1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 #include "fs.h" 59 #include "accessors.h" 60 #include "extent-tree.h" 61 #include "root-tree.h" 62 #include "defrag.h" 63 #include "dir-item.h" 64 #include "file-item.h" 65 #include "uuid-tree.h" 66 #include "ioctl.h" 67 #include "file.h" 68 #include "acl.h" 69 #include "relocation.h" 70 #include "verity.h" 71 #include "super.h" 72 #include "orphan.h" 73 #include "backref.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_dio_data { 81 ssize_t submitted; 82 struct extent_changeset *data_reserved; 83 struct btrfs_ordered_extent *ordered; 84 bool data_space_reserved; 85 bool nocow_done; 86 }; 87 88 struct btrfs_dio_private { 89 /* Range of I/O */ 90 u64 file_offset; 91 u32 bytes; 92 93 /* This must be last */ 94 struct btrfs_bio bbio; 95 }; 96 97 static struct bio_set btrfs_dio_bioset; 98 99 struct btrfs_rename_ctx { 100 /* Output field. Stores the index number of the old directory entry. */ 101 u64 index; 102 }; 103 104 /* 105 * Used by data_reloc_print_warning_inode() to pass needed info for filename 106 * resolution and output of error message. 107 */ 108 struct data_reloc_warn { 109 struct btrfs_path path; 110 struct btrfs_fs_info *fs_info; 111 u64 extent_item_size; 112 u64 logical; 113 int mirror_num; 114 }; 115 116 static const struct inode_operations btrfs_dir_inode_operations; 117 static const struct inode_operations btrfs_symlink_inode_operations; 118 static const struct inode_operations btrfs_special_inode_operations; 119 static const struct inode_operations btrfs_file_inode_operations; 120 static const struct address_space_operations btrfs_aops; 121 static const struct file_operations btrfs_dir_file_operations; 122 123 static struct kmem_cache *btrfs_inode_cachep; 124 125 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 127 128 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 129 struct page *locked_page, u64 start, 130 u64 end, struct writeback_control *wbc, 131 bool pages_dirty); 132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 133 u64 len, u64 orig_start, u64 block_start, 134 u64 block_len, u64 orig_block_len, 135 u64 ram_bytes, int compress_type, 136 int type); 137 138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 139 u64 root, void *warn_ctx) 140 { 141 struct data_reloc_warn *warn = warn_ctx; 142 struct btrfs_fs_info *fs_info = warn->fs_info; 143 struct extent_buffer *eb; 144 struct btrfs_inode_item *inode_item; 145 struct inode_fs_paths *ipath = NULL; 146 struct btrfs_root *local_root; 147 struct btrfs_key key; 148 unsigned int nofs_flag; 149 u32 nlink; 150 int ret; 151 152 local_root = btrfs_get_fs_root(fs_info, root, true); 153 if (IS_ERR(local_root)) { 154 ret = PTR_ERR(local_root); 155 goto err; 156 } 157 158 /* This makes the path point to (inum INODE_ITEM ioff). */ 159 key.objectid = inum; 160 key.type = BTRFS_INODE_ITEM_KEY; 161 key.offset = 0; 162 163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 164 if (ret) { 165 btrfs_put_root(local_root); 166 btrfs_release_path(&warn->path); 167 goto err; 168 } 169 170 eb = warn->path.nodes[0]; 171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 172 nlink = btrfs_inode_nlink(eb, inode_item); 173 btrfs_release_path(&warn->path); 174 175 nofs_flag = memalloc_nofs_save(); 176 ipath = init_ipath(4096, local_root, &warn->path); 177 memalloc_nofs_restore(nofs_flag); 178 if (IS_ERR(ipath)) { 179 btrfs_put_root(local_root); 180 ret = PTR_ERR(ipath); 181 ipath = NULL; 182 /* 183 * -ENOMEM, not a critical error, just output an generic error 184 * without filename. 185 */ 186 btrfs_warn(fs_info, 187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 188 warn->logical, warn->mirror_num, root, inum, offset); 189 return ret; 190 } 191 ret = paths_from_inode(inum, ipath); 192 if (ret < 0) 193 goto err; 194 195 /* 196 * We deliberately ignore the bit ipath might have been too small to 197 * hold all of the paths here 198 */ 199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 200 btrfs_warn(fs_info, 201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 202 warn->logical, warn->mirror_num, root, inum, offset, 203 fs_info->sectorsize, nlink, 204 (char *)(unsigned long)ipath->fspath->val[i]); 205 } 206 207 btrfs_put_root(local_root); 208 free_ipath(ipath); 209 return 0; 210 211 err: 212 btrfs_warn(fs_info, 213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 214 warn->logical, warn->mirror_num, root, inum, offset, ret); 215 216 free_ipath(ipath); 217 return ret; 218 } 219 220 /* 221 * Do extra user-friendly error output (e.g. lookup all the affected files). 222 * 223 * Return true if we succeeded doing the backref lookup. 224 * Return false if such lookup failed, and has to fallback to the old error message. 225 */ 226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 227 const u8 *csum, const u8 *csum_expected, 228 int mirror_num) 229 { 230 struct btrfs_fs_info *fs_info = inode->root->fs_info; 231 struct btrfs_path path = { 0 }; 232 struct btrfs_key found_key = { 0 }; 233 struct extent_buffer *eb; 234 struct btrfs_extent_item *ei; 235 const u32 csum_size = fs_info->csum_size; 236 u64 logical; 237 u64 flags; 238 u32 item_size; 239 int ret; 240 241 mutex_lock(&fs_info->reloc_mutex); 242 logical = btrfs_get_reloc_bg_bytenr(fs_info); 243 mutex_unlock(&fs_info->reloc_mutex); 244 245 if (logical == U64_MAX) { 246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 249 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 250 CSUM_FMT_VALUE(csum_size, csum), 251 CSUM_FMT_VALUE(csum_size, csum_expected), 252 mirror_num); 253 return; 254 } 255 256 logical += file_off; 257 btrfs_warn_rl(fs_info, 258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 259 inode->root->root_key.objectid, 260 btrfs_ino(inode), file_off, logical, 261 CSUM_FMT_VALUE(csum_size, csum), 262 CSUM_FMT_VALUE(csum_size, csum_expected), 263 mirror_num); 264 265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 266 if (ret < 0) { 267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 268 logical, ret); 269 return; 270 } 271 eb = path.nodes[0]; 272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 273 item_size = btrfs_item_size(eb, path.slots[0]); 274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 275 unsigned long ptr = 0; 276 u64 ref_root; 277 u8 ref_level; 278 279 while (true) { 280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 281 item_size, &ref_root, 282 &ref_level); 283 if (ret < 0) { 284 btrfs_warn_rl(fs_info, 285 "failed to resolve tree backref for logical %llu: %d", 286 logical, ret); 287 break; 288 } 289 if (ret > 0) 290 break; 291 292 btrfs_warn_rl(fs_info, 293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 294 logical, mirror_num, 295 (ref_level ? "node" : "leaf"), 296 ref_level, ref_root); 297 } 298 btrfs_release_path(&path); 299 } else { 300 struct btrfs_backref_walk_ctx ctx = { 0 }; 301 struct data_reloc_warn reloc_warn = { 0 }; 302 303 btrfs_release_path(&path); 304 305 ctx.bytenr = found_key.objectid; 306 ctx.extent_item_pos = logical - found_key.objectid; 307 ctx.fs_info = fs_info; 308 309 reloc_warn.logical = logical; 310 reloc_warn.extent_item_size = found_key.offset; 311 reloc_warn.mirror_num = mirror_num; 312 reloc_warn.fs_info = fs_info; 313 314 iterate_extent_inodes(&ctx, true, 315 data_reloc_print_warning_inode, &reloc_warn); 316 } 317 } 318 319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 321 { 322 struct btrfs_root *root = inode->root; 323 const u32 csum_size = root->fs_info->csum_size; 324 325 /* For data reloc tree, it's better to do a backref lookup instead. */ 326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 327 return print_data_reloc_error(inode, logical_start, csum, 328 csum_expected, mirror_num); 329 330 /* Output without objectid, which is more meaningful */ 331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 332 btrfs_warn_rl(root->fs_info, 333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 334 root->root_key.objectid, btrfs_ino(inode), 335 logical_start, 336 CSUM_FMT_VALUE(csum_size, csum), 337 CSUM_FMT_VALUE(csum_size, csum_expected), 338 mirror_num); 339 } else { 340 btrfs_warn_rl(root->fs_info, 341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 342 root->root_key.objectid, btrfs_ino(inode), 343 logical_start, 344 CSUM_FMT_VALUE(csum_size, csum), 345 CSUM_FMT_VALUE(csum_size, csum_expected), 346 mirror_num); 347 } 348 } 349 350 /* 351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 352 * 353 * ilock_flags can have the following bit set: 354 * 355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 357 * return -EAGAIN 358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 359 */ 360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 361 { 362 if (ilock_flags & BTRFS_ILOCK_SHARED) { 363 if (ilock_flags & BTRFS_ILOCK_TRY) { 364 if (!inode_trylock_shared(&inode->vfs_inode)) 365 return -EAGAIN; 366 else 367 return 0; 368 } 369 inode_lock_shared(&inode->vfs_inode); 370 } else { 371 if (ilock_flags & BTRFS_ILOCK_TRY) { 372 if (!inode_trylock(&inode->vfs_inode)) 373 return -EAGAIN; 374 else 375 return 0; 376 } 377 inode_lock(&inode->vfs_inode); 378 } 379 if (ilock_flags & BTRFS_ILOCK_MMAP) 380 down_write(&inode->i_mmap_lock); 381 return 0; 382 } 383 384 /* 385 * btrfs_inode_unlock - unock inode i_rwsem 386 * 387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 388 * to decide whether the lock acquired is shared or exclusive. 389 */ 390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 391 { 392 if (ilock_flags & BTRFS_ILOCK_MMAP) 393 up_write(&inode->i_mmap_lock); 394 if (ilock_flags & BTRFS_ILOCK_SHARED) 395 inode_unlock_shared(&inode->vfs_inode); 396 else 397 inode_unlock(&inode->vfs_inode); 398 } 399 400 /* 401 * Cleanup all submitted ordered extents in specified range to handle errors 402 * from the btrfs_run_delalloc_range() callback. 403 * 404 * NOTE: caller must ensure that when an error happens, it can not call 405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 407 * to be released, which we want to happen only when finishing the ordered 408 * extent (btrfs_finish_ordered_io()). 409 */ 410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 411 struct page *locked_page, 412 u64 offset, u64 bytes) 413 { 414 unsigned long index = offset >> PAGE_SHIFT; 415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 416 u64 page_start = 0, page_end = 0; 417 struct page *page; 418 419 if (locked_page) { 420 page_start = page_offset(locked_page); 421 page_end = page_start + PAGE_SIZE - 1; 422 } 423 424 while (index <= end_index) { 425 /* 426 * For locked page, we will call btrfs_mark_ordered_io_finished 427 * through btrfs_mark_ordered_io_finished() on it 428 * in run_delalloc_range() for the error handling, which will 429 * clear page Ordered and run the ordered extent accounting. 430 * 431 * Here we can't just clear the Ordered bit, or 432 * btrfs_mark_ordered_io_finished() would skip the accounting 433 * for the page range, and the ordered extent will never finish. 434 */ 435 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 436 index++; 437 continue; 438 } 439 page = find_get_page(inode->vfs_inode.i_mapping, index); 440 index++; 441 if (!page) 442 continue; 443 444 /* 445 * Here we just clear all Ordered bits for every page in the 446 * range, then btrfs_mark_ordered_io_finished() will handle 447 * the ordered extent accounting for the range. 448 */ 449 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 450 offset, bytes); 451 put_page(page); 452 } 453 454 if (locked_page) { 455 /* The locked page covers the full range, nothing needs to be done */ 456 if (bytes + offset <= page_start + PAGE_SIZE) 457 return; 458 /* 459 * In case this page belongs to the delalloc range being 460 * instantiated then skip it, since the first page of a range is 461 * going to be properly cleaned up by the caller of 462 * run_delalloc_range 463 */ 464 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 465 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 466 offset = page_offset(locked_page) + PAGE_SIZE; 467 } 468 } 469 470 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 471 } 472 473 static int btrfs_dirty_inode(struct btrfs_inode *inode); 474 475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 476 struct btrfs_new_inode_args *args) 477 { 478 int err; 479 480 if (args->default_acl) { 481 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 482 ACL_TYPE_DEFAULT); 483 if (err) 484 return err; 485 } 486 if (args->acl) { 487 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 488 if (err) 489 return err; 490 } 491 if (!args->default_acl && !args->acl) 492 cache_no_acl(args->inode); 493 return btrfs_xattr_security_init(trans, args->inode, args->dir, 494 &args->dentry->d_name); 495 } 496 497 /* 498 * this does all the hard work for inserting an inline extent into 499 * the btree. The caller should have done a btrfs_drop_extents so that 500 * no overlapping inline items exist in the btree 501 */ 502 static int insert_inline_extent(struct btrfs_trans_handle *trans, 503 struct btrfs_path *path, 504 struct btrfs_inode *inode, bool extent_inserted, 505 size_t size, size_t compressed_size, 506 int compress_type, 507 struct page **compressed_pages, 508 bool update_i_size) 509 { 510 struct btrfs_root *root = inode->root; 511 struct extent_buffer *leaf; 512 struct page *page = NULL; 513 char *kaddr; 514 unsigned long ptr; 515 struct btrfs_file_extent_item *ei; 516 int ret; 517 size_t cur_size = size; 518 u64 i_size; 519 520 ASSERT((compressed_size > 0 && compressed_pages) || 521 (compressed_size == 0 && !compressed_pages)); 522 523 if (compressed_size && compressed_pages) 524 cur_size = compressed_size; 525 526 if (!extent_inserted) { 527 struct btrfs_key key; 528 size_t datasize; 529 530 key.objectid = btrfs_ino(inode); 531 key.offset = 0; 532 key.type = BTRFS_EXTENT_DATA_KEY; 533 534 datasize = btrfs_file_extent_calc_inline_size(cur_size); 535 ret = btrfs_insert_empty_item(trans, root, path, &key, 536 datasize); 537 if (ret) 538 goto fail; 539 } 540 leaf = path->nodes[0]; 541 ei = btrfs_item_ptr(leaf, path->slots[0], 542 struct btrfs_file_extent_item); 543 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 544 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 545 btrfs_set_file_extent_encryption(leaf, ei, 0); 546 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 547 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 548 ptr = btrfs_file_extent_inline_start(ei); 549 550 if (compress_type != BTRFS_COMPRESS_NONE) { 551 struct page *cpage; 552 int i = 0; 553 while (compressed_size > 0) { 554 cpage = compressed_pages[i]; 555 cur_size = min_t(unsigned long, compressed_size, 556 PAGE_SIZE); 557 558 kaddr = kmap_local_page(cpage); 559 write_extent_buffer(leaf, kaddr, ptr, cur_size); 560 kunmap_local(kaddr); 561 562 i++; 563 ptr += cur_size; 564 compressed_size -= cur_size; 565 } 566 btrfs_set_file_extent_compression(leaf, ei, 567 compress_type); 568 } else { 569 page = find_get_page(inode->vfs_inode.i_mapping, 0); 570 btrfs_set_file_extent_compression(leaf, ei, 0); 571 kaddr = kmap_local_page(page); 572 write_extent_buffer(leaf, kaddr, ptr, size); 573 kunmap_local(kaddr); 574 put_page(page); 575 } 576 btrfs_mark_buffer_dirty(trans, leaf); 577 btrfs_release_path(path); 578 579 /* 580 * We align size to sectorsize for inline extents just for simplicity 581 * sake. 582 */ 583 ret = btrfs_inode_set_file_extent_range(inode, 0, 584 ALIGN(size, root->fs_info->sectorsize)); 585 if (ret) 586 goto fail; 587 588 /* 589 * We're an inline extent, so nobody can extend the file past i_size 590 * without locking a page we already have locked. 591 * 592 * We must do any i_size and inode updates before we unlock the pages. 593 * Otherwise we could end up racing with unlink. 594 */ 595 i_size = i_size_read(&inode->vfs_inode); 596 if (update_i_size && size > i_size) { 597 i_size_write(&inode->vfs_inode, size); 598 i_size = size; 599 } 600 inode->disk_i_size = i_size; 601 602 fail: 603 return ret; 604 } 605 606 607 /* 608 * conditionally insert an inline extent into the file. This 609 * does the checks required to make sure the data is small enough 610 * to fit as an inline extent. 611 */ 612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 613 size_t compressed_size, 614 int compress_type, 615 struct page **compressed_pages, 616 bool update_i_size) 617 { 618 struct btrfs_drop_extents_args drop_args = { 0 }; 619 struct btrfs_root *root = inode->root; 620 struct btrfs_fs_info *fs_info = root->fs_info; 621 struct btrfs_trans_handle *trans; 622 u64 data_len = (compressed_size ?: size); 623 int ret; 624 struct btrfs_path *path; 625 626 /* 627 * We can create an inline extent if it ends at or beyond the current 628 * i_size, is no larger than a sector (decompressed), and the (possibly 629 * compressed) data fits in a leaf and the configured maximum inline 630 * size. 631 */ 632 if (size < i_size_read(&inode->vfs_inode) || 633 size > fs_info->sectorsize || 634 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 635 data_len > fs_info->max_inline) 636 return 1; 637 638 path = btrfs_alloc_path(); 639 if (!path) 640 return -ENOMEM; 641 642 trans = btrfs_join_transaction(root); 643 if (IS_ERR(trans)) { 644 btrfs_free_path(path); 645 return PTR_ERR(trans); 646 } 647 trans->block_rsv = &inode->block_rsv; 648 649 drop_args.path = path; 650 drop_args.start = 0; 651 drop_args.end = fs_info->sectorsize; 652 drop_args.drop_cache = true; 653 drop_args.replace_extent = true; 654 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 655 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 656 if (ret) { 657 btrfs_abort_transaction(trans, ret); 658 goto out; 659 } 660 661 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 662 size, compressed_size, compress_type, 663 compressed_pages, update_i_size); 664 if (ret && ret != -ENOSPC) { 665 btrfs_abort_transaction(trans, ret); 666 goto out; 667 } else if (ret == -ENOSPC) { 668 ret = 1; 669 goto out; 670 } 671 672 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 673 ret = btrfs_update_inode(trans, root, inode); 674 if (ret && ret != -ENOSPC) { 675 btrfs_abort_transaction(trans, ret); 676 goto out; 677 } else if (ret == -ENOSPC) { 678 ret = 1; 679 goto out; 680 } 681 682 btrfs_set_inode_full_sync(inode); 683 out: 684 /* 685 * Don't forget to free the reserved space, as for inlined extent 686 * it won't count as data extent, free them directly here. 687 * And at reserve time, it's always aligned to page size, so 688 * just free one page here. 689 */ 690 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 691 btrfs_free_path(path); 692 btrfs_end_transaction(trans); 693 return ret; 694 } 695 696 struct async_extent { 697 u64 start; 698 u64 ram_size; 699 u64 compressed_size; 700 struct page **pages; 701 unsigned long nr_pages; 702 int compress_type; 703 struct list_head list; 704 }; 705 706 struct async_chunk { 707 struct btrfs_inode *inode; 708 struct page *locked_page; 709 u64 start; 710 u64 end; 711 blk_opf_t write_flags; 712 struct list_head extents; 713 struct cgroup_subsys_state *blkcg_css; 714 struct btrfs_work work; 715 struct async_cow *async_cow; 716 }; 717 718 struct async_cow { 719 atomic_t num_chunks; 720 struct async_chunk chunks[]; 721 }; 722 723 static noinline int add_async_extent(struct async_chunk *cow, 724 u64 start, u64 ram_size, 725 u64 compressed_size, 726 struct page **pages, 727 unsigned long nr_pages, 728 int compress_type) 729 { 730 struct async_extent *async_extent; 731 732 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 733 BUG_ON(!async_extent); /* -ENOMEM */ 734 async_extent->start = start; 735 async_extent->ram_size = ram_size; 736 async_extent->compressed_size = compressed_size; 737 async_extent->pages = pages; 738 async_extent->nr_pages = nr_pages; 739 async_extent->compress_type = compress_type; 740 list_add_tail(&async_extent->list, &cow->extents); 741 return 0; 742 } 743 744 /* 745 * Check if the inode needs to be submitted to compression, based on mount 746 * options, defragmentation, properties or heuristics. 747 */ 748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 749 u64 end) 750 { 751 struct btrfs_fs_info *fs_info = inode->root->fs_info; 752 753 if (!btrfs_inode_can_compress(inode)) { 754 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 755 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 756 btrfs_ino(inode)); 757 return 0; 758 } 759 /* 760 * Special check for subpage. 761 * 762 * We lock the full page then run each delalloc range in the page, thus 763 * for the following case, we will hit some subpage specific corner case: 764 * 765 * 0 32K 64K 766 * | |///////| |///////| 767 * \- A \- B 768 * 769 * In above case, both range A and range B will try to unlock the full 770 * page [0, 64K), causing the one finished later will have page 771 * unlocked already, triggering various page lock requirement BUG_ON()s. 772 * 773 * So here we add an artificial limit that subpage compression can only 774 * if the range is fully page aligned. 775 * 776 * In theory we only need to ensure the first page is fully covered, but 777 * the tailing partial page will be locked until the full compression 778 * finishes, delaying the write of other range. 779 * 780 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 781 * first to prevent any submitted async extent to unlock the full page. 782 * By this, we can ensure for subpage case that only the last async_cow 783 * will unlock the full page. 784 */ 785 if (fs_info->sectorsize < PAGE_SIZE) { 786 if (!PAGE_ALIGNED(start) || 787 !PAGE_ALIGNED(end + 1)) 788 return 0; 789 } 790 791 /* force compress */ 792 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 793 return 1; 794 /* defrag ioctl */ 795 if (inode->defrag_compress) 796 return 1; 797 /* bad compression ratios */ 798 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 799 return 0; 800 if (btrfs_test_opt(fs_info, COMPRESS) || 801 inode->flags & BTRFS_INODE_COMPRESS || 802 inode->prop_compress) 803 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 804 return 0; 805 } 806 807 static inline void inode_should_defrag(struct btrfs_inode *inode, 808 u64 start, u64 end, u64 num_bytes, u32 small_write) 809 { 810 /* If this is a small write inside eof, kick off a defrag */ 811 if (num_bytes < small_write && 812 (start > 0 || end + 1 < inode->disk_i_size)) 813 btrfs_add_inode_defrag(NULL, inode, small_write); 814 } 815 816 /* 817 * Work queue call back to started compression on a file and pages. 818 * 819 * This is done inside an ordered work queue, and the compression is spread 820 * across many cpus. The actual IO submission is step two, and the ordered work 821 * queue takes care of making sure that happens in the same order things were 822 * put onto the queue by writepages and friends. 823 * 824 * If this code finds it can't get good compression, it puts an entry onto the 825 * work queue to write the uncompressed bytes. This makes sure that both 826 * compressed inodes and uncompressed inodes are written in the same order that 827 * the flusher thread sent them down. 828 */ 829 static void compress_file_range(struct btrfs_work *work) 830 { 831 struct async_chunk *async_chunk = 832 container_of(work, struct async_chunk, work); 833 struct btrfs_inode *inode = async_chunk->inode; 834 struct btrfs_fs_info *fs_info = inode->root->fs_info; 835 struct address_space *mapping = inode->vfs_inode.i_mapping; 836 u64 blocksize = fs_info->sectorsize; 837 u64 start = async_chunk->start; 838 u64 end = async_chunk->end; 839 u64 actual_end; 840 u64 i_size; 841 int ret = 0; 842 struct page **pages; 843 unsigned long nr_pages; 844 unsigned long total_compressed = 0; 845 unsigned long total_in = 0; 846 unsigned int poff; 847 int i; 848 int compress_type = fs_info->compress_type; 849 850 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 851 852 /* 853 * We need to call clear_page_dirty_for_io on each page in the range. 854 * Otherwise applications with the file mmap'd can wander in and change 855 * the page contents while we are compressing them. 856 */ 857 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 858 859 /* 860 * We need to save i_size before now because it could change in between 861 * us evaluating the size and assigning it. This is because we lock and 862 * unlock the page in truncate and fallocate, and then modify the i_size 863 * later on. 864 * 865 * The barriers are to emulate READ_ONCE, remove that once i_size_read 866 * does that for us. 867 */ 868 barrier(); 869 i_size = i_size_read(&inode->vfs_inode); 870 barrier(); 871 actual_end = min_t(u64, i_size, end + 1); 872 again: 873 pages = NULL; 874 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 875 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 876 877 /* 878 * we don't want to send crud past the end of i_size through 879 * compression, that's just a waste of CPU time. So, if the 880 * end of the file is before the start of our current 881 * requested range of bytes, we bail out to the uncompressed 882 * cleanup code that can deal with all of this. 883 * 884 * It isn't really the fastest way to fix things, but this is a 885 * very uncommon corner. 886 */ 887 if (actual_end <= start) 888 goto cleanup_and_bail_uncompressed; 889 890 total_compressed = actual_end - start; 891 892 /* 893 * Skip compression for a small file range(<=blocksize) that 894 * isn't an inline extent, since it doesn't save disk space at all. 895 */ 896 if (total_compressed <= blocksize && 897 (start > 0 || end + 1 < inode->disk_i_size)) 898 goto cleanup_and_bail_uncompressed; 899 900 /* 901 * For subpage case, we require full page alignment for the sector 902 * aligned range. 903 * Thus we must also check against @actual_end, not just @end. 904 */ 905 if (blocksize < PAGE_SIZE) { 906 if (!PAGE_ALIGNED(start) || 907 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 908 goto cleanup_and_bail_uncompressed; 909 } 910 911 total_compressed = min_t(unsigned long, total_compressed, 912 BTRFS_MAX_UNCOMPRESSED); 913 total_in = 0; 914 ret = 0; 915 916 /* 917 * We do compression for mount -o compress and when the inode has not 918 * been flagged as NOCOMPRESS. This flag can change at any time if we 919 * discover bad compression ratios. 920 */ 921 if (!inode_need_compress(inode, start, end)) 922 goto cleanup_and_bail_uncompressed; 923 924 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 925 if (!pages) { 926 /* 927 * Memory allocation failure is not a fatal error, we can fall 928 * back to uncompressed code. 929 */ 930 goto cleanup_and_bail_uncompressed; 931 } 932 933 if (inode->defrag_compress) 934 compress_type = inode->defrag_compress; 935 else if (inode->prop_compress) 936 compress_type = inode->prop_compress; 937 938 /* Compression level is applied here. */ 939 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4), 940 mapping, start, pages, &nr_pages, &total_in, 941 &total_compressed); 942 if (ret) 943 goto mark_incompressible; 944 945 /* 946 * Zero the tail end of the last page, as we might be sending it down 947 * to disk. 948 */ 949 poff = offset_in_page(total_compressed); 950 if (poff) 951 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff); 952 953 /* 954 * Try to create an inline extent. 955 * 956 * If we didn't compress the entire range, try to create an uncompressed 957 * inline extent, else a compressed one. 958 * 959 * Check cow_file_range() for why we don't even try to create inline 960 * extent for the subpage case. 961 */ 962 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 963 if (total_in < actual_end) { 964 ret = cow_file_range_inline(inode, actual_end, 0, 965 BTRFS_COMPRESS_NONE, NULL, 966 false); 967 } else { 968 ret = cow_file_range_inline(inode, actual_end, 969 total_compressed, 970 compress_type, pages, 971 false); 972 } 973 if (ret <= 0) { 974 unsigned long clear_flags = EXTENT_DELALLOC | 975 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 976 EXTENT_DO_ACCOUNTING; 977 978 if (ret < 0) 979 mapping_set_error(mapping, -EIO); 980 981 /* 982 * inline extent creation worked or returned error, 983 * we don't need to create any more async work items. 984 * Unlock and free up our temp pages. 985 * 986 * We use DO_ACCOUNTING here because we need the 987 * delalloc_release_metadata to be done _after_ we drop 988 * our outstanding extent for clearing delalloc for this 989 * range. 990 */ 991 extent_clear_unlock_delalloc(inode, start, end, 992 NULL, 993 clear_flags, 994 PAGE_UNLOCK | 995 PAGE_START_WRITEBACK | 996 PAGE_END_WRITEBACK); 997 goto free_pages; 998 } 999 } 1000 1001 /* 1002 * We aren't doing an inline extent. Round the compressed size up to a 1003 * block size boundary so the allocator does sane things. 1004 */ 1005 total_compressed = ALIGN(total_compressed, blocksize); 1006 1007 /* 1008 * One last check to make sure the compression is really a win, compare 1009 * the page count read with the blocks on disk, compression must free at 1010 * least one sector. 1011 */ 1012 total_in = round_up(total_in, fs_info->sectorsize); 1013 if (total_compressed + blocksize > total_in) 1014 goto mark_incompressible; 1015 1016 /* 1017 * The async work queues will take care of doing actual allocation on 1018 * disk for these compressed pages, and will submit the bios. 1019 */ 1020 add_async_extent(async_chunk, start, total_in, total_compressed, pages, 1021 nr_pages, compress_type); 1022 if (start + total_in < end) { 1023 start += total_in; 1024 cond_resched(); 1025 goto again; 1026 } 1027 return; 1028 1029 mark_incompressible: 1030 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1031 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1032 cleanup_and_bail_uncompressed: 1033 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1034 BTRFS_COMPRESS_NONE); 1035 free_pages: 1036 if (pages) { 1037 for (i = 0; i < nr_pages; i++) { 1038 WARN_ON(pages[i]->mapping); 1039 put_page(pages[i]); 1040 } 1041 kfree(pages); 1042 } 1043 } 1044 1045 static void free_async_extent_pages(struct async_extent *async_extent) 1046 { 1047 int i; 1048 1049 if (!async_extent->pages) 1050 return; 1051 1052 for (i = 0; i < async_extent->nr_pages; i++) { 1053 WARN_ON(async_extent->pages[i]->mapping); 1054 put_page(async_extent->pages[i]); 1055 } 1056 kfree(async_extent->pages); 1057 async_extent->nr_pages = 0; 1058 async_extent->pages = NULL; 1059 } 1060 1061 static void submit_uncompressed_range(struct btrfs_inode *inode, 1062 struct async_extent *async_extent, 1063 struct page *locked_page) 1064 { 1065 u64 start = async_extent->start; 1066 u64 end = async_extent->start + async_extent->ram_size - 1; 1067 int ret; 1068 struct writeback_control wbc = { 1069 .sync_mode = WB_SYNC_ALL, 1070 .range_start = start, 1071 .range_end = end, 1072 .no_cgroup_owner = 1, 1073 }; 1074 1075 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1076 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1077 wbc_detach_inode(&wbc); 1078 if (ret < 0) { 1079 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1080 if (locked_page) { 1081 const u64 page_start = page_offset(locked_page); 1082 1083 set_page_writeback(locked_page); 1084 end_page_writeback(locked_page); 1085 btrfs_mark_ordered_io_finished(inode, locked_page, 1086 page_start, PAGE_SIZE, 1087 !ret); 1088 mapping_set_error(locked_page->mapping, ret); 1089 unlock_page(locked_page); 1090 } 1091 } 1092 } 1093 1094 static void submit_one_async_extent(struct async_chunk *async_chunk, 1095 struct async_extent *async_extent, 1096 u64 *alloc_hint) 1097 { 1098 struct btrfs_inode *inode = async_chunk->inode; 1099 struct extent_io_tree *io_tree = &inode->io_tree; 1100 struct btrfs_root *root = inode->root; 1101 struct btrfs_fs_info *fs_info = root->fs_info; 1102 struct btrfs_ordered_extent *ordered; 1103 struct btrfs_key ins; 1104 struct page *locked_page = NULL; 1105 struct extent_map *em; 1106 int ret = 0; 1107 u64 start = async_extent->start; 1108 u64 end = async_extent->start + async_extent->ram_size - 1; 1109 1110 if (async_chunk->blkcg_css) 1111 kthread_associate_blkcg(async_chunk->blkcg_css); 1112 1113 /* 1114 * If async_chunk->locked_page is in the async_extent range, we need to 1115 * handle it. 1116 */ 1117 if (async_chunk->locked_page) { 1118 u64 locked_page_start = page_offset(async_chunk->locked_page); 1119 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1120 1121 if (!(start >= locked_page_end || end <= locked_page_start)) 1122 locked_page = async_chunk->locked_page; 1123 } 1124 lock_extent(io_tree, start, end, NULL); 1125 1126 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1127 submit_uncompressed_range(inode, async_extent, locked_page); 1128 goto done; 1129 } 1130 1131 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1132 async_extent->compressed_size, 1133 async_extent->compressed_size, 1134 0, *alloc_hint, &ins, 1, 1); 1135 if (ret) { 1136 /* 1137 * Here we used to try again by going back to non-compressed 1138 * path for ENOSPC. But we can't reserve space even for 1139 * compressed size, how could it work for uncompressed size 1140 * which requires larger size? So here we directly go error 1141 * path. 1142 */ 1143 goto out_free; 1144 } 1145 1146 /* Here we're doing allocation and writeback of the compressed pages */ 1147 em = create_io_em(inode, start, 1148 async_extent->ram_size, /* len */ 1149 start, /* orig_start */ 1150 ins.objectid, /* block_start */ 1151 ins.offset, /* block_len */ 1152 ins.offset, /* orig_block_len */ 1153 async_extent->ram_size, /* ram_bytes */ 1154 async_extent->compress_type, 1155 BTRFS_ORDERED_COMPRESSED); 1156 if (IS_ERR(em)) { 1157 ret = PTR_ERR(em); 1158 goto out_free_reserve; 1159 } 1160 free_extent_map(em); 1161 1162 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1163 async_extent->ram_size, /* num_bytes */ 1164 async_extent->ram_size, /* ram_bytes */ 1165 ins.objectid, /* disk_bytenr */ 1166 ins.offset, /* disk_num_bytes */ 1167 0, /* offset */ 1168 1 << BTRFS_ORDERED_COMPRESSED, 1169 async_extent->compress_type); 1170 if (IS_ERR(ordered)) { 1171 btrfs_drop_extent_map_range(inode, start, end, false); 1172 ret = PTR_ERR(ordered); 1173 goto out_free_reserve; 1174 } 1175 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1176 1177 /* Clear dirty, set writeback and unlock the pages. */ 1178 extent_clear_unlock_delalloc(inode, start, end, 1179 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1180 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1181 btrfs_submit_compressed_write(ordered, 1182 async_extent->pages, /* compressed_pages */ 1183 async_extent->nr_pages, 1184 async_chunk->write_flags, true); 1185 *alloc_hint = ins.objectid + ins.offset; 1186 done: 1187 if (async_chunk->blkcg_css) 1188 kthread_associate_blkcg(NULL); 1189 kfree(async_extent); 1190 return; 1191 1192 out_free_reserve: 1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1195 out_free: 1196 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1197 extent_clear_unlock_delalloc(inode, start, end, 1198 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1199 EXTENT_DELALLOC_NEW | 1200 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1201 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1202 PAGE_END_WRITEBACK); 1203 free_async_extent_pages(async_extent); 1204 if (async_chunk->blkcg_css) 1205 kthread_associate_blkcg(NULL); 1206 btrfs_debug(fs_info, 1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1208 root->root_key.objectid, btrfs_ino(inode), start, 1209 async_extent->ram_size, ret); 1210 kfree(async_extent); 1211 } 1212 1213 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1214 u64 num_bytes) 1215 { 1216 struct extent_map_tree *em_tree = &inode->extent_tree; 1217 struct extent_map *em; 1218 u64 alloc_hint = 0; 1219 1220 read_lock(&em_tree->lock); 1221 em = search_extent_mapping(em_tree, start, num_bytes); 1222 if (em) { 1223 /* 1224 * if block start isn't an actual block number then find the 1225 * first block in this inode and use that as a hint. If that 1226 * block is also bogus then just don't worry about it. 1227 */ 1228 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1229 free_extent_map(em); 1230 em = search_extent_mapping(em_tree, 0, 0); 1231 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1232 alloc_hint = em->block_start; 1233 if (em) 1234 free_extent_map(em); 1235 } else { 1236 alloc_hint = em->block_start; 1237 free_extent_map(em); 1238 } 1239 } 1240 read_unlock(&em_tree->lock); 1241 1242 return alloc_hint; 1243 } 1244 1245 /* 1246 * when extent_io.c finds a delayed allocation range in the file, 1247 * the call backs end up in this code. The basic idea is to 1248 * allocate extents on disk for the range, and create ordered data structs 1249 * in ram to track those extents. 1250 * 1251 * locked_page is the page that writepage had locked already. We use 1252 * it to make sure we don't do extra locks or unlocks. 1253 * 1254 * When this function fails, it unlocks all pages except @locked_page. 1255 * 1256 * When this function successfully creates an inline extent, it returns 1 and 1257 * unlocks all pages including locked_page and starts I/O on them. 1258 * (In reality inline extents are limited to a single page, so locked_page is 1259 * the only page handled anyway). 1260 * 1261 * When this function succeed and creates a normal extent, the page locking 1262 * status depends on the passed in flags: 1263 * 1264 * - If @keep_locked is set, all pages are kept locked. 1265 * - Else all pages except for @locked_page are unlocked. 1266 * 1267 * When a failure happens in the second or later iteration of the 1268 * while-loop, the ordered extents created in previous iterations are kept 1269 * intact. So, the caller must clean them up by calling 1270 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1271 * example. 1272 */ 1273 static noinline int cow_file_range(struct btrfs_inode *inode, 1274 struct page *locked_page, u64 start, u64 end, 1275 u64 *done_offset, 1276 bool keep_locked, bool no_inline) 1277 { 1278 struct btrfs_root *root = inode->root; 1279 struct btrfs_fs_info *fs_info = root->fs_info; 1280 u64 alloc_hint = 0; 1281 u64 orig_start = start; 1282 u64 num_bytes; 1283 unsigned long ram_size; 1284 u64 cur_alloc_size = 0; 1285 u64 min_alloc_size; 1286 u64 blocksize = fs_info->sectorsize; 1287 struct btrfs_key ins; 1288 struct extent_map *em; 1289 unsigned clear_bits; 1290 unsigned long page_ops; 1291 bool extent_reserved = false; 1292 int ret = 0; 1293 1294 if (btrfs_is_free_space_inode(inode)) { 1295 ret = -EINVAL; 1296 goto out_unlock; 1297 } 1298 1299 num_bytes = ALIGN(end - start + 1, blocksize); 1300 num_bytes = max(blocksize, num_bytes); 1301 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1302 1303 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1304 1305 /* 1306 * Due to the page size limit, for subpage we can only trigger the 1307 * writeback for the dirty sectors of page, that means data writeback 1308 * is doing more writeback than what we want. 1309 * 1310 * This is especially unexpected for some call sites like fallocate, 1311 * where we only increase i_size after everything is done. 1312 * This means we can trigger inline extent even if we didn't want to. 1313 * So here we skip inline extent creation completely. 1314 */ 1315 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) { 1316 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1317 end + 1); 1318 1319 /* lets try to make an inline extent */ 1320 ret = cow_file_range_inline(inode, actual_end, 0, 1321 BTRFS_COMPRESS_NONE, NULL, false); 1322 if (ret == 0) { 1323 /* 1324 * We use DO_ACCOUNTING here because we need the 1325 * delalloc_release_metadata to be run _after_ we drop 1326 * our outstanding extent for clearing delalloc for this 1327 * range. 1328 */ 1329 extent_clear_unlock_delalloc(inode, start, end, 1330 locked_page, 1331 EXTENT_LOCKED | EXTENT_DELALLOC | 1332 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1333 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1334 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1335 /* 1336 * locked_page is locked by the caller of 1337 * writepage_delalloc(), not locked by 1338 * __process_pages_contig(). 1339 * 1340 * We can't let __process_pages_contig() to unlock it, 1341 * as it doesn't have any subpage::writers recorded. 1342 * 1343 * Here we manually unlock the page, since the caller 1344 * can't determine if it's an inline extent or a 1345 * compressed extent. 1346 */ 1347 unlock_page(locked_page); 1348 ret = 1; 1349 goto done; 1350 } else if (ret < 0) { 1351 goto out_unlock; 1352 } 1353 } 1354 1355 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1356 1357 /* 1358 * Relocation relies on the relocated extents to have exactly the same 1359 * size as the original extents. Normally writeback for relocation data 1360 * extents follows a NOCOW path because relocation preallocates the 1361 * extents. However, due to an operation such as scrub turning a block 1362 * group to RO mode, it may fallback to COW mode, so we must make sure 1363 * an extent allocated during COW has exactly the requested size and can 1364 * not be split into smaller extents, otherwise relocation breaks and 1365 * fails during the stage where it updates the bytenr of file extent 1366 * items. 1367 */ 1368 if (btrfs_is_data_reloc_root(root)) 1369 min_alloc_size = num_bytes; 1370 else 1371 min_alloc_size = fs_info->sectorsize; 1372 1373 while (num_bytes > 0) { 1374 struct btrfs_ordered_extent *ordered; 1375 1376 cur_alloc_size = num_bytes; 1377 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1378 min_alloc_size, 0, alloc_hint, 1379 &ins, 1, 1); 1380 if (ret == -EAGAIN) { 1381 /* 1382 * btrfs_reserve_extent only returns -EAGAIN for zoned 1383 * file systems, which is an indication that there are 1384 * no active zones to allocate from at the moment. 1385 * 1386 * If this is the first loop iteration, wait for at 1387 * least one zone to finish before retrying the 1388 * allocation. Otherwise ask the caller to write out 1389 * the already allocated blocks before coming back to 1390 * us, or return -ENOSPC if it can't handle retries. 1391 */ 1392 ASSERT(btrfs_is_zoned(fs_info)); 1393 if (start == orig_start) { 1394 wait_on_bit_io(&inode->root->fs_info->flags, 1395 BTRFS_FS_NEED_ZONE_FINISH, 1396 TASK_UNINTERRUPTIBLE); 1397 continue; 1398 } 1399 if (done_offset) { 1400 *done_offset = start - 1; 1401 return 0; 1402 } 1403 ret = -ENOSPC; 1404 } 1405 if (ret < 0) 1406 goto out_unlock; 1407 cur_alloc_size = ins.offset; 1408 extent_reserved = true; 1409 1410 ram_size = ins.offset; 1411 em = create_io_em(inode, start, ins.offset, /* len */ 1412 start, /* orig_start */ 1413 ins.objectid, /* block_start */ 1414 ins.offset, /* block_len */ 1415 ins.offset, /* orig_block_len */ 1416 ram_size, /* ram_bytes */ 1417 BTRFS_COMPRESS_NONE, /* compress_type */ 1418 BTRFS_ORDERED_REGULAR /* type */); 1419 if (IS_ERR(em)) { 1420 ret = PTR_ERR(em); 1421 goto out_reserve; 1422 } 1423 free_extent_map(em); 1424 1425 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1426 ram_size, ins.objectid, cur_alloc_size, 1427 0, 1 << BTRFS_ORDERED_REGULAR, 1428 BTRFS_COMPRESS_NONE); 1429 if (IS_ERR(ordered)) { 1430 ret = PTR_ERR(ordered); 1431 goto out_drop_extent_cache; 1432 } 1433 1434 if (btrfs_is_data_reloc_root(root)) { 1435 ret = btrfs_reloc_clone_csums(ordered); 1436 1437 /* 1438 * Only drop cache here, and process as normal. 1439 * 1440 * We must not allow extent_clear_unlock_delalloc() 1441 * at out_unlock label to free meta of this ordered 1442 * extent, as its meta should be freed by 1443 * btrfs_finish_ordered_io(). 1444 * 1445 * So we must continue until @start is increased to 1446 * skip current ordered extent. 1447 */ 1448 if (ret) 1449 btrfs_drop_extent_map_range(inode, start, 1450 start + ram_size - 1, 1451 false); 1452 } 1453 btrfs_put_ordered_extent(ordered); 1454 1455 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1456 1457 /* 1458 * We're not doing compressed IO, don't unlock the first page 1459 * (which the caller expects to stay locked), don't clear any 1460 * dirty bits and don't set any writeback bits 1461 * 1462 * Do set the Ordered (Private2) bit so we know this page was 1463 * properly setup for writepage. 1464 */ 1465 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1466 page_ops |= PAGE_SET_ORDERED; 1467 1468 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1469 locked_page, 1470 EXTENT_LOCKED | EXTENT_DELALLOC, 1471 page_ops); 1472 if (num_bytes < cur_alloc_size) 1473 num_bytes = 0; 1474 else 1475 num_bytes -= cur_alloc_size; 1476 alloc_hint = ins.objectid + ins.offset; 1477 start += cur_alloc_size; 1478 extent_reserved = false; 1479 1480 /* 1481 * btrfs_reloc_clone_csums() error, since start is increased 1482 * extent_clear_unlock_delalloc() at out_unlock label won't 1483 * free metadata of current ordered extent, we're OK to exit. 1484 */ 1485 if (ret) 1486 goto out_unlock; 1487 } 1488 done: 1489 if (done_offset) 1490 *done_offset = end; 1491 return ret; 1492 1493 out_drop_extent_cache: 1494 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1495 out_reserve: 1496 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1497 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1498 out_unlock: 1499 /* 1500 * Now, we have three regions to clean up: 1501 * 1502 * |-------(1)----|---(2)---|-------------(3)----------| 1503 * `- orig_start `- start `- start + cur_alloc_size `- end 1504 * 1505 * We process each region below. 1506 */ 1507 1508 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1509 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1510 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1511 1512 /* 1513 * For the range (1). We have already instantiated the ordered extents 1514 * for this region. They are cleaned up by 1515 * btrfs_cleanup_ordered_extents() in e.g, 1516 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1517 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1518 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1519 * function. 1520 * 1521 * However, in case of @keep_locked, we still need to unlock the pages 1522 * (except @locked_page) to ensure all the pages are unlocked. 1523 */ 1524 if (keep_locked && orig_start < start) { 1525 if (!locked_page) 1526 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1527 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1528 locked_page, 0, page_ops); 1529 } 1530 1531 /* 1532 * For the range (2). If we reserved an extent for our delalloc range 1533 * (or a subrange) and failed to create the respective ordered extent, 1534 * then it means that when we reserved the extent we decremented the 1535 * extent's size from the data space_info's bytes_may_use counter and 1536 * incremented the space_info's bytes_reserved counter by the same 1537 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1538 * to decrement again the data space_info's bytes_may_use counter, 1539 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1540 */ 1541 if (extent_reserved) { 1542 extent_clear_unlock_delalloc(inode, start, 1543 start + cur_alloc_size - 1, 1544 locked_page, 1545 clear_bits, 1546 page_ops); 1547 start += cur_alloc_size; 1548 } 1549 1550 /* 1551 * For the range (3). We never touched the region. In addition to the 1552 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1553 * space_info's bytes_may_use counter, reserved in 1554 * btrfs_check_data_free_space(). 1555 */ 1556 if (start < end) { 1557 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1558 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1559 clear_bits, page_ops); 1560 } 1561 return ret; 1562 } 1563 1564 /* 1565 * Phase two of compressed writeback. This is the ordered portion of the code, 1566 * which only gets called in the order the work was queued. We walk all the 1567 * async extents created by compress_file_range and send them down to the disk. 1568 */ 1569 static noinline void submit_compressed_extents(struct btrfs_work *work) 1570 { 1571 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1572 work); 1573 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1574 struct async_extent *async_extent; 1575 unsigned long nr_pages; 1576 u64 alloc_hint = 0; 1577 1578 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1579 PAGE_SHIFT; 1580 1581 while (!list_empty(&async_chunk->extents)) { 1582 async_extent = list_entry(async_chunk->extents.next, 1583 struct async_extent, list); 1584 list_del(&async_extent->list); 1585 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1586 } 1587 1588 /* atomic_sub_return implies a barrier */ 1589 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1590 5 * SZ_1M) 1591 cond_wake_up_nomb(&fs_info->async_submit_wait); 1592 } 1593 1594 static noinline void async_cow_free(struct btrfs_work *work) 1595 { 1596 struct async_chunk *async_chunk; 1597 struct async_cow *async_cow; 1598 1599 async_chunk = container_of(work, struct async_chunk, work); 1600 btrfs_add_delayed_iput(async_chunk->inode); 1601 if (async_chunk->blkcg_css) 1602 css_put(async_chunk->blkcg_css); 1603 1604 async_cow = async_chunk->async_cow; 1605 if (atomic_dec_and_test(&async_cow->num_chunks)) 1606 kvfree(async_cow); 1607 } 1608 1609 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1610 struct page *locked_page, u64 start, 1611 u64 end, struct writeback_control *wbc) 1612 { 1613 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1614 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1615 struct async_cow *ctx; 1616 struct async_chunk *async_chunk; 1617 unsigned long nr_pages; 1618 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1619 int i; 1620 unsigned nofs_flag; 1621 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1622 1623 nofs_flag = memalloc_nofs_save(); 1624 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1625 memalloc_nofs_restore(nofs_flag); 1626 if (!ctx) 1627 return false; 1628 1629 unlock_extent(&inode->io_tree, start, end, NULL); 1630 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1631 1632 async_chunk = ctx->chunks; 1633 atomic_set(&ctx->num_chunks, num_chunks); 1634 1635 for (i = 0; i < num_chunks; i++) { 1636 u64 cur_end = min(end, start + SZ_512K - 1); 1637 1638 /* 1639 * igrab is called higher up in the call chain, take only the 1640 * lightweight reference for the callback lifetime 1641 */ 1642 ihold(&inode->vfs_inode); 1643 async_chunk[i].async_cow = ctx; 1644 async_chunk[i].inode = inode; 1645 async_chunk[i].start = start; 1646 async_chunk[i].end = cur_end; 1647 async_chunk[i].write_flags = write_flags; 1648 INIT_LIST_HEAD(&async_chunk[i].extents); 1649 1650 /* 1651 * The locked_page comes all the way from writepage and its 1652 * the original page we were actually given. As we spread 1653 * this large delalloc region across multiple async_chunk 1654 * structs, only the first struct needs a pointer to locked_page 1655 * 1656 * This way we don't need racey decisions about who is supposed 1657 * to unlock it. 1658 */ 1659 if (locked_page) { 1660 /* 1661 * Depending on the compressibility, the pages might or 1662 * might not go through async. We want all of them to 1663 * be accounted against wbc once. Let's do it here 1664 * before the paths diverge. wbc accounting is used 1665 * only for foreign writeback detection and doesn't 1666 * need full accuracy. Just account the whole thing 1667 * against the first page. 1668 */ 1669 wbc_account_cgroup_owner(wbc, locked_page, 1670 cur_end - start); 1671 async_chunk[i].locked_page = locked_page; 1672 locked_page = NULL; 1673 } else { 1674 async_chunk[i].locked_page = NULL; 1675 } 1676 1677 if (blkcg_css != blkcg_root_css) { 1678 css_get(blkcg_css); 1679 async_chunk[i].blkcg_css = blkcg_css; 1680 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1681 } else { 1682 async_chunk[i].blkcg_css = NULL; 1683 } 1684 1685 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1686 submit_compressed_extents, async_cow_free); 1687 1688 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1689 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1690 1691 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1692 1693 start = cur_end + 1; 1694 } 1695 return true; 1696 } 1697 1698 /* 1699 * Run the delalloc range from start to end, and write back any dirty pages 1700 * covered by the range. 1701 */ 1702 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1703 struct page *locked_page, u64 start, 1704 u64 end, struct writeback_control *wbc, 1705 bool pages_dirty) 1706 { 1707 u64 done_offset = end; 1708 int ret; 1709 1710 while (start <= end) { 1711 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1712 true, false); 1713 if (ret) 1714 return ret; 1715 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1716 done_offset, wbc, pages_dirty); 1717 start = done_offset + 1; 1718 } 1719 1720 return 1; 1721 } 1722 1723 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1724 u64 bytenr, u64 num_bytes, bool nowait) 1725 { 1726 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1727 struct btrfs_ordered_sum *sums; 1728 int ret; 1729 LIST_HEAD(list); 1730 1731 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1732 &list, 0, nowait); 1733 if (ret == 0 && list_empty(&list)) 1734 return 0; 1735 1736 while (!list_empty(&list)) { 1737 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1738 list_del(&sums->list); 1739 kfree(sums); 1740 } 1741 if (ret < 0) 1742 return ret; 1743 return 1; 1744 } 1745 1746 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1747 const u64 start, const u64 end) 1748 { 1749 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1750 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1751 const u64 range_bytes = end + 1 - start; 1752 struct extent_io_tree *io_tree = &inode->io_tree; 1753 u64 range_start = start; 1754 u64 count; 1755 int ret; 1756 1757 /* 1758 * If EXTENT_NORESERVE is set it means that when the buffered write was 1759 * made we had not enough available data space and therefore we did not 1760 * reserve data space for it, since we though we could do NOCOW for the 1761 * respective file range (either there is prealloc extent or the inode 1762 * has the NOCOW bit set). 1763 * 1764 * However when we need to fallback to COW mode (because for example the 1765 * block group for the corresponding extent was turned to RO mode by a 1766 * scrub or relocation) we need to do the following: 1767 * 1768 * 1) We increment the bytes_may_use counter of the data space info. 1769 * If COW succeeds, it allocates a new data extent and after doing 1770 * that it decrements the space info's bytes_may_use counter and 1771 * increments its bytes_reserved counter by the same amount (we do 1772 * this at btrfs_add_reserved_bytes()). So we need to increment the 1773 * bytes_may_use counter to compensate (when space is reserved at 1774 * buffered write time, the bytes_may_use counter is incremented); 1775 * 1776 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1777 * that if the COW path fails for any reason, it decrements (through 1778 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1779 * data space info, which we incremented in the step above. 1780 * 1781 * If we need to fallback to cow and the inode corresponds to a free 1782 * space cache inode or an inode of the data relocation tree, we must 1783 * also increment bytes_may_use of the data space_info for the same 1784 * reason. Space caches and relocated data extents always get a prealloc 1785 * extent for them, however scrub or balance may have set the block 1786 * group that contains that extent to RO mode and therefore force COW 1787 * when starting writeback. 1788 */ 1789 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1790 EXTENT_NORESERVE, 0, NULL); 1791 if (count > 0 || is_space_ino || is_reloc_ino) { 1792 u64 bytes = count; 1793 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1794 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1795 1796 if (is_space_ino || is_reloc_ino) 1797 bytes = range_bytes; 1798 1799 spin_lock(&sinfo->lock); 1800 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1801 spin_unlock(&sinfo->lock); 1802 1803 if (count > 0) 1804 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1805 NULL); 1806 } 1807 1808 /* 1809 * Don't try to create inline extents, as a mix of inline extent that 1810 * is written out and unlocked directly and a normal NOCOW extent 1811 * doesn't work. 1812 */ 1813 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1814 ASSERT(ret != 1); 1815 return ret; 1816 } 1817 1818 struct can_nocow_file_extent_args { 1819 /* Input fields. */ 1820 1821 /* Start file offset of the range we want to NOCOW. */ 1822 u64 start; 1823 /* End file offset (inclusive) of the range we want to NOCOW. */ 1824 u64 end; 1825 bool writeback_path; 1826 bool strict; 1827 /* 1828 * Free the path passed to can_nocow_file_extent() once it's not needed 1829 * anymore. 1830 */ 1831 bool free_path; 1832 1833 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1834 1835 u64 disk_bytenr; 1836 u64 disk_num_bytes; 1837 u64 extent_offset; 1838 /* Number of bytes that can be written to in NOCOW mode. */ 1839 u64 num_bytes; 1840 }; 1841 1842 /* 1843 * Check if we can NOCOW the file extent that the path points to. 1844 * This function may return with the path released, so the caller should check 1845 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1846 * 1847 * Returns: < 0 on error 1848 * 0 if we can not NOCOW 1849 * 1 if we can NOCOW 1850 */ 1851 static int can_nocow_file_extent(struct btrfs_path *path, 1852 struct btrfs_key *key, 1853 struct btrfs_inode *inode, 1854 struct can_nocow_file_extent_args *args) 1855 { 1856 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1857 struct extent_buffer *leaf = path->nodes[0]; 1858 struct btrfs_root *root = inode->root; 1859 struct btrfs_file_extent_item *fi; 1860 u64 extent_end; 1861 u8 extent_type; 1862 int can_nocow = 0; 1863 int ret = 0; 1864 bool nowait = path->nowait; 1865 1866 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1867 extent_type = btrfs_file_extent_type(leaf, fi); 1868 1869 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1870 goto out; 1871 1872 /* Can't access these fields unless we know it's not an inline extent. */ 1873 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1874 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1875 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1876 1877 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1878 extent_type == BTRFS_FILE_EXTENT_REG) 1879 goto out; 1880 1881 /* 1882 * If the extent was created before the generation where the last snapshot 1883 * for its subvolume was created, then this implies the extent is shared, 1884 * hence we must COW. 1885 */ 1886 if (!args->strict && 1887 btrfs_file_extent_generation(leaf, fi) <= 1888 btrfs_root_last_snapshot(&root->root_item)) 1889 goto out; 1890 1891 /* An explicit hole, must COW. */ 1892 if (args->disk_bytenr == 0) 1893 goto out; 1894 1895 /* Compressed/encrypted/encoded extents must be COWed. */ 1896 if (btrfs_file_extent_compression(leaf, fi) || 1897 btrfs_file_extent_encryption(leaf, fi) || 1898 btrfs_file_extent_other_encoding(leaf, fi)) 1899 goto out; 1900 1901 extent_end = btrfs_file_extent_end(path); 1902 1903 /* 1904 * The following checks can be expensive, as they need to take other 1905 * locks and do btree or rbtree searches, so release the path to avoid 1906 * blocking other tasks for too long. 1907 */ 1908 btrfs_release_path(path); 1909 1910 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1911 key->offset - args->extent_offset, 1912 args->disk_bytenr, args->strict, path); 1913 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1914 if (ret != 0) 1915 goto out; 1916 1917 if (args->free_path) { 1918 /* 1919 * We don't need the path anymore, plus through the 1920 * csum_exist_in_range() call below we will end up allocating 1921 * another path. So free the path to avoid unnecessary extra 1922 * memory usage. 1923 */ 1924 btrfs_free_path(path); 1925 path = NULL; 1926 } 1927 1928 /* If there are pending snapshots for this root, we must COW. */ 1929 if (args->writeback_path && !is_freespace_inode && 1930 atomic_read(&root->snapshot_force_cow)) 1931 goto out; 1932 1933 args->disk_bytenr += args->extent_offset; 1934 args->disk_bytenr += args->start - key->offset; 1935 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1936 1937 /* 1938 * Force COW if csums exist in the range. This ensures that csums for a 1939 * given extent are either valid or do not exist. 1940 */ 1941 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1942 nowait); 1943 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1944 if (ret != 0) 1945 goto out; 1946 1947 can_nocow = 1; 1948 out: 1949 if (args->free_path && path) 1950 btrfs_free_path(path); 1951 1952 return ret < 0 ? ret : can_nocow; 1953 } 1954 1955 /* 1956 * when nowcow writeback call back. This checks for snapshots or COW copies 1957 * of the extents that exist in the file, and COWs the file as required. 1958 * 1959 * If no cow copies or snapshots exist, we write directly to the existing 1960 * blocks on disk 1961 */ 1962 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1963 struct page *locked_page, 1964 const u64 start, const u64 end) 1965 { 1966 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1967 struct btrfs_root *root = inode->root; 1968 struct btrfs_path *path; 1969 u64 cow_start = (u64)-1; 1970 u64 cur_offset = start; 1971 int ret; 1972 bool check_prev = true; 1973 u64 ino = btrfs_ino(inode); 1974 struct can_nocow_file_extent_args nocow_args = { 0 }; 1975 1976 /* 1977 * Normally on a zoned device we're only doing COW writes, but in case 1978 * of relocation on a zoned filesystem serializes I/O so that we're only 1979 * writing sequentially and can end up here as well. 1980 */ 1981 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 1982 1983 path = btrfs_alloc_path(); 1984 if (!path) { 1985 ret = -ENOMEM; 1986 goto error; 1987 } 1988 1989 nocow_args.end = end; 1990 nocow_args.writeback_path = true; 1991 1992 while (1) { 1993 struct btrfs_block_group *nocow_bg = NULL; 1994 struct btrfs_ordered_extent *ordered; 1995 struct btrfs_key found_key; 1996 struct btrfs_file_extent_item *fi; 1997 struct extent_buffer *leaf; 1998 u64 extent_end; 1999 u64 ram_bytes; 2000 u64 nocow_end; 2001 int extent_type; 2002 bool is_prealloc; 2003 2004 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2005 cur_offset, 0); 2006 if (ret < 0) 2007 goto error; 2008 2009 /* 2010 * If there is no extent for our range when doing the initial 2011 * search, then go back to the previous slot as it will be the 2012 * one containing the search offset 2013 */ 2014 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2015 leaf = path->nodes[0]; 2016 btrfs_item_key_to_cpu(leaf, &found_key, 2017 path->slots[0] - 1); 2018 if (found_key.objectid == ino && 2019 found_key.type == BTRFS_EXTENT_DATA_KEY) 2020 path->slots[0]--; 2021 } 2022 check_prev = false; 2023 next_slot: 2024 /* Go to next leaf if we have exhausted the current one */ 2025 leaf = path->nodes[0]; 2026 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2027 ret = btrfs_next_leaf(root, path); 2028 if (ret < 0) 2029 goto error; 2030 if (ret > 0) 2031 break; 2032 leaf = path->nodes[0]; 2033 } 2034 2035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2036 2037 /* Didn't find anything for our INO */ 2038 if (found_key.objectid > ino) 2039 break; 2040 /* 2041 * Keep searching until we find an EXTENT_ITEM or there are no 2042 * more extents for this inode 2043 */ 2044 if (WARN_ON_ONCE(found_key.objectid < ino) || 2045 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2046 path->slots[0]++; 2047 goto next_slot; 2048 } 2049 2050 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2051 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2052 found_key.offset > end) 2053 break; 2054 2055 /* 2056 * If the found extent starts after requested offset, then 2057 * adjust extent_end to be right before this extent begins 2058 */ 2059 if (found_key.offset > cur_offset) { 2060 extent_end = found_key.offset; 2061 extent_type = 0; 2062 goto must_cow; 2063 } 2064 2065 /* 2066 * Found extent which begins before our range and potentially 2067 * intersect it 2068 */ 2069 fi = btrfs_item_ptr(leaf, path->slots[0], 2070 struct btrfs_file_extent_item); 2071 extent_type = btrfs_file_extent_type(leaf, fi); 2072 /* If this is triggered then we have a memory corruption. */ 2073 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2074 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2075 ret = -EUCLEAN; 2076 goto error; 2077 } 2078 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2079 extent_end = btrfs_file_extent_end(path); 2080 2081 /* 2082 * If the extent we got ends before our current offset, skip to 2083 * the next extent. 2084 */ 2085 if (extent_end <= cur_offset) { 2086 path->slots[0]++; 2087 goto next_slot; 2088 } 2089 2090 nocow_args.start = cur_offset; 2091 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2092 if (ret < 0) 2093 goto error; 2094 if (ret == 0) 2095 goto must_cow; 2096 2097 ret = 0; 2098 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2099 if (!nocow_bg) { 2100 must_cow: 2101 /* 2102 * If we can't perform NOCOW writeback for the range, 2103 * then record the beginning of the range that needs to 2104 * be COWed. It will be written out before the next 2105 * NOCOW range if we find one, or when exiting this 2106 * loop. 2107 */ 2108 if (cow_start == (u64)-1) 2109 cow_start = cur_offset; 2110 cur_offset = extent_end; 2111 if (cur_offset > end) 2112 break; 2113 if (!path->nodes[0]) 2114 continue; 2115 path->slots[0]++; 2116 goto next_slot; 2117 } 2118 2119 /* 2120 * COW range from cow_start to found_key.offset - 1. As the key 2121 * will contain the beginning of the first extent that can be 2122 * NOCOW, following one which needs to be COW'ed 2123 */ 2124 if (cow_start != (u64)-1) { 2125 ret = fallback_to_cow(inode, locked_page, 2126 cow_start, found_key.offset - 1); 2127 cow_start = (u64)-1; 2128 if (ret) { 2129 btrfs_dec_nocow_writers(nocow_bg); 2130 goto error; 2131 } 2132 } 2133 2134 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2135 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2136 if (is_prealloc) { 2137 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2138 struct extent_map *em; 2139 2140 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2141 orig_start, 2142 nocow_args.disk_bytenr, /* block_start */ 2143 nocow_args.num_bytes, /* block_len */ 2144 nocow_args.disk_num_bytes, /* orig_block_len */ 2145 ram_bytes, BTRFS_COMPRESS_NONE, 2146 BTRFS_ORDERED_PREALLOC); 2147 if (IS_ERR(em)) { 2148 btrfs_dec_nocow_writers(nocow_bg); 2149 ret = PTR_ERR(em); 2150 goto error; 2151 } 2152 free_extent_map(em); 2153 } 2154 2155 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2156 nocow_args.num_bytes, nocow_args.num_bytes, 2157 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2158 is_prealloc 2159 ? (1 << BTRFS_ORDERED_PREALLOC) 2160 : (1 << BTRFS_ORDERED_NOCOW), 2161 BTRFS_COMPRESS_NONE); 2162 btrfs_dec_nocow_writers(nocow_bg); 2163 if (IS_ERR(ordered)) { 2164 if (is_prealloc) { 2165 btrfs_drop_extent_map_range(inode, cur_offset, 2166 nocow_end, false); 2167 } 2168 ret = PTR_ERR(ordered); 2169 goto error; 2170 } 2171 2172 if (btrfs_is_data_reloc_root(root)) 2173 /* 2174 * Error handled later, as we must prevent 2175 * extent_clear_unlock_delalloc() in error handler 2176 * from freeing metadata of created ordered extent. 2177 */ 2178 ret = btrfs_reloc_clone_csums(ordered); 2179 btrfs_put_ordered_extent(ordered); 2180 2181 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2182 locked_page, EXTENT_LOCKED | 2183 EXTENT_DELALLOC | 2184 EXTENT_CLEAR_DATA_RESV, 2185 PAGE_UNLOCK | PAGE_SET_ORDERED); 2186 2187 cur_offset = extent_end; 2188 2189 /* 2190 * btrfs_reloc_clone_csums() error, now we're OK to call error 2191 * handler, as metadata for created ordered extent will only 2192 * be freed by btrfs_finish_ordered_io(). 2193 */ 2194 if (ret) 2195 goto error; 2196 if (cur_offset > end) 2197 break; 2198 } 2199 btrfs_release_path(path); 2200 2201 if (cur_offset <= end && cow_start == (u64)-1) 2202 cow_start = cur_offset; 2203 2204 if (cow_start != (u64)-1) { 2205 cur_offset = end; 2206 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2207 cow_start = (u64)-1; 2208 if (ret) 2209 goto error; 2210 } 2211 2212 btrfs_free_path(path); 2213 return 0; 2214 2215 error: 2216 /* 2217 * If an error happened while a COW region is outstanding, cur_offset 2218 * needs to be reset to cow_start to ensure the COW region is unlocked 2219 * as well. 2220 */ 2221 if (cow_start != (u64)-1) 2222 cur_offset = cow_start; 2223 if (cur_offset < end) 2224 extent_clear_unlock_delalloc(inode, cur_offset, end, 2225 locked_page, EXTENT_LOCKED | 2226 EXTENT_DELALLOC | EXTENT_DEFRAG | 2227 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2228 PAGE_START_WRITEBACK | 2229 PAGE_END_WRITEBACK); 2230 btrfs_free_path(path); 2231 return ret; 2232 } 2233 2234 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2235 { 2236 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2237 if (inode->defrag_bytes && 2238 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 2239 0, NULL)) 2240 return false; 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 /* 2247 * Function to process delayed allocation (create CoW) for ranges which are 2248 * being touched for the first time. 2249 */ 2250 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2251 u64 start, u64 end, struct writeback_control *wbc) 2252 { 2253 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2254 int ret; 2255 2256 /* 2257 * The range must cover part of the @locked_page, or a return of 1 2258 * can confuse the caller. 2259 */ 2260 ASSERT(!(end <= page_offset(locked_page) || 2261 start >= page_offset(locked_page) + PAGE_SIZE)); 2262 2263 if (should_nocow(inode, start, end)) { 2264 ret = run_delalloc_nocow(inode, locked_page, start, end); 2265 goto out; 2266 } 2267 2268 if (btrfs_inode_can_compress(inode) && 2269 inode_need_compress(inode, start, end) && 2270 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2271 return 1; 2272 2273 if (zoned) 2274 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2275 true); 2276 else 2277 ret = cow_file_range(inode, locked_page, start, end, NULL, 2278 false, false); 2279 2280 out: 2281 if (ret < 0) 2282 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2283 end - start + 1); 2284 return ret; 2285 } 2286 2287 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2288 struct extent_state *orig, u64 split) 2289 { 2290 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2291 u64 size; 2292 2293 /* not delalloc, ignore it */ 2294 if (!(orig->state & EXTENT_DELALLOC)) 2295 return; 2296 2297 size = orig->end - orig->start + 1; 2298 if (size > fs_info->max_extent_size) { 2299 u32 num_extents; 2300 u64 new_size; 2301 2302 /* 2303 * See the explanation in btrfs_merge_delalloc_extent, the same 2304 * applies here, just in reverse. 2305 */ 2306 new_size = orig->end - split + 1; 2307 num_extents = count_max_extents(fs_info, new_size); 2308 new_size = split - orig->start; 2309 num_extents += count_max_extents(fs_info, new_size); 2310 if (count_max_extents(fs_info, size) >= num_extents) 2311 return; 2312 } 2313 2314 spin_lock(&inode->lock); 2315 btrfs_mod_outstanding_extents(inode, 1); 2316 spin_unlock(&inode->lock); 2317 } 2318 2319 /* 2320 * Handle merged delayed allocation extents so we can keep track of new extents 2321 * that are just merged onto old extents, such as when we are doing sequential 2322 * writes, so we can properly account for the metadata space we'll need. 2323 */ 2324 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2325 struct extent_state *other) 2326 { 2327 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2328 u64 new_size, old_size; 2329 u32 num_extents; 2330 2331 /* not delalloc, ignore it */ 2332 if (!(other->state & EXTENT_DELALLOC)) 2333 return; 2334 2335 if (new->start > other->start) 2336 new_size = new->end - other->start + 1; 2337 else 2338 new_size = other->end - new->start + 1; 2339 2340 /* we're not bigger than the max, unreserve the space and go */ 2341 if (new_size <= fs_info->max_extent_size) { 2342 spin_lock(&inode->lock); 2343 btrfs_mod_outstanding_extents(inode, -1); 2344 spin_unlock(&inode->lock); 2345 return; 2346 } 2347 2348 /* 2349 * We have to add up either side to figure out how many extents were 2350 * accounted for before we merged into one big extent. If the number of 2351 * extents we accounted for is <= the amount we need for the new range 2352 * then we can return, otherwise drop. Think of it like this 2353 * 2354 * [ 4k][MAX_SIZE] 2355 * 2356 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2357 * need 2 outstanding extents, on one side we have 1 and the other side 2358 * we have 1 so they are == and we can return. But in this case 2359 * 2360 * [MAX_SIZE+4k][MAX_SIZE+4k] 2361 * 2362 * Each range on their own accounts for 2 extents, but merged together 2363 * they are only 3 extents worth of accounting, so we need to drop in 2364 * this case. 2365 */ 2366 old_size = other->end - other->start + 1; 2367 num_extents = count_max_extents(fs_info, old_size); 2368 old_size = new->end - new->start + 1; 2369 num_extents += count_max_extents(fs_info, old_size); 2370 if (count_max_extents(fs_info, new_size) >= num_extents) 2371 return; 2372 2373 spin_lock(&inode->lock); 2374 btrfs_mod_outstanding_extents(inode, -1); 2375 spin_unlock(&inode->lock); 2376 } 2377 2378 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2379 struct btrfs_inode *inode) 2380 { 2381 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2382 2383 spin_lock(&root->delalloc_lock); 2384 if (list_empty(&inode->delalloc_inodes)) { 2385 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2386 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); 2387 root->nr_delalloc_inodes++; 2388 if (root->nr_delalloc_inodes == 1) { 2389 spin_lock(&fs_info->delalloc_root_lock); 2390 BUG_ON(!list_empty(&root->delalloc_root)); 2391 list_add_tail(&root->delalloc_root, 2392 &fs_info->delalloc_roots); 2393 spin_unlock(&fs_info->delalloc_root_lock); 2394 } 2395 } 2396 spin_unlock(&root->delalloc_lock); 2397 } 2398 2399 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2400 struct btrfs_inode *inode) 2401 { 2402 struct btrfs_fs_info *fs_info = root->fs_info; 2403 2404 if (!list_empty(&inode->delalloc_inodes)) { 2405 list_del_init(&inode->delalloc_inodes); 2406 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2407 &inode->runtime_flags); 2408 root->nr_delalloc_inodes--; 2409 if (!root->nr_delalloc_inodes) { 2410 ASSERT(list_empty(&root->delalloc_inodes)); 2411 spin_lock(&fs_info->delalloc_root_lock); 2412 BUG_ON(list_empty(&root->delalloc_root)); 2413 list_del_init(&root->delalloc_root); 2414 spin_unlock(&fs_info->delalloc_root_lock); 2415 } 2416 } 2417 } 2418 2419 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2420 struct btrfs_inode *inode) 2421 { 2422 spin_lock(&root->delalloc_lock); 2423 __btrfs_del_delalloc_inode(root, inode); 2424 spin_unlock(&root->delalloc_lock); 2425 } 2426 2427 /* 2428 * Properly track delayed allocation bytes in the inode and to maintain the 2429 * list of inodes that have pending delalloc work to be done. 2430 */ 2431 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2432 u32 bits) 2433 { 2434 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2435 2436 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2437 WARN_ON(1); 2438 /* 2439 * set_bit and clear bit hooks normally require _irqsave/restore 2440 * but in this case, we are only testing for the DELALLOC 2441 * bit, which is only set or cleared with irqs on 2442 */ 2443 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2444 struct btrfs_root *root = inode->root; 2445 u64 len = state->end + 1 - state->start; 2446 u32 num_extents = count_max_extents(fs_info, len); 2447 bool do_list = !btrfs_is_free_space_inode(inode); 2448 2449 spin_lock(&inode->lock); 2450 btrfs_mod_outstanding_extents(inode, num_extents); 2451 spin_unlock(&inode->lock); 2452 2453 /* For sanity tests */ 2454 if (btrfs_is_testing(fs_info)) 2455 return; 2456 2457 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2458 fs_info->delalloc_batch); 2459 spin_lock(&inode->lock); 2460 inode->delalloc_bytes += len; 2461 if (bits & EXTENT_DEFRAG) 2462 inode->defrag_bytes += len; 2463 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2464 &inode->runtime_flags)) 2465 btrfs_add_delalloc_inodes(root, inode); 2466 spin_unlock(&inode->lock); 2467 } 2468 2469 if (!(state->state & EXTENT_DELALLOC_NEW) && 2470 (bits & EXTENT_DELALLOC_NEW)) { 2471 spin_lock(&inode->lock); 2472 inode->new_delalloc_bytes += state->end + 1 - state->start; 2473 spin_unlock(&inode->lock); 2474 } 2475 } 2476 2477 /* 2478 * Once a range is no longer delalloc this function ensures that proper 2479 * accounting happens. 2480 */ 2481 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2482 struct extent_state *state, u32 bits) 2483 { 2484 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2485 u64 len = state->end + 1 - state->start; 2486 u32 num_extents = count_max_extents(fs_info, len); 2487 2488 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2489 spin_lock(&inode->lock); 2490 inode->defrag_bytes -= len; 2491 spin_unlock(&inode->lock); 2492 } 2493 2494 /* 2495 * set_bit and clear bit hooks normally require _irqsave/restore 2496 * but in this case, we are only testing for the DELALLOC 2497 * bit, which is only set or cleared with irqs on 2498 */ 2499 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2500 struct btrfs_root *root = inode->root; 2501 bool do_list = !btrfs_is_free_space_inode(inode); 2502 2503 spin_lock(&inode->lock); 2504 btrfs_mod_outstanding_extents(inode, -num_extents); 2505 spin_unlock(&inode->lock); 2506 2507 /* 2508 * We don't reserve metadata space for space cache inodes so we 2509 * don't need to call delalloc_release_metadata if there is an 2510 * error. 2511 */ 2512 if (bits & EXTENT_CLEAR_META_RESV && 2513 root != fs_info->tree_root) 2514 btrfs_delalloc_release_metadata(inode, len, false); 2515 2516 /* For sanity tests. */ 2517 if (btrfs_is_testing(fs_info)) 2518 return; 2519 2520 if (!btrfs_is_data_reloc_root(root) && 2521 do_list && !(state->state & EXTENT_NORESERVE) && 2522 (bits & EXTENT_CLEAR_DATA_RESV)) 2523 btrfs_free_reserved_data_space_noquota(fs_info, len); 2524 2525 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2526 fs_info->delalloc_batch); 2527 spin_lock(&inode->lock); 2528 inode->delalloc_bytes -= len; 2529 if (do_list && inode->delalloc_bytes == 0 && 2530 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2531 &inode->runtime_flags)) 2532 btrfs_del_delalloc_inode(root, inode); 2533 spin_unlock(&inode->lock); 2534 } 2535 2536 if ((state->state & EXTENT_DELALLOC_NEW) && 2537 (bits & EXTENT_DELALLOC_NEW)) { 2538 spin_lock(&inode->lock); 2539 ASSERT(inode->new_delalloc_bytes >= len); 2540 inode->new_delalloc_bytes -= len; 2541 if (bits & EXTENT_ADD_INODE_BYTES) 2542 inode_add_bytes(&inode->vfs_inode, len); 2543 spin_unlock(&inode->lock); 2544 } 2545 } 2546 2547 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2548 struct btrfs_ordered_extent *ordered) 2549 { 2550 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2551 u64 len = bbio->bio.bi_iter.bi_size; 2552 struct btrfs_ordered_extent *new; 2553 int ret; 2554 2555 /* Must always be called for the beginning of an ordered extent. */ 2556 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2557 return -EINVAL; 2558 2559 /* No need to split if the ordered extent covers the entire bio. */ 2560 if (ordered->disk_num_bytes == len) { 2561 refcount_inc(&ordered->refs); 2562 bbio->ordered = ordered; 2563 return 0; 2564 } 2565 2566 /* 2567 * Don't split the extent_map for NOCOW extents, as we're writing into 2568 * a pre-existing one. 2569 */ 2570 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2571 ret = split_extent_map(bbio->inode, bbio->file_offset, 2572 ordered->num_bytes, len, 2573 ordered->disk_bytenr); 2574 if (ret) 2575 return ret; 2576 } 2577 2578 new = btrfs_split_ordered_extent(ordered, len); 2579 if (IS_ERR(new)) 2580 return PTR_ERR(new); 2581 bbio->ordered = new; 2582 return 0; 2583 } 2584 2585 /* 2586 * given a list of ordered sums record them in the inode. This happens 2587 * at IO completion time based on sums calculated at bio submission time. 2588 */ 2589 static int add_pending_csums(struct btrfs_trans_handle *trans, 2590 struct list_head *list) 2591 { 2592 struct btrfs_ordered_sum *sum; 2593 struct btrfs_root *csum_root = NULL; 2594 int ret; 2595 2596 list_for_each_entry(sum, list, list) { 2597 trans->adding_csums = true; 2598 if (!csum_root) 2599 csum_root = btrfs_csum_root(trans->fs_info, 2600 sum->logical); 2601 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2602 trans->adding_csums = false; 2603 if (ret) 2604 return ret; 2605 } 2606 return 0; 2607 } 2608 2609 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2610 const u64 start, 2611 const u64 len, 2612 struct extent_state **cached_state) 2613 { 2614 u64 search_start = start; 2615 const u64 end = start + len - 1; 2616 2617 while (search_start < end) { 2618 const u64 search_len = end - search_start + 1; 2619 struct extent_map *em; 2620 u64 em_len; 2621 int ret = 0; 2622 2623 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2624 if (IS_ERR(em)) 2625 return PTR_ERR(em); 2626 2627 if (em->block_start != EXTENT_MAP_HOLE) 2628 goto next; 2629 2630 em_len = em->len; 2631 if (em->start < search_start) 2632 em_len -= search_start - em->start; 2633 if (em_len > search_len) 2634 em_len = search_len; 2635 2636 ret = set_extent_bit(&inode->io_tree, search_start, 2637 search_start + em_len - 1, 2638 EXTENT_DELALLOC_NEW, cached_state); 2639 next: 2640 search_start = extent_map_end(em); 2641 free_extent_map(em); 2642 if (ret) 2643 return ret; 2644 } 2645 return 0; 2646 } 2647 2648 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2649 unsigned int extra_bits, 2650 struct extent_state **cached_state) 2651 { 2652 WARN_ON(PAGE_ALIGNED(end)); 2653 2654 if (start >= i_size_read(&inode->vfs_inode) && 2655 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2656 /* 2657 * There can't be any extents following eof in this case so just 2658 * set the delalloc new bit for the range directly. 2659 */ 2660 extra_bits |= EXTENT_DELALLOC_NEW; 2661 } else { 2662 int ret; 2663 2664 ret = btrfs_find_new_delalloc_bytes(inode, start, 2665 end + 1 - start, 2666 cached_state); 2667 if (ret) 2668 return ret; 2669 } 2670 2671 return set_extent_bit(&inode->io_tree, start, end, 2672 EXTENT_DELALLOC | extra_bits, cached_state); 2673 } 2674 2675 /* see btrfs_writepage_start_hook for details on why this is required */ 2676 struct btrfs_writepage_fixup { 2677 struct page *page; 2678 struct btrfs_inode *inode; 2679 struct btrfs_work work; 2680 }; 2681 2682 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2683 { 2684 struct btrfs_writepage_fixup *fixup = 2685 container_of(work, struct btrfs_writepage_fixup, work); 2686 struct btrfs_ordered_extent *ordered; 2687 struct extent_state *cached_state = NULL; 2688 struct extent_changeset *data_reserved = NULL; 2689 struct page *page = fixup->page; 2690 struct btrfs_inode *inode = fixup->inode; 2691 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2692 u64 page_start = page_offset(page); 2693 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2694 int ret = 0; 2695 bool free_delalloc_space = true; 2696 2697 /* 2698 * This is similar to page_mkwrite, we need to reserve the space before 2699 * we take the page lock. 2700 */ 2701 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2702 PAGE_SIZE); 2703 again: 2704 lock_page(page); 2705 2706 /* 2707 * Before we queued this fixup, we took a reference on the page. 2708 * page->mapping may go NULL, but it shouldn't be moved to a different 2709 * address space. 2710 */ 2711 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2712 /* 2713 * Unfortunately this is a little tricky, either 2714 * 2715 * 1) We got here and our page had already been dealt with and 2716 * we reserved our space, thus ret == 0, so we need to just 2717 * drop our space reservation and bail. This can happen the 2718 * first time we come into the fixup worker, or could happen 2719 * while waiting for the ordered extent. 2720 * 2) Our page was already dealt with, but we happened to get an 2721 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2722 * this case we obviously don't have anything to release, but 2723 * because the page was already dealt with we don't want to 2724 * mark the page with an error, so make sure we're resetting 2725 * ret to 0. This is why we have this check _before_ the ret 2726 * check, because we do not want to have a surprise ENOSPC 2727 * when the page was already properly dealt with. 2728 */ 2729 if (!ret) { 2730 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2731 btrfs_delalloc_release_space(inode, data_reserved, 2732 page_start, PAGE_SIZE, 2733 true); 2734 } 2735 ret = 0; 2736 goto out_page; 2737 } 2738 2739 /* 2740 * We can't mess with the page state unless it is locked, so now that 2741 * it is locked bail if we failed to make our space reservation. 2742 */ 2743 if (ret) 2744 goto out_page; 2745 2746 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2747 2748 /* already ordered? We're done */ 2749 if (PageOrdered(page)) 2750 goto out_reserved; 2751 2752 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2753 if (ordered) { 2754 unlock_extent(&inode->io_tree, page_start, page_end, 2755 &cached_state); 2756 unlock_page(page); 2757 btrfs_start_ordered_extent(ordered); 2758 btrfs_put_ordered_extent(ordered); 2759 goto again; 2760 } 2761 2762 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2763 &cached_state); 2764 if (ret) 2765 goto out_reserved; 2766 2767 /* 2768 * Everything went as planned, we're now the owner of a dirty page with 2769 * delayed allocation bits set and space reserved for our COW 2770 * destination. 2771 * 2772 * The page was dirty when we started, nothing should have cleaned it. 2773 */ 2774 BUG_ON(!PageDirty(page)); 2775 free_delalloc_space = false; 2776 out_reserved: 2777 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2778 if (free_delalloc_space) 2779 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2780 PAGE_SIZE, true); 2781 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2782 out_page: 2783 if (ret) { 2784 /* 2785 * We hit ENOSPC or other errors. Update the mapping and page 2786 * to reflect the errors and clean the page. 2787 */ 2788 mapping_set_error(page->mapping, ret); 2789 btrfs_mark_ordered_io_finished(inode, page, page_start, 2790 PAGE_SIZE, !ret); 2791 clear_page_dirty_for_io(page); 2792 } 2793 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 2794 unlock_page(page); 2795 put_page(page); 2796 kfree(fixup); 2797 extent_changeset_free(data_reserved); 2798 /* 2799 * As a precaution, do a delayed iput in case it would be the last iput 2800 * that could need flushing space. Recursing back to fixup worker would 2801 * deadlock. 2802 */ 2803 btrfs_add_delayed_iput(inode); 2804 } 2805 2806 /* 2807 * There are a few paths in the higher layers of the kernel that directly 2808 * set the page dirty bit without asking the filesystem if it is a 2809 * good idea. This causes problems because we want to make sure COW 2810 * properly happens and the data=ordered rules are followed. 2811 * 2812 * In our case any range that doesn't have the ORDERED bit set 2813 * hasn't been properly setup for IO. We kick off an async process 2814 * to fix it up. The async helper will wait for ordered extents, set 2815 * the delalloc bit and make it safe to write the page. 2816 */ 2817 int btrfs_writepage_cow_fixup(struct page *page) 2818 { 2819 struct inode *inode = page->mapping->host; 2820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2821 struct btrfs_writepage_fixup *fixup; 2822 2823 /* This page has ordered extent covering it already */ 2824 if (PageOrdered(page)) 2825 return 0; 2826 2827 /* 2828 * PageChecked is set below when we create a fixup worker for this page, 2829 * don't try to create another one if we're already PageChecked() 2830 * 2831 * The extent_io writepage code will redirty the page if we send back 2832 * EAGAIN. 2833 */ 2834 if (PageChecked(page)) 2835 return -EAGAIN; 2836 2837 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2838 if (!fixup) 2839 return -EAGAIN; 2840 2841 /* 2842 * We are already holding a reference to this inode from 2843 * write_cache_pages. We need to hold it because the space reservation 2844 * takes place outside of the page lock, and we can't trust 2845 * page->mapping outside of the page lock. 2846 */ 2847 ihold(inode); 2848 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2849 get_page(page); 2850 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2851 fixup->page = page; 2852 fixup->inode = BTRFS_I(inode); 2853 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2854 2855 return -EAGAIN; 2856 } 2857 2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2859 struct btrfs_inode *inode, u64 file_pos, 2860 struct btrfs_file_extent_item *stack_fi, 2861 const bool update_inode_bytes, 2862 u64 qgroup_reserved) 2863 { 2864 struct btrfs_root *root = inode->root; 2865 const u64 sectorsize = root->fs_info->sectorsize; 2866 struct btrfs_path *path; 2867 struct extent_buffer *leaf; 2868 struct btrfs_key ins; 2869 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2870 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2871 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2872 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2873 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2874 struct btrfs_drop_extents_args drop_args = { 0 }; 2875 int ret; 2876 2877 path = btrfs_alloc_path(); 2878 if (!path) 2879 return -ENOMEM; 2880 2881 /* 2882 * we may be replacing one extent in the tree with another. 2883 * The new extent is pinned in the extent map, and we don't want 2884 * to drop it from the cache until it is completely in the btree. 2885 * 2886 * So, tell btrfs_drop_extents to leave this extent in the cache. 2887 * the caller is expected to unpin it and allow it to be merged 2888 * with the others. 2889 */ 2890 drop_args.path = path; 2891 drop_args.start = file_pos; 2892 drop_args.end = file_pos + num_bytes; 2893 drop_args.replace_extent = true; 2894 drop_args.extent_item_size = sizeof(*stack_fi); 2895 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2896 if (ret) 2897 goto out; 2898 2899 if (!drop_args.extent_inserted) { 2900 ins.objectid = btrfs_ino(inode); 2901 ins.offset = file_pos; 2902 ins.type = BTRFS_EXTENT_DATA_KEY; 2903 2904 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2905 sizeof(*stack_fi)); 2906 if (ret) 2907 goto out; 2908 } 2909 leaf = path->nodes[0]; 2910 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2911 write_extent_buffer(leaf, stack_fi, 2912 btrfs_item_ptr_offset(leaf, path->slots[0]), 2913 sizeof(struct btrfs_file_extent_item)); 2914 2915 btrfs_mark_buffer_dirty(trans, leaf); 2916 btrfs_release_path(path); 2917 2918 /* 2919 * If we dropped an inline extent here, we know the range where it is 2920 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2921 * number of bytes only for that range containing the inline extent. 2922 * The remaining of the range will be processed when clearning the 2923 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2924 */ 2925 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2926 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2927 2928 inline_size = drop_args.bytes_found - inline_size; 2929 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2930 drop_args.bytes_found -= inline_size; 2931 num_bytes -= sectorsize; 2932 } 2933 2934 if (update_inode_bytes) 2935 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2936 2937 ins.objectid = disk_bytenr; 2938 ins.offset = disk_num_bytes; 2939 ins.type = BTRFS_EXTENT_ITEM_KEY; 2940 2941 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2942 if (ret) 2943 goto out; 2944 2945 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2946 file_pos - offset, 2947 qgroup_reserved, &ins); 2948 out: 2949 btrfs_free_path(path); 2950 2951 return ret; 2952 } 2953 2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2955 u64 start, u64 len) 2956 { 2957 struct btrfs_block_group *cache; 2958 2959 cache = btrfs_lookup_block_group(fs_info, start); 2960 ASSERT(cache); 2961 2962 spin_lock(&cache->lock); 2963 cache->delalloc_bytes -= len; 2964 spin_unlock(&cache->lock); 2965 2966 btrfs_put_block_group(cache); 2967 } 2968 2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2970 struct btrfs_ordered_extent *oe) 2971 { 2972 struct btrfs_file_extent_item stack_fi; 2973 bool update_inode_bytes; 2974 u64 num_bytes = oe->num_bytes; 2975 u64 ram_bytes = oe->ram_bytes; 2976 2977 memset(&stack_fi, 0, sizeof(stack_fi)); 2978 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2979 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2980 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2981 oe->disk_num_bytes); 2982 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2983 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 2984 num_bytes = oe->truncated_len; 2985 ram_bytes = num_bytes; 2986 } 2987 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2988 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 2989 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2990 /* Encryption and other encoding is reserved and all 0 */ 2991 2992 /* 2993 * For delalloc, when completing an ordered extent we update the inode's 2994 * bytes when clearing the range in the inode's io tree, so pass false 2995 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2996 * except if the ordered extent was truncated. 2997 */ 2998 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2999 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3000 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3001 3002 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3003 oe->file_offset, &stack_fi, 3004 update_inode_bytes, oe->qgroup_rsv); 3005 } 3006 3007 /* 3008 * As ordered data IO finishes, this gets called so we can finish 3009 * an ordered extent if the range of bytes in the file it covers are 3010 * fully written. 3011 */ 3012 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3013 { 3014 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3015 struct btrfs_root *root = inode->root; 3016 struct btrfs_fs_info *fs_info = root->fs_info; 3017 struct btrfs_trans_handle *trans = NULL; 3018 struct extent_io_tree *io_tree = &inode->io_tree; 3019 struct extent_state *cached_state = NULL; 3020 u64 start, end; 3021 int compress_type = 0; 3022 int ret = 0; 3023 u64 logical_len = ordered_extent->num_bytes; 3024 bool freespace_inode; 3025 bool truncated = false; 3026 bool clear_reserved_extent = true; 3027 unsigned int clear_bits = EXTENT_DEFRAG; 3028 3029 start = ordered_extent->file_offset; 3030 end = start + ordered_extent->num_bytes - 1; 3031 3032 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3033 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3034 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3035 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3036 clear_bits |= EXTENT_DELALLOC_NEW; 3037 3038 freespace_inode = btrfs_is_free_space_inode(inode); 3039 if (!freespace_inode) 3040 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3041 3042 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3043 ret = -EIO; 3044 goto out; 3045 } 3046 3047 if (btrfs_is_zoned(fs_info)) 3048 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3049 ordered_extent->disk_num_bytes); 3050 3051 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3052 truncated = true; 3053 logical_len = ordered_extent->truncated_len; 3054 /* Truncated the entire extent, don't bother adding */ 3055 if (!logical_len) 3056 goto out; 3057 } 3058 3059 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3060 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3061 3062 btrfs_inode_safe_disk_i_size_write(inode, 0); 3063 if (freespace_inode) 3064 trans = btrfs_join_transaction_spacecache(root); 3065 else 3066 trans = btrfs_join_transaction(root); 3067 if (IS_ERR(trans)) { 3068 ret = PTR_ERR(trans); 3069 trans = NULL; 3070 goto out; 3071 } 3072 trans->block_rsv = &inode->block_rsv; 3073 ret = btrfs_update_inode_fallback(trans, root, inode); 3074 if (ret) /* -ENOMEM or corruption */ 3075 btrfs_abort_transaction(trans, ret); 3076 goto out; 3077 } 3078 3079 clear_bits |= EXTENT_LOCKED; 3080 lock_extent(io_tree, start, end, &cached_state); 3081 3082 if (freespace_inode) 3083 trans = btrfs_join_transaction_spacecache(root); 3084 else 3085 trans = btrfs_join_transaction(root); 3086 if (IS_ERR(trans)) { 3087 ret = PTR_ERR(trans); 3088 trans = NULL; 3089 goto out; 3090 } 3091 3092 trans->block_rsv = &inode->block_rsv; 3093 3094 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3095 compress_type = ordered_extent->compress_type; 3096 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3097 BUG_ON(compress_type); 3098 ret = btrfs_mark_extent_written(trans, inode, 3099 ordered_extent->file_offset, 3100 ordered_extent->file_offset + 3101 logical_len); 3102 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3103 ordered_extent->disk_num_bytes); 3104 } else { 3105 BUG_ON(root == fs_info->tree_root); 3106 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3107 if (!ret) { 3108 clear_reserved_extent = false; 3109 btrfs_release_delalloc_bytes(fs_info, 3110 ordered_extent->disk_bytenr, 3111 ordered_extent->disk_num_bytes); 3112 } 3113 } 3114 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3115 ordered_extent->num_bytes, trans->transid); 3116 if (ret < 0) { 3117 btrfs_abort_transaction(trans, ret); 3118 goto out; 3119 } 3120 3121 ret = add_pending_csums(trans, &ordered_extent->list); 3122 if (ret) { 3123 btrfs_abort_transaction(trans, ret); 3124 goto out; 3125 } 3126 3127 /* 3128 * If this is a new delalloc range, clear its new delalloc flag to 3129 * update the inode's number of bytes. This needs to be done first 3130 * before updating the inode item. 3131 */ 3132 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3133 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3134 clear_extent_bit(&inode->io_tree, start, end, 3135 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3136 &cached_state); 3137 3138 btrfs_inode_safe_disk_i_size_write(inode, 0); 3139 ret = btrfs_update_inode_fallback(trans, root, inode); 3140 if (ret) { /* -ENOMEM or corruption */ 3141 btrfs_abort_transaction(trans, ret); 3142 goto out; 3143 } 3144 ret = 0; 3145 out: 3146 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3147 &cached_state); 3148 3149 if (trans) 3150 btrfs_end_transaction(trans); 3151 3152 if (ret || truncated) { 3153 u64 unwritten_start = start; 3154 3155 /* 3156 * If we failed to finish this ordered extent for any reason we 3157 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3158 * extent, and mark the inode with the error if it wasn't 3159 * already set. Any error during writeback would have already 3160 * set the mapping error, so we need to set it if we're the ones 3161 * marking this ordered extent as failed. 3162 */ 3163 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3164 &ordered_extent->flags)) 3165 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3166 3167 if (truncated) 3168 unwritten_start += logical_len; 3169 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3170 3171 /* 3172 * Drop extent maps for the part of the extent we didn't write. 3173 * 3174 * We have an exception here for the free_space_inode, this is 3175 * because when we do btrfs_get_extent() on the free space inode 3176 * we will search the commit root. If this is a new block group 3177 * we won't find anything, and we will trip over the assert in 3178 * writepage where we do ASSERT(em->block_start != 3179 * EXTENT_MAP_HOLE). 3180 * 3181 * Theoretically we could also skip this for any NOCOW extent as 3182 * we don't mess with the extent map tree in the NOCOW case, but 3183 * for now simply skip this if we are the free space inode. 3184 */ 3185 if (!btrfs_is_free_space_inode(inode)) 3186 btrfs_drop_extent_map_range(inode, unwritten_start, 3187 end, false); 3188 3189 /* 3190 * If the ordered extent had an IOERR or something else went 3191 * wrong we need to return the space for this ordered extent 3192 * back to the allocator. We only free the extent in the 3193 * truncated case if we didn't write out the extent at all. 3194 * 3195 * If we made it past insert_reserved_file_extent before we 3196 * errored out then we don't need to do this as the accounting 3197 * has already been done. 3198 */ 3199 if ((ret || !logical_len) && 3200 clear_reserved_extent && 3201 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3202 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3203 /* 3204 * Discard the range before returning it back to the 3205 * free space pool 3206 */ 3207 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3208 btrfs_discard_extent(fs_info, 3209 ordered_extent->disk_bytenr, 3210 ordered_extent->disk_num_bytes, 3211 NULL); 3212 btrfs_free_reserved_extent(fs_info, 3213 ordered_extent->disk_bytenr, 3214 ordered_extent->disk_num_bytes, 1); 3215 /* 3216 * Actually free the qgroup rsv which was released when 3217 * the ordered extent was created. 3218 */ 3219 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, 3220 ordered_extent->qgroup_rsv, 3221 BTRFS_QGROUP_RSV_DATA); 3222 } 3223 } 3224 3225 /* 3226 * This needs to be done to make sure anybody waiting knows we are done 3227 * updating everything for this ordered extent. 3228 */ 3229 btrfs_remove_ordered_extent(inode, ordered_extent); 3230 3231 /* once for us */ 3232 btrfs_put_ordered_extent(ordered_extent); 3233 /* once for the tree */ 3234 btrfs_put_ordered_extent(ordered_extent); 3235 3236 return ret; 3237 } 3238 3239 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3240 { 3241 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) && 3242 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 3243 btrfs_finish_ordered_zoned(ordered); 3244 return btrfs_finish_one_ordered(ordered); 3245 } 3246 3247 /* 3248 * Verify the checksum for a single sector without any extra action that depend 3249 * on the type of I/O. 3250 */ 3251 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3252 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3253 { 3254 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3255 char *kaddr; 3256 3257 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3258 3259 shash->tfm = fs_info->csum_shash; 3260 3261 kaddr = kmap_local_page(page) + pgoff; 3262 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3263 kunmap_local(kaddr); 3264 3265 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3266 return -EIO; 3267 return 0; 3268 } 3269 3270 /* 3271 * Verify the checksum of a single data sector. 3272 * 3273 * @bbio: btrfs_io_bio which contains the csum 3274 * @dev: device the sector is on 3275 * @bio_offset: offset to the beginning of the bio (in bytes) 3276 * @bv: bio_vec to check 3277 * 3278 * Check if the checksum on a data block is valid. When a checksum mismatch is 3279 * detected, report the error and fill the corrupted range with zero. 3280 * 3281 * Return %true if the sector is ok or had no checksum to start with, else %false. 3282 */ 3283 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3284 u32 bio_offset, struct bio_vec *bv) 3285 { 3286 struct btrfs_inode *inode = bbio->inode; 3287 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3288 u64 file_offset = bbio->file_offset + bio_offset; 3289 u64 end = file_offset + bv->bv_len - 1; 3290 u8 *csum_expected; 3291 u8 csum[BTRFS_CSUM_SIZE]; 3292 3293 ASSERT(bv->bv_len == fs_info->sectorsize); 3294 3295 if (!bbio->csum) 3296 return true; 3297 3298 if (btrfs_is_data_reloc_root(inode->root) && 3299 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3300 1, NULL)) { 3301 /* Skip the range without csum for data reloc inode */ 3302 clear_extent_bits(&inode->io_tree, file_offset, end, 3303 EXTENT_NODATASUM); 3304 return true; 3305 } 3306 3307 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3308 fs_info->csum_size; 3309 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3310 csum_expected)) 3311 goto zeroit; 3312 return true; 3313 3314 zeroit: 3315 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3316 bbio->mirror_num); 3317 if (dev) 3318 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3319 memzero_bvec(bv); 3320 return false; 3321 } 3322 3323 /* 3324 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3325 * 3326 * @inode: The inode we want to perform iput on 3327 * 3328 * This function uses the generic vfs_inode::i_count to track whether we should 3329 * just decrement it (in case it's > 1) or if this is the last iput then link 3330 * the inode to the delayed iput machinery. Delayed iputs are processed at 3331 * transaction commit time/superblock commit/cleaner kthread. 3332 */ 3333 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3334 { 3335 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3336 unsigned long flags; 3337 3338 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3339 return; 3340 3341 atomic_inc(&fs_info->nr_delayed_iputs); 3342 /* 3343 * Need to be irq safe here because we can be called from either an irq 3344 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3345 * context. 3346 */ 3347 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3348 ASSERT(list_empty(&inode->delayed_iput)); 3349 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3350 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3351 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3352 wake_up_process(fs_info->cleaner_kthread); 3353 } 3354 3355 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3356 struct btrfs_inode *inode) 3357 { 3358 list_del_init(&inode->delayed_iput); 3359 spin_unlock_irq(&fs_info->delayed_iput_lock); 3360 iput(&inode->vfs_inode); 3361 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3362 wake_up(&fs_info->delayed_iputs_wait); 3363 spin_lock_irq(&fs_info->delayed_iput_lock); 3364 } 3365 3366 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3367 struct btrfs_inode *inode) 3368 { 3369 if (!list_empty(&inode->delayed_iput)) { 3370 spin_lock_irq(&fs_info->delayed_iput_lock); 3371 if (!list_empty(&inode->delayed_iput)) 3372 run_delayed_iput_locked(fs_info, inode); 3373 spin_unlock_irq(&fs_info->delayed_iput_lock); 3374 } 3375 } 3376 3377 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3378 { 3379 /* 3380 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3381 * calls btrfs_add_delayed_iput() and that needs to lock 3382 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3383 * prevent a deadlock. 3384 */ 3385 spin_lock_irq(&fs_info->delayed_iput_lock); 3386 while (!list_empty(&fs_info->delayed_iputs)) { 3387 struct btrfs_inode *inode; 3388 3389 inode = list_first_entry(&fs_info->delayed_iputs, 3390 struct btrfs_inode, delayed_iput); 3391 run_delayed_iput_locked(fs_info, inode); 3392 if (need_resched()) { 3393 spin_unlock_irq(&fs_info->delayed_iput_lock); 3394 cond_resched(); 3395 spin_lock_irq(&fs_info->delayed_iput_lock); 3396 } 3397 } 3398 spin_unlock_irq(&fs_info->delayed_iput_lock); 3399 } 3400 3401 /* 3402 * Wait for flushing all delayed iputs 3403 * 3404 * @fs_info: the filesystem 3405 * 3406 * This will wait on any delayed iputs that are currently running with KILLABLE 3407 * set. Once they are all done running we will return, unless we are killed in 3408 * which case we return EINTR. This helps in user operations like fallocate etc 3409 * that might get blocked on the iputs. 3410 * 3411 * Return EINTR if we were killed, 0 if nothing's pending 3412 */ 3413 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3414 { 3415 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3416 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3417 if (ret) 3418 return -EINTR; 3419 return 0; 3420 } 3421 3422 /* 3423 * This creates an orphan entry for the given inode in case something goes wrong 3424 * in the middle of an unlink. 3425 */ 3426 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3427 struct btrfs_inode *inode) 3428 { 3429 int ret; 3430 3431 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3432 if (ret && ret != -EEXIST) { 3433 btrfs_abort_transaction(trans, ret); 3434 return ret; 3435 } 3436 3437 return 0; 3438 } 3439 3440 /* 3441 * We have done the delete so we can go ahead and remove the orphan item for 3442 * this particular inode. 3443 */ 3444 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3445 struct btrfs_inode *inode) 3446 { 3447 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3448 } 3449 3450 /* 3451 * this cleans up any orphans that may be left on the list from the last use 3452 * of this root. 3453 */ 3454 int btrfs_orphan_cleanup(struct btrfs_root *root) 3455 { 3456 struct btrfs_fs_info *fs_info = root->fs_info; 3457 struct btrfs_path *path; 3458 struct extent_buffer *leaf; 3459 struct btrfs_key key, found_key; 3460 struct btrfs_trans_handle *trans; 3461 struct inode *inode; 3462 u64 last_objectid = 0; 3463 int ret = 0, nr_unlink = 0; 3464 3465 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3466 return 0; 3467 3468 path = btrfs_alloc_path(); 3469 if (!path) { 3470 ret = -ENOMEM; 3471 goto out; 3472 } 3473 path->reada = READA_BACK; 3474 3475 key.objectid = BTRFS_ORPHAN_OBJECTID; 3476 key.type = BTRFS_ORPHAN_ITEM_KEY; 3477 key.offset = (u64)-1; 3478 3479 while (1) { 3480 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3481 if (ret < 0) 3482 goto out; 3483 3484 /* 3485 * if ret == 0 means we found what we were searching for, which 3486 * is weird, but possible, so only screw with path if we didn't 3487 * find the key and see if we have stuff that matches 3488 */ 3489 if (ret > 0) { 3490 ret = 0; 3491 if (path->slots[0] == 0) 3492 break; 3493 path->slots[0]--; 3494 } 3495 3496 /* pull out the item */ 3497 leaf = path->nodes[0]; 3498 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3499 3500 /* make sure the item matches what we want */ 3501 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3502 break; 3503 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3504 break; 3505 3506 /* release the path since we're done with it */ 3507 btrfs_release_path(path); 3508 3509 /* 3510 * this is where we are basically btrfs_lookup, without the 3511 * crossing root thing. we store the inode number in the 3512 * offset of the orphan item. 3513 */ 3514 3515 if (found_key.offset == last_objectid) { 3516 /* 3517 * We found the same inode as before. This means we were 3518 * not able to remove its items via eviction triggered 3519 * by an iput(). A transaction abort may have happened, 3520 * due to -ENOSPC for example, so try to grab the error 3521 * that lead to a transaction abort, if any. 3522 */ 3523 btrfs_err(fs_info, 3524 "Error removing orphan entry, stopping orphan cleanup"); 3525 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3526 goto out; 3527 } 3528 3529 last_objectid = found_key.offset; 3530 3531 found_key.objectid = found_key.offset; 3532 found_key.type = BTRFS_INODE_ITEM_KEY; 3533 found_key.offset = 0; 3534 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3535 if (IS_ERR(inode)) { 3536 ret = PTR_ERR(inode); 3537 inode = NULL; 3538 if (ret != -ENOENT) 3539 goto out; 3540 } 3541 3542 if (!inode && root == fs_info->tree_root) { 3543 struct btrfs_root *dead_root; 3544 int is_dead_root = 0; 3545 3546 /* 3547 * This is an orphan in the tree root. Currently these 3548 * could come from 2 sources: 3549 * a) a root (snapshot/subvolume) deletion in progress 3550 * b) a free space cache inode 3551 * We need to distinguish those two, as the orphan item 3552 * for a root must not get deleted before the deletion 3553 * of the snapshot/subvolume's tree completes. 3554 * 3555 * btrfs_find_orphan_roots() ran before us, which has 3556 * found all deleted roots and loaded them into 3557 * fs_info->fs_roots_radix. So here we can find if an 3558 * orphan item corresponds to a deleted root by looking 3559 * up the root from that radix tree. 3560 */ 3561 3562 spin_lock(&fs_info->fs_roots_radix_lock); 3563 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3564 (unsigned long)found_key.objectid); 3565 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3566 is_dead_root = 1; 3567 spin_unlock(&fs_info->fs_roots_radix_lock); 3568 3569 if (is_dead_root) { 3570 /* prevent this orphan from being found again */ 3571 key.offset = found_key.objectid - 1; 3572 continue; 3573 } 3574 3575 } 3576 3577 /* 3578 * If we have an inode with links, there are a couple of 3579 * possibilities: 3580 * 3581 * 1. We were halfway through creating fsverity metadata for the 3582 * file. In that case, the orphan item represents incomplete 3583 * fsverity metadata which must be cleaned up with 3584 * btrfs_drop_verity_items and deleting the orphan item. 3585 3586 * 2. Old kernels (before v3.12) used to create an 3587 * orphan item for truncate indicating that there were possibly 3588 * extent items past i_size that needed to be deleted. In v3.12, 3589 * truncate was changed to update i_size in sync with the extent 3590 * items, but the (useless) orphan item was still created. Since 3591 * v4.18, we don't create the orphan item for truncate at all. 3592 * 3593 * So, this item could mean that we need to do a truncate, but 3594 * only if this filesystem was last used on a pre-v3.12 kernel 3595 * and was not cleanly unmounted. The odds of that are quite 3596 * slim, and it's a pain to do the truncate now, so just delete 3597 * the orphan item. 3598 * 3599 * It's also possible that this orphan item was supposed to be 3600 * deleted but wasn't. The inode number may have been reused, 3601 * but either way, we can delete the orphan item. 3602 */ 3603 if (!inode || inode->i_nlink) { 3604 if (inode) { 3605 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3606 iput(inode); 3607 inode = NULL; 3608 if (ret) 3609 goto out; 3610 } 3611 trans = btrfs_start_transaction(root, 1); 3612 if (IS_ERR(trans)) { 3613 ret = PTR_ERR(trans); 3614 goto out; 3615 } 3616 btrfs_debug(fs_info, "auto deleting %Lu", 3617 found_key.objectid); 3618 ret = btrfs_del_orphan_item(trans, root, 3619 found_key.objectid); 3620 btrfs_end_transaction(trans); 3621 if (ret) 3622 goto out; 3623 continue; 3624 } 3625 3626 nr_unlink++; 3627 3628 /* this will do delete_inode and everything for us */ 3629 iput(inode); 3630 } 3631 /* release the path since we're done with it */ 3632 btrfs_release_path(path); 3633 3634 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3635 trans = btrfs_join_transaction(root); 3636 if (!IS_ERR(trans)) 3637 btrfs_end_transaction(trans); 3638 } 3639 3640 if (nr_unlink) 3641 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3642 3643 out: 3644 if (ret) 3645 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3646 btrfs_free_path(path); 3647 return ret; 3648 } 3649 3650 /* 3651 * very simple check to peek ahead in the leaf looking for xattrs. If we 3652 * don't find any xattrs, we know there can't be any acls. 3653 * 3654 * slot is the slot the inode is in, objectid is the objectid of the inode 3655 */ 3656 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3657 int slot, u64 objectid, 3658 int *first_xattr_slot) 3659 { 3660 u32 nritems = btrfs_header_nritems(leaf); 3661 struct btrfs_key found_key; 3662 static u64 xattr_access = 0; 3663 static u64 xattr_default = 0; 3664 int scanned = 0; 3665 3666 if (!xattr_access) { 3667 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3668 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3669 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3670 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3671 } 3672 3673 slot++; 3674 *first_xattr_slot = -1; 3675 while (slot < nritems) { 3676 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3677 3678 /* we found a different objectid, there must not be acls */ 3679 if (found_key.objectid != objectid) 3680 return 0; 3681 3682 /* we found an xattr, assume we've got an acl */ 3683 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3684 if (*first_xattr_slot == -1) 3685 *first_xattr_slot = slot; 3686 if (found_key.offset == xattr_access || 3687 found_key.offset == xattr_default) 3688 return 1; 3689 } 3690 3691 /* 3692 * we found a key greater than an xattr key, there can't 3693 * be any acls later on 3694 */ 3695 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3696 return 0; 3697 3698 slot++; 3699 scanned++; 3700 3701 /* 3702 * it goes inode, inode backrefs, xattrs, extents, 3703 * so if there are a ton of hard links to an inode there can 3704 * be a lot of backrefs. Don't waste time searching too hard, 3705 * this is just an optimization 3706 */ 3707 if (scanned >= 8) 3708 break; 3709 } 3710 /* we hit the end of the leaf before we found an xattr or 3711 * something larger than an xattr. We have to assume the inode 3712 * has acls 3713 */ 3714 if (*first_xattr_slot == -1) 3715 *first_xattr_slot = slot; 3716 return 1; 3717 } 3718 3719 /* 3720 * read an inode from the btree into the in-memory inode 3721 */ 3722 static int btrfs_read_locked_inode(struct inode *inode, 3723 struct btrfs_path *in_path) 3724 { 3725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3726 struct btrfs_path *path = in_path; 3727 struct extent_buffer *leaf; 3728 struct btrfs_inode_item *inode_item; 3729 struct btrfs_root *root = BTRFS_I(inode)->root; 3730 struct btrfs_key location; 3731 unsigned long ptr; 3732 int maybe_acls; 3733 u32 rdev; 3734 int ret; 3735 bool filled = false; 3736 int first_xattr_slot; 3737 3738 ret = btrfs_fill_inode(inode, &rdev); 3739 if (!ret) 3740 filled = true; 3741 3742 if (!path) { 3743 path = btrfs_alloc_path(); 3744 if (!path) 3745 return -ENOMEM; 3746 } 3747 3748 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3749 3750 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3751 if (ret) { 3752 if (path != in_path) 3753 btrfs_free_path(path); 3754 return ret; 3755 } 3756 3757 leaf = path->nodes[0]; 3758 3759 if (filled) 3760 goto cache_index; 3761 3762 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3763 struct btrfs_inode_item); 3764 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3765 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3766 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3767 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3768 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3769 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3770 round_up(i_size_read(inode), fs_info->sectorsize)); 3771 3772 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3773 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3774 3775 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3776 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3777 3778 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3779 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3780 3781 BTRFS_I(inode)->i_otime.tv_sec = 3782 btrfs_timespec_sec(leaf, &inode_item->otime); 3783 BTRFS_I(inode)->i_otime.tv_nsec = 3784 btrfs_timespec_nsec(leaf, &inode_item->otime); 3785 3786 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3787 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3788 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3789 3790 inode_set_iversion_queried(inode, 3791 btrfs_inode_sequence(leaf, inode_item)); 3792 inode->i_generation = BTRFS_I(inode)->generation; 3793 inode->i_rdev = 0; 3794 rdev = btrfs_inode_rdev(leaf, inode_item); 3795 3796 BTRFS_I(inode)->index_cnt = (u64)-1; 3797 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3798 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3799 3800 cache_index: 3801 /* 3802 * If we were modified in the current generation and evicted from memory 3803 * and then re-read we need to do a full sync since we don't have any 3804 * idea about which extents were modified before we were evicted from 3805 * cache. 3806 * 3807 * This is required for both inode re-read from disk and delayed inode 3808 * in delayed_nodes_tree. 3809 */ 3810 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3811 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3812 &BTRFS_I(inode)->runtime_flags); 3813 3814 /* 3815 * We don't persist the id of the transaction where an unlink operation 3816 * against the inode was last made. So here we assume the inode might 3817 * have been evicted, and therefore the exact value of last_unlink_trans 3818 * lost, and set it to last_trans to avoid metadata inconsistencies 3819 * between the inode and its parent if the inode is fsync'ed and the log 3820 * replayed. For example, in the scenario: 3821 * 3822 * touch mydir/foo 3823 * ln mydir/foo mydir/bar 3824 * sync 3825 * unlink mydir/bar 3826 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3827 * xfs_io -c fsync mydir/foo 3828 * <power failure> 3829 * mount fs, triggers fsync log replay 3830 * 3831 * We must make sure that when we fsync our inode foo we also log its 3832 * parent inode, otherwise after log replay the parent still has the 3833 * dentry with the "bar" name but our inode foo has a link count of 1 3834 * and doesn't have an inode ref with the name "bar" anymore. 3835 * 3836 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3837 * but it guarantees correctness at the expense of occasional full 3838 * transaction commits on fsync if our inode is a directory, or if our 3839 * inode is not a directory, logging its parent unnecessarily. 3840 */ 3841 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3842 3843 /* 3844 * Same logic as for last_unlink_trans. We don't persist the generation 3845 * of the last transaction where this inode was used for a reflink 3846 * operation, so after eviction and reloading the inode we must be 3847 * pessimistic and assume the last transaction that modified the inode. 3848 */ 3849 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3850 3851 path->slots[0]++; 3852 if (inode->i_nlink != 1 || 3853 path->slots[0] >= btrfs_header_nritems(leaf)) 3854 goto cache_acl; 3855 3856 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3857 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3858 goto cache_acl; 3859 3860 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3861 if (location.type == BTRFS_INODE_REF_KEY) { 3862 struct btrfs_inode_ref *ref; 3863 3864 ref = (struct btrfs_inode_ref *)ptr; 3865 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3866 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3867 struct btrfs_inode_extref *extref; 3868 3869 extref = (struct btrfs_inode_extref *)ptr; 3870 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3871 extref); 3872 } 3873 cache_acl: 3874 /* 3875 * try to precache a NULL acl entry for files that don't have 3876 * any xattrs or acls 3877 */ 3878 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3879 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3880 if (first_xattr_slot != -1) { 3881 path->slots[0] = first_xattr_slot; 3882 ret = btrfs_load_inode_props(inode, path); 3883 if (ret) 3884 btrfs_err(fs_info, 3885 "error loading props for ino %llu (root %llu): %d", 3886 btrfs_ino(BTRFS_I(inode)), 3887 root->root_key.objectid, ret); 3888 } 3889 if (path != in_path) 3890 btrfs_free_path(path); 3891 3892 if (!maybe_acls) 3893 cache_no_acl(inode); 3894 3895 switch (inode->i_mode & S_IFMT) { 3896 case S_IFREG: 3897 inode->i_mapping->a_ops = &btrfs_aops; 3898 inode->i_fop = &btrfs_file_operations; 3899 inode->i_op = &btrfs_file_inode_operations; 3900 break; 3901 case S_IFDIR: 3902 inode->i_fop = &btrfs_dir_file_operations; 3903 inode->i_op = &btrfs_dir_inode_operations; 3904 break; 3905 case S_IFLNK: 3906 inode->i_op = &btrfs_symlink_inode_operations; 3907 inode_nohighmem(inode); 3908 inode->i_mapping->a_ops = &btrfs_aops; 3909 break; 3910 default: 3911 inode->i_op = &btrfs_special_inode_operations; 3912 init_special_inode(inode, inode->i_mode, rdev); 3913 break; 3914 } 3915 3916 btrfs_sync_inode_flags_to_i_flags(inode); 3917 return 0; 3918 } 3919 3920 /* 3921 * given a leaf and an inode, copy the inode fields into the leaf 3922 */ 3923 static void fill_inode_item(struct btrfs_trans_handle *trans, 3924 struct extent_buffer *leaf, 3925 struct btrfs_inode_item *item, 3926 struct inode *inode) 3927 { 3928 struct btrfs_map_token token; 3929 u64 flags; 3930 3931 btrfs_init_map_token(&token, leaf); 3932 3933 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3934 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3935 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3936 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3937 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3938 3939 btrfs_set_token_timespec_sec(&token, &item->atime, 3940 inode->i_atime.tv_sec); 3941 btrfs_set_token_timespec_nsec(&token, &item->atime, 3942 inode->i_atime.tv_nsec); 3943 3944 btrfs_set_token_timespec_sec(&token, &item->mtime, 3945 inode->i_mtime.tv_sec); 3946 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3947 inode->i_mtime.tv_nsec); 3948 3949 btrfs_set_token_timespec_sec(&token, &item->ctime, 3950 inode_get_ctime(inode).tv_sec); 3951 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3952 inode_get_ctime(inode).tv_nsec); 3953 3954 btrfs_set_token_timespec_sec(&token, &item->otime, 3955 BTRFS_I(inode)->i_otime.tv_sec); 3956 btrfs_set_token_timespec_nsec(&token, &item->otime, 3957 BTRFS_I(inode)->i_otime.tv_nsec); 3958 3959 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3960 btrfs_set_token_inode_generation(&token, item, 3961 BTRFS_I(inode)->generation); 3962 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3963 btrfs_set_token_inode_transid(&token, item, trans->transid); 3964 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3965 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3966 BTRFS_I(inode)->ro_flags); 3967 btrfs_set_token_inode_flags(&token, item, flags); 3968 btrfs_set_token_inode_block_group(&token, item, 0); 3969 } 3970 3971 /* 3972 * copy everything in the in-memory inode into the btree. 3973 */ 3974 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3975 struct btrfs_root *root, 3976 struct btrfs_inode *inode) 3977 { 3978 struct btrfs_inode_item *inode_item; 3979 struct btrfs_path *path; 3980 struct extent_buffer *leaf; 3981 int ret; 3982 3983 path = btrfs_alloc_path(); 3984 if (!path) 3985 return -ENOMEM; 3986 3987 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3988 if (ret) { 3989 if (ret > 0) 3990 ret = -ENOENT; 3991 goto failed; 3992 } 3993 3994 leaf = path->nodes[0]; 3995 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3996 struct btrfs_inode_item); 3997 3998 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3999 btrfs_mark_buffer_dirty(trans, leaf); 4000 btrfs_set_inode_last_trans(trans, inode); 4001 ret = 0; 4002 failed: 4003 btrfs_free_path(path); 4004 return ret; 4005 } 4006 4007 /* 4008 * copy everything in the in-memory inode into the btree. 4009 */ 4010 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4011 struct btrfs_root *root, 4012 struct btrfs_inode *inode) 4013 { 4014 struct btrfs_fs_info *fs_info = root->fs_info; 4015 int ret; 4016 4017 /* 4018 * If the inode is a free space inode, we can deadlock during commit 4019 * if we put it into the delayed code. 4020 * 4021 * The data relocation inode should also be directly updated 4022 * without delay 4023 */ 4024 if (!btrfs_is_free_space_inode(inode) 4025 && !btrfs_is_data_reloc_root(root) 4026 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4027 btrfs_update_root_times(trans, root); 4028 4029 ret = btrfs_delayed_update_inode(trans, root, inode); 4030 if (!ret) 4031 btrfs_set_inode_last_trans(trans, inode); 4032 return ret; 4033 } 4034 4035 return btrfs_update_inode_item(trans, root, inode); 4036 } 4037 4038 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4039 struct btrfs_root *root, struct btrfs_inode *inode) 4040 { 4041 int ret; 4042 4043 ret = btrfs_update_inode(trans, root, inode); 4044 if (ret == -ENOSPC) 4045 return btrfs_update_inode_item(trans, root, inode); 4046 return ret; 4047 } 4048 4049 /* 4050 * unlink helper that gets used here in inode.c and in the tree logging 4051 * recovery code. It remove a link in a directory with a given name, and 4052 * also drops the back refs in the inode to the directory 4053 */ 4054 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4055 struct btrfs_inode *dir, 4056 struct btrfs_inode *inode, 4057 const struct fscrypt_str *name, 4058 struct btrfs_rename_ctx *rename_ctx) 4059 { 4060 struct btrfs_root *root = dir->root; 4061 struct btrfs_fs_info *fs_info = root->fs_info; 4062 struct btrfs_path *path; 4063 int ret = 0; 4064 struct btrfs_dir_item *di; 4065 u64 index; 4066 u64 ino = btrfs_ino(inode); 4067 u64 dir_ino = btrfs_ino(dir); 4068 4069 path = btrfs_alloc_path(); 4070 if (!path) { 4071 ret = -ENOMEM; 4072 goto out; 4073 } 4074 4075 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4076 if (IS_ERR_OR_NULL(di)) { 4077 ret = di ? PTR_ERR(di) : -ENOENT; 4078 goto err; 4079 } 4080 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4081 if (ret) 4082 goto err; 4083 btrfs_release_path(path); 4084 4085 /* 4086 * If we don't have dir index, we have to get it by looking up 4087 * the inode ref, since we get the inode ref, remove it directly, 4088 * it is unnecessary to do delayed deletion. 4089 * 4090 * But if we have dir index, needn't search inode ref to get it. 4091 * Since the inode ref is close to the inode item, it is better 4092 * that we delay to delete it, and just do this deletion when 4093 * we update the inode item. 4094 */ 4095 if (inode->dir_index) { 4096 ret = btrfs_delayed_delete_inode_ref(inode); 4097 if (!ret) { 4098 index = inode->dir_index; 4099 goto skip_backref; 4100 } 4101 } 4102 4103 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4104 if (ret) { 4105 btrfs_info(fs_info, 4106 "failed to delete reference to %.*s, inode %llu parent %llu", 4107 name->len, name->name, ino, dir_ino); 4108 btrfs_abort_transaction(trans, ret); 4109 goto err; 4110 } 4111 skip_backref: 4112 if (rename_ctx) 4113 rename_ctx->index = index; 4114 4115 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4116 if (ret) { 4117 btrfs_abort_transaction(trans, ret); 4118 goto err; 4119 } 4120 4121 /* 4122 * If we are in a rename context, we don't need to update anything in the 4123 * log. That will be done later during the rename by btrfs_log_new_name(). 4124 * Besides that, doing it here would only cause extra unnecessary btree 4125 * operations on the log tree, increasing latency for applications. 4126 */ 4127 if (!rename_ctx) { 4128 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4129 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4130 } 4131 4132 /* 4133 * If we have a pending delayed iput we could end up with the final iput 4134 * being run in btrfs-cleaner context. If we have enough of these built 4135 * up we can end up burning a lot of time in btrfs-cleaner without any 4136 * way to throttle the unlinks. Since we're currently holding a ref on 4137 * the inode we can run the delayed iput here without any issues as the 4138 * final iput won't be done until after we drop the ref we're currently 4139 * holding. 4140 */ 4141 btrfs_run_delayed_iput(fs_info, inode); 4142 err: 4143 btrfs_free_path(path); 4144 if (ret) 4145 goto out; 4146 4147 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4148 inode_inc_iversion(&inode->vfs_inode); 4149 inode_inc_iversion(&dir->vfs_inode); 4150 inode_set_ctime_current(&inode->vfs_inode); 4151 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode); 4152 ret = btrfs_update_inode(trans, root, dir); 4153 out: 4154 return ret; 4155 } 4156 4157 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4158 struct btrfs_inode *dir, struct btrfs_inode *inode, 4159 const struct fscrypt_str *name) 4160 { 4161 int ret; 4162 4163 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4164 if (!ret) { 4165 drop_nlink(&inode->vfs_inode); 4166 ret = btrfs_update_inode(trans, inode->root, inode); 4167 } 4168 return ret; 4169 } 4170 4171 /* 4172 * helper to start transaction for unlink and rmdir. 4173 * 4174 * unlink and rmdir are special in btrfs, they do not always free space, so 4175 * if we cannot make our reservations the normal way try and see if there is 4176 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4177 * allow the unlink to occur. 4178 */ 4179 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4180 { 4181 struct btrfs_root *root = dir->root; 4182 4183 return btrfs_start_transaction_fallback_global_rsv(root, 4184 BTRFS_UNLINK_METADATA_UNITS); 4185 } 4186 4187 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4188 { 4189 struct btrfs_trans_handle *trans; 4190 struct inode *inode = d_inode(dentry); 4191 int ret; 4192 struct fscrypt_name fname; 4193 4194 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4195 if (ret) 4196 return ret; 4197 4198 /* This needs to handle no-key deletions later on */ 4199 4200 trans = __unlink_start_trans(BTRFS_I(dir)); 4201 if (IS_ERR(trans)) { 4202 ret = PTR_ERR(trans); 4203 goto fscrypt_free; 4204 } 4205 4206 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4207 false); 4208 4209 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4210 &fname.disk_name); 4211 if (ret) 4212 goto end_trans; 4213 4214 if (inode->i_nlink == 0) { 4215 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4216 if (ret) 4217 goto end_trans; 4218 } 4219 4220 end_trans: 4221 btrfs_end_transaction(trans); 4222 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4223 fscrypt_free: 4224 fscrypt_free_filename(&fname); 4225 return ret; 4226 } 4227 4228 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4229 struct btrfs_inode *dir, struct dentry *dentry) 4230 { 4231 struct btrfs_root *root = dir->root; 4232 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4233 struct btrfs_path *path; 4234 struct extent_buffer *leaf; 4235 struct btrfs_dir_item *di; 4236 struct btrfs_key key; 4237 u64 index; 4238 int ret; 4239 u64 objectid; 4240 u64 dir_ino = btrfs_ino(dir); 4241 struct fscrypt_name fname; 4242 4243 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4244 if (ret) 4245 return ret; 4246 4247 /* This needs to handle no-key deletions later on */ 4248 4249 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4250 objectid = inode->root->root_key.objectid; 4251 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4252 objectid = inode->location.objectid; 4253 } else { 4254 WARN_ON(1); 4255 fscrypt_free_filename(&fname); 4256 return -EINVAL; 4257 } 4258 4259 path = btrfs_alloc_path(); 4260 if (!path) { 4261 ret = -ENOMEM; 4262 goto out; 4263 } 4264 4265 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4266 &fname.disk_name, -1); 4267 if (IS_ERR_OR_NULL(di)) { 4268 ret = di ? PTR_ERR(di) : -ENOENT; 4269 goto out; 4270 } 4271 4272 leaf = path->nodes[0]; 4273 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4274 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4275 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4276 if (ret) { 4277 btrfs_abort_transaction(trans, ret); 4278 goto out; 4279 } 4280 btrfs_release_path(path); 4281 4282 /* 4283 * This is a placeholder inode for a subvolume we didn't have a 4284 * reference to at the time of the snapshot creation. In the meantime 4285 * we could have renamed the real subvol link into our snapshot, so 4286 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4287 * Instead simply lookup the dir_index_item for this entry so we can 4288 * remove it. Otherwise we know we have a ref to the root and we can 4289 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4290 */ 4291 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4292 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4293 if (IS_ERR_OR_NULL(di)) { 4294 if (!di) 4295 ret = -ENOENT; 4296 else 4297 ret = PTR_ERR(di); 4298 btrfs_abort_transaction(trans, ret); 4299 goto out; 4300 } 4301 4302 leaf = path->nodes[0]; 4303 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4304 index = key.offset; 4305 btrfs_release_path(path); 4306 } else { 4307 ret = btrfs_del_root_ref(trans, objectid, 4308 root->root_key.objectid, dir_ino, 4309 &index, &fname.disk_name); 4310 if (ret) { 4311 btrfs_abort_transaction(trans, ret); 4312 goto out; 4313 } 4314 } 4315 4316 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4317 if (ret) { 4318 btrfs_abort_transaction(trans, ret); 4319 goto out; 4320 } 4321 4322 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4323 inode_inc_iversion(&dir->vfs_inode); 4324 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode); 4325 ret = btrfs_update_inode_fallback(trans, root, dir); 4326 if (ret) 4327 btrfs_abort_transaction(trans, ret); 4328 out: 4329 btrfs_free_path(path); 4330 fscrypt_free_filename(&fname); 4331 return ret; 4332 } 4333 4334 /* 4335 * Helper to check if the subvolume references other subvolumes or if it's 4336 * default. 4337 */ 4338 static noinline int may_destroy_subvol(struct btrfs_root *root) 4339 { 4340 struct btrfs_fs_info *fs_info = root->fs_info; 4341 struct btrfs_path *path; 4342 struct btrfs_dir_item *di; 4343 struct btrfs_key key; 4344 struct fscrypt_str name = FSTR_INIT("default", 7); 4345 u64 dir_id; 4346 int ret; 4347 4348 path = btrfs_alloc_path(); 4349 if (!path) 4350 return -ENOMEM; 4351 4352 /* Make sure this root isn't set as the default subvol */ 4353 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4354 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4355 dir_id, &name, 0); 4356 if (di && !IS_ERR(di)) { 4357 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4358 if (key.objectid == root->root_key.objectid) { 4359 ret = -EPERM; 4360 btrfs_err(fs_info, 4361 "deleting default subvolume %llu is not allowed", 4362 key.objectid); 4363 goto out; 4364 } 4365 btrfs_release_path(path); 4366 } 4367 4368 key.objectid = root->root_key.objectid; 4369 key.type = BTRFS_ROOT_REF_KEY; 4370 key.offset = (u64)-1; 4371 4372 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4373 if (ret < 0) 4374 goto out; 4375 BUG_ON(ret == 0); 4376 4377 ret = 0; 4378 if (path->slots[0] > 0) { 4379 path->slots[0]--; 4380 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4381 if (key.objectid == root->root_key.objectid && 4382 key.type == BTRFS_ROOT_REF_KEY) 4383 ret = -ENOTEMPTY; 4384 } 4385 out: 4386 btrfs_free_path(path); 4387 return ret; 4388 } 4389 4390 /* Delete all dentries for inodes belonging to the root */ 4391 static void btrfs_prune_dentries(struct btrfs_root *root) 4392 { 4393 struct btrfs_fs_info *fs_info = root->fs_info; 4394 struct rb_node *node; 4395 struct rb_node *prev; 4396 struct btrfs_inode *entry; 4397 struct inode *inode; 4398 u64 objectid = 0; 4399 4400 if (!BTRFS_FS_ERROR(fs_info)) 4401 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4402 4403 spin_lock(&root->inode_lock); 4404 again: 4405 node = root->inode_tree.rb_node; 4406 prev = NULL; 4407 while (node) { 4408 prev = node; 4409 entry = rb_entry(node, struct btrfs_inode, rb_node); 4410 4411 if (objectid < btrfs_ino(entry)) 4412 node = node->rb_left; 4413 else if (objectid > btrfs_ino(entry)) 4414 node = node->rb_right; 4415 else 4416 break; 4417 } 4418 if (!node) { 4419 while (prev) { 4420 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4421 if (objectid <= btrfs_ino(entry)) { 4422 node = prev; 4423 break; 4424 } 4425 prev = rb_next(prev); 4426 } 4427 } 4428 while (node) { 4429 entry = rb_entry(node, struct btrfs_inode, rb_node); 4430 objectid = btrfs_ino(entry) + 1; 4431 inode = igrab(&entry->vfs_inode); 4432 if (inode) { 4433 spin_unlock(&root->inode_lock); 4434 if (atomic_read(&inode->i_count) > 1) 4435 d_prune_aliases(inode); 4436 /* 4437 * btrfs_drop_inode will have it removed from the inode 4438 * cache when its usage count hits zero. 4439 */ 4440 iput(inode); 4441 cond_resched(); 4442 spin_lock(&root->inode_lock); 4443 goto again; 4444 } 4445 4446 if (cond_resched_lock(&root->inode_lock)) 4447 goto again; 4448 4449 node = rb_next(node); 4450 } 4451 spin_unlock(&root->inode_lock); 4452 } 4453 4454 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4455 { 4456 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4457 struct btrfs_root *root = dir->root; 4458 struct inode *inode = d_inode(dentry); 4459 struct btrfs_root *dest = BTRFS_I(inode)->root; 4460 struct btrfs_trans_handle *trans; 4461 struct btrfs_block_rsv block_rsv; 4462 u64 root_flags; 4463 u64 qgroup_reserved = 0; 4464 int ret; 4465 4466 down_write(&fs_info->subvol_sem); 4467 4468 /* 4469 * Don't allow to delete a subvolume with send in progress. This is 4470 * inside the inode lock so the error handling that has to drop the bit 4471 * again is not run concurrently. 4472 */ 4473 spin_lock(&dest->root_item_lock); 4474 if (dest->send_in_progress) { 4475 spin_unlock(&dest->root_item_lock); 4476 btrfs_warn(fs_info, 4477 "attempt to delete subvolume %llu during send", 4478 dest->root_key.objectid); 4479 ret = -EPERM; 4480 goto out_up_write; 4481 } 4482 if (atomic_read(&dest->nr_swapfiles)) { 4483 spin_unlock(&dest->root_item_lock); 4484 btrfs_warn(fs_info, 4485 "attempt to delete subvolume %llu with active swapfile", 4486 root->root_key.objectid); 4487 ret = -EPERM; 4488 goto out_up_write; 4489 } 4490 root_flags = btrfs_root_flags(&dest->root_item); 4491 btrfs_set_root_flags(&dest->root_item, 4492 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4493 spin_unlock(&dest->root_item_lock); 4494 4495 ret = may_destroy_subvol(dest); 4496 if (ret) 4497 goto out_undead; 4498 4499 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4500 /* 4501 * One for dir inode, 4502 * two for dir entries, 4503 * two for root ref/backref. 4504 */ 4505 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4506 if (ret) 4507 goto out_undead; 4508 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4509 4510 trans = btrfs_start_transaction(root, 0); 4511 if (IS_ERR(trans)) { 4512 ret = PTR_ERR(trans); 4513 goto out_release; 4514 } 4515 ret = btrfs_record_root_in_trans(trans, root); 4516 if (ret) { 4517 btrfs_abort_transaction(trans, ret); 4518 goto out_end_trans; 4519 } 4520 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4521 qgroup_reserved = 0; 4522 trans->block_rsv = &block_rsv; 4523 trans->bytes_reserved = block_rsv.size; 4524 4525 btrfs_record_snapshot_destroy(trans, dir); 4526 4527 ret = btrfs_unlink_subvol(trans, dir, dentry); 4528 if (ret) { 4529 btrfs_abort_transaction(trans, ret); 4530 goto out_end_trans; 4531 } 4532 4533 ret = btrfs_record_root_in_trans(trans, dest); 4534 if (ret) { 4535 btrfs_abort_transaction(trans, ret); 4536 goto out_end_trans; 4537 } 4538 4539 memset(&dest->root_item.drop_progress, 0, 4540 sizeof(dest->root_item.drop_progress)); 4541 btrfs_set_root_drop_level(&dest->root_item, 0); 4542 btrfs_set_root_refs(&dest->root_item, 0); 4543 4544 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4545 ret = btrfs_insert_orphan_item(trans, 4546 fs_info->tree_root, 4547 dest->root_key.objectid); 4548 if (ret) { 4549 btrfs_abort_transaction(trans, ret); 4550 goto out_end_trans; 4551 } 4552 } 4553 4554 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4555 BTRFS_UUID_KEY_SUBVOL, 4556 dest->root_key.objectid); 4557 if (ret && ret != -ENOENT) { 4558 btrfs_abort_transaction(trans, ret); 4559 goto out_end_trans; 4560 } 4561 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4562 ret = btrfs_uuid_tree_remove(trans, 4563 dest->root_item.received_uuid, 4564 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4565 dest->root_key.objectid); 4566 if (ret && ret != -ENOENT) { 4567 btrfs_abort_transaction(trans, ret); 4568 goto out_end_trans; 4569 } 4570 } 4571 4572 free_anon_bdev(dest->anon_dev); 4573 dest->anon_dev = 0; 4574 out_end_trans: 4575 trans->block_rsv = NULL; 4576 trans->bytes_reserved = 0; 4577 ret = btrfs_end_transaction(trans); 4578 inode->i_flags |= S_DEAD; 4579 out_release: 4580 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4581 if (qgroup_reserved) 4582 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4583 out_undead: 4584 if (ret) { 4585 spin_lock(&dest->root_item_lock); 4586 root_flags = btrfs_root_flags(&dest->root_item); 4587 btrfs_set_root_flags(&dest->root_item, 4588 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4589 spin_unlock(&dest->root_item_lock); 4590 } 4591 out_up_write: 4592 up_write(&fs_info->subvol_sem); 4593 if (!ret) { 4594 d_invalidate(dentry); 4595 btrfs_prune_dentries(dest); 4596 ASSERT(dest->send_in_progress == 0); 4597 } 4598 4599 return ret; 4600 } 4601 4602 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4603 { 4604 struct inode *inode = d_inode(dentry); 4605 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4606 int err = 0; 4607 struct btrfs_trans_handle *trans; 4608 u64 last_unlink_trans; 4609 struct fscrypt_name fname; 4610 4611 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4612 return -ENOTEMPTY; 4613 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4614 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4615 btrfs_err(fs_info, 4616 "extent tree v2 doesn't support snapshot deletion yet"); 4617 return -EOPNOTSUPP; 4618 } 4619 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4620 } 4621 4622 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4623 if (err) 4624 return err; 4625 4626 /* This needs to handle no-key deletions later on */ 4627 4628 trans = __unlink_start_trans(BTRFS_I(dir)); 4629 if (IS_ERR(trans)) { 4630 err = PTR_ERR(trans); 4631 goto out_notrans; 4632 } 4633 4634 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4635 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4636 goto out; 4637 } 4638 4639 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4640 if (err) 4641 goto out; 4642 4643 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4644 4645 /* now the directory is empty */ 4646 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4647 &fname.disk_name); 4648 if (!err) { 4649 btrfs_i_size_write(BTRFS_I(inode), 0); 4650 /* 4651 * Propagate the last_unlink_trans value of the deleted dir to 4652 * its parent directory. This is to prevent an unrecoverable 4653 * log tree in the case we do something like this: 4654 * 1) create dir foo 4655 * 2) create snapshot under dir foo 4656 * 3) delete the snapshot 4657 * 4) rmdir foo 4658 * 5) mkdir foo 4659 * 6) fsync foo or some file inside foo 4660 */ 4661 if (last_unlink_trans >= trans->transid) 4662 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4663 } 4664 out: 4665 btrfs_end_transaction(trans); 4666 out_notrans: 4667 btrfs_btree_balance_dirty(fs_info); 4668 fscrypt_free_filename(&fname); 4669 4670 return err; 4671 } 4672 4673 /* 4674 * btrfs_truncate_block - read, zero a chunk and write a block 4675 * @inode - inode that we're zeroing 4676 * @from - the offset to start zeroing 4677 * @len - the length to zero, 0 to zero the entire range respective to the 4678 * offset 4679 * @front - zero up to the offset instead of from the offset on 4680 * 4681 * This will find the block for the "from" offset and cow the block and zero the 4682 * part we want to zero. This is used with truncate and hole punching. 4683 */ 4684 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4685 int front) 4686 { 4687 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4688 struct address_space *mapping = inode->vfs_inode.i_mapping; 4689 struct extent_io_tree *io_tree = &inode->io_tree; 4690 struct btrfs_ordered_extent *ordered; 4691 struct extent_state *cached_state = NULL; 4692 struct extent_changeset *data_reserved = NULL; 4693 bool only_release_metadata = false; 4694 u32 blocksize = fs_info->sectorsize; 4695 pgoff_t index = from >> PAGE_SHIFT; 4696 unsigned offset = from & (blocksize - 1); 4697 struct page *page; 4698 gfp_t mask = btrfs_alloc_write_mask(mapping); 4699 size_t write_bytes = blocksize; 4700 int ret = 0; 4701 u64 block_start; 4702 u64 block_end; 4703 4704 if (IS_ALIGNED(offset, blocksize) && 4705 (!len || IS_ALIGNED(len, blocksize))) 4706 goto out; 4707 4708 block_start = round_down(from, blocksize); 4709 block_end = block_start + blocksize - 1; 4710 4711 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4712 blocksize, false); 4713 if (ret < 0) { 4714 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4715 /* For nocow case, no need to reserve data space */ 4716 only_release_metadata = true; 4717 } else { 4718 goto out; 4719 } 4720 } 4721 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4722 if (ret < 0) { 4723 if (!only_release_metadata) 4724 btrfs_free_reserved_data_space(inode, data_reserved, 4725 block_start, blocksize); 4726 goto out; 4727 } 4728 again: 4729 page = find_or_create_page(mapping, index, mask); 4730 if (!page) { 4731 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4732 blocksize, true); 4733 btrfs_delalloc_release_extents(inode, blocksize); 4734 ret = -ENOMEM; 4735 goto out; 4736 } 4737 4738 if (!PageUptodate(page)) { 4739 ret = btrfs_read_folio(NULL, page_folio(page)); 4740 lock_page(page); 4741 if (page->mapping != mapping) { 4742 unlock_page(page); 4743 put_page(page); 4744 goto again; 4745 } 4746 if (!PageUptodate(page)) { 4747 ret = -EIO; 4748 goto out_unlock; 4749 } 4750 } 4751 4752 /* 4753 * We unlock the page after the io is completed and then re-lock it 4754 * above. release_folio() could have come in between that and cleared 4755 * PagePrivate(), but left the page in the mapping. Set the page mapped 4756 * here to make sure it's properly set for the subpage stuff. 4757 */ 4758 ret = set_page_extent_mapped(page); 4759 if (ret < 0) 4760 goto out_unlock; 4761 4762 wait_on_page_writeback(page); 4763 4764 lock_extent(io_tree, block_start, block_end, &cached_state); 4765 4766 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4767 if (ordered) { 4768 unlock_extent(io_tree, block_start, block_end, &cached_state); 4769 unlock_page(page); 4770 put_page(page); 4771 btrfs_start_ordered_extent(ordered); 4772 btrfs_put_ordered_extent(ordered); 4773 goto again; 4774 } 4775 4776 clear_extent_bit(&inode->io_tree, block_start, block_end, 4777 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4778 &cached_state); 4779 4780 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4781 &cached_state); 4782 if (ret) { 4783 unlock_extent(io_tree, block_start, block_end, &cached_state); 4784 goto out_unlock; 4785 } 4786 4787 if (offset != blocksize) { 4788 if (!len) 4789 len = blocksize - offset; 4790 if (front) 4791 memzero_page(page, (block_start - page_offset(page)), 4792 offset); 4793 else 4794 memzero_page(page, (block_start - page_offset(page)) + offset, 4795 len); 4796 } 4797 btrfs_page_clear_checked(fs_info, page, block_start, 4798 block_end + 1 - block_start); 4799 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4800 unlock_extent(io_tree, block_start, block_end, &cached_state); 4801 4802 if (only_release_metadata) 4803 set_extent_bit(&inode->io_tree, block_start, block_end, 4804 EXTENT_NORESERVE, NULL); 4805 4806 out_unlock: 4807 if (ret) { 4808 if (only_release_metadata) 4809 btrfs_delalloc_release_metadata(inode, blocksize, true); 4810 else 4811 btrfs_delalloc_release_space(inode, data_reserved, 4812 block_start, blocksize, true); 4813 } 4814 btrfs_delalloc_release_extents(inode, blocksize); 4815 unlock_page(page); 4816 put_page(page); 4817 out: 4818 if (only_release_metadata) 4819 btrfs_check_nocow_unlock(inode); 4820 extent_changeset_free(data_reserved); 4821 return ret; 4822 } 4823 4824 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4825 u64 offset, u64 len) 4826 { 4827 struct btrfs_fs_info *fs_info = root->fs_info; 4828 struct btrfs_trans_handle *trans; 4829 struct btrfs_drop_extents_args drop_args = { 0 }; 4830 int ret; 4831 4832 /* 4833 * If NO_HOLES is enabled, we don't need to do anything. 4834 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4835 * or btrfs_update_inode() will be called, which guarantee that the next 4836 * fsync will know this inode was changed and needs to be logged. 4837 */ 4838 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4839 return 0; 4840 4841 /* 4842 * 1 - for the one we're dropping 4843 * 1 - for the one we're adding 4844 * 1 - for updating the inode. 4845 */ 4846 trans = btrfs_start_transaction(root, 3); 4847 if (IS_ERR(trans)) 4848 return PTR_ERR(trans); 4849 4850 drop_args.start = offset; 4851 drop_args.end = offset + len; 4852 drop_args.drop_cache = true; 4853 4854 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4855 if (ret) { 4856 btrfs_abort_transaction(trans, ret); 4857 btrfs_end_transaction(trans); 4858 return ret; 4859 } 4860 4861 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4862 if (ret) { 4863 btrfs_abort_transaction(trans, ret); 4864 } else { 4865 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4866 btrfs_update_inode(trans, root, inode); 4867 } 4868 btrfs_end_transaction(trans); 4869 return ret; 4870 } 4871 4872 /* 4873 * This function puts in dummy file extents for the area we're creating a hole 4874 * for. So if we are truncating this file to a larger size we need to insert 4875 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4876 * the range between oldsize and size 4877 */ 4878 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4879 { 4880 struct btrfs_root *root = inode->root; 4881 struct btrfs_fs_info *fs_info = root->fs_info; 4882 struct extent_io_tree *io_tree = &inode->io_tree; 4883 struct extent_map *em = NULL; 4884 struct extent_state *cached_state = NULL; 4885 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4886 u64 block_end = ALIGN(size, fs_info->sectorsize); 4887 u64 last_byte; 4888 u64 cur_offset; 4889 u64 hole_size; 4890 int err = 0; 4891 4892 /* 4893 * If our size started in the middle of a block we need to zero out the 4894 * rest of the block before we expand the i_size, otherwise we could 4895 * expose stale data. 4896 */ 4897 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4898 if (err) 4899 return err; 4900 4901 if (size <= hole_start) 4902 return 0; 4903 4904 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4905 &cached_state); 4906 cur_offset = hole_start; 4907 while (1) { 4908 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4909 block_end - cur_offset); 4910 if (IS_ERR(em)) { 4911 err = PTR_ERR(em); 4912 em = NULL; 4913 break; 4914 } 4915 last_byte = min(extent_map_end(em), block_end); 4916 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4917 hole_size = last_byte - cur_offset; 4918 4919 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4920 struct extent_map *hole_em; 4921 4922 err = maybe_insert_hole(root, inode, cur_offset, 4923 hole_size); 4924 if (err) 4925 break; 4926 4927 err = btrfs_inode_set_file_extent_range(inode, 4928 cur_offset, hole_size); 4929 if (err) 4930 break; 4931 4932 hole_em = alloc_extent_map(); 4933 if (!hole_em) { 4934 btrfs_drop_extent_map_range(inode, cur_offset, 4935 cur_offset + hole_size - 1, 4936 false); 4937 btrfs_set_inode_full_sync(inode); 4938 goto next; 4939 } 4940 hole_em->start = cur_offset; 4941 hole_em->len = hole_size; 4942 hole_em->orig_start = cur_offset; 4943 4944 hole_em->block_start = EXTENT_MAP_HOLE; 4945 hole_em->block_len = 0; 4946 hole_em->orig_block_len = 0; 4947 hole_em->ram_bytes = hole_size; 4948 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4949 hole_em->generation = fs_info->generation; 4950 4951 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4952 free_extent_map(hole_em); 4953 } else { 4954 err = btrfs_inode_set_file_extent_range(inode, 4955 cur_offset, hole_size); 4956 if (err) 4957 break; 4958 } 4959 next: 4960 free_extent_map(em); 4961 em = NULL; 4962 cur_offset = last_byte; 4963 if (cur_offset >= block_end) 4964 break; 4965 } 4966 free_extent_map(em); 4967 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4968 return err; 4969 } 4970 4971 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4972 { 4973 struct btrfs_root *root = BTRFS_I(inode)->root; 4974 struct btrfs_trans_handle *trans; 4975 loff_t oldsize = i_size_read(inode); 4976 loff_t newsize = attr->ia_size; 4977 int mask = attr->ia_valid; 4978 int ret; 4979 4980 /* 4981 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4982 * special case where we need to update the times despite not having 4983 * these flags set. For all other operations the VFS set these flags 4984 * explicitly if it wants a timestamp update. 4985 */ 4986 if (newsize != oldsize) { 4987 inode_inc_iversion(inode); 4988 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4989 inode->i_mtime = inode_set_ctime_current(inode); 4990 } 4991 } 4992 4993 if (newsize > oldsize) { 4994 /* 4995 * Don't do an expanding truncate while snapshotting is ongoing. 4996 * This is to ensure the snapshot captures a fully consistent 4997 * state of this file - if the snapshot captures this expanding 4998 * truncation, it must capture all writes that happened before 4999 * this truncation. 5000 */ 5001 btrfs_drew_write_lock(&root->snapshot_lock); 5002 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5003 if (ret) { 5004 btrfs_drew_write_unlock(&root->snapshot_lock); 5005 return ret; 5006 } 5007 5008 trans = btrfs_start_transaction(root, 1); 5009 if (IS_ERR(trans)) { 5010 btrfs_drew_write_unlock(&root->snapshot_lock); 5011 return PTR_ERR(trans); 5012 } 5013 5014 i_size_write(inode, newsize); 5015 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5016 pagecache_isize_extended(inode, oldsize, newsize); 5017 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5018 btrfs_drew_write_unlock(&root->snapshot_lock); 5019 btrfs_end_transaction(trans); 5020 } else { 5021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5022 5023 if (btrfs_is_zoned(fs_info)) { 5024 ret = btrfs_wait_ordered_range(inode, 5025 ALIGN(newsize, fs_info->sectorsize), 5026 (u64)-1); 5027 if (ret) 5028 return ret; 5029 } 5030 5031 /* 5032 * We're truncating a file that used to have good data down to 5033 * zero. Make sure any new writes to the file get on disk 5034 * on close. 5035 */ 5036 if (newsize == 0) 5037 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5038 &BTRFS_I(inode)->runtime_flags); 5039 5040 truncate_setsize(inode, newsize); 5041 5042 inode_dio_wait(inode); 5043 5044 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5045 if (ret && inode->i_nlink) { 5046 int err; 5047 5048 /* 5049 * Truncate failed, so fix up the in-memory size. We 5050 * adjusted disk_i_size down as we removed extents, so 5051 * wait for disk_i_size to be stable and then update the 5052 * in-memory size to match. 5053 */ 5054 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5055 if (err) 5056 return err; 5057 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5058 } 5059 } 5060 5061 return ret; 5062 } 5063 5064 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5065 struct iattr *attr) 5066 { 5067 struct inode *inode = d_inode(dentry); 5068 struct btrfs_root *root = BTRFS_I(inode)->root; 5069 int err; 5070 5071 if (btrfs_root_readonly(root)) 5072 return -EROFS; 5073 5074 err = setattr_prepare(idmap, dentry, attr); 5075 if (err) 5076 return err; 5077 5078 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5079 err = btrfs_setsize(inode, attr); 5080 if (err) 5081 return err; 5082 } 5083 5084 if (attr->ia_valid) { 5085 setattr_copy(idmap, inode, attr); 5086 inode_inc_iversion(inode); 5087 err = btrfs_dirty_inode(BTRFS_I(inode)); 5088 5089 if (!err && attr->ia_valid & ATTR_MODE) 5090 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5091 } 5092 5093 return err; 5094 } 5095 5096 /* 5097 * While truncating the inode pages during eviction, we get the VFS 5098 * calling btrfs_invalidate_folio() against each folio of the inode. This 5099 * is slow because the calls to btrfs_invalidate_folio() result in a 5100 * huge amount of calls to lock_extent() and clear_extent_bit(), 5101 * which keep merging and splitting extent_state structures over and over, 5102 * wasting lots of time. 5103 * 5104 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5105 * skip all those expensive operations on a per folio basis and do only 5106 * the ordered io finishing, while we release here the extent_map and 5107 * extent_state structures, without the excessive merging and splitting. 5108 */ 5109 static void evict_inode_truncate_pages(struct inode *inode) 5110 { 5111 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5112 struct rb_node *node; 5113 5114 ASSERT(inode->i_state & I_FREEING); 5115 truncate_inode_pages_final(&inode->i_data); 5116 5117 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5118 5119 /* 5120 * Keep looping until we have no more ranges in the io tree. 5121 * We can have ongoing bios started by readahead that have 5122 * their endio callback (extent_io.c:end_bio_extent_readpage) 5123 * still in progress (unlocked the pages in the bio but did not yet 5124 * unlocked the ranges in the io tree). Therefore this means some 5125 * ranges can still be locked and eviction started because before 5126 * submitting those bios, which are executed by a separate task (work 5127 * queue kthread), inode references (inode->i_count) were not taken 5128 * (which would be dropped in the end io callback of each bio). 5129 * Therefore here we effectively end up waiting for those bios and 5130 * anyone else holding locked ranges without having bumped the inode's 5131 * reference count - if we don't do it, when they access the inode's 5132 * io_tree to unlock a range it may be too late, leading to an 5133 * use-after-free issue. 5134 */ 5135 spin_lock(&io_tree->lock); 5136 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5137 struct extent_state *state; 5138 struct extent_state *cached_state = NULL; 5139 u64 start; 5140 u64 end; 5141 unsigned state_flags; 5142 5143 node = rb_first(&io_tree->state); 5144 state = rb_entry(node, struct extent_state, rb_node); 5145 start = state->start; 5146 end = state->end; 5147 state_flags = state->state; 5148 spin_unlock(&io_tree->lock); 5149 5150 lock_extent(io_tree, start, end, &cached_state); 5151 5152 /* 5153 * If still has DELALLOC flag, the extent didn't reach disk, 5154 * and its reserved space won't be freed by delayed_ref. 5155 * So we need to free its reserved space here. 5156 * (Refer to comment in btrfs_invalidate_folio, case 2) 5157 * 5158 * Note, end is the bytenr of last byte, so we need + 1 here. 5159 */ 5160 if (state_flags & EXTENT_DELALLOC) 5161 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5162 end - start + 1, NULL); 5163 5164 clear_extent_bit(io_tree, start, end, 5165 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5166 &cached_state); 5167 5168 cond_resched(); 5169 spin_lock(&io_tree->lock); 5170 } 5171 spin_unlock(&io_tree->lock); 5172 } 5173 5174 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5175 struct btrfs_block_rsv *rsv) 5176 { 5177 struct btrfs_fs_info *fs_info = root->fs_info; 5178 struct btrfs_trans_handle *trans; 5179 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5180 int ret; 5181 5182 /* 5183 * Eviction should be taking place at some place safe because of our 5184 * delayed iputs. However the normal flushing code will run delayed 5185 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5186 * 5187 * We reserve the delayed_refs_extra here again because we can't use 5188 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5189 * above. We reserve our extra bit here because we generate a ton of 5190 * delayed refs activity by truncating. 5191 * 5192 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5193 * if we fail to make this reservation we can re-try without the 5194 * delayed_refs_extra so we can make some forward progress. 5195 */ 5196 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5197 BTRFS_RESERVE_FLUSH_EVICT); 5198 if (ret) { 5199 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5200 BTRFS_RESERVE_FLUSH_EVICT); 5201 if (ret) { 5202 btrfs_warn(fs_info, 5203 "could not allocate space for delete; will truncate on mount"); 5204 return ERR_PTR(-ENOSPC); 5205 } 5206 delayed_refs_extra = 0; 5207 } 5208 5209 trans = btrfs_join_transaction(root); 5210 if (IS_ERR(trans)) 5211 return trans; 5212 5213 if (delayed_refs_extra) { 5214 trans->block_rsv = &fs_info->trans_block_rsv; 5215 trans->bytes_reserved = delayed_refs_extra; 5216 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5217 delayed_refs_extra, true); 5218 } 5219 return trans; 5220 } 5221 5222 void btrfs_evict_inode(struct inode *inode) 5223 { 5224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5225 struct btrfs_trans_handle *trans; 5226 struct btrfs_root *root = BTRFS_I(inode)->root; 5227 struct btrfs_block_rsv *rsv = NULL; 5228 int ret; 5229 5230 trace_btrfs_inode_evict(inode); 5231 5232 if (!root) { 5233 fsverity_cleanup_inode(inode); 5234 clear_inode(inode); 5235 return; 5236 } 5237 5238 evict_inode_truncate_pages(inode); 5239 5240 if (inode->i_nlink && 5241 ((btrfs_root_refs(&root->root_item) != 0 && 5242 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5243 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5244 goto out; 5245 5246 if (is_bad_inode(inode)) 5247 goto out; 5248 5249 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5250 goto out; 5251 5252 if (inode->i_nlink > 0) { 5253 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5254 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5255 goto out; 5256 } 5257 5258 /* 5259 * This makes sure the inode item in tree is uptodate and the space for 5260 * the inode update is released. 5261 */ 5262 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5263 if (ret) 5264 goto out; 5265 5266 /* 5267 * This drops any pending insert or delete operations we have for this 5268 * inode. We could have a delayed dir index deletion queued up, but 5269 * we're removing the inode completely so that'll be taken care of in 5270 * the truncate. 5271 */ 5272 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5273 5274 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5275 if (!rsv) 5276 goto out; 5277 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5278 rsv->failfast = true; 5279 5280 btrfs_i_size_write(BTRFS_I(inode), 0); 5281 5282 while (1) { 5283 struct btrfs_truncate_control control = { 5284 .inode = BTRFS_I(inode), 5285 .ino = btrfs_ino(BTRFS_I(inode)), 5286 .new_size = 0, 5287 .min_type = 0, 5288 }; 5289 5290 trans = evict_refill_and_join(root, rsv); 5291 if (IS_ERR(trans)) 5292 goto out; 5293 5294 trans->block_rsv = rsv; 5295 5296 ret = btrfs_truncate_inode_items(trans, root, &control); 5297 trans->block_rsv = &fs_info->trans_block_rsv; 5298 btrfs_end_transaction(trans); 5299 /* 5300 * We have not added new delayed items for our inode after we 5301 * have flushed its delayed items, so no need to throttle on 5302 * delayed items. However we have modified extent buffers. 5303 */ 5304 btrfs_btree_balance_dirty_nodelay(fs_info); 5305 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5306 goto out; 5307 else if (!ret) 5308 break; 5309 } 5310 5311 /* 5312 * Errors here aren't a big deal, it just means we leave orphan items in 5313 * the tree. They will be cleaned up on the next mount. If the inode 5314 * number gets reused, cleanup deletes the orphan item without doing 5315 * anything, and unlink reuses the existing orphan item. 5316 * 5317 * If it turns out that we are dropping too many of these, we might want 5318 * to add a mechanism for retrying these after a commit. 5319 */ 5320 trans = evict_refill_and_join(root, rsv); 5321 if (!IS_ERR(trans)) { 5322 trans->block_rsv = rsv; 5323 btrfs_orphan_del(trans, BTRFS_I(inode)); 5324 trans->block_rsv = &fs_info->trans_block_rsv; 5325 btrfs_end_transaction(trans); 5326 } 5327 5328 out: 5329 btrfs_free_block_rsv(fs_info, rsv); 5330 /* 5331 * If we didn't successfully delete, the orphan item will still be in 5332 * the tree and we'll retry on the next mount. Again, we might also want 5333 * to retry these periodically in the future. 5334 */ 5335 btrfs_remove_delayed_node(BTRFS_I(inode)); 5336 fsverity_cleanup_inode(inode); 5337 clear_inode(inode); 5338 } 5339 5340 /* 5341 * Return the key found in the dir entry in the location pointer, fill @type 5342 * with BTRFS_FT_*, and return 0. 5343 * 5344 * If no dir entries were found, returns -ENOENT. 5345 * If found a corrupted location in dir entry, returns -EUCLEAN. 5346 */ 5347 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5348 struct btrfs_key *location, u8 *type) 5349 { 5350 struct btrfs_dir_item *di; 5351 struct btrfs_path *path; 5352 struct btrfs_root *root = dir->root; 5353 int ret = 0; 5354 struct fscrypt_name fname; 5355 5356 path = btrfs_alloc_path(); 5357 if (!path) 5358 return -ENOMEM; 5359 5360 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5361 if (ret < 0) 5362 goto out; 5363 /* 5364 * fscrypt_setup_filename() should never return a positive value, but 5365 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5366 */ 5367 ASSERT(ret == 0); 5368 5369 /* This needs to handle no-key deletions later on */ 5370 5371 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5372 &fname.disk_name, 0); 5373 if (IS_ERR_OR_NULL(di)) { 5374 ret = di ? PTR_ERR(di) : -ENOENT; 5375 goto out; 5376 } 5377 5378 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5379 if (location->type != BTRFS_INODE_ITEM_KEY && 5380 location->type != BTRFS_ROOT_ITEM_KEY) { 5381 ret = -EUCLEAN; 5382 btrfs_warn(root->fs_info, 5383 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5384 __func__, fname.disk_name.name, btrfs_ino(dir), 5385 location->objectid, location->type, location->offset); 5386 } 5387 if (!ret) 5388 *type = btrfs_dir_ftype(path->nodes[0], di); 5389 out: 5390 fscrypt_free_filename(&fname); 5391 btrfs_free_path(path); 5392 return ret; 5393 } 5394 5395 /* 5396 * when we hit a tree root in a directory, the btrfs part of the inode 5397 * needs to be changed to reflect the root directory of the tree root. This 5398 * is kind of like crossing a mount point. 5399 */ 5400 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5401 struct btrfs_inode *dir, 5402 struct dentry *dentry, 5403 struct btrfs_key *location, 5404 struct btrfs_root **sub_root) 5405 { 5406 struct btrfs_path *path; 5407 struct btrfs_root *new_root; 5408 struct btrfs_root_ref *ref; 5409 struct extent_buffer *leaf; 5410 struct btrfs_key key; 5411 int ret; 5412 int err = 0; 5413 struct fscrypt_name fname; 5414 5415 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5416 if (ret) 5417 return ret; 5418 5419 path = btrfs_alloc_path(); 5420 if (!path) { 5421 err = -ENOMEM; 5422 goto out; 5423 } 5424 5425 err = -ENOENT; 5426 key.objectid = dir->root->root_key.objectid; 5427 key.type = BTRFS_ROOT_REF_KEY; 5428 key.offset = location->objectid; 5429 5430 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5431 if (ret) { 5432 if (ret < 0) 5433 err = ret; 5434 goto out; 5435 } 5436 5437 leaf = path->nodes[0]; 5438 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5439 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5440 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5441 goto out; 5442 5443 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5444 (unsigned long)(ref + 1), fname.disk_name.len); 5445 if (ret) 5446 goto out; 5447 5448 btrfs_release_path(path); 5449 5450 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5451 if (IS_ERR(new_root)) { 5452 err = PTR_ERR(new_root); 5453 goto out; 5454 } 5455 5456 *sub_root = new_root; 5457 location->objectid = btrfs_root_dirid(&new_root->root_item); 5458 location->type = BTRFS_INODE_ITEM_KEY; 5459 location->offset = 0; 5460 err = 0; 5461 out: 5462 btrfs_free_path(path); 5463 fscrypt_free_filename(&fname); 5464 return err; 5465 } 5466 5467 static void inode_tree_add(struct btrfs_inode *inode) 5468 { 5469 struct btrfs_root *root = inode->root; 5470 struct btrfs_inode *entry; 5471 struct rb_node **p; 5472 struct rb_node *parent; 5473 struct rb_node *new = &inode->rb_node; 5474 u64 ino = btrfs_ino(inode); 5475 5476 if (inode_unhashed(&inode->vfs_inode)) 5477 return; 5478 parent = NULL; 5479 spin_lock(&root->inode_lock); 5480 p = &root->inode_tree.rb_node; 5481 while (*p) { 5482 parent = *p; 5483 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5484 5485 if (ino < btrfs_ino(entry)) 5486 p = &parent->rb_left; 5487 else if (ino > btrfs_ino(entry)) 5488 p = &parent->rb_right; 5489 else { 5490 WARN_ON(!(entry->vfs_inode.i_state & 5491 (I_WILL_FREE | I_FREEING))); 5492 rb_replace_node(parent, new, &root->inode_tree); 5493 RB_CLEAR_NODE(parent); 5494 spin_unlock(&root->inode_lock); 5495 return; 5496 } 5497 } 5498 rb_link_node(new, parent, p); 5499 rb_insert_color(new, &root->inode_tree); 5500 spin_unlock(&root->inode_lock); 5501 } 5502 5503 static void inode_tree_del(struct btrfs_inode *inode) 5504 { 5505 struct btrfs_root *root = inode->root; 5506 int empty = 0; 5507 5508 spin_lock(&root->inode_lock); 5509 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5510 rb_erase(&inode->rb_node, &root->inode_tree); 5511 RB_CLEAR_NODE(&inode->rb_node); 5512 empty = RB_EMPTY_ROOT(&root->inode_tree); 5513 } 5514 spin_unlock(&root->inode_lock); 5515 5516 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5517 spin_lock(&root->inode_lock); 5518 empty = RB_EMPTY_ROOT(&root->inode_tree); 5519 spin_unlock(&root->inode_lock); 5520 if (empty) 5521 btrfs_add_dead_root(root); 5522 } 5523 } 5524 5525 5526 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5527 { 5528 struct btrfs_iget_args *args = p; 5529 5530 inode->i_ino = args->ino; 5531 BTRFS_I(inode)->location.objectid = args->ino; 5532 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5533 BTRFS_I(inode)->location.offset = 0; 5534 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5535 BUG_ON(args->root && !BTRFS_I(inode)->root); 5536 5537 if (args->root && args->root == args->root->fs_info->tree_root && 5538 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5539 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5540 &BTRFS_I(inode)->runtime_flags); 5541 return 0; 5542 } 5543 5544 static int btrfs_find_actor(struct inode *inode, void *opaque) 5545 { 5546 struct btrfs_iget_args *args = opaque; 5547 5548 return args->ino == BTRFS_I(inode)->location.objectid && 5549 args->root == BTRFS_I(inode)->root; 5550 } 5551 5552 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5553 struct btrfs_root *root) 5554 { 5555 struct inode *inode; 5556 struct btrfs_iget_args args; 5557 unsigned long hashval = btrfs_inode_hash(ino, root); 5558 5559 args.ino = ino; 5560 args.root = root; 5561 5562 inode = iget5_locked(s, hashval, btrfs_find_actor, 5563 btrfs_init_locked_inode, 5564 (void *)&args); 5565 return inode; 5566 } 5567 5568 /* 5569 * Get an inode object given its inode number and corresponding root. 5570 * Path can be preallocated to prevent recursing back to iget through 5571 * allocator. NULL is also valid but may require an additional allocation 5572 * later. 5573 */ 5574 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5575 struct btrfs_root *root, struct btrfs_path *path) 5576 { 5577 struct inode *inode; 5578 5579 inode = btrfs_iget_locked(s, ino, root); 5580 if (!inode) 5581 return ERR_PTR(-ENOMEM); 5582 5583 if (inode->i_state & I_NEW) { 5584 int ret; 5585 5586 ret = btrfs_read_locked_inode(inode, path); 5587 if (!ret) { 5588 inode_tree_add(BTRFS_I(inode)); 5589 unlock_new_inode(inode); 5590 } else { 5591 iget_failed(inode); 5592 /* 5593 * ret > 0 can come from btrfs_search_slot called by 5594 * btrfs_read_locked_inode, this means the inode item 5595 * was not found. 5596 */ 5597 if (ret > 0) 5598 ret = -ENOENT; 5599 inode = ERR_PTR(ret); 5600 } 5601 } 5602 5603 return inode; 5604 } 5605 5606 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5607 { 5608 return btrfs_iget_path(s, ino, root, NULL); 5609 } 5610 5611 static struct inode *new_simple_dir(struct inode *dir, 5612 struct btrfs_key *key, 5613 struct btrfs_root *root) 5614 { 5615 struct inode *inode = new_inode(dir->i_sb); 5616 5617 if (!inode) 5618 return ERR_PTR(-ENOMEM); 5619 5620 BTRFS_I(inode)->root = btrfs_grab_root(root); 5621 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5622 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5623 5624 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5625 /* 5626 * We only need lookup, the rest is read-only and there's no inode 5627 * associated with the dentry 5628 */ 5629 inode->i_op = &simple_dir_inode_operations; 5630 inode->i_opflags &= ~IOP_XATTR; 5631 inode->i_fop = &simple_dir_operations; 5632 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5633 inode->i_mtime = inode_set_ctime_current(inode); 5634 inode->i_atime = dir->i_atime; 5635 BTRFS_I(inode)->i_otime = inode->i_mtime; 5636 inode->i_uid = dir->i_uid; 5637 inode->i_gid = dir->i_gid; 5638 5639 return inode; 5640 } 5641 5642 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5643 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5644 static_assert(BTRFS_FT_DIR == FT_DIR); 5645 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5646 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5647 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5648 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5649 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5650 5651 static inline u8 btrfs_inode_type(struct inode *inode) 5652 { 5653 return fs_umode_to_ftype(inode->i_mode); 5654 } 5655 5656 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5657 { 5658 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5659 struct inode *inode; 5660 struct btrfs_root *root = BTRFS_I(dir)->root; 5661 struct btrfs_root *sub_root = root; 5662 struct btrfs_key location; 5663 u8 di_type = 0; 5664 int ret = 0; 5665 5666 if (dentry->d_name.len > BTRFS_NAME_LEN) 5667 return ERR_PTR(-ENAMETOOLONG); 5668 5669 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5670 if (ret < 0) 5671 return ERR_PTR(ret); 5672 5673 if (location.type == BTRFS_INODE_ITEM_KEY) { 5674 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5675 if (IS_ERR(inode)) 5676 return inode; 5677 5678 /* Do extra check against inode mode with di_type */ 5679 if (btrfs_inode_type(inode) != di_type) { 5680 btrfs_crit(fs_info, 5681 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5682 inode->i_mode, btrfs_inode_type(inode), 5683 di_type); 5684 iput(inode); 5685 return ERR_PTR(-EUCLEAN); 5686 } 5687 return inode; 5688 } 5689 5690 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5691 &location, &sub_root); 5692 if (ret < 0) { 5693 if (ret != -ENOENT) 5694 inode = ERR_PTR(ret); 5695 else 5696 inode = new_simple_dir(dir, &location, root); 5697 } else { 5698 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5699 btrfs_put_root(sub_root); 5700 5701 if (IS_ERR(inode)) 5702 return inode; 5703 5704 down_read(&fs_info->cleanup_work_sem); 5705 if (!sb_rdonly(inode->i_sb)) 5706 ret = btrfs_orphan_cleanup(sub_root); 5707 up_read(&fs_info->cleanup_work_sem); 5708 if (ret) { 5709 iput(inode); 5710 inode = ERR_PTR(ret); 5711 } 5712 } 5713 5714 return inode; 5715 } 5716 5717 static int btrfs_dentry_delete(const struct dentry *dentry) 5718 { 5719 struct btrfs_root *root; 5720 struct inode *inode = d_inode(dentry); 5721 5722 if (!inode && !IS_ROOT(dentry)) 5723 inode = d_inode(dentry->d_parent); 5724 5725 if (inode) { 5726 root = BTRFS_I(inode)->root; 5727 if (btrfs_root_refs(&root->root_item) == 0) 5728 return 1; 5729 5730 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5731 return 1; 5732 } 5733 return 0; 5734 } 5735 5736 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5737 unsigned int flags) 5738 { 5739 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5740 5741 if (inode == ERR_PTR(-ENOENT)) 5742 inode = NULL; 5743 return d_splice_alias(inode, dentry); 5744 } 5745 5746 /* 5747 * Find the highest existing sequence number in a directory and then set the 5748 * in-memory index_cnt variable to the first free sequence number. 5749 */ 5750 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5751 { 5752 struct btrfs_root *root = inode->root; 5753 struct btrfs_key key, found_key; 5754 struct btrfs_path *path; 5755 struct extent_buffer *leaf; 5756 int ret; 5757 5758 key.objectid = btrfs_ino(inode); 5759 key.type = BTRFS_DIR_INDEX_KEY; 5760 key.offset = (u64)-1; 5761 5762 path = btrfs_alloc_path(); 5763 if (!path) 5764 return -ENOMEM; 5765 5766 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5767 if (ret < 0) 5768 goto out; 5769 /* FIXME: we should be able to handle this */ 5770 if (ret == 0) 5771 goto out; 5772 ret = 0; 5773 5774 if (path->slots[0] == 0) { 5775 inode->index_cnt = BTRFS_DIR_START_INDEX; 5776 goto out; 5777 } 5778 5779 path->slots[0]--; 5780 5781 leaf = path->nodes[0]; 5782 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5783 5784 if (found_key.objectid != btrfs_ino(inode) || 5785 found_key.type != BTRFS_DIR_INDEX_KEY) { 5786 inode->index_cnt = BTRFS_DIR_START_INDEX; 5787 goto out; 5788 } 5789 5790 inode->index_cnt = found_key.offset + 1; 5791 out: 5792 btrfs_free_path(path); 5793 return ret; 5794 } 5795 5796 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5797 { 5798 int ret = 0; 5799 5800 btrfs_inode_lock(dir, 0); 5801 if (dir->index_cnt == (u64)-1) { 5802 ret = btrfs_inode_delayed_dir_index_count(dir); 5803 if (ret) { 5804 ret = btrfs_set_inode_index_count(dir); 5805 if (ret) 5806 goto out; 5807 } 5808 } 5809 5810 /* index_cnt is the index number of next new entry, so decrement it. */ 5811 *index = dir->index_cnt - 1; 5812 out: 5813 btrfs_inode_unlock(dir, 0); 5814 5815 return ret; 5816 } 5817 5818 /* 5819 * All this infrastructure exists because dir_emit can fault, and we are holding 5820 * the tree lock when doing readdir. For now just allocate a buffer and copy 5821 * our information into that, and then dir_emit from the buffer. This is 5822 * similar to what NFS does, only we don't keep the buffer around in pagecache 5823 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5824 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5825 * tree lock. 5826 */ 5827 static int btrfs_opendir(struct inode *inode, struct file *file) 5828 { 5829 struct btrfs_file_private *private; 5830 u64 last_index; 5831 int ret; 5832 5833 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5834 if (ret) 5835 return ret; 5836 5837 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5838 if (!private) 5839 return -ENOMEM; 5840 private->last_index = last_index; 5841 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5842 if (!private->filldir_buf) { 5843 kfree(private); 5844 return -ENOMEM; 5845 } 5846 file->private_data = private; 5847 return 0; 5848 } 5849 5850 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5851 { 5852 struct btrfs_file_private *private = file->private_data; 5853 int ret; 5854 5855 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5856 &private->last_index); 5857 if (ret) 5858 return ret; 5859 5860 return generic_file_llseek(file, offset, whence); 5861 } 5862 5863 struct dir_entry { 5864 u64 ino; 5865 u64 offset; 5866 unsigned type; 5867 int name_len; 5868 }; 5869 5870 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5871 { 5872 while (entries--) { 5873 struct dir_entry *entry = addr; 5874 char *name = (char *)(entry + 1); 5875 5876 ctx->pos = get_unaligned(&entry->offset); 5877 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5878 get_unaligned(&entry->ino), 5879 get_unaligned(&entry->type))) 5880 return 1; 5881 addr += sizeof(struct dir_entry) + 5882 get_unaligned(&entry->name_len); 5883 ctx->pos++; 5884 } 5885 return 0; 5886 } 5887 5888 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5889 { 5890 struct inode *inode = file_inode(file); 5891 struct btrfs_root *root = BTRFS_I(inode)->root; 5892 struct btrfs_file_private *private = file->private_data; 5893 struct btrfs_dir_item *di; 5894 struct btrfs_key key; 5895 struct btrfs_key found_key; 5896 struct btrfs_path *path; 5897 void *addr; 5898 LIST_HEAD(ins_list); 5899 LIST_HEAD(del_list); 5900 int ret; 5901 char *name_ptr; 5902 int name_len; 5903 int entries = 0; 5904 int total_len = 0; 5905 bool put = false; 5906 struct btrfs_key location; 5907 5908 if (!dir_emit_dots(file, ctx)) 5909 return 0; 5910 5911 path = btrfs_alloc_path(); 5912 if (!path) 5913 return -ENOMEM; 5914 5915 addr = private->filldir_buf; 5916 path->reada = READA_FORWARD; 5917 5918 put = btrfs_readdir_get_delayed_items(inode, private->last_index, 5919 &ins_list, &del_list); 5920 5921 again: 5922 key.type = BTRFS_DIR_INDEX_KEY; 5923 key.offset = ctx->pos; 5924 key.objectid = btrfs_ino(BTRFS_I(inode)); 5925 5926 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5927 struct dir_entry *entry; 5928 struct extent_buffer *leaf = path->nodes[0]; 5929 u8 ftype; 5930 5931 if (found_key.objectid != key.objectid) 5932 break; 5933 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5934 break; 5935 if (found_key.offset < ctx->pos) 5936 continue; 5937 if (found_key.offset > private->last_index) 5938 break; 5939 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5940 continue; 5941 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5942 name_len = btrfs_dir_name_len(leaf, di); 5943 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5944 PAGE_SIZE) { 5945 btrfs_release_path(path); 5946 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5947 if (ret) 5948 goto nopos; 5949 addr = private->filldir_buf; 5950 entries = 0; 5951 total_len = 0; 5952 goto again; 5953 } 5954 5955 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5956 entry = addr; 5957 name_ptr = (char *)(entry + 1); 5958 read_extent_buffer(leaf, name_ptr, 5959 (unsigned long)(di + 1), name_len); 5960 put_unaligned(name_len, &entry->name_len); 5961 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5962 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5963 put_unaligned(location.objectid, &entry->ino); 5964 put_unaligned(found_key.offset, &entry->offset); 5965 entries++; 5966 addr += sizeof(struct dir_entry) + name_len; 5967 total_len += sizeof(struct dir_entry) + name_len; 5968 } 5969 /* Catch error encountered during iteration */ 5970 if (ret < 0) 5971 goto err; 5972 5973 btrfs_release_path(path); 5974 5975 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5976 if (ret) 5977 goto nopos; 5978 5979 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5980 if (ret) 5981 goto nopos; 5982 5983 /* 5984 * Stop new entries from being returned after we return the last 5985 * entry. 5986 * 5987 * New directory entries are assigned a strictly increasing 5988 * offset. This means that new entries created during readdir 5989 * are *guaranteed* to be seen in the future by that readdir. 5990 * This has broken buggy programs which operate on names as 5991 * they're returned by readdir. Until we re-use freed offsets 5992 * we have this hack to stop new entries from being returned 5993 * under the assumption that they'll never reach this huge 5994 * offset. 5995 * 5996 * This is being careful not to overflow 32bit loff_t unless the 5997 * last entry requires it because doing so has broken 32bit apps 5998 * in the past. 5999 */ 6000 if (ctx->pos >= INT_MAX) 6001 ctx->pos = LLONG_MAX; 6002 else 6003 ctx->pos = INT_MAX; 6004 nopos: 6005 ret = 0; 6006 err: 6007 if (put) 6008 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6009 btrfs_free_path(path); 6010 return ret; 6011 } 6012 6013 /* 6014 * This is somewhat expensive, updating the tree every time the 6015 * inode changes. But, it is most likely to find the inode in cache. 6016 * FIXME, needs more benchmarking...there are no reasons other than performance 6017 * to keep or drop this code. 6018 */ 6019 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6020 { 6021 struct btrfs_root *root = inode->root; 6022 struct btrfs_fs_info *fs_info = root->fs_info; 6023 struct btrfs_trans_handle *trans; 6024 int ret; 6025 6026 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6027 return 0; 6028 6029 trans = btrfs_join_transaction(root); 6030 if (IS_ERR(trans)) 6031 return PTR_ERR(trans); 6032 6033 ret = btrfs_update_inode(trans, root, inode); 6034 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6035 /* whoops, lets try again with the full transaction */ 6036 btrfs_end_transaction(trans); 6037 trans = btrfs_start_transaction(root, 1); 6038 if (IS_ERR(trans)) 6039 return PTR_ERR(trans); 6040 6041 ret = btrfs_update_inode(trans, root, inode); 6042 } 6043 btrfs_end_transaction(trans); 6044 if (inode->delayed_node) 6045 btrfs_balance_delayed_items(fs_info); 6046 6047 return ret; 6048 } 6049 6050 /* 6051 * This is a copy of file_update_time. We need this so we can return error on 6052 * ENOSPC for updating the inode in the case of file write and mmap writes. 6053 */ 6054 static int btrfs_update_time(struct inode *inode, int flags) 6055 { 6056 struct btrfs_root *root = BTRFS_I(inode)->root; 6057 bool dirty = flags & ~S_VERSION; 6058 6059 if (btrfs_root_readonly(root)) 6060 return -EROFS; 6061 6062 dirty = inode_update_timestamps(inode, flags); 6063 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6064 } 6065 6066 /* 6067 * helper to find a free sequence number in a given directory. This current 6068 * code is very simple, later versions will do smarter things in the btree 6069 */ 6070 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6071 { 6072 int ret = 0; 6073 6074 if (dir->index_cnt == (u64)-1) { 6075 ret = btrfs_inode_delayed_dir_index_count(dir); 6076 if (ret) { 6077 ret = btrfs_set_inode_index_count(dir); 6078 if (ret) 6079 return ret; 6080 } 6081 } 6082 6083 *index = dir->index_cnt; 6084 dir->index_cnt++; 6085 6086 return ret; 6087 } 6088 6089 static int btrfs_insert_inode_locked(struct inode *inode) 6090 { 6091 struct btrfs_iget_args args; 6092 6093 args.ino = BTRFS_I(inode)->location.objectid; 6094 args.root = BTRFS_I(inode)->root; 6095 6096 return insert_inode_locked4(inode, 6097 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6098 btrfs_find_actor, &args); 6099 } 6100 6101 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6102 unsigned int *trans_num_items) 6103 { 6104 struct inode *dir = args->dir; 6105 struct inode *inode = args->inode; 6106 int ret; 6107 6108 if (!args->orphan) { 6109 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6110 &args->fname); 6111 if (ret) 6112 return ret; 6113 } 6114 6115 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6116 if (ret) { 6117 fscrypt_free_filename(&args->fname); 6118 return ret; 6119 } 6120 6121 /* 1 to add inode item */ 6122 *trans_num_items = 1; 6123 /* 1 to add compression property */ 6124 if (BTRFS_I(dir)->prop_compress) 6125 (*trans_num_items)++; 6126 /* 1 to add default ACL xattr */ 6127 if (args->default_acl) 6128 (*trans_num_items)++; 6129 /* 1 to add access ACL xattr */ 6130 if (args->acl) 6131 (*trans_num_items)++; 6132 #ifdef CONFIG_SECURITY 6133 /* 1 to add LSM xattr */ 6134 if (dir->i_security) 6135 (*trans_num_items)++; 6136 #endif 6137 if (args->orphan) { 6138 /* 1 to add orphan item */ 6139 (*trans_num_items)++; 6140 } else { 6141 /* 6142 * 1 to add dir item 6143 * 1 to add dir index 6144 * 1 to update parent inode item 6145 * 6146 * No need for 1 unit for the inode ref item because it is 6147 * inserted in a batch together with the inode item at 6148 * btrfs_create_new_inode(). 6149 */ 6150 *trans_num_items += 3; 6151 } 6152 return 0; 6153 } 6154 6155 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6156 { 6157 posix_acl_release(args->acl); 6158 posix_acl_release(args->default_acl); 6159 fscrypt_free_filename(&args->fname); 6160 } 6161 6162 /* 6163 * Inherit flags from the parent inode. 6164 * 6165 * Currently only the compression flags and the cow flags are inherited. 6166 */ 6167 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6168 { 6169 unsigned int flags; 6170 6171 flags = dir->flags; 6172 6173 if (flags & BTRFS_INODE_NOCOMPRESS) { 6174 inode->flags &= ~BTRFS_INODE_COMPRESS; 6175 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6176 } else if (flags & BTRFS_INODE_COMPRESS) { 6177 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6178 inode->flags |= BTRFS_INODE_COMPRESS; 6179 } 6180 6181 if (flags & BTRFS_INODE_NODATACOW) { 6182 inode->flags |= BTRFS_INODE_NODATACOW; 6183 if (S_ISREG(inode->vfs_inode.i_mode)) 6184 inode->flags |= BTRFS_INODE_NODATASUM; 6185 } 6186 6187 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6188 } 6189 6190 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6191 struct btrfs_new_inode_args *args) 6192 { 6193 struct inode *dir = args->dir; 6194 struct inode *inode = args->inode; 6195 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6196 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6197 struct btrfs_root *root; 6198 struct btrfs_inode_item *inode_item; 6199 struct btrfs_key *location; 6200 struct btrfs_path *path; 6201 u64 objectid; 6202 struct btrfs_inode_ref *ref; 6203 struct btrfs_key key[2]; 6204 u32 sizes[2]; 6205 struct btrfs_item_batch batch; 6206 unsigned long ptr; 6207 int ret; 6208 6209 path = btrfs_alloc_path(); 6210 if (!path) 6211 return -ENOMEM; 6212 6213 if (!args->subvol) 6214 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6215 root = BTRFS_I(inode)->root; 6216 6217 ret = btrfs_get_free_objectid(root, &objectid); 6218 if (ret) 6219 goto out; 6220 inode->i_ino = objectid; 6221 6222 if (args->orphan) { 6223 /* 6224 * O_TMPFILE, set link count to 0, so that after this point, we 6225 * fill in an inode item with the correct link count. 6226 */ 6227 set_nlink(inode, 0); 6228 } else { 6229 trace_btrfs_inode_request(dir); 6230 6231 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6232 if (ret) 6233 goto out; 6234 } 6235 /* index_cnt is ignored for everything but a dir. */ 6236 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6237 BTRFS_I(inode)->generation = trans->transid; 6238 inode->i_generation = BTRFS_I(inode)->generation; 6239 6240 /* 6241 * Subvolumes don't inherit flags from their parent directory. 6242 * Originally this was probably by accident, but we probably can't 6243 * change it now without compatibility issues. 6244 */ 6245 if (!args->subvol) 6246 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6247 6248 if (S_ISREG(inode->i_mode)) { 6249 if (btrfs_test_opt(fs_info, NODATASUM)) 6250 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6251 if (btrfs_test_opt(fs_info, NODATACOW)) 6252 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6253 BTRFS_INODE_NODATASUM; 6254 } 6255 6256 location = &BTRFS_I(inode)->location; 6257 location->objectid = objectid; 6258 location->offset = 0; 6259 location->type = BTRFS_INODE_ITEM_KEY; 6260 6261 ret = btrfs_insert_inode_locked(inode); 6262 if (ret < 0) { 6263 if (!args->orphan) 6264 BTRFS_I(dir)->index_cnt--; 6265 goto out; 6266 } 6267 6268 /* 6269 * We could have gotten an inode number from somebody who was fsynced 6270 * and then removed in this same transaction, so let's just set full 6271 * sync since it will be a full sync anyway and this will blow away the 6272 * old info in the log. 6273 */ 6274 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6275 6276 key[0].objectid = objectid; 6277 key[0].type = BTRFS_INODE_ITEM_KEY; 6278 key[0].offset = 0; 6279 6280 sizes[0] = sizeof(struct btrfs_inode_item); 6281 6282 if (!args->orphan) { 6283 /* 6284 * Start new inodes with an inode_ref. This is slightly more 6285 * efficient for small numbers of hard links since they will 6286 * be packed into one item. Extended refs will kick in if we 6287 * add more hard links than can fit in the ref item. 6288 */ 6289 key[1].objectid = objectid; 6290 key[1].type = BTRFS_INODE_REF_KEY; 6291 if (args->subvol) { 6292 key[1].offset = objectid; 6293 sizes[1] = 2 + sizeof(*ref); 6294 } else { 6295 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6296 sizes[1] = name->len + sizeof(*ref); 6297 } 6298 } 6299 6300 batch.keys = &key[0]; 6301 batch.data_sizes = &sizes[0]; 6302 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6303 batch.nr = args->orphan ? 1 : 2; 6304 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6305 if (ret != 0) { 6306 btrfs_abort_transaction(trans, ret); 6307 goto discard; 6308 } 6309 6310 inode->i_mtime = inode_set_ctime_current(inode); 6311 inode->i_atime = inode->i_mtime; 6312 BTRFS_I(inode)->i_otime = inode->i_mtime; 6313 6314 /* 6315 * We're going to fill the inode item now, so at this point the inode 6316 * must be fully initialized. 6317 */ 6318 6319 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6320 struct btrfs_inode_item); 6321 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6322 sizeof(*inode_item)); 6323 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6324 6325 if (!args->orphan) { 6326 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6327 struct btrfs_inode_ref); 6328 ptr = (unsigned long)(ref + 1); 6329 if (args->subvol) { 6330 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6331 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6332 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6333 } else { 6334 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6335 name->len); 6336 btrfs_set_inode_ref_index(path->nodes[0], ref, 6337 BTRFS_I(inode)->dir_index); 6338 write_extent_buffer(path->nodes[0], name->name, ptr, 6339 name->len); 6340 } 6341 } 6342 6343 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6344 /* 6345 * We don't need the path anymore, plus inheriting properties, adding 6346 * ACLs, security xattrs, orphan item or adding the link, will result in 6347 * allocating yet another path. So just free our path. 6348 */ 6349 btrfs_free_path(path); 6350 path = NULL; 6351 6352 if (args->subvol) { 6353 struct inode *parent; 6354 6355 /* 6356 * Subvolumes inherit properties from their parent subvolume, 6357 * not the directory they were created in. 6358 */ 6359 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6360 BTRFS_I(dir)->root); 6361 if (IS_ERR(parent)) { 6362 ret = PTR_ERR(parent); 6363 } else { 6364 ret = btrfs_inode_inherit_props(trans, inode, parent); 6365 iput(parent); 6366 } 6367 } else { 6368 ret = btrfs_inode_inherit_props(trans, inode, dir); 6369 } 6370 if (ret) { 6371 btrfs_err(fs_info, 6372 "error inheriting props for ino %llu (root %llu): %d", 6373 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6374 ret); 6375 } 6376 6377 /* 6378 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6379 * probably a bug. 6380 */ 6381 if (!args->subvol) { 6382 ret = btrfs_init_inode_security(trans, args); 6383 if (ret) { 6384 btrfs_abort_transaction(trans, ret); 6385 goto discard; 6386 } 6387 } 6388 6389 inode_tree_add(BTRFS_I(inode)); 6390 6391 trace_btrfs_inode_new(inode); 6392 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6393 6394 btrfs_update_root_times(trans, root); 6395 6396 if (args->orphan) { 6397 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6398 } else { 6399 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6400 0, BTRFS_I(inode)->dir_index); 6401 } 6402 if (ret) { 6403 btrfs_abort_transaction(trans, ret); 6404 goto discard; 6405 } 6406 6407 return 0; 6408 6409 discard: 6410 /* 6411 * discard_new_inode() calls iput(), but the caller owns the reference 6412 * to the inode. 6413 */ 6414 ihold(inode); 6415 discard_new_inode(inode); 6416 out: 6417 btrfs_free_path(path); 6418 return ret; 6419 } 6420 6421 /* 6422 * utility function to add 'inode' into 'parent_inode' with 6423 * a give name and a given sequence number. 6424 * if 'add_backref' is true, also insert a backref from the 6425 * inode to the parent directory. 6426 */ 6427 int btrfs_add_link(struct btrfs_trans_handle *trans, 6428 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6429 const struct fscrypt_str *name, int add_backref, u64 index) 6430 { 6431 int ret = 0; 6432 struct btrfs_key key; 6433 struct btrfs_root *root = parent_inode->root; 6434 u64 ino = btrfs_ino(inode); 6435 u64 parent_ino = btrfs_ino(parent_inode); 6436 6437 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6438 memcpy(&key, &inode->root->root_key, sizeof(key)); 6439 } else { 6440 key.objectid = ino; 6441 key.type = BTRFS_INODE_ITEM_KEY; 6442 key.offset = 0; 6443 } 6444 6445 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6446 ret = btrfs_add_root_ref(trans, key.objectid, 6447 root->root_key.objectid, parent_ino, 6448 index, name); 6449 } else if (add_backref) { 6450 ret = btrfs_insert_inode_ref(trans, root, name, 6451 ino, parent_ino, index); 6452 } 6453 6454 /* Nothing to clean up yet */ 6455 if (ret) 6456 return ret; 6457 6458 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6459 btrfs_inode_type(&inode->vfs_inode), index); 6460 if (ret == -EEXIST || ret == -EOVERFLOW) 6461 goto fail_dir_item; 6462 else if (ret) { 6463 btrfs_abort_transaction(trans, ret); 6464 return ret; 6465 } 6466 6467 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6468 name->len * 2); 6469 inode_inc_iversion(&parent_inode->vfs_inode); 6470 /* 6471 * If we are replaying a log tree, we do not want to update the mtime 6472 * and ctime of the parent directory with the current time, since the 6473 * log replay procedure is responsible for setting them to their correct 6474 * values (the ones it had when the fsync was done). 6475 */ 6476 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6477 parent_inode->vfs_inode.i_mtime = 6478 inode_set_ctime_current(&parent_inode->vfs_inode); 6479 6480 ret = btrfs_update_inode(trans, root, parent_inode); 6481 if (ret) 6482 btrfs_abort_transaction(trans, ret); 6483 return ret; 6484 6485 fail_dir_item: 6486 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6487 u64 local_index; 6488 int err; 6489 err = btrfs_del_root_ref(trans, key.objectid, 6490 root->root_key.objectid, parent_ino, 6491 &local_index, name); 6492 if (err) 6493 btrfs_abort_transaction(trans, err); 6494 } else if (add_backref) { 6495 u64 local_index; 6496 int err; 6497 6498 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6499 &local_index); 6500 if (err) 6501 btrfs_abort_transaction(trans, err); 6502 } 6503 6504 /* Return the original error code */ 6505 return ret; 6506 } 6507 6508 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6509 struct inode *inode) 6510 { 6511 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6512 struct btrfs_root *root = BTRFS_I(dir)->root; 6513 struct btrfs_new_inode_args new_inode_args = { 6514 .dir = dir, 6515 .dentry = dentry, 6516 .inode = inode, 6517 }; 6518 unsigned int trans_num_items; 6519 struct btrfs_trans_handle *trans; 6520 int err; 6521 6522 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6523 if (err) 6524 goto out_inode; 6525 6526 trans = btrfs_start_transaction(root, trans_num_items); 6527 if (IS_ERR(trans)) { 6528 err = PTR_ERR(trans); 6529 goto out_new_inode_args; 6530 } 6531 6532 err = btrfs_create_new_inode(trans, &new_inode_args); 6533 if (!err) 6534 d_instantiate_new(dentry, inode); 6535 6536 btrfs_end_transaction(trans); 6537 btrfs_btree_balance_dirty(fs_info); 6538 out_new_inode_args: 6539 btrfs_new_inode_args_destroy(&new_inode_args); 6540 out_inode: 6541 if (err) 6542 iput(inode); 6543 return err; 6544 } 6545 6546 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6547 struct dentry *dentry, umode_t mode, dev_t rdev) 6548 { 6549 struct inode *inode; 6550 6551 inode = new_inode(dir->i_sb); 6552 if (!inode) 6553 return -ENOMEM; 6554 inode_init_owner(idmap, inode, dir, mode); 6555 inode->i_op = &btrfs_special_inode_operations; 6556 init_special_inode(inode, inode->i_mode, rdev); 6557 return btrfs_create_common(dir, dentry, inode); 6558 } 6559 6560 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6561 struct dentry *dentry, umode_t mode, bool excl) 6562 { 6563 struct inode *inode; 6564 6565 inode = new_inode(dir->i_sb); 6566 if (!inode) 6567 return -ENOMEM; 6568 inode_init_owner(idmap, inode, dir, mode); 6569 inode->i_fop = &btrfs_file_operations; 6570 inode->i_op = &btrfs_file_inode_operations; 6571 inode->i_mapping->a_ops = &btrfs_aops; 6572 return btrfs_create_common(dir, dentry, inode); 6573 } 6574 6575 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6576 struct dentry *dentry) 6577 { 6578 struct btrfs_trans_handle *trans = NULL; 6579 struct btrfs_root *root = BTRFS_I(dir)->root; 6580 struct inode *inode = d_inode(old_dentry); 6581 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6582 struct fscrypt_name fname; 6583 u64 index; 6584 int err; 6585 int drop_inode = 0; 6586 6587 /* do not allow sys_link's with other subvols of the same device */ 6588 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6589 return -EXDEV; 6590 6591 if (inode->i_nlink >= BTRFS_LINK_MAX) 6592 return -EMLINK; 6593 6594 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6595 if (err) 6596 goto fail; 6597 6598 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6599 if (err) 6600 goto fail; 6601 6602 /* 6603 * 2 items for inode and inode ref 6604 * 2 items for dir items 6605 * 1 item for parent inode 6606 * 1 item for orphan item deletion if O_TMPFILE 6607 */ 6608 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6609 if (IS_ERR(trans)) { 6610 err = PTR_ERR(trans); 6611 trans = NULL; 6612 goto fail; 6613 } 6614 6615 /* There are several dir indexes for this inode, clear the cache. */ 6616 BTRFS_I(inode)->dir_index = 0ULL; 6617 inc_nlink(inode); 6618 inode_inc_iversion(inode); 6619 inode_set_ctime_current(inode); 6620 ihold(inode); 6621 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6622 6623 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6624 &fname.disk_name, 1, index); 6625 6626 if (err) { 6627 drop_inode = 1; 6628 } else { 6629 struct dentry *parent = dentry->d_parent; 6630 6631 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6632 if (err) 6633 goto fail; 6634 if (inode->i_nlink == 1) { 6635 /* 6636 * If new hard link count is 1, it's a file created 6637 * with open(2) O_TMPFILE flag. 6638 */ 6639 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6640 if (err) 6641 goto fail; 6642 } 6643 d_instantiate(dentry, inode); 6644 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6645 } 6646 6647 fail: 6648 fscrypt_free_filename(&fname); 6649 if (trans) 6650 btrfs_end_transaction(trans); 6651 if (drop_inode) { 6652 inode_dec_link_count(inode); 6653 iput(inode); 6654 } 6655 btrfs_btree_balance_dirty(fs_info); 6656 return err; 6657 } 6658 6659 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6660 struct dentry *dentry, umode_t mode) 6661 { 6662 struct inode *inode; 6663 6664 inode = new_inode(dir->i_sb); 6665 if (!inode) 6666 return -ENOMEM; 6667 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6668 inode->i_op = &btrfs_dir_inode_operations; 6669 inode->i_fop = &btrfs_dir_file_operations; 6670 return btrfs_create_common(dir, dentry, inode); 6671 } 6672 6673 static noinline int uncompress_inline(struct btrfs_path *path, 6674 struct page *page, 6675 struct btrfs_file_extent_item *item) 6676 { 6677 int ret; 6678 struct extent_buffer *leaf = path->nodes[0]; 6679 char *tmp; 6680 size_t max_size; 6681 unsigned long inline_size; 6682 unsigned long ptr; 6683 int compress_type; 6684 6685 compress_type = btrfs_file_extent_compression(leaf, item); 6686 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6687 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6688 tmp = kmalloc(inline_size, GFP_NOFS); 6689 if (!tmp) 6690 return -ENOMEM; 6691 ptr = btrfs_file_extent_inline_start(item); 6692 6693 read_extent_buffer(leaf, tmp, ptr, inline_size); 6694 6695 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6696 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6697 6698 /* 6699 * decompression code contains a memset to fill in any space between the end 6700 * of the uncompressed data and the end of max_size in case the decompressed 6701 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6702 * the end of an inline extent and the beginning of the next block, so we 6703 * cover that region here. 6704 */ 6705 6706 if (max_size < PAGE_SIZE) 6707 memzero_page(page, max_size, PAGE_SIZE - max_size); 6708 kfree(tmp); 6709 return ret; 6710 } 6711 6712 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6713 struct page *page) 6714 { 6715 struct btrfs_file_extent_item *fi; 6716 void *kaddr; 6717 size_t copy_size; 6718 6719 if (!page || PageUptodate(page)) 6720 return 0; 6721 6722 ASSERT(page_offset(page) == 0); 6723 6724 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6725 struct btrfs_file_extent_item); 6726 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6727 return uncompress_inline(path, page, fi); 6728 6729 copy_size = min_t(u64, PAGE_SIZE, 6730 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6731 kaddr = kmap_local_page(page); 6732 read_extent_buffer(path->nodes[0], kaddr, 6733 btrfs_file_extent_inline_start(fi), copy_size); 6734 kunmap_local(kaddr); 6735 if (copy_size < PAGE_SIZE) 6736 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6737 return 0; 6738 } 6739 6740 /* 6741 * Lookup the first extent overlapping a range in a file. 6742 * 6743 * @inode: file to search in 6744 * @page: page to read extent data into if the extent is inline 6745 * @pg_offset: offset into @page to copy to 6746 * @start: file offset 6747 * @len: length of range starting at @start 6748 * 6749 * Return the first &struct extent_map which overlaps the given range, reading 6750 * it from the B-tree and caching it if necessary. Note that there may be more 6751 * extents which overlap the given range after the returned extent_map. 6752 * 6753 * If @page is not NULL and the extent is inline, this also reads the extent 6754 * data directly into the page and marks the extent up to date in the io_tree. 6755 * 6756 * Return: ERR_PTR on error, non-NULL extent_map on success. 6757 */ 6758 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6759 struct page *page, size_t pg_offset, 6760 u64 start, u64 len) 6761 { 6762 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6763 int ret = 0; 6764 u64 extent_start = 0; 6765 u64 extent_end = 0; 6766 u64 objectid = btrfs_ino(inode); 6767 int extent_type = -1; 6768 struct btrfs_path *path = NULL; 6769 struct btrfs_root *root = inode->root; 6770 struct btrfs_file_extent_item *item; 6771 struct extent_buffer *leaf; 6772 struct btrfs_key found_key; 6773 struct extent_map *em = NULL; 6774 struct extent_map_tree *em_tree = &inode->extent_tree; 6775 6776 read_lock(&em_tree->lock); 6777 em = lookup_extent_mapping(em_tree, start, len); 6778 read_unlock(&em_tree->lock); 6779 6780 if (em) { 6781 if (em->start > start || em->start + em->len <= start) 6782 free_extent_map(em); 6783 else if (em->block_start == EXTENT_MAP_INLINE && page) 6784 free_extent_map(em); 6785 else 6786 goto out; 6787 } 6788 em = alloc_extent_map(); 6789 if (!em) { 6790 ret = -ENOMEM; 6791 goto out; 6792 } 6793 em->start = EXTENT_MAP_HOLE; 6794 em->orig_start = EXTENT_MAP_HOLE; 6795 em->len = (u64)-1; 6796 em->block_len = (u64)-1; 6797 6798 path = btrfs_alloc_path(); 6799 if (!path) { 6800 ret = -ENOMEM; 6801 goto out; 6802 } 6803 6804 /* Chances are we'll be called again, so go ahead and do readahead */ 6805 path->reada = READA_FORWARD; 6806 6807 /* 6808 * The same explanation in load_free_space_cache applies here as well, 6809 * we only read when we're loading the free space cache, and at that 6810 * point the commit_root has everything we need. 6811 */ 6812 if (btrfs_is_free_space_inode(inode)) { 6813 path->search_commit_root = 1; 6814 path->skip_locking = 1; 6815 } 6816 6817 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6818 if (ret < 0) { 6819 goto out; 6820 } else if (ret > 0) { 6821 if (path->slots[0] == 0) 6822 goto not_found; 6823 path->slots[0]--; 6824 ret = 0; 6825 } 6826 6827 leaf = path->nodes[0]; 6828 item = btrfs_item_ptr(leaf, path->slots[0], 6829 struct btrfs_file_extent_item); 6830 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6831 if (found_key.objectid != objectid || 6832 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6833 /* 6834 * If we backup past the first extent we want to move forward 6835 * and see if there is an extent in front of us, otherwise we'll 6836 * say there is a hole for our whole search range which can 6837 * cause problems. 6838 */ 6839 extent_end = start; 6840 goto next; 6841 } 6842 6843 extent_type = btrfs_file_extent_type(leaf, item); 6844 extent_start = found_key.offset; 6845 extent_end = btrfs_file_extent_end(path); 6846 if (extent_type == BTRFS_FILE_EXTENT_REG || 6847 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6848 /* Only regular file could have regular/prealloc extent */ 6849 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6850 ret = -EUCLEAN; 6851 btrfs_crit(fs_info, 6852 "regular/prealloc extent found for non-regular inode %llu", 6853 btrfs_ino(inode)); 6854 goto out; 6855 } 6856 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6857 extent_start); 6858 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6859 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6860 path->slots[0], 6861 extent_start); 6862 } 6863 next: 6864 if (start >= extent_end) { 6865 path->slots[0]++; 6866 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6867 ret = btrfs_next_leaf(root, path); 6868 if (ret < 0) 6869 goto out; 6870 else if (ret > 0) 6871 goto not_found; 6872 6873 leaf = path->nodes[0]; 6874 } 6875 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6876 if (found_key.objectid != objectid || 6877 found_key.type != BTRFS_EXTENT_DATA_KEY) 6878 goto not_found; 6879 if (start + len <= found_key.offset) 6880 goto not_found; 6881 if (start > found_key.offset) 6882 goto next; 6883 6884 /* New extent overlaps with existing one */ 6885 em->start = start; 6886 em->orig_start = start; 6887 em->len = found_key.offset - start; 6888 em->block_start = EXTENT_MAP_HOLE; 6889 goto insert; 6890 } 6891 6892 btrfs_extent_item_to_extent_map(inode, path, item, em); 6893 6894 if (extent_type == BTRFS_FILE_EXTENT_REG || 6895 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6896 goto insert; 6897 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6898 /* 6899 * Inline extent can only exist at file offset 0. This is 6900 * ensured by tree-checker and inline extent creation path. 6901 * Thus all members representing file offsets should be zero. 6902 */ 6903 ASSERT(pg_offset == 0); 6904 ASSERT(extent_start == 0); 6905 ASSERT(em->start == 0); 6906 6907 /* 6908 * btrfs_extent_item_to_extent_map() should have properly 6909 * initialized em members already. 6910 * 6911 * Other members are not utilized for inline extents. 6912 */ 6913 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6914 ASSERT(em->len == fs_info->sectorsize); 6915 6916 ret = read_inline_extent(inode, path, page); 6917 if (ret < 0) 6918 goto out; 6919 goto insert; 6920 } 6921 not_found: 6922 em->start = start; 6923 em->orig_start = start; 6924 em->len = len; 6925 em->block_start = EXTENT_MAP_HOLE; 6926 insert: 6927 ret = 0; 6928 btrfs_release_path(path); 6929 if (em->start > start || extent_map_end(em) <= start) { 6930 btrfs_err(fs_info, 6931 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6932 em->start, em->len, start, len); 6933 ret = -EIO; 6934 goto out; 6935 } 6936 6937 write_lock(&em_tree->lock); 6938 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6939 write_unlock(&em_tree->lock); 6940 out: 6941 btrfs_free_path(path); 6942 6943 trace_btrfs_get_extent(root, inode, em); 6944 6945 if (ret) { 6946 free_extent_map(em); 6947 return ERR_PTR(ret); 6948 } 6949 return em; 6950 } 6951 6952 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6953 struct btrfs_dio_data *dio_data, 6954 const u64 start, 6955 const u64 len, 6956 const u64 orig_start, 6957 const u64 block_start, 6958 const u64 block_len, 6959 const u64 orig_block_len, 6960 const u64 ram_bytes, 6961 const int type) 6962 { 6963 struct extent_map *em = NULL; 6964 struct btrfs_ordered_extent *ordered; 6965 6966 if (type != BTRFS_ORDERED_NOCOW) { 6967 em = create_io_em(inode, start, len, orig_start, block_start, 6968 block_len, orig_block_len, ram_bytes, 6969 BTRFS_COMPRESS_NONE, /* compress_type */ 6970 type); 6971 if (IS_ERR(em)) 6972 goto out; 6973 } 6974 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 6975 block_start, block_len, 0, 6976 (1 << type) | 6977 (1 << BTRFS_ORDERED_DIRECT), 6978 BTRFS_COMPRESS_NONE); 6979 if (IS_ERR(ordered)) { 6980 if (em) { 6981 free_extent_map(em); 6982 btrfs_drop_extent_map_range(inode, start, 6983 start + len - 1, false); 6984 } 6985 em = ERR_CAST(ordered); 6986 } else { 6987 ASSERT(!dio_data->ordered); 6988 dio_data->ordered = ordered; 6989 } 6990 out: 6991 6992 return em; 6993 } 6994 6995 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6996 struct btrfs_dio_data *dio_data, 6997 u64 start, u64 len) 6998 { 6999 struct btrfs_root *root = inode->root; 7000 struct btrfs_fs_info *fs_info = root->fs_info; 7001 struct extent_map *em; 7002 struct btrfs_key ins; 7003 u64 alloc_hint; 7004 int ret; 7005 7006 alloc_hint = get_extent_allocation_hint(inode, start, len); 7007 again: 7008 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7009 0, alloc_hint, &ins, 1, 1); 7010 if (ret == -EAGAIN) { 7011 ASSERT(btrfs_is_zoned(fs_info)); 7012 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 7013 TASK_UNINTERRUPTIBLE); 7014 goto again; 7015 } 7016 if (ret) 7017 return ERR_PTR(ret); 7018 7019 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 7020 ins.objectid, ins.offset, ins.offset, 7021 ins.offset, BTRFS_ORDERED_REGULAR); 7022 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7023 if (IS_ERR(em)) 7024 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7025 1); 7026 7027 return em; 7028 } 7029 7030 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7031 { 7032 struct btrfs_block_group *block_group; 7033 bool readonly = false; 7034 7035 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7036 if (!block_group || block_group->ro) 7037 readonly = true; 7038 if (block_group) 7039 btrfs_put_block_group(block_group); 7040 return readonly; 7041 } 7042 7043 /* 7044 * Check if we can do nocow write into the range [@offset, @offset + @len) 7045 * 7046 * @offset: File offset 7047 * @len: The length to write, will be updated to the nocow writeable 7048 * range 7049 * @orig_start: (optional) Return the original file offset of the file extent 7050 * @orig_len: (optional) Return the original on-disk length of the file extent 7051 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7052 * @strict: if true, omit optimizations that might force us into unnecessary 7053 * cow. e.g., don't trust generation number. 7054 * 7055 * Return: 7056 * >0 and update @len if we can do nocow write 7057 * 0 if we can't do nocow write 7058 * <0 if error happened 7059 * 7060 * NOTE: This only checks the file extents, caller is responsible to wait for 7061 * any ordered extents. 7062 */ 7063 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7064 u64 *orig_start, u64 *orig_block_len, 7065 u64 *ram_bytes, bool nowait, bool strict) 7066 { 7067 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7068 struct can_nocow_file_extent_args nocow_args = { 0 }; 7069 struct btrfs_path *path; 7070 int ret; 7071 struct extent_buffer *leaf; 7072 struct btrfs_root *root = BTRFS_I(inode)->root; 7073 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7074 struct btrfs_file_extent_item *fi; 7075 struct btrfs_key key; 7076 int found_type; 7077 7078 path = btrfs_alloc_path(); 7079 if (!path) 7080 return -ENOMEM; 7081 path->nowait = nowait; 7082 7083 ret = btrfs_lookup_file_extent(NULL, root, path, 7084 btrfs_ino(BTRFS_I(inode)), offset, 0); 7085 if (ret < 0) 7086 goto out; 7087 7088 if (ret == 1) { 7089 if (path->slots[0] == 0) { 7090 /* can't find the item, must cow */ 7091 ret = 0; 7092 goto out; 7093 } 7094 path->slots[0]--; 7095 } 7096 ret = 0; 7097 leaf = path->nodes[0]; 7098 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7099 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7100 key.type != BTRFS_EXTENT_DATA_KEY) { 7101 /* not our file or wrong item type, must cow */ 7102 goto out; 7103 } 7104 7105 if (key.offset > offset) { 7106 /* Wrong offset, must cow */ 7107 goto out; 7108 } 7109 7110 if (btrfs_file_extent_end(path) <= offset) 7111 goto out; 7112 7113 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7114 found_type = btrfs_file_extent_type(leaf, fi); 7115 if (ram_bytes) 7116 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7117 7118 nocow_args.start = offset; 7119 nocow_args.end = offset + *len - 1; 7120 nocow_args.strict = strict; 7121 nocow_args.free_path = true; 7122 7123 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7124 /* can_nocow_file_extent() has freed the path. */ 7125 path = NULL; 7126 7127 if (ret != 1) { 7128 /* Treat errors as not being able to NOCOW. */ 7129 ret = 0; 7130 goto out; 7131 } 7132 7133 ret = 0; 7134 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7135 goto out; 7136 7137 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7138 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7139 u64 range_end; 7140 7141 range_end = round_up(offset + nocow_args.num_bytes, 7142 root->fs_info->sectorsize) - 1; 7143 ret = test_range_bit(io_tree, offset, range_end, 7144 EXTENT_DELALLOC, 0, NULL); 7145 if (ret) { 7146 ret = -EAGAIN; 7147 goto out; 7148 } 7149 } 7150 7151 if (orig_start) 7152 *orig_start = key.offset - nocow_args.extent_offset; 7153 if (orig_block_len) 7154 *orig_block_len = nocow_args.disk_num_bytes; 7155 7156 *len = nocow_args.num_bytes; 7157 ret = 1; 7158 out: 7159 btrfs_free_path(path); 7160 return ret; 7161 } 7162 7163 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7164 struct extent_state **cached_state, 7165 unsigned int iomap_flags) 7166 { 7167 const bool writing = (iomap_flags & IOMAP_WRITE); 7168 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7169 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7170 struct btrfs_ordered_extent *ordered; 7171 int ret = 0; 7172 7173 while (1) { 7174 if (nowait) { 7175 if (!try_lock_extent(io_tree, lockstart, lockend, 7176 cached_state)) 7177 return -EAGAIN; 7178 } else { 7179 lock_extent(io_tree, lockstart, lockend, cached_state); 7180 } 7181 /* 7182 * We're concerned with the entire range that we're going to be 7183 * doing DIO to, so we need to make sure there's no ordered 7184 * extents in this range. 7185 */ 7186 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7187 lockend - lockstart + 1); 7188 7189 /* 7190 * We need to make sure there are no buffered pages in this 7191 * range either, we could have raced between the invalidate in 7192 * generic_file_direct_write and locking the extent. The 7193 * invalidate needs to happen so that reads after a write do not 7194 * get stale data. 7195 */ 7196 if (!ordered && 7197 (!writing || !filemap_range_has_page(inode->i_mapping, 7198 lockstart, lockend))) 7199 break; 7200 7201 unlock_extent(io_tree, lockstart, lockend, cached_state); 7202 7203 if (ordered) { 7204 if (nowait) { 7205 btrfs_put_ordered_extent(ordered); 7206 ret = -EAGAIN; 7207 break; 7208 } 7209 /* 7210 * If we are doing a DIO read and the ordered extent we 7211 * found is for a buffered write, we can not wait for it 7212 * to complete and retry, because if we do so we can 7213 * deadlock with concurrent buffered writes on page 7214 * locks. This happens only if our DIO read covers more 7215 * than one extent map, if at this point has already 7216 * created an ordered extent for a previous extent map 7217 * and locked its range in the inode's io tree, and a 7218 * concurrent write against that previous extent map's 7219 * range and this range started (we unlock the ranges 7220 * in the io tree only when the bios complete and 7221 * buffered writes always lock pages before attempting 7222 * to lock range in the io tree). 7223 */ 7224 if (writing || 7225 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7226 btrfs_start_ordered_extent(ordered); 7227 else 7228 ret = nowait ? -EAGAIN : -ENOTBLK; 7229 btrfs_put_ordered_extent(ordered); 7230 } else { 7231 /* 7232 * We could trigger writeback for this range (and wait 7233 * for it to complete) and then invalidate the pages for 7234 * this range (through invalidate_inode_pages2_range()), 7235 * but that can lead us to a deadlock with a concurrent 7236 * call to readahead (a buffered read or a defrag call 7237 * triggered a readahead) on a page lock due to an 7238 * ordered dio extent we created before but did not have 7239 * yet a corresponding bio submitted (whence it can not 7240 * complete), which makes readahead wait for that 7241 * ordered extent to complete while holding a lock on 7242 * that page. 7243 */ 7244 ret = nowait ? -EAGAIN : -ENOTBLK; 7245 } 7246 7247 if (ret) 7248 break; 7249 7250 cond_resched(); 7251 } 7252 7253 return ret; 7254 } 7255 7256 /* The callers of this must take lock_extent() */ 7257 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7258 u64 len, u64 orig_start, u64 block_start, 7259 u64 block_len, u64 orig_block_len, 7260 u64 ram_bytes, int compress_type, 7261 int type) 7262 { 7263 struct extent_map *em; 7264 int ret; 7265 7266 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7267 type == BTRFS_ORDERED_COMPRESSED || 7268 type == BTRFS_ORDERED_NOCOW || 7269 type == BTRFS_ORDERED_REGULAR); 7270 7271 em = alloc_extent_map(); 7272 if (!em) 7273 return ERR_PTR(-ENOMEM); 7274 7275 em->start = start; 7276 em->orig_start = orig_start; 7277 em->len = len; 7278 em->block_len = block_len; 7279 em->block_start = block_start; 7280 em->orig_block_len = orig_block_len; 7281 em->ram_bytes = ram_bytes; 7282 em->generation = -1; 7283 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7284 if (type == BTRFS_ORDERED_PREALLOC) { 7285 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7286 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7287 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7288 em->compress_type = compress_type; 7289 } 7290 7291 ret = btrfs_replace_extent_map_range(inode, em, true); 7292 if (ret) { 7293 free_extent_map(em); 7294 return ERR_PTR(ret); 7295 } 7296 7297 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7298 return em; 7299 } 7300 7301 7302 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7303 struct inode *inode, 7304 struct btrfs_dio_data *dio_data, 7305 u64 start, u64 *lenp, 7306 unsigned int iomap_flags) 7307 { 7308 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7310 struct extent_map *em = *map; 7311 int type; 7312 u64 block_start, orig_start, orig_block_len, ram_bytes; 7313 struct btrfs_block_group *bg; 7314 bool can_nocow = false; 7315 bool space_reserved = false; 7316 u64 len = *lenp; 7317 u64 prev_len; 7318 int ret = 0; 7319 7320 /* 7321 * We don't allocate a new extent in the following cases 7322 * 7323 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7324 * existing extent. 7325 * 2) The extent is marked as PREALLOC. We're good to go here and can 7326 * just use the extent. 7327 * 7328 */ 7329 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7330 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7331 em->block_start != EXTENT_MAP_HOLE)) { 7332 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7333 type = BTRFS_ORDERED_PREALLOC; 7334 else 7335 type = BTRFS_ORDERED_NOCOW; 7336 len = min(len, em->len - (start - em->start)); 7337 block_start = em->block_start + (start - em->start); 7338 7339 if (can_nocow_extent(inode, start, &len, &orig_start, 7340 &orig_block_len, &ram_bytes, false, false) == 1) { 7341 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7342 if (bg) 7343 can_nocow = true; 7344 } 7345 } 7346 7347 prev_len = len; 7348 if (can_nocow) { 7349 struct extent_map *em2; 7350 7351 /* We can NOCOW, so only need to reserve metadata space. */ 7352 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7353 nowait); 7354 if (ret < 0) { 7355 /* Our caller expects us to free the input extent map. */ 7356 free_extent_map(em); 7357 *map = NULL; 7358 btrfs_dec_nocow_writers(bg); 7359 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7360 ret = -EAGAIN; 7361 goto out; 7362 } 7363 space_reserved = true; 7364 7365 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7366 orig_start, block_start, 7367 len, orig_block_len, 7368 ram_bytes, type); 7369 btrfs_dec_nocow_writers(bg); 7370 if (type == BTRFS_ORDERED_PREALLOC) { 7371 free_extent_map(em); 7372 *map = em2; 7373 em = em2; 7374 } 7375 7376 if (IS_ERR(em2)) { 7377 ret = PTR_ERR(em2); 7378 goto out; 7379 } 7380 7381 dio_data->nocow_done = true; 7382 } else { 7383 /* Our caller expects us to free the input extent map. */ 7384 free_extent_map(em); 7385 *map = NULL; 7386 7387 if (nowait) { 7388 ret = -EAGAIN; 7389 goto out; 7390 } 7391 7392 /* 7393 * If we could not allocate data space before locking the file 7394 * range and we can't do a NOCOW write, then we have to fail. 7395 */ 7396 if (!dio_data->data_space_reserved) { 7397 ret = -ENOSPC; 7398 goto out; 7399 } 7400 7401 /* 7402 * We have to COW and we have already reserved data space before, 7403 * so now we reserve only metadata. 7404 */ 7405 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7406 false); 7407 if (ret < 0) 7408 goto out; 7409 space_reserved = true; 7410 7411 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7412 if (IS_ERR(em)) { 7413 ret = PTR_ERR(em); 7414 goto out; 7415 } 7416 *map = em; 7417 len = min(len, em->len - (start - em->start)); 7418 if (len < prev_len) 7419 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7420 prev_len - len, true); 7421 } 7422 7423 /* 7424 * We have created our ordered extent, so we can now release our reservation 7425 * for an outstanding extent. 7426 */ 7427 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7428 7429 /* 7430 * Need to update the i_size under the extent lock so buffered 7431 * readers will get the updated i_size when we unlock. 7432 */ 7433 if (start + len > i_size_read(inode)) 7434 i_size_write(inode, start + len); 7435 out: 7436 if (ret && space_reserved) { 7437 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7438 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7439 } 7440 *lenp = len; 7441 return ret; 7442 } 7443 7444 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7445 loff_t length, unsigned int flags, struct iomap *iomap, 7446 struct iomap *srcmap) 7447 { 7448 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7450 struct extent_map *em; 7451 struct extent_state *cached_state = NULL; 7452 struct btrfs_dio_data *dio_data = iter->private; 7453 u64 lockstart, lockend; 7454 const bool write = !!(flags & IOMAP_WRITE); 7455 int ret = 0; 7456 u64 len = length; 7457 const u64 data_alloc_len = length; 7458 bool unlock_extents = false; 7459 7460 /* 7461 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7462 * we're NOWAIT we may submit a bio for a partial range and return 7463 * EIOCBQUEUED, which would result in an errant short read. 7464 * 7465 * The best way to handle this would be to allow for partial completions 7466 * of iocb's, so we could submit the partial bio, return and fault in 7467 * the rest of the pages, and then submit the io for the rest of the 7468 * range. However we don't have that currently, so simply return 7469 * -EAGAIN at this point so that the normal path is used. 7470 */ 7471 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7472 return -EAGAIN; 7473 7474 /* 7475 * Cap the size of reads to that usually seen in buffered I/O as we need 7476 * to allocate a contiguous array for the checksums. 7477 */ 7478 if (!write) 7479 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7480 7481 lockstart = start; 7482 lockend = start + len - 1; 7483 7484 /* 7485 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7486 * enough if we've written compressed pages to this area, so we need to 7487 * flush the dirty pages again to make absolutely sure that any 7488 * outstanding dirty pages are on disk - the first flush only starts 7489 * compression on the data, while keeping the pages locked, so by the 7490 * time the second flush returns we know bios for the compressed pages 7491 * were submitted and finished, and the pages no longer under writeback. 7492 * 7493 * If we have a NOWAIT request and we have any pages in the range that 7494 * are locked, likely due to compression still in progress, we don't want 7495 * to block on page locks. We also don't want to block on pages marked as 7496 * dirty or under writeback (same as for the non-compression case). 7497 * iomap_dio_rw() did the same check, but after that and before we got 7498 * here, mmap'ed writes may have happened or buffered reads started 7499 * (readpage() and readahead(), which lock pages), as we haven't locked 7500 * the file range yet. 7501 */ 7502 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7503 &BTRFS_I(inode)->runtime_flags)) { 7504 if (flags & IOMAP_NOWAIT) { 7505 if (filemap_range_needs_writeback(inode->i_mapping, 7506 lockstart, lockend)) 7507 return -EAGAIN; 7508 } else { 7509 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7510 start + length - 1); 7511 if (ret) 7512 return ret; 7513 } 7514 } 7515 7516 memset(dio_data, 0, sizeof(*dio_data)); 7517 7518 /* 7519 * We always try to allocate data space and must do it before locking 7520 * the file range, to avoid deadlocks with concurrent writes to the same 7521 * range if the range has several extents and the writes don't expand the 7522 * current i_size (the inode lock is taken in shared mode). If we fail to 7523 * allocate data space here we continue and later, after locking the 7524 * file range, we fail with ENOSPC only if we figure out we can not do a 7525 * NOCOW write. 7526 */ 7527 if (write && !(flags & IOMAP_NOWAIT)) { 7528 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7529 &dio_data->data_reserved, 7530 start, data_alloc_len, false); 7531 if (!ret) 7532 dio_data->data_space_reserved = true; 7533 else if (ret && !(BTRFS_I(inode)->flags & 7534 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7535 goto err; 7536 } 7537 7538 /* 7539 * If this errors out it's because we couldn't invalidate pagecache for 7540 * this range and we need to fallback to buffered IO, or we are doing a 7541 * NOWAIT read/write and we need to block. 7542 */ 7543 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7544 if (ret < 0) 7545 goto err; 7546 7547 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7548 if (IS_ERR(em)) { 7549 ret = PTR_ERR(em); 7550 goto unlock_err; 7551 } 7552 7553 /* 7554 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7555 * io. INLINE is special, and we could probably kludge it in here, but 7556 * it's still buffered so for safety lets just fall back to the generic 7557 * buffered path. 7558 * 7559 * For COMPRESSED we _have_ to read the entire extent in so we can 7560 * decompress it, so there will be buffering required no matter what we 7561 * do, so go ahead and fallback to buffered. 7562 * 7563 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7564 * to buffered IO. Don't blame me, this is the price we pay for using 7565 * the generic code. 7566 */ 7567 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7568 em->block_start == EXTENT_MAP_INLINE) { 7569 free_extent_map(em); 7570 /* 7571 * If we are in a NOWAIT context, return -EAGAIN in order to 7572 * fallback to buffered IO. This is not only because we can 7573 * block with buffered IO (no support for NOWAIT semantics at 7574 * the moment) but also to avoid returning short reads to user 7575 * space - this happens if we were able to read some data from 7576 * previous non-compressed extents and then when we fallback to 7577 * buffered IO, at btrfs_file_read_iter() by calling 7578 * filemap_read(), we fail to fault in pages for the read buffer, 7579 * in which case filemap_read() returns a short read (the number 7580 * of bytes previously read is > 0, so it does not return -EFAULT). 7581 */ 7582 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7583 goto unlock_err; 7584 } 7585 7586 len = min(len, em->len - (start - em->start)); 7587 7588 /* 7589 * If we have a NOWAIT request and the range contains multiple extents 7590 * (or a mix of extents and holes), then we return -EAGAIN to make the 7591 * caller fallback to a context where it can do a blocking (without 7592 * NOWAIT) request. This way we avoid doing partial IO and returning 7593 * success to the caller, which is not optimal for writes and for reads 7594 * it can result in unexpected behaviour for an application. 7595 * 7596 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7597 * iomap_dio_rw(), we can end up returning less data then what the caller 7598 * asked for, resulting in an unexpected, and incorrect, short read. 7599 * That is, the caller asked to read N bytes and we return less than that, 7600 * which is wrong unless we are crossing EOF. This happens if we get a 7601 * page fault error when trying to fault in pages for the buffer that is 7602 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7603 * have previously submitted bios for other extents in the range, in 7604 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7605 * those bios have completed by the time we get the page fault error, 7606 * which we return back to our caller - we should only return EIOCBQUEUED 7607 * after we have submitted bios for all the extents in the range. 7608 */ 7609 if ((flags & IOMAP_NOWAIT) && len < length) { 7610 free_extent_map(em); 7611 ret = -EAGAIN; 7612 goto unlock_err; 7613 } 7614 7615 if (write) { 7616 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7617 start, &len, flags); 7618 if (ret < 0) 7619 goto unlock_err; 7620 unlock_extents = true; 7621 /* Recalc len in case the new em is smaller than requested */ 7622 len = min(len, em->len - (start - em->start)); 7623 if (dio_data->data_space_reserved) { 7624 u64 release_offset; 7625 u64 release_len = 0; 7626 7627 if (dio_data->nocow_done) { 7628 release_offset = start; 7629 release_len = data_alloc_len; 7630 } else if (len < data_alloc_len) { 7631 release_offset = start + len; 7632 release_len = data_alloc_len - len; 7633 } 7634 7635 if (release_len > 0) 7636 btrfs_free_reserved_data_space(BTRFS_I(inode), 7637 dio_data->data_reserved, 7638 release_offset, 7639 release_len); 7640 } 7641 } else { 7642 /* 7643 * We need to unlock only the end area that we aren't using. 7644 * The rest is going to be unlocked by the endio routine. 7645 */ 7646 lockstart = start + len; 7647 if (lockstart < lockend) 7648 unlock_extents = true; 7649 } 7650 7651 if (unlock_extents) 7652 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7653 &cached_state); 7654 else 7655 free_extent_state(cached_state); 7656 7657 /* 7658 * Translate extent map information to iomap. 7659 * We trim the extents (and move the addr) even though iomap code does 7660 * that, since we have locked only the parts we are performing I/O in. 7661 */ 7662 if ((em->block_start == EXTENT_MAP_HOLE) || 7663 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7664 iomap->addr = IOMAP_NULL_ADDR; 7665 iomap->type = IOMAP_HOLE; 7666 } else { 7667 iomap->addr = em->block_start + (start - em->start); 7668 iomap->type = IOMAP_MAPPED; 7669 } 7670 iomap->offset = start; 7671 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7672 iomap->length = len; 7673 free_extent_map(em); 7674 7675 return 0; 7676 7677 unlock_err: 7678 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7679 &cached_state); 7680 err: 7681 if (dio_data->data_space_reserved) { 7682 btrfs_free_reserved_data_space(BTRFS_I(inode), 7683 dio_data->data_reserved, 7684 start, data_alloc_len); 7685 extent_changeset_free(dio_data->data_reserved); 7686 } 7687 7688 return ret; 7689 } 7690 7691 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7692 ssize_t written, unsigned int flags, struct iomap *iomap) 7693 { 7694 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7695 struct btrfs_dio_data *dio_data = iter->private; 7696 size_t submitted = dio_data->submitted; 7697 const bool write = !!(flags & IOMAP_WRITE); 7698 int ret = 0; 7699 7700 if (!write && (iomap->type == IOMAP_HOLE)) { 7701 /* If reading from a hole, unlock and return */ 7702 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7703 NULL); 7704 return 0; 7705 } 7706 7707 if (submitted < length) { 7708 pos += submitted; 7709 length -= submitted; 7710 if (write) 7711 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7712 pos, length, false); 7713 else 7714 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7715 pos + length - 1, NULL); 7716 ret = -ENOTBLK; 7717 } 7718 if (write) { 7719 btrfs_put_ordered_extent(dio_data->ordered); 7720 dio_data->ordered = NULL; 7721 } 7722 7723 if (write) 7724 extent_changeset_free(dio_data->data_reserved); 7725 return ret; 7726 } 7727 7728 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7729 { 7730 struct btrfs_dio_private *dip = 7731 container_of(bbio, struct btrfs_dio_private, bbio); 7732 struct btrfs_inode *inode = bbio->inode; 7733 struct bio *bio = &bbio->bio; 7734 7735 if (bio->bi_status) { 7736 btrfs_warn(inode->root->fs_info, 7737 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7738 btrfs_ino(inode), bio->bi_opf, 7739 dip->file_offset, dip->bytes, bio->bi_status); 7740 } 7741 7742 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7743 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7744 dip->file_offset, dip->bytes, 7745 !bio->bi_status); 7746 } else { 7747 unlock_extent(&inode->io_tree, dip->file_offset, 7748 dip->file_offset + dip->bytes - 1, NULL); 7749 } 7750 7751 bbio->bio.bi_private = bbio->private; 7752 iomap_dio_bio_end_io(bio); 7753 } 7754 7755 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7756 loff_t file_offset) 7757 { 7758 struct btrfs_bio *bbio = btrfs_bio(bio); 7759 struct btrfs_dio_private *dip = 7760 container_of(bbio, struct btrfs_dio_private, bbio); 7761 struct btrfs_dio_data *dio_data = iter->private; 7762 7763 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7764 btrfs_dio_end_io, bio->bi_private); 7765 bbio->inode = BTRFS_I(iter->inode); 7766 bbio->file_offset = file_offset; 7767 7768 dip->file_offset = file_offset; 7769 dip->bytes = bio->bi_iter.bi_size; 7770 7771 dio_data->submitted += bio->bi_iter.bi_size; 7772 7773 /* 7774 * Check if we are doing a partial write. If we are, we need to split 7775 * the ordered extent to match the submitted bio. Hang on to the 7776 * remaining unfinishable ordered_extent in dio_data so that it can be 7777 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7778 * remaining pages is blocked on the outstanding ordered extent. 7779 */ 7780 if (iter->flags & IOMAP_WRITE) { 7781 int ret; 7782 7783 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7784 if (ret) { 7785 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7786 file_offset, dip->bytes, 7787 !ret); 7788 bio->bi_status = errno_to_blk_status(ret); 7789 iomap_dio_bio_end_io(bio); 7790 return; 7791 } 7792 } 7793 7794 btrfs_submit_bio(bbio, 0); 7795 } 7796 7797 static const struct iomap_ops btrfs_dio_iomap_ops = { 7798 .iomap_begin = btrfs_dio_iomap_begin, 7799 .iomap_end = btrfs_dio_iomap_end, 7800 }; 7801 7802 static const struct iomap_dio_ops btrfs_dio_ops = { 7803 .submit_io = btrfs_dio_submit_io, 7804 .bio_set = &btrfs_dio_bioset, 7805 }; 7806 7807 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7808 { 7809 struct btrfs_dio_data data = { 0 }; 7810 7811 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7812 IOMAP_DIO_PARTIAL, &data, done_before); 7813 } 7814 7815 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7816 size_t done_before) 7817 { 7818 struct btrfs_dio_data data = { 0 }; 7819 7820 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7821 IOMAP_DIO_PARTIAL, &data, done_before); 7822 } 7823 7824 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7825 u64 start, u64 len) 7826 { 7827 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 7828 int ret; 7829 7830 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7831 if (ret) 7832 return ret; 7833 7834 /* 7835 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7836 * file range (0 to LLONG_MAX), but that is not enough if we have 7837 * compression enabled. The first filemap_fdatawrite_range() only kicks 7838 * in the compression of data (in an async thread) and will return 7839 * before the compression is done and writeback is started. A second 7840 * filemap_fdatawrite_range() is needed to wait for the compression to 7841 * complete and writeback to start. We also need to wait for ordered 7842 * extents to complete, because our fiemap implementation uses mainly 7843 * file extent items to list the extents, searching for extent maps 7844 * only for file ranges with holes or prealloc extents to figure out 7845 * if we have delalloc in those ranges. 7846 */ 7847 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7848 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7849 if (ret) 7850 return ret; 7851 } 7852 7853 btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED); 7854 7855 /* 7856 * We did an initial flush to avoid holding the inode's lock while 7857 * triggering writeback and waiting for the completion of IO and ordered 7858 * extents. Now after we locked the inode we do it again, because it's 7859 * possible a new write may have happened in between those two steps. 7860 */ 7861 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7862 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7863 if (ret) { 7864 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7865 return ret; 7866 } 7867 } 7868 7869 ret = extent_fiemap(btrfs_inode, fieinfo, start, len); 7870 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7871 7872 return ret; 7873 } 7874 7875 static int btrfs_writepages(struct address_space *mapping, 7876 struct writeback_control *wbc) 7877 { 7878 return extent_writepages(mapping, wbc); 7879 } 7880 7881 static void btrfs_readahead(struct readahead_control *rac) 7882 { 7883 extent_readahead(rac); 7884 } 7885 7886 /* 7887 * For release_folio() and invalidate_folio() we have a race window where 7888 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7889 * If we continue to release/invalidate the page, we could cause use-after-free 7890 * for subpage spinlock. So this function is to spin and wait for subpage 7891 * spinlock. 7892 */ 7893 static void wait_subpage_spinlock(struct page *page) 7894 { 7895 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7896 struct btrfs_subpage *subpage; 7897 7898 if (!btrfs_is_subpage(fs_info, page)) 7899 return; 7900 7901 ASSERT(PagePrivate(page) && page->private); 7902 subpage = (struct btrfs_subpage *)page->private; 7903 7904 /* 7905 * This may look insane as we just acquire the spinlock and release it, 7906 * without doing anything. But we just want to make sure no one is 7907 * still holding the subpage spinlock. 7908 * And since the page is not dirty nor writeback, and we have page 7909 * locked, the only possible way to hold a spinlock is from the endio 7910 * function to clear page writeback. 7911 * 7912 * Here we just acquire the spinlock so that all existing callers 7913 * should exit and we're safe to release/invalidate the page. 7914 */ 7915 spin_lock_irq(&subpage->lock); 7916 spin_unlock_irq(&subpage->lock); 7917 } 7918 7919 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7920 { 7921 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7922 7923 if (ret == 1) { 7924 wait_subpage_spinlock(&folio->page); 7925 clear_page_extent_mapped(&folio->page); 7926 } 7927 return ret; 7928 } 7929 7930 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7931 { 7932 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7933 return false; 7934 return __btrfs_release_folio(folio, gfp_flags); 7935 } 7936 7937 #ifdef CONFIG_MIGRATION 7938 static int btrfs_migrate_folio(struct address_space *mapping, 7939 struct folio *dst, struct folio *src, 7940 enum migrate_mode mode) 7941 { 7942 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7943 7944 if (ret != MIGRATEPAGE_SUCCESS) 7945 return ret; 7946 7947 if (folio_test_ordered(src)) { 7948 folio_clear_ordered(src); 7949 folio_set_ordered(dst); 7950 } 7951 7952 return MIGRATEPAGE_SUCCESS; 7953 } 7954 #else 7955 #define btrfs_migrate_folio NULL 7956 #endif 7957 7958 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7959 size_t length) 7960 { 7961 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 7962 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7963 struct extent_io_tree *tree = &inode->io_tree; 7964 struct extent_state *cached_state = NULL; 7965 u64 page_start = folio_pos(folio); 7966 u64 page_end = page_start + folio_size(folio) - 1; 7967 u64 cur; 7968 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7969 7970 /* 7971 * We have folio locked so no new ordered extent can be created on this 7972 * page, nor bio can be submitted for this folio. 7973 * 7974 * But already submitted bio can still be finished on this folio. 7975 * Furthermore, endio function won't skip folio which has Ordered 7976 * (Private2) already cleared, so it's possible for endio and 7977 * invalidate_folio to do the same ordered extent accounting twice 7978 * on one folio. 7979 * 7980 * So here we wait for any submitted bios to finish, so that we won't 7981 * do double ordered extent accounting on the same folio. 7982 */ 7983 folio_wait_writeback(folio); 7984 wait_subpage_spinlock(&folio->page); 7985 7986 /* 7987 * For subpage case, we have call sites like 7988 * btrfs_punch_hole_lock_range() which passes range not aligned to 7989 * sectorsize. 7990 * If the range doesn't cover the full folio, we don't need to and 7991 * shouldn't clear page extent mapped, as folio->private can still 7992 * record subpage dirty bits for other part of the range. 7993 * 7994 * For cases that invalidate the full folio even the range doesn't 7995 * cover the full folio, like invalidating the last folio, we're 7996 * still safe to wait for ordered extent to finish. 7997 */ 7998 if (!(offset == 0 && length == folio_size(folio))) { 7999 btrfs_release_folio(folio, GFP_NOFS); 8000 return; 8001 } 8002 8003 if (!inode_evicting) 8004 lock_extent(tree, page_start, page_end, &cached_state); 8005 8006 cur = page_start; 8007 while (cur < page_end) { 8008 struct btrfs_ordered_extent *ordered; 8009 u64 range_end; 8010 u32 range_len; 8011 u32 extra_flags = 0; 8012 8013 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8014 page_end + 1 - cur); 8015 if (!ordered) { 8016 range_end = page_end; 8017 /* 8018 * No ordered extent covering this range, we are safe 8019 * to delete all extent states in the range. 8020 */ 8021 extra_flags = EXTENT_CLEAR_ALL_BITS; 8022 goto next; 8023 } 8024 if (ordered->file_offset > cur) { 8025 /* 8026 * There is a range between [cur, oe->file_offset) not 8027 * covered by any ordered extent. 8028 * We are safe to delete all extent states, and handle 8029 * the ordered extent in the next iteration. 8030 */ 8031 range_end = ordered->file_offset - 1; 8032 extra_flags = EXTENT_CLEAR_ALL_BITS; 8033 goto next; 8034 } 8035 8036 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8037 page_end); 8038 ASSERT(range_end + 1 - cur < U32_MAX); 8039 range_len = range_end + 1 - cur; 8040 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8041 /* 8042 * If Ordered (Private2) is cleared, it means endio has 8043 * already been executed for the range. 8044 * We can't delete the extent states as 8045 * btrfs_finish_ordered_io() may still use some of them. 8046 */ 8047 goto next; 8048 } 8049 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8050 8051 /* 8052 * IO on this page will never be started, so we need to account 8053 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8054 * here, must leave that up for the ordered extent completion. 8055 * 8056 * This will also unlock the range for incoming 8057 * btrfs_finish_ordered_io(). 8058 */ 8059 if (!inode_evicting) 8060 clear_extent_bit(tree, cur, range_end, 8061 EXTENT_DELALLOC | 8062 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8063 EXTENT_DEFRAG, &cached_state); 8064 8065 spin_lock_irq(&inode->ordered_tree.lock); 8066 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8067 ordered->truncated_len = min(ordered->truncated_len, 8068 cur - ordered->file_offset); 8069 spin_unlock_irq(&inode->ordered_tree.lock); 8070 8071 /* 8072 * If the ordered extent has finished, we're safe to delete all 8073 * the extent states of the range, otherwise 8074 * btrfs_finish_ordered_io() will get executed by endio for 8075 * other pages, so we can't delete extent states. 8076 */ 8077 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8078 cur, range_end + 1 - cur)) { 8079 btrfs_finish_ordered_io(ordered); 8080 /* 8081 * The ordered extent has finished, now we're again 8082 * safe to delete all extent states of the range. 8083 */ 8084 extra_flags = EXTENT_CLEAR_ALL_BITS; 8085 } 8086 next: 8087 if (ordered) 8088 btrfs_put_ordered_extent(ordered); 8089 /* 8090 * Qgroup reserved space handler 8091 * Sector(s) here will be either: 8092 * 8093 * 1) Already written to disk or bio already finished 8094 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8095 * Qgroup will be handled by its qgroup_record then. 8096 * btrfs_qgroup_free_data() call will do nothing here. 8097 * 8098 * 2) Not written to disk yet 8099 * Then btrfs_qgroup_free_data() call will clear the 8100 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8101 * reserved data space. 8102 * Since the IO will never happen for this page. 8103 */ 8104 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 8105 if (!inode_evicting) { 8106 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8107 EXTENT_DELALLOC | EXTENT_UPTODATE | 8108 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8109 extra_flags, &cached_state); 8110 } 8111 cur = range_end + 1; 8112 } 8113 /* 8114 * We have iterated through all ordered extents of the page, the page 8115 * should not have Ordered (Private2) anymore, or the above iteration 8116 * did something wrong. 8117 */ 8118 ASSERT(!folio_test_ordered(folio)); 8119 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8120 if (!inode_evicting) 8121 __btrfs_release_folio(folio, GFP_NOFS); 8122 clear_page_extent_mapped(&folio->page); 8123 } 8124 8125 /* 8126 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8127 * called from a page fault handler when a page is first dirtied. Hence we must 8128 * be careful to check for EOF conditions here. We set the page up correctly 8129 * for a written page which means we get ENOSPC checking when writing into 8130 * holes and correct delalloc and unwritten extent mapping on filesystems that 8131 * support these features. 8132 * 8133 * We are not allowed to take the i_mutex here so we have to play games to 8134 * protect against truncate races as the page could now be beyond EOF. Because 8135 * truncate_setsize() writes the inode size before removing pages, once we have 8136 * the page lock we can determine safely if the page is beyond EOF. If it is not 8137 * beyond EOF, then the page is guaranteed safe against truncation until we 8138 * unlock the page. 8139 */ 8140 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8141 { 8142 struct page *page = vmf->page; 8143 struct inode *inode = file_inode(vmf->vma->vm_file); 8144 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8145 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8146 struct btrfs_ordered_extent *ordered; 8147 struct extent_state *cached_state = NULL; 8148 struct extent_changeset *data_reserved = NULL; 8149 unsigned long zero_start; 8150 loff_t size; 8151 vm_fault_t ret; 8152 int ret2; 8153 int reserved = 0; 8154 u64 reserved_space; 8155 u64 page_start; 8156 u64 page_end; 8157 u64 end; 8158 8159 reserved_space = PAGE_SIZE; 8160 8161 sb_start_pagefault(inode->i_sb); 8162 page_start = page_offset(page); 8163 page_end = page_start + PAGE_SIZE - 1; 8164 end = page_end; 8165 8166 /* 8167 * Reserving delalloc space after obtaining the page lock can lead to 8168 * deadlock. For example, if a dirty page is locked by this function 8169 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8170 * dirty page write out, then the btrfs_writepages() function could 8171 * end up waiting indefinitely to get a lock on the page currently 8172 * being processed by btrfs_page_mkwrite() function. 8173 */ 8174 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8175 page_start, reserved_space); 8176 if (!ret2) { 8177 ret2 = file_update_time(vmf->vma->vm_file); 8178 reserved = 1; 8179 } 8180 if (ret2) { 8181 ret = vmf_error(ret2); 8182 if (reserved) 8183 goto out; 8184 goto out_noreserve; 8185 } 8186 8187 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8188 again: 8189 down_read(&BTRFS_I(inode)->i_mmap_lock); 8190 lock_page(page); 8191 size = i_size_read(inode); 8192 8193 if ((page->mapping != inode->i_mapping) || 8194 (page_start >= size)) { 8195 /* page got truncated out from underneath us */ 8196 goto out_unlock; 8197 } 8198 wait_on_page_writeback(page); 8199 8200 lock_extent(io_tree, page_start, page_end, &cached_state); 8201 ret2 = set_page_extent_mapped(page); 8202 if (ret2 < 0) { 8203 ret = vmf_error(ret2); 8204 unlock_extent(io_tree, page_start, page_end, &cached_state); 8205 goto out_unlock; 8206 } 8207 8208 /* 8209 * we can't set the delalloc bits if there are pending ordered 8210 * extents. Drop our locks and wait for them to finish 8211 */ 8212 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8213 PAGE_SIZE); 8214 if (ordered) { 8215 unlock_extent(io_tree, page_start, page_end, &cached_state); 8216 unlock_page(page); 8217 up_read(&BTRFS_I(inode)->i_mmap_lock); 8218 btrfs_start_ordered_extent(ordered); 8219 btrfs_put_ordered_extent(ordered); 8220 goto again; 8221 } 8222 8223 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8224 reserved_space = round_up(size - page_start, 8225 fs_info->sectorsize); 8226 if (reserved_space < PAGE_SIZE) { 8227 end = page_start + reserved_space - 1; 8228 btrfs_delalloc_release_space(BTRFS_I(inode), 8229 data_reserved, page_start, 8230 PAGE_SIZE - reserved_space, true); 8231 } 8232 } 8233 8234 /* 8235 * page_mkwrite gets called when the page is firstly dirtied after it's 8236 * faulted in, but write(2) could also dirty a page and set delalloc 8237 * bits, thus in this case for space account reason, we still need to 8238 * clear any delalloc bits within this page range since we have to 8239 * reserve data&meta space before lock_page() (see above comments). 8240 */ 8241 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8242 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8243 EXTENT_DEFRAG, &cached_state); 8244 8245 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8246 &cached_state); 8247 if (ret2) { 8248 unlock_extent(io_tree, page_start, page_end, &cached_state); 8249 ret = VM_FAULT_SIGBUS; 8250 goto out_unlock; 8251 } 8252 8253 /* page is wholly or partially inside EOF */ 8254 if (page_start + PAGE_SIZE > size) 8255 zero_start = offset_in_page(size); 8256 else 8257 zero_start = PAGE_SIZE; 8258 8259 if (zero_start != PAGE_SIZE) 8260 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8261 8262 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8263 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8264 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8265 8266 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8267 8268 unlock_extent(io_tree, page_start, page_end, &cached_state); 8269 up_read(&BTRFS_I(inode)->i_mmap_lock); 8270 8271 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8272 sb_end_pagefault(inode->i_sb); 8273 extent_changeset_free(data_reserved); 8274 return VM_FAULT_LOCKED; 8275 8276 out_unlock: 8277 unlock_page(page); 8278 up_read(&BTRFS_I(inode)->i_mmap_lock); 8279 out: 8280 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8281 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8282 reserved_space, (ret != 0)); 8283 out_noreserve: 8284 sb_end_pagefault(inode->i_sb); 8285 extent_changeset_free(data_reserved); 8286 return ret; 8287 } 8288 8289 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8290 { 8291 struct btrfs_truncate_control control = { 8292 .inode = inode, 8293 .ino = btrfs_ino(inode), 8294 .min_type = BTRFS_EXTENT_DATA_KEY, 8295 .clear_extent_range = true, 8296 }; 8297 struct btrfs_root *root = inode->root; 8298 struct btrfs_fs_info *fs_info = root->fs_info; 8299 struct btrfs_block_rsv *rsv; 8300 int ret; 8301 struct btrfs_trans_handle *trans; 8302 u64 mask = fs_info->sectorsize - 1; 8303 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8304 8305 if (!skip_writeback) { 8306 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8307 inode->vfs_inode.i_size & (~mask), 8308 (u64)-1); 8309 if (ret) 8310 return ret; 8311 } 8312 8313 /* 8314 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8315 * things going on here: 8316 * 8317 * 1) We need to reserve space to update our inode. 8318 * 8319 * 2) We need to have something to cache all the space that is going to 8320 * be free'd up by the truncate operation, but also have some slack 8321 * space reserved in case it uses space during the truncate (thank you 8322 * very much snapshotting). 8323 * 8324 * And we need these to be separate. The fact is we can use a lot of 8325 * space doing the truncate, and we have no earthly idea how much space 8326 * we will use, so we need the truncate reservation to be separate so it 8327 * doesn't end up using space reserved for updating the inode. We also 8328 * need to be able to stop the transaction and start a new one, which 8329 * means we need to be able to update the inode several times, and we 8330 * have no idea of knowing how many times that will be, so we can't just 8331 * reserve 1 item for the entirety of the operation, so that has to be 8332 * done separately as well. 8333 * 8334 * So that leaves us with 8335 * 8336 * 1) rsv - for the truncate reservation, which we will steal from the 8337 * transaction reservation. 8338 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8339 * updating the inode. 8340 */ 8341 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8342 if (!rsv) 8343 return -ENOMEM; 8344 rsv->size = min_size; 8345 rsv->failfast = true; 8346 8347 /* 8348 * 1 for the truncate slack space 8349 * 1 for updating the inode. 8350 */ 8351 trans = btrfs_start_transaction(root, 2); 8352 if (IS_ERR(trans)) { 8353 ret = PTR_ERR(trans); 8354 goto out; 8355 } 8356 8357 /* Migrate the slack space for the truncate to our reserve */ 8358 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8359 min_size, false); 8360 /* 8361 * We have reserved 2 metadata units when we started the transaction and 8362 * min_size matches 1 unit, so this should never fail, but if it does, 8363 * it's not critical we just fail truncation. 8364 */ 8365 if (WARN_ON(ret)) { 8366 btrfs_end_transaction(trans); 8367 goto out; 8368 } 8369 8370 trans->block_rsv = rsv; 8371 8372 while (1) { 8373 struct extent_state *cached_state = NULL; 8374 const u64 new_size = inode->vfs_inode.i_size; 8375 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8376 8377 control.new_size = new_size; 8378 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8379 /* 8380 * We want to drop from the next block forward in case this new 8381 * size is not block aligned since we will be keeping the last 8382 * block of the extent just the way it is. 8383 */ 8384 btrfs_drop_extent_map_range(inode, 8385 ALIGN(new_size, fs_info->sectorsize), 8386 (u64)-1, false); 8387 8388 ret = btrfs_truncate_inode_items(trans, root, &control); 8389 8390 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8391 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8392 8393 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8394 8395 trans->block_rsv = &fs_info->trans_block_rsv; 8396 if (ret != -ENOSPC && ret != -EAGAIN) 8397 break; 8398 8399 ret = btrfs_update_inode(trans, root, inode); 8400 if (ret) 8401 break; 8402 8403 btrfs_end_transaction(trans); 8404 btrfs_btree_balance_dirty(fs_info); 8405 8406 trans = btrfs_start_transaction(root, 2); 8407 if (IS_ERR(trans)) { 8408 ret = PTR_ERR(trans); 8409 trans = NULL; 8410 break; 8411 } 8412 8413 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8414 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8415 rsv, min_size, false); 8416 /* 8417 * We have reserved 2 metadata units when we started the 8418 * transaction and min_size matches 1 unit, so this should never 8419 * fail, but if it does, it's not critical we just fail truncation. 8420 */ 8421 if (WARN_ON(ret)) 8422 break; 8423 8424 trans->block_rsv = rsv; 8425 } 8426 8427 /* 8428 * We can't call btrfs_truncate_block inside a trans handle as we could 8429 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8430 * know we've truncated everything except the last little bit, and can 8431 * do btrfs_truncate_block and then update the disk_i_size. 8432 */ 8433 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8434 btrfs_end_transaction(trans); 8435 btrfs_btree_balance_dirty(fs_info); 8436 8437 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8438 if (ret) 8439 goto out; 8440 trans = btrfs_start_transaction(root, 1); 8441 if (IS_ERR(trans)) { 8442 ret = PTR_ERR(trans); 8443 goto out; 8444 } 8445 btrfs_inode_safe_disk_i_size_write(inode, 0); 8446 } 8447 8448 if (trans) { 8449 int ret2; 8450 8451 trans->block_rsv = &fs_info->trans_block_rsv; 8452 ret2 = btrfs_update_inode(trans, root, inode); 8453 if (ret2 && !ret) 8454 ret = ret2; 8455 8456 ret2 = btrfs_end_transaction(trans); 8457 if (ret2 && !ret) 8458 ret = ret2; 8459 btrfs_btree_balance_dirty(fs_info); 8460 } 8461 out: 8462 btrfs_free_block_rsv(fs_info, rsv); 8463 /* 8464 * So if we truncate and then write and fsync we normally would just 8465 * write the extents that changed, which is a problem if we need to 8466 * first truncate that entire inode. So set this flag so we write out 8467 * all of the extents in the inode to the sync log so we're completely 8468 * safe. 8469 * 8470 * If no extents were dropped or trimmed we don't need to force the next 8471 * fsync to truncate all the inode's items from the log and re-log them 8472 * all. This means the truncate operation did not change the file size, 8473 * or changed it to a smaller size but there was only an implicit hole 8474 * between the old i_size and the new i_size, and there were no prealloc 8475 * extents beyond i_size to drop. 8476 */ 8477 if (control.extents_found > 0) 8478 btrfs_set_inode_full_sync(inode); 8479 8480 return ret; 8481 } 8482 8483 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8484 struct inode *dir) 8485 { 8486 struct inode *inode; 8487 8488 inode = new_inode(dir->i_sb); 8489 if (inode) { 8490 /* 8491 * Subvolumes don't inherit the sgid bit or the parent's gid if 8492 * the parent's sgid bit is set. This is probably a bug. 8493 */ 8494 inode_init_owner(idmap, inode, NULL, 8495 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8496 inode->i_op = &btrfs_dir_inode_operations; 8497 inode->i_fop = &btrfs_dir_file_operations; 8498 } 8499 return inode; 8500 } 8501 8502 struct inode *btrfs_alloc_inode(struct super_block *sb) 8503 { 8504 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8505 struct btrfs_inode *ei; 8506 struct inode *inode; 8507 8508 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8509 if (!ei) 8510 return NULL; 8511 8512 ei->root = NULL; 8513 ei->generation = 0; 8514 ei->last_trans = 0; 8515 ei->last_sub_trans = 0; 8516 ei->logged_trans = 0; 8517 ei->delalloc_bytes = 0; 8518 ei->new_delalloc_bytes = 0; 8519 ei->defrag_bytes = 0; 8520 ei->disk_i_size = 0; 8521 ei->flags = 0; 8522 ei->ro_flags = 0; 8523 ei->csum_bytes = 0; 8524 ei->index_cnt = (u64)-1; 8525 ei->dir_index = 0; 8526 ei->last_unlink_trans = 0; 8527 ei->last_reflink_trans = 0; 8528 ei->last_log_commit = 0; 8529 8530 spin_lock_init(&ei->lock); 8531 ei->outstanding_extents = 0; 8532 if (sb->s_magic != BTRFS_TEST_MAGIC) 8533 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8534 BTRFS_BLOCK_RSV_DELALLOC); 8535 ei->runtime_flags = 0; 8536 ei->prop_compress = BTRFS_COMPRESS_NONE; 8537 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8538 8539 ei->delayed_node = NULL; 8540 8541 ei->i_otime.tv_sec = 0; 8542 ei->i_otime.tv_nsec = 0; 8543 8544 inode = &ei->vfs_inode; 8545 extent_map_tree_init(&ei->extent_tree); 8546 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8547 ei->io_tree.inode = ei; 8548 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8549 IO_TREE_INODE_FILE_EXTENT); 8550 mutex_init(&ei->log_mutex); 8551 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8552 INIT_LIST_HEAD(&ei->delalloc_inodes); 8553 INIT_LIST_HEAD(&ei->delayed_iput); 8554 RB_CLEAR_NODE(&ei->rb_node); 8555 init_rwsem(&ei->i_mmap_lock); 8556 8557 return inode; 8558 } 8559 8560 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8561 void btrfs_test_destroy_inode(struct inode *inode) 8562 { 8563 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8564 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8565 } 8566 #endif 8567 8568 void btrfs_free_inode(struct inode *inode) 8569 { 8570 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8571 } 8572 8573 void btrfs_destroy_inode(struct inode *vfs_inode) 8574 { 8575 struct btrfs_ordered_extent *ordered; 8576 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8577 struct btrfs_root *root = inode->root; 8578 bool freespace_inode; 8579 8580 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8581 WARN_ON(vfs_inode->i_data.nrpages); 8582 WARN_ON(inode->block_rsv.reserved); 8583 WARN_ON(inode->block_rsv.size); 8584 WARN_ON(inode->outstanding_extents); 8585 if (!S_ISDIR(vfs_inode->i_mode)) { 8586 WARN_ON(inode->delalloc_bytes); 8587 WARN_ON(inode->new_delalloc_bytes); 8588 } 8589 WARN_ON(inode->csum_bytes); 8590 WARN_ON(inode->defrag_bytes); 8591 8592 /* 8593 * This can happen where we create an inode, but somebody else also 8594 * created the same inode and we need to destroy the one we already 8595 * created. 8596 */ 8597 if (!root) 8598 return; 8599 8600 /* 8601 * If this is a free space inode do not take the ordered extents lockdep 8602 * map. 8603 */ 8604 freespace_inode = btrfs_is_free_space_inode(inode); 8605 8606 while (1) { 8607 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8608 if (!ordered) 8609 break; 8610 else { 8611 btrfs_err(root->fs_info, 8612 "found ordered extent %llu %llu on inode cleanup", 8613 ordered->file_offset, ordered->num_bytes); 8614 8615 if (!freespace_inode) 8616 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8617 8618 btrfs_remove_ordered_extent(inode, ordered); 8619 btrfs_put_ordered_extent(ordered); 8620 btrfs_put_ordered_extent(ordered); 8621 } 8622 } 8623 btrfs_qgroup_check_reserved_leak(inode); 8624 inode_tree_del(inode); 8625 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8626 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8627 btrfs_put_root(inode->root); 8628 } 8629 8630 int btrfs_drop_inode(struct inode *inode) 8631 { 8632 struct btrfs_root *root = BTRFS_I(inode)->root; 8633 8634 if (root == NULL) 8635 return 1; 8636 8637 /* the snap/subvol tree is on deleting */ 8638 if (btrfs_root_refs(&root->root_item) == 0) 8639 return 1; 8640 else 8641 return generic_drop_inode(inode); 8642 } 8643 8644 static void init_once(void *foo) 8645 { 8646 struct btrfs_inode *ei = foo; 8647 8648 inode_init_once(&ei->vfs_inode); 8649 } 8650 8651 void __cold btrfs_destroy_cachep(void) 8652 { 8653 /* 8654 * Make sure all delayed rcu free inodes are flushed before we 8655 * destroy cache. 8656 */ 8657 rcu_barrier(); 8658 bioset_exit(&btrfs_dio_bioset); 8659 kmem_cache_destroy(btrfs_inode_cachep); 8660 } 8661 8662 int __init btrfs_init_cachep(void) 8663 { 8664 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8665 sizeof(struct btrfs_inode), 0, 8666 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8667 init_once); 8668 if (!btrfs_inode_cachep) 8669 goto fail; 8670 8671 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8672 offsetof(struct btrfs_dio_private, bbio.bio), 8673 BIOSET_NEED_BVECS)) 8674 goto fail; 8675 8676 return 0; 8677 fail: 8678 btrfs_destroy_cachep(); 8679 return -ENOMEM; 8680 } 8681 8682 static int btrfs_getattr(struct mnt_idmap *idmap, 8683 const struct path *path, struct kstat *stat, 8684 u32 request_mask, unsigned int flags) 8685 { 8686 u64 delalloc_bytes; 8687 u64 inode_bytes; 8688 struct inode *inode = d_inode(path->dentry); 8689 u32 blocksize = inode->i_sb->s_blocksize; 8690 u32 bi_flags = BTRFS_I(inode)->flags; 8691 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8692 8693 stat->result_mask |= STATX_BTIME; 8694 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8695 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8696 if (bi_flags & BTRFS_INODE_APPEND) 8697 stat->attributes |= STATX_ATTR_APPEND; 8698 if (bi_flags & BTRFS_INODE_COMPRESS) 8699 stat->attributes |= STATX_ATTR_COMPRESSED; 8700 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8701 stat->attributes |= STATX_ATTR_IMMUTABLE; 8702 if (bi_flags & BTRFS_INODE_NODUMP) 8703 stat->attributes |= STATX_ATTR_NODUMP; 8704 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8705 stat->attributes |= STATX_ATTR_VERITY; 8706 8707 stat->attributes_mask |= (STATX_ATTR_APPEND | 8708 STATX_ATTR_COMPRESSED | 8709 STATX_ATTR_IMMUTABLE | 8710 STATX_ATTR_NODUMP); 8711 8712 generic_fillattr(idmap, request_mask, inode, stat); 8713 stat->dev = BTRFS_I(inode)->root->anon_dev; 8714 8715 spin_lock(&BTRFS_I(inode)->lock); 8716 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8717 inode_bytes = inode_get_bytes(inode); 8718 spin_unlock(&BTRFS_I(inode)->lock); 8719 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8720 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8721 return 0; 8722 } 8723 8724 static int btrfs_rename_exchange(struct inode *old_dir, 8725 struct dentry *old_dentry, 8726 struct inode *new_dir, 8727 struct dentry *new_dentry) 8728 { 8729 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8730 struct btrfs_trans_handle *trans; 8731 unsigned int trans_num_items; 8732 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8733 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8734 struct inode *new_inode = new_dentry->d_inode; 8735 struct inode *old_inode = old_dentry->d_inode; 8736 struct btrfs_rename_ctx old_rename_ctx; 8737 struct btrfs_rename_ctx new_rename_ctx; 8738 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8739 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8740 u64 old_idx = 0; 8741 u64 new_idx = 0; 8742 int ret; 8743 int ret2; 8744 bool need_abort = false; 8745 struct fscrypt_name old_fname, new_fname; 8746 struct fscrypt_str *old_name, *new_name; 8747 8748 /* 8749 * For non-subvolumes allow exchange only within one subvolume, in the 8750 * same inode namespace. Two subvolumes (represented as directory) can 8751 * be exchanged as they're a logical link and have a fixed inode number. 8752 */ 8753 if (root != dest && 8754 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8755 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8756 return -EXDEV; 8757 8758 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8759 if (ret) 8760 return ret; 8761 8762 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8763 if (ret) { 8764 fscrypt_free_filename(&old_fname); 8765 return ret; 8766 } 8767 8768 old_name = &old_fname.disk_name; 8769 new_name = &new_fname.disk_name; 8770 8771 /* close the race window with snapshot create/destroy ioctl */ 8772 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8773 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8774 down_read(&fs_info->subvol_sem); 8775 8776 /* 8777 * For each inode: 8778 * 1 to remove old dir item 8779 * 1 to remove old dir index 8780 * 1 to add new dir item 8781 * 1 to add new dir index 8782 * 1 to update parent inode 8783 * 8784 * If the parents are the same, we only need to account for one 8785 */ 8786 trans_num_items = (old_dir == new_dir ? 9 : 10); 8787 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8788 /* 8789 * 1 to remove old root ref 8790 * 1 to remove old root backref 8791 * 1 to add new root ref 8792 * 1 to add new root backref 8793 */ 8794 trans_num_items += 4; 8795 } else { 8796 /* 8797 * 1 to update inode item 8798 * 1 to remove old inode ref 8799 * 1 to add new inode ref 8800 */ 8801 trans_num_items += 3; 8802 } 8803 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8804 trans_num_items += 4; 8805 else 8806 trans_num_items += 3; 8807 trans = btrfs_start_transaction(root, trans_num_items); 8808 if (IS_ERR(trans)) { 8809 ret = PTR_ERR(trans); 8810 goto out_notrans; 8811 } 8812 8813 if (dest != root) { 8814 ret = btrfs_record_root_in_trans(trans, dest); 8815 if (ret) 8816 goto out_fail; 8817 } 8818 8819 /* 8820 * We need to find a free sequence number both in the source and 8821 * in the destination directory for the exchange. 8822 */ 8823 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8824 if (ret) 8825 goto out_fail; 8826 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8827 if (ret) 8828 goto out_fail; 8829 8830 BTRFS_I(old_inode)->dir_index = 0ULL; 8831 BTRFS_I(new_inode)->dir_index = 0ULL; 8832 8833 /* Reference for the source. */ 8834 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8835 /* force full log commit if subvolume involved. */ 8836 btrfs_set_log_full_commit(trans); 8837 } else { 8838 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8839 btrfs_ino(BTRFS_I(new_dir)), 8840 old_idx); 8841 if (ret) 8842 goto out_fail; 8843 need_abort = true; 8844 } 8845 8846 /* And now for the dest. */ 8847 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8848 /* force full log commit if subvolume involved. */ 8849 btrfs_set_log_full_commit(trans); 8850 } else { 8851 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8852 btrfs_ino(BTRFS_I(old_dir)), 8853 new_idx); 8854 if (ret) { 8855 if (need_abort) 8856 btrfs_abort_transaction(trans, ret); 8857 goto out_fail; 8858 } 8859 } 8860 8861 /* Update inode version and ctime/mtime. */ 8862 inode_inc_iversion(old_dir); 8863 inode_inc_iversion(new_dir); 8864 inode_inc_iversion(old_inode); 8865 inode_inc_iversion(new_inode); 8866 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8867 8868 if (old_dentry->d_parent != new_dentry->d_parent) { 8869 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8870 BTRFS_I(old_inode), true); 8871 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8872 BTRFS_I(new_inode), true); 8873 } 8874 8875 /* src is a subvolume */ 8876 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8877 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8878 } else { /* src is an inode */ 8879 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8880 BTRFS_I(old_dentry->d_inode), 8881 old_name, &old_rename_ctx); 8882 if (!ret) 8883 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 8884 } 8885 if (ret) { 8886 btrfs_abort_transaction(trans, ret); 8887 goto out_fail; 8888 } 8889 8890 /* dest is a subvolume */ 8891 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8892 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8893 } else { /* dest is an inode */ 8894 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8895 BTRFS_I(new_dentry->d_inode), 8896 new_name, &new_rename_ctx); 8897 if (!ret) 8898 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 8899 } 8900 if (ret) { 8901 btrfs_abort_transaction(trans, ret); 8902 goto out_fail; 8903 } 8904 8905 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8906 new_name, 0, old_idx); 8907 if (ret) { 8908 btrfs_abort_transaction(trans, ret); 8909 goto out_fail; 8910 } 8911 8912 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8913 old_name, 0, new_idx); 8914 if (ret) { 8915 btrfs_abort_transaction(trans, ret); 8916 goto out_fail; 8917 } 8918 8919 if (old_inode->i_nlink == 1) 8920 BTRFS_I(old_inode)->dir_index = old_idx; 8921 if (new_inode->i_nlink == 1) 8922 BTRFS_I(new_inode)->dir_index = new_idx; 8923 8924 /* 8925 * Now pin the logs of the roots. We do it to ensure that no other task 8926 * can sync the logs while we are in progress with the rename, because 8927 * that could result in an inconsistency in case any of the inodes that 8928 * are part of this rename operation were logged before. 8929 */ 8930 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8931 btrfs_pin_log_trans(root); 8932 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8933 btrfs_pin_log_trans(dest); 8934 8935 /* Do the log updates for all inodes. */ 8936 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8937 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8938 old_rename_ctx.index, new_dentry->d_parent); 8939 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8940 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8941 new_rename_ctx.index, old_dentry->d_parent); 8942 8943 /* Now unpin the logs. */ 8944 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8945 btrfs_end_log_trans(root); 8946 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8947 btrfs_end_log_trans(dest); 8948 out_fail: 8949 ret2 = btrfs_end_transaction(trans); 8950 ret = ret ? ret : ret2; 8951 out_notrans: 8952 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8953 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8954 up_read(&fs_info->subvol_sem); 8955 8956 fscrypt_free_filename(&new_fname); 8957 fscrypt_free_filename(&old_fname); 8958 return ret; 8959 } 8960 8961 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8962 struct inode *dir) 8963 { 8964 struct inode *inode; 8965 8966 inode = new_inode(dir->i_sb); 8967 if (inode) { 8968 inode_init_owner(idmap, inode, dir, 8969 S_IFCHR | WHITEOUT_MODE); 8970 inode->i_op = &btrfs_special_inode_operations; 8971 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8972 } 8973 return inode; 8974 } 8975 8976 static int btrfs_rename(struct mnt_idmap *idmap, 8977 struct inode *old_dir, struct dentry *old_dentry, 8978 struct inode *new_dir, struct dentry *new_dentry, 8979 unsigned int flags) 8980 { 8981 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8982 struct btrfs_new_inode_args whiteout_args = { 8983 .dir = old_dir, 8984 .dentry = old_dentry, 8985 }; 8986 struct btrfs_trans_handle *trans; 8987 unsigned int trans_num_items; 8988 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8989 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8990 struct inode *new_inode = d_inode(new_dentry); 8991 struct inode *old_inode = d_inode(old_dentry); 8992 struct btrfs_rename_ctx rename_ctx; 8993 u64 index = 0; 8994 int ret; 8995 int ret2; 8996 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8997 struct fscrypt_name old_fname, new_fname; 8998 8999 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9000 return -EPERM; 9001 9002 /* we only allow rename subvolume link between subvolumes */ 9003 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9004 return -EXDEV; 9005 9006 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9007 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9008 return -ENOTEMPTY; 9009 9010 if (S_ISDIR(old_inode->i_mode) && new_inode && 9011 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9012 return -ENOTEMPTY; 9013 9014 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 9015 if (ret) 9016 return ret; 9017 9018 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 9019 if (ret) { 9020 fscrypt_free_filename(&old_fname); 9021 return ret; 9022 } 9023 9024 /* check for collisions, even if the name isn't there */ 9025 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 9026 if (ret) { 9027 if (ret == -EEXIST) { 9028 /* we shouldn't get 9029 * eexist without a new_inode */ 9030 if (WARN_ON(!new_inode)) { 9031 goto out_fscrypt_names; 9032 } 9033 } else { 9034 /* maybe -EOVERFLOW */ 9035 goto out_fscrypt_names; 9036 } 9037 } 9038 ret = 0; 9039 9040 /* 9041 * we're using rename to replace one file with another. Start IO on it 9042 * now so we don't add too much work to the end of the transaction 9043 */ 9044 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9045 filemap_flush(old_inode->i_mapping); 9046 9047 if (flags & RENAME_WHITEOUT) { 9048 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 9049 if (!whiteout_args.inode) { 9050 ret = -ENOMEM; 9051 goto out_fscrypt_names; 9052 } 9053 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9054 if (ret) 9055 goto out_whiteout_inode; 9056 } else { 9057 /* 1 to update the old parent inode. */ 9058 trans_num_items = 1; 9059 } 9060 9061 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9062 /* Close the race window with snapshot create/destroy ioctl */ 9063 down_read(&fs_info->subvol_sem); 9064 /* 9065 * 1 to remove old root ref 9066 * 1 to remove old root backref 9067 * 1 to add new root ref 9068 * 1 to add new root backref 9069 */ 9070 trans_num_items += 4; 9071 } else { 9072 /* 9073 * 1 to update inode 9074 * 1 to remove old inode ref 9075 * 1 to add new inode ref 9076 */ 9077 trans_num_items += 3; 9078 } 9079 /* 9080 * 1 to remove old dir item 9081 * 1 to remove old dir index 9082 * 1 to add new dir item 9083 * 1 to add new dir index 9084 */ 9085 trans_num_items += 4; 9086 /* 1 to update new parent inode if it's not the same as the old parent */ 9087 if (new_dir != old_dir) 9088 trans_num_items++; 9089 if (new_inode) { 9090 /* 9091 * 1 to update inode 9092 * 1 to remove inode ref 9093 * 1 to remove dir item 9094 * 1 to remove dir index 9095 * 1 to possibly add orphan item 9096 */ 9097 trans_num_items += 5; 9098 } 9099 trans = btrfs_start_transaction(root, trans_num_items); 9100 if (IS_ERR(trans)) { 9101 ret = PTR_ERR(trans); 9102 goto out_notrans; 9103 } 9104 9105 if (dest != root) { 9106 ret = btrfs_record_root_in_trans(trans, dest); 9107 if (ret) 9108 goto out_fail; 9109 } 9110 9111 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9112 if (ret) 9113 goto out_fail; 9114 9115 BTRFS_I(old_inode)->dir_index = 0ULL; 9116 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9117 /* force full log commit if subvolume involved. */ 9118 btrfs_set_log_full_commit(trans); 9119 } else { 9120 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9121 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9122 index); 9123 if (ret) 9124 goto out_fail; 9125 } 9126 9127 inode_inc_iversion(old_dir); 9128 inode_inc_iversion(new_dir); 9129 inode_inc_iversion(old_inode); 9130 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 9131 9132 if (old_dentry->d_parent != new_dentry->d_parent) 9133 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9134 BTRFS_I(old_inode), true); 9135 9136 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9137 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9138 } else { 9139 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9140 BTRFS_I(d_inode(old_dentry)), 9141 &old_fname.disk_name, &rename_ctx); 9142 if (!ret) 9143 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9144 } 9145 if (ret) { 9146 btrfs_abort_transaction(trans, ret); 9147 goto out_fail; 9148 } 9149 9150 if (new_inode) { 9151 inode_inc_iversion(new_inode); 9152 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9153 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9154 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9155 BUG_ON(new_inode->i_nlink == 0); 9156 } else { 9157 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9158 BTRFS_I(d_inode(new_dentry)), 9159 &new_fname.disk_name); 9160 } 9161 if (!ret && new_inode->i_nlink == 0) 9162 ret = btrfs_orphan_add(trans, 9163 BTRFS_I(d_inode(new_dentry))); 9164 if (ret) { 9165 btrfs_abort_transaction(trans, ret); 9166 goto out_fail; 9167 } 9168 } 9169 9170 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9171 &new_fname.disk_name, 0, index); 9172 if (ret) { 9173 btrfs_abort_transaction(trans, ret); 9174 goto out_fail; 9175 } 9176 9177 if (old_inode->i_nlink == 1) 9178 BTRFS_I(old_inode)->dir_index = index; 9179 9180 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9181 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9182 rename_ctx.index, new_dentry->d_parent); 9183 9184 if (flags & RENAME_WHITEOUT) { 9185 ret = btrfs_create_new_inode(trans, &whiteout_args); 9186 if (ret) { 9187 btrfs_abort_transaction(trans, ret); 9188 goto out_fail; 9189 } else { 9190 unlock_new_inode(whiteout_args.inode); 9191 iput(whiteout_args.inode); 9192 whiteout_args.inode = NULL; 9193 } 9194 } 9195 out_fail: 9196 ret2 = btrfs_end_transaction(trans); 9197 ret = ret ? ret : ret2; 9198 out_notrans: 9199 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9200 up_read(&fs_info->subvol_sem); 9201 if (flags & RENAME_WHITEOUT) 9202 btrfs_new_inode_args_destroy(&whiteout_args); 9203 out_whiteout_inode: 9204 if (flags & RENAME_WHITEOUT) 9205 iput(whiteout_args.inode); 9206 out_fscrypt_names: 9207 fscrypt_free_filename(&old_fname); 9208 fscrypt_free_filename(&new_fname); 9209 return ret; 9210 } 9211 9212 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9213 struct dentry *old_dentry, struct inode *new_dir, 9214 struct dentry *new_dentry, unsigned int flags) 9215 { 9216 int ret; 9217 9218 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9219 return -EINVAL; 9220 9221 if (flags & RENAME_EXCHANGE) 9222 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9223 new_dentry); 9224 else 9225 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9226 new_dentry, flags); 9227 9228 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9229 9230 return ret; 9231 } 9232 9233 struct btrfs_delalloc_work { 9234 struct inode *inode; 9235 struct completion completion; 9236 struct list_head list; 9237 struct btrfs_work work; 9238 }; 9239 9240 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9241 { 9242 struct btrfs_delalloc_work *delalloc_work; 9243 struct inode *inode; 9244 9245 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9246 work); 9247 inode = delalloc_work->inode; 9248 filemap_flush(inode->i_mapping); 9249 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9250 &BTRFS_I(inode)->runtime_flags)) 9251 filemap_flush(inode->i_mapping); 9252 9253 iput(inode); 9254 complete(&delalloc_work->completion); 9255 } 9256 9257 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9258 { 9259 struct btrfs_delalloc_work *work; 9260 9261 work = kmalloc(sizeof(*work), GFP_NOFS); 9262 if (!work) 9263 return NULL; 9264 9265 init_completion(&work->completion); 9266 INIT_LIST_HEAD(&work->list); 9267 work->inode = inode; 9268 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9269 9270 return work; 9271 } 9272 9273 /* 9274 * some fairly slow code that needs optimization. This walks the list 9275 * of all the inodes with pending delalloc and forces them to disk. 9276 */ 9277 static int start_delalloc_inodes(struct btrfs_root *root, 9278 struct writeback_control *wbc, bool snapshot, 9279 bool in_reclaim_context) 9280 { 9281 struct btrfs_inode *binode; 9282 struct inode *inode; 9283 struct btrfs_delalloc_work *work, *next; 9284 LIST_HEAD(works); 9285 LIST_HEAD(splice); 9286 int ret = 0; 9287 bool full_flush = wbc->nr_to_write == LONG_MAX; 9288 9289 mutex_lock(&root->delalloc_mutex); 9290 spin_lock(&root->delalloc_lock); 9291 list_splice_init(&root->delalloc_inodes, &splice); 9292 while (!list_empty(&splice)) { 9293 binode = list_entry(splice.next, struct btrfs_inode, 9294 delalloc_inodes); 9295 9296 list_move_tail(&binode->delalloc_inodes, 9297 &root->delalloc_inodes); 9298 9299 if (in_reclaim_context && 9300 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9301 continue; 9302 9303 inode = igrab(&binode->vfs_inode); 9304 if (!inode) { 9305 cond_resched_lock(&root->delalloc_lock); 9306 continue; 9307 } 9308 spin_unlock(&root->delalloc_lock); 9309 9310 if (snapshot) 9311 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9312 &binode->runtime_flags); 9313 if (full_flush) { 9314 work = btrfs_alloc_delalloc_work(inode); 9315 if (!work) { 9316 iput(inode); 9317 ret = -ENOMEM; 9318 goto out; 9319 } 9320 list_add_tail(&work->list, &works); 9321 btrfs_queue_work(root->fs_info->flush_workers, 9322 &work->work); 9323 } else { 9324 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9325 btrfs_add_delayed_iput(BTRFS_I(inode)); 9326 if (ret || wbc->nr_to_write <= 0) 9327 goto out; 9328 } 9329 cond_resched(); 9330 spin_lock(&root->delalloc_lock); 9331 } 9332 spin_unlock(&root->delalloc_lock); 9333 9334 out: 9335 list_for_each_entry_safe(work, next, &works, list) { 9336 list_del_init(&work->list); 9337 wait_for_completion(&work->completion); 9338 kfree(work); 9339 } 9340 9341 if (!list_empty(&splice)) { 9342 spin_lock(&root->delalloc_lock); 9343 list_splice_tail(&splice, &root->delalloc_inodes); 9344 spin_unlock(&root->delalloc_lock); 9345 } 9346 mutex_unlock(&root->delalloc_mutex); 9347 return ret; 9348 } 9349 9350 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9351 { 9352 struct writeback_control wbc = { 9353 .nr_to_write = LONG_MAX, 9354 .sync_mode = WB_SYNC_NONE, 9355 .range_start = 0, 9356 .range_end = LLONG_MAX, 9357 }; 9358 struct btrfs_fs_info *fs_info = root->fs_info; 9359 9360 if (BTRFS_FS_ERROR(fs_info)) 9361 return -EROFS; 9362 9363 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9364 } 9365 9366 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9367 bool in_reclaim_context) 9368 { 9369 struct writeback_control wbc = { 9370 .nr_to_write = nr, 9371 .sync_mode = WB_SYNC_NONE, 9372 .range_start = 0, 9373 .range_end = LLONG_MAX, 9374 }; 9375 struct btrfs_root *root; 9376 LIST_HEAD(splice); 9377 int ret; 9378 9379 if (BTRFS_FS_ERROR(fs_info)) 9380 return -EROFS; 9381 9382 mutex_lock(&fs_info->delalloc_root_mutex); 9383 spin_lock(&fs_info->delalloc_root_lock); 9384 list_splice_init(&fs_info->delalloc_roots, &splice); 9385 while (!list_empty(&splice)) { 9386 /* 9387 * Reset nr_to_write here so we know that we're doing a full 9388 * flush. 9389 */ 9390 if (nr == LONG_MAX) 9391 wbc.nr_to_write = LONG_MAX; 9392 9393 root = list_first_entry(&splice, struct btrfs_root, 9394 delalloc_root); 9395 root = btrfs_grab_root(root); 9396 BUG_ON(!root); 9397 list_move_tail(&root->delalloc_root, 9398 &fs_info->delalloc_roots); 9399 spin_unlock(&fs_info->delalloc_root_lock); 9400 9401 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9402 btrfs_put_root(root); 9403 if (ret < 0 || wbc.nr_to_write <= 0) 9404 goto out; 9405 spin_lock(&fs_info->delalloc_root_lock); 9406 } 9407 spin_unlock(&fs_info->delalloc_root_lock); 9408 9409 ret = 0; 9410 out: 9411 if (!list_empty(&splice)) { 9412 spin_lock(&fs_info->delalloc_root_lock); 9413 list_splice_tail(&splice, &fs_info->delalloc_roots); 9414 spin_unlock(&fs_info->delalloc_root_lock); 9415 } 9416 mutex_unlock(&fs_info->delalloc_root_mutex); 9417 return ret; 9418 } 9419 9420 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9421 struct dentry *dentry, const char *symname) 9422 { 9423 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9424 struct btrfs_trans_handle *trans; 9425 struct btrfs_root *root = BTRFS_I(dir)->root; 9426 struct btrfs_path *path; 9427 struct btrfs_key key; 9428 struct inode *inode; 9429 struct btrfs_new_inode_args new_inode_args = { 9430 .dir = dir, 9431 .dentry = dentry, 9432 }; 9433 unsigned int trans_num_items; 9434 int err; 9435 int name_len; 9436 int datasize; 9437 unsigned long ptr; 9438 struct btrfs_file_extent_item *ei; 9439 struct extent_buffer *leaf; 9440 9441 name_len = strlen(symname); 9442 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9443 return -ENAMETOOLONG; 9444 9445 inode = new_inode(dir->i_sb); 9446 if (!inode) 9447 return -ENOMEM; 9448 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9449 inode->i_op = &btrfs_symlink_inode_operations; 9450 inode_nohighmem(inode); 9451 inode->i_mapping->a_ops = &btrfs_aops; 9452 btrfs_i_size_write(BTRFS_I(inode), name_len); 9453 inode_set_bytes(inode, name_len); 9454 9455 new_inode_args.inode = inode; 9456 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9457 if (err) 9458 goto out_inode; 9459 /* 1 additional item for the inline extent */ 9460 trans_num_items++; 9461 9462 trans = btrfs_start_transaction(root, trans_num_items); 9463 if (IS_ERR(trans)) { 9464 err = PTR_ERR(trans); 9465 goto out_new_inode_args; 9466 } 9467 9468 err = btrfs_create_new_inode(trans, &new_inode_args); 9469 if (err) 9470 goto out; 9471 9472 path = btrfs_alloc_path(); 9473 if (!path) { 9474 err = -ENOMEM; 9475 btrfs_abort_transaction(trans, err); 9476 discard_new_inode(inode); 9477 inode = NULL; 9478 goto out; 9479 } 9480 key.objectid = btrfs_ino(BTRFS_I(inode)); 9481 key.offset = 0; 9482 key.type = BTRFS_EXTENT_DATA_KEY; 9483 datasize = btrfs_file_extent_calc_inline_size(name_len); 9484 err = btrfs_insert_empty_item(trans, root, path, &key, 9485 datasize); 9486 if (err) { 9487 btrfs_abort_transaction(trans, err); 9488 btrfs_free_path(path); 9489 discard_new_inode(inode); 9490 inode = NULL; 9491 goto out; 9492 } 9493 leaf = path->nodes[0]; 9494 ei = btrfs_item_ptr(leaf, path->slots[0], 9495 struct btrfs_file_extent_item); 9496 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9497 btrfs_set_file_extent_type(leaf, ei, 9498 BTRFS_FILE_EXTENT_INLINE); 9499 btrfs_set_file_extent_encryption(leaf, ei, 0); 9500 btrfs_set_file_extent_compression(leaf, ei, 0); 9501 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9502 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9503 9504 ptr = btrfs_file_extent_inline_start(ei); 9505 write_extent_buffer(leaf, symname, ptr, name_len); 9506 btrfs_mark_buffer_dirty(trans, leaf); 9507 btrfs_free_path(path); 9508 9509 d_instantiate_new(dentry, inode); 9510 err = 0; 9511 out: 9512 btrfs_end_transaction(trans); 9513 btrfs_btree_balance_dirty(fs_info); 9514 out_new_inode_args: 9515 btrfs_new_inode_args_destroy(&new_inode_args); 9516 out_inode: 9517 if (err) 9518 iput(inode); 9519 return err; 9520 } 9521 9522 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9523 struct btrfs_trans_handle *trans_in, 9524 struct btrfs_inode *inode, 9525 struct btrfs_key *ins, 9526 u64 file_offset) 9527 { 9528 struct btrfs_file_extent_item stack_fi; 9529 struct btrfs_replace_extent_info extent_info; 9530 struct btrfs_trans_handle *trans = trans_in; 9531 struct btrfs_path *path; 9532 u64 start = ins->objectid; 9533 u64 len = ins->offset; 9534 u64 qgroup_released = 0; 9535 int ret; 9536 9537 memset(&stack_fi, 0, sizeof(stack_fi)); 9538 9539 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9540 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9541 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9542 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9543 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9544 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9545 /* Encryption and other encoding is reserved and all 0 */ 9546 9547 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9548 if (ret < 0) 9549 return ERR_PTR(ret); 9550 9551 if (trans) { 9552 ret = insert_reserved_file_extent(trans, inode, 9553 file_offset, &stack_fi, 9554 true, qgroup_released); 9555 if (ret) 9556 goto free_qgroup; 9557 return trans; 9558 } 9559 9560 extent_info.disk_offset = start; 9561 extent_info.disk_len = len; 9562 extent_info.data_offset = 0; 9563 extent_info.data_len = len; 9564 extent_info.file_offset = file_offset; 9565 extent_info.extent_buf = (char *)&stack_fi; 9566 extent_info.is_new_extent = true; 9567 extent_info.update_times = true; 9568 extent_info.qgroup_reserved = qgroup_released; 9569 extent_info.insertions = 0; 9570 9571 path = btrfs_alloc_path(); 9572 if (!path) { 9573 ret = -ENOMEM; 9574 goto free_qgroup; 9575 } 9576 9577 ret = btrfs_replace_file_extents(inode, path, file_offset, 9578 file_offset + len - 1, &extent_info, 9579 &trans); 9580 btrfs_free_path(path); 9581 if (ret) 9582 goto free_qgroup; 9583 return trans; 9584 9585 free_qgroup: 9586 /* 9587 * We have released qgroup data range at the beginning of the function, 9588 * and normally qgroup_released bytes will be freed when committing 9589 * transaction. 9590 * But if we error out early, we have to free what we have released 9591 * or we leak qgroup data reservation. 9592 */ 9593 btrfs_qgroup_free_refroot(inode->root->fs_info, 9594 inode->root->root_key.objectid, qgroup_released, 9595 BTRFS_QGROUP_RSV_DATA); 9596 return ERR_PTR(ret); 9597 } 9598 9599 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9600 u64 start, u64 num_bytes, u64 min_size, 9601 loff_t actual_len, u64 *alloc_hint, 9602 struct btrfs_trans_handle *trans) 9603 { 9604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9605 struct extent_map *em; 9606 struct btrfs_root *root = BTRFS_I(inode)->root; 9607 struct btrfs_key ins; 9608 u64 cur_offset = start; 9609 u64 clear_offset = start; 9610 u64 i_size; 9611 u64 cur_bytes; 9612 u64 last_alloc = (u64)-1; 9613 int ret = 0; 9614 bool own_trans = true; 9615 u64 end = start + num_bytes - 1; 9616 9617 if (trans) 9618 own_trans = false; 9619 while (num_bytes > 0) { 9620 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9621 cur_bytes = max(cur_bytes, min_size); 9622 /* 9623 * If we are severely fragmented we could end up with really 9624 * small allocations, so if the allocator is returning small 9625 * chunks lets make its job easier by only searching for those 9626 * sized chunks. 9627 */ 9628 cur_bytes = min(cur_bytes, last_alloc); 9629 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9630 min_size, 0, *alloc_hint, &ins, 1, 0); 9631 if (ret) 9632 break; 9633 9634 /* 9635 * We've reserved this space, and thus converted it from 9636 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9637 * from here on out we will only need to clear our reservation 9638 * for the remaining unreserved area, so advance our 9639 * clear_offset by our extent size. 9640 */ 9641 clear_offset += ins.offset; 9642 9643 last_alloc = ins.offset; 9644 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9645 &ins, cur_offset); 9646 /* 9647 * Now that we inserted the prealloc extent we can finally 9648 * decrement the number of reservations in the block group. 9649 * If we did it before, we could race with relocation and have 9650 * relocation miss the reserved extent, making it fail later. 9651 */ 9652 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9653 if (IS_ERR(trans)) { 9654 ret = PTR_ERR(trans); 9655 btrfs_free_reserved_extent(fs_info, ins.objectid, 9656 ins.offset, 0); 9657 break; 9658 } 9659 9660 em = alloc_extent_map(); 9661 if (!em) { 9662 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9663 cur_offset + ins.offset - 1, false); 9664 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9665 goto next; 9666 } 9667 9668 em->start = cur_offset; 9669 em->orig_start = cur_offset; 9670 em->len = ins.offset; 9671 em->block_start = ins.objectid; 9672 em->block_len = ins.offset; 9673 em->orig_block_len = ins.offset; 9674 em->ram_bytes = ins.offset; 9675 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9676 em->generation = trans->transid; 9677 9678 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9679 free_extent_map(em); 9680 next: 9681 num_bytes -= ins.offset; 9682 cur_offset += ins.offset; 9683 *alloc_hint = ins.objectid + ins.offset; 9684 9685 inode_inc_iversion(inode); 9686 inode_set_ctime_current(inode); 9687 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9688 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9689 (actual_len > inode->i_size) && 9690 (cur_offset > inode->i_size)) { 9691 if (cur_offset > actual_len) 9692 i_size = actual_len; 9693 else 9694 i_size = cur_offset; 9695 i_size_write(inode, i_size); 9696 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9697 } 9698 9699 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9700 9701 if (ret) { 9702 btrfs_abort_transaction(trans, ret); 9703 if (own_trans) 9704 btrfs_end_transaction(trans); 9705 break; 9706 } 9707 9708 if (own_trans) { 9709 btrfs_end_transaction(trans); 9710 trans = NULL; 9711 } 9712 } 9713 if (clear_offset < end) 9714 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9715 end - clear_offset + 1); 9716 return ret; 9717 } 9718 9719 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9720 u64 start, u64 num_bytes, u64 min_size, 9721 loff_t actual_len, u64 *alloc_hint) 9722 { 9723 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9724 min_size, actual_len, alloc_hint, 9725 NULL); 9726 } 9727 9728 int btrfs_prealloc_file_range_trans(struct inode *inode, 9729 struct btrfs_trans_handle *trans, int mode, 9730 u64 start, u64 num_bytes, u64 min_size, 9731 loff_t actual_len, u64 *alloc_hint) 9732 { 9733 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9734 min_size, actual_len, alloc_hint, trans); 9735 } 9736 9737 static int btrfs_permission(struct mnt_idmap *idmap, 9738 struct inode *inode, int mask) 9739 { 9740 struct btrfs_root *root = BTRFS_I(inode)->root; 9741 umode_t mode = inode->i_mode; 9742 9743 if (mask & MAY_WRITE && 9744 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9745 if (btrfs_root_readonly(root)) 9746 return -EROFS; 9747 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9748 return -EACCES; 9749 } 9750 return generic_permission(idmap, inode, mask); 9751 } 9752 9753 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9754 struct file *file, umode_t mode) 9755 { 9756 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9757 struct btrfs_trans_handle *trans; 9758 struct btrfs_root *root = BTRFS_I(dir)->root; 9759 struct inode *inode; 9760 struct btrfs_new_inode_args new_inode_args = { 9761 .dir = dir, 9762 .dentry = file->f_path.dentry, 9763 .orphan = true, 9764 }; 9765 unsigned int trans_num_items; 9766 int ret; 9767 9768 inode = new_inode(dir->i_sb); 9769 if (!inode) 9770 return -ENOMEM; 9771 inode_init_owner(idmap, inode, dir, mode); 9772 inode->i_fop = &btrfs_file_operations; 9773 inode->i_op = &btrfs_file_inode_operations; 9774 inode->i_mapping->a_ops = &btrfs_aops; 9775 9776 new_inode_args.inode = inode; 9777 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9778 if (ret) 9779 goto out_inode; 9780 9781 trans = btrfs_start_transaction(root, trans_num_items); 9782 if (IS_ERR(trans)) { 9783 ret = PTR_ERR(trans); 9784 goto out_new_inode_args; 9785 } 9786 9787 ret = btrfs_create_new_inode(trans, &new_inode_args); 9788 9789 /* 9790 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9791 * set it to 1 because d_tmpfile() will issue a warning if the count is 9792 * 0, through: 9793 * 9794 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9795 */ 9796 set_nlink(inode, 1); 9797 9798 if (!ret) { 9799 d_tmpfile(file, inode); 9800 unlock_new_inode(inode); 9801 mark_inode_dirty(inode); 9802 } 9803 9804 btrfs_end_transaction(trans); 9805 btrfs_btree_balance_dirty(fs_info); 9806 out_new_inode_args: 9807 btrfs_new_inode_args_destroy(&new_inode_args); 9808 out_inode: 9809 if (ret) 9810 iput(inode); 9811 return finish_open_simple(file, ret); 9812 } 9813 9814 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9815 { 9816 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9817 unsigned long index = start >> PAGE_SHIFT; 9818 unsigned long end_index = end >> PAGE_SHIFT; 9819 struct page *page; 9820 u32 len; 9821 9822 ASSERT(end + 1 - start <= U32_MAX); 9823 len = end + 1 - start; 9824 while (index <= end_index) { 9825 page = find_get_page(inode->vfs_inode.i_mapping, index); 9826 ASSERT(page); /* Pages should be in the extent_io_tree */ 9827 9828 btrfs_page_set_writeback(fs_info, page, start, len); 9829 put_page(page); 9830 index++; 9831 } 9832 } 9833 9834 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9835 int compress_type) 9836 { 9837 switch (compress_type) { 9838 case BTRFS_COMPRESS_NONE: 9839 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9840 case BTRFS_COMPRESS_ZLIB: 9841 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9842 case BTRFS_COMPRESS_LZO: 9843 /* 9844 * The LZO format depends on the sector size. 64K is the maximum 9845 * sector size that we support. 9846 */ 9847 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9848 return -EINVAL; 9849 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9850 (fs_info->sectorsize_bits - 12); 9851 case BTRFS_COMPRESS_ZSTD: 9852 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9853 default: 9854 return -EUCLEAN; 9855 } 9856 } 9857 9858 static ssize_t btrfs_encoded_read_inline( 9859 struct kiocb *iocb, 9860 struct iov_iter *iter, u64 start, 9861 u64 lockend, 9862 struct extent_state **cached_state, 9863 u64 extent_start, size_t count, 9864 struct btrfs_ioctl_encoded_io_args *encoded, 9865 bool *unlocked) 9866 { 9867 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9868 struct btrfs_root *root = inode->root; 9869 struct btrfs_fs_info *fs_info = root->fs_info; 9870 struct extent_io_tree *io_tree = &inode->io_tree; 9871 struct btrfs_path *path; 9872 struct extent_buffer *leaf; 9873 struct btrfs_file_extent_item *item; 9874 u64 ram_bytes; 9875 unsigned long ptr; 9876 void *tmp; 9877 ssize_t ret; 9878 9879 path = btrfs_alloc_path(); 9880 if (!path) { 9881 ret = -ENOMEM; 9882 goto out; 9883 } 9884 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9885 extent_start, 0); 9886 if (ret) { 9887 if (ret > 0) { 9888 /* The extent item disappeared? */ 9889 ret = -EIO; 9890 } 9891 goto out; 9892 } 9893 leaf = path->nodes[0]; 9894 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9895 9896 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9897 ptr = btrfs_file_extent_inline_start(item); 9898 9899 encoded->len = min_t(u64, extent_start + ram_bytes, 9900 inode->vfs_inode.i_size) - iocb->ki_pos; 9901 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9902 btrfs_file_extent_compression(leaf, item)); 9903 if (ret < 0) 9904 goto out; 9905 encoded->compression = ret; 9906 if (encoded->compression) { 9907 size_t inline_size; 9908 9909 inline_size = btrfs_file_extent_inline_item_len(leaf, 9910 path->slots[0]); 9911 if (inline_size > count) { 9912 ret = -ENOBUFS; 9913 goto out; 9914 } 9915 count = inline_size; 9916 encoded->unencoded_len = ram_bytes; 9917 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9918 } else { 9919 count = min_t(u64, count, encoded->len); 9920 encoded->len = count; 9921 encoded->unencoded_len = count; 9922 ptr += iocb->ki_pos - extent_start; 9923 } 9924 9925 tmp = kmalloc(count, GFP_NOFS); 9926 if (!tmp) { 9927 ret = -ENOMEM; 9928 goto out; 9929 } 9930 read_extent_buffer(leaf, tmp, ptr, count); 9931 btrfs_release_path(path); 9932 unlock_extent(io_tree, start, lockend, cached_state); 9933 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9934 *unlocked = true; 9935 9936 ret = copy_to_iter(tmp, count, iter); 9937 if (ret != count) 9938 ret = -EFAULT; 9939 kfree(tmp); 9940 out: 9941 btrfs_free_path(path); 9942 return ret; 9943 } 9944 9945 struct btrfs_encoded_read_private { 9946 wait_queue_head_t wait; 9947 atomic_t pending; 9948 blk_status_t status; 9949 }; 9950 9951 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9952 { 9953 struct btrfs_encoded_read_private *priv = bbio->private; 9954 9955 if (bbio->bio.bi_status) { 9956 /* 9957 * The memory barrier implied by the atomic_dec_return() here 9958 * pairs with the memory barrier implied by the 9959 * atomic_dec_return() or io_wait_event() in 9960 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9961 * write is observed before the load of status in 9962 * btrfs_encoded_read_regular_fill_pages(). 9963 */ 9964 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9965 } 9966 if (!atomic_dec_return(&priv->pending)) 9967 wake_up(&priv->wait); 9968 bio_put(&bbio->bio); 9969 } 9970 9971 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9972 u64 file_offset, u64 disk_bytenr, 9973 u64 disk_io_size, struct page **pages) 9974 { 9975 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9976 struct btrfs_encoded_read_private priv = { 9977 .pending = ATOMIC_INIT(1), 9978 }; 9979 unsigned long i = 0; 9980 struct btrfs_bio *bbio; 9981 9982 init_waitqueue_head(&priv.wait); 9983 9984 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9985 btrfs_encoded_read_endio, &priv); 9986 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9987 bbio->inode = inode; 9988 9989 do { 9990 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9991 9992 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9993 atomic_inc(&priv.pending); 9994 btrfs_submit_bio(bbio, 0); 9995 9996 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9997 btrfs_encoded_read_endio, &priv); 9998 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9999 bbio->inode = inode; 10000 continue; 10001 } 10002 10003 i++; 10004 disk_bytenr += bytes; 10005 disk_io_size -= bytes; 10006 } while (disk_io_size); 10007 10008 atomic_inc(&priv.pending); 10009 btrfs_submit_bio(bbio, 0); 10010 10011 if (atomic_dec_return(&priv.pending)) 10012 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10013 /* See btrfs_encoded_read_endio() for ordering. */ 10014 return blk_status_to_errno(READ_ONCE(priv.status)); 10015 } 10016 10017 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10018 struct iov_iter *iter, 10019 u64 start, u64 lockend, 10020 struct extent_state **cached_state, 10021 u64 disk_bytenr, u64 disk_io_size, 10022 size_t count, bool compressed, 10023 bool *unlocked) 10024 { 10025 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10026 struct extent_io_tree *io_tree = &inode->io_tree; 10027 struct page **pages; 10028 unsigned long nr_pages, i; 10029 u64 cur; 10030 size_t page_offset; 10031 ssize_t ret; 10032 10033 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10034 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10035 if (!pages) 10036 return -ENOMEM; 10037 ret = btrfs_alloc_page_array(nr_pages, pages); 10038 if (ret) { 10039 ret = -ENOMEM; 10040 goto out; 10041 } 10042 10043 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10044 disk_io_size, pages); 10045 if (ret) 10046 goto out; 10047 10048 unlock_extent(io_tree, start, lockend, cached_state); 10049 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10050 *unlocked = true; 10051 10052 if (compressed) { 10053 i = 0; 10054 page_offset = 0; 10055 } else { 10056 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10057 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10058 } 10059 cur = 0; 10060 while (cur < count) { 10061 size_t bytes = min_t(size_t, count - cur, 10062 PAGE_SIZE - page_offset); 10063 10064 if (copy_page_to_iter(pages[i], page_offset, bytes, 10065 iter) != bytes) { 10066 ret = -EFAULT; 10067 goto out; 10068 } 10069 i++; 10070 cur += bytes; 10071 page_offset = 0; 10072 } 10073 ret = count; 10074 out: 10075 for (i = 0; i < nr_pages; i++) { 10076 if (pages[i]) 10077 __free_page(pages[i]); 10078 } 10079 kfree(pages); 10080 return ret; 10081 } 10082 10083 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10084 struct btrfs_ioctl_encoded_io_args *encoded) 10085 { 10086 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10087 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10088 struct extent_io_tree *io_tree = &inode->io_tree; 10089 ssize_t ret; 10090 size_t count = iov_iter_count(iter); 10091 u64 start, lockend, disk_bytenr, disk_io_size; 10092 struct extent_state *cached_state = NULL; 10093 struct extent_map *em; 10094 bool unlocked = false; 10095 10096 file_accessed(iocb->ki_filp); 10097 10098 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10099 10100 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10101 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10102 return 0; 10103 } 10104 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10105 /* 10106 * We don't know how long the extent containing iocb->ki_pos is, but if 10107 * it's compressed we know that it won't be longer than this. 10108 */ 10109 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10110 10111 for (;;) { 10112 struct btrfs_ordered_extent *ordered; 10113 10114 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10115 lockend - start + 1); 10116 if (ret) 10117 goto out_unlock_inode; 10118 lock_extent(io_tree, start, lockend, &cached_state); 10119 ordered = btrfs_lookup_ordered_range(inode, start, 10120 lockend - start + 1); 10121 if (!ordered) 10122 break; 10123 btrfs_put_ordered_extent(ordered); 10124 unlock_extent(io_tree, start, lockend, &cached_state); 10125 cond_resched(); 10126 } 10127 10128 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10129 if (IS_ERR(em)) { 10130 ret = PTR_ERR(em); 10131 goto out_unlock_extent; 10132 } 10133 10134 if (em->block_start == EXTENT_MAP_INLINE) { 10135 u64 extent_start = em->start; 10136 10137 /* 10138 * For inline extents we get everything we need out of the 10139 * extent item. 10140 */ 10141 free_extent_map(em); 10142 em = NULL; 10143 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10144 &cached_state, extent_start, 10145 count, encoded, &unlocked); 10146 goto out; 10147 } 10148 10149 /* 10150 * We only want to return up to EOF even if the extent extends beyond 10151 * that. 10152 */ 10153 encoded->len = min_t(u64, extent_map_end(em), 10154 inode->vfs_inode.i_size) - iocb->ki_pos; 10155 if (em->block_start == EXTENT_MAP_HOLE || 10156 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10157 disk_bytenr = EXTENT_MAP_HOLE; 10158 count = min_t(u64, count, encoded->len); 10159 encoded->len = count; 10160 encoded->unencoded_len = count; 10161 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10162 disk_bytenr = em->block_start; 10163 /* 10164 * Bail if the buffer isn't large enough to return the whole 10165 * compressed extent. 10166 */ 10167 if (em->block_len > count) { 10168 ret = -ENOBUFS; 10169 goto out_em; 10170 } 10171 disk_io_size = em->block_len; 10172 count = em->block_len; 10173 encoded->unencoded_len = em->ram_bytes; 10174 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10175 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10176 em->compress_type); 10177 if (ret < 0) 10178 goto out_em; 10179 encoded->compression = ret; 10180 } else { 10181 disk_bytenr = em->block_start + (start - em->start); 10182 if (encoded->len > count) 10183 encoded->len = count; 10184 /* 10185 * Don't read beyond what we locked. This also limits the page 10186 * allocations that we'll do. 10187 */ 10188 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10189 count = start + disk_io_size - iocb->ki_pos; 10190 encoded->len = count; 10191 encoded->unencoded_len = count; 10192 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10193 } 10194 free_extent_map(em); 10195 em = NULL; 10196 10197 if (disk_bytenr == EXTENT_MAP_HOLE) { 10198 unlock_extent(io_tree, start, lockend, &cached_state); 10199 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10200 unlocked = true; 10201 ret = iov_iter_zero(count, iter); 10202 if (ret != count) 10203 ret = -EFAULT; 10204 } else { 10205 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10206 &cached_state, disk_bytenr, 10207 disk_io_size, count, 10208 encoded->compression, 10209 &unlocked); 10210 } 10211 10212 out: 10213 if (ret >= 0) 10214 iocb->ki_pos += encoded->len; 10215 out_em: 10216 free_extent_map(em); 10217 out_unlock_extent: 10218 if (!unlocked) 10219 unlock_extent(io_tree, start, lockend, &cached_state); 10220 out_unlock_inode: 10221 if (!unlocked) 10222 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10223 return ret; 10224 } 10225 10226 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10227 const struct btrfs_ioctl_encoded_io_args *encoded) 10228 { 10229 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10230 struct btrfs_root *root = inode->root; 10231 struct btrfs_fs_info *fs_info = root->fs_info; 10232 struct extent_io_tree *io_tree = &inode->io_tree; 10233 struct extent_changeset *data_reserved = NULL; 10234 struct extent_state *cached_state = NULL; 10235 struct btrfs_ordered_extent *ordered; 10236 int compression; 10237 size_t orig_count; 10238 u64 start, end; 10239 u64 num_bytes, ram_bytes, disk_num_bytes; 10240 unsigned long nr_pages, i; 10241 struct page **pages; 10242 struct btrfs_key ins; 10243 bool extent_reserved = false; 10244 struct extent_map *em; 10245 ssize_t ret; 10246 10247 switch (encoded->compression) { 10248 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10249 compression = BTRFS_COMPRESS_ZLIB; 10250 break; 10251 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10252 compression = BTRFS_COMPRESS_ZSTD; 10253 break; 10254 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10255 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10256 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10257 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10258 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10259 /* The sector size must match for LZO. */ 10260 if (encoded->compression - 10261 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10262 fs_info->sectorsize_bits) 10263 return -EINVAL; 10264 compression = BTRFS_COMPRESS_LZO; 10265 break; 10266 default: 10267 return -EINVAL; 10268 } 10269 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10270 return -EINVAL; 10271 10272 /* 10273 * Compressed extents should always have checksums, so error out if we 10274 * have a NOCOW file or inode was created while mounted with NODATASUM. 10275 */ 10276 if (inode->flags & BTRFS_INODE_NODATASUM) 10277 return -EINVAL; 10278 10279 orig_count = iov_iter_count(from); 10280 10281 /* The extent size must be sane. */ 10282 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10283 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10284 return -EINVAL; 10285 10286 /* 10287 * The compressed data must be smaller than the decompressed data. 10288 * 10289 * It's of course possible for data to compress to larger or the same 10290 * size, but the buffered I/O path falls back to no compression for such 10291 * data, and we don't want to break any assumptions by creating these 10292 * extents. 10293 * 10294 * Note that this is less strict than the current check we have that the 10295 * compressed data must be at least one sector smaller than the 10296 * decompressed data. We only want to enforce the weaker requirement 10297 * from old kernels that it is at least one byte smaller. 10298 */ 10299 if (orig_count >= encoded->unencoded_len) 10300 return -EINVAL; 10301 10302 /* The extent must start on a sector boundary. */ 10303 start = iocb->ki_pos; 10304 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10305 return -EINVAL; 10306 10307 /* 10308 * The extent must end on a sector boundary. However, we allow a write 10309 * which ends at or extends i_size to have an unaligned length; we round 10310 * up the extent size and set i_size to the unaligned end. 10311 */ 10312 if (start + encoded->len < inode->vfs_inode.i_size && 10313 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10314 return -EINVAL; 10315 10316 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10317 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10318 return -EINVAL; 10319 10320 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10321 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10322 end = start + num_bytes - 1; 10323 10324 /* 10325 * If the extent cannot be inline, the compressed data on disk must be 10326 * sector-aligned. For convenience, we extend it with zeroes if it 10327 * isn't. 10328 */ 10329 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10330 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10331 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10332 if (!pages) 10333 return -ENOMEM; 10334 for (i = 0; i < nr_pages; i++) { 10335 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10336 char *kaddr; 10337 10338 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10339 if (!pages[i]) { 10340 ret = -ENOMEM; 10341 goto out_pages; 10342 } 10343 kaddr = kmap_local_page(pages[i]); 10344 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10345 kunmap_local(kaddr); 10346 ret = -EFAULT; 10347 goto out_pages; 10348 } 10349 if (bytes < PAGE_SIZE) 10350 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10351 kunmap_local(kaddr); 10352 } 10353 10354 for (;;) { 10355 struct btrfs_ordered_extent *ordered; 10356 10357 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10358 if (ret) 10359 goto out_pages; 10360 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10361 start >> PAGE_SHIFT, 10362 end >> PAGE_SHIFT); 10363 if (ret) 10364 goto out_pages; 10365 lock_extent(io_tree, start, end, &cached_state); 10366 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10367 if (!ordered && 10368 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10369 break; 10370 if (ordered) 10371 btrfs_put_ordered_extent(ordered); 10372 unlock_extent(io_tree, start, end, &cached_state); 10373 cond_resched(); 10374 } 10375 10376 /* 10377 * We don't use the higher-level delalloc space functions because our 10378 * num_bytes and disk_num_bytes are different. 10379 */ 10380 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10381 if (ret) 10382 goto out_unlock; 10383 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10384 if (ret) 10385 goto out_free_data_space; 10386 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10387 false); 10388 if (ret) 10389 goto out_qgroup_free_data; 10390 10391 /* Try an inline extent first. */ 10392 if (start == 0 && encoded->unencoded_len == encoded->len && 10393 encoded->unencoded_offset == 0) { 10394 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10395 compression, pages, true); 10396 if (ret <= 0) { 10397 if (ret == 0) 10398 ret = orig_count; 10399 goto out_delalloc_release; 10400 } 10401 } 10402 10403 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10404 disk_num_bytes, 0, 0, &ins, 1, 1); 10405 if (ret) 10406 goto out_delalloc_release; 10407 extent_reserved = true; 10408 10409 em = create_io_em(inode, start, num_bytes, 10410 start - encoded->unencoded_offset, ins.objectid, 10411 ins.offset, ins.offset, ram_bytes, compression, 10412 BTRFS_ORDERED_COMPRESSED); 10413 if (IS_ERR(em)) { 10414 ret = PTR_ERR(em); 10415 goto out_free_reserved; 10416 } 10417 free_extent_map(em); 10418 10419 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10420 ins.objectid, ins.offset, 10421 encoded->unencoded_offset, 10422 (1 << BTRFS_ORDERED_ENCODED) | 10423 (1 << BTRFS_ORDERED_COMPRESSED), 10424 compression); 10425 if (IS_ERR(ordered)) { 10426 btrfs_drop_extent_map_range(inode, start, end, false); 10427 ret = PTR_ERR(ordered); 10428 goto out_free_reserved; 10429 } 10430 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10431 10432 if (start + encoded->len > inode->vfs_inode.i_size) 10433 i_size_write(&inode->vfs_inode, start + encoded->len); 10434 10435 unlock_extent(io_tree, start, end, &cached_state); 10436 10437 btrfs_delalloc_release_extents(inode, num_bytes); 10438 10439 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10440 ret = orig_count; 10441 goto out; 10442 10443 out_free_reserved: 10444 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10445 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10446 out_delalloc_release: 10447 btrfs_delalloc_release_extents(inode, num_bytes); 10448 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10449 out_qgroup_free_data: 10450 if (ret < 0) 10451 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10452 out_free_data_space: 10453 /* 10454 * If btrfs_reserve_extent() succeeded, then we already decremented 10455 * bytes_may_use. 10456 */ 10457 if (!extent_reserved) 10458 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10459 out_unlock: 10460 unlock_extent(io_tree, start, end, &cached_state); 10461 out_pages: 10462 for (i = 0; i < nr_pages; i++) { 10463 if (pages[i]) 10464 __free_page(pages[i]); 10465 } 10466 kvfree(pages); 10467 out: 10468 if (ret >= 0) 10469 iocb->ki_pos += encoded->len; 10470 return ret; 10471 } 10472 10473 #ifdef CONFIG_SWAP 10474 /* 10475 * Add an entry indicating a block group or device which is pinned by a 10476 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10477 * negative errno on failure. 10478 */ 10479 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10480 bool is_block_group) 10481 { 10482 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10483 struct btrfs_swapfile_pin *sp, *entry; 10484 struct rb_node **p; 10485 struct rb_node *parent = NULL; 10486 10487 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10488 if (!sp) 10489 return -ENOMEM; 10490 sp->ptr = ptr; 10491 sp->inode = inode; 10492 sp->is_block_group = is_block_group; 10493 sp->bg_extent_count = 1; 10494 10495 spin_lock(&fs_info->swapfile_pins_lock); 10496 p = &fs_info->swapfile_pins.rb_node; 10497 while (*p) { 10498 parent = *p; 10499 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10500 if (sp->ptr < entry->ptr || 10501 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10502 p = &(*p)->rb_left; 10503 } else if (sp->ptr > entry->ptr || 10504 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10505 p = &(*p)->rb_right; 10506 } else { 10507 if (is_block_group) 10508 entry->bg_extent_count++; 10509 spin_unlock(&fs_info->swapfile_pins_lock); 10510 kfree(sp); 10511 return 1; 10512 } 10513 } 10514 rb_link_node(&sp->node, parent, p); 10515 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10516 spin_unlock(&fs_info->swapfile_pins_lock); 10517 return 0; 10518 } 10519 10520 /* Free all of the entries pinned by this swapfile. */ 10521 static void btrfs_free_swapfile_pins(struct inode *inode) 10522 { 10523 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10524 struct btrfs_swapfile_pin *sp; 10525 struct rb_node *node, *next; 10526 10527 spin_lock(&fs_info->swapfile_pins_lock); 10528 node = rb_first(&fs_info->swapfile_pins); 10529 while (node) { 10530 next = rb_next(node); 10531 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10532 if (sp->inode == inode) { 10533 rb_erase(&sp->node, &fs_info->swapfile_pins); 10534 if (sp->is_block_group) { 10535 btrfs_dec_block_group_swap_extents(sp->ptr, 10536 sp->bg_extent_count); 10537 btrfs_put_block_group(sp->ptr); 10538 } 10539 kfree(sp); 10540 } 10541 node = next; 10542 } 10543 spin_unlock(&fs_info->swapfile_pins_lock); 10544 } 10545 10546 struct btrfs_swap_info { 10547 u64 start; 10548 u64 block_start; 10549 u64 block_len; 10550 u64 lowest_ppage; 10551 u64 highest_ppage; 10552 unsigned long nr_pages; 10553 int nr_extents; 10554 }; 10555 10556 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10557 struct btrfs_swap_info *bsi) 10558 { 10559 unsigned long nr_pages; 10560 unsigned long max_pages; 10561 u64 first_ppage, first_ppage_reported, next_ppage; 10562 int ret; 10563 10564 /* 10565 * Our swapfile may have had its size extended after the swap header was 10566 * written. In that case activating the swapfile should not go beyond 10567 * the max size set in the swap header. 10568 */ 10569 if (bsi->nr_pages >= sis->max) 10570 return 0; 10571 10572 max_pages = sis->max - bsi->nr_pages; 10573 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10574 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10575 10576 if (first_ppage >= next_ppage) 10577 return 0; 10578 nr_pages = next_ppage - first_ppage; 10579 nr_pages = min(nr_pages, max_pages); 10580 10581 first_ppage_reported = first_ppage; 10582 if (bsi->start == 0) 10583 first_ppage_reported++; 10584 if (bsi->lowest_ppage > first_ppage_reported) 10585 bsi->lowest_ppage = first_ppage_reported; 10586 if (bsi->highest_ppage < (next_ppage - 1)) 10587 bsi->highest_ppage = next_ppage - 1; 10588 10589 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10590 if (ret < 0) 10591 return ret; 10592 bsi->nr_extents += ret; 10593 bsi->nr_pages += nr_pages; 10594 return 0; 10595 } 10596 10597 static void btrfs_swap_deactivate(struct file *file) 10598 { 10599 struct inode *inode = file_inode(file); 10600 10601 btrfs_free_swapfile_pins(inode); 10602 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10603 } 10604 10605 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10606 sector_t *span) 10607 { 10608 struct inode *inode = file_inode(file); 10609 struct btrfs_root *root = BTRFS_I(inode)->root; 10610 struct btrfs_fs_info *fs_info = root->fs_info; 10611 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10612 struct extent_state *cached_state = NULL; 10613 struct extent_map *em = NULL; 10614 struct btrfs_device *device = NULL; 10615 struct btrfs_swap_info bsi = { 10616 .lowest_ppage = (sector_t)-1ULL, 10617 }; 10618 int ret = 0; 10619 u64 isize; 10620 u64 start; 10621 10622 /* 10623 * If the swap file was just created, make sure delalloc is done. If the 10624 * file changes again after this, the user is doing something stupid and 10625 * we don't really care. 10626 */ 10627 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10628 if (ret) 10629 return ret; 10630 10631 /* 10632 * The inode is locked, so these flags won't change after we check them. 10633 */ 10634 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10635 btrfs_warn(fs_info, "swapfile must not be compressed"); 10636 return -EINVAL; 10637 } 10638 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10639 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10640 return -EINVAL; 10641 } 10642 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10643 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10644 return -EINVAL; 10645 } 10646 10647 /* 10648 * Balance or device remove/replace/resize can move stuff around from 10649 * under us. The exclop protection makes sure they aren't running/won't 10650 * run concurrently while we are mapping the swap extents, and 10651 * fs_info->swapfile_pins prevents them from running while the swap 10652 * file is active and moving the extents. Note that this also prevents 10653 * a concurrent device add which isn't actually necessary, but it's not 10654 * really worth the trouble to allow it. 10655 */ 10656 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10657 btrfs_warn(fs_info, 10658 "cannot activate swapfile while exclusive operation is running"); 10659 return -EBUSY; 10660 } 10661 10662 /* 10663 * Prevent snapshot creation while we are activating the swap file. 10664 * We do not want to race with snapshot creation. If snapshot creation 10665 * already started before we bumped nr_swapfiles from 0 to 1 and 10666 * completes before the first write into the swap file after it is 10667 * activated, than that write would fallback to COW. 10668 */ 10669 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10670 btrfs_exclop_finish(fs_info); 10671 btrfs_warn(fs_info, 10672 "cannot activate swapfile because snapshot creation is in progress"); 10673 return -EINVAL; 10674 } 10675 /* 10676 * Snapshots can create extents which require COW even if NODATACOW is 10677 * set. We use this counter to prevent snapshots. We must increment it 10678 * before walking the extents because we don't want a concurrent 10679 * snapshot to run after we've already checked the extents. 10680 * 10681 * It is possible that subvolume is marked for deletion but still not 10682 * removed yet. To prevent this race, we check the root status before 10683 * activating the swapfile. 10684 */ 10685 spin_lock(&root->root_item_lock); 10686 if (btrfs_root_dead(root)) { 10687 spin_unlock(&root->root_item_lock); 10688 10689 btrfs_exclop_finish(fs_info); 10690 btrfs_warn(fs_info, 10691 "cannot activate swapfile because subvolume %llu is being deleted", 10692 root->root_key.objectid); 10693 return -EPERM; 10694 } 10695 atomic_inc(&root->nr_swapfiles); 10696 spin_unlock(&root->root_item_lock); 10697 10698 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10699 10700 lock_extent(io_tree, 0, isize - 1, &cached_state); 10701 start = 0; 10702 while (start < isize) { 10703 u64 logical_block_start, physical_block_start; 10704 struct btrfs_block_group *bg; 10705 u64 len = isize - start; 10706 10707 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10708 if (IS_ERR(em)) { 10709 ret = PTR_ERR(em); 10710 goto out; 10711 } 10712 10713 if (em->block_start == EXTENT_MAP_HOLE) { 10714 btrfs_warn(fs_info, "swapfile must not have holes"); 10715 ret = -EINVAL; 10716 goto out; 10717 } 10718 if (em->block_start == EXTENT_MAP_INLINE) { 10719 /* 10720 * It's unlikely we'll ever actually find ourselves 10721 * here, as a file small enough to fit inline won't be 10722 * big enough to store more than the swap header, but in 10723 * case something changes in the future, let's catch it 10724 * here rather than later. 10725 */ 10726 btrfs_warn(fs_info, "swapfile must not be inline"); 10727 ret = -EINVAL; 10728 goto out; 10729 } 10730 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10731 btrfs_warn(fs_info, "swapfile must not be compressed"); 10732 ret = -EINVAL; 10733 goto out; 10734 } 10735 10736 logical_block_start = em->block_start + (start - em->start); 10737 len = min(len, em->len - (start - em->start)); 10738 free_extent_map(em); 10739 em = NULL; 10740 10741 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10742 if (ret < 0) { 10743 goto out; 10744 } else if (ret) { 10745 ret = 0; 10746 } else { 10747 btrfs_warn(fs_info, 10748 "swapfile must not be copy-on-write"); 10749 ret = -EINVAL; 10750 goto out; 10751 } 10752 10753 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10754 if (IS_ERR(em)) { 10755 ret = PTR_ERR(em); 10756 goto out; 10757 } 10758 10759 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10760 btrfs_warn(fs_info, 10761 "swapfile must have single data profile"); 10762 ret = -EINVAL; 10763 goto out; 10764 } 10765 10766 if (device == NULL) { 10767 device = em->map_lookup->stripes[0].dev; 10768 ret = btrfs_add_swapfile_pin(inode, device, false); 10769 if (ret == 1) 10770 ret = 0; 10771 else if (ret) 10772 goto out; 10773 } else if (device != em->map_lookup->stripes[0].dev) { 10774 btrfs_warn(fs_info, "swapfile must be on one device"); 10775 ret = -EINVAL; 10776 goto out; 10777 } 10778 10779 physical_block_start = (em->map_lookup->stripes[0].physical + 10780 (logical_block_start - em->start)); 10781 len = min(len, em->len - (logical_block_start - em->start)); 10782 free_extent_map(em); 10783 em = NULL; 10784 10785 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10786 if (!bg) { 10787 btrfs_warn(fs_info, 10788 "could not find block group containing swapfile"); 10789 ret = -EINVAL; 10790 goto out; 10791 } 10792 10793 if (!btrfs_inc_block_group_swap_extents(bg)) { 10794 btrfs_warn(fs_info, 10795 "block group for swapfile at %llu is read-only%s", 10796 bg->start, 10797 atomic_read(&fs_info->scrubs_running) ? 10798 " (scrub running)" : ""); 10799 btrfs_put_block_group(bg); 10800 ret = -EINVAL; 10801 goto out; 10802 } 10803 10804 ret = btrfs_add_swapfile_pin(inode, bg, true); 10805 if (ret) { 10806 btrfs_put_block_group(bg); 10807 if (ret == 1) 10808 ret = 0; 10809 else 10810 goto out; 10811 } 10812 10813 if (bsi.block_len && 10814 bsi.block_start + bsi.block_len == physical_block_start) { 10815 bsi.block_len += len; 10816 } else { 10817 if (bsi.block_len) { 10818 ret = btrfs_add_swap_extent(sis, &bsi); 10819 if (ret) 10820 goto out; 10821 } 10822 bsi.start = start; 10823 bsi.block_start = physical_block_start; 10824 bsi.block_len = len; 10825 } 10826 10827 start += len; 10828 } 10829 10830 if (bsi.block_len) 10831 ret = btrfs_add_swap_extent(sis, &bsi); 10832 10833 out: 10834 if (!IS_ERR_OR_NULL(em)) 10835 free_extent_map(em); 10836 10837 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10838 10839 if (ret) 10840 btrfs_swap_deactivate(file); 10841 10842 btrfs_drew_write_unlock(&root->snapshot_lock); 10843 10844 btrfs_exclop_finish(fs_info); 10845 10846 if (ret) 10847 return ret; 10848 10849 if (device) 10850 sis->bdev = device->bdev; 10851 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10852 sis->max = bsi.nr_pages; 10853 sis->pages = bsi.nr_pages - 1; 10854 sis->highest_bit = bsi.nr_pages - 1; 10855 return bsi.nr_extents; 10856 } 10857 #else 10858 static void btrfs_swap_deactivate(struct file *file) 10859 { 10860 } 10861 10862 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10863 sector_t *span) 10864 { 10865 return -EOPNOTSUPP; 10866 } 10867 #endif 10868 10869 /* 10870 * Update the number of bytes used in the VFS' inode. When we replace extents in 10871 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10872 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10873 * always get a correct value. 10874 */ 10875 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10876 const u64 add_bytes, 10877 const u64 del_bytes) 10878 { 10879 if (add_bytes == del_bytes) 10880 return; 10881 10882 spin_lock(&inode->lock); 10883 if (del_bytes > 0) 10884 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10885 if (add_bytes > 0) 10886 inode_add_bytes(&inode->vfs_inode, add_bytes); 10887 spin_unlock(&inode->lock); 10888 } 10889 10890 /* 10891 * Verify that there are no ordered extents for a given file range. 10892 * 10893 * @inode: The target inode. 10894 * @start: Start offset of the file range, should be sector size aligned. 10895 * @end: End offset (inclusive) of the file range, its value +1 should be 10896 * sector size aligned. 10897 * 10898 * This should typically be used for cases where we locked an inode's VFS lock in 10899 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10900 * we have flushed all delalloc in the range, we have waited for all ordered 10901 * extents in the range to complete and finally we have locked the file range in 10902 * the inode's io_tree. 10903 */ 10904 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10905 { 10906 struct btrfs_root *root = inode->root; 10907 struct btrfs_ordered_extent *ordered; 10908 10909 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10910 return; 10911 10912 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10913 if (ordered) { 10914 btrfs_err(root->fs_info, 10915 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10916 start, end, btrfs_ino(inode), root->root_key.objectid, 10917 ordered->file_offset, 10918 ordered->file_offset + ordered->num_bytes - 1); 10919 btrfs_put_ordered_extent(ordered); 10920 } 10921 10922 ASSERT(ordered == NULL); 10923 } 10924 10925 static const struct inode_operations btrfs_dir_inode_operations = { 10926 .getattr = btrfs_getattr, 10927 .lookup = btrfs_lookup, 10928 .create = btrfs_create, 10929 .unlink = btrfs_unlink, 10930 .link = btrfs_link, 10931 .mkdir = btrfs_mkdir, 10932 .rmdir = btrfs_rmdir, 10933 .rename = btrfs_rename2, 10934 .symlink = btrfs_symlink, 10935 .setattr = btrfs_setattr, 10936 .mknod = btrfs_mknod, 10937 .listxattr = btrfs_listxattr, 10938 .permission = btrfs_permission, 10939 .get_inode_acl = btrfs_get_acl, 10940 .set_acl = btrfs_set_acl, 10941 .update_time = btrfs_update_time, 10942 .tmpfile = btrfs_tmpfile, 10943 .fileattr_get = btrfs_fileattr_get, 10944 .fileattr_set = btrfs_fileattr_set, 10945 }; 10946 10947 static const struct file_operations btrfs_dir_file_operations = { 10948 .llseek = btrfs_dir_llseek, 10949 .read = generic_read_dir, 10950 .iterate_shared = btrfs_real_readdir, 10951 .open = btrfs_opendir, 10952 .unlocked_ioctl = btrfs_ioctl, 10953 #ifdef CONFIG_COMPAT 10954 .compat_ioctl = btrfs_compat_ioctl, 10955 #endif 10956 .release = btrfs_release_file, 10957 .fsync = btrfs_sync_file, 10958 }; 10959 10960 /* 10961 * btrfs doesn't support the bmap operation because swapfiles 10962 * use bmap to make a mapping of extents in the file. They assume 10963 * these extents won't change over the life of the file and they 10964 * use the bmap result to do IO directly to the drive. 10965 * 10966 * the btrfs bmap call would return logical addresses that aren't 10967 * suitable for IO and they also will change frequently as COW 10968 * operations happen. So, swapfile + btrfs == corruption. 10969 * 10970 * For now we're avoiding this by dropping bmap. 10971 */ 10972 static const struct address_space_operations btrfs_aops = { 10973 .read_folio = btrfs_read_folio, 10974 .writepages = btrfs_writepages, 10975 .readahead = btrfs_readahead, 10976 .invalidate_folio = btrfs_invalidate_folio, 10977 .release_folio = btrfs_release_folio, 10978 .migrate_folio = btrfs_migrate_folio, 10979 .dirty_folio = filemap_dirty_folio, 10980 .error_remove_page = generic_error_remove_page, 10981 .swap_activate = btrfs_swap_activate, 10982 .swap_deactivate = btrfs_swap_deactivate, 10983 }; 10984 10985 static const struct inode_operations btrfs_file_inode_operations = { 10986 .getattr = btrfs_getattr, 10987 .setattr = btrfs_setattr, 10988 .listxattr = btrfs_listxattr, 10989 .permission = btrfs_permission, 10990 .fiemap = btrfs_fiemap, 10991 .get_inode_acl = btrfs_get_acl, 10992 .set_acl = btrfs_set_acl, 10993 .update_time = btrfs_update_time, 10994 .fileattr_get = btrfs_fileattr_get, 10995 .fileattr_set = btrfs_fileattr_set, 10996 }; 10997 static const struct inode_operations btrfs_special_inode_operations = { 10998 .getattr = btrfs_getattr, 10999 .setattr = btrfs_setattr, 11000 .permission = btrfs_permission, 11001 .listxattr = btrfs_listxattr, 11002 .get_inode_acl = btrfs_get_acl, 11003 .set_acl = btrfs_set_acl, 11004 .update_time = btrfs_update_time, 11005 }; 11006 static const struct inode_operations btrfs_symlink_inode_operations = { 11007 .get_link = page_get_link, 11008 .getattr = btrfs_getattr, 11009 .setattr = btrfs_setattr, 11010 .permission = btrfs_permission, 11011 .listxattr = btrfs_listxattr, 11012 .update_time = btrfs_update_time, 11013 }; 11014 11015 const struct dentry_operations btrfs_dentry_operations = { 11016 .d_delete = btrfs_dentry_delete, 11017 }; 11018