1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "print-tree.h" 50 #include "ordered-data.h" 51 #include "xattr.h" 52 #include "tree-log.h" 53 #include "volumes.h" 54 #include "compression.h" 55 #include "locking.h" 56 #include "free-space-cache.h" 57 #include "inode-map.h" 58 #include "backref.h" 59 #include "hash.h" 60 #include "props.h" 61 #include "qgroup.h" 62 #include "dedupe.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 int overwrite; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, u64 delalloc_end, 109 int *page_started, unsigned long *nr_written, 110 int unlock, struct btrfs_dedupe_hash *hash); 111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 112 u64 orig_start, u64 block_start, 113 u64 block_len, u64 orig_block_len, 114 u64 ram_bytes, int compress_type, 115 int type); 116 117 static void __endio_write_update_ordered(struct inode *inode, 118 const u64 offset, const u64 bytes, 119 const bool uptodate); 120 121 /* 122 * Cleanup all submitted ordered extents in specified range to handle errors 123 * from the fill_dellaloc() callback. 124 * 125 * NOTE: caller must ensure that when an error happens, it can not call 126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 128 * to be released, which we want to happen only when finishing the ordered 129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 130 * fill_delalloc() callback already does proper cleanup for the first page of 131 * the range, that is, it invokes the callback writepage_end_io_hook() for the 132 * range of the first page. 133 */ 134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 135 const u64 offset, 136 const u64 bytes) 137 { 138 unsigned long index = offset >> PAGE_SHIFT; 139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 140 struct page *page; 141 142 while (index <= end_index) { 143 page = find_get_page(inode->i_mapping, index); 144 index++; 145 if (!page) 146 continue; 147 ClearPagePrivate2(page); 148 put_page(page); 149 } 150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 151 bytes - PAGE_SIZE, false); 152 } 153 154 static int btrfs_dirty_inode(struct inode *inode); 155 156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 157 void btrfs_test_inode_set_ops(struct inode *inode) 158 { 159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 160 } 161 #endif 162 163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 164 struct inode *inode, struct inode *dir, 165 const struct qstr *qstr) 166 { 167 int err; 168 169 err = btrfs_init_acl(trans, inode, dir); 170 if (!err) 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 172 return err; 173 } 174 175 /* 176 * this does all the hard work for inserting an inline extent into 177 * the btree. The caller should have done a btrfs_drop_extents so that 178 * no overlapping inline items exist in the btree 179 */ 180 static int insert_inline_extent(struct btrfs_trans_handle *trans, 181 struct btrfs_path *path, int extent_inserted, 182 struct btrfs_root *root, struct inode *inode, 183 u64 start, size_t size, size_t compressed_size, 184 int compress_type, 185 struct page **compressed_pages) 186 { 187 struct extent_buffer *leaf; 188 struct page *page = NULL; 189 char *kaddr; 190 unsigned long ptr; 191 struct btrfs_file_extent_item *ei; 192 int ret; 193 size_t cur_size = size; 194 unsigned long offset; 195 196 if (compressed_size && compressed_pages) 197 cur_size = compressed_size; 198 199 inode_add_bytes(inode, size); 200 201 if (!extent_inserted) { 202 struct btrfs_key key; 203 size_t datasize; 204 205 key.objectid = btrfs_ino(BTRFS_I(inode)); 206 key.offset = start; 207 key.type = BTRFS_EXTENT_DATA_KEY; 208 209 datasize = btrfs_file_extent_calc_inline_size(cur_size); 210 path->leave_spinning = 1; 211 ret = btrfs_insert_empty_item(trans, root, path, &key, 212 datasize); 213 if (ret) 214 goto fail; 215 } 216 leaf = path->nodes[0]; 217 ei = btrfs_item_ptr(leaf, path->slots[0], 218 struct btrfs_file_extent_item); 219 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 221 btrfs_set_file_extent_encryption(leaf, ei, 0); 222 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 223 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 224 ptr = btrfs_file_extent_inline_start(ei); 225 226 if (compress_type != BTRFS_COMPRESS_NONE) { 227 struct page *cpage; 228 int i = 0; 229 while (compressed_size > 0) { 230 cpage = compressed_pages[i]; 231 cur_size = min_t(unsigned long, compressed_size, 232 PAGE_SIZE); 233 234 kaddr = kmap_atomic(cpage); 235 write_extent_buffer(leaf, kaddr, ptr, cur_size); 236 kunmap_atomic(kaddr); 237 238 i++; 239 ptr += cur_size; 240 compressed_size -= cur_size; 241 } 242 btrfs_set_file_extent_compression(leaf, ei, 243 compress_type); 244 } else { 245 page = find_get_page(inode->i_mapping, 246 start >> PAGE_SHIFT); 247 btrfs_set_file_extent_compression(leaf, ei, 0); 248 kaddr = kmap_atomic(page); 249 offset = start & (PAGE_SIZE - 1); 250 write_extent_buffer(leaf, kaddr + offset, ptr, size); 251 kunmap_atomic(kaddr); 252 put_page(page); 253 } 254 btrfs_mark_buffer_dirty(leaf); 255 btrfs_release_path(path); 256 257 /* 258 * we're an inline extent, so nobody can 259 * extend the file past i_size without locking 260 * a page we already have locked. 261 * 262 * We must do any isize and inode updates 263 * before we unlock the pages. Otherwise we 264 * could end up racing with unlink. 265 */ 266 BTRFS_I(inode)->disk_i_size = inode->i_size; 267 ret = btrfs_update_inode(trans, root, inode); 268 269 fail: 270 return ret; 271 } 272 273 274 /* 275 * conditionally insert an inline extent into the file. This 276 * does the checks required to make sure the data is small enough 277 * to fit as an inline extent. 278 */ 279 static noinline int cow_file_range_inline(struct btrfs_root *root, 280 struct inode *inode, u64 start, 281 u64 end, size_t compressed_size, 282 int compress_type, 283 struct page **compressed_pages) 284 { 285 struct btrfs_fs_info *fs_info = root->fs_info; 286 struct btrfs_trans_handle *trans; 287 u64 isize = i_size_read(inode); 288 u64 actual_end = min(end + 1, isize); 289 u64 inline_len = actual_end - start; 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 291 u64 data_len = inline_len; 292 int ret; 293 struct btrfs_path *path; 294 int extent_inserted = 0; 295 u32 extent_item_size; 296 297 if (compressed_size) 298 data_len = compressed_size; 299 300 if (start > 0 || 301 actual_end > fs_info->sectorsize || 302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 303 (!compressed_size && 304 (actual_end & (fs_info->sectorsize - 1)) == 0) || 305 end + 1 < isize || 306 data_len > fs_info->max_inline) { 307 return 1; 308 } 309 310 path = btrfs_alloc_path(); 311 if (!path) 312 return -ENOMEM; 313 314 trans = btrfs_join_transaction(root); 315 if (IS_ERR(trans)) { 316 btrfs_free_path(path); 317 return PTR_ERR(trans); 318 } 319 trans->block_rsv = &fs_info->delalloc_block_rsv; 320 321 if (compressed_size && compressed_pages) 322 extent_item_size = btrfs_file_extent_calc_inline_size( 323 compressed_size); 324 else 325 extent_item_size = btrfs_file_extent_calc_inline_size( 326 inline_len); 327 328 ret = __btrfs_drop_extents(trans, root, inode, path, 329 start, aligned_end, NULL, 330 1, 1, extent_item_size, &extent_inserted); 331 if (ret) { 332 btrfs_abort_transaction(trans, ret); 333 goto out; 334 } 335 336 if (isize > actual_end) 337 inline_len = min_t(u64, isize, actual_end); 338 ret = insert_inline_extent(trans, path, extent_inserted, 339 root, inode, start, 340 inline_len, compressed_size, 341 compress_type, compressed_pages); 342 if (ret && ret != -ENOSPC) { 343 btrfs_abort_transaction(trans, ret); 344 goto out; 345 } else if (ret == -ENOSPC) { 346 ret = 1; 347 goto out; 348 } 349 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 351 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start); 352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 353 out: 354 /* 355 * Don't forget to free the reserved space, as for inlined extent 356 * it won't count as data extent, free them directly here. 357 * And at reserve time, it's always aligned to page size, so 358 * just free one page here. 359 */ 360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 361 btrfs_free_path(path); 362 btrfs_end_transaction(trans); 363 return ret; 364 } 365 366 struct async_extent { 367 u64 start; 368 u64 ram_size; 369 u64 compressed_size; 370 struct page **pages; 371 unsigned long nr_pages; 372 int compress_type; 373 struct list_head list; 374 }; 375 376 struct async_cow { 377 struct inode *inode; 378 struct btrfs_root *root; 379 struct page *locked_page; 380 u64 start; 381 u64 end; 382 struct list_head extents; 383 struct btrfs_work work; 384 }; 385 386 static noinline int add_async_extent(struct async_cow *cow, 387 u64 start, u64 ram_size, 388 u64 compressed_size, 389 struct page **pages, 390 unsigned long nr_pages, 391 int compress_type) 392 { 393 struct async_extent *async_extent; 394 395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 396 BUG_ON(!async_extent); /* -ENOMEM */ 397 async_extent->start = start; 398 async_extent->ram_size = ram_size; 399 async_extent->compressed_size = compressed_size; 400 async_extent->pages = pages; 401 async_extent->nr_pages = nr_pages; 402 async_extent->compress_type = compress_type; 403 list_add_tail(&async_extent->list, &cow->extents); 404 return 0; 405 } 406 407 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 408 { 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 410 411 /* force compress */ 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 413 return 1; 414 /* defrag ioctl */ 415 if (BTRFS_I(inode)->defrag_compress) 416 return 1; 417 /* bad compression ratios */ 418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 419 return 0; 420 if (btrfs_test_opt(fs_info, COMPRESS) || 421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 422 BTRFS_I(inode)->prop_compress) 423 return btrfs_compress_heuristic(inode, start, end); 424 return 0; 425 } 426 427 static inline void inode_should_defrag(struct btrfs_inode *inode, 428 u64 start, u64 end, u64 num_bytes, u64 small_write) 429 { 430 /* If this is a small write inside eof, kick off a defrag */ 431 if (num_bytes < small_write && 432 (start > 0 || end + 1 < inode->disk_i_size)) 433 btrfs_add_inode_defrag(NULL, inode); 434 } 435 436 /* 437 * we create compressed extents in two phases. The first 438 * phase compresses a range of pages that have already been 439 * locked (both pages and state bits are locked). 440 * 441 * This is done inside an ordered work queue, and the compression 442 * is spread across many cpus. The actual IO submission is step 443 * two, and the ordered work queue takes care of making sure that 444 * happens in the same order things were put onto the queue by 445 * writepages and friends. 446 * 447 * If this code finds it can't get good compression, it puts an 448 * entry onto the work queue to write the uncompressed bytes. This 449 * makes sure that both compressed inodes and uncompressed inodes 450 * are written in the same order that the flusher thread sent them 451 * down. 452 */ 453 static noinline void compress_file_range(struct inode *inode, 454 struct page *locked_page, 455 u64 start, u64 end, 456 struct async_cow *async_cow, 457 int *num_added) 458 { 459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 460 struct btrfs_root *root = BTRFS_I(inode)->root; 461 u64 num_bytes; 462 u64 blocksize = fs_info->sectorsize; 463 u64 actual_end; 464 u64 isize = i_size_read(inode); 465 int ret = 0; 466 struct page **pages = NULL; 467 unsigned long nr_pages; 468 unsigned long total_compressed = 0; 469 unsigned long total_in = 0; 470 int i; 471 int will_compress; 472 int compress_type = fs_info->compress_type; 473 int redirty = 0; 474 475 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 476 SZ_16K); 477 478 actual_end = min_t(u64, isize, end + 1); 479 again: 480 will_compress = 0; 481 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 482 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 483 nr_pages = min_t(unsigned long, nr_pages, 484 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 485 486 /* 487 * we don't want to send crud past the end of i_size through 488 * compression, that's just a waste of CPU time. So, if the 489 * end of the file is before the start of our current 490 * requested range of bytes, we bail out to the uncompressed 491 * cleanup code that can deal with all of this. 492 * 493 * It isn't really the fastest way to fix things, but this is a 494 * very uncommon corner. 495 */ 496 if (actual_end <= start) 497 goto cleanup_and_bail_uncompressed; 498 499 total_compressed = actual_end - start; 500 501 /* 502 * skip compression for a small file range(<=blocksize) that 503 * isn't an inline extent, since it doesn't save disk space at all. 504 */ 505 if (total_compressed <= blocksize && 506 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 507 goto cleanup_and_bail_uncompressed; 508 509 total_compressed = min_t(unsigned long, total_compressed, 510 BTRFS_MAX_UNCOMPRESSED); 511 num_bytes = ALIGN(end - start + 1, blocksize); 512 num_bytes = max(blocksize, num_bytes); 513 total_in = 0; 514 ret = 0; 515 516 /* 517 * we do compression for mount -o compress and when the 518 * inode has not been flagged as nocompress. This flag can 519 * change at any time if we discover bad compression ratios. 520 */ 521 if (inode_need_compress(inode, start, end)) { 522 WARN_ON(pages); 523 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 524 if (!pages) { 525 /* just bail out to the uncompressed code */ 526 goto cont; 527 } 528 529 if (BTRFS_I(inode)->defrag_compress) 530 compress_type = BTRFS_I(inode)->defrag_compress; 531 else if (BTRFS_I(inode)->prop_compress) 532 compress_type = BTRFS_I(inode)->prop_compress; 533 534 /* 535 * we need to call clear_page_dirty_for_io on each 536 * page in the range. Otherwise applications with the file 537 * mmap'd can wander in and change the page contents while 538 * we are compressing them. 539 * 540 * If the compression fails for any reason, we set the pages 541 * dirty again later on. 542 */ 543 extent_range_clear_dirty_for_io(inode, start, end); 544 redirty = 1; 545 ret = btrfs_compress_pages(compress_type, 546 inode->i_mapping, start, 547 pages, 548 &nr_pages, 549 &total_in, 550 &total_compressed); 551 552 if (!ret) { 553 unsigned long offset = total_compressed & 554 (PAGE_SIZE - 1); 555 struct page *page = pages[nr_pages - 1]; 556 char *kaddr; 557 558 /* zero the tail end of the last page, we might be 559 * sending it down to disk 560 */ 561 if (offset) { 562 kaddr = kmap_atomic(page); 563 memset(kaddr + offset, 0, 564 PAGE_SIZE - offset); 565 kunmap_atomic(kaddr); 566 } 567 will_compress = 1; 568 } 569 } 570 cont: 571 if (start == 0) { 572 /* lets try to make an inline extent */ 573 if (ret || total_in < (actual_end - start)) { 574 /* we didn't compress the entire range, try 575 * to make an uncompressed inline extent. 576 */ 577 ret = cow_file_range_inline(root, inode, start, end, 578 0, BTRFS_COMPRESS_NONE, NULL); 579 } else { 580 /* try making a compressed inline extent */ 581 ret = cow_file_range_inline(root, inode, start, end, 582 total_compressed, 583 compress_type, pages); 584 } 585 if (ret <= 0) { 586 unsigned long clear_flags = EXTENT_DELALLOC | 587 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG; 588 unsigned long page_error_op; 589 590 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 591 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 592 593 /* 594 * inline extent creation worked or returned error, 595 * we don't need to create any more async work items. 596 * Unlock and free up our temp pages. 597 */ 598 extent_clear_unlock_delalloc(inode, start, end, end, 599 NULL, clear_flags, 600 PAGE_UNLOCK | 601 PAGE_CLEAR_DIRTY | 602 PAGE_SET_WRITEBACK | 603 page_error_op | 604 PAGE_END_WRITEBACK); 605 if (ret == 0) 606 btrfs_free_reserved_data_space_noquota(inode, 607 start, 608 end - start + 1); 609 goto free_pages_out; 610 } 611 } 612 613 if (will_compress) { 614 /* 615 * we aren't doing an inline extent round the compressed size 616 * up to a block size boundary so the allocator does sane 617 * things 618 */ 619 total_compressed = ALIGN(total_compressed, blocksize); 620 621 /* 622 * one last check to make sure the compression is really a 623 * win, compare the page count read with the blocks on disk, 624 * compression must free at least one sector size 625 */ 626 total_in = ALIGN(total_in, PAGE_SIZE); 627 if (total_compressed + blocksize <= total_in) { 628 num_bytes = total_in; 629 *num_added += 1; 630 631 /* 632 * The async work queues will take care of doing actual 633 * allocation on disk for these compressed pages, and 634 * will submit them to the elevator. 635 */ 636 add_async_extent(async_cow, start, num_bytes, 637 total_compressed, pages, nr_pages, 638 compress_type); 639 640 if (start + num_bytes < end) { 641 start += num_bytes; 642 pages = NULL; 643 cond_resched(); 644 goto again; 645 } 646 return; 647 } 648 } 649 if (pages) { 650 /* 651 * the compression code ran but failed to make things smaller, 652 * free any pages it allocated and our page pointer array 653 */ 654 for (i = 0; i < nr_pages; i++) { 655 WARN_ON(pages[i]->mapping); 656 put_page(pages[i]); 657 } 658 kfree(pages); 659 pages = NULL; 660 total_compressed = 0; 661 nr_pages = 0; 662 663 /* flag the file so we don't compress in the future */ 664 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 665 !(BTRFS_I(inode)->prop_compress)) { 666 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 667 } 668 } 669 cleanup_and_bail_uncompressed: 670 /* 671 * No compression, but we still need to write the pages in the file 672 * we've been given so far. redirty the locked page if it corresponds 673 * to our extent and set things up for the async work queue to run 674 * cow_file_range to do the normal delalloc dance. 675 */ 676 if (page_offset(locked_page) >= start && 677 page_offset(locked_page) <= end) 678 __set_page_dirty_nobuffers(locked_page); 679 /* unlocked later on in the async handlers */ 680 681 if (redirty) 682 extent_range_redirty_for_io(inode, start, end); 683 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 684 BTRFS_COMPRESS_NONE); 685 *num_added += 1; 686 687 return; 688 689 free_pages_out: 690 for (i = 0; i < nr_pages; i++) { 691 WARN_ON(pages[i]->mapping); 692 put_page(pages[i]); 693 } 694 kfree(pages); 695 } 696 697 static void free_async_extent_pages(struct async_extent *async_extent) 698 { 699 int i; 700 701 if (!async_extent->pages) 702 return; 703 704 for (i = 0; i < async_extent->nr_pages; i++) { 705 WARN_ON(async_extent->pages[i]->mapping); 706 put_page(async_extent->pages[i]); 707 } 708 kfree(async_extent->pages); 709 async_extent->nr_pages = 0; 710 async_extent->pages = NULL; 711 } 712 713 /* 714 * phase two of compressed writeback. This is the ordered portion 715 * of the code, which only gets called in the order the work was 716 * queued. We walk all the async extents created by compress_file_range 717 * and send them down to the disk. 718 */ 719 static noinline void submit_compressed_extents(struct inode *inode, 720 struct async_cow *async_cow) 721 { 722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 723 struct async_extent *async_extent; 724 u64 alloc_hint = 0; 725 struct btrfs_key ins; 726 struct extent_map *em; 727 struct btrfs_root *root = BTRFS_I(inode)->root; 728 struct extent_io_tree *io_tree; 729 int ret = 0; 730 731 again: 732 while (!list_empty(&async_cow->extents)) { 733 async_extent = list_entry(async_cow->extents.next, 734 struct async_extent, list); 735 list_del(&async_extent->list); 736 737 io_tree = &BTRFS_I(inode)->io_tree; 738 739 retry: 740 /* did the compression code fall back to uncompressed IO? */ 741 if (!async_extent->pages) { 742 int page_started = 0; 743 unsigned long nr_written = 0; 744 745 lock_extent(io_tree, async_extent->start, 746 async_extent->start + 747 async_extent->ram_size - 1); 748 749 /* allocate blocks */ 750 ret = cow_file_range(inode, async_cow->locked_page, 751 async_extent->start, 752 async_extent->start + 753 async_extent->ram_size - 1, 754 async_extent->start + 755 async_extent->ram_size - 1, 756 &page_started, &nr_written, 0, 757 NULL); 758 759 /* JDM XXX */ 760 761 /* 762 * if page_started, cow_file_range inserted an 763 * inline extent and took care of all the unlocking 764 * and IO for us. Otherwise, we need to submit 765 * all those pages down to the drive. 766 */ 767 if (!page_started && !ret) 768 extent_write_locked_range(io_tree, 769 inode, async_extent->start, 770 async_extent->start + 771 async_extent->ram_size - 1, 772 btrfs_get_extent, 773 WB_SYNC_ALL); 774 else if (ret) 775 unlock_page(async_cow->locked_page); 776 kfree(async_extent); 777 cond_resched(); 778 continue; 779 } 780 781 lock_extent(io_tree, async_extent->start, 782 async_extent->start + async_extent->ram_size - 1); 783 784 ret = btrfs_reserve_extent(root, async_extent->ram_size, 785 async_extent->compressed_size, 786 async_extent->compressed_size, 787 0, alloc_hint, &ins, 1, 1); 788 if (ret) { 789 free_async_extent_pages(async_extent); 790 791 if (ret == -ENOSPC) { 792 unlock_extent(io_tree, async_extent->start, 793 async_extent->start + 794 async_extent->ram_size - 1); 795 796 /* 797 * we need to redirty the pages if we decide to 798 * fallback to uncompressed IO, otherwise we 799 * will not submit these pages down to lower 800 * layers. 801 */ 802 extent_range_redirty_for_io(inode, 803 async_extent->start, 804 async_extent->start + 805 async_extent->ram_size - 1); 806 807 goto retry; 808 } 809 goto out_free; 810 } 811 /* 812 * here we're doing allocation and writeback of the 813 * compressed pages 814 */ 815 em = create_io_em(inode, async_extent->start, 816 async_extent->ram_size, /* len */ 817 async_extent->start, /* orig_start */ 818 ins.objectid, /* block_start */ 819 ins.offset, /* block_len */ 820 ins.offset, /* orig_block_len */ 821 async_extent->ram_size, /* ram_bytes */ 822 async_extent->compress_type, 823 BTRFS_ORDERED_COMPRESSED); 824 if (IS_ERR(em)) 825 /* ret value is not necessary due to void function */ 826 goto out_free_reserve; 827 free_extent_map(em); 828 829 ret = btrfs_add_ordered_extent_compress(inode, 830 async_extent->start, 831 ins.objectid, 832 async_extent->ram_size, 833 ins.offset, 834 BTRFS_ORDERED_COMPRESSED, 835 async_extent->compress_type); 836 if (ret) { 837 btrfs_drop_extent_cache(BTRFS_I(inode), 838 async_extent->start, 839 async_extent->start + 840 async_extent->ram_size - 1, 0); 841 goto out_free_reserve; 842 } 843 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 844 845 /* 846 * clear dirty, set writeback and unlock the pages. 847 */ 848 extent_clear_unlock_delalloc(inode, async_extent->start, 849 async_extent->start + 850 async_extent->ram_size - 1, 851 async_extent->start + 852 async_extent->ram_size - 1, 853 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 854 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 855 PAGE_SET_WRITEBACK); 856 if (btrfs_submit_compressed_write(inode, 857 async_extent->start, 858 async_extent->ram_size, 859 ins.objectid, 860 ins.offset, async_extent->pages, 861 async_extent->nr_pages)) { 862 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 863 struct page *p = async_extent->pages[0]; 864 const u64 start = async_extent->start; 865 const u64 end = start + async_extent->ram_size - 1; 866 867 p->mapping = inode->i_mapping; 868 tree->ops->writepage_end_io_hook(p, start, end, 869 NULL, 0); 870 p->mapping = NULL; 871 extent_clear_unlock_delalloc(inode, start, end, end, 872 NULL, 0, 873 PAGE_END_WRITEBACK | 874 PAGE_SET_ERROR); 875 free_async_extent_pages(async_extent); 876 } 877 alloc_hint = ins.objectid + ins.offset; 878 kfree(async_extent); 879 cond_resched(); 880 } 881 return; 882 out_free_reserve: 883 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 884 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 885 out_free: 886 extent_clear_unlock_delalloc(inode, async_extent->start, 887 async_extent->start + 888 async_extent->ram_size - 1, 889 async_extent->start + 890 async_extent->ram_size - 1, 891 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 892 EXTENT_DELALLOC_NEW | 893 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 894 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 895 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 896 PAGE_SET_ERROR); 897 free_async_extent_pages(async_extent); 898 kfree(async_extent); 899 goto again; 900 } 901 902 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 903 u64 num_bytes) 904 { 905 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 906 struct extent_map *em; 907 u64 alloc_hint = 0; 908 909 read_lock(&em_tree->lock); 910 em = search_extent_mapping(em_tree, start, num_bytes); 911 if (em) { 912 /* 913 * if block start isn't an actual block number then find the 914 * first block in this inode and use that as a hint. If that 915 * block is also bogus then just don't worry about it. 916 */ 917 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 918 free_extent_map(em); 919 em = search_extent_mapping(em_tree, 0, 0); 920 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 921 alloc_hint = em->block_start; 922 if (em) 923 free_extent_map(em); 924 } else { 925 alloc_hint = em->block_start; 926 free_extent_map(em); 927 } 928 } 929 read_unlock(&em_tree->lock); 930 931 return alloc_hint; 932 } 933 934 /* 935 * when extent_io.c finds a delayed allocation range in the file, 936 * the call backs end up in this code. The basic idea is to 937 * allocate extents on disk for the range, and create ordered data structs 938 * in ram to track those extents. 939 * 940 * locked_page is the page that writepage had locked already. We use 941 * it to make sure we don't do extra locks or unlocks. 942 * 943 * *page_started is set to one if we unlock locked_page and do everything 944 * required to start IO on it. It may be clean and already done with 945 * IO when we return. 946 */ 947 static noinline int cow_file_range(struct inode *inode, 948 struct page *locked_page, 949 u64 start, u64 end, u64 delalloc_end, 950 int *page_started, unsigned long *nr_written, 951 int unlock, struct btrfs_dedupe_hash *hash) 952 { 953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 954 struct btrfs_root *root = BTRFS_I(inode)->root; 955 u64 alloc_hint = 0; 956 u64 num_bytes; 957 unsigned long ram_size; 958 u64 disk_num_bytes; 959 u64 cur_alloc_size = 0; 960 u64 blocksize = fs_info->sectorsize; 961 struct btrfs_key ins; 962 struct extent_map *em; 963 unsigned clear_bits; 964 unsigned long page_ops; 965 bool extent_reserved = false; 966 int ret = 0; 967 968 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 969 WARN_ON_ONCE(1); 970 ret = -EINVAL; 971 goto out_unlock; 972 } 973 974 num_bytes = ALIGN(end - start + 1, blocksize); 975 num_bytes = max(blocksize, num_bytes); 976 disk_num_bytes = num_bytes; 977 978 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 979 980 if (start == 0) { 981 /* lets try to make an inline extent */ 982 ret = cow_file_range_inline(root, inode, start, end, 0, 983 BTRFS_COMPRESS_NONE, NULL); 984 if (ret == 0) { 985 extent_clear_unlock_delalloc(inode, start, end, 986 delalloc_end, NULL, 987 EXTENT_LOCKED | EXTENT_DELALLOC | 988 EXTENT_DELALLOC_NEW | 989 EXTENT_DEFRAG, PAGE_UNLOCK | 990 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 991 PAGE_END_WRITEBACK); 992 btrfs_free_reserved_data_space_noquota(inode, start, 993 end - start + 1); 994 *nr_written = *nr_written + 995 (end - start + PAGE_SIZE) / PAGE_SIZE; 996 *page_started = 1; 997 goto out; 998 } else if (ret < 0) { 999 goto out_unlock; 1000 } 1001 } 1002 1003 BUG_ON(disk_num_bytes > 1004 btrfs_super_total_bytes(fs_info->super_copy)); 1005 1006 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1007 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1008 start + num_bytes - 1, 0); 1009 1010 while (disk_num_bytes > 0) { 1011 cur_alloc_size = disk_num_bytes; 1012 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1013 fs_info->sectorsize, 0, alloc_hint, 1014 &ins, 1, 1); 1015 if (ret < 0) 1016 goto out_unlock; 1017 cur_alloc_size = ins.offset; 1018 extent_reserved = true; 1019 1020 ram_size = ins.offset; 1021 em = create_io_em(inode, start, ins.offset, /* len */ 1022 start, /* orig_start */ 1023 ins.objectid, /* block_start */ 1024 ins.offset, /* block_len */ 1025 ins.offset, /* orig_block_len */ 1026 ram_size, /* ram_bytes */ 1027 BTRFS_COMPRESS_NONE, /* compress_type */ 1028 BTRFS_ORDERED_REGULAR /* type */); 1029 if (IS_ERR(em)) 1030 goto out_reserve; 1031 free_extent_map(em); 1032 1033 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1034 ram_size, cur_alloc_size, 0); 1035 if (ret) 1036 goto out_drop_extent_cache; 1037 1038 if (root->root_key.objectid == 1039 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1040 ret = btrfs_reloc_clone_csums(inode, start, 1041 cur_alloc_size); 1042 /* 1043 * Only drop cache here, and process as normal. 1044 * 1045 * We must not allow extent_clear_unlock_delalloc() 1046 * at out_unlock label to free meta of this ordered 1047 * extent, as its meta should be freed by 1048 * btrfs_finish_ordered_io(). 1049 * 1050 * So we must continue until @start is increased to 1051 * skip current ordered extent. 1052 */ 1053 if (ret) 1054 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1055 start + ram_size - 1, 0); 1056 } 1057 1058 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1059 1060 /* we're not doing compressed IO, don't unlock the first 1061 * page (which the caller expects to stay locked), don't 1062 * clear any dirty bits and don't set any writeback bits 1063 * 1064 * Do set the Private2 bit so we know this page was properly 1065 * setup for writepage 1066 */ 1067 page_ops = unlock ? PAGE_UNLOCK : 0; 1068 page_ops |= PAGE_SET_PRIVATE2; 1069 1070 extent_clear_unlock_delalloc(inode, start, 1071 start + ram_size - 1, 1072 delalloc_end, locked_page, 1073 EXTENT_LOCKED | EXTENT_DELALLOC, 1074 page_ops); 1075 if (disk_num_bytes < cur_alloc_size) 1076 disk_num_bytes = 0; 1077 else 1078 disk_num_bytes -= cur_alloc_size; 1079 num_bytes -= cur_alloc_size; 1080 alloc_hint = ins.objectid + ins.offset; 1081 start += cur_alloc_size; 1082 extent_reserved = false; 1083 1084 /* 1085 * btrfs_reloc_clone_csums() error, since start is increased 1086 * extent_clear_unlock_delalloc() at out_unlock label won't 1087 * free metadata of current ordered extent, we're OK to exit. 1088 */ 1089 if (ret) 1090 goto out_unlock; 1091 } 1092 out: 1093 return ret; 1094 1095 out_drop_extent_cache: 1096 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1097 out_reserve: 1098 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1099 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1100 out_unlock: 1101 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1102 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1103 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1104 PAGE_END_WRITEBACK; 1105 /* 1106 * If we reserved an extent for our delalloc range (or a subrange) and 1107 * failed to create the respective ordered extent, then it means that 1108 * when we reserved the extent we decremented the extent's size from 1109 * the data space_info's bytes_may_use counter and incremented the 1110 * space_info's bytes_reserved counter by the same amount. We must make 1111 * sure extent_clear_unlock_delalloc() does not try to decrement again 1112 * the data space_info's bytes_may_use counter, therefore we do not pass 1113 * it the flag EXTENT_CLEAR_DATA_RESV. 1114 */ 1115 if (extent_reserved) { 1116 extent_clear_unlock_delalloc(inode, start, 1117 start + cur_alloc_size, 1118 start + cur_alloc_size, 1119 locked_page, 1120 clear_bits, 1121 page_ops); 1122 start += cur_alloc_size; 1123 if (start >= end) 1124 goto out; 1125 } 1126 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1127 locked_page, 1128 clear_bits | EXTENT_CLEAR_DATA_RESV, 1129 page_ops); 1130 goto out; 1131 } 1132 1133 /* 1134 * work queue call back to started compression on a file and pages 1135 */ 1136 static noinline void async_cow_start(struct btrfs_work *work) 1137 { 1138 struct async_cow *async_cow; 1139 int num_added = 0; 1140 async_cow = container_of(work, struct async_cow, work); 1141 1142 compress_file_range(async_cow->inode, async_cow->locked_page, 1143 async_cow->start, async_cow->end, async_cow, 1144 &num_added); 1145 if (num_added == 0) { 1146 btrfs_add_delayed_iput(async_cow->inode); 1147 async_cow->inode = NULL; 1148 } 1149 } 1150 1151 /* 1152 * work queue call back to submit previously compressed pages 1153 */ 1154 static noinline void async_cow_submit(struct btrfs_work *work) 1155 { 1156 struct btrfs_fs_info *fs_info; 1157 struct async_cow *async_cow; 1158 struct btrfs_root *root; 1159 unsigned long nr_pages; 1160 1161 async_cow = container_of(work, struct async_cow, work); 1162 1163 root = async_cow->root; 1164 fs_info = root->fs_info; 1165 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1166 PAGE_SHIFT; 1167 1168 /* 1169 * atomic_sub_return implies a barrier for waitqueue_active 1170 */ 1171 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1172 5 * SZ_1M && 1173 waitqueue_active(&fs_info->async_submit_wait)) 1174 wake_up(&fs_info->async_submit_wait); 1175 1176 if (async_cow->inode) 1177 submit_compressed_extents(async_cow->inode, async_cow); 1178 } 1179 1180 static noinline void async_cow_free(struct btrfs_work *work) 1181 { 1182 struct async_cow *async_cow; 1183 async_cow = container_of(work, struct async_cow, work); 1184 if (async_cow->inode) 1185 btrfs_add_delayed_iput(async_cow->inode); 1186 kfree(async_cow); 1187 } 1188 1189 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1190 u64 start, u64 end, int *page_started, 1191 unsigned long *nr_written) 1192 { 1193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1194 struct async_cow *async_cow; 1195 struct btrfs_root *root = BTRFS_I(inode)->root; 1196 unsigned long nr_pages; 1197 u64 cur_end; 1198 1199 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1200 1, 0, NULL, GFP_NOFS); 1201 while (start < end) { 1202 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1203 BUG_ON(!async_cow); /* -ENOMEM */ 1204 async_cow->inode = igrab(inode); 1205 async_cow->root = root; 1206 async_cow->locked_page = locked_page; 1207 async_cow->start = start; 1208 1209 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1210 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1211 cur_end = end; 1212 else 1213 cur_end = min(end, start + SZ_512K - 1); 1214 1215 async_cow->end = cur_end; 1216 INIT_LIST_HEAD(&async_cow->extents); 1217 1218 btrfs_init_work(&async_cow->work, 1219 btrfs_delalloc_helper, 1220 async_cow_start, async_cow_submit, 1221 async_cow_free); 1222 1223 nr_pages = (cur_end - start + PAGE_SIZE) >> 1224 PAGE_SHIFT; 1225 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1226 1227 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1228 1229 while (atomic_read(&fs_info->async_submit_draining) && 1230 atomic_read(&fs_info->async_delalloc_pages)) { 1231 wait_event(fs_info->async_submit_wait, 1232 (atomic_read(&fs_info->async_delalloc_pages) == 1233 0)); 1234 } 1235 1236 *nr_written += nr_pages; 1237 start = cur_end + 1; 1238 } 1239 *page_started = 1; 1240 return 0; 1241 } 1242 1243 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1244 u64 bytenr, u64 num_bytes) 1245 { 1246 int ret; 1247 struct btrfs_ordered_sum *sums; 1248 LIST_HEAD(list); 1249 1250 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1251 bytenr + num_bytes - 1, &list, 0); 1252 if (ret == 0 && list_empty(&list)) 1253 return 0; 1254 1255 while (!list_empty(&list)) { 1256 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1257 list_del(&sums->list); 1258 kfree(sums); 1259 } 1260 return 1; 1261 } 1262 1263 /* 1264 * when nowcow writeback call back. This checks for snapshots or COW copies 1265 * of the extents that exist in the file, and COWs the file as required. 1266 * 1267 * If no cow copies or snapshots exist, we write directly to the existing 1268 * blocks on disk 1269 */ 1270 static noinline int run_delalloc_nocow(struct inode *inode, 1271 struct page *locked_page, 1272 u64 start, u64 end, int *page_started, int force, 1273 unsigned long *nr_written) 1274 { 1275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1276 struct btrfs_root *root = BTRFS_I(inode)->root; 1277 struct extent_buffer *leaf; 1278 struct btrfs_path *path; 1279 struct btrfs_file_extent_item *fi; 1280 struct btrfs_key found_key; 1281 struct extent_map *em; 1282 u64 cow_start; 1283 u64 cur_offset; 1284 u64 extent_end; 1285 u64 extent_offset; 1286 u64 disk_bytenr; 1287 u64 num_bytes; 1288 u64 disk_num_bytes; 1289 u64 ram_bytes; 1290 int extent_type; 1291 int ret, err; 1292 int type; 1293 int nocow; 1294 int check_prev = 1; 1295 bool nolock; 1296 u64 ino = btrfs_ino(BTRFS_I(inode)); 1297 1298 path = btrfs_alloc_path(); 1299 if (!path) { 1300 extent_clear_unlock_delalloc(inode, start, end, end, 1301 locked_page, 1302 EXTENT_LOCKED | EXTENT_DELALLOC | 1303 EXTENT_DO_ACCOUNTING | 1304 EXTENT_DEFRAG, PAGE_UNLOCK | 1305 PAGE_CLEAR_DIRTY | 1306 PAGE_SET_WRITEBACK | 1307 PAGE_END_WRITEBACK); 1308 return -ENOMEM; 1309 } 1310 1311 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1312 1313 cow_start = (u64)-1; 1314 cur_offset = start; 1315 while (1) { 1316 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1317 cur_offset, 0); 1318 if (ret < 0) 1319 goto error; 1320 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1321 leaf = path->nodes[0]; 1322 btrfs_item_key_to_cpu(leaf, &found_key, 1323 path->slots[0] - 1); 1324 if (found_key.objectid == ino && 1325 found_key.type == BTRFS_EXTENT_DATA_KEY) 1326 path->slots[0]--; 1327 } 1328 check_prev = 0; 1329 next_slot: 1330 leaf = path->nodes[0]; 1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1332 ret = btrfs_next_leaf(root, path); 1333 if (ret < 0) 1334 goto error; 1335 if (ret > 0) 1336 break; 1337 leaf = path->nodes[0]; 1338 } 1339 1340 nocow = 0; 1341 disk_bytenr = 0; 1342 num_bytes = 0; 1343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1344 1345 if (found_key.objectid > ino) 1346 break; 1347 if (WARN_ON_ONCE(found_key.objectid < ino) || 1348 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1349 path->slots[0]++; 1350 goto next_slot; 1351 } 1352 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1353 found_key.offset > end) 1354 break; 1355 1356 if (found_key.offset > cur_offset) { 1357 extent_end = found_key.offset; 1358 extent_type = 0; 1359 goto out_check; 1360 } 1361 1362 fi = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_file_extent_item); 1364 extent_type = btrfs_file_extent_type(leaf, fi); 1365 1366 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1367 if (extent_type == BTRFS_FILE_EXTENT_REG || 1368 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1370 extent_offset = btrfs_file_extent_offset(leaf, fi); 1371 extent_end = found_key.offset + 1372 btrfs_file_extent_num_bytes(leaf, fi); 1373 disk_num_bytes = 1374 btrfs_file_extent_disk_num_bytes(leaf, fi); 1375 if (extent_end <= start) { 1376 path->slots[0]++; 1377 goto next_slot; 1378 } 1379 if (disk_bytenr == 0) 1380 goto out_check; 1381 if (btrfs_file_extent_compression(leaf, fi) || 1382 btrfs_file_extent_encryption(leaf, fi) || 1383 btrfs_file_extent_other_encoding(leaf, fi)) 1384 goto out_check; 1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1386 goto out_check; 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1388 goto out_check; 1389 if (btrfs_cross_ref_exist(root, ino, 1390 found_key.offset - 1391 extent_offset, disk_bytenr)) 1392 goto out_check; 1393 disk_bytenr += extent_offset; 1394 disk_bytenr += cur_offset - found_key.offset; 1395 num_bytes = min(end + 1, extent_end) - cur_offset; 1396 /* 1397 * if there are pending snapshots for this root, 1398 * we fall into common COW way. 1399 */ 1400 if (!nolock) { 1401 err = btrfs_start_write_no_snapshotting(root); 1402 if (!err) 1403 goto out_check; 1404 } 1405 /* 1406 * force cow if csum exists in the range. 1407 * this ensure that csum for a given extent are 1408 * either valid or do not exist. 1409 */ 1410 if (csum_exist_in_range(fs_info, disk_bytenr, 1411 num_bytes)) { 1412 if (!nolock) 1413 btrfs_end_write_no_snapshotting(root); 1414 goto out_check; 1415 } 1416 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1417 if (!nolock) 1418 btrfs_end_write_no_snapshotting(root); 1419 goto out_check; 1420 } 1421 nocow = 1; 1422 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1423 extent_end = found_key.offset + 1424 btrfs_file_extent_inline_len(leaf, 1425 path->slots[0], fi); 1426 extent_end = ALIGN(extent_end, 1427 fs_info->sectorsize); 1428 } else { 1429 BUG_ON(1); 1430 } 1431 out_check: 1432 if (extent_end <= start) { 1433 path->slots[0]++; 1434 if (!nolock && nocow) 1435 btrfs_end_write_no_snapshotting(root); 1436 if (nocow) 1437 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1438 goto next_slot; 1439 } 1440 if (!nocow) { 1441 if (cow_start == (u64)-1) 1442 cow_start = cur_offset; 1443 cur_offset = extent_end; 1444 if (cur_offset > end) 1445 break; 1446 path->slots[0]++; 1447 goto next_slot; 1448 } 1449 1450 btrfs_release_path(path); 1451 if (cow_start != (u64)-1) { 1452 ret = cow_file_range(inode, locked_page, 1453 cow_start, found_key.offset - 1, 1454 end, page_started, nr_written, 1, 1455 NULL); 1456 if (ret) { 1457 if (!nolock && nocow) 1458 btrfs_end_write_no_snapshotting(root); 1459 if (nocow) 1460 btrfs_dec_nocow_writers(fs_info, 1461 disk_bytenr); 1462 goto error; 1463 } 1464 cow_start = (u64)-1; 1465 } 1466 1467 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1468 u64 orig_start = found_key.offset - extent_offset; 1469 1470 em = create_io_em(inode, cur_offset, num_bytes, 1471 orig_start, 1472 disk_bytenr, /* block_start */ 1473 num_bytes, /* block_len */ 1474 disk_num_bytes, /* orig_block_len */ 1475 ram_bytes, BTRFS_COMPRESS_NONE, 1476 BTRFS_ORDERED_PREALLOC); 1477 if (IS_ERR(em)) { 1478 if (!nolock && nocow) 1479 btrfs_end_write_no_snapshotting(root); 1480 if (nocow) 1481 btrfs_dec_nocow_writers(fs_info, 1482 disk_bytenr); 1483 ret = PTR_ERR(em); 1484 goto error; 1485 } 1486 free_extent_map(em); 1487 } 1488 1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1490 type = BTRFS_ORDERED_PREALLOC; 1491 } else { 1492 type = BTRFS_ORDERED_NOCOW; 1493 } 1494 1495 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1496 num_bytes, num_bytes, type); 1497 if (nocow) 1498 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1499 BUG_ON(ret); /* -ENOMEM */ 1500 1501 if (root->root_key.objectid == 1502 BTRFS_DATA_RELOC_TREE_OBJECTID) 1503 /* 1504 * Error handled later, as we must prevent 1505 * extent_clear_unlock_delalloc() in error handler 1506 * from freeing metadata of created ordered extent. 1507 */ 1508 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1509 num_bytes); 1510 1511 extent_clear_unlock_delalloc(inode, cur_offset, 1512 cur_offset + num_bytes - 1, end, 1513 locked_page, EXTENT_LOCKED | 1514 EXTENT_DELALLOC | 1515 EXTENT_CLEAR_DATA_RESV, 1516 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1517 1518 if (!nolock && nocow) 1519 btrfs_end_write_no_snapshotting(root); 1520 cur_offset = extent_end; 1521 1522 /* 1523 * btrfs_reloc_clone_csums() error, now we're OK to call error 1524 * handler, as metadata for created ordered extent will only 1525 * be freed by btrfs_finish_ordered_io(). 1526 */ 1527 if (ret) 1528 goto error; 1529 if (cur_offset > end) 1530 break; 1531 } 1532 btrfs_release_path(path); 1533 1534 if (cur_offset <= end && cow_start == (u64)-1) { 1535 cow_start = cur_offset; 1536 cur_offset = end; 1537 } 1538 1539 if (cow_start != (u64)-1) { 1540 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1541 page_started, nr_written, 1, NULL); 1542 if (ret) 1543 goto error; 1544 } 1545 1546 error: 1547 if (ret && cur_offset < end) 1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1549 locked_page, EXTENT_LOCKED | 1550 EXTENT_DELALLOC | EXTENT_DEFRAG | 1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1552 PAGE_CLEAR_DIRTY | 1553 PAGE_SET_WRITEBACK | 1554 PAGE_END_WRITEBACK); 1555 btrfs_free_path(path); 1556 return ret; 1557 } 1558 1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1560 { 1561 1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1564 return 0; 1565 1566 /* 1567 * @defrag_bytes is a hint value, no spinlock held here, 1568 * if is not zero, it means the file is defragging. 1569 * Force cow if given extent needs to be defragged. 1570 */ 1571 if (BTRFS_I(inode)->defrag_bytes && 1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1573 EXTENT_DEFRAG, 0, NULL)) 1574 return 1; 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * extent_io.c call back to do delayed allocation processing 1581 */ 1582 static int run_delalloc_range(void *private_data, struct page *locked_page, 1583 u64 start, u64 end, int *page_started, 1584 unsigned long *nr_written) 1585 { 1586 struct inode *inode = private_data; 1587 int ret; 1588 int force_cow = need_force_cow(inode, start, end); 1589 1590 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1591 ret = run_delalloc_nocow(inode, locked_page, start, end, 1592 page_started, 1, nr_written); 1593 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1594 ret = run_delalloc_nocow(inode, locked_page, start, end, 1595 page_started, 0, nr_written); 1596 } else if (!inode_need_compress(inode, start, end)) { 1597 ret = cow_file_range(inode, locked_page, start, end, end, 1598 page_started, nr_written, 1, NULL); 1599 } else { 1600 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1601 &BTRFS_I(inode)->runtime_flags); 1602 ret = cow_file_range_async(inode, locked_page, start, end, 1603 page_started, nr_written); 1604 } 1605 if (ret) 1606 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1607 return ret; 1608 } 1609 1610 static void btrfs_split_extent_hook(void *private_data, 1611 struct extent_state *orig, u64 split) 1612 { 1613 struct inode *inode = private_data; 1614 u64 size; 1615 1616 /* not delalloc, ignore it */ 1617 if (!(orig->state & EXTENT_DELALLOC)) 1618 return; 1619 1620 size = orig->end - orig->start + 1; 1621 if (size > BTRFS_MAX_EXTENT_SIZE) { 1622 u32 num_extents; 1623 u64 new_size; 1624 1625 /* 1626 * See the explanation in btrfs_merge_extent_hook, the same 1627 * applies here, just in reverse. 1628 */ 1629 new_size = orig->end - split + 1; 1630 num_extents = count_max_extents(new_size); 1631 new_size = split - orig->start; 1632 num_extents += count_max_extents(new_size); 1633 if (count_max_extents(size) >= num_extents) 1634 return; 1635 } 1636 1637 spin_lock(&BTRFS_I(inode)->lock); 1638 BTRFS_I(inode)->outstanding_extents++; 1639 spin_unlock(&BTRFS_I(inode)->lock); 1640 } 1641 1642 /* 1643 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1644 * extents so we can keep track of new extents that are just merged onto old 1645 * extents, such as when we are doing sequential writes, so we can properly 1646 * account for the metadata space we'll need. 1647 */ 1648 static void btrfs_merge_extent_hook(void *private_data, 1649 struct extent_state *new, 1650 struct extent_state *other) 1651 { 1652 struct inode *inode = private_data; 1653 u64 new_size, old_size; 1654 u32 num_extents; 1655 1656 /* not delalloc, ignore it */ 1657 if (!(other->state & EXTENT_DELALLOC)) 1658 return; 1659 1660 if (new->start > other->start) 1661 new_size = new->end - other->start + 1; 1662 else 1663 new_size = other->end - new->start + 1; 1664 1665 /* we're not bigger than the max, unreserve the space and go */ 1666 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1667 spin_lock(&BTRFS_I(inode)->lock); 1668 BTRFS_I(inode)->outstanding_extents--; 1669 spin_unlock(&BTRFS_I(inode)->lock); 1670 return; 1671 } 1672 1673 /* 1674 * We have to add up either side to figure out how many extents were 1675 * accounted for before we merged into one big extent. If the number of 1676 * extents we accounted for is <= the amount we need for the new range 1677 * then we can return, otherwise drop. Think of it like this 1678 * 1679 * [ 4k][MAX_SIZE] 1680 * 1681 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1682 * need 2 outstanding extents, on one side we have 1 and the other side 1683 * we have 1 so they are == and we can return. But in this case 1684 * 1685 * [MAX_SIZE+4k][MAX_SIZE+4k] 1686 * 1687 * Each range on their own accounts for 2 extents, but merged together 1688 * they are only 3 extents worth of accounting, so we need to drop in 1689 * this case. 1690 */ 1691 old_size = other->end - other->start + 1; 1692 num_extents = count_max_extents(old_size); 1693 old_size = new->end - new->start + 1; 1694 num_extents += count_max_extents(old_size); 1695 if (count_max_extents(new_size) >= num_extents) 1696 return; 1697 1698 spin_lock(&BTRFS_I(inode)->lock); 1699 BTRFS_I(inode)->outstanding_extents--; 1700 spin_unlock(&BTRFS_I(inode)->lock); 1701 } 1702 1703 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1704 struct inode *inode) 1705 { 1706 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1707 1708 spin_lock(&root->delalloc_lock); 1709 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1710 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1711 &root->delalloc_inodes); 1712 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1713 &BTRFS_I(inode)->runtime_flags); 1714 root->nr_delalloc_inodes++; 1715 if (root->nr_delalloc_inodes == 1) { 1716 spin_lock(&fs_info->delalloc_root_lock); 1717 BUG_ON(!list_empty(&root->delalloc_root)); 1718 list_add_tail(&root->delalloc_root, 1719 &fs_info->delalloc_roots); 1720 spin_unlock(&fs_info->delalloc_root_lock); 1721 } 1722 } 1723 spin_unlock(&root->delalloc_lock); 1724 } 1725 1726 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1727 struct btrfs_inode *inode) 1728 { 1729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1730 1731 spin_lock(&root->delalloc_lock); 1732 if (!list_empty(&inode->delalloc_inodes)) { 1733 list_del_init(&inode->delalloc_inodes); 1734 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1735 &inode->runtime_flags); 1736 root->nr_delalloc_inodes--; 1737 if (!root->nr_delalloc_inodes) { 1738 spin_lock(&fs_info->delalloc_root_lock); 1739 BUG_ON(list_empty(&root->delalloc_root)); 1740 list_del_init(&root->delalloc_root); 1741 spin_unlock(&fs_info->delalloc_root_lock); 1742 } 1743 } 1744 spin_unlock(&root->delalloc_lock); 1745 } 1746 1747 /* 1748 * extent_io.c set_bit_hook, used to track delayed allocation 1749 * bytes in this file, and to maintain the list of inodes that 1750 * have pending delalloc work to be done. 1751 */ 1752 static void btrfs_set_bit_hook(void *private_data, 1753 struct extent_state *state, unsigned *bits) 1754 { 1755 struct inode *inode = private_data; 1756 1757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1758 1759 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1760 WARN_ON(1); 1761 /* 1762 * set_bit and clear bit hooks normally require _irqsave/restore 1763 * but in this case, we are only testing for the DELALLOC 1764 * bit, which is only set or cleared with irqs on 1765 */ 1766 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1767 struct btrfs_root *root = BTRFS_I(inode)->root; 1768 u64 len = state->end + 1 - state->start; 1769 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1770 1771 if (*bits & EXTENT_FIRST_DELALLOC) { 1772 *bits &= ~EXTENT_FIRST_DELALLOC; 1773 } else { 1774 spin_lock(&BTRFS_I(inode)->lock); 1775 BTRFS_I(inode)->outstanding_extents++; 1776 spin_unlock(&BTRFS_I(inode)->lock); 1777 } 1778 1779 /* For sanity tests */ 1780 if (btrfs_is_testing(fs_info)) 1781 return; 1782 1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1784 fs_info->delalloc_batch); 1785 spin_lock(&BTRFS_I(inode)->lock); 1786 BTRFS_I(inode)->delalloc_bytes += len; 1787 if (*bits & EXTENT_DEFRAG) 1788 BTRFS_I(inode)->defrag_bytes += len; 1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1790 &BTRFS_I(inode)->runtime_flags)) 1791 btrfs_add_delalloc_inodes(root, inode); 1792 spin_unlock(&BTRFS_I(inode)->lock); 1793 } 1794 1795 if (!(state->state & EXTENT_DELALLOC_NEW) && 1796 (*bits & EXTENT_DELALLOC_NEW)) { 1797 spin_lock(&BTRFS_I(inode)->lock); 1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1799 state->start; 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 } 1802 } 1803 1804 /* 1805 * extent_io.c clear_bit_hook, see set_bit_hook for why 1806 */ 1807 static void btrfs_clear_bit_hook(void *private_data, 1808 struct extent_state *state, 1809 unsigned *bits) 1810 { 1811 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1813 u64 len = state->end + 1 - state->start; 1814 u32 num_extents = count_max_extents(len); 1815 1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1817 spin_lock(&inode->lock); 1818 inode->defrag_bytes -= len; 1819 spin_unlock(&inode->lock); 1820 } 1821 1822 /* 1823 * set_bit and clear bit hooks normally require _irqsave/restore 1824 * but in this case, we are only testing for the DELALLOC 1825 * bit, which is only set or cleared with irqs on 1826 */ 1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1828 struct btrfs_root *root = inode->root; 1829 bool do_list = !btrfs_is_free_space_inode(inode); 1830 1831 if (*bits & EXTENT_FIRST_DELALLOC) { 1832 *bits &= ~EXTENT_FIRST_DELALLOC; 1833 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) { 1834 spin_lock(&inode->lock); 1835 inode->outstanding_extents -= num_extents; 1836 spin_unlock(&inode->lock); 1837 } 1838 1839 /* 1840 * We don't reserve metadata space for space cache inodes so we 1841 * don't need to call dellalloc_release_metadata if there is an 1842 * error. 1843 */ 1844 if (*bits & EXTENT_CLEAR_META_RESV && 1845 root != fs_info->tree_root) 1846 btrfs_delalloc_release_metadata(inode, len); 1847 1848 /* For sanity tests. */ 1849 if (btrfs_is_testing(fs_info)) 1850 return; 1851 1852 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1853 do_list && !(state->state & EXTENT_NORESERVE) && 1854 (*bits & EXTENT_CLEAR_DATA_RESV)) 1855 btrfs_free_reserved_data_space_noquota( 1856 &inode->vfs_inode, 1857 state->start, len); 1858 1859 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1860 fs_info->delalloc_batch); 1861 spin_lock(&inode->lock); 1862 inode->delalloc_bytes -= len; 1863 if (do_list && inode->delalloc_bytes == 0 && 1864 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1865 &inode->runtime_flags)) 1866 btrfs_del_delalloc_inode(root, inode); 1867 spin_unlock(&inode->lock); 1868 } 1869 1870 if ((state->state & EXTENT_DELALLOC_NEW) && 1871 (*bits & EXTENT_DELALLOC_NEW)) { 1872 spin_lock(&inode->lock); 1873 ASSERT(inode->new_delalloc_bytes >= len); 1874 inode->new_delalloc_bytes -= len; 1875 spin_unlock(&inode->lock); 1876 } 1877 } 1878 1879 /* 1880 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1881 * we don't create bios that span stripes or chunks 1882 * 1883 * return 1 if page cannot be merged to bio 1884 * return 0 if page can be merged to bio 1885 * return error otherwise 1886 */ 1887 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1888 size_t size, struct bio *bio, 1889 unsigned long bio_flags) 1890 { 1891 struct inode *inode = page->mapping->host; 1892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1893 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1894 u64 length = 0; 1895 u64 map_length; 1896 int ret; 1897 1898 if (bio_flags & EXTENT_BIO_COMPRESSED) 1899 return 0; 1900 1901 length = bio->bi_iter.bi_size; 1902 map_length = length; 1903 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1904 NULL, 0); 1905 if (ret < 0) 1906 return ret; 1907 if (map_length < length + size) 1908 return 1; 1909 return 0; 1910 } 1911 1912 /* 1913 * in order to insert checksums into the metadata in large chunks, 1914 * we wait until bio submission time. All the pages in the bio are 1915 * checksummed and sums are attached onto the ordered extent record. 1916 * 1917 * At IO completion time the cums attached on the ordered extent record 1918 * are inserted into the btree 1919 */ 1920 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio, 1921 int mirror_num, unsigned long bio_flags, 1922 u64 bio_offset) 1923 { 1924 struct inode *inode = private_data; 1925 blk_status_t ret = 0; 1926 1927 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1928 BUG_ON(ret); /* -ENOMEM */ 1929 return 0; 1930 } 1931 1932 /* 1933 * in order to insert checksums into the metadata in large chunks, 1934 * we wait until bio submission time. All the pages in the bio are 1935 * checksummed and sums are attached onto the ordered extent record. 1936 * 1937 * At IO completion time the cums attached on the ordered extent record 1938 * are inserted into the btree 1939 */ 1940 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio, 1941 int mirror_num, unsigned long bio_flags, 1942 u64 bio_offset) 1943 { 1944 struct inode *inode = private_data; 1945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1946 blk_status_t ret; 1947 1948 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1949 if (ret) { 1950 bio->bi_status = ret; 1951 bio_endio(bio); 1952 } 1953 return ret; 1954 } 1955 1956 /* 1957 * extent_io.c submission hook. This does the right thing for csum calculation 1958 * on write, or reading the csums from the tree before a read 1959 */ 1960 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1961 int mirror_num, unsigned long bio_flags, 1962 u64 bio_offset) 1963 { 1964 struct inode *inode = private_data; 1965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1966 struct btrfs_root *root = BTRFS_I(inode)->root; 1967 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1968 blk_status_t ret = 0; 1969 int skip_sum; 1970 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1971 1972 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1973 1974 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1975 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1976 1977 if (bio_op(bio) != REQ_OP_WRITE) { 1978 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1979 if (ret) 1980 goto out; 1981 1982 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1983 ret = btrfs_submit_compressed_read(inode, bio, 1984 mirror_num, 1985 bio_flags); 1986 goto out; 1987 } else if (!skip_sum) { 1988 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1989 if (ret) 1990 goto out; 1991 } 1992 goto mapit; 1993 } else if (async && !skip_sum) { 1994 /* csum items have already been cloned */ 1995 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1996 goto mapit; 1997 /* we're doing a write, do the async checksumming */ 1998 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 1999 bio_offset, inode, 2000 __btrfs_submit_bio_start, 2001 __btrfs_submit_bio_done); 2002 goto out; 2003 } else if (!skip_sum) { 2004 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2005 if (ret) 2006 goto out; 2007 } 2008 2009 mapit: 2010 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2011 2012 out: 2013 if (ret) { 2014 bio->bi_status = ret; 2015 bio_endio(bio); 2016 } 2017 return ret; 2018 } 2019 2020 /* 2021 * given a list of ordered sums record them in the inode. This happens 2022 * at IO completion time based on sums calculated at bio submission time. 2023 */ 2024 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2025 struct inode *inode, struct list_head *list) 2026 { 2027 struct btrfs_ordered_sum *sum; 2028 2029 list_for_each_entry(sum, list, list) { 2030 trans->adding_csums = 1; 2031 btrfs_csum_file_blocks(trans, 2032 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2033 trans->adding_csums = 0; 2034 } 2035 return 0; 2036 } 2037 2038 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2039 struct extent_state **cached_state, int dedupe) 2040 { 2041 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2042 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2043 cached_state); 2044 } 2045 2046 /* see btrfs_writepage_start_hook for details on why this is required */ 2047 struct btrfs_writepage_fixup { 2048 struct page *page; 2049 struct btrfs_work work; 2050 }; 2051 2052 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2053 { 2054 struct btrfs_writepage_fixup *fixup; 2055 struct btrfs_ordered_extent *ordered; 2056 struct extent_state *cached_state = NULL; 2057 struct extent_changeset *data_reserved = NULL; 2058 struct page *page; 2059 struct inode *inode; 2060 u64 page_start; 2061 u64 page_end; 2062 int ret; 2063 2064 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2065 page = fixup->page; 2066 again: 2067 lock_page(page); 2068 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2069 ClearPageChecked(page); 2070 goto out_page; 2071 } 2072 2073 inode = page->mapping->host; 2074 page_start = page_offset(page); 2075 page_end = page_offset(page) + PAGE_SIZE - 1; 2076 2077 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2078 &cached_state); 2079 2080 /* already ordered? We're done */ 2081 if (PagePrivate2(page)) 2082 goto out; 2083 2084 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2085 PAGE_SIZE); 2086 if (ordered) { 2087 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2088 page_end, &cached_state, GFP_NOFS); 2089 unlock_page(page); 2090 btrfs_start_ordered_extent(inode, ordered, 1); 2091 btrfs_put_ordered_extent(ordered); 2092 goto again; 2093 } 2094 2095 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2096 PAGE_SIZE); 2097 if (ret) { 2098 mapping_set_error(page->mapping, ret); 2099 end_extent_writepage(page, ret, page_start, page_end); 2100 ClearPageChecked(page); 2101 goto out; 2102 } 2103 2104 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state, 2105 0); 2106 ClearPageChecked(page); 2107 set_page_dirty(page); 2108 out: 2109 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2110 &cached_state, GFP_NOFS); 2111 out_page: 2112 unlock_page(page); 2113 put_page(page); 2114 kfree(fixup); 2115 extent_changeset_free(data_reserved); 2116 } 2117 2118 /* 2119 * There are a few paths in the higher layers of the kernel that directly 2120 * set the page dirty bit without asking the filesystem if it is a 2121 * good idea. This causes problems because we want to make sure COW 2122 * properly happens and the data=ordered rules are followed. 2123 * 2124 * In our case any range that doesn't have the ORDERED bit set 2125 * hasn't been properly setup for IO. We kick off an async process 2126 * to fix it up. The async helper will wait for ordered extents, set 2127 * the delalloc bit and make it safe to write the page. 2128 */ 2129 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2130 { 2131 struct inode *inode = page->mapping->host; 2132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2133 struct btrfs_writepage_fixup *fixup; 2134 2135 /* this page is properly in the ordered list */ 2136 if (TestClearPagePrivate2(page)) 2137 return 0; 2138 2139 if (PageChecked(page)) 2140 return -EAGAIN; 2141 2142 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2143 if (!fixup) 2144 return -EAGAIN; 2145 2146 SetPageChecked(page); 2147 get_page(page); 2148 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2149 btrfs_writepage_fixup_worker, NULL, NULL); 2150 fixup->page = page; 2151 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2152 return -EBUSY; 2153 } 2154 2155 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2156 struct inode *inode, u64 file_pos, 2157 u64 disk_bytenr, u64 disk_num_bytes, 2158 u64 num_bytes, u64 ram_bytes, 2159 u8 compression, u8 encryption, 2160 u16 other_encoding, int extent_type) 2161 { 2162 struct btrfs_root *root = BTRFS_I(inode)->root; 2163 struct btrfs_file_extent_item *fi; 2164 struct btrfs_path *path; 2165 struct extent_buffer *leaf; 2166 struct btrfs_key ins; 2167 u64 qg_released; 2168 int extent_inserted = 0; 2169 int ret; 2170 2171 path = btrfs_alloc_path(); 2172 if (!path) 2173 return -ENOMEM; 2174 2175 /* 2176 * we may be replacing one extent in the tree with another. 2177 * The new extent is pinned in the extent map, and we don't want 2178 * to drop it from the cache until it is completely in the btree. 2179 * 2180 * So, tell btrfs_drop_extents to leave this extent in the cache. 2181 * the caller is expected to unpin it and allow it to be merged 2182 * with the others. 2183 */ 2184 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2185 file_pos + num_bytes, NULL, 0, 2186 1, sizeof(*fi), &extent_inserted); 2187 if (ret) 2188 goto out; 2189 2190 if (!extent_inserted) { 2191 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2192 ins.offset = file_pos; 2193 ins.type = BTRFS_EXTENT_DATA_KEY; 2194 2195 path->leave_spinning = 1; 2196 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2197 sizeof(*fi)); 2198 if (ret) 2199 goto out; 2200 } 2201 leaf = path->nodes[0]; 2202 fi = btrfs_item_ptr(leaf, path->slots[0], 2203 struct btrfs_file_extent_item); 2204 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2205 btrfs_set_file_extent_type(leaf, fi, extent_type); 2206 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2207 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2208 btrfs_set_file_extent_offset(leaf, fi, 0); 2209 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2210 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2211 btrfs_set_file_extent_compression(leaf, fi, compression); 2212 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2213 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2214 2215 btrfs_mark_buffer_dirty(leaf); 2216 btrfs_release_path(path); 2217 2218 inode_add_bytes(inode, num_bytes); 2219 2220 ins.objectid = disk_bytenr; 2221 ins.offset = disk_num_bytes; 2222 ins.type = BTRFS_EXTENT_ITEM_KEY; 2223 2224 /* 2225 * Release the reserved range from inode dirty range map, as it is 2226 * already moved into delayed_ref_head 2227 */ 2228 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2229 if (ret < 0) 2230 goto out; 2231 qg_released = ret; 2232 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid, 2233 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins); 2234 out: 2235 btrfs_free_path(path); 2236 2237 return ret; 2238 } 2239 2240 /* snapshot-aware defrag */ 2241 struct sa_defrag_extent_backref { 2242 struct rb_node node; 2243 struct old_sa_defrag_extent *old; 2244 u64 root_id; 2245 u64 inum; 2246 u64 file_pos; 2247 u64 extent_offset; 2248 u64 num_bytes; 2249 u64 generation; 2250 }; 2251 2252 struct old_sa_defrag_extent { 2253 struct list_head list; 2254 struct new_sa_defrag_extent *new; 2255 2256 u64 extent_offset; 2257 u64 bytenr; 2258 u64 offset; 2259 u64 len; 2260 int count; 2261 }; 2262 2263 struct new_sa_defrag_extent { 2264 struct rb_root root; 2265 struct list_head head; 2266 struct btrfs_path *path; 2267 struct inode *inode; 2268 u64 file_pos; 2269 u64 len; 2270 u64 bytenr; 2271 u64 disk_len; 2272 u8 compress_type; 2273 }; 2274 2275 static int backref_comp(struct sa_defrag_extent_backref *b1, 2276 struct sa_defrag_extent_backref *b2) 2277 { 2278 if (b1->root_id < b2->root_id) 2279 return -1; 2280 else if (b1->root_id > b2->root_id) 2281 return 1; 2282 2283 if (b1->inum < b2->inum) 2284 return -1; 2285 else if (b1->inum > b2->inum) 2286 return 1; 2287 2288 if (b1->file_pos < b2->file_pos) 2289 return -1; 2290 else if (b1->file_pos > b2->file_pos) 2291 return 1; 2292 2293 /* 2294 * [------------------------------] ===> (a range of space) 2295 * |<--->| |<---->| =============> (fs/file tree A) 2296 * |<---------------------------->| ===> (fs/file tree B) 2297 * 2298 * A range of space can refer to two file extents in one tree while 2299 * refer to only one file extent in another tree. 2300 * 2301 * So we may process a disk offset more than one time(two extents in A) 2302 * and locate at the same extent(one extent in B), then insert two same 2303 * backrefs(both refer to the extent in B). 2304 */ 2305 return 0; 2306 } 2307 2308 static void backref_insert(struct rb_root *root, 2309 struct sa_defrag_extent_backref *backref) 2310 { 2311 struct rb_node **p = &root->rb_node; 2312 struct rb_node *parent = NULL; 2313 struct sa_defrag_extent_backref *entry; 2314 int ret; 2315 2316 while (*p) { 2317 parent = *p; 2318 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2319 2320 ret = backref_comp(backref, entry); 2321 if (ret < 0) 2322 p = &(*p)->rb_left; 2323 else 2324 p = &(*p)->rb_right; 2325 } 2326 2327 rb_link_node(&backref->node, parent, p); 2328 rb_insert_color(&backref->node, root); 2329 } 2330 2331 /* 2332 * Note the backref might has changed, and in this case we just return 0. 2333 */ 2334 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2335 void *ctx) 2336 { 2337 struct btrfs_file_extent_item *extent; 2338 struct old_sa_defrag_extent *old = ctx; 2339 struct new_sa_defrag_extent *new = old->new; 2340 struct btrfs_path *path = new->path; 2341 struct btrfs_key key; 2342 struct btrfs_root *root; 2343 struct sa_defrag_extent_backref *backref; 2344 struct extent_buffer *leaf; 2345 struct inode *inode = new->inode; 2346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2347 int slot; 2348 int ret; 2349 u64 extent_offset; 2350 u64 num_bytes; 2351 2352 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2353 inum == btrfs_ino(BTRFS_I(inode))) 2354 return 0; 2355 2356 key.objectid = root_id; 2357 key.type = BTRFS_ROOT_ITEM_KEY; 2358 key.offset = (u64)-1; 2359 2360 root = btrfs_read_fs_root_no_name(fs_info, &key); 2361 if (IS_ERR(root)) { 2362 if (PTR_ERR(root) == -ENOENT) 2363 return 0; 2364 WARN_ON(1); 2365 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2366 inum, offset, root_id); 2367 return PTR_ERR(root); 2368 } 2369 2370 key.objectid = inum; 2371 key.type = BTRFS_EXTENT_DATA_KEY; 2372 if (offset > (u64)-1 << 32) 2373 key.offset = 0; 2374 else 2375 key.offset = offset; 2376 2377 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2378 if (WARN_ON(ret < 0)) 2379 return ret; 2380 ret = 0; 2381 2382 while (1) { 2383 cond_resched(); 2384 2385 leaf = path->nodes[0]; 2386 slot = path->slots[0]; 2387 2388 if (slot >= btrfs_header_nritems(leaf)) { 2389 ret = btrfs_next_leaf(root, path); 2390 if (ret < 0) { 2391 goto out; 2392 } else if (ret > 0) { 2393 ret = 0; 2394 goto out; 2395 } 2396 continue; 2397 } 2398 2399 path->slots[0]++; 2400 2401 btrfs_item_key_to_cpu(leaf, &key, slot); 2402 2403 if (key.objectid > inum) 2404 goto out; 2405 2406 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2407 continue; 2408 2409 extent = btrfs_item_ptr(leaf, slot, 2410 struct btrfs_file_extent_item); 2411 2412 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2413 continue; 2414 2415 /* 2416 * 'offset' refers to the exact key.offset, 2417 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2418 * (key.offset - extent_offset). 2419 */ 2420 if (key.offset != offset) 2421 continue; 2422 2423 extent_offset = btrfs_file_extent_offset(leaf, extent); 2424 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2425 2426 if (extent_offset >= old->extent_offset + old->offset + 2427 old->len || extent_offset + num_bytes <= 2428 old->extent_offset + old->offset) 2429 continue; 2430 break; 2431 } 2432 2433 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2434 if (!backref) { 2435 ret = -ENOENT; 2436 goto out; 2437 } 2438 2439 backref->root_id = root_id; 2440 backref->inum = inum; 2441 backref->file_pos = offset; 2442 backref->num_bytes = num_bytes; 2443 backref->extent_offset = extent_offset; 2444 backref->generation = btrfs_file_extent_generation(leaf, extent); 2445 backref->old = old; 2446 backref_insert(&new->root, backref); 2447 old->count++; 2448 out: 2449 btrfs_release_path(path); 2450 WARN_ON(ret); 2451 return ret; 2452 } 2453 2454 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2455 struct new_sa_defrag_extent *new) 2456 { 2457 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2458 struct old_sa_defrag_extent *old, *tmp; 2459 int ret; 2460 2461 new->path = path; 2462 2463 list_for_each_entry_safe(old, tmp, &new->head, list) { 2464 ret = iterate_inodes_from_logical(old->bytenr + 2465 old->extent_offset, fs_info, 2466 path, record_one_backref, 2467 old); 2468 if (ret < 0 && ret != -ENOENT) 2469 return false; 2470 2471 /* no backref to be processed for this extent */ 2472 if (!old->count) { 2473 list_del(&old->list); 2474 kfree(old); 2475 } 2476 } 2477 2478 if (list_empty(&new->head)) 2479 return false; 2480 2481 return true; 2482 } 2483 2484 static int relink_is_mergable(struct extent_buffer *leaf, 2485 struct btrfs_file_extent_item *fi, 2486 struct new_sa_defrag_extent *new) 2487 { 2488 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2489 return 0; 2490 2491 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2492 return 0; 2493 2494 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2495 return 0; 2496 2497 if (btrfs_file_extent_encryption(leaf, fi) || 2498 btrfs_file_extent_other_encoding(leaf, fi)) 2499 return 0; 2500 2501 return 1; 2502 } 2503 2504 /* 2505 * Note the backref might has changed, and in this case we just return 0. 2506 */ 2507 static noinline int relink_extent_backref(struct btrfs_path *path, 2508 struct sa_defrag_extent_backref *prev, 2509 struct sa_defrag_extent_backref *backref) 2510 { 2511 struct btrfs_file_extent_item *extent; 2512 struct btrfs_file_extent_item *item; 2513 struct btrfs_ordered_extent *ordered; 2514 struct btrfs_trans_handle *trans; 2515 struct btrfs_root *root; 2516 struct btrfs_key key; 2517 struct extent_buffer *leaf; 2518 struct old_sa_defrag_extent *old = backref->old; 2519 struct new_sa_defrag_extent *new = old->new; 2520 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2521 struct inode *inode; 2522 struct extent_state *cached = NULL; 2523 int ret = 0; 2524 u64 start; 2525 u64 len; 2526 u64 lock_start; 2527 u64 lock_end; 2528 bool merge = false; 2529 int index; 2530 2531 if (prev && prev->root_id == backref->root_id && 2532 prev->inum == backref->inum && 2533 prev->file_pos + prev->num_bytes == backref->file_pos) 2534 merge = true; 2535 2536 /* step 1: get root */ 2537 key.objectid = backref->root_id; 2538 key.type = BTRFS_ROOT_ITEM_KEY; 2539 key.offset = (u64)-1; 2540 2541 index = srcu_read_lock(&fs_info->subvol_srcu); 2542 2543 root = btrfs_read_fs_root_no_name(fs_info, &key); 2544 if (IS_ERR(root)) { 2545 srcu_read_unlock(&fs_info->subvol_srcu, index); 2546 if (PTR_ERR(root) == -ENOENT) 2547 return 0; 2548 return PTR_ERR(root); 2549 } 2550 2551 if (btrfs_root_readonly(root)) { 2552 srcu_read_unlock(&fs_info->subvol_srcu, index); 2553 return 0; 2554 } 2555 2556 /* step 2: get inode */ 2557 key.objectid = backref->inum; 2558 key.type = BTRFS_INODE_ITEM_KEY; 2559 key.offset = 0; 2560 2561 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2562 if (IS_ERR(inode)) { 2563 srcu_read_unlock(&fs_info->subvol_srcu, index); 2564 return 0; 2565 } 2566 2567 srcu_read_unlock(&fs_info->subvol_srcu, index); 2568 2569 /* step 3: relink backref */ 2570 lock_start = backref->file_pos; 2571 lock_end = backref->file_pos + backref->num_bytes - 1; 2572 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2573 &cached); 2574 2575 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2576 if (ordered) { 2577 btrfs_put_ordered_extent(ordered); 2578 goto out_unlock; 2579 } 2580 2581 trans = btrfs_join_transaction(root); 2582 if (IS_ERR(trans)) { 2583 ret = PTR_ERR(trans); 2584 goto out_unlock; 2585 } 2586 2587 key.objectid = backref->inum; 2588 key.type = BTRFS_EXTENT_DATA_KEY; 2589 key.offset = backref->file_pos; 2590 2591 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2592 if (ret < 0) { 2593 goto out_free_path; 2594 } else if (ret > 0) { 2595 ret = 0; 2596 goto out_free_path; 2597 } 2598 2599 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2600 struct btrfs_file_extent_item); 2601 2602 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2603 backref->generation) 2604 goto out_free_path; 2605 2606 btrfs_release_path(path); 2607 2608 start = backref->file_pos; 2609 if (backref->extent_offset < old->extent_offset + old->offset) 2610 start += old->extent_offset + old->offset - 2611 backref->extent_offset; 2612 2613 len = min(backref->extent_offset + backref->num_bytes, 2614 old->extent_offset + old->offset + old->len); 2615 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2616 2617 ret = btrfs_drop_extents(trans, root, inode, start, 2618 start + len, 1); 2619 if (ret) 2620 goto out_free_path; 2621 again: 2622 key.objectid = btrfs_ino(BTRFS_I(inode)); 2623 key.type = BTRFS_EXTENT_DATA_KEY; 2624 key.offset = start; 2625 2626 path->leave_spinning = 1; 2627 if (merge) { 2628 struct btrfs_file_extent_item *fi; 2629 u64 extent_len; 2630 struct btrfs_key found_key; 2631 2632 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2633 if (ret < 0) 2634 goto out_free_path; 2635 2636 path->slots[0]--; 2637 leaf = path->nodes[0]; 2638 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2639 2640 fi = btrfs_item_ptr(leaf, path->slots[0], 2641 struct btrfs_file_extent_item); 2642 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2643 2644 if (extent_len + found_key.offset == start && 2645 relink_is_mergable(leaf, fi, new)) { 2646 btrfs_set_file_extent_num_bytes(leaf, fi, 2647 extent_len + len); 2648 btrfs_mark_buffer_dirty(leaf); 2649 inode_add_bytes(inode, len); 2650 2651 ret = 1; 2652 goto out_free_path; 2653 } else { 2654 merge = false; 2655 btrfs_release_path(path); 2656 goto again; 2657 } 2658 } 2659 2660 ret = btrfs_insert_empty_item(trans, root, path, &key, 2661 sizeof(*extent)); 2662 if (ret) { 2663 btrfs_abort_transaction(trans, ret); 2664 goto out_free_path; 2665 } 2666 2667 leaf = path->nodes[0]; 2668 item = btrfs_item_ptr(leaf, path->slots[0], 2669 struct btrfs_file_extent_item); 2670 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2671 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2672 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2673 btrfs_set_file_extent_num_bytes(leaf, item, len); 2674 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2675 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2676 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2677 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2678 btrfs_set_file_extent_encryption(leaf, item, 0); 2679 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2680 2681 btrfs_mark_buffer_dirty(leaf); 2682 inode_add_bytes(inode, len); 2683 btrfs_release_path(path); 2684 2685 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr, 2686 new->disk_len, 0, 2687 backref->root_id, backref->inum, 2688 new->file_pos); /* start - extent_offset */ 2689 if (ret) { 2690 btrfs_abort_transaction(trans, ret); 2691 goto out_free_path; 2692 } 2693 2694 ret = 1; 2695 out_free_path: 2696 btrfs_release_path(path); 2697 path->leave_spinning = 0; 2698 btrfs_end_transaction(trans); 2699 out_unlock: 2700 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2701 &cached, GFP_NOFS); 2702 iput(inode); 2703 return ret; 2704 } 2705 2706 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2707 { 2708 struct old_sa_defrag_extent *old, *tmp; 2709 2710 if (!new) 2711 return; 2712 2713 list_for_each_entry_safe(old, tmp, &new->head, list) { 2714 kfree(old); 2715 } 2716 kfree(new); 2717 } 2718 2719 static void relink_file_extents(struct new_sa_defrag_extent *new) 2720 { 2721 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2722 struct btrfs_path *path; 2723 struct sa_defrag_extent_backref *backref; 2724 struct sa_defrag_extent_backref *prev = NULL; 2725 struct inode *inode; 2726 struct btrfs_root *root; 2727 struct rb_node *node; 2728 int ret; 2729 2730 inode = new->inode; 2731 root = BTRFS_I(inode)->root; 2732 2733 path = btrfs_alloc_path(); 2734 if (!path) 2735 return; 2736 2737 if (!record_extent_backrefs(path, new)) { 2738 btrfs_free_path(path); 2739 goto out; 2740 } 2741 btrfs_release_path(path); 2742 2743 while (1) { 2744 node = rb_first(&new->root); 2745 if (!node) 2746 break; 2747 rb_erase(node, &new->root); 2748 2749 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2750 2751 ret = relink_extent_backref(path, prev, backref); 2752 WARN_ON(ret < 0); 2753 2754 kfree(prev); 2755 2756 if (ret == 1) 2757 prev = backref; 2758 else 2759 prev = NULL; 2760 cond_resched(); 2761 } 2762 kfree(prev); 2763 2764 btrfs_free_path(path); 2765 out: 2766 free_sa_defrag_extent(new); 2767 2768 atomic_dec(&fs_info->defrag_running); 2769 wake_up(&fs_info->transaction_wait); 2770 } 2771 2772 static struct new_sa_defrag_extent * 2773 record_old_file_extents(struct inode *inode, 2774 struct btrfs_ordered_extent *ordered) 2775 { 2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2777 struct btrfs_root *root = BTRFS_I(inode)->root; 2778 struct btrfs_path *path; 2779 struct btrfs_key key; 2780 struct old_sa_defrag_extent *old; 2781 struct new_sa_defrag_extent *new; 2782 int ret; 2783 2784 new = kmalloc(sizeof(*new), GFP_NOFS); 2785 if (!new) 2786 return NULL; 2787 2788 new->inode = inode; 2789 new->file_pos = ordered->file_offset; 2790 new->len = ordered->len; 2791 new->bytenr = ordered->start; 2792 new->disk_len = ordered->disk_len; 2793 new->compress_type = ordered->compress_type; 2794 new->root = RB_ROOT; 2795 INIT_LIST_HEAD(&new->head); 2796 2797 path = btrfs_alloc_path(); 2798 if (!path) 2799 goto out_kfree; 2800 2801 key.objectid = btrfs_ino(BTRFS_I(inode)); 2802 key.type = BTRFS_EXTENT_DATA_KEY; 2803 key.offset = new->file_pos; 2804 2805 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2806 if (ret < 0) 2807 goto out_free_path; 2808 if (ret > 0 && path->slots[0] > 0) 2809 path->slots[0]--; 2810 2811 /* find out all the old extents for the file range */ 2812 while (1) { 2813 struct btrfs_file_extent_item *extent; 2814 struct extent_buffer *l; 2815 int slot; 2816 u64 num_bytes; 2817 u64 offset; 2818 u64 end; 2819 u64 disk_bytenr; 2820 u64 extent_offset; 2821 2822 l = path->nodes[0]; 2823 slot = path->slots[0]; 2824 2825 if (slot >= btrfs_header_nritems(l)) { 2826 ret = btrfs_next_leaf(root, path); 2827 if (ret < 0) 2828 goto out_free_path; 2829 else if (ret > 0) 2830 break; 2831 continue; 2832 } 2833 2834 btrfs_item_key_to_cpu(l, &key, slot); 2835 2836 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2837 break; 2838 if (key.type != BTRFS_EXTENT_DATA_KEY) 2839 break; 2840 if (key.offset >= new->file_pos + new->len) 2841 break; 2842 2843 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2844 2845 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2846 if (key.offset + num_bytes < new->file_pos) 2847 goto next; 2848 2849 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2850 if (!disk_bytenr) 2851 goto next; 2852 2853 extent_offset = btrfs_file_extent_offset(l, extent); 2854 2855 old = kmalloc(sizeof(*old), GFP_NOFS); 2856 if (!old) 2857 goto out_free_path; 2858 2859 offset = max(new->file_pos, key.offset); 2860 end = min(new->file_pos + new->len, key.offset + num_bytes); 2861 2862 old->bytenr = disk_bytenr; 2863 old->extent_offset = extent_offset; 2864 old->offset = offset - key.offset; 2865 old->len = end - offset; 2866 old->new = new; 2867 old->count = 0; 2868 list_add_tail(&old->list, &new->head); 2869 next: 2870 path->slots[0]++; 2871 cond_resched(); 2872 } 2873 2874 btrfs_free_path(path); 2875 atomic_inc(&fs_info->defrag_running); 2876 2877 return new; 2878 2879 out_free_path: 2880 btrfs_free_path(path); 2881 out_kfree: 2882 free_sa_defrag_extent(new); 2883 return NULL; 2884 } 2885 2886 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2887 u64 start, u64 len) 2888 { 2889 struct btrfs_block_group_cache *cache; 2890 2891 cache = btrfs_lookup_block_group(fs_info, start); 2892 ASSERT(cache); 2893 2894 spin_lock(&cache->lock); 2895 cache->delalloc_bytes -= len; 2896 spin_unlock(&cache->lock); 2897 2898 btrfs_put_block_group(cache); 2899 } 2900 2901 /* as ordered data IO finishes, this gets called so we can finish 2902 * an ordered extent if the range of bytes in the file it covers are 2903 * fully written. 2904 */ 2905 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2906 { 2907 struct inode *inode = ordered_extent->inode; 2908 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2909 struct btrfs_root *root = BTRFS_I(inode)->root; 2910 struct btrfs_trans_handle *trans = NULL; 2911 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2912 struct extent_state *cached_state = NULL; 2913 struct new_sa_defrag_extent *new = NULL; 2914 int compress_type = 0; 2915 int ret = 0; 2916 u64 logical_len = ordered_extent->len; 2917 bool nolock; 2918 bool truncated = false; 2919 bool range_locked = false; 2920 bool clear_new_delalloc_bytes = false; 2921 2922 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2923 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2924 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2925 clear_new_delalloc_bytes = true; 2926 2927 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2928 2929 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2930 ret = -EIO; 2931 goto out; 2932 } 2933 2934 btrfs_free_io_failure_record(BTRFS_I(inode), 2935 ordered_extent->file_offset, 2936 ordered_extent->file_offset + 2937 ordered_extent->len - 1); 2938 2939 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2940 truncated = true; 2941 logical_len = ordered_extent->truncated_len; 2942 /* Truncated the entire extent, don't bother adding */ 2943 if (!logical_len) 2944 goto out; 2945 } 2946 2947 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2948 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2949 2950 /* 2951 * For mwrite(mmap + memset to write) case, we still reserve 2952 * space for NOCOW range. 2953 * As NOCOW won't cause a new delayed ref, just free the space 2954 */ 2955 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2956 ordered_extent->len); 2957 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2958 if (nolock) 2959 trans = btrfs_join_transaction_nolock(root); 2960 else 2961 trans = btrfs_join_transaction(root); 2962 if (IS_ERR(trans)) { 2963 ret = PTR_ERR(trans); 2964 trans = NULL; 2965 goto out; 2966 } 2967 trans->block_rsv = &fs_info->delalloc_block_rsv; 2968 ret = btrfs_update_inode_fallback(trans, root, inode); 2969 if (ret) /* -ENOMEM or corruption */ 2970 btrfs_abort_transaction(trans, ret); 2971 goto out; 2972 } 2973 2974 range_locked = true; 2975 lock_extent_bits(io_tree, ordered_extent->file_offset, 2976 ordered_extent->file_offset + ordered_extent->len - 1, 2977 &cached_state); 2978 2979 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2980 ordered_extent->file_offset + ordered_extent->len - 1, 2981 EXTENT_DEFRAG, 0, cached_state); 2982 if (ret) { 2983 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2984 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2985 /* the inode is shared */ 2986 new = record_old_file_extents(inode, ordered_extent); 2987 2988 clear_extent_bit(io_tree, ordered_extent->file_offset, 2989 ordered_extent->file_offset + ordered_extent->len - 1, 2990 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2991 } 2992 2993 if (nolock) 2994 trans = btrfs_join_transaction_nolock(root); 2995 else 2996 trans = btrfs_join_transaction(root); 2997 if (IS_ERR(trans)) { 2998 ret = PTR_ERR(trans); 2999 trans = NULL; 3000 goto out; 3001 } 3002 3003 trans->block_rsv = &fs_info->delalloc_block_rsv; 3004 3005 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3006 compress_type = ordered_extent->compress_type; 3007 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3008 BUG_ON(compress_type); 3009 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3010 ordered_extent->file_offset, 3011 ordered_extent->file_offset + 3012 logical_len); 3013 } else { 3014 BUG_ON(root == fs_info->tree_root); 3015 ret = insert_reserved_file_extent(trans, inode, 3016 ordered_extent->file_offset, 3017 ordered_extent->start, 3018 ordered_extent->disk_len, 3019 logical_len, logical_len, 3020 compress_type, 0, 0, 3021 BTRFS_FILE_EXTENT_REG); 3022 if (!ret) 3023 btrfs_release_delalloc_bytes(fs_info, 3024 ordered_extent->start, 3025 ordered_extent->disk_len); 3026 } 3027 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3028 ordered_extent->file_offset, ordered_extent->len, 3029 trans->transid); 3030 if (ret < 0) { 3031 btrfs_abort_transaction(trans, ret); 3032 goto out; 3033 } 3034 3035 add_pending_csums(trans, inode, &ordered_extent->list); 3036 3037 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3038 ret = btrfs_update_inode_fallback(trans, root, inode); 3039 if (ret) { /* -ENOMEM or corruption */ 3040 btrfs_abort_transaction(trans, ret); 3041 goto out; 3042 } 3043 ret = 0; 3044 out: 3045 if (range_locked || clear_new_delalloc_bytes) { 3046 unsigned int clear_bits = 0; 3047 3048 if (range_locked) 3049 clear_bits |= EXTENT_LOCKED; 3050 if (clear_new_delalloc_bytes) 3051 clear_bits |= EXTENT_DELALLOC_NEW; 3052 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3053 ordered_extent->file_offset, 3054 ordered_extent->file_offset + 3055 ordered_extent->len - 1, 3056 clear_bits, 3057 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3058 0, &cached_state, GFP_NOFS); 3059 } 3060 3061 if (root != fs_info->tree_root) 3062 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3063 ordered_extent->len); 3064 if (trans) 3065 btrfs_end_transaction(trans); 3066 3067 if (ret || truncated) { 3068 u64 start, end; 3069 3070 if (truncated) 3071 start = ordered_extent->file_offset + logical_len; 3072 else 3073 start = ordered_extent->file_offset; 3074 end = ordered_extent->file_offset + ordered_extent->len - 1; 3075 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3076 3077 /* Drop the cache for the part of the extent we didn't write. */ 3078 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3079 3080 /* 3081 * If the ordered extent had an IOERR or something else went 3082 * wrong we need to return the space for this ordered extent 3083 * back to the allocator. We only free the extent in the 3084 * truncated case if we didn't write out the extent at all. 3085 */ 3086 if ((ret || !logical_len) && 3087 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3088 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3089 btrfs_free_reserved_extent(fs_info, 3090 ordered_extent->start, 3091 ordered_extent->disk_len, 1); 3092 } 3093 3094 3095 /* 3096 * This needs to be done to make sure anybody waiting knows we are done 3097 * updating everything for this ordered extent. 3098 */ 3099 btrfs_remove_ordered_extent(inode, ordered_extent); 3100 3101 /* for snapshot-aware defrag */ 3102 if (new) { 3103 if (ret) { 3104 free_sa_defrag_extent(new); 3105 atomic_dec(&fs_info->defrag_running); 3106 } else { 3107 relink_file_extents(new); 3108 } 3109 } 3110 3111 /* once for us */ 3112 btrfs_put_ordered_extent(ordered_extent); 3113 /* once for the tree */ 3114 btrfs_put_ordered_extent(ordered_extent); 3115 3116 return ret; 3117 } 3118 3119 static void finish_ordered_fn(struct btrfs_work *work) 3120 { 3121 struct btrfs_ordered_extent *ordered_extent; 3122 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3123 btrfs_finish_ordered_io(ordered_extent); 3124 } 3125 3126 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3127 struct extent_state *state, int uptodate) 3128 { 3129 struct inode *inode = page->mapping->host; 3130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3131 struct btrfs_ordered_extent *ordered_extent = NULL; 3132 struct btrfs_workqueue *wq; 3133 btrfs_work_func_t func; 3134 3135 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3136 3137 ClearPagePrivate2(page); 3138 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3139 end - start + 1, uptodate)) 3140 return; 3141 3142 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3143 wq = fs_info->endio_freespace_worker; 3144 func = btrfs_freespace_write_helper; 3145 } else { 3146 wq = fs_info->endio_write_workers; 3147 func = btrfs_endio_write_helper; 3148 } 3149 3150 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3151 NULL); 3152 btrfs_queue_work(wq, &ordered_extent->work); 3153 } 3154 3155 static int __readpage_endio_check(struct inode *inode, 3156 struct btrfs_io_bio *io_bio, 3157 int icsum, struct page *page, 3158 int pgoff, u64 start, size_t len) 3159 { 3160 char *kaddr; 3161 u32 csum_expected; 3162 u32 csum = ~(u32)0; 3163 3164 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3165 3166 kaddr = kmap_atomic(page); 3167 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3168 btrfs_csum_final(csum, (u8 *)&csum); 3169 if (csum != csum_expected) 3170 goto zeroit; 3171 3172 kunmap_atomic(kaddr); 3173 return 0; 3174 zeroit: 3175 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3176 io_bio->mirror_num); 3177 memset(kaddr + pgoff, 1, len); 3178 flush_dcache_page(page); 3179 kunmap_atomic(kaddr); 3180 return -EIO; 3181 } 3182 3183 /* 3184 * when reads are done, we need to check csums to verify the data is correct 3185 * if there's a match, we allow the bio to finish. If not, the code in 3186 * extent_io.c will try to find good copies for us. 3187 */ 3188 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3189 u64 phy_offset, struct page *page, 3190 u64 start, u64 end, int mirror) 3191 { 3192 size_t offset = start - page_offset(page); 3193 struct inode *inode = page->mapping->host; 3194 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3195 struct btrfs_root *root = BTRFS_I(inode)->root; 3196 3197 if (PageChecked(page)) { 3198 ClearPageChecked(page); 3199 return 0; 3200 } 3201 3202 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3203 return 0; 3204 3205 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3206 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3207 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3208 return 0; 3209 } 3210 3211 phy_offset >>= inode->i_sb->s_blocksize_bits; 3212 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3213 start, (size_t)(end - start + 1)); 3214 } 3215 3216 void btrfs_add_delayed_iput(struct inode *inode) 3217 { 3218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3219 struct btrfs_inode *binode = BTRFS_I(inode); 3220 3221 if (atomic_add_unless(&inode->i_count, -1, 1)) 3222 return; 3223 3224 spin_lock(&fs_info->delayed_iput_lock); 3225 if (binode->delayed_iput_count == 0) { 3226 ASSERT(list_empty(&binode->delayed_iput)); 3227 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3228 } else { 3229 binode->delayed_iput_count++; 3230 } 3231 spin_unlock(&fs_info->delayed_iput_lock); 3232 } 3233 3234 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3235 { 3236 3237 spin_lock(&fs_info->delayed_iput_lock); 3238 while (!list_empty(&fs_info->delayed_iputs)) { 3239 struct btrfs_inode *inode; 3240 3241 inode = list_first_entry(&fs_info->delayed_iputs, 3242 struct btrfs_inode, delayed_iput); 3243 if (inode->delayed_iput_count) { 3244 inode->delayed_iput_count--; 3245 list_move_tail(&inode->delayed_iput, 3246 &fs_info->delayed_iputs); 3247 } else { 3248 list_del_init(&inode->delayed_iput); 3249 } 3250 spin_unlock(&fs_info->delayed_iput_lock); 3251 iput(&inode->vfs_inode); 3252 spin_lock(&fs_info->delayed_iput_lock); 3253 } 3254 spin_unlock(&fs_info->delayed_iput_lock); 3255 } 3256 3257 /* 3258 * This is called in transaction commit time. If there are no orphan 3259 * files in the subvolume, it removes orphan item and frees block_rsv 3260 * structure. 3261 */ 3262 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3263 struct btrfs_root *root) 3264 { 3265 struct btrfs_fs_info *fs_info = root->fs_info; 3266 struct btrfs_block_rsv *block_rsv; 3267 int ret; 3268 3269 if (atomic_read(&root->orphan_inodes) || 3270 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3271 return; 3272 3273 spin_lock(&root->orphan_lock); 3274 if (atomic_read(&root->orphan_inodes)) { 3275 spin_unlock(&root->orphan_lock); 3276 return; 3277 } 3278 3279 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3280 spin_unlock(&root->orphan_lock); 3281 return; 3282 } 3283 3284 block_rsv = root->orphan_block_rsv; 3285 root->orphan_block_rsv = NULL; 3286 spin_unlock(&root->orphan_lock); 3287 3288 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3289 btrfs_root_refs(&root->root_item) > 0) { 3290 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3291 root->root_key.objectid); 3292 if (ret) 3293 btrfs_abort_transaction(trans, ret); 3294 else 3295 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3296 &root->state); 3297 } 3298 3299 if (block_rsv) { 3300 WARN_ON(block_rsv->size > 0); 3301 btrfs_free_block_rsv(fs_info, block_rsv); 3302 } 3303 } 3304 3305 /* 3306 * This creates an orphan entry for the given inode in case something goes 3307 * wrong in the middle of an unlink/truncate. 3308 * 3309 * NOTE: caller of this function should reserve 5 units of metadata for 3310 * this function. 3311 */ 3312 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3313 struct btrfs_inode *inode) 3314 { 3315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3316 struct btrfs_root *root = inode->root; 3317 struct btrfs_block_rsv *block_rsv = NULL; 3318 int reserve = 0; 3319 int insert = 0; 3320 int ret; 3321 3322 if (!root->orphan_block_rsv) { 3323 block_rsv = btrfs_alloc_block_rsv(fs_info, 3324 BTRFS_BLOCK_RSV_TEMP); 3325 if (!block_rsv) 3326 return -ENOMEM; 3327 } 3328 3329 spin_lock(&root->orphan_lock); 3330 if (!root->orphan_block_rsv) { 3331 root->orphan_block_rsv = block_rsv; 3332 } else if (block_rsv) { 3333 btrfs_free_block_rsv(fs_info, block_rsv); 3334 block_rsv = NULL; 3335 } 3336 3337 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3338 &inode->runtime_flags)) { 3339 #if 0 3340 /* 3341 * For proper ENOSPC handling, we should do orphan 3342 * cleanup when mounting. But this introduces backward 3343 * compatibility issue. 3344 */ 3345 if (!xchg(&root->orphan_item_inserted, 1)) 3346 insert = 2; 3347 else 3348 insert = 1; 3349 #endif 3350 insert = 1; 3351 atomic_inc(&root->orphan_inodes); 3352 } 3353 3354 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3355 &inode->runtime_flags)) 3356 reserve = 1; 3357 spin_unlock(&root->orphan_lock); 3358 3359 /* grab metadata reservation from transaction handle */ 3360 if (reserve) { 3361 ret = btrfs_orphan_reserve_metadata(trans, inode); 3362 ASSERT(!ret); 3363 if (ret) { 3364 atomic_dec(&root->orphan_inodes); 3365 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3366 &inode->runtime_flags); 3367 if (insert) 3368 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3369 &inode->runtime_flags); 3370 return ret; 3371 } 3372 } 3373 3374 /* insert an orphan item to track this unlinked/truncated file */ 3375 if (insert >= 1) { 3376 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3377 if (ret) { 3378 atomic_dec(&root->orphan_inodes); 3379 if (reserve) { 3380 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3381 &inode->runtime_flags); 3382 btrfs_orphan_release_metadata(inode); 3383 } 3384 if (ret != -EEXIST) { 3385 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3386 &inode->runtime_flags); 3387 btrfs_abort_transaction(trans, ret); 3388 return ret; 3389 } 3390 } 3391 ret = 0; 3392 } 3393 3394 /* insert an orphan item to track subvolume contains orphan files */ 3395 if (insert >= 2) { 3396 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3397 root->root_key.objectid); 3398 if (ret && ret != -EEXIST) { 3399 btrfs_abort_transaction(trans, ret); 3400 return ret; 3401 } 3402 } 3403 return 0; 3404 } 3405 3406 /* 3407 * We have done the truncate/delete so we can go ahead and remove the orphan 3408 * item for this particular inode. 3409 */ 3410 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3411 struct btrfs_inode *inode) 3412 { 3413 struct btrfs_root *root = inode->root; 3414 int delete_item = 0; 3415 int release_rsv = 0; 3416 int ret = 0; 3417 3418 spin_lock(&root->orphan_lock); 3419 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3420 &inode->runtime_flags)) 3421 delete_item = 1; 3422 3423 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3424 &inode->runtime_flags)) 3425 release_rsv = 1; 3426 spin_unlock(&root->orphan_lock); 3427 3428 if (delete_item) { 3429 atomic_dec(&root->orphan_inodes); 3430 if (trans) 3431 ret = btrfs_del_orphan_item(trans, root, 3432 btrfs_ino(inode)); 3433 } 3434 3435 if (release_rsv) 3436 btrfs_orphan_release_metadata(inode); 3437 3438 return ret; 3439 } 3440 3441 /* 3442 * this cleans up any orphans that may be left on the list from the last use 3443 * of this root. 3444 */ 3445 int btrfs_orphan_cleanup(struct btrfs_root *root) 3446 { 3447 struct btrfs_fs_info *fs_info = root->fs_info; 3448 struct btrfs_path *path; 3449 struct extent_buffer *leaf; 3450 struct btrfs_key key, found_key; 3451 struct btrfs_trans_handle *trans; 3452 struct inode *inode; 3453 u64 last_objectid = 0; 3454 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3455 3456 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3457 return 0; 3458 3459 path = btrfs_alloc_path(); 3460 if (!path) { 3461 ret = -ENOMEM; 3462 goto out; 3463 } 3464 path->reada = READA_BACK; 3465 3466 key.objectid = BTRFS_ORPHAN_OBJECTID; 3467 key.type = BTRFS_ORPHAN_ITEM_KEY; 3468 key.offset = (u64)-1; 3469 3470 while (1) { 3471 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3472 if (ret < 0) 3473 goto out; 3474 3475 /* 3476 * if ret == 0 means we found what we were searching for, which 3477 * is weird, but possible, so only screw with path if we didn't 3478 * find the key and see if we have stuff that matches 3479 */ 3480 if (ret > 0) { 3481 ret = 0; 3482 if (path->slots[0] == 0) 3483 break; 3484 path->slots[0]--; 3485 } 3486 3487 /* pull out the item */ 3488 leaf = path->nodes[0]; 3489 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3490 3491 /* make sure the item matches what we want */ 3492 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3493 break; 3494 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3495 break; 3496 3497 /* release the path since we're done with it */ 3498 btrfs_release_path(path); 3499 3500 /* 3501 * this is where we are basically btrfs_lookup, without the 3502 * crossing root thing. we store the inode number in the 3503 * offset of the orphan item. 3504 */ 3505 3506 if (found_key.offset == last_objectid) { 3507 btrfs_err(fs_info, 3508 "Error removing orphan entry, stopping orphan cleanup"); 3509 ret = -EINVAL; 3510 goto out; 3511 } 3512 3513 last_objectid = found_key.offset; 3514 3515 found_key.objectid = found_key.offset; 3516 found_key.type = BTRFS_INODE_ITEM_KEY; 3517 found_key.offset = 0; 3518 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3519 ret = PTR_ERR_OR_ZERO(inode); 3520 if (ret && ret != -ENOENT) 3521 goto out; 3522 3523 if (ret == -ENOENT && root == fs_info->tree_root) { 3524 struct btrfs_root *dead_root; 3525 struct btrfs_fs_info *fs_info = root->fs_info; 3526 int is_dead_root = 0; 3527 3528 /* 3529 * this is an orphan in the tree root. Currently these 3530 * could come from 2 sources: 3531 * a) a snapshot deletion in progress 3532 * b) a free space cache inode 3533 * We need to distinguish those two, as the snapshot 3534 * orphan must not get deleted. 3535 * find_dead_roots already ran before us, so if this 3536 * is a snapshot deletion, we should find the root 3537 * in the dead_roots list 3538 */ 3539 spin_lock(&fs_info->trans_lock); 3540 list_for_each_entry(dead_root, &fs_info->dead_roots, 3541 root_list) { 3542 if (dead_root->root_key.objectid == 3543 found_key.objectid) { 3544 is_dead_root = 1; 3545 break; 3546 } 3547 } 3548 spin_unlock(&fs_info->trans_lock); 3549 if (is_dead_root) { 3550 /* prevent this orphan from being found again */ 3551 key.offset = found_key.objectid - 1; 3552 continue; 3553 } 3554 } 3555 /* 3556 * Inode is already gone but the orphan item is still there, 3557 * kill the orphan item. 3558 */ 3559 if (ret == -ENOENT) { 3560 trans = btrfs_start_transaction(root, 1); 3561 if (IS_ERR(trans)) { 3562 ret = PTR_ERR(trans); 3563 goto out; 3564 } 3565 btrfs_debug(fs_info, "auto deleting %Lu", 3566 found_key.objectid); 3567 ret = btrfs_del_orphan_item(trans, root, 3568 found_key.objectid); 3569 btrfs_end_transaction(trans); 3570 if (ret) 3571 goto out; 3572 continue; 3573 } 3574 3575 /* 3576 * add this inode to the orphan list so btrfs_orphan_del does 3577 * the proper thing when we hit it 3578 */ 3579 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3580 &BTRFS_I(inode)->runtime_flags); 3581 atomic_inc(&root->orphan_inodes); 3582 3583 /* if we have links, this was a truncate, lets do that */ 3584 if (inode->i_nlink) { 3585 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3586 iput(inode); 3587 continue; 3588 } 3589 nr_truncate++; 3590 3591 /* 1 for the orphan item deletion. */ 3592 trans = btrfs_start_transaction(root, 1); 3593 if (IS_ERR(trans)) { 3594 iput(inode); 3595 ret = PTR_ERR(trans); 3596 goto out; 3597 } 3598 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3599 btrfs_end_transaction(trans); 3600 if (ret) { 3601 iput(inode); 3602 goto out; 3603 } 3604 3605 ret = btrfs_truncate(inode); 3606 if (ret) 3607 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3608 } else { 3609 nr_unlink++; 3610 } 3611 3612 /* this will do delete_inode and everything for us */ 3613 iput(inode); 3614 if (ret) 3615 goto out; 3616 } 3617 /* release the path since we're done with it */ 3618 btrfs_release_path(path); 3619 3620 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3621 3622 if (root->orphan_block_rsv) 3623 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3624 (u64)-1); 3625 3626 if (root->orphan_block_rsv || 3627 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3628 trans = btrfs_join_transaction(root); 3629 if (!IS_ERR(trans)) 3630 btrfs_end_transaction(trans); 3631 } 3632 3633 if (nr_unlink) 3634 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3635 if (nr_truncate) 3636 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3637 3638 out: 3639 if (ret) 3640 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3641 btrfs_free_path(path); 3642 return ret; 3643 } 3644 3645 /* 3646 * very simple check to peek ahead in the leaf looking for xattrs. If we 3647 * don't find any xattrs, we know there can't be any acls. 3648 * 3649 * slot is the slot the inode is in, objectid is the objectid of the inode 3650 */ 3651 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3652 int slot, u64 objectid, 3653 int *first_xattr_slot) 3654 { 3655 u32 nritems = btrfs_header_nritems(leaf); 3656 struct btrfs_key found_key; 3657 static u64 xattr_access = 0; 3658 static u64 xattr_default = 0; 3659 int scanned = 0; 3660 3661 if (!xattr_access) { 3662 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3663 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3664 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3665 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3666 } 3667 3668 slot++; 3669 *first_xattr_slot = -1; 3670 while (slot < nritems) { 3671 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3672 3673 /* we found a different objectid, there must not be acls */ 3674 if (found_key.objectid != objectid) 3675 return 0; 3676 3677 /* we found an xattr, assume we've got an acl */ 3678 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3679 if (*first_xattr_slot == -1) 3680 *first_xattr_slot = slot; 3681 if (found_key.offset == xattr_access || 3682 found_key.offset == xattr_default) 3683 return 1; 3684 } 3685 3686 /* 3687 * we found a key greater than an xattr key, there can't 3688 * be any acls later on 3689 */ 3690 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3691 return 0; 3692 3693 slot++; 3694 scanned++; 3695 3696 /* 3697 * it goes inode, inode backrefs, xattrs, extents, 3698 * so if there are a ton of hard links to an inode there can 3699 * be a lot of backrefs. Don't waste time searching too hard, 3700 * this is just an optimization 3701 */ 3702 if (scanned >= 8) 3703 break; 3704 } 3705 /* we hit the end of the leaf before we found an xattr or 3706 * something larger than an xattr. We have to assume the inode 3707 * has acls 3708 */ 3709 if (*first_xattr_slot == -1) 3710 *first_xattr_slot = slot; 3711 return 1; 3712 } 3713 3714 /* 3715 * read an inode from the btree into the in-memory inode 3716 */ 3717 static int btrfs_read_locked_inode(struct inode *inode) 3718 { 3719 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3720 struct btrfs_path *path; 3721 struct extent_buffer *leaf; 3722 struct btrfs_inode_item *inode_item; 3723 struct btrfs_root *root = BTRFS_I(inode)->root; 3724 struct btrfs_key location; 3725 unsigned long ptr; 3726 int maybe_acls; 3727 u32 rdev; 3728 int ret; 3729 bool filled = false; 3730 int first_xattr_slot; 3731 3732 ret = btrfs_fill_inode(inode, &rdev); 3733 if (!ret) 3734 filled = true; 3735 3736 path = btrfs_alloc_path(); 3737 if (!path) { 3738 ret = -ENOMEM; 3739 goto make_bad; 3740 } 3741 3742 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3743 3744 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3745 if (ret) { 3746 if (ret > 0) 3747 ret = -ENOENT; 3748 goto make_bad; 3749 } 3750 3751 leaf = path->nodes[0]; 3752 3753 if (filled) 3754 goto cache_index; 3755 3756 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3757 struct btrfs_inode_item); 3758 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3759 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3760 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3761 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3762 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3763 3764 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3765 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3766 3767 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3768 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3769 3770 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3771 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3772 3773 BTRFS_I(inode)->i_otime.tv_sec = 3774 btrfs_timespec_sec(leaf, &inode_item->otime); 3775 BTRFS_I(inode)->i_otime.tv_nsec = 3776 btrfs_timespec_nsec(leaf, &inode_item->otime); 3777 3778 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3779 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3780 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3781 3782 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3783 inode->i_generation = BTRFS_I(inode)->generation; 3784 inode->i_rdev = 0; 3785 rdev = btrfs_inode_rdev(leaf, inode_item); 3786 3787 BTRFS_I(inode)->index_cnt = (u64)-1; 3788 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3789 3790 cache_index: 3791 /* 3792 * If we were modified in the current generation and evicted from memory 3793 * and then re-read we need to do a full sync since we don't have any 3794 * idea about which extents were modified before we were evicted from 3795 * cache. 3796 * 3797 * This is required for both inode re-read from disk and delayed inode 3798 * in delayed_nodes_tree. 3799 */ 3800 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3801 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3802 &BTRFS_I(inode)->runtime_flags); 3803 3804 /* 3805 * We don't persist the id of the transaction where an unlink operation 3806 * against the inode was last made. So here we assume the inode might 3807 * have been evicted, and therefore the exact value of last_unlink_trans 3808 * lost, and set it to last_trans to avoid metadata inconsistencies 3809 * between the inode and its parent if the inode is fsync'ed and the log 3810 * replayed. For example, in the scenario: 3811 * 3812 * touch mydir/foo 3813 * ln mydir/foo mydir/bar 3814 * sync 3815 * unlink mydir/bar 3816 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3817 * xfs_io -c fsync mydir/foo 3818 * <power failure> 3819 * mount fs, triggers fsync log replay 3820 * 3821 * We must make sure that when we fsync our inode foo we also log its 3822 * parent inode, otherwise after log replay the parent still has the 3823 * dentry with the "bar" name but our inode foo has a link count of 1 3824 * and doesn't have an inode ref with the name "bar" anymore. 3825 * 3826 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3827 * but it guarantees correctness at the expense of occasional full 3828 * transaction commits on fsync if our inode is a directory, or if our 3829 * inode is not a directory, logging its parent unnecessarily. 3830 */ 3831 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3832 3833 path->slots[0]++; 3834 if (inode->i_nlink != 1 || 3835 path->slots[0] >= btrfs_header_nritems(leaf)) 3836 goto cache_acl; 3837 3838 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3839 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3840 goto cache_acl; 3841 3842 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3843 if (location.type == BTRFS_INODE_REF_KEY) { 3844 struct btrfs_inode_ref *ref; 3845 3846 ref = (struct btrfs_inode_ref *)ptr; 3847 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3848 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3849 struct btrfs_inode_extref *extref; 3850 3851 extref = (struct btrfs_inode_extref *)ptr; 3852 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3853 extref); 3854 } 3855 cache_acl: 3856 /* 3857 * try to precache a NULL acl entry for files that don't have 3858 * any xattrs or acls 3859 */ 3860 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3861 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3862 if (first_xattr_slot != -1) { 3863 path->slots[0] = first_xattr_slot; 3864 ret = btrfs_load_inode_props(inode, path); 3865 if (ret) 3866 btrfs_err(fs_info, 3867 "error loading props for ino %llu (root %llu): %d", 3868 btrfs_ino(BTRFS_I(inode)), 3869 root->root_key.objectid, ret); 3870 } 3871 btrfs_free_path(path); 3872 3873 if (!maybe_acls) 3874 cache_no_acl(inode); 3875 3876 switch (inode->i_mode & S_IFMT) { 3877 case S_IFREG: 3878 inode->i_mapping->a_ops = &btrfs_aops; 3879 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3880 inode->i_fop = &btrfs_file_operations; 3881 inode->i_op = &btrfs_file_inode_operations; 3882 break; 3883 case S_IFDIR: 3884 inode->i_fop = &btrfs_dir_file_operations; 3885 inode->i_op = &btrfs_dir_inode_operations; 3886 break; 3887 case S_IFLNK: 3888 inode->i_op = &btrfs_symlink_inode_operations; 3889 inode_nohighmem(inode); 3890 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3891 break; 3892 default: 3893 inode->i_op = &btrfs_special_inode_operations; 3894 init_special_inode(inode, inode->i_mode, rdev); 3895 break; 3896 } 3897 3898 btrfs_update_iflags(inode); 3899 return 0; 3900 3901 make_bad: 3902 btrfs_free_path(path); 3903 make_bad_inode(inode); 3904 return ret; 3905 } 3906 3907 /* 3908 * given a leaf and an inode, copy the inode fields into the leaf 3909 */ 3910 static void fill_inode_item(struct btrfs_trans_handle *trans, 3911 struct extent_buffer *leaf, 3912 struct btrfs_inode_item *item, 3913 struct inode *inode) 3914 { 3915 struct btrfs_map_token token; 3916 3917 btrfs_init_map_token(&token); 3918 3919 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3920 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3921 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3922 &token); 3923 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3924 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3925 3926 btrfs_set_token_timespec_sec(leaf, &item->atime, 3927 inode->i_atime.tv_sec, &token); 3928 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3929 inode->i_atime.tv_nsec, &token); 3930 3931 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3932 inode->i_mtime.tv_sec, &token); 3933 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3934 inode->i_mtime.tv_nsec, &token); 3935 3936 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3937 inode->i_ctime.tv_sec, &token); 3938 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3939 inode->i_ctime.tv_nsec, &token); 3940 3941 btrfs_set_token_timespec_sec(leaf, &item->otime, 3942 BTRFS_I(inode)->i_otime.tv_sec, &token); 3943 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3944 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3945 3946 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3947 &token); 3948 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3949 &token); 3950 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3951 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3952 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3953 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3954 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3955 } 3956 3957 /* 3958 * copy everything in the in-memory inode into the btree. 3959 */ 3960 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3961 struct btrfs_root *root, struct inode *inode) 3962 { 3963 struct btrfs_inode_item *inode_item; 3964 struct btrfs_path *path; 3965 struct extent_buffer *leaf; 3966 int ret; 3967 3968 path = btrfs_alloc_path(); 3969 if (!path) 3970 return -ENOMEM; 3971 3972 path->leave_spinning = 1; 3973 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3974 1); 3975 if (ret) { 3976 if (ret > 0) 3977 ret = -ENOENT; 3978 goto failed; 3979 } 3980 3981 leaf = path->nodes[0]; 3982 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3983 struct btrfs_inode_item); 3984 3985 fill_inode_item(trans, leaf, inode_item, inode); 3986 btrfs_mark_buffer_dirty(leaf); 3987 btrfs_set_inode_last_trans(trans, inode); 3988 ret = 0; 3989 failed: 3990 btrfs_free_path(path); 3991 return ret; 3992 } 3993 3994 /* 3995 * copy everything in the in-memory inode into the btree. 3996 */ 3997 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3998 struct btrfs_root *root, struct inode *inode) 3999 { 4000 struct btrfs_fs_info *fs_info = root->fs_info; 4001 int ret; 4002 4003 /* 4004 * If the inode is a free space inode, we can deadlock during commit 4005 * if we put it into the delayed code. 4006 * 4007 * The data relocation inode should also be directly updated 4008 * without delay 4009 */ 4010 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4011 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4012 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4013 btrfs_update_root_times(trans, root); 4014 4015 ret = btrfs_delayed_update_inode(trans, root, inode); 4016 if (!ret) 4017 btrfs_set_inode_last_trans(trans, inode); 4018 return ret; 4019 } 4020 4021 return btrfs_update_inode_item(trans, root, inode); 4022 } 4023 4024 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4025 struct btrfs_root *root, 4026 struct inode *inode) 4027 { 4028 int ret; 4029 4030 ret = btrfs_update_inode(trans, root, inode); 4031 if (ret == -ENOSPC) 4032 return btrfs_update_inode_item(trans, root, inode); 4033 return ret; 4034 } 4035 4036 /* 4037 * unlink helper that gets used here in inode.c and in the tree logging 4038 * recovery code. It remove a link in a directory with a given name, and 4039 * also drops the back refs in the inode to the directory 4040 */ 4041 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4042 struct btrfs_root *root, 4043 struct btrfs_inode *dir, 4044 struct btrfs_inode *inode, 4045 const char *name, int name_len) 4046 { 4047 struct btrfs_fs_info *fs_info = root->fs_info; 4048 struct btrfs_path *path; 4049 int ret = 0; 4050 struct extent_buffer *leaf; 4051 struct btrfs_dir_item *di; 4052 struct btrfs_key key; 4053 u64 index; 4054 u64 ino = btrfs_ino(inode); 4055 u64 dir_ino = btrfs_ino(dir); 4056 4057 path = btrfs_alloc_path(); 4058 if (!path) { 4059 ret = -ENOMEM; 4060 goto out; 4061 } 4062 4063 path->leave_spinning = 1; 4064 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4065 name, name_len, -1); 4066 if (IS_ERR(di)) { 4067 ret = PTR_ERR(di); 4068 goto err; 4069 } 4070 if (!di) { 4071 ret = -ENOENT; 4072 goto err; 4073 } 4074 leaf = path->nodes[0]; 4075 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4076 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4077 if (ret) 4078 goto err; 4079 btrfs_release_path(path); 4080 4081 /* 4082 * If we don't have dir index, we have to get it by looking up 4083 * the inode ref, since we get the inode ref, remove it directly, 4084 * it is unnecessary to do delayed deletion. 4085 * 4086 * But if we have dir index, needn't search inode ref to get it. 4087 * Since the inode ref is close to the inode item, it is better 4088 * that we delay to delete it, and just do this deletion when 4089 * we update the inode item. 4090 */ 4091 if (inode->dir_index) { 4092 ret = btrfs_delayed_delete_inode_ref(inode); 4093 if (!ret) { 4094 index = inode->dir_index; 4095 goto skip_backref; 4096 } 4097 } 4098 4099 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4100 dir_ino, &index); 4101 if (ret) { 4102 btrfs_info(fs_info, 4103 "failed to delete reference to %.*s, inode %llu parent %llu", 4104 name_len, name, ino, dir_ino); 4105 btrfs_abort_transaction(trans, ret); 4106 goto err; 4107 } 4108 skip_backref: 4109 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4110 if (ret) { 4111 btrfs_abort_transaction(trans, ret); 4112 goto err; 4113 } 4114 4115 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4116 dir_ino); 4117 if (ret != 0 && ret != -ENOENT) { 4118 btrfs_abort_transaction(trans, ret); 4119 goto err; 4120 } 4121 4122 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4123 index); 4124 if (ret == -ENOENT) 4125 ret = 0; 4126 else if (ret) 4127 btrfs_abort_transaction(trans, ret); 4128 err: 4129 btrfs_free_path(path); 4130 if (ret) 4131 goto out; 4132 4133 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4134 inode_inc_iversion(&inode->vfs_inode); 4135 inode_inc_iversion(&dir->vfs_inode); 4136 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4137 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4138 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4139 out: 4140 return ret; 4141 } 4142 4143 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4144 struct btrfs_root *root, 4145 struct btrfs_inode *dir, struct btrfs_inode *inode, 4146 const char *name, int name_len) 4147 { 4148 int ret; 4149 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4150 if (!ret) { 4151 drop_nlink(&inode->vfs_inode); 4152 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4153 } 4154 return ret; 4155 } 4156 4157 /* 4158 * helper to start transaction for unlink and rmdir. 4159 * 4160 * unlink and rmdir are special in btrfs, they do not always free space, so 4161 * if we cannot make our reservations the normal way try and see if there is 4162 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4163 * allow the unlink to occur. 4164 */ 4165 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4166 { 4167 struct btrfs_root *root = BTRFS_I(dir)->root; 4168 4169 /* 4170 * 1 for the possible orphan item 4171 * 1 for the dir item 4172 * 1 for the dir index 4173 * 1 for the inode ref 4174 * 1 for the inode 4175 */ 4176 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4177 } 4178 4179 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4180 { 4181 struct btrfs_root *root = BTRFS_I(dir)->root; 4182 struct btrfs_trans_handle *trans; 4183 struct inode *inode = d_inode(dentry); 4184 int ret; 4185 4186 trans = __unlink_start_trans(dir); 4187 if (IS_ERR(trans)) 4188 return PTR_ERR(trans); 4189 4190 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4191 0); 4192 4193 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4194 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4195 dentry->d_name.len); 4196 if (ret) 4197 goto out; 4198 4199 if (inode->i_nlink == 0) { 4200 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4201 if (ret) 4202 goto out; 4203 } 4204 4205 out: 4206 btrfs_end_transaction(trans); 4207 btrfs_btree_balance_dirty(root->fs_info); 4208 return ret; 4209 } 4210 4211 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4212 struct btrfs_root *root, 4213 struct inode *dir, u64 objectid, 4214 const char *name, int name_len) 4215 { 4216 struct btrfs_fs_info *fs_info = root->fs_info; 4217 struct btrfs_path *path; 4218 struct extent_buffer *leaf; 4219 struct btrfs_dir_item *di; 4220 struct btrfs_key key; 4221 u64 index; 4222 int ret; 4223 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4224 4225 path = btrfs_alloc_path(); 4226 if (!path) 4227 return -ENOMEM; 4228 4229 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4230 name, name_len, -1); 4231 if (IS_ERR_OR_NULL(di)) { 4232 if (!di) 4233 ret = -ENOENT; 4234 else 4235 ret = PTR_ERR(di); 4236 goto out; 4237 } 4238 4239 leaf = path->nodes[0]; 4240 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4241 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4242 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4243 if (ret) { 4244 btrfs_abort_transaction(trans, ret); 4245 goto out; 4246 } 4247 btrfs_release_path(path); 4248 4249 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4250 root->root_key.objectid, dir_ino, 4251 &index, name, name_len); 4252 if (ret < 0) { 4253 if (ret != -ENOENT) { 4254 btrfs_abort_transaction(trans, ret); 4255 goto out; 4256 } 4257 di = btrfs_search_dir_index_item(root, path, dir_ino, 4258 name, name_len); 4259 if (IS_ERR_OR_NULL(di)) { 4260 if (!di) 4261 ret = -ENOENT; 4262 else 4263 ret = PTR_ERR(di); 4264 btrfs_abort_transaction(trans, ret); 4265 goto out; 4266 } 4267 4268 leaf = path->nodes[0]; 4269 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4270 btrfs_release_path(path); 4271 index = key.offset; 4272 } 4273 btrfs_release_path(path); 4274 4275 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4276 if (ret) { 4277 btrfs_abort_transaction(trans, ret); 4278 goto out; 4279 } 4280 4281 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4282 inode_inc_iversion(dir); 4283 dir->i_mtime = dir->i_ctime = current_time(dir); 4284 ret = btrfs_update_inode_fallback(trans, root, dir); 4285 if (ret) 4286 btrfs_abort_transaction(trans, ret); 4287 out: 4288 btrfs_free_path(path); 4289 return ret; 4290 } 4291 4292 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4293 { 4294 struct inode *inode = d_inode(dentry); 4295 int err = 0; 4296 struct btrfs_root *root = BTRFS_I(dir)->root; 4297 struct btrfs_trans_handle *trans; 4298 u64 last_unlink_trans; 4299 4300 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4301 return -ENOTEMPTY; 4302 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4303 return -EPERM; 4304 4305 trans = __unlink_start_trans(dir); 4306 if (IS_ERR(trans)) 4307 return PTR_ERR(trans); 4308 4309 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4310 err = btrfs_unlink_subvol(trans, root, dir, 4311 BTRFS_I(inode)->location.objectid, 4312 dentry->d_name.name, 4313 dentry->d_name.len); 4314 goto out; 4315 } 4316 4317 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4318 if (err) 4319 goto out; 4320 4321 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4322 4323 /* now the directory is empty */ 4324 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4325 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4326 dentry->d_name.len); 4327 if (!err) { 4328 btrfs_i_size_write(BTRFS_I(inode), 0); 4329 /* 4330 * Propagate the last_unlink_trans value of the deleted dir to 4331 * its parent directory. This is to prevent an unrecoverable 4332 * log tree in the case we do something like this: 4333 * 1) create dir foo 4334 * 2) create snapshot under dir foo 4335 * 3) delete the snapshot 4336 * 4) rmdir foo 4337 * 5) mkdir foo 4338 * 6) fsync foo or some file inside foo 4339 */ 4340 if (last_unlink_trans >= trans->transid) 4341 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4342 } 4343 out: 4344 btrfs_end_transaction(trans); 4345 btrfs_btree_balance_dirty(root->fs_info); 4346 4347 return err; 4348 } 4349 4350 static int truncate_space_check(struct btrfs_trans_handle *trans, 4351 struct btrfs_root *root, 4352 u64 bytes_deleted) 4353 { 4354 struct btrfs_fs_info *fs_info = root->fs_info; 4355 int ret; 4356 4357 /* 4358 * This is only used to apply pressure to the enospc system, we don't 4359 * intend to use this reservation at all. 4360 */ 4361 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4362 bytes_deleted *= fs_info->nodesize; 4363 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4364 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4365 if (!ret) { 4366 trace_btrfs_space_reservation(fs_info, "transaction", 4367 trans->transid, 4368 bytes_deleted, 1); 4369 trans->bytes_reserved += bytes_deleted; 4370 } 4371 return ret; 4372 4373 } 4374 4375 static int truncate_inline_extent(struct inode *inode, 4376 struct btrfs_path *path, 4377 struct btrfs_key *found_key, 4378 const u64 item_end, 4379 const u64 new_size) 4380 { 4381 struct extent_buffer *leaf = path->nodes[0]; 4382 int slot = path->slots[0]; 4383 struct btrfs_file_extent_item *fi; 4384 u32 size = (u32)(new_size - found_key->offset); 4385 struct btrfs_root *root = BTRFS_I(inode)->root; 4386 4387 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4388 4389 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4390 loff_t offset = new_size; 4391 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4392 4393 /* 4394 * Zero out the remaining of the last page of our inline extent, 4395 * instead of directly truncating our inline extent here - that 4396 * would be much more complex (decompressing all the data, then 4397 * compressing the truncated data, which might be bigger than 4398 * the size of the inline extent, resize the extent, etc). 4399 * We release the path because to get the page we might need to 4400 * read the extent item from disk (data not in the page cache). 4401 */ 4402 btrfs_release_path(path); 4403 return btrfs_truncate_block(inode, offset, page_end - offset, 4404 0); 4405 } 4406 4407 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4408 size = btrfs_file_extent_calc_inline_size(size); 4409 btrfs_truncate_item(root->fs_info, path, size, 1); 4410 4411 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4412 inode_sub_bytes(inode, item_end + 1 - new_size); 4413 4414 return 0; 4415 } 4416 4417 /* 4418 * this can truncate away extent items, csum items and directory items. 4419 * It starts at a high offset and removes keys until it can't find 4420 * any higher than new_size 4421 * 4422 * csum items that cross the new i_size are truncated to the new size 4423 * as well. 4424 * 4425 * min_type is the minimum key type to truncate down to. If set to 0, this 4426 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4427 */ 4428 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4429 struct btrfs_root *root, 4430 struct inode *inode, 4431 u64 new_size, u32 min_type) 4432 { 4433 struct btrfs_fs_info *fs_info = root->fs_info; 4434 struct btrfs_path *path; 4435 struct extent_buffer *leaf; 4436 struct btrfs_file_extent_item *fi; 4437 struct btrfs_key key; 4438 struct btrfs_key found_key; 4439 u64 extent_start = 0; 4440 u64 extent_num_bytes = 0; 4441 u64 extent_offset = 0; 4442 u64 item_end = 0; 4443 u64 last_size = new_size; 4444 u32 found_type = (u8)-1; 4445 int found_extent; 4446 int del_item; 4447 int pending_del_nr = 0; 4448 int pending_del_slot = 0; 4449 int extent_type = -1; 4450 int ret; 4451 int err = 0; 4452 u64 ino = btrfs_ino(BTRFS_I(inode)); 4453 u64 bytes_deleted = 0; 4454 bool be_nice = 0; 4455 bool should_throttle = 0; 4456 bool should_end = 0; 4457 4458 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4459 4460 /* 4461 * for non-free space inodes and ref cows, we want to back off from 4462 * time to time 4463 */ 4464 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4465 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4466 be_nice = 1; 4467 4468 path = btrfs_alloc_path(); 4469 if (!path) 4470 return -ENOMEM; 4471 path->reada = READA_BACK; 4472 4473 /* 4474 * We want to drop from the next block forward in case this new size is 4475 * not block aligned since we will be keeping the last block of the 4476 * extent just the way it is. 4477 */ 4478 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4479 root == fs_info->tree_root) 4480 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4481 fs_info->sectorsize), 4482 (u64)-1, 0); 4483 4484 /* 4485 * This function is also used to drop the items in the log tree before 4486 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4487 * it is used to drop the loged items. So we shouldn't kill the delayed 4488 * items. 4489 */ 4490 if (min_type == 0 && root == BTRFS_I(inode)->root) 4491 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4492 4493 key.objectid = ino; 4494 key.offset = (u64)-1; 4495 key.type = (u8)-1; 4496 4497 search_again: 4498 /* 4499 * with a 16K leaf size and 128MB extents, you can actually queue 4500 * up a huge file in a single leaf. Most of the time that 4501 * bytes_deleted is > 0, it will be huge by the time we get here 4502 */ 4503 if (be_nice && bytes_deleted > SZ_32M) { 4504 if (btrfs_should_end_transaction(trans)) { 4505 err = -EAGAIN; 4506 goto error; 4507 } 4508 } 4509 4510 4511 path->leave_spinning = 1; 4512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4513 if (ret < 0) { 4514 err = ret; 4515 goto out; 4516 } 4517 4518 if (ret > 0) { 4519 /* there are no items in the tree for us to truncate, we're 4520 * done 4521 */ 4522 if (path->slots[0] == 0) 4523 goto out; 4524 path->slots[0]--; 4525 } 4526 4527 while (1) { 4528 fi = NULL; 4529 leaf = path->nodes[0]; 4530 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4531 found_type = found_key.type; 4532 4533 if (found_key.objectid != ino) 4534 break; 4535 4536 if (found_type < min_type) 4537 break; 4538 4539 item_end = found_key.offset; 4540 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4541 fi = btrfs_item_ptr(leaf, path->slots[0], 4542 struct btrfs_file_extent_item); 4543 extent_type = btrfs_file_extent_type(leaf, fi); 4544 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4545 item_end += 4546 btrfs_file_extent_num_bytes(leaf, fi); 4547 4548 trace_btrfs_truncate_show_fi_regular( 4549 BTRFS_I(inode), leaf, fi, 4550 found_key.offset); 4551 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4552 item_end += btrfs_file_extent_inline_len(leaf, 4553 path->slots[0], fi); 4554 4555 trace_btrfs_truncate_show_fi_inline( 4556 BTRFS_I(inode), leaf, fi, path->slots[0], 4557 found_key.offset); 4558 } 4559 item_end--; 4560 } 4561 if (found_type > min_type) { 4562 del_item = 1; 4563 } else { 4564 if (item_end < new_size) 4565 break; 4566 if (found_key.offset >= new_size) 4567 del_item = 1; 4568 else 4569 del_item = 0; 4570 } 4571 found_extent = 0; 4572 /* FIXME, shrink the extent if the ref count is only 1 */ 4573 if (found_type != BTRFS_EXTENT_DATA_KEY) 4574 goto delete; 4575 4576 if (del_item) 4577 last_size = found_key.offset; 4578 else 4579 last_size = new_size; 4580 4581 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4582 u64 num_dec; 4583 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4584 if (!del_item) { 4585 u64 orig_num_bytes = 4586 btrfs_file_extent_num_bytes(leaf, fi); 4587 extent_num_bytes = ALIGN(new_size - 4588 found_key.offset, 4589 fs_info->sectorsize); 4590 btrfs_set_file_extent_num_bytes(leaf, fi, 4591 extent_num_bytes); 4592 num_dec = (orig_num_bytes - 4593 extent_num_bytes); 4594 if (test_bit(BTRFS_ROOT_REF_COWS, 4595 &root->state) && 4596 extent_start != 0) 4597 inode_sub_bytes(inode, num_dec); 4598 btrfs_mark_buffer_dirty(leaf); 4599 } else { 4600 extent_num_bytes = 4601 btrfs_file_extent_disk_num_bytes(leaf, 4602 fi); 4603 extent_offset = found_key.offset - 4604 btrfs_file_extent_offset(leaf, fi); 4605 4606 /* FIXME blocksize != 4096 */ 4607 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4608 if (extent_start != 0) { 4609 found_extent = 1; 4610 if (test_bit(BTRFS_ROOT_REF_COWS, 4611 &root->state)) 4612 inode_sub_bytes(inode, num_dec); 4613 } 4614 } 4615 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4616 /* 4617 * we can't truncate inline items that have had 4618 * special encodings 4619 */ 4620 if (!del_item && 4621 btrfs_file_extent_encryption(leaf, fi) == 0 && 4622 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4623 4624 /* 4625 * Need to release path in order to truncate a 4626 * compressed extent. So delete any accumulated 4627 * extent items so far. 4628 */ 4629 if (btrfs_file_extent_compression(leaf, fi) != 4630 BTRFS_COMPRESS_NONE && pending_del_nr) { 4631 err = btrfs_del_items(trans, root, path, 4632 pending_del_slot, 4633 pending_del_nr); 4634 if (err) { 4635 btrfs_abort_transaction(trans, 4636 err); 4637 goto error; 4638 } 4639 pending_del_nr = 0; 4640 } 4641 4642 err = truncate_inline_extent(inode, path, 4643 &found_key, 4644 item_end, 4645 new_size); 4646 if (err) { 4647 btrfs_abort_transaction(trans, err); 4648 goto error; 4649 } 4650 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4651 &root->state)) { 4652 inode_sub_bytes(inode, item_end + 1 - new_size); 4653 } 4654 } 4655 delete: 4656 if (del_item) { 4657 if (!pending_del_nr) { 4658 /* no pending yet, add ourselves */ 4659 pending_del_slot = path->slots[0]; 4660 pending_del_nr = 1; 4661 } else if (pending_del_nr && 4662 path->slots[0] + 1 == pending_del_slot) { 4663 /* hop on the pending chunk */ 4664 pending_del_nr++; 4665 pending_del_slot = path->slots[0]; 4666 } else { 4667 BUG(); 4668 } 4669 } else { 4670 break; 4671 } 4672 should_throttle = 0; 4673 4674 if (found_extent && 4675 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4676 root == fs_info->tree_root)) { 4677 btrfs_set_path_blocking(path); 4678 bytes_deleted += extent_num_bytes; 4679 ret = btrfs_free_extent(trans, fs_info, extent_start, 4680 extent_num_bytes, 0, 4681 btrfs_header_owner(leaf), 4682 ino, extent_offset); 4683 BUG_ON(ret); 4684 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4685 btrfs_async_run_delayed_refs(fs_info, 4686 trans->delayed_ref_updates * 2, 4687 trans->transid, 0); 4688 if (be_nice) { 4689 if (truncate_space_check(trans, root, 4690 extent_num_bytes)) { 4691 should_end = 1; 4692 } 4693 if (btrfs_should_throttle_delayed_refs(trans, 4694 fs_info)) 4695 should_throttle = 1; 4696 } 4697 } 4698 4699 if (found_type == BTRFS_INODE_ITEM_KEY) 4700 break; 4701 4702 if (path->slots[0] == 0 || 4703 path->slots[0] != pending_del_slot || 4704 should_throttle || should_end) { 4705 if (pending_del_nr) { 4706 ret = btrfs_del_items(trans, root, path, 4707 pending_del_slot, 4708 pending_del_nr); 4709 if (ret) { 4710 btrfs_abort_transaction(trans, ret); 4711 goto error; 4712 } 4713 pending_del_nr = 0; 4714 } 4715 btrfs_release_path(path); 4716 if (should_throttle) { 4717 unsigned long updates = trans->delayed_ref_updates; 4718 if (updates) { 4719 trans->delayed_ref_updates = 0; 4720 ret = btrfs_run_delayed_refs(trans, 4721 fs_info, 4722 updates * 2); 4723 if (ret && !err) 4724 err = ret; 4725 } 4726 } 4727 /* 4728 * if we failed to refill our space rsv, bail out 4729 * and let the transaction restart 4730 */ 4731 if (should_end) { 4732 err = -EAGAIN; 4733 goto error; 4734 } 4735 goto search_again; 4736 } else { 4737 path->slots[0]--; 4738 } 4739 } 4740 out: 4741 if (pending_del_nr) { 4742 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4743 pending_del_nr); 4744 if (ret) 4745 btrfs_abort_transaction(trans, ret); 4746 } 4747 error: 4748 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4749 ASSERT(last_size >= new_size); 4750 if (!err && last_size > new_size) 4751 last_size = new_size; 4752 btrfs_ordered_update_i_size(inode, last_size, NULL); 4753 } 4754 4755 btrfs_free_path(path); 4756 4757 if (be_nice && bytes_deleted > SZ_32M) { 4758 unsigned long updates = trans->delayed_ref_updates; 4759 if (updates) { 4760 trans->delayed_ref_updates = 0; 4761 ret = btrfs_run_delayed_refs(trans, fs_info, 4762 updates * 2); 4763 if (ret && !err) 4764 err = ret; 4765 } 4766 } 4767 return err; 4768 } 4769 4770 /* 4771 * btrfs_truncate_block - read, zero a chunk and write a block 4772 * @inode - inode that we're zeroing 4773 * @from - the offset to start zeroing 4774 * @len - the length to zero, 0 to zero the entire range respective to the 4775 * offset 4776 * @front - zero up to the offset instead of from the offset on 4777 * 4778 * This will find the block for the "from" offset and cow the block and zero the 4779 * part we want to zero. This is used with truncate and hole punching. 4780 */ 4781 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4782 int front) 4783 { 4784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4785 struct address_space *mapping = inode->i_mapping; 4786 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4787 struct btrfs_ordered_extent *ordered; 4788 struct extent_state *cached_state = NULL; 4789 struct extent_changeset *data_reserved = NULL; 4790 char *kaddr; 4791 u32 blocksize = fs_info->sectorsize; 4792 pgoff_t index = from >> PAGE_SHIFT; 4793 unsigned offset = from & (blocksize - 1); 4794 struct page *page; 4795 gfp_t mask = btrfs_alloc_write_mask(mapping); 4796 int ret = 0; 4797 u64 block_start; 4798 u64 block_end; 4799 4800 if ((offset & (blocksize - 1)) == 0 && 4801 (!len || ((len & (blocksize - 1)) == 0))) 4802 goto out; 4803 4804 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4805 round_down(from, blocksize), blocksize); 4806 if (ret) 4807 goto out; 4808 4809 again: 4810 page = find_or_create_page(mapping, index, mask); 4811 if (!page) { 4812 btrfs_delalloc_release_space(inode, data_reserved, 4813 round_down(from, blocksize), 4814 blocksize); 4815 ret = -ENOMEM; 4816 goto out; 4817 } 4818 4819 block_start = round_down(from, blocksize); 4820 block_end = block_start + blocksize - 1; 4821 4822 if (!PageUptodate(page)) { 4823 ret = btrfs_readpage(NULL, page); 4824 lock_page(page); 4825 if (page->mapping != mapping) { 4826 unlock_page(page); 4827 put_page(page); 4828 goto again; 4829 } 4830 if (!PageUptodate(page)) { 4831 ret = -EIO; 4832 goto out_unlock; 4833 } 4834 } 4835 wait_on_page_writeback(page); 4836 4837 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4838 set_page_extent_mapped(page); 4839 4840 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4841 if (ordered) { 4842 unlock_extent_cached(io_tree, block_start, block_end, 4843 &cached_state, GFP_NOFS); 4844 unlock_page(page); 4845 put_page(page); 4846 btrfs_start_ordered_extent(inode, ordered, 1); 4847 btrfs_put_ordered_extent(ordered); 4848 goto again; 4849 } 4850 4851 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4852 EXTENT_DIRTY | EXTENT_DELALLOC | 4853 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4854 0, 0, &cached_state, GFP_NOFS); 4855 4856 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4857 &cached_state, 0); 4858 if (ret) { 4859 unlock_extent_cached(io_tree, block_start, block_end, 4860 &cached_state, GFP_NOFS); 4861 goto out_unlock; 4862 } 4863 4864 if (offset != blocksize) { 4865 if (!len) 4866 len = blocksize - offset; 4867 kaddr = kmap(page); 4868 if (front) 4869 memset(kaddr + (block_start - page_offset(page)), 4870 0, offset); 4871 else 4872 memset(kaddr + (block_start - page_offset(page)) + offset, 4873 0, len); 4874 flush_dcache_page(page); 4875 kunmap(page); 4876 } 4877 ClearPageChecked(page); 4878 set_page_dirty(page); 4879 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4880 GFP_NOFS); 4881 4882 out_unlock: 4883 if (ret) 4884 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4885 blocksize); 4886 unlock_page(page); 4887 put_page(page); 4888 out: 4889 extent_changeset_free(data_reserved); 4890 return ret; 4891 } 4892 4893 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4894 u64 offset, u64 len) 4895 { 4896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4897 struct btrfs_trans_handle *trans; 4898 int ret; 4899 4900 /* 4901 * Still need to make sure the inode looks like it's been updated so 4902 * that any holes get logged if we fsync. 4903 */ 4904 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4905 BTRFS_I(inode)->last_trans = fs_info->generation; 4906 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4907 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4908 return 0; 4909 } 4910 4911 /* 4912 * 1 - for the one we're dropping 4913 * 1 - for the one we're adding 4914 * 1 - for updating the inode. 4915 */ 4916 trans = btrfs_start_transaction(root, 3); 4917 if (IS_ERR(trans)) 4918 return PTR_ERR(trans); 4919 4920 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4921 if (ret) { 4922 btrfs_abort_transaction(trans, ret); 4923 btrfs_end_transaction(trans); 4924 return ret; 4925 } 4926 4927 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4928 offset, 0, 0, len, 0, len, 0, 0, 0); 4929 if (ret) 4930 btrfs_abort_transaction(trans, ret); 4931 else 4932 btrfs_update_inode(trans, root, inode); 4933 btrfs_end_transaction(trans); 4934 return ret; 4935 } 4936 4937 /* 4938 * This function puts in dummy file extents for the area we're creating a hole 4939 * for. So if we are truncating this file to a larger size we need to insert 4940 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4941 * the range between oldsize and size 4942 */ 4943 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4944 { 4945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4946 struct btrfs_root *root = BTRFS_I(inode)->root; 4947 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4948 struct extent_map *em = NULL; 4949 struct extent_state *cached_state = NULL; 4950 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4951 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4952 u64 block_end = ALIGN(size, fs_info->sectorsize); 4953 u64 last_byte; 4954 u64 cur_offset; 4955 u64 hole_size; 4956 int err = 0; 4957 4958 /* 4959 * If our size started in the middle of a block we need to zero out the 4960 * rest of the block before we expand the i_size, otherwise we could 4961 * expose stale data. 4962 */ 4963 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4964 if (err) 4965 return err; 4966 4967 if (size <= hole_start) 4968 return 0; 4969 4970 while (1) { 4971 struct btrfs_ordered_extent *ordered; 4972 4973 lock_extent_bits(io_tree, hole_start, block_end - 1, 4974 &cached_state); 4975 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4976 block_end - hole_start); 4977 if (!ordered) 4978 break; 4979 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4980 &cached_state, GFP_NOFS); 4981 btrfs_start_ordered_extent(inode, ordered, 1); 4982 btrfs_put_ordered_extent(ordered); 4983 } 4984 4985 cur_offset = hole_start; 4986 while (1) { 4987 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4988 block_end - cur_offset, 0); 4989 if (IS_ERR(em)) { 4990 err = PTR_ERR(em); 4991 em = NULL; 4992 break; 4993 } 4994 last_byte = min(extent_map_end(em), block_end); 4995 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4996 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4997 struct extent_map *hole_em; 4998 hole_size = last_byte - cur_offset; 4999 5000 err = maybe_insert_hole(root, inode, cur_offset, 5001 hole_size); 5002 if (err) 5003 break; 5004 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5005 cur_offset + hole_size - 1, 0); 5006 hole_em = alloc_extent_map(); 5007 if (!hole_em) { 5008 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5009 &BTRFS_I(inode)->runtime_flags); 5010 goto next; 5011 } 5012 hole_em->start = cur_offset; 5013 hole_em->len = hole_size; 5014 hole_em->orig_start = cur_offset; 5015 5016 hole_em->block_start = EXTENT_MAP_HOLE; 5017 hole_em->block_len = 0; 5018 hole_em->orig_block_len = 0; 5019 hole_em->ram_bytes = hole_size; 5020 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5021 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5022 hole_em->generation = fs_info->generation; 5023 5024 while (1) { 5025 write_lock(&em_tree->lock); 5026 err = add_extent_mapping(em_tree, hole_em, 1); 5027 write_unlock(&em_tree->lock); 5028 if (err != -EEXIST) 5029 break; 5030 btrfs_drop_extent_cache(BTRFS_I(inode), 5031 cur_offset, 5032 cur_offset + 5033 hole_size - 1, 0); 5034 } 5035 free_extent_map(hole_em); 5036 } 5037 next: 5038 free_extent_map(em); 5039 em = NULL; 5040 cur_offset = last_byte; 5041 if (cur_offset >= block_end) 5042 break; 5043 } 5044 free_extent_map(em); 5045 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 5046 GFP_NOFS); 5047 return err; 5048 } 5049 5050 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5051 { 5052 struct btrfs_root *root = BTRFS_I(inode)->root; 5053 struct btrfs_trans_handle *trans; 5054 loff_t oldsize = i_size_read(inode); 5055 loff_t newsize = attr->ia_size; 5056 int mask = attr->ia_valid; 5057 int ret; 5058 5059 /* 5060 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5061 * special case where we need to update the times despite not having 5062 * these flags set. For all other operations the VFS set these flags 5063 * explicitly if it wants a timestamp update. 5064 */ 5065 if (newsize != oldsize) { 5066 inode_inc_iversion(inode); 5067 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5068 inode->i_ctime = inode->i_mtime = 5069 current_time(inode); 5070 } 5071 5072 if (newsize > oldsize) { 5073 /* 5074 * Don't do an expanding truncate while snapshotting is ongoing. 5075 * This is to ensure the snapshot captures a fully consistent 5076 * state of this file - if the snapshot captures this expanding 5077 * truncation, it must capture all writes that happened before 5078 * this truncation. 5079 */ 5080 btrfs_wait_for_snapshot_creation(root); 5081 ret = btrfs_cont_expand(inode, oldsize, newsize); 5082 if (ret) { 5083 btrfs_end_write_no_snapshotting(root); 5084 return ret; 5085 } 5086 5087 trans = btrfs_start_transaction(root, 1); 5088 if (IS_ERR(trans)) { 5089 btrfs_end_write_no_snapshotting(root); 5090 return PTR_ERR(trans); 5091 } 5092 5093 i_size_write(inode, newsize); 5094 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5095 pagecache_isize_extended(inode, oldsize, newsize); 5096 ret = btrfs_update_inode(trans, root, inode); 5097 btrfs_end_write_no_snapshotting(root); 5098 btrfs_end_transaction(trans); 5099 } else { 5100 5101 /* 5102 * We're truncating a file that used to have good data down to 5103 * zero. Make sure it gets into the ordered flush list so that 5104 * any new writes get down to disk quickly. 5105 */ 5106 if (newsize == 0) 5107 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5108 &BTRFS_I(inode)->runtime_flags); 5109 5110 /* 5111 * 1 for the orphan item we're going to add 5112 * 1 for the orphan item deletion. 5113 */ 5114 trans = btrfs_start_transaction(root, 2); 5115 if (IS_ERR(trans)) 5116 return PTR_ERR(trans); 5117 5118 /* 5119 * We need to do this in case we fail at _any_ point during the 5120 * actual truncate. Once we do the truncate_setsize we could 5121 * invalidate pages which forces any outstanding ordered io to 5122 * be instantly completed which will give us extents that need 5123 * to be truncated. If we fail to get an orphan inode down we 5124 * could have left over extents that were never meant to live, 5125 * so we need to guarantee from this point on that everything 5126 * will be consistent. 5127 */ 5128 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5129 btrfs_end_transaction(trans); 5130 if (ret) 5131 return ret; 5132 5133 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5134 truncate_setsize(inode, newsize); 5135 5136 /* Disable nonlocked read DIO to avoid the end less truncate */ 5137 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5138 inode_dio_wait(inode); 5139 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5140 5141 ret = btrfs_truncate(inode); 5142 if (ret && inode->i_nlink) { 5143 int err; 5144 5145 /* To get a stable disk_i_size */ 5146 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5147 if (err) { 5148 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5149 return err; 5150 } 5151 5152 /* 5153 * failed to truncate, disk_i_size is only adjusted down 5154 * as we remove extents, so it should represent the true 5155 * size of the inode, so reset the in memory size and 5156 * delete our orphan entry. 5157 */ 5158 trans = btrfs_join_transaction(root); 5159 if (IS_ERR(trans)) { 5160 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5161 return ret; 5162 } 5163 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5164 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5165 if (err) 5166 btrfs_abort_transaction(trans, err); 5167 btrfs_end_transaction(trans); 5168 } 5169 } 5170 5171 return ret; 5172 } 5173 5174 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5175 { 5176 struct inode *inode = d_inode(dentry); 5177 struct btrfs_root *root = BTRFS_I(inode)->root; 5178 int err; 5179 5180 if (btrfs_root_readonly(root)) 5181 return -EROFS; 5182 5183 err = setattr_prepare(dentry, attr); 5184 if (err) 5185 return err; 5186 5187 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5188 err = btrfs_setsize(inode, attr); 5189 if (err) 5190 return err; 5191 } 5192 5193 if (attr->ia_valid) { 5194 setattr_copy(inode, attr); 5195 inode_inc_iversion(inode); 5196 err = btrfs_dirty_inode(inode); 5197 5198 if (!err && attr->ia_valid & ATTR_MODE) 5199 err = posix_acl_chmod(inode, inode->i_mode); 5200 } 5201 5202 return err; 5203 } 5204 5205 /* 5206 * While truncating the inode pages during eviction, we get the VFS calling 5207 * btrfs_invalidatepage() against each page of the inode. This is slow because 5208 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5209 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5210 * extent_state structures over and over, wasting lots of time. 5211 * 5212 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5213 * those expensive operations on a per page basis and do only the ordered io 5214 * finishing, while we release here the extent_map and extent_state structures, 5215 * without the excessive merging and splitting. 5216 */ 5217 static void evict_inode_truncate_pages(struct inode *inode) 5218 { 5219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5220 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5221 struct rb_node *node; 5222 5223 ASSERT(inode->i_state & I_FREEING); 5224 truncate_inode_pages_final(&inode->i_data); 5225 5226 write_lock(&map_tree->lock); 5227 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5228 struct extent_map *em; 5229 5230 node = rb_first(&map_tree->map); 5231 em = rb_entry(node, struct extent_map, rb_node); 5232 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5233 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5234 remove_extent_mapping(map_tree, em); 5235 free_extent_map(em); 5236 if (need_resched()) { 5237 write_unlock(&map_tree->lock); 5238 cond_resched(); 5239 write_lock(&map_tree->lock); 5240 } 5241 } 5242 write_unlock(&map_tree->lock); 5243 5244 /* 5245 * Keep looping until we have no more ranges in the io tree. 5246 * We can have ongoing bios started by readpages (called from readahead) 5247 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5248 * still in progress (unlocked the pages in the bio but did not yet 5249 * unlocked the ranges in the io tree). Therefore this means some 5250 * ranges can still be locked and eviction started because before 5251 * submitting those bios, which are executed by a separate task (work 5252 * queue kthread), inode references (inode->i_count) were not taken 5253 * (which would be dropped in the end io callback of each bio). 5254 * Therefore here we effectively end up waiting for those bios and 5255 * anyone else holding locked ranges without having bumped the inode's 5256 * reference count - if we don't do it, when they access the inode's 5257 * io_tree to unlock a range it may be too late, leading to an 5258 * use-after-free issue. 5259 */ 5260 spin_lock(&io_tree->lock); 5261 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5262 struct extent_state *state; 5263 struct extent_state *cached_state = NULL; 5264 u64 start; 5265 u64 end; 5266 5267 node = rb_first(&io_tree->state); 5268 state = rb_entry(node, struct extent_state, rb_node); 5269 start = state->start; 5270 end = state->end; 5271 spin_unlock(&io_tree->lock); 5272 5273 lock_extent_bits(io_tree, start, end, &cached_state); 5274 5275 /* 5276 * If still has DELALLOC flag, the extent didn't reach disk, 5277 * and its reserved space won't be freed by delayed_ref. 5278 * So we need to free its reserved space here. 5279 * (Refer to comment in btrfs_invalidatepage, case 2) 5280 * 5281 * Note, end is the bytenr of last byte, so we need + 1 here. 5282 */ 5283 if (state->state & EXTENT_DELALLOC) 5284 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5285 5286 clear_extent_bit(io_tree, start, end, 5287 EXTENT_LOCKED | EXTENT_DIRTY | 5288 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5289 EXTENT_DEFRAG, 1, 1, 5290 &cached_state, GFP_NOFS); 5291 5292 cond_resched(); 5293 spin_lock(&io_tree->lock); 5294 } 5295 spin_unlock(&io_tree->lock); 5296 } 5297 5298 void btrfs_evict_inode(struct inode *inode) 5299 { 5300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5301 struct btrfs_trans_handle *trans; 5302 struct btrfs_root *root = BTRFS_I(inode)->root; 5303 struct btrfs_block_rsv *rsv, *global_rsv; 5304 int steal_from_global = 0; 5305 u64 min_size; 5306 int ret; 5307 5308 trace_btrfs_inode_evict(inode); 5309 5310 if (!root) { 5311 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5312 return; 5313 } 5314 5315 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5316 5317 evict_inode_truncate_pages(inode); 5318 5319 if (inode->i_nlink && 5320 ((btrfs_root_refs(&root->root_item) != 0 && 5321 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5322 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5323 goto no_delete; 5324 5325 if (is_bad_inode(inode)) { 5326 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5327 goto no_delete; 5328 } 5329 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5330 if (!special_file(inode->i_mode)) 5331 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5332 5333 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5334 5335 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5336 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5337 &BTRFS_I(inode)->runtime_flags)); 5338 goto no_delete; 5339 } 5340 5341 if (inode->i_nlink > 0) { 5342 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5343 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5344 goto no_delete; 5345 } 5346 5347 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5348 if (ret) { 5349 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5350 goto no_delete; 5351 } 5352 5353 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5354 if (!rsv) { 5355 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5356 goto no_delete; 5357 } 5358 rsv->size = min_size; 5359 rsv->failfast = 1; 5360 global_rsv = &fs_info->global_block_rsv; 5361 5362 btrfs_i_size_write(BTRFS_I(inode), 0); 5363 5364 /* 5365 * This is a bit simpler than btrfs_truncate since we've already 5366 * reserved our space for our orphan item in the unlink, so we just 5367 * need to reserve some slack space in case we add bytes and update 5368 * inode item when doing the truncate. 5369 */ 5370 while (1) { 5371 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5372 BTRFS_RESERVE_FLUSH_LIMIT); 5373 5374 /* 5375 * Try and steal from the global reserve since we will 5376 * likely not use this space anyway, we want to try as 5377 * hard as possible to get this to work. 5378 */ 5379 if (ret) 5380 steal_from_global++; 5381 else 5382 steal_from_global = 0; 5383 ret = 0; 5384 5385 /* 5386 * steal_from_global == 0: we reserved stuff, hooray! 5387 * steal_from_global == 1: we didn't reserve stuff, boo! 5388 * steal_from_global == 2: we've committed, still not a lot of 5389 * room but maybe we'll have room in the global reserve this 5390 * time. 5391 * steal_from_global == 3: abandon all hope! 5392 */ 5393 if (steal_from_global > 2) { 5394 btrfs_warn(fs_info, 5395 "Could not get space for a delete, will truncate on mount %d", 5396 ret); 5397 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5398 btrfs_free_block_rsv(fs_info, rsv); 5399 goto no_delete; 5400 } 5401 5402 trans = btrfs_join_transaction(root); 5403 if (IS_ERR(trans)) { 5404 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5405 btrfs_free_block_rsv(fs_info, rsv); 5406 goto no_delete; 5407 } 5408 5409 /* 5410 * We can't just steal from the global reserve, we need to make 5411 * sure there is room to do it, if not we need to commit and try 5412 * again. 5413 */ 5414 if (steal_from_global) { 5415 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5416 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5417 min_size, 0); 5418 else 5419 ret = -ENOSPC; 5420 } 5421 5422 /* 5423 * Couldn't steal from the global reserve, we have too much 5424 * pending stuff built up, commit the transaction and try it 5425 * again. 5426 */ 5427 if (ret) { 5428 ret = btrfs_commit_transaction(trans); 5429 if (ret) { 5430 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5431 btrfs_free_block_rsv(fs_info, rsv); 5432 goto no_delete; 5433 } 5434 continue; 5435 } else { 5436 steal_from_global = 0; 5437 } 5438 5439 trans->block_rsv = rsv; 5440 5441 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5442 if (ret != -ENOSPC && ret != -EAGAIN) 5443 break; 5444 5445 trans->block_rsv = &fs_info->trans_block_rsv; 5446 btrfs_end_transaction(trans); 5447 trans = NULL; 5448 btrfs_btree_balance_dirty(fs_info); 5449 } 5450 5451 btrfs_free_block_rsv(fs_info, rsv); 5452 5453 /* 5454 * Errors here aren't a big deal, it just means we leave orphan items 5455 * in the tree. They will be cleaned up on the next mount. 5456 */ 5457 if (ret == 0) { 5458 trans->block_rsv = root->orphan_block_rsv; 5459 btrfs_orphan_del(trans, BTRFS_I(inode)); 5460 } else { 5461 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5462 } 5463 5464 trans->block_rsv = &fs_info->trans_block_rsv; 5465 if (!(root == fs_info->tree_root || 5466 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5467 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5468 5469 btrfs_end_transaction(trans); 5470 btrfs_btree_balance_dirty(fs_info); 5471 no_delete: 5472 btrfs_remove_delayed_node(BTRFS_I(inode)); 5473 clear_inode(inode); 5474 } 5475 5476 /* 5477 * this returns the key found in the dir entry in the location pointer. 5478 * If no dir entries were found, location->objectid is 0. 5479 */ 5480 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5481 struct btrfs_key *location) 5482 { 5483 const char *name = dentry->d_name.name; 5484 int namelen = dentry->d_name.len; 5485 struct btrfs_dir_item *di; 5486 struct btrfs_path *path; 5487 struct btrfs_root *root = BTRFS_I(dir)->root; 5488 int ret = 0; 5489 5490 path = btrfs_alloc_path(); 5491 if (!path) 5492 return -ENOMEM; 5493 5494 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5495 name, namelen, 0); 5496 if (IS_ERR(di)) 5497 ret = PTR_ERR(di); 5498 5499 if (IS_ERR_OR_NULL(di)) 5500 goto out_err; 5501 5502 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5503 out: 5504 btrfs_free_path(path); 5505 return ret; 5506 out_err: 5507 location->objectid = 0; 5508 goto out; 5509 } 5510 5511 /* 5512 * when we hit a tree root in a directory, the btrfs part of the inode 5513 * needs to be changed to reflect the root directory of the tree root. This 5514 * is kind of like crossing a mount point. 5515 */ 5516 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5517 struct inode *dir, 5518 struct dentry *dentry, 5519 struct btrfs_key *location, 5520 struct btrfs_root **sub_root) 5521 { 5522 struct btrfs_path *path; 5523 struct btrfs_root *new_root; 5524 struct btrfs_root_ref *ref; 5525 struct extent_buffer *leaf; 5526 struct btrfs_key key; 5527 int ret; 5528 int err = 0; 5529 5530 path = btrfs_alloc_path(); 5531 if (!path) { 5532 err = -ENOMEM; 5533 goto out; 5534 } 5535 5536 err = -ENOENT; 5537 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5538 key.type = BTRFS_ROOT_REF_KEY; 5539 key.offset = location->objectid; 5540 5541 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5542 if (ret) { 5543 if (ret < 0) 5544 err = ret; 5545 goto out; 5546 } 5547 5548 leaf = path->nodes[0]; 5549 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5550 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5551 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5552 goto out; 5553 5554 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5555 (unsigned long)(ref + 1), 5556 dentry->d_name.len); 5557 if (ret) 5558 goto out; 5559 5560 btrfs_release_path(path); 5561 5562 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5563 if (IS_ERR(new_root)) { 5564 err = PTR_ERR(new_root); 5565 goto out; 5566 } 5567 5568 *sub_root = new_root; 5569 location->objectid = btrfs_root_dirid(&new_root->root_item); 5570 location->type = BTRFS_INODE_ITEM_KEY; 5571 location->offset = 0; 5572 err = 0; 5573 out: 5574 btrfs_free_path(path); 5575 return err; 5576 } 5577 5578 static void inode_tree_add(struct inode *inode) 5579 { 5580 struct btrfs_root *root = BTRFS_I(inode)->root; 5581 struct btrfs_inode *entry; 5582 struct rb_node **p; 5583 struct rb_node *parent; 5584 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5585 u64 ino = btrfs_ino(BTRFS_I(inode)); 5586 5587 if (inode_unhashed(inode)) 5588 return; 5589 parent = NULL; 5590 spin_lock(&root->inode_lock); 5591 p = &root->inode_tree.rb_node; 5592 while (*p) { 5593 parent = *p; 5594 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5595 5596 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5597 p = &parent->rb_left; 5598 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5599 p = &parent->rb_right; 5600 else { 5601 WARN_ON(!(entry->vfs_inode.i_state & 5602 (I_WILL_FREE | I_FREEING))); 5603 rb_replace_node(parent, new, &root->inode_tree); 5604 RB_CLEAR_NODE(parent); 5605 spin_unlock(&root->inode_lock); 5606 return; 5607 } 5608 } 5609 rb_link_node(new, parent, p); 5610 rb_insert_color(new, &root->inode_tree); 5611 spin_unlock(&root->inode_lock); 5612 } 5613 5614 static void inode_tree_del(struct inode *inode) 5615 { 5616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5617 struct btrfs_root *root = BTRFS_I(inode)->root; 5618 int empty = 0; 5619 5620 spin_lock(&root->inode_lock); 5621 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5622 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5623 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5624 empty = RB_EMPTY_ROOT(&root->inode_tree); 5625 } 5626 spin_unlock(&root->inode_lock); 5627 5628 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5629 synchronize_srcu(&fs_info->subvol_srcu); 5630 spin_lock(&root->inode_lock); 5631 empty = RB_EMPTY_ROOT(&root->inode_tree); 5632 spin_unlock(&root->inode_lock); 5633 if (empty) 5634 btrfs_add_dead_root(root); 5635 } 5636 } 5637 5638 void btrfs_invalidate_inodes(struct btrfs_root *root) 5639 { 5640 struct btrfs_fs_info *fs_info = root->fs_info; 5641 struct rb_node *node; 5642 struct rb_node *prev; 5643 struct btrfs_inode *entry; 5644 struct inode *inode; 5645 u64 objectid = 0; 5646 5647 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5648 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5649 5650 spin_lock(&root->inode_lock); 5651 again: 5652 node = root->inode_tree.rb_node; 5653 prev = NULL; 5654 while (node) { 5655 prev = node; 5656 entry = rb_entry(node, struct btrfs_inode, rb_node); 5657 5658 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5659 node = node->rb_left; 5660 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5661 node = node->rb_right; 5662 else 5663 break; 5664 } 5665 if (!node) { 5666 while (prev) { 5667 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5668 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5669 node = prev; 5670 break; 5671 } 5672 prev = rb_next(prev); 5673 } 5674 } 5675 while (node) { 5676 entry = rb_entry(node, struct btrfs_inode, rb_node); 5677 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5678 inode = igrab(&entry->vfs_inode); 5679 if (inode) { 5680 spin_unlock(&root->inode_lock); 5681 if (atomic_read(&inode->i_count) > 1) 5682 d_prune_aliases(inode); 5683 /* 5684 * btrfs_drop_inode will have it removed from 5685 * the inode cache when its usage count 5686 * hits zero. 5687 */ 5688 iput(inode); 5689 cond_resched(); 5690 spin_lock(&root->inode_lock); 5691 goto again; 5692 } 5693 5694 if (cond_resched_lock(&root->inode_lock)) 5695 goto again; 5696 5697 node = rb_next(node); 5698 } 5699 spin_unlock(&root->inode_lock); 5700 } 5701 5702 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5703 { 5704 struct btrfs_iget_args *args = p; 5705 inode->i_ino = args->location->objectid; 5706 memcpy(&BTRFS_I(inode)->location, args->location, 5707 sizeof(*args->location)); 5708 BTRFS_I(inode)->root = args->root; 5709 return 0; 5710 } 5711 5712 static int btrfs_find_actor(struct inode *inode, void *opaque) 5713 { 5714 struct btrfs_iget_args *args = opaque; 5715 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5716 args->root == BTRFS_I(inode)->root; 5717 } 5718 5719 static struct inode *btrfs_iget_locked(struct super_block *s, 5720 struct btrfs_key *location, 5721 struct btrfs_root *root) 5722 { 5723 struct inode *inode; 5724 struct btrfs_iget_args args; 5725 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5726 5727 args.location = location; 5728 args.root = root; 5729 5730 inode = iget5_locked(s, hashval, btrfs_find_actor, 5731 btrfs_init_locked_inode, 5732 (void *)&args); 5733 return inode; 5734 } 5735 5736 /* Get an inode object given its location and corresponding root. 5737 * Returns in *is_new if the inode was read from disk 5738 */ 5739 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5740 struct btrfs_root *root, int *new) 5741 { 5742 struct inode *inode; 5743 5744 inode = btrfs_iget_locked(s, location, root); 5745 if (!inode) 5746 return ERR_PTR(-ENOMEM); 5747 5748 if (inode->i_state & I_NEW) { 5749 int ret; 5750 5751 ret = btrfs_read_locked_inode(inode); 5752 if (!is_bad_inode(inode)) { 5753 inode_tree_add(inode); 5754 unlock_new_inode(inode); 5755 if (new) 5756 *new = 1; 5757 } else { 5758 unlock_new_inode(inode); 5759 iput(inode); 5760 ASSERT(ret < 0); 5761 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5762 } 5763 } 5764 5765 return inode; 5766 } 5767 5768 static struct inode *new_simple_dir(struct super_block *s, 5769 struct btrfs_key *key, 5770 struct btrfs_root *root) 5771 { 5772 struct inode *inode = new_inode(s); 5773 5774 if (!inode) 5775 return ERR_PTR(-ENOMEM); 5776 5777 BTRFS_I(inode)->root = root; 5778 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5779 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5780 5781 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5782 inode->i_op = &btrfs_dir_ro_inode_operations; 5783 inode->i_opflags &= ~IOP_XATTR; 5784 inode->i_fop = &simple_dir_operations; 5785 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5786 inode->i_mtime = current_time(inode); 5787 inode->i_atime = inode->i_mtime; 5788 inode->i_ctime = inode->i_mtime; 5789 BTRFS_I(inode)->i_otime = inode->i_mtime; 5790 5791 return inode; 5792 } 5793 5794 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5795 { 5796 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5797 struct inode *inode; 5798 struct btrfs_root *root = BTRFS_I(dir)->root; 5799 struct btrfs_root *sub_root = root; 5800 struct btrfs_key location; 5801 int index; 5802 int ret = 0; 5803 5804 if (dentry->d_name.len > BTRFS_NAME_LEN) 5805 return ERR_PTR(-ENAMETOOLONG); 5806 5807 ret = btrfs_inode_by_name(dir, dentry, &location); 5808 if (ret < 0) 5809 return ERR_PTR(ret); 5810 5811 if (location.objectid == 0) 5812 return ERR_PTR(-ENOENT); 5813 5814 if (location.type == BTRFS_INODE_ITEM_KEY) { 5815 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5816 return inode; 5817 } 5818 5819 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5820 5821 index = srcu_read_lock(&fs_info->subvol_srcu); 5822 ret = fixup_tree_root_location(fs_info, dir, dentry, 5823 &location, &sub_root); 5824 if (ret < 0) { 5825 if (ret != -ENOENT) 5826 inode = ERR_PTR(ret); 5827 else 5828 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5829 } else { 5830 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5831 } 5832 srcu_read_unlock(&fs_info->subvol_srcu, index); 5833 5834 if (!IS_ERR(inode) && root != sub_root) { 5835 down_read(&fs_info->cleanup_work_sem); 5836 if (!sb_rdonly(inode->i_sb)) 5837 ret = btrfs_orphan_cleanup(sub_root); 5838 up_read(&fs_info->cleanup_work_sem); 5839 if (ret) { 5840 iput(inode); 5841 inode = ERR_PTR(ret); 5842 } 5843 } 5844 5845 return inode; 5846 } 5847 5848 static int btrfs_dentry_delete(const struct dentry *dentry) 5849 { 5850 struct btrfs_root *root; 5851 struct inode *inode = d_inode(dentry); 5852 5853 if (!inode && !IS_ROOT(dentry)) 5854 inode = d_inode(dentry->d_parent); 5855 5856 if (inode) { 5857 root = BTRFS_I(inode)->root; 5858 if (btrfs_root_refs(&root->root_item) == 0) 5859 return 1; 5860 5861 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5862 return 1; 5863 } 5864 return 0; 5865 } 5866 5867 static void btrfs_dentry_release(struct dentry *dentry) 5868 { 5869 kfree(dentry->d_fsdata); 5870 } 5871 5872 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5873 unsigned int flags) 5874 { 5875 struct inode *inode; 5876 5877 inode = btrfs_lookup_dentry(dir, dentry); 5878 if (IS_ERR(inode)) { 5879 if (PTR_ERR(inode) == -ENOENT) 5880 inode = NULL; 5881 else 5882 return ERR_CAST(inode); 5883 } 5884 5885 return d_splice_alias(inode, dentry); 5886 } 5887 5888 unsigned char btrfs_filetype_table[] = { 5889 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5890 }; 5891 5892 /* 5893 * All this infrastructure exists because dir_emit can fault, and we are holding 5894 * the tree lock when doing readdir. For now just allocate a buffer and copy 5895 * our information into that, and then dir_emit from the buffer. This is 5896 * similar to what NFS does, only we don't keep the buffer around in pagecache 5897 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5898 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5899 * tree lock. 5900 */ 5901 static int btrfs_opendir(struct inode *inode, struct file *file) 5902 { 5903 struct btrfs_file_private *private; 5904 5905 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5906 if (!private) 5907 return -ENOMEM; 5908 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5909 if (!private->filldir_buf) { 5910 kfree(private); 5911 return -ENOMEM; 5912 } 5913 file->private_data = private; 5914 return 0; 5915 } 5916 5917 struct dir_entry { 5918 u64 ino; 5919 u64 offset; 5920 unsigned type; 5921 int name_len; 5922 }; 5923 5924 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5925 { 5926 while (entries--) { 5927 struct dir_entry *entry = addr; 5928 char *name = (char *)(entry + 1); 5929 5930 ctx->pos = entry->offset; 5931 if (!dir_emit(ctx, name, entry->name_len, entry->ino, 5932 entry->type)) 5933 return 1; 5934 addr += sizeof(struct dir_entry) + entry->name_len; 5935 ctx->pos++; 5936 } 5937 return 0; 5938 } 5939 5940 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5941 { 5942 struct inode *inode = file_inode(file); 5943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5944 struct btrfs_root *root = BTRFS_I(inode)->root; 5945 struct btrfs_file_private *private = file->private_data; 5946 struct btrfs_dir_item *di; 5947 struct btrfs_key key; 5948 struct btrfs_key found_key; 5949 struct btrfs_path *path; 5950 void *addr; 5951 struct list_head ins_list; 5952 struct list_head del_list; 5953 int ret; 5954 struct extent_buffer *leaf; 5955 int slot; 5956 char *name_ptr; 5957 int name_len; 5958 int entries = 0; 5959 int total_len = 0; 5960 bool put = false; 5961 struct btrfs_key location; 5962 5963 if (!dir_emit_dots(file, ctx)) 5964 return 0; 5965 5966 path = btrfs_alloc_path(); 5967 if (!path) 5968 return -ENOMEM; 5969 5970 addr = private->filldir_buf; 5971 path->reada = READA_FORWARD; 5972 5973 INIT_LIST_HEAD(&ins_list); 5974 INIT_LIST_HEAD(&del_list); 5975 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5976 5977 again: 5978 key.type = BTRFS_DIR_INDEX_KEY; 5979 key.offset = ctx->pos; 5980 key.objectid = btrfs_ino(BTRFS_I(inode)); 5981 5982 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5983 if (ret < 0) 5984 goto err; 5985 5986 while (1) { 5987 struct dir_entry *entry; 5988 5989 leaf = path->nodes[0]; 5990 slot = path->slots[0]; 5991 if (slot >= btrfs_header_nritems(leaf)) { 5992 ret = btrfs_next_leaf(root, path); 5993 if (ret < 0) 5994 goto err; 5995 else if (ret > 0) 5996 break; 5997 continue; 5998 } 5999 6000 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6001 6002 if (found_key.objectid != key.objectid) 6003 break; 6004 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6005 break; 6006 if (found_key.offset < ctx->pos) 6007 goto next; 6008 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6009 goto next; 6010 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6011 if (verify_dir_item(fs_info, leaf, slot, di)) 6012 goto next; 6013 6014 name_len = btrfs_dir_name_len(leaf, di); 6015 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6016 PAGE_SIZE) { 6017 btrfs_release_path(path); 6018 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6019 if (ret) 6020 goto nopos; 6021 addr = private->filldir_buf; 6022 entries = 0; 6023 total_len = 0; 6024 goto again; 6025 } 6026 6027 entry = addr; 6028 entry->name_len = name_len; 6029 name_ptr = (char *)(entry + 1); 6030 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6031 name_len); 6032 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 6033 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6034 entry->ino = location.objectid; 6035 entry->offset = found_key.offset; 6036 entries++; 6037 addr += sizeof(struct dir_entry) + name_len; 6038 total_len += sizeof(struct dir_entry) + name_len; 6039 next: 6040 path->slots[0]++; 6041 } 6042 btrfs_release_path(path); 6043 6044 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6045 if (ret) 6046 goto nopos; 6047 6048 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6049 if (ret) 6050 goto nopos; 6051 6052 /* 6053 * Stop new entries from being returned after we return the last 6054 * entry. 6055 * 6056 * New directory entries are assigned a strictly increasing 6057 * offset. This means that new entries created during readdir 6058 * are *guaranteed* to be seen in the future by that readdir. 6059 * This has broken buggy programs which operate on names as 6060 * they're returned by readdir. Until we re-use freed offsets 6061 * we have this hack to stop new entries from being returned 6062 * under the assumption that they'll never reach this huge 6063 * offset. 6064 * 6065 * This is being careful not to overflow 32bit loff_t unless the 6066 * last entry requires it because doing so has broken 32bit apps 6067 * in the past. 6068 */ 6069 if (ctx->pos >= INT_MAX) 6070 ctx->pos = LLONG_MAX; 6071 else 6072 ctx->pos = INT_MAX; 6073 nopos: 6074 ret = 0; 6075 err: 6076 if (put) 6077 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6078 btrfs_free_path(path); 6079 return ret; 6080 } 6081 6082 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6083 { 6084 struct btrfs_root *root = BTRFS_I(inode)->root; 6085 struct btrfs_trans_handle *trans; 6086 int ret = 0; 6087 bool nolock = false; 6088 6089 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6090 return 0; 6091 6092 if (btrfs_fs_closing(root->fs_info) && 6093 btrfs_is_free_space_inode(BTRFS_I(inode))) 6094 nolock = true; 6095 6096 if (wbc->sync_mode == WB_SYNC_ALL) { 6097 if (nolock) 6098 trans = btrfs_join_transaction_nolock(root); 6099 else 6100 trans = btrfs_join_transaction(root); 6101 if (IS_ERR(trans)) 6102 return PTR_ERR(trans); 6103 ret = btrfs_commit_transaction(trans); 6104 } 6105 return ret; 6106 } 6107 6108 /* 6109 * This is somewhat expensive, updating the tree every time the 6110 * inode changes. But, it is most likely to find the inode in cache. 6111 * FIXME, needs more benchmarking...there are no reasons other than performance 6112 * to keep or drop this code. 6113 */ 6114 static int btrfs_dirty_inode(struct inode *inode) 6115 { 6116 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6117 struct btrfs_root *root = BTRFS_I(inode)->root; 6118 struct btrfs_trans_handle *trans; 6119 int ret; 6120 6121 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6122 return 0; 6123 6124 trans = btrfs_join_transaction(root); 6125 if (IS_ERR(trans)) 6126 return PTR_ERR(trans); 6127 6128 ret = btrfs_update_inode(trans, root, inode); 6129 if (ret && ret == -ENOSPC) { 6130 /* whoops, lets try again with the full transaction */ 6131 btrfs_end_transaction(trans); 6132 trans = btrfs_start_transaction(root, 1); 6133 if (IS_ERR(trans)) 6134 return PTR_ERR(trans); 6135 6136 ret = btrfs_update_inode(trans, root, inode); 6137 } 6138 btrfs_end_transaction(trans); 6139 if (BTRFS_I(inode)->delayed_node) 6140 btrfs_balance_delayed_items(fs_info); 6141 6142 return ret; 6143 } 6144 6145 /* 6146 * This is a copy of file_update_time. We need this so we can return error on 6147 * ENOSPC for updating the inode in the case of file write and mmap writes. 6148 */ 6149 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6150 int flags) 6151 { 6152 struct btrfs_root *root = BTRFS_I(inode)->root; 6153 6154 if (btrfs_root_readonly(root)) 6155 return -EROFS; 6156 6157 if (flags & S_VERSION) 6158 inode_inc_iversion(inode); 6159 if (flags & S_CTIME) 6160 inode->i_ctime = *now; 6161 if (flags & S_MTIME) 6162 inode->i_mtime = *now; 6163 if (flags & S_ATIME) 6164 inode->i_atime = *now; 6165 return btrfs_dirty_inode(inode); 6166 } 6167 6168 /* 6169 * find the highest existing sequence number in a directory 6170 * and then set the in-memory index_cnt variable to reflect 6171 * free sequence numbers 6172 */ 6173 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6174 { 6175 struct btrfs_root *root = inode->root; 6176 struct btrfs_key key, found_key; 6177 struct btrfs_path *path; 6178 struct extent_buffer *leaf; 6179 int ret; 6180 6181 key.objectid = btrfs_ino(inode); 6182 key.type = BTRFS_DIR_INDEX_KEY; 6183 key.offset = (u64)-1; 6184 6185 path = btrfs_alloc_path(); 6186 if (!path) 6187 return -ENOMEM; 6188 6189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6190 if (ret < 0) 6191 goto out; 6192 /* FIXME: we should be able to handle this */ 6193 if (ret == 0) 6194 goto out; 6195 ret = 0; 6196 6197 /* 6198 * MAGIC NUMBER EXPLANATION: 6199 * since we search a directory based on f_pos we have to start at 2 6200 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6201 * else has to start at 2 6202 */ 6203 if (path->slots[0] == 0) { 6204 inode->index_cnt = 2; 6205 goto out; 6206 } 6207 6208 path->slots[0]--; 6209 6210 leaf = path->nodes[0]; 6211 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6212 6213 if (found_key.objectid != btrfs_ino(inode) || 6214 found_key.type != BTRFS_DIR_INDEX_KEY) { 6215 inode->index_cnt = 2; 6216 goto out; 6217 } 6218 6219 inode->index_cnt = found_key.offset + 1; 6220 out: 6221 btrfs_free_path(path); 6222 return ret; 6223 } 6224 6225 /* 6226 * helper to find a free sequence number in a given directory. This current 6227 * code is very simple, later versions will do smarter things in the btree 6228 */ 6229 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6230 { 6231 int ret = 0; 6232 6233 if (dir->index_cnt == (u64)-1) { 6234 ret = btrfs_inode_delayed_dir_index_count(dir); 6235 if (ret) { 6236 ret = btrfs_set_inode_index_count(dir); 6237 if (ret) 6238 return ret; 6239 } 6240 } 6241 6242 *index = dir->index_cnt; 6243 dir->index_cnt++; 6244 6245 return ret; 6246 } 6247 6248 static int btrfs_insert_inode_locked(struct inode *inode) 6249 { 6250 struct btrfs_iget_args args; 6251 args.location = &BTRFS_I(inode)->location; 6252 args.root = BTRFS_I(inode)->root; 6253 6254 return insert_inode_locked4(inode, 6255 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6256 btrfs_find_actor, &args); 6257 } 6258 6259 /* 6260 * Inherit flags from the parent inode. 6261 * 6262 * Currently only the compression flags and the cow flags are inherited. 6263 */ 6264 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6265 { 6266 unsigned int flags; 6267 6268 if (!dir) 6269 return; 6270 6271 flags = BTRFS_I(dir)->flags; 6272 6273 if (flags & BTRFS_INODE_NOCOMPRESS) { 6274 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6275 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6276 } else if (flags & BTRFS_INODE_COMPRESS) { 6277 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6278 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6279 } 6280 6281 if (flags & BTRFS_INODE_NODATACOW) { 6282 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6283 if (S_ISREG(inode->i_mode)) 6284 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6285 } 6286 6287 btrfs_update_iflags(inode); 6288 } 6289 6290 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6291 struct btrfs_root *root, 6292 struct inode *dir, 6293 const char *name, int name_len, 6294 u64 ref_objectid, u64 objectid, 6295 umode_t mode, u64 *index) 6296 { 6297 struct btrfs_fs_info *fs_info = root->fs_info; 6298 struct inode *inode; 6299 struct btrfs_inode_item *inode_item; 6300 struct btrfs_key *location; 6301 struct btrfs_path *path; 6302 struct btrfs_inode_ref *ref; 6303 struct btrfs_key key[2]; 6304 u32 sizes[2]; 6305 int nitems = name ? 2 : 1; 6306 unsigned long ptr; 6307 int ret; 6308 6309 path = btrfs_alloc_path(); 6310 if (!path) 6311 return ERR_PTR(-ENOMEM); 6312 6313 inode = new_inode(fs_info->sb); 6314 if (!inode) { 6315 btrfs_free_path(path); 6316 return ERR_PTR(-ENOMEM); 6317 } 6318 6319 /* 6320 * O_TMPFILE, set link count to 0, so that after this point, 6321 * we fill in an inode item with the correct link count. 6322 */ 6323 if (!name) 6324 set_nlink(inode, 0); 6325 6326 /* 6327 * we have to initialize this early, so we can reclaim the inode 6328 * number if we fail afterwards in this function. 6329 */ 6330 inode->i_ino = objectid; 6331 6332 if (dir && name) { 6333 trace_btrfs_inode_request(dir); 6334 6335 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6336 if (ret) { 6337 btrfs_free_path(path); 6338 iput(inode); 6339 return ERR_PTR(ret); 6340 } 6341 } else if (dir) { 6342 *index = 0; 6343 } 6344 /* 6345 * index_cnt is ignored for everything but a dir, 6346 * btrfs_get_inode_index_count has an explanation for the magic 6347 * number 6348 */ 6349 BTRFS_I(inode)->index_cnt = 2; 6350 BTRFS_I(inode)->dir_index = *index; 6351 BTRFS_I(inode)->root = root; 6352 BTRFS_I(inode)->generation = trans->transid; 6353 inode->i_generation = BTRFS_I(inode)->generation; 6354 6355 /* 6356 * We could have gotten an inode number from somebody who was fsynced 6357 * and then removed in this same transaction, so let's just set full 6358 * sync since it will be a full sync anyway and this will blow away the 6359 * old info in the log. 6360 */ 6361 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6362 6363 key[0].objectid = objectid; 6364 key[0].type = BTRFS_INODE_ITEM_KEY; 6365 key[0].offset = 0; 6366 6367 sizes[0] = sizeof(struct btrfs_inode_item); 6368 6369 if (name) { 6370 /* 6371 * Start new inodes with an inode_ref. This is slightly more 6372 * efficient for small numbers of hard links since they will 6373 * be packed into one item. Extended refs will kick in if we 6374 * add more hard links than can fit in the ref item. 6375 */ 6376 key[1].objectid = objectid; 6377 key[1].type = BTRFS_INODE_REF_KEY; 6378 key[1].offset = ref_objectid; 6379 6380 sizes[1] = name_len + sizeof(*ref); 6381 } 6382 6383 location = &BTRFS_I(inode)->location; 6384 location->objectid = objectid; 6385 location->offset = 0; 6386 location->type = BTRFS_INODE_ITEM_KEY; 6387 6388 ret = btrfs_insert_inode_locked(inode); 6389 if (ret < 0) 6390 goto fail; 6391 6392 path->leave_spinning = 1; 6393 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6394 if (ret != 0) 6395 goto fail_unlock; 6396 6397 inode_init_owner(inode, dir, mode); 6398 inode_set_bytes(inode, 0); 6399 6400 inode->i_mtime = current_time(inode); 6401 inode->i_atime = inode->i_mtime; 6402 inode->i_ctime = inode->i_mtime; 6403 BTRFS_I(inode)->i_otime = inode->i_mtime; 6404 6405 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6406 struct btrfs_inode_item); 6407 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6408 sizeof(*inode_item)); 6409 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6410 6411 if (name) { 6412 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6413 struct btrfs_inode_ref); 6414 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6415 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6416 ptr = (unsigned long)(ref + 1); 6417 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6418 } 6419 6420 btrfs_mark_buffer_dirty(path->nodes[0]); 6421 btrfs_free_path(path); 6422 6423 btrfs_inherit_iflags(inode, dir); 6424 6425 if (S_ISREG(mode)) { 6426 if (btrfs_test_opt(fs_info, NODATASUM)) 6427 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6428 if (btrfs_test_opt(fs_info, NODATACOW)) 6429 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6430 BTRFS_INODE_NODATASUM; 6431 } 6432 6433 inode_tree_add(inode); 6434 6435 trace_btrfs_inode_new(inode); 6436 btrfs_set_inode_last_trans(trans, inode); 6437 6438 btrfs_update_root_times(trans, root); 6439 6440 ret = btrfs_inode_inherit_props(trans, inode, dir); 6441 if (ret) 6442 btrfs_err(fs_info, 6443 "error inheriting props for ino %llu (root %llu): %d", 6444 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6445 6446 return inode; 6447 6448 fail_unlock: 6449 unlock_new_inode(inode); 6450 fail: 6451 if (dir && name) 6452 BTRFS_I(dir)->index_cnt--; 6453 btrfs_free_path(path); 6454 iput(inode); 6455 return ERR_PTR(ret); 6456 } 6457 6458 static inline u8 btrfs_inode_type(struct inode *inode) 6459 { 6460 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6461 } 6462 6463 /* 6464 * utility function to add 'inode' into 'parent_inode' with 6465 * a give name and a given sequence number. 6466 * if 'add_backref' is true, also insert a backref from the 6467 * inode to the parent directory. 6468 */ 6469 int btrfs_add_link(struct btrfs_trans_handle *trans, 6470 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6471 const char *name, int name_len, int add_backref, u64 index) 6472 { 6473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6474 int ret = 0; 6475 struct btrfs_key key; 6476 struct btrfs_root *root = parent_inode->root; 6477 u64 ino = btrfs_ino(inode); 6478 u64 parent_ino = btrfs_ino(parent_inode); 6479 6480 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6481 memcpy(&key, &inode->root->root_key, sizeof(key)); 6482 } else { 6483 key.objectid = ino; 6484 key.type = BTRFS_INODE_ITEM_KEY; 6485 key.offset = 0; 6486 } 6487 6488 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6489 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6490 root->root_key.objectid, parent_ino, 6491 index, name, name_len); 6492 } else if (add_backref) { 6493 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6494 parent_ino, index); 6495 } 6496 6497 /* Nothing to clean up yet */ 6498 if (ret) 6499 return ret; 6500 6501 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6502 parent_inode, &key, 6503 btrfs_inode_type(&inode->vfs_inode), index); 6504 if (ret == -EEXIST || ret == -EOVERFLOW) 6505 goto fail_dir_item; 6506 else if (ret) { 6507 btrfs_abort_transaction(trans, ret); 6508 return ret; 6509 } 6510 6511 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6512 name_len * 2); 6513 inode_inc_iversion(&parent_inode->vfs_inode); 6514 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6515 current_time(&parent_inode->vfs_inode); 6516 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6517 if (ret) 6518 btrfs_abort_transaction(trans, ret); 6519 return ret; 6520 6521 fail_dir_item: 6522 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6523 u64 local_index; 6524 int err; 6525 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6526 root->root_key.objectid, parent_ino, 6527 &local_index, name, name_len); 6528 6529 } else if (add_backref) { 6530 u64 local_index; 6531 int err; 6532 6533 err = btrfs_del_inode_ref(trans, root, name, name_len, 6534 ino, parent_ino, &local_index); 6535 } 6536 return ret; 6537 } 6538 6539 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6540 struct btrfs_inode *dir, struct dentry *dentry, 6541 struct btrfs_inode *inode, int backref, u64 index) 6542 { 6543 int err = btrfs_add_link(trans, dir, inode, 6544 dentry->d_name.name, dentry->d_name.len, 6545 backref, index); 6546 if (err > 0) 6547 err = -EEXIST; 6548 return err; 6549 } 6550 6551 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6552 umode_t mode, dev_t rdev) 6553 { 6554 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6555 struct btrfs_trans_handle *trans; 6556 struct btrfs_root *root = BTRFS_I(dir)->root; 6557 struct inode *inode = NULL; 6558 int err; 6559 int drop_inode = 0; 6560 u64 objectid; 6561 u64 index = 0; 6562 6563 /* 6564 * 2 for inode item and ref 6565 * 2 for dir items 6566 * 1 for xattr if selinux is on 6567 */ 6568 trans = btrfs_start_transaction(root, 5); 6569 if (IS_ERR(trans)) 6570 return PTR_ERR(trans); 6571 6572 err = btrfs_find_free_ino(root, &objectid); 6573 if (err) 6574 goto out_unlock; 6575 6576 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6577 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6578 mode, &index); 6579 if (IS_ERR(inode)) { 6580 err = PTR_ERR(inode); 6581 goto out_unlock; 6582 } 6583 6584 /* 6585 * If the active LSM wants to access the inode during 6586 * d_instantiate it needs these. Smack checks to see 6587 * if the filesystem supports xattrs by looking at the 6588 * ops vector. 6589 */ 6590 inode->i_op = &btrfs_special_inode_operations; 6591 init_special_inode(inode, inode->i_mode, rdev); 6592 6593 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6594 if (err) 6595 goto out_unlock_inode; 6596 6597 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6598 0, index); 6599 if (err) { 6600 goto out_unlock_inode; 6601 } else { 6602 btrfs_update_inode(trans, root, inode); 6603 unlock_new_inode(inode); 6604 d_instantiate(dentry, inode); 6605 } 6606 6607 out_unlock: 6608 btrfs_end_transaction(trans); 6609 btrfs_balance_delayed_items(fs_info); 6610 btrfs_btree_balance_dirty(fs_info); 6611 if (drop_inode) { 6612 inode_dec_link_count(inode); 6613 iput(inode); 6614 } 6615 return err; 6616 6617 out_unlock_inode: 6618 drop_inode = 1; 6619 unlock_new_inode(inode); 6620 goto out_unlock; 6621 6622 } 6623 6624 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6625 umode_t mode, bool excl) 6626 { 6627 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6628 struct btrfs_trans_handle *trans; 6629 struct btrfs_root *root = BTRFS_I(dir)->root; 6630 struct inode *inode = NULL; 6631 int drop_inode_on_err = 0; 6632 int err; 6633 u64 objectid; 6634 u64 index = 0; 6635 6636 /* 6637 * 2 for inode item and ref 6638 * 2 for dir items 6639 * 1 for xattr if selinux is on 6640 */ 6641 trans = btrfs_start_transaction(root, 5); 6642 if (IS_ERR(trans)) 6643 return PTR_ERR(trans); 6644 6645 err = btrfs_find_free_ino(root, &objectid); 6646 if (err) 6647 goto out_unlock; 6648 6649 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6650 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6651 mode, &index); 6652 if (IS_ERR(inode)) { 6653 err = PTR_ERR(inode); 6654 goto out_unlock; 6655 } 6656 drop_inode_on_err = 1; 6657 /* 6658 * If the active LSM wants to access the inode during 6659 * d_instantiate it needs these. Smack checks to see 6660 * if the filesystem supports xattrs by looking at the 6661 * ops vector. 6662 */ 6663 inode->i_fop = &btrfs_file_operations; 6664 inode->i_op = &btrfs_file_inode_operations; 6665 inode->i_mapping->a_ops = &btrfs_aops; 6666 6667 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6668 if (err) 6669 goto out_unlock_inode; 6670 6671 err = btrfs_update_inode(trans, root, inode); 6672 if (err) 6673 goto out_unlock_inode; 6674 6675 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6676 0, index); 6677 if (err) 6678 goto out_unlock_inode; 6679 6680 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6681 unlock_new_inode(inode); 6682 d_instantiate(dentry, inode); 6683 6684 out_unlock: 6685 btrfs_end_transaction(trans); 6686 if (err && drop_inode_on_err) { 6687 inode_dec_link_count(inode); 6688 iput(inode); 6689 } 6690 btrfs_balance_delayed_items(fs_info); 6691 btrfs_btree_balance_dirty(fs_info); 6692 return err; 6693 6694 out_unlock_inode: 6695 unlock_new_inode(inode); 6696 goto out_unlock; 6697 6698 } 6699 6700 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6701 struct dentry *dentry) 6702 { 6703 struct btrfs_trans_handle *trans = NULL; 6704 struct btrfs_root *root = BTRFS_I(dir)->root; 6705 struct inode *inode = d_inode(old_dentry); 6706 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6707 u64 index; 6708 int err; 6709 int drop_inode = 0; 6710 6711 /* do not allow sys_link's with other subvols of the same device */ 6712 if (root->objectid != BTRFS_I(inode)->root->objectid) 6713 return -EXDEV; 6714 6715 if (inode->i_nlink >= BTRFS_LINK_MAX) 6716 return -EMLINK; 6717 6718 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6719 if (err) 6720 goto fail; 6721 6722 /* 6723 * 2 items for inode and inode ref 6724 * 2 items for dir items 6725 * 1 item for parent inode 6726 */ 6727 trans = btrfs_start_transaction(root, 5); 6728 if (IS_ERR(trans)) { 6729 err = PTR_ERR(trans); 6730 trans = NULL; 6731 goto fail; 6732 } 6733 6734 /* There are several dir indexes for this inode, clear the cache. */ 6735 BTRFS_I(inode)->dir_index = 0ULL; 6736 inc_nlink(inode); 6737 inode_inc_iversion(inode); 6738 inode->i_ctime = current_time(inode); 6739 ihold(inode); 6740 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6741 6742 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6743 1, index); 6744 6745 if (err) { 6746 drop_inode = 1; 6747 } else { 6748 struct dentry *parent = dentry->d_parent; 6749 err = btrfs_update_inode(trans, root, inode); 6750 if (err) 6751 goto fail; 6752 if (inode->i_nlink == 1) { 6753 /* 6754 * If new hard link count is 1, it's a file created 6755 * with open(2) O_TMPFILE flag. 6756 */ 6757 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6758 if (err) 6759 goto fail; 6760 } 6761 d_instantiate(dentry, inode); 6762 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6763 } 6764 6765 btrfs_balance_delayed_items(fs_info); 6766 fail: 6767 if (trans) 6768 btrfs_end_transaction(trans); 6769 if (drop_inode) { 6770 inode_dec_link_count(inode); 6771 iput(inode); 6772 } 6773 btrfs_btree_balance_dirty(fs_info); 6774 return err; 6775 } 6776 6777 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6778 { 6779 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6780 struct inode *inode = NULL; 6781 struct btrfs_trans_handle *trans; 6782 struct btrfs_root *root = BTRFS_I(dir)->root; 6783 int err = 0; 6784 int drop_on_err = 0; 6785 u64 objectid = 0; 6786 u64 index = 0; 6787 6788 /* 6789 * 2 items for inode and ref 6790 * 2 items for dir items 6791 * 1 for xattr if selinux is on 6792 */ 6793 trans = btrfs_start_transaction(root, 5); 6794 if (IS_ERR(trans)) 6795 return PTR_ERR(trans); 6796 6797 err = btrfs_find_free_ino(root, &objectid); 6798 if (err) 6799 goto out_fail; 6800 6801 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6802 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6803 S_IFDIR | mode, &index); 6804 if (IS_ERR(inode)) { 6805 err = PTR_ERR(inode); 6806 goto out_fail; 6807 } 6808 6809 drop_on_err = 1; 6810 /* these must be set before we unlock the inode */ 6811 inode->i_op = &btrfs_dir_inode_operations; 6812 inode->i_fop = &btrfs_dir_file_operations; 6813 6814 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6815 if (err) 6816 goto out_fail_inode; 6817 6818 btrfs_i_size_write(BTRFS_I(inode), 0); 6819 err = btrfs_update_inode(trans, root, inode); 6820 if (err) 6821 goto out_fail_inode; 6822 6823 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6824 dentry->d_name.name, 6825 dentry->d_name.len, 0, index); 6826 if (err) 6827 goto out_fail_inode; 6828 6829 d_instantiate(dentry, inode); 6830 /* 6831 * mkdir is special. We're unlocking after we call d_instantiate 6832 * to avoid a race with nfsd calling d_instantiate. 6833 */ 6834 unlock_new_inode(inode); 6835 drop_on_err = 0; 6836 6837 out_fail: 6838 btrfs_end_transaction(trans); 6839 if (drop_on_err) { 6840 inode_dec_link_count(inode); 6841 iput(inode); 6842 } 6843 btrfs_balance_delayed_items(fs_info); 6844 btrfs_btree_balance_dirty(fs_info); 6845 return err; 6846 6847 out_fail_inode: 6848 unlock_new_inode(inode); 6849 goto out_fail; 6850 } 6851 6852 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6853 static struct extent_map *next_extent_map(struct extent_map *em) 6854 { 6855 struct rb_node *next; 6856 6857 next = rb_next(&em->rb_node); 6858 if (!next) 6859 return NULL; 6860 return container_of(next, struct extent_map, rb_node); 6861 } 6862 6863 static struct extent_map *prev_extent_map(struct extent_map *em) 6864 { 6865 struct rb_node *prev; 6866 6867 prev = rb_prev(&em->rb_node); 6868 if (!prev) 6869 return NULL; 6870 return container_of(prev, struct extent_map, rb_node); 6871 } 6872 6873 /* helper for btfs_get_extent. Given an existing extent in the tree, 6874 * the existing extent is the nearest extent to map_start, 6875 * and an extent that you want to insert, deal with overlap and insert 6876 * the best fitted new extent into the tree. 6877 */ 6878 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6879 struct extent_map *existing, 6880 struct extent_map *em, 6881 u64 map_start) 6882 { 6883 struct extent_map *prev; 6884 struct extent_map *next; 6885 u64 start; 6886 u64 end; 6887 u64 start_diff; 6888 6889 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6890 6891 if (existing->start > map_start) { 6892 next = existing; 6893 prev = prev_extent_map(next); 6894 } else { 6895 prev = existing; 6896 next = next_extent_map(prev); 6897 } 6898 6899 start = prev ? extent_map_end(prev) : em->start; 6900 start = max_t(u64, start, em->start); 6901 end = next ? next->start : extent_map_end(em); 6902 end = min_t(u64, end, extent_map_end(em)); 6903 start_diff = start - em->start; 6904 em->start = start; 6905 em->len = end - start; 6906 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6907 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6908 em->block_start += start_diff; 6909 em->block_len -= start_diff; 6910 } 6911 return add_extent_mapping(em_tree, em, 0); 6912 } 6913 6914 static noinline int uncompress_inline(struct btrfs_path *path, 6915 struct page *page, 6916 size_t pg_offset, u64 extent_offset, 6917 struct btrfs_file_extent_item *item) 6918 { 6919 int ret; 6920 struct extent_buffer *leaf = path->nodes[0]; 6921 char *tmp; 6922 size_t max_size; 6923 unsigned long inline_size; 6924 unsigned long ptr; 6925 int compress_type; 6926 6927 WARN_ON(pg_offset != 0); 6928 compress_type = btrfs_file_extent_compression(leaf, item); 6929 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6930 inline_size = btrfs_file_extent_inline_item_len(leaf, 6931 btrfs_item_nr(path->slots[0])); 6932 tmp = kmalloc(inline_size, GFP_NOFS); 6933 if (!tmp) 6934 return -ENOMEM; 6935 ptr = btrfs_file_extent_inline_start(item); 6936 6937 read_extent_buffer(leaf, tmp, ptr, inline_size); 6938 6939 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6940 ret = btrfs_decompress(compress_type, tmp, page, 6941 extent_offset, inline_size, max_size); 6942 6943 /* 6944 * decompression code contains a memset to fill in any space between the end 6945 * of the uncompressed data and the end of max_size in case the decompressed 6946 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6947 * the end of an inline extent and the beginning of the next block, so we 6948 * cover that region here. 6949 */ 6950 6951 if (max_size + pg_offset < PAGE_SIZE) { 6952 char *map = kmap(page); 6953 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6954 kunmap(page); 6955 } 6956 kfree(tmp); 6957 return ret; 6958 } 6959 6960 /* 6961 * a bit scary, this does extent mapping from logical file offset to the disk. 6962 * the ugly parts come from merging extents from the disk with the in-ram 6963 * representation. This gets more complex because of the data=ordered code, 6964 * where the in-ram extents might be locked pending data=ordered completion. 6965 * 6966 * This also copies inline extents directly into the page. 6967 */ 6968 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6969 struct page *page, 6970 size_t pg_offset, u64 start, u64 len, 6971 int create) 6972 { 6973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6974 int ret; 6975 int err = 0; 6976 u64 extent_start = 0; 6977 u64 extent_end = 0; 6978 u64 objectid = btrfs_ino(inode); 6979 u32 found_type; 6980 struct btrfs_path *path = NULL; 6981 struct btrfs_root *root = inode->root; 6982 struct btrfs_file_extent_item *item; 6983 struct extent_buffer *leaf; 6984 struct btrfs_key found_key; 6985 struct extent_map *em = NULL; 6986 struct extent_map_tree *em_tree = &inode->extent_tree; 6987 struct extent_io_tree *io_tree = &inode->io_tree; 6988 struct btrfs_trans_handle *trans = NULL; 6989 const bool new_inline = !page || create; 6990 6991 again: 6992 read_lock(&em_tree->lock); 6993 em = lookup_extent_mapping(em_tree, start, len); 6994 if (em) 6995 em->bdev = fs_info->fs_devices->latest_bdev; 6996 read_unlock(&em_tree->lock); 6997 6998 if (em) { 6999 if (em->start > start || em->start + em->len <= start) 7000 free_extent_map(em); 7001 else if (em->block_start == EXTENT_MAP_INLINE && page) 7002 free_extent_map(em); 7003 else 7004 goto out; 7005 } 7006 em = alloc_extent_map(); 7007 if (!em) { 7008 err = -ENOMEM; 7009 goto out; 7010 } 7011 em->bdev = fs_info->fs_devices->latest_bdev; 7012 em->start = EXTENT_MAP_HOLE; 7013 em->orig_start = EXTENT_MAP_HOLE; 7014 em->len = (u64)-1; 7015 em->block_len = (u64)-1; 7016 7017 if (!path) { 7018 path = btrfs_alloc_path(); 7019 if (!path) { 7020 err = -ENOMEM; 7021 goto out; 7022 } 7023 /* 7024 * Chances are we'll be called again, so go ahead and do 7025 * readahead 7026 */ 7027 path->reada = READA_FORWARD; 7028 } 7029 7030 ret = btrfs_lookup_file_extent(trans, root, path, 7031 objectid, start, trans != NULL); 7032 if (ret < 0) { 7033 err = ret; 7034 goto out; 7035 } 7036 7037 if (ret != 0) { 7038 if (path->slots[0] == 0) 7039 goto not_found; 7040 path->slots[0]--; 7041 } 7042 7043 leaf = path->nodes[0]; 7044 item = btrfs_item_ptr(leaf, path->slots[0], 7045 struct btrfs_file_extent_item); 7046 /* are we inside the extent that was found? */ 7047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7048 found_type = found_key.type; 7049 if (found_key.objectid != objectid || 7050 found_type != BTRFS_EXTENT_DATA_KEY) { 7051 /* 7052 * If we backup past the first extent we want to move forward 7053 * and see if there is an extent in front of us, otherwise we'll 7054 * say there is a hole for our whole search range which can 7055 * cause problems. 7056 */ 7057 extent_end = start; 7058 goto next; 7059 } 7060 7061 found_type = btrfs_file_extent_type(leaf, item); 7062 extent_start = found_key.offset; 7063 if (found_type == BTRFS_FILE_EXTENT_REG || 7064 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7065 extent_end = extent_start + 7066 btrfs_file_extent_num_bytes(leaf, item); 7067 7068 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7069 extent_start); 7070 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7071 size_t size; 7072 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7073 extent_end = ALIGN(extent_start + size, 7074 fs_info->sectorsize); 7075 7076 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7077 path->slots[0], 7078 extent_start); 7079 } 7080 next: 7081 if (start >= extent_end) { 7082 path->slots[0]++; 7083 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7084 ret = btrfs_next_leaf(root, path); 7085 if (ret < 0) { 7086 err = ret; 7087 goto out; 7088 } 7089 if (ret > 0) 7090 goto not_found; 7091 leaf = path->nodes[0]; 7092 } 7093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7094 if (found_key.objectid != objectid || 7095 found_key.type != BTRFS_EXTENT_DATA_KEY) 7096 goto not_found; 7097 if (start + len <= found_key.offset) 7098 goto not_found; 7099 if (start > found_key.offset) 7100 goto next; 7101 em->start = start; 7102 em->orig_start = start; 7103 em->len = found_key.offset - start; 7104 goto not_found_em; 7105 } 7106 7107 btrfs_extent_item_to_extent_map(inode, path, item, 7108 new_inline, em); 7109 7110 if (found_type == BTRFS_FILE_EXTENT_REG || 7111 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7112 goto insert; 7113 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7114 unsigned long ptr; 7115 char *map; 7116 size_t size; 7117 size_t extent_offset; 7118 size_t copy_size; 7119 7120 if (new_inline) 7121 goto out; 7122 7123 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7124 extent_offset = page_offset(page) + pg_offset - extent_start; 7125 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7126 size - extent_offset); 7127 em->start = extent_start + extent_offset; 7128 em->len = ALIGN(copy_size, fs_info->sectorsize); 7129 em->orig_block_len = em->len; 7130 em->orig_start = em->start; 7131 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7132 if (create == 0 && !PageUptodate(page)) { 7133 if (btrfs_file_extent_compression(leaf, item) != 7134 BTRFS_COMPRESS_NONE) { 7135 ret = uncompress_inline(path, page, pg_offset, 7136 extent_offset, item); 7137 if (ret) { 7138 err = ret; 7139 goto out; 7140 } 7141 } else { 7142 map = kmap(page); 7143 read_extent_buffer(leaf, map + pg_offset, ptr, 7144 copy_size); 7145 if (pg_offset + copy_size < PAGE_SIZE) { 7146 memset(map + pg_offset + copy_size, 0, 7147 PAGE_SIZE - pg_offset - 7148 copy_size); 7149 } 7150 kunmap(page); 7151 } 7152 flush_dcache_page(page); 7153 } else if (create && PageUptodate(page)) { 7154 BUG(); 7155 if (!trans) { 7156 kunmap(page); 7157 free_extent_map(em); 7158 em = NULL; 7159 7160 btrfs_release_path(path); 7161 trans = btrfs_join_transaction(root); 7162 7163 if (IS_ERR(trans)) 7164 return ERR_CAST(trans); 7165 goto again; 7166 } 7167 map = kmap(page); 7168 write_extent_buffer(leaf, map + pg_offset, ptr, 7169 copy_size); 7170 kunmap(page); 7171 btrfs_mark_buffer_dirty(leaf); 7172 } 7173 set_extent_uptodate(io_tree, em->start, 7174 extent_map_end(em) - 1, NULL, GFP_NOFS); 7175 goto insert; 7176 } 7177 not_found: 7178 em->start = start; 7179 em->orig_start = start; 7180 em->len = len; 7181 not_found_em: 7182 em->block_start = EXTENT_MAP_HOLE; 7183 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7184 insert: 7185 btrfs_release_path(path); 7186 if (em->start > start || extent_map_end(em) <= start) { 7187 btrfs_err(fs_info, 7188 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7189 em->start, em->len, start, len); 7190 err = -EIO; 7191 goto out; 7192 } 7193 7194 err = 0; 7195 write_lock(&em_tree->lock); 7196 ret = add_extent_mapping(em_tree, em, 0); 7197 /* it is possible that someone inserted the extent into the tree 7198 * while we had the lock dropped. It is also possible that 7199 * an overlapping map exists in the tree 7200 */ 7201 if (ret == -EEXIST) { 7202 struct extent_map *existing; 7203 7204 ret = 0; 7205 7206 existing = search_extent_mapping(em_tree, start, len); 7207 /* 7208 * existing will always be non-NULL, since there must be 7209 * extent causing the -EEXIST. 7210 */ 7211 if (existing->start == em->start && 7212 extent_map_end(existing) >= extent_map_end(em) && 7213 em->block_start == existing->block_start) { 7214 /* 7215 * The existing extent map already encompasses the 7216 * entire extent map we tried to add. 7217 */ 7218 free_extent_map(em); 7219 em = existing; 7220 err = 0; 7221 7222 } else if (start >= extent_map_end(existing) || 7223 start <= existing->start) { 7224 /* 7225 * The existing extent map is the one nearest to 7226 * the [start, start + len) range which overlaps 7227 */ 7228 err = merge_extent_mapping(em_tree, existing, 7229 em, start); 7230 free_extent_map(existing); 7231 if (err) { 7232 free_extent_map(em); 7233 em = NULL; 7234 } 7235 } else { 7236 free_extent_map(em); 7237 em = existing; 7238 err = 0; 7239 } 7240 } 7241 write_unlock(&em_tree->lock); 7242 out: 7243 7244 trace_btrfs_get_extent(root, inode, em); 7245 7246 btrfs_free_path(path); 7247 if (trans) { 7248 ret = btrfs_end_transaction(trans); 7249 if (!err) 7250 err = ret; 7251 } 7252 if (err) { 7253 free_extent_map(em); 7254 return ERR_PTR(err); 7255 } 7256 BUG_ON(!em); /* Error is always set */ 7257 return em; 7258 } 7259 7260 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7261 struct page *page, 7262 size_t pg_offset, u64 start, u64 len, 7263 int create) 7264 { 7265 struct extent_map *em; 7266 struct extent_map *hole_em = NULL; 7267 u64 range_start = start; 7268 u64 end; 7269 u64 found; 7270 u64 found_end; 7271 int err = 0; 7272 7273 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7274 if (IS_ERR(em)) 7275 return em; 7276 /* 7277 * If our em maps to: 7278 * - a hole or 7279 * - a pre-alloc extent, 7280 * there might actually be delalloc bytes behind it. 7281 */ 7282 if (em->block_start != EXTENT_MAP_HOLE && 7283 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7284 return em; 7285 else 7286 hole_em = em; 7287 7288 /* check to see if we've wrapped (len == -1 or similar) */ 7289 end = start + len; 7290 if (end < start) 7291 end = (u64)-1; 7292 else 7293 end -= 1; 7294 7295 em = NULL; 7296 7297 /* ok, we didn't find anything, lets look for delalloc */ 7298 found = count_range_bits(&inode->io_tree, &range_start, 7299 end, len, EXTENT_DELALLOC, 1); 7300 found_end = range_start + found; 7301 if (found_end < range_start) 7302 found_end = (u64)-1; 7303 7304 /* 7305 * we didn't find anything useful, return 7306 * the original results from get_extent() 7307 */ 7308 if (range_start > end || found_end <= start) { 7309 em = hole_em; 7310 hole_em = NULL; 7311 goto out; 7312 } 7313 7314 /* adjust the range_start to make sure it doesn't 7315 * go backwards from the start they passed in 7316 */ 7317 range_start = max(start, range_start); 7318 found = found_end - range_start; 7319 7320 if (found > 0) { 7321 u64 hole_start = start; 7322 u64 hole_len = len; 7323 7324 em = alloc_extent_map(); 7325 if (!em) { 7326 err = -ENOMEM; 7327 goto out; 7328 } 7329 /* 7330 * when btrfs_get_extent can't find anything it 7331 * returns one huge hole 7332 * 7333 * make sure what it found really fits our range, and 7334 * adjust to make sure it is based on the start from 7335 * the caller 7336 */ 7337 if (hole_em) { 7338 u64 calc_end = extent_map_end(hole_em); 7339 7340 if (calc_end <= start || (hole_em->start > end)) { 7341 free_extent_map(hole_em); 7342 hole_em = NULL; 7343 } else { 7344 hole_start = max(hole_em->start, start); 7345 hole_len = calc_end - hole_start; 7346 } 7347 } 7348 em->bdev = NULL; 7349 if (hole_em && range_start > hole_start) { 7350 /* our hole starts before our delalloc, so we 7351 * have to return just the parts of the hole 7352 * that go until the delalloc starts 7353 */ 7354 em->len = min(hole_len, 7355 range_start - hole_start); 7356 em->start = hole_start; 7357 em->orig_start = hole_start; 7358 /* 7359 * don't adjust block start at all, 7360 * it is fixed at EXTENT_MAP_HOLE 7361 */ 7362 em->block_start = hole_em->block_start; 7363 em->block_len = hole_len; 7364 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7365 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7366 } else { 7367 em->start = range_start; 7368 em->len = found; 7369 em->orig_start = range_start; 7370 em->block_start = EXTENT_MAP_DELALLOC; 7371 em->block_len = found; 7372 } 7373 } else if (hole_em) { 7374 return hole_em; 7375 } 7376 out: 7377 7378 free_extent_map(hole_em); 7379 if (err) { 7380 free_extent_map(em); 7381 return ERR_PTR(err); 7382 } 7383 return em; 7384 } 7385 7386 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7387 const u64 start, 7388 const u64 len, 7389 const u64 orig_start, 7390 const u64 block_start, 7391 const u64 block_len, 7392 const u64 orig_block_len, 7393 const u64 ram_bytes, 7394 const int type) 7395 { 7396 struct extent_map *em = NULL; 7397 int ret; 7398 7399 if (type != BTRFS_ORDERED_NOCOW) { 7400 em = create_io_em(inode, start, len, orig_start, 7401 block_start, block_len, orig_block_len, 7402 ram_bytes, 7403 BTRFS_COMPRESS_NONE, /* compress_type */ 7404 type); 7405 if (IS_ERR(em)) 7406 goto out; 7407 } 7408 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7409 len, block_len, type); 7410 if (ret) { 7411 if (em) { 7412 free_extent_map(em); 7413 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7414 start + len - 1, 0); 7415 } 7416 em = ERR_PTR(ret); 7417 } 7418 out: 7419 7420 return em; 7421 } 7422 7423 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7424 u64 start, u64 len) 7425 { 7426 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7427 struct btrfs_root *root = BTRFS_I(inode)->root; 7428 struct extent_map *em; 7429 struct btrfs_key ins; 7430 u64 alloc_hint; 7431 int ret; 7432 7433 alloc_hint = get_extent_allocation_hint(inode, start, len); 7434 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7435 0, alloc_hint, &ins, 1, 1); 7436 if (ret) 7437 return ERR_PTR(ret); 7438 7439 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7440 ins.objectid, ins.offset, ins.offset, 7441 ins.offset, BTRFS_ORDERED_REGULAR); 7442 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7443 if (IS_ERR(em)) 7444 btrfs_free_reserved_extent(fs_info, ins.objectid, 7445 ins.offset, 1); 7446 7447 return em; 7448 } 7449 7450 /* 7451 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7452 * block must be cow'd 7453 */ 7454 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7455 u64 *orig_start, u64 *orig_block_len, 7456 u64 *ram_bytes) 7457 { 7458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7459 struct btrfs_path *path; 7460 int ret; 7461 struct extent_buffer *leaf; 7462 struct btrfs_root *root = BTRFS_I(inode)->root; 7463 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7464 struct btrfs_file_extent_item *fi; 7465 struct btrfs_key key; 7466 u64 disk_bytenr; 7467 u64 backref_offset; 7468 u64 extent_end; 7469 u64 num_bytes; 7470 int slot; 7471 int found_type; 7472 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7473 7474 path = btrfs_alloc_path(); 7475 if (!path) 7476 return -ENOMEM; 7477 7478 ret = btrfs_lookup_file_extent(NULL, root, path, 7479 btrfs_ino(BTRFS_I(inode)), offset, 0); 7480 if (ret < 0) 7481 goto out; 7482 7483 slot = path->slots[0]; 7484 if (ret == 1) { 7485 if (slot == 0) { 7486 /* can't find the item, must cow */ 7487 ret = 0; 7488 goto out; 7489 } 7490 slot--; 7491 } 7492 ret = 0; 7493 leaf = path->nodes[0]; 7494 btrfs_item_key_to_cpu(leaf, &key, slot); 7495 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7496 key.type != BTRFS_EXTENT_DATA_KEY) { 7497 /* not our file or wrong item type, must cow */ 7498 goto out; 7499 } 7500 7501 if (key.offset > offset) { 7502 /* Wrong offset, must cow */ 7503 goto out; 7504 } 7505 7506 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7507 found_type = btrfs_file_extent_type(leaf, fi); 7508 if (found_type != BTRFS_FILE_EXTENT_REG && 7509 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7510 /* not a regular extent, must cow */ 7511 goto out; 7512 } 7513 7514 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7515 goto out; 7516 7517 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7518 if (extent_end <= offset) 7519 goto out; 7520 7521 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7522 if (disk_bytenr == 0) 7523 goto out; 7524 7525 if (btrfs_file_extent_compression(leaf, fi) || 7526 btrfs_file_extent_encryption(leaf, fi) || 7527 btrfs_file_extent_other_encoding(leaf, fi)) 7528 goto out; 7529 7530 backref_offset = btrfs_file_extent_offset(leaf, fi); 7531 7532 if (orig_start) { 7533 *orig_start = key.offset - backref_offset; 7534 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7535 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7536 } 7537 7538 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7539 goto out; 7540 7541 num_bytes = min(offset + *len, extent_end) - offset; 7542 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7543 u64 range_end; 7544 7545 range_end = round_up(offset + num_bytes, 7546 root->fs_info->sectorsize) - 1; 7547 ret = test_range_bit(io_tree, offset, range_end, 7548 EXTENT_DELALLOC, 0, NULL); 7549 if (ret) { 7550 ret = -EAGAIN; 7551 goto out; 7552 } 7553 } 7554 7555 btrfs_release_path(path); 7556 7557 /* 7558 * look for other files referencing this extent, if we 7559 * find any we must cow 7560 */ 7561 7562 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7563 key.offset - backref_offset, disk_bytenr); 7564 if (ret) { 7565 ret = 0; 7566 goto out; 7567 } 7568 7569 /* 7570 * adjust disk_bytenr and num_bytes to cover just the bytes 7571 * in this extent we are about to write. If there 7572 * are any csums in that range we have to cow in order 7573 * to keep the csums correct 7574 */ 7575 disk_bytenr += backref_offset; 7576 disk_bytenr += offset - key.offset; 7577 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7578 goto out; 7579 /* 7580 * all of the above have passed, it is safe to overwrite this extent 7581 * without cow 7582 */ 7583 *len = num_bytes; 7584 ret = 1; 7585 out: 7586 btrfs_free_path(path); 7587 return ret; 7588 } 7589 7590 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7591 { 7592 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7593 bool found = false; 7594 void **pagep = NULL; 7595 struct page *page = NULL; 7596 unsigned long start_idx; 7597 unsigned long end_idx; 7598 7599 start_idx = start >> PAGE_SHIFT; 7600 7601 /* 7602 * end is the last byte in the last page. end == start is legal 7603 */ 7604 end_idx = end >> PAGE_SHIFT; 7605 7606 rcu_read_lock(); 7607 7608 /* Most of the code in this while loop is lifted from 7609 * find_get_page. It's been modified to begin searching from a 7610 * page and return just the first page found in that range. If the 7611 * found idx is less than or equal to the end idx then we know that 7612 * a page exists. If no pages are found or if those pages are 7613 * outside of the range then we're fine (yay!) */ 7614 while (page == NULL && 7615 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7616 page = radix_tree_deref_slot(pagep); 7617 if (unlikely(!page)) 7618 break; 7619 7620 if (radix_tree_exception(page)) { 7621 if (radix_tree_deref_retry(page)) { 7622 page = NULL; 7623 continue; 7624 } 7625 /* 7626 * Otherwise, shmem/tmpfs must be storing a swap entry 7627 * here as an exceptional entry: so return it without 7628 * attempting to raise page count. 7629 */ 7630 page = NULL; 7631 break; /* TODO: Is this relevant for this use case? */ 7632 } 7633 7634 if (!page_cache_get_speculative(page)) { 7635 page = NULL; 7636 continue; 7637 } 7638 7639 /* 7640 * Has the page moved? 7641 * This is part of the lockless pagecache protocol. See 7642 * include/linux/pagemap.h for details. 7643 */ 7644 if (unlikely(page != *pagep)) { 7645 put_page(page); 7646 page = NULL; 7647 } 7648 } 7649 7650 if (page) { 7651 if (page->index <= end_idx) 7652 found = true; 7653 put_page(page); 7654 } 7655 7656 rcu_read_unlock(); 7657 return found; 7658 } 7659 7660 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7661 struct extent_state **cached_state, int writing) 7662 { 7663 struct btrfs_ordered_extent *ordered; 7664 int ret = 0; 7665 7666 while (1) { 7667 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7668 cached_state); 7669 /* 7670 * We're concerned with the entire range that we're going to be 7671 * doing DIO to, so we need to make sure there's no ordered 7672 * extents in this range. 7673 */ 7674 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7675 lockend - lockstart + 1); 7676 7677 /* 7678 * We need to make sure there are no buffered pages in this 7679 * range either, we could have raced between the invalidate in 7680 * generic_file_direct_write and locking the extent. The 7681 * invalidate needs to happen so that reads after a write do not 7682 * get stale data. 7683 */ 7684 if (!ordered && 7685 (!writing || 7686 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7687 break; 7688 7689 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7690 cached_state, GFP_NOFS); 7691 7692 if (ordered) { 7693 /* 7694 * If we are doing a DIO read and the ordered extent we 7695 * found is for a buffered write, we can not wait for it 7696 * to complete and retry, because if we do so we can 7697 * deadlock with concurrent buffered writes on page 7698 * locks. This happens only if our DIO read covers more 7699 * than one extent map, if at this point has already 7700 * created an ordered extent for a previous extent map 7701 * and locked its range in the inode's io tree, and a 7702 * concurrent write against that previous extent map's 7703 * range and this range started (we unlock the ranges 7704 * in the io tree only when the bios complete and 7705 * buffered writes always lock pages before attempting 7706 * to lock range in the io tree). 7707 */ 7708 if (writing || 7709 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7710 btrfs_start_ordered_extent(inode, ordered, 1); 7711 else 7712 ret = -ENOTBLK; 7713 btrfs_put_ordered_extent(ordered); 7714 } else { 7715 /* 7716 * We could trigger writeback for this range (and wait 7717 * for it to complete) and then invalidate the pages for 7718 * this range (through invalidate_inode_pages2_range()), 7719 * but that can lead us to a deadlock with a concurrent 7720 * call to readpages() (a buffered read or a defrag call 7721 * triggered a readahead) on a page lock due to an 7722 * ordered dio extent we created before but did not have 7723 * yet a corresponding bio submitted (whence it can not 7724 * complete), which makes readpages() wait for that 7725 * ordered extent to complete while holding a lock on 7726 * that page. 7727 */ 7728 ret = -ENOTBLK; 7729 } 7730 7731 if (ret) 7732 break; 7733 7734 cond_resched(); 7735 } 7736 7737 return ret; 7738 } 7739 7740 /* The callers of this must take lock_extent() */ 7741 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7742 u64 orig_start, u64 block_start, 7743 u64 block_len, u64 orig_block_len, 7744 u64 ram_bytes, int compress_type, 7745 int type) 7746 { 7747 struct extent_map_tree *em_tree; 7748 struct extent_map *em; 7749 struct btrfs_root *root = BTRFS_I(inode)->root; 7750 int ret; 7751 7752 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7753 type == BTRFS_ORDERED_COMPRESSED || 7754 type == BTRFS_ORDERED_NOCOW || 7755 type == BTRFS_ORDERED_REGULAR); 7756 7757 em_tree = &BTRFS_I(inode)->extent_tree; 7758 em = alloc_extent_map(); 7759 if (!em) 7760 return ERR_PTR(-ENOMEM); 7761 7762 em->start = start; 7763 em->orig_start = orig_start; 7764 em->len = len; 7765 em->block_len = block_len; 7766 em->block_start = block_start; 7767 em->bdev = root->fs_info->fs_devices->latest_bdev; 7768 em->orig_block_len = orig_block_len; 7769 em->ram_bytes = ram_bytes; 7770 em->generation = -1; 7771 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7772 if (type == BTRFS_ORDERED_PREALLOC) { 7773 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7774 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7775 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7776 em->compress_type = compress_type; 7777 } 7778 7779 do { 7780 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7781 em->start + em->len - 1, 0); 7782 write_lock(&em_tree->lock); 7783 ret = add_extent_mapping(em_tree, em, 1); 7784 write_unlock(&em_tree->lock); 7785 /* 7786 * The caller has taken lock_extent(), who could race with us 7787 * to add em? 7788 */ 7789 } while (ret == -EEXIST); 7790 7791 if (ret) { 7792 free_extent_map(em); 7793 return ERR_PTR(ret); 7794 } 7795 7796 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7797 return em; 7798 } 7799 7800 static void adjust_dio_outstanding_extents(struct inode *inode, 7801 struct btrfs_dio_data *dio_data, 7802 const u64 len) 7803 { 7804 unsigned num_extents = count_max_extents(len); 7805 7806 /* 7807 * If we have an outstanding_extents count still set then we're 7808 * within our reservation, otherwise we need to adjust our inode 7809 * counter appropriately. 7810 */ 7811 if (dio_data->outstanding_extents >= num_extents) { 7812 dio_data->outstanding_extents -= num_extents; 7813 } else { 7814 /* 7815 * If dio write length has been split due to no large enough 7816 * contiguous space, we need to compensate our inode counter 7817 * appropriately. 7818 */ 7819 u64 num_needed = num_extents - dio_data->outstanding_extents; 7820 7821 spin_lock(&BTRFS_I(inode)->lock); 7822 BTRFS_I(inode)->outstanding_extents += num_needed; 7823 spin_unlock(&BTRFS_I(inode)->lock); 7824 } 7825 } 7826 7827 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7828 struct buffer_head *bh_result, int create) 7829 { 7830 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7831 struct extent_map *em; 7832 struct extent_state *cached_state = NULL; 7833 struct btrfs_dio_data *dio_data = NULL; 7834 u64 start = iblock << inode->i_blkbits; 7835 u64 lockstart, lockend; 7836 u64 len = bh_result->b_size; 7837 int unlock_bits = EXTENT_LOCKED; 7838 int ret = 0; 7839 7840 if (create) 7841 unlock_bits |= EXTENT_DIRTY; 7842 else 7843 len = min_t(u64, len, fs_info->sectorsize); 7844 7845 lockstart = start; 7846 lockend = start + len - 1; 7847 7848 if (current->journal_info) { 7849 /* 7850 * Need to pull our outstanding extents and set journal_info to NULL so 7851 * that anything that needs to check if there's a transaction doesn't get 7852 * confused. 7853 */ 7854 dio_data = current->journal_info; 7855 current->journal_info = NULL; 7856 } 7857 7858 /* 7859 * If this errors out it's because we couldn't invalidate pagecache for 7860 * this range and we need to fallback to buffered. 7861 */ 7862 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7863 create)) { 7864 ret = -ENOTBLK; 7865 goto err; 7866 } 7867 7868 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7869 if (IS_ERR(em)) { 7870 ret = PTR_ERR(em); 7871 goto unlock_err; 7872 } 7873 7874 /* 7875 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7876 * io. INLINE is special, and we could probably kludge it in here, but 7877 * it's still buffered so for safety lets just fall back to the generic 7878 * buffered path. 7879 * 7880 * For COMPRESSED we _have_ to read the entire extent in so we can 7881 * decompress it, so there will be buffering required no matter what we 7882 * do, so go ahead and fallback to buffered. 7883 * 7884 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7885 * to buffered IO. Don't blame me, this is the price we pay for using 7886 * the generic code. 7887 */ 7888 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7889 em->block_start == EXTENT_MAP_INLINE) { 7890 free_extent_map(em); 7891 ret = -ENOTBLK; 7892 goto unlock_err; 7893 } 7894 7895 /* Just a good old fashioned hole, return */ 7896 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7897 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7898 free_extent_map(em); 7899 goto unlock_err; 7900 } 7901 7902 /* 7903 * We don't allocate a new extent in the following cases 7904 * 7905 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7906 * existing extent. 7907 * 2) The extent is marked as PREALLOC. We're good to go here and can 7908 * just use the extent. 7909 * 7910 */ 7911 if (!create) { 7912 len = min(len, em->len - (start - em->start)); 7913 lockstart = start + len; 7914 goto unlock; 7915 } 7916 7917 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7918 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7919 em->block_start != EXTENT_MAP_HOLE)) { 7920 int type; 7921 u64 block_start, orig_start, orig_block_len, ram_bytes; 7922 7923 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7924 type = BTRFS_ORDERED_PREALLOC; 7925 else 7926 type = BTRFS_ORDERED_NOCOW; 7927 len = min(len, em->len - (start - em->start)); 7928 block_start = em->block_start + (start - em->start); 7929 7930 if (can_nocow_extent(inode, start, &len, &orig_start, 7931 &orig_block_len, &ram_bytes) == 1 && 7932 btrfs_inc_nocow_writers(fs_info, block_start)) { 7933 struct extent_map *em2; 7934 7935 em2 = btrfs_create_dio_extent(inode, start, len, 7936 orig_start, block_start, 7937 len, orig_block_len, 7938 ram_bytes, type); 7939 btrfs_dec_nocow_writers(fs_info, block_start); 7940 if (type == BTRFS_ORDERED_PREALLOC) { 7941 free_extent_map(em); 7942 em = em2; 7943 } 7944 if (em2 && IS_ERR(em2)) { 7945 ret = PTR_ERR(em2); 7946 goto unlock_err; 7947 } 7948 /* 7949 * For inode marked NODATACOW or extent marked PREALLOC, 7950 * use the existing or preallocated extent, so does not 7951 * need to adjust btrfs_space_info's bytes_may_use. 7952 */ 7953 btrfs_free_reserved_data_space_noquota(inode, 7954 start, len); 7955 goto unlock; 7956 } 7957 } 7958 7959 /* 7960 * this will cow the extent, reset the len in case we changed 7961 * it above 7962 */ 7963 len = bh_result->b_size; 7964 free_extent_map(em); 7965 em = btrfs_new_extent_direct(inode, start, len); 7966 if (IS_ERR(em)) { 7967 ret = PTR_ERR(em); 7968 goto unlock_err; 7969 } 7970 len = min(len, em->len - (start - em->start)); 7971 unlock: 7972 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7973 inode->i_blkbits; 7974 bh_result->b_size = len; 7975 bh_result->b_bdev = em->bdev; 7976 set_buffer_mapped(bh_result); 7977 if (create) { 7978 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7979 set_buffer_new(bh_result); 7980 7981 /* 7982 * Need to update the i_size under the extent lock so buffered 7983 * readers will get the updated i_size when we unlock. 7984 */ 7985 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7986 i_size_write(inode, start + len); 7987 7988 adjust_dio_outstanding_extents(inode, dio_data, len); 7989 WARN_ON(dio_data->reserve < len); 7990 dio_data->reserve -= len; 7991 dio_data->unsubmitted_oe_range_end = start + len; 7992 current->journal_info = dio_data; 7993 } 7994 7995 /* 7996 * In the case of write we need to clear and unlock the entire range, 7997 * in the case of read we need to unlock only the end area that we 7998 * aren't using if there is any left over space. 7999 */ 8000 if (lockstart < lockend) { 8001 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 8002 lockend, unlock_bits, 1, 0, 8003 &cached_state, GFP_NOFS); 8004 } else { 8005 free_extent_state(cached_state); 8006 } 8007 8008 free_extent_map(em); 8009 8010 return 0; 8011 8012 unlock_err: 8013 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 8014 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 8015 err: 8016 if (dio_data) 8017 current->journal_info = dio_data; 8018 /* 8019 * Compensate the delalloc release we do in btrfs_direct_IO() when we 8020 * write less data then expected, so that we don't underflow our inode's 8021 * outstanding extents counter. 8022 */ 8023 if (create && dio_data) 8024 adjust_dio_outstanding_extents(inode, dio_data, len); 8025 8026 return ret; 8027 } 8028 8029 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 8030 struct bio *bio, 8031 int mirror_num) 8032 { 8033 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8034 blk_status_t ret; 8035 8036 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 8037 8038 bio_get(bio); 8039 8040 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 8041 if (ret) 8042 goto err; 8043 8044 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 8045 err: 8046 bio_put(bio); 8047 return ret; 8048 } 8049 8050 static int btrfs_check_dio_repairable(struct inode *inode, 8051 struct bio *failed_bio, 8052 struct io_failure_record *failrec, 8053 int failed_mirror) 8054 { 8055 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8056 int num_copies; 8057 8058 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 8059 if (num_copies == 1) { 8060 /* 8061 * we only have a single copy of the data, so don't bother with 8062 * all the retry and error correction code that follows. no 8063 * matter what the error is, it is very likely to persist. 8064 */ 8065 btrfs_debug(fs_info, 8066 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 8067 num_copies, failrec->this_mirror, failed_mirror); 8068 return 0; 8069 } 8070 8071 failrec->failed_mirror = failed_mirror; 8072 failrec->this_mirror++; 8073 if (failrec->this_mirror == failed_mirror) 8074 failrec->this_mirror++; 8075 8076 if (failrec->this_mirror > num_copies) { 8077 btrfs_debug(fs_info, 8078 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 8079 num_copies, failrec->this_mirror, failed_mirror); 8080 return 0; 8081 } 8082 8083 return 1; 8084 } 8085 8086 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 8087 struct page *page, unsigned int pgoff, 8088 u64 start, u64 end, int failed_mirror, 8089 bio_end_io_t *repair_endio, void *repair_arg) 8090 { 8091 struct io_failure_record *failrec; 8092 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8093 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 8094 struct bio *bio; 8095 int isector; 8096 unsigned int read_mode = 0; 8097 int segs; 8098 int ret; 8099 blk_status_t status; 8100 8101 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 8102 8103 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 8104 if (ret) 8105 return errno_to_blk_status(ret); 8106 8107 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 8108 failed_mirror); 8109 if (!ret) { 8110 free_io_failure(failure_tree, io_tree, failrec); 8111 return BLK_STS_IOERR; 8112 } 8113 8114 segs = bio_segments(failed_bio); 8115 if (segs > 1 || 8116 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode))) 8117 read_mode |= REQ_FAILFAST_DEV; 8118 8119 isector = start - btrfs_io_bio(failed_bio)->logical; 8120 isector >>= inode->i_sb->s_blocksize_bits; 8121 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 8122 pgoff, isector, repair_endio, repair_arg); 8123 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 8124 8125 btrfs_debug(BTRFS_I(inode)->root->fs_info, 8126 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 8127 read_mode, failrec->this_mirror, failrec->in_validation); 8128 8129 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 8130 if (status) { 8131 free_io_failure(failure_tree, io_tree, failrec); 8132 bio_put(bio); 8133 } 8134 8135 return status; 8136 } 8137 8138 struct btrfs_retry_complete { 8139 struct completion done; 8140 struct inode *inode; 8141 u64 start; 8142 int uptodate; 8143 }; 8144 8145 static void btrfs_retry_endio_nocsum(struct bio *bio) 8146 { 8147 struct btrfs_retry_complete *done = bio->bi_private; 8148 struct inode *inode = done->inode; 8149 struct bio_vec *bvec; 8150 struct extent_io_tree *io_tree, *failure_tree; 8151 int i; 8152 8153 if (bio->bi_status) 8154 goto end; 8155 8156 ASSERT(bio->bi_vcnt == 1); 8157 io_tree = &BTRFS_I(inode)->io_tree; 8158 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8159 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode)); 8160 8161 done->uptodate = 1; 8162 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8163 bio_for_each_segment_all(bvec, bio, i) 8164 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 8165 io_tree, done->start, bvec->bv_page, 8166 btrfs_ino(BTRFS_I(inode)), 0); 8167 end: 8168 complete(&done->done); 8169 bio_put(bio); 8170 } 8171 8172 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 8173 struct btrfs_io_bio *io_bio) 8174 { 8175 struct btrfs_fs_info *fs_info; 8176 struct bio_vec bvec; 8177 struct bvec_iter iter; 8178 struct btrfs_retry_complete done; 8179 u64 start; 8180 unsigned int pgoff; 8181 u32 sectorsize; 8182 int nr_sectors; 8183 blk_status_t ret; 8184 blk_status_t err = BLK_STS_OK; 8185 8186 fs_info = BTRFS_I(inode)->root->fs_info; 8187 sectorsize = fs_info->sectorsize; 8188 8189 start = io_bio->logical; 8190 done.inode = inode; 8191 io_bio->bio.bi_iter = io_bio->iter; 8192 8193 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8194 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8195 pgoff = bvec.bv_offset; 8196 8197 next_block_or_try_again: 8198 done.uptodate = 0; 8199 done.start = start; 8200 init_completion(&done.done); 8201 8202 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8203 pgoff, start, start + sectorsize - 1, 8204 io_bio->mirror_num, 8205 btrfs_retry_endio_nocsum, &done); 8206 if (ret) { 8207 err = ret; 8208 goto next; 8209 } 8210 8211 wait_for_completion_io(&done.done); 8212 8213 if (!done.uptodate) { 8214 /* We might have another mirror, so try again */ 8215 goto next_block_or_try_again; 8216 } 8217 8218 next: 8219 start += sectorsize; 8220 8221 nr_sectors--; 8222 if (nr_sectors) { 8223 pgoff += sectorsize; 8224 ASSERT(pgoff < PAGE_SIZE); 8225 goto next_block_or_try_again; 8226 } 8227 } 8228 8229 return err; 8230 } 8231 8232 static void btrfs_retry_endio(struct bio *bio) 8233 { 8234 struct btrfs_retry_complete *done = bio->bi_private; 8235 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8236 struct extent_io_tree *io_tree, *failure_tree; 8237 struct inode *inode = done->inode; 8238 struct bio_vec *bvec; 8239 int uptodate; 8240 int ret; 8241 int i; 8242 8243 if (bio->bi_status) 8244 goto end; 8245 8246 uptodate = 1; 8247 8248 ASSERT(bio->bi_vcnt == 1); 8249 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode)); 8250 8251 io_tree = &BTRFS_I(inode)->io_tree; 8252 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8253 8254 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8255 bio_for_each_segment_all(bvec, bio, i) { 8256 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8257 bvec->bv_offset, done->start, 8258 bvec->bv_len); 8259 if (!ret) 8260 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8261 failure_tree, io_tree, done->start, 8262 bvec->bv_page, 8263 btrfs_ino(BTRFS_I(inode)), 8264 bvec->bv_offset); 8265 else 8266 uptodate = 0; 8267 } 8268 8269 done->uptodate = uptodate; 8270 end: 8271 complete(&done->done); 8272 bio_put(bio); 8273 } 8274 8275 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8276 struct btrfs_io_bio *io_bio, blk_status_t err) 8277 { 8278 struct btrfs_fs_info *fs_info; 8279 struct bio_vec bvec; 8280 struct bvec_iter iter; 8281 struct btrfs_retry_complete done; 8282 u64 start; 8283 u64 offset = 0; 8284 u32 sectorsize; 8285 int nr_sectors; 8286 unsigned int pgoff; 8287 int csum_pos; 8288 bool uptodate = (err == 0); 8289 int ret; 8290 blk_status_t status; 8291 8292 fs_info = BTRFS_I(inode)->root->fs_info; 8293 sectorsize = fs_info->sectorsize; 8294 8295 err = BLK_STS_OK; 8296 start = io_bio->logical; 8297 done.inode = inode; 8298 io_bio->bio.bi_iter = io_bio->iter; 8299 8300 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8301 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8302 8303 pgoff = bvec.bv_offset; 8304 next_block: 8305 if (uptodate) { 8306 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8307 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8308 bvec.bv_page, pgoff, start, sectorsize); 8309 if (likely(!ret)) 8310 goto next; 8311 } 8312 try_again: 8313 done.uptodate = 0; 8314 done.start = start; 8315 init_completion(&done.done); 8316 8317 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8318 pgoff, start, start + sectorsize - 1, 8319 io_bio->mirror_num, btrfs_retry_endio, 8320 &done); 8321 if (status) { 8322 err = status; 8323 goto next; 8324 } 8325 8326 wait_for_completion_io(&done.done); 8327 8328 if (!done.uptodate) { 8329 /* We might have another mirror, so try again */ 8330 goto try_again; 8331 } 8332 next: 8333 offset += sectorsize; 8334 start += sectorsize; 8335 8336 ASSERT(nr_sectors); 8337 8338 nr_sectors--; 8339 if (nr_sectors) { 8340 pgoff += sectorsize; 8341 ASSERT(pgoff < PAGE_SIZE); 8342 goto next_block; 8343 } 8344 } 8345 8346 return err; 8347 } 8348 8349 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8350 struct btrfs_io_bio *io_bio, blk_status_t err) 8351 { 8352 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8353 8354 if (skip_csum) { 8355 if (unlikely(err)) 8356 return __btrfs_correct_data_nocsum(inode, io_bio); 8357 else 8358 return BLK_STS_OK; 8359 } else { 8360 return __btrfs_subio_endio_read(inode, io_bio, err); 8361 } 8362 } 8363 8364 static void btrfs_endio_direct_read(struct bio *bio) 8365 { 8366 struct btrfs_dio_private *dip = bio->bi_private; 8367 struct inode *inode = dip->inode; 8368 struct bio *dio_bio; 8369 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8370 blk_status_t err = bio->bi_status; 8371 8372 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8373 err = btrfs_subio_endio_read(inode, io_bio, err); 8374 8375 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8376 dip->logical_offset + dip->bytes - 1); 8377 dio_bio = dip->dio_bio; 8378 8379 kfree(dip); 8380 8381 dio_bio->bi_status = err; 8382 dio_end_io(dio_bio); 8383 8384 if (io_bio->end_io) 8385 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8386 bio_put(bio); 8387 } 8388 8389 static void __endio_write_update_ordered(struct inode *inode, 8390 const u64 offset, const u64 bytes, 8391 const bool uptodate) 8392 { 8393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8394 struct btrfs_ordered_extent *ordered = NULL; 8395 struct btrfs_workqueue *wq; 8396 btrfs_work_func_t func; 8397 u64 ordered_offset = offset; 8398 u64 ordered_bytes = bytes; 8399 u64 last_offset; 8400 int ret; 8401 8402 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8403 wq = fs_info->endio_freespace_worker; 8404 func = btrfs_freespace_write_helper; 8405 } else { 8406 wq = fs_info->endio_write_workers; 8407 func = btrfs_endio_write_helper; 8408 } 8409 8410 again: 8411 last_offset = ordered_offset; 8412 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8413 &ordered_offset, 8414 ordered_bytes, 8415 uptodate); 8416 if (!ret) 8417 goto out_test; 8418 8419 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8420 btrfs_queue_work(wq, &ordered->work); 8421 out_test: 8422 /* 8423 * If btrfs_dec_test_ordered_pending does not find any ordered extent 8424 * in the range, we can exit. 8425 */ 8426 if (ordered_offset == last_offset) 8427 return; 8428 /* 8429 * our bio might span multiple ordered extents. If we haven't 8430 * completed the accounting for the whole dio, go back and try again 8431 */ 8432 if (ordered_offset < offset + bytes) { 8433 ordered_bytes = offset + bytes - ordered_offset; 8434 ordered = NULL; 8435 goto again; 8436 } 8437 } 8438 8439 static void btrfs_endio_direct_write(struct bio *bio) 8440 { 8441 struct btrfs_dio_private *dip = bio->bi_private; 8442 struct bio *dio_bio = dip->dio_bio; 8443 8444 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8445 dip->bytes, !bio->bi_status); 8446 8447 kfree(dip); 8448 8449 dio_bio->bi_status = bio->bi_status; 8450 dio_end_io(dio_bio); 8451 bio_put(bio); 8452 } 8453 8454 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data, 8455 struct bio *bio, int mirror_num, 8456 unsigned long bio_flags, u64 offset) 8457 { 8458 struct inode *inode = private_data; 8459 blk_status_t ret; 8460 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8461 BUG_ON(ret); /* -ENOMEM */ 8462 return 0; 8463 } 8464 8465 static void btrfs_end_dio_bio(struct bio *bio) 8466 { 8467 struct btrfs_dio_private *dip = bio->bi_private; 8468 blk_status_t err = bio->bi_status; 8469 8470 if (err) 8471 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8472 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8473 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8474 bio->bi_opf, 8475 (unsigned long long)bio->bi_iter.bi_sector, 8476 bio->bi_iter.bi_size, err); 8477 8478 if (dip->subio_endio) 8479 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8480 8481 if (err) { 8482 dip->errors = 1; 8483 8484 /* 8485 * before atomic variable goto zero, we must make sure 8486 * dip->errors is perceived to be set. 8487 */ 8488 smp_mb__before_atomic(); 8489 } 8490 8491 /* if there are more bios still pending for this dio, just exit */ 8492 if (!atomic_dec_and_test(&dip->pending_bios)) 8493 goto out; 8494 8495 if (dip->errors) { 8496 bio_io_error(dip->orig_bio); 8497 } else { 8498 dip->dio_bio->bi_status = 0; 8499 bio_endio(dip->orig_bio); 8500 } 8501 out: 8502 bio_put(bio); 8503 } 8504 8505 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8506 struct btrfs_dio_private *dip, 8507 struct bio *bio, 8508 u64 file_offset) 8509 { 8510 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8511 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8512 blk_status_t ret; 8513 8514 /* 8515 * We load all the csum data we need when we submit 8516 * the first bio to reduce the csum tree search and 8517 * contention. 8518 */ 8519 if (dip->logical_offset == file_offset) { 8520 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8521 file_offset); 8522 if (ret) 8523 return ret; 8524 } 8525 8526 if (bio == dip->orig_bio) 8527 return 0; 8528 8529 file_offset -= dip->logical_offset; 8530 file_offset >>= inode->i_sb->s_blocksize_bits; 8531 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8532 8533 return 0; 8534 } 8535 8536 static inline blk_status_t 8537 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, 8538 int async_submit) 8539 { 8540 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8541 struct btrfs_dio_private *dip = bio->bi_private; 8542 bool write = bio_op(bio) == REQ_OP_WRITE; 8543 blk_status_t ret; 8544 8545 if (async_submit) 8546 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8547 8548 bio_get(bio); 8549 8550 if (!write) { 8551 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8552 if (ret) 8553 goto err; 8554 } 8555 8556 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8557 goto map; 8558 8559 if (write && async_submit) { 8560 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8561 file_offset, inode, 8562 __btrfs_submit_bio_start_direct_io, 8563 __btrfs_submit_bio_done); 8564 goto err; 8565 } else if (write) { 8566 /* 8567 * If we aren't doing async submit, calculate the csum of the 8568 * bio now. 8569 */ 8570 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8571 if (ret) 8572 goto err; 8573 } else { 8574 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8575 file_offset); 8576 if (ret) 8577 goto err; 8578 } 8579 map: 8580 ret = btrfs_map_bio(fs_info, bio, 0, async_submit); 8581 err: 8582 bio_put(bio); 8583 return ret; 8584 } 8585 8586 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8587 { 8588 struct inode *inode = dip->inode; 8589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8590 struct bio *bio; 8591 struct bio *orig_bio = dip->orig_bio; 8592 u64 start_sector = orig_bio->bi_iter.bi_sector; 8593 u64 file_offset = dip->logical_offset; 8594 u64 map_length; 8595 int async_submit = 0; 8596 u64 submit_len; 8597 int clone_offset = 0; 8598 int clone_len; 8599 int ret; 8600 blk_status_t status; 8601 8602 map_length = orig_bio->bi_iter.bi_size; 8603 submit_len = map_length; 8604 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8605 &map_length, NULL, 0); 8606 if (ret) 8607 return -EIO; 8608 8609 if (map_length >= submit_len) { 8610 bio = orig_bio; 8611 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8612 goto submit; 8613 } 8614 8615 /* async crcs make it difficult to collect full stripe writes. */ 8616 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8617 async_submit = 0; 8618 else 8619 async_submit = 1; 8620 8621 /* bio split */ 8622 ASSERT(map_length <= INT_MAX); 8623 atomic_inc(&dip->pending_bios); 8624 do { 8625 clone_len = min_t(int, submit_len, map_length); 8626 8627 /* 8628 * This will never fail as it's passing GPF_NOFS and 8629 * the allocation is backed by btrfs_bioset. 8630 */ 8631 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8632 clone_len); 8633 bio->bi_private = dip; 8634 bio->bi_end_io = btrfs_end_dio_bio; 8635 btrfs_io_bio(bio)->logical = file_offset; 8636 8637 ASSERT(submit_len >= clone_len); 8638 submit_len -= clone_len; 8639 if (submit_len == 0) 8640 break; 8641 8642 /* 8643 * Increase the count before we submit the bio so we know 8644 * the end IO handler won't happen before we increase the 8645 * count. Otherwise, the dip might get freed before we're 8646 * done setting it up. 8647 */ 8648 atomic_inc(&dip->pending_bios); 8649 8650 status = __btrfs_submit_dio_bio(bio, inode, file_offset, 8651 async_submit); 8652 if (status) { 8653 bio_put(bio); 8654 atomic_dec(&dip->pending_bios); 8655 goto out_err; 8656 } 8657 8658 clone_offset += clone_len; 8659 start_sector += clone_len >> 9; 8660 file_offset += clone_len; 8661 8662 map_length = submit_len; 8663 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8664 start_sector << 9, &map_length, NULL, 0); 8665 if (ret) 8666 goto out_err; 8667 } while (submit_len > 0); 8668 8669 submit: 8670 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8671 if (!status) 8672 return 0; 8673 8674 bio_put(bio); 8675 out_err: 8676 dip->errors = 1; 8677 /* 8678 * before atomic variable goto zero, we must 8679 * make sure dip->errors is perceived to be set. 8680 */ 8681 smp_mb__before_atomic(); 8682 if (atomic_dec_and_test(&dip->pending_bios)) 8683 bio_io_error(dip->orig_bio); 8684 8685 /* bio_end_io() will handle error, so we needn't return it */ 8686 return 0; 8687 } 8688 8689 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8690 loff_t file_offset) 8691 { 8692 struct btrfs_dio_private *dip = NULL; 8693 struct bio *bio = NULL; 8694 struct btrfs_io_bio *io_bio; 8695 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8696 int ret = 0; 8697 8698 bio = btrfs_bio_clone(dio_bio); 8699 8700 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8701 if (!dip) { 8702 ret = -ENOMEM; 8703 goto free_ordered; 8704 } 8705 8706 dip->private = dio_bio->bi_private; 8707 dip->inode = inode; 8708 dip->logical_offset = file_offset; 8709 dip->bytes = dio_bio->bi_iter.bi_size; 8710 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8711 bio->bi_private = dip; 8712 dip->orig_bio = bio; 8713 dip->dio_bio = dio_bio; 8714 atomic_set(&dip->pending_bios, 0); 8715 io_bio = btrfs_io_bio(bio); 8716 io_bio->logical = file_offset; 8717 8718 if (write) { 8719 bio->bi_end_io = btrfs_endio_direct_write; 8720 } else { 8721 bio->bi_end_io = btrfs_endio_direct_read; 8722 dip->subio_endio = btrfs_subio_endio_read; 8723 } 8724 8725 /* 8726 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8727 * even if we fail to submit a bio, because in such case we do the 8728 * corresponding error handling below and it must not be done a second 8729 * time by btrfs_direct_IO(). 8730 */ 8731 if (write) { 8732 struct btrfs_dio_data *dio_data = current->journal_info; 8733 8734 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8735 dip->bytes; 8736 dio_data->unsubmitted_oe_range_start = 8737 dio_data->unsubmitted_oe_range_end; 8738 } 8739 8740 ret = btrfs_submit_direct_hook(dip); 8741 if (!ret) 8742 return; 8743 8744 if (io_bio->end_io) 8745 io_bio->end_io(io_bio, ret); 8746 8747 free_ordered: 8748 /* 8749 * If we arrived here it means either we failed to submit the dip 8750 * or we either failed to clone the dio_bio or failed to allocate the 8751 * dip. If we cloned the dio_bio and allocated the dip, we can just 8752 * call bio_endio against our io_bio so that we get proper resource 8753 * cleanup if we fail to submit the dip, otherwise, we must do the 8754 * same as btrfs_endio_direct_[write|read] because we can't call these 8755 * callbacks - they require an allocated dip and a clone of dio_bio. 8756 */ 8757 if (bio && dip) { 8758 bio_io_error(bio); 8759 /* 8760 * The end io callbacks free our dip, do the final put on bio 8761 * and all the cleanup and final put for dio_bio (through 8762 * dio_end_io()). 8763 */ 8764 dip = NULL; 8765 bio = NULL; 8766 } else { 8767 if (write) 8768 __endio_write_update_ordered(inode, 8769 file_offset, 8770 dio_bio->bi_iter.bi_size, 8771 false); 8772 else 8773 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8774 file_offset + dio_bio->bi_iter.bi_size - 1); 8775 8776 dio_bio->bi_status = BLK_STS_IOERR; 8777 /* 8778 * Releases and cleans up our dio_bio, no need to bio_put() 8779 * nor bio_endio()/bio_io_error() against dio_bio. 8780 */ 8781 dio_end_io(dio_bio); 8782 } 8783 if (bio) 8784 bio_put(bio); 8785 kfree(dip); 8786 } 8787 8788 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8789 struct kiocb *iocb, 8790 const struct iov_iter *iter, loff_t offset) 8791 { 8792 int seg; 8793 int i; 8794 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8795 ssize_t retval = -EINVAL; 8796 8797 if (offset & blocksize_mask) 8798 goto out; 8799 8800 if (iov_iter_alignment(iter) & blocksize_mask) 8801 goto out; 8802 8803 /* If this is a write we don't need to check anymore */ 8804 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8805 return 0; 8806 /* 8807 * Check to make sure we don't have duplicate iov_base's in this 8808 * iovec, if so return EINVAL, otherwise we'll get csum errors 8809 * when reading back. 8810 */ 8811 for (seg = 0; seg < iter->nr_segs; seg++) { 8812 for (i = seg + 1; i < iter->nr_segs; i++) { 8813 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8814 goto out; 8815 } 8816 } 8817 retval = 0; 8818 out: 8819 return retval; 8820 } 8821 8822 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8823 { 8824 struct file *file = iocb->ki_filp; 8825 struct inode *inode = file->f_mapping->host; 8826 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8827 struct btrfs_dio_data dio_data = { 0 }; 8828 struct extent_changeset *data_reserved = NULL; 8829 loff_t offset = iocb->ki_pos; 8830 size_t count = 0; 8831 int flags = 0; 8832 bool wakeup = true; 8833 bool relock = false; 8834 ssize_t ret; 8835 8836 if (check_direct_IO(fs_info, iocb, iter, offset)) 8837 return 0; 8838 8839 inode_dio_begin(inode); 8840 8841 /* 8842 * The generic stuff only does filemap_write_and_wait_range, which 8843 * isn't enough if we've written compressed pages to this area, so 8844 * we need to flush the dirty pages again to make absolutely sure 8845 * that any outstanding dirty pages are on disk. 8846 */ 8847 count = iov_iter_count(iter); 8848 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8849 &BTRFS_I(inode)->runtime_flags)) 8850 filemap_fdatawrite_range(inode->i_mapping, offset, 8851 offset + count - 1); 8852 8853 if (iov_iter_rw(iter) == WRITE) { 8854 /* 8855 * If the write DIO is beyond the EOF, we need update 8856 * the isize, but it is protected by i_mutex. So we can 8857 * not unlock the i_mutex at this case. 8858 */ 8859 if (offset + count <= inode->i_size) { 8860 dio_data.overwrite = 1; 8861 inode_unlock(inode); 8862 relock = true; 8863 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8864 ret = -EAGAIN; 8865 goto out; 8866 } 8867 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8868 offset, count); 8869 if (ret) 8870 goto out; 8871 dio_data.outstanding_extents = count_max_extents(count); 8872 8873 /* 8874 * We need to know how many extents we reserved so that we can 8875 * do the accounting properly if we go over the number we 8876 * originally calculated. Abuse current->journal_info for this. 8877 */ 8878 dio_data.reserve = round_up(count, 8879 fs_info->sectorsize); 8880 dio_data.unsubmitted_oe_range_start = (u64)offset; 8881 dio_data.unsubmitted_oe_range_end = (u64)offset; 8882 current->journal_info = &dio_data; 8883 down_read(&BTRFS_I(inode)->dio_sem); 8884 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8885 &BTRFS_I(inode)->runtime_flags)) { 8886 inode_dio_end(inode); 8887 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8888 wakeup = false; 8889 } 8890 8891 ret = __blockdev_direct_IO(iocb, inode, 8892 fs_info->fs_devices->latest_bdev, 8893 iter, btrfs_get_blocks_direct, NULL, 8894 btrfs_submit_direct, flags); 8895 if (iov_iter_rw(iter) == WRITE) { 8896 up_read(&BTRFS_I(inode)->dio_sem); 8897 current->journal_info = NULL; 8898 if (ret < 0 && ret != -EIOCBQUEUED) { 8899 if (dio_data.reserve) 8900 btrfs_delalloc_release_space(inode, data_reserved, 8901 offset, dio_data.reserve); 8902 /* 8903 * On error we might have left some ordered extents 8904 * without submitting corresponding bios for them, so 8905 * cleanup them up to avoid other tasks getting them 8906 * and waiting for them to complete forever. 8907 */ 8908 if (dio_data.unsubmitted_oe_range_start < 8909 dio_data.unsubmitted_oe_range_end) 8910 __endio_write_update_ordered(inode, 8911 dio_data.unsubmitted_oe_range_start, 8912 dio_data.unsubmitted_oe_range_end - 8913 dio_data.unsubmitted_oe_range_start, 8914 false); 8915 } else if (ret >= 0 && (size_t)ret < count) 8916 btrfs_delalloc_release_space(inode, data_reserved, 8917 offset, count - (size_t)ret); 8918 } 8919 out: 8920 if (wakeup) 8921 inode_dio_end(inode); 8922 if (relock) 8923 inode_lock(inode); 8924 8925 extent_changeset_free(data_reserved); 8926 return ret; 8927 } 8928 8929 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8930 8931 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8932 __u64 start, __u64 len) 8933 { 8934 int ret; 8935 8936 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8937 if (ret) 8938 return ret; 8939 8940 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8941 } 8942 8943 int btrfs_readpage(struct file *file, struct page *page) 8944 { 8945 struct extent_io_tree *tree; 8946 tree = &BTRFS_I(page->mapping->host)->io_tree; 8947 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8948 } 8949 8950 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8951 { 8952 struct extent_io_tree *tree; 8953 struct inode *inode = page->mapping->host; 8954 int ret; 8955 8956 if (current->flags & PF_MEMALLOC) { 8957 redirty_page_for_writepage(wbc, page); 8958 unlock_page(page); 8959 return 0; 8960 } 8961 8962 /* 8963 * If we are under memory pressure we will call this directly from the 8964 * VM, we need to make sure we have the inode referenced for the ordered 8965 * extent. If not just return like we didn't do anything. 8966 */ 8967 if (!igrab(inode)) { 8968 redirty_page_for_writepage(wbc, page); 8969 return AOP_WRITEPAGE_ACTIVATE; 8970 } 8971 tree = &BTRFS_I(page->mapping->host)->io_tree; 8972 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8973 btrfs_add_delayed_iput(inode); 8974 return ret; 8975 } 8976 8977 static int btrfs_writepages(struct address_space *mapping, 8978 struct writeback_control *wbc) 8979 { 8980 struct extent_io_tree *tree; 8981 8982 tree = &BTRFS_I(mapping->host)->io_tree; 8983 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8984 } 8985 8986 static int 8987 btrfs_readpages(struct file *file, struct address_space *mapping, 8988 struct list_head *pages, unsigned nr_pages) 8989 { 8990 struct extent_io_tree *tree; 8991 tree = &BTRFS_I(mapping->host)->io_tree; 8992 return extent_readpages(tree, mapping, pages, nr_pages, 8993 btrfs_get_extent); 8994 } 8995 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8996 { 8997 struct extent_io_tree *tree; 8998 struct extent_map_tree *map; 8999 int ret; 9000 9001 tree = &BTRFS_I(page->mapping->host)->io_tree; 9002 map = &BTRFS_I(page->mapping->host)->extent_tree; 9003 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 9004 if (ret == 1) { 9005 ClearPagePrivate(page); 9006 set_page_private(page, 0); 9007 put_page(page); 9008 } 9009 return ret; 9010 } 9011 9012 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 9013 { 9014 if (PageWriteback(page) || PageDirty(page)) 9015 return 0; 9016 return __btrfs_releasepage(page, gfp_flags); 9017 } 9018 9019 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 9020 unsigned int length) 9021 { 9022 struct inode *inode = page->mapping->host; 9023 struct extent_io_tree *tree; 9024 struct btrfs_ordered_extent *ordered; 9025 struct extent_state *cached_state = NULL; 9026 u64 page_start = page_offset(page); 9027 u64 page_end = page_start + PAGE_SIZE - 1; 9028 u64 start; 9029 u64 end; 9030 int inode_evicting = inode->i_state & I_FREEING; 9031 9032 /* 9033 * we have the page locked, so new writeback can't start, 9034 * and the dirty bit won't be cleared while we are here. 9035 * 9036 * Wait for IO on this page so that we can safely clear 9037 * the PagePrivate2 bit and do ordered accounting 9038 */ 9039 wait_on_page_writeback(page); 9040 9041 tree = &BTRFS_I(inode)->io_tree; 9042 if (offset) { 9043 btrfs_releasepage(page, GFP_NOFS); 9044 return; 9045 } 9046 9047 if (!inode_evicting) 9048 lock_extent_bits(tree, page_start, page_end, &cached_state); 9049 again: 9050 start = page_start; 9051 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 9052 page_end - start + 1); 9053 if (ordered) { 9054 end = min(page_end, ordered->file_offset + ordered->len - 1); 9055 /* 9056 * IO on this page will never be started, so we need 9057 * to account for any ordered extents now 9058 */ 9059 if (!inode_evicting) 9060 clear_extent_bit(tree, start, end, 9061 EXTENT_DIRTY | EXTENT_DELALLOC | 9062 EXTENT_DELALLOC_NEW | 9063 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 9064 EXTENT_DEFRAG, 1, 0, &cached_state, 9065 GFP_NOFS); 9066 /* 9067 * whoever cleared the private bit is responsible 9068 * for the finish_ordered_io 9069 */ 9070 if (TestClearPagePrivate2(page)) { 9071 struct btrfs_ordered_inode_tree *tree; 9072 u64 new_len; 9073 9074 tree = &BTRFS_I(inode)->ordered_tree; 9075 9076 spin_lock_irq(&tree->lock); 9077 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 9078 new_len = start - ordered->file_offset; 9079 if (new_len < ordered->truncated_len) 9080 ordered->truncated_len = new_len; 9081 spin_unlock_irq(&tree->lock); 9082 9083 if (btrfs_dec_test_ordered_pending(inode, &ordered, 9084 start, 9085 end - start + 1, 1)) 9086 btrfs_finish_ordered_io(ordered); 9087 } 9088 btrfs_put_ordered_extent(ordered); 9089 if (!inode_evicting) { 9090 cached_state = NULL; 9091 lock_extent_bits(tree, start, end, 9092 &cached_state); 9093 } 9094 9095 start = end + 1; 9096 if (start < page_end) 9097 goto again; 9098 } 9099 9100 /* 9101 * Qgroup reserved space handler 9102 * Page here will be either 9103 * 1) Already written to disk 9104 * In this case, its reserved space is released from data rsv map 9105 * and will be freed by delayed_ref handler finally. 9106 * So even we call qgroup_free_data(), it won't decrease reserved 9107 * space. 9108 * 2) Not written to disk 9109 * This means the reserved space should be freed here. However, 9110 * if a truncate invalidates the page (by clearing PageDirty) 9111 * and the page is accounted for while allocating extent 9112 * in btrfs_check_data_free_space() we let delayed_ref to 9113 * free the entire extent. 9114 */ 9115 if (PageDirty(page)) 9116 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 9117 if (!inode_evicting) { 9118 clear_extent_bit(tree, page_start, page_end, 9119 EXTENT_LOCKED | EXTENT_DIRTY | 9120 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 9121 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 9122 &cached_state, GFP_NOFS); 9123 9124 __btrfs_releasepage(page, GFP_NOFS); 9125 } 9126 9127 ClearPageChecked(page); 9128 if (PagePrivate(page)) { 9129 ClearPagePrivate(page); 9130 set_page_private(page, 0); 9131 put_page(page); 9132 } 9133 } 9134 9135 /* 9136 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 9137 * called from a page fault handler when a page is first dirtied. Hence we must 9138 * be careful to check for EOF conditions here. We set the page up correctly 9139 * for a written page which means we get ENOSPC checking when writing into 9140 * holes and correct delalloc and unwritten extent mapping on filesystems that 9141 * support these features. 9142 * 9143 * We are not allowed to take the i_mutex here so we have to play games to 9144 * protect against truncate races as the page could now be beyond EOF. Because 9145 * vmtruncate() writes the inode size before removing pages, once we have the 9146 * page lock we can determine safely if the page is beyond EOF. If it is not 9147 * beyond EOF, then the page is guaranteed safe against truncation until we 9148 * unlock the page. 9149 */ 9150 int btrfs_page_mkwrite(struct vm_fault *vmf) 9151 { 9152 struct page *page = vmf->page; 9153 struct inode *inode = file_inode(vmf->vma->vm_file); 9154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9155 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9156 struct btrfs_ordered_extent *ordered; 9157 struct extent_state *cached_state = NULL; 9158 struct extent_changeset *data_reserved = NULL; 9159 char *kaddr; 9160 unsigned long zero_start; 9161 loff_t size; 9162 int ret; 9163 int reserved = 0; 9164 u64 reserved_space; 9165 u64 page_start; 9166 u64 page_end; 9167 u64 end; 9168 9169 reserved_space = PAGE_SIZE; 9170 9171 sb_start_pagefault(inode->i_sb); 9172 page_start = page_offset(page); 9173 page_end = page_start + PAGE_SIZE - 1; 9174 end = page_end; 9175 9176 /* 9177 * Reserving delalloc space after obtaining the page lock can lead to 9178 * deadlock. For example, if a dirty page is locked by this function 9179 * and the call to btrfs_delalloc_reserve_space() ends up triggering 9180 * dirty page write out, then the btrfs_writepage() function could 9181 * end up waiting indefinitely to get a lock on the page currently 9182 * being processed by btrfs_page_mkwrite() function. 9183 */ 9184 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 9185 reserved_space); 9186 if (!ret) { 9187 ret = file_update_time(vmf->vma->vm_file); 9188 reserved = 1; 9189 } 9190 if (ret) { 9191 if (ret == -ENOMEM) 9192 ret = VM_FAULT_OOM; 9193 else /* -ENOSPC, -EIO, etc */ 9194 ret = VM_FAULT_SIGBUS; 9195 if (reserved) 9196 goto out; 9197 goto out_noreserve; 9198 } 9199 9200 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9201 again: 9202 lock_page(page); 9203 size = i_size_read(inode); 9204 9205 if ((page->mapping != inode->i_mapping) || 9206 (page_start >= size)) { 9207 /* page got truncated out from underneath us */ 9208 goto out_unlock; 9209 } 9210 wait_on_page_writeback(page); 9211 9212 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9213 set_page_extent_mapped(page); 9214 9215 /* 9216 * we can't set the delalloc bits if there are pending ordered 9217 * extents. Drop our locks and wait for them to finish 9218 */ 9219 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9220 PAGE_SIZE); 9221 if (ordered) { 9222 unlock_extent_cached(io_tree, page_start, page_end, 9223 &cached_state, GFP_NOFS); 9224 unlock_page(page); 9225 btrfs_start_ordered_extent(inode, ordered, 1); 9226 btrfs_put_ordered_extent(ordered); 9227 goto again; 9228 } 9229 9230 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9231 reserved_space = round_up(size - page_start, 9232 fs_info->sectorsize); 9233 if (reserved_space < PAGE_SIZE) { 9234 end = page_start + reserved_space - 1; 9235 spin_lock(&BTRFS_I(inode)->lock); 9236 BTRFS_I(inode)->outstanding_extents++; 9237 spin_unlock(&BTRFS_I(inode)->lock); 9238 btrfs_delalloc_release_space(inode, data_reserved, 9239 page_start, PAGE_SIZE - reserved_space); 9240 } 9241 } 9242 9243 /* 9244 * page_mkwrite gets called when the page is firstly dirtied after it's 9245 * faulted in, but write(2) could also dirty a page and set delalloc 9246 * bits, thus in this case for space account reason, we still need to 9247 * clear any delalloc bits within this page range since we have to 9248 * reserve data&meta space before lock_page() (see above comments). 9249 */ 9250 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9251 EXTENT_DIRTY | EXTENT_DELALLOC | 9252 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9253 0, 0, &cached_state, GFP_NOFS); 9254 9255 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9256 &cached_state, 0); 9257 if (ret) { 9258 unlock_extent_cached(io_tree, page_start, page_end, 9259 &cached_state, GFP_NOFS); 9260 ret = VM_FAULT_SIGBUS; 9261 goto out_unlock; 9262 } 9263 ret = 0; 9264 9265 /* page is wholly or partially inside EOF */ 9266 if (page_start + PAGE_SIZE > size) 9267 zero_start = size & ~PAGE_MASK; 9268 else 9269 zero_start = PAGE_SIZE; 9270 9271 if (zero_start != PAGE_SIZE) { 9272 kaddr = kmap(page); 9273 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9274 flush_dcache_page(page); 9275 kunmap(page); 9276 } 9277 ClearPageChecked(page); 9278 set_page_dirty(page); 9279 SetPageUptodate(page); 9280 9281 BTRFS_I(inode)->last_trans = fs_info->generation; 9282 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9283 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9284 9285 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9286 9287 out_unlock: 9288 if (!ret) { 9289 sb_end_pagefault(inode->i_sb); 9290 extent_changeset_free(data_reserved); 9291 return VM_FAULT_LOCKED; 9292 } 9293 unlock_page(page); 9294 out: 9295 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9296 reserved_space); 9297 out_noreserve: 9298 sb_end_pagefault(inode->i_sb); 9299 extent_changeset_free(data_reserved); 9300 return ret; 9301 } 9302 9303 static int btrfs_truncate(struct inode *inode) 9304 { 9305 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9306 struct btrfs_root *root = BTRFS_I(inode)->root; 9307 struct btrfs_block_rsv *rsv; 9308 int ret = 0; 9309 int err = 0; 9310 struct btrfs_trans_handle *trans; 9311 u64 mask = fs_info->sectorsize - 1; 9312 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9313 9314 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9315 (u64)-1); 9316 if (ret) 9317 return ret; 9318 9319 /* 9320 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9321 * 3 things going on here 9322 * 9323 * 1) We need to reserve space for our orphan item and the space to 9324 * delete our orphan item. Lord knows we don't want to have a dangling 9325 * orphan item because we didn't reserve space to remove it. 9326 * 9327 * 2) We need to reserve space to update our inode. 9328 * 9329 * 3) We need to have something to cache all the space that is going to 9330 * be free'd up by the truncate operation, but also have some slack 9331 * space reserved in case it uses space during the truncate (thank you 9332 * very much snapshotting). 9333 * 9334 * And we need these to all be separate. The fact is we can use a lot of 9335 * space doing the truncate, and we have no earthly idea how much space 9336 * we will use, so we need the truncate reservation to be separate so it 9337 * doesn't end up using space reserved for updating the inode or 9338 * removing the orphan item. We also need to be able to stop the 9339 * transaction and start a new one, which means we need to be able to 9340 * update the inode several times, and we have no idea of knowing how 9341 * many times that will be, so we can't just reserve 1 item for the 9342 * entirety of the operation, so that has to be done separately as well. 9343 * Then there is the orphan item, which does indeed need to be held on 9344 * to for the whole operation, and we need nobody to touch this reserved 9345 * space except the orphan code. 9346 * 9347 * So that leaves us with 9348 * 9349 * 1) root->orphan_block_rsv - for the orphan deletion. 9350 * 2) rsv - for the truncate reservation, which we will steal from the 9351 * transaction reservation. 9352 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9353 * updating the inode. 9354 */ 9355 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9356 if (!rsv) 9357 return -ENOMEM; 9358 rsv->size = min_size; 9359 rsv->failfast = 1; 9360 9361 /* 9362 * 1 for the truncate slack space 9363 * 1 for updating the inode. 9364 */ 9365 trans = btrfs_start_transaction(root, 2); 9366 if (IS_ERR(trans)) { 9367 err = PTR_ERR(trans); 9368 goto out; 9369 } 9370 9371 /* Migrate the slack space for the truncate to our reserve */ 9372 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9373 min_size, 0); 9374 BUG_ON(ret); 9375 9376 /* 9377 * So if we truncate and then write and fsync we normally would just 9378 * write the extents that changed, which is a problem if we need to 9379 * first truncate that entire inode. So set this flag so we write out 9380 * all of the extents in the inode to the sync log so we're completely 9381 * safe. 9382 */ 9383 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9384 trans->block_rsv = rsv; 9385 9386 while (1) { 9387 ret = btrfs_truncate_inode_items(trans, root, inode, 9388 inode->i_size, 9389 BTRFS_EXTENT_DATA_KEY); 9390 if (ret != -ENOSPC && ret != -EAGAIN) { 9391 err = ret; 9392 break; 9393 } 9394 9395 trans->block_rsv = &fs_info->trans_block_rsv; 9396 ret = btrfs_update_inode(trans, root, inode); 9397 if (ret) { 9398 err = ret; 9399 break; 9400 } 9401 9402 btrfs_end_transaction(trans); 9403 btrfs_btree_balance_dirty(fs_info); 9404 9405 trans = btrfs_start_transaction(root, 2); 9406 if (IS_ERR(trans)) { 9407 ret = err = PTR_ERR(trans); 9408 trans = NULL; 9409 break; 9410 } 9411 9412 btrfs_block_rsv_release(fs_info, rsv, -1); 9413 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9414 rsv, min_size, 0); 9415 BUG_ON(ret); /* shouldn't happen */ 9416 trans->block_rsv = rsv; 9417 } 9418 9419 if (ret == 0 && inode->i_nlink > 0) { 9420 trans->block_rsv = root->orphan_block_rsv; 9421 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9422 if (ret) 9423 err = ret; 9424 } 9425 9426 if (trans) { 9427 trans->block_rsv = &fs_info->trans_block_rsv; 9428 ret = btrfs_update_inode(trans, root, inode); 9429 if (ret && !err) 9430 err = ret; 9431 9432 ret = btrfs_end_transaction(trans); 9433 btrfs_btree_balance_dirty(fs_info); 9434 } 9435 out: 9436 btrfs_free_block_rsv(fs_info, rsv); 9437 9438 if (ret && !err) 9439 err = ret; 9440 9441 return err; 9442 } 9443 9444 /* 9445 * create a new subvolume directory/inode (helper for the ioctl). 9446 */ 9447 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9448 struct btrfs_root *new_root, 9449 struct btrfs_root *parent_root, 9450 u64 new_dirid) 9451 { 9452 struct inode *inode; 9453 int err; 9454 u64 index = 0; 9455 9456 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9457 new_dirid, new_dirid, 9458 S_IFDIR | (~current_umask() & S_IRWXUGO), 9459 &index); 9460 if (IS_ERR(inode)) 9461 return PTR_ERR(inode); 9462 inode->i_op = &btrfs_dir_inode_operations; 9463 inode->i_fop = &btrfs_dir_file_operations; 9464 9465 set_nlink(inode, 1); 9466 btrfs_i_size_write(BTRFS_I(inode), 0); 9467 unlock_new_inode(inode); 9468 9469 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9470 if (err) 9471 btrfs_err(new_root->fs_info, 9472 "error inheriting subvolume %llu properties: %d", 9473 new_root->root_key.objectid, err); 9474 9475 err = btrfs_update_inode(trans, new_root, inode); 9476 9477 iput(inode); 9478 return err; 9479 } 9480 9481 struct inode *btrfs_alloc_inode(struct super_block *sb) 9482 { 9483 struct btrfs_inode *ei; 9484 struct inode *inode; 9485 9486 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9487 if (!ei) 9488 return NULL; 9489 9490 ei->root = NULL; 9491 ei->generation = 0; 9492 ei->last_trans = 0; 9493 ei->last_sub_trans = 0; 9494 ei->logged_trans = 0; 9495 ei->delalloc_bytes = 0; 9496 ei->new_delalloc_bytes = 0; 9497 ei->defrag_bytes = 0; 9498 ei->disk_i_size = 0; 9499 ei->flags = 0; 9500 ei->csum_bytes = 0; 9501 ei->index_cnt = (u64)-1; 9502 ei->dir_index = 0; 9503 ei->last_unlink_trans = 0; 9504 ei->last_log_commit = 0; 9505 ei->delayed_iput_count = 0; 9506 9507 spin_lock_init(&ei->lock); 9508 ei->outstanding_extents = 0; 9509 ei->reserved_extents = 0; 9510 9511 ei->runtime_flags = 0; 9512 ei->prop_compress = BTRFS_COMPRESS_NONE; 9513 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9514 9515 ei->delayed_node = NULL; 9516 9517 ei->i_otime.tv_sec = 0; 9518 ei->i_otime.tv_nsec = 0; 9519 9520 inode = &ei->vfs_inode; 9521 extent_map_tree_init(&ei->extent_tree); 9522 extent_io_tree_init(&ei->io_tree, inode); 9523 extent_io_tree_init(&ei->io_failure_tree, inode); 9524 ei->io_tree.track_uptodate = 1; 9525 ei->io_failure_tree.track_uptodate = 1; 9526 atomic_set(&ei->sync_writers, 0); 9527 mutex_init(&ei->log_mutex); 9528 mutex_init(&ei->delalloc_mutex); 9529 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9530 INIT_LIST_HEAD(&ei->delalloc_inodes); 9531 INIT_LIST_HEAD(&ei->delayed_iput); 9532 RB_CLEAR_NODE(&ei->rb_node); 9533 init_rwsem(&ei->dio_sem); 9534 9535 return inode; 9536 } 9537 9538 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9539 void btrfs_test_destroy_inode(struct inode *inode) 9540 { 9541 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9542 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9543 } 9544 #endif 9545 9546 static void btrfs_i_callback(struct rcu_head *head) 9547 { 9548 struct inode *inode = container_of(head, struct inode, i_rcu); 9549 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9550 } 9551 9552 void btrfs_destroy_inode(struct inode *inode) 9553 { 9554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9555 struct btrfs_ordered_extent *ordered; 9556 struct btrfs_root *root = BTRFS_I(inode)->root; 9557 9558 WARN_ON(!hlist_empty(&inode->i_dentry)); 9559 WARN_ON(inode->i_data.nrpages); 9560 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9561 WARN_ON(BTRFS_I(inode)->reserved_extents); 9562 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9563 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9564 WARN_ON(BTRFS_I(inode)->csum_bytes); 9565 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9566 9567 /* 9568 * This can happen where we create an inode, but somebody else also 9569 * created the same inode and we need to destroy the one we already 9570 * created. 9571 */ 9572 if (!root) 9573 goto free; 9574 9575 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9576 &BTRFS_I(inode)->runtime_flags)) { 9577 btrfs_info(fs_info, "inode %llu still on the orphan list", 9578 btrfs_ino(BTRFS_I(inode))); 9579 atomic_dec(&root->orphan_inodes); 9580 } 9581 9582 while (1) { 9583 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9584 if (!ordered) 9585 break; 9586 else { 9587 btrfs_err(fs_info, 9588 "found ordered extent %llu %llu on inode cleanup", 9589 ordered->file_offset, ordered->len); 9590 btrfs_remove_ordered_extent(inode, ordered); 9591 btrfs_put_ordered_extent(ordered); 9592 btrfs_put_ordered_extent(ordered); 9593 } 9594 } 9595 btrfs_qgroup_check_reserved_leak(inode); 9596 inode_tree_del(inode); 9597 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9598 free: 9599 call_rcu(&inode->i_rcu, btrfs_i_callback); 9600 } 9601 9602 int btrfs_drop_inode(struct inode *inode) 9603 { 9604 struct btrfs_root *root = BTRFS_I(inode)->root; 9605 9606 if (root == NULL) 9607 return 1; 9608 9609 /* the snap/subvol tree is on deleting */ 9610 if (btrfs_root_refs(&root->root_item) == 0) 9611 return 1; 9612 else 9613 return generic_drop_inode(inode); 9614 } 9615 9616 static void init_once(void *foo) 9617 { 9618 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9619 9620 inode_init_once(&ei->vfs_inode); 9621 } 9622 9623 void btrfs_destroy_cachep(void) 9624 { 9625 /* 9626 * Make sure all delayed rcu free inodes are flushed before we 9627 * destroy cache. 9628 */ 9629 rcu_barrier(); 9630 kmem_cache_destroy(btrfs_inode_cachep); 9631 kmem_cache_destroy(btrfs_trans_handle_cachep); 9632 kmem_cache_destroy(btrfs_path_cachep); 9633 kmem_cache_destroy(btrfs_free_space_cachep); 9634 } 9635 9636 int btrfs_init_cachep(void) 9637 { 9638 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9639 sizeof(struct btrfs_inode), 0, 9640 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9641 init_once); 9642 if (!btrfs_inode_cachep) 9643 goto fail; 9644 9645 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9646 sizeof(struct btrfs_trans_handle), 0, 9647 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9648 if (!btrfs_trans_handle_cachep) 9649 goto fail; 9650 9651 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9652 sizeof(struct btrfs_path), 0, 9653 SLAB_MEM_SPREAD, NULL); 9654 if (!btrfs_path_cachep) 9655 goto fail; 9656 9657 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9658 sizeof(struct btrfs_free_space), 0, 9659 SLAB_MEM_SPREAD, NULL); 9660 if (!btrfs_free_space_cachep) 9661 goto fail; 9662 9663 return 0; 9664 fail: 9665 btrfs_destroy_cachep(); 9666 return -ENOMEM; 9667 } 9668 9669 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9670 u32 request_mask, unsigned int flags) 9671 { 9672 u64 delalloc_bytes; 9673 struct inode *inode = d_inode(path->dentry); 9674 u32 blocksize = inode->i_sb->s_blocksize; 9675 u32 bi_flags = BTRFS_I(inode)->flags; 9676 9677 stat->result_mask |= STATX_BTIME; 9678 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9679 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9680 if (bi_flags & BTRFS_INODE_APPEND) 9681 stat->attributes |= STATX_ATTR_APPEND; 9682 if (bi_flags & BTRFS_INODE_COMPRESS) 9683 stat->attributes |= STATX_ATTR_COMPRESSED; 9684 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9685 stat->attributes |= STATX_ATTR_IMMUTABLE; 9686 if (bi_flags & BTRFS_INODE_NODUMP) 9687 stat->attributes |= STATX_ATTR_NODUMP; 9688 9689 stat->attributes_mask |= (STATX_ATTR_APPEND | 9690 STATX_ATTR_COMPRESSED | 9691 STATX_ATTR_IMMUTABLE | 9692 STATX_ATTR_NODUMP); 9693 9694 generic_fillattr(inode, stat); 9695 stat->dev = BTRFS_I(inode)->root->anon_dev; 9696 9697 spin_lock(&BTRFS_I(inode)->lock); 9698 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9699 spin_unlock(&BTRFS_I(inode)->lock); 9700 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9701 ALIGN(delalloc_bytes, blocksize)) >> 9; 9702 return 0; 9703 } 9704 9705 static int btrfs_rename_exchange(struct inode *old_dir, 9706 struct dentry *old_dentry, 9707 struct inode *new_dir, 9708 struct dentry *new_dentry) 9709 { 9710 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9711 struct btrfs_trans_handle *trans; 9712 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9713 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9714 struct inode *new_inode = new_dentry->d_inode; 9715 struct inode *old_inode = old_dentry->d_inode; 9716 struct timespec ctime = current_time(old_inode); 9717 struct dentry *parent; 9718 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9719 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9720 u64 old_idx = 0; 9721 u64 new_idx = 0; 9722 u64 root_objectid; 9723 int ret; 9724 bool root_log_pinned = false; 9725 bool dest_log_pinned = false; 9726 9727 /* we only allow rename subvolume link between subvolumes */ 9728 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9729 return -EXDEV; 9730 9731 /* close the race window with snapshot create/destroy ioctl */ 9732 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9733 down_read(&fs_info->subvol_sem); 9734 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9735 down_read(&fs_info->subvol_sem); 9736 9737 /* 9738 * We want to reserve the absolute worst case amount of items. So if 9739 * both inodes are subvols and we need to unlink them then that would 9740 * require 4 item modifications, but if they are both normal inodes it 9741 * would require 5 item modifications, so we'll assume their normal 9742 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9743 * should cover the worst case number of items we'll modify. 9744 */ 9745 trans = btrfs_start_transaction(root, 12); 9746 if (IS_ERR(trans)) { 9747 ret = PTR_ERR(trans); 9748 goto out_notrans; 9749 } 9750 9751 /* 9752 * We need to find a free sequence number both in the source and 9753 * in the destination directory for the exchange. 9754 */ 9755 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9756 if (ret) 9757 goto out_fail; 9758 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9759 if (ret) 9760 goto out_fail; 9761 9762 BTRFS_I(old_inode)->dir_index = 0ULL; 9763 BTRFS_I(new_inode)->dir_index = 0ULL; 9764 9765 /* Reference for the source. */ 9766 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9767 /* force full log commit if subvolume involved. */ 9768 btrfs_set_log_full_commit(fs_info, trans); 9769 } else { 9770 btrfs_pin_log_trans(root); 9771 root_log_pinned = true; 9772 ret = btrfs_insert_inode_ref(trans, dest, 9773 new_dentry->d_name.name, 9774 new_dentry->d_name.len, 9775 old_ino, 9776 btrfs_ino(BTRFS_I(new_dir)), 9777 old_idx); 9778 if (ret) 9779 goto out_fail; 9780 } 9781 9782 /* And now for the dest. */ 9783 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9784 /* force full log commit if subvolume involved. */ 9785 btrfs_set_log_full_commit(fs_info, trans); 9786 } else { 9787 btrfs_pin_log_trans(dest); 9788 dest_log_pinned = true; 9789 ret = btrfs_insert_inode_ref(trans, root, 9790 old_dentry->d_name.name, 9791 old_dentry->d_name.len, 9792 new_ino, 9793 btrfs_ino(BTRFS_I(old_dir)), 9794 new_idx); 9795 if (ret) 9796 goto out_fail; 9797 } 9798 9799 /* Update inode version and ctime/mtime. */ 9800 inode_inc_iversion(old_dir); 9801 inode_inc_iversion(new_dir); 9802 inode_inc_iversion(old_inode); 9803 inode_inc_iversion(new_inode); 9804 old_dir->i_ctime = old_dir->i_mtime = ctime; 9805 new_dir->i_ctime = new_dir->i_mtime = ctime; 9806 old_inode->i_ctime = ctime; 9807 new_inode->i_ctime = ctime; 9808 9809 if (old_dentry->d_parent != new_dentry->d_parent) { 9810 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9811 BTRFS_I(old_inode), 1); 9812 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9813 BTRFS_I(new_inode), 1); 9814 } 9815 9816 /* src is a subvolume */ 9817 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9818 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9819 ret = btrfs_unlink_subvol(trans, root, old_dir, 9820 root_objectid, 9821 old_dentry->d_name.name, 9822 old_dentry->d_name.len); 9823 } else { /* src is an inode */ 9824 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9825 BTRFS_I(old_dentry->d_inode), 9826 old_dentry->d_name.name, 9827 old_dentry->d_name.len); 9828 if (!ret) 9829 ret = btrfs_update_inode(trans, root, old_inode); 9830 } 9831 if (ret) { 9832 btrfs_abort_transaction(trans, ret); 9833 goto out_fail; 9834 } 9835 9836 /* dest is a subvolume */ 9837 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9838 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9839 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9840 root_objectid, 9841 new_dentry->d_name.name, 9842 new_dentry->d_name.len); 9843 } else { /* dest is an inode */ 9844 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9845 BTRFS_I(new_dentry->d_inode), 9846 new_dentry->d_name.name, 9847 new_dentry->d_name.len); 9848 if (!ret) 9849 ret = btrfs_update_inode(trans, dest, new_inode); 9850 } 9851 if (ret) { 9852 btrfs_abort_transaction(trans, ret); 9853 goto out_fail; 9854 } 9855 9856 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9857 new_dentry->d_name.name, 9858 new_dentry->d_name.len, 0, old_idx); 9859 if (ret) { 9860 btrfs_abort_transaction(trans, ret); 9861 goto out_fail; 9862 } 9863 9864 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9865 old_dentry->d_name.name, 9866 old_dentry->d_name.len, 0, new_idx); 9867 if (ret) { 9868 btrfs_abort_transaction(trans, ret); 9869 goto out_fail; 9870 } 9871 9872 if (old_inode->i_nlink == 1) 9873 BTRFS_I(old_inode)->dir_index = old_idx; 9874 if (new_inode->i_nlink == 1) 9875 BTRFS_I(new_inode)->dir_index = new_idx; 9876 9877 if (root_log_pinned) { 9878 parent = new_dentry->d_parent; 9879 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9880 parent); 9881 btrfs_end_log_trans(root); 9882 root_log_pinned = false; 9883 } 9884 if (dest_log_pinned) { 9885 parent = old_dentry->d_parent; 9886 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9887 parent); 9888 btrfs_end_log_trans(dest); 9889 dest_log_pinned = false; 9890 } 9891 out_fail: 9892 /* 9893 * If we have pinned a log and an error happened, we unpin tasks 9894 * trying to sync the log and force them to fallback to a transaction 9895 * commit if the log currently contains any of the inodes involved in 9896 * this rename operation (to ensure we do not persist a log with an 9897 * inconsistent state for any of these inodes or leading to any 9898 * inconsistencies when replayed). If the transaction was aborted, the 9899 * abortion reason is propagated to userspace when attempting to commit 9900 * the transaction. If the log does not contain any of these inodes, we 9901 * allow the tasks to sync it. 9902 */ 9903 if (ret && (root_log_pinned || dest_log_pinned)) { 9904 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9905 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9906 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9907 (new_inode && 9908 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9909 btrfs_set_log_full_commit(fs_info, trans); 9910 9911 if (root_log_pinned) { 9912 btrfs_end_log_trans(root); 9913 root_log_pinned = false; 9914 } 9915 if (dest_log_pinned) { 9916 btrfs_end_log_trans(dest); 9917 dest_log_pinned = false; 9918 } 9919 } 9920 ret = btrfs_end_transaction(trans); 9921 out_notrans: 9922 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9923 up_read(&fs_info->subvol_sem); 9924 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9925 up_read(&fs_info->subvol_sem); 9926 9927 return ret; 9928 } 9929 9930 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9931 struct btrfs_root *root, 9932 struct inode *dir, 9933 struct dentry *dentry) 9934 { 9935 int ret; 9936 struct inode *inode; 9937 u64 objectid; 9938 u64 index; 9939 9940 ret = btrfs_find_free_ino(root, &objectid); 9941 if (ret) 9942 return ret; 9943 9944 inode = btrfs_new_inode(trans, root, dir, 9945 dentry->d_name.name, 9946 dentry->d_name.len, 9947 btrfs_ino(BTRFS_I(dir)), 9948 objectid, 9949 S_IFCHR | WHITEOUT_MODE, 9950 &index); 9951 9952 if (IS_ERR(inode)) { 9953 ret = PTR_ERR(inode); 9954 return ret; 9955 } 9956 9957 inode->i_op = &btrfs_special_inode_operations; 9958 init_special_inode(inode, inode->i_mode, 9959 WHITEOUT_DEV); 9960 9961 ret = btrfs_init_inode_security(trans, inode, dir, 9962 &dentry->d_name); 9963 if (ret) 9964 goto out; 9965 9966 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9967 BTRFS_I(inode), 0, index); 9968 if (ret) 9969 goto out; 9970 9971 ret = btrfs_update_inode(trans, root, inode); 9972 out: 9973 unlock_new_inode(inode); 9974 if (ret) 9975 inode_dec_link_count(inode); 9976 iput(inode); 9977 9978 return ret; 9979 } 9980 9981 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9982 struct inode *new_dir, struct dentry *new_dentry, 9983 unsigned int flags) 9984 { 9985 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9986 struct btrfs_trans_handle *trans; 9987 unsigned int trans_num_items; 9988 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9989 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9990 struct inode *new_inode = d_inode(new_dentry); 9991 struct inode *old_inode = d_inode(old_dentry); 9992 u64 index = 0; 9993 u64 root_objectid; 9994 int ret; 9995 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9996 bool log_pinned = false; 9997 9998 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9999 return -EPERM; 10000 10001 /* we only allow rename subvolume link between subvolumes */ 10002 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 10003 return -EXDEV; 10004 10005 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 10006 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 10007 return -ENOTEMPTY; 10008 10009 if (S_ISDIR(old_inode->i_mode) && new_inode && 10010 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 10011 return -ENOTEMPTY; 10012 10013 10014 /* check for collisions, even if the name isn't there */ 10015 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 10016 new_dentry->d_name.name, 10017 new_dentry->d_name.len); 10018 10019 if (ret) { 10020 if (ret == -EEXIST) { 10021 /* we shouldn't get 10022 * eexist without a new_inode */ 10023 if (WARN_ON(!new_inode)) { 10024 return ret; 10025 } 10026 } else { 10027 /* maybe -EOVERFLOW */ 10028 return ret; 10029 } 10030 } 10031 ret = 0; 10032 10033 /* 10034 * we're using rename to replace one file with another. Start IO on it 10035 * now so we don't add too much work to the end of the transaction 10036 */ 10037 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 10038 filemap_flush(old_inode->i_mapping); 10039 10040 /* close the racy window with snapshot create/destroy ioctl */ 10041 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10042 down_read(&fs_info->subvol_sem); 10043 /* 10044 * We want to reserve the absolute worst case amount of items. So if 10045 * both inodes are subvols and we need to unlink them then that would 10046 * require 4 item modifications, but if they are both normal inodes it 10047 * would require 5 item modifications, so we'll assume they are normal 10048 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 10049 * should cover the worst case number of items we'll modify. 10050 * If our rename has the whiteout flag, we need more 5 units for the 10051 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 10052 * when selinux is enabled). 10053 */ 10054 trans_num_items = 11; 10055 if (flags & RENAME_WHITEOUT) 10056 trans_num_items += 5; 10057 trans = btrfs_start_transaction(root, trans_num_items); 10058 if (IS_ERR(trans)) { 10059 ret = PTR_ERR(trans); 10060 goto out_notrans; 10061 } 10062 10063 if (dest != root) 10064 btrfs_record_root_in_trans(trans, dest); 10065 10066 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 10067 if (ret) 10068 goto out_fail; 10069 10070 BTRFS_I(old_inode)->dir_index = 0ULL; 10071 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10072 /* force full log commit if subvolume involved. */ 10073 btrfs_set_log_full_commit(fs_info, trans); 10074 } else { 10075 btrfs_pin_log_trans(root); 10076 log_pinned = true; 10077 ret = btrfs_insert_inode_ref(trans, dest, 10078 new_dentry->d_name.name, 10079 new_dentry->d_name.len, 10080 old_ino, 10081 btrfs_ino(BTRFS_I(new_dir)), index); 10082 if (ret) 10083 goto out_fail; 10084 } 10085 10086 inode_inc_iversion(old_dir); 10087 inode_inc_iversion(new_dir); 10088 inode_inc_iversion(old_inode); 10089 old_dir->i_ctime = old_dir->i_mtime = 10090 new_dir->i_ctime = new_dir->i_mtime = 10091 old_inode->i_ctime = current_time(old_dir); 10092 10093 if (old_dentry->d_parent != new_dentry->d_parent) 10094 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 10095 BTRFS_I(old_inode), 1); 10096 10097 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10098 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 10099 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 10100 old_dentry->d_name.name, 10101 old_dentry->d_name.len); 10102 } else { 10103 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 10104 BTRFS_I(d_inode(old_dentry)), 10105 old_dentry->d_name.name, 10106 old_dentry->d_name.len); 10107 if (!ret) 10108 ret = btrfs_update_inode(trans, root, old_inode); 10109 } 10110 if (ret) { 10111 btrfs_abort_transaction(trans, ret); 10112 goto out_fail; 10113 } 10114 10115 if (new_inode) { 10116 inode_inc_iversion(new_inode); 10117 new_inode->i_ctime = current_time(new_inode); 10118 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 10119 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 10120 root_objectid = BTRFS_I(new_inode)->location.objectid; 10121 ret = btrfs_unlink_subvol(trans, dest, new_dir, 10122 root_objectid, 10123 new_dentry->d_name.name, 10124 new_dentry->d_name.len); 10125 BUG_ON(new_inode->i_nlink == 0); 10126 } else { 10127 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 10128 BTRFS_I(d_inode(new_dentry)), 10129 new_dentry->d_name.name, 10130 new_dentry->d_name.len); 10131 } 10132 if (!ret && new_inode->i_nlink == 0) 10133 ret = btrfs_orphan_add(trans, 10134 BTRFS_I(d_inode(new_dentry))); 10135 if (ret) { 10136 btrfs_abort_transaction(trans, ret); 10137 goto out_fail; 10138 } 10139 } 10140 10141 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 10142 new_dentry->d_name.name, 10143 new_dentry->d_name.len, 0, index); 10144 if (ret) { 10145 btrfs_abort_transaction(trans, ret); 10146 goto out_fail; 10147 } 10148 10149 if (old_inode->i_nlink == 1) 10150 BTRFS_I(old_inode)->dir_index = index; 10151 10152 if (log_pinned) { 10153 struct dentry *parent = new_dentry->d_parent; 10154 10155 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 10156 parent); 10157 btrfs_end_log_trans(root); 10158 log_pinned = false; 10159 } 10160 10161 if (flags & RENAME_WHITEOUT) { 10162 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10163 old_dentry); 10164 10165 if (ret) { 10166 btrfs_abort_transaction(trans, ret); 10167 goto out_fail; 10168 } 10169 } 10170 out_fail: 10171 /* 10172 * If we have pinned the log and an error happened, we unpin tasks 10173 * trying to sync the log and force them to fallback to a transaction 10174 * commit if the log currently contains any of the inodes involved in 10175 * this rename operation (to ensure we do not persist a log with an 10176 * inconsistent state for any of these inodes or leading to any 10177 * inconsistencies when replayed). If the transaction was aborted, the 10178 * abortion reason is propagated to userspace when attempting to commit 10179 * the transaction. If the log does not contain any of these inodes, we 10180 * allow the tasks to sync it. 10181 */ 10182 if (ret && log_pinned) { 10183 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10184 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10185 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10186 (new_inode && 10187 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10188 btrfs_set_log_full_commit(fs_info, trans); 10189 10190 btrfs_end_log_trans(root); 10191 log_pinned = false; 10192 } 10193 btrfs_end_transaction(trans); 10194 out_notrans: 10195 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10196 up_read(&fs_info->subvol_sem); 10197 10198 return ret; 10199 } 10200 10201 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10202 struct inode *new_dir, struct dentry *new_dentry, 10203 unsigned int flags) 10204 { 10205 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10206 return -EINVAL; 10207 10208 if (flags & RENAME_EXCHANGE) 10209 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10210 new_dentry); 10211 10212 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10213 } 10214 10215 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10216 { 10217 struct btrfs_delalloc_work *delalloc_work; 10218 struct inode *inode; 10219 10220 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10221 work); 10222 inode = delalloc_work->inode; 10223 filemap_flush(inode->i_mapping); 10224 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10225 &BTRFS_I(inode)->runtime_flags)) 10226 filemap_flush(inode->i_mapping); 10227 10228 if (delalloc_work->delay_iput) 10229 btrfs_add_delayed_iput(inode); 10230 else 10231 iput(inode); 10232 complete(&delalloc_work->completion); 10233 } 10234 10235 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10236 int delay_iput) 10237 { 10238 struct btrfs_delalloc_work *work; 10239 10240 work = kmalloc(sizeof(*work), GFP_NOFS); 10241 if (!work) 10242 return NULL; 10243 10244 init_completion(&work->completion); 10245 INIT_LIST_HEAD(&work->list); 10246 work->inode = inode; 10247 work->delay_iput = delay_iput; 10248 WARN_ON_ONCE(!inode); 10249 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10250 btrfs_run_delalloc_work, NULL, NULL); 10251 10252 return work; 10253 } 10254 10255 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10256 { 10257 wait_for_completion(&work->completion); 10258 kfree(work); 10259 } 10260 10261 /* 10262 * some fairly slow code that needs optimization. This walks the list 10263 * of all the inodes with pending delalloc and forces them to disk. 10264 */ 10265 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10266 int nr) 10267 { 10268 struct btrfs_inode *binode; 10269 struct inode *inode; 10270 struct btrfs_delalloc_work *work, *next; 10271 struct list_head works; 10272 struct list_head splice; 10273 int ret = 0; 10274 10275 INIT_LIST_HEAD(&works); 10276 INIT_LIST_HEAD(&splice); 10277 10278 mutex_lock(&root->delalloc_mutex); 10279 spin_lock(&root->delalloc_lock); 10280 list_splice_init(&root->delalloc_inodes, &splice); 10281 while (!list_empty(&splice)) { 10282 binode = list_entry(splice.next, struct btrfs_inode, 10283 delalloc_inodes); 10284 10285 list_move_tail(&binode->delalloc_inodes, 10286 &root->delalloc_inodes); 10287 inode = igrab(&binode->vfs_inode); 10288 if (!inode) { 10289 cond_resched_lock(&root->delalloc_lock); 10290 continue; 10291 } 10292 spin_unlock(&root->delalloc_lock); 10293 10294 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10295 if (!work) { 10296 if (delay_iput) 10297 btrfs_add_delayed_iput(inode); 10298 else 10299 iput(inode); 10300 ret = -ENOMEM; 10301 goto out; 10302 } 10303 list_add_tail(&work->list, &works); 10304 btrfs_queue_work(root->fs_info->flush_workers, 10305 &work->work); 10306 ret++; 10307 if (nr != -1 && ret >= nr) 10308 goto out; 10309 cond_resched(); 10310 spin_lock(&root->delalloc_lock); 10311 } 10312 spin_unlock(&root->delalloc_lock); 10313 10314 out: 10315 list_for_each_entry_safe(work, next, &works, list) { 10316 list_del_init(&work->list); 10317 btrfs_wait_and_free_delalloc_work(work); 10318 } 10319 10320 if (!list_empty_careful(&splice)) { 10321 spin_lock(&root->delalloc_lock); 10322 list_splice_tail(&splice, &root->delalloc_inodes); 10323 spin_unlock(&root->delalloc_lock); 10324 } 10325 mutex_unlock(&root->delalloc_mutex); 10326 return ret; 10327 } 10328 10329 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10330 { 10331 struct btrfs_fs_info *fs_info = root->fs_info; 10332 int ret; 10333 10334 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10335 return -EROFS; 10336 10337 ret = __start_delalloc_inodes(root, delay_iput, -1); 10338 if (ret > 0) 10339 ret = 0; 10340 /* 10341 * the filemap_flush will queue IO into the worker threads, but 10342 * we have to make sure the IO is actually started and that 10343 * ordered extents get created before we return 10344 */ 10345 atomic_inc(&fs_info->async_submit_draining); 10346 while (atomic_read(&fs_info->nr_async_submits) || 10347 atomic_read(&fs_info->async_delalloc_pages)) { 10348 wait_event(fs_info->async_submit_wait, 10349 (atomic_read(&fs_info->nr_async_submits) == 0 && 10350 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10351 } 10352 atomic_dec(&fs_info->async_submit_draining); 10353 return ret; 10354 } 10355 10356 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10357 int nr) 10358 { 10359 struct btrfs_root *root; 10360 struct list_head splice; 10361 int ret; 10362 10363 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10364 return -EROFS; 10365 10366 INIT_LIST_HEAD(&splice); 10367 10368 mutex_lock(&fs_info->delalloc_root_mutex); 10369 spin_lock(&fs_info->delalloc_root_lock); 10370 list_splice_init(&fs_info->delalloc_roots, &splice); 10371 while (!list_empty(&splice) && nr) { 10372 root = list_first_entry(&splice, struct btrfs_root, 10373 delalloc_root); 10374 root = btrfs_grab_fs_root(root); 10375 BUG_ON(!root); 10376 list_move_tail(&root->delalloc_root, 10377 &fs_info->delalloc_roots); 10378 spin_unlock(&fs_info->delalloc_root_lock); 10379 10380 ret = __start_delalloc_inodes(root, delay_iput, nr); 10381 btrfs_put_fs_root(root); 10382 if (ret < 0) 10383 goto out; 10384 10385 if (nr != -1) { 10386 nr -= ret; 10387 WARN_ON(nr < 0); 10388 } 10389 spin_lock(&fs_info->delalloc_root_lock); 10390 } 10391 spin_unlock(&fs_info->delalloc_root_lock); 10392 10393 ret = 0; 10394 atomic_inc(&fs_info->async_submit_draining); 10395 while (atomic_read(&fs_info->nr_async_submits) || 10396 atomic_read(&fs_info->async_delalloc_pages)) { 10397 wait_event(fs_info->async_submit_wait, 10398 (atomic_read(&fs_info->nr_async_submits) == 0 && 10399 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10400 } 10401 atomic_dec(&fs_info->async_submit_draining); 10402 out: 10403 if (!list_empty_careful(&splice)) { 10404 spin_lock(&fs_info->delalloc_root_lock); 10405 list_splice_tail(&splice, &fs_info->delalloc_roots); 10406 spin_unlock(&fs_info->delalloc_root_lock); 10407 } 10408 mutex_unlock(&fs_info->delalloc_root_mutex); 10409 return ret; 10410 } 10411 10412 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10413 const char *symname) 10414 { 10415 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10416 struct btrfs_trans_handle *trans; 10417 struct btrfs_root *root = BTRFS_I(dir)->root; 10418 struct btrfs_path *path; 10419 struct btrfs_key key; 10420 struct inode *inode = NULL; 10421 int err; 10422 int drop_inode = 0; 10423 u64 objectid; 10424 u64 index = 0; 10425 int name_len; 10426 int datasize; 10427 unsigned long ptr; 10428 struct btrfs_file_extent_item *ei; 10429 struct extent_buffer *leaf; 10430 10431 name_len = strlen(symname); 10432 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10433 return -ENAMETOOLONG; 10434 10435 /* 10436 * 2 items for inode item and ref 10437 * 2 items for dir items 10438 * 1 item for updating parent inode item 10439 * 1 item for the inline extent item 10440 * 1 item for xattr if selinux is on 10441 */ 10442 trans = btrfs_start_transaction(root, 7); 10443 if (IS_ERR(trans)) 10444 return PTR_ERR(trans); 10445 10446 err = btrfs_find_free_ino(root, &objectid); 10447 if (err) 10448 goto out_unlock; 10449 10450 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10451 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10452 objectid, S_IFLNK|S_IRWXUGO, &index); 10453 if (IS_ERR(inode)) { 10454 err = PTR_ERR(inode); 10455 goto out_unlock; 10456 } 10457 10458 /* 10459 * If the active LSM wants to access the inode during 10460 * d_instantiate it needs these. Smack checks to see 10461 * if the filesystem supports xattrs by looking at the 10462 * ops vector. 10463 */ 10464 inode->i_fop = &btrfs_file_operations; 10465 inode->i_op = &btrfs_file_inode_operations; 10466 inode->i_mapping->a_ops = &btrfs_aops; 10467 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10468 10469 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10470 if (err) 10471 goto out_unlock_inode; 10472 10473 path = btrfs_alloc_path(); 10474 if (!path) { 10475 err = -ENOMEM; 10476 goto out_unlock_inode; 10477 } 10478 key.objectid = btrfs_ino(BTRFS_I(inode)); 10479 key.offset = 0; 10480 key.type = BTRFS_EXTENT_DATA_KEY; 10481 datasize = btrfs_file_extent_calc_inline_size(name_len); 10482 err = btrfs_insert_empty_item(trans, root, path, &key, 10483 datasize); 10484 if (err) { 10485 btrfs_free_path(path); 10486 goto out_unlock_inode; 10487 } 10488 leaf = path->nodes[0]; 10489 ei = btrfs_item_ptr(leaf, path->slots[0], 10490 struct btrfs_file_extent_item); 10491 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10492 btrfs_set_file_extent_type(leaf, ei, 10493 BTRFS_FILE_EXTENT_INLINE); 10494 btrfs_set_file_extent_encryption(leaf, ei, 0); 10495 btrfs_set_file_extent_compression(leaf, ei, 0); 10496 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10497 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10498 10499 ptr = btrfs_file_extent_inline_start(ei); 10500 write_extent_buffer(leaf, symname, ptr, name_len); 10501 btrfs_mark_buffer_dirty(leaf); 10502 btrfs_free_path(path); 10503 10504 inode->i_op = &btrfs_symlink_inode_operations; 10505 inode_nohighmem(inode); 10506 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10507 inode_set_bytes(inode, name_len); 10508 btrfs_i_size_write(BTRFS_I(inode), name_len); 10509 err = btrfs_update_inode(trans, root, inode); 10510 /* 10511 * Last step, add directory indexes for our symlink inode. This is the 10512 * last step to avoid extra cleanup of these indexes if an error happens 10513 * elsewhere above. 10514 */ 10515 if (!err) 10516 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10517 BTRFS_I(inode), 0, index); 10518 if (err) { 10519 drop_inode = 1; 10520 goto out_unlock_inode; 10521 } 10522 10523 unlock_new_inode(inode); 10524 d_instantiate(dentry, inode); 10525 10526 out_unlock: 10527 btrfs_end_transaction(trans); 10528 if (drop_inode) { 10529 inode_dec_link_count(inode); 10530 iput(inode); 10531 } 10532 btrfs_btree_balance_dirty(fs_info); 10533 return err; 10534 10535 out_unlock_inode: 10536 drop_inode = 1; 10537 unlock_new_inode(inode); 10538 goto out_unlock; 10539 } 10540 10541 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10542 u64 start, u64 num_bytes, u64 min_size, 10543 loff_t actual_len, u64 *alloc_hint, 10544 struct btrfs_trans_handle *trans) 10545 { 10546 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10547 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10548 struct extent_map *em; 10549 struct btrfs_root *root = BTRFS_I(inode)->root; 10550 struct btrfs_key ins; 10551 u64 cur_offset = start; 10552 u64 i_size; 10553 u64 cur_bytes; 10554 u64 last_alloc = (u64)-1; 10555 int ret = 0; 10556 bool own_trans = true; 10557 u64 end = start + num_bytes - 1; 10558 10559 if (trans) 10560 own_trans = false; 10561 while (num_bytes > 0) { 10562 if (own_trans) { 10563 trans = btrfs_start_transaction(root, 3); 10564 if (IS_ERR(trans)) { 10565 ret = PTR_ERR(trans); 10566 break; 10567 } 10568 } 10569 10570 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10571 cur_bytes = max(cur_bytes, min_size); 10572 /* 10573 * If we are severely fragmented we could end up with really 10574 * small allocations, so if the allocator is returning small 10575 * chunks lets make its job easier by only searching for those 10576 * sized chunks. 10577 */ 10578 cur_bytes = min(cur_bytes, last_alloc); 10579 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10580 min_size, 0, *alloc_hint, &ins, 1, 0); 10581 if (ret) { 10582 if (own_trans) 10583 btrfs_end_transaction(trans); 10584 break; 10585 } 10586 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10587 10588 last_alloc = ins.offset; 10589 ret = insert_reserved_file_extent(trans, inode, 10590 cur_offset, ins.objectid, 10591 ins.offset, ins.offset, 10592 ins.offset, 0, 0, 0, 10593 BTRFS_FILE_EXTENT_PREALLOC); 10594 if (ret) { 10595 btrfs_free_reserved_extent(fs_info, ins.objectid, 10596 ins.offset, 0); 10597 btrfs_abort_transaction(trans, ret); 10598 if (own_trans) 10599 btrfs_end_transaction(trans); 10600 break; 10601 } 10602 10603 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10604 cur_offset + ins.offset -1, 0); 10605 10606 em = alloc_extent_map(); 10607 if (!em) { 10608 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10609 &BTRFS_I(inode)->runtime_flags); 10610 goto next; 10611 } 10612 10613 em->start = cur_offset; 10614 em->orig_start = cur_offset; 10615 em->len = ins.offset; 10616 em->block_start = ins.objectid; 10617 em->block_len = ins.offset; 10618 em->orig_block_len = ins.offset; 10619 em->ram_bytes = ins.offset; 10620 em->bdev = fs_info->fs_devices->latest_bdev; 10621 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10622 em->generation = trans->transid; 10623 10624 while (1) { 10625 write_lock(&em_tree->lock); 10626 ret = add_extent_mapping(em_tree, em, 1); 10627 write_unlock(&em_tree->lock); 10628 if (ret != -EEXIST) 10629 break; 10630 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10631 cur_offset + ins.offset - 1, 10632 0); 10633 } 10634 free_extent_map(em); 10635 next: 10636 num_bytes -= ins.offset; 10637 cur_offset += ins.offset; 10638 *alloc_hint = ins.objectid + ins.offset; 10639 10640 inode_inc_iversion(inode); 10641 inode->i_ctime = current_time(inode); 10642 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10643 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10644 (actual_len > inode->i_size) && 10645 (cur_offset > inode->i_size)) { 10646 if (cur_offset > actual_len) 10647 i_size = actual_len; 10648 else 10649 i_size = cur_offset; 10650 i_size_write(inode, i_size); 10651 btrfs_ordered_update_i_size(inode, i_size, NULL); 10652 } 10653 10654 ret = btrfs_update_inode(trans, root, inode); 10655 10656 if (ret) { 10657 btrfs_abort_transaction(trans, ret); 10658 if (own_trans) 10659 btrfs_end_transaction(trans); 10660 break; 10661 } 10662 10663 if (own_trans) 10664 btrfs_end_transaction(trans); 10665 } 10666 if (cur_offset < end) 10667 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10668 end - cur_offset + 1); 10669 return ret; 10670 } 10671 10672 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10673 u64 start, u64 num_bytes, u64 min_size, 10674 loff_t actual_len, u64 *alloc_hint) 10675 { 10676 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10677 min_size, actual_len, alloc_hint, 10678 NULL); 10679 } 10680 10681 int btrfs_prealloc_file_range_trans(struct inode *inode, 10682 struct btrfs_trans_handle *trans, int mode, 10683 u64 start, u64 num_bytes, u64 min_size, 10684 loff_t actual_len, u64 *alloc_hint) 10685 { 10686 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10687 min_size, actual_len, alloc_hint, trans); 10688 } 10689 10690 static int btrfs_set_page_dirty(struct page *page) 10691 { 10692 return __set_page_dirty_nobuffers(page); 10693 } 10694 10695 static int btrfs_permission(struct inode *inode, int mask) 10696 { 10697 struct btrfs_root *root = BTRFS_I(inode)->root; 10698 umode_t mode = inode->i_mode; 10699 10700 if (mask & MAY_WRITE && 10701 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10702 if (btrfs_root_readonly(root)) 10703 return -EROFS; 10704 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10705 return -EACCES; 10706 } 10707 return generic_permission(inode, mask); 10708 } 10709 10710 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10711 { 10712 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10713 struct btrfs_trans_handle *trans; 10714 struct btrfs_root *root = BTRFS_I(dir)->root; 10715 struct inode *inode = NULL; 10716 u64 objectid; 10717 u64 index; 10718 int ret = 0; 10719 10720 /* 10721 * 5 units required for adding orphan entry 10722 */ 10723 trans = btrfs_start_transaction(root, 5); 10724 if (IS_ERR(trans)) 10725 return PTR_ERR(trans); 10726 10727 ret = btrfs_find_free_ino(root, &objectid); 10728 if (ret) 10729 goto out; 10730 10731 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10732 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10733 if (IS_ERR(inode)) { 10734 ret = PTR_ERR(inode); 10735 inode = NULL; 10736 goto out; 10737 } 10738 10739 inode->i_fop = &btrfs_file_operations; 10740 inode->i_op = &btrfs_file_inode_operations; 10741 10742 inode->i_mapping->a_ops = &btrfs_aops; 10743 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10744 10745 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10746 if (ret) 10747 goto out_inode; 10748 10749 ret = btrfs_update_inode(trans, root, inode); 10750 if (ret) 10751 goto out_inode; 10752 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10753 if (ret) 10754 goto out_inode; 10755 10756 /* 10757 * We set number of links to 0 in btrfs_new_inode(), and here we set 10758 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10759 * through: 10760 * 10761 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10762 */ 10763 set_nlink(inode, 1); 10764 unlock_new_inode(inode); 10765 d_tmpfile(dentry, inode); 10766 mark_inode_dirty(inode); 10767 10768 out: 10769 btrfs_end_transaction(trans); 10770 if (ret) 10771 iput(inode); 10772 btrfs_balance_delayed_items(fs_info); 10773 btrfs_btree_balance_dirty(fs_info); 10774 return ret; 10775 10776 out_inode: 10777 unlock_new_inode(inode); 10778 goto out; 10779 10780 } 10781 10782 __attribute__((const)) 10783 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10784 { 10785 return -EAGAIN; 10786 } 10787 10788 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10789 { 10790 struct inode *inode = private_data; 10791 return btrfs_sb(inode->i_sb); 10792 } 10793 10794 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10795 u64 start, u64 end) 10796 { 10797 struct inode *inode = private_data; 10798 u64 isize; 10799 10800 isize = i_size_read(inode); 10801 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10802 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10803 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10804 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10805 } 10806 } 10807 10808 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10809 { 10810 struct inode *inode = private_data; 10811 unsigned long index = start >> PAGE_SHIFT; 10812 unsigned long end_index = end >> PAGE_SHIFT; 10813 struct page *page; 10814 10815 while (index <= end_index) { 10816 page = find_get_page(inode->i_mapping, index); 10817 ASSERT(page); /* Pages should be in the extent_io_tree */ 10818 set_page_writeback(page); 10819 put_page(page); 10820 index++; 10821 } 10822 } 10823 10824 static const struct inode_operations btrfs_dir_inode_operations = { 10825 .getattr = btrfs_getattr, 10826 .lookup = btrfs_lookup, 10827 .create = btrfs_create, 10828 .unlink = btrfs_unlink, 10829 .link = btrfs_link, 10830 .mkdir = btrfs_mkdir, 10831 .rmdir = btrfs_rmdir, 10832 .rename = btrfs_rename2, 10833 .symlink = btrfs_symlink, 10834 .setattr = btrfs_setattr, 10835 .mknod = btrfs_mknod, 10836 .listxattr = btrfs_listxattr, 10837 .permission = btrfs_permission, 10838 .get_acl = btrfs_get_acl, 10839 .set_acl = btrfs_set_acl, 10840 .update_time = btrfs_update_time, 10841 .tmpfile = btrfs_tmpfile, 10842 }; 10843 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10844 .lookup = btrfs_lookup, 10845 .permission = btrfs_permission, 10846 .update_time = btrfs_update_time, 10847 }; 10848 10849 static const struct file_operations btrfs_dir_file_operations = { 10850 .llseek = generic_file_llseek, 10851 .read = generic_read_dir, 10852 .iterate_shared = btrfs_real_readdir, 10853 .open = btrfs_opendir, 10854 .unlocked_ioctl = btrfs_ioctl, 10855 #ifdef CONFIG_COMPAT 10856 .compat_ioctl = btrfs_compat_ioctl, 10857 #endif 10858 .release = btrfs_release_file, 10859 .fsync = btrfs_sync_file, 10860 }; 10861 10862 static const struct extent_io_ops btrfs_extent_io_ops = { 10863 /* mandatory callbacks */ 10864 .submit_bio_hook = btrfs_submit_bio_hook, 10865 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10866 .merge_bio_hook = btrfs_merge_bio_hook, 10867 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10868 .tree_fs_info = iotree_fs_info, 10869 .set_range_writeback = btrfs_set_range_writeback, 10870 10871 /* optional callbacks */ 10872 .fill_delalloc = run_delalloc_range, 10873 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10874 .writepage_start_hook = btrfs_writepage_start_hook, 10875 .set_bit_hook = btrfs_set_bit_hook, 10876 .clear_bit_hook = btrfs_clear_bit_hook, 10877 .merge_extent_hook = btrfs_merge_extent_hook, 10878 .split_extent_hook = btrfs_split_extent_hook, 10879 .check_extent_io_range = btrfs_check_extent_io_range, 10880 }; 10881 10882 /* 10883 * btrfs doesn't support the bmap operation because swapfiles 10884 * use bmap to make a mapping of extents in the file. They assume 10885 * these extents won't change over the life of the file and they 10886 * use the bmap result to do IO directly to the drive. 10887 * 10888 * the btrfs bmap call would return logical addresses that aren't 10889 * suitable for IO and they also will change frequently as COW 10890 * operations happen. So, swapfile + btrfs == corruption. 10891 * 10892 * For now we're avoiding this by dropping bmap. 10893 */ 10894 static const struct address_space_operations btrfs_aops = { 10895 .readpage = btrfs_readpage, 10896 .writepage = btrfs_writepage, 10897 .writepages = btrfs_writepages, 10898 .readpages = btrfs_readpages, 10899 .direct_IO = btrfs_direct_IO, 10900 .invalidatepage = btrfs_invalidatepage, 10901 .releasepage = btrfs_releasepage, 10902 .set_page_dirty = btrfs_set_page_dirty, 10903 .error_remove_page = generic_error_remove_page, 10904 }; 10905 10906 static const struct address_space_operations btrfs_symlink_aops = { 10907 .readpage = btrfs_readpage, 10908 .writepage = btrfs_writepage, 10909 .invalidatepage = btrfs_invalidatepage, 10910 .releasepage = btrfs_releasepage, 10911 }; 10912 10913 static const struct inode_operations btrfs_file_inode_operations = { 10914 .getattr = btrfs_getattr, 10915 .setattr = btrfs_setattr, 10916 .listxattr = btrfs_listxattr, 10917 .permission = btrfs_permission, 10918 .fiemap = btrfs_fiemap, 10919 .get_acl = btrfs_get_acl, 10920 .set_acl = btrfs_set_acl, 10921 .update_time = btrfs_update_time, 10922 }; 10923 static const struct inode_operations btrfs_special_inode_operations = { 10924 .getattr = btrfs_getattr, 10925 .setattr = btrfs_setattr, 10926 .permission = btrfs_permission, 10927 .listxattr = btrfs_listxattr, 10928 .get_acl = btrfs_get_acl, 10929 .set_acl = btrfs_set_acl, 10930 .update_time = btrfs_update_time, 10931 }; 10932 static const struct inode_operations btrfs_symlink_inode_operations = { 10933 .get_link = page_get_link, 10934 .getattr = btrfs_getattr, 10935 .setattr = btrfs_setattr, 10936 .permission = btrfs_permission, 10937 .listxattr = btrfs_listxattr, 10938 .update_time = btrfs_update_time, 10939 }; 10940 10941 const struct dentry_operations btrfs_dentry_operations = { 10942 .d_delete = btrfs_dentry_delete, 10943 .d_release = btrfs_dentry_release, 10944 }; 10945