xref: /openbmc/linux/fs/btrfs/inode.c (revision 94b00cd6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_dio_data {
81 	ssize_t submitted;
82 	struct extent_changeset *data_reserved;
83 	struct btrfs_ordered_extent *ordered;
84 	bool data_space_reserved;
85 	bool nocow_done;
86 };
87 
88 struct btrfs_dio_private {
89 	/* Range of I/O */
90 	u64 file_offset;
91 	u32 bytes;
92 
93 	/* This must be last */
94 	struct btrfs_bio bbio;
95 };
96 
97 static struct bio_set btrfs_dio_bioset;
98 
99 struct btrfs_rename_ctx {
100 	/* Output field. Stores the index number of the old directory entry. */
101 	u64 index;
102 };
103 
104 /*
105  * Used by data_reloc_print_warning_inode() to pass needed info for filename
106  * resolution and output of error message.
107  */
108 struct data_reloc_warn {
109 	struct btrfs_path path;
110 	struct btrfs_fs_info *fs_info;
111 	u64 extent_item_size;
112 	u64 logical;
113 	int mirror_num;
114 };
115 
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122 
123 static struct kmem_cache *btrfs_inode_cachep;
124 
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 				     struct page *locked_page, u64 start,
130 				     u64 end, struct writeback_control *wbc,
131 				     bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 				       u64 len, u64 orig_start, u64 block_start,
134 				       u64 block_len, u64 orig_block_len,
135 				       u64 ram_bytes, int compress_type,
136 				       int type);
137 
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 					  u64 root, void *warn_ctx)
140 {
141 	struct data_reloc_warn *warn = warn_ctx;
142 	struct btrfs_fs_info *fs_info = warn->fs_info;
143 	struct extent_buffer *eb;
144 	struct btrfs_inode_item *inode_item;
145 	struct inode_fs_paths *ipath = NULL;
146 	struct btrfs_root *local_root;
147 	struct btrfs_key key;
148 	unsigned int nofs_flag;
149 	u32 nlink;
150 	int ret;
151 
152 	local_root = btrfs_get_fs_root(fs_info, root, true);
153 	if (IS_ERR(local_root)) {
154 		ret = PTR_ERR(local_root);
155 		goto err;
156 	}
157 
158 	/* This makes the path point to (inum INODE_ITEM ioff). */
159 	key.objectid = inum;
160 	key.type = BTRFS_INODE_ITEM_KEY;
161 	key.offset = 0;
162 
163 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 	if (ret) {
165 		btrfs_put_root(local_root);
166 		btrfs_release_path(&warn->path);
167 		goto err;
168 	}
169 
170 	eb = warn->path.nodes[0];
171 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 	nlink = btrfs_inode_nlink(eb, inode_item);
173 	btrfs_release_path(&warn->path);
174 
175 	nofs_flag = memalloc_nofs_save();
176 	ipath = init_ipath(4096, local_root, &warn->path);
177 	memalloc_nofs_restore(nofs_flag);
178 	if (IS_ERR(ipath)) {
179 		btrfs_put_root(local_root);
180 		ret = PTR_ERR(ipath);
181 		ipath = NULL;
182 		/*
183 		 * -ENOMEM, not a critical error, just output an generic error
184 		 * without filename.
185 		 */
186 		btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 			   warn->logical, warn->mirror_num, root, inum, offset);
189 		return ret;
190 	}
191 	ret = paths_from_inode(inum, ipath);
192 	if (ret < 0)
193 		goto err;
194 
195 	/*
196 	 * We deliberately ignore the bit ipath might have been too small to
197 	 * hold all of the paths here
198 	 */
199 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 		btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 			   warn->logical, warn->mirror_num, root, inum, offset,
203 			   fs_info->sectorsize, nlink,
204 			   (char *)(unsigned long)ipath->fspath->val[i]);
205 	}
206 
207 	btrfs_put_root(local_root);
208 	free_ipath(ipath);
209 	return 0;
210 
211 err:
212 	btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
215 
216 	free_ipath(ipath);
217 	return ret;
218 }
219 
220 /*
221  * Do extra user-friendly error output (e.g. lookup all the affected files).
222  *
223  * Return true if we succeeded doing the backref lookup.
224  * Return false if such lookup failed, and has to fallback to the old error message.
225  */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 				   const u8 *csum, const u8 *csum_expected,
228 				   int mirror_num)
229 {
230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 	struct btrfs_path path = { 0 };
232 	struct btrfs_key found_key = { 0 };
233 	struct extent_buffer *eb;
234 	struct btrfs_extent_item *ei;
235 	const u32 csum_size = fs_info->csum_size;
236 	u64 logical;
237 	u64 flags;
238 	u32 item_size;
239 	int ret;
240 
241 	mutex_lock(&fs_info->reloc_mutex);
242 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 	mutex_unlock(&fs_info->reloc_mutex);
244 
245 	if (logical == U64_MAX) {
246 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 		btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 			CSUM_FMT_VALUE(csum_size, csum),
251 			CSUM_FMT_VALUE(csum_size, csum_expected),
252 			mirror_num);
253 		return;
254 	}
255 
256 	logical += file_off;
257 	btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid,
260 			btrfs_ino(inode), file_off, logical,
261 			CSUM_FMT_VALUE(csum_size, csum),
262 			CSUM_FMT_VALUE(csum_size, csum_expected),
263 			mirror_num);
264 
265 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 	if (ret < 0) {
267 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 			     logical, ret);
269 		return;
270 	}
271 	eb = path.nodes[0];
272 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 	item_size = btrfs_item_size(eb, path.slots[0]);
274 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 		unsigned long ptr = 0;
276 		u64 ref_root;
277 		u8 ref_level;
278 
279 		while (true) {
280 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 						      item_size, &ref_root,
282 						      &ref_level);
283 			if (ret < 0) {
284 				btrfs_warn_rl(fs_info,
285 				"failed to resolve tree backref for logical %llu: %d",
286 					      logical, ret);
287 				break;
288 			}
289 			if (ret > 0)
290 				break;
291 
292 			btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 				logical, mirror_num,
295 				(ref_level ? "node" : "leaf"),
296 				ref_level, ref_root);
297 		}
298 		btrfs_release_path(&path);
299 	} else {
300 		struct btrfs_backref_walk_ctx ctx = { 0 };
301 		struct data_reloc_warn reloc_warn = { 0 };
302 
303 		btrfs_release_path(&path);
304 
305 		ctx.bytenr = found_key.objectid;
306 		ctx.extent_item_pos = logical - found_key.objectid;
307 		ctx.fs_info = fs_info;
308 
309 		reloc_warn.logical = logical;
310 		reloc_warn.extent_item_size = found_key.offset;
311 		reloc_warn.mirror_num = mirror_num;
312 		reloc_warn.fs_info = fs_info;
313 
314 		iterate_extent_inodes(&ctx, true,
315 				      data_reloc_print_warning_inode, &reloc_warn);
316 	}
317 }
318 
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 	struct btrfs_root *root = inode->root;
323 	const u32 csum_size = root->fs_info->csum_size;
324 
325 	/* For data reloc tree, it's better to do a backref lookup instead. */
326 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 		return print_data_reloc_error(inode, logical_start, csum,
328 					      csum_expected, mirror_num);
329 
330 	/* Output without objectid, which is more meaningful */
331 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 		btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 			root->root_key.objectid, btrfs_ino(inode),
335 			logical_start,
336 			CSUM_FMT_VALUE(csum_size, csum),
337 			CSUM_FMT_VALUE(csum_size, csum_expected),
338 			mirror_num);
339 	} else {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	}
348 }
349 
350 /*
351  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352  *
353  * ilock_flags can have the following bit set:
354  *
355  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357  *		     return -EAGAIN
358  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359  */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 		if (ilock_flags & BTRFS_ILOCK_TRY) {
364 			if (!inode_trylock_shared(&inode->vfs_inode))
365 				return -EAGAIN;
366 			else
367 				return 0;
368 		}
369 		inode_lock_shared(&inode->vfs_inode);
370 	} else {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock(&inode->vfs_inode);
378 	}
379 	if (ilock_flags & BTRFS_ILOCK_MMAP)
380 		down_write(&inode->i_mmap_lock);
381 	return 0;
382 }
383 
384 /*
385  * btrfs_inode_unlock - unock inode i_rwsem
386  *
387  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388  * to decide whether the lock acquired is shared or exclusive.
389  */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 	if (ilock_flags & BTRFS_ILOCK_MMAP)
393 		up_write(&inode->i_mmap_lock);
394 	if (ilock_flags & BTRFS_ILOCK_SHARED)
395 		inode_unlock_shared(&inode->vfs_inode);
396 	else
397 		inode_unlock(&inode->vfs_inode);
398 }
399 
400 /*
401  * Cleanup all submitted ordered extents in specified range to handle errors
402  * from the btrfs_run_delalloc_range() callback.
403  *
404  * NOTE: caller must ensure that when an error happens, it can not call
405  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407  * to be released, which we want to happen only when finishing the ordered
408  * extent (btrfs_finish_ordered_io()).
409  */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 						 struct page *locked_page,
412 						 u64 offset, u64 bytes)
413 {
414 	unsigned long index = offset >> PAGE_SHIFT;
415 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 	u64 page_start = 0, page_end = 0;
417 	struct page *page;
418 
419 	if (locked_page) {
420 		page_start = page_offset(locked_page);
421 		page_end = page_start + PAGE_SIZE - 1;
422 	}
423 
424 	while (index <= end_index) {
425 		/*
426 		 * For locked page, we will call btrfs_mark_ordered_io_finished
427 		 * through btrfs_mark_ordered_io_finished() on it
428 		 * in run_delalloc_range() for the error handling, which will
429 		 * clear page Ordered and run the ordered extent accounting.
430 		 *
431 		 * Here we can't just clear the Ordered bit, or
432 		 * btrfs_mark_ordered_io_finished() would skip the accounting
433 		 * for the page range, and the ordered extent will never finish.
434 		 */
435 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 			index++;
437 			continue;
438 		}
439 		page = find_get_page(inode->vfs_inode.i_mapping, index);
440 		index++;
441 		if (!page)
442 			continue;
443 
444 		/*
445 		 * Here we just clear all Ordered bits for every page in the
446 		 * range, then btrfs_mark_ordered_io_finished() will handle
447 		 * the ordered extent accounting for the range.
448 		 */
449 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 					       offset, bytes);
451 		put_page(page);
452 	}
453 
454 	if (locked_page) {
455 		/* The locked page covers the full range, nothing needs to be done */
456 		if (bytes + offset <= page_start + PAGE_SIZE)
457 			return;
458 		/*
459 		 * In case this page belongs to the delalloc range being
460 		 * instantiated then skip it, since the first page of a range is
461 		 * going to be properly cleaned up by the caller of
462 		 * run_delalloc_range
463 		 */
464 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 			offset = page_offset(locked_page) + PAGE_SIZE;
467 		}
468 	}
469 
470 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472 
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474 
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 				     struct btrfs_new_inode_args *args)
477 {
478 	int err;
479 
480 	if (args->default_acl) {
481 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 				      ACL_TYPE_DEFAULT);
483 		if (err)
484 			return err;
485 	}
486 	if (args->acl) {
487 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 		if (err)
489 			return err;
490 	}
491 	if (!args->default_acl && !args->acl)
492 		cache_no_acl(args->inode);
493 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 					 &args->dentry->d_name);
495 }
496 
497 /*
498  * this does all the hard work for inserting an inline extent into
499  * the btree.  The caller should have done a btrfs_drop_extents so that
500  * no overlapping inline items exist in the btree
501  */
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 				struct btrfs_path *path,
504 				struct btrfs_inode *inode, bool extent_inserted,
505 				size_t size, size_t compressed_size,
506 				int compress_type,
507 				struct page **compressed_pages,
508 				bool update_i_size)
509 {
510 	struct btrfs_root *root = inode->root;
511 	struct extent_buffer *leaf;
512 	struct page *page = NULL;
513 	char *kaddr;
514 	unsigned long ptr;
515 	struct btrfs_file_extent_item *ei;
516 	int ret;
517 	size_t cur_size = size;
518 	u64 i_size;
519 
520 	ASSERT((compressed_size > 0 && compressed_pages) ||
521 	       (compressed_size == 0 && !compressed_pages));
522 
523 	if (compressed_size && compressed_pages)
524 		cur_size = compressed_size;
525 
526 	if (!extent_inserted) {
527 		struct btrfs_key key;
528 		size_t datasize;
529 
530 		key.objectid = btrfs_ino(inode);
531 		key.offset = 0;
532 		key.type = BTRFS_EXTENT_DATA_KEY;
533 
534 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 		ret = btrfs_insert_empty_item(trans, root, path, &key,
536 					      datasize);
537 		if (ret)
538 			goto fail;
539 	}
540 	leaf = path->nodes[0];
541 	ei = btrfs_item_ptr(leaf, path->slots[0],
542 			    struct btrfs_file_extent_item);
543 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 	btrfs_set_file_extent_encryption(leaf, ei, 0);
546 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 	ptr = btrfs_file_extent_inline_start(ei);
549 
550 	if (compress_type != BTRFS_COMPRESS_NONE) {
551 		struct page *cpage;
552 		int i = 0;
553 		while (compressed_size > 0) {
554 			cpage = compressed_pages[i];
555 			cur_size = min_t(unsigned long, compressed_size,
556 				       PAGE_SIZE);
557 
558 			kaddr = kmap_local_page(cpage);
559 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 			kunmap_local(kaddr);
561 
562 			i++;
563 			ptr += cur_size;
564 			compressed_size -= cur_size;
565 		}
566 		btrfs_set_file_extent_compression(leaf, ei,
567 						  compress_type);
568 	} else {
569 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 		btrfs_set_file_extent_compression(leaf, ei, 0);
571 		kaddr = kmap_local_page(page);
572 		write_extent_buffer(leaf, kaddr, ptr, size);
573 		kunmap_local(kaddr);
574 		put_page(page);
575 	}
576 	btrfs_mark_buffer_dirty(trans, leaf);
577 	btrfs_release_path(path);
578 
579 	/*
580 	 * We align size to sectorsize for inline extents just for simplicity
581 	 * sake.
582 	 */
583 	ret = btrfs_inode_set_file_extent_range(inode, 0,
584 					ALIGN(size, root->fs_info->sectorsize));
585 	if (ret)
586 		goto fail;
587 
588 	/*
589 	 * We're an inline extent, so nobody can extend the file past i_size
590 	 * without locking a page we already have locked.
591 	 *
592 	 * We must do any i_size and inode updates before we unlock the pages.
593 	 * Otherwise we could end up racing with unlink.
594 	 */
595 	i_size = i_size_read(&inode->vfs_inode);
596 	if (update_i_size && size > i_size) {
597 		i_size_write(&inode->vfs_inode, size);
598 		i_size = size;
599 	}
600 	inode->disk_i_size = i_size;
601 
602 fail:
603 	return ret;
604 }
605 
606 
607 /*
608  * conditionally insert an inline extent into the file.  This
609  * does the checks required to make sure the data is small enough
610  * to fit as an inline extent.
611  */
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 					  size_t compressed_size,
614 					  int compress_type,
615 					  struct page **compressed_pages,
616 					  bool update_i_size)
617 {
618 	struct btrfs_drop_extents_args drop_args = { 0 };
619 	struct btrfs_root *root = inode->root;
620 	struct btrfs_fs_info *fs_info = root->fs_info;
621 	struct btrfs_trans_handle *trans;
622 	u64 data_len = (compressed_size ?: size);
623 	int ret;
624 	struct btrfs_path *path;
625 
626 	/*
627 	 * We can create an inline extent if it ends at or beyond the current
628 	 * i_size, is no larger than a sector (decompressed), and the (possibly
629 	 * compressed) data fits in a leaf and the configured maximum inline
630 	 * size.
631 	 */
632 	if (size < i_size_read(&inode->vfs_inode) ||
633 	    size > fs_info->sectorsize ||
634 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 	    data_len > fs_info->max_inline)
636 		return 1;
637 
638 	path = btrfs_alloc_path();
639 	if (!path)
640 		return -ENOMEM;
641 
642 	trans = btrfs_join_transaction(root);
643 	if (IS_ERR(trans)) {
644 		btrfs_free_path(path);
645 		return PTR_ERR(trans);
646 	}
647 	trans->block_rsv = &inode->block_rsv;
648 
649 	drop_args.path = path;
650 	drop_args.start = 0;
651 	drop_args.end = fs_info->sectorsize;
652 	drop_args.drop_cache = true;
653 	drop_args.replace_extent = true;
654 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 	if (ret) {
657 		btrfs_abort_transaction(trans, ret);
658 		goto out;
659 	}
660 
661 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 				   size, compressed_size, compress_type,
663 				   compressed_pages, update_i_size);
664 	if (ret && ret != -ENOSPC) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	} else if (ret == -ENOSPC) {
668 		ret = 1;
669 		goto out;
670 	}
671 
672 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 	ret = btrfs_update_inode(trans, root, inode);
674 	if (ret && ret != -ENOSPC) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto out;
677 	} else if (ret == -ENOSPC) {
678 		ret = 1;
679 		goto out;
680 	}
681 
682 	btrfs_set_inode_full_sync(inode);
683 out:
684 	/*
685 	 * Don't forget to free the reserved space, as for inlined extent
686 	 * it won't count as data extent, free them directly here.
687 	 * And at reserve time, it's always aligned to page size, so
688 	 * just free one page here.
689 	 */
690 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
691 	btrfs_free_path(path);
692 	btrfs_end_transaction(trans);
693 	return ret;
694 }
695 
696 struct async_extent {
697 	u64 start;
698 	u64 ram_size;
699 	u64 compressed_size;
700 	struct page **pages;
701 	unsigned long nr_pages;
702 	int compress_type;
703 	struct list_head list;
704 };
705 
706 struct async_chunk {
707 	struct btrfs_inode *inode;
708 	struct page *locked_page;
709 	u64 start;
710 	u64 end;
711 	blk_opf_t write_flags;
712 	struct list_head extents;
713 	struct cgroup_subsys_state *blkcg_css;
714 	struct btrfs_work work;
715 	struct async_cow *async_cow;
716 };
717 
718 struct async_cow {
719 	atomic_t num_chunks;
720 	struct async_chunk chunks[];
721 };
722 
723 static noinline int add_async_extent(struct async_chunk *cow,
724 				     u64 start, u64 ram_size,
725 				     u64 compressed_size,
726 				     struct page **pages,
727 				     unsigned long nr_pages,
728 				     int compress_type)
729 {
730 	struct async_extent *async_extent;
731 
732 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 	BUG_ON(!async_extent); /* -ENOMEM */
734 	async_extent->start = start;
735 	async_extent->ram_size = ram_size;
736 	async_extent->compressed_size = compressed_size;
737 	async_extent->pages = pages;
738 	async_extent->nr_pages = nr_pages;
739 	async_extent->compress_type = compress_type;
740 	list_add_tail(&async_extent->list, &cow->extents);
741 	return 0;
742 }
743 
744 /*
745  * Check if the inode needs to be submitted to compression, based on mount
746  * options, defragmentation, properties or heuristics.
747  */
748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
749 				      u64 end)
750 {
751 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
752 
753 	if (!btrfs_inode_can_compress(inode)) {
754 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
755 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
756 			btrfs_ino(inode));
757 		return 0;
758 	}
759 	/*
760 	 * Special check for subpage.
761 	 *
762 	 * We lock the full page then run each delalloc range in the page, thus
763 	 * for the following case, we will hit some subpage specific corner case:
764 	 *
765 	 * 0		32K		64K
766 	 * |	|///////|	|///////|
767 	 *		\- A		\- B
768 	 *
769 	 * In above case, both range A and range B will try to unlock the full
770 	 * page [0, 64K), causing the one finished later will have page
771 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
772 	 *
773 	 * So here we add an artificial limit that subpage compression can only
774 	 * if the range is fully page aligned.
775 	 *
776 	 * In theory we only need to ensure the first page is fully covered, but
777 	 * the tailing partial page will be locked until the full compression
778 	 * finishes, delaying the write of other range.
779 	 *
780 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
781 	 * first to prevent any submitted async extent to unlock the full page.
782 	 * By this, we can ensure for subpage case that only the last async_cow
783 	 * will unlock the full page.
784 	 */
785 	if (fs_info->sectorsize < PAGE_SIZE) {
786 		if (!PAGE_ALIGNED(start) ||
787 		    !PAGE_ALIGNED(end + 1))
788 			return 0;
789 	}
790 
791 	/* force compress */
792 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
793 		return 1;
794 	/* defrag ioctl */
795 	if (inode->defrag_compress)
796 		return 1;
797 	/* bad compression ratios */
798 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
799 		return 0;
800 	if (btrfs_test_opt(fs_info, COMPRESS) ||
801 	    inode->flags & BTRFS_INODE_COMPRESS ||
802 	    inode->prop_compress)
803 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
804 	return 0;
805 }
806 
807 static inline void inode_should_defrag(struct btrfs_inode *inode,
808 		u64 start, u64 end, u64 num_bytes, u32 small_write)
809 {
810 	/* If this is a small write inside eof, kick off a defrag */
811 	if (num_bytes < small_write &&
812 	    (start > 0 || end + 1 < inode->disk_i_size))
813 		btrfs_add_inode_defrag(NULL, inode, small_write);
814 }
815 
816 /*
817  * Work queue call back to started compression on a file and pages.
818  *
819  * This is done inside an ordered work queue, and the compression is spread
820  * across many cpus.  The actual IO submission is step two, and the ordered work
821  * queue takes care of making sure that happens in the same order things were
822  * put onto the queue by writepages and friends.
823  *
824  * If this code finds it can't get good compression, it puts an entry onto the
825  * work queue to write the uncompressed bytes.  This makes sure that both
826  * compressed inodes and uncompressed inodes are written in the same order that
827  * the flusher thread sent them down.
828  */
829 static void compress_file_range(struct btrfs_work *work)
830 {
831 	struct async_chunk *async_chunk =
832 		container_of(work, struct async_chunk, work);
833 	struct btrfs_inode *inode = async_chunk->inode;
834 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
835 	struct address_space *mapping = inode->vfs_inode.i_mapping;
836 	u64 blocksize = fs_info->sectorsize;
837 	u64 start = async_chunk->start;
838 	u64 end = async_chunk->end;
839 	u64 actual_end;
840 	u64 i_size;
841 	int ret = 0;
842 	struct page **pages;
843 	unsigned long nr_pages;
844 	unsigned long total_compressed = 0;
845 	unsigned long total_in = 0;
846 	unsigned int poff;
847 	int i;
848 	int compress_type = fs_info->compress_type;
849 
850 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
851 
852 	/*
853 	 * We need to call clear_page_dirty_for_io on each page in the range.
854 	 * Otherwise applications with the file mmap'd can wander in and change
855 	 * the page contents while we are compressing them.
856 	 */
857 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
858 
859 	/*
860 	 * We need to save i_size before now because it could change in between
861 	 * us evaluating the size and assigning it.  This is because we lock and
862 	 * unlock the page in truncate and fallocate, and then modify the i_size
863 	 * later on.
864 	 *
865 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
866 	 * does that for us.
867 	 */
868 	barrier();
869 	i_size = i_size_read(&inode->vfs_inode);
870 	barrier();
871 	actual_end = min_t(u64, i_size, end + 1);
872 again:
873 	pages = NULL;
874 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
875 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
876 
877 	/*
878 	 * we don't want to send crud past the end of i_size through
879 	 * compression, that's just a waste of CPU time.  So, if the
880 	 * end of the file is before the start of our current
881 	 * requested range of bytes, we bail out to the uncompressed
882 	 * cleanup code that can deal with all of this.
883 	 *
884 	 * It isn't really the fastest way to fix things, but this is a
885 	 * very uncommon corner.
886 	 */
887 	if (actual_end <= start)
888 		goto cleanup_and_bail_uncompressed;
889 
890 	total_compressed = actual_end - start;
891 
892 	/*
893 	 * Skip compression for a small file range(<=blocksize) that
894 	 * isn't an inline extent, since it doesn't save disk space at all.
895 	 */
896 	if (total_compressed <= blocksize &&
897 	   (start > 0 || end + 1 < inode->disk_i_size))
898 		goto cleanup_and_bail_uncompressed;
899 
900 	/*
901 	 * For subpage case, we require full page alignment for the sector
902 	 * aligned range.
903 	 * Thus we must also check against @actual_end, not just @end.
904 	 */
905 	if (blocksize < PAGE_SIZE) {
906 		if (!PAGE_ALIGNED(start) ||
907 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
908 			goto cleanup_and_bail_uncompressed;
909 	}
910 
911 	total_compressed = min_t(unsigned long, total_compressed,
912 			BTRFS_MAX_UNCOMPRESSED);
913 	total_in = 0;
914 	ret = 0;
915 
916 	/*
917 	 * We do compression for mount -o compress and when the inode has not
918 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
919 	 * discover bad compression ratios.
920 	 */
921 	if (!inode_need_compress(inode, start, end))
922 		goto cleanup_and_bail_uncompressed;
923 
924 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
925 	if (!pages) {
926 		/*
927 		 * Memory allocation failure is not a fatal error, we can fall
928 		 * back to uncompressed code.
929 		 */
930 		goto cleanup_and_bail_uncompressed;
931 	}
932 
933 	if (inode->defrag_compress)
934 		compress_type = inode->defrag_compress;
935 	else if (inode->prop_compress)
936 		compress_type = inode->prop_compress;
937 
938 	/* Compression level is applied here. */
939 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
940 				   mapping, start, pages, &nr_pages, &total_in,
941 				   &total_compressed);
942 	if (ret)
943 		goto mark_incompressible;
944 
945 	/*
946 	 * Zero the tail end of the last page, as we might be sending it down
947 	 * to disk.
948 	 */
949 	poff = offset_in_page(total_compressed);
950 	if (poff)
951 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
952 
953 	/*
954 	 * Try to create an inline extent.
955 	 *
956 	 * If we didn't compress the entire range, try to create an uncompressed
957 	 * inline extent, else a compressed one.
958 	 *
959 	 * Check cow_file_range() for why we don't even try to create inline
960 	 * extent for the subpage case.
961 	 */
962 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
963 		if (total_in < actual_end) {
964 			ret = cow_file_range_inline(inode, actual_end, 0,
965 						    BTRFS_COMPRESS_NONE, NULL,
966 						    false);
967 		} else {
968 			ret = cow_file_range_inline(inode, actual_end,
969 						    total_compressed,
970 						    compress_type, pages,
971 						    false);
972 		}
973 		if (ret <= 0) {
974 			unsigned long clear_flags = EXTENT_DELALLOC |
975 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
976 				EXTENT_DO_ACCOUNTING;
977 
978 			if (ret < 0)
979 				mapping_set_error(mapping, -EIO);
980 
981 			/*
982 			 * inline extent creation worked or returned error,
983 			 * we don't need to create any more async work items.
984 			 * Unlock and free up our temp pages.
985 			 *
986 			 * We use DO_ACCOUNTING here because we need the
987 			 * delalloc_release_metadata to be done _after_ we drop
988 			 * our outstanding extent for clearing delalloc for this
989 			 * range.
990 			 */
991 			extent_clear_unlock_delalloc(inode, start, end,
992 						     NULL,
993 						     clear_flags,
994 						     PAGE_UNLOCK |
995 						     PAGE_START_WRITEBACK |
996 						     PAGE_END_WRITEBACK);
997 			goto free_pages;
998 		}
999 	}
1000 
1001 	/*
1002 	 * We aren't doing an inline extent. Round the compressed size up to a
1003 	 * block size boundary so the allocator does sane things.
1004 	 */
1005 	total_compressed = ALIGN(total_compressed, blocksize);
1006 
1007 	/*
1008 	 * One last check to make sure the compression is really a win, compare
1009 	 * the page count read with the blocks on disk, compression must free at
1010 	 * least one sector.
1011 	 */
1012 	total_in = round_up(total_in, fs_info->sectorsize);
1013 	if (total_compressed + blocksize > total_in)
1014 		goto mark_incompressible;
1015 
1016 	/*
1017 	 * The async work queues will take care of doing actual allocation on
1018 	 * disk for these compressed pages, and will submit the bios.
1019 	 */
1020 	add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1021 			 nr_pages, compress_type);
1022 	if (start + total_in < end) {
1023 		start += total_in;
1024 		cond_resched();
1025 		goto again;
1026 	}
1027 	return;
1028 
1029 mark_incompressible:
1030 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1031 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1032 cleanup_and_bail_uncompressed:
1033 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1034 			 BTRFS_COMPRESS_NONE);
1035 free_pages:
1036 	if (pages) {
1037 		for (i = 0; i < nr_pages; i++) {
1038 			WARN_ON(pages[i]->mapping);
1039 			put_page(pages[i]);
1040 		}
1041 		kfree(pages);
1042 	}
1043 }
1044 
1045 static void free_async_extent_pages(struct async_extent *async_extent)
1046 {
1047 	int i;
1048 
1049 	if (!async_extent->pages)
1050 		return;
1051 
1052 	for (i = 0; i < async_extent->nr_pages; i++) {
1053 		WARN_ON(async_extent->pages[i]->mapping);
1054 		put_page(async_extent->pages[i]);
1055 	}
1056 	kfree(async_extent->pages);
1057 	async_extent->nr_pages = 0;
1058 	async_extent->pages = NULL;
1059 }
1060 
1061 static void submit_uncompressed_range(struct btrfs_inode *inode,
1062 				      struct async_extent *async_extent,
1063 				      struct page *locked_page)
1064 {
1065 	u64 start = async_extent->start;
1066 	u64 end = async_extent->start + async_extent->ram_size - 1;
1067 	int ret;
1068 	struct writeback_control wbc = {
1069 		.sync_mode		= WB_SYNC_ALL,
1070 		.range_start		= start,
1071 		.range_end		= end,
1072 		.no_cgroup_owner	= 1,
1073 	};
1074 
1075 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1076 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1077 	wbc_detach_inode(&wbc);
1078 	if (ret < 0) {
1079 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1080 		if (locked_page) {
1081 			const u64 page_start = page_offset(locked_page);
1082 
1083 			set_page_writeback(locked_page);
1084 			end_page_writeback(locked_page);
1085 			btrfs_mark_ordered_io_finished(inode, locked_page,
1086 						       page_start, PAGE_SIZE,
1087 						       !ret);
1088 			mapping_set_error(locked_page->mapping, ret);
1089 			unlock_page(locked_page);
1090 		}
1091 	}
1092 }
1093 
1094 static void submit_one_async_extent(struct async_chunk *async_chunk,
1095 				    struct async_extent *async_extent,
1096 				    u64 *alloc_hint)
1097 {
1098 	struct btrfs_inode *inode = async_chunk->inode;
1099 	struct extent_io_tree *io_tree = &inode->io_tree;
1100 	struct btrfs_root *root = inode->root;
1101 	struct btrfs_fs_info *fs_info = root->fs_info;
1102 	struct btrfs_ordered_extent *ordered;
1103 	struct btrfs_key ins;
1104 	struct page *locked_page = NULL;
1105 	struct extent_map *em;
1106 	int ret = 0;
1107 	u64 start = async_extent->start;
1108 	u64 end = async_extent->start + async_extent->ram_size - 1;
1109 
1110 	if (async_chunk->blkcg_css)
1111 		kthread_associate_blkcg(async_chunk->blkcg_css);
1112 
1113 	/*
1114 	 * If async_chunk->locked_page is in the async_extent range, we need to
1115 	 * handle it.
1116 	 */
1117 	if (async_chunk->locked_page) {
1118 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1119 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1120 
1121 		if (!(start >= locked_page_end || end <= locked_page_start))
1122 			locked_page = async_chunk->locked_page;
1123 	}
1124 	lock_extent(io_tree, start, end, NULL);
1125 
1126 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1127 		submit_uncompressed_range(inode, async_extent, locked_page);
1128 		goto done;
1129 	}
1130 
1131 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1132 				   async_extent->compressed_size,
1133 				   async_extent->compressed_size,
1134 				   0, *alloc_hint, &ins, 1, 1);
1135 	if (ret) {
1136 		/*
1137 		 * Here we used to try again by going back to non-compressed
1138 		 * path for ENOSPC.  But we can't reserve space even for
1139 		 * compressed size, how could it work for uncompressed size
1140 		 * which requires larger size?  So here we directly go error
1141 		 * path.
1142 		 */
1143 		goto out_free;
1144 	}
1145 
1146 	/* Here we're doing allocation and writeback of the compressed pages */
1147 	em = create_io_em(inode, start,
1148 			  async_extent->ram_size,	/* len */
1149 			  start,			/* orig_start */
1150 			  ins.objectid,			/* block_start */
1151 			  ins.offset,			/* block_len */
1152 			  ins.offset,			/* orig_block_len */
1153 			  async_extent->ram_size,	/* ram_bytes */
1154 			  async_extent->compress_type,
1155 			  BTRFS_ORDERED_COMPRESSED);
1156 	if (IS_ERR(em)) {
1157 		ret = PTR_ERR(em);
1158 		goto out_free_reserve;
1159 	}
1160 	free_extent_map(em);
1161 
1162 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1163 				       async_extent->ram_size,	/* num_bytes */
1164 				       async_extent->ram_size,	/* ram_bytes */
1165 				       ins.objectid,		/* disk_bytenr */
1166 				       ins.offset,		/* disk_num_bytes */
1167 				       0,			/* offset */
1168 				       1 << BTRFS_ORDERED_COMPRESSED,
1169 				       async_extent->compress_type);
1170 	if (IS_ERR(ordered)) {
1171 		btrfs_drop_extent_map_range(inode, start, end, false);
1172 		ret = PTR_ERR(ordered);
1173 		goto out_free_reserve;
1174 	}
1175 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1176 
1177 	/* Clear dirty, set writeback and unlock the pages. */
1178 	extent_clear_unlock_delalloc(inode, start, end,
1179 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1180 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1181 	btrfs_submit_compressed_write(ordered,
1182 			    async_extent->pages,	/* compressed_pages */
1183 			    async_extent->nr_pages,
1184 			    async_chunk->write_flags, true);
1185 	*alloc_hint = ins.objectid + ins.offset;
1186 done:
1187 	if (async_chunk->blkcg_css)
1188 		kthread_associate_blkcg(NULL);
1189 	kfree(async_extent);
1190 	return;
1191 
1192 out_free_reserve:
1193 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1194 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1195 out_free:
1196 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1197 	extent_clear_unlock_delalloc(inode, start, end,
1198 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1199 				     EXTENT_DELALLOC_NEW |
1200 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1201 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1202 				     PAGE_END_WRITEBACK);
1203 	free_async_extent_pages(async_extent);
1204 	if (async_chunk->blkcg_css)
1205 		kthread_associate_blkcg(NULL);
1206 	btrfs_debug(fs_info,
1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1208 		    root->root_key.objectid, btrfs_ino(inode), start,
1209 		    async_extent->ram_size, ret);
1210 	kfree(async_extent);
1211 }
1212 
1213 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1214 				      u64 num_bytes)
1215 {
1216 	struct extent_map_tree *em_tree = &inode->extent_tree;
1217 	struct extent_map *em;
1218 	u64 alloc_hint = 0;
1219 
1220 	read_lock(&em_tree->lock);
1221 	em = search_extent_mapping(em_tree, start, num_bytes);
1222 	if (em) {
1223 		/*
1224 		 * if block start isn't an actual block number then find the
1225 		 * first block in this inode and use that as a hint.  If that
1226 		 * block is also bogus then just don't worry about it.
1227 		 */
1228 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1229 			free_extent_map(em);
1230 			em = search_extent_mapping(em_tree, 0, 0);
1231 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1232 				alloc_hint = em->block_start;
1233 			if (em)
1234 				free_extent_map(em);
1235 		} else {
1236 			alloc_hint = em->block_start;
1237 			free_extent_map(em);
1238 		}
1239 	}
1240 	read_unlock(&em_tree->lock);
1241 
1242 	return alloc_hint;
1243 }
1244 
1245 /*
1246  * when extent_io.c finds a delayed allocation range in the file,
1247  * the call backs end up in this code.  The basic idea is to
1248  * allocate extents on disk for the range, and create ordered data structs
1249  * in ram to track those extents.
1250  *
1251  * locked_page is the page that writepage had locked already.  We use
1252  * it to make sure we don't do extra locks or unlocks.
1253  *
1254  * When this function fails, it unlocks all pages except @locked_page.
1255  *
1256  * When this function successfully creates an inline extent, it returns 1 and
1257  * unlocks all pages including locked_page and starts I/O on them.
1258  * (In reality inline extents are limited to a single page, so locked_page is
1259  * the only page handled anyway).
1260  *
1261  * When this function succeed and creates a normal extent, the page locking
1262  * status depends on the passed in flags:
1263  *
1264  * - If @keep_locked is set, all pages are kept locked.
1265  * - Else all pages except for @locked_page are unlocked.
1266  *
1267  * When a failure happens in the second or later iteration of the
1268  * while-loop, the ordered extents created in previous iterations are kept
1269  * intact. So, the caller must clean them up by calling
1270  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1271  * example.
1272  */
1273 static noinline int cow_file_range(struct btrfs_inode *inode,
1274 				   struct page *locked_page, u64 start, u64 end,
1275 				   u64 *done_offset,
1276 				   bool keep_locked, bool no_inline)
1277 {
1278 	struct btrfs_root *root = inode->root;
1279 	struct btrfs_fs_info *fs_info = root->fs_info;
1280 	u64 alloc_hint = 0;
1281 	u64 orig_start = start;
1282 	u64 num_bytes;
1283 	unsigned long ram_size;
1284 	u64 cur_alloc_size = 0;
1285 	u64 min_alloc_size;
1286 	u64 blocksize = fs_info->sectorsize;
1287 	struct btrfs_key ins;
1288 	struct extent_map *em;
1289 	unsigned clear_bits;
1290 	unsigned long page_ops;
1291 	bool extent_reserved = false;
1292 	int ret = 0;
1293 
1294 	if (btrfs_is_free_space_inode(inode)) {
1295 		ret = -EINVAL;
1296 		goto out_unlock;
1297 	}
1298 
1299 	num_bytes = ALIGN(end - start + 1, blocksize);
1300 	num_bytes = max(blocksize,  num_bytes);
1301 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1302 
1303 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1304 
1305 	/*
1306 	 * Due to the page size limit, for subpage we can only trigger the
1307 	 * writeback for the dirty sectors of page, that means data writeback
1308 	 * is doing more writeback than what we want.
1309 	 *
1310 	 * This is especially unexpected for some call sites like fallocate,
1311 	 * where we only increase i_size after everything is done.
1312 	 * This means we can trigger inline extent even if we didn't want to.
1313 	 * So here we skip inline extent creation completely.
1314 	 */
1315 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1316 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1317 				       end + 1);
1318 
1319 		/* lets try to make an inline extent */
1320 		ret = cow_file_range_inline(inode, actual_end, 0,
1321 					    BTRFS_COMPRESS_NONE, NULL, false);
1322 		if (ret == 0) {
1323 			/*
1324 			 * We use DO_ACCOUNTING here because we need the
1325 			 * delalloc_release_metadata to be run _after_ we drop
1326 			 * our outstanding extent for clearing delalloc for this
1327 			 * range.
1328 			 */
1329 			extent_clear_unlock_delalloc(inode, start, end,
1330 				     locked_page,
1331 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1332 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1333 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1334 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1335 			/*
1336 			 * locked_page is locked by the caller of
1337 			 * writepage_delalloc(), not locked by
1338 			 * __process_pages_contig().
1339 			 *
1340 			 * We can't let __process_pages_contig() to unlock it,
1341 			 * as it doesn't have any subpage::writers recorded.
1342 			 *
1343 			 * Here we manually unlock the page, since the caller
1344 			 * can't determine if it's an inline extent or a
1345 			 * compressed extent.
1346 			 */
1347 			unlock_page(locked_page);
1348 			ret = 1;
1349 			goto done;
1350 		} else if (ret < 0) {
1351 			goto out_unlock;
1352 		}
1353 	}
1354 
1355 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1356 
1357 	/*
1358 	 * Relocation relies on the relocated extents to have exactly the same
1359 	 * size as the original extents. Normally writeback for relocation data
1360 	 * extents follows a NOCOW path because relocation preallocates the
1361 	 * extents. However, due to an operation such as scrub turning a block
1362 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1363 	 * an extent allocated during COW has exactly the requested size and can
1364 	 * not be split into smaller extents, otherwise relocation breaks and
1365 	 * fails during the stage where it updates the bytenr of file extent
1366 	 * items.
1367 	 */
1368 	if (btrfs_is_data_reloc_root(root))
1369 		min_alloc_size = num_bytes;
1370 	else
1371 		min_alloc_size = fs_info->sectorsize;
1372 
1373 	while (num_bytes > 0) {
1374 		struct btrfs_ordered_extent *ordered;
1375 
1376 		cur_alloc_size = num_bytes;
1377 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1378 					   min_alloc_size, 0, alloc_hint,
1379 					   &ins, 1, 1);
1380 		if (ret == -EAGAIN) {
1381 			/*
1382 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1383 			 * file systems, which is an indication that there are
1384 			 * no active zones to allocate from at the moment.
1385 			 *
1386 			 * If this is the first loop iteration, wait for at
1387 			 * least one zone to finish before retrying the
1388 			 * allocation.  Otherwise ask the caller to write out
1389 			 * the already allocated blocks before coming back to
1390 			 * us, or return -ENOSPC if it can't handle retries.
1391 			 */
1392 			ASSERT(btrfs_is_zoned(fs_info));
1393 			if (start == orig_start) {
1394 				wait_on_bit_io(&inode->root->fs_info->flags,
1395 					       BTRFS_FS_NEED_ZONE_FINISH,
1396 					       TASK_UNINTERRUPTIBLE);
1397 				continue;
1398 			}
1399 			if (done_offset) {
1400 				*done_offset = start - 1;
1401 				return 0;
1402 			}
1403 			ret = -ENOSPC;
1404 		}
1405 		if (ret < 0)
1406 			goto out_unlock;
1407 		cur_alloc_size = ins.offset;
1408 		extent_reserved = true;
1409 
1410 		ram_size = ins.offset;
1411 		em = create_io_em(inode, start, ins.offset, /* len */
1412 				  start, /* orig_start */
1413 				  ins.objectid, /* block_start */
1414 				  ins.offset, /* block_len */
1415 				  ins.offset, /* orig_block_len */
1416 				  ram_size, /* ram_bytes */
1417 				  BTRFS_COMPRESS_NONE, /* compress_type */
1418 				  BTRFS_ORDERED_REGULAR /* type */);
1419 		if (IS_ERR(em)) {
1420 			ret = PTR_ERR(em);
1421 			goto out_reserve;
1422 		}
1423 		free_extent_map(em);
1424 
1425 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1426 					ram_size, ins.objectid, cur_alloc_size,
1427 					0, 1 << BTRFS_ORDERED_REGULAR,
1428 					BTRFS_COMPRESS_NONE);
1429 		if (IS_ERR(ordered)) {
1430 			ret = PTR_ERR(ordered);
1431 			goto out_drop_extent_cache;
1432 		}
1433 
1434 		if (btrfs_is_data_reloc_root(root)) {
1435 			ret = btrfs_reloc_clone_csums(ordered);
1436 
1437 			/*
1438 			 * Only drop cache here, and process as normal.
1439 			 *
1440 			 * We must not allow extent_clear_unlock_delalloc()
1441 			 * at out_unlock label to free meta of this ordered
1442 			 * extent, as its meta should be freed by
1443 			 * btrfs_finish_ordered_io().
1444 			 *
1445 			 * So we must continue until @start is increased to
1446 			 * skip current ordered extent.
1447 			 */
1448 			if (ret)
1449 				btrfs_drop_extent_map_range(inode, start,
1450 							    start + ram_size - 1,
1451 							    false);
1452 		}
1453 		btrfs_put_ordered_extent(ordered);
1454 
1455 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1456 
1457 		/*
1458 		 * We're not doing compressed IO, don't unlock the first page
1459 		 * (which the caller expects to stay locked), don't clear any
1460 		 * dirty bits and don't set any writeback bits
1461 		 *
1462 		 * Do set the Ordered (Private2) bit so we know this page was
1463 		 * properly setup for writepage.
1464 		 */
1465 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1466 		page_ops |= PAGE_SET_ORDERED;
1467 
1468 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1469 					     locked_page,
1470 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1471 					     page_ops);
1472 		if (num_bytes < cur_alloc_size)
1473 			num_bytes = 0;
1474 		else
1475 			num_bytes -= cur_alloc_size;
1476 		alloc_hint = ins.objectid + ins.offset;
1477 		start += cur_alloc_size;
1478 		extent_reserved = false;
1479 
1480 		/*
1481 		 * btrfs_reloc_clone_csums() error, since start is increased
1482 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1483 		 * free metadata of current ordered extent, we're OK to exit.
1484 		 */
1485 		if (ret)
1486 			goto out_unlock;
1487 	}
1488 done:
1489 	if (done_offset)
1490 		*done_offset = end;
1491 	return ret;
1492 
1493 out_drop_extent_cache:
1494 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1495 out_reserve:
1496 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1497 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1498 out_unlock:
1499 	/*
1500 	 * Now, we have three regions to clean up:
1501 	 *
1502 	 * |-------(1)----|---(2)---|-------------(3)----------|
1503 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1504 	 *
1505 	 * We process each region below.
1506 	 */
1507 
1508 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1509 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1510 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1511 
1512 	/*
1513 	 * For the range (1). We have already instantiated the ordered extents
1514 	 * for this region. They are cleaned up by
1515 	 * btrfs_cleanup_ordered_extents() in e.g,
1516 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1517 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1518 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1519 	 * function.
1520 	 *
1521 	 * However, in case of @keep_locked, we still need to unlock the pages
1522 	 * (except @locked_page) to ensure all the pages are unlocked.
1523 	 */
1524 	if (keep_locked && orig_start < start) {
1525 		if (!locked_page)
1526 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1527 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1528 					     locked_page, 0, page_ops);
1529 	}
1530 
1531 	/*
1532 	 * For the range (2). If we reserved an extent for our delalloc range
1533 	 * (or a subrange) and failed to create the respective ordered extent,
1534 	 * then it means that when we reserved the extent we decremented the
1535 	 * extent's size from the data space_info's bytes_may_use counter and
1536 	 * incremented the space_info's bytes_reserved counter by the same
1537 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1538 	 * to decrement again the data space_info's bytes_may_use counter,
1539 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1540 	 */
1541 	if (extent_reserved) {
1542 		extent_clear_unlock_delalloc(inode, start,
1543 					     start + cur_alloc_size - 1,
1544 					     locked_page,
1545 					     clear_bits,
1546 					     page_ops);
1547 		start += cur_alloc_size;
1548 	}
1549 
1550 	/*
1551 	 * For the range (3). We never touched the region. In addition to the
1552 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1553 	 * space_info's bytes_may_use counter, reserved in
1554 	 * btrfs_check_data_free_space().
1555 	 */
1556 	if (start < end) {
1557 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1558 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1559 					     clear_bits, page_ops);
1560 	}
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Phase two of compressed writeback.  This is the ordered portion of the code,
1566  * which only gets called in the order the work was queued.  We walk all the
1567  * async extents created by compress_file_range and send them down to the disk.
1568  */
1569 static noinline void submit_compressed_extents(struct btrfs_work *work)
1570 {
1571 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1572 						     work);
1573 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1574 	struct async_extent *async_extent;
1575 	unsigned long nr_pages;
1576 	u64 alloc_hint = 0;
1577 
1578 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1579 		PAGE_SHIFT;
1580 
1581 	while (!list_empty(&async_chunk->extents)) {
1582 		async_extent = list_entry(async_chunk->extents.next,
1583 					  struct async_extent, list);
1584 		list_del(&async_extent->list);
1585 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1586 	}
1587 
1588 	/* atomic_sub_return implies a barrier */
1589 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1590 	    5 * SZ_1M)
1591 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1592 }
1593 
1594 static noinline void async_cow_free(struct btrfs_work *work)
1595 {
1596 	struct async_chunk *async_chunk;
1597 	struct async_cow *async_cow;
1598 
1599 	async_chunk = container_of(work, struct async_chunk, work);
1600 	btrfs_add_delayed_iput(async_chunk->inode);
1601 	if (async_chunk->blkcg_css)
1602 		css_put(async_chunk->blkcg_css);
1603 
1604 	async_cow = async_chunk->async_cow;
1605 	if (atomic_dec_and_test(&async_cow->num_chunks))
1606 		kvfree(async_cow);
1607 }
1608 
1609 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1610 				    struct page *locked_page, u64 start,
1611 				    u64 end, struct writeback_control *wbc)
1612 {
1613 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1614 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1615 	struct async_cow *ctx;
1616 	struct async_chunk *async_chunk;
1617 	unsigned long nr_pages;
1618 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1619 	int i;
1620 	unsigned nofs_flag;
1621 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1622 
1623 	nofs_flag = memalloc_nofs_save();
1624 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1625 	memalloc_nofs_restore(nofs_flag);
1626 	if (!ctx)
1627 		return false;
1628 
1629 	unlock_extent(&inode->io_tree, start, end, NULL);
1630 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1631 
1632 	async_chunk = ctx->chunks;
1633 	atomic_set(&ctx->num_chunks, num_chunks);
1634 
1635 	for (i = 0; i < num_chunks; i++) {
1636 		u64 cur_end = min(end, start + SZ_512K - 1);
1637 
1638 		/*
1639 		 * igrab is called higher up in the call chain, take only the
1640 		 * lightweight reference for the callback lifetime
1641 		 */
1642 		ihold(&inode->vfs_inode);
1643 		async_chunk[i].async_cow = ctx;
1644 		async_chunk[i].inode = inode;
1645 		async_chunk[i].start = start;
1646 		async_chunk[i].end = cur_end;
1647 		async_chunk[i].write_flags = write_flags;
1648 		INIT_LIST_HEAD(&async_chunk[i].extents);
1649 
1650 		/*
1651 		 * The locked_page comes all the way from writepage and its
1652 		 * the original page we were actually given.  As we spread
1653 		 * this large delalloc region across multiple async_chunk
1654 		 * structs, only the first struct needs a pointer to locked_page
1655 		 *
1656 		 * This way we don't need racey decisions about who is supposed
1657 		 * to unlock it.
1658 		 */
1659 		if (locked_page) {
1660 			/*
1661 			 * Depending on the compressibility, the pages might or
1662 			 * might not go through async.  We want all of them to
1663 			 * be accounted against wbc once.  Let's do it here
1664 			 * before the paths diverge.  wbc accounting is used
1665 			 * only for foreign writeback detection and doesn't
1666 			 * need full accuracy.  Just account the whole thing
1667 			 * against the first page.
1668 			 */
1669 			wbc_account_cgroup_owner(wbc, locked_page,
1670 						 cur_end - start);
1671 			async_chunk[i].locked_page = locked_page;
1672 			locked_page = NULL;
1673 		} else {
1674 			async_chunk[i].locked_page = NULL;
1675 		}
1676 
1677 		if (blkcg_css != blkcg_root_css) {
1678 			css_get(blkcg_css);
1679 			async_chunk[i].blkcg_css = blkcg_css;
1680 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1681 		} else {
1682 			async_chunk[i].blkcg_css = NULL;
1683 		}
1684 
1685 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1686 				submit_compressed_extents, async_cow_free);
1687 
1688 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1689 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1690 
1691 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1692 
1693 		start = cur_end + 1;
1694 	}
1695 	return true;
1696 }
1697 
1698 /*
1699  * Run the delalloc range from start to end, and write back any dirty pages
1700  * covered by the range.
1701  */
1702 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1703 				     struct page *locked_page, u64 start,
1704 				     u64 end, struct writeback_control *wbc,
1705 				     bool pages_dirty)
1706 {
1707 	u64 done_offset = end;
1708 	int ret;
1709 
1710 	while (start <= end) {
1711 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1712 				     true, false);
1713 		if (ret)
1714 			return ret;
1715 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1716 					  done_offset, wbc, pages_dirty);
1717 		start = done_offset + 1;
1718 	}
1719 
1720 	return 1;
1721 }
1722 
1723 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1724 					u64 bytenr, u64 num_bytes, bool nowait)
1725 {
1726 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1727 	struct btrfs_ordered_sum *sums;
1728 	int ret;
1729 	LIST_HEAD(list);
1730 
1731 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1732 				      &list, 0, nowait);
1733 	if (ret == 0 && list_empty(&list))
1734 		return 0;
1735 
1736 	while (!list_empty(&list)) {
1737 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1738 		list_del(&sums->list);
1739 		kfree(sums);
1740 	}
1741 	if (ret < 0)
1742 		return ret;
1743 	return 1;
1744 }
1745 
1746 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1747 			   const u64 start, const u64 end)
1748 {
1749 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1750 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1751 	const u64 range_bytes = end + 1 - start;
1752 	struct extent_io_tree *io_tree = &inode->io_tree;
1753 	u64 range_start = start;
1754 	u64 count;
1755 	int ret;
1756 
1757 	/*
1758 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1759 	 * made we had not enough available data space and therefore we did not
1760 	 * reserve data space for it, since we though we could do NOCOW for the
1761 	 * respective file range (either there is prealloc extent or the inode
1762 	 * has the NOCOW bit set).
1763 	 *
1764 	 * However when we need to fallback to COW mode (because for example the
1765 	 * block group for the corresponding extent was turned to RO mode by a
1766 	 * scrub or relocation) we need to do the following:
1767 	 *
1768 	 * 1) We increment the bytes_may_use counter of the data space info.
1769 	 *    If COW succeeds, it allocates a new data extent and after doing
1770 	 *    that it decrements the space info's bytes_may_use counter and
1771 	 *    increments its bytes_reserved counter by the same amount (we do
1772 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1773 	 *    bytes_may_use counter to compensate (when space is reserved at
1774 	 *    buffered write time, the bytes_may_use counter is incremented);
1775 	 *
1776 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1777 	 *    that if the COW path fails for any reason, it decrements (through
1778 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1779 	 *    data space info, which we incremented in the step above.
1780 	 *
1781 	 * If we need to fallback to cow and the inode corresponds to a free
1782 	 * space cache inode or an inode of the data relocation tree, we must
1783 	 * also increment bytes_may_use of the data space_info for the same
1784 	 * reason. Space caches and relocated data extents always get a prealloc
1785 	 * extent for them, however scrub or balance may have set the block
1786 	 * group that contains that extent to RO mode and therefore force COW
1787 	 * when starting writeback.
1788 	 */
1789 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1790 				 EXTENT_NORESERVE, 0, NULL);
1791 	if (count > 0 || is_space_ino || is_reloc_ino) {
1792 		u64 bytes = count;
1793 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1794 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1795 
1796 		if (is_space_ino || is_reloc_ino)
1797 			bytes = range_bytes;
1798 
1799 		spin_lock(&sinfo->lock);
1800 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1801 		spin_unlock(&sinfo->lock);
1802 
1803 		if (count > 0)
1804 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1805 					 NULL);
1806 	}
1807 
1808 	/*
1809 	 * Don't try to create inline extents, as a mix of inline extent that
1810 	 * is written out and unlocked directly and a normal NOCOW extent
1811 	 * doesn't work.
1812 	 */
1813 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1814 	ASSERT(ret != 1);
1815 	return ret;
1816 }
1817 
1818 struct can_nocow_file_extent_args {
1819 	/* Input fields. */
1820 
1821 	/* Start file offset of the range we want to NOCOW. */
1822 	u64 start;
1823 	/* End file offset (inclusive) of the range we want to NOCOW. */
1824 	u64 end;
1825 	bool writeback_path;
1826 	bool strict;
1827 	/*
1828 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1829 	 * anymore.
1830 	 */
1831 	bool free_path;
1832 
1833 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1834 
1835 	u64 disk_bytenr;
1836 	u64 disk_num_bytes;
1837 	u64 extent_offset;
1838 	/* Number of bytes that can be written to in NOCOW mode. */
1839 	u64 num_bytes;
1840 };
1841 
1842 /*
1843  * Check if we can NOCOW the file extent that the path points to.
1844  * This function may return with the path released, so the caller should check
1845  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1846  *
1847  * Returns: < 0 on error
1848  *            0 if we can not NOCOW
1849  *            1 if we can NOCOW
1850  */
1851 static int can_nocow_file_extent(struct btrfs_path *path,
1852 				 struct btrfs_key *key,
1853 				 struct btrfs_inode *inode,
1854 				 struct can_nocow_file_extent_args *args)
1855 {
1856 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1857 	struct extent_buffer *leaf = path->nodes[0];
1858 	struct btrfs_root *root = inode->root;
1859 	struct btrfs_file_extent_item *fi;
1860 	u64 extent_end;
1861 	u8 extent_type;
1862 	int can_nocow = 0;
1863 	int ret = 0;
1864 	bool nowait = path->nowait;
1865 
1866 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1867 	extent_type = btrfs_file_extent_type(leaf, fi);
1868 
1869 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1870 		goto out;
1871 
1872 	/* Can't access these fields unless we know it's not an inline extent. */
1873 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1874 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1875 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1876 
1877 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1878 	    extent_type == BTRFS_FILE_EXTENT_REG)
1879 		goto out;
1880 
1881 	/*
1882 	 * If the extent was created before the generation where the last snapshot
1883 	 * for its subvolume was created, then this implies the extent is shared,
1884 	 * hence we must COW.
1885 	 */
1886 	if (!args->strict &&
1887 	    btrfs_file_extent_generation(leaf, fi) <=
1888 	    btrfs_root_last_snapshot(&root->root_item))
1889 		goto out;
1890 
1891 	/* An explicit hole, must COW. */
1892 	if (args->disk_bytenr == 0)
1893 		goto out;
1894 
1895 	/* Compressed/encrypted/encoded extents must be COWed. */
1896 	if (btrfs_file_extent_compression(leaf, fi) ||
1897 	    btrfs_file_extent_encryption(leaf, fi) ||
1898 	    btrfs_file_extent_other_encoding(leaf, fi))
1899 		goto out;
1900 
1901 	extent_end = btrfs_file_extent_end(path);
1902 
1903 	/*
1904 	 * The following checks can be expensive, as they need to take other
1905 	 * locks and do btree or rbtree searches, so release the path to avoid
1906 	 * blocking other tasks for too long.
1907 	 */
1908 	btrfs_release_path(path);
1909 
1910 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1911 				    key->offset - args->extent_offset,
1912 				    args->disk_bytenr, args->strict, path);
1913 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1914 	if (ret != 0)
1915 		goto out;
1916 
1917 	if (args->free_path) {
1918 		/*
1919 		 * We don't need the path anymore, plus through the
1920 		 * csum_exist_in_range() call below we will end up allocating
1921 		 * another path. So free the path to avoid unnecessary extra
1922 		 * memory usage.
1923 		 */
1924 		btrfs_free_path(path);
1925 		path = NULL;
1926 	}
1927 
1928 	/* If there are pending snapshots for this root, we must COW. */
1929 	if (args->writeback_path && !is_freespace_inode &&
1930 	    atomic_read(&root->snapshot_force_cow))
1931 		goto out;
1932 
1933 	args->disk_bytenr += args->extent_offset;
1934 	args->disk_bytenr += args->start - key->offset;
1935 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1936 
1937 	/*
1938 	 * Force COW if csums exist in the range. This ensures that csums for a
1939 	 * given extent are either valid or do not exist.
1940 	 */
1941 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1942 				  nowait);
1943 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1944 	if (ret != 0)
1945 		goto out;
1946 
1947 	can_nocow = 1;
1948  out:
1949 	if (args->free_path && path)
1950 		btrfs_free_path(path);
1951 
1952 	return ret < 0 ? ret : can_nocow;
1953 }
1954 
1955 /*
1956  * when nowcow writeback call back.  This checks for snapshots or COW copies
1957  * of the extents that exist in the file, and COWs the file as required.
1958  *
1959  * If no cow copies or snapshots exist, we write directly to the existing
1960  * blocks on disk
1961  */
1962 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1963 				       struct page *locked_page,
1964 				       const u64 start, const u64 end)
1965 {
1966 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1967 	struct btrfs_root *root = inode->root;
1968 	struct btrfs_path *path;
1969 	u64 cow_start = (u64)-1;
1970 	u64 cur_offset = start;
1971 	int ret;
1972 	bool check_prev = true;
1973 	u64 ino = btrfs_ino(inode);
1974 	struct can_nocow_file_extent_args nocow_args = { 0 };
1975 
1976 	/*
1977 	 * Normally on a zoned device we're only doing COW writes, but in case
1978 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1979 	 * writing sequentially and can end up here as well.
1980 	 */
1981 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1982 
1983 	path = btrfs_alloc_path();
1984 	if (!path) {
1985 		ret = -ENOMEM;
1986 		goto error;
1987 	}
1988 
1989 	nocow_args.end = end;
1990 	nocow_args.writeback_path = true;
1991 
1992 	while (1) {
1993 		struct btrfs_block_group *nocow_bg = NULL;
1994 		struct btrfs_ordered_extent *ordered;
1995 		struct btrfs_key found_key;
1996 		struct btrfs_file_extent_item *fi;
1997 		struct extent_buffer *leaf;
1998 		u64 extent_end;
1999 		u64 ram_bytes;
2000 		u64 nocow_end;
2001 		int extent_type;
2002 		bool is_prealloc;
2003 
2004 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2005 					       cur_offset, 0);
2006 		if (ret < 0)
2007 			goto error;
2008 
2009 		/*
2010 		 * If there is no extent for our range when doing the initial
2011 		 * search, then go back to the previous slot as it will be the
2012 		 * one containing the search offset
2013 		 */
2014 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2015 			leaf = path->nodes[0];
2016 			btrfs_item_key_to_cpu(leaf, &found_key,
2017 					      path->slots[0] - 1);
2018 			if (found_key.objectid == ino &&
2019 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2020 				path->slots[0]--;
2021 		}
2022 		check_prev = false;
2023 next_slot:
2024 		/* Go to next leaf if we have exhausted the current one */
2025 		leaf = path->nodes[0];
2026 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2027 			ret = btrfs_next_leaf(root, path);
2028 			if (ret < 0)
2029 				goto error;
2030 			if (ret > 0)
2031 				break;
2032 			leaf = path->nodes[0];
2033 		}
2034 
2035 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2036 
2037 		/* Didn't find anything for our INO */
2038 		if (found_key.objectid > ino)
2039 			break;
2040 		/*
2041 		 * Keep searching until we find an EXTENT_ITEM or there are no
2042 		 * more extents for this inode
2043 		 */
2044 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2045 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2046 			path->slots[0]++;
2047 			goto next_slot;
2048 		}
2049 
2050 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2051 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2052 		    found_key.offset > end)
2053 			break;
2054 
2055 		/*
2056 		 * If the found extent starts after requested offset, then
2057 		 * adjust extent_end to be right before this extent begins
2058 		 */
2059 		if (found_key.offset > cur_offset) {
2060 			extent_end = found_key.offset;
2061 			extent_type = 0;
2062 			goto must_cow;
2063 		}
2064 
2065 		/*
2066 		 * Found extent which begins before our range and potentially
2067 		 * intersect it
2068 		 */
2069 		fi = btrfs_item_ptr(leaf, path->slots[0],
2070 				    struct btrfs_file_extent_item);
2071 		extent_type = btrfs_file_extent_type(leaf, fi);
2072 		/* If this is triggered then we have a memory corruption. */
2073 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2074 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2075 			ret = -EUCLEAN;
2076 			goto error;
2077 		}
2078 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2079 		extent_end = btrfs_file_extent_end(path);
2080 
2081 		/*
2082 		 * If the extent we got ends before our current offset, skip to
2083 		 * the next extent.
2084 		 */
2085 		if (extent_end <= cur_offset) {
2086 			path->slots[0]++;
2087 			goto next_slot;
2088 		}
2089 
2090 		nocow_args.start = cur_offset;
2091 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2092 		if (ret < 0)
2093 			goto error;
2094 		if (ret == 0)
2095 			goto must_cow;
2096 
2097 		ret = 0;
2098 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2099 		if (!nocow_bg) {
2100 must_cow:
2101 			/*
2102 			 * If we can't perform NOCOW writeback for the range,
2103 			 * then record the beginning of the range that needs to
2104 			 * be COWed.  It will be written out before the next
2105 			 * NOCOW range if we find one, or when exiting this
2106 			 * loop.
2107 			 */
2108 			if (cow_start == (u64)-1)
2109 				cow_start = cur_offset;
2110 			cur_offset = extent_end;
2111 			if (cur_offset > end)
2112 				break;
2113 			if (!path->nodes[0])
2114 				continue;
2115 			path->slots[0]++;
2116 			goto next_slot;
2117 		}
2118 
2119 		/*
2120 		 * COW range from cow_start to found_key.offset - 1. As the key
2121 		 * will contain the beginning of the first extent that can be
2122 		 * NOCOW, following one which needs to be COW'ed
2123 		 */
2124 		if (cow_start != (u64)-1) {
2125 			ret = fallback_to_cow(inode, locked_page,
2126 					      cow_start, found_key.offset - 1);
2127 			cow_start = (u64)-1;
2128 			if (ret) {
2129 				btrfs_dec_nocow_writers(nocow_bg);
2130 				goto error;
2131 			}
2132 		}
2133 
2134 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2135 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2136 		if (is_prealloc) {
2137 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2138 			struct extent_map *em;
2139 
2140 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2141 					  orig_start,
2142 					  nocow_args.disk_bytenr, /* block_start */
2143 					  nocow_args.num_bytes, /* block_len */
2144 					  nocow_args.disk_num_bytes, /* orig_block_len */
2145 					  ram_bytes, BTRFS_COMPRESS_NONE,
2146 					  BTRFS_ORDERED_PREALLOC);
2147 			if (IS_ERR(em)) {
2148 				btrfs_dec_nocow_writers(nocow_bg);
2149 				ret = PTR_ERR(em);
2150 				goto error;
2151 			}
2152 			free_extent_map(em);
2153 		}
2154 
2155 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2156 				nocow_args.num_bytes, nocow_args.num_bytes,
2157 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2158 				is_prealloc
2159 				? (1 << BTRFS_ORDERED_PREALLOC)
2160 				: (1 << BTRFS_ORDERED_NOCOW),
2161 				BTRFS_COMPRESS_NONE);
2162 		btrfs_dec_nocow_writers(nocow_bg);
2163 		if (IS_ERR(ordered)) {
2164 			if (is_prealloc) {
2165 				btrfs_drop_extent_map_range(inode, cur_offset,
2166 							    nocow_end, false);
2167 			}
2168 			ret = PTR_ERR(ordered);
2169 			goto error;
2170 		}
2171 
2172 		if (btrfs_is_data_reloc_root(root))
2173 			/*
2174 			 * Error handled later, as we must prevent
2175 			 * extent_clear_unlock_delalloc() in error handler
2176 			 * from freeing metadata of created ordered extent.
2177 			 */
2178 			ret = btrfs_reloc_clone_csums(ordered);
2179 		btrfs_put_ordered_extent(ordered);
2180 
2181 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2182 					     locked_page, EXTENT_LOCKED |
2183 					     EXTENT_DELALLOC |
2184 					     EXTENT_CLEAR_DATA_RESV,
2185 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2186 
2187 		cur_offset = extent_end;
2188 
2189 		/*
2190 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2191 		 * handler, as metadata for created ordered extent will only
2192 		 * be freed by btrfs_finish_ordered_io().
2193 		 */
2194 		if (ret)
2195 			goto error;
2196 		if (cur_offset > end)
2197 			break;
2198 	}
2199 	btrfs_release_path(path);
2200 
2201 	if (cur_offset <= end && cow_start == (u64)-1)
2202 		cow_start = cur_offset;
2203 
2204 	if (cow_start != (u64)-1) {
2205 		cur_offset = end;
2206 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2207 		cow_start = (u64)-1;
2208 		if (ret)
2209 			goto error;
2210 	}
2211 
2212 	btrfs_free_path(path);
2213 	return 0;
2214 
2215 error:
2216 	/*
2217 	 * If an error happened while a COW region is outstanding, cur_offset
2218 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2219 	 * as well.
2220 	 */
2221 	if (cow_start != (u64)-1)
2222 		cur_offset = cow_start;
2223 	if (cur_offset < end)
2224 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2225 					     locked_page, EXTENT_LOCKED |
2226 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2227 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2228 					     PAGE_START_WRITEBACK |
2229 					     PAGE_END_WRITEBACK);
2230 	btrfs_free_path(path);
2231 	return ret;
2232 }
2233 
2234 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2235 {
2236 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2237 		if (inode->defrag_bytes &&
2238 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2239 				   0, NULL))
2240 			return false;
2241 		return true;
2242 	}
2243 	return false;
2244 }
2245 
2246 /*
2247  * Function to process delayed allocation (create CoW) for ranges which are
2248  * being touched for the first time.
2249  */
2250 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2251 			     u64 start, u64 end, struct writeback_control *wbc)
2252 {
2253 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2254 	int ret;
2255 
2256 	/*
2257 	 * The range must cover part of the @locked_page, or a return of 1
2258 	 * can confuse the caller.
2259 	 */
2260 	ASSERT(!(end <= page_offset(locked_page) ||
2261 		 start >= page_offset(locked_page) + PAGE_SIZE));
2262 
2263 	if (should_nocow(inode, start, end)) {
2264 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2265 		goto out;
2266 	}
2267 
2268 	if (btrfs_inode_can_compress(inode) &&
2269 	    inode_need_compress(inode, start, end) &&
2270 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2271 		return 1;
2272 
2273 	if (zoned)
2274 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2275 				       true);
2276 	else
2277 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2278 				     false, false);
2279 
2280 out:
2281 	if (ret < 0)
2282 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2283 					      end - start + 1);
2284 	return ret;
2285 }
2286 
2287 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2288 				 struct extent_state *orig, u64 split)
2289 {
2290 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2291 	u64 size;
2292 
2293 	/* not delalloc, ignore it */
2294 	if (!(orig->state & EXTENT_DELALLOC))
2295 		return;
2296 
2297 	size = orig->end - orig->start + 1;
2298 	if (size > fs_info->max_extent_size) {
2299 		u32 num_extents;
2300 		u64 new_size;
2301 
2302 		/*
2303 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2304 		 * applies here, just in reverse.
2305 		 */
2306 		new_size = orig->end - split + 1;
2307 		num_extents = count_max_extents(fs_info, new_size);
2308 		new_size = split - orig->start;
2309 		num_extents += count_max_extents(fs_info, new_size);
2310 		if (count_max_extents(fs_info, size) >= num_extents)
2311 			return;
2312 	}
2313 
2314 	spin_lock(&inode->lock);
2315 	btrfs_mod_outstanding_extents(inode, 1);
2316 	spin_unlock(&inode->lock);
2317 }
2318 
2319 /*
2320  * Handle merged delayed allocation extents so we can keep track of new extents
2321  * that are just merged onto old extents, such as when we are doing sequential
2322  * writes, so we can properly account for the metadata space we'll need.
2323  */
2324 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2325 				 struct extent_state *other)
2326 {
2327 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2328 	u64 new_size, old_size;
2329 	u32 num_extents;
2330 
2331 	/* not delalloc, ignore it */
2332 	if (!(other->state & EXTENT_DELALLOC))
2333 		return;
2334 
2335 	if (new->start > other->start)
2336 		new_size = new->end - other->start + 1;
2337 	else
2338 		new_size = other->end - new->start + 1;
2339 
2340 	/* we're not bigger than the max, unreserve the space and go */
2341 	if (new_size <= fs_info->max_extent_size) {
2342 		spin_lock(&inode->lock);
2343 		btrfs_mod_outstanding_extents(inode, -1);
2344 		spin_unlock(&inode->lock);
2345 		return;
2346 	}
2347 
2348 	/*
2349 	 * We have to add up either side to figure out how many extents were
2350 	 * accounted for before we merged into one big extent.  If the number of
2351 	 * extents we accounted for is <= the amount we need for the new range
2352 	 * then we can return, otherwise drop.  Think of it like this
2353 	 *
2354 	 * [ 4k][MAX_SIZE]
2355 	 *
2356 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2357 	 * need 2 outstanding extents, on one side we have 1 and the other side
2358 	 * we have 1 so they are == and we can return.  But in this case
2359 	 *
2360 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2361 	 *
2362 	 * Each range on their own accounts for 2 extents, but merged together
2363 	 * they are only 3 extents worth of accounting, so we need to drop in
2364 	 * this case.
2365 	 */
2366 	old_size = other->end - other->start + 1;
2367 	num_extents = count_max_extents(fs_info, old_size);
2368 	old_size = new->end - new->start + 1;
2369 	num_extents += count_max_extents(fs_info, old_size);
2370 	if (count_max_extents(fs_info, new_size) >= num_extents)
2371 		return;
2372 
2373 	spin_lock(&inode->lock);
2374 	btrfs_mod_outstanding_extents(inode, -1);
2375 	spin_unlock(&inode->lock);
2376 }
2377 
2378 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2379 				      struct btrfs_inode *inode)
2380 {
2381 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2382 
2383 	spin_lock(&root->delalloc_lock);
2384 	if (list_empty(&inode->delalloc_inodes)) {
2385 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2386 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2387 		root->nr_delalloc_inodes++;
2388 		if (root->nr_delalloc_inodes == 1) {
2389 			spin_lock(&fs_info->delalloc_root_lock);
2390 			BUG_ON(!list_empty(&root->delalloc_root));
2391 			list_add_tail(&root->delalloc_root,
2392 				      &fs_info->delalloc_roots);
2393 			spin_unlock(&fs_info->delalloc_root_lock);
2394 		}
2395 	}
2396 	spin_unlock(&root->delalloc_lock);
2397 }
2398 
2399 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2400 				struct btrfs_inode *inode)
2401 {
2402 	struct btrfs_fs_info *fs_info = root->fs_info;
2403 
2404 	if (!list_empty(&inode->delalloc_inodes)) {
2405 		list_del_init(&inode->delalloc_inodes);
2406 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2407 			  &inode->runtime_flags);
2408 		root->nr_delalloc_inodes--;
2409 		if (!root->nr_delalloc_inodes) {
2410 			ASSERT(list_empty(&root->delalloc_inodes));
2411 			spin_lock(&fs_info->delalloc_root_lock);
2412 			BUG_ON(list_empty(&root->delalloc_root));
2413 			list_del_init(&root->delalloc_root);
2414 			spin_unlock(&fs_info->delalloc_root_lock);
2415 		}
2416 	}
2417 }
2418 
2419 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2420 				     struct btrfs_inode *inode)
2421 {
2422 	spin_lock(&root->delalloc_lock);
2423 	__btrfs_del_delalloc_inode(root, inode);
2424 	spin_unlock(&root->delalloc_lock);
2425 }
2426 
2427 /*
2428  * Properly track delayed allocation bytes in the inode and to maintain the
2429  * list of inodes that have pending delalloc work to be done.
2430  */
2431 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2432 			       u32 bits)
2433 {
2434 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2435 
2436 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2437 		WARN_ON(1);
2438 	/*
2439 	 * set_bit and clear bit hooks normally require _irqsave/restore
2440 	 * but in this case, we are only testing for the DELALLOC
2441 	 * bit, which is only set or cleared with irqs on
2442 	 */
2443 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2444 		struct btrfs_root *root = inode->root;
2445 		u64 len = state->end + 1 - state->start;
2446 		u32 num_extents = count_max_extents(fs_info, len);
2447 		bool do_list = !btrfs_is_free_space_inode(inode);
2448 
2449 		spin_lock(&inode->lock);
2450 		btrfs_mod_outstanding_extents(inode, num_extents);
2451 		spin_unlock(&inode->lock);
2452 
2453 		/* For sanity tests */
2454 		if (btrfs_is_testing(fs_info))
2455 			return;
2456 
2457 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2458 					 fs_info->delalloc_batch);
2459 		spin_lock(&inode->lock);
2460 		inode->delalloc_bytes += len;
2461 		if (bits & EXTENT_DEFRAG)
2462 			inode->defrag_bytes += len;
2463 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2464 					 &inode->runtime_flags))
2465 			btrfs_add_delalloc_inodes(root, inode);
2466 		spin_unlock(&inode->lock);
2467 	}
2468 
2469 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2470 	    (bits & EXTENT_DELALLOC_NEW)) {
2471 		spin_lock(&inode->lock);
2472 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2473 		spin_unlock(&inode->lock);
2474 	}
2475 }
2476 
2477 /*
2478  * Once a range is no longer delalloc this function ensures that proper
2479  * accounting happens.
2480  */
2481 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2482 				 struct extent_state *state, u32 bits)
2483 {
2484 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2485 	u64 len = state->end + 1 - state->start;
2486 	u32 num_extents = count_max_extents(fs_info, len);
2487 
2488 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2489 		spin_lock(&inode->lock);
2490 		inode->defrag_bytes -= len;
2491 		spin_unlock(&inode->lock);
2492 	}
2493 
2494 	/*
2495 	 * set_bit and clear bit hooks normally require _irqsave/restore
2496 	 * but in this case, we are only testing for the DELALLOC
2497 	 * bit, which is only set or cleared with irqs on
2498 	 */
2499 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2500 		struct btrfs_root *root = inode->root;
2501 		bool do_list = !btrfs_is_free_space_inode(inode);
2502 
2503 		spin_lock(&inode->lock);
2504 		btrfs_mod_outstanding_extents(inode, -num_extents);
2505 		spin_unlock(&inode->lock);
2506 
2507 		/*
2508 		 * We don't reserve metadata space for space cache inodes so we
2509 		 * don't need to call delalloc_release_metadata if there is an
2510 		 * error.
2511 		 */
2512 		if (bits & EXTENT_CLEAR_META_RESV &&
2513 		    root != fs_info->tree_root)
2514 			btrfs_delalloc_release_metadata(inode, len, false);
2515 
2516 		/* For sanity tests. */
2517 		if (btrfs_is_testing(fs_info))
2518 			return;
2519 
2520 		if (!btrfs_is_data_reloc_root(root) &&
2521 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2522 		    (bits & EXTENT_CLEAR_DATA_RESV))
2523 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2524 
2525 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2526 					 fs_info->delalloc_batch);
2527 		spin_lock(&inode->lock);
2528 		inode->delalloc_bytes -= len;
2529 		if (do_list && inode->delalloc_bytes == 0 &&
2530 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2531 					&inode->runtime_flags))
2532 			btrfs_del_delalloc_inode(root, inode);
2533 		spin_unlock(&inode->lock);
2534 	}
2535 
2536 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2537 	    (bits & EXTENT_DELALLOC_NEW)) {
2538 		spin_lock(&inode->lock);
2539 		ASSERT(inode->new_delalloc_bytes >= len);
2540 		inode->new_delalloc_bytes -= len;
2541 		if (bits & EXTENT_ADD_INODE_BYTES)
2542 			inode_add_bytes(&inode->vfs_inode, len);
2543 		spin_unlock(&inode->lock);
2544 	}
2545 }
2546 
2547 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2548 					struct btrfs_ordered_extent *ordered)
2549 {
2550 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2551 	u64 len = bbio->bio.bi_iter.bi_size;
2552 	struct btrfs_ordered_extent *new;
2553 	int ret;
2554 
2555 	/* Must always be called for the beginning of an ordered extent. */
2556 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2557 		return -EINVAL;
2558 
2559 	/* No need to split if the ordered extent covers the entire bio. */
2560 	if (ordered->disk_num_bytes == len) {
2561 		refcount_inc(&ordered->refs);
2562 		bbio->ordered = ordered;
2563 		return 0;
2564 	}
2565 
2566 	/*
2567 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2568 	 * a pre-existing one.
2569 	 */
2570 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2571 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2572 				       ordered->num_bytes, len,
2573 				       ordered->disk_bytenr);
2574 		if (ret)
2575 			return ret;
2576 	}
2577 
2578 	new = btrfs_split_ordered_extent(ordered, len);
2579 	if (IS_ERR(new))
2580 		return PTR_ERR(new);
2581 	bbio->ordered = new;
2582 	return 0;
2583 }
2584 
2585 /*
2586  * given a list of ordered sums record them in the inode.  This happens
2587  * at IO completion time based on sums calculated at bio submission time.
2588  */
2589 static int add_pending_csums(struct btrfs_trans_handle *trans,
2590 			     struct list_head *list)
2591 {
2592 	struct btrfs_ordered_sum *sum;
2593 	struct btrfs_root *csum_root = NULL;
2594 	int ret;
2595 
2596 	list_for_each_entry(sum, list, list) {
2597 		trans->adding_csums = true;
2598 		if (!csum_root)
2599 			csum_root = btrfs_csum_root(trans->fs_info,
2600 						    sum->logical);
2601 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2602 		trans->adding_csums = false;
2603 		if (ret)
2604 			return ret;
2605 	}
2606 	return 0;
2607 }
2608 
2609 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2610 					 const u64 start,
2611 					 const u64 len,
2612 					 struct extent_state **cached_state)
2613 {
2614 	u64 search_start = start;
2615 	const u64 end = start + len - 1;
2616 
2617 	while (search_start < end) {
2618 		const u64 search_len = end - search_start + 1;
2619 		struct extent_map *em;
2620 		u64 em_len;
2621 		int ret = 0;
2622 
2623 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2624 		if (IS_ERR(em))
2625 			return PTR_ERR(em);
2626 
2627 		if (em->block_start != EXTENT_MAP_HOLE)
2628 			goto next;
2629 
2630 		em_len = em->len;
2631 		if (em->start < search_start)
2632 			em_len -= search_start - em->start;
2633 		if (em_len > search_len)
2634 			em_len = search_len;
2635 
2636 		ret = set_extent_bit(&inode->io_tree, search_start,
2637 				     search_start + em_len - 1,
2638 				     EXTENT_DELALLOC_NEW, cached_state);
2639 next:
2640 		search_start = extent_map_end(em);
2641 		free_extent_map(em);
2642 		if (ret)
2643 			return ret;
2644 	}
2645 	return 0;
2646 }
2647 
2648 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2649 			      unsigned int extra_bits,
2650 			      struct extent_state **cached_state)
2651 {
2652 	WARN_ON(PAGE_ALIGNED(end));
2653 
2654 	if (start >= i_size_read(&inode->vfs_inode) &&
2655 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2656 		/*
2657 		 * There can't be any extents following eof in this case so just
2658 		 * set the delalloc new bit for the range directly.
2659 		 */
2660 		extra_bits |= EXTENT_DELALLOC_NEW;
2661 	} else {
2662 		int ret;
2663 
2664 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2665 						    end + 1 - start,
2666 						    cached_state);
2667 		if (ret)
2668 			return ret;
2669 	}
2670 
2671 	return set_extent_bit(&inode->io_tree, start, end,
2672 			      EXTENT_DELALLOC | extra_bits, cached_state);
2673 }
2674 
2675 /* see btrfs_writepage_start_hook for details on why this is required */
2676 struct btrfs_writepage_fixup {
2677 	struct page *page;
2678 	struct btrfs_inode *inode;
2679 	struct btrfs_work work;
2680 };
2681 
2682 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2683 {
2684 	struct btrfs_writepage_fixup *fixup =
2685 		container_of(work, struct btrfs_writepage_fixup, work);
2686 	struct btrfs_ordered_extent *ordered;
2687 	struct extent_state *cached_state = NULL;
2688 	struct extent_changeset *data_reserved = NULL;
2689 	struct page *page = fixup->page;
2690 	struct btrfs_inode *inode = fixup->inode;
2691 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2692 	u64 page_start = page_offset(page);
2693 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2694 	int ret = 0;
2695 	bool free_delalloc_space = true;
2696 
2697 	/*
2698 	 * This is similar to page_mkwrite, we need to reserve the space before
2699 	 * we take the page lock.
2700 	 */
2701 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2702 					   PAGE_SIZE);
2703 again:
2704 	lock_page(page);
2705 
2706 	/*
2707 	 * Before we queued this fixup, we took a reference on the page.
2708 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2709 	 * address space.
2710 	 */
2711 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2712 		/*
2713 		 * Unfortunately this is a little tricky, either
2714 		 *
2715 		 * 1) We got here and our page had already been dealt with and
2716 		 *    we reserved our space, thus ret == 0, so we need to just
2717 		 *    drop our space reservation and bail.  This can happen the
2718 		 *    first time we come into the fixup worker, or could happen
2719 		 *    while waiting for the ordered extent.
2720 		 * 2) Our page was already dealt with, but we happened to get an
2721 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2722 		 *    this case we obviously don't have anything to release, but
2723 		 *    because the page was already dealt with we don't want to
2724 		 *    mark the page with an error, so make sure we're resetting
2725 		 *    ret to 0.  This is why we have this check _before_ the ret
2726 		 *    check, because we do not want to have a surprise ENOSPC
2727 		 *    when the page was already properly dealt with.
2728 		 */
2729 		if (!ret) {
2730 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2731 			btrfs_delalloc_release_space(inode, data_reserved,
2732 						     page_start, PAGE_SIZE,
2733 						     true);
2734 		}
2735 		ret = 0;
2736 		goto out_page;
2737 	}
2738 
2739 	/*
2740 	 * We can't mess with the page state unless it is locked, so now that
2741 	 * it is locked bail if we failed to make our space reservation.
2742 	 */
2743 	if (ret)
2744 		goto out_page;
2745 
2746 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2747 
2748 	/* already ordered? We're done */
2749 	if (PageOrdered(page))
2750 		goto out_reserved;
2751 
2752 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2753 	if (ordered) {
2754 		unlock_extent(&inode->io_tree, page_start, page_end,
2755 			      &cached_state);
2756 		unlock_page(page);
2757 		btrfs_start_ordered_extent(ordered);
2758 		btrfs_put_ordered_extent(ordered);
2759 		goto again;
2760 	}
2761 
2762 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2763 					&cached_state);
2764 	if (ret)
2765 		goto out_reserved;
2766 
2767 	/*
2768 	 * Everything went as planned, we're now the owner of a dirty page with
2769 	 * delayed allocation bits set and space reserved for our COW
2770 	 * destination.
2771 	 *
2772 	 * The page was dirty when we started, nothing should have cleaned it.
2773 	 */
2774 	BUG_ON(!PageDirty(page));
2775 	free_delalloc_space = false;
2776 out_reserved:
2777 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2778 	if (free_delalloc_space)
2779 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2780 					     PAGE_SIZE, true);
2781 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2782 out_page:
2783 	if (ret) {
2784 		/*
2785 		 * We hit ENOSPC or other errors.  Update the mapping and page
2786 		 * to reflect the errors and clean the page.
2787 		 */
2788 		mapping_set_error(page->mapping, ret);
2789 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2790 					       PAGE_SIZE, !ret);
2791 		clear_page_dirty_for_io(page);
2792 	}
2793 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2794 	unlock_page(page);
2795 	put_page(page);
2796 	kfree(fixup);
2797 	extent_changeset_free(data_reserved);
2798 	/*
2799 	 * As a precaution, do a delayed iput in case it would be the last iput
2800 	 * that could need flushing space. Recursing back to fixup worker would
2801 	 * deadlock.
2802 	 */
2803 	btrfs_add_delayed_iput(inode);
2804 }
2805 
2806 /*
2807  * There are a few paths in the higher layers of the kernel that directly
2808  * set the page dirty bit without asking the filesystem if it is a
2809  * good idea.  This causes problems because we want to make sure COW
2810  * properly happens and the data=ordered rules are followed.
2811  *
2812  * In our case any range that doesn't have the ORDERED bit set
2813  * hasn't been properly setup for IO.  We kick off an async process
2814  * to fix it up.  The async helper will wait for ordered extents, set
2815  * the delalloc bit and make it safe to write the page.
2816  */
2817 int btrfs_writepage_cow_fixup(struct page *page)
2818 {
2819 	struct inode *inode = page->mapping->host;
2820 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2821 	struct btrfs_writepage_fixup *fixup;
2822 
2823 	/* This page has ordered extent covering it already */
2824 	if (PageOrdered(page))
2825 		return 0;
2826 
2827 	/*
2828 	 * PageChecked is set below when we create a fixup worker for this page,
2829 	 * don't try to create another one if we're already PageChecked()
2830 	 *
2831 	 * The extent_io writepage code will redirty the page if we send back
2832 	 * EAGAIN.
2833 	 */
2834 	if (PageChecked(page))
2835 		return -EAGAIN;
2836 
2837 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2838 	if (!fixup)
2839 		return -EAGAIN;
2840 
2841 	/*
2842 	 * We are already holding a reference to this inode from
2843 	 * write_cache_pages.  We need to hold it because the space reservation
2844 	 * takes place outside of the page lock, and we can't trust
2845 	 * page->mapping outside of the page lock.
2846 	 */
2847 	ihold(inode);
2848 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2849 	get_page(page);
2850 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2851 	fixup->page = page;
2852 	fixup->inode = BTRFS_I(inode);
2853 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2854 
2855 	return -EAGAIN;
2856 }
2857 
2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2859 				       struct btrfs_inode *inode, u64 file_pos,
2860 				       struct btrfs_file_extent_item *stack_fi,
2861 				       const bool update_inode_bytes,
2862 				       u64 qgroup_reserved)
2863 {
2864 	struct btrfs_root *root = inode->root;
2865 	const u64 sectorsize = root->fs_info->sectorsize;
2866 	struct btrfs_path *path;
2867 	struct extent_buffer *leaf;
2868 	struct btrfs_key ins;
2869 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2870 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2871 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2872 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2873 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2874 	struct btrfs_drop_extents_args drop_args = { 0 };
2875 	int ret;
2876 
2877 	path = btrfs_alloc_path();
2878 	if (!path)
2879 		return -ENOMEM;
2880 
2881 	/*
2882 	 * we may be replacing one extent in the tree with another.
2883 	 * The new extent is pinned in the extent map, and we don't want
2884 	 * to drop it from the cache until it is completely in the btree.
2885 	 *
2886 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2887 	 * the caller is expected to unpin it and allow it to be merged
2888 	 * with the others.
2889 	 */
2890 	drop_args.path = path;
2891 	drop_args.start = file_pos;
2892 	drop_args.end = file_pos + num_bytes;
2893 	drop_args.replace_extent = true;
2894 	drop_args.extent_item_size = sizeof(*stack_fi);
2895 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2896 	if (ret)
2897 		goto out;
2898 
2899 	if (!drop_args.extent_inserted) {
2900 		ins.objectid = btrfs_ino(inode);
2901 		ins.offset = file_pos;
2902 		ins.type = BTRFS_EXTENT_DATA_KEY;
2903 
2904 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2905 					      sizeof(*stack_fi));
2906 		if (ret)
2907 			goto out;
2908 	}
2909 	leaf = path->nodes[0];
2910 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2911 	write_extent_buffer(leaf, stack_fi,
2912 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2913 			sizeof(struct btrfs_file_extent_item));
2914 
2915 	btrfs_mark_buffer_dirty(trans, leaf);
2916 	btrfs_release_path(path);
2917 
2918 	/*
2919 	 * If we dropped an inline extent here, we know the range where it is
2920 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2921 	 * number of bytes only for that range containing the inline extent.
2922 	 * The remaining of the range will be processed when clearning the
2923 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2924 	 */
2925 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2926 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2927 
2928 		inline_size = drop_args.bytes_found - inline_size;
2929 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2930 		drop_args.bytes_found -= inline_size;
2931 		num_bytes -= sectorsize;
2932 	}
2933 
2934 	if (update_inode_bytes)
2935 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2936 
2937 	ins.objectid = disk_bytenr;
2938 	ins.offset = disk_num_bytes;
2939 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2940 
2941 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2942 	if (ret)
2943 		goto out;
2944 
2945 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2946 					       file_pos - offset,
2947 					       qgroup_reserved, &ins);
2948 out:
2949 	btrfs_free_path(path);
2950 
2951 	return ret;
2952 }
2953 
2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2955 					 u64 start, u64 len)
2956 {
2957 	struct btrfs_block_group *cache;
2958 
2959 	cache = btrfs_lookup_block_group(fs_info, start);
2960 	ASSERT(cache);
2961 
2962 	spin_lock(&cache->lock);
2963 	cache->delalloc_bytes -= len;
2964 	spin_unlock(&cache->lock);
2965 
2966 	btrfs_put_block_group(cache);
2967 }
2968 
2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2970 					     struct btrfs_ordered_extent *oe)
2971 {
2972 	struct btrfs_file_extent_item stack_fi;
2973 	bool update_inode_bytes;
2974 	u64 num_bytes = oe->num_bytes;
2975 	u64 ram_bytes = oe->ram_bytes;
2976 
2977 	memset(&stack_fi, 0, sizeof(stack_fi));
2978 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2979 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2980 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2981 						   oe->disk_num_bytes);
2982 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2983 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2984 		num_bytes = oe->truncated_len;
2985 		ram_bytes = num_bytes;
2986 	}
2987 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2988 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2989 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2990 	/* Encryption and other encoding is reserved and all 0 */
2991 
2992 	/*
2993 	 * For delalloc, when completing an ordered extent we update the inode's
2994 	 * bytes when clearing the range in the inode's io tree, so pass false
2995 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2996 	 * except if the ordered extent was truncated.
2997 	 */
2998 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2999 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3000 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3001 
3002 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3003 					   oe->file_offset, &stack_fi,
3004 					   update_inode_bytes, oe->qgroup_rsv);
3005 }
3006 
3007 /*
3008  * As ordered data IO finishes, this gets called so we can finish
3009  * an ordered extent if the range of bytes in the file it covers are
3010  * fully written.
3011  */
3012 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3013 {
3014 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3015 	struct btrfs_root *root = inode->root;
3016 	struct btrfs_fs_info *fs_info = root->fs_info;
3017 	struct btrfs_trans_handle *trans = NULL;
3018 	struct extent_io_tree *io_tree = &inode->io_tree;
3019 	struct extent_state *cached_state = NULL;
3020 	u64 start, end;
3021 	int compress_type = 0;
3022 	int ret = 0;
3023 	u64 logical_len = ordered_extent->num_bytes;
3024 	bool freespace_inode;
3025 	bool truncated = false;
3026 	bool clear_reserved_extent = true;
3027 	unsigned int clear_bits = EXTENT_DEFRAG;
3028 
3029 	start = ordered_extent->file_offset;
3030 	end = start + ordered_extent->num_bytes - 1;
3031 
3032 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3033 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3034 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3035 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3036 		clear_bits |= EXTENT_DELALLOC_NEW;
3037 
3038 	freespace_inode = btrfs_is_free_space_inode(inode);
3039 	if (!freespace_inode)
3040 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3041 
3042 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3043 		ret = -EIO;
3044 		goto out;
3045 	}
3046 
3047 	if (btrfs_is_zoned(fs_info))
3048 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3049 					ordered_extent->disk_num_bytes);
3050 
3051 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3052 		truncated = true;
3053 		logical_len = ordered_extent->truncated_len;
3054 		/* Truncated the entire extent, don't bother adding */
3055 		if (!logical_len)
3056 			goto out;
3057 	}
3058 
3059 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3060 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3061 
3062 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3063 		if (freespace_inode)
3064 			trans = btrfs_join_transaction_spacecache(root);
3065 		else
3066 			trans = btrfs_join_transaction(root);
3067 		if (IS_ERR(trans)) {
3068 			ret = PTR_ERR(trans);
3069 			trans = NULL;
3070 			goto out;
3071 		}
3072 		trans->block_rsv = &inode->block_rsv;
3073 		ret = btrfs_update_inode_fallback(trans, root, inode);
3074 		if (ret) /* -ENOMEM or corruption */
3075 			btrfs_abort_transaction(trans, ret);
3076 		goto out;
3077 	}
3078 
3079 	clear_bits |= EXTENT_LOCKED;
3080 	lock_extent(io_tree, start, end, &cached_state);
3081 
3082 	if (freespace_inode)
3083 		trans = btrfs_join_transaction_spacecache(root);
3084 	else
3085 		trans = btrfs_join_transaction(root);
3086 	if (IS_ERR(trans)) {
3087 		ret = PTR_ERR(trans);
3088 		trans = NULL;
3089 		goto out;
3090 	}
3091 
3092 	trans->block_rsv = &inode->block_rsv;
3093 
3094 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3095 		compress_type = ordered_extent->compress_type;
3096 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3097 		BUG_ON(compress_type);
3098 		ret = btrfs_mark_extent_written(trans, inode,
3099 						ordered_extent->file_offset,
3100 						ordered_extent->file_offset +
3101 						logical_len);
3102 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3103 						  ordered_extent->disk_num_bytes);
3104 	} else {
3105 		BUG_ON(root == fs_info->tree_root);
3106 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3107 		if (!ret) {
3108 			clear_reserved_extent = false;
3109 			btrfs_release_delalloc_bytes(fs_info,
3110 						ordered_extent->disk_bytenr,
3111 						ordered_extent->disk_num_bytes);
3112 		}
3113 	}
3114 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3115 			   ordered_extent->num_bytes, trans->transid);
3116 	if (ret < 0) {
3117 		btrfs_abort_transaction(trans, ret);
3118 		goto out;
3119 	}
3120 
3121 	ret = add_pending_csums(trans, &ordered_extent->list);
3122 	if (ret) {
3123 		btrfs_abort_transaction(trans, ret);
3124 		goto out;
3125 	}
3126 
3127 	/*
3128 	 * If this is a new delalloc range, clear its new delalloc flag to
3129 	 * update the inode's number of bytes. This needs to be done first
3130 	 * before updating the inode item.
3131 	 */
3132 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3133 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3134 		clear_extent_bit(&inode->io_tree, start, end,
3135 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3136 				 &cached_state);
3137 
3138 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3139 	ret = btrfs_update_inode_fallback(trans, root, inode);
3140 	if (ret) { /* -ENOMEM or corruption */
3141 		btrfs_abort_transaction(trans, ret);
3142 		goto out;
3143 	}
3144 	ret = 0;
3145 out:
3146 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3147 			 &cached_state);
3148 
3149 	if (trans)
3150 		btrfs_end_transaction(trans);
3151 
3152 	if (ret || truncated) {
3153 		u64 unwritten_start = start;
3154 
3155 		/*
3156 		 * If we failed to finish this ordered extent for any reason we
3157 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3158 		 * extent, and mark the inode with the error if it wasn't
3159 		 * already set.  Any error during writeback would have already
3160 		 * set the mapping error, so we need to set it if we're the ones
3161 		 * marking this ordered extent as failed.
3162 		 */
3163 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3164 					     &ordered_extent->flags))
3165 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3166 
3167 		if (truncated)
3168 			unwritten_start += logical_len;
3169 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3170 
3171 		/*
3172 		 * Drop extent maps for the part of the extent we didn't write.
3173 		 *
3174 		 * We have an exception here for the free_space_inode, this is
3175 		 * because when we do btrfs_get_extent() on the free space inode
3176 		 * we will search the commit root.  If this is a new block group
3177 		 * we won't find anything, and we will trip over the assert in
3178 		 * writepage where we do ASSERT(em->block_start !=
3179 		 * EXTENT_MAP_HOLE).
3180 		 *
3181 		 * Theoretically we could also skip this for any NOCOW extent as
3182 		 * we don't mess with the extent map tree in the NOCOW case, but
3183 		 * for now simply skip this if we are the free space inode.
3184 		 */
3185 		if (!btrfs_is_free_space_inode(inode))
3186 			btrfs_drop_extent_map_range(inode, unwritten_start,
3187 						    end, false);
3188 
3189 		/*
3190 		 * If the ordered extent had an IOERR or something else went
3191 		 * wrong we need to return the space for this ordered extent
3192 		 * back to the allocator.  We only free the extent in the
3193 		 * truncated case if we didn't write out the extent at all.
3194 		 *
3195 		 * If we made it past insert_reserved_file_extent before we
3196 		 * errored out then we don't need to do this as the accounting
3197 		 * has already been done.
3198 		 */
3199 		if ((ret || !logical_len) &&
3200 		    clear_reserved_extent &&
3201 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3202 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3203 			/*
3204 			 * Discard the range before returning it back to the
3205 			 * free space pool
3206 			 */
3207 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3208 				btrfs_discard_extent(fs_info,
3209 						ordered_extent->disk_bytenr,
3210 						ordered_extent->disk_num_bytes,
3211 						NULL);
3212 			btrfs_free_reserved_extent(fs_info,
3213 					ordered_extent->disk_bytenr,
3214 					ordered_extent->disk_num_bytes, 1);
3215 			/*
3216 			 * Actually free the qgroup rsv which was released when
3217 			 * the ordered extent was created.
3218 			 */
3219 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3220 						  ordered_extent->qgroup_rsv,
3221 						  BTRFS_QGROUP_RSV_DATA);
3222 		}
3223 	}
3224 
3225 	/*
3226 	 * This needs to be done to make sure anybody waiting knows we are done
3227 	 * updating everything for this ordered extent.
3228 	 */
3229 	btrfs_remove_ordered_extent(inode, ordered_extent);
3230 
3231 	/* once for us */
3232 	btrfs_put_ordered_extent(ordered_extent);
3233 	/* once for the tree */
3234 	btrfs_put_ordered_extent(ordered_extent);
3235 
3236 	return ret;
3237 }
3238 
3239 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3240 {
3241 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3242 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3243 		btrfs_finish_ordered_zoned(ordered);
3244 	return btrfs_finish_one_ordered(ordered);
3245 }
3246 
3247 /*
3248  * Verify the checksum for a single sector without any extra action that depend
3249  * on the type of I/O.
3250  */
3251 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3252 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3253 {
3254 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3255 	char *kaddr;
3256 
3257 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3258 
3259 	shash->tfm = fs_info->csum_shash;
3260 
3261 	kaddr = kmap_local_page(page) + pgoff;
3262 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3263 	kunmap_local(kaddr);
3264 
3265 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3266 		return -EIO;
3267 	return 0;
3268 }
3269 
3270 /*
3271  * Verify the checksum of a single data sector.
3272  *
3273  * @bbio:	btrfs_io_bio which contains the csum
3274  * @dev:	device the sector is on
3275  * @bio_offset:	offset to the beginning of the bio (in bytes)
3276  * @bv:		bio_vec to check
3277  *
3278  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3279  * detected, report the error and fill the corrupted range with zero.
3280  *
3281  * Return %true if the sector is ok or had no checksum to start with, else %false.
3282  */
3283 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3284 			u32 bio_offset, struct bio_vec *bv)
3285 {
3286 	struct btrfs_inode *inode = bbio->inode;
3287 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3288 	u64 file_offset = bbio->file_offset + bio_offset;
3289 	u64 end = file_offset + bv->bv_len - 1;
3290 	u8 *csum_expected;
3291 	u8 csum[BTRFS_CSUM_SIZE];
3292 
3293 	ASSERT(bv->bv_len == fs_info->sectorsize);
3294 
3295 	if (!bbio->csum)
3296 		return true;
3297 
3298 	if (btrfs_is_data_reloc_root(inode->root) &&
3299 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3300 			   1, NULL)) {
3301 		/* Skip the range without csum for data reloc inode */
3302 		clear_extent_bits(&inode->io_tree, file_offset, end,
3303 				  EXTENT_NODATASUM);
3304 		return true;
3305 	}
3306 
3307 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3308 				fs_info->csum_size;
3309 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3310 				    csum_expected))
3311 		goto zeroit;
3312 	return true;
3313 
3314 zeroit:
3315 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3316 				    bbio->mirror_num);
3317 	if (dev)
3318 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3319 	memzero_bvec(bv);
3320 	return false;
3321 }
3322 
3323 /*
3324  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3325  *
3326  * @inode: The inode we want to perform iput on
3327  *
3328  * This function uses the generic vfs_inode::i_count to track whether we should
3329  * just decrement it (in case it's > 1) or if this is the last iput then link
3330  * the inode to the delayed iput machinery. Delayed iputs are processed at
3331  * transaction commit time/superblock commit/cleaner kthread.
3332  */
3333 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3334 {
3335 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3336 	unsigned long flags;
3337 
3338 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3339 		return;
3340 
3341 	atomic_inc(&fs_info->nr_delayed_iputs);
3342 	/*
3343 	 * Need to be irq safe here because we can be called from either an irq
3344 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3345 	 * context.
3346 	 */
3347 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3348 	ASSERT(list_empty(&inode->delayed_iput));
3349 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3350 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3351 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3352 		wake_up_process(fs_info->cleaner_kthread);
3353 }
3354 
3355 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3356 				    struct btrfs_inode *inode)
3357 {
3358 	list_del_init(&inode->delayed_iput);
3359 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3360 	iput(&inode->vfs_inode);
3361 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3362 		wake_up(&fs_info->delayed_iputs_wait);
3363 	spin_lock_irq(&fs_info->delayed_iput_lock);
3364 }
3365 
3366 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3367 				   struct btrfs_inode *inode)
3368 {
3369 	if (!list_empty(&inode->delayed_iput)) {
3370 		spin_lock_irq(&fs_info->delayed_iput_lock);
3371 		if (!list_empty(&inode->delayed_iput))
3372 			run_delayed_iput_locked(fs_info, inode);
3373 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3374 	}
3375 }
3376 
3377 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3378 {
3379 	/*
3380 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3381 	 * calls btrfs_add_delayed_iput() and that needs to lock
3382 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3383 	 * prevent a deadlock.
3384 	 */
3385 	spin_lock_irq(&fs_info->delayed_iput_lock);
3386 	while (!list_empty(&fs_info->delayed_iputs)) {
3387 		struct btrfs_inode *inode;
3388 
3389 		inode = list_first_entry(&fs_info->delayed_iputs,
3390 				struct btrfs_inode, delayed_iput);
3391 		run_delayed_iput_locked(fs_info, inode);
3392 		if (need_resched()) {
3393 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3394 			cond_resched();
3395 			spin_lock_irq(&fs_info->delayed_iput_lock);
3396 		}
3397 	}
3398 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3399 }
3400 
3401 /*
3402  * Wait for flushing all delayed iputs
3403  *
3404  * @fs_info:  the filesystem
3405  *
3406  * This will wait on any delayed iputs that are currently running with KILLABLE
3407  * set.  Once they are all done running we will return, unless we are killed in
3408  * which case we return EINTR. This helps in user operations like fallocate etc
3409  * that might get blocked on the iputs.
3410  *
3411  * Return EINTR if we were killed, 0 if nothing's pending
3412  */
3413 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3414 {
3415 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3416 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3417 	if (ret)
3418 		return -EINTR;
3419 	return 0;
3420 }
3421 
3422 /*
3423  * This creates an orphan entry for the given inode in case something goes wrong
3424  * in the middle of an unlink.
3425  */
3426 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3427 		     struct btrfs_inode *inode)
3428 {
3429 	int ret;
3430 
3431 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3432 	if (ret && ret != -EEXIST) {
3433 		btrfs_abort_transaction(trans, ret);
3434 		return ret;
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 /*
3441  * We have done the delete so we can go ahead and remove the orphan item for
3442  * this particular inode.
3443  */
3444 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3445 			    struct btrfs_inode *inode)
3446 {
3447 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3448 }
3449 
3450 /*
3451  * this cleans up any orphans that may be left on the list from the last use
3452  * of this root.
3453  */
3454 int btrfs_orphan_cleanup(struct btrfs_root *root)
3455 {
3456 	struct btrfs_fs_info *fs_info = root->fs_info;
3457 	struct btrfs_path *path;
3458 	struct extent_buffer *leaf;
3459 	struct btrfs_key key, found_key;
3460 	struct btrfs_trans_handle *trans;
3461 	struct inode *inode;
3462 	u64 last_objectid = 0;
3463 	int ret = 0, nr_unlink = 0;
3464 
3465 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3466 		return 0;
3467 
3468 	path = btrfs_alloc_path();
3469 	if (!path) {
3470 		ret = -ENOMEM;
3471 		goto out;
3472 	}
3473 	path->reada = READA_BACK;
3474 
3475 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3476 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3477 	key.offset = (u64)-1;
3478 
3479 	while (1) {
3480 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3481 		if (ret < 0)
3482 			goto out;
3483 
3484 		/*
3485 		 * if ret == 0 means we found what we were searching for, which
3486 		 * is weird, but possible, so only screw with path if we didn't
3487 		 * find the key and see if we have stuff that matches
3488 		 */
3489 		if (ret > 0) {
3490 			ret = 0;
3491 			if (path->slots[0] == 0)
3492 				break;
3493 			path->slots[0]--;
3494 		}
3495 
3496 		/* pull out the item */
3497 		leaf = path->nodes[0];
3498 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3499 
3500 		/* make sure the item matches what we want */
3501 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3502 			break;
3503 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3504 			break;
3505 
3506 		/* release the path since we're done with it */
3507 		btrfs_release_path(path);
3508 
3509 		/*
3510 		 * this is where we are basically btrfs_lookup, without the
3511 		 * crossing root thing.  we store the inode number in the
3512 		 * offset of the orphan item.
3513 		 */
3514 
3515 		if (found_key.offset == last_objectid) {
3516 			/*
3517 			 * We found the same inode as before. This means we were
3518 			 * not able to remove its items via eviction triggered
3519 			 * by an iput(). A transaction abort may have happened,
3520 			 * due to -ENOSPC for example, so try to grab the error
3521 			 * that lead to a transaction abort, if any.
3522 			 */
3523 			btrfs_err(fs_info,
3524 				  "Error removing orphan entry, stopping orphan cleanup");
3525 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3526 			goto out;
3527 		}
3528 
3529 		last_objectid = found_key.offset;
3530 
3531 		found_key.objectid = found_key.offset;
3532 		found_key.type = BTRFS_INODE_ITEM_KEY;
3533 		found_key.offset = 0;
3534 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3535 		if (IS_ERR(inode)) {
3536 			ret = PTR_ERR(inode);
3537 			inode = NULL;
3538 			if (ret != -ENOENT)
3539 				goto out;
3540 		}
3541 
3542 		if (!inode && root == fs_info->tree_root) {
3543 			struct btrfs_root *dead_root;
3544 			int is_dead_root = 0;
3545 
3546 			/*
3547 			 * This is an orphan in the tree root. Currently these
3548 			 * could come from 2 sources:
3549 			 *  a) a root (snapshot/subvolume) deletion in progress
3550 			 *  b) a free space cache inode
3551 			 * We need to distinguish those two, as the orphan item
3552 			 * for a root must not get deleted before the deletion
3553 			 * of the snapshot/subvolume's tree completes.
3554 			 *
3555 			 * btrfs_find_orphan_roots() ran before us, which has
3556 			 * found all deleted roots and loaded them into
3557 			 * fs_info->fs_roots_radix. So here we can find if an
3558 			 * orphan item corresponds to a deleted root by looking
3559 			 * up the root from that radix tree.
3560 			 */
3561 
3562 			spin_lock(&fs_info->fs_roots_radix_lock);
3563 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3564 							 (unsigned long)found_key.objectid);
3565 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3566 				is_dead_root = 1;
3567 			spin_unlock(&fs_info->fs_roots_radix_lock);
3568 
3569 			if (is_dead_root) {
3570 				/* prevent this orphan from being found again */
3571 				key.offset = found_key.objectid - 1;
3572 				continue;
3573 			}
3574 
3575 		}
3576 
3577 		/*
3578 		 * If we have an inode with links, there are a couple of
3579 		 * possibilities:
3580 		 *
3581 		 * 1. We were halfway through creating fsverity metadata for the
3582 		 * file. In that case, the orphan item represents incomplete
3583 		 * fsverity metadata which must be cleaned up with
3584 		 * btrfs_drop_verity_items and deleting the orphan item.
3585 
3586 		 * 2. Old kernels (before v3.12) used to create an
3587 		 * orphan item for truncate indicating that there were possibly
3588 		 * extent items past i_size that needed to be deleted. In v3.12,
3589 		 * truncate was changed to update i_size in sync with the extent
3590 		 * items, but the (useless) orphan item was still created. Since
3591 		 * v4.18, we don't create the orphan item for truncate at all.
3592 		 *
3593 		 * So, this item could mean that we need to do a truncate, but
3594 		 * only if this filesystem was last used on a pre-v3.12 kernel
3595 		 * and was not cleanly unmounted. The odds of that are quite
3596 		 * slim, and it's a pain to do the truncate now, so just delete
3597 		 * the orphan item.
3598 		 *
3599 		 * It's also possible that this orphan item was supposed to be
3600 		 * deleted but wasn't. The inode number may have been reused,
3601 		 * but either way, we can delete the orphan item.
3602 		 */
3603 		if (!inode || inode->i_nlink) {
3604 			if (inode) {
3605 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3606 				iput(inode);
3607 				inode = NULL;
3608 				if (ret)
3609 					goto out;
3610 			}
3611 			trans = btrfs_start_transaction(root, 1);
3612 			if (IS_ERR(trans)) {
3613 				ret = PTR_ERR(trans);
3614 				goto out;
3615 			}
3616 			btrfs_debug(fs_info, "auto deleting %Lu",
3617 				    found_key.objectid);
3618 			ret = btrfs_del_orphan_item(trans, root,
3619 						    found_key.objectid);
3620 			btrfs_end_transaction(trans);
3621 			if (ret)
3622 				goto out;
3623 			continue;
3624 		}
3625 
3626 		nr_unlink++;
3627 
3628 		/* this will do delete_inode and everything for us */
3629 		iput(inode);
3630 	}
3631 	/* release the path since we're done with it */
3632 	btrfs_release_path(path);
3633 
3634 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3635 		trans = btrfs_join_transaction(root);
3636 		if (!IS_ERR(trans))
3637 			btrfs_end_transaction(trans);
3638 	}
3639 
3640 	if (nr_unlink)
3641 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3642 
3643 out:
3644 	if (ret)
3645 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3646 	btrfs_free_path(path);
3647 	return ret;
3648 }
3649 
3650 /*
3651  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3652  * don't find any xattrs, we know there can't be any acls.
3653  *
3654  * slot is the slot the inode is in, objectid is the objectid of the inode
3655  */
3656 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3657 					  int slot, u64 objectid,
3658 					  int *first_xattr_slot)
3659 {
3660 	u32 nritems = btrfs_header_nritems(leaf);
3661 	struct btrfs_key found_key;
3662 	static u64 xattr_access = 0;
3663 	static u64 xattr_default = 0;
3664 	int scanned = 0;
3665 
3666 	if (!xattr_access) {
3667 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3668 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3669 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3670 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3671 	}
3672 
3673 	slot++;
3674 	*first_xattr_slot = -1;
3675 	while (slot < nritems) {
3676 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3677 
3678 		/* we found a different objectid, there must not be acls */
3679 		if (found_key.objectid != objectid)
3680 			return 0;
3681 
3682 		/* we found an xattr, assume we've got an acl */
3683 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3684 			if (*first_xattr_slot == -1)
3685 				*first_xattr_slot = slot;
3686 			if (found_key.offset == xattr_access ||
3687 			    found_key.offset == xattr_default)
3688 				return 1;
3689 		}
3690 
3691 		/*
3692 		 * we found a key greater than an xattr key, there can't
3693 		 * be any acls later on
3694 		 */
3695 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3696 			return 0;
3697 
3698 		slot++;
3699 		scanned++;
3700 
3701 		/*
3702 		 * it goes inode, inode backrefs, xattrs, extents,
3703 		 * so if there are a ton of hard links to an inode there can
3704 		 * be a lot of backrefs.  Don't waste time searching too hard,
3705 		 * this is just an optimization
3706 		 */
3707 		if (scanned >= 8)
3708 			break;
3709 	}
3710 	/* we hit the end of the leaf before we found an xattr or
3711 	 * something larger than an xattr.  We have to assume the inode
3712 	 * has acls
3713 	 */
3714 	if (*first_xattr_slot == -1)
3715 		*first_xattr_slot = slot;
3716 	return 1;
3717 }
3718 
3719 /*
3720  * read an inode from the btree into the in-memory inode
3721  */
3722 static int btrfs_read_locked_inode(struct inode *inode,
3723 				   struct btrfs_path *in_path)
3724 {
3725 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3726 	struct btrfs_path *path = in_path;
3727 	struct extent_buffer *leaf;
3728 	struct btrfs_inode_item *inode_item;
3729 	struct btrfs_root *root = BTRFS_I(inode)->root;
3730 	struct btrfs_key location;
3731 	unsigned long ptr;
3732 	int maybe_acls;
3733 	u32 rdev;
3734 	int ret;
3735 	bool filled = false;
3736 	int first_xattr_slot;
3737 
3738 	ret = btrfs_fill_inode(inode, &rdev);
3739 	if (!ret)
3740 		filled = true;
3741 
3742 	if (!path) {
3743 		path = btrfs_alloc_path();
3744 		if (!path)
3745 			return -ENOMEM;
3746 	}
3747 
3748 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3749 
3750 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3751 	if (ret) {
3752 		if (path != in_path)
3753 			btrfs_free_path(path);
3754 		return ret;
3755 	}
3756 
3757 	leaf = path->nodes[0];
3758 
3759 	if (filled)
3760 		goto cache_index;
3761 
3762 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3763 				    struct btrfs_inode_item);
3764 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3765 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3766 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3767 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3768 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3769 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3770 			round_up(i_size_read(inode), fs_info->sectorsize));
3771 
3772 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3773 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3774 
3775 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3776 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3777 
3778 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3779 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3780 
3781 	BTRFS_I(inode)->i_otime.tv_sec =
3782 		btrfs_timespec_sec(leaf, &inode_item->otime);
3783 	BTRFS_I(inode)->i_otime.tv_nsec =
3784 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3785 
3786 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3787 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3788 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3789 
3790 	inode_set_iversion_queried(inode,
3791 				   btrfs_inode_sequence(leaf, inode_item));
3792 	inode->i_generation = BTRFS_I(inode)->generation;
3793 	inode->i_rdev = 0;
3794 	rdev = btrfs_inode_rdev(leaf, inode_item);
3795 
3796 	BTRFS_I(inode)->index_cnt = (u64)-1;
3797 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3798 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3799 
3800 cache_index:
3801 	/*
3802 	 * If we were modified in the current generation and evicted from memory
3803 	 * and then re-read we need to do a full sync since we don't have any
3804 	 * idea about which extents were modified before we were evicted from
3805 	 * cache.
3806 	 *
3807 	 * This is required for both inode re-read from disk and delayed inode
3808 	 * in delayed_nodes_tree.
3809 	 */
3810 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3811 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3812 			&BTRFS_I(inode)->runtime_flags);
3813 
3814 	/*
3815 	 * We don't persist the id of the transaction where an unlink operation
3816 	 * against the inode was last made. So here we assume the inode might
3817 	 * have been evicted, and therefore the exact value of last_unlink_trans
3818 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3819 	 * between the inode and its parent if the inode is fsync'ed and the log
3820 	 * replayed. For example, in the scenario:
3821 	 *
3822 	 * touch mydir/foo
3823 	 * ln mydir/foo mydir/bar
3824 	 * sync
3825 	 * unlink mydir/bar
3826 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3827 	 * xfs_io -c fsync mydir/foo
3828 	 * <power failure>
3829 	 * mount fs, triggers fsync log replay
3830 	 *
3831 	 * We must make sure that when we fsync our inode foo we also log its
3832 	 * parent inode, otherwise after log replay the parent still has the
3833 	 * dentry with the "bar" name but our inode foo has a link count of 1
3834 	 * and doesn't have an inode ref with the name "bar" anymore.
3835 	 *
3836 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3837 	 * but it guarantees correctness at the expense of occasional full
3838 	 * transaction commits on fsync if our inode is a directory, or if our
3839 	 * inode is not a directory, logging its parent unnecessarily.
3840 	 */
3841 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3842 
3843 	/*
3844 	 * Same logic as for last_unlink_trans. We don't persist the generation
3845 	 * of the last transaction where this inode was used for a reflink
3846 	 * operation, so after eviction and reloading the inode we must be
3847 	 * pessimistic and assume the last transaction that modified the inode.
3848 	 */
3849 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3850 
3851 	path->slots[0]++;
3852 	if (inode->i_nlink != 1 ||
3853 	    path->slots[0] >= btrfs_header_nritems(leaf))
3854 		goto cache_acl;
3855 
3856 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3857 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3858 		goto cache_acl;
3859 
3860 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3861 	if (location.type == BTRFS_INODE_REF_KEY) {
3862 		struct btrfs_inode_ref *ref;
3863 
3864 		ref = (struct btrfs_inode_ref *)ptr;
3865 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3866 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3867 		struct btrfs_inode_extref *extref;
3868 
3869 		extref = (struct btrfs_inode_extref *)ptr;
3870 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3871 								     extref);
3872 	}
3873 cache_acl:
3874 	/*
3875 	 * try to precache a NULL acl entry for files that don't have
3876 	 * any xattrs or acls
3877 	 */
3878 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3879 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3880 	if (first_xattr_slot != -1) {
3881 		path->slots[0] = first_xattr_slot;
3882 		ret = btrfs_load_inode_props(inode, path);
3883 		if (ret)
3884 			btrfs_err(fs_info,
3885 				  "error loading props for ino %llu (root %llu): %d",
3886 				  btrfs_ino(BTRFS_I(inode)),
3887 				  root->root_key.objectid, ret);
3888 	}
3889 	if (path != in_path)
3890 		btrfs_free_path(path);
3891 
3892 	if (!maybe_acls)
3893 		cache_no_acl(inode);
3894 
3895 	switch (inode->i_mode & S_IFMT) {
3896 	case S_IFREG:
3897 		inode->i_mapping->a_ops = &btrfs_aops;
3898 		inode->i_fop = &btrfs_file_operations;
3899 		inode->i_op = &btrfs_file_inode_operations;
3900 		break;
3901 	case S_IFDIR:
3902 		inode->i_fop = &btrfs_dir_file_operations;
3903 		inode->i_op = &btrfs_dir_inode_operations;
3904 		break;
3905 	case S_IFLNK:
3906 		inode->i_op = &btrfs_symlink_inode_operations;
3907 		inode_nohighmem(inode);
3908 		inode->i_mapping->a_ops = &btrfs_aops;
3909 		break;
3910 	default:
3911 		inode->i_op = &btrfs_special_inode_operations;
3912 		init_special_inode(inode, inode->i_mode, rdev);
3913 		break;
3914 	}
3915 
3916 	btrfs_sync_inode_flags_to_i_flags(inode);
3917 	return 0;
3918 }
3919 
3920 /*
3921  * given a leaf and an inode, copy the inode fields into the leaf
3922  */
3923 static void fill_inode_item(struct btrfs_trans_handle *trans,
3924 			    struct extent_buffer *leaf,
3925 			    struct btrfs_inode_item *item,
3926 			    struct inode *inode)
3927 {
3928 	struct btrfs_map_token token;
3929 	u64 flags;
3930 
3931 	btrfs_init_map_token(&token, leaf);
3932 
3933 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3934 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3935 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3936 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3937 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3938 
3939 	btrfs_set_token_timespec_sec(&token, &item->atime,
3940 				     inode->i_atime.tv_sec);
3941 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3942 				      inode->i_atime.tv_nsec);
3943 
3944 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3945 				     inode->i_mtime.tv_sec);
3946 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3947 				      inode->i_mtime.tv_nsec);
3948 
3949 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3950 				     inode_get_ctime(inode).tv_sec);
3951 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3952 				      inode_get_ctime(inode).tv_nsec);
3953 
3954 	btrfs_set_token_timespec_sec(&token, &item->otime,
3955 				     BTRFS_I(inode)->i_otime.tv_sec);
3956 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3957 				      BTRFS_I(inode)->i_otime.tv_nsec);
3958 
3959 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3960 	btrfs_set_token_inode_generation(&token, item,
3961 					 BTRFS_I(inode)->generation);
3962 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3963 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3964 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3965 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3966 					  BTRFS_I(inode)->ro_flags);
3967 	btrfs_set_token_inode_flags(&token, item, flags);
3968 	btrfs_set_token_inode_block_group(&token, item, 0);
3969 }
3970 
3971 /*
3972  * copy everything in the in-memory inode into the btree.
3973  */
3974 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3975 				struct btrfs_root *root,
3976 				struct btrfs_inode *inode)
3977 {
3978 	struct btrfs_inode_item *inode_item;
3979 	struct btrfs_path *path;
3980 	struct extent_buffer *leaf;
3981 	int ret;
3982 
3983 	path = btrfs_alloc_path();
3984 	if (!path)
3985 		return -ENOMEM;
3986 
3987 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3988 	if (ret) {
3989 		if (ret > 0)
3990 			ret = -ENOENT;
3991 		goto failed;
3992 	}
3993 
3994 	leaf = path->nodes[0];
3995 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3996 				    struct btrfs_inode_item);
3997 
3998 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3999 	btrfs_mark_buffer_dirty(trans, leaf);
4000 	btrfs_set_inode_last_trans(trans, inode);
4001 	ret = 0;
4002 failed:
4003 	btrfs_free_path(path);
4004 	return ret;
4005 }
4006 
4007 /*
4008  * copy everything in the in-memory inode into the btree.
4009  */
4010 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4011 				struct btrfs_root *root,
4012 				struct btrfs_inode *inode)
4013 {
4014 	struct btrfs_fs_info *fs_info = root->fs_info;
4015 	int ret;
4016 
4017 	/*
4018 	 * If the inode is a free space inode, we can deadlock during commit
4019 	 * if we put it into the delayed code.
4020 	 *
4021 	 * The data relocation inode should also be directly updated
4022 	 * without delay
4023 	 */
4024 	if (!btrfs_is_free_space_inode(inode)
4025 	    && !btrfs_is_data_reloc_root(root)
4026 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4027 		btrfs_update_root_times(trans, root);
4028 
4029 		ret = btrfs_delayed_update_inode(trans, root, inode);
4030 		if (!ret)
4031 			btrfs_set_inode_last_trans(trans, inode);
4032 		return ret;
4033 	}
4034 
4035 	return btrfs_update_inode_item(trans, root, inode);
4036 }
4037 
4038 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4039 				struct btrfs_root *root, struct btrfs_inode *inode)
4040 {
4041 	int ret;
4042 
4043 	ret = btrfs_update_inode(trans, root, inode);
4044 	if (ret == -ENOSPC)
4045 		return btrfs_update_inode_item(trans, root, inode);
4046 	return ret;
4047 }
4048 
4049 /*
4050  * unlink helper that gets used here in inode.c and in the tree logging
4051  * recovery code.  It remove a link in a directory with a given name, and
4052  * also drops the back refs in the inode to the directory
4053  */
4054 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4055 				struct btrfs_inode *dir,
4056 				struct btrfs_inode *inode,
4057 				const struct fscrypt_str *name,
4058 				struct btrfs_rename_ctx *rename_ctx)
4059 {
4060 	struct btrfs_root *root = dir->root;
4061 	struct btrfs_fs_info *fs_info = root->fs_info;
4062 	struct btrfs_path *path;
4063 	int ret = 0;
4064 	struct btrfs_dir_item *di;
4065 	u64 index;
4066 	u64 ino = btrfs_ino(inode);
4067 	u64 dir_ino = btrfs_ino(dir);
4068 
4069 	path = btrfs_alloc_path();
4070 	if (!path) {
4071 		ret = -ENOMEM;
4072 		goto out;
4073 	}
4074 
4075 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4076 	if (IS_ERR_OR_NULL(di)) {
4077 		ret = di ? PTR_ERR(di) : -ENOENT;
4078 		goto err;
4079 	}
4080 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4081 	if (ret)
4082 		goto err;
4083 	btrfs_release_path(path);
4084 
4085 	/*
4086 	 * If we don't have dir index, we have to get it by looking up
4087 	 * the inode ref, since we get the inode ref, remove it directly,
4088 	 * it is unnecessary to do delayed deletion.
4089 	 *
4090 	 * But if we have dir index, needn't search inode ref to get it.
4091 	 * Since the inode ref is close to the inode item, it is better
4092 	 * that we delay to delete it, and just do this deletion when
4093 	 * we update the inode item.
4094 	 */
4095 	if (inode->dir_index) {
4096 		ret = btrfs_delayed_delete_inode_ref(inode);
4097 		if (!ret) {
4098 			index = inode->dir_index;
4099 			goto skip_backref;
4100 		}
4101 	}
4102 
4103 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4104 	if (ret) {
4105 		btrfs_info(fs_info,
4106 			"failed to delete reference to %.*s, inode %llu parent %llu",
4107 			name->len, name->name, ino, dir_ino);
4108 		btrfs_abort_transaction(trans, ret);
4109 		goto err;
4110 	}
4111 skip_backref:
4112 	if (rename_ctx)
4113 		rename_ctx->index = index;
4114 
4115 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4116 	if (ret) {
4117 		btrfs_abort_transaction(trans, ret);
4118 		goto err;
4119 	}
4120 
4121 	/*
4122 	 * If we are in a rename context, we don't need to update anything in the
4123 	 * log. That will be done later during the rename by btrfs_log_new_name().
4124 	 * Besides that, doing it here would only cause extra unnecessary btree
4125 	 * operations on the log tree, increasing latency for applications.
4126 	 */
4127 	if (!rename_ctx) {
4128 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4129 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4130 	}
4131 
4132 	/*
4133 	 * If we have a pending delayed iput we could end up with the final iput
4134 	 * being run in btrfs-cleaner context.  If we have enough of these built
4135 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4136 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4137 	 * the inode we can run the delayed iput here without any issues as the
4138 	 * final iput won't be done until after we drop the ref we're currently
4139 	 * holding.
4140 	 */
4141 	btrfs_run_delayed_iput(fs_info, inode);
4142 err:
4143 	btrfs_free_path(path);
4144 	if (ret)
4145 		goto out;
4146 
4147 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4148 	inode_inc_iversion(&inode->vfs_inode);
4149 	inode_inc_iversion(&dir->vfs_inode);
4150 	inode_set_ctime_current(&inode->vfs_inode);
4151 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4152 	ret = btrfs_update_inode(trans, root, dir);
4153 out:
4154 	return ret;
4155 }
4156 
4157 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4158 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4159 		       const struct fscrypt_str *name)
4160 {
4161 	int ret;
4162 
4163 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4164 	if (!ret) {
4165 		drop_nlink(&inode->vfs_inode);
4166 		ret = btrfs_update_inode(trans, inode->root, inode);
4167 	}
4168 	return ret;
4169 }
4170 
4171 /*
4172  * helper to start transaction for unlink and rmdir.
4173  *
4174  * unlink and rmdir are special in btrfs, they do not always free space, so
4175  * if we cannot make our reservations the normal way try and see if there is
4176  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4177  * allow the unlink to occur.
4178  */
4179 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4180 {
4181 	struct btrfs_root *root = dir->root;
4182 
4183 	return btrfs_start_transaction_fallback_global_rsv(root,
4184 						   BTRFS_UNLINK_METADATA_UNITS);
4185 }
4186 
4187 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4188 {
4189 	struct btrfs_trans_handle *trans;
4190 	struct inode *inode = d_inode(dentry);
4191 	int ret;
4192 	struct fscrypt_name fname;
4193 
4194 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4195 	if (ret)
4196 		return ret;
4197 
4198 	/* This needs to handle no-key deletions later on */
4199 
4200 	trans = __unlink_start_trans(BTRFS_I(dir));
4201 	if (IS_ERR(trans)) {
4202 		ret = PTR_ERR(trans);
4203 		goto fscrypt_free;
4204 	}
4205 
4206 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4207 				false);
4208 
4209 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4210 				 &fname.disk_name);
4211 	if (ret)
4212 		goto end_trans;
4213 
4214 	if (inode->i_nlink == 0) {
4215 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4216 		if (ret)
4217 			goto end_trans;
4218 	}
4219 
4220 end_trans:
4221 	btrfs_end_transaction(trans);
4222 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4223 fscrypt_free:
4224 	fscrypt_free_filename(&fname);
4225 	return ret;
4226 }
4227 
4228 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4229 			       struct btrfs_inode *dir, struct dentry *dentry)
4230 {
4231 	struct btrfs_root *root = dir->root;
4232 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4233 	struct btrfs_path *path;
4234 	struct extent_buffer *leaf;
4235 	struct btrfs_dir_item *di;
4236 	struct btrfs_key key;
4237 	u64 index;
4238 	int ret;
4239 	u64 objectid;
4240 	u64 dir_ino = btrfs_ino(dir);
4241 	struct fscrypt_name fname;
4242 
4243 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4244 	if (ret)
4245 		return ret;
4246 
4247 	/* This needs to handle no-key deletions later on */
4248 
4249 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4250 		objectid = inode->root->root_key.objectid;
4251 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4252 		objectid = inode->location.objectid;
4253 	} else {
4254 		WARN_ON(1);
4255 		fscrypt_free_filename(&fname);
4256 		return -EINVAL;
4257 	}
4258 
4259 	path = btrfs_alloc_path();
4260 	if (!path) {
4261 		ret = -ENOMEM;
4262 		goto out;
4263 	}
4264 
4265 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4266 				   &fname.disk_name, -1);
4267 	if (IS_ERR_OR_NULL(di)) {
4268 		ret = di ? PTR_ERR(di) : -ENOENT;
4269 		goto out;
4270 	}
4271 
4272 	leaf = path->nodes[0];
4273 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4274 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4275 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4276 	if (ret) {
4277 		btrfs_abort_transaction(trans, ret);
4278 		goto out;
4279 	}
4280 	btrfs_release_path(path);
4281 
4282 	/*
4283 	 * This is a placeholder inode for a subvolume we didn't have a
4284 	 * reference to at the time of the snapshot creation.  In the meantime
4285 	 * we could have renamed the real subvol link into our snapshot, so
4286 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4287 	 * Instead simply lookup the dir_index_item for this entry so we can
4288 	 * remove it.  Otherwise we know we have a ref to the root and we can
4289 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4290 	 */
4291 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4292 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4293 		if (IS_ERR_OR_NULL(di)) {
4294 			if (!di)
4295 				ret = -ENOENT;
4296 			else
4297 				ret = PTR_ERR(di);
4298 			btrfs_abort_transaction(trans, ret);
4299 			goto out;
4300 		}
4301 
4302 		leaf = path->nodes[0];
4303 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4304 		index = key.offset;
4305 		btrfs_release_path(path);
4306 	} else {
4307 		ret = btrfs_del_root_ref(trans, objectid,
4308 					 root->root_key.objectid, dir_ino,
4309 					 &index, &fname.disk_name);
4310 		if (ret) {
4311 			btrfs_abort_transaction(trans, ret);
4312 			goto out;
4313 		}
4314 	}
4315 
4316 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4317 	if (ret) {
4318 		btrfs_abort_transaction(trans, ret);
4319 		goto out;
4320 	}
4321 
4322 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4323 	inode_inc_iversion(&dir->vfs_inode);
4324 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4325 	ret = btrfs_update_inode_fallback(trans, root, dir);
4326 	if (ret)
4327 		btrfs_abort_transaction(trans, ret);
4328 out:
4329 	btrfs_free_path(path);
4330 	fscrypt_free_filename(&fname);
4331 	return ret;
4332 }
4333 
4334 /*
4335  * Helper to check if the subvolume references other subvolumes or if it's
4336  * default.
4337  */
4338 static noinline int may_destroy_subvol(struct btrfs_root *root)
4339 {
4340 	struct btrfs_fs_info *fs_info = root->fs_info;
4341 	struct btrfs_path *path;
4342 	struct btrfs_dir_item *di;
4343 	struct btrfs_key key;
4344 	struct fscrypt_str name = FSTR_INIT("default", 7);
4345 	u64 dir_id;
4346 	int ret;
4347 
4348 	path = btrfs_alloc_path();
4349 	if (!path)
4350 		return -ENOMEM;
4351 
4352 	/* Make sure this root isn't set as the default subvol */
4353 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4354 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4355 				   dir_id, &name, 0);
4356 	if (di && !IS_ERR(di)) {
4357 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4358 		if (key.objectid == root->root_key.objectid) {
4359 			ret = -EPERM;
4360 			btrfs_err(fs_info,
4361 				  "deleting default subvolume %llu is not allowed",
4362 				  key.objectid);
4363 			goto out;
4364 		}
4365 		btrfs_release_path(path);
4366 	}
4367 
4368 	key.objectid = root->root_key.objectid;
4369 	key.type = BTRFS_ROOT_REF_KEY;
4370 	key.offset = (u64)-1;
4371 
4372 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4373 	if (ret < 0)
4374 		goto out;
4375 	BUG_ON(ret == 0);
4376 
4377 	ret = 0;
4378 	if (path->slots[0] > 0) {
4379 		path->slots[0]--;
4380 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4381 		if (key.objectid == root->root_key.objectid &&
4382 		    key.type == BTRFS_ROOT_REF_KEY)
4383 			ret = -ENOTEMPTY;
4384 	}
4385 out:
4386 	btrfs_free_path(path);
4387 	return ret;
4388 }
4389 
4390 /* Delete all dentries for inodes belonging to the root */
4391 static void btrfs_prune_dentries(struct btrfs_root *root)
4392 {
4393 	struct btrfs_fs_info *fs_info = root->fs_info;
4394 	struct rb_node *node;
4395 	struct rb_node *prev;
4396 	struct btrfs_inode *entry;
4397 	struct inode *inode;
4398 	u64 objectid = 0;
4399 
4400 	if (!BTRFS_FS_ERROR(fs_info))
4401 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4402 
4403 	spin_lock(&root->inode_lock);
4404 again:
4405 	node = root->inode_tree.rb_node;
4406 	prev = NULL;
4407 	while (node) {
4408 		prev = node;
4409 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4410 
4411 		if (objectid < btrfs_ino(entry))
4412 			node = node->rb_left;
4413 		else if (objectid > btrfs_ino(entry))
4414 			node = node->rb_right;
4415 		else
4416 			break;
4417 	}
4418 	if (!node) {
4419 		while (prev) {
4420 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4421 			if (objectid <= btrfs_ino(entry)) {
4422 				node = prev;
4423 				break;
4424 			}
4425 			prev = rb_next(prev);
4426 		}
4427 	}
4428 	while (node) {
4429 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4430 		objectid = btrfs_ino(entry) + 1;
4431 		inode = igrab(&entry->vfs_inode);
4432 		if (inode) {
4433 			spin_unlock(&root->inode_lock);
4434 			if (atomic_read(&inode->i_count) > 1)
4435 				d_prune_aliases(inode);
4436 			/*
4437 			 * btrfs_drop_inode will have it removed from the inode
4438 			 * cache when its usage count hits zero.
4439 			 */
4440 			iput(inode);
4441 			cond_resched();
4442 			spin_lock(&root->inode_lock);
4443 			goto again;
4444 		}
4445 
4446 		if (cond_resched_lock(&root->inode_lock))
4447 			goto again;
4448 
4449 		node = rb_next(node);
4450 	}
4451 	spin_unlock(&root->inode_lock);
4452 }
4453 
4454 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4455 {
4456 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4457 	struct btrfs_root *root = dir->root;
4458 	struct inode *inode = d_inode(dentry);
4459 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4460 	struct btrfs_trans_handle *trans;
4461 	struct btrfs_block_rsv block_rsv;
4462 	u64 root_flags;
4463 	u64 qgroup_reserved = 0;
4464 	int ret;
4465 
4466 	down_write(&fs_info->subvol_sem);
4467 
4468 	/*
4469 	 * Don't allow to delete a subvolume with send in progress. This is
4470 	 * inside the inode lock so the error handling that has to drop the bit
4471 	 * again is not run concurrently.
4472 	 */
4473 	spin_lock(&dest->root_item_lock);
4474 	if (dest->send_in_progress) {
4475 		spin_unlock(&dest->root_item_lock);
4476 		btrfs_warn(fs_info,
4477 			   "attempt to delete subvolume %llu during send",
4478 			   dest->root_key.objectid);
4479 		ret = -EPERM;
4480 		goto out_up_write;
4481 	}
4482 	if (atomic_read(&dest->nr_swapfiles)) {
4483 		spin_unlock(&dest->root_item_lock);
4484 		btrfs_warn(fs_info,
4485 			   "attempt to delete subvolume %llu with active swapfile",
4486 			   root->root_key.objectid);
4487 		ret = -EPERM;
4488 		goto out_up_write;
4489 	}
4490 	root_flags = btrfs_root_flags(&dest->root_item);
4491 	btrfs_set_root_flags(&dest->root_item,
4492 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4493 	spin_unlock(&dest->root_item_lock);
4494 
4495 	ret = may_destroy_subvol(dest);
4496 	if (ret)
4497 		goto out_undead;
4498 
4499 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4500 	/*
4501 	 * One for dir inode,
4502 	 * two for dir entries,
4503 	 * two for root ref/backref.
4504 	 */
4505 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4506 	if (ret)
4507 		goto out_undead;
4508 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4509 
4510 	trans = btrfs_start_transaction(root, 0);
4511 	if (IS_ERR(trans)) {
4512 		ret = PTR_ERR(trans);
4513 		goto out_release;
4514 	}
4515 	ret = btrfs_record_root_in_trans(trans, root);
4516 	if (ret) {
4517 		btrfs_abort_transaction(trans, ret);
4518 		goto out_end_trans;
4519 	}
4520 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4521 	qgroup_reserved = 0;
4522 	trans->block_rsv = &block_rsv;
4523 	trans->bytes_reserved = block_rsv.size;
4524 
4525 	btrfs_record_snapshot_destroy(trans, dir);
4526 
4527 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4528 	if (ret) {
4529 		btrfs_abort_transaction(trans, ret);
4530 		goto out_end_trans;
4531 	}
4532 
4533 	ret = btrfs_record_root_in_trans(trans, dest);
4534 	if (ret) {
4535 		btrfs_abort_transaction(trans, ret);
4536 		goto out_end_trans;
4537 	}
4538 
4539 	memset(&dest->root_item.drop_progress, 0,
4540 		sizeof(dest->root_item.drop_progress));
4541 	btrfs_set_root_drop_level(&dest->root_item, 0);
4542 	btrfs_set_root_refs(&dest->root_item, 0);
4543 
4544 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4545 		ret = btrfs_insert_orphan_item(trans,
4546 					fs_info->tree_root,
4547 					dest->root_key.objectid);
4548 		if (ret) {
4549 			btrfs_abort_transaction(trans, ret);
4550 			goto out_end_trans;
4551 		}
4552 	}
4553 
4554 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4555 				  BTRFS_UUID_KEY_SUBVOL,
4556 				  dest->root_key.objectid);
4557 	if (ret && ret != -ENOENT) {
4558 		btrfs_abort_transaction(trans, ret);
4559 		goto out_end_trans;
4560 	}
4561 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4562 		ret = btrfs_uuid_tree_remove(trans,
4563 					  dest->root_item.received_uuid,
4564 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4565 					  dest->root_key.objectid);
4566 		if (ret && ret != -ENOENT) {
4567 			btrfs_abort_transaction(trans, ret);
4568 			goto out_end_trans;
4569 		}
4570 	}
4571 
4572 	free_anon_bdev(dest->anon_dev);
4573 	dest->anon_dev = 0;
4574 out_end_trans:
4575 	trans->block_rsv = NULL;
4576 	trans->bytes_reserved = 0;
4577 	ret = btrfs_end_transaction(trans);
4578 	inode->i_flags |= S_DEAD;
4579 out_release:
4580 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4581 	if (qgroup_reserved)
4582 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4583 out_undead:
4584 	if (ret) {
4585 		spin_lock(&dest->root_item_lock);
4586 		root_flags = btrfs_root_flags(&dest->root_item);
4587 		btrfs_set_root_flags(&dest->root_item,
4588 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4589 		spin_unlock(&dest->root_item_lock);
4590 	}
4591 out_up_write:
4592 	up_write(&fs_info->subvol_sem);
4593 	if (!ret) {
4594 		d_invalidate(dentry);
4595 		btrfs_prune_dentries(dest);
4596 		ASSERT(dest->send_in_progress == 0);
4597 	}
4598 
4599 	return ret;
4600 }
4601 
4602 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4603 {
4604 	struct inode *inode = d_inode(dentry);
4605 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4606 	int err = 0;
4607 	struct btrfs_trans_handle *trans;
4608 	u64 last_unlink_trans;
4609 	struct fscrypt_name fname;
4610 
4611 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4612 		return -ENOTEMPTY;
4613 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4614 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4615 			btrfs_err(fs_info,
4616 			"extent tree v2 doesn't support snapshot deletion yet");
4617 			return -EOPNOTSUPP;
4618 		}
4619 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4620 	}
4621 
4622 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4623 	if (err)
4624 		return err;
4625 
4626 	/* This needs to handle no-key deletions later on */
4627 
4628 	trans = __unlink_start_trans(BTRFS_I(dir));
4629 	if (IS_ERR(trans)) {
4630 		err = PTR_ERR(trans);
4631 		goto out_notrans;
4632 	}
4633 
4634 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4635 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4636 		goto out;
4637 	}
4638 
4639 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4640 	if (err)
4641 		goto out;
4642 
4643 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4644 
4645 	/* now the directory is empty */
4646 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4647 				 &fname.disk_name);
4648 	if (!err) {
4649 		btrfs_i_size_write(BTRFS_I(inode), 0);
4650 		/*
4651 		 * Propagate the last_unlink_trans value of the deleted dir to
4652 		 * its parent directory. This is to prevent an unrecoverable
4653 		 * log tree in the case we do something like this:
4654 		 * 1) create dir foo
4655 		 * 2) create snapshot under dir foo
4656 		 * 3) delete the snapshot
4657 		 * 4) rmdir foo
4658 		 * 5) mkdir foo
4659 		 * 6) fsync foo or some file inside foo
4660 		 */
4661 		if (last_unlink_trans >= trans->transid)
4662 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4663 	}
4664 out:
4665 	btrfs_end_transaction(trans);
4666 out_notrans:
4667 	btrfs_btree_balance_dirty(fs_info);
4668 	fscrypt_free_filename(&fname);
4669 
4670 	return err;
4671 }
4672 
4673 /*
4674  * btrfs_truncate_block - read, zero a chunk and write a block
4675  * @inode - inode that we're zeroing
4676  * @from - the offset to start zeroing
4677  * @len - the length to zero, 0 to zero the entire range respective to the
4678  *	offset
4679  * @front - zero up to the offset instead of from the offset on
4680  *
4681  * This will find the block for the "from" offset and cow the block and zero the
4682  * part we want to zero.  This is used with truncate and hole punching.
4683  */
4684 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4685 			 int front)
4686 {
4687 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4688 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4689 	struct extent_io_tree *io_tree = &inode->io_tree;
4690 	struct btrfs_ordered_extent *ordered;
4691 	struct extent_state *cached_state = NULL;
4692 	struct extent_changeset *data_reserved = NULL;
4693 	bool only_release_metadata = false;
4694 	u32 blocksize = fs_info->sectorsize;
4695 	pgoff_t index = from >> PAGE_SHIFT;
4696 	unsigned offset = from & (blocksize - 1);
4697 	struct page *page;
4698 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4699 	size_t write_bytes = blocksize;
4700 	int ret = 0;
4701 	u64 block_start;
4702 	u64 block_end;
4703 
4704 	if (IS_ALIGNED(offset, blocksize) &&
4705 	    (!len || IS_ALIGNED(len, blocksize)))
4706 		goto out;
4707 
4708 	block_start = round_down(from, blocksize);
4709 	block_end = block_start + blocksize - 1;
4710 
4711 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4712 					  blocksize, false);
4713 	if (ret < 0) {
4714 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4715 			/* For nocow case, no need to reserve data space */
4716 			only_release_metadata = true;
4717 		} else {
4718 			goto out;
4719 		}
4720 	}
4721 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4722 	if (ret < 0) {
4723 		if (!only_release_metadata)
4724 			btrfs_free_reserved_data_space(inode, data_reserved,
4725 						       block_start, blocksize);
4726 		goto out;
4727 	}
4728 again:
4729 	page = find_or_create_page(mapping, index, mask);
4730 	if (!page) {
4731 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4732 					     blocksize, true);
4733 		btrfs_delalloc_release_extents(inode, blocksize);
4734 		ret = -ENOMEM;
4735 		goto out;
4736 	}
4737 
4738 	if (!PageUptodate(page)) {
4739 		ret = btrfs_read_folio(NULL, page_folio(page));
4740 		lock_page(page);
4741 		if (page->mapping != mapping) {
4742 			unlock_page(page);
4743 			put_page(page);
4744 			goto again;
4745 		}
4746 		if (!PageUptodate(page)) {
4747 			ret = -EIO;
4748 			goto out_unlock;
4749 		}
4750 	}
4751 
4752 	/*
4753 	 * We unlock the page after the io is completed and then re-lock it
4754 	 * above.  release_folio() could have come in between that and cleared
4755 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4756 	 * here to make sure it's properly set for the subpage stuff.
4757 	 */
4758 	ret = set_page_extent_mapped(page);
4759 	if (ret < 0)
4760 		goto out_unlock;
4761 
4762 	wait_on_page_writeback(page);
4763 
4764 	lock_extent(io_tree, block_start, block_end, &cached_state);
4765 
4766 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4767 	if (ordered) {
4768 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4769 		unlock_page(page);
4770 		put_page(page);
4771 		btrfs_start_ordered_extent(ordered);
4772 		btrfs_put_ordered_extent(ordered);
4773 		goto again;
4774 	}
4775 
4776 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4777 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4778 			 &cached_state);
4779 
4780 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4781 					&cached_state);
4782 	if (ret) {
4783 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4784 		goto out_unlock;
4785 	}
4786 
4787 	if (offset != blocksize) {
4788 		if (!len)
4789 			len = blocksize - offset;
4790 		if (front)
4791 			memzero_page(page, (block_start - page_offset(page)),
4792 				     offset);
4793 		else
4794 			memzero_page(page, (block_start - page_offset(page)) + offset,
4795 				     len);
4796 	}
4797 	btrfs_page_clear_checked(fs_info, page, block_start,
4798 				 block_end + 1 - block_start);
4799 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4800 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4801 
4802 	if (only_release_metadata)
4803 		set_extent_bit(&inode->io_tree, block_start, block_end,
4804 			       EXTENT_NORESERVE, NULL);
4805 
4806 out_unlock:
4807 	if (ret) {
4808 		if (only_release_metadata)
4809 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4810 		else
4811 			btrfs_delalloc_release_space(inode, data_reserved,
4812 					block_start, blocksize, true);
4813 	}
4814 	btrfs_delalloc_release_extents(inode, blocksize);
4815 	unlock_page(page);
4816 	put_page(page);
4817 out:
4818 	if (only_release_metadata)
4819 		btrfs_check_nocow_unlock(inode);
4820 	extent_changeset_free(data_reserved);
4821 	return ret;
4822 }
4823 
4824 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4825 			     u64 offset, u64 len)
4826 {
4827 	struct btrfs_fs_info *fs_info = root->fs_info;
4828 	struct btrfs_trans_handle *trans;
4829 	struct btrfs_drop_extents_args drop_args = { 0 };
4830 	int ret;
4831 
4832 	/*
4833 	 * If NO_HOLES is enabled, we don't need to do anything.
4834 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4835 	 * or btrfs_update_inode() will be called, which guarantee that the next
4836 	 * fsync will know this inode was changed and needs to be logged.
4837 	 */
4838 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4839 		return 0;
4840 
4841 	/*
4842 	 * 1 - for the one we're dropping
4843 	 * 1 - for the one we're adding
4844 	 * 1 - for updating the inode.
4845 	 */
4846 	trans = btrfs_start_transaction(root, 3);
4847 	if (IS_ERR(trans))
4848 		return PTR_ERR(trans);
4849 
4850 	drop_args.start = offset;
4851 	drop_args.end = offset + len;
4852 	drop_args.drop_cache = true;
4853 
4854 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4855 	if (ret) {
4856 		btrfs_abort_transaction(trans, ret);
4857 		btrfs_end_transaction(trans);
4858 		return ret;
4859 	}
4860 
4861 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4862 	if (ret) {
4863 		btrfs_abort_transaction(trans, ret);
4864 	} else {
4865 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4866 		btrfs_update_inode(trans, root, inode);
4867 	}
4868 	btrfs_end_transaction(trans);
4869 	return ret;
4870 }
4871 
4872 /*
4873  * This function puts in dummy file extents for the area we're creating a hole
4874  * for.  So if we are truncating this file to a larger size we need to insert
4875  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4876  * the range between oldsize and size
4877  */
4878 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4879 {
4880 	struct btrfs_root *root = inode->root;
4881 	struct btrfs_fs_info *fs_info = root->fs_info;
4882 	struct extent_io_tree *io_tree = &inode->io_tree;
4883 	struct extent_map *em = NULL;
4884 	struct extent_state *cached_state = NULL;
4885 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4886 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4887 	u64 last_byte;
4888 	u64 cur_offset;
4889 	u64 hole_size;
4890 	int err = 0;
4891 
4892 	/*
4893 	 * If our size started in the middle of a block we need to zero out the
4894 	 * rest of the block before we expand the i_size, otherwise we could
4895 	 * expose stale data.
4896 	 */
4897 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4898 	if (err)
4899 		return err;
4900 
4901 	if (size <= hole_start)
4902 		return 0;
4903 
4904 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4905 					   &cached_state);
4906 	cur_offset = hole_start;
4907 	while (1) {
4908 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4909 				      block_end - cur_offset);
4910 		if (IS_ERR(em)) {
4911 			err = PTR_ERR(em);
4912 			em = NULL;
4913 			break;
4914 		}
4915 		last_byte = min(extent_map_end(em), block_end);
4916 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4917 		hole_size = last_byte - cur_offset;
4918 
4919 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4920 			struct extent_map *hole_em;
4921 
4922 			err = maybe_insert_hole(root, inode, cur_offset,
4923 						hole_size);
4924 			if (err)
4925 				break;
4926 
4927 			err = btrfs_inode_set_file_extent_range(inode,
4928 							cur_offset, hole_size);
4929 			if (err)
4930 				break;
4931 
4932 			hole_em = alloc_extent_map();
4933 			if (!hole_em) {
4934 				btrfs_drop_extent_map_range(inode, cur_offset,
4935 						    cur_offset + hole_size - 1,
4936 						    false);
4937 				btrfs_set_inode_full_sync(inode);
4938 				goto next;
4939 			}
4940 			hole_em->start = cur_offset;
4941 			hole_em->len = hole_size;
4942 			hole_em->orig_start = cur_offset;
4943 
4944 			hole_em->block_start = EXTENT_MAP_HOLE;
4945 			hole_em->block_len = 0;
4946 			hole_em->orig_block_len = 0;
4947 			hole_em->ram_bytes = hole_size;
4948 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4949 			hole_em->generation = fs_info->generation;
4950 
4951 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4952 			free_extent_map(hole_em);
4953 		} else {
4954 			err = btrfs_inode_set_file_extent_range(inode,
4955 							cur_offset, hole_size);
4956 			if (err)
4957 				break;
4958 		}
4959 next:
4960 		free_extent_map(em);
4961 		em = NULL;
4962 		cur_offset = last_byte;
4963 		if (cur_offset >= block_end)
4964 			break;
4965 	}
4966 	free_extent_map(em);
4967 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4968 	return err;
4969 }
4970 
4971 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4972 {
4973 	struct btrfs_root *root = BTRFS_I(inode)->root;
4974 	struct btrfs_trans_handle *trans;
4975 	loff_t oldsize = i_size_read(inode);
4976 	loff_t newsize = attr->ia_size;
4977 	int mask = attr->ia_valid;
4978 	int ret;
4979 
4980 	/*
4981 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4982 	 * special case where we need to update the times despite not having
4983 	 * these flags set.  For all other operations the VFS set these flags
4984 	 * explicitly if it wants a timestamp update.
4985 	 */
4986 	if (newsize != oldsize) {
4987 		inode_inc_iversion(inode);
4988 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4989 			inode->i_mtime = inode_set_ctime_current(inode);
4990 		}
4991 	}
4992 
4993 	if (newsize > oldsize) {
4994 		/*
4995 		 * Don't do an expanding truncate while snapshotting is ongoing.
4996 		 * This is to ensure the snapshot captures a fully consistent
4997 		 * state of this file - if the snapshot captures this expanding
4998 		 * truncation, it must capture all writes that happened before
4999 		 * this truncation.
5000 		 */
5001 		btrfs_drew_write_lock(&root->snapshot_lock);
5002 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5003 		if (ret) {
5004 			btrfs_drew_write_unlock(&root->snapshot_lock);
5005 			return ret;
5006 		}
5007 
5008 		trans = btrfs_start_transaction(root, 1);
5009 		if (IS_ERR(trans)) {
5010 			btrfs_drew_write_unlock(&root->snapshot_lock);
5011 			return PTR_ERR(trans);
5012 		}
5013 
5014 		i_size_write(inode, newsize);
5015 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5016 		pagecache_isize_extended(inode, oldsize, newsize);
5017 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5018 		btrfs_drew_write_unlock(&root->snapshot_lock);
5019 		btrfs_end_transaction(trans);
5020 	} else {
5021 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5022 
5023 		if (btrfs_is_zoned(fs_info)) {
5024 			ret = btrfs_wait_ordered_range(inode,
5025 					ALIGN(newsize, fs_info->sectorsize),
5026 					(u64)-1);
5027 			if (ret)
5028 				return ret;
5029 		}
5030 
5031 		/*
5032 		 * We're truncating a file that used to have good data down to
5033 		 * zero. Make sure any new writes to the file get on disk
5034 		 * on close.
5035 		 */
5036 		if (newsize == 0)
5037 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5038 				&BTRFS_I(inode)->runtime_flags);
5039 
5040 		truncate_setsize(inode, newsize);
5041 
5042 		inode_dio_wait(inode);
5043 
5044 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5045 		if (ret && inode->i_nlink) {
5046 			int err;
5047 
5048 			/*
5049 			 * Truncate failed, so fix up the in-memory size. We
5050 			 * adjusted disk_i_size down as we removed extents, so
5051 			 * wait for disk_i_size to be stable and then update the
5052 			 * in-memory size to match.
5053 			 */
5054 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5055 			if (err)
5056 				return err;
5057 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5058 		}
5059 	}
5060 
5061 	return ret;
5062 }
5063 
5064 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5065 			 struct iattr *attr)
5066 {
5067 	struct inode *inode = d_inode(dentry);
5068 	struct btrfs_root *root = BTRFS_I(inode)->root;
5069 	int err;
5070 
5071 	if (btrfs_root_readonly(root))
5072 		return -EROFS;
5073 
5074 	err = setattr_prepare(idmap, dentry, attr);
5075 	if (err)
5076 		return err;
5077 
5078 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5079 		err = btrfs_setsize(inode, attr);
5080 		if (err)
5081 			return err;
5082 	}
5083 
5084 	if (attr->ia_valid) {
5085 		setattr_copy(idmap, inode, attr);
5086 		inode_inc_iversion(inode);
5087 		err = btrfs_dirty_inode(BTRFS_I(inode));
5088 
5089 		if (!err && attr->ia_valid & ATTR_MODE)
5090 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5091 	}
5092 
5093 	return err;
5094 }
5095 
5096 /*
5097  * While truncating the inode pages during eviction, we get the VFS
5098  * calling btrfs_invalidate_folio() against each folio of the inode. This
5099  * is slow because the calls to btrfs_invalidate_folio() result in a
5100  * huge amount of calls to lock_extent() and clear_extent_bit(),
5101  * which keep merging and splitting extent_state structures over and over,
5102  * wasting lots of time.
5103  *
5104  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5105  * skip all those expensive operations on a per folio basis and do only
5106  * the ordered io finishing, while we release here the extent_map and
5107  * extent_state structures, without the excessive merging and splitting.
5108  */
5109 static void evict_inode_truncate_pages(struct inode *inode)
5110 {
5111 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5112 	struct rb_node *node;
5113 
5114 	ASSERT(inode->i_state & I_FREEING);
5115 	truncate_inode_pages_final(&inode->i_data);
5116 
5117 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5118 
5119 	/*
5120 	 * Keep looping until we have no more ranges in the io tree.
5121 	 * We can have ongoing bios started by readahead that have
5122 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5123 	 * still in progress (unlocked the pages in the bio but did not yet
5124 	 * unlocked the ranges in the io tree). Therefore this means some
5125 	 * ranges can still be locked and eviction started because before
5126 	 * submitting those bios, which are executed by a separate task (work
5127 	 * queue kthread), inode references (inode->i_count) were not taken
5128 	 * (which would be dropped in the end io callback of each bio).
5129 	 * Therefore here we effectively end up waiting for those bios and
5130 	 * anyone else holding locked ranges without having bumped the inode's
5131 	 * reference count - if we don't do it, when they access the inode's
5132 	 * io_tree to unlock a range it may be too late, leading to an
5133 	 * use-after-free issue.
5134 	 */
5135 	spin_lock(&io_tree->lock);
5136 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5137 		struct extent_state *state;
5138 		struct extent_state *cached_state = NULL;
5139 		u64 start;
5140 		u64 end;
5141 		unsigned state_flags;
5142 
5143 		node = rb_first(&io_tree->state);
5144 		state = rb_entry(node, struct extent_state, rb_node);
5145 		start = state->start;
5146 		end = state->end;
5147 		state_flags = state->state;
5148 		spin_unlock(&io_tree->lock);
5149 
5150 		lock_extent(io_tree, start, end, &cached_state);
5151 
5152 		/*
5153 		 * If still has DELALLOC flag, the extent didn't reach disk,
5154 		 * and its reserved space won't be freed by delayed_ref.
5155 		 * So we need to free its reserved space here.
5156 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5157 		 *
5158 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5159 		 */
5160 		if (state_flags & EXTENT_DELALLOC)
5161 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5162 					       end - start + 1, NULL);
5163 
5164 		clear_extent_bit(io_tree, start, end,
5165 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5166 				 &cached_state);
5167 
5168 		cond_resched();
5169 		spin_lock(&io_tree->lock);
5170 	}
5171 	spin_unlock(&io_tree->lock);
5172 }
5173 
5174 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5175 							struct btrfs_block_rsv *rsv)
5176 {
5177 	struct btrfs_fs_info *fs_info = root->fs_info;
5178 	struct btrfs_trans_handle *trans;
5179 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5180 	int ret;
5181 
5182 	/*
5183 	 * Eviction should be taking place at some place safe because of our
5184 	 * delayed iputs.  However the normal flushing code will run delayed
5185 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5186 	 *
5187 	 * We reserve the delayed_refs_extra here again because we can't use
5188 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5189 	 * above.  We reserve our extra bit here because we generate a ton of
5190 	 * delayed refs activity by truncating.
5191 	 *
5192 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5193 	 * if we fail to make this reservation we can re-try without the
5194 	 * delayed_refs_extra so we can make some forward progress.
5195 	 */
5196 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5197 				     BTRFS_RESERVE_FLUSH_EVICT);
5198 	if (ret) {
5199 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5200 					     BTRFS_RESERVE_FLUSH_EVICT);
5201 		if (ret) {
5202 			btrfs_warn(fs_info,
5203 				   "could not allocate space for delete; will truncate on mount");
5204 			return ERR_PTR(-ENOSPC);
5205 		}
5206 		delayed_refs_extra = 0;
5207 	}
5208 
5209 	trans = btrfs_join_transaction(root);
5210 	if (IS_ERR(trans))
5211 		return trans;
5212 
5213 	if (delayed_refs_extra) {
5214 		trans->block_rsv = &fs_info->trans_block_rsv;
5215 		trans->bytes_reserved = delayed_refs_extra;
5216 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5217 					delayed_refs_extra, true);
5218 	}
5219 	return trans;
5220 }
5221 
5222 void btrfs_evict_inode(struct inode *inode)
5223 {
5224 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5225 	struct btrfs_trans_handle *trans;
5226 	struct btrfs_root *root = BTRFS_I(inode)->root;
5227 	struct btrfs_block_rsv *rsv = NULL;
5228 	int ret;
5229 
5230 	trace_btrfs_inode_evict(inode);
5231 
5232 	if (!root) {
5233 		fsverity_cleanup_inode(inode);
5234 		clear_inode(inode);
5235 		return;
5236 	}
5237 
5238 	evict_inode_truncate_pages(inode);
5239 
5240 	if (inode->i_nlink &&
5241 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5242 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5243 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5244 		goto out;
5245 
5246 	if (is_bad_inode(inode))
5247 		goto out;
5248 
5249 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5250 		goto out;
5251 
5252 	if (inode->i_nlink > 0) {
5253 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5254 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5255 		goto out;
5256 	}
5257 
5258 	/*
5259 	 * This makes sure the inode item in tree is uptodate and the space for
5260 	 * the inode update is released.
5261 	 */
5262 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5263 	if (ret)
5264 		goto out;
5265 
5266 	/*
5267 	 * This drops any pending insert or delete operations we have for this
5268 	 * inode.  We could have a delayed dir index deletion queued up, but
5269 	 * we're removing the inode completely so that'll be taken care of in
5270 	 * the truncate.
5271 	 */
5272 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5273 
5274 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5275 	if (!rsv)
5276 		goto out;
5277 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5278 	rsv->failfast = true;
5279 
5280 	btrfs_i_size_write(BTRFS_I(inode), 0);
5281 
5282 	while (1) {
5283 		struct btrfs_truncate_control control = {
5284 			.inode = BTRFS_I(inode),
5285 			.ino = btrfs_ino(BTRFS_I(inode)),
5286 			.new_size = 0,
5287 			.min_type = 0,
5288 		};
5289 
5290 		trans = evict_refill_and_join(root, rsv);
5291 		if (IS_ERR(trans))
5292 			goto out;
5293 
5294 		trans->block_rsv = rsv;
5295 
5296 		ret = btrfs_truncate_inode_items(trans, root, &control);
5297 		trans->block_rsv = &fs_info->trans_block_rsv;
5298 		btrfs_end_transaction(trans);
5299 		/*
5300 		 * We have not added new delayed items for our inode after we
5301 		 * have flushed its delayed items, so no need to throttle on
5302 		 * delayed items. However we have modified extent buffers.
5303 		 */
5304 		btrfs_btree_balance_dirty_nodelay(fs_info);
5305 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5306 			goto out;
5307 		else if (!ret)
5308 			break;
5309 	}
5310 
5311 	/*
5312 	 * Errors here aren't a big deal, it just means we leave orphan items in
5313 	 * the tree. They will be cleaned up on the next mount. If the inode
5314 	 * number gets reused, cleanup deletes the orphan item without doing
5315 	 * anything, and unlink reuses the existing orphan item.
5316 	 *
5317 	 * If it turns out that we are dropping too many of these, we might want
5318 	 * to add a mechanism for retrying these after a commit.
5319 	 */
5320 	trans = evict_refill_and_join(root, rsv);
5321 	if (!IS_ERR(trans)) {
5322 		trans->block_rsv = rsv;
5323 		btrfs_orphan_del(trans, BTRFS_I(inode));
5324 		trans->block_rsv = &fs_info->trans_block_rsv;
5325 		btrfs_end_transaction(trans);
5326 	}
5327 
5328 out:
5329 	btrfs_free_block_rsv(fs_info, rsv);
5330 	/*
5331 	 * If we didn't successfully delete, the orphan item will still be in
5332 	 * the tree and we'll retry on the next mount. Again, we might also want
5333 	 * to retry these periodically in the future.
5334 	 */
5335 	btrfs_remove_delayed_node(BTRFS_I(inode));
5336 	fsverity_cleanup_inode(inode);
5337 	clear_inode(inode);
5338 }
5339 
5340 /*
5341  * Return the key found in the dir entry in the location pointer, fill @type
5342  * with BTRFS_FT_*, and return 0.
5343  *
5344  * If no dir entries were found, returns -ENOENT.
5345  * If found a corrupted location in dir entry, returns -EUCLEAN.
5346  */
5347 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5348 			       struct btrfs_key *location, u8 *type)
5349 {
5350 	struct btrfs_dir_item *di;
5351 	struct btrfs_path *path;
5352 	struct btrfs_root *root = dir->root;
5353 	int ret = 0;
5354 	struct fscrypt_name fname;
5355 
5356 	path = btrfs_alloc_path();
5357 	if (!path)
5358 		return -ENOMEM;
5359 
5360 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5361 	if (ret < 0)
5362 		goto out;
5363 	/*
5364 	 * fscrypt_setup_filename() should never return a positive value, but
5365 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5366 	 */
5367 	ASSERT(ret == 0);
5368 
5369 	/* This needs to handle no-key deletions later on */
5370 
5371 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5372 				   &fname.disk_name, 0);
5373 	if (IS_ERR_OR_NULL(di)) {
5374 		ret = di ? PTR_ERR(di) : -ENOENT;
5375 		goto out;
5376 	}
5377 
5378 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5379 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5380 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5381 		ret = -EUCLEAN;
5382 		btrfs_warn(root->fs_info,
5383 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5384 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5385 			   location->objectid, location->type, location->offset);
5386 	}
5387 	if (!ret)
5388 		*type = btrfs_dir_ftype(path->nodes[0], di);
5389 out:
5390 	fscrypt_free_filename(&fname);
5391 	btrfs_free_path(path);
5392 	return ret;
5393 }
5394 
5395 /*
5396  * when we hit a tree root in a directory, the btrfs part of the inode
5397  * needs to be changed to reflect the root directory of the tree root.  This
5398  * is kind of like crossing a mount point.
5399  */
5400 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5401 				    struct btrfs_inode *dir,
5402 				    struct dentry *dentry,
5403 				    struct btrfs_key *location,
5404 				    struct btrfs_root **sub_root)
5405 {
5406 	struct btrfs_path *path;
5407 	struct btrfs_root *new_root;
5408 	struct btrfs_root_ref *ref;
5409 	struct extent_buffer *leaf;
5410 	struct btrfs_key key;
5411 	int ret;
5412 	int err = 0;
5413 	struct fscrypt_name fname;
5414 
5415 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5416 	if (ret)
5417 		return ret;
5418 
5419 	path = btrfs_alloc_path();
5420 	if (!path) {
5421 		err = -ENOMEM;
5422 		goto out;
5423 	}
5424 
5425 	err = -ENOENT;
5426 	key.objectid = dir->root->root_key.objectid;
5427 	key.type = BTRFS_ROOT_REF_KEY;
5428 	key.offset = location->objectid;
5429 
5430 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5431 	if (ret) {
5432 		if (ret < 0)
5433 			err = ret;
5434 		goto out;
5435 	}
5436 
5437 	leaf = path->nodes[0];
5438 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5439 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5440 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5441 		goto out;
5442 
5443 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5444 				   (unsigned long)(ref + 1), fname.disk_name.len);
5445 	if (ret)
5446 		goto out;
5447 
5448 	btrfs_release_path(path);
5449 
5450 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5451 	if (IS_ERR(new_root)) {
5452 		err = PTR_ERR(new_root);
5453 		goto out;
5454 	}
5455 
5456 	*sub_root = new_root;
5457 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5458 	location->type = BTRFS_INODE_ITEM_KEY;
5459 	location->offset = 0;
5460 	err = 0;
5461 out:
5462 	btrfs_free_path(path);
5463 	fscrypt_free_filename(&fname);
5464 	return err;
5465 }
5466 
5467 static void inode_tree_add(struct btrfs_inode *inode)
5468 {
5469 	struct btrfs_root *root = inode->root;
5470 	struct btrfs_inode *entry;
5471 	struct rb_node **p;
5472 	struct rb_node *parent;
5473 	struct rb_node *new = &inode->rb_node;
5474 	u64 ino = btrfs_ino(inode);
5475 
5476 	if (inode_unhashed(&inode->vfs_inode))
5477 		return;
5478 	parent = NULL;
5479 	spin_lock(&root->inode_lock);
5480 	p = &root->inode_tree.rb_node;
5481 	while (*p) {
5482 		parent = *p;
5483 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5484 
5485 		if (ino < btrfs_ino(entry))
5486 			p = &parent->rb_left;
5487 		else if (ino > btrfs_ino(entry))
5488 			p = &parent->rb_right;
5489 		else {
5490 			WARN_ON(!(entry->vfs_inode.i_state &
5491 				  (I_WILL_FREE | I_FREEING)));
5492 			rb_replace_node(parent, new, &root->inode_tree);
5493 			RB_CLEAR_NODE(parent);
5494 			spin_unlock(&root->inode_lock);
5495 			return;
5496 		}
5497 	}
5498 	rb_link_node(new, parent, p);
5499 	rb_insert_color(new, &root->inode_tree);
5500 	spin_unlock(&root->inode_lock);
5501 }
5502 
5503 static void inode_tree_del(struct btrfs_inode *inode)
5504 {
5505 	struct btrfs_root *root = inode->root;
5506 	int empty = 0;
5507 
5508 	spin_lock(&root->inode_lock);
5509 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5510 		rb_erase(&inode->rb_node, &root->inode_tree);
5511 		RB_CLEAR_NODE(&inode->rb_node);
5512 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5513 	}
5514 	spin_unlock(&root->inode_lock);
5515 
5516 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5517 		spin_lock(&root->inode_lock);
5518 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5519 		spin_unlock(&root->inode_lock);
5520 		if (empty)
5521 			btrfs_add_dead_root(root);
5522 	}
5523 }
5524 
5525 
5526 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5527 {
5528 	struct btrfs_iget_args *args = p;
5529 
5530 	inode->i_ino = args->ino;
5531 	BTRFS_I(inode)->location.objectid = args->ino;
5532 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5533 	BTRFS_I(inode)->location.offset = 0;
5534 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5535 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5536 
5537 	if (args->root && args->root == args->root->fs_info->tree_root &&
5538 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5539 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5540 			&BTRFS_I(inode)->runtime_flags);
5541 	return 0;
5542 }
5543 
5544 static int btrfs_find_actor(struct inode *inode, void *opaque)
5545 {
5546 	struct btrfs_iget_args *args = opaque;
5547 
5548 	return args->ino == BTRFS_I(inode)->location.objectid &&
5549 		args->root == BTRFS_I(inode)->root;
5550 }
5551 
5552 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5553 				       struct btrfs_root *root)
5554 {
5555 	struct inode *inode;
5556 	struct btrfs_iget_args args;
5557 	unsigned long hashval = btrfs_inode_hash(ino, root);
5558 
5559 	args.ino = ino;
5560 	args.root = root;
5561 
5562 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5563 			     btrfs_init_locked_inode,
5564 			     (void *)&args);
5565 	return inode;
5566 }
5567 
5568 /*
5569  * Get an inode object given its inode number and corresponding root.
5570  * Path can be preallocated to prevent recursing back to iget through
5571  * allocator. NULL is also valid but may require an additional allocation
5572  * later.
5573  */
5574 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5575 			      struct btrfs_root *root, struct btrfs_path *path)
5576 {
5577 	struct inode *inode;
5578 
5579 	inode = btrfs_iget_locked(s, ino, root);
5580 	if (!inode)
5581 		return ERR_PTR(-ENOMEM);
5582 
5583 	if (inode->i_state & I_NEW) {
5584 		int ret;
5585 
5586 		ret = btrfs_read_locked_inode(inode, path);
5587 		if (!ret) {
5588 			inode_tree_add(BTRFS_I(inode));
5589 			unlock_new_inode(inode);
5590 		} else {
5591 			iget_failed(inode);
5592 			/*
5593 			 * ret > 0 can come from btrfs_search_slot called by
5594 			 * btrfs_read_locked_inode, this means the inode item
5595 			 * was not found.
5596 			 */
5597 			if (ret > 0)
5598 				ret = -ENOENT;
5599 			inode = ERR_PTR(ret);
5600 		}
5601 	}
5602 
5603 	return inode;
5604 }
5605 
5606 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5607 {
5608 	return btrfs_iget_path(s, ino, root, NULL);
5609 }
5610 
5611 static struct inode *new_simple_dir(struct inode *dir,
5612 				    struct btrfs_key *key,
5613 				    struct btrfs_root *root)
5614 {
5615 	struct inode *inode = new_inode(dir->i_sb);
5616 
5617 	if (!inode)
5618 		return ERR_PTR(-ENOMEM);
5619 
5620 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5621 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5622 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5623 
5624 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5625 	/*
5626 	 * We only need lookup, the rest is read-only and there's no inode
5627 	 * associated with the dentry
5628 	 */
5629 	inode->i_op = &simple_dir_inode_operations;
5630 	inode->i_opflags &= ~IOP_XATTR;
5631 	inode->i_fop = &simple_dir_operations;
5632 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5633 	inode->i_mtime = inode_set_ctime_current(inode);
5634 	inode->i_atime = dir->i_atime;
5635 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5636 	inode->i_uid = dir->i_uid;
5637 	inode->i_gid = dir->i_gid;
5638 
5639 	return inode;
5640 }
5641 
5642 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5643 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5644 static_assert(BTRFS_FT_DIR == FT_DIR);
5645 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5646 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5647 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5648 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5649 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5650 
5651 static inline u8 btrfs_inode_type(struct inode *inode)
5652 {
5653 	return fs_umode_to_ftype(inode->i_mode);
5654 }
5655 
5656 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5657 {
5658 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5659 	struct inode *inode;
5660 	struct btrfs_root *root = BTRFS_I(dir)->root;
5661 	struct btrfs_root *sub_root = root;
5662 	struct btrfs_key location;
5663 	u8 di_type = 0;
5664 	int ret = 0;
5665 
5666 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5667 		return ERR_PTR(-ENAMETOOLONG);
5668 
5669 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5670 	if (ret < 0)
5671 		return ERR_PTR(ret);
5672 
5673 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5674 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5675 		if (IS_ERR(inode))
5676 			return inode;
5677 
5678 		/* Do extra check against inode mode with di_type */
5679 		if (btrfs_inode_type(inode) != di_type) {
5680 			btrfs_crit(fs_info,
5681 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5682 				  inode->i_mode, btrfs_inode_type(inode),
5683 				  di_type);
5684 			iput(inode);
5685 			return ERR_PTR(-EUCLEAN);
5686 		}
5687 		return inode;
5688 	}
5689 
5690 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5691 				       &location, &sub_root);
5692 	if (ret < 0) {
5693 		if (ret != -ENOENT)
5694 			inode = ERR_PTR(ret);
5695 		else
5696 			inode = new_simple_dir(dir, &location, root);
5697 	} else {
5698 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5699 		btrfs_put_root(sub_root);
5700 
5701 		if (IS_ERR(inode))
5702 			return inode;
5703 
5704 		down_read(&fs_info->cleanup_work_sem);
5705 		if (!sb_rdonly(inode->i_sb))
5706 			ret = btrfs_orphan_cleanup(sub_root);
5707 		up_read(&fs_info->cleanup_work_sem);
5708 		if (ret) {
5709 			iput(inode);
5710 			inode = ERR_PTR(ret);
5711 		}
5712 	}
5713 
5714 	return inode;
5715 }
5716 
5717 static int btrfs_dentry_delete(const struct dentry *dentry)
5718 {
5719 	struct btrfs_root *root;
5720 	struct inode *inode = d_inode(dentry);
5721 
5722 	if (!inode && !IS_ROOT(dentry))
5723 		inode = d_inode(dentry->d_parent);
5724 
5725 	if (inode) {
5726 		root = BTRFS_I(inode)->root;
5727 		if (btrfs_root_refs(&root->root_item) == 0)
5728 			return 1;
5729 
5730 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5731 			return 1;
5732 	}
5733 	return 0;
5734 }
5735 
5736 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5737 				   unsigned int flags)
5738 {
5739 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5740 
5741 	if (inode == ERR_PTR(-ENOENT))
5742 		inode = NULL;
5743 	return d_splice_alias(inode, dentry);
5744 }
5745 
5746 /*
5747  * Find the highest existing sequence number in a directory and then set the
5748  * in-memory index_cnt variable to the first free sequence number.
5749  */
5750 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5751 {
5752 	struct btrfs_root *root = inode->root;
5753 	struct btrfs_key key, found_key;
5754 	struct btrfs_path *path;
5755 	struct extent_buffer *leaf;
5756 	int ret;
5757 
5758 	key.objectid = btrfs_ino(inode);
5759 	key.type = BTRFS_DIR_INDEX_KEY;
5760 	key.offset = (u64)-1;
5761 
5762 	path = btrfs_alloc_path();
5763 	if (!path)
5764 		return -ENOMEM;
5765 
5766 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5767 	if (ret < 0)
5768 		goto out;
5769 	/* FIXME: we should be able to handle this */
5770 	if (ret == 0)
5771 		goto out;
5772 	ret = 0;
5773 
5774 	if (path->slots[0] == 0) {
5775 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5776 		goto out;
5777 	}
5778 
5779 	path->slots[0]--;
5780 
5781 	leaf = path->nodes[0];
5782 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5783 
5784 	if (found_key.objectid != btrfs_ino(inode) ||
5785 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5786 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5787 		goto out;
5788 	}
5789 
5790 	inode->index_cnt = found_key.offset + 1;
5791 out:
5792 	btrfs_free_path(path);
5793 	return ret;
5794 }
5795 
5796 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5797 {
5798 	int ret = 0;
5799 
5800 	btrfs_inode_lock(dir, 0);
5801 	if (dir->index_cnt == (u64)-1) {
5802 		ret = btrfs_inode_delayed_dir_index_count(dir);
5803 		if (ret) {
5804 			ret = btrfs_set_inode_index_count(dir);
5805 			if (ret)
5806 				goto out;
5807 		}
5808 	}
5809 
5810 	/* index_cnt is the index number of next new entry, so decrement it. */
5811 	*index = dir->index_cnt - 1;
5812 out:
5813 	btrfs_inode_unlock(dir, 0);
5814 
5815 	return ret;
5816 }
5817 
5818 /*
5819  * All this infrastructure exists because dir_emit can fault, and we are holding
5820  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5821  * our information into that, and then dir_emit from the buffer.  This is
5822  * similar to what NFS does, only we don't keep the buffer around in pagecache
5823  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5824  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5825  * tree lock.
5826  */
5827 static int btrfs_opendir(struct inode *inode, struct file *file)
5828 {
5829 	struct btrfs_file_private *private;
5830 	u64 last_index;
5831 	int ret;
5832 
5833 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5834 	if (ret)
5835 		return ret;
5836 
5837 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5838 	if (!private)
5839 		return -ENOMEM;
5840 	private->last_index = last_index;
5841 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5842 	if (!private->filldir_buf) {
5843 		kfree(private);
5844 		return -ENOMEM;
5845 	}
5846 	file->private_data = private;
5847 	return 0;
5848 }
5849 
5850 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5851 {
5852 	struct btrfs_file_private *private = file->private_data;
5853 	int ret;
5854 
5855 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5856 				       &private->last_index);
5857 	if (ret)
5858 		return ret;
5859 
5860 	return generic_file_llseek(file, offset, whence);
5861 }
5862 
5863 struct dir_entry {
5864 	u64 ino;
5865 	u64 offset;
5866 	unsigned type;
5867 	int name_len;
5868 };
5869 
5870 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5871 {
5872 	while (entries--) {
5873 		struct dir_entry *entry = addr;
5874 		char *name = (char *)(entry + 1);
5875 
5876 		ctx->pos = get_unaligned(&entry->offset);
5877 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5878 					 get_unaligned(&entry->ino),
5879 					 get_unaligned(&entry->type)))
5880 			return 1;
5881 		addr += sizeof(struct dir_entry) +
5882 			get_unaligned(&entry->name_len);
5883 		ctx->pos++;
5884 	}
5885 	return 0;
5886 }
5887 
5888 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5889 {
5890 	struct inode *inode = file_inode(file);
5891 	struct btrfs_root *root = BTRFS_I(inode)->root;
5892 	struct btrfs_file_private *private = file->private_data;
5893 	struct btrfs_dir_item *di;
5894 	struct btrfs_key key;
5895 	struct btrfs_key found_key;
5896 	struct btrfs_path *path;
5897 	void *addr;
5898 	LIST_HEAD(ins_list);
5899 	LIST_HEAD(del_list);
5900 	int ret;
5901 	char *name_ptr;
5902 	int name_len;
5903 	int entries = 0;
5904 	int total_len = 0;
5905 	bool put = false;
5906 	struct btrfs_key location;
5907 
5908 	if (!dir_emit_dots(file, ctx))
5909 		return 0;
5910 
5911 	path = btrfs_alloc_path();
5912 	if (!path)
5913 		return -ENOMEM;
5914 
5915 	addr = private->filldir_buf;
5916 	path->reada = READA_FORWARD;
5917 
5918 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5919 					      &ins_list, &del_list);
5920 
5921 again:
5922 	key.type = BTRFS_DIR_INDEX_KEY;
5923 	key.offset = ctx->pos;
5924 	key.objectid = btrfs_ino(BTRFS_I(inode));
5925 
5926 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5927 		struct dir_entry *entry;
5928 		struct extent_buffer *leaf = path->nodes[0];
5929 		u8 ftype;
5930 
5931 		if (found_key.objectid != key.objectid)
5932 			break;
5933 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5934 			break;
5935 		if (found_key.offset < ctx->pos)
5936 			continue;
5937 		if (found_key.offset > private->last_index)
5938 			break;
5939 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5940 			continue;
5941 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5942 		name_len = btrfs_dir_name_len(leaf, di);
5943 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5944 		    PAGE_SIZE) {
5945 			btrfs_release_path(path);
5946 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5947 			if (ret)
5948 				goto nopos;
5949 			addr = private->filldir_buf;
5950 			entries = 0;
5951 			total_len = 0;
5952 			goto again;
5953 		}
5954 
5955 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5956 		entry = addr;
5957 		name_ptr = (char *)(entry + 1);
5958 		read_extent_buffer(leaf, name_ptr,
5959 				   (unsigned long)(di + 1), name_len);
5960 		put_unaligned(name_len, &entry->name_len);
5961 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5962 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5963 		put_unaligned(location.objectid, &entry->ino);
5964 		put_unaligned(found_key.offset, &entry->offset);
5965 		entries++;
5966 		addr += sizeof(struct dir_entry) + name_len;
5967 		total_len += sizeof(struct dir_entry) + name_len;
5968 	}
5969 	/* Catch error encountered during iteration */
5970 	if (ret < 0)
5971 		goto err;
5972 
5973 	btrfs_release_path(path);
5974 
5975 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5976 	if (ret)
5977 		goto nopos;
5978 
5979 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5980 	if (ret)
5981 		goto nopos;
5982 
5983 	/*
5984 	 * Stop new entries from being returned after we return the last
5985 	 * entry.
5986 	 *
5987 	 * New directory entries are assigned a strictly increasing
5988 	 * offset.  This means that new entries created during readdir
5989 	 * are *guaranteed* to be seen in the future by that readdir.
5990 	 * This has broken buggy programs which operate on names as
5991 	 * they're returned by readdir.  Until we re-use freed offsets
5992 	 * we have this hack to stop new entries from being returned
5993 	 * under the assumption that they'll never reach this huge
5994 	 * offset.
5995 	 *
5996 	 * This is being careful not to overflow 32bit loff_t unless the
5997 	 * last entry requires it because doing so has broken 32bit apps
5998 	 * in the past.
5999 	 */
6000 	if (ctx->pos >= INT_MAX)
6001 		ctx->pos = LLONG_MAX;
6002 	else
6003 		ctx->pos = INT_MAX;
6004 nopos:
6005 	ret = 0;
6006 err:
6007 	if (put)
6008 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6009 	btrfs_free_path(path);
6010 	return ret;
6011 }
6012 
6013 /*
6014  * This is somewhat expensive, updating the tree every time the
6015  * inode changes.  But, it is most likely to find the inode in cache.
6016  * FIXME, needs more benchmarking...there are no reasons other than performance
6017  * to keep or drop this code.
6018  */
6019 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6020 {
6021 	struct btrfs_root *root = inode->root;
6022 	struct btrfs_fs_info *fs_info = root->fs_info;
6023 	struct btrfs_trans_handle *trans;
6024 	int ret;
6025 
6026 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6027 		return 0;
6028 
6029 	trans = btrfs_join_transaction(root);
6030 	if (IS_ERR(trans))
6031 		return PTR_ERR(trans);
6032 
6033 	ret = btrfs_update_inode(trans, root, inode);
6034 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6035 		/* whoops, lets try again with the full transaction */
6036 		btrfs_end_transaction(trans);
6037 		trans = btrfs_start_transaction(root, 1);
6038 		if (IS_ERR(trans))
6039 			return PTR_ERR(trans);
6040 
6041 		ret = btrfs_update_inode(trans, root, inode);
6042 	}
6043 	btrfs_end_transaction(trans);
6044 	if (inode->delayed_node)
6045 		btrfs_balance_delayed_items(fs_info);
6046 
6047 	return ret;
6048 }
6049 
6050 /*
6051  * This is a copy of file_update_time.  We need this so we can return error on
6052  * ENOSPC for updating the inode in the case of file write and mmap writes.
6053  */
6054 static int btrfs_update_time(struct inode *inode, int flags)
6055 {
6056 	struct btrfs_root *root = BTRFS_I(inode)->root;
6057 	bool dirty = flags & ~S_VERSION;
6058 
6059 	if (btrfs_root_readonly(root))
6060 		return -EROFS;
6061 
6062 	dirty = inode_update_timestamps(inode, flags);
6063 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6064 }
6065 
6066 /*
6067  * helper to find a free sequence number in a given directory.  This current
6068  * code is very simple, later versions will do smarter things in the btree
6069  */
6070 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6071 {
6072 	int ret = 0;
6073 
6074 	if (dir->index_cnt == (u64)-1) {
6075 		ret = btrfs_inode_delayed_dir_index_count(dir);
6076 		if (ret) {
6077 			ret = btrfs_set_inode_index_count(dir);
6078 			if (ret)
6079 				return ret;
6080 		}
6081 	}
6082 
6083 	*index = dir->index_cnt;
6084 	dir->index_cnt++;
6085 
6086 	return ret;
6087 }
6088 
6089 static int btrfs_insert_inode_locked(struct inode *inode)
6090 {
6091 	struct btrfs_iget_args args;
6092 
6093 	args.ino = BTRFS_I(inode)->location.objectid;
6094 	args.root = BTRFS_I(inode)->root;
6095 
6096 	return insert_inode_locked4(inode,
6097 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6098 		   btrfs_find_actor, &args);
6099 }
6100 
6101 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6102 			    unsigned int *trans_num_items)
6103 {
6104 	struct inode *dir = args->dir;
6105 	struct inode *inode = args->inode;
6106 	int ret;
6107 
6108 	if (!args->orphan) {
6109 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6110 					     &args->fname);
6111 		if (ret)
6112 			return ret;
6113 	}
6114 
6115 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6116 	if (ret) {
6117 		fscrypt_free_filename(&args->fname);
6118 		return ret;
6119 	}
6120 
6121 	/* 1 to add inode item */
6122 	*trans_num_items = 1;
6123 	/* 1 to add compression property */
6124 	if (BTRFS_I(dir)->prop_compress)
6125 		(*trans_num_items)++;
6126 	/* 1 to add default ACL xattr */
6127 	if (args->default_acl)
6128 		(*trans_num_items)++;
6129 	/* 1 to add access ACL xattr */
6130 	if (args->acl)
6131 		(*trans_num_items)++;
6132 #ifdef CONFIG_SECURITY
6133 	/* 1 to add LSM xattr */
6134 	if (dir->i_security)
6135 		(*trans_num_items)++;
6136 #endif
6137 	if (args->orphan) {
6138 		/* 1 to add orphan item */
6139 		(*trans_num_items)++;
6140 	} else {
6141 		/*
6142 		 * 1 to add dir item
6143 		 * 1 to add dir index
6144 		 * 1 to update parent inode item
6145 		 *
6146 		 * No need for 1 unit for the inode ref item because it is
6147 		 * inserted in a batch together with the inode item at
6148 		 * btrfs_create_new_inode().
6149 		 */
6150 		*trans_num_items += 3;
6151 	}
6152 	return 0;
6153 }
6154 
6155 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6156 {
6157 	posix_acl_release(args->acl);
6158 	posix_acl_release(args->default_acl);
6159 	fscrypt_free_filename(&args->fname);
6160 }
6161 
6162 /*
6163  * Inherit flags from the parent inode.
6164  *
6165  * Currently only the compression flags and the cow flags are inherited.
6166  */
6167 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6168 {
6169 	unsigned int flags;
6170 
6171 	flags = dir->flags;
6172 
6173 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6174 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6175 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6176 	} else if (flags & BTRFS_INODE_COMPRESS) {
6177 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6178 		inode->flags |= BTRFS_INODE_COMPRESS;
6179 	}
6180 
6181 	if (flags & BTRFS_INODE_NODATACOW) {
6182 		inode->flags |= BTRFS_INODE_NODATACOW;
6183 		if (S_ISREG(inode->vfs_inode.i_mode))
6184 			inode->flags |= BTRFS_INODE_NODATASUM;
6185 	}
6186 
6187 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6188 }
6189 
6190 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6191 			   struct btrfs_new_inode_args *args)
6192 {
6193 	struct inode *dir = args->dir;
6194 	struct inode *inode = args->inode;
6195 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6196 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6197 	struct btrfs_root *root;
6198 	struct btrfs_inode_item *inode_item;
6199 	struct btrfs_key *location;
6200 	struct btrfs_path *path;
6201 	u64 objectid;
6202 	struct btrfs_inode_ref *ref;
6203 	struct btrfs_key key[2];
6204 	u32 sizes[2];
6205 	struct btrfs_item_batch batch;
6206 	unsigned long ptr;
6207 	int ret;
6208 
6209 	path = btrfs_alloc_path();
6210 	if (!path)
6211 		return -ENOMEM;
6212 
6213 	if (!args->subvol)
6214 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6215 	root = BTRFS_I(inode)->root;
6216 
6217 	ret = btrfs_get_free_objectid(root, &objectid);
6218 	if (ret)
6219 		goto out;
6220 	inode->i_ino = objectid;
6221 
6222 	if (args->orphan) {
6223 		/*
6224 		 * O_TMPFILE, set link count to 0, so that after this point, we
6225 		 * fill in an inode item with the correct link count.
6226 		 */
6227 		set_nlink(inode, 0);
6228 	} else {
6229 		trace_btrfs_inode_request(dir);
6230 
6231 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6232 		if (ret)
6233 			goto out;
6234 	}
6235 	/* index_cnt is ignored for everything but a dir. */
6236 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6237 	BTRFS_I(inode)->generation = trans->transid;
6238 	inode->i_generation = BTRFS_I(inode)->generation;
6239 
6240 	/*
6241 	 * Subvolumes don't inherit flags from their parent directory.
6242 	 * Originally this was probably by accident, but we probably can't
6243 	 * change it now without compatibility issues.
6244 	 */
6245 	if (!args->subvol)
6246 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6247 
6248 	if (S_ISREG(inode->i_mode)) {
6249 		if (btrfs_test_opt(fs_info, NODATASUM))
6250 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6251 		if (btrfs_test_opt(fs_info, NODATACOW))
6252 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6253 				BTRFS_INODE_NODATASUM;
6254 	}
6255 
6256 	location = &BTRFS_I(inode)->location;
6257 	location->objectid = objectid;
6258 	location->offset = 0;
6259 	location->type = BTRFS_INODE_ITEM_KEY;
6260 
6261 	ret = btrfs_insert_inode_locked(inode);
6262 	if (ret < 0) {
6263 		if (!args->orphan)
6264 			BTRFS_I(dir)->index_cnt--;
6265 		goto out;
6266 	}
6267 
6268 	/*
6269 	 * We could have gotten an inode number from somebody who was fsynced
6270 	 * and then removed in this same transaction, so let's just set full
6271 	 * sync since it will be a full sync anyway and this will blow away the
6272 	 * old info in the log.
6273 	 */
6274 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6275 
6276 	key[0].objectid = objectid;
6277 	key[0].type = BTRFS_INODE_ITEM_KEY;
6278 	key[0].offset = 0;
6279 
6280 	sizes[0] = sizeof(struct btrfs_inode_item);
6281 
6282 	if (!args->orphan) {
6283 		/*
6284 		 * Start new inodes with an inode_ref. This is slightly more
6285 		 * efficient for small numbers of hard links since they will
6286 		 * be packed into one item. Extended refs will kick in if we
6287 		 * add more hard links than can fit in the ref item.
6288 		 */
6289 		key[1].objectid = objectid;
6290 		key[1].type = BTRFS_INODE_REF_KEY;
6291 		if (args->subvol) {
6292 			key[1].offset = objectid;
6293 			sizes[1] = 2 + sizeof(*ref);
6294 		} else {
6295 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6296 			sizes[1] = name->len + sizeof(*ref);
6297 		}
6298 	}
6299 
6300 	batch.keys = &key[0];
6301 	batch.data_sizes = &sizes[0];
6302 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6303 	batch.nr = args->orphan ? 1 : 2;
6304 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6305 	if (ret != 0) {
6306 		btrfs_abort_transaction(trans, ret);
6307 		goto discard;
6308 	}
6309 
6310 	inode->i_mtime = inode_set_ctime_current(inode);
6311 	inode->i_atime = inode->i_mtime;
6312 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6313 
6314 	/*
6315 	 * We're going to fill the inode item now, so at this point the inode
6316 	 * must be fully initialized.
6317 	 */
6318 
6319 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6320 				  struct btrfs_inode_item);
6321 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6322 			     sizeof(*inode_item));
6323 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6324 
6325 	if (!args->orphan) {
6326 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6327 				     struct btrfs_inode_ref);
6328 		ptr = (unsigned long)(ref + 1);
6329 		if (args->subvol) {
6330 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6331 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6332 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6333 		} else {
6334 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6335 						     name->len);
6336 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6337 						  BTRFS_I(inode)->dir_index);
6338 			write_extent_buffer(path->nodes[0], name->name, ptr,
6339 					    name->len);
6340 		}
6341 	}
6342 
6343 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6344 	/*
6345 	 * We don't need the path anymore, plus inheriting properties, adding
6346 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6347 	 * allocating yet another path. So just free our path.
6348 	 */
6349 	btrfs_free_path(path);
6350 	path = NULL;
6351 
6352 	if (args->subvol) {
6353 		struct inode *parent;
6354 
6355 		/*
6356 		 * Subvolumes inherit properties from their parent subvolume,
6357 		 * not the directory they were created in.
6358 		 */
6359 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6360 				    BTRFS_I(dir)->root);
6361 		if (IS_ERR(parent)) {
6362 			ret = PTR_ERR(parent);
6363 		} else {
6364 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6365 			iput(parent);
6366 		}
6367 	} else {
6368 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6369 	}
6370 	if (ret) {
6371 		btrfs_err(fs_info,
6372 			  "error inheriting props for ino %llu (root %llu): %d",
6373 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6374 			  ret);
6375 	}
6376 
6377 	/*
6378 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6379 	 * probably a bug.
6380 	 */
6381 	if (!args->subvol) {
6382 		ret = btrfs_init_inode_security(trans, args);
6383 		if (ret) {
6384 			btrfs_abort_transaction(trans, ret);
6385 			goto discard;
6386 		}
6387 	}
6388 
6389 	inode_tree_add(BTRFS_I(inode));
6390 
6391 	trace_btrfs_inode_new(inode);
6392 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6393 
6394 	btrfs_update_root_times(trans, root);
6395 
6396 	if (args->orphan) {
6397 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6398 	} else {
6399 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6400 				     0, BTRFS_I(inode)->dir_index);
6401 	}
6402 	if (ret) {
6403 		btrfs_abort_transaction(trans, ret);
6404 		goto discard;
6405 	}
6406 
6407 	return 0;
6408 
6409 discard:
6410 	/*
6411 	 * discard_new_inode() calls iput(), but the caller owns the reference
6412 	 * to the inode.
6413 	 */
6414 	ihold(inode);
6415 	discard_new_inode(inode);
6416 out:
6417 	btrfs_free_path(path);
6418 	return ret;
6419 }
6420 
6421 /*
6422  * utility function to add 'inode' into 'parent_inode' with
6423  * a give name and a given sequence number.
6424  * if 'add_backref' is true, also insert a backref from the
6425  * inode to the parent directory.
6426  */
6427 int btrfs_add_link(struct btrfs_trans_handle *trans,
6428 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6429 		   const struct fscrypt_str *name, int add_backref, u64 index)
6430 {
6431 	int ret = 0;
6432 	struct btrfs_key key;
6433 	struct btrfs_root *root = parent_inode->root;
6434 	u64 ino = btrfs_ino(inode);
6435 	u64 parent_ino = btrfs_ino(parent_inode);
6436 
6437 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6438 		memcpy(&key, &inode->root->root_key, sizeof(key));
6439 	} else {
6440 		key.objectid = ino;
6441 		key.type = BTRFS_INODE_ITEM_KEY;
6442 		key.offset = 0;
6443 	}
6444 
6445 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6446 		ret = btrfs_add_root_ref(trans, key.objectid,
6447 					 root->root_key.objectid, parent_ino,
6448 					 index, name);
6449 	} else if (add_backref) {
6450 		ret = btrfs_insert_inode_ref(trans, root, name,
6451 					     ino, parent_ino, index);
6452 	}
6453 
6454 	/* Nothing to clean up yet */
6455 	if (ret)
6456 		return ret;
6457 
6458 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6459 				    btrfs_inode_type(&inode->vfs_inode), index);
6460 	if (ret == -EEXIST || ret == -EOVERFLOW)
6461 		goto fail_dir_item;
6462 	else if (ret) {
6463 		btrfs_abort_transaction(trans, ret);
6464 		return ret;
6465 	}
6466 
6467 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6468 			   name->len * 2);
6469 	inode_inc_iversion(&parent_inode->vfs_inode);
6470 	/*
6471 	 * If we are replaying a log tree, we do not want to update the mtime
6472 	 * and ctime of the parent directory with the current time, since the
6473 	 * log replay procedure is responsible for setting them to their correct
6474 	 * values (the ones it had when the fsync was done).
6475 	 */
6476 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6477 		parent_inode->vfs_inode.i_mtime =
6478 			inode_set_ctime_current(&parent_inode->vfs_inode);
6479 
6480 	ret = btrfs_update_inode(trans, root, parent_inode);
6481 	if (ret)
6482 		btrfs_abort_transaction(trans, ret);
6483 	return ret;
6484 
6485 fail_dir_item:
6486 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6487 		u64 local_index;
6488 		int err;
6489 		err = btrfs_del_root_ref(trans, key.objectid,
6490 					 root->root_key.objectid, parent_ino,
6491 					 &local_index, name);
6492 		if (err)
6493 			btrfs_abort_transaction(trans, err);
6494 	} else if (add_backref) {
6495 		u64 local_index;
6496 		int err;
6497 
6498 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6499 					  &local_index);
6500 		if (err)
6501 			btrfs_abort_transaction(trans, err);
6502 	}
6503 
6504 	/* Return the original error code */
6505 	return ret;
6506 }
6507 
6508 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6509 			       struct inode *inode)
6510 {
6511 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6512 	struct btrfs_root *root = BTRFS_I(dir)->root;
6513 	struct btrfs_new_inode_args new_inode_args = {
6514 		.dir = dir,
6515 		.dentry = dentry,
6516 		.inode = inode,
6517 	};
6518 	unsigned int trans_num_items;
6519 	struct btrfs_trans_handle *trans;
6520 	int err;
6521 
6522 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6523 	if (err)
6524 		goto out_inode;
6525 
6526 	trans = btrfs_start_transaction(root, trans_num_items);
6527 	if (IS_ERR(trans)) {
6528 		err = PTR_ERR(trans);
6529 		goto out_new_inode_args;
6530 	}
6531 
6532 	err = btrfs_create_new_inode(trans, &new_inode_args);
6533 	if (!err)
6534 		d_instantiate_new(dentry, inode);
6535 
6536 	btrfs_end_transaction(trans);
6537 	btrfs_btree_balance_dirty(fs_info);
6538 out_new_inode_args:
6539 	btrfs_new_inode_args_destroy(&new_inode_args);
6540 out_inode:
6541 	if (err)
6542 		iput(inode);
6543 	return err;
6544 }
6545 
6546 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6547 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6548 {
6549 	struct inode *inode;
6550 
6551 	inode = new_inode(dir->i_sb);
6552 	if (!inode)
6553 		return -ENOMEM;
6554 	inode_init_owner(idmap, inode, dir, mode);
6555 	inode->i_op = &btrfs_special_inode_operations;
6556 	init_special_inode(inode, inode->i_mode, rdev);
6557 	return btrfs_create_common(dir, dentry, inode);
6558 }
6559 
6560 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6561 			struct dentry *dentry, umode_t mode, bool excl)
6562 {
6563 	struct inode *inode;
6564 
6565 	inode = new_inode(dir->i_sb);
6566 	if (!inode)
6567 		return -ENOMEM;
6568 	inode_init_owner(idmap, inode, dir, mode);
6569 	inode->i_fop = &btrfs_file_operations;
6570 	inode->i_op = &btrfs_file_inode_operations;
6571 	inode->i_mapping->a_ops = &btrfs_aops;
6572 	return btrfs_create_common(dir, dentry, inode);
6573 }
6574 
6575 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6576 		      struct dentry *dentry)
6577 {
6578 	struct btrfs_trans_handle *trans = NULL;
6579 	struct btrfs_root *root = BTRFS_I(dir)->root;
6580 	struct inode *inode = d_inode(old_dentry);
6581 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6582 	struct fscrypt_name fname;
6583 	u64 index;
6584 	int err;
6585 	int drop_inode = 0;
6586 
6587 	/* do not allow sys_link's with other subvols of the same device */
6588 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6589 		return -EXDEV;
6590 
6591 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6592 		return -EMLINK;
6593 
6594 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6595 	if (err)
6596 		goto fail;
6597 
6598 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6599 	if (err)
6600 		goto fail;
6601 
6602 	/*
6603 	 * 2 items for inode and inode ref
6604 	 * 2 items for dir items
6605 	 * 1 item for parent inode
6606 	 * 1 item for orphan item deletion if O_TMPFILE
6607 	 */
6608 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6609 	if (IS_ERR(trans)) {
6610 		err = PTR_ERR(trans);
6611 		trans = NULL;
6612 		goto fail;
6613 	}
6614 
6615 	/* There are several dir indexes for this inode, clear the cache. */
6616 	BTRFS_I(inode)->dir_index = 0ULL;
6617 	inc_nlink(inode);
6618 	inode_inc_iversion(inode);
6619 	inode_set_ctime_current(inode);
6620 	ihold(inode);
6621 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6622 
6623 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6624 			     &fname.disk_name, 1, index);
6625 
6626 	if (err) {
6627 		drop_inode = 1;
6628 	} else {
6629 		struct dentry *parent = dentry->d_parent;
6630 
6631 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6632 		if (err)
6633 			goto fail;
6634 		if (inode->i_nlink == 1) {
6635 			/*
6636 			 * If new hard link count is 1, it's a file created
6637 			 * with open(2) O_TMPFILE flag.
6638 			 */
6639 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6640 			if (err)
6641 				goto fail;
6642 		}
6643 		d_instantiate(dentry, inode);
6644 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6645 	}
6646 
6647 fail:
6648 	fscrypt_free_filename(&fname);
6649 	if (trans)
6650 		btrfs_end_transaction(trans);
6651 	if (drop_inode) {
6652 		inode_dec_link_count(inode);
6653 		iput(inode);
6654 	}
6655 	btrfs_btree_balance_dirty(fs_info);
6656 	return err;
6657 }
6658 
6659 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6660 		       struct dentry *dentry, umode_t mode)
6661 {
6662 	struct inode *inode;
6663 
6664 	inode = new_inode(dir->i_sb);
6665 	if (!inode)
6666 		return -ENOMEM;
6667 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6668 	inode->i_op = &btrfs_dir_inode_operations;
6669 	inode->i_fop = &btrfs_dir_file_operations;
6670 	return btrfs_create_common(dir, dentry, inode);
6671 }
6672 
6673 static noinline int uncompress_inline(struct btrfs_path *path,
6674 				      struct page *page,
6675 				      struct btrfs_file_extent_item *item)
6676 {
6677 	int ret;
6678 	struct extent_buffer *leaf = path->nodes[0];
6679 	char *tmp;
6680 	size_t max_size;
6681 	unsigned long inline_size;
6682 	unsigned long ptr;
6683 	int compress_type;
6684 
6685 	compress_type = btrfs_file_extent_compression(leaf, item);
6686 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6687 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6688 	tmp = kmalloc(inline_size, GFP_NOFS);
6689 	if (!tmp)
6690 		return -ENOMEM;
6691 	ptr = btrfs_file_extent_inline_start(item);
6692 
6693 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6694 
6695 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6696 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6697 
6698 	/*
6699 	 * decompression code contains a memset to fill in any space between the end
6700 	 * of the uncompressed data and the end of max_size in case the decompressed
6701 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6702 	 * the end of an inline extent and the beginning of the next block, so we
6703 	 * cover that region here.
6704 	 */
6705 
6706 	if (max_size < PAGE_SIZE)
6707 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6708 	kfree(tmp);
6709 	return ret;
6710 }
6711 
6712 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6713 			      struct page *page)
6714 {
6715 	struct btrfs_file_extent_item *fi;
6716 	void *kaddr;
6717 	size_t copy_size;
6718 
6719 	if (!page || PageUptodate(page))
6720 		return 0;
6721 
6722 	ASSERT(page_offset(page) == 0);
6723 
6724 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6725 			    struct btrfs_file_extent_item);
6726 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6727 		return uncompress_inline(path, page, fi);
6728 
6729 	copy_size = min_t(u64, PAGE_SIZE,
6730 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6731 	kaddr = kmap_local_page(page);
6732 	read_extent_buffer(path->nodes[0], kaddr,
6733 			   btrfs_file_extent_inline_start(fi), copy_size);
6734 	kunmap_local(kaddr);
6735 	if (copy_size < PAGE_SIZE)
6736 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6737 	return 0;
6738 }
6739 
6740 /*
6741  * Lookup the first extent overlapping a range in a file.
6742  *
6743  * @inode:	file to search in
6744  * @page:	page to read extent data into if the extent is inline
6745  * @pg_offset:	offset into @page to copy to
6746  * @start:	file offset
6747  * @len:	length of range starting at @start
6748  *
6749  * Return the first &struct extent_map which overlaps the given range, reading
6750  * it from the B-tree and caching it if necessary. Note that there may be more
6751  * extents which overlap the given range after the returned extent_map.
6752  *
6753  * If @page is not NULL and the extent is inline, this also reads the extent
6754  * data directly into the page and marks the extent up to date in the io_tree.
6755  *
6756  * Return: ERR_PTR on error, non-NULL extent_map on success.
6757  */
6758 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6759 				    struct page *page, size_t pg_offset,
6760 				    u64 start, u64 len)
6761 {
6762 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6763 	int ret = 0;
6764 	u64 extent_start = 0;
6765 	u64 extent_end = 0;
6766 	u64 objectid = btrfs_ino(inode);
6767 	int extent_type = -1;
6768 	struct btrfs_path *path = NULL;
6769 	struct btrfs_root *root = inode->root;
6770 	struct btrfs_file_extent_item *item;
6771 	struct extent_buffer *leaf;
6772 	struct btrfs_key found_key;
6773 	struct extent_map *em = NULL;
6774 	struct extent_map_tree *em_tree = &inode->extent_tree;
6775 
6776 	read_lock(&em_tree->lock);
6777 	em = lookup_extent_mapping(em_tree, start, len);
6778 	read_unlock(&em_tree->lock);
6779 
6780 	if (em) {
6781 		if (em->start > start || em->start + em->len <= start)
6782 			free_extent_map(em);
6783 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6784 			free_extent_map(em);
6785 		else
6786 			goto out;
6787 	}
6788 	em = alloc_extent_map();
6789 	if (!em) {
6790 		ret = -ENOMEM;
6791 		goto out;
6792 	}
6793 	em->start = EXTENT_MAP_HOLE;
6794 	em->orig_start = EXTENT_MAP_HOLE;
6795 	em->len = (u64)-1;
6796 	em->block_len = (u64)-1;
6797 
6798 	path = btrfs_alloc_path();
6799 	if (!path) {
6800 		ret = -ENOMEM;
6801 		goto out;
6802 	}
6803 
6804 	/* Chances are we'll be called again, so go ahead and do readahead */
6805 	path->reada = READA_FORWARD;
6806 
6807 	/*
6808 	 * The same explanation in load_free_space_cache applies here as well,
6809 	 * we only read when we're loading the free space cache, and at that
6810 	 * point the commit_root has everything we need.
6811 	 */
6812 	if (btrfs_is_free_space_inode(inode)) {
6813 		path->search_commit_root = 1;
6814 		path->skip_locking = 1;
6815 	}
6816 
6817 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6818 	if (ret < 0) {
6819 		goto out;
6820 	} else if (ret > 0) {
6821 		if (path->slots[0] == 0)
6822 			goto not_found;
6823 		path->slots[0]--;
6824 		ret = 0;
6825 	}
6826 
6827 	leaf = path->nodes[0];
6828 	item = btrfs_item_ptr(leaf, path->slots[0],
6829 			      struct btrfs_file_extent_item);
6830 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6831 	if (found_key.objectid != objectid ||
6832 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6833 		/*
6834 		 * If we backup past the first extent we want to move forward
6835 		 * and see if there is an extent in front of us, otherwise we'll
6836 		 * say there is a hole for our whole search range which can
6837 		 * cause problems.
6838 		 */
6839 		extent_end = start;
6840 		goto next;
6841 	}
6842 
6843 	extent_type = btrfs_file_extent_type(leaf, item);
6844 	extent_start = found_key.offset;
6845 	extent_end = btrfs_file_extent_end(path);
6846 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6847 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6848 		/* Only regular file could have regular/prealloc extent */
6849 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6850 			ret = -EUCLEAN;
6851 			btrfs_crit(fs_info,
6852 		"regular/prealloc extent found for non-regular inode %llu",
6853 				   btrfs_ino(inode));
6854 			goto out;
6855 		}
6856 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6857 						       extent_start);
6858 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6859 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6860 						      path->slots[0],
6861 						      extent_start);
6862 	}
6863 next:
6864 	if (start >= extent_end) {
6865 		path->slots[0]++;
6866 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6867 			ret = btrfs_next_leaf(root, path);
6868 			if (ret < 0)
6869 				goto out;
6870 			else if (ret > 0)
6871 				goto not_found;
6872 
6873 			leaf = path->nodes[0];
6874 		}
6875 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6876 		if (found_key.objectid != objectid ||
6877 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6878 			goto not_found;
6879 		if (start + len <= found_key.offset)
6880 			goto not_found;
6881 		if (start > found_key.offset)
6882 			goto next;
6883 
6884 		/* New extent overlaps with existing one */
6885 		em->start = start;
6886 		em->orig_start = start;
6887 		em->len = found_key.offset - start;
6888 		em->block_start = EXTENT_MAP_HOLE;
6889 		goto insert;
6890 	}
6891 
6892 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6893 
6894 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6895 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6896 		goto insert;
6897 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6898 		/*
6899 		 * Inline extent can only exist at file offset 0. This is
6900 		 * ensured by tree-checker and inline extent creation path.
6901 		 * Thus all members representing file offsets should be zero.
6902 		 */
6903 		ASSERT(pg_offset == 0);
6904 		ASSERT(extent_start == 0);
6905 		ASSERT(em->start == 0);
6906 
6907 		/*
6908 		 * btrfs_extent_item_to_extent_map() should have properly
6909 		 * initialized em members already.
6910 		 *
6911 		 * Other members are not utilized for inline extents.
6912 		 */
6913 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6914 		ASSERT(em->len == fs_info->sectorsize);
6915 
6916 		ret = read_inline_extent(inode, path, page);
6917 		if (ret < 0)
6918 			goto out;
6919 		goto insert;
6920 	}
6921 not_found:
6922 	em->start = start;
6923 	em->orig_start = start;
6924 	em->len = len;
6925 	em->block_start = EXTENT_MAP_HOLE;
6926 insert:
6927 	ret = 0;
6928 	btrfs_release_path(path);
6929 	if (em->start > start || extent_map_end(em) <= start) {
6930 		btrfs_err(fs_info,
6931 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6932 			  em->start, em->len, start, len);
6933 		ret = -EIO;
6934 		goto out;
6935 	}
6936 
6937 	write_lock(&em_tree->lock);
6938 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6939 	write_unlock(&em_tree->lock);
6940 out:
6941 	btrfs_free_path(path);
6942 
6943 	trace_btrfs_get_extent(root, inode, em);
6944 
6945 	if (ret) {
6946 		free_extent_map(em);
6947 		return ERR_PTR(ret);
6948 	}
6949 	return em;
6950 }
6951 
6952 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6953 						  struct btrfs_dio_data *dio_data,
6954 						  const u64 start,
6955 						  const u64 len,
6956 						  const u64 orig_start,
6957 						  const u64 block_start,
6958 						  const u64 block_len,
6959 						  const u64 orig_block_len,
6960 						  const u64 ram_bytes,
6961 						  const int type)
6962 {
6963 	struct extent_map *em = NULL;
6964 	struct btrfs_ordered_extent *ordered;
6965 
6966 	if (type != BTRFS_ORDERED_NOCOW) {
6967 		em = create_io_em(inode, start, len, orig_start, block_start,
6968 				  block_len, orig_block_len, ram_bytes,
6969 				  BTRFS_COMPRESS_NONE, /* compress_type */
6970 				  type);
6971 		if (IS_ERR(em))
6972 			goto out;
6973 	}
6974 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6975 					     block_start, block_len, 0,
6976 					     (1 << type) |
6977 					     (1 << BTRFS_ORDERED_DIRECT),
6978 					     BTRFS_COMPRESS_NONE);
6979 	if (IS_ERR(ordered)) {
6980 		if (em) {
6981 			free_extent_map(em);
6982 			btrfs_drop_extent_map_range(inode, start,
6983 						    start + len - 1, false);
6984 		}
6985 		em = ERR_CAST(ordered);
6986 	} else {
6987 		ASSERT(!dio_data->ordered);
6988 		dio_data->ordered = ordered;
6989 	}
6990  out:
6991 
6992 	return em;
6993 }
6994 
6995 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6996 						  struct btrfs_dio_data *dio_data,
6997 						  u64 start, u64 len)
6998 {
6999 	struct btrfs_root *root = inode->root;
7000 	struct btrfs_fs_info *fs_info = root->fs_info;
7001 	struct extent_map *em;
7002 	struct btrfs_key ins;
7003 	u64 alloc_hint;
7004 	int ret;
7005 
7006 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7007 again:
7008 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7009 				   0, alloc_hint, &ins, 1, 1);
7010 	if (ret == -EAGAIN) {
7011 		ASSERT(btrfs_is_zoned(fs_info));
7012 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7013 			       TASK_UNINTERRUPTIBLE);
7014 		goto again;
7015 	}
7016 	if (ret)
7017 		return ERR_PTR(ret);
7018 
7019 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7020 				     ins.objectid, ins.offset, ins.offset,
7021 				     ins.offset, BTRFS_ORDERED_REGULAR);
7022 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7023 	if (IS_ERR(em))
7024 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7025 					   1);
7026 
7027 	return em;
7028 }
7029 
7030 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7031 {
7032 	struct btrfs_block_group *block_group;
7033 	bool readonly = false;
7034 
7035 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7036 	if (!block_group || block_group->ro)
7037 		readonly = true;
7038 	if (block_group)
7039 		btrfs_put_block_group(block_group);
7040 	return readonly;
7041 }
7042 
7043 /*
7044  * Check if we can do nocow write into the range [@offset, @offset + @len)
7045  *
7046  * @offset:	File offset
7047  * @len:	The length to write, will be updated to the nocow writeable
7048  *		range
7049  * @orig_start:	(optional) Return the original file offset of the file extent
7050  * @orig_len:	(optional) Return the original on-disk length of the file extent
7051  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7052  * @strict:	if true, omit optimizations that might force us into unnecessary
7053  *		cow. e.g., don't trust generation number.
7054  *
7055  * Return:
7056  * >0	and update @len if we can do nocow write
7057  *  0	if we can't do nocow write
7058  * <0	if error happened
7059  *
7060  * NOTE: This only checks the file extents, caller is responsible to wait for
7061  *	 any ordered extents.
7062  */
7063 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7064 			      u64 *orig_start, u64 *orig_block_len,
7065 			      u64 *ram_bytes, bool nowait, bool strict)
7066 {
7067 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7068 	struct can_nocow_file_extent_args nocow_args = { 0 };
7069 	struct btrfs_path *path;
7070 	int ret;
7071 	struct extent_buffer *leaf;
7072 	struct btrfs_root *root = BTRFS_I(inode)->root;
7073 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7074 	struct btrfs_file_extent_item *fi;
7075 	struct btrfs_key key;
7076 	int found_type;
7077 
7078 	path = btrfs_alloc_path();
7079 	if (!path)
7080 		return -ENOMEM;
7081 	path->nowait = nowait;
7082 
7083 	ret = btrfs_lookup_file_extent(NULL, root, path,
7084 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7085 	if (ret < 0)
7086 		goto out;
7087 
7088 	if (ret == 1) {
7089 		if (path->slots[0] == 0) {
7090 			/* can't find the item, must cow */
7091 			ret = 0;
7092 			goto out;
7093 		}
7094 		path->slots[0]--;
7095 	}
7096 	ret = 0;
7097 	leaf = path->nodes[0];
7098 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7099 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7100 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7101 		/* not our file or wrong item type, must cow */
7102 		goto out;
7103 	}
7104 
7105 	if (key.offset > offset) {
7106 		/* Wrong offset, must cow */
7107 		goto out;
7108 	}
7109 
7110 	if (btrfs_file_extent_end(path) <= offset)
7111 		goto out;
7112 
7113 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7114 	found_type = btrfs_file_extent_type(leaf, fi);
7115 	if (ram_bytes)
7116 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7117 
7118 	nocow_args.start = offset;
7119 	nocow_args.end = offset + *len - 1;
7120 	nocow_args.strict = strict;
7121 	nocow_args.free_path = true;
7122 
7123 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7124 	/* can_nocow_file_extent() has freed the path. */
7125 	path = NULL;
7126 
7127 	if (ret != 1) {
7128 		/* Treat errors as not being able to NOCOW. */
7129 		ret = 0;
7130 		goto out;
7131 	}
7132 
7133 	ret = 0;
7134 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7135 		goto out;
7136 
7137 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7138 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7139 		u64 range_end;
7140 
7141 		range_end = round_up(offset + nocow_args.num_bytes,
7142 				     root->fs_info->sectorsize) - 1;
7143 		ret = test_range_bit(io_tree, offset, range_end,
7144 				     EXTENT_DELALLOC, 0, NULL);
7145 		if (ret) {
7146 			ret = -EAGAIN;
7147 			goto out;
7148 		}
7149 	}
7150 
7151 	if (orig_start)
7152 		*orig_start = key.offset - nocow_args.extent_offset;
7153 	if (orig_block_len)
7154 		*orig_block_len = nocow_args.disk_num_bytes;
7155 
7156 	*len = nocow_args.num_bytes;
7157 	ret = 1;
7158 out:
7159 	btrfs_free_path(path);
7160 	return ret;
7161 }
7162 
7163 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7164 			      struct extent_state **cached_state,
7165 			      unsigned int iomap_flags)
7166 {
7167 	const bool writing = (iomap_flags & IOMAP_WRITE);
7168 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7169 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7170 	struct btrfs_ordered_extent *ordered;
7171 	int ret = 0;
7172 
7173 	while (1) {
7174 		if (nowait) {
7175 			if (!try_lock_extent(io_tree, lockstart, lockend,
7176 					     cached_state))
7177 				return -EAGAIN;
7178 		} else {
7179 			lock_extent(io_tree, lockstart, lockend, cached_state);
7180 		}
7181 		/*
7182 		 * We're concerned with the entire range that we're going to be
7183 		 * doing DIO to, so we need to make sure there's no ordered
7184 		 * extents in this range.
7185 		 */
7186 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7187 						     lockend - lockstart + 1);
7188 
7189 		/*
7190 		 * We need to make sure there are no buffered pages in this
7191 		 * range either, we could have raced between the invalidate in
7192 		 * generic_file_direct_write and locking the extent.  The
7193 		 * invalidate needs to happen so that reads after a write do not
7194 		 * get stale data.
7195 		 */
7196 		if (!ordered &&
7197 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7198 							 lockstart, lockend)))
7199 			break;
7200 
7201 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7202 
7203 		if (ordered) {
7204 			if (nowait) {
7205 				btrfs_put_ordered_extent(ordered);
7206 				ret = -EAGAIN;
7207 				break;
7208 			}
7209 			/*
7210 			 * If we are doing a DIO read and the ordered extent we
7211 			 * found is for a buffered write, we can not wait for it
7212 			 * to complete and retry, because if we do so we can
7213 			 * deadlock with concurrent buffered writes on page
7214 			 * locks. This happens only if our DIO read covers more
7215 			 * than one extent map, if at this point has already
7216 			 * created an ordered extent for a previous extent map
7217 			 * and locked its range in the inode's io tree, and a
7218 			 * concurrent write against that previous extent map's
7219 			 * range and this range started (we unlock the ranges
7220 			 * in the io tree only when the bios complete and
7221 			 * buffered writes always lock pages before attempting
7222 			 * to lock range in the io tree).
7223 			 */
7224 			if (writing ||
7225 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7226 				btrfs_start_ordered_extent(ordered);
7227 			else
7228 				ret = nowait ? -EAGAIN : -ENOTBLK;
7229 			btrfs_put_ordered_extent(ordered);
7230 		} else {
7231 			/*
7232 			 * We could trigger writeback for this range (and wait
7233 			 * for it to complete) and then invalidate the pages for
7234 			 * this range (through invalidate_inode_pages2_range()),
7235 			 * but that can lead us to a deadlock with a concurrent
7236 			 * call to readahead (a buffered read or a defrag call
7237 			 * triggered a readahead) on a page lock due to an
7238 			 * ordered dio extent we created before but did not have
7239 			 * yet a corresponding bio submitted (whence it can not
7240 			 * complete), which makes readahead wait for that
7241 			 * ordered extent to complete while holding a lock on
7242 			 * that page.
7243 			 */
7244 			ret = nowait ? -EAGAIN : -ENOTBLK;
7245 		}
7246 
7247 		if (ret)
7248 			break;
7249 
7250 		cond_resched();
7251 	}
7252 
7253 	return ret;
7254 }
7255 
7256 /* The callers of this must take lock_extent() */
7257 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7258 				       u64 len, u64 orig_start, u64 block_start,
7259 				       u64 block_len, u64 orig_block_len,
7260 				       u64 ram_bytes, int compress_type,
7261 				       int type)
7262 {
7263 	struct extent_map *em;
7264 	int ret;
7265 
7266 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7267 	       type == BTRFS_ORDERED_COMPRESSED ||
7268 	       type == BTRFS_ORDERED_NOCOW ||
7269 	       type == BTRFS_ORDERED_REGULAR);
7270 
7271 	em = alloc_extent_map();
7272 	if (!em)
7273 		return ERR_PTR(-ENOMEM);
7274 
7275 	em->start = start;
7276 	em->orig_start = orig_start;
7277 	em->len = len;
7278 	em->block_len = block_len;
7279 	em->block_start = block_start;
7280 	em->orig_block_len = orig_block_len;
7281 	em->ram_bytes = ram_bytes;
7282 	em->generation = -1;
7283 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7284 	if (type == BTRFS_ORDERED_PREALLOC) {
7285 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7286 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7287 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7288 		em->compress_type = compress_type;
7289 	}
7290 
7291 	ret = btrfs_replace_extent_map_range(inode, em, true);
7292 	if (ret) {
7293 		free_extent_map(em);
7294 		return ERR_PTR(ret);
7295 	}
7296 
7297 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7298 	return em;
7299 }
7300 
7301 
7302 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7303 					 struct inode *inode,
7304 					 struct btrfs_dio_data *dio_data,
7305 					 u64 start, u64 *lenp,
7306 					 unsigned int iomap_flags)
7307 {
7308 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7309 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7310 	struct extent_map *em = *map;
7311 	int type;
7312 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7313 	struct btrfs_block_group *bg;
7314 	bool can_nocow = false;
7315 	bool space_reserved = false;
7316 	u64 len = *lenp;
7317 	u64 prev_len;
7318 	int ret = 0;
7319 
7320 	/*
7321 	 * We don't allocate a new extent in the following cases
7322 	 *
7323 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7324 	 * existing extent.
7325 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7326 	 * just use the extent.
7327 	 *
7328 	 */
7329 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7330 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7331 	     em->block_start != EXTENT_MAP_HOLE)) {
7332 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7333 			type = BTRFS_ORDERED_PREALLOC;
7334 		else
7335 			type = BTRFS_ORDERED_NOCOW;
7336 		len = min(len, em->len - (start - em->start));
7337 		block_start = em->block_start + (start - em->start);
7338 
7339 		if (can_nocow_extent(inode, start, &len, &orig_start,
7340 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7341 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7342 			if (bg)
7343 				can_nocow = true;
7344 		}
7345 	}
7346 
7347 	prev_len = len;
7348 	if (can_nocow) {
7349 		struct extent_map *em2;
7350 
7351 		/* We can NOCOW, so only need to reserve metadata space. */
7352 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7353 						      nowait);
7354 		if (ret < 0) {
7355 			/* Our caller expects us to free the input extent map. */
7356 			free_extent_map(em);
7357 			*map = NULL;
7358 			btrfs_dec_nocow_writers(bg);
7359 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7360 				ret = -EAGAIN;
7361 			goto out;
7362 		}
7363 		space_reserved = true;
7364 
7365 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7366 					      orig_start, block_start,
7367 					      len, orig_block_len,
7368 					      ram_bytes, type);
7369 		btrfs_dec_nocow_writers(bg);
7370 		if (type == BTRFS_ORDERED_PREALLOC) {
7371 			free_extent_map(em);
7372 			*map = em2;
7373 			em = em2;
7374 		}
7375 
7376 		if (IS_ERR(em2)) {
7377 			ret = PTR_ERR(em2);
7378 			goto out;
7379 		}
7380 
7381 		dio_data->nocow_done = true;
7382 	} else {
7383 		/* Our caller expects us to free the input extent map. */
7384 		free_extent_map(em);
7385 		*map = NULL;
7386 
7387 		if (nowait) {
7388 			ret = -EAGAIN;
7389 			goto out;
7390 		}
7391 
7392 		/*
7393 		 * If we could not allocate data space before locking the file
7394 		 * range and we can't do a NOCOW write, then we have to fail.
7395 		 */
7396 		if (!dio_data->data_space_reserved) {
7397 			ret = -ENOSPC;
7398 			goto out;
7399 		}
7400 
7401 		/*
7402 		 * We have to COW and we have already reserved data space before,
7403 		 * so now we reserve only metadata.
7404 		 */
7405 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7406 						      false);
7407 		if (ret < 0)
7408 			goto out;
7409 		space_reserved = true;
7410 
7411 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7412 		if (IS_ERR(em)) {
7413 			ret = PTR_ERR(em);
7414 			goto out;
7415 		}
7416 		*map = em;
7417 		len = min(len, em->len - (start - em->start));
7418 		if (len < prev_len)
7419 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7420 							prev_len - len, true);
7421 	}
7422 
7423 	/*
7424 	 * We have created our ordered extent, so we can now release our reservation
7425 	 * for an outstanding extent.
7426 	 */
7427 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7428 
7429 	/*
7430 	 * Need to update the i_size under the extent lock so buffered
7431 	 * readers will get the updated i_size when we unlock.
7432 	 */
7433 	if (start + len > i_size_read(inode))
7434 		i_size_write(inode, start + len);
7435 out:
7436 	if (ret && space_reserved) {
7437 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7438 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7439 	}
7440 	*lenp = len;
7441 	return ret;
7442 }
7443 
7444 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7445 		loff_t length, unsigned int flags, struct iomap *iomap,
7446 		struct iomap *srcmap)
7447 {
7448 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7449 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7450 	struct extent_map *em;
7451 	struct extent_state *cached_state = NULL;
7452 	struct btrfs_dio_data *dio_data = iter->private;
7453 	u64 lockstart, lockend;
7454 	const bool write = !!(flags & IOMAP_WRITE);
7455 	int ret = 0;
7456 	u64 len = length;
7457 	const u64 data_alloc_len = length;
7458 	bool unlock_extents = false;
7459 
7460 	/*
7461 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7462 	 * we're NOWAIT we may submit a bio for a partial range and return
7463 	 * EIOCBQUEUED, which would result in an errant short read.
7464 	 *
7465 	 * The best way to handle this would be to allow for partial completions
7466 	 * of iocb's, so we could submit the partial bio, return and fault in
7467 	 * the rest of the pages, and then submit the io for the rest of the
7468 	 * range.  However we don't have that currently, so simply return
7469 	 * -EAGAIN at this point so that the normal path is used.
7470 	 */
7471 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7472 		return -EAGAIN;
7473 
7474 	/*
7475 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7476 	 * to allocate a contiguous array for the checksums.
7477 	 */
7478 	if (!write)
7479 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7480 
7481 	lockstart = start;
7482 	lockend = start + len - 1;
7483 
7484 	/*
7485 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7486 	 * enough if we've written compressed pages to this area, so we need to
7487 	 * flush the dirty pages again to make absolutely sure that any
7488 	 * outstanding dirty pages are on disk - the first flush only starts
7489 	 * compression on the data, while keeping the pages locked, so by the
7490 	 * time the second flush returns we know bios for the compressed pages
7491 	 * were submitted and finished, and the pages no longer under writeback.
7492 	 *
7493 	 * If we have a NOWAIT request and we have any pages in the range that
7494 	 * are locked, likely due to compression still in progress, we don't want
7495 	 * to block on page locks. We also don't want to block on pages marked as
7496 	 * dirty or under writeback (same as for the non-compression case).
7497 	 * iomap_dio_rw() did the same check, but after that and before we got
7498 	 * here, mmap'ed writes may have happened or buffered reads started
7499 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7500 	 * the file range yet.
7501 	 */
7502 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7503 		     &BTRFS_I(inode)->runtime_flags)) {
7504 		if (flags & IOMAP_NOWAIT) {
7505 			if (filemap_range_needs_writeback(inode->i_mapping,
7506 							  lockstart, lockend))
7507 				return -EAGAIN;
7508 		} else {
7509 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7510 						       start + length - 1);
7511 			if (ret)
7512 				return ret;
7513 		}
7514 	}
7515 
7516 	memset(dio_data, 0, sizeof(*dio_data));
7517 
7518 	/*
7519 	 * We always try to allocate data space and must do it before locking
7520 	 * the file range, to avoid deadlocks with concurrent writes to the same
7521 	 * range if the range has several extents and the writes don't expand the
7522 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7523 	 * allocate data space here we continue and later, after locking the
7524 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7525 	 * NOCOW write.
7526 	 */
7527 	if (write && !(flags & IOMAP_NOWAIT)) {
7528 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7529 						  &dio_data->data_reserved,
7530 						  start, data_alloc_len, false);
7531 		if (!ret)
7532 			dio_data->data_space_reserved = true;
7533 		else if (ret && !(BTRFS_I(inode)->flags &
7534 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7535 			goto err;
7536 	}
7537 
7538 	/*
7539 	 * If this errors out it's because we couldn't invalidate pagecache for
7540 	 * this range and we need to fallback to buffered IO, or we are doing a
7541 	 * NOWAIT read/write and we need to block.
7542 	 */
7543 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7544 	if (ret < 0)
7545 		goto err;
7546 
7547 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7548 	if (IS_ERR(em)) {
7549 		ret = PTR_ERR(em);
7550 		goto unlock_err;
7551 	}
7552 
7553 	/*
7554 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7555 	 * io.  INLINE is special, and we could probably kludge it in here, but
7556 	 * it's still buffered so for safety lets just fall back to the generic
7557 	 * buffered path.
7558 	 *
7559 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7560 	 * decompress it, so there will be buffering required no matter what we
7561 	 * do, so go ahead and fallback to buffered.
7562 	 *
7563 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7564 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7565 	 * the generic code.
7566 	 */
7567 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7568 	    em->block_start == EXTENT_MAP_INLINE) {
7569 		free_extent_map(em);
7570 		/*
7571 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7572 		 * fallback to buffered IO. This is not only because we can
7573 		 * block with buffered IO (no support for NOWAIT semantics at
7574 		 * the moment) but also to avoid returning short reads to user
7575 		 * space - this happens if we were able to read some data from
7576 		 * previous non-compressed extents and then when we fallback to
7577 		 * buffered IO, at btrfs_file_read_iter() by calling
7578 		 * filemap_read(), we fail to fault in pages for the read buffer,
7579 		 * in which case filemap_read() returns a short read (the number
7580 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7581 		 */
7582 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7583 		goto unlock_err;
7584 	}
7585 
7586 	len = min(len, em->len - (start - em->start));
7587 
7588 	/*
7589 	 * If we have a NOWAIT request and the range contains multiple extents
7590 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7591 	 * caller fallback to a context where it can do a blocking (without
7592 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7593 	 * success to the caller, which is not optimal for writes and for reads
7594 	 * it can result in unexpected behaviour for an application.
7595 	 *
7596 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7597 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7598 	 * asked for, resulting in an unexpected, and incorrect, short read.
7599 	 * That is, the caller asked to read N bytes and we return less than that,
7600 	 * which is wrong unless we are crossing EOF. This happens if we get a
7601 	 * page fault error when trying to fault in pages for the buffer that is
7602 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7603 	 * have previously submitted bios for other extents in the range, in
7604 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7605 	 * those bios have completed by the time we get the page fault error,
7606 	 * which we return back to our caller - we should only return EIOCBQUEUED
7607 	 * after we have submitted bios for all the extents in the range.
7608 	 */
7609 	if ((flags & IOMAP_NOWAIT) && len < length) {
7610 		free_extent_map(em);
7611 		ret = -EAGAIN;
7612 		goto unlock_err;
7613 	}
7614 
7615 	if (write) {
7616 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7617 						    start, &len, flags);
7618 		if (ret < 0)
7619 			goto unlock_err;
7620 		unlock_extents = true;
7621 		/* Recalc len in case the new em is smaller than requested */
7622 		len = min(len, em->len - (start - em->start));
7623 		if (dio_data->data_space_reserved) {
7624 			u64 release_offset;
7625 			u64 release_len = 0;
7626 
7627 			if (dio_data->nocow_done) {
7628 				release_offset = start;
7629 				release_len = data_alloc_len;
7630 			} else if (len < data_alloc_len) {
7631 				release_offset = start + len;
7632 				release_len = data_alloc_len - len;
7633 			}
7634 
7635 			if (release_len > 0)
7636 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7637 							       dio_data->data_reserved,
7638 							       release_offset,
7639 							       release_len);
7640 		}
7641 	} else {
7642 		/*
7643 		 * We need to unlock only the end area that we aren't using.
7644 		 * The rest is going to be unlocked by the endio routine.
7645 		 */
7646 		lockstart = start + len;
7647 		if (lockstart < lockend)
7648 			unlock_extents = true;
7649 	}
7650 
7651 	if (unlock_extents)
7652 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7653 			      &cached_state);
7654 	else
7655 		free_extent_state(cached_state);
7656 
7657 	/*
7658 	 * Translate extent map information to iomap.
7659 	 * We trim the extents (and move the addr) even though iomap code does
7660 	 * that, since we have locked only the parts we are performing I/O in.
7661 	 */
7662 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7663 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7664 		iomap->addr = IOMAP_NULL_ADDR;
7665 		iomap->type = IOMAP_HOLE;
7666 	} else {
7667 		iomap->addr = em->block_start + (start - em->start);
7668 		iomap->type = IOMAP_MAPPED;
7669 	}
7670 	iomap->offset = start;
7671 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7672 	iomap->length = len;
7673 	free_extent_map(em);
7674 
7675 	return 0;
7676 
7677 unlock_err:
7678 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7679 		      &cached_state);
7680 err:
7681 	if (dio_data->data_space_reserved) {
7682 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7683 					       dio_data->data_reserved,
7684 					       start, data_alloc_len);
7685 		extent_changeset_free(dio_data->data_reserved);
7686 	}
7687 
7688 	return ret;
7689 }
7690 
7691 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7692 		ssize_t written, unsigned int flags, struct iomap *iomap)
7693 {
7694 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7695 	struct btrfs_dio_data *dio_data = iter->private;
7696 	size_t submitted = dio_data->submitted;
7697 	const bool write = !!(flags & IOMAP_WRITE);
7698 	int ret = 0;
7699 
7700 	if (!write && (iomap->type == IOMAP_HOLE)) {
7701 		/* If reading from a hole, unlock and return */
7702 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7703 			      NULL);
7704 		return 0;
7705 	}
7706 
7707 	if (submitted < length) {
7708 		pos += submitted;
7709 		length -= submitted;
7710 		if (write)
7711 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7712 						    pos, length, false);
7713 		else
7714 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7715 				      pos + length - 1, NULL);
7716 		ret = -ENOTBLK;
7717 	}
7718 	if (write) {
7719 		btrfs_put_ordered_extent(dio_data->ordered);
7720 		dio_data->ordered = NULL;
7721 	}
7722 
7723 	if (write)
7724 		extent_changeset_free(dio_data->data_reserved);
7725 	return ret;
7726 }
7727 
7728 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7729 {
7730 	struct btrfs_dio_private *dip =
7731 		container_of(bbio, struct btrfs_dio_private, bbio);
7732 	struct btrfs_inode *inode = bbio->inode;
7733 	struct bio *bio = &bbio->bio;
7734 
7735 	if (bio->bi_status) {
7736 		btrfs_warn(inode->root->fs_info,
7737 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7738 			   btrfs_ino(inode), bio->bi_opf,
7739 			   dip->file_offset, dip->bytes, bio->bi_status);
7740 	}
7741 
7742 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7743 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7744 					    dip->file_offset, dip->bytes,
7745 					    !bio->bi_status);
7746 	} else {
7747 		unlock_extent(&inode->io_tree, dip->file_offset,
7748 			      dip->file_offset + dip->bytes - 1, NULL);
7749 	}
7750 
7751 	bbio->bio.bi_private = bbio->private;
7752 	iomap_dio_bio_end_io(bio);
7753 }
7754 
7755 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7756 				loff_t file_offset)
7757 {
7758 	struct btrfs_bio *bbio = btrfs_bio(bio);
7759 	struct btrfs_dio_private *dip =
7760 		container_of(bbio, struct btrfs_dio_private, bbio);
7761 	struct btrfs_dio_data *dio_data = iter->private;
7762 
7763 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7764 		       btrfs_dio_end_io, bio->bi_private);
7765 	bbio->inode = BTRFS_I(iter->inode);
7766 	bbio->file_offset = file_offset;
7767 
7768 	dip->file_offset = file_offset;
7769 	dip->bytes = bio->bi_iter.bi_size;
7770 
7771 	dio_data->submitted += bio->bi_iter.bi_size;
7772 
7773 	/*
7774 	 * Check if we are doing a partial write.  If we are, we need to split
7775 	 * the ordered extent to match the submitted bio.  Hang on to the
7776 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7777 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7778 	 * remaining pages is blocked on the outstanding ordered extent.
7779 	 */
7780 	if (iter->flags & IOMAP_WRITE) {
7781 		int ret;
7782 
7783 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7784 		if (ret) {
7785 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7786 						    file_offset, dip->bytes,
7787 						    !ret);
7788 			bio->bi_status = errno_to_blk_status(ret);
7789 			iomap_dio_bio_end_io(bio);
7790 			return;
7791 		}
7792 	}
7793 
7794 	btrfs_submit_bio(bbio, 0);
7795 }
7796 
7797 static const struct iomap_ops btrfs_dio_iomap_ops = {
7798 	.iomap_begin            = btrfs_dio_iomap_begin,
7799 	.iomap_end              = btrfs_dio_iomap_end,
7800 };
7801 
7802 static const struct iomap_dio_ops btrfs_dio_ops = {
7803 	.submit_io		= btrfs_dio_submit_io,
7804 	.bio_set		= &btrfs_dio_bioset,
7805 };
7806 
7807 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7808 {
7809 	struct btrfs_dio_data data = { 0 };
7810 
7811 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7812 			    IOMAP_DIO_PARTIAL, &data, done_before);
7813 }
7814 
7815 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7816 				  size_t done_before)
7817 {
7818 	struct btrfs_dio_data data = { 0 };
7819 
7820 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7821 			    IOMAP_DIO_PARTIAL, &data, done_before);
7822 }
7823 
7824 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7825 			u64 start, u64 len)
7826 {
7827 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7828 	int	ret;
7829 
7830 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7831 	if (ret)
7832 		return ret;
7833 
7834 	/*
7835 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7836 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7837 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7838 	 * in the compression of data (in an async thread) and will return
7839 	 * before the compression is done and writeback is started. A second
7840 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7841 	 * complete and writeback to start. We also need to wait for ordered
7842 	 * extents to complete, because our fiemap implementation uses mainly
7843 	 * file extent items to list the extents, searching for extent maps
7844 	 * only for file ranges with holes or prealloc extents to figure out
7845 	 * if we have delalloc in those ranges.
7846 	 */
7847 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7848 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7849 		if (ret)
7850 			return ret;
7851 	}
7852 
7853 	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7854 
7855 	/*
7856 	 * We did an initial flush to avoid holding the inode's lock while
7857 	 * triggering writeback and waiting for the completion of IO and ordered
7858 	 * extents. Now after we locked the inode we do it again, because it's
7859 	 * possible a new write may have happened in between those two steps.
7860 	 */
7861 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7862 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7863 		if (ret) {
7864 			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7865 			return ret;
7866 		}
7867 	}
7868 
7869 	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7870 	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7871 
7872 	return ret;
7873 }
7874 
7875 static int btrfs_writepages(struct address_space *mapping,
7876 			    struct writeback_control *wbc)
7877 {
7878 	return extent_writepages(mapping, wbc);
7879 }
7880 
7881 static void btrfs_readahead(struct readahead_control *rac)
7882 {
7883 	extent_readahead(rac);
7884 }
7885 
7886 /*
7887  * For release_folio() and invalidate_folio() we have a race window where
7888  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7889  * If we continue to release/invalidate the page, we could cause use-after-free
7890  * for subpage spinlock.  So this function is to spin and wait for subpage
7891  * spinlock.
7892  */
7893 static void wait_subpage_spinlock(struct page *page)
7894 {
7895 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7896 	struct btrfs_subpage *subpage;
7897 
7898 	if (!btrfs_is_subpage(fs_info, page))
7899 		return;
7900 
7901 	ASSERT(PagePrivate(page) && page->private);
7902 	subpage = (struct btrfs_subpage *)page->private;
7903 
7904 	/*
7905 	 * This may look insane as we just acquire the spinlock and release it,
7906 	 * without doing anything.  But we just want to make sure no one is
7907 	 * still holding the subpage spinlock.
7908 	 * And since the page is not dirty nor writeback, and we have page
7909 	 * locked, the only possible way to hold a spinlock is from the endio
7910 	 * function to clear page writeback.
7911 	 *
7912 	 * Here we just acquire the spinlock so that all existing callers
7913 	 * should exit and we're safe to release/invalidate the page.
7914 	 */
7915 	spin_lock_irq(&subpage->lock);
7916 	spin_unlock_irq(&subpage->lock);
7917 }
7918 
7919 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7920 {
7921 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7922 
7923 	if (ret == 1) {
7924 		wait_subpage_spinlock(&folio->page);
7925 		clear_page_extent_mapped(&folio->page);
7926 	}
7927 	return ret;
7928 }
7929 
7930 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7931 {
7932 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7933 		return false;
7934 	return __btrfs_release_folio(folio, gfp_flags);
7935 }
7936 
7937 #ifdef CONFIG_MIGRATION
7938 static int btrfs_migrate_folio(struct address_space *mapping,
7939 			     struct folio *dst, struct folio *src,
7940 			     enum migrate_mode mode)
7941 {
7942 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7943 
7944 	if (ret != MIGRATEPAGE_SUCCESS)
7945 		return ret;
7946 
7947 	if (folio_test_ordered(src)) {
7948 		folio_clear_ordered(src);
7949 		folio_set_ordered(dst);
7950 	}
7951 
7952 	return MIGRATEPAGE_SUCCESS;
7953 }
7954 #else
7955 #define btrfs_migrate_folio NULL
7956 #endif
7957 
7958 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7959 				 size_t length)
7960 {
7961 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7962 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7963 	struct extent_io_tree *tree = &inode->io_tree;
7964 	struct extent_state *cached_state = NULL;
7965 	u64 page_start = folio_pos(folio);
7966 	u64 page_end = page_start + folio_size(folio) - 1;
7967 	u64 cur;
7968 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7969 
7970 	/*
7971 	 * We have folio locked so no new ordered extent can be created on this
7972 	 * page, nor bio can be submitted for this folio.
7973 	 *
7974 	 * But already submitted bio can still be finished on this folio.
7975 	 * Furthermore, endio function won't skip folio which has Ordered
7976 	 * (Private2) already cleared, so it's possible for endio and
7977 	 * invalidate_folio to do the same ordered extent accounting twice
7978 	 * on one folio.
7979 	 *
7980 	 * So here we wait for any submitted bios to finish, so that we won't
7981 	 * do double ordered extent accounting on the same folio.
7982 	 */
7983 	folio_wait_writeback(folio);
7984 	wait_subpage_spinlock(&folio->page);
7985 
7986 	/*
7987 	 * For subpage case, we have call sites like
7988 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7989 	 * sectorsize.
7990 	 * If the range doesn't cover the full folio, we don't need to and
7991 	 * shouldn't clear page extent mapped, as folio->private can still
7992 	 * record subpage dirty bits for other part of the range.
7993 	 *
7994 	 * For cases that invalidate the full folio even the range doesn't
7995 	 * cover the full folio, like invalidating the last folio, we're
7996 	 * still safe to wait for ordered extent to finish.
7997 	 */
7998 	if (!(offset == 0 && length == folio_size(folio))) {
7999 		btrfs_release_folio(folio, GFP_NOFS);
8000 		return;
8001 	}
8002 
8003 	if (!inode_evicting)
8004 		lock_extent(tree, page_start, page_end, &cached_state);
8005 
8006 	cur = page_start;
8007 	while (cur < page_end) {
8008 		struct btrfs_ordered_extent *ordered;
8009 		u64 range_end;
8010 		u32 range_len;
8011 		u32 extra_flags = 0;
8012 
8013 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8014 							   page_end + 1 - cur);
8015 		if (!ordered) {
8016 			range_end = page_end;
8017 			/*
8018 			 * No ordered extent covering this range, we are safe
8019 			 * to delete all extent states in the range.
8020 			 */
8021 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8022 			goto next;
8023 		}
8024 		if (ordered->file_offset > cur) {
8025 			/*
8026 			 * There is a range between [cur, oe->file_offset) not
8027 			 * covered by any ordered extent.
8028 			 * We are safe to delete all extent states, and handle
8029 			 * the ordered extent in the next iteration.
8030 			 */
8031 			range_end = ordered->file_offset - 1;
8032 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8033 			goto next;
8034 		}
8035 
8036 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8037 				page_end);
8038 		ASSERT(range_end + 1 - cur < U32_MAX);
8039 		range_len = range_end + 1 - cur;
8040 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8041 			/*
8042 			 * If Ordered (Private2) is cleared, it means endio has
8043 			 * already been executed for the range.
8044 			 * We can't delete the extent states as
8045 			 * btrfs_finish_ordered_io() may still use some of them.
8046 			 */
8047 			goto next;
8048 		}
8049 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8050 
8051 		/*
8052 		 * IO on this page will never be started, so we need to account
8053 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8054 		 * here, must leave that up for the ordered extent completion.
8055 		 *
8056 		 * This will also unlock the range for incoming
8057 		 * btrfs_finish_ordered_io().
8058 		 */
8059 		if (!inode_evicting)
8060 			clear_extent_bit(tree, cur, range_end,
8061 					 EXTENT_DELALLOC |
8062 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8063 					 EXTENT_DEFRAG, &cached_state);
8064 
8065 		spin_lock_irq(&inode->ordered_tree.lock);
8066 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8067 		ordered->truncated_len = min(ordered->truncated_len,
8068 					     cur - ordered->file_offset);
8069 		spin_unlock_irq(&inode->ordered_tree.lock);
8070 
8071 		/*
8072 		 * If the ordered extent has finished, we're safe to delete all
8073 		 * the extent states of the range, otherwise
8074 		 * btrfs_finish_ordered_io() will get executed by endio for
8075 		 * other pages, so we can't delete extent states.
8076 		 */
8077 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8078 						   cur, range_end + 1 - cur)) {
8079 			btrfs_finish_ordered_io(ordered);
8080 			/*
8081 			 * The ordered extent has finished, now we're again
8082 			 * safe to delete all extent states of the range.
8083 			 */
8084 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8085 		}
8086 next:
8087 		if (ordered)
8088 			btrfs_put_ordered_extent(ordered);
8089 		/*
8090 		 * Qgroup reserved space handler
8091 		 * Sector(s) here will be either:
8092 		 *
8093 		 * 1) Already written to disk or bio already finished
8094 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8095 		 *    Qgroup will be handled by its qgroup_record then.
8096 		 *    btrfs_qgroup_free_data() call will do nothing here.
8097 		 *
8098 		 * 2) Not written to disk yet
8099 		 *    Then btrfs_qgroup_free_data() call will clear the
8100 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8101 		 *    reserved data space.
8102 		 *    Since the IO will never happen for this page.
8103 		 */
8104 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8105 		if (!inode_evicting) {
8106 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8107 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8108 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8109 				 extra_flags, &cached_state);
8110 		}
8111 		cur = range_end + 1;
8112 	}
8113 	/*
8114 	 * We have iterated through all ordered extents of the page, the page
8115 	 * should not have Ordered (Private2) anymore, or the above iteration
8116 	 * did something wrong.
8117 	 */
8118 	ASSERT(!folio_test_ordered(folio));
8119 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8120 	if (!inode_evicting)
8121 		__btrfs_release_folio(folio, GFP_NOFS);
8122 	clear_page_extent_mapped(&folio->page);
8123 }
8124 
8125 /*
8126  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8127  * called from a page fault handler when a page is first dirtied. Hence we must
8128  * be careful to check for EOF conditions here. We set the page up correctly
8129  * for a written page which means we get ENOSPC checking when writing into
8130  * holes and correct delalloc and unwritten extent mapping on filesystems that
8131  * support these features.
8132  *
8133  * We are not allowed to take the i_mutex here so we have to play games to
8134  * protect against truncate races as the page could now be beyond EOF.  Because
8135  * truncate_setsize() writes the inode size before removing pages, once we have
8136  * the page lock we can determine safely if the page is beyond EOF. If it is not
8137  * beyond EOF, then the page is guaranteed safe against truncation until we
8138  * unlock the page.
8139  */
8140 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8141 {
8142 	struct page *page = vmf->page;
8143 	struct inode *inode = file_inode(vmf->vma->vm_file);
8144 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8145 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8146 	struct btrfs_ordered_extent *ordered;
8147 	struct extent_state *cached_state = NULL;
8148 	struct extent_changeset *data_reserved = NULL;
8149 	unsigned long zero_start;
8150 	loff_t size;
8151 	vm_fault_t ret;
8152 	int ret2;
8153 	int reserved = 0;
8154 	u64 reserved_space;
8155 	u64 page_start;
8156 	u64 page_end;
8157 	u64 end;
8158 
8159 	reserved_space = PAGE_SIZE;
8160 
8161 	sb_start_pagefault(inode->i_sb);
8162 	page_start = page_offset(page);
8163 	page_end = page_start + PAGE_SIZE - 1;
8164 	end = page_end;
8165 
8166 	/*
8167 	 * Reserving delalloc space after obtaining the page lock can lead to
8168 	 * deadlock. For example, if a dirty page is locked by this function
8169 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8170 	 * dirty page write out, then the btrfs_writepages() function could
8171 	 * end up waiting indefinitely to get a lock on the page currently
8172 	 * being processed by btrfs_page_mkwrite() function.
8173 	 */
8174 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8175 					    page_start, reserved_space);
8176 	if (!ret2) {
8177 		ret2 = file_update_time(vmf->vma->vm_file);
8178 		reserved = 1;
8179 	}
8180 	if (ret2) {
8181 		ret = vmf_error(ret2);
8182 		if (reserved)
8183 			goto out;
8184 		goto out_noreserve;
8185 	}
8186 
8187 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8188 again:
8189 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8190 	lock_page(page);
8191 	size = i_size_read(inode);
8192 
8193 	if ((page->mapping != inode->i_mapping) ||
8194 	    (page_start >= size)) {
8195 		/* page got truncated out from underneath us */
8196 		goto out_unlock;
8197 	}
8198 	wait_on_page_writeback(page);
8199 
8200 	lock_extent(io_tree, page_start, page_end, &cached_state);
8201 	ret2 = set_page_extent_mapped(page);
8202 	if (ret2 < 0) {
8203 		ret = vmf_error(ret2);
8204 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8205 		goto out_unlock;
8206 	}
8207 
8208 	/*
8209 	 * we can't set the delalloc bits if there are pending ordered
8210 	 * extents.  Drop our locks and wait for them to finish
8211 	 */
8212 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8213 			PAGE_SIZE);
8214 	if (ordered) {
8215 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8216 		unlock_page(page);
8217 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8218 		btrfs_start_ordered_extent(ordered);
8219 		btrfs_put_ordered_extent(ordered);
8220 		goto again;
8221 	}
8222 
8223 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8224 		reserved_space = round_up(size - page_start,
8225 					  fs_info->sectorsize);
8226 		if (reserved_space < PAGE_SIZE) {
8227 			end = page_start + reserved_space - 1;
8228 			btrfs_delalloc_release_space(BTRFS_I(inode),
8229 					data_reserved, page_start,
8230 					PAGE_SIZE - reserved_space, true);
8231 		}
8232 	}
8233 
8234 	/*
8235 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8236 	 * faulted in, but write(2) could also dirty a page and set delalloc
8237 	 * bits, thus in this case for space account reason, we still need to
8238 	 * clear any delalloc bits within this page range since we have to
8239 	 * reserve data&meta space before lock_page() (see above comments).
8240 	 */
8241 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8242 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8243 			  EXTENT_DEFRAG, &cached_state);
8244 
8245 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8246 					&cached_state);
8247 	if (ret2) {
8248 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8249 		ret = VM_FAULT_SIGBUS;
8250 		goto out_unlock;
8251 	}
8252 
8253 	/* page is wholly or partially inside EOF */
8254 	if (page_start + PAGE_SIZE > size)
8255 		zero_start = offset_in_page(size);
8256 	else
8257 		zero_start = PAGE_SIZE;
8258 
8259 	if (zero_start != PAGE_SIZE)
8260 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8261 
8262 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8263 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8264 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8265 
8266 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8267 
8268 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8269 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8270 
8271 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8272 	sb_end_pagefault(inode->i_sb);
8273 	extent_changeset_free(data_reserved);
8274 	return VM_FAULT_LOCKED;
8275 
8276 out_unlock:
8277 	unlock_page(page);
8278 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8279 out:
8280 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8281 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8282 				     reserved_space, (ret != 0));
8283 out_noreserve:
8284 	sb_end_pagefault(inode->i_sb);
8285 	extent_changeset_free(data_reserved);
8286 	return ret;
8287 }
8288 
8289 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8290 {
8291 	struct btrfs_truncate_control control = {
8292 		.inode = inode,
8293 		.ino = btrfs_ino(inode),
8294 		.min_type = BTRFS_EXTENT_DATA_KEY,
8295 		.clear_extent_range = true,
8296 	};
8297 	struct btrfs_root *root = inode->root;
8298 	struct btrfs_fs_info *fs_info = root->fs_info;
8299 	struct btrfs_block_rsv *rsv;
8300 	int ret;
8301 	struct btrfs_trans_handle *trans;
8302 	u64 mask = fs_info->sectorsize - 1;
8303 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8304 
8305 	if (!skip_writeback) {
8306 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8307 					       inode->vfs_inode.i_size & (~mask),
8308 					       (u64)-1);
8309 		if (ret)
8310 			return ret;
8311 	}
8312 
8313 	/*
8314 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8315 	 * things going on here:
8316 	 *
8317 	 * 1) We need to reserve space to update our inode.
8318 	 *
8319 	 * 2) We need to have something to cache all the space that is going to
8320 	 * be free'd up by the truncate operation, but also have some slack
8321 	 * space reserved in case it uses space during the truncate (thank you
8322 	 * very much snapshotting).
8323 	 *
8324 	 * And we need these to be separate.  The fact is we can use a lot of
8325 	 * space doing the truncate, and we have no earthly idea how much space
8326 	 * we will use, so we need the truncate reservation to be separate so it
8327 	 * doesn't end up using space reserved for updating the inode.  We also
8328 	 * need to be able to stop the transaction and start a new one, which
8329 	 * means we need to be able to update the inode several times, and we
8330 	 * have no idea of knowing how many times that will be, so we can't just
8331 	 * reserve 1 item for the entirety of the operation, so that has to be
8332 	 * done separately as well.
8333 	 *
8334 	 * So that leaves us with
8335 	 *
8336 	 * 1) rsv - for the truncate reservation, which we will steal from the
8337 	 * transaction reservation.
8338 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8339 	 * updating the inode.
8340 	 */
8341 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8342 	if (!rsv)
8343 		return -ENOMEM;
8344 	rsv->size = min_size;
8345 	rsv->failfast = true;
8346 
8347 	/*
8348 	 * 1 for the truncate slack space
8349 	 * 1 for updating the inode.
8350 	 */
8351 	trans = btrfs_start_transaction(root, 2);
8352 	if (IS_ERR(trans)) {
8353 		ret = PTR_ERR(trans);
8354 		goto out;
8355 	}
8356 
8357 	/* Migrate the slack space for the truncate to our reserve */
8358 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8359 				      min_size, false);
8360 	/*
8361 	 * We have reserved 2 metadata units when we started the transaction and
8362 	 * min_size matches 1 unit, so this should never fail, but if it does,
8363 	 * it's not critical we just fail truncation.
8364 	 */
8365 	if (WARN_ON(ret)) {
8366 		btrfs_end_transaction(trans);
8367 		goto out;
8368 	}
8369 
8370 	trans->block_rsv = rsv;
8371 
8372 	while (1) {
8373 		struct extent_state *cached_state = NULL;
8374 		const u64 new_size = inode->vfs_inode.i_size;
8375 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8376 
8377 		control.new_size = new_size;
8378 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8379 		/*
8380 		 * We want to drop from the next block forward in case this new
8381 		 * size is not block aligned since we will be keeping the last
8382 		 * block of the extent just the way it is.
8383 		 */
8384 		btrfs_drop_extent_map_range(inode,
8385 					    ALIGN(new_size, fs_info->sectorsize),
8386 					    (u64)-1, false);
8387 
8388 		ret = btrfs_truncate_inode_items(trans, root, &control);
8389 
8390 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8391 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8392 
8393 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8394 
8395 		trans->block_rsv = &fs_info->trans_block_rsv;
8396 		if (ret != -ENOSPC && ret != -EAGAIN)
8397 			break;
8398 
8399 		ret = btrfs_update_inode(trans, root, inode);
8400 		if (ret)
8401 			break;
8402 
8403 		btrfs_end_transaction(trans);
8404 		btrfs_btree_balance_dirty(fs_info);
8405 
8406 		trans = btrfs_start_transaction(root, 2);
8407 		if (IS_ERR(trans)) {
8408 			ret = PTR_ERR(trans);
8409 			trans = NULL;
8410 			break;
8411 		}
8412 
8413 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8414 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8415 					      rsv, min_size, false);
8416 		/*
8417 		 * We have reserved 2 metadata units when we started the
8418 		 * transaction and min_size matches 1 unit, so this should never
8419 		 * fail, but if it does, it's not critical we just fail truncation.
8420 		 */
8421 		if (WARN_ON(ret))
8422 			break;
8423 
8424 		trans->block_rsv = rsv;
8425 	}
8426 
8427 	/*
8428 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8429 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8430 	 * know we've truncated everything except the last little bit, and can
8431 	 * do btrfs_truncate_block and then update the disk_i_size.
8432 	 */
8433 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8434 		btrfs_end_transaction(trans);
8435 		btrfs_btree_balance_dirty(fs_info);
8436 
8437 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8438 		if (ret)
8439 			goto out;
8440 		trans = btrfs_start_transaction(root, 1);
8441 		if (IS_ERR(trans)) {
8442 			ret = PTR_ERR(trans);
8443 			goto out;
8444 		}
8445 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8446 	}
8447 
8448 	if (trans) {
8449 		int ret2;
8450 
8451 		trans->block_rsv = &fs_info->trans_block_rsv;
8452 		ret2 = btrfs_update_inode(trans, root, inode);
8453 		if (ret2 && !ret)
8454 			ret = ret2;
8455 
8456 		ret2 = btrfs_end_transaction(trans);
8457 		if (ret2 && !ret)
8458 			ret = ret2;
8459 		btrfs_btree_balance_dirty(fs_info);
8460 	}
8461 out:
8462 	btrfs_free_block_rsv(fs_info, rsv);
8463 	/*
8464 	 * So if we truncate and then write and fsync we normally would just
8465 	 * write the extents that changed, which is a problem if we need to
8466 	 * first truncate that entire inode.  So set this flag so we write out
8467 	 * all of the extents in the inode to the sync log so we're completely
8468 	 * safe.
8469 	 *
8470 	 * If no extents were dropped or trimmed we don't need to force the next
8471 	 * fsync to truncate all the inode's items from the log and re-log them
8472 	 * all. This means the truncate operation did not change the file size,
8473 	 * or changed it to a smaller size but there was only an implicit hole
8474 	 * between the old i_size and the new i_size, and there were no prealloc
8475 	 * extents beyond i_size to drop.
8476 	 */
8477 	if (control.extents_found > 0)
8478 		btrfs_set_inode_full_sync(inode);
8479 
8480 	return ret;
8481 }
8482 
8483 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8484 				     struct inode *dir)
8485 {
8486 	struct inode *inode;
8487 
8488 	inode = new_inode(dir->i_sb);
8489 	if (inode) {
8490 		/*
8491 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8492 		 * the parent's sgid bit is set. This is probably a bug.
8493 		 */
8494 		inode_init_owner(idmap, inode, NULL,
8495 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8496 		inode->i_op = &btrfs_dir_inode_operations;
8497 		inode->i_fop = &btrfs_dir_file_operations;
8498 	}
8499 	return inode;
8500 }
8501 
8502 struct inode *btrfs_alloc_inode(struct super_block *sb)
8503 {
8504 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8505 	struct btrfs_inode *ei;
8506 	struct inode *inode;
8507 
8508 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8509 	if (!ei)
8510 		return NULL;
8511 
8512 	ei->root = NULL;
8513 	ei->generation = 0;
8514 	ei->last_trans = 0;
8515 	ei->last_sub_trans = 0;
8516 	ei->logged_trans = 0;
8517 	ei->delalloc_bytes = 0;
8518 	ei->new_delalloc_bytes = 0;
8519 	ei->defrag_bytes = 0;
8520 	ei->disk_i_size = 0;
8521 	ei->flags = 0;
8522 	ei->ro_flags = 0;
8523 	ei->csum_bytes = 0;
8524 	ei->index_cnt = (u64)-1;
8525 	ei->dir_index = 0;
8526 	ei->last_unlink_trans = 0;
8527 	ei->last_reflink_trans = 0;
8528 	ei->last_log_commit = 0;
8529 
8530 	spin_lock_init(&ei->lock);
8531 	ei->outstanding_extents = 0;
8532 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8533 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8534 					      BTRFS_BLOCK_RSV_DELALLOC);
8535 	ei->runtime_flags = 0;
8536 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8537 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8538 
8539 	ei->delayed_node = NULL;
8540 
8541 	ei->i_otime.tv_sec = 0;
8542 	ei->i_otime.tv_nsec = 0;
8543 
8544 	inode = &ei->vfs_inode;
8545 	extent_map_tree_init(&ei->extent_tree);
8546 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8547 	ei->io_tree.inode = ei;
8548 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8549 			    IO_TREE_INODE_FILE_EXTENT);
8550 	mutex_init(&ei->log_mutex);
8551 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8552 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8553 	INIT_LIST_HEAD(&ei->delayed_iput);
8554 	RB_CLEAR_NODE(&ei->rb_node);
8555 	init_rwsem(&ei->i_mmap_lock);
8556 
8557 	return inode;
8558 }
8559 
8560 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8561 void btrfs_test_destroy_inode(struct inode *inode)
8562 {
8563 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8564 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8565 }
8566 #endif
8567 
8568 void btrfs_free_inode(struct inode *inode)
8569 {
8570 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8571 }
8572 
8573 void btrfs_destroy_inode(struct inode *vfs_inode)
8574 {
8575 	struct btrfs_ordered_extent *ordered;
8576 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8577 	struct btrfs_root *root = inode->root;
8578 	bool freespace_inode;
8579 
8580 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8581 	WARN_ON(vfs_inode->i_data.nrpages);
8582 	WARN_ON(inode->block_rsv.reserved);
8583 	WARN_ON(inode->block_rsv.size);
8584 	WARN_ON(inode->outstanding_extents);
8585 	if (!S_ISDIR(vfs_inode->i_mode)) {
8586 		WARN_ON(inode->delalloc_bytes);
8587 		WARN_ON(inode->new_delalloc_bytes);
8588 	}
8589 	WARN_ON(inode->csum_bytes);
8590 	WARN_ON(inode->defrag_bytes);
8591 
8592 	/*
8593 	 * This can happen where we create an inode, but somebody else also
8594 	 * created the same inode and we need to destroy the one we already
8595 	 * created.
8596 	 */
8597 	if (!root)
8598 		return;
8599 
8600 	/*
8601 	 * If this is a free space inode do not take the ordered extents lockdep
8602 	 * map.
8603 	 */
8604 	freespace_inode = btrfs_is_free_space_inode(inode);
8605 
8606 	while (1) {
8607 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8608 		if (!ordered)
8609 			break;
8610 		else {
8611 			btrfs_err(root->fs_info,
8612 				  "found ordered extent %llu %llu on inode cleanup",
8613 				  ordered->file_offset, ordered->num_bytes);
8614 
8615 			if (!freespace_inode)
8616 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8617 
8618 			btrfs_remove_ordered_extent(inode, ordered);
8619 			btrfs_put_ordered_extent(ordered);
8620 			btrfs_put_ordered_extent(ordered);
8621 		}
8622 	}
8623 	btrfs_qgroup_check_reserved_leak(inode);
8624 	inode_tree_del(inode);
8625 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8626 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8627 	btrfs_put_root(inode->root);
8628 }
8629 
8630 int btrfs_drop_inode(struct inode *inode)
8631 {
8632 	struct btrfs_root *root = BTRFS_I(inode)->root;
8633 
8634 	if (root == NULL)
8635 		return 1;
8636 
8637 	/* the snap/subvol tree is on deleting */
8638 	if (btrfs_root_refs(&root->root_item) == 0)
8639 		return 1;
8640 	else
8641 		return generic_drop_inode(inode);
8642 }
8643 
8644 static void init_once(void *foo)
8645 {
8646 	struct btrfs_inode *ei = foo;
8647 
8648 	inode_init_once(&ei->vfs_inode);
8649 }
8650 
8651 void __cold btrfs_destroy_cachep(void)
8652 {
8653 	/*
8654 	 * Make sure all delayed rcu free inodes are flushed before we
8655 	 * destroy cache.
8656 	 */
8657 	rcu_barrier();
8658 	bioset_exit(&btrfs_dio_bioset);
8659 	kmem_cache_destroy(btrfs_inode_cachep);
8660 }
8661 
8662 int __init btrfs_init_cachep(void)
8663 {
8664 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8665 			sizeof(struct btrfs_inode), 0,
8666 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8667 			init_once);
8668 	if (!btrfs_inode_cachep)
8669 		goto fail;
8670 
8671 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8672 			offsetof(struct btrfs_dio_private, bbio.bio),
8673 			BIOSET_NEED_BVECS))
8674 		goto fail;
8675 
8676 	return 0;
8677 fail:
8678 	btrfs_destroy_cachep();
8679 	return -ENOMEM;
8680 }
8681 
8682 static int btrfs_getattr(struct mnt_idmap *idmap,
8683 			 const struct path *path, struct kstat *stat,
8684 			 u32 request_mask, unsigned int flags)
8685 {
8686 	u64 delalloc_bytes;
8687 	u64 inode_bytes;
8688 	struct inode *inode = d_inode(path->dentry);
8689 	u32 blocksize = inode->i_sb->s_blocksize;
8690 	u32 bi_flags = BTRFS_I(inode)->flags;
8691 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8692 
8693 	stat->result_mask |= STATX_BTIME;
8694 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8695 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8696 	if (bi_flags & BTRFS_INODE_APPEND)
8697 		stat->attributes |= STATX_ATTR_APPEND;
8698 	if (bi_flags & BTRFS_INODE_COMPRESS)
8699 		stat->attributes |= STATX_ATTR_COMPRESSED;
8700 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8701 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8702 	if (bi_flags & BTRFS_INODE_NODUMP)
8703 		stat->attributes |= STATX_ATTR_NODUMP;
8704 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8705 		stat->attributes |= STATX_ATTR_VERITY;
8706 
8707 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8708 				  STATX_ATTR_COMPRESSED |
8709 				  STATX_ATTR_IMMUTABLE |
8710 				  STATX_ATTR_NODUMP);
8711 
8712 	generic_fillattr(idmap, request_mask, inode, stat);
8713 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8714 
8715 	spin_lock(&BTRFS_I(inode)->lock);
8716 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8717 	inode_bytes = inode_get_bytes(inode);
8718 	spin_unlock(&BTRFS_I(inode)->lock);
8719 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8720 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8721 	return 0;
8722 }
8723 
8724 static int btrfs_rename_exchange(struct inode *old_dir,
8725 			      struct dentry *old_dentry,
8726 			      struct inode *new_dir,
8727 			      struct dentry *new_dentry)
8728 {
8729 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8730 	struct btrfs_trans_handle *trans;
8731 	unsigned int trans_num_items;
8732 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8733 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8734 	struct inode *new_inode = new_dentry->d_inode;
8735 	struct inode *old_inode = old_dentry->d_inode;
8736 	struct btrfs_rename_ctx old_rename_ctx;
8737 	struct btrfs_rename_ctx new_rename_ctx;
8738 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8739 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8740 	u64 old_idx = 0;
8741 	u64 new_idx = 0;
8742 	int ret;
8743 	int ret2;
8744 	bool need_abort = false;
8745 	struct fscrypt_name old_fname, new_fname;
8746 	struct fscrypt_str *old_name, *new_name;
8747 
8748 	/*
8749 	 * For non-subvolumes allow exchange only within one subvolume, in the
8750 	 * same inode namespace. Two subvolumes (represented as directory) can
8751 	 * be exchanged as they're a logical link and have a fixed inode number.
8752 	 */
8753 	if (root != dest &&
8754 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8755 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8756 		return -EXDEV;
8757 
8758 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8759 	if (ret)
8760 		return ret;
8761 
8762 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8763 	if (ret) {
8764 		fscrypt_free_filename(&old_fname);
8765 		return ret;
8766 	}
8767 
8768 	old_name = &old_fname.disk_name;
8769 	new_name = &new_fname.disk_name;
8770 
8771 	/* close the race window with snapshot create/destroy ioctl */
8772 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8773 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8774 		down_read(&fs_info->subvol_sem);
8775 
8776 	/*
8777 	 * For each inode:
8778 	 * 1 to remove old dir item
8779 	 * 1 to remove old dir index
8780 	 * 1 to add new dir item
8781 	 * 1 to add new dir index
8782 	 * 1 to update parent inode
8783 	 *
8784 	 * If the parents are the same, we only need to account for one
8785 	 */
8786 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8787 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8788 		/*
8789 		 * 1 to remove old root ref
8790 		 * 1 to remove old root backref
8791 		 * 1 to add new root ref
8792 		 * 1 to add new root backref
8793 		 */
8794 		trans_num_items += 4;
8795 	} else {
8796 		/*
8797 		 * 1 to update inode item
8798 		 * 1 to remove old inode ref
8799 		 * 1 to add new inode ref
8800 		 */
8801 		trans_num_items += 3;
8802 	}
8803 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8804 		trans_num_items += 4;
8805 	else
8806 		trans_num_items += 3;
8807 	trans = btrfs_start_transaction(root, trans_num_items);
8808 	if (IS_ERR(trans)) {
8809 		ret = PTR_ERR(trans);
8810 		goto out_notrans;
8811 	}
8812 
8813 	if (dest != root) {
8814 		ret = btrfs_record_root_in_trans(trans, dest);
8815 		if (ret)
8816 			goto out_fail;
8817 	}
8818 
8819 	/*
8820 	 * We need to find a free sequence number both in the source and
8821 	 * in the destination directory for the exchange.
8822 	 */
8823 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8824 	if (ret)
8825 		goto out_fail;
8826 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8827 	if (ret)
8828 		goto out_fail;
8829 
8830 	BTRFS_I(old_inode)->dir_index = 0ULL;
8831 	BTRFS_I(new_inode)->dir_index = 0ULL;
8832 
8833 	/* Reference for the source. */
8834 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8835 		/* force full log commit if subvolume involved. */
8836 		btrfs_set_log_full_commit(trans);
8837 	} else {
8838 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8839 					     btrfs_ino(BTRFS_I(new_dir)),
8840 					     old_idx);
8841 		if (ret)
8842 			goto out_fail;
8843 		need_abort = true;
8844 	}
8845 
8846 	/* And now for the dest. */
8847 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8848 		/* force full log commit if subvolume involved. */
8849 		btrfs_set_log_full_commit(trans);
8850 	} else {
8851 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8852 					     btrfs_ino(BTRFS_I(old_dir)),
8853 					     new_idx);
8854 		if (ret) {
8855 			if (need_abort)
8856 				btrfs_abort_transaction(trans, ret);
8857 			goto out_fail;
8858 		}
8859 	}
8860 
8861 	/* Update inode version and ctime/mtime. */
8862 	inode_inc_iversion(old_dir);
8863 	inode_inc_iversion(new_dir);
8864 	inode_inc_iversion(old_inode);
8865 	inode_inc_iversion(new_inode);
8866 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8867 
8868 	if (old_dentry->d_parent != new_dentry->d_parent) {
8869 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8870 					BTRFS_I(old_inode), true);
8871 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8872 					BTRFS_I(new_inode), true);
8873 	}
8874 
8875 	/* src is a subvolume */
8876 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8877 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8878 	} else { /* src is an inode */
8879 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8880 					   BTRFS_I(old_dentry->d_inode),
8881 					   old_name, &old_rename_ctx);
8882 		if (!ret)
8883 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8884 	}
8885 	if (ret) {
8886 		btrfs_abort_transaction(trans, ret);
8887 		goto out_fail;
8888 	}
8889 
8890 	/* dest is a subvolume */
8891 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8892 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8893 	} else { /* dest is an inode */
8894 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8895 					   BTRFS_I(new_dentry->d_inode),
8896 					   new_name, &new_rename_ctx);
8897 		if (!ret)
8898 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8899 	}
8900 	if (ret) {
8901 		btrfs_abort_transaction(trans, ret);
8902 		goto out_fail;
8903 	}
8904 
8905 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8906 			     new_name, 0, old_idx);
8907 	if (ret) {
8908 		btrfs_abort_transaction(trans, ret);
8909 		goto out_fail;
8910 	}
8911 
8912 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8913 			     old_name, 0, new_idx);
8914 	if (ret) {
8915 		btrfs_abort_transaction(trans, ret);
8916 		goto out_fail;
8917 	}
8918 
8919 	if (old_inode->i_nlink == 1)
8920 		BTRFS_I(old_inode)->dir_index = old_idx;
8921 	if (new_inode->i_nlink == 1)
8922 		BTRFS_I(new_inode)->dir_index = new_idx;
8923 
8924 	/*
8925 	 * Now pin the logs of the roots. We do it to ensure that no other task
8926 	 * can sync the logs while we are in progress with the rename, because
8927 	 * that could result in an inconsistency in case any of the inodes that
8928 	 * are part of this rename operation were logged before.
8929 	 */
8930 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8931 		btrfs_pin_log_trans(root);
8932 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8933 		btrfs_pin_log_trans(dest);
8934 
8935 	/* Do the log updates for all inodes. */
8936 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8937 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8938 				   old_rename_ctx.index, new_dentry->d_parent);
8939 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8940 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8941 				   new_rename_ctx.index, old_dentry->d_parent);
8942 
8943 	/* Now unpin the logs. */
8944 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8945 		btrfs_end_log_trans(root);
8946 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8947 		btrfs_end_log_trans(dest);
8948 out_fail:
8949 	ret2 = btrfs_end_transaction(trans);
8950 	ret = ret ? ret : ret2;
8951 out_notrans:
8952 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8953 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8954 		up_read(&fs_info->subvol_sem);
8955 
8956 	fscrypt_free_filename(&new_fname);
8957 	fscrypt_free_filename(&old_fname);
8958 	return ret;
8959 }
8960 
8961 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8962 					struct inode *dir)
8963 {
8964 	struct inode *inode;
8965 
8966 	inode = new_inode(dir->i_sb);
8967 	if (inode) {
8968 		inode_init_owner(idmap, inode, dir,
8969 				 S_IFCHR | WHITEOUT_MODE);
8970 		inode->i_op = &btrfs_special_inode_operations;
8971 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8972 	}
8973 	return inode;
8974 }
8975 
8976 static int btrfs_rename(struct mnt_idmap *idmap,
8977 			struct inode *old_dir, struct dentry *old_dentry,
8978 			struct inode *new_dir, struct dentry *new_dentry,
8979 			unsigned int flags)
8980 {
8981 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8982 	struct btrfs_new_inode_args whiteout_args = {
8983 		.dir = old_dir,
8984 		.dentry = old_dentry,
8985 	};
8986 	struct btrfs_trans_handle *trans;
8987 	unsigned int trans_num_items;
8988 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8989 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8990 	struct inode *new_inode = d_inode(new_dentry);
8991 	struct inode *old_inode = d_inode(old_dentry);
8992 	struct btrfs_rename_ctx rename_ctx;
8993 	u64 index = 0;
8994 	int ret;
8995 	int ret2;
8996 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8997 	struct fscrypt_name old_fname, new_fname;
8998 
8999 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9000 		return -EPERM;
9001 
9002 	/* we only allow rename subvolume link between subvolumes */
9003 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9004 		return -EXDEV;
9005 
9006 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9007 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9008 		return -ENOTEMPTY;
9009 
9010 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9011 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9012 		return -ENOTEMPTY;
9013 
9014 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9015 	if (ret)
9016 		return ret;
9017 
9018 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9019 	if (ret) {
9020 		fscrypt_free_filename(&old_fname);
9021 		return ret;
9022 	}
9023 
9024 	/* check for collisions, even if the  name isn't there */
9025 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9026 	if (ret) {
9027 		if (ret == -EEXIST) {
9028 			/* we shouldn't get
9029 			 * eexist without a new_inode */
9030 			if (WARN_ON(!new_inode)) {
9031 				goto out_fscrypt_names;
9032 			}
9033 		} else {
9034 			/* maybe -EOVERFLOW */
9035 			goto out_fscrypt_names;
9036 		}
9037 	}
9038 	ret = 0;
9039 
9040 	/*
9041 	 * we're using rename to replace one file with another.  Start IO on it
9042 	 * now so  we don't add too much work to the end of the transaction
9043 	 */
9044 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9045 		filemap_flush(old_inode->i_mapping);
9046 
9047 	if (flags & RENAME_WHITEOUT) {
9048 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9049 		if (!whiteout_args.inode) {
9050 			ret = -ENOMEM;
9051 			goto out_fscrypt_names;
9052 		}
9053 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9054 		if (ret)
9055 			goto out_whiteout_inode;
9056 	} else {
9057 		/* 1 to update the old parent inode. */
9058 		trans_num_items = 1;
9059 	}
9060 
9061 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9062 		/* Close the race window with snapshot create/destroy ioctl */
9063 		down_read(&fs_info->subvol_sem);
9064 		/*
9065 		 * 1 to remove old root ref
9066 		 * 1 to remove old root backref
9067 		 * 1 to add new root ref
9068 		 * 1 to add new root backref
9069 		 */
9070 		trans_num_items += 4;
9071 	} else {
9072 		/*
9073 		 * 1 to update inode
9074 		 * 1 to remove old inode ref
9075 		 * 1 to add new inode ref
9076 		 */
9077 		trans_num_items += 3;
9078 	}
9079 	/*
9080 	 * 1 to remove old dir item
9081 	 * 1 to remove old dir index
9082 	 * 1 to add new dir item
9083 	 * 1 to add new dir index
9084 	 */
9085 	trans_num_items += 4;
9086 	/* 1 to update new parent inode if it's not the same as the old parent */
9087 	if (new_dir != old_dir)
9088 		trans_num_items++;
9089 	if (new_inode) {
9090 		/*
9091 		 * 1 to update inode
9092 		 * 1 to remove inode ref
9093 		 * 1 to remove dir item
9094 		 * 1 to remove dir index
9095 		 * 1 to possibly add orphan item
9096 		 */
9097 		trans_num_items += 5;
9098 	}
9099 	trans = btrfs_start_transaction(root, trans_num_items);
9100 	if (IS_ERR(trans)) {
9101 		ret = PTR_ERR(trans);
9102 		goto out_notrans;
9103 	}
9104 
9105 	if (dest != root) {
9106 		ret = btrfs_record_root_in_trans(trans, dest);
9107 		if (ret)
9108 			goto out_fail;
9109 	}
9110 
9111 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9112 	if (ret)
9113 		goto out_fail;
9114 
9115 	BTRFS_I(old_inode)->dir_index = 0ULL;
9116 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9117 		/* force full log commit if subvolume involved. */
9118 		btrfs_set_log_full_commit(trans);
9119 	} else {
9120 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9121 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9122 					     index);
9123 		if (ret)
9124 			goto out_fail;
9125 	}
9126 
9127 	inode_inc_iversion(old_dir);
9128 	inode_inc_iversion(new_dir);
9129 	inode_inc_iversion(old_inode);
9130 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9131 
9132 	if (old_dentry->d_parent != new_dentry->d_parent)
9133 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9134 					BTRFS_I(old_inode), true);
9135 
9136 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9137 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9138 	} else {
9139 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9140 					   BTRFS_I(d_inode(old_dentry)),
9141 					   &old_fname.disk_name, &rename_ctx);
9142 		if (!ret)
9143 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9144 	}
9145 	if (ret) {
9146 		btrfs_abort_transaction(trans, ret);
9147 		goto out_fail;
9148 	}
9149 
9150 	if (new_inode) {
9151 		inode_inc_iversion(new_inode);
9152 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9153 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9154 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9155 			BUG_ON(new_inode->i_nlink == 0);
9156 		} else {
9157 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9158 						 BTRFS_I(d_inode(new_dentry)),
9159 						 &new_fname.disk_name);
9160 		}
9161 		if (!ret && new_inode->i_nlink == 0)
9162 			ret = btrfs_orphan_add(trans,
9163 					BTRFS_I(d_inode(new_dentry)));
9164 		if (ret) {
9165 			btrfs_abort_transaction(trans, ret);
9166 			goto out_fail;
9167 		}
9168 	}
9169 
9170 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9171 			     &new_fname.disk_name, 0, index);
9172 	if (ret) {
9173 		btrfs_abort_transaction(trans, ret);
9174 		goto out_fail;
9175 	}
9176 
9177 	if (old_inode->i_nlink == 1)
9178 		BTRFS_I(old_inode)->dir_index = index;
9179 
9180 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9181 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9182 				   rename_ctx.index, new_dentry->d_parent);
9183 
9184 	if (flags & RENAME_WHITEOUT) {
9185 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9186 		if (ret) {
9187 			btrfs_abort_transaction(trans, ret);
9188 			goto out_fail;
9189 		} else {
9190 			unlock_new_inode(whiteout_args.inode);
9191 			iput(whiteout_args.inode);
9192 			whiteout_args.inode = NULL;
9193 		}
9194 	}
9195 out_fail:
9196 	ret2 = btrfs_end_transaction(trans);
9197 	ret = ret ? ret : ret2;
9198 out_notrans:
9199 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9200 		up_read(&fs_info->subvol_sem);
9201 	if (flags & RENAME_WHITEOUT)
9202 		btrfs_new_inode_args_destroy(&whiteout_args);
9203 out_whiteout_inode:
9204 	if (flags & RENAME_WHITEOUT)
9205 		iput(whiteout_args.inode);
9206 out_fscrypt_names:
9207 	fscrypt_free_filename(&old_fname);
9208 	fscrypt_free_filename(&new_fname);
9209 	return ret;
9210 }
9211 
9212 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9213 			 struct dentry *old_dentry, struct inode *new_dir,
9214 			 struct dentry *new_dentry, unsigned int flags)
9215 {
9216 	int ret;
9217 
9218 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9219 		return -EINVAL;
9220 
9221 	if (flags & RENAME_EXCHANGE)
9222 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9223 					    new_dentry);
9224 	else
9225 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9226 				   new_dentry, flags);
9227 
9228 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9229 
9230 	return ret;
9231 }
9232 
9233 struct btrfs_delalloc_work {
9234 	struct inode *inode;
9235 	struct completion completion;
9236 	struct list_head list;
9237 	struct btrfs_work work;
9238 };
9239 
9240 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9241 {
9242 	struct btrfs_delalloc_work *delalloc_work;
9243 	struct inode *inode;
9244 
9245 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9246 				     work);
9247 	inode = delalloc_work->inode;
9248 	filemap_flush(inode->i_mapping);
9249 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9250 				&BTRFS_I(inode)->runtime_flags))
9251 		filemap_flush(inode->i_mapping);
9252 
9253 	iput(inode);
9254 	complete(&delalloc_work->completion);
9255 }
9256 
9257 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9258 {
9259 	struct btrfs_delalloc_work *work;
9260 
9261 	work = kmalloc(sizeof(*work), GFP_NOFS);
9262 	if (!work)
9263 		return NULL;
9264 
9265 	init_completion(&work->completion);
9266 	INIT_LIST_HEAD(&work->list);
9267 	work->inode = inode;
9268 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9269 
9270 	return work;
9271 }
9272 
9273 /*
9274  * some fairly slow code that needs optimization. This walks the list
9275  * of all the inodes with pending delalloc and forces them to disk.
9276  */
9277 static int start_delalloc_inodes(struct btrfs_root *root,
9278 				 struct writeback_control *wbc, bool snapshot,
9279 				 bool in_reclaim_context)
9280 {
9281 	struct btrfs_inode *binode;
9282 	struct inode *inode;
9283 	struct btrfs_delalloc_work *work, *next;
9284 	LIST_HEAD(works);
9285 	LIST_HEAD(splice);
9286 	int ret = 0;
9287 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9288 
9289 	mutex_lock(&root->delalloc_mutex);
9290 	spin_lock(&root->delalloc_lock);
9291 	list_splice_init(&root->delalloc_inodes, &splice);
9292 	while (!list_empty(&splice)) {
9293 		binode = list_entry(splice.next, struct btrfs_inode,
9294 				    delalloc_inodes);
9295 
9296 		list_move_tail(&binode->delalloc_inodes,
9297 			       &root->delalloc_inodes);
9298 
9299 		if (in_reclaim_context &&
9300 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9301 			continue;
9302 
9303 		inode = igrab(&binode->vfs_inode);
9304 		if (!inode) {
9305 			cond_resched_lock(&root->delalloc_lock);
9306 			continue;
9307 		}
9308 		spin_unlock(&root->delalloc_lock);
9309 
9310 		if (snapshot)
9311 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9312 				&binode->runtime_flags);
9313 		if (full_flush) {
9314 			work = btrfs_alloc_delalloc_work(inode);
9315 			if (!work) {
9316 				iput(inode);
9317 				ret = -ENOMEM;
9318 				goto out;
9319 			}
9320 			list_add_tail(&work->list, &works);
9321 			btrfs_queue_work(root->fs_info->flush_workers,
9322 					 &work->work);
9323 		} else {
9324 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9325 			btrfs_add_delayed_iput(BTRFS_I(inode));
9326 			if (ret || wbc->nr_to_write <= 0)
9327 				goto out;
9328 		}
9329 		cond_resched();
9330 		spin_lock(&root->delalloc_lock);
9331 	}
9332 	spin_unlock(&root->delalloc_lock);
9333 
9334 out:
9335 	list_for_each_entry_safe(work, next, &works, list) {
9336 		list_del_init(&work->list);
9337 		wait_for_completion(&work->completion);
9338 		kfree(work);
9339 	}
9340 
9341 	if (!list_empty(&splice)) {
9342 		spin_lock(&root->delalloc_lock);
9343 		list_splice_tail(&splice, &root->delalloc_inodes);
9344 		spin_unlock(&root->delalloc_lock);
9345 	}
9346 	mutex_unlock(&root->delalloc_mutex);
9347 	return ret;
9348 }
9349 
9350 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9351 {
9352 	struct writeback_control wbc = {
9353 		.nr_to_write = LONG_MAX,
9354 		.sync_mode = WB_SYNC_NONE,
9355 		.range_start = 0,
9356 		.range_end = LLONG_MAX,
9357 	};
9358 	struct btrfs_fs_info *fs_info = root->fs_info;
9359 
9360 	if (BTRFS_FS_ERROR(fs_info))
9361 		return -EROFS;
9362 
9363 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9364 }
9365 
9366 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9367 			       bool in_reclaim_context)
9368 {
9369 	struct writeback_control wbc = {
9370 		.nr_to_write = nr,
9371 		.sync_mode = WB_SYNC_NONE,
9372 		.range_start = 0,
9373 		.range_end = LLONG_MAX,
9374 	};
9375 	struct btrfs_root *root;
9376 	LIST_HEAD(splice);
9377 	int ret;
9378 
9379 	if (BTRFS_FS_ERROR(fs_info))
9380 		return -EROFS;
9381 
9382 	mutex_lock(&fs_info->delalloc_root_mutex);
9383 	spin_lock(&fs_info->delalloc_root_lock);
9384 	list_splice_init(&fs_info->delalloc_roots, &splice);
9385 	while (!list_empty(&splice)) {
9386 		/*
9387 		 * Reset nr_to_write here so we know that we're doing a full
9388 		 * flush.
9389 		 */
9390 		if (nr == LONG_MAX)
9391 			wbc.nr_to_write = LONG_MAX;
9392 
9393 		root = list_first_entry(&splice, struct btrfs_root,
9394 					delalloc_root);
9395 		root = btrfs_grab_root(root);
9396 		BUG_ON(!root);
9397 		list_move_tail(&root->delalloc_root,
9398 			       &fs_info->delalloc_roots);
9399 		spin_unlock(&fs_info->delalloc_root_lock);
9400 
9401 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9402 		btrfs_put_root(root);
9403 		if (ret < 0 || wbc.nr_to_write <= 0)
9404 			goto out;
9405 		spin_lock(&fs_info->delalloc_root_lock);
9406 	}
9407 	spin_unlock(&fs_info->delalloc_root_lock);
9408 
9409 	ret = 0;
9410 out:
9411 	if (!list_empty(&splice)) {
9412 		spin_lock(&fs_info->delalloc_root_lock);
9413 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9414 		spin_unlock(&fs_info->delalloc_root_lock);
9415 	}
9416 	mutex_unlock(&fs_info->delalloc_root_mutex);
9417 	return ret;
9418 }
9419 
9420 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9421 			 struct dentry *dentry, const char *symname)
9422 {
9423 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9424 	struct btrfs_trans_handle *trans;
9425 	struct btrfs_root *root = BTRFS_I(dir)->root;
9426 	struct btrfs_path *path;
9427 	struct btrfs_key key;
9428 	struct inode *inode;
9429 	struct btrfs_new_inode_args new_inode_args = {
9430 		.dir = dir,
9431 		.dentry = dentry,
9432 	};
9433 	unsigned int trans_num_items;
9434 	int err;
9435 	int name_len;
9436 	int datasize;
9437 	unsigned long ptr;
9438 	struct btrfs_file_extent_item *ei;
9439 	struct extent_buffer *leaf;
9440 
9441 	name_len = strlen(symname);
9442 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9443 		return -ENAMETOOLONG;
9444 
9445 	inode = new_inode(dir->i_sb);
9446 	if (!inode)
9447 		return -ENOMEM;
9448 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9449 	inode->i_op = &btrfs_symlink_inode_operations;
9450 	inode_nohighmem(inode);
9451 	inode->i_mapping->a_ops = &btrfs_aops;
9452 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9453 	inode_set_bytes(inode, name_len);
9454 
9455 	new_inode_args.inode = inode;
9456 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9457 	if (err)
9458 		goto out_inode;
9459 	/* 1 additional item for the inline extent */
9460 	trans_num_items++;
9461 
9462 	trans = btrfs_start_transaction(root, trans_num_items);
9463 	if (IS_ERR(trans)) {
9464 		err = PTR_ERR(trans);
9465 		goto out_new_inode_args;
9466 	}
9467 
9468 	err = btrfs_create_new_inode(trans, &new_inode_args);
9469 	if (err)
9470 		goto out;
9471 
9472 	path = btrfs_alloc_path();
9473 	if (!path) {
9474 		err = -ENOMEM;
9475 		btrfs_abort_transaction(trans, err);
9476 		discard_new_inode(inode);
9477 		inode = NULL;
9478 		goto out;
9479 	}
9480 	key.objectid = btrfs_ino(BTRFS_I(inode));
9481 	key.offset = 0;
9482 	key.type = BTRFS_EXTENT_DATA_KEY;
9483 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9484 	err = btrfs_insert_empty_item(trans, root, path, &key,
9485 				      datasize);
9486 	if (err) {
9487 		btrfs_abort_transaction(trans, err);
9488 		btrfs_free_path(path);
9489 		discard_new_inode(inode);
9490 		inode = NULL;
9491 		goto out;
9492 	}
9493 	leaf = path->nodes[0];
9494 	ei = btrfs_item_ptr(leaf, path->slots[0],
9495 			    struct btrfs_file_extent_item);
9496 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9497 	btrfs_set_file_extent_type(leaf, ei,
9498 				   BTRFS_FILE_EXTENT_INLINE);
9499 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9500 	btrfs_set_file_extent_compression(leaf, ei, 0);
9501 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9502 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9503 
9504 	ptr = btrfs_file_extent_inline_start(ei);
9505 	write_extent_buffer(leaf, symname, ptr, name_len);
9506 	btrfs_mark_buffer_dirty(trans, leaf);
9507 	btrfs_free_path(path);
9508 
9509 	d_instantiate_new(dentry, inode);
9510 	err = 0;
9511 out:
9512 	btrfs_end_transaction(trans);
9513 	btrfs_btree_balance_dirty(fs_info);
9514 out_new_inode_args:
9515 	btrfs_new_inode_args_destroy(&new_inode_args);
9516 out_inode:
9517 	if (err)
9518 		iput(inode);
9519 	return err;
9520 }
9521 
9522 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9523 				       struct btrfs_trans_handle *trans_in,
9524 				       struct btrfs_inode *inode,
9525 				       struct btrfs_key *ins,
9526 				       u64 file_offset)
9527 {
9528 	struct btrfs_file_extent_item stack_fi;
9529 	struct btrfs_replace_extent_info extent_info;
9530 	struct btrfs_trans_handle *trans = trans_in;
9531 	struct btrfs_path *path;
9532 	u64 start = ins->objectid;
9533 	u64 len = ins->offset;
9534 	u64 qgroup_released = 0;
9535 	int ret;
9536 
9537 	memset(&stack_fi, 0, sizeof(stack_fi));
9538 
9539 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9540 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9541 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9542 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9543 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9544 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9545 	/* Encryption and other encoding is reserved and all 0 */
9546 
9547 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9548 	if (ret < 0)
9549 		return ERR_PTR(ret);
9550 
9551 	if (trans) {
9552 		ret = insert_reserved_file_extent(trans, inode,
9553 						  file_offset, &stack_fi,
9554 						  true, qgroup_released);
9555 		if (ret)
9556 			goto free_qgroup;
9557 		return trans;
9558 	}
9559 
9560 	extent_info.disk_offset = start;
9561 	extent_info.disk_len = len;
9562 	extent_info.data_offset = 0;
9563 	extent_info.data_len = len;
9564 	extent_info.file_offset = file_offset;
9565 	extent_info.extent_buf = (char *)&stack_fi;
9566 	extent_info.is_new_extent = true;
9567 	extent_info.update_times = true;
9568 	extent_info.qgroup_reserved = qgroup_released;
9569 	extent_info.insertions = 0;
9570 
9571 	path = btrfs_alloc_path();
9572 	if (!path) {
9573 		ret = -ENOMEM;
9574 		goto free_qgroup;
9575 	}
9576 
9577 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9578 				     file_offset + len - 1, &extent_info,
9579 				     &trans);
9580 	btrfs_free_path(path);
9581 	if (ret)
9582 		goto free_qgroup;
9583 	return trans;
9584 
9585 free_qgroup:
9586 	/*
9587 	 * We have released qgroup data range at the beginning of the function,
9588 	 * and normally qgroup_released bytes will be freed when committing
9589 	 * transaction.
9590 	 * But if we error out early, we have to free what we have released
9591 	 * or we leak qgroup data reservation.
9592 	 */
9593 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9594 			inode->root->root_key.objectid, qgroup_released,
9595 			BTRFS_QGROUP_RSV_DATA);
9596 	return ERR_PTR(ret);
9597 }
9598 
9599 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9600 				       u64 start, u64 num_bytes, u64 min_size,
9601 				       loff_t actual_len, u64 *alloc_hint,
9602 				       struct btrfs_trans_handle *trans)
9603 {
9604 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9605 	struct extent_map *em;
9606 	struct btrfs_root *root = BTRFS_I(inode)->root;
9607 	struct btrfs_key ins;
9608 	u64 cur_offset = start;
9609 	u64 clear_offset = start;
9610 	u64 i_size;
9611 	u64 cur_bytes;
9612 	u64 last_alloc = (u64)-1;
9613 	int ret = 0;
9614 	bool own_trans = true;
9615 	u64 end = start + num_bytes - 1;
9616 
9617 	if (trans)
9618 		own_trans = false;
9619 	while (num_bytes > 0) {
9620 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9621 		cur_bytes = max(cur_bytes, min_size);
9622 		/*
9623 		 * If we are severely fragmented we could end up with really
9624 		 * small allocations, so if the allocator is returning small
9625 		 * chunks lets make its job easier by only searching for those
9626 		 * sized chunks.
9627 		 */
9628 		cur_bytes = min(cur_bytes, last_alloc);
9629 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9630 				min_size, 0, *alloc_hint, &ins, 1, 0);
9631 		if (ret)
9632 			break;
9633 
9634 		/*
9635 		 * We've reserved this space, and thus converted it from
9636 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9637 		 * from here on out we will only need to clear our reservation
9638 		 * for the remaining unreserved area, so advance our
9639 		 * clear_offset by our extent size.
9640 		 */
9641 		clear_offset += ins.offset;
9642 
9643 		last_alloc = ins.offset;
9644 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9645 						    &ins, cur_offset);
9646 		/*
9647 		 * Now that we inserted the prealloc extent we can finally
9648 		 * decrement the number of reservations in the block group.
9649 		 * If we did it before, we could race with relocation and have
9650 		 * relocation miss the reserved extent, making it fail later.
9651 		 */
9652 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9653 		if (IS_ERR(trans)) {
9654 			ret = PTR_ERR(trans);
9655 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9656 						   ins.offset, 0);
9657 			break;
9658 		}
9659 
9660 		em = alloc_extent_map();
9661 		if (!em) {
9662 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9663 					    cur_offset + ins.offset - 1, false);
9664 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9665 			goto next;
9666 		}
9667 
9668 		em->start = cur_offset;
9669 		em->orig_start = cur_offset;
9670 		em->len = ins.offset;
9671 		em->block_start = ins.objectid;
9672 		em->block_len = ins.offset;
9673 		em->orig_block_len = ins.offset;
9674 		em->ram_bytes = ins.offset;
9675 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9676 		em->generation = trans->transid;
9677 
9678 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9679 		free_extent_map(em);
9680 next:
9681 		num_bytes -= ins.offset;
9682 		cur_offset += ins.offset;
9683 		*alloc_hint = ins.objectid + ins.offset;
9684 
9685 		inode_inc_iversion(inode);
9686 		inode_set_ctime_current(inode);
9687 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9688 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9689 		    (actual_len > inode->i_size) &&
9690 		    (cur_offset > inode->i_size)) {
9691 			if (cur_offset > actual_len)
9692 				i_size = actual_len;
9693 			else
9694 				i_size = cur_offset;
9695 			i_size_write(inode, i_size);
9696 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9697 		}
9698 
9699 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9700 
9701 		if (ret) {
9702 			btrfs_abort_transaction(trans, ret);
9703 			if (own_trans)
9704 				btrfs_end_transaction(trans);
9705 			break;
9706 		}
9707 
9708 		if (own_trans) {
9709 			btrfs_end_transaction(trans);
9710 			trans = NULL;
9711 		}
9712 	}
9713 	if (clear_offset < end)
9714 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9715 			end - clear_offset + 1);
9716 	return ret;
9717 }
9718 
9719 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9720 			      u64 start, u64 num_bytes, u64 min_size,
9721 			      loff_t actual_len, u64 *alloc_hint)
9722 {
9723 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9724 					   min_size, actual_len, alloc_hint,
9725 					   NULL);
9726 }
9727 
9728 int btrfs_prealloc_file_range_trans(struct inode *inode,
9729 				    struct btrfs_trans_handle *trans, int mode,
9730 				    u64 start, u64 num_bytes, u64 min_size,
9731 				    loff_t actual_len, u64 *alloc_hint)
9732 {
9733 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9734 					   min_size, actual_len, alloc_hint, trans);
9735 }
9736 
9737 static int btrfs_permission(struct mnt_idmap *idmap,
9738 			    struct inode *inode, int mask)
9739 {
9740 	struct btrfs_root *root = BTRFS_I(inode)->root;
9741 	umode_t mode = inode->i_mode;
9742 
9743 	if (mask & MAY_WRITE &&
9744 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9745 		if (btrfs_root_readonly(root))
9746 			return -EROFS;
9747 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9748 			return -EACCES;
9749 	}
9750 	return generic_permission(idmap, inode, mask);
9751 }
9752 
9753 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9754 			 struct file *file, umode_t mode)
9755 {
9756 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9757 	struct btrfs_trans_handle *trans;
9758 	struct btrfs_root *root = BTRFS_I(dir)->root;
9759 	struct inode *inode;
9760 	struct btrfs_new_inode_args new_inode_args = {
9761 		.dir = dir,
9762 		.dentry = file->f_path.dentry,
9763 		.orphan = true,
9764 	};
9765 	unsigned int trans_num_items;
9766 	int ret;
9767 
9768 	inode = new_inode(dir->i_sb);
9769 	if (!inode)
9770 		return -ENOMEM;
9771 	inode_init_owner(idmap, inode, dir, mode);
9772 	inode->i_fop = &btrfs_file_operations;
9773 	inode->i_op = &btrfs_file_inode_operations;
9774 	inode->i_mapping->a_ops = &btrfs_aops;
9775 
9776 	new_inode_args.inode = inode;
9777 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9778 	if (ret)
9779 		goto out_inode;
9780 
9781 	trans = btrfs_start_transaction(root, trans_num_items);
9782 	if (IS_ERR(trans)) {
9783 		ret = PTR_ERR(trans);
9784 		goto out_new_inode_args;
9785 	}
9786 
9787 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9788 
9789 	/*
9790 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9791 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9792 	 * 0, through:
9793 	 *
9794 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9795 	 */
9796 	set_nlink(inode, 1);
9797 
9798 	if (!ret) {
9799 		d_tmpfile(file, inode);
9800 		unlock_new_inode(inode);
9801 		mark_inode_dirty(inode);
9802 	}
9803 
9804 	btrfs_end_transaction(trans);
9805 	btrfs_btree_balance_dirty(fs_info);
9806 out_new_inode_args:
9807 	btrfs_new_inode_args_destroy(&new_inode_args);
9808 out_inode:
9809 	if (ret)
9810 		iput(inode);
9811 	return finish_open_simple(file, ret);
9812 }
9813 
9814 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9815 {
9816 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9817 	unsigned long index = start >> PAGE_SHIFT;
9818 	unsigned long end_index = end >> PAGE_SHIFT;
9819 	struct page *page;
9820 	u32 len;
9821 
9822 	ASSERT(end + 1 - start <= U32_MAX);
9823 	len = end + 1 - start;
9824 	while (index <= end_index) {
9825 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9826 		ASSERT(page); /* Pages should be in the extent_io_tree */
9827 
9828 		btrfs_page_set_writeback(fs_info, page, start, len);
9829 		put_page(page);
9830 		index++;
9831 	}
9832 }
9833 
9834 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9835 					     int compress_type)
9836 {
9837 	switch (compress_type) {
9838 	case BTRFS_COMPRESS_NONE:
9839 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9840 	case BTRFS_COMPRESS_ZLIB:
9841 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9842 	case BTRFS_COMPRESS_LZO:
9843 		/*
9844 		 * The LZO format depends on the sector size. 64K is the maximum
9845 		 * sector size that we support.
9846 		 */
9847 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9848 			return -EINVAL;
9849 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9850 		       (fs_info->sectorsize_bits - 12);
9851 	case BTRFS_COMPRESS_ZSTD:
9852 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9853 	default:
9854 		return -EUCLEAN;
9855 	}
9856 }
9857 
9858 static ssize_t btrfs_encoded_read_inline(
9859 				struct kiocb *iocb,
9860 				struct iov_iter *iter, u64 start,
9861 				u64 lockend,
9862 				struct extent_state **cached_state,
9863 				u64 extent_start, size_t count,
9864 				struct btrfs_ioctl_encoded_io_args *encoded,
9865 				bool *unlocked)
9866 {
9867 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9868 	struct btrfs_root *root = inode->root;
9869 	struct btrfs_fs_info *fs_info = root->fs_info;
9870 	struct extent_io_tree *io_tree = &inode->io_tree;
9871 	struct btrfs_path *path;
9872 	struct extent_buffer *leaf;
9873 	struct btrfs_file_extent_item *item;
9874 	u64 ram_bytes;
9875 	unsigned long ptr;
9876 	void *tmp;
9877 	ssize_t ret;
9878 
9879 	path = btrfs_alloc_path();
9880 	if (!path) {
9881 		ret = -ENOMEM;
9882 		goto out;
9883 	}
9884 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9885 				       extent_start, 0);
9886 	if (ret) {
9887 		if (ret > 0) {
9888 			/* The extent item disappeared? */
9889 			ret = -EIO;
9890 		}
9891 		goto out;
9892 	}
9893 	leaf = path->nodes[0];
9894 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9895 
9896 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9897 	ptr = btrfs_file_extent_inline_start(item);
9898 
9899 	encoded->len = min_t(u64, extent_start + ram_bytes,
9900 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9901 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9902 				 btrfs_file_extent_compression(leaf, item));
9903 	if (ret < 0)
9904 		goto out;
9905 	encoded->compression = ret;
9906 	if (encoded->compression) {
9907 		size_t inline_size;
9908 
9909 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9910 								path->slots[0]);
9911 		if (inline_size > count) {
9912 			ret = -ENOBUFS;
9913 			goto out;
9914 		}
9915 		count = inline_size;
9916 		encoded->unencoded_len = ram_bytes;
9917 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9918 	} else {
9919 		count = min_t(u64, count, encoded->len);
9920 		encoded->len = count;
9921 		encoded->unencoded_len = count;
9922 		ptr += iocb->ki_pos - extent_start;
9923 	}
9924 
9925 	tmp = kmalloc(count, GFP_NOFS);
9926 	if (!tmp) {
9927 		ret = -ENOMEM;
9928 		goto out;
9929 	}
9930 	read_extent_buffer(leaf, tmp, ptr, count);
9931 	btrfs_release_path(path);
9932 	unlock_extent(io_tree, start, lockend, cached_state);
9933 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9934 	*unlocked = true;
9935 
9936 	ret = copy_to_iter(tmp, count, iter);
9937 	if (ret != count)
9938 		ret = -EFAULT;
9939 	kfree(tmp);
9940 out:
9941 	btrfs_free_path(path);
9942 	return ret;
9943 }
9944 
9945 struct btrfs_encoded_read_private {
9946 	wait_queue_head_t wait;
9947 	atomic_t pending;
9948 	blk_status_t status;
9949 };
9950 
9951 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9952 {
9953 	struct btrfs_encoded_read_private *priv = bbio->private;
9954 
9955 	if (bbio->bio.bi_status) {
9956 		/*
9957 		 * The memory barrier implied by the atomic_dec_return() here
9958 		 * pairs with the memory barrier implied by the
9959 		 * atomic_dec_return() or io_wait_event() in
9960 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9961 		 * write is observed before the load of status in
9962 		 * btrfs_encoded_read_regular_fill_pages().
9963 		 */
9964 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9965 	}
9966 	if (!atomic_dec_return(&priv->pending))
9967 		wake_up(&priv->wait);
9968 	bio_put(&bbio->bio);
9969 }
9970 
9971 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9972 					  u64 file_offset, u64 disk_bytenr,
9973 					  u64 disk_io_size, struct page **pages)
9974 {
9975 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9976 	struct btrfs_encoded_read_private priv = {
9977 		.pending = ATOMIC_INIT(1),
9978 	};
9979 	unsigned long i = 0;
9980 	struct btrfs_bio *bbio;
9981 
9982 	init_waitqueue_head(&priv.wait);
9983 
9984 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9985 			       btrfs_encoded_read_endio, &priv);
9986 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9987 	bbio->inode = inode;
9988 
9989 	do {
9990 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9991 
9992 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9993 			atomic_inc(&priv.pending);
9994 			btrfs_submit_bio(bbio, 0);
9995 
9996 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9997 					       btrfs_encoded_read_endio, &priv);
9998 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9999 			bbio->inode = inode;
10000 			continue;
10001 		}
10002 
10003 		i++;
10004 		disk_bytenr += bytes;
10005 		disk_io_size -= bytes;
10006 	} while (disk_io_size);
10007 
10008 	atomic_inc(&priv.pending);
10009 	btrfs_submit_bio(bbio, 0);
10010 
10011 	if (atomic_dec_return(&priv.pending))
10012 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10013 	/* See btrfs_encoded_read_endio() for ordering. */
10014 	return blk_status_to_errno(READ_ONCE(priv.status));
10015 }
10016 
10017 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10018 					  struct iov_iter *iter,
10019 					  u64 start, u64 lockend,
10020 					  struct extent_state **cached_state,
10021 					  u64 disk_bytenr, u64 disk_io_size,
10022 					  size_t count, bool compressed,
10023 					  bool *unlocked)
10024 {
10025 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10026 	struct extent_io_tree *io_tree = &inode->io_tree;
10027 	struct page **pages;
10028 	unsigned long nr_pages, i;
10029 	u64 cur;
10030 	size_t page_offset;
10031 	ssize_t ret;
10032 
10033 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10034 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10035 	if (!pages)
10036 		return -ENOMEM;
10037 	ret = btrfs_alloc_page_array(nr_pages, pages);
10038 	if (ret) {
10039 		ret = -ENOMEM;
10040 		goto out;
10041 		}
10042 
10043 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10044 						    disk_io_size, pages);
10045 	if (ret)
10046 		goto out;
10047 
10048 	unlock_extent(io_tree, start, lockend, cached_state);
10049 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10050 	*unlocked = true;
10051 
10052 	if (compressed) {
10053 		i = 0;
10054 		page_offset = 0;
10055 	} else {
10056 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10057 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10058 	}
10059 	cur = 0;
10060 	while (cur < count) {
10061 		size_t bytes = min_t(size_t, count - cur,
10062 				     PAGE_SIZE - page_offset);
10063 
10064 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10065 				      iter) != bytes) {
10066 			ret = -EFAULT;
10067 			goto out;
10068 		}
10069 		i++;
10070 		cur += bytes;
10071 		page_offset = 0;
10072 	}
10073 	ret = count;
10074 out:
10075 	for (i = 0; i < nr_pages; i++) {
10076 		if (pages[i])
10077 			__free_page(pages[i]);
10078 	}
10079 	kfree(pages);
10080 	return ret;
10081 }
10082 
10083 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10084 			   struct btrfs_ioctl_encoded_io_args *encoded)
10085 {
10086 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10087 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10088 	struct extent_io_tree *io_tree = &inode->io_tree;
10089 	ssize_t ret;
10090 	size_t count = iov_iter_count(iter);
10091 	u64 start, lockend, disk_bytenr, disk_io_size;
10092 	struct extent_state *cached_state = NULL;
10093 	struct extent_map *em;
10094 	bool unlocked = false;
10095 
10096 	file_accessed(iocb->ki_filp);
10097 
10098 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10099 
10100 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10101 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10102 		return 0;
10103 	}
10104 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10105 	/*
10106 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10107 	 * it's compressed we know that it won't be longer than this.
10108 	 */
10109 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10110 
10111 	for (;;) {
10112 		struct btrfs_ordered_extent *ordered;
10113 
10114 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10115 					       lockend - start + 1);
10116 		if (ret)
10117 			goto out_unlock_inode;
10118 		lock_extent(io_tree, start, lockend, &cached_state);
10119 		ordered = btrfs_lookup_ordered_range(inode, start,
10120 						     lockend - start + 1);
10121 		if (!ordered)
10122 			break;
10123 		btrfs_put_ordered_extent(ordered);
10124 		unlock_extent(io_tree, start, lockend, &cached_state);
10125 		cond_resched();
10126 	}
10127 
10128 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10129 	if (IS_ERR(em)) {
10130 		ret = PTR_ERR(em);
10131 		goto out_unlock_extent;
10132 	}
10133 
10134 	if (em->block_start == EXTENT_MAP_INLINE) {
10135 		u64 extent_start = em->start;
10136 
10137 		/*
10138 		 * For inline extents we get everything we need out of the
10139 		 * extent item.
10140 		 */
10141 		free_extent_map(em);
10142 		em = NULL;
10143 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10144 						&cached_state, extent_start,
10145 						count, encoded, &unlocked);
10146 		goto out;
10147 	}
10148 
10149 	/*
10150 	 * We only want to return up to EOF even if the extent extends beyond
10151 	 * that.
10152 	 */
10153 	encoded->len = min_t(u64, extent_map_end(em),
10154 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10155 	if (em->block_start == EXTENT_MAP_HOLE ||
10156 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10157 		disk_bytenr = EXTENT_MAP_HOLE;
10158 		count = min_t(u64, count, encoded->len);
10159 		encoded->len = count;
10160 		encoded->unencoded_len = count;
10161 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10162 		disk_bytenr = em->block_start;
10163 		/*
10164 		 * Bail if the buffer isn't large enough to return the whole
10165 		 * compressed extent.
10166 		 */
10167 		if (em->block_len > count) {
10168 			ret = -ENOBUFS;
10169 			goto out_em;
10170 		}
10171 		disk_io_size = em->block_len;
10172 		count = em->block_len;
10173 		encoded->unencoded_len = em->ram_bytes;
10174 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10175 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10176 							     em->compress_type);
10177 		if (ret < 0)
10178 			goto out_em;
10179 		encoded->compression = ret;
10180 	} else {
10181 		disk_bytenr = em->block_start + (start - em->start);
10182 		if (encoded->len > count)
10183 			encoded->len = count;
10184 		/*
10185 		 * Don't read beyond what we locked. This also limits the page
10186 		 * allocations that we'll do.
10187 		 */
10188 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10189 		count = start + disk_io_size - iocb->ki_pos;
10190 		encoded->len = count;
10191 		encoded->unencoded_len = count;
10192 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10193 	}
10194 	free_extent_map(em);
10195 	em = NULL;
10196 
10197 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10198 		unlock_extent(io_tree, start, lockend, &cached_state);
10199 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10200 		unlocked = true;
10201 		ret = iov_iter_zero(count, iter);
10202 		if (ret != count)
10203 			ret = -EFAULT;
10204 	} else {
10205 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10206 						 &cached_state, disk_bytenr,
10207 						 disk_io_size, count,
10208 						 encoded->compression,
10209 						 &unlocked);
10210 	}
10211 
10212 out:
10213 	if (ret >= 0)
10214 		iocb->ki_pos += encoded->len;
10215 out_em:
10216 	free_extent_map(em);
10217 out_unlock_extent:
10218 	if (!unlocked)
10219 		unlock_extent(io_tree, start, lockend, &cached_state);
10220 out_unlock_inode:
10221 	if (!unlocked)
10222 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10223 	return ret;
10224 }
10225 
10226 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10227 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10228 {
10229 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10230 	struct btrfs_root *root = inode->root;
10231 	struct btrfs_fs_info *fs_info = root->fs_info;
10232 	struct extent_io_tree *io_tree = &inode->io_tree;
10233 	struct extent_changeset *data_reserved = NULL;
10234 	struct extent_state *cached_state = NULL;
10235 	struct btrfs_ordered_extent *ordered;
10236 	int compression;
10237 	size_t orig_count;
10238 	u64 start, end;
10239 	u64 num_bytes, ram_bytes, disk_num_bytes;
10240 	unsigned long nr_pages, i;
10241 	struct page **pages;
10242 	struct btrfs_key ins;
10243 	bool extent_reserved = false;
10244 	struct extent_map *em;
10245 	ssize_t ret;
10246 
10247 	switch (encoded->compression) {
10248 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10249 		compression = BTRFS_COMPRESS_ZLIB;
10250 		break;
10251 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10252 		compression = BTRFS_COMPRESS_ZSTD;
10253 		break;
10254 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10255 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10256 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10257 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10258 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10259 		/* The sector size must match for LZO. */
10260 		if (encoded->compression -
10261 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10262 		    fs_info->sectorsize_bits)
10263 			return -EINVAL;
10264 		compression = BTRFS_COMPRESS_LZO;
10265 		break;
10266 	default:
10267 		return -EINVAL;
10268 	}
10269 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10270 		return -EINVAL;
10271 
10272 	/*
10273 	 * Compressed extents should always have checksums, so error out if we
10274 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10275 	 */
10276 	if (inode->flags & BTRFS_INODE_NODATASUM)
10277 		return -EINVAL;
10278 
10279 	orig_count = iov_iter_count(from);
10280 
10281 	/* The extent size must be sane. */
10282 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10283 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10284 		return -EINVAL;
10285 
10286 	/*
10287 	 * The compressed data must be smaller than the decompressed data.
10288 	 *
10289 	 * It's of course possible for data to compress to larger or the same
10290 	 * size, but the buffered I/O path falls back to no compression for such
10291 	 * data, and we don't want to break any assumptions by creating these
10292 	 * extents.
10293 	 *
10294 	 * Note that this is less strict than the current check we have that the
10295 	 * compressed data must be at least one sector smaller than the
10296 	 * decompressed data. We only want to enforce the weaker requirement
10297 	 * from old kernels that it is at least one byte smaller.
10298 	 */
10299 	if (orig_count >= encoded->unencoded_len)
10300 		return -EINVAL;
10301 
10302 	/* The extent must start on a sector boundary. */
10303 	start = iocb->ki_pos;
10304 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10305 		return -EINVAL;
10306 
10307 	/*
10308 	 * The extent must end on a sector boundary. However, we allow a write
10309 	 * which ends at or extends i_size to have an unaligned length; we round
10310 	 * up the extent size and set i_size to the unaligned end.
10311 	 */
10312 	if (start + encoded->len < inode->vfs_inode.i_size &&
10313 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10314 		return -EINVAL;
10315 
10316 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10317 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10318 		return -EINVAL;
10319 
10320 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10321 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10322 	end = start + num_bytes - 1;
10323 
10324 	/*
10325 	 * If the extent cannot be inline, the compressed data on disk must be
10326 	 * sector-aligned. For convenience, we extend it with zeroes if it
10327 	 * isn't.
10328 	 */
10329 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10330 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10331 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10332 	if (!pages)
10333 		return -ENOMEM;
10334 	for (i = 0; i < nr_pages; i++) {
10335 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10336 		char *kaddr;
10337 
10338 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10339 		if (!pages[i]) {
10340 			ret = -ENOMEM;
10341 			goto out_pages;
10342 		}
10343 		kaddr = kmap_local_page(pages[i]);
10344 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10345 			kunmap_local(kaddr);
10346 			ret = -EFAULT;
10347 			goto out_pages;
10348 		}
10349 		if (bytes < PAGE_SIZE)
10350 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10351 		kunmap_local(kaddr);
10352 	}
10353 
10354 	for (;;) {
10355 		struct btrfs_ordered_extent *ordered;
10356 
10357 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10358 		if (ret)
10359 			goto out_pages;
10360 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10361 						    start >> PAGE_SHIFT,
10362 						    end >> PAGE_SHIFT);
10363 		if (ret)
10364 			goto out_pages;
10365 		lock_extent(io_tree, start, end, &cached_state);
10366 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10367 		if (!ordered &&
10368 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10369 			break;
10370 		if (ordered)
10371 			btrfs_put_ordered_extent(ordered);
10372 		unlock_extent(io_tree, start, end, &cached_state);
10373 		cond_resched();
10374 	}
10375 
10376 	/*
10377 	 * We don't use the higher-level delalloc space functions because our
10378 	 * num_bytes and disk_num_bytes are different.
10379 	 */
10380 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10381 	if (ret)
10382 		goto out_unlock;
10383 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10384 	if (ret)
10385 		goto out_free_data_space;
10386 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10387 					      false);
10388 	if (ret)
10389 		goto out_qgroup_free_data;
10390 
10391 	/* Try an inline extent first. */
10392 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10393 	    encoded->unencoded_offset == 0) {
10394 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10395 					    compression, pages, true);
10396 		if (ret <= 0) {
10397 			if (ret == 0)
10398 				ret = orig_count;
10399 			goto out_delalloc_release;
10400 		}
10401 	}
10402 
10403 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10404 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10405 	if (ret)
10406 		goto out_delalloc_release;
10407 	extent_reserved = true;
10408 
10409 	em = create_io_em(inode, start, num_bytes,
10410 			  start - encoded->unencoded_offset, ins.objectid,
10411 			  ins.offset, ins.offset, ram_bytes, compression,
10412 			  BTRFS_ORDERED_COMPRESSED);
10413 	if (IS_ERR(em)) {
10414 		ret = PTR_ERR(em);
10415 		goto out_free_reserved;
10416 	}
10417 	free_extent_map(em);
10418 
10419 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10420 				       ins.objectid, ins.offset,
10421 				       encoded->unencoded_offset,
10422 				       (1 << BTRFS_ORDERED_ENCODED) |
10423 				       (1 << BTRFS_ORDERED_COMPRESSED),
10424 				       compression);
10425 	if (IS_ERR(ordered)) {
10426 		btrfs_drop_extent_map_range(inode, start, end, false);
10427 		ret = PTR_ERR(ordered);
10428 		goto out_free_reserved;
10429 	}
10430 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10431 
10432 	if (start + encoded->len > inode->vfs_inode.i_size)
10433 		i_size_write(&inode->vfs_inode, start + encoded->len);
10434 
10435 	unlock_extent(io_tree, start, end, &cached_state);
10436 
10437 	btrfs_delalloc_release_extents(inode, num_bytes);
10438 
10439 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10440 	ret = orig_count;
10441 	goto out;
10442 
10443 out_free_reserved:
10444 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10445 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10446 out_delalloc_release:
10447 	btrfs_delalloc_release_extents(inode, num_bytes);
10448 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10449 out_qgroup_free_data:
10450 	if (ret < 0)
10451 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10452 out_free_data_space:
10453 	/*
10454 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10455 	 * bytes_may_use.
10456 	 */
10457 	if (!extent_reserved)
10458 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10459 out_unlock:
10460 	unlock_extent(io_tree, start, end, &cached_state);
10461 out_pages:
10462 	for (i = 0; i < nr_pages; i++) {
10463 		if (pages[i])
10464 			__free_page(pages[i]);
10465 	}
10466 	kvfree(pages);
10467 out:
10468 	if (ret >= 0)
10469 		iocb->ki_pos += encoded->len;
10470 	return ret;
10471 }
10472 
10473 #ifdef CONFIG_SWAP
10474 /*
10475  * Add an entry indicating a block group or device which is pinned by a
10476  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10477  * negative errno on failure.
10478  */
10479 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10480 				  bool is_block_group)
10481 {
10482 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10483 	struct btrfs_swapfile_pin *sp, *entry;
10484 	struct rb_node **p;
10485 	struct rb_node *parent = NULL;
10486 
10487 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10488 	if (!sp)
10489 		return -ENOMEM;
10490 	sp->ptr = ptr;
10491 	sp->inode = inode;
10492 	sp->is_block_group = is_block_group;
10493 	sp->bg_extent_count = 1;
10494 
10495 	spin_lock(&fs_info->swapfile_pins_lock);
10496 	p = &fs_info->swapfile_pins.rb_node;
10497 	while (*p) {
10498 		parent = *p;
10499 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10500 		if (sp->ptr < entry->ptr ||
10501 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10502 			p = &(*p)->rb_left;
10503 		} else if (sp->ptr > entry->ptr ||
10504 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10505 			p = &(*p)->rb_right;
10506 		} else {
10507 			if (is_block_group)
10508 				entry->bg_extent_count++;
10509 			spin_unlock(&fs_info->swapfile_pins_lock);
10510 			kfree(sp);
10511 			return 1;
10512 		}
10513 	}
10514 	rb_link_node(&sp->node, parent, p);
10515 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10516 	spin_unlock(&fs_info->swapfile_pins_lock);
10517 	return 0;
10518 }
10519 
10520 /* Free all of the entries pinned by this swapfile. */
10521 static void btrfs_free_swapfile_pins(struct inode *inode)
10522 {
10523 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10524 	struct btrfs_swapfile_pin *sp;
10525 	struct rb_node *node, *next;
10526 
10527 	spin_lock(&fs_info->swapfile_pins_lock);
10528 	node = rb_first(&fs_info->swapfile_pins);
10529 	while (node) {
10530 		next = rb_next(node);
10531 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10532 		if (sp->inode == inode) {
10533 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10534 			if (sp->is_block_group) {
10535 				btrfs_dec_block_group_swap_extents(sp->ptr,
10536 							   sp->bg_extent_count);
10537 				btrfs_put_block_group(sp->ptr);
10538 			}
10539 			kfree(sp);
10540 		}
10541 		node = next;
10542 	}
10543 	spin_unlock(&fs_info->swapfile_pins_lock);
10544 }
10545 
10546 struct btrfs_swap_info {
10547 	u64 start;
10548 	u64 block_start;
10549 	u64 block_len;
10550 	u64 lowest_ppage;
10551 	u64 highest_ppage;
10552 	unsigned long nr_pages;
10553 	int nr_extents;
10554 };
10555 
10556 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10557 				 struct btrfs_swap_info *bsi)
10558 {
10559 	unsigned long nr_pages;
10560 	unsigned long max_pages;
10561 	u64 first_ppage, first_ppage_reported, next_ppage;
10562 	int ret;
10563 
10564 	/*
10565 	 * Our swapfile may have had its size extended after the swap header was
10566 	 * written. In that case activating the swapfile should not go beyond
10567 	 * the max size set in the swap header.
10568 	 */
10569 	if (bsi->nr_pages >= sis->max)
10570 		return 0;
10571 
10572 	max_pages = sis->max - bsi->nr_pages;
10573 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10574 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10575 
10576 	if (first_ppage >= next_ppage)
10577 		return 0;
10578 	nr_pages = next_ppage - first_ppage;
10579 	nr_pages = min(nr_pages, max_pages);
10580 
10581 	first_ppage_reported = first_ppage;
10582 	if (bsi->start == 0)
10583 		first_ppage_reported++;
10584 	if (bsi->lowest_ppage > first_ppage_reported)
10585 		bsi->lowest_ppage = first_ppage_reported;
10586 	if (bsi->highest_ppage < (next_ppage - 1))
10587 		bsi->highest_ppage = next_ppage - 1;
10588 
10589 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10590 	if (ret < 0)
10591 		return ret;
10592 	bsi->nr_extents += ret;
10593 	bsi->nr_pages += nr_pages;
10594 	return 0;
10595 }
10596 
10597 static void btrfs_swap_deactivate(struct file *file)
10598 {
10599 	struct inode *inode = file_inode(file);
10600 
10601 	btrfs_free_swapfile_pins(inode);
10602 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10603 }
10604 
10605 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10606 			       sector_t *span)
10607 {
10608 	struct inode *inode = file_inode(file);
10609 	struct btrfs_root *root = BTRFS_I(inode)->root;
10610 	struct btrfs_fs_info *fs_info = root->fs_info;
10611 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10612 	struct extent_state *cached_state = NULL;
10613 	struct extent_map *em = NULL;
10614 	struct btrfs_device *device = NULL;
10615 	struct btrfs_swap_info bsi = {
10616 		.lowest_ppage = (sector_t)-1ULL,
10617 	};
10618 	int ret = 0;
10619 	u64 isize;
10620 	u64 start;
10621 
10622 	/*
10623 	 * If the swap file was just created, make sure delalloc is done. If the
10624 	 * file changes again after this, the user is doing something stupid and
10625 	 * we don't really care.
10626 	 */
10627 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10628 	if (ret)
10629 		return ret;
10630 
10631 	/*
10632 	 * The inode is locked, so these flags won't change after we check them.
10633 	 */
10634 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10635 		btrfs_warn(fs_info, "swapfile must not be compressed");
10636 		return -EINVAL;
10637 	}
10638 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10639 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10640 		return -EINVAL;
10641 	}
10642 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10643 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10644 		return -EINVAL;
10645 	}
10646 
10647 	/*
10648 	 * Balance or device remove/replace/resize can move stuff around from
10649 	 * under us. The exclop protection makes sure they aren't running/won't
10650 	 * run concurrently while we are mapping the swap extents, and
10651 	 * fs_info->swapfile_pins prevents them from running while the swap
10652 	 * file is active and moving the extents. Note that this also prevents
10653 	 * a concurrent device add which isn't actually necessary, but it's not
10654 	 * really worth the trouble to allow it.
10655 	 */
10656 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10657 		btrfs_warn(fs_info,
10658 	   "cannot activate swapfile while exclusive operation is running");
10659 		return -EBUSY;
10660 	}
10661 
10662 	/*
10663 	 * Prevent snapshot creation while we are activating the swap file.
10664 	 * We do not want to race with snapshot creation. If snapshot creation
10665 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10666 	 * completes before the first write into the swap file after it is
10667 	 * activated, than that write would fallback to COW.
10668 	 */
10669 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10670 		btrfs_exclop_finish(fs_info);
10671 		btrfs_warn(fs_info,
10672 	   "cannot activate swapfile because snapshot creation is in progress");
10673 		return -EINVAL;
10674 	}
10675 	/*
10676 	 * Snapshots can create extents which require COW even if NODATACOW is
10677 	 * set. We use this counter to prevent snapshots. We must increment it
10678 	 * before walking the extents because we don't want a concurrent
10679 	 * snapshot to run after we've already checked the extents.
10680 	 *
10681 	 * It is possible that subvolume is marked for deletion but still not
10682 	 * removed yet. To prevent this race, we check the root status before
10683 	 * activating the swapfile.
10684 	 */
10685 	spin_lock(&root->root_item_lock);
10686 	if (btrfs_root_dead(root)) {
10687 		spin_unlock(&root->root_item_lock);
10688 
10689 		btrfs_exclop_finish(fs_info);
10690 		btrfs_warn(fs_info,
10691 		"cannot activate swapfile because subvolume %llu is being deleted",
10692 			root->root_key.objectid);
10693 		return -EPERM;
10694 	}
10695 	atomic_inc(&root->nr_swapfiles);
10696 	spin_unlock(&root->root_item_lock);
10697 
10698 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10699 
10700 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10701 	start = 0;
10702 	while (start < isize) {
10703 		u64 logical_block_start, physical_block_start;
10704 		struct btrfs_block_group *bg;
10705 		u64 len = isize - start;
10706 
10707 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10708 		if (IS_ERR(em)) {
10709 			ret = PTR_ERR(em);
10710 			goto out;
10711 		}
10712 
10713 		if (em->block_start == EXTENT_MAP_HOLE) {
10714 			btrfs_warn(fs_info, "swapfile must not have holes");
10715 			ret = -EINVAL;
10716 			goto out;
10717 		}
10718 		if (em->block_start == EXTENT_MAP_INLINE) {
10719 			/*
10720 			 * It's unlikely we'll ever actually find ourselves
10721 			 * here, as a file small enough to fit inline won't be
10722 			 * big enough to store more than the swap header, but in
10723 			 * case something changes in the future, let's catch it
10724 			 * here rather than later.
10725 			 */
10726 			btrfs_warn(fs_info, "swapfile must not be inline");
10727 			ret = -EINVAL;
10728 			goto out;
10729 		}
10730 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10731 			btrfs_warn(fs_info, "swapfile must not be compressed");
10732 			ret = -EINVAL;
10733 			goto out;
10734 		}
10735 
10736 		logical_block_start = em->block_start + (start - em->start);
10737 		len = min(len, em->len - (start - em->start));
10738 		free_extent_map(em);
10739 		em = NULL;
10740 
10741 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10742 		if (ret < 0) {
10743 			goto out;
10744 		} else if (ret) {
10745 			ret = 0;
10746 		} else {
10747 			btrfs_warn(fs_info,
10748 				   "swapfile must not be copy-on-write");
10749 			ret = -EINVAL;
10750 			goto out;
10751 		}
10752 
10753 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10754 		if (IS_ERR(em)) {
10755 			ret = PTR_ERR(em);
10756 			goto out;
10757 		}
10758 
10759 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10760 			btrfs_warn(fs_info,
10761 				   "swapfile must have single data profile");
10762 			ret = -EINVAL;
10763 			goto out;
10764 		}
10765 
10766 		if (device == NULL) {
10767 			device = em->map_lookup->stripes[0].dev;
10768 			ret = btrfs_add_swapfile_pin(inode, device, false);
10769 			if (ret == 1)
10770 				ret = 0;
10771 			else if (ret)
10772 				goto out;
10773 		} else if (device != em->map_lookup->stripes[0].dev) {
10774 			btrfs_warn(fs_info, "swapfile must be on one device");
10775 			ret = -EINVAL;
10776 			goto out;
10777 		}
10778 
10779 		physical_block_start = (em->map_lookup->stripes[0].physical +
10780 					(logical_block_start - em->start));
10781 		len = min(len, em->len - (logical_block_start - em->start));
10782 		free_extent_map(em);
10783 		em = NULL;
10784 
10785 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10786 		if (!bg) {
10787 			btrfs_warn(fs_info,
10788 			   "could not find block group containing swapfile");
10789 			ret = -EINVAL;
10790 			goto out;
10791 		}
10792 
10793 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10794 			btrfs_warn(fs_info,
10795 			   "block group for swapfile at %llu is read-only%s",
10796 			   bg->start,
10797 			   atomic_read(&fs_info->scrubs_running) ?
10798 				       " (scrub running)" : "");
10799 			btrfs_put_block_group(bg);
10800 			ret = -EINVAL;
10801 			goto out;
10802 		}
10803 
10804 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10805 		if (ret) {
10806 			btrfs_put_block_group(bg);
10807 			if (ret == 1)
10808 				ret = 0;
10809 			else
10810 				goto out;
10811 		}
10812 
10813 		if (bsi.block_len &&
10814 		    bsi.block_start + bsi.block_len == physical_block_start) {
10815 			bsi.block_len += len;
10816 		} else {
10817 			if (bsi.block_len) {
10818 				ret = btrfs_add_swap_extent(sis, &bsi);
10819 				if (ret)
10820 					goto out;
10821 			}
10822 			bsi.start = start;
10823 			bsi.block_start = physical_block_start;
10824 			bsi.block_len = len;
10825 		}
10826 
10827 		start += len;
10828 	}
10829 
10830 	if (bsi.block_len)
10831 		ret = btrfs_add_swap_extent(sis, &bsi);
10832 
10833 out:
10834 	if (!IS_ERR_OR_NULL(em))
10835 		free_extent_map(em);
10836 
10837 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10838 
10839 	if (ret)
10840 		btrfs_swap_deactivate(file);
10841 
10842 	btrfs_drew_write_unlock(&root->snapshot_lock);
10843 
10844 	btrfs_exclop_finish(fs_info);
10845 
10846 	if (ret)
10847 		return ret;
10848 
10849 	if (device)
10850 		sis->bdev = device->bdev;
10851 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10852 	sis->max = bsi.nr_pages;
10853 	sis->pages = bsi.nr_pages - 1;
10854 	sis->highest_bit = bsi.nr_pages - 1;
10855 	return bsi.nr_extents;
10856 }
10857 #else
10858 static void btrfs_swap_deactivate(struct file *file)
10859 {
10860 }
10861 
10862 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10863 			       sector_t *span)
10864 {
10865 	return -EOPNOTSUPP;
10866 }
10867 #endif
10868 
10869 /*
10870  * Update the number of bytes used in the VFS' inode. When we replace extents in
10871  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10872  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10873  * always get a correct value.
10874  */
10875 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10876 			      const u64 add_bytes,
10877 			      const u64 del_bytes)
10878 {
10879 	if (add_bytes == del_bytes)
10880 		return;
10881 
10882 	spin_lock(&inode->lock);
10883 	if (del_bytes > 0)
10884 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10885 	if (add_bytes > 0)
10886 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10887 	spin_unlock(&inode->lock);
10888 }
10889 
10890 /*
10891  * Verify that there are no ordered extents for a given file range.
10892  *
10893  * @inode:   The target inode.
10894  * @start:   Start offset of the file range, should be sector size aligned.
10895  * @end:     End offset (inclusive) of the file range, its value +1 should be
10896  *           sector size aligned.
10897  *
10898  * This should typically be used for cases where we locked an inode's VFS lock in
10899  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10900  * we have flushed all delalloc in the range, we have waited for all ordered
10901  * extents in the range to complete and finally we have locked the file range in
10902  * the inode's io_tree.
10903  */
10904 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10905 {
10906 	struct btrfs_root *root = inode->root;
10907 	struct btrfs_ordered_extent *ordered;
10908 
10909 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10910 		return;
10911 
10912 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10913 	if (ordered) {
10914 		btrfs_err(root->fs_info,
10915 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10916 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10917 			  ordered->file_offset,
10918 			  ordered->file_offset + ordered->num_bytes - 1);
10919 		btrfs_put_ordered_extent(ordered);
10920 	}
10921 
10922 	ASSERT(ordered == NULL);
10923 }
10924 
10925 static const struct inode_operations btrfs_dir_inode_operations = {
10926 	.getattr	= btrfs_getattr,
10927 	.lookup		= btrfs_lookup,
10928 	.create		= btrfs_create,
10929 	.unlink		= btrfs_unlink,
10930 	.link		= btrfs_link,
10931 	.mkdir		= btrfs_mkdir,
10932 	.rmdir		= btrfs_rmdir,
10933 	.rename		= btrfs_rename2,
10934 	.symlink	= btrfs_symlink,
10935 	.setattr	= btrfs_setattr,
10936 	.mknod		= btrfs_mknod,
10937 	.listxattr	= btrfs_listxattr,
10938 	.permission	= btrfs_permission,
10939 	.get_inode_acl	= btrfs_get_acl,
10940 	.set_acl	= btrfs_set_acl,
10941 	.update_time	= btrfs_update_time,
10942 	.tmpfile        = btrfs_tmpfile,
10943 	.fileattr_get	= btrfs_fileattr_get,
10944 	.fileattr_set	= btrfs_fileattr_set,
10945 };
10946 
10947 static const struct file_operations btrfs_dir_file_operations = {
10948 	.llseek		= btrfs_dir_llseek,
10949 	.read		= generic_read_dir,
10950 	.iterate_shared	= btrfs_real_readdir,
10951 	.open		= btrfs_opendir,
10952 	.unlocked_ioctl	= btrfs_ioctl,
10953 #ifdef CONFIG_COMPAT
10954 	.compat_ioctl	= btrfs_compat_ioctl,
10955 #endif
10956 	.release        = btrfs_release_file,
10957 	.fsync		= btrfs_sync_file,
10958 };
10959 
10960 /*
10961  * btrfs doesn't support the bmap operation because swapfiles
10962  * use bmap to make a mapping of extents in the file.  They assume
10963  * these extents won't change over the life of the file and they
10964  * use the bmap result to do IO directly to the drive.
10965  *
10966  * the btrfs bmap call would return logical addresses that aren't
10967  * suitable for IO and they also will change frequently as COW
10968  * operations happen.  So, swapfile + btrfs == corruption.
10969  *
10970  * For now we're avoiding this by dropping bmap.
10971  */
10972 static const struct address_space_operations btrfs_aops = {
10973 	.read_folio	= btrfs_read_folio,
10974 	.writepages	= btrfs_writepages,
10975 	.readahead	= btrfs_readahead,
10976 	.invalidate_folio = btrfs_invalidate_folio,
10977 	.release_folio	= btrfs_release_folio,
10978 	.migrate_folio	= btrfs_migrate_folio,
10979 	.dirty_folio	= filemap_dirty_folio,
10980 	.error_remove_page = generic_error_remove_page,
10981 	.swap_activate	= btrfs_swap_activate,
10982 	.swap_deactivate = btrfs_swap_deactivate,
10983 };
10984 
10985 static const struct inode_operations btrfs_file_inode_operations = {
10986 	.getattr	= btrfs_getattr,
10987 	.setattr	= btrfs_setattr,
10988 	.listxattr      = btrfs_listxattr,
10989 	.permission	= btrfs_permission,
10990 	.fiemap		= btrfs_fiemap,
10991 	.get_inode_acl	= btrfs_get_acl,
10992 	.set_acl	= btrfs_set_acl,
10993 	.update_time	= btrfs_update_time,
10994 	.fileattr_get	= btrfs_fileattr_get,
10995 	.fileattr_set	= btrfs_fileattr_set,
10996 };
10997 static const struct inode_operations btrfs_special_inode_operations = {
10998 	.getattr	= btrfs_getattr,
10999 	.setattr	= btrfs_setattr,
11000 	.permission	= btrfs_permission,
11001 	.listxattr	= btrfs_listxattr,
11002 	.get_inode_acl	= btrfs_get_acl,
11003 	.set_acl	= btrfs_set_acl,
11004 	.update_time	= btrfs_update_time,
11005 };
11006 static const struct inode_operations btrfs_symlink_inode_operations = {
11007 	.get_link	= page_get_link,
11008 	.getattr	= btrfs_getattr,
11009 	.setattr	= btrfs_setattr,
11010 	.permission	= btrfs_permission,
11011 	.listxattr	= btrfs_listxattr,
11012 	.update_time	= btrfs_update_time,
11013 };
11014 
11015 const struct dentry_operations btrfs_dentry_operations = {
11016 	.d_delete	= btrfs_dentry_delete,
11017 };
11018