xref: /openbmc/linux/fs/btrfs/inode.c (revision 8d1af5c6af5c665cfa35b8e6dcb1a729989a3669)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_dio_data {
81 	ssize_t submitted;
82 	struct extent_changeset *data_reserved;
83 	struct btrfs_ordered_extent *ordered;
84 	bool data_space_reserved;
85 	bool nocow_done;
86 };
87 
88 struct btrfs_dio_private {
89 	/* Range of I/O */
90 	u64 file_offset;
91 	u32 bytes;
92 
93 	/* This must be last */
94 	struct btrfs_bio bbio;
95 };
96 
97 static struct bio_set btrfs_dio_bioset;
98 
99 struct btrfs_rename_ctx {
100 	/* Output field. Stores the index number of the old directory entry. */
101 	u64 index;
102 };
103 
104 /*
105  * Used by data_reloc_print_warning_inode() to pass needed info for filename
106  * resolution and output of error message.
107  */
108 struct data_reloc_warn {
109 	struct btrfs_path path;
110 	struct btrfs_fs_info *fs_info;
111 	u64 extent_item_size;
112 	u64 logical;
113 	int mirror_num;
114 };
115 
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122 
123 static struct kmem_cache *btrfs_inode_cachep;
124 
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 				     struct page *locked_page, u64 start,
130 				     u64 end, struct writeback_control *wbc,
131 				     bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 				       u64 len, u64 orig_start, u64 block_start,
134 				       u64 block_len, u64 orig_block_len,
135 				       u64 ram_bytes, int compress_type,
136 				       int type);
137 
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 					  u64 root, void *warn_ctx)
140 {
141 	struct data_reloc_warn *warn = warn_ctx;
142 	struct btrfs_fs_info *fs_info = warn->fs_info;
143 	struct extent_buffer *eb;
144 	struct btrfs_inode_item *inode_item;
145 	struct inode_fs_paths *ipath = NULL;
146 	struct btrfs_root *local_root;
147 	struct btrfs_key key;
148 	unsigned int nofs_flag;
149 	u32 nlink;
150 	int ret;
151 
152 	local_root = btrfs_get_fs_root(fs_info, root, true);
153 	if (IS_ERR(local_root)) {
154 		ret = PTR_ERR(local_root);
155 		goto err;
156 	}
157 
158 	/* This makes the path point to (inum INODE_ITEM ioff). */
159 	key.objectid = inum;
160 	key.type = BTRFS_INODE_ITEM_KEY;
161 	key.offset = 0;
162 
163 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 	if (ret) {
165 		btrfs_put_root(local_root);
166 		btrfs_release_path(&warn->path);
167 		goto err;
168 	}
169 
170 	eb = warn->path.nodes[0];
171 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 	nlink = btrfs_inode_nlink(eb, inode_item);
173 	btrfs_release_path(&warn->path);
174 
175 	nofs_flag = memalloc_nofs_save();
176 	ipath = init_ipath(4096, local_root, &warn->path);
177 	memalloc_nofs_restore(nofs_flag);
178 	if (IS_ERR(ipath)) {
179 		btrfs_put_root(local_root);
180 		ret = PTR_ERR(ipath);
181 		ipath = NULL;
182 		/*
183 		 * -ENOMEM, not a critical error, just output an generic error
184 		 * without filename.
185 		 */
186 		btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 			   warn->logical, warn->mirror_num, root, inum, offset);
189 		return ret;
190 	}
191 	ret = paths_from_inode(inum, ipath);
192 	if (ret < 0)
193 		goto err;
194 
195 	/*
196 	 * We deliberately ignore the bit ipath might have been too small to
197 	 * hold all of the paths here
198 	 */
199 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 		btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 			   warn->logical, warn->mirror_num, root, inum, offset,
203 			   fs_info->sectorsize, nlink,
204 			   (char *)(unsigned long)ipath->fspath->val[i]);
205 	}
206 
207 	btrfs_put_root(local_root);
208 	free_ipath(ipath);
209 	return 0;
210 
211 err:
212 	btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
215 
216 	free_ipath(ipath);
217 	return ret;
218 }
219 
220 /*
221  * Do extra user-friendly error output (e.g. lookup all the affected files).
222  *
223  * Return true if we succeeded doing the backref lookup.
224  * Return false if such lookup failed, and has to fallback to the old error message.
225  */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 				   const u8 *csum, const u8 *csum_expected,
228 				   int mirror_num)
229 {
230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 	struct btrfs_path path = { 0 };
232 	struct btrfs_key found_key = { 0 };
233 	struct extent_buffer *eb;
234 	struct btrfs_extent_item *ei;
235 	const u32 csum_size = fs_info->csum_size;
236 	u64 logical;
237 	u64 flags;
238 	u32 item_size;
239 	int ret;
240 
241 	mutex_lock(&fs_info->reloc_mutex);
242 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 	mutex_unlock(&fs_info->reloc_mutex);
244 
245 	if (logical == U64_MAX) {
246 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 		btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 			CSUM_FMT_VALUE(csum_size, csum),
251 			CSUM_FMT_VALUE(csum_size, csum_expected),
252 			mirror_num);
253 		return;
254 	}
255 
256 	logical += file_off;
257 	btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid,
260 			btrfs_ino(inode), file_off, logical,
261 			CSUM_FMT_VALUE(csum_size, csum),
262 			CSUM_FMT_VALUE(csum_size, csum_expected),
263 			mirror_num);
264 
265 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 	if (ret < 0) {
267 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 			     logical, ret);
269 		return;
270 	}
271 	eb = path.nodes[0];
272 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 	item_size = btrfs_item_size(eb, path.slots[0]);
274 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 		unsigned long ptr = 0;
276 		u64 ref_root;
277 		u8 ref_level;
278 
279 		while (true) {
280 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 						      item_size, &ref_root,
282 						      &ref_level);
283 			if (ret < 0) {
284 				btrfs_warn_rl(fs_info,
285 				"failed to resolve tree backref for logical %llu: %d",
286 					      logical, ret);
287 				break;
288 			}
289 			if (ret > 0)
290 				break;
291 
292 			btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 				logical, mirror_num,
295 				(ref_level ? "node" : "leaf"),
296 				ref_level, ref_root);
297 		}
298 		btrfs_release_path(&path);
299 	} else {
300 		struct btrfs_backref_walk_ctx ctx = { 0 };
301 		struct data_reloc_warn reloc_warn = { 0 };
302 
303 		btrfs_release_path(&path);
304 
305 		ctx.bytenr = found_key.objectid;
306 		ctx.extent_item_pos = logical - found_key.objectid;
307 		ctx.fs_info = fs_info;
308 
309 		reloc_warn.logical = logical;
310 		reloc_warn.extent_item_size = found_key.offset;
311 		reloc_warn.mirror_num = mirror_num;
312 		reloc_warn.fs_info = fs_info;
313 
314 		iterate_extent_inodes(&ctx, true,
315 				      data_reloc_print_warning_inode, &reloc_warn);
316 	}
317 }
318 
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 	struct btrfs_root *root = inode->root;
323 	const u32 csum_size = root->fs_info->csum_size;
324 
325 	/* For data reloc tree, it's better to do a backref lookup instead. */
326 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 		return print_data_reloc_error(inode, logical_start, csum,
328 					      csum_expected, mirror_num);
329 
330 	/* Output without objectid, which is more meaningful */
331 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 		btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 			root->root_key.objectid, btrfs_ino(inode),
335 			logical_start,
336 			CSUM_FMT_VALUE(csum_size, csum),
337 			CSUM_FMT_VALUE(csum_size, csum_expected),
338 			mirror_num);
339 	} else {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	}
348 }
349 
350 /*
351  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352  *
353  * ilock_flags can have the following bit set:
354  *
355  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357  *		     return -EAGAIN
358  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359  */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 		if (ilock_flags & BTRFS_ILOCK_TRY) {
364 			if (!inode_trylock_shared(&inode->vfs_inode))
365 				return -EAGAIN;
366 			else
367 				return 0;
368 		}
369 		inode_lock_shared(&inode->vfs_inode);
370 	} else {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock(&inode->vfs_inode);
378 	}
379 	if (ilock_flags & BTRFS_ILOCK_MMAP)
380 		down_write(&inode->i_mmap_lock);
381 	return 0;
382 }
383 
384 /*
385  * btrfs_inode_unlock - unock inode i_rwsem
386  *
387  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388  * to decide whether the lock acquired is shared or exclusive.
389  */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 	if (ilock_flags & BTRFS_ILOCK_MMAP)
393 		up_write(&inode->i_mmap_lock);
394 	if (ilock_flags & BTRFS_ILOCK_SHARED)
395 		inode_unlock_shared(&inode->vfs_inode);
396 	else
397 		inode_unlock(&inode->vfs_inode);
398 }
399 
400 /*
401  * Cleanup all submitted ordered extents in specified range to handle errors
402  * from the btrfs_run_delalloc_range() callback.
403  *
404  * NOTE: caller must ensure that when an error happens, it can not call
405  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407  * to be released, which we want to happen only when finishing the ordered
408  * extent (btrfs_finish_ordered_io()).
409  */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 						 struct page *locked_page,
412 						 u64 offset, u64 bytes)
413 {
414 	unsigned long index = offset >> PAGE_SHIFT;
415 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 	u64 page_start = 0, page_end = 0;
417 	struct page *page;
418 
419 	if (locked_page) {
420 		page_start = page_offset(locked_page);
421 		page_end = page_start + PAGE_SIZE - 1;
422 	}
423 
424 	while (index <= end_index) {
425 		/*
426 		 * For locked page, we will call btrfs_mark_ordered_io_finished
427 		 * through btrfs_mark_ordered_io_finished() on it
428 		 * in run_delalloc_range() for the error handling, which will
429 		 * clear page Ordered and run the ordered extent accounting.
430 		 *
431 		 * Here we can't just clear the Ordered bit, or
432 		 * btrfs_mark_ordered_io_finished() would skip the accounting
433 		 * for the page range, and the ordered extent will never finish.
434 		 */
435 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 			index++;
437 			continue;
438 		}
439 		page = find_get_page(inode->vfs_inode.i_mapping, index);
440 		index++;
441 		if (!page)
442 			continue;
443 
444 		/*
445 		 * Here we just clear all Ordered bits for every page in the
446 		 * range, then btrfs_mark_ordered_io_finished() will handle
447 		 * the ordered extent accounting for the range.
448 		 */
449 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 					       offset, bytes);
451 		put_page(page);
452 	}
453 
454 	if (locked_page) {
455 		/* The locked page covers the full range, nothing needs to be done */
456 		if (bytes + offset <= page_start + PAGE_SIZE)
457 			return;
458 		/*
459 		 * In case this page belongs to the delalloc range being
460 		 * instantiated then skip it, since the first page of a range is
461 		 * going to be properly cleaned up by the caller of
462 		 * run_delalloc_range
463 		 */
464 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 			offset = page_offset(locked_page) + PAGE_SIZE;
467 		}
468 	}
469 
470 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472 
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474 
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 				     struct btrfs_new_inode_args *args)
477 {
478 	int err;
479 
480 	if (args->default_acl) {
481 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 				      ACL_TYPE_DEFAULT);
483 		if (err)
484 			return err;
485 	}
486 	if (args->acl) {
487 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 		if (err)
489 			return err;
490 	}
491 	if (!args->default_acl && !args->acl)
492 		cache_no_acl(args->inode);
493 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 					 &args->dentry->d_name);
495 }
496 
497 /*
498  * this does all the hard work for inserting an inline extent into
499  * the btree.  The caller should have done a btrfs_drop_extents so that
500  * no overlapping inline items exist in the btree
501  */
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 				struct btrfs_path *path,
504 				struct btrfs_inode *inode, bool extent_inserted,
505 				size_t size, size_t compressed_size,
506 				int compress_type,
507 				struct page **compressed_pages,
508 				bool update_i_size)
509 {
510 	struct btrfs_root *root = inode->root;
511 	struct extent_buffer *leaf;
512 	struct page *page = NULL;
513 	char *kaddr;
514 	unsigned long ptr;
515 	struct btrfs_file_extent_item *ei;
516 	int ret;
517 	size_t cur_size = size;
518 	u64 i_size;
519 
520 	ASSERT((compressed_size > 0 && compressed_pages) ||
521 	       (compressed_size == 0 && !compressed_pages));
522 
523 	if (compressed_size && compressed_pages)
524 		cur_size = compressed_size;
525 
526 	if (!extent_inserted) {
527 		struct btrfs_key key;
528 		size_t datasize;
529 
530 		key.objectid = btrfs_ino(inode);
531 		key.offset = 0;
532 		key.type = BTRFS_EXTENT_DATA_KEY;
533 
534 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 		ret = btrfs_insert_empty_item(trans, root, path, &key,
536 					      datasize);
537 		if (ret)
538 			goto fail;
539 	}
540 	leaf = path->nodes[0];
541 	ei = btrfs_item_ptr(leaf, path->slots[0],
542 			    struct btrfs_file_extent_item);
543 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 	btrfs_set_file_extent_encryption(leaf, ei, 0);
546 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 	ptr = btrfs_file_extent_inline_start(ei);
549 
550 	if (compress_type != BTRFS_COMPRESS_NONE) {
551 		struct page *cpage;
552 		int i = 0;
553 		while (compressed_size > 0) {
554 			cpage = compressed_pages[i];
555 			cur_size = min_t(unsigned long, compressed_size,
556 				       PAGE_SIZE);
557 
558 			kaddr = kmap_local_page(cpage);
559 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 			kunmap_local(kaddr);
561 
562 			i++;
563 			ptr += cur_size;
564 			compressed_size -= cur_size;
565 		}
566 		btrfs_set_file_extent_compression(leaf, ei,
567 						  compress_type);
568 	} else {
569 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 		btrfs_set_file_extent_compression(leaf, ei, 0);
571 		kaddr = kmap_local_page(page);
572 		write_extent_buffer(leaf, kaddr, ptr, size);
573 		kunmap_local(kaddr);
574 		put_page(page);
575 	}
576 	btrfs_mark_buffer_dirty(trans, leaf);
577 	btrfs_release_path(path);
578 
579 	/*
580 	 * We align size to sectorsize for inline extents just for simplicity
581 	 * sake.
582 	 */
583 	ret = btrfs_inode_set_file_extent_range(inode, 0,
584 					ALIGN(size, root->fs_info->sectorsize));
585 	if (ret)
586 		goto fail;
587 
588 	/*
589 	 * We're an inline extent, so nobody can extend the file past i_size
590 	 * without locking a page we already have locked.
591 	 *
592 	 * We must do any i_size and inode updates before we unlock the pages.
593 	 * Otherwise we could end up racing with unlink.
594 	 */
595 	i_size = i_size_read(&inode->vfs_inode);
596 	if (update_i_size && size > i_size) {
597 		i_size_write(&inode->vfs_inode, size);
598 		i_size = size;
599 	}
600 	inode->disk_i_size = i_size;
601 
602 fail:
603 	return ret;
604 }
605 
606 
607 /*
608  * conditionally insert an inline extent into the file.  This
609  * does the checks required to make sure the data is small enough
610  * to fit as an inline extent.
611  */
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 					  size_t compressed_size,
614 					  int compress_type,
615 					  struct page **compressed_pages,
616 					  bool update_i_size)
617 {
618 	struct btrfs_drop_extents_args drop_args = { 0 };
619 	struct btrfs_root *root = inode->root;
620 	struct btrfs_fs_info *fs_info = root->fs_info;
621 	struct btrfs_trans_handle *trans;
622 	u64 data_len = (compressed_size ?: size);
623 	int ret;
624 	struct btrfs_path *path;
625 
626 	/*
627 	 * We can create an inline extent if it ends at or beyond the current
628 	 * i_size, is no larger than a sector (decompressed), and the (possibly
629 	 * compressed) data fits in a leaf and the configured maximum inline
630 	 * size.
631 	 */
632 	if (size < i_size_read(&inode->vfs_inode) ||
633 	    size > fs_info->sectorsize ||
634 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 	    data_len > fs_info->max_inline)
636 		return 1;
637 
638 	path = btrfs_alloc_path();
639 	if (!path)
640 		return -ENOMEM;
641 
642 	trans = btrfs_join_transaction(root);
643 	if (IS_ERR(trans)) {
644 		btrfs_free_path(path);
645 		return PTR_ERR(trans);
646 	}
647 	trans->block_rsv = &inode->block_rsv;
648 
649 	drop_args.path = path;
650 	drop_args.start = 0;
651 	drop_args.end = fs_info->sectorsize;
652 	drop_args.drop_cache = true;
653 	drop_args.replace_extent = true;
654 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 	if (ret) {
657 		btrfs_abort_transaction(trans, ret);
658 		goto out;
659 	}
660 
661 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 				   size, compressed_size, compress_type,
663 				   compressed_pages, update_i_size);
664 	if (ret && ret != -ENOSPC) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	} else if (ret == -ENOSPC) {
668 		ret = 1;
669 		goto out;
670 	}
671 
672 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 	ret = btrfs_update_inode(trans, root, inode);
674 	if (ret && ret != -ENOSPC) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto out;
677 	} else if (ret == -ENOSPC) {
678 		ret = 1;
679 		goto out;
680 	}
681 
682 	btrfs_set_inode_full_sync(inode);
683 out:
684 	/*
685 	 * Don't forget to free the reserved space, as for inlined extent
686 	 * it won't count as data extent, free them directly here.
687 	 * And at reserve time, it's always aligned to page size, so
688 	 * just free one page here.
689 	 */
690 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
691 	btrfs_free_path(path);
692 	btrfs_end_transaction(trans);
693 	return ret;
694 }
695 
696 struct async_extent {
697 	u64 start;
698 	u64 ram_size;
699 	u64 compressed_size;
700 	struct page **pages;
701 	unsigned long nr_pages;
702 	int compress_type;
703 	struct list_head list;
704 };
705 
706 struct async_chunk {
707 	struct btrfs_inode *inode;
708 	struct page *locked_page;
709 	u64 start;
710 	u64 end;
711 	blk_opf_t write_flags;
712 	struct list_head extents;
713 	struct cgroup_subsys_state *blkcg_css;
714 	struct btrfs_work work;
715 	struct async_cow *async_cow;
716 };
717 
718 struct async_cow {
719 	atomic_t num_chunks;
720 	struct async_chunk chunks[];
721 };
722 
723 static noinline int add_async_extent(struct async_chunk *cow,
724 				     u64 start, u64 ram_size,
725 				     u64 compressed_size,
726 				     struct page **pages,
727 				     unsigned long nr_pages,
728 				     int compress_type)
729 {
730 	struct async_extent *async_extent;
731 
732 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 	if (!async_extent)
734 		return -ENOMEM;
735 	async_extent->start = start;
736 	async_extent->ram_size = ram_size;
737 	async_extent->compressed_size = compressed_size;
738 	async_extent->pages = pages;
739 	async_extent->nr_pages = nr_pages;
740 	async_extent->compress_type = compress_type;
741 	list_add_tail(&async_extent->list, &cow->extents);
742 	return 0;
743 }
744 
745 /*
746  * Check if the inode needs to be submitted to compression, based on mount
747  * options, defragmentation, properties or heuristics.
748  */
749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
750 				      u64 end)
751 {
752 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
753 
754 	if (!btrfs_inode_can_compress(inode)) {
755 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
756 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
757 			btrfs_ino(inode));
758 		return 0;
759 	}
760 	/*
761 	 * Special check for subpage.
762 	 *
763 	 * We lock the full page then run each delalloc range in the page, thus
764 	 * for the following case, we will hit some subpage specific corner case:
765 	 *
766 	 * 0		32K		64K
767 	 * |	|///////|	|///////|
768 	 *		\- A		\- B
769 	 *
770 	 * In above case, both range A and range B will try to unlock the full
771 	 * page [0, 64K), causing the one finished later will have page
772 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
773 	 *
774 	 * So here we add an artificial limit that subpage compression can only
775 	 * if the range is fully page aligned.
776 	 *
777 	 * In theory we only need to ensure the first page is fully covered, but
778 	 * the tailing partial page will be locked until the full compression
779 	 * finishes, delaying the write of other range.
780 	 *
781 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
782 	 * first to prevent any submitted async extent to unlock the full page.
783 	 * By this, we can ensure for subpage case that only the last async_cow
784 	 * will unlock the full page.
785 	 */
786 	if (fs_info->sectorsize < PAGE_SIZE) {
787 		if (!PAGE_ALIGNED(start) ||
788 		    !PAGE_ALIGNED(end + 1))
789 			return 0;
790 	}
791 
792 	/* force compress */
793 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
794 		return 1;
795 	/* defrag ioctl */
796 	if (inode->defrag_compress)
797 		return 1;
798 	/* bad compression ratios */
799 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 		return 0;
801 	if (btrfs_test_opt(fs_info, COMPRESS) ||
802 	    inode->flags & BTRFS_INODE_COMPRESS ||
803 	    inode->prop_compress)
804 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
805 	return 0;
806 }
807 
808 static inline void inode_should_defrag(struct btrfs_inode *inode,
809 		u64 start, u64 end, u64 num_bytes, u32 small_write)
810 {
811 	/* If this is a small write inside eof, kick off a defrag */
812 	if (num_bytes < small_write &&
813 	    (start > 0 || end + 1 < inode->disk_i_size))
814 		btrfs_add_inode_defrag(NULL, inode, small_write);
815 }
816 
817 /*
818  * Work queue call back to started compression on a file and pages.
819  *
820  * This is done inside an ordered work queue, and the compression is spread
821  * across many cpus.  The actual IO submission is step two, and the ordered work
822  * queue takes care of making sure that happens in the same order things were
823  * put onto the queue by writepages and friends.
824  *
825  * If this code finds it can't get good compression, it puts an entry onto the
826  * work queue to write the uncompressed bytes.  This makes sure that both
827  * compressed inodes and uncompressed inodes are written in the same order that
828  * the flusher thread sent them down.
829  */
830 static void compress_file_range(struct btrfs_work *work)
831 {
832 	struct async_chunk *async_chunk =
833 		container_of(work, struct async_chunk, work);
834 	struct btrfs_inode *inode = async_chunk->inode;
835 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
836 	struct address_space *mapping = inode->vfs_inode.i_mapping;
837 	u64 blocksize = fs_info->sectorsize;
838 	u64 start = async_chunk->start;
839 	u64 end = async_chunk->end;
840 	u64 actual_end;
841 	u64 i_size;
842 	int ret = 0;
843 	struct page **pages;
844 	unsigned long nr_pages;
845 	unsigned long total_compressed = 0;
846 	unsigned long total_in = 0;
847 	unsigned int poff;
848 	int i;
849 	int compress_type = fs_info->compress_type;
850 
851 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
852 
853 	/*
854 	 * We need to call clear_page_dirty_for_io on each page in the range.
855 	 * Otherwise applications with the file mmap'd can wander in and change
856 	 * the page contents while we are compressing them.
857 	 */
858 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
859 
860 	/*
861 	 * We need to save i_size before now because it could change in between
862 	 * us evaluating the size and assigning it.  This is because we lock and
863 	 * unlock the page in truncate and fallocate, and then modify the i_size
864 	 * later on.
865 	 *
866 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
867 	 * does that for us.
868 	 */
869 	barrier();
870 	i_size = i_size_read(&inode->vfs_inode);
871 	barrier();
872 	actual_end = min_t(u64, i_size, end + 1);
873 again:
874 	pages = NULL;
875 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
876 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
877 
878 	/*
879 	 * we don't want to send crud past the end of i_size through
880 	 * compression, that's just a waste of CPU time.  So, if the
881 	 * end of the file is before the start of our current
882 	 * requested range of bytes, we bail out to the uncompressed
883 	 * cleanup code that can deal with all of this.
884 	 *
885 	 * It isn't really the fastest way to fix things, but this is a
886 	 * very uncommon corner.
887 	 */
888 	if (actual_end <= start)
889 		goto cleanup_and_bail_uncompressed;
890 
891 	total_compressed = actual_end - start;
892 
893 	/*
894 	 * Skip compression for a small file range(<=blocksize) that
895 	 * isn't an inline extent, since it doesn't save disk space at all.
896 	 */
897 	if (total_compressed <= blocksize &&
898 	   (start > 0 || end + 1 < inode->disk_i_size))
899 		goto cleanup_and_bail_uncompressed;
900 
901 	/*
902 	 * For subpage case, we require full page alignment for the sector
903 	 * aligned range.
904 	 * Thus we must also check against @actual_end, not just @end.
905 	 */
906 	if (blocksize < PAGE_SIZE) {
907 		if (!PAGE_ALIGNED(start) ||
908 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
909 			goto cleanup_and_bail_uncompressed;
910 	}
911 
912 	total_compressed = min_t(unsigned long, total_compressed,
913 			BTRFS_MAX_UNCOMPRESSED);
914 	total_in = 0;
915 	ret = 0;
916 
917 	/*
918 	 * We do compression for mount -o compress and when the inode has not
919 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
920 	 * discover bad compression ratios.
921 	 */
922 	if (!inode_need_compress(inode, start, end))
923 		goto cleanup_and_bail_uncompressed;
924 
925 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
926 	if (!pages) {
927 		/*
928 		 * Memory allocation failure is not a fatal error, we can fall
929 		 * back to uncompressed code.
930 		 */
931 		goto cleanup_and_bail_uncompressed;
932 	}
933 
934 	if (inode->defrag_compress)
935 		compress_type = inode->defrag_compress;
936 	else if (inode->prop_compress)
937 		compress_type = inode->prop_compress;
938 
939 	/* Compression level is applied here. */
940 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
941 				   mapping, start, pages, &nr_pages, &total_in,
942 				   &total_compressed);
943 	if (ret)
944 		goto mark_incompressible;
945 
946 	/*
947 	 * Zero the tail end of the last page, as we might be sending it down
948 	 * to disk.
949 	 */
950 	poff = offset_in_page(total_compressed);
951 	if (poff)
952 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
953 
954 	/*
955 	 * Try to create an inline extent.
956 	 *
957 	 * If we didn't compress the entire range, try to create an uncompressed
958 	 * inline extent, else a compressed one.
959 	 *
960 	 * Check cow_file_range() for why we don't even try to create inline
961 	 * extent for the subpage case.
962 	 */
963 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
964 		if (total_in < actual_end) {
965 			ret = cow_file_range_inline(inode, actual_end, 0,
966 						    BTRFS_COMPRESS_NONE, NULL,
967 						    false);
968 		} else {
969 			ret = cow_file_range_inline(inode, actual_end,
970 						    total_compressed,
971 						    compress_type, pages,
972 						    false);
973 		}
974 		if (ret <= 0) {
975 			unsigned long clear_flags = EXTENT_DELALLOC |
976 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
977 				EXTENT_DO_ACCOUNTING;
978 
979 			if (ret < 0)
980 				mapping_set_error(mapping, -EIO);
981 
982 			/*
983 			 * inline extent creation worked or returned error,
984 			 * we don't need to create any more async work items.
985 			 * Unlock and free up our temp pages.
986 			 *
987 			 * We use DO_ACCOUNTING here because we need the
988 			 * delalloc_release_metadata to be done _after_ we drop
989 			 * our outstanding extent for clearing delalloc for this
990 			 * range.
991 			 */
992 			extent_clear_unlock_delalloc(inode, start, end,
993 						     NULL,
994 						     clear_flags,
995 						     PAGE_UNLOCK |
996 						     PAGE_START_WRITEBACK |
997 						     PAGE_END_WRITEBACK);
998 			goto free_pages;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * We aren't doing an inline extent. Round the compressed size up to a
1004 	 * block size boundary so the allocator does sane things.
1005 	 */
1006 	total_compressed = ALIGN(total_compressed, blocksize);
1007 
1008 	/*
1009 	 * One last check to make sure the compression is really a win, compare
1010 	 * the page count read with the blocks on disk, compression must free at
1011 	 * least one sector.
1012 	 */
1013 	total_in = round_up(total_in, fs_info->sectorsize);
1014 	if (total_compressed + blocksize > total_in)
1015 		goto mark_incompressible;
1016 
1017 	/*
1018 	 * The async work queues will take care of doing actual allocation on
1019 	 * disk for these compressed pages, and will submit the bios.
1020 	 */
1021 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1022 			       nr_pages, compress_type);
1023 	BUG_ON(ret);
1024 	if (start + total_in < end) {
1025 		start += total_in;
1026 		cond_resched();
1027 		goto again;
1028 	}
1029 	return;
1030 
1031 mark_incompressible:
1032 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1033 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1034 cleanup_and_bail_uncompressed:
1035 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1036 			       BTRFS_COMPRESS_NONE);
1037 	BUG_ON(ret);
1038 free_pages:
1039 	if (pages) {
1040 		for (i = 0; i < nr_pages; i++) {
1041 			WARN_ON(pages[i]->mapping);
1042 			put_page(pages[i]);
1043 		}
1044 		kfree(pages);
1045 	}
1046 }
1047 
1048 static void free_async_extent_pages(struct async_extent *async_extent)
1049 {
1050 	int i;
1051 
1052 	if (!async_extent->pages)
1053 		return;
1054 
1055 	for (i = 0; i < async_extent->nr_pages; i++) {
1056 		WARN_ON(async_extent->pages[i]->mapping);
1057 		put_page(async_extent->pages[i]);
1058 	}
1059 	kfree(async_extent->pages);
1060 	async_extent->nr_pages = 0;
1061 	async_extent->pages = NULL;
1062 }
1063 
1064 static void submit_uncompressed_range(struct btrfs_inode *inode,
1065 				      struct async_extent *async_extent,
1066 				      struct page *locked_page)
1067 {
1068 	u64 start = async_extent->start;
1069 	u64 end = async_extent->start + async_extent->ram_size - 1;
1070 	int ret;
1071 	struct writeback_control wbc = {
1072 		.sync_mode		= WB_SYNC_ALL,
1073 		.range_start		= start,
1074 		.range_end		= end,
1075 		.no_cgroup_owner	= 1,
1076 	};
1077 
1078 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1079 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1080 	wbc_detach_inode(&wbc);
1081 	if (ret < 0) {
1082 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1083 		if (locked_page) {
1084 			const u64 page_start = page_offset(locked_page);
1085 
1086 			set_page_writeback(locked_page);
1087 			end_page_writeback(locked_page);
1088 			btrfs_mark_ordered_io_finished(inode, locked_page,
1089 						       page_start, PAGE_SIZE,
1090 						       !ret);
1091 			mapping_set_error(locked_page->mapping, ret);
1092 			unlock_page(locked_page);
1093 		}
1094 	}
1095 }
1096 
1097 static void submit_one_async_extent(struct async_chunk *async_chunk,
1098 				    struct async_extent *async_extent,
1099 				    u64 *alloc_hint)
1100 {
1101 	struct btrfs_inode *inode = async_chunk->inode;
1102 	struct extent_io_tree *io_tree = &inode->io_tree;
1103 	struct btrfs_root *root = inode->root;
1104 	struct btrfs_fs_info *fs_info = root->fs_info;
1105 	struct btrfs_ordered_extent *ordered;
1106 	struct btrfs_key ins;
1107 	struct page *locked_page = NULL;
1108 	struct extent_map *em;
1109 	int ret = 0;
1110 	u64 start = async_extent->start;
1111 	u64 end = async_extent->start + async_extent->ram_size - 1;
1112 
1113 	if (async_chunk->blkcg_css)
1114 		kthread_associate_blkcg(async_chunk->blkcg_css);
1115 
1116 	/*
1117 	 * If async_chunk->locked_page is in the async_extent range, we need to
1118 	 * handle it.
1119 	 */
1120 	if (async_chunk->locked_page) {
1121 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1122 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1123 
1124 		if (!(start >= locked_page_end || end <= locked_page_start))
1125 			locked_page = async_chunk->locked_page;
1126 	}
1127 	lock_extent(io_tree, start, end, NULL);
1128 
1129 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1130 		submit_uncompressed_range(inode, async_extent, locked_page);
1131 		goto done;
1132 	}
1133 
1134 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1135 				   async_extent->compressed_size,
1136 				   async_extent->compressed_size,
1137 				   0, *alloc_hint, &ins, 1, 1);
1138 	if (ret) {
1139 		/*
1140 		 * We can't reserve contiguous space for the compressed size.
1141 		 * Unlikely, but it's possible that we could have enough
1142 		 * non-contiguous space for the uncompressed size instead.  So
1143 		 * fall back to uncompressed.
1144 		 */
1145 		submit_uncompressed_range(inode, async_extent, locked_page);
1146 		goto done;
1147 	}
1148 
1149 	/* Here we're doing allocation and writeback of the compressed pages */
1150 	em = create_io_em(inode, start,
1151 			  async_extent->ram_size,	/* len */
1152 			  start,			/* orig_start */
1153 			  ins.objectid,			/* block_start */
1154 			  ins.offset,			/* block_len */
1155 			  ins.offset,			/* orig_block_len */
1156 			  async_extent->ram_size,	/* ram_bytes */
1157 			  async_extent->compress_type,
1158 			  BTRFS_ORDERED_COMPRESSED);
1159 	if (IS_ERR(em)) {
1160 		ret = PTR_ERR(em);
1161 		goto out_free_reserve;
1162 	}
1163 	free_extent_map(em);
1164 
1165 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1166 				       async_extent->ram_size,	/* num_bytes */
1167 				       async_extent->ram_size,	/* ram_bytes */
1168 				       ins.objectid,		/* disk_bytenr */
1169 				       ins.offset,		/* disk_num_bytes */
1170 				       0,			/* offset */
1171 				       1 << BTRFS_ORDERED_COMPRESSED,
1172 				       async_extent->compress_type);
1173 	if (IS_ERR(ordered)) {
1174 		btrfs_drop_extent_map_range(inode, start, end, false);
1175 		ret = PTR_ERR(ordered);
1176 		goto out_free_reserve;
1177 	}
1178 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1179 
1180 	/* Clear dirty, set writeback and unlock the pages. */
1181 	extent_clear_unlock_delalloc(inode, start, end,
1182 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1183 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1184 	btrfs_submit_compressed_write(ordered,
1185 			    async_extent->pages,	/* compressed_pages */
1186 			    async_extent->nr_pages,
1187 			    async_chunk->write_flags, true);
1188 	*alloc_hint = ins.objectid + ins.offset;
1189 done:
1190 	if (async_chunk->blkcg_css)
1191 		kthread_associate_blkcg(NULL);
1192 	kfree(async_extent);
1193 	return;
1194 
1195 out_free_reserve:
1196 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1197 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1198 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1199 	extent_clear_unlock_delalloc(inode, start, end,
1200 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1201 				     EXTENT_DELALLOC_NEW |
1202 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1203 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1204 				     PAGE_END_WRITEBACK);
1205 	free_async_extent_pages(async_extent);
1206 	if (async_chunk->blkcg_css)
1207 		kthread_associate_blkcg(NULL);
1208 	btrfs_debug(fs_info,
1209 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1210 		    root->root_key.objectid, btrfs_ino(inode), start,
1211 		    async_extent->ram_size, ret);
1212 	kfree(async_extent);
1213 }
1214 
1215 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1216 				      u64 num_bytes)
1217 {
1218 	struct extent_map_tree *em_tree = &inode->extent_tree;
1219 	struct extent_map *em;
1220 	u64 alloc_hint = 0;
1221 
1222 	read_lock(&em_tree->lock);
1223 	em = search_extent_mapping(em_tree, start, num_bytes);
1224 	if (em) {
1225 		/*
1226 		 * if block start isn't an actual block number then find the
1227 		 * first block in this inode and use that as a hint.  If that
1228 		 * block is also bogus then just don't worry about it.
1229 		 */
1230 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1231 			free_extent_map(em);
1232 			em = search_extent_mapping(em_tree, 0, 0);
1233 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1234 				alloc_hint = em->block_start;
1235 			if (em)
1236 				free_extent_map(em);
1237 		} else {
1238 			alloc_hint = em->block_start;
1239 			free_extent_map(em);
1240 		}
1241 	}
1242 	read_unlock(&em_tree->lock);
1243 
1244 	return alloc_hint;
1245 }
1246 
1247 /*
1248  * when extent_io.c finds a delayed allocation range in the file,
1249  * the call backs end up in this code.  The basic idea is to
1250  * allocate extents on disk for the range, and create ordered data structs
1251  * in ram to track those extents.
1252  *
1253  * locked_page is the page that writepage had locked already.  We use
1254  * it to make sure we don't do extra locks or unlocks.
1255  *
1256  * When this function fails, it unlocks all pages except @locked_page.
1257  *
1258  * When this function successfully creates an inline extent, it returns 1 and
1259  * unlocks all pages including locked_page and starts I/O on them.
1260  * (In reality inline extents are limited to a single page, so locked_page is
1261  * the only page handled anyway).
1262  *
1263  * When this function succeed and creates a normal extent, the page locking
1264  * status depends on the passed in flags:
1265  *
1266  * - If @keep_locked is set, all pages are kept locked.
1267  * - Else all pages except for @locked_page are unlocked.
1268  *
1269  * When a failure happens in the second or later iteration of the
1270  * while-loop, the ordered extents created in previous iterations are kept
1271  * intact. So, the caller must clean them up by calling
1272  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1273  * example.
1274  */
1275 static noinline int cow_file_range(struct btrfs_inode *inode,
1276 				   struct page *locked_page, u64 start, u64 end,
1277 				   u64 *done_offset,
1278 				   bool keep_locked, bool no_inline)
1279 {
1280 	struct btrfs_root *root = inode->root;
1281 	struct btrfs_fs_info *fs_info = root->fs_info;
1282 	u64 alloc_hint = 0;
1283 	u64 orig_start = start;
1284 	u64 num_bytes;
1285 	unsigned long ram_size;
1286 	u64 cur_alloc_size = 0;
1287 	u64 min_alloc_size;
1288 	u64 blocksize = fs_info->sectorsize;
1289 	struct btrfs_key ins;
1290 	struct extent_map *em;
1291 	unsigned clear_bits;
1292 	unsigned long page_ops;
1293 	bool extent_reserved = false;
1294 	int ret = 0;
1295 
1296 	if (btrfs_is_free_space_inode(inode)) {
1297 		ret = -EINVAL;
1298 		goto out_unlock;
1299 	}
1300 
1301 	num_bytes = ALIGN(end - start + 1, blocksize);
1302 	num_bytes = max(blocksize,  num_bytes);
1303 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1304 
1305 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1306 
1307 	/*
1308 	 * Due to the page size limit, for subpage we can only trigger the
1309 	 * writeback for the dirty sectors of page, that means data writeback
1310 	 * is doing more writeback than what we want.
1311 	 *
1312 	 * This is especially unexpected for some call sites like fallocate,
1313 	 * where we only increase i_size after everything is done.
1314 	 * This means we can trigger inline extent even if we didn't want to.
1315 	 * So here we skip inline extent creation completely.
1316 	 */
1317 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1318 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1319 				       end + 1);
1320 
1321 		/* lets try to make an inline extent */
1322 		ret = cow_file_range_inline(inode, actual_end, 0,
1323 					    BTRFS_COMPRESS_NONE, NULL, false);
1324 		if (ret == 0) {
1325 			/*
1326 			 * We use DO_ACCOUNTING here because we need the
1327 			 * delalloc_release_metadata to be run _after_ we drop
1328 			 * our outstanding extent for clearing delalloc for this
1329 			 * range.
1330 			 */
1331 			extent_clear_unlock_delalloc(inode, start, end,
1332 				     locked_page,
1333 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1334 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1335 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1336 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1337 			/*
1338 			 * locked_page is locked by the caller of
1339 			 * writepage_delalloc(), not locked by
1340 			 * __process_pages_contig().
1341 			 *
1342 			 * We can't let __process_pages_contig() to unlock it,
1343 			 * as it doesn't have any subpage::writers recorded.
1344 			 *
1345 			 * Here we manually unlock the page, since the caller
1346 			 * can't determine if it's an inline extent or a
1347 			 * compressed extent.
1348 			 */
1349 			unlock_page(locked_page);
1350 			ret = 1;
1351 			goto done;
1352 		} else if (ret < 0) {
1353 			goto out_unlock;
1354 		}
1355 	}
1356 
1357 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1358 
1359 	/*
1360 	 * Relocation relies on the relocated extents to have exactly the same
1361 	 * size as the original extents. Normally writeback for relocation data
1362 	 * extents follows a NOCOW path because relocation preallocates the
1363 	 * extents. However, due to an operation such as scrub turning a block
1364 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1365 	 * an extent allocated during COW has exactly the requested size and can
1366 	 * not be split into smaller extents, otherwise relocation breaks and
1367 	 * fails during the stage where it updates the bytenr of file extent
1368 	 * items.
1369 	 */
1370 	if (btrfs_is_data_reloc_root(root))
1371 		min_alloc_size = num_bytes;
1372 	else
1373 		min_alloc_size = fs_info->sectorsize;
1374 
1375 	while (num_bytes > 0) {
1376 		struct btrfs_ordered_extent *ordered;
1377 
1378 		cur_alloc_size = num_bytes;
1379 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1380 					   min_alloc_size, 0, alloc_hint,
1381 					   &ins, 1, 1);
1382 		if (ret == -EAGAIN) {
1383 			/*
1384 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1385 			 * file systems, which is an indication that there are
1386 			 * no active zones to allocate from at the moment.
1387 			 *
1388 			 * If this is the first loop iteration, wait for at
1389 			 * least one zone to finish before retrying the
1390 			 * allocation.  Otherwise ask the caller to write out
1391 			 * the already allocated blocks before coming back to
1392 			 * us, or return -ENOSPC if it can't handle retries.
1393 			 */
1394 			ASSERT(btrfs_is_zoned(fs_info));
1395 			if (start == orig_start) {
1396 				wait_on_bit_io(&inode->root->fs_info->flags,
1397 					       BTRFS_FS_NEED_ZONE_FINISH,
1398 					       TASK_UNINTERRUPTIBLE);
1399 				continue;
1400 			}
1401 			if (done_offset) {
1402 				*done_offset = start - 1;
1403 				return 0;
1404 			}
1405 			ret = -ENOSPC;
1406 		}
1407 		if (ret < 0)
1408 			goto out_unlock;
1409 		cur_alloc_size = ins.offset;
1410 		extent_reserved = true;
1411 
1412 		ram_size = ins.offset;
1413 		em = create_io_em(inode, start, ins.offset, /* len */
1414 				  start, /* orig_start */
1415 				  ins.objectid, /* block_start */
1416 				  ins.offset, /* block_len */
1417 				  ins.offset, /* orig_block_len */
1418 				  ram_size, /* ram_bytes */
1419 				  BTRFS_COMPRESS_NONE, /* compress_type */
1420 				  BTRFS_ORDERED_REGULAR /* type */);
1421 		if (IS_ERR(em)) {
1422 			ret = PTR_ERR(em);
1423 			goto out_reserve;
1424 		}
1425 		free_extent_map(em);
1426 
1427 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1428 					ram_size, ins.objectid, cur_alloc_size,
1429 					0, 1 << BTRFS_ORDERED_REGULAR,
1430 					BTRFS_COMPRESS_NONE);
1431 		if (IS_ERR(ordered)) {
1432 			ret = PTR_ERR(ordered);
1433 			goto out_drop_extent_cache;
1434 		}
1435 
1436 		if (btrfs_is_data_reloc_root(root)) {
1437 			ret = btrfs_reloc_clone_csums(ordered);
1438 
1439 			/*
1440 			 * Only drop cache here, and process as normal.
1441 			 *
1442 			 * We must not allow extent_clear_unlock_delalloc()
1443 			 * at out_unlock label to free meta of this ordered
1444 			 * extent, as its meta should be freed by
1445 			 * btrfs_finish_ordered_io().
1446 			 *
1447 			 * So we must continue until @start is increased to
1448 			 * skip current ordered extent.
1449 			 */
1450 			if (ret)
1451 				btrfs_drop_extent_map_range(inode, start,
1452 							    start + ram_size - 1,
1453 							    false);
1454 		}
1455 		btrfs_put_ordered_extent(ordered);
1456 
1457 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1458 
1459 		/*
1460 		 * We're not doing compressed IO, don't unlock the first page
1461 		 * (which the caller expects to stay locked), don't clear any
1462 		 * dirty bits and don't set any writeback bits
1463 		 *
1464 		 * Do set the Ordered (Private2) bit so we know this page was
1465 		 * properly setup for writepage.
1466 		 */
1467 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1468 		page_ops |= PAGE_SET_ORDERED;
1469 
1470 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1471 					     locked_page,
1472 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1473 					     page_ops);
1474 		if (num_bytes < cur_alloc_size)
1475 			num_bytes = 0;
1476 		else
1477 			num_bytes -= cur_alloc_size;
1478 		alloc_hint = ins.objectid + ins.offset;
1479 		start += cur_alloc_size;
1480 		extent_reserved = false;
1481 
1482 		/*
1483 		 * btrfs_reloc_clone_csums() error, since start is increased
1484 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1485 		 * free metadata of current ordered extent, we're OK to exit.
1486 		 */
1487 		if (ret)
1488 			goto out_unlock;
1489 	}
1490 done:
1491 	if (done_offset)
1492 		*done_offset = end;
1493 	return ret;
1494 
1495 out_drop_extent_cache:
1496 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1497 out_reserve:
1498 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1499 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1500 out_unlock:
1501 	/*
1502 	 * Now, we have three regions to clean up:
1503 	 *
1504 	 * |-------(1)----|---(2)---|-------------(3)----------|
1505 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1506 	 *
1507 	 * We process each region below.
1508 	 */
1509 
1510 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1511 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1512 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1513 
1514 	/*
1515 	 * For the range (1). We have already instantiated the ordered extents
1516 	 * for this region. They are cleaned up by
1517 	 * btrfs_cleanup_ordered_extents() in e.g,
1518 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1519 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1520 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1521 	 * function.
1522 	 *
1523 	 * However, in case of @keep_locked, we still need to unlock the pages
1524 	 * (except @locked_page) to ensure all the pages are unlocked.
1525 	 */
1526 	if (keep_locked && orig_start < start) {
1527 		if (!locked_page)
1528 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1529 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1530 					     locked_page, 0, page_ops);
1531 	}
1532 
1533 	/*
1534 	 * For the range (2). If we reserved an extent for our delalloc range
1535 	 * (or a subrange) and failed to create the respective ordered extent,
1536 	 * then it means that when we reserved the extent we decremented the
1537 	 * extent's size from the data space_info's bytes_may_use counter and
1538 	 * incremented the space_info's bytes_reserved counter by the same
1539 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1540 	 * to decrement again the data space_info's bytes_may_use counter,
1541 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1542 	 */
1543 	if (extent_reserved) {
1544 		extent_clear_unlock_delalloc(inode, start,
1545 					     start + cur_alloc_size - 1,
1546 					     locked_page,
1547 					     clear_bits,
1548 					     page_ops);
1549 		start += cur_alloc_size;
1550 	}
1551 
1552 	/*
1553 	 * For the range (3). We never touched the region. In addition to the
1554 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1555 	 * space_info's bytes_may_use counter, reserved in
1556 	 * btrfs_check_data_free_space().
1557 	 */
1558 	if (start < end) {
1559 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1560 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1561 					     clear_bits, page_ops);
1562 	}
1563 	return ret;
1564 }
1565 
1566 /*
1567  * Phase two of compressed writeback.  This is the ordered portion of the code,
1568  * which only gets called in the order the work was queued.  We walk all the
1569  * async extents created by compress_file_range and send them down to the disk.
1570  */
1571 static noinline void submit_compressed_extents(struct btrfs_work *work)
1572 {
1573 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1574 						     work);
1575 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1576 	struct async_extent *async_extent;
1577 	unsigned long nr_pages;
1578 	u64 alloc_hint = 0;
1579 
1580 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1581 		PAGE_SHIFT;
1582 
1583 	while (!list_empty(&async_chunk->extents)) {
1584 		async_extent = list_entry(async_chunk->extents.next,
1585 					  struct async_extent, list);
1586 		list_del(&async_extent->list);
1587 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1588 	}
1589 
1590 	/* atomic_sub_return implies a barrier */
1591 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1592 	    5 * SZ_1M)
1593 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1594 }
1595 
1596 static noinline void async_cow_free(struct btrfs_work *work)
1597 {
1598 	struct async_chunk *async_chunk;
1599 	struct async_cow *async_cow;
1600 
1601 	async_chunk = container_of(work, struct async_chunk, work);
1602 	btrfs_add_delayed_iput(async_chunk->inode);
1603 	if (async_chunk->blkcg_css)
1604 		css_put(async_chunk->blkcg_css);
1605 
1606 	async_cow = async_chunk->async_cow;
1607 	if (atomic_dec_and_test(&async_cow->num_chunks))
1608 		kvfree(async_cow);
1609 }
1610 
1611 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1612 				    struct page *locked_page, u64 start,
1613 				    u64 end, struct writeback_control *wbc)
1614 {
1615 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1616 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1617 	struct async_cow *ctx;
1618 	struct async_chunk *async_chunk;
1619 	unsigned long nr_pages;
1620 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1621 	int i;
1622 	unsigned nofs_flag;
1623 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1624 
1625 	nofs_flag = memalloc_nofs_save();
1626 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1627 	memalloc_nofs_restore(nofs_flag);
1628 	if (!ctx)
1629 		return false;
1630 
1631 	unlock_extent(&inode->io_tree, start, end, NULL);
1632 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1633 
1634 	async_chunk = ctx->chunks;
1635 	atomic_set(&ctx->num_chunks, num_chunks);
1636 
1637 	for (i = 0; i < num_chunks; i++) {
1638 		u64 cur_end = min(end, start + SZ_512K - 1);
1639 
1640 		/*
1641 		 * igrab is called higher up in the call chain, take only the
1642 		 * lightweight reference for the callback lifetime
1643 		 */
1644 		ihold(&inode->vfs_inode);
1645 		async_chunk[i].async_cow = ctx;
1646 		async_chunk[i].inode = inode;
1647 		async_chunk[i].start = start;
1648 		async_chunk[i].end = cur_end;
1649 		async_chunk[i].write_flags = write_flags;
1650 		INIT_LIST_HEAD(&async_chunk[i].extents);
1651 
1652 		/*
1653 		 * The locked_page comes all the way from writepage and its
1654 		 * the original page we were actually given.  As we spread
1655 		 * this large delalloc region across multiple async_chunk
1656 		 * structs, only the first struct needs a pointer to locked_page
1657 		 *
1658 		 * This way we don't need racey decisions about who is supposed
1659 		 * to unlock it.
1660 		 */
1661 		if (locked_page) {
1662 			/*
1663 			 * Depending on the compressibility, the pages might or
1664 			 * might not go through async.  We want all of them to
1665 			 * be accounted against wbc once.  Let's do it here
1666 			 * before the paths diverge.  wbc accounting is used
1667 			 * only for foreign writeback detection and doesn't
1668 			 * need full accuracy.  Just account the whole thing
1669 			 * against the first page.
1670 			 */
1671 			wbc_account_cgroup_owner(wbc, locked_page,
1672 						 cur_end - start);
1673 			async_chunk[i].locked_page = locked_page;
1674 			locked_page = NULL;
1675 		} else {
1676 			async_chunk[i].locked_page = NULL;
1677 		}
1678 
1679 		if (blkcg_css != blkcg_root_css) {
1680 			css_get(blkcg_css);
1681 			async_chunk[i].blkcg_css = blkcg_css;
1682 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1683 		} else {
1684 			async_chunk[i].blkcg_css = NULL;
1685 		}
1686 
1687 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1688 				submit_compressed_extents, async_cow_free);
1689 
1690 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1691 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1692 
1693 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1694 
1695 		start = cur_end + 1;
1696 	}
1697 	return true;
1698 }
1699 
1700 /*
1701  * Run the delalloc range from start to end, and write back any dirty pages
1702  * covered by the range.
1703  */
1704 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1705 				     struct page *locked_page, u64 start,
1706 				     u64 end, struct writeback_control *wbc,
1707 				     bool pages_dirty)
1708 {
1709 	u64 done_offset = end;
1710 	int ret;
1711 
1712 	while (start <= end) {
1713 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1714 				     true, false);
1715 		if (ret)
1716 			return ret;
1717 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1718 					  done_offset, wbc, pages_dirty);
1719 		start = done_offset + 1;
1720 	}
1721 
1722 	return 1;
1723 }
1724 
1725 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1726 					u64 bytenr, u64 num_bytes, bool nowait)
1727 {
1728 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1729 	struct btrfs_ordered_sum *sums;
1730 	int ret;
1731 	LIST_HEAD(list);
1732 
1733 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1734 				      &list, 0, nowait);
1735 	if (ret == 0 && list_empty(&list))
1736 		return 0;
1737 
1738 	while (!list_empty(&list)) {
1739 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1740 		list_del(&sums->list);
1741 		kfree(sums);
1742 	}
1743 	if (ret < 0)
1744 		return ret;
1745 	return 1;
1746 }
1747 
1748 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1749 			   const u64 start, const u64 end)
1750 {
1751 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1752 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1753 	const u64 range_bytes = end + 1 - start;
1754 	struct extent_io_tree *io_tree = &inode->io_tree;
1755 	u64 range_start = start;
1756 	u64 count;
1757 	int ret;
1758 
1759 	/*
1760 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1761 	 * made we had not enough available data space and therefore we did not
1762 	 * reserve data space for it, since we though we could do NOCOW for the
1763 	 * respective file range (either there is prealloc extent or the inode
1764 	 * has the NOCOW bit set).
1765 	 *
1766 	 * However when we need to fallback to COW mode (because for example the
1767 	 * block group for the corresponding extent was turned to RO mode by a
1768 	 * scrub or relocation) we need to do the following:
1769 	 *
1770 	 * 1) We increment the bytes_may_use counter of the data space info.
1771 	 *    If COW succeeds, it allocates a new data extent and after doing
1772 	 *    that it decrements the space info's bytes_may_use counter and
1773 	 *    increments its bytes_reserved counter by the same amount (we do
1774 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1775 	 *    bytes_may_use counter to compensate (when space is reserved at
1776 	 *    buffered write time, the bytes_may_use counter is incremented);
1777 	 *
1778 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1779 	 *    that if the COW path fails for any reason, it decrements (through
1780 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1781 	 *    data space info, which we incremented in the step above.
1782 	 *
1783 	 * If we need to fallback to cow and the inode corresponds to a free
1784 	 * space cache inode or an inode of the data relocation tree, we must
1785 	 * also increment bytes_may_use of the data space_info for the same
1786 	 * reason. Space caches and relocated data extents always get a prealloc
1787 	 * extent for them, however scrub or balance may have set the block
1788 	 * group that contains that extent to RO mode and therefore force COW
1789 	 * when starting writeback.
1790 	 */
1791 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1792 				 EXTENT_NORESERVE, 0, NULL);
1793 	if (count > 0 || is_space_ino || is_reloc_ino) {
1794 		u64 bytes = count;
1795 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1796 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1797 
1798 		if (is_space_ino || is_reloc_ino)
1799 			bytes = range_bytes;
1800 
1801 		spin_lock(&sinfo->lock);
1802 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1803 		spin_unlock(&sinfo->lock);
1804 
1805 		if (count > 0)
1806 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1807 					 NULL);
1808 	}
1809 
1810 	/*
1811 	 * Don't try to create inline extents, as a mix of inline extent that
1812 	 * is written out and unlocked directly and a normal NOCOW extent
1813 	 * doesn't work.
1814 	 */
1815 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1816 	ASSERT(ret != 1);
1817 	return ret;
1818 }
1819 
1820 struct can_nocow_file_extent_args {
1821 	/* Input fields. */
1822 
1823 	/* Start file offset of the range we want to NOCOW. */
1824 	u64 start;
1825 	/* End file offset (inclusive) of the range we want to NOCOW. */
1826 	u64 end;
1827 	bool writeback_path;
1828 	bool strict;
1829 	/*
1830 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1831 	 * anymore.
1832 	 */
1833 	bool free_path;
1834 
1835 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1836 
1837 	u64 disk_bytenr;
1838 	u64 disk_num_bytes;
1839 	u64 extent_offset;
1840 	/* Number of bytes that can be written to in NOCOW mode. */
1841 	u64 num_bytes;
1842 };
1843 
1844 /*
1845  * Check if we can NOCOW the file extent that the path points to.
1846  * This function may return with the path released, so the caller should check
1847  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1848  *
1849  * Returns: < 0 on error
1850  *            0 if we can not NOCOW
1851  *            1 if we can NOCOW
1852  */
1853 static int can_nocow_file_extent(struct btrfs_path *path,
1854 				 struct btrfs_key *key,
1855 				 struct btrfs_inode *inode,
1856 				 struct can_nocow_file_extent_args *args)
1857 {
1858 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1859 	struct extent_buffer *leaf = path->nodes[0];
1860 	struct btrfs_root *root = inode->root;
1861 	struct btrfs_file_extent_item *fi;
1862 	u64 extent_end;
1863 	u8 extent_type;
1864 	int can_nocow = 0;
1865 	int ret = 0;
1866 	bool nowait = path->nowait;
1867 
1868 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1869 	extent_type = btrfs_file_extent_type(leaf, fi);
1870 
1871 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1872 		goto out;
1873 
1874 	/* Can't access these fields unless we know it's not an inline extent. */
1875 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1876 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1877 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1878 
1879 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1880 	    extent_type == BTRFS_FILE_EXTENT_REG)
1881 		goto out;
1882 
1883 	/*
1884 	 * If the extent was created before the generation where the last snapshot
1885 	 * for its subvolume was created, then this implies the extent is shared,
1886 	 * hence we must COW.
1887 	 */
1888 	if (!args->strict &&
1889 	    btrfs_file_extent_generation(leaf, fi) <=
1890 	    btrfs_root_last_snapshot(&root->root_item))
1891 		goto out;
1892 
1893 	/* An explicit hole, must COW. */
1894 	if (args->disk_bytenr == 0)
1895 		goto out;
1896 
1897 	/* Compressed/encrypted/encoded extents must be COWed. */
1898 	if (btrfs_file_extent_compression(leaf, fi) ||
1899 	    btrfs_file_extent_encryption(leaf, fi) ||
1900 	    btrfs_file_extent_other_encoding(leaf, fi))
1901 		goto out;
1902 
1903 	extent_end = btrfs_file_extent_end(path);
1904 
1905 	/*
1906 	 * The following checks can be expensive, as they need to take other
1907 	 * locks and do btree or rbtree searches, so release the path to avoid
1908 	 * blocking other tasks for too long.
1909 	 */
1910 	btrfs_release_path(path);
1911 
1912 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1913 				    key->offset - args->extent_offset,
1914 				    args->disk_bytenr, args->strict, path);
1915 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1916 	if (ret != 0)
1917 		goto out;
1918 
1919 	if (args->free_path) {
1920 		/*
1921 		 * We don't need the path anymore, plus through the
1922 		 * csum_exist_in_range() call below we will end up allocating
1923 		 * another path. So free the path to avoid unnecessary extra
1924 		 * memory usage.
1925 		 */
1926 		btrfs_free_path(path);
1927 		path = NULL;
1928 	}
1929 
1930 	/* If there are pending snapshots for this root, we must COW. */
1931 	if (args->writeback_path && !is_freespace_inode &&
1932 	    atomic_read(&root->snapshot_force_cow))
1933 		goto out;
1934 
1935 	args->disk_bytenr += args->extent_offset;
1936 	args->disk_bytenr += args->start - key->offset;
1937 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1938 
1939 	/*
1940 	 * Force COW if csums exist in the range. This ensures that csums for a
1941 	 * given extent are either valid or do not exist.
1942 	 */
1943 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1944 				  nowait);
1945 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1946 	if (ret != 0)
1947 		goto out;
1948 
1949 	can_nocow = 1;
1950  out:
1951 	if (args->free_path && path)
1952 		btrfs_free_path(path);
1953 
1954 	return ret < 0 ? ret : can_nocow;
1955 }
1956 
1957 /*
1958  * when nowcow writeback call back.  This checks for snapshots or COW copies
1959  * of the extents that exist in the file, and COWs the file as required.
1960  *
1961  * If no cow copies or snapshots exist, we write directly to the existing
1962  * blocks on disk
1963  */
1964 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1965 				       struct page *locked_page,
1966 				       const u64 start, const u64 end)
1967 {
1968 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1969 	struct btrfs_root *root = inode->root;
1970 	struct btrfs_path *path;
1971 	u64 cow_start = (u64)-1;
1972 	u64 cur_offset = start;
1973 	int ret;
1974 	bool check_prev = true;
1975 	u64 ino = btrfs_ino(inode);
1976 	struct can_nocow_file_extent_args nocow_args = { 0 };
1977 
1978 	/*
1979 	 * Normally on a zoned device we're only doing COW writes, but in case
1980 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1981 	 * writing sequentially and can end up here as well.
1982 	 */
1983 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path) {
1987 		ret = -ENOMEM;
1988 		goto error;
1989 	}
1990 
1991 	nocow_args.end = end;
1992 	nocow_args.writeback_path = true;
1993 
1994 	while (1) {
1995 		struct btrfs_block_group *nocow_bg = NULL;
1996 		struct btrfs_ordered_extent *ordered;
1997 		struct btrfs_key found_key;
1998 		struct btrfs_file_extent_item *fi;
1999 		struct extent_buffer *leaf;
2000 		u64 extent_end;
2001 		u64 ram_bytes;
2002 		u64 nocow_end;
2003 		int extent_type;
2004 		bool is_prealloc;
2005 
2006 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2007 					       cur_offset, 0);
2008 		if (ret < 0)
2009 			goto error;
2010 
2011 		/*
2012 		 * If there is no extent for our range when doing the initial
2013 		 * search, then go back to the previous slot as it will be the
2014 		 * one containing the search offset
2015 		 */
2016 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2017 			leaf = path->nodes[0];
2018 			btrfs_item_key_to_cpu(leaf, &found_key,
2019 					      path->slots[0] - 1);
2020 			if (found_key.objectid == ino &&
2021 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2022 				path->slots[0]--;
2023 		}
2024 		check_prev = false;
2025 next_slot:
2026 		/* Go to next leaf if we have exhausted the current one */
2027 		leaf = path->nodes[0];
2028 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2029 			ret = btrfs_next_leaf(root, path);
2030 			if (ret < 0)
2031 				goto error;
2032 			if (ret > 0)
2033 				break;
2034 			leaf = path->nodes[0];
2035 		}
2036 
2037 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2038 
2039 		/* Didn't find anything for our INO */
2040 		if (found_key.objectid > ino)
2041 			break;
2042 		/*
2043 		 * Keep searching until we find an EXTENT_ITEM or there are no
2044 		 * more extents for this inode
2045 		 */
2046 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2047 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2048 			path->slots[0]++;
2049 			goto next_slot;
2050 		}
2051 
2052 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2053 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2054 		    found_key.offset > end)
2055 			break;
2056 
2057 		/*
2058 		 * If the found extent starts after requested offset, then
2059 		 * adjust extent_end to be right before this extent begins
2060 		 */
2061 		if (found_key.offset > cur_offset) {
2062 			extent_end = found_key.offset;
2063 			extent_type = 0;
2064 			goto must_cow;
2065 		}
2066 
2067 		/*
2068 		 * Found extent which begins before our range and potentially
2069 		 * intersect it
2070 		 */
2071 		fi = btrfs_item_ptr(leaf, path->slots[0],
2072 				    struct btrfs_file_extent_item);
2073 		extent_type = btrfs_file_extent_type(leaf, fi);
2074 		/* If this is triggered then we have a memory corruption. */
2075 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2076 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2077 			ret = -EUCLEAN;
2078 			goto error;
2079 		}
2080 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2081 		extent_end = btrfs_file_extent_end(path);
2082 
2083 		/*
2084 		 * If the extent we got ends before our current offset, skip to
2085 		 * the next extent.
2086 		 */
2087 		if (extent_end <= cur_offset) {
2088 			path->slots[0]++;
2089 			goto next_slot;
2090 		}
2091 
2092 		nocow_args.start = cur_offset;
2093 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2094 		if (ret < 0)
2095 			goto error;
2096 		if (ret == 0)
2097 			goto must_cow;
2098 
2099 		ret = 0;
2100 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2101 		if (!nocow_bg) {
2102 must_cow:
2103 			/*
2104 			 * If we can't perform NOCOW writeback for the range,
2105 			 * then record the beginning of the range that needs to
2106 			 * be COWed.  It will be written out before the next
2107 			 * NOCOW range if we find one, or when exiting this
2108 			 * loop.
2109 			 */
2110 			if (cow_start == (u64)-1)
2111 				cow_start = cur_offset;
2112 			cur_offset = extent_end;
2113 			if (cur_offset > end)
2114 				break;
2115 			if (!path->nodes[0])
2116 				continue;
2117 			path->slots[0]++;
2118 			goto next_slot;
2119 		}
2120 
2121 		/*
2122 		 * COW range from cow_start to found_key.offset - 1. As the key
2123 		 * will contain the beginning of the first extent that can be
2124 		 * NOCOW, following one which needs to be COW'ed
2125 		 */
2126 		if (cow_start != (u64)-1) {
2127 			ret = fallback_to_cow(inode, locked_page,
2128 					      cow_start, found_key.offset - 1);
2129 			cow_start = (u64)-1;
2130 			if (ret) {
2131 				btrfs_dec_nocow_writers(nocow_bg);
2132 				goto error;
2133 			}
2134 		}
2135 
2136 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2137 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2138 		if (is_prealloc) {
2139 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2140 			struct extent_map *em;
2141 
2142 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2143 					  orig_start,
2144 					  nocow_args.disk_bytenr, /* block_start */
2145 					  nocow_args.num_bytes, /* block_len */
2146 					  nocow_args.disk_num_bytes, /* orig_block_len */
2147 					  ram_bytes, BTRFS_COMPRESS_NONE,
2148 					  BTRFS_ORDERED_PREALLOC);
2149 			if (IS_ERR(em)) {
2150 				btrfs_dec_nocow_writers(nocow_bg);
2151 				ret = PTR_ERR(em);
2152 				goto error;
2153 			}
2154 			free_extent_map(em);
2155 		}
2156 
2157 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2158 				nocow_args.num_bytes, nocow_args.num_bytes,
2159 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2160 				is_prealloc
2161 				? (1 << BTRFS_ORDERED_PREALLOC)
2162 				: (1 << BTRFS_ORDERED_NOCOW),
2163 				BTRFS_COMPRESS_NONE);
2164 		btrfs_dec_nocow_writers(nocow_bg);
2165 		if (IS_ERR(ordered)) {
2166 			if (is_prealloc) {
2167 				btrfs_drop_extent_map_range(inode, cur_offset,
2168 							    nocow_end, false);
2169 			}
2170 			ret = PTR_ERR(ordered);
2171 			goto error;
2172 		}
2173 
2174 		if (btrfs_is_data_reloc_root(root))
2175 			/*
2176 			 * Error handled later, as we must prevent
2177 			 * extent_clear_unlock_delalloc() in error handler
2178 			 * from freeing metadata of created ordered extent.
2179 			 */
2180 			ret = btrfs_reloc_clone_csums(ordered);
2181 		btrfs_put_ordered_extent(ordered);
2182 
2183 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2184 					     locked_page, EXTENT_LOCKED |
2185 					     EXTENT_DELALLOC |
2186 					     EXTENT_CLEAR_DATA_RESV,
2187 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2188 
2189 		cur_offset = extent_end;
2190 
2191 		/*
2192 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2193 		 * handler, as metadata for created ordered extent will only
2194 		 * be freed by btrfs_finish_ordered_io().
2195 		 */
2196 		if (ret)
2197 			goto error;
2198 		if (cur_offset > end)
2199 			break;
2200 	}
2201 	btrfs_release_path(path);
2202 
2203 	if (cur_offset <= end && cow_start == (u64)-1)
2204 		cow_start = cur_offset;
2205 
2206 	if (cow_start != (u64)-1) {
2207 		cur_offset = end;
2208 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2209 		cow_start = (u64)-1;
2210 		if (ret)
2211 			goto error;
2212 	}
2213 
2214 	btrfs_free_path(path);
2215 	return 0;
2216 
2217 error:
2218 	/*
2219 	 * If an error happened while a COW region is outstanding, cur_offset
2220 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2221 	 * as well.
2222 	 */
2223 	if (cow_start != (u64)-1)
2224 		cur_offset = cow_start;
2225 	if (cur_offset < end)
2226 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2227 					     locked_page, EXTENT_LOCKED |
2228 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2229 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2230 					     PAGE_START_WRITEBACK |
2231 					     PAGE_END_WRITEBACK);
2232 	btrfs_free_path(path);
2233 	return ret;
2234 }
2235 
2236 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2237 {
2238 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2239 		if (inode->defrag_bytes &&
2240 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2241 				   0, NULL))
2242 			return false;
2243 		return true;
2244 	}
2245 	return false;
2246 }
2247 
2248 /*
2249  * Function to process delayed allocation (create CoW) for ranges which are
2250  * being touched for the first time.
2251  */
2252 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2253 			     u64 start, u64 end, struct writeback_control *wbc)
2254 {
2255 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2256 	int ret;
2257 
2258 	/*
2259 	 * The range must cover part of the @locked_page, or a return of 1
2260 	 * can confuse the caller.
2261 	 */
2262 	ASSERT(!(end <= page_offset(locked_page) ||
2263 		 start >= page_offset(locked_page) + PAGE_SIZE));
2264 
2265 	if (should_nocow(inode, start, end)) {
2266 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2267 		goto out;
2268 	}
2269 
2270 	if (btrfs_inode_can_compress(inode) &&
2271 	    inode_need_compress(inode, start, end) &&
2272 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2273 		return 1;
2274 
2275 	if (zoned)
2276 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2277 				       true);
2278 	else
2279 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2280 				     false, false);
2281 
2282 out:
2283 	if (ret < 0)
2284 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2285 					      end - start + 1);
2286 	return ret;
2287 }
2288 
2289 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2290 				 struct extent_state *orig, u64 split)
2291 {
2292 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2293 	u64 size;
2294 
2295 	/* not delalloc, ignore it */
2296 	if (!(orig->state & EXTENT_DELALLOC))
2297 		return;
2298 
2299 	size = orig->end - orig->start + 1;
2300 	if (size > fs_info->max_extent_size) {
2301 		u32 num_extents;
2302 		u64 new_size;
2303 
2304 		/*
2305 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2306 		 * applies here, just in reverse.
2307 		 */
2308 		new_size = orig->end - split + 1;
2309 		num_extents = count_max_extents(fs_info, new_size);
2310 		new_size = split - orig->start;
2311 		num_extents += count_max_extents(fs_info, new_size);
2312 		if (count_max_extents(fs_info, size) >= num_extents)
2313 			return;
2314 	}
2315 
2316 	spin_lock(&inode->lock);
2317 	btrfs_mod_outstanding_extents(inode, 1);
2318 	spin_unlock(&inode->lock);
2319 }
2320 
2321 /*
2322  * Handle merged delayed allocation extents so we can keep track of new extents
2323  * that are just merged onto old extents, such as when we are doing sequential
2324  * writes, so we can properly account for the metadata space we'll need.
2325  */
2326 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2327 				 struct extent_state *other)
2328 {
2329 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2330 	u64 new_size, old_size;
2331 	u32 num_extents;
2332 
2333 	/* not delalloc, ignore it */
2334 	if (!(other->state & EXTENT_DELALLOC))
2335 		return;
2336 
2337 	if (new->start > other->start)
2338 		new_size = new->end - other->start + 1;
2339 	else
2340 		new_size = other->end - new->start + 1;
2341 
2342 	/* we're not bigger than the max, unreserve the space and go */
2343 	if (new_size <= fs_info->max_extent_size) {
2344 		spin_lock(&inode->lock);
2345 		btrfs_mod_outstanding_extents(inode, -1);
2346 		spin_unlock(&inode->lock);
2347 		return;
2348 	}
2349 
2350 	/*
2351 	 * We have to add up either side to figure out how many extents were
2352 	 * accounted for before we merged into one big extent.  If the number of
2353 	 * extents we accounted for is <= the amount we need for the new range
2354 	 * then we can return, otherwise drop.  Think of it like this
2355 	 *
2356 	 * [ 4k][MAX_SIZE]
2357 	 *
2358 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2359 	 * need 2 outstanding extents, on one side we have 1 and the other side
2360 	 * we have 1 so they are == and we can return.  But in this case
2361 	 *
2362 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2363 	 *
2364 	 * Each range on their own accounts for 2 extents, but merged together
2365 	 * they are only 3 extents worth of accounting, so we need to drop in
2366 	 * this case.
2367 	 */
2368 	old_size = other->end - other->start + 1;
2369 	num_extents = count_max_extents(fs_info, old_size);
2370 	old_size = new->end - new->start + 1;
2371 	num_extents += count_max_extents(fs_info, old_size);
2372 	if (count_max_extents(fs_info, new_size) >= num_extents)
2373 		return;
2374 
2375 	spin_lock(&inode->lock);
2376 	btrfs_mod_outstanding_extents(inode, -1);
2377 	spin_unlock(&inode->lock);
2378 }
2379 
2380 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2381 				      struct btrfs_inode *inode)
2382 {
2383 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2384 
2385 	spin_lock(&root->delalloc_lock);
2386 	if (list_empty(&inode->delalloc_inodes)) {
2387 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2388 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2389 		root->nr_delalloc_inodes++;
2390 		if (root->nr_delalloc_inodes == 1) {
2391 			spin_lock(&fs_info->delalloc_root_lock);
2392 			BUG_ON(!list_empty(&root->delalloc_root));
2393 			list_add_tail(&root->delalloc_root,
2394 				      &fs_info->delalloc_roots);
2395 			spin_unlock(&fs_info->delalloc_root_lock);
2396 		}
2397 	}
2398 	spin_unlock(&root->delalloc_lock);
2399 }
2400 
2401 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2402 				struct btrfs_inode *inode)
2403 {
2404 	struct btrfs_fs_info *fs_info = root->fs_info;
2405 
2406 	if (!list_empty(&inode->delalloc_inodes)) {
2407 		list_del_init(&inode->delalloc_inodes);
2408 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2409 			  &inode->runtime_flags);
2410 		root->nr_delalloc_inodes--;
2411 		if (!root->nr_delalloc_inodes) {
2412 			ASSERT(list_empty(&root->delalloc_inodes));
2413 			spin_lock(&fs_info->delalloc_root_lock);
2414 			BUG_ON(list_empty(&root->delalloc_root));
2415 			list_del_init(&root->delalloc_root);
2416 			spin_unlock(&fs_info->delalloc_root_lock);
2417 		}
2418 	}
2419 }
2420 
2421 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2422 				     struct btrfs_inode *inode)
2423 {
2424 	spin_lock(&root->delalloc_lock);
2425 	__btrfs_del_delalloc_inode(root, inode);
2426 	spin_unlock(&root->delalloc_lock);
2427 }
2428 
2429 /*
2430  * Properly track delayed allocation bytes in the inode and to maintain the
2431  * list of inodes that have pending delalloc work to be done.
2432  */
2433 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2434 			       u32 bits)
2435 {
2436 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2437 
2438 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2439 		WARN_ON(1);
2440 	/*
2441 	 * set_bit and clear bit hooks normally require _irqsave/restore
2442 	 * but in this case, we are only testing for the DELALLOC
2443 	 * bit, which is only set or cleared with irqs on
2444 	 */
2445 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2446 		struct btrfs_root *root = inode->root;
2447 		u64 len = state->end + 1 - state->start;
2448 		u32 num_extents = count_max_extents(fs_info, len);
2449 		bool do_list = !btrfs_is_free_space_inode(inode);
2450 
2451 		spin_lock(&inode->lock);
2452 		btrfs_mod_outstanding_extents(inode, num_extents);
2453 		spin_unlock(&inode->lock);
2454 
2455 		/* For sanity tests */
2456 		if (btrfs_is_testing(fs_info))
2457 			return;
2458 
2459 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2460 					 fs_info->delalloc_batch);
2461 		spin_lock(&inode->lock);
2462 		inode->delalloc_bytes += len;
2463 		if (bits & EXTENT_DEFRAG)
2464 			inode->defrag_bytes += len;
2465 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2466 					 &inode->runtime_flags))
2467 			btrfs_add_delalloc_inodes(root, inode);
2468 		spin_unlock(&inode->lock);
2469 	}
2470 
2471 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2472 	    (bits & EXTENT_DELALLOC_NEW)) {
2473 		spin_lock(&inode->lock);
2474 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2475 		spin_unlock(&inode->lock);
2476 	}
2477 }
2478 
2479 /*
2480  * Once a range is no longer delalloc this function ensures that proper
2481  * accounting happens.
2482  */
2483 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2484 				 struct extent_state *state, u32 bits)
2485 {
2486 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2487 	u64 len = state->end + 1 - state->start;
2488 	u32 num_extents = count_max_extents(fs_info, len);
2489 
2490 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2491 		spin_lock(&inode->lock);
2492 		inode->defrag_bytes -= len;
2493 		spin_unlock(&inode->lock);
2494 	}
2495 
2496 	/*
2497 	 * set_bit and clear bit hooks normally require _irqsave/restore
2498 	 * but in this case, we are only testing for the DELALLOC
2499 	 * bit, which is only set or cleared with irqs on
2500 	 */
2501 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2502 		struct btrfs_root *root = inode->root;
2503 		bool do_list = !btrfs_is_free_space_inode(inode);
2504 
2505 		spin_lock(&inode->lock);
2506 		btrfs_mod_outstanding_extents(inode, -num_extents);
2507 		spin_unlock(&inode->lock);
2508 
2509 		/*
2510 		 * We don't reserve metadata space for space cache inodes so we
2511 		 * don't need to call delalloc_release_metadata if there is an
2512 		 * error.
2513 		 */
2514 		if (bits & EXTENT_CLEAR_META_RESV &&
2515 		    root != fs_info->tree_root)
2516 			btrfs_delalloc_release_metadata(inode, len, true);
2517 
2518 		/* For sanity tests. */
2519 		if (btrfs_is_testing(fs_info))
2520 			return;
2521 
2522 		if (!btrfs_is_data_reloc_root(root) &&
2523 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2524 		    (bits & EXTENT_CLEAR_DATA_RESV))
2525 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2526 
2527 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2528 					 fs_info->delalloc_batch);
2529 		spin_lock(&inode->lock);
2530 		inode->delalloc_bytes -= len;
2531 		if (do_list && inode->delalloc_bytes == 0 &&
2532 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2533 					&inode->runtime_flags))
2534 			btrfs_del_delalloc_inode(root, inode);
2535 		spin_unlock(&inode->lock);
2536 	}
2537 
2538 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2539 	    (bits & EXTENT_DELALLOC_NEW)) {
2540 		spin_lock(&inode->lock);
2541 		ASSERT(inode->new_delalloc_bytes >= len);
2542 		inode->new_delalloc_bytes -= len;
2543 		if (bits & EXTENT_ADD_INODE_BYTES)
2544 			inode_add_bytes(&inode->vfs_inode, len);
2545 		spin_unlock(&inode->lock);
2546 	}
2547 }
2548 
2549 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2550 					struct btrfs_ordered_extent *ordered)
2551 {
2552 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2553 	u64 len = bbio->bio.bi_iter.bi_size;
2554 	struct btrfs_ordered_extent *new;
2555 	int ret;
2556 
2557 	/* Must always be called for the beginning of an ordered extent. */
2558 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2559 		return -EINVAL;
2560 
2561 	/* No need to split if the ordered extent covers the entire bio. */
2562 	if (ordered->disk_num_bytes == len) {
2563 		refcount_inc(&ordered->refs);
2564 		bbio->ordered = ordered;
2565 		return 0;
2566 	}
2567 
2568 	/*
2569 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2570 	 * a pre-existing one.
2571 	 */
2572 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2573 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2574 				       ordered->num_bytes, len,
2575 				       ordered->disk_bytenr);
2576 		if (ret)
2577 			return ret;
2578 	}
2579 
2580 	new = btrfs_split_ordered_extent(ordered, len);
2581 	if (IS_ERR(new))
2582 		return PTR_ERR(new);
2583 	bbio->ordered = new;
2584 	return 0;
2585 }
2586 
2587 /*
2588  * given a list of ordered sums record them in the inode.  This happens
2589  * at IO completion time based on sums calculated at bio submission time.
2590  */
2591 static int add_pending_csums(struct btrfs_trans_handle *trans,
2592 			     struct list_head *list)
2593 {
2594 	struct btrfs_ordered_sum *sum;
2595 	struct btrfs_root *csum_root = NULL;
2596 	int ret;
2597 
2598 	list_for_each_entry(sum, list, list) {
2599 		trans->adding_csums = true;
2600 		if (!csum_root)
2601 			csum_root = btrfs_csum_root(trans->fs_info,
2602 						    sum->logical);
2603 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2604 		trans->adding_csums = false;
2605 		if (ret)
2606 			return ret;
2607 	}
2608 	return 0;
2609 }
2610 
2611 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2612 					 const u64 start,
2613 					 const u64 len,
2614 					 struct extent_state **cached_state)
2615 {
2616 	u64 search_start = start;
2617 	const u64 end = start + len - 1;
2618 
2619 	while (search_start < end) {
2620 		const u64 search_len = end - search_start + 1;
2621 		struct extent_map *em;
2622 		u64 em_len;
2623 		int ret = 0;
2624 
2625 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2626 		if (IS_ERR(em))
2627 			return PTR_ERR(em);
2628 
2629 		if (em->block_start != EXTENT_MAP_HOLE)
2630 			goto next;
2631 
2632 		em_len = em->len;
2633 		if (em->start < search_start)
2634 			em_len -= search_start - em->start;
2635 		if (em_len > search_len)
2636 			em_len = search_len;
2637 
2638 		ret = set_extent_bit(&inode->io_tree, search_start,
2639 				     search_start + em_len - 1,
2640 				     EXTENT_DELALLOC_NEW, cached_state);
2641 next:
2642 		search_start = extent_map_end(em);
2643 		free_extent_map(em);
2644 		if (ret)
2645 			return ret;
2646 	}
2647 	return 0;
2648 }
2649 
2650 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2651 			      unsigned int extra_bits,
2652 			      struct extent_state **cached_state)
2653 {
2654 	WARN_ON(PAGE_ALIGNED(end));
2655 
2656 	if (start >= i_size_read(&inode->vfs_inode) &&
2657 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2658 		/*
2659 		 * There can't be any extents following eof in this case so just
2660 		 * set the delalloc new bit for the range directly.
2661 		 */
2662 		extra_bits |= EXTENT_DELALLOC_NEW;
2663 	} else {
2664 		int ret;
2665 
2666 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2667 						    end + 1 - start,
2668 						    cached_state);
2669 		if (ret)
2670 			return ret;
2671 	}
2672 
2673 	return set_extent_bit(&inode->io_tree, start, end,
2674 			      EXTENT_DELALLOC | extra_bits, cached_state);
2675 }
2676 
2677 /* see btrfs_writepage_start_hook for details on why this is required */
2678 struct btrfs_writepage_fixup {
2679 	struct page *page;
2680 	struct btrfs_inode *inode;
2681 	struct btrfs_work work;
2682 };
2683 
2684 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2685 {
2686 	struct btrfs_writepage_fixup *fixup =
2687 		container_of(work, struct btrfs_writepage_fixup, work);
2688 	struct btrfs_ordered_extent *ordered;
2689 	struct extent_state *cached_state = NULL;
2690 	struct extent_changeset *data_reserved = NULL;
2691 	struct page *page = fixup->page;
2692 	struct btrfs_inode *inode = fixup->inode;
2693 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2694 	u64 page_start = page_offset(page);
2695 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2696 	int ret = 0;
2697 	bool free_delalloc_space = true;
2698 
2699 	/*
2700 	 * This is similar to page_mkwrite, we need to reserve the space before
2701 	 * we take the page lock.
2702 	 */
2703 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2704 					   PAGE_SIZE);
2705 again:
2706 	lock_page(page);
2707 
2708 	/*
2709 	 * Before we queued this fixup, we took a reference on the page.
2710 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2711 	 * address space.
2712 	 */
2713 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2714 		/*
2715 		 * Unfortunately this is a little tricky, either
2716 		 *
2717 		 * 1) We got here and our page had already been dealt with and
2718 		 *    we reserved our space, thus ret == 0, so we need to just
2719 		 *    drop our space reservation and bail.  This can happen the
2720 		 *    first time we come into the fixup worker, or could happen
2721 		 *    while waiting for the ordered extent.
2722 		 * 2) Our page was already dealt with, but we happened to get an
2723 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2724 		 *    this case we obviously don't have anything to release, but
2725 		 *    because the page was already dealt with we don't want to
2726 		 *    mark the page with an error, so make sure we're resetting
2727 		 *    ret to 0.  This is why we have this check _before_ the ret
2728 		 *    check, because we do not want to have a surprise ENOSPC
2729 		 *    when the page was already properly dealt with.
2730 		 */
2731 		if (!ret) {
2732 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2733 			btrfs_delalloc_release_space(inode, data_reserved,
2734 						     page_start, PAGE_SIZE,
2735 						     true);
2736 		}
2737 		ret = 0;
2738 		goto out_page;
2739 	}
2740 
2741 	/*
2742 	 * We can't mess with the page state unless it is locked, so now that
2743 	 * it is locked bail if we failed to make our space reservation.
2744 	 */
2745 	if (ret)
2746 		goto out_page;
2747 
2748 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2749 
2750 	/* already ordered? We're done */
2751 	if (PageOrdered(page))
2752 		goto out_reserved;
2753 
2754 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2755 	if (ordered) {
2756 		unlock_extent(&inode->io_tree, page_start, page_end,
2757 			      &cached_state);
2758 		unlock_page(page);
2759 		btrfs_start_ordered_extent(ordered);
2760 		btrfs_put_ordered_extent(ordered);
2761 		goto again;
2762 	}
2763 
2764 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2765 					&cached_state);
2766 	if (ret)
2767 		goto out_reserved;
2768 
2769 	/*
2770 	 * Everything went as planned, we're now the owner of a dirty page with
2771 	 * delayed allocation bits set and space reserved for our COW
2772 	 * destination.
2773 	 *
2774 	 * The page was dirty when we started, nothing should have cleaned it.
2775 	 */
2776 	BUG_ON(!PageDirty(page));
2777 	free_delalloc_space = false;
2778 out_reserved:
2779 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2780 	if (free_delalloc_space)
2781 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2782 					     PAGE_SIZE, true);
2783 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2784 out_page:
2785 	if (ret) {
2786 		/*
2787 		 * We hit ENOSPC or other errors.  Update the mapping and page
2788 		 * to reflect the errors and clean the page.
2789 		 */
2790 		mapping_set_error(page->mapping, ret);
2791 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2792 					       PAGE_SIZE, !ret);
2793 		clear_page_dirty_for_io(page);
2794 	}
2795 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2796 	unlock_page(page);
2797 	put_page(page);
2798 	kfree(fixup);
2799 	extent_changeset_free(data_reserved);
2800 	/*
2801 	 * As a precaution, do a delayed iput in case it would be the last iput
2802 	 * that could need flushing space. Recursing back to fixup worker would
2803 	 * deadlock.
2804 	 */
2805 	btrfs_add_delayed_iput(inode);
2806 }
2807 
2808 /*
2809  * There are a few paths in the higher layers of the kernel that directly
2810  * set the page dirty bit without asking the filesystem if it is a
2811  * good idea.  This causes problems because we want to make sure COW
2812  * properly happens and the data=ordered rules are followed.
2813  *
2814  * In our case any range that doesn't have the ORDERED bit set
2815  * hasn't been properly setup for IO.  We kick off an async process
2816  * to fix it up.  The async helper will wait for ordered extents, set
2817  * the delalloc bit and make it safe to write the page.
2818  */
2819 int btrfs_writepage_cow_fixup(struct page *page)
2820 {
2821 	struct inode *inode = page->mapping->host;
2822 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2823 	struct btrfs_writepage_fixup *fixup;
2824 
2825 	/* This page has ordered extent covering it already */
2826 	if (PageOrdered(page))
2827 		return 0;
2828 
2829 	/*
2830 	 * PageChecked is set below when we create a fixup worker for this page,
2831 	 * don't try to create another one if we're already PageChecked()
2832 	 *
2833 	 * The extent_io writepage code will redirty the page if we send back
2834 	 * EAGAIN.
2835 	 */
2836 	if (PageChecked(page))
2837 		return -EAGAIN;
2838 
2839 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2840 	if (!fixup)
2841 		return -EAGAIN;
2842 
2843 	/*
2844 	 * We are already holding a reference to this inode from
2845 	 * write_cache_pages.  We need to hold it because the space reservation
2846 	 * takes place outside of the page lock, and we can't trust
2847 	 * page->mapping outside of the page lock.
2848 	 */
2849 	ihold(inode);
2850 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2851 	get_page(page);
2852 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2853 	fixup->page = page;
2854 	fixup->inode = BTRFS_I(inode);
2855 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2856 
2857 	return -EAGAIN;
2858 }
2859 
2860 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2861 				       struct btrfs_inode *inode, u64 file_pos,
2862 				       struct btrfs_file_extent_item *stack_fi,
2863 				       const bool update_inode_bytes,
2864 				       u64 qgroup_reserved)
2865 {
2866 	struct btrfs_root *root = inode->root;
2867 	const u64 sectorsize = root->fs_info->sectorsize;
2868 	struct btrfs_path *path;
2869 	struct extent_buffer *leaf;
2870 	struct btrfs_key ins;
2871 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2872 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2873 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2874 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2875 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2876 	struct btrfs_drop_extents_args drop_args = { 0 };
2877 	int ret;
2878 
2879 	path = btrfs_alloc_path();
2880 	if (!path)
2881 		return -ENOMEM;
2882 
2883 	/*
2884 	 * we may be replacing one extent in the tree with another.
2885 	 * The new extent is pinned in the extent map, and we don't want
2886 	 * to drop it from the cache until it is completely in the btree.
2887 	 *
2888 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2889 	 * the caller is expected to unpin it and allow it to be merged
2890 	 * with the others.
2891 	 */
2892 	drop_args.path = path;
2893 	drop_args.start = file_pos;
2894 	drop_args.end = file_pos + num_bytes;
2895 	drop_args.replace_extent = true;
2896 	drop_args.extent_item_size = sizeof(*stack_fi);
2897 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2898 	if (ret)
2899 		goto out;
2900 
2901 	if (!drop_args.extent_inserted) {
2902 		ins.objectid = btrfs_ino(inode);
2903 		ins.offset = file_pos;
2904 		ins.type = BTRFS_EXTENT_DATA_KEY;
2905 
2906 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2907 					      sizeof(*stack_fi));
2908 		if (ret)
2909 			goto out;
2910 	}
2911 	leaf = path->nodes[0];
2912 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2913 	write_extent_buffer(leaf, stack_fi,
2914 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2915 			sizeof(struct btrfs_file_extent_item));
2916 
2917 	btrfs_mark_buffer_dirty(trans, leaf);
2918 	btrfs_release_path(path);
2919 
2920 	/*
2921 	 * If we dropped an inline extent here, we know the range where it is
2922 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2923 	 * number of bytes only for that range containing the inline extent.
2924 	 * The remaining of the range will be processed when clearning the
2925 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2926 	 */
2927 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2928 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2929 
2930 		inline_size = drop_args.bytes_found - inline_size;
2931 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2932 		drop_args.bytes_found -= inline_size;
2933 		num_bytes -= sectorsize;
2934 	}
2935 
2936 	if (update_inode_bytes)
2937 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2938 
2939 	ins.objectid = disk_bytenr;
2940 	ins.offset = disk_num_bytes;
2941 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2942 
2943 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2944 	if (ret)
2945 		goto out;
2946 
2947 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2948 					       file_pos - offset,
2949 					       qgroup_reserved, &ins);
2950 out:
2951 	btrfs_free_path(path);
2952 
2953 	return ret;
2954 }
2955 
2956 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2957 					 u64 start, u64 len)
2958 {
2959 	struct btrfs_block_group *cache;
2960 
2961 	cache = btrfs_lookup_block_group(fs_info, start);
2962 	ASSERT(cache);
2963 
2964 	spin_lock(&cache->lock);
2965 	cache->delalloc_bytes -= len;
2966 	spin_unlock(&cache->lock);
2967 
2968 	btrfs_put_block_group(cache);
2969 }
2970 
2971 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2972 					     struct btrfs_ordered_extent *oe)
2973 {
2974 	struct btrfs_file_extent_item stack_fi;
2975 	bool update_inode_bytes;
2976 	u64 num_bytes = oe->num_bytes;
2977 	u64 ram_bytes = oe->ram_bytes;
2978 
2979 	memset(&stack_fi, 0, sizeof(stack_fi));
2980 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2981 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2982 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2983 						   oe->disk_num_bytes);
2984 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2985 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2986 		num_bytes = oe->truncated_len;
2987 		ram_bytes = num_bytes;
2988 	}
2989 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2990 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2991 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2992 	/* Encryption and other encoding is reserved and all 0 */
2993 
2994 	/*
2995 	 * For delalloc, when completing an ordered extent we update the inode's
2996 	 * bytes when clearing the range in the inode's io tree, so pass false
2997 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2998 	 * except if the ordered extent was truncated.
2999 	 */
3000 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3001 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3002 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3003 
3004 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3005 					   oe->file_offset, &stack_fi,
3006 					   update_inode_bytes, oe->qgroup_rsv);
3007 }
3008 
3009 /*
3010  * As ordered data IO finishes, this gets called so we can finish
3011  * an ordered extent if the range of bytes in the file it covers are
3012  * fully written.
3013  */
3014 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3015 {
3016 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3017 	struct btrfs_root *root = inode->root;
3018 	struct btrfs_fs_info *fs_info = root->fs_info;
3019 	struct btrfs_trans_handle *trans = NULL;
3020 	struct extent_io_tree *io_tree = &inode->io_tree;
3021 	struct extent_state *cached_state = NULL;
3022 	u64 start, end;
3023 	int compress_type = 0;
3024 	int ret = 0;
3025 	u64 logical_len = ordered_extent->num_bytes;
3026 	bool freespace_inode;
3027 	bool truncated = false;
3028 	bool clear_reserved_extent = true;
3029 	unsigned int clear_bits = EXTENT_DEFRAG;
3030 
3031 	start = ordered_extent->file_offset;
3032 	end = start + ordered_extent->num_bytes - 1;
3033 
3034 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3035 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3036 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3037 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3038 		clear_bits |= EXTENT_DELALLOC_NEW;
3039 
3040 	freespace_inode = btrfs_is_free_space_inode(inode);
3041 	if (!freespace_inode)
3042 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3043 
3044 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3045 		ret = -EIO;
3046 		goto out;
3047 	}
3048 
3049 	if (btrfs_is_zoned(fs_info))
3050 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3051 					ordered_extent->disk_num_bytes);
3052 
3053 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3054 		truncated = true;
3055 		logical_len = ordered_extent->truncated_len;
3056 		/* Truncated the entire extent, don't bother adding */
3057 		if (!logical_len)
3058 			goto out;
3059 	}
3060 
3061 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3062 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3063 
3064 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3065 		if (freespace_inode)
3066 			trans = btrfs_join_transaction_spacecache(root);
3067 		else
3068 			trans = btrfs_join_transaction(root);
3069 		if (IS_ERR(trans)) {
3070 			ret = PTR_ERR(trans);
3071 			trans = NULL;
3072 			goto out;
3073 		}
3074 		trans->block_rsv = &inode->block_rsv;
3075 		ret = btrfs_update_inode_fallback(trans, root, inode);
3076 		if (ret) /* -ENOMEM or corruption */
3077 			btrfs_abort_transaction(trans, ret);
3078 		goto out;
3079 	}
3080 
3081 	clear_bits |= EXTENT_LOCKED;
3082 	lock_extent(io_tree, start, end, &cached_state);
3083 
3084 	if (freespace_inode)
3085 		trans = btrfs_join_transaction_spacecache(root);
3086 	else
3087 		trans = btrfs_join_transaction(root);
3088 	if (IS_ERR(trans)) {
3089 		ret = PTR_ERR(trans);
3090 		trans = NULL;
3091 		goto out;
3092 	}
3093 
3094 	trans->block_rsv = &inode->block_rsv;
3095 
3096 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3097 		compress_type = ordered_extent->compress_type;
3098 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3099 		BUG_ON(compress_type);
3100 		ret = btrfs_mark_extent_written(trans, inode,
3101 						ordered_extent->file_offset,
3102 						ordered_extent->file_offset +
3103 						logical_len);
3104 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3105 						  ordered_extent->disk_num_bytes);
3106 	} else {
3107 		BUG_ON(root == fs_info->tree_root);
3108 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3109 		if (!ret) {
3110 			clear_reserved_extent = false;
3111 			btrfs_release_delalloc_bytes(fs_info,
3112 						ordered_extent->disk_bytenr,
3113 						ordered_extent->disk_num_bytes);
3114 		}
3115 	}
3116 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3117 			   ordered_extent->num_bytes, trans->transid);
3118 	if (ret < 0) {
3119 		btrfs_abort_transaction(trans, ret);
3120 		goto out;
3121 	}
3122 
3123 	ret = add_pending_csums(trans, &ordered_extent->list);
3124 	if (ret) {
3125 		btrfs_abort_transaction(trans, ret);
3126 		goto out;
3127 	}
3128 
3129 	/*
3130 	 * If this is a new delalloc range, clear its new delalloc flag to
3131 	 * update the inode's number of bytes. This needs to be done first
3132 	 * before updating the inode item.
3133 	 */
3134 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3135 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3136 		clear_extent_bit(&inode->io_tree, start, end,
3137 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3138 				 &cached_state);
3139 
3140 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3141 	ret = btrfs_update_inode_fallback(trans, root, inode);
3142 	if (ret) { /* -ENOMEM or corruption */
3143 		btrfs_abort_transaction(trans, ret);
3144 		goto out;
3145 	}
3146 	ret = 0;
3147 out:
3148 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3149 			 &cached_state);
3150 
3151 	if (trans)
3152 		btrfs_end_transaction(trans);
3153 
3154 	if (ret || truncated) {
3155 		u64 unwritten_start = start;
3156 
3157 		/*
3158 		 * If we failed to finish this ordered extent for any reason we
3159 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3160 		 * extent, and mark the inode with the error if it wasn't
3161 		 * already set.  Any error during writeback would have already
3162 		 * set the mapping error, so we need to set it if we're the ones
3163 		 * marking this ordered extent as failed.
3164 		 */
3165 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3166 					     &ordered_extent->flags))
3167 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3168 
3169 		if (truncated)
3170 			unwritten_start += logical_len;
3171 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3172 
3173 		/*
3174 		 * Drop extent maps for the part of the extent we didn't write.
3175 		 *
3176 		 * We have an exception here for the free_space_inode, this is
3177 		 * because when we do btrfs_get_extent() on the free space inode
3178 		 * we will search the commit root.  If this is a new block group
3179 		 * we won't find anything, and we will trip over the assert in
3180 		 * writepage where we do ASSERT(em->block_start !=
3181 		 * EXTENT_MAP_HOLE).
3182 		 *
3183 		 * Theoretically we could also skip this for any NOCOW extent as
3184 		 * we don't mess with the extent map tree in the NOCOW case, but
3185 		 * for now simply skip this if we are the free space inode.
3186 		 */
3187 		if (!btrfs_is_free_space_inode(inode))
3188 			btrfs_drop_extent_map_range(inode, unwritten_start,
3189 						    end, false);
3190 
3191 		/*
3192 		 * If the ordered extent had an IOERR or something else went
3193 		 * wrong we need to return the space for this ordered extent
3194 		 * back to the allocator.  We only free the extent in the
3195 		 * truncated case if we didn't write out the extent at all.
3196 		 *
3197 		 * If we made it past insert_reserved_file_extent before we
3198 		 * errored out then we don't need to do this as the accounting
3199 		 * has already been done.
3200 		 */
3201 		if ((ret || !logical_len) &&
3202 		    clear_reserved_extent &&
3203 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3204 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3205 			/*
3206 			 * Discard the range before returning it back to the
3207 			 * free space pool
3208 			 */
3209 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3210 				btrfs_discard_extent(fs_info,
3211 						ordered_extent->disk_bytenr,
3212 						ordered_extent->disk_num_bytes,
3213 						NULL);
3214 			btrfs_free_reserved_extent(fs_info,
3215 					ordered_extent->disk_bytenr,
3216 					ordered_extent->disk_num_bytes, 1);
3217 			/*
3218 			 * Actually free the qgroup rsv which was released when
3219 			 * the ordered extent was created.
3220 			 */
3221 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3222 						  ordered_extent->qgroup_rsv,
3223 						  BTRFS_QGROUP_RSV_DATA);
3224 		}
3225 	}
3226 
3227 	/*
3228 	 * This needs to be done to make sure anybody waiting knows we are done
3229 	 * updating everything for this ordered extent.
3230 	 */
3231 	btrfs_remove_ordered_extent(inode, ordered_extent);
3232 
3233 	/* once for us */
3234 	btrfs_put_ordered_extent(ordered_extent);
3235 	/* once for the tree */
3236 	btrfs_put_ordered_extent(ordered_extent);
3237 
3238 	return ret;
3239 }
3240 
3241 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3242 {
3243 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3244 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3245 		btrfs_finish_ordered_zoned(ordered);
3246 	return btrfs_finish_one_ordered(ordered);
3247 }
3248 
3249 /*
3250  * Verify the checksum for a single sector without any extra action that depend
3251  * on the type of I/O.
3252  */
3253 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3254 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3255 {
3256 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3257 	char *kaddr;
3258 
3259 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3260 
3261 	shash->tfm = fs_info->csum_shash;
3262 
3263 	kaddr = kmap_local_page(page) + pgoff;
3264 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3265 	kunmap_local(kaddr);
3266 
3267 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3268 		return -EIO;
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Verify the checksum of a single data sector.
3274  *
3275  * @bbio:	btrfs_io_bio which contains the csum
3276  * @dev:	device the sector is on
3277  * @bio_offset:	offset to the beginning of the bio (in bytes)
3278  * @bv:		bio_vec to check
3279  *
3280  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3281  * detected, report the error and fill the corrupted range with zero.
3282  *
3283  * Return %true if the sector is ok or had no checksum to start with, else %false.
3284  */
3285 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3286 			u32 bio_offset, struct bio_vec *bv)
3287 {
3288 	struct btrfs_inode *inode = bbio->inode;
3289 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3290 	u64 file_offset = bbio->file_offset + bio_offset;
3291 	u64 end = file_offset + bv->bv_len - 1;
3292 	u8 *csum_expected;
3293 	u8 csum[BTRFS_CSUM_SIZE];
3294 
3295 	ASSERT(bv->bv_len == fs_info->sectorsize);
3296 
3297 	if (!bbio->csum)
3298 		return true;
3299 
3300 	if (btrfs_is_data_reloc_root(inode->root) &&
3301 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3302 			   1, NULL)) {
3303 		/* Skip the range without csum for data reloc inode */
3304 		clear_extent_bits(&inode->io_tree, file_offset, end,
3305 				  EXTENT_NODATASUM);
3306 		return true;
3307 	}
3308 
3309 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3310 				fs_info->csum_size;
3311 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3312 				    csum_expected))
3313 		goto zeroit;
3314 	return true;
3315 
3316 zeroit:
3317 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3318 				    bbio->mirror_num);
3319 	if (dev)
3320 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3321 	memzero_bvec(bv);
3322 	return false;
3323 }
3324 
3325 /*
3326  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3327  *
3328  * @inode: The inode we want to perform iput on
3329  *
3330  * This function uses the generic vfs_inode::i_count to track whether we should
3331  * just decrement it (in case it's > 1) or if this is the last iput then link
3332  * the inode to the delayed iput machinery. Delayed iputs are processed at
3333  * transaction commit time/superblock commit/cleaner kthread.
3334  */
3335 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3336 {
3337 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3338 	unsigned long flags;
3339 
3340 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3341 		return;
3342 
3343 	atomic_inc(&fs_info->nr_delayed_iputs);
3344 	/*
3345 	 * Need to be irq safe here because we can be called from either an irq
3346 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3347 	 * context.
3348 	 */
3349 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3350 	ASSERT(list_empty(&inode->delayed_iput));
3351 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3352 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3353 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3354 		wake_up_process(fs_info->cleaner_kthread);
3355 }
3356 
3357 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3358 				    struct btrfs_inode *inode)
3359 {
3360 	list_del_init(&inode->delayed_iput);
3361 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3362 	iput(&inode->vfs_inode);
3363 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3364 		wake_up(&fs_info->delayed_iputs_wait);
3365 	spin_lock_irq(&fs_info->delayed_iput_lock);
3366 }
3367 
3368 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3369 				   struct btrfs_inode *inode)
3370 {
3371 	if (!list_empty(&inode->delayed_iput)) {
3372 		spin_lock_irq(&fs_info->delayed_iput_lock);
3373 		if (!list_empty(&inode->delayed_iput))
3374 			run_delayed_iput_locked(fs_info, inode);
3375 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3376 	}
3377 }
3378 
3379 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3380 {
3381 	/*
3382 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3383 	 * calls btrfs_add_delayed_iput() and that needs to lock
3384 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3385 	 * prevent a deadlock.
3386 	 */
3387 	spin_lock_irq(&fs_info->delayed_iput_lock);
3388 	while (!list_empty(&fs_info->delayed_iputs)) {
3389 		struct btrfs_inode *inode;
3390 
3391 		inode = list_first_entry(&fs_info->delayed_iputs,
3392 				struct btrfs_inode, delayed_iput);
3393 		run_delayed_iput_locked(fs_info, inode);
3394 		if (need_resched()) {
3395 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3396 			cond_resched();
3397 			spin_lock_irq(&fs_info->delayed_iput_lock);
3398 		}
3399 	}
3400 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3401 }
3402 
3403 /*
3404  * Wait for flushing all delayed iputs
3405  *
3406  * @fs_info:  the filesystem
3407  *
3408  * This will wait on any delayed iputs that are currently running with KILLABLE
3409  * set.  Once they are all done running we will return, unless we are killed in
3410  * which case we return EINTR. This helps in user operations like fallocate etc
3411  * that might get blocked on the iputs.
3412  *
3413  * Return EINTR if we were killed, 0 if nothing's pending
3414  */
3415 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3416 {
3417 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3418 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3419 	if (ret)
3420 		return -EINTR;
3421 	return 0;
3422 }
3423 
3424 /*
3425  * This creates an orphan entry for the given inode in case something goes wrong
3426  * in the middle of an unlink.
3427  */
3428 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3429 		     struct btrfs_inode *inode)
3430 {
3431 	int ret;
3432 
3433 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3434 	if (ret && ret != -EEXIST) {
3435 		btrfs_abort_transaction(trans, ret);
3436 		return ret;
3437 	}
3438 
3439 	return 0;
3440 }
3441 
3442 /*
3443  * We have done the delete so we can go ahead and remove the orphan item for
3444  * this particular inode.
3445  */
3446 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3447 			    struct btrfs_inode *inode)
3448 {
3449 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3450 }
3451 
3452 /*
3453  * this cleans up any orphans that may be left on the list from the last use
3454  * of this root.
3455  */
3456 int btrfs_orphan_cleanup(struct btrfs_root *root)
3457 {
3458 	struct btrfs_fs_info *fs_info = root->fs_info;
3459 	struct btrfs_path *path;
3460 	struct extent_buffer *leaf;
3461 	struct btrfs_key key, found_key;
3462 	struct btrfs_trans_handle *trans;
3463 	struct inode *inode;
3464 	u64 last_objectid = 0;
3465 	int ret = 0, nr_unlink = 0;
3466 
3467 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3468 		return 0;
3469 
3470 	path = btrfs_alloc_path();
3471 	if (!path) {
3472 		ret = -ENOMEM;
3473 		goto out;
3474 	}
3475 	path->reada = READA_BACK;
3476 
3477 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3478 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3479 	key.offset = (u64)-1;
3480 
3481 	while (1) {
3482 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483 		if (ret < 0)
3484 			goto out;
3485 
3486 		/*
3487 		 * if ret == 0 means we found what we were searching for, which
3488 		 * is weird, but possible, so only screw with path if we didn't
3489 		 * find the key and see if we have stuff that matches
3490 		 */
3491 		if (ret > 0) {
3492 			ret = 0;
3493 			if (path->slots[0] == 0)
3494 				break;
3495 			path->slots[0]--;
3496 		}
3497 
3498 		/* pull out the item */
3499 		leaf = path->nodes[0];
3500 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3501 
3502 		/* make sure the item matches what we want */
3503 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3504 			break;
3505 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3506 			break;
3507 
3508 		/* release the path since we're done with it */
3509 		btrfs_release_path(path);
3510 
3511 		/*
3512 		 * this is where we are basically btrfs_lookup, without the
3513 		 * crossing root thing.  we store the inode number in the
3514 		 * offset of the orphan item.
3515 		 */
3516 
3517 		if (found_key.offset == last_objectid) {
3518 			/*
3519 			 * We found the same inode as before. This means we were
3520 			 * not able to remove its items via eviction triggered
3521 			 * by an iput(). A transaction abort may have happened,
3522 			 * due to -ENOSPC for example, so try to grab the error
3523 			 * that lead to a transaction abort, if any.
3524 			 */
3525 			btrfs_err(fs_info,
3526 				  "Error removing orphan entry, stopping orphan cleanup");
3527 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3528 			goto out;
3529 		}
3530 
3531 		last_objectid = found_key.offset;
3532 
3533 		found_key.objectid = found_key.offset;
3534 		found_key.type = BTRFS_INODE_ITEM_KEY;
3535 		found_key.offset = 0;
3536 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3537 		if (IS_ERR(inode)) {
3538 			ret = PTR_ERR(inode);
3539 			inode = NULL;
3540 			if (ret != -ENOENT)
3541 				goto out;
3542 		}
3543 
3544 		if (!inode && root == fs_info->tree_root) {
3545 			struct btrfs_root *dead_root;
3546 			int is_dead_root = 0;
3547 
3548 			/*
3549 			 * This is an orphan in the tree root. Currently these
3550 			 * could come from 2 sources:
3551 			 *  a) a root (snapshot/subvolume) deletion in progress
3552 			 *  b) a free space cache inode
3553 			 * We need to distinguish those two, as the orphan item
3554 			 * for a root must not get deleted before the deletion
3555 			 * of the snapshot/subvolume's tree completes.
3556 			 *
3557 			 * btrfs_find_orphan_roots() ran before us, which has
3558 			 * found all deleted roots and loaded them into
3559 			 * fs_info->fs_roots_radix. So here we can find if an
3560 			 * orphan item corresponds to a deleted root by looking
3561 			 * up the root from that radix tree.
3562 			 */
3563 
3564 			spin_lock(&fs_info->fs_roots_radix_lock);
3565 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3566 							 (unsigned long)found_key.objectid);
3567 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3568 				is_dead_root = 1;
3569 			spin_unlock(&fs_info->fs_roots_radix_lock);
3570 
3571 			if (is_dead_root) {
3572 				/* prevent this orphan from being found again */
3573 				key.offset = found_key.objectid - 1;
3574 				continue;
3575 			}
3576 
3577 		}
3578 
3579 		/*
3580 		 * If we have an inode with links, there are a couple of
3581 		 * possibilities:
3582 		 *
3583 		 * 1. We were halfway through creating fsverity metadata for the
3584 		 * file. In that case, the orphan item represents incomplete
3585 		 * fsverity metadata which must be cleaned up with
3586 		 * btrfs_drop_verity_items and deleting the orphan item.
3587 
3588 		 * 2. Old kernels (before v3.12) used to create an
3589 		 * orphan item for truncate indicating that there were possibly
3590 		 * extent items past i_size that needed to be deleted. In v3.12,
3591 		 * truncate was changed to update i_size in sync with the extent
3592 		 * items, but the (useless) orphan item was still created. Since
3593 		 * v4.18, we don't create the orphan item for truncate at all.
3594 		 *
3595 		 * So, this item could mean that we need to do a truncate, but
3596 		 * only if this filesystem was last used on a pre-v3.12 kernel
3597 		 * and was not cleanly unmounted. The odds of that are quite
3598 		 * slim, and it's a pain to do the truncate now, so just delete
3599 		 * the orphan item.
3600 		 *
3601 		 * It's also possible that this orphan item was supposed to be
3602 		 * deleted but wasn't. The inode number may have been reused,
3603 		 * but either way, we can delete the orphan item.
3604 		 */
3605 		if (!inode || inode->i_nlink) {
3606 			if (inode) {
3607 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3608 				iput(inode);
3609 				inode = NULL;
3610 				if (ret)
3611 					goto out;
3612 			}
3613 			trans = btrfs_start_transaction(root, 1);
3614 			if (IS_ERR(trans)) {
3615 				ret = PTR_ERR(trans);
3616 				goto out;
3617 			}
3618 			btrfs_debug(fs_info, "auto deleting %Lu",
3619 				    found_key.objectid);
3620 			ret = btrfs_del_orphan_item(trans, root,
3621 						    found_key.objectid);
3622 			btrfs_end_transaction(trans);
3623 			if (ret)
3624 				goto out;
3625 			continue;
3626 		}
3627 
3628 		nr_unlink++;
3629 
3630 		/* this will do delete_inode and everything for us */
3631 		iput(inode);
3632 	}
3633 	/* release the path since we're done with it */
3634 	btrfs_release_path(path);
3635 
3636 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3637 		trans = btrfs_join_transaction(root);
3638 		if (!IS_ERR(trans))
3639 			btrfs_end_transaction(trans);
3640 	}
3641 
3642 	if (nr_unlink)
3643 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3644 
3645 out:
3646 	if (ret)
3647 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3648 	btrfs_free_path(path);
3649 	return ret;
3650 }
3651 
3652 /*
3653  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3654  * don't find any xattrs, we know there can't be any acls.
3655  *
3656  * slot is the slot the inode is in, objectid is the objectid of the inode
3657  */
3658 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3659 					  int slot, u64 objectid,
3660 					  int *first_xattr_slot)
3661 {
3662 	u32 nritems = btrfs_header_nritems(leaf);
3663 	struct btrfs_key found_key;
3664 	static u64 xattr_access = 0;
3665 	static u64 xattr_default = 0;
3666 	int scanned = 0;
3667 
3668 	if (!xattr_access) {
3669 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3670 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3671 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3672 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3673 	}
3674 
3675 	slot++;
3676 	*first_xattr_slot = -1;
3677 	while (slot < nritems) {
3678 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3679 
3680 		/* we found a different objectid, there must not be acls */
3681 		if (found_key.objectid != objectid)
3682 			return 0;
3683 
3684 		/* we found an xattr, assume we've got an acl */
3685 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3686 			if (*first_xattr_slot == -1)
3687 				*first_xattr_slot = slot;
3688 			if (found_key.offset == xattr_access ||
3689 			    found_key.offset == xattr_default)
3690 				return 1;
3691 		}
3692 
3693 		/*
3694 		 * we found a key greater than an xattr key, there can't
3695 		 * be any acls later on
3696 		 */
3697 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3698 			return 0;
3699 
3700 		slot++;
3701 		scanned++;
3702 
3703 		/*
3704 		 * it goes inode, inode backrefs, xattrs, extents,
3705 		 * so if there are a ton of hard links to an inode there can
3706 		 * be a lot of backrefs.  Don't waste time searching too hard,
3707 		 * this is just an optimization
3708 		 */
3709 		if (scanned >= 8)
3710 			break;
3711 	}
3712 	/* we hit the end of the leaf before we found an xattr or
3713 	 * something larger than an xattr.  We have to assume the inode
3714 	 * has acls
3715 	 */
3716 	if (*first_xattr_slot == -1)
3717 		*first_xattr_slot = slot;
3718 	return 1;
3719 }
3720 
3721 /*
3722  * read an inode from the btree into the in-memory inode
3723  */
3724 static int btrfs_read_locked_inode(struct inode *inode,
3725 				   struct btrfs_path *in_path)
3726 {
3727 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3728 	struct btrfs_path *path = in_path;
3729 	struct extent_buffer *leaf;
3730 	struct btrfs_inode_item *inode_item;
3731 	struct btrfs_root *root = BTRFS_I(inode)->root;
3732 	struct btrfs_key location;
3733 	unsigned long ptr;
3734 	int maybe_acls;
3735 	u32 rdev;
3736 	int ret;
3737 	bool filled = false;
3738 	int first_xattr_slot;
3739 
3740 	ret = btrfs_fill_inode(inode, &rdev);
3741 	if (!ret)
3742 		filled = true;
3743 
3744 	if (!path) {
3745 		path = btrfs_alloc_path();
3746 		if (!path)
3747 			return -ENOMEM;
3748 	}
3749 
3750 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3751 
3752 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3753 	if (ret) {
3754 		if (path != in_path)
3755 			btrfs_free_path(path);
3756 		return ret;
3757 	}
3758 
3759 	leaf = path->nodes[0];
3760 
3761 	if (filled)
3762 		goto cache_index;
3763 
3764 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3765 				    struct btrfs_inode_item);
3766 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3767 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3768 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3769 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3770 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3771 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3772 			round_up(i_size_read(inode), fs_info->sectorsize));
3773 
3774 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3775 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3776 
3777 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3778 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3779 
3780 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3781 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3782 
3783 	BTRFS_I(inode)->i_otime.tv_sec =
3784 		btrfs_timespec_sec(leaf, &inode_item->otime);
3785 	BTRFS_I(inode)->i_otime.tv_nsec =
3786 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3787 
3788 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3789 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3790 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3791 
3792 	inode_set_iversion_queried(inode,
3793 				   btrfs_inode_sequence(leaf, inode_item));
3794 	inode->i_generation = BTRFS_I(inode)->generation;
3795 	inode->i_rdev = 0;
3796 	rdev = btrfs_inode_rdev(leaf, inode_item);
3797 
3798 	BTRFS_I(inode)->index_cnt = (u64)-1;
3799 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3800 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3801 
3802 cache_index:
3803 	/*
3804 	 * If we were modified in the current generation and evicted from memory
3805 	 * and then re-read we need to do a full sync since we don't have any
3806 	 * idea about which extents were modified before we were evicted from
3807 	 * cache.
3808 	 *
3809 	 * This is required for both inode re-read from disk and delayed inode
3810 	 * in delayed_nodes_tree.
3811 	 */
3812 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3813 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3814 			&BTRFS_I(inode)->runtime_flags);
3815 
3816 	/*
3817 	 * We don't persist the id of the transaction where an unlink operation
3818 	 * against the inode was last made. So here we assume the inode might
3819 	 * have been evicted, and therefore the exact value of last_unlink_trans
3820 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3821 	 * between the inode and its parent if the inode is fsync'ed and the log
3822 	 * replayed. For example, in the scenario:
3823 	 *
3824 	 * touch mydir/foo
3825 	 * ln mydir/foo mydir/bar
3826 	 * sync
3827 	 * unlink mydir/bar
3828 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3829 	 * xfs_io -c fsync mydir/foo
3830 	 * <power failure>
3831 	 * mount fs, triggers fsync log replay
3832 	 *
3833 	 * We must make sure that when we fsync our inode foo we also log its
3834 	 * parent inode, otherwise after log replay the parent still has the
3835 	 * dentry with the "bar" name but our inode foo has a link count of 1
3836 	 * and doesn't have an inode ref with the name "bar" anymore.
3837 	 *
3838 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3839 	 * but it guarantees correctness at the expense of occasional full
3840 	 * transaction commits on fsync if our inode is a directory, or if our
3841 	 * inode is not a directory, logging its parent unnecessarily.
3842 	 */
3843 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3844 
3845 	/*
3846 	 * Same logic as for last_unlink_trans. We don't persist the generation
3847 	 * of the last transaction where this inode was used for a reflink
3848 	 * operation, so after eviction and reloading the inode we must be
3849 	 * pessimistic and assume the last transaction that modified the inode.
3850 	 */
3851 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3852 
3853 	path->slots[0]++;
3854 	if (inode->i_nlink != 1 ||
3855 	    path->slots[0] >= btrfs_header_nritems(leaf))
3856 		goto cache_acl;
3857 
3858 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3859 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3860 		goto cache_acl;
3861 
3862 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3863 	if (location.type == BTRFS_INODE_REF_KEY) {
3864 		struct btrfs_inode_ref *ref;
3865 
3866 		ref = (struct btrfs_inode_ref *)ptr;
3867 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3868 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3869 		struct btrfs_inode_extref *extref;
3870 
3871 		extref = (struct btrfs_inode_extref *)ptr;
3872 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3873 								     extref);
3874 	}
3875 cache_acl:
3876 	/*
3877 	 * try to precache a NULL acl entry for files that don't have
3878 	 * any xattrs or acls
3879 	 */
3880 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3881 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3882 	if (first_xattr_slot != -1) {
3883 		path->slots[0] = first_xattr_slot;
3884 		ret = btrfs_load_inode_props(inode, path);
3885 		if (ret)
3886 			btrfs_err(fs_info,
3887 				  "error loading props for ino %llu (root %llu): %d",
3888 				  btrfs_ino(BTRFS_I(inode)),
3889 				  root->root_key.objectid, ret);
3890 	}
3891 	if (path != in_path)
3892 		btrfs_free_path(path);
3893 
3894 	if (!maybe_acls)
3895 		cache_no_acl(inode);
3896 
3897 	switch (inode->i_mode & S_IFMT) {
3898 	case S_IFREG:
3899 		inode->i_mapping->a_ops = &btrfs_aops;
3900 		inode->i_fop = &btrfs_file_operations;
3901 		inode->i_op = &btrfs_file_inode_operations;
3902 		break;
3903 	case S_IFDIR:
3904 		inode->i_fop = &btrfs_dir_file_operations;
3905 		inode->i_op = &btrfs_dir_inode_operations;
3906 		break;
3907 	case S_IFLNK:
3908 		inode->i_op = &btrfs_symlink_inode_operations;
3909 		inode_nohighmem(inode);
3910 		inode->i_mapping->a_ops = &btrfs_aops;
3911 		break;
3912 	default:
3913 		inode->i_op = &btrfs_special_inode_operations;
3914 		init_special_inode(inode, inode->i_mode, rdev);
3915 		break;
3916 	}
3917 
3918 	btrfs_sync_inode_flags_to_i_flags(inode);
3919 	return 0;
3920 }
3921 
3922 /*
3923  * given a leaf and an inode, copy the inode fields into the leaf
3924  */
3925 static void fill_inode_item(struct btrfs_trans_handle *trans,
3926 			    struct extent_buffer *leaf,
3927 			    struct btrfs_inode_item *item,
3928 			    struct inode *inode)
3929 {
3930 	struct btrfs_map_token token;
3931 	u64 flags;
3932 
3933 	btrfs_init_map_token(&token, leaf);
3934 
3935 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3936 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3937 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3938 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3939 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3940 
3941 	btrfs_set_token_timespec_sec(&token, &item->atime,
3942 				     inode->i_atime.tv_sec);
3943 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3944 				      inode->i_atime.tv_nsec);
3945 
3946 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3947 				     inode->i_mtime.tv_sec);
3948 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3949 				      inode->i_mtime.tv_nsec);
3950 
3951 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3952 				     inode_get_ctime(inode).tv_sec);
3953 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3954 				      inode_get_ctime(inode).tv_nsec);
3955 
3956 	btrfs_set_token_timespec_sec(&token, &item->otime,
3957 				     BTRFS_I(inode)->i_otime.tv_sec);
3958 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3959 				      BTRFS_I(inode)->i_otime.tv_nsec);
3960 
3961 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3962 	btrfs_set_token_inode_generation(&token, item,
3963 					 BTRFS_I(inode)->generation);
3964 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3965 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3966 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3967 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3968 					  BTRFS_I(inode)->ro_flags);
3969 	btrfs_set_token_inode_flags(&token, item, flags);
3970 	btrfs_set_token_inode_block_group(&token, item, 0);
3971 }
3972 
3973 /*
3974  * copy everything in the in-memory inode into the btree.
3975  */
3976 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3977 				struct btrfs_root *root,
3978 				struct btrfs_inode *inode)
3979 {
3980 	struct btrfs_inode_item *inode_item;
3981 	struct btrfs_path *path;
3982 	struct extent_buffer *leaf;
3983 	int ret;
3984 
3985 	path = btrfs_alloc_path();
3986 	if (!path)
3987 		return -ENOMEM;
3988 
3989 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3990 	if (ret) {
3991 		if (ret > 0)
3992 			ret = -ENOENT;
3993 		goto failed;
3994 	}
3995 
3996 	leaf = path->nodes[0];
3997 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3998 				    struct btrfs_inode_item);
3999 
4000 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4001 	btrfs_mark_buffer_dirty(trans, leaf);
4002 	btrfs_set_inode_last_trans(trans, inode);
4003 	ret = 0;
4004 failed:
4005 	btrfs_free_path(path);
4006 	return ret;
4007 }
4008 
4009 /*
4010  * copy everything in the in-memory inode into the btree.
4011  */
4012 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4013 				struct btrfs_root *root,
4014 				struct btrfs_inode *inode)
4015 {
4016 	struct btrfs_fs_info *fs_info = root->fs_info;
4017 	int ret;
4018 
4019 	/*
4020 	 * If the inode is a free space inode, we can deadlock during commit
4021 	 * if we put it into the delayed code.
4022 	 *
4023 	 * The data relocation inode should also be directly updated
4024 	 * without delay
4025 	 */
4026 	if (!btrfs_is_free_space_inode(inode)
4027 	    && !btrfs_is_data_reloc_root(root)
4028 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4029 		btrfs_update_root_times(trans, root);
4030 
4031 		ret = btrfs_delayed_update_inode(trans, root, inode);
4032 		if (!ret)
4033 			btrfs_set_inode_last_trans(trans, inode);
4034 		return ret;
4035 	}
4036 
4037 	return btrfs_update_inode_item(trans, root, inode);
4038 }
4039 
4040 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4041 				struct btrfs_root *root, struct btrfs_inode *inode)
4042 {
4043 	int ret;
4044 
4045 	ret = btrfs_update_inode(trans, root, inode);
4046 	if (ret == -ENOSPC)
4047 		return btrfs_update_inode_item(trans, root, inode);
4048 	return ret;
4049 }
4050 
4051 /*
4052  * unlink helper that gets used here in inode.c and in the tree logging
4053  * recovery code.  It remove a link in a directory with a given name, and
4054  * also drops the back refs in the inode to the directory
4055  */
4056 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4057 				struct btrfs_inode *dir,
4058 				struct btrfs_inode *inode,
4059 				const struct fscrypt_str *name,
4060 				struct btrfs_rename_ctx *rename_ctx)
4061 {
4062 	struct btrfs_root *root = dir->root;
4063 	struct btrfs_fs_info *fs_info = root->fs_info;
4064 	struct btrfs_path *path;
4065 	int ret = 0;
4066 	struct btrfs_dir_item *di;
4067 	u64 index;
4068 	u64 ino = btrfs_ino(inode);
4069 	u64 dir_ino = btrfs_ino(dir);
4070 
4071 	path = btrfs_alloc_path();
4072 	if (!path) {
4073 		ret = -ENOMEM;
4074 		goto out;
4075 	}
4076 
4077 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4078 	if (IS_ERR_OR_NULL(di)) {
4079 		ret = di ? PTR_ERR(di) : -ENOENT;
4080 		goto err;
4081 	}
4082 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4083 	if (ret)
4084 		goto err;
4085 	btrfs_release_path(path);
4086 
4087 	/*
4088 	 * If we don't have dir index, we have to get it by looking up
4089 	 * the inode ref, since we get the inode ref, remove it directly,
4090 	 * it is unnecessary to do delayed deletion.
4091 	 *
4092 	 * But if we have dir index, needn't search inode ref to get it.
4093 	 * Since the inode ref is close to the inode item, it is better
4094 	 * that we delay to delete it, and just do this deletion when
4095 	 * we update the inode item.
4096 	 */
4097 	if (inode->dir_index) {
4098 		ret = btrfs_delayed_delete_inode_ref(inode);
4099 		if (!ret) {
4100 			index = inode->dir_index;
4101 			goto skip_backref;
4102 		}
4103 	}
4104 
4105 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4106 	if (ret) {
4107 		btrfs_info(fs_info,
4108 			"failed to delete reference to %.*s, inode %llu parent %llu",
4109 			name->len, name->name, ino, dir_ino);
4110 		btrfs_abort_transaction(trans, ret);
4111 		goto err;
4112 	}
4113 skip_backref:
4114 	if (rename_ctx)
4115 		rename_ctx->index = index;
4116 
4117 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4118 	if (ret) {
4119 		btrfs_abort_transaction(trans, ret);
4120 		goto err;
4121 	}
4122 
4123 	/*
4124 	 * If we are in a rename context, we don't need to update anything in the
4125 	 * log. That will be done later during the rename by btrfs_log_new_name().
4126 	 * Besides that, doing it here would only cause extra unnecessary btree
4127 	 * operations on the log tree, increasing latency for applications.
4128 	 */
4129 	if (!rename_ctx) {
4130 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4131 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4132 	}
4133 
4134 	/*
4135 	 * If we have a pending delayed iput we could end up with the final iput
4136 	 * being run in btrfs-cleaner context.  If we have enough of these built
4137 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4138 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4139 	 * the inode we can run the delayed iput here without any issues as the
4140 	 * final iput won't be done until after we drop the ref we're currently
4141 	 * holding.
4142 	 */
4143 	btrfs_run_delayed_iput(fs_info, inode);
4144 err:
4145 	btrfs_free_path(path);
4146 	if (ret)
4147 		goto out;
4148 
4149 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4150 	inode_inc_iversion(&inode->vfs_inode);
4151 	inode_inc_iversion(&dir->vfs_inode);
4152 	inode_set_ctime_current(&inode->vfs_inode);
4153 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4154 	ret = btrfs_update_inode(trans, root, dir);
4155 out:
4156 	return ret;
4157 }
4158 
4159 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4160 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4161 		       const struct fscrypt_str *name)
4162 {
4163 	int ret;
4164 
4165 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4166 	if (!ret) {
4167 		drop_nlink(&inode->vfs_inode);
4168 		ret = btrfs_update_inode(trans, inode->root, inode);
4169 	}
4170 	return ret;
4171 }
4172 
4173 /*
4174  * helper to start transaction for unlink and rmdir.
4175  *
4176  * unlink and rmdir are special in btrfs, they do not always free space, so
4177  * if we cannot make our reservations the normal way try and see if there is
4178  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4179  * allow the unlink to occur.
4180  */
4181 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4182 {
4183 	struct btrfs_root *root = dir->root;
4184 
4185 	return btrfs_start_transaction_fallback_global_rsv(root,
4186 						   BTRFS_UNLINK_METADATA_UNITS);
4187 }
4188 
4189 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4190 {
4191 	struct btrfs_trans_handle *trans;
4192 	struct inode *inode = d_inode(dentry);
4193 	int ret;
4194 	struct fscrypt_name fname;
4195 
4196 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4197 	if (ret)
4198 		return ret;
4199 
4200 	/* This needs to handle no-key deletions later on */
4201 
4202 	trans = __unlink_start_trans(BTRFS_I(dir));
4203 	if (IS_ERR(trans)) {
4204 		ret = PTR_ERR(trans);
4205 		goto fscrypt_free;
4206 	}
4207 
4208 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4209 				false);
4210 
4211 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4212 				 &fname.disk_name);
4213 	if (ret)
4214 		goto end_trans;
4215 
4216 	if (inode->i_nlink == 0) {
4217 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4218 		if (ret)
4219 			goto end_trans;
4220 	}
4221 
4222 end_trans:
4223 	btrfs_end_transaction(trans);
4224 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4225 fscrypt_free:
4226 	fscrypt_free_filename(&fname);
4227 	return ret;
4228 }
4229 
4230 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4231 			       struct btrfs_inode *dir, struct dentry *dentry)
4232 {
4233 	struct btrfs_root *root = dir->root;
4234 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4235 	struct btrfs_path *path;
4236 	struct extent_buffer *leaf;
4237 	struct btrfs_dir_item *di;
4238 	struct btrfs_key key;
4239 	u64 index;
4240 	int ret;
4241 	u64 objectid;
4242 	u64 dir_ino = btrfs_ino(dir);
4243 	struct fscrypt_name fname;
4244 
4245 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4246 	if (ret)
4247 		return ret;
4248 
4249 	/* This needs to handle no-key deletions later on */
4250 
4251 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4252 		objectid = inode->root->root_key.objectid;
4253 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4254 		objectid = inode->location.objectid;
4255 	} else {
4256 		WARN_ON(1);
4257 		fscrypt_free_filename(&fname);
4258 		return -EINVAL;
4259 	}
4260 
4261 	path = btrfs_alloc_path();
4262 	if (!path) {
4263 		ret = -ENOMEM;
4264 		goto out;
4265 	}
4266 
4267 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4268 				   &fname.disk_name, -1);
4269 	if (IS_ERR_OR_NULL(di)) {
4270 		ret = di ? PTR_ERR(di) : -ENOENT;
4271 		goto out;
4272 	}
4273 
4274 	leaf = path->nodes[0];
4275 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4276 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4277 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4278 	if (ret) {
4279 		btrfs_abort_transaction(trans, ret);
4280 		goto out;
4281 	}
4282 	btrfs_release_path(path);
4283 
4284 	/*
4285 	 * This is a placeholder inode for a subvolume we didn't have a
4286 	 * reference to at the time of the snapshot creation.  In the meantime
4287 	 * we could have renamed the real subvol link into our snapshot, so
4288 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4289 	 * Instead simply lookup the dir_index_item for this entry so we can
4290 	 * remove it.  Otherwise we know we have a ref to the root and we can
4291 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4292 	 */
4293 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4294 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4295 		if (IS_ERR_OR_NULL(di)) {
4296 			if (!di)
4297 				ret = -ENOENT;
4298 			else
4299 				ret = PTR_ERR(di);
4300 			btrfs_abort_transaction(trans, ret);
4301 			goto out;
4302 		}
4303 
4304 		leaf = path->nodes[0];
4305 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4306 		index = key.offset;
4307 		btrfs_release_path(path);
4308 	} else {
4309 		ret = btrfs_del_root_ref(trans, objectid,
4310 					 root->root_key.objectid, dir_ino,
4311 					 &index, &fname.disk_name);
4312 		if (ret) {
4313 			btrfs_abort_transaction(trans, ret);
4314 			goto out;
4315 		}
4316 	}
4317 
4318 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4319 	if (ret) {
4320 		btrfs_abort_transaction(trans, ret);
4321 		goto out;
4322 	}
4323 
4324 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4325 	inode_inc_iversion(&dir->vfs_inode);
4326 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4327 	ret = btrfs_update_inode_fallback(trans, root, dir);
4328 	if (ret)
4329 		btrfs_abort_transaction(trans, ret);
4330 out:
4331 	btrfs_free_path(path);
4332 	fscrypt_free_filename(&fname);
4333 	return ret;
4334 }
4335 
4336 /*
4337  * Helper to check if the subvolume references other subvolumes or if it's
4338  * default.
4339  */
4340 static noinline int may_destroy_subvol(struct btrfs_root *root)
4341 {
4342 	struct btrfs_fs_info *fs_info = root->fs_info;
4343 	struct btrfs_path *path;
4344 	struct btrfs_dir_item *di;
4345 	struct btrfs_key key;
4346 	struct fscrypt_str name = FSTR_INIT("default", 7);
4347 	u64 dir_id;
4348 	int ret;
4349 
4350 	path = btrfs_alloc_path();
4351 	if (!path)
4352 		return -ENOMEM;
4353 
4354 	/* Make sure this root isn't set as the default subvol */
4355 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4356 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4357 				   dir_id, &name, 0);
4358 	if (di && !IS_ERR(di)) {
4359 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4360 		if (key.objectid == root->root_key.objectid) {
4361 			ret = -EPERM;
4362 			btrfs_err(fs_info,
4363 				  "deleting default subvolume %llu is not allowed",
4364 				  key.objectid);
4365 			goto out;
4366 		}
4367 		btrfs_release_path(path);
4368 	}
4369 
4370 	key.objectid = root->root_key.objectid;
4371 	key.type = BTRFS_ROOT_REF_KEY;
4372 	key.offset = (u64)-1;
4373 
4374 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4375 	if (ret < 0)
4376 		goto out;
4377 	if (ret == 0) {
4378 		/*
4379 		 * Key with offset -1 found, there would have to exist a root
4380 		 * with such id, but this is out of valid range.
4381 		 */
4382 		ret = -EUCLEAN;
4383 		goto out;
4384 	}
4385 
4386 	ret = 0;
4387 	if (path->slots[0] > 0) {
4388 		path->slots[0]--;
4389 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4390 		if (key.objectid == root->root_key.objectid &&
4391 		    key.type == BTRFS_ROOT_REF_KEY)
4392 			ret = -ENOTEMPTY;
4393 	}
4394 out:
4395 	btrfs_free_path(path);
4396 	return ret;
4397 }
4398 
4399 /* Delete all dentries for inodes belonging to the root */
4400 static void btrfs_prune_dentries(struct btrfs_root *root)
4401 {
4402 	struct btrfs_fs_info *fs_info = root->fs_info;
4403 	struct rb_node *node;
4404 	struct rb_node *prev;
4405 	struct btrfs_inode *entry;
4406 	struct inode *inode;
4407 	u64 objectid = 0;
4408 
4409 	if (!BTRFS_FS_ERROR(fs_info))
4410 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4411 
4412 	spin_lock(&root->inode_lock);
4413 again:
4414 	node = root->inode_tree.rb_node;
4415 	prev = NULL;
4416 	while (node) {
4417 		prev = node;
4418 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4419 
4420 		if (objectid < btrfs_ino(entry))
4421 			node = node->rb_left;
4422 		else if (objectid > btrfs_ino(entry))
4423 			node = node->rb_right;
4424 		else
4425 			break;
4426 	}
4427 	if (!node) {
4428 		while (prev) {
4429 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4430 			if (objectid <= btrfs_ino(entry)) {
4431 				node = prev;
4432 				break;
4433 			}
4434 			prev = rb_next(prev);
4435 		}
4436 	}
4437 	while (node) {
4438 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4439 		objectid = btrfs_ino(entry) + 1;
4440 		inode = igrab(&entry->vfs_inode);
4441 		if (inode) {
4442 			spin_unlock(&root->inode_lock);
4443 			if (atomic_read(&inode->i_count) > 1)
4444 				d_prune_aliases(inode);
4445 			/*
4446 			 * btrfs_drop_inode will have it removed from the inode
4447 			 * cache when its usage count hits zero.
4448 			 */
4449 			iput(inode);
4450 			cond_resched();
4451 			spin_lock(&root->inode_lock);
4452 			goto again;
4453 		}
4454 
4455 		if (cond_resched_lock(&root->inode_lock))
4456 			goto again;
4457 
4458 		node = rb_next(node);
4459 	}
4460 	spin_unlock(&root->inode_lock);
4461 }
4462 
4463 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4464 {
4465 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4466 	struct btrfs_root *root = dir->root;
4467 	struct inode *inode = d_inode(dentry);
4468 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4469 	struct btrfs_trans_handle *trans;
4470 	struct btrfs_block_rsv block_rsv;
4471 	u64 root_flags;
4472 	u64 qgroup_reserved = 0;
4473 	int ret;
4474 
4475 	down_write(&fs_info->subvol_sem);
4476 
4477 	/*
4478 	 * Don't allow to delete a subvolume with send in progress. This is
4479 	 * inside the inode lock so the error handling that has to drop the bit
4480 	 * again is not run concurrently.
4481 	 */
4482 	spin_lock(&dest->root_item_lock);
4483 	if (dest->send_in_progress) {
4484 		spin_unlock(&dest->root_item_lock);
4485 		btrfs_warn(fs_info,
4486 			   "attempt to delete subvolume %llu during send",
4487 			   dest->root_key.objectid);
4488 		ret = -EPERM;
4489 		goto out_up_write;
4490 	}
4491 	if (atomic_read(&dest->nr_swapfiles)) {
4492 		spin_unlock(&dest->root_item_lock);
4493 		btrfs_warn(fs_info,
4494 			   "attempt to delete subvolume %llu with active swapfile",
4495 			   root->root_key.objectid);
4496 		ret = -EPERM;
4497 		goto out_up_write;
4498 	}
4499 	root_flags = btrfs_root_flags(&dest->root_item);
4500 	btrfs_set_root_flags(&dest->root_item,
4501 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4502 	spin_unlock(&dest->root_item_lock);
4503 
4504 	ret = may_destroy_subvol(dest);
4505 	if (ret)
4506 		goto out_undead;
4507 
4508 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4509 	/*
4510 	 * One for dir inode,
4511 	 * two for dir entries,
4512 	 * two for root ref/backref.
4513 	 */
4514 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4515 	if (ret)
4516 		goto out_undead;
4517 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4518 
4519 	trans = btrfs_start_transaction(root, 0);
4520 	if (IS_ERR(trans)) {
4521 		ret = PTR_ERR(trans);
4522 		goto out_release;
4523 	}
4524 	ret = btrfs_record_root_in_trans(trans, root);
4525 	if (ret) {
4526 		btrfs_abort_transaction(trans, ret);
4527 		goto out_end_trans;
4528 	}
4529 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4530 	qgroup_reserved = 0;
4531 	trans->block_rsv = &block_rsv;
4532 	trans->bytes_reserved = block_rsv.size;
4533 
4534 	btrfs_record_snapshot_destroy(trans, dir);
4535 
4536 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4537 	if (ret) {
4538 		btrfs_abort_transaction(trans, ret);
4539 		goto out_end_trans;
4540 	}
4541 
4542 	ret = btrfs_record_root_in_trans(trans, dest);
4543 	if (ret) {
4544 		btrfs_abort_transaction(trans, ret);
4545 		goto out_end_trans;
4546 	}
4547 
4548 	memset(&dest->root_item.drop_progress, 0,
4549 		sizeof(dest->root_item.drop_progress));
4550 	btrfs_set_root_drop_level(&dest->root_item, 0);
4551 	btrfs_set_root_refs(&dest->root_item, 0);
4552 
4553 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4554 		ret = btrfs_insert_orphan_item(trans,
4555 					fs_info->tree_root,
4556 					dest->root_key.objectid);
4557 		if (ret) {
4558 			btrfs_abort_transaction(trans, ret);
4559 			goto out_end_trans;
4560 		}
4561 	}
4562 
4563 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4564 				  BTRFS_UUID_KEY_SUBVOL,
4565 				  dest->root_key.objectid);
4566 	if (ret && ret != -ENOENT) {
4567 		btrfs_abort_transaction(trans, ret);
4568 		goto out_end_trans;
4569 	}
4570 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4571 		ret = btrfs_uuid_tree_remove(trans,
4572 					  dest->root_item.received_uuid,
4573 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4574 					  dest->root_key.objectid);
4575 		if (ret && ret != -ENOENT) {
4576 			btrfs_abort_transaction(trans, ret);
4577 			goto out_end_trans;
4578 		}
4579 	}
4580 
4581 	free_anon_bdev(dest->anon_dev);
4582 	dest->anon_dev = 0;
4583 out_end_trans:
4584 	trans->block_rsv = NULL;
4585 	trans->bytes_reserved = 0;
4586 	ret = btrfs_end_transaction(trans);
4587 	inode->i_flags |= S_DEAD;
4588 out_release:
4589 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4590 	if (qgroup_reserved)
4591 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4592 out_undead:
4593 	if (ret) {
4594 		spin_lock(&dest->root_item_lock);
4595 		root_flags = btrfs_root_flags(&dest->root_item);
4596 		btrfs_set_root_flags(&dest->root_item,
4597 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4598 		spin_unlock(&dest->root_item_lock);
4599 	}
4600 out_up_write:
4601 	up_write(&fs_info->subvol_sem);
4602 	if (!ret) {
4603 		d_invalidate(dentry);
4604 		btrfs_prune_dentries(dest);
4605 		ASSERT(dest->send_in_progress == 0);
4606 	}
4607 
4608 	return ret;
4609 }
4610 
4611 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4612 {
4613 	struct inode *inode = d_inode(dentry);
4614 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4615 	int err = 0;
4616 	struct btrfs_trans_handle *trans;
4617 	u64 last_unlink_trans;
4618 	struct fscrypt_name fname;
4619 
4620 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4621 		return -ENOTEMPTY;
4622 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4623 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4624 			btrfs_err(fs_info,
4625 			"extent tree v2 doesn't support snapshot deletion yet");
4626 			return -EOPNOTSUPP;
4627 		}
4628 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4629 	}
4630 
4631 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4632 	if (err)
4633 		return err;
4634 
4635 	/* This needs to handle no-key deletions later on */
4636 
4637 	trans = __unlink_start_trans(BTRFS_I(dir));
4638 	if (IS_ERR(trans)) {
4639 		err = PTR_ERR(trans);
4640 		goto out_notrans;
4641 	}
4642 
4643 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4644 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4645 		goto out;
4646 	}
4647 
4648 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4649 	if (err)
4650 		goto out;
4651 
4652 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4653 
4654 	/* now the directory is empty */
4655 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4656 				 &fname.disk_name);
4657 	if (!err) {
4658 		btrfs_i_size_write(BTRFS_I(inode), 0);
4659 		/*
4660 		 * Propagate the last_unlink_trans value of the deleted dir to
4661 		 * its parent directory. This is to prevent an unrecoverable
4662 		 * log tree in the case we do something like this:
4663 		 * 1) create dir foo
4664 		 * 2) create snapshot under dir foo
4665 		 * 3) delete the snapshot
4666 		 * 4) rmdir foo
4667 		 * 5) mkdir foo
4668 		 * 6) fsync foo or some file inside foo
4669 		 */
4670 		if (last_unlink_trans >= trans->transid)
4671 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4672 	}
4673 out:
4674 	btrfs_end_transaction(trans);
4675 out_notrans:
4676 	btrfs_btree_balance_dirty(fs_info);
4677 	fscrypt_free_filename(&fname);
4678 
4679 	return err;
4680 }
4681 
4682 /*
4683  * btrfs_truncate_block - read, zero a chunk and write a block
4684  * @inode - inode that we're zeroing
4685  * @from - the offset to start zeroing
4686  * @len - the length to zero, 0 to zero the entire range respective to the
4687  *	offset
4688  * @front - zero up to the offset instead of from the offset on
4689  *
4690  * This will find the block for the "from" offset and cow the block and zero the
4691  * part we want to zero.  This is used with truncate and hole punching.
4692  */
4693 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4694 			 int front)
4695 {
4696 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4697 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4698 	struct extent_io_tree *io_tree = &inode->io_tree;
4699 	struct btrfs_ordered_extent *ordered;
4700 	struct extent_state *cached_state = NULL;
4701 	struct extent_changeset *data_reserved = NULL;
4702 	bool only_release_metadata = false;
4703 	u32 blocksize = fs_info->sectorsize;
4704 	pgoff_t index = from >> PAGE_SHIFT;
4705 	unsigned offset = from & (blocksize - 1);
4706 	struct page *page;
4707 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4708 	size_t write_bytes = blocksize;
4709 	int ret = 0;
4710 	u64 block_start;
4711 	u64 block_end;
4712 
4713 	if (IS_ALIGNED(offset, blocksize) &&
4714 	    (!len || IS_ALIGNED(len, blocksize)))
4715 		goto out;
4716 
4717 	block_start = round_down(from, blocksize);
4718 	block_end = block_start + blocksize - 1;
4719 
4720 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4721 					  blocksize, false);
4722 	if (ret < 0) {
4723 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4724 			/* For nocow case, no need to reserve data space */
4725 			only_release_metadata = true;
4726 		} else {
4727 			goto out;
4728 		}
4729 	}
4730 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4731 	if (ret < 0) {
4732 		if (!only_release_metadata)
4733 			btrfs_free_reserved_data_space(inode, data_reserved,
4734 						       block_start, blocksize);
4735 		goto out;
4736 	}
4737 again:
4738 	page = find_or_create_page(mapping, index, mask);
4739 	if (!page) {
4740 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4741 					     blocksize, true);
4742 		btrfs_delalloc_release_extents(inode, blocksize);
4743 		ret = -ENOMEM;
4744 		goto out;
4745 	}
4746 
4747 	if (!PageUptodate(page)) {
4748 		ret = btrfs_read_folio(NULL, page_folio(page));
4749 		lock_page(page);
4750 		if (page->mapping != mapping) {
4751 			unlock_page(page);
4752 			put_page(page);
4753 			goto again;
4754 		}
4755 		if (!PageUptodate(page)) {
4756 			ret = -EIO;
4757 			goto out_unlock;
4758 		}
4759 	}
4760 
4761 	/*
4762 	 * We unlock the page after the io is completed and then re-lock it
4763 	 * above.  release_folio() could have come in between that and cleared
4764 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4765 	 * here to make sure it's properly set for the subpage stuff.
4766 	 */
4767 	ret = set_page_extent_mapped(page);
4768 	if (ret < 0)
4769 		goto out_unlock;
4770 
4771 	wait_on_page_writeback(page);
4772 
4773 	lock_extent(io_tree, block_start, block_end, &cached_state);
4774 
4775 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4776 	if (ordered) {
4777 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4778 		unlock_page(page);
4779 		put_page(page);
4780 		btrfs_start_ordered_extent(ordered);
4781 		btrfs_put_ordered_extent(ordered);
4782 		goto again;
4783 	}
4784 
4785 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4786 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4787 			 &cached_state);
4788 
4789 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4790 					&cached_state);
4791 	if (ret) {
4792 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4793 		goto out_unlock;
4794 	}
4795 
4796 	if (offset != blocksize) {
4797 		if (!len)
4798 			len = blocksize - offset;
4799 		if (front)
4800 			memzero_page(page, (block_start - page_offset(page)),
4801 				     offset);
4802 		else
4803 			memzero_page(page, (block_start - page_offset(page)) + offset,
4804 				     len);
4805 	}
4806 	btrfs_page_clear_checked(fs_info, page, block_start,
4807 				 block_end + 1 - block_start);
4808 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4809 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4810 
4811 	if (only_release_metadata)
4812 		set_extent_bit(&inode->io_tree, block_start, block_end,
4813 			       EXTENT_NORESERVE, NULL);
4814 
4815 out_unlock:
4816 	if (ret) {
4817 		if (only_release_metadata)
4818 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4819 		else
4820 			btrfs_delalloc_release_space(inode, data_reserved,
4821 					block_start, blocksize, true);
4822 	}
4823 	btrfs_delalloc_release_extents(inode, blocksize);
4824 	unlock_page(page);
4825 	put_page(page);
4826 out:
4827 	if (only_release_metadata)
4828 		btrfs_check_nocow_unlock(inode);
4829 	extent_changeset_free(data_reserved);
4830 	return ret;
4831 }
4832 
4833 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4834 			     u64 offset, u64 len)
4835 {
4836 	struct btrfs_fs_info *fs_info = root->fs_info;
4837 	struct btrfs_trans_handle *trans;
4838 	struct btrfs_drop_extents_args drop_args = { 0 };
4839 	int ret;
4840 
4841 	/*
4842 	 * If NO_HOLES is enabled, we don't need to do anything.
4843 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4844 	 * or btrfs_update_inode() will be called, which guarantee that the next
4845 	 * fsync will know this inode was changed and needs to be logged.
4846 	 */
4847 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4848 		return 0;
4849 
4850 	/*
4851 	 * 1 - for the one we're dropping
4852 	 * 1 - for the one we're adding
4853 	 * 1 - for updating the inode.
4854 	 */
4855 	trans = btrfs_start_transaction(root, 3);
4856 	if (IS_ERR(trans))
4857 		return PTR_ERR(trans);
4858 
4859 	drop_args.start = offset;
4860 	drop_args.end = offset + len;
4861 	drop_args.drop_cache = true;
4862 
4863 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4864 	if (ret) {
4865 		btrfs_abort_transaction(trans, ret);
4866 		btrfs_end_transaction(trans);
4867 		return ret;
4868 	}
4869 
4870 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4871 	if (ret) {
4872 		btrfs_abort_transaction(trans, ret);
4873 	} else {
4874 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4875 		btrfs_update_inode(trans, root, inode);
4876 	}
4877 	btrfs_end_transaction(trans);
4878 	return ret;
4879 }
4880 
4881 /*
4882  * This function puts in dummy file extents for the area we're creating a hole
4883  * for.  So if we are truncating this file to a larger size we need to insert
4884  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4885  * the range between oldsize and size
4886  */
4887 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4888 {
4889 	struct btrfs_root *root = inode->root;
4890 	struct btrfs_fs_info *fs_info = root->fs_info;
4891 	struct extent_io_tree *io_tree = &inode->io_tree;
4892 	struct extent_map *em = NULL;
4893 	struct extent_state *cached_state = NULL;
4894 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4895 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4896 	u64 last_byte;
4897 	u64 cur_offset;
4898 	u64 hole_size;
4899 	int err = 0;
4900 
4901 	/*
4902 	 * If our size started in the middle of a block we need to zero out the
4903 	 * rest of the block before we expand the i_size, otherwise we could
4904 	 * expose stale data.
4905 	 */
4906 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4907 	if (err)
4908 		return err;
4909 
4910 	if (size <= hole_start)
4911 		return 0;
4912 
4913 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4914 					   &cached_state);
4915 	cur_offset = hole_start;
4916 	while (1) {
4917 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4918 				      block_end - cur_offset);
4919 		if (IS_ERR(em)) {
4920 			err = PTR_ERR(em);
4921 			em = NULL;
4922 			break;
4923 		}
4924 		last_byte = min(extent_map_end(em), block_end);
4925 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4926 		hole_size = last_byte - cur_offset;
4927 
4928 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4929 			struct extent_map *hole_em;
4930 
4931 			err = maybe_insert_hole(root, inode, cur_offset,
4932 						hole_size);
4933 			if (err)
4934 				break;
4935 
4936 			err = btrfs_inode_set_file_extent_range(inode,
4937 							cur_offset, hole_size);
4938 			if (err)
4939 				break;
4940 
4941 			hole_em = alloc_extent_map();
4942 			if (!hole_em) {
4943 				btrfs_drop_extent_map_range(inode, cur_offset,
4944 						    cur_offset + hole_size - 1,
4945 						    false);
4946 				btrfs_set_inode_full_sync(inode);
4947 				goto next;
4948 			}
4949 			hole_em->start = cur_offset;
4950 			hole_em->len = hole_size;
4951 			hole_em->orig_start = cur_offset;
4952 
4953 			hole_em->block_start = EXTENT_MAP_HOLE;
4954 			hole_em->block_len = 0;
4955 			hole_em->orig_block_len = 0;
4956 			hole_em->ram_bytes = hole_size;
4957 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4958 			hole_em->generation = fs_info->generation;
4959 
4960 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4961 			free_extent_map(hole_em);
4962 		} else {
4963 			err = btrfs_inode_set_file_extent_range(inode,
4964 							cur_offset, hole_size);
4965 			if (err)
4966 				break;
4967 		}
4968 next:
4969 		free_extent_map(em);
4970 		em = NULL;
4971 		cur_offset = last_byte;
4972 		if (cur_offset >= block_end)
4973 			break;
4974 	}
4975 	free_extent_map(em);
4976 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4977 	return err;
4978 }
4979 
4980 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4981 {
4982 	struct btrfs_root *root = BTRFS_I(inode)->root;
4983 	struct btrfs_trans_handle *trans;
4984 	loff_t oldsize = i_size_read(inode);
4985 	loff_t newsize = attr->ia_size;
4986 	int mask = attr->ia_valid;
4987 	int ret;
4988 
4989 	/*
4990 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4991 	 * special case where we need to update the times despite not having
4992 	 * these flags set.  For all other operations the VFS set these flags
4993 	 * explicitly if it wants a timestamp update.
4994 	 */
4995 	if (newsize != oldsize) {
4996 		inode_inc_iversion(inode);
4997 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4998 			inode->i_mtime = inode_set_ctime_current(inode);
4999 		}
5000 	}
5001 
5002 	if (newsize > oldsize) {
5003 		/*
5004 		 * Don't do an expanding truncate while snapshotting is ongoing.
5005 		 * This is to ensure the snapshot captures a fully consistent
5006 		 * state of this file - if the snapshot captures this expanding
5007 		 * truncation, it must capture all writes that happened before
5008 		 * this truncation.
5009 		 */
5010 		btrfs_drew_write_lock(&root->snapshot_lock);
5011 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5012 		if (ret) {
5013 			btrfs_drew_write_unlock(&root->snapshot_lock);
5014 			return ret;
5015 		}
5016 
5017 		trans = btrfs_start_transaction(root, 1);
5018 		if (IS_ERR(trans)) {
5019 			btrfs_drew_write_unlock(&root->snapshot_lock);
5020 			return PTR_ERR(trans);
5021 		}
5022 
5023 		i_size_write(inode, newsize);
5024 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5025 		pagecache_isize_extended(inode, oldsize, newsize);
5026 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5027 		btrfs_drew_write_unlock(&root->snapshot_lock);
5028 		btrfs_end_transaction(trans);
5029 	} else {
5030 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5031 
5032 		if (btrfs_is_zoned(fs_info)) {
5033 			ret = btrfs_wait_ordered_range(inode,
5034 					ALIGN(newsize, fs_info->sectorsize),
5035 					(u64)-1);
5036 			if (ret)
5037 				return ret;
5038 		}
5039 
5040 		/*
5041 		 * We're truncating a file that used to have good data down to
5042 		 * zero. Make sure any new writes to the file get on disk
5043 		 * on close.
5044 		 */
5045 		if (newsize == 0)
5046 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5047 				&BTRFS_I(inode)->runtime_flags);
5048 
5049 		truncate_setsize(inode, newsize);
5050 
5051 		inode_dio_wait(inode);
5052 
5053 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5054 		if (ret && inode->i_nlink) {
5055 			int err;
5056 
5057 			/*
5058 			 * Truncate failed, so fix up the in-memory size. We
5059 			 * adjusted disk_i_size down as we removed extents, so
5060 			 * wait for disk_i_size to be stable and then update the
5061 			 * in-memory size to match.
5062 			 */
5063 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5064 			if (err)
5065 				return err;
5066 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5067 		}
5068 	}
5069 
5070 	return ret;
5071 }
5072 
5073 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5074 			 struct iattr *attr)
5075 {
5076 	struct inode *inode = d_inode(dentry);
5077 	struct btrfs_root *root = BTRFS_I(inode)->root;
5078 	int err;
5079 
5080 	if (btrfs_root_readonly(root))
5081 		return -EROFS;
5082 
5083 	err = setattr_prepare(idmap, dentry, attr);
5084 	if (err)
5085 		return err;
5086 
5087 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5088 		err = btrfs_setsize(inode, attr);
5089 		if (err)
5090 			return err;
5091 	}
5092 
5093 	if (attr->ia_valid) {
5094 		setattr_copy(idmap, inode, attr);
5095 		inode_inc_iversion(inode);
5096 		err = btrfs_dirty_inode(BTRFS_I(inode));
5097 
5098 		if (!err && attr->ia_valid & ATTR_MODE)
5099 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5100 	}
5101 
5102 	return err;
5103 }
5104 
5105 /*
5106  * While truncating the inode pages during eviction, we get the VFS
5107  * calling btrfs_invalidate_folio() against each folio of the inode. This
5108  * is slow because the calls to btrfs_invalidate_folio() result in a
5109  * huge amount of calls to lock_extent() and clear_extent_bit(),
5110  * which keep merging and splitting extent_state structures over and over,
5111  * wasting lots of time.
5112  *
5113  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5114  * skip all those expensive operations on a per folio basis and do only
5115  * the ordered io finishing, while we release here the extent_map and
5116  * extent_state structures, without the excessive merging and splitting.
5117  */
5118 static void evict_inode_truncate_pages(struct inode *inode)
5119 {
5120 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5121 	struct rb_node *node;
5122 
5123 	ASSERT(inode->i_state & I_FREEING);
5124 	truncate_inode_pages_final(&inode->i_data);
5125 
5126 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5127 
5128 	/*
5129 	 * Keep looping until we have no more ranges in the io tree.
5130 	 * We can have ongoing bios started by readahead that have
5131 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5132 	 * still in progress (unlocked the pages in the bio but did not yet
5133 	 * unlocked the ranges in the io tree). Therefore this means some
5134 	 * ranges can still be locked and eviction started because before
5135 	 * submitting those bios, which are executed by a separate task (work
5136 	 * queue kthread), inode references (inode->i_count) were not taken
5137 	 * (which would be dropped in the end io callback of each bio).
5138 	 * Therefore here we effectively end up waiting for those bios and
5139 	 * anyone else holding locked ranges without having bumped the inode's
5140 	 * reference count - if we don't do it, when they access the inode's
5141 	 * io_tree to unlock a range it may be too late, leading to an
5142 	 * use-after-free issue.
5143 	 */
5144 	spin_lock(&io_tree->lock);
5145 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5146 		struct extent_state *state;
5147 		struct extent_state *cached_state = NULL;
5148 		u64 start;
5149 		u64 end;
5150 		unsigned state_flags;
5151 
5152 		node = rb_first(&io_tree->state);
5153 		state = rb_entry(node, struct extent_state, rb_node);
5154 		start = state->start;
5155 		end = state->end;
5156 		state_flags = state->state;
5157 		spin_unlock(&io_tree->lock);
5158 
5159 		lock_extent(io_tree, start, end, &cached_state);
5160 
5161 		/*
5162 		 * If still has DELALLOC flag, the extent didn't reach disk,
5163 		 * and its reserved space won't be freed by delayed_ref.
5164 		 * So we need to free its reserved space here.
5165 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5166 		 *
5167 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5168 		 */
5169 		if (state_flags & EXTENT_DELALLOC)
5170 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5171 					       end - start + 1, NULL);
5172 
5173 		clear_extent_bit(io_tree, start, end,
5174 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5175 				 &cached_state);
5176 
5177 		cond_resched();
5178 		spin_lock(&io_tree->lock);
5179 	}
5180 	spin_unlock(&io_tree->lock);
5181 }
5182 
5183 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5184 							struct btrfs_block_rsv *rsv)
5185 {
5186 	struct btrfs_fs_info *fs_info = root->fs_info;
5187 	struct btrfs_trans_handle *trans;
5188 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5189 	int ret;
5190 
5191 	/*
5192 	 * Eviction should be taking place at some place safe because of our
5193 	 * delayed iputs.  However the normal flushing code will run delayed
5194 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5195 	 *
5196 	 * We reserve the delayed_refs_extra here again because we can't use
5197 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5198 	 * above.  We reserve our extra bit here because we generate a ton of
5199 	 * delayed refs activity by truncating.
5200 	 *
5201 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5202 	 * if we fail to make this reservation we can re-try without the
5203 	 * delayed_refs_extra so we can make some forward progress.
5204 	 */
5205 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5206 				     BTRFS_RESERVE_FLUSH_EVICT);
5207 	if (ret) {
5208 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5209 					     BTRFS_RESERVE_FLUSH_EVICT);
5210 		if (ret) {
5211 			btrfs_warn(fs_info,
5212 				   "could not allocate space for delete; will truncate on mount");
5213 			return ERR_PTR(-ENOSPC);
5214 		}
5215 		delayed_refs_extra = 0;
5216 	}
5217 
5218 	trans = btrfs_join_transaction(root);
5219 	if (IS_ERR(trans))
5220 		return trans;
5221 
5222 	if (delayed_refs_extra) {
5223 		trans->block_rsv = &fs_info->trans_block_rsv;
5224 		trans->bytes_reserved = delayed_refs_extra;
5225 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5226 					delayed_refs_extra, true);
5227 	}
5228 	return trans;
5229 }
5230 
5231 void btrfs_evict_inode(struct inode *inode)
5232 {
5233 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5234 	struct btrfs_trans_handle *trans;
5235 	struct btrfs_root *root = BTRFS_I(inode)->root;
5236 	struct btrfs_block_rsv *rsv = NULL;
5237 	int ret;
5238 
5239 	trace_btrfs_inode_evict(inode);
5240 
5241 	if (!root) {
5242 		fsverity_cleanup_inode(inode);
5243 		clear_inode(inode);
5244 		return;
5245 	}
5246 
5247 	evict_inode_truncate_pages(inode);
5248 
5249 	if (inode->i_nlink &&
5250 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5251 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5252 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5253 		goto out;
5254 
5255 	if (is_bad_inode(inode))
5256 		goto out;
5257 
5258 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5259 		goto out;
5260 
5261 	if (inode->i_nlink > 0) {
5262 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5263 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5264 		goto out;
5265 	}
5266 
5267 	/*
5268 	 * This makes sure the inode item in tree is uptodate and the space for
5269 	 * the inode update is released.
5270 	 */
5271 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5272 	if (ret)
5273 		goto out;
5274 
5275 	/*
5276 	 * This drops any pending insert or delete operations we have for this
5277 	 * inode.  We could have a delayed dir index deletion queued up, but
5278 	 * we're removing the inode completely so that'll be taken care of in
5279 	 * the truncate.
5280 	 */
5281 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5282 
5283 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5284 	if (!rsv)
5285 		goto out;
5286 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5287 	rsv->failfast = true;
5288 
5289 	btrfs_i_size_write(BTRFS_I(inode), 0);
5290 
5291 	while (1) {
5292 		struct btrfs_truncate_control control = {
5293 			.inode = BTRFS_I(inode),
5294 			.ino = btrfs_ino(BTRFS_I(inode)),
5295 			.new_size = 0,
5296 			.min_type = 0,
5297 		};
5298 
5299 		trans = evict_refill_and_join(root, rsv);
5300 		if (IS_ERR(trans))
5301 			goto out;
5302 
5303 		trans->block_rsv = rsv;
5304 
5305 		ret = btrfs_truncate_inode_items(trans, root, &control);
5306 		trans->block_rsv = &fs_info->trans_block_rsv;
5307 		btrfs_end_transaction(trans);
5308 		/*
5309 		 * We have not added new delayed items for our inode after we
5310 		 * have flushed its delayed items, so no need to throttle on
5311 		 * delayed items. However we have modified extent buffers.
5312 		 */
5313 		btrfs_btree_balance_dirty_nodelay(fs_info);
5314 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5315 			goto out;
5316 		else if (!ret)
5317 			break;
5318 	}
5319 
5320 	/*
5321 	 * Errors here aren't a big deal, it just means we leave orphan items in
5322 	 * the tree. They will be cleaned up on the next mount. If the inode
5323 	 * number gets reused, cleanup deletes the orphan item without doing
5324 	 * anything, and unlink reuses the existing orphan item.
5325 	 *
5326 	 * If it turns out that we are dropping too many of these, we might want
5327 	 * to add a mechanism for retrying these after a commit.
5328 	 */
5329 	trans = evict_refill_and_join(root, rsv);
5330 	if (!IS_ERR(trans)) {
5331 		trans->block_rsv = rsv;
5332 		btrfs_orphan_del(trans, BTRFS_I(inode));
5333 		trans->block_rsv = &fs_info->trans_block_rsv;
5334 		btrfs_end_transaction(trans);
5335 	}
5336 
5337 out:
5338 	btrfs_free_block_rsv(fs_info, rsv);
5339 	/*
5340 	 * If we didn't successfully delete, the orphan item will still be in
5341 	 * the tree and we'll retry on the next mount. Again, we might also want
5342 	 * to retry these periodically in the future.
5343 	 */
5344 	btrfs_remove_delayed_node(BTRFS_I(inode));
5345 	fsverity_cleanup_inode(inode);
5346 	clear_inode(inode);
5347 }
5348 
5349 /*
5350  * Return the key found in the dir entry in the location pointer, fill @type
5351  * with BTRFS_FT_*, and return 0.
5352  *
5353  * If no dir entries were found, returns -ENOENT.
5354  * If found a corrupted location in dir entry, returns -EUCLEAN.
5355  */
5356 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5357 			       struct btrfs_key *location, u8 *type)
5358 {
5359 	struct btrfs_dir_item *di;
5360 	struct btrfs_path *path;
5361 	struct btrfs_root *root = dir->root;
5362 	int ret = 0;
5363 	struct fscrypt_name fname;
5364 
5365 	path = btrfs_alloc_path();
5366 	if (!path)
5367 		return -ENOMEM;
5368 
5369 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5370 	if (ret < 0)
5371 		goto out;
5372 	/*
5373 	 * fscrypt_setup_filename() should never return a positive value, but
5374 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5375 	 */
5376 	ASSERT(ret == 0);
5377 
5378 	/* This needs to handle no-key deletions later on */
5379 
5380 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5381 				   &fname.disk_name, 0);
5382 	if (IS_ERR_OR_NULL(di)) {
5383 		ret = di ? PTR_ERR(di) : -ENOENT;
5384 		goto out;
5385 	}
5386 
5387 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5388 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5389 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5390 		ret = -EUCLEAN;
5391 		btrfs_warn(root->fs_info,
5392 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5393 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5394 			   location->objectid, location->type, location->offset);
5395 	}
5396 	if (!ret)
5397 		*type = btrfs_dir_ftype(path->nodes[0], di);
5398 out:
5399 	fscrypt_free_filename(&fname);
5400 	btrfs_free_path(path);
5401 	return ret;
5402 }
5403 
5404 /*
5405  * when we hit a tree root in a directory, the btrfs part of the inode
5406  * needs to be changed to reflect the root directory of the tree root.  This
5407  * is kind of like crossing a mount point.
5408  */
5409 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5410 				    struct btrfs_inode *dir,
5411 				    struct dentry *dentry,
5412 				    struct btrfs_key *location,
5413 				    struct btrfs_root **sub_root)
5414 {
5415 	struct btrfs_path *path;
5416 	struct btrfs_root *new_root;
5417 	struct btrfs_root_ref *ref;
5418 	struct extent_buffer *leaf;
5419 	struct btrfs_key key;
5420 	int ret;
5421 	int err = 0;
5422 	struct fscrypt_name fname;
5423 
5424 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5425 	if (ret)
5426 		return ret;
5427 
5428 	path = btrfs_alloc_path();
5429 	if (!path) {
5430 		err = -ENOMEM;
5431 		goto out;
5432 	}
5433 
5434 	err = -ENOENT;
5435 	key.objectid = dir->root->root_key.objectid;
5436 	key.type = BTRFS_ROOT_REF_KEY;
5437 	key.offset = location->objectid;
5438 
5439 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5440 	if (ret) {
5441 		if (ret < 0)
5442 			err = ret;
5443 		goto out;
5444 	}
5445 
5446 	leaf = path->nodes[0];
5447 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5448 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5449 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5450 		goto out;
5451 
5452 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5453 				   (unsigned long)(ref + 1), fname.disk_name.len);
5454 	if (ret)
5455 		goto out;
5456 
5457 	btrfs_release_path(path);
5458 
5459 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5460 	if (IS_ERR(new_root)) {
5461 		err = PTR_ERR(new_root);
5462 		goto out;
5463 	}
5464 
5465 	*sub_root = new_root;
5466 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5467 	location->type = BTRFS_INODE_ITEM_KEY;
5468 	location->offset = 0;
5469 	err = 0;
5470 out:
5471 	btrfs_free_path(path);
5472 	fscrypt_free_filename(&fname);
5473 	return err;
5474 }
5475 
5476 static void inode_tree_add(struct btrfs_inode *inode)
5477 {
5478 	struct btrfs_root *root = inode->root;
5479 	struct btrfs_inode *entry;
5480 	struct rb_node **p;
5481 	struct rb_node *parent;
5482 	struct rb_node *new = &inode->rb_node;
5483 	u64 ino = btrfs_ino(inode);
5484 
5485 	if (inode_unhashed(&inode->vfs_inode))
5486 		return;
5487 	parent = NULL;
5488 	spin_lock(&root->inode_lock);
5489 	p = &root->inode_tree.rb_node;
5490 	while (*p) {
5491 		parent = *p;
5492 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5493 
5494 		if (ino < btrfs_ino(entry))
5495 			p = &parent->rb_left;
5496 		else if (ino > btrfs_ino(entry))
5497 			p = &parent->rb_right;
5498 		else {
5499 			WARN_ON(!(entry->vfs_inode.i_state &
5500 				  (I_WILL_FREE | I_FREEING)));
5501 			rb_replace_node(parent, new, &root->inode_tree);
5502 			RB_CLEAR_NODE(parent);
5503 			spin_unlock(&root->inode_lock);
5504 			return;
5505 		}
5506 	}
5507 	rb_link_node(new, parent, p);
5508 	rb_insert_color(new, &root->inode_tree);
5509 	spin_unlock(&root->inode_lock);
5510 }
5511 
5512 static void inode_tree_del(struct btrfs_inode *inode)
5513 {
5514 	struct btrfs_root *root = inode->root;
5515 	int empty = 0;
5516 
5517 	spin_lock(&root->inode_lock);
5518 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5519 		rb_erase(&inode->rb_node, &root->inode_tree);
5520 		RB_CLEAR_NODE(&inode->rb_node);
5521 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5522 	}
5523 	spin_unlock(&root->inode_lock);
5524 
5525 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5526 		spin_lock(&root->inode_lock);
5527 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5528 		spin_unlock(&root->inode_lock);
5529 		if (empty)
5530 			btrfs_add_dead_root(root);
5531 	}
5532 }
5533 
5534 
5535 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5536 {
5537 	struct btrfs_iget_args *args = p;
5538 
5539 	inode->i_ino = args->ino;
5540 	BTRFS_I(inode)->location.objectid = args->ino;
5541 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5542 	BTRFS_I(inode)->location.offset = 0;
5543 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5544 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5545 
5546 	if (args->root && args->root == args->root->fs_info->tree_root &&
5547 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5548 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5549 			&BTRFS_I(inode)->runtime_flags);
5550 	return 0;
5551 }
5552 
5553 static int btrfs_find_actor(struct inode *inode, void *opaque)
5554 {
5555 	struct btrfs_iget_args *args = opaque;
5556 
5557 	return args->ino == BTRFS_I(inode)->location.objectid &&
5558 		args->root == BTRFS_I(inode)->root;
5559 }
5560 
5561 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5562 				       struct btrfs_root *root)
5563 {
5564 	struct inode *inode;
5565 	struct btrfs_iget_args args;
5566 	unsigned long hashval = btrfs_inode_hash(ino, root);
5567 
5568 	args.ino = ino;
5569 	args.root = root;
5570 
5571 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5572 			     btrfs_init_locked_inode,
5573 			     (void *)&args);
5574 	return inode;
5575 }
5576 
5577 /*
5578  * Get an inode object given its inode number and corresponding root.
5579  * Path can be preallocated to prevent recursing back to iget through
5580  * allocator. NULL is also valid but may require an additional allocation
5581  * later.
5582  */
5583 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5584 			      struct btrfs_root *root, struct btrfs_path *path)
5585 {
5586 	struct inode *inode;
5587 
5588 	inode = btrfs_iget_locked(s, ino, root);
5589 	if (!inode)
5590 		return ERR_PTR(-ENOMEM);
5591 
5592 	if (inode->i_state & I_NEW) {
5593 		int ret;
5594 
5595 		ret = btrfs_read_locked_inode(inode, path);
5596 		if (!ret) {
5597 			inode_tree_add(BTRFS_I(inode));
5598 			unlock_new_inode(inode);
5599 		} else {
5600 			iget_failed(inode);
5601 			/*
5602 			 * ret > 0 can come from btrfs_search_slot called by
5603 			 * btrfs_read_locked_inode, this means the inode item
5604 			 * was not found.
5605 			 */
5606 			if (ret > 0)
5607 				ret = -ENOENT;
5608 			inode = ERR_PTR(ret);
5609 		}
5610 	}
5611 
5612 	return inode;
5613 }
5614 
5615 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5616 {
5617 	return btrfs_iget_path(s, ino, root, NULL);
5618 }
5619 
5620 static struct inode *new_simple_dir(struct inode *dir,
5621 				    struct btrfs_key *key,
5622 				    struct btrfs_root *root)
5623 {
5624 	struct inode *inode = new_inode(dir->i_sb);
5625 
5626 	if (!inode)
5627 		return ERR_PTR(-ENOMEM);
5628 
5629 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5630 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5631 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5632 
5633 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5634 	/*
5635 	 * We only need lookup, the rest is read-only and there's no inode
5636 	 * associated with the dentry
5637 	 */
5638 	inode->i_op = &simple_dir_inode_operations;
5639 	inode->i_opflags &= ~IOP_XATTR;
5640 	inode->i_fop = &simple_dir_operations;
5641 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5642 	inode->i_mtime = inode_set_ctime_current(inode);
5643 	inode->i_atime = dir->i_atime;
5644 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5645 	inode->i_uid = dir->i_uid;
5646 	inode->i_gid = dir->i_gid;
5647 
5648 	return inode;
5649 }
5650 
5651 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5652 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5653 static_assert(BTRFS_FT_DIR == FT_DIR);
5654 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5655 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5656 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5657 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5658 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5659 
5660 static inline u8 btrfs_inode_type(struct inode *inode)
5661 {
5662 	return fs_umode_to_ftype(inode->i_mode);
5663 }
5664 
5665 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5666 {
5667 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5668 	struct inode *inode;
5669 	struct btrfs_root *root = BTRFS_I(dir)->root;
5670 	struct btrfs_root *sub_root = root;
5671 	struct btrfs_key location;
5672 	u8 di_type = 0;
5673 	int ret = 0;
5674 
5675 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5676 		return ERR_PTR(-ENAMETOOLONG);
5677 
5678 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5679 	if (ret < 0)
5680 		return ERR_PTR(ret);
5681 
5682 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5683 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5684 		if (IS_ERR(inode))
5685 			return inode;
5686 
5687 		/* Do extra check against inode mode with di_type */
5688 		if (btrfs_inode_type(inode) != di_type) {
5689 			btrfs_crit(fs_info,
5690 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5691 				  inode->i_mode, btrfs_inode_type(inode),
5692 				  di_type);
5693 			iput(inode);
5694 			return ERR_PTR(-EUCLEAN);
5695 		}
5696 		return inode;
5697 	}
5698 
5699 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5700 				       &location, &sub_root);
5701 	if (ret < 0) {
5702 		if (ret != -ENOENT)
5703 			inode = ERR_PTR(ret);
5704 		else
5705 			inode = new_simple_dir(dir, &location, root);
5706 	} else {
5707 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5708 		btrfs_put_root(sub_root);
5709 
5710 		if (IS_ERR(inode))
5711 			return inode;
5712 
5713 		down_read(&fs_info->cleanup_work_sem);
5714 		if (!sb_rdonly(inode->i_sb))
5715 			ret = btrfs_orphan_cleanup(sub_root);
5716 		up_read(&fs_info->cleanup_work_sem);
5717 		if (ret) {
5718 			iput(inode);
5719 			inode = ERR_PTR(ret);
5720 		}
5721 	}
5722 
5723 	return inode;
5724 }
5725 
5726 static int btrfs_dentry_delete(const struct dentry *dentry)
5727 {
5728 	struct btrfs_root *root;
5729 	struct inode *inode = d_inode(dentry);
5730 
5731 	if (!inode && !IS_ROOT(dentry))
5732 		inode = d_inode(dentry->d_parent);
5733 
5734 	if (inode) {
5735 		root = BTRFS_I(inode)->root;
5736 		if (btrfs_root_refs(&root->root_item) == 0)
5737 			return 1;
5738 
5739 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5740 			return 1;
5741 	}
5742 	return 0;
5743 }
5744 
5745 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5746 				   unsigned int flags)
5747 {
5748 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5749 
5750 	if (inode == ERR_PTR(-ENOENT))
5751 		inode = NULL;
5752 	return d_splice_alias(inode, dentry);
5753 }
5754 
5755 /*
5756  * Find the highest existing sequence number in a directory and then set the
5757  * in-memory index_cnt variable to the first free sequence number.
5758  */
5759 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5760 {
5761 	struct btrfs_root *root = inode->root;
5762 	struct btrfs_key key, found_key;
5763 	struct btrfs_path *path;
5764 	struct extent_buffer *leaf;
5765 	int ret;
5766 
5767 	key.objectid = btrfs_ino(inode);
5768 	key.type = BTRFS_DIR_INDEX_KEY;
5769 	key.offset = (u64)-1;
5770 
5771 	path = btrfs_alloc_path();
5772 	if (!path)
5773 		return -ENOMEM;
5774 
5775 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5776 	if (ret < 0)
5777 		goto out;
5778 	/* FIXME: we should be able to handle this */
5779 	if (ret == 0)
5780 		goto out;
5781 	ret = 0;
5782 
5783 	if (path->slots[0] == 0) {
5784 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5785 		goto out;
5786 	}
5787 
5788 	path->slots[0]--;
5789 
5790 	leaf = path->nodes[0];
5791 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5792 
5793 	if (found_key.objectid != btrfs_ino(inode) ||
5794 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5795 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5796 		goto out;
5797 	}
5798 
5799 	inode->index_cnt = found_key.offset + 1;
5800 out:
5801 	btrfs_free_path(path);
5802 	return ret;
5803 }
5804 
5805 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5806 {
5807 	int ret = 0;
5808 
5809 	btrfs_inode_lock(dir, 0);
5810 	if (dir->index_cnt == (u64)-1) {
5811 		ret = btrfs_inode_delayed_dir_index_count(dir);
5812 		if (ret) {
5813 			ret = btrfs_set_inode_index_count(dir);
5814 			if (ret)
5815 				goto out;
5816 		}
5817 	}
5818 
5819 	/* index_cnt is the index number of next new entry, so decrement it. */
5820 	*index = dir->index_cnt - 1;
5821 out:
5822 	btrfs_inode_unlock(dir, 0);
5823 
5824 	return ret;
5825 }
5826 
5827 /*
5828  * All this infrastructure exists because dir_emit can fault, and we are holding
5829  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5830  * our information into that, and then dir_emit from the buffer.  This is
5831  * similar to what NFS does, only we don't keep the buffer around in pagecache
5832  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5833  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5834  * tree lock.
5835  */
5836 static int btrfs_opendir(struct inode *inode, struct file *file)
5837 {
5838 	struct btrfs_file_private *private;
5839 	u64 last_index;
5840 	int ret;
5841 
5842 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5843 	if (ret)
5844 		return ret;
5845 
5846 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5847 	if (!private)
5848 		return -ENOMEM;
5849 	private->last_index = last_index;
5850 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5851 	if (!private->filldir_buf) {
5852 		kfree(private);
5853 		return -ENOMEM;
5854 	}
5855 	file->private_data = private;
5856 	return 0;
5857 }
5858 
5859 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5860 {
5861 	struct btrfs_file_private *private = file->private_data;
5862 	int ret;
5863 
5864 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5865 				       &private->last_index);
5866 	if (ret)
5867 		return ret;
5868 
5869 	return generic_file_llseek(file, offset, whence);
5870 }
5871 
5872 struct dir_entry {
5873 	u64 ino;
5874 	u64 offset;
5875 	unsigned type;
5876 	int name_len;
5877 };
5878 
5879 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5880 {
5881 	while (entries--) {
5882 		struct dir_entry *entry = addr;
5883 		char *name = (char *)(entry + 1);
5884 
5885 		ctx->pos = get_unaligned(&entry->offset);
5886 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5887 					 get_unaligned(&entry->ino),
5888 					 get_unaligned(&entry->type)))
5889 			return 1;
5890 		addr += sizeof(struct dir_entry) +
5891 			get_unaligned(&entry->name_len);
5892 		ctx->pos++;
5893 	}
5894 	return 0;
5895 }
5896 
5897 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5898 {
5899 	struct inode *inode = file_inode(file);
5900 	struct btrfs_root *root = BTRFS_I(inode)->root;
5901 	struct btrfs_file_private *private = file->private_data;
5902 	struct btrfs_dir_item *di;
5903 	struct btrfs_key key;
5904 	struct btrfs_key found_key;
5905 	struct btrfs_path *path;
5906 	void *addr;
5907 	LIST_HEAD(ins_list);
5908 	LIST_HEAD(del_list);
5909 	int ret;
5910 	char *name_ptr;
5911 	int name_len;
5912 	int entries = 0;
5913 	int total_len = 0;
5914 	bool put = false;
5915 	struct btrfs_key location;
5916 
5917 	if (!dir_emit_dots(file, ctx))
5918 		return 0;
5919 
5920 	path = btrfs_alloc_path();
5921 	if (!path)
5922 		return -ENOMEM;
5923 
5924 	addr = private->filldir_buf;
5925 	path->reada = READA_FORWARD;
5926 
5927 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5928 					      &ins_list, &del_list);
5929 
5930 again:
5931 	key.type = BTRFS_DIR_INDEX_KEY;
5932 	key.offset = ctx->pos;
5933 	key.objectid = btrfs_ino(BTRFS_I(inode));
5934 
5935 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5936 		struct dir_entry *entry;
5937 		struct extent_buffer *leaf = path->nodes[0];
5938 		u8 ftype;
5939 
5940 		if (found_key.objectid != key.objectid)
5941 			break;
5942 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5943 			break;
5944 		if (found_key.offset < ctx->pos)
5945 			continue;
5946 		if (found_key.offset > private->last_index)
5947 			break;
5948 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5949 			continue;
5950 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5951 		name_len = btrfs_dir_name_len(leaf, di);
5952 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5953 		    PAGE_SIZE) {
5954 			btrfs_release_path(path);
5955 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5956 			if (ret)
5957 				goto nopos;
5958 			addr = private->filldir_buf;
5959 			entries = 0;
5960 			total_len = 0;
5961 			goto again;
5962 		}
5963 
5964 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5965 		entry = addr;
5966 		name_ptr = (char *)(entry + 1);
5967 		read_extent_buffer(leaf, name_ptr,
5968 				   (unsigned long)(di + 1), name_len);
5969 		put_unaligned(name_len, &entry->name_len);
5970 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5971 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5972 		put_unaligned(location.objectid, &entry->ino);
5973 		put_unaligned(found_key.offset, &entry->offset);
5974 		entries++;
5975 		addr += sizeof(struct dir_entry) + name_len;
5976 		total_len += sizeof(struct dir_entry) + name_len;
5977 	}
5978 	/* Catch error encountered during iteration */
5979 	if (ret < 0)
5980 		goto err;
5981 
5982 	btrfs_release_path(path);
5983 
5984 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5985 	if (ret)
5986 		goto nopos;
5987 
5988 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5989 	if (ret)
5990 		goto nopos;
5991 
5992 	/*
5993 	 * Stop new entries from being returned after we return the last
5994 	 * entry.
5995 	 *
5996 	 * New directory entries are assigned a strictly increasing
5997 	 * offset.  This means that new entries created during readdir
5998 	 * are *guaranteed* to be seen in the future by that readdir.
5999 	 * This has broken buggy programs which operate on names as
6000 	 * they're returned by readdir.  Until we re-use freed offsets
6001 	 * we have this hack to stop new entries from being returned
6002 	 * under the assumption that they'll never reach this huge
6003 	 * offset.
6004 	 *
6005 	 * This is being careful not to overflow 32bit loff_t unless the
6006 	 * last entry requires it because doing so has broken 32bit apps
6007 	 * in the past.
6008 	 */
6009 	if (ctx->pos >= INT_MAX)
6010 		ctx->pos = LLONG_MAX;
6011 	else
6012 		ctx->pos = INT_MAX;
6013 nopos:
6014 	ret = 0;
6015 err:
6016 	if (put)
6017 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6018 	btrfs_free_path(path);
6019 	return ret;
6020 }
6021 
6022 /*
6023  * This is somewhat expensive, updating the tree every time the
6024  * inode changes.  But, it is most likely to find the inode in cache.
6025  * FIXME, needs more benchmarking...there are no reasons other than performance
6026  * to keep or drop this code.
6027  */
6028 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6029 {
6030 	struct btrfs_root *root = inode->root;
6031 	struct btrfs_fs_info *fs_info = root->fs_info;
6032 	struct btrfs_trans_handle *trans;
6033 	int ret;
6034 
6035 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6036 		return 0;
6037 
6038 	trans = btrfs_join_transaction(root);
6039 	if (IS_ERR(trans))
6040 		return PTR_ERR(trans);
6041 
6042 	ret = btrfs_update_inode(trans, root, inode);
6043 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6044 		/* whoops, lets try again with the full transaction */
6045 		btrfs_end_transaction(trans);
6046 		trans = btrfs_start_transaction(root, 1);
6047 		if (IS_ERR(trans))
6048 			return PTR_ERR(trans);
6049 
6050 		ret = btrfs_update_inode(trans, root, inode);
6051 	}
6052 	btrfs_end_transaction(trans);
6053 	if (inode->delayed_node)
6054 		btrfs_balance_delayed_items(fs_info);
6055 
6056 	return ret;
6057 }
6058 
6059 /*
6060  * This is a copy of file_update_time.  We need this so we can return error on
6061  * ENOSPC for updating the inode in the case of file write and mmap writes.
6062  */
6063 static int btrfs_update_time(struct inode *inode, int flags)
6064 {
6065 	struct btrfs_root *root = BTRFS_I(inode)->root;
6066 	bool dirty = flags & ~S_VERSION;
6067 
6068 	if (btrfs_root_readonly(root))
6069 		return -EROFS;
6070 
6071 	dirty = inode_update_timestamps(inode, flags);
6072 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6073 }
6074 
6075 /*
6076  * helper to find a free sequence number in a given directory.  This current
6077  * code is very simple, later versions will do smarter things in the btree
6078  */
6079 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6080 {
6081 	int ret = 0;
6082 
6083 	if (dir->index_cnt == (u64)-1) {
6084 		ret = btrfs_inode_delayed_dir_index_count(dir);
6085 		if (ret) {
6086 			ret = btrfs_set_inode_index_count(dir);
6087 			if (ret)
6088 				return ret;
6089 		}
6090 	}
6091 
6092 	*index = dir->index_cnt;
6093 	dir->index_cnt++;
6094 
6095 	return ret;
6096 }
6097 
6098 static int btrfs_insert_inode_locked(struct inode *inode)
6099 {
6100 	struct btrfs_iget_args args;
6101 
6102 	args.ino = BTRFS_I(inode)->location.objectid;
6103 	args.root = BTRFS_I(inode)->root;
6104 
6105 	return insert_inode_locked4(inode,
6106 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6107 		   btrfs_find_actor, &args);
6108 }
6109 
6110 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6111 			    unsigned int *trans_num_items)
6112 {
6113 	struct inode *dir = args->dir;
6114 	struct inode *inode = args->inode;
6115 	int ret;
6116 
6117 	if (!args->orphan) {
6118 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6119 					     &args->fname);
6120 		if (ret)
6121 			return ret;
6122 	}
6123 
6124 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6125 	if (ret) {
6126 		fscrypt_free_filename(&args->fname);
6127 		return ret;
6128 	}
6129 
6130 	/* 1 to add inode item */
6131 	*trans_num_items = 1;
6132 	/* 1 to add compression property */
6133 	if (BTRFS_I(dir)->prop_compress)
6134 		(*trans_num_items)++;
6135 	/* 1 to add default ACL xattr */
6136 	if (args->default_acl)
6137 		(*trans_num_items)++;
6138 	/* 1 to add access ACL xattr */
6139 	if (args->acl)
6140 		(*trans_num_items)++;
6141 #ifdef CONFIG_SECURITY
6142 	/* 1 to add LSM xattr */
6143 	if (dir->i_security)
6144 		(*trans_num_items)++;
6145 #endif
6146 	if (args->orphan) {
6147 		/* 1 to add orphan item */
6148 		(*trans_num_items)++;
6149 	} else {
6150 		/*
6151 		 * 1 to add dir item
6152 		 * 1 to add dir index
6153 		 * 1 to update parent inode item
6154 		 *
6155 		 * No need for 1 unit for the inode ref item because it is
6156 		 * inserted in a batch together with the inode item at
6157 		 * btrfs_create_new_inode().
6158 		 */
6159 		*trans_num_items += 3;
6160 	}
6161 	return 0;
6162 }
6163 
6164 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6165 {
6166 	posix_acl_release(args->acl);
6167 	posix_acl_release(args->default_acl);
6168 	fscrypt_free_filename(&args->fname);
6169 }
6170 
6171 /*
6172  * Inherit flags from the parent inode.
6173  *
6174  * Currently only the compression flags and the cow flags are inherited.
6175  */
6176 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6177 {
6178 	unsigned int flags;
6179 
6180 	flags = dir->flags;
6181 
6182 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6183 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6184 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6185 	} else if (flags & BTRFS_INODE_COMPRESS) {
6186 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6187 		inode->flags |= BTRFS_INODE_COMPRESS;
6188 	}
6189 
6190 	if (flags & BTRFS_INODE_NODATACOW) {
6191 		inode->flags |= BTRFS_INODE_NODATACOW;
6192 		if (S_ISREG(inode->vfs_inode.i_mode))
6193 			inode->flags |= BTRFS_INODE_NODATASUM;
6194 	}
6195 
6196 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6197 }
6198 
6199 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6200 			   struct btrfs_new_inode_args *args)
6201 {
6202 	struct inode *dir = args->dir;
6203 	struct inode *inode = args->inode;
6204 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6205 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6206 	struct btrfs_root *root;
6207 	struct btrfs_inode_item *inode_item;
6208 	struct btrfs_key *location;
6209 	struct btrfs_path *path;
6210 	u64 objectid;
6211 	struct btrfs_inode_ref *ref;
6212 	struct btrfs_key key[2];
6213 	u32 sizes[2];
6214 	struct btrfs_item_batch batch;
6215 	unsigned long ptr;
6216 	int ret;
6217 
6218 	path = btrfs_alloc_path();
6219 	if (!path)
6220 		return -ENOMEM;
6221 
6222 	if (!args->subvol)
6223 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6224 	root = BTRFS_I(inode)->root;
6225 
6226 	ret = btrfs_get_free_objectid(root, &objectid);
6227 	if (ret)
6228 		goto out;
6229 	inode->i_ino = objectid;
6230 
6231 	if (args->orphan) {
6232 		/*
6233 		 * O_TMPFILE, set link count to 0, so that after this point, we
6234 		 * fill in an inode item with the correct link count.
6235 		 */
6236 		set_nlink(inode, 0);
6237 	} else {
6238 		trace_btrfs_inode_request(dir);
6239 
6240 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6241 		if (ret)
6242 			goto out;
6243 	}
6244 	/* index_cnt is ignored for everything but a dir. */
6245 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6246 	BTRFS_I(inode)->generation = trans->transid;
6247 	inode->i_generation = BTRFS_I(inode)->generation;
6248 
6249 	/*
6250 	 * Subvolumes don't inherit flags from their parent directory.
6251 	 * Originally this was probably by accident, but we probably can't
6252 	 * change it now without compatibility issues.
6253 	 */
6254 	if (!args->subvol)
6255 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6256 
6257 	if (S_ISREG(inode->i_mode)) {
6258 		if (btrfs_test_opt(fs_info, NODATASUM))
6259 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6260 		if (btrfs_test_opt(fs_info, NODATACOW))
6261 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6262 				BTRFS_INODE_NODATASUM;
6263 	}
6264 
6265 	location = &BTRFS_I(inode)->location;
6266 	location->objectid = objectid;
6267 	location->offset = 0;
6268 	location->type = BTRFS_INODE_ITEM_KEY;
6269 
6270 	ret = btrfs_insert_inode_locked(inode);
6271 	if (ret < 0) {
6272 		if (!args->orphan)
6273 			BTRFS_I(dir)->index_cnt--;
6274 		goto out;
6275 	}
6276 
6277 	/*
6278 	 * We could have gotten an inode number from somebody who was fsynced
6279 	 * and then removed in this same transaction, so let's just set full
6280 	 * sync since it will be a full sync anyway and this will blow away the
6281 	 * old info in the log.
6282 	 */
6283 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6284 
6285 	key[0].objectid = objectid;
6286 	key[0].type = BTRFS_INODE_ITEM_KEY;
6287 	key[0].offset = 0;
6288 
6289 	sizes[0] = sizeof(struct btrfs_inode_item);
6290 
6291 	if (!args->orphan) {
6292 		/*
6293 		 * Start new inodes with an inode_ref. This is slightly more
6294 		 * efficient for small numbers of hard links since they will
6295 		 * be packed into one item. Extended refs will kick in if we
6296 		 * add more hard links than can fit in the ref item.
6297 		 */
6298 		key[1].objectid = objectid;
6299 		key[1].type = BTRFS_INODE_REF_KEY;
6300 		if (args->subvol) {
6301 			key[1].offset = objectid;
6302 			sizes[1] = 2 + sizeof(*ref);
6303 		} else {
6304 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6305 			sizes[1] = name->len + sizeof(*ref);
6306 		}
6307 	}
6308 
6309 	batch.keys = &key[0];
6310 	batch.data_sizes = &sizes[0];
6311 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6312 	batch.nr = args->orphan ? 1 : 2;
6313 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6314 	if (ret != 0) {
6315 		btrfs_abort_transaction(trans, ret);
6316 		goto discard;
6317 	}
6318 
6319 	inode->i_mtime = inode_set_ctime_current(inode);
6320 	inode->i_atime = inode->i_mtime;
6321 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6322 
6323 	/*
6324 	 * We're going to fill the inode item now, so at this point the inode
6325 	 * must be fully initialized.
6326 	 */
6327 
6328 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6329 				  struct btrfs_inode_item);
6330 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6331 			     sizeof(*inode_item));
6332 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6333 
6334 	if (!args->orphan) {
6335 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6336 				     struct btrfs_inode_ref);
6337 		ptr = (unsigned long)(ref + 1);
6338 		if (args->subvol) {
6339 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6340 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6341 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6342 		} else {
6343 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6344 						     name->len);
6345 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6346 						  BTRFS_I(inode)->dir_index);
6347 			write_extent_buffer(path->nodes[0], name->name, ptr,
6348 					    name->len);
6349 		}
6350 	}
6351 
6352 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6353 	/*
6354 	 * We don't need the path anymore, plus inheriting properties, adding
6355 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6356 	 * allocating yet another path. So just free our path.
6357 	 */
6358 	btrfs_free_path(path);
6359 	path = NULL;
6360 
6361 	if (args->subvol) {
6362 		struct inode *parent;
6363 
6364 		/*
6365 		 * Subvolumes inherit properties from their parent subvolume,
6366 		 * not the directory they were created in.
6367 		 */
6368 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6369 				    BTRFS_I(dir)->root);
6370 		if (IS_ERR(parent)) {
6371 			ret = PTR_ERR(parent);
6372 		} else {
6373 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6374 			iput(parent);
6375 		}
6376 	} else {
6377 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6378 	}
6379 	if (ret) {
6380 		btrfs_err(fs_info,
6381 			  "error inheriting props for ino %llu (root %llu): %d",
6382 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6383 			  ret);
6384 	}
6385 
6386 	/*
6387 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6388 	 * probably a bug.
6389 	 */
6390 	if (!args->subvol) {
6391 		ret = btrfs_init_inode_security(trans, args);
6392 		if (ret) {
6393 			btrfs_abort_transaction(trans, ret);
6394 			goto discard;
6395 		}
6396 	}
6397 
6398 	inode_tree_add(BTRFS_I(inode));
6399 
6400 	trace_btrfs_inode_new(inode);
6401 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6402 
6403 	btrfs_update_root_times(trans, root);
6404 
6405 	if (args->orphan) {
6406 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6407 	} else {
6408 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6409 				     0, BTRFS_I(inode)->dir_index);
6410 	}
6411 	if (ret) {
6412 		btrfs_abort_transaction(trans, ret);
6413 		goto discard;
6414 	}
6415 
6416 	return 0;
6417 
6418 discard:
6419 	/*
6420 	 * discard_new_inode() calls iput(), but the caller owns the reference
6421 	 * to the inode.
6422 	 */
6423 	ihold(inode);
6424 	discard_new_inode(inode);
6425 out:
6426 	btrfs_free_path(path);
6427 	return ret;
6428 }
6429 
6430 /*
6431  * utility function to add 'inode' into 'parent_inode' with
6432  * a give name and a given sequence number.
6433  * if 'add_backref' is true, also insert a backref from the
6434  * inode to the parent directory.
6435  */
6436 int btrfs_add_link(struct btrfs_trans_handle *trans,
6437 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6438 		   const struct fscrypt_str *name, int add_backref, u64 index)
6439 {
6440 	int ret = 0;
6441 	struct btrfs_key key;
6442 	struct btrfs_root *root = parent_inode->root;
6443 	u64 ino = btrfs_ino(inode);
6444 	u64 parent_ino = btrfs_ino(parent_inode);
6445 
6446 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6447 		memcpy(&key, &inode->root->root_key, sizeof(key));
6448 	} else {
6449 		key.objectid = ino;
6450 		key.type = BTRFS_INODE_ITEM_KEY;
6451 		key.offset = 0;
6452 	}
6453 
6454 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6455 		ret = btrfs_add_root_ref(trans, key.objectid,
6456 					 root->root_key.objectid, parent_ino,
6457 					 index, name);
6458 	} else if (add_backref) {
6459 		ret = btrfs_insert_inode_ref(trans, root, name,
6460 					     ino, parent_ino, index);
6461 	}
6462 
6463 	/* Nothing to clean up yet */
6464 	if (ret)
6465 		return ret;
6466 
6467 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6468 				    btrfs_inode_type(&inode->vfs_inode), index);
6469 	if (ret == -EEXIST || ret == -EOVERFLOW)
6470 		goto fail_dir_item;
6471 	else if (ret) {
6472 		btrfs_abort_transaction(trans, ret);
6473 		return ret;
6474 	}
6475 
6476 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6477 			   name->len * 2);
6478 	inode_inc_iversion(&parent_inode->vfs_inode);
6479 	/*
6480 	 * If we are replaying a log tree, we do not want to update the mtime
6481 	 * and ctime of the parent directory with the current time, since the
6482 	 * log replay procedure is responsible for setting them to their correct
6483 	 * values (the ones it had when the fsync was done).
6484 	 */
6485 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6486 		parent_inode->vfs_inode.i_mtime =
6487 			inode_set_ctime_current(&parent_inode->vfs_inode);
6488 
6489 	ret = btrfs_update_inode(trans, root, parent_inode);
6490 	if (ret)
6491 		btrfs_abort_transaction(trans, ret);
6492 	return ret;
6493 
6494 fail_dir_item:
6495 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6496 		u64 local_index;
6497 		int err;
6498 		err = btrfs_del_root_ref(trans, key.objectid,
6499 					 root->root_key.objectid, parent_ino,
6500 					 &local_index, name);
6501 		if (err)
6502 			btrfs_abort_transaction(trans, err);
6503 	} else if (add_backref) {
6504 		u64 local_index;
6505 		int err;
6506 
6507 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6508 					  &local_index);
6509 		if (err)
6510 			btrfs_abort_transaction(trans, err);
6511 	}
6512 
6513 	/* Return the original error code */
6514 	return ret;
6515 }
6516 
6517 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6518 			       struct inode *inode)
6519 {
6520 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6521 	struct btrfs_root *root = BTRFS_I(dir)->root;
6522 	struct btrfs_new_inode_args new_inode_args = {
6523 		.dir = dir,
6524 		.dentry = dentry,
6525 		.inode = inode,
6526 	};
6527 	unsigned int trans_num_items;
6528 	struct btrfs_trans_handle *trans;
6529 	int err;
6530 
6531 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6532 	if (err)
6533 		goto out_inode;
6534 
6535 	trans = btrfs_start_transaction(root, trans_num_items);
6536 	if (IS_ERR(trans)) {
6537 		err = PTR_ERR(trans);
6538 		goto out_new_inode_args;
6539 	}
6540 
6541 	err = btrfs_create_new_inode(trans, &new_inode_args);
6542 	if (!err)
6543 		d_instantiate_new(dentry, inode);
6544 
6545 	btrfs_end_transaction(trans);
6546 	btrfs_btree_balance_dirty(fs_info);
6547 out_new_inode_args:
6548 	btrfs_new_inode_args_destroy(&new_inode_args);
6549 out_inode:
6550 	if (err)
6551 		iput(inode);
6552 	return err;
6553 }
6554 
6555 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6556 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6557 {
6558 	struct inode *inode;
6559 
6560 	inode = new_inode(dir->i_sb);
6561 	if (!inode)
6562 		return -ENOMEM;
6563 	inode_init_owner(idmap, inode, dir, mode);
6564 	inode->i_op = &btrfs_special_inode_operations;
6565 	init_special_inode(inode, inode->i_mode, rdev);
6566 	return btrfs_create_common(dir, dentry, inode);
6567 }
6568 
6569 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6570 			struct dentry *dentry, umode_t mode, bool excl)
6571 {
6572 	struct inode *inode;
6573 
6574 	inode = new_inode(dir->i_sb);
6575 	if (!inode)
6576 		return -ENOMEM;
6577 	inode_init_owner(idmap, inode, dir, mode);
6578 	inode->i_fop = &btrfs_file_operations;
6579 	inode->i_op = &btrfs_file_inode_operations;
6580 	inode->i_mapping->a_ops = &btrfs_aops;
6581 	return btrfs_create_common(dir, dentry, inode);
6582 }
6583 
6584 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6585 		      struct dentry *dentry)
6586 {
6587 	struct btrfs_trans_handle *trans = NULL;
6588 	struct btrfs_root *root = BTRFS_I(dir)->root;
6589 	struct inode *inode = d_inode(old_dentry);
6590 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6591 	struct fscrypt_name fname;
6592 	u64 index;
6593 	int err;
6594 	int drop_inode = 0;
6595 
6596 	/* do not allow sys_link's with other subvols of the same device */
6597 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6598 		return -EXDEV;
6599 
6600 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6601 		return -EMLINK;
6602 
6603 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6604 	if (err)
6605 		goto fail;
6606 
6607 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6608 	if (err)
6609 		goto fail;
6610 
6611 	/*
6612 	 * 2 items for inode and inode ref
6613 	 * 2 items for dir items
6614 	 * 1 item for parent inode
6615 	 * 1 item for orphan item deletion if O_TMPFILE
6616 	 */
6617 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6618 	if (IS_ERR(trans)) {
6619 		err = PTR_ERR(trans);
6620 		trans = NULL;
6621 		goto fail;
6622 	}
6623 
6624 	/* There are several dir indexes for this inode, clear the cache. */
6625 	BTRFS_I(inode)->dir_index = 0ULL;
6626 	inc_nlink(inode);
6627 	inode_inc_iversion(inode);
6628 	inode_set_ctime_current(inode);
6629 	ihold(inode);
6630 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6631 
6632 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6633 			     &fname.disk_name, 1, index);
6634 
6635 	if (err) {
6636 		drop_inode = 1;
6637 	} else {
6638 		struct dentry *parent = dentry->d_parent;
6639 
6640 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6641 		if (err)
6642 			goto fail;
6643 		if (inode->i_nlink == 1) {
6644 			/*
6645 			 * If new hard link count is 1, it's a file created
6646 			 * with open(2) O_TMPFILE flag.
6647 			 */
6648 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6649 			if (err)
6650 				goto fail;
6651 		}
6652 		d_instantiate(dentry, inode);
6653 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6654 	}
6655 
6656 fail:
6657 	fscrypt_free_filename(&fname);
6658 	if (trans)
6659 		btrfs_end_transaction(trans);
6660 	if (drop_inode) {
6661 		inode_dec_link_count(inode);
6662 		iput(inode);
6663 	}
6664 	btrfs_btree_balance_dirty(fs_info);
6665 	return err;
6666 }
6667 
6668 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6669 		       struct dentry *dentry, umode_t mode)
6670 {
6671 	struct inode *inode;
6672 
6673 	inode = new_inode(dir->i_sb);
6674 	if (!inode)
6675 		return -ENOMEM;
6676 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6677 	inode->i_op = &btrfs_dir_inode_operations;
6678 	inode->i_fop = &btrfs_dir_file_operations;
6679 	return btrfs_create_common(dir, dentry, inode);
6680 }
6681 
6682 static noinline int uncompress_inline(struct btrfs_path *path,
6683 				      struct page *page,
6684 				      struct btrfs_file_extent_item *item)
6685 {
6686 	int ret;
6687 	struct extent_buffer *leaf = path->nodes[0];
6688 	char *tmp;
6689 	size_t max_size;
6690 	unsigned long inline_size;
6691 	unsigned long ptr;
6692 	int compress_type;
6693 
6694 	compress_type = btrfs_file_extent_compression(leaf, item);
6695 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6696 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6697 	tmp = kmalloc(inline_size, GFP_NOFS);
6698 	if (!tmp)
6699 		return -ENOMEM;
6700 	ptr = btrfs_file_extent_inline_start(item);
6701 
6702 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6703 
6704 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6705 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6706 
6707 	/*
6708 	 * decompression code contains a memset to fill in any space between the end
6709 	 * of the uncompressed data and the end of max_size in case the decompressed
6710 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6711 	 * the end of an inline extent and the beginning of the next block, so we
6712 	 * cover that region here.
6713 	 */
6714 
6715 	if (max_size < PAGE_SIZE)
6716 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6717 	kfree(tmp);
6718 	return ret;
6719 }
6720 
6721 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6722 			      struct page *page)
6723 {
6724 	struct btrfs_file_extent_item *fi;
6725 	void *kaddr;
6726 	size_t copy_size;
6727 
6728 	if (!page || PageUptodate(page))
6729 		return 0;
6730 
6731 	ASSERT(page_offset(page) == 0);
6732 
6733 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6734 			    struct btrfs_file_extent_item);
6735 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6736 		return uncompress_inline(path, page, fi);
6737 
6738 	copy_size = min_t(u64, PAGE_SIZE,
6739 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6740 	kaddr = kmap_local_page(page);
6741 	read_extent_buffer(path->nodes[0], kaddr,
6742 			   btrfs_file_extent_inline_start(fi), copy_size);
6743 	kunmap_local(kaddr);
6744 	if (copy_size < PAGE_SIZE)
6745 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6746 	return 0;
6747 }
6748 
6749 /*
6750  * Lookup the first extent overlapping a range in a file.
6751  *
6752  * @inode:	file to search in
6753  * @page:	page to read extent data into if the extent is inline
6754  * @pg_offset:	offset into @page to copy to
6755  * @start:	file offset
6756  * @len:	length of range starting at @start
6757  *
6758  * Return the first &struct extent_map which overlaps the given range, reading
6759  * it from the B-tree and caching it if necessary. Note that there may be more
6760  * extents which overlap the given range after the returned extent_map.
6761  *
6762  * If @page is not NULL and the extent is inline, this also reads the extent
6763  * data directly into the page and marks the extent up to date in the io_tree.
6764  *
6765  * Return: ERR_PTR on error, non-NULL extent_map on success.
6766  */
6767 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6768 				    struct page *page, size_t pg_offset,
6769 				    u64 start, u64 len)
6770 {
6771 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6772 	int ret = 0;
6773 	u64 extent_start = 0;
6774 	u64 extent_end = 0;
6775 	u64 objectid = btrfs_ino(inode);
6776 	int extent_type = -1;
6777 	struct btrfs_path *path = NULL;
6778 	struct btrfs_root *root = inode->root;
6779 	struct btrfs_file_extent_item *item;
6780 	struct extent_buffer *leaf;
6781 	struct btrfs_key found_key;
6782 	struct extent_map *em = NULL;
6783 	struct extent_map_tree *em_tree = &inode->extent_tree;
6784 
6785 	read_lock(&em_tree->lock);
6786 	em = lookup_extent_mapping(em_tree, start, len);
6787 	read_unlock(&em_tree->lock);
6788 
6789 	if (em) {
6790 		if (em->start > start || em->start + em->len <= start)
6791 			free_extent_map(em);
6792 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6793 			free_extent_map(em);
6794 		else
6795 			goto out;
6796 	}
6797 	em = alloc_extent_map();
6798 	if (!em) {
6799 		ret = -ENOMEM;
6800 		goto out;
6801 	}
6802 	em->start = EXTENT_MAP_HOLE;
6803 	em->orig_start = EXTENT_MAP_HOLE;
6804 	em->len = (u64)-1;
6805 	em->block_len = (u64)-1;
6806 
6807 	path = btrfs_alloc_path();
6808 	if (!path) {
6809 		ret = -ENOMEM;
6810 		goto out;
6811 	}
6812 
6813 	/* Chances are we'll be called again, so go ahead and do readahead */
6814 	path->reada = READA_FORWARD;
6815 
6816 	/*
6817 	 * The same explanation in load_free_space_cache applies here as well,
6818 	 * we only read when we're loading the free space cache, and at that
6819 	 * point the commit_root has everything we need.
6820 	 */
6821 	if (btrfs_is_free_space_inode(inode)) {
6822 		path->search_commit_root = 1;
6823 		path->skip_locking = 1;
6824 	}
6825 
6826 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6827 	if (ret < 0) {
6828 		goto out;
6829 	} else if (ret > 0) {
6830 		if (path->slots[0] == 0)
6831 			goto not_found;
6832 		path->slots[0]--;
6833 		ret = 0;
6834 	}
6835 
6836 	leaf = path->nodes[0];
6837 	item = btrfs_item_ptr(leaf, path->slots[0],
6838 			      struct btrfs_file_extent_item);
6839 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6840 	if (found_key.objectid != objectid ||
6841 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6842 		/*
6843 		 * If we backup past the first extent we want to move forward
6844 		 * and see if there is an extent in front of us, otherwise we'll
6845 		 * say there is a hole for our whole search range which can
6846 		 * cause problems.
6847 		 */
6848 		extent_end = start;
6849 		goto next;
6850 	}
6851 
6852 	extent_type = btrfs_file_extent_type(leaf, item);
6853 	extent_start = found_key.offset;
6854 	extent_end = btrfs_file_extent_end(path);
6855 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6856 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6857 		/* Only regular file could have regular/prealloc extent */
6858 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6859 			ret = -EUCLEAN;
6860 			btrfs_crit(fs_info,
6861 		"regular/prealloc extent found for non-regular inode %llu",
6862 				   btrfs_ino(inode));
6863 			goto out;
6864 		}
6865 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6866 						       extent_start);
6867 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6868 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6869 						      path->slots[0],
6870 						      extent_start);
6871 	}
6872 next:
6873 	if (start >= extent_end) {
6874 		path->slots[0]++;
6875 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6876 			ret = btrfs_next_leaf(root, path);
6877 			if (ret < 0)
6878 				goto out;
6879 			else if (ret > 0)
6880 				goto not_found;
6881 
6882 			leaf = path->nodes[0];
6883 		}
6884 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6885 		if (found_key.objectid != objectid ||
6886 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6887 			goto not_found;
6888 		if (start + len <= found_key.offset)
6889 			goto not_found;
6890 		if (start > found_key.offset)
6891 			goto next;
6892 
6893 		/* New extent overlaps with existing one */
6894 		em->start = start;
6895 		em->orig_start = start;
6896 		em->len = found_key.offset - start;
6897 		em->block_start = EXTENT_MAP_HOLE;
6898 		goto insert;
6899 	}
6900 
6901 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6902 
6903 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6904 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6905 		goto insert;
6906 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6907 		/*
6908 		 * Inline extent can only exist at file offset 0. This is
6909 		 * ensured by tree-checker and inline extent creation path.
6910 		 * Thus all members representing file offsets should be zero.
6911 		 */
6912 		ASSERT(pg_offset == 0);
6913 		ASSERT(extent_start == 0);
6914 		ASSERT(em->start == 0);
6915 
6916 		/*
6917 		 * btrfs_extent_item_to_extent_map() should have properly
6918 		 * initialized em members already.
6919 		 *
6920 		 * Other members are not utilized for inline extents.
6921 		 */
6922 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6923 		ASSERT(em->len == fs_info->sectorsize);
6924 
6925 		ret = read_inline_extent(inode, path, page);
6926 		if (ret < 0)
6927 			goto out;
6928 		goto insert;
6929 	}
6930 not_found:
6931 	em->start = start;
6932 	em->orig_start = start;
6933 	em->len = len;
6934 	em->block_start = EXTENT_MAP_HOLE;
6935 insert:
6936 	ret = 0;
6937 	btrfs_release_path(path);
6938 	if (em->start > start || extent_map_end(em) <= start) {
6939 		btrfs_err(fs_info,
6940 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6941 			  em->start, em->len, start, len);
6942 		ret = -EIO;
6943 		goto out;
6944 	}
6945 
6946 	write_lock(&em_tree->lock);
6947 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6948 	write_unlock(&em_tree->lock);
6949 out:
6950 	btrfs_free_path(path);
6951 
6952 	trace_btrfs_get_extent(root, inode, em);
6953 
6954 	if (ret) {
6955 		free_extent_map(em);
6956 		return ERR_PTR(ret);
6957 	}
6958 	return em;
6959 }
6960 
6961 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6962 						  struct btrfs_dio_data *dio_data,
6963 						  const u64 start,
6964 						  const u64 len,
6965 						  const u64 orig_start,
6966 						  const u64 block_start,
6967 						  const u64 block_len,
6968 						  const u64 orig_block_len,
6969 						  const u64 ram_bytes,
6970 						  const int type)
6971 {
6972 	struct extent_map *em = NULL;
6973 	struct btrfs_ordered_extent *ordered;
6974 
6975 	if (type != BTRFS_ORDERED_NOCOW) {
6976 		em = create_io_em(inode, start, len, orig_start, block_start,
6977 				  block_len, orig_block_len, ram_bytes,
6978 				  BTRFS_COMPRESS_NONE, /* compress_type */
6979 				  type);
6980 		if (IS_ERR(em))
6981 			goto out;
6982 	}
6983 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6984 					     block_start, block_len, 0,
6985 					     (1 << type) |
6986 					     (1 << BTRFS_ORDERED_DIRECT),
6987 					     BTRFS_COMPRESS_NONE);
6988 	if (IS_ERR(ordered)) {
6989 		if (em) {
6990 			free_extent_map(em);
6991 			btrfs_drop_extent_map_range(inode, start,
6992 						    start + len - 1, false);
6993 		}
6994 		em = ERR_CAST(ordered);
6995 	} else {
6996 		ASSERT(!dio_data->ordered);
6997 		dio_data->ordered = ordered;
6998 	}
6999  out:
7000 
7001 	return em;
7002 }
7003 
7004 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7005 						  struct btrfs_dio_data *dio_data,
7006 						  u64 start, u64 len)
7007 {
7008 	struct btrfs_root *root = inode->root;
7009 	struct btrfs_fs_info *fs_info = root->fs_info;
7010 	struct extent_map *em;
7011 	struct btrfs_key ins;
7012 	u64 alloc_hint;
7013 	int ret;
7014 
7015 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7016 again:
7017 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7018 				   0, alloc_hint, &ins, 1, 1);
7019 	if (ret == -EAGAIN) {
7020 		ASSERT(btrfs_is_zoned(fs_info));
7021 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7022 			       TASK_UNINTERRUPTIBLE);
7023 		goto again;
7024 	}
7025 	if (ret)
7026 		return ERR_PTR(ret);
7027 
7028 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7029 				     ins.objectid, ins.offset, ins.offset,
7030 				     ins.offset, BTRFS_ORDERED_REGULAR);
7031 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7032 	if (IS_ERR(em))
7033 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7034 					   1);
7035 
7036 	return em;
7037 }
7038 
7039 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7040 {
7041 	struct btrfs_block_group *block_group;
7042 	bool readonly = false;
7043 
7044 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7045 	if (!block_group || block_group->ro)
7046 		readonly = true;
7047 	if (block_group)
7048 		btrfs_put_block_group(block_group);
7049 	return readonly;
7050 }
7051 
7052 /*
7053  * Check if we can do nocow write into the range [@offset, @offset + @len)
7054  *
7055  * @offset:	File offset
7056  * @len:	The length to write, will be updated to the nocow writeable
7057  *		range
7058  * @orig_start:	(optional) Return the original file offset of the file extent
7059  * @orig_len:	(optional) Return the original on-disk length of the file extent
7060  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7061  * @strict:	if true, omit optimizations that might force us into unnecessary
7062  *		cow. e.g., don't trust generation number.
7063  *
7064  * Return:
7065  * >0	and update @len if we can do nocow write
7066  *  0	if we can't do nocow write
7067  * <0	if error happened
7068  *
7069  * NOTE: This only checks the file extents, caller is responsible to wait for
7070  *	 any ordered extents.
7071  */
7072 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7073 			      u64 *orig_start, u64 *orig_block_len,
7074 			      u64 *ram_bytes, bool nowait, bool strict)
7075 {
7076 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7077 	struct can_nocow_file_extent_args nocow_args = { 0 };
7078 	struct btrfs_path *path;
7079 	int ret;
7080 	struct extent_buffer *leaf;
7081 	struct btrfs_root *root = BTRFS_I(inode)->root;
7082 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7083 	struct btrfs_file_extent_item *fi;
7084 	struct btrfs_key key;
7085 	int found_type;
7086 
7087 	path = btrfs_alloc_path();
7088 	if (!path)
7089 		return -ENOMEM;
7090 	path->nowait = nowait;
7091 
7092 	ret = btrfs_lookup_file_extent(NULL, root, path,
7093 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7094 	if (ret < 0)
7095 		goto out;
7096 
7097 	if (ret == 1) {
7098 		if (path->slots[0] == 0) {
7099 			/* can't find the item, must cow */
7100 			ret = 0;
7101 			goto out;
7102 		}
7103 		path->slots[0]--;
7104 	}
7105 	ret = 0;
7106 	leaf = path->nodes[0];
7107 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7108 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7109 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7110 		/* not our file or wrong item type, must cow */
7111 		goto out;
7112 	}
7113 
7114 	if (key.offset > offset) {
7115 		/* Wrong offset, must cow */
7116 		goto out;
7117 	}
7118 
7119 	if (btrfs_file_extent_end(path) <= offset)
7120 		goto out;
7121 
7122 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7123 	found_type = btrfs_file_extent_type(leaf, fi);
7124 	if (ram_bytes)
7125 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7126 
7127 	nocow_args.start = offset;
7128 	nocow_args.end = offset + *len - 1;
7129 	nocow_args.strict = strict;
7130 	nocow_args.free_path = true;
7131 
7132 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7133 	/* can_nocow_file_extent() has freed the path. */
7134 	path = NULL;
7135 
7136 	if (ret != 1) {
7137 		/* Treat errors as not being able to NOCOW. */
7138 		ret = 0;
7139 		goto out;
7140 	}
7141 
7142 	ret = 0;
7143 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7144 		goto out;
7145 
7146 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7147 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7148 		u64 range_end;
7149 
7150 		range_end = round_up(offset + nocow_args.num_bytes,
7151 				     root->fs_info->sectorsize) - 1;
7152 		ret = test_range_bit(io_tree, offset, range_end,
7153 				     EXTENT_DELALLOC, 0, NULL);
7154 		if (ret) {
7155 			ret = -EAGAIN;
7156 			goto out;
7157 		}
7158 	}
7159 
7160 	if (orig_start)
7161 		*orig_start = key.offset - nocow_args.extent_offset;
7162 	if (orig_block_len)
7163 		*orig_block_len = nocow_args.disk_num_bytes;
7164 
7165 	*len = nocow_args.num_bytes;
7166 	ret = 1;
7167 out:
7168 	btrfs_free_path(path);
7169 	return ret;
7170 }
7171 
7172 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7173 			      struct extent_state **cached_state,
7174 			      unsigned int iomap_flags)
7175 {
7176 	const bool writing = (iomap_flags & IOMAP_WRITE);
7177 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7178 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7179 	struct btrfs_ordered_extent *ordered;
7180 	int ret = 0;
7181 
7182 	while (1) {
7183 		if (nowait) {
7184 			if (!try_lock_extent(io_tree, lockstart, lockend,
7185 					     cached_state))
7186 				return -EAGAIN;
7187 		} else {
7188 			lock_extent(io_tree, lockstart, lockend, cached_state);
7189 		}
7190 		/*
7191 		 * We're concerned with the entire range that we're going to be
7192 		 * doing DIO to, so we need to make sure there's no ordered
7193 		 * extents in this range.
7194 		 */
7195 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7196 						     lockend - lockstart + 1);
7197 
7198 		/*
7199 		 * We need to make sure there are no buffered pages in this
7200 		 * range either, we could have raced between the invalidate in
7201 		 * generic_file_direct_write and locking the extent.  The
7202 		 * invalidate needs to happen so that reads after a write do not
7203 		 * get stale data.
7204 		 */
7205 		if (!ordered &&
7206 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7207 							 lockstart, lockend)))
7208 			break;
7209 
7210 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7211 
7212 		if (ordered) {
7213 			if (nowait) {
7214 				btrfs_put_ordered_extent(ordered);
7215 				ret = -EAGAIN;
7216 				break;
7217 			}
7218 			/*
7219 			 * If we are doing a DIO read and the ordered extent we
7220 			 * found is for a buffered write, we can not wait for it
7221 			 * to complete and retry, because if we do so we can
7222 			 * deadlock with concurrent buffered writes on page
7223 			 * locks. This happens only if our DIO read covers more
7224 			 * than one extent map, if at this point has already
7225 			 * created an ordered extent for a previous extent map
7226 			 * and locked its range in the inode's io tree, and a
7227 			 * concurrent write against that previous extent map's
7228 			 * range and this range started (we unlock the ranges
7229 			 * in the io tree only when the bios complete and
7230 			 * buffered writes always lock pages before attempting
7231 			 * to lock range in the io tree).
7232 			 */
7233 			if (writing ||
7234 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7235 				btrfs_start_ordered_extent(ordered);
7236 			else
7237 				ret = nowait ? -EAGAIN : -ENOTBLK;
7238 			btrfs_put_ordered_extent(ordered);
7239 		} else {
7240 			/*
7241 			 * We could trigger writeback for this range (and wait
7242 			 * for it to complete) and then invalidate the pages for
7243 			 * this range (through invalidate_inode_pages2_range()),
7244 			 * but that can lead us to a deadlock with a concurrent
7245 			 * call to readahead (a buffered read or a defrag call
7246 			 * triggered a readahead) on a page lock due to an
7247 			 * ordered dio extent we created before but did not have
7248 			 * yet a corresponding bio submitted (whence it can not
7249 			 * complete), which makes readahead wait for that
7250 			 * ordered extent to complete while holding a lock on
7251 			 * that page.
7252 			 */
7253 			ret = nowait ? -EAGAIN : -ENOTBLK;
7254 		}
7255 
7256 		if (ret)
7257 			break;
7258 
7259 		cond_resched();
7260 	}
7261 
7262 	return ret;
7263 }
7264 
7265 /* The callers of this must take lock_extent() */
7266 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7267 				       u64 len, u64 orig_start, u64 block_start,
7268 				       u64 block_len, u64 orig_block_len,
7269 				       u64 ram_bytes, int compress_type,
7270 				       int type)
7271 {
7272 	struct extent_map *em;
7273 	int ret;
7274 
7275 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7276 	       type == BTRFS_ORDERED_COMPRESSED ||
7277 	       type == BTRFS_ORDERED_NOCOW ||
7278 	       type == BTRFS_ORDERED_REGULAR);
7279 
7280 	em = alloc_extent_map();
7281 	if (!em)
7282 		return ERR_PTR(-ENOMEM);
7283 
7284 	em->start = start;
7285 	em->orig_start = orig_start;
7286 	em->len = len;
7287 	em->block_len = block_len;
7288 	em->block_start = block_start;
7289 	em->orig_block_len = orig_block_len;
7290 	em->ram_bytes = ram_bytes;
7291 	em->generation = -1;
7292 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7293 	if (type == BTRFS_ORDERED_PREALLOC) {
7294 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7295 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7296 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7297 		em->compress_type = compress_type;
7298 	}
7299 
7300 	ret = btrfs_replace_extent_map_range(inode, em, true);
7301 	if (ret) {
7302 		free_extent_map(em);
7303 		return ERR_PTR(ret);
7304 	}
7305 
7306 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7307 	return em;
7308 }
7309 
7310 
7311 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7312 					 struct inode *inode,
7313 					 struct btrfs_dio_data *dio_data,
7314 					 u64 start, u64 *lenp,
7315 					 unsigned int iomap_flags)
7316 {
7317 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7318 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7319 	struct extent_map *em = *map;
7320 	int type;
7321 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7322 	struct btrfs_block_group *bg;
7323 	bool can_nocow = false;
7324 	bool space_reserved = false;
7325 	u64 len = *lenp;
7326 	u64 prev_len;
7327 	int ret = 0;
7328 
7329 	/*
7330 	 * We don't allocate a new extent in the following cases
7331 	 *
7332 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7333 	 * existing extent.
7334 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7335 	 * just use the extent.
7336 	 *
7337 	 */
7338 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7339 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7340 	     em->block_start != EXTENT_MAP_HOLE)) {
7341 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7342 			type = BTRFS_ORDERED_PREALLOC;
7343 		else
7344 			type = BTRFS_ORDERED_NOCOW;
7345 		len = min(len, em->len - (start - em->start));
7346 		block_start = em->block_start + (start - em->start);
7347 
7348 		if (can_nocow_extent(inode, start, &len, &orig_start,
7349 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7350 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7351 			if (bg)
7352 				can_nocow = true;
7353 		}
7354 	}
7355 
7356 	prev_len = len;
7357 	if (can_nocow) {
7358 		struct extent_map *em2;
7359 
7360 		/* We can NOCOW, so only need to reserve metadata space. */
7361 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7362 						      nowait);
7363 		if (ret < 0) {
7364 			/* Our caller expects us to free the input extent map. */
7365 			free_extent_map(em);
7366 			*map = NULL;
7367 			btrfs_dec_nocow_writers(bg);
7368 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7369 				ret = -EAGAIN;
7370 			goto out;
7371 		}
7372 		space_reserved = true;
7373 
7374 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7375 					      orig_start, block_start,
7376 					      len, orig_block_len,
7377 					      ram_bytes, type);
7378 		btrfs_dec_nocow_writers(bg);
7379 		if (type == BTRFS_ORDERED_PREALLOC) {
7380 			free_extent_map(em);
7381 			*map = em2;
7382 			em = em2;
7383 		}
7384 
7385 		if (IS_ERR(em2)) {
7386 			ret = PTR_ERR(em2);
7387 			goto out;
7388 		}
7389 
7390 		dio_data->nocow_done = true;
7391 	} else {
7392 		/* Our caller expects us to free the input extent map. */
7393 		free_extent_map(em);
7394 		*map = NULL;
7395 
7396 		if (nowait) {
7397 			ret = -EAGAIN;
7398 			goto out;
7399 		}
7400 
7401 		/*
7402 		 * If we could not allocate data space before locking the file
7403 		 * range and we can't do a NOCOW write, then we have to fail.
7404 		 */
7405 		if (!dio_data->data_space_reserved) {
7406 			ret = -ENOSPC;
7407 			goto out;
7408 		}
7409 
7410 		/*
7411 		 * We have to COW and we have already reserved data space before,
7412 		 * so now we reserve only metadata.
7413 		 */
7414 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7415 						      false);
7416 		if (ret < 0)
7417 			goto out;
7418 		space_reserved = true;
7419 
7420 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7421 		if (IS_ERR(em)) {
7422 			ret = PTR_ERR(em);
7423 			goto out;
7424 		}
7425 		*map = em;
7426 		len = min(len, em->len - (start - em->start));
7427 		if (len < prev_len)
7428 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7429 							prev_len - len, true);
7430 	}
7431 
7432 	/*
7433 	 * We have created our ordered extent, so we can now release our reservation
7434 	 * for an outstanding extent.
7435 	 */
7436 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7437 
7438 	/*
7439 	 * Need to update the i_size under the extent lock so buffered
7440 	 * readers will get the updated i_size when we unlock.
7441 	 */
7442 	if (start + len > i_size_read(inode))
7443 		i_size_write(inode, start + len);
7444 out:
7445 	if (ret && space_reserved) {
7446 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7447 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7448 	}
7449 	*lenp = len;
7450 	return ret;
7451 }
7452 
7453 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7454 		loff_t length, unsigned int flags, struct iomap *iomap,
7455 		struct iomap *srcmap)
7456 {
7457 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7458 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7459 	struct extent_map *em;
7460 	struct extent_state *cached_state = NULL;
7461 	struct btrfs_dio_data *dio_data = iter->private;
7462 	u64 lockstart, lockend;
7463 	const bool write = !!(flags & IOMAP_WRITE);
7464 	int ret = 0;
7465 	u64 len = length;
7466 	const u64 data_alloc_len = length;
7467 	bool unlock_extents = false;
7468 
7469 	/*
7470 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7471 	 * we're NOWAIT we may submit a bio for a partial range and return
7472 	 * EIOCBQUEUED, which would result in an errant short read.
7473 	 *
7474 	 * The best way to handle this would be to allow for partial completions
7475 	 * of iocb's, so we could submit the partial bio, return and fault in
7476 	 * the rest of the pages, and then submit the io for the rest of the
7477 	 * range.  However we don't have that currently, so simply return
7478 	 * -EAGAIN at this point so that the normal path is used.
7479 	 */
7480 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7481 		return -EAGAIN;
7482 
7483 	/*
7484 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7485 	 * to allocate a contiguous array for the checksums.
7486 	 */
7487 	if (!write)
7488 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7489 
7490 	lockstart = start;
7491 	lockend = start + len - 1;
7492 
7493 	/*
7494 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7495 	 * enough if we've written compressed pages to this area, so we need to
7496 	 * flush the dirty pages again to make absolutely sure that any
7497 	 * outstanding dirty pages are on disk - the first flush only starts
7498 	 * compression on the data, while keeping the pages locked, so by the
7499 	 * time the second flush returns we know bios for the compressed pages
7500 	 * were submitted and finished, and the pages no longer under writeback.
7501 	 *
7502 	 * If we have a NOWAIT request and we have any pages in the range that
7503 	 * are locked, likely due to compression still in progress, we don't want
7504 	 * to block on page locks. We also don't want to block on pages marked as
7505 	 * dirty or under writeback (same as for the non-compression case).
7506 	 * iomap_dio_rw() did the same check, but after that and before we got
7507 	 * here, mmap'ed writes may have happened or buffered reads started
7508 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7509 	 * the file range yet.
7510 	 */
7511 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7512 		     &BTRFS_I(inode)->runtime_flags)) {
7513 		if (flags & IOMAP_NOWAIT) {
7514 			if (filemap_range_needs_writeback(inode->i_mapping,
7515 							  lockstart, lockend))
7516 				return -EAGAIN;
7517 		} else {
7518 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7519 						       start + length - 1);
7520 			if (ret)
7521 				return ret;
7522 		}
7523 	}
7524 
7525 	memset(dio_data, 0, sizeof(*dio_data));
7526 
7527 	/*
7528 	 * We always try to allocate data space and must do it before locking
7529 	 * the file range, to avoid deadlocks with concurrent writes to the same
7530 	 * range if the range has several extents and the writes don't expand the
7531 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7532 	 * allocate data space here we continue and later, after locking the
7533 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7534 	 * NOCOW write.
7535 	 */
7536 	if (write && !(flags & IOMAP_NOWAIT)) {
7537 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7538 						  &dio_data->data_reserved,
7539 						  start, data_alloc_len, false);
7540 		if (!ret)
7541 			dio_data->data_space_reserved = true;
7542 		else if (ret && !(BTRFS_I(inode)->flags &
7543 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7544 			goto err;
7545 	}
7546 
7547 	/*
7548 	 * If this errors out it's because we couldn't invalidate pagecache for
7549 	 * this range and we need to fallback to buffered IO, or we are doing a
7550 	 * NOWAIT read/write and we need to block.
7551 	 */
7552 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7553 	if (ret < 0)
7554 		goto err;
7555 
7556 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7557 	if (IS_ERR(em)) {
7558 		ret = PTR_ERR(em);
7559 		goto unlock_err;
7560 	}
7561 
7562 	/*
7563 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7564 	 * io.  INLINE is special, and we could probably kludge it in here, but
7565 	 * it's still buffered so for safety lets just fall back to the generic
7566 	 * buffered path.
7567 	 *
7568 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7569 	 * decompress it, so there will be buffering required no matter what we
7570 	 * do, so go ahead and fallback to buffered.
7571 	 *
7572 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7573 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7574 	 * the generic code.
7575 	 */
7576 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7577 	    em->block_start == EXTENT_MAP_INLINE) {
7578 		free_extent_map(em);
7579 		/*
7580 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7581 		 * fallback to buffered IO. This is not only because we can
7582 		 * block with buffered IO (no support for NOWAIT semantics at
7583 		 * the moment) but also to avoid returning short reads to user
7584 		 * space - this happens if we were able to read some data from
7585 		 * previous non-compressed extents and then when we fallback to
7586 		 * buffered IO, at btrfs_file_read_iter() by calling
7587 		 * filemap_read(), we fail to fault in pages for the read buffer,
7588 		 * in which case filemap_read() returns a short read (the number
7589 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7590 		 */
7591 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7592 		goto unlock_err;
7593 	}
7594 
7595 	len = min(len, em->len - (start - em->start));
7596 
7597 	/*
7598 	 * If we have a NOWAIT request and the range contains multiple extents
7599 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7600 	 * caller fallback to a context where it can do a blocking (without
7601 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7602 	 * success to the caller, which is not optimal for writes and for reads
7603 	 * it can result in unexpected behaviour for an application.
7604 	 *
7605 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7606 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7607 	 * asked for, resulting in an unexpected, and incorrect, short read.
7608 	 * That is, the caller asked to read N bytes and we return less than that,
7609 	 * which is wrong unless we are crossing EOF. This happens if we get a
7610 	 * page fault error when trying to fault in pages for the buffer that is
7611 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7612 	 * have previously submitted bios for other extents in the range, in
7613 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7614 	 * those bios have completed by the time we get the page fault error,
7615 	 * which we return back to our caller - we should only return EIOCBQUEUED
7616 	 * after we have submitted bios for all the extents in the range.
7617 	 */
7618 	if ((flags & IOMAP_NOWAIT) && len < length) {
7619 		free_extent_map(em);
7620 		ret = -EAGAIN;
7621 		goto unlock_err;
7622 	}
7623 
7624 	if (write) {
7625 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7626 						    start, &len, flags);
7627 		if (ret < 0)
7628 			goto unlock_err;
7629 		unlock_extents = true;
7630 		/* Recalc len in case the new em is smaller than requested */
7631 		len = min(len, em->len - (start - em->start));
7632 		if (dio_data->data_space_reserved) {
7633 			u64 release_offset;
7634 			u64 release_len = 0;
7635 
7636 			if (dio_data->nocow_done) {
7637 				release_offset = start;
7638 				release_len = data_alloc_len;
7639 			} else if (len < data_alloc_len) {
7640 				release_offset = start + len;
7641 				release_len = data_alloc_len - len;
7642 			}
7643 
7644 			if (release_len > 0)
7645 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7646 							       dio_data->data_reserved,
7647 							       release_offset,
7648 							       release_len);
7649 		}
7650 	} else {
7651 		/*
7652 		 * We need to unlock only the end area that we aren't using.
7653 		 * The rest is going to be unlocked by the endio routine.
7654 		 */
7655 		lockstart = start + len;
7656 		if (lockstart < lockend)
7657 			unlock_extents = true;
7658 	}
7659 
7660 	if (unlock_extents)
7661 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7662 			      &cached_state);
7663 	else
7664 		free_extent_state(cached_state);
7665 
7666 	/*
7667 	 * Translate extent map information to iomap.
7668 	 * We trim the extents (and move the addr) even though iomap code does
7669 	 * that, since we have locked only the parts we are performing I/O in.
7670 	 */
7671 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7672 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7673 		iomap->addr = IOMAP_NULL_ADDR;
7674 		iomap->type = IOMAP_HOLE;
7675 	} else {
7676 		iomap->addr = em->block_start + (start - em->start);
7677 		iomap->type = IOMAP_MAPPED;
7678 	}
7679 	iomap->offset = start;
7680 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7681 	iomap->length = len;
7682 	free_extent_map(em);
7683 
7684 	return 0;
7685 
7686 unlock_err:
7687 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7688 		      &cached_state);
7689 err:
7690 	if (dio_data->data_space_reserved) {
7691 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7692 					       dio_data->data_reserved,
7693 					       start, data_alloc_len);
7694 		extent_changeset_free(dio_data->data_reserved);
7695 	}
7696 
7697 	return ret;
7698 }
7699 
7700 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7701 		ssize_t written, unsigned int flags, struct iomap *iomap)
7702 {
7703 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7704 	struct btrfs_dio_data *dio_data = iter->private;
7705 	size_t submitted = dio_data->submitted;
7706 	const bool write = !!(flags & IOMAP_WRITE);
7707 	int ret = 0;
7708 
7709 	if (!write && (iomap->type == IOMAP_HOLE)) {
7710 		/* If reading from a hole, unlock and return */
7711 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7712 			      NULL);
7713 		return 0;
7714 	}
7715 
7716 	if (submitted < length) {
7717 		pos += submitted;
7718 		length -= submitted;
7719 		if (write)
7720 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7721 						    pos, length, false);
7722 		else
7723 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7724 				      pos + length - 1, NULL);
7725 		ret = -ENOTBLK;
7726 	}
7727 	if (write) {
7728 		btrfs_put_ordered_extent(dio_data->ordered);
7729 		dio_data->ordered = NULL;
7730 	}
7731 
7732 	if (write)
7733 		extent_changeset_free(dio_data->data_reserved);
7734 	return ret;
7735 }
7736 
7737 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7738 {
7739 	struct btrfs_dio_private *dip =
7740 		container_of(bbio, struct btrfs_dio_private, bbio);
7741 	struct btrfs_inode *inode = bbio->inode;
7742 	struct bio *bio = &bbio->bio;
7743 
7744 	if (bio->bi_status) {
7745 		btrfs_warn(inode->root->fs_info,
7746 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7747 			   btrfs_ino(inode), bio->bi_opf,
7748 			   dip->file_offset, dip->bytes, bio->bi_status);
7749 	}
7750 
7751 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7752 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7753 					    dip->file_offset, dip->bytes,
7754 					    !bio->bi_status);
7755 	} else {
7756 		unlock_extent(&inode->io_tree, dip->file_offset,
7757 			      dip->file_offset + dip->bytes - 1, NULL);
7758 	}
7759 
7760 	bbio->bio.bi_private = bbio->private;
7761 	iomap_dio_bio_end_io(bio);
7762 }
7763 
7764 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7765 				loff_t file_offset)
7766 {
7767 	struct btrfs_bio *bbio = btrfs_bio(bio);
7768 	struct btrfs_dio_private *dip =
7769 		container_of(bbio, struct btrfs_dio_private, bbio);
7770 	struct btrfs_dio_data *dio_data = iter->private;
7771 
7772 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7773 		       btrfs_dio_end_io, bio->bi_private);
7774 	bbio->inode = BTRFS_I(iter->inode);
7775 	bbio->file_offset = file_offset;
7776 
7777 	dip->file_offset = file_offset;
7778 	dip->bytes = bio->bi_iter.bi_size;
7779 
7780 	dio_data->submitted += bio->bi_iter.bi_size;
7781 
7782 	/*
7783 	 * Check if we are doing a partial write.  If we are, we need to split
7784 	 * the ordered extent to match the submitted bio.  Hang on to the
7785 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7786 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7787 	 * remaining pages is blocked on the outstanding ordered extent.
7788 	 */
7789 	if (iter->flags & IOMAP_WRITE) {
7790 		int ret;
7791 
7792 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7793 		if (ret) {
7794 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7795 						    file_offset, dip->bytes,
7796 						    !ret);
7797 			bio->bi_status = errno_to_blk_status(ret);
7798 			iomap_dio_bio_end_io(bio);
7799 			return;
7800 		}
7801 	}
7802 
7803 	btrfs_submit_bio(bbio, 0);
7804 }
7805 
7806 static const struct iomap_ops btrfs_dio_iomap_ops = {
7807 	.iomap_begin            = btrfs_dio_iomap_begin,
7808 	.iomap_end              = btrfs_dio_iomap_end,
7809 };
7810 
7811 static const struct iomap_dio_ops btrfs_dio_ops = {
7812 	.submit_io		= btrfs_dio_submit_io,
7813 	.bio_set		= &btrfs_dio_bioset,
7814 };
7815 
7816 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7817 {
7818 	struct btrfs_dio_data data = { 0 };
7819 
7820 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7821 			    IOMAP_DIO_PARTIAL, &data, done_before);
7822 }
7823 
7824 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7825 				  size_t done_before)
7826 {
7827 	struct btrfs_dio_data data = { 0 };
7828 
7829 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7830 			    IOMAP_DIO_PARTIAL, &data, done_before);
7831 }
7832 
7833 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7834 			u64 start, u64 len)
7835 {
7836 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7837 	int	ret;
7838 
7839 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7840 	if (ret)
7841 		return ret;
7842 
7843 	/*
7844 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7845 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7846 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7847 	 * in the compression of data (in an async thread) and will return
7848 	 * before the compression is done and writeback is started. A second
7849 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7850 	 * complete and writeback to start. We also need to wait for ordered
7851 	 * extents to complete, because our fiemap implementation uses mainly
7852 	 * file extent items to list the extents, searching for extent maps
7853 	 * only for file ranges with holes or prealloc extents to figure out
7854 	 * if we have delalloc in those ranges.
7855 	 */
7856 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7857 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7858 		if (ret)
7859 			return ret;
7860 	}
7861 
7862 	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7863 
7864 	/*
7865 	 * We did an initial flush to avoid holding the inode's lock while
7866 	 * triggering writeback and waiting for the completion of IO and ordered
7867 	 * extents. Now after we locked the inode we do it again, because it's
7868 	 * possible a new write may have happened in between those two steps.
7869 	 */
7870 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7871 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7872 		if (ret) {
7873 			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7874 			return ret;
7875 		}
7876 	}
7877 
7878 	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7879 	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7880 
7881 	return ret;
7882 }
7883 
7884 static int btrfs_writepages(struct address_space *mapping,
7885 			    struct writeback_control *wbc)
7886 {
7887 	return extent_writepages(mapping, wbc);
7888 }
7889 
7890 static void btrfs_readahead(struct readahead_control *rac)
7891 {
7892 	extent_readahead(rac);
7893 }
7894 
7895 /*
7896  * For release_folio() and invalidate_folio() we have a race window where
7897  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7898  * If we continue to release/invalidate the page, we could cause use-after-free
7899  * for subpage spinlock.  So this function is to spin and wait for subpage
7900  * spinlock.
7901  */
7902 static void wait_subpage_spinlock(struct page *page)
7903 {
7904 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7905 	struct btrfs_subpage *subpage;
7906 
7907 	if (!btrfs_is_subpage(fs_info, page))
7908 		return;
7909 
7910 	ASSERT(PagePrivate(page) && page->private);
7911 	subpage = (struct btrfs_subpage *)page->private;
7912 
7913 	/*
7914 	 * This may look insane as we just acquire the spinlock and release it,
7915 	 * without doing anything.  But we just want to make sure no one is
7916 	 * still holding the subpage spinlock.
7917 	 * And since the page is not dirty nor writeback, and we have page
7918 	 * locked, the only possible way to hold a spinlock is from the endio
7919 	 * function to clear page writeback.
7920 	 *
7921 	 * Here we just acquire the spinlock so that all existing callers
7922 	 * should exit and we're safe to release/invalidate the page.
7923 	 */
7924 	spin_lock_irq(&subpage->lock);
7925 	spin_unlock_irq(&subpage->lock);
7926 }
7927 
7928 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7929 {
7930 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7931 
7932 	if (ret == 1) {
7933 		wait_subpage_spinlock(&folio->page);
7934 		clear_page_extent_mapped(&folio->page);
7935 	}
7936 	return ret;
7937 }
7938 
7939 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7940 {
7941 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7942 		return false;
7943 	return __btrfs_release_folio(folio, gfp_flags);
7944 }
7945 
7946 #ifdef CONFIG_MIGRATION
7947 static int btrfs_migrate_folio(struct address_space *mapping,
7948 			     struct folio *dst, struct folio *src,
7949 			     enum migrate_mode mode)
7950 {
7951 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7952 
7953 	if (ret != MIGRATEPAGE_SUCCESS)
7954 		return ret;
7955 
7956 	if (folio_test_ordered(src)) {
7957 		folio_clear_ordered(src);
7958 		folio_set_ordered(dst);
7959 	}
7960 
7961 	return MIGRATEPAGE_SUCCESS;
7962 }
7963 #else
7964 #define btrfs_migrate_folio NULL
7965 #endif
7966 
7967 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7968 				 size_t length)
7969 {
7970 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7971 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7972 	struct extent_io_tree *tree = &inode->io_tree;
7973 	struct extent_state *cached_state = NULL;
7974 	u64 page_start = folio_pos(folio);
7975 	u64 page_end = page_start + folio_size(folio) - 1;
7976 	u64 cur;
7977 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7978 
7979 	/*
7980 	 * We have folio locked so no new ordered extent can be created on this
7981 	 * page, nor bio can be submitted for this folio.
7982 	 *
7983 	 * But already submitted bio can still be finished on this folio.
7984 	 * Furthermore, endio function won't skip folio which has Ordered
7985 	 * (Private2) already cleared, so it's possible for endio and
7986 	 * invalidate_folio to do the same ordered extent accounting twice
7987 	 * on one folio.
7988 	 *
7989 	 * So here we wait for any submitted bios to finish, so that we won't
7990 	 * do double ordered extent accounting on the same folio.
7991 	 */
7992 	folio_wait_writeback(folio);
7993 	wait_subpage_spinlock(&folio->page);
7994 
7995 	/*
7996 	 * For subpage case, we have call sites like
7997 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7998 	 * sectorsize.
7999 	 * If the range doesn't cover the full folio, we don't need to and
8000 	 * shouldn't clear page extent mapped, as folio->private can still
8001 	 * record subpage dirty bits for other part of the range.
8002 	 *
8003 	 * For cases that invalidate the full folio even the range doesn't
8004 	 * cover the full folio, like invalidating the last folio, we're
8005 	 * still safe to wait for ordered extent to finish.
8006 	 */
8007 	if (!(offset == 0 && length == folio_size(folio))) {
8008 		btrfs_release_folio(folio, GFP_NOFS);
8009 		return;
8010 	}
8011 
8012 	if (!inode_evicting)
8013 		lock_extent(tree, page_start, page_end, &cached_state);
8014 
8015 	cur = page_start;
8016 	while (cur < page_end) {
8017 		struct btrfs_ordered_extent *ordered;
8018 		u64 range_end;
8019 		u32 range_len;
8020 		u32 extra_flags = 0;
8021 
8022 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8023 							   page_end + 1 - cur);
8024 		if (!ordered) {
8025 			range_end = page_end;
8026 			/*
8027 			 * No ordered extent covering this range, we are safe
8028 			 * to delete all extent states in the range.
8029 			 */
8030 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8031 			goto next;
8032 		}
8033 		if (ordered->file_offset > cur) {
8034 			/*
8035 			 * There is a range between [cur, oe->file_offset) not
8036 			 * covered by any ordered extent.
8037 			 * We are safe to delete all extent states, and handle
8038 			 * the ordered extent in the next iteration.
8039 			 */
8040 			range_end = ordered->file_offset - 1;
8041 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8042 			goto next;
8043 		}
8044 
8045 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8046 				page_end);
8047 		ASSERT(range_end + 1 - cur < U32_MAX);
8048 		range_len = range_end + 1 - cur;
8049 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8050 			/*
8051 			 * If Ordered (Private2) is cleared, it means endio has
8052 			 * already been executed for the range.
8053 			 * We can't delete the extent states as
8054 			 * btrfs_finish_ordered_io() may still use some of them.
8055 			 */
8056 			goto next;
8057 		}
8058 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8059 
8060 		/*
8061 		 * IO on this page will never be started, so we need to account
8062 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8063 		 * here, must leave that up for the ordered extent completion.
8064 		 *
8065 		 * This will also unlock the range for incoming
8066 		 * btrfs_finish_ordered_io().
8067 		 */
8068 		if (!inode_evicting)
8069 			clear_extent_bit(tree, cur, range_end,
8070 					 EXTENT_DELALLOC |
8071 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8072 					 EXTENT_DEFRAG, &cached_state);
8073 
8074 		spin_lock_irq(&inode->ordered_tree.lock);
8075 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8076 		ordered->truncated_len = min(ordered->truncated_len,
8077 					     cur - ordered->file_offset);
8078 		spin_unlock_irq(&inode->ordered_tree.lock);
8079 
8080 		/*
8081 		 * If the ordered extent has finished, we're safe to delete all
8082 		 * the extent states of the range, otherwise
8083 		 * btrfs_finish_ordered_io() will get executed by endio for
8084 		 * other pages, so we can't delete extent states.
8085 		 */
8086 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8087 						   cur, range_end + 1 - cur)) {
8088 			btrfs_finish_ordered_io(ordered);
8089 			/*
8090 			 * The ordered extent has finished, now we're again
8091 			 * safe to delete all extent states of the range.
8092 			 */
8093 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8094 		}
8095 next:
8096 		if (ordered)
8097 			btrfs_put_ordered_extent(ordered);
8098 		/*
8099 		 * Qgroup reserved space handler
8100 		 * Sector(s) here will be either:
8101 		 *
8102 		 * 1) Already written to disk or bio already finished
8103 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8104 		 *    Qgroup will be handled by its qgroup_record then.
8105 		 *    btrfs_qgroup_free_data() call will do nothing here.
8106 		 *
8107 		 * 2) Not written to disk yet
8108 		 *    Then btrfs_qgroup_free_data() call will clear the
8109 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8110 		 *    reserved data space.
8111 		 *    Since the IO will never happen for this page.
8112 		 */
8113 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8114 		if (!inode_evicting) {
8115 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8116 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8117 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8118 				 extra_flags, &cached_state);
8119 		}
8120 		cur = range_end + 1;
8121 	}
8122 	/*
8123 	 * We have iterated through all ordered extents of the page, the page
8124 	 * should not have Ordered (Private2) anymore, or the above iteration
8125 	 * did something wrong.
8126 	 */
8127 	ASSERT(!folio_test_ordered(folio));
8128 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8129 	if (!inode_evicting)
8130 		__btrfs_release_folio(folio, GFP_NOFS);
8131 	clear_page_extent_mapped(&folio->page);
8132 }
8133 
8134 /*
8135  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8136  * called from a page fault handler when a page is first dirtied. Hence we must
8137  * be careful to check for EOF conditions here. We set the page up correctly
8138  * for a written page which means we get ENOSPC checking when writing into
8139  * holes and correct delalloc and unwritten extent mapping on filesystems that
8140  * support these features.
8141  *
8142  * We are not allowed to take the i_mutex here so we have to play games to
8143  * protect against truncate races as the page could now be beyond EOF.  Because
8144  * truncate_setsize() writes the inode size before removing pages, once we have
8145  * the page lock we can determine safely if the page is beyond EOF. If it is not
8146  * beyond EOF, then the page is guaranteed safe against truncation until we
8147  * unlock the page.
8148  */
8149 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8150 {
8151 	struct page *page = vmf->page;
8152 	struct inode *inode = file_inode(vmf->vma->vm_file);
8153 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8154 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8155 	struct btrfs_ordered_extent *ordered;
8156 	struct extent_state *cached_state = NULL;
8157 	struct extent_changeset *data_reserved = NULL;
8158 	unsigned long zero_start;
8159 	loff_t size;
8160 	vm_fault_t ret;
8161 	int ret2;
8162 	int reserved = 0;
8163 	u64 reserved_space;
8164 	u64 page_start;
8165 	u64 page_end;
8166 	u64 end;
8167 
8168 	reserved_space = PAGE_SIZE;
8169 
8170 	sb_start_pagefault(inode->i_sb);
8171 	page_start = page_offset(page);
8172 	page_end = page_start + PAGE_SIZE - 1;
8173 	end = page_end;
8174 
8175 	/*
8176 	 * Reserving delalloc space after obtaining the page lock can lead to
8177 	 * deadlock. For example, if a dirty page is locked by this function
8178 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8179 	 * dirty page write out, then the btrfs_writepages() function could
8180 	 * end up waiting indefinitely to get a lock on the page currently
8181 	 * being processed by btrfs_page_mkwrite() function.
8182 	 */
8183 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8184 					    page_start, reserved_space);
8185 	if (!ret2) {
8186 		ret2 = file_update_time(vmf->vma->vm_file);
8187 		reserved = 1;
8188 	}
8189 	if (ret2) {
8190 		ret = vmf_error(ret2);
8191 		if (reserved)
8192 			goto out;
8193 		goto out_noreserve;
8194 	}
8195 
8196 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8197 again:
8198 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8199 	lock_page(page);
8200 	size = i_size_read(inode);
8201 
8202 	if ((page->mapping != inode->i_mapping) ||
8203 	    (page_start >= size)) {
8204 		/* page got truncated out from underneath us */
8205 		goto out_unlock;
8206 	}
8207 	wait_on_page_writeback(page);
8208 
8209 	lock_extent(io_tree, page_start, page_end, &cached_state);
8210 	ret2 = set_page_extent_mapped(page);
8211 	if (ret2 < 0) {
8212 		ret = vmf_error(ret2);
8213 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8214 		goto out_unlock;
8215 	}
8216 
8217 	/*
8218 	 * we can't set the delalloc bits if there are pending ordered
8219 	 * extents.  Drop our locks and wait for them to finish
8220 	 */
8221 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8222 			PAGE_SIZE);
8223 	if (ordered) {
8224 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8225 		unlock_page(page);
8226 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8227 		btrfs_start_ordered_extent(ordered);
8228 		btrfs_put_ordered_extent(ordered);
8229 		goto again;
8230 	}
8231 
8232 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8233 		reserved_space = round_up(size - page_start,
8234 					  fs_info->sectorsize);
8235 		if (reserved_space < PAGE_SIZE) {
8236 			end = page_start + reserved_space - 1;
8237 			btrfs_delalloc_release_space(BTRFS_I(inode),
8238 					data_reserved, page_start,
8239 					PAGE_SIZE - reserved_space, true);
8240 		}
8241 	}
8242 
8243 	/*
8244 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8245 	 * faulted in, but write(2) could also dirty a page and set delalloc
8246 	 * bits, thus in this case for space account reason, we still need to
8247 	 * clear any delalloc bits within this page range since we have to
8248 	 * reserve data&meta space before lock_page() (see above comments).
8249 	 */
8250 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8251 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8252 			  EXTENT_DEFRAG, &cached_state);
8253 
8254 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8255 					&cached_state);
8256 	if (ret2) {
8257 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8258 		ret = VM_FAULT_SIGBUS;
8259 		goto out_unlock;
8260 	}
8261 
8262 	/* page is wholly or partially inside EOF */
8263 	if (page_start + PAGE_SIZE > size)
8264 		zero_start = offset_in_page(size);
8265 	else
8266 		zero_start = PAGE_SIZE;
8267 
8268 	if (zero_start != PAGE_SIZE)
8269 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8270 
8271 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8272 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8273 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8274 
8275 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8276 
8277 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8278 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8279 
8280 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8281 	sb_end_pagefault(inode->i_sb);
8282 	extent_changeset_free(data_reserved);
8283 	return VM_FAULT_LOCKED;
8284 
8285 out_unlock:
8286 	unlock_page(page);
8287 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8288 out:
8289 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8290 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8291 				     reserved_space, (ret != 0));
8292 out_noreserve:
8293 	sb_end_pagefault(inode->i_sb);
8294 	extent_changeset_free(data_reserved);
8295 	return ret;
8296 }
8297 
8298 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8299 {
8300 	struct btrfs_truncate_control control = {
8301 		.inode = inode,
8302 		.ino = btrfs_ino(inode),
8303 		.min_type = BTRFS_EXTENT_DATA_KEY,
8304 		.clear_extent_range = true,
8305 	};
8306 	struct btrfs_root *root = inode->root;
8307 	struct btrfs_fs_info *fs_info = root->fs_info;
8308 	struct btrfs_block_rsv *rsv;
8309 	int ret;
8310 	struct btrfs_trans_handle *trans;
8311 	u64 mask = fs_info->sectorsize - 1;
8312 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8313 
8314 	if (!skip_writeback) {
8315 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8316 					       inode->vfs_inode.i_size & (~mask),
8317 					       (u64)-1);
8318 		if (ret)
8319 			return ret;
8320 	}
8321 
8322 	/*
8323 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8324 	 * things going on here:
8325 	 *
8326 	 * 1) We need to reserve space to update our inode.
8327 	 *
8328 	 * 2) We need to have something to cache all the space that is going to
8329 	 * be free'd up by the truncate operation, but also have some slack
8330 	 * space reserved in case it uses space during the truncate (thank you
8331 	 * very much snapshotting).
8332 	 *
8333 	 * And we need these to be separate.  The fact is we can use a lot of
8334 	 * space doing the truncate, and we have no earthly idea how much space
8335 	 * we will use, so we need the truncate reservation to be separate so it
8336 	 * doesn't end up using space reserved for updating the inode.  We also
8337 	 * need to be able to stop the transaction and start a new one, which
8338 	 * means we need to be able to update the inode several times, and we
8339 	 * have no idea of knowing how many times that will be, so we can't just
8340 	 * reserve 1 item for the entirety of the operation, so that has to be
8341 	 * done separately as well.
8342 	 *
8343 	 * So that leaves us with
8344 	 *
8345 	 * 1) rsv - for the truncate reservation, which we will steal from the
8346 	 * transaction reservation.
8347 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8348 	 * updating the inode.
8349 	 */
8350 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8351 	if (!rsv)
8352 		return -ENOMEM;
8353 	rsv->size = min_size;
8354 	rsv->failfast = true;
8355 
8356 	/*
8357 	 * 1 for the truncate slack space
8358 	 * 1 for updating the inode.
8359 	 */
8360 	trans = btrfs_start_transaction(root, 2);
8361 	if (IS_ERR(trans)) {
8362 		ret = PTR_ERR(trans);
8363 		goto out;
8364 	}
8365 
8366 	/* Migrate the slack space for the truncate to our reserve */
8367 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8368 				      min_size, false);
8369 	/*
8370 	 * We have reserved 2 metadata units when we started the transaction and
8371 	 * min_size matches 1 unit, so this should never fail, but if it does,
8372 	 * it's not critical we just fail truncation.
8373 	 */
8374 	if (WARN_ON(ret)) {
8375 		btrfs_end_transaction(trans);
8376 		goto out;
8377 	}
8378 
8379 	trans->block_rsv = rsv;
8380 
8381 	while (1) {
8382 		struct extent_state *cached_state = NULL;
8383 		const u64 new_size = inode->vfs_inode.i_size;
8384 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8385 
8386 		control.new_size = new_size;
8387 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8388 		/*
8389 		 * We want to drop from the next block forward in case this new
8390 		 * size is not block aligned since we will be keeping the last
8391 		 * block of the extent just the way it is.
8392 		 */
8393 		btrfs_drop_extent_map_range(inode,
8394 					    ALIGN(new_size, fs_info->sectorsize),
8395 					    (u64)-1, false);
8396 
8397 		ret = btrfs_truncate_inode_items(trans, root, &control);
8398 
8399 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8400 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8401 
8402 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8403 
8404 		trans->block_rsv = &fs_info->trans_block_rsv;
8405 		if (ret != -ENOSPC && ret != -EAGAIN)
8406 			break;
8407 
8408 		ret = btrfs_update_inode(trans, root, inode);
8409 		if (ret)
8410 			break;
8411 
8412 		btrfs_end_transaction(trans);
8413 		btrfs_btree_balance_dirty(fs_info);
8414 
8415 		trans = btrfs_start_transaction(root, 2);
8416 		if (IS_ERR(trans)) {
8417 			ret = PTR_ERR(trans);
8418 			trans = NULL;
8419 			break;
8420 		}
8421 
8422 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8423 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8424 					      rsv, min_size, false);
8425 		/*
8426 		 * We have reserved 2 metadata units when we started the
8427 		 * transaction and min_size matches 1 unit, so this should never
8428 		 * fail, but if it does, it's not critical we just fail truncation.
8429 		 */
8430 		if (WARN_ON(ret))
8431 			break;
8432 
8433 		trans->block_rsv = rsv;
8434 	}
8435 
8436 	/*
8437 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8438 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8439 	 * know we've truncated everything except the last little bit, and can
8440 	 * do btrfs_truncate_block and then update the disk_i_size.
8441 	 */
8442 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8443 		btrfs_end_transaction(trans);
8444 		btrfs_btree_balance_dirty(fs_info);
8445 
8446 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8447 		if (ret)
8448 			goto out;
8449 		trans = btrfs_start_transaction(root, 1);
8450 		if (IS_ERR(trans)) {
8451 			ret = PTR_ERR(trans);
8452 			goto out;
8453 		}
8454 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8455 	}
8456 
8457 	if (trans) {
8458 		int ret2;
8459 
8460 		trans->block_rsv = &fs_info->trans_block_rsv;
8461 		ret2 = btrfs_update_inode(trans, root, inode);
8462 		if (ret2 && !ret)
8463 			ret = ret2;
8464 
8465 		ret2 = btrfs_end_transaction(trans);
8466 		if (ret2 && !ret)
8467 			ret = ret2;
8468 		btrfs_btree_balance_dirty(fs_info);
8469 	}
8470 out:
8471 	btrfs_free_block_rsv(fs_info, rsv);
8472 	/*
8473 	 * So if we truncate and then write and fsync we normally would just
8474 	 * write the extents that changed, which is a problem if we need to
8475 	 * first truncate that entire inode.  So set this flag so we write out
8476 	 * all of the extents in the inode to the sync log so we're completely
8477 	 * safe.
8478 	 *
8479 	 * If no extents were dropped or trimmed we don't need to force the next
8480 	 * fsync to truncate all the inode's items from the log and re-log them
8481 	 * all. This means the truncate operation did not change the file size,
8482 	 * or changed it to a smaller size but there was only an implicit hole
8483 	 * between the old i_size and the new i_size, and there were no prealloc
8484 	 * extents beyond i_size to drop.
8485 	 */
8486 	if (control.extents_found > 0)
8487 		btrfs_set_inode_full_sync(inode);
8488 
8489 	return ret;
8490 }
8491 
8492 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8493 				     struct inode *dir)
8494 {
8495 	struct inode *inode;
8496 
8497 	inode = new_inode(dir->i_sb);
8498 	if (inode) {
8499 		/*
8500 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8501 		 * the parent's sgid bit is set. This is probably a bug.
8502 		 */
8503 		inode_init_owner(idmap, inode, NULL,
8504 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8505 		inode->i_op = &btrfs_dir_inode_operations;
8506 		inode->i_fop = &btrfs_dir_file_operations;
8507 	}
8508 	return inode;
8509 }
8510 
8511 struct inode *btrfs_alloc_inode(struct super_block *sb)
8512 {
8513 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8514 	struct btrfs_inode *ei;
8515 	struct inode *inode;
8516 
8517 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8518 	if (!ei)
8519 		return NULL;
8520 
8521 	ei->root = NULL;
8522 	ei->generation = 0;
8523 	ei->last_trans = 0;
8524 	ei->last_sub_trans = 0;
8525 	ei->logged_trans = 0;
8526 	ei->delalloc_bytes = 0;
8527 	ei->new_delalloc_bytes = 0;
8528 	ei->defrag_bytes = 0;
8529 	ei->disk_i_size = 0;
8530 	ei->flags = 0;
8531 	ei->ro_flags = 0;
8532 	ei->csum_bytes = 0;
8533 	ei->index_cnt = (u64)-1;
8534 	ei->dir_index = 0;
8535 	ei->last_unlink_trans = 0;
8536 	ei->last_reflink_trans = 0;
8537 	ei->last_log_commit = 0;
8538 
8539 	spin_lock_init(&ei->lock);
8540 	ei->outstanding_extents = 0;
8541 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8542 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8543 					      BTRFS_BLOCK_RSV_DELALLOC);
8544 	ei->runtime_flags = 0;
8545 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8546 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8547 
8548 	ei->delayed_node = NULL;
8549 
8550 	ei->i_otime.tv_sec = 0;
8551 	ei->i_otime.tv_nsec = 0;
8552 
8553 	inode = &ei->vfs_inode;
8554 	extent_map_tree_init(&ei->extent_tree);
8555 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8556 	ei->io_tree.inode = ei;
8557 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8558 			    IO_TREE_INODE_FILE_EXTENT);
8559 	mutex_init(&ei->log_mutex);
8560 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8561 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8562 	INIT_LIST_HEAD(&ei->delayed_iput);
8563 	RB_CLEAR_NODE(&ei->rb_node);
8564 	init_rwsem(&ei->i_mmap_lock);
8565 
8566 	return inode;
8567 }
8568 
8569 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8570 void btrfs_test_destroy_inode(struct inode *inode)
8571 {
8572 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8573 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8574 }
8575 #endif
8576 
8577 void btrfs_free_inode(struct inode *inode)
8578 {
8579 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8580 }
8581 
8582 void btrfs_destroy_inode(struct inode *vfs_inode)
8583 {
8584 	struct btrfs_ordered_extent *ordered;
8585 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8586 	struct btrfs_root *root = inode->root;
8587 	bool freespace_inode;
8588 
8589 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8590 	WARN_ON(vfs_inode->i_data.nrpages);
8591 	WARN_ON(inode->block_rsv.reserved);
8592 	WARN_ON(inode->block_rsv.size);
8593 	WARN_ON(inode->outstanding_extents);
8594 	if (!S_ISDIR(vfs_inode->i_mode)) {
8595 		WARN_ON(inode->delalloc_bytes);
8596 		WARN_ON(inode->new_delalloc_bytes);
8597 	}
8598 	WARN_ON(inode->csum_bytes);
8599 	WARN_ON(inode->defrag_bytes);
8600 
8601 	/*
8602 	 * This can happen where we create an inode, but somebody else also
8603 	 * created the same inode and we need to destroy the one we already
8604 	 * created.
8605 	 */
8606 	if (!root)
8607 		return;
8608 
8609 	/*
8610 	 * If this is a free space inode do not take the ordered extents lockdep
8611 	 * map.
8612 	 */
8613 	freespace_inode = btrfs_is_free_space_inode(inode);
8614 
8615 	while (1) {
8616 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8617 		if (!ordered)
8618 			break;
8619 		else {
8620 			btrfs_err(root->fs_info,
8621 				  "found ordered extent %llu %llu on inode cleanup",
8622 				  ordered->file_offset, ordered->num_bytes);
8623 
8624 			if (!freespace_inode)
8625 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8626 
8627 			btrfs_remove_ordered_extent(inode, ordered);
8628 			btrfs_put_ordered_extent(ordered);
8629 			btrfs_put_ordered_extent(ordered);
8630 		}
8631 	}
8632 	btrfs_qgroup_check_reserved_leak(inode);
8633 	inode_tree_del(inode);
8634 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8635 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8636 	btrfs_put_root(inode->root);
8637 }
8638 
8639 int btrfs_drop_inode(struct inode *inode)
8640 {
8641 	struct btrfs_root *root = BTRFS_I(inode)->root;
8642 
8643 	if (root == NULL)
8644 		return 1;
8645 
8646 	/* the snap/subvol tree is on deleting */
8647 	if (btrfs_root_refs(&root->root_item) == 0)
8648 		return 1;
8649 	else
8650 		return generic_drop_inode(inode);
8651 }
8652 
8653 static void init_once(void *foo)
8654 {
8655 	struct btrfs_inode *ei = foo;
8656 
8657 	inode_init_once(&ei->vfs_inode);
8658 }
8659 
8660 void __cold btrfs_destroy_cachep(void)
8661 {
8662 	/*
8663 	 * Make sure all delayed rcu free inodes are flushed before we
8664 	 * destroy cache.
8665 	 */
8666 	rcu_barrier();
8667 	bioset_exit(&btrfs_dio_bioset);
8668 	kmem_cache_destroy(btrfs_inode_cachep);
8669 }
8670 
8671 int __init btrfs_init_cachep(void)
8672 {
8673 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8674 			sizeof(struct btrfs_inode), 0,
8675 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8676 			init_once);
8677 	if (!btrfs_inode_cachep)
8678 		goto fail;
8679 
8680 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8681 			offsetof(struct btrfs_dio_private, bbio.bio),
8682 			BIOSET_NEED_BVECS))
8683 		goto fail;
8684 
8685 	return 0;
8686 fail:
8687 	btrfs_destroy_cachep();
8688 	return -ENOMEM;
8689 }
8690 
8691 static int btrfs_getattr(struct mnt_idmap *idmap,
8692 			 const struct path *path, struct kstat *stat,
8693 			 u32 request_mask, unsigned int flags)
8694 {
8695 	u64 delalloc_bytes;
8696 	u64 inode_bytes;
8697 	struct inode *inode = d_inode(path->dentry);
8698 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8699 	u32 bi_flags = BTRFS_I(inode)->flags;
8700 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8701 
8702 	stat->result_mask |= STATX_BTIME;
8703 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8704 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8705 	if (bi_flags & BTRFS_INODE_APPEND)
8706 		stat->attributes |= STATX_ATTR_APPEND;
8707 	if (bi_flags & BTRFS_INODE_COMPRESS)
8708 		stat->attributes |= STATX_ATTR_COMPRESSED;
8709 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8710 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8711 	if (bi_flags & BTRFS_INODE_NODUMP)
8712 		stat->attributes |= STATX_ATTR_NODUMP;
8713 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8714 		stat->attributes |= STATX_ATTR_VERITY;
8715 
8716 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8717 				  STATX_ATTR_COMPRESSED |
8718 				  STATX_ATTR_IMMUTABLE |
8719 				  STATX_ATTR_NODUMP);
8720 
8721 	generic_fillattr(idmap, request_mask, inode, stat);
8722 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8723 
8724 	spin_lock(&BTRFS_I(inode)->lock);
8725 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8726 	inode_bytes = inode_get_bytes(inode);
8727 	spin_unlock(&BTRFS_I(inode)->lock);
8728 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8729 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8730 	return 0;
8731 }
8732 
8733 static int btrfs_rename_exchange(struct inode *old_dir,
8734 			      struct dentry *old_dentry,
8735 			      struct inode *new_dir,
8736 			      struct dentry *new_dentry)
8737 {
8738 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8739 	struct btrfs_trans_handle *trans;
8740 	unsigned int trans_num_items;
8741 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8742 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8743 	struct inode *new_inode = new_dentry->d_inode;
8744 	struct inode *old_inode = old_dentry->d_inode;
8745 	struct btrfs_rename_ctx old_rename_ctx;
8746 	struct btrfs_rename_ctx new_rename_ctx;
8747 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8748 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8749 	u64 old_idx = 0;
8750 	u64 new_idx = 0;
8751 	int ret;
8752 	int ret2;
8753 	bool need_abort = false;
8754 	struct fscrypt_name old_fname, new_fname;
8755 	struct fscrypt_str *old_name, *new_name;
8756 
8757 	/*
8758 	 * For non-subvolumes allow exchange only within one subvolume, in the
8759 	 * same inode namespace. Two subvolumes (represented as directory) can
8760 	 * be exchanged as they're a logical link and have a fixed inode number.
8761 	 */
8762 	if (root != dest &&
8763 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8764 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8765 		return -EXDEV;
8766 
8767 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8768 	if (ret)
8769 		return ret;
8770 
8771 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8772 	if (ret) {
8773 		fscrypt_free_filename(&old_fname);
8774 		return ret;
8775 	}
8776 
8777 	old_name = &old_fname.disk_name;
8778 	new_name = &new_fname.disk_name;
8779 
8780 	/* close the race window with snapshot create/destroy ioctl */
8781 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8782 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8783 		down_read(&fs_info->subvol_sem);
8784 
8785 	/*
8786 	 * For each inode:
8787 	 * 1 to remove old dir item
8788 	 * 1 to remove old dir index
8789 	 * 1 to add new dir item
8790 	 * 1 to add new dir index
8791 	 * 1 to update parent inode
8792 	 *
8793 	 * If the parents are the same, we only need to account for one
8794 	 */
8795 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8796 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8797 		/*
8798 		 * 1 to remove old root ref
8799 		 * 1 to remove old root backref
8800 		 * 1 to add new root ref
8801 		 * 1 to add new root backref
8802 		 */
8803 		trans_num_items += 4;
8804 	} else {
8805 		/*
8806 		 * 1 to update inode item
8807 		 * 1 to remove old inode ref
8808 		 * 1 to add new inode ref
8809 		 */
8810 		trans_num_items += 3;
8811 	}
8812 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8813 		trans_num_items += 4;
8814 	else
8815 		trans_num_items += 3;
8816 	trans = btrfs_start_transaction(root, trans_num_items);
8817 	if (IS_ERR(trans)) {
8818 		ret = PTR_ERR(trans);
8819 		goto out_notrans;
8820 	}
8821 
8822 	if (dest != root) {
8823 		ret = btrfs_record_root_in_trans(trans, dest);
8824 		if (ret)
8825 			goto out_fail;
8826 	}
8827 
8828 	/*
8829 	 * We need to find a free sequence number both in the source and
8830 	 * in the destination directory for the exchange.
8831 	 */
8832 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8833 	if (ret)
8834 		goto out_fail;
8835 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8836 	if (ret)
8837 		goto out_fail;
8838 
8839 	BTRFS_I(old_inode)->dir_index = 0ULL;
8840 	BTRFS_I(new_inode)->dir_index = 0ULL;
8841 
8842 	/* Reference for the source. */
8843 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8844 		/* force full log commit if subvolume involved. */
8845 		btrfs_set_log_full_commit(trans);
8846 	} else {
8847 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8848 					     btrfs_ino(BTRFS_I(new_dir)),
8849 					     old_idx);
8850 		if (ret)
8851 			goto out_fail;
8852 		need_abort = true;
8853 	}
8854 
8855 	/* And now for the dest. */
8856 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8857 		/* force full log commit if subvolume involved. */
8858 		btrfs_set_log_full_commit(trans);
8859 	} else {
8860 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8861 					     btrfs_ino(BTRFS_I(old_dir)),
8862 					     new_idx);
8863 		if (ret) {
8864 			if (need_abort)
8865 				btrfs_abort_transaction(trans, ret);
8866 			goto out_fail;
8867 		}
8868 	}
8869 
8870 	/* Update inode version and ctime/mtime. */
8871 	inode_inc_iversion(old_dir);
8872 	inode_inc_iversion(new_dir);
8873 	inode_inc_iversion(old_inode);
8874 	inode_inc_iversion(new_inode);
8875 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8876 
8877 	if (old_dentry->d_parent != new_dentry->d_parent) {
8878 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8879 					BTRFS_I(old_inode), true);
8880 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8881 					BTRFS_I(new_inode), true);
8882 	}
8883 
8884 	/* src is a subvolume */
8885 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8886 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8887 	} else { /* src is an inode */
8888 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8889 					   BTRFS_I(old_dentry->d_inode),
8890 					   old_name, &old_rename_ctx);
8891 		if (!ret)
8892 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8893 	}
8894 	if (ret) {
8895 		btrfs_abort_transaction(trans, ret);
8896 		goto out_fail;
8897 	}
8898 
8899 	/* dest is a subvolume */
8900 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8901 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8902 	} else { /* dest is an inode */
8903 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8904 					   BTRFS_I(new_dentry->d_inode),
8905 					   new_name, &new_rename_ctx);
8906 		if (!ret)
8907 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8908 	}
8909 	if (ret) {
8910 		btrfs_abort_transaction(trans, ret);
8911 		goto out_fail;
8912 	}
8913 
8914 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8915 			     new_name, 0, old_idx);
8916 	if (ret) {
8917 		btrfs_abort_transaction(trans, ret);
8918 		goto out_fail;
8919 	}
8920 
8921 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8922 			     old_name, 0, new_idx);
8923 	if (ret) {
8924 		btrfs_abort_transaction(trans, ret);
8925 		goto out_fail;
8926 	}
8927 
8928 	if (old_inode->i_nlink == 1)
8929 		BTRFS_I(old_inode)->dir_index = old_idx;
8930 	if (new_inode->i_nlink == 1)
8931 		BTRFS_I(new_inode)->dir_index = new_idx;
8932 
8933 	/*
8934 	 * Now pin the logs of the roots. We do it to ensure that no other task
8935 	 * can sync the logs while we are in progress with the rename, because
8936 	 * that could result in an inconsistency in case any of the inodes that
8937 	 * are part of this rename operation were logged before.
8938 	 */
8939 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8940 		btrfs_pin_log_trans(root);
8941 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8942 		btrfs_pin_log_trans(dest);
8943 
8944 	/* Do the log updates for all inodes. */
8945 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8946 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8947 				   old_rename_ctx.index, new_dentry->d_parent);
8948 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8949 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8950 				   new_rename_ctx.index, old_dentry->d_parent);
8951 
8952 	/* Now unpin the logs. */
8953 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8954 		btrfs_end_log_trans(root);
8955 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8956 		btrfs_end_log_trans(dest);
8957 out_fail:
8958 	ret2 = btrfs_end_transaction(trans);
8959 	ret = ret ? ret : ret2;
8960 out_notrans:
8961 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8962 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8963 		up_read(&fs_info->subvol_sem);
8964 
8965 	fscrypt_free_filename(&new_fname);
8966 	fscrypt_free_filename(&old_fname);
8967 	return ret;
8968 }
8969 
8970 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8971 					struct inode *dir)
8972 {
8973 	struct inode *inode;
8974 
8975 	inode = new_inode(dir->i_sb);
8976 	if (inode) {
8977 		inode_init_owner(idmap, inode, dir,
8978 				 S_IFCHR | WHITEOUT_MODE);
8979 		inode->i_op = &btrfs_special_inode_operations;
8980 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8981 	}
8982 	return inode;
8983 }
8984 
8985 static int btrfs_rename(struct mnt_idmap *idmap,
8986 			struct inode *old_dir, struct dentry *old_dentry,
8987 			struct inode *new_dir, struct dentry *new_dentry,
8988 			unsigned int flags)
8989 {
8990 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8991 	struct btrfs_new_inode_args whiteout_args = {
8992 		.dir = old_dir,
8993 		.dentry = old_dentry,
8994 	};
8995 	struct btrfs_trans_handle *trans;
8996 	unsigned int trans_num_items;
8997 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8998 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8999 	struct inode *new_inode = d_inode(new_dentry);
9000 	struct inode *old_inode = d_inode(old_dentry);
9001 	struct btrfs_rename_ctx rename_ctx;
9002 	u64 index = 0;
9003 	int ret;
9004 	int ret2;
9005 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9006 	struct fscrypt_name old_fname, new_fname;
9007 
9008 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9009 		return -EPERM;
9010 
9011 	/* we only allow rename subvolume link between subvolumes */
9012 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9013 		return -EXDEV;
9014 
9015 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9016 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9017 		return -ENOTEMPTY;
9018 
9019 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9020 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9021 		return -ENOTEMPTY;
9022 
9023 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9024 	if (ret)
9025 		return ret;
9026 
9027 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9028 	if (ret) {
9029 		fscrypt_free_filename(&old_fname);
9030 		return ret;
9031 	}
9032 
9033 	/* check for collisions, even if the  name isn't there */
9034 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9035 	if (ret) {
9036 		if (ret == -EEXIST) {
9037 			/* we shouldn't get
9038 			 * eexist without a new_inode */
9039 			if (WARN_ON(!new_inode)) {
9040 				goto out_fscrypt_names;
9041 			}
9042 		} else {
9043 			/* maybe -EOVERFLOW */
9044 			goto out_fscrypt_names;
9045 		}
9046 	}
9047 	ret = 0;
9048 
9049 	/*
9050 	 * we're using rename to replace one file with another.  Start IO on it
9051 	 * now so  we don't add too much work to the end of the transaction
9052 	 */
9053 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9054 		filemap_flush(old_inode->i_mapping);
9055 
9056 	if (flags & RENAME_WHITEOUT) {
9057 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9058 		if (!whiteout_args.inode) {
9059 			ret = -ENOMEM;
9060 			goto out_fscrypt_names;
9061 		}
9062 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9063 		if (ret)
9064 			goto out_whiteout_inode;
9065 	} else {
9066 		/* 1 to update the old parent inode. */
9067 		trans_num_items = 1;
9068 	}
9069 
9070 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9071 		/* Close the race window with snapshot create/destroy ioctl */
9072 		down_read(&fs_info->subvol_sem);
9073 		/*
9074 		 * 1 to remove old root ref
9075 		 * 1 to remove old root backref
9076 		 * 1 to add new root ref
9077 		 * 1 to add new root backref
9078 		 */
9079 		trans_num_items += 4;
9080 	} else {
9081 		/*
9082 		 * 1 to update inode
9083 		 * 1 to remove old inode ref
9084 		 * 1 to add new inode ref
9085 		 */
9086 		trans_num_items += 3;
9087 	}
9088 	/*
9089 	 * 1 to remove old dir item
9090 	 * 1 to remove old dir index
9091 	 * 1 to add new dir item
9092 	 * 1 to add new dir index
9093 	 */
9094 	trans_num_items += 4;
9095 	/* 1 to update new parent inode if it's not the same as the old parent */
9096 	if (new_dir != old_dir)
9097 		trans_num_items++;
9098 	if (new_inode) {
9099 		/*
9100 		 * 1 to update inode
9101 		 * 1 to remove inode ref
9102 		 * 1 to remove dir item
9103 		 * 1 to remove dir index
9104 		 * 1 to possibly add orphan item
9105 		 */
9106 		trans_num_items += 5;
9107 	}
9108 	trans = btrfs_start_transaction(root, trans_num_items);
9109 	if (IS_ERR(trans)) {
9110 		ret = PTR_ERR(trans);
9111 		goto out_notrans;
9112 	}
9113 
9114 	if (dest != root) {
9115 		ret = btrfs_record_root_in_trans(trans, dest);
9116 		if (ret)
9117 			goto out_fail;
9118 	}
9119 
9120 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9121 	if (ret)
9122 		goto out_fail;
9123 
9124 	BTRFS_I(old_inode)->dir_index = 0ULL;
9125 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9126 		/* force full log commit if subvolume involved. */
9127 		btrfs_set_log_full_commit(trans);
9128 	} else {
9129 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9130 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9131 					     index);
9132 		if (ret)
9133 			goto out_fail;
9134 	}
9135 
9136 	inode_inc_iversion(old_dir);
9137 	inode_inc_iversion(new_dir);
9138 	inode_inc_iversion(old_inode);
9139 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9140 
9141 	if (old_dentry->d_parent != new_dentry->d_parent)
9142 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9143 					BTRFS_I(old_inode), true);
9144 
9145 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9146 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9147 	} else {
9148 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9149 					   BTRFS_I(d_inode(old_dentry)),
9150 					   &old_fname.disk_name, &rename_ctx);
9151 		if (!ret)
9152 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9153 	}
9154 	if (ret) {
9155 		btrfs_abort_transaction(trans, ret);
9156 		goto out_fail;
9157 	}
9158 
9159 	if (new_inode) {
9160 		inode_inc_iversion(new_inode);
9161 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9162 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9163 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9164 			BUG_ON(new_inode->i_nlink == 0);
9165 		} else {
9166 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9167 						 BTRFS_I(d_inode(new_dentry)),
9168 						 &new_fname.disk_name);
9169 		}
9170 		if (!ret && new_inode->i_nlink == 0)
9171 			ret = btrfs_orphan_add(trans,
9172 					BTRFS_I(d_inode(new_dentry)));
9173 		if (ret) {
9174 			btrfs_abort_transaction(trans, ret);
9175 			goto out_fail;
9176 		}
9177 	}
9178 
9179 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9180 			     &new_fname.disk_name, 0, index);
9181 	if (ret) {
9182 		btrfs_abort_transaction(trans, ret);
9183 		goto out_fail;
9184 	}
9185 
9186 	if (old_inode->i_nlink == 1)
9187 		BTRFS_I(old_inode)->dir_index = index;
9188 
9189 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9190 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9191 				   rename_ctx.index, new_dentry->d_parent);
9192 
9193 	if (flags & RENAME_WHITEOUT) {
9194 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9195 		if (ret) {
9196 			btrfs_abort_transaction(trans, ret);
9197 			goto out_fail;
9198 		} else {
9199 			unlock_new_inode(whiteout_args.inode);
9200 			iput(whiteout_args.inode);
9201 			whiteout_args.inode = NULL;
9202 		}
9203 	}
9204 out_fail:
9205 	ret2 = btrfs_end_transaction(trans);
9206 	ret = ret ? ret : ret2;
9207 out_notrans:
9208 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9209 		up_read(&fs_info->subvol_sem);
9210 	if (flags & RENAME_WHITEOUT)
9211 		btrfs_new_inode_args_destroy(&whiteout_args);
9212 out_whiteout_inode:
9213 	if (flags & RENAME_WHITEOUT)
9214 		iput(whiteout_args.inode);
9215 out_fscrypt_names:
9216 	fscrypt_free_filename(&old_fname);
9217 	fscrypt_free_filename(&new_fname);
9218 	return ret;
9219 }
9220 
9221 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9222 			 struct dentry *old_dentry, struct inode *new_dir,
9223 			 struct dentry *new_dentry, unsigned int flags)
9224 {
9225 	int ret;
9226 
9227 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9228 		return -EINVAL;
9229 
9230 	if (flags & RENAME_EXCHANGE)
9231 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9232 					    new_dentry);
9233 	else
9234 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9235 				   new_dentry, flags);
9236 
9237 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9238 
9239 	return ret;
9240 }
9241 
9242 struct btrfs_delalloc_work {
9243 	struct inode *inode;
9244 	struct completion completion;
9245 	struct list_head list;
9246 	struct btrfs_work work;
9247 };
9248 
9249 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9250 {
9251 	struct btrfs_delalloc_work *delalloc_work;
9252 	struct inode *inode;
9253 
9254 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9255 				     work);
9256 	inode = delalloc_work->inode;
9257 	filemap_flush(inode->i_mapping);
9258 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9259 				&BTRFS_I(inode)->runtime_flags))
9260 		filemap_flush(inode->i_mapping);
9261 
9262 	iput(inode);
9263 	complete(&delalloc_work->completion);
9264 }
9265 
9266 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9267 {
9268 	struct btrfs_delalloc_work *work;
9269 
9270 	work = kmalloc(sizeof(*work), GFP_NOFS);
9271 	if (!work)
9272 		return NULL;
9273 
9274 	init_completion(&work->completion);
9275 	INIT_LIST_HEAD(&work->list);
9276 	work->inode = inode;
9277 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9278 
9279 	return work;
9280 }
9281 
9282 /*
9283  * some fairly slow code that needs optimization. This walks the list
9284  * of all the inodes with pending delalloc and forces them to disk.
9285  */
9286 static int start_delalloc_inodes(struct btrfs_root *root,
9287 				 struct writeback_control *wbc, bool snapshot,
9288 				 bool in_reclaim_context)
9289 {
9290 	struct btrfs_inode *binode;
9291 	struct inode *inode;
9292 	struct btrfs_delalloc_work *work, *next;
9293 	LIST_HEAD(works);
9294 	LIST_HEAD(splice);
9295 	int ret = 0;
9296 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9297 
9298 	mutex_lock(&root->delalloc_mutex);
9299 	spin_lock(&root->delalloc_lock);
9300 	list_splice_init(&root->delalloc_inodes, &splice);
9301 	while (!list_empty(&splice)) {
9302 		binode = list_entry(splice.next, struct btrfs_inode,
9303 				    delalloc_inodes);
9304 
9305 		list_move_tail(&binode->delalloc_inodes,
9306 			       &root->delalloc_inodes);
9307 
9308 		if (in_reclaim_context &&
9309 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9310 			continue;
9311 
9312 		inode = igrab(&binode->vfs_inode);
9313 		if (!inode) {
9314 			cond_resched_lock(&root->delalloc_lock);
9315 			continue;
9316 		}
9317 		spin_unlock(&root->delalloc_lock);
9318 
9319 		if (snapshot)
9320 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9321 				&binode->runtime_flags);
9322 		if (full_flush) {
9323 			work = btrfs_alloc_delalloc_work(inode);
9324 			if (!work) {
9325 				iput(inode);
9326 				ret = -ENOMEM;
9327 				goto out;
9328 			}
9329 			list_add_tail(&work->list, &works);
9330 			btrfs_queue_work(root->fs_info->flush_workers,
9331 					 &work->work);
9332 		} else {
9333 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9334 			btrfs_add_delayed_iput(BTRFS_I(inode));
9335 			if (ret || wbc->nr_to_write <= 0)
9336 				goto out;
9337 		}
9338 		cond_resched();
9339 		spin_lock(&root->delalloc_lock);
9340 	}
9341 	spin_unlock(&root->delalloc_lock);
9342 
9343 out:
9344 	list_for_each_entry_safe(work, next, &works, list) {
9345 		list_del_init(&work->list);
9346 		wait_for_completion(&work->completion);
9347 		kfree(work);
9348 	}
9349 
9350 	if (!list_empty(&splice)) {
9351 		spin_lock(&root->delalloc_lock);
9352 		list_splice_tail(&splice, &root->delalloc_inodes);
9353 		spin_unlock(&root->delalloc_lock);
9354 	}
9355 	mutex_unlock(&root->delalloc_mutex);
9356 	return ret;
9357 }
9358 
9359 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9360 {
9361 	struct writeback_control wbc = {
9362 		.nr_to_write = LONG_MAX,
9363 		.sync_mode = WB_SYNC_NONE,
9364 		.range_start = 0,
9365 		.range_end = LLONG_MAX,
9366 	};
9367 	struct btrfs_fs_info *fs_info = root->fs_info;
9368 
9369 	if (BTRFS_FS_ERROR(fs_info))
9370 		return -EROFS;
9371 
9372 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9373 }
9374 
9375 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9376 			       bool in_reclaim_context)
9377 {
9378 	struct writeback_control wbc = {
9379 		.nr_to_write = nr,
9380 		.sync_mode = WB_SYNC_NONE,
9381 		.range_start = 0,
9382 		.range_end = LLONG_MAX,
9383 	};
9384 	struct btrfs_root *root;
9385 	LIST_HEAD(splice);
9386 	int ret;
9387 
9388 	if (BTRFS_FS_ERROR(fs_info))
9389 		return -EROFS;
9390 
9391 	mutex_lock(&fs_info->delalloc_root_mutex);
9392 	spin_lock(&fs_info->delalloc_root_lock);
9393 	list_splice_init(&fs_info->delalloc_roots, &splice);
9394 	while (!list_empty(&splice)) {
9395 		/*
9396 		 * Reset nr_to_write here so we know that we're doing a full
9397 		 * flush.
9398 		 */
9399 		if (nr == LONG_MAX)
9400 			wbc.nr_to_write = LONG_MAX;
9401 
9402 		root = list_first_entry(&splice, struct btrfs_root,
9403 					delalloc_root);
9404 		root = btrfs_grab_root(root);
9405 		BUG_ON(!root);
9406 		list_move_tail(&root->delalloc_root,
9407 			       &fs_info->delalloc_roots);
9408 		spin_unlock(&fs_info->delalloc_root_lock);
9409 
9410 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9411 		btrfs_put_root(root);
9412 		if (ret < 0 || wbc.nr_to_write <= 0)
9413 			goto out;
9414 		spin_lock(&fs_info->delalloc_root_lock);
9415 	}
9416 	spin_unlock(&fs_info->delalloc_root_lock);
9417 
9418 	ret = 0;
9419 out:
9420 	if (!list_empty(&splice)) {
9421 		spin_lock(&fs_info->delalloc_root_lock);
9422 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9423 		spin_unlock(&fs_info->delalloc_root_lock);
9424 	}
9425 	mutex_unlock(&fs_info->delalloc_root_mutex);
9426 	return ret;
9427 }
9428 
9429 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9430 			 struct dentry *dentry, const char *symname)
9431 {
9432 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9433 	struct btrfs_trans_handle *trans;
9434 	struct btrfs_root *root = BTRFS_I(dir)->root;
9435 	struct btrfs_path *path;
9436 	struct btrfs_key key;
9437 	struct inode *inode;
9438 	struct btrfs_new_inode_args new_inode_args = {
9439 		.dir = dir,
9440 		.dentry = dentry,
9441 	};
9442 	unsigned int trans_num_items;
9443 	int err;
9444 	int name_len;
9445 	int datasize;
9446 	unsigned long ptr;
9447 	struct btrfs_file_extent_item *ei;
9448 	struct extent_buffer *leaf;
9449 
9450 	name_len = strlen(symname);
9451 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9452 		return -ENAMETOOLONG;
9453 
9454 	inode = new_inode(dir->i_sb);
9455 	if (!inode)
9456 		return -ENOMEM;
9457 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9458 	inode->i_op = &btrfs_symlink_inode_operations;
9459 	inode_nohighmem(inode);
9460 	inode->i_mapping->a_ops = &btrfs_aops;
9461 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9462 	inode_set_bytes(inode, name_len);
9463 
9464 	new_inode_args.inode = inode;
9465 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9466 	if (err)
9467 		goto out_inode;
9468 	/* 1 additional item for the inline extent */
9469 	trans_num_items++;
9470 
9471 	trans = btrfs_start_transaction(root, trans_num_items);
9472 	if (IS_ERR(trans)) {
9473 		err = PTR_ERR(trans);
9474 		goto out_new_inode_args;
9475 	}
9476 
9477 	err = btrfs_create_new_inode(trans, &new_inode_args);
9478 	if (err)
9479 		goto out;
9480 
9481 	path = btrfs_alloc_path();
9482 	if (!path) {
9483 		err = -ENOMEM;
9484 		btrfs_abort_transaction(trans, err);
9485 		discard_new_inode(inode);
9486 		inode = NULL;
9487 		goto out;
9488 	}
9489 	key.objectid = btrfs_ino(BTRFS_I(inode));
9490 	key.offset = 0;
9491 	key.type = BTRFS_EXTENT_DATA_KEY;
9492 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9493 	err = btrfs_insert_empty_item(trans, root, path, &key,
9494 				      datasize);
9495 	if (err) {
9496 		btrfs_abort_transaction(trans, err);
9497 		btrfs_free_path(path);
9498 		discard_new_inode(inode);
9499 		inode = NULL;
9500 		goto out;
9501 	}
9502 	leaf = path->nodes[0];
9503 	ei = btrfs_item_ptr(leaf, path->slots[0],
9504 			    struct btrfs_file_extent_item);
9505 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9506 	btrfs_set_file_extent_type(leaf, ei,
9507 				   BTRFS_FILE_EXTENT_INLINE);
9508 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9509 	btrfs_set_file_extent_compression(leaf, ei, 0);
9510 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9511 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9512 
9513 	ptr = btrfs_file_extent_inline_start(ei);
9514 	write_extent_buffer(leaf, symname, ptr, name_len);
9515 	btrfs_mark_buffer_dirty(trans, leaf);
9516 	btrfs_free_path(path);
9517 
9518 	d_instantiate_new(dentry, inode);
9519 	err = 0;
9520 out:
9521 	btrfs_end_transaction(trans);
9522 	btrfs_btree_balance_dirty(fs_info);
9523 out_new_inode_args:
9524 	btrfs_new_inode_args_destroy(&new_inode_args);
9525 out_inode:
9526 	if (err)
9527 		iput(inode);
9528 	return err;
9529 }
9530 
9531 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9532 				       struct btrfs_trans_handle *trans_in,
9533 				       struct btrfs_inode *inode,
9534 				       struct btrfs_key *ins,
9535 				       u64 file_offset)
9536 {
9537 	struct btrfs_file_extent_item stack_fi;
9538 	struct btrfs_replace_extent_info extent_info;
9539 	struct btrfs_trans_handle *trans = trans_in;
9540 	struct btrfs_path *path;
9541 	u64 start = ins->objectid;
9542 	u64 len = ins->offset;
9543 	u64 qgroup_released = 0;
9544 	int ret;
9545 
9546 	memset(&stack_fi, 0, sizeof(stack_fi));
9547 
9548 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9549 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9550 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9551 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9552 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9553 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9554 	/* Encryption and other encoding is reserved and all 0 */
9555 
9556 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9557 	if (ret < 0)
9558 		return ERR_PTR(ret);
9559 
9560 	if (trans) {
9561 		ret = insert_reserved_file_extent(trans, inode,
9562 						  file_offset, &stack_fi,
9563 						  true, qgroup_released);
9564 		if (ret)
9565 			goto free_qgroup;
9566 		return trans;
9567 	}
9568 
9569 	extent_info.disk_offset = start;
9570 	extent_info.disk_len = len;
9571 	extent_info.data_offset = 0;
9572 	extent_info.data_len = len;
9573 	extent_info.file_offset = file_offset;
9574 	extent_info.extent_buf = (char *)&stack_fi;
9575 	extent_info.is_new_extent = true;
9576 	extent_info.update_times = true;
9577 	extent_info.qgroup_reserved = qgroup_released;
9578 	extent_info.insertions = 0;
9579 
9580 	path = btrfs_alloc_path();
9581 	if (!path) {
9582 		ret = -ENOMEM;
9583 		goto free_qgroup;
9584 	}
9585 
9586 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9587 				     file_offset + len - 1, &extent_info,
9588 				     &trans);
9589 	btrfs_free_path(path);
9590 	if (ret)
9591 		goto free_qgroup;
9592 	return trans;
9593 
9594 free_qgroup:
9595 	/*
9596 	 * We have released qgroup data range at the beginning of the function,
9597 	 * and normally qgroup_released bytes will be freed when committing
9598 	 * transaction.
9599 	 * But if we error out early, we have to free what we have released
9600 	 * or we leak qgroup data reservation.
9601 	 */
9602 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9603 			inode->root->root_key.objectid, qgroup_released,
9604 			BTRFS_QGROUP_RSV_DATA);
9605 	return ERR_PTR(ret);
9606 }
9607 
9608 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9609 				       u64 start, u64 num_bytes, u64 min_size,
9610 				       loff_t actual_len, u64 *alloc_hint,
9611 				       struct btrfs_trans_handle *trans)
9612 {
9613 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9614 	struct extent_map *em;
9615 	struct btrfs_root *root = BTRFS_I(inode)->root;
9616 	struct btrfs_key ins;
9617 	u64 cur_offset = start;
9618 	u64 clear_offset = start;
9619 	u64 i_size;
9620 	u64 cur_bytes;
9621 	u64 last_alloc = (u64)-1;
9622 	int ret = 0;
9623 	bool own_trans = true;
9624 	u64 end = start + num_bytes - 1;
9625 
9626 	if (trans)
9627 		own_trans = false;
9628 	while (num_bytes > 0) {
9629 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9630 		cur_bytes = max(cur_bytes, min_size);
9631 		/*
9632 		 * If we are severely fragmented we could end up with really
9633 		 * small allocations, so if the allocator is returning small
9634 		 * chunks lets make its job easier by only searching for those
9635 		 * sized chunks.
9636 		 */
9637 		cur_bytes = min(cur_bytes, last_alloc);
9638 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9639 				min_size, 0, *alloc_hint, &ins, 1, 0);
9640 		if (ret)
9641 			break;
9642 
9643 		/*
9644 		 * We've reserved this space, and thus converted it from
9645 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9646 		 * from here on out we will only need to clear our reservation
9647 		 * for the remaining unreserved area, so advance our
9648 		 * clear_offset by our extent size.
9649 		 */
9650 		clear_offset += ins.offset;
9651 
9652 		last_alloc = ins.offset;
9653 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9654 						    &ins, cur_offset);
9655 		/*
9656 		 * Now that we inserted the prealloc extent we can finally
9657 		 * decrement the number of reservations in the block group.
9658 		 * If we did it before, we could race with relocation and have
9659 		 * relocation miss the reserved extent, making it fail later.
9660 		 */
9661 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9662 		if (IS_ERR(trans)) {
9663 			ret = PTR_ERR(trans);
9664 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9665 						   ins.offset, 0);
9666 			break;
9667 		}
9668 
9669 		em = alloc_extent_map();
9670 		if (!em) {
9671 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9672 					    cur_offset + ins.offset - 1, false);
9673 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9674 			goto next;
9675 		}
9676 
9677 		em->start = cur_offset;
9678 		em->orig_start = cur_offset;
9679 		em->len = ins.offset;
9680 		em->block_start = ins.objectid;
9681 		em->block_len = ins.offset;
9682 		em->orig_block_len = ins.offset;
9683 		em->ram_bytes = ins.offset;
9684 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9685 		em->generation = trans->transid;
9686 
9687 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9688 		free_extent_map(em);
9689 next:
9690 		num_bytes -= ins.offset;
9691 		cur_offset += ins.offset;
9692 		*alloc_hint = ins.objectid + ins.offset;
9693 
9694 		inode_inc_iversion(inode);
9695 		inode_set_ctime_current(inode);
9696 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9697 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9698 		    (actual_len > inode->i_size) &&
9699 		    (cur_offset > inode->i_size)) {
9700 			if (cur_offset > actual_len)
9701 				i_size = actual_len;
9702 			else
9703 				i_size = cur_offset;
9704 			i_size_write(inode, i_size);
9705 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9706 		}
9707 
9708 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9709 
9710 		if (ret) {
9711 			btrfs_abort_transaction(trans, ret);
9712 			if (own_trans)
9713 				btrfs_end_transaction(trans);
9714 			break;
9715 		}
9716 
9717 		if (own_trans) {
9718 			btrfs_end_transaction(trans);
9719 			trans = NULL;
9720 		}
9721 	}
9722 	if (clear_offset < end)
9723 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9724 			end - clear_offset + 1);
9725 	return ret;
9726 }
9727 
9728 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9729 			      u64 start, u64 num_bytes, u64 min_size,
9730 			      loff_t actual_len, u64 *alloc_hint)
9731 {
9732 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9733 					   min_size, actual_len, alloc_hint,
9734 					   NULL);
9735 }
9736 
9737 int btrfs_prealloc_file_range_trans(struct inode *inode,
9738 				    struct btrfs_trans_handle *trans, int mode,
9739 				    u64 start, u64 num_bytes, u64 min_size,
9740 				    loff_t actual_len, u64 *alloc_hint)
9741 {
9742 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9743 					   min_size, actual_len, alloc_hint, trans);
9744 }
9745 
9746 static int btrfs_permission(struct mnt_idmap *idmap,
9747 			    struct inode *inode, int mask)
9748 {
9749 	struct btrfs_root *root = BTRFS_I(inode)->root;
9750 	umode_t mode = inode->i_mode;
9751 
9752 	if (mask & MAY_WRITE &&
9753 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9754 		if (btrfs_root_readonly(root))
9755 			return -EROFS;
9756 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9757 			return -EACCES;
9758 	}
9759 	return generic_permission(idmap, inode, mask);
9760 }
9761 
9762 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9763 			 struct file *file, umode_t mode)
9764 {
9765 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9766 	struct btrfs_trans_handle *trans;
9767 	struct btrfs_root *root = BTRFS_I(dir)->root;
9768 	struct inode *inode;
9769 	struct btrfs_new_inode_args new_inode_args = {
9770 		.dir = dir,
9771 		.dentry = file->f_path.dentry,
9772 		.orphan = true,
9773 	};
9774 	unsigned int trans_num_items;
9775 	int ret;
9776 
9777 	inode = new_inode(dir->i_sb);
9778 	if (!inode)
9779 		return -ENOMEM;
9780 	inode_init_owner(idmap, inode, dir, mode);
9781 	inode->i_fop = &btrfs_file_operations;
9782 	inode->i_op = &btrfs_file_inode_operations;
9783 	inode->i_mapping->a_ops = &btrfs_aops;
9784 
9785 	new_inode_args.inode = inode;
9786 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9787 	if (ret)
9788 		goto out_inode;
9789 
9790 	trans = btrfs_start_transaction(root, trans_num_items);
9791 	if (IS_ERR(trans)) {
9792 		ret = PTR_ERR(trans);
9793 		goto out_new_inode_args;
9794 	}
9795 
9796 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9797 
9798 	/*
9799 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9800 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9801 	 * 0, through:
9802 	 *
9803 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9804 	 */
9805 	set_nlink(inode, 1);
9806 
9807 	if (!ret) {
9808 		d_tmpfile(file, inode);
9809 		unlock_new_inode(inode);
9810 		mark_inode_dirty(inode);
9811 	}
9812 
9813 	btrfs_end_transaction(trans);
9814 	btrfs_btree_balance_dirty(fs_info);
9815 out_new_inode_args:
9816 	btrfs_new_inode_args_destroy(&new_inode_args);
9817 out_inode:
9818 	if (ret)
9819 		iput(inode);
9820 	return finish_open_simple(file, ret);
9821 }
9822 
9823 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9824 {
9825 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9826 	unsigned long index = start >> PAGE_SHIFT;
9827 	unsigned long end_index = end >> PAGE_SHIFT;
9828 	struct page *page;
9829 	u32 len;
9830 
9831 	ASSERT(end + 1 - start <= U32_MAX);
9832 	len = end + 1 - start;
9833 	while (index <= end_index) {
9834 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9835 		ASSERT(page); /* Pages should be in the extent_io_tree */
9836 
9837 		btrfs_page_set_writeback(fs_info, page, start, len);
9838 		put_page(page);
9839 		index++;
9840 	}
9841 }
9842 
9843 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9844 					     int compress_type)
9845 {
9846 	switch (compress_type) {
9847 	case BTRFS_COMPRESS_NONE:
9848 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9849 	case BTRFS_COMPRESS_ZLIB:
9850 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9851 	case BTRFS_COMPRESS_LZO:
9852 		/*
9853 		 * The LZO format depends on the sector size. 64K is the maximum
9854 		 * sector size that we support.
9855 		 */
9856 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9857 			return -EINVAL;
9858 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9859 		       (fs_info->sectorsize_bits - 12);
9860 	case BTRFS_COMPRESS_ZSTD:
9861 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9862 	default:
9863 		return -EUCLEAN;
9864 	}
9865 }
9866 
9867 static ssize_t btrfs_encoded_read_inline(
9868 				struct kiocb *iocb,
9869 				struct iov_iter *iter, u64 start,
9870 				u64 lockend,
9871 				struct extent_state **cached_state,
9872 				u64 extent_start, size_t count,
9873 				struct btrfs_ioctl_encoded_io_args *encoded,
9874 				bool *unlocked)
9875 {
9876 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9877 	struct btrfs_root *root = inode->root;
9878 	struct btrfs_fs_info *fs_info = root->fs_info;
9879 	struct extent_io_tree *io_tree = &inode->io_tree;
9880 	struct btrfs_path *path;
9881 	struct extent_buffer *leaf;
9882 	struct btrfs_file_extent_item *item;
9883 	u64 ram_bytes;
9884 	unsigned long ptr;
9885 	void *tmp;
9886 	ssize_t ret;
9887 
9888 	path = btrfs_alloc_path();
9889 	if (!path) {
9890 		ret = -ENOMEM;
9891 		goto out;
9892 	}
9893 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9894 				       extent_start, 0);
9895 	if (ret) {
9896 		if (ret > 0) {
9897 			/* The extent item disappeared? */
9898 			ret = -EIO;
9899 		}
9900 		goto out;
9901 	}
9902 	leaf = path->nodes[0];
9903 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9904 
9905 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9906 	ptr = btrfs_file_extent_inline_start(item);
9907 
9908 	encoded->len = min_t(u64, extent_start + ram_bytes,
9909 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9910 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9911 				 btrfs_file_extent_compression(leaf, item));
9912 	if (ret < 0)
9913 		goto out;
9914 	encoded->compression = ret;
9915 	if (encoded->compression) {
9916 		size_t inline_size;
9917 
9918 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9919 								path->slots[0]);
9920 		if (inline_size > count) {
9921 			ret = -ENOBUFS;
9922 			goto out;
9923 		}
9924 		count = inline_size;
9925 		encoded->unencoded_len = ram_bytes;
9926 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9927 	} else {
9928 		count = min_t(u64, count, encoded->len);
9929 		encoded->len = count;
9930 		encoded->unencoded_len = count;
9931 		ptr += iocb->ki_pos - extent_start;
9932 	}
9933 
9934 	tmp = kmalloc(count, GFP_NOFS);
9935 	if (!tmp) {
9936 		ret = -ENOMEM;
9937 		goto out;
9938 	}
9939 	read_extent_buffer(leaf, tmp, ptr, count);
9940 	btrfs_release_path(path);
9941 	unlock_extent(io_tree, start, lockend, cached_state);
9942 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9943 	*unlocked = true;
9944 
9945 	ret = copy_to_iter(tmp, count, iter);
9946 	if (ret != count)
9947 		ret = -EFAULT;
9948 	kfree(tmp);
9949 out:
9950 	btrfs_free_path(path);
9951 	return ret;
9952 }
9953 
9954 struct btrfs_encoded_read_private {
9955 	wait_queue_head_t wait;
9956 	atomic_t pending;
9957 	blk_status_t status;
9958 };
9959 
9960 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9961 {
9962 	struct btrfs_encoded_read_private *priv = bbio->private;
9963 
9964 	if (bbio->bio.bi_status) {
9965 		/*
9966 		 * The memory barrier implied by the atomic_dec_return() here
9967 		 * pairs with the memory barrier implied by the
9968 		 * atomic_dec_return() or io_wait_event() in
9969 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9970 		 * write is observed before the load of status in
9971 		 * btrfs_encoded_read_regular_fill_pages().
9972 		 */
9973 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9974 	}
9975 	if (!atomic_dec_return(&priv->pending))
9976 		wake_up(&priv->wait);
9977 	bio_put(&bbio->bio);
9978 }
9979 
9980 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9981 					  u64 file_offset, u64 disk_bytenr,
9982 					  u64 disk_io_size, struct page **pages)
9983 {
9984 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9985 	struct btrfs_encoded_read_private priv = {
9986 		.pending = ATOMIC_INIT(1),
9987 	};
9988 	unsigned long i = 0;
9989 	struct btrfs_bio *bbio;
9990 
9991 	init_waitqueue_head(&priv.wait);
9992 
9993 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9994 			       btrfs_encoded_read_endio, &priv);
9995 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9996 	bbio->inode = inode;
9997 
9998 	do {
9999 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10000 
10001 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10002 			atomic_inc(&priv.pending);
10003 			btrfs_submit_bio(bbio, 0);
10004 
10005 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10006 					       btrfs_encoded_read_endio, &priv);
10007 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10008 			bbio->inode = inode;
10009 			continue;
10010 		}
10011 
10012 		i++;
10013 		disk_bytenr += bytes;
10014 		disk_io_size -= bytes;
10015 	} while (disk_io_size);
10016 
10017 	atomic_inc(&priv.pending);
10018 	btrfs_submit_bio(bbio, 0);
10019 
10020 	if (atomic_dec_return(&priv.pending))
10021 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10022 	/* See btrfs_encoded_read_endio() for ordering. */
10023 	return blk_status_to_errno(READ_ONCE(priv.status));
10024 }
10025 
10026 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10027 					  struct iov_iter *iter,
10028 					  u64 start, u64 lockend,
10029 					  struct extent_state **cached_state,
10030 					  u64 disk_bytenr, u64 disk_io_size,
10031 					  size_t count, bool compressed,
10032 					  bool *unlocked)
10033 {
10034 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10035 	struct extent_io_tree *io_tree = &inode->io_tree;
10036 	struct page **pages;
10037 	unsigned long nr_pages, i;
10038 	u64 cur;
10039 	size_t page_offset;
10040 	ssize_t ret;
10041 
10042 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10043 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10044 	if (!pages)
10045 		return -ENOMEM;
10046 	ret = btrfs_alloc_page_array(nr_pages, pages);
10047 	if (ret) {
10048 		ret = -ENOMEM;
10049 		goto out;
10050 		}
10051 
10052 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10053 						    disk_io_size, pages);
10054 	if (ret)
10055 		goto out;
10056 
10057 	unlock_extent(io_tree, start, lockend, cached_state);
10058 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10059 	*unlocked = true;
10060 
10061 	if (compressed) {
10062 		i = 0;
10063 		page_offset = 0;
10064 	} else {
10065 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10066 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10067 	}
10068 	cur = 0;
10069 	while (cur < count) {
10070 		size_t bytes = min_t(size_t, count - cur,
10071 				     PAGE_SIZE - page_offset);
10072 
10073 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10074 				      iter) != bytes) {
10075 			ret = -EFAULT;
10076 			goto out;
10077 		}
10078 		i++;
10079 		cur += bytes;
10080 		page_offset = 0;
10081 	}
10082 	ret = count;
10083 out:
10084 	for (i = 0; i < nr_pages; i++) {
10085 		if (pages[i])
10086 			__free_page(pages[i]);
10087 	}
10088 	kfree(pages);
10089 	return ret;
10090 }
10091 
10092 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10093 			   struct btrfs_ioctl_encoded_io_args *encoded)
10094 {
10095 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10096 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10097 	struct extent_io_tree *io_tree = &inode->io_tree;
10098 	ssize_t ret;
10099 	size_t count = iov_iter_count(iter);
10100 	u64 start, lockend, disk_bytenr, disk_io_size;
10101 	struct extent_state *cached_state = NULL;
10102 	struct extent_map *em;
10103 	bool unlocked = false;
10104 
10105 	file_accessed(iocb->ki_filp);
10106 
10107 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10108 
10109 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10110 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10111 		return 0;
10112 	}
10113 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10114 	/*
10115 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10116 	 * it's compressed we know that it won't be longer than this.
10117 	 */
10118 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10119 
10120 	for (;;) {
10121 		struct btrfs_ordered_extent *ordered;
10122 
10123 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10124 					       lockend - start + 1);
10125 		if (ret)
10126 			goto out_unlock_inode;
10127 		lock_extent(io_tree, start, lockend, &cached_state);
10128 		ordered = btrfs_lookup_ordered_range(inode, start,
10129 						     lockend - start + 1);
10130 		if (!ordered)
10131 			break;
10132 		btrfs_put_ordered_extent(ordered);
10133 		unlock_extent(io_tree, start, lockend, &cached_state);
10134 		cond_resched();
10135 	}
10136 
10137 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10138 	if (IS_ERR(em)) {
10139 		ret = PTR_ERR(em);
10140 		goto out_unlock_extent;
10141 	}
10142 
10143 	if (em->block_start == EXTENT_MAP_INLINE) {
10144 		u64 extent_start = em->start;
10145 
10146 		/*
10147 		 * For inline extents we get everything we need out of the
10148 		 * extent item.
10149 		 */
10150 		free_extent_map(em);
10151 		em = NULL;
10152 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10153 						&cached_state, extent_start,
10154 						count, encoded, &unlocked);
10155 		goto out;
10156 	}
10157 
10158 	/*
10159 	 * We only want to return up to EOF even if the extent extends beyond
10160 	 * that.
10161 	 */
10162 	encoded->len = min_t(u64, extent_map_end(em),
10163 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10164 	if (em->block_start == EXTENT_MAP_HOLE ||
10165 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10166 		disk_bytenr = EXTENT_MAP_HOLE;
10167 		count = min_t(u64, count, encoded->len);
10168 		encoded->len = count;
10169 		encoded->unencoded_len = count;
10170 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10171 		disk_bytenr = em->block_start;
10172 		/*
10173 		 * Bail if the buffer isn't large enough to return the whole
10174 		 * compressed extent.
10175 		 */
10176 		if (em->block_len > count) {
10177 			ret = -ENOBUFS;
10178 			goto out_em;
10179 		}
10180 		disk_io_size = em->block_len;
10181 		count = em->block_len;
10182 		encoded->unencoded_len = em->ram_bytes;
10183 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10184 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10185 							     em->compress_type);
10186 		if (ret < 0)
10187 			goto out_em;
10188 		encoded->compression = ret;
10189 	} else {
10190 		disk_bytenr = em->block_start + (start - em->start);
10191 		if (encoded->len > count)
10192 			encoded->len = count;
10193 		/*
10194 		 * Don't read beyond what we locked. This also limits the page
10195 		 * allocations that we'll do.
10196 		 */
10197 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10198 		count = start + disk_io_size - iocb->ki_pos;
10199 		encoded->len = count;
10200 		encoded->unencoded_len = count;
10201 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10202 	}
10203 	free_extent_map(em);
10204 	em = NULL;
10205 
10206 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10207 		unlock_extent(io_tree, start, lockend, &cached_state);
10208 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10209 		unlocked = true;
10210 		ret = iov_iter_zero(count, iter);
10211 		if (ret != count)
10212 			ret = -EFAULT;
10213 	} else {
10214 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10215 						 &cached_state, disk_bytenr,
10216 						 disk_io_size, count,
10217 						 encoded->compression,
10218 						 &unlocked);
10219 	}
10220 
10221 out:
10222 	if (ret >= 0)
10223 		iocb->ki_pos += encoded->len;
10224 out_em:
10225 	free_extent_map(em);
10226 out_unlock_extent:
10227 	if (!unlocked)
10228 		unlock_extent(io_tree, start, lockend, &cached_state);
10229 out_unlock_inode:
10230 	if (!unlocked)
10231 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10232 	return ret;
10233 }
10234 
10235 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10236 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10237 {
10238 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10239 	struct btrfs_root *root = inode->root;
10240 	struct btrfs_fs_info *fs_info = root->fs_info;
10241 	struct extent_io_tree *io_tree = &inode->io_tree;
10242 	struct extent_changeset *data_reserved = NULL;
10243 	struct extent_state *cached_state = NULL;
10244 	struct btrfs_ordered_extent *ordered;
10245 	int compression;
10246 	size_t orig_count;
10247 	u64 start, end;
10248 	u64 num_bytes, ram_bytes, disk_num_bytes;
10249 	unsigned long nr_pages, i;
10250 	struct page **pages;
10251 	struct btrfs_key ins;
10252 	bool extent_reserved = false;
10253 	struct extent_map *em;
10254 	ssize_t ret;
10255 
10256 	switch (encoded->compression) {
10257 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10258 		compression = BTRFS_COMPRESS_ZLIB;
10259 		break;
10260 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10261 		compression = BTRFS_COMPRESS_ZSTD;
10262 		break;
10263 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10264 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10265 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10266 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10267 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10268 		/* The sector size must match for LZO. */
10269 		if (encoded->compression -
10270 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10271 		    fs_info->sectorsize_bits)
10272 			return -EINVAL;
10273 		compression = BTRFS_COMPRESS_LZO;
10274 		break;
10275 	default:
10276 		return -EINVAL;
10277 	}
10278 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10279 		return -EINVAL;
10280 
10281 	/*
10282 	 * Compressed extents should always have checksums, so error out if we
10283 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10284 	 */
10285 	if (inode->flags & BTRFS_INODE_NODATASUM)
10286 		return -EINVAL;
10287 
10288 	orig_count = iov_iter_count(from);
10289 
10290 	/* The extent size must be sane. */
10291 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10292 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10293 		return -EINVAL;
10294 
10295 	/*
10296 	 * The compressed data must be smaller than the decompressed data.
10297 	 *
10298 	 * It's of course possible for data to compress to larger or the same
10299 	 * size, but the buffered I/O path falls back to no compression for such
10300 	 * data, and we don't want to break any assumptions by creating these
10301 	 * extents.
10302 	 *
10303 	 * Note that this is less strict than the current check we have that the
10304 	 * compressed data must be at least one sector smaller than the
10305 	 * decompressed data. We only want to enforce the weaker requirement
10306 	 * from old kernels that it is at least one byte smaller.
10307 	 */
10308 	if (orig_count >= encoded->unencoded_len)
10309 		return -EINVAL;
10310 
10311 	/* The extent must start on a sector boundary. */
10312 	start = iocb->ki_pos;
10313 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10314 		return -EINVAL;
10315 
10316 	/*
10317 	 * The extent must end on a sector boundary. However, we allow a write
10318 	 * which ends at or extends i_size to have an unaligned length; we round
10319 	 * up the extent size and set i_size to the unaligned end.
10320 	 */
10321 	if (start + encoded->len < inode->vfs_inode.i_size &&
10322 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10323 		return -EINVAL;
10324 
10325 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10326 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10327 		return -EINVAL;
10328 
10329 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10330 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10331 	end = start + num_bytes - 1;
10332 
10333 	/*
10334 	 * If the extent cannot be inline, the compressed data on disk must be
10335 	 * sector-aligned. For convenience, we extend it with zeroes if it
10336 	 * isn't.
10337 	 */
10338 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10339 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10340 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10341 	if (!pages)
10342 		return -ENOMEM;
10343 	for (i = 0; i < nr_pages; i++) {
10344 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10345 		char *kaddr;
10346 
10347 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10348 		if (!pages[i]) {
10349 			ret = -ENOMEM;
10350 			goto out_pages;
10351 		}
10352 		kaddr = kmap_local_page(pages[i]);
10353 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10354 			kunmap_local(kaddr);
10355 			ret = -EFAULT;
10356 			goto out_pages;
10357 		}
10358 		if (bytes < PAGE_SIZE)
10359 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10360 		kunmap_local(kaddr);
10361 	}
10362 
10363 	for (;;) {
10364 		struct btrfs_ordered_extent *ordered;
10365 
10366 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10367 		if (ret)
10368 			goto out_pages;
10369 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10370 						    start >> PAGE_SHIFT,
10371 						    end >> PAGE_SHIFT);
10372 		if (ret)
10373 			goto out_pages;
10374 		lock_extent(io_tree, start, end, &cached_state);
10375 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10376 		if (!ordered &&
10377 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10378 			break;
10379 		if (ordered)
10380 			btrfs_put_ordered_extent(ordered);
10381 		unlock_extent(io_tree, start, end, &cached_state);
10382 		cond_resched();
10383 	}
10384 
10385 	/*
10386 	 * We don't use the higher-level delalloc space functions because our
10387 	 * num_bytes and disk_num_bytes are different.
10388 	 */
10389 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10390 	if (ret)
10391 		goto out_unlock;
10392 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10393 	if (ret)
10394 		goto out_free_data_space;
10395 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10396 					      false);
10397 	if (ret)
10398 		goto out_qgroup_free_data;
10399 
10400 	/* Try an inline extent first. */
10401 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10402 	    encoded->unencoded_offset == 0) {
10403 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10404 					    compression, pages, true);
10405 		if (ret <= 0) {
10406 			if (ret == 0)
10407 				ret = orig_count;
10408 			goto out_delalloc_release;
10409 		}
10410 	}
10411 
10412 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10413 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10414 	if (ret)
10415 		goto out_delalloc_release;
10416 	extent_reserved = true;
10417 
10418 	em = create_io_em(inode, start, num_bytes,
10419 			  start - encoded->unencoded_offset, ins.objectid,
10420 			  ins.offset, ins.offset, ram_bytes, compression,
10421 			  BTRFS_ORDERED_COMPRESSED);
10422 	if (IS_ERR(em)) {
10423 		ret = PTR_ERR(em);
10424 		goto out_free_reserved;
10425 	}
10426 	free_extent_map(em);
10427 
10428 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10429 				       ins.objectid, ins.offset,
10430 				       encoded->unencoded_offset,
10431 				       (1 << BTRFS_ORDERED_ENCODED) |
10432 				       (1 << BTRFS_ORDERED_COMPRESSED),
10433 				       compression);
10434 	if (IS_ERR(ordered)) {
10435 		btrfs_drop_extent_map_range(inode, start, end, false);
10436 		ret = PTR_ERR(ordered);
10437 		goto out_free_reserved;
10438 	}
10439 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10440 
10441 	if (start + encoded->len > inode->vfs_inode.i_size)
10442 		i_size_write(&inode->vfs_inode, start + encoded->len);
10443 
10444 	unlock_extent(io_tree, start, end, &cached_state);
10445 
10446 	btrfs_delalloc_release_extents(inode, num_bytes);
10447 
10448 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10449 	ret = orig_count;
10450 	goto out;
10451 
10452 out_free_reserved:
10453 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10454 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10455 out_delalloc_release:
10456 	btrfs_delalloc_release_extents(inode, num_bytes);
10457 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10458 out_qgroup_free_data:
10459 	if (ret < 0)
10460 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10461 out_free_data_space:
10462 	/*
10463 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10464 	 * bytes_may_use.
10465 	 */
10466 	if (!extent_reserved)
10467 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10468 out_unlock:
10469 	unlock_extent(io_tree, start, end, &cached_state);
10470 out_pages:
10471 	for (i = 0; i < nr_pages; i++) {
10472 		if (pages[i])
10473 			__free_page(pages[i]);
10474 	}
10475 	kvfree(pages);
10476 out:
10477 	if (ret >= 0)
10478 		iocb->ki_pos += encoded->len;
10479 	return ret;
10480 }
10481 
10482 #ifdef CONFIG_SWAP
10483 /*
10484  * Add an entry indicating a block group or device which is pinned by a
10485  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10486  * negative errno on failure.
10487  */
10488 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10489 				  bool is_block_group)
10490 {
10491 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10492 	struct btrfs_swapfile_pin *sp, *entry;
10493 	struct rb_node **p;
10494 	struct rb_node *parent = NULL;
10495 
10496 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10497 	if (!sp)
10498 		return -ENOMEM;
10499 	sp->ptr = ptr;
10500 	sp->inode = inode;
10501 	sp->is_block_group = is_block_group;
10502 	sp->bg_extent_count = 1;
10503 
10504 	spin_lock(&fs_info->swapfile_pins_lock);
10505 	p = &fs_info->swapfile_pins.rb_node;
10506 	while (*p) {
10507 		parent = *p;
10508 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10509 		if (sp->ptr < entry->ptr ||
10510 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10511 			p = &(*p)->rb_left;
10512 		} else if (sp->ptr > entry->ptr ||
10513 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10514 			p = &(*p)->rb_right;
10515 		} else {
10516 			if (is_block_group)
10517 				entry->bg_extent_count++;
10518 			spin_unlock(&fs_info->swapfile_pins_lock);
10519 			kfree(sp);
10520 			return 1;
10521 		}
10522 	}
10523 	rb_link_node(&sp->node, parent, p);
10524 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10525 	spin_unlock(&fs_info->swapfile_pins_lock);
10526 	return 0;
10527 }
10528 
10529 /* Free all of the entries pinned by this swapfile. */
10530 static void btrfs_free_swapfile_pins(struct inode *inode)
10531 {
10532 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10533 	struct btrfs_swapfile_pin *sp;
10534 	struct rb_node *node, *next;
10535 
10536 	spin_lock(&fs_info->swapfile_pins_lock);
10537 	node = rb_first(&fs_info->swapfile_pins);
10538 	while (node) {
10539 		next = rb_next(node);
10540 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10541 		if (sp->inode == inode) {
10542 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10543 			if (sp->is_block_group) {
10544 				btrfs_dec_block_group_swap_extents(sp->ptr,
10545 							   sp->bg_extent_count);
10546 				btrfs_put_block_group(sp->ptr);
10547 			}
10548 			kfree(sp);
10549 		}
10550 		node = next;
10551 	}
10552 	spin_unlock(&fs_info->swapfile_pins_lock);
10553 }
10554 
10555 struct btrfs_swap_info {
10556 	u64 start;
10557 	u64 block_start;
10558 	u64 block_len;
10559 	u64 lowest_ppage;
10560 	u64 highest_ppage;
10561 	unsigned long nr_pages;
10562 	int nr_extents;
10563 };
10564 
10565 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10566 				 struct btrfs_swap_info *bsi)
10567 {
10568 	unsigned long nr_pages;
10569 	unsigned long max_pages;
10570 	u64 first_ppage, first_ppage_reported, next_ppage;
10571 	int ret;
10572 
10573 	/*
10574 	 * Our swapfile may have had its size extended after the swap header was
10575 	 * written. In that case activating the swapfile should not go beyond
10576 	 * the max size set in the swap header.
10577 	 */
10578 	if (bsi->nr_pages >= sis->max)
10579 		return 0;
10580 
10581 	max_pages = sis->max - bsi->nr_pages;
10582 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10583 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10584 
10585 	if (first_ppage >= next_ppage)
10586 		return 0;
10587 	nr_pages = next_ppage - first_ppage;
10588 	nr_pages = min(nr_pages, max_pages);
10589 
10590 	first_ppage_reported = first_ppage;
10591 	if (bsi->start == 0)
10592 		first_ppage_reported++;
10593 	if (bsi->lowest_ppage > first_ppage_reported)
10594 		bsi->lowest_ppage = first_ppage_reported;
10595 	if (bsi->highest_ppage < (next_ppage - 1))
10596 		bsi->highest_ppage = next_ppage - 1;
10597 
10598 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10599 	if (ret < 0)
10600 		return ret;
10601 	bsi->nr_extents += ret;
10602 	bsi->nr_pages += nr_pages;
10603 	return 0;
10604 }
10605 
10606 static void btrfs_swap_deactivate(struct file *file)
10607 {
10608 	struct inode *inode = file_inode(file);
10609 
10610 	btrfs_free_swapfile_pins(inode);
10611 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10612 }
10613 
10614 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10615 			       sector_t *span)
10616 {
10617 	struct inode *inode = file_inode(file);
10618 	struct btrfs_root *root = BTRFS_I(inode)->root;
10619 	struct btrfs_fs_info *fs_info = root->fs_info;
10620 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10621 	struct extent_state *cached_state = NULL;
10622 	struct extent_map *em = NULL;
10623 	struct btrfs_device *device = NULL;
10624 	struct btrfs_swap_info bsi = {
10625 		.lowest_ppage = (sector_t)-1ULL,
10626 	};
10627 	int ret = 0;
10628 	u64 isize;
10629 	u64 start;
10630 
10631 	/*
10632 	 * If the swap file was just created, make sure delalloc is done. If the
10633 	 * file changes again after this, the user is doing something stupid and
10634 	 * we don't really care.
10635 	 */
10636 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10637 	if (ret)
10638 		return ret;
10639 
10640 	/*
10641 	 * The inode is locked, so these flags won't change after we check them.
10642 	 */
10643 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10644 		btrfs_warn(fs_info, "swapfile must not be compressed");
10645 		return -EINVAL;
10646 	}
10647 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10648 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10649 		return -EINVAL;
10650 	}
10651 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10652 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10653 		return -EINVAL;
10654 	}
10655 
10656 	/*
10657 	 * Balance or device remove/replace/resize can move stuff around from
10658 	 * under us. The exclop protection makes sure they aren't running/won't
10659 	 * run concurrently while we are mapping the swap extents, and
10660 	 * fs_info->swapfile_pins prevents them from running while the swap
10661 	 * file is active and moving the extents. Note that this also prevents
10662 	 * a concurrent device add which isn't actually necessary, but it's not
10663 	 * really worth the trouble to allow it.
10664 	 */
10665 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10666 		btrfs_warn(fs_info,
10667 	   "cannot activate swapfile while exclusive operation is running");
10668 		return -EBUSY;
10669 	}
10670 
10671 	/*
10672 	 * Prevent snapshot creation while we are activating the swap file.
10673 	 * We do not want to race with snapshot creation. If snapshot creation
10674 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10675 	 * completes before the first write into the swap file after it is
10676 	 * activated, than that write would fallback to COW.
10677 	 */
10678 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10679 		btrfs_exclop_finish(fs_info);
10680 		btrfs_warn(fs_info,
10681 	   "cannot activate swapfile because snapshot creation is in progress");
10682 		return -EINVAL;
10683 	}
10684 	/*
10685 	 * Snapshots can create extents which require COW even if NODATACOW is
10686 	 * set. We use this counter to prevent snapshots. We must increment it
10687 	 * before walking the extents because we don't want a concurrent
10688 	 * snapshot to run after we've already checked the extents.
10689 	 *
10690 	 * It is possible that subvolume is marked for deletion but still not
10691 	 * removed yet. To prevent this race, we check the root status before
10692 	 * activating the swapfile.
10693 	 */
10694 	spin_lock(&root->root_item_lock);
10695 	if (btrfs_root_dead(root)) {
10696 		spin_unlock(&root->root_item_lock);
10697 
10698 		btrfs_exclop_finish(fs_info);
10699 		btrfs_warn(fs_info,
10700 		"cannot activate swapfile because subvolume %llu is being deleted",
10701 			root->root_key.objectid);
10702 		return -EPERM;
10703 	}
10704 	atomic_inc(&root->nr_swapfiles);
10705 	spin_unlock(&root->root_item_lock);
10706 
10707 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10708 
10709 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10710 	start = 0;
10711 	while (start < isize) {
10712 		u64 logical_block_start, physical_block_start;
10713 		struct btrfs_block_group *bg;
10714 		u64 len = isize - start;
10715 
10716 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10717 		if (IS_ERR(em)) {
10718 			ret = PTR_ERR(em);
10719 			goto out;
10720 		}
10721 
10722 		if (em->block_start == EXTENT_MAP_HOLE) {
10723 			btrfs_warn(fs_info, "swapfile must not have holes");
10724 			ret = -EINVAL;
10725 			goto out;
10726 		}
10727 		if (em->block_start == EXTENT_MAP_INLINE) {
10728 			/*
10729 			 * It's unlikely we'll ever actually find ourselves
10730 			 * here, as a file small enough to fit inline won't be
10731 			 * big enough to store more than the swap header, but in
10732 			 * case something changes in the future, let's catch it
10733 			 * here rather than later.
10734 			 */
10735 			btrfs_warn(fs_info, "swapfile must not be inline");
10736 			ret = -EINVAL;
10737 			goto out;
10738 		}
10739 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10740 			btrfs_warn(fs_info, "swapfile must not be compressed");
10741 			ret = -EINVAL;
10742 			goto out;
10743 		}
10744 
10745 		logical_block_start = em->block_start + (start - em->start);
10746 		len = min(len, em->len - (start - em->start));
10747 		free_extent_map(em);
10748 		em = NULL;
10749 
10750 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10751 		if (ret < 0) {
10752 			goto out;
10753 		} else if (ret) {
10754 			ret = 0;
10755 		} else {
10756 			btrfs_warn(fs_info,
10757 				   "swapfile must not be copy-on-write");
10758 			ret = -EINVAL;
10759 			goto out;
10760 		}
10761 
10762 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10763 		if (IS_ERR(em)) {
10764 			ret = PTR_ERR(em);
10765 			goto out;
10766 		}
10767 
10768 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10769 			btrfs_warn(fs_info,
10770 				   "swapfile must have single data profile");
10771 			ret = -EINVAL;
10772 			goto out;
10773 		}
10774 
10775 		if (device == NULL) {
10776 			device = em->map_lookup->stripes[0].dev;
10777 			ret = btrfs_add_swapfile_pin(inode, device, false);
10778 			if (ret == 1)
10779 				ret = 0;
10780 			else if (ret)
10781 				goto out;
10782 		} else if (device != em->map_lookup->stripes[0].dev) {
10783 			btrfs_warn(fs_info, "swapfile must be on one device");
10784 			ret = -EINVAL;
10785 			goto out;
10786 		}
10787 
10788 		physical_block_start = (em->map_lookup->stripes[0].physical +
10789 					(logical_block_start - em->start));
10790 		len = min(len, em->len - (logical_block_start - em->start));
10791 		free_extent_map(em);
10792 		em = NULL;
10793 
10794 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10795 		if (!bg) {
10796 			btrfs_warn(fs_info,
10797 			   "could not find block group containing swapfile");
10798 			ret = -EINVAL;
10799 			goto out;
10800 		}
10801 
10802 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10803 			btrfs_warn(fs_info,
10804 			   "block group for swapfile at %llu is read-only%s",
10805 			   bg->start,
10806 			   atomic_read(&fs_info->scrubs_running) ?
10807 				       " (scrub running)" : "");
10808 			btrfs_put_block_group(bg);
10809 			ret = -EINVAL;
10810 			goto out;
10811 		}
10812 
10813 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10814 		if (ret) {
10815 			btrfs_put_block_group(bg);
10816 			if (ret == 1)
10817 				ret = 0;
10818 			else
10819 				goto out;
10820 		}
10821 
10822 		if (bsi.block_len &&
10823 		    bsi.block_start + bsi.block_len == physical_block_start) {
10824 			bsi.block_len += len;
10825 		} else {
10826 			if (bsi.block_len) {
10827 				ret = btrfs_add_swap_extent(sis, &bsi);
10828 				if (ret)
10829 					goto out;
10830 			}
10831 			bsi.start = start;
10832 			bsi.block_start = physical_block_start;
10833 			bsi.block_len = len;
10834 		}
10835 
10836 		start += len;
10837 	}
10838 
10839 	if (bsi.block_len)
10840 		ret = btrfs_add_swap_extent(sis, &bsi);
10841 
10842 out:
10843 	if (!IS_ERR_OR_NULL(em))
10844 		free_extent_map(em);
10845 
10846 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10847 
10848 	if (ret)
10849 		btrfs_swap_deactivate(file);
10850 
10851 	btrfs_drew_write_unlock(&root->snapshot_lock);
10852 
10853 	btrfs_exclop_finish(fs_info);
10854 
10855 	if (ret)
10856 		return ret;
10857 
10858 	if (device)
10859 		sis->bdev = device->bdev;
10860 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10861 	sis->max = bsi.nr_pages;
10862 	sis->pages = bsi.nr_pages - 1;
10863 	sis->highest_bit = bsi.nr_pages - 1;
10864 	return bsi.nr_extents;
10865 }
10866 #else
10867 static void btrfs_swap_deactivate(struct file *file)
10868 {
10869 }
10870 
10871 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10872 			       sector_t *span)
10873 {
10874 	return -EOPNOTSUPP;
10875 }
10876 #endif
10877 
10878 /*
10879  * Update the number of bytes used in the VFS' inode. When we replace extents in
10880  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10881  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10882  * always get a correct value.
10883  */
10884 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10885 			      const u64 add_bytes,
10886 			      const u64 del_bytes)
10887 {
10888 	if (add_bytes == del_bytes)
10889 		return;
10890 
10891 	spin_lock(&inode->lock);
10892 	if (del_bytes > 0)
10893 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10894 	if (add_bytes > 0)
10895 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10896 	spin_unlock(&inode->lock);
10897 }
10898 
10899 /*
10900  * Verify that there are no ordered extents for a given file range.
10901  *
10902  * @inode:   The target inode.
10903  * @start:   Start offset of the file range, should be sector size aligned.
10904  * @end:     End offset (inclusive) of the file range, its value +1 should be
10905  *           sector size aligned.
10906  *
10907  * This should typically be used for cases where we locked an inode's VFS lock in
10908  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10909  * we have flushed all delalloc in the range, we have waited for all ordered
10910  * extents in the range to complete and finally we have locked the file range in
10911  * the inode's io_tree.
10912  */
10913 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10914 {
10915 	struct btrfs_root *root = inode->root;
10916 	struct btrfs_ordered_extent *ordered;
10917 
10918 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10919 		return;
10920 
10921 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10922 	if (ordered) {
10923 		btrfs_err(root->fs_info,
10924 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10925 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10926 			  ordered->file_offset,
10927 			  ordered->file_offset + ordered->num_bytes - 1);
10928 		btrfs_put_ordered_extent(ordered);
10929 	}
10930 
10931 	ASSERT(ordered == NULL);
10932 }
10933 
10934 static const struct inode_operations btrfs_dir_inode_operations = {
10935 	.getattr	= btrfs_getattr,
10936 	.lookup		= btrfs_lookup,
10937 	.create		= btrfs_create,
10938 	.unlink		= btrfs_unlink,
10939 	.link		= btrfs_link,
10940 	.mkdir		= btrfs_mkdir,
10941 	.rmdir		= btrfs_rmdir,
10942 	.rename		= btrfs_rename2,
10943 	.symlink	= btrfs_symlink,
10944 	.setattr	= btrfs_setattr,
10945 	.mknod		= btrfs_mknod,
10946 	.listxattr	= btrfs_listxattr,
10947 	.permission	= btrfs_permission,
10948 	.get_inode_acl	= btrfs_get_acl,
10949 	.set_acl	= btrfs_set_acl,
10950 	.update_time	= btrfs_update_time,
10951 	.tmpfile        = btrfs_tmpfile,
10952 	.fileattr_get	= btrfs_fileattr_get,
10953 	.fileattr_set	= btrfs_fileattr_set,
10954 };
10955 
10956 static const struct file_operations btrfs_dir_file_operations = {
10957 	.llseek		= btrfs_dir_llseek,
10958 	.read		= generic_read_dir,
10959 	.iterate_shared	= btrfs_real_readdir,
10960 	.open		= btrfs_opendir,
10961 	.unlocked_ioctl	= btrfs_ioctl,
10962 #ifdef CONFIG_COMPAT
10963 	.compat_ioctl	= btrfs_compat_ioctl,
10964 #endif
10965 	.release        = btrfs_release_file,
10966 	.fsync		= btrfs_sync_file,
10967 };
10968 
10969 /*
10970  * btrfs doesn't support the bmap operation because swapfiles
10971  * use bmap to make a mapping of extents in the file.  They assume
10972  * these extents won't change over the life of the file and they
10973  * use the bmap result to do IO directly to the drive.
10974  *
10975  * the btrfs bmap call would return logical addresses that aren't
10976  * suitable for IO and they also will change frequently as COW
10977  * operations happen.  So, swapfile + btrfs == corruption.
10978  *
10979  * For now we're avoiding this by dropping bmap.
10980  */
10981 static const struct address_space_operations btrfs_aops = {
10982 	.read_folio	= btrfs_read_folio,
10983 	.writepages	= btrfs_writepages,
10984 	.readahead	= btrfs_readahead,
10985 	.invalidate_folio = btrfs_invalidate_folio,
10986 	.release_folio	= btrfs_release_folio,
10987 	.migrate_folio	= btrfs_migrate_folio,
10988 	.dirty_folio	= filemap_dirty_folio,
10989 	.error_remove_page = generic_error_remove_page,
10990 	.swap_activate	= btrfs_swap_activate,
10991 	.swap_deactivate = btrfs_swap_deactivate,
10992 };
10993 
10994 static const struct inode_operations btrfs_file_inode_operations = {
10995 	.getattr	= btrfs_getattr,
10996 	.setattr	= btrfs_setattr,
10997 	.listxattr      = btrfs_listxattr,
10998 	.permission	= btrfs_permission,
10999 	.fiemap		= btrfs_fiemap,
11000 	.get_inode_acl	= btrfs_get_acl,
11001 	.set_acl	= btrfs_set_acl,
11002 	.update_time	= btrfs_update_time,
11003 	.fileattr_get	= btrfs_fileattr_get,
11004 	.fileattr_set	= btrfs_fileattr_set,
11005 };
11006 static const struct inode_operations btrfs_special_inode_operations = {
11007 	.getattr	= btrfs_getattr,
11008 	.setattr	= btrfs_setattr,
11009 	.permission	= btrfs_permission,
11010 	.listxattr	= btrfs_listxattr,
11011 	.get_inode_acl	= btrfs_get_acl,
11012 	.set_acl	= btrfs_set_acl,
11013 	.update_time	= btrfs_update_time,
11014 };
11015 static const struct inode_operations btrfs_symlink_inode_operations = {
11016 	.get_link	= page_get_link,
11017 	.getattr	= btrfs_getattr,
11018 	.setattr	= btrfs_setattr,
11019 	.permission	= btrfs_permission,
11020 	.listxattr	= btrfs_listxattr,
11021 	.update_time	= btrfs_update_time,
11022 };
11023 
11024 const struct dentry_operations btrfs_dentry_operations = {
11025 	.d_delete	= btrfs_dentry_delete,
11026 };
11027