1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include "compat.h" 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "print-tree.h" 50 #include "ordered-data.h" 51 #include "xattr.h" 52 #include "tree-log.h" 53 #include "volumes.h" 54 #include "compression.h" 55 #include "locking.h" 56 #include "free-space-cache.h" 57 #include "inode-map.h" 58 #include "backref.h" 59 60 struct btrfs_iget_args { 61 u64 ino; 62 struct btrfs_root *root; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_dir_ro_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct address_space_operations btrfs_symlink_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 static struct extent_io_ops btrfs_extent_io_ops; 74 75 static struct kmem_cache *btrfs_inode_cachep; 76 static struct kmem_cache *btrfs_delalloc_work_cachep; 77 struct kmem_cache *btrfs_trans_handle_cachep; 78 struct kmem_cache *btrfs_transaction_cachep; 79 struct kmem_cache *btrfs_path_cachep; 80 struct kmem_cache *btrfs_free_space_cachep; 81 82 #define S_SHIFT 12 83 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 84 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 85 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 86 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 87 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 88 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 89 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 90 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 91 }; 92 93 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 94 static int btrfs_truncate(struct inode *inode); 95 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 96 static noinline int cow_file_range(struct inode *inode, 97 struct page *locked_page, 98 u64 start, u64 end, int *page_started, 99 unsigned long *nr_written, int unlock); 100 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 101 u64 len, u64 orig_start, 102 u64 block_start, u64 block_len, 103 u64 orig_block_len, int type); 104 105 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 106 struct inode *inode, struct inode *dir, 107 const struct qstr *qstr) 108 { 109 int err; 110 111 err = btrfs_init_acl(trans, inode, dir); 112 if (!err) 113 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 114 return err; 115 } 116 117 /* 118 * this does all the hard work for inserting an inline extent into 119 * the btree. The caller should have done a btrfs_drop_extents so that 120 * no overlapping inline items exist in the btree 121 */ 122 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 123 struct btrfs_root *root, struct inode *inode, 124 u64 start, size_t size, size_t compressed_size, 125 int compress_type, 126 struct page **compressed_pages) 127 { 128 struct btrfs_key key; 129 struct btrfs_path *path; 130 struct extent_buffer *leaf; 131 struct page *page = NULL; 132 char *kaddr; 133 unsigned long ptr; 134 struct btrfs_file_extent_item *ei; 135 int err = 0; 136 int ret; 137 size_t cur_size = size; 138 size_t datasize; 139 unsigned long offset; 140 141 if (compressed_size && compressed_pages) 142 cur_size = compressed_size; 143 144 path = btrfs_alloc_path(); 145 if (!path) 146 return -ENOMEM; 147 148 path->leave_spinning = 1; 149 150 key.objectid = btrfs_ino(inode); 151 key.offset = start; 152 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 153 datasize = btrfs_file_extent_calc_inline_size(cur_size); 154 155 inode_add_bytes(inode, size); 156 ret = btrfs_insert_empty_item(trans, root, path, &key, 157 datasize); 158 if (ret) { 159 err = ret; 160 goto fail; 161 } 162 leaf = path->nodes[0]; 163 ei = btrfs_item_ptr(leaf, path->slots[0], 164 struct btrfs_file_extent_item); 165 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 166 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 167 btrfs_set_file_extent_encryption(leaf, ei, 0); 168 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 169 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 170 ptr = btrfs_file_extent_inline_start(ei); 171 172 if (compress_type != BTRFS_COMPRESS_NONE) { 173 struct page *cpage; 174 int i = 0; 175 while (compressed_size > 0) { 176 cpage = compressed_pages[i]; 177 cur_size = min_t(unsigned long, compressed_size, 178 PAGE_CACHE_SIZE); 179 180 kaddr = kmap_atomic(cpage); 181 write_extent_buffer(leaf, kaddr, ptr, cur_size); 182 kunmap_atomic(kaddr); 183 184 i++; 185 ptr += cur_size; 186 compressed_size -= cur_size; 187 } 188 btrfs_set_file_extent_compression(leaf, ei, 189 compress_type); 190 } else { 191 page = find_get_page(inode->i_mapping, 192 start >> PAGE_CACHE_SHIFT); 193 btrfs_set_file_extent_compression(leaf, ei, 0); 194 kaddr = kmap_atomic(page); 195 offset = start & (PAGE_CACHE_SIZE - 1); 196 write_extent_buffer(leaf, kaddr + offset, ptr, size); 197 kunmap_atomic(kaddr); 198 page_cache_release(page); 199 } 200 btrfs_mark_buffer_dirty(leaf); 201 btrfs_free_path(path); 202 203 /* 204 * we're an inline extent, so nobody can 205 * extend the file past i_size without locking 206 * a page we already have locked. 207 * 208 * We must do any isize and inode updates 209 * before we unlock the pages. Otherwise we 210 * could end up racing with unlink. 211 */ 212 BTRFS_I(inode)->disk_i_size = inode->i_size; 213 ret = btrfs_update_inode(trans, root, inode); 214 215 return ret; 216 fail: 217 btrfs_free_path(path); 218 return err; 219 } 220 221 222 /* 223 * conditionally insert an inline extent into the file. This 224 * does the checks required to make sure the data is small enough 225 * to fit as an inline extent. 226 */ 227 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 228 struct btrfs_root *root, 229 struct inode *inode, u64 start, u64 end, 230 size_t compressed_size, int compress_type, 231 struct page **compressed_pages) 232 { 233 u64 isize = i_size_read(inode); 234 u64 actual_end = min(end + 1, isize); 235 u64 inline_len = actual_end - start; 236 u64 aligned_end = ALIGN(end, root->sectorsize); 237 u64 data_len = inline_len; 238 int ret; 239 240 if (compressed_size) 241 data_len = compressed_size; 242 243 if (start > 0 || 244 actual_end >= PAGE_CACHE_SIZE || 245 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 246 (!compressed_size && 247 (actual_end & (root->sectorsize - 1)) == 0) || 248 end + 1 < isize || 249 data_len > root->fs_info->max_inline) { 250 return 1; 251 } 252 253 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 254 if (ret) 255 return ret; 256 257 if (isize > actual_end) 258 inline_len = min_t(u64, isize, actual_end); 259 ret = insert_inline_extent(trans, root, inode, start, 260 inline_len, compressed_size, 261 compress_type, compressed_pages); 262 if (ret && ret != -ENOSPC) { 263 btrfs_abort_transaction(trans, root, ret); 264 return ret; 265 } else if (ret == -ENOSPC) { 266 return 1; 267 } 268 269 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 270 btrfs_delalloc_release_metadata(inode, end + 1 - start); 271 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 272 return 0; 273 } 274 275 struct async_extent { 276 u64 start; 277 u64 ram_size; 278 u64 compressed_size; 279 struct page **pages; 280 unsigned long nr_pages; 281 int compress_type; 282 struct list_head list; 283 }; 284 285 struct async_cow { 286 struct inode *inode; 287 struct btrfs_root *root; 288 struct page *locked_page; 289 u64 start; 290 u64 end; 291 struct list_head extents; 292 struct btrfs_work work; 293 }; 294 295 static noinline int add_async_extent(struct async_cow *cow, 296 u64 start, u64 ram_size, 297 u64 compressed_size, 298 struct page **pages, 299 unsigned long nr_pages, 300 int compress_type) 301 { 302 struct async_extent *async_extent; 303 304 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 305 BUG_ON(!async_extent); /* -ENOMEM */ 306 async_extent->start = start; 307 async_extent->ram_size = ram_size; 308 async_extent->compressed_size = compressed_size; 309 async_extent->pages = pages; 310 async_extent->nr_pages = nr_pages; 311 async_extent->compress_type = compress_type; 312 list_add_tail(&async_extent->list, &cow->extents); 313 return 0; 314 } 315 316 /* 317 * we create compressed extents in two phases. The first 318 * phase compresses a range of pages that have already been 319 * locked (both pages and state bits are locked). 320 * 321 * This is done inside an ordered work queue, and the compression 322 * is spread across many cpus. The actual IO submission is step 323 * two, and the ordered work queue takes care of making sure that 324 * happens in the same order things were put onto the queue by 325 * writepages and friends. 326 * 327 * If this code finds it can't get good compression, it puts an 328 * entry onto the work queue to write the uncompressed bytes. This 329 * makes sure that both compressed inodes and uncompressed inodes 330 * are written in the same order that the flusher thread sent them 331 * down. 332 */ 333 static noinline int compress_file_range(struct inode *inode, 334 struct page *locked_page, 335 u64 start, u64 end, 336 struct async_cow *async_cow, 337 int *num_added) 338 { 339 struct btrfs_root *root = BTRFS_I(inode)->root; 340 struct btrfs_trans_handle *trans; 341 u64 num_bytes; 342 u64 blocksize = root->sectorsize; 343 u64 actual_end; 344 u64 isize = i_size_read(inode); 345 int ret = 0; 346 struct page **pages = NULL; 347 unsigned long nr_pages; 348 unsigned long nr_pages_ret = 0; 349 unsigned long total_compressed = 0; 350 unsigned long total_in = 0; 351 unsigned long max_compressed = 128 * 1024; 352 unsigned long max_uncompressed = 128 * 1024; 353 int i; 354 int will_compress; 355 int compress_type = root->fs_info->compress_type; 356 357 /* if this is a small write inside eof, kick off a defrag */ 358 if ((end - start + 1) < 16 * 1024 && 359 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 360 btrfs_add_inode_defrag(NULL, inode); 361 362 actual_end = min_t(u64, isize, end + 1); 363 again: 364 will_compress = 0; 365 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 366 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 367 368 /* 369 * we don't want to send crud past the end of i_size through 370 * compression, that's just a waste of CPU time. So, if the 371 * end of the file is before the start of our current 372 * requested range of bytes, we bail out to the uncompressed 373 * cleanup code that can deal with all of this. 374 * 375 * It isn't really the fastest way to fix things, but this is a 376 * very uncommon corner. 377 */ 378 if (actual_end <= start) 379 goto cleanup_and_bail_uncompressed; 380 381 total_compressed = actual_end - start; 382 383 /* we want to make sure that amount of ram required to uncompress 384 * an extent is reasonable, so we limit the total size in ram 385 * of a compressed extent to 128k. This is a crucial number 386 * because it also controls how easily we can spread reads across 387 * cpus for decompression. 388 * 389 * We also want to make sure the amount of IO required to do 390 * a random read is reasonably small, so we limit the size of 391 * a compressed extent to 128k. 392 */ 393 total_compressed = min(total_compressed, max_uncompressed); 394 num_bytes = ALIGN(end - start + 1, blocksize); 395 num_bytes = max(blocksize, num_bytes); 396 total_in = 0; 397 ret = 0; 398 399 /* 400 * we do compression for mount -o compress and when the 401 * inode has not been flagged as nocompress. This flag can 402 * change at any time if we discover bad compression ratios. 403 */ 404 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 405 (btrfs_test_opt(root, COMPRESS) || 406 (BTRFS_I(inode)->force_compress) || 407 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 408 WARN_ON(pages); 409 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 410 if (!pages) { 411 /* just bail out to the uncompressed code */ 412 goto cont; 413 } 414 415 if (BTRFS_I(inode)->force_compress) 416 compress_type = BTRFS_I(inode)->force_compress; 417 418 ret = btrfs_compress_pages(compress_type, 419 inode->i_mapping, start, 420 total_compressed, pages, 421 nr_pages, &nr_pages_ret, 422 &total_in, 423 &total_compressed, 424 max_compressed); 425 426 if (!ret) { 427 unsigned long offset = total_compressed & 428 (PAGE_CACHE_SIZE - 1); 429 struct page *page = pages[nr_pages_ret - 1]; 430 char *kaddr; 431 432 /* zero the tail end of the last page, we might be 433 * sending it down to disk 434 */ 435 if (offset) { 436 kaddr = kmap_atomic(page); 437 memset(kaddr + offset, 0, 438 PAGE_CACHE_SIZE - offset); 439 kunmap_atomic(kaddr); 440 } 441 will_compress = 1; 442 } 443 } 444 cont: 445 if (start == 0) { 446 trans = btrfs_join_transaction(root); 447 if (IS_ERR(trans)) { 448 ret = PTR_ERR(trans); 449 trans = NULL; 450 goto cleanup_and_out; 451 } 452 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 453 454 /* lets try to make an inline extent */ 455 if (ret || total_in < (actual_end - start)) { 456 /* we didn't compress the entire range, try 457 * to make an uncompressed inline extent. 458 */ 459 ret = cow_file_range_inline(trans, root, inode, 460 start, end, 0, 0, NULL); 461 } else { 462 /* try making a compressed inline extent */ 463 ret = cow_file_range_inline(trans, root, inode, 464 start, end, 465 total_compressed, 466 compress_type, pages); 467 } 468 if (ret <= 0) { 469 /* 470 * inline extent creation worked or returned error, 471 * we don't need to create any more async work items. 472 * Unlock and free up our temp pages. 473 */ 474 extent_clear_unlock_delalloc(inode, 475 &BTRFS_I(inode)->io_tree, 476 start, end, NULL, 477 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 478 EXTENT_CLEAR_DELALLOC | 479 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 480 481 btrfs_end_transaction(trans, root); 482 goto free_pages_out; 483 } 484 btrfs_end_transaction(trans, root); 485 } 486 487 if (will_compress) { 488 /* 489 * we aren't doing an inline extent round the compressed size 490 * up to a block size boundary so the allocator does sane 491 * things 492 */ 493 total_compressed = ALIGN(total_compressed, blocksize); 494 495 /* 496 * one last check to make sure the compression is really a 497 * win, compare the page count read with the blocks on disk 498 */ 499 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 500 if (total_compressed >= total_in) { 501 will_compress = 0; 502 } else { 503 num_bytes = total_in; 504 } 505 } 506 if (!will_compress && pages) { 507 /* 508 * the compression code ran but failed to make things smaller, 509 * free any pages it allocated and our page pointer array 510 */ 511 for (i = 0; i < nr_pages_ret; i++) { 512 WARN_ON(pages[i]->mapping); 513 page_cache_release(pages[i]); 514 } 515 kfree(pages); 516 pages = NULL; 517 total_compressed = 0; 518 nr_pages_ret = 0; 519 520 /* flag the file so we don't compress in the future */ 521 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 522 !(BTRFS_I(inode)->force_compress)) { 523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 524 } 525 } 526 if (will_compress) { 527 *num_added += 1; 528 529 /* the async work queues will take care of doing actual 530 * allocation on disk for these compressed pages, 531 * and will submit them to the elevator. 532 */ 533 add_async_extent(async_cow, start, num_bytes, 534 total_compressed, pages, nr_pages_ret, 535 compress_type); 536 537 if (start + num_bytes < end) { 538 start += num_bytes; 539 pages = NULL; 540 cond_resched(); 541 goto again; 542 } 543 } else { 544 cleanup_and_bail_uncompressed: 545 /* 546 * No compression, but we still need to write the pages in 547 * the file we've been given so far. redirty the locked 548 * page if it corresponds to our extent and set things up 549 * for the async work queue to run cow_file_range to do 550 * the normal delalloc dance 551 */ 552 if (page_offset(locked_page) >= start && 553 page_offset(locked_page) <= end) { 554 __set_page_dirty_nobuffers(locked_page); 555 /* unlocked later on in the async handlers */ 556 } 557 add_async_extent(async_cow, start, end - start + 1, 558 0, NULL, 0, BTRFS_COMPRESS_NONE); 559 *num_added += 1; 560 } 561 562 out: 563 return ret; 564 565 free_pages_out: 566 for (i = 0; i < nr_pages_ret; i++) { 567 WARN_ON(pages[i]->mapping); 568 page_cache_release(pages[i]); 569 } 570 kfree(pages); 571 572 goto out; 573 574 cleanup_and_out: 575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 576 start, end, NULL, 577 EXTENT_CLEAR_UNLOCK_PAGE | 578 EXTENT_CLEAR_DIRTY | 579 EXTENT_CLEAR_DELALLOC | 580 EXTENT_SET_WRITEBACK | 581 EXTENT_END_WRITEBACK); 582 if (!trans || IS_ERR(trans)) 583 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 584 else 585 btrfs_abort_transaction(trans, root, ret); 586 goto free_pages_out; 587 } 588 589 /* 590 * phase two of compressed writeback. This is the ordered portion 591 * of the code, which only gets called in the order the work was 592 * queued. We walk all the async extents created by compress_file_range 593 * and send them down to the disk. 594 */ 595 static noinline int submit_compressed_extents(struct inode *inode, 596 struct async_cow *async_cow) 597 { 598 struct async_extent *async_extent; 599 u64 alloc_hint = 0; 600 struct btrfs_trans_handle *trans; 601 struct btrfs_key ins; 602 struct extent_map *em; 603 struct btrfs_root *root = BTRFS_I(inode)->root; 604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 605 struct extent_io_tree *io_tree; 606 int ret = 0; 607 608 if (list_empty(&async_cow->extents)) 609 return 0; 610 611 again: 612 while (!list_empty(&async_cow->extents)) { 613 async_extent = list_entry(async_cow->extents.next, 614 struct async_extent, list); 615 list_del(&async_extent->list); 616 617 io_tree = &BTRFS_I(inode)->io_tree; 618 619 retry: 620 /* did the compression code fall back to uncompressed IO? */ 621 if (!async_extent->pages) { 622 int page_started = 0; 623 unsigned long nr_written = 0; 624 625 lock_extent(io_tree, async_extent->start, 626 async_extent->start + 627 async_extent->ram_size - 1); 628 629 /* allocate blocks */ 630 ret = cow_file_range(inode, async_cow->locked_page, 631 async_extent->start, 632 async_extent->start + 633 async_extent->ram_size - 1, 634 &page_started, &nr_written, 0); 635 636 /* JDM XXX */ 637 638 /* 639 * if page_started, cow_file_range inserted an 640 * inline extent and took care of all the unlocking 641 * and IO for us. Otherwise, we need to submit 642 * all those pages down to the drive. 643 */ 644 if (!page_started && !ret) 645 extent_write_locked_range(io_tree, 646 inode, async_extent->start, 647 async_extent->start + 648 async_extent->ram_size - 1, 649 btrfs_get_extent, 650 WB_SYNC_ALL); 651 else if (ret) 652 unlock_page(async_cow->locked_page); 653 kfree(async_extent); 654 cond_resched(); 655 continue; 656 } 657 658 lock_extent(io_tree, async_extent->start, 659 async_extent->start + async_extent->ram_size - 1); 660 661 trans = btrfs_join_transaction(root); 662 if (IS_ERR(trans)) { 663 ret = PTR_ERR(trans); 664 } else { 665 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 666 ret = btrfs_reserve_extent(trans, root, 667 async_extent->compressed_size, 668 async_extent->compressed_size, 669 0, alloc_hint, &ins, 1); 670 if (ret && ret != -ENOSPC) 671 btrfs_abort_transaction(trans, root, ret); 672 btrfs_end_transaction(trans, root); 673 } 674 675 if (ret) { 676 int i; 677 678 for (i = 0; i < async_extent->nr_pages; i++) { 679 WARN_ON(async_extent->pages[i]->mapping); 680 page_cache_release(async_extent->pages[i]); 681 } 682 kfree(async_extent->pages); 683 async_extent->nr_pages = 0; 684 async_extent->pages = NULL; 685 686 if (ret == -ENOSPC) 687 goto retry; 688 goto out_free; 689 } 690 691 /* 692 * here we're doing allocation and writeback of the 693 * compressed pages 694 */ 695 btrfs_drop_extent_cache(inode, async_extent->start, 696 async_extent->start + 697 async_extent->ram_size - 1, 0); 698 699 em = alloc_extent_map(); 700 if (!em) 701 goto out_free_reserve; 702 em->start = async_extent->start; 703 em->len = async_extent->ram_size; 704 em->orig_start = em->start; 705 em->mod_start = em->start; 706 em->mod_len = em->len; 707 708 em->block_start = ins.objectid; 709 em->block_len = ins.offset; 710 em->orig_block_len = ins.offset; 711 em->bdev = root->fs_info->fs_devices->latest_bdev; 712 em->compress_type = async_extent->compress_type; 713 set_bit(EXTENT_FLAG_PINNED, &em->flags); 714 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 715 em->generation = -1; 716 717 while (1) { 718 write_lock(&em_tree->lock); 719 ret = add_extent_mapping(em_tree, em); 720 if (!ret) 721 list_move(&em->list, 722 &em_tree->modified_extents); 723 write_unlock(&em_tree->lock); 724 if (ret != -EEXIST) { 725 free_extent_map(em); 726 break; 727 } 728 btrfs_drop_extent_cache(inode, async_extent->start, 729 async_extent->start + 730 async_extent->ram_size - 1, 0); 731 } 732 733 if (ret) 734 goto out_free_reserve; 735 736 ret = btrfs_add_ordered_extent_compress(inode, 737 async_extent->start, 738 ins.objectid, 739 async_extent->ram_size, 740 ins.offset, 741 BTRFS_ORDERED_COMPRESSED, 742 async_extent->compress_type); 743 if (ret) 744 goto out_free_reserve; 745 746 /* 747 * clear dirty, set writeback and unlock the pages. 748 */ 749 extent_clear_unlock_delalloc(inode, 750 &BTRFS_I(inode)->io_tree, 751 async_extent->start, 752 async_extent->start + 753 async_extent->ram_size - 1, 754 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 755 EXTENT_CLEAR_UNLOCK | 756 EXTENT_CLEAR_DELALLOC | 757 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 758 759 ret = btrfs_submit_compressed_write(inode, 760 async_extent->start, 761 async_extent->ram_size, 762 ins.objectid, 763 ins.offset, async_extent->pages, 764 async_extent->nr_pages); 765 alloc_hint = ins.objectid + ins.offset; 766 kfree(async_extent); 767 if (ret) 768 goto out; 769 cond_resched(); 770 } 771 ret = 0; 772 out: 773 return ret; 774 out_free_reserve: 775 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 776 out_free: 777 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 778 async_extent->start, 779 async_extent->start + 780 async_extent->ram_size - 1, 781 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 782 EXTENT_CLEAR_UNLOCK | 783 EXTENT_CLEAR_DELALLOC | 784 EXTENT_CLEAR_DIRTY | 785 EXTENT_SET_WRITEBACK | 786 EXTENT_END_WRITEBACK); 787 kfree(async_extent); 788 goto again; 789 } 790 791 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 792 u64 num_bytes) 793 { 794 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 795 struct extent_map *em; 796 u64 alloc_hint = 0; 797 798 read_lock(&em_tree->lock); 799 em = search_extent_mapping(em_tree, start, num_bytes); 800 if (em) { 801 /* 802 * if block start isn't an actual block number then find the 803 * first block in this inode and use that as a hint. If that 804 * block is also bogus then just don't worry about it. 805 */ 806 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 807 free_extent_map(em); 808 em = search_extent_mapping(em_tree, 0, 0); 809 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 810 alloc_hint = em->block_start; 811 if (em) 812 free_extent_map(em); 813 } else { 814 alloc_hint = em->block_start; 815 free_extent_map(em); 816 } 817 } 818 read_unlock(&em_tree->lock); 819 820 return alloc_hint; 821 } 822 823 /* 824 * when extent_io.c finds a delayed allocation range in the file, 825 * the call backs end up in this code. The basic idea is to 826 * allocate extents on disk for the range, and create ordered data structs 827 * in ram to track those extents. 828 * 829 * locked_page is the page that writepage had locked already. We use 830 * it to make sure we don't do extra locks or unlocks. 831 * 832 * *page_started is set to one if we unlock locked_page and do everything 833 * required to start IO on it. It may be clean and already done with 834 * IO when we return. 835 */ 836 static noinline int __cow_file_range(struct btrfs_trans_handle *trans, 837 struct inode *inode, 838 struct btrfs_root *root, 839 struct page *locked_page, 840 u64 start, u64 end, int *page_started, 841 unsigned long *nr_written, 842 int unlock) 843 { 844 u64 alloc_hint = 0; 845 u64 num_bytes; 846 unsigned long ram_size; 847 u64 disk_num_bytes; 848 u64 cur_alloc_size; 849 u64 blocksize = root->sectorsize; 850 struct btrfs_key ins; 851 struct extent_map *em; 852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 853 int ret = 0; 854 855 BUG_ON(btrfs_is_free_space_inode(inode)); 856 857 num_bytes = ALIGN(end - start + 1, blocksize); 858 num_bytes = max(blocksize, num_bytes); 859 disk_num_bytes = num_bytes; 860 861 /* if this is a small write inside eof, kick off defrag */ 862 if (num_bytes < 64 * 1024 && 863 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 864 btrfs_add_inode_defrag(trans, inode); 865 866 if (start == 0) { 867 /* lets try to make an inline extent */ 868 ret = cow_file_range_inline(trans, root, inode, 869 start, end, 0, 0, NULL); 870 if (ret == 0) { 871 extent_clear_unlock_delalloc(inode, 872 &BTRFS_I(inode)->io_tree, 873 start, end, NULL, 874 EXTENT_CLEAR_UNLOCK_PAGE | 875 EXTENT_CLEAR_UNLOCK | 876 EXTENT_CLEAR_DELALLOC | 877 EXTENT_CLEAR_DIRTY | 878 EXTENT_SET_WRITEBACK | 879 EXTENT_END_WRITEBACK); 880 881 *nr_written = *nr_written + 882 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 883 *page_started = 1; 884 goto out; 885 } else if (ret < 0) { 886 btrfs_abort_transaction(trans, root, ret); 887 goto out_unlock; 888 } 889 } 890 891 BUG_ON(disk_num_bytes > 892 btrfs_super_total_bytes(root->fs_info->super_copy)); 893 894 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 895 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 896 897 while (disk_num_bytes > 0) { 898 unsigned long op; 899 900 cur_alloc_size = disk_num_bytes; 901 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 902 root->sectorsize, 0, alloc_hint, 903 &ins, 1); 904 if (ret < 0) { 905 btrfs_abort_transaction(trans, root, ret); 906 goto out_unlock; 907 } 908 909 em = alloc_extent_map(); 910 BUG_ON(!em); /* -ENOMEM */ 911 em->start = start; 912 em->orig_start = em->start; 913 ram_size = ins.offset; 914 em->len = ins.offset; 915 em->mod_start = em->start; 916 em->mod_len = em->len; 917 918 em->block_start = ins.objectid; 919 em->block_len = ins.offset; 920 em->orig_block_len = ins.offset; 921 em->bdev = root->fs_info->fs_devices->latest_bdev; 922 set_bit(EXTENT_FLAG_PINNED, &em->flags); 923 em->generation = -1; 924 925 while (1) { 926 write_lock(&em_tree->lock); 927 ret = add_extent_mapping(em_tree, em); 928 if (!ret) 929 list_move(&em->list, 930 &em_tree->modified_extents); 931 write_unlock(&em_tree->lock); 932 if (ret != -EEXIST) { 933 free_extent_map(em); 934 break; 935 } 936 btrfs_drop_extent_cache(inode, start, 937 start + ram_size - 1, 0); 938 } 939 940 cur_alloc_size = ins.offset; 941 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 942 ram_size, cur_alloc_size, 0); 943 BUG_ON(ret); /* -ENOMEM */ 944 945 if (root->root_key.objectid == 946 BTRFS_DATA_RELOC_TREE_OBJECTID) { 947 ret = btrfs_reloc_clone_csums(inode, start, 948 cur_alloc_size); 949 if (ret) { 950 btrfs_abort_transaction(trans, root, ret); 951 goto out_unlock; 952 } 953 } 954 955 if (disk_num_bytes < cur_alloc_size) 956 break; 957 958 /* we're not doing compressed IO, don't unlock the first 959 * page (which the caller expects to stay locked), don't 960 * clear any dirty bits and don't set any writeback bits 961 * 962 * Do set the Private2 bit so we know this page was properly 963 * setup for writepage 964 */ 965 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 966 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 967 EXTENT_SET_PRIVATE2; 968 969 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 970 start, start + ram_size - 1, 971 locked_page, op); 972 disk_num_bytes -= cur_alloc_size; 973 num_bytes -= cur_alloc_size; 974 alloc_hint = ins.objectid + ins.offset; 975 start += cur_alloc_size; 976 } 977 out: 978 return ret; 979 980 out_unlock: 981 extent_clear_unlock_delalloc(inode, 982 &BTRFS_I(inode)->io_tree, 983 start, end, locked_page, 984 EXTENT_CLEAR_UNLOCK_PAGE | 985 EXTENT_CLEAR_UNLOCK | 986 EXTENT_CLEAR_DELALLOC | 987 EXTENT_CLEAR_DIRTY | 988 EXTENT_SET_WRITEBACK | 989 EXTENT_END_WRITEBACK); 990 991 goto out; 992 } 993 994 static noinline int cow_file_range(struct inode *inode, 995 struct page *locked_page, 996 u64 start, u64 end, int *page_started, 997 unsigned long *nr_written, 998 int unlock) 999 { 1000 struct btrfs_trans_handle *trans; 1001 struct btrfs_root *root = BTRFS_I(inode)->root; 1002 int ret; 1003 1004 trans = btrfs_join_transaction(root); 1005 if (IS_ERR(trans)) { 1006 extent_clear_unlock_delalloc(inode, 1007 &BTRFS_I(inode)->io_tree, 1008 start, end, locked_page, 1009 EXTENT_CLEAR_UNLOCK_PAGE | 1010 EXTENT_CLEAR_UNLOCK | 1011 EXTENT_CLEAR_DELALLOC | 1012 EXTENT_CLEAR_DIRTY | 1013 EXTENT_SET_WRITEBACK | 1014 EXTENT_END_WRITEBACK); 1015 return PTR_ERR(trans); 1016 } 1017 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1018 1019 ret = __cow_file_range(trans, inode, root, locked_page, start, end, 1020 page_started, nr_written, unlock); 1021 1022 btrfs_end_transaction(trans, root); 1023 1024 return ret; 1025 } 1026 1027 /* 1028 * work queue call back to started compression on a file and pages 1029 */ 1030 static noinline void async_cow_start(struct btrfs_work *work) 1031 { 1032 struct async_cow *async_cow; 1033 int num_added = 0; 1034 async_cow = container_of(work, struct async_cow, work); 1035 1036 compress_file_range(async_cow->inode, async_cow->locked_page, 1037 async_cow->start, async_cow->end, async_cow, 1038 &num_added); 1039 if (num_added == 0) { 1040 btrfs_add_delayed_iput(async_cow->inode); 1041 async_cow->inode = NULL; 1042 } 1043 } 1044 1045 /* 1046 * work queue call back to submit previously compressed pages 1047 */ 1048 static noinline void async_cow_submit(struct btrfs_work *work) 1049 { 1050 struct async_cow *async_cow; 1051 struct btrfs_root *root; 1052 unsigned long nr_pages; 1053 1054 async_cow = container_of(work, struct async_cow, work); 1055 1056 root = async_cow->root; 1057 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1058 PAGE_CACHE_SHIFT; 1059 1060 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1061 5 * 1024 * 1024 && 1062 waitqueue_active(&root->fs_info->async_submit_wait)) 1063 wake_up(&root->fs_info->async_submit_wait); 1064 1065 if (async_cow->inode) 1066 submit_compressed_extents(async_cow->inode, async_cow); 1067 } 1068 1069 static noinline void async_cow_free(struct btrfs_work *work) 1070 { 1071 struct async_cow *async_cow; 1072 async_cow = container_of(work, struct async_cow, work); 1073 if (async_cow->inode) 1074 btrfs_add_delayed_iput(async_cow->inode); 1075 kfree(async_cow); 1076 } 1077 1078 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1079 u64 start, u64 end, int *page_started, 1080 unsigned long *nr_written) 1081 { 1082 struct async_cow *async_cow; 1083 struct btrfs_root *root = BTRFS_I(inode)->root; 1084 unsigned long nr_pages; 1085 u64 cur_end; 1086 int limit = 10 * 1024 * 1024; 1087 1088 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1089 1, 0, NULL, GFP_NOFS); 1090 while (start < end) { 1091 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1092 BUG_ON(!async_cow); /* -ENOMEM */ 1093 async_cow->inode = igrab(inode); 1094 async_cow->root = root; 1095 async_cow->locked_page = locked_page; 1096 async_cow->start = start; 1097 1098 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1099 cur_end = end; 1100 else 1101 cur_end = min(end, start + 512 * 1024 - 1); 1102 1103 async_cow->end = cur_end; 1104 INIT_LIST_HEAD(&async_cow->extents); 1105 1106 async_cow->work.func = async_cow_start; 1107 async_cow->work.ordered_func = async_cow_submit; 1108 async_cow->work.ordered_free = async_cow_free; 1109 async_cow->work.flags = 0; 1110 1111 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1112 PAGE_CACHE_SHIFT; 1113 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1114 1115 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1116 &async_cow->work); 1117 1118 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1119 wait_event(root->fs_info->async_submit_wait, 1120 (atomic_read(&root->fs_info->async_delalloc_pages) < 1121 limit)); 1122 } 1123 1124 while (atomic_read(&root->fs_info->async_submit_draining) && 1125 atomic_read(&root->fs_info->async_delalloc_pages)) { 1126 wait_event(root->fs_info->async_submit_wait, 1127 (atomic_read(&root->fs_info->async_delalloc_pages) == 1128 0)); 1129 } 1130 1131 *nr_written += nr_pages; 1132 start = cur_end + 1; 1133 } 1134 *page_started = 1; 1135 return 0; 1136 } 1137 1138 static noinline int csum_exist_in_range(struct btrfs_root *root, 1139 u64 bytenr, u64 num_bytes) 1140 { 1141 int ret; 1142 struct btrfs_ordered_sum *sums; 1143 LIST_HEAD(list); 1144 1145 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1146 bytenr + num_bytes - 1, &list, 0); 1147 if (ret == 0 && list_empty(&list)) 1148 return 0; 1149 1150 while (!list_empty(&list)) { 1151 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1152 list_del(&sums->list); 1153 kfree(sums); 1154 } 1155 return 1; 1156 } 1157 1158 /* 1159 * when nowcow writeback call back. This checks for snapshots or COW copies 1160 * of the extents that exist in the file, and COWs the file as required. 1161 * 1162 * If no cow copies or snapshots exist, we write directly to the existing 1163 * blocks on disk 1164 */ 1165 static noinline int run_delalloc_nocow(struct inode *inode, 1166 struct page *locked_page, 1167 u64 start, u64 end, int *page_started, int force, 1168 unsigned long *nr_written) 1169 { 1170 struct btrfs_root *root = BTRFS_I(inode)->root; 1171 struct btrfs_trans_handle *trans; 1172 struct extent_buffer *leaf; 1173 struct btrfs_path *path; 1174 struct btrfs_file_extent_item *fi; 1175 struct btrfs_key found_key; 1176 u64 cow_start; 1177 u64 cur_offset; 1178 u64 extent_end; 1179 u64 extent_offset; 1180 u64 disk_bytenr; 1181 u64 num_bytes; 1182 u64 disk_num_bytes; 1183 int extent_type; 1184 int ret, err; 1185 int type; 1186 int nocow; 1187 int check_prev = 1; 1188 bool nolock; 1189 u64 ino = btrfs_ino(inode); 1190 1191 path = btrfs_alloc_path(); 1192 if (!path) { 1193 extent_clear_unlock_delalloc(inode, 1194 &BTRFS_I(inode)->io_tree, 1195 start, end, locked_page, 1196 EXTENT_CLEAR_UNLOCK_PAGE | 1197 EXTENT_CLEAR_UNLOCK | 1198 EXTENT_CLEAR_DELALLOC | 1199 EXTENT_CLEAR_DIRTY | 1200 EXTENT_SET_WRITEBACK | 1201 EXTENT_END_WRITEBACK); 1202 return -ENOMEM; 1203 } 1204 1205 nolock = btrfs_is_free_space_inode(inode); 1206 1207 if (nolock) 1208 trans = btrfs_join_transaction_nolock(root); 1209 else 1210 trans = btrfs_join_transaction(root); 1211 1212 if (IS_ERR(trans)) { 1213 extent_clear_unlock_delalloc(inode, 1214 &BTRFS_I(inode)->io_tree, 1215 start, end, locked_page, 1216 EXTENT_CLEAR_UNLOCK_PAGE | 1217 EXTENT_CLEAR_UNLOCK | 1218 EXTENT_CLEAR_DELALLOC | 1219 EXTENT_CLEAR_DIRTY | 1220 EXTENT_SET_WRITEBACK | 1221 EXTENT_END_WRITEBACK); 1222 btrfs_free_path(path); 1223 return PTR_ERR(trans); 1224 } 1225 1226 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1227 1228 cow_start = (u64)-1; 1229 cur_offset = start; 1230 while (1) { 1231 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1232 cur_offset, 0); 1233 if (ret < 0) { 1234 btrfs_abort_transaction(trans, root, ret); 1235 goto error; 1236 } 1237 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1238 leaf = path->nodes[0]; 1239 btrfs_item_key_to_cpu(leaf, &found_key, 1240 path->slots[0] - 1); 1241 if (found_key.objectid == ino && 1242 found_key.type == BTRFS_EXTENT_DATA_KEY) 1243 path->slots[0]--; 1244 } 1245 check_prev = 0; 1246 next_slot: 1247 leaf = path->nodes[0]; 1248 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1249 ret = btrfs_next_leaf(root, path); 1250 if (ret < 0) { 1251 btrfs_abort_transaction(trans, root, ret); 1252 goto error; 1253 } 1254 if (ret > 0) 1255 break; 1256 leaf = path->nodes[0]; 1257 } 1258 1259 nocow = 0; 1260 disk_bytenr = 0; 1261 num_bytes = 0; 1262 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1263 1264 if (found_key.objectid > ino || 1265 found_key.type > BTRFS_EXTENT_DATA_KEY || 1266 found_key.offset > end) 1267 break; 1268 1269 if (found_key.offset > cur_offset) { 1270 extent_end = found_key.offset; 1271 extent_type = 0; 1272 goto out_check; 1273 } 1274 1275 fi = btrfs_item_ptr(leaf, path->slots[0], 1276 struct btrfs_file_extent_item); 1277 extent_type = btrfs_file_extent_type(leaf, fi); 1278 1279 if (extent_type == BTRFS_FILE_EXTENT_REG || 1280 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1281 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1282 extent_offset = btrfs_file_extent_offset(leaf, fi); 1283 extent_end = found_key.offset + 1284 btrfs_file_extent_num_bytes(leaf, fi); 1285 disk_num_bytes = 1286 btrfs_file_extent_disk_num_bytes(leaf, fi); 1287 if (extent_end <= start) { 1288 path->slots[0]++; 1289 goto next_slot; 1290 } 1291 if (disk_bytenr == 0) 1292 goto out_check; 1293 if (btrfs_file_extent_compression(leaf, fi) || 1294 btrfs_file_extent_encryption(leaf, fi) || 1295 btrfs_file_extent_other_encoding(leaf, fi)) 1296 goto out_check; 1297 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1298 goto out_check; 1299 if (btrfs_extent_readonly(root, disk_bytenr)) 1300 goto out_check; 1301 if (btrfs_cross_ref_exist(trans, root, ino, 1302 found_key.offset - 1303 extent_offset, disk_bytenr)) 1304 goto out_check; 1305 disk_bytenr += extent_offset; 1306 disk_bytenr += cur_offset - found_key.offset; 1307 num_bytes = min(end + 1, extent_end) - cur_offset; 1308 /* 1309 * force cow if csum exists in the range. 1310 * this ensure that csum for a given extent are 1311 * either valid or do not exist. 1312 */ 1313 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1314 goto out_check; 1315 nocow = 1; 1316 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1317 extent_end = found_key.offset + 1318 btrfs_file_extent_inline_len(leaf, fi); 1319 extent_end = ALIGN(extent_end, root->sectorsize); 1320 } else { 1321 BUG_ON(1); 1322 } 1323 out_check: 1324 if (extent_end <= start) { 1325 path->slots[0]++; 1326 goto next_slot; 1327 } 1328 if (!nocow) { 1329 if (cow_start == (u64)-1) 1330 cow_start = cur_offset; 1331 cur_offset = extent_end; 1332 if (cur_offset > end) 1333 break; 1334 path->slots[0]++; 1335 goto next_slot; 1336 } 1337 1338 btrfs_release_path(path); 1339 if (cow_start != (u64)-1) { 1340 ret = __cow_file_range(trans, inode, root, locked_page, 1341 cow_start, found_key.offset - 1, 1342 page_started, nr_written, 1); 1343 if (ret) { 1344 btrfs_abort_transaction(trans, root, ret); 1345 goto error; 1346 } 1347 cow_start = (u64)-1; 1348 } 1349 1350 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1351 struct extent_map *em; 1352 struct extent_map_tree *em_tree; 1353 em_tree = &BTRFS_I(inode)->extent_tree; 1354 em = alloc_extent_map(); 1355 BUG_ON(!em); /* -ENOMEM */ 1356 em->start = cur_offset; 1357 em->orig_start = found_key.offset - extent_offset; 1358 em->len = num_bytes; 1359 em->block_len = num_bytes; 1360 em->block_start = disk_bytenr; 1361 em->orig_block_len = disk_num_bytes; 1362 em->bdev = root->fs_info->fs_devices->latest_bdev; 1363 em->mod_start = em->start; 1364 em->mod_len = em->len; 1365 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1366 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1367 em->generation = -1; 1368 while (1) { 1369 write_lock(&em_tree->lock); 1370 ret = add_extent_mapping(em_tree, em); 1371 if (!ret) 1372 list_move(&em->list, 1373 &em_tree->modified_extents); 1374 write_unlock(&em_tree->lock); 1375 if (ret != -EEXIST) { 1376 free_extent_map(em); 1377 break; 1378 } 1379 btrfs_drop_extent_cache(inode, em->start, 1380 em->start + em->len - 1, 0); 1381 } 1382 type = BTRFS_ORDERED_PREALLOC; 1383 } else { 1384 type = BTRFS_ORDERED_NOCOW; 1385 } 1386 1387 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1388 num_bytes, num_bytes, type); 1389 BUG_ON(ret); /* -ENOMEM */ 1390 1391 if (root->root_key.objectid == 1392 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1393 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1394 num_bytes); 1395 if (ret) { 1396 btrfs_abort_transaction(trans, root, ret); 1397 goto error; 1398 } 1399 } 1400 1401 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1402 cur_offset, cur_offset + num_bytes - 1, 1403 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1404 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1405 EXTENT_SET_PRIVATE2); 1406 cur_offset = extent_end; 1407 if (cur_offset > end) 1408 break; 1409 } 1410 btrfs_release_path(path); 1411 1412 if (cur_offset <= end && cow_start == (u64)-1) { 1413 cow_start = cur_offset; 1414 cur_offset = end; 1415 } 1416 1417 if (cow_start != (u64)-1) { 1418 ret = __cow_file_range(trans, inode, root, locked_page, 1419 cow_start, end, 1420 page_started, nr_written, 1); 1421 if (ret) { 1422 btrfs_abort_transaction(trans, root, ret); 1423 goto error; 1424 } 1425 } 1426 1427 error: 1428 err = btrfs_end_transaction(trans, root); 1429 if (!ret) 1430 ret = err; 1431 1432 if (ret && cur_offset < end) 1433 extent_clear_unlock_delalloc(inode, 1434 &BTRFS_I(inode)->io_tree, 1435 cur_offset, end, locked_page, 1436 EXTENT_CLEAR_UNLOCK_PAGE | 1437 EXTENT_CLEAR_UNLOCK | 1438 EXTENT_CLEAR_DELALLOC | 1439 EXTENT_CLEAR_DIRTY | 1440 EXTENT_SET_WRITEBACK | 1441 EXTENT_END_WRITEBACK); 1442 1443 btrfs_free_path(path); 1444 return ret; 1445 } 1446 1447 /* 1448 * extent_io.c call back to do delayed allocation processing 1449 */ 1450 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1451 u64 start, u64 end, int *page_started, 1452 unsigned long *nr_written) 1453 { 1454 int ret; 1455 struct btrfs_root *root = BTRFS_I(inode)->root; 1456 1457 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1458 ret = run_delalloc_nocow(inode, locked_page, start, end, 1459 page_started, 1, nr_written); 1460 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1461 ret = run_delalloc_nocow(inode, locked_page, start, end, 1462 page_started, 0, nr_written); 1463 } else if (!btrfs_test_opt(root, COMPRESS) && 1464 !(BTRFS_I(inode)->force_compress) && 1465 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1466 ret = cow_file_range(inode, locked_page, start, end, 1467 page_started, nr_written, 1); 1468 } else { 1469 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1470 &BTRFS_I(inode)->runtime_flags); 1471 ret = cow_file_range_async(inode, locked_page, start, end, 1472 page_started, nr_written); 1473 } 1474 return ret; 1475 } 1476 1477 static void btrfs_split_extent_hook(struct inode *inode, 1478 struct extent_state *orig, u64 split) 1479 { 1480 /* not delalloc, ignore it */ 1481 if (!(orig->state & EXTENT_DELALLOC)) 1482 return; 1483 1484 spin_lock(&BTRFS_I(inode)->lock); 1485 BTRFS_I(inode)->outstanding_extents++; 1486 spin_unlock(&BTRFS_I(inode)->lock); 1487 } 1488 1489 /* 1490 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1491 * extents so we can keep track of new extents that are just merged onto old 1492 * extents, such as when we are doing sequential writes, so we can properly 1493 * account for the metadata space we'll need. 1494 */ 1495 static void btrfs_merge_extent_hook(struct inode *inode, 1496 struct extent_state *new, 1497 struct extent_state *other) 1498 { 1499 /* not delalloc, ignore it */ 1500 if (!(other->state & EXTENT_DELALLOC)) 1501 return; 1502 1503 spin_lock(&BTRFS_I(inode)->lock); 1504 BTRFS_I(inode)->outstanding_extents--; 1505 spin_unlock(&BTRFS_I(inode)->lock); 1506 } 1507 1508 /* 1509 * extent_io.c set_bit_hook, used to track delayed allocation 1510 * bytes in this file, and to maintain the list of inodes that 1511 * have pending delalloc work to be done. 1512 */ 1513 static void btrfs_set_bit_hook(struct inode *inode, 1514 struct extent_state *state, int *bits) 1515 { 1516 1517 /* 1518 * set_bit and clear bit hooks normally require _irqsave/restore 1519 * but in this case, we are only testing for the DELALLOC 1520 * bit, which is only set or cleared with irqs on 1521 */ 1522 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1523 struct btrfs_root *root = BTRFS_I(inode)->root; 1524 u64 len = state->end + 1 - state->start; 1525 bool do_list = !btrfs_is_free_space_inode(inode); 1526 1527 if (*bits & EXTENT_FIRST_DELALLOC) { 1528 *bits &= ~EXTENT_FIRST_DELALLOC; 1529 } else { 1530 spin_lock(&BTRFS_I(inode)->lock); 1531 BTRFS_I(inode)->outstanding_extents++; 1532 spin_unlock(&BTRFS_I(inode)->lock); 1533 } 1534 1535 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1536 root->fs_info->delalloc_batch); 1537 spin_lock(&BTRFS_I(inode)->lock); 1538 BTRFS_I(inode)->delalloc_bytes += len; 1539 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1540 &BTRFS_I(inode)->runtime_flags)) { 1541 spin_lock(&root->fs_info->delalloc_lock); 1542 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1543 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1544 &root->fs_info->delalloc_inodes); 1545 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1546 &BTRFS_I(inode)->runtime_flags); 1547 } 1548 spin_unlock(&root->fs_info->delalloc_lock); 1549 } 1550 spin_unlock(&BTRFS_I(inode)->lock); 1551 } 1552 } 1553 1554 /* 1555 * extent_io.c clear_bit_hook, see set_bit_hook for why 1556 */ 1557 static void btrfs_clear_bit_hook(struct inode *inode, 1558 struct extent_state *state, int *bits) 1559 { 1560 /* 1561 * set_bit and clear bit hooks normally require _irqsave/restore 1562 * but in this case, we are only testing for the DELALLOC 1563 * bit, which is only set or cleared with irqs on 1564 */ 1565 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1566 struct btrfs_root *root = BTRFS_I(inode)->root; 1567 u64 len = state->end + 1 - state->start; 1568 bool do_list = !btrfs_is_free_space_inode(inode); 1569 1570 if (*bits & EXTENT_FIRST_DELALLOC) { 1571 *bits &= ~EXTENT_FIRST_DELALLOC; 1572 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1573 spin_lock(&BTRFS_I(inode)->lock); 1574 BTRFS_I(inode)->outstanding_extents--; 1575 spin_unlock(&BTRFS_I(inode)->lock); 1576 } 1577 1578 if (*bits & EXTENT_DO_ACCOUNTING) 1579 btrfs_delalloc_release_metadata(inode, len); 1580 1581 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1582 && do_list) 1583 btrfs_free_reserved_data_space(inode, len); 1584 1585 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1586 root->fs_info->delalloc_batch); 1587 spin_lock(&BTRFS_I(inode)->lock); 1588 BTRFS_I(inode)->delalloc_bytes -= len; 1589 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1590 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1591 &BTRFS_I(inode)->runtime_flags)) { 1592 spin_lock(&root->fs_info->delalloc_lock); 1593 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1594 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1595 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1596 &BTRFS_I(inode)->runtime_flags); 1597 } 1598 spin_unlock(&root->fs_info->delalloc_lock); 1599 } 1600 spin_unlock(&BTRFS_I(inode)->lock); 1601 } 1602 } 1603 1604 /* 1605 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1606 * we don't create bios that span stripes or chunks 1607 */ 1608 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1609 size_t size, struct bio *bio, 1610 unsigned long bio_flags) 1611 { 1612 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1613 u64 logical = (u64)bio->bi_sector << 9; 1614 u64 length = 0; 1615 u64 map_length; 1616 int ret; 1617 1618 if (bio_flags & EXTENT_BIO_COMPRESSED) 1619 return 0; 1620 1621 length = bio->bi_size; 1622 map_length = length; 1623 ret = btrfs_map_block(root->fs_info, rw, logical, 1624 &map_length, NULL, 0); 1625 /* Will always return 0 with map_multi == NULL */ 1626 BUG_ON(ret < 0); 1627 if (map_length < length + size) 1628 return 1; 1629 return 0; 1630 } 1631 1632 /* 1633 * in order to insert checksums into the metadata in large chunks, 1634 * we wait until bio submission time. All the pages in the bio are 1635 * checksummed and sums are attached onto the ordered extent record. 1636 * 1637 * At IO completion time the cums attached on the ordered extent record 1638 * are inserted into the btree 1639 */ 1640 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1641 struct bio *bio, int mirror_num, 1642 unsigned long bio_flags, 1643 u64 bio_offset) 1644 { 1645 struct btrfs_root *root = BTRFS_I(inode)->root; 1646 int ret = 0; 1647 1648 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1649 BUG_ON(ret); /* -ENOMEM */ 1650 return 0; 1651 } 1652 1653 /* 1654 * in order to insert checksums into the metadata in large chunks, 1655 * we wait until bio submission time. All the pages in the bio are 1656 * checksummed and sums are attached onto the ordered extent record. 1657 * 1658 * At IO completion time the cums attached on the ordered extent record 1659 * are inserted into the btree 1660 */ 1661 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1662 int mirror_num, unsigned long bio_flags, 1663 u64 bio_offset) 1664 { 1665 struct btrfs_root *root = BTRFS_I(inode)->root; 1666 int ret; 1667 1668 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1669 if (ret) 1670 bio_endio(bio, ret); 1671 return ret; 1672 } 1673 1674 /* 1675 * extent_io.c submission hook. This does the right thing for csum calculation 1676 * on write, or reading the csums from the tree before a read 1677 */ 1678 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1679 int mirror_num, unsigned long bio_flags, 1680 u64 bio_offset) 1681 { 1682 struct btrfs_root *root = BTRFS_I(inode)->root; 1683 int ret = 0; 1684 int skip_sum; 1685 int metadata = 0; 1686 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1687 1688 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1689 1690 if (btrfs_is_free_space_inode(inode)) 1691 metadata = 2; 1692 1693 if (!(rw & REQ_WRITE)) { 1694 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1695 if (ret) 1696 goto out; 1697 1698 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1699 ret = btrfs_submit_compressed_read(inode, bio, 1700 mirror_num, 1701 bio_flags); 1702 goto out; 1703 } else if (!skip_sum) { 1704 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1705 if (ret) 1706 goto out; 1707 } 1708 goto mapit; 1709 } else if (async && !skip_sum) { 1710 /* csum items have already been cloned */ 1711 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1712 goto mapit; 1713 /* we're doing a write, do the async checksumming */ 1714 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1715 inode, rw, bio, mirror_num, 1716 bio_flags, bio_offset, 1717 __btrfs_submit_bio_start, 1718 __btrfs_submit_bio_done); 1719 goto out; 1720 } else if (!skip_sum) { 1721 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1722 if (ret) 1723 goto out; 1724 } 1725 1726 mapit: 1727 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1728 1729 out: 1730 if (ret < 0) 1731 bio_endio(bio, ret); 1732 return ret; 1733 } 1734 1735 /* 1736 * given a list of ordered sums record them in the inode. This happens 1737 * at IO completion time based on sums calculated at bio submission time. 1738 */ 1739 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1740 struct inode *inode, u64 file_offset, 1741 struct list_head *list) 1742 { 1743 struct btrfs_ordered_sum *sum; 1744 1745 list_for_each_entry(sum, list, list) { 1746 btrfs_csum_file_blocks(trans, 1747 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1748 } 1749 return 0; 1750 } 1751 1752 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1753 struct extent_state **cached_state) 1754 { 1755 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1756 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1757 cached_state, GFP_NOFS); 1758 } 1759 1760 /* see btrfs_writepage_start_hook for details on why this is required */ 1761 struct btrfs_writepage_fixup { 1762 struct page *page; 1763 struct btrfs_work work; 1764 }; 1765 1766 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1767 { 1768 struct btrfs_writepage_fixup *fixup; 1769 struct btrfs_ordered_extent *ordered; 1770 struct extent_state *cached_state = NULL; 1771 struct page *page; 1772 struct inode *inode; 1773 u64 page_start; 1774 u64 page_end; 1775 int ret; 1776 1777 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1778 page = fixup->page; 1779 again: 1780 lock_page(page); 1781 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1782 ClearPageChecked(page); 1783 goto out_page; 1784 } 1785 1786 inode = page->mapping->host; 1787 page_start = page_offset(page); 1788 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1789 1790 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1791 &cached_state); 1792 1793 /* already ordered? We're done */ 1794 if (PagePrivate2(page)) 1795 goto out; 1796 1797 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1798 if (ordered) { 1799 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1800 page_end, &cached_state, GFP_NOFS); 1801 unlock_page(page); 1802 btrfs_start_ordered_extent(inode, ordered, 1); 1803 btrfs_put_ordered_extent(ordered); 1804 goto again; 1805 } 1806 1807 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1808 if (ret) { 1809 mapping_set_error(page->mapping, ret); 1810 end_extent_writepage(page, ret, page_start, page_end); 1811 ClearPageChecked(page); 1812 goto out; 1813 } 1814 1815 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1816 ClearPageChecked(page); 1817 set_page_dirty(page); 1818 out: 1819 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1820 &cached_state, GFP_NOFS); 1821 out_page: 1822 unlock_page(page); 1823 page_cache_release(page); 1824 kfree(fixup); 1825 } 1826 1827 /* 1828 * There are a few paths in the higher layers of the kernel that directly 1829 * set the page dirty bit without asking the filesystem if it is a 1830 * good idea. This causes problems because we want to make sure COW 1831 * properly happens and the data=ordered rules are followed. 1832 * 1833 * In our case any range that doesn't have the ORDERED bit set 1834 * hasn't been properly setup for IO. We kick off an async process 1835 * to fix it up. The async helper will wait for ordered extents, set 1836 * the delalloc bit and make it safe to write the page. 1837 */ 1838 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1839 { 1840 struct inode *inode = page->mapping->host; 1841 struct btrfs_writepage_fixup *fixup; 1842 struct btrfs_root *root = BTRFS_I(inode)->root; 1843 1844 /* this page is properly in the ordered list */ 1845 if (TestClearPagePrivate2(page)) 1846 return 0; 1847 1848 if (PageChecked(page)) 1849 return -EAGAIN; 1850 1851 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1852 if (!fixup) 1853 return -EAGAIN; 1854 1855 SetPageChecked(page); 1856 page_cache_get(page); 1857 fixup->work.func = btrfs_writepage_fixup_worker; 1858 fixup->page = page; 1859 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1860 return -EBUSY; 1861 } 1862 1863 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1864 struct inode *inode, u64 file_pos, 1865 u64 disk_bytenr, u64 disk_num_bytes, 1866 u64 num_bytes, u64 ram_bytes, 1867 u8 compression, u8 encryption, 1868 u16 other_encoding, int extent_type) 1869 { 1870 struct btrfs_root *root = BTRFS_I(inode)->root; 1871 struct btrfs_file_extent_item *fi; 1872 struct btrfs_path *path; 1873 struct extent_buffer *leaf; 1874 struct btrfs_key ins; 1875 int ret; 1876 1877 path = btrfs_alloc_path(); 1878 if (!path) 1879 return -ENOMEM; 1880 1881 path->leave_spinning = 1; 1882 1883 /* 1884 * we may be replacing one extent in the tree with another. 1885 * The new extent is pinned in the extent map, and we don't want 1886 * to drop it from the cache until it is completely in the btree. 1887 * 1888 * So, tell btrfs_drop_extents to leave this extent in the cache. 1889 * the caller is expected to unpin it and allow it to be merged 1890 * with the others. 1891 */ 1892 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1893 file_pos + num_bytes, 0); 1894 if (ret) 1895 goto out; 1896 1897 ins.objectid = btrfs_ino(inode); 1898 ins.offset = file_pos; 1899 ins.type = BTRFS_EXTENT_DATA_KEY; 1900 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1901 if (ret) 1902 goto out; 1903 leaf = path->nodes[0]; 1904 fi = btrfs_item_ptr(leaf, path->slots[0], 1905 struct btrfs_file_extent_item); 1906 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1907 btrfs_set_file_extent_type(leaf, fi, extent_type); 1908 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1909 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1910 btrfs_set_file_extent_offset(leaf, fi, 0); 1911 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1912 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1913 btrfs_set_file_extent_compression(leaf, fi, compression); 1914 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1915 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1916 1917 btrfs_mark_buffer_dirty(leaf); 1918 btrfs_release_path(path); 1919 1920 inode_add_bytes(inode, num_bytes); 1921 1922 ins.objectid = disk_bytenr; 1923 ins.offset = disk_num_bytes; 1924 ins.type = BTRFS_EXTENT_ITEM_KEY; 1925 ret = btrfs_alloc_reserved_file_extent(trans, root, 1926 root->root_key.objectid, 1927 btrfs_ino(inode), file_pos, &ins); 1928 out: 1929 btrfs_free_path(path); 1930 1931 return ret; 1932 } 1933 1934 /* snapshot-aware defrag */ 1935 struct sa_defrag_extent_backref { 1936 struct rb_node node; 1937 struct old_sa_defrag_extent *old; 1938 u64 root_id; 1939 u64 inum; 1940 u64 file_pos; 1941 u64 extent_offset; 1942 u64 num_bytes; 1943 u64 generation; 1944 }; 1945 1946 struct old_sa_defrag_extent { 1947 struct list_head list; 1948 struct new_sa_defrag_extent *new; 1949 1950 u64 extent_offset; 1951 u64 bytenr; 1952 u64 offset; 1953 u64 len; 1954 int count; 1955 }; 1956 1957 struct new_sa_defrag_extent { 1958 struct rb_root root; 1959 struct list_head head; 1960 struct btrfs_path *path; 1961 struct inode *inode; 1962 u64 file_pos; 1963 u64 len; 1964 u64 bytenr; 1965 u64 disk_len; 1966 u8 compress_type; 1967 }; 1968 1969 static int backref_comp(struct sa_defrag_extent_backref *b1, 1970 struct sa_defrag_extent_backref *b2) 1971 { 1972 if (b1->root_id < b2->root_id) 1973 return -1; 1974 else if (b1->root_id > b2->root_id) 1975 return 1; 1976 1977 if (b1->inum < b2->inum) 1978 return -1; 1979 else if (b1->inum > b2->inum) 1980 return 1; 1981 1982 if (b1->file_pos < b2->file_pos) 1983 return -1; 1984 else if (b1->file_pos > b2->file_pos) 1985 return 1; 1986 1987 /* 1988 * [------------------------------] ===> (a range of space) 1989 * |<--->| |<---->| =============> (fs/file tree A) 1990 * |<---------------------------->| ===> (fs/file tree B) 1991 * 1992 * A range of space can refer to two file extents in one tree while 1993 * refer to only one file extent in another tree. 1994 * 1995 * So we may process a disk offset more than one time(two extents in A) 1996 * and locate at the same extent(one extent in B), then insert two same 1997 * backrefs(both refer to the extent in B). 1998 */ 1999 return 0; 2000 } 2001 2002 static void backref_insert(struct rb_root *root, 2003 struct sa_defrag_extent_backref *backref) 2004 { 2005 struct rb_node **p = &root->rb_node; 2006 struct rb_node *parent = NULL; 2007 struct sa_defrag_extent_backref *entry; 2008 int ret; 2009 2010 while (*p) { 2011 parent = *p; 2012 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2013 2014 ret = backref_comp(backref, entry); 2015 if (ret < 0) 2016 p = &(*p)->rb_left; 2017 else 2018 p = &(*p)->rb_right; 2019 } 2020 2021 rb_link_node(&backref->node, parent, p); 2022 rb_insert_color(&backref->node, root); 2023 } 2024 2025 /* 2026 * Note the backref might has changed, and in this case we just return 0. 2027 */ 2028 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2029 void *ctx) 2030 { 2031 struct btrfs_file_extent_item *extent; 2032 struct btrfs_fs_info *fs_info; 2033 struct old_sa_defrag_extent *old = ctx; 2034 struct new_sa_defrag_extent *new = old->new; 2035 struct btrfs_path *path = new->path; 2036 struct btrfs_key key; 2037 struct btrfs_root *root; 2038 struct sa_defrag_extent_backref *backref; 2039 struct extent_buffer *leaf; 2040 struct inode *inode = new->inode; 2041 int slot; 2042 int ret; 2043 u64 extent_offset; 2044 u64 num_bytes; 2045 2046 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2047 inum == btrfs_ino(inode)) 2048 return 0; 2049 2050 key.objectid = root_id; 2051 key.type = BTRFS_ROOT_ITEM_KEY; 2052 key.offset = (u64)-1; 2053 2054 fs_info = BTRFS_I(inode)->root->fs_info; 2055 root = btrfs_read_fs_root_no_name(fs_info, &key); 2056 if (IS_ERR(root)) { 2057 if (PTR_ERR(root) == -ENOENT) 2058 return 0; 2059 WARN_ON(1); 2060 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2061 inum, offset, root_id); 2062 return PTR_ERR(root); 2063 } 2064 2065 key.objectid = inum; 2066 key.type = BTRFS_EXTENT_DATA_KEY; 2067 if (offset > (u64)-1 << 32) 2068 key.offset = 0; 2069 else 2070 key.offset = offset; 2071 2072 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2073 if (ret < 0) { 2074 WARN_ON(1); 2075 return ret; 2076 } 2077 2078 while (1) { 2079 cond_resched(); 2080 2081 leaf = path->nodes[0]; 2082 slot = path->slots[0]; 2083 2084 if (slot >= btrfs_header_nritems(leaf)) { 2085 ret = btrfs_next_leaf(root, path); 2086 if (ret < 0) { 2087 goto out; 2088 } else if (ret > 0) { 2089 ret = 0; 2090 goto out; 2091 } 2092 continue; 2093 } 2094 2095 path->slots[0]++; 2096 2097 btrfs_item_key_to_cpu(leaf, &key, slot); 2098 2099 if (key.objectid > inum) 2100 goto out; 2101 2102 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2103 continue; 2104 2105 extent = btrfs_item_ptr(leaf, slot, 2106 struct btrfs_file_extent_item); 2107 2108 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2109 continue; 2110 2111 extent_offset = btrfs_file_extent_offset(leaf, extent); 2112 if (key.offset - extent_offset != offset) 2113 continue; 2114 2115 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2116 if (extent_offset >= old->extent_offset + old->offset + 2117 old->len || extent_offset + num_bytes <= 2118 old->extent_offset + old->offset) 2119 continue; 2120 2121 break; 2122 } 2123 2124 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2125 if (!backref) { 2126 ret = -ENOENT; 2127 goto out; 2128 } 2129 2130 backref->root_id = root_id; 2131 backref->inum = inum; 2132 backref->file_pos = offset + extent_offset; 2133 backref->num_bytes = num_bytes; 2134 backref->extent_offset = extent_offset; 2135 backref->generation = btrfs_file_extent_generation(leaf, extent); 2136 backref->old = old; 2137 backref_insert(&new->root, backref); 2138 old->count++; 2139 out: 2140 btrfs_release_path(path); 2141 WARN_ON(ret); 2142 return ret; 2143 } 2144 2145 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2146 struct new_sa_defrag_extent *new) 2147 { 2148 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2149 struct old_sa_defrag_extent *old, *tmp; 2150 int ret; 2151 2152 new->path = path; 2153 2154 list_for_each_entry_safe(old, tmp, &new->head, list) { 2155 ret = iterate_inodes_from_logical(old->bytenr, fs_info, 2156 path, record_one_backref, 2157 old); 2158 BUG_ON(ret < 0 && ret != -ENOENT); 2159 2160 /* no backref to be processed for this extent */ 2161 if (!old->count) { 2162 list_del(&old->list); 2163 kfree(old); 2164 } 2165 } 2166 2167 if (list_empty(&new->head)) 2168 return false; 2169 2170 return true; 2171 } 2172 2173 static int relink_is_mergable(struct extent_buffer *leaf, 2174 struct btrfs_file_extent_item *fi, 2175 u64 disk_bytenr) 2176 { 2177 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr) 2178 return 0; 2179 2180 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2181 return 0; 2182 2183 if (btrfs_file_extent_compression(leaf, fi) || 2184 btrfs_file_extent_encryption(leaf, fi) || 2185 btrfs_file_extent_other_encoding(leaf, fi)) 2186 return 0; 2187 2188 return 1; 2189 } 2190 2191 /* 2192 * Note the backref might has changed, and in this case we just return 0. 2193 */ 2194 static noinline int relink_extent_backref(struct btrfs_path *path, 2195 struct sa_defrag_extent_backref *prev, 2196 struct sa_defrag_extent_backref *backref) 2197 { 2198 struct btrfs_file_extent_item *extent; 2199 struct btrfs_file_extent_item *item; 2200 struct btrfs_ordered_extent *ordered; 2201 struct btrfs_trans_handle *trans; 2202 struct btrfs_fs_info *fs_info; 2203 struct btrfs_root *root; 2204 struct btrfs_key key; 2205 struct extent_buffer *leaf; 2206 struct old_sa_defrag_extent *old = backref->old; 2207 struct new_sa_defrag_extent *new = old->new; 2208 struct inode *src_inode = new->inode; 2209 struct inode *inode; 2210 struct extent_state *cached = NULL; 2211 int ret = 0; 2212 u64 start; 2213 u64 len; 2214 u64 lock_start; 2215 u64 lock_end; 2216 bool merge = false; 2217 int index; 2218 2219 if (prev && prev->root_id == backref->root_id && 2220 prev->inum == backref->inum && 2221 prev->file_pos + prev->num_bytes == backref->file_pos) 2222 merge = true; 2223 2224 /* step 1: get root */ 2225 key.objectid = backref->root_id; 2226 key.type = BTRFS_ROOT_ITEM_KEY; 2227 key.offset = (u64)-1; 2228 2229 fs_info = BTRFS_I(src_inode)->root->fs_info; 2230 index = srcu_read_lock(&fs_info->subvol_srcu); 2231 2232 root = btrfs_read_fs_root_no_name(fs_info, &key); 2233 if (IS_ERR(root)) { 2234 srcu_read_unlock(&fs_info->subvol_srcu, index); 2235 if (PTR_ERR(root) == -ENOENT) 2236 return 0; 2237 return PTR_ERR(root); 2238 } 2239 if (btrfs_root_refs(&root->root_item) == 0) { 2240 srcu_read_unlock(&fs_info->subvol_srcu, index); 2241 /* parse ENOENT to 0 */ 2242 return 0; 2243 } 2244 2245 /* step 2: get inode */ 2246 key.objectid = backref->inum; 2247 key.type = BTRFS_INODE_ITEM_KEY; 2248 key.offset = 0; 2249 2250 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2251 if (IS_ERR(inode)) { 2252 srcu_read_unlock(&fs_info->subvol_srcu, index); 2253 return 0; 2254 } 2255 2256 srcu_read_unlock(&fs_info->subvol_srcu, index); 2257 2258 /* step 3: relink backref */ 2259 lock_start = backref->file_pos; 2260 lock_end = backref->file_pos + backref->num_bytes - 1; 2261 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2262 0, &cached); 2263 2264 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2265 if (ordered) { 2266 btrfs_put_ordered_extent(ordered); 2267 goto out_unlock; 2268 } 2269 2270 trans = btrfs_join_transaction(root); 2271 if (IS_ERR(trans)) { 2272 ret = PTR_ERR(trans); 2273 goto out_unlock; 2274 } 2275 2276 key.objectid = backref->inum; 2277 key.type = BTRFS_EXTENT_DATA_KEY; 2278 key.offset = backref->file_pos; 2279 2280 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2281 if (ret < 0) { 2282 goto out_free_path; 2283 } else if (ret > 0) { 2284 ret = 0; 2285 goto out_free_path; 2286 } 2287 2288 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2289 struct btrfs_file_extent_item); 2290 2291 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2292 backref->generation) 2293 goto out_free_path; 2294 2295 btrfs_release_path(path); 2296 2297 start = backref->file_pos; 2298 if (backref->extent_offset < old->extent_offset + old->offset) 2299 start += old->extent_offset + old->offset - 2300 backref->extent_offset; 2301 2302 len = min(backref->extent_offset + backref->num_bytes, 2303 old->extent_offset + old->offset + old->len); 2304 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2305 2306 ret = btrfs_drop_extents(trans, root, inode, start, 2307 start + len, 1); 2308 if (ret) 2309 goto out_free_path; 2310 again: 2311 key.objectid = btrfs_ino(inode); 2312 key.type = BTRFS_EXTENT_DATA_KEY; 2313 key.offset = start; 2314 2315 if (merge) { 2316 struct btrfs_file_extent_item *fi; 2317 u64 extent_len; 2318 struct btrfs_key found_key; 2319 2320 ret = btrfs_search_slot(trans, root, &key, path, 1, 1); 2321 if (ret < 0) 2322 goto out_free_path; 2323 2324 path->slots[0]--; 2325 leaf = path->nodes[0]; 2326 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2327 2328 fi = btrfs_item_ptr(leaf, path->slots[0], 2329 struct btrfs_file_extent_item); 2330 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2331 2332 if (relink_is_mergable(leaf, fi, new->bytenr) && 2333 extent_len + found_key.offset == start) { 2334 btrfs_set_file_extent_num_bytes(leaf, fi, 2335 extent_len + len); 2336 btrfs_mark_buffer_dirty(leaf); 2337 inode_add_bytes(inode, len); 2338 2339 ret = 1; 2340 goto out_free_path; 2341 } else { 2342 merge = false; 2343 btrfs_release_path(path); 2344 goto again; 2345 } 2346 } 2347 2348 ret = btrfs_insert_empty_item(trans, root, path, &key, 2349 sizeof(*extent)); 2350 if (ret) { 2351 btrfs_abort_transaction(trans, root, ret); 2352 goto out_free_path; 2353 } 2354 2355 leaf = path->nodes[0]; 2356 item = btrfs_item_ptr(leaf, path->slots[0], 2357 struct btrfs_file_extent_item); 2358 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2359 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2360 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2361 btrfs_set_file_extent_num_bytes(leaf, item, len); 2362 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2363 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2364 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2365 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2366 btrfs_set_file_extent_encryption(leaf, item, 0); 2367 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2368 2369 btrfs_mark_buffer_dirty(leaf); 2370 inode_add_bytes(inode, len); 2371 2372 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2373 new->disk_len, 0, 2374 backref->root_id, backref->inum, 2375 new->file_pos, 0); /* start - extent_offset */ 2376 if (ret) { 2377 btrfs_abort_transaction(trans, root, ret); 2378 goto out_free_path; 2379 } 2380 2381 ret = 1; 2382 out_free_path: 2383 btrfs_release_path(path); 2384 btrfs_end_transaction(trans, root); 2385 out_unlock: 2386 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2387 &cached, GFP_NOFS); 2388 iput(inode); 2389 return ret; 2390 } 2391 2392 static void relink_file_extents(struct new_sa_defrag_extent *new) 2393 { 2394 struct btrfs_path *path; 2395 struct old_sa_defrag_extent *old, *tmp; 2396 struct sa_defrag_extent_backref *backref; 2397 struct sa_defrag_extent_backref *prev = NULL; 2398 struct inode *inode; 2399 struct btrfs_root *root; 2400 struct rb_node *node; 2401 int ret; 2402 2403 inode = new->inode; 2404 root = BTRFS_I(inode)->root; 2405 2406 path = btrfs_alloc_path(); 2407 if (!path) 2408 return; 2409 2410 if (!record_extent_backrefs(path, new)) { 2411 btrfs_free_path(path); 2412 goto out; 2413 } 2414 btrfs_release_path(path); 2415 2416 while (1) { 2417 node = rb_first(&new->root); 2418 if (!node) 2419 break; 2420 rb_erase(node, &new->root); 2421 2422 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2423 2424 ret = relink_extent_backref(path, prev, backref); 2425 WARN_ON(ret < 0); 2426 2427 kfree(prev); 2428 2429 if (ret == 1) 2430 prev = backref; 2431 else 2432 prev = NULL; 2433 cond_resched(); 2434 } 2435 kfree(prev); 2436 2437 btrfs_free_path(path); 2438 2439 list_for_each_entry_safe(old, tmp, &new->head, list) { 2440 list_del(&old->list); 2441 kfree(old); 2442 } 2443 out: 2444 atomic_dec(&root->fs_info->defrag_running); 2445 wake_up(&root->fs_info->transaction_wait); 2446 2447 kfree(new); 2448 } 2449 2450 static struct new_sa_defrag_extent * 2451 record_old_file_extents(struct inode *inode, 2452 struct btrfs_ordered_extent *ordered) 2453 { 2454 struct btrfs_root *root = BTRFS_I(inode)->root; 2455 struct btrfs_path *path; 2456 struct btrfs_key key; 2457 struct old_sa_defrag_extent *old, *tmp; 2458 struct new_sa_defrag_extent *new; 2459 int ret; 2460 2461 new = kmalloc(sizeof(*new), GFP_NOFS); 2462 if (!new) 2463 return NULL; 2464 2465 new->inode = inode; 2466 new->file_pos = ordered->file_offset; 2467 new->len = ordered->len; 2468 new->bytenr = ordered->start; 2469 new->disk_len = ordered->disk_len; 2470 new->compress_type = ordered->compress_type; 2471 new->root = RB_ROOT; 2472 INIT_LIST_HEAD(&new->head); 2473 2474 path = btrfs_alloc_path(); 2475 if (!path) 2476 goto out_kfree; 2477 2478 key.objectid = btrfs_ino(inode); 2479 key.type = BTRFS_EXTENT_DATA_KEY; 2480 key.offset = new->file_pos; 2481 2482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2483 if (ret < 0) 2484 goto out_free_path; 2485 if (ret > 0 && path->slots[0] > 0) 2486 path->slots[0]--; 2487 2488 /* find out all the old extents for the file range */ 2489 while (1) { 2490 struct btrfs_file_extent_item *extent; 2491 struct extent_buffer *l; 2492 int slot; 2493 u64 num_bytes; 2494 u64 offset; 2495 u64 end; 2496 u64 disk_bytenr; 2497 u64 extent_offset; 2498 2499 l = path->nodes[0]; 2500 slot = path->slots[0]; 2501 2502 if (slot >= btrfs_header_nritems(l)) { 2503 ret = btrfs_next_leaf(root, path); 2504 if (ret < 0) 2505 goto out_free_list; 2506 else if (ret > 0) 2507 break; 2508 continue; 2509 } 2510 2511 btrfs_item_key_to_cpu(l, &key, slot); 2512 2513 if (key.objectid != btrfs_ino(inode)) 2514 break; 2515 if (key.type != BTRFS_EXTENT_DATA_KEY) 2516 break; 2517 if (key.offset >= new->file_pos + new->len) 2518 break; 2519 2520 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2521 2522 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2523 if (key.offset + num_bytes < new->file_pos) 2524 goto next; 2525 2526 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2527 if (!disk_bytenr) 2528 goto next; 2529 2530 extent_offset = btrfs_file_extent_offset(l, extent); 2531 2532 old = kmalloc(sizeof(*old), GFP_NOFS); 2533 if (!old) 2534 goto out_free_list; 2535 2536 offset = max(new->file_pos, key.offset); 2537 end = min(new->file_pos + new->len, key.offset + num_bytes); 2538 2539 old->bytenr = disk_bytenr; 2540 old->extent_offset = extent_offset; 2541 old->offset = offset - key.offset; 2542 old->len = end - offset; 2543 old->new = new; 2544 old->count = 0; 2545 list_add_tail(&old->list, &new->head); 2546 next: 2547 path->slots[0]++; 2548 cond_resched(); 2549 } 2550 2551 btrfs_free_path(path); 2552 atomic_inc(&root->fs_info->defrag_running); 2553 2554 return new; 2555 2556 out_free_list: 2557 list_for_each_entry_safe(old, tmp, &new->head, list) { 2558 list_del(&old->list); 2559 kfree(old); 2560 } 2561 out_free_path: 2562 btrfs_free_path(path); 2563 out_kfree: 2564 kfree(new); 2565 return NULL; 2566 } 2567 2568 /* 2569 * helper function for btrfs_finish_ordered_io, this 2570 * just reads in some of the csum leaves to prime them into ram 2571 * before we start the transaction. It limits the amount of btree 2572 * reads required while inside the transaction. 2573 */ 2574 /* as ordered data IO finishes, this gets called so we can finish 2575 * an ordered extent if the range of bytes in the file it covers are 2576 * fully written. 2577 */ 2578 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2579 { 2580 struct inode *inode = ordered_extent->inode; 2581 struct btrfs_root *root = BTRFS_I(inode)->root; 2582 struct btrfs_trans_handle *trans = NULL; 2583 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2584 struct extent_state *cached_state = NULL; 2585 struct new_sa_defrag_extent *new = NULL; 2586 int compress_type = 0; 2587 int ret; 2588 bool nolock; 2589 2590 nolock = btrfs_is_free_space_inode(inode); 2591 2592 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2593 ret = -EIO; 2594 goto out; 2595 } 2596 2597 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2598 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2599 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2600 if (nolock) 2601 trans = btrfs_join_transaction_nolock(root); 2602 else 2603 trans = btrfs_join_transaction(root); 2604 if (IS_ERR(trans)) { 2605 ret = PTR_ERR(trans); 2606 trans = NULL; 2607 goto out; 2608 } 2609 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2610 ret = btrfs_update_inode_fallback(trans, root, inode); 2611 if (ret) /* -ENOMEM or corruption */ 2612 btrfs_abort_transaction(trans, root, ret); 2613 goto out; 2614 } 2615 2616 lock_extent_bits(io_tree, ordered_extent->file_offset, 2617 ordered_extent->file_offset + ordered_extent->len - 1, 2618 0, &cached_state); 2619 2620 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2621 ordered_extent->file_offset + ordered_extent->len - 1, 2622 EXTENT_DEFRAG, 1, cached_state); 2623 if (ret) { 2624 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2625 if (last_snapshot >= BTRFS_I(inode)->generation) 2626 /* the inode is shared */ 2627 new = record_old_file_extents(inode, ordered_extent); 2628 2629 clear_extent_bit(io_tree, ordered_extent->file_offset, 2630 ordered_extent->file_offset + ordered_extent->len - 1, 2631 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2632 } 2633 2634 if (nolock) 2635 trans = btrfs_join_transaction_nolock(root); 2636 else 2637 trans = btrfs_join_transaction(root); 2638 if (IS_ERR(trans)) { 2639 ret = PTR_ERR(trans); 2640 trans = NULL; 2641 goto out_unlock; 2642 } 2643 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2644 2645 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2646 compress_type = ordered_extent->compress_type; 2647 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2648 BUG_ON(compress_type); 2649 ret = btrfs_mark_extent_written(trans, inode, 2650 ordered_extent->file_offset, 2651 ordered_extent->file_offset + 2652 ordered_extent->len); 2653 } else { 2654 BUG_ON(root == root->fs_info->tree_root); 2655 ret = insert_reserved_file_extent(trans, inode, 2656 ordered_extent->file_offset, 2657 ordered_extent->start, 2658 ordered_extent->disk_len, 2659 ordered_extent->len, 2660 ordered_extent->len, 2661 compress_type, 0, 0, 2662 BTRFS_FILE_EXTENT_REG); 2663 } 2664 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2665 ordered_extent->file_offset, ordered_extent->len, 2666 trans->transid); 2667 if (ret < 0) { 2668 btrfs_abort_transaction(trans, root, ret); 2669 goto out_unlock; 2670 } 2671 2672 add_pending_csums(trans, inode, ordered_extent->file_offset, 2673 &ordered_extent->list); 2674 2675 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2676 ret = btrfs_update_inode_fallback(trans, root, inode); 2677 if (ret) { /* -ENOMEM or corruption */ 2678 btrfs_abort_transaction(trans, root, ret); 2679 goto out_unlock; 2680 } 2681 ret = 0; 2682 out_unlock: 2683 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2684 ordered_extent->file_offset + 2685 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2686 out: 2687 if (root != root->fs_info->tree_root) 2688 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2689 if (trans) 2690 btrfs_end_transaction(trans, root); 2691 2692 if (ret) { 2693 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2694 ordered_extent->file_offset + 2695 ordered_extent->len - 1, NULL, GFP_NOFS); 2696 2697 /* 2698 * If the ordered extent had an IOERR or something else went 2699 * wrong we need to return the space for this ordered extent 2700 * back to the allocator. 2701 */ 2702 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2703 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2704 btrfs_free_reserved_extent(root, ordered_extent->start, 2705 ordered_extent->disk_len); 2706 } 2707 2708 2709 /* 2710 * This needs to be done to make sure anybody waiting knows we are done 2711 * updating everything for this ordered extent. 2712 */ 2713 btrfs_remove_ordered_extent(inode, ordered_extent); 2714 2715 /* for snapshot-aware defrag */ 2716 if (new) 2717 relink_file_extents(new); 2718 2719 /* once for us */ 2720 btrfs_put_ordered_extent(ordered_extent); 2721 /* once for the tree */ 2722 btrfs_put_ordered_extent(ordered_extent); 2723 2724 return ret; 2725 } 2726 2727 static void finish_ordered_fn(struct btrfs_work *work) 2728 { 2729 struct btrfs_ordered_extent *ordered_extent; 2730 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2731 btrfs_finish_ordered_io(ordered_extent); 2732 } 2733 2734 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2735 struct extent_state *state, int uptodate) 2736 { 2737 struct inode *inode = page->mapping->host; 2738 struct btrfs_root *root = BTRFS_I(inode)->root; 2739 struct btrfs_ordered_extent *ordered_extent = NULL; 2740 struct btrfs_workers *workers; 2741 2742 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2743 2744 ClearPagePrivate2(page); 2745 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2746 end - start + 1, uptodate)) 2747 return 0; 2748 2749 ordered_extent->work.func = finish_ordered_fn; 2750 ordered_extent->work.flags = 0; 2751 2752 if (btrfs_is_free_space_inode(inode)) 2753 workers = &root->fs_info->endio_freespace_worker; 2754 else 2755 workers = &root->fs_info->endio_write_workers; 2756 btrfs_queue_worker(workers, &ordered_extent->work); 2757 2758 return 0; 2759 } 2760 2761 /* 2762 * when reads are done, we need to check csums to verify the data is correct 2763 * if there's a match, we allow the bio to finish. If not, the code in 2764 * extent_io.c will try to find good copies for us. 2765 */ 2766 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2767 struct extent_state *state, int mirror) 2768 { 2769 size_t offset = start - page_offset(page); 2770 struct inode *inode = page->mapping->host; 2771 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2772 char *kaddr; 2773 u64 private = ~(u32)0; 2774 int ret; 2775 struct btrfs_root *root = BTRFS_I(inode)->root; 2776 u32 csum = ~(u32)0; 2777 2778 if (PageChecked(page)) { 2779 ClearPageChecked(page); 2780 goto good; 2781 } 2782 2783 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2784 goto good; 2785 2786 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2787 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2788 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2789 GFP_NOFS); 2790 return 0; 2791 } 2792 2793 if (state && state->start == start) { 2794 private = state->private; 2795 ret = 0; 2796 } else { 2797 ret = get_state_private(io_tree, start, &private); 2798 } 2799 kaddr = kmap_atomic(page); 2800 if (ret) 2801 goto zeroit; 2802 2803 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2804 btrfs_csum_final(csum, (char *)&csum); 2805 if (csum != private) 2806 goto zeroit; 2807 2808 kunmap_atomic(kaddr); 2809 good: 2810 return 0; 2811 2812 zeroit: 2813 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2814 "private %llu\n", 2815 (unsigned long long)btrfs_ino(page->mapping->host), 2816 (unsigned long long)start, csum, 2817 (unsigned long long)private); 2818 memset(kaddr + offset, 1, end - start + 1); 2819 flush_dcache_page(page); 2820 kunmap_atomic(kaddr); 2821 if (private == 0) 2822 return 0; 2823 return -EIO; 2824 } 2825 2826 struct delayed_iput { 2827 struct list_head list; 2828 struct inode *inode; 2829 }; 2830 2831 /* JDM: If this is fs-wide, why can't we add a pointer to 2832 * btrfs_inode instead and avoid the allocation? */ 2833 void btrfs_add_delayed_iput(struct inode *inode) 2834 { 2835 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2836 struct delayed_iput *delayed; 2837 2838 if (atomic_add_unless(&inode->i_count, -1, 1)) 2839 return; 2840 2841 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2842 delayed->inode = inode; 2843 2844 spin_lock(&fs_info->delayed_iput_lock); 2845 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2846 spin_unlock(&fs_info->delayed_iput_lock); 2847 } 2848 2849 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2850 { 2851 LIST_HEAD(list); 2852 struct btrfs_fs_info *fs_info = root->fs_info; 2853 struct delayed_iput *delayed; 2854 int empty; 2855 2856 spin_lock(&fs_info->delayed_iput_lock); 2857 empty = list_empty(&fs_info->delayed_iputs); 2858 spin_unlock(&fs_info->delayed_iput_lock); 2859 if (empty) 2860 return; 2861 2862 spin_lock(&fs_info->delayed_iput_lock); 2863 list_splice_init(&fs_info->delayed_iputs, &list); 2864 spin_unlock(&fs_info->delayed_iput_lock); 2865 2866 while (!list_empty(&list)) { 2867 delayed = list_entry(list.next, struct delayed_iput, list); 2868 list_del(&delayed->list); 2869 iput(delayed->inode); 2870 kfree(delayed); 2871 } 2872 } 2873 2874 /* 2875 * This is called in transaction commit time. If there are no orphan 2876 * files in the subvolume, it removes orphan item and frees block_rsv 2877 * structure. 2878 */ 2879 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2880 struct btrfs_root *root) 2881 { 2882 struct btrfs_block_rsv *block_rsv; 2883 int ret; 2884 2885 if (atomic_read(&root->orphan_inodes) || 2886 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2887 return; 2888 2889 spin_lock(&root->orphan_lock); 2890 if (atomic_read(&root->orphan_inodes)) { 2891 spin_unlock(&root->orphan_lock); 2892 return; 2893 } 2894 2895 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2896 spin_unlock(&root->orphan_lock); 2897 return; 2898 } 2899 2900 block_rsv = root->orphan_block_rsv; 2901 root->orphan_block_rsv = NULL; 2902 spin_unlock(&root->orphan_lock); 2903 2904 if (root->orphan_item_inserted && 2905 btrfs_root_refs(&root->root_item) > 0) { 2906 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2907 root->root_key.objectid); 2908 BUG_ON(ret); 2909 root->orphan_item_inserted = 0; 2910 } 2911 2912 if (block_rsv) { 2913 WARN_ON(block_rsv->size > 0); 2914 btrfs_free_block_rsv(root, block_rsv); 2915 } 2916 } 2917 2918 /* 2919 * This creates an orphan entry for the given inode in case something goes 2920 * wrong in the middle of an unlink/truncate. 2921 * 2922 * NOTE: caller of this function should reserve 5 units of metadata for 2923 * this function. 2924 */ 2925 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2926 { 2927 struct btrfs_root *root = BTRFS_I(inode)->root; 2928 struct btrfs_block_rsv *block_rsv = NULL; 2929 int reserve = 0; 2930 int insert = 0; 2931 int ret; 2932 2933 if (!root->orphan_block_rsv) { 2934 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2935 if (!block_rsv) 2936 return -ENOMEM; 2937 } 2938 2939 spin_lock(&root->orphan_lock); 2940 if (!root->orphan_block_rsv) { 2941 root->orphan_block_rsv = block_rsv; 2942 } else if (block_rsv) { 2943 btrfs_free_block_rsv(root, block_rsv); 2944 block_rsv = NULL; 2945 } 2946 2947 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2948 &BTRFS_I(inode)->runtime_flags)) { 2949 #if 0 2950 /* 2951 * For proper ENOSPC handling, we should do orphan 2952 * cleanup when mounting. But this introduces backward 2953 * compatibility issue. 2954 */ 2955 if (!xchg(&root->orphan_item_inserted, 1)) 2956 insert = 2; 2957 else 2958 insert = 1; 2959 #endif 2960 insert = 1; 2961 atomic_inc(&root->orphan_inodes); 2962 } 2963 2964 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2965 &BTRFS_I(inode)->runtime_flags)) 2966 reserve = 1; 2967 spin_unlock(&root->orphan_lock); 2968 2969 /* grab metadata reservation from transaction handle */ 2970 if (reserve) { 2971 ret = btrfs_orphan_reserve_metadata(trans, inode); 2972 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2973 } 2974 2975 /* insert an orphan item to track this unlinked/truncated file */ 2976 if (insert >= 1) { 2977 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2978 if (ret && ret != -EEXIST) { 2979 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2980 &BTRFS_I(inode)->runtime_flags); 2981 btrfs_abort_transaction(trans, root, ret); 2982 return ret; 2983 } 2984 ret = 0; 2985 } 2986 2987 /* insert an orphan item to track subvolume contains orphan files */ 2988 if (insert >= 2) { 2989 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2990 root->root_key.objectid); 2991 if (ret && ret != -EEXIST) { 2992 btrfs_abort_transaction(trans, root, ret); 2993 return ret; 2994 } 2995 } 2996 return 0; 2997 } 2998 2999 /* 3000 * We have done the truncate/delete so we can go ahead and remove the orphan 3001 * item for this particular inode. 3002 */ 3003 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 3004 { 3005 struct btrfs_root *root = BTRFS_I(inode)->root; 3006 int delete_item = 0; 3007 int release_rsv = 0; 3008 int ret = 0; 3009 3010 spin_lock(&root->orphan_lock); 3011 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3012 &BTRFS_I(inode)->runtime_flags)) 3013 delete_item = 1; 3014 3015 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3016 &BTRFS_I(inode)->runtime_flags)) 3017 release_rsv = 1; 3018 spin_unlock(&root->orphan_lock); 3019 3020 if (trans && delete_item) { 3021 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3022 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3023 } 3024 3025 if (release_rsv) { 3026 btrfs_orphan_release_metadata(inode); 3027 atomic_dec(&root->orphan_inodes); 3028 } 3029 3030 return 0; 3031 } 3032 3033 /* 3034 * this cleans up any orphans that may be left on the list from the last use 3035 * of this root. 3036 */ 3037 int btrfs_orphan_cleanup(struct btrfs_root *root) 3038 { 3039 struct btrfs_path *path; 3040 struct extent_buffer *leaf; 3041 struct btrfs_key key, found_key; 3042 struct btrfs_trans_handle *trans; 3043 struct inode *inode; 3044 u64 last_objectid = 0; 3045 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3046 3047 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3048 return 0; 3049 3050 path = btrfs_alloc_path(); 3051 if (!path) { 3052 ret = -ENOMEM; 3053 goto out; 3054 } 3055 path->reada = -1; 3056 3057 key.objectid = BTRFS_ORPHAN_OBJECTID; 3058 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3059 key.offset = (u64)-1; 3060 3061 while (1) { 3062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3063 if (ret < 0) 3064 goto out; 3065 3066 /* 3067 * if ret == 0 means we found what we were searching for, which 3068 * is weird, but possible, so only screw with path if we didn't 3069 * find the key and see if we have stuff that matches 3070 */ 3071 if (ret > 0) { 3072 ret = 0; 3073 if (path->slots[0] == 0) 3074 break; 3075 path->slots[0]--; 3076 } 3077 3078 /* pull out the item */ 3079 leaf = path->nodes[0]; 3080 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3081 3082 /* make sure the item matches what we want */ 3083 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3084 break; 3085 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3086 break; 3087 3088 /* release the path since we're done with it */ 3089 btrfs_release_path(path); 3090 3091 /* 3092 * this is where we are basically btrfs_lookup, without the 3093 * crossing root thing. we store the inode number in the 3094 * offset of the orphan item. 3095 */ 3096 3097 if (found_key.offset == last_objectid) { 3098 printk(KERN_ERR "btrfs: Error removing orphan entry, " 3099 "stopping orphan cleanup\n"); 3100 ret = -EINVAL; 3101 goto out; 3102 } 3103 3104 last_objectid = found_key.offset; 3105 3106 found_key.objectid = found_key.offset; 3107 found_key.type = BTRFS_INODE_ITEM_KEY; 3108 found_key.offset = 0; 3109 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3110 ret = PTR_RET(inode); 3111 if (ret && ret != -ESTALE) 3112 goto out; 3113 3114 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3115 struct btrfs_root *dead_root; 3116 struct btrfs_fs_info *fs_info = root->fs_info; 3117 int is_dead_root = 0; 3118 3119 /* 3120 * this is an orphan in the tree root. Currently these 3121 * could come from 2 sources: 3122 * a) a snapshot deletion in progress 3123 * b) a free space cache inode 3124 * We need to distinguish those two, as the snapshot 3125 * orphan must not get deleted. 3126 * find_dead_roots already ran before us, so if this 3127 * is a snapshot deletion, we should find the root 3128 * in the dead_roots list 3129 */ 3130 spin_lock(&fs_info->trans_lock); 3131 list_for_each_entry(dead_root, &fs_info->dead_roots, 3132 root_list) { 3133 if (dead_root->root_key.objectid == 3134 found_key.objectid) { 3135 is_dead_root = 1; 3136 break; 3137 } 3138 } 3139 spin_unlock(&fs_info->trans_lock); 3140 if (is_dead_root) { 3141 /* prevent this orphan from being found again */ 3142 key.offset = found_key.objectid - 1; 3143 continue; 3144 } 3145 } 3146 /* 3147 * Inode is already gone but the orphan item is still there, 3148 * kill the orphan item. 3149 */ 3150 if (ret == -ESTALE) { 3151 trans = btrfs_start_transaction(root, 1); 3152 if (IS_ERR(trans)) { 3153 ret = PTR_ERR(trans); 3154 goto out; 3155 } 3156 printk(KERN_ERR "auto deleting %Lu\n", 3157 found_key.objectid); 3158 ret = btrfs_del_orphan_item(trans, root, 3159 found_key.objectid); 3160 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3161 btrfs_end_transaction(trans, root); 3162 continue; 3163 } 3164 3165 /* 3166 * add this inode to the orphan list so btrfs_orphan_del does 3167 * the proper thing when we hit it 3168 */ 3169 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3170 &BTRFS_I(inode)->runtime_flags); 3171 atomic_inc(&root->orphan_inodes); 3172 3173 /* if we have links, this was a truncate, lets do that */ 3174 if (inode->i_nlink) { 3175 if (!S_ISREG(inode->i_mode)) { 3176 WARN_ON(1); 3177 iput(inode); 3178 continue; 3179 } 3180 nr_truncate++; 3181 3182 /* 1 for the orphan item deletion. */ 3183 trans = btrfs_start_transaction(root, 1); 3184 if (IS_ERR(trans)) { 3185 ret = PTR_ERR(trans); 3186 goto out; 3187 } 3188 ret = btrfs_orphan_add(trans, inode); 3189 btrfs_end_transaction(trans, root); 3190 if (ret) 3191 goto out; 3192 3193 ret = btrfs_truncate(inode); 3194 if (ret) 3195 btrfs_orphan_del(NULL, inode); 3196 } else { 3197 nr_unlink++; 3198 } 3199 3200 /* this will do delete_inode and everything for us */ 3201 iput(inode); 3202 if (ret) 3203 goto out; 3204 } 3205 /* release the path since we're done with it */ 3206 btrfs_release_path(path); 3207 3208 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3209 3210 if (root->orphan_block_rsv) 3211 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3212 (u64)-1); 3213 3214 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3215 trans = btrfs_join_transaction(root); 3216 if (!IS_ERR(trans)) 3217 btrfs_end_transaction(trans, root); 3218 } 3219 3220 if (nr_unlink) 3221 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 3222 if (nr_truncate) 3223 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 3224 3225 out: 3226 if (ret) 3227 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 3228 btrfs_free_path(path); 3229 return ret; 3230 } 3231 3232 /* 3233 * very simple check to peek ahead in the leaf looking for xattrs. If we 3234 * don't find any xattrs, we know there can't be any acls. 3235 * 3236 * slot is the slot the inode is in, objectid is the objectid of the inode 3237 */ 3238 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3239 int slot, u64 objectid) 3240 { 3241 u32 nritems = btrfs_header_nritems(leaf); 3242 struct btrfs_key found_key; 3243 int scanned = 0; 3244 3245 slot++; 3246 while (slot < nritems) { 3247 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3248 3249 /* we found a different objectid, there must not be acls */ 3250 if (found_key.objectid != objectid) 3251 return 0; 3252 3253 /* we found an xattr, assume we've got an acl */ 3254 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 3255 return 1; 3256 3257 /* 3258 * we found a key greater than an xattr key, there can't 3259 * be any acls later on 3260 */ 3261 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3262 return 0; 3263 3264 slot++; 3265 scanned++; 3266 3267 /* 3268 * it goes inode, inode backrefs, xattrs, extents, 3269 * so if there are a ton of hard links to an inode there can 3270 * be a lot of backrefs. Don't waste time searching too hard, 3271 * this is just an optimization 3272 */ 3273 if (scanned >= 8) 3274 break; 3275 } 3276 /* we hit the end of the leaf before we found an xattr or 3277 * something larger than an xattr. We have to assume the inode 3278 * has acls 3279 */ 3280 return 1; 3281 } 3282 3283 /* 3284 * read an inode from the btree into the in-memory inode 3285 */ 3286 static void btrfs_read_locked_inode(struct inode *inode) 3287 { 3288 struct btrfs_path *path; 3289 struct extent_buffer *leaf; 3290 struct btrfs_inode_item *inode_item; 3291 struct btrfs_timespec *tspec; 3292 struct btrfs_root *root = BTRFS_I(inode)->root; 3293 struct btrfs_key location; 3294 int maybe_acls; 3295 u32 rdev; 3296 int ret; 3297 bool filled = false; 3298 3299 ret = btrfs_fill_inode(inode, &rdev); 3300 if (!ret) 3301 filled = true; 3302 3303 path = btrfs_alloc_path(); 3304 if (!path) 3305 goto make_bad; 3306 3307 path->leave_spinning = 1; 3308 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3309 3310 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3311 if (ret) 3312 goto make_bad; 3313 3314 leaf = path->nodes[0]; 3315 3316 if (filled) 3317 goto cache_acl; 3318 3319 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3320 struct btrfs_inode_item); 3321 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3322 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3323 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3324 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3325 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3326 3327 tspec = btrfs_inode_atime(inode_item); 3328 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3329 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3330 3331 tspec = btrfs_inode_mtime(inode_item); 3332 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3333 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3334 3335 tspec = btrfs_inode_ctime(inode_item); 3336 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3337 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3338 3339 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3340 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3341 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3342 3343 /* 3344 * If we were modified in the current generation and evicted from memory 3345 * and then re-read we need to do a full sync since we don't have any 3346 * idea about which extents were modified before we were evicted from 3347 * cache. 3348 */ 3349 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3351 &BTRFS_I(inode)->runtime_flags); 3352 3353 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3354 inode->i_generation = BTRFS_I(inode)->generation; 3355 inode->i_rdev = 0; 3356 rdev = btrfs_inode_rdev(leaf, inode_item); 3357 3358 BTRFS_I(inode)->index_cnt = (u64)-1; 3359 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3360 cache_acl: 3361 /* 3362 * try to precache a NULL acl entry for files that don't have 3363 * any xattrs or acls 3364 */ 3365 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3366 btrfs_ino(inode)); 3367 if (!maybe_acls) 3368 cache_no_acl(inode); 3369 3370 btrfs_free_path(path); 3371 3372 switch (inode->i_mode & S_IFMT) { 3373 case S_IFREG: 3374 inode->i_mapping->a_ops = &btrfs_aops; 3375 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3376 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3377 inode->i_fop = &btrfs_file_operations; 3378 inode->i_op = &btrfs_file_inode_operations; 3379 break; 3380 case S_IFDIR: 3381 inode->i_fop = &btrfs_dir_file_operations; 3382 if (root == root->fs_info->tree_root) 3383 inode->i_op = &btrfs_dir_ro_inode_operations; 3384 else 3385 inode->i_op = &btrfs_dir_inode_operations; 3386 break; 3387 case S_IFLNK: 3388 inode->i_op = &btrfs_symlink_inode_operations; 3389 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3390 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3391 break; 3392 default: 3393 inode->i_op = &btrfs_special_inode_operations; 3394 init_special_inode(inode, inode->i_mode, rdev); 3395 break; 3396 } 3397 3398 btrfs_update_iflags(inode); 3399 return; 3400 3401 make_bad: 3402 btrfs_free_path(path); 3403 make_bad_inode(inode); 3404 } 3405 3406 /* 3407 * given a leaf and an inode, copy the inode fields into the leaf 3408 */ 3409 static void fill_inode_item(struct btrfs_trans_handle *trans, 3410 struct extent_buffer *leaf, 3411 struct btrfs_inode_item *item, 3412 struct inode *inode) 3413 { 3414 struct btrfs_map_token token; 3415 3416 btrfs_init_map_token(&token); 3417 3418 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3419 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3420 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3421 &token); 3422 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3423 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3424 3425 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3426 inode->i_atime.tv_sec, &token); 3427 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3428 inode->i_atime.tv_nsec, &token); 3429 3430 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3431 inode->i_mtime.tv_sec, &token); 3432 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3433 inode->i_mtime.tv_nsec, &token); 3434 3435 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3436 inode->i_ctime.tv_sec, &token); 3437 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3438 inode->i_ctime.tv_nsec, &token); 3439 3440 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3441 &token); 3442 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3443 &token); 3444 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3445 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3446 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3447 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3448 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3449 } 3450 3451 /* 3452 * copy everything in the in-memory inode into the btree. 3453 */ 3454 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3455 struct btrfs_root *root, struct inode *inode) 3456 { 3457 struct btrfs_inode_item *inode_item; 3458 struct btrfs_path *path; 3459 struct extent_buffer *leaf; 3460 int ret; 3461 3462 path = btrfs_alloc_path(); 3463 if (!path) 3464 return -ENOMEM; 3465 3466 path->leave_spinning = 1; 3467 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3468 1); 3469 if (ret) { 3470 if (ret > 0) 3471 ret = -ENOENT; 3472 goto failed; 3473 } 3474 3475 btrfs_unlock_up_safe(path, 1); 3476 leaf = path->nodes[0]; 3477 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3478 struct btrfs_inode_item); 3479 3480 fill_inode_item(trans, leaf, inode_item, inode); 3481 btrfs_mark_buffer_dirty(leaf); 3482 btrfs_set_inode_last_trans(trans, inode); 3483 ret = 0; 3484 failed: 3485 btrfs_free_path(path); 3486 return ret; 3487 } 3488 3489 /* 3490 * copy everything in the in-memory inode into the btree. 3491 */ 3492 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3493 struct btrfs_root *root, struct inode *inode) 3494 { 3495 int ret; 3496 3497 /* 3498 * If the inode is a free space inode, we can deadlock during commit 3499 * if we put it into the delayed code. 3500 * 3501 * The data relocation inode should also be directly updated 3502 * without delay 3503 */ 3504 if (!btrfs_is_free_space_inode(inode) 3505 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3506 btrfs_update_root_times(trans, root); 3507 3508 ret = btrfs_delayed_update_inode(trans, root, inode); 3509 if (!ret) 3510 btrfs_set_inode_last_trans(trans, inode); 3511 return ret; 3512 } 3513 3514 return btrfs_update_inode_item(trans, root, inode); 3515 } 3516 3517 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3518 struct btrfs_root *root, 3519 struct inode *inode) 3520 { 3521 int ret; 3522 3523 ret = btrfs_update_inode(trans, root, inode); 3524 if (ret == -ENOSPC) 3525 return btrfs_update_inode_item(trans, root, inode); 3526 return ret; 3527 } 3528 3529 /* 3530 * unlink helper that gets used here in inode.c and in the tree logging 3531 * recovery code. It remove a link in a directory with a given name, and 3532 * also drops the back refs in the inode to the directory 3533 */ 3534 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3535 struct btrfs_root *root, 3536 struct inode *dir, struct inode *inode, 3537 const char *name, int name_len) 3538 { 3539 struct btrfs_path *path; 3540 int ret = 0; 3541 struct extent_buffer *leaf; 3542 struct btrfs_dir_item *di; 3543 struct btrfs_key key; 3544 u64 index; 3545 u64 ino = btrfs_ino(inode); 3546 u64 dir_ino = btrfs_ino(dir); 3547 3548 path = btrfs_alloc_path(); 3549 if (!path) { 3550 ret = -ENOMEM; 3551 goto out; 3552 } 3553 3554 path->leave_spinning = 1; 3555 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3556 name, name_len, -1); 3557 if (IS_ERR(di)) { 3558 ret = PTR_ERR(di); 3559 goto err; 3560 } 3561 if (!di) { 3562 ret = -ENOENT; 3563 goto err; 3564 } 3565 leaf = path->nodes[0]; 3566 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3567 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3568 if (ret) 3569 goto err; 3570 btrfs_release_path(path); 3571 3572 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3573 dir_ino, &index); 3574 if (ret) { 3575 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 3576 "inode %llu parent %llu\n", name_len, name, 3577 (unsigned long long)ino, (unsigned long long)dir_ino); 3578 btrfs_abort_transaction(trans, root, ret); 3579 goto err; 3580 } 3581 3582 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3583 if (ret) { 3584 btrfs_abort_transaction(trans, root, ret); 3585 goto err; 3586 } 3587 3588 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3589 inode, dir_ino); 3590 if (ret != 0 && ret != -ENOENT) { 3591 btrfs_abort_transaction(trans, root, ret); 3592 goto err; 3593 } 3594 3595 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3596 dir, index); 3597 if (ret == -ENOENT) 3598 ret = 0; 3599 err: 3600 btrfs_free_path(path); 3601 if (ret) 3602 goto out; 3603 3604 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3605 inode_inc_iversion(inode); 3606 inode_inc_iversion(dir); 3607 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3608 ret = btrfs_update_inode(trans, root, dir); 3609 out: 3610 return ret; 3611 } 3612 3613 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3614 struct btrfs_root *root, 3615 struct inode *dir, struct inode *inode, 3616 const char *name, int name_len) 3617 { 3618 int ret; 3619 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3620 if (!ret) { 3621 btrfs_drop_nlink(inode); 3622 ret = btrfs_update_inode(trans, root, inode); 3623 } 3624 return ret; 3625 } 3626 3627 3628 /* helper to check if there is any shared block in the path */ 3629 static int check_path_shared(struct btrfs_root *root, 3630 struct btrfs_path *path) 3631 { 3632 struct extent_buffer *eb; 3633 int level; 3634 u64 refs = 1; 3635 3636 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 3637 int ret; 3638 3639 if (!path->nodes[level]) 3640 break; 3641 eb = path->nodes[level]; 3642 if (!btrfs_block_can_be_shared(root, eb)) 3643 continue; 3644 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 3645 &refs, NULL); 3646 if (refs > 1) 3647 return 1; 3648 } 3649 return 0; 3650 } 3651 3652 /* 3653 * helper to start transaction for unlink and rmdir. 3654 * 3655 * unlink and rmdir are special in btrfs, they do not always free space. 3656 * so in enospc case, we should make sure they will free space before 3657 * allowing them to use the global metadata reservation. 3658 */ 3659 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 3660 struct dentry *dentry) 3661 { 3662 struct btrfs_trans_handle *trans; 3663 struct btrfs_root *root = BTRFS_I(dir)->root; 3664 struct btrfs_path *path; 3665 struct btrfs_dir_item *di; 3666 struct inode *inode = dentry->d_inode; 3667 u64 index; 3668 int check_link = 1; 3669 int err = -ENOSPC; 3670 int ret; 3671 u64 ino = btrfs_ino(inode); 3672 u64 dir_ino = btrfs_ino(dir); 3673 3674 /* 3675 * 1 for the possible orphan item 3676 * 1 for the dir item 3677 * 1 for the dir index 3678 * 1 for the inode ref 3679 * 1 for the inode ref in the tree log 3680 * 2 for the dir entries in the log 3681 * 1 for the inode 3682 */ 3683 trans = btrfs_start_transaction(root, 8); 3684 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3685 return trans; 3686 3687 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 3688 return ERR_PTR(-ENOSPC); 3689 3690 /* check if there is someone else holds reference */ 3691 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 3692 return ERR_PTR(-ENOSPC); 3693 3694 if (atomic_read(&inode->i_count) > 2) 3695 return ERR_PTR(-ENOSPC); 3696 3697 if (xchg(&root->fs_info->enospc_unlink, 1)) 3698 return ERR_PTR(-ENOSPC); 3699 3700 path = btrfs_alloc_path(); 3701 if (!path) { 3702 root->fs_info->enospc_unlink = 0; 3703 return ERR_PTR(-ENOMEM); 3704 } 3705 3706 /* 1 for the orphan item */ 3707 trans = btrfs_start_transaction(root, 1); 3708 if (IS_ERR(trans)) { 3709 btrfs_free_path(path); 3710 root->fs_info->enospc_unlink = 0; 3711 return trans; 3712 } 3713 3714 path->skip_locking = 1; 3715 path->search_commit_root = 1; 3716 3717 ret = btrfs_lookup_inode(trans, root, path, 3718 &BTRFS_I(dir)->location, 0); 3719 if (ret < 0) { 3720 err = ret; 3721 goto out; 3722 } 3723 if (ret == 0) { 3724 if (check_path_shared(root, path)) 3725 goto out; 3726 } else { 3727 check_link = 0; 3728 } 3729 btrfs_release_path(path); 3730 3731 ret = btrfs_lookup_inode(trans, root, path, 3732 &BTRFS_I(inode)->location, 0); 3733 if (ret < 0) { 3734 err = ret; 3735 goto out; 3736 } 3737 if (ret == 0) { 3738 if (check_path_shared(root, path)) 3739 goto out; 3740 } else { 3741 check_link = 0; 3742 } 3743 btrfs_release_path(path); 3744 3745 if (ret == 0 && S_ISREG(inode->i_mode)) { 3746 ret = btrfs_lookup_file_extent(trans, root, path, 3747 ino, (u64)-1, 0); 3748 if (ret < 0) { 3749 err = ret; 3750 goto out; 3751 } 3752 BUG_ON(ret == 0); /* Corruption */ 3753 if (check_path_shared(root, path)) 3754 goto out; 3755 btrfs_release_path(path); 3756 } 3757 3758 if (!check_link) { 3759 err = 0; 3760 goto out; 3761 } 3762 3763 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3764 dentry->d_name.name, dentry->d_name.len, 0); 3765 if (IS_ERR(di)) { 3766 err = PTR_ERR(di); 3767 goto out; 3768 } 3769 if (di) { 3770 if (check_path_shared(root, path)) 3771 goto out; 3772 } else { 3773 err = 0; 3774 goto out; 3775 } 3776 btrfs_release_path(path); 3777 3778 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name, 3779 dentry->d_name.len, ino, dir_ino, 0, 3780 &index); 3781 if (ret) { 3782 err = ret; 3783 goto out; 3784 } 3785 3786 if (check_path_shared(root, path)) 3787 goto out; 3788 3789 btrfs_release_path(path); 3790 3791 /* 3792 * This is a commit root search, if we can lookup inode item and other 3793 * relative items in the commit root, it means the transaction of 3794 * dir/file creation has been committed, and the dir index item that we 3795 * delay to insert has also been inserted into the commit root. So 3796 * we needn't worry about the delayed insertion of the dir index item 3797 * here. 3798 */ 3799 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 3800 dentry->d_name.name, dentry->d_name.len, 0); 3801 if (IS_ERR(di)) { 3802 err = PTR_ERR(di); 3803 goto out; 3804 } 3805 BUG_ON(ret == -ENOENT); 3806 if (check_path_shared(root, path)) 3807 goto out; 3808 3809 err = 0; 3810 out: 3811 btrfs_free_path(path); 3812 /* Migrate the orphan reservation over */ 3813 if (!err) 3814 err = btrfs_block_rsv_migrate(trans->block_rsv, 3815 &root->fs_info->global_block_rsv, 3816 trans->bytes_reserved); 3817 3818 if (err) { 3819 btrfs_end_transaction(trans, root); 3820 root->fs_info->enospc_unlink = 0; 3821 return ERR_PTR(err); 3822 } 3823 3824 trans->block_rsv = &root->fs_info->global_block_rsv; 3825 return trans; 3826 } 3827 3828 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 3829 struct btrfs_root *root) 3830 { 3831 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) { 3832 btrfs_block_rsv_release(root, trans->block_rsv, 3833 trans->bytes_reserved); 3834 trans->block_rsv = &root->fs_info->trans_block_rsv; 3835 BUG_ON(!root->fs_info->enospc_unlink); 3836 root->fs_info->enospc_unlink = 0; 3837 } 3838 btrfs_end_transaction(trans, root); 3839 } 3840 3841 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3842 { 3843 struct btrfs_root *root = BTRFS_I(dir)->root; 3844 struct btrfs_trans_handle *trans; 3845 struct inode *inode = dentry->d_inode; 3846 int ret; 3847 3848 trans = __unlink_start_trans(dir, dentry); 3849 if (IS_ERR(trans)) 3850 return PTR_ERR(trans); 3851 3852 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3853 3854 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3855 dentry->d_name.name, dentry->d_name.len); 3856 if (ret) 3857 goto out; 3858 3859 if (inode->i_nlink == 0) { 3860 ret = btrfs_orphan_add(trans, inode); 3861 if (ret) 3862 goto out; 3863 } 3864 3865 out: 3866 __unlink_end_trans(trans, root); 3867 btrfs_btree_balance_dirty(root); 3868 return ret; 3869 } 3870 3871 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3872 struct btrfs_root *root, 3873 struct inode *dir, u64 objectid, 3874 const char *name, int name_len) 3875 { 3876 struct btrfs_path *path; 3877 struct extent_buffer *leaf; 3878 struct btrfs_dir_item *di; 3879 struct btrfs_key key; 3880 u64 index; 3881 int ret; 3882 u64 dir_ino = btrfs_ino(dir); 3883 3884 path = btrfs_alloc_path(); 3885 if (!path) 3886 return -ENOMEM; 3887 3888 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3889 name, name_len, -1); 3890 if (IS_ERR_OR_NULL(di)) { 3891 if (!di) 3892 ret = -ENOENT; 3893 else 3894 ret = PTR_ERR(di); 3895 goto out; 3896 } 3897 3898 leaf = path->nodes[0]; 3899 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3900 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3901 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3902 if (ret) { 3903 btrfs_abort_transaction(trans, root, ret); 3904 goto out; 3905 } 3906 btrfs_release_path(path); 3907 3908 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3909 objectid, root->root_key.objectid, 3910 dir_ino, &index, name, name_len); 3911 if (ret < 0) { 3912 if (ret != -ENOENT) { 3913 btrfs_abort_transaction(trans, root, ret); 3914 goto out; 3915 } 3916 di = btrfs_search_dir_index_item(root, path, dir_ino, 3917 name, name_len); 3918 if (IS_ERR_OR_NULL(di)) { 3919 if (!di) 3920 ret = -ENOENT; 3921 else 3922 ret = PTR_ERR(di); 3923 btrfs_abort_transaction(trans, root, ret); 3924 goto out; 3925 } 3926 3927 leaf = path->nodes[0]; 3928 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3929 btrfs_release_path(path); 3930 index = key.offset; 3931 } 3932 btrfs_release_path(path); 3933 3934 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3935 if (ret) { 3936 btrfs_abort_transaction(trans, root, ret); 3937 goto out; 3938 } 3939 3940 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3941 inode_inc_iversion(dir); 3942 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3943 ret = btrfs_update_inode_fallback(trans, root, dir); 3944 if (ret) 3945 btrfs_abort_transaction(trans, root, ret); 3946 out: 3947 btrfs_free_path(path); 3948 return ret; 3949 } 3950 3951 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3952 { 3953 struct inode *inode = dentry->d_inode; 3954 int err = 0; 3955 struct btrfs_root *root = BTRFS_I(dir)->root; 3956 struct btrfs_trans_handle *trans; 3957 3958 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3959 return -ENOTEMPTY; 3960 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3961 return -EPERM; 3962 3963 trans = __unlink_start_trans(dir, dentry); 3964 if (IS_ERR(trans)) 3965 return PTR_ERR(trans); 3966 3967 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3968 err = btrfs_unlink_subvol(trans, root, dir, 3969 BTRFS_I(inode)->location.objectid, 3970 dentry->d_name.name, 3971 dentry->d_name.len); 3972 goto out; 3973 } 3974 3975 err = btrfs_orphan_add(trans, inode); 3976 if (err) 3977 goto out; 3978 3979 /* now the directory is empty */ 3980 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3981 dentry->d_name.name, dentry->d_name.len); 3982 if (!err) 3983 btrfs_i_size_write(inode, 0); 3984 out: 3985 __unlink_end_trans(trans, root); 3986 btrfs_btree_balance_dirty(root); 3987 3988 return err; 3989 } 3990 3991 /* 3992 * this can truncate away extent items, csum items and directory items. 3993 * It starts at a high offset and removes keys until it can't find 3994 * any higher than new_size 3995 * 3996 * csum items that cross the new i_size are truncated to the new size 3997 * as well. 3998 * 3999 * min_type is the minimum key type to truncate down to. If set to 0, this 4000 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4001 */ 4002 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4003 struct btrfs_root *root, 4004 struct inode *inode, 4005 u64 new_size, u32 min_type) 4006 { 4007 struct btrfs_path *path; 4008 struct extent_buffer *leaf; 4009 struct btrfs_file_extent_item *fi; 4010 struct btrfs_key key; 4011 struct btrfs_key found_key; 4012 u64 extent_start = 0; 4013 u64 extent_num_bytes = 0; 4014 u64 extent_offset = 0; 4015 u64 item_end = 0; 4016 u32 found_type = (u8)-1; 4017 int found_extent; 4018 int del_item; 4019 int pending_del_nr = 0; 4020 int pending_del_slot = 0; 4021 int extent_type = -1; 4022 int ret; 4023 int err = 0; 4024 u64 ino = btrfs_ino(inode); 4025 4026 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4027 4028 path = btrfs_alloc_path(); 4029 if (!path) 4030 return -ENOMEM; 4031 path->reada = -1; 4032 4033 /* 4034 * We want to drop from the next block forward in case this new size is 4035 * not block aligned since we will be keeping the last block of the 4036 * extent just the way it is. 4037 */ 4038 if (root->ref_cows || root == root->fs_info->tree_root) 4039 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4040 root->sectorsize), (u64)-1, 0); 4041 4042 /* 4043 * This function is also used to drop the items in the log tree before 4044 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4045 * it is used to drop the loged items. So we shouldn't kill the delayed 4046 * items. 4047 */ 4048 if (min_type == 0 && root == BTRFS_I(inode)->root) 4049 btrfs_kill_delayed_inode_items(inode); 4050 4051 key.objectid = ino; 4052 key.offset = (u64)-1; 4053 key.type = (u8)-1; 4054 4055 search_again: 4056 path->leave_spinning = 1; 4057 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4058 if (ret < 0) { 4059 err = ret; 4060 goto out; 4061 } 4062 4063 if (ret > 0) { 4064 /* there are no items in the tree for us to truncate, we're 4065 * done 4066 */ 4067 if (path->slots[0] == 0) 4068 goto out; 4069 path->slots[0]--; 4070 } 4071 4072 while (1) { 4073 fi = NULL; 4074 leaf = path->nodes[0]; 4075 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4076 found_type = btrfs_key_type(&found_key); 4077 4078 if (found_key.objectid != ino) 4079 break; 4080 4081 if (found_type < min_type) 4082 break; 4083 4084 item_end = found_key.offset; 4085 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4086 fi = btrfs_item_ptr(leaf, path->slots[0], 4087 struct btrfs_file_extent_item); 4088 extent_type = btrfs_file_extent_type(leaf, fi); 4089 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4090 item_end += 4091 btrfs_file_extent_num_bytes(leaf, fi); 4092 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4093 item_end += btrfs_file_extent_inline_len(leaf, 4094 fi); 4095 } 4096 item_end--; 4097 } 4098 if (found_type > min_type) { 4099 del_item = 1; 4100 } else { 4101 if (item_end < new_size) 4102 break; 4103 if (found_key.offset >= new_size) 4104 del_item = 1; 4105 else 4106 del_item = 0; 4107 } 4108 found_extent = 0; 4109 /* FIXME, shrink the extent if the ref count is only 1 */ 4110 if (found_type != BTRFS_EXTENT_DATA_KEY) 4111 goto delete; 4112 4113 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4114 u64 num_dec; 4115 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4116 if (!del_item) { 4117 u64 orig_num_bytes = 4118 btrfs_file_extent_num_bytes(leaf, fi); 4119 extent_num_bytes = ALIGN(new_size - 4120 found_key.offset, 4121 root->sectorsize); 4122 btrfs_set_file_extent_num_bytes(leaf, fi, 4123 extent_num_bytes); 4124 num_dec = (orig_num_bytes - 4125 extent_num_bytes); 4126 if (root->ref_cows && extent_start != 0) 4127 inode_sub_bytes(inode, num_dec); 4128 btrfs_mark_buffer_dirty(leaf); 4129 } else { 4130 extent_num_bytes = 4131 btrfs_file_extent_disk_num_bytes(leaf, 4132 fi); 4133 extent_offset = found_key.offset - 4134 btrfs_file_extent_offset(leaf, fi); 4135 4136 /* FIXME blocksize != 4096 */ 4137 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4138 if (extent_start != 0) { 4139 found_extent = 1; 4140 if (root->ref_cows) 4141 inode_sub_bytes(inode, num_dec); 4142 } 4143 } 4144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4145 /* 4146 * we can't truncate inline items that have had 4147 * special encodings 4148 */ 4149 if (!del_item && 4150 btrfs_file_extent_compression(leaf, fi) == 0 && 4151 btrfs_file_extent_encryption(leaf, fi) == 0 && 4152 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4153 u32 size = new_size - found_key.offset; 4154 4155 if (root->ref_cows) { 4156 inode_sub_bytes(inode, item_end + 1 - 4157 new_size); 4158 } 4159 size = 4160 btrfs_file_extent_calc_inline_size(size); 4161 btrfs_truncate_item(trans, root, path, 4162 size, 1); 4163 } else if (root->ref_cows) { 4164 inode_sub_bytes(inode, item_end + 1 - 4165 found_key.offset); 4166 } 4167 } 4168 delete: 4169 if (del_item) { 4170 if (!pending_del_nr) { 4171 /* no pending yet, add ourselves */ 4172 pending_del_slot = path->slots[0]; 4173 pending_del_nr = 1; 4174 } else if (pending_del_nr && 4175 path->slots[0] + 1 == pending_del_slot) { 4176 /* hop on the pending chunk */ 4177 pending_del_nr++; 4178 pending_del_slot = path->slots[0]; 4179 } else { 4180 BUG(); 4181 } 4182 } else { 4183 break; 4184 } 4185 if (found_extent && (root->ref_cows || 4186 root == root->fs_info->tree_root)) { 4187 btrfs_set_path_blocking(path); 4188 ret = btrfs_free_extent(trans, root, extent_start, 4189 extent_num_bytes, 0, 4190 btrfs_header_owner(leaf), 4191 ino, extent_offset, 0); 4192 BUG_ON(ret); 4193 } 4194 4195 if (found_type == BTRFS_INODE_ITEM_KEY) 4196 break; 4197 4198 if (path->slots[0] == 0 || 4199 path->slots[0] != pending_del_slot) { 4200 if (pending_del_nr) { 4201 ret = btrfs_del_items(trans, root, path, 4202 pending_del_slot, 4203 pending_del_nr); 4204 if (ret) { 4205 btrfs_abort_transaction(trans, 4206 root, ret); 4207 goto error; 4208 } 4209 pending_del_nr = 0; 4210 } 4211 btrfs_release_path(path); 4212 goto search_again; 4213 } else { 4214 path->slots[0]--; 4215 } 4216 } 4217 out: 4218 if (pending_del_nr) { 4219 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4220 pending_del_nr); 4221 if (ret) 4222 btrfs_abort_transaction(trans, root, ret); 4223 } 4224 error: 4225 btrfs_free_path(path); 4226 return err; 4227 } 4228 4229 /* 4230 * btrfs_truncate_page - read, zero a chunk and write a page 4231 * @inode - inode that we're zeroing 4232 * @from - the offset to start zeroing 4233 * @len - the length to zero, 0 to zero the entire range respective to the 4234 * offset 4235 * @front - zero up to the offset instead of from the offset on 4236 * 4237 * This will find the page for the "from" offset and cow the page and zero the 4238 * part we want to zero. This is used with truncate and hole punching. 4239 */ 4240 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4241 int front) 4242 { 4243 struct address_space *mapping = inode->i_mapping; 4244 struct btrfs_root *root = BTRFS_I(inode)->root; 4245 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4246 struct btrfs_ordered_extent *ordered; 4247 struct extent_state *cached_state = NULL; 4248 char *kaddr; 4249 u32 blocksize = root->sectorsize; 4250 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4251 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4252 struct page *page; 4253 gfp_t mask = btrfs_alloc_write_mask(mapping); 4254 int ret = 0; 4255 u64 page_start; 4256 u64 page_end; 4257 4258 if ((offset & (blocksize - 1)) == 0 && 4259 (!len || ((len & (blocksize - 1)) == 0))) 4260 goto out; 4261 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4262 if (ret) 4263 goto out; 4264 4265 again: 4266 page = find_or_create_page(mapping, index, mask); 4267 if (!page) { 4268 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4269 ret = -ENOMEM; 4270 goto out; 4271 } 4272 4273 page_start = page_offset(page); 4274 page_end = page_start + PAGE_CACHE_SIZE - 1; 4275 4276 if (!PageUptodate(page)) { 4277 ret = btrfs_readpage(NULL, page); 4278 lock_page(page); 4279 if (page->mapping != mapping) { 4280 unlock_page(page); 4281 page_cache_release(page); 4282 goto again; 4283 } 4284 if (!PageUptodate(page)) { 4285 ret = -EIO; 4286 goto out_unlock; 4287 } 4288 } 4289 wait_on_page_writeback(page); 4290 4291 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4292 set_page_extent_mapped(page); 4293 4294 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4295 if (ordered) { 4296 unlock_extent_cached(io_tree, page_start, page_end, 4297 &cached_state, GFP_NOFS); 4298 unlock_page(page); 4299 page_cache_release(page); 4300 btrfs_start_ordered_extent(inode, ordered, 1); 4301 btrfs_put_ordered_extent(ordered); 4302 goto again; 4303 } 4304 4305 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4306 EXTENT_DIRTY | EXTENT_DELALLOC | 4307 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4308 0, 0, &cached_state, GFP_NOFS); 4309 4310 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4311 &cached_state); 4312 if (ret) { 4313 unlock_extent_cached(io_tree, page_start, page_end, 4314 &cached_state, GFP_NOFS); 4315 goto out_unlock; 4316 } 4317 4318 if (offset != PAGE_CACHE_SIZE) { 4319 if (!len) 4320 len = PAGE_CACHE_SIZE - offset; 4321 kaddr = kmap(page); 4322 if (front) 4323 memset(kaddr, 0, offset); 4324 else 4325 memset(kaddr + offset, 0, len); 4326 flush_dcache_page(page); 4327 kunmap(page); 4328 } 4329 ClearPageChecked(page); 4330 set_page_dirty(page); 4331 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4332 GFP_NOFS); 4333 4334 out_unlock: 4335 if (ret) 4336 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4337 unlock_page(page); 4338 page_cache_release(page); 4339 out: 4340 return ret; 4341 } 4342 4343 /* 4344 * This function puts in dummy file extents for the area we're creating a hole 4345 * for. So if we are truncating this file to a larger size we need to insert 4346 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4347 * the range between oldsize and size 4348 */ 4349 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4350 { 4351 struct btrfs_trans_handle *trans; 4352 struct btrfs_root *root = BTRFS_I(inode)->root; 4353 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4354 struct extent_map *em = NULL; 4355 struct extent_state *cached_state = NULL; 4356 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4357 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4358 u64 block_end = ALIGN(size, root->sectorsize); 4359 u64 last_byte; 4360 u64 cur_offset; 4361 u64 hole_size; 4362 int err = 0; 4363 4364 if (size <= hole_start) 4365 return 0; 4366 4367 while (1) { 4368 struct btrfs_ordered_extent *ordered; 4369 btrfs_wait_ordered_range(inode, hole_start, 4370 block_end - hole_start); 4371 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4372 &cached_state); 4373 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 4374 if (!ordered) 4375 break; 4376 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4377 &cached_state, GFP_NOFS); 4378 btrfs_put_ordered_extent(ordered); 4379 } 4380 4381 cur_offset = hole_start; 4382 while (1) { 4383 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4384 block_end - cur_offset, 0); 4385 if (IS_ERR(em)) { 4386 err = PTR_ERR(em); 4387 em = NULL; 4388 break; 4389 } 4390 last_byte = min(extent_map_end(em), block_end); 4391 last_byte = ALIGN(last_byte , root->sectorsize); 4392 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4393 struct extent_map *hole_em; 4394 hole_size = last_byte - cur_offset; 4395 4396 trans = btrfs_start_transaction(root, 3); 4397 if (IS_ERR(trans)) { 4398 err = PTR_ERR(trans); 4399 break; 4400 } 4401 4402 err = btrfs_drop_extents(trans, root, inode, 4403 cur_offset, 4404 cur_offset + hole_size, 1); 4405 if (err) { 4406 btrfs_abort_transaction(trans, root, err); 4407 btrfs_end_transaction(trans, root); 4408 break; 4409 } 4410 4411 err = btrfs_insert_file_extent(trans, root, 4412 btrfs_ino(inode), cur_offset, 0, 4413 0, hole_size, 0, hole_size, 4414 0, 0, 0); 4415 if (err) { 4416 btrfs_abort_transaction(trans, root, err); 4417 btrfs_end_transaction(trans, root); 4418 break; 4419 } 4420 4421 btrfs_drop_extent_cache(inode, cur_offset, 4422 cur_offset + hole_size - 1, 0); 4423 hole_em = alloc_extent_map(); 4424 if (!hole_em) { 4425 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4426 &BTRFS_I(inode)->runtime_flags); 4427 goto next; 4428 } 4429 hole_em->start = cur_offset; 4430 hole_em->len = hole_size; 4431 hole_em->orig_start = cur_offset; 4432 4433 hole_em->block_start = EXTENT_MAP_HOLE; 4434 hole_em->block_len = 0; 4435 hole_em->orig_block_len = 0; 4436 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4437 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4438 hole_em->generation = trans->transid; 4439 4440 while (1) { 4441 write_lock(&em_tree->lock); 4442 err = add_extent_mapping(em_tree, hole_em); 4443 if (!err) 4444 list_move(&hole_em->list, 4445 &em_tree->modified_extents); 4446 write_unlock(&em_tree->lock); 4447 if (err != -EEXIST) 4448 break; 4449 btrfs_drop_extent_cache(inode, cur_offset, 4450 cur_offset + 4451 hole_size - 1, 0); 4452 } 4453 free_extent_map(hole_em); 4454 next: 4455 btrfs_update_inode(trans, root, inode); 4456 btrfs_end_transaction(trans, root); 4457 } 4458 free_extent_map(em); 4459 em = NULL; 4460 cur_offset = last_byte; 4461 if (cur_offset >= block_end) 4462 break; 4463 } 4464 4465 free_extent_map(em); 4466 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4467 GFP_NOFS); 4468 return err; 4469 } 4470 4471 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4472 { 4473 struct btrfs_root *root = BTRFS_I(inode)->root; 4474 struct btrfs_trans_handle *trans; 4475 loff_t oldsize = i_size_read(inode); 4476 loff_t newsize = attr->ia_size; 4477 int mask = attr->ia_valid; 4478 int ret; 4479 4480 if (newsize == oldsize) 4481 return 0; 4482 4483 /* 4484 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4485 * special case where we need to update the times despite not having 4486 * these flags set. For all other operations the VFS set these flags 4487 * explicitly if it wants a timestamp update. 4488 */ 4489 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 4490 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 4491 4492 if (newsize > oldsize) { 4493 truncate_pagecache(inode, oldsize, newsize); 4494 ret = btrfs_cont_expand(inode, oldsize, newsize); 4495 if (ret) 4496 return ret; 4497 4498 trans = btrfs_start_transaction(root, 1); 4499 if (IS_ERR(trans)) 4500 return PTR_ERR(trans); 4501 4502 i_size_write(inode, newsize); 4503 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4504 ret = btrfs_update_inode(trans, root, inode); 4505 btrfs_end_transaction(trans, root); 4506 } else { 4507 4508 /* 4509 * We're truncating a file that used to have good data down to 4510 * zero. Make sure it gets into the ordered flush list so that 4511 * any new writes get down to disk quickly. 4512 */ 4513 if (newsize == 0) 4514 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4515 &BTRFS_I(inode)->runtime_flags); 4516 4517 /* 4518 * 1 for the orphan item we're going to add 4519 * 1 for the orphan item deletion. 4520 */ 4521 trans = btrfs_start_transaction(root, 2); 4522 if (IS_ERR(trans)) 4523 return PTR_ERR(trans); 4524 4525 /* 4526 * We need to do this in case we fail at _any_ point during the 4527 * actual truncate. Once we do the truncate_setsize we could 4528 * invalidate pages which forces any outstanding ordered io to 4529 * be instantly completed which will give us extents that need 4530 * to be truncated. If we fail to get an orphan inode down we 4531 * could have left over extents that were never meant to live, 4532 * so we need to garuntee from this point on that everything 4533 * will be consistent. 4534 */ 4535 ret = btrfs_orphan_add(trans, inode); 4536 btrfs_end_transaction(trans, root); 4537 if (ret) 4538 return ret; 4539 4540 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4541 truncate_setsize(inode, newsize); 4542 4543 /* Disable nonlocked read DIO to avoid the end less truncate */ 4544 btrfs_inode_block_unlocked_dio(inode); 4545 inode_dio_wait(inode); 4546 btrfs_inode_resume_unlocked_dio(inode); 4547 4548 ret = btrfs_truncate(inode); 4549 if (ret && inode->i_nlink) 4550 btrfs_orphan_del(NULL, inode); 4551 } 4552 4553 return ret; 4554 } 4555 4556 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4557 { 4558 struct inode *inode = dentry->d_inode; 4559 struct btrfs_root *root = BTRFS_I(inode)->root; 4560 int err; 4561 4562 if (btrfs_root_readonly(root)) 4563 return -EROFS; 4564 4565 err = inode_change_ok(inode, attr); 4566 if (err) 4567 return err; 4568 4569 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4570 err = btrfs_setsize(inode, attr); 4571 if (err) 4572 return err; 4573 } 4574 4575 if (attr->ia_valid) { 4576 setattr_copy(inode, attr); 4577 inode_inc_iversion(inode); 4578 err = btrfs_dirty_inode(inode); 4579 4580 if (!err && attr->ia_valid & ATTR_MODE) 4581 err = btrfs_acl_chmod(inode); 4582 } 4583 4584 return err; 4585 } 4586 4587 void btrfs_evict_inode(struct inode *inode) 4588 { 4589 struct btrfs_trans_handle *trans; 4590 struct btrfs_root *root = BTRFS_I(inode)->root; 4591 struct btrfs_block_rsv *rsv, *global_rsv; 4592 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4593 int ret; 4594 4595 trace_btrfs_inode_evict(inode); 4596 4597 truncate_inode_pages(&inode->i_data, 0); 4598 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 4599 btrfs_is_free_space_inode(inode))) 4600 goto no_delete; 4601 4602 if (is_bad_inode(inode)) { 4603 btrfs_orphan_del(NULL, inode); 4604 goto no_delete; 4605 } 4606 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4607 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4608 4609 if (root->fs_info->log_root_recovering) { 4610 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4611 &BTRFS_I(inode)->runtime_flags)); 4612 goto no_delete; 4613 } 4614 4615 if (inode->i_nlink > 0) { 4616 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 4617 goto no_delete; 4618 } 4619 4620 ret = btrfs_commit_inode_delayed_inode(inode); 4621 if (ret) { 4622 btrfs_orphan_del(NULL, inode); 4623 goto no_delete; 4624 } 4625 4626 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4627 if (!rsv) { 4628 btrfs_orphan_del(NULL, inode); 4629 goto no_delete; 4630 } 4631 rsv->size = min_size; 4632 rsv->failfast = 1; 4633 global_rsv = &root->fs_info->global_block_rsv; 4634 4635 btrfs_i_size_write(inode, 0); 4636 4637 /* 4638 * This is a bit simpler than btrfs_truncate since we've already 4639 * reserved our space for our orphan item in the unlink, so we just 4640 * need to reserve some slack space in case we add bytes and update 4641 * inode item when doing the truncate. 4642 */ 4643 while (1) { 4644 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4645 BTRFS_RESERVE_FLUSH_LIMIT); 4646 4647 /* 4648 * Try and steal from the global reserve since we will 4649 * likely not use this space anyway, we want to try as 4650 * hard as possible to get this to work. 4651 */ 4652 if (ret) 4653 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4654 4655 if (ret) { 4656 printk(KERN_WARNING "Could not get space for a " 4657 "delete, will truncate on mount %d\n", ret); 4658 btrfs_orphan_del(NULL, inode); 4659 btrfs_free_block_rsv(root, rsv); 4660 goto no_delete; 4661 } 4662 4663 trans = btrfs_join_transaction(root); 4664 if (IS_ERR(trans)) { 4665 btrfs_orphan_del(NULL, inode); 4666 btrfs_free_block_rsv(root, rsv); 4667 goto no_delete; 4668 } 4669 4670 trans->block_rsv = rsv; 4671 4672 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4673 if (ret != -ENOSPC) 4674 break; 4675 4676 trans->block_rsv = &root->fs_info->trans_block_rsv; 4677 btrfs_end_transaction(trans, root); 4678 trans = NULL; 4679 btrfs_btree_balance_dirty(root); 4680 } 4681 4682 btrfs_free_block_rsv(root, rsv); 4683 4684 if (ret == 0) { 4685 trans->block_rsv = root->orphan_block_rsv; 4686 ret = btrfs_orphan_del(trans, inode); 4687 BUG_ON(ret); 4688 } 4689 4690 trans->block_rsv = &root->fs_info->trans_block_rsv; 4691 if (!(root == root->fs_info->tree_root || 4692 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4693 btrfs_return_ino(root, btrfs_ino(inode)); 4694 4695 btrfs_end_transaction(trans, root); 4696 btrfs_btree_balance_dirty(root); 4697 no_delete: 4698 clear_inode(inode); 4699 return; 4700 } 4701 4702 /* 4703 * this returns the key found in the dir entry in the location pointer. 4704 * If no dir entries were found, location->objectid is 0. 4705 */ 4706 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4707 struct btrfs_key *location) 4708 { 4709 const char *name = dentry->d_name.name; 4710 int namelen = dentry->d_name.len; 4711 struct btrfs_dir_item *di; 4712 struct btrfs_path *path; 4713 struct btrfs_root *root = BTRFS_I(dir)->root; 4714 int ret = 0; 4715 4716 path = btrfs_alloc_path(); 4717 if (!path) 4718 return -ENOMEM; 4719 4720 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4721 namelen, 0); 4722 if (IS_ERR(di)) 4723 ret = PTR_ERR(di); 4724 4725 if (IS_ERR_OR_NULL(di)) 4726 goto out_err; 4727 4728 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4729 out: 4730 btrfs_free_path(path); 4731 return ret; 4732 out_err: 4733 location->objectid = 0; 4734 goto out; 4735 } 4736 4737 /* 4738 * when we hit a tree root in a directory, the btrfs part of the inode 4739 * needs to be changed to reflect the root directory of the tree root. This 4740 * is kind of like crossing a mount point. 4741 */ 4742 static int fixup_tree_root_location(struct btrfs_root *root, 4743 struct inode *dir, 4744 struct dentry *dentry, 4745 struct btrfs_key *location, 4746 struct btrfs_root **sub_root) 4747 { 4748 struct btrfs_path *path; 4749 struct btrfs_root *new_root; 4750 struct btrfs_root_ref *ref; 4751 struct extent_buffer *leaf; 4752 int ret; 4753 int err = 0; 4754 4755 path = btrfs_alloc_path(); 4756 if (!path) { 4757 err = -ENOMEM; 4758 goto out; 4759 } 4760 4761 err = -ENOENT; 4762 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4763 BTRFS_I(dir)->root->root_key.objectid, 4764 location->objectid); 4765 if (ret) { 4766 if (ret < 0) 4767 err = ret; 4768 goto out; 4769 } 4770 4771 leaf = path->nodes[0]; 4772 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4773 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4774 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4775 goto out; 4776 4777 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4778 (unsigned long)(ref + 1), 4779 dentry->d_name.len); 4780 if (ret) 4781 goto out; 4782 4783 btrfs_release_path(path); 4784 4785 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4786 if (IS_ERR(new_root)) { 4787 err = PTR_ERR(new_root); 4788 goto out; 4789 } 4790 4791 if (btrfs_root_refs(&new_root->root_item) == 0) { 4792 err = -ENOENT; 4793 goto out; 4794 } 4795 4796 *sub_root = new_root; 4797 location->objectid = btrfs_root_dirid(&new_root->root_item); 4798 location->type = BTRFS_INODE_ITEM_KEY; 4799 location->offset = 0; 4800 err = 0; 4801 out: 4802 btrfs_free_path(path); 4803 return err; 4804 } 4805 4806 static void inode_tree_add(struct inode *inode) 4807 { 4808 struct btrfs_root *root = BTRFS_I(inode)->root; 4809 struct btrfs_inode *entry; 4810 struct rb_node **p; 4811 struct rb_node *parent; 4812 u64 ino = btrfs_ino(inode); 4813 again: 4814 p = &root->inode_tree.rb_node; 4815 parent = NULL; 4816 4817 if (inode_unhashed(inode)) 4818 return; 4819 4820 spin_lock(&root->inode_lock); 4821 while (*p) { 4822 parent = *p; 4823 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4824 4825 if (ino < btrfs_ino(&entry->vfs_inode)) 4826 p = &parent->rb_left; 4827 else if (ino > btrfs_ino(&entry->vfs_inode)) 4828 p = &parent->rb_right; 4829 else { 4830 WARN_ON(!(entry->vfs_inode.i_state & 4831 (I_WILL_FREE | I_FREEING))); 4832 rb_erase(parent, &root->inode_tree); 4833 RB_CLEAR_NODE(parent); 4834 spin_unlock(&root->inode_lock); 4835 goto again; 4836 } 4837 } 4838 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4839 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4840 spin_unlock(&root->inode_lock); 4841 } 4842 4843 static void inode_tree_del(struct inode *inode) 4844 { 4845 struct btrfs_root *root = BTRFS_I(inode)->root; 4846 int empty = 0; 4847 4848 spin_lock(&root->inode_lock); 4849 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4850 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4851 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4852 empty = RB_EMPTY_ROOT(&root->inode_tree); 4853 } 4854 spin_unlock(&root->inode_lock); 4855 4856 /* 4857 * Free space cache has inodes in the tree root, but the tree root has a 4858 * root_refs of 0, so this could end up dropping the tree root as a 4859 * snapshot, so we need the extra !root->fs_info->tree_root check to 4860 * make sure we don't drop it. 4861 */ 4862 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4863 root != root->fs_info->tree_root) { 4864 synchronize_srcu(&root->fs_info->subvol_srcu); 4865 spin_lock(&root->inode_lock); 4866 empty = RB_EMPTY_ROOT(&root->inode_tree); 4867 spin_unlock(&root->inode_lock); 4868 if (empty) 4869 btrfs_add_dead_root(root); 4870 } 4871 } 4872 4873 void btrfs_invalidate_inodes(struct btrfs_root *root) 4874 { 4875 struct rb_node *node; 4876 struct rb_node *prev; 4877 struct btrfs_inode *entry; 4878 struct inode *inode; 4879 u64 objectid = 0; 4880 4881 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4882 4883 spin_lock(&root->inode_lock); 4884 again: 4885 node = root->inode_tree.rb_node; 4886 prev = NULL; 4887 while (node) { 4888 prev = node; 4889 entry = rb_entry(node, struct btrfs_inode, rb_node); 4890 4891 if (objectid < btrfs_ino(&entry->vfs_inode)) 4892 node = node->rb_left; 4893 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4894 node = node->rb_right; 4895 else 4896 break; 4897 } 4898 if (!node) { 4899 while (prev) { 4900 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4901 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4902 node = prev; 4903 break; 4904 } 4905 prev = rb_next(prev); 4906 } 4907 } 4908 while (node) { 4909 entry = rb_entry(node, struct btrfs_inode, rb_node); 4910 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4911 inode = igrab(&entry->vfs_inode); 4912 if (inode) { 4913 spin_unlock(&root->inode_lock); 4914 if (atomic_read(&inode->i_count) > 1) 4915 d_prune_aliases(inode); 4916 /* 4917 * btrfs_drop_inode will have it removed from 4918 * the inode cache when its usage count 4919 * hits zero. 4920 */ 4921 iput(inode); 4922 cond_resched(); 4923 spin_lock(&root->inode_lock); 4924 goto again; 4925 } 4926 4927 if (cond_resched_lock(&root->inode_lock)) 4928 goto again; 4929 4930 node = rb_next(node); 4931 } 4932 spin_unlock(&root->inode_lock); 4933 } 4934 4935 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4936 { 4937 struct btrfs_iget_args *args = p; 4938 inode->i_ino = args->ino; 4939 BTRFS_I(inode)->root = args->root; 4940 return 0; 4941 } 4942 4943 static int btrfs_find_actor(struct inode *inode, void *opaque) 4944 { 4945 struct btrfs_iget_args *args = opaque; 4946 return args->ino == btrfs_ino(inode) && 4947 args->root == BTRFS_I(inode)->root; 4948 } 4949 4950 static struct inode *btrfs_iget_locked(struct super_block *s, 4951 u64 objectid, 4952 struct btrfs_root *root) 4953 { 4954 struct inode *inode; 4955 struct btrfs_iget_args args; 4956 args.ino = objectid; 4957 args.root = root; 4958 4959 inode = iget5_locked(s, objectid, btrfs_find_actor, 4960 btrfs_init_locked_inode, 4961 (void *)&args); 4962 return inode; 4963 } 4964 4965 /* Get an inode object given its location and corresponding root. 4966 * Returns in *is_new if the inode was read from disk 4967 */ 4968 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4969 struct btrfs_root *root, int *new) 4970 { 4971 struct inode *inode; 4972 4973 inode = btrfs_iget_locked(s, location->objectid, root); 4974 if (!inode) 4975 return ERR_PTR(-ENOMEM); 4976 4977 if (inode->i_state & I_NEW) { 4978 BTRFS_I(inode)->root = root; 4979 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4980 btrfs_read_locked_inode(inode); 4981 if (!is_bad_inode(inode)) { 4982 inode_tree_add(inode); 4983 unlock_new_inode(inode); 4984 if (new) 4985 *new = 1; 4986 } else { 4987 unlock_new_inode(inode); 4988 iput(inode); 4989 inode = ERR_PTR(-ESTALE); 4990 } 4991 } 4992 4993 return inode; 4994 } 4995 4996 static struct inode *new_simple_dir(struct super_block *s, 4997 struct btrfs_key *key, 4998 struct btrfs_root *root) 4999 { 5000 struct inode *inode = new_inode(s); 5001 5002 if (!inode) 5003 return ERR_PTR(-ENOMEM); 5004 5005 BTRFS_I(inode)->root = root; 5006 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5007 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5008 5009 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5010 inode->i_op = &btrfs_dir_ro_inode_operations; 5011 inode->i_fop = &simple_dir_operations; 5012 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5013 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5014 5015 return inode; 5016 } 5017 5018 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5019 { 5020 struct inode *inode; 5021 struct btrfs_root *root = BTRFS_I(dir)->root; 5022 struct btrfs_root *sub_root = root; 5023 struct btrfs_key location; 5024 int index; 5025 int ret = 0; 5026 5027 if (dentry->d_name.len > BTRFS_NAME_LEN) 5028 return ERR_PTR(-ENAMETOOLONG); 5029 5030 ret = btrfs_inode_by_name(dir, dentry, &location); 5031 if (ret < 0) 5032 return ERR_PTR(ret); 5033 5034 if (location.objectid == 0) 5035 return NULL; 5036 5037 if (location.type == BTRFS_INODE_ITEM_KEY) { 5038 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5039 return inode; 5040 } 5041 5042 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5043 5044 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5045 ret = fixup_tree_root_location(root, dir, dentry, 5046 &location, &sub_root); 5047 if (ret < 0) { 5048 if (ret != -ENOENT) 5049 inode = ERR_PTR(ret); 5050 else 5051 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5052 } else { 5053 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5054 } 5055 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5056 5057 if (!IS_ERR(inode) && root != sub_root) { 5058 down_read(&root->fs_info->cleanup_work_sem); 5059 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5060 ret = btrfs_orphan_cleanup(sub_root); 5061 up_read(&root->fs_info->cleanup_work_sem); 5062 if (ret) 5063 inode = ERR_PTR(ret); 5064 } 5065 5066 return inode; 5067 } 5068 5069 static int btrfs_dentry_delete(const struct dentry *dentry) 5070 { 5071 struct btrfs_root *root; 5072 struct inode *inode = dentry->d_inode; 5073 5074 if (!inode && !IS_ROOT(dentry)) 5075 inode = dentry->d_parent->d_inode; 5076 5077 if (inode) { 5078 root = BTRFS_I(inode)->root; 5079 if (btrfs_root_refs(&root->root_item) == 0) 5080 return 1; 5081 5082 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5083 return 1; 5084 } 5085 return 0; 5086 } 5087 5088 static void btrfs_dentry_release(struct dentry *dentry) 5089 { 5090 if (dentry->d_fsdata) 5091 kfree(dentry->d_fsdata); 5092 } 5093 5094 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5095 unsigned int flags) 5096 { 5097 struct dentry *ret; 5098 5099 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 5100 return ret; 5101 } 5102 5103 unsigned char btrfs_filetype_table[] = { 5104 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5105 }; 5106 5107 static int btrfs_real_readdir(struct file *filp, void *dirent, 5108 filldir_t filldir) 5109 { 5110 struct inode *inode = file_inode(filp); 5111 struct btrfs_root *root = BTRFS_I(inode)->root; 5112 struct btrfs_item *item; 5113 struct btrfs_dir_item *di; 5114 struct btrfs_key key; 5115 struct btrfs_key found_key; 5116 struct btrfs_path *path; 5117 struct list_head ins_list; 5118 struct list_head del_list; 5119 int ret; 5120 struct extent_buffer *leaf; 5121 int slot; 5122 unsigned char d_type; 5123 int over = 0; 5124 u32 di_cur; 5125 u32 di_total; 5126 u32 di_len; 5127 int key_type = BTRFS_DIR_INDEX_KEY; 5128 char tmp_name[32]; 5129 char *name_ptr; 5130 int name_len; 5131 int is_curr = 0; /* filp->f_pos points to the current index? */ 5132 5133 /* FIXME, use a real flag for deciding about the key type */ 5134 if (root->fs_info->tree_root == root) 5135 key_type = BTRFS_DIR_ITEM_KEY; 5136 5137 /* special case for "." */ 5138 if (filp->f_pos == 0) { 5139 over = filldir(dirent, ".", 1, 5140 filp->f_pos, btrfs_ino(inode), DT_DIR); 5141 if (over) 5142 return 0; 5143 filp->f_pos = 1; 5144 } 5145 /* special case for .., just use the back ref */ 5146 if (filp->f_pos == 1) { 5147 u64 pino = parent_ino(filp->f_path.dentry); 5148 over = filldir(dirent, "..", 2, 5149 filp->f_pos, pino, DT_DIR); 5150 if (over) 5151 return 0; 5152 filp->f_pos = 2; 5153 } 5154 path = btrfs_alloc_path(); 5155 if (!path) 5156 return -ENOMEM; 5157 5158 path->reada = 1; 5159 5160 if (key_type == BTRFS_DIR_INDEX_KEY) { 5161 INIT_LIST_HEAD(&ins_list); 5162 INIT_LIST_HEAD(&del_list); 5163 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5164 } 5165 5166 btrfs_set_key_type(&key, key_type); 5167 key.offset = filp->f_pos; 5168 key.objectid = btrfs_ino(inode); 5169 5170 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5171 if (ret < 0) 5172 goto err; 5173 5174 while (1) { 5175 leaf = path->nodes[0]; 5176 slot = path->slots[0]; 5177 if (slot >= btrfs_header_nritems(leaf)) { 5178 ret = btrfs_next_leaf(root, path); 5179 if (ret < 0) 5180 goto err; 5181 else if (ret > 0) 5182 break; 5183 continue; 5184 } 5185 5186 item = btrfs_item_nr(leaf, slot); 5187 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5188 5189 if (found_key.objectid != key.objectid) 5190 break; 5191 if (btrfs_key_type(&found_key) != key_type) 5192 break; 5193 if (found_key.offset < filp->f_pos) 5194 goto next; 5195 if (key_type == BTRFS_DIR_INDEX_KEY && 5196 btrfs_should_delete_dir_index(&del_list, 5197 found_key.offset)) 5198 goto next; 5199 5200 filp->f_pos = found_key.offset; 5201 is_curr = 1; 5202 5203 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5204 di_cur = 0; 5205 di_total = btrfs_item_size(leaf, item); 5206 5207 while (di_cur < di_total) { 5208 struct btrfs_key location; 5209 5210 if (verify_dir_item(root, leaf, di)) 5211 break; 5212 5213 name_len = btrfs_dir_name_len(leaf, di); 5214 if (name_len <= sizeof(tmp_name)) { 5215 name_ptr = tmp_name; 5216 } else { 5217 name_ptr = kmalloc(name_len, GFP_NOFS); 5218 if (!name_ptr) { 5219 ret = -ENOMEM; 5220 goto err; 5221 } 5222 } 5223 read_extent_buffer(leaf, name_ptr, 5224 (unsigned long)(di + 1), name_len); 5225 5226 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5227 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5228 5229 5230 /* is this a reference to our own snapshot? If so 5231 * skip it. 5232 * 5233 * In contrast to old kernels, we insert the snapshot's 5234 * dir item and dir index after it has been created, so 5235 * we won't find a reference to our own snapshot. We 5236 * still keep the following code for backward 5237 * compatibility. 5238 */ 5239 if (location.type == BTRFS_ROOT_ITEM_KEY && 5240 location.objectid == root->root_key.objectid) { 5241 over = 0; 5242 goto skip; 5243 } 5244 over = filldir(dirent, name_ptr, name_len, 5245 found_key.offset, location.objectid, 5246 d_type); 5247 5248 skip: 5249 if (name_ptr != tmp_name) 5250 kfree(name_ptr); 5251 5252 if (over) 5253 goto nopos; 5254 di_len = btrfs_dir_name_len(leaf, di) + 5255 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5256 di_cur += di_len; 5257 di = (struct btrfs_dir_item *)((char *)di + di_len); 5258 } 5259 next: 5260 path->slots[0]++; 5261 } 5262 5263 if (key_type == BTRFS_DIR_INDEX_KEY) { 5264 if (is_curr) 5265 filp->f_pos++; 5266 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 5267 &ins_list); 5268 if (ret) 5269 goto nopos; 5270 } 5271 5272 /* Reached end of directory/root. Bump pos past the last item. */ 5273 if (key_type == BTRFS_DIR_INDEX_KEY) 5274 /* 5275 * 32-bit glibc will use getdents64, but then strtol - 5276 * so the last number we can serve is this. 5277 */ 5278 filp->f_pos = 0x7fffffff; 5279 else 5280 filp->f_pos++; 5281 nopos: 5282 ret = 0; 5283 err: 5284 if (key_type == BTRFS_DIR_INDEX_KEY) 5285 btrfs_put_delayed_items(&ins_list, &del_list); 5286 btrfs_free_path(path); 5287 return ret; 5288 } 5289 5290 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5291 { 5292 struct btrfs_root *root = BTRFS_I(inode)->root; 5293 struct btrfs_trans_handle *trans; 5294 int ret = 0; 5295 bool nolock = false; 5296 5297 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5298 return 0; 5299 5300 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5301 nolock = true; 5302 5303 if (wbc->sync_mode == WB_SYNC_ALL) { 5304 if (nolock) 5305 trans = btrfs_join_transaction_nolock(root); 5306 else 5307 trans = btrfs_join_transaction(root); 5308 if (IS_ERR(trans)) 5309 return PTR_ERR(trans); 5310 ret = btrfs_commit_transaction(trans, root); 5311 } 5312 return ret; 5313 } 5314 5315 /* 5316 * This is somewhat expensive, updating the tree every time the 5317 * inode changes. But, it is most likely to find the inode in cache. 5318 * FIXME, needs more benchmarking...there are no reasons other than performance 5319 * to keep or drop this code. 5320 */ 5321 int btrfs_dirty_inode(struct inode *inode) 5322 { 5323 struct btrfs_root *root = BTRFS_I(inode)->root; 5324 struct btrfs_trans_handle *trans; 5325 int ret; 5326 5327 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5328 return 0; 5329 5330 trans = btrfs_join_transaction(root); 5331 if (IS_ERR(trans)) 5332 return PTR_ERR(trans); 5333 5334 ret = btrfs_update_inode(trans, root, inode); 5335 if (ret && ret == -ENOSPC) { 5336 /* whoops, lets try again with the full transaction */ 5337 btrfs_end_transaction(trans, root); 5338 trans = btrfs_start_transaction(root, 1); 5339 if (IS_ERR(trans)) 5340 return PTR_ERR(trans); 5341 5342 ret = btrfs_update_inode(trans, root, inode); 5343 } 5344 btrfs_end_transaction(trans, root); 5345 if (BTRFS_I(inode)->delayed_node) 5346 btrfs_balance_delayed_items(root); 5347 5348 return ret; 5349 } 5350 5351 /* 5352 * This is a copy of file_update_time. We need this so we can return error on 5353 * ENOSPC for updating the inode in the case of file write and mmap writes. 5354 */ 5355 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5356 int flags) 5357 { 5358 struct btrfs_root *root = BTRFS_I(inode)->root; 5359 5360 if (btrfs_root_readonly(root)) 5361 return -EROFS; 5362 5363 if (flags & S_VERSION) 5364 inode_inc_iversion(inode); 5365 if (flags & S_CTIME) 5366 inode->i_ctime = *now; 5367 if (flags & S_MTIME) 5368 inode->i_mtime = *now; 5369 if (flags & S_ATIME) 5370 inode->i_atime = *now; 5371 return btrfs_dirty_inode(inode); 5372 } 5373 5374 /* 5375 * find the highest existing sequence number in a directory 5376 * and then set the in-memory index_cnt variable to reflect 5377 * free sequence numbers 5378 */ 5379 static int btrfs_set_inode_index_count(struct inode *inode) 5380 { 5381 struct btrfs_root *root = BTRFS_I(inode)->root; 5382 struct btrfs_key key, found_key; 5383 struct btrfs_path *path; 5384 struct extent_buffer *leaf; 5385 int ret; 5386 5387 key.objectid = btrfs_ino(inode); 5388 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5389 key.offset = (u64)-1; 5390 5391 path = btrfs_alloc_path(); 5392 if (!path) 5393 return -ENOMEM; 5394 5395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5396 if (ret < 0) 5397 goto out; 5398 /* FIXME: we should be able to handle this */ 5399 if (ret == 0) 5400 goto out; 5401 ret = 0; 5402 5403 /* 5404 * MAGIC NUMBER EXPLANATION: 5405 * since we search a directory based on f_pos we have to start at 2 5406 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5407 * else has to start at 2 5408 */ 5409 if (path->slots[0] == 0) { 5410 BTRFS_I(inode)->index_cnt = 2; 5411 goto out; 5412 } 5413 5414 path->slots[0]--; 5415 5416 leaf = path->nodes[0]; 5417 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5418 5419 if (found_key.objectid != btrfs_ino(inode) || 5420 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5421 BTRFS_I(inode)->index_cnt = 2; 5422 goto out; 5423 } 5424 5425 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5426 out: 5427 btrfs_free_path(path); 5428 return ret; 5429 } 5430 5431 /* 5432 * helper to find a free sequence number in a given directory. This current 5433 * code is very simple, later versions will do smarter things in the btree 5434 */ 5435 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5436 { 5437 int ret = 0; 5438 5439 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5440 ret = btrfs_inode_delayed_dir_index_count(dir); 5441 if (ret) { 5442 ret = btrfs_set_inode_index_count(dir); 5443 if (ret) 5444 return ret; 5445 } 5446 } 5447 5448 *index = BTRFS_I(dir)->index_cnt; 5449 BTRFS_I(dir)->index_cnt++; 5450 5451 return ret; 5452 } 5453 5454 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5455 struct btrfs_root *root, 5456 struct inode *dir, 5457 const char *name, int name_len, 5458 u64 ref_objectid, u64 objectid, 5459 umode_t mode, u64 *index) 5460 { 5461 struct inode *inode; 5462 struct btrfs_inode_item *inode_item; 5463 struct btrfs_key *location; 5464 struct btrfs_path *path; 5465 struct btrfs_inode_ref *ref; 5466 struct btrfs_key key[2]; 5467 u32 sizes[2]; 5468 unsigned long ptr; 5469 int ret; 5470 int owner; 5471 5472 path = btrfs_alloc_path(); 5473 if (!path) 5474 return ERR_PTR(-ENOMEM); 5475 5476 inode = new_inode(root->fs_info->sb); 5477 if (!inode) { 5478 btrfs_free_path(path); 5479 return ERR_PTR(-ENOMEM); 5480 } 5481 5482 /* 5483 * we have to initialize this early, so we can reclaim the inode 5484 * number if we fail afterwards in this function. 5485 */ 5486 inode->i_ino = objectid; 5487 5488 if (dir) { 5489 trace_btrfs_inode_request(dir); 5490 5491 ret = btrfs_set_inode_index(dir, index); 5492 if (ret) { 5493 btrfs_free_path(path); 5494 iput(inode); 5495 return ERR_PTR(ret); 5496 } 5497 } 5498 /* 5499 * index_cnt is ignored for everything but a dir, 5500 * btrfs_get_inode_index_count has an explanation for the magic 5501 * number 5502 */ 5503 BTRFS_I(inode)->index_cnt = 2; 5504 BTRFS_I(inode)->root = root; 5505 BTRFS_I(inode)->generation = trans->transid; 5506 inode->i_generation = BTRFS_I(inode)->generation; 5507 5508 /* 5509 * We could have gotten an inode number from somebody who was fsynced 5510 * and then removed in this same transaction, so let's just set full 5511 * sync since it will be a full sync anyway and this will blow away the 5512 * old info in the log. 5513 */ 5514 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5515 5516 if (S_ISDIR(mode)) 5517 owner = 0; 5518 else 5519 owner = 1; 5520 5521 key[0].objectid = objectid; 5522 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5523 key[0].offset = 0; 5524 5525 /* 5526 * Start new inodes with an inode_ref. This is slightly more 5527 * efficient for small numbers of hard links since they will 5528 * be packed into one item. Extended refs will kick in if we 5529 * add more hard links than can fit in the ref item. 5530 */ 5531 key[1].objectid = objectid; 5532 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5533 key[1].offset = ref_objectid; 5534 5535 sizes[0] = sizeof(struct btrfs_inode_item); 5536 sizes[1] = name_len + sizeof(*ref); 5537 5538 path->leave_spinning = 1; 5539 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5540 if (ret != 0) 5541 goto fail; 5542 5543 inode_init_owner(inode, dir, mode); 5544 inode_set_bytes(inode, 0); 5545 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5546 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5547 struct btrfs_inode_item); 5548 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5549 sizeof(*inode_item)); 5550 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5551 5552 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5553 struct btrfs_inode_ref); 5554 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5555 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5556 ptr = (unsigned long)(ref + 1); 5557 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5558 5559 btrfs_mark_buffer_dirty(path->nodes[0]); 5560 btrfs_free_path(path); 5561 5562 location = &BTRFS_I(inode)->location; 5563 location->objectid = objectid; 5564 location->offset = 0; 5565 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5566 5567 btrfs_inherit_iflags(inode, dir); 5568 5569 if (S_ISREG(mode)) { 5570 if (btrfs_test_opt(root, NODATASUM)) 5571 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5572 if (btrfs_test_opt(root, NODATACOW)) 5573 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5574 BTRFS_INODE_NODATASUM; 5575 } 5576 5577 insert_inode_hash(inode); 5578 inode_tree_add(inode); 5579 5580 trace_btrfs_inode_new(inode); 5581 btrfs_set_inode_last_trans(trans, inode); 5582 5583 btrfs_update_root_times(trans, root); 5584 5585 return inode; 5586 fail: 5587 if (dir) 5588 BTRFS_I(dir)->index_cnt--; 5589 btrfs_free_path(path); 5590 iput(inode); 5591 return ERR_PTR(ret); 5592 } 5593 5594 static inline u8 btrfs_inode_type(struct inode *inode) 5595 { 5596 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5597 } 5598 5599 /* 5600 * utility function to add 'inode' into 'parent_inode' with 5601 * a give name and a given sequence number. 5602 * if 'add_backref' is true, also insert a backref from the 5603 * inode to the parent directory. 5604 */ 5605 int btrfs_add_link(struct btrfs_trans_handle *trans, 5606 struct inode *parent_inode, struct inode *inode, 5607 const char *name, int name_len, int add_backref, u64 index) 5608 { 5609 int ret = 0; 5610 struct btrfs_key key; 5611 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5612 u64 ino = btrfs_ino(inode); 5613 u64 parent_ino = btrfs_ino(parent_inode); 5614 5615 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5616 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5617 } else { 5618 key.objectid = ino; 5619 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5620 key.offset = 0; 5621 } 5622 5623 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5624 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5625 key.objectid, root->root_key.objectid, 5626 parent_ino, index, name, name_len); 5627 } else if (add_backref) { 5628 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5629 parent_ino, index); 5630 } 5631 5632 /* Nothing to clean up yet */ 5633 if (ret) 5634 return ret; 5635 5636 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5637 parent_inode, &key, 5638 btrfs_inode_type(inode), index); 5639 if (ret == -EEXIST || ret == -EOVERFLOW) 5640 goto fail_dir_item; 5641 else if (ret) { 5642 btrfs_abort_transaction(trans, root, ret); 5643 return ret; 5644 } 5645 5646 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5647 name_len * 2); 5648 inode_inc_iversion(parent_inode); 5649 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5650 ret = btrfs_update_inode(trans, root, parent_inode); 5651 if (ret) 5652 btrfs_abort_transaction(trans, root, ret); 5653 return ret; 5654 5655 fail_dir_item: 5656 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5657 u64 local_index; 5658 int err; 5659 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5660 key.objectid, root->root_key.objectid, 5661 parent_ino, &local_index, name, name_len); 5662 5663 } else if (add_backref) { 5664 u64 local_index; 5665 int err; 5666 5667 err = btrfs_del_inode_ref(trans, root, name, name_len, 5668 ino, parent_ino, &local_index); 5669 } 5670 return ret; 5671 } 5672 5673 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5674 struct inode *dir, struct dentry *dentry, 5675 struct inode *inode, int backref, u64 index) 5676 { 5677 int err = btrfs_add_link(trans, dir, inode, 5678 dentry->d_name.name, dentry->d_name.len, 5679 backref, index); 5680 if (err > 0) 5681 err = -EEXIST; 5682 return err; 5683 } 5684 5685 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5686 umode_t mode, dev_t rdev) 5687 { 5688 struct btrfs_trans_handle *trans; 5689 struct btrfs_root *root = BTRFS_I(dir)->root; 5690 struct inode *inode = NULL; 5691 int err; 5692 int drop_inode = 0; 5693 u64 objectid; 5694 u64 index = 0; 5695 5696 if (!new_valid_dev(rdev)) 5697 return -EINVAL; 5698 5699 /* 5700 * 2 for inode item and ref 5701 * 2 for dir items 5702 * 1 for xattr if selinux is on 5703 */ 5704 trans = btrfs_start_transaction(root, 5); 5705 if (IS_ERR(trans)) 5706 return PTR_ERR(trans); 5707 5708 err = btrfs_find_free_ino(root, &objectid); 5709 if (err) 5710 goto out_unlock; 5711 5712 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5713 dentry->d_name.len, btrfs_ino(dir), objectid, 5714 mode, &index); 5715 if (IS_ERR(inode)) { 5716 err = PTR_ERR(inode); 5717 goto out_unlock; 5718 } 5719 5720 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5721 if (err) { 5722 drop_inode = 1; 5723 goto out_unlock; 5724 } 5725 5726 /* 5727 * If the active LSM wants to access the inode during 5728 * d_instantiate it needs these. Smack checks to see 5729 * if the filesystem supports xattrs by looking at the 5730 * ops vector. 5731 */ 5732 5733 inode->i_op = &btrfs_special_inode_operations; 5734 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5735 if (err) 5736 drop_inode = 1; 5737 else { 5738 init_special_inode(inode, inode->i_mode, rdev); 5739 btrfs_update_inode(trans, root, inode); 5740 d_instantiate(dentry, inode); 5741 } 5742 out_unlock: 5743 btrfs_end_transaction(trans, root); 5744 btrfs_btree_balance_dirty(root); 5745 if (drop_inode) { 5746 inode_dec_link_count(inode); 5747 iput(inode); 5748 } 5749 return err; 5750 } 5751 5752 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5753 umode_t mode, bool excl) 5754 { 5755 struct btrfs_trans_handle *trans; 5756 struct btrfs_root *root = BTRFS_I(dir)->root; 5757 struct inode *inode = NULL; 5758 int drop_inode_on_err = 0; 5759 int err; 5760 u64 objectid; 5761 u64 index = 0; 5762 5763 /* 5764 * 2 for inode item and ref 5765 * 2 for dir items 5766 * 1 for xattr if selinux is on 5767 */ 5768 trans = btrfs_start_transaction(root, 5); 5769 if (IS_ERR(trans)) 5770 return PTR_ERR(trans); 5771 5772 err = btrfs_find_free_ino(root, &objectid); 5773 if (err) 5774 goto out_unlock; 5775 5776 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5777 dentry->d_name.len, btrfs_ino(dir), objectid, 5778 mode, &index); 5779 if (IS_ERR(inode)) { 5780 err = PTR_ERR(inode); 5781 goto out_unlock; 5782 } 5783 drop_inode_on_err = 1; 5784 5785 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5786 if (err) 5787 goto out_unlock; 5788 5789 err = btrfs_update_inode(trans, root, inode); 5790 if (err) 5791 goto out_unlock; 5792 5793 /* 5794 * If the active LSM wants to access the inode during 5795 * d_instantiate it needs these. Smack checks to see 5796 * if the filesystem supports xattrs by looking at the 5797 * ops vector. 5798 */ 5799 inode->i_fop = &btrfs_file_operations; 5800 inode->i_op = &btrfs_file_inode_operations; 5801 5802 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5803 if (err) 5804 goto out_unlock; 5805 5806 inode->i_mapping->a_ops = &btrfs_aops; 5807 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5808 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5809 d_instantiate(dentry, inode); 5810 5811 out_unlock: 5812 btrfs_end_transaction(trans, root); 5813 if (err && drop_inode_on_err) { 5814 inode_dec_link_count(inode); 5815 iput(inode); 5816 } 5817 btrfs_btree_balance_dirty(root); 5818 return err; 5819 } 5820 5821 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5822 struct dentry *dentry) 5823 { 5824 struct btrfs_trans_handle *trans; 5825 struct btrfs_root *root = BTRFS_I(dir)->root; 5826 struct inode *inode = old_dentry->d_inode; 5827 u64 index; 5828 int err; 5829 int drop_inode = 0; 5830 5831 /* do not allow sys_link's with other subvols of the same device */ 5832 if (root->objectid != BTRFS_I(inode)->root->objectid) 5833 return -EXDEV; 5834 5835 if (inode->i_nlink >= BTRFS_LINK_MAX) 5836 return -EMLINK; 5837 5838 err = btrfs_set_inode_index(dir, &index); 5839 if (err) 5840 goto fail; 5841 5842 /* 5843 * 2 items for inode and inode ref 5844 * 2 items for dir items 5845 * 1 item for parent inode 5846 */ 5847 trans = btrfs_start_transaction(root, 5); 5848 if (IS_ERR(trans)) { 5849 err = PTR_ERR(trans); 5850 goto fail; 5851 } 5852 5853 btrfs_inc_nlink(inode); 5854 inode_inc_iversion(inode); 5855 inode->i_ctime = CURRENT_TIME; 5856 ihold(inode); 5857 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5858 5859 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5860 5861 if (err) { 5862 drop_inode = 1; 5863 } else { 5864 struct dentry *parent = dentry->d_parent; 5865 err = btrfs_update_inode(trans, root, inode); 5866 if (err) 5867 goto fail; 5868 d_instantiate(dentry, inode); 5869 btrfs_log_new_name(trans, inode, NULL, parent); 5870 } 5871 5872 btrfs_end_transaction(trans, root); 5873 fail: 5874 if (drop_inode) { 5875 inode_dec_link_count(inode); 5876 iput(inode); 5877 } 5878 btrfs_btree_balance_dirty(root); 5879 return err; 5880 } 5881 5882 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5883 { 5884 struct inode *inode = NULL; 5885 struct btrfs_trans_handle *trans; 5886 struct btrfs_root *root = BTRFS_I(dir)->root; 5887 int err = 0; 5888 int drop_on_err = 0; 5889 u64 objectid = 0; 5890 u64 index = 0; 5891 5892 /* 5893 * 2 items for inode and ref 5894 * 2 items for dir items 5895 * 1 for xattr if selinux is on 5896 */ 5897 trans = btrfs_start_transaction(root, 5); 5898 if (IS_ERR(trans)) 5899 return PTR_ERR(trans); 5900 5901 err = btrfs_find_free_ino(root, &objectid); 5902 if (err) 5903 goto out_fail; 5904 5905 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5906 dentry->d_name.len, btrfs_ino(dir), objectid, 5907 S_IFDIR | mode, &index); 5908 if (IS_ERR(inode)) { 5909 err = PTR_ERR(inode); 5910 goto out_fail; 5911 } 5912 5913 drop_on_err = 1; 5914 5915 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5916 if (err) 5917 goto out_fail; 5918 5919 inode->i_op = &btrfs_dir_inode_operations; 5920 inode->i_fop = &btrfs_dir_file_operations; 5921 5922 btrfs_i_size_write(inode, 0); 5923 err = btrfs_update_inode(trans, root, inode); 5924 if (err) 5925 goto out_fail; 5926 5927 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5928 dentry->d_name.len, 0, index); 5929 if (err) 5930 goto out_fail; 5931 5932 d_instantiate(dentry, inode); 5933 drop_on_err = 0; 5934 5935 out_fail: 5936 btrfs_end_transaction(trans, root); 5937 if (drop_on_err) 5938 iput(inode); 5939 btrfs_btree_balance_dirty(root); 5940 return err; 5941 } 5942 5943 /* helper for btfs_get_extent. Given an existing extent in the tree, 5944 * and an extent that you want to insert, deal with overlap and insert 5945 * the new extent into the tree. 5946 */ 5947 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5948 struct extent_map *existing, 5949 struct extent_map *em, 5950 u64 map_start, u64 map_len) 5951 { 5952 u64 start_diff; 5953 5954 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5955 start_diff = map_start - em->start; 5956 em->start = map_start; 5957 em->len = map_len; 5958 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5959 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5960 em->block_start += start_diff; 5961 em->block_len -= start_diff; 5962 } 5963 return add_extent_mapping(em_tree, em); 5964 } 5965 5966 static noinline int uncompress_inline(struct btrfs_path *path, 5967 struct inode *inode, struct page *page, 5968 size_t pg_offset, u64 extent_offset, 5969 struct btrfs_file_extent_item *item) 5970 { 5971 int ret; 5972 struct extent_buffer *leaf = path->nodes[0]; 5973 char *tmp; 5974 size_t max_size; 5975 unsigned long inline_size; 5976 unsigned long ptr; 5977 int compress_type; 5978 5979 WARN_ON(pg_offset != 0); 5980 compress_type = btrfs_file_extent_compression(leaf, item); 5981 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5982 inline_size = btrfs_file_extent_inline_item_len(leaf, 5983 btrfs_item_nr(leaf, path->slots[0])); 5984 tmp = kmalloc(inline_size, GFP_NOFS); 5985 if (!tmp) 5986 return -ENOMEM; 5987 ptr = btrfs_file_extent_inline_start(item); 5988 5989 read_extent_buffer(leaf, tmp, ptr, inline_size); 5990 5991 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5992 ret = btrfs_decompress(compress_type, tmp, page, 5993 extent_offset, inline_size, max_size); 5994 if (ret) { 5995 char *kaddr = kmap_atomic(page); 5996 unsigned long copy_size = min_t(u64, 5997 PAGE_CACHE_SIZE - pg_offset, 5998 max_size - extent_offset); 5999 memset(kaddr + pg_offset, 0, copy_size); 6000 kunmap_atomic(kaddr); 6001 } 6002 kfree(tmp); 6003 return 0; 6004 } 6005 6006 /* 6007 * a bit scary, this does extent mapping from logical file offset to the disk. 6008 * the ugly parts come from merging extents from the disk with the in-ram 6009 * representation. This gets more complex because of the data=ordered code, 6010 * where the in-ram extents might be locked pending data=ordered completion. 6011 * 6012 * This also copies inline extents directly into the page. 6013 */ 6014 6015 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6016 size_t pg_offset, u64 start, u64 len, 6017 int create) 6018 { 6019 int ret; 6020 int err = 0; 6021 u64 bytenr; 6022 u64 extent_start = 0; 6023 u64 extent_end = 0; 6024 u64 objectid = btrfs_ino(inode); 6025 u32 found_type; 6026 struct btrfs_path *path = NULL; 6027 struct btrfs_root *root = BTRFS_I(inode)->root; 6028 struct btrfs_file_extent_item *item; 6029 struct extent_buffer *leaf; 6030 struct btrfs_key found_key; 6031 struct extent_map *em = NULL; 6032 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6033 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6034 struct btrfs_trans_handle *trans = NULL; 6035 int compress_type; 6036 6037 again: 6038 read_lock(&em_tree->lock); 6039 em = lookup_extent_mapping(em_tree, start, len); 6040 if (em) 6041 em->bdev = root->fs_info->fs_devices->latest_bdev; 6042 read_unlock(&em_tree->lock); 6043 6044 if (em) { 6045 if (em->start > start || em->start + em->len <= start) 6046 free_extent_map(em); 6047 else if (em->block_start == EXTENT_MAP_INLINE && page) 6048 free_extent_map(em); 6049 else 6050 goto out; 6051 } 6052 em = alloc_extent_map(); 6053 if (!em) { 6054 err = -ENOMEM; 6055 goto out; 6056 } 6057 em->bdev = root->fs_info->fs_devices->latest_bdev; 6058 em->start = EXTENT_MAP_HOLE; 6059 em->orig_start = EXTENT_MAP_HOLE; 6060 em->len = (u64)-1; 6061 em->block_len = (u64)-1; 6062 6063 if (!path) { 6064 path = btrfs_alloc_path(); 6065 if (!path) { 6066 err = -ENOMEM; 6067 goto out; 6068 } 6069 /* 6070 * Chances are we'll be called again, so go ahead and do 6071 * readahead 6072 */ 6073 path->reada = 1; 6074 } 6075 6076 ret = btrfs_lookup_file_extent(trans, root, path, 6077 objectid, start, trans != NULL); 6078 if (ret < 0) { 6079 err = ret; 6080 goto out; 6081 } 6082 6083 if (ret != 0) { 6084 if (path->slots[0] == 0) 6085 goto not_found; 6086 path->slots[0]--; 6087 } 6088 6089 leaf = path->nodes[0]; 6090 item = btrfs_item_ptr(leaf, path->slots[0], 6091 struct btrfs_file_extent_item); 6092 /* are we inside the extent that was found? */ 6093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6094 found_type = btrfs_key_type(&found_key); 6095 if (found_key.objectid != objectid || 6096 found_type != BTRFS_EXTENT_DATA_KEY) { 6097 goto not_found; 6098 } 6099 6100 found_type = btrfs_file_extent_type(leaf, item); 6101 extent_start = found_key.offset; 6102 compress_type = btrfs_file_extent_compression(leaf, item); 6103 if (found_type == BTRFS_FILE_EXTENT_REG || 6104 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6105 extent_end = extent_start + 6106 btrfs_file_extent_num_bytes(leaf, item); 6107 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6108 size_t size; 6109 size = btrfs_file_extent_inline_len(leaf, item); 6110 extent_end = ALIGN(extent_start + size, root->sectorsize); 6111 } 6112 6113 if (start >= extent_end) { 6114 path->slots[0]++; 6115 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6116 ret = btrfs_next_leaf(root, path); 6117 if (ret < 0) { 6118 err = ret; 6119 goto out; 6120 } 6121 if (ret > 0) 6122 goto not_found; 6123 leaf = path->nodes[0]; 6124 } 6125 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6126 if (found_key.objectid != objectid || 6127 found_key.type != BTRFS_EXTENT_DATA_KEY) 6128 goto not_found; 6129 if (start + len <= found_key.offset) 6130 goto not_found; 6131 em->start = start; 6132 em->orig_start = start; 6133 em->len = found_key.offset - start; 6134 goto not_found_em; 6135 } 6136 6137 if (found_type == BTRFS_FILE_EXTENT_REG || 6138 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6139 em->start = extent_start; 6140 em->len = extent_end - extent_start; 6141 em->orig_start = extent_start - 6142 btrfs_file_extent_offset(leaf, item); 6143 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 6144 item); 6145 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 6146 if (bytenr == 0) { 6147 em->block_start = EXTENT_MAP_HOLE; 6148 goto insert; 6149 } 6150 if (compress_type != BTRFS_COMPRESS_NONE) { 6151 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6152 em->compress_type = compress_type; 6153 em->block_start = bytenr; 6154 em->block_len = em->orig_block_len; 6155 } else { 6156 bytenr += btrfs_file_extent_offset(leaf, item); 6157 em->block_start = bytenr; 6158 em->block_len = em->len; 6159 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 6160 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6161 } 6162 goto insert; 6163 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6164 unsigned long ptr; 6165 char *map; 6166 size_t size; 6167 size_t extent_offset; 6168 size_t copy_size; 6169 6170 em->block_start = EXTENT_MAP_INLINE; 6171 if (!page || create) { 6172 em->start = extent_start; 6173 em->len = extent_end - extent_start; 6174 goto out; 6175 } 6176 6177 size = btrfs_file_extent_inline_len(leaf, item); 6178 extent_offset = page_offset(page) + pg_offset - extent_start; 6179 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6180 size - extent_offset); 6181 em->start = extent_start + extent_offset; 6182 em->len = ALIGN(copy_size, root->sectorsize); 6183 em->orig_block_len = em->len; 6184 em->orig_start = em->start; 6185 if (compress_type) { 6186 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6187 em->compress_type = compress_type; 6188 } 6189 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6190 if (create == 0 && !PageUptodate(page)) { 6191 if (btrfs_file_extent_compression(leaf, item) != 6192 BTRFS_COMPRESS_NONE) { 6193 ret = uncompress_inline(path, inode, page, 6194 pg_offset, 6195 extent_offset, item); 6196 BUG_ON(ret); /* -ENOMEM */ 6197 } else { 6198 map = kmap(page); 6199 read_extent_buffer(leaf, map + pg_offset, ptr, 6200 copy_size); 6201 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6202 memset(map + pg_offset + copy_size, 0, 6203 PAGE_CACHE_SIZE - pg_offset - 6204 copy_size); 6205 } 6206 kunmap(page); 6207 } 6208 flush_dcache_page(page); 6209 } else if (create && PageUptodate(page)) { 6210 BUG(); 6211 if (!trans) { 6212 kunmap(page); 6213 free_extent_map(em); 6214 em = NULL; 6215 6216 btrfs_release_path(path); 6217 trans = btrfs_join_transaction(root); 6218 6219 if (IS_ERR(trans)) 6220 return ERR_CAST(trans); 6221 goto again; 6222 } 6223 map = kmap(page); 6224 write_extent_buffer(leaf, map + pg_offset, ptr, 6225 copy_size); 6226 kunmap(page); 6227 btrfs_mark_buffer_dirty(leaf); 6228 } 6229 set_extent_uptodate(io_tree, em->start, 6230 extent_map_end(em) - 1, NULL, GFP_NOFS); 6231 goto insert; 6232 } else { 6233 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6234 } 6235 not_found: 6236 em->start = start; 6237 em->orig_start = start; 6238 em->len = len; 6239 not_found_em: 6240 em->block_start = EXTENT_MAP_HOLE; 6241 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6242 insert: 6243 btrfs_release_path(path); 6244 if (em->start > start || extent_map_end(em) <= start) { 6245 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 6246 "[%llu %llu]\n", (unsigned long long)em->start, 6247 (unsigned long long)em->len, 6248 (unsigned long long)start, 6249 (unsigned long long)len); 6250 err = -EIO; 6251 goto out; 6252 } 6253 6254 err = 0; 6255 write_lock(&em_tree->lock); 6256 ret = add_extent_mapping(em_tree, em); 6257 /* it is possible that someone inserted the extent into the tree 6258 * while we had the lock dropped. It is also possible that 6259 * an overlapping map exists in the tree 6260 */ 6261 if (ret == -EEXIST) { 6262 struct extent_map *existing; 6263 6264 ret = 0; 6265 6266 existing = lookup_extent_mapping(em_tree, start, len); 6267 if (existing && (existing->start > start || 6268 existing->start + existing->len <= start)) { 6269 free_extent_map(existing); 6270 existing = NULL; 6271 } 6272 if (!existing) { 6273 existing = lookup_extent_mapping(em_tree, em->start, 6274 em->len); 6275 if (existing) { 6276 err = merge_extent_mapping(em_tree, existing, 6277 em, start, 6278 root->sectorsize); 6279 free_extent_map(existing); 6280 if (err) { 6281 free_extent_map(em); 6282 em = NULL; 6283 } 6284 } else { 6285 err = -EIO; 6286 free_extent_map(em); 6287 em = NULL; 6288 } 6289 } else { 6290 free_extent_map(em); 6291 em = existing; 6292 err = 0; 6293 } 6294 } 6295 write_unlock(&em_tree->lock); 6296 out: 6297 6298 if (em) 6299 trace_btrfs_get_extent(root, em); 6300 6301 if (path) 6302 btrfs_free_path(path); 6303 if (trans) { 6304 ret = btrfs_end_transaction(trans, root); 6305 if (!err) 6306 err = ret; 6307 } 6308 if (err) { 6309 free_extent_map(em); 6310 return ERR_PTR(err); 6311 } 6312 BUG_ON(!em); /* Error is always set */ 6313 return em; 6314 } 6315 6316 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6317 size_t pg_offset, u64 start, u64 len, 6318 int create) 6319 { 6320 struct extent_map *em; 6321 struct extent_map *hole_em = NULL; 6322 u64 range_start = start; 6323 u64 end; 6324 u64 found; 6325 u64 found_end; 6326 int err = 0; 6327 6328 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6329 if (IS_ERR(em)) 6330 return em; 6331 if (em) { 6332 /* 6333 * if our em maps to 6334 * - a hole or 6335 * - a pre-alloc extent, 6336 * there might actually be delalloc bytes behind it. 6337 */ 6338 if (em->block_start != EXTENT_MAP_HOLE && 6339 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6340 return em; 6341 else 6342 hole_em = em; 6343 } 6344 6345 /* check to see if we've wrapped (len == -1 or similar) */ 6346 end = start + len; 6347 if (end < start) 6348 end = (u64)-1; 6349 else 6350 end -= 1; 6351 6352 em = NULL; 6353 6354 /* ok, we didn't find anything, lets look for delalloc */ 6355 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6356 end, len, EXTENT_DELALLOC, 1); 6357 found_end = range_start + found; 6358 if (found_end < range_start) 6359 found_end = (u64)-1; 6360 6361 /* 6362 * we didn't find anything useful, return 6363 * the original results from get_extent() 6364 */ 6365 if (range_start > end || found_end <= start) { 6366 em = hole_em; 6367 hole_em = NULL; 6368 goto out; 6369 } 6370 6371 /* adjust the range_start to make sure it doesn't 6372 * go backwards from the start they passed in 6373 */ 6374 range_start = max(start,range_start); 6375 found = found_end - range_start; 6376 6377 if (found > 0) { 6378 u64 hole_start = start; 6379 u64 hole_len = len; 6380 6381 em = alloc_extent_map(); 6382 if (!em) { 6383 err = -ENOMEM; 6384 goto out; 6385 } 6386 /* 6387 * when btrfs_get_extent can't find anything it 6388 * returns one huge hole 6389 * 6390 * make sure what it found really fits our range, and 6391 * adjust to make sure it is based on the start from 6392 * the caller 6393 */ 6394 if (hole_em) { 6395 u64 calc_end = extent_map_end(hole_em); 6396 6397 if (calc_end <= start || (hole_em->start > end)) { 6398 free_extent_map(hole_em); 6399 hole_em = NULL; 6400 } else { 6401 hole_start = max(hole_em->start, start); 6402 hole_len = calc_end - hole_start; 6403 } 6404 } 6405 em->bdev = NULL; 6406 if (hole_em && range_start > hole_start) { 6407 /* our hole starts before our delalloc, so we 6408 * have to return just the parts of the hole 6409 * that go until the delalloc starts 6410 */ 6411 em->len = min(hole_len, 6412 range_start - hole_start); 6413 em->start = hole_start; 6414 em->orig_start = hole_start; 6415 /* 6416 * don't adjust block start at all, 6417 * it is fixed at EXTENT_MAP_HOLE 6418 */ 6419 em->block_start = hole_em->block_start; 6420 em->block_len = hole_len; 6421 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6422 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6423 } else { 6424 em->start = range_start; 6425 em->len = found; 6426 em->orig_start = range_start; 6427 em->block_start = EXTENT_MAP_DELALLOC; 6428 em->block_len = found; 6429 } 6430 } else if (hole_em) { 6431 return hole_em; 6432 } 6433 out: 6434 6435 free_extent_map(hole_em); 6436 if (err) { 6437 free_extent_map(em); 6438 return ERR_PTR(err); 6439 } 6440 return em; 6441 } 6442 6443 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6444 u64 start, u64 len) 6445 { 6446 struct btrfs_root *root = BTRFS_I(inode)->root; 6447 struct btrfs_trans_handle *trans; 6448 struct extent_map *em; 6449 struct btrfs_key ins; 6450 u64 alloc_hint; 6451 int ret; 6452 6453 trans = btrfs_join_transaction(root); 6454 if (IS_ERR(trans)) 6455 return ERR_CAST(trans); 6456 6457 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 6458 6459 alloc_hint = get_extent_allocation_hint(inode, start, len); 6460 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 6461 alloc_hint, &ins, 1); 6462 if (ret) { 6463 em = ERR_PTR(ret); 6464 goto out; 6465 } 6466 6467 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6468 ins.offset, ins.offset, 0); 6469 if (IS_ERR(em)) 6470 goto out; 6471 6472 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6473 ins.offset, ins.offset, 0); 6474 if (ret) { 6475 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6476 em = ERR_PTR(ret); 6477 } 6478 out: 6479 btrfs_end_transaction(trans, root); 6480 return em; 6481 } 6482 6483 /* 6484 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6485 * block must be cow'd 6486 */ 6487 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 6488 struct inode *inode, u64 offset, u64 len) 6489 { 6490 struct btrfs_path *path; 6491 int ret; 6492 struct extent_buffer *leaf; 6493 struct btrfs_root *root = BTRFS_I(inode)->root; 6494 struct btrfs_file_extent_item *fi; 6495 struct btrfs_key key; 6496 u64 disk_bytenr; 6497 u64 backref_offset; 6498 u64 extent_end; 6499 u64 num_bytes; 6500 int slot; 6501 int found_type; 6502 6503 path = btrfs_alloc_path(); 6504 if (!path) 6505 return -ENOMEM; 6506 6507 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 6508 offset, 0); 6509 if (ret < 0) 6510 goto out; 6511 6512 slot = path->slots[0]; 6513 if (ret == 1) { 6514 if (slot == 0) { 6515 /* can't find the item, must cow */ 6516 ret = 0; 6517 goto out; 6518 } 6519 slot--; 6520 } 6521 ret = 0; 6522 leaf = path->nodes[0]; 6523 btrfs_item_key_to_cpu(leaf, &key, slot); 6524 if (key.objectid != btrfs_ino(inode) || 6525 key.type != BTRFS_EXTENT_DATA_KEY) { 6526 /* not our file or wrong item type, must cow */ 6527 goto out; 6528 } 6529 6530 if (key.offset > offset) { 6531 /* Wrong offset, must cow */ 6532 goto out; 6533 } 6534 6535 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6536 found_type = btrfs_file_extent_type(leaf, fi); 6537 if (found_type != BTRFS_FILE_EXTENT_REG && 6538 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6539 /* not a regular extent, must cow */ 6540 goto out; 6541 } 6542 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6543 backref_offset = btrfs_file_extent_offset(leaf, fi); 6544 6545 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6546 if (extent_end < offset + len) { 6547 /* extent doesn't include our full range, must cow */ 6548 goto out; 6549 } 6550 6551 if (btrfs_extent_readonly(root, disk_bytenr)) 6552 goto out; 6553 6554 /* 6555 * look for other files referencing this extent, if we 6556 * find any we must cow 6557 */ 6558 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6559 key.offset - backref_offset, disk_bytenr)) 6560 goto out; 6561 6562 /* 6563 * adjust disk_bytenr and num_bytes to cover just the bytes 6564 * in this extent we are about to write. If there 6565 * are any csums in that range we have to cow in order 6566 * to keep the csums correct 6567 */ 6568 disk_bytenr += backref_offset; 6569 disk_bytenr += offset - key.offset; 6570 num_bytes = min(offset + len, extent_end) - offset; 6571 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6572 goto out; 6573 /* 6574 * all of the above have passed, it is safe to overwrite this extent 6575 * without cow 6576 */ 6577 ret = 1; 6578 out: 6579 btrfs_free_path(path); 6580 return ret; 6581 } 6582 6583 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6584 struct extent_state **cached_state, int writing) 6585 { 6586 struct btrfs_ordered_extent *ordered; 6587 int ret = 0; 6588 6589 while (1) { 6590 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6591 0, cached_state); 6592 /* 6593 * We're concerned with the entire range that we're going to be 6594 * doing DIO to, so we need to make sure theres no ordered 6595 * extents in this range. 6596 */ 6597 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6598 lockend - lockstart + 1); 6599 6600 /* 6601 * We need to make sure there are no buffered pages in this 6602 * range either, we could have raced between the invalidate in 6603 * generic_file_direct_write and locking the extent. The 6604 * invalidate needs to happen so that reads after a write do not 6605 * get stale data. 6606 */ 6607 if (!ordered && (!writing || 6608 !test_range_bit(&BTRFS_I(inode)->io_tree, 6609 lockstart, lockend, EXTENT_UPTODATE, 0, 6610 *cached_state))) 6611 break; 6612 6613 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6614 cached_state, GFP_NOFS); 6615 6616 if (ordered) { 6617 btrfs_start_ordered_extent(inode, ordered, 1); 6618 btrfs_put_ordered_extent(ordered); 6619 } else { 6620 /* Screw you mmap */ 6621 ret = filemap_write_and_wait_range(inode->i_mapping, 6622 lockstart, 6623 lockend); 6624 if (ret) 6625 break; 6626 6627 /* 6628 * If we found a page that couldn't be invalidated just 6629 * fall back to buffered. 6630 */ 6631 ret = invalidate_inode_pages2_range(inode->i_mapping, 6632 lockstart >> PAGE_CACHE_SHIFT, 6633 lockend >> PAGE_CACHE_SHIFT); 6634 if (ret) 6635 break; 6636 } 6637 6638 cond_resched(); 6639 } 6640 6641 return ret; 6642 } 6643 6644 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6645 u64 len, u64 orig_start, 6646 u64 block_start, u64 block_len, 6647 u64 orig_block_len, int type) 6648 { 6649 struct extent_map_tree *em_tree; 6650 struct extent_map *em; 6651 struct btrfs_root *root = BTRFS_I(inode)->root; 6652 int ret; 6653 6654 em_tree = &BTRFS_I(inode)->extent_tree; 6655 em = alloc_extent_map(); 6656 if (!em) 6657 return ERR_PTR(-ENOMEM); 6658 6659 em->start = start; 6660 em->orig_start = orig_start; 6661 em->mod_start = start; 6662 em->mod_len = len; 6663 em->len = len; 6664 em->block_len = block_len; 6665 em->block_start = block_start; 6666 em->bdev = root->fs_info->fs_devices->latest_bdev; 6667 em->orig_block_len = orig_block_len; 6668 em->generation = -1; 6669 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6670 if (type == BTRFS_ORDERED_PREALLOC) 6671 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6672 6673 do { 6674 btrfs_drop_extent_cache(inode, em->start, 6675 em->start + em->len - 1, 0); 6676 write_lock(&em_tree->lock); 6677 ret = add_extent_mapping(em_tree, em); 6678 if (!ret) 6679 list_move(&em->list, 6680 &em_tree->modified_extents); 6681 write_unlock(&em_tree->lock); 6682 } while (ret == -EEXIST); 6683 6684 if (ret) { 6685 free_extent_map(em); 6686 return ERR_PTR(ret); 6687 } 6688 6689 return em; 6690 } 6691 6692 6693 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6694 struct buffer_head *bh_result, int create) 6695 { 6696 struct extent_map *em; 6697 struct btrfs_root *root = BTRFS_I(inode)->root; 6698 struct extent_state *cached_state = NULL; 6699 u64 start = iblock << inode->i_blkbits; 6700 u64 lockstart, lockend; 6701 u64 len = bh_result->b_size; 6702 struct btrfs_trans_handle *trans; 6703 int unlock_bits = EXTENT_LOCKED; 6704 int ret = 0; 6705 6706 if (create) 6707 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6708 else 6709 len = min_t(u64, len, root->sectorsize); 6710 6711 lockstart = start; 6712 lockend = start + len - 1; 6713 6714 /* 6715 * If this errors out it's because we couldn't invalidate pagecache for 6716 * this range and we need to fallback to buffered. 6717 */ 6718 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6719 return -ENOTBLK; 6720 6721 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6722 if (IS_ERR(em)) { 6723 ret = PTR_ERR(em); 6724 goto unlock_err; 6725 } 6726 6727 /* 6728 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6729 * io. INLINE is special, and we could probably kludge it in here, but 6730 * it's still buffered so for safety lets just fall back to the generic 6731 * buffered path. 6732 * 6733 * For COMPRESSED we _have_ to read the entire extent in so we can 6734 * decompress it, so there will be buffering required no matter what we 6735 * do, so go ahead and fallback to buffered. 6736 * 6737 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6738 * to buffered IO. Don't blame me, this is the price we pay for using 6739 * the generic code. 6740 */ 6741 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6742 em->block_start == EXTENT_MAP_INLINE) { 6743 free_extent_map(em); 6744 ret = -ENOTBLK; 6745 goto unlock_err; 6746 } 6747 6748 /* Just a good old fashioned hole, return */ 6749 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6750 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6751 free_extent_map(em); 6752 goto unlock_err; 6753 } 6754 6755 /* 6756 * We don't allocate a new extent in the following cases 6757 * 6758 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6759 * existing extent. 6760 * 2) The extent is marked as PREALLOC. We're good to go here and can 6761 * just use the extent. 6762 * 6763 */ 6764 if (!create) { 6765 len = min(len, em->len - (start - em->start)); 6766 lockstart = start + len; 6767 goto unlock; 6768 } 6769 6770 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6771 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6772 em->block_start != EXTENT_MAP_HOLE)) { 6773 int type; 6774 int ret; 6775 u64 block_start; 6776 6777 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6778 type = BTRFS_ORDERED_PREALLOC; 6779 else 6780 type = BTRFS_ORDERED_NOCOW; 6781 len = min(len, em->len - (start - em->start)); 6782 block_start = em->block_start + (start - em->start); 6783 6784 /* 6785 * we're not going to log anything, but we do need 6786 * to make sure the current transaction stays open 6787 * while we look for nocow cross refs 6788 */ 6789 trans = btrfs_join_transaction(root); 6790 if (IS_ERR(trans)) 6791 goto must_cow; 6792 6793 if (can_nocow_odirect(trans, inode, start, len) == 1) { 6794 u64 orig_start = em->orig_start; 6795 u64 orig_block_len = em->orig_block_len; 6796 6797 if (type == BTRFS_ORDERED_PREALLOC) { 6798 free_extent_map(em); 6799 em = create_pinned_em(inode, start, len, 6800 orig_start, 6801 block_start, len, 6802 orig_block_len, type); 6803 if (IS_ERR(em)) { 6804 btrfs_end_transaction(trans, root); 6805 goto unlock_err; 6806 } 6807 } 6808 6809 ret = btrfs_add_ordered_extent_dio(inode, start, 6810 block_start, len, len, type); 6811 btrfs_end_transaction(trans, root); 6812 if (ret) { 6813 free_extent_map(em); 6814 goto unlock_err; 6815 } 6816 goto unlock; 6817 } 6818 btrfs_end_transaction(trans, root); 6819 } 6820 must_cow: 6821 /* 6822 * this will cow the extent, reset the len in case we changed 6823 * it above 6824 */ 6825 len = bh_result->b_size; 6826 free_extent_map(em); 6827 em = btrfs_new_extent_direct(inode, start, len); 6828 if (IS_ERR(em)) { 6829 ret = PTR_ERR(em); 6830 goto unlock_err; 6831 } 6832 len = min(len, em->len - (start - em->start)); 6833 unlock: 6834 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6835 inode->i_blkbits; 6836 bh_result->b_size = len; 6837 bh_result->b_bdev = em->bdev; 6838 set_buffer_mapped(bh_result); 6839 if (create) { 6840 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6841 set_buffer_new(bh_result); 6842 6843 /* 6844 * Need to update the i_size under the extent lock so buffered 6845 * readers will get the updated i_size when we unlock. 6846 */ 6847 if (start + len > i_size_read(inode)) 6848 i_size_write(inode, start + len); 6849 6850 spin_lock(&BTRFS_I(inode)->lock); 6851 BTRFS_I(inode)->outstanding_extents++; 6852 spin_unlock(&BTRFS_I(inode)->lock); 6853 6854 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6855 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6856 &cached_state, GFP_NOFS); 6857 BUG_ON(ret); 6858 } 6859 6860 /* 6861 * In the case of write we need to clear and unlock the entire range, 6862 * in the case of read we need to unlock only the end area that we 6863 * aren't using if there is any left over space. 6864 */ 6865 if (lockstart < lockend) { 6866 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6867 lockend, unlock_bits, 1, 0, 6868 &cached_state, GFP_NOFS); 6869 } else { 6870 free_extent_state(cached_state); 6871 } 6872 6873 free_extent_map(em); 6874 6875 return 0; 6876 6877 unlock_err: 6878 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6879 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6880 return ret; 6881 } 6882 6883 struct btrfs_dio_private { 6884 struct inode *inode; 6885 u64 logical_offset; 6886 u64 disk_bytenr; 6887 u64 bytes; 6888 void *private; 6889 6890 /* number of bios pending for this dio */ 6891 atomic_t pending_bios; 6892 6893 /* IO errors */ 6894 int errors; 6895 6896 struct bio *orig_bio; 6897 }; 6898 6899 static void btrfs_endio_direct_read(struct bio *bio, int err) 6900 { 6901 struct btrfs_dio_private *dip = bio->bi_private; 6902 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6903 struct bio_vec *bvec = bio->bi_io_vec; 6904 struct inode *inode = dip->inode; 6905 struct btrfs_root *root = BTRFS_I(inode)->root; 6906 u64 start; 6907 6908 start = dip->logical_offset; 6909 do { 6910 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6911 struct page *page = bvec->bv_page; 6912 char *kaddr; 6913 u32 csum = ~(u32)0; 6914 u64 private = ~(u32)0; 6915 unsigned long flags; 6916 6917 if (get_state_private(&BTRFS_I(inode)->io_tree, 6918 start, &private)) 6919 goto failed; 6920 local_irq_save(flags); 6921 kaddr = kmap_atomic(page); 6922 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 6923 csum, bvec->bv_len); 6924 btrfs_csum_final(csum, (char *)&csum); 6925 kunmap_atomic(kaddr); 6926 local_irq_restore(flags); 6927 6928 flush_dcache_page(bvec->bv_page); 6929 if (csum != private) { 6930 failed: 6931 printk(KERN_ERR "btrfs csum failed ino %llu off" 6932 " %llu csum %u private %u\n", 6933 (unsigned long long)btrfs_ino(inode), 6934 (unsigned long long)start, 6935 csum, (unsigned)private); 6936 err = -EIO; 6937 } 6938 } 6939 6940 start += bvec->bv_len; 6941 bvec++; 6942 } while (bvec <= bvec_end); 6943 6944 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6945 dip->logical_offset + dip->bytes - 1); 6946 bio->bi_private = dip->private; 6947 6948 kfree(dip); 6949 6950 /* If we had a csum failure make sure to clear the uptodate flag */ 6951 if (err) 6952 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6953 dio_end_io(bio, err); 6954 } 6955 6956 static void btrfs_endio_direct_write(struct bio *bio, int err) 6957 { 6958 struct btrfs_dio_private *dip = bio->bi_private; 6959 struct inode *inode = dip->inode; 6960 struct btrfs_root *root = BTRFS_I(inode)->root; 6961 struct btrfs_ordered_extent *ordered = NULL; 6962 u64 ordered_offset = dip->logical_offset; 6963 u64 ordered_bytes = dip->bytes; 6964 int ret; 6965 6966 if (err) 6967 goto out_done; 6968 again: 6969 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6970 &ordered_offset, 6971 ordered_bytes, !err); 6972 if (!ret) 6973 goto out_test; 6974 6975 ordered->work.func = finish_ordered_fn; 6976 ordered->work.flags = 0; 6977 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6978 &ordered->work); 6979 out_test: 6980 /* 6981 * our bio might span multiple ordered extents. If we haven't 6982 * completed the accounting for the whole dio, go back and try again 6983 */ 6984 if (ordered_offset < dip->logical_offset + dip->bytes) { 6985 ordered_bytes = dip->logical_offset + dip->bytes - 6986 ordered_offset; 6987 ordered = NULL; 6988 goto again; 6989 } 6990 out_done: 6991 bio->bi_private = dip->private; 6992 6993 kfree(dip); 6994 6995 /* If we had an error make sure to clear the uptodate flag */ 6996 if (err) 6997 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6998 dio_end_io(bio, err); 6999 } 7000 7001 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7002 struct bio *bio, int mirror_num, 7003 unsigned long bio_flags, u64 offset) 7004 { 7005 int ret; 7006 struct btrfs_root *root = BTRFS_I(inode)->root; 7007 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7008 BUG_ON(ret); /* -ENOMEM */ 7009 return 0; 7010 } 7011 7012 static void btrfs_end_dio_bio(struct bio *bio, int err) 7013 { 7014 struct btrfs_dio_private *dip = bio->bi_private; 7015 7016 if (err) { 7017 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 7018 "sector %#Lx len %u err no %d\n", 7019 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 7020 (unsigned long long)bio->bi_sector, bio->bi_size, err); 7021 dip->errors = 1; 7022 7023 /* 7024 * before atomic variable goto zero, we must make sure 7025 * dip->errors is perceived to be set. 7026 */ 7027 smp_mb__before_atomic_dec(); 7028 } 7029 7030 /* if there are more bios still pending for this dio, just exit */ 7031 if (!atomic_dec_and_test(&dip->pending_bios)) 7032 goto out; 7033 7034 if (dip->errors) 7035 bio_io_error(dip->orig_bio); 7036 else { 7037 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 7038 bio_endio(dip->orig_bio, 0); 7039 } 7040 out: 7041 bio_put(bio); 7042 } 7043 7044 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7045 u64 first_sector, gfp_t gfp_flags) 7046 { 7047 int nr_vecs = bio_get_nr_vecs(bdev); 7048 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7049 } 7050 7051 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7052 int rw, u64 file_offset, int skip_sum, 7053 int async_submit) 7054 { 7055 int write = rw & REQ_WRITE; 7056 struct btrfs_root *root = BTRFS_I(inode)->root; 7057 int ret; 7058 7059 if (async_submit) 7060 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7061 7062 bio_get(bio); 7063 7064 if (!write) { 7065 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 7066 if (ret) 7067 goto err; 7068 } 7069 7070 if (skip_sum) 7071 goto map; 7072 7073 if (write && async_submit) { 7074 ret = btrfs_wq_submit_bio(root->fs_info, 7075 inode, rw, bio, 0, 0, 7076 file_offset, 7077 __btrfs_submit_bio_start_direct_io, 7078 __btrfs_submit_bio_done); 7079 goto err; 7080 } else if (write) { 7081 /* 7082 * If we aren't doing async submit, calculate the csum of the 7083 * bio now. 7084 */ 7085 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7086 if (ret) 7087 goto err; 7088 } else if (!skip_sum) { 7089 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset); 7090 if (ret) 7091 goto err; 7092 } 7093 7094 map: 7095 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7096 err: 7097 bio_put(bio); 7098 return ret; 7099 } 7100 7101 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7102 int skip_sum) 7103 { 7104 struct inode *inode = dip->inode; 7105 struct btrfs_root *root = BTRFS_I(inode)->root; 7106 struct bio *bio; 7107 struct bio *orig_bio = dip->orig_bio; 7108 struct bio_vec *bvec = orig_bio->bi_io_vec; 7109 u64 start_sector = orig_bio->bi_sector; 7110 u64 file_offset = dip->logical_offset; 7111 u64 submit_len = 0; 7112 u64 map_length; 7113 int nr_pages = 0; 7114 int ret = 0; 7115 int async_submit = 0; 7116 7117 map_length = orig_bio->bi_size; 7118 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7119 &map_length, NULL, 0); 7120 if (ret) { 7121 bio_put(orig_bio); 7122 return -EIO; 7123 } 7124 if (map_length >= orig_bio->bi_size) { 7125 bio = orig_bio; 7126 goto submit; 7127 } 7128 7129 /* async crcs make it difficult to collect full stripe writes. */ 7130 if (btrfs_get_alloc_profile(root, 1) & 7131 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7132 async_submit = 0; 7133 else 7134 async_submit = 1; 7135 7136 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7137 if (!bio) 7138 return -ENOMEM; 7139 bio->bi_private = dip; 7140 bio->bi_end_io = btrfs_end_dio_bio; 7141 atomic_inc(&dip->pending_bios); 7142 7143 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7144 if (unlikely(map_length < submit_len + bvec->bv_len || 7145 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7146 bvec->bv_offset) < bvec->bv_len)) { 7147 /* 7148 * inc the count before we submit the bio so 7149 * we know the end IO handler won't happen before 7150 * we inc the count. Otherwise, the dip might get freed 7151 * before we're done setting it up 7152 */ 7153 atomic_inc(&dip->pending_bios); 7154 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7155 file_offset, skip_sum, 7156 async_submit); 7157 if (ret) { 7158 bio_put(bio); 7159 atomic_dec(&dip->pending_bios); 7160 goto out_err; 7161 } 7162 7163 start_sector += submit_len >> 9; 7164 file_offset += submit_len; 7165 7166 submit_len = 0; 7167 nr_pages = 0; 7168 7169 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7170 start_sector, GFP_NOFS); 7171 if (!bio) 7172 goto out_err; 7173 bio->bi_private = dip; 7174 bio->bi_end_io = btrfs_end_dio_bio; 7175 7176 map_length = orig_bio->bi_size; 7177 ret = btrfs_map_block(root->fs_info, rw, 7178 start_sector << 9, 7179 &map_length, NULL, 0); 7180 if (ret) { 7181 bio_put(bio); 7182 goto out_err; 7183 } 7184 } else { 7185 submit_len += bvec->bv_len; 7186 nr_pages ++; 7187 bvec++; 7188 } 7189 } 7190 7191 submit: 7192 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7193 async_submit); 7194 if (!ret) 7195 return 0; 7196 7197 bio_put(bio); 7198 out_err: 7199 dip->errors = 1; 7200 /* 7201 * before atomic variable goto zero, we must 7202 * make sure dip->errors is perceived to be set. 7203 */ 7204 smp_mb__before_atomic_dec(); 7205 if (atomic_dec_and_test(&dip->pending_bios)) 7206 bio_io_error(dip->orig_bio); 7207 7208 /* bio_end_io() will handle error, so we needn't return it */ 7209 return 0; 7210 } 7211 7212 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 7213 loff_t file_offset) 7214 { 7215 struct btrfs_root *root = BTRFS_I(inode)->root; 7216 struct btrfs_dio_private *dip; 7217 struct bio_vec *bvec = bio->bi_io_vec; 7218 int skip_sum; 7219 int write = rw & REQ_WRITE; 7220 int ret = 0; 7221 7222 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7223 7224 dip = kmalloc(sizeof(*dip), GFP_NOFS); 7225 if (!dip) { 7226 ret = -ENOMEM; 7227 goto free_ordered; 7228 } 7229 7230 dip->private = bio->bi_private; 7231 dip->inode = inode; 7232 dip->logical_offset = file_offset; 7233 7234 dip->bytes = 0; 7235 do { 7236 dip->bytes += bvec->bv_len; 7237 bvec++; 7238 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 7239 7240 dip->disk_bytenr = (u64)bio->bi_sector << 9; 7241 bio->bi_private = dip; 7242 dip->errors = 0; 7243 dip->orig_bio = bio; 7244 atomic_set(&dip->pending_bios, 0); 7245 7246 if (write) 7247 bio->bi_end_io = btrfs_endio_direct_write; 7248 else 7249 bio->bi_end_io = btrfs_endio_direct_read; 7250 7251 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7252 if (!ret) 7253 return; 7254 free_ordered: 7255 /* 7256 * If this is a write, we need to clean up the reserved space and kill 7257 * the ordered extent. 7258 */ 7259 if (write) { 7260 struct btrfs_ordered_extent *ordered; 7261 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7262 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7263 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7264 btrfs_free_reserved_extent(root, ordered->start, 7265 ordered->disk_len); 7266 btrfs_put_ordered_extent(ordered); 7267 btrfs_put_ordered_extent(ordered); 7268 } 7269 bio_endio(bio, ret); 7270 } 7271 7272 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7273 const struct iovec *iov, loff_t offset, 7274 unsigned long nr_segs) 7275 { 7276 int seg; 7277 int i; 7278 size_t size; 7279 unsigned long addr; 7280 unsigned blocksize_mask = root->sectorsize - 1; 7281 ssize_t retval = -EINVAL; 7282 loff_t end = offset; 7283 7284 if (offset & blocksize_mask) 7285 goto out; 7286 7287 /* Check the memory alignment. Blocks cannot straddle pages */ 7288 for (seg = 0; seg < nr_segs; seg++) { 7289 addr = (unsigned long)iov[seg].iov_base; 7290 size = iov[seg].iov_len; 7291 end += size; 7292 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7293 goto out; 7294 7295 /* If this is a write we don't need to check anymore */ 7296 if (rw & WRITE) 7297 continue; 7298 7299 /* 7300 * Check to make sure we don't have duplicate iov_base's in this 7301 * iovec, if so return EINVAL, otherwise we'll get csum errors 7302 * when reading back. 7303 */ 7304 for (i = seg + 1; i < nr_segs; i++) { 7305 if (iov[seg].iov_base == iov[i].iov_base) 7306 goto out; 7307 } 7308 } 7309 retval = 0; 7310 out: 7311 return retval; 7312 } 7313 7314 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7315 const struct iovec *iov, loff_t offset, 7316 unsigned long nr_segs) 7317 { 7318 struct file *file = iocb->ki_filp; 7319 struct inode *inode = file->f_mapping->host; 7320 size_t count = 0; 7321 int flags = 0; 7322 bool wakeup = true; 7323 bool relock = false; 7324 ssize_t ret; 7325 7326 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7327 offset, nr_segs)) 7328 return 0; 7329 7330 atomic_inc(&inode->i_dio_count); 7331 smp_mb__after_atomic_inc(); 7332 7333 if (rw & WRITE) { 7334 count = iov_length(iov, nr_segs); 7335 /* 7336 * If the write DIO is beyond the EOF, we need update 7337 * the isize, but it is protected by i_mutex. So we can 7338 * not unlock the i_mutex at this case. 7339 */ 7340 if (offset + count <= inode->i_size) { 7341 mutex_unlock(&inode->i_mutex); 7342 relock = true; 7343 } 7344 ret = btrfs_delalloc_reserve_space(inode, count); 7345 if (ret) 7346 goto out; 7347 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7348 &BTRFS_I(inode)->runtime_flags))) { 7349 inode_dio_done(inode); 7350 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7351 wakeup = false; 7352 } 7353 7354 ret = __blockdev_direct_IO(rw, iocb, inode, 7355 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7356 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7357 btrfs_submit_direct, flags); 7358 if (rw & WRITE) { 7359 if (ret < 0 && ret != -EIOCBQUEUED) 7360 btrfs_delalloc_release_space(inode, count); 7361 else if (ret >= 0 && (size_t)ret < count) 7362 btrfs_delalloc_release_space(inode, 7363 count - (size_t)ret); 7364 else 7365 btrfs_delalloc_release_metadata(inode, 0); 7366 } 7367 out: 7368 if (wakeup) 7369 inode_dio_done(inode); 7370 if (relock) 7371 mutex_lock(&inode->i_mutex); 7372 7373 return ret; 7374 } 7375 7376 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7377 7378 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7379 __u64 start, __u64 len) 7380 { 7381 int ret; 7382 7383 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7384 if (ret) 7385 return ret; 7386 7387 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7388 } 7389 7390 int btrfs_readpage(struct file *file, struct page *page) 7391 { 7392 struct extent_io_tree *tree; 7393 tree = &BTRFS_I(page->mapping->host)->io_tree; 7394 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7395 } 7396 7397 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7398 { 7399 struct extent_io_tree *tree; 7400 7401 7402 if (current->flags & PF_MEMALLOC) { 7403 redirty_page_for_writepage(wbc, page); 7404 unlock_page(page); 7405 return 0; 7406 } 7407 tree = &BTRFS_I(page->mapping->host)->io_tree; 7408 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7409 } 7410 7411 int btrfs_writepages(struct address_space *mapping, 7412 struct writeback_control *wbc) 7413 { 7414 struct extent_io_tree *tree; 7415 7416 tree = &BTRFS_I(mapping->host)->io_tree; 7417 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7418 } 7419 7420 static int 7421 btrfs_readpages(struct file *file, struct address_space *mapping, 7422 struct list_head *pages, unsigned nr_pages) 7423 { 7424 struct extent_io_tree *tree; 7425 tree = &BTRFS_I(mapping->host)->io_tree; 7426 return extent_readpages(tree, mapping, pages, nr_pages, 7427 btrfs_get_extent); 7428 } 7429 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7430 { 7431 struct extent_io_tree *tree; 7432 struct extent_map_tree *map; 7433 int ret; 7434 7435 tree = &BTRFS_I(page->mapping->host)->io_tree; 7436 map = &BTRFS_I(page->mapping->host)->extent_tree; 7437 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7438 if (ret == 1) { 7439 ClearPagePrivate(page); 7440 set_page_private(page, 0); 7441 page_cache_release(page); 7442 } 7443 return ret; 7444 } 7445 7446 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7447 { 7448 if (PageWriteback(page) || PageDirty(page)) 7449 return 0; 7450 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7451 } 7452 7453 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 7454 { 7455 struct inode *inode = page->mapping->host; 7456 struct extent_io_tree *tree; 7457 struct btrfs_ordered_extent *ordered; 7458 struct extent_state *cached_state = NULL; 7459 u64 page_start = page_offset(page); 7460 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7461 7462 /* 7463 * we have the page locked, so new writeback can't start, 7464 * and the dirty bit won't be cleared while we are here. 7465 * 7466 * Wait for IO on this page so that we can safely clear 7467 * the PagePrivate2 bit and do ordered accounting 7468 */ 7469 wait_on_page_writeback(page); 7470 7471 tree = &BTRFS_I(inode)->io_tree; 7472 if (offset) { 7473 btrfs_releasepage(page, GFP_NOFS); 7474 return; 7475 } 7476 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7477 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 7478 if (ordered) { 7479 /* 7480 * IO on this page will never be started, so we need 7481 * to account for any ordered extents now 7482 */ 7483 clear_extent_bit(tree, page_start, page_end, 7484 EXTENT_DIRTY | EXTENT_DELALLOC | 7485 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7486 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 7487 /* 7488 * whoever cleared the private bit is responsible 7489 * for the finish_ordered_io 7490 */ 7491 if (TestClearPagePrivate2(page) && 7492 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 7493 PAGE_CACHE_SIZE, 1)) { 7494 btrfs_finish_ordered_io(ordered); 7495 } 7496 btrfs_put_ordered_extent(ordered); 7497 cached_state = NULL; 7498 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7499 } 7500 clear_extent_bit(tree, page_start, page_end, 7501 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 7502 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 7503 &cached_state, GFP_NOFS); 7504 __btrfs_releasepage(page, GFP_NOFS); 7505 7506 ClearPageChecked(page); 7507 if (PagePrivate(page)) { 7508 ClearPagePrivate(page); 7509 set_page_private(page, 0); 7510 page_cache_release(page); 7511 } 7512 } 7513 7514 /* 7515 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7516 * called from a page fault handler when a page is first dirtied. Hence we must 7517 * be careful to check for EOF conditions here. We set the page up correctly 7518 * for a written page which means we get ENOSPC checking when writing into 7519 * holes and correct delalloc and unwritten extent mapping on filesystems that 7520 * support these features. 7521 * 7522 * We are not allowed to take the i_mutex here so we have to play games to 7523 * protect against truncate races as the page could now be beyond EOF. Because 7524 * vmtruncate() writes the inode size before removing pages, once we have the 7525 * page lock we can determine safely if the page is beyond EOF. If it is not 7526 * beyond EOF, then the page is guaranteed safe against truncation until we 7527 * unlock the page. 7528 */ 7529 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7530 { 7531 struct page *page = vmf->page; 7532 struct inode *inode = file_inode(vma->vm_file); 7533 struct btrfs_root *root = BTRFS_I(inode)->root; 7534 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7535 struct btrfs_ordered_extent *ordered; 7536 struct extent_state *cached_state = NULL; 7537 char *kaddr; 7538 unsigned long zero_start; 7539 loff_t size; 7540 int ret; 7541 int reserved = 0; 7542 u64 page_start; 7543 u64 page_end; 7544 7545 sb_start_pagefault(inode->i_sb); 7546 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7547 if (!ret) { 7548 ret = file_update_time(vma->vm_file); 7549 reserved = 1; 7550 } 7551 if (ret) { 7552 if (ret == -ENOMEM) 7553 ret = VM_FAULT_OOM; 7554 else /* -ENOSPC, -EIO, etc */ 7555 ret = VM_FAULT_SIGBUS; 7556 if (reserved) 7557 goto out; 7558 goto out_noreserve; 7559 } 7560 7561 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7562 again: 7563 lock_page(page); 7564 size = i_size_read(inode); 7565 page_start = page_offset(page); 7566 page_end = page_start + PAGE_CACHE_SIZE - 1; 7567 7568 if ((page->mapping != inode->i_mapping) || 7569 (page_start >= size)) { 7570 /* page got truncated out from underneath us */ 7571 goto out_unlock; 7572 } 7573 wait_on_page_writeback(page); 7574 7575 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7576 set_page_extent_mapped(page); 7577 7578 /* 7579 * we can't set the delalloc bits if there are pending ordered 7580 * extents. Drop our locks and wait for them to finish 7581 */ 7582 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7583 if (ordered) { 7584 unlock_extent_cached(io_tree, page_start, page_end, 7585 &cached_state, GFP_NOFS); 7586 unlock_page(page); 7587 btrfs_start_ordered_extent(inode, ordered, 1); 7588 btrfs_put_ordered_extent(ordered); 7589 goto again; 7590 } 7591 7592 /* 7593 * XXX - page_mkwrite gets called every time the page is dirtied, even 7594 * if it was already dirty, so for space accounting reasons we need to 7595 * clear any delalloc bits for the range we are fixing to save. There 7596 * is probably a better way to do this, but for now keep consistent with 7597 * prepare_pages in the normal write path. 7598 */ 7599 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7600 EXTENT_DIRTY | EXTENT_DELALLOC | 7601 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7602 0, 0, &cached_state, GFP_NOFS); 7603 7604 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7605 &cached_state); 7606 if (ret) { 7607 unlock_extent_cached(io_tree, page_start, page_end, 7608 &cached_state, GFP_NOFS); 7609 ret = VM_FAULT_SIGBUS; 7610 goto out_unlock; 7611 } 7612 ret = 0; 7613 7614 /* page is wholly or partially inside EOF */ 7615 if (page_start + PAGE_CACHE_SIZE > size) 7616 zero_start = size & ~PAGE_CACHE_MASK; 7617 else 7618 zero_start = PAGE_CACHE_SIZE; 7619 7620 if (zero_start != PAGE_CACHE_SIZE) { 7621 kaddr = kmap(page); 7622 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7623 flush_dcache_page(page); 7624 kunmap(page); 7625 } 7626 ClearPageChecked(page); 7627 set_page_dirty(page); 7628 SetPageUptodate(page); 7629 7630 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7631 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7632 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7633 7634 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7635 7636 out_unlock: 7637 if (!ret) { 7638 sb_end_pagefault(inode->i_sb); 7639 return VM_FAULT_LOCKED; 7640 } 7641 unlock_page(page); 7642 out: 7643 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7644 out_noreserve: 7645 sb_end_pagefault(inode->i_sb); 7646 return ret; 7647 } 7648 7649 static int btrfs_truncate(struct inode *inode) 7650 { 7651 struct btrfs_root *root = BTRFS_I(inode)->root; 7652 struct btrfs_block_rsv *rsv; 7653 int ret; 7654 int err = 0; 7655 struct btrfs_trans_handle *trans; 7656 u64 mask = root->sectorsize - 1; 7657 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7658 7659 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 7660 if (ret) 7661 return ret; 7662 7663 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 7664 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 7665 7666 /* 7667 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7668 * 3 things going on here 7669 * 7670 * 1) We need to reserve space for our orphan item and the space to 7671 * delete our orphan item. Lord knows we don't want to have a dangling 7672 * orphan item because we didn't reserve space to remove it. 7673 * 7674 * 2) We need to reserve space to update our inode. 7675 * 7676 * 3) We need to have something to cache all the space that is going to 7677 * be free'd up by the truncate operation, but also have some slack 7678 * space reserved in case it uses space during the truncate (thank you 7679 * very much snapshotting). 7680 * 7681 * And we need these to all be seperate. The fact is we can use alot of 7682 * space doing the truncate, and we have no earthly idea how much space 7683 * we will use, so we need the truncate reservation to be seperate so it 7684 * doesn't end up using space reserved for updating the inode or 7685 * removing the orphan item. We also need to be able to stop the 7686 * transaction and start a new one, which means we need to be able to 7687 * update the inode several times, and we have no idea of knowing how 7688 * many times that will be, so we can't just reserve 1 item for the 7689 * entirety of the opration, so that has to be done seperately as well. 7690 * Then there is the orphan item, which does indeed need to be held on 7691 * to for the whole operation, and we need nobody to touch this reserved 7692 * space except the orphan code. 7693 * 7694 * So that leaves us with 7695 * 7696 * 1) root->orphan_block_rsv - for the orphan deletion. 7697 * 2) rsv - for the truncate reservation, which we will steal from the 7698 * transaction reservation. 7699 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7700 * updating the inode. 7701 */ 7702 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7703 if (!rsv) 7704 return -ENOMEM; 7705 rsv->size = min_size; 7706 rsv->failfast = 1; 7707 7708 /* 7709 * 1 for the truncate slack space 7710 * 1 for updating the inode. 7711 */ 7712 trans = btrfs_start_transaction(root, 2); 7713 if (IS_ERR(trans)) { 7714 err = PTR_ERR(trans); 7715 goto out; 7716 } 7717 7718 /* Migrate the slack space for the truncate to our reserve */ 7719 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7720 min_size); 7721 BUG_ON(ret); 7722 7723 /* 7724 * setattr is responsible for setting the ordered_data_close flag, 7725 * but that is only tested during the last file release. That 7726 * could happen well after the next commit, leaving a great big 7727 * window where new writes may get lost if someone chooses to write 7728 * to this file after truncating to zero 7729 * 7730 * The inode doesn't have any dirty data here, and so if we commit 7731 * this is a noop. If someone immediately starts writing to the inode 7732 * it is very likely we'll catch some of their writes in this 7733 * transaction, and the commit will find this file on the ordered 7734 * data list with good things to send down. 7735 * 7736 * This is a best effort solution, there is still a window where 7737 * using truncate to replace the contents of the file will 7738 * end up with a zero length file after a crash. 7739 */ 7740 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7741 &BTRFS_I(inode)->runtime_flags)) 7742 btrfs_add_ordered_operation(trans, root, inode); 7743 7744 /* 7745 * So if we truncate and then write and fsync we normally would just 7746 * write the extents that changed, which is a problem if we need to 7747 * first truncate that entire inode. So set this flag so we write out 7748 * all of the extents in the inode to the sync log so we're completely 7749 * safe. 7750 */ 7751 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7752 trans->block_rsv = rsv; 7753 7754 while (1) { 7755 ret = btrfs_truncate_inode_items(trans, root, inode, 7756 inode->i_size, 7757 BTRFS_EXTENT_DATA_KEY); 7758 if (ret != -ENOSPC) { 7759 err = ret; 7760 break; 7761 } 7762 7763 trans->block_rsv = &root->fs_info->trans_block_rsv; 7764 ret = btrfs_update_inode(trans, root, inode); 7765 if (ret) { 7766 err = ret; 7767 break; 7768 } 7769 7770 btrfs_end_transaction(trans, root); 7771 btrfs_btree_balance_dirty(root); 7772 7773 trans = btrfs_start_transaction(root, 2); 7774 if (IS_ERR(trans)) { 7775 ret = err = PTR_ERR(trans); 7776 trans = NULL; 7777 break; 7778 } 7779 7780 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7781 rsv, min_size); 7782 BUG_ON(ret); /* shouldn't happen */ 7783 trans->block_rsv = rsv; 7784 } 7785 7786 if (ret == 0 && inode->i_nlink > 0) { 7787 trans->block_rsv = root->orphan_block_rsv; 7788 ret = btrfs_orphan_del(trans, inode); 7789 if (ret) 7790 err = ret; 7791 } 7792 7793 if (trans) { 7794 trans->block_rsv = &root->fs_info->trans_block_rsv; 7795 ret = btrfs_update_inode(trans, root, inode); 7796 if (ret && !err) 7797 err = ret; 7798 7799 ret = btrfs_end_transaction(trans, root); 7800 btrfs_btree_balance_dirty(root); 7801 } 7802 7803 out: 7804 btrfs_free_block_rsv(root, rsv); 7805 7806 if (ret && !err) 7807 err = ret; 7808 7809 return err; 7810 } 7811 7812 /* 7813 * create a new subvolume directory/inode (helper for the ioctl). 7814 */ 7815 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7816 struct btrfs_root *new_root, u64 new_dirid) 7817 { 7818 struct inode *inode; 7819 int err; 7820 u64 index = 0; 7821 7822 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7823 new_dirid, new_dirid, 7824 S_IFDIR | (~current_umask() & S_IRWXUGO), 7825 &index); 7826 if (IS_ERR(inode)) 7827 return PTR_ERR(inode); 7828 inode->i_op = &btrfs_dir_inode_operations; 7829 inode->i_fop = &btrfs_dir_file_operations; 7830 7831 set_nlink(inode, 1); 7832 btrfs_i_size_write(inode, 0); 7833 7834 err = btrfs_update_inode(trans, new_root, inode); 7835 7836 iput(inode); 7837 return err; 7838 } 7839 7840 struct inode *btrfs_alloc_inode(struct super_block *sb) 7841 { 7842 struct btrfs_inode *ei; 7843 struct inode *inode; 7844 7845 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7846 if (!ei) 7847 return NULL; 7848 7849 ei->root = NULL; 7850 ei->generation = 0; 7851 ei->last_trans = 0; 7852 ei->last_sub_trans = 0; 7853 ei->logged_trans = 0; 7854 ei->delalloc_bytes = 0; 7855 ei->disk_i_size = 0; 7856 ei->flags = 0; 7857 ei->csum_bytes = 0; 7858 ei->index_cnt = (u64)-1; 7859 ei->last_unlink_trans = 0; 7860 ei->last_log_commit = 0; 7861 7862 spin_lock_init(&ei->lock); 7863 ei->outstanding_extents = 0; 7864 ei->reserved_extents = 0; 7865 7866 ei->runtime_flags = 0; 7867 ei->force_compress = BTRFS_COMPRESS_NONE; 7868 7869 ei->delayed_node = NULL; 7870 7871 inode = &ei->vfs_inode; 7872 extent_map_tree_init(&ei->extent_tree); 7873 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7874 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7875 ei->io_tree.track_uptodate = 1; 7876 ei->io_failure_tree.track_uptodate = 1; 7877 atomic_set(&ei->sync_writers, 0); 7878 mutex_init(&ei->log_mutex); 7879 mutex_init(&ei->delalloc_mutex); 7880 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7881 INIT_LIST_HEAD(&ei->delalloc_inodes); 7882 INIT_LIST_HEAD(&ei->ordered_operations); 7883 RB_CLEAR_NODE(&ei->rb_node); 7884 7885 return inode; 7886 } 7887 7888 static void btrfs_i_callback(struct rcu_head *head) 7889 { 7890 struct inode *inode = container_of(head, struct inode, i_rcu); 7891 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7892 } 7893 7894 void btrfs_destroy_inode(struct inode *inode) 7895 { 7896 struct btrfs_ordered_extent *ordered; 7897 struct btrfs_root *root = BTRFS_I(inode)->root; 7898 7899 WARN_ON(!hlist_empty(&inode->i_dentry)); 7900 WARN_ON(inode->i_data.nrpages); 7901 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7902 WARN_ON(BTRFS_I(inode)->reserved_extents); 7903 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7904 WARN_ON(BTRFS_I(inode)->csum_bytes); 7905 7906 /* 7907 * This can happen where we create an inode, but somebody else also 7908 * created the same inode and we need to destroy the one we already 7909 * created. 7910 */ 7911 if (!root) 7912 goto free; 7913 7914 /* 7915 * Make sure we're properly removed from the ordered operation 7916 * lists. 7917 */ 7918 smp_mb(); 7919 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7920 spin_lock(&root->fs_info->ordered_extent_lock); 7921 list_del_init(&BTRFS_I(inode)->ordered_operations); 7922 spin_unlock(&root->fs_info->ordered_extent_lock); 7923 } 7924 7925 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7926 &BTRFS_I(inode)->runtime_flags)) { 7927 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 7928 (unsigned long long)btrfs_ino(inode)); 7929 atomic_dec(&root->orphan_inodes); 7930 } 7931 7932 while (1) { 7933 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7934 if (!ordered) 7935 break; 7936 else { 7937 printk(KERN_ERR "btrfs found ordered " 7938 "extent %llu %llu on inode cleanup\n", 7939 (unsigned long long)ordered->file_offset, 7940 (unsigned long long)ordered->len); 7941 btrfs_remove_ordered_extent(inode, ordered); 7942 btrfs_put_ordered_extent(ordered); 7943 btrfs_put_ordered_extent(ordered); 7944 } 7945 } 7946 inode_tree_del(inode); 7947 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7948 free: 7949 btrfs_remove_delayed_node(inode); 7950 call_rcu(&inode->i_rcu, btrfs_i_callback); 7951 } 7952 7953 int btrfs_drop_inode(struct inode *inode) 7954 { 7955 struct btrfs_root *root = BTRFS_I(inode)->root; 7956 7957 /* the snap/subvol tree is on deleting */ 7958 if (btrfs_root_refs(&root->root_item) == 0 && 7959 root != root->fs_info->tree_root) 7960 return 1; 7961 else 7962 return generic_drop_inode(inode); 7963 } 7964 7965 static void init_once(void *foo) 7966 { 7967 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7968 7969 inode_init_once(&ei->vfs_inode); 7970 } 7971 7972 void btrfs_destroy_cachep(void) 7973 { 7974 /* 7975 * Make sure all delayed rcu free inodes are flushed before we 7976 * destroy cache. 7977 */ 7978 rcu_barrier(); 7979 if (btrfs_inode_cachep) 7980 kmem_cache_destroy(btrfs_inode_cachep); 7981 if (btrfs_trans_handle_cachep) 7982 kmem_cache_destroy(btrfs_trans_handle_cachep); 7983 if (btrfs_transaction_cachep) 7984 kmem_cache_destroy(btrfs_transaction_cachep); 7985 if (btrfs_path_cachep) 7986 kmem_cache_destroy(btrfs_path_cachep); 7987 if (btrfs_free_space_cachep) 7988 kmem_cache_destroy(btrfs_free_space_cachep); 7989 if (btrfs_delalloc_work_cachep) 7990 kmem_cache_destroy(btrfs_delalloc_work_cachep); 7991 } 7992 7993 int btrfs_init_cachep(void) 7994 { 7995 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7996 sizeof(struct btrfs_inode), 0, 7997 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7998 if (!btrfs_inode_cachep) 7999 goto fail; 8000 8001 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8002 sizeof(struct btrfs_trans_handle), 0, 8003 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8004 if (!btrfs_trans_handle_cachep) 8005 goto fail; 8006 8007 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8008 sizeof(struct btrfs_transaction), 0, 8009 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8010 if (!btrfs_transaction_cachep) 8011 goto fail; 8012 8013 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8014 sizeof(struct btrfs_path), 0, 8015 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8016 if (!btrfs_path_cachep) 8017 goto fail; 8018 8019 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8020 sizeof(struct btrfs_free_space), 0, 8021 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8022 if (!btrfs_free_space_cachep) 8023 goto fail; 8024 8025 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8026 sizeof(struct btrfs_delalloc_work), 0, 8027 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8028 NULL); 8029 if (!btrfs_delalloc_work_cachep) 8030 goto fail; 8031 8032 return 0; 8033 fail: 8034 btrfs_destroy_cachep(); 8035 return -ENOMEM; 8036 } 8037 8038 static int btrfs_getattr(struct vfsmount *mnt, 8039 struct dentry *dentry, struct kstat *stat) 8040 { 8041 u64 delalloc_bytes; 8042 struct inode *inode = dentry->d_inode; 8043 u32 blocksize = inode->i_sb->s_blocksize; 8044 8045 generic_fillattr(inode, stat); 8046 stat->dev = BTRFS_I(inode)->root->anon_dev; 8047 stat->blksize = PAGE_CACHE_SIZE; 8048 8049 spin_lock(&BTRFS_I(inode)->lock); 8050 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8051 spin_unlock(&BTRFS_I(inode)->lock); 8052 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8053 ALIGN(delalloc_bytes, blocksize)) >> 9; 8054 return 0; 8055 } 8056 8057 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8058 struct inode *new_dir, struct dentry *new_dentry) 8059 { 8060 struct btrfs_trans_handle *trans; 8061 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8062 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8063 struct inode *new_inode = new_dentry->d_inode; 8064 struct inode *old_inode = old_dentry->d_inode; 8065 struct timespec ctime = CURRENT_TIME; 8066 u64 index = 0; 8067 u64 root_objectid; 8068 int ret; 8069 u64 old_ino = btrfs_ino(old_inode); 8070 8071 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8072 return -EPERM; 8073 8074 /* we only allow rename subvolume link between subvolumes */ 8075 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8076 return -EXDEV; 8077 8078 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8079 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8080 return -ENOTEMPTY; 8081 8082 if (S_ISDIR(old_inode->i_mode) && new_inode && 8083 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8084 return -ENOTEMPTY; 8085 8086 8087 /* check for collisions, even if the name isn't there */ 8088 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 8089 new_dentry->d_name.name, 8090 new_dentry->d_name.len); 8091 8092 if (ret) { 8093 if (ret == -EEXIST) { 8094 /* we shouldn't get 8095 * eexist without a new_inode */ 8096 if (!new_inode) { 8097 WARN_ON(1); 8098 return ret; 8099 } 8100 } else { 8101 /* maybe -EOVERFLOW */ 8102 return ret; 8103 } 8104 } 8105 ret = 0; 8106 8107 /* 8108 * we're using rename to replace one file with another. 8109 * and the replacement file is large. Start IO on it now so 8110 * we don't add too much work to the end of the transaction 8111 */ 8112 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8113 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8114 filemap_flush(old_inode->i_mapping); 8115 8116 /* close the racy window with snapshot create/destroy ioctl */ 8117 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8118 down_read(&root->fs_info->subvol_sem); 8119 /* 8120 * We want to reserve the absolute worst case amount of items. So if 8121 * both inodes are subvols and we need to unlink them then that would 8122 * require 4 item modifications, but if they are both normal inodes it 8123 * would require 5 item modifications, so we'll assume their normal 8124 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8125 * should cover the worst case number of items we'll modify. 8126 */ 8127 trans = btrfs_start_transaction(root, 20); 8128 if (IS_ERR(trans)) { 8129 ret = PTR_ERR(trans); 8130 goto out_notrans; 8131 } 8132 8133 if (dest != root) 8134 btrfs_record_root_in_trans(trans, dest); 8135 8136 ret = btrfs_set_inode_index(new_dir, &index); 8137 if (ret) 8138 goto out_fail; 8139 8140 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8141 /* force full log commit if subvolume involved. */ 8142 root->fs_info->last_trans_log_full_commit = trans->transid; 8143 } else { 8144 ret = btrfs_insert_inode_ref(trans, dest, 8145 new_dentry->d_name.name, 8146 new_dentry->d_name.len, 8147 old_ino, 8148 btrfs_ino(new_dir), index); 8149 if (ret) 8150 goto out_fail; 8151 /* 8152 * this is an ugly little race, but the rename is required 8153 * to make sure that if we crash, the inode is either at the 8154 * old name or the new one. pinning the log transaction lets 8155 * us make sure we don't allow a log commit to come in after 8156 * we unlink the name but before we add the new name back in. 8157 */ 8158 btrfs_pin_log_trans(root); 8159 } 8160 /* 8161 * make sure the inode gets flushed if it is replacing 8162 * something. 8163 */ 8164 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8165 btrfs_add_ordered_operation(trans, root, old_inode); 8166 8167 inode_inc_iversion(old_dir); 8168 inode_inc_iversion(new_dir); 8169 inode_inc_iversion(old_inode); 8170 old_dir->i_ctime = old_dir->i_mtime = ctime; 8171 new_dir->i_ctime = new_dir->i_mtime = ctime; 8172 old_inode->i_ctime = ctime; 8173 8174 if (old_dentry->d_parent != new_dentry->d_parent) 8175 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8176 8177 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8178 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8179 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8180 old_dentry->d_name.name, 8181 old_dentry->d_name.len); 8182 } else { 8183 ret = __btrfs_unlink_inode(trans, root, old_dir, 8184 old_dentry->d_inode, 8185 old_dentry->d_name.name, 8186 old_dentry->d_name.len); 8187 if (!ret) 8188 ret = btrfs_update_inode(trans, root, old_inode); 8189 } 8190 if (ret) { 8191 btrfs_abort_transaction(trans, root, ret); 8192 goto out_fail; 8193 } 8194 8195 if (new_inode) { 8196 inode_inc_iversion(new_inode); 8197 new_inode->i_ctime = CURRENT_TIME; 8198 if (unlikely(btrfs_ino(new_inode) == 8199 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8200 root_objectid = BTRFS_I(new_inode)->location.objectid; 8201 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8202 root_objectid, 8203 new_dentry->d_name.name, 8204 new_dentry->d_name.len); 8205 BUG_ON(new_inode->i_nlink == 0); 8206 } else { 8207 ret = btrfs_unlink_inode(trans, dest, new_dir, 8208 new_dentry->d_inode, 8209 new_dentry->d_name.name, 8210 new_dentry->d_name.len); 8211 } 8212 if (!ret && new_inode->i_nlink == 0) { 8213 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8214 BUG_ON(ret); 8215 } 8216 if (ret) { 8217 btrfs_abort_transaction(trans, root, ret); 8218 goto out_fail; 8219 } 8220 } 8221 8222 ret = btrfs_add_link(trans, new_dir, old_inode, 8223 new_dentry->d_name.name, 8224 new_dentry->d_name.len, 0, index); 8225 if (ret) { 8226 btrfs_abort_transaction(trans, root, ret); 8227 goto out_fail; 8228 } 8229 8230 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8231 struct dentry *parent = new_dentry->d_parent; 8232 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8233 btrfs_end_log_trans(root); 8234 } 8235 out_fail: 8236 btrfs_end_transaction(trans, root); 8237 out_notrans: 8238 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8239 up_read(&root->fs_info->subvol_sem); 8240 8241 return ret; 8242 } 8243 8244 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8245 { 8246 struct btrfs_delalloc_work *delalloc_work; 8247 8248 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8249 work); 8250 if (delalloc_work->wait) 8251 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 8252 else 8253 filemap_flush(delalloc_work->inode->i_mapping); 8254 8255 if (delalloc_work->delay_iput) 8256 btrfs_add_delayed_iput(delalloc_work->inode); 8257 else 8258 iput(delalloc_work->inode); 8259 complete(&delalloc_work->completion); 8260 } 8261 8262 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8263 int wait, int delay_iput) 8264 { 8265 struct btrfs_delalloc_work *work; 8266 8267 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8268 if (!work) 8269 return NULL; 8270 8271 init_completion(&work->completion); 8272 INIT_LIST_HEAD(&work->list); 8273 work->inode = inode; 8274 work->wait = wait; 8275 work->delay_iput = delay_iput; 8276 work->work.func = btrfs_run_delalloc_work; 8277 8278 return work; 8279 } 8280 8281 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8282 { 8283 wait_for_completion(&work->completion); 8284 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8285 } 8286 8287 /* 8288 * some fairly slow code that needs optimization. This walks the list 8289 * of all the inodes with pending delalloc and forces them to disk. 8290 */ 8291 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8292 { 8293 struct btrfs_inode *binode; 8294 struct inode *inode; 8295 struct btrfs_delalloc_work *work, *next; 8296 struct list_head works; 8297 struct list_head splice; 8298 int ret = 0; 8299 8300 if (root->fs_info->sb->s_flags & MS_RDONLY) 8301 return -EROFS; 8302 8303 INIT_LIST_HEAD(&works); 8304 INIT_LIST_HEAD(&splice); 8305 8306 spin_lock(&root->fs_info->delalloc_lock); 8307 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 8308 while (!list_empty(&splice)) { 8309 binode = list_entry(splice.next, struct btrfs_inode, 8310 delalloc_inodes); 8311 8312 list_del_init(&binode->delalloc_inodes); 8313 8314 inode = igrab(&binode->vfs_inode); 8315 if (!inode) { 8316 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 8317 &binode->runtime_flags); 8318 continue; 8319 } 8320 8321 list_add_tail(&binode->delalloc_inodes, 8322 &root->fs_info->delalloc_inodes); 8323 spin_unlock(&root->fs_info->delalloc_lock); 8324 8325 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8326 if (unlikely(!work)) { 8327 ret = -ENOMEM; 8328 goto out; 8329 } 8330 list_add_tail(&work->list, &works); 8331 btrfs_queue_worker(&root->fs_info->flush_workers, 8332 &work->work); 8333 8334 cond_resched(); 8335 spin_lock(&root->fs_info->delalloc_lock); 8336 } 8337 spin_unlock(&root->fs_info->delalloc_lock); 8338 8339 list_for_each_entry_safe(work, next, &works, list) { 8340 list_del_init(&work->list); 8341 btrfs_wait_and_free_delalloc_work(work); 8342 } 8343 8344 /* the filemap_flush will queue IO into the worker threads, but 8345 * we have to make sure the IO is actually started and that 8346 * ordered extents get created before we return 8347 */ 8348 atomic_inc(&root->fs_info->async_submit_draining); 8349 while (atomic_read(&root->fs_info->nr_async_submits) || 8350 atomic_read(&root->fs_info->async_delalloc_pages)) { 8351 wait_event(root->fs_info->async_submit_wait, 8352 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8353 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8354 } 8355 atomic_dec(&root->fs_info->async_submit_draining); 8356 return 0; 8357 out: 8358 list_for_each_entry_safe(work, next, &works, list) { 8359 list_del_init(&work->list); 8360 btrfs_wait_and_free_delalloc_work(work); 8361 } 8362 8363 if (!list_empty_careful(&splice)) { 8364 spin_lock(&root->fs_info->delalloc_lock); 8365 list_splice_tail(&splice, &root->fs_info->delalloc_inodes); 8366 spin_unlock(&root->fs_info->delalloc_lock); 8367 } 8368 return ret; 8369 } 8370 8371 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8372 const char *symname) 8373 { 8374 struct btrfs_trans_handle *trans; 8375 struct btrfs_root *root = BTRFS_I(dir)->root; 8376 struct btrfs_path *path; 8377 struct btrfs_key key; 8378 struct inode *inode = NULL; 8379 int err; 8380 int drop_inode = 0; 8381 u64 objectid; 8382 u64 index = 0 ; 8383 int name_len; 8384 int datasize; 8385 unsigned long ptr; 8386 struct btrfs_file_extent_item *ei; 8387 struct extent_buffer *leaf; 8388 8389 name_len = strlen(symname) + 1; 8390 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8391 return -ENAMETOOLONG; 8392 8393 /* 8394 * 2 items for inode item and ref 8395 * 2 items for dir items 8396 * 1 item for xattr if selinux is on 8397 */ 8398 trans = btrfs_start_transaction(root, 5); 8399 if (IS_ERR(trans)) 8400 return PTR_ERR(trans); 8401 8402 err = btrfs_find_free_ino(root, &objectid); 8403 if (err) 8404 goto out_unlock; 8405 8406 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8407 dentry->d_name.len, btrfs_ino(dir), objectid, 8408 S_IFLNK|S_IRWXUGO, &index); 8409 if (IS_ERR(inode)) { 8410 err = PTR_ERR(inode); 8411 goto out_unlock; 8412 } 8413 8414 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8415 if (err) { 8416 drop_inode = 1; 8417 goto out_unlock; 8418 } 8419 8420 /* 8421 * If the active LSM wants to access the inode during 8422 * d_instantiate it needs these. Smack checks to see 8423 * if the filesystem supports xattrs by looking at the 8424 * ops vector. 8425 */ 8426 inode->i_fop = &btrfs_file_operations; 8427 inode->i_op = &btrfs_file_inode_operations; 8428 8429 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8430 if (err) 8431 drop_inode = 1; 8432 else { 8433 inode->i_mapping->a_ops = &btrfs_aops; 8434 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8435 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8436 } 8437 if (drop_inode) 8438 goto out_unlock; 8439 8440 path = btrfs_alloc_path(); 8441 if (!path) { 8442 err = -ENOMEM; 8443 drop_inode = 1; 8444 goto out_unlock; 8445 } 8446 key.objectid = btrfs_ino(inode); 8447 key.offset = 0; 8448 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8449 datasize = btrfs_file_extent_calc_inline_size(name_len); 8450 err = btrfs_insert_empty_item(trans, root, path, &key, 8451 datasize); 8452 if (err) { 8453 drop_inode = 1; 8454 btrfs_free_path(path); 8455 goto out_unlock; 8456 } 8457 leaf = path->nodes[0]; 8458 ei = btrfs_item_ptr(leaf, path->slots[0], 8459 struct btrfs_file_extent_item); 8460 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8461 btrfs_set_file_extent_type(leaf, ei, 8462 BTRFS_FILE_EXTENT_INLINE); 8463 btrfs_set_file_extent_encryption(leaf, ei, 0); 8464 btrfs_set_file_extent_compression(leaf, ei, 0); 8465 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8466 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8467 8468 ptr = btrfs_file_extent_inline_start(ei); 8469 write_extent_buffer(leaf, symname, ptr, name_len); 8470 btrfs_mark_buffer_dirty(leaf); 8471 btrfs_free_path(path); 8472 8473 inode->i_op = &btrfs_symlink_inode_operations; 8474 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8475 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8476 inode_set_bytes(inode, name_len); 8477 btrfs_i_size_write(inode, name_len - 1); 8478 err = btrfs_update_inode(trans, root, inode); 8479 if (err) 8480 drop_inode = 1; 8481 8482 out_unlock: 8483 if (!err) 8484 d_instantiate(dentry, inode); 8485 btrfs_end_transaction(trans, root); 8486 if (drop_inode) { 8487 inode_dec_link_count(inode); 8488 iput(inode); 8489 } 8490 btrfs_btree_balance_dirty(root); 8491 return err; 8492 } 8493 8494 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8495 u64 start, u64 num_bytes, u64 min_size, 8496 loff_t actual_len, u64 *alloc_hint, 8497 struct btrfs_trans_handle *trans) 8498 { 8499 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8500 struct extent_map *em; 8501 struct btrfs_root *root = BTRFS_I(inode)->root; 8502 struct btrfs_key ins; 8503 u64 cur_offset = start; 8504 u64 i_size; 8505 int ret = 0; 8506 bool own_trans = true; 8507 8508 if (trans) 8509 own_trans = false; 8510 while (num_bytes > 0) { 8511 if (own_trans) { 8512 trans = btrfs_start_transaction(root, 3); 8513 if (IS_ERR(trans)) { 8514 ret = PTR_ERR(trans); 8515 break; 8516 } 8517 } 8518 8519 ret = btrfs_reserve_extent(trans, root, 8520 min(num_bytes, 256ULL * 1024 * 1024), 8521 min_size, 0, *alloc_hint, &ins, 1); 8522 if (ret) { 8523 if (own_trans) 8524 btrfs_end_transaction(trans, root); 8525 break; 8526 } 8527 8528 ret = insert_reserved_file_extent(trans, inode, 8529 cur_offset, ins.objectid, 8530 ins.offset, ins.offset, 8531 ins.offset, 0, 0, 0, 8532 BTRFS_FILE_EXTENT_PREALLOC); 8533 if (ret) { 8534 btrfs_abort_transaction(trans, root, ret); 8535 if (own_trans) 8536 btrfs_end_transaction(trans, root); 8537 break; 8538 } 8539 btrfs_drop_extent_cache(inode, cur_offset, 8540 cur_offset + ins.offset -1, 0); 8541 8542 em = alloc_extent_map(); 8543 if (!em) { 8544 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8545 &BTRFS_I(inode)->runtime_flags); 8546 goto next; 8547 } 8548 8549 em->start = cur_offset; 8550 em->orig_start = cur_offset; 8551 em->len = ins.offset; 8552 em->block_start = ins.objectid; 8553 em->block_len = ins.offset; 8554 em->orig_block_len = ins.offset; 8555 em->bdev = root->fs_info->fs_devices->latest_bdev; 8556 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8557 em->generation = trans->transid; 8558 8559 while (1) { 8560 write_lock(&em_tree->lock); 8561 ret = add_extent_mapping(em_tree, em); 8562 if (!ret) 8563 list_move(&em->list, 8564 &em_tree->modified_extents); 8565 write_unlock(&em_tree->lock); 8566 if (ret != -EEXIST) 8567 break; 8568 btrfs_drop_extent_cache(inode, cur_offset, 8569 cur_offset + ins.offset - 1, 8570 0); 8571 } 8572 free_extent_map(em); 8573 next: 8574 num_bytes -= ins.offset; 8575 cur_offset += ins.offset; 8576 *alloc_hint = ins.objectid + ins.offset; 8577 8578 inode_inc_iversion(inode); 8579 inode->i_ctime = CURRENT_TIME; 8580 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8581 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8582 (actual_len > inode->i_size) && 8583 (cur_offset > inode->i_size)) { 8584 if (cur_offset > actual_len) 8585 i_size = actual_len; 8586 else 8587 i_size = cur_offset; 8588 i_size_write(inode, i_size); 8589 btrfs_ordered_update_i_size(inode, i_size, NULL); 8590 } 8591 8592 ret = btrfs_update_inode(trans, root, inode); 8593 8594 if (ret) { 8595 btrfs_abort_transaction(trans, root, ret); 8596 if (own_trans) 8597 btrfs_end_transaction(trans, root); 8598 break; 8599 } 8600 8601 if (own_trans) 8602 btrfs_end_transaction(trans, root); 8603 } 8604 return ret; 8605 } 8606 8607 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8608 u64 start, u64 num_bytes, u64 min_size, 8609 loff_t actual_len, u64 *alloc_hint) 8610 { 8611 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8612 min_size, actual_len, alloc_hint, 8613 NULL); 8614 } 8615 8616 int btrfs_prealloc_file_range_trans(struct inode *inode, 8617 struct btrfs_trans_handle *trans, int mode, 8618 u64 start, u64 num_bytes, u64 min_size, 8619 loff_t actual_len, u64 *alloc_hint) 8620 { 8621 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8622 min_size, actual_len, alloc_hint, trans); 8623 } 8624 8625 static int btrfs_set_page_dirty(struct page *page) 8626 { 8627 return __set_page_dirty_nobuffers(page); 8628 } 8629 8630 static int btrfs_permission(struct inode *inode, int mask) 8631 { 8632 struct btrfs_root *root = BTRFS_I(inode)->root; 8633 umode_t mode = inode->i_mode; 8634 8635 if (mask & MAY_WRITE && 8636 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8637 if (btrfs_root_readonly(root)) 8638 return -EROFS; 8639 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8640 return -EACCES; 8641 } 8642 return generic_permission(inode, mask); 8643 } 8644 8645 static const struct inode_operations btrfs_dir_inode_operations = { 8646 .getattr = btrfs_getattr, 8647 .lookup = btrfs_lookup, 8648 .create = btrfs_create, 8649 .unlink = btrfs_unlink, 8650 .link = btrfs_link, 8651 .mkdir = btrfs_mkdir, 8652 .rmdir = btrfs_rmdir, 8653 .rename = btrfs_rename, 8654 .symlink = btrfs_symlink, 8655 .setattr = btrfs_setattr, 8656 .mknod = btrfs_mknod, 8657 .setxattr = btrfs_setxattr, 8658 .getxattr = btrfs_getxattr, 8659 .listxattr = btrfs_listxattr, 8660 .removexattr = btrfs_removexattr, 8661 .permission = btrfs_permission, 8662 .get_acl = btrfs_get_acl, 8663 }; 8664 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8665 .lookup = btrfs_lookup, 8666 .permission = btrfs_permission, 8667 .get_acl = btrfs_get_acl, 8668 }; 8669 8670 static const struct file_operations btrfs_dir_file_operations = { 8671 .llseek = generic_file_llseek, 8672 .read = generic_read_dir, 8673 .readdir = btrfs_real_readdir, 8674 .unlocked_ioctl = btrfs_ioctl, 8675 #ifdef CONFIG_COMPAT 8676 .compat_ioctl = btrfs_ioctl, 8677 #endif 8678 .release = btrfs_release_file, 8679 .fsync = btrfs_sync_file, 8680 }; 8681 8682 static struct extent_io_ops btrfs_extent_io_ops = { 8683 .fill_delalloc = run_delalloc_range, 8684 .submit_bio_hook = btrfs_submit_bio_hook, 8685 .merge_bio_hook = btrfs_merge_bio_hook, 8686 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8687 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8688 .writepage_start_hook = btrfs_writepage_start_hook, 8689 .set_bit_hook = btrfs_set_bit_hook, 8690 .clear_bit_hook = btrfs_clear_bit_hook, 8691 .merge_extent_hook = btrfs_merge_extent_hook, 8692 .split_extent_hook = btrfs_split_extent_hook, 8693 }; 8694 8695 /* 8696 * btrfs doesn't support the bmap operation because swapfiles 8697 * use bmap to make a mapping of extents in the file. They assume 8698 * these extents won't change over the life of the file and they 8699 * use the bmap result to do IO directly to the drive. 8700 * 8701 * the btrfs bmap call would return logical addresses that aren't 8702 * suitable for IO and they also will change frequently as COW 8703 * operations happen. So, swapfile + btrfs == corruption. 8704 * 8705 * For now we're avoiding this by dropping bmap. 8706 */ 8707 static const struct address_space_operations btrfs_aops = { 8708 .readpage = btrfs_readpage, 8709 .writepage = btrfs_writepage, 8710 .writepages = btrfs_writepages, 8711 .readpages = btrfs_readpages, 8712 .direct_IO = btrfs_direct_IO, 8713 .invalidatepage = btrfs_invalidatepage, 8714 .releasepage = btrfs_releasepage, 8715 .set_page_dirty = btrfs_set_page_dirty, 8716 .error_remove_page = generic_error_remove_page, 8717 }; 8718 8719 static const struct address_space_operations btrfs_symlink_aops = { 8720 .readpage = btrfs_readpage, 8721 .writepage = btrfs_writepage, 8722 .invalidatepage = btrfs_invalidatepage, 8723 .releasepage = btrfs_releasepage, 8724 }; 8725 8726 static const struct inode_operations btrfs_file_inode_operations = { 8727 .getattr = btrfs_getattr, 8728 .setattr = btrfs_setattr, 8729 .setxattr = btrfs_setxattr, 8730 .getxattr = btrfs_getxattr, 8731 .listxattr = btrfs_listxattr, 8732 .removexattr = btrfs_removexattr, 8733 .permission = btrfs_permission, 8734 .fiemap = btrfs_fiemap, 8735 .get_acl = btrfs_get_acl, 8736 .update_time = btrfs_update_time, 8737 }; 8738 static const struct inode_operations btrfs_special_inode_operations = { 8739 .getattr = btrfs_getattr, 8740 .setattr = btrfs_setattr, 8741 .permission = btrfs_permission, 8742 .setxattr = btrfs_setxattr, 8743 .getxattr = btrfs_getxattr, 8744 .listxattr = btrfs_listxattr, 8745 .removexattr = btrfs_removexattr, 8746 .get_acl = btrfs_get_acl, 8747 .update_time = btrfs_update_time, 8748 }; 8749 static const struct inode_operations btrfs_symlink_inode_operations = { 8750 .readlink = generic_readlink, 8751 .follow_link = page_follow_link_light, 8752 .put_link = page_put_link, 8753 .getattr = btrfs_getattr, 8754 .setattr = btrfs_setattr, 8755 .permission = btrfs_permission, 8756 .setxattr = btrfs_setxattr, 8757 .getxattr = btrfs_getxattr, 8758 .listxattr = btrfs_listxattr, 8759 .removexattr = btrfs_removexattr, 8760 .get_acl = btrfs_get_acl, 8761 .update_time = btrfs_update_time, 8762 }; 8763 8764 const struct dentry_operations btrfs_dentry_operations = { 8765 .d_delete = btrfs_dentry_delete, 8766 .d_release = btrfs_dentry_release, 8767 }; 8768