xref: /openbmc/linux/fs/btrfs/inode.c (revision 8cc484e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_dio_data {
81 	ssize_t submitted;
82 	struct extent_changeset *data_reserved;
83 	struct btrfs_ordered_extent *ordered;
84 	bool data_space_reserved;
85 	bool nocow_done;
86 };
87 
88 struct btrfs_dio_private {
89 	/* Range of I/O */
90 	u64 file_offset;
91 	u32 bytes;
92 
93 	/* This must be last */
94 	struct btrfs_bio bbio;
95 };
96 
97 static struct bio_set btrfs_dio_bioset;
98 
99 struct btrfs_rename_ctx {
100 	/* Output field. Stores the index number of the old directory entry. */
101 	u64 index;
102 };
103 
104 /*
105  * Used by data_reloc_print_warning_inode() to pass needed info for filename
106  * resolution and output of error message.
107  */
108 struct data_reloc_warn {
109 	struct btrfs_path path;
110 	struct btrfs_fs_info *fs_info;
111 	u64 extent_item_size;
112 	u64 logical;
113 	int mirror_num;
114 };
115 
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122 
123 static struct kmem_cache *btrfs_inode_cachep;
124 
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 				     struct page *locked_page, u64 start,
130 				     u64 end, struct writeback_control *wbc,
131 				     bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 				       u64 len, u64 orig_start, u64 block_start,
134 				       u64 block_len, u64 orig_block_len,
135 				       u64 ram_bytes, int compress_type,
136 				       int type);
137 
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 					  u64 root, void *warn_ctx)
140 {
141 	struct data_reloc_warn *warn = warn_ctx;
142 	struct btrfs_fs_info *fs_info = warn->fs_info;
143 	struct extent_buffer *eb;
144 	struct btrfs_inode_item *inode_item;
145 	struct inode_fs_paths *ipath = NULL;
146 	struct btrfs_root *local_root;
147 	struct btrfs_key key;
148 	unsigned int nofs_flag;
149 	u32 nlink;
150 	int ret;
151 
152 	local_root = btrfs_get_fs_root(fs_info, root, true);
153 	if (IS_ERR(local_root)) {
154 		ret = PTR_ERR(local_root);
155 		goto err;
156 	}
157 
158 	/* This makes the path point to (inum INODE_ITEM ioff). */
159 	key.objectid = inum;
160 	key.type = BTRFS_INODE_ITEM_KEY;
161 	key.offset = 0;
162 
163 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 	if (ret) {
165 		btrfs_put_root(local_root);
166 		btrfs_release_path(&warn->path);
167 		goto err;
168 	}
169 
170 	eb = warn->path.nodes[0];
171 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 	nlink = btrfs_inode_nlink(eb, inode_item);
173 	btrfs_release_path(&warn->path);
174 
175 	nofs_flag = memalloc_nofs_save();
176 	ipath = init_ipath(4096, local_root, &warn->path);
177 	memalloc_nofs_restore(nofs_flag);
178 	if (IS_ERR(ipath)) {
179 		btrfs_put_root(local_root);
180 		ret = PTR_ERR(ipath);
181 		ipath = NULL;
182 		/*
183 		 * -ENOMEM, not a critical error, just output an generic error
184 		 * without filename.
185 		 */
186 		btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 			   warn->logical, warn->mirror_num, root, inum, offset);
189 		return ret;
190 	}
191 	ret = paths_from_inode(inum, ipath);
192 	if (ret < 0)
193 		goto err;
194 
195 	/*
196 	 * We deliberately ignore the bit ipath might have been too small to
197 	 * hold all of the paths here
198 	 */
199 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 		btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 			   warn->logical, warn->mirror_num, root, inum, offset,
203 			   fs_info->sectorsize, nlink,
204 			   (char *)(unsigned long)ipath->fspath->val[i]);
205 	}
206 
207 	btrfs_put_root(local_root);
208 	free_ipath(ipath);
209 	return 0;
210 
211 err:
212 	btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
215 
216 	free_ipath(ipath);
217 	return ret;
218 }
219 
220 /*
221  * Do extra user-friendly error output (e.g. lookup all the affected files).
222  *
223  * Return true if we succeeded doing the backref lookup.
224  * Return false if such lookup failed, and has to fallback to the old error message.
225  */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 				   const u8 *csum, const u8 *csum_expected,
228 				   int mirror_num)
229 {
230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 	struct btrfs_path path = { 0 };
232 	struct btrfs_key found_key = { 0 };
233 	struct extent_buffer *eb;
234 	struct btrfs_extent_item *ei;
235 	const u32 csum_size = fs_info->csum_size;
236 	u64 logical;
237 	u64 flags;
238 	u32 item_size;
239 	int ret;
240 
241 	mutex_lock(&fs_info->reloc_mutex);
242 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 	mutex_unlock(&fs_info->reloc_mutex);
244 
245 	if (logical == U64_MAX) {
246 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 		btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 			CSUM_FMT_VALUE(csum_size, csum),
251 			CSUM_FMT_VALUE(csum_size, csum_expected),
252 			mirror_num);
253 		return;
254 	}
255 
256 	logical += file_off;
257 	btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid,
260 			btrfs_ino(inode), file_off, logical,
261 			CSUM_FMT_VALUE(csum_size, csum),
262 			CSUM_FMT_VALUE(csum_size, csum_expected),
263 			mirror_num);
264 
265 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 	if (ret < 0) {
267 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 			     logical, ret);
269 		return;
270 	}
271 	eb = path.nodes[0];
272 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 	item_size = btrfs_item_size(eb, path.slots[0]);
274 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 		unsigned long ptr = 0;
276 		u64 ref_root;
277 		u8 ref_level;
278 
279 		while (true) {
280 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 						      item_size, &ref_root,
282 						      &ref_level);
283 			if (ret < 0) {
284 				btrfs_warn_rl(fs_info,
285 				"failed to resolve tree backref for logical %llu: %d",
286 					      logical, ret);
287 				break;
288 			}
289 			if (ret > 0)
290 				break;
291 
292 			btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 				logical, mirror_num,
295 				(ref_level ? "node" : "leaf"),
296 				ref_level, ref_root);
297 		}
298 		btrfs_release_path(&path);
299 	} else {
300 		struct btrfs_backref_walk_ctx ctx = { 0 };
301 		struct data_reloc_warn reloc_warn = { 0 };
302 
303 		btrfs_release_path(&path);
304 
305 		ctx.bytenr = found_key.objectid;
306 		ctx.extent_item_pos = logical - found_key.objectid;
307 		ctx.fs_info = fs_info;
308 
309 		reloc_warn.logical = logical;
310 		reloc_warn.extent_item_size = found_key.offset;
311 		reloc_warn.mirror_num = mirror_num;
312 		reloc_warn.fs_info = fs_info;
313 
314 		iterate_extent_inodes(&ctx, true,
315 				      data_reloc_print_warning_inode, &reloc_warn);
316 	}
317 }
318 
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 	struct btrfs_root *root = inode->root;
323 	const u32 csum_size = root->fs_info->csum_size;
324 
325 	/* For data reloc tree, it's better to do a backref lookup instead. */
326 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 		return print_data_reloc_error(inode, logical_start, csum,
328 					      csum_expected, mirror_num);
329 
330 	/* Output without objectid, which is more meaningful */
331 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 		btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 			root->root_key.objectid, btrfs_ino(inode),
335 			logical_start,
336 			CSUM_FMT_VALUE(csum_size, csum),
337 			CSUM_FMT_VALUE(csum_size, csum_expected),
338 			mirror_num);
339 	} else {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	}
348 }
349 
350 /*
351  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352  *
353  * ilock_flags can have the following bit set:
354  *
355  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357  *		     return -EAGAIN
358  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359  */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 		if (ilock_flags & BTRFS_ILOCK_TRY) {
364 			if (!inode_trylock_shared(&inode->vfs_inode))
365 				return -EAGAIN;
366 			else
367 				return 0;
368 		}
369 		inode_lock_shared(&inode->vfs_inode);
370 	} else {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock(&inode->vfs_inode);
378 	}
379 	if (ilock_flags & BTRFS_ILOCK_MMAP)
380 		down_write(&inode->i_mmap_lock);
381 	return 0;
382 }
383 
384 /*
385  * btrfs_inode_unlock - unock inode i_rwsem
386  *
387  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388  * to decide whether the lock acquired is shared or exclusive.
389  */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 	if (ilock_flags & BTRFS_ILOCK_MMAP)
393 		up_write(&inode->i_mmap_lock);
394 	if (ilock_flags & BTRFS_ILOCK_SHARED)
395 		inode_unlock_shared(&inode->vfs_inode);
396 	else
397 		inode_unlock(&inode->vfs_inode);
398 }
399 
400 /*
401  * Cleanup all submitted ordered extents in specified range to handle errors
402  * from the btrfs_run_delalloc_range() callback.
403  *
404  * NOTE: caller must ensure that when an error happens, it can not call
405  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407  * to be released, which we want to happen only when finishing the ordered
408  * extent (btrfs_finish_ordered_io()).
409  */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 						 struct page *locked_page,
412 						 u64 offset, u64 bytes)
413 {
414 	unsigned long index = offset >> PAGE_SHIFT;
415 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 	u64 page_start = 0, page_end = 0;
417 	struct page *page;
418 
419 	if (locked_page) {
420 		page_start = page_offset(locked_page);
421 		page_end = page_start + PAGE_SIZE - 1;
422 	}
423 
424 	while (index <= end_index) {
425 		/*
426 		 * For locked page, we will call btrfs_mark_ordered_io_finished
427 		 * through btrfs_mark_ordered_io_finished() on it
428 		 * in run_delalloc_range() for the error handling, which will
429 		 * clear page Ordered and run the ordered extent accounting.
430 		 *
431 		 * Here we can't just clear the Ordered bit, or
432 		 * btrfs_mark_ordered_io_finished() would skip the accounting
433 		 * for the page range, and the ordered extent will never finish.
434 		 */
435 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 			index++;
437 			continue;
438 		}
439 		page = find_get_page(inode->vfs_inode.i_mapping, index);
440 		index++;
441 		if (!page)
442 			continue;
443 
444 		/*
445 		 * Here we just clear all Ordered bits for every page in the
446 		 * range, then btrfs_mark_ordered_io_finished() will handle
447 		 * the ordered extent accounting for the range.
448 		 */
449 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 					       offset, bytes);
451 		put_page(page);
452 	}
453 
454 	if (locked_page) {
455 		/* The locked page covers the full range, nothing needs to be done */
456 		if (bytes + offset <= page_start + PAGE_SIZE)
457 			return;
458 		/*
459 		 * In case this page belongs to the delalloc range being
460 		 * instantiated then skip it, since the first page of a range is
461 		 * going to be properly cleaned up by the caller of
462 		 * run_delalloc_range
463 		 */
464 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 			offset = page_offset(locked_page) + PAGE_SIZE;
467 		}
468 	}
469 
470 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472 
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474 
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 				     struct btrfs_new_inode_args *args)
477 {
478 	int err;
479 
480 	if (args->default_acl) {
481 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 				      ACL_TYPE_DEFAULT);
483 		if (err)
484 			return err;
485 	}
486 	if (args->acl) {
487 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 		if (err)
489 			return err;
490 	}
491 	if (!args->default_acl && !args->acl)
492 		cache_no_acl(args->inode);
493 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 					 &args->dentry->d_name);
495 }
496 
497 /*
498  * this does all the hard work for inserting an inline extent into
499  * the btree.  The caller should have done a btrfs_drop_extents so that
500  * no overlapping inline items exist in the btree
501  */
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 				struct btrfs_path *path,
504 				struct btrfs_inode *inode, bool extent_inserted,
505 				size_t size, size_t compressed_size,
506 				int compress_type,
507 				struct page **compressed_pages,
508 				bool update_i_size)
509 {
510 	struct btrfs_root *root = inode->root;
511 	struct extent_buffer *leaf;
512 	struct page *page = NULL;
513 	char *kaddr;
514 	unsigned long ptr;
515 	struct btrfs_file_extent_item *ei;
516 	int ret;
517 	size_t cur_size = size;
518 	u64 i_size;
519 
520 	ASSERT((compressed_size > 0 && compressed_pages) ||
521 	       (compressed_size == 0 && !compressed_pages));
522 
523 	if (compressed_size && compressed_pages)
524 		cur_size = compressed_size;
525 
526 	if (!extent_inserted) {
527 		struct btrfs_key key;
528 		size_t datasize;
529 
530 		key.objectid = btrfs_ino(inode);
531 		key.offset = 0;
532 		key.type = BTRFS_EXTENT_DATA_KEY;
533 
534 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 		ret = btrfs_insert_empty_item(trans, root, path, &key,
536 					      datasize);
537 		if (ret)
538 			goto fail;
539 	}
540 	leaf = path->nodes[0];
541 	ei = btrfs_item_ptr(leaf, path->slots[0],
542 			    struct btrfs_file_extent_item);
543 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 	btrfs_set_file_extent_encryption(leaf, ei, 0);
546 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 	ptr = btrfs_file_extent_inline_start(ei);
549 
550 	if (compress_type != BTRFS_COMPRESS_NONE) {
551 		struct page *cpage;
552 		int i = 0;
553 		while (compressed_size > 0) {
554 			cpage = compressed_pages[i];
555 			cur_size = min_t(unsigned long, compressed_size,
556 				       PAGE_SIZE);
557 
558 			kaddr = kmap_local_page(cpage);
559 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 			kunmap_local(kaddr);
561 
562 			i++;
563 			ptr += cur_size;
564 			compressed_size -= cur_size;
565 		}
566 		btrfs_set_file_extent_compression(leaf, ei,
567 						  compress_type);
568 	} else {
569 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 		btrfs_set_file_extent_compression(leaf, ei, 0);
571 		kaddr = kmap_local_page(page);
572 		write_extent_buffer(leaf, kaddr, ptr, size);
573 		kunmap_local(kaddr);
574 		put_page(page);
575 	}
576 	btrfs_mark_buffer_dirty(trans, leaf);
577 	btrfs_release_path(path);
578 
579 	/*
580 	 * We align size to sectorsize for inline extents just for simplicity
581 	 * sake.
582 	 */
583 	ret = btrfs_inode_set_file_extent_range(inode, 0,
584 					ALIGN(size, root->fs_info->sectorsize));
585 	if (ret)
586 		goto fail;
587 
588 	/*
589 	 * We're an inline extent, so nobody can extend the file past i_size
590 	 * without locking a page we already have locked.
591 	 *
592 	 * We must do any i_size and inode updates before we unlock the pages.
593 	 * Otherwise we could end up racing with unlink.
594 	 */
595 	i_size = i_size_read(&inode->vfs_inode);
596 	if (update_i_size && size > i_size) {
597 		i_size_write(&inode->vfs_inode, size);
598 		i_size = size;
599 	}
600 	inode->disk_i_size = i_size;
601 
602 fail:
603 	return ret;
604 }
605 
606 
607 /*
608  * conditionally insert an inline extent into the file.  This
609  * does the checks required to make sure the data is small enough
610  * to fit as an inline extent.
611  */
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 					  size_t compressed_size,
614 					  int compress_type,
615 					  struct page **compressed_pages,
616 					  bool update_i_size)
617 {
618 	struct btrfs_drop_extents_args drop_args = { 0 };
619 	struct btrfs_root *root = inode->root;
620 	struct btrfs_fs_info *fs_info = root->fs_info;
621 	struct btrfs_trans_handle *trans;
622 	u64 data_len = (compressed_size ?: size);
623 	int ret;
624 	struct btrfs_path *path;
625 
626 	/*
627 	 * We can create an inline extent if it ends at or beyond the current
628 	 * i_size, is no larger than a sector (decompressed), and the (possibly
629 	 * compressed) data fits in a leaf and the configured maximum inline
630 	 * size.
631 	 */
632 	if (size < i_size_read(&inode->vfs_inode) ||
633 	    size > fs_info->sectorsize ||
634 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 	    data_len > fs_info->max_inline)
636 		return 1;
637 
638 	path = btrfs_alloc_path();
639 	if (!path)
640 		return -ENOMEM;
641 
642 	trans = btrfs_join_transaction(root);
643 	if (IS_ERR(trans)) {
644 		btrfs_free_path(path);
645 		return PTR_ERR(trans);
646 	}
647 	trans->block_rsv = &inode->block_rsv;
648 
649 	drop_args.path = path;
650 	drop_args.start = 0;
651 	drop_args.end = fs_info->sectorsize;
652 	drop_args.drop_cache = true;
653 	drop_args.replace_extent = true;
654 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 	if (ret) {
657 		btrfs_abort_transaction(trans, ret);
658 		goto out;
659 	}
660 
661 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 				   size, compressed_size, compress_type,
663 				   compressed_pages, update_i_size);
664 	if (ret && ret != -ENOSPC) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	} else if (ret == -ENOSPC) {
668 		ret = 1;
669 		goto out;
670 	}
671 
672 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 	ret = btrfs_update_inode(trans, root, inode);
674 	if (ret && ret != -ENOSPC) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto out;
677 	} else if (ret == -ENOSPC) {
678 		ret = 1;
679 		goto out;
680 	}
681 
682 	btrfs_set_inode_full_sync(inode);
683 out:
684 	/*
685 	 * Don't forget to free the reserved space, as for inlined extent
686 	 * it won't count as data extent, free them directly here.
687 	 * And at reserve time, it's always aligned to page size, so
688 	 * just free one page here.
689 	 */
690 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
691 	btrfs_free_path(path);
692 	btrfs_end_transaction(trans);
693 	return ret;
694 }
695 
696 struct async_extent {
697 	u64 start;
698 	u64 ram_size;
699 	u64 compressed_size;
700 	struct page **pages;
701 	unsigned long nr_pages;
702 	int compress_type;
703 	struct list_head list;
704 };
705 
706 struct async_chunk {
707 	struct btrfs_inode *inode;
708 	struct page *locked_page;
709 	u64 start;
710 	u64 end;
711 	blk_opf_t write_flags;
712 	struct list_head extents;
713 	struct cgroup_subsys_state *blkcg_css;
714 	struct btrfs_work work;
715 	struct async_cow *async_cow;
716 };
717 
718 struct async_cow {
719 	atomic_t num_chunks;
720 	struct async_chunk chunks[];
721 };
722 
723 static noinline int add_async_extent(struct async_chunk *cow,
724 				     u64 start, u64 ram_size,
725 				     u64 compressed_size,
726 				     struct page **pages,
727 				     unsigned long nr_pages,
728 				     int compress_type)
729 {
730 	struct async_extent *async_extent;
731 
732 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 	BUG_ON(!async_extent); /* -ENOMEM */
734 	async_extent->start = start;
735 	async_extent->ram_size = ram_size;
736 	async_extent->compressed_size = compressed_size;
737 	async_extent->pages = pages;
738 	async_extent->nr_pages = nr_pages;
739 	async_extent->compress_type = compress_type;
740 	list_add_tail(&async_extent->list, &cow->extents);
741 	return 0;
742 }
743 
744 /*
745  * Check if the inode needs to be submitted to compression, based on mount
746  * options, defragmentation, properties or heuristics.
747  */
748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
749 				      u64 end)
750 {
751 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
752 
753 	if (!btrfs_inode_can_compress(inode)) {
754 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
755 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
756 			btrfs_ino(inode));
757 		return 0;
758 	}
759 	/*
760 	 * Special check for subpage.
761 	 *
762 	 * We lock the full page then run each delalloc range in the page, thus
763 	 * for the following case, we will hit some subpage specific corner case:
764 	 *
765 	 * 0		32K		64K
766 	 * |	|///////|	|///////|
767 	 *		\- A		\- B
768 	 *
769 	 * In above case, both range A and range B will try to unlock the full
770 	 * page [0, 64K), causing the one finished later will have page
771 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
772 	 *
773 	 * So here we add an artificial limit that subpage compression can only
774 	 * if the range is fully page aligned.
775 	 *
776 	 * In theory we only need to ensure the first page is fully covered, but
777 	 * the tailing partial page will be locked until the full compression
778 	 * finishes, delaying the write of other range.
779 	 *
780 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
781 	 * first to prevent any submitted async extent to unlock the full page.
782 	 * By this, we can ensure for subpage case that only the last async_cow
783 	 * will unlock the full page.
784 	 */
785 	if (fs_info->sectorsize < PAGE_SIZE) {
786 		if (!PAGE_ALIGNED(start) ||
787 		    !PAGE_ALIGNED(end + 1))
788 			return 0;
789 	}
790 
791 	/* force compress */
792 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
793 		return 1;
794 	/* defrag ioctl */
795 	if (inode->defrag_compress)
796 		return 1;
797 	/* bad compression ratios */
798 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
799 		return 0;
800 	if (btrfs_test_opt(fs_info, COMPRESS) ||
801 	    inode->flags & BTRFS_INODE_COMPRESS ||
802 	    inode->prop_compress)
803 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
804 	return 0;
805 }
806 
807 static inline void inode_should_defrag(struct btrfs_inode *inode,
808 		u64 start, u64 end, u64 num_bytes, u32 small_write)
809 {
810 	/* If this is a small write inside eof, kick off a defrag */
811 	if (num_bytes < small_write &&
812 	    (start > 0 || end + 1 < inode->disk_i_size))
813 		btrfs_add_inode_defrag(NULL, inode, small_write);
814 }
815 
816 /*
817  * Work queue call back to started compression on a file and pages.
818  *
819  * This is done inside an ordered work queue, and the compression is spread
820  * across many cpus.  The actual IO submission is step two, and the ordered work
821  * queue takes care of making sure that happens in the same order things were
822  * put onto the queue by writepages and friends.
823  *
824  * If this code finds it can't get good compression, it puts an entry onto the
825  * work queue to write the uncompressed bytes.  This makes sure that both
826  * compressed inodes and uncompressed inodes are written in the same order that
827  * the flusher thread sent them down.
828  */
829 static void compress_file_range(struct btrfs_work *work)
830 {
831 	struct async_chunk *async_chunk =
832 		container_of(work, struct async_chunk, work);
833 	struct btrfs_inode *inode = async_chunk->inode;
834 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
835 	struct address_space *mapping = inode->vfs_inode.i_mapping;
836 	u64 blocksize = fs_info->sectorsize;
837 	u64 start = async_chunk->start;
838 	u64 end = async_chunk->end;
839 	u64 actual_end;
840 	u64 i_size;
841 	int ret = 0;
842 	struct page **pages;
843 	unsigned long nr_pages;
844 	unsigned long total_compressed = 0;
845 	unsigned long total_in = 0;
846 	unsigned int poff;
847 	int i;
848 	int compress_type = fs_info->compress_type;
849 
850 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
851 
852 	/*
853 	 * We need to call clear_page_dirty_for_io on each page in the range.
854 	 * Otherwise applications with the file mmap'd can wander in and change
855 	 * the page contents while we are compressing them.
856 	 */
857 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
858 
859 	/*
860 	 * We need to save i_size before now because it could change in between
861 	 * us evaluating the size and assigning it.  This is because we lock and
862 	 * unlock the page in truncate and fallocate, and then modify the i_size
863 	 * later on.
864 	 *
865 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
866 	 * does that for us.
867 	 */
868 	barrier();
869 	i_size = i_size_read(&inode->vfs_inode);
870 	barrier();
871 	actual_end = min_t(u64, i_size, end + 1);
872 again:
873 	pages = NULL;
874 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
875 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
876 
877 	/*
878 	 * we don't want to send crud past the end of i_size through
879 	 * compression, that's just a waste of CPU time.  So, if the
880 	 * end of the file is before the start of our current
881 	 * requested range of bytes, we bail out to the uncompressed
882 	 * cleanup code that can deal with all of this.
883 	 *
884 	 * It isn't really the fastest way to fix things, but this is a
885 	 * very uncommon corner.
886 	 */
887 	if (actual_end <= start)
888 		goto cleanup_and_bail_uncompressed;
889 
890 	total_compressed = actual_end - start;
891 
892 	/*
893 	 * Skip compression for a small file range(<=blocksize) that
894 	 * isn't an inline extent, since it doesn't save disk space at all.
895 	 */
896 	if (total_compressed <= blocksize &&
897 	   (start > 0 || end + 1 < inode->disk_i_size))
898 		goto cleanup_and_bail_uncompressed;
899 
900 	/*
901 	 * For subpage case, we require full page alignment for the sector
902 	 * aligned range.
903 	 * Thus we must also check against @actual_end, not just @end.
904 	 */
905 	if (blocksize < PAGE_SIZE) {
906 		if (!PAGE_ALIGNED(start) ||
907 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
908 			goto cleanup_and_bail_uncompressed;
909 	}
910 
911 	total_compressed = min_t(unsigned long, total_compressed,
912 			BTRFS_MAX_UNCOMPRESSED);
913 	total_in = 0;
914 	ret = 0;
915 
916 	/*
917 	 * We do compression for mount -o compress and when the inode has not
918 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
919 	 * discover bad compression ratios.
920 	 */
921 	if (!inode_need_compress(inode, start, end))
922 		goto cleanup_and_bail_uncompressed;
923 
924 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
925 	if (!pages) {
926 		/*
927 		 * Memory allocation failure is not a fatal error, we can fall
928 		 * back to uncompressed code.
929 		 */
930 		goto cleanup_and_bail_uncompressed;
931 	}
932 
933 	if (inode->defrag_compress)
934 		compress_type = inode->defrag_compress;
935 	else if (inode->prop_compress)
936 		compress_type = inode->prop_compress;
937 
938 	/* Compression level is applied here. */
939 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
940 				   mapping, start, pages, &nr_pages, &total_in,
941 				   &total_compressed);
942 	if (ret)
943 		goto mark_incompressible;
944 
945 	/*
946 	 * Zero the tail end of the last page, as we might be sending it down
947 	 * to disk.
948 	 */
949 	poff = offset_in_page(total_compressed);
950 	if (poff)
951 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
952 
953 	/*
954 	 * Try to create an inline extent.
955 	 *
956 	 * If we didn't compress the entire range, try to create an uncompressed
957 	 * inline extent, else a compressed one.
958 	 *
959 	 * Check cow_file_range() for why we don't even try to create inline
960 	 * extent for the subpage case.
961 	 */
962 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
963 		if (total_in < actual_end) {
964 			ret = cow_file_range_inline(inode, actual_end, 0,
965 						    BTRFS_COMPRESS_NONE, NULL,
966 						    false);
967 		} else {
968 			ret = cow_file_range_inline(inode, actual_end,
969 						    total_compressed,
970 						    compress_type, pages,
971 						    false);
972 		}
973 		if (ret <= 0) {
974 			unsigned long clear_flags = EXTENT_DELALLOC |
975 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
976 				EXTENT_DO_ACCOUNTING;
977 
978 			if (ret < 0)
979 				mapping_set_error(mapping, -EIO);
980 
981 			/*
982 			 * inline extent creation worked or returned error,
983 			 * we don't need to create any more async work items.
984 			 * Unlock and free up our temp pages.
985 			 *
986 			 * We use DO_ACCOUNTING here because we need the
987 			 * delalloc_release_metadata to be done _after_ we drop
988 			 * our outstanding extent for clearing delalloc for this
989 			 * range.
990 			 */
991 			extent_clear_unlock_delalloc(inode, start, end,
992 						     NULL,
993 						     clear_flags,
994 						     PAGE_UNLOCK |
995 						     PAGE_START_WRITEBACK |
996 						     PAGE_END_WRITEBACK);
997 			goto free_pages;
998 		}
999 	}
1000 
1001 	/*
1002 	 * We aren't doing an inline extent. Round the compressed size up to a
1003 	 * block size boundary so the allocator does sane things.
1004 	 */
1005 	total_compressed = ALIGN(total_compressed, blocksize);
1006 
1007 	/*
1008 	 * One last check to make sure the compression is really a win, compare
1009 	 * the page count read with the blocks on disk, compression must free at
1010 	 * least one sector.
1011 	 */
1012 	total_in = round_up(total_in, fs_info->sectorsize);
1013 	if (total_compressed + blocksize > total_in)
1014 		goto mark_incompressible;
1015 
1016 	/*
1017 	 * The async work queues will take care of doing actual allocation on
1018 	 * disk for these compressed pages, and will submit the bios.
1019 	 */
1020 	add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1021 			 nr_pages, compress_type);
1022 	if (start + total_in < end) {
1023 		start += total_in;
1024 		cond_resched();
1025 		goto again;
1026 	}
1027 	return;
1028 
1029 mark_incompressible:
1030 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1031 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1032 cleanup_and_bail_uncompressed:
1033 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1034 			 BTRFS_COMPRESS_NONE);
1035 free_pages:
1036 	if (pages) {
1037 		for (i = 0; i < nr_pages; i++) {
1038 			WARN_ON(pages[i]->mapping);
1039 			put_page(pages[i]);
1040 		}
1041 		kfree(pages);
1042 	}
1043 }
1044 
1045 static void free_async_extent_pages(struct async_extent *async_extent)
1046 {
1047 	int i;
1048 
1049 	if (!async_extent->pages)
1050 		return;
1051 
1052 	for (i = 0; i < async_extent->nr_pages; i++) {
1053 		WARN_ON(async_extent->pages[i]->mapping);
1054 		put_page(async_extent->pages[i]);
1055 	}
1056 	kfree(async_extent->pages);
1057 	async_extent->nr_pages = 0;
1058 	async_extent->pages = NULL;
1059 }
1060 
1061 static void submit_uncompressed_range(struct btrfs_inode *inode,
1062 				      struct async_extent *async_extent,
1063 				      struct page *locked_page)
1064 {
1065 	u64 start = async_extent->start;
1066 	u64 end = async_extent->start + async_extent->ram_size - 1;
1067 	int ret;
1068 	struct writeback_control wbc = {
1069 		.sync_mode		= WB_SYNC_ALL,
1070 		.range_start		= start,
1071 		.range_end		= end,
1072 		.no_cgroup_owner	= 1,
1073 	};
1074 
1075 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1076 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1077 	wbc_detach_inode(&wbc);
1078 	if (ret < 0) {
1079 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1080 		if (locked_page) {
1081 			const u64 page_start = page_offset(locked_page);
1082 
1083 			set_page_writeback(locked_page);
1084 			end_page_writeback(locked_page);
1085 			btrfs_mark_ordered_io_finished(inode, locked_page,
1086 						       page_start, PAGE_SIZE,
1087 						       !ret);
1088 			mapping_set_error(locked_page->mapping, ret);
1089 			unlock_page(locked_page);
1090 		}
1091 	}
1092 }
1093 
1094 static void submit_one_async_extent(struct async_chunk *async_chunk,
1095 				    struct async_extent *async_extent,
1096 				    u64 *alloc_hint)
1097 {
1098 	struct btrfs_inode *inode = async_chunk->inode;
1099 	struct extent_io_tree *io_tree = &inode->io_tree;
1100 	struct btrfs_root *root = inode->root;
1101 	struct btrfs_fs_info *fs_info = root->fs_info;
1102 	struct btrfs_ordered_extent *ordered;
1103 	struct btrfs_key ins;
1104 	struct page *locked_page = NULL;
1105 	struct extent_map *em;
1106 	int ret = 0;
1107 	u64 start = async_extent->start;
1108 	u64 end = async_extent->start + async_extent->ram_size - 1;
1109 
1110 	if (async_chunk->blkcg_css)
1111 		kthread_associate_blkcg(async_chunk->blkcg_css);
1112 
1113 	/*
1114 	 * If async_chunk->locked_page is in the async_extent range, we need to
1115 	 * handle it.
1116 	 */
1117 	if (async_chunk->locked_page) {
1118 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1119 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1120 
1121 		if (!(start >= locked_page_end || end <= locked_page_start))
1122 			locked_page = async_chunk->locked_page;
1123 	}
1124 	lock_extent(io_tree, start, end, NULL);
1125 
1126 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1127 		submit_uncompressed_range(inode, async_extent, locked_page);
1128 		goto done;
1129 	}
1130 
1131 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1132 				   async_extent->compressed_size,
1133 				   async_extent->compressed_size,
1134 				   0, *alloc_hint, &ins, 1, 1);
1135 	if (ret) {
1136 		/*
1137 		 * Here we used to try again by going back to non-compressed
1138 		 * path for ENOSPC.  But we can't reserve space even for
1139 		 * compressed size, how could it work for uncompressed size
1140 		 * which requires larger size?  So here we directly go error
1141 		 * path.
1142 		 */
1143 		goto out_free;
1144 	}
1145 
1146 	/* Here we're doing allocation and writeback of the compressed pages */
1147 	em = create_io_em(inode, start,
1148 			  async_extent->ram_size,	/* len */
1149 			  start,			/* orig_start */
1150 			  ins.objectid,			/* block_start */
1151 			  ins.offset,			/* block_len */
1152 			  ins.offset,			/* orig_block_len */
1153 			  async_extent->ram_size,	/* ram_bytes */
1154 			  async_extent->compress_type,
1155 			  BTRFS_ORDERED_COMPRESSED);
1156 	if (IS_ERR(em)) {
1157 		ret = PTR_ERR(em);
1158 		goto out_free_reserve;
1159 	}
1160 	free_extent_map(em);
1161 
1162 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1163 				       async_extent->ram_size,	/* num_bytes */
1164 				       async_extent->ram_size,	/* ram_bytes */
1165 				       ins.objectid,		/* disk_bytenr */
1166 				       ins.offset,		/* disk_num_bytes */
1167 				       0,			/* offset */
1168 				       1 << BTRFS_ORDERED_COMPRESSED,
1169 				       async_extent->compress_type);
1170 	if (IS_ERR(ordered)) {
1171 		btrfs_drop_extent_map_range(inode, start, end, false);
1172 		ret = PTR_ERR(ordered);
1173 		goto out_free_reserve;
1174 	}
1175 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1176 
1177 	/* Clear dirty, set writeback and unlock the pages. */
1178 	extent_clear_unlock_delalloc(inode, start, end,
1179 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1180 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1181 	btrfs_submit_compressed_write(ordered,
1182 			    async_extent->pages,	/* compressed_pages */
1183 			    async_extent->nr_pages,
1184 			    async_chunk->write_flags, true);
1185 	*alloc_hint = ins.objectid + ins.offset;
1186 done:
1187 	if (async_chunk->blkcg_css)
1188 		kthread_associate_blkcg(NULL);
1189 	kfree(async_extent);
1190 	return;
1191 
1192 out_free_reserve:
1193 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1194 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1195 out_free:
1196 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1197 	extent_clear_unlock_delalloc(inode, start, end,
1198 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1199 				     EXTENT_DELALLOC_NEW |
1200 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1201 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1202 				     PAGE_END_WRITEBACK);
1203 	free_async_extent_pages(async_extent);
1204 	if (async_chunk->blkcg_css)
1205 		kthread_associate_blkcg(NULL);
1206 	btrfs_debug(fs_info,
1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1208 		    root->root_key.objectid, btrfs_ino(inode), start,
1209 		    async_extent->ram_size, ret);
1210 	kfree(async_extent);
1211 }
1212 
1213 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1214 				      u64 num_bytes)
1215 {
1216 	struct extent_map_tree *em_tree = &inode->extent_tree;
1217 	struct extent_map *em;
1218 	u64 alloc_hint = 0;
1219 
1220 	read_lock(&em_tree->lock);
1221 	em = search_extent_mapping(em_tree, start, num_bytes);
1222 	if (em) {
1223 		/*
1224 		 * if block start isn't an actual block number then find the
1225 		 * first block in this inode and use that as a hint.  If that
1226 		 * block is also bogus then just don't worry about it.
1227 		 */
1228 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1229 			free_extent_map(em);
1230 			em = search_extent_mapping(em_tree, 0, 0);
1231 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1232 				alloc_hint = em->block_start;
1233 			if (em)
1234 				free_extent_map(em);
1235 		} else {
1236 			alloc_hint = em->block_start;
1237 			free_extent_map(em);
1238 		}
1239 	}
1240 	read_unlock(&em_tree->lock);
1241 
1242 	return alloc_hint;
1243 }
1244 
1245 /*
1246  * when extent_io.c finds a delayed allocation range in the file,
1247  * the call backs end up in this code.  The basic idea is to
1248  * allocate extents on disk for the range, and create ordered data structs
1249  * in ram to track those extents.
1250  *
1251  * locked_page is the page that writepage had locked already.  We use
1252  * it to make sure we don't do extra locks or unlocks.
1253  *
1254  * When this function fails, it unlocks all pages except @locked_page.
1255  *
1256  * When this function successfully creates an inline extent, it returns 1 and
1257  * unlocks all pages including locked_page and starts I/O on them.
1258  * (In reality inline extents are limited to a single page, so locked_page is
1259  * the only page handled anyway).
1260  *
1261  * When this function succeed and creates a normal extent, the page locking
1262  * status depends on the passed in flags:
1263  *
1264  * - If @keep_locked is set, all pages are kept locked.
1265  * - Else all pages except for @locked_page are unlocked.
1266  *
1267  * When a failure happens in the second or later iteration of the
1268  * while-loop, the ordered extents created in previous iterations are kept
1269  * intact. So, the caller must clean them up by calling
1270  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1271  * example.
1272  */
1273 static noinline int cow_file_range(struct btrfs_inode *inode,
1274 				   struct page *locked_page, u64 start, u64 end,
1275 				   u64 *done_offset,
1276 				   bool keep_locked, bool no_inline)
1277 {
1278 	struct btrfs_root *root = inode->root;
1279 	struct btrfs_fs_info *fs_info = root->fs_info;
1280 	u64 alloc_hint = 0;
1281 	u64 orig_start = start;
1282 	u64 num_bytes;
1283 	unsigned long ram_size;
1284 	u64 cur_alloc_size = 0;
1285 	u64 min_alloc_size;
1286 	u64 blocksize = fs_info->sectorsize;
1287 	struct btrfs_key ins;
1288 	struct extent_map *em;
1289 	unsigned clear_bits;
1290 	unsigned long page_ops;
1291 	bool extent_reserved = false;
1292 	int ret = 0;
1293 
1294 	if (btrfs_is_free_space_inode(inode)) {
1295 		ret = -EINVAL;
1296 		goto out_unlock;
1297 	}
1298 
1299 	num_bytes = ALIGN(end - start + 1, blocksize);
1300 	num_bytes = max(blocksize,  num_bytes);
1301 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1302 
1303 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1304 
1305 	/*
1306 	 * Due to the page size limit, for subpage we can only trigger the
1307 	 * writeback for the dirty sectors of page, that means data writeback
1308 	 * is doing more writeback than what we want.
1309 	 *
1310 	 * This is especially unexpected for some call sites like fallocate,
1311 	 * where we only increase i_size after everything is done.
1312 	 * This means we can trigger inline extent even if we didn't want to.
1313 	 * So here we skip inline extent creation completely.
1314 	 */
1315 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1316 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1317 				       end + 1);
1318 
1319 		/* lets try to make an inline extent */
1320 		ret = cow_file_range_inline(inode, actual_end, 0,
1321 					    BTRFS_COMPRESS_NONE, NULL, false);
1322 		if (ret == 0) {
1323 			/*
1324 			 * We use DO_ACCOUNTING here because we need the
1325 			 * delalloc_release_metadata to be run _after_ we drop
1326 			 * our outstanding extent for clearing delalloc for this
1327 			 * range.
1328 			 */
1329 			extent_clear_unlock_delalloc(inode, start, end,
1330 				     locked_page,
1331 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1332 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1333 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1334 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1335 			/*
1336 			 * locked_page is locked by the caller of
1337 			 * writepage_delalloc(), not locked by
1338 			 * __process_pages_contig().
1339 			 *
1340 			 * We can't let __process_pages_contig() to unlock it,
1341 			 * as it doesn't have any subpage::writers recorded.
1342 			 *
1343 			 * Here we manually unlock the page, since the caller
1344 			 * can't determine if it's an inline extent or a
1345 			 * compressed extent.
1346 			 */
1347 			unlock_page(locked_page);
1348 			ret = 1;
1349 			goto done;
1350 		} else if (ret < 0) {
1351 			goto out_unlock;
1352 		}
1353 	}
1354 
1355 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1356 
1357 	/*
1358 	 * Relocation relies on the relocated extents to have exactly the same
1359 	 * size as the original extents. Normally writeback for relocation data
1360 	 * extents follows a NOCOW path because relocation preallocates the
1361 	 * extents. However, due to an operation such as scrub turning a block
1362 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1363 	 * an extent allocated during COW has exactly the requested size and can
1364 	 * not be split into smaller extents, otherwise relocation breaks and
1365 	 * fails during the stage where it updates the bytenr of file extent
1366 	 * items.
1367 	 */
1368 	if (btrfs_is_data_reloc_root(root))
1369 		min_alloc_size = num_bytes;
1370 	else
1371 		min_alloc_size = fs_info->sectorsize;
1372 
1373 	while (num_bytes > 0) {
1374 		struct btrfs_ordered_extent *ordered;
1375 
1376 		cur_alloc_size = num_bytes;
1377 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1378 					   min_alloc_size, 0, alloc_hint,
1379 					   &ins, 1, 1);
1380 		if (ret == -EAGAIN) {
1381 			/*
1382 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1383 			 * file systems, which is an indication that there are
1384 			 * no active zones to allocate from at the moment.
1385 			 *
1386 			 * If this is the first loop iteration, wait for at
1387 			 * least one zone to finish before retrying the
1388 			 * allocation.  Otherwise ask the caller to write out
1389 			 * the already allocated blocks before coming back to
1390 			 * us, or return -ENOSPC if it can't handle retries.
1391 			 */
1392 			ASSERT(btrfs_is_zoned(fs_info));
1393 			if (start == orig_start) {
1394 				wait_on_bit_io(&inode->root->fs_info->flags,
1395 					       BTRFS_FS_NEED_ZONE_FINISH,
1396 					       TASK_UNINTERRUPTIBLE);
1397 				continue;
1398 			}
1399 			if (done_offset) {
1400 				*done_offset = start - 1;
1401 				return 0;
1402 			}
1403 			ret = -ENOSPC;
1404 		}
1405 		if (ret < 0)
1406 			goto out_unlock;
1407 		cur_alloc_size = ins.offset;
1408 		extent_reserved = true;
1409 
1410 		ram_size = ins.offset;
1411 		em = create_io_em(inode, start, ins.offset, /* len */
1412 				  start, /* orig_start */
1413 				  ins.objectid, /* block_start */
1414 				  ins.offset, /* block_len */
1415 				  ins.offset, /* orig_block_len */
1416 				  ram_size, /* ram_bytes */
1417 				  BTRFS_COMPRESS_NONE, /* compress_type */
1418 				  BTRFS_ORDERED_REGULAR /* type */);
1419 		if (IS_ERR(em)) {
1420 			ret = PTR_ERR(em);
1421 			goto out_reserve;
1422 		}
1423 		free_extent_map(em);
1424 
1425 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1426 					ram_size, ins.objectid, cur_alloc_size,
1427 					0, 1 << BTRFS_ORDERED_REGULAR,
1428 					BTRFS_COMPRESS_NONE);
1429 		if (IS_ERR(ordered)) {
1430 			ret = PTR_ERR(ordered);
1431 			goto out_drop_extent_cache;
1432 		}
1433 
1434 		if (btrfs_is_data_reloc_root(root)) {
1435 			ret = btrfs_reloc_clone_csums(ordered);
1436 
1437 			/*
1438 			 * Only drop cache here, and process as normal.
1439 			 *
1440 			 * We must not allow extent_clear_unlock_delalloc()
1441 			 * at out_unlock label to free meta of this ordered
1442 			 * extent, as its meta should be freed by
1443 			 * btrfs_finish_ordered_io().
1444 			 *
1445 			 * So we must continue until @start is increased to
1446 			 * skip current ordered extent.
1447 			 */
1448 			if (ret)
1449 				btrfs_drop_extent_map_range(inode, start,
1450 							    start + ram_size - 1,
1451 							    false);
1452 		}
1453 		btrfs_put_ordered_extent(ordered);
1454 
1455 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1456 
1457 		/*
1458 		 * We're not doing compressed IO, don't unlock the first page
1459 		 * (which the caller expects to stay locked), don't clear any
1460 		 * dirty bits and don't set any writeback bits
1461 		 *
1462 		 * Do set the Ordered (Private2) bit so we know this page was
1463 		 * properly setup for writepage.
1464 		 */
1465 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1466 		page_ops |= PAGE_SET_ORDERED;
1467 
1468 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1469 					     locked_page,
1470 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1471 					     page_ops);
1472 		if (num_bytes < cur_alloc_size)
1473 			num_bytes = 0;
1474 		else
1475 			num_bytes -= cur_alloc_size;
1476 		alloc_hint = ins.objectid + ins.offset;
1477 		start += cur_alloc_size;
1478 		extent_reserved = false;
1479 
1480 		/*
1481 		 * btrfs_reloc_clone_csums() error, since start is increased
1482 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1483 		 * free metadata of current ordered extent, we're OK to exit.
1484 		 */
1485 		if (ret)
1486 			goto out_unlock;
1487 	}
1488 done:
1489 	if (done_offset)
1490 		*done_offset = end;
1491 	return ret;
1492 
1493 out_drop_extent_cache:
1494 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1495 out_reserve:
1496 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1497 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1498 out_unlock:
1499 	/*
1500 	 * Now, we have three regions to clean up:
1501 	 *
1502 	 * |-------(1)----|---(2)---|-------------(3)----------|
1503 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1504 	 *
1505 	 * We process each region below.
1506 	 */
1507 
1508 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1509 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1510 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1511 
1512 	/*
1513 	 * For the range (1). We have already instantiated the ordered extents
1514 	 * for this region. They are cleaned up by
1515 	 * btrfs_cleanup_ordered_extents() in e.g,
1516 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1517 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1518 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1519 	 * function.
1520 	 *
1521 	 * However, in case of @keep_locked, we still need to unlock the pages
1522 	 * (except @locked_page) to ensure all the pages are unlocked.
1523 	 */
1524 	if (keep_locked && orig_start < start) {
1525 		if (!locked_page)
1526 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1527 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1528 					     locked_page, 0, page_ops);
1529 	}
1530 
1531 	/*
1532 	 * For the range (2). If we reserved an extent for our delalloc range
1533 	 * (or a subrange) and failed to create the respective ordered extent,
1534 	 * then it means that when we reserved the extent we decremented the
1535 	 * extent's size from the data space_info's bytes_may_use counter and
1536 	 * incremented the space_info's bytes_reserved counter by the same
1537 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1538 	 * to decrement again the data space_info's bytes_may_use counter,
1539 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1540 	 */
1541 	if (extent_reserved) {
1542 		extent_clear_unlock_delalloc(inode, start,
1543 					     start + cur_alloc_size - 1,
1544 					     locked_page,
1545 					     clear_bits,
1546 					     page_ops);
1547 		start += cur_alloc_size;
1548 	}
1549 
1550 	/*
1551 	 * For the range (3). We never touched the region. In addition to the
1552 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1553 	 * space_info's bytes_may_use counter, reserved in
1554 	 * btrfs_check_data_free_space().
1555 	 */
1556 	if (start < end) {
1557 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1558 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1559 					     clear_bits, page_ops);
1560 	}
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Phase two of compressed writeback.  This is the ordered portion of the code,
1566  * which only gets called in the order the work was queued.  We walk all the
1567  * async extents created by compress_file_range and send them down to the disk.
1568  */
1569 static noinline void submit_compressed_extents(struct btrfs_work *work)
1570 {
1571 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1572 						     work);
1573 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1574 	struct async_extent *async_extent;
1575 	unsigned long nr_pages;
1576 	u64 alloc_hint = 0;
1577 
1578 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1579 		PAGE_SHIFT;
1580 
1581 	while (!list_empty(&async_chunk->extents)) {
1582 		async_extent = list_entry(async_chunk->extents.next,
1583 					  struct async_extent, list);
1584 		list_del(&async_extent->list);
1585 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1586 	}
1587 
1588 	/* atomic_sub_return implies a barrier */
1589 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1590 	    5 * SZ_1M)
1591 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1592 }
1593 
1594 static noinline void async_cow_free(struct btrfs_work *work)
1595 {
1596 	struct async_chunk *async_chunk;
1597 	struct async_cow *async_cow;
1598 
1599 	async_chunk = container_of(work, struct async_chunk, work);
1600 	btrfs_add_delayed_iput(async_chunk->inode);
1601 	if (async_chunk->blkcg_css)
1602 		css_put(async_chunk->blkcg_css);
1603 
1604 	async_cow = async_chunk->async_cow;
1605 	if (atomic_dec_and_test(&async_cow->num_chunks))
1606 		kvfree(async_cow);
1607 }
1608 
1609 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1610 				    struct page *locked_page, u64 start,
1611 				    u64 end, struct writeback_control *wbc)
1612 {
1613 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1614 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1615 	struct async_cow *ctx;
1616 	struct async_chunk *async_chunk;
1617 	unsigned long nr_pages;
1618 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1619 	int i;
1620 	unsigned nofs_flag;
1621 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1622 
1623 	nofs_flag = memalloc_nofs_save();
1624 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1625 	memalloc_nofs_restore(nofs_flag);
1626 	if (!ctx)
1627 		return false;
1628 
1629 	unlock_extent(&inode->io_tree, start, end, NULL);
1630 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1631 
1632 	async_chunk = ctx->chunks;
1633 	atomic_set(&ctx->num_chunks, num_chunks);
1634 
1635 	for (i = 0; i < num_chunks; i++) {
1636 		u64 cur_end = min(end, start + SZ_512K - 1);
1637 
1638 		/*
1639 		 * igrab is called higher up in the call chain, take only the
1640 		 * lightweight reference for the callback lifetime
1641 		 */
1642 		ihold(&inode->vfs_inode);
1643 		async_chunk[i].async_cow = ctx;
1644 		async_chunk[i].inode = inode;
1645 		async_chunk[i].start = start;
1646 		async_chunk[i].end = cur_end;
1647 		async_chunk[i].write_flags = write_flags;
1648 		INIT_LIST_HEAD(&async_chunk[i].extents);
1649 
1650 		/*
1651 		 * The locked_page comes all the way from writepage and its
1652 		 * the original page we were actually given.  As we spread
1653 		 * this large delalloc region across multiple async_chunk
1654 		 * structs, only the first struct needs a pointer to locked_page
1655 		 *
1656 		 * This way we don't need racey decisions about who is supposed
1657 		 * to unlock it.
1658 		 */
1659 		if (locked_page) {
1660 			/*
1661 			 * Depending on the compressibility, the pages might or
1662 			 * might not go through async.  We want all of them to
1663 			 * be accounted against wbc once.  Let's do it here
1664 			 * before the paths diverge.  wbc accounting is used
1665 			 * only for foreign writeback detection and doesn't
1666 			 * need full accuracy.  Just account the whole thing
1667 			 * against the first page.
1668 			 */
1669 			wbc_account_cgroup_owner(wbc, locked_page,
1670 						 cur_end - start);
1671 			async_chunk[i].locked_page = locked_page;
1672 			locked_page = NULL;
1673 		} else {
1674 			async_chunk[i].locked_page = NULL;
1675 		}
1676 
1677 		if (blkcg_css != blkcg_root_css) {
1678 			css_get(blkcg_css);
1679 			async_chunk[i].blkcg_css = blkcg_css;
1680 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1681 		} else {
1682 			async_chunk[i].blkcg_css = NULL;
1683 		}
1684 
1685 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1686 				submit_compressed_extents, async_cow_free);
1687 
1688 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1689 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1690 
1691 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1692 
1693 		start = cur_end + 1;
1694 	}
1695 	return true;
1696 }
1697 
1698 /*
1699  * Run the delalloc range from start to end, and write back any dirty pages
1700  * covered by the range.
1701  */
1702 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1703 				     struct page *locked_page, u64 start,
1704 				     u64 end, struct writeback_control *wbc,
1705 				     bool pages_dirty)
1706 {
1707 	u64 done_offset = end;
1708 	int ret;
1709 
1710 	while (start <= end) {
1711 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1712 				     true, false);
1713 		if (ret)
1714 			return ret;
1715 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1716 					  done_offset, wbc, pages_dirty);
1717 		start = done_offset + 1;
1718 	}
1719 
1720 	return 1;
1721 }
1722 
1723 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1724 					u64 bytenr, u64 num_bytes, bool nowait)
1725 {
1726 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1727 	struct btrfs_ordered_sum *sums;
1728 	int ret;
1729 	LIST_HEAD(list);
1730 
1731 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1732 				      &list, 0, nowait);
1733 	if (ret == 0 && list_empty(&list))
1734 		return 0;
1735 
1736 	while (!list_empty(&list)) {
1737 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1738 		list_del(&sums->list);
1739 		kfree(sums);
1740 	}
1741 	if (ret < 0)
1742 		return ret;
1743 	return 1;
1744 }
1745 
1746 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1747 			   const u64 start, const u64 end)
1748 {
1749 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1750 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1751 	const u64 range_bytes = end + 1 - start;
1752 	struct extent_io_tree *io_tree = &inode->io_tree;
1753 	u64 range_start = start;
1754 	u64 count;
1755 	int ret;
1756 
1757 	/*
1758 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1759 	 * made we had not enough available data space and therefore we did not
1760 	 * reserve data space for it, since we though we could do NOCOW for the
1761 	 * respective file range (either there is prealloc extent or the inode
1762 	 * has the NOCOW bit set).
1763 	 *
1764 	 * However when we need to fallback to COW mode (because for example the
1765 	 * block group for the corresponding extent was turned to RO mode by a
1766 	 * scrub or relocation) we need to do the following:
1767 	 *
1768 	 * 1) We increment the bytes_may_use counter of the data space info.
1769 	 *    If COW succeeds, it allocates a new data extent and after doing
1770 	 *    that it decrements the space info's bytes_may_use counter and
1771 	 *    increments its bytes_reserved counter by the same amount (we do
1772 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1773 	 *    bytes_may_use counter to compensate (when space is reserved at
1774 	 *    buffered write time, the bytes_may_use counter is incremented);
1775 	 *
1776 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1777 	 *    that if the COW path fails for any reason, it decrements (through
1778 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1779 	 *    data space info, which we incremented in the step above.
1780 	 *
1781 	 * If we need to fallback to cow and the inode corresponds to a free
1782 	 * space cache inode or an inode of the data relocation tree, we must
1783 	 * also increment bytes_may_use of the data space_info for the same
1784 	 * reason. Space caches and relocated data extents always get a prealloc
1785 	 * extent for them, however scrub or balance may have set the block
1786 	 * group that contains that extent to RO mode and therefore force COW
1787 	 * when starting writeback.
1788 	 */
1789 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1790 				 EXTENT_NORESERVE, 0, NULL);
1791 	if (count > 0 || is_space_ino || is_reloc_ino) {
1792 		u64 bytes = count;
1793 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1794 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1795 
1796 		if (is_space_ino || is_reloc_ino)
1797 			bytes = range_bytes;
1798 
1799 		spin_lock(&sinfo->lock);
1800 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1801 		spin_unlock(&sinfo->lock);
1802 
1803 		if (count > 0)
1804 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1805 					 NULL);
1806 	}
1807 
1808 	/*
1809 	 * Don't try to create inline extents, as a mix of inline extent that
1810 	 * is written out and unlocked directly and a normal NOCOW extent
1811 	 * doesn't work.
1812 	 */
1813 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1814 	ASSERT(ret != 1);
1815 	return ret;
1816 }
1817 
1818 struct can_nocow_file_extent_args {
1819 	/* Input fields. */
1820 
1821 	/* Start file offset of the range we want to NOCOW. */
1822 	u64 start;
1823 	/* End file offset (inclusive) of the range we want to NOCOW. */
1824 	u64 end;
1825 	bool writeback_path;
1826 	bool strict;
1827 	/*
1828 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1829 	 * anymore.
1830 	 */
1831 	bool free_path;
1832 
1833 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1834 
1835 	u64 disk_bytenr;
1836 	u64 disk_num_bytes;
1837 	u64 extent_offset;
1838 	/* Number of bytes that can be written to in NOCOW mode. */
1839 	u64 num_bytes;
1840 };
1841 
1842 /*
1843  * Check if we can NOCOW the file extent that the path points to.
1844  * This function may return with the path released, so the caller should check
1845  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1846  *
1847  * Returns: < 0 on error
1848  *            0 if we can not NOCOW
1849  *            1 if we can NOCOW
1850  */
1851 static int can_nocow_file_extent(struct btrfs_path *path,
1852 				 struct btrfs_key *key,
1853 				 struct btrfs_inode *inode,
1854 				 struct can_nocow_file_extent_args *args)
1855 {
1856 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1857 	struct extent_buffer *leaf = path->nodes[0];
1858 	struct btrfs_root *root = inode->root;
1859 	struct btrfs_file_extent_item *fi;
1860 	u64 extent_end;
1861 	u8 extent_type;
1862 	int can_nocow = 0;
1863 	int ret = 0;
1864 	bool nowait = path->nowait;
1865 
1866 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1867 	extent_type = btrfs_file_extent_type(leaf, fi);
1868 
1869 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1870 		goto out;
1871 
1872 	/* Can't access these fields unless we know it's not an inline extent. */
1873 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1874 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1875 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1876 
1877 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1878 	    extent_type == BTRFS_FILE_EXTENT_REG)
1879 		goto out;
1880 
1881 	/*
1882 	 * If the extent was created before the generation where the last snapshot
1883 	 * for its subvolume was created, then this implies the extent is shared,
1884 	 * hence we must COW.
1885 	 */
1886 	if (!args->strict &&
1887 	    btrfs_file_extent_generation(leaf, fi) <=
1888 	    btrfs_root_last_snapshot(&root->root_item))
1889 		goto out;
1890 
1891 	/* An explicit hole, must COW. */
1892 	if (args->disk_bytenr == 0)
1893 		goto out;
1894 
1895 	/* Compressed/encrypted/encoded extents must be COWed. */
1896 	if (btrfs_file_extent_compression(leaf, fi) ||
1897 	    btrfs_file_extent_encryption(leaf, fi) ||
1898 	    btrfs_file_extent_other_encoding(leaf, fi))
1899 		goto out;
1900 
1901 	extent_end = btrfs_file_extent_end(path);
1902 
1903 	/*
1904 	 * The following checks can be expensive, as they need to take other
1905 	 * locks and do btree or rbtree searches, so release the path to avoid
1906 	 * blocking other tasks for too long.
1907 	 */
1908 	btrfs_release_path(path);
1909 
1910 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1911 				    key->offset - args->extent_offset,
1912 				    args->disk_bytenr, args->strict, path);
1913 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1914 	if (ret != 0)
1915 		goto out;
1916 
1917 	if (args->free_path) {
1918 		/*
1919 		 * We don't need the path anymore, plus through the
1920 		 * csum_exist_in_range() call below we will end up allocating
1921 		 * another path. So free the path to avoid unnecessary extra
1922 		 * memory usage.
1923 		 */
1924 		btrfs_free_path(path);
1925 		path = NULL;
1926 	}
1927 
1928 	/* If there are pending snapshots for this root, we must COW. */
1929 	if (args->writeback_path && !is_freespace_inode &&
1930 	    atomic_read(&root->snapshot_force_cow))
1931 		goto out;
1932 
1933 	args->disk_bytenr += args->extent_offset;
1934 	args->disk_bytenr += args->start - key->offset;
1935 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1936 
1937 	/*
1938 	 * Force COW if csums exist in the range. This ensures that csums for a
1939 	 * given extent are either valid or do not exist.
1940 	 */
1941 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1942 				  nowait);
1943 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1944 	if (ret != 0)
1945 		goto out;
1946 
1947 	can_nocow = 1;
1948  out:
1949 	if (args->free_path && path)
1950 		btrfs_free_path(path);
1951 
1952 	return ret < 0 ? ret : can_nocow;
1953 }
1954 
1955 /*
1956  * when nowcow writeback call back.  This checks for snapshots or COW copies
1957  * of the extents that exist in the file, and COWs the file as required.
1958  *
1959  * If no cow copies or snapshots exist, we write directly to the existing
1960  * blocks on disk
1961  */
1962 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1963 				       struct page *locked_page,
1964 				       const u64 start, const u64 end)
1965 {
1966 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1967 	struct btrfs_root *root = inode->root;
1968 	struct btrfs_path *path;
1969 	u64 cow_start = (u64)-1;
1970 	u64 cur_offset = start;
1971 	int ret;
1972 	bool check_prev = true;
1973 	u64 ino = btrfs_ino(inode);
1974 	struct can_nocow_file_extent_args nocow_args = { 0 };
1975 
1976 	/*
1977 	 * Normally on a zoned device we're only doing COW writes, but in case
1978 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1979 	 * writing sequentially and can end up here as well.
1980 	 */
1981 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1982 
1983 	path = btrfs_alloc_path();
1984 	if (!path) {
1985 		ret = -ENOMEM;
1986 		goto error;
1987 	}
1988 
1989 	nocow_args.end = end;
1990 	nocow_args.writeback_path = true;
1991 
1992 	while (1) {
1993 		struct btrfs_block_group *nocow_bg = NULL;
1994 		struct btrfs_ordered_extent *ordered;
1995 		struct btrfs_key found_key;
1996 		struct btrfs_file_extent_item *fi;
1997 		struct extent_buffer *leaf;
1998 		u64 extent_end;
1999 		u64 ram_bytes;
2000 		u64 nocow_end;
2001 		int extent_type;
2002 		bool is_prealloc;
2003 
2004 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2005 					       cur_offset, 0);
2006 		if (ret < 0)
2007 			goto error;
2008 
2009 		/*
2010 		 * If there is no extent for our range when doing the initial
2011 		 * search, then go back to the previous slot as it will be the
2012 		 * one containing the search offset
2013 		 */
2014 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2015 			leaf = path->nodes[0];
2016 			btrfs_item_key_to_cpu(leaf, &found_key,
2017 					      path->slots[0] - 1);
2018 			if (found_key.objectid == ino &&
2019 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2020 				path->slots[0]--;
2021 		}
2022 		check_prev = false;
2023 next_slot:
2024 		/* Go to next leaf if we have exhausted the current one */
2025 		leaf = path->nodes[0];
2026 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2027 			ret = btrfs_next_leaf(root, path);
2028 			if (ret < 0)
2029 				goto error;
2030 			if (ret > 0)
2031 				break;
2032 			leaf = path->nodes[0];
2033 		}
2034 
2035 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2036 
2037 		/* Didn't find anything for our INO */
2038 		if (found_key.objectid > ino)
2039 			break;
2040 		/*
2041 		 * Keep searching until we find an EXTENT_ITEM or there are no
2042 		 * more extents for this inode
2043 		 */
2044 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2045 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2046 			path->slots[0]++;
2047 			goto next_slot;
2048 		}
2049 
2050 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2051 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2052 		    found_key.offset > end)
2053 			break;
2054 
2055 		/*
2056 		 * If the found extent starts after requested offset, then
2057 		 * adjust extent_end to be right before this extent begins
2058 		 */
2059 		if (found_key.offset > cur_offset) {
2060 			extent_end = found_key.offset;
2061 			extent_type = 0;
2062 			goto must_cow;
2063 		}
2064 
2065 		/*
2066 		 * Found extent which begins before our range and potentially
2067 		 * intersect it
2068 		 */
2069 		fi = btrfs_item_ptr(leaf, path->slots[0],
2070 				    struct btrfs_file_extent_item);
2071 		extent_type = btrfs_file_extent_type(leaf, fi);
2072 		/* If this is triggered then we have a memory corruption. */
2073 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2074 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2075 			ret = -EUCLEAN;
2076 			goto error;
2077 		}
2078 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2079 		extent_end = btrfs_file_extent_end(path);
2080 
2081 		/*
2082 		 * If the extent we got ends before our current offset, skip to
2083 		 * the next extent.
2084 		 */
2085 		if (extent_end <= cur_offset) {
2086 			path->slots[0]++;
2087 			goto next_slot;
2088 		}
2089 
2090 		nocow_args.start = cur_offset;
2091 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2092 		if (ret < 0)
2093 			goto error;
2094 		if (ret == 0)
2095 			goto must_cow;
2096 
2097 		ret = 0;
2098 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2099 		if (!nocow_bg) {
2100 must_cow:
2101 			/*
2102 			 * If we can't perform NOCOW writeback for the range,
2103 			 * then record the beginning of the range that needs to
2104 			 * be COWed.  It will be written out before the next
2105 			 * NOCOW range if we find one, or when exiting this
2106 			 * loop.
2107 			 */
2108 			if (cow_start == (u64)-1)
2109 				cow_start = cur_offset;
2110 			cur_offset = extent_end;
2111 			if (cur_offset > end)
2112 				break;
2113 			if (!path->nodes[0])
2114 				continue;
2115 			path->slots[0]++;
2116 			goto next_slot;
2117 		}
2118 
2119 		/*
2120 		 * COW range from cow_start to found_key.offset - 1. As the key
2121 		 * will contain the beginning of the first extent that can be
2122 		 * NOCOW, following one which needs to be COW'ed
2123 		 */
2124 		if (cow_start != (u64)-1) {
2125 			ret = fallback_to_cow(inode, locked_page,
2126 					      cow_start, found_key.offset - 1);
2127 			cow_start = (u64)-1;
2128 			if (ret) {
2129 				btrfs_dec_nocow_writers(nocow_bg);
2130 				goto error;
2131 			}
2132 		}
2133 
2134 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2135 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2136 		if (is_prealloc) {
2137 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2138 			struct extent_map *em;
2139 
2140 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2141 					  orig_start,
2142 					  nocow_args.disk_bytenr, /* block_start */
2143 					  nocow_args.num_bytes, /* block_len */
2144 					  nocow_args.disk_num_bytes, /* orig_block_len */
2145 					  ram_bytes, BTRFS_COMPRESS_NONE,
2146 					  BTRFS_ORDERED_PREALLOC);
2147 			if (IS_ERR(em)) {
2148 				btrfs_dec_nocow_writers(nocow_bg);
2149 				ret = PTR_ERR(em);
2150 				goto error;
2151 			}
2152 			free_extent_map(em);
2153 		}
2154 
2155 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2156 				nocow_args.num_bytes, nocow_args.num_bytes,
2157 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2158 				is_prealloc
2159 				? (1 << BTRFS_ORDERED_PREALLOC)
2160 				: (1 << BTRFS_ORDERED_NOCOW),
2161 				BTRFS_COMPRESS_NONE);
2162 		btrfs_dec_nocow_writers(nocow_bg);
2163 		if (IS_ERR(ordered)) {
2164 			if (is_prealloc) {
2165 				btrfs_drop_extent_map_range(inode, cur_offset,
2166 							    nocow_end, false);
2167 			}
2168 			ret = PTR_ERR(ordered);
2169 			goto error;
2170 		}
2171 
2172 		if (btrfs_is_data_reloc_root(root))
2173 			/*
2174 			 * Error handled later, as we must prevent
2175 			 * extent_clear_unlock_delalloc() in error handler
2176 			 * from freeing metadata of created ordered extent.
2177 			 */
2178 			ret = btrfs_reloc_clone_csums(ordered);
2179 		btrfs_put_ordered_extent(ordered);
2180 
2181 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2182 					     locked_page, EXTENT_LOCKED |
2183 					     EXTENT_DELALLOC |
2184 					     EXTENT_CLEAR_DATA_RESV,
2185 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2186 
2187 		cur_offset = extent_end;
2188 
2189 		/*
2190 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2191 		 * handler, as metadata for created ordered extent will only
2192 		 * be freed by btrfs_finish_ordered_io().
2193 		 */
2194 		if (ret)
2195 			goto error;
2196 		if (cur_offset > end)
2197 			break;
2198 	}
2199 	btrfs_release_path(path);
2200 
2201 	if (cur_offset <= end && cow_start == (u64)-1)
2202 		cow_start = cur_offset;
2203 
2204 	if (cow_start != (u64)-1) {
2205 		cur_offset = end;
2206 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2207 		cow_start = (u64)-1;
2208 		if (ret)
2209 			goto error;
2210 	}
2211 
2212 	btrfs_free_path(path);
2213 	return 0;
2214 
2215 error:
2216 	/*
2217 	 * If an error happened while a COW region is outstanding, cur_offset
2218 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2219 	 * as well.
2220 	 */
2221 	if (cow_start != (u64)-1)
2222 		cur_offset = cow_start;
2223 	if (cur_offset < end)
2224 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2225 					     locked_page, EXTENT_LOCKED |
2226 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2227 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2228 					     PAGE_START_WRITEBACK |
2229 					     PAGE_END_WRITEBACK);
2230 	btrfs_free_path(path);
2231 	return ret;
2232 }
2233 
2234 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2235 {
2236 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2237 		if (inode->defrag_bytes &&
2238 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2239 				   0, NULL))
2240 			return false;
2241 		return true;
2242 	}
2243 	return false;
2244 }
2245 
2246 /*
2247  * Function to process delayed allocation (create CoW) for ranges which are
2248  * being touched for the first time.
2249  */
2250 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2251 			     u64 start, u64 end, struct writeback_control *wbc)
2252 {
2253 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2254 	int ret;
2255 
2256 	/*
2257 	 * The range must cover part of the @locked_page, or a return of 1
2258 	 * can confuse the caller.
2259 	 */
2260 	ASSERT(!(end <= page_offset(locked_page) ||
2261 		 start >= page_offset(locked_page) + PAGE_SIZE));
2262 
2263 	if (should_nocow(inode, start, end)) {
2264 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2265 		goto out;
2266 	}
2267 
2268 	if (btrfs_inode_can_compress(inode) &&
2269 	    inode_need_compress(inode, start, end) &&
2270 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2271 		return 1;
2272 
2273 	if (zoned)
2274 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2275 				       true);
2276 	else
2277 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2278 				     false, false);
2279 
2280 out:
2281 	if (ret < 0)
2282 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2283 					      end - start + 1);
2284 	return ret;
2285 }
2286 
2287 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2288 				 struct extent_state *orig, u64 split)
2289 {
2290 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2291 	u64 size;
2292 
2293 	/* not delalloc, ignore it */
2294 	if (!(orig->state & EXTENT_DELALLOC))
2295 		return;
2296 
2297 	size = orig->end - orig->start + 1;
2298 	if (size > fs_info->max_extent_size) {
2299 		u32 num_extents;
2300 		u64 new_size;
2301 
2302 		/*
2303 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2304 		 * applies here, just in reverse.
2305 		 */
2306 		new_size = orig->end - split + 1;
2307 		num_extents = count_max_extents(fs_info, new_size);
2308 		new_size = split - orig->start;
2309 		num_extents += count_max_extents(fs_info, new_size);
2310 		if (count_max_extents(fs_info, size) >= num_extents)
2311 			return;
2312 	}
2313 
2314 	spin_lock(&inode->lock);
2315 	btrfs_mod_outstanding_extents(inode, 1);
2316 	spin_unlock(&inode->lock);
2317 }
2318 
2319 /*
2320  * Handle merged delayed allocation extents so we can keep track of new extents
2321  * that are just merged onto old extents, such as when we are doing sequential
2322  * writes, so we can properly account for the metadata space we'll need.
2323  */
2324 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2325 				 struct extent_state *other)
2326 {
2327 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2328 	u64 new_size, old_size;
2329 	u32 num_extents;
2330 
2331 	/* not delalloc, ignore it */
2332 	if (!(other->state & EXTENT_DELALLOC))
2333 		return;
2334 
2335 	if (new->start > other->start)
2336 		new_size = new->end - other->start + 1;
2337 	else
2338 		new_size = other->end - new->start + 1;
2339 
2340 	/* we're not bigger than the max, unreserve the space and go */
2341 	if (new_size <= fs_info->max_extent_size) {
2342 		spin_lock(&inode->lock);
2343 		btrfs_mod_outstanding_extents(inode, -1);
2344 		spin_unlock(&inode->lock);
2345 		return;
2346 	}
2347 
2348 	/*
2349 	 * We have to add up either side to figure out how many extents were
2350 	 * accounted for before we merged into one big extent.  If the number of
2351 	 * extents we accounted for is <= the amount we need for the new range
2352 	 * then we can return, otherwise drop.  Think of it like this
2353 	 *
2354 	 * [ 4k][MAX_SIZE]
2355 	 *
2356 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2357 	 * need 2 outstanding extents, on one side we have 1 and the other side
2358 	 * we have 1 so they are == and we can return.  But in this case
2359 	 *
2360 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2361 	 *
2362 	 * Each range on their own accounts for 2 extents, but merged together
2363 	 * they are only 3 extents worth of accounting, so we need to drop in
2364 	 * this case.
2365 	 */
2366 	old_size = other->end - other->start + 1;
2367 	num_extents = count_max_extents(fs_info, old_size);
2368 	old_size = new->end - new->start + 1;
2369 	num_extents += count_max_extents(fs_info, old_size);
2370 	if (count_max_extents(fs_info, new_size) >= num_extents)
2371 		return;
2372 
2373 	spin_lock(&inode->lock);
2374 	btrfs_mod_outstanding_extents(inode, -1);
2375 	spin_unlock(&inode->lock);
2376 }
2377 
2378 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2379 				      struct btrfs_inode *inode)
2380 {
2381 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2382 
2383 	spin_lock(&root->delalloc_lock);
2384 	if (list_empty(&inode->delalloc_inodes)) {
2385 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2386 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2387 		root->nr_delalloc_inodes++;
2388 		if (root->nr_delalloc_inodes == 1) {
2389 			spin_lock(&fs_info->delalloc_root_lock);
2390 			BUG_ON(!list_empty(&root->delalloc_root));
2391 			list_add_tail(&root->delalloc_root,
2392 				      &fs_info->delalloc_roots);
2393 			spin_unlock(&fs_info->delalloc_root_lock);
2394 		}
2395 	}
2396 	spin_unlock(&root->delalloc_lock);
2397 }
2398 
2399 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2400 				struct btrfs_inode *inode)
2401 {
2402 	struct btrfs_fs_info *fs_info = root->fs_info;
2403 
2404 	if (!list_empty(&inode->delalloc_inodes)) {
2405 		list_del_init(&inode->delalloc_inodes);
2406 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2407 			  &inode->runtime_flags);
2408 		root->nr_delalloc_inodes--;
2409 		if (!root->nr_delalloc_inodes) {
2410 			ASSERT(list_empty(&root->delalloc_inodes));
2411 			spin_lock(&fs_info->delalloc_root_lock);
2412 			BUG_ON(list_empty(&root->delalloc_root));
2413 			list_del_init(&root->delalloc_root);
2414 			spin_unlock(&fs_info->delalloc_root_lock);
2415 		}
2416 	}
2417 }
2418 
2419 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2420 				     struct btrfs_inode *inode)
2421 {
2422 	spin_lock(&root->delalloc_lock);
2423 	__btrfs_del_delalloc_inode(root, inode);
2424 	spin_unlock(&root->delalloc_lock);
2425 }
2426 
2427 /*
2428  * Properly track delayed allocation bytes in the inode and to maintain the
2429  * list of inodes that have pending delalloc work to be done.
2430  */
2431 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2432 			       u32 bits)
2433 {
2434 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2435 
2436 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2437 		WARN_ON(1);
2438 	/*
2439 	 * set_bit and clear bit hooks normally require _irqsave/restore
2440 	 * but in this case, we are only testing for the DELALLOC
2441 	 * bit, which is only set or cleared with irqs on
2442 	 */
2443 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2444 		struct btrfs_root *root = inode->root;
2445 		u64 len = state->end + 1 - state->start;
2446 		u32 num_extents = count_max_extents(fs_info, len);
2447 		bool do_list = !btrfs_is_free_space_inode(inode);
2448 
2449 		spin_lock(&inode->lock);
2450 		btrfs_mod_outstanding_extents(inode, num_extents);
2451 		spin_unlock(&inode->lock);
2452 
2453 		/* For sanity tests */
2454 		if (btrfs_is_testing(fs_info))
2455 			return;
2456 
2457 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2458 					 fs_info->delalloc_batch);
2459 		spin_lock(&inode->lock);
2460 		inode->delalloc_bytes += len;
2461 		if (bits & EXTENT_DEFRAG)
2462 			inode->defrag_bytes += len;
2463 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2464 					 &inode->runtime_flags))
2465 			btrfs_add_delalloc_inodes(root, inode);
2466 		spin_unlock(&inode->lock);
2467 	}
2468 
2469 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2470 	    (bits & EXTENT_DELALLOC_NEW)) {
2471 		spin_lock(&inode->lock);
2472 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2473 		spin_unlock(&inode->lock);
2474 	}
2475 }
2476 
2477 /*
2478  * Once a range is no longer delalloc this function ensures that proper
2479  * accounting happens.
2480  */
2481 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2482 				 struct extent_state *state, u32 bits)
2483 {
2484 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2485 	u64 len = state->end + 1 - state->start;
2486 	u32 num_extents = count_max_extents(fs_info, len);
2487 
2488 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2489 		spin_lock(&inode->lock);
2490 		inode->defrag_bytes -= len;
2491 		spin_unlock(&inode->lock);
2492 	}
2493 
2494 	/*
2495 	 * set_bit and clear bit hooks normally require _irqsave/restore
2496 	 * but in this case, we are only testing for the DELALLOC
2497 	 * bit, which is only set or cleared with irqs on
2498 	 */
2499 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2500 		struct btrfs_root *root = inode->root;
2501 		bool do_list = !btrfs_is_free_space_inode(inode);
2502 
2503 		spin_lock(&inode->lock);
2504 		btrfs_mod_outstanding_extents(inode, -num_extents);
2505 		spin_unlock(&inode->lock);
2506 
2507 		/*
2508 		 * We don't reserve metadata space for space cache inodes so we
2509 		 * don't need to call delalloc_release_metadata if there is an
2510 		 * error.
2511 		 */
2512 		if (bits & EXTENT_CLEAR_META_RESV &&
2513 		    root != fs_info->tree_root)
2514 			btrfs_delalloc_release_metadata(inode, len, false);
2515 
2516 		/* For sanity tests. */
2517 		if (btrfs_is_testing(fs_info))
2518 			return;
2519 
2520 		if (!btrfs_is_data_reloc_root(root) &&
2521 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2522 		    (bits & EXTENT_CLEAR_DATA_RESV))
2523 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2524 
2525 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2526 					 fs_info->delalloc_batch);
2527 		spin_lock(&inode->lock);
2528 		inode->delalloc_bytes -= len;
2529 		if (do_list && inode->delalloc_bytes == 0 &&
2530 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2531 					&inode->runtime_flags))
2532 			btrfs_del_delalloc_inode(root, inode);
2533 		spin_unlock(&inode->lock);
2534 	}
2535 
2536 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2537 	    (bits & EXTENT_DELALLOC_NEW)) {
2538 		spin_lock(&inode->lock);
2539 		ASSERT(inode->new_delalloc_bytes >= len);
2540 		inode->new_delalloc_bytes -= len;
2541 		if (bits & EXTENT_ADD_INODE_BYTES)
2542 			inode_add_bytes(&inode->vfs_inode, len);
2543 		spin_unlock(&inode->lock);
2544 	}
2545 }
2546 
2547 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2548 					struct btrfs_ordered_extent *ordered)
2549 {
2550 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2551 	u64 len = bbio->bio.bi_iter.bi_size;
2552 	struct btrfs_ordered_extent *new;
2553 	int ret;
2554 
2555 	/* Must always be called for the beginning of an ordered extent. */
2556 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2557 		return -EINVAL;
2558 
2559 	/* No need to split if the ordered extent covers the entire bio. */
2560 	if (ordered->disk_num_bytes == len) {
2561 		refcount_inc(&ordered->refs);
2562 		bbio->ordered = ordered;
2563 		return 0;
2564 	}
2565 
2566 	/*
2567 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2568 	 * a pre-existing one.
2569 	 */
2570 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2571 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2572 				       ordered->num_bytes, len,
2573 				       ordered->disk_bytenr);
2574 		if (ret)
2575 			return ret;
2576 	}
2577 
2578 	new = btrfs_split_ordered_extent(ordered, len);
2579 	if (IS_ERR(new))
2580 		return PTR_ERR(new);
2581 	bbio->ordered = new;
2582 	return 0;
2583 }
2584 
2585 /*
2586  * given a list of ordered sums record them in the inode.  This happens
2587  * at IO completion time based on sums calculated at bio submission time.
2588  */
2589 static int add_pending_csums(struct btrfs_trans_handle *trans,
2590 			     struct list_head *list)
2591 {
2592 	struct btrfs_ordered_sum *sum;
2593 	struct btrfs_root *csum_root = NULL;
2594 	int ret;
2595 
2596 	list_for_each_entry(sum, list, list) {
2597 		trans->adding_csums = true;
2598 		if (!csum_root)
2599 			csum_root = btrfs_csum_root(trans->fs_info,
2600 						    sum->logical);
2601 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2602 		trans->adding_csums = false;
2603 		if (ret)
2604 			return ret;
2605 	}
2606 	return 0;
2607 }
2608 
2609 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2610 					 const u64 start,
2611 					 const u64 len,
2612 					 struct extent_state **cached_state)
2613 {
2614 	u64 search_start = start;
2615 	const u64 end = start + len - 1;
2616 
2617 	while (search_start < end) {
2618 		const u64 search_len = end - search_start + 1;
2619 		struct extent_map *em;
2620 		u64 em_len;
2621 		int ret = 0;
2622 
2623 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2624 		if (IS_ERR(em))
2625 			return PTR_ERR(em);
2626 
2627 		if (em->block_start != EXTENT_MAP_HOLE)
2628 			goto next;
2629 
2630 		em_len = em->len;
2631 		if (em->start < search_start)
2632 			em_len -= search_start - em->start;
2633 		if (em_len > search_len)
2634 			em_len = search_len;
2635 
2636 		ret = set_extent_bit(&inode->io_tree, search_start,
2637 				     search_start + em_len - 1,
2638 				     EXTENT_DELALLOC_NEW, cached_state);
2639 next:
2640 		search_start = extent_map_end(em);
2641 		free_extent_map(em);
2642 		if (ret)
2643 			return ret;
2644 	}
2645 	return 0;
2646 }
2647 
2648 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2649 			      unsigned int extra_bits,
2650 			      struct extent_state **cached_state)
2651 {
2652 	WARN_ON(PAGE_ALIGNED(end));
2653 
2654 	if (start >= i_size_read(&inode->vfs_inode) &&
2655 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2656 		/*
2657 		 * There can't be any extents following eof in this case so just
2658 		 * set the delalloc new bit for the range directly.
2659 		 */
2660 		extra_bits |= EXTENT_DELALLOC_NEW;
2661 	} else {
2662 		int ret;
2663 
2664 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2665 						    end + 1 - start,
2666 						    cached_state);
2667 		if (ret)
2668 			return ret;
2669 	}
2670 
2671 	return set_extent_bit(&inode->io_tree, start, end,
2672 			      EXTENT_DELALLOC | extra_bits, cached_state);
2673 }
2674 
2675 /* see btrfs_writepage_start_hook for details on why this is required */
2676 struct btrfs_writepage_fixup {
2677 	struct page *page;
2678 	struct btrfs_inode *inode;
2679 	struct btrfs_work work;
2680 };
2681 
2682 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2683 {
2684 	struct btrfs_writepage_fixup *fixup =
2685 		container_of(work, struct btrfs_writepage_fixup, work);
2686 	struct btrfs_ordered_extent *ordered;
2687 	struct extent_state *cached_state = NULL;
2688 	struct extent_changeset *data_reserved = NULL;
2689 	struct page *page = fixup->page;
2690 	struct btrfs_inode *inode = fixup->inode;
2691 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2692 	u64 page_start = page_offset(page);
2693 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2694 	int ret = 0;
2695 	bool free_delalloc_space = true;
2696 
2697 	/*
2698 	 * This is similar to page_mkwrite, we need to reserve the space before
2699 	 * we take the page lock.
2700 	 */
2701 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2702 					   PAGE_SIZE);
2703 again:
2704 	lock_page(page);
2705 
2706 	/*
2707 	 * Before we queued this fixup, we took a reference on the page.
2708 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2709 	 * address space.
2710 	 */
2711 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2712 		/*
2713 		 * Unfortunately this is a little tricky, either
2714 		 *
2715 		 * 1) We got here and our page had already been dealt with and
2716 		 *    we reserved our space, thus ret == 0, so we need to just
2717 		 *    drop our space reservation and bail.  This can happen the
2718 		 *    first time we come into the fixup worker, or could happen
2719 		 *    while waiting for the ordered extent.
2720 		 * 2) Our page was already dealt with, but we happened to get an
2721 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2722 		 *    this case we obviously don't have anything to release, but
2723 		 *    because the page was already dealt with we don't want to
2724 		 *    mark the page with an error, so make sure we're resetting
2725 		 *    ret to 0.  This is why we have this check _before_ the ret
2726 		 *    check, because we do not want to have a surprise ENOSPC
2727 		 *    when the page was already properly dealt with.
2728 		 */
2729 		if (!ret) {
2730 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2731 			btrfs_delalloc_release_space(inode, data_reserved,
2732 						     page_start, PAGE_SIZE,
2733 						     true);
2734 		}
2735 		ret = 0;
2736 		goto out_page;
2737 	}
2738 
2739 	/*
2740 	 * We can't mess with the page state unless it is locked, so now that
2741 	 * it is locked bail if we failed to make our space reservation.
2742 	 */
2743 	if (ret)
2744 		goto out_page;
2745 
2746 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2747 
2748 	/* already ordered? We're done */
2749 	if (PageOrdered(page))
2750 		goto out_reserved;
2751 
2752 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2753 	if (ordered) {
2754 		unlock_extent(&inode->io_tree, page_start, page_end,
2755 			      &cached_state);
2756 		unlock_page(page);
2757 		btrfs_start_ordered_extent(ordered);
2758 		btrfs_put_ordered_extent(ordered);
2759 		goto again;
2760 	}
2761 
2762 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2763 					&cached_state);
2764 	if (ret)
2765 		goto out_reserved;
2766 
2767 	/*
2768 	 * Everything went as planned, we're now the owner of a dirty page with
2769 	 * delayed allocation bits set and space reserved for our COW
2770 	 * destination.
2771 	 *
2772 	 * The page was dirty when we started, nothing should have cleaned it.
2773 	 */
2774 	BUG_ON(!PageDirty(page));
2775 	free_delalloc_space = false;
2776 out_reserved:
2777 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2778 	if (free_delalloc_space)
2779 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2780 					     PAGE_SIZE, true);
2781 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2782 out_page:
2783 	if (ret) {
2784 		/*
2785 		 * We hit ENOSPC or other errors.  Update the mapping and page
2786 		 * to reflect the errors and clean the page.
2787 		 */
2788 		mapping_set_error(page->mapping, ret);
2789 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2790 					       PAGE_SIZE, !ret);
2791 		clear_page_dirty_for_io(page);
2792 	}
2793 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2794 	unlock_page(page);
2795 	put_page(page);
2796 	kfree(fixup);
2797 	extent_changeset_free(data_reserved);
2798 	/*
2799 	 * As a precaution, do a delayed iput in case it would be the last iput
2800 	 * that could need flushing space. Recursing back to fixup worker would
2801 	 * deadlock.
2802 	 */
2803 	btrfs_add_delayed_iput(inode);
2804 }
2805 
2806 /*
2807  * There are a few paths in the higher layers of the kernel that directly
2808  * set the page dirty bit without asking the filesystem if it is a
2809  * good idea.  This causes problems because we want to make sure COW
2810  * properly happens and the data=ordered rules are followed.
2811  *
2812  * In our case any range that doesn't have the ORDERED bit set
2813  * hasn't been properly setup for IO.  We kick off an async process
2814  * to fix it up.  The async helper will wait for ordered extents, set
2815  * the delalloc bit and make it safe to write the page.
2816  */
2817 int btrfs_writepage_cow_fixup(struct page *page)
2818 {
2819 	struct inode *inode = page->mapping->host;
2820 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2821 	struct btrfs_writepage_fixup *fixup;
2822 
2823 	/* This page has ordered extent covering it already */
2824 	if (PageOrdered(page))
2825 		return 0;
2826 
2827 	/*
2828 	 * PageChecked is set below when we create a fixup worker for this page,
2829 	 * don't try to create another one if we're already PageChecked()
2830 	 *
2831 	 * The extent_io writepage code will redirty the page if we send back
2832 	 * EAGAIN.
2833 	 */
2834 	if (PageChecked(page))
2835 		return -EAGAIN;
2836 
2837 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2838 	if (!fixup)
2839 		return -EAGAIN;
2840 
2841 	/*
2842 	 * We are already holding a reference to this inode from
2843 	 * write_cache_pages.  We need to hold it because the space reservation
2844 	 * takes place outside of the page lock, and we can't trust
2845 	 * page->mapping outside of the page lock.
2846 	 */
2847 	ihold(inode);
2848 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2849 	get_page(page);
2850 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2851 	fixup->page = page;
2852 	fixup->inode = BTRFS_I(inode);
2853 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2854 
2855 	return -EAGAIN;
2856 }
2857 
2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2859 				       struct btrfs_inode *inode, u64 file_pos,
2860 				       struct btrfs_file_extent_item *stack_fi,
2861 				       const bool update_inode_bytes,
2862 				       u64 qgroup_reserved)
2863 {
2864 	struct btrfs_root *root = inode->root;
2865 	const u64 sectorsize = root->fs_info->sectorsize;
2866 	struct btrfs_path *path;
2867 	struct extent_buffer *leaf;
2868 	struct btrfs_key ins;
2869 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2870 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2871 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2872 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2873 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2874 	struct btrfs_drop_extents_args drop_args = { 0 };
2875 	int ret;
2876 
2877 	path = btrfs_alloc_path();
2878 	if (!path)
2879 		return -ENOMEM;
2880 
2881 	/*
2882 	 * we may be replacing one extent in the tree with another.
2883 	 * The new extent is pinned in the extent map, and we don't want
2884 	 * to drop it from the cache until it is completely in the btree.
2885 	 *
2886 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2887 	 * the caller is expected to unpin it and allow it to be merged
2888 	 * with the others.
2889 	 */
2890 	drop_args.path = path;
2891 	drop_args.start = file_pos;
2892 	drop_args.end = file_pos + num_bytes;
2893 	drop_args.replace_extent = true;
2894 	drop_args.extent_item_size = sizeof(*stack_fi);
2895 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2896 	if (ret)
2897 		goto out;
2898 
2899 	if (!drop_args.extent_inserted) {
2900 		ins.objectid = btrfs_ino(inode);
2901 		ins.offset = file_pos;
2902 		ins.type = BTRFS_EXTENT_DATA_KEY;
2903 
2904 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2905 					      sizeof(*stack_fi));
2906 		if (ret)
2907 			goto out;
2908 	}
2909 	leaf = path->nodes[0];
2910 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2911 	write_extent_buffer(leaf, stack_fi,
2912 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2913 			sizeof(struct btrfs_file_extent_item));
2914 
2915 	btrfs_mark_buffer_dirty(trans, leaf);
2916 	btrfs_release_path(path);
2917 
2918 	/*
2919 	 * If we dropped an inline extent here, we know the range where it is
2920 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2921 	 * number of bytes only for that range containing the inline extent.
2922 	 * The remaining of the range will be processed when clearning the
2923 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2924 	 */
2925 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2926 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2927 
2928 		inline_size = drop_args.bytes_found - inline_size;
2929 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2930 		drop_args.bytes_found -= inline_size;
2931 		num_bytes -= sectorsize;
2932 	}
2933 
2934 	if (update_inode_bytes)
2935 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2936 
2937 	ins.objectid = disk_bytenr;
2938 	ins.offset = disk_num_bytes;
2939 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2940 
2941 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2942 	if (ret)
2943 		goto out;
2944 
2945 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2946 					       file_pos - offset,
2947 					       qgroup_reserved, &ins);
2948 out:
2949 	btrfs_free_path(path);
2950 
2951 	return ret;
2952 }
2953 
2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2955 					 u64 start, u64 len)
2956 {
2957 	struct btrfs_block_group *cache;
2958 
2959 	cache = btrfs_lookup_block_group(fs_info, start);
2960 	ASSERT(cache);
2961 
2962 	spin_lock(&cache->lock);
2963 	cache->delalloc_bytes -= len;
2964 	spin_unlock(&cache->lock);
2965 
2966 	btrfs_put_block_group(cache);
2967 }
2968 
2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2970 					     struct btrfs_ordered_extent *oe)
2971 {
2972 	struct btrfs_file_extent_item stack_fi;
2973 	bool update_inode_bytes;
2974 	u64 num_bytes = oe->num_bytes;
2975 	u64 ram_bytes = oe->ram_bytes;
2976 
2977 	memset(&stack_fi, 0, sizeof(stack_fi));
2978 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2979 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2980 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2981 						   oe->disk_num_bytes);
2982 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2983 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2984 		num_bytes = oe->truncated_len;
2985 		ram_bytes = num_bytes;
2986 	}
2987 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2988 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2989 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2990 	/* Encryption and other encoding is reserved and all 0 */
2991 
2992 	/*
2993 	 * For delalloc, when completing an ordered extent we update the inode's
2994 	 * bytes when clearing the range in the inode's io tree, so pass false
2995 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2996 	 * except if the ordered extent was truncated.
2997 	 */
2998 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2999 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3000 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3001 
3002 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3003 					   oe->file_offset, &stack_fi,
3004 					   update_inode_bytes, oe->qgroup_rsv);
3005 }
3006 
3007 /*
3008  * As ordered data IO finishes, this gets called so we can finish
3009  * an ordered extent if the range of bytes in the file it covers are
3010  * fully written.
3011  */
3012 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3013 {
3014 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3015 	struct btrfs_root *root = inode->root;
3016 	struct btrfs_fs_info *fs_info = root->fs_info;
3017 	struct btrfs_trans_handle *trans = NULL;
3018 	struct extent_io_tree *io_tree = &inode->io_tree;
3019 	struct extent_state *cached_state = NULL;
3020 	u64 start, end;
3021 	int compress_type = 0;
3022 	int ret = 0;
3023 	u64 logical_len = ordered_extent->num_bytes;
3024 	bool freespace_inode;
3025 	bool truncated = false;
3026 	bool clear_reserved_extent = true;
3027 	unsigned int clear_bits = EXTENT_DEFRAG;
3028 
3029 	start = ordered_extent->file_offset;
3030 	end = start + ordered_extent->num_bytes - 1;
3031 
3032 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3033 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3034 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3035 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3036 		clear_bits |= EXTENT_DELALLOC_NEW;
3037 
3038 	freespace_inode = btrfs_is_free_space_inode(inode);
3039 	if (!freespace_inode)
3040 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3041 
3042 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3043 		ret = -EIO;
3044 		goto out;
3045 	}
3046 
3047 	if (btrfs_is_zoned(fs_info))
3048 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3049 					ordered_extent->disk_num_bytes);
3050 
3051 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3052 		truncated = true;
3053 		logical_len = ordered_extent->truncated_len;
3054 		/* Truncated the entire extent, don't bother adding */
3055 		if (!logical_len)
3056 			goto out;
3057 	}
3058 
3059 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3060 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3061 
3062 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3063 		if (freespace_inode)
3064 			trans = btrfs_join_transaction_spacecache(root);
3065 		else
3066 			trans = btrfs_join_transaction(root);
3067 		if (IS_ERR(trans)) {
3068 			ret = PTR_ERR(trans);
3069 			trans = NULL;
3070 			goto out;
3071 		}
3072 		trans->block_rsv = &inode->block_rsv;
3073 		ret = btrfs_update_inode_fallback(trans, root, inode);
3074 		if (ret) /* -ENOMEM or corruption */
3075 			btrfs_abort_transaction(trans, ret);
3076 		goto out;
3077 	}
3078 
3079 	clear_bits |= EXTENT_LOCKED;
3080 	lock_extent(io_tree, start, end, &cached_state);
3081 
3082 	if (freespace_inode)
3083 		trans = btrfs_join_transaction_spacecache(root);
3084 	else
3085 		trans = btrfs_join_transaction(root);
3086 	if (IS_ERR(trans)) {
3087 		ret = PTR_ERR(trans);
3088 		trans = NULL;
3089 		goto out;
3090 	}
3091 
3092 	trans->block_rsv = &inode->block_rsv;
3093 
3094 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3095 		compress_type = ordered_extent->compress_type;
3096 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3097 		BUG_ON(compress_type);
3098 		ret = btrfs_mark_extent_written(trans, inode,
3099 						ordered_extent->file_offset,
3100 						ordered_extent->file_offset +
3101 						logical_len);
3102 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3103 						  ordered_extent->disk_num_bytes);
3104 	} else {
3105 		BUG_ON(root == fs_info->tree_root);
3106 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3107 		if (!ret) {
3108 			clear_reserved_extent = false;
3109 			btrfs_release_delalloc_bytes(fs_info,
3110 						ordered_extent->disk_bytenr,
3111 						ordered_extent->disk_num_bytes);
3112 		}
3113 	}
3114 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3115 			   ordered_extent->num_bytes, trans->transid);
3116 	if (ret < 0) {
3117 		btrfs_abort_transaction(trans, ret);
3118 		goto out;
3119 	}
3120 
3121 	ret = add_pending_csums(trans, &ordered_extent->list);
3122 	if (ret) {
3123 		btrfs_abort_transaction(trans, ret);
3124 		goto out;
3125 	}
3126 
3127 	/*
3128 	 * If this is a new delalloc range, clear its new delalloc flag to
3129 	 * update the inode's number of bytes. This needs to be done first
3130 	 * before updating the inode item.
3131 	 */
3132 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3133 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3134 		clear_extent_bit(&inode->io_tree, start, end,
3135 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3136 				 &cached_state);
3137 
3138 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3139 	ret = btrfs_update_inode_fallback(trans, root, inode);
3140 	if (ret) { /* -ENOMEM or corruption */
3141 		btrfs_abort_transaction(trans, ret);
3142 		goto out;
3143 	}
3144 	ret = 0;
3145 out:
3146 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3147 			 &cached_state);
3148 
3149 	if (trans)
3150 		btrfs_end_transaction(trans);
3151 
3152 	if (ret || truncated) {
3153 		u64 unwritten_start = start;
3154 
3155 		/*
3156 		 * If we failed to finish this ordered extent for any reason we
3157 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3158 		 * extent, and mark the inode with the error if it wasn't
3159 		 * already set.  Any error during writeback would have already
3160 		 * set the mapping error, so we need to set it if we're the ones
3161 		 * marking this ordered extent as failed.
3162 		 */
3163 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3164 					     &ordered_extent->flags))
3165 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3166 
3167 		if (truncated)
3168 			unwritten_start += logical_len;
3169 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3170 
3171 		/*
3172 		 * Drop extent maps for the part of the extent we didn't write.
3173 		 *
3174 		 * We have an exception here for the free_space_inode, this is
3175 		 * because when we do btrfs_get_extent() on the free space inode
3176 		 * we will search the commit root.  If this is a new block group
3177 		 * we won't find anything, and we will trip over the assert in
3178 		 * writepage where we do ASSERT(em->block_start !=
3179 		 * EXTENT_MAP_HOLE).
3180 		 *
3181 		 * Theoretically we could also skip this for any NOCOW extent as
3182 		 * we don't mess with the extent map tree in the NOCOW case, but
3183 		 * for now simply skip this if we are the free space inode.
3184 		 */
3185 		if (!btrfs_is_free_space_inode(inode))
3186 			btrfs_drop_extent_map_range(inode, unwritten_start,
3187 						    end, false);
3188 
3189 		/*
3190 		 * If the ordered extent had an IOERR or something else went
3191 		 * wrong we need to return the space for this ordered extent
3192 		 * back to the allocator.  We only free the extent in the
3193 		 * truncated case if we didn't write out the extent at all.
3194 		 *
3195 		 * If we made it past insert_reserved_file_extent before we
3196 		 * errored out then we don't need to do this as the accounting
3197 		 * has already been done.
3198 		 */
3199 		if ((ret || !logical_len) &&
3200 		    clear_reserved_extent &&
3201 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3202 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3203 			/*
3204 			 * Discard the range before returning it back to the
3205 			 * free space pool
3206 			 */
3207 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3208 				btrfs_discard_extent(fs_info,
3209 						ordered_extent->disk_bytenr,
3210 						ordered_extent->disk_num_bytes,
3211 						NULL);
3212 			btrfs_free_reserved_extent(fs_info,
3213 					ordered_extent->disk_bytenr,
3214 					ordered_extent->disk_num_bytes, 1);
3215 			/*
3216 			 * Actually free the qgroup rsv which was released when
3217 			 * the ordered extent was created.
3218 			 */
3219 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3220 						  ordered_extent->qgroup_rsv,
3221 						  BTRFS_QGROUP_RSV_DATA);
3222 		}
3223 	}
3224 
3225 	/*
3226 	 * This needs to be done to make sure anybody waiting knows we are done
3227 	 * updating everything for this ordered extent.
3228 	 */
3229 	btrfs_remove_ordered_extent(inode, ordered_extent);
3230 
3231 	/* once for us */
3232 	btrfs_put_ordered_extent(ordered_extent);
3233 	/* once for the tree */
3234 	btrfs_put_ordered_extent(ordered_extent);
3235 
3236 	return ret;
3237 }
3238 
3239 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3240 {
3241 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3242 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3243 		btrfs_finish_ordered_zoned(ordered);
3244 	return btrfs_finish_one_ordered(ordered);
3245 }
3246 
3247 /*
3248  * Verify the checksum for a single sector without any extra action that depend
3249  * on the type of I/O.
3250  */
3251 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3252 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3253 {
3254 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3255 	char *kaddr;
3256 
3257 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3258 
3259 	shash->tfm = fs_info->csum_shash;
3260 
3261 	kaddr = kmap_local_page(page) + pgoff;
3262 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3263 	kunmap_local(kaddr);
3264 
3265 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3266 		return -EIO;
3267 	return 0;
3268 }
3269 
3270 /*
3271  * Verify the checksum of a single data sector.
3272  *
3273  * @bbio:	btrfs_io_bio which contains the csum
3274  * @dev:	device the sector is on
3275  * @bio_offset:	offset to the beginning of the bio (in bytes)
3276  * @bv:		bio_vec to check
3277  *
3278  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3279  * detected, report the error and fill the corrupted range with zero.
3280  *
3281  * Return %true if the sector is ok or had no checksum to start with, else %false.
3282  */
3283 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3284 			u32 bio_offset, struct bio_vec *bv)
3285 {
3286 	struct btrfs_inode *inode = bbio->inode;
3287 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3288 	u64 file_offset = bbio->file_offset + bio_offset;
3289 	u64 end = file_offset + bv->bv_len - 1;
3290 	u8 *csum_expected;
3291 	u8 csum[BTRFS_CSUM_SIZE];
3292 
3293 	ASSERT(bv->bv_len == fs_info->sectorsize);
3294 
3295 	if (!bbio->csum)
3296 		return true;
3297 
3298 	if (btrfs_is_data_reloc_root(inode->root) &&
3299 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3300 			   1, NULL)) {
3301 		/* Skip the range without csum for data reloc inode */
3302 		clear_extent_bits(&inode->io_tree, file_offset, end,
3303 				  EXTENT_NODATASUM);
3304 		return true;
3305 	}
3306 
3307 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3308 				fs_info->csum_size;
3309 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3310 				    csum_expected))
3311 		goto zeroit;
3312 	return true;
3313 
3314 zeroit:
3315 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3316 				    bbio->mirror_num);
3317 	if (dev)
3318 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3319 	memzero_bvec(bv);
3320 	return false;
3321 }
3322 
3323 /*
3324  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3325  *
3326  * @inode: The inode we want to perform iput on
3327  *
3328  * This function uses the generic vfs_inode::i_count to track whether we should
3329  * just decrement it (in case it's > 1) or if this is the last iput then link
3330  * the inode to the delayed iput machinery. Delayed iputs are processed at
3331  * transaction commit time/superblock commit/cleaner kthread.
3332  */
3333 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3334 {
3335 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3336 	unsigned long flags;
3337 
3338 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3339 		return;
3340 
3341 	atomic_inc(&fs_info->nr_delayed_iputs);
3342 	/*
3343 	 * Need to be irq safe here because we can be called from either an irq
3344 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3345 	 * context.
3346 	 */
3347 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3348 	ASSERT(list_empty(&inode->delayed_iput));
3349 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3350 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3351 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3352 		wake_up_process(fs_info->cleaner_kthread);
3353 }
3354 
3355 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3356 				    struct btrfs_inode *inode)
3357 {
3358 	list_del_init(&inode->delayed_iput);
3359 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3360 	iput(&inode->vfs_inode);
3361 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3362 		wake_up(&fs_info->delayed_iputs_wait);
3363 	spin_lock_irq(&fs_info->delayed_iput_lock);
3364 }
3365 
3366 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3367 				   struct btrfs_inode *inode)
3368 {
3369 	if (!list_empty(&inode->delayed_iput)) {
3370 		spin_lock_irq(&fs_info->delayed_iput_lock);
3371 		if (!list_empty(&inode->delayed_iput))
3372 			run_delayed_iput_locked(fs_info, inode);
3373 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3374 	}
3375 }
3376 
3377 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3378 {
3379 	/*
3380 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3381 	 * calls btrfs_add_delayed_iput() and that needs to lock
3382 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3383 	 * prevent a deadlock.
3384 	 */
3385 	spin_lock_irq(&fs_info->delayed_iput_lock);
3386 	while (!list_empty(&fs_info->delayed_iputs)) {
3387 		struct btrfs_inode *inode;
3388 
3389 		inode = list_first_entry(&fs_info->delayed_iputs,
3390 				struct btrfs_inode, delayed_iput);
3391 		run_delayed_iput_locked(fs_info, inode);
3392 		if (need_resched()) {
3393 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3394 			cond_resched();
3395 			spin_lock_irq(&fs_info->delayed_iput_lock);
3396 		}
3397 	}
3398 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3399 }
3400 
3401 /*
3402  * Wait for flushing all delayed iputs
3403  *
3404  * @fs_info:  the filesystem
3405  *
3406  * This will wait on any delayed iputs that are currently running with KILLABLE
3407  * set.  Once they are all done running we will return, unless we are killed in
3408  * which case we return EINTR. This helps in user operations like fallocate etc
3409  * that might get blocked on the iputs.
3410  *
3411  * Return EINTR if we were killed, 0 if nothing's pending
3412  */
3413 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3414 {
3415 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3416 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3417 	if (ret)
3418 		return -EINTR;
3419 	return 0;
3420 }
3421 
3422 /*
3423  * This creates an orphan entry for the given inode in case something goes wrong
3424  * in the middle of an unlink.
3425  */
3426 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3427 		     struct btrfs_inode *inode)
3428 {
3429 	int ret;
3430 
3431 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3432 	if (ret && ret != -EEXIST) {
3433 		btrfs_abort_transaction(trans, ret);
3434 		return ret;
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 /*
3441  * We have done the delete so we can go ahead and remove the orphan item for
3442  * this particular inode.
3443  */
3444 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3445 			    struct btrfs_inode *inode)
3446 {
3447 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3448 }
3449 
3450 /*
3451  * this cleans up any orphans that may be left on the list from the last use
3452  * of this root.
3453  */
3454 int btrfs_orphan_cleanup(struct btrfs_root *root)
3455 {
3456 	struct btrfs_fs_info *fs_info = root->fs_info;
3457 	struct btrfs_path *path;
3458 	struct extent_buffer *leaf;
3459 	struct btrfs_key key, found_key;
3460 	struct btrfs_trans_handle *trans;
3461 	struct inode *inode;
3462 	u64 last_objectid = 0;
3463 	int ret = 0, nr_unlink = 0;
3464 
3465 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3466 		return 0;
3467 
3468 	path = btrfs_alloc_path();
3469 	if (!path) {
3470 		ret = -ENOMEM;
3471 		goto out;
3472 	}
3473 	path->reada = READA_BACK;
3474 
3475 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3476 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3477 	key.offset = (u64)-1;
3478 
3479 	while (1) {
3480 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3481 		if (ret < 0)
3482 			goto out;
3483 
3484 		/*
3485 		 * if ret == 0 means we found what we were searching for, which
3486 		 * is weird, but possible, so only screw with path if we didn't
3487 		 * find the key and see if we have stuff that matches
3488 		 */
3489 		if (ret > 0) {
3490 			ret = 0;
3491 			if (path->slots[0] == 0)
3492 				break;
3493 			path->slots[0]--;
3494 		}
3495 
3496 		/* pull out the item */
3497 		leaf = path->nodes[0];
3498 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3499 
3500 		/* make sure the item matches what we want */
3501 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3502 			break;
3503 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3504 			break;
3505 
3506 		/* release the path since we're done with it */
3507 		btrfs_release_path(path);
3508 
3509 		/*
3510 		 * this is where we are basically btrfs_lookup, without the
3511 		 * crossing root thing.  we store the inode number in the
3512 		 * offset of the orphan item.
3513 		 */
3514 
3515 		if (found_key.offset == last_objectid) {
3516 			/*
3517 			 * We found the same inode as before. This means we were
3518 			 * not able to remove its items via eviction triggered
3519 			 * by an iput(). A transaction abort may have happened,
3520 			 * due to -ENOSPC for example, so try to grab the error
3521 			 * that lead to a transaction abort, if any.
3522 			 */
3523 			btrfs_err(fs_info,
3524 				  "Error removing orphan entry, stopping orphan cleanup");
3525 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3526 			goto out;
3527 		}
3528 
3529 		last_objectid = found_key.offset;
3530 
3531 		found_key.objectid = found_key.offset;
3532 		found_key.type = BTRFS_INODE_ITEM_KEY;
3533 		found_key.offset = 0;
3534 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3535 		if (IS_ERR(inode)) {
3536 			ret = PTR_ERR(inode);
3537 			inode = NULL;
3538 			if (ret != -ENOENT)
3539 				goto out;
3540 		}
3541 
3542 		if (!inode && root == fs_info->tree_root) {
3543 			struct btrfs_root *dead_root;
3544 			int is_dead_root = 0;
3545 
3546 			/*
3547 			 * This is an orphan in the tree root. Currently these
3548 			 * could come from 2 sources:
3549 			 *  a) a root (snapshot/subvolume) deletion in progress
3550 			 *  b) a free space cache inode
3551 			 * We need to distinguish those two, as the orphan item
3552 			 * for a root must not get deleted before the deletion
3553 			 * of the snapshot/subvolume's tree completes.
3554 			 *
3555 			 * btrfs_find_orphan_roots() ran before us, which has
3556 			 * found all deleted roots and loaded them into
3557 			 * fs_info->fs_roots_radix. So here we can find if an
3558 			 * orphan item corresponds to a deleted root by looking
3559 			 * up the root from that radix tree.
3560 			 */
3561 
3562 			spin_lock(&fs_info->fs_roots_radix_lock);
3563 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3564 							 (unsigned long)found_key.objectid);
3565 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3566 				is_dead_root = 1;
3567 			spin_unlock(&fs_info->fs_roots_radix_lock);
3568 
3569 			if (is_dead_root) {
3570 				/* prevent this orphan from being found again */
3571 				key.offset = found_key.objectid - 1;
3572 				continue;
3573 			}
3574 
3575 		}
3576 
3577 		/*
3578 		 * If we have an inode with links, there are a couple of
3579 		 * possibilities:
3580 		 *
3581 		 * 1. We were halfway through creating fsverity metadata for the
3582 		 * file. In that case, the orphan item represents incomplete
3583 		 * fsverity metadata which must be cleaned up with
3584 		 * btrfs_drop_verity_items and deleting the orphan item.
3585 
3586 		 * 2. Old kernels (before v3.12) used to create an
3587 		 * orphan item for truncate indicating that there were possibly
3588 		 * extent items past i_size that needed to be deleted. In v3.12,
3589 		 * truncate was changed to update i_size in sync with the extent
3590 		 * items, but the (useless) orphan item was still created. Since
3591 		 * v4.18, we don't create the orphan item for truncate at all.
3592 		 *
3593 		 * So, this item could mean that we need to do a truncate, but
3594 		 * only if this filesystem was last used on a pre-v3.12 kernel
3595 		 * and was not cleanly unmounted. The odds of that are quite
3596 		 * slim, and it's a pain to do the truncate now, so just delete
3597 		 * the orphan item.
3598 		 *
3599 		 * It's also possible that this orphan item was supposed to be
3600 		 * deleted but wasn't. The inode number may have been reused,
3601 		 * but either way, we can delete the orphan item.
3602 		 */
3603 		if (!inode || inode->i_nlink) {
3604 			if (inode) {
3605 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3606 				iput(inode);
3607 				inode = NULL;
3608 				if (ret)
3609 					goto out;
3610 			}
3611 			trans = btrfs_start_transaction(root, 1);
3612 			if (IS_ERR(trans)) {
3613 				ret = PTR_ERR(trans);
3614 				goto out;
3615 			}
3616 			btrfs_debug(fs_info, "auto deleting %Lu",
3617 				    found_key.objectid);
3618 			ret = btrfs_del_orphan_item(trans, root,
3619 						    found_key.objectid);
3620 			btrfs_end_transaction(trans);
3621 			if (ret)
3622 				goto out;
3623 			continue;
3624 		}
3625 
3626 		nr_unlink++;
3627 
3628 		/* this will do delete_inode and everything for us */
3629 		iput(inode);
3630 	}
3631 	/* release the path since we're done with it */
3632 	btrfs_release_path(path);
3633 
3634 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3635 		trans = btrfs_join_transaction(root);
3636 		if (!IS_ERR(trans))
3637 			btrfs_end_transaction(trans);
3638 	}
3639 
3640 	if (nr_unlink)
3641 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3642 
3643 out:
3644 	if (ret)
3645 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3646 	btrfs_free_path(path);
3647 	return ret;
3648 }
3649 
3650 /*
3651  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3652  * don't find any xattrs, we know there can't be any acls.
3653  *
3654  * slot is the slot the inode is in, objectid is the objectid of the inode
3655  */
3656 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3657 					  int slot, u64 objectid,
3658 					  int *first_xattr_slot)
3659 {
3660 	u32 nritems = btrfs_header_nritems(leaf);
3661 	struct btrfs_key found_key;
3662 	static u64 xattr_access = 0;
3663 	static u64 xattr_default = 0;
3664 	int scanned = 0;
3665 
3666 	if (!xattr_access) {
3667 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3668 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3669 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3670 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3671 	}
3672 
3673 	slot++;
3674 	*first_xattr_slot = -1;
3675 	while (slot < nritems) {
3676 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3677 
3678 		/* we found a different objectid, there must not be acls */
3679 		if (found_key.objectid != objectid)
3680 			return 0;
3681 
3682 		/* we found an xattr, assume we've got an acl */
3683 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3684 			if (*first_xattr_slot == -1)
3685 				*first_xattr_slot = slot;
3686 			if (found_key.offset == xattr_access ||
3687 			    found_key.offset == xattr_default)
3688 				return 1;
3689 		}
3690 
3691 		/*
3692 		 * we found a key greater than an xattr key, there can't
3693 		 * be any acls later on
3694 		 */
3695 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3696 			return 0;
3697 
3698 		slot++;
3699 		scanned++;
3700 
3701 		/*
3702 		 * it goes inode, inode backrefs, xattrs, extents,
3703 		 * so if there are a ton of hard links to an inode there can
3704 		 * be a lot of backrefs.  Don't waste time searching too hard,
3705 		 * this is just an optimization
3706 		 */
3707 		if (scanned >= 8)
3708 			break;
3709 	}
3710 	/* we hit the end of the leaf before we found an xattr or
3711 	 * something larger than an xattr.  We have to assume the inode
3712 	 * has acls
3713 	 */
3714 	if (*first_xattr_slot == -1)
3715 		*first_xattr_slot = slot;
3716 	return 1;
3717 }
3718 
3719 /*
3720  * read an inode from the btree into the in-memory inode
3721  */
3722 static int btrfs_read_locked_inode(struct inode *inode,
3723 				   struct btrfs_path *in_path)
3724 {
3725 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3726 	struct btrfs_path *path = in_path;
3727 	struct extent_buffer *leaf;
3728 	struct btrfs_inode_item *inode_item;
3729 	struct btrfs_root *root = BTRFS_I(inode)->root;
3730 	struct btrfs_key location;
3731 	unsigned long ptr;
3732 	int maybe_acls;
3733 	u32 rdev;
3734 	int ret;
3735 	bool filled = false;
3736 	int first_xattr_slot;
3737 
3738 	ret = btrfs_fill_inode(inode, &rdev);
3739 	if (!ret)
3740 		filled = true;
3741 
3742 	if (!path) {
3743 		path = btrfs_alloc_path();
3744 		if (!path)
3745 			return -ENOMEM;
3746 	}
3747 
3748 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3749 
3750 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3751 	if (ret) {
3752 		if (path != in_path)
3753 			btrfs_free_path(path);
3754 		return ret;
3755 	}
3756 
3757 	leaf = path->nodes[0];
3758 
3759 	if (filled)
3760 		goto cache_index;
3761 
3762 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3763 				    struct btrfs_inode_item);
3764 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3765 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3766 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3767 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3768 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3769 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3770 			round_up(i_size_read(inode), fs_info->sectorsize));
3771 
3772 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3773 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3774 
3775 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3776 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3777 
3778 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3779 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3780 
3781 	BTRFS_I(inode)->i_otime.tv_sec =
3782 		btrfs_timespec_sec(leaf, &inode_item->otime);
3783 	BTRFS_I(inode)->i_otime.tv_nsec =
3784 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3785 
3786 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3787 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3788 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3789 
3790 	inode_set_iversion_queried(inode,
3791 				   btrfs_inode_sequence(leaf, inode_item));
3792 	inode->i_generation = BTRFS_I(inode)->generation;
3793 	inode->i_rdev = 0;
3794 	rdev = btrfs_inode_rdev(leaf, inode_item);
3795 
3796 	BTRFS_I(inode)->index_cnt = (u64)-1;
3797 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3798 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3799 
3800 cache_index:
3801 	/*
3802 	 * If we were modified in the current generation and evicted from memory
3803 	 * and then re-read we need to do a full sync since we don't have any
3804 	 * idea about which extents were modified before we were evicted from
3805 	 * cache.
3806 	 *
3807 	 * This is required for both inode re-read from disk and delayed inode
3808 	 * in delayed_nodes_tree.
3809 	 */
3810 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3811 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3812 			&BTRFS_I(inode)->runtime_flags);
3813 
3814 	/*
3815 	 * We don't persist the id of the transaction where an unlink operation
3816 	 * against the inode was last made. So here we assume the inode might
3817 	 * have been evicted, and therefore the exact value of last_unlink_trans
3818 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3819 	 * between the inode and its parent if the inode is fsync'ed and the log
3820 	 * replayed. For example, in the scenario:
3821 	 *
3822 	 * touch mydir/foo
3823 	 * ln mydir/foo mydir/bar
3824 	 * sync
3825 	 * unlink mydir/bar
3826 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3827 	 * xfs_io -c fsync mydir/foo
3828 	 * <power failure>
3829 	 * mount fs, triggers fsync log replay
3830 	 *
3831 	 * We must make sure that when we fsync our inode foo we also log its
3832 	 * parent inode, otherwise after log replay the parent still has the
3833 	 * dentry with the "bar" name but our inode foo has a link count of 1
3834 	 * and doesn't have an inode ref with the name "bar" anymore.
3835 	 *
3836 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3837 	 * but it guarantees correctness at the expense of occasional full
3838 	 * transaction commits on fsync if our inode is a directory, or if our
3839 	 * inode is not a directory, logging its parent unnecessarily.
3840 	 */
3841 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3842 
3843 	/*
3844 	 * Same logic as for last_unlink_trans. We don't persist the generation
3845 	 * of the last transaction where this inode was used for a reflink
3846 	 * operation, so after eviction and reloading the inode we must be
3847 	 * pessimistic and assume the last transaction that modified the inode.
3848 	 */
3849 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3850 
3851 	path->slots[0]++;
3852 	if (inode->i_nlink != 1 ||
3853 	    path->slots[0] >= btrfs_header_nritems(leaf))
3854 		goto cache_acl;
3855 
3856 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3857 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3858 		goto cache_acl;
3859 
3860 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3861 	if (location.type == BTRFS_INODE_REF_KEY) {
3862 		struct btrfs_inode_ref *ref;
3863 
3864 		ref = (struct btrfs_inode_ref *)ptr;
3865 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3866 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3867 		struct btrfs_inode_extref *extref;
3868 
3869 		extref = (struct btrfs_inode_extref *)ptr;
3870 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3871 								     extref);
3872 	}
3873 cache_acl:
3874 	/*
3875 	 * try to precache a NULL acl entry for files that don't have
3876 	 * any xattrs or acls
3877 	 */
3878 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3879 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3880 	if (first_xattr_slot != -1) {
3881 		path->slots[0] = first_xattr_slot;
3882 		ret = btrfs_load_inode_props(inode, path);
3883 		if (ret)
3884 			btrfs_err(fs_info,
3885 				  "error loading props for ino %llu (root %llu): %d",
3886 				  btrfs_ino(BTRFS_I(inode)),
3887 				  root->root_key.objectid, ret);
3888 	}
3889 	if (path != in_path)
3890 		btrfs_free_path(path);
3891 
3892 	if (!maybe_acls)
3893 		cache_no_acl(inode);
3894 
3895 	switch (inode->i_mode & S_IFMT) {
3896 	case S_IFREG:
3897 		inode->i_mapping->a_ops = &btrfs_aops;
3898 		inode->i_fop = &btrfs_file_operations;
3899 		inode->i_op = &btrfs_file_inode_operations;
3900 		break;
3901 	case S_IFDIR:
3902 		inode->i_fop = &btrfs_dir_file_operations;
3903 		inode->i_op = &btrfs_dir_inode_operations;
3904 		break;
3905 	case S_IFLNK:
3906 		inode->i_op = &btrfs_symlink_inode_operations;
3907 		inode_nohighmem(inode);
3908 		inode->i_mapping->a_ops = &btrfs_aops;
3909 		break;
3910 	default:
3911 		inode->i_op = &btrfs_special_inode_operations;
3912 		init_special_inode(inode, inode->i_mode, rdev);
3913 		break;
3914 	}
3915 
3916 	btrfs_sync_inode_flags_to_i_flags(inode);
3917 	return 0;
3918 }
3919 
3920 /*
3921  * given a leaf and an inode, copy the inode fields into the leaf
3922  */
3923 static void fill_inode_item(struct btrfs_trans_handle *trans,
3924 			    struct extent_buffer *leaf,
3925 			    struct btrfs_inode_item *item,
3926 			    struct inode *inode)
3927 {
3928 	struct btrfs_map_token token;
3929 	u64 flags;
3930 
3931 	btrfs_init_map_token(&token, leaf);
3932 
3933 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3934 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3935 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3936 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3937 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3938 
3939 	btrfs_set_token_timespec_sec(&token, &item->atime,
3940 				     inode->i_atime.tv_sec);
3941 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3942 				      inode->i_atime.tv_nsec);
3943 
3944 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3945 				     inode->i_mtime.tv_sec);
3946 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3947 				      inode->i_mtime.tv_nsec);
3948 
3949 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3950 				     inode_get_ctime(inode).tv_sec);
3951 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3952 				      inode_get_ctime(inode).tv_nsec);
3953 
3954 	btrfs_set_token_timespec_sec(&token, &item->otime,
3955 				     BTRFS_I(inode)->i_otime.tv_sec);
3956 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3957 				      BTRFS_I(inode)->i_otime.tv_nsec);
3958 
3959 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3960 	btrfs_set_token_inode_generation(&token, item,
3961 					 BTRFS_I(inode)->generation);
3962 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3963 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3964 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3965 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3966 					  BTRFS_I(inode)->ro_flags);
3967 	btrfs_set_token_inode_flags(&token, item, flags);
3968 	btrfs_set_token_inode_block_group(&token, item, 0);
3969 }
3970 
3971 /*
3972  * copy everything in the in-memory inode into the btree.
3973  */
3974 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3975 				struct btrfs_root *root,
3976 				struct btrfs_inode *inode)
3977 {
3978 	struct btrfs_inode_item *inode_item;
3979 	struct btrfs_path *path;
3980 	struct extent_buffer *leaf;
3981 	int ret;
3982 
3983 	path = btrfs_alloc_path();
3984 	if (!path)
3985 		return -ENOMEM;
3986 
3987 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3988 	if (ret) {
3989 		if (ret > 0)
3990 			ret = -ENOENT;
3991 		goto failed;
3992 	}
3993 
3994 	leaf = path->nodes[0];
3995 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3996 				    struct btrfs_inode_item);
3997 
3998 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3999 	btrfs_mark_buffer_dirty(trans, leaf);
4000 	btrfs_set_inode_last_trans(trans, inode);
4001 	ret = 0;
4002 failed:
4003 	btrfs_free_path(path);
4004 	return ret;
4005 }
4006 
4007 /*
4008  * copy everything in the in-memory inode into the btree.
4009  */
4010 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4011 				struct btrfs_root *root,
4012 				struct btrfs_inode *inode)
4013 {
4014 	struct btrfs_fs_info *fs_info = root->fs_info;
4015 	int ret;
4016 
4017 	/*
4018 	 * If the inode is a free space inode, we can deadlock during commit
4019 	 * if we put it into the delayed code.
4020 	 *
4021 	 * The data relocation inode should also be directly updated
4022 	 * without delay
4023 	 */
4024 	if (!btrfs_is_free_space_inode(inode)
4025 	    && !btrfs_is_data_reloc_root(root)
4026 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4027 		btrfs_update_root_times(trans, root);
4028 
4029 		ret = btrfs_delayed_update_inode(trans, root, inode);
4030 		if (!ret)
4031 			btrfs_set_inode_last_trans(trans, inode);
4032 		return ret;
4033 	}
4034 
4035 	return btrfs_update_inode_item(trans, root, inode);
4036 }
4037 
4038 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4039 				struct btrfs_root *root, struct btrfs_inode *inode)
4040 {
4041 	int ret;
4042 
4043 	ret = btrfs_update_inode(trans, root, inode);
4044 	if (ret == -ENOSPC)
4045 		return btrfs_update_inode_item(trans, root, inode);
4046 	return ret;
4047 }
4048 
4049 /*
4050  * unlink helper that gets used here in inode.c and in the tree logging
4051  * recovery code.  It remove a link in a directory with a given name, and
4052  * also drops the back refs in the inode to the directory
4053  */
4054 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4055 				struct btrfs_inode *dir,
4056 				struct btrfs_inode *inode,
4057 				const struct fscrypt_str *name,
4058 				struct btrfs_rename_ctx *rename_ctx)
4059 {
4060 	struct btrfs_root *root = dir->root;
4061 	struct btrfs_fs_info *fs_info = root->fs_info;
4062 	struct btrfs_path *path;
4063 	int ret = 0;
4064 	struct btrfs_dir_item *di;
4065 	u64 index;
4066 	u64 ino = btrfs_ino(inode);
4067 	u64 dir_ino = btrfs_ino(dir);
4068 
4069 	path = btrfs_alloc_path();
4070 	if (!path) {
4071 		ret = -ENOMEM;
4072 		goto out;
4073 	}
4074 
4075 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4076 	if (IS_ERR_OR_NULL(di)) {
4077 		ret = di ? PTR_ERR(di) : -ENOENT;
4078 		goto err;
4079 	}
4080 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4081 	if (ret)
4082 		goto err;
4083 	btrfs_release_path(path);
4084 
4085 	/*
4086 	 * If we don't have dir index, we have to get it by looking up
4087 	 * the inode ref, since we get the inode ref, remove it directly,
4088 	 * it is unnecessary to do delayed deletion.
4089 	 *
4090 	 * But if we have dir index, needn't search inode ref to get it.
4091 	 * Since the inode ref is close to the inode item, it is better
4092 	 * that we delay to delete it, and just do this deletion when
4093 	 * we update the inode item.
4094 	 */
4095 	if (inode->dir_index) {
4096 		ret = btrfs_delayed_delete_inode_ref(inode);
4097 		if (!ret) {
4098 			index = inode->dir_index;
4099 			goto skip_backref;
4100 		}
4101 	}
4102 
4103 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4104 	if (ret) {
4105 		btrfs_info(fs_info,
4106 			"failed to delete reference to %.*s, inode %llu parent %llu",
4107 			name->len, name->name, ino, dir_ino);
4108 		btrfs_abort_transaction(trans, ret);
4109 		goto err;
4110 	}
4111 skip_backref:
4112 	if (rename_ctx)
4113 		rename_ctx->index = index;
4114 
4115 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4116 	if (ret) {
4117 		btrfs_abort_transaction(trans, ret);
4118 		goto err;
4119 	}
4120 
4121 	/*
4122 	 * If we are in a rename context, we don't need to update anything in the
4123 	 * log. That will be done later during the rename by btrfs_log_new_name().
4124 	 * Besides that, doing it here would only cause extra unnecessary btree
4125 	 * operations on the log tree, increasing latency for applications.
4126 	 */
4127 	if (!rename_ctx) {
4128 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4129 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4130 	}
4131 
4132 	/*
4133 	 * If we have a pending delayed iput we could end up with the final iput
4134 	 * being run in btrfs-cleaner context.  If we have enough of these built
4135 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4136 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4137 	 * the inode we can run the delayed iput here without any issues as the
4138 	 * final iput won't be done until after we drop the ref we're currently
4139 	 * holding.
4140 	 */
4141 	btrfs_run_delayed_iput(fs_info, inode);
4142 err:
4143 	btrfs_free_path(path);
4144 	if (ret)
4145 		goto out;
4146 
4147 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4148 	inode_inc_iversion(&inode->vfs_inode);
4149 	inode_inc_iversion(&dir->vfs_inode);
4150 	inode_set_ctime_current(&inode->vfs_inode);
4151 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4152 	ret = btrfs_update_inode(trans, root, dir);
4153 out:
4154 	return ret;
4155 }
4156 
4157 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4158 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4159 		       const struct fscrypt_str *name)
4160 {
4161 	int ret;
4162 
4163 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4164 	if (!ret) {
4165 		drop_nlink(&inode->vfs_inode);
4166 		ret = btrfs_update_inode(trans, inode->root, inode);
4167 	}
4168 	return ret;
4169 }
4170 
4171 /*
4172  * helper to start transaction for unlink and rmdir.
4173  *
4174  * unlink and rmdir are special in btrfs, they do not always free space, so
4175  * if we cannot make our reservations the normal way try and see if there is
4176  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4177  * allow the unlink to occur.
4178  */
4179 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4180 {
4181 	struct btrfs_root *root = dir->root;
4182 
4183 	return btrfs_start_transaction_fallback_global_rsv(root,
4184 						   BTRFS_UNLINK_METADATA_UNITS);
4185 }
4186 
4187 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4188 {
4189 	struct btrfs_trans_handle *trans;
4190 	struct inode *inode = d_inode(dentry);
4191 	int ret;
4192 	struct fscrypt_name fname;
4193 
4194 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4195 	if (ret)
4196 		return ret;
4197 
4198 	/* This needs to handle no-key deletions later on */
4199 
4200 	trans = __unlink_start_trans(BTRFS_I(dir));
4201 	if (IS_ERR(trans)) {
4202 		ret = PTR_ERR(trans);
4203 		goto fscrypt_free;
4204 	}
4205 
4206 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4207 				false);
4208 
4209 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4210 				 &fname.disk_name);
4211 	if (ret)
4212 		goto end_trans;
4213 
4214 	if (inode->i_nlink == 0) {
4215 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4216 		if (ret)
4217 			goto end_trans;
4218 	}
4219 
4220 end_trans:
4221 	btrfs_end_transaction(trans);
4222 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4223 fscrypt_free:
4224 	fscrypt_free_filename(&fname);
4225 	return ret;
4226 }
4227 
4228 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4229 			       struct btrfs_inode *dir, struct dentry *dentry)
4230 {
4231 	struct btrfs_root *root = dir->root;
4232 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4233 	struct btrfs_path *path;
4234 	struct extent_buffer *leaf;
4235 	struct btrfs_dir_item *di;
4236 	struct btrfs_key key;
4237 	u64 index;
4238 	int ret;
4239 	u64 objectid;
4240 	u64 dir_ino = btrfs_ino(dir);
4241 	struct fscrypt_name fname;
4242 
4243 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4244 	if (ret)
4245 		return ret;
4246 
4247 	/* This needs to handle no-key deletions later on */
4248 
4249 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4250 		objectid = inode->root->root_key.objectid;
4251 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4252 		objectid = inode->location.objectid;
4253 	} else {
4254 		WARN_ON(1);
4255 		fscrypt_free_filename(&fname);
4256 		return -EINVAL;
4257 	}
4258 
4259 	path = btrfs_alloc_path();
4260 	if (!path) {
4261 		ret = -ENOMEM;
4262 		goto out;
4263 	}
4264 
4265 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4266 				   &fname.disk_name, -1);
4267 	if (IS_ERR_OR_NULL(di)) {
4268 		ret = di ? PTR_ERR(di) : -ENOENT;
4269 		goto out;
4270 	}
4271 
4272 	leaf = path->nodes[0];
4273 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4274 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4275 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4276 	if (ret) {
4277 		btrfs_abort_transaction(trans, ret);
4278 		goto out;
4279 	}
4280 	btrfs_release_path(path);
4281 
4282 	/*
4283 	 * This is a placeholder inode for a subvolume we didn't have a
4284 	 * reference to at the time of the snapshot creation.  In the meantime
4285 	 * we could have renamed the real subvol link into our snapshot, so
4286 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4287 	 * Instead simply lookup the dir_index_item for this entry so we can
4288 	 * remove it.  Otherwise we know we have a ref to the root and we can
4289 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4290 	 */
4291 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4292 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4293 		if (IS_ERR_OR_NULL(di)) {
4294 			if (!di)
4295 				ret = -ENOENT;
4296 			else
4297 				ret = PTR_ERR(di);
4298 			btrfs_abort_transaction(trans, ret);
4299 			goto out;
4300 		}
4301 
4302 		leaf = path->nodes[0];
4303 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4304 		index = key.offset;
4305 		btrfs_release_path(path);
4306 	} else {
4307 		ret = btrfs_del_root_ref(trans, objectid,
4308 					 root->root_key.objectid, dir_ino,
4309 					 &index, &fname.disk_name);
4310 		if (ret) {
4311 			btrfs_abort_transaction(trans, ret);
4312 			goto out;
4313 		}
4314 	}
4315 
4316 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4317 	if (ret) {
4318 		btrfs_abort_transaction(trans, ret);
4319 		goto out;
4320 	}
4321 
4322 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4323 	inode_inc_iversion(&dir->vfs_inode);
4324 	dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4325 	ret = btrfs_update_inode_fallback(trans, root, dir);
4326 	if (ret)
4327 		btrfs_abort_transaction(trans, ret);
4328 out:
4329 	btrfs_free_path(path);
4330 	fscrypt_free_filename(&fname);
4331 	return ret;
4332 }
4333 
4334 /*
4335  * Helper to check if the subvolume references other subvolumes or if it's
4336  * default.
4337  */
4338 static noinline int may_destroy_subvol(struct btrfs_root *root)
4339 {
4340 	struct btrfs_fs_info *fs_info = root->fs_info;
4341 	struct btrfs_path *path;
4342 	struct btrfs_dir_item *di;
4343 	struct btrfs_key key;
4344 	struct fscrypt_str name = FSTR_INIT("default", 7);
4345 	u64 dir_id;
4346 	int ret;
4347 
4348 	path = btrfs_alloc_path();
4349 	if (!path)
4350 		return -ENOMEM;
4351 
4352 	/* Make sure this root isn't set as the default subvol */
4353 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4354 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4355 				   dir_id, &name, 0);
4356 	if (di && !IS_ERR(di)) {
4357 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4358 		if (key.objectid == root->root_key.objectid) {
4359 			ret = -EPERM;
4360 			btrfs_err(fs_info,
4361 				  "deleting default subvolume %llu is not allowed",
4362 				  key.objectid);
4363 			goto out;
4364 		}
4365 		btrfs_release_path(path);
4366 	}
4367 
4368 	key.objectid = root->root_key.objectid;
4369 	key.type = BTRFS_ROOT_REF_KEY;
4370 	key.offset = (u64)-1;
4371 
4372 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4373 	if (ret < 0)
4374 		goto out;
4375 	BUG_ON(ret == 0);
4376 
4377 	ret = 0;
4378 	if (path->slots[0] > 0) {
4379 		path->slots[0]--;
4380 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4381 		if (key.objectid == root->root_key.objectid &&
4382 		    key.type == BTRFS_ROOT_REF_KEY)
4383 			ret = -ENOTEMPTY;
4384 	}
4385 out:
4386 	btrfs_free_path(path);
4387 	return ret;
4388 }
4389 
4390 /* Delete all dentries for inodes belonging to the root */
4391 static void btrfs_prune_dentries(struct btrfs_root *root)
4392 {
4393 	struct btrfs_fs_info *fs_info = root->fs_info;
4394 	struct rb_node *node;
4395 	struct rb_node *prev;
4396 	struct btrfs_inode *entry;
4397 	struct inode *inode;
4398 	u64 objectid = 0;
4399 
4400 	if (!BTRFS_FS_ERROR(fs_info))
4401 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4402 
4403 	spin_lock(&root->inode_lock);
4404 again:
4405 	node = root->inode_tree.rb_node;
4406 	prev = NULL;
4407 	while (node) {
4408 		prev = node;
4409 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4410 
4411 		if (objectid < btrfs_ino(entry))
4412 			node = node->rb_left;
4413 		else if (objectid > btrfs_ino(entry))
4414 			node = node->rb_right;
4415 		else
4416 			break;
4417 	}
4418 	if (!node) {
4419 		while (prev) {
4420 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4421 			if (objectid <= btrfs_ino(entry)) {
4422 				node = prev;
4423 				break;
4424 			}
4425 			prev = rb_next(prev);
4426 		}
4427 	}
4428 	while (node) {
4429 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4430 		objectid = btrfs_ino(entry) + 1;
4431 		inode = igrab(&entry->vfs_inode);
4432 		if (inode) {
4433 			spin_unlock(&root->inode_lock);
4434 			if (atomic_read(&inode->i_count) > 1)
4435 				d_prune_aliases(inode);
4436 			/*
4437 			 * btrfs_drop_inode will have it removed from the inode
4438 			 * cache when its usage count hits zero.
4439 			 */
4440 			iput(inode);
4441 			cond_resched();
4442 			spin_lock(&root->inode_lock);
4443 			goto again;
4444 		}
4445 
4446 		if (cond_resched_lock(&root->inode_lock))
4447 			goto again;
4448 
4449 		node = rb_next(node);
4450 	}
4451 	spin_unlock(&root->inode_lock);
4452 }
4453 
4454 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4455 {
4456 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4457 	struct btrfs_root *root = dir->root;
4458 	struct inode *inode = d_inode(dentry);
4459 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4460 	struct btrfs_trans_handle *trans;
4461 	struct btrfs_block_rsv block_rsv;
4462 	u64 root_flags;
4463 	int ret;
4464 
4465 	down_write(&fs_info->subvol_sem);
4466 
4467 	/*
4468 	 * Don't allow to delete a subvolume with send in progress. This is
4469 	 * inside the inode lock so the error handling that has to drop the bit
4470 	 * again is not run concurrently.
4471 	 */
4472 	spin_lock(&dest->root_item_lock);
4473 	if (dest->send_in_progress) {
4474 		spin_unlock(&dest->root_item_lock);
4475 		btrfs_warn(fs_info,
4476 			   "attempt to delete subvolume %llu during send",
4477 			   dest->root_key.objectid);
4478 		ret = -EPERM;
4479 		goto out_up_write;
4480 	}
4481 	if (atomic_read(&dest->nr_swapfiles)) {
4482 		spin_unlock(&dest->root_item_lock);
4483 		btrfs_warn(fs_info,
4484 			   "attempt to delete subvolume %llu with active swapfile",
4485 			   root->root_key.objectid);
4486 		ret = -EPERM;
4487 		goto out_up_write;
4488 	}
4489 	root_flags = btrfs_root_flags(&dest->root_item);
4490 	btrfs_set_root_flags(&dest->root_item,
4491 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4492 	spin_unlock(&dest->root_item_lock);
4493 
4494 	ret = may_destroy_subvol(dest);
4495 	if (ret)
4496 		goto out_undead;
4497 
4498 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4499 	/*
4500 	 * One for dir inode,
4501 	 * two for dir entries,
4502 	 * two for root ref/backref.
4503 	 */
4504 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4505 	if (ret)
4506 		goto out_undead;
4507 
4508 	trans = btrfs_start_transaction(root, 0);
4509 	if (IS_ERR(trans)) {
4510 		ret = PTR_ERR(trans);
4511 		goto out_release;
4512 	}
4513 	trans->block_rsv = &block_rsv;
4514 	trans->bytes_reserved = block_rsv.size;
4515 
4516 	btrfs_record_snapshot_destroy(trans, dir);
4517 
4518 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4519 	if (ret) {
4520 		btrfs_abort_transaction(trans, ret);
4521 		goto out_end_trans;
4522 	}
4523 
4524 	ret = btrfs_record_root_in_trans(trans, dest);
4525 	if (ret) {
4526 		btrfs_abort_transaction(trans, ret);
4527 		goto out_end_trans;
4528 	}
4529 
4530 	memset(&dest->root_item.drop_progress, 0,
4531 		sizeof(dest->root_item.drop_progress));
4532 	btrfs_set_root_drop_level(&dest->root_item, 0);
4533 	btrfs_set_root_refs(&dest->root_item, 0);
4534 
4535 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4536 		ret = btrfs_insert_orphan_item(trans,
4537 					fs_info->tree_root,
4538 					dest->root_key.objectid);
4539 		if (ret) {
4540 			btrfs_abort_transaction(trans, ret);
4541 			goto out_end_trans;
4542 		}
4543 	}
4544 
4545 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4546 				  BTRFS_UUID_KEY_SUBVOL,
4547 				  dest->root_key.objectid);
4548 	if (ret && ret != -ENOENT) {
4549 		btrfs_abort_transaction(trans, ret);
4550 		goto out_end_trans;
4551 	}
4552 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4553 		ret = btrfs_uuid_tree_remove(trans,
4554 					  dest->root_item.received_uuid,
4555 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4556 					  dest->root_key.objectid);
4557 		if (ret && ret != -ENOENT) {
4558 			btrfs_abort_transaction(trans, ret);
4559 			goto out_end_trans;
4560 		}
4561 	}
4562 
4563 	free_anon_bdev(dest->anon_dev);
4564 	dest->anon_dev = 0;
4565 out_end_trans:
4566 	trans->block_rsv = NULL;
4567 	trans->bytes_reserved = 0;
4568 	ret = btrfs_end_transaction(trans);
4569 	inode->i_flags |= S_DEAD;
4570 out_release:
4571 	btrfs_subvolume_release_metadata(root, &block_rsv);
4572 out_undead:
4573 	if (ret) {
4574 		spin_lock(&dest->root_item_lock);
4575 		root_flags = btrfs_root_flags(&dest->root_item);
4576 		btrfs_set_root_flags(&dest->root_item,
4577 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4578 		spin_unlock(&dest->root_item_lock);
4579 	}
4580 out_up_write:
4581 	up_write(&fs_info->subvol_sem);
4582 	if (!ret) {
4583 		d_invalidate(dentry);
4584 		btrfs_prune_dentries(dest);
4585 		ASSERT(dest->send_in_progress == 0);
4586 	}
4587 
4588 	return ret;
4589 }
4590 
4591 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4592 {
4593 	struct inode *inode = d_inode(dentry);
4594 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4595 	int err = 0;
4596 	struct btrfs_trans_handle *trans;
4597 	u64 last_unlink_trans;
4598 	struct fscrypt_name fname;
4599 
4600 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4601 		return -ENOTEMPTY;
4602 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4603 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4604 			btrfs_err(fs_info,
4605 			"extent tree v2 doesn't support snapshot deletion yet");
4606 			return -EOPNOTSUPP;
4607 		}
4608 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4609 	}
4610 
4611 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4612 	if (err)
4613 		return err;
4614 
4615 	/* This needs to handle no-key deletions later on */
4616 
4617 	trans = __unlink_start_trans(BTRFS_I(dir));
4618 	if (IS_ERR(trans)) {
4619 		err = PTR_ERR(trans);
4620 		goto out_notrans;
4621 	}
4622 
4623 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4624 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4625 		goto out;
4626 	}
4627 
4628 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4629 	if (err)
4630 		goto out;
4631 
4632 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4633 
4634 	/* now the directory is empty */
4635 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4636 				 &fname.disk_name);
4637 	if (!err) {
4638 		btrfs_i_size_write(BTRFS_I(inode), 0);
4639 		/*
4640 		 * Propagate the last_unlink_trans value of the deleted dir to
4641 		 * its parent directory. This is to prevent an unrecoverable
4642 		 * log tree in the case we do something like this:
4643 		 * 1) create dir foo
4644 		 * 2) create snapshot under dir foo
4645 		 * 3) delete the snapshot
4646 		 * 4) rmdir foo
4647 		 * 5) mkdir foo
4648 		 * 6) fsync foo or some file inside foo
4649 		 */
4650 		if (last_unlink_trans >= trans->transid)
4651 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4652 	}
4653 out:
4654 	btrfs_end_transaction(trans);
4655 out_notrans:
4656 	btrfs_btree_balance_dirty(fs_info);
4657 	fscrypt_free_filename(&fname);
4658 
4659 	return err;
4660 }
4661 
4662 /*
4663  * btrfs_truncate_block - read, zero a chunk and write a block
4664  * @inode - inode that we're zeroing
4665  * @from - the offset to start zeroing
4666  * @len - the length to zero, 0 to zero the entire range respective to the
4667  *	offset
4668  * @front - zero up to the offset instead of from the offset on
4669  *
4670  * This will find the block for the "from" offset and cow the block and zero the
4671  * part we want to zero.  This is used with truncate and hole punching.
4672  */
4673 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4674 			 int front)
4675 {
4676 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4677 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4678 	struct extent_io_tree *io_tree = &inode->io_tree;
4679 	struct btrfs_ordered_extent *ordered;
4680 	struct extent_state *cached_state = NULL;
4681 	struct extent_changeset *data_reserved = NULL;
4682 	bool only_release_metadata = false;
4683 	u32 blocksize = fs_info->sectorsize;
4684 	pgoff_t index = from >> PAGE_SHIFT;
4685 	unsigned offset = from & (blocksize - 1);
4686 	struct page *page;
4687 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4688 	size_t write_bytes = blocksize;
4689 	int ret = 0;
4690 	u64 block_start;
4691 	u64 block_end;
4692 
4693 	if (IS_ALIGNED(offset, blocksize) &&
4694 	    (!len || IS_ALIGNED(len, blocksize)))
4695 		goto out;
4696 
4697 	block_start = round_down(from, blocksize);
4698 	block_end = block_start + blocksize - 1;
4699 
4700 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4701 					  blocksize, false);
4702 	if (ret < 0) {
4703 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4704 			/* For nocow case, no need to reserve data space */
4705 			only_release_metadata = true;
4706 		} else {
4707 			goto out;
4708 		}
4709 	}
4710 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4711 	if (ret < 0) {
4712 		if (!only_release_metadata)
4713 			btrfs_free_reserved_data_space(inode, data_reserved,
4714 						       block_start, blocksize);
4715 		goto out;
4716 	}
4717 again:
4718 	page = find_or_create_page(mapping, index, mask);
4719 	if (!page) {
4720 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4721 					     blocksize, true);
4722 		btrfs_delalloc_release_extents(inode, blocksize);
4723 		ret = -ENOMEM;
4724 		goto out;
4725 	}
4726 
4727 	if (!PageUptodate(page)) {
4728 		ret = btrfs_read_folio(NULL, page_folio(page));
4729 		lock_page(page);
4730 		if (page->mapping != mapping) {
4731 			unlock_page(page);
4732 			put_page(page);
4733 			goto again;
4734 		}
4735 		if (!PageUptodate(page)) {
4736 			ret = -EIO;
4737 			goto out_unlock;
4738 		}
4739 	}
4740 
4741 	/*
4742 	 * We unlock the page after the io is completed and then re-lock it
4743 	 * above.  release_folio() could have come in between that and cleared
4744 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4745 	 * here to make sure it's properly set for the subpage stuff.
4746 	 */
4747 	ret = set_page_extent_mapped(page);
4748 	if (ret < 0)
4749 		goto out_unlock;
4750 
4751 	wait_on_page_writeback(page);
4752 
4753 	lock_extent(io_tree, block_start, block_end, &cached_state);
4754 
4755 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4756 	if (ordered) {
4757 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4758 		unlock_page(page);
4759 		put_page(page);
4760 		btrfs_start_ordered_extent(ordered);
4761 		btrfs_put_ordered_extent(ordered);
4762 		goto again;
4763 	}
4764 
4765 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4766 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4767 			 &cached_state);
4768 
4769 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4770 					&cached_state);
4771 	if (ret) {
4772 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4773 		goto out_unlock;
4774 	}
4775 
4776 	if (offset != blocksize) {
4777 		if (!len)
4778 			len = blocksize - offset;
4779 		if (front)
4780 			memzero_page(page, (block_start - page_offset(page)),
4781 				     offset);
4782 		else
4783 			memzero_page(page, (block_start - page_offset(page)) + offset,
4784 				     len);
4785 	}
4786 	btrfs_page_clear_checked(fs_info, page, block_start,
4787 				 block_end + 1 - block_start);
4788 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4789 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4790 
4791 	if (only_release_metadata)
4792 		set_extent_bit(&inode->io_tree, block_start, block_end,
4793 			       EXTENT_NORESERVE, NULL);
4794 
4795 out_unlock:
4796 	if (ret) {
4797 		if (only_release_metadata)
4798 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4799 		else
4800 			btrfs_delalloc_release_space(inode, data_reserved,
4801 					block_start, blocksize, true);
4802 	}
4803 	btrfs_delalloc_release_extents(inode, blocksize);
4804 	unlock_page(page);
4805 	put_page(page);
4806 out:
4807 	if (only_release_metadata)
4808 		btrfs_check_nocow_unlock(inode);
4809 	extent_changeset_free(data_reserved);
4810 	return ret;
4811 }
4812 
4813 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4814 			     u64 offset, u64 len)
4815 {
4816 	struct btrfs_fs_info *fs_info = root->fs_info;
4817 	struct btrfs_trans_handle *trans;
4818 	struct btrfs_drop_extents_args drop_args = { 0 };
4819 	int ret;
4820 
4821 	/*
4822 	 * If NO_HOLES is enabled, we don't need to do anything.
4823 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4824 	 * or btrfs_update_inode() will be called, which guarantee that the next
4825 	 * fsync will know this inode was changed and needs to be logged.
4826 	 */
4827 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4828 		return 0;
4829 
4830 	/*
4831 	 * 1 - for the one we're dropping
4832 	 * 1 - for the one we're adding
4833 	 * 1 - for updating the inode.
4834 	 */
4835 	trans = btrfs_start_transaction(root, 3);
4836 	if (IS_ERR(trans))
4837 		return PTR_ERR(trans);
4838 
4839 	drop_args.start = offset;
4840 	drop_args.end = offset + len;
4841 	drop_args.drop_cache = true;
4842 
4843 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4844 	if (ret) {
4845 		btrfs_abort_transaction(trans, ret);
4846 		btrfs_end_transaction(trans);
4847 		return ret;
4848 	}
4849 
4850 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4851 	if (ret) {
4852 		btrfs_abort_transaction(trans, ret);
4853 	} else {
4854 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4855 		btrfs_update_inode(trans, root, inode);
4856 	}
4857 	btrfs_end_transaction(trans);
4858 	return ret;
4859 }
4860 
4861 /*
4862  * This function puts in dummy file extents for the area we're creating a hole
4863  * for.  So if we are truncating this file to a larger size we need to insert
4864  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4865  * the range between oldsize and size
4866  */
4867 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4868 {
4869 	struct btrfs_root *root = inode->root;
4870 	struct btrfs_fs_info *fs_info = root->fs_info;
4871 	struct extent_io_tree *io_tree = &inode->io_tree;
4872 	struct extent_map *em = NULL;
4873 	struct extent_state *cached_state = NULL;
4874 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4875 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4876 	u64 last_byte;
4877 	u64 cur_offset;
4878 	u64 hole_size;
4879 	int err = 0;
4880 
4881 	/*
4882 	 * If our size started in the middle of a block we need to zero out the
4883 	 * rest of the block before we expand the i_size, otherwise we could
4884 	 * expose stale data.
4885 	 */
4886 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4887 	if (err)
4888 		return err;
4889 
4890 	if (size <= hole_start)
4891 		return 0;
4892 
4893 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4894 					   &cached_state);
4895 	cur_offset = hole_start;
4896 	while (1) {
4897 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4898 				      block_end - cur_offset);
4899 		if (IS_ERR(em)) {
4900 			err = PTR_ERR(em);
4901 			em = NULL;
4902 			break;
4903 		}
4904 		last_byte = min(extent_map_end(em), block_end);
4905 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4906 		hole_size = last_byte - cur_offset;
4907 
4908 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4909 			struct extent_map *hole_em;
4910 
4911 			err = maybe_insert_hole(root, inode, cur_offset,
4912 						hole_size);
4913 			if (err)
4914 				break;
4915 
4916 			err = btrfs_inode_set_file_extent_range(inode,
4917 							cur_offset, hole_size);
4918 			if (err)
4919 				break;
4920 
4921 			hole_em = alloc_extent_map();
4922 			if (!hole_em) {
4923 				btrfs_drop_extent_map_range(inode, cur_offset,
4924 						    cur_offset + hole_size - 1,
4925 						    false);
4926 				btrfs_set_inode_full_sync(inode);
4927 				goto next;
4928 			}
4929 			hole_em->start = cur_offset;
4930 			hole_em->len = hole_size;
4931 			hole_em->orig_start = cur_offset;
4932 
4933 			hole_em->block_start = EXTENT_MAP_HOLE;
4934 			hole_em->block_len = 0;
4935 			hole_em->orig_block_len = 0;
4936 			hole_em->ram_bytes = hole_size;
4937 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4938 			hole_em->generation = fs_info->generation;
4939 
4940 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4941 			free_extent_map(hole_em);
4942 		} else {
4943 			err = btrfs_inode_set_file_extent_range(inode,
4944 							cur_offset, hole_size);
4945 			if (err)
4946 				break;
4947 		}
4948 next:
4949 		free_extent_map(em);
4950 		em = NULL;
4951 		cur_offset = last_byte;
4952 		if (cur_offset >= block_end)
4953 			break;
4954 	}
4955 	free_extent_map(em);
4956 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4957 	return err;
4958 }
4959 
4960 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4961 {
4962 	struct btrfs_root *root = BTRFS_I(inode)->root;
4963 	struct btrfs_trans_handle *trans;
4964 	loff_t oldsize = i_size_read(inode);
4965 	loff_t newsize = attr->ia_size;
4966 	int mask = attr->ia_valid;
4967 	int ret;
4968 
4969 	/*
4970 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4971 	 * special case where we need to update the times despite not having
4972 	 * these flags set.  For all other operations the VFS set these flags
4973 	 * explicitly if it wants a timestamp update.
4974 	 */
4975 	if (newsize != oldsize) {
4976 		inode_inc_iversion(inode);
4977 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4978 			inode->i_mtime = inode_set_ctime_current(inode);
4979 		}
4980 	}
4981 
4982 	if (newsize > oldsize) {
4983 		/*
4984 		 * Don't do an expanding truncate while snapshotting is ongoing.
4985 		 * This is to ensure the snapshot captures a fully consistent
4986 		 * state of this file - if the snapshot captures this expanding
4987 		 * truncation, it must capture all writes that happened before
4988 		 * this truncation.
4989 		 */
4990 		btrfs_drew_write_lock(&root->snapshot_lock);
4991 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4992 		if (ret) {
4993 			btrfs_drew_write_unlock(&root->snapshot_lock);
4994 			return ret;
4995 		}
4996 
4997 		trans = btrfs_start_transaction(root, 1);
4998 		if (IS_ERR(trans)) {
4999 			btrfs_drew_write_unlock(&root->snapshot_lock);
5000 			return PTR_ERR(trans);
5001 		}
5002 
5003 		i_size_write(inode, newsize);
5004 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5005 		pagecache_isize_extended(inode, oldsize, newsize);
5006 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5007 		btrfs_drew_write_unlock(&root->snapshot_lock);
5008 		btrfs_end_transaction(trans);
5009 	} else {
5010 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5011 
5012 		if (btrfs_is_zoned(fs_info)) {
5013 			ret = btrfs_wait_ordered_range(inode,
5014 					ALIGN(newsize, fs_info->sectorsize),
5015 					(u64)-1);
5016 			if (ret)
5017 				return ret;
5018 		}
5019 
5020 		/*
5021 		 * We're truncating a file that used to have good data down to
5022 		 * zero. Make sure any new writes to the file get on disk
5023 		 * on close.
5024 		 */
5025 		if (newsize == 0)
5026 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5027 				&BTRFS_I(inode)->runtime_flags);
5028 
5029 		truncate_setsize(inode, newsize);
5030 
5031 		inode_dio_wait(inode);
5032 
5033 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5034 		if (ret && inode->i_nlink) {
5035 			int err;
5036 
5037 			/*
5038 			 * Truncate failed, so fix up the in-memory size. We
5039 			 * adjusted disk_i_size down as we removed extents, so
5040 			 * wait for disk_i_size to be stable and then update the
5041 			 * in-memory size to match.
5042 			 */
5043 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5044 			if (err)
5045 				return err;
5046 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5047 		}
5048 	}
5049 
5050 	return ret;
5051 }
5052 
5053 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5054 			 struct iattr *attr)
5055 {
5056 	struct inode *inode = d_inode(dentry);
5057 	struct btrfs_root *root = BTRFS_I(inode)->root;
5058 	int err;
5059 
5060 	if (btrfs_root_readonly(root))
5061 		return -EROFS;
5062 
5063 	err = setattr_prepare(idmap, dentry, attr);
5064 	if (err)
5065 		return err;
5066 
5067 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5068 		err = btrfs_setsize(inode, attr);
5069 		if (err)
5070 			return err;
5071 	}
5072 
5073 	if (attr->ia_valid) {
5074 		setattr_copy(idmap, inode, attr);
5075 		inode_inc_iversion(inode);
5076 		err = btrfs_dirty_inode(BTRFS_I(inode));
5077 
5078 		if (!err && attr->ia_valid & ATTR_MODE)
5079 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5080 	}
5081 
5082 	return err;
5083 }
5084 
5085 /*
5086  * While truncating the inode pages during eviction, we get the VFS
5087  * calling btrfs_invalidate_folio() against each folio of the inode. This
5088  * is slow because the calls to btrfs_invalidate_folio() result in a
5089  * huge amount of calls to lock_extent() and clear_extent_bit(),
5090  * which keep merging and splitting extent_state structures over and over,
5091  * wasting lots of time.
5092  *
5093  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5094  * skip all those expensive operations on a per folio basis and do only
5095  * the ordered io finishing, while we release here the extent_map and
5096  * extent_state structures, without the excessive merging and splitting.
5097  */
5098 static void evict_inode_truncate_pages(struct inode *inode)
5099 {
5100 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5101 	struct rb_node *node;
5102 
5103 	ASSERT(inode->i_state & I_FREEING);
5104 	truncate_inode_pages_final(&inode->i_data);
5105 
5106 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5107 
5108 	/*
5109 	 * Keep looping until we have no more ranges in the io tree.
5110 	 * We can have ongoing bios started by readahead that have
5111 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5112 	 * still in progress (unlocked the pages in the bio but did not yet
5113 	 * unlocked the ranges in the io tree). Therefore this means some
5114 	 * ranges can still be locked and eviction started because before
5115 	 * submitting those bios, which are executed by a separate task (work
5116 	 * queue kthread), inode references (inode->i_count) were not taken
5117 	 * (which would be dropped in the end io callback of each bio).
5118 	 * Therefore here we effectively end up waiting for those bios and
5119 	 * anyone else holding locked ranges without having bumped the inode's
5120 	 * reference count - if we don't do it, when they access the inode's
5121 	 * io_tree to unlock a range it may be too late, leading to an
5122 	 * use-after-free issue.
5123 	 */
5124 	spin_lock(&io_tree->lock);
5125 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5126 		struct extent_state *state;
5127 		struct extent_state *cached_state = NULL;
5128 		u64 start;
5129 		u64 end;
5130 		unsigned state_flags;
5131 
5132 		node = rb_first(&io_tree->state);
5133 		state = rb_entry(node, struct extent_state, rb_node);
5134 		start = state->start;
5135 		end = state->end;
5136 		state_flags = state->state;
5137 		spin_unlock(&io_tree->lock);
5138 
5139 		lock_extent(io_tree, start, end, &cached_state);
5140 
5141 		/*
5142 		 * If still has DELALLOC flag, the extent didn't reach disk,
5143 		 * and its reserved space won't be freed by delayed_ref.
5144 		 * So we need to free its reserved space here.
5145 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5146 		 *
5147 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5148 		 */
5149 		if (state_flags & EXTENT_DELALLOC)
5150 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5151 					       end - start + 1, NULL);
5152 
5153 		clear_extent_bit(io_tree, start, end,
5154 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5155 				 &cached_state);
5156 
5157 		cond_resched();
5158 		spin_lock(&io_tree->lock);
5159 	}
5160 	spin_unlock(&io_tree->lock);
5161 }
5162 
5163 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5164 							struct btrfs_block_rsv *rsv)
5165 {
5166 	struct btrfs_fs_info *fs_info = root->fs_info;
5167 	struct btrfs_trans_handle *trans;
5168 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5169 	int ret;
5170 
5171 	/*
5172 	 * Eviction should be taking place at some place safe because of our
5173 	 * delayed iputs.  However the normal flushing code will run delayed
5174 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5175 	 *
5176 	 * We reserve the delayed_refs_extra here again because we can't use
5177 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5178 	 * above.  We reserve our extra bit here because we generate a ton of
5179 	 * delayed refs activity by truncating.
5180 	 *
5181 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5182 	 * if we fail to make this reservation we can re-try without the
5183 	 * delayed_refs_extra so we can make some forward progress.
5184 	 */
5185 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5186 				     BTRFS_RESERVE_FLUSH_EVICT);
5187 	if (ret) {
5188 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5189 					     BTRFS_RESERVE_FLUSH_EVICT);
5190 		if (ret) {
5191 			btrfs_warn(fs_info,
5192 				   "could not allocate space for delete; will truncate on mount");
5193 			return ERR_PTR(-ENOSPC);
5194 		}
5195 		delayed_refs_extra = 0;
5196 	}
5197 
5198 	trans = btrfs_join_transaction(root);
5199 	if (IS_ERR(trans))
5200 		return trans;
5201 
5202 	if (delayed_refs_extra) {
5203 		trans->block_rsv = &fs_info->trans_block_rsv;
5204 		trans->bytes_reserved = delayed_refs_extra;
5205 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5206 					delayed_refs_extra, true);
5207 	}
5208 	return trans;
5209 }
5210 
5211 void btrfs_evict_inode(struct inode *inode)
5212 {
5213 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5214 	struct btrfs_trans_handle *trans;
5215 	struct btrfs_root *root = BTRFS_I(inode)->root;
5216 	struct btrfs_block_rsv *rsv = NULL;
5217 	int ret;
5218 
5219 	trace_btrfs_inode_evict(inode);
5220 
5221 	if (!root) {
5222 		fsverity_cleanup_inode(inode);
5223 		clear_inode(inode);
5224 		return;
5225 	}
5226 
5227 	evict_inode_truncate_pages(inode);
5228 
5229 	if (inode->i_nlink &&
5230 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5231 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5232 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5233 		goto out;
5234 
5235 	if (is_bad_inode(inode))
5236 		goto out;
5237 
5238 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5239 		goto out;
5240 
5241 	if (inode->i_nlink > 0) {
5242 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5243 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5244 		goto out;
5245 	}
5246 
5247 	/*
5248 	 * This makes sure the inode item in tree is uptodate and the space for
5249 	 * the inode update is released.
5250 	 */
5251 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5252 	if (ret)
5253 		goto out;
5254 
5255 	/*
5256 	 * This drops any pending insert or delete operations we have for this
5257 	 * inode.  We could have a delayed dir index deletion queued up, but
5258 	 * we're removing the inode completely so that'll be taken care of in
5259 	 * the truncate.
5260 	 */
5261 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5262 
5263 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5264 	if (!rsv)
5265 		goto out;
5266 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5267 	rsv->failfast = true;
5268 
5269 	btrfs_i_size_write(BTRFS_I(inode), 0);
5270 
5271 	while (1) {
5272 		struct btrfs_truncate_control control = {
5273 			.inode = BTRFS_I(inode),
5274 			.ino = btrfs_ino(BTRFS_I(inode)),
5275 			.new_size = 0,
5276 			.min_type = 0,
5277 		};
5278 
5279 		trans = evict_refill_and_join(root, rsv);
5280 		if (IS_ERR(trans))
5281 			goto out;
5282 
5283 		trans->block_rsv = rsv;
5284 
5285 		ret = btrfs_truncate_inode_items(trans, root, &control);
5286 		trans->block_rsv = &fs_info->trans_block_rsv;
5287 		btrfs_end_transaction(trans);
5288 		/*
5289 		 * We have not added new delayed items for our inode after we
5290 		 * have flushed its delayed items, so no need to throttle on
5291 		 * delayed items. However we have modified extent buffers.
5292 		 */
5293 		btrfs_btree_balance_dirty_nodelay(fs_info);
5294 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5295 			goto out;
5296 		else if (!ret)
5297 			break;
5298 	}
5299 
5300 	/*
5301 	 * Errors here aren't a big deal, it just means we leave orphan items in
5302 	 * the tree. They will be cleaned up on the next mount. If the inode
5303 	 * number gets reused, cleanup deletes the orphan item without doing
5304 	 * anything, and unlink reuses the existing orphan item.
5305 	 *
5306 	 * If it turns out that we are dropping too many of these, we might want
5307 	 * to add a mechanism for retrying these after a commit.
5308 	 */
5309 	trans = evict_refill_and_join(root, rsv);
5310 	if (!IS_ERR(trans)) {
5311 		trans->block_rsv = rsv;
5312 		btrfs_orphan_del(trans, BTRFS_I(inode));
5313 		trans->block_rsv = &fs_info->trans_block_rsv;
5314 		btrfs_end_transaction(trans);
5315 	}
5316 
5317 out:
5318 	btrfs_free_block_rsv(fs_info, rsv);
5319 	/*
5320 	 * If we didn't successfully delete, the orphan item will still be in
5321 	 * the tree and we'll retry on the next mount. Again, we might also want
5322 	 * to retry these periodically in the future.
5323 	 */
5324 	btrfs_remove_delayed_node(BTRFS_I(inode));
5325 	fsverity_cleanup_inode(inode);
5326 	clear_inode(inode);
5327 }
5328 
5329 /*
5330  * Return the key found in the dir entry in the location pointer, fill @type
5331  * with BTRFS_FT_*, and return 0.
5332  *
5333  * If no dir entries were found, returns -ENOENT.
5334  * If found a corrupted location in dir entry, returns -EUCLEAN.
5335  */
5336 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5337 			       struct btrfs_key *location, u8 *type)
5338 {
5339 	struct btrfs_dir_item *di;
5340 	struct btrfs_path *path;
5341 	struct btrfs_root *root = dir->root;
5342 	int ret = 0;
5343 	struct fscrypt_name fname;
5344 
5345 	path = btrfs_alloc_path();
5346 	if (!path)
5347 		return -ENOMEM;
5348 
5349 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5350 	if (ret < 0)
5351 		goto out;
5352 	/*
5353 	 * fscrypt_setup_filename() should never return a positive value, but
5354 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5355 	 */
5356 	ASSERT(ret == 0);
5357 
5358 	/* This needs to handle no-key deletions later on */
5359 
5360 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5361 				   &fname.disk_name, 0);
5362 	if (IS_ERR_OR_NULL(di)) {
5363 		ret = di ? PTR_ERR(di) : -ENOENT;
5364 		goto out;
5365 	}
5366 
5367 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5368 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5369 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5370 		ret = -EUCLEAN;
5371 		btrfs_warn(root->fs_info,
5372 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5373 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5374 			   location->objectid, location->type, location->offset);
5375 	}
5376 	if (!ret)
5377 		*type = btrfs_dir_ftype(path->nodes[0], di);
5378 out:
5379 	fscrypt_free_filename(&fname);
5380 	btrfs_free_path(path);
5381 	return ret;
5382 }
5383 
5384 /*
5385  * when we hit a tree root in a directory, the btrfs part of the inode
5386  * needs to be changed to reflect the root directory of the tree root.  This
5387  * is kind of like crossing a mount point.
5388  */
5389 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5390 				    struct btrfs_inode *dir,
5391 				    struct dentry *dentry,
5392 				    struct btrfs_key *location,
5393 				    struct btrfs_root **sub_root)
5394 {
5395 	struct btrfs_path *path;
5396 	struct btrfs_root *new_root;
5397 	struct btrfs_root_ref *ref;
5398 	struct extent_buffer *leaf;
5399 	struct btrfs_key key;
5400 	int ret;
5401 	int err = 0;
5402 	struct fscrypt_name fname;
5403 
5404 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5405 	if (ret)
5406 		return ret;
5407 
5408 	path = btrfs_alloc_path();
5409 	if (!path) {
5410 		err = -ENOMEM;
5411 		goto out;
5412 	}
5413 
5414 	err = -ENOENT;
5415 	key.objectid = dir->root->root_key.objectid;
5416 	key.type = BTRFS_ROOT_REF_KEY;
5417 	key.offset = location->objectid;
5418 
5419 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5420 	if (ret) {
5421 		if (ret < 0)
5422 			err = ret;
5423 		goto out;
5424 	}
5425 
5426 	leaf = path->nodes[0];
5427 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5428 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5429 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5430 		goto out;
5431 
5432 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5433 				   (unsigned long)(ref + 1), fname.disk_name.len);
5434 	if (ret)
5435 		goto out;
5436 
5437 	btrfs_release_path(path);
5438 
5439 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5440 	if (IS_ERR(new_root)) {
5441 		err = PTR_ERR(new_root);
5442 		goto out;
5443 	}
5444 
5445 	*sub_root = new_root;
5446 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5447 	location->type = BTRFS_INODE_ITEM_KEY;
5448 	location->offset = 0;
5449 	err = 0;
5450 out:
5451 	btrfs_free_path(path);
5452 	fscrypt_free_filename(&fname);
5453 	return err;
5454 }
5455 
5456 static void inode_tree_add(struct btrfs_inode *inode)
5457 {
5458 	struct btrfs_root *root = inode->root;
5459 	struct btrfs_inode *entry;
5460 	struct rb_node **p;
5461 	struct rb_node *parent;
5462 	struct rb_node *new = &inode->rb_node;
5463 	u64 ino = btrfs_ino(inode);
5464 
5465 	if (inode_unhashed(&inode->vfs_inode))
5466 		return;
5467 	parent = NULL;
5468 	spin_lock(&root->inode_lock);
5469 	p = &root->inode_tree.rb_node;
5470 	while (*p) {
5471 		parent = *p;
5472 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5473 
5474 		if (ino < btrfs_ino(entry))
5475 			p = &parent->rb_left;
5476 		else if (ino > btrfs_ino(entry))
5477 			p = &parent->rb_right;
5478 		else {
5479 			WARN_ON(!(entry->vfs_inode.i_state &
5480 				  (I_WILL_FREE | I_FREEING)));
5481 			rb_replace_node(parent, new, &root->inode_tree);
5482 			RB_CLEAR_NODE(parent);
5483 			spin_unlock(&root->inode_lock);
5484 			return;
5485 		}
5486 	}
5487 	rb_link_node(new, parent, p);
5488 	rb_insert_color(new, &root->inode_tree);
5489 	spin_unlock(&root->inode_lock);
5490 }
5491 
5492 static void inode_tree_del(struct btrfs_inode *inode)
5493 {
5494 	struct btrfs_root *root = inode->root;
5495 	int empty = 0;
5496 
5497 	spin_lock(&root->inode_lock);
5498 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5499 		rb_erase(&inode->rb_node, &root->inode_tree);
5500 		RB_CLEAR_NODE(&inode->rb_node);
5501 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5502 	}
5503 	spin_unlock(&root->inode_lock);
5504 
5505 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5506 		spin_lock(&root->inode_lock);
5507 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5508 		spin_unlock(&root->inode_lock);
5509 		if (empty)
5510 			btrfs_add_dead_root(root);
5511 	}
5512 }
5513 
5514 
5515 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5516 {
5517 	struct btrfs_iget_args *args = p;
5518 
5519 	inode->i_ino = args->ino;
5520 	BTRFS_I(inode)->location.objectid = args->ino;
5521 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5522 	BTRFS_I(inode)->location.offset = 0;
5523 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5524 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5525 
5526 	if (args->root && args->root == args->root->fs_info->tree_root &&
5527 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5528 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5529 			&BTRFS_I(inode)->runtime_flags);
5530 	return 0;
5531 }
5532 
5533 static int btrfs_find_actor(struct inode *inode, void *opaque)
5534 {
5535 	struct btrfs_iget_args *args = opaque;
5536 
5537 	return args->ino == BTRFS_I(inode)->location.objectid &&
5538 		args->root == BTRFS_I(inode)->root;
5539 }
5540 
5541 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5542 				       struct btrfs_root *root)
5543 {
5544 	struct inode *inode;
5545 	struct btrfs_iget_args args;
5546 	unsigned long hashval = btrfs_inode_hash(ino, root);
5547 
5548 	args.ino = ino;
5549 	args.root = root;
5550 
5551 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5552 			     btrfs_init_locked_inode,
5553 			     (void *)&args);
5554 	return inode;
5555 }
5556 
5557 /*
5558  * Get an inode object given its inode number and corresponding root.
5559  * Path can be preallocated to prevent recursing back to iget through
5560  * allocator. NULL is also valid but may require an additional allocation
5561  * later.
5562  */
5563 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5564 			      struct btrfs_root *root, struct btrfs_path *path)
5565 {
5566 	struct inode *inode;
5567 
5568 	inode = btrfs_iget_locked(s, ino, root);
5569 	if (!inode)
5570 		return ERR_PTR(-ENOMEM);
5571 
5572 	if (inode->i_state & I_NEW) {
5573 		int ret;
5574 
5575 		ret = btrfs_read_locked_inode(inode, path);
5576 		if (!ret) {
5577 			inode_tree_add(BTRFS_I(inode));
5578 			unlock_new_inode(inode);
5579 		} else {
5580 			iget_failed(inode);
5581 			/*
5582 			 * ret > 0 can come from btrfs_search_slot called by
5583 			 * btrfs_read_locked_inode, this means the inode item
5584 			 * was not found.
5585 			 */
5586 			if (ret > 0)
5587 				ret = -ENOENT;
5588 			inode = ERR_PTR(ret);
5589 		}
5590 	}
5591 
5592 	return inode;
5593 }
5594 
5595 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5596 {
5597 	return btrfs_iget_path(s, ino, root, NULL);
5598 }
5599 
5600 static struct inode *new_simple_dir(struct inode *dir,
5601 				    struct btrfs_key *key,
5602 				    struct btrfs_root *root)
5603 {
5604 	struct inode *inode = new_inode(dir->i_sb);
5605 
5606 	if (!inode)
5607 		return ERR_PTR(-ENOMEM);
5608 
5609 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5610 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5611 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5612 
5613 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5614 	/*
5615 	 * We only need lookup, the rest is read-only and there's no inode
5616 	 * associated with the dentry
5617 	 */
5618 	inode->i_op = &simple_dir_inode_operations;
5619 	inode->i_opflags &= ~IOP_XATTR;
5620 	inode->i_fop = &simple_dir_operations;
5621 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5622 	inode->i_mtime = inode_set_ctime_current(inode);
5623 	inode->i_atime = dir->i_atime;
5624 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5625 	inode->i_uid = dir->i_uid;
5626 	inode->i_gid = dir->i_gid;
5627 
5628 	return inode;
5629 }
5630 
5631 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5632 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5633 static_assert(BTRFS_FT_DIR == FT_DIR);
5634 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5635 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5636 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5637 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5638 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5639 
5640 static inline u8 btrfs_inode_type(struct inode *inode)
5641 {
5642 	return fs_umode_to_ftype(inode->i_mode);
5643 }
5644 
5645 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5646 {
5647 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5648 	struct inode *inode;
5649 	struct btrfs_root *root = BTRFS_I(dir)->root;
5650 	struct btrfs_root *sub_root = root;
5651 	struct btrfs_key location;
5652 	u8 di_type = 0;
5653 	int ret = 0;
5654 
5655 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5656 		return ERR_PTR(-ENAMETOOLONG);
5657 
5658 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5659 	if (ret < 0)
5660 		return ERR_PTR(ret);
5661 
5662 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5663 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5664 		if (IS_ERR(inode))
5665 			return inode;
5666 
5667 		/* Do extra check against inode mode with di_type */
5668 		if (btrfs_inode_type(inode) != di_type) {
5669 			btrfs_crit(fs_info,
5670 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5671 				  inode->i_mode, btrfs_inode_type(inode),
5672 				  di_type);
5673 			iput(inode);
5674 			return ERR_PTR(-EUCLEAN);
5675 		}
5676 		return inode;
5677 	}
5678 
5679 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5680 				       &location, &sub_root);
5681 	if (ret < 0) {
5682 		if (ret != -ENOENT)
5683 			inode = ERR_PTR(ret);
5684 		else
5685 			inode = new_simple_dir(dir, &location, root);
5686 	} else {
5687 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5688 		btrfs_put_root(sub_root);
5689 
5690 		if (IS_ERR(inode))
5691 			return inode;
5692 
5693 		down_read(&fs_info->cleanup_work_sem);
5694 		if (!sb_rdonly(inode->i_sb))
5695 			ret = btrfs_orphan_cleanup(sub_root);
5696 		up_read(&fs_info->cleanup_work_sem);
5697 		if (ret) {
5698 			iput(inode);
5699 			inode = ERR_PTR(ret);
5700 		}
5701 	}
5702 
5703 	return inode;
5704 }
5705 
5706 static int btrfs_dentry_delete(const struct dentry *dentry)
5707 {
5708 	struct btrfs_root *root;
5709 	struct inode *inode = d_inode(dentry);
5710 
5711 	if (!inode && !IS_ROOT(dentry))
5712 		inode = d_inode(dentry->d_parent);
5713 
5714 	if (inode) {
5715 		root = BTRFS_I(inode)->root;
5716 		if (btrfs_root_refs(&root->root_item) == 0)
5717 			return 1;
5718 
5719 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5720 			return 1;
5721 	}
5722 	return 0;
5723 }
5724 
5725 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5726 				   unsigned int flags)
5727 {
5728 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5729 
5730 	if (inode == ERR_PTR(-ENOENT))
5731 		inode = NULL;
5732 	return d_splice_alias(inode, dentry);
5733 }
5734 
5735 /*
5736  * Find the highest existing sequence number in a directory and then set the
5737  * in-memory index_cnt variable to the first free sequence number.
5738  */
5739 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5740 {
5741 	struct btrfs_root *root = inode->root;
5742 	struct btrfs_key key, found_key;
5743 	struct btrfs_path *path;
5744 	struct extent_buffer *leaf;
5745 	int ret;
5746 
5747 	key.objectid = btrfs_ino(inode);
5748 	key.type = BTRFS_DIR_INDEX_KEY;
5749 	key.offset = (u64)-1;
5750 
5751 	path = btrfs_alloc_path();
5752 	if (!path)
5753 		return -ENOMEM;
5754 
5755 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5756 	if (ret < 0)
5757 		goto out;
5758 	/* FIXME: we should be able to handle this */
5759 	if (ret == 0)
5760 		goto out;
5761 	ret = 0;
5762 
5763 	if (path->slots[0] == 0) {
5764 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5765 		goto out;
5766 	}
5767 
5768 	path->slots[0]--;
5769 
5770 	leaf = path->nodes[0];
5771 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5772 
5773 	if (found_key.objectid != btrfs_ino(inode) ||
5774 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5775 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5776 		goto out;
5777 	}
5778 
5779 	inode->index_cnt = found_key.offset + 1;
5780 out:
5781 	btrfs_free_path(path);
5782 	return ret;
5783 }
5784 
5785 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5786 {
5787 	int ret = 0;
5788 
5789 	btrfs_inode_lock(dir, 0);
5790 	if (dir->index_cnt == (u64)-1) {
5791 		ret = btrfs_inode_delayed_dir_index_count(dir);
5792 		if (ret) {
5793 			ret = btrfs_set_inode_index_count(dir);
5794 			if (ret)
5795 				goto out;
5796 		}
5797 	}
5798 
5799 	/* index_cnt is the index number of next new entry, so decrement it. */
5800 	*index = dir->index_cnt - 1;
5801 out:
5802 	btrfs_inode_unlock(dir, 0);
5803 
5804 	return ret;
5805 }
5806 
5807 /*
5808  * All this infrastructure exists because dir_emit can fault, and we are holding
5809  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5810  * our information into that, and then dir_emit from the buffer.  This is
5811  * similar to what NFS does, only we don't keep the buffer around in pagecache
5812  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5813  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5814  * tree lock.
5815  */
5816 static int btrfs_opendir(struct inode *inode, struct file *file)
5817 {
5818 	struct btrfs_file_private *private;
5819 	u64 last_index;
5820 	int ret;
5821 
5822 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5823 	if (ret)
5824 		return ret;
5825 
5826 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5827 	if (!private)
5828 		return -ENOMEM;
5829 	private->last_index = last_index;
5830 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5831 	if (!private->filldir_buf) {
5832 		kfree(private);
5833 		return -ENOMEM;
5834 	}
5835 	file->private_data = private;
5836 	return 0;
5837 }
5838 
5839 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5840 {
5841 	struct btrfs_file_private *private = file->private_data;
5842 	int ret;
5843 
5844 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5845 				       &private->last_index);
5846 	if (ret)
5847 		return ret;
5848 
5849 	return generic_file_llseek(file, offset, whence);
5850 }
5851 
5852 struct dir_entry {
5853 	u64 ino;
5854 	u64 offset;
5855 	unsigned type;
5856 	int name_len;
5857 };
5858 
5859 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5860 {
5861 	while (entries--) {
5862 		struct dir_entry *entry = addr;
5863 		char *name = (char *)(entry + 1);
5864 
5865 		ctx->pos = get_unaligned(&entry->offset);
5866 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5867 					 get_unaligned(&entry->ino),
5868 					 get_unaligned(&entry->type)))
5869 			return 1;
5870 		addr += sizeof(struct dir_entry) +
5871 			get_unaligned(&entry->name_len);
5872 		ctx->pos++;
5873 	}
5874 	return 0;
5875 }
5876 
5877 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5878 {
5879 	struct inode *inode = file_inode(file);
5880 	struct btrfs_root *root = BTRFS_I(inode)->root;
5881 	struct btrfs_file_private *private = file->private_data;
5882 	struct btrfs_dir_item *di;
5883 	struct btrfs_key key;
5884 	struct btrfs_key found_key;
5885 	struct btrfs_path *path;
5886 	void *addr;
5887 	LIST_HEAD(ins_list);
5888 	LIST_HEAD(del_list);
5889 	int ret;
5890 	char *name_ptr;
5891 	int name_len;
5892 	int entries = 0;
5893 	int total_len = 0;
5894 	bool put = false;
5895 	struct btrfs_key location;
5896 
5897 	if (!dir_emit_dots(file, ctx))
5898 		return 0;
5899 
5900 	path = btrfs_alloc_path();
5901 	if (!path)
5902 		return -ENOMEM;
5903 
5904 	addr = private->filldir_buf;
5905 	path->reada = READA_FORWARD;
5906 
5907 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5908 					      &ins_list, &del_list);
5909 
5910 again:
5911 	key.type = BTRFS_DIR_INDEX_KEY;
5912 	key.offset = ctx->pos;
5913 	key.objectid = btrfs_ino(BTRFS_I(inode));
5914 
5915 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5916 		struct dir_entry *entry;
5917 		struct extent_buffer *leaf = path->nodes[0];
5918 		u8 ftype;
5919 
5920 		if (found_key.objectid != key.objectid)
5921 			break;
5922 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5923 			break;
5924 		if (found_key.offset < ctx->pos)
5925 			continue;
5926 		if (found_key.offset > private->last_index)
5927 			break;
5928 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5929 			continue;
5930 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5931 		name_len = btrfs_dir_name_len(leaf, di);
5932 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5933 		    PAGE_SIZE) {
5934 			btrfs_release_path(path);
5935 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5936 			if (ret)
5937 				goto nopos;
5938 			addr = private->filldir_buf;
5939 			entries = 0;
5940 			total_len = 0;
5941 			goto again;
5942 		}
5943 
5944 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5945 		entry = addr;
5946 		name_ptr = (char *)(entry + 1);
5947 		read_extent_buffer(leaf, name_ptr,
5948 				   (unsigned long)(di + 1), name_len);
5949 		put_unaligned(name_len, &entry->name_len);
5950 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5951 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5952 		put_unaligned(location.objectid, &entry->ino);
5953 		put_unaligned(found_key.offset, &entry->offset);
5954 		entries++;
5955 		addr += sizeof(struct dir_entry) + name_len;
5956 		total_len += sizeof(struct dir_entry) + name_len;
5957 	}
5958 	/* Catch error encountered during iteration */
5959 	if (ret < 0)
5960 		goto err;
5961 
5962 	btrfs_release_path(path);
5963 
5964 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5965 	if (ret)
5966 		goto nopos;
5967 
5968 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5969 	if (ret)
5970 		goto nopos;
5971 
5972 	/*
5973 	 * Stop new entries from being returned after we return the last
5974 	 * entry.
5975 	 *
5976 	 * New directory entries are assigned a strictly increasing
5977 	 * offset.  This means that new entries created during readdir
5978 	 * are *guaranteed* to be seen in the future by that readdir.
5979 	 * This has broken buggy programs which operate on names as
5980 	 * they're returned by readdir.  Until we re-use freed offsets
5981 	 * we have this hack to stop new entries from being returned
5982 	 * under the assumption that they'll never reach this huge
5983 	 * offset.
5984 	 *
5985 	 * This is being careful not to overflow 32bit loff_t unless the
5986 	 * last entry requires it because doing so has broken 32bit apps
5987 	 * in the past.
5988 	 */
5989 	if (ctx->pos >= INT_MAX)
5990 		ctx->pos = LLONG_MAX;
5991 	else
5992 		ctx->pos = INT_MAX;
5993 nopos:
5994 	ret = 0;
5995 err:
5996 	if (put)
5997 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5998 	btrfs_free_path(path);
5999 	return ret;
6000 }
6001 
6002 /*
6003  * This is somewhat expensive, updating the tree every time the
6004  * inode changes.  But, it is most likely to find the inode in cache.
6005  * FIXME, needs more benchmarking...there are no reasons other than performance
6006  * to keep or drop this code.
6007  */
6008 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6009 {
6010 	struct btrfs_root *root = inode->root;
6011 	struct btrfs_fs_info *fs_info = root->fs_info;
6012 	struct btrfs_trans_handle *trans;
6013 	int ret;
6014 
6015 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6016 		return 0;
6017 
6018 	trans = btrfs_join_transaction(root);
6019 	if (IS_ERR(trans))
6020 		return PTR_ERR(trans);
6021 
6022 	ret = btrfs_update_inode(trans, root, inode);
6023 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6024 		/* whoops, lets try again with the full transaction */
6025 		btrfs_end_transaction(trans);
6026 		trans = btrfs_start_transaction(root, 1);
6027 		if (IS_ERR(trans))
6028 			return PTR_ERR(trans);
6029 
6030 		ret = btrfs_update_inode(trans, root, inode);
6031 	}
6032 	btrfs_end_transaction(trans);
6033 	if (inode->delayed_node)
6034 		btrfs_balance_delayed_items(fs_info);
6035 
6036 	return ret;
6037 }
6038 
6039 /*
6040  * This is a copy of file_update_time.  We need this so we can return error on
6041  * ENOSPC for updating the inode in the case of file write and mmap writes.
6042  */
6043 static int btrfs_update_time(struct inode *inode, int flags)
6044 {
6045 	struct btrfs_root *root = BTRFS_I(inode)->root;
6046 	bool dirty = flags & ~S_VERSION;
6047 
6048 	if (btrfs_root_readonly(root))
6049 		return -EROFS;
6050 
6051 	dirty = inode_update_timestamps(inode, flags);
6052 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6053 }
6054 
6055 /*
6056  * helper to find a free sequence number in a given directory.  This current
6057  * code is very simple, later versions will do smarter things in the btree
6058  */
6059 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6060 {
6061 	int ret = 0;
6062 
6063 	if (dir->index_cnt == (u64)-1) {
6064 		ret = btrfs_inode_delayed_dir_index_count(dir);
6065 		if (ret) {
6066 			ret = btrfs_set_inode_index_count(dir);
6067 			if (ret)
6068 				return ret;
6069 		}
6070 	}
6071 
6072 	*index = dir->index_cnt;
6073 	dir->index_cnt++;
6074 
6075 	return ret;
6076 }
6077 
6078 static int btrfs_insert_inode_locked(struct inode *inode)
6079 {
6080 	struct btrfs_iget_args args;
6081 
6082 	args.ino = BTRFS_I(inode)->location.objectid;
6083 	args.root = BTRFS_I(inode)->root;
6084 
6085 	return insert_inode_locked4(inode,
6086 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6087 		   btrfs_find_actor, &args);
6088 }
6089 
6090 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6091 			    unsigned int *trans_num_items)
6092 {
6093 	struct inode *dir = args->dir;
6094 	struct inode *inode = args->inode;
6095 	int ret;
6096 
6097 	if (!args->orphan) {
6098 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6099 					     &args->fname);
6100 		if (ret)
6101 			return ret;
6102 	}
6103 
6104 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6105 	if (ret) {
6106 		fscrypt_free_filename(&args->fname);
6107 		return ret;
6108 	}
6109 
6110 	/* 1 to add inode item */
6111 	*trans_num_items = 1;
6112 	/* 1 to add compression property */
6113 	if (BTRFS_I(dir)->prop_compress)
6114 		(*trans_num_items)++;
6115 	/* 1 to add default ACL xattr */
6116 	if (args->default_acl)
6117 		(*trans_num_items)++;
6118 	/* 1 to add access ACL xattr */
6119 	if (args->acl)
6120 		(*trans_num_items)++;
6121 #ifdef CONFIG_SECURITY
6122 	/* 1 to add LSM xattr */
6123 	if (dir->i_security)
6124 		(*trans_num_items)++;
6125 #endif
6126 	if (args->orphan) {
6127 		/* 1 to add orphan item */
6128 		(*trans_num_items)++;
6129 	} else {
6130 		/*
6131 		 * 1 to add dir item
6132 		 * 1 to add dir index
6133 		 * 1 to update parent inode item
6134 		 *
6135 		 * No need for 1 unit for the inode ref item because it is
6136 		 * inserted in a batch together with the inode item at
6137 		 * btrfs_create_new_inode().
6138 		 */
6139 		*trans_num_items += 3;
6140 	}
6141 	return 0;
6142 }
6143 
6144 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6145 {
6146 	posix_acl_release(args->acl);
6147 	posix_acl_release(args->default_acl);
6148 	fscrypt_free_filename(&args->fname);
6149 }
6150 
6151 /*
6152  * Inherit flags from the parent inode.
6153  *
6154  * Currently only the compression flags and the cow flags are inherited.
6155  */
6156 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6157 {
6158 	unsigned int flags;
6159 
6160 	flags = dir->flags;
6161 
6162 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6163 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6164 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6165 	} else if (flags & BTRFS_INODE_COMPRESS) {
6166 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6167 		inode->flags |= BTRFS_INODE_COMPRESS;
6168 	}
6169 
6170 	if (flags & BTRFS_INODE_NODATACOW) {
6171 		inode->flags |= BTRFS_INODE_NODATACOW;
6172 		if (S_ISREG(inode->vfs_inode.i_mode))
6173 			inode->flags |= BTRFS_INODE_NODATASUM;
6174 	}
6175 
6176 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6177 }
6178 
6179 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6180 			   struct btrfs_new_inode_args *args)
6181 {
6182 	struct inode *dir = args->dir;
6183 	struct inode *inode = args->inode;
6184 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6185 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6186 	struct btrfs_root *root;
6187 	struct btrfs_inode_item *inode_item;
6188 	struct btrfs_key *location;
6189 	struct btrfs_path *path;
6190 	u64 objectid;
6191 	struct btrfs_inode_ref *ref;
6192 	struct btrfs_key key[2];
6193 	u32 sizes[2];
6194 	struct btrfs_item_batch batch;
6195 	unsigned long ptr;
6196 	int ret;
6197 
6198 	path = btrfs_alloc_path();
6199 	if (!path)
6200 		return -ENOMEM;
6201 
6202 	if (!args->subvol)
6203 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6204 	root = BTRFS_I(inode)->root;
6205 
6206 	ret = btrfs_get_free_objectid(root, &objectid);
6207 	if (ret)
6208 		goto out;
6209 	inode->i_ino = objectid;
6210 
6211 	if (args->orphan) {
6212 		/*
6213 		 * O_TMPFILE, set link count to 0, so that after this point, we
6214 		 * fill in an inode item with the correct link count.
6215 		 */
6216 		set_nlink(inode, 0);
6217 	} else {
6218 		trace_btrfs_inode_request(dir);
6219 
6220 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6221 		if (ret)
6222 			goto out;
6223 	}
6224 	/* index_cnt is ignored for everything but a dir. */
6225 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6226 	BTRFS_I(inode)->generation = trans->transid;
6227 	inode->i_generation = BTRFS_I(inode)->generation;
6228 
6229 	/*
6230 	 * Subvolumes don't inherit flags from their parent directory.
6231 	 * Originally this was probably by accident, but we probably can't
6232 	 * change it now without compatibility issues.
6233 	 */
6234 	if (!args->subvol)
6235 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6236 
6237 	if (S_ISREG(inode->i_mode)) {
6238 		if (btrfs_test_opt(fs_info, NODATASUM))
6239 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6240 		if (btrfs_test_opt(fs_info, NODATACOW))
6241 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6242 				BTRFS_INODE_NODATASUM;
6243 	}
6244 
6245 	location = &BTRFS_I(inode)->location;
6246 	location->objectid = objectid;
6247 	location->offset = 0;
6248 	location->type = BTRFS_INODE_ITEM_KEY;
6249 
6250 	ret = btrfs_insert_inode_locked(inode);
6251 	if (ret < 0) {
6252 		if (!args->orphan)
6253 			BTRFS_I(dir)->index_cnt--;
6254 		goto out;
6255 	}
6256 
6257 	/*
6258 	 * We could have gotten an inode number from somebody who was fsynced
6259 	 * and then removed in this same transaction, so let's just set full
6260 	 * sync since it will be a full sync anyway and this will blow away the
6261 	 * old info in the log.
6262 	 */
6263 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6264 
6265 	key[0].objectid = objectid;
6266 	key[0].type = BTRFS_INODE_ITEM_KEY;
6267 	key[0].offset = 0;
6268 
6269 	sizes[0] = sizeof(struct btrfs_inode_item);
6270 
6271 	if (!args->orphan) {
6272 		/*
6273 		 * Start new inodes with an inode_ref. This is slightly more
6274 		 * efficient for small numbers of hard links since they will
6275 		 * be packed into one item. Extended refs will kick in if we
6276 		 * add more hard links than can fit in the ref item.
6277 		 */
6278 		key[1].objectid = objectid;
6279 		key[1].type = BTRFS_INODE_REF_KEY;
6280 		if (args->subvol) {
6281 			key[1].offset = objectid;
6282 			sizes[1] = 2 + sizeof(*ref);
6283 		} else {
6284 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6285 			sizes[1] = name->len + sizeof(*ref);
6286 		}
6287 	}
6288 
6289 	batch.keys = &key[0];
6290 	batch.data_sizes = &sizes[0];
6291 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6292 	batch.nr = args->orphan ? 1 : 2;
6293 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6294 	if (ret != 0) {
6295 		btrfs_abort_transaction(trans, ret);
6296 		goto discard;
6297 	}
6298 
6299 	inode->i_mtime = inode_set_ctime_current(inode);
6300 	inode->i_atime = inode->i_mtime;
6301 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6302 
6303 	/*
6304 	 * We're going to fill the inode item now, so at this point the inode
6305 	 * must be fully initialized.
6306 	 */
6307 
6308 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6309 				  struct btrfs_inode_item);
6310 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6311 			     sizeof(*inode_item));
6312 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6313 
6314 	if (!args->orphan) {
6315 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6316 				     struct btrfs_inode_ref);
6317 		ptr = (unsigned long)(ref + 1);
6318 		if (args->subvol) {
6319 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6320 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6321 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6322 		} else {
6323 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6324 						     name->len);
6325 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6326 						  BTRFS_I(inode)->dir_index);
6327 			write_extent_buffer(path->nodes[0], name->name, ptr,
6328 					    name->len);
6329 		}
6330 	}
6331 
6332 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6333 	/*
6334 	 * We don't need the path anymore, plus inheriting properties, adding
6335 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6336 	 * allocating yet another path. So just free our path.
6337 	 */
6338 	btrfs_free_path(path);
6339 	path = NULL;
6340 
6341 	if (args->subvol) {
6342 		struct inode *parent;
6343 
6344 		/*
6345 		 * Subvolumes inherit properties from their parent subvolume,
6346 		 * not the directory they were created in.
6347 		 */
6348 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6349 				    BTRFS_I(dir)->root);
6350 		if (IS_ERR(parent)) {
6351 			ret = PTR_ERR(parent);
6352 		} else {
6353 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6354 			iput(parent);
6355 		}
6356 	} else {
6357 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6358 	}
6359 	if (ret) {
6360 		btrfs_err(fs_info,
6361 			  "error inheriting props for ino %llu (root %llu): %d",
6362 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6363 			  ret);
6364 	}
6365 
6366 	/*
6367 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6368 	 * probably a bug.
6369 	 */
6370 	if (!args->subvol) {
6371 		ret = btrfs_init_inode_security(trans, args);
6372 		if (ret) {
6373 			btrfs_abort_transaction(trans, ret);
6374 			goto discard;
6375 		}
6376 	}
6377 
6378 	inode_tree_add(BTRFS_I(inode));
6379 
6380 	trace_btrfs_inode_new(inode);
6381 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6382 
6383 	btrfs_update_root_times(trans, root);
6384 
6385 	if (args->orphan) {
6386 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6387 	} else {
6388 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6389 				     0, BTRFS_I(inode)->dir_index);
6390 	}
6391 	if (ret) {
6392 		btrfs_abort_transaction(trans, ret);
6393 		goto discard;
6394 	}
6395 
6396 	return 0;
6397 
6398 discard:
6399 	/*
6400 	 * discard_new_inode() calls iput(), but the caller owns the reference
6401 	 * to the inode.
6402 	 */
6403 	ihold(inode);
6404 	discard_new_inode(inode);
6405 out:
6406 	btrfs_free_path(path);
6407 	return ret;
6408 }
6409 
6410 /*
6411  * utility function to add 'inode' into 'parent_inode' with
6412  * a give name and a given sequence number.
6413  * if 'add_backref' is true, also insert a backref from the
6414  * inode to the parent directory.
6415  */
6416 int btrfs_add_link(struct btrfs_trans_handle *trans,
6417 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6418 		   const struct fscrypt_str *name, int add_backref, u64 index)
6419 {
6420 	int ret = 0;
6421 	struct btrfs_key key;
6422 	struct btrfs_root *root = parent_inode->root;
6423 	u64 ino = btrfs_ino(inode);
6424 	u64 parent_ino = btrfs_ino(parent_inode);
6425 
6426 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6427 		memcpy(&key, &inode->root->root_key, sizeof(key));
6428 	} else {
6429 		key.objectid = ino;
6430 		key.type = BTRFS_INODE_ITEM_KEY;
6431 		key.offset = 0;
6432 	}
6433 
6434 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6435 		ret = btrfs_add_root_ref(trans, key.objectid,
6436 					 root->root_key.objectid, parent_ino,
6437 					 index, name);
6438 	} else if (add_backref) {
6439 		ret = btrfs_insert_inode_ref(trans, root, name,
6440 					     ino, parent_ino, index);
6441 	}
6442 
6443 	/* Nothing to clean up yet */
6444 	if (ret)
6445 		return ret;
6446 
6447 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6448 				    btrfs_inode_type(&inode->vfs_inode), index);
6449 	if (ret == -EEXIST || ret == -EOVERFLOW)
6450 		goto fail_dir_item;
6451 	else if (ret) {
6452 		btrfs_abort_transaction(trans, ret);
6453 		return ret;
6454 	}
6455 
6456 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6457 			   name->len * 2);
6458 	inode_inc_iversion(&parent_inode->vfs_inode);
6459 	/*
6460 	 * If we are replaying a log tree, we do not want to update the mtime
6461 	 * and ctime of the parent directory with the current time, since the
6462 	 * log replay procedure is responsible for setting them to their correct
6463 	 * values (the ones it had when the fsync was done).
6464 	 */
6465 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6466 		parent_inode->vfs_inode.i_mtime =
6467 			inode_set_ctime_current(&parent_inode->vfs_inode);
6468 
6469 	ret = btrfs_update_inode(trans, root, parent_inode);
6470 	if (ret)
6471 		btrfs_abort_transaction(trans, ret);
6472 	return ret;
6473 
6474 fail_dir_item:
6475 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6476 		u64 local_index;
6477 		int err;
6478 		err = btrfs_del_root_ref(trans, key.objectid,
6479 					 root->root_key.objectid, parent_ino,
6480 					 &local_index, name);
6481 		if (err)
6482 			btrfs_abort_transaction(trans, err);
6483 	} else if (add_backref) {
6484 		u64 local_index;
6485 		int err;
6486 
6487 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6488 					  &local_index);
6489 		if (err)
6490 			btrfs_abort_transaction(trans, err);
6491 	}
6492 
6493 	/* Return the original error code */
6494 	return ret;
6495 }
6496 
6497 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6498 			       struct inode *inode)
6499 {
6500 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6501 	struct btrfs_root *root = BTRFS_I(dir)->root;
6502 	struct btrfs_new_inode_args new_inode_args = {
6503 		.dir = dir,
6504 		.dentry = dentry,
6505 		.inode = inode,
6506 	};
6507 	unsigned int trans_num_items;
6508 	struct btrfs_trans_handle *trans;
6509 	int err;
6510 
6511 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6512 	if (err)
6513 		goto out_inode;
6514 
6515 	trans = btrfs_start_transaction(root, trans_num_items);
6516 	if (IS_ERR(trans)) {
6517 		err = PTR_ERR(trans);
6518 		goto out_new_inode_args;
6519 	}
6520 
6521 	err = btrfs_create_new_inode(trans, &new_inode_args);
6522 	if (!err)
6523 		d_instantiate_new(dentry, inode);
6524 
6525 	btrfs_end_transaction(trans);
6526 	btrfs_btree_balance_dirty(fs_info);
6527 out_new_inode_args:
6528 	btrfs_new_inode_args_destroy(&new_inode_args);
6529 out_inode:
6530 	if (err)
6531 		iput(inode);
6532 	return err;
6533 }
6534 
6535 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6536 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6537 {
6538 	struct inode *inode;
6539 
6540 	inode = new_inode(dir->i_sb);
6541 	if (!inode)
6542 		return -ENOMEM;
6543 	inode_init_owner(idmap, inode, dir, mode);
6544 	inode->i_op = &btrfs_special_inode_operations;
6545 	init_special_inode(inode, inode->i_mode, rdev);
6546 	return btrfs_create_common(dir, dentry, inode);
6547 }
6548 
6549 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6550 			struct dentry *dentry, umode_t mode, bool excl)
6551 {
6552 	struct inode *inode;
6553 
6554 	inode = new_inode(dir->i_sb);
6555 	if (!inode)
6556 		return -ENOMEM;
6557 	inode_init_owner(idmap, inode, dir, mode);
6558 	inode->i_fop = &btrfs_file_operations;
6559 	inode->i_op = &btrfs_file_inode_operations;
6560 	inode->i_mapping->a_ops = &btrfs_aops;
6561 	return btrfs_create_common(dir, dentry, inode);
6562 }
6563 
6564 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6565 		      struct dentry *dentry)
6566 {
6567 	struct btrfs_trans_handle *trans = NULL;
6568 	struct btrfs_root *root = BTRFS_I(dir)->root;
6569 	struct inode *inode = d_inode(old_dentry);
6570 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6571 	struct fscrypt_name fname;
6572 	u64 index;
6573 	int err;
6574 	int drop_inode = 0;
6575 
6576 	/* do not allow sys_link's with other subvols of the same device */
6577 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6578 		return -EXDEV;
6579 
6580 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6581 		return -EMLINK;
6582 
6583 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6584 	if (err)
6585 		goto fail;
6586 
6587 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6588 	if (err)
6589 		goto fail;
6590 
6591 	/*
6592 	 * 2 items for inode and inode ref
6593 	 * 2 items for dir items
6594 	 * 1 item for parent inode
6595 	 * 1 item for orphan item deletion if O_TMPFILE
6596 	 */
6597 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6598 	if (IS_ERR(trans)) {
6599 		err = PTR_ERR(trans);
6600 		trans = NULL;
6601 		goto fail;
6602 	}
6603 
6604 	/* There are several dir indexes for this inode, clear the cache. */
6605 	BTRFS_I(inode)->dir_index = 0ULL;
6606 	inc_nlink(inode);
6607 	inode_inc_iversion(inode);
6608 	inode_set_ctime_current(inode);
6609 	ihold(inode);
6610 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6611 
6612 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6613 			     &fname.disk_name, 1, index);
6614 
6615 	if (err) {
6616 		drop_inode = 1;
6617 	} else {
6618 		struct dentry *parent = dentry->d_parent;
6619 
6620 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6621 		if (err)
6622 			goto fail;
6623 		if (inode->i_nlink == 1) {
6624 			/*
6625 			 * If new hard link count is 1, it's a file created
6626 			 * with open(2) O_TMPFILE flag.
6627 			 */
6628 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6629 			if (err)
6630 				goto fail;
6631 		}
6632 		d_instantiate(dentry, inode);
6633 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6634 	}
6635 
6636 fail:
6637 	fscrypt_free_filename(&fname);
6638 	if (trans)
6639 		btrfs_end_transaction(trans);
6640 	if (drop_inode) {
6641 		inode_dec_link_count(inode);
6642 		iput(inode);
6643 	}
6644 	btrfs_btree_balance_dirty(fs_info);
6645 	return err;
6646 }
6647 
6648 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6649 		       struct dentry *dentry, umode_t mode)
6650 {
6651 	struct inode *inode;
6652 
6653 	inode = new_inode(dir->i_sb);
6654 	if (!inode)
6655 		return -ENOMEM;
6656 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6657 	inode->i_op = &btrfs_dir_inode_operations;
6658 	inode->i_fop = &btrfs_dir_file_operations;
6659 	return btrfs_create_common(dir, dentry, inode);
6660 }
6661 
6662 static noinline int uncompress_inline(struct btrfs_path *path,
6663 				      struct page *page,
6664 				      struct btrfs_file_extent_item *item)
6665 {
6666 	int ret;
6667 	struct extent_buffer *leaf = path->nodes[0];
6668 	char *tmp;
6669 	size_t max_size;
6670 	unsigned long inline_size;
6671 	unsigned long ptr;
6672 	int compress_type;
6673 
6674 	compress_type = btrfs_file_extent_compression(leaf, item);
6675 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6676 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6677 	tmp = kmalloc(inline_size, GFP_NOFS);
6678 	if (!tmp)
6679 		return -ENOMEM;
6680 	ptr = btrfs_file_extent_inline_start(item);
6681 
6682 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6683 
6684 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6685 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6686 
6687 	/*
6688 	 * decompression code contains a memset to fill in any space between the end
6689 	 * of the uncompressed data and the end of max_size in case the decompressed
6690 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6691 	 * the end of an inline extent and the beginning of the next block, so we
6692 	 * cover that region here.
6693 	 */
6694 
6695 	if (max_size < PAGE_SIZE)
6696 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6697 	kfree(tmp);
6698 	return ret;
6699 }
6700 
6701 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6702 			      struct page *page)
6703 {
6704 	struct btrfs_file_extent_item *fi;
6705 	void *kaddr;
6706 	size_t copy_size;
6707 
6708 	if (!page || PageUptodate(page))
6709 		return 0;
6710 
6711 	ASSERT(page_offset(page) == 0);
6712 
6713 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6714 			    struct btrfs_file_extent_item);
6715 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6716 		return uncompress_inline(path, page, fi);
6717 
6718 	copy_size = min_t(u64, PAGE_SIZE,
6719 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6720 	kaddr = kmap_local_page(page);
6721 	read_extent_buffer(path->nodes[0], kaddr,
6722 			   btrfs_file_extent_inline_start(fi), copy_size);
6723 	kunmap_local(kaddr);
6724 	if (copy_size < PAGE_SIZE)
6725 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6726 	return 0;
6727 }
6728 
6729 /*
6730  * Lookup the first extent overlapping a range in a file.
6731  *
6732  * @inode:	file to search in
6733  * @page:	page to read extent data into if the extent is inline
6734  * @pg_offset:	offset into @page to copy to
6735  * @start:	file offset
6736  * @len:	length of range starting at @start
6737  *
6738  * Return the first &struct extent_map which overlaps the given range, reading
6739  * it from the B-tree and caching it if necessary. Note that there may be more
6740  * extents which overlap the given range after the returned extent_map.
6741  *
6742  * If @page is not NULL and the extent is inline, this also reads the extent
6743  * data directly into the page and marks the extent up to date in the io_tree.
6744  *
6745  * Return: ERR_PTR on error, non-NULL extent_map on success.
6746  */
6747 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6748 				    struct page *page, size_t pg_offset,
6749 				    u64 start, u64 len)
6750 {
6751 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6752 	int ret = 0;
6753 	u64 extent_start = 0;
6754 	u64 extent_end = 0;
6755 	u64 objectid = btrfs_ino(inode);
6756 	int extent_type = -1;
6757 	struct btrfs_path *path = NULL;
6758 	struct btrfs_root *root = inode->root;
6759 	struct btrfs_file_extent_item *item;
6760 	struct extent_buffer *leaf;
6761 	struct btrfs_key found_key;
6762 	struct extent_map *em = NULL;
6763 	struct extent_map_tree *em_tree = &inode->extent_tree;
6764 
6765 	read_lock(&em_tree->lock);
6766 	em = lookup_extent_mapping(em_tree, start, len);
6767 	read_unlock(&em_tree->lock);
6768 
6769 	if (em) {
6770 		if (em->start > start || em->start + em->len <= start)
6771 			free_extent_map(em);
6772 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6773 			free_extent_map(em);
6774 		else
6775 			goto out;
6776 	}
6777 	em = alloc_extent_map();
6778 	if (!em) {
6779 		ret = -ENOMEM;
6780 		goto out;
6781 	}
6782 	em->start = EXTENT_MAP_HOLE;
6783 	em->orig_start = EXTENT_MAP_HOLE;
6784 	em->len = (u64)-1;
6785 	em->block_len = (u64)-1;
6786 
6787 	path = btrfs_alloc_path();
6788 	if (!path) {
6789 		ret = -ENOMEM;
6790 		goto out;
6791 	}
6792 
6793 	/* Chances are we'll be called again, so go ahead and do readahead */
6794 	path->reada = READA_FORWARD;
6795 
6796 	/*
6797 	 * The same explanation in load_free_space_cache applies here as well,
6798 	 * we only read when we're loading the free space cache, and at that
6799 	 * point the commit_root has everything we need.
6800 	 */
6801 	if (btrfs_is_free_space_inode(inode)) {
6802 		path->search_commit_root = 1;
6803 		path->skip_locking = 1;
6804 	}
6805 
6806 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6807 	if (ret < 0) {
6808 		goto out;
6809 	} else if (ret > 0) {
6810 		if (path->slots[0] == 0)
6811 			goto not_found;
6812 		path->slots[0]--;
6813 		ret = 0;
6814 	}
6815 
6816 	leaf = path->nodes[0];
6817 	item = btrfs_item_ptr(leaf, path->slots[0],
6818 			      struct btrfs_file_extent_item);
6819 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6820 	if (found_key.objectid != objectid ||
6821 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6822 		/*
6823 		 * If we backup past the first extent we want to move forward
6824 		 * and see if there is an extent in front of us, otherwise we'll
6825 		 * say there is a hole for our whole search range which can
6826 		 * cause problems.
6827 		 */
6828 		extent_end = start;
6829 		goto next;
6830 	}
6831 
6832 	extent_type = btrfs_file_extent_type(leaf, item);
6833 	extent_start = found_key.offset;
6834 	extent_end = btrfs_file_extent_end(path);
6835 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6836 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6837 		/* Only regular file could have regular/prealloc extent */
6838 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6839 			ret = -EUCLEAN;
6840 			btrfs_crit(fs_info,
6841 		"regular/prealloc extent found for non-regular inode %llu",
6842 				   btrfs_ino(inode));
6843 			goto out;
6844 		}
6845 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6846 						       extent_start);
6847 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6848 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6849 						      path->slots[0],
6850 						      extent_start);
6851 	}
6852 next:
6853 	if (start >= extent_end) {
6854 		path->slots[0]++;
6855 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6856 			ret = btrfs_next_leaf(root, path);
6857 			if (ret < 0)
6858 				goto out;
6859 			else if (ret > 0)
6860 				goto not_found;
6861 
6862 			leaf = path->nodes[0];
6863 		}
6864 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6865 		if (found_key.objectid != objectid ||
6866 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6867 			goto not_found;
6868 		if (start + len <= found_key.offset)
6869 			goto not_found;
6870 		if (start > found_key.offset)
6871 			goto next;
6872 
6873 		/* New extent overlaps with existing one */
6874 		em->start = start;
6875 		em->orig_start = start;
6876 		em->len = found_key.offset - start;
6877 		em->block_start = EXTENT_MAP_HOLE;
6878 		goto insert;
6879 	}
6880 
6881 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6882 
6883 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6884 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6885 		goto insert;
6886 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6887 		/*
6888 		 * Inline extent can only exist at file offset 0. This is
6889 		 * ensured by tree-checker and inline extent creation path.
6890 		 * Thus all members representing file offsets should be zero.
6891 		 */
6892 		ASSERT(pg_offset == 0);
6893 		ASSERT(extent_start == 0);
6894 		ASSERT(em->start == 0);
6895 
6896 		/*
6897 		 * btrfs_extent_item_to_extent_map() should have properly
6898 		 * initialized em members already.
6899 		 *
6900 		 * Other members are not utilized for inline extents.
6901 		 */
6902 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6903 		ASSERT(em->len == fs_info->sectorsize);
6904 
6905 		ret = read_inline_extent(inode, path, page);
6906 		if (ret < 0)
6907 			goto out;
6908 		goto insert;
6909 	}
6910 not_found:
6911 	em->start = start;
6912 	em->orig_start = start;
6913 	em->len = len;
6914 	em->block_start = EXTENT_MAP_HOLE;
6915 insert:
6916 	ret = 0;
6917 	btrfs_release_path(path);
6918 	if (em->start > start || extent_map_end(em) <= start) {
6919 		btrfs_err(fs_info,
6920 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6921 			  em->start, em->len, start, len);
6922 		ret = -EIO;
6923 		goto out;
6924 	}
6925 
6926 	write_lock(&em_tree->lock);
6927 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6928 	write_unlock(&em_tree->lock);
6929 out:
6930 	btrfs_free_path(path);
6931 
6932 	trace_btrfs_get_extent(root, inode, em);
6933 
6934 	if (ret) {
6935 		free_extent_map(em);
6936 		return ERR_PTR(ret);
6937 	}
6938 	return em;
6939 }
6940 
6941 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6942 						  struct btrfs_dio_data *dio_data,
6943 						  const u64 start,
6944 						  const u64 len,
6945 						  const u64 orig_start,
6946 						  const u64 block_start,
6947 						  const u64 block_len,
6948 						  const u64 orig_block_len,
6949 						  const u64 ram_bytes,
6950 						  const int type)
6951 {
6952 	struct extent_map *em = NULL;
6953 	struct btrfs_ordered_extent *ordered;
6954 
6955 	if (type != BTRFS_ORDERED_NOCOW) {
6956 		em = create_io_em(inode, start, len, orig_start, block_start,
6957 				  block_len, orig_block_len, ram_bytes,
6958 				  BTRFS_COMPRESS_NONE, /* compress_type */
6959 				  type);
6960 		if (IS_ERR(em))
6961 			goto out;
6962 	}
6963 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6964 					     block_start, block_len, 0,
6965 					     (1 << type) |
6966 					     (1 << BTRFS_ORDERED_DIRECT),
6967 					     BTRFS_COMPRESS_NONE);
6968 	if (IS_ERR(ordered)) {
6969 		if (em) {
6970 			free_extent_map(em);
6971 			btrfs_drop_extent_map_range(inode, start,
6972 						    start + len - 1, false);
6973 		}
6974 		em = ERR_CAST(ordered);
6975 	} else {
6976 		ASSERT(!dio_data->ordered);
6977 		dio_data->ordered = ordered;
6978 	}
6979  out:
6980 
6981 	return em;
6982 }
6983 
6984 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6985 						  struct btrfs_dio_data *dio_data,
6986 						  u64 start, u64 len)
6987 {
6988 	struct btrfs_root *root = inode->root;
6989 	struct btrfs_fs_info *fs_info = root->fs_info;
6990 	struct extent_map *em;
6991 	struct btrfs_key ins;
6992 	u64 alloc_hint;
6993 	int ret;
6994 
6995 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6996 again:
6997 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6998 				   0, alloc_hint, &ins, 1, 1);
6999 	if (ret == -EAGAIN) {
7000 		ASSERT(btrfs_is_zoned(fs_info));
7001 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7002 			       TASK_UNINTERRUPTIBLE);
7003 		goto again;
7004 	}
7005 	if (ret)
7006 		return ERR_PTR(ret);
7007 
7008 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7009 				     ins.objectid, ins.offset, ins.offset,
7010 				     ins.offset, BTRFS_ORDERED_REGULAR);
7011 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7012 	if (IS_ERR(em))
7013 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7014 					   1);
7015 
7016 	return em;
7017 }
7018 
7019 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7020 {
7021 	struct btrfs_block_group *block_group;
7022 	bool readonly = false;
7023 
7024 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7025 	if (!block_group || block_group->ro)
7026 		readonly = true;
7027 	if (block_group)
7028 		btrfs_put_block_group(block_group);
7029 	return readonly;
7030 }
7031 
7032 /*
7033  * Check if we can do nocow write into the range [@offset, @offset + @len)
7034  *
7035  * @offset:	File offset
7036  * @len:	The length to write, will be updated to the nocow writeable
7037  *		range
7038  * @orig_start:	(optional) Return the original file offset of the file extent
7039  * @orig_len:	(optional) Return the original on-disk length of the file extent
7040  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7041  * @strict:	if true, omit optimizations that might force us into unnecessary
7042  *		cow. e.g., don't trust generation number.
7043  *
7044  * Return:
7045  * >0	and update @len if we can do nocow write
7046  *  0	if we can't do nocow write
7047  * <0	if error happened
7048  *
7049  * NOTE: This only checks the file extents, caller is responsible to wait for
7050  *	 any ordered extents.
7051  */
7052 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7053 			      u64 *orig_start, u64 *orig_block_len,
7054 			      u64 *ram_bytes, bool nowait, bool strict)
7055 {
7056 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7057 	struct can_nocow_file_extent_args nocow_args = { 0 };
7058 	struct btrfs_path *path;
7059 	int ret;
7060 	struct extent_buffer *leaf;
7061 	struct btrfs_root *root = BTRFS_I(inode)->root;
7062 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7063 	struct btrfs_file_extent_item *fi;
7064 	struct btrfs_key key;
7065 	int found_type;
7066 
7067 	path = btrfs_alloc_path();
7068 	if (!path)
7069 		return -ENOMEM;
7070 	path->nowait = nowait;
7071 
7072 	ret = btrfs_lookup_file_extent(NULL, root, path,
7073 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7074 	if (ret < 0)
7075 		goto out;
7076 
7077 	if (ret == 1) {
7078 		if (path->slots[0] == 0) {
7079 			/* can't find the item, must cow */
7080 			ret = 0;
7081 			goto out;
7082 		}
7083 		path->slots[0]--;
7084 	}
7085 	ret = 0;
7086 	leaf = path->nodes[0];
7087 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7088 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7089 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7090 		/* not our file or wrong item type, must cow */
7091 		goto out;
7092 	}
7093 
7094 	if (key.offset > offset) {
7095 		/* Wrong offset, must cow */
7096 		goto out;
7097 	}
7098 
7099 	if (btrfs_file_extent_end(path) <= offset)
7100 		goto out;
7101 
7102 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7103 	found_type = btrfs_file_extent_type(leaf, fi);
7104 	if (ram_bytes)
7105 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7106 
7107 	nocow_args.start = offset;
7108 	nocow_args.end = offset + *len - 1;
7109 	nocow_args.strict = strict;
7110 	nocow_args.free_path = true;
7111 
7112 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7113 	/* can_nocow_file_extent() has freed the path. */
7114 	path = NULL;
7115 
7116 	if (ret != 1) {
7117 		/* Treat errors as not being able to NOCOW. */
7118 		ret = 0;
7119 		goto out;
7120 	}
7121 
7122 	ret = 0;
7123 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7124 		goto out;
7125 
7126 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7127 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7128 		u64 range_end;
7129 
7130 		range_end = round_up(offset + nocow_args.num_bytes,
7131 				     root->fs_info->sectorsize) - 1;
7132 		ret = test_range_bit(io_tree, offset, range_end,
7133 				     EXTENT_DELALLOC, 0, NULL);
7134 		if (ret) {
7135 			ret = -EAGAIN;
7136 			goto out;
7137 		}
7138 	}
7139 
7140 	if (orig_start)
7141 		*orig_start = key.offset - nocow_args.extent_offset;
7142 	if (orig_block_len)
7143 		*orig_block_len = nocow_args.disk_num_bytes;
7144 
7145 	*len = nocow_args.num_bytes;
7146 	ret = 1;
7147 out:
7148 	btrfs_free_path(path);
7149 	return ret;
7150 }
7151 
7152 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7153 			      struct extent_state **cached_state,
7154 			      unsigned int iomap_flags)
7155 {
7156 	const bool writing = (iomap_flags & IOMAP_WRITE);
7157 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7158 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7159 	struct btrfs_ordered_extent *ordered;
7160 	int ret = 0;
7161 
7162 	while (1) {
7163 		if (nowait) {
7164 			if (!try_lock_extent(io_tree, lockstart, lockend,
7165 					     cached_state))
7166 				return -EAGAIN;
7167 		} else {
7168 			lock_extent(io_tree, lockstart, lockend, cached_state);
7169 		}
7170 		/*
7171 		 * We're concerned with the entire range that we're going to be
7172 		 * doing DIO to, so we need to make sure there's no ordered
7173 		 * extents in this range.
7174 		 */
7175 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7176 						     lockend - lockstart + 1);
7177 
7178 		/*
7179 		 * We need to make sure there are no buffered pages in this
7180 		 * range either, we could have raced between the invalidate in
7181 		 * generic_file_direct_write and locking the extent.  The
7182 		 * invalidate needs to happen so that reads after a write do not
7183 		 * get stale data.
7184 		 */
7185 		if (!ordered &&
7186 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7187 							 lockstart, lockend)))
7188 			break;
7189 
7190 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7191 
7192 		if (ordered) {
7193 			if (nowait) {
7194 				btrfs_put_ordered_extent(ordered);
7195 				ret = -EAGAIN;
7196 				break;
7197 			}
7198 			/*
7199 			 * If we are doing a DIO read and the ordered extent we
7200 			 * found is for a buffered write, we can not wait for it
7201 			 * to complete and retry, because if we do so we can
7202 			 * deadlock with concurrent buffered writes on page
7203 			 * locks. This happens only if our DIO read covers more
7204 			 * than one extent map, if at this point has already
7205 			 * created an ordered extent for a previous extent map
7206 			 * and locked its range in the inode's io tree, and a
7207 			 * concurrent write against that previous extent map's
7208 			 * range and this range started (we unlock the ranges
7209 			 * in the io tree only when the bios complete and
7210 			 * buffered writes always lock pages before attempting
7211 			 * to lock range in the io tree).
7212 			 */
7213 			if (writing ||
7214 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7215 				btrfs_start_ordered_extent(ordered);
7216 			else
7217 				ret = nowait ? -EAGAIN : -ENOTBLK;
7218 			btrfs_put_ordered_extent(ordered);
7219 		} else {
7220 			/*
7221 			 * We could trigger writeback for this range (and wait
7222 			 * for it to complete) and then invalidate the pages for
7223 			 * this range (through invalidate_inode_pages2_range()),
7224 			 * but that can lead us to a deadlock with a concurrent
7225 			 * call to readahead (a buffered read or a defrag call
7226 			 * triggered a readahead) on a page lock due to an
7227 			 * ordered dio extent we created before but did not have
7228 			 * yet a corresponding bio submitted (whence it can not
7229 			 * complete), which makes readahead wait for that
7230 			 * ordered extent to complete while holding a lock on
7231 			 * that page.
7232 			 */
7233 			ret = nowait ? -EAGAIN : -ENOTBLK;
7234 		}
7235 
7236 		if (ret)
7237 			break;
7238 
7239 		cond_resched();
7240 	}
7241 
7242 	return ret;
7243 }
7244 
7245 /* The callers of this must take lock_extent() */
7246 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7247 				       u64 len, u64 orig_start, u64 block_start,
7248 				       u64 block_len, u64 orig_block_len,
7249 				       u64 ram_bytes, int compress_type,
7250 				       int type)
7251 {
7252 	struct extent_map *em;
7253 	int ret;
7254 
7255 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7256 	       type == BTRFS_ORDERED_COMPRESSED ||
7257 	       type == BTRFS_ORDERED_NOCOW ||
7258 	       type == BTRFS_ORDERED_REGULAR);
7259 
7260 	em = alloc_extent_map();
7261 	if (!em)
7262 		return ERR_PTR(-ENOMEM);
7263 
7264 	em->start = start;
7265 	em->orig_start = orig_start;
7266 	em->len = len;
7267 	em->block_len = block_len;
7268 	em->block_start = block_start;
7269 	em->orig_block_len = orig_block_len;
7270 	em->ram_bytes = ram_bytes;
7271 	em->generation = -1;
7272 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7273 	if (type == BTRFS_ORDERED_PREALLOC) {
7274 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7275 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7276 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7277 		em->compress_type = compress_type;
7278 	}
7279 
7280 	ret = btrfs_replace_extent_map_range(inode, em, true);
7281 	if (ret) {
7282 		free_extent_map(em);
7283 		return ERR_PTR(ret);
7284 	}
7285 
7286 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7287 	return em;
7288 }
7289 
7290 
7291 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7292 					 struct inode *inode,
7293 					 struct btrfs_dio_data *dio_data,
7294 					 u64 start, u64 *lenp,
7295 					 unsigned int iomap_flags)
7296 {
7297 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7298 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7299 	struct extent_map *em = *map;
7300 	int type;
7301 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7302 	struct btrfs_block_group *bg;
7303 	bool can_nocow = false;
7304 	bool space_reserved = false;
7305 	u64 len = *lenp;
7306 	u64 prev_len;
7307 	int ret = 0;
7308 
7309 	/*
7310 	 * We don't allocate a new extent in the following cases
7311 	 *
7312 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7313 	 * existing extent.
7314 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7315 	 * just use the extent.
7316 	 *
7317 	 */
7318 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7319 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7320 	     em->block_start != EXTENT_MAP_HOLE)) {
7321 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7322 			type = BTRFS_ORDERED_PREALLOC;
7323 		else
7324 			type = BTRFS_ORDERED_NOCOW;
7325 		len = min(len, em->len - (start - em->start));
7326 		block_start = em->block_start + (start - em->start);
7327 
7328 		if (can_nocow_extent(inode, start, &len, &orig_start,
7329 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7330 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7331 			if (bg)
7332 				can_nocow = true;
7333 		}
7334 	}
7335 
7336 	prev_len = len;
7337 	if (can_nocow) {
7338 		struct extent_map *em2;
7339 
7340 		/* We can NOCOW, so only need to reserve metadata space. */
7341 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7342 						      nowait);
7343 		if (ret < 0) {
7344 			/* Our caller expects us to free the input extent map. */
7345 			free_extent_map(em);
7346 			*map = NULL;
7347 			btrfs_dec_nocow_writers(bg);
7348 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7349 				ret = -EAGAIN;
7350 			goto out;
7351 		}
7352 		space_reserved = true;
7353 
7354 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7355 					      orig_start, block_start,
7356 					      len, orig_block_len,
7357 					      ram_bytes, type);
7358 		btrfs_dec_nocow_writers(bg);
7359 		if (type == BTRFS_ORDERED_PREALLOC) {
7360 			free_extent_map(em);
7361 			*map = em2;
7362 			em = em2;
7363 		}
7364 
7365 		if (IS_ERR(em2)) {
7366 			ret = PTR_ERR(em2);
7367 			goto out;
7368 		}
7369 
7370 		dio_data->nocow_done = true;
7371 	} else {
7372 		/* Our caller expects us to free the input extent map. */
7373 		free_extent_map(em);
7374 		*map = NULL;
7375 
7376 		if (nowait) {
7377 			ret = -EAGAIN;
7378 			goto out;
7379 		}
7380 
7381 		/*
7382 		 * If we could not allocate data space before locking the file
7383 		 * range and we can't do a NOCOW write, then we have to fail.
7384 		 */
7385 		if (!dio_data->data_space_reserved) {
7386 			ret = -ENOSPC;
7387 			goto out;
7388 		}
7389 
7390 		/*
7391 		 * We have to COW and we have already reserved data space before,
7392 		 * so now we reserve only metadata.
7393 		 */
7394 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7395 						      false);
7396 		if (ret < 0)
7397 			goto out;
7398 		space_reserved = true;
7399 
7400 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7401 		if (IS_ERR(em)) {
7402 			ret = PTR_ERR(em);
7403 			goto out;
7404 		}
7405 		*map = em;
7406 		len = min(len, em->len - (start - em->start));
7407 		if (len < prev_len)
7408 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7409 							prev_len - len, true);
7410 	}
7411 
7412 	/*
7413 	 * We have created our ordered extent, so we can now release our reservation
7414 	 * for an outstanding extent.
7415 	 */
7416 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7417 
7418 	/*
7419 	 * Need to update the i_size under the extent lock so buffered
7420 	 * readers will get the updated i_size when we unlock.
7421 	 */
7422 	if (start + len > i_size_read(inode))
7423 		i_size_write(inode, start + len);
7424 out:
7425 	if (ret && space_reserved) {
7426 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7427 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7428 	}
7429 	*lenp = len;
7430 	return ret;
7431 }
7432 
7433 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7434 		loff_t length, unsigned int flags, struct iomap *iomap,
7435 		struct iomap *srcmap)
7436 {
7437 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7438 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7439 	struct extent_map *em;
7440 	struct extent_state *cached_state = NULL;
7441 	struct btrfs_dio_data *dio_data = iter->private;
7442 	u64 lockstart, lockend;
7443 	const bool write = !!(flags & IOMAP_WRITE);
7444 	int ret = 0;
7445 	u64 len = length;
7446 	const u64 data_alloc_len = length;
7447 	bool unlock_extents = false;
7448 
7449 	/*
7450 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7451 	 * we're NOWAIT we may submit a bio for a partial range and return
7452 	 * EIOCBQUEUED, which would result in an errant short read.
7453 	 *
7454 	 * The best way to handle this would be to allow for partial completions
7455 	 * of iocb's, so we could submit the partial bio, return and fault in
7456 	 * the rest of the pages, and then submit the io for the rest of the
7457 	 * range.  However we don't have that currently, so simply return
7458 	 * -EAGAIN at this point so that the normal path is used.
7459 	 */
7460 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7461 		return -EAGAIN;
7462 
7463 	/*
7464 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7465 	 * to allocate a contiguous array for the checksums.
7466 	 */
7467 	if (!write)
7468 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7469 
7470 	lockstart = start;
7471 	lockend = start + len - 1;
7472 
7473 	/*
7474 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7475 	 * enough if we've written compressed pages to this area, so we need to
7476 	 * flush the dirty pages again to make absolutely sure that any
7477 	 * outstanding dirty pages are on disk - the first flush only starts
7478 	 * compression on the data, while keeping the pages locked, so by the
7479 	 * time the second flush returns we know bios for the compressed pages
7480 	 * were submitted and finished, and the pages no longer under writeback.
7481 	 *
7482 	 * If we have a NOWAIT request and we have any pages in the range that
7483 	 * are locked, likely due to compression still in progress, we don't want
7484 	 * to block on page locks. We also don't want to block on pages marked as
7485 	 * dirty or under writeback (same as for the non-compression case).
7486 	 * iomap_dio_rw() did the same check, but after that and before we got
7487 	 * here, mmap'ed writes may have happened or buffered reads started
7488 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7489 	 * the file range yet.
7490 	 */
7491 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7492 		     &BTRFS_I(inode)->runtime_flags)) {
7493 		if (flags & IOMAP_NOWAIT) {
7494 			if (filemap_range_needs_writeback(inode->i_mapping,
7495 							  lockstart, lockend))
7496 				return -EAGAIN;
7497 		} else {
7498 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7499 						       start + length - 1);
7500 			if (ret)
7501 				return ret;
7502 		}
7503 	}
7504 
7505 	memset(dio_data, 0, sizeof(*dio_data));
7506 
7507 	/*
7508 	 * We always try to allocate data space and must do it before locking
7509 	 * the file range, to avoid deadlocks with concurrent writes to the same
7510 	 * range if the range has several extents and the writes don't expand the
7511 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7512 	 * allocate data space here we continue and later, after locking the
7513 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7514 	 * NOCOW write.
7515 	 */
7516 	if (write && !(flags & IOMAP_NOWAIT)) {
7517 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7518 						  &dio_data->data_reserved,
7519 						  start, data_alloc_len, false);
7520 		if (!ret)
7521 			dio_data->data_space_reserved = true;
7522 		else if (ret && !(BTRFS_I(inode)->flags &
7523 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7524 			goto err;
7525 	}
7526 
7527 	/*
7528 	 * If this errors out it's because we couldn't invalidate pagecache for
7529 	 * this range and we need to fallback to buffered IO, or we are doing a
7530 	 * NOWAIT read/write and we need to block.
7531 	 */
7532 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7533 	if (ret < 0)
7534 		goto err;
7535 
7536 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7537 	if (IS_ERR(em)) {
7538 		ret = PTR_ERR(em);
7539 		goto unlock_err;
7540 	}
7541 
7542 	/*
7543 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7544 	 * io.  INLINE is special, and we could probably kludge it in here, but
7545 	 * it's still buffered so for safety lets just fall back to the generic
7546 	 * buffered path.
7547 	 *
7548 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7549 	 * decompress it, so there will be buffering required no matter what we
7550 	 * do, so go ahead and fallback to buffered.
7551 	 *
7552 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7553 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7554 	 * the generic code.
7555 	 */
7556 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7557 	    em->block_start == EXTENT_MAP_INLINE) {
7558 		free_extent_map(em);
7559 		/*
7560 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7561 		 * fallback to buffered IO. This is not only because we can
7562 		 * block with buffered IO (no support for NOWAIT semantics at
7563 		 * the moment) but also to avoid returning short reads to user
7564 		 * space - this happens if we were able to read some data from
7565 		 * previous non-compressed extents and then when we fallback to
7566 		 * buffered IO, at btrfs_file_read_iter() by calling
7567 		 * filemap_read(), we fail to fault in pages for the read buffer,
7568 		 * in which case filemap_read() returns a short read (the number
7569 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7570 		 */
7571 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7572 		goto unlock_err;
7573 	}
7574 
7575 	len = min(len, em->len - (start - em->start));
7576 
7577 	/*
7578 	 * If we have a NOWAIT request and the range contains multiple extents
7579 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7580 	 * caller fallback to a context where it can do a blocking (without
7581 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7582 	 * success to the caller, which is not optimal for writes and for reads
7583 	 * it can result in unexpected behaviour for an application.
7584 	 *
7585 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7586 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7587 	 * asked for, resulting in an unexpected, and incorrect, short read.
7588 	 * That is, the caller asked to read N bytes and we return less than that,
7589 	 * which is wrong unless we are crossing EOF. This happens if we get a
7590 	 * page fault error when trying to fault in pages for the buffer that is
7591 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7592 	 * have previously submitted bios for other extents in the range, in
7593 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7594 	 * those bios have completed by the time we get the page fault error,
7595 	 * which we return back to our caller - we should only return EIOCBQUEUED
7596 	 * after we have submitted bios for all the extents in the range.
7597 	 */
7598 	if ((flags & IOMAP_NOWAIT) && len < length) {
7599 		free_extent_map(em);
7600 		ret = -EAGAIN;
7601 		goto unlock_err;
7602 	}
7603 
7604 	if (write) {
7605 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7606 						    start, &len, flags);
7607 		if (ret < 0)
7608 			goto unlock_err;
7609 		unlock_extents = true;
7610 		/* Recalc len in case the new em is smaller than requested */
7611 		len = min(len, em->len - (start - em->start));
7612 		if (dio_data->data_space_reserved) {
7613 			u64 release_offset;
7614 			u64 release_len = 0;
7615 
7616 			if (dio_data->nocow_done) {
7617 				release_offset = start;
7618 				release_len = data_alloc_len;
7619 			} else if (len < data_alloc_len) {
7620 				release_offset = start + len;
7621 				release_len = data_alloc_len - len;
7622 			}
7623 
7624 			if (release_len > 0)
7625 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7626 							       dio_data->data_reserved,
7627 							       release_offset,
7628 							       release_len);
7629 		}
7630 	} else {
7631 		/*
7632 		 * We need to unlock only the end area that we aren't using.
7633 		 * The rest is going to be unlocked by the endio routine.
7634 		 */
7635 		lockstart = start + len;
7636 		if (lockstart < lockend)
7637 			unlock_extents = true;
7638 	}
7639 
7640 	if (unlock_extents)
7641 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7642 			      &cached_state);
7643 	else
7644 		free_extent_state(cached_state);
7645 
7646 	/*
7647 	 * Translate extent map information to iomap.
7648 	 * We trim the extents (and move the addr) even though iomap code does
7649 	 * that, since we have locked only the parts we are performing I/O in.
7650 	 */
7651 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7652 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7653 		iomap->addr = IOMAP_NULL_ADDR;
7654 		iomap->type = IOMAP_HOLE;
7655 	} else {
7656 		iomap->addr = em->block_start + (start - em->start);
7657 		iomap->type = IOMAP_MAPPED;
7658 	}
7659 	iomap->offset = start;
7660 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7661 	iomap->length = len;
7662 	free_extent_map(em);
7663 
7664 	return 0;
7665 
7666 unlock_err:
7667 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7668 		      &cached_state);
7669 err:
7670 	if (dio_data->data_space_reserved) {
7671 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7672 					       dio_data->data_reserved,
7673 					       start, data_alloc_len);
7674 		extent_changeset_free(dio_data->data_reserved);
7675 	}
7676 
7677 	return ret;
7678 }
7679 
7680 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7681 		ssize_t written, unsigned int flags, struct iomap *iomap)
7682 {
7683 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7684 	struct btrfs_dio_data *dio_data = iter->private;
7685 	size_t submitted = dio_data->submitted;
7686 	const bool write = !!(flags & IOMAP_WRITE);
7687 	int ret = 0;
7688 
7689 	if (!write && (iomap->type == IOMAP_HOLE)) {
7690 		/* If reading from a hole, unlock and return */
7691 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7692 			      NULL);
7693 		return 0;
7694 	}
7695 
7696 	if (submitted < length) {
7697 		pos += submitted;
7698 		length -= submitted;
7699 		if (write)
7700 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7701 						    pos, length, false);
7702 		else
7703 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7704 				      pos + length - 1, NULL);
7705 		ret = -ENOTBLK;
7706 	}
7707 	if (write) {
7708 		btrfs_put_ordered_extent(dio_data->ordered);
7709 		dio_data->ordered = NULL;
7710 	}
7711 
7712 	if (write)
7713 		extent_changeset_free(dio_data->data_reserved);
7714 	return ret;
7715 }
7716 
7717 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7718 {
7719 	struct btrfs_dio_private *dip =
7720 		container_of(bbio, struct btrfs_dio_private, bbio);
7721 	struct btrfs_inode *inode = bbio->inode;
7722 	struct bio *bio = &bbio->bio;
7723 
7724 	if (bio->bi_status) {
7725 		btrfs_warn(inode->root->fs_info,
7726 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7727 			   btrfs_ino(inode), bio->bi_opf,
7728 			   dip->file_offset, dip->bytes, bio->bi_status);
7729 	}
7730 
7731 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7732 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7733 					    dip->file_offset, dip->bytes,
7734 					    !bio->bi_status);
7735 	} else {
7736 		unlock_extent(&inode->io_tree, dip->file_offset,
7737 			      dip->file_offset + dip->bytes - 1, NULL);
7738 	}
7739 
7740 	bbio->bio.bi_private = bbio->private;
7741 	iomap_dio_bio_end_io(bio);
7742 }
7743 
7744 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7745 				loff_t file_offset)
7746 {
7747 	struct btrfs_bio *bbio = btrfs_bio(bio);
7748 	struct btrfs_dio_private *dip =
7749 		container_of(bbio, struct btrfs_dio_private, bbio);
7750 	struct btrfs_dio_data *dio_data = iter->private;
7751 
7752 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7753 		       btrfs_dio_end_io, bio->bi_private);
7754 	bbio->inode = BTRFS_I(iter->inode);
7755 	bbio->file_offset = file_offset;
7756 
7757 	dip->file_offset = file_offset;
7758 	dip->bytes = bio->bi_iter.bi_size;
7759 
7760 	dio_data->submitted += bio->bi_iter.bi_size;
7761 
7762 	/*
7763 	 * Check if we are doing a partial write.  If we are, we need to split
7764 	 * the ordered extent to match the submitted bio.  Hang on to the
7765 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7766 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7767 	 * remaining pages is blocked on the outstanding ordered extent.
7768 	 */
7769 	if (iter->flags & IOMAP_WRITE) {
7770 		int ret;
7771 
7772 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7773 		if (ret) {
7774 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7775 						    file_offset, dip->bytes,
7776 						    !ret);
7777 			bio->bi_status = errno_to_blk_status(ret);
7778 			iomap_dio_bio_end_io(bio);
7779 			return;
7780 		}
7781 	}
7782 
7783 	btrfs_submit_bio(bbio, 0);
7784 }
7785 
7786 static const struct iomap_ops btrfs_dio_iomap_ops = {
7787 	.iomap_begin            = btrfs_dio_iomap_begin,
7788 	.iomap_end              = btrfs_dio_iomap_end,
7789 };
7790 
7791 static const struct iomap_dio_ops btrfs_dio_ops = {
7792 	.submit_io		= btrfs_dio_submit_io,
7793 	.bio_set		= &btrfs_dio_bioset,
7794 };
7795 
7796 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7797 {
7798 	struct btrfs_dio_data data = { 0 };
7799 
7800 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7801 			    IOMAP_DIO_PARTIAL, &data, done_before);
7802 }
7803 
7804 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7805 				  size_t done_before)
7806 {
7807 	struct btrfs_dio_data data = { 0 };
7808 
7809 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7810 			    IOMAP_DIO_PARTIAL, &data, done_before);
7811 }
7812 
7813 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7814 			u64 start, u64 len)
7815 {
7816 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7817 	int	ret;
7818 
7819 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7820 	if (ret)
7821 		return ret;
7822 
7823 	/*
7824 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7825 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7826 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7827 	 * in the compression of data (in an async thread) and will return
7828 	 * before the compression is done and writeback is started. A second
7829 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7830 	 * complete and writeback to start. We also need to wait for ordered
7831 	 * extents to complete, because our fiemap implementation uses mainly
7832 	 * file extent items to list the extents, searching for extent maps
7833 	 * only for file ranges with holes or prealloc extents to figure out
7834 	 * if we have delalloc in those ranges.
7835 	 */
7836 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7837 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7838 		if (ret)
7839 			return ret;
7840 	}
7841 
7842 	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7843 
7844 	/*
7845 	 * We did an initial flush to avoid holding the inode's lock while
7846 	 * triggering writeback and waiting for the completion of IO and ordered
7847 	 * extents. Now after we locked the inode we do it again, because it's
7848 	 * possible a new write may have happened in between those two steps.
7849 	 */
7850 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7851 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7852 		if (ret) {
7853 			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7854 			return ret;
7855 		}
7856 	}
7857 
7858 	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7859 	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7860 
7861 	return ret;
7862 }
7863 
7864 static int btrfs_writepages(struct address_space *mapping,
7865 			    struct writeback_control *wbc)
7866 {
7867 	return extent_writepages(mapping, wbc);
7868 }
7869 
7870 static void btrfs_readahead(struct readahead_control *rac)
7871 {
7872 	extent_readahead(rac);
7873 }
7874 
7875 /*
7876  * For release_folio() and invalidate_folio() we have a race window where
7877  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7878  * If we continue to release/invalidate the page, we could cause use-after-free
7879  * for subpage spinlock.  So this function is to spin and wait for subpage
7880  * spinlock.
7881  */
7882 static void wait_subpage_spinlock(struct page *page)
7883 {
7884 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7885 	struct btrfs_subpage *subpage;
7886 
7887 	if (!btrfs_is_subpage(fs_info, page))
7888 		return;
7889 
7890 	ASSERT(PagePrivate(page) && page->private);
7891 	subpage = (struct btrfs_subpage *)page->private;
7892 
7893 	/*
7894 	 * This may look insane as we just acquire the spinlock and release it,
7895 	 * without doing anything.  But we just want to make sure no one is
7896 	 * still holding the subpage spinlock.
7897 	 * And since the page is not dirty nor writeback, and we have page
7898 	 * locked, the only possible way to hold a spinlock is from the endio
7899 	 * function to clear page writeback.
7900 	 *
7901 	 * Here we just acquire the spinlock so that all existing callers
7902 	 * should exit and we're safe to release/invalidate the page.
7903 	 */
7904 	spin_lock_irq(&subpage->lock);
7905 	spin_unlock_irq(&subpage->lock);
7906 }
7907 
7908 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7909 {
7910 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7911 
7912 	if (ret == 1) {
7913 		wait_subpage_spinlock(&folio->page);
7914 		clear_page_extent_mapped(&folio->page);
7915 	}
7916 	return ret;
7917 }
7918 
7919 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7920 {
7921 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7922 		return false;
7923 	return __btrfs_release_folio(folio, gfp_flags);
7924 }
7925 
7926 #ifdef CONFIG_MIGRATION
7927 static int btrfs_migrate_folio(struct address_space *mapping,
7928 			     struct folio *dst, struct folio *src,
7929 			     enum migrate_mode mode)
7930 {
7931 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7932 
7933 	if (ret != MIGRATEPAGE_SUCCESS)
7934 		return ret;
7935 
7936 	if (folio_test_ordered(src)) {
7937 		folio_clear_ordered(src);
7938 		folio_set_ordered(dst);
7939 	}
7940 
7941 	return MIGRATEPAGE_SUCCESS;
7942 }
7943 #else
7944 #define btrfs_migrate_folio NULL
7945 #endif
7946 
7947 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7948 				 size_t length)
7949 {
7950 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7951 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7952 	struct extent_io_tree *tree = &inode->io_tree;
7953 	struct extent_state *cached_state = NULL;
7954 	u64 page_start = folio_pos(folio);
7955 	u64 page_end = page_start + folio_size(folio) - 1;
7956 	u64 cur;
7957 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7958 
7959 	/*
7960 	 * We have folio locked so no new ordered extent can be created on this
7961 	 * page, nor bio can be submitted for this folio.
7962 	 *
7963 	 * But already submitted bio can still be finished on this folio.
7964 	 * Furthermore, endio function won't skip folio which has Ordered
7965 	 * (Private2) already cleared, so it's possible for endio and
7966 	 * invalidate_folio to do the same ordered extent accounting twice
7967 	 * on one folio.
7968 	 *
7969 	 * So here we wait for any submitted bios to finish, so that we won't
7970 	 * do double ordered extent accounting on the same folio.
7971 	 */
7972 	folio_wait_writeback(folio);
7973 	wait_subpage_spinlock(&folio->page);
7974 
7975 	/*
7976 	 * For subpage case, we have call sites like
7977 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7978 	 * sectorsize.
7979 	 * If the range doesn't cover the full folio, we don't need to and
7980 	 * shouldn't clear page extent mapped, as folio->private can still
7981 	 * record subpage dirty bits for other part of the range.
7982 	 *
7983 	 * For cases that invalidate the full folio even the range doesn't
7984 	 * cover the full folio, like invalidating the last folio, we're
7985 	 * still safe to wait for ordered extent to finish.
7986 	 */
7987 	if (!(offset == 0 && length == folio_size(folio))) {
7988 		btrfs_release_folio(folio, GFP_NOFS);
7989 		return;
7990 	}
7991 
7992 	if (!inode_evicting)
7993 		lock_extent(tree, page_start, page_end, &cached_state);
7994 
7995 	cur = page_start;
7996 	while (cur < page_end) {
7997 		struct btrfs_ordered_extent *ordered;
7998 		u64 range_end;
7999 		u32 range_len;
8000 		u32 extra_flags = 0;
8001 
8002 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8003 							   page_end + 1 - cur);
8004 		if (!ordered) {
8005 			range_end = page_end;
8006 			/*
8007 			 * No ordered extent covering this range, we are safe
8008 			 * to delete all extent states in the range.
8009 			 */
8010 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8011 			goto next;
8012 		}
8013 		if (ordered->file_offset > cur) {
8014 			/*
8015 			 * There is a range between [cur, oe->file_offset) not
8016 			 * covered by any ordered extent.
8017 			 * We are safe to delete all extent states, and handle
8018 			 * the ordered extent in the next iteration.
8019 			 */
8020 			range_end = ordered->file_offset - 1;
8021 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8022 			goto next;
8023 		}
8024 
8025 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8026 				page_end);
8027 		ASSERT(range_end + 1 - cur < U32_MAX);
8028 		range_len = range_end + 1 - cur;
8029 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8030 			/*
8031 			 * If Ordered (Private2) is cleared, it means endio has
8032 			 * already been executed for the range.
8033 			 * We can't delete the extent states as
8034 			 * btrfs_finish_ordered_io() may still use some of them.
8035 			 */
8036 			goto next;
8037 		}
8038 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8039 
8040 		/*
8041 		 * IO on this page will never be started, so we need to account
8042 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8043 		 * here, must leave that up for the ordered extent completion.
8044 		 *
8045 		 * This will also unlock the range for incoming
8046 		 * btrfs_finish_ordered_io().
8047 		 */
8048 		if (!inode_evicting)
8049 			clear_extent_bit(tree, cur, range_end,
8050 					 EXTENT_DELALLOC |
8051 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8052 					 EXTENT_DEFRAG, &cached_state);
8053 
8054 		spin_lock_irq(&inode->ordered_tree.lock);
8055 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8056 		ordered->truncated_len = min(ordered->truncated_len,
8057 					     cur - ordered->file_offset);
8058 		spin_unlock_irq(&inode->ordered_tree.lock);
8059 
8060 		/*
8061 		 * If the ordered extent has finished, we're safe to delete all
8062 		 * the extent states of the range, otherwise
8063 		 * btrfs_finish_ordered_io() will get executed by endio for
8064 		 * other pages, so we can't delete extent states.
8065 		 */
8066 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8067 						   cur, range_end + 1 - cur)) {
8068 			btrfs_finish_ordered_io(ordered);
8069 			/*
8070 			 * The ordered extent has finished, now we're again
8071 			 * safe to delete all extent states of the range.
8072 			 */
8073 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8074 		}
8075 next:
8076 		if (ordered)
8077 			btrfs_put_ordered_extent(ordered);
8078 		/*
8079 		 * Qgroup reserved space handler
8080 		 * Sector(s) here will be either:
8081 		 *
8082 		 * 1) Already written to disk or bio already finished
8083 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8084 		 *    Qgroup will be handled by its qgroup_record then.
8085 		 *    btrfs_qgroup_free_data() call will do nothing here.
8086 		 *
8087 		 * 2) Not written to disk yet
8088 		 *    Then btrfs_qgroup_free_data() call will clear the
8089 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8090 		 *    reserved data space.
8091 		 *    Since the IO will never happen for this page.
8092 		 */
8093 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8094 		if (!inode_evicting) {
8095 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8096 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8097 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8098 				 extra_flags, &cached_state);
8099 		}
8100 		cur = range_end + 1;
8101 	}
8102 	/*
8103 	 * We have iterated through all ordered extents of the page, the page
8104 	 * should not have Ordered (Private2) anymore, or the above iteration
8105 	 * did something wrong.
8106 	 */
8107 	ASSERT(!folio_test_ordered(folio));
8108 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8109 	if (!inode_evicting)
8110 		__btrfs_release_folio(folio, GFP_NOFS);
8111 	clear_page_extent_mapped(&folio->page);
8112 }
8113 
8114 /*
8115  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8116  * called from a page fault handler when a page is first dirtied. Hence we must
8117  * be careful to check for EOF conditions here. We set the page up correctly
8118  * for a written page which means we get ENOSPC checking when writing into
8119  * holes and correct delalloc and unwritten extent mapping on filesystems that
8120  * support these features.
8121  *
8122  * We are not allowed to take the i_mutex here so we have to play games to
8123  * protect against truncate races as the page could now be beyond EOF.  Because
8124  * truncate_setsize() writes the inode size before removing pages, once we have
8125  * the page lock we can determine safely if the page is beyond EOF. If it is not
8126  * beyond EOF, then the page is guaranteed safe against truncation until we
8127  * unlock the page.
8128  */
8129 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8130 {
8131 	struct page *page = vmf->page;
8132 	struct inode *inode = file_inode(vmf->vma->vm_file);
8133 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8134 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8135 	struct btrfs_ordered_extent *ordered;
8136 	struct extent_state *cached_state = NULL;
8137 	struct extent_changeset *data_reserved = NULL;
8138 	unsigned long zero_start;
8139 	loff_t size;
8140 	vm_fault_t ret;
8141 	int ret2;
8142 	int reserved = 0;
8143 	u64 reserved_space;
8144 	u64 page_start;
8145 	u64 page_end;
8146 	u64 end;
8147 
8148 	reserved_space = PAGE_SIZE;
8149 
8150 	sb_start_pagefault(inode->i_sb);
8151 	page_start = page_offset(page);
8152 	page_end = page_start + PAGE_SIZE - 1;
8153 	end = page_end;
8154 
8155 	/*
8156 	 * Reserving delalloc space after obtaining the page lock can lead to
8157 	 * deadlock. For example, if a dirty page is locked by this function
8158 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8159 	 * dirty page write out, then the btrfs_writepages() function could
8160 	 * end up waiting indefinitely to get a lock on the page currently
8161 	 * being processed by btrfs_page_mkwrite() function.
8162 	 */
8163 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8164 					    page_start, reserved_space);
8165 	if (!ret2) {
8166 		ret2 = file_update_time(vmf->vma->vm_file);
8167 		reserved = 1;
8168 	}
8169 	if (ret2) {
8170 		ret = vmf_error(ret2);
8171 		if (reserved)
8172 			goto out;
8173 		goto out_noreserve;
8174 	}
8175 
8176 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8177 again:
8178 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8179 	lock_page(page);
8180 	size = i_size_read(inode);
8181 
8182 	if ((page->mapping != inode->i_mapping) ||
8183 	    (page_start >= size)) {
8184 		/* page got truncated out from underneath us */
8185 		goto out_unlock;
8186 	}
8187 	wait_on_page_writeback(page);
8188 
8189 	lock_extent(io_tree, page_start, page_end, &cached_state);
8190 	ret2 = set_page_extent_mapped(page);
8191 	if (ret2 < 0) {
8192 		ret = vmf_error(ret2);
8193 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8194 		goto out_unlock;
8195 	}
8196 
8197 	/*
8198 	 * we can't set the delalloc bits if there are pending ordered
8199 	 * extents.  Drop our locks and wait for them to finish
8200 	 */
8201 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8202 			PAGE_SIZE);
8203 	if (ordered) {
8204 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8205 		unlock_page(page);
8206 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8207 		btrfs_start_ordered_extent(ordered);
8208 		btrfs_put_ordered_extent(ordered);
8209 		goto again;
8210 	}
8211 
8212 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8213 		reserved_space = round_up(size - page_start,
8214 					  fs_info->sectorsize);
8215 		if (reserved_space < PAGE_SIZE) {
8216 			end = page_start + reserved_space - 1;
8217 			btrfs_delalloc_release_space(BTRFS_I(inode),
8218 					data_reserved, page_start,
8219 					PAGE_SIZE - reserved_space, true);
8220 		}
8221 	}
8222 
8223 	/*
8224 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8225 	 * faulted in, but write(2) could also dirty a page and set delalloc
8226 	 * bits, thus in this case for space account reason, we still need to
8227 	 * clear any delalloc bits within this page range since we have to
8228 	 * reserve data&meta space before lock_page() (see above comments).
8229 	 */
8230 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8231 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8232 			  EXTENT_DEFRAG, &cached_state);
8233 
8234 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8235 					&cached_state);
8236 	if (ret2) {
8237 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8238 		ret = VM_FAULT_SIGBUS;
8239 		goto out_unlock;
8240 	}
8241 
8242 	/* page is wholly or partially inside EOF */
8243 	if (page_start + PAGE_SIZE > size)
8244 		zero_start = offset_in_page(size);
8245 	else
8246 		zero_start = PAGE_SIZE;
8247 
8248 	if (zero_start != PAGE_SIZE)
8249 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8250 
8251 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8252 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8253 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8254 
8255 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8256 
8257 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8258 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8259 
8260 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8261 	sb_end_pagefault(inode->i_sb);
8262 	extent_changeset_free(data_reserved);
8263 	return VM_FAULT_LOCKED;
8264 
8265 out_unlock:
8266 	unlock_page(page);
8267 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8268 out:
8269 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8270 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8271 				     reserved_space, (ret != 0));
8272 out_noreserve:
8273 	sb_end_pagefault(inode->i_sb);
8274 	extent_changeset_free(data_reserved);
8275 	return ret;
8276 }
8277 
8278 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8279 {
8280 	struct btrfs_truncate_control control = {
8281 		.inode = inode,
8282 		.ino = btrfs_ino(inode),
8283 		.min_type = BTRFS_EXTENT_DATA_KEY,
8284 		.clear_extent_range = true,
8285 	};
8286 	struct btrfs_root *root = inode->root;
8287 	struct btrfs_fs_info *fs_info = root->fs_info;
8288 	struct btrfs_block_rsv *rsv;
8289 	int ret;
8290 	struct btrfs_trans_handle *trans;
8291 	u64 mask = fs_info->sectorsize - 1;
8292 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8293 
8294 	if (!skip_writeback) {
8295 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8296 					       inode->vfs_inode.i_size & (~mask),
8297 					       (u64)-1);
8298 		if (ret)
8299 			return ret;
8300 	}
8301 
8302 	/*
8303 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8304 	 * things going on here:
8305 	 *
8306 	 * 1) We need to reserve space to update our inode.
8307 	 *
8308 	 * 2) We need to have something to cache all the space that is going to
8309 	 * be free'd up by the truncate operation, but also have some slack
8310 	 * space reserved in case it uses space during the truncate (thank you
8311 	 * very much snapshotting).
8312 	 *
8313 	 * And we need these to be separate.  The fact is we can use a lot of
8314 	 * space doing the truncate, and we have no earthly idea how much space
8315 	 * we will use, so we need the truncate reservation to be separate so it
8316 	 * doesn't end up using space reserved for updating the inode.  We also
8317 	 * need to be able to stop the transaction and start a new one, which
8318 	 * means we need to be able to update the inode several times, and we
8319 	 * have no idea of knowing how many times that will be, so we can't just
8320 	 * reserve 1 item for the entirety of the operation, so that has to be
8321 	 * done separately as well.
8322 	 *
8323 	 * So that leaves us with
8324 	 *
8325 	 * 1) rsv - for the truncate reservation, which we will steal from the
8326 	 * transaction reservation.
8327 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8328 	 * updating the inode.
8329 	 */
8330 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8331 	if (!rsv)
8332 		return -ENOMEM;
8333 	rsv->size = min_size;
8334 	rsv->failfast = true;
8335 
8336 	/*
8337 	 * 1 for the truncate slack space
8338 	 * 1 for updating the inode.
8339 	 */
8340 	trans = btrfs_start_transaction(root, 2);
8341 	if (IS_ERR(trans)) {
8342 		ret = PTR_ERR(trans);
8343 		goto out;
8344 	}
8345 
8346 	/* Migrate the slack space for the truncate to our reserve */
8347 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8348 				      min_size, false);
8349 	/*
8350 	 * We have reserved 2 metadata units when we started the transaction and
8351 	 * min_size matches 1 unit, so this should never fail, but if it does,
8352 	 * it's not critical we just fail truncation.
8353 	 */
8354 	if (WARN_ON(ret)) {
8355 		btrfs_end_transaction(trans);
8356 		goto out;
8357 	}
8358 
8359 	trans->block_rsv = rsv;
8360 
8361 	while (1) {
8362 		struct extent_state *cached_state = NULL;
8363 		const u64 new_size = inode->vfs_inode.i_size;
8364 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8365 
8366 		control.new_size = new_size;
8367 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8368 		/*
8369 		 * We want to drop from the next block forward in case this new
8370 		 * size is not block aligned since we will be keeping the last
8371 		 * block of the extent just the way it is.
8372 		 */
8373 		btrfs_drop_extent_map_range(inode,
8374 					    ALIGN(new_size, fs_info->sectorsize),
8375 					    (u64)-1, false);
8376 
8377 		ret = btrfs_truncate_inode_items(trans, root, &control);
8378 
8379 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8380 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8381 
8382 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8383 
8384 		trans->block_rsv = &fs_info->trans_block_rsv;
8385 		if (ret != -ENOSPC && ret != -EAGAIN)
8386 			break;
8387 
8388 		ret = btrfs_update_inode(trans, root, inode);
8389 		if (ret)
8390 			break;
8391 
8392 		btrfs_end_transaction(trans);
8393 		btrfs_btree_balance_dirty(fs_info);
8394 
8395 		trans = btrfs_start_transaction(root, 2);
8396 		if (IS_ERR(trans)) {
8397 			ret = PTR_ERR(trans);
8398 			trans = NULL;
8399 			break;
8400 		}
8401 
8402 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8403 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8404 					      rsv, min_size, false);
8405 		/*
8406 		 * We have reserved 2 metadata units when we started the
8407 		 * transaction and min_size matches 1 unit, so this should never
8408 		 * fail, but if it does, it's not critical we just fail truncation.
8409 		 */
8410 		if (WARN_ON(ret))
8411 			break;
8412 
8413 		trans->block_rsv = rsv;
8414 	}
8415 
8416 	/*
8417 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8418 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8419 	 * know we've truncated everything except the last little bit, and can
8420 	 * do btrfs_truncate_block and then update the disk_i_size.
8421 	 */
8422 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8423 		btrfs_end_transaction(trans);
8424 		btrfs_btree_balance_dirty(fs_info);
8425 
8426 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8427 		if (ret)
8428 			goto out;
8429 		trans = btrfs_start_transaction(root, 1);
8430 		if (IS_ERR(trans)) {
8431 			ret = PTR_ERR(trans);
8432 			goto out;
8433 		}
8434 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8435 	}
8436 
8437 	if (trans) {
8438 		int ret2;
8439 
8440 		trans->block_rsv = &fs_info->trans_block_rsv;
8441 		ret2 = btrfs_update_inode(trans, root, inode);
8442 		if (ret2 && !ret)
8443 			ret = ret2;
8444 
8445 		ret2 = btrfs_end_transaction(trans);
8446 		if (ret2 && !ret)
8447 			ret = ret2;
8448 		btrfs_btree_balance_dirty(fs_info);
8449 	}
8450 out:
8451 	btrfs_free_block_rsv(fs_info, rsv);
8452 	/*
8453 	 * So if we truncate and then write and fsync we normally would just
8454 	 * write the extents that changed, which is a problem if we need to
8455 	 * first truncate that entire inode.  So set this flag so we write out
8456 	 * all of the extents in the inode to the sync log so we're completely
8457 	 * safe.
8458 	 *
8459 	 * If no extents were dropped or trimmed we don't need to force the next
8460 	 * fsync to truncate all the inode's items from the log and re-log them
8461 	 * all. This means the truncate operation did not change the file size,
8462 	 * or changed it to a smaller size but there was only an implicit hole
8463 	 * between the old i_size and the new i_size, and there were no prealloc
8464 	 * extents beyond i_size to drop.
8465 	 */
8466 	if (control.extents_found > 0)
8467 		btrfs_set_inode_full_sync(inode);
8468 
8469 	return ret;
8470 }
8471 
8472 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8473 				     struct inode *dir)
8474 {
8475 	struct inode *inode;
8476 
8477 	inode = new_inode(dir->i_sb);
8478 	if (inode) {
8479 		/*
8480 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8481 		 * the parent's sgid bit is set. This is probably a bug.
8482 		 */
8483 		inode_init_owner(idmap, inode, NULL,
8484 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8485 		inode->i_op = &btrfs_dir_inode_operations;
8486 		inode->i_fop = &btrfs_dir_file_operations;
8487 	}
8488 	return inode;
8489 }
8490 
8491 struct inode *btrfs_alloc_inode(struct super_block *sb)
8492 {
8493 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8494 	struct btrfs_inode *ei;
8495 	struct inode *inode;
8496 
8497 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8498 	if (!ei)
8499 		return NULL;
8500 
8501 	ei->root = NULL;
8502 	ei->generation = 0;
8503 	ei->last_trans = 0;
8504 	ei->last_sub_trans = 0;
8505 	ei->logged_trans = 0;
8506 	ei->delalloc_bytes = 0;
8507 	ei->new_delalloc_bytes = 0;
8508 	ei->defrag_bytes = 0;
8509 	ei->disk_i_size = 0;
8510 	ei->flags = 0;
8511 	ei->ro_flags = 0;
8512 	ei->csum_bytes = 0;
8513 	ei->index_cnt = (u64)-1;
8514 	ei->dir_index = 0;
8515 	ei->last_unlink_trans = 0;
8516 	ei->last_reflink_trans = 0;
8517 	ei->last_log_commit = 0;
8518 
8519 	spin_lock_init(&ei->lock);
8520 	ei->outstanding_extents = 0;
8521 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8522 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8523 					      BTRFS_BLOCK_RSV_DELALLOC);
8524 	ei->runtime_flags = 0;
8525 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8526 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8527 
8528 	ei->delayed_node = NULL;
8529 
8530 	ei->i_otime.tv_sec = 0;
8531 	ei->i_otime.tv_nsec = 0;
8532 
8533 	inode = &ei->vfs_inode;
8534 	extent_map_tree_init(&ei->extent_tree);
8535 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8536 	ei->io_tree.inode = ei;
8537 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8538 			    IO_TREE_INODE_FILE_EXTENT);
8539 	mutex_init(&ei->log_mutex);
8540 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8541 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8542 	INIT_LIST_HEAD(&ei->delayed_iput);
8543 	RB_CLEAR_NODE(&ei->rb_node);
8544 	init_rwsem(&ei->i_mmap_lock);
8545 
8546 	return inode;
8547 }
8548 
8549 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8550 void btrfs_test_destroy_inode(struct inode *inode)
8551 {
8552 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8553 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8554 }
8555 #endif
8556 
8557 void btrfs_free_inode(struct inode *inode)
8558 {
8559 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8560 }
8561 
8562 void btrfs_destroy_inode(struct inode *vfs_inode)
8563 {
8564 	struct btrfs_ordered_extent *ordered;
8565 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8566 	struct btrfs_root *root = inode->root;
8567 	bool freespace_inode;
8568 
8569 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8570 	WARN_ON(vfs_inode->i_data.nrpages);
8571 	WARN_ON(inode->block_rsv.reserved);
8572 	WARN_ON(inode->block_rsv.size);
8573 	WARN_ON(inode->outstanding_extents);
8574 	if (!S_ISDIR(vfs_inode->i_mode)) {
8575 		WARN_ON(inode->delalloc_bytes);
8576 		WARN_ON(inode->new_delalloc_bytes);
8577 	}
8578 	WARN_ON(inode->csum_bytes);
8579 	WARN_ON(inode->defrag_bytes);
8580 
8581 	/*
8582 	 * This can happen where we create an inode, but somebody else also
8583 	 * created the same inode and we need to destroy the one we already
8584 	 * created.
8585 	 */
8586 	if (!root)
8587 		return;
8588 
8589 	/*
8590 	 * If this is a free space inode do not take the ordered extents lockdep
8591 	 * map.
8592 	 */
8593 	freespace_inode = btrfs_is_free_space_inode(inode);
8594 
8595 	while (1) {
8596 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8597 		if (!ordered)
8598 			break;
8599 		else {
8600 			btrfs_err(root->fs_info,
8601 				  "found ordered extent %llu %llu on inode cleanup",
8602 				  ordered->file_offset, ordered->num_bytes);
8603 
8604 			if (!freespace_inode)
8605 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8606 
8607 			btrfs_remove_ordered_extent(inode, ordered);
8608 			btrfs_put_ordered_extent(ordered);
8609 			btrfs_put_ordered_extent(ordered);
8610 		}
8611 	}
8612 	btrfs_qgroup_check_reserved_leak(inode);
8613 	inode_tree_del(inode);
8614 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8615 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8616 	btrfs_put_root(inode->root);
8617 }
8618 
8619 int btrfs_drop_inode(struct inode *inode)
8620 {
8621 	struct btrfs_root *root = BTRFS_I(inode)->root;
8622 
8623 	if (root == NULL)
8624 		return 1;
8625 
8626 	/* the snap/subvol tree is on deleting */
8627 	if (btrfs_root_refs(&root->root_item) == 0)
8628 		return 1;
8629 	else
8630 		return generic_drop_inode(inode);
8631 }
8632 
8633 static void init_once(void *foo)
8634 {
8635 	struct btrfs_inode *ei = foo;
8636 
8637 	inode_init_once(&ei->vfs_inode);
8638 }
8639 
8640 void __cold btrfs_destroy_cachep(void)
8641 {
8642 	/*
8643 	 * Make sure all delayed rcu free inodes are flushed before we
8644 	 * destroy cache.
8645 	 */
8646 	rcu_barrier();
8647 	bioset_exit(&btrfs_dio_bioset);
8648 	kmem_cache_destroy(btrfs_inode_cachep);
8649 }
8650 
8651 int __init btrfs_init_cachep(void)
8652 {
8653 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8654 			sizeof(struct btrfs_inode), 0,
8655 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8656 			init_once);
8657 	if (!btrfs_inode_cachep)
8658 		goto fail;
8659 
8660 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8661 			offsetof(struct btrfs_dio_private, bbio.bio),
8662 			BIOSET_NEED_BVECS))
8663 		goto fail;
8664 
8665 	return 0;
8666 fail:
8667 	btrfs_destroy_cachep();
8668 	return -ENOMEM;
8669 }
8670 
8671 static int btrfs_getattr(struct mnt_idmap *idmap,
8672 			 const struct path *path, struct kstat *stat,
8673 			 u32 request_mask, unsigned int flags)
8674 {
8675 	u64 delalloc_bytes;
8676 	u64 inode_bytes;
8677 	struct inode *inode = d_inode(path->dentry);
8678 	u32 blocksize = inode->i_sb->s_blocksize;
8679 	u32 bi_flags = BTRFS_I(inode)->flags;
8680 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8681 
8682 	stat->result_mask |= STATX_BTIME;
8683 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8684 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8685 	if (bi_flags & BTRFS_INODE_APPEND)
8686 		stat->attributes |= STATX_ATTR_APPEND;
8687 	if (bi_flags & BTRFS_INODE_COMPRESS)
8688 		stat->attributes |= STATX_ATTR_COMPRESSED;
8689 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8690 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8691 	if (bi_flags & BTRFS_INODE_NODUMP)
8692 		stat->attributes |= STATX_ATTR_NODUMP;
8693 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8694 		stat->attributes |= STATX_ATTR_VERITY;
8695 
8696 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8697 				  STATX_ATTR_COMPRESSED |
8698 				  STATX_ATTR_IMMUTABLE |
8699 				  STATX_ATTR_NODUMP);
8700 
8701 	generic_fillattr(idmap, request_mask, inode, stat);
8702 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8703 
8704 	spin_lock(&BTRFS_I(inode)->lock);
8705 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8706 	inode_bytes = inode_get_bytes(inode);
8707 	spin_unlock(&BTRFS_I(inode)->lock);
8708 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8709 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8710 	return 0;
8711 }
8712 
8713 static int btrfs_rename_exchange(struct inode *old_dir,
8714 			      struct dentry *old_dentry,
8715 			      struct inode *new_dir,
8716 			      struct dentry *new_dentry)
8717 {
8718 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8719 	struct btrfs_trans_handle *trans;
8720 	unsigned int trans_num_items;
8721 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8722 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8723 	struct inode *new_inode = new_dentry->d_inode;
8724 	struct inode *old_inode = old_dentry->d_inode;
8725 	struct btrfs_rename_ctx old_rename_ctx;
8726 	struct btrfs_rename_ctx new_rename_ctx;
8727 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8728 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8729 	u64 old_idx = 0;
8730 	u64 new_idx = 0;
8731 	int ret;
8732 	int ret2;
8733 	bool need_abort = false;
8734 	struct fscrypt_name old_fname, new_fname;
8735 	struct fscrypt_str *old_name, *new_name;
8736 
8737 	/*
8738 	 * For non-subvolumes allow exchange only within one subvolume, in the
8739 	 * same inode namespace. Two subvolumes (represented as directory) can
8740 	 * be exchanged as they're a logical link and have a fixed inode number.
8741 	 */
8742 	if (root != dest &&
8743 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8744 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8745 		return -EXDEV;
8746 
8747 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8748 	if (ret)
8749 		return ret;
8750 
8751 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8752 	if (ret) {
8753 		fscrypt_free_filename(&old_fname);
8754 		return ret;
8755 	}
8756 
8757 	old_name = &old_fname.disk_name;
8758 	new_name = &new_fname.disk_name;
8759 
8760 	/* close the race window with snapshot create/destroy ioctl */
8761 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8762 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8763 		down_read(&fs_info->subvol_sem);
8764 
8765 	/*
8766 	 * For each inode:
8767 	 * 1 to remove old dir item
8768 	 * 1 to remove old dir index
8769 	 * 1 to add new dir item
8770 	 * 1 to add new dir index
8771 	 * 1 to update parent inode
8772 	 *
8773 	 * If the parents are the same, we only need to account for one
8774 	 */
8775 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8776 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8777 		/*
8778 		 * 1 to remove old root ref
8779 		 * 1 to remove old root backref
8780 		 * 1 to add new root ref
8781 		 * 1 to add new root backref
8782 		 */
8783 		trans_num_items += 4;
8784 	} else {
8785 		/*
8786 		 * 1 to update inode item
8787 		 * 1 to remove old inode ref
8788 		 * 1 to add new inode ref
8789 		 */
8790 		trans_num_items += 3;
8791 	}
8792 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8793 		trans_num_items += 4;
8794 	else
8795 		trans_num_items += 3;
8796 	trans = btrfs_start_transaction(root, trans_num_items);
8797 	if (IS_ERR(trans)) {
8798 		ret = PTR_ERR(trans);
8799 		goto out_notrans;
8800 	}
8801 
8802 	if (dest != root) {
8803 		ret = btrfs_record_root_in_trans(trans, dest);
8804 		if (ret)
8805 			goto out_fail;
8806 	}
8807 
8808 	/*
8809 	 * We need to find a free sequence number both in the source and
8810 	 * in the destination directory for the exchange.
8811 	 */
8812 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8813 	if (ret)
8814 		goto out_fail;
8815 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8816 	if (ret)
8817 		goto out_fail;
8818 
8819 	BTRFS_I(old_inode)->dir_index = 0ULL;
8820 	BTRFS_I(new_inode)->dir_index = 0ULL;
8821 
8822 	/* Reference for the source. */
8823 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8824 		/* force full log commit if subvolume involved. */
8825 		btrfs_set_log_full_commit(trans);
8826 	} else {
8827 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8828 					     btrfs_ino(BTRFS_I(new_dir)),
8829 					     old_idx);
8830 		if (ret)
8831 			goto out_fail;
8832 		need_abort = true;
8833 	}
8834 
8835 	/* And now for the dest. */
8836 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8837 		/* force full log commit if subvolume involved. */
8838 		btrfs_set_log_full_commit(trans);
8839 	} else {
8840 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8841 					     btrfs_ino(BTRFS_I(old_dir)),
8842 					     new_idx);
8843 		if (ret) {
8844 			if (need_abort)
8845 				btrfs_abort_transaction(trans, ret);
8846 			goto out_fail;
8847 		}
8848 	}
8849 
8850 	/* Update inode version and ctime/mtime. */
8851 	inode_inc_iversion(old_dir);
8852 	inode_inc_iversion(new_dir);
8853 	inode_inc_iversion(old_inode);
8854 	inode_inc_iversion(new_inode);
8855 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8856 
8857 	if (old_dentry->d_parent != new_dentry->d_parent) {
8858 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8859 					BTRFS_I(old_inode), true);
8860 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8861 					BTRFS_I(new_inode), true);
8862 	}
8863 
8864 	/* src is a subvolume */
8865 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8866 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8867 	} else { /* src is an inode */
8868 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8869 					   BTRFS_I(old_dentry->d_inode),
8870 					   old_name, &old_rename_ctx);
8871 		if (!ret)
8872 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8873 	}
8874 	if (ret) {
8875 		btrfs_abort_transaction(trans, ret);
8876 		goto out_fail;
8877 	}
8878 
8879 	/* dest is a subvolume */
8880 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8881 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8882 	} else { /* dest is an inode */
8883 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8884 					   BTRFS_I(new_dentry->d_inode),
8885 					   new_name, &new_rename_ctx);
8886 		if (!ret)
8887 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8888 	}
8889 	if (ret) {
8890 		btrfs_abort_transaction(trans, ret);
8891 		goto out_fail;
8892 	}
8893 
8894 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8895 			     new_name, 0, old_idx);
8896 	if (ret) {
8897 		btrfs_abort_transaction(trans, ret);
8898 		goto out_fail;
8899 	}
8900 
8901 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8902 			     old_name, 0, new_idx);
8903 	if (ret) {
8904 		btrfs_abort_transaction(trans, ret);
8905 		goto out_fail;
8906 	}
8907 
8908 	if (old_inode->i_nlink == 1)
8909 		BTRFS_I(old_inode)->dir_index = old_idx;
8910 	if (new_inode->i_nlink == 1)
8911 		BTRFS_I(new_inode)->dir_index = new_idx;
8912 
8913 	/*
8914 	 * Now pin the logs of the roots. We do it to ensure that no other task
8915 	 * can sync the logs while we are in progress with the rename, because
8916 	 * that could result in an inconsistency in case any of the inodes that
8917 	 * are part of this rename operation were logged before.
8918 	 */
8919 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8920 		btrfs_pin_log_trans(root);
8921 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8922 		btrfs_pin_log_trans(dest);
8923 
8924 	/* Do the log updates for all inodes. */
8925 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8926 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8927 				   old_rename_ctx.index, new_dentry->d_parent);
8928 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8929 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8930 				   new_rename_ctx.index, old_dentry->d_parent);
8931 
8932 	/* Now unpin the logs. */
8933 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8934 		btrfs_end_log_trans(root);
8935 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8936 		btrfs_end_log_trans(dest);
8937 out_fail:
8938 	ret2 = btrfs_end_transaction(trans);
8939 	ret = ret ? ret : ret2;
8940 out_notrans:
8941 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8942 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8943 		up_read(&fs_info->subvol_sem);
8944 
8945 	fscrypt_free_filename(&new_fname);
8946 	fscrypt_free_filename(&old_fname);
8947 	return ret;
8948 }
8949 
8950 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8951 					struct inode *dir)
8952 {
8953 	struct inode *inode;
8954 
8955 	inode = new_inode(dir->i_sb);
8956 	if (inode) {
8957 		inode_init_owner(idmap, inode, dir,
8958 				 S_IFCHR | WHITEOUT_MODE);
8959 		inode->i_op = &btrfs_special_inode_operations;
8960 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8961 	}
8962 	return inode;
8963 }
8964 
8965 static int btrfs_rename(struct mnt_idmap *idmap,
8966 			struct inode *old_dir, struct dentry *old_dentry,
8967 			struct inode *new_dir, struct dentry *new_dentry,
8968 			unsigned int flags)
8969 {
8970 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8971 	struct btrfs_new_inode_args whiteout_args = {
8972 		.dir = old_dir,
8973 		.dentry = old_dentry,
8974 	};
8975 	struct btrfs_trans_handle *trans;
8976 	unsigned int trans_num_items;
8977 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8978 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8979 	struct inode *new_inode = d_inode(new_dentry);
8980 	struct inode *old_inode = d_inode(old_dentry);
8981 	struct btrfs_rename_ctx rename_ctx;
8982 	u64 index = 0;
8983 	int ret;
8984 	int ret2;
8985 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8986 	struct fscrypt_name old_fname, new_fname;
8987 
8988 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8989 		return -EPERM;
8990 
8991 	/* we only allow rename subvolume link between subvolumes */
8992 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8993 		return -EXDEV;
8994 
8995 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8996 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8997 		return -ENOTEMPTY;
8998 
8999 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9000 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9001 		return -ENOTEMPTY;
9002 
9003 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9004 	if (ret)
9005 		return ret;
9006 
9007 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9008 	if (ret) {
9009 		fscrypt_free_filename(&old_fname);
9010 		return ret;
9011 	}
9012 
9013 	/* check for collisions, even if the  name isn't there */
9014 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9015 	if (ret) {
9016 		if (ret == -EEXIST) {
9017 			/* we shouldn't get
9018 			 * eexist without a new_inode */
9019 			if (WARN_ON(!new_inode)) {
9020 				goto out_fscrypt_names;
9021 			}
9022 		} else {
9023 			/* maybe -EOVERFLOW */
9024 			goto out_fscrypt_names;
9025 		}
9026 	}
9027 	ret = 0;
9028 
9029 	/*
9030 	 * we're using rename to replace one file with another.  Start IO on it
9031 	 * now so  we don't add too much work to the end of the transaction
9032 	 */
9033 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9034 		filemap_flush(old_inode->i_mapping);
9035 
9036 	if (flags & RENAME_WHITEOUT) {
9037 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9038 		if (!whiteout_args.inode) {
9039 			ret = -ENOMEM;
9040 			goto out_fscrypt_names;
9041 		}
9042 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9043 		if (ret)
9044 			goto out_whiteout_inode;
9045 	} else {
9046 		/* 1 to update the old parent inode. */
9047 		trans_num_items = 1;
9048 	}
9049 
9050 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9051 		/* Close the race window with snapshot create/destroy ioctl */
9052 		down_read(&fs_info->subvol_sem);
9053 		/*
9054 		 * 1 to remove old root ref
9055 		 * 1 to remove old root backref
9056 		 * 1 to add new root ref
9057 		 * 1 to add new root backref
9058 		 */
9059 		trans_num_items += 4;
9060 	} else {
9061 		/*
9062 		 * 1 to update inode
9063 		 * 1 to remove old inode ref
9064 		 * 1 to add new inode ref
9065 		 */
9066 		trans_num_items += 3;
9067 	}
9068 	/*
9069 	 * 1 to remove old dir item
9070 	 * 1 to remove old dir index
9071 	 * 1 to add new dir item
9072 	 * 1 to add new dir index
9073 	 */
9074 	trans_num_items += 4;
9075 	/* 1 to update new parent inode if it's not the same as the old parent */
9076 	if (new_dir != old_dir)
9077 		trans_num_items++;
9078 	if (new_inode) {
9079 		/*
9080 		 * 1 to update inode
9081 		 * 1 to remove inode ref
9082 		 * 1 to remove dir item
9083 		 * 1 to remove dir index
9084 		 * 1 to possibly add orphan item
9085 		 */
9086 		trans_num_items += 5;
9087 	}
9088 	trans = btrfs_start_transaction(root, trans_num_items);
9089 	if (IS_ERR(trans)) {
9090 		ret = PTR_ERR(trans);
9091 		goto out_notrans;
9092 	}
9093 
9094 	if (dest != root) {
9095 		ret = btrfs_record_root_in_trans(trans, dest);
9096 		if (ret)
9097 			goto out_fail;
9098 	}
9099 
9100 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9101 	if (ret)
9102 		goto out_fail;
9103 
9104 	BTRFS_I(old_inode)->dir_index = 0ULL;
9105 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9106 		/* force full log commit if subvolume involved. */
9107 		btrfs_set_log_full_commit(trans);
9108 	} else {
9109 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9110 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9111 					     index);
9112 		if (ret)
9113 			goto out_fail;
9114 	}
9115 
9116 	inode_inc_iversion(old_dir);
9117 	inode_inc_iversion(new_dir);
9118 	inode_inc_iversion(old_inode);
9119 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9120 
9121 	if (old_dentry->d_parent != new_dentry->d_parent)
9122 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9123 					BTRFS_I(old_inode), true);
9124 
9125 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9126 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9127 	} else {
9128 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9129 					   BTRFS_I(d_inode(old_dentry)),
9130 					   &old_fname.disk_name, &rename_ctx);
9131 		if (!ret)
9132 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9133 	}
9134 	if (ret) {
9135 		btrfs_abort_transaction(trans, ret);
9136 		goto out_fail;
9137 	}
9138 
9139 	if (new_inode) {
9140 		inode_inc_iversion(new_inode);
9141 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9142 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9143 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9144 			BUG_ON(new_inode->i_nlink == 0);
9145 		} else {
9146 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9147 						 BTRFS_I(d_inode(new_dentry)),
9148 						 &new_fname.disk_name);
9149 		}
9150 		if (!ret && new_inode->i_nlink == 0)
9151 			ret = btrfs_orphan_add(trans,
9152 					BTRFS_I(d_inode(new_dentry)));
9153 		if (ret) {
9154 			btrfs_abort_transaction(trans, ret);
9155 			goto out_fail;
9156 		}
9157 	}
9158 
9159 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9160 			     &new_fname.disk_name, 0, index);
9161 	if (ret) {
9162 		btrfs_abort_transaction(trans, ret);
9163 		goto out_fail;
9164 	}
9165 
9166 	if (old_inode->i_nlink == 1)
9167 		BTRFS_I(old_inode)->dir_index = index;
9168 
9169 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9170 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9171 				   rename_ctx.index, new_dentry->d_parent);
9172 
9173 	if (flags & RENAME_WHITEOUT) {
9174 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9175 		if (ret) {
9176 			btrfs_abort_transaction(trans, ret);
9177 			goto out_fail;
9178 		} else {
9179 			unlock_new_inode(whiteout_args.inode);
9180 			iput(whiteout_args.inode);
9181 			whiteout_args.inode = NULL;
9182 		}
9183 	}
9184 out_fail:
9185 	ret2 = btrfs_end_transaction(trans);
9186 	ret = ret ? ret : ret2;
9187 out_notrans:
9188 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9189 		up_read(&fs_info->subvol_sem);
9190 	if (flags & RENAME_WHITEOUT)
9191 		btrfs_new_inode_args_destroy(&whiteout_args);
9192 out_whiteout_inode:
9193 	if (flags & RENAME_WHITEOUT)
9194 		iput(whiteout_args.inode);
9195 out_fscrypt_names:
9196 	fscrypt_free_filename(&old_fname);
9197 	fscrypt_free_filename(&new_fname);
9198 	return ret;
9199 }
9200 
9201 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9202 			 struct dentry *old_dentry, struct inode *new_dir,
9203 			 struct dentry *new_dentry, unsigned int flags)
9204 {
9205 	int ret;
9206 
9207 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9208 		return -EINVAL;
9209 
9210 	if (flags & RENAME_EXCHANGE)
9211 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9212 					    new_dentry);
9213 	else
9214 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9215 				   new_dentry, flags);
9216 
9217 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9218 
9219 	return ret;
9220 }
9221 
9222 struct btrfs_delalloc_work {
9223 	struct inode *inode;
9224 	struct completion completion;
9225 	struct list_head list;
9226 	struct btrfs_work work;
9227 };
9228 
9229 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9230 {
9231 	struct btrfs_delalloc_work *delalloc_work;
9232 	struct inode *inode;
9233 
9234 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9235 				     work);
9236 	inode = delalloc_work->inode;
9237 	filemap_flush(inode->i_mapping);
9238 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9239 				&BTRFS_I(inode)->runtime_flags))
9240 		filemap_flush(inode->i_mapping);
9241 
9242 	iput(inode);
9243 	complete(&delalloc_work->completion);
9244 }
9245 
9246 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9247 {
9248 	struct btrfs_delalloc_work *work;
9249 
9250 	work = kmalloc(sizeof(*work), GFP_NOFS);
9251 	if (!work)
9252 		return NULL;
9253 
9254 	init_completion(&work->completion);
9255 	INIT_LIST_HEAD(&work->list);
9256 	work->inode = inode;
9257 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9258 
9259 	return work;
9260 }
9261 
9262 /*
9263  * some fairly slow code that needs optimization. This walks the list
9264  * of all the inodes with pending delalloc and forces them to disk.
9265  */
9266 static int start_delalloc_inodes(struct btrfs_root *root,
9267 				 struct writeback_control *wbc, bool snapshot,
9268 				 bool in_reclaim_context)
9269 {
9270 	struct btrfs_inode *binode;
9271 	struct inode *inode;
9272 	struct btrfs_delalloc_work *work, *next;
9273 	LIST_HEAD(works);
9274 	LIST_HEAD(splice);
9275 	int ret = 0;
9276 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9277 
9278 	mutex_lock(&root->delalloc_mutex);
9279 	spin_lock(&root->delalloc_lock);
9280 	list_splice_init(&root->delalloc_inodes, &splice);
9281 	while (!list_empty(&splice)) {
9282 		binode = list_entry(splice.next, struct btrfs_inode,
9283 				    delalloc_inodes);
9284 
9285 		list_move_tail(&binode->delalloc_inodes,
9286 			       &root->delalloc_inodes);
9287 
9288 		if (in_reclaim_context &&
9289 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9290 			continue;
9291 
9292 		inode = igrab(&binode->vfs_inode);
9293 		if (!inode) {
9294 			cond_resched_lock(&root->delalloc_lock);
9295 			continue;
9296 		}
9297 		spin_unlock(&root->delalloc_lock);
9298 
9299 		if (snapshot)
9300 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9301 				&binode->runtime_flags);
9302 		if (full_flush) {
9303 			work = btrfs_alloc_delalloc_work(inode);
9304 			if (!work) {
9305 				iput(inode);
9306 				ret = -ENOMEM;
9307 				goto out;
9308 			}
9309 			list_add_tail(&work->list, &works);
9310 			btrfs_queue_work(root->fs_info->flush_workers,
9311 					 &work->work);
9312 		} else {
9313 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9314 			btrfs_add_delayed_iput(BTRFS_I(inode));
9315 			if (ret || wbc->nr_to_write <= 0)
9316 				goto out;
9317 		}
9318 		cond_resched();
9319 		spin_lock(&root->delalloc_lock);
9320 	}
9321 	spin_unlock(&root->delalloc_lock);
9322 
9323 out:
9324 	list_for_each_entry_safe(work, next, &works, list) {
9325 		list_del_init(&work->list);
9326 		wait_for_completion(&work->completion);
9327 		kfree(work);
9328 	}
9329 
9330 	if (!list_empty(&splice)) {
9331 		spin_lock(&root->delalloc_lock);
9332 		list_splice_tail(&splice, &root->delalloc_inodes);
9333 		spin_unlock(&root->delalloc_lock);
9334 	}
9335 	mutex_unlock(&root->delalloc_mutex);
9336 	return ret;
9337 }
9338 
9339 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9340 {
9341 	struct writeback_control wbc = {
9342 		.nr_to_write = LONG_MAX,
9343 		.sync_mode = WB_SYNC_NONE,
9344 		.range_start = 0,
9345 		.range_end = LLONG_MAX,
9346 	};
9347 	struct btrfs_fs_info *fs_info = root->fs_info;
9348 
9349 	if (BTRFS_FS_ERROR(fs_info))
9350 		return -EROFS;
9351 
9352 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9353 }
9354 
9355 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9356 			       bool in_reclaim_context)
9357 {
9358 	struct writeback_control wbc = {
9359 		.nr_to_write = nr,
9360 		.sync_mode = WB_SYNC_NONE,
9361 		.range_start = 0,
9362 		.range_end = LLONG_MAX,
9363 	};
9364 	struct btrfs_root *root;
9365 	LIST_HEAD(splice);
9366 	int ret;
9367 
9368 	if (BTRFS_FS_ERROR(fs_info))
9369 		return -EROFS;
9370 
9371 	mutex_lock(&fs_info->delalloc_root_mutex);
9372 	spin_lock(&fs_info->delalloc_root_lock);
9373 	list_splice_init(&fs_info->delalloc_roots, &splice);
9374 	while (!list_empty(&splice)) {
9375 		/*
9376 		 * Reset nr_to_write here so we know that we're doing a full
9377 		 * flush.
9378 		 */
9379 		if (nr == LONG_MAX)
9380 			wbc.nr_to_write = LONG_MAX;
9381 
9382 		root = list_first_entry(&splice, struct btrfs_root,
9383 					delalloc_root);
9384 		root = btrfs_grab_root(root);
9385 		BUG_ON(!root);
9386 		list_move_tail(&root->delalloc_root,
9387 			       &fs_info->delalloc_roots);
9388 		spin_unlock(&fs_info->delalloc_root_lock);
9389 
9390 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9391 		btrfs_put_root(root);
9392 		if (ret < 0 || wbc.nr_to_write <= 0)
9393 			goto out;
9394 		spin_lock(&fs_info->delalloc_root_lock);
9395 	}
9396 	spin_unlock(&fs_info->delalloc_root_lock);
9397 
9398 	ret = 0;
9399 out:
9400 	if (!list_empty(&splice)) {
9401 		spin_lock(&fs_info->delalloc_root_lock);
9402 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9403 		spin_unlock(&fs_info->delalloc_root_lock);
9404 	}
9405 	mutex_unlock(&fs_info->delalloc_root_mutex);
9406 	return ret;
9407 }
9408 
9409 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9410 			 struct dentry *dentry, const char *symname)
9411 {
9412 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9413 	struct btrfs_trans_handle *trans;
9414 	struct btrfs_root *root = BTRFS_I(dir)->root;
9415 	struct btrfs_path *path;
9416 	struct btrfs_key key;
9417 	struct inode *inode;
9418 	struct btrfs_new_inode_args new_inode_args = {
9419 		.dir = dir,
9420 		.dentry = dentry,
9421 	};
9422 	unsigned int trans_num_items;
9423 	int err;
9424 	int name_len;
9425 	int datasize;
9426 	unsigned long ptr;
9427 	struct btrfs_file_extent_item *ei;
9428 	struct extent_buffer *leaf;
9429 
9430 	name_len = strlen(symname);
9431 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9432 		return -ENAMETOOLONG;
9433 
9434 	inode = new_inode(dir->i_sb);
9435 	if (!inode)
9436 		return -ENOMEM;
9437 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9438 	inode->i_op = &btrfs_symlink_inode_operations;
9439 	inode_nohighmem(inode);
9440 	inode->i_mapping->a_ops = &btrfs_aops;
9441 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9442 	inode_set_bytes(inode, name_len);
9443 
9444 	new_inode_args.inode = inode;
9445 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9446 	if (err)
9447 		goto out_inode;
9448 	/* 1 additional item for the inline extent */
9449 	trans_num_items++;
9450 
9451 	trans = btrfs_start_transaction(root, trans_num_items);
9452 	if (IS_ERR(trans)) {
9453 		err = PTR_ERR(trans);
9454 		goto out_new_inode_args;
9455 	}
9456 
9457 	err = btrfs_create_new_inode(trans, &new_inode_args);
9458 	if (err)
9459 		goto out;
9460 
9461 	path = btrfs_alloc_path();
9462 	if (!path) {
9463 		err = -ENOMEM;
9464 		btrfs_abort_transaction(trans, err);
9465 		discard_new_inode(inode);
9466 		inode = NULL;
9467 		goto out;
9468 	}
9469 	key.objectid = btrfs_ino(BTRFS_I(inode));
9470 	key.offset = 0;
9471 	key.type = BTRFS_EXTENT_DATA_KEY;
9472 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9473 	err = btrfs_insert_empty_item(trans, root, path, &key,
9474 				      datasize);
9475 	if (err) {
9476 		btrfs_abort_transaction(trans, err);
9477 		btrfs_free_path(path);
9478 		discard_new_inode(inode);
9479 		inode = NULL;
9480 		goto out;
9481 	}
9482 	leaf = path->nodes[0];
9483 	ei = btrfs_item_ptr(leaf, path->slots[0],
9484 			    struct btrfs_file_extent_item);
9485 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9486 	btrfs_set_file_extent_type(leaf, ei,
9487 				   BTRFS_FILE_EXTENT_INLINE);
9488 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9489 	btrfs_set_file_extent_compression(leaf, ei, 0);
9490 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9491 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9492 
9493 	ptr = btrfs_file_extent_inline_start(ei);
9494 	write_extent_buffer(leaf, symname, ptr, name_len);
9495 	btrfs_mark_buffer_dirty(trans, leaf);
9496 	btrfs_free_path(path);
9497 
9498 	d_instantiate_new(dentry, inode);
9499 	err = 0;
9500 out:
9501 	btrfs_end_transaction(trans);
9502 	btrfs_btree_balance_dirty(fs_info);
9503 out_new_inode_args:
9504 	btrfs_new_inode_args_destroy(&new_inode_args);
9505 out_inode:
9506 	if (err)
9507 		iput(inode);
9508 	return err;
9509 }
9510 
9511 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9512 				       struct btrfs_trans_handle *trans_in,
9513 				       struct btrfs_inode *inode,
9514 				       struct btrfs_key *ins,
9515 				       u64 file_offset)
9516 {
9517 	struct btrfs_file_extent_item stack_fi;
9518 	struct btrfs_replace_extent_info extent_info;
9519 	struct btrfs_trans_handle *trans = trans_in;
9520 	struct btrfs_path *path;
9521 	u64 start = ins->objectid;
9522 	u64 len = ins->offset;
9523 	u64 qgroup_released = 0;
9524 	int ret;
9525 
9526 	memset(&stack_fi, 0, sizeof(stack_fi));
9527 
9528 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9529 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9530 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9531 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9532 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9533 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9534 	/* Encryption and other encoding is reserved and all 0 */
9535 
9536 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9537 	if (ret < 0)
9538 		return ERR_PTR(ret);
9539 
9540 	if (trans) {
9541 		ret = insert_reserved_file_extent(trans, inode,
9542 						  file_offset, &stack_fi,
9543 						  true, qgroup_released);
9544 		if (ret)
9545 			goto free_qgroup;
9546 		return trans;
9547 	}
9548 
9549 	extent_info.disk_offset = start;
9550 	extent_info.disk_len = len;
9551 	extent_info.data_offset = 0;
9552 	extent_info.data_len = len;
9553 	extent_info.file_offset = file_offset;
9554 	extent_info.extent_buf = (char *)&stack_fi;
9555 	extent_info.is_new_extent = true;
9556 	extent_info.update_times = true;
9557 	extent_info.qgroup_reserved = qgroup_released;
9558 	extent_info.insertions = 0;
9559 
9560 	path = btrfs_alloc_path();
9561 	if (!path) {
9562 		ret = -ENOMEM;
9563 		goto free_qgroup;
9564 	}
9565 
9566 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9567 				     file_offset + len - 1, &extent_info,
9568 				     &trans);
9569 	btrfs_free_path(path);
9570 	if (ret)
9571 		goto free_qgroup;
9572 	return trans;
9573 
9574 free_qgroup:
9575 	/*
9576 	 * We have released qgroup data range at the beginning of the function,
9577 	 * and normally qgroup_released bytes will be freed when committing
9578 	 * transaction.
9579 	 * But if we error out early, we have to free what we have released
9580 	 * or we leak qgroup data reservation.
9581 	 */
9582 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9583 			inode->root->root_key.objectid, qgroup_released,
9584 			BTRFS_QGROUP_RSV_DATA);
9585 	return ERR_PTR(ret);
9586 }
9587 
9588 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9589 				       u64 start, u64 num_bytes, u64 min_size,
9590 				       loff_t actual_len, u64 *alloc_hint,
9591 				       struct btrfs_trans_handle *trans)
9592 {
9593 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9594 	struct extent_map *em;
9595 	struct btrfs_root *root = BTRFS_I(inode)->root;
9596 	struct btrfs_key ins;
9597 	u64 cur_offset = start;
9598 	u64 clear_offset = start;
9599 	u64 i_size;
9600 	u64 cur_bytes;
9601 	u64 last_alloc = (u64)-1;
9602 	int ret = 0;
9603 	bool own_trans = true;
9604 	u64 end = start + num_bytes - 1;
9605 
9606 	if (trans)
9607 		own_trans = false;
9608 	while (num_bytes > 0) {
9609 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9610 		cur_bytes = max(cur_bytes, min_size);
9611 		/*
9612 		 * If we are severely fragmented we could end up with really
9613 		 * small allocations, so if the allocator is returning small
9614 		 * chunks lets make its job easier by only searching for those
9615 		 * sized chunks.
9616 		 */
9617 		cur_bytes = min(cur_bytes, last_alloc);
9618 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9619 				min_size, 0, *alloc_hint, &ins, 1, 0);
9620 		if (ret)
9621 			break;
9622 
9623 		/*
9624 		 * We've reserved this space, and thus converted it from
9625 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9626 		 * from here on out we will only need to clear our reservation
9627 		 * for the remaining unreserved area, so advance our
9628 		 * clear_offset by our extent size.
9629 		 */
9630 		clear_offset += ins.offset;
9631 
9632 		last_alloc = ins.offset;
9633 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9634 						    &ins, cur_offset);
9635 		/*
9636 		 * Now that we inserted the prealloc extent we can finally
9637 		 * decrement the number of reservations in the block group.
9638 		 * If we did it before, we could race with relocation and have
9639 		 * relocation miss the reserved extent, making it fail later.
9640 		 */
9641 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9642 		if (IS_ERR(trans)) {
9643 			ret = PTR_ERR(trans);
9644 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9645 						   ins.offset, 0);
9646 			break;
9647 		}
9648 
9649 		em = alloc_extent_map();
9650 		if (!em) {
9651 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9652 					    cur_offset + ins.offset - 1, false);
9653 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9654 			goto next;
9655 		}
9656 
9657 		em->start = cur_offset;
9658 		em->orig_start = cur_offset;
9659 		em->len = ins.offset;
9660 		em->block_start = ins.objectid;
9661 		em->block_len = ins.offset;
9662 		em->orig_block_len = ins.offset;
9663 		em->ram_bytes = ins.offset;
9664 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9665 		em->generation = trans->transid;
9666 
9667 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9668 		free_extent_map(em);
9669 next:
9670 		num_bytes -= ins.offset;
9671 		cur_offset += ins.offset;
9672 		*alloc_hint = ins.objectid + ins.offset;
9673 
9674 		inode_inc_iversion(inode);
9675 		inode_set_ctime_current(inode);
9676 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9677 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9678 		    (actual_len > inode->i_size) &&
9679 		    (cur_offset > inode->i_size)) {
9680 			if (cur_offset > actual_len)
9681 				i_size = actual_len;
9682 			else
9683 				i_size = cur_offset;
9684 			i_size_write(inode, i_size);
9685 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9686 		}
9687 
9688 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9689 
9690 		if (ret) {
9691 			btrfs_abort_transaction(trans, ret);
9692 			if (own_trans)
9693 				btrfs_end_transaction(trans);
9694 			break;
9695 		}
9696 
9697 		if (own_trans) {
9698 			btrfs_end_transaction(trans);
9699 			trans = NULL;
9700 		}
9701 	}
9702 	if (clear_offset < end)
9703 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9704 			end - clear_offset + 1);
9705 	return ret;
9706 }
9707 
9708 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9709 			      u64 start, u64 num_bytes, u64 min_size,
9710 			      loff_t actual_len, u64 *alloc_hint)
9711 {
9712 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9713 					   min_size, actual_len, alloc_hint,
9714 					   NULL);
9715 }
9716 
9717 int btrfs_prealloc_file_range_trans(struct inode *inode,
9718 				    struct btrfs_trans_handle *trans, int mode,
9719 				    u64 start, u64 num_bytes, u64 min_size,
9720 				    loff_t actual_len, u64 *alloc_hint)
9721 {
9722 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9723 					   min_size, actual_len, alloc_hint, trans);
9724 }
9725 
9726 static int btrfs_permission(struct mnt_idmap *idmap,
9727 			    struct inode *inode, int mask)
9728 {
9729 	struct btrfs_root *root = BTRFS_I(inode)->root;
9730 	umode_t mode = inode->i_mode;
9731 
9732 	if (mask & MAY_WRITE &&
9733 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9734 		if (btrfs_root_readonly(root))
9735 			return -EROFS;
9736 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9737 			return -EACCES;
9738 	}
9739 	return generic_permission(idmap, inode, mask);
9740 }
9741 
9742 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9743 			 struct file *file, umode_t mode)
9744 {
9745 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9746 	struct btrfs_trans_handle *trans;
9747 	struct btrfs_root *root = BTRFS_I(dir)->root;
9748 	struct inode *inode;
9749 	struct btrfs_new_inode_args new_inode_args = {
9750 		.dir = dir,
9751 		.dentry = file->f_path.dentry,
9752 		.orphan = true,
9753 	};
9754 	unsigned int trans_num_items;
9755 	int ret;
9756 
9757 	inode = new_inode(dir->i_sb);
9758 	if (!inode)
9759 		return -ENOMEM;
9760 	inode_init_owner(idmap, inode, dir, mode);
9761 	inode->i_fop = &btrfs_file_operations;
9762 	inode->i_op = &btrfs_file_inode_operations;
9763 	inode->i_mapping->a_ops = &btrfs_aops;
9764 
9765 	new_inode_args.inode = inode;
9766 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9767 	if (ret)
9768 		goto out_inode;
9769 
9770 	trans = btrfs_start_transaction(root, trans_num_items);
9771 	if (IS_ERR(trans)) {
9772 		ret = PTR_ERR(trans);
9773 		goto out_new_inode_args;
9774 	}
9775 
9776 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9777 
9778 	/*
9779 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9780 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9781 	 * 0, through:
9782 	 *
9783 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9784 	 */
9785 	set_nlink(inode, 1);
9786 
9787 	if (!ret) {
9788 		d_tmpfile(file, inode);
9789 		unlock_new_inode(inode);
9790 		mark_inode_dirty(inode);
9791 	}
9792 
9793 	btrfs_end_transaction(trans);
9794 	btrfs_btree_balance_dirty(fs_info);
9795 out_new_inode_args:
9796 	btrfs_new_inode_args_destroy(&new_inode_args);
9797 out_inode:
9798 	if (ret)
9799 		iput(inode);
9800 	return finish_open_simple(file, ret);
9801 }
9802 
9803 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9804 {
9805 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9806 	unsigned long index = start >> PAGE_SHIFT;
9807 	unsigned long end_index = end >> PAGE_SHIFT;
9808 	struct page *page;
9809 	u32 len;
9810 
9811 	ASSERT(end + 1 - start <= U32_MAX);
9812 	len = end + 1 - start;
9813 	while (index <= end_index) {
9814 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9815 		ASSERT(page); /* Pages should be in the extent_io_tree */
9816 
9817 		btrfs_page_set_writeback(fs_info, page, start, len);
9818 		put_page(page);
9819 		index++;
9820 	}
9821 }
9822 
9823 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9824 					     int compress_type)
9825 {
9826 	switch (compress_type) {
9827 	case BTRFS_COMPRESS_NONE:
9828 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9829 	case BTRFS_COMPRESS_ZLIB:
9830 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9831 	case BTRFS_COMPRESS_LZO:
9832 		/*
9833 		 * The LZO format depends on the sector size. 64K is the maximum
9834 		 * sector size that we support.
9835 		 */
9836 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9837 			return -EINVAL;
9838 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9839 		       (fs_info->sectorsize_bits - 12);
9840 	case BTRFS_COMPRESS_ZSTD:
9841 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9842 	default:
9843 		return -EUCLEAN;
9844 	}
9845 }
9846 
9847 static ssize_t btrfs_encoded_read_inline(
9848 				struct kiocb *iocb,
9849 				struct iov_iter *iter, u64 start,
9850 				u64 lockend,
9851 				struct extent_state **cached_state,
9852 				u64 extent_start, size_t count,
9853 				struct btrfs_ioctl_encoded_io_args *encoded,
9854 				bool *unlocked)
9855 {
9856 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9857 	struct btrfs_root *root = inode->root;
9858 	struct btrfs_fs_info *fs_info = root->fs_info;
9859 	struct extent_io_tree *io_tree = &inode->io_tree;
9860 	struct btrfs_path *path;
9861 	struct extent_buffer *leaf;
9862 	struct btrfs_file_extent_item *item;
9863 	u64 ram_bytes;
9864 	unsigned long ptr;
9865 	void *tmp;
9866 	ssize_t ret;
9867 
9868 	path = btrfs_alloc_path();
9869 	if (!path) {
9870 		ret = -ENOMEM;
9871 		goto out;
9872 	}
9873 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9874 				       extent_start, 0);
9875 	if (ret) {
9876 		if (ret > 0) {
9877 			/* The extent item disappeared? */
9878 			ret = -EIO;
9879 		}
9880 		goto out;
9881 	}
9882 	leaf = path->nodes[0];
9883 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9884 
9885 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9886 	ptr = btrfs_file_extent_inline_start(item);
9887 
9888 	encoded->len = min_t(u64, extent_start + ram_bytes,
9889 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9890 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9891 				 btrfs_file_extent_compression(leaf, item));
9892 	if (ret < 0)
9893 		goto out;
9894 	encoded->compression = ret;
9895 	if (encoded->compression) {
9896 		size_t inline_size;
9897 
9898 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9899 								path->slots[0]);
9900 		if (inline_size > count) {
9901 			ret = -ENOBUFS;
9902 			goto out;
9903 		}
9904 		count = inline_size;
9905 		encoded->unencoded_len = ram_bytes;
9906 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9907 	} else {
9908 		count = min_t(u64, count, encoded->len);
9909 		encoded->len = count;
9910 		encoded->unencoded_len = count;
9911 		ptr += iocb->ki_pos - extent_start;
9912 	}
9913 
9914 	tmp = kmalloc(count, GFP_NOFS);
9915 	if (!tmp) {
9916 		ret = -ENOMEM;
9917 		goto out;
9918 	}
9919 	read_extent_buffer(leaf, tmp, ptr, count);
9920 	btrfs_release_path(path);
9921 	unlock_extent(io_tree, start, lockend, cached_state);
9922 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9923 	*unlocked = true;
9924 
9925 	ret = copy_to_iter(tmp, count, iter);
9926 	if (ret != count)
9927 		ret = -EFAULT;
9928 	kfree(tmp);
9929 out:
9930 	btrfs_free_path(path);
9931 	return ret;
9932 }
9933 
9934 struct btrfs_encoded_read_private {
9935 	wait_queue_head_t wait;
9936 	atomic_t pending;
9937 	blk_status_t status;
9938 };
9939 
9940 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9941 {
9942 	struct btrfs_encoded_read_private *priv = bbio->private;
9943 
9944 	if (bbio->bio.bi_status) {
9945 		/*
9946 		 * The memory barrier implied by the atomic_dec_return() here
9947 		 * pairs with the memory barrier implied by the
9948 		 * atomic_dec_return() or io_wait_event() in
9949 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9950 		 * write is observed before the load of status in
9951 		 * btrfs_encoded_read_regular_fill_pages().
9952 		 */
9953 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9954 	}
9955 	if (!atomic_dec_return(&priv->pending))
9956 		wake_up(&priv->wait);
9957 	bio_put(&bbio->bio);
9958 }
9959 
9960 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9961 					  u64 file_offset, u64 disk_bytenr,
9962 					  u64 disk_io_size, struct page **pages)
9963 {
9964 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9965 	struct btrfs_encoded_read_private priv = {
9966 		.pending = ATOMIC_INIT(1),
9967 	};
9968 	unsigned long i = 0;
9969 	struct btrfs_bio *bbio;
9970 
9971 	init_waitqueue_head(&priv.wait);
9972 
9973 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9974 			       btrfs_encoded_read_endio, &priv);
9975 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9976 	bbio->inode = inode;
9977 
9978 	do {
9979 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9980 
9981 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9982 			atomic_inc(&priv.pending);
9983 			btrfs_submit_bio(bbio, 0);
9984 
9985 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9986 					       btrfs_encoded_read_endio, &priv);
9987 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9988 			bbio->inode = inode;
9989 			continue;
9990 		}
9991 
9992 		i++;
9993 		disk_bytenr += bytes;
9994 		disk_io_size -= bytes;
9995 	} while (disk_io_size);
9996 
9997 	atomic_inc(&priv.pending);
9998 	btrfs_submit_bio(bbio, 0);
9999 
10000 	if (atomic_dec_return(&priv.pending))
10001 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10002 	/* See btrfs_encoded_read_endio() for ordering. */
10003 	return blk_status_to_errno(READ_ONCE(priv.status));
10004 }
10005 
10006 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10007 					  struct iov_iter *iter,
10008 					  u64 start, u64 lockend,
10009 					  struct extent_state **cached_state,
10010 					  u64 disk_bytenr, u64 disk_io_size,
10011 					  size_t count, bool compressed,
10012 					  bool *unlocked)
10013 {
10014 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10015 	struct extent_io_tree *io_tree = &inode->io_tree;
10016 	struct page **pages;
10017 	unsigned long nr_pages, i;
10018 	u64 cur;
10019 	size_t page_offset;
10020 	ssize_t ret;
10021 
10022 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10023 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10024 	if (!pages)
10025 		return -ENOMEM;
10026 	ret = btrfs_alloc_page_array(nr_pages, pages);
10027 	if (ret) {
10028 		ret = -ENOMEM;
10029 		goto out;
10030 		}
10031 
10032 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10033 						    disk_io_size, pages);
10034 	if (ret)
10035 		goto out;
10036 
10037 	unlock_extent(io_tree, start, lockend, cached_state);
10038 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10039 	*unlocked = true;
10040 
10041 	if (compressed) {
10042 		i = 0;
10043 		page_offset = 0;
10044 	} else {
10045 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10046 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10047 	}
10048 	cur = 0;
10049 	while (cur < count) {
10050 		size_t bytes = min_t(size_t, count - cur,
10051 				     PAGE_SIZE - page_offset);
10052 
10053 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10054 				      iter) != bytes) {
10055 			ret = -EFAULT;
10056 			goto out;
10057 		}
10058 		i++;
10059 		cur += bytes;
10060 		page_offset = 0;
10061 	}
10062 	ret = count;
10063 out:
10064 	for (i = 0; i < nr_pages; i++) {
10065 		if (pages[i])
10066 			__free_page(pages[i]);
10067 	}
10068 	kfree(pages);
10069 	return ret;
10070 }
10071 
10072 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10073 			   struct btrfs_ioctl_encoded_io_args *encoded)
10074 {
10075 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10076 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10077 	struct extent_io_tree *io_tree = &inode->io_tree;
10078 	ssize_t ret;
10079 	size_t count = iov_iter_count(iter);
10080 	u64 start, lockend, disk_bytenr, disk_io_size;
10081 	struct extent_state *cached_state = NULL;
10082 	struct extent_map *em;
10083 	bool unlocked = false;
10084 
10085 	file_accessed(iocb->ki_filp);
10086 
10087 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10088 
10089 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10090 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10091 		return 0;
10092 	}
10093 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10094 	/*
10095 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10096 	 * it's compressed we know that it won't be longer than this.
10097 	 */
10098 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10099 
10100 	for (;;) {
10101 		struct btrfs_ordered_extent *ordered;
10102 
10103 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10104 					       lockend - start + 1);
10105 		if (ret)
10106 			goto out_unlock_inode;
10107 		lock_extent(io_tree, start, lockend, &cached_state);
10108 		ordered = btrfs_lookup_ordered_range(inode, start,
10109 						     lockend - start + 1);
10110 		if (!ordered)
10111 			break;
10112 		btrfs_put_ordered_extent(ordered);
10113 		unlock_extent(io_tree, start, lockend, &cached_state);
10114 		cond_resched();
10115 	}
10116 
10117 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10118 	if (IS_ERR(em)) {
10119 		ret = PTR_ERR(em);
10120 		goto out_unlock_extent;
10121 	}
10122 
10123 	if (em->block_start == EXTENT_MAP_INLINE) {
10124 		u64 extent_start = em->start;
10125 
10126 		/*
10127 		 * For inline extents we get everything we need out of the
10128 		 * extent item.
10129 		 */
10130 		free_extent_map(em);
10131 		em = NULL;
10132 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10133 						&cached_state, extent_start,
10134 						count, encoded, &unlocked);
10135 		goto out;
10136 	}
10137 
10138 	/*
10139 	 * We only want to return up to EOF even if the extent extends beyond
10140 	 * that.
10141 	 */
10142 	encoded->len = min_t(u64, extent_map_end(em),
10143 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10144 	if (em->block_start == EXTENT_MAP_HOLE ||
10145 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10146 		disk_bytenr = EXTENT_MAP_HOLE;
10147 		count = min_t(u64, count, encoded->len);
10148 		encoded->len = count;
10149 		encoded->unencoded_len = count;
10150 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10151 		disk_bytenr = em->block_start;
10152 		/*
10153 		 * Bail if the buffer isn't large enough to return the whole
10154 		 * compressed extent.
10155 		 */
10156 		if (em->block_len > count) {
10157 			ret = -ENOBUFS;
10158 			goto out_em;
10159 		}
10160 		disk_io_size = em->block_len;
10161 		count = em->block_len;
10162 		encoded->unencoded_len = em->ram_bytes;
10163 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10164 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10165 							     em->compress_type);
10166 		if (ret < 0)
10167 			goto out_em;
10168 		encoded->compression = ret;
10169 	} else {
10170 		disk_bytenr = em->block_start + (start - em->start);
10171 		if (encoded->len > count)
10172 			encoded->len = count;
10173 		/*
10174 		 * Don't read beyond what we locked. This also limits the page
10175 		 * allocations that we'll do.
10176 		 */
10177 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10178 		count = start + disk_io_size - iocb->ki_pos;
10179 		encoded->len = count;
10180 		encoded->unencoded_len = count;
10181 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10182 	}
10183 	free_extent_map(em);
10184 	em = NULL;
10185 
10186 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10187 		unlock_extent(io_tree, start, lockend, &cached_state);
10188 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10189 		unlocked = true;
10190 		ret = iov_iter_zero(count, iter);
10191 		if (ret != count)
10192 			ret = -EFAULT;
10193 	} else {
10194 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10195 						 &cached_state, disk_bytenr,
10196 						 disk_io_size, count,
10197 						 encoded->compression,
10198 						 &unlocked);
10199 	}
10200 
10201 out:
10202 	if (ret >= 0)
10203 		iocb->ki_pos += encoded->len;
10204 out_em:
10205 	free_extent_map(em);
10206 out_unlock_extent:
10207 	if (!unlocked)
10208 		unlock_extent(io_tree, start, lockend, &cached_state);
10209 out_unlock_inode:
10210 	if (!unlocked)
10211 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10212 	return ret;
10213 }
10214 
10215 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10216 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10217 {
10218 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10219 	struct btrfs_root *root = inode->root;
10220 	struct btrfs_fs_info *fs_info = root->fs_info;
10221 	struct extent_io_tree *io_tree = &inode->io_tree;
10222 	struct extent_changeset *data_reserved = NULL;
10223 	struct extent_state *cached_state = NULL;
10224 	struct btrfs_ordered_extent *ordered;
10225 	int compression;
10226 	size_t orig_count;
10227 	u64 start, end;
10228 	u64 num_bytes, ram_bytes, disk_num_bytes;
10229 	unsigned long nr_pages, i;
10230 	struct page **pages;
10231 	struct btrfs_key ins;
10232 	bool extent_reserved = false;
10233 	struct extent_map *em;
10234 	ssize_t ret;
10235 
10236 	switch (encoded->compression) {
10237 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10238 		compression = BTRFS_COMPRESS_ZLIB;
10239 		break;
10240 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10241 		compression = BTRFS_COMPRESS_ZSTD;
10242 		break;
10243 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10244 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10245 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10246 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10247 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10248 		/* The sector size must match for LZO. */
10249 		if (encoded->compression -
10250 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10251 		    fs_info->sectorsize_bits)
10252 			return -EINVAL;
10253 		compression = BTRFS_COMPRESS_LZO;
10254 		break;
10255 	default:
10256 		return -EINVAL;
10257 	}
10258 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10259 		return -EINVAL;
10260 
10261 	/*
10262 	 * Compressed extents should always have checksums, so error out if we
10263 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10264 	 */
10265 	if (inode->flags & BTRFS_INODE_NODATASUM)
10266 		return -EINVAL;
10267 
10268 	orig_count = iov_iter_count(from);
10269 
10270 	/* The extent size must be sane. */
10271 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10272 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10273 		return -EINVAL;
10274 
10275 	/*
10276 	 * The compressed data must be smaller than the decompressed data.
10277 	 *
10278 	 * It's of course possible for data to compress to larger or the same
10279 	 * size, but the buffered I/O path falls back to no compression for such
10280 	 * data, and we don't want to break any assumptions by creating these
10281 	 * extents.
10282 	 *
10283 	 * Note that this is less strict than the current check we have that the
10284 	 * compressed data must be at least one sector smaller than the
10285 	 * decompressed data. We only want to enforce the weaker requirement
10286 	 * from old kernels that it is at least one byte smaller.
10287 	 */
10288 	if (orig_count >= encoded->unencoded_len)
10289 		return -EINVAL;
10290 
10291 	/* The extent must start on a sector boundary. */
10292 	start = iocb->ki_pos;
10293 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10294 		return -EINVAL;
10295 
10296 	/*
10297 	 * The extent must end on a sector boundary. However, we allow a write
10298 	 * which ends at or extends i_size to have an unaligned length; we round
10299 	 * up the extent size and set i_size to the unaligned end.
10300 	 */
10301 	if (start + encoded->len < inode->vfs_inode.i_size &&
10302 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10303 		return -EINVAL;
10304 
10305 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10306 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10307 		return -EINVAL;
10308 
10309 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10310 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10311 	end = start + num_bytes - 1;
10312 
10313 	/*
10314 	 * If the extent cannot be inline, the compressed data on disk must be
10315 	 * sector-aligned. For convenience, we extend it with zeroes if it
10316 	 * isn't.
10317 	 */
10318 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10319 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10320 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10321 	if (!pages)
10322 		return -ENOMEM;
10323 	for (i = 0; i < nr_pages; i++) {
10324 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10325 		char *kaddr;
10326 
10327 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10328 		if (!pages[i]) {
10329 			ret = -ENOMEM;
10330 			goto out_pages;
10331 		}
10332 		kaddr = kmap_local_page(pages[i]);
10333 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10334 			kunmap_local(kaddr);
10335 			ret = -EFAULT;
10336 			goto out_pages;
10337 		}
10338 		if (bytes < PAGE_SIZE)
10339 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10340 		kunmap_local(kaddr);
10341 	}
10342 
10343 	for (;;) {
10344 		struct btrfs_ordered_extent *ordered;
10345 
10346 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10347 		if (ret)
10348 			goto out_pages;
10349 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10350 						    start >> PAGE_SHIFT,
10351 						    end >> PAGE_SHIFT);
10352 		if (ret)
10353 			goto out_pages;
10354 		lock_extent(io_tree, start, end, &cached_state);
10355 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10356 		if (!ordered &&
10357 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10358 			break;
10359 		if (ordered)
10360 			btrfs_put_ordered_extent(ordered);
10361 		unlock_extent(io_tree, start, end, &cached_state);
10362 		cond_resched();
10363 	}
10364 
10365 	/*
10366 	 * We don't use the higher-level delalloc space functions because our
10367 	 * num_bytes and disk_num_bytes are different.
10368 	 */
10369 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10370 	if (ret)
10371 		goto out_unlock;
10372 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10373 	if (ret)
10374 		goto out_free_data_space;
10375 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10376 					      false);
10377 	if (ret)
10378 		goto out_qgroup_free_data;
10379 
10380 	/* Try an inline extent first. */
10381 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10382 	    encoded->unencoded_offset == 0) {
10383 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10384 					    compression, pages, true);
10385 		if (ret <= 0) {
10386 			if (ret == 0)
10387 				ret = orig_count;
10388 			goto out_delalloc_release;
10389 		}
10390 	}
10391 
10392 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10393 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10394 	if (ret)
10395 		goto out_delalloc_release;
10396 	extent_reserved = true;
10397 
10398 	em = create_io_em(inode, start, num_bytes,
10399 			  start - encoded->unencoded_offset, ins.objectid,
10400 			  ins.offset, ins.offset, ram_bytes, compression,
10401 			  BTRFS_ORDERED_COMPRESSED);
10402 	if (IS_ERR(em)) {
10403 		ret = PTR_ERR(em);
10404 		goto out_free_reserved;
10405 	}
10406 	free_extent_map(em);
10407 
10408 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10409 				       ins.objectid, ins.offset,
10410 				       encoded->unencoded_offset,
10411 				       (1 << BTRFS_ORDERED_ENCODED) |
10412 				       (1 << BTRFS_ORDERED_COMPRESSED),
10413 				       compression);
10414 	if (IS_ERR(ordered)) {
10415 		btrfs_drop_extent_map_range(inode, start, end, false);
10416 		ret = PTR_ERR(ordered);
10417 		goto out_free_reserved;
10418 	}
10419 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10420 
10421 	if (start + encoded->len > inode->vfs_inode.i_size)
10422 		i_size_write(&inode->vfs_inode, start + encoded->len);
10423 
10424 	unlock_extent(io_tree, start, end, &cached_state);
10425 
10426 	btrfs_delalloc_release_extents(inode, num_bytes);
10427 
10428 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10429 	ret = orig_count;
10430 	goto out;
10431 
10432 out_free_reserved:
10433 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10434 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10435 out_delalloc_release:
10436 	btrfs_delalloc_release_extents(inode, num_bytes);
10437 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10438 out_qgroup_free_data:
10439 	if (ret < 0)
10440 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10441 out_free_data_space:
10442 	/*
10443 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10444 	 * bytes_may_use.
10445 	 */
10446 	if (!extent_reserved)
10447 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10448 out_unlock:
10449 	unlock_extent(io_tree, start, end, &cached_state);
10450 out_pages:
10451 	for (i = 0; i < nr_pages; i++) {
10452 		if (pages[i])
10453 			__free_page(pages[i]);
10454 	}
10455 	kvfree(pages);
10456 out:
10457 	if (ret >= 0)
10458 		iocb->ki_pos += encoded->len;
10459 	return ret;
10460 }
10461 
10462 #ifdef CONFIG_SWAP
10463 /*
10464  * Add an entry indicating a block group or device which is pinned by a
10465  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10466  * negative errno on failure.
10467  */
10468 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10469 				  bool is_block_group)
10470 {
10471 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10472 	struct btrfs_swapfile_pin *sp, *entry;
10473 	struct rb_node **p;
10474 	struct rb_node *parent = NULL;
10475 
10476 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10477 	if (!sp)
10478 		return -ENOMEM;
10479 	sp->ptr = ptr;
10480 	sp->inode = inode;
10481 	sp->is_block_group = is_block_group;
10482 	sp->bg_extent_count = 1;
10483 
10484 	spin_lock(&fs_info->swapfile_pins_lock);
10485 	p = &fs_info->swapfile_pins.rb_node;
10486 	while (*p) {
10487 		parent = *p;
10488 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10489 		if (sp->ptr < entry->ptr ||
10490 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10491 			p = &(*p)->rb_left;
10492 		} else if (sp->ptr > entry->ptr ||
10493 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10494 			p = &(*p)->rb_right;
10495 		} else {
10496 			if (is_block_group)
10497 				entry->bg_extent_count++;
10498 			spin_unlock(&fs_info->swapfile_pins_lock);
10499 			kfree(sp);
10500 			return 1;
10501 		}
10502 	}
10503 	rb_link_node(&sp->node, parent, p);
10504 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10505 	spin_unlock(&fs_info->swapfile_pins_lock);
10506 	return 0;
10507 }
10508 
10509 /* Free all of the entries pinned by this swapfile. */
10510 static void btrfs_free_swapfile_pins(struct inode *inode)
10511 {
10512 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10513 	struct btrfs_swapfile_pin *sp;
10514 	struct rb_node *node, *next;
10515 
10516 	spin_lock(&fs_info->swapfile_pins_lock);
10517 	node = rb_first(&fs_info->swapfile_pins);
10518 	while (node) {
10519 		next = rb_next(node);
10520 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10521 		if (sp->inode == inode) {
10522 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10523 			if (sp->is_block_group) {
10524 				btrfs_dec_block_group_swap_extents(sp->ptr,
10525 							   sp->bg_extent_count);
10526 				btrfs_put_block_group(sp->ptr);
10527 			}
10528 			kfree(sp);
10529 		}
10530 		node = next;
10531 	}
10532 	spin_unlock(&fs_info->swapfile_pins_lock);
10533 }
10534 
10535 struct btrfs_swap_info {
10536 	u64 start;
10537 	u64 block_start;
10538 	u64 block_len;
10539 	u64 lowest_ppage;
10540 	u64 highest_ppage;
10541 	unsigned long nr_pages;
10542 	int nr_extents;
10543 };
10544 
10545 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10546 				 struct btrfs_swap_info *bsi)
10547 {
10548 	unsigned long nr_pages;
10549 	unsigned long max_pages;
10550 	u64 first_ppage, first_ppage_reported, next_ppage;
10551 	int ret;
10552 
10553 	/*
10554 	 * Our swapfile may have had its size extended after the swap header was
10555 	 * written. In that case activating the swapfile should not go beyond
10556 	 * the max size set in the swap header.
10557 	 */
10558 	if (bsi->nr_pages >= sis->max)
10559 		return 0;
10560 
10561 	max_pages = sis->max - bsi->nr_pages;
10562 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10563 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10564 
10565 	if (first_ppage >= next_ppage)
10566 		return 0;
10567 	nr_pages = next_ppage - first_ppage;
10568 	nr_pages = min(nr_pages, max_pages);
10569 
10570 	first_ppage_reported = first_ppage;
10571 	if (bsi->start == 0)
10572 		first_ppage_reported++;
10573 	if (bsi->lowest_ppage > first_ppage_reported)
10574 		bsi->lowest_ppage = first_ppage_reported;
10575 	if (bsi->highest_ppage < (next_ppage - 1))
10576 		bsi->highest_ppage = next_ppage - 1;
10577 
10578 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10579 	if (ret < 0)
10580 		return ret;
10581 	bsi->nr_extents += ret;
10582 	bsi->nr_pages += nr_pages;
10583 	return 0;
10584 }
10585 
10586 static void btrfs_swap_deactivate(struct file *file)
10587 {
10588 	struct inode *inode = file_inode(file);
10589 
10590 	btrfs_free_swapfile_pins(inode);
10591 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10592 }
10593 
10594 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10595 			       sector_t *span)
10596 {
10597 	struct inode *inode = file_inode(file);
10598 	struct btrfs_root *root = BTRFS_I(inode)->root;
10599 	struct btrfs_fs_info *fs_info = root->fs_info;
10600 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10601 	struct extent_state *cached_state = NULL;
10602 	struct extent_map *em = NULL;
10603 	struct btrfs_device *device = NULL;
10604 	struct btrfs_swap_info bsi = {
10605 		.lowest_ppage = (sector_t)-1ULL,
10606 	};
10607 	int ret = 0;
10608 	u64 isize;
10609 	u64 start;
10610 
10611 	/*
10612 	 * If the swap file was just created, make sure delalloc is done. If the
10613 	 * file changes again after this, the user is doing something stupid and
10614 	 * we don't really care.
10615 	 */
10616 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10617 	if (ret)
10618 		return ret;
10619 
10620 	/*
10621 	 * The inode is locked, so these flags won't change after we check them.
10622 	 */
10623 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10624 		btrfs_warn(fs_info, "swapfile must not be compressed");
10625 		return -EINVAL;
10626 	}
10627 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10628 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10629 		return -EINVAL;
10630 	}
10631 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10632 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10633 		return -EINVAL;
10634 	}
10635 
10636 	/*
10637 	 * Balance or device remove/replace/resize can move stuff around from
10638 	 * under us. The exclop protection makes sure they aren't running/won't
10639 	 * run concurrently while we are mapping the swap extents, and
10640 	 * fs_info->swapfile_pins prevents them from running while the swap
10641 	 * file is active and moving the extents. Note that this also prevents
10642 	 * a concurrent device add which isn't actually necessary, but it's not
10643 	 * really worth the trouble to allow it.
10644 	 */
10645 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10646 		btrfs_warn(fs_info,
10647 	   "cannot activate swapfile while exclusive operation is running");
10648 		return -EBUSY;
10649 	}
10650 
10651 	/*
10652 	 * Prevent snapshot creation while we are activating the swap file.
10653 	 * We do not want to race with snapshot creation. If snapshot creation
10654 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10655 	 * completes before the first write into the swap file after it is
10656 	 * activated, than that write would fallback to COW.
10657 	 */
10658 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10659 		btrfs_exclop_finish(fs_info);
10660 		btrfs_warn(fs_info,
10661 	   "cannot activate swapfile because snapshot creation is in progress");
10662 		return -EINVAL;
10663 	}
10664 	/*
10665 	 * Snapshots can create extents which require COW even if NODATACOW is
10666 	 * set. We use this counter to prevent snapshots. We must increment it
10667 	 * before walking the extents because we don't want a concurrent
10668 	 * snapshot to run after we've already checked the extents.
10669 	 *
10670 	 * It is possible that subvolume is marked for deletion but still not
10671 	 * removed yet. To prevent this race, we check the root status before
10672 	 * activating the swapfile.
10673 	 */
10674 	spin_lock(&root->root_item_lock);
10675 	if (btrfs_root_dead(root)) {
10676 		spin_unlock(&root->root_item_lock);
10677 
10678 		btrfs_exclop_finish(fs_info);
10679 		btrfs_warn(fs_info,
10680 		"cannot activate swapfile because subvolume %llu is being deleted",
10681 			root->root_key.objectid);
10682 		return -EPERM;
10683 	}
10684 	atomic_inc(&root->nr_swapfiles);
10685 	spin_unlock(&root->root_item_lock);
10686 
10687 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10688 
10689 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10690 	start = 0;
10691 	while (start < isize) {
10692 		u64 logical_block_start, physical_block_start;
10693 		struct btrfs_block_group *bg;
10694 		u64 len = isize - start;
10695 
10696 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10697 		if (IS_ERR(em)) {
10698 			ret = PTR_ERR(em);
10699 			goto out;
10700 		}
10701 
10702 		if (em->block_start == EXTENT_MAP_HOLE) {
10703 			btrfs_warn(fs_info, "swapfile must not have holes");
10704 			ret = -EINVAL;
10705 			goto out;
10706 		}
10707 		if (em->block_start == EXTENT_MAP_INLINE) {
10708 			/*
10709 			 * It's unlikely we'll ever actually find ourselves
10710 			 * here, as a file small enough to fit inline won't be
10711 			 * big enough to store more than the swap header, but in
10712 			 * case something changes in the future, let's catch it
10713 			 * here rather than later.
10714 			 */
10715 			btrfs_warn(fs_info, "swapfile must not be inline");
10716 			ret = -EINVAL;
10717 			goto out;
10718 		}
10719 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10720 			btrfs_warn(fs_info, "swapfile must not be compressed");
10721 			ret = -EINVAL;
10722 			goto out;
10723 		}
10724 
10725 		logical_block_start = em->block_start + (start - em->start);
10726 		len = min(len, em->len - (start - em->start));
10727 		free_extent_map(em);
10728 		em = NULL;
10729 
10730 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10731 		if (ret < 0) {
10732 			goto out;
10733 		} else if (ret) {
10734 			ret = 0;
10735 		} else {
10736 			btrfs_warn(fs_info,
10737 				   "swapfile must not be copy-on-write");
10738 			ret = -EINVAL;
10739 			goto out;
10740 		}
10741 
10742 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10743 		if (IS_ERR(em)) {
10744 			ret = PTR_ERR(em);
10745 			goto out;
10746 		}
10747 
10748 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10749 			btrfs_warn(fs_info,
10750 				   "swapfile must have single data profile");
10751 			ret = -EINVAL;
10752 			goto out;
10753 		}
10754 
10755 		if (device == NULL) {
10756 			device = em->map_lookup->stripes[0].dev;
10757 			ret = btrfs_add_swapfile_pin(inode, device, false);
10758 			if (ret == 1)
10759 				ret = 0;
10760 			else if (ret)
10761 				goto out;
10762 		} else if (device != em->map_lookup->stripes[0].dev) {
10763 			btrfs_warn(fs_info, "swapfile must be on one device");
10764 			ret = -EINVAL;
10765 			goto out;
10766 		}
10767 
10768 		physical_block_start = (em->map_lookup->stripes[0].physical +
10769 					(logical_block_start - em->start));
10770 		len = min(len, em->len - (logical_block_start - em->start));
10771 		free_extent_map(em);
10772 		em = NULL;
10773 
10774 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10775 		if (!bg) {
10776 			btrfs_warn(fs_info,
10777 			   "could not find block group containing swapfile");
10778 			ret = -EINVAL;
10779 			goto out;
10780 		}
10781 
10782 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10783 			btrfs_warn(fs_info,
10784 			   "block group for swapfile at %llu is read-only%s",
10785 			   bg->start,
10786 			   atomic_read(&fs_info->scrubs_running) ?
10787 				       " (scrub running)" : "");
10788 			btrfs_put_block_group(bg);
10789 			ret = -EINVAL;
10790 			goto out;
10791 		}
10792 
10793 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10794 		if (ret) {
10795 			btrfs_put_block_group(bg);
10796 			if (ret == 1)
10797 				ret = 0;
10798 			else
10799 				goto out;
10800 		}
10801 
10802 		if (bsi.block_len &&
10803 		    bsi.block_start + bsi.block_len == physical_block_start) {
10804 			bsi.block_len += len;
10805 		} else {
10806 			if (bsi.block_len) {
10807 				ret = btrfs_add_swap_extent(sis, &bsi);
10808 				if (ret)
10809 					goto out;
10810 			}
10811 			bsi.start = start;
10812 			bsi.block_start = physical_block_start;
10813 			bsi.block_len = len;
10814 		}
10815 
10816 		start += len;
10817 	}
10818 
10819 	if (bsi.block_len)
10820 		ret = btrfs_add_swap_extent(sis, &bsi);
10821 
10822 out:
10823 	if (!IS_ERR_OR_NULL(em))
10824 		free_extent_map(em);
10825 
10826 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10827 
10828 	if (ret)
10829 		btrfs_swap_deactivate(file);
10830 
10831 	btrfs_drew_write_unlock(&root->snapshot_lock);
10832 
10833 	btrfs_exclop_finish(fs_info);
10834 
10835 	if (ret)
10836 		return ret;
10837 
10838 	if (device)
10839 		sis->bdev = device->bdev;
10840 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10841 	sis->max = bsi.nr_pages;
10842 	sis->pages = bsi.nr_pages - 1;
10843 	sis->highest_bit = bsi.nr_pages - 1;
10844 	return bsi.nr_extents;
10845 }
10846 #else
10847 static void btrfs_swap_deactivate(struct file *file)
10848 {
10849 }
10850 
10851 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10852 			       sector_t *span)
10853 {
10854 	return -EOPNOTSUPP;
10855 }
10856 #endif
10857 
10858 /*
10859  * Update the number of bytes used in the VFS' inode. When we replace extents in
10860  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10861  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10862  * always get a correct value.
10863  */
10864 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10865 			      const u64 add_bytes,
10866 			      const u64 del_bytes)
10867 {
10868 	if (add_bytes == del_bytes)
10869 		return;
10870 
10871 	spin_lock(&inode->lock);
10872 	if (del_bytes > 0)
10873 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10874 	if (add_bytes > 0)
10875 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10876 	spin_unlock(&inode->lock);
10877 }
10878 
10879 /*
10880  * Verify that there are no ordered extents for a given file range.
10881  *
10882  * @inode:   The target inode.
10883  * @start:   Start offset of the file range, should be sector size aligned.
10884  * @end:     End offset (inclusive) of the file range, its value +1 should be
10885  *           sector size aligned.
10886  *
10887  * This should typically be used for cases where we locked an inode's VFS lock in
10888  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10889  * we have flushed all delalloc in the range, we have waited for all ordered
10890  * extents in the range to complete and finally we have locked the file range in
10891  * the inode's io_tree.
10892  */
10893 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10894 {
10895 	struct btrfs_root *root = inode->root;
10896 	struct btrfs_ordered_extent *ordered;
10897 
10898 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10899 		return;
10900 
10901 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10902 	if (ordered) {
10903 		btrfs_err(root->fs_info,
10904 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10905 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10906 			  ordered->file_offset,
10907 			  ordered->file_offset + ordered->num_bytes - 1);
10908 		btrfs_put_ordered_extent(ordered);
10909 	}
10910 
10911 	ASSERT(ordered == NULL);
10912 }
10913 
10914 static const struct inode_operations btrfs_dir_inode_operations = {
10915 	.getattr	= btrfs_getattr,
10916 	.lookup		= btrfs_lookup,
10917 	.create		= btrfs_create,
10918 	.unlink		= btrfs_unlink,
10919 	.link		= btrfs_link,
10920 	.mkdir		= btrfs_mkdir,
10921 	.rmdir		= btrfs_rmdir,
10922 	.rename		= btrfs_rename2,
10923 	.symlink	= btrfs_symlink,
10924 	.setattr	= btrfs_setattr,
10925 	.mknod		= btrfs_mknod,
10926 	.listxattr	= btrfs_listxattr,
10927 	.permission	= btrfs_permission,
10928 	.get_inode_acl	= btrfs_get_acl,
10929 	.set_acl	= btrfs_set_acl,
10930 	.update_time	= btrfs_update_time,
10931 	.tmpfile        = btrfs_tmpfile,
10932 	.fileattr_get	= btrfs_fileattr_get,
10933 	.fileattr_set	= btrfs_fileattr_set,
10934 };
10935 
10936 static const struct file_operations btrfs_dir_file_operations = {
10937 	.llseek		= btrfs_dir_llseek,
10938 	.read		= generic_read_dir,
10939 	.iterate_shared	= btrfs_real_readdir,
10940 	.open		= btrfs_opendir,
10941 	.unlocked_ioctl	= btrfs_ioctl,
10942 #ifdef CONFIG_COMPAT
10943 	.compat_ioctl	= btrfs_compat_ioctl,
10944 #endif
10945 	.release        = btrfs_release_file,
10946 	.fsync		= btrfs_sync_file,
10947 };
10948 
10949 /*
10950  * btrfs doesn't support the bmap operation because swapfiles
10951  * use bmap to make a mapping of extents in the file.  They assume
10952  * these extents won't change over the life of the file and they
10953  * use the bmap result to do IO directly to the drive.
10954  *
10955  * the btrfs bmap call would return logical addresses that aren't
10956  * suitable for IO and they also will change frequently as COW
10957  * operations happen.  So, swapfile + btrfs == corruption.
10958  *
10959  * For now we're avoiding this by dropping bmap.
10960  */
10961 static const struct address_space_operations btrfs_aops = {
10962 	.read_folio	= btrfs_read_folio,
10963 	.writepages	= btrfs_writepages,
10964 	.readahead	= btrfs_readahead,
10965 	.invalidate_folio = btrfs_invalidate_folio,
10966 	.release_folio	= btrfs_release_folio,
10967 	.migrate_folio	= btrfs_migrate_folio,
10968 	.dirty_folio	= filemap_dirty_folio,
10969 	.error_remove_page = generic_error_remove_page,
10970 	.swap_activate	= btrfs_swap_activate,
10971 	.swap_deactivate = btrfs_swap_deactivate,
10972 };
10973 
10974 static const struct inode_operations btrfs_file_inode_operations = {
10975 	.getattr	= btrfs_getattr,
10976 	.setattr	= btrfs_setattr,
10977 	.listxattr      = btrfs_listxattr,
10978 	.permission	= btrfs_permission,
10979 	.fiemap		= btrfs_fiemap,
10980 	.get_inode_acl	= btrfs_get_acl,
10981 	.set_acl	= btrfs_set_acl,
10982 	.update_time	= btrfs_update_time,
10983 	.fileattr_get	= btrfs_fileattr_get,
10984 	.fileattr_set	= btrfs_fileattr_set,
10985 };
10986 static const struct inode_operations btrfs_special_inode_operations = {
10987 	.getattr	= btrfs_getattr,
10988 	.setattr	= btrfs_setattr,
10989 	.permission	= btrfs_permission,
10990 	.listxattr	= btrfs_listxattr,
10991 	.get_inode_acl	= btrfs_get_acl,
10992 	.set_acl	= btrfs_set_acl,
10993 	.update_time	= btrfs_update_time,
10994 };
10995 static const struct inode_operations btrfs_symlink_inode_operations = {
10996 	.get_link	= page_get_link,
10997 	.getattr	= btrfs_getattr,
10998 	.setattr	= btrfs_setattr,
10999 	.permission	= btrfs_permission,
11000 	.listxattr	= btrfs_listxattr,
11001 	.update_time	= btrfs_update_time,
11002 };
11003 
11004 const struct dentry_operations btrfs_dentry_operations = {
11005 	.d_delete	= btrfs_dentry_delete,
11006 };
11007