xref: /openbmc/linux/fs/btrfs/inode.c (revision 94c7b6fc)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 
63 struct btrfs_iget_args {
64 	struct btrfs_key *location;
65 	struct btrfs_root *root;
66 };
67 
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77 
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84 
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
88 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
89 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
90 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
91 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
92 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
93 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
94 };
95 
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 				   struct page *locked_page,
101 				   u64 start, u64 end, int *page_started,
102 				   unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 					   u64 len, u64 orig_start,
105 					   u64 block_start, u64 block_len,
106 					   u64 orig_block_len, u64 ram_bytes,
107 					   int type);
108 
109 static int btrfs_dirty_inode(struct inode *inode);
110 
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 				     struct inode *inode,  struct inode *dir,
113 				     const struct qstr *qstr)
114 {
115 	int err;
116 
117 	err = btrfs_init_acl(trans, inode, dir);
118 	if (!err)
119 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 	return err;
121 }
122 
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 				struct btrfs_path *path, int extent_inserted,
130 				struct btrfs_root *root, struct inode *inode,
131 				u64 start, size_t size, size_t compressed_size,
132 				int compress_type,
133 				struct page **compressed_pages)
134 {
135 	struct extent_buffer *leaf;
136 	struct page *page = NULL;
137 	char *kaddr;
138 	unsigned long ptr;
139 	struct btrfs_file_extent_item *ei;
140 	int err = 0;
141 	int ret;
142 	size_t cur_size = size;
143 	unsigned long offset;
144 
145 	if (compressed_size && compressed_pages)
146 		cur_size = compressed_size;
147 
148 	inode_add_bytes(inode, size);
149 
150 	if (!extent_inserted) {
151 		struct btrfs_key key;
152 		size_t datasize;
153 
154 		key.objectid = btrfs_ino(inode);
155 		key.offset = start;
156 		btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
157 
158 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 		path->leave_spinning = 1;
160 		ret = btrfs_insert_empty_item(trans, root, path, &key,
161 					      datasize);
162 		if (ret) {
163 			err = ret;
164 			goto fail;
165 		}
166 	}
167 	leaf = path->nodes[0];
168 	ei = btrfs_item_ptr(leaf, path->slots[0],
169 			    struct btrfs_file_extent_item);
170 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 	btrfs_set_file_extent_encryption(leaf, ei, 0);
173 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 	ptr = btrfs_file_extent_inline_start(ei);
176 
177 	if (compress_type != BTRFS_COMPRESS_NONE) {
178 		struct page *cpage;
179 		int i = 0;
180 		while (compressed_size > 0) {
181 			cpage = compressed_pages[i];
182 			cur_size = min_t(unsigned long, compressed_size,
183 				       PAGE_CACHE_SIZE);
184 
185 			kaddr = kmap_atomic(cpage);
186 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 			kunmap_atomic(kaddr);
188 
189 			i++;
190 			ptr += cur_size;
191 			compressed_size -= cur_size;
192 		}
193 		btrfs_set_file_extent_compression(leaf, ei,
194 						  compress_type);
195 	} else {
196 		page = find_get_page(inode->i_mapping,
197 				     start >> PAGE_CACHE_SHIFT);
198 		btrfs_set_file_extent_compression(leaf, ei, 0);
199 		kaddr = kmap_atomic(page);
200 		offset = start & (PAGE_CACHE_SIZE - 1);
201 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 		kunmap_atomic(kaddr);
203 		page_cache_release(page);
204 	}
205 	btrfs_mark_buffer_dirty(leaf);
206 	btrfs_release_path(path);
207 
208 	/*
209 	 * we're an inline extent, so nobody can
210 	 * extend the file past i_size without locking
211 	 * a page we already have locked.
212 	 *
213 	 * We must do any isize and inode updates
214 	 * before we unlock the pages.  Otherwise we
215 	 * could end up racing with unlink.
216 	 */
217 	BTRFS_I(inode)->disk_i_size = inode->i_size;
218 	ret = btrfs_update_inode(trans, root, inode);
219 
220 	return ret;
221 fail:
222 	return err;
223 }
224 
225 
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 					  struct inode *inode, u64 start,
233 					  u64 end, size_t compressed_size,
234 					  int compress_type,
235 					  struct page **compressed_pages)
236 {
237 	struct btrfs_trans_handle *trans;
238 	u64 isize = i_size_read(inode);
239 	u64 actual_end = min(end + 1, isize);
240 	u64 inline_len = actual_end - start;
241 	u64 aligned_end = ALIGN(end, root->sectorsize);
242 	u64 data_len = inline_len;
243 	int ret;
244 	struct btrfs_path *path;
245 	int extent_inserted = 0;
246 	u32 extent_item_size;
247 
248 	if (compressed_size)
249 		data_len = compressed_size;
250 
251 	if (start > 0 ||
252 	    actual_end >= PAGE_CACHE_SIZE ||
253 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 	    (!compressed_size &&
255 	    (actual_end & (root->sectorsize - 1)) == 0) ||
256 	    end + 1 < isize ||
257 	    data_len > root->fs_info->max_inline) {
258 		return 1;
259 	}
260 
261 	path = btrfs_alloc_path();
262 	if (!path)
263 		return -ENOMEM;
264 
265 	trans = btrfs_join_transaction(root);
266 	if (IS_ERR(trans)) {
267 		btrfs_free_path(path);
268 		return PTR_ERR(trans);
269 	}
270 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271 
272 	if (compressed_size && compressed_pages)
273 		extent_item_size = btrfs_file_extent_calc_inline_size(
274 		   compressed_size);
275 	else
276 		extent_item_size = btrfs_file_extent_calc_inline_size(
277 		    inline_len);
278 
279 	ret = __btrfs_drop_extents(trans, root, inode, path,
280 				   start, aligned_end, NULL,
281 				   1, 1, extent_item_size, &extent_inserted);
282 	if (ret) {
283 		btrfs_abort_transaction(trans, root, ret);
284 		goto out;
285 	}
286 
287 	if (isize > actual_end)
288 		inline_len = min_t(u64, isize, actual_end);
289 	ret = insert_inline_extent(trans, path, extent_inserted,
290 				   root, inode, start,
291 				   inline_len, compressed_size,
292 				   compress_type, compressed_pages);
293 	if (ret && ret != -ENOSPC) {
294 		btrfs_abort_transaction(trans, root, ret);
295 		goto out;
296 	} else if (ret == -ENOSPC) {
297 		ret = 1;
298 		goto out;
299 	}
300 
301 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305 	btrfs_free_path(path);
306 	btrfs_end_transaction(trans, root);
307 	return ret;
308 }
309 
310 struct async_extent {
311 	u64 start;
312 	u64 ram_size;
313 	u64 compressed_size;
314 	struct page **pages;
315 	unsigned long nr_pages;
316 	int compress_type;
317 	struct list_head list;
318 };
319 
320 struct async_cow {
321 	struct inode *inode;
322 	struct btrfs_root *root;
323 	struct page *locked_page;
324 	u64 start;
325 	u64 end;
326 	struct list_head extents;
327 	struct btrfs_work work;
328 };
329 
330 static noinline int add_async_extent(struct async_cow *cow,
331 				     u64 start, u64 ram_size,
332 				     u64 compressed_size,
333 				     struct page **pages,
334 				     unsigned long nr_pages,
335 				     int compress_type)
336 {
337 	struct async_extent *async_extent;
338 
339 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 	BUG_ON(!async_extent); /* -ENOMEM */
341 	async_extent->start = start;
342 	async_extent->ram_size = ram_size;
343 	async_extent->compressed_size = compressed_size;
344 	async_extent->pages = pages;
345 	async_extent->nr_pages = nr_pages;
346 	async_extent->compress_type = compress_type;
347 	list_add_tail(&async_extent->list, &cow->extents);
348 	return 0;
349 }
350 
351 /*
352  * we create compressed extents in two phases.  The first
353  * phase compresses a range of pages that have already been
354  * locked (both pages and state bits are locked).
355  *
356  * This is done inside an ordered work queue, and the compression
357  * is spread across many cpus.  The actual IO submission is step
358  * two, and the ordered work queue takes care of making sure that
359  * happens in the same order things were put onto the queue by
360  * writepages and friends.
361  *
362  * If this code finds it can't get good compression, it puts an
363  * entry onto the work queue to write the uncompressed bytes.  This
364  * makes sure that both compressed inodes and uncompressed inodes
365  * are written in the same order that the flusher thread sent them
366  * down.
367  */
368 static noinline int compress_file_range(struct inode *inode,
369 					struct page *locked_page,
370 					u64 start, u64 end,
371 					struct async_cow *async_cow,
372 					int *num_added)
373 {
374 	struct btrfs_root *root = BTRFS_I(inode)->root;
375 	u64 num_bytes;
376 	u64 blocksize = root->sectorsize;
377 	u64 actual_end;
378 	u64 isize = i_size_read(inode);
379 	int ret = 0;
380 	struct page **pages = NULL;
381 	unsigned long nr_pages;
382 	unsigned long nr_pages_ret = 0;
383 	unsigned long total_compressed = 0;
384 	unsigned long total_in = 0;
385 	unsigned long max_compressed = 128 * 1024;
386 	unsigned long max_uncompressed = 128 * 1024;
387 	int i;
388 	int will_compress;
389 	int compress_type = root->fs_info->compress_type;
390 	int redirty = 0;
391 
392 	/* if this is a small write inside eof, kick off a defrag */
393 	if ((end - start + 1) < 16 * 1024 &&
394 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
395 		btrfs_add_inode_defrag(NULL, inode);
396 
397 	/*
398 	 * skip compression for a small file range(<=blocksize) that
399 	 * isn't an inline extent, since it dosen't save disk space at all.
400 	 */
401 	if ((end - start + 1) <= blocksize &&
402 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 		goto cleanup_and_bail_uncompressed;
404 
405 	actual_end = min_t(u64, isize, end + 1);
406 again:
407 	will_compress = 0;
408 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
410 
411 	/*
412 	 * we don't want to send crud past the end of i_size through
413 	 * compression, that's just a waste of CPU time.  So, if the
414 	 * end of the file is before the start of our current
415 	 * requested range of bytes, we bail out to the uncompressed
416 	 * cleanup code that can deal with all of this.
417 	 *
418 	 * It isn't really the fastest way to fix things, but this is a
419 	 * very uncommon corner.
420 	 */
421 	if (actual_end <= start)
422 		goto cleanup_and_bail_uncompressed;
423 
424 	total_compressed = actual_end - start;
425 
426 	/* we want to make sure that amount of ram required to uncompress
427 	 * an extent is reasonable, so we limit the total size in ram
428 	 * of a compressed extent to 128k.  This is a crucial number
429 	 * because it also controls how easily we can spread reads across
430 	 * cpus for decompression.
431 	 *
432 	 * We also want to make sure the amount of IO required to do
433 	 * a random read is reasonably small, so we limit the size of
434 	 * a compressed extent to 128k.
435 	 */
436 	total_compressed = min(total_compressed, max_uncompressed);
437 	num_bytes = ALIGN(end - start + 1, blocksize);
438 	num_bytes = max(blocksize,  num_bytes);
439 	total_in = 0;
440 	ret = 0;
441 
442 	/*
443 	 * we do compression for mount -o compress and when the
444 	 * inode has not been flagged as nocompress.  This flag can
445 	 * change at any time if we discover bad compression ratios.
446 	 */
447 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
448 	    (btrfs_test_opt(root, COMPRESS) ||
449 	     (BTRFS_I(inode)->force_compress) ||
450 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
451 		WARN_ON(pages);
452 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
453 		if (!pages) {
454 			/* just bail out to the uncompressed code */
455 			goto cont;
456 		}
457 
458 		if (BTRFS_I(inode)->force_compress)
459 			compress_type = BTRFS_I(inode)->force_compress;
460 
461 		/*
462 		 * we need to call clear_page_dirty_for_io on each
463 		 * page in the range.  Otherwise applications with the file
464 		 * mmap'd can wander in and change the page contents while
465 		 * we are compressing them.
466 		 *
467 		 * If the compression fails for any reason, we set the pages
468 		 * dirty again later on.
469 		 */
470 		extent_range_clear_dirty_for_io(inode, start, end);
471 		redirty = 1;
472 		ret = btrfs_compress_pages(compress_type,
473 					   inode->i_mapping, start,
474 					   total_compressed, pages,
475 					   nr_pages, &nr_pages_ret,
476 					   &total_in,
477 					   &total_compressed,
478 					   max_compressed);
479 
480 		if (!ret) {
481 			unsigned long offset = total_compressed &
482 				(PAGE_CACHE_SIZE - 1);
483 			struct page *page = pages[nr_pages_ret - 1];
484 			char *kaddr;
485 
486 			/* zero the tail end of the last page, we might be
487 			 * sending it down to disk
488 			 */
489 			if (offset) {
490 				kaddr = kmap_atomic(page);
491 				memset(kaddr + offset, 0,
492 				       PAGE_CACHE_SIZE - offset);
493 				kunmap_atomic(kaddr);
494 			}
495 			will_compress = 1;
496 		}
497 	}
498 cont:
499 	if (start == 0) {
500 		/* lets try to make an inline extent */
501 		if (ret || total_in < (actual_end - start)) {
502 			/* we didn't compress the entire range, try
503 			 * to make an uncompressed inline extent.
504 			 */
505 			ret = cow_file_range_inline(root, inode, start, end,
506 						    0, 0, NULL);
507 		} else {
508 			/* try making a compressed inline extent */
509 			ret = cow_file_range_inline(root, inode, start, end,
510 						    total_compressed,
511 						    compress_type, pages);
512 		}
513 		if (ret <= 0) {
514 			unsigned long clear_flags = EXTENT_DELALLOC |
515 				EXTENT_DEFRAG;
516 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
517 
518 			/*
519 			 * inline extent creation worked or returned error,
520 			 * we don't need to create any more async work items.
521 			 * Unlock and free up our temp pages.
522 			 */
523 			extent_clear_unlock_delalloc(inode, start, end, NULL,
524 						     clear_flags, PAGE_UNLOCK |
525 						     PAGE_CLEAR_DIRTY |
526 						     PAGE_SET_WRITEBACK |
527 						     PAGE_END_WRITEBACK);
528 			goto free_pages_out;
529 		}
530 	}
531 
532 	if (will_compress) {
533 		/*
534 		 * we aren't doing an inline extent round the compressed size
535 		 * up to a block size boundary so the allocator does sane
536 		 * things
537 		 */
538 		total_compressed = ALIGN(total_compressed, blocksize);
539 
540 		/*
541 		 * one last check to make sure the compression is really a
542 		 * win, compare the page count read with the blocks on disk
543 		 */
544 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
545 		if (total_compressed >= total_in) {
546 			will_compress = 0;
547 		} else {
548 			num_bytes = total_in;
549 		}
550 	}
551 	if (!will_compress && pages) {
552 		/*
553 		 * the compression code ran but failed to make things smaller,
554 		 * free any pages it allocated and our page pointer array
555 		 */
556 		for (i = 0; i < nr_pages_ret; i++) {
557 			WARN_ON(pages[i]->mapping);
558 			page_cache_release(pages[i]);
559 		}
560 		kfree(pages);
561 		pages = NULL;
562 		total_compressed = 0;
563 		nr_pages_ret = 0;
564 
565 		/* flag the file so we don't compress in the future */
566 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 		    !(BTRFS_I(inode)->force_compress)) {
568 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
569 		}
570 	}
571 	if (will_compress) {
572 		*num_added += 1;
573 
574 		/* the async work queues will take care of doing actual
575 		 * allocation on disk for these compressed pages,
576 		 * and will submit them to the elevator.
577 		 */
578 		add_async_extent(async_cow, start, num_bytes,
579 				 total_compressed, pages, nr_pages_ret,
580 				 compress_type);
581 
582 		if (start + num_bytes < end) {
583 			start += num_bytes;
584 			pages = NULL;
585 			cond_resched();
586 			goto again;
587 		}
588 	} else {
589 cleanup_and_bail_uncompressed:
590 		/*
591 		 * No compression, but we still need to write the pages in
592 		 * the file we've been given so far.  redirty the locked
593 		 * page if it corresponds to our extent and set things up
594 		 * for the async work queue to run cow_file_range to do
595 		 * the normal delalloc dance
596 		 */
597 		if (page_offset(locked_page) >= start &&
598 		    page_offset(locked_page) <= end) {
599 			__set_page_dirty_nobuffers(locked_page);
600 			/* unlocked later on in the async handlers */
601 		}
602 		if (redirty)
603 			extent_range_redirty_for_io(inode, start, end);
604 		add_async_extent(async_cow, start, end - start + 1,
605 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
606 		*num_added += 1;
607 	}
608 
609 out:
610 	return ret;
611 
612 free_pages_out:
613 	for (i = 0; i < nr_pages_ret; i++) {
614 		WARN_ON(pages[i]->mapping);
615 		page_cache_release(pages[i]);
616 	}
617 	kfree(pages);
618 
619 	goto out;
620 }
621 
622 /*
623  * phase two of compressed writeback.  This is the ordered portion
624  * of the code, which only gets called in the order the work was
625  * queued.  We walk all the async extents created by compress_file_range
626  * and send them down to the disk.
627  */
628 static noinline int submit_compressed_extents(struct inode *inode,
629 					      struct async_cow *async_cow)
630 {
631 	struct async_extent *async_extent;
632 	u64 alloc_hint = 0;
633 	struct btrfs_key ins;
634 	struct extent_map *em;
635 	struct btrfs_root *root = BTRFS_I(inode)->root;
636 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 	struct extent_io_tree *io_tree;
638 	int ret = 0;
639 
640 	if (list_empty(&async_cow->extents))
641 		return 0;
642 
643 again:
644 	while (!list_empty(&async_cow->extents)) {
645 		async_extent = list_entry(async_cow->extents.next,
646 					  struct async_extent, list);
647 		list_del(&async_extent->list);
648 
649 		io_tree = &BTRFS_I(inode)->io_tree;
650 
651 retry:
652 		/* did the compression code fall back to uncompressed IO? */
653 		if (!async_extent->pages) {
654 			int page_started = 0;
655 			unsigned long nr_written = 0;
656 
657 			lock_extent(io_tree, async_extent->start,
658 					 async_extent->start +
659 					 async_extent->ram_size - 1);
660 
661 			/* allocate blocks */
662 			ret = cow_file_range(inode, async_cow->locked_page,
663 					     async_extent->start,
664 					     async_extent->start +
665 					     async_extent->ram_size - 1,
666 					     &page_started, &nr_written, 0);
667 
668 			/* JDM XXX */
669 
670 			/*
671 			 * if page_started, cow_file_range inserted an
672 			 * inline extent and took care of all the unlocking
673 			 * and IO for us.  Otherwise, we need to submit
674 			 * all those pages down to the drive.
675 			 */
676 			if (!page_started && !ret)
677 				extent_write_locked_range(io_tree,
678 						  inode, async_extent->start,
679 						  async_extent->start +
680 						  async_extent->ram_size - 1,
681 						  btrfs_get_extent,
682 						  WB_SYNC_ALL);
683 			else if (ret)
684 				unlock_page(async_cow->locked_page);
685 			kfree(async_extent);
686 			cond_resched();
687 			continue;
688 		}
689 
690 		lock_extent(io_tree, async_extent->start,
691 			    async_extent->start + async_extent->ram_size - 1);
692 
693 		ret = btrfs_reserve_extent(root,
694 					   async_extent->compressed_size,
695 					   async_extent->compressed_size,
696 					   0, alloc_hint, &ins, 1, 1);
697 		if (ret) {
698 			int i;
699 
700 			for (i = 0; i < async_extent->nr_pages; i++) {
701 				WARN_ON(async_extent->pages[i]->mapping);
702 				page_cache_release(async_extent->pages[i]);
703 			}
704 			kfree(async_extent->pages);
705 			async_extent->nr_pages = 0;
706 			async_extent->pages = NULL;
707 
708 			if (ret == -ENOSPC) {
709 				unlock_extent(io_tree, async_extent->start,
710 					      async_extent->start +
711 					      async_extent->ram_size - 1);
712 				goto retry;
713 			}
714 			goto out_free;
715 		}
716 
717 		/*
718 		 * here we're doing allocation and writeback of the
719 		 * compressed pages
720 		 */
721 		btrfs_drop_extent_cache(inode, async_extent->start,
722 					async_extent->start +
723 					async_extent->ram_size - 1, 0);
724 
725 		em = alloc_extent_map();
726 		if (!em) {
727 			ret = -ENOMEM;
728 			goto out_free_reserve;
729 		}
730 		em->start = async_extent->start;
731 		em->len = async_extent->ram_size;
732 		em->orig_start = em->start;
733 		em->mod_start = em->start;
734 		em->mod_len = em->len;
735 
736 		em->block_start = ins.objectid;
737 		em->block_len = ins.offset;
738 		em->orig_block_len = ins.offset;
739 		em->ram_bytes = async_extent->ram_size;
740 		em->bdev = root->fs_info->fs_devices->latest_bdev;
741 		em->compress_type = async_extent->compress_type;
742 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
743 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
744 		em->generation = -1;
745 
746 		while (1) {
747 			write_lock(&em_tree->lock);
748 			ret = add_extent_mapping(em_tree, em, 1);
749 			write_unlock(&em_tree->lock);
750 			if (ret != -EEXIST) {
751 				free_extent_map(em);
752 				break;
753 			}
754 			btrfs_drop_extent_cache(inode, async_extent->start,
755 						async_extent->start +
756 						async_extent->ram_size - 1, 0);
757 		}
758 
759 		if (ret)
760 			goto out_free_reserve;
761 
762 		ret = btrfs_add_ordered_extent_compress(inode,
763 						async_extent->start,
764 						ins.objectid,
765 						async_extent->ram_size,
766 						ins.offset,
767 						BTRFS_ORDERED_COMPRESSED,
768 						async_extent->compress_type);
769 		if (ret)
770 			goto out_free_reserve;
771 
772 		/*
773 		 * clear dirty, set writeback and unlock the pages.
774 		 */
775 		extent_clear_unlock_delalloc(inode, async_extent->start,
776 				async_extent->start +
777 				async_extent->ram_size - 1,
778 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
779 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
780 				PAGE_SET_WRITEBACK);
781 		ret = btrfs_submit_compressed_write(inode,
782 				    async_extent->start,
783 				    async_extent->ram_size,
784 				    ins.objectid,
785 				    ins.offset, async_extent->pages,
786 				    async_extent->nr_pages);
787 		alloc_hint = ins.objectid + ins.offset;
788 		kfree(async_extent);
789 		if (ret)
790 			goto out;
791 		cond_resched();
792 	}
793 	ret = 0;
794 out:
795 	return ret;
796 out_free_reserve:
797 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
798 out_free:
799 	extent_clear_unlock_delalloc(inode, async_extent->start,
800 				     async_extent->start +
801 				     async_extent->ram_size - 1,
802 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
803 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
804 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
805 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
806 	kfree(async_extent);
807 	goto again;
808 }
809 
810 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
811 				      u64 num_bytes)
812 {
813 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
814 	struct extent_map *em;
815 	u64 alloc_hint = 0;
816 
817 	read_lock(&em_tree->lock);
818 	em = search_extent_mapping(em_tree, start, num_bytes);
819 	if (em) {
820 		/*
821 		 * if block start isn't an actual block number then find the
822 		 * first block in this inode and use that as a hint.  If that
823 		 * block is also bogus then just don't worry about it.
824 		 */
825 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
826 			free_extent_map(em);
827 			em = search_extent_mapping(em_tree, 0, 0);
828 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
829 				alloc_hint = em->block_start;
830 			if (em)
831 				free_extent_map(em);
832 		} else {
833 			alloc_hint = em->block_start;
834 			free_extent_map(em);
835 		}
836 	}
837 	read_unlock(&em_tree->lock);
838 
839 	return alloc_hint;
840 }
841 
842 /*
843  * when extent_io.c finds a delayed allocation range in the file,
844  * the call backs end up in this code.  The basic idea is to
845  * allocate extents on disk for the range, and create ordered data structs
846  * in ram to track those extents.
847  *
848  * locked_page is the page that writepage had locked already.  We use
849  * it to make sure we don't do extra locks or unlocks.
850  *
851  * *page_started is set to one if we unlock locked_page and do everything
852  * required to start IO on it.  It may be clean and already done with
853  * IO when we return.
854  */
855 static noinline int cow_file_range(struct inode *inode,
856 				   struct page *locked_page,
857 				   u64 start, u64 end, int *page_started,
858 				   unsigned long *nr_written,
859 				   int unlock)
860 {
861 	struct btrfs_root *root = BTRFS_I(inode)->root;
862 	u64 alloc_hint = 0;
863 	u64 num_bytes;
864 	unsigned long ram_size;
865 	u64 disk_num_bytes;
866 	u64 cur_alloc_size;
867 	u64 blocksize = root->sectorsize;
868 	struct btrfs_key ins;
869 	struct extent_map *em;
870 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
871 	int ret = 0;
872 
873 	if (btrfs_is_free_space_inode(inode)) {
874 		WARN_ON_ONCE(1);
875 		ret = -EINVAL;
876 		goto out_unlock;
877 	}
878 
879 	num_bytes = ALIGN(end - start + 1, blocksize);
880 	num_bytes = max(blocksize,  num_bytes);
881 	disk_num_bytes = num_bytes;
882 
883 	/* if this is a small write inside eof, kick off defrag */
884 	if (num_bytes < 64 * 1024 &&
885 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
886 		btrfs_add_inode_defrag(NULL, inode);
887 
888 	if (start == 0) {
889 		/* lets try to make an inline extent */
890 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
891 					    NULL);
892 		if (ret == 0) {
893 			extent_clear_unlock_delalloc(inode, start, end, NULL,
894 				     EXTENT_LOCKED | EXTENT_DELALLOC |
895 				     EXTENT_DEFRAG, PAGE_UNLOCK |
896 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
897 				     PAGE_END_WRITEBACK);
898 
899 			*nr_written = *nr_written +
900 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
901 			*page_started = 1;
902 			goto out;
903 		} else if (ret < 0) {
904 			goto out_unlock;
905 		}
906 	}
907 
908 	BUG_ON(disk_num_bytes >
909 	       btrfs_super_total_bytes(root->fs_info->super_copy));
910 
911 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
912 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
913 
914 	while (disk_num_bytes > 0) {
915 		unsigned long op;
916 
917 		cur_alloc_size = disk_num_bytes;
918 		ret = btrfs_reserve_extent(root, cur_alloc_size,
919 					   root->sectorsize, 0, alloc_hint,
920 					   &ins, 1, 1);
921 		if (ret < 0)
922 			goto out_unlock;
923 
924 		em = alloc_extent_map();
925 		if (!em) {
926 			ret = -ENOMEM;
927 			goto out_reserve;
928 		}
929 		em->start = start;
930 		em->orig_start = em->start;
931 		ram_size = ins.offset;
932 		em->len = ins.offset;
933 		em->mod_start = em->start;
934 		em->mod_len = em->len;
935 
936 		em->block_start = ins.objectid;
937 		em->block_len = ins.offset;
938 		em->orig_block_len = ins.offset;
939 		em->ram_bytes = ram_size;
940 		em->bdev = root->fs_info->fs_devices->latest_bdev;
941 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
942 		em->generation = -1;
943 
944 		while (1) {
945 			write_lock(&em_tree->lock);
946 			ret = add_extent_mapping(em_tree, em, 1);
947 			write_unlock(&em_tree->lock);
948 			if (ret != -EEXIST) {
949 				free_extent_map(em);
950 				break;
951 			}
952 			btrfs_drop_extent_cache(inode, start,
953 						start + ram_size - 1, 0);
954 		}
955 		if (ret)
956 			goto out_reserve;
957 
958 		cur_alloc_size = ins.offset;
959 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
960 					       ram_size, cur_alloc_size, 0);
961 		if (ret)
962 			goto out_reserve;
963 
964 		if (root->root_key.objectid ==
965 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
966 			ret = btrfs_reloc_clone_csums(inode, start,
967 						      cur_alloc_size);
968 			if (ret)
969 				goto out_reserve;
970 		}
971 
972 		if (disk_num_bytes < cur_alloc_size)
973 			break;
974 
975 		/* we're not doing compressed IO, don't unlock the first
976 		 * page (which the caller expects to stay locked), don't
977 		 * clear any dirty bits and don't set any writeback bits
978 		 *
979 		 * Do set the Private2 bit so we know this page was properly
980 		 * setup for writepage
981 		 */
982 		op = unlock ? PAGE_UNLOCK : 0;
983 		op |= PAGE_SET_PRIVATE2;
984 
985 		extent_clear_unlock_delalloc(inode, start,
986 					     start + ram_size - 1, locked_page,
987 					     EXTENT_LOCKED | EXTENT_DELALLOC,
988 					     op);
989 		disk_num_bytes -= cur_alloc_size;
990 		num_bytes -= cur_alloc_size;
991 		alloc_hint = ins.objectid + ins.offset;
992 		start += cur_alloc_size;
993 	}
994 out:
995 	return ret;
996 
997 out_reserve:
998 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
999 out_unlock:
1000 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1001 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1002 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1003 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1004 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1005 	goto out;
1006 }
1007 
1008 /*
1009  * work queue call back to started compression on a file and pages
1010  */
1011 static noinline void async_cow_start(struct btrfs_work *work)
1012 {
1013 	struct async_cow *async_cow;
1014 	int num_added = 0;
1015 	async_cow = container_of(work, struct async_cow, work);
1016 
1017 	compress_file_range(async_cow->inode, async_cow->locked_page,
1018 			    async_cow->start, async_cow->end, async_cow,
1019 			    &num_added);
1020 	if (num_added == 0) {
1021 		btrfs_add_delayed_iput(async_cow->inode);
1022 		async_cow->inode = NULL;
1023 	}
1024 }
1025 
1026 /*
1027  * work queue call back to submit previously compressed pages
1028  */
1029 static noinline void async_cow_submit(struct btrfs_work *work)
1030 {
1031 	struct async_cow *async_cow;
1032 	struct btrfs_root *root;
1033 	unsigned long nr_pages;
1034 
1035 	async_cow = container_of(work, struct async_cow, work);
1036 
1037 	root = async_cow->root;
1038 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1039 		PAGE_CACHE_SHIFT;
1040 
1041 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1042 	    5 * 1024 * 1024 &&
1043 	    waitqueue_active(&root->fs_info->async_submit_wait))
1044 		wake_up(&root->fs_info->async_submit_wait);
1045 
1046 	if (async_cow->inode)
1047 		submit_compressed_extents(async_cow->inode, async_cow);
1048 }
1049 
1050 static noinline void async_cow_free(struct btrfs_work *work)
1051 {
1052 	struct async_cow *async_cow;
1053 	async_cow = container_of(work, struct async_cow, work);
1054 	if (async_cow->inode)
1055 		btrfs_add_delayed_iput(async_cow->inode);
1056 	kfree(async_cow);
1057 }
1058 
1059 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1060 				u64 start, u64 end, int *page_started,
1061 				unsigned long *nr_written)
1062 {
1063 	struct async_cow *async_cow;
1064 	struct btrfs_root *root = BTRFS_I(inode)->root;
1065 	unsigned long nr_pages;
1066 	u64 cur_end;
1067 	int limit = 10 * 1024 * 1024;
1068 
1069 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1070 			 1, 0, NULL, GFP_NOFS);
1071 	while (start < end) {
1072 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1073 		BUG_ON(!async_cow); /* -ENOMEM */
1074 		async_cow->inode = igrab(inode);
1075 		async_cow->root = root;
1076 		async_cow->locked_page = locked_page;
1077 		async_cow->start = start;
1078 
1079 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1080 			cur_end = end;
1081 		else
1082 			cur_end = min(end, start + 512 * 1024 - 1);
1083 
1084 		async_cow->end = cur_end;
1085 		INIT_LIST_HEAD(&async_cow->extents);
1086 
1087 		btrfs_init_work(&async_cow->work, async_cow_start,
1088 				async_cow_submit, async_cow_free);
1089 
1090 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1091 			PAGE_CACHE_SHIFT;
1092 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1093 
1094 		btrfs_queue_work(root->fs_info->delalloc_workers,
1095 				 &async_cow->work);
1096 
1097 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1098 			wait_event(root->fs_info->async_submit_wait,
1099 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1100 			    limit));
1101 		}
1102 
1103 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1104 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1105 			wait_event(root->fs_info->async_submit_wait,
1106 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1107 			   0));
1108 		}
1109 
1110 		*nr_written += nr_pages;
1111 		start = cur_end + 1;
1112 	}
1113 	*page_started = 1;
1114 	return 0;
1115 }
1116 
1117 static noinline int csum_exist_in_range(struct btrfs_root *root,
1118 					u64 bytenr, u64 num_bytes)
1119 {
1120 	int ret;
1121 	struct btrfs_ordered_sum *sums;
1122 	LIST_HEAD(list);
1123 
1124 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1125 				       bytenr + num_bytes - 1, &list, 0);
1126 	if (ret == 0 && list_empty(&list))
1127 		return 0;
1128 
1129 	while (!list_empty(&list)) {
1130 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1131 		list_del(&sums->list);
1132 		kfree(sums);
1133 	}
1134 	return 1;
1135 }
1136 
1137 /*
1138  * when nowcow writeback call back.  This checks for snapshots or COW copies
1139  * of the extents that exist in the file, and COWs the file as required.
1140  *
1141  * If no cow copies or snapshots exist, we write directly to the existing
1142  * blocks on disk
1143  */
1144 static noinline int run_delalloc_nocow(struct inode *inode,
1145 				       struct page *locked_page,
1146 			      u64 start, u64 end, int *page_started, int force,
1147 			      unsigned long *nr_written)
1148 {
1149 	struct btrfs_root *root = BTRFS_I(inode)->root;
1150 	struct btrfs_trans_handle *trans;
1151 	struct extent_buffer *leaf;
1152 	struct btrfs_path *path;
1153 	struct btrfs_file_extent_item *fi;
1154 	struct btrfs_key found_key;
1155 	u64 cow_start;
1156 	u64 cur_offset;
1157 	u64 extent_end;
1158 	u64 extent_offset;
1159 	u64 disk_bytenr;
1160 	u64 num_bytes;
1161 	u64 disk_num_bytes;
1162 	u64 ram_bytes;
1163 	int extent_type;
1164 	int ret, err;
1165 	int type;
1166 	int nocow;
1167 	int check_prev = 1;
1168 	bool nolock;
1169 	u64 ino = btrfs_ino(inode);
1170 
1171 	path = btrfs_alloc_path();
1172 	if (!path) {
1173 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1174 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1175 					     EXTENT_DO_ACCOUNTING |
1176 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1177 					     PAGE_CLEAR_DIRTY |
1178 					     PAGE_SET_WRITEBACK |
1179 					     PAGE_END_WRITEBACK);
1180 		return -ENOMEM;
1181 	}
1182 
1183 	nolock = btrfs_is_free_space_inode(inode);
1184 
1185 	if (nolock)
1186 		trans = btrfs_join_transaction_nolock(root);
1187 	else
1188 		trans = btrfs_join_transaction(root);
1189 
1190 	if (IS_ERR(trans)) {
1191 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1192 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1193 					     EXTENT_DO_ACCOUNTING |
1194 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1195 					     PAGE_CLEAR_DIRTY |
1196 					     PAGE_SET_WRITEBACK |
1197 					     PAGE_END_WRITEBACK);
1198 		btrfs_free_path(path);
1199 		return PTR_ERR(trans);
1200 	}
1201 
1202 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1203 
1204 	cow_start = (u64)-1;
1205 	cur_offset = start;
1206 	while (1) {
1207 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1208 					       cur_offset, 0);
1209 		if (ret < 0)
1210 			goto error;
1211 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1212 			leaf = path->nodes[0];
1213 			btrfs_item_key_to_cpu(leaf, &found_key,
1214 					      path->slots[0] - 1);
1215 			if (found_key.objectid == ino &&
1216 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1217 				path->slots[0]--;
1218 		}
1219 		check_prev = 0;
1220 next_slot:
1221 		leaf = path->nodes[0];
1222 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1223 			ret = btrfs_next_leaf(root, path);
1224 			if (ret < 0)
1225 				goto error;
1226 			if (ret > 0)
1227 				break;
1228 			leaf = path->nodes[0];
1229 		}
1230 
1231 		nocow = 0;
1232 		disk_bytenr = 0;
1233 		num_bytes = 0;
1234 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1235 
1236 		if (found_key.objectid > ino ||
1237 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1238 		    found_key.offset > end)
1239 			break;
1240 
1241 		if (found_key.offset > cur_offset) {
1242 			extent_end = found_key.offset;
1243 			extent_type = 0;
1244 			goto out_check;
1245 		}
1246 
1247 		fi = btrfs_item_ptr(leaf, path->slots[0],
1248 				    struct btrfs_file_extent_item);
1249 		extent_type = btrfs_file_extent_type(leaf, fi);
1250 
1251 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1252 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1253 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1254 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1255 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1256 			extent_end = found_key.offset +
1257 				btrfs_file_extent_num_bytes(leaf, fi);
1258 			disk_num_bytes =
1259 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1260 			if (extent_end <= start) {
1261 				path->slots[0]++;
1262 				goto next_slot;
1263 			}
1264 			if (disk_bytenr == 0)
1265 				goto out_check;
1266 			if (btrfs_file_extent_compression(leaf, fi) ||
1267 			    btrfs_file_extent_encryption(leaf, fi) ||
1268 			    btrfs_file_extent_other_encoding(leaf, fi))
1269 				goto out_check;
1270 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1271 				goto out_check;
1272 			if (btrfs_extent_readonly(root, disk_bytenr))
1273 				goto out_check;
1274 			if (btrfs_cross_ref_exist(trans, root, ino,
1275 						  found_key.offset -
1276 						  extent_offset, disk_bytenr))
1277 				goto out_check;
1278 			disk_bytenr += extent_offset;
1279 			disk_bytenr += cur_offset - found_key.offset;
1280 			num_bytes = min(end + 1, extent_end) - cur_offset;
1281 			/*
1282 			 * if there are pending snapshots for this root,
1283 			 * we fall into common COW way.
1284 			 */
1285 			if (!nolock) {
1286 				err = btrfs_start_nocow_write(root);
1287 				if (!err)
1288 					goto out_check;
1289 			}
1290 			/*
1291 			 * force cow if csum exists in the range.
1292 			 * this ensure that csum for a given extent are
1293 			 * either valid or do not exist.
1294 			 */
1295 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1296 				goto out_check;
1297 			nocow = 1;
1298 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1299 			extent_end = found_key.offset +
1300 				btrfs_file_extent_inline_len(leaf,
1301 						     path->slots[0], fi);
1302 			extent_end = ALIGN(extent_end, root->sectorsize);
1303 		} else {
1304 			BUG_ON(1);
1305 		}
1306 out_check:
1307 		if (extent_end <= start) {
1308 			path->slots[0]++;
1309 			if (!nolock && nocow)
1310 				btrfs_end_nocow_write(root);
1311 			goto next_slot;
1312 		}
1313 		if (!nocow) {
1314 			if (cow_start == (u64)-1)
1315 				cow_start = cur_offset;
1316 			cur_offset = extent_end;
1317 			if (cur_offset > end)
1318 				break;
1319 			path->slots[0]++;
1320 			goto next_slot;
1321 		}
1322 
1323 		btrfs_release_path(path);
1324 		if (cow_start != (u64)-1) {
1325 			ret = cow_file_range(inode, locked_page,
1326 					     cow_start, found_key.offset - 1,
1327 					     page_started, nr_written, 1);
1328 			if (ret) {
1329 				if (!nolock && nocow)
1330 					btrfs_end_nocow_write(root);
1331 				goto error;
1332 			}
1333 			cow_start = (u64)-1;
1334 		}
1335 
1336 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 			struct extent_map *em;
1338 			struct extent_map_tree *em_tree;
1339 			em_tree = &BTRFS_I(inode)->extent_tree;
1340 			em = alloc_extent_map();
1341 			BUG_ON(!em); /* -ENOMEM */
1342 			em->start = cur_offset;
1343 			em->orig_start = found_key.offset - extent_offset;
1344 			em->len = num_bytes;
1345 			em->block_len = num_bytes;
1346 			em->block_start = disk_bytenr;
1347 			em->orig_block_len = disk_num_bytes;
1348 			em->ram_bytes = ram_bytes;
1349 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1350 			em->mod_start = em->start;
1351 			em->mod_len = em->len;
1352 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1353 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1354 			em->generation = -1;
1355 			while (1) {
1356 				write_lock(&em_tree->lock);
1357 				ret = add_extent_mapping(em_tree, em, 1);
1358 				write_unlock(&em_tree->lock);
1359 				if (ret != -EEXIST) {
1360 					free_extent_map(em);
1361 					break;
1362 				}
1363 				btrfs_drop_extent_cache(inode, em->start,
1364 						em->start + em->len - 1, 0);
1365 			}
1366 			type = BTRFS_ORDERED_PREALLOC;
1367 		} else {
1368 			type = BTRFS_ORDERED_NOCOW;
1369 		}
1370 
1371 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1372 					       num_bytes, num_bytes, type);
1373 		BUG_ON(ret); /* -ENOMEM */
1374 
1375 		if (root->root_key.objectid ==
1376 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1377 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1378 						      num_bytes);
1379 			if (ret) {
1380 				if (!nolock && nocow)
1381 					btrfs_end_nocow_write(root);
1382 				goto error;
1383 			}
1384 		}
1385 
1386 		extent_clear_unlock_delalloc(inode, cur_offset,
1387 					     cur_offset + num_bytes - 1,
1388 					     locked_page, EXTENT_LOCKED |
1389 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1390 					     PAGE_SET_PRIVATE2);
1391 		if (!nolock && nocow)
1392 			btrfs_end_nocow_write(root);
1393 		cur_offset = extent_end;
1394 		if (cur_offset > end)
1395 			break;
1396 	}
1397 	btrfs_release_path(path);
1398 
1399 	if (cur_offset <= end && cow_start == (u64)-1) {
1400 		cow_start = cur_offset;
1401 		cur_offset = end;
1402 	}
1403 
1404 	if (cow_start != (u64)-1) {
1405 		ret = cow_file_range(inode, locked_page, cow_start, end,
1406 				     page_started, nr_written, 1);
1407 		if (ret)
1408 			goto error;
1409 	}
1410 
1411 error:
1412 	err = btrfs_end_transaction(trans, root);
1413 	if (!ret)
1414 		ret = err;
1415 
1416 	if (ret && cur_offset < end)
1417 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1418 					     locked_page, EXTENT_LOCKED |
1419 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1420 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1421 					     PAGE_CLEAR_DIRTY |
1422 					     PAGE_SET_WRITEBACK |
1423 					     PAGE_END_WRITEBACK);
1424 	btrfs_free_path(path);
1425 	return ret;
1426 }
1427 
1428 /*
1429  * extent_io.c call back to do delayed allocation processing
1430  */
1431 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1432 			      u64 start, u64 end, int *page_started,
1433 			      unsigned long *nr_written)
1434 {
1435 	int ret;
1436 	struct btrfs_root *root = BTRFS_I(inode)->root;
1437 
1438 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1439 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1440 					 page_started, 1, nr_written);
1441 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1442 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1443 					 page_started, 0, nr_written);
1444 	} else if (!btrfs_test_opt(root, COMPRESS) &&
1445 		   !(BTRFS_I(inode)->force_compress) &&
1446 		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1447 		ret = cow_file_range(inode, locked_page, start, end,
1448 				      page_started, nr_written, 1);
1449 	} else {
1450 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1451 			&BTRFS_I(inode)->runtime_flags);
1452 		ret = cow_file_range_async(inode, locked_page, start, end,
1453 					   page_started, nr_written);
1454 	}
1455 	return ret;
1456 }
1457 
1458 static void btrfs_split_extent_hook(struct inode *inode,
1459 				    struct extent_state *orig, u64 split)
1460 {
1461 	/* not delalloc, ignore it */
1462 	if (!(orig->state & EXTENT_DELALLOC))
1463 		return;
1464 
1465 	spin_lock(&BTRFS_I(inode)->lock);
1466 	BTRFS_I(inode)->outstanding_extents++;
1467 	spin_unlock(&BTRFS_I(inode)->lock);
1468 }
1469 
1470 /*
1471  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1472  * extents so we can keep track of new extents that are just merged onto old
1473  * extents, such as when we are doing sequential writes, so we can properly
1474  * account for the metadata space we'll need.
1475  */
1476 static void btrfs_merge_extent_hook(struct inode *inode,
1477 				    struct extent_state *new,
1478 				    struct extent_state *other)
1479 {
1480 	/* not delalloc, ignore it */
1481 	if (!(other->state & EXTENT_DELALLOC))
1482 		return;
1483 
1484 	spin_lock(&BTRFS_I(inode)->lock);
1485 	BTRFS_I(inode)->outstanding_extents--;
1486 	spin_unlock(&BTRFS_I(inode)->lock);
1487 }
1488 
1489 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1490 				      struct inode *inode)
1491 {
1492 	spin_lock(&root->delalloc_lock);
1493 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1494 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1495 			      &root->delalloc_inodes);
1496 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1497 			&BTRFS_I(inode)->runtime_flags);
1498 		root->nr_delalloc_inodes++;
1499 		if (root->nr_delalloc_inodes == 1) {
1500 			spin_lock(&root->fs_info->delalloc_root_lock);
1501 			BUG_ON(!list_empty(&root->delalloc_root));
1502 			list_add_tail(&root->delalloc_root,
1503 				      &root->fs_info->delalloc_roots);
1504 			spin_unlock(&root->fs_info->delalloc_root_lock);
1505 		}
1506 	}
1507 	spin_unlock(&root->delalloc_lock);
1508 }
1509 
1510 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1511 				     struct inode *inode)
1512 {
1513 	spin_lock(&root->delalloc_lock);
1514 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1515 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1516 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1517 			  &BTRFS_I(inode)->runtime_flags);
1518 		root->nr_delalloc_inodes--;
1519 		if (!root->nr_delalloc_inodes) {
1520 			spin_lock(&root->fs_info->delalloc_root_lock);
1521 			BUG_ON(list_empty(&root->delalloc_root));
1522 			list_del_init(&root->delalloc_root);
1523 			spin_unlock(&root->fs_info->delalloc_root_lock);
1524 		}
1525 	}
1526 	spin_unlock(&root->delalloc_lock);
1527 }
1528 
1529 /*
1530  * extent_io.c set_bit_hook, used to track delayed allocation
1531  * bytes in this file, and to maintain the list of inodes that
1532  * have pending delalloc work to be done.
1533  */
1534 static void btrfs_set_bit_hook(struct inode *inode,
1535 			       struct extent_state *state, unsigned long *bits)
1536 {
1537 
1538 	/*
1539 	 * set_bit and clear bit hooks normally require _irqsave/restore
1540 	 * but in this case, we are only testing for the DELALLOC
1541 	 * bit, which is only set or cleared with irqs on
1542 	 */
1543 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1544 		struct btrfs_root *root = BTRFS_I(inode)->root;
1545 		u64 len = state->end + 1 - state->start;
1546 		bool do_list = !btrfs_is_free_space_inode(inode);
1547 
1548 		if (*bits & EXTENT_FIRST_DELALLOC) {
1549 			*bits &= ~EXTENT_FIRST_DELALLOC;
1550 		} else {
1551 			spin_lock(&BTRFS_I(inode)->lock);
1552 			BTRFS_I(inode)->outstanding_extents++;
1553 			spin_unlock(&BTRFS_I(inode)->lock);
1554 		}
1555 
1556 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1557 				     root->fs_info->delalloc_batch);
1558 		spin_lock(&BTRFS_I(inode)->lock);
1559 		BTRFS_I(inode)->delalloc_bytes += len;
1560 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1561 					 &BTRFS_I(inode)->runtime_flags))
1562 			btrfs_add_delalloc_inodes(root, inode);
1563 		spin_unlock(&BTRFS_I(inode)->lock);
1564 	}
1565 }
1566 
1567 /*
1568  * extent_io.c clear_bit_hook, see set_bit_hook for why
1569  */
1570 static void btrfs_clear_bit_hook(struct inode *inode,
1571 				 struct extent_state *state,
1572 				 unsigned long *bits)
1573 {
1574 	/*
1575 	 * set_bit and clear bit hooks normally require _irqsave/restore
1576 	 * but in this case, we are only testing for the DELALLOC
1577 	 * bit, which is only set or cleared with irqs on
1578 	 */
1579 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1580 		struct btrfs_root *root = BTRFS_I(inode)->root;
1581 		u64 len = state->end + 1 - state->start;
1582 		bool do_list = !btrfs_is_free_space_inode(inode);
1583 
1584 		if (*bits & EXTENT_FIRST_DELALLOC) {
1585 			*bits &= ~EXTENT_FIRST_DELALLOC;
1586 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1587 			spin_lock(&BTRFS_I(inode)->lock);
1588 			BTRFS_I(inode)->outstanding_extents--;
1589 			spin_unlock(&BTRFS_I(inode)->lock);
1590 		}
1591 
1592 		/*
1593 		 * We don't reserve metadata space for space cache inodes so we
1594 		 * don't need to call dellalloc_release_metadata if there is an
1595 		 * error.
1596 		 */
1597 		if (*bits & EXTENT_DO_ACCOUNTING &&
1598 		    root != root->fs_info->tree_root)
1599 			btrfs_delalloc_release_metadata(inode, len);
1600 
1601 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1602 		    && do_list && !(state->state & EXTENT_NORESERVE))
1603 			btrfs_free_reserved_data_space(inode, len);
1604 
1605 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1606 				     root->fs_info->delalloc_batch);
1607 		spin_lock(&BTRFS_I(inode)->lock);
1608 		BTRFS_I(inode)->delalloc_bytes -= len;
1609 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1610 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1611 			     &BTRFS_I(inode)->runtime_flags))
1612 			btrfs_del_delalloc_inode(root, inode);
1613 		spin_unlock(&BTRFS_I(inode)->lock);
1614 	}
1615 }
1616 
1617 /*
1618  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1619  * we don't create bios that span stripes or chunks
1620  */
1621 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1622 			 size_t size, struct bio *bio,
1623 			 unsigned long bio_flags)
1624 {
1625 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1626 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1627 	u64 length = 0;
1628 	u64 map_length;
1629 	int ret;
1630 
1631 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1632 		return 0;
1633 
1634 	length = bio->bi_iter.bi_size;
1635 	map_length = length;
1636 	ret = btrfs_map_block(root->fs_info, rw, logical,
1637 			      &map_length, NULL, 0);
1638 	/* Will always return 0 with map_multi == NULL */
1639 	BUG_ON(ret < 0);
1640 	if (map_length < length + size)
1641 		return 1;
1642 	return 0;
1643 }
1644 
1645 /*
1646  * in order to insert checksums into the metadata in large chunks,
1647  * we wait until bio submission time.   All the pages in the bio are
1648  * checksummed and sums are attached onto the ordered extent record.
1649  *
1650  * At IO completion time the cums attached on the ordered extent record
1651  * are inserted into the btree
1652  */
1653 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1654 				    struct bio *bio, int mirror_num,
1655 				    unsigned long bio_flags,
1656 				    u64 bio_offset)
1657 {
1658 	struct btrfs_root *root = BTRFS_I(inode)->root;
1659 	int ret = 0;
1660 
1661 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1662 	BUG_ON(ret); /* -ENOMEM */
1663 	return 0;
1664 }
1665 
1666 /*
1667  * in order to insert checksums into the metadata in large chunks,
1668  * we wait until bio submission time.   All the pages in the bio are
1669  * checksummed and sums are attached onto the ordered extent record.
1670  *
1671  * At IO completion time the cums attached on the ordered extent record
1672  * are inserted into the btree
1673  */
1674 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1675 			  int mirror_num, unsigned long bio_flags,
1676 			  u64 bio_offset)
1677 {
1678 	struct btrfs_root *root = BTRFS_I(inode)->root;
1679 	int ret;
1680 
1681 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1682 	if (ret)
1683 		bio_endio(bio, ret);
1684 	return ret;
1685 }
1686 
1687 /*
1688  * extent_io.c submission hook. This does the right thing for csum calculation
1689  * on write, or reading the csums from the tree before a read
1690  */
1691 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1692 			  int mirror_num, unsigned long bio_flags,
1693 			  u64 bio_offset)
1694 {
1695 	struct btrfs_root *root = BTRFS_I(inode)->root;
1696 	int ret = 0;
1697 	int skip_sum;
1698 	int metadata = 0;
1699 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1700 
1701 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1702 
1703 	if (btrfs_is_free_space_inode(inode))
1704 		metadata = 2;
1705 
1706 	if (!(rw & REQ_WRITE)) {
1707 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1708 		if (ret)
1709 			goto out;
1710 
1711 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1712 			ret = btrfs_submit_compressed_read(inode, bio,
1713 							   mirror_num,
1714 							   bio_flags);
1715 			goto out;
1716 		} else if (!skip_sum) {
1717 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1718 			if (ret)
1719 				goto out;
1720 		}
1721 		goto mapit;
1722 	} else if (async && !skip_sum) {
1723 		/* csum items have already been cloned */
1724 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1725 			goto mapit;
1726 		/* we're doing a write, do the async checksumming */
1727 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1728 				   inode, rw, bio, mirror_num,
1729 				   bio_flags, bio_offset,
1730 				   __btrfs_submit_bio_start,
1731 				   __btrfs_submit_bio_done);
1732 		goto out;
1733 	} else if (!skip_sum) {
1734 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1735 		if (ret)
1736 			goto out;
1737 	}
1738 
1739 mapit:
1740 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1741 
1742 out:
1743 	if (ret < 0)
1744 		bio_endio(bio, ret);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * given a list of ordered sums record them in the inode.  This happens
1750  * at IO completion time based on sums calculated at bio submission time.
1751  */
1752 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1753 			     struct inode *inode, u64 file_offset,
1754 			     struct list_head *list)
1755 {
1756 	struct btrfs_ordered_sum *sum;
1757 
1758 	list_for_each_entry(sum, list, list) {
1759 		trans->adding_csums = 1;
1760 		btrfs_csum_file_blocks(trans,
1761 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1762 		trans->adding_csums = 0;
1763 	}
1764 	return 0;
1765 }
1766 
1767 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1768 			      struct extent_state **cached_state)
1769 {
1770 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1771 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1772 				   cached_state, GFP_NOFS);
1773 }
1774 
1775 /* see btrfs_writepage_start_hook for details on why this is required */
1776 struct btrfs_writepage_fixup {
1777 	struct page *page;
1778 	struct btrfs_work work;
1779 };
1780 
1781 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1782 {
1783 	struct btrfs_writepage_fixup *fixup;
1784 	struct btrfs_ordered_extent *ordered;
1785 	struct extent_state *cached_state = NULL;
1786 	struct page *page;
1787 	struct inode *inode;
1788 	u64 page_start;
1789 	u64 page_end;
1790 	int ret;
1791 
1792 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1793 	page = fixup->page;
1794 again:
1795 	lock_page(page);
1796 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1797 		ClearPageChecked(page);
1798 		goto out_page;
1799 	}
1800 
1801 	inode = page->mapping->host;
1802 	page_start = page_offset(page);
1803 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1804 
1805 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1806 			 &cached_state);
1807 
1808 	/* already ordered? We're done */
1809 	if (PagePrivate2(page))
1810 		goto out;
1811 
1812 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1813 	if (ordered) {
1814 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1815 				     page_end, &cached_state, GFP_NOFS);
1816 		unlock_page(page);
1817 		btrfs_start_ordered_extent(inode, ordered, 1);
1818 		btrfs_put_ordered_extent(ordered);
1819 		goto again;
1820 	}
1821 
1822 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1823 	if (ret) {
1824 		mapping_set_error(page->mapping, ret);
1825 		end_extent_writepage(page, ret, page_start, page_end);
1826 		ClearPageChecked(page);
1827 		goto out;
1828 	 }
1829 
1830 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1831 	ClearPageChecked(page);
1832 	set_page_dirty(page);
1833 out:
1834 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1835 			     &cached_state, GFP_NOFS);
1836 out_page:
1837 	unlock_page(page);
1838 	page_cache_release(page);
1839 	kfree(fixup);
1840 }
1841 
1842 /*
1843  * There are a few paths in the higher layers of the kernel that directly
1844  * set the page dirty bit without asking the filesystem if it is a
1845  * good idea.  This causes problems because we want to make sure COW
1846  * properly happens and the data=ordered rules are followed.
1847  *
1848  * In our case any range that doesn't have the ORDERED bit set
1849  * hasn't been properly setup for IO.  We kick off an async process
1850  * to fix it up.  The async helper will wait for ordered extents, set
1851  * the delalloc bit and make it safe to write the page.
1852  */
1853 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1854 {
1855 	struct inode *inode = page->mapping->host;
1856 	struct btrfs_writepage_fixup *fixup;
1857 	struct btrfs_root *root = BTRFS_I(inode)->root;
1858 
1859 	/* this page is properly in the ordered list */
1860 	if (TestClearPagePrivate2(page))
1861 		return 0;
1862 
1863 	if (PageChecked(page))
1864 		return -EAGAIN;
1865 
1866 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1867 	if (!fixup)
1868 		return -EAGAIN;
1869 
1870 	SetPageChecked(page);
1871 	page_cache_get(page);
1872 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
1873 	fixup->page = page;
1874 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1875 	return -EBUSY;
1876 }
1877 
1878 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1879 				       struct inode *inode, u64 file_pos,
1880 				       u64 disk_bytenr, u64 disk_num_bytes,
1881 				       u64 num_bytes, u64 ram_bytes,
1882 				       u8 compression, u8 encryption,
1883 				       u16 other_encoding, int extent_type)
1884 {
1885 	struct btrfs_root *root = BTRFS_I(inode)->root;
1886 	struct btrfs_file_extent_item *fi;
1887 	struct btrfs_path *path;
1888 	struct extent_buffer *leaf;
1889 	struct btrfs_key ins;
1890 	int extent_inserted = 0;
1891 	int ret;
1892 
1893 	path = btrfs_alloc_path();
1894 	if (!path)
1895 		return -ENOMEM;
1896 
1897 	/*
1898 	 * we may be replacing one extent in the tree with another.
1899 	 * The new extent is pinned in the extent map, and we don't want
1900 	 * to drop it from the cache until it is completely in the btree.
1901 	 *
1902 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1903 	 * the caller is expected to unpin it and allow it to be merged
1904 	 * with the others.
1905 	 */
1906 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1907 				   file_pos + num_bytes, NULL, 0,
1908 				   1, sizeof(*fi), &extent_inserted);
1909 	if (ret)
1910 		goto out;
1911 
1912 	if (!extent_inserted) {
1913 		ins.objectid = btrfs_ino(inode);
1914 		ins.offset = file_pos;
1915 		ins.type = BTRFS_EXTENT_DATA_KEY;
1916 
1917 		path->leave_spinning = 1;
1918 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
1919 					      sizeof(*fi));
1920 		if (ret)
1921 			goto out;
1922 	}
1923 	leaf = path->nodes[0];
1924 	fi = btrfs_item_ptr(leaf, path->slots[0],
1925 			    struct btrfs_file_extent_item);
1926 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1927 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1928 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1929 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1930 	btrfs_set_file_extent_offset(leaf, fi, 0);
1931 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1932 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1933 	btrfs_set_file_extent_compression(leaf, fi, compression);
1934 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1935 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1936 
1937 	btrfs_mark_buffer_dirty(leaf);
1938 	btrfs_release_path(path);
1939 
1940 	inode_add_bytes(inode, num_bytes);
1941 
1942 	ins.objectid = disk_bytenr;
1943 	ins.offset = disk_num_bytes;
1944 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1945 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1946 					root->root_key.objectid,
1947 					btrfs_ino(inode), file_pos, &ins);
1948 out:
1949 	btrfs_free_path(path);
1950 
1951 	return ret;
1952 }
1953 
1954 /* snapshot-aware defrag */
1955 struct sa_defrag_extent_backref {
1956 	struct rb_node node;
1957 	struct old_sa_defrag_extent *old;
1958 	u64 root_id;
1959 	u64 inum;
1960 	u64 file_pos;
1961 	u64 extent_offset;
1962 	u64 num_bytes;
1963 	u64 generation;
1964 };
1965 
1966 struct old_sa_defrag_extent {
1967 	struct list_head list;
1968 	struct new_sa_defrag_extent *new;
1969 
1970 	u64 extent_offset;
1971 	u64 bytenr;
1972 	u64 offset;
1973 	u64 len;
1974 	int count;
1975 };
1976 
1977 struct new_sa_defrag_extent {
1978 	struct rb_root root;
1979 	struct list_head head;
1980 	struct btrfs_path *path;
1981 	struct inode *inode;
1982 	u64 file_pos;
1983 	u64 len;
1984 	u64 bytenr;
1985 	u64 disk_len;
1986 	u8 compress_type;
1987 };
1988 
1989 static int backref_comp(struct sa_defrag_extent_backref *b1,
1990 			struct sa_defrag_extent_backref *b2)
1991 {
1992 	if (b1->root_id < b2->root_id)
1993 		return -1;
1994 	else if (b1->root_id > b2->root_id)
1995 		return 1;
1996 
1997 	if (b1->inum < b2->inum)
1998 		return -1;
1999 	else if (b1->inum > b2->inum)
2000 		return 1;
2001 
2002 	if (b1->file_pos < b2->file_pos)
2003 		return -1;
2004 	else if (b1->file_pos > b2->file_pos)
2005 		return 1;
2006 
2007 	/*
2008 	 * [------------------------------] ===> (a range of space)
2009 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2010 	 * |<---------------------------->| ===> (fs/file tree B)
2011 	 *
2012 	 * A range of space can refer to two file extents in one tree while
2013 	 * refer to only one file extent in another tree.
2014 	 *
2015 	 * So we may process a disk offset more than one time(two extents in A)
2016 	 * and locate at the same extent(one extent in B), then insert two same
2017 	 * backrefs(both refer to the extent in B).
2018 	 */
2019 	return 0;
2020 }
2021 
2022 static void backref_insert(struct rb_root *root,
2023 			   struct sa_defrag_extent_backref *backref)
2024 {
2025 	struct rb_node **p = &root->rb_node;
2026 	struct rb_node *parent = NULL;
2027 	struct sa_defrag_extent_backref *entry;
2028 	int ret;
2029 
2030 	while (*p) {
2031 		parent = *p;
2032 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2033 
2034 		ret = backref_comp(backref, entry);
2035 		if (ret < 0)
2036 			p = &(*p)->rb_left;
2037 		else
2038 			p = &(*p)->rb_right;
2039 	}
2040 
2041 	rb_link_node(&backref->node, parent, p);
2042 	rb_insert_color(&backref->node, root);
2043 }
2044 
2045 /*
2046  * Note the backref might has changed, and in this case we just return 0.
2047  */
2048 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2049 				       void *ctx)
2050 {
2051 	struct btrfs_file_extent_item *extent;
2052 	struct btrfs_fs_info *fs_info;
2053 	struct old_sa_defrag_extent *old = ctx;
2054 	struct new_sa_defrag_extent *new = old->new;
2055 	struct btrfs_path *path = new->path;
2056 	struct btrfs_key key;
2057 	struct btrfs_root *root;
2058 	struct sa_defrag_extent_backref *backref;
2059 	struct extent_buffer *leaf;
2060 	struct inode *inode = new->inode;
2061 	int slot;
2062 	int ret;
2063 	u64 extent_offset;
2064 	u64 num_bytes;
2065 
2066 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2067 	    inum == btrfs_ino(inode))
2068 		return 0;
2069 
2070 	key.objectid = root_id;
2071 	key.type = BTRFS_ROOT_ITEM_KEY;
2072 	key.offset = (u64)-1;
2073 
2074 	fs_info = BTRFS_I(inode)->root->fs_info;
2075 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2076 	if (IS_ERR(root)) {
2077 		if (PTR_ERR(root) == -ENOENT)
2078 			return 0;
2079 		WARN_ON(1);
2080 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2081 			 inum, offset, root_id);
2082 		return PTR_ERR(root);
2083 	}
2084 
2085 	key.objectid = inum;
2086 	key.type = BTRFS_EXTENT_DATA_KEY;
2087 	if (offset > (u64)-1 << 32)
2088 		key.offset = 0;
2089 	else
2090 		key.offset = offset;
2091 
2092 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2093 	if (WARN_ON(ret < 0))
2094 		return ret;
2095 	ret = 0;
2096 
2097 	while (1) {
2098 		cond_resched();
2099 
2100 		leaf = path->nodes[0];
2101 		slot = path->slots[0];
2102 
2103 		if (slot >= btrfs_header_nritems(leaf)) {
2104 			ret = btrfs_next_leaf(root, path);
2105 			if (ret < 0) {
2106 				goto out;
2107 			} else if (ret > 0) {
2108 				ret = 0;
2109 				goto out;
2110 			}
2111 			continue;
2112 		}
2113 
2114 		path->slots[0]++;
2115 
2116 		btrfs_item_key_to_cpu(leaf, &key, slot);
2117 
2118 		if (key.objectid > inum)
2119 			goto out;
2120 
2121 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2122 			continue;
2123 
2124 		extent = btrfs_item_ptr(leaf, slot,
2125 					struct btrfs_file_extent_item);
2126 
2127 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2128 			continue;
2129 
2130 		/*
2131 		 * 'offset' refers to the exact key.offset,
2132 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2133 		 * (key.offset - extent_offset).
2134 		 */
2135 		if (key.offset != offset)
2136 			continue;
2137 
2138 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2139 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2140 
2141 		if (extent_offset >= old->extent_offset + old->offset +
2142 		    old->len || extent_offset + num_bytes <=
2143 		    old->extent_offset + old->offset)
2144 			continue;
2145 		break;
2146 	}
2147 
2148 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2149 	if (!backref) {
2150 		ret = -ENOENT;
2151 		goto out;
2152 	}
2153 
2154 	backref->root_id = root_id;
2155 	backref->inum = inum;
2156 	backref->file_pos = offset;
2157 	backref->num_bytes = num_bytes;
2158 	backref->extent_offset = extent_offset;
2159 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2160 	backref->old = old;
2161 	backref_insert(&new->root, backref);
2162 	old->count++;
2163 out:
2164 	btrfs_release_path(path);
2165 	WARN_ON(ret);
2166 	return ret;
2167 }
2168 
2169 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2170 				   struct new_sa_defrag_extent *new)
2171 {
2172 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2173 	struct old_sa_defrag_extent *old, *tmp;
2174 	int ret;
2175 
2176 	new->path = path;
2177 
2178 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2179 		ret = iterate_inodes_from_logical(old->bytenr +
2180 						  old->extent_offset, fs_info,
2181 						  path, record_one_backref,
2182 						  old);
2183 		if (ret < 0 && ret != -ENOENT)
2184 			return false;
2185 
2186 		/* no backref to be processed for this extent */
2187 		if (!old->count) {
2188 			list_del(&old->list);
2189 			kfree(old);
2190 		}
2191 	}
2192 
2193 	if (list_empty(&new->head))
2194 		return false;
2195 
2196 	return true;
2197 }
2198 
2199 static int relink_is_mergable(struct extent_buffer *leaf,
2200 			      struct btrfs_file_extent_item *fi,
2201 			      struct new_sa_defrag_extent *new)
2202 {
2203 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2204 		return 0;
2205 
2206 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2207 		return 0;
2208 
2209 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2210 		return 0;
2211 
2212 	if (btrfs_file_extent_encryption(leaf, fi) ||
2213 	    btrfs_file_extent_other_encoding(leaf, fi))
2214 		return 0;
2215 
2216 	return 1;
2217 }
2218 
2219 /*
2220  * Note the backref might has changed, and in this case we just return 0.
2221  */
2222 static noinline int relink_extent_backref(struct btrfs_path *path,
2223 				 struct sa_defrag_extent_backref *prev,
2224 				 struct sa_defrag_extent_backref *backref)
2225 {
2226 	struct btrfs_file_extent_item *extent;
2227 	struct btrfs_file_extent_item *item;
2228 	struct btrfs_ordered_extent *ordered;
2229 	struct btrfs_trans_handle *trans;
2230 	struct btrfs_fs_info *fs_info;
2231 	struct btrfs_root *root;
2232 	struct btrfs_key key;
2233 	struct extent_buffer *leaf;
2234 	struct old_sa_defrag_extent *old = backref->old;
2235 	struct new_sa_defrag_extent *new = old->new;
2236 	struct inode *src_inode = new->inode;
2237 	struct inode *inode;
2238 	struct extent_state *cached = NULL;
2239 	int ret = 0;
2240 	u64 start;
2241 	u64 len;
2242 	u64 lock_start;
2243 	u64 lock_end;
2244 	bool merge = false;
2245 	int index;
2246 
2247 	if (prev && prev->root_id == backref->root_id &&
2248 	    prev->inum == backref->inum &&
2249 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2250 		merge = true;
2251 
2252 	/* step 1: get root */
2253 	key.objectid = backref->root_id;
2254 	key.type = BTRFS_ROOT_ITEM_KEY;
2255 	key.offset = (u64)-1;
2256 
2257 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2258 	index = srcu_read_lock(&fs_info->subvol_srcu);
2259 
2260 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2261 	if (IS_ERR(root)) {
2262 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2263 		if (PTR_ERR(root) == -ENOENT)
2264 			return 0;
2265 		return PTR_ERR(root);
2266 	}
2267 
2268 	if (btrfs_root_readonly(root)) {
2269 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2270 		return 0;
2271 	}
2272 
2273 	/* step 2: get inode */
2274 	key.objectid = backref->inum;
2275 	key.type = BTRFS_INODE_ITEM_KEY;
2276 	key.offset = 0;
2277 
2278 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2279 	if (IS_ERR(inode)) {
2280 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2281 		return 0;
2282 	}
2283 
2284 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2285 
2286 	/* step 3: relink backref */
2287 	lock_start = backref->file_pos;
2288 	lock_end = backref->file_pos + backref->num_bytes - 1;
2289 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2290 			 0, &cached);
2291 
2292 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2293 	if (ordered) {
2294 		btrfs_put_ordered_extent(ordered);
2295 		goto out_unlock;
2296 	}
2297 
2298 	trans = btrfs_join_transaction(root);
2299 	if (IS_ERR(trans)) {
2300 		ret = PTR_ERR(trans);
2301 		goto out_unlock;
2302 	}
2303 
2304 	key.objectid = backref->inum;
2305 	key.type = BTRFS_EXTENT_DATA_KEY;
2306 	key.offset = backref->file_pos;
2307 
2308 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2309 	if (ret < 0) {
2310 		goto out_free_path;
2311 	} else if (ret > 0) {
2312 		ret = 0;
2313 		goto out_free_path;
2314 	}
2315 
2316 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2317 				struct btrfs_file_extent_item);
2318 
2319 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2320 	    backref->generation)
2321 		goto out_free_path;
2322 
2323 	btrfs_release_path(path);
2324 
2325 	start = backref->file_pos;
2326 	if (backref->extent_offset < old->extent_offset + old->offset)
2327 		start += old->extent_offset + old->offset -
2328 			 backref->extent_offset;
2329 
2330 	len = min(backref->extent_offset + backref->num_bytes,
2331 		  old->extent_offset + old->offset + old->len);
2332 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2333 
2334 	ret = btrfs_drop_extents(trans, root, inode, start,
2335 				 start + len, 1);
2336 	if (ret)
2337 		goto out_free_path;
2338 again:
2339 	key.objectid = btrfs_ino(inode);
2340 	key.type = BTRFS_EXTENT_DATA_KEY;
2341 	key.offset = start;
2342 
2343 	path->leave_spinning = 1;
2344 	if (merge) {
2345 		struct btrfs_file_extent_item *fi;
2346 		u64 extent_len;
2347 		struct btrfs_key found_key;
2348 
2349 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2350 		if (ret < 0)
2351 			goto out_free_path;
2352 
2353 		path->slots[0]--;
2354 		leaf = path->nodes[0];
2355 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2356 
2357 		fi = btrfs_item_ptr(leaf, path->slots[0],
2358 				    struct btrfs_file_extent_item);
2359 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2360 
2361 		if (extent_len + found_key.offset == start &&
2362 		    relink_is_mergable(leaf, fi, new)) {
2363 			btrfs_set_file_extent_num_bytes(leaf, fi,
2364 							extent_len + len);
2365 			btrfs_mark_buffer_dirty(leaf);
2366 			inode_add_bytes(inode, len);
2367 
2368 			ret = 1;
2369 			goto out_free_path;
2370 		} else {
2371 			merge = false;
2372 			btrfs_release_path(path);
2373 			goto again;
2374 		}
2375 	}
2376 
2377 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2378 					sizeof(*extent));
2379 	if (ret) {
2380 		btrfs_abort_transaction(trans, root, ret);
2381 		goto out_free_path;
2382 	}
2383 
2384 	leaf = path->nodes[0];
2385 	item = btrfs_item_ptr(leaf, path->slots[0],
2386 				struct btrfs_file_extent_item);
2387 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2388 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2389 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2390 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2391 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2392 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2393 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2394 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2395 	btrfs_set_file_extent_encryption(leaf, item, 0);
2396 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2397 
2398 	btrfs_mark_buffer_dirty(leaf);
2399 	inode_add_bytes(inode, len);
2400 	btrfs_release_path(path);
2401 
2402 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2403 			new->disk_len, 0,
2404 			backref->root_id, backref->inum,
2405 			new->file_pos, 0);	/* start - extent_offset */
2406 	if (ret) {
2407 		btrfs_abort_transaction(trans, root, ret);
2408 		goto out_free_path;
2409 	}
2410 
2411 	ret = 1;
2412 out_free_path:
2413 	btrfs_release_path(path);
2414 	path->leave_spinning = 0;
2415 	btrfs_end_transaction(trans, root);
2416 out_unlock:
2417 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2418 			     &cached, GFP_NOFS);
2419 	iput(inode);
2420 	return ret;
2421 }
2422 
2423 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2424 {
2425 	struct old_sa_defrag_extent *old, *tmp;
2426 
2427 	if (!new)
2428 		return;
2429 
2430 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2431 		list_del(&old->list);
2432 		kfree(old);
2433 	}
2434 	kfree(new);
2435 }
2436 
2437 static void relink_file_extents(struct new_sa_defrag_extent *new)
2438 {
2439 	struct btrfs_path *path;
2440 	struct sa_defrag_extent_backref *backref;
2441 	struct sa_defrag_extent_backref *prev = NULL;
2442 	struct inode *inode;
2443 	struct btrfs_root *root;
2444 	struct rb_node *node;
2445 	int ret;
2446 
2447 	inode = new->inode;
2448 	root = BTRFS_I(inode)->root;
2449 
2450 	path = btrfs_alloc_path();
2451 	if (!path)
2452 		return;
2453 
2454 	if (!record_extent_backrefs(path, new)) {
2455 		btrfs_free_path(path);
2456 		goto out;
2457 	}
2458 	btrfs_release_path(path);
2459 
2460 	while (1) {
2461 		node = rb_first(&new->root);
2462 		if (!node)
2463 			break;
2464 		rb_erase(node, &new->root);
2465 
2466 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2467 
2468 		ret = relink_extent_backref(path, prev, backref);
2469 		WARN_ON(ret < 0);
2470 
2471 		kfree(prev);
2472 
2473 		if (ret == 1)
2474 			prev = backref;
2475 		else
2476 			prev = NULL;
2477 		cond_resched();
2478 	}
2479 	kfree(prev);
2480 
2481 	btrfs_free_path(path);
2482 out:
2483 	free_sa_defrag_extent(new);
2484 
2485 	atomic_dec(&root->fs_info->defrag_running);
2486 	wake_up(&root->fs_info->transaction_wait);
2487 }
2488 
2489 static struct new_sa_defrag_extent *
2490 record_old_file_extents(struct inode *inode,
2491 			struct btrfs_ordered_extent *ordered)
2492 {
2493 	struct btrfs_root *root = BTRFS_I(inode)->root;
2494 	struct btrfs_path *path;
2495 	struct btrfs_key key;
2496 	struct old_sa_defrag_extent *old;
2497 	struct new_sa_defrag_extent *new;
2498 	int ret;
2499 
2500 	new = kmalloc(sizeof(*new), GFP_NOFS);
2501 	if (!new)
2502 		return NULL;
2503 
2504 	new->inode = inode;
2505 	new->file_pos = ordered->file_offset;
2506 	new->len = ordered->len;
2507 	new->bytenr = ordered->start;
2508 	new->disk_len = ordered->disk_len;
2509 	new->compress_type = ordered->compress_type;
2510 	new->root = RB_ROOT;
2511 	INIT_LIST_HEAD(&new->head);
2512 
2513 	path = btrfs_alloc_path();
2514 	if (!path)
2515 		goto out_kfree;
2516 
2517 	key.objectid = btrfs_ino(inode);
2518 	key.type = BTRFS_EXTENT_DATA_KEY;
2519 	key.offset = new->file_pos;
2520 
2521 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2522 	if (ret < 0)
2523 		goto out_free_path;
2524 	if (ret > 0 && path->slots[0] > 0)
2525 		path->slots[0]--;
2526 
2527 	/* find out all the old extents for the file range */
2528 	while (1) {
2529 		struct btrfs_file_extent_item *extent;
2530 		struct extent_buffer *l;
2531 		int slot;
2532 		u64 num_bytes;
2533 		u64 offset;
2534 		u64 end;
2535 		u64 disk_bytenr;
2536 		u64 extent_offset;
2537 
2538 		l = path->nodes[0];
2539 		slot = path->slots[0];
2540 
2541 		if (slot >= btrfs_header_nritems(l)) {
2542 			ret = btrfs_next_leaf(root, path);
2543 			if (ret < 0)
2544 				goto out_free_path;
2545 			else if (ret > 0)
2546 				break;
2547 			continue;
2548 		}
2549 
2550 		btrfs_item_key_to_cpu(l, &key, slot);
2551 
2552 		if (key.objectid != btrfs_ino(inode))
2553 			break;
2554 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2555 			break;
2556 		if (key.offset >= new->file_pos + new->len)
2557 			break;
2558 
2559 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2560 
2561 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2562 		if (key.offset + num_bytes < new->file_pos)
2563 			goto next;
2564 
2565 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2566 		if (!disk_bytenr)
2567 			goto next;
2568 
2569 		extent_offset = btrfs_file_extent_offset(l, extent);
2570 
2571 		old = kmalloc(sizeof(*old), GFP_NOFS);
2572 		if (!old)
2573 			goto out_free_path;
2574 
2575 		offset = max(new->file_pos, key.offset);
2576 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2577 
2578 		old->bytenr = disk_bytenr;
2579 		old->extent_offset = extent_offset;
2580 		old->offset = offset - key.offset;
2581 		old->len = end - offset;
2582 		old->new = new;
2583 		old->count = 0;
2584 		list_add_tail(&old->list, &new->head);
2585 next:
2586 		path->slots[0]++;
2587 		cond_resched();
2588 	}
2589 
2590 	btrfs_free_path(path);
2591 	atomic_inc(&root->fs_info->defrag_running);
2592 
2593 	return new;
2594 
2595 out_free_path:
2596 	btrfs_free_path(path);
2597 out_kfree:
2598 	free_sa_defrag_extent(new);
2599 	return NULL;
2600 }
2601 
2602 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2603 					 u64 start, u64 len)
2604 {
2605 	struct btrfs_block_group_cache *cache;
2606 
2607 	cache = btrfs_lookup_block_group(root->fs_info, start);
2608 	ASSERT(cache);
2609 
2610 	spin_lock(&cache->lock);
2611 	cache->delalloc_bytes -= len;
2612 	spin_unlock(&cache->lock);
2613 
2614 	btrfs_put_block_group(cache);
2615 }
2616 
2617 /* as ordered data IO finishes, this gets called so we can finish
2618  * an ordered extent if the range of bytes in the file it covers are
2619  * fully written.
2620  */
2621 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2622 {
2623 	struct inode *inode = ordered_extent->inode;
2624 	struct btrfs_root *root = BTRFS_I(inode)->root;
2625 	struct btrfs_trans_handle *trans = NULL;
2626 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2627 	struct extent_state *cached_state = NULL;
2628 	struct new_sa_defrag_extent *new = NULL;
2629 	int compress_type = 0;
2630 	int ret = 0;
2631 	u64 logical_len = ordered_extent->len;
2632 	bool nolock;
2633 	bool truncated = false;
2634 
2635 	nolock = btrfs_is_free_space_inode(inode);
2636 
2637 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2638 		ret = -EIO;
2639 		goto out;
2640 	}
2641 
2642 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2643 		truncated = true;
2644 		logical_len = ordered_extent->truncated_len;
2645 		/* Truncated the entire extent, don't bother adding */
2646 		if (!logical_len)
2647 			goto out;
2648 	}
2649 
2650 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2651 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2652 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2653 		if (nolock)
2654 			trans = btrfs_join_transaction_nolock(root);
2655 		else
2656 			trans = btrfs_join_transaction(root);
2657 		if (IS_ERR(trans)) {
2658 			ret = PTR_ERR(trans);
2659 			trans = NULL;
2660 			goto out;
2661 		}
2662 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2663 		ret = btrfs_update_inode_fallback(trans, root, inode);
2664 		if (ret) /* -ENOMEM or corruption */
2665 			btrfs_abort_transaction(trans, root, ret);
2666 		goto out;
2667 	}
2668 
2669 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2670 			 ordered_extent->file_offset + ordered_extent->len - 1,
2671 			 0, &cached_state);
2672 
2673 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2674 			ordered_extent->file_offset + ordered_extent->len - 1,
2675 			EXTENT_DEFRAG, 1, cached_state);
2676 	if (ret) {
2677 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2678 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2679 			/* the inode is shared */
2680 			new = record_old_file_extents(inode, ordered_extent);
2681 
2682 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2683 			ordered_extent->file_offset + ordered_extent->len - 1,
2684 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2685 	}
2686 
2687 	if (nolock)
2688 		trans = btrfs_join_transaction_nolock(root);
2689 	else
2690 		trans = btrfs_join_transaction(root);
2691 	if (IS_ERR(trans)) {
2692 		ret = PTR_ERR(trans);
2693 		trans = NULL;
2694 		goto out_unlock;
2695 	}
2696 
2697 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2698 
2699 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2700 		compress_type = ordered_extent->compress_type;
2701 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2702 		BUG_ON(compress_type);
2703 		ret = btrfs_mark_extent_written(trans, inode,
2704 						ordered_extent->file_offset,
2705 						ordered_extent->file_offset +
2706 						logical_len);
2707 	} else {
2708 		BUG_ON(root == root->fs_info->tree_root);
2709 		ret = insert_reserved_file_extent(trans, inode,
2710 						ordered_extent->file_offset,
2711 						ordered_extent->start,
2712 						ordered_extent->disk_len,
2713 						logical_len, logical_len,
2714 						compress_type, 0, 0,
2715 						BTRFS_FILE_EXTENT_REG);
2716 		if (!ret)
2717 			btrfs_release_delalloc_bytes(root,
2718 						     ordered_extent->start,
2719 						     ordered_extent->disk_len);
2720 	}
2721 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2722 			   ordered_extent->file_offset, ordered_extent->len,
2723 			   trans->transid);
2724 	if (ret < 0) {
2725 		btrfs_abort_transaction(trans, root, ret);
2726 		goto out_unlock;
2727 	}
2728 
2729 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2730 			  &ordered_extent->list);
2731 
2732 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2733 	ret = btrfs_update_inode_fallback(trans, root, inode);
2734 	if (ret) { /* -ENOMEM or corruption */
2735 		btrfs_abort_transaction(trans, root, ret);
2736 		goto out_unlock;
2737 	}
2738 	ret = 0;
2739 out_unlock:
2740 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2741 			     ordered_extent->file_offset +
2742 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2743 out:
2744 	if (root != root->fs_info->tree_root)
2745 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2746 	if (trans)
2747 		btrfs_end_transaction(trans, root);
2748 
2749 	if (ret || truncated) {
2750 		u64 start, end;
2751 
2752 		if (truncated)
2753 			start = ordered_extent->file_offset + logical_len;
2754 		else
2755 			start = ordered_extent->file_offset;
2756 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2757 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2758 
2759 		/* Drop the cache for the part of the extent we didn't write. */
2760 		btrfs_drop_extent_cache(inode, start, end, 0);
2761 
2762 		/*
2763 		 * If the ordered extent had an IOERR or something else went
2764 		 * wrong we need to return the space for this ordered extent
2765 		 * back to the allocator.  We only free the extent in the
2766 		 * truncated case if we didn't write out the extent at all.
2767 		 */
2768 		if ((ret || !logical_len) &&
2769 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2770 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2771 			btrfs_free_reserved_extent(root, ordered_extent->start,
2772 						   ordered_extent->disk_len, 1);
2773 	}
2774 
2775 
2776 	/*
2777 	 * This needs to be done to make sure anybody waiting knows we are done
2778 	 * updating everything for this ordered extent.
2779 	 */
2780 	btrfs_remove_ordered_extent(inode, ordered_extent);
2781 
2782 	/* for snapshot-aware defrag */
2783 	if (new) {
2784 		if (ret) {
2785 			free_sa_defrag_extent(new);
2786 			atomic_dec(&root->fs_info->defrag_running);
2787 		} else {
2788 			relink_file_extents(new);
2789 		}
2790 	}
2791 
2792 	/* once for us */
2793 	btrfs_put_ordered_extent(ordered_extent);
2794 	/* once for the tree */
2795 	btrfs_put_ordered_extent(ordered_extent);
2796 
2797 	return ret;
2798 }
2799 
2800 static void finish_ordered_fn(struct btrfs_work *work)
2801 {
2802 	struct btrfs_ordered_extent *ordered_extent;
2803 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2804 	btrfs_finish_ordered_io(ordered_extent);
2805 }
2806 
2807 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2808 				struct extent_state *state, int uptodate)
2809 {
2810 	struct inode *inode = page->mapping->host;
2811 	struct btrfs_root *root = BTRFS_I(inode)->root;
2812 	struct btrfs_ordered_extent *ordered_extent = NULL;
2813 	struct btrfs_workqueue *workers;
2814 
2815 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2816 
2817 	ClearPagePrivate2(page);
2818 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2819 					    end - start + 1, uptodate))
2820 		return 0;
2821 
2822 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2823 
2824 	if (btrfs_is_free_space_inode(inode))
2825 		workers = root->fs_info->endio_freespace_worker;
2826 	else
2827 		workers = root->fs_info->endio_write_workers;
2828 	btrfs_queue_work(workers, &ordered_extent->work);
2829 
2830 	return 0;
2831 }
2832 
2833 /*
2834  * when reads are done, we need to check csums to verify the data is correct
2835  * if there's a match, we allow the bio to finish.  If not, the code in
2836  * extent_io.c will try to find good copies for us.
2837  */
2838 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2839 				      u64 phy_offset, struct page *page,
2840 				      u64 start, u64 end, int mirror)
2841 {
2842 	size_t offset = start - page_offset(page);
2843 	struct inode *inode = page->mapping->host;
2844 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2845 	char *kaddr;
2846 	struct btrfs_root *root = BTRFS_I(inode)->root;
2847 	u32 csum_expected;
2848 	u32 csum = ~(u32)0;
2849 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2850 	                              DEFAULT_RATELIMIT_BURST);
2851 
2852 	if (PageChecked(page)) {
2853 		ClearPageChecked(page);
2854 		goto good;
2855 	}
2856 
2857 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2858 		goto good;
2859 
2860 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2861 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2862 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2863 				  GFP_NOFS);
2864 		return 0;
2865 	}
2866 
2867 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2868 	csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2869 
2870 	kaddr = kmap_atomic(page);
2871 	csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2872 	btrfs_csum_final(csum, (char *)&csum);
2873 	if (csum != csum_expected)
2874 		goto zeroit;
2875 
2876 	kunmap_atomic(kaddr);
2877 good:
2878 	return 0;
2879 
2880 zeroit:
2881 	if (__ratelimit(&_rs))
2882 		btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2883 			btrfs_ino(page->mapping->host), start, csum, csum_expected);
2884 	memset(kaddr + offset, 1, end - start + 1);
2885 	flush_dcache_page(page);
2886 	kunmap_atomic(kaddr);
2887 	if (csum_expected == 0)
2888 		return 0;
2889 	return -EIO;
2890 }
2891 
2892 struct delayed_iput {
2893 	struct list_head list;
2894 	struct inode *inode;
2895 };
2896 
2897 /* JDM: If this is fs-wide, why can't we add a pointer to
2898  * btrfs_inode instead and avoid the allocation? */
2899 void btrfs_add_delayed_iput(struct inode *inode)
2900 {
2901 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2902 	struct delayed_iput *delayed;
2903 
2904 	if (atomic_add_unless(&inode->i_count, -1, 1))
2905 		return;
2906 
2907 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2908 	delayed->inode = inode;
2909 
2910 	spin_lock(&fs_info->delayed_iput_lock);
2911 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2912 	spin_unlock(&fs_info->delayed_iput_lock);
2913 }
2914 
2915 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2916 {
2917 	LIST_HEAD(list);
2918 	struct btrfs_fs_info *fs_info = root->fs_info;
2919 	struct delayed_iput *delayed;
2920 	int empty;
2921 
2922 	spin_lock(&fs_info->delayed_iput_lock);
2923 	empty = list_empty(&fs_info->delayed_iputs);
2924 	spin_unlock(&fs_info->delayed_iput_lock);
2925 	if (empty)
2926 		return;
2927 
2928 	spin_lock(&fs_info->delayed_iput_lock);
2929 	list_splice_init(&fs_info->delayed_iputs, &list);
2930 	spin_unlock(&fs_info->delayed_iput_lock);
2931 
2932 	while (!list_empty(&list)) {
2933 		delayed = list_entry(list.next, struct delayed_iput, list);
2934 		list_del(&delayed->list);
2935 		iput(delayed->inode);
2936 		kfree(delayed);
2937 	}
2938 }
2939 
2940 /*
2941  * This is called in transaction commit time. If there are no orphan
2942  * files in the subvolume, it removes orphan item and frees block_rsv
2943  * structure.
2944  */
2945 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2946 			      struct btrfs_root *root)
2947 {
2948 	struct btrfs_block_rsv *block_rsv;
2949 	int ret;
2950 
2951 	if (atomic_read(&root->orphan_inodes) ||
2952 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2953 		return;
2954 
2955 	spin_lock(&root->orphan_lock);
2956 	if (atomic_read(&root->orphan_inodes)) {
2957 		spin_unlock(&root->orphan_lock);
2958 		return;
2959 	}
2960 
2961 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2962 		spin_unlock(&root->orphan_lock);
2963 		return;
2964 	}
2965 
2966 	block_rsv = root->orphan_block_rsv;
2967 	root->orphan_block_rsv = NULL;
2968 	spin_unlock(&root->orphan_lock);
2969 
2970 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
2971 	    btrfs_root_refs(&root->root_item) > 0) {
2972 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2973 					    root->root_key.objectid);
2974 		if (ret)
2975 			btrfs_abort_transaction(trans, root, ret);
2976 		else
2977 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
2978 				  &root->state);
2979 	}
2980 
2981 	if (block_rsv) {
2982 		WARN_ON(block_rsv->size > 0);
2983 		btrfs_free_block_rsv(root, block_rsv);
2984 	}
2985 }
2986 
2987 /*
2988  * This creates an orphan entry for the given inode in case something goes
2989  * wrong in the middle of an unlink/truncate.
2990  *
2991  * NOTE: caller of this function should reserve 5 units of metadata for
2992  *	 this function.
2993  */
2994 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2995 {
2996 	struct btrfs_root *root = BTRFS_I(inode)->root;
2997 	struct btrfs_block_rsv *block_rsv = NULL;
2998 	int reserve = 0;
2999 	int insert = 0;
3000 	int ret;
3001 
3002 	if (!root->orphan_block_rsv) {
3003 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3004 		if (!block_rsv)
3005 			return -ENOMEM;
3006 	}
3007 
3008 	spin_lock(&root->orphan_lock);
3009 	if (!root->orphan_block_rsv) {
3010 		root->orphan_block_rsv = block_rsv;
3011 	} else if (block_rsv) {
3012 		btrfs_free_block_rsv(root, block_rsv);
3013 		block_rsv = NULL;
3014 	}
3015 
3016 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3017 			      &BTRFS_I(inode)->runtime_flags)) {
3018 #if 0
3019 		/*
3020 		 * For proper ENOSPC handling, we should do orphan
3021 		 * cleanup when mounting. But this introduces backward
3022 		 * compatibility issue.
3023 		 */
3024 		if (!xchg(&root->orphan_item_inserted, 1))
3025 			insert = 2;
3026 		else
3027 			insert = 1;
3028 #endif
3029 		insert = 1;
3030 		atomic_inc(&root->orphan_inodes);
3031 	}
3032 
3033 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3034 			      &BTRFS_I(inode)->runtime_flags))
3035 		reserve = 1;
3036 	spin_unlock(&root->orphan_lock);
3037 
3038 	/* grab metadata reservation from transaction handle */
3039 	if (reserve) {
3040 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3041 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3042 	}
3043 
3044 	/* insert an orphan item to track this unlinked/truncated file */
3045 	if (insert >= 1) {
3046 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3047 		if (ret) {
3048 			atomic_dec(&root->orphan_inodes);
3049 			if (reserve) {
3050 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3051 					  &BTRFS_I(inode)->runtime_flags);
3052 				btrfs_orphan_release_metadata(inode);
3053 			}
3054 			if (ret != -EEXIST) {
3055 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3056 					  &BTRFS_I(inode)->runtime_flags);
3057 				btrfs_abort_transaction(trans, root, ret);
3058 				return ret;
3059 			}
3060 		}
3061 		ret = 0;
3062 	}
3063 
3064 	/* insert an orphan item to track subvolume contains orphan files */
3065 	if (insert >= 2) {
3066 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3067 					       root->root_key.objectid);
3068 		if (ret && ret != -EEXIST) {
3069 			btrfs_abort_transaction(trans, root, ret);
3070 			return ret;
3071 		}
3072 	}
3073 	return 0;
3074 }
3075 
3076 /*
3077  * We have done the truncate/delete so we can go ahead and remove the orphan
3078  * item for this particular inode.
3079  */
3080 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3081 			    struct inode *inode)
3082 {
3083 	struct btrfs_root *root = BTRFS_I(inode)->root;
3084 	int delete_item = 0;
3085 	int release_rsv = 0;
3086 	int ret = 0;
3087 
3088 	spin_lock(&root->orphan_lock);
3089 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3090 			       &BTRFS_I(inode)->runtime_flags))
3091 		delete_item = 1;
3092 
3093 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3094 			       &BTRFS_I(inode)->runtime_flags))
3095 		release_rsv = 1;
3096 	spin_unlock(&root->orphan_lock);
3097 
3098 	if (delete_item) {
3099 		atomic_dec(&root->orphan_inodes);
3100 		if (trans)
3101 			ret = btrfs_del_orphan_item(trans, root,
3102 						    btrfs_ino(inode));
3103 	}
3104 
3105 	if (release_rsv)
3106 		btrfs_orphan_release_metadata(inode);
3107 
3108 	return ret;
3109 }
3110 
3111 /*
3112  * this cleans up any orphans that may be left on the list from the last use
3113  * of this root.
3114  */
3115 int btrfs_orphan_cleanup(struct btrfs_root *root)
3116 {
3117 	struct btrfs_path *path;
3118 	struct extent_buffer *leaf;
3119 	struct btrfs_key key, found_key;
3120 	struct btrfs_trans_handle *trans;
3121 	struct inode *inode;
3122 	u64 last_objectid = 0;
3123 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3124 
3125 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3126 		return 0;
3127 
3128 	path = btrfs_alloc_path();
3129 	if (!path) {
3130 		ret = -ENOMEM;
3131 		goto out;
3132 	}
3133 	path->reada = -1;
3134 
3135 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3136 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3137 	key.offset = (u64)-1;
3138 
3139 	while (1) {
3140 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3141 		if (ret < 0)
3142 			goto out;
3143 
3144 		/*
3145 		 * if ret == 0 means we found what we were searching for, which
3146 		 * is weird, but possible, so only screw with path if we didn't
3147 		 * find the key and see if we have stuff that matches
3148 		 */
3149 		if (ret > 0) {
3150 			ret = 0;
3151 			if (path->slots[0] == 0)
3152 				break;
3153 			path->slots[0]--;
3154 		}
3155 
3156 		/* pull out the item */
3157 		leaf = path->nodes[0];
3158 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3159 
3160 		/* make sure the item matches what we want */
3161 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3162 			break;
3163 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3164 			break;
3165 
3166 		/* release the path since we're done with it */
3167 		btrfs_release_path(path);
3168 
3169 		/*
3170 		 * this is where we are basically btrfs_lookup, without the
3171 		 * crossing root thing.  we store the inode number in the
3172 		 * offset of the orphan item.
3173 		 */
3174 
3175 		if (found_key.offset == last_objectid) {
3176 			btrfs_err(root->fs_info,
3177 				"Error removing orphan entry, stopping orphan cleanup");
3178 			ret = -EINVAL;
3179 			goto out;
3180 		}
3181 
3182 		last_objectid = found_key.offset;
3183 
3184 		found_key.objectid = found_key.offset;
3185 		found_key.type = BTRFS_INODE_ITEM_KEY;
3186 		found_key.offset = 0;
3187 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3188 		ret = PTR_ERR_OR_ZERO(inode);
3189 		if (ret && ret != -ESTALE)
3190 			goto out;
3191 
3192 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3193 			struct btrfs_root *dead_root;
3194 			struct btrfs_fs_info *fs_info = root->fs_info;
3195 			int is_dead_root = 0;
3196 
3197 			/*
3198 			 * this is an orphan in the tree root. Currently these
3199 			 * could come from 2 sources:
3200 			 *  a) a snapshot deletion in progress
3201 			 *  b) a free space cache inode
3202 			 * We need to distinguish those two, as the snapshot
3203 			 * orphan must not get deleted.
3204 			 * find_dead_roots already ran before us, so if this
3205 			 * is a snapshot deletion, we should find the root
3206 			 * in the dead_roots list
3207 			 */
3208 			spin_lock(&fs_info->trans_lock);
3209 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3210 					    root_list) {
3211 				if (dead_root->root_key.objectid ==
3212 				    found_key.objectid) {
3213 					is_dead_root = 1;
3214 					break;
3215 				}
3216 			}
3217 			spin_unlock(&fs_info->trans_lock);
3218 			if (is_dead_root) {
3219 				/* prevent this orphan from being found again */
3220 				key.offset = found_key.objectid - 1;
3221 				continue;
3222 			}
3223 		}
3224 		/*
3225 		 * Inode is already gone but the orphan item is still there,
3226 		 * kill the orphan item.
3227 		 */
3228 		if (ret == -ESTALE) {
3229 			trans = btrfs_start_transaction(root, 1);
3230 			if (IS_ERR(trans)) {
3231 				ret = PTR_ERR(trans);
3232 				goto out;
3233 			}
3234 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3235 				found_key.objectid);
3236 			ret = btrfs_del_orphan_item(trans, root,
3237 						    found_key.objectid);
3238 			btrfs_end_transaction(trans, root);
3239 			if (ret)
3240 				goto out;
3241 			continue;
3242 		}
3243 
3244 		/*
3245 		 * add this inode to the orphan list so btrfs_orphan_del does
3246 		 * the proper thing when we hit it
3247 		 */
3248 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3249 			&BTRFS_I(inode)->runtime_flags);
3250 		atomic_inc(&root->orphan_inodes);
3251 
3252 		/* if we have links, this was a truncate, lets do that */
3253 		if (inode->i_nlink) {
3254 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3255 				iput(inode);
3256 				continue;
3257 			}
3258 			nr_truncate++;
3259 
3260 			/* 1 for the orphan item deletion. */
3261 			trans = btrfs_start_transaction(root, 1);
3262 			if (IS_ERR(trans)) {
3263 				iput(inode);
3264 				ret = PTR_ERR(trans);
3265 				goto out;
3266 			}
3267 			ret = btrfs_orphan_add(trans, inode);
3268 			btrfs_end_transaction(trans, root);
3269 			if (ret) {
3270 				iput(inode);
3271 				goto out;
3272 			}
3273 
3274 			ret = btrfs_truncate(inode);
3275 			if (ret)
3276 				btrfs_orphan_del(NULL, inode);
3277 		} else {
3278 			nr_unlink++;
3279 		}
3280 
3281 		/* this will do delete_inode and everything for us */
3282 		iput(inode);
3283 		if (ret)
3284 			goto out;
3285 	}
3286 	/* release the path since we're done with it */
3287 	btrfs_release_path(path);
3288 
3289 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3290 
3291 	if (root->orphan_block_rsv)
3292 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3293 					(u64)-1);
3294 
3295 	if (root->orphan_block_rsv ||
3296 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3297 		trans = btrfs_join_transaction(root);
3298 		if (!IS_ERR(trans))
3299 			btrfs_end_transaction(trans, root);
3300 	}
3301 
3302 	if (nr_unlink)
3303 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3304 	if (nr_truncate)
3305 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3306 
3307 out:
3308 	if (ret)
3309 		btrfs_crit(root->fs_info,
3310 			"could not do orphan cleanup %d", ret);
3311 	btrfs_free_path(path);
3312 	return ret;
3313 }
3314 
3315 /*
3316  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3317  * don't find any xattrs, we know there can't be any acls.
3318  *
3319  * slot is the slot the inode is in, objectid is the objectid of the inode
3320  */
3321 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3322 					  int slot, u64 objectid,
3323 					  int *first_xattr_slot)
3324 {
3325 	u32 nritems = btrfs_header_nritems(leaf);
3326 	struct btrfs_key found_key;
3327 	static u64 xattr_access = 0;
3328 	static u64 xattr_default = 0;
3329 	int scanned = 0;
3330 
3331 	if (!xattr_access) {
3332 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3333 					strlen(POSIX_ACL_XATTR_ACCESS));
3334 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3335 					strlen(POSIX_ACL_XATTR_DEFAULT));
3336 	}
3337 
3338 	slot++;
3339 	*first_xattr_slot = -1;
3340 	while (slot < nritems) {
3341 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3342 
3343 		/* we found a different objectid, there must not be acls */
3344 		if (found_key.objectid != objectid)
3345 			return 0;
3346 
3347 		/* we found an xattr, assume we've got an acl */
3348 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3349 			if (*first_xattr_slot == -1)
3350 				*first_xattr_slot = slot;
3351 			if (found_key.offset == xattr_access ||
3352 			    found_key.offset == xattr_default)
3353 				return 1;
3354 		}
3355 
3356 		/*
3357 		 * we found a key greater than an xattr key, there can't
3358 		 * be any acls later on
3359 		 */
3360 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3361 			return 0;
3362 
3363 		slot++;
3364 		scanned++;
3365 
3366 		/*
3367 		 * it goes inode, inode backrefs, xattrs, extents,
3368 		 * so if there are a ton of hard links to an inode there can
3369 		 * be a lot of backrefs.  Don't waste time searching too hard,
3370 		 * this is just an optimization
3371 		 */
3372 		if (scanned >= 8)
3373 			break;
3374 	}
3375 	/* we hit the end of the leaf before we found an xattr or
3376 	 * something larger than an xattr.  We have to assume the inode
3377 	 * has acls
3378 	 */
3379 	if (*first_xattr_slot == -1)
3380 		*first_xattr_slot = slot;
3381 	return 1;
3382 }
3383 
3384 /*
3385  * read an inode from the btree into the in-memory inode
3386  */
3387 static void btrfs_read_locked_inode(struct inode *inode)
3388 {
3389 	struct btrfs_path *path;
3390 	struct extent_buffer *leaf;
3391 	struct btrfs_inode_item *inode_item;
3392 	struct btrfs_timespec *tspec;
3393 	struct btrfs_root *root = BTRFS_I(inode)->root;
3394 	struct btrfs_key location;
3395 	unsigned long ptr;
3396 	int maybe_acls;
3397 	u32 rdev;
3398 	int ret;
3399 	bool filled = false;
3400 	int first_xattr_slot;
3401 
3402 	ret = btrfs_fill_inode(inode, &rdev);
3403 	if (!ret)
3404 		filled = true;
3405 
3406 	path = btrfs_alloc_path();
3407 	if (!path)
3408 		goto make_bad;
3409 
3410 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3411 
3412 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3413 	if (ret)
3414 		goto make_bad;
3415 
3416 	leaf = path->nodes[0];
3417 
3418 	if (filled)
3419 		goto cache_index;
3420 
3421 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3422 				    struct btrfs_inode_item);
3423 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3424 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3425 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3426 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3427 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3428 
3429 	tspec = btrfs_inode_atime(inode_item);
3430 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3431 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3432 
3433 	tspec = btrfs_inode_mtime(inode_item);
3434 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3435 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3436 
3437 	tspec = btrfs_inode_ctime(inode_item);
3438 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3439 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3440 
3441 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3442 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3443 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3444 
3445 	/*
3446 	 * If we were modified in the current generation and evicted from memory
3447 	 * and then re-read we need to do a full sync since we don't have any
3448 	 * idea about which extents were modified before we were evicted from
3449 	 * cache.
3450 	 */
3451 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3452 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3453 			&BTRFS_I(inode)->runtime_flags);
3454 
3455 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3456 	inode->i_generation = BTRFS_I(inode)->generation;
3457 	inode->i_rdev = 0;
3458 	rdev = btrfs_inode_rdev(leaf, inode_item);
3459 
3460 	BTRFS_I(inode)->index_cnt = (u64)-1;
3461 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3462 
3463 cache_index:
3464 	path->slots[0]++;
3465 	if (inode->i_nlink != 1 ||
3466 	    path->slots[0] >= btrfs_header_nritems(leaf))
3467 		goto cache_acl;
3468 
3469 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3470 	if (location.objectid != btrfs_ino(inode))
3471 		goto cache_acl;
3472 
3473 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3474 	if (location.type == BTRFS_INODE_REF_KEY) {
3475 		struct btrfs_inode_ref *ref;
3476 
3477 		ref = (struct btrfs_inode_ref *)ptr;
3478 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3479 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3480 		struct btrfs_inode_extref *extref;
3481 
3482 		extref = (struct btrfs_inode_extref *)ptr;
3483 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3484 								     extref);
3485 	}
3486 cache_acl:
3487 	/*
3488 	 * try to precache a NULL acl entry for files that don't have
3489 	 * any xattrs or acls
3490 	 */
3491 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3492 					   btrfs_ino(inode), &first_xattr_slot);
3493 	if (first_xattr_slot != -1) {
3494 		path->slots[0] = first_xattr_slot;
3495 		ret = btrfs_load_inode_props(inode, path);
3496 		if (ret)
3497 			btrfs_err(root->fs_info,
3498 				  "error loading props for ino %llu (root %llu): %d",
3499 				  btrfs_ino(inode),
3500 				  root->root_key.objectid, ret);
3501 	}
3502 	btrfs_free_path(path);
3503 
3504 	if (!maybe_acls)
3505 		cache_no_acl(inode);
3506 
3507 	switch (inode->i_mode & S_IFMT) {
3508 	case S_IFREG:
3509 		inode->i_mapping->a_ops = &btrfs_aops;
3510 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3511 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3512 		inode->i_fop = &btrfs_file_operations;
3513 		inode->i_op = &btrfs_file_inode_operations;
3514 		break;
3515 	case S_IFDIR:
3516 		inode->i_fop = &btrfs_dir_file_operations;
3517 		if (root == root->fs_info->tree_root)
3518 			inode->i_op = &btrfs_dir_ro_inode_operations;
3519 		else
3520 			inode->i_op = &btrfs_dir_inode_operations;
3521 		break;
3522 	case S_IFLNK:
3523 		inode->i_op = &btrfs_symlink_inode_operations;
3524 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3525 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3526 		break;
3527 	default:
3528 		inode->i_op = &btrfs_special_inode_operations;
3529 		init_special_inode(inode, inode->i_mode, rdev);
3530 		break;
3531 	}
3532 
3533 	btrfs_update_iflags(inode);
3534 	return;
3535 
3536 make_bad:
3537 	btrfs_free_path(path);
3538 	make_bad_inode(inode);
3539 }
3540 
3541 /*
3542  * given a leaf and an inode, copy the inode fields into the leaf
3543  */
3544 static void fill_inode_item(struct btrfs_trans_handle *trans,
3545 			    struct extent_buffer *leaf,
3546 			    struct btrfs_inode_item *item,
3547 			    struct inode *inode)
3548 {
3549 	struct btrfs_map_token token;
3550 
3551 	btrfs_init_map_token(&token);
3552 
3553 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3554 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3555 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3556 				   &token);
3557 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3558 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3559 
3560 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3561 				     inode->i_atime.tv_sec, &token);
3562 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3563 				      inode->i_atime.tv_nsec, &token);
3564 
3565 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3566 				     inode->i_mtime.tv_sec, &token);
3567 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3568 				      inode->i_mtime.tv_nsec, &token);
3569 
3570 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3571 				     inode->i_ctime.tv_sec, &token);
3572 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3573 				      inode->i_ctime.tv_nsec, &token);
3574 
3575 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3576 				     &token);
3577 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3578 					 &token);
3579 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3580 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3581 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3582 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3583 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3584 }
3585 
3586 /*
3587  * copy everything in the in-memory inode into the btree.
3588  */
3589 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3590 				struct btrfs_root *root, struct inode *inode)
3591 {
3592 	struct btrfs_inode_item *inode_item;
3593 	struct btrfs_path *path;
3594 	struct extent_buffer *leaf;
3595 	int ret;
3596 
3597 	path = btrfs_alloc_path();
3598 	if (!path)
3599 		return -ENOMEM;
3600 
3601 	path->leave_spinning = 1;
3602 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3603 				 1);
3604 	if (ret) {
3605 		if (ret > 0)
3606 			ret = -ENOENT;
3607 		goto failed;
3608 	}
3609 
3610 	leaf = path->nodes[0];
3611 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3612 				    struct btrfs_inode_item);
3613 
3614 	fill_inode_item(trans, leaf, inode_item, inode);
3615 	btrfs_mark_buffer_dirty(leaf);
3616 	btrfs_set_inode_last_trans(trans, inode);
3617 	ret = 0;
3618 failed:
3619 	btrfs_free_path(path);
3620 	return ret;
3621 }
3622 
3623 /*
3624  * copy everything in the in-memory inode into the btree.
3625  */
3626 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3627 				struct btrfs_root *root, struct inode *inode)
3628 {
3629 	int ret;
3630 
3631 	/*
3632 	 * If the inode is a free space inode, we can deadlock during commit
3633 	 * if we put it into the delayed code.
3634 	 *
3635 	 * The data relocation inode should also be directly updated
3636 	 * without delay
3637 	 */
3638 	if (!btrfs_is_free_space_inode(inode)
3639 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3640 		btrfs_update_root_times(trans, root);
3641 
3642 		ret = btrfs_delayed_update_inode(trans, root, inode);
3643 		if (!ret)
3644 			btrfs_set_inode_last_trans(trans, inode);
3645 		return ret;
3646 	}
3647 
3648 	return btrfs_update_inode_item(trans, root, inode);
3649 }
3650 
3651 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3652 					 struct btrfs_root *root,
3653 					 struct inode *inode)
3654 {
3655 	int ret;
3656 
3657 	ret = btrfs_update_inode(trans, root, inode);
3658 	if (ret == -ENOSPC)
3659 		return btrfs_update_inode_item(trans, root, inode);
3660 	return ret;
3661 }
3662 
3663 /*
3664  * unlink helper that gets used here in inode.c and in the tree logging
3665  * recovery code.  It remove a link in a directory with a given name, and
3666  * also drops the back refs in the inode to the directory
3667  */
3668 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3669 				struct btrfs_root *root,
3670 				struct inode *dir, struct inode *inode,
3671 				const char *name, int name_len)
3672 {
3673 	struct btrfs_path *path;
3674 	int ret = 0;
3675 	struct extent_buffer *leaf;
3676 	struct btrfs_dir_item *di;
3677 	struct btrfs_key key;
3678 	u64 index;
3679 	u64 ino = btrfs_ino(inode);
3680 	u64 dir_ino = btrfs_ino(dir);
3681 
3682 	path = btrfs_alloc_path();
3683 	if (!path) {
3684 		ret = -ENOMEM;
3685 		goto out;
3686 	}
3687 
3688 	path->leave_spinning = 1;
3689 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3690 				    name, name_len, -1);
3691 	if (IS_ERR(di)) {
3692 		ret = PTR_ERR(di);
3693 		goto err;
3694 	}
3695 	if (!di) {
3696 		ret = -ENOENT;
3697 		goto err;
3698 	}
3699 	leaf = path->nodes[0];
3700 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3701 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3702 	if (ret)
3703 		goto err;
3704 	btrfs_release_path(path);
3705 
3706 	/*
3707 	 * If we don't have dir index, we have to get it by looking up
3708 	 * the inode ref, since we get the inode ref, remove it directly,
3709 	 * it is unnecessary to do delayed deletion.
3710 	 *
3711 	 * But if we have dir index, needn't search inode ref to get it.
3712 	 * Since the inode ref is close to the inode item, it is better
3713 	 * that we delay to delete it, and just do this deletion when
3714 	 * we update the inode item.
3715 	 */
3716 	if (BTRFS_I(inode)->dir_index) {
3717 		ret = btrfs_delayed_delete_inode_ref(inode);
3718 		if (!ret) {
3719 			index = BTRFS_I(inode)->dir_index;
3720 			goto skip_backref;
3721 		}
3722 	}
3723 
3724 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3725 				  dir_ino, &index);
3726 	if (ret) {
3727 		btrfs_info(root->fs_info,
3728 			"failed to delete reference to %.*s, inode %llu parent %llu",
3729 			name_len, name, ino, dir_ino);
3730 		btrfs_abort_transaction(trans, root, ret);
3731 		goto err;
3732 	}
3733 skip_backref:
3734 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3735 	if (ret) {
3736 		btrfs_abort_transaction(trans, root, ret);
3737 		goto err;
3738 	}
3739 
3740 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3741 					 inode, dir_ino);
3742 	if (ret != 0 && ret != -ENOENT) {
3743 		btrfs_abort_transaction(trans, root, ret);
3744 		goto err;
3745 	}
3746 
3747 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3748 					   dir, index);
3749 	if (ret == -ENOENT)
3750 		ret = 0;
3751 	else if (ret)
3752 		btrfs_abort_transaction(trans, root, ret);
3753 err:
3754 	btrfs_free_path(path);
3755 	if (ret)
3756 		goto out;
3757 
3758 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3759 	inode_inc_iversion(inode);
3760 	inode_inc_iversion(dir);
3761 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3762 	ret = btrfs_update_inode(trans, root, dir);
3763 out:
3764 	return ret;
3765 }
3766 
3767 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3768 		       struct btrfs_root *root,
3769 		       struct inode *dir, struct inode *inode,
3770 		       const char *name, int name_len)
3771 {
3772 	int ret;
3773 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3774 	if (!ret) {
3775 		drop_nlink(inode);
3776 		ret = btrfs_update_inode(trans, root, inode);
3777 	}
3778 	return ret;
3779 }
3780 
3781 /*
3782  * helper to start transaction for unlink and rmdir.
3783  *
3784  * unlink and rmdir are special in btrfs, they do not always free space, so
3785  * if we cannot make our reservations the normal way try and see if there is
3786  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3787  * allow the unlink to occur.
3788  */
3789 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3790 {
3791 	struct btrfs_trans_handle *trans;
3792 	struct btrfs_root *root = BTRFS_I(dir)->root;
3793 	int ret;
3794 
3795 	/*
3796 	 * 1 for the possible orphan item
3797 	 * 1 for the dir item
3798 	 * 1 for the dir index
3799 	 * 1 for the inode ref
3800 	 * 1 for the inode
3801 	 */
3802 	trans = btrfs_start_transaction(root, 5);
3803 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3804 		return trans;
3805 
3806 	if (PTR_ERR(trans) == -ENOSPC) {
3807 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3808 
3809 		trans = btrfs_start_transaction(root, 0);
3810 		if (IS_ERR(trans))
3811 			return trans;
3812 		ret = btrfs_cond_migrate_bytes(root->fs_info,
3813 					       &root->fs_info->trans_block_rsv,
3814 					       num_bytes, 5);
3815 		if (ret) {
3816 			btrfs_end_transaction(trans, root);
3817 			return ERR_PTR(ret);
3818 		}
3819 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3820 		trans->bytes_reserved = num_bytes;
3821 	}
3822 	return trans;
3823 }
3824 
3825 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3826 {
3827 	struct btrfs_root *root = BTRFS_I(dir)->root;
3828 	struct btrfs_trans_handle *trans;
3829 	struct inode *inode = dentry->d_inode;
3830 	int ret;
3831 
3832 	trans = __unlink_start_trans(dir);
3833 	if (IS_ERR(trans))
3834 		return PTR_ERR(trans);
3835 
3836 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3837 
3838 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3839 				 dentry->d_name.name, dentry->d_name.len);
3840 	if (ret)
3841 		goto out;
3842 
3843 	if (inode->i_nlink == 0) {
3844 		ret = btrfs_orphan_add(trans, inode);
3845 		if (ret)
3846 			goto out;
3847 	}
3848 
3849 out:
3850 	btrfs_end_transaction(trans, root);
3851 	btrfs_btree_balance_dirty(root);
3852 	return ret;
3853 }
3854 
3855 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3856 			struct btrfs_root *root,
3857 			struct inode *dir, u64 objectid,
3858 			const char *name, int name_len)
3859 {
3860 	struct btrfs_path *path;
3861 	struct extent_buffer *leaf;
3862 	struct btrfs_dir_item *di;
3863 	struct btrfs_key key;
3864 	u64 index;
3865 	int ret;
3866 	u64 dir_ino = btrfs_ino(dir);
3867 
3868 	path = btrfs_alloc_path();
3869 	if (!path)
3870 		return -ENOMEM;
3871 
3872 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3873 				   name, name_len, -1);
3874 	if (IS_ERR_OR_NULL(di)) {
3875 		if (!di)
3876 			ret = -ENOENT;
3877 		else
3878 			ret = PTR_ERR(di);
3879 		goto out;
3880 	}
3881 
3882 	leaf = path->nodes[0];
3883 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3884 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3885 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3886 	if (ret) {
3887 		btrfs_abort_transaction(trans, root, ret);
3888 		goto out;
3889 	}
3890 	btrfs_release_path(path);
3891 
3892 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3893 				 objectid, root->root_key.objectid,
3894 				 dir_ino, &index, name, name_len);
3895 	if (ret < 0) {
3896 		if (ret != -ENOENT) {
3897 			btrfs_abort_transaction(trans, root, ret);
3898 			goto out;
3899 		}
3900 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3901 						 name, name_len);
3902 		if (IS_ERR_OR_NULL(di)) {
3903 			if (!di)
3904 				ret = -ENOENT;
3905 			else
3906 				ret = PTR_ERR(di);
3907 			btrfs_abort_transaction(trans, root, ret);
3908 			goto out;
3909 		}
3910 
3911 		leaf = path->nodes[0];
3912 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3913 		btrfs_release_path(path);
3914 		index = key.offset;
3915 	}
3916 	btrfs_release_path(path);
3917 
3918 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3919 	if (ret) {
3920 		btrfs_abort_transaction(trans, root, ret);
3921 		goto out;
3922 	}
3923 
3924 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3925 	inode_inc_iversion(dir);
3926 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3927 	ret = btrfs_update_inode_fallback(trans, root, dir);
3928 	if (ret)
3929 		btrfs_abort_transaction(trans, root, ret);
3930 out:
3931 	btrfs_free_path(path);
3932 	return ret;
3933 }
3934 
3935 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3936 {
3937 	struct inode *inode = dentry->d_inode;
3938 	int err = 0;
3939 	struct btrfs_root *root = BTRFS_I(dir)->root;
3940 	struct btrfs_trans_handle *trans;
3941 
3942 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3943 		return -ENOTEMPTY;
3944 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3945 		return -EPERM;
3946 
3947 	trans = __unlink_start_trans(dir);
3948 	if (IS_ERR(trans))
3949 		return PTR_ERR(trans);
3950 
3951 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3952 		err = btrfs_unlink_subvol(trans, root, dir,
3953 					  BTRFS_I(inode)->location.objectid,
3954 					  dentry->d_name.name,
3955 					  dentry->d_name.len);
3956 		goto out;
3957 	}
3958 
3959 	err = btrfs_orphan_add(trans, inode);
3960 	if (err)
3961 		goto out;
3962 
3963 	/* now the directory is empty */
3964 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3965 				 dentry->d_name.name, dentry->d_name.len);
3966 	if (!err)
3967 		btrfs_i_size_write(inode, 0);
3968 out:
3969 	btrfs_end_transaction(trans, root);
3970 	btrfs_btree_balance_dirty(root);
3971 
3972 	return err;
3973 }
3974 
3975 /*
3976  * this can truncate away extent items, csum items and directory items.
3977  * It starts at a high offset and removes keys until it can't find
3978  * any higher than new_size
3979  *
3980  * csum items that cross the new i_size are truncated to the new size
3981  * as well.
3982  *
3983  * min_type is the minimum key type to truncate down to.  If set to 0, this
3984  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3985  */
3986 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3987 			       struct btrfs_root *root,
3988 			       struct inode *inode,
3989 			       u64 new_size, u32 min_type)
3990 {
3991 	struct btrfs_path *path;
3992 	struct extent_buffer *leaf;
3993 	struct btrfs_file_extent_item *fi;
3994 	struct btrfs_key key;
3995 	struct btrfs_key found_key;
3996 	u64 extent_start = 0;
3997 	u64 extent_num_bytes = 0;
3998 	u64 extent_offset = 0;
3999 	u64 item_end = 0;
4000 	u64 last_size = (u64)-1;
4001 	u32 found_type = (u8)-1;
4002 	int found_extent;
4003 	int del_item;
4004 	int pending_del_nr = 0;
4005 	int pending_del_slot = 0;
4006 	int extent_type = -1;
4007 	int ret;
4008 	int err = 0;
4009 	u64 ino = btrfs_ino(inode);
4010 
4011 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4012 
4013 	path = btrfs_alloc_path();
4014 	if (!path)
4015 		return -ENOMEM;
4016 	path->reada = -1;
4017 
4018 	/*
4019 	 * We want to drop from the next block forward in case this new size is
4020 	 * not block aligned since we will be keeping the last block of the
4021 	 * extent just the way it is.
4022 	 */
4023 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4024 	    root == root->fs_info->tree_root)
4025 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4026 					root->sectorsize), (u64)-1, 0);
4027 
4028 	/*
4029 	 * This function is also used to drop the items in the log tree before
4030 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4031 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4032 	 * items.
4033 	 */
4034 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4035 		btrfs_kill_delayed_inode_items(inode);
4036 
4037 	key.objectid = ino;
4038 	key.offset = (u64)-1;
4039 	key.type = (u8)-1;
4040 
4041 search_again:
4042 	path->leave_spinning = 1;
4043 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4044 	if (ret < 0) {
4045 		err = ret;
4046 		goto out;
4047 	}
4048 
4049 	if (ret > 0) {
4050 		/* there are no items in the tree for us to truncate, we're
4051 		 * done
4052 		 */
4053 		if (path->slots[0] == 0)
4054 			goto out;
4055 		path->slots[0]--;
4056 	}
4057 
4058 	while (1) {
4059 		fi = NULL;
4060 		leaf = path->nodes[0];
4061 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4062 		found_type = btrfs_key_type(&found_key);
4063 
4064 		if (found_key.objectid != ino)
4065 			break;
4066 
4067 		if (found_type < min_type)
4068 			break;
4069 
4070 		item_end = found_key.offset;
4071 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4072 			fi = btrfs_item_ptr(leaf, path->slots[0],
4073 					    struct btrfs_file_extent_item);
4074 			extent_type = btrfs_file_extent_type(leaf, fi);
4075 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4076 				item_end +=
4077 				    btrfs_file_extent_num_bytes(leaf, fi);
4078 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4079 				item_end += btrfs_file_extent_inline_len(leaf,
4080 							 path->slots[0], fi);
4081 			}
4082 			item_end--;
4083 		}
4084 		if (found_type > min_type) {
4085 			del_item = 1;
4086 		} else {
4087 			if (item_end < new_size)
4088 				break;
4089 			if (found_key.offset >= new_size)
4090 				del_item = 1;
4091 			else
4092 				del_item = 0;
4093 		}
4094 		found_extent = 0;
4095 		/* FIXME, shrink the extent if the ref count is only 1 */
4096 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4097 			goto delete;
4098 
4099 		if (del_item)
4100 			last_size = found_key.offset;
4101 		else
4102 			last_size = new_size;
4103 
4104 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4105 			u64 num_dec;
4106 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4107 			if (!del_item) {
4108 				u64 orig_num_bytes =
4109 					btrfs_file_extent_num_bytes(leaf, fi);
4110 				extent_num_bytes = ALIGN(new_size -
4111 						found_key.offset,
4112 						root->sectorsize);
4113 				btrfs_set_file_extent_num_bytes(leaf, fi,
4114 							 extent_num_bytes);
4115 				num_dec = (orig_num_bytes -
4116 					   extent_num_bytes);
4117 				if (test_bit(BTRFS_ROOT_REF_COWS,
4118 					     &root->state) &&
4119 				    extent_start != 0)
4120 					inode_sub_bytes(inode, num_dec);
4121 				btrfs_mark_buffer_dirty(leaf);
4122 			} else {
4123 				extent_num_bytes =
4124 					btrfs_file_extent_disk_num_bytes(leaf,
4125 									 fi);
4126 				extent_offset = found_key.offset -
4127 					btrfs_file_extent_offset(leaf, fi);
4128 
4129 				/* FIXME blocksize != 4096 */
4130 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4131 				if (extent_start != 0) {
4132 					found_extent = 1;
4133 					if (test_bit(BTRFS_ROOT_REF_COWS,
4134 						     &root->state))
4135 						inode_sub_bytes(inode, num_dec);
4136 				}
4137 			}
4138 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4139 			/*
4140 			 * we can't truncate inline items that have had
4141 			 * special encodings
4142 			 */
4143 			if (!del_item &&
4144 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4145 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4146 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4147 				u32 size = new_size - found_key.offset;
4148 
4149 				if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4150 					inode_sub_bytes(inode, item_end + 1 -
4151 							new_size);
4152 
4153 				/*
4154 				 * update the ram bytes to properly reflect
4155 				 * the new size of our item
4156 				 */
4157 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4158 				size =
4159 				    btrfs_file_extent_calc_inline_size(size);
4160 				btrfs_truncate_item(root, path, size, 1);
4161 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4162 					    &root->state)) {
4163 				inode_sub_bytes(inode, item_end + 1 -
4164 						found_key.offset);
4165 			}
4166 		}
4167 delete:
4168 		if (del_item) {
4169 			if (!pending_del_nr) {
4170 				/* no pending yet, add ourselves */
4171 				pending_del_slot = path->slots[0];
4172 				pending_del_nr = 1;
4173 			} else if (pending_del_nr &&
4174 				   path->slots[0] + 1 == pending_del_slot) {
4175 				/* hop on the pending chunk */
4176 				pending_del_nr++;
4177 				pending_del_slot = path->slots[0];
4178 			} else {
4179 				BUG();
4180 			}
4181 		} else {
4182 			break;
4183 		}
4184 		if (found_extent &&
4185 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4186 		     root == root->fs_info->tree_root)) {
4187 			btrfs_set_path_blocking(path);
4188 			ret = btrfs_free_extent(trans, root, extent_start,
4189 						extent_num_bytes, 0,
4190 						btrfs_header_owner(leaf),
4191 						ino, extent_offset, 0);
4192 			BUG_ON(ret);
4193 		}
4194 
4195 		if (found_type == BTRFS_INODE_ITEM_KEY)
4196 			break;
4197 
4198 		if (path->slots[0] == 0 ||
4199 		    path->slots[0] != pending_del_slot) {
4200 			if (pending_del_nr) {
4201 				ret = btrfs_del_items(trans, root, path,
4202 						pending_del_slot,
4203 						pending_del_nr);
4204 				if (ret) {
4205 					btrfs_abort_transaction(trans,
4206 								root, ret);
4207 					goto error;
4208 				}
4209 				pending_del_nr = 0;
4210 			}
4211 			btrfs_release_path(path);
4212 			goto search_again;
4213 		} else {
4214 			path->slots[0]--;
4215 		}
4216 	}
4217 out:
4218 	if (pending_del_nr) {
4219 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4220 				      pending_del_nr);
4221 		if (ret)
4222 			btrfs_abort_transaction(trans, root, ret);
4223 	}
4224 error:
4225 	if (last_size != (u64)-1)
4226 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4227 	btrfs_free_path(path);
4228 	return err;
4229 }
4230 
4231 /*
4232  * btrfs_truncate_page - read, zero a chunk and write a page
4233  * @inode - inode that we're zeroing
4234  * @from - the offset to start zeroing
4235  * @len - the length to zero, 0 to zero the entire range respective to the
4236  *	offset
4237  * @front - zero up to the offset instead of from the offset on
4238  *
4239  * This will find the page for the "from" offset and cow the page and zero the
4240  * part we want to zero.  This is used with truncate and hole punching.
4241  */
4242 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4243 			int front)
4244 {
4245 	struct address_space *mapping = inode->i_mapping;
4246 	struct btrfs_root *root = BTRFS_I(inode)->root;
4247 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4248 	struct btrfs_ordered_extent *ordered;
4249 	struct extent_state *cached_state = NULL;
4250 	char *kaddr;
4251 	u32 blocksize = root->sectorsize;
4252 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4253 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4254 	struct page *page;
4255 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4256 	int ret = 0;
4257 	u64 page_start;
4258 	u64 page_end;
4259 
4260 	if ((offset & (blocksize - 1)) == 0 &&
4261 	    (!len || ((len & (blocksize - 1)) == 0)))
4262 		goto out;
4263 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4264 	if (ret)
4265 		goto out;
4266 
4267 again:
4268 	page = find_or_create_page(mapping, index, mask);
4269 	if (!page) {
4270 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4271 		ret = -ENOMEM;
4272 		goto out;
4273 	}
4274 
4275 	page_start = page_offset(page);
4276 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4277 
4278 	if (!PageUptodate(page)) {
4279 		ret = btrfs_readpage(NULL, page);
4280 		lock_page(page);
4281 		if (page->mapping != mapping) {
4282 			unlock_page(page);
4283 			page_cache_release(page);
4284 			goto again;
4285 		}
4286 		if (!PageUptodate(page)) {
4287 			ret = -EIO;
4288 			goto out_unlock;
4289 		}
4290 	}
4291 	wait_on_page_writeback(page);
4292 
4293 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4294 	set_page_extent_mapped(page);
4295 
4296 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4297 	if (ordered) {
4298 		unlock_extent_cached(io_tree, page_start, page_end,
4299 				     &cached_state, GFP_NOFS);
4300 		unlock_page(page);
4301 		page_cache_release(page);
4302 		btrfs_start_ordered_extent(inode, ordered, 1);
4303 		btrfs_put_ordered_extent(ordered);
4304 		goto again;
4305 	}
4306 
4307 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4308 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4309 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4310 			  0, 0, &cached_state, GFP_NOFS);
4311 
4312 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4313 					&cached_state);
4314 	if (ret) {
4315 		unlock_extent_cached(io_tree, page_start, page_end,
4316 				     &cached_state, GFP_NOFS);
4317 		goto out_unlock;
4318 	}
4319 
4320 	if (offset != PAGE_CACHE_SIZE) {
4321 		if (!len)
4322 			len = PAGE_CACHE_SIZE - offset;
4323 		kaddr = kmap(page);
4324 		if (front)
4325 			memset(kaddr, 0, offset);
4326 		else
4327 			memset(kaddr + offset, 0, len);
4328 		flush_dcache_page(page);
4329 		kunmap(page);
4330 	}
4331 	ClearPageChecked(page);
4332 	set_page_dirty(page);
4333 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4334 			     GFP_NOFS);
4335 
4336 out_unlock:
4337 	if (ret)
4338 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4339 	unlock_page(page);
4340 	page_cache_release(page);
4341 out:
4342 	return ret;
4343 }
4344 
4345 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4346 			     u64 offset, u64 len)
4347 {
4348 	struct btrfs_trans_handle *trans;
4349 	int ret;
4350 
4351 	/*
4352 	 * Still need to make sure the inode looks like it's been updated so
4353 	 * that any holes get logged if we fsync.
4354 	 */
4355 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4356 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4357 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4358 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4359 		return 0;
4360 	}
4361 
4362 	/*
4363 	 * 1 - for the one we're dropping
4364 	 * 1 - for the one we're adding
4365 	 * 1 - for updating the inode.
4366 	 */
4367 	trans = btrfs_start_transaction(root, 3);
4368 	if (IS_ERR(trans))
4369 		return PTR_ERR(trans);
4370 
4371 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4372 	if (ret) {
4373 		btrfs_abort_transaction(trans, root, ret);
4374 		btrfs_end_transaction(trans, root);
4375 		return ret;
4376 	}
4377 
4378 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4379 				       0, 0, len, 0, len, 0, 0, 0);
4380 	if (ret)
4381 		btrfs_abort_transaction(trans, root, ret);
4382 	else
4383 		btrfs_update_inode(trans, root, inode);
4384 	btrfs_end_transaction(trans, root);
4385 	return ret;
4386 }
4387 
4388 /*
4389  * This function puts in dummy file extents for the area we're creating a hole
4390  * for.  So if we are truncating this file to a larger size we need to insert
4391  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4392  * the range between oldsize and size
4393  */
4394 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4395 {
4396 	struct btrfs_root *root = BTRFS_I(inode)->root;
4397 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4398 	struct extent_map *em = NULL;
4399 	struct extent_state *cached_state = NULL;
4400 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4401 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4402 	u64 block_end = ALIGN(size, root->sectorsize);
4403 	u64 last_byte;
4404 	u64 cur_offset;
4405 	u64 hole_size;
4406 	int err = 0;
4407 
4408 	/*
4409 	 * If our size started in the middle of a page we need to zero out the
4410 	 * rest of the page before we expand the i_size, otherwise we could
4411 	 * expose stale data.
4412 	 */
4413 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4414 	if (err)
4415 		return err;
4416 
4417 	if (size <= hole_start)
4418 		return 0;
4419 
4420 	while (1) {
4421 		struct btrfs_ordered_extent *ordered;
4422 
4423 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4424 				 &cached_state);
4425 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4426 						     block_end - hole_start);
4427 		if (!ordered)
4428 			break;
4429 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4430 				     &cached_state, GFP_NOFS);
4431 		btrfs_start_ordered_extent(inode, ordered, 1);
4432 		btrfs_put_ordered_extent(ordered);
4433 	}
4434 
4435 	cur_offset = hole_start;
4436 	while (1) {
4437 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4438 				block_end - cur_offset, 0);
4439 		if (IS_ERR(em)) {
4440 			err = PTR_ERR(em);
4441 			em = NULL;
4442 			break;
4443 		}
4444 		last_byte = min(extent_map_end(em), block_end);
4445 		last_byte = ALIGN(last_byte , root->sectorsize);
4446 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4447 			struct extent_map *hole_em;
4448 			hole_size = last_byte - cur_offset;
4449 
4450 			err = maybe_insert_hole(root, inode, cur_offset,
4451 						hole_size);
4452 			if (err)
4453 				break;
4454 			btrfs_drop_extent_cache(inode, cur_offset,
4455 						cur_offset + hole_size - 1, 0);
4456 			hole_em = alloc_extent_map();
4457 			if (!hole_em) {
4458 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4459 					&BTRFS_I(inode)->runtime_flags);
4460 				goto next;
4461 			}
4462 			hole_em->start = cur_offset;
4463 			hole_em->len = hole_size;
4464 			hole_em->orig_start = cur_offset;
4465 
4466 			hole_em->block_start = EXTENT_MAP_HOLE;
4467 			hole_em->block_len = 0;
4468 			hole_em->orig_block_len = 0;
4469 			hole_em->ram_bytes = hole_size;
4470 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4471 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4472 			hole_em->generation = root->fs_info->generation;
4473 
4474 			while (1) {
4475 				write_lock(&em_tree->lock);
4476 				err = add_extent_mapping(em_tree, hole_em, 1);
4477 				write_unlock(&em_tree->lock);
4478 				if (err != -EEXIST)
4479 					break;
4480 				btrfs_drop_extent_cache(inode, cur_offset,
4481 							cur_offset +
4482 							hole_size - 1, 0);
4483 			}
4484 			free_extent_map(hole_em);
4485 		}
4486 next:
4487 		free_extent_map(em);
4488 		em = NULL;
4489 		cur_offset = last_byte;
4490 		if (cur_offset >= block_end)
4491 			break;
4492 	}
4493 	free_extent_map(em);
4494 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4495 			     GFP_NOFS);
4496 	return err;
4497 }
4498 
4499 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4500 {
4501 	struct btrfs_root *root = BTRFS_I(inode)->root;
4502 	struct btrfs_trans_handle *trans;
4503 	loff_t oldsize = i_size_read(inode);
4504 	loff_t newsize = attr->ia_size;
4505 	int mask = attr->ia_valid;
4506 	int ret;
4507 
4508 	/*
4509 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4510 	 * special case where we need to update the times despite not having
4511 	 * these flags set.  For all other operations the VFS set these flags
4512 	 * explicitly if it wants a timestamp update.
4513 	 */
4514 	if (newsize != oldsize) {
4515 		inode_inc_iversion(inode);
4516 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4517 			inode->i_ctime = inode->i_mtime =
4518 				current_fs_time(inode->i_sb);
4519 	}
4520 
4521 	if (newsize > oldsize) {
4522 		truncate_pagecache(inode, newsize);
4523 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4524 		if (ret)
4525 			return ret;
4526 
4527 		trans = btrfs_start_transaction(root, 1);
4528 		if (IS_ERR(trans))
4529 			return PTR_ERR(trans);
4530 
4531 		i_size_write(inode, newsize);
4532 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4533 		ret = btrfs_update_inode(trans, root, inode);
4534 		btrfs_end_transaction(trans, root);
4535 	} else {
4536 
4537 		/*
4538 		 * We're truncating a file that used to have good data down to
4539 		 * zero. Make sure it gets into the ordered flush list so that
4540 		 * any new writes get down to disk quickly.
4541 		 */
4542 		if (newsize == 0)
4543 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4544 				&BTRFS_I(inode)->runtime_flags);
4545 
4546 		/*
4547 		 * 1 for the orphan item we're going to add
4548 		 * 1 for the orphan item deletion.
4549 		 */
4550 		trans = btrfs_start_transaction(root, 2);
4551 		if (IS_ERR(trans))
4552 			return PTR_ERR(trans);
4553 
4554 		/*
4555 		 * We need to do this in case we fail at _any_ point during the
4556 		 * actual truncate.  Once we do the truncate_setsize we could
4557 		 * invalidate pages which forces any outstanding ordered io to
4558 		 * be instantly completed which will give us extents that need
4559 		 * to be truncated.  If we fail to get an orphan inode down we
4560 		 * could have left over extents that were never meant to live,
4561 		 * so we need to garuntee from this point on that everything
4562 		 * will be consistent.
4563 		 */
4564 		ret = btrfs_orphan_add(trans, inode);
4565 		btrfs_end_transaction(trans, root);
4566 		if (ret)
4567 			return ret;
4568 
4569 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4570 		truncate_setsize(inode, newsize);
4571 
4572 		/* Disable nonlocked read DIO to avoid the end less truncate */
4573 		btrfs_inode_block_unlocked_dio(inode);
4574 		inode_dio_wait(inode);
4575 		btrfs_inode_resume_unlocked_dio(inode);
4576 
4577 		ret = btrfs_truncate(inode);
4578 		if (ret && inode->i_nlink) {
4579 			int err;
4580 
4581 			/*
4582 			 * failed to truncate, disk_i_size is only adjusted down
4583 			 * as we remove extents, so it should represent the true
4584 			 * size of the inode, so reset the in memory size and
4585 			 * delete our orphan entry.
4586 			 */
4587 			trans = btrfs_join_transaction(root);
4588 			if (IS_ERR(trans)) {
4589 				btrfs_orphan_del(NULL, inode);
4590 				return ret;
4591 			}
4592 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4593 			err = btrfs_orphan_del(trans, inode);
4594 			if (err)
4595 				btrfs_abort_transaction(trans, root, err);
4596 			btrfs_end_transaction(trans, root);
4597 		}
4598 	}
4599 
4600 	return ret;
4601 }
4602 
4603 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4604 {
4605 	struct inode *inode = dentry->d_inode;
4606 	struct btrfs_root *root = BTRFS_I(inode)->root;
4607 	int err;
4608 
4609 	if (btrfs_root_readonly(root))
4610 		return -EROFS;
4611 
4612 	err = inode_change_ok(inode, attr);
4613 	if (err)
4614 		return err;
4615 
4616 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4617 		err = btrfs_setsize(inode, attr);
4618 		if (err)
4619 			return err;
4620 	}
4621 
4622 	if (attr->ia_valid) {
4623 		setattr_copy(inode, attr);
4624 		inode_inc_iversion(inode);
4625 		err = btrfs_dirty_inode(inode);
4626 
4627 		if (!err && attr->ia_valid & ATTR_MODE)
4628 			err = posix_acl_chmod(inode, inode->i_mode);
4629 	}
4630 
4631 	return err;
4632 }
4633 
4634 /*
4635  * While truncating the inode pages during eviction, we get the VFS calling
4636  * btrfs_invalidatepage() against each page of the inode. This is slow because
4637  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4638  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4639  * extent_state structures over and over, wasting lots of time.
4640  *
4641  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4642  * those expensive operations on a per page basis and do only the ordered io
4643  * finishing, while we release here the extent_map and extent_state structures,
4644  * without the excessive merging and splitting.
4645  */
4646 static void evict_inode_truncate_pages(struct inode *inode)
4647 {
4648 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4649 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4650 	struct rb_node *node;
4651 
4652 	ASSERT(inode->i_state & I_FREEING);
4653 	truncate_inode_pages_final(&inode->i_data);
4654 
4655 	write_lock(&map_tree->lock);
4656 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
4657 		struct extent_map *em;
4658 
4659 		node = rb_first(&map_tree->map);
4660 		em = rb_entry(node, struct extent_map, rb_node);
4661 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4662 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4663 		remove_extent_mapping(map_tree, em);
4664 		free_extent_map(em);
4665 	}
4666 	write_unlock(&map_tree->lock);
4667 
4668 	spin_lock(&io_tree->lock);
4669 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4670 		struct extent_state *state;
4671 		struct extent_state *cached_state = NULL;
4672 
4673 		node = rb_first(&io_tree->state);
4674 		state = rb_entry(node, struct extent_state, rb_node);
4675 		atomic_inc(&state->refs);
4676 		spin_unlock(&io_tree->lock);
4677 
4678 		lock_extent_bits(io_tree, state->start, state->end,
4679 				 0, &cached_state);
4680 		clear_extent_bit(io_tree, state->start, state->end,
4681 				 EXTENT_LOCKED | EXTENT_DIRTY |
4682 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4683 				 EXTENT_DEFRAG, 1, 1,
4684 				 &cached_state, GFP_NOFS);
4685 		free_extent_state(state);
4686 
4687 		spin_lock(&io_tree->lock);
4688 	}
4689 	spin_unlock(&io_tree->lock);
4690 }
4691 
4692 void btrfs_evict_inode(struct inode *inode)
4693 {
4694 	struct btrfs_trans_handle *trans;
4695 	struct btrfs_root *root = BTRFS_I(inode)->root;
4696 	struct btrfs_block_rsv *rsv, *global_rsv;
4697 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4698 	int ret;
4699 
4700 	trace_btrfs_inode_evict(inode);
4701 
4702 	evict_inode_truncate_pages(inode);
4703 
4704 	if (inode->i_nlink &&
4705 	    ((btrfs_root_refs(&root->root_item) != 0 &&
4706 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4707 	     btrfs_is_free_space_inode(inode)))
4708 		goto no_delete;
4709 
4710 	if (is_bad_inode(inode)) {
4711 		btrfs_orphan_del(NULL, inode);
4712 		goto no_delete;
4713 	}
4714 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4715 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
4716 
4717 	if (root->fs_info->log_root_recovering) {
4718 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4719 				 &BTRFS_I(inode)->runtime_flags));
4720 		goto no_delete;
4721 	}
4722 
4723 	if (inode->i_nlink > 0) {
4724 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4725 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4726 		goto no_delete;
4727 	}
4728 
4729 	ret = btrfs_commit_inode_delayed_inode(inode);
4730 	if (ret) {
4731 		btrfs_orphan_del(NULL, inode);
4732 		goto no_delete;
4733 	}
4734 
4735 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4736 	if (!rsv) {
4737 		btrfs_orphan_del(NULL, inode);
4738 		goto no_delete;
4739 	}
4740 	rsv->size = min_size;
4741 	rsv->failfast = 1;
4742 	global_rsv = &root->fs_info->global_block_rsv;
4743 
4744 	btrfs_i_size_write(inode, 0);
4745 
4746 	/*
4747 	 * This is a bit simpler than btrfs_truncate since we've already
4748 	 * reserved our space for our orphan item in the unlink, so we just
4749 	 * need to reserve some slack space in case we add bytes and update
4750 	 * inode item when doing the truncate.
4751 	 */
4752 	while (1) {
4753 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
4754 					     BTRFS_RESERVE_FLUSH_LIMIT);
4755 
4756 		/*
4757 		 * Try and steal from the global reserve since we will
4758 		 * likely not use this space anyway, we want to try as
4759 		 * hard as possible to get this to work.
4760 		 */
4761 		if (ret)
4762 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4763 
4764 		if (ret) {
4765 			btrfs_warn(root->fs_info,
4766 				"Could not get space for a delete, will truncate on mount %d",
4767 				ret);
4768 			btrfs_orphan_del(NULL, inode);
4769 			btrfs_free_block_rsv(root, rsv);
4770 			goto no_delete;
4771 		}
4772 
4773 		trans = btrfs_join_transaction(root);
4774 		if (IS_ERR(trans)) {
4775 			btrfs_orphan_del(NULL, inode);
4776 			btrfs_free_block_rsv(root, rsv);
4777 			goto no_delete;
4778 		}
4779 
4780 		trans->block_rsv = rsv;
4781 
4782 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4783 		if (ret != -ENOSPC)
4784 			break;
4785 
4786 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4787 		btrfs_end_transaction(trans, root);
4788 		trans = NULL;
4789 		btrfs_btree_balance_dirty(root);
4790 	}
4791 
4792 	btrfs_free_block_rsv(root, rsv);
4793 
4794 	/*
4795 	 * Errors here aren't a big deal, it just means we leave orphan items
4796 	 * in the tree.  They will be cleaned up on the next mount.
4797 	 */
4798 	if (ret == 0) {
4799 		trans->block_rsv = root->orphan_block_rsv;
4800 		btrfs_orphan_del(trans, inode);
4801 	} else {
4802 		btrfs_orphan_del(NULL, inode);
4803 	}
4804 
4805 	trans->block_rsv = &root->fs_info->trans_block_rsv;
4806 	if (!(root == root->fs_info->tree_root ||
4807 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4808 		btrfs_return_ino(root, btrfs_ino(inode));
4809 
4810 	btrfs_end_transaction(trans, root);
4811 	btrfs_btree_balance_dirty(root);
4812 no_delete:
4813 	btrfs_remove_delayed_node(inode);
4814 	clear_inode(inode);
4815 	return;
4816 }
4817 
4818 /*
4819  * this returns the key found in the dir entry in the location pointer.
4820  * If no dir entries were found, location->objectid is 0.
4821  */
4822 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4823 			       struct btrfs_key *location)
4824 {
4825 	const char *name = dentry->d_name.name;
4826 	int namelen = dentry->d_name.len;
4827 	struct btrfs_dir_item *di;
4828 	struct btrfs_path *path;
4829 	struct btrfs_root *root = BTRFS_I(dir)->root;
4830 	int ret = 0;
4831 
4832 	path = btrfs_alloc_path();
4833 	if (!path)
4834 		return -ENOMEM;
4835 
4836 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4837 				    namelen, 0);
4838 	if (IS_ERR(di))
4839 		ret = PTR_ERR(di);
4840 
4841 	if (IS_ERR_OR_NULL(di))
4842 		goto out_err;
4843 
4844 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4845 out:
4846 	btrfs_free_path(path);
4847 	return ret;
4848 out_err:
4849 	location->objectid = 0;
4850 	goto out;
4851 }
4852 
4853 /*
4854  * when we hit a tree root in a directory, the btrfs part of the inode
4855  * needs to be changed to reflect the root directory of the tree root.  This
4856  * is kind of like crossing a mount point.
4857  */
4858 static int fixup_tree_root_location(struct btrfs_root *root,
4859 				    struct inode *dir,
4860 				    struct dentry *dentry,
4861 				    struct btrfs_key *location,
4862 				    struct btrfs_root **sub_root)
4863 {
4864 	struct btrfs_path *path;
4865 	struct btrfs_root *new_root;
4866 	struct btrfs_root_ref *ref;
4867 	struct extent_buffer *leaf;
4868 	int ret;
4869 	int err = 0;
4870 
4871 	path = btrfs_alloc_path();
4872 	if (!path) {
4873 		err = -ENOMEM;
4874 		goto out;
4875 	}
4876 
4877 	err = -ENOENT;
4878 	ret = btrfs_find_item(root->fs_info->tree_root, path,
4879 				BTRFS_I(dir)->root->root_key.objectid,
4880 				location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4881 	if (ret) {
4882 		if (ret < 0)
4883 			err = ret;
4884 		goto out;
4885 	}
4886 
4887 	leaf = path->nodes[0];
4888 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4889 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4890 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4891 		goto out;
4892 
4893 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4894 				   (unsigned long)(ref + 1),
4895 				   dentry->d_name.len);
4896 	if (ret)
4897 		goto out;
4898 
4899 	btrfs_release_path(path);
4900 
4901 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4902 	if (IS_ERR(new_root)) {
4903 		err = PTR_ERR(new_root);
4904 		goto out;
4905 	}
4906 
4907 	*sub_root = new_root;
4908 	location->objectid = btrfs_root_dirid(&new_root->root_item);
4909 	location->type = BTRFS_INODE_ITEM_KEY;
4910 	location->offset = 0;
4911 	err = 0;
4912 out:
4913 	btrfs_free_path(path);
4914 	return err;
4915 }
4916 
4917 static void inode_tree_add(struct inode *inode)
4918 {
4919 	struct btrfs_root *root = BTRFS_I(inode)->root;
4920 	struct btrfs_inode *entry;
4921 	struct rb_node **p;
4922 	struct rb_node *parent;
4923 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
4924 	u64 ino = btrfs_ino(inode);
4925 
4926 	if (inode_unhashed(inode))
4927 		return;
4928 	parent = NULL;
4929 	spin_lock(&root->inode_lock);
4930 	p = &root->inode_tree.rb_node;
4931 	while (*p) {
4932 		parent = *p;
4933 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
4934 
4935 		if (ino < btrfs_ino(&entry->vfs_inode))
4936 			p = &parent->rb_left;
4937 		else if (ino > btrfs_ino(&entry->vfs_inode))
4938 			p = &parent->rb_right;
4939 		else {
4940 			WARN_ON(!(entry->vfs_inode.i_state &
4941 				  (I_WILL_FREE | I_FREEING)));
4942 			rb_replace_node(parent, new, &root->inode_tree);
4943 			RB_CLEAR_NODE(parent);
4944 			spin_unlock(&root->inode_lock);
4945 			return;
4946 		}
4947 	}
4948 	rb_link_node(new, parent, p);
4949 	rb_insert_color(new, &root->inode_tree);
4950 	spin_unlock(&root->inode_lock);
4951 }
4952 
4953 static void inode_tree_del(struct inode *inode)
4954 {
4955 	struct btrfs_root *root = BTRFS_I(inode)->root;
4956 	int empty = 0;
4957 
4958 	spin_lock(&root->inode_lock);
4959 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4960 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4961 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4962 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4963 	}
4964 	spin_unlock(&root->inode_lock);
4965 
4966 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
4967 		synchronize_srcu(&root->fs_info->subvol_srcu);
4968 		spin_lock(&root->inode_lock);
4969 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4970 		spin_unlock(&root->inode_lock);
4971 		if (empty)
4972 			btrfs_add_dead_root(root);
4973 	}
4974 }
4975 
4976 void btrfs_invalidate_inodes(struct btrfs_root *root)
4977 {
4978 	struct rb_node *node;
4979 	struct rb_node *prev;
4980 	struct btrfs_inode *entry;
4981 	struct inode *inode;
4982 	u64 objectid = 0;
4983 
4984 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
4985 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4986 
4987 	spin_lock(&root->inode_lock);
4988 again:
4989 	node = root->inode_tree.rb_node;
4990 	prev = NULL;
4991 	while (node) {
4992 		prev = node;
4993 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4994 
4995 		if (objectid < btrfs_ino(&entry->vfs_inode))
4996 			node = node->rb_left;
4997 		else if (objectid > btrfs_ino(&entry->vfs_inode))
4998 			node = node->rb_right;
4999 		else
5000 			break;
5001 	}
5002 	if (!node) {
5003 		while (prev) {
5004 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5005 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5006 				node = prev;
5007 				break;
5008 			}
5009 			prev = rb_next(prev);
5010 		}
5011 	}
5012 	while (node) {
5013 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5014 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5015 		inode = igrab(&entry->vfs_inode);
5016 		if (inode) {
5017 			spin_unlock(&root->inode_lock);
5018 			if (atomic_read(&inode->i_count) > 1)
5019 				d_prune_aliases(inode);
5020 			/*
5021 			 * btrfs_drop_inode will have it removed from
5022 			 * the inode cache when its usage count
5023 			 * hits zero.
5024 			 */
5025 			iput(inode);
5026 			cond_resched();
5027 			spin_lock(&root->inode_lock);
5028 			goto again;
5029 		}
5030 
5031 		if (cond_resched_lock(&root->inode_lock))
5032 			goto again;
5033 
5034 		node = rb_next(node);
5035 	}
5036 	spin_unlock(&root->inode_lock);
5037 }
5038 
5039 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5040 {
5041 	struct btrfs_iget_args *args = p;
5042 	inode->i_ino = args->location->objectid;
5043 	memcpy(&BTRFS_I(inode)->location, args->location,
5044 	       sizeof(*args->location));
5045 	BTRFS_I(inode)->root = args->root;
5046 	return 0;
5047 }
5048 
5049 static int btrfs_find_actor(struct inode *inode, void *opaque)
5050 {
5051 	struct btrfs_iget_args *args = opaque;
5052 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5053 		args->root == BTRFS_I(inode)->root;
5054 }
5055 
5056 static struct inode *btrfs_iget_locked(struct super_block *s,
5057 				       struct btrfs_key *location,
5058 				       struct btrfs_root *root)
5059 {
5060 	struct inode *inode;
5061 	struct btrfs_iget_args args;
5062 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5063 
5064 	args.location = location;
5065 	args.root = root;
5066 
5067 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5068 			     btrfs_init_locked_inode,
5069 			     (void *)&args);
5070 	return inode;
5071 }
5072 
5073 /* Get an inode object given its location and corresponding root.
5074  * Returns in *is_new if the inode was read from disk
5075  */
5076 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5077 			 struct btrfs_root *root, int *new)
5078 {
5079 	struct inode *inode;
5080 
5081 	inode = btrfs_iget_locked(s, location, root);
5082 	if (!inode)
5083 		return ERR_PTR(-ENOMEM);
5084 
5085 	if (inode->i_state & I_NEW) {
5086 		btrfs_read_locked_inode(inode);
5087 		if (!is_bad_inode(inode)) {
5088 			inode_tree_add(inode);
5089 			unlock_new_inode(inode);
5090 			if (new)
5091 				*new = 1;
5092 		} else {
5093 			unlock_new_inode(inode);
5094 			iput(inode);
5095 			inode = ERR_PTR(-ESTALE);
5096 		}
5097 	}
5098 
5099 	return inode;
5100 }
5101 
5102 static struct inode *new_simple_dir(struct super_block *s,
5103 				    struct btrfs_key *key,
5104 				    struct btrfs_root *root)
5105 {
5106 	struct inode *inode = new_inode(s);
5107 
5108 	if (!inode)
5109 		return ERR_PTR(-ENOMEM);
5110 
5111 	BTRFS_I(inode)->root = root;
5112 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5113 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5114 
5115 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5116 	inode->i_op = &btrfs_dir_ro_inode_operations;
5117 	inode->i_fop = &simple_dir_operations;
5118 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5119 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5120 
5121 	return inode;
5122 }
5123 
5124 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5125 {
5126 	struct inode *inode;
5127 	struct btrfs_root *root = BTRFS_I(dir)->root;
5128 	struct btrfs_root *sub_root = root;
5129 	struct btrfs_key location;
5130 	int index;
5131 	int ret = 0;
5132 
5133 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5134 		return ERR_PTR(-ENAMETOOLONG);
5135 
5136 	ret = btrfs_inode_by_name(dir, dentry, &location);
5137 	if (ret < 0)
5138 		return ERR_PTR(ret);
5139 
5140 	if (location.objectid == 0)
5141 		return ERR_PTR(-ENOENT);
5142 
5143 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5144 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5145 		return inode;
5146 	}
5147 
5148 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5149 
5150 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5151 	ret = fixup_tree_root_location(root, dir, dentry,
5152 				       &location, &sub_root);
5153 	if (ret < 0) {
5154 		if (ret != -ENOENT)
5155 			inode = ERR_PTR(ret);
5156 		else
5157 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5158 	} else {
5159 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5160 	}
5161 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5162 
5163 	if (!IS_ERR(inode) && root != sub_root) {
5164 		down_read(&root->fs_info->cleanup_work_sem);
5165 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5166 			ret = btrfs_orphan_cleanup(sub_root);
5167 		up_read(&root->fs_info->cleanup_work_sem);
5168 		if (ret) {
5169 			iput(inode);
5170 			inode = ERR_PTR(ret);
5171 		}
5172 	}
5173 
5174 	return inode;
5175 }
5176 
5177 static int btrfs_dentry_delete(const struct dentry *dentry)
5178 {
5179 	struct btrfs_root *root;
5180 	struct inode *inode = dentry->d_inode;
5181 
5182 	if (!inode && !IS_ROOT(dentry))
5183 		inode = dentry->d_parent->d_inode;
5184 
5185 	if (inode) {
5186 		root = BTRFS_I(inode)->root;
5187 		if (btrfs_root_refs(&root->root_item) == 0)
5188 			return 1;
5189 
5190 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5191 			return 1;
5192 	}
5193 	return 0;
5194 }
5195 
5196 static void btrfs_dentry_release(struct dentry *dentry)
5197 {
5198 	kfree(dentry->d_fsdata);
5199 }
5200 
5201 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5202 				   unsigned int flags)
5203 {
5204 	struct inode *inode;
5205 
5206 	inode = btrfs_lookup_dentry(dir, dentry);
5207 	if (IS_ERR(inode)) {
5208 		if (PTR_ERR(inode) == -ENOENT)
5209 			inode = NULL;
5210 		else
5211 			return ERR_CAST(inode);
5212 	}
5213 
5214 	return d_materialise_unique(dentry, inode);
5215 }
5216 
5217 unsigned char btrfs_filetype_table[] = {
5218 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5219 };
5220 
5221 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5222 {
5223 	struct inode *inode = file_inode(file);
5224 	struct btrfs_root *root = BTRFS_I(inode)->root;
5225 	struct btrfs_item *item;
5226 	struct btrfs_dir_item *di;
5227 	struct btrfs_key key;
5228 	struct btrfs_key found_key;
5229 	struct btrfs_path *path;
5230 	struct list_head ins_list;
5231 	struct list_head del_list;
5232 	int ret;
5233 	struct extent_buffer *leaf;
5234 	int slot;
5235 	unsigned char d_type;
5236 	int over = 0;
5237 	u32 di_cur;
5238 	u32 di_total;
5239 	u32 di_len;
5240 	int key_type = BTRFS_DIR_INDEX_KEY;
5241 	char tmp_name[32];
5242 	char *name_ptr;
5243 	int name_len;
5244 	int is_curr = 0;	/* ctx->pos points to the current index? */
5245 
5246 	/* FIXME, use a real flag for deciding about the key type */
5247 	if (root->fs_info->tree_root == root)
5248 		key_type = BTRFS_DIR_ITEM_KEY;
5249 
5250 	if (!dir_emit_dots(file, ctx))
5251 		return 0;
5252 
5253 	path = btrfs_alloc_path();
5254 	if (!path)
5255 		return -ENOMEM;
5256 
5257 	path->reada = 1;
5258 
5259 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5260 		INIT_LIST_HEAD(&ins_list);
5261 		INIT_LIST_HEAD(&del_list);
5262 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5263 	}
5264 
5265 	btrfs_set_key_type(&key, key_type);
5266 	key.offset = ctx->pos;
5267 	key.objectid = btrfs_ino(inode);
5268 
5269 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5270 	if (ret < 0)
5271 		goto err;
5272 
5273 	while (1) {
5274 		leaf = path->nodes[0];
5275 		slot = path->slots[0];
5276 		if (slot >= btrfs_header_nritems(leaf)) {
5277 			ret = btrfs_next_leaf(root, path);
5278 			if (ret < 0)
5279 				goto err;
5280 			else if (ret > 0)
5281 				break;
5282 			continue;
5283 		}
5284 
5285 		item = btrfs_item_nr(slot);
5286 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5287 
5288 		if (found_key.objectid != key.objectid)
5289 			break;
5290 		if (btrfs_key_type(&found_key) != key_type)
5291 			break;
5292 		if (found_key.offset < ctx->pos)
5293 			goto next;
5294 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5295 		    btrfs_should_delete_dir_index(&del_list,
5296 						  found_key.offset))
5297 			goto next;
5298 
5299 		ctx->pos = found_key.offset;
5300 		is_curr = 1;
5301 
5302 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5303 		di_cur = 0;
5304 		di_total = btrfs_item_size(leaf, item);
5305 
5306 		while (di_cur < di_total) {
5307 			struct btrfs_key location;
5308 
5309 			if (verify_dir_item(root, leaf, di))
5310 				break;
5311 
5312 			name_len = btrfs_dir_name_len(leaf, di);
5313 			if (name_len <= sizeof(tmp_name)) {
5314 				name_ptr = tmp_name;
5315 			} else {
5316 				name_ptr = kmalloc(name_len, GFP_NOFS);
5317 				if (!name_ptr) {
5318 					ret = -ENOMEM;
5319 					goto err;
5320 				}
5321 			}
5322 			read_extent_buffer(leaf, name_ptr,
5323 					   (unsigned long)(di + 1), name_len);
5324 
5325 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5326 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5327 
5328 
5329 			/* is this a reference to our own snapshot? If so
5330 			 * skip it.
5331 			 *
5332 			 * In contrast to old kernels, we insert the snapshot's
5333 			 * dir item and dir index after it has been created, so
5334 			 * we won't find a reference to our own snapshot. We
5335 			 * still keep the following code for backward
5336 			 * compatibility.
5337 			 */
5338 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5339 			    location.objectid == root->root_key.objectid) {
5340 				over = 0;
5341 				goto skip;
5342 			}
5343 			over = !dir_emit(ctx, name_ptr, name_len,
5344 				       location.objectid, d_type);
5345 
5346 skip:
5347 			if (name_ptr != tmp_name)
5348 				kfree(name_ptr);
5349 
5350 			if (over)
5351 				goto nopos;
5352 			di_len = btrfs_dir_name_len(leaf, di) +
5353 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5354 			di_cur += di_len;
5355 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5356 		}
5357 next:
5358 		path->slots[0]++;
5359 	}
5360 
5361 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5362 		if (is_curr)
5363 			ctx->pos++;
5364 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5365 		if (ret)
5366 			goto nopos;
5367 	}
5368 
5369 	/* Reached end of directory/root. Bump pos past the last item. */
5370 	ctx->pos++;
5371 
5372 	/*
5373 	 * Stop new entries from being returned after we return the last
5374 	 * entry.
5375 	 *
5376 	 * New directory entries are assigned a strictly increasing
5377 	 * offset.  This means that new entries created during readdir
5378 	 * are *guaranteed* to be seen in the future by that readdir.
5379 	 * This has broken buggy programs which operate on names as
5380 	 * they're returned by readdir.  Until we re-use freed offsets
5381 	 * we have this hack to stop new entries from being returned
5382 	 * under the assumption that they'll never reach this huge
5383 	 * offset.
5384 	 *
5385 	 * This is being careful not to overflow 32bit loff_t unless the
5386 	 * last entry requires it because doing so has broken 32bit apps
5387 	 * in the past.
5388 	 */
5389 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5390 		if (ctx->pos >= INT_MAX)
5391 			ctx->pos = LLONG_MAX;
5392 		else
5393 			ctx->pos = INT_MAX;
5394 	}
5395 nopos:
5396 	ret = 0;
5397 err:
5398 	if (key_type == BTRFS_DIR_INDEX_KEY)
5399 		btrfs_put_delayed_items(&ins_list, &del_list);
5400 	btrfs_free_path(path);
5401 	return ret;
5402 }
5403 
5404 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5405 {
5406 	struct btrfs_root *root = BTRFS_I(inode)->root;
5407 	struct btrfs_trans_handle *trans;
5408 	int ret = 0;
5409 	bool nolock = false;
5410 
5411 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5412 		return 0;
5413 
5414 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5415 		nolock = true;
5416 
5417 	if (wbc->sync_mode == WB_SYNC_ALL) {
5418 		if (nolock)
5419 			trans = btrfs_join_transaction_nolock(root);
5420 		else
5421 			trans = btrfs_join_transaction(root);
5422 		if (IS_ERR(trans))
5423 			return PTR_ERR(trans);
5424 		ret = btrfs_commit_transaction(trans, root);
5425 	}
5426 	return ret;
5427 }
5428 
5429 /*
5430  * This is somewhat expensive, updating the tree every time the
5431  * inode changes.  But, it is most likely to find the inode in cache.
5432  * FIXME, needs more benchmarking...there are no reasons other than performance
5433  * to keep or drop this code.
5434  */
5435 static int btrfs_dirty_inode(struct inode *inode)
5436 {
5437 	struct btrfs_root *root = BTRFS_I(inode)->root;
5438 	struct btrfs_trans_handle *trans;
5439 	int ret;
5440 
5441 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5442 		return 0;
5443 
5444 	trans = btrfs_join_transaction(root);
5445 	if (IS_ERR(trans))
5446 		return PTR_ERR(trans);
5447 
5448 	ret = btrfs_update_inode(trans, root, inode);
5449 	if (ret && ret == -ENOSPC) {
5450 		/* whoops, lets try again with the full transaction */
5451 		btrfs_end_transaction(trans, root);
5452 		trans = btrfs_start_transaction(root, 1);
5453 		if (IS_ERR(trans))
5454 			return PTR_ERR(trans);
5455 
5456 		ret = btrfs_update_inode(trans, root, inode);
5457 	}
5458 	btrfs_end_transaction(trans, root);
5459 	if (BTRFS_I(inode)->delayed_node)
5460 		btrfs_balance_delayed_items(root);
5461 
5462 	return ret;
5463 }
5464 
5465 /*
5466  * This is a copy of file_update_time.  We need this so we can return error on
5467  * ENOSPC for updating the inode in the case of file write and mmap writes.
5468  */
5469 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5470 			     int flags)
5471 {
5472 	struct btrfs_root *root = BTRFS_I(inode)->root;
5473 
5474 	if (btrfs_root_readonly(root))
5475 		return -EROFS;
5476 
5477 	if (flags & S_VERSION)
5478 		inode_inc_iversion(inode);
5479 	if (flags & S_CTIME)
5480 		inode->i_ctime = *now;
5481 	if (flags & S_MTIME)
5482 		inode->i_mtime = *now;
5483 	if (flags & S_ATIME)
5484 		inode->i_atime = *now;
5485 	return btrfs_dirty_inode(inode);
5486 }
5487 
5488 /*
5489  * find the highest existing sequence number in a directory
5490  * and then set the in-memory index_cnt variable to reflect
5491  * free sequence numbers
5492  */
5493 static int btrfs_set_inode_index_count(struct inode *inode)
5494 {
5495 	struct btrfs_root *root = BTRFS_I(inode)->root;
5496 	struct btrfs_key key, found_key;
5497 	struct btrfs_path *path;
5498 	struct extent_buffer *leaf;
5499 	int ret;
5500 
5501 	key.objectid = btrfs_ino(inode);
5502 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5503 	key.offset = (u64)-1;
5504 
5505 	path = btrfs_alloc_path();
5506 	if (!path)
5507 		return -ENOMEM;
5508 
5509 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5510 	if (ret < 0)
5511 		goto out;
5512 	/* FIXME: we should be able to handle this */
5513 	if (ret == 0)
5514 		goto out;
5515 	ret = 0;
5516 
5517 	/*
5518 	 * MAGIC NUMBER EXPLANATION:
5519 	 * since we search a directory based on f_pos we have to start at 2
5520 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5521 	 * else has to start at 2
5522 	 */
5523 	if (path->slots[0] == 0) {
5524 		BTRFS_I(inode)->index_cnt = 2;
5525 		goto out;
5526 	}
5527 
5528 	path->slots[0]--;
5529 
5530 	leaf = path->nodes[0];
5531 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5532 
5533 	if (found_key.objectid != btrfs_ino(inode) ||
5534 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5535 		BTRFS_I(inode)->index_cnt = 2;
5536 		goto out;
5537 	}
5538 
5539 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5540 out:
5541 	btrfs_free_path(path);
5542 	return ret;
5543 }
5544 
5545 /*
5546  * helper to find a free sequence number in a given directory.  This current
5547  * code is very simple, later versions will do smarter things in the btree
5548  */
5549 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5550 {
5551 	int ret = 0;
5552 
5553 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5554 		ret = btrfs_inode_delayed_dir_index_count(dir);
5555 		if (ret) {
5556 			ret = btrfs_set_inode_index_count(dir);
5557 			if (ret)
5558 				return ret;
5559 		}
5560 	}
5561 
5562 	*index = BTRFS_I(dir)->index_cnt;
5563 	BTRFS_I(dir)->index_cnt++;
5564 
5565 	return ret;
5566 }
5567 
5568 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5569 				     struct btrfs_root *root,
5570 				     struct inode *dir,
5571 				     const char *name, int name_len,
5572 				     u64 ref_objectid, u64 objectid,
5573 				     umode_t mode, u64 *index)
5574 {
5575 	struct inode *inode;
5576 	struct btrfs_inode_item *inode_item;
5577 	struct btrfs_key *location;
5578 	struct btrfs_path *path;
5579 	struct btrfs_inode_ref *ref;
5580 	struct btrfs_key key[2];
5581 	u32 sizes[2];
5582 	int nitems = name ? 2 : 1;
5583 	unsigned long ptr;
5584 	int ret;
5585 
5586 	path = btrfs_alloc_path();
5587 	if (!path)
5588 		return ERR_PTR(-ENOMEM);
5589 
5590 	inode = new_inode(root->fs_info->sb);
5591 	if (!inode) {
5592 		btrfs_free_path(path);
5593 		return ERR_PTR(-ENOMEM);
5594 	}
5595 
5596 	/*
5597 	 * we have to initialize this early, so we can reclaim the inode
5598 	 * number if we fail afterwards in this function.
5599 	 */
5600 	inode->i_ino = objectid;
5601 
5602 	if (dir && name) {
5603 		trace_btrfs_inode_request(dir);
5604 
5605 		ret = btrfs_set_inode_index(dir, index);
5606 		if (ret) {
5607 			btrfs_free_path(path);
5608 			iput(inode);
5609 			return ERR_PTR(ret);
5610 		}
5611 	} else if (dir) {
5612 		*index = 0;
5613 	}
5614 	/*
5615 	 * index_cnt is ignored for everything but a dir,
5616 	 * btrfs_get_inode_index_count has an explanation for the magic
5617 	 * number
5618 	 */
5619 	BTRFS_I(inode)->index_cnt = 2;
5620 	BTRFS_I(inode)->dir_index = *index;
5621 	BTRFS_I(inode)->root = root;
5622 	BTRFS_I(inode)->generation = trans->transid;
5623 	inode->i_generation = BTRFS_I(inode)->generation;
5624 
5625 	/*
5626 	 * We could have gotten an inode number from somebody who was fsynced
5627 	 * and then removed in this same transaction, so let's just set full
5628 	 * sync since it will be a full sync anyway and this will blow away the
5629 	 * old info in the log.
5630 	 */
5631 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5632 
5633 	key[0].objectid = objectid;
5634 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5635 	key[0].offset = 0;
5636 
5637 	sizes[0] = sizeof(struct btrfs_inode_item);
5638 
5639 	if (name) {
5640 		/*
5641 		 * Start new inodes with an inode_ref. This is slightly more
5642 		 * efficient for small numbers of hard links since they will
5643 		 * be packed into one item. Extended refs will kick in if we
5644 		 * add more hard links than can fit in the ref item.
5645 		 */
5646 		key[1].objectid = objectid;
5647 		btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5648 		key[1].offset = ref_objectid;
5649 
5650 		sizes[1] = name_len + sizeof(*ref);
5651 	}
5652 
5653 	path->leave_spinning = 1;
5654 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5655 	if (ret != 0)
5656 		goto fail;
5657 
5658 	inode_init_owner(inode, dir, mode);
5659 	inode_set_bytes(inode, 0);
5660 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5661 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5662 				  struct btrfs_inode_item);
5663 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5664 			     sizeof(*inode_item));
5665 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5666 
5667 	if (name) {
5668 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5669 				     struct btrfs_inode_ref);
5670 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5671 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5672 		ptr = (unsigned long)(ref + 1);
5673 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
5674 	}
5675 
5676 	btrfs_mark_buffer_dirty(path->nodes[0]);
5677 	btrfs_free_path(path);
5678 
5679 	location = &BTRFS_I(inode)->location;
5680 	location->objectid = objectid;
5681 	location->offset = 0;
5682 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5683 
5684 	btrfs_inherit_iflags(inode, dir);
5685 
5686 	if (S_ISREG(mode)) {
5687 		if (btrfs_test_opt(root, NODATASUM))
5688 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5689 		if (btrfs_test_opt(root, NODATACOW))
5690 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5691 				BTRFS_INODE_NODATASUM;
5692 	}
5693 
5694 	btrfs_insert_inode_hash(inode);
5695 	inode_tree_add(inode);
5696 
5697 	trace_btrfs_inode_new(inode);
5698 	btrfs_set_inode_last_trans(trans, inode);
5699 
5700 	btrfs_update_root_times(trans, root);
5701 
5702 	ret = btrfs_inode_inherit_props(trans, inode, dir);
5703 	if (ret)
5704 		btrfs_err(root->fs_info,
5705 			  "error inheriting props for ino %llu (root %llu): %d",
5706 			  btrfs_ino(inode), root->root_key.objectid, ret);
5707 
5708 	return inode;
5709 fail:
5710 	if (dir && name)
5711 		BTRFS_I(dir)->index_cnt--;
5712 	btrfs_free_path(path);
5713 	iput(inode);
5714 	return ERR_PTR(ret);
5715 }
5716 
5717 static inline u8 btrfs_inode_type(struct inode *inode)
5718 {
5719 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5720 }
5721 
5722 /*
5723  * utility function to add 'inode' into 'parent_inode' with
5724  * a give name and a given sequence number.
5725  * if 'add_backref' is true, also insert a backref from the
5726  * inode to the parent directory.
5727  */
5728 int btrfs_add_link(struct btrfs_trans_handle *trans,
5729 		   struct inode *parent_inode, struct inode *inode,
5730 		   const char *name, int name_len, int add_backref, u64 index)
5731 {
5732 	int ret = 0;
5733 	struct btrfs_key key;
5734 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5735 	u64 ino = btrfs_ino(inode);
5736 	u64 parent_ino = btrfs_ino(parent_inode);
5737 
5738 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5739 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5740 	} else {
5741 		key.objectid = ino;
5742 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5743 		key.offset = 0;
5744 	}
5745 
5746 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5747 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5748 					 key.objectid, root->root_key.objectid,
5749 					 parent_ino, index, name, name_len);
5750 	} else if (add_backref) {
5751 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5752 					     parent_ino, index);
5753 	}
5754 
5755 	/* Nothing to clean up yet */
5756 	if (ret)
5757 		return ret;
5758 
5759 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
5760 				    parent_inode, &key,
5761 				    btrfs_inode_type(inode), index);
5762 	if (ret == -EEXIST || ret == -EOVERFLOW)
5763 		goto fail_dir_item;
5764 	else if (ret) {
5765 		btrfs_abort_transaction(trans, root, ret);
5766 		return ret;
5767 	}
5768 
5769 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
5770 			   name_len * 2);
5771 	inode_inc_iversion(parent_inode);
5772 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5773 	ret = btrfs_update_inode(trans, root, parent_inode);
5774 	if (ret)
5775 		btrfs_abort_transaction(trans, root, ret);
5776 	return ret;
5777 
5778 fail_dir_item:
5779 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5780 		u64 local_index;
5781 		int err;
5782 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5783 				 key.objectid, root->root_key.objectid,
5784 				 parent_ino, &local_index, name, name_len);
5785 
5786 	} else if (add_backref) {
5787 		u64 local_index;
5788 		int err;
5789 
5790 		err = btrfs_del_inode_ref(trans, root, name, name_len,
5791 					  ino, parent_ino, &local_index);
5792 	}
5793 	return ret;
5794 }
5795 
5796 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5797 			    struct inode *dir, struct dentry *dentry,
5798 			    struct inode *inode, int backref, u64 index)
5799 {
5800 	int err = btrfs_add_link(trans, dir, inode,
5801 				 dentry->d_name.name, dentry->d_name.len,
5802 				 backref, index);
5803 	if (err > 0)
5804 		err = -EEXIST;
5805 	return err;
5806 }
5807 
5808 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5809 			umode_t mode, dev_t rdev)
5810 {
5811 	struct btrfs_trans_handle *trans;
5812 	struct btrfs_root *root = BTRFS_I(dir)->root;
5813 	struct inode *inode = NULL;
5814 	int err;
5815 	int drop_inode = 0;
5816 	u64 objectid;
5817 	u64 index = 0;
5818 
5819 	if (!new_valid_dev(rdev))
5820 		return -EINVAL;
5821 
5822 	/*
5823 	 * 2 for inode item and ref
5824 	 * 2 for dir items
5825 	 * 1 for xattr if selinux is on
5826 	 */
5827 	trans = btrfs_start_transaction(root, 5);
5828 	if (IS_ERR(trans))
5829 		return PTR_ERR(trans);
5830 
5831 	err = btrfs_find_free_ino(root, &objectid);
5832 	if (err)
5833 		goto out_unlock;
5834 
5835 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5836 				dentry->d_name.len, btrfs_ino(dir), objectid,
5837 				mode, &index);
5838 	if (IS_ERR(inode)) {
5839 		err = PTR_ERR(inode);
5840 		goto out_unlock;
5841 	}
5842 
5843 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5844 	if (err) {
5845 		drop_inode = 1;
5846 		goto out_unlock;
5847 	}
5848 
5849 	/*
5850 	* If the active LSM wants to access the inode during
5851 	* d_instantiate it needs these. Smack checks to see
5852 	* if the filesystem supports xattrs by looking at the
5853 	* ops vector.
5854 	*/
5855 
5856 	inode->i_op = &btrfs_special_inode_operations;
5857 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5858 	if (err)
5859 		drop_inode = 1;
5860 	else {
5861 		init_special_inode(inode, inode->i_mode, rdev);
5862 		btrfs_update_inode(trans, root, inode);
5863 		d_instantiate(dentry, inode);
5864 	}
5865 out_unlock:
5866 	btrfs_end_transaction(trans, root);
5867 	btrfs_balance_delayed_items(root);
5868 	btrfs_btree_balance_dirty(root);
5869 	if (drop_inode) {
5870 		inode_dec_link_count(inode);
5871 		iput(inode);
5872 	}
5873 	return err;
5874 }
5875 
5876 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5877 			umode_t mode, bool excl)
5878 {
5879 	struct btrfs_trans_handle *trans;
5880 	struct btrfs_root *root = BTRFS_I(dir)->root;
5881 	struct inode *inode = NULL;
5882 	int drop_inode_on_err = 0;
5883 	int err;
5884 	u64 objectid;
5885 	u64 index = 0;
5886 
5887 	/*
5888 	 * 2 for inode item and ref
5889 	 * 2 for dir items
5890 	 * 1 for xattr if selinux is on
5891 	 */
5892 	trans = btrfs_start_transaction(root, 5);
5893 	if (IS_ERR(trans))
5894 		return PTR_ERR(trans);
5895 
5896 	err = btrfs_find_free_ino(root, &objectid);
5897 	if (err)
5898 		goto out_unlock;
5899 
5900 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5901 				dentry->d_name.len, btrfs_ino(dir), objectid,
5902 				mode, &index);
5903 	if (IS_ERR(inode)) {
5904 		err = PTR_ERR(inode);
5905 		goto out_unlock;
5906 	}
5907 	drop_inode_on_err = 1;
5908 
5909 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5910 	if (err)
5911 		goto out_unlock;
5912 
5913 	err = btrfs_update_inode(trans, root, inode);
5914 	if (err)
5915 		goto out_unlock;
5916 
5917 	/*
5918 	* If the active LSM wants to access the inode during
5919 	* d_instantiate it needs these. Smack checks to see
5920 	* if the filesystem supports xattrs by looking at the
5921 	* ops vector.
5922 	*/
5923 	inode->i_fop = &btrfs_file_operations;
5924 	inode->i_op = &btrfs_file_inode_operations;
5925 
5926 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5927 	if (err)
5928 		goto out_unlock;
5929 
5930 	inode->i_mapping->a_ops = &btrfs_aops;
5931 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5932 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5933 	d_instantiate(dentry, inode);
5934 
5935 out_unlock:
5936 	btrfs_end_transaction(trans, root);
5937 	if (err && drop_inode_on_err) {
5938 		inode_dec_link_count(inode);
5939 		iput(inode);
5940 	}
5941 	btrfs_balance_delayed_items(root);
5942 	btrfs_btree_balance_dirty(root);
5943 	return err;
5944 }
5945 
5946 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5947 		      struct dentry *dentry)
5948 {
5949 	struct btrfs_trans_handle *trans;
5950 	struct btrfs_root *root = BTRFS_I(dir)->root;
5951 	struct inode *inode = old_dentry->d_inode;
5952 	u64 index;
5953 	int err;
5954 	int drop_inode = 0;
5955 
5956 	/* do not allow sys_link's with other subvols of the same device */
5957 	if (root->objectid != BTRFS_I(inode)->root->objectid)
5958 		return -EXDEV;
5959 
5960 	if (inode->i_nlink >= BTRFS_LINK_MAX)
5961 		return -EMLINK;
5962 
5963 	err = btrfs_set_inode_index(dir, &index);
5964 	if (err)
5965 		goto fail;
5966 
5967 	/*
5968 	 * 2 items for inode and inode ref
5969 	 * 2 items for dir items
5970 	 * 1 item for parent inode
5971 	 */
5972 	trans = btrfs_start_transaction(root, 5);
5973 	if (IS_ERR(trans)) {
5974 		err = PTR_ERR(trans);
5975 		goto fail;
5976 	}
5977 
5978 	/* There are several dir indexes for this inode, clear the cache. */
5979 	BTRFS_I(inode)->dir_index = 0ULL;
5980 	inc_nlink(inode);
5981 	inode_inc_iversion(inode);
5982 	inode->i_ctime = CURRENT_TIME;
5983 	ihold(inode);
5984 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5985 
5986 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5987 
5988 	if (err) {
5989 		drop_inode = 1;
5990 	} else {
5991 		struct dentry *parent = dentry->d_parent;
5992 		err = btrfs_update_inode(trans, root, inode);
5993 		if (err)
5994 			goto fail;
5995 		if (inode->i_nlink == 1) {
5996 			/*
5997 			 * If new hard link count is 1, it's a file created
5998 			 * with open(2) O_TMPFILE flag.
5999 			 */
6000 			err = btrfs_orphan_del(trans, inode);
6001 			if (err)
6002 				goto fail;
6003 		}
6004 		d_instantiate(dentry, inode);
6005 		btrfs_log_new_name(trans, inode, NULL, parent);
6006 	}
6007 
6008 	btrfs_end_transaction(trans, root);
6009 	btrfs_balance_delayed_items(root);
6010 fail:
6011 	if (drop_inode) {
6012 		inode_dec_link_count(inode);
6013 		iput(inode);
6014 	}
6015 	btrfs_btree_balance_dirty(root);
6016 	return err;
6017 }
6018 
6019 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6020 {
6021 	struct inode *inode = NULL;
6022 	struct btrfs_trans_handle *trans;
6023 	struct btrfs_root *root = BTRFS_I(dir)->root;
6024 	int err = 0;
6025 	int drop_on_err = 0;
6026 	u64 objectid = 0;
6027 	u64 index = 0;
6028 
6029 	/*
6030 	 * 2 items for inode and ref
6031 	 * 2 items for dir items
6032 	 * 1 for xattr if selinux is on
6033 	 */
6034 	trans = btrfs_start_transaction(root, 5);
6035 	if (IS_ERR(trans))
6036 		return PTR_ERR(trans);
6037 
6038 	err = btrfs_find_free_ino(root, &objectid);
6039 	if (err)
6040 		goto out_fail;
6041 
6042 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6043 				dentry->d_name.len, btrfs_ino(dir), objectid,
6044 				S_IFDIR | mode, &index);
6045 	if (IS_ERR(inode)) {
6046 		err = PTR_ERR(inode);
6047 		goto out_fail;
6048 	}
6049 
6050 	drop_on_err = 1;
6051 
6052 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6053 	if (err)
6054 		goto out_fail;
6055 
6056 	inode->i_op = &btrfs_dir_inode_operations;
6057 	inode->i_fop = &btrfs_dir_file_operations;
6058 
6059 	btrfs_i_size_write(inode, 0);
6060 	err = btrfs_update_inode(trans, root, inode);
6061 	if (err)
6062 		goto out_fail;
6063 
6064 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6065 			     dentry->d_name.len, 0, index);
6066 	if (err)
6067 		goto out_fail;
6068 
6069 	d_instantiate(dentry, inode);
6070 	drop_on_err = 0;
6071 
6072 out_fail:
6073 	btrfs_end_transaction(trans, root);
6074 	if (drop_on_err)
6075 		iput(inode);
6076 	btrfs_balance_delayed_items(root);
6077 	btrfs_btree_balance_dirty(root);
6078 	return err;
6079 }
6080 
6081 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6082  * and an extent that you want to insert, deal with overlap and insert
6083  * the new extent into the tree.
6084  */
6085 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6086 				struct extent_map *existing,
6087 				struct extent_map *em,
6088 				u64 map_start, u64 map_len)
6089 {
6090 	u64 start_diff;
6091 
6092 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6093 	start_diff = map_start - em->start;
6094 	em->start = map_start;
6095 	em->len = map_len;
6096 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6097 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6098 		em->block_start += start_diff;
6099 		em->block_len -= start_diff;
6100 	}
6101 	return add_extent_mapping(em_tree, em, 0);
6102 }
6103 
6104 static noinline int uncompress_inline(struct btrfs_path *path,
6105 				      struct inode *inode, struct page *page,
6106 				      size_t pg_offset, u64 extent_offset,
6107 				      struct btrfs_file_extent_item *item)
6108 {
6109 	int ret;
6110 	struct extent_buffer *leaf = path->nodes[0];
6111 	char *tmp;
6112 	size_t max_size;
6113 	unsigned long inline_size;
6114 	unsigned long ptr;
6115 	int compress_type;
6116 
6117 	WARN_ON(pg_offset != 0);
6118 	compress_type = btrfs_file_extent_compression(leaf, item);
6119 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6120 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6121 					btrfs_item_nr(path->slots[0]));
6122 	tmp = kmalloc(inline_size, GFP_NOFS);
6123 	if (!tmp)
6124 		return -ENOMEM;
6125 	ptr = btrfs_file_extent_inline_start(item);
6126 
6127 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6128 
6129 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6130 	ret = btrfs_decompress(compress_type, tmp, page,
6131 			       extent_offset, inline_size, max_size);
6132 	kfree(tmp);
6133 	return ret;
6134 }
6135 
6136 /*
6137  * a bit scary, this does extent mapping from logical file offset to the disk.
6138  * the ugly parts come from merging extents from the disk with the in-ram
6139  * representation.  This gets more complex because of the data=ordered code,
6140  * where the in-ram extents might be locked pending data=ordered completion.
6141  *
6142  * This also copies inline extents directly into the page.
6143  */
6144 
6145 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6146 				    size_t pg_offset, u64 start, u64 len,
6147 				    int create)
6148 {
6149 	int ret;
6150 	int err = 0;
6151 	u64 extent_start = 0;
6152 	u64 extent_end = 0;
6153 	u64 objectid = btrfs_ino(inode);
6154 	u32 found_type;
6155 	struct btrfs_path *path = NULL;
6156 	struct btrfs_root *root = BTRFS_I(inode)->root;
6157 	struct btrfs_file_extent_item *item;
6158 	struct extent_buffer *leaf;
6159 	struct btrfs_key found_key;
6160 	struct extent_map *em = NULL;
6161 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6162 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6163 	struct btrfs_trans_handle *trans = NULL;
6164 	const bool new_inline = !page || create;
6165 
6166 again:
6167 	read_lock(&em_tree->lock);
6168 	em = lookup_extent_mapping(em_tree, start, len);
6169 	if (em)
6170 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6171 	read_unlock(&em_tree->lock);
6172 
6173 	if (em) {
6174 		if (em->start > start || em->start + em->len <= start)
6175 			free_extent_map(em);
6176 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6177 			free_extent_map(em);
6178 		else
6179 			goto out;
6180 	}
6181 	em = alloc_extent_map();
6182 	if (!em) {
6183 		err = -ENOMEM;
6184 		goto out;
6185 	}
6186 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6187 	em->start = EXTENT_MAP_HOLE;
6188 	em->orig_start = EXTENT_MAP_HOLE;
6189 	em->len = (u64)-1;
6190 	em->block_len = (u64)-1;
6191 
6192 	if (!path) {
6193 		path = btrfs_alloc_path();
6194 		if (!path) {
6195 			err = -ENOMEM;
6196 			goto out;
6197 		}
6198 		/*
6199 		 * Chances are we'll be called again, so go ahead and do
6200 		 * readahead
6201 		 */
6202 		path->reada = 1;
6203 	}
6204 
6205 	ret = btrfs_lookup_file_extent(trans, root, path,
6206 				       objectid, start, trans != NULL);
6207 	if (ret < 0) {
6208 		err = ret;
6209 		goto out;
6210 	}
6211 
6212 	if (ret != 0) {
6213 		if (path->slots[0] == 0)
6214 			goto not_found;
6215 		path->slots[0]--;
6216 	}
6217 
6218 	leaf = path->nodes[0];
6219 	item = btrfs_item_ptr(leaf, path->slots[0],
6220 			      struct btrfs_file_extent_item);
6221 	/* are we inside the extent that was found? */
6222 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6223 	found_type = btrfs_key_type(&found_key);
6224 	if (found_key.objectid != objectid ||
6225 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6226 		/*
6227 		 * If we backup past the first extent we want to move forward
6228 		 * and see if there is an extent in front of us, otherwise we'll
6229 		 * say there is a hole for our whole search range which can
6230 		 * cause problems.
6231 		 */
6232 		extent_end = start;
6233 		goto next;
6234 	}
6235 
6236 	found_type = btrfs_file_extent_type(leaf, item);
6237 	extent_start = found_key.offset;
6238 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6239 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6240 		extent_end = extent_start +
6241 		       btrfs_file_extent_num_bytes(leaf, item);
6242 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6243 		size_t size;
6244 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6245 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6246 	}
6247 next:
6248 	if (start >= extent_end) {
6249 		path->slots[0]++;
6250 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6251 			ret = btrfs_next_leaf(root, path);
6252 			if (ret < 0) {
6253 				err = ret;
6254 				goto out;
6255 			}
6256 			if (ret > 0)
6257 				goto not_found;
6258 			leaf = path->nodes[0];
6259 		}
6260 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6261 		if (found_key.objectid != objectid ||
6262 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6263 			goto not_found;
6264 		if (start + len <= found_key.offset)
6265 			goto not_found;
6266 		em->start = start;
6267 		em->orig_start = start;
6268 		em->len = found_key.offset - start;
6269 		goto not_found_em;
6270 	}
6271 
6272 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6273 
6274 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6275 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6276 		goto insert;
6277 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6278 		unsigned long ptr;
6279 		char *map;
6280 		size_t size;
6281 		size_t extent_offset;
6282 		size_t copy_size;
6283 
6284 		if (new_inline)
6285 			goto out;
6286 
6287 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6288 		extent_offset = page_offset(page) + pg_offset - extent_start;
6289 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6290 				size - extent_offset);
6291 		em->start = extent_start + extent_offset;
6292 		em->len = ALIGN(copy_size, root->sectorsize);
6293 		em->orig_block_len = em->len;
6294 		em->orig_start = em->start;
6295 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6296 		if (create == 0 && !PageUptodate(page)) {
6297 			if (btrfs_file_extent_compression(leaf, item) !=
6298 			    BTRFS_COMPRESS_NONE) {
6299 				ret = uncompress_inline(path, inode, page,
6300 							pg_offset,
6301 							extent_offset, item);
6302 				if (ret) {
6303 					err = ret;
6304 					goto out;
6305 				}
6306 			} else {
6307 				map = kmap(page);
6308 				read_extent_buffer(leaf, map + pg_offset, ptr,
6309 						   copy_size);
6310 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6311 					memset(map + pg_offset + copy_size, 0,
6312 					       PAGE_CACHE_SIZE - pg_offset -
6313 					       copy_size);
6314 				}
6315 				kunmap(page);
6316 			}
6317 			flush_dcache_page(page);
6318 		} else if (create && PageUptodate(page)) {
6319 			BUG();
6320 			if (!trans) {
6321 				kunmap(page);
6322 				free_extent_map(em);
6323 				em = NULL;
6324 
6325 				btrfs_release_path(path);
6326 				trans = btrfs_join_transaction(root);
6327 
6328 				if (IS_ERR(trans))
6329 					return ERR_CAST(trans);
6330 				goto again;
6331 			}
6332 			map = kmap(page);
6333 			write_extent_buffer(leaf, map + pg_offset, ptr,
6334 					    copy_size);
6335 			kunmap(page);
6336 			btrfs_mark_buffer_dirty(leaf);
6337 		}
6338 		set_extent_uptodate(io_tree, em->start,
6339 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6340 		goto insert;
6341 	}
6342 not_found:
6343 	em->start = start;
6344 	em->orig_start = start;
6345 	em->len = len;
6346 not_found_em:
6347 	em->block_start = EXTENT_MAP_HOLE;
6348 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6349 insert:
6350 	btrfs_release_path(path);
6351 	if (em->start > start || extent_map_end(em) <= start) {
6352 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6353 			em->start, em->len, start, len);
6354 		err = -EIO;
6355 		goto out;
6356 	}
6357 
6358 	err = 0;
6359 	write_lock(&em_tree->lock);
6360 	ret = add_extent_mapping(em_tree, em, 0);
6361 	/* it is possible that someone inserted the extent into the tree
6362 	 * while we had the lock dropped.  It is also possible that
6363 	 * an overlapping map exists in the tree
6364 	 */
6365 	if (ret == -EEXIST) {
6366 		struct extent_map *existing;
6367 
6368 		ret = 0;
6369 
6370 		existing = lookup_extent_mapping(em_tree, start, len);
6371 		if (existing && (existing->start > start ||
6372 		    existing->start + existing->len <= start)) {
6373 			free_extent_map(existing);
6374 			existing = NULL;
6375 		}
6376 		if (!existing) {
6377 			existing = lookup_extent_mapping(em_tree, em->start,
6378 							 em->len);
6379 			if (existing) {
6380 				err = merge_extent_mapping(em_tree, existing,
6381 							   em, start,
6382 							   root->sectorsize);
6383 				free_extent_map(existing);
6384 				if (err) {
6385 					free_extent_map(em);
6386 					em = NULL;
6387 				}
6388 			} else {
6389 				err = -EIO;
6390 				free_extent_map(em);
6391 				em = NULL;
6392 			}
6393 		} else {
6394 			free_extent_map(em);
6395 			em = existing;
6396 			err = 0;
6397 		}
6398 	}
6399 	write_unlock(&em_tree->lock);
6400 out:
6401 
6402 	trace_btrfs_get_extent(root, em);
6403 
6404 	if (path)
6405 		btrfs_free_path(path);
6406 	if (trans) {
6407 		ret = btrfs_end_transaction(trans, root);
6408 		if (!err)
6409 			err = ret;
6410 	}
6411 	if (err) {
6412 		free_extent_map(em);
6413 		return ERR_PTR(err);
6414 	}
6415 	BUG_ON(!em); /* Error is always set */
6416 	return em;
6417 }
6418 
6419 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6420 					   size_t pg_offset, u64 start, u64 len,
6421 					   int create)
6422 {
6423 	struct extent_map *em;
6424 	struct extent_map *hole_em = NULL;
6425 	u64 range_start = start;
6426 	u64 end;
6427 	u64 found;
6428 	u64 found_end;
6429 	int err = 0;
6430 
6431 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6432 	if (IS_ERR(em))
6433 		return em;
6434 	if (em) {
6435 		/*
6436 		 * if our em maps to
6437 		 * -  a hole or
6438 		 * -  a pre-alloc extent,
6439 		 * there might actually be delalloc bytes behind it.
6440 		 */
6441 		if (em->block_start != EXTENT_MAP_HOLE &&
6442 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6443 			return em;
6444 		else
6445 			hole_em = em;
6446 	}
6447 
6448 	/* check to see if we've wrapped (len == -1 or similar) */
6449 	end = start + len;
6450 	if (end < start)
6451 		end = (u64)-1;
6452 	else
6453 		end -= 1;
6454 
6455 	em = NULL;
6456 
6457 	/* ok, we didn't find anything, lets look for delalloc */
6458 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6459 				 end, len, EXTENT_DELALLOC, 1);
6460 	found_end = range_start + found;
6461 	if (found_end < range_start)
6462 		found_end = (u64)-1;
6463 
6464 	/*
6465 	 * we didn't find anything useful, return
6466 	 * the original results from get_extent()
6467 	 */
6468 	if (range_start > end || found_end <= start) {
6469 		em = hole_em;
6470 		hole_em = NULL;
6471 		goto out;
6472 	}
6473 
6474 	/* adjust the range_start to make sure it doesn't
6475 	 * go backwards from the start they passed in
6476 	 */
6477 	range_start = max(start, range_start);
6478 	found = found_end - range_start;
6479 
6480 	if (found > 0) {
6481 		u64 hole_start = start;
6482 		u64 hole_len = len;
6483 
6484 		em = alloc_extent_map();
6485 		if (!em) {
6486 			err = -ENOMEM;
6487 			goto out;
6488 		}
6489 		/*
6490 		 * when btrfs_get_extent can't find anything it
6491 		 * returns one huge hole
6492 		 *
6493 		 * make sure what it found really fits our range, and
6494 		 * adjust to make sure it is based on the start from
6495 		 * the caller
6496 		 */
6497 		if (hole_em) {
6498 			u64 calc_end = extent_map_end(hole_em);
6499 
6500 			if (calc_end <= start || (hole_em->start > end)) {
6501 				free_extent_map(hole_em);
6502 				hole_em = NULL;
6503 			} else {
6504 				hole_start = max(hole_em->start, start);
6505 				hole_len = calc_end - hole_start;
6506 			}
6507 		}
6508 		em->bdev = NULL;
6509 		if (hole_em && range_start > hole_start) {
6510 			/* our hole starts before our delalloc, so we
6511 			 * have to return just the parts of the hole
6512 			 * that go until  the delalloc starts
6513 			 */
6514 			em->len = min(hole_len,
6515 				      range_start - hole_start);
6516 			em->start = hole_start;
6517 			em->orig_start = hole_start;
6518 			/*
6519 			 * don't adjust block start at all,
6520 			 * it is fixed at EXTENT_MAP_HOLE
6521 			 */
6522 			em->block_start = hole_em->block_start;
6523 			em->block_len = hole_len;
6524 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6525 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6526 		} else {
6527 			em->start = range_start;
6528 			em->len = found;
6529 			em->orig_start = range_start;
6530 			em->block_start = EXTENT_MAP_DELALLOC;
6531 			em->block_len = found;
6532 		}
6533 	} else if (hole_em) {
6534 		return hole_em;
6535 	}
6536 out:
6537 
6538 	free_extent_map(hole_em);
6539 	if (err) {
6540 		free_extent_map(em);
6541 		return ERR_PTR(err);
6542 	}
6543 	return em;
6544 }
6545 
6546 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6547 						  u64 start, u64 len)
6548 {
6549 	struct btrfs_root *root = BTRFS_I(inode)->root;
6550 	struct extent_map *em;
6551 	struct btrfs_key ins;
6552 	u64 alloc_hint;
6553 	int ret;
6554 
6555 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6556 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6557 				   alloc_hint, &ins, 1, 1);
6558 	if (ret)
6559 		return ERR_PTR(ret);
6560 
6561 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6562 			      ins.offset, ins.offset, ins.offset, 0);
6563 	if (IS_ERR(em)) {
6564 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6565 		return em;
6566 	}
6567 
6568 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6569 					   ins.offset, ins.offset, 0);
6570 	if (ret) {
6571 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6572 		free_extent_map(em);
6573 		return ERR_PTR(ret);
6574 	}
6575 
6576 	return em;
6577 }
6578 
6579 /*
6580  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6581  * block must be cow'd
6582  */
6583 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6584 			      u64 *orig_start, u64 *orig_block_len,
6585 			      u64 *ram_bytes)
6586 {
6587 	struct btrfs_trans_handle *trans;
6588 	struct btrfs_path *path;
6589 	int ret;
6590 	struct extent_buffer *leaf;
6591 	struct btrfs_root *root = BTRFS_I(inode)->root;
6592 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6593 	struct btrfs_file_extent_item *fi;
6594 	struct btrfs_key key;
6595 	u64 disk_bytenr;
6596 	u64 backref_offset;
6597 	u64 extent_end;
6598 	u64 num_bytes;
6599 	int slot;
6600 	int found_type;
6601 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6602 
6603 	path = btrfs_alloc_path();
6604 	if (!path)
6605 		return -ENOMEM;
6606 
6607 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6608 				       offset, 0);
6609 	if (ret < 0)
6610 		goto out;
6611 
6612 	slot = path->slots[0];
6613 	if (ret == 1) {
6614 		if (slot == 0) {
6615 			/* can't find the item, must cow */
6616 			ret = 0;
6617 			goto out;
6618 		}
6619 		slot--;
6620 	}
6621 	ret = 0;
6622 	leaf = path->nodes[0];
6623 	btrfs_item_key_to_cpu(leaf, &key, slot);
6624 	if (key.objectid != btrfs_ino(inode) ||
6625 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6626 		/* not our file or wrong item type, must cow */
6627 		goto out;
6628 	}
6629 
6630 	if (key.offset > offset) {
6631 		/* Wrong offset, must cow */
6632 		goto out;
6633 	}
6634 
6635 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6636 	found_type = btrfs_file_extent_type(leaf, fi);
6637 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6638 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6639 		/* not a regular extent, must cow */
6640 		goto out;
6641 	}
6642 
6643 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6644 		goto out;
6645 
6646 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6647 	if (extent_end <= offset)
6648 		goto out;
6649 
6650 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6651 	if (disk_bytenr == 0)
6652 		goto out;
6653 
6654 	if (btrfs_file_extent_compression(leaf, fi) ||
6655 	    btrfs_file_extent_encryption(leaf, fi) ||
6656 	    btrfs_file_extent_other_encoding(leaf, fi))
6657 		goto out;
6658 
6659 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6660 
6661 	if (orig_start) {
6662 		*orig_start = key.offset - backref_offset;
6663 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6664 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6665 	}
6666 
6667 	if (btrfs_extent_readonly(root, disk_bytenr))
6668 		goto out;
6669 
6670 	num_bytes = min(offset + *len, extent_end) - offset;
6671 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6672 		u64 range_end;
6673 
6674 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6675 		ret = test_range_bit(io_tree, offset, range_end,
6676 				     EXTENT_DELALLOC, 0, NULL);
6677 		if (ret) {
6678 			ret = -EAGAIN;
6679 			goto out;
6680 		}
6681 	}
6682 
6683 	btrfs_release_path(path);
6684 
6685 	/*
6686 	 * look for other files referencing this extent, if we
6687 	 * find any we must cow
6688 	 */
6689 	trans = btrfs_join_transaction(root);
6690 	if (IS_ERR(trans)) {
6691 		ret = 0;
6692 		goto out;
6693 	}
6694 
6695 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6696 				    key.offset - backref_offset, disk_bytenr);
6697 	btrfs_end_transaction(trans, root);
6698 	if (ret) {
6699 		ret = 0;
6700 		goto out;
6701 	}
6702 
6703 	/*
6704 	 * adjust disk_bytenr and num_bytes to cover just the bytes
6705 	 * in this extent we are about to write.  If there
6706 	 * are any csums in that range we have to cow in order
6707 	 * to keep the csums correct
6708 	 */
6709 	disk_bytenr += backref_offset;
6710 	disk_bytenr += offset - key.offset;
6711 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6712 				goto out;
6713 	/*
6714 	 * all of the above have passed, it is safe to overwrite this extent
6715 	 * without cow
6716 	 */
6717 	*len = num_bytes;
6718 	ret = 1;
6719 out:
6720 	btrfs_free_path(path);
6721 	return ret;
6722 }
6723 
6724 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6725 {
6726 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
6727 	int found = false;
6728 	void **pagep = NULL;
6729 	struct page *page = NULL;
6730 	int start_idx;
6731 	int end_idx;
6732 
6733 	start_idx = start >> PAGE_CACHE_SHIFT;
6734 
6735 	/*
6736 	 * end is the last byte in the last page.  end == start is legal
6737 	 */
6738 	end_idx = end >> PAGE_CACHE_SHIFT;
6739 
6740 	rcu_read_lock();
6741 
6742 	/* Most of the code in this while loop is lifted from
6743 	 * find_get_page.  It's been modified to begin searching from a
6744 	 * page and return just the first page found in that range.  If the
6745 	 * found idx is less than or equal to the end idx then we know that
6746 	 * a page exists.  If no pages are found or if those pages are
6747 	 * outside of the range then we're fine (yay!) */
6748 	while (page == NULL &&
6749 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6750 		page = radix_tree_deref_slot(pagep);
6751 		if (unlikely(!page))
6752 			break;
6753 
6754 		if (radix_tree_exception(page)) {
6755 			if (radix_tree_deref_retry(page)) {
6756 				page = NULL;
6757 				continue;
6758 			}
6759 			/*
6760 			 * Otherwise, shmem/tmpfs must be storing a swap entry
6761 			 * here as an exceptional entry: so return it without
6762 			 * attempting to raise page count.
6763 			 */
6764 			page = NULL;
6765 			break; /* TODO: Is this relevant for this use case? */
6766 		}
6767 
6768 		if (!page_cache_get_speculative(page)) {
6769 			page = NULL;
6770 			continue;
6771 		}
6772 
6773 		/*
6774 		 * Has the page moved?
6775 		 * This is part of the lockless pagecache protocol. See
6776 		 * include/linux/pagemap.h for details.
6777 		 */
6778 		if (unlikely(page != *pagep)) {
6779 			page_cache_release(page);
6780 			page = NULL;
6781 		}
6782 	}
6783 
6784 	if (page) {
6785 		if (page->index <= end_idx)
6786 			found = true;
6787 		page_cache_release(page);
6788 	}
6789 
6790 	rcu_read_unlock();
6791 	return found;
6792 }
6793 
6794 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6795 			      struct extent_state **cached_state, int writing)
6796 {
6797 	struct btrfs_ordered_extent *ordered;
6798 	int ret = 0;
6799 
6800 	while (1) {
6801 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6802 				 0, cached_state);
6803 		/*
6804 		 * We're concerned with the entire range that we're going to be
6805 		 * doing DIO to, so we need to make sure theres no ordered
6806 		 * extents in this range.
6807 		 */
6808 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6809 						     lockend - lockstart + 1);
6810 
6811 		/*
6812 		 * We need to make sure there are no buffered pages in this
6813 		 * range either, we could have raced between the invalidate in
6814 		 * generic_file_direct_write and locking the extent.  The
6815 		 * invalidate needs to happen so that reads after a write do not
6816 		 * get stale data.
6817 		 */
6818 		if (!ordered &&
6819 		    (!writing ||
6820 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
6821 			break;
6822 
6823 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6824 				     cached_state, GFP_NOFS);
6825 
6826 		if (ordered) {
6827 			btrfs_start_ordered_extent(inode, ordered, 1);
6828 			btrfs_put_ordered_extent(ordered);
6829 		} else {
6830 			/* Screw you mmap */
6831 			ret = filemap_write_and_wait_range(inode->i_mapping,
6832 							   lockstart,
6833 							   lockend);
6834 			if (ret)
6835 				break;
6836 
6837 			/*
6838 			 * If we found a page that couldn't be invalidated just
6839 			 * fall back to buffered.
6840 			 */
6841 			ret = invalidate_inode_pages2_range(inode->i_mapping,
6842 					lockstart >> PAGE_CACHE_SHIFT,
6843 					lockend >> PAGE_CACHE_SHIFT);
6844 			if (ret)
6845 				break;
6846 		}
6847 
6848 		cond_resched();
6849 	}
6850 
6851 	return ret;
6852 }
6853 
6854 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6855 					   u64 len, u64 orig_start,
6856 					   u64 block_start, u64 block_len,
6857 					   u64 orig_block_len, u64 ram_bytes,
6858 					   int type)
6859 {
6860 	struct extent_map_tree *em_tree;
6861 	struct extent_map *em;
6862 	struct btrfs_root *root = BTRFS_I(inode)->root;
6863 	int ret;
6864 
6865 	em_tree = &BTRFS_I(inode)->extent_tree;
6866 	em = alloc_extent_map();
6867 	if (!em)
6868 		return ERR_PTR(-ENOMEM);
6869 
6870 	em->start = start;
6871 	em->orig_start = orig_start;
6872 	em->mod_start = start;
6873 	em->mod_len = len;
6874 	em->len = len;
6875 	em->block_len = block_len;
6876 	em->block_start = block_start;
6877 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6878 	em->orig_block_len = orig_block_len;
6879 	em->ram_bytes = ram_bytes;
6880 	em->generation = -1;
6881 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6882 	if (type == BTRFS_ORDERED_PREALLOC)
6883 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
6884 
6885 	do {
6886 		btrfs_drop_extent_cache(inode, em->start,
6887 				em->start + em->len - 1, 0);
6888 		write_lock(&em_tree->lock);
6889 		ret = add_extent_mapping(em_tree, em, 1);
6890 		write_unlock(&em_tree->lock);
6891 	} while (ret == -EEXIST);
6892 
6893 	if (ret) {
6894 		free_extent_map(em);
6895 		return ERR_PTR(ret);
6896 	}
6897 
6898 	return em;
6899 }
6900 
6901 
6902 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6903 				   struct buffer_head *bh_result, int create)
6904 {
6905 	struct extent_map *em;
6906 	struct btrfs_root *root = BTRFS_I(inode)->root;
6907 	struct extent_state *cached_state = NULL;
6908 	u64 start = iblock << inode->i_blkbits;
6909 	u64 lockstart, lockend;
6910 	u64 len = bh_result->b_size;
6911 	int unlock_bits = EXTENT_LOCKED;
6912 	int ret = 0;
6913 
6914 	if (create)
6915 		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6916 	else
6917 		len = min_t(u64, len, root->sectorsize);
6918 
6919 	lockstart = start;
6920 	lockend = start + len - 1;
6921 
6922 	/*
6923 	 * If this errors out it's because we couldn't invalidate pagecache for
6924 	 * this range and we need to fallback to buffered.
6925 	 */
6926 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6927 		return -ENOTBLK;
6928 
6929 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6930 	if (IS_ERR(em)) {
6931 		ret = PTR_ERR(em);
6932 		goto unlock_err;
6933 	}
6934 
6935 	/*
6936 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6937 	 * io.  INLINE is special, and we could probably kludge it in here, but
6938 	 * it's still buffered so for safety lets just fall back to the generic
6939 	 * buffered path.
6940 	 *
6941 	 * For COMPRESSED we _have_ to read the entire extent in so we can
6942 	 * decompress it, so there will be buffering required no matter what we
6943 	 * do, so go ahead and fallback to buffered.
6944 	 *
6945 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6946 	 * to buffered IO.  Don't blame me, this is the price we pay for using
6947 	 * the generic code.
6948 	 */
6949 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6950 	    em->block_start == EXTENT_MAP_INLINE) {
6951 		free_extent_map(em);
6952 		ret = -ENOTBLK;
6953 		goto unlock_err;
6954 	}
6955 
6956 	/* Just a good old fashioned hole, return */
6957 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6958 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6959 		free_extent_map(em);
6960 		goto unlock_err;
6961 	}
6962 
6963 	/*
6964 	 * We don't allocate a new extent in the following cases
6965 	 *
6966 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6967 	 * existing extent.
6968 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
6969 	 * just use the extent.
6970 	 *
6971 	 */
6972 	if (!create) {
6973 		len = min(len, em->len - (start - em->start));
6974 		lockstart = start + len;
6975 		goto unlock;
6976 	}
6977 
6978 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6979 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6980 	     em->block_start != EXTENT_MAP_HOLE)) {
6981 		int type;
6982 		int ret;
6983 		u64 block_start, orig_start, orig_block_len, ram_bytes;
6984 
6985 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6986 			type = BTRFS_ORDERED_PREALLOC;
6987 		else
6988 			type = BTRFS_ORDERED_NOCOW;
6989 		len = min(len, em->len - (start - em->start));
6990 		block_start = em->block_start + (start - em->start);
6991 
6992 		if (can_nocow_extent(inode, start, &len, &orig_start,
6993 				     &orig_block_len, &ram_bytes) == 1) {
6994 			if (type == BTRFS_ORDERED_PREALLOC) {
6995 				free_extent_map(em);
6996 				em = create_pinned_em(inode, start, len,
6997 						       orig_start,
6998 						       block_start, len,
6999 						       orig_block_len,
7000 						       ram_bytes, type);
7001 				if (IS_ERR(em))
7002 					goto unlock_err;
7003 			}
7004 
7005 			ret = btrfs_add_ordered_extent_dio(inode, start,
7006 					   block_start, len, len, type);
7007 			if (ret) {
7008 				free_extent_map(em);
7009 				goto unlock_err;
7010 			}
7011 			goto unlock;
7012 		}
7013 	}
7014 
7015 	/*
7016 	 * this will cow the extent, reset the len in case we changed
7017 	 * it above
7018 	 */
7019 	len = bh_result->b_size;
7020 	free_extent_map(em);
7021 	em = btrfs_new_extent_direct(inode, start, len);
7022 	if (IS_ERR(em)) {
7023 		ret = PTR_ERR(em);
7024 		goto unlock_err;
7025 	}
7026 	len = min(len, em->len - (start - em->start));
7027 unlock:
7028 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7029 		inode->i_blkbits;
7030 	bh_result->b_size = len;
7031 	bh_result->b_bdev = em->bdev;
7032 	set_buffer_mapped(bh_result);
7033 	if (create) {
7034 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7035 			set_buffer_new(bh_result);
7036 
7037 		/*
7038 		 * Need to update the i_size under the extent lock so buffered
7039 		 * readers will get the updated i_size when we unlock.
7040 		 */
7041 		if (start + len > i_size_read(inode))
7042 			i_size_write(inode, start + len);
7043 
7044 		spin_lock(&BTRFS_I(inode)->lock);
7045 		BTRFS_I(inode)->outstanding_extents++;
7046 		spin_unlock(&BTRFS_I(inode)->lock);
7047 
7048 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7049 				     lockstart + len - 1, EXTENT_DELALLOC, NULL,
7050 				     &cached_state, GFP_NOFS);
7051 		BUG_ON(ret);
7052 	}
7053 
7054 	/*
7055 	 * In the case of write we need to clear and unlock the entire range,
7056 	 * in the case of read we need to unlock only the end area that we
7057 	 * aren't using if there is any left over space.
7058 	 */
7059 	if (lockstart < lockend) {
7060 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7061 				 lockend, unlock_bits, 1, 0,
7062 				 &cached_state, GFP_NOFS);
7063 	} else {
7064 		free_extent_state(cached_state);
7065 	}
7066 
7067 	free_extent_map(em);
7068 
7069 	return 0;
7070 
7071 unlock_err:
7072 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7073 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7074 	return ret;
7075 }
7076 
7077 static void btrfs_endio_direct_read(struct bio *bio, int err)
7078 {
7079 	struct btrfs_dio_private *dip = bio->bi_private;
7080 	struct bio_vec *bvec;
7081 	struct inode *inode = dip->inode;
7082 	struct btrfs_root *root = BTRFS_I(inode)->root;
7083 	struct bio *dio_bio;
7084 	u32 *csums = (u32 *)dip->csum;
7085 	u64 start;
7086 	int i;
7087 
7088 	start = dip->logical_offset;
7089 	bio_for_each_segment_all(bvec, bio, i) {
7090 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7091 			struct page *page = bvec->bv_page;
7092 			char *kaddr;
7093 			u32 csum = ~(u32)0;
7094 			unsigned long flags;
7095 
7096 			local_irq_save(flags);
7097 			kaddr = kmap_atomic(page);
7098 			csum = btrfs_csum_data(kaddr + bvec->bv_offset,
7099 					       csum, bvec->bv_len);
7100 			btrfs_csum_final(csum, (char *)&csum);
7101 			kunmap_atomic(kaddr);
7102 			local_irq_restore(flags);
7103 
7104 			flush_dcache_page(bvec->bv_page);
7105 			if (csum != csums[i]) {
7106 				btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
7107 					  btrfs_ino(inode), start, csum,
7108 					  csums[i]);
7109 				err = -EIO;
7110 			}
7111 		}
7112 
7113 		start += bvec->bv_len;
7114 	}
7115 
7116 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7117 		      dip->logical_offset + dip->bytes - 1);
7118 	dio_bio = dip->dio_bio;
7119 
7120 	kfree(dip);
7121 
7122 	/* If we had a csum failure make sure to clear the uptodate flag */
7123 	if (err)
7124 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7125 	dio_end_io(dio_bio, err);
7126 	bio_put(bio);
7127 }
7128 
7129 static void btrfs_endio_direct_write(struct bio *bio, int err)
7130 {
7131 	struct btrfs_dio_private *dip = bio->bi_private;
7132 	struct inode *inode = dip->inode;
7133 	struct btrfs_root *root = BTRFS_I(inode)->root;
7134 	struct btrfs_ordered_extent *ordered = NULL;
7135 	u64 ordered_offset = dip->logical_offset;
7136 	u64 ordered_bytes = dip->bytes;
7137 	struct bio *dio_bio;
7138 	int ret;
7139 
7140 	if (err)
7141 		goto out_done;
7142 again:
7143 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7144 						   &ordered_offset,
7145 						   ordered_bytes, !err);
7146 	if (!ret)
7147 		goto out_test;
7148 
7149 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
7150 	btrfs_queue_work(root->fs_info->endio_write_workers,
7151 			 &ordered->work);
7152 out_test:
7153 	/*
7154 	 * our bio might span multiple ordered extents.  If we haven't
7155 	 * completed the accounting for the whole dio, go back and try again
7156 	 */
7157 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7158 		ordered_bytes = dip->logical_offset + dip->bytes -
7159 			ordered_offset;
7160 		ordered = NULL;
7161 		goto again;
7162 	}
7163 out_done:
7164 	dio_bio = dip->dio_bio;
7165 
7166 	kfree(dip);
7167 
7168 	/* If we had an error make sure to clear the uptodate flag */
7169 	if (err)
7170 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7171 	dio_end_io(dio_bio, err);
7172 	bio_put(bio);
7173 }
7174 
7175 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7176 				    struct bio *bio, int mirror_num,
7177 				    unsigned long bio_flags, u64 offset)
7178 {
7179 	int ret;
7180 	struct btrfs_root *root = BTRFS_I(inode)->root;
7181 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7182 	BUG_ON(ret); /* -ENOMEM */
7183 	return 0;
7184 }
7185 
7186 static void btrfs_end_dio_bio(struct bio *bio, int err)
7187 {
7188 	struct btrfs_dio_private *dip = bio->bi_private;
7189 
7190 	if (err) {
7191 		btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7192 			  "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7193 		      btrfs_ino(dip->inode), bio->bi_rw,
7194 		      (unsigned long long)bio->bi_iter.bi_sector,
7195 		      bio->bi_iter.bi_size, err);
7196 		dip->errors = 1;
7197 
7198 		/*
7199 		 * before atomic variable goto zero, we must make sure
7200 		 * dip->errors is perceived to be set.
7201 		 */
7202 		smp_mb__before_atomic();
7203 	}
7204 
7205 	/* if there are more bios still pending for this dio, just exit */
7206 	if (!atomic_dec_and_test(&dip->pending_bios))
7207 		goto out;
7208 
7209 	if (dip->errors) {
7210 		bio_io_error(dip->orig_bio);
7211 	} else {
7212 		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7213 		bio_endio(dip->orig_bio, 0);
7214 	}
7215 out:
7216 	bio_put(bio);
7217 }
7218 
7219 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7220 				       u64 first_sector, gfp_t gfp_flags)
7221 {
7222 	int nr_vecs = bio_get_nr_vecs(bdev);
7223 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7224 }
7225 
7226 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7227 					 int rw, u64 file_offset, int skip_sum,
7228 					 int async_submit)
7229 {
7230 	struct btrfs_dio_private *dip = bio->bi_private;
7231 	int write = rw & REQ_WRITE;
7232 	struct btrfs_root *root = BTRFS_I(inode)->root;
7233 	int ret;
7234 
7235 	if (async_submit)
7236 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7237 
7238 	bio_get(bio);
7239 
7240 	if (!write) {
7241 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7242 		if (ret)
7243 			goto err;
7244 	}
7245 
7246 	if (skip_sum)
7247 		goto map;
7248 
7249 	if (write && async_submit) {
7250 		ret = btrfs_wq_submit_bio(root->fs_info,
7251 				   inode, rw, bio, 0, 0,
7252 				   file_offset,
7253 				   __btrfs_submit_bio_start_direct_io,
7254 				   __btrfs_submit_bio_done);
7255 		goto err;
7256 	} else if (write) {
7257 		/*
7258 		 * If we aren't doing async submit, calculate the csum of the
7259 		 * bio now.
7260 		 */
7261 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7262 		if (ret)
7263 			goto err;
7264 	} else if (!skip_sum) {
7265 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7266 						file_offset);
7267 		if (ret)
7268 			goto err;
7269 	}
7270 
7271 map:
7272 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7273 err:
7274 	bio_put(bio);
7275 	return ret;
7276 }
7277 
7278 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7279 				    int skip_sum)
7280 {
7281 	struct inode *inode = dip->inode;
7282 	struct btrfs_root *root = BTRFS_I(inode)->root;
7283 	struct bio *bio;
7284 	struct bio *orig_bio = dip->orig_bio;
7285 	struct bio_vec *bvec = orig_bio->bi_io_vec;
7286 	u64 start_sector = orig_bio->bi_iter.bi_sector;
7287 	u64 file_offset = dip->logical_offset;
7288 	u64 submit_len = 0;
7289 	u64 map_length;
7290 	int nr_pages = 0;
7291 	int ret = 0;
7292 	int async_submit = 0;
7293 
7294 	map_length = orig_bio->bi_iter.bi_size;
7295 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7296 			      &map_length, NULL, 0);
7297 	if (ret) {
7298 		bio_put(orig_bio);
7299 		return -EIO;
7300 	}
7301 
7302 	if (map_length >= orig_bio->bi_iter.bi_size) {
7303 		bio = orig_bio;
7304 		goto submit;
7305 	}
7306 
7307 	/* async crcs make it difficult to collect full stripe writes. */
7308 	if (btrfs_get_alloc_profile(root, 1) &
7309 	    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7310 		async_submit = 0;
7311 	else
7312 		async_submit = 1;
7313 
7314 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7315 	if (!bio)
7316 		return -ENOMEM;
7317 	bio->bi_private = dip;
7318 	bio->bi_end_io = btrfs_end_dio_bio;
7319 	atomic_inc(&dip->pending_bios);
7320 
7321 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7322 		if (unlikely(map_length < submit_len + bvec->bv_len ||
7323 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7324 				 bvec->bv_offset) < bvec->bv_len)) {
7325 			/*
7326 			 * inc the count before we submit the bio so
7327 			 * we know the end IO handler won't happen before
7328 			 * we inc the count. Otherwise, the dip might get freed
7329 			 * before we're done setting it up
7330 			 */
7331 			atomic_inc(&dip->pending_bios);
7332 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
7333 						     file_offset, skip_sum,
7334 						     async_submit);
7335 			if (ret) {
7336 				bio_put(bio);
7337 				atomic_dec(&dip->pending_bios);
7338 				goto out_err;
7339 			}
7340 
7341 			start_sector += submit_len >> 9;
7342 			file_offset += submit_len;
7343 
7344 			submit_len = 0;
7345 			nr_pages = 0;
7346 
7347 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7348 						  start_sector, GFP_NOFS);
7349 			if (!bio)
7350 				goto out_err;
7351 			bio->bi_private = dip;
7352 			bio->bi_end_io = btrfs_end_dio_bio;
7353 
7354 			map_length = orig_bio->bi_iter.bi_size;
7355 			ret = btrfs_map_block(root->fs_info, rw,
7356 					      start_sector << 9,
7357 					      &map_length, NULL, 0);
7358 			if (ret) {
7359 				bio_put(bio);
7360 				goto out_err;
7361 			}
7362 		} else {
7363 			submit_len += bvec->bv_len;
7364 			nr_pages++;
7365 			bvec++;
7366 		}
7367 	}
7368 
7369 submit:
7370 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7371 				     async_submit);
7372 	if (!ret)
7373 		return 0;
7374 
7375 	bio_put(bio);
7376 out_err:
7377 	dip->errors = 1;
7378 	/*
7379 	 * before atomic variable goto zero, we must
7380 	 * make sure dip->errors is perceived to be set.
7381 	 */
7382 	smp_mb__before_atomic();
7383 	if (atomic_dec_and_test(&dip->pending_bios))
7384 		bio_io_error(dip->orig_bio);
7385 
7386 	/* bio_end_io() will handle error, so we needn't return it */
7387 	return 0;
7388 }
7389 
7390 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7391 				struct inode *inode, loff_t file_offset)
7392 {
7393 	struct btrfs_root *root = BTRFS_I(inode)->root;
7394 	struct btrfs_dio_private *dip;
7395 	struct bio *io_bio;
7396 	int skip_sum;
7397 	int sum_len;
7398 	int write = rw & REQ_WRITE;
7399 	int ret = 0;
7400 	u16 csum_size;
7401 
7402 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7403 
7404 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7405 	if (!io_bio) {
7406 		ret = -ENOMEM;
7407 		goto free_ordered;
7408 	}
7409 
7410 	if (!skip_sum && !write) {
7411 		csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7412 		sum_len = dio_bio->bi_iter.bi_size >>
7413 			inode->i_sb->s_blocksize_bits;
7414 		sum_len *= csum_size;
7415 	} else {
7416 		sum_len = 0;
7417 	}
7418 
7419 	dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7420 	if (!dip) {
7421 		ret = -ENOMEM;
7422 		goto free_io_bio;
7423 	}
7424 
7425 	dip->private = dio_bio->bi_private;
7426 	dip->inode = inode;
7427 	dip->logical_offset = file_offset;
7428 	dip->bytes = dio_bio->bi_iter.bi_size;
7429 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7430 	io_bio->bi_private = dip;
7431 	dip->errors = 0;
7432 	dip->orig_bio = io_bio;
7433 	dip->dio_bio = dio_bio;
7434 	atomic_set(&dip->pending_bios, 0);
7435 
7436 	if (write)
7437 		io_bio->bi_end_io = btrfs_endio_direct_write;
7438 	else
7439 		io_bio->bi_end_io = btrfs_endio_direct_read;
7440 
7441 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7442 	if (!ret)
7443 		return;
7444 
7445 free_io_bio:
7446 	bio_put(io_bio);
7447 
7448 free_ordered:
7449 	/*
7450 	 * If this is a write, we need to clean up the reserved space and kill
7451 	 * the ordered extent.
7452 	 */
7453 	if (write) {
7454 		struct btrfs_ordered_extent *ordered;
7455 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7456 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7457 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7458 			btrfs_free_reserved_extent(root, ordered->start,
7459 						   ordered->disk_len, 1);
7460 		btrfs_put_ordered_extent(ordered);
7461 		btrfs_put_ordered_extent(ordered);
7462 	}
7463 	bio_endio(dio_bio, ret);
7464 }
7465 
7466 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7467 			const struct iov_iter *iter, loff_t offset)
7468 {
7469 	int seg;
7470 	int i;
7471 	unsigned blocksize_mask = root->sectorsize - 1;
7472 	ssize_t retval = -EINVAL;
7473 
7474 	if (offset & blocksize_mask)
7475 		goto out;
7476 
7477 	if (iov_iter_alignment(iter) & blocksize_mask)
7478 		goto out;
7479 
7480 	/* If this is a write we don't need to check anymore */
7481 	if (rw & WRITE)
7482 		return 0;
7483 	/*
7484 	 * Check to make sure we don't have duplicate iov_base's in this
7485 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
7486 	 * when reading back.
7487 	 */
7488 	for (seg = 0; seg < iter->nr_segs; seg++) {
7489 		for (i = seg + 1; i < iter->nr_segs; i++) {
7490 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7491 				goto out;
7492 		}
7493 	}
7494 	retval = 0;
7495 out:
7496 	return retval;
7497 }
7498 
7499 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7500 			struct iov_iter *iter, loff_t offset)
7501 {
7502 	struct file *file = iocb->ki_filp;
7503 	struct inode *inode = file->f_mapping->host;
7504 	size_t count = 0;
7505 	int flags = 0;
7506 	bool wakeup = true;
7507 	bool relock = false;
7508 	ssize_t ret;
7509 
7510 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7511 		return 0;
7512 
7513 	atomic_inc(&inode->i_dio_count);
7514 	smp_mb__after_atomic();
7515 
7516 	/*
7517 	 * The generic stuff only does filemap_write_and_wait_range, which
7518 	 * isn't enough if we've written compressed pages to this area, so
7519 	 * we need to flush the dirty pages again to make absolutely sure
7520 	 * that any outstanding dirty pages are on disk.
7521 	 */
7522 	count = iov_iter_count(iter);
7523 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7524 		     &BTRFS_I(inode)->runtime_flags))
7525 		filemap_fdatawrite_range(inode->i_mapping, offset, count);
7526 
7527 	if (rw & WRITE) {
7528 		/*
7529 		 * If the write DIO is beyond the EOF, we need update
7530 		 * the isize, but it is protected by i_mutex. So we can
7531 		 * not unlock the i_mutex at this case.
7532 		 */
7533 		if (offset + count <= inode->i_size) {
7534 			mutex_unlock(&inode->i_mutex);
7535 			relock = true;
7536 		}
7537 		ret = btrfs_delalloc_reserve_space(inode, count);
7538 		if (ret)
7539 			goto out;
7540 	} else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7541 				     &BTRFS_I(inode)->runtime_flags))) {
7542 		inode_dio_done(inode);
7543 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7544 		wakeup = false;
7545 	}
7546 
7547 	ret = __blockdev_direct_IO(rw, iocb, inode,
7548 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7549 			iter, offset, btrfs_get_blocks_direct, NULL,
7550 			btrfs_submit_direct, flags);
7551 	if (rw & WRITE) {
7552 		if (ret < 0 && ret != -EIOCBQUEUED)
7553 			btrfs_delalloc_release_space(inode, count);
7554 		else if (ret >= 0 && (size_t)ret < count)
7555 			btrfs_delalloc_release_space(inode,
7556 						     count - (size_t)ret);
7557 		else
7558 			btrfs_delalloc_release_metadata(inode, 0);
7559 	}
7560 out:
7561 	if (wakeup)
7562 		inode_dio_done(inode);
7563 	if (relock)
7564 		mutex_lock(&inode->i_mutex);
7565 
7566 	return ret;
7567 }
7568 
7569 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
7570 
7571 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7572 		__u64 start, __u64 len)
7573 {
7574 	int	ret;
7575 
7576 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7577 	if (ret)
7578 		return ret;
7579 
7580 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7581 }
7582 
7583 int btrfs_readpage(struct file *file, struct page *page)
7584 {
7585 	struct extent_io_tree *tree;
7586 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7587 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7588 }
7589 
7590 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7591 {
7592 	struct extent_io_tree *tree;
7593 
7594 
7595 	if (current->flags & PF_MEMALLOC) {
7596 		redirty_page_for_writepage(wbc, page);
7597 		unlock_page(page);
7598 		return 0;
7599 	}
7600 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7601 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7602 }
7603 
7604 static int btrfs_writepages(struct address_space *mapping,
7605 			    struct writeback_control *wbc)
7606 {
7607 	struct extent_io_tree *tree;
7608 
7609 	tree = &BTRFS_I(mapping->host)->io_tree;
7610 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7611 }
7612 
7613 static int
7614 btrfs_readpages(struct file *file, struct address_space *mapping,
7615 		struct list_head *pages, unsigned nr_pages)
7616 {
7617 	struct extent_io_tree *tree;
7618 	tree = &BTRFS_I(mapping->host)->io_tree;
7619 	return extent_readpages(tree, mapping, pages, nr_pages,
7620 				btrfs_get_extent);
7621 }
7622 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7623 {
7624 	struct extent_io_tree *tree;
7625 	struct extent_map_tree *map;
7626 	int ret;
7627 
7628 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7629 	map = &BTRFS_I(page->mapping->host)->extent_tree;
7630 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7631 	if (ret == 1) {
7632 		ClearPagePrivate(page);
7633 		set_page_private(page, 0);
7634 		page_cache_release(page);
7635 	}
7636 	return ret;
7637 }
7638 
7639 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7640 {
7641 	if (PageWriteback(page) || PageDirty(page))
7642 		return 0;
7643 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7644 }
7645 
7646 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7647 				 unsigned int length)
7648 {
7649 	struct inode *inode = page->mapping->host;
7650 	struct extent_io_tree *tree;
7651 	struct btrfs_ordered_extent *ordered;
7652 	struct extent_state *cached_state = NULL;
7653 	u64 page_start = page_offset(page);
7654 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7655 	int inode_evicting = inode->i_state & I_FREEING;
7656 
7657 	/*
7658 	 * we have the page locked, so new writeback can't start,
7659 	 * and the dirty bit won't be cleared while we are here.
7660 	 *
7661 	 * Wait for IO on this page so that we can safely clear
7662 	 * the PagePrivate2 bit and do ordered accounting
7663 	 */
7664 	wait_on_page_writeback(page);
7665 
7666 	tree = &BTRFS_I(inode)->io_tree;
7667 	if (offset) {
7668 		btrfs_releasepage(page, GFP_NOFS);
7669 		return;
7670 	}
7671 
7672 	if (!inode_evicting)
7673 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7674 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7675 	if (ordered) {
7676 		/*
7677 		 * IO on this page will never be started, so we need
7678 		 * to account for any ordered extents now
7679 		 */
7680 		if (!inode_evicting)
7681 			clear_extent_bit(tree, page_start, page_end,
7682 					 EXTENT_DIRTY | EXTENT_DELALLOC |
7683 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7684 					 EXTENT_DEFRAG, 1, 0, &cached_state,
7685 					 GFP_NOFS);
7686 		/*
7687 		 * whoever cleared the private bit is responsible
7688 		 * for the finish_ordered_io
7689 		 */
7690 		if (TestClearPagePrivate2(page)) {
7691 			struct btrfs_ordered_inode_tree *tree;
7692 			u64 new_len;
7693 
7694 			tree = &BTRFS_I(inode)->ordered_tree;
7695 
7696 			spin_lock_irq(&tree->lock);
7697 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7698 			new_len = page_start - ordered->file_offset;
7699 			if (new_len < ordered->truncated_len)
7700 				ordered->truncated_len = new_len;
7701 			spin_unlock_irq(&tree->lock);
7702 
7703 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
7704 							   page_start,
7705 							   PAGE_CACHE_SIZE, 1))
7706 				btrfs_finish_ordered_io(ordered);
7707 		}
7708 		btrfs_put_ordered_extent(ordered);
7709 		if (!inode_evicting) {
7710 			cached_state = NULL;
7711 			lock_extent_bits(tree, page_start, page_end, 0,
7712 					 &cached_state);
7713 		}
7714 	}
7715 
7716 	if (!inode_evicting) {
7717 		clear_extent_bit(tree, page_start, page_end,
7718 				 EXTENT_LOCKED | EXTENT_DIRTY |
7719 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7720 				 EXTENT_DEFRAG, 1, 1,
7721 				 &cached_state, GFP_NOFS);
7722 
7723 		__btrfs_releasepage(page, GFP_NOFS);
7724 	}
7725 
7726 	ClearPageChecked(page);
7727 	if (PagePrivate(page)) {
7728 		ClearPagePrivate(page);
7729 		set_page_private(page, 0);
7730 		page_cache_release(page);
7731 	}
7732 }
7733 
7734 /*
7735  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7736  * called from a page fault handler when a page is first dirtied. Hence we must
7737  * be careful to check for EOF conditions here. We set the page up correctly
7738  * for a written page which means we get ENOSPC checking when writing into
7739  * holes and correct delalloc and unwritten extent mapping on filesystems that
7740  * support these features.
7741  *
7742  * We are not allowed to take the i_mutex here so we have to play games to
7743  * protect against truncate races as the page could now be beyond EOF.  Because
7744  * vmtruncate() writes the inode size before removing pages, once we have the
7745  * page lock we can determine safely if the page is beyond EOF. If it is not
7746  * beyond EOF, then the page is guaranteed safe against truncation until we
7747  * unlock the page.
7748  */
7749 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7750 {
7751 	struct page *page = vmf->page;
7752 	struct inode *inode = file_inode(vma->vm_file);
7753 	struct btrfs_root *root = BTRFS_I(inode)->root;
7754 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7755 	struct btrfs_ordered_extent *ordered;
7756 	struct extent_state *cached_state = NULL;
7757 	char *kaddr;
7758 	unsigned long zero_start;
7759 	loff_t size;
7760 	int ret;
7761 	int reserved = 0;
7762 	u64 page_start;
7763 	u64 page_end;
7764 
7765 	sb_start_pagefault(inode->i_sb);
7766 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7767 	if (!ret) {
7768 		ret = file_update_time(vma->vm_file);
7769 		reserved = 1;
7770 	}
7771 	if (ret) {
7772 		if (ret == -ENOMEM)
7773 			ret = VM_FAULT_OOM;
7774 		else /* -ENOSPC, -EIO, etc */
7775 			ret = VM_FAULT_SIGBUS;
7776 		if (reserved)
7777 			goto out;
7778 		goto out_noreserve;
7779 	}
7780 
7781 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7782 again:
7783 	lock_page(page);
7784 	size = i_size_read(inode);
7785 	page_start = page_offset(page);
7786 	page_end = page_start + PAGE_CACHE_SIZE - 1;
7787 
7788 	if ((page->mapping != inode->i_mapping) ||
7789 	    (page_start >= size)) {
7790 		/* page got truncated out from underneath us */
7791 		goto out_unlock;
7792 	}
7793 	wait_on_page_writeback(page);
7794 
7795 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7796 	set_page_extent_mapped(page);
7797 
7798 	/*
7799 	 * we can't set the delalloc bits if there are pending ordered
7800 	 * extents.  Drop our locks and wait for them to finish
7801 	 */
7802 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7803 	if (ordered) {
7804 		unlock_extent_cached(io_tree, page_start, page_end,
7805 				     &cached_state, GFP_NOFS);
7806 		unlock_page(page);
7807 		btrfs_start_ordered_extent(inode, ordered, 1);
7808 		btrfs_put_ordered_extent(ordered);
7809 		goto again;
7810 	}
7811 
7812 	/*
7813 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
7814 	 * if it was already dirty, so for space accounting reasons we need to
7815 	 * clear any delalloc bits for the range we are fixing to save.  There
7816 	 * is probably a better way to do this, but for now keep consistent with
7817 	 * prepare_pages in the normal write path.
7818 	 */
7819 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7820 			  EXTENT_DIRTY | EXTENT_DELALLOC |
7821 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7822 			  0, 0, &cached_state, GFP_NOFS);
7823 
7824 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7825 					&cached_state);
7826 	if (ret) {
7827 		unlock_extent_cached(io_tree, page_start, page_end,
7828 				     &cached_state, GFP_NOFS);
7829 		ret = VM_FAULT_SIGBUS;
7830 		goto out_unlock;
7831 	}
7832 	ret = 0;
7833 
7834 	/* page is wholly or partially inside EOF */
7835 	if (page_start + PAGE_CACHE_SIZE > size)
7836 		zero_start = size & ~PAGE_CACHE_MASK;
7837 	else
7838 		zero_start = PAGE_CACHE_SIZE;
7839 
7840 	if (zero_start != PAGE_CACHE_SIZE) {
7841 		kaddr = kmap(page);
7842 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7843 		flush_dcache_page(page);
7844 		kunmap(page);
7845 	}
7846 	ClearPageChecked(page);
7847 	set_page_dirty(page);
7848 	SetPageUptodate(page);
7849 
7850 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
7851 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7852 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7853 
7854 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7855 
7856 out_unlock:
7857 	if (!ret) {
7858 		sb_end_pagefault(inode->i_sb);
7859 		return VM_FAULT_LOCKED;
7860 	}
7861 	unlock_page(page);
7862 out:
7863 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7864 out_noreserve:
7865 	sb_end_pagefault(inode->i_sb);
7866 	return ret;
7867 }
7868 
7869 static int btrfs_truncate(struct inode *inode)
7870 {
7871 	struct btrfs_root *root = BTRFS_I(inode)->root;
7872 	struct btrfs_block_rsv *rsv;
7873 	int ret = 0;
7874 	int err = 0;
7875 	struct btrfs_trans_handle *trans;
7876 	u64 mask = root->sectorsize - 1;
7877 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7878 
7879 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7880 				       (u64)-1);
7881 	if (ret)
7882 		return ret;
7883 
7884 	/*
7885 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7886 	 * 3 things going on here
7887 	 *
7888 	 * 1) We need to reserve space for our orphan item and the space to
7889 	 * delete our orphan item.  Lord knows we don't want to have a dangling
7890 	 * orphan item because we didn't reserve space to remove it.
7891 	 *
7892 	 * 2) We need to reserve space to update our inode.
7893 	 *
7894 	 * 3) We need to have something to cache all the space that is going to
7895 	 * be free'd up by the truncate operation, but also have some slack
7896 	 * space reserved in case it uses space during the truncate (thank you
7897 	 * very much snapshotting).
7898 	 *
7899 	 * And we need these to all be seperate.  The fact is we can use alot of
7900 	 * space doing the truncate, and we have no earthly idea how much space
7901 	 * we will use, so we need the truncate reservation to be seperate so it
7902 	 * doesn't end up using space reserved for updating the inode or
7903 	 * removing the orphan item.  We also need to be able to stop the
7904 	 * transaction and start a new one, which means we need to be able to
7905 	 * update the inode several times, and we have no idea of knowing how
7906 	 * many times that will be, so we can't just reserve 1 item for the
7907 	 * entirety of the opration, so that has to be done seperately as well.
7908 	 * Then there is the orphan item, which does indeed need to be held on
7909 	 * to for the whole operation, and we need nobody to touch this reserved
7910 	 * space except the orphan code.
7911 	 *
7912 	 * So that leaves us with
7913 	 *
7914 	 * 1) root->orphan_block_rsv - for the orphan deletion.
7915 	 * 2) rsv - for the truncate reservation, which we will steal from the
7916 	 * transaction reservation.
7917 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7918 	 * updating the inode.
7919 	 */
7920 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7921 	if (!rsv)
7922 		return -ENOMEM;
7923 	rsv->size = min_size;
7924 	rsv->failfast = 1;
7925 
7926 	/*
7927 	 * 1 for the truncate slack space
7928 	 * 1 for updating the inode.
7929 	 */
7930 	trans = btrfs_start_transaction(root, 2);
7931 	if (IS_ERR(trans)) {
7932 		err = PTR_ERR(trans);
7933 		goto out;
7934 	}
7935 
7936 	/* Migrate the slack space for the truncate to our reserve */
7937 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7938 				      min_size);
7939 	BUG_ON(ret);
7940 
7941 	/*
7942 	 * setattr is responsible for setting the ordered_data_close flag,
7943 	 * but that is only tested during the last file release.  That
7944 	 * could happen well after the next commit, leaving a great big
7945 	 * window where new writes may get lost if someone chooses to write
7946 	 * to this file after truncating to zero
7947 	 *
7948 	 * The inode doesn't have any dirty data here, and so if we commit
7949 	 * this is a noop.  If someone immediately starts writing to the inode
7950 	 * it is very likely we'll catch some of their writes in this
7951 	 * transaction, and the commit will find this file on the ordered
7952 	 * data list with good things to send down.
7953 	 *
7954 	 * This is a best effort solution, there is still a window where
7955 	 * using truncate to replace the contents of the file will
7956 	 * end up with a zero length file after a crash.
7957 	 */
7958 	if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7959 					   &BTRFS_I(inode)->runtime_flags))
7960 		btrfs_add_ordered_operation(trans, root, inode);
7961 
7962 	/*
7963 	 * So if we truncate and then write and fsync we normally would just
7964 	 * write the extents that changed, which is a problem if we need to
7965 	 * first truncate that entire inode.  So set this flag so we write out
7966 	 * all of the extents in the inode to the sync log so we're completely
7967 	 * safe.
7968 	 */
7969 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7970 	trans->block_rsv = rsv;
7971 
7972 	while (1) {
7973 		ret = btrfs_truncate_inode_items(trans, root, inode,
7974 						 inode->i_size,
7975 						 BTRFS_EXTENT_DATA_KEY);
7976 		if (ret != -ENOSPC) {
7977 			err = ret;
7978 			break;
7979 		}
7980 
7981 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7982 		ret = btrfs_update_inode(trans, root, inode);
7983 		if (ret) {
7984 			err = ret;
7985 			break;
7986 		}
7987 
7988 		btrfs_end_transaction(trans, root);
7989 		btrfs_btree_balance_dirty(root);
7990 
7991 		trans = btrfs_start_transaction(root, 2);
7992 		if (IS_ERR(trans)) {
7993 			ret = err = PTR_ERR(trans);
7994 			trans = NULL;
7995 			break;
7996 		}
7997 
7998 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7999 					      rsv, min_size);
8000 		BUG_ON(ret);	/* shouldn't happen */
8001 		trans->block_rsv = rsv;
8002 	}
8003 
8004 	if (ret == 0 && inode->i_nlink > 0) {
8005 		trans->block_rsv = root->orphan_block_rsv;
8006 		ret = btrfs_orphan_del(trans, inode);
8007 		if (ret)
8008 			err = ret;
8009 	}
8010 
8011 	if (trans) {
8012 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8013 		ret = btrfs_update_inode(trans, root, inode);
8014 		if (ret && !err)
8015 			err = ret;
8016 
8017 		ret = btrfs_end_transaction(trans, root);
8018 		btrfs_btree_balance_dirty(root);
8019 	}
8020 
8021 out:
8022 	btrfs_free_block_rsv(root, rsv);
8023 
8024 	if (ret && !err)
8025 		err = ret;
8026 
8027 	return err;
8028 }
8029 
8030 /*
8031  * create a new subvolume directory/inode (helper for the ioctl).
8032  */
8033 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8034 			     struct btrfs_root *new_root,
8035 			     struct btrfs_root *parent_root,
8036 			     u64 new_dirid)
8037 {
8038 	struct inode *inode;
8039 	int err;
8040 	u64 index = 0;
8041 
8042 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8043 				new_dirid, new_dirid,
8044 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8045 				&index);
8046 	if (IS_ERR(inode))
8047 		return PTR_ERR(inode);
8048 	inode->i_op = &btrfs_dir_inode_operations;
8049 	inode->i_fop = &btrfs_dir_file_operations;
8050 
8051 	set_nlink(inode, 1);
8052 	btrfs_i_size_write(inode, 0);
8053 
8054 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8055 	if (err)
8056 		btrfs_err(new_root->fs_info,
8057 			  "error inheriting subvolume %llu properties: %d",
8058 			  new_root->root_key.objectid, err);
8059 
8060 	err = btrfs_update_inode(trans, new_root, inode);
8061 
8062 	iput(inode);
8063 	return err;
8064 }
8065 
8066 struct inode *btrfs_alloc_inode(struct super_block *sb)
8067 {
8068 	struct btrfs_inode *ei;
8069 	struct inode *inode;
8070 
8071 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8072 	if (!ei)
8073 		return NULL;
8074 
8075 	ei->root = NULL;
8076 	ei->generation = 0;
8077 	ei->last_trans = 0;
8078 	ei->last_sub_trans = 0;
8079 	ei->logged_trans = 0;
8080 	ei->delalloc_bytes = 0;
8081 	ei->disk_i_size = 0;
8082 	ei->flags = 0;
8083 	ei->csum_bytes = 0;
8084 	ei->index_cnt = (u64)-1;
8085 	ei->dir_index = 0;
8086 	ei->last_unlink_trans = 0;
8087 	ei->last_log_commit = 0;
8088 
8089 	spin_lock_init(&ei->lock);
8090 	ei->outstanding_extents = 0;
8091 	ei->reserved_extents = 0;
8092 
8093 	ei->runtime_flags = 0;
8094 	ei->force_compress = BTRFS_COMPRESS_NONE;
8095 
8096 	ei->delayed_node = NULL;
8097 
8098 	inode = &ei->vfs_inode;
8099 	extent_map_tree_init(&ei->extent_tree);
8100 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
8101 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8102 	ei->io_tree.track_uptodate = 1;
8103 	ei->io_failure_tree.track_uptodate = 1;
8104 	atomic_set(&ei->sync_writers, 0);
8105 	mutex_init(&ei->log_mutex);
8106 	mutex_init(&ei->delalloc_mutex);
8107 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8108 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8109 	INIT_LIST_HEAD(&ei->ordered_operations);
8110 	RB_CLEAR_NODE(&ei->rb_node);
8111 
8112 	return inode;
8113 }
8114 
8115 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8116 void btrfs_test_destroy_inode(struct inode *inode)
8117 {
8118 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8119 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8120 }
8121 #endif
8122 
8123 static void btrfs_i_callback(struct rcu_head *head)
8124 {
8125 	struct inode *inode = container_of(head, struct inode, i_rcu);
8126 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8127 }
8128 
8129 void btrfs_destroy_inode(struct inode *inode)
8130 {
8131 	struct btrfs_ordered_extent *ordered;
8132 	struct btrfs_root *root = BTRFS_I(inode)->root;
8133 
8134 	WARN_ON(!hlist_empty(&inode->i_dentry));
8135 	WARN_ON(inode->i_data.nrpages);
8136 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8137 	WARN_ON(BTRFS_I(inode)->reserved_extents);
8138 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8139 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8140 
8141 	/*
8142 	 * This can happen where we create an inode, but somebody else also
8143 	 * created the same inode and we need to destroy the one we already
8144 	 * created.
8145 	 */
8146 	if (!root)
8147 		goto free;
8148 
8149 	/*
8150 	 * Make sure we're properly removed from the ordered operation
8151 	 * lists.
8152 	 */
8153 	smp_mb();
8154 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
8155 		spin_lock(&root->fs_info->ordered_root_lock);
8156 		list_del_init(&BTRFS_I(inode)->ordered_operations);
8157 		spin_unlock(&root->fs_info->ordered_root_lock);
8158 	}
8159 
8160 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8161 		     &BTRFS_I(inode)->runtime_flags)) {
8162 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8163 			btrfs_ino(inode));
8164 		atomic_dec(&root->orphan_inodes);
8165 	}
8166 
8167 	while (1) {
8168 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8169 		if (!ordered)
8170 			break;
8171 		else {
8172 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8173 				ordered->file_offset, ordered->len);
8174 			btrfs_remove_ordered_extent(inode, ordered);
8175 			btrfs_put_ordered_extent(ordered);
8176 			btrfs_put_ordered_extent(ordered);
8177 		}
8178 	}
8179 	inode_tree_del(inode);
8180 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8181 free:
8182 	call_rcu(&inode->i_rcu, btrfs_i_callback);
8183 }
8184 
8185 int btrfs_drop_inode(struct inode *inode)
8186 {
8187 	struct btrfs_root *root = BTRFS_I(inode)->root;
8188 
8189 	if (root == NULL)
8190 		return 1;
8191 
8192 	/* the snap/subvol tree is on deleting */
8193 	if (btrfs_root_refs(&root->root_item) == 0)
8194 		return 1;
8195 	else
8196 		return generic_drop_inode(inode);
8197 }
8198 
8199 static void init_once(void *foo)
8200 {
8201 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8202 
8203 	inode_init_once(&ei->vfs_inode);
8204 }
8205 
8206 void btrfs_destroy_cachep(void)
8207 {
8208 	/*
8209 	 * Make sure all delayed rcu free inodes are flushed before we
8210 	 * destroy cache.
8211 	 */
8212 	rcu_barrier();
8213 	if (btrfs_inode_cachep)
8214 		kmem_cache_destroy(btrfs_inode_cachep);
8215 	if (btrfs_trans_handle_cachep)
8216 		kmem_cache_destroy(btrfs_trans_handle_cachep);
8217 	if (btrfs_transaction_cachep)
8218 		kmem_cache_destroy(btrfs_transaction_cachep);
8219 	if (btrfs_path_cachep)
8220 		kmem_cache_destroy(btrfs_path_cachep);
8221 	if (btrfs_free_space_cachep)
8222 		kmem_cache_destroy(btrfs_free_space_cachep);
8223 	if (btrfs_delalloc_work_cachep)
8224 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
8225 }
8226 
8227 int btrfs_init_cachep(void)
8228 {
8229 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8230 			sizeof(struct btrfs_inode), 0,
8231 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8232 	if (!btrfs_inode_cachep)
8233 		goto fail;
8234 
8235 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8236 			sizeof(struct btrfs_trans_handle), 0,
8237 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8238 	if (!btrfs_trans_handle_cachep)
8239 		goto fail;
8240 
8241 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8242 			sizeof(struct btrfs_transaction), 0,
8243 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8244 	if (!btrfs_transaction_cachep)
8245 		goto fail;
8246 
8247 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8248 			sizeof(struct btrfs_path), 0,
8249 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8250 	if (!btrfs_path_cachep)
8251 		goto fail;
8252 
8253 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8254 			sizeof(struct btrfs_free_space), 0,
8255 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8256 	if (!btrfs_free_space_cachep)
8257 		goto fail;
8258 
8259 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8260 			sizeof(struct btrfs_delalloc_work), 0,
8261 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8262 			NULL);
8263 	if (!btrfs_delalloc_work_cachep)
8264 		goto fail;
8265 
8266 	return 0;
8267 fail:
8268 	btrfs_destroy_cachep();
8269 	return -ENOMEM;
8270 }
8271 
8272 static int btrfs_getattr(struct vfsmount *mnt,
8273 			 struct dentry *dentry, struct kstat *stat)
8274 {
8275 	u64 delalloc_bytes;
8276 	struct inode *inode = dentry->d_inode;
8277 	u32 blocksize = inode->i_sb->s_blocksize;
8278 
8279 	generic_fillattr(inode, stat);
8280 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8281 	stat->blksize = PAGE_CACHE_SIZE;
8282 
8283 	spin_lock(&BTRFS_I(inode)->lock);
8284 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8285 	spin_unlock(&BTRFS_I(inode)->lock);
8286 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8287 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8288 	return 0;
8289 }
8290 
8291 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8292 			   struct inode *new_dir, struct dentry *new_dentry)
8293 {
8294 	struct btrfs_trans_handle *trans;
8295 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8296 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8297 	struct inode *new_inode = new_dentry->d_inode;
8298 	struct inode *old_inode = old_dentry->d_inode;
8299 	struct timespec ctime = CURRENT_TIME;
8300 	u64 index = 0;
8301 	u64 root_objectid;
8302 	int ret;
8303 	u64 old_ino = btrfs_ino(old_inode);
8304 
8305 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8306 		return -EPERM;
8307 
8308 	/* we only allow rename subvolume link between subvolumes */
8309 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8310 		return -EXDEV;
8311 
8312 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8313 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8314 		return -ENOTEMPTY;
8315 
8316 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8317 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8318 		return -ENOTEMPTY;
8319 
8320 
8321 	/* check for collisions, even if the  name isn't there */
8322 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8323 			     new_dentry->d_name.name,
8324 			     new_dentry->d_name.len);
8325 
8326 	if (ret) {
8327 		if (ret == -EEXIST) {
8328 			/* we shouldn't get
8329 			 * eexist without a new_inode */
8330 			if (WARN_ON(!new_inode)) {
8331 				return ret;
8332 			}
8333 		} else {
8334 			/* maybe -EOVERFLOW */
8335 			return ret;
8336 		}
8337 	}
8338 	ret = 0;
8339 
8340 	/*
8341 	 * we're using rename to replace one file with another.
8342 	 * and the replacement file is large.  Start IO on it now so
8343 	 * we don't add too much work to the end of the transaction
8344 	 */
8345 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8346 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8347 		filemap_flush(old_inode->i_mapping);
8348 
8349 	/* close the racy window with snapshot create/destroy ioctl */
8350 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8351 		down_read(&root->fs_info->subvol_sem);
8352 	/*
8353 	 * We want to reserve the absolute worst case amount of items.  So if
8354 	 * both inodes are subvols and we need to unlink them then that would
8355 	 * require 4 item modifications, but if they are both normal inodes it
8356 	 * would require 5 item modifications, so we'll assume their normal
8357 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8358 	 * should cover the worst case number of items we'll modify.
8359 	 */
8360 	trans = btrfs_start_transaction(root, 11);
8361 	if (IS_ERR(trans)) {
8362                 ret = PTR_ERR(trans);
8363                 goto out_notrans;
8364         }
8365 
8366 	if (dest != root)
8367 		btrfs_record_root_in_trans(trans, dest);
8368 
8369 	ret = btrfs_set_inode_index(new_dir, &index);
8370 	if (ret)
8371 		goto out_fail;
8372 
8373 	BTRFS_I(old_inode)->dir_index = 0ULL;
8374 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8375 		/* force full log commit if subvolume involved. */
8376 		btrfs_set_log_full_commit(root->fs_info, trans);
8377 	} else {
8378 		ret = btrfs_insert_inode_ref(trans, dest,
8379 					     new_dentry->d_name.name,
8380 					     new_dentry->d_name.len,
8381 					     old_ino,
8382 					     btrfs_ino(new_dir), index);
8383 		if (ret)
8384 			goto out_fail;
8385 		/*
8386 		 * this is an ugly little race, but the rename is required
8387 		 * to make sure that if we crash, the inode is either at the
8388 		 * old name or the new one.  pinning the log transaction lets
8389 		 * us make sure we don't allow a log commit to come in after
8390 		 * we unlink the name but before we add the new name back in.
8391 		 */
8392 		btrfs_pin_log_trans(root);
8393 	}
8394 	/*
8395 	 * make sure the inode gets flushed if it is replacing
8396 	 * something.
8397 	 */
8398 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8399 		btrfs_add_ordered_operation(trans, root, old_inode);
8400 
8401 	inode_inc_iversion(old_dir);
8402 	inode_inc_iversion(new_dir);
8403 	inode_inc_iversion(old_inode);
8404 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8405 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8406 	old_inode->i_ctime = ctime;
8407 
8408 	if (old_dentry->d_parent != new_dentry->d_parent)
8409 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8410 
8411 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8412 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8413 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8414 					old_dentry->d_name.name,
8415 					old_dentry->d_name.len);
8416 	} else {
8417 		ret = __btrfs_unlink_inode(trans, root, old_dir,
8418 					old_dentry->d_inode,
8419 					old_dentry->d_name.name,
8420 					old_dentry->d_name.len);
8421 		if (!ret)
8422 			ret = btrfs_update_inode(trans, root, old_inode);
8423 	}
8424 	if (ret) {
8425 		btrfs_abort_transaction(trans, root, ret);
8426 		goto out_fail;
8427 	}
8428 
8429 	if (new_inode) {
8430 		inode_inc_iversion(new_inode);
8431 		new_inode->i_ctime = CURRENT_TIME;
8432 		if (unlikely(btrfs_ino(new_inode) ==
8433 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8434 			root_objectid = BTRFS_I(new_inode)->location.objectid;
8435 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
8436 						root_objectid,
8437 						new_dentry->d_name.name,
8438 						new_dentry->d_name.len);
8439 			BUG_ON(new_inode->i_nlink == 0);
8440 		} else {
8441 			ret = btrfs_unlink_inode(trans, dest, new_dir,
8442 						 new_dentry->d_inode,
8443 						 new_dentry->d_name.name,
8444 						 new_dentry->d_name.len);
8445 		}
8446 		if (!ret && new_inode->i_nlink == 0)
8447 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8448 		if (ret) {
8449 			btrfs_abort_transaction(trans, root, ret);
8450 			goto out_fail;
8451 		}
8452 	}
8453 
8454 	ret = btrfs_add_link(trans, new_dir, old_inode,
8455 			     new_dentry->d_name.name,
8456 			     new_dentry->d_name.len, 0, index);
8457 	if (ret) {
8458 		btrfs_abort_transaction(trans, root, ret);
8459 		goto out_fail;
8460 	}
8461 
8462 	if (old_inode->i_nlink == 1)
8463 		BTRFS_I(old_inode)->dir_index = index;
8464 
8465 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8466 		struct dentry *parent = new_dentry->d_parent;
8467 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
8468 		btrfs_end_log_trans(root);
8469 	}
8470 out_fail:
8471 	btrfs_end_transaction(trans, root);
8472 out_notrans:
8473 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8474 		up_read(&root->fs_info->subvol_sem);
8475 
8476 	return ret;
8477 }
8478 
8479 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8480 {
8481 	struct btrfs_delalloc_work *delalloc_work;
8482 	struct inode *inode;
8483 
8484 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8485 				     work);
8486 	inode = delalloc_work->inode;
8487 	if (delalloc_work->wait) {
8488 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
8489 	} else {
8490 		filemap_flush(inode->i_mapping);
8491 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8492 			     &BTRFS_I(inode)->runtime_flags))
8493 			filemap_flush(inode->i_mapping);
8494 	}
8495 
8496 	if (delalloc_work->delay_iput)
8497 		btrfs_add_delayed_iput(inode);
8498 	else
8499 		iput(inode);
8500 	complete(&delalloc_work->completion);
8501 }
8502 
8503 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8504 						    int wait, int delay_iput)
8505 {
8506 	struct btrfs_delalloc_work *work;
8507 
8508 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8509 	if (!work)
8510 		return NULL;
8511 
8512 	init_completion(&work->completion);
8513 	INIT_LIST_HEAD(&work->list);
8514 	work->inode = inode;
8515 	work->wait = wait;
8516 	work->delay_iput = delay_iput;
8517 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8518 
8519 	return work;
8520 }
8521 
8522 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8523 {
8524 	wait_for_completion(&work->completion);
8525 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
8526 }
8527 
8528 /*
8529  * some fairly slow code that needs optimization. This walks the list
8530  * of all the inodes with pending delalloc and forces them to disk.
8531  */
8532 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8533 				   int nr)
8534 {
8535 	struct btrfs_inode *binode;
8536 	struct inode *inode;
8537 	struct btrfs_delalloc_work *work, *next;
8538 	struct list_head works;
8539 	struct list_head splice;
8540 	int ret = 0;
8541 
8542 	INIT_LIST_HEAD(&works);
8543 	INIT_LIST_HEAD(&splice);
8544 
8545 	mutex_lock(&root->delalloc_mutex);
8546 	spin_lock(&root->delalloc_lock);
8547 	list_splice_init(&root->delalloc_inodes, &splice);
8548 	while (!list_empty(&splice)) {
8549 		binode = list_entry(splice.next, struct btrfs_inode,
8550 				    delalloc_inodes);
8551 
8552 		list_move_tail(&binode->delalloc_inodes,
8553 			       &root->delalloc_inodes);
8554 		inode = igrab(&binode->vfs_inode);
8555 		if (!inode) {
8556 			cond_resched_lock(&root->delalloc_lock);
8557 			continue;
8558 		}
8559 		spin_unlock(&root->delalloc_lock);
8560 
8561 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8562 		if (unlikely(!work)) {
8563 			if (delay_iput)
8564 				btrfs_add_delayed_iput(inode);
8565 			else
8566 				iput(inode);
8567 			ret = -ENOMEM;
8568 			goto out;
8569 		}
8570 		list_add_tail(&work->list, &works);
8571 		btrfs_queue_work(root->fs_info->flush_workers,
8572 				 &work->work);
8573 		ret++;
8574 		if (nr != -1 && ret >= nr)
8575 			goto out;
8576 		cond_resched();
8577 		spin_lock(&root->delalloc_lock);
8578 	}
8579 	spin_unlock(&root->delalloc_lock);
8580 
8581 out:
8582 	list_for_each_entry_safe(work, next, &works, list) {
8583 		list_del_init(&work->list);
8584 		btrfs_wait_and_free_delalloc_work(work);
8585 	}
8586 
8587 	if (!list_empty_careful(&splice)) {
8588 		spin_lock(&root->delalloc_lock);
8589 		list_splice_tail(&splice, &root->delalloc_inodes);
8590 		spin_unlock(&root->delalloc_lock);
8591 	}
8592 	mutex_unlock(&root->delalloc_mutex);
8593 	return ret;
8594 }
8595 
8596 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8597 {
8598 	int ret;
8599 
8600 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
8601 		return -EROFS;
8602 
8603 	ret = __start_delalloc_inodes(root, delay_iput, -1);
8604 	if (ret > 0)
8605 		ret = 0;
8606 	/*
8607 	 * the filemap_flush will queue IO into the worker threads, but
8608 	 * we have to make sure the IO is actually started and that
8609 	 * ordered extents get created before we return
8610 	 */
8611 	atomic_inc(&root->fs_info->async_submit_draining);
8612 	while (atomic_read(&root->fs_info->nr_async_submits) ||
8613 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
8614 		wait_event(root->fs_info->async_submit_wait,
8615 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8616 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8617 	}
8618 	atomic_dec(&root->fs_info->async_submit_draining);
8619 	return ret;
8620 }
8621 
8622 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8623 			       int nr)
8624 {
8625 	struct btrfs_root *root;
8626 	struct list_head splice;
8627 	int ret;
8628 
8629 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
8630 		return -EROFS;
8631 
8632 	INIT_LIST_HEAD(&splice);
8633 
8634 	mutex_lock(&fs_info->delalloc_root_mutex);
8635 	spin_lock(&fs_info->delalloc_root_lock);
8636 	list_splice_init(&fs_info->delalloc_roots, &splice);
8637 	while (!list_empty(&splice) && nr) {
8638 		root = list_first_entry(&splice, struct btrfs_root,
8639 					delalloc_root);
8640 		root = btrfs_grab_fs_root(root);
8641 		BUG_ON(!root);
8642 		list_move_tail(&root->delalloc_root,
8643 			       &fs_info->delalloc_roots);
8644 		spin_unlock(&fs_info->delalloc_root_lock);
8645 
8646 		ret = __start_delalloc_inodes(root, delay_iput, nr);
8647 		btrfs_put_fs_root(root);
8648 		if (ret < 0)
8649 			goto out;
8650 
8651 		if (nr != -1) {
8652 			nr -= ret;
8653 			WARN_ON(nr < 0);
8654 		}
8655 		spin_lock(&fs_info->delalloc_root_lock);
8656 	}
8657 	spin_unlock(&fs_info->delalloc_root_lock);
8658 
8659 	ret = 0;
8660 	atomic_inc(&fs_info->async_submit_draining);
8661 	while (atomic_read(&fs_info->nr_async_submits) ||
8662 	      atomic_read(&fs_info->async_delalloc_pages)) {
8663 		wait_event(fs_info->async_submit_wait,
8664 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
8665 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
8666 	}
8667 	atomic_dec(&fs_info->async_submit_draining);
8668 out:
8669 	if (!list_empty_careful(&splice)) {
8670 		spin_lock(&fs_info->delalloc_root_lock);
8671 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8672 		spin_unlock(&fs_info->delalloc_root_lock);
8673 	}
8674 	mutex_unlock(&fs_info->delalloc_root_mutex);
8675 	return ret;
8676 }
8677 
8678 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8679 			 const char *symname)
8680 {
8681 	struct btrfs_trans_handle *trans;
8682 	struct btrfs_root *root = BTRFS_I(dir)->root;
8683 	struct btrfs_path *path;
8684 	struct btrfs_key key;
8685 	struct inode *inode = NULL;
8686 	int err;
8687 	int drop_inode = 0;
8688 	u64 objectid;
8689 	u64 index = 0;
8690 	int name_len;
8691 	int datasize;
8692 	unsigned long ptr;
8693 	struct btrfs_file_extent_item *ei;
8694 	struct extent_buffer *leaf;
8695 
8696 	name_len = strlen(symname);
8697 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8698 		return -ENAMETOOLONG;
8699 
8700 	/*
8701 	 * 2 items for inode item and ref
8702 	 * 2 items for dir items
8703 	 * 1 item for xattr if selinux is on
8704 	 */
8705 	trans = btrfs_start_transaction(root, 5);
8706 	if (IS_ERR(trans))
8707 		return PTR_ERR(trans);
8708 
8709 	err = btrfs_find_free_ino(root, &objectid);
8710 	if (err)
8711 		goto out_unlock;
8712 
8713 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8714 				dentry->d_name.len, btrfs_ino(dir), objectid,
8715 				S_IFLNK|S_IRWXUGO, &index);
8716 	if (IS_ERR(inode)) {
8717 		err = PTR_ERR(inode);
8718 		goto out_unlock;
8719 	}
8720 
8721 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8722 	if (err) {
8723 		drop_inode = 1;
8724 		goto out_unlock;
8725 	}
8726 
8727 	/*
8728 	* If the active LSM wants to access the inode during
8729 	* d_instantiate it needs these. Smack checks to see
8730 	* if the filesystem supports xattrs by looking at the
8731 	* ops vector.
8732 	*/
8733 	inode->i_fop = &btrfs_file_operations;
8734 	inode->i_op = &btrfs_file_inode_operations;
8735 
8736 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8737 	if (err)
8738 		drop_inode = 1;
8739 	else {
8740 		inode->i_mapping->a_ops = &btrfs_aops;
8741 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8742 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8743 	}
8744 	if (drop_inode)
8745 		goto out_unlock;
8746 
8747 	path = btrfs_alloc_path();
8748 	if (!path) {
8749 		err = -ENOMEM;
8750 		drop_inode = 1;
8751 		goto out_unlock;
8752 	}
8753 	key.objectid = btrfs_ino(inode);
8754 	key.offset = 0;
8755 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8756 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8757 	err = btrfs_insert_empty_item(trans, root, path, &key,
8758 				      datasize);
8759 	if (err) {
8760 		drop_inode = 1;
8761 		btrfs_free_path(path);
8762 		goto out_unlock;
8763 	}
8764 	leaf = path->nodes[0];
8765 	ei = btrfs_item_ptr(leaf, path->slots[0],
8766 			    struct btrfs_file_extent_item);
8767 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8768 	btrfs_set_file_extent_type(leaf, ei,
8769 				   BTRFS_FILE_EXTENT_INLINE);
8770 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8771 	btrfs_set_file_extent_compression(leaf, ei, 0);
8772 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8773 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8774 
8775 	ptr = btrfs_file_extent_inline_start(ei);
8776 	write_extent_buffer(leaf, symname, ptr, name_len);
8777 	btrfs_mark_buffer_dirty(leaf);
8778 	btrfs_free_path(path);
8779 
8780 	inode->i_op = &btrfs_symlink_inode_operations;
8781 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
8782 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8783 	inode_set_bytes(inode, name_len);
8784 	btrfs_i_size_write(inode, name_len);
8785 	err = btrfs_update_inode(trans, root, inode);
8786 	if (err)
8787 		drop_inode = 1;
8788 
8789 out_unlock:
8790 	if (!err)
8791 		d_instantiate(dentry, inode);
8792 	btrfs_end_transaction(trans, root);
8793 	if (drop_inode) {
8794 		inode_dec_link_count(inode);
8795 		iput(inode);
8796 	}
8797 	btrfs_btree_balance_dirty(root);
8798 	return err;
8799 }
8800 
8801 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8802 				       u64 start, u64 num_bytes, u64 min_size,
8803 				       loff_t actual_len, u64 *alloc_hint,
8804 				       struct btrfs_trans_handle *trans)
8805 {
8806 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8807 	struct extent_map *em;
8808 	struct btrfs_root *root = BTRFS_I(inode)->root;
8809 	struct btrfs_key ins;
8810 	u64 cur_offset = start;
8811 	u64 i_size;
8812 	u64 cur_bytes;
8813 	int ret = 0;
8814 	bool own_trans = true;
8815 
8816 	if (trans)
8817 		own_trans = false;
8818 	while (num_bytes > 0) {
8819 		if (own_trans) {
8820 			trans = btrfs_start_transaction(root, 3);
8821 			if (IS_ERR(trans)) {
8822 				ret = PTR_ERR(trans);
8823 				break;
8824 			}
8825 		}
8826 
8827 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8828 		cur_bytes = max(cur_bytes, min_size);
8829 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8830 					   *alloc_hint, &ins, 1, 0);
8831 		if (ret) {
8832 			if (own_trans)
8833 				btrfs_end_transaction(trans, root);
8834 			break;
8835 		}
8836 
8837 		ret = insert_reserved_file_extent(trans, inode,
8838 						  cur_offset, ins.objectid,
8839 						  ins.offset, ins.offset,
8840 						  ins.offset, 0, 0, 0,
8841 						  BTRFS_FILE_EXTENT_PREALLOC);
8842 		if (ret) {
8843 			btrfs_free_reserved_extent(root, ins.objectid,
8844 						   ins.offset, 0);
8845 			btrfs_abort_transaction(trans, root, ret);
8846 			if (own_trans)
8847 				btrfs_end_transaction(trans, root);
8848 			break;
8849 		}
8850 		btrfs_drop_extent_cache(inode, cur_offset,
8851 					cur_offset + ins.offset -1, 0);
8852 
8853 		em = alloc_extent_map();
8854 		if (!em) {
8855 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8856 				&BTRFS_I(inode)->runtime_flags);
8857 			goto next;
8858 		}
8859 
8860 		em->start = cur_offset;
8861 		em->orig_start = cur_offset;
8862 		em->len = ins.offset;
8863 		em->block_start = ins.objectid;
8864 		em->block_len = ins.offset;
8865 		em->orig_block_len = ins.offset;
8866 		em->ram_bytes = ins.offset;
8867 		em->bdev = root->fs_info->fs_devices->latest_bdev;
8868 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8869 		em->generation = trans->transid;
8870 
8871 		while (1) {
8872 			write_lock(&em_tree->lock);
8873 			ret = add_extent_mapping(em_tree, em, 1);
8874 			write_unlock(&em_tree->lock);
8875 			if (ret != -EEXIST)
8876 				break;
8877 			btrfs_drop_extent_cache(inode, cur_offset,
8878 						cur_offset + ins.offset - 1,
8879 						0);
8880 		}
8881 		free_extent_map(em);
8882 next:
8883 		num_bytes -= ins.offset;
8884 		cur_offset += ins.offset;
8885 		*alloc_hint = ins.objectid + ins.offset;
8886 
8887 		inode_inc_iversion(inode);
8888 		inode->i_ctime = CURRENT_TIME;
8889 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8890 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8891 		    (actual_len > inode->i_size) &&
8892 		    (cur_offset > inode->i_size)) {
8893 			if (cur_offset > actual_len)
8894 				i_size = actual_len;
8895 			else
8896 				i_size = cur_offset;
8897 			i_size_write(inode, i_size);
8898 			btrfs_ordered_update_i_size(inode, i_size, NULL);
8899 		}
8900 
8901 		ret = btrfs_update_inode(trans, root, inode);
8902 
8903 		if (ret) {
8904 			btrfs_abort_transaction(trans, root, ret);
8905 			if (own_trans)
8906 				btrfs_end_transaction(trans, root);
8907 			break;
8908 		}
8909 
8910 		if (own_trans)
8911 			btrfs_end_transaction(trans, root);
8912 	}
8913 	return ret;
8914 }
8915 
8916 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8917 			      u64 start, u64 num_bytes, u64 min_size,
8918 			      loff_t actual_len, u64 *alloc_hint)
8919 {
8920 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8921 					   min_size, actual_len, alloc_hint,
8922 					   NULL);
8923 }
8924 
8925 int btrfs_prealloc_file_range_trans(struct inode *inode,
8926 				    struct btrfs_trans_handle *trans, int mode,
8927 				    u64 start, u64 num_bytes, u64 min_size,
8928 				    loff_t actual_len, u64 *alloc_hint)
8929 {
8930 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8931 					   min_size, actual_len, alloc_hint, trans);
8932 }
8933 
8934 static int btrfs_set_page_dirty(struct page *page)
8935 {
8936 	return __set_page_dirty_nobuffers(page);
8937 }
8938 
8939 static int btrfs_permission(struct inode *inode, int mask)
8940 {
8941 	struct btrfs_root *root = BTRFS_I(inode)->root;
8942 	umode_t mode = inode->i_mode;
8943 
8944 	if (mask & MAY_WRITE &&
8945 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8946 		if (btrfs_root_readonly(root))
8947 			return -EROFS;
8948 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8949 			return -EACCES;
8950 	}
8951 	return generic_permission(inode, mask);
8952 }
8953 
8954 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
8955 {
8956 	struct btrfs_trans_handle *trans;
8957 	struct btrfs_root *root = BTRFS_I(dir)->root;
8958 	struct inode *inode = NULL;
8959 	u64 objectid;
8960 	u64 index;
8961 	int ret = 0;
8962 
8963 	/*
8964 	 * 5 units required for adding orphan entry
8965 	 */
8966 	trans = btrfs_start_transaction(root, 5);
8967 	if (IS_ERR(trans))
8968 		return PTR_ERR(trans);
8969 
8970 	ret = btrfs_find_free_ino(root, &objectid);
8971 	if (ret)
8972 		goto out;
8973 
8974 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
8975 				btrfs_ino(dir), objectid, mode, &index);
8976 	if (IS_ERR(inode)) {
8977 		ret = PTR_ERR(inode);
8978 		inode = NULL;
8979 		goto out;
8980 	}
8981 
8982 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
8983 	if (ret)
8984 		goto out;
8985 
8986 	ret = btrfs_update_inode(trans, root, inode);
8987 	if (ret)
8988 		goto out;
8989 
8990 	inode->i_fop = &btrfs_file_operations;
8991 	inode->i_op = &btrfs_file_inode_operations;
8992 
8993 	inode->i_mapping->a_ops = &btrfs_aops;
8994 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8995 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8996 
8997 	ret = btrfs_orphan_add(trans, inode);
8998 	if (ret)
8999 		goto out;
9000 
9001 	d_tmpfile(dentry, inode);
9002 	mark_inode_dirty(inode);
9003 
9004 out:
9005 	btrfs_end_transaction(trans, root);
9006 	if (ret)
9007 		iput(inode);
9008 	btrfs_balance_delayed_items(root);
9009 	btrfs_btree_balance_dirty(root);
9010 
9011 	return ret;
9012 }
9013 
9014 static const struct inode_operations btrfs_dir_inode_operations = {
9015 	.getattr	= btrfs_getattr,
9016 	.lookup		= btrfs_lookup,
9017 	.create		= btrfs_create,
9018 	.unlink		= btrfs_unlink,
9019 	.link		= btrfs_link,
9020 	.mkdir		= btrfs_mkdir,
9021 	.rmdir		= btrfs_rmdir,
9022 	.rename		= btrfs_rename,
9023 	.symlink	= btrfs_symlink,
9024 	.setattr	= btrfs_setattr,
9025 	.mknod		= btrfs_mknod,
9026 	.setxattr	= btrfs_setxattr,
9027 	.getxattr	= btrfs_getxattr,
9028 	.listxattr	= btrfs_listxattr,
9029 	.removexattr	= btrfs_removexattr,
9030 	.permission	= btrfs_permission,
9031 	.get_acl	= btrfs_get_acl,
9032 	.set_acl	= btrfs_set_acl,
9033 	.update_time	= btrfs_update_time,
9034 	.tmpfile        = btrfs_tmpfile,
9035 };
9036 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9037 	.lookup		= btrfs_lookup,
9038 	.permission	= btrfs_permission,
9039 	.get_acl	= btrfs_get_acl,
9040 	.set_acl	= btrfs_set_acl,
9041 	.update_time	= btrfs_update_time,
9042 };
9043 
9044 static const struct file_operations btrfs_dir_file_operations = {
9045 	.llseek		= generic_file_llseek,
9046 	.read		= generic_read_dir,
9047 	.iterate	= btrfs_real_readdir,
9048 	.unlocked_ioctl	= btrfs_ioctl,
9049 #ifdef CONFIG_COMPAT
9050 	.compat_ioctl	= btrfs_ioctl,
9051 #endif
9052 	.release        = btrfs_release_file,
9053 	.fsync		= btrfs_sync_file,
9054 };
9055 
9056 static struct extent_io_ops btrfs_extent_io_ops = {
9057 	.fill_delalloc = run_delalloc_range,
9058 	.submit_bio_hook = btrfs_submit_bio_hook,
9059 	.merge_bio_hook = btrfs_merge_bio_hook,
9060 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
9061 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
9062 	.writepage_start_hook = btrfs_writepage_start_hook,
9063 	.set_bit_hook = btrfs_set_bit_hook,
9064 	.clear_bit_hook = btrfs_clear_bit_hook,
9065 	.merge_extent_hook = btrfs_merge_extent_hook,
9066 	.split_extent_hook = btrfs_split_extent_hook,
9067 };
9068 
9069 /*
9070  * btrfs doesn't support the bmap operation because swapfiles
9071  * use bmap to make a mapping of extents in the file.  They assume
9072  * these extents won't change over the life of the file and they
9073  * use the bmap result to do IO directly to the drive.
9074  *
9075  * the btrfs bmap call would return logical addresses that aren't
9076  * suitable for IO and they also will change frequently as COW
9077  * operations happen.  So, swapfile + btrfs == corruption.
9078  *
9079  * For now we're avoiding this by dropping bmap.
9080  */
9081 static const struct address_space_operations btrfs_aops = {
9082 	.readpage	= btrfs_readpage,
9083 	.writepage	= btrfs_writepage,
9084 	.writepages	= btrfs_writepages,
9085 	.readpages	= btrfs_readpages,
9086 	.direct_IO	= btrfs_direct_IO,
9087 	.invalidatepage = btrfs_invalidatepage,
9088 	.releasepage	= btrfs_releasepage,
9089 	.set_page_dirty	= btrfs_set_page_dirty,
9090 	.error_remove_page = generic_error_remove_page,
9091 };
9092 
9093 static const struct address_space_operations btrfs_symlink_aops = {
9094 	.readpage	= btrfs_readpage,
9095 	.writepage	= btrfs_writepage,
9096 	.invalidatepage = btrfs_invalidatepage,
9097 	.releasepage	= btrfs_releasepage,
9098 };
9099 
9100 static const struct inode_operations btrfs_file_inode_operations = {
9101 	.getattr	= btrfs_getattr,
9102 	.setattr	= btrfs_setattr,
9103 	.setxattr	= btrfs_setxattr,
9104 	.getxattr	= btrfs_getxattr,
9105 	.listxattr      = btrfs_listxattr,
9106 	.removexattr	= btrfs_removexattr,
9107 	.permission	= btrfs_permission,
9108 	.fiemap		= btrfs_fiemap,
9109 	.get_acl	= btrfs_get_acl,
9110 	.set_acl	= btrfs_set_acl,
9111 	.update_time	= btrfs_update_time,
9112 };
9113 static const struct inode_operations btrfs_special_inode_operations = {
9114 	.getattr	= btrfs_getattr,
9115 	.setattr	= btrfs_setattr,
9116 	.permission	= btrfs_permission,
9117 	.setxattr	= btrfs_setxattr,
9118 	.getxattr	= btrfs_getxattr,
9119 	.listxattr	= btrfs_listxattr,
9120 	.removexattr	= btrfs_removexattr,
9121 	.get_acl	= btrfs_get_acl,
9122 	.set_acl	= btrfs_set_acl,
9123 	.update_time	= btrfs_update_time,
9124 };
9125 static const struct inode_operations btrfs_symlink_inode_operations = {
9126 	.readlink	= generic_readlink,
9127 	.follow_link	= page_follow_link_light,
9128 	.put_link	= page_put_link,
9129 	.getattr	= btrfs_getattr,
9130 	.setattr	= btrfs_setattr,
9131 	.permission	= btrfs_permission,
9132 	.setxattr	= btrfs_setxattr,
9133 	.getxattr	= btrfs_getxattr,
9134 	.listxattr	= btrfs_listxattr,
9135 	.removexattr	= btrfs_removexattr,
9136 	.update_time	= btrfs_update_time,
9137 };
9138 
9139 const struct dentry_operations btrfs_dentry_operations = {
9140 	.d_delete	= btrfs_dentry_delete,
9141 	.d_release	= btrfs_dentry_release,
9142 };
9143