ? PTR_ERR(di) : -ENOENT; 5163 goto out; 5164 } 5165 5166 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5167 if (location->type != BTRFS_INODE_ITEM_KEY && 5168 location->type != BTRFS_ROOT_ITEM_KEY) { 5169 ret = -EUCLEAN; 5170 btrfs_warn(root->fs_info, 5171 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5172 __func__, name, btrfs_ino(BTRFS_I(dir)), 5173 location->objectid, location->type, location->offset); 5174 } 5175 if (!ret) 5176 *type = btrfs_dir_type(path->nodes[0], di); 5177 out: 5178 btrfs_free_path(path); 5179 return ret; 5180 } 5181 5182 /* 5183 * when we hit a tree root in a directory, the btrfs part of the inode 5184 * needs to be changed to reflect the root directory of the tree root. This 5185 * is kind of like crossing a mount point. 5186 */ 5187 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5188 struct inode *dir, 5189 struct dentry *dentry, 5190 struct btrfs_key *location, 5191 struct btrfs_root **sub_root) 5192 { 5193 struct btrfs_path *path; 5194 struct btrfs_root *new_root; 5195 struct btrfs_root_ref *ref; 5196 struct extent_buffer *leaf; 5197 struct btrfs_key key; 5198 int ret; 5199 int err = 0; 5200 5201 path = btrfs_alloc_path(); 5202 if (!path) { 5203 err = -ENOMEM; 5204 goto out; 5205 } 5206 5207 err = -ENOENT; 5208 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5209 key.type = BTRFS_ROOT_REF_KEY; 5210 key.offset = location->objectid; 5211 5212 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5213 if (ret) { 5214 if (ret < 0) 5215 err = ret; 5216 goto out; 5217 } 5218 5219 leaf = path->nodes[0]; 5220 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5221 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5222 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5223 goto out; 5224 5225 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5226 (unsigned long)(ref + 1), 5227 dentry->d_name.len); 5228 if (ret) 5229 goto out; 5230 5231 btrfs_release_path(path); 5232 5233 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5234 if (IS_ERR(new_root)) { 5235 err = PTR_ERR(new_root); 5236 goto out; 5237 } 5238 5239 *sub_root = new_root; 5240 location->objectid = btrfs_root_dirid(&new_root->root_item); 5241 location->type = BTRFS_INODE_ITEM_KEY; 5242 location->offset = 0; 5243 err = 0; 5244 out: 5245 btrfs_free_path(path); 5246 return err; 5247 } 5248 5249 static void inode_tree_add(struct inode *inode) 5250 { 5251 struct btrfs_root *root = BTRFS_I(inode)->root; 5252 struct btrfs_inode *entry; 5253 struct rb_node **p; 5254 struct rb_node *parent; 5255 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5256 u64 ino = btrfs_ino(BTRFS_I(inode)); 5257 5258 if (inode_unhashed(inode)) 5259 return; 5260 parent = NULL; 5261 spin_lock(&root->inode_lock); 5262 p = &root->inode_tree.rb_node; 5263 while (*p) { 5264 parent = *p; 5265 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5266 5267 if (ino < btrfs_ino(entry)) 5268 p = &parent->rb_left; 5269 else if (ino > btrfs_ino(entry)) 5270 p = &parent->rb_right; 5271 else { 5272 WARN_ON(!(entry->vfs_inode.i_state & 5273 (I_WILL_FREE | I_FREEING))); 5274 rb_replace_node(parent, new, &root->inode_tree); 5275 RB_CLEAR_NODE(parent); 5276 spin_unlock(&root->inode_lock); 5277 return; 5278 } 5279 } 5280 rb_link_node(new, parent, p); 5281 rb_insert_color(new, &root->inode_tree); 5282 spin_unlock(&root->inode_lock); 5283 } 5284 5285 static void inode_tree_del(struct inode *inode) 5286 { 5287 struct btrfs_root *root = BTRFS_I(inode)->root; 5288 int empty = 0; 5289 5290 spin_lock(&root->inode_lock); 5291 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5292 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5293 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5294 empty = RB_EMPTY_ROOT(&root->inode_tree); 5295 } 5296 spin_unlock(&root->inode_lock); 5297 5298 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5299 spin_lock(&root->inode_lock); 5300 empty = RB_EMPTY_ROOT(&root->inode_tree); 5301 spin_unlock(&root->inode_lock); 5302 if (empty) 5303 btrfs_add_dead_root(root); 5304 } 5305 } 5306 5307 5308 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5309 { 5310 struct btrfs_iget_args *args = p; 5311 5312 inode->i_ino = args->ino; 5313 BTRFS_I(inode)->location.objectid = args->ino; 5314 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5315 BTRFS_I(inode)->location.offset = 0; 5316 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5317 BUG_ON(args->root && !BTRFS_I(inode)->root); 5318 return 0; 5319 } 5320 5321 static int btrfs_find_actor(struct inode *inode, void *opaque) 5322 { 5323 struct btrfs_iget_args *args = opaque; 5324 5325 return args->ino == BTRFS_I(inode)->location.objectid && 5326 args->root == BTRFS_I(inode)->root; 5327 } 5328 5329 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5330 struct btrfs_root *root) 5331 { 5332 struct inode *inode; 5333 struct btrfs_iget_args args; 5334 unsigned long hashval = btrfs_inode_hash(ino, root); 5335 5336 args.ino = ino; 5337 args.root = root; 5338 5339 inode = iget5_locked(s, hashval, btrfs_find_actor, 5340 btrfs_init_locked_inode, 5341 (void *)&args); 5342 return inode; 5343 } 5344 5345 /* 5346 * Get an inode object given its inode number and corresponding root. 5347 * Path can be preallocated to prevent recursing back to iget through 5348 * allocator. NULL is also valid but may require an additional allocation 5349 * later. 5350 */ 5351 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5352 struct btrfs_root *root, struct btrfs_path *path) 5353 { 5354 struct inode *inode; 5355 5356 inode = btrfs_iget_locked(s, ino, root); 5357 if (!inode) 5358 return ERR_PTR(-ENOMEM); 5359 5360 if (inode->i_state & I_NEW) { 5361 int ret; 5362 5363 ret = btrfs_read_locked_inode(inode, path); 5364 if (!ret) { 5365 inode_tree_add(inode); 5366 unlock_new_inode(inode); 5367 } else { 5368 iget_failed(inode); 5369 /* 5370 * ret > 0 can come from btrfs_search_slot called by 5371 * btrfs_read_locked_inode, this means the inode item 5372 * was not found. 5373 */ 5374 if (ret > 0) 5375 ret = -ENOENT; 5376 inode = ERR_PTR(ret); 5377 } 5378 } 5379 5380 return inode; 5381 } 5382 5383 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5384 { 5385 return btrfs_iget_path(s, ino, root, NULL); 5386 } 5387 5388 static struct inode *new_simple_dir(struct super_block *s, 5389 struct btrfs_key *key, 5390 struct btrfs_root *root) 5391 { 5392 struct inode *inode = new_inode(s); 5393 5394 if (!inode) 5395 return ERR_PTR(-ENOMEM); 5396 5397 BTRFS_I(inode)->root = btrfs_grab_root(root); 5398 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5399 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5400 5401 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5402 /* 5403 * We only need lookup, the rest is read-only and there's no inode 5404 * associated with the dentry 5405 */ 5406 inode->i_op = &simple_dir_inode_operations; 5407 inode->i_opflags &= ~IOP_XATTR; 5408 inode->i_fop = &simple_dir_operations; 5409 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5410 inode->i_mtime = current_time(inode); 5411 inode->i_atime = inode->i_mtime; 5412 inode->i_ctime = inode->i_mtime; 5413 BTRFS_I(inode)->i_otime = inode->i_mtime; 5414 5415 return inode; 5416 } 5417 5418 static inline u8 btrfs_inode_type(struct inode *inode) 5419 { 5420 /* 5421 * Compile-time asserts that generic FT_* types still match 5422 * BTRFS_FT_* types 5423 */ 5424 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5425 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5426 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5427 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5428 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5429 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5430 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5431 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5432 5433 return fs_umode_to_ftype(inode->i_mode); 5434 } 5435 5436 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5437 { 5438 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5439 struct inode *inode; 5440 struct btrfs_root *root = BTRFS_I(dir)->root; 5441 struct btrfs_root *sub_root = root; 5442 struct btrfs_key location; 5443 u8 di_type = 0; 5444 int ret = 0; 5445 5446 if (dentry->d_name.len > BTRFS_NAME_LEN) 5447 return ERR_PTR(-ENAMETOOLONG); 5448 5449 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5450 if (ret < 0) 5451 return ERR_PTR(ret); 5452 5453 if (location.type == BTRFS_INODE_ITEM_KEY) { 5454 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5455 if (IS_ERR(inode)) 5456 return inode; 5457 5458 /* Do extra check against inode mode with di_type */ 5459 if (btrfs_inode_type(inode) != di_type) { 5460 btrfs_crit(fs_info, 5461 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5462 inode->i_mode, btrfs_inode_type(inode), 5463 di_type); 5464 iput(inode); 5465 return ERR_PTR(-EUCLEAN); 5466 } 5467 return inode; 5468 } 5469 5470 ret = fixup_tree_root_location(fs_info, dir, dentry, 5471 &location, &sub_root); 5472 if (ret < 0) { 5473 if (ret != -ENOENT) 5474 inode = ERR_PTR(ret); 5475 else 5476 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5477 } else { 5478 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5479 } 5480 if (root != sub_root) 5481 btrfs_put_root(sub_root); 5482 5483 if (!IS_ERR(inode) && root != sub_root) { 5484 down_read(&fs_info->cleanup_work_sem); 5485 if (!sb_rdonly(inode->i_sb)) 5486 ret = btrfs_orphan_cleanup(sub_root); 5487 up_read(&fs_info->cleanup_work_sem); 5488 if (ret) { 5489 iput(inode); 5490 inode = ERR_PTR(ret); 5491 } 5492 } 5493 5494 return inode; 5495 } 5496 5497 static int btrfs_dentry_delete(const struct dentry *dentry) 5498 { 5499 struct btrfs_root *root; 5500 struct inode *inode = d_inode(dentry); 5501 5502 if (!inode && !IS_ROOT(dentry)) 5503 inode = d_inode(dentry->d_parent); 5504 5505 if (inode) { 5506 root = BTRFS_I(inode)->root; 5507 if (btrfs_root_refs(&root->root_item) == 0) 5508 return 1; 5509 5510 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5511 return 1; 5512 } 5513 return 0; 5514 } 5515 5516 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5517 unsigned int flags) 5518 { 5519 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5520 5521 if (inode == ERR_PTR(-ENOENT)) 5522 inode = NULL; 5523 return d_splice_alias(inode, dentry); 5524 } 5525 5526 /* 5527 * All this infrastructure exists because dir_emit can fault, and we are holding 5528 * the tree lock when doing readdir. For now just allocate a buffer and copy 5529 * our information into that, and then dir_emit from the buffer. This is 5530 * similar to what NFS does, only we don't keep the buffer around in pagecache 5531 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5532 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5533 * tree lock. 5534 */ 5535 static int btrfs_opendir(struct inode *inode, struct file *file) 5536 { 5537 struct btrfs_file_private *private; 5538 5539 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5540 if (!private) 5541 return -ENOMEM; 5542 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5543 if (!private->filldir_buf) { 5544 kfree(private); 5545 return -ENOMEM; 5546 } 5547 file->private_data = private; 5548 return 0; 5549 } 5550 5551 struct dir_entry { 5552 u64 ino; 5553 u64 offset; 5554 unsigned type; 5555 int name_len; 5556 }; 5557 5558 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5559 { 5560 while (entries--) { 5561 struct dir_entry *entry = addr; 5562 char *name = (char *)(entry + 1); 5563 5564 ctx->pos = get_unaligned(&entry->offset); 5565 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5566 get_unaligned(&entry->ino), 5567 get_unaligned(&entry->type))) 5568 return 1; 5569 addr += sizeof(struct dir_entry) + 5570 get_unaligned(&entry->name_len); 5571 ctx->pos++; 5572 } 5573 return 0; 5574 } 5575 5576 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5577 { 5578 struct inode *inode = file_inode(file); 5579 struct btrfs_root *root = BTRFS_I(inode)->root; 5580 struct btrfs_file_private *private = file->private_data; 5581 struct btrfs_dir_item *di; 5582 struct btrfs_key key; 5583 struct btrfs_key found_key; 5584 struct btrfs_path *path; 5585 void *addr; 5586 struct list_head ins_list; 5587 struct list_head del_list; 5588 int ret; 5589 struct extent_buffer *leaf; 5590 int slot; 5591 char *name_ptr; 5592 int name_len; 5593 int entries = 0; 5594 int total_len = 0; 5595 bool put = false; 5596 struct btrfs_key location; 5597 5598 if (!dir_emit_dots(file, ctx)) 5599 return 0; 5600 5601 path = btrfs_alloc_path(); 5602 if (!path) 5603 return -ENOMEM; 5604 5605 addr = private->filldir_buf; 5606 path->reada = READA_FORWARD; 5607 5608 INIT_LIST_HEAD(&ins_list); 5609 INIT_LIST_HEAD(&del_list); 5610 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5611 5612 again: 5613 key.type = BTRFS_DIR_INDEX_KEY; 5614 key.offset = ctx->pos; 5615 key.objectid = btrfs_ino(BTRFS_I(inode)); 5616 5617 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5618 if (ret < 0) 5619 goto err; 5620 5621 while (1) { 5622 struct dir_entry *entry; 5623 5624 leaf = path->nodes[0]; 5625 slot = path->slots[0]; 5626 if (slot >= btrfs_header_nritems(leaf)) { 5627 ret = btrfs_next_leaf(root, path); 5628 if (ret < 0) 5629 goto err; 5630 else if (ret > 0) 5631 break; 5632 continue; 5633 } 5634 5635 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5636 5637 if (found_key.objectid != key.objectid) 5638 break; 5639 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5640 break; 5641 if (found_key.offset < ctx->pos) 5642 goto next; 5643 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5644 goto next; 5645 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5646 name_len = btrfs_dir_name_len(leaf, di); 5647 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5648 PAGE_SIZE) { 5649 btrfs_release_path(path); 5650 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5651 if (ret) 5652 goto nopos; 5653 addr = private->filldir_buf; 5654 entries = 0; 5655 total_len = 0; 5656 goto again; 5657 } 5658 5659 entry = addr; 5660 put_unaligned(name_len, &entry->name_len); 5661 name_ptr = (char *)(entry + 1); 5662 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5663 name_len); 5664 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5665 &entry->type); 5666 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5667 put_unaligned(location.objectid, &entry->ino); 5668 put_unaligned(found_key.offset, &entry->offset); 5669 entries++; 5670 addr += sizeof(struct dir_entry) + name_len; 5671 total_len += sizeof(struct dir_entry) + name_len; 5672 next: 5673 path->slots[0]++; 5674 } 5675 btrfs_release_path(path); 5676 5677 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5678 if (ret) 5679 goto nopos; 5680 5681 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5682 if (ret) 5683 goto nopos; 5684 5685 /* 5686 * Stop new entries from being returned after we return the last 5687 * entry. 5688 * 5689 * New directory entries are assigned a strictly increasing 5690 * offset. This means that new entries created during readdir 5691 * are *guaranteed* to be seen in the future by that readdir. 5692 * This has broken buggy programs which operate on names as 5693 * they're returned by readdir. Until we re-use freed offsets 5694 * we have this hack to stop new entries from being returned 5695 * under the assumption that they'll never reach this huge 5696 * offset. 5697 * 5698 * This is being careful not to overflow 32bit loff_t unless the 5699 * last entry requires it because doing so has broken 32bit apps 5700 * in the past. 5701 */ 5702 if (ctx->pos >= INT_MAX) 5703 ctx->pos = LLONG_MAX; 5704 else 5705 ctx->pos = INT_MAX; 5706 nopos: 5707 ret = 0; 5708 err: 5709 if (put) 5710 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5711 btrfs_free_path(path); 5712 return ret; 5713 } 5714 5715 /* 5716 * This is somewhat expensive, updating the tree every time the 5717 * inode changes. But, it is most likely to find the inode in cache. 5718 * FIXME, needs more benchmarking...there are no reasons other than performance 5719 * to keep or drop this code. 5720 */ 5721 static int btrfs_dirty_inode(struct inode *inode) 5722 { 5723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5724 struct btrfs_root *root = BTRFS_I(inode)->root; 5725 struct btrfs_trans_handle *trans; 5726 int ret; 5727 5728 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5729 return 0; 5730 5731 trans = btrfs_join_transaction(root); 5732 if (IS_ERR(trans)) 5733 return PTR_ERR(trans); 5734 5735 ret = btrfs_update_inode(trans, root, inode); 5736 if (ret && ret == -ENOSPC) { 5737 /* whoops, lets try again with the full transaction */ 5738 btrfs_end_transaction(trans); 5739 trans = btrfs_start_transaction(root, 1); 5740 if (IS_ERR(trans)) 5741 return PTR_ERR(trans); 5742 5743 ret = btrfs_update_inode(trans, root, inode); 5744 } 5745 btrfs_end_transaction(trans); 5746 if (BTRFS_I(inode)->delayed_node) 5747 btrfs_balance_delayed_items(fs_info); 5748 5749 return ret; 5750 } 5751 5752 /* 5753 * This is a copy of file_update_time. We need this so we can return error on 5754 * ENOSPC for updating the inode in the case of file write and mmap writes. 5755 */ 5756 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5757 int flags) 5758 { 5759 struct btrfs_root *root = BTRFS_I(inode)->root; 5760 bool dirty = flags & ~S_VERSION; 5761 5762 if (btrfs_root_readonly(root)) 5763 return -EROFS; 5764 5765 if (flags & S_VERSION) 5766 dirty |= inode_maybe_inc_iversion(inode, dirty); 5767 if (flags & S_CTIME) 5768 inode->i_ctime = *now; 5769 if (flags & S_MTIME) 5770 inode->i_mtime = *now; 5771 if (flags & S_ATIME) 5772 inode->i_atime = *now; 5773 return dirty ? btrfs_dirty_inode(inode) : 0; 5774 } 5775 5776 /* 5777 * find the highest existing sequence number in a directory 5778 * and then set the in-memory index_cnt variable to reflect 5779 * free sequence numbers 5780 */ 5781 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5782 { 5783 struct btrfs_root *root = inode->root; 5784 struct btrfs_key key, found_key; 5785 struct btrfs_path *path; 5786 struct extent_buffer *leaf; 5787 int ret; 5788 5789 key.objectid = btrfs_ino(inode); 5790 key.type = BTRFS_DIR_INDEX_KEY; 5791 key.offset = (u64)-1; 5792 5793 path = btrfs_alloc_path(); 5794 if (!path) 5795 return -ENOMEM; 5796 5797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5798 if (ret < 0) 5799 goto out; 5800 /* FIXME: we should be able to handle this */ 5801 if (ret == 0) 5802 goto out; 5803 ret = 0; 5804 5805 /* 5806 * MAGIC NUMBER EXPLANATION: 5807 * since we search a directory based on f_pos we have to start at 2 5808 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5809 * else has to start at 2 5810 */ 5811 if (path->slots[0] == 0) { 5812 inode->index_cnt = 2; 5813 goto out; 5814 } 5815 5816 path->slots[0]--; 5817 5818 leaf = path->nodes[0]; 5819 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5820 5821 if (found_key.objectid != btrfs_ino(inode) || 5822 found_key.type != BTRFS_DIR_INDEX_KEY) { 5823 inode->index_cnt = 2; 5824 goto out; 5825 } 5826 5827 inode->index_cnt = found_key.offset + 1; 5828 out: 5829 btrfs_free_path(path); 5830 return ret; 5831 } 5832 5833 /* 5834 * helper to find a free sequence number in a given directory. This current 5835 * code is very simple, later versions will do smarter things in the btree 5836 */ 5837 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5838 { 5839 int ret = 0; 5840 5841 if (dir->index_cnt == (u64)-1) { 5842 ret = btrfs_inode_delayed_dir_index_count(dir); 5843 if (ret) { 5844 ret = btrfs_set_inode_index_count(dir); 5845 if (ret) 5846 return ret; 5847 } 5848 } 5849 5850 *index = dir->index_cnt; 5851 dir->index_cnt++; 5852 5853 return ret; 5854 } 5855 5856 static int btrfs_insert_inode_locked(struct inode *inode) 5857 { 5858 struct btrfs_iget_args args; 5859 5860 args.ino = BTRFS_I(inode)->location.objectid; 5861 args.root = BTRFS_I(inode)->root; 5862 5863 return insert_inode_locked4(inode, 5864 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5865 btrfs_find_actor, &args); 5866 } 5867 5868 /* 5869 * Inherit flags from the parent inode. 5870 * 5871 * Currently only the compression flags and the cow flags are inherited. 5872 */ 5873 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5874 { 5875 unsigned int flags; 5876 5877 if (!dir) 5878 return; 5879 5880 flags = BTRFS_I(dir)->flags; 5881 5882 if (flags & BTRFS_INODE_NOCOMPRESS) { 5883 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5884 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5885 } else if (flags & BTRFS_INODE_COMPRESS) { 5886 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5887 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5888 } 5889 5890 if (flags & BTRFS_INODE_NODATACOW) { 5891 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5892 if (S_ISREG(inode->i_mode)) 5893 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5894 } 5895 5896 btrfs_sync_inode_flags_to_i_flags(inode); 5897 } 5898 5899 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5900 struct btrfs_root *root, 5901 struct inode *dir, 5902 const char *name, int name_len, 5903 u64 ref_objectid, u64 objectid, 5904 umode_t mode, u64 *index) 5905 { 5906 struct btrfs_fs_info *fs_info = root->fs_info; 5907 struct inode *inode; 5908 struct btrfs_inode_item *inode_item; 5909 struct btrfs_key *location; 5910 struct btrfs_path *path; 5911 struct btrfs_inode_ref *ref; 5912 struct btrfs_key key[2]; 5913 u32 sizes[2]; 5914 int nitems = name ? 2 : 1; 5915 unsigned long ptr; 5916 unsigned int nofs_flag; 5917 int ret; 5918 5919 path = btrfs_alloc_path(); 5920 if (!path) 5921 return ERR_PTR(-ENOMEM); 5922 5923 nofs_flag = memalloc_nofs_save(); 5924 inode = new_inode(fs_info->sb); 5925 memalloc_nofs_restore(nofs_flag); 5926 if (!inode) { 5927 btrfs_free_path(path); 5928 return ERR_PTR(-ENOMEM); 5929 } 5930 5931 /* 5932 * O_TMPFILE, set link count to 0, so that after this point, 5933 * we fill in an inode item with the correct link count. 5934 */ 5935 if (!name) 5936 set_nlink(inode, 0); 5937 5938 /* 5939 * we have to initialize this early, so we can reclaim the inode 5940 * number if we fail afterwards in this function. 5941 */ 5942 inode->i_ino = objectid; 5943 5944 if (dir && name) { 5945 trace_btrfs_inode_request(dir); 5946 5947 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5948 if (ret) { 5949 btrfs_free_path(path); 5950 iput(inode); 5951 return ERR_PTR(ret); 5952 } 5953 } else if (dir) { 5954 *index = 0; 5955 } 5956 /* 5957 * index_cnt is ignored for everything but a dir, 5958 * btrfs_set_inode_index_count has an explanation for the magic 5959 * number 5960 */ 5961 BTRFS_I(inode)->index_cnt = 2; 5962 BTRFS_I(inode)->dir_index = *index; 5963 BTRFS_I(inode)->root = btrfs_grab_root(root); 5964 BTRFS_I(inode)->generation = trans->transid; 5965 inode->i_generation = BTRFS_I(inode)->generation; 5966 5967 /* 5968 * We could have gotten an inode number from somebody who was fsynced 5969 * and then removed in this same transaction, so let's just set full 5970 * sync since it will be a full sync anyway and this will blow away the 5971 * old info in the log. 5972 */ 5973 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5974 5975 key[0].objectid = objectid; 5976 key[0].type = BTRFS_INODE_ITEM_KEY; 5977 key[0].offset = 0; 5978 5979 sizes[0] = sizeof(struct btrfs_inode_item); 5980 5981 if (name) { 5982 /* 5983 * Start new inodes with an inode_ref. This is slightly more 5984 * efficient for small numbers of hard links since they will 5985 * be packed into one item. Extended refs will kick in if we 5986 * add more hard links than can fit in the ref item. 5987 */ 5988 key[1].objectid = objectid; 5989 key[1].type = BTRFS_INODE_REF_KEY; 5990 key[1].offset = ref_objectid; 5991 5992 sizes[1] = name_len + sizeof(*ref); 5993 } 5994 5995 location = &BTRFS_I(inode)->location; 5996 location->objectid = objectid; 5997 location->offset = 0; 5998 location->type = BTRFS_INODE_ITEM_KEY; 5999 6000 ret = btrfs_insert_inode_locked(inode); 6001 if (ret < 0) { 6002 iput(inode); 6003 goto fail; 6004 } 6005 6006 path->leave_spinning = 1; 6007 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6008 if (ret != 0) 6009 goto fail_unlock; 6010 6011 inode_init_owner(inode, dir, mode); 6012 inode_set_bytes(inode, 0); 6013 6014 inode->i_mtime = current_time(inode); 6015 inode->i_atime = inode->i_mtime; 6016 inode->i_ctime = inode->i_mtime; 6017 BTRFS_I(inode)->i_otime = inode->i_mtime; 6018 6019 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6020 struct btrfs_inode_item); 6021 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6022 sizeof(*inode_item)); 6023 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6024 6025 if (name) { 6026 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6027 struct btrfs_inode_ref); 6028 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6029 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6030 ptr = (unsigned long)(ref + 1); 6031 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6032 } 6033 6034 btrfs_mark_buffer_dirty(path->nodes[0]); 6035 btrfs_free_path(path); 6036 6037 btrfs_inherit_iflags(inode, dir); 6038 6039 if (S_ISREG(mode)) { 6040 if (btrfs_test_opt(fs_info, NODATASUM)) 6041 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6042 if (btrfs_test_opt(fs_info, NODATACOW)) 6043 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6044 BTRFS_INODE_NODATASUM; 6045 } 6046 6047 inode_tree_add(inode); 6048 6049 trace_btrfs_inode_new(inode); 6050 btrfs_set_inode_last_trans(trans, inode); 6051 6052 btrfs_update_root_times(trans, root); 6053 6054 ret = btrfs_inode_inherit_props(trans, inode, dir); 6055 if (ret) 6056 btrfs_err(fs_info, 6057 "error inheriting props for ino %llu (root %llu): %d", 6058 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6059 6060 return inode; 6061 6062 fail_unlock: 6063 discard_new_inode(inode); 6064 fail: 6065 if (dir && name) 6066 BTRFS_I(dir)->index_cnt--; 6067 btrfs_free_path(path); 6068 return ERR_PTR(ret); 6069 } 6070 6071 /* 6072 * utility function to add 'inode' into 'parent_inode' with 6073 * a give name and a given sequence number. 6074 * if 'add_backref' is true, also insert a backref from the 6075 * inode to the parent directory. 6076 */ 6077 int btrfs_add_link(struct btrfs_trans_handle *trans, 6078 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6079 const char *name, int name_len, int add_backref, u64 index) 6080 { 6081 int ret = 0; 6082 struct btrfs_key key; 6083 struct btrfs_root *root = parent_inode->root; 6084 u64 ino = btrfs_ino(inode); 6085 u64 parent_ino = btrfs_ino(parent_inode); 6086 6087 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6088 memcpy(&key, &inode->root->root_key, sizeof(key)); 6089 } else { 6090 key.objectid = ino; 6091 key.type = BTRFS_INODE_ITEM_KEY; 6092 key.offset = 0; 6093 } 6094 6095 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6096 ret = btrfs_add_root_ref(trans, key.objectid, 6097 root->root_key.objectid, parent_ino, 6098 index, name, name_len); 6099 } else if (add_backref) { 6100 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6101 parent_ino, index); 6102 } 6103 6104 /* Nothing to clean up yet */ 6105 if (ret) 6106 return ret; 6107 6108 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6109 btrfs_inode_type(&inode->vfs_inode), index); 6110 if (ret == -EEXIST || ret == -EOVERFLOW) 6111 goto fail_dir_item; 6112 else if (ret) { 6113 btrfs_abort_transaction(trans, ret); 6114 return ret; 6115 } 6116 6117 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6118 name_len * 2); 6119 inode_inc_iversion(&parent_inode->vfs_inode); 6120 /* 6121 * If we are replaying a log tree, we do not want to update the mtime 6122 * and ctime of the parent directory with the current time, since the 6123 * log replay procedure is responsible for setting them to their correct 6124 * values (the ones it had when the fsync was done). 6125 */ 6126 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6127 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6128 6129 parent_inode->vfs_inode.i_mtime = now; 6130 parent_inode->vfs_inode.i_ctime = now; 6131 } 6132 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6133 if (ret) 6134 btrfs_abort_transaction(trans, ret); 6135 return ret; 6136 6137 fail_dir_item: 6138 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6139 u64 local_index; 6140 int err; 6141 err = btrfs_del_root_ref(trans, key.objectid, 6142 root->root_key.objectid, parent_ino, 6143 &local_index, name, name_len); 6144 if (err) 6145 btrfs_abort_transaction(trans, err); 6146 } else if (add_backref) { 6147 u64 local_index; 6148 int err; 6149 6150 err = btrfs_del_inode_ref(trans, root, name, name_len, 6151 ino, parent_ino, &local_index); 6152 if (err) 6153 btrfs_abort_transaction(trans, err); 6154 } 6155 6156 /* Return the original error code */ 6157 return ret; 6158 } 6159 6160 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6161 struct btrfs_inode *dir, struct dentry *dentry, 6162 struct btrfs_inode *inode, int backref, u64 index) 6163 { 6164 int err = btrfs_add_link(trans, dir, inode, 6165 dentry->d_name.name, dentry->d_name.len, 6166 backref, index); 6167 if (err > 0) 6168 err = -EEXIST; 6169 return err; 6170 } 6171 6172 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6173 umode_t mode, dev_t rdev) 6174 { 6175 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6176 struct btrfs_trans_handle *trans; 6177 struct btrfs_root *root = BTRFS_I(dir)->root; 6178 struct inode *inode = NULL; 6179 int err; 6180 u64 objectid; 6181 u64 index = 0; 6182 6183 /* 6184 * 2 for inode item and ref 6185 * 2 for dir items 6186 * 1 for xattr if selinux is on 6187 */ 6188 trans = btrfs_start_transaction(root, 5); 6189 if (IS_ERR(trans)) 6190 return PTR_ERR(trans); 6191 6192 err = btrfs_find_free_ino(root, &objectid); 6193 if (err) 6194 goto out_unlock; 6195 6196 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6197 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6198 mode, &index); 6199 if (IS_ERR(inode)) { 6200 err = PTR_ERR(inode); 6201 inode = NULL; 6202 goto out_unlock; 6203 } 6204 6205 /* 6206 * If the active LSM wants to access the inode during 6207 * d_instantiate it needs these. Smack checks to see 6208 * if the filesystem supports xattrs by looking at the 6209 * ops vector. 6210 */ 6211 inode->i_op = &btrfs_special_inode_operations; 6212 init_special_inode(inode, inode->i_mode, rdev); 6213 6214 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6215 if (err) 6216 goto out_unlock; 6217 6218 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6219 0, index); 6220 if (err) 6221 goto out_unlock; 6222 6223 btrfs_update_inode(trans, root, inode); 6224 d_instantiate_new(dentry, inode); 6225 6226 out_unlock: 6227 btrfs_end_transaction(trans); 6228 btrfs_btree_balance_dirty(fs_info); 6229 if (err && inode) { 6230 inode_dec_link_count(inode); 6231 discard_new_inode(inode); 6232 } 6233 return err; 6234 } 6235 6236 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6237 umode_t mode, bool excl) 6238 { 6239 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6240 struct btrfs_trans_handle *trans; 6241 struct btrfs_root *root = BTRFS_I(dir)->root; 6242 struct inode *inode = NULL; 6243 int err; 6244 u64 objectid; 6245 u64 index = 0; 6246 6247 /* 6248 * 2 for inode item and ref 6249 * 2 for dir items 6250 * 1 for xattr if selinux is on 6251 */ 6252 trans = btrfs_start_transaction(root, 5); 6253 if (IS_ERR(trans)) 6254 return PTR_ERR(trans); 6255 6256 err = btrfs_find_free_ino(root, &objectid); 6257 if (err) 6258 goto out_unlock; 6259 6260 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6261 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6262 mode, &index); 6263 if (IS_ERR(inode)) { 6264 err = PTR_ERR(inode); 6265 inode = NULL; 6266 goto out_unlock; 6267 } 6268 /* 6269 * If the active LSM wants to access the inode during 6270 * d_instantiate it needs these. Smack checks to see 6271 * if the filesystem supports xattrs by looking at the 6272 * ops vector. 6273 */ 6274 inode->i_fop = &btrfs_file_operations; 6275 inode->i_op = &btrfs_file_inode_operations; 6276 inode->i_mapping->a_ops = &btrfs_aops; 6277 6278 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6279 if (err) 6280 goto out_unlock; 6281 6282 err = btrfs_update_inode(trans, root, inode); 6283 if (err) 6284 goto out_unlock; 6285 6286 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6287 0, index); 6288 if (err) 6289 goto out_unlock; 6290 6291 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6292 d_instantiate_new(dentry, inode); 6293 6294 out_unlock: 6295 btrfs_end_transaction(trans); 6296 if (err && inode) { 6297 inode_dec_link_count(inode); 6298 discard_new_inode(inode); 6299 } 6300 btrfs_btree_balance_dirty(fs_info); 6301 return err; 6302 } 6303 6304 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6305 struct dentry *dentry) 6306 { 6307 struct btrfs_trans_handle *trans = NULL; 6308 struct btrfs_root *root = BTRFS_I(dir)->root; 6309 struct inode *inode = d_inode(old_dentry); 6310 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6311 u64 index; 6312 int err; 6313 int drop_inode = 0; 6314 6315 /* do not allow sys_link's with other subvols of the same device */ 6316 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6317 return -EXDEV; 6318 6319 if (inode->i_nlink >= BTRFS_LINK_MAX) 6320 return -EMLINK; 6321 6322 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6323 if (err) 6324 goto fail; 6325 6326 /* 6327 * 2 items for inode and inode ref 6328 * 2 items for dir items 6329 * 1 item for parent inode 6330 * 1 item for orphan item deletion if O_TMPFILE 6331 */ 6332 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6333 if (IS_ERR(trans)) { 6334 err = PTR_ERR(trans); 6335 trans = NULL; 6336 goto fail; 6337 } 6338 6339 /* There are several dir indexes for this inode, clear the cache. */ 6340 BTRFS_I(inode)->dir_index = 0ULL; 6341 inc_nlink(inode); 6342 inode_inc_iversion(inode); 6343 inode->i_ctime = current_time(inode); 6344 ihold(inode); 6345 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6346 6347 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6348 1, index); 6349 6350 if (err) { 6351 drop_inode = 1; 6352 } else { 6353 struct dentry *parent = dentry->d_parent; 6354 int ret; 6355 6356 err = btrfs_update_inode(trans, root, inode); 6357 if (err) 6358 goto fail; 6359 if (inode->i_nlink == 1) { 6360 /* 6361 * If new hard link count is 1, it's a file created 6362 * with open(2) O_TMPFILE flag. 6363 */ 6364 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6365 if (err) 6366 goto fail; 6367 } 6368 d_instantiate(dentry, inode); 6369 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6370 true, NULL); 6371 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6372 err = btrfs_commit_transaction(trans); 6373 trans = NULL; 6374 } 6375 } 6376 6377 fail: 6378 if (trans) 6379 btrfs_end_transaction(trans); 6380 if (drop_inode) { 6381 inode_dec_link_count(inode); 6382 iput(inode); 6383 } 6384 btrfs_btree_balance_dirty(fs_info); 6385 return err; 6386 } 6387 6388 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6389 { 6390 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6391 struct inode *inode = NULL; 6392 struct btrfs_trans_handle *trans; 6393 struct btrfs_root *root = BTRFS_I(dir)->root; 6394 int err = 0; 6395 u64 objectid = 0; 6396 u64 index = 0; 6397 6398 /* 6399 * 2 items for inode and ref 6400 * 2 items for dir items 6401 * 1 for xattr if selinux is on 6402 */ 6403 trans = btrfs_start_transaction(root, 5); 6404 if (IS_ERR(trans)) 6405 return PTR_ERR(trans); 6406 6407 err = btrfs_find_free_ino(root, &objectid); 6408 if (err) 6409 goto out_fail; 6410 6411 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6412 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6413 S_IFDIR | mode, &index); 6414 if (IS_ERR(inode)) { 6415 err = PTR_ERR(inode); 6416 inode = NULL; 6417 goto out_fail; 6418 } 6419 6420 /* these must be set before we unlock the inode */ 6421 inode->i_op = &btrfs_dir_inode_operations; 6422 inode->i_fop = &btrfs_dir_file_operations; 6423 6424 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6425 if (err) 6426 goto out_fail; 6427 6428 btrfs_i_size_write(BTRFS_I(inode), 0); 6429 err = btrfs_update_inode(trans, root, inode); 6430 if (err) 6431 goto out_fail; 6432 6433 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6434 dentry->d_name.name, 6435 dentry->d_name.len, 0, index); 6436 if (err) 6437 goto out_fail; 6438 6439 d_instantiate_new(dentry, inode); 6440 6441 out_fail: 6442 btrfs_end_transaction(trans); 6443 if (err && inode) { 6444 inode_dec_link_count(inode); 6445 discard_new_inode(inode); 6446 } 6447 btrfs_btree_balance_dirty(fs_info); 6448 return err; 6449 } 6450 6451 static noinline int uncompress_inline(struct btrfs_path *path, 6452 struct page *page, 6453 size_t pg_offset, u64 extent_offset, 6454 struct btrfs_file_extent_item *item) 6455 { 6456 int ret; 6457 struct extent_buffer *leaf = path->nodes[0]; 6458 char *tmp; 6459 size_t max_size; 6460 unsigned long inline_size; 6461 unsigned long ptr; 6462 int compress_type; 6463 6464 WARN_ON(pg_offset != 0); 6465 compress_type = btrfs_file_extent_compression(leaf, item); 6466 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6467 inline_size = btrfs_file_extent_inline_item_len(leaf, 6468 btrfs_item_nr(path->slots[0])); 6469 tmp = kmalloc(inline_size, GFP_NOFS); 6470 if (!tmp) 6471 return -ENOMEM; 6472 ptr = btrfs_file_extent_inline_start(item); 6473 6474 read_extent_buffer(leaf, tmp, ptr, inline_size); 6475 6476 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6477 ret = btrfs_decompress(compress_type, tmp, page, 6478 extent_offset, inline_size, max_size); 6479 6480 /* 6481 * decompression code contains a memset to fill in any space between the end 6482 * of the uncompressed data and the end of max_size in case the decompressed 6483 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6484 * the end of an inline extent and the beginning of the next block, so we 6485 * cover that region here. 6486 */ 6487 6488 if (max_size + pg_offset < PAGE_SIZE) { 6489 char *map = kmap(page); 6490 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6491 kunmap(page); 6492 } 6493 kfree(tmp); 6494 return ret; 6495 } 6496 6497 /** 6498 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6499 * @inode: file to search in 6500 * @page: page to read extent data into if the extent is inline 6501 * @pg_offset: offset into @page to copy to 6502 * @start: file offset 6503 * @len: length of range starting at @start 6504 * 6505 * This returns the first &struct extent_map which overlaps with the given 6506 * range, reading it from the B-tree and caching it if necessary. Note that 6507 * there may be more extents which overlap the given range after the returned 6508 * extent_map. 6509 * 6510 * If @page is not NULL and the extent is inline, this also reads the extent 6511 * data directly into the page and marks the extent up to date in the io_tree. 6512 * 6513 * Return: ERR_PTR on error, non-NULL extent_map on success. 6514 */ 6515 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6516 struct page *page, size_t pg_offset, 6517 u64 start, u64 len) 6518 { 6519 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6520 int ret; 6521 int err = 0; 6522 u64 extent_start = 0; 6523 u64 extent_end = 0; 6524 u64 objectid = btrfs_ino(inode); 6525 int extent_type = -1; 6526 struct btrfs_path *path = NULL; 6527 struct btrfs_root *root = inode->root; 6528 struct btrfs_file_extent_item *item; 6529 struct extent_buffer *leaf; 6530 struct btrfs_key found_key; 6531 struct extent_map *em = NULL; 6532 struct extent_map_tree *em_tree = &inode->extent_tree; 6533 struct extent_io_tree *io_tree = &inode->io_tree; 6534 6535 read_lock(&em_tree->lock); 6536 em = lookup_extent_mapping(em_tree, start, len); 6537 read_unlock(&em_tree->lock); 6538 6539 if (em) { 6540 if (em->start > start || em->start + em->len <= start) 6541 free_extent_map(em); 6542 else if (em->block_start == EXTENT_MAP_INLINE && page) 6543 free_extent_map(em); 6544 else 6545 goto out; 6546 } 6547 em = alloc_extent_map(); 6548 if (!em) { 6549 err = -ENOMEM; 6550 goto out; 6551 } 6552 em->start = EXTENT_MAP_HOLE; 6553 em->orig_start = EXTENT_MAP_HOLE; 6554 em->len = (u64)-1; 6555 em->block_len = (u64)-1; 6556 6557 path = btrfs_alloc_path(); 6558 if (!path) { 6559 err = -ENOMEM; 6560 goto out; 6561 } 6562 6563 /* Chances are we'll be called again, so go ahead and do readahead */ 6564 path->reada = READA_FORWARD; 6565 6566 /* 6567 * Unless we're going to uncompress the inline extent, no sleep would 6568 * happen. 6569 */ 6570 path->leave_spinning = 1; 6571 6572 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6573 if (ret < 0) { 6574 err = ret; 6575 goto out; 6576 } else if (ret > 0) { 6577 if (path->slots[0] == 0) 6578 goto not_found; 6579 path->slots[0]--; 6580 } 6581 6582 leaf = path->nodes[0]; 6583 item = btrfs_item_ptr(leaf, path->slots[0], 6584 struct btrfs_file_extent_item); 6585 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6586 if (found_key.objectid != objectid || 6587 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6588 /* 6589 * If we backup past the first extent we want to move forward 6590 * and see if there is an extent in front of us, otherwise we'll 6591 * say there is a hole for our whole search range which can 6592 * cause problems. 6593 */ 6594 extent_end = start; 6595 goto next; 6596 } 6597 6598 extent_type = btrfs_file_extent_type(leaf, item); 6599 extent_start = found_key.offset; 6600 extent_end = btrfs_file_extent_end(path); 6601 if (extent_type == BTRFS_FILE_EXTENT_REG || 6602 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6603 /* Only regular file could have regular/prealloc extent */ 6604 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6605 ret = -EUCLEAN; 6606 btrfs_crit(fs_info, 6607 "regular/prealloc extent found for non-regular inode %llu", 6608 btrfs_ino(inode)); 6609 goto out; 6610 } 6611 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6612 extent_start); 6613 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6614 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6615 path->slots[0], 6616 extent_start); 6617 } 6618 next: 6619 if (start >= extent_end) { 6620 path->slots[0]++; 6621 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6622 ret = btrfs_next_leaf(root, path); 6623 if (ret < 0) { 6624 err = ret; 6625 goto out; 6626 } else if (ret > 0) { 6627 goto not_found; 6628 } 6629 leaf = path->nodes[0]; 6630 } 6631 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6632 if (found_key.objectid != objectid || 6633 found_key.type != BTRFS_EXTENT_DATA_KEY) 6634 goto not_found; 6635 if (start + len <= found_key.offset) 6636 goto not_found; 6637 if (start > found_key.offset) 6638 goto next; 6639 6640 /* New extent overlaps with existing one */ 6641 em->start = start; 6642 em->orig_start = start; 6643 em->len = found_key.offset - start; 6644 em->block_start = EXTENT_MAP_HOLE; 6645 goto insert; 6646 } 6647 6648 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6649 6650 if (extent_type == BTRFS_FILE_EXTENT_REG || 6651 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6652 goto insert; 6653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6654 unsigned long ptr; 6655 char *map; 6656 size_t size; 6657 size_t extent_offset; 6658 size_t copy_size; 6659 6660 if (!page) 6661 goto out; 6662 6663 size = btrfs_file_extent_ram_bytes(leaf, item); 6664 extent_offset = page_offset(page) + pg_offset - extent_start; 6665 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6666 size - extent_offset); 6667 em->start = extent_start + extent_offset; 6668 em->len = ALIGN(copy_size, fs_info->sectorsize); 6669 em->orig_block_len = em->len; 6670 em->orig_start = em->start; 6671 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6672 6673 btrfs_set_path_blocking(path); 6674 if (!PageUptodate(page)) { 6675 if (btrfs_file_extent_compression(leaf, item) != 6676 BTRFS_COMPRESS_NONE) { 6677 ret = uncompress_inline(path, page, pg_offset, 6678 extent_offset, item); 6679 if (ret) { 6680 err = ret; 6681 goto out; 6682 } 6683 } else { 6684 map = kmap(page); 6685 read_extent_buffer(leaf, map + pg_offset, ptr, 6686 copy_size); 6687 if (pg_offset + copy_size < PAGE_SIZE) { 6688 memset(map + pg_offset + copy_size, 0, 6689 PAGE_SIZE - pg_offset - 6690 copy_size); 6691 } 6692 kunmap(page); 6693 } 6694 flush_dcache_page(page); 6695 } 6696 set_extent_uptodate(io_tree, em->start, 6697 extent_map_end(em) - 1, NULL, GFP_NOFS); 6698 goto insert; 6699 } 6700 not_found: 6701 em->start = start; 6702 em->orig_start = start; 6703 em->len = len; 6704 em->block_start = EXTENT_MAP_HOLE; 6705 insert: 6706 btrfs_release_path(path); 6707 if (em->start > start || extent_map_end(em) <= start) { 6708 btrfs_err(fs_info, 6709 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6710 em->start, em->len, start, len); 6711 err = -EIO; 6712 goto out; 6713 } 6714 6715 err = 0; 6716 write_lock(&em_tree->lock); 6717 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6718 write_unlock(&em_tree->lock); 6719 out: 6720 btrfs_free_path(path); 6721 6722 trace_btrfs_get_extent(root, inode, em); 6723 6724 if (err) { 6725 free_extent_map(em); 6726 return ERR_PTR(err); 6727 } 6728 BUG_ON(!em); /* Error is always set */ 6729 return em; 6730 } 6731 6732 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6733 u64 start, u64 len) 6734 { 6735 struct extent_map *em; 6736 struct extent_map *hole_em = NULL; 6737 u64 delalloc_start = start; 6738 u64 end; 6739 u64 delalloc_len; 6740 u64 delalloc_end; 6741 int err = 0; 6742 6743 em = btrfs_get_extent(inode, NULL, 0, start, len); 6744 if (IS_ERR(em)) 6745 return em; 6746 /* 6747 * If our em maps to: 6748 * - a hole or 6749 * - a pre-alloc extent, 6750 * there might actually be delalloc bytes behind it. 6751 */ 6752 if (em->block_start != EXTENT_MAP_HOLE && 6753 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6754 return em; 6755 else 6756 hole_em = em; 6757 6758 /* check to see if we've wrapped (len == -1 or similar) */ 6759 end = start + len; 6760 if (end < start) 6761 end = (u64)-1; 6762 else 6763 end -= 1; 6764 6765 em = NULL; 6766 6767 /* ok, we didn't find anything, lets look for delalloc */ 6768 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6769 end, len, EXTENT_DELALLOC, 1); 6770 delalloc_end = delalloc_start + delalloc_len; 6771 if (delalloc_end < delalloc_start) 6772 delalloc_end = (u64)-1; 6773 6774 /* 6775 * We didn't find anything useful, return the original results from 6776 * get_extent() 6777 */ 6778 if (delalloc_start > end || delalloc_end <= start) { 6779 em = hole_em; 6780 hole_em = NULL; 6781 goto out; 6782 } 6783 6784 /* 6785 * Adjust the delalloc_start to make sure it doesn't go backwards from 6786 * the start they passed in 6787 */ 6788 delalloc_start = max(start, delalloc_start); 6789 delalloc_len = delalloc_end - delalloc_start; 6790 6791 if (delalloc_len > 0) { 6792 u64 hole_start; 6793 u64 hole_len; 6794 const u64 hole_end = extent_map_end(hole_em); 6795 6796 em = alloc_extent_map(); 6797 if (!em) { 6798 err = -ENOMEM; 6799 goto out; 6800 } 6801 6802 ASSERT(hole_em); 6803 /* 6804 * When btrfs_get_extent can't find anything it returns one 6805 * huge hole 6806 * 6807 * Make sure what it found really fits our range, and adjust to 6808 * make sure it is based on the start from the caller 6809 */ 6810 if (hole_end <= start || hole_em->start > end) { 6811 free_extent_map(hole_em); 6812 hole_em = NULL; 6813 } else { 6814 hole_start = max(hole_em->start, start); 6815 hole_len = hole_end - hole_start; 6816 } 6817 6818 if (hole_em && delalloc_start > hole_start) { 6819 /* 6820 * Our hole starts before our delalloc, so we have to 6821 * return just the parts of the hole that go until the 6822 * delalloc starts 6823 */ 6824 em->len = min(hole_len, delalloc_start - hole_start); 6825 em->start = hole_start; 6826 em->orig_start = hole_start; 6827 /* 6828 * Don't adjust block start at all, it is fixed at 6829 * EXTENT_MAP_HOLE 6830 */ 6831 em->block_start = hole_em->block_start; 6832 em->block_len = hole_len; 6833 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6834 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6835 } else { 6836 /* 6837 * Hole is out of passed range or it starts after 6838 * delalloc range 6839 */ 6840 em->start = delalloc_start; 6841 em->len = delalloc_len; 6842 em->orig_start = delalloc_start; 6843 em->block_start = EXTENT_MAP_DELALLOC; 6844 em->block_len = delalloc_len; 6845 } 6846 } else { 6847 return hole_em; 6848 } 6849 out: 6850 6851 free_extent_map(hole_em); 6852 if (err) { 6853 free_extent_map(em); 6854 return ERR_PTR(err); 6855 } 6856 return em; 6857 } 6858 6859 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 6860 const u64 start, 6861 const u64 len, 6862 const u64 orig_start, 6863 const u64 block_start, 6864 const u64 block_len, 6865 const u64 orig_block_len, 6866 const u64 ram_bytes, 6867 const int type) 6868 { 6869 struct extent_map *em = NULL; 6870 int ret; 6871 6872 if (type != BTRFS_ORDERED_NOCOW) { 6873 em = create_io_em(inode, start, len, orig_start, 6874 block_start, block_len, orig_block_len, 6875 ram_bytes, 6876 BTRFS_COMPRESS_NONE, /* compress_type */ 6877 type); 6878 if (IS_ERR(em)) 6879 goto out; 6880 } 6881 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 6882 len, block_len, type); 6883 if (ret) { 6884 if (em) { 6885 free_extent_map(em); 6886 btrfs_drop_extent_cache(BTRFS_I(inode), start, 6887 start + len - 1, 0); 6888 } 6889 em = ERR_PTR(ret); 6890 } 6891 out: 6892 6893 return em; 6894 } 6895 6896 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6897 u64 start, u64 len) 6898 { 6899 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6900 struct btrfs_root *root = BTRFS_I(inode)->root; 6901 struct extent_map *em; 6902 struct btrfs_key ins; 6903 u64 alloc_hint; 6904 int ret; 6905 6906 alloc_hint = get_extent_allocation_hint(inode, start, len); 6907 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6908 0, alloc_hint, &ins, 1, 1); 6909 if (ret) 6910 return ERR_PTR(ret); 6911 6912 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6913 ins.objectid, ins.offset, ins.offset, 6914 ins.offset, BTRFS_ORDERED_REGULAR); 6915 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6916 if (IS_ERR(em)) 6917 btrfs_free_reserved_extent(fs_info, ins.objectid, 6918 ins.offset, 1); 6919 6920 return em; 6921 } 6922 6923 /* 6924 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6925 * block must be cow'd 6926 */ 6927 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6928 u64 *orig_start, u64 *orig_block_len, 6929 u64 *ram_bytes) 6930 { 6931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6932 struct btrfs_path *path; 6933 int ret; 6934 struct extent_buffer *leaf; 6935 struct btrfs_root *root = BTRFS_I(inode)->root; 6936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6937 struct btrfs_file_extent_item *fi; 6938 struct btrfs_key key; 6939 u64 disk_bytenr; 6940 u64 backref_offset; 6941 u64 extent_end; 6942 u64 num_bytes; 6943 int slot; 6944 int found_type; 6945 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6946 6947 path = btrfs_alloc_path(); 6948 if (!path) 6949 return -ENOMEM; 6950 6951 ret = btrfs_lookup_file_extent(NULL, root, path, 6952 btrfs_ino(BTRFS_I(inode)), offset, 0); 6953 if (ret < 0) 6954 goto out; 6955 6956 slot = path->slots[0]; 6957 if (ret == 1) { 6958 if (slot == 0) { 6959 /* can't find the item, must cow */ 6960 ret = 0; 6961 goto out; 6962 } 6963 slot--; 6964 } 6965 ret = 0; 6966 leaf = path->nodes[0]; 6967 btrfs_item_key_to_cpu(leaf, &key, slot); 6968 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6969 key.type != BTRFS_EXTENT_DATA_KEY) { 6970 /* not our file or wrong item type, must cow */ 6971 goto out; 6972 } 6973 6974 if (key.offset > offset) { 6975 /* Wrong offset, must cow */ 6976 goto out; 6977 } 6978 6979 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6980 found_type = btrfs_file_extent_type(leaf, fi); 6981 if (found_type != BTRFS_FILE_EXTENT_REG && 6982 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6983 /* not a regular extent, must cow */ 6984 goto out; 6985 } 6986 6987 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6988 goto out; 6989 6990 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6991 if (extent_end <= offset) 6992 goto out; 6993 6994 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6995 if (disk_bytenr == 0) 6996 goto out; 6997 6998 if (btrfs_file_extent_compression(leaf, fi) || 6999 btrfs_file_extent_encryption(leaf, fi) || 7000 btrfs_file_extent_other_encoding(leaf, fi)) 7001 goto out; 7002 7003 /* 7004 * Do the same check as in btrfs_cross_ref_exist but without the 7005 * unnecessary search. 7006 */ 7007 if (btrfs_file_extent_generation(leaf, fi) <= 7008 btrfs_root_last_snapshot(&root->root_item)) 7009 goto out; 7010 7011 backref_offset = btrfs_file_extent_offset(leaf, fi); 7012 7013 if (orig_start) { 7014 *orig_start = key.offset - backref_offset; 7015 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7016 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7017 } 7018 7019 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7020 goto out; 7021 7022 num_bytes = min(offset + *len, extent_end) - offset; 7023 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7024 u64 range_end; 7025 7026 range_end = round_up(offset + num_bytes, 7027 root->fs_info->sectorsize) - 1; 7028 ret = test_range_bit(io_tree, offset, range_end, 7029 EXTENT_DELALLOC, 0, NULL); 7030 if (ret) { 7031 ret = -EAGAIN; 7032 goto out; 7033 } 7034 } 7035 7036 btrfs_release_path(path); 7037 7038 /* 7039 * look for other files referencing this extent, if we 7040 * find any we must cow 7041 */ 7042 7043 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7044 key.offset - backref_offset, disk_bytenr); 7045 if (ret) { 7046 ret = 0; 7047 goto out; 7048 } 7049 7050 /* 7051 * adjust disk_bytenr and num_bytes to cover just the bytes 7052 * in this extent we are about to write. If there 7053 * are any csums in that range we have to cow in order 7054 * to keep the csums correct 7055 */ 7056 disk_bytenr += backref_offset; 7057 disk_bytenr += offset - key.offset; 7058 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7059 goto out; 7060 /* 7061 * all of the above have passed, it is safe to overwrite this extent 7062 * without cow 7063 */ 7064 *len = num_bytes; 7065 ret = 1; 7066 out: 7067 btrfs_free_path(path); 7068 return ret; 7069 } 7070 7071 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7072 struct extent_state **cached_state, int writing) 7073 { 7074 struct btrfs_ordered_extent *ordered; 7075 int ret = 0; 7076 7077 while (1) { 7078 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7079 cached_state); 7080 /* 7081 * We're concerned with the entire range that we're going to be 7082 * doing DIO to, so we need to make sure there's no ordered 7083 * extents in this range. 7084 */ 7085 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7086 lockend - lockstart + 1); 7087 7088 /* 7089 * We need to make sure there are no buffered pages in this 7090 * range either, we could have raced between the invalidate in 7091 * generic_file_direct_write and locking the extent. The 7092 * invalidate needs to happen so that reads after a write do not 7093 * get stale data. 7094 */ 7095 if (!ordered && 7096 (!writing || !filemap_range_has_page(inode->i_mapping, 7097 lockstart, lockend))) 7098 break; 7099 7100 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7101 cached_state); 7102 7103 if (ordered) { 7104 /* 7105 * If we are doing a DIO read and the ordered extent we 7106 * found is for a buffered write, we can not wait for it 7107 * to complete and retry, because if we do so we can 7108 * deadlock with concurrent buffered writes on page 7109 * locks. This happens only if our DIO read covers more 7110 * than one extent map, if at this point has already 7111 * created an ordered extent for a previous extent map 7112 * and locked its range in the inode's io tree, and a 7113 * concurrent write against that previous extent map's 7114 * range and this range started (we unlock the ranges 7115 * in the io tree only when the bios complete and 7116 * buffered writes always lock pages before attempting 7117 * to lock range in the io tree). 7118 */ 7119 if (writing || 7120 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7121 btrfs_start_ordered_extent(inode, ordered, 1); 7122 else 7123 ret = -ENOTBLK; 7124 btrfs_put_ordered_extent(ordered); 7125 } else { 7126 /* 7127 * We could trigger writeback for this range (and wait 7128 * for it to complete) and then invalidate the pages for 7129 * this range (through invalidate_inode_pages2_range()), 7130 * but that can lead us to a deadlock with a concurrent 7131 * call to readahead (a buffered read or a defrag call 7132 * triggered a readahead) on a page lock due to an 7133 * ordered dio extent we created before but did not have 7134 * yet a corresponding bio submitted (whence it can not 7135 * complete), which makes readahead wait for that 7136 * ordered extent to complete while holding a lock on 7137 * that page. 7138 */ 7139 ret = -ENOTBLK; 7140 } 7141 7142 if (ret) 7143 break; 7144 7145 cond_resched(); 7146 } 7147 7148 return ret; 7149 } 7150 7151 /* The callers of this must take lock_extent() */ 7152 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7153 u64 orig_start, u64 block_start, 7154 u64 block_len, u64 orig_block_len, 7155 u64 ram_bytes, int compress_type, 7156 int type) 7157 { 7158 struct extent_map_tree *em_tree; 7159 struct extent_map *em; 7160 int ret; 7161 7162 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7163 type == BTRFS_ORDERED_COMPRESSED || 7164 type == BTRFS_ORDERED_NOCOW || 7165 type == BTRFS_ORDERED_REGULAR); 7166 7167 em_tree = &BTRFS_I(inode)->extent_tree; 7168 em = alloc_extent_map(); 7169 if (!em) 7170 return ERR_PTR(-ENOMEM); 7171 7172 em->start = start; 7173 em->orig_start = orig_start; 7174 em->len = len; 7175 em->block_len = block_len; 7176 em->block_start = block_start; 7177 em->orig_block_len = orig_block_len; 7178 em->ram_bytes = ram_bytes; 7179 em->generation = -1; 7180 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7181 if (type == BTRFS_ORDERED_PREALLOC) { 7182 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7183 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7184 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7185 em->compress_type = compress_type; 7186 } 7187 7188 do { 7189 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7190 em->start + em->len - 1, 0); 7191 write_lock(&em_tree->lock); 7192 ret = add_extent_mapping(em_tree, em, 1); 7193 write_unlock(&em_tree->lock); 7194 /* 7195 * The caller has taken lock_extent(), who could race with us 7196 * to add em? 7197 */ 7198 } while (ret == -EEXIST); 7199 7200 if (ret) { 7201 free_extent_map(em); 7202 return ERR_PTR(ret); 7203 } 7204 7205 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7206 return em; 7207 } 7208 7209 7210 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7211 struct buffer_head *bh_result, 7212 struct inode *inode, 7213 u64 start, u64 len) 7214 { 7215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7216 7217 if (em->block_start == EXTENT_MAP_HOLE || 7218 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7219 return -ENOENT; 7220 7221 len = min(len, em->len - (start - em->start)); 7222 7223 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7224 inode->i_blkbits; 7225 bh_result->b_size = len; 7226 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7227 set_buffer_mapped(bh_result); 7228 7229 return 0; 7230 } 7231 7232 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7233 struct buffer_head *bh_result, 7234 struct inode *inode, 7235 struct btrfs_dio_data *dio_data, 7236 u64 start, u64 len) 7237 { 7238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7239 struct extent_map *em = *map; 7240 int ret = 0; 7241 7242 /* 7243 * We don't allocate a new extent in the following cases 7244 * 7245 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7246 * existing extent. 7247 * 2) The extent is marked as PREALLOC. We're good to go here and can 7248 * just use the extent. 7249 * 7250 */ 7251 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7252 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7253 em->block_start != EXTENT_MAP_HOLE)) { 7254 int type; 7255 u64 block_start, orig_start, orig_block_len, ram_bytes; 7256 7257 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7258 type = BTRFS_ORDERED_PREALLOC; 7259 else 7260 type = BTRFS_ORDERED_NOCOW; 7261 len = min(len, em->len - (start - em->start)); 7262 block_start = em->block_start + (start - em->start); 7263 7264 if (can_nocow_extent(inode, start, &len, &orig_start, 7265 &orig_block_len, &ram_bytes) == 1 && 7266 btrfs_inc_nocow_writers(fs_info, block_start)) { 7267 struct extent_map *em2; 7268 7269 em2 = btrfs_create_dio_extent(inode, start, len, 7270 orig_start, block_start, 7271 len, orig_block_len, 7272 ram_bytes, type); 7273 btrfs_dec_nocow_writers(fs_info, block_start); 7274 if (type == BTRFS_ORDERED_PREALLOC) { 7275 free_extent_map(em); 7276 *map = em = em2; 7277 } 7278 7279 if (em2 && IS_ERR(em2)) { 7280 ret = PTR_ERR(em2); 7281 goto out; 7282 } 7283 /* 7284 * For inode marked NODATACOW or extent marked PREALLOC, 7285 * use the existing or preallocated extent, so does not 7286 * need to adjust btrfs_space_info's bytes_may_use. 7287 */ 7288 btrfs_free_reserved_data_space_noquota(inode, start, 7289 len); 7290 goto skip_cow; 7291 } 7292 } 7293 7294 /* this will cow the extent */ 7295 len = bh_result->b_size; 7296 free_extent_map(em); 7297 *map = em = btrfs_new_extent_direct(inode, start, len); 7298 if (IS_ERR(em)) { 7299 ret = PTR_ERR(em); 7300 goto out; 7301 } 7302 7303 len = min(len, em->len - (start - em->start)); 7304 7305 skip_cow: 7306 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7307 inode->i_blkbits; 7308 bh_result->b_size = len; 7309 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7310 set_buffer_mapped(bh_result); 7311 7312 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7313 set_buffer_new(bh_result); 7314 7315 /* 7316 * Need to update the i_size under the extent lock so buffered 7317 * readers will get the updated i_size when we unlock. 7318 */ 7319 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7320 i_size_write(inode, start + len); 7321 7322 WARN_ON(dio_data->reserve < len); 7323 dio_data->reserve -= len; 7324 dio_data->unsubmitted_oe_range_end = start + len; 7325 current->journal_info = dio_data; 7326 out: 7327 return ret; 7328 } 7329 7330 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7331 struct buffer_head *bh_result, int create) 7332 { 7333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7334 struct extent_map *em; 7335 struct extent_state *cached_state = NULL; 7336 struct btrfs_dio_data *dio_data = NULL; 7337 u64 start = iblock << inode->i_blkbits; 7338 u64 lockstart, lockend; 7339 u64 len = bh_result->b_size; 7340 int ret = 0; 7341 7342 if (!create) 7343 len = min_t(u64, len, fs_info->sectorsize); 7344 7345 lockstart = start; 7346 lockend = start + len - 1; 7347 7348 if (current->journal_info) { 7349 /* 7350 * Need to pull our outstanding extents and set journal_info to NULL so 7351 * that anything that needs to check if there's a transaction doesn't get 7352 * confused. 7353 */ 7354 dio_data = current->journal_info; 7355 current->journal_info = NULL; 7356 } 7357 7358 /* 7359 * If this errors out it's because we couldn't invalidate pagecache for 7360 * this range and we need to fallback to buffered. 7361 */ 7362 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7363 create)) { 7364 ret = -ENOTBLK; 7365 goto err; 7366 } 7367 7368 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7369 if (IS_ERR(em)) { 7370 ret = PTR_ERR(em); 7371 goto unlock_err; 7372 } 7373 7374 /* 7375 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7376 * io. INLINE is special, and we could probably kludge it in here, but 7377 * it's still buffered so for safety lets just fall back to the generic 7378 * buffered path. 7379 * 7380 * For COMPRESSED we _have_ to read the entire extent in so we can 7381 * decompress it, so there will be buffering required no matter what we 7382 * do, so go ahead and fallback to buffered. 7383 * 7384 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7385 * to buffered IO. Don't blame me, this is the price we pay for using 7386 * the generic code. 7387 */ 7388 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7389 em->block_start == EXTENT_MAP_INLINE) { 7390 free_extent_map(em); 7391 ret = -ENOTBLK; 7392 goto unlock_err; 7393 } 7394 7395 if (create) { 7396 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7397 dio_data, start, len); 7398 if (ret < 0) 7399 goto unlock_err; 7400 7401 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7402 lockend, &cached_state); 7403 } else { 7404 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7405 start, len); 7406 /* Can be negative only if we read from a hole */ 7407 if (ret < 0) { 7408 ret = 0; 7409 free_extent_map(em); 7410 goto unlock_err; 7411 } 7412 /* 7413 * We need to unlock only the end area that we aren't using. 7414 * The rest is going to be unlocked by the endio routine. 7415 */ 7416 lockstart = start + bh_result->b_size; 7417 if (lockstart < lockend) { 7418 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7419 lockstart, lockend, &cached_state); 7420 } else { 7421 free_extent_state(cached_state); 7422 } 7423 } 7424 7425 free_extent_map(em); 7426 7427 return 0; 7428 7429 unlock_err: 7430 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7431 &cached_state); 7432 err: 7433 if (dio_data) 7434 current->journal_info = dio_data; 7435 return ret; 7436 } 7437 7438 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7439 { 7440 /* 7441 * This implies a barrier so that stores to dio_bio->bi_status before 7442 * this and loads of dio_bio->bi_status after this are fully ordered. 7443 */ 7444 if (!refcount_dec_and_test(&dip->refs)) 7445 return; 7446 7447 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { 7448 __endio_write_update_ordered(dip->inode, dip->logical_offset, 7449 dip->bytes, 7450 !dip->dio_bio->bi_status); 7451 } else { 7452 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7453 dip->logical_offset, 7454 dip->logical_offset + dip->bytes - 1); 7455 } 7456 7457 dio_end_io(dip->dio_bio); 7458 kfree(dip); 7459 } 7460 7461 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7462 int mirror_num, 7463 unsigned long bio_flags) 7464 { 7465 struct btrfs_dio_private *dip = bio->bi_private; 7466 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7467 blk_status_t ret; 7468 7469 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7470 7471 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7472 if (ret) 7473 return ret; 7474 7475 refcount_inc(&dip->refs); 7476 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7477 if (ret) 7478 refcount_dec(&dip->refs); 7479 return ret; 7480 } 7481 7482 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7483 struct btrfs_io_bio *io_bio, 7484 const bool uptodate) 7485 { 7486 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7487 const u32 sectorsize = fs_info->sectorsize; 7488 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7490 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7491 struct bio_vec bvec; 7492 struct bvec_iter iter; 7493 u64 start = io_bio->logical; 7494 int icsum = 0; 7495 blk_status_t err = BLK_STS_OK; 7496 7497 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7498 unsigned int i, nr_sectors, pgoff; 7499 7500 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7501 pgoff = bvec.bv_offset; 7502 for (i = 0; i < nr_sectors; i++) { 7503 ASSERT(pgoff < PAGE_SIZE); 7504 if (uptodate && 7505 (!csum || !check_data_csum(inode, io_bio, icsum, 7506 bvec.bv_page, pgoff, 7507 start, sectorsize))) { 7508 clean_io_failure(fs_info, failure_tree, io_tree, 7509 start, bvec.bv_page, 7510 btrfs_ino(BTRFS_I(inode)), 7511 pgoff); 7512 } else { 7513 blk_status_t status; 7514 7515 status = btrfs_submit_read_repair(inode, 7516 &io_bio->bio, 7517 start - io_bio->logical, 7518 bvec.bv_page, pgoff, 7519 start, 7520 start + sectorsize - 1, 7521 io_bio->mirror_num, 7522 submit_dio_repair_bio); 7523 if (status) 7524 err = status; 7525 } 7526 start += sectorsize; 7527 icsum++; 7528 pgoff += sectorsize; 7529 } 7530 } 7531 return err; 7532 } 7533 7534 static void __endio_write_update_ordered(struct inode *inode, 7535 const u64 offset, const u64 bytes, 7536 const bool uptodate) 7537 { 7538 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7539 struct btrfs_ordered_extent *ordered = NULL; 7540 struct btrfs_workqueue *wq; 7541 u64 ordered_offset = offset; 7542 u64 ordered_bytes = bytes; 7543 u64 last_offset; 7544 7545 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 7546 wq = fs_info->endio_freespace_worker; 7547 else 7548 wq = fs_info->endio_write_workers; 7549 7550 while (ordered_offset < offset + bytes) { 7551 last_offset = ordered_offset; 7552 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7553 &ordered_offset, 7554 ordered_bytes, 7555 uptodate)) { 7556 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7557 NULL); 7558 btrfs_queue_work(wq, &ordered->work); 7559 } 7560 /* 7561 * If btrfs_dec_test_ordered_pending does not find any ordered 7562 * extent in the range, we can exit. 7563 */ 7564 if (ordered_offset == last_offset) 7565 return; 7566 /* 7567 * Our bio might span multiple ordered extents. In this case 7568 * we keep going until we have accounted the whole dio. 7569 */ 7570 if (ordered_offset < offset + bytes) { 7571 ordered_bytes = offset + bytes - ordered_offset; 7572 ordered = NULL; 7573 } 7574 } 7575 } 7576 7577 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7578 struct bio *bio, u64 offset) 7579 { 7580 struct inode *inode = private_data; 7581 blk_status_t ret; 7582 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 7583 BUG_ON(ret); /* -ENOMEM */ 7584 return 0; 7585 } 7586 7587 static void btrfs_end_dio_bio(struct bio *bio) 7588 { 7589 struct btrfs_dio_private *dip = bio->bi_private; 7590 blk_status_t err = bio->bi_status; 7591 7592 if (err) 7593 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7594 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7595 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7596 bio->bi_opf, 7597 (unsigned long long)bio->bi_iter.bi_sector, 7598 bio->bi_iter.bi_size, err); 7599 7600 if (bio_op(bio) == REQ_OP_READ) { 7601 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 7602 !err); 7603 } 7604 7605 if (err) 7606 dip->dio_bio->bi_status = err; 7607 7608 bio_put(bio); 7609 btrfs_dio_private_put(dip); 7610 } 7611 7612 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7613 struct inode *inode, u64 file_offset, int async_submit) 7614 { 7615 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7616 struct btrfs_dio_private *dip = bio->bi_private; 7617 bool write = bio_op(bio) == REQ_OP_WRITE; 7618 blk_status_t ret; 7619 7620 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7621 if (async_submit) 7622 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7623 7624 if (!write) { 7625 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7626 if (ret) 7627 goto err; 7628 } 7629 7630 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7631 goto map; 7632 7633 if (write && async_submit) { 7634 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7635 file_offset, inode, 7636 btrfs_submit_bio_start_direct_io); 7637 goto err; 7638 } else if (write) { 7639 /* 7640 * If we aren't doing async submit, calculate the csum of the 7641 * bio now. 7642 */ 7643 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 7644 if (ret) 7645 goto err; 7646 } else { 7647 u64 csum_offset; 7648 7649 csum_offset = file_offset - dip->logical_offset; 7650 csum_offset >>= inode->i_sb->s_blocksize_bits; 7651 csum_offset *= btrfs_super_csum_size(fs_info->super_copy); 7652 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 7653 } 7654 map: 7655 ret = btrfs_map_bio(fs_info, bio, 0); 7656 err: 7657 return ret; 7658 } 7659 7660 /* 7661 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7662 * or ordered extents whether or not we submit any bios. 7663 */ 7664 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7665 struct inode *inode, 7666 loff_t file_offset) 7667 { 7668 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7669 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7670 size_t dip_size; 7671 struct btrfs_dio_private *dip; 7672 7673 dip_size = sizeof(*dip); 7674 if (!write && csum) { 7675 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7676 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 7677 size_t nblocks; 7678 7679 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 7680 dip_size += csum_size * nblocks; 7681 } 7682 7683 dip = kzalloc(dip_size, GFP_NOFS); 7684 if (!dip) 7685 return NULL; 7686 7687 dip->inode = inode; 7688 dip->logical_offset = file_offset; 7689 dip->bytes = dio_bio->bi_iter.bi_size; 7690 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7691 dip->dio_bio = dio_bio; 7692 refcount_set(&dip->refs, 1); 7693 7694 if (write) { 7695 struct btrfs_dio_data *dio_data = current->journal_info; 7696 7697 /* 7698 * Setting range start and end to the same value means that 7699 * no cleanup will happen in btrfs_direct_IO 7700 */ 7701 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 7702 dip->bytes; 7703 dio_data->unsubmitted_oe_range_start = 7704 dio_data->unsubmitted_oe_range_end; 7705 } 7706 return dip; 7707 } 7708 7709 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 7710 loff_t file_offset) 7711 { 7712 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7713 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7715 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7716 BTRFS_BLOCK_GROUP_RAID56_MASK); 7717 struct btrfs_dio_private *dip; 7718 struct bio *bio; 7719 u64 start_sector; 7720 int async_submit = 0; 7721 u64 submit_len; 7722 int clone_offset = 0; 7723 int clone_len; 7724 int ret; 7725 blk_status_t status; 7726 struct btrfs_io_geometry geom; 7727 7728 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7729 if (!dip) { 7730 if (!write) { 7731 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7732 file_offset + dio_bio->bi_iter.bi_size - 1); 7733 } 7734 dio_bio->bi_status = BLK_STS_RESOURCE; 7735 dio_end_io(dio_bio); 7736 return; 7737 } 7738 7739 if (!write && csum) { 7740 /* 7741 * Load the csums up front to reduce csum tree searches and 7742 * contention when submitting bios. 7743 */ 7744 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, 7745 dip->csums); 7746 if (status != BLK_STS_OK) 7747 goto out_err; 7748 } 7749 7750 start_sector = dio_bio->bi_iter.bi_sector; 7751 submit_len = dio_bio->bi_iter.bi_size; 7752 7753 do { 7754 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), 7755 start_sector << 9, submit_len, 7756 &geom); 7757 if (ret) { 7758 status = errno_to_blk_status(ret); 7759 goto out_err; 7760 } 7761 ASSERT(geom.len <= INT_MAX); 7762 7763 clone_len = min_t(int, submit_len, geom.len); 7764 7765 /* 7766 * This will never fail as it's passing GPF_NOFS and 7767 * the allocation is backed by btrfs_bioset. 7768 */ 7769 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 7770 bio->bi_private = dip; 7771 bio->bi_end_io = btrfs_end_dio_bio; 7772 btrfs_io_bio(bio)->logical = file_offset; 7773 7774 ASSERT(submit_len >= clone_len); 7775 submit_len -= clone_len; 7776 7777 /* 7778 * Increase the count before we submit the bio so we know 7779 * the end IO handler won't happen before we increase the 7780 * count. Otherwise, the dip might get freed before we're 7781 * done setting it up. 7782 * 7783 * We transfer the initial reference to the last bio, so we 7784 * don't need to increment the reference count for the last one. 7785 */ 7786 if (submit_len > 0) { 7787 refcount_inc(&dip->refs); 7788 /* 7789 * If we are submitting more than one bio, submit them 7790 * all asynchronously. The exception is RAID 5 or 6, as 7791 * asynchronous checksums make it difficult to collect 7792 * full stripe writes. 7793 */ 7794 if (!raid56) 7795 async_submit = 1; 7796 } 7797 7798 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7799 async_submit); 7800 if (status) { 7801 bio_put(bio); 7802 if (submit_len > 0) 7803 refcount_dec(&dip->refs); 7804 goto out_err; 7805 } 7806 7807 clone_offset += clone_len; 7808 start_sector += clone_len >> 9; 7809 file_offset += clone_len; 7810 } while (submit_len > 0); 7811 return; 7812 7813 out_err: 7814 dip->dio_bio->bi_status = status; 7815 btrfs_dio_private_put(dip); 7816 } 7817 7818 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 7819 const struct iov_iter *iter, loff_t offset) 7820 { 7821 int seg; 7822 int i; 7823 unsigned int blocksize_mask = fs_info->sectorsize - 1; 7824 ssize_t retval = -EINVAL; 7825 7826 if (offset & blocksize_mask) 7827 goto out; 7828 7829 if (iov_iter_alignment(iter) & blocksize_mask) 7830 goto out; 7831 7832 /* If this is a write we don't need to check anymore */ 7833 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 7834 return 0; 7835 /* 7836 * Check to make sure we don't have duplicate iov_base's in this 7837 * iovec, if so return EINVAL, otherwise we'll get csum errors 7838 * when reading back. 7839 */ 7840 for (seg = 0; seg < iter->nr_segs; seg++) { 7841 for (i = seg + 1; i < iter->nr_segs; i++) { 7842 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 7843 goto out; 7844 } 7845 } 7846 retval = 0; 7847 out: 7848 return retval; 7849 } 7850 7851 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 7852 { 7853 struct file *file = iocb->ki_filp; 7854 struct inode *inode = file->f_mapping->host; 7855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7856 struct btrfs_dio_data dio_data = { 0 }; 7857 struct extent_changeset *data_reserved = NULL; 7858 loff_t offset = iocb->ki_pos; 7859 size_t count = 0; 7860 int flags = 0; 7861 bool wakeup = true; 7862 bool relock = false; 7863 ssize_t ret; 7864 7865 if (check_direct_IO(fs_info, iter, offset)) 7866 return 0; 7867 7868 inode_dio_begin(inode); 7869 7870 /* 7871 * The generic stuff only does filemap_write_and_wait_range, which 7872 * isn't enough if we've written compressed pages to this area, so 7873 * we need to flush the dirty pages again to make absolutely sure 7874 * that any outstanding dirty pages are on disk. 7875 */ 7876 count = iov_iter_count(iter); 7877 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7878 &BTRFS_I(inode)->runtime_flags)) 7879 filemap_fdatawrite_range(inode->i_mapping, offset, 7880 offset + count - 1); 7881 7882 if (iov_iter_rw(iter) == WRITE) { 7883 /* 7884 * If the write DIO is beyond the EOF, we need update 7885 * the isize, but it is protected by i_mutex. So we can 7886 * not unlock the i_mutex at this case. 7887 */ 7888 if (offset + count <= inode->i_size) { 7889 dio_data.overwrite = 1; 7890 inode_unlock(inode); 7891 relock = true; 7892 } 7893 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 7894 offset, count); 7895 if (ret) 7896 goto out; 7897 7898 /* 7899 * We need to know how many extents we reserved so that we can 7900 * do the accounting properly if we go over the number we 7901 * originally calculated. Abuse current->journal_info for this. 7902 */ 7903 dio_data.reserve = round_up(count, 7904 fs_info->sectorsize); 7905 dio_data.unsubmitted_oe_range_start = (u64)offset; 7906 dio_data.unsubmitted_oe_range_end = (u64)offset; 7907 current->journal_info = &dio_data; 7908 down_read(&BTRFS_I(inode)->dio_sem); 7909 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7910 &BTRFS_I(inode)->runtime_flags)) { 7911 inode_dio_end(inode); 7912 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7913 wakeup = false; 7914 } 7915 7916 ret = __blockdev_direct_IO(iocb, inode, 7917 fs_info->fs_devices->latest_bdev, 7918 iter, btrfs_get_blocks_direct, NULL, 7919 btrfs_submit_direct, flags); 7920 if (iov_iter_rw(iter) == WRITE) { 7921 up_read(&BTRFS_I(inode)->dio_sem); 7922 current->journal_info = NULL; 7923 if (ret < 0 && ret != -EIOCBQUEUED) { 7924 if (dio_data.reserve) 7925 btrfs_delalloc_release_space(inode, data_reserved, 7926 offset, dio_data.reserve, true); 7927 /* 7928 * On error we might have left some ordered extents 7929 * without submitting corresponding bios for them, so 7930 * cleanup them up to avoid other tasks getting them 7931 * and waiting for them to complete forever. 7932 */ 7933 if (dio_data.unsubmitted_oe_range_start < 7934 dio_data.unsubmitted_oe_range_end) 7935 __endio_write_update_ordered(inode, 7936 dio_data.unsubmitted_oe_range_start, 7937 dio_data.unsubmitted_oe_range_end - 7938 dio_data.unsubmitted_oe_range_start, 7939 false); 7940 } else if (ret >= 0 && (size_t)ret < count) 7941 btrfs_delalloc_release_space(inode, data_reserved, 7942 offset, count - (size_t)ret, true); 7943 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 7944 } 7945 out: 7946 if (wakeup) 7947 inode_dio_end(inode); 7948 if (relock) 7949 inode_lock(inode); 7950 7951 extent_changeset_free(data_reserved); 7952 return ret; 7953 } 7954 7955 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7956 __u64 start, __u64 len) 7957 { 7958 int ret; 7959 7960 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7961 if (ret) 7962 return ret; 7963 7964 return extent_fiemap(inode, fieinfo, start, len); 7965 } 7966 7967 int btrfs_readpage(struct file *file, struct page *page) 7968 { 7969 return extent_read_full_page(page, btrfs_get_extent, 0); 7970 } 7971 7972 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7973 { 7974 struct inode *inode = page->mapping->host; 7975 int ret; 7976 7977 if (current->flags & PF_MEMALLOC) { 7978 redirty_page_for_writepage(wbc, page); 7979 unlock_page(page); 7980 return 0; 7981 } 7982 7983 /* 7984 * If we are under memory pressure we will call this directly from the 7985 * VM, we need to make sure we have the inode referenced for the ordered 7986 * extent. If not just return like we didn't do anything. 7987 */ 7988 if (!igrab(inode)) { 7989 redirty_page_for_writepage(wbc, page); 7990 return AOP_WRITEPAGE_ACTIVATE; 7991 } 7992 ret = extent_write_full_page(page, wbc); 7993 btrfs_add_delayed_iput(inode); 7994 return ret; 7995 } 7996 7997 static int btrfs_writepages(struct address_space *mapping, 7998 struct writeback_control *wbc) 7999 { 8000 return extent_writepages(mapping, wbc); 8001 } 8002 8003 static void btrfs_readahead(struct readahead_control *rac) 8004 { 8005 extent_readahead(rac); 8006 } 8007 8008 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8009 { 8010 int ret = try_release_extent_mapping(page, gfp_flags); 8011 if (ret == 1) 8012 detach_page_private(page); 8013 return ret; 8014 } 8015 8016 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8017 { 8018 if (PageWriteback(page) || PageDirty(page)) 8019 return 0; 8020 return __btrfs_releasepage(page, gfp_flags); 8021 } 8022 8023 #ifdef CONFIG_MIGRATION 8024 static int btrfs_migratepage(struct address_space *mapping, 8025 struct page *newpage, struct page *page, 8026 enum migrate_mode mode) 8027 { 8028 int ret; 8029 8030 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8031 if (ret != MIGRATEPAGE_SUCCESS) 8032 return ret; 8033 8034 if (page_has_private(page)) 8035 attach_page_private(newpage, detach_page_private(page)); 8036 8037 if (PagePrivate2(page)) { 8038 ClearPagePrivate2(page); 8039 SetPagePrivate2(newpage); 8040 } 8041 8042 if (mode != MIGRATE_SYNC_NO_COPY) 8043 migrate_page_copy(newpage, page); 8044 else 8045 migrate_page_states(newpage, page); 8046 return MIGRATEPAGE_SUCCESS; 8047 } 8048 #endif 8049 8050 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8051 unsigned int length) 8052 { 8053 struct inode *inode = page->mapping->host; 8054 struct extent_io_tree *tree; 8055 struct btrfs_ordered_extent *ordered; 8056 struct extent_state *cached_state = NULL; 8057 u64 page_start = page_offset(page); 8058 u64 page_end = page_start + PAGE_SIZE - 1; 8059 u64 start; 8060 u64 end; 8061 int inode_evicting = inode->i_state & I_FREEING; 8062 8063 /* 8064 * we have the page locked, so new writeback can't start, 8065 * and the dirty bit won't be cleared while we are here. 8066 * 8067 * Wait for IO on this page so that we can safely clear 8068 * the PagePrivate2 bit and do ordered accounting 8069 */ 8070 wait_on_page_writeback(page); 8071 8072 tree = &BTRFS_I(inode)->io_tree; 8073 if (offset) { 8074 btrfs_releasepage(page, GFP_NOFS); 8075 return; 8076 } 8077 8078 if (!inode_evicting) 8079 lock_extent_bits(tree, page_start, page_end, &cached_state); 8080 again: 8081 start = page_start; 8082 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8083 page_end - start + 1); 8084 if (ordered) { 8085 end = min(page_end, 8086 ordered->file_offset + ordered->num_bytes - 1); 8087 /* 8088 * IO on this page will never be started, so we need 8089 * to account for any ordered extents now 8090 */ 8091 if (!inode_evicting) 8092 clear_extent_bit(tree, start, end, 8093 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8094 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8095 EXTENT_DEFRAG, 1, 0, &cached_state); 8096 /* 8097 * whoever cleared the private bit is responsible 8098 * for the finish_ordered_io 8099 */ 8100 if (TestClearPagePrivate2(page)) { 8101 struct btrfs_ordered_inode_tree *tree; 8102 u64 new_len; 8103 8104 tree = &BTRFS_I(inode)->ordered_tree; 8105 8106 spin_lock_irq(&tree->lock); 8107 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8108 new_len = start - ordered->file_offset; 8109 if (new_len < ordered->truncated_len) 8110 ordered->truncated_len = new_len; 8111 spin_unlock_irq(&tree->lock); 8112 8113 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8114 start, 8115 end - start + 1, 1)) 8116 btrfs_finish_ordered_io(ordered); 8117 } 8118 btrfs_put_ordered_extent(ordered); 8119 if (!inode_evicting) { 8120 cached_state = NULL; 8121 lock_extent_bits(tree, start, end, 8122 &cached_state); 8123 } 8124 8125 start = end + 1; 8126 if (start < page_end) 8127 goto again; 8128 } 8129 8130 /* 8131 * Qgroup reserved space handler 8132 * Page here will be either 8133 * 1) Already written to disk 8134 * In this case, its reserved space is released from data rsv map 8135 * and will be freed by delayed_ref handler finally. 8136 * So even we call qgroup_free_data(), it won't decrease reserved 8137 * space. 8138 * 2) Not written to disk 8139 * This means the reserved space should be freed here. However, 8140 * if a truncate invalidates the page (by clearing PageDirty) 8141 * and the page is accounted for while allocating extent 8142 * in btrfs_check_data_free_space() we let delayed_ref to 8143 * free the entire extent. 8144 */ 8145 if (PageDirty(page)) 8146 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8147 if (!inode_evicting) { 8148 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8149 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8150 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8151 &cached_state); 8152 8153 __btrfs_releasepage(page, GFP_NOFS); 8154 } 8155 8156 ClearPageChecked(page); 8157 detach_page_private(page); 8158 } 8159 8160 /* 8161 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8162 * called from a page fault handler when a page is first dirtied. Hence we must 8163 * be careful to check for EOF conditions here. We set the page up correctly 8164 * for a written page which means we get ENOSPC checking when writing into 8165 * holes and correct delalloc and unwritten extent mapping on filesystems that 8166 * support these features. 8167 * 8168 * We are not allowed to take the i_mutex here so we have to play games to 8169 * protect against truncate races as the page could now be beyond EOF. Because 8170 * truncate_setsize() writes the inode size before removing pages, once we have 8171 * the page lock we can determine safely if the page is beyond EOF. If it is not 8172 * beyond EOF, then the page is guaranteed safe against truncation until we 8173 * unlock the page. 8174 */ 8175 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8176 { 8177 struct page *page = vmf->page; 8178 struct inode *inode = file_inode(vmf->vma->vm_file); 8179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8180 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8181 struct btrfs_ordered_extent *ordered; 8182 struct extent_state *cached_state = NULL; 8183 struct extent_changeset *data_reserved = NULL; 8184 char *kaddr; 8185 unsigned long zero_start; 8186 loff_t size; 8187 vm_fault_t ret; 8188 int ret2; 8189 int reserved = 0; 8190 u64 reserved_space; 8191 u64 page_start; 8192 u64 page_end; 8193 u64 end; 8194 8195 reserved_space = PAGE_SIZE; 8196 8197 sb_start_pagefault(inode->i_sb); 8198 page_start = page_offset(page); 8199 page_end = page_start + PAGE_SIZE - 1; 8200 end = page_end; 8201 8202 /* 8203 * Reserving delalloc space after obtaining the page lock can lead to 8204 * deadlock. For example, if a dirty page is locked by this function 8205 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8206 * dirty page write out, then the btrfs_writepage() function could 8207 * end up waiting indefinitely to get a lock on the page currently 8208 * being processed by btrfs_page_mkwrite() function. 8209 */ 8210 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8211 reserved_space); 8212 if (!ret2) { 8213 ret2 = file_update_time(vmf->vma->vm_file); 8214 reserved = 1; 8215 } 8216 if (ret2) { 8217 ret = vmf_error(ret2); 8218 if (reserved) 8219 goto out; 8220 goto out_noreserve; 8221 } 8222 8223 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8224 again: 8225 lock_page(page); 8226 size = i_size_read(inode); 8227 8228 if ((page->mapping != inode->i_mapping) || 8229 (page_start >= size)) { 8230 /* page got truncated out from underneath us */ 8231 goto out_unlock; 8232 } 8233 wait_on_page_writeback(page); 8234 8235 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8236 set_page_extent_mapped(page); 8237 8238 /* 8239 * we can't set the delalloc bits if there are pending ordered 8240 * extents. Drop our locks and wait for them to finish 8241 */ 8242 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8243 PAGE_SIZE); 8244 if (ordered) { 8245 unlock_extent_cached(io_tree, page_start, page_end, 8246 &cached_state); 8247 unlock_page(page); 8248 btrfs_start_ordered_extent(inode, ordered, 1); 8249 btrfs_put_ordered_extent(ordered); 8250 goto again; 8251 } 8252 8253 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8254 reserved_space = round_up(size - page_start, 8255 fs_info->sectorsize); 8256 if (reserved_space < PAGE_SIZE) { 8257 end = page_start + reserved_space - 1; 8258 btrfs_delalloc_release_space(inode, data_reserved, 8259 page_start, PAGE_SIZE - reserved_space, 8260 true); 8261 } 8262 } 8263 8264 /* 8265 * page_mkwrite gets called when the page is firstly dirtied after it's 8266 * faulted in, but write(2) could also dirty a page and set delalloc 8267 * bits, thus in this case for space account reason, we still need to 8268 * clear any delalloc bits within this page range since we have to 8269 * reserve data&meta space before lock_page() (see above comments). 8270 */ 8271 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8272 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8273 EXTENT_DEFRAG, 0, 0, &cached_state); 8274 8275 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8276 &cached_state); 8277 if (ret2) { 8278 unlock_extent_cached(io_tree, page_start, page_end, 8279 &cached_state); 8280 ret = VM_FAULT_SIGBUS; 8281 goto out_unlock; 8282 } 8283 8284 /* page is wholly or partially inside EOF */ 8285 if (page_start + PAGE_SIZE > size) 8286 zero_start = offset_in_page(size); 8287 else 8288 zero_start = PAGE_SIZE; 8289 8290 if (zero_start != PAGE_SIZE) { 8291 kaddr = kmap(page); 8292 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8293 flush_dcache_page(page); 8294 kunmap(page); 8295 } 8296 ClearPageChecked(page); 8297 set_page_dirty(page); 8298 SetPageUptodate(page); 8299 8300 BTRFS_I(inode)->last_trans = fs_info->generation; 8301 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8302 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8303 8304 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8305 8306 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8307 sb_end_pagefault(inode->i_sb); 8308 extent_changeset_free(data_reserved); 8309 return VM_FAULT_LOCKED; 8310 8311 out_unlock: 8312 unlock_page(page); 8313 out: 8314 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8315 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8316 reserved_space, (ret != 0)); 8317 out_noreserve: 8318 sb_end_pagefault(inode->i_sb); 8319 extent_changeset_free(data_reserved); 8320 return ret; 8321 } 8322 8323 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8324 { 8325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8326 struct btrfs_root *root = BTRFS_I(inode)->root; 8327 struct btrfs_block_rsv *rsv; 8328 int ret; 8329 struct btrfs_trans_handle *trans; 8330 u64 mask = fs_info->sectorsize - 1; 8331 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8332 8333 if (!skip_writeback) { 8334 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8335 (u64)-1); 8336 if (ret) 8337 return ret; 8338 } 8339 8340 /* 8341 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8342 * things going on here: 8343 * 8344 * 1) We need to reserve space to update our inode. 8345 * 8346 * 2) We need to have something to cache all the space that is going to 8347 * be free'd up by the truncate operation, but also have some slack 8348 * space reserved in case it uses space during the truncate (thank you 8349 * very much snapshotting). 8350 * 8351 * And we need these to be separate. The fact is we can use a lot of 8352 * space doing the truncate, and we have no earthly idea how much space 8353 * we will use, so we need the truncate reservation to be separate so it 8354 * doesn't end up using space reserved for updating the inode. We also 8355 * need to be able to stop the transaction and start a new one, which 8356 * means we need to be able to update the inode several times, and we 8357 * have no idea of knowing how many times that will be, so we can't just 8358 * reserve 1 item for the entirety of the operation, so that has to be 8359 * done separately as well. 8360 * 8361 * So that leaves us with 8362 * 8363 * 1) rsv - for the truncate reservation, which we will steal from the 8364 * transaction reservation. 8365 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8366 * updating the inode. 8367 */ 8368 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8369 if (!rsv) 8370 return -ENOMEM; 8371 rsv->size = min_size; 8372 rsv->failfast = 1; 8373 8374 /* 8375 * 1 for the truncate slack space 8376 * 1 for updating the inode. 8377 */ 8378 trans = btrfs_start_transaction(root, 2); 8379 if (IS_ERR(trans)) { 8380 ret = PTR_ERR(trans); 8381 goto out; 8382 } 8383 8384 /* Migrate the slack space for the truncate to our reserve */ 8385 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8386 min_size, false); 8387 BUG_ON(ret); 8388 8389 /* 8390 * So if we truncate and then write and fsync we normally would just 8391 * write the extents that changed, which is a problem if we need to 8392 * first truncate that entire inode. So set this flag so we write out 8393 * all of the extents in the inode to the sync log so we're completely 8394 * safe. 8395 */ 8396 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8397 trans->block_rsv = rsv; 8398 8399 while (1) { 8400 ret = btrfs_truncate_inode_items(trans, root, inode, 8401 inode->i_size, 8402 BTRFS_EXTENT_DATA_KEY); 8403 trans->block_rsv = &fs_info->trans_block_rsv; 8404 if (ret != -ENOSPC && ret != -EAGAIN) 8405 break; 8406 8407 ret = btrfs_update_inode(trans, root, inode); 8408 if (ret) 8409 break; 8410 8411 btrfs_end_transaction(trans); 8412 btrfs_btree_balance_dirty(fs_info); 8413 8414 trans = btrfs_start_transaction(root, 2); 8415 if (IS_ERR(trans)) { 8416 ret = PTR_ERR(trans); 8417 trans = NULL; 8418 break; 8419 } 8420 8421 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8422 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8423 rsv, min_size, false); 8424 BUG_ON(ret); /* shouldn't happen */ 8425 trans->block_rsv = rsv; 8426 } 8427 8428 /* 8429 * We can't call btrfs_truncate_block inside a trans handle as we could 8430 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8431 * we've truncated everything except the last little bit, and can do 8432 * btrfs_truncate_block and then update the disk_i_size. 8433 */ 8434 if (ret == NEED_TRUNCATE_BLOCK) { 8435 btrfs_end_transaction(trans); 8436 btrfs_btree_balance_dirty(fs_info); 8437 8438 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8439 if (ret) 8440 goto out; 8441 trans = btrfs_start_transaction(root, 1); 8442 if (IS_ERR(trans)) { 8443 ret = PTR_ERR(trans); 8444 goto out; 8445 } 8446 btrfs_inode_safe_disk_i_size_write(inode, 0); 8447 } 8448 8449 if (trans) { 8450 int ret2; 8451 8452 trans->block_rsv = &fs_info->trans_block_rsv; 8453 ret2 = btrfs_update_inode(trans, root, inode); 8454 if (ret2 && !ret) 8455 ret = ret2; 8456 8457 ret2 = btrfs_end_transaction(trans); 8458 if (ret2 && !ret) 8459 ret = ret2; 8460 btrfs_btree_balance_dirty(fs_info); 8461 } 8462 out: 8463 btrfs_free_block_rsv(fs_info, rsv); 8464 8465 return ret; 8466 } 8467 8468 /* 8469 * create a new subvolume directory/inode (helper for the ioctl). 8470 */ 8471 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8472 struct btrfs_root *new_root, 8473 struct btrfs_root *parent_root, 8474 u64 new_dirid) 8475 { 8476 struct inode *inode; 8477 int err; 8478 u64 index = 0; 8479 8480 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8481 new_dirid, new_dirid, 8482 S_IFDIR | (~current_umask() & S_IRWXUGO), 8483 &index); 8484 if (IS_ERR(inode)) 8485 return PTR_ERR(inode); 8486 inode->i_op = &btrfs_dir_inode_operations; 8487 inode->i_fop = &btrfs_dir_file_operations; 8488 8489 set_nlink(inode, 1); 8490 btrfs_i_size_write(BTRFS_I(inode), 0); 8491 unlock_new_inode(inode); 8492 8493 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8494 if (err) 8495 btrfs_err(new_root->fs_info, 8496 "error inheriting subvolume %llu properties: %d", 8497 new_root->root_key.objectid, err); 8498 8499 err = btrfs_update_inode(trans, new_root, inode); 8500 8501 iput(inode); 8502 return err; 8503 } 8504 8505 struct inode *btrfs_alloc_inode(struct super_block *sb) 8506 { 8507 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8508 struct btrfs_inode *ei; 8509 struct inode *inode; 8510 8511 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8512 if (!ei) 8513 return NULL; 8514 8515 ei->root = NULL; 8516 ei->generation = 0; 8517 ei->last_trans = 0; 8518 ei->last_sub_trans = 0; 8519 ei->logged_trans = 0; 8520 ei->delalloc_bytes = 0; 8521 ei->new_delalloc_bytes = 0; 8522 ei->defrag_bytes = 0; 8523 ei->disk_i_size = 0; 8524 ei->flags = 0; 8525 ei->csum_bytes = 0; 8526 ei->index_cnt = (u64)-1; 8527 ei->dir_index = 0; 8528 ei->last_unlink_trans = 0; 8529 ei->last_log_commit = 0; 8530 8531 spin_lock_init(&ei->lock); 8532 ei->outstanding_extents = 0; 8533 if (sb->s_magic != BTRFS_TEST_MAGIC) 8534 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8535 BTRFS_BLOCK_RSV_DELALLOC); 8536 ei->runtime_flags = 0; 8537 ei->prop_compress = BTRFS_COMPRESS_NONE; 8538 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8539 8540 ei->delayed_node = NULL; 8541 8542 ei->i_otime.tv_sec = 0; 8543 ei->i_otime.tv_nsec = 0; 8544 8545 inode = &ei->vfs_inode; 8546 extent_map_tree_init(&ei->extent_tree); 8547 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8548 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8549 IO_TREE_INODE_IO_FAILURE, inode); 8550 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8551 IO_TREE_INODE_FILE_EXTENT, inode); 8552 ei->io_tree.track_uptodate = true; 8553 ei->io_failure_tree.track_uptodate = true; 8554 atomic_set(&ei->sync_writers, 0); 8555 mutex_init(&ei->log_mutex); 8556 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8557 INIT_LIST_HEAD(&ei->delalloc_inodes); 8558 INIT_LIST_HEAD(&ei->delayed_iput); 8559 RB_CLEAR_NODE(&ei->rb_node); 8560 init_rwsem(&ei->dio_sem); 8561 8562 return inode; 8563 } 8564 8565 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8566 void btrfs_test_destroy_inode(struct inode *inode) 8567 { 8568 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8569 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8570 } 8571 #endif 8572 8573 void btrfs_free_inode(struct inode *inode) 8574 { 8575 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8576 } 8577 8578 void btrfs_destroy_inode(struct inode *inode) 8579 { 8580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8581 struct btrfs_ordered_extent *ordered; 8582 struct btrfs_root *root = BTRFS_I(inode)->root; 8583 8584 WARN_ON(!hlist_empty(&inode->i_dentry)); 8585 WARN_ON(inode->i_data.nrpages); 8586 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8587 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8588 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8589 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8590 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8591 WARN_ON(BTRFS_I(inode)->csum_bytes); 8592 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8593 8594 /* 8595 * This can happen where we create an inode, but somebody else also 8596 * created the same inode and we need to destroy the one we already 8597 * created. 8598 */ 8599 if (!root) 8600 return; 8601 8602 while (1) { 8603 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8604 if (!ordered) 8605 break; 8606 else { 8607 btrfs_err(fs_info, 8608 "found ordered extent %llu %llu on inode cleanup", 8609 ordered->file_offset, ordered->num_bytes); 8610 btrfs_remove_ordered_extent(inode, ordered); 8611 btrfs_put_ordered_extent(ordered); 8612 btrfs_put_ordered_extent(ordered); 8613 } 8614 } 8615 btrfs_qgroup_check_reserved_leak(inode); 8616 inode_tree_del(inode); 8617 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8618 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1); 8619 btrfs_put_root(BTRFS_I(inode)->root); 8620 } 8621 8622 int btrfs_drop_inode(struct inode *inode) 8623 { 8624 struct btrfs_root *root = BTRFS_I(inode)->root; 8625 8626 if (root == NULL) 8627 return 1; 8628 8629 /* the snap/subvol tree is on deleting */ 8630 if (btrfs_root_refs(&root->root_item) == 0) 8631 return 1; 8632 else 8633 return generic_drop_inode(inode); 8634 } 8635 8636 static void init_once(void *foo) 8637 { 8638 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8639 8640 inode_init_once(&ei->vfs_inode); 8641 } 8642 8643 void __cold btrfs_destroy_cachep(void) 8644 { 8645 /* 8646 * Make sure all delayed rcu free inodes are flushed before we 8647 * destroy cache. 8648 */ 8649 rcu_barrier(); 8650 kmem_cache_destroy(btrfs_inode_cachep); 8651 kmem_cache_destroy(btrfs_trans_handle_cachep); 8652 kmem_cache_destroy(btrfs_path_cachep); 8653 kmem_cache_destroy(btrfs_free_space_cachep); 8654 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8655 } 8656 8657 int __init btrfs_init_cachep(void) 8658 { 8659 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8660 sizeof(struct btrfs_inode), 0, 8661 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8662 init_once); 8663 if (!btrfs_inode_cachep) 8664 goto fail; 8665 8666 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8667 sizeof(struct btrfs_trans_handle), 0, 8668 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8669 if (!btrfs_trans_handle_cachep) 8670 goto fail; 8671 8672 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8673 sizeof(struct btrfs_path), 0, 8674 SLAB_MEM_SPREAD, NULL); 8675 if (!btrfs_path_cachep) 8676 goto fail; 8677 8678 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8679 sizeof(struct btrfs_free_space), 0, 8680 SLAB_MEM_SPREAD, NULL); 8681 if (!btrfs_free_space_cachep) 8682 goto fail; 8683 8684 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8685 PAGE_SIZE, PAGE_SIZE, 8686 SLAB_RED_ZONE, NULL); 8687 if (!btrfs_free_space_bitmap_cachep) 8688 goto fail; 8689 8690 return 0; 8691 fail: 8692 btrfs_destroy_cachep(); 8693 return -ENOMEM; 8694 } 8695 8696 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8697 u32 request_mask, unsigned int flags) 8698 { 8699 u64 delalloc_bytes; 8700 struct inode *inode = d_inode(path->dentry); 8701 u32 blocksize = inode->i_sb->s_blocksize; 8702 u32 bi_flags = BTRFS_I(inode)->flags; 8703 8704 stat->result_mask |= STATX_BTIME; 8705 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8706 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8707 if (bi_flags & BTRFS_INODE_APPEND) 8708 stat->attributes |= STATX_ATTR_APPEND; 8709 if (bi_flags & BTRFS_INODE_COMPRESS) 8710 stat->attributes |= STATX_ATTR_COMPRESSED; 8711 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8712 stat->attributes |= STATX_ATTR_IMMUTABLE; 8713 if (bi_flags & BTRFS_INODE_NODUMP) 8714 stat->attributes |= STATX_ATTR_NODUMP; 8715 8716 stat->attributes_mask |= (STATX_ATTR_APPEND | 8717 STATX_ATTR_COMPRESSED | 8718 STATX_ATTR_IMMUTABLE | 8719 STATX_ATTR_NODUMP); 8720 8721 generic_fillattr(inode, stat); 8722 stat->dev = BTRFS_I(inode)->root->anon_dev; 8723 8724 spin_lock(&BTRFS_I(inode)->lock); 8725 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8726 spin_unlock(&BTRFS_I(inode)->lock); 8727 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8728 ALIGN(delalloc_bytes, blocksize)) >> 9; 8729 return 0; 8730 } 8731 8732 static int btrfs_rename_exchange(struct inode *old_dir, 8733 struct dentry *old_dentry, 8734 struct inode *new_dir, 8735 struct dentry *new_dentry) 8736 { 8737 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8738 struct btrfs_trans_handle *trans; 8739 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8740 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8741 struct inode *new_inode = new_dentry->d_inode; 8742 struct inode *old_inode = old_dentry->d_inode; 8743 struct timespec64 ctime = current_time(old_inode); 8744 struct dentry *parent; 8745 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8746 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8747 u64 old_idx = 0; 8748 u64 new_idx = 0; 8749 int ret; 8750 bool root_log_pinned = false; 8751 bool dest_log_pinned = false; 8752 struct btrfs_log_ctx ctx_root; 8753 struct btrfs_log_ctx ctx_dest; 8754 bool sync_log_root = false; 8755 bool sync_log_dest = false; 8756 bool commit_transaction = false; 8757 8758 /* we only allow rename subvolume link between subvolumes */ 8759 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8760 return -EXDEV; 8761 8762 btrfs_init_log_ctx(&ctx_root, old_inode); 8763 btrfs_init_log_ctx(&ctx_dest, new_inode); 8764 8765 /* close the race window with snapshot create/destroy ioctl */ 8766 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8767 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8768 down_read(&fs_info->subvol_sem); 8769 8770 /* 8771 * We want to reserve the absolute worst case amount of items. So if 8772 * both inodes are subvols and we need to unlink them then that would 8773 * require 4 item modifications, but if they are both normal inodes it 8774 * would require 5 item modifications, so we'll assume their normal 8775 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8776 * should cover the worst case number of items we'll modify. 8777 */ 8778 trans = btrfs_start_transaction(root, 12); 8779 if (IS_ERR(trans)) { 8780 ret = PTR_ERR(trans); 8781 goto out_notrans; 8782 } 8783 8784 if (dest != root) 8785 btrfs_record_root_in_trans(trans, dest); 8786 8787 /* 8788 * We need to find a free sequence number both in the source and 8789 * in the destination directory for the exchange. 8790 */ 8791 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8792 if (ret) 8793 goto out_fail; 8794 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8795 if (ret) 8796 goto out_fail; 8797 8798 BTRFS_I(old_inode)->dir_index = 0ULL; 8799 BTRFS_I(new_inode)->dir_index = 0ULL; 8800 8801 /* Reference for the source. */ 8802 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8803 /* force full log commit if subvolume involved. */ 8804 btrfs_set_log_full_commit(trans); 8805 } else { 8806 btrfs_pin_log_trans(root); 8807 root_log_pinned = true; 8808 ret = btrfs_insert_inode_ref(trans, dest, 8809 new_dentry->d_name.name, 8810 new_dentry->d_name.len, 8811 old_ino, 8812 btrfs_ino(BTRFS_I(new_dir)), 8813 old_idx); 8814 if (ret) 8815 goto out_fail; 8816 } 8817 8818 /* And now for the dest. */ 8819 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8820 /* force full log commit if subvolume involved. */ 8821 btrfs_set_log_full_commit(trans); 8822 } else { 8823 btrfs_pin_log_trans(dest); 8824 dest_log_pinned = true; 8825 ret = btrfs_insert_inode_ref(trans, root, 8826 old_dentry->d_name.name, 8827 old_dentry->d_name.len, 8828 new_ino, 8829 btrfs_ino(BTRFS_I(old_dir)), 8830 new_idx); 8831 if (ret) 8832 goto out_fail; 8833 } 8834 8835 /* Update inode version and ctime/mtime. */ 8836 inode_inc_iversion(old_dir); 8837 inode_inc_iversion(new_dir); 8838 inode_inc_iversion(old_inode); 8839 inode_inc_iversion(new_inode); 8840 old_dir->i_ctime = old_dir->i_mtime = ctime; 8841 new_dir->i_ctime = new_dir->i_mtime = ctime; 8842 old_inode->i_ctime = ctime; 8843 new_inode->i_ctime = ctime; 8844 8845 if (old_dentry->d_parent != new_dentry->d_parent) { 8846 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8847 BTRFS_I(old_inode), 1); 8848 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8849 BTRFS_I(new_inode), 1); 8850 } 8851 8852 /* src is a subvolume */ 8853 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8854 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 8855 } else { /* src is an inode */ 8856 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 8857 BTRFS_I(old_dentry->d_inode), 8858 old_dentry->d_name.name, 8859 old_dentry->d_name.len); 8860 if (!ret) 8861 ret = btrfs_update_inode(trans, root, old_inode); 8862 } 8863 if (ret) { 8864 btrfs_abort_transaction(trans, ret); 8865 goto out_fail; 8866 } 8867 8868 /* dest is a subvolume */ 8869 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8870 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 8871 } else { /* dest is an inode */ 8872 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 8873 BTRFS_I(new_dentry->d_inode), 8874 new_dentry->d_name.name, 8875 new_dentry->d_name.len); 8876 if (!ret) 8877 ret = btrfs_update_inode(trans, dest, new_inode); 8878 } 8879 if (ret) { 8880 btrfs_abort_transaction(trans, ret); 8881 goto out_fail; 8882 } 8883 8884 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8885 new_dentry->d_name.name, 8886 new_dentry->d_name.len, 0, old_idx); 8887 if (ret) { 8888 btrfs_abort_transaction(trans, ret); 8889 goto out_fail; 8890 } 8891 8892 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8893 old_dentry->d_name.name, 8894 old_dentry->d_name.len, 0, new_idx); 8895 if (ret) { 8896 btrfs_abort_transaction(trans, ret); 8897 goto out_fail; 8898 } 8899 8900 if (old_inode->i_nlink == 1) 8901 BTRFS_I(old_inode)->dir_index = old_idx; 8902 if (new_inode->i_nlink == 1) 8903 BTRFS_I(new_inode)->dir_index = new_idx; 8904 8905 if (root_log_pinned) { 8906 parent = new_dentry->d_parent; 8907 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 8908 BTRFS_I(old_dir), parent, 8909 false, &ctx_root); 8910 if (ret == BTRFS_NEED_LOG_SYNC) 8911 sync_log_root = true; 8912 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8913 commit_transaction = true; 8914 ret = 0; 8915 btrfs_end_log_trans(root); 8916 root_log_pinned = false; 8917 } 8918 if (dest_log_pinned) { 8919 if (!commit_transaction) { 8920 parent = old_dentry->d_parent; 8921 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 8922 BTRFS_I(new_dir), parent, 8923 false, &ctx_dest); 8924 if (ret == BTRFS_NEED_LOG_SYNC) 8925 sync_log_dest = true; 8926 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8927 commit_transaction = true; 8928 ret = 0; 8929 } 8930 btrfs_end_log_trans(dest); 8931 dest_log_pinned = false; 8932 } 8933 out_fail: 8934 /* 8935 * If we have pinned a log and an error happened, we unpin tasks 8936 * trying to sync the log and force them to fallback to a transaction 8937 * commit if the log currently contains any of the inodes involved in 8938 * this rename operation (to ensure we do not persist a log with an 8939 * inconsistent state for any of these inodes or leading to any 8940 * inconsistencies when replayed). If the transaction was aborted, the 8941 * abortion reason is propagated to userspace when attempting to commit 8942 * the transaction. If the log does not contain any of these inodes, we 8943 * allow the tasks to sync it. 8944 */ 8945 if (ret && (root_log_pinned || dest_log_pinned)) { 8946 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 8947 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 8948 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 8949 (new_inode && 8950 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 8951 btrfs_set_log_full_commit(trans); 8952 8953 if (root_log_pinned) { 8954 btrfs_end_log_trans(root); 8955 root_log_pinned = false; 8956 } 8957 if (dest_log_pinned) { 8958 btrfs_end_log_trans(dest); 8959 dest_log_pinned = false; 8960 } 8961 } 8962 if (!ret && sync_log_root && !commit_transaction) { 8963 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 8964 &ctx_root); 8965 if (ret) 8966 commit_transaction = true; 8967 } 8968 if (!ret && sync_log_dest && !commit_transaction) { 8969 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 8970 &ctx_dest); 8971 if (ret) 8972 commit_transaction = true; 8973 } 8974 if (commit_transaction) { 8975 /* 8976 * We may have set commit_transaction when logging the new name 8977 * in the destination root, in which case we left the source 8978 * root context in the list of log contextes. So make sure we 8979 * remove it to avoid invalid memory accesses, since the context 8980 * was allocated in our stack frame. 8981 */ 8982 if (sync_log_root) { 8983 mutex_lock(&root->log_mutex); 8984 list_del_init(&ctx_root.list); 8985 mutex_unlock(&root->log_mutex); 8986 } 8987 ret = btrfs_commit_transaction(trans); 8988 } else { 8989 int ret2; 8990 8991 ret2 = btrfs_end_transaction(trans); 8992 ret = ret ? ret : ret2; 8993 } 8994 out_notrans: 8995 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8996 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8997 up_read(&fs_info->subvol_sem); 8998 8999 ASSERT(list_empty(&ctx_root.list)); 9000 ASSERT(list_empty(&ctx_dest.list)); 9001 9002 return ret; 9003 } 9004 9005 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9006 struct btrfs_root *root, 9007 struct inode *dir, 9008 struct dentry *dentry) 9009 { 9010 int ret; 9011 struct inode *inode; 9012 u64 objectid; 9013 u64 index; 9014 9015 ret = btrfs_find_free_ino(root, &objectid); 9016 if (ret) 9017 return ret; 9018 9019 inode = btrfs_new_inode(trans, root, dir, 9020 dentry->d_name.name, 9021 dentry->d_name.len, 9022 btrfs_ino(BTRFS_I(dir)), 9023 objectid, 9024 S_IFCHR | WHITEOUT_MODE, 9025 &index); 9026 9027 if (IS_ERR(inode)) { 9028 ret = PTR_ERR(inode); 9029 return ret; 9030 } 9031 9032 inode->i_op = &btrfs_special_inode_operations; 9033 init_special_inode(inode, inode->i_mode, 9034 WHITEOUT_DEV); 9035 9036 ret = btrfs_init_inode_security(trans, inode, dir, 9037 &dentry->d_name); 9038 if (ret) 9039 goto out; 9040 9041 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9042 BTRFS_I(inode), 0, index); 9043 if (ret) 9044 goto out; 9045 9046 ret = btrfs_update_inode(trans, root, inode); 9047 out: 9048 unlock_new_inode(inode); 9049 if (ret) 9050 inode_dec_link_count(inode); 9051 iput(inode); 9052 9053 return ret; 9054 } 9055 9056 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9057 struct inode *new_dir, struct dentry *new_dentry, 9058 unsigned int flags) 9059 { 9060 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9061 struct btrfs_trans_handle *trans; 9062 unsigned int trans_num_items; 9063 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9064 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9065 struct inode *new_inode = d_inode(new_dentry); 9066 struct inode *old_inode = d_inode(old_dentry); 9067 u64 index = 0; 9068 int ret; 9069 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9070 bool log_pinned = false; 9071 struct btrfs_log_ctx ctx; 9072 bool sync_log = false; 9073 bool commit_transaction = false; 9074 9075 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9076 return -EPERM; 9077 9078 /* we only allow rename subvolume link between subvolumes */ 9079 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9080 return -EXDEV; 9081 9082 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9083 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9084 return -ENOTEMPTY; 9085 9086 if (S_ISDIR(old_inode->i_mode) && new_inode && 9087 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9088 return -ENOTEMPTY; 9089 9090 9091 /* check for collisions, even if the name isn't there */ 9092 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9093 new_dentry->d_name.name, 9094 new_dentry->d_name.len); 9095 9096 if (ret) { 9097 if (ret == -EEXIST) { 9098 /* we shouldn't get 9099 * eexist without a new_inode */ 9100 if (WARN_ON(!new_inode)) { 9101 return ret; 9102 } 9103 } else { 9104 /* maybe -EOVERFLOW */ 9105 return ret; 9106 } 9107 } 9108 ret = 0; 9109 9110 /* 9111 * we're using rename to replace one file with another. Start IO on it 9112 * now so we don't add too much work to the end of the transaction 9113 */ 9114 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9115 filemap_flush(old_inode->i_mapping); 9116 9117 /* close the racy window with snapshot create/destroy ioctl */ 9118 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9119 down_read(&fs_info->subvol_sem); 9120 /* 9121 * We want to reserve the absolute worst case amount of items. So if 9122 * both inodes are subvols and we need to unlink them then that would 9123 * require 4 item modifications, but if they are both normal inodes it 9124 * would require 5 item modifications, so we'll assume they are normal 9125 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9126 * should cover the worst case number of items we'll modify. 9127 * If our rename has the whiteout flag, we need more 5 units for the 9128 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9129 * when selinux is enabled). 9130 */ 9131 trans_num_items = 11; 9132 if (flags & RENAME_WHITEOUT) 9133 trans_num_items += 5; 9134 trans = btrfs_start_transaction(root, trans_num_items); 9135 if (IS_ERR(trans)) { 9136 ret = PTR_ERR(trans); 9137 goto out_notrans; 9138 } 9139 9140 if (dest != root) 9141 btrfs_record_root_in_trans(trans, dest); 9142 9143 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9144 if (ret) 9145 goto out_fail; 9146 9147 BTRFS_I(old_inode)->dir_index = 0ULL; 9148 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9149 /* force full log commit if subvolume involved. */ 9150 btrfs_set_log_full_commit(trans); 9151 } else { 9152 btrfs_pin_log_trans(root); 9153 log_pinned = true; 9154 ret = btrfs_insert_inode_ref(trans, dest, 9155 new_dentry->d_name.name, 9156 new_dentry->d_name.len, 9157 old_ino, 9158 btrfs_ino(BTRFS_I(new_dir)), index); 9159 if (ret) 9160 goto out_fail; 9161 } 9162 9163 inode_inc_iversion(old_dir); 9164 inode_inc_iversion(new_dir); 9165 inode_inc_iversion(old_inode); 9166 old_dir->i_ctime = old_dir->i_mtime = 9167 new_dir->i_ctime = new_dir->i_mtime = 9168 old_inode->i_ctime = current_time(old_dir); 9169 9170 if (old_dentry->d_parent != new_dentry->d_parent) 9171 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9172 BTRFS_I(old_inode), 1); 9173 9174 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9175 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9176 } else { 9177 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9178 BTRFS_I(d_inode(old_dentry)), 9179 old_dentry->d_name.name, 9180 old_dentry->d_name.len); 9181 if (!ret) 9182 ret = btrfs_update_inode(trans, root, old_inode); 9183 } 9184 if (ret) { 9185 btrfs_abort_transaction(trans, ret); 9186 goto out_fail; 9187 } 9188 9189 if (new_inode) { 9190 inode_inc_iversion(new_inode); 9191 new_inode->i_ctime = current_time(new_inode); 9192 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9193 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9194 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9195 BUG_ON(new_inode->i_nlink == 0); 9196 } else { 9197 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9198 BTRFS_I(d_inode(new_dentry)), 9199 new_dentry->d_name.name, 9200 new_dentry->d_name.len); 9201 } 9202 if (!ret && new_inode->i_nlink == 0) 9203 ret = btrfs_orphan_add(trans, 9204 BTRFS_I(d_inode(new_dentry))); 9205 if (ret) { 9206 btrfs_abort_transaction(trans, ret); 9207 goto out_fail; 9208 } 9209 } 9210 9211 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9212 new_dentry->d_name.name, 9213 new_dentry->d_name.len, 0, index); 9214 if (ret) { 9215 btrfs_abort_transaction(trans, ret); 9216 goto out_fail; 9217 } 9218 9219 if (old_inode->i_nlink == 1) 9220 BTRFS_I(old_inode)->dir_index = index; 9221 9222 if (log_pinned) { 9223 struct dentry *parent = new_dentry->d_parent; 9224 9225 btrfs_init_log_ctx(&ctx, old_inode); 9226 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9227 BTRFS_I(old_dir), parent, 9228 false, &ctx); 9229 if (ret == BTRFS_NEED_LOG_SYNC) 9230 sync_log = true; 9231 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9232 commit_transaction = true; 9233 ret = 0; 9234 btrfs_end_log_trans(root); 9235 log_pinned = false; 9236 } 9237 9238 if (flags & RENAME_WHITEOUT) { 9239 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9240 old_dentry); 9241 9242 if (ret) { 9243 btrfs_abort_transaction(trans, ret); 9244 goto out_fail; 9245 } 9246 } 9247 out_fail: 9248 /* 9249 * If we have pinned the log and an error happened, we unpin tasks 9250 * trying to sync the log and force them to fallback to a transaction 9251 * commit if the log currently contains any of the inodes involved in 9252 * this rename operation (to ensure we do not persist a log with an 9253 * inconsistent state for any of these inodes or leading to any 9254 * inconsistencies when replayed). If the transaction was aborted, the 9255 * abortion reason is propagated to userspace when attempting to commit 9256 * the transaction. If the log does not contain any of these inodes, we 9257 * allow the tasks to sync it. 9258 */ 9259 if (ret && log_pinned) { 9260 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9261 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9262 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9263 (new_inode && 9264 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9265 btrfs_set_log_full_commit(trans); 9266 9267 btrfs_end_log_trans(root); 9268 log_pinned = false; 9269 } 9270 if (!ret && sync_log) { 9271 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9272 if (ret) 9273 commit_transaction = true; 9274 } else if (sync_log) { 9275 mutex_lock(&root->log_mutex); 9276 list_del(&ctx.list); 9277 mutex_unlock(&root->log_mutex); 9278 } 9279 if (commit_transaction) { 9280 ret = btrfs_commit_transaction(trans); 9281 } else { 9282 int ret2; 9283 9284 ret2 = btrfs_end_transaction(trans); 9285 ret = ret ? ret : ret2; 9286 } 9287 out_notrans: 9288 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9289 up_read(&fs_info->subvol_sem); 9290 9291 return ret; 9292 } 9293 9294 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9295 struct inode *new_dir, struct dentry *new_dentry, 9296 unsigned int flags) 9297 { 9298 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9299 return -EINVAL; 9300 9301 if (flags & RENAME_EXCHANGE) 9302 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9303 new_dentry); 9304 9305 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9306 } 9307 9308 struct btrfs_delalloc_work { 9309 struct inode *inode; 9310 struct completion completion; 9311 struct list_head list; 9312 struct btrfs_work work; 9313 }; 9314 9315 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9316 { 9317 struct btrfs_delalloc_work *delalloc_work; 9318 struct inode *inode; 9319 9320 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9321 work); 9322 inode = delalloc_work->inode; 9323 filemap_flush(inode->i_mapping); 9324 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9325 &BTRFS_I(inode)->runtime_flags)) 9326 filemap_flush(inode->i_mapping); 9327 9328 iput(inode); 9329 complete(&delalloc_work->completion); 9330 } 9331 9332 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9333 { 9334 struct btrfs_delalloc_work *work; 9335 9336 work = kmalloc(sizeof(*work), GFP_NOFS); 9337 if (!work) 9338 return NULL; 9339 9340 init_completion(&work->completion); 9341 INIT_LIST_HEAD(&work->list); 9342 work->inode = inode; 9343 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9344 9345 return work; 9346 } 9347 9348 /* 9349 * some fairly slow code that needs optimization. This walks the list 9350 * of all the inodes with pending delalloc and forces them to disk. 9351 */ 9352 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9353 { 9354 struct btrfs_inode *binode; 9355 struct inode *inode; 9356 struct btrfs_delalloc_work *work, *next; 9357 struct list_head works; 9358 struct list_head splice; 9359 int ret = 0; 9360 9361 INIT_LIST_HEAD(&works); 9362 INIT_LIST_HEAD(&splice); 9363 9364 mutex_lock(&root->delalloc_mutex); 9365 spin_lock(&root->delalloc_lock); 9366 list_splice_init(&root->delalloc_inodes, &splice); 9367 while (!list_empty(&splice)) { 9368 binode = list_entry(splice.next, struct btrfs_inode, 9369 delalloc_inodes); 9370 9371 list_move_tail(&binode->delalloc_inodes, 9372 &root->delalloc_inodes); 9373 inode = igrab(&binode->vfs_inode); 9374 if (!inode) { 9375 cond_resched_lock(&root->delalloc_lock); 9376 continue; 9377 } 9378 spin_unlock(&root->delalloc_lock); 9379 9380 if (snapshot) 9381 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9382 &binode->runtime_flags); 9383 work = btrfs_alloc_delalloc_work(inode); 9384 if (!work) { 9385 iput(inode); 9386 ret = -ENOMEM; 9387 goto out; 9388 } 9389 list_add_tail(&work->list, &works); 9390 btrfs_queue_work(root->fs_info->flush_workers, 9391 &work->work); 9392 ret++; 9393 if (nr != -1 && ret >= nr) 9394 goto out; 9395 cond_resched(); 9396 spin_lock(&root->delalloc_lock); 9397 } 9398 spin_unlock(&root->delalloc_lock); 9399 9400 out: 9401 list_for_each_entry_safe(work, next, &works, list) { 9402 list_del_init(&work->list); 9403 wait_for_completion(&work->completion); 9404 kfree(work); 9405 } 9406 9407 if (!list_empty(&splice)) { 9408 spin_lock(&root->delalloc_lock); 9409 list_splice_tail(&splice, &root->delalloc_inodes); 9410 spin_unlock(&root->delalloc_lock); 9411 } 9412 mutex_unlock(&root->delalloc_mutex); 9413 return ret; 9414 } 9415 9416 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9417 { 9418 struct btrfs_fs_info *fs_info = root->fs_info; 9419 int ret; 9420 9421 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9422 return -EROFS; 9423 9424 ret = start_delalloc_inodes(root, -1, true); 9425 if (ret > 0) 9426 ret = 0; 9427 return ret; 9428 } 9429 9430 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9431 { 9432 struct btrfs_root *root; 9433 struct list_head splice; 9434 int ret; 9435 9436 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9437 return -EROFS; 9438 9439 INIT_LIST_HEAD(&splice); 9440 9441 mutex_lock(&fs_info->delalloc_root_mutex); 9442 spin_lock(&fs_info->delalloc_root_lock); 9443 list_splice_init(&fs_info->delalloc_roots, &splice); 9444 while (!list_empty(&splice) && nr) { 9445 root = list_first_entry(&splice, struct btrfs_root, 9446 delalloc_root); 9447 root = btrfs_grab_root(root); 9448 BUG_ON(!root); 9449 list_move_tail(&root->delalloc_root, 9450 &fs_info->delalloc_roots); 9451 spin_unlock(&fs_info->delalloc_root_lock); 9452 9453 ret = start_delalloc_inodes(root, nr, false); 9454 btrfs_put_root(root); 9455 if (ret < 0) 9456 goto out; 9457 9458 if (nr != -1) { 9459 nr -= ret; 9460 WARN_ON(nr < 0); 9461 } 9462 spin_lock(&fs_info->delalloc_root_lock); 9463 } 9464 spin_unlock(&fs_info->delalloc_root_lock); 9465 9466 ret = 0; 9467 out: 9468 if (!list_empty(&splice)) { 9469 spin_lock(&fs_info->delalloc_root_lock); 9470 list_splice_tail(&splice, &fs_info->delalloc_roots); 9471 spin_unlock(&fs_info->delalloc_root_lock); 9472 } 9473 mutex_unlock(&fs_info->delalloc_root_mutex); 9474 return ret; 9475 } 9476 9477 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9478 const char *symname) 9479 { 9480 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9481 struct btrfs_trans_handle *trans; 9482 struct btrfs_root *root = BTRFS_I(dir)->root; 9483 struct btrfs_path *path; 9484 struct btrfs_key key; 9485 struct inode *inode = NULL; 9486 int err; 9487 u64 objectid; 9488 u64 index = 0; 9489 int name_len; 9490 int datasize; 9491 unsigned long ptr; 9492 struct btrfs_file_extent_item *ei; 9493 struct extent_buffer *leaf; 9494 9495 name_len = strlen(symname); 9496 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9497 return -ENAMETOOLONG; 9498 9499 /* 9500 * 2 items for inode item and ref 9501 * 2 items for dir items 9502 * 1 item for updating parent inode item 9503 * 1 item for the inline extent item 9504 * 1 item for xattr if selinux is on 9505 */ 9506 trans = btrfs_start_transaction(root, 7); 9507 if (IS_ERR(trans)) 9508 return PTR_ERR(trans); 9509 9510 err = btrfs_find_free_ino(root, &objectid); 9511 if (err) 9512 goto out_unlock; 9513 9514 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9515 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9516 objectid, S_IFLNK|S_IRWXUGO, &index); 9517 if (IS_ERR(inode)) { 9518 err = PTR_ERR(inode); 9519 inode = NULL; 9520 goto out_unlock; 9521 } 9522 9523 /* 9524 * If the active LSM wants to access the inode during 9525 * d_instantiate it needs these. Smack checks to see 9526 * if the filesystem supports xattrs by looking at the 9527 * ops vector. 9528 */ 9529 inode->i_fop = &btrfs_file_operations; 9530 inode->i_op = &btrfs_file_inode_operations; 9531 inode->i_mapping->a_ops = &btrfs_aops; 9532 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9533 9534 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9535 if (err) 9536 goto out_unlock; 9537 9538 path = btrfs_alloc_path(); 9539 if (!path) { 9540 err = -ENOMEM; 9541 goto out_unlock; 9542 } 9543 key.objectid = btrfs_ino(BTRFS_I(inode)); 9544 key.offset = 0; 9545 key.type = BTRFS_EXTENT_DATA_KEY; 9546 datasize = btrfs_file_extent_calc_inline_size(name_len); 9547 err = btrfs_insert_empty_item(trans, root, path, &key, 9548 datasize); 9549 if (err) { 9550 btrfs_free_path(path); 9551 goto out_unlock; 9552 } 9553 leaf = path->nodes[0]; 9554 ei = btrfs_item_ptr(leaf, path->slots[0], 9555 struct btrfs_file_extent_item); 9556 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9557 btrfs_set_file_extent_type(leaf, ei, 9558 BTRFS_FILE_EXTENT_INLINE); 9559 btrfs_set_file_extent_encryption(leaf, ei, 0); 9560 btrfs_set_file_extent_compression(leaf, ei, 0); 9561 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9562 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9563 9564 ptr = btrfs_file_extent_inline_start(ei); 9565 write_extent_buffer(leaf, symname, ptr, name_len); 9566 btrfs_mark_buffer_dirty(leaf); 9567 btrfs_free_path(path); 9568 9569 inode->i_op = &btrfs_symlink_inode_operations; 9570 inode_nohighmem(inode); 9571 inode_set_bytes(inode, name_len); 9572 btrfs_i_size_write(BTRFS_I(inode), name_len); 9573 err = btrfs_update_inode(trans, root, inode); 9574 /* 9575 * Last step, add directory indexes for our symlink inode. This is the 9576 * last step to avoid extra cleanup of these indexes if an error happens 9577 * elsewhere above. 9578 */ 9579 if (!err) 9580 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9581 BTRFS_I(inode), 0, index); 9582 if (err) 9583 goto out_unlock; 9584 9585 d_instantiate_new(dentry, inode); 9586 9587 out_unlock: 9588 btrfs_end_transaction(trans); 9589 if (err && inode) { 9590 inode_dec_link_count(inode); 9591 discard_new_inode(inode); 9592 } 9593 btrfs_btree_balance_dirty(fs_info); 9594 return err; 9595 } 9596 9597 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9598 u64 start, u64 num_bytes, u64 min_size, 9599 loff_t actual_len, u64 *alloc_hint, 9600 struct btrfs_trans_handle *trans) 9601 { 9602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9603 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9604 struct extent_map *em; 9605 struct btrfs_root *root = BTRFS_I(inode)->root; 9606 struct btrfs_key ins; 9607 u64 cur_offset = start; 9608 u64 clear_offset = start; 9609 u64 i_size; 9610 u64 cur_bytes; 9611 u64 last_alloc = (u64)-1; 9612 int ret = 0; 9613 bool own_trans = true; 9614 u64 end = start + num_bytes - 1; 9615 9616 if (trans) 9617 own_trans = false; 9618 while (num_bytes > 0) { 9619 if (own_trans) { 9620 trans = btrfs_start_transaction(root, 3); 9621 if (IS_ERR(trans)) { 9622 ret = PTR_ERR(trans); 9623 break; 9624 } 9625 } 9626 9627 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9628 cur_bytes = max(cur_bytes, min_size); 9629 /* 9630 * If we are severely fragmented we could end up with really 9631 * small allocations, so if the allocator is returning small 9632 * chunks lets make its job easier by only searching for those 9633 * sized chunks. 9634 */ 9635 cur_bytes = min(cur_bytes, last_alloc); 9636 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9637 min_size, 0, *alloc_hint, &ins, 1, 0); 9638 if (ret) { 9639 if (own_trans) 9640 btrfs_end_transaction(trans); 9641 break; 9642 } 9643 9644 /* 9645 * We've reserved this space, and thus converted it from 9646 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9647 * from here on out we will only need to clear our reservation 9648 * for the remaining unreserved area, so advance our 9649 * clear_offset by our extent size. 9650 */ 9651 clear_offset += ins.offset; 9652 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9653 9654 last_alloc = ins.offset; 9655 ret = insert_reserved_file_extent(trans, inode, 9656 cur_offset, ins.objectid, 9657 ins.offset, ins.offset, 9658 ins.offset, 0, 0, 0, 9659 BTRFS_FILE_EXTENT_PREALLOC); 9660 if (ret) { 9661 btrfs_free_reserved_extent(fs_info, ins.objectid, 9662 ins.offset, 0); 9663 btrfs_abort_transaction(trans, ret); 9664 if (own_trans) 9665 btrfs_end_transaction(trans); 9666 break; 9667 } 9668 9669 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9670 cur_offset + ins.offset -1, 0); 9671 9672 em = alloc_extent_map(); 9673 if (!em) { 9674 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9675 &BTRFS_I(inode)->runtime_flags); 9676 goto next; 9677 } 9678 9679 em->start = cur_offset; 9680 em->orig_start = cur_offset; 9681 em->len = ins.offset; 9682 em->block_start = ins.objectid; 9683 em->block_len = ins.offset; 9684 em->orig_block_len = ins.offset; 9685 em->ram_bytes = ins.offset; 9686 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9687 em->generation = trans->transid; 9688 9689 while (1) { 9690 write_lock(&em_tree->lock); 9691 ret = add_extent_mapping(em_tree, em, 1); 9692 write_unlock(&em_tree->lock); 9693 if (ret != -EEXIST) 9694 break; 9695 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9696 cur_offset + ins.offset - 1, 9697 0); 9698 } 9699 free_extent_map(em); 9700 next: 9701 num_bytes -= ins.offset; 9702 cur_offset += ins.offset; 9703 *alloc_hint = ins.objectid + ins.offset; 9704 9705 inode_inc_iversion(inode); 9706 inode->i_ctime = current_time(inode); 9707 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9708 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9709 (actual_len > inode->i_size) && 9710 (cur_offset > inode->i_size)) { 9711 if (cur_offset > actual_len) 9712 i_size = actual_len; 9713 else 9714 i_size = cur_offset; 9715 i_size_write(inode, i_size); 9716 btrfs_inode_safe_disk_i_size_write(inode, 0); 9717 } 9718 9719 ret = btrfs_update_inode(trans, root, inode); 9720 9721 if (ret) { 9722 btrfs_abort_transaction(trans, ret); 9723 if (own_trans) 9724 btrfs_end_transaction(trans); 9725 break; 9726 } 9727 9728 if (own_trans) 9729 btrfs_end_transaction(trans); 9730 } 9731 if (clear_offset < end) 9732 btrfs_free_reserved_data_space(inode, NULL, clear_offset, 9733 end - clear_offset + 1); 9734 return ret; 9735 } 9736 9737 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9738 u64 start, u64 num_bytes, u64 min_size, 9739 loff_t actual_len, u64 *alloc_hint) 9740 { 9741 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9742 min_size, actual_len, alloc_hint, 9743 NULL); 9744 } 9745 9746 int btrfs_prealloc_file_range_trans(struct inode *inode, 9747 struct btrfs_trans_handle *trans, int mode, 9748 u64 start, u64 num_bytes, u64 min_size, 9749 loff_t actual_len, u64 *alloc_hint) 9750 { 9751 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9752 min_size, actual_len, alloc_hint, trans); 9753 } 9754 9755 static int btrfs_set_page_dirty(struct page *page) 9756 { 9757 return __set_page_dirty_nobuffers(page); 9758 } 9759 9760 static int btrfs_permission(struct inode *inode, int mask) 9761 { 9762 struct btrfs_root *root = BTRFS_I(inode)->root; 9763 umode_t mode = inode->i_mode; 9764 9765 if (mask & MAY_WRITE && 9766 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9767 if (btrfs_root_readonly(root)) 9768 return -EROFS; 9769 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9770 return -EACCES; 9771 } 9772 return generic_permission(inode, mask); 9773 } 9774 9775 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9776 { 9777 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9778 struct btrfs_trans_handle *trans; 9779 struct btrfs_root *root = BTRFS_I(dir)->root; 9780 struct inode *inode = NULL; 9781 u64 objectid; 9782 u64 index; 9783 int ret = 0; 9784 9785 /* 9786 * 5 units required for adding orphan entry 9787 */ 9788 trans = btrfs_start_transaction(root, 5); 9789 if (IS_ERR(trans)) 9790 return PTR_ERR(trans); 9791 9792 ret = btrfs_find_free_ino(root, &objectid); 9793 if (ret) 9794 goto out; 9795 9796 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9797 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9798 if (IS_ERR(inode)) { 9799 ret = PTR_ERR(inode); 9800 inode = NULL; 9801 goto out; 9802 } 9803 9804 inode->i_fop = &btrfs_file_operations; 9805 inode->i_op = &btrfs_file_inode_operations; 9806 9807 inode->i_mapping->a_ops = &btrfs_aops; 9808 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9809 9810 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9811 if (ret) 9812 goto out; 9813 9814 ret = btrfs_update_inode(trans, root, inode); 9815 if (ret) 9816 goto out; 9817 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9818 if (ret) 9819 goto out; 9820 9821 /* 9822 * We set number of links to 0 in btrfs_new_inode(), and here we set 9823 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9824 * through: 9825 * 9826 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9827 */ 9828 set_nlink(inode, 1); 9829 d_tmpfile(dentry, inode); 9830 unlock_new_inode(inode); 9831 mark_inode_dirty(inode); 9832 out: 9833 btrfs_end_transaction(trans); 9834 if (ret && inode) 9835 discard_new_inode(inode); 9836 btrfs_btree_balance_dirty(fs_info); 9837 return ret; 9838 } 9839 9840 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 9841 { 9842 struct inode *inode = tree->private_data; 9843 unsigned long index = start >> PAGE_SHIFT; 9844 unsigned long end_index = end >> PAGE_SHIFT; 9845 struct page *page; 9846 9847 while (index <= end_index) { 9848 page = find_get_page(inode->i_mapping, index); 9849 ASSERT(page); /* Pages should be in the extent_io_tree */ 9850 set_page_writeback(page); 9851 put_page(page); 9852 index++; 9853 } 9854 } 9855 9856 #ifdef CONFIG_SWAP 9857 /* 9858 * Add an entry indicating a block group or device which is pinned by a 9859 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9860 * negative errno on failure. 9861 */ 9862 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9863 bool is_block_group) 9864 { 9865 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9866 struct btrfs_swapfile_pin *sp, *entry; 9867 struct rb_node **p; 9868 struct rb_node *parent = NULL; 9869 9870 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9871 if (!sp) 9872 return -ENOMEM; 9873 sp->ptr = ptr; 9874 sp->inode = inode; 9875 sp->is_block_group = is_block_group; 9876 9877 spin_lock(&fs_info->swapfile_pins_lock); 9878 p = &fs_info->swapfile_pins.rb_node; 9879 while (*p) { 9880 parent = *p; 9881 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9882 if (sp->ptr < entry->ptr || 9883 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9884 p = &(*p)->rb_left; 9885 } else if (sp->ptr > entry->ptr || 9886 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9887 p = &(*p)->rb_right; 9888 } else { 9889 spin_unlock(&fs_info->swapfile_pins_lock); 9890 kfree(sp); 9891 return 1; 9892 } 9893 } 9894 rb_link_node(&sp->node, parent, p); 9895 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9896 spin_unlock(&fs_info->swapfile_pins_lock); 9897 return 0; 9898 } 9899 9900 /* Free all of the entries pinned by this swapfile. */ 9901 static void btrfs_free_swapfile_pins(struct inode *inode) 9902 { 9903 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9904 struct btrfs_swapfile_pin *sp; 9905 struct rb_node *node, *next; 9906 9907 spin_lock(&fs_info->swapfile_pins_lock); 9908 node = rb_first(&fs_info->swapfile_pins); 9909 while (node) { 9910 next = rb_next(node); 9911 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9912 if (sp->inode == inode) { 9913 rb_erase(&sp->node, &fs_info->swapfile_pins); 9914 if (sp->is_block_group) 9915 btrfs_put_block_group(sp->ptr); 9916 kfree(sp); 9917 } 9918 node = next; 9919 } 9920 spin_unlock(&fs_info->swapfile_pins_lock); 9921 } 9922 9923 struct btrfs_swap_info { 9924 u64 start; 9925 u64 block_start; 9926 u64 block_len; 9927 u64 lowest_ppage; 9928 u64 highest_ppage; 9929 unsigned long nr_pages; 9930 int nr_extents; 9931 }; 9932 9933 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9934 struct btrfs_swap_info *bsi) 9935 { 9936 unsigned long nr_pages; 9937 u64 first_ppage, first_ppage_reported, next_ppage; 9938 int ret; 9939 9940 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 9941 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 9942 PAGE_SIZE) >> PAGE_SHIFT; 9943 9944 if (first_ppage >= next_ppage) 9945 return 0; 9946 nr_pages = next_ppage - first_ppage; 9947 9948 first_ppage_reported = first_ppage; 9949 if (bsi->start == 0) 9950 first_ppage_reported++; 9951 if (bsi->lowest_ppage > first_ppage_reported) 9952 bsi->lowest_ppage = first_ppage_reported; 9953 if (bsi->highest_ppage < (next_ppage - 1)) 9954 bsi->highest_ppage = next_ppage - 1; 9955 9956 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9957 if (ret < 0) 9958 return ret; 9959 bsi->nr_extents += ret; 9960 bsi->nr_pages += nr_pages; 9961 return 0; 9962 } 9963 9964 static void btrfs_swap_deactivate(struct file *file) 9965 { 9966 struct inode *inode = file_inode(file); 9967 9968 btrfs_free_swapfile_pins(inode); 9969 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9970 } 9971 9972 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9973 sector_t *span) 9974 { 9975 struct inode *inode = file_inode(file); 9976 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9977 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9978 struct extent_state *cached_state = NULL; 9979 struct extent_map *em = NULL; 9980 struct btrfs_device *device = NULL; 9981 struct btrfs_swap_info bsi = { 9982 .lowest_ppage = (sector_t)-1ULL, 9983 }; 9984 int ret = 0; 9985 u64 isize; 9986 u64 start; 9987 9988 /* 9989 * If the swap file was just created, make sure delalloc is done. If the 9990 * file changes again after this, the user is doing something stupid and 9991 * we don't really care. 9992 */ 9993 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 9994 if (ret) 9995 return ret; 9996 9997 /* 9998 * The inode is locked, so these flags won't change after we check them. 9999 */ 10000 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10001 btrfs_warn(fs_info, "swapfile must not be compressed"); 10002 return -EINVAL; 10003 } 10004 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10005 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10006 return -EINVAL; 10007 } 10008 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10009 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10010 return -EINVAL; 10011 } 10012 10013 /* 10014 * Balance or device remove/replace/resize can move stuff around from 10015 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10016 * concurrently while we are mapping the swap extents, and 10017 * fs_info->swapfile_pins prevents them from running while the swap file 10018 * is active and moving the extents. Note that this also prevents a 10019 * concurrent device add which isn't actually necessary, but it's not 10020 * really worth the trouble to allow it. 10021 */ 10022 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10023 btrfs_warn(fs_info, 10024 "cannot activate swapfile while exclusive operation is running"); 10025 return -EBUSY; 10026 } 10027 /* 10028 * Snapshots can create extents which require COW even if NODATACOW is 10029 * set. We use this counter to prevent snapshots. We must increment it 10030 * before walking the extents because we don't want a concurrent 10031 * snapshot to run after we've already checked the extents. 10032 */ 10033 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10034 10035 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10036 10037 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10038 start = 0; 10039 while (start < isize) { 10040 u64 logical_block_start, physical_block_start; 10041 struct btrfs_block_group *bg; 10042 u64 len = isize - start; 10043 10044 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10045 if (IS_ERR(em)) { 10046 ret = PTR_ERR(em); 10047 goto out; 10048 } 10049 10050 if (em->block_start == EXTENT_MAP_HOLE) { 10051 btrfs_warn(fs_info, "swapfile must not have holes"); 10052 ret = -EINVAL; 10053 goto out; 10054 } 10055 if (em->block_start == EXTENT_MAP_INLINE) { 10056 /* 10057 * It's unlikely we'll ever actually find ourselves 10058 * here, as a file small enough to fit inline won't be 10059 * big enough to store more than the swap header, but in 10060 * case something changes in the future, let's catch it 10061 * here rather than later. 10062 */ 10063 btrfs_warn(fs_info, "swapfile must not be inline"); 10064 ret = -EINVAL; 10065 goto out; 10066 } 10067 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10068 btrfs_warn(fs_info, "swapfile must not be compressed"); 10069 ret = -EINVAL; 10070 goto out; 10071 } 10072 10073 logical_block_start = em->block_start + (start - em->start); 10074 len = min(len, em->len - (start - em->start)); 10075 free_extent_map(em); 10076 em = NULL; 10077 10078 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10079 if (ret < 0) { 10080 goto out; 10081 } else if (ret) { 10082 ret = 0; 10083 } else { 10084 btrfs_warn(fs_info, 10085 "swapfile must not be copy-on-write"); 10086 ret = -EINVAL; 10087 goto out; 10088 } 10089 10090 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10091 if (IS_ERR(em)) { 10092 ret = PTR_ERR(em); 10093 goto out; 10094 } 10095 10096 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10097 btrfs_warn(fs_info, 10098 "swapfile must have single data profile"); 10099 ret = -EINVAL; 10100 goto out; 10101 } 10102 10103 if (device == NULL) { 10104 device = em->map_lookup->stripes[0].dev; 10105 ret = btrfs_add_swapfile_pin(inode, device, false); 10106 if (ret == 1) 10107 ret = 0; 10108 else if (ret) 10109 goto out; 10110 } else if (device != em->map_lookup->stripes[0].dev) { 10111 btrfs_warn(fs_info, "swapfile must be on one device"); 10112 ret = -EINVAL; 10113 goto out; 10114 } 10115 10116 physical_block_start = (em->map_lookup->stripes[0].physical + 10117 (logical_block_start - em->start)); 10118 len = min(len, em->len - (logical_block_start - em->start)); 10119 free_extent_map(em); 10120 em = NULL; 10121 10122 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10123 if (!bg) { 10124 btrfs_warn(fs_info, 10125 "could not find block group containing swapfile"); 10126 ret = -EINVAL; 10127 goto out; 10128 } 10129 10130 ret = btrfs_add_swapfile_pin(inode, bg, true); 10131 if (ret) { 10132 btrfs_put_block_group(bg); 10133 if (ret == 1) 10134 ret = 0; 10135 else 10136 goto out; 10137 } 10138 10139 if (bsi.block_len && 10140 bsi.block_start + bsi.block_len == physical_block_start) { 10141 bsi.block_len += len; 10142 } else { 10143 if (bsi.block_len) { 10144 ret = btrfs_add_swap_extent(sis, &bsi); 10145 if (ret) 10146 goto out; 10147 } 10148 bsi.start = start; 10149 bsi.block_start = physical_block_start; 10150 bsi.block_len = len; 10151 } 10152 10153 start += len; 10154 } 10155 10156 if (bsi.block_len) 10157 ret = btrfs_add_swap_extent(sis, &bsi); 10158 10159 out: 10160 if (!IS_ERR_OR_NULL(em)) 10161 free_extent_map(em); 10162 10163 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10164 10165 if (ret) 10166 btrfs_swap_deactivate(file); 10167 10168 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10169 10170 if (ret) 10171 return ret; 10172 10173 if (device) 10174 sis->bdev = device->bdev; 10175 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10176 sis->max = bsi.nr_pages; 10177 sis->pages = bsi.nr_pages - 1; 10178 sis->highest_bit = bsi.nr_pages - 1; 10179 return bsi.nr_extents; 10180 } 10181 #else 10182 static void btrfs_swap_deactivate(struct file *file) 10183 { 10184 } 10185 10186 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10187 sector_t *span) 10188 { 10189 return -EOPNOTSUPP; 10190 } 10191 #endif 10192 10193 static const struct inode_operations btrfs_dir_inode_operations = { 10194 .getattr = btrfs_getattr, 10195 .lookup = btrfs_lookup, 10196 .create = btrfs_create, 10197 .unlink = btrfs_unlink, 10198 .link = btrfs_link, 10199 .mkdir = btrfs_mkdir, 10200 .rmdir = btrfs_rmdir, 10201 .rename = btrfs_rename2, 10202 .symlink = btrfs_symlink, 10203 .setattr = btrfs_setattr, 10204 .mknod = btrfs_mknod, 10205 .listxattr = btrfs_listxattr, 10206 .permission = btrfs_permission, 10207 .get_acl = btrfs_get_acl, 10208 .set_acl = btrfs_set_acl, 10209 .update_time = btrfs_update_time, 10210 .tmpfile = btrfs_tmpfile, 10211 }; 10212 10213 static const struct file_operations btrfs_dir_file_operations = { 10214 .llseek = generic_file_llseek, 10215 .read = generic_read_dir, 10216 .iterate_shared = btrfs_real_readdir, 10217 .open = btrfs_opendir, 10218 .unlocked_ioctl = btrfs_ioctl, 10219 #ifdef CONFIG_COMPAT 10220 .compat_ioctl = btrfs_compat_ioctl, 10221 #endif 10222 .release = btrfs_release_file, 10223 .fsync = btrfs_sync_file, 10224 }; 10225 10226 static const struct extent_io_ops btrfs_extent_io_ops = { 10227 /* mandatory callbacks */ 10228 .submit_bio_hook = btrfs_submit_bio_hook, 10229 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10230 }; 10231 10232 /* 10233 * btrfs doesn't support the bmap operation because swapfiles 10234 * use bmap to make a mapping of extents in the file. They assume 10235 * these extents won't change over the life of the file and they 10236 * use the bmap result to do IO directly to the drive. 10237 * 10238 * the btrfs bmap call would return logical addresses that aren't 10239 * suitable for IO and they also will change frequently as COW 10240 * operations happen. So, swapfile + btrfs == corruption. 10241 * 10242 * For now we're avoiding this by dropping bmap. 10243 */ 10244 static const struct address_space_operations btrfs_aops = { 10245 .readpage = btrfs_readpage, 10246 .writepage = btrfs_writepage, 10247 .writepages = btrfs_writepages, 10248 .readahead = btrfs_readahead, 10249 .direct_IO = btrfs_direct_IO, 10250 .invalidatepage = btrfs_invalidatepage, 10251 .releasepage = btrfs_releasepage, 10252 #ifdef CONFIG_MIGRATION 10253 .migratepage = btrfs_migratepage, 10254 #endif 10255 .set_page_dirty = btrfs_set_page_dirty, 10256 .error_remove_page = generic_error_remove_page, 10257 .swap_activate = btrfs_swap_activate, 10258 .swap_deactivate = btrfs_swap_deactivate, 10259 }; 10260 10261 static const struct inode_operations btrfs_file_inode_operations = { 10262 .getattr = btrfs_getattr, 10263 .setattr = btrfs_setattr, 10264 .listxattr = btrfs_listxattr, 10265 .permission = btrfs_permission, 10266 .fiemap = btrfs_fiemap, 10267 .get_acl = btrfs_get_acl, 10268 .set_acl = btrfs_set_acl, 10269 .update_time = btrfs_update_time, 10270 }; 10271 static const struct inode_operations btrfs_special_inode_operations = { 10272 .getattr = btrfs_getattr, 10273 .setattr = btrfs_setattr, 10274 .permission = btrfs_permission, 10275 .listxattr = btrfs_listxattr, 10276 .get_acl = btrfs_get_acl, 10277 .set_acl = btrfs_set_acl, 10278 .update_time = btrfs_update_time, 10279 }; 10280 static const struct inode_operations btrfs_symlink_inode_operations = { 10281 .get_link = page_get_link, 10282 .getattr = btrfs_getattr, 10283 .setattr = btrfs_setattr, 10284 .permission = btrfs_permission, 10285 .listxattr = btrfs_listxattr, 10286 .update_time = btrfs_update_time, 10287 }; 10288 10289 const struct dentry_operations btrfs_dentry_operations = { 10290 .d_delete = btrfs_dentry_delete, 10291 }; 10292