1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/smp_lock.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "ref-cache.h" 52 #include "compression.h" 53 #include "locking.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 static struct inode_operations btrfs_dir_inode_operations; 61 static struct inode_operations btrfs_symlink_inode_operations; 62 static struct inode_operations btrfs_dir_ro_inode_operations; 63 static struct inode_operations btrfs_special_inode_operations; 64 static struct inode_operations btrfs_file_inode_operations; 65 static struct address_space_operations btrfs_aops; 66 static struct address_space_operations btrfs_symlink_aops; 67 static struct file_operations btrfs_dir_file_operations; 68 static struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_transaction_cachep; 73 struct kmem_cache *btrfs_path_cachep; 74 75 #define S_SHIFT 12 76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 84 }; 85 86 static void btrfs_truncate(struct inode *inode); 87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 88 static noinline int cow_file_range(struct inode *inode, 89 struct page *locked_page, 90 u64 start, u64 end, int *page_started, 91 unsigned long *nr_written, int unlock); 92 93 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir) 94 { 95 int err; 96 97 err = btrfs_init_acl(inode, dir); 98 if (!err) 99 err = btrfs_xattr_security_init(inode, dir); 100 return err; 101 } 102 103 /* 104 * this does all the hard work for inserting an inline extent into 105 * the btree. The caller should have done a btrfs_drop_extents so that 106 * no overlapping inline items exist in the btree 107 */ 108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, struct inode *inode, 110 u64 start, size_t size, size_t compressed_size, 111 struct page **compressed_pages) 112 { 113 struct btrfs_key key; 114 struct btrfs_path *path; 115 struct extent_buffer *leaf; 116 struct page *page = NULL; 117 char *kaddr; 118 unsigned long ptr; 119 struct btrfs_file_extent_item *ei; 120 int err = 0; 121 int ret; 122 size_t cur_size = size; 123 size_t datasize; 124 unsigned long offset; 125 int use_compress = 0; 126 127 if (compressed_size && compressed_pages) { 128 use_compress = 1; 129 cur_size = compressed_size; 130 } 131 132 path = btrfs_alloc_path(); 133 if (!path) 134 return -ENOMEM; 135 136 path->leave_spinning = 1; 137 btrfs_set_trans_block_group(trans, inode); 138 139 key.objectid = inode->i_ino; 140 key.offset = start; 141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 142 datasize = btrfs_file_extent_calc_inline_size(cur_size); 143 144 inode_add_bytes(inode, size); 145 ret = btrfs_insert_empty_item(trans, root, path, &key, 146 datasize); 147 BUG_ON(ret); 148 if (ret) { 149 err = ret; 150 goto fail; 151 } 152 leaf = path->nodes[0]; 153 ei = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_file_extent_item); 155 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 157 btrfs_set_file_extent_encryption(leaf, ei, 0); 158 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 159 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 160 ptr = btrfs_file_extent_inline_start(ei); 161 162 if (use_compress) { 163 struct page *cpage; 164 int i = 0; 165 while (compressed_size > 0) { 166 cpage = compressed_pages[i]; 167 cur_size = min_t(unsigned long, compressed_size, 168 PAGE_CACHE_SIZE); 169 170 kaddr = kmap_atomic(cpage, KM_USER0); 171 write_extent_buffer(leaf, kaddr, ptr, cur_size); 172 kunmap_atomic(kaddr, KM_USER0); 173 174 i++; 175 ptr += cur_size; 176 compressed_size -= cur_size; 177 } 178 btrfs_set_file_extent_compression(leaf, ei, 179 BTRFS_COMPRESS_ZLIB); 180 } else { 181 page = find_get_page(inode->i_mapping, 182 start >> PAGE_CACHE_SHIFT); 183 btrfs_set_file_extent_compression(leaf, ei, 0); 184 kaddr = kmap_atomic(page, KM_USER0); 185 offset = start & (PAGE_CACHE_SIZE - 1); 186 write_extent_buffer(leaf, kaddr + offset, ptr, size); 187 kunmap_atomic(kaddr, KM_USER0); 188 page_cache_release(page); 189 } 190 btrfs_mark_buffer_dirty(leaf); 191 btrfs_free_path(path); 192 193 BTRFS_I(inode)->disk_i_size = inode->i_size; 194 btrfs_update_inode(trans, root, inode); 195 return 0; 196 fail: 197 btrfs_free_path(path); 198 return err; 199 } 200 201 202 /* 203 * conditionally insert an inline extent into the file. This 204 * does the checks required to make sure the data is small enough 205 * to fit as an inline extent. 206 */ 207 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 208 struct btrfs_root *root, 209 struct inode *inode, u64 start, u64 end, 210 size_t compressed_size, 211 struct page **compressed_pages) 212 { 213 u64 isize = i_size_read(inode); 214 u64 actual_end = min(end + 1, isize); 215 u64 inline_len = actual_end - start; 216 u64 aligned_end = (end + root->sectorsize - 1) & 217 ~((u64)root->sectorsize - 1); 218 u64 hint_byte; 219 u64 data_len = inline_len; 220 int ret; 221 222 if (compressed_size) 223 data_len = compressed_size; 224 225 if (start > 0 || 226 actual_end >= PAGE_CACHE_SIZE || 227 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 228 (!compressed_size && 229 (actual_end & (root->sectorsize - 1)) == 0) || 230 end + 1 < isize || 231 data_len > root->fs_info->max_inline) { 232 return 1; 233 } 234 235 ret = btrfs_drop_extents(trans, root, inode, start, 236 aligned_end, aligned_end, start, &hint_byte); 237 BUG_ON(ret); 238 239 if (isize > actual_end) 240 inline_len = min_t(u64, isize, actual_end); 241 ret = insert_inline_extent(trans, root, inode, start, 242 inline_len, compressed_size, 243 compressed_pages); 244 BUG_ON(ret); 245 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 246 return 0; 247 } 248 249 struct async_extent { 250 u64 start; 251 u64 ram_size; 252 u64 compressed_size; 253 struct page **pages; 254 unsigned long nr_pages; 255 struct list_head list; 256 }; 257 258 struct async_cow { 259 struct inode *inode; 260 struct btrfs_root *root; 261 struct page *locked_page; 262 u64 start; 263 u64 end; 264 struct list_head extents; 265 struct btrfs_work work; 266 }; 267 268 static noinline int add_async_extent(struct async_cow *cow, 269 u64 start, u64 ram_size, 270 u64 compressed_size, 271 struct page **pages, 272 unsigned long nr_pages) 273 { 274 struct async_extent *async_extent; 275 276 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 277 async_extent->start = start; 278 async_extent->ram_size = ram_size; 279 async_extent->compressed_size = compressed_size; 280 async_extent->pages = pages; 281 async_extent->nr_pages = nr_pages; 282 list_add_tail(&async_extent->list, &cow->extents); 283 return 0; 284 } 285 286 /* 287 * we create compressed extents in two phases. The first 288 * phase compresses a range of pages that have already been 289 * locked (both pages and state bits are locked). 290 * 291 * This is done inside an ordered work queue, and the compression 292 * is spread across many cpus. The actual IO submission is step 293 * two, and the ordered work queue takes care of making sure that 294 * happens in the same order things were put onto the queue by 295 * writepages and friends. 296 * 297 * If this code finds it can't get good compression, it puts an 298 * entry onto the work queue to write the uncompressed bytes. This 299 * makes sure that both compressed inodes and uncompressed inodes 300 * are written in the same order that pdflush sent them down. 301 */ 302 static noinline int compress_file_range(struct inode *inode, 303 struct page *locked_page, 304 u64 start, u64 end, 305 struct async_cow *async_cow, 306 int *num_added) 307 { 308 struct btrfs_root *root = BTRFS_I(inode)->root; 309 struct btrfs_trans_handle *trans; 310 u64 num_bytes; 311 u64 orig_start; 312 u64 disk_num_bytes; 313 u64 blocksize = root->sectorsize; 314 u64 actual_end; 315 u64 isize = i_size_read(inode); 316 int ret = 0; 317 struct page **pages = NULL; 318 unsigned long nr_pages; 319 unsigned long nr_pages_ret = 0; 320 unsigned long total_compressed = 0; 321 unsigned long total_in = 0; 322 unsigned long max_compressed = 128 * 1024; 323 unsigned long max_uncompressed = 128 * 1024; 324 int i; 325 int will_compress; 326 327 orig_start = start; 328 329 actual_end = min_t(u64, isize, end + 1); 330 again: 331 will_compress = 0; 332 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 333 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 334 335 /* 336 * we don't want to send crud past the end of i_size through 337 * compression, that's just a waste of CPU time. So, if the 338 * end of the file is before the start of our current 339 * requested range of bytes, we bail out to the uncompressed 340 * cleanup code that can deal with all of this. 341 * 342 * It isn't really the fastest way to fix things, but this is a 343 * very uncommon corner. 344 */ 345 if (actual_end <= start) 346 goto cleanup_and_bail_uncompressed; 347 348 total_compressed = actual_end - start; 349 350 /* we want to make sure that amount of ram required to uncompress 351 * an extent is reasonable, so we limit the total size in ram 352 * of a compressed extent to 128k. This is a crucial number 353 * because it also controls how easily we can spread reads across 354 * cpus for decompression. 355 * 356 * We also want to make sure the amount of IO required to do 357 * a random read is reasonably small, so we limit the size of 358 * a compressed extent to 128k. 359 */ 360 total_compressed = min(total_compressed, max_uncompressed); 361 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 362 num_bytes = max(blocksize, num_bytes); 363 disk_num_bytes = num_bytes; 364 total_in = 0; 365 ret = 0; 366 367 /* 368 * we do compression for mount -o compress and when the 369 * inode has not been flagged as nocompress. This flag can 370 * change at any time if we discover bad compression ratios. 371 */ 372 if (!btrfs_test_flag(inode, NOCOMPRESS) && 373 btrfs_test_opt(root, COMPRESS)) { 374 WARN_ON(pages); 375 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 376 377 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 378 total_compressed, pages, 379 nr_pages, &nr_pages_ret, 380 &total_in, 381 &total_compressed, 382 max_compressed); 383 384 if (!ret) { 385 unsigned long offset = total_compressed & 386 (PAGE_CACHE_SIZE - 1); 387 struct page *page = pages[nr_pages_ret - 1]; 388 char *kaddr; 389 390 /* zero the tail end of the last page, we might be 391 * sending it down to disk 392 */ 393 if (offset) { 394 kaddr = kmap_atomic(page, KM_USER0); 395 memset(kaddr + offset, 0, 396 PAGE_CACHE_SIZE - offset); 397 kunmap_atomic(kaddr, KM_USER0); 398 } 399 will_compress = 1; 400 } 401 } 402 if (start == 0) { 403 trans = btrfs_join_transaction(root, 1); 404 BUG_ON(!trans); 405 btrfs_set_trans_block_group(trans, inode); 406 407 /* lets try to make an inline extent */ 408 if (ret || total_in < (actual_end - start)) { 409 /* we didn't compress the entire range, try 410 * to make an uncompressed inline extent. 411 */ 412 ret = cow_file_range_inline(trans, root, inode, 413 start, end, 0, NULL); 414 } else { 415 /* try making a compressed inline extent */ 416 ret = cow_file_range_inline(trans, root, inode, 417 start, end, 418 total_compressed, pages); 419 } 420 btrfs_end_transaction(trans, root); 421 if (ret == 0) { 422 /* 423 * inline extent creation worked, we don't need 424 * to create any more async work items. Unlock 425 * and free up our temp pages. 426 */ 427 extent_clear_unlock_delalloc(inode, 428 &BTRFS_I(inode)->io_tree, 429 start, end, NULL, 1, 0, 430 0, 1, 1, 1); 431 ret = 0; 432 goto free_pages_out; 433 } 434 } 435 436 if (will_compress) { 437 /* 438 * we aren't doing an inline extent round the compressed size 439 * up to a block size boundary so the allocator does sane 440 * things 441 */ 442 total_compressed = (total_compressed + blocksize - 1) & 443 ~(blocksize - 1); 444 445 /* 446 * one last check to make sure the compression is really a 447 * win, compare the page count read with the blocks on disk 448 */ 449 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 450 ~(PAGE_CACHE_SIZE - 1); 451 if (total_compressed >= total_in) { 452 will_compress = 0; 453 } else { 454 disk_num_bytes = total_compressed; 455 num_bytes = total_in; 456 } 457 } 458 if (!will_compress && pages) { 459 /* 460 * the compression code ran but failed to make things smaller, 461 * free any pages it allocated and our page pointer array 462 */ 463 for (i = 0; i < nr_pages_ret; i++) { 464 WARN_ON(pages[i]->mapping); 465 page_cache_release(pages[i]); 466 } 467 kfree(pages); 468 pages = NULL; 469 total_compressed = 0; 470 nr_pages_ret = 0; 471 472 /* flag the file so we don't compress in the future */ 473 btrfs_set_flag(inode, NOCOMPRESS); 474 } 475 if (will_compress) { 476 *num_added += 1; 477 478 /* the async work queues will take care of doing actual 479 * allocation on disk for these compressed pages, 480 * and will submit them to the elevator. 481 */ 482 add_async_extent(async_cow, start, num_bytes, 483 total_compressed, pages, nr_pages_ret); 484 485 if (start + num_bytes < end && start + num_bytes < actual_end) { 486 start += num_bytes; 487 pages = NULL; 488 cond_resched(); 489 goto again; 490 } 491 } else { 492 cleanup_and_bail_uncompressed: 493 /* 494 * No compression, but we still need to write the pages in 495 * the file we've been given so far. redirty the locked 496 * page if it corresponds to our extent and set things up 497 * for the async work queue to run cow_file_range to do 498 * the normal delalloc dance 499 */ 500 if (page_offset(locked_page) >= start && 501 page_offset(locked_page) <= end) { 502 __set_page_dirty_nobuffers(locked_page); 503 /* unlocked later on in the async handlers */ 504 } 505 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 506 *num_added += 1; 507 } 508 509 out: 510 return 0; 511 512 free_pages_out: 513 for (i = 0; i < nr_pages_ret; i++) { 514 WARN_ON(pages[i]->mapping); 515 page_cache_release(pages[i]); 516 } 517 kfree(pages); 518 519 goto out; 520 } 521 522 /* 523 * phase two of compressed writeback. This is the ordered portion 524 * of the code, which only gets called in the order the work was 525 * queued. We walk all the async extents created by compress_file_range 526 * and send them down to the disk. 527 */ 528 static noinline int submit_compressed_extents(struct inode *inode, 529 struct async_cow *async_cow) 530 { 531 struct async_extent *async_extent; 532 u64 alloc_hint = 0; 533 struct btrfs_trans_handle *trans; 534 struct btrfs_key ins; 535 struct extent_map *em; 536 struct btrfs_root *root = BTRFS_I(inode)->root; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 struct extent_io_tree *io_tree; 539 int ret; 540 541 if (list_empty(&async_cow->extents)) 542 return 0; 543 544 trans = btrfs_join_transaction(root, 1); 545 546 while (!list_empty(&async_cow->extents)) { 547 async_extent = list_entry(async_cow->extents.next, 548 struct async_extent, list); 549 list_del(&async_extent->list); 550 551 io_tree = &BTRFS_I(inode)->io_tree; 552 553 /* did the compression code fall back to uncompressed IO? */ 554 if (!async_extent->pages) { 555 int page_started = 0; 556 unsigned long nr_written = 0; 557 558 lock_extent(io_tree, async_extent->start, 559 async_extent->start + 560 async_extent->ram_size - 1, GFP_NOFS); 561 562 /* allocate blocks */ 563 cow_file_range(inode, async_cow->locked_page, 564 async_extent->start, 565 async_extent->start + 566 async_extent->ram_size - 1, 567 &page_started, &nr_written, 0); 568 569 /* 570 * if page_started, cow_file_range inserted an 571 * inline extent and took care of all the unlocking 572 * and IO for us. Otherwise, we need to submit 573 * all those pages down to the drive. 574 */ 575 if (!page_started) 576 extent_write_locked_range(io_tree, 577 inode, async_extent->start, 578 async_extent->start + 579 async_extent->ram_size - 1, 580 btrfs_get_extent, 581 WB_SYNC_ALL); 582 kfree(async_extent); 583 cond_resched(); 584 continue; 585 } 586 587 lock_extent(io_tree, async_extent->start, 588 async_extent->start + async_extent->ram_size - 1, 589 GFP_NOFS); 590 /* 591 * here we're doing allocation and writeback of the 592 * compressed pages 593 */ 594 btrfs_drop_extent_cache(inode, async_extent->start, 595 async_extent->start + 596 async_extent->ram_size - 1, 0); 597 598 ret = btrfs_reserve_extent(trans, root, 599 async_extent->compressed_size, 600 async_extent->compressed_size, 601 0, alloc_hint, 602 (u64)-1, &ins, 1); 603 BUG_ON(ret); 604 em = alloc_extent_map(GFP_NOFS); 605 em->start = async_extent->start; 606 em->len = async_extent->ram_size; 607 em->orig_start = em->start; 608 609 em->block_start = ins.objectid; 610 em->block_len = ins.offset; 611 em->bdev = root->fs_info->fs_devices->latest_bdev; 612 set_bit(EXTENT_FLAG_PINNED, &em->flags); 613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 614 615 while (1) { 616 spin_lock(&em_tree->lock); 617 ret = add_extent_mapping(em_tree, em); 618 spin_unlock(&em_tree->lock); 619 if (ret != -EEXIST) { 620 free_extent_map(em); 621 break; 622 } 623 btrfs_drop_extent_cache(inode, async_extent->start, 624 async_extent->start + 625 async_extent->ram_size - 1, 0); 626 } 627 628 ret = btrfs_add_ordered_extent(inode, async_extent->start, 629 ins.objectid, 630 async_extent->ram_size, 631 ins.offset, 632 BTRFS_ORDERED_COMPRESSED); 633 BUG_ON(ret); 634 635 btrfs_end_transaction(trans, root); 636 637 /* 638 * clear dirty, set writeback and unlock the pages. 639 */ 640 extent_clear_unlock_delalloc(inode, 641 &BTRFS_I(inode)->io_tree, 642 async_extent->start, 643 async_extent->start + 644 async_extent->ram_size - 1, 645 NULL, 1, 1, 0, 1, 1, 0); 646 647 ret = btrfs_submit_compressed_write(inode, 648 async_extent->start, 649 async_extent->ram_size, 650 ins.objectid, 651 ins.offset, async_extent->pages, 652 async_extent->nr_pages); 653 654 BUG_ON(ret); 655 trans = btrfs_join_transaction(root, 1); 656 alloc_hint = ins.objectid + ins.offset; 657 kfree(async_extent); 658 cond_resched(); 659 } 660 661 btrfs_end_transaction(trans, root); 662 return 0; 663 } 664 665 /* 666 * when extent_io.c finds a delayed allocation range in the file, 667 * the call backs end up in this code. The basic idea is to 668 * allocate extents on disk for the range, and create ordered data structs 669 * in ram to track those extents. 670 * 671 * locked_page is the page that writepage had locked already. We use 672 * it to make sure we don't do extra locks or unlocks. 673 * 674 * *page_started is set to one if we unlock locked_page and do everything 675 * required to start IO on it. It may be clean and already done with 676 * IO when we return. 677 */ 678 static noinline int cow_file_range(struct inode *inode, 679 struct page *locked_page, 680 u64 start, u64 end, int *page_started, 681 unsigned long *nr_written, 682 int unlock) 683 { 684 struct btrfs_root *root = BTRFS_I(inode)->root; 685 struct btrfs_trans_handle *trans; 686 u64 alloc_hint = 0; 687 u64 num_bytes; 688 unsigned long ram_size; 689 u64 disk_num_bytes; 690 u64 cur_alloc_size; 691 u64 blocksize = root->sectorsize; 692 u64 actual_end; 693 u64 isize = i_size_read(inode); 694 struct btrfs_key ins; 695 struct extent_map *em; 696 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 697 int ret = 0; 698 699 trans = btrfs_join_transaction(root, 1); 700 BUG_ON(!trans); 701 btrfs_set_trans_block_group(trans, inode); 702 703 actual_end = min_t(u64, isize, end + 1); 704 705 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 706 num_bytes = max(blocksize, num_bytes); 707 disk_num_bytes = num_bytes; 708 ret = 0; 709 710 if (start == 0) { 711 /* lets try to make an inline extent */ 712 ret = cow_file_range_inline(trans, root, inode, 713 start, end, 0, NULL); 714 if (ret == 0) { 715 extent_clear_unlock_delalloc(inode, 716 &BTRFS_I(inode)->io_tree, 717 start, end, NULL, 1, 1, 718 1, 1, 1, 1); 719 *nr_written = *nr_written + 720 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 721 *page_started = 1; 722 ret = 0; 723 goto out; 724 } 725 } 726 727 BUG_ON(disk_num_bytes > 728 btrfs_super_total_bytes(&root->fs_info->super_copy)); 729 730 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 731 732 while (disk_num_bytes > 0) { 733 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 734 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 735 root->sectorsize, 0, alloc_hint, 736 (u64)-1, &ins, 1); 737 BUG_ON(ret); 738 739 em = alloc_extent_map(GFP_NOFS); 740 em->start = start; 741 em->orig_start = em->start; 742 743 ram_size = ins.offset; 744 em->len = ins.offset; 745 746 em->block_start = ins.objectid; 747 em->block_len = ins.offset; 748 em->bdev = root->fs_info->fs_devices->latest_bdev; 749 set_bit(EXTENT_FLAG_PINNED, &em->flags); 750 751 while (1) { 752 spin_lock(&em_tree->lock); 753 ret = add_extent_mapping(em_tree, em); 754 spin_unlock(&em_tree->lock); 755 if (ret != -EEXIST) { 756 free_extent_map(em); 757 break; 758 } 759 btrfs_drop_extent_cache(inode, start, 760 start + ram_size - 1, 0); 761 } 762 763 cur_alloc_size = ins.offset; 764 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 765 ram_size, cur_alloc_size, 0); 766 BUG_ON(ret); 767 768 if (root->root_key.objectid == 769 BTRFS_DATA_RELOC_TREE_OBJECTID) { 770 ret = btrfs_reloc_clone_csums(inode, start, 771 cur_alloc_size); 772 BUG_ON(ret); 773 } 774 775 if (disk_num_bytes < cur_alloc_size) 776 break; 777 778 /* we're not doing compressed IO, don't unlock the first 779 * page (which the caller expects to stay locked), don't 780 * clear any dirty bits and don't set any writeback bits 781 */ 782 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 783 start, start + ram_size - 1, 784 locked_page, unlock, 1, 785 1, 0, 0, 0); 786 disk_num_bytes -= cur_alloc_size; 787 num_bytes -= cur_alloc_size; 788 alloc_hint = ins.objectid + ins.offset; 789 start += cur_alloc_size; 790 } 791 out: 792 ret = 0; 793 btrfs_end_transaction(trans, root); 794 795 return ret; 796 } 797 798 /* 799 * work queue call back to started compression on a file and pages 800 */ 801 static noinline void async_cow_start(struct btrfs_work *work) 802 { 803 struct async_cow *async_cow; 804 int num_added = 0; 805 async_cow = container_of(work, struct async_cow, work); 806 807 compress_file_range(async_cow->inode, async_cow->locked_page, 808 async_cow->start, async_cow->end, async_cow, 809 &num_added); 810 if (num_added == 0) 811 async_cow->inode = NULL; 812 } 813 814 /* 815 * work queue call back to submit previously compressed pages 816 */ 817 static noinline void async_cow_submit(struct btrfs_work *work) 818 { 819 struct async_cow *async_cow; 820 struct btrfs_root *root; 821 unsigned long nr_pages; 822 823 async_cow = container_of(work, struct async_cow, work); 824 825 root = async_cow->root; 826 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 827 PAGE_CACHE_SHIFT; 828 829 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 830 831 if (atomic_read(&root->fs_info->async_delalloc_pages) < 832 5 * 1042 * 1024 && 833 waitqueue_active(&root->fs_info->async_submit_wait)) 834 wake_up(&root->fs_info->async_submit_wait); 835 836 if (async_cow->inode) 837 submit_compressed_extents(async_cow->inode, async_cow); 838 } 839 840 static noinline void async_cow_free(struct btrfs_work *work) 841 { 842 struct async_cow *async_cow; 843 async_cow = container_of(work, struct async_cow, work); 844 kfree(async_cow); 845 } 846 847 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 848 u64 start, u64 end, int *page_started, 849 unsigned long *nr_written) 850 { 851 struct async_cow *async_cow; 852 struct btrfs_root *root = BTRFS_I(inode)->root; 853 unsigned long nr_pages; 854 u64 cur_end; 855 int limit = 10 * 1024 * 1042; 856 857 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 858 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 859 while (start < end) { 860 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 861 async_cow->inode = inode; 862 async_cow->root = root; 863 async_cow->locked_page = locked_page; 864 async_cow->start = start; 865 866 if (btrfs_test_flag(inode, NOCOMPRESS)) 867 cur_end = end; 868 else 869 cur_end = min(end, start + 512 * 1024 - 1); 870 871 async_cow->end = cur_end; 872 INIT_LIST_HEAD(&async_cow->extents); 873 874 async_cow->work.func = async_cow_start; 875 async_cow->work.ordered_func = async_cow_submit; 876 async_cow->work.ordered_free = async_cow_free; 877 async_cow->work.flags = 0; 878 879 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 880 PAGE_CACHE_SHIFT; 881 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 882 883 btrfs_queue_worker(&root->fs_info->delalloc_workers, 884 &async_cow->work); 885 886 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 887 wait_event(root->fs_info->async_submit_wait, 888 (atomic_read(&root->fs_info->async_delalloc_pages) < 889 limit)); 890 } 891 892 while (atomic_read(&root->fs_info->async_submit_draining) && 893 atomic_read(&root->fs_info->async_delalloc_pages)) { 894 wait_event(root->fs_info->async_submit_wait, 895 (atomic_read(&root->fs_info->async_delalloc_pages) == 896 0)); 897 } 898 899 *nr_written += nr_pages; 900 start = cur_end + 1; 901 } 902 *page_started = 1; 903 return 0; 904 } 905 906 static noinline int csum_exist_in_range(struct btrfs_root *root, 907 u64 bytenr, u64 num_bytes) 908 { 909 int ret; 910 struct btrfs_ordered_sum *sums; 911 LIST_HEAD(list); 912 913 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 914 bytenr + num_bytes - 1, &list); 915 if (ret == 0 && list_empty(&list)) 916 return 0; 917 918 while (!list_empty(&list)) { 919 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 920 list_del(&sums->list); 921 kfree(sums); 922 } 923 return 1; 924 } 925 926 /* 927 * when nowcow writeback call back. This checks for snapshots or COW copies 928 * of the extents that exist in the file, and COWs the file as required. 929 * 930 * If no cow copies or snapshots exist, we write directly to the existing 931 * blocks on disk 932 */ 933 static noinline int run_delalloc_nocow(struct inode *inode, 934 struct page *locked_page, 935 u64 start, u64 end, int *page_started, int force, 936 unsigned long *nr_written) 937 { 938 struct btrfs_root *root = BTRFS_I(inode)->root; 939 struct btrfs_trans_handle *trans; 940 struct extent_buffer *leaf; 941 struct btrfs_path *path; 942 struct btrfs_file_extent_item *fi; 943 struct btrfs_key found_key; 944 u64 cow_start; 945 u64 cur_offset; 946 u64 extent_end; 947 u64 disk_bytenr; 948 u64 num_bytes; 949 int extent_type; 950 int ret; 951 int type; 952 int nocow; 953 int check_prev = 1; 954 955 path = btrfs_alloc_path(); 956 BUG_ON(!path); 957 trans = btrfs_join_transaction(root, 1); 958 BUG_ON(!trans); 959 960 cow_start = (u64)-1; 961 cur_offset = start; 962 while (1) { 963 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 964 cur_offset, 0); 965 BUG_ON(ret < 0); 966 if (ret > 0 && path->slots[0] > 0 && check_prev) { 967 leaf = path->nodes[0]; 968 btrfs_item_key_to_cpu(leaf, &found_key, 969 path->slots[0] - 1); 970 if (found_key.objectid == inode->i_ino && 971 found_key.type == BTRFS_EXTENT_DATA_KEY) 972 path->slots[0]--; 973 } 974 check_prev = 0; 975 next_slot: 976 leaf = path->nodes[0]; 977 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 978 ret = btrfs_next_leaf(root, path); 979 if (ret < 0) 980 BUG_ON(1); 981 if (ret > 0) 982 break; 983 leaf = path->nodes[0]; 984 } 985 986 nocow = 0; 987 disk_bytenr = 0; 988 num_bytes = 0; 989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 990 991 if (found_key.objectid > inode->i_ino || 992 found_key.type > BTRFS_EXTENT_DATA_KEY || 993 found_key.offset > end) 994 break; 995 996 if (found_key.offset > cur_offset) { 997 extent_end = found_key.offset; 998 goto out_check; 999 } 1000 1001 fi = btrfs_item_ptr(leaf, path->slots[0], 1002 struct btrfs_file_extent_item); 1003 extent_type = btrfs_file_extent_type(leaf, fi); 1004 1005 if (extent_type == BTRFS_FILE_EXTENT_REG || 1006 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1007 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1008 extent_end = found_key.offset + 1009 btrfs_file_extent_num_bytes(leaf, fi); 1010 if (extent_end <= start) { 1011 path->slots[0]++; 1012 goto next_slot; 1013 } 1014 if (disk_bytenr == 0) 1015 goto out_check; 1016 if (btrfs_file_extent_compression(leaf, fi) || 1017 btrfs_file_extent_encryption(leaf, fi) || 1018 btrfs_file_extent_other_encoding(leaf, fi)) 1019 goto out_check; 1020 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1021 goto out_check; 1022 if (btrfs_extent_readonly(root, disk_bytenr)) 1023 goto out_check; 1024 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1025 disk_bytenr)) 1026 goto out_check; 1027 disk_bytenr += btrfs_file_extent_offset(leaf, fi); 1028 disk_bytenr += cur_offset - found_key.offset; 1029 num_bytes = min(end + 1, extent_end) - cur_offset; 1030 /* 1031 * force cow if csum exists in the range. 1032 * this ensure that csum for a given extent are 1033 * either valid or do not exist. 1034 */ 1035 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1036 goto out_check; 1037 nocow = 1; 1038 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1039 extent_end = found_key.offset + 1040 btrfs_file_extent_inline_len(leaf, fi); 1041 extent_end = ALIGN(extent_end, root->sectorsize); 1042 } else { 1043 BUG_ON(1); 1044 } 1045 out_check: 1046 if (extent_end <= start) { 1047 path->slots[0]++; 1048 goto next_slot; 1049 } 1050 if (!nocow) { 1051 if (cow_start == (u64)-1) 1052 cow_start = cur_offset; 1053 cur_offset = extent_end; 1054 if (cur_offset > end) 1055 break; 1056 path->slots[0]++; 1057 goto next_slot; 1058 } 1059 1060 btrfs_release_path(root, path); 1061 if (cow_start != (u64)-1) { 1062 ret = cow_file_range(inode, locked_page, cow_start, 1063 found_key.offset - 1, page_started, 1064 nr_written, 1); 1065 BUG_ON(ret); 1066 cow_start = (u64)-1; 1067 } 1068 1069 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1070 struct extent_map *em; 1071 struct extent_map_tree *em_tree; 1072 em_tree = &BTRFS_I(inode)->extent_tree; 1073 em = alloc_extent_map(GFP_NOFS); 1074 em->start = cur_offset; 1075 em->orig_start = em->start; 1076 em->len = num_bytes; 1077 em->block_len = num_bytes; 1078 em->block_start = disk_bytenr; 1079 em->bdev = root->fs_info->fs_devices->latest_bdev; 1080 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1081 while (1) { 1082 spin_lock(&em_tree->lock); 1083 ret = add_extent_mapping(em_tree, em); 1084 spin_unlock(&em_tree->lock); 1085 if (ret != -EEXIST) { 1086 free_extent_map(em); 1087 break; 1088 } 1089 btrfs_drop_extent_cache(inode, em->start, 1090 em->start + em->len - 1, 0); 1091 } 1092 type = BTRFS_ORDERED_PREALLOC; 1093 } else { 1094 type = BTRFS_ORDERED_NOCOW; 1095 } 1096 1097 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1098 num_bytes, num_bytes, type); 1099 BUG_ON(ret); 1100 1101 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1102 cur_offset, cur_offset + num_bytes - 1, 1103 locked_page, 1, 1, 1, 0, 0, 0); 1104 cur_offset = extent_end; 1105 if (cur_offset > end) 1106 break; 1107 } 1108 btrfs_release_path(root, path); 1109 1110 if (cur_offset <= end && cow_start == (u64)-1) 1111 cow_start = cur_offset; 1112 if (cow_start != (u64)-1) { 1113 ret = cow_file_range(inode, locked_page, cow_start, end, 1114 page_started, nr_written, 1); 1115 BUG_ON(ret); 1116 } 1117 1118 ret = btrfs_end_transaction(trans, root); 1119 BUG_ON(ret); 1120 btrfs_free_path(path); 1121 return 0; 1122 } 1123 1124 /* 1125 * extent_io.c call back to do delayed allocation processing 1126 */ 1127 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1128 u64 start, u64 end, int *page_started, 1129 unsigned long *nr_written) 1130 { 1131 int ret; 1132 struct btrfs_root *root = BTRFS_I(inode)->root; 1133 1134 if (btrfs_test_flag(inode, NODATACOW)) 1135 ret = run_delalloc_nocow(inode, locked_page, start, end, 1136 page_started, 1, nr_written); 1137 else if (btrfs_test_flag(inode, PREALLOC)) 1138 ret = run_delalloc_nocow(inode, locked_page, start, end, 1139 page_started, 0, nr_written); 1140 else if (!btrfs_test_opt(root, COMPRESS)) 1141 ret = cow_file_range(inode, locked_page, start, end, 1142 page_started, nr_written, 1); 1143 else 1144 ret = cow_file_range_async(inode, locked_page, start, end, 1145 page_started, nr_written); 1146 return ret; 1147 } 1148 1149 /* 1150 * extent_io.c set_bit_hook, used to track delayed allocation 1151 * bytes in this file, and to maintain the list of inodes that 1152 * have pending delalloc work to be done. 1153 */ 1154 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1155 unsigned long old, unsigned long bits) 1156 { 1157 /* 1158 * set_bit and clear bit hooks normally require _irqsave/restore 1159 * but in this case, we are only testeing for the DELALLOC 1160 * bit, which is only set or cleared with irqs on 1161 */ 1162 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1163 struct btrfs_root *root = BTRFS_I(inode)->root; 1164 btrfs_delalloc_reserve_space(root, inode, end - start + 1); 1165 spin_lock(&root->fs_info->delalloc_lock); 1166 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1167 root->fs_info->delalloc_bytes += end - start + 1; 1168 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1169 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1170 &root->fs_info->delalloc_inodes); 1171 } 1172 spin_unlock(&root->fs_info->delalloc_lock); 1173 } 1174 return 0; 1175 } 1176 1177 /* 1178 * extent_io.c clear_bit_hook, see set_bit_hook for why 1179 */ 1180 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1181 unsigned long old, unsigned long bits) 1182 { 1183 /* 1184 * set_bit and clear bit hooks normally require _irqsave/restore 1185 * but in this case, we are only testeing for the DELALLOC 1186 * bit, which is only set or cleared with irqs on 1187 */ 1188 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1189 struct btrfs_root *root = BTRFS_I(inode)->root; 1190 1191 spin_lock(&root->fs_info->delalloc_lock); 1192 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1193 printk(KERN_INFO "btrfs warning: delalloc account " 1194 "%llu %llu\n", 1195 (unsigned long long)end - start + 1, 1196 (unsigned long long) 1197 root->fs_info->delalloc_bytes); 1198 btrfs_delalloc_free_space(root, inode, (u64)-1); 1199 root->fs_info->delalloc_bytes = 0; 1200 BTRFS_I(inode)->delalloc_bytes = 0; 1201 } else { 1202 btrfs_delalloc_free_space(root, inode, 1203 end - start + 1); 1204 root->fs_info->delalloc_bytes -= end - start + 1; 1205 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1206 } 1207 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1208 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1209 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1210 } 1211 spin_unlock(&root->fs_info->delalloc_lock); 1212 } 1213 return 0; 1214 } 1215 1216 /* 1217 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1218 * we don't create bios that span stripes or chunks 1219 */ 1220 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1221 size_t size, struct bio *bio, 1222 unsigned long bio_flags) 1223 { 1224 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1225 struct btrfs_mapping_tree *map_tree; 1226 u64 logical = (u64)bio->bi_sector << 9; 1227 u64 length = 0; 1228 u64 map_length; 1229 int ret; 1230 1231 if (bio_flags & EXTENT_BIO_COMPRESSED) 1232 return 0; 1233 1234 length = bio->bi_size; 1235 map_tree = &root->fs_info->mapping_tree; 1236 map_length = length; 1237 ret = btrfs_map_block(map_tree, READ, logical, 1238 &map_length, NULL, 0); 1239 1240 if (map_length < length + size) 1241 return 1; 1242 return 0; 1243 } 1244 1245 /* 1246 * in order to insert checksums into the metadata in large chunks, 1247 * we wait until bio submission time. All the pages in the bio are 1248 * checksummed and sums are attached onto the ordered extent record. 1249 * 1250 * At IO completion time the cums attached on the ordered extent record 1251 * are inserted into the btree 1252 */ 1253 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1254 struct bio *bio, int mirror_num, 1255 unsigned long bio_flags) 1256 { 1257 struct btrfs_root *root = BTRFS_I(inode)->root; 1258 int ret = 0; 1259 1260 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1261 BUG_ON(ret); 1262 return 0; 1263 } 1264 1265 /* 1266 * in order to insert checksums into the metadata in large chunks, 1267 * we wait until bio submission time. All the pages in the bio are 1268 * checksummed and sums are attached onto the ordered extent record. 1269 * 1270 * At IO completion time the cums attached on the ordered extent record 1271 * are inserted into the btree 1272 */ 1273 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1274 int mirror_num, unsigned long bio_flags) 1275 { 1276 struct btrfs_root *root = BTRFS_I(inode)->root; 1277 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1278 } 1279 1280 /* 1281 * extent_io.c submission hook. This does the right thing for csum calculation 1282 * on write, or reading the csums from the tree before a read 1283 */ 1284 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1285 int mirror_num, unsigned long bio_flags) 1286 { 1287 struct btrfs_root *root = BTRFS_I(inode)->root; 1288 int ret = 0; 1289 int skip_sum; 1290 1291 skip_sum = btrfs_test_flag(inode, NODATASUM); 1292 1293 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1294 BUG_ON(ret); 1295 1296 if (!(rw & (1 << BIO_RW))) { 1297 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1298 return btrfs_submit_compressed_read(inode, bio, 1299 mirror_num, bio_flags); 1300 } else if (!skip_sum) 1301 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1302 goto mapit; 1303 } else if (!skip_sum) { 1304 /* csum items have already been cloned */ 1305 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1306 goto mapit; 1307 /* we're doing a write, do the async checksumming */ 1308 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1309 inode, rw, bio, mirror_num, 1310 bio_flags, __btrfs_submit_bio_start, 1311 __btrfs_submit_bio_done); 1312 } 1313 1314 mapit: 1315 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1316 } 1317 1318 /* 1319 * given a list of ordered sums record them in the inode. This happens 1320 * at IO completion time based on sums calculated at bio submission time. 1321 */ 1322 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1323 struct inode *inode, u64 file_offset, 1324 struct list_head *list) 1325 { 1326 struct btrfs_ordered_sum *sum; 1327 1328 btrfs_set_trans_block_group(trans, inode); 1329 1330 list_for_each_entry(sum, list, list) { 1331 btrfs_csum_file_blocks(trans, 1332 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1333 } 1334 return 0; 1335 } 1336 1337 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1338 { 1339 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1340 WARN_ON(1); 1341 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1342 GFP_NOFS); 1343 } 1344 1345 /* see btrfs_writepage_start_hook for details on why this is required */ 1346 struct btrfs_writepage_fixup { 1347 struct page *page; 1348 struct btrfs_work work; 1349 }; 1350 1351 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1352 { 1353 struct btrfs_writepage_fixup *fixup; 1354 struct btrfs_ordered_extent *ordered; 1355 struct page *page; 1356 struct inode *inode; 1357 u64 page_start; 1358 u64 page_end; 1359 1360 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1361 page = fixup->page; 1362 again: 1363 lock_page(page); 1364 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1365 ClearPageChecked(page); 1366 goto out_page; 1367 } 1368 1369 inode = page->mapping->host; 1370 page_start = page_offset(page); 1371 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1372 1373 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1374 1375 /* already ordered? We're done */ 1376 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1377 EXTENT_ORDERED, 0)) { 1378 goto out; 1379 } 1380 1381 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1382 if (ordered) { 1383 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1384 page_end, GFP_NOFS); 1385 unlock_page(page); 1386 btrfs_start_ordered_extent(inode, ordered, 1); 1387 goto again; 1388 } 1389 1390 btrfs_set_extent_delalloc(inode, page_start, page_end); 1391 ClearPageChecked(page); 1392 out: 1393 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1394 out_page: 1395 unlock_page(page); 1396 page_cache_release(page); 1397 } 1398 1399 /* 1400 * There are a few paths in the higher layers of the kernel that directly 1401 * set the page dirty bit without asking the filesystem if it is a 1402 * good idea. This causes problems because we want to make sure COW 1403 * properly happens and the data=ordered rules are followed. 1404 * 1405 * In our case any range that doesn't have the ORDERED bit set 1406 * hasn't been properly setup for IO. We kick off an async process 1407 * to fix it up. The async helper will wait for ordered extents, set 1408 * the delalloc bit and make it safe to write the page. 1409 */ 1410 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1411 { 1412 struct inode *inode = page->mapping->host; 1413 struct btrfs_writepage_fixup *fixup; 1414 struct btrfs_root *root = BTRFS_I(inode)->root; 1415 int ret; 1416 1417 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1418 EXTENT_ORDERED, 0); 1419 if (ret) 1420 return 0; 1421 1422 if (PageChecked(page)) 1423 return -EAGAIN; 1424 1425 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1426 if (!fixup) 1427 return -EAGAIN; 1428 1429 SetPageChecked(page); 1430 page_cache_get(page); 1431 fixup->work.func = btrfs_writepage_fixup_worker; 1432 fixup->page = page; 1433 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1434 return -EAGAIN; 1435 } 1436 1437 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1438 struct inode *inode, u64 file_pos, 1439 u64 disk_bytenr, u64 disk_num_bytes, 1440 u64 num_bytes, u64 ram_bytes, 1441 u64 locked_end, 1442 u8 compression, u8 encryption, 1443 u16 other_encoding, int extent_type) 1444 { 1445 struct btrfs_root *root = BTRFS_I(inode)->root; 1446 struct btrfs_file_extent_item *fi; 1447 struct btrfs_path *path; 1448 struct extent_buffer *leaf; 1449 struct btrfs_key ins; 1450 u64 hint; 1451 int ret; 1452 1453 path = btrfs_alloc_path(); 1454 BUG_ON(!path); 1455 1456 path->leave_spinning = 1; 1457 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1458 file_pos + num_bytes, locked_end, 1459 file_pos, &hint); 1460 BUG_ON(ret); 1461 1462 ins.objectid = inode->i_ino; 1463 ins.offset = file_pos; 1464 ins.type = BTRFS_EXTENT_DATA_KEY; 1465 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1466 BUG_ON(ret); 1467 leaf = path->nodes[0]; 1468 fi = btrfs_item_ptr(leaf, path->slots[0], 1469 struct btrfs_file_extent_item); 1470 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1471 btrfs_set_file_extent_type(leaf, fi, extent_type); 1472 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1473 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1474 btrfs_set_file_extent_offset(leaf, fi, 0); 1475 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1476 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1477 btrfs_set_file_extent_compression(leaf, fi, compression); 1478 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1479 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1480 1481 btrfs_unlock_up_safe(path, 1); 1482 btrfs_set_lock_blocking(leaf); 1483 1484 btrfs_mark_buffer_dirty(leaf); 1485 1486 inode_add_bytes(inode, num_bytes); 1487 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1488 1489 ins.objectid = disk_bytenr; 1490 ins.offset = disk_num_bytes; 1491 ins.type = BTRFS_EXTENT_ITEM_KEY; 1492 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start, 1493 root->root_key.objectid, 1494 trans->transid, inode->i_ino, &ins); 1495 BUG_ON(ret); 1496 btrfs_free_path(path); 1497 1498 return 0; 1499 } 1500 1501 /* 1502 * helper function for btrfs_finish_ordered_io, this 1503 * just reads in some of the csum leaves to prime them into ram 1504 * before we start the transaction. It limits the amount of btree 1505 * reads required while inside the transaction. 1506 */ 1507 static noinline void reada_csum(struct btrfs_root *root, 1508 struct btrfs_path *path, 1509 struct btrfs_ordered_extent *ordered_extent) 1510 { 1511 struct btrfs_ordered_sum *sum; 1512 u64 bytenr; 1513 1514 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum, 1515 list); 1516 bytenr = sum->sums[0].bytenr; 1517 1518 /* 1519 * we don't care about the results, the point of this search is 1520 * just to get the btree leaves into ram 1521 */ 1522 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0); 1523 } 1524 1525 /* as ordered data IO finishes, this gets called so we can finish 1526 * an ordered extent if the range of bytes in the file it covers are 1527 * fully written. 1528 */ 1529 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1530 { 1531 struct btrfs_root *root = BTRFS_I(inode)->root; 1532 struct btrfs_trans_handle *trans; 1533 struct btrfs_ordered_extent *ordered_extent = NULL; 1534 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1535 struct btrfs_path *path; 1536 int compressed = 0; 1537 int ret; 1538 1539 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1540 if (!ret) 1541 return 0; 1542 1543 /* 1544 * before we join the transaction, try to do some of our IO. 1545 * This will limit the amount of IO that we have to do with 1546 * the transaction running. We're unlikely to need to do any 1547 * IO if the file extents are new, the disk_i_size checks 1548 * covers the most common case. 1549 */ 1550 if (start < BTRFS_I(inode)->disk_i_size) { 1551 path = btrfs_alloc_path(); 1552 if (path) { 1553 ret = btrfs_lookup_file_extent(NULL, root, path, 1554 inode->i_ino, 1555 start, 0); 1556 ordered_extent = btrfs_lookup_ordered_extent(inode, 1557 start); 1558 if (!list_empty(&ordered_extent->list)) { 1559 btrfs_release_path(root, path); 1560 reada_csum(root, path, ordered_extent); 1561 } 1562 btrfs_free_path(path); 1563 } 1564 } 1565 1566 trans = btrfs_join_transaction(root, 1); 1567 1568 if (!ordered_extent) 1569 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1570 BUG_ON(!ordered_extent); 1571 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1572 goto nocow; 1573 1574 lock_extent(io_tree, ordered_extent->file_offset, 1575 ordered_extent->file_offset + ordered_extent->len - 1, 1576 GFP_NOFS); 1577 1578 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1579 compressed = 1; 1580 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1581 BUG_ON(compressed); 1582 ret = btrfs_mark_extent_written(trans, root, inode, 1583 ordered_extent->file_offset, 1584 ordered_extent->file_offset + 1585 ordered_extent->len); 1586 BUG_ON(ret); 1587 } else { 1588 ret = insert_reserved_file_extent(trans, inode, 1589 ordered_extent->file_offset, 1590 ordered_extent->start, 1591 ordered_extent->disk_len, 1592 ordered_extent->len, 1593 ordered_extent->len, 1594 ordered_extent->file_offset + 1595 ordered_extent->len, 1596 compressed, 0, 0, 1597 BTRFS_FILE_EXTENT_REG); 1598 BUG_ON(ret); 1599 } 1600 unlock_extent(io_tree, ordered_extent->file_offset, 1601 ordered_extent->file_offset + ordered_extent->len - 1, 1602 GFP_NOFS); 1603 nocow: 1604 add_pending_csums(trans, inode, ordered_extent->file_offset, 1605 &ordered_extent->list); 1606 1607 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1608 btrfs_ordered_update_i_size(inode, ordered_extent); 1609 btrfs_update_inode(trans, root, inode); 1610 btrfs_remove_ordered_extent(inode, ordered_extent); 1611 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1612 1613 /* once for us */ 1614 btrfs_put_ordered_extent(ordered_extent); 1615 /* once for the tree */ 1616 btrfs_put_ordered_extent(ordered_extent); 1617 1618 btrfs_end_transaction(trans, root); 1619 return 0; 1620 } 1621 1622 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1623 struct extent_state *state, int uptodate) 1624 { 1625 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1626 } 1627 1628 /* 1629 * When IO fails, either with EIO or csum verification fails, we 1630 * try other mirrors that might have a good copy of the data. This 1631 * io_failure_record is used to record state as we go through all the 1632 * mirrors. If another mirror has good data, the page is set up to date 1633 * and things continue. If a good mirror can't be found, the original 1634 * bio end_io callback is called to indicate things have failed. 1635 */ 1636 struct io_failure_record { 1637 struct page *page; 1638 u64 start; 1639 u64 len; 1640 u64 logical; 1641 unsigned long bio_flags; 1642 int last_mirror; 1643 }; 1644 1645 static int btrfs_io_failed_hook(struct bio *failed_bio, 1646 struct page *page, u64 start, u64 end, 1647 struct extent_state *state) 1648 { 1649 struct io_failure_record *failrec = NULL; 1650 u64 private; 1651 struct extent_map *em; 1652 struct inode *inode = page->mapping->host; 1653 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1654 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1655 struct bio *bio; 1656 int num_copies; 1657 int ret; 1658 int rw; 1659 u64 logical; 1660 1661 ret = get_state_private(failure_tree, start, &private); 1662 if (ret) { 1663 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1664 if (!failrec) 1665 return -ENOMEM; 1666 failrec->start = start; 1667 failrec->len = end - start + 1; 1668 failrec->last_mirror = 0; 1669 failrec->bio_flags = 0; 1670 1671 spin_lock(&em_tree->lock); 1672 em = lookup_extent_mapping(em_tree, start, failrec->len); 1673 if (em->start > start || em->start + em->len < start) { 1674 free_extent_map(em); 1675 em = NULL; 1676 } 1677 spin_unlock(&em_tree->lock); 1678 1679 if (!em || IS_ERR(em)) { 1680 kfree(failrec); 1681 return -EIO; 1682 } 1683 logical = start - em->start; 1684 logical = em->block_start + logical; 1685 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1686 logical = em->block_start; 1687 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1688 } 1689 failrec->logical = logical; 1690 free_extent_map(em); 1691 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1692 EXTENT_DIRTY, GFP_NOFS); 1693 set_state_private(failure_tree, start, 1694 (u64)(unsigned long)failrec); 1695 } else { 1696 failrec = (struct io_failure_record *)(unsigned long)private; 1697 } 1698 num_copies = btrfs_num_copies( 1699 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1700 failrec->logical, failrec->len); 1701 failrec->last_mirror++; 1702 if (!state) { 1703 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1704 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1705 failrec->start, 1706 EXTENT_LOCKED); 1707 if (state && state->start != failrec->start) 1708 state = NULL; 1709 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1710 } 1711 if (!state || failrec->last_mirror > num_copies) { 1712 set_state_private(failure_tree, failrec->start, 0); 1713 clear_extent_bits(failure_tree, failrec->start, 1714 failrec->start + failrec->len - 1, 1715 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1716 kfree(failrec); 1717 return -EIO; 1718 } 1719 bio = bio_alloc(GFP_NOFS, 1); 1720 bio->bi_private = state; 1721 bio->bi_end_io = failed_bio->bi_end_io; 1722 bio->bi_sector = failrec->logical >> 9; 1723 bio->bi_bdev = failed_bio->bi_bdev; 1724 bio->bi_size = 0; 1725 1726 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1727 if (failed_bio->bi_rw & (1 << BIO_RW)) 1728 rw = WRITE; 1729 else 1730 rw = READ; 1731 1732 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1733 failrec->last_mirror, 1734 failrec->bio_flags); 1735 return 0; 1736 } 1737 1738 /* 1739 * each time an IO finishes, we do a fast check in the IO failure tree 1740 * to see if we need to process or clean up an io_failure_record 1741 */ 1742 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1743 { 1744 u64 private; 1745 u64 private_failure; 1746 struct io_failure_record *failure; 1747 int ret; 1748 1749 private = 0; 1750 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1751 (u64)-1, 1, EXTENT_DIRTY)) { 1752 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1753 start, &private_failure); 1754 if (ret == 0) { 1755 failure = (struct io_failure_record *)(unsigned long) 1756 private_failure; 1757 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1758 failure->start, 0); 1759 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1760 failure->start, 1761 failure->start + failure->len - 1, 1762 EXTENT_DIRTY | EXTENT_LOCKED, 1763 GFP_NOFS); 1764 kfree(failure); 1765 } 1766 } 1767 return 0; 1768 } 1769 1770 /* 1771 * when reads are done, we need to check csums to verify the data is correct 1772 * if there's a match, we allow the bio to finish. If not, we go through 1773 * the io_failure_record routines to find good copies 1774 */ 1775 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1776 struct extent_state *state) 1777 { 1778 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1779 struct inode *inode = page->mapping->host; 1780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1781 char *kaddr; 1782 u64 private = ~(u32)0; 1783 int ret; 1784 struct btrfs_root *root = BTRFS_I(inode)->root; 1785 u32 csum = ~(u32)0; 1786 1787 if (PageChecked(page)) { 1788 ClearPageChecked(page); 1789 goto good; 1790 } 1791 if (btrfs_test_flag(inode, NODATASUM)) 1792 return 0; 1793 1794 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1795 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1796 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1797 GFP_NOFS); 1798 return 0; 1799 } 1800 1801 if (state && state->start == start) { 1802 private = state->private; 1803 ret = 0; 1804 } else { 1805 ret = get_state_private(io_tree, start, &private); 1806 } 1807 kaddr = kmap_atomic(page, KM_USER0); 1808 if (ret) 1809 goto zeroit; 1810 1811 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1812 btrfs_csum_final(csum, (char *)&csum); 1813 if (csum != private) 1814 goto zeroit; 1815 1816 kunmap_atomic(kaddr, KM_USER0); 1817 good: 1818 /* if the io failure tree for this inode is non-empty, 1819 * check to see if we've recovered from a failed IO 1820 */ 1821 btrfs_clean_io_failures(inode, start); 1822 return 0; 1823 1824 zeroit: 1825 if (printk_ratelimit()) { 1826 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1827 "private %llu\n", page->mapping->host->i_ino, 1828 (unsigned long long)start, csum, 1829 (unsigned long long)private); 1830 } 1831 memset(kaddr + offset, 1, end - start + 1); 1832 flush_dcache_page(page); 1833 kunmap_atomic(kaddr, KM_USER0); 1834 if (private == 0) 1835 return 0; 1836 return -EIO; 1837 } 1838 1839 /* 1840 * This creates an orphan entry for the given inode in case something goes 1841 * wrong in the middle of an unlink/truncate. 1842 */ 1843 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1844 { 1845 struct btrfs_root *root = BTRFS_I(inode)->root; 1846 int ret = 0; 1847 1848 spin_lock(&root->list_lock); 1849 1850 /* already on the orphan list, we're good */ 1851 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1852 spin_unlock(&root->list_lock); 1853 return 0; 1854 } 1855 1856 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1857 1858 spin_unlock(&root->list_lock); 1859 1860 /* 1861 * insert an orphan item to track this unlinked/truncated file 1862 */ 1863 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1864 1865 return ret; 1866 } 1867 1868 /* 1869 * We have done the truncate/delete so we can go ahead and remove the orphan 1870 * item for this particular inode. 1871 */ 1872 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1873 { 1874 struct btrfs_root *root = BTRFS_I(inode)->root; 1875 int ret = 0; 1876 1877 spin_lock(&root->list_lock); 1878 1879 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1880 spin_unlock(&root->list_lock); 1881 return 0; 1882 } 1883 1884 list_del_init(&BTRFS_I(inode)->i_orphan); 1885 if (!trans) { 1886 spin_unlock(&root->list_lock); 1887 return 0; 1888 } 1889 1890 spin_unlock(&root->list_lock); 1891 1892 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1893 1894 return ret; 1895 } 1896 1897 /* 1898 * this cleans up any orphans that may be left on the list from the last use 1899 * of this root. 1900 */ 1901 void btrfs_orphan_cleanup(struct btrfs_root *root) 1902 { 1903 struct btrfs_path *path; 1904 struct extent_buffer *leaf; 1905 struct btrfs_item *item; 1906 struct btrfs_key key, found_key; 1907 struct btrfs_trans_handle *trans; 1908 struct inode *inode; 1909 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1910 1911 path = btrfs_alloc_path(); 1912 if (!path) 1913 return; 1914 path->reada = -1; 1915 1916 key.objectid = BTRFS_ORPHAN_OBJECTID; 1917 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1918 key.offset = (u64)-1; 1919 1920 1921 while (1) { 1922 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1923 if (ret < 0) { 1924 printk(KERN_ERR "Error searching slot for orphan: %d" 1925 "\n", ret); 1926 break; 1927 } 1928 1929 /* 1930 * if ret == 0 means we found what we were searching for, which 1931 * is weird, but possible, so only screw with path if we didnt 1932 * find the key and see if we have stuff that matches 1933 */ 1934 if (ret > 0) { 1935 if (path->slots[0] == 0) 1936 break; 1937 path->slots[0]--; 1938 } 1939 1940 /* pull out the item */ 1941 leaf = path->nodes[0]; 1942 item = btrfs_item_nr(leaf, path->slots[0]); 1943 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1944 1945 /* make sure the item matches what we want */ 1946 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1947 break; 1948 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1949 break; 1950 1951 /* release the path since we're done with it */ 1952 btrfs_release_path(root, path); 1953 1954 /* 1955 * this is where we are basically btrfs_lookup, without the 1956 * crossing root thing. we store the inode number in the 1957 * offset of the orphan item. 1958 */ 1959 inode = btrfs_iget_locked(root->fs_info->sb, 1960 found_key.offset, root); 1961 if (!inode) 1962 break; 1963 1964 if (inode->i_state & I_NEW) { 1965 BTRFS_I(inode)->root = root; 1966 1967 /* have to set the location manually */ 1968 BTRFS_I(inode)->location.objectid = inode->i_ino; 1969 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 1970 BTRFS_I(inode)->location.offset = 0; 1971 1972 btrfs_read_locked_inode(inode); 1973 unlock_new_inode(inode); 1974 } 1975 1976 /* 1977 * add this inode to the orphan list so btrfs_orphan_del does 1978 * the proper thing when we hit it 1979 */ 1980 spin_lock(&root->list_lock); 1981 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1982 spin_unlock(&root->list_lock); 1983 1984 /* 1985 * if this is a bad inode, means we actually succeeded in 1986 * removing the inode, but not the orphan record, which means 1987 * we need to manually delete the orphan since iput will just 1988 * do a destroy_inode 1989 */ 1990 if (is_bad_inode(inode)) { 1991 trans = btrfs_start_transaction(root, 1); 1992 btrfs_orphan_del(trans, inode); 1993 btrfs_end_transaction(trans, root); 1994 iput(inode); 1995 continue; 1996 } 1997 1998 /* if we have links, this was a truncate, lets do that */ 1999 if (inode->i_nlink) { 2000 nr_truncate++; 2001 btrfs_truncate(inode); 2002 } else { 2003 nr_unlink++; 2004 } 2005 2006 /* this will do delete_inode and everything for us */ 2007 iput(inode); 2008 } 2009 2010 if (nr_unlink) 2011 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2012 if (nr_truncate) 2013 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2014 2015 btrfs_free_path(path); 2016 } 2017 2018 /* 2019 * very simple check to peek ahead in the leaf looking for xattrs. If we 2020 * don't find any xattrs, we know there can't be any acls. 2021 * 2022 * slot is the slot the inode is in, objectid is the objectid of the inode 2023 */ 2024 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2025 int slot, u64 objectid) 2026 { 2027 u32 nritems = btrfs_header_nritems(leaf); 2028 struct btrfs_key found_key; 2029 int scanned = 0; 2030 2031 slot++; 2032 while (slot < nritems) { 2033 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2034 2035 /* we found a different objectid, there must not be acls */ 2036 if (found_key.objectid != objectid) 2037 return 0; 2038 2039 /* we found an xattr, assume we've got an acl */ 2040 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2041 return 1; 2042 2043 /* 2044 * we found a key greater than an xattr key, there can't 2045 * be any acls later on 2046 */ 2047 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2048 return 0; 2049 2050 slot++; 2051 scanned++; 2052 2053 /* 2054 * it goes inode, inode backrefs, xattrs, extents, 2055 * so if there are a ton of hard links to an inode there can 2056 * be a lot of backrefs. Don't waste time searching too hard, 2057 * this is just an optimization 2058 */ 2059 if (scanned >= 8) 2060 break; 2061 } 2062 /* we hit the end of the leaf before we found an xattr or 2063 * something larger than an xattr. We have to assume the inode 2064 * has acls 2065 */ 2066 return 1; 2067 } 2068 2069 /* 2070 * read an inode from the btree into the in-memory inode 2071 */ 2072 void btrfs_read_locked_inode(struct inode *inode) 2073 { 2074 struct btrfs_path *path; 2075 struct extent_buffer *leaf; 2076 struct btrfs_inode_item *inode_item; 2077 struct btrfs_timespec *tspec; 2078 struct btrfs_root *root = BTRFS_I(inode)->root; 2079 struct btrfs_key location; 2080 int maybe_acls; 2081 u64 alloc_group_block; 2082 u32 rdev; 2083 int ret; 2084 2085 path = btrfs_alloc_path(); 2086 BUG_ON(!path); 2087 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2088 2089 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2090 if (ret) 2091 goto make_bad; 2092 2093 leaf = path->nodes[0]; 2094 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2095 struct btrfs_inode_item); 2096 2097 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2098 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2099 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2100 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2101 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2102 2103 tspec = btrfs_inode_atime(inode_item); 2104 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2105 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2106 2107 tspec = btrfs_inode_mtime(inode_item); 2108 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2109 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2110 2111 tspec = btrfs_inode_ctime(inode_item); 2112 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2113 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2114 2115 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2116 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2117 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2118 inode->i_generation = BTRFS_I(inode)->generation; 2119 inode->i_rdev = 0; 2120 rdev = btrfs_inode_rdev(leaf, inode_item); 2121 2122 BTRFS_I(inode)->index_cnt = (u64)-1; 2123 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2124 2125 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2126 2127 /* 2128 * try to precache a NULL acl entry for files that don't have 2129 * any xattrs or acls 2130 */ 2131 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2132 if (!maybe_acls) { 2133 BTRFS_I(inode)->i_acl = NULL; 2134 BTRFS_I(inode)->i_default_acl = NULL; 2135 } 2136 2137 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2138 alloc_group_block, 0); 2139 btrfs_free_path(path); 2140 inode_item = NULL; 2141 2142 switch (inode->i_mode & S_IFMT) { 2143 case S_IFREG: 2144 inode->i_mapping->a_ops = &btrfs_aops; 2145 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2146 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2147 inode->i_fop = &btrfs_file_operations; 2148 inode->i_op = &btrfs_file_inode_operations; 2149 break; 2150 case S_IFDIR: 2151 inode->i_fop = &btrfs_dir_file_operations; 2152 if (root == root->fs_info->tree_root) 2153 inode->i_op = &btrfs_dir_ro_inode_operations; 2154 else 2155 inode->i_op = &btrfs_dir_inode_operations; 2156 break; 2157 case S_IFLNK: 2158 inode->i_op = &btrfs_symlink_inode_operations; 2159 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2160 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2161 break; 2162 default: 2163 inode->i_op = &btrfs_special_inode_operations; 2164 init_special_inode(inode, inode->i_mode, rdev); 2165 break; 2166 } 2167 return; 2168 2169 make_bad: 2170 btrfs_free_path(path); 2171 make_bad_inode(inode); 2172 } 2173 2174 /* 2175 * given a leaf and an inode, copy the inode fields into the leaf 2176 */ 2177 static void fill_inode_item(struct btrfs_trans_handle *trans, 2178 struct extent_buffer *leaf, 2179 struct btrfs_inode_item *item, 2180 struct inode *inode) 2181 { 2182 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2183 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2184 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2185 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2186 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2187 2188 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2189 inode->i_atime.tv_sec); 2190 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2191 inode->i_atime.tv_nsec); 2192 2193 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2194 inode->i_mtime.tv_sec); 2195 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2196 inode->i_mtime.tv_nsec); 2197 2198 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2199 inode->i_ctime.tv_sec); 2200 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2201 inode->i_ctime.tv_nsec); 2202 2203 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2204 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2205 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2206 btrfs_set_inode_transid(leaf, item, trans->transid); 2207 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2208 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2209 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2210 } 2211 2212 /* 2213 * copy everything in the in-memory inode into the btree. 2214 */ 2215 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2216 struct btrfs_root *root, struct inode *inode) 2217 { 2218 struct btrfs_inode_item *inode_item; 2219 struct btrfs_path *path; 2220 struct extent_buffer *leaf; 2221 int ret; 2222 2223 path = btrfs_alloc_path(); 2224 BUG_ON(!path); 2225 path->leave_spinning = 1; 2226 ret = btrfs_lookup_inode(trans, root, path, 2227 &BTRFS_I(inode)->location, 1); 2228 if (ret) { 2229 if (ret > 0) 2230 ret = -ENOENT; 2231 goto failed; 2232 } 2233 2234 btrfs_unlock_up_safe(path, 1); 2235 leaf = path->nodes[0]; 2236 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2237 struct btrfs_inode_item); 2238 2239 fill_inode_item(trans, leaf, inode_item, inode); 2240 btrfs_mark_buffer_dirty(leaf); 2241 btrfs_set_inode_last_trans(trans, inode); 2242 ret = 0; 2243 failed: 2244 btrfs_free_path(path); 2245 return ret; 2246 } 2247 2248 2249 /* 2250 * unlink helper that gets used here in inode.c and in the tree logging 2251 * recovery code. It remove a link in a directory with a given name, and 2252 * also drops the back refs in the inode to the directory 2253 */ 2254 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2255 struct btrfs_root *root, 2256 struct inode *dir, struct inode *inode, 2257 const char *name, int name_len) 2258 { 2259 struct btrfs_path *path; 2260 int ret = 0; 2261 struct extent_buffer *leaf; 2262 struct btrfs_dir_item *di; 2263 struct btrfs_key key; 2264 u64 index; 2265 2266 path = btrfs_alloc_path(); 2267 if (!path) { 2268 ret = -ENOMEM; 2269 goto err; 2270 } 2271 2272 path->leave_spinning = 1; 2273 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2274 name, name_len, -1); 2275 if (IS_ERR(di)) { 2276 ret = PTR_ERR(di); 2277 goto err; 2278 } 2279 if (!di) { 2280 ret = -ENOENT; 2281 goto err; 2282 } 2283 leaf = path->nodes[0]; 2284 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2285 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2286 if (ret) 2287 goto err; 2288 btrfs_release_path(root, path); 2289 2290 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2291 inode->i_ino, 2292 dir->i_ino, &index); 2293 if (ret) { 2294 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2295 "inode %lu parent %lu\n", name_len, name, 2296 inode->i_ino, dir->i_ino); 2297 goto err; 2298 } 2299 2300 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2301 index, name, name_len, -1); 2302 if (IS_ERR(di)) { 2303 ret = PTR_ERR(di); 2304 goto err; 2305 } 2306 if (!di) { 2307 ret = -ENOENT; 2308 goto err; 2309 } 2310 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2311 btrfs_release_path(root, path); 2312 2313 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2314 inode, dir->i_ino); 2315 BUG_ON(ret != 0 && ret != -ENOENT); 2316 2317 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2318 dir, index); 2319 BUG_ON(ret); 2320 err: 2321 btrfs_free_path(path); 2322 if (ret) 2323 goto out; 2324 2325 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2326 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2327 btrfs_update_inode(trans, root, dir); 2328 btrfs_drop_nlink(inode); 2329 ret = btrfs_update_inode(trans, root, inode); 2330 dir->i_sb->s_dirt = 1; 2331 out: 2332 return ret; 2333 } 2334 2335 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2336 { 2337 struct btrfs_root *root; 2338 struct btrfs_trans_handle *trans; 2339 struct inode *inode = dentry->d_inode; 2340 int ret; 2341 unsigned long nr = 0; 2342 2343 root = BTRFS_I(dir)->root; 2344 2345 trans = btrfs_start_transaction(root, 1); 2346 2347 btrfs_set_trans_block_group(trans, dir); 2348 2349 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2350 2351 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2352 dentry->d_name.name, dentry->d_name.len); 2353 2354 if (inode->i_nlink == 0) 2355 ret = btrfs_orphan_add(trans, inode); 2356 2357 nr = trans->blocks_used; 2358 2359 btrfs_end_transaction_throttle(trans, root); 2360 btrfs_btree_balance_dirty(root, nr); 2361 return ret; 2362 } 2363 2364 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2365 { 2366 struct inode *inode = dentry->d_inode; 2367 int err = 0; 2368 int ret; 2369 struct btrfs_root *root = BTRFS_I(dir)->root; 2370 struct btrfs_trans_handle *trans; 2371 unsigned long nr = 0; 2372 2373 /* 2374 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2375 * the root of a subvolume or snapshot 2376 */ 2377 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2378 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2379 return -ENOTEMPTY; 2380 } 2381 2382 trans = btrfs_start_transaction(root, 1); 2383 btrfs_set_trans_block_group(trans, dir); 2384 2385 err = btrfs_orphan_add(trans, inode); 2386 if (err) 2387 goto fail_trans; 2388 2389 /* now the directory is empty */ 2390 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2391 dentry->d_name.name, dentry->d_name.len); 2392 if (!err) 2393 btrfs_i_size_write(inode, 0); 2394 2395 fail_trans: 2396 nr = trans->blocks_used; 2397 ret = btrfs_end_transaction_throttle(trans, root); 2398 btrfs_btree_balance_dirty(root, nr); 2399 2400 if (ret && !err) 2401 err = ret; 2402 return err; 2403 } 2404 2405 #if 0 2406 /* 2407 * when truncating bytes in a file, it is possible to avoid reading 2408 * the leaves that contain only checksum items. This can be the 2409 * majority of the IO required to delete a large file, but it must 2410 * be done carefully. 2411 * 2412 * The keys in the level just above the leaves are checked to make sure 2413 * the lowest key in a given leaf is a csum key, and starts at an offset 2414 * after the new size. 2415 * 2416 * Then the key for the next leaf is checked to make sure it also has 2417 * a checksum item for the same file. If it does, we know our target leaf 2418 * contains only checksum items, and it can be safely freed without reading 2419 * it. 2420 * 2421 * This is just an optimization targeted at large files. It may do 2422 * nothing. It will return 0 unless things went badly. 2423 */ 2424 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2425 struct btrfs_root *root, 2426 struct btrfs_path *path, 2427 struct inode *inode, u64 new_size) 2428 { 2429 struct btrfs_key key; 2430 int ret; 2431 int nritems; 2432 struct btrfs_key found_key; 2433 struct btrfs_key other_key; 2434 struct btrfs_leaf_ref *ref; 2435 u64 leaf_gen; 2436 u64 leaf_start; 2437 2438 path->lowest_level = 1; 2439 key.objectid = inode->i_ino; 2440 key.type = BTRFS_CSUM_ITEM_KEY; 2441 key.offset = new_size; 2442 again: 2443 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2444 if (ret < 0) 2445 goto out; 2446 2447 if (path->nodes[1] == NULL) { 2448 ret = 0; 2449 goto out; 2450 } 2451 ret = 0; 2452 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2453 nritems = btrfs_header_nritems(path->nodes[1]); 2454 2455 if (!nritems) 2456 goto out; 2457 2458 if (path->slots[1] >= nritems) 2459 goto next_node; 2460 2461 /* did we find a key greater than anything we want to delete? */ 2462 if (found_key.objectid > inode->i_ino || 2463 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2464 goto out; 2465 2466 /* we check the next key in the node to make sure the leave contains 2467 * only checksum items. This comparison doesn't work if our 2468 * leaf is the last one in the node 2469 */ 2470 if (path->slots[1] + 1 >= nritems) { 2471 next_node: 2472 /* search forward from the last key in the node, this 2473 * will bring us into the next node in the tree 2474 */ 2475 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2476 2477 /* unlikely, but we inc below, so check to be safe */ 2478 if (found_key.offset == (u64)-1) 2479 goto out; 2480 2481 /* search_forward needs a path with locks held, do the 2482 * search again for the original key. It is possible 2483 * this will race with a balance and return a path that 2484 * we could modify, but this drop is just an optimization 2485 * and is allowed to miss some leaves. 2486 */ 2487 btrfs_release_path(root, path); 2488 found_key.offset++; 2489 2490 /* setup a max key for search_forward */ 2491 other_key.offset = (u64)-1; 2492 other_key.type = key.type; 2493 other_key.objectid = key.objectid; 2494 2495 path->keep_locks = 1; 2496 ret = btrfs_search_forward(root, &found_key, &other_key, 2497 path, 0, 0); 2498 path->keep_locks = 0; 2499 if (ret || found_key.objectid != key.objectid || 2500 found_key.type != key.type) { 2501 ret = 0; 2502 goto out; 2503 } 2504 2505 key.offset = found_key.offset; 2506 btrfs_release_path(root, path); 2507 cond_resched(); 2508 goto again; 2509 } 2510 2511 /* we know there's one more slot after us in the tree, 2512 * read that key so we can verify it is also a checksum item 2513 */ 2514 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2515 2516 if (found_key.objectid < inode->i_ino) 2517 goto next_key; 2518 2519 if (found_key.type != key.type || found_key.offset < new_size) 2520 goto next_key; 2521 2522 /* 2523 * if the key for the next leaf isn't a csum key from this objectid, 2524 * we can't be sure there aren't good items inside this leaf. 2525 * Bail out 2526 */ 2527 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2528 goto out; 2529 2530 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2531 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2532 /* 2533 * it is safe to delete this leaf, it contains only 2534 * csum items from this inode at an offset >= new_size 2535 */ 2536 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2537 BUG_ON(ret); 2538 2539 if (root->ref_cows && leaf_gen < trans->transid) { 2540 ref = btrfs_alloc_leaf_ref(root, 0); 2541 if (ref) { 2542 ref->root_gen = root->root_key.offset; 2543 ref->bytenr = leaf_start; 2544 ref->owner = 0; 2545 ref->generation = leaf_gen; 2546 ref->nritems = 0; 2547 2548 btrfs_sort_leaf_ref(ref); 2549 2550 ret = btrfs_add_leaf_ref(root, ref, 0); 2551 WARN_ON(ret); 2552 btrfs_free_leaf_ref(root, ref); 2553 } else { 2554 WARN_ON(1); 2555 } 2556 } 2557 next_key: 2558 btrfs_release_path(root, path); 2559 2560 if (other_key.objectid == inode->i_ino && 2561 other_key.type == key.type && other_key.offset > key.offset) { 2562 key.offset = other_key.offset; 2563 cond_resched(); 2564 goto again; 2565 } 2566 ret = 0; 2567 out: 2568 /* fixup any changes we've made to the path */ 2569 path->lowest_level = 0; 2570 path->keep_locks = 0; 2571 btrfs_release_path(root, path); 2572 return ret; 2573 } 2574 2575 #endif 2576 2577 /* 2578 * this can truncate away extent items, csum items and directory items. 2579 * It starts at a high offset and removes keys until it can't find 2580 * any higher than new_size 2581 * 2582 * csum items that cross the new i_size are truncated to the new size 2583 * as well. 2584 * 2585 * min_type is the minimum key type to truncate down to. If set to 0, this 2586 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2587 */ 2588 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2589 struct btrfs_root *root, 2590 struct inode *inode, 2591 u64 new_size, u32 min_type) 2592 { 2593 int ret; 2594 struct btrfs_path *path; 2595 struct btrfs_key key; 2596 struct btrfs_key found_key; 2597 u32 found_type = (u8)-1; 2598 struct extent_buffer *leaf; 2599 struct btrfs_file_extent_item *fi; 2600 u64 extent_start = 0; 2601 u64 extent_num_bytes = 0; 2602 u64 item_end = 0; 2603 u64 root_gen = 0; 2604 u64 root_owner = 0; 2605 int found_extent; 2606 int del_item; 2607 int pending_del_nr = 0; 2608 int pending_del_slot = 0; 2609 int extent_type = -1; 2610 int encoding; 2611 u64 mask = root->sectorsize - 1; 2612 2613 if (root->ref_cows) 2614 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2615 path = btrfs_alloc_path(); 2616 path->reada = -1; 2617 BUG_ON(!path); 2618 2619 /* FIXME, add redo link to tree so we don't leak on crash */ 2620 key.objectid = inode->i_ino; 2621 key.offset = (u64)-1; 2622 key.type = (u8)-1; 2623 2624 search_again: 2625 path->leave_spinning = 1; 2626 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2627 if (ret < 0) 2628 goto error; 2629 2630 if (ret > 0) { 2631 /* there are no items in the tree for us to truncate, we're 2632 * done 2633 */ 2634 if (path->slots[0] == 0) { 2635 ret = 0; 2636 goto error; 2637 } 2638 path->slots[0]--; 2639 } 2640 2641 while (1) { 2642 fi = NULL; 2643 leaf = path->nodes[0]; 2644 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2645 found_type = btrfs_key_type(&found_key); 2646 encoding = 0; 2647 2648 if (found_key.objectid != inode->i_ino) 2649 break; 2650 2651 if (found_type < min_type) 2652 break; 2653 2654 item_end = found_key.offset; 2655 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2656 fi = btrfs_item_ptr(leaf, path->slots[0], 2657 struct btrfs_file_extent_item); 2658 extent_type = btrfs_file_extent_type(leaf, fi); 2659 encoding = btrfs_file_extent_compression(leaf, fi); 2660 encoding |= btrfs_file_extent_encryption(leaf, fi); 2661 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2662 2663 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2664 item_end += 2665 btrfs_file_extent_num_bytes(leaf, fi); 2666 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2667 item_end += btrfs_file_extent_inline_len(leaf, 2668 fi); 2669 } 2670 item_end--; 2671 } 2672 if (item_end < new_size) { 2673 if (found_type == BTRFS_DIR_ITEM_KEY) 2674 found_type = BTRFS_INODE_ITEM_KEY; 2675 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2676 found_type = BTRFS_EXTENT_DATA_KEY; 2677 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2678 found_type = BTRFS_XATTR_ITEM_KEY; 2679 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2680 found_type = BTRFS_INODE_REF_KEY; 2681 else if (found_type) 2682 found_type--; 2683 else 2684 break; 2685 btrfs_set_key_type(&key, found_type); 2686 goto next; 2687 } 2688 if (found_key.offset >= new_size) 2689 del_item = 1; 2690 else 2691 del_item = 0; 2692 found_extent = 0; 2693 2694 /* FIXME, shrink the extent if the ref count is only 1 */ 2695 if (found_type != BTRFS_EXTENT_DATA_KEY) 2696 goto delete; 2697 2698 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2699 u64 num_dec; 2700 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2701 if (!del_item && !encoding) { 2702 u64 orig_num_bytes = 2703 btrfs_file_extent_num_bytes(leaf, fi); 2704 extent_num_bytes = new_size - 2705 found_key.offset + root->sectorsize - 1; 2706 extent_num_bytes = extent_num_bytes & 2707 ~((u64)root->sectorsize - 1); 2708 btrfs_set_file_extent_num_bytes(leaf, fi, 2709 extent_num_bytes); 2710 num_dec = (orig_num_bytes - 2711 extent_num_bytes); 2712 if (root->ref_cows && extent_start != 0) 2713 inode_sub_bytes(inode, num_dec); 2714 btrfs_mark_buffer_dirty(leaf); 2715 } else { 2716 extent_num_bytes = 2717 btrfs_file_extent_disk_num_bytes(leaf, 2718 fi); 2719 /* FIXME blocksize != 4096 */ 2720 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2721 if (extent_start != 0) { 2722 found_extent = 1; 2723 if (root->ref_cows) 2724 inode_sub_bytes(inode, num_dec); 2725 } 2726 root_gen = btrfs_header_generation(leaf); 2727 root_owner = btrfs_header_owner(leaf); 2728 } 2729 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2730 /* 2731 * we can't truncate inline items that have had 2732 * special encodings 2733 */ 2734 if (!del_item && 2735 btrfs_file_extent_compression(leaf, fi) == 0 && 2736 btrfs_file_extent_encryption(leaf, fi) == 0 && 2737 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2738 u32 size = new_size - found_key.offset; 2739 2740 if (root->ref_cows) { 2741 inode_sub_bytes(inode, item_end + 1 - 2742 new_size); 2743 } 2744 size = 2745 btrfs_file_extent_calc_inline_size(size); 2746 ret = btrfs_truncate_item(trans, root, path, 2747 size, 1); 2748 BUG_ON(ret); 2749 } else if (root->ref_cows) { 2750 inode_sub_bytes(inode, item_end + 1 - 2751 found_key.offset); 2752 } 2753 } 2754 delete: 2755 if (del_item) { 2756 if (!pending_del_nr) { 2757 /* no pending yet, add ourselves */ 2758 pending_del_slot = path->slots[0]; 2759 pending_del_nr = 1; 2760 } else if (pending_del_nr && 2761 path->slots[0] + 1 == pending_del_slot) { 2762 /* hop on the pending chunk */ 2763 pending_del_nr++; 2764 pending_del_slot = path->slots[0]; 2765 } else { 2766 BUG(); 2767 } 2768 } else { 2769 break; 2770 } 2771 if (found_extent) { 2772 btrfs_set_path_blocking(path); 2773 ret = btrfs_free_extent(trans, root, extent_start, 2774 extent_num_bytes, 2775 leaf->start, root_owner, 2776 root_gen, inode->i_ino, 0); 2777 BUG_ON(ret); 2778 } 2779 next: 2780 if (path->slots[0] == 0) { 2781 if (pending_del_nr) 2782 goto del_pending; 2783 btrfs_release_path(root, path); 2784 if (found_type == BTRFS_INODE_ITEM_KEY) 2785 break; 2786 goto search_again; 2787 } 2788 2789 path->slots[0]--; 2790 if (pending_del_nr && 2791 path->slots[0] + 1 != pending_del_slot) { 2792 struct btrfs_key debug; 2793 del_pending: 2794 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2795 pending_del_slot); 2796 ret = btrfs_del_items(trans, root, path, 2797 pending_del_slot, 2798 pending_del_nr); 2799 BUG_ON(ret); 2800 pending_del_nr = 0; 2801 btrfs_release_path(root, path); 2802 if (found_type == BTRFS_INODE_ITEM_KEY) 2803 break; 2804 goto search_again; 2805 } 2806 } 2807 ret = 0; 2808 error: 2809 if (pending_del_nr) { 2810 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2811 pending_del_nr); 2812 } 2813 btrfs_free_path(path); 2814 inode->i_sb->s_dirt = 1; 2815 return ret; 2816 } 2817 2818 /* 2819 * taken from block_truncate_page, but does cow as it zeros out 2820 * any bytes left in the last page in the file. 2821 */ 2822 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2823 { 2824 struct inode *inode = mapping->host; 2825 struct btrfs_root *root = BTRFS_I(inode)->root; 2826 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2827 struct btrfs_ordered_extent *ordered; 2828 char *kaddr; 2829 u32 blocksize = root->sectorsize; 2830 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2831 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2832 struct page *page; 2833 int ret = 0; 2834 u64 page_start; 2835 u64 page_end; 2836 2837 if ((offset & (blocksize - 1)) == 0) 2838 goto out; 2839 2840 ret = -ENOMEM; 2841 again: 2842 page = grab_cache_page(mapping, index); 2843 if (!page) 2844 goto out; 2845 2846 page_start = page_offset(page); 2847 page_end = page_start + PAGE_CACHE_SIZE - 1; 2848 2849 if (!PageUptodate(page)) { 2850 ret = btrfs_readpage(NULL, page); 2851 lock_page(page); 2852 if (page->mapping != mapping) { 2853 unlock_page(page); 2854 page_cache_release(page); 2855 goto again; 2856 } 2857 if (!PageUptodate(page)) { 2858 ret = -EIO; 2859 goto out_unlock; 2860 } 2861 } 2862 wait_on_page_writeback(page); 2863 2864 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2865 set_page_extent_mapped(page); 2866 2867 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2868 if (ordered) { 2869 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2870 unlock_page(page); 2871 page_cache_release(page); 2872 btrfs_start_ordered_extent(inode, ordered, 1); 2873 btrfs_put_ordered_extent(ordered); 2874 goto again; 2875 } 2876 2877 btrfs_set_extent_delalloc(inode, page_start, page_end); 2878 ret = 0; 2879 if (offset != PAGE_CACHE_SIZE) { 2880 kaddr = kmap(page); 2881 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2882 flush_dcache_page(page); 2883 kunmap(page); 2884 } 2885 ClearPageChecked(page); 2886 set_page_dirty(page); 2887 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2888 2889 out_unlock: 2890 unlock_page(page); 2891 page_cache_release(page); 2892 out: 2893 return ret; 2894 } 2895 2896 int btrfs_cont_expand(struct inode *inode, loff_t size) 2897 { 2898 struct btrfs_trans_handle *trans; 2899 struct btrfs_root *root = BTRFS_I(inode)->root; 2900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2901 struct extent_map *em; 2902 u64 mask = root->sectorsize - 1; 2903 u64 hole_start = (inode->i_size + mask) & ~mask; 2904 u64 block_end = (size + mask) & ~mask; 2905 u64 last_byte; 2906 u64 cur_offset; 2907 u64 hole_size; 2908 int err; 2909 2910 if (size <= hole_start) 2911 return 0; 2912 2913 err = btrfs_check_metadata_free_space(root); 2914 if (err) 2915 return err; 2916 2917 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2918 2919 while (1) { 2920 struct btrfs_ordered_extent *ordered; 2921 btrfs_wait_ordered_range(inode, hole_start, 2922 block_end - hole_start); 2923 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2924 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2925 if (!ordered) 2926 break; 2927 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2928 btrfs_put_ordered_extent(ordered); 2929 } 2930 2931 trans = btrfs_start_transaction(root, 1); 2932 btrfs_set_trans_block_group(trans, inode); 2933 2934 cur_offset = hole_start; 2935 while (1) { 2936 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2937 block_end - cur_offset, 0); 2938 BUG_ON(IS_ERR(em) || !em); 2939 last_byte = min(extent_map_end(em), block_end); 2940 last_byte = (last_byte + mask) & ~mask; 2941 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2942 u64 hint_byte = 0; 2943 hole_size = last_byte - cur_offset; 2944 err = btrfs_drop_extents(trans, root, inode, 2945 cur_offset, 2946 cur_offset + hole_size, 2947 block_end, 2948 cur_offset, &hint_byte); 2949 if (err) 2950 break; 2951 err = btrfs_insert_file_extent(trans, root, 2952 inode->i_ino, cur_offset, 0, 2953 0, hole_size, 0, hole_size, 2954 0, 0, 0); 2955 btrfs_drop_extent_cache(inode, hole_start, 2956 last_byte - 1, 0); 2957 } 2958 free_extent_map(em); 2959 cur_offset = last_byte; 2960 if (err || cur_offset >= block_end) 2961 break; 2962 } 2963 2964 btrfs_end_transaction(trans, root); 2965 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2966 return err; 2967 } 2968 2969 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2970 { 2971 struct inode *inode = dentry->d_inode; 2972 int err; 2973 2974 err = inode_change_ok(inode, attr); 2975 if (err) 2976 return err; 2977 2978 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 2979 if (attr->ia_size > inode->i_size) { 2980 err = btrfs_cont_expand(inode, attr->ia_size); 2981 if (err) 2982 return err; 2983 } else if (inode->i_size > 0 && 2984 attr->ia_size == 0) { 2985 2986 /* we're truncating a file that used to have good 2987 * data down to zero. Make sure it gets into 2988 * the ordered flush list so that any new writes 2989 * get down to disk quickly. 2990 */ 2991 BTRFS_I(inode)->ordered_data_close = 1; 2992 } 2993 } 2994 2995 err = inode_setattr(inode, attr); 2996 2997 if (!err && ((attr->ia_valid & ATTR_MODE))) 2998 err = btrfs_acl_chmod(inode); 2999 return err; 3000 } 3001 3002 void btrfs_delete_inode(struct inode *inode) 3003 { 3004 struct btrfs_trans_handle *trans; 3005 struct btrfs_root *root = BTRFS_I(inode)->root; 3006 unsigned long nr; 3007 int ret; 3008 3009 truncate_inode_pages(&inode->i_data, 0); 3010 if (is_bad_inode(inode)) { 3011 btrfs_orphan_del(NULL, inode); 3012 goto no_delete; 3013 } 3014 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3015 3016 btrfs_i_size_write(inode, 0); 3017 trans = btrfs_join_transaction(root, 1); 3018 3019 btrfs_set_trans_block_group(trans, inode); 3020 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 3021 if (ret) { 3022 btrfs_orphan_del(NULL, inode); 3023 goto no_delete_lock; 3024 } 3025 3026 btrfs_orphan_del(trans, inode); 3027 3028 nr = trans->blocks_used; 3029 clear_inode(inode); 3030 3031 btrfs_end_transaction(trans, root); 3032 btrfs_btree_balance_dirty(root, nr); 3033 return; 3034 3035 no_delete_lock: 3036 nr = trans->blocks_used; 3037 btrfs_end_transaction(trans, root); 3038 btrfs_btree_balance_dirty(root, nr); 3039 no_delete: 3040 clear_inode(inode); 3041 } 3042 3043 /* 3044 * this returns the key found in the dir entry in the location pointer. 3045 * If no dir entries were found, location->objectid is 0. 3046 */ 3047 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3048 struct btrfs_key *location) 3049 { 3050 const char *name = dentry->d_name.name; 3051 int namelen = dentry->d_name.len; 3052 struct btrfs_dir_item *di; 3053 struct btrfs_path *path; 3054 struct btrfs_root *root = BTRFS_I(dir)->root; 3055 int ret = 0; 3056 3057 path = btrfs_alloc_path(); 3058 BUG_ON(!path); 3059 3060 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3061 namelen, 0); 3062 if (IS_ERR(di)) 3063 ret = PTR_ERR(di); 3064 3065 if (!di || IS_ERR(di)) 3066 goto out_err; 3067 3068 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3069 out: 3070 btrfs_free_path(path); 3071 return ret; 3072 out_err: 3073 location->objectid = 0; 3074 goto out; 3075 } 3076 3077 /* 3078 * when we hit a tree root in a directory, the btrfs part of the inode 3079 * needs to be changed to reflect the root directory of the tree root. This 3080 * is kind of like crossing a mount point. 3081 */ 3082 static int fixup_tree_root_location(struct btrfs_root *root, 3083 struct btrfs_key *location, 3084 struct btrfs_root **sub_root, 3085 struct dentry *dentry) 3086 { 3087 struct btrfs_root_item *ri; 3088 3089 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 3090 return 0; 3091 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 3092 return 0; 3093 3094 *sub_root = btrfs_read_fs_root(root->fs_info, location, 3095 dentry->d_name.name, 3096 dentry->d_name.len); 3097 if (IS_ERR(*sub_root)) 3098 return PTR_ERR(*sub_root); 3099 3100 ri = &(*sub_root)->root_item; 3101 location->objectid = btrfs_root_dirid(ri); 3102 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3103 location->offset = 0; 3104 3105 return 0; 3106 } 3107 3108 static noinline void init_btrfs_i(struct inode *inode) 3109 { 3110 struct btrfs_inode *bi = BTRFS_I(inode); 3111 3112 bi->i_acl = BTRFS_ACL_NOT_CACHED; 3113 bi->i_default_acl = BTRFS_ACL_NOT_CACHED; 3114 3115 bi->generation = 0; 3116 bi->sequence = 0; 3117 bi->last_trans = 0; 3118 bi->logged_trans = 0; 3119 bi->delalloc_bytes = 0; 3120 bi->reserved_bytes = 0; 3121 bi->disk_i_size = 0; 3122 bi->flags = 0; 3123 bi->index_cnt = (u64)-1; 3124 bi->last_unlink_trans = 0; 3125 bi->ordered_data_close = 0; 3126 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 3127 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 3128 inode->i_mapping, GFP_NOFS); 3129 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3130 inode->i_mapping, GFP_NOFS); 3131 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3132 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations); 3133 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3134 mutex_init(&BTRFS_I(inode)->extent_mutex); 3135 mutex_init(&BTRFS_I(inode)->log_mutex); 3136 } 3137 3138 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3139 { 3140 struct btrfs_iget_args *args = p; 3141 inode->i_ino = args->ino; 3142 init_btrfs_i(inode); 3143 BTRFS_I(inode)->root = args->root; 3144 btrfs_set_inode_space_info(args->root, inode); 3145 return 0; 3146 } 3147 3148 static int btrfs_find_actor(struct inode *inode, void *opaque) 3149 { 3150 struct btrfs_iget_args *args = opaque; 3151 return args->ino == inode->i_ino && 3152 args->root == BTRFS_I(inode)->root; 3153 } 3154 3155 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, 3156 struct btrfs_root *root, int wait) 3157 { 3158 struct inode *inode; 3159 struct btrfs_iget_args args; 3160 args.ino = objectid; 3161 args.root = root; 3162 3163 if (wait) { 3164 inode = ilookup5(s, objectid, btrfs_find_actor, 3165 (void *)&args); 3166 } else { 3167 inode = ilookup5_nowait(s, objectid, btrfs_find_actor, 3168 (void *)&args); 3169 } 3170 return inode; 3171 } 3172 3173 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, 3174 struct btrfs_root *root) 3175 { 3176 struct inode *inode; 3177 struct btrfs_iget_args args; 3178 args.ino = objectid; 3179 args.root = root; 3180 3181 inode = iget5_locked(s, objectid, btrfs_find_actor, 3182 btrfs_init_locked_inode, 3183 (void *)&args); 3184 return inode; 3185 } 3186 3187 /* Get an inode object given its location and corresponding root. 3188 * Returns in *is_new if the inode was read from disk 3189 */ 3190 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3191 struct btrfs_root *root, int *is_new) 3192 { 3193 struct inode *inode; 3194 3195 inode = btrfs_iget_locked(s, location->objectid, root); 3196 if (!inode) 3197 return ERR_PTR(-EACCES); 3198 3199 if (inode->i_state & I_NEW) { 3200 BTRFS_I(inode)->root = root; 3201 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3202 btrfs_read_locked_inode(inode); 3203 unlock_new_inode(inode); 3204 if (is_new) 3205 *is_new = 1; 3206 } else { 3207 if (is_new) 3208 *is_new = 0; 3209 } 3210 3211 return inode; 3212 } 3213 3214 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3215 { 3216 struct inode *inode; 3217 struct btrfs_inode *bi = BTRFS_I(dir); 3218 struct btrfs_root *root = bi->root; 3219 struct btrfs_root *sub_root = root; 3220 struct btrfs_key location; 3221 int ret, new; 3222 3223 if (dentry->d_name.len > BTRFS_NAME_LEN) 3224 return ERR_PTR(-ENAMETOOLONG); 3225 3226 ret = btrfs_inode_by_name(dir, dentry, &location); 3227 3228 if (ret < 0) 3229 return ERR_PTR(ret); 3230 3231 inode = NULL; 3232 if (location.objectid) { 3233 ret = fixup_tree_root_location(root, &location, &sub_root, 3234 dentry); 3235 if (ret < 0) 3236 return ERR_PTR(ret); 3237 if (ret > 0) 3238 return ERR_PTR(-ENOENT); 3239 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new); 3240 if (IS_ERR(inode)) 3241 return ERR_CAST(inode); 3242 } 3243 return inode; 3244 } 3245 3246 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3247 struct nameidata *nd) 3248 { 3249 struct inode *inode; 3250 3251 if (dentry->d_name.len > BTRFS_NAME_LEN) 3252 return ERR_PTR(-ENAMETOOLONG); 3253 3254 inode = btrfs_lookup_dentry(dir, dentry); 3255 if (IS_ERR(inode)) 3256 return ERR_CAST(inode); 3257 3258 return d_splice_alias(inode, dentry); 3259 } 3260 3261 static unsigned char btrfs_filetype_table[] = { 3262 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3263 }; 3264 3265 static int btrfs_real_readdir(struct file *filp, void *dirent, 3266 filldir_t filldir) 3267 { 3268 struct inode *inode = filp->f_dentry->d_inode; 3269 struct btrfs_root *root = BTRFS_I(inode)->root; 3270 struct btrfs_item *item; 3271 struct btrfs_dir_item *di; 3272 struct btrfs_key key; 3273 struct btrfs_key found_key; 3274 struct btrfs_path *path; 3275 int ret; 3276 u32 nritems; 3277 struct extent_buffer *leaf; 3278 int slot; 3279 int advance; 3280 unsigned char d_type; 3281 int over = 0; 3282 u32 di_cur; 3283 u32 di_total; 3284 u32 di_len; 3285 int key_type = BTRFS_DIR_INDEX_KEY; 3286 char tmp_name[32]; 3287 char *name_ptr; 3288 int name_len; 3289 3290 /* FIXME, use a real flag for deciding about the key type */ 3291 if (root->fs_info->tree_root == root) 3292 key_type = BTRFS_DIR_ITEM_KEY; 3293 3294 /* special case for "." */ 3295 if (filp->f_pos == 0) { 3296 over = filldir(dirent, ".", 1, 3297 1, inode->i_ino, 3298 DT_DIR); 3299 if (over) 3300 return 0; 3301 filp->f_pos = 1; 3302 } 3303 /* special case for .., just use the back ref */ 3304 if (filp->f_pos == 1) { 3305 u64 pino = parent_ino(filp->f_path.dentry); 3306 over = filldir(dirent, "..", 2, 3307 2, pino, DT_DIR); 3308 if (over) 3309 return 0; 3310 filp->f_pos = 2; 3311 } 3312 path = btrfs_alloc_path(); 3313 path->reada = 2; 3314 3315 btrfs_set_key_type(&key, key_type); 3316 key.offset = filp->f_pos; 3317 key.objectid = inode->i_ino; 3318 3319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3320 if (ret < 0) 3321 goto err; 3322 advance = 0; 3323 3324 while (1) { 3325 leaf = path->nodes[0]; 3326 nritems = btrfs_header_nritems(leaf); 3327 slot = path->slots[0]; 3328 if (advance || slot >= nritems) { 3329 if (slot >= nritems - 1) { 3330 ret = btrfs_next_leaf(root, path); 3331 if (ret) 3332 break; 3333 leaf = path->nodes[0]; 3334 nritems = btrfs_header_nritems(leaf); 3335 slot = path->slots[0]; 3336 } else { 3337 slot++; 3338 path->slots[0]++; 3339 } 3340 } 3341 3342 advance = 1; 3343 item = btrfs_item_nr(leaf, slot); 3344 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3345 3346 if (found_key.objectid != key.objectid) 3347 break; 3348 if (btrfs_key_type(&found_key) != key_type) 3349 break; 3350 if (found_key.offset < filp->f_pos) 3351 continue; 3352 3353 filp->f_pos = found_key.offset; 3354 3355 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3356 di_cur = 0; 3357 di_total = btrfs_item_size(leaf, item); 3358 3359 while (di_cur < di_total) { 3360 struct btrfs_key location; 3361 3362 name_len = btrfs_dir_name_len(leaf, di); 3363 if (name_len <= sizeof(tmp_name)) { 3364 name_ptr = tmp_name; 3365 } else { 3366 name_ptr = kmalloc(name_len, GFP_NOFS); 3367 if (!name_ptr) { 3368 ret = -ENOMEM; 3369 goto err; 3370 } 3371 } 3372 read_extent_buffer(leaf, name_ptr, 3373 (unsigned long)(di + 1), name_len); 3374 3375 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3376 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3377 3378 /* is this a reference to our own snapshot? If so 3379 * skip it 3380 */ 3381 if (location.type == BTRFS_ROOT_ITEM_KEY && 3382 location.objectid == root->root_key.objectid) { 3383 over = 0; 3384 goto skip; 3385 } 3386 over = filldir(dirent, name_ptr, name_len, 3387 found_key.offset, location.objectid, 3388 d_type); 3389 3390 skip: 3391 if (name_ptr != tmp_name) 3392 kfree(name_ptr); 3393 3394 if (over) 3395 goto nopos; 3396 di_len = btrfs_dir_name_len(leaf, di) + 3397 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3398 di_cur += di_len; 3399 di = (struct btrfs_dir_item *)((char *)di + di_len); 3400 } 3401 } 3402 3403 /* Reached end of directory/root. Bump pos past the last item. */ 3404 if (key_type == BTRFS_DIR_INDEX_KEY) 3405 filp->f_pos = INT_LIMIT(off_t); 3406 else 3407 filp->f_pos++; 3408 nopos: 3409 ret = 0; 3410 err: 3411 btrfs_free_path(path); 3412 return ret; 3413 } 3414 3415 int btrfs_write_inode(struct inode *inode, int wait) 3416 { 3417 struct btrfs_root *root = BTRFS_I(inode)->root; 3418 struct btrfs_trans_handle *trans; 3419 int ret = 0; 3420 3421 if (root->fs_info->btree_inode == inode) 3422 return 0; 3423 3424 if (wait) { 3425 trans = btrfs_join_transaction(root, 1); 3426 btrfs_set_trans_block_group(trans, inode); 3427 ret = btrfs_commit_transaction(trans, root); 3428 } 3429 return ret; 3430 } 3431 3432 /* 3433 * This is somewhat expensive, updating the tree every time the 3434 * inode changes. But, it is most likely to find the inode in cache. 3435 * FIXME, needs more benchmarking...there are no reasons other than performance 3436 * to keep or drop this code. 3437 */ 3438 void btrfs_dirty_inode(struct inode *inode) 3439 { 3440 struct btrfs_root *root = BTRFS_I(inode)->root; 3441 struct btrfs_trans_handle *trans; 3442 3443 trans = btrfs_join_transaction(root, 1); 3444 btrfs_set_trans_block_group(trans, inode); 3445 btrfs_update_inode(trans, root, inode); 3446 btrfs_end_transaction(trans, root); 3447 } 3448 3449 /* 3450 * find the highest existing sequence number in a directory 3451 * and then set the in-memory index_cnt variable to reflect 3452 * free sequence numbers 3453 */ 3454 static int btrfs_set_inode_index_count(struct inode *inode) 3455 { 3456 struct btrfs_root *root = BTRFS_I(inode)->root; 3457 struct btrfs_key key, found_key; 3458 struct btrfs_path *path; 3459 struct extent_buffer *leaf; 3460 int ret; 3461 3462 key.objectid = inode->i_ino; 3463 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3464 key.offset = (u64)-1; 3465 3466 path = btrfs_alloc_path(); 3467 if (!path) 3468 return -ENOMEM; 3469 3470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3471 if (ret < 0) 3472 goto out; 3473 /* FIXME: we should be able to handle this */ 3474 if (ret == 0) 3475 goto out; 3476 ret = 0; 3477 3478 /* 3479 * MAGIC NUMBER EXPLANATION: 3480 * since we search a directory based on f_pos we have to start at 2 3481 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3482 * else has to start at 2 3483 */ 3484 if (path->slots[0] == 0) { 3485 BTRFS_I(inode)->index_cnt = 2; 3486 goto out; 3487 } 3488 3489 path->slots[0]--; 3490 3491 leaf = path->nodes[0]; 3492 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3493 3494 if (found_key.objectid != inode->i_ino || 3495 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3496 BTRFS_I(inode)->index_cnt = 2; 3497 goto out; 3498 } 3499 3500 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3501 out: 3502 btrfs_free_path(path); 3503 return ret; 3504 } 3505 3506 /* 3507 * helper to find a free sequence number in a given directory. This current 3508 * code is very simple, later versions will do smarter things in the btree 3509 */ 3510 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3511 { 3512 int ret = 0; 3513 3514 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3515 ret = btrfs_set_inode_index_count(dir); 3516 if (ret) 3517 return ret; 3518 } 3519 3520 *index = BTRFS_I(dir)->index_cnt; 3521 BTRFS_I(dir)->index_cnt++; 3522 3523 return ret; 3524 } 3525 3526 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3527 struct btrfs_root *root, 3528 struct inode *dir, 3529 const char *name, int name_len, 3530 u64 ref_objectid, u64 objectid, 3531 u64 alloc_hint, int mode, u64 *index) 3532 { 3533 struct inode *inode; 3534 struct btrfs_inode_item *inode_item; 3535 struct btrfs_key *location; 3536 struct btrfs_path *path; 3537 struct btrfs_inode_ref *ref; 3538 struct btrfs_key key[2]; 3539 u32 sizes[2]; 3540 unsigned long ptr; 3541 int ret; 3542 int owner; 3543 3544 path = btrfs_alloc_path(); 3545 BUG_ON(!path); 3546 3547 inode = new_inode(root->fs_info->sb); 3548 if (!inode) 3549 return ERR_PTR(-ENOMEM); 3550 3551 if (dir) { 3552 ret = btrfs_set_inode_index(dir, index); 3553 if (ret) { 3554 iput(inode); 3555 return ERR_PTR(ret); 3556 } 3557 } 3558 /* 3559 * index_cnt is ignored for everything but a dir, 3560 * btrfs_get_inode_index_count has an explanation for the magic 3561 * number 3562 */ 3563 init_btrfs_i(inode); 3564 BTRFS_I(inode)->index_cnt = 2; 3565 BTRFS_I(inode)->root = root; 3566 BTRFS_I(inode)->generation = trans->transid; 3567 btrfs_set_inode_space_info(root, inode); 3568 3569 if (mode & S_IFDIR) 3570 owner = 0; 3571 else 3572 owner = 1; 3573 BTRFS_I(inode)->block_group = 3574 btrfs_find_block_group(root, 0, alloc_hint, owner); 3575 if ((mode & S_IFREG)) { 3576 if (btrfs_test_opt(root, NODATASUM)) 3577 btrfs_set_flag(inode, NODATASUM); 3578 if (btrfs_test_opt(root, NODATACOW)) 3579 btrfs_set_flag(inode, NODATACOW); 3580 } 3581 3582 key[0].objectid = objectid; 3583 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3584 key[0].offset = 0; 3585 3586 key[1].objectid = objectid; 3587 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3588 key[1].offset = ref_objectid; 3589 3590 sizes[0] = sizeof(struct btrfs_inode_item); 3591 sizes[1] = name_len + sizeof(*ref); 3592 3593 path->leave_spinning = 1; 3594 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3595 if (ret != 0) 3596 goto fail; 3597 3598 if (objectid > root->highest_inode) 3599 root->highest_inode = objectid; 3600 3601 inode->i_uid = current_fsuid(); 3602 3603 if (dir && (dir->i_mode & S_ISGID)) { 3604 inode->i_gid = dir->i_gid; 3605 if (S_ISDIR(mode)) 3606 mode |= S_ISGID; 3607 } else 3608 inode->i_gid = current_fsgid(); 3609 3610 inode->i_mode = mode; 3611 inode->i_ino = objectid; 3612 inode_set_bytes(inode, 0); 3613 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3614 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3615 struct btrfs_inode_item); 3616 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3617 3618 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3619 struct btrfs_inode_ref); 3620 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3621 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3622 ptr = (unsigned long)(ref + 1); 3623 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3624 3625 btrfs_mark_buffer_dirty(path->nodes[0]); 3626 btrfs_free_path(path); 3627 3628 location = &BTRFS_I(inode)->location; 3629 location->objectid = objectid; 3630 location->offset = 0; 3631 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3632 3633 insert_inode_hash(inode); 3634 return inode; 3635 fail: 3636 if (dir) 3637 BTRFS_I(dir)->index_cnt--; 3638 btrfs_free_path(path); 3639 iput(inode); 3640 return ERR_PTR(ret); 3641 } 3642 3643 static inline u8 btrfs_inode_type(struct inode *inode) 3644 { 3645 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3646 } 3647 3648 /* 3649 * utility function to add 'inode' into 'parent_inode' with 3650 * a give name and a given sequence number. 3651 * if 'add_backref' is true, also insert a backref from the 3652 * inode to the parent directory. 3653 */ 3654 int btrfs_add_link(struct btrfs_trans_handle *trans, 3655 struct inode *parent_inode, struct inode *inode, 3656 const char *name, int name_len, int add_backref, u64 index) 3657 { 3658 int ret; 3659 struct btrfs_key key; 3660 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3661 3662 key.objectid = inode->i_ino; 3663 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3664 key.offset = 0; 3665 3666 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3667 parent_inode->i_ino, 3668 &key, btrfs_inode_type(inode), 3669 index); 3670 if (ret == 0) { 3671 if (add_backref) { 3672 ret = btrfs_insert_inode_ref(trans, root, 3673 name, name_len, 3674 inode->i_ino, 3675 parent_inode->i_ino, 3676 index); 3677 } 3678 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3679 name_len * 2); 3680 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3681 ret = btrfs_update_inode(trans, root, parent_inode); 3682 } 3683 return ret; 3684 } 3685 3686 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3687 struct dentry *dentry, struct inode *inode, 3688 int backref, u64 index) 3689 { 3690 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3691 inode, dentry->d_name.name, 3692 dentry->d_name.len, backref, index); 3693 if (!err) { 3694 d_instantiate(dentry, inode); 3695 return 0; 3696 } 3697 if (err > 0) 3698 err = -EEXIST; 3699 return err; 3700 } 3701 3702 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3703 int mode, dev_t rdev) 3704 { 3705 struct btrfs_trans_handle *trans; 3706 struct btrfs_root *root = BTRFS_I(dir)->root; 3707 struct inode *inode = NULL; 3708 int err; 3709 int drop_inode = 0; 3710 u64 objectid; 3711 unsigned long nr = 0; 3712 u64 index = 0; 3713 3714 if (!new_valid_dev(rdev)) 3715 return -EINVAL; 3716 3717 err = btrfs_check_metadata_free_space(root); 3718 if (err) 3719 goto fail; 3720 3721 trans = btrfs_start_transaction(root, 1); 3722 btrfs_set_trans_block_group(trans, dir); 3723 3724 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3725 if (err) { 3726 err = -ENOSPC; 3727 goto out_unlock; 3728 } 3729 3730 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3731 dentry->d_name.len, 3732 dentry->d_parent->d_inode->i_ino, objectid, 3733 BTRFS_I(dir)->block_group, mode, &index); 3734 err = PTR_ERR(inode); 3735 if (IS_ERR(inode)) 3736 goto out_unlock; 3737 3738 err = btrfs_init_inode_security(inode, dir); 3739 if (err) { 3740 drop_inode = 1; 3741 goto out_unlock; 3742 } 3743 3744 btrfs_set_trans_block_group(trans, inode); 3745 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3746 if (err) 3747 drop_inode = 1; 3748 else { 3749 inode->i_op = &btrfs_special_inode_operations; 3750 init_special_inode(inode, inode->i_mode, rdev); 3751 btrfs_update_inode(trans, root, inode); 3752 } 3753 dir->i_sb->s_dirt = 1; 3754 btrfs_update_inode_block_group(trans, inode); 3755 btrfs_update_inode_block_group(trans, dir); 3756 out_unlock: 3757 nr = trans->blocks_used; 3758 btrfs_end_transaction_throttle(trans, root); 3759 fail: 3760 if (drop_inode) { 3761 inode_dec_link_count(inode); 3762 iput(inode); 3763 } 3764 btrfs_btree_balance_dirty(root, nr); 3765 return err; 3766 } 3767 3768 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3769 int mode, struct nameidata *nd) 3770 { 3771 struct btrfs_trans_handle *trans; 3772 struct btrfs_root *root = BTRFS_I(dir)->root; 3773 struct inode *inode = NULL; 3774 int err; 3775 int drop_inode = 0; 3776 unsigned long nr = 0; 3777 u64 objectid; 3778 u64 index = 0; 3779 3780 err = btrfs_check_metadata_free_space(root); 3781 if (err) 3782 goto fail; 3783 trans = btrfs_start_transaction(root, 1); 3784 btrfs_set_trans_block_group(trans, dir); 3785 3786 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3787 if (err) { 3788 err = -ENOSPC; 3789 goto out_unlock; 3790 } 3791 3792 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3793 dentry->d_name.len, 3794 dentry->d_parent->d_inode->i_ino, 3795 objectid, BTRFS_I(dir)->block_group, mode, 3796 &index); 3797 err = PTR_ERR(inode); 3798 if (IS_ERR(inode)) 3799 goto out_unlock; 3800 3801 err = btrfs_init_inode_security(inode, dir); 3802 if (err) { 3803 drop_inode = 1; 3804 goto out_unlock; 3805 } 3806 3807 btrfs_set_trans_block_group(trans, inode); 3808 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3809 if (err) 3810 drop_inode = 1; 3811 else { 3812 inode->i_mapping->a_ops = &btrfs_aops; 3813 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3814 inode->i_fop = &btrfs_file_operations; 3815 inode->i_op = &btrfs_file_inode_operations; 3816 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3817 } 3818 dir->i_sb->s_dirt = 1; 3819 btrfs_update_inode_block_group(trans, inode); 3820 btrfs_update_inode_block_group(trans, dir); 3821 out_unlock: 3822 nr = trans->blocks_used; 3823 btrfs_end_transaction_throttle(trans, root); 3824 fail: 3825 if (drop_inode) { 3826 inode_dec_link_count(inode); 3827 iput(inode); 3828 } 3829 btrfs_btree_balance_dirty(root, nr); 3830 return err; 3831 } 3832 3833 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3834 struct dentry *dentry) 3835 { 3836 struct btrfs_trans_handle *trans; 3837 struct btrfs_root *root = BTRFS_I(dir)->root; 3838 struct inode *inode = old_dentry->d_inode; 3839 u64 index; 3840 unsigned long nr = 0; 3841 int err; 3842 int drop_inode = 0; 3843 3844 if (inode->i_nlink == 0) 3845 return -ENOENT; 3846 3847 btrfs_inc_nlink(inode); 3848 err = btrfs_check_metadata_free_space(root); 3849 if (err) 3850 goto fail; 3851 err = btrfs_set_inode_index(dir, &index); 3852 if (err) 3853 goto fail; 3854 3855 trans = btrfs_start_transaction(root, 1); 3856 3857 btrfs_set_trans_block_group(trans, dir); 3858 atomic_inc(&inode->i_count); 3859 3860 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3861 3862 if (err) 3863 drop_inode = 1; 3864 3865 dir->i_sb->s_dirt = 1; 3866 btrfs_update_inode_block_group(trans, dir); 3867 err = btrfs_update_inode(trans, root, inode); 3868 3869 if (err) 3870 drop_inode = 1; 3871 3872 nr = trans->blocks_used; 3873 3874 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent); 3875 btrfs_end_transaction_throttle(trans, root); 3876 fail: 3877 if (drop_inode) { 3878 inode_dec_link_count(inode); 3879 iput(inode); 3880 } 3881 btrfs_btree_balance_dirty(root, nr); 3882 return err; 3883 } 3884 3885 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3886 { 3887 struct inode *inode = NULL; 3888 struct btrfs_trans_handle *trans; 3889 struct btrfs_root *root = BTRFS_I(dir)->root; 3890 int err = 0; 3891 int drop_on_err = 0; 3892 u64 objectid = 0; 3893 u64 index = 0; 3894 unsigned long nr = 1; 3895 3896 err = btrfs_check_metadata_free_space(root); 3897 if (err) 3898 goto out_unlock; 3899 3900 trans = btrfs_start_transaction(root, 1); 3901 btrfs_set_trans_block_group(trans, dir); 3902 3903 if (IS_ERR(trans)) { 3904 err = PTR_ERR(trans); 3905 goto out_unlock; 3906 } 3907 3908 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3909 if (err) { 3910 err = -ENOSPC; 3911 goto out_unlock; 3912 } 3913 3914 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3915 dentry->d_name.len, 3916 dentry->d_parent->d_inode->i_ino, objectid, 3917 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3918 &index); 3919 if (IS_ERR(inode)) { 3920 err = PTR_ERR(inode); 3921 goto out_fail; 3922 } 3923 3924 drop_on_err = 1; 3925 3926 err = btrfs_init_inode_security(inode, dir); 3927 if (err) 3928 goto out_fail; 3929 3930 inode->i_op = &btrfs_dir_inode_operations; 3931 inode->i_fop = &btrfs_dir_file_operations; 3932 btrfs_set_trans_block_group(trans, inode); 3933 3934 btrfs_i_size_write(inode, 0); 3935 err = btrfs_update_inode(trans, root, inode); 3936 if (err) 3937 goto out_fail; 3938 3939 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3940 inode, dentry->d_name.name, 3941 dentry->d_name.len, 0, index); 3942 if (err) 3943 goto out_fail; 3944 3945 d_instantiate(dentry, inode); 3946 drop_on_err = 0; 3947 dir->i_sb->s_dirt = 1; 3948 btrfs_update_inode_block_group(trans, inode); 3949 btrfs_update_inode_block_group(trans, dir); 3950 3951 out_fail: 3952 nr = trans->blocks_used; 3953 btrfs_end_transaction_throttle(trans, root); 3954 3955 out_unlock: 3956 if (drop_on_err) 3957 iput(inode); 3958 btrfs_btree_balance_dirty(root, nr); 3959 return err; 3960 } 3961 3962 /* helper for btfs_get_extent. Given an existing extent in the tree, 3963 * and an extent that you want to insert, deal with overlap and insert 3964 * the new extent into the tree. 3965 */ 3966 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3967 struct extent_map *existing, 3968 struct extent_map *em, 3969 u64 map_start, u64 map_len) 3970 { 3971 u64 start_diff; 3972 3973 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3974 start_diff = map_start - em->start; 3975 em->start = map_start; 3976 em->len = map_len; 3977 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3978 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3979 em->block_start += start_diff; 3980 em->block_len -= start_diff; 3981 } 3982 return add_extent_mapping(em_tree, em); 3983 } 3984 3985 static noinline int uncompress_inline(struct btrfs_path *path, 3986 struct inode *inode, struct page *page, 3987 size_t pg_offset, u64 extent_offset, 3988 struct btrfs_file_extent_item *item) 3989 { 3990 int ret; 3991 struct extent_buffer *leaf = path->nodes[0]; 3992 char *tmp; 3993 size_t max_size; 3994 unsigned long inline_size; 3995 unsigned long ptr; 3996 3997 WARN_ON(pg_offset != 0); 3998 max_size = btrfs_file_extent_ram_bytes(leaf, item); 3999 inline_size = btrfs_file_extent_inline_item_len(leaf, 4000 btrfs_item_nr(leaf, path->slots[0])); 4001 tmp = kmalloc(inline_size, GFP_NOFS); 4002 ptr = btrfs_file_extent_inline_start(item); 4003 4004 read_extent_buffer(leaf, tmp, ptr, inline_size); 4005 4006 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4007 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4008 inline_size, max_size); 4009 if (ret) { 4010 char *kaddr = kmap_atomic(page, KM_USER0); 4011 unsigned long copy_size = min_t(u64, 4012 PAGE_CACHE_SIZE - pg_offset, 4013 max_size - extent_offset); 4014 memset(kaddr + pg_offset, 0, copy_size); 4015 kunmap_atomic(kaddr, KM_USER0); 4016 } 4017 kfree(tmp); 4018 return 0; 4019 } 4020 4021 /* 4022 * a bit scary, this does extent mapping from logical file offset to the disk. 4023 * the ugly parts come from merging extents from the disk with the in-ram 4024 * representation. This gets more complex because of the data=ordered code, 4025 * where the in-ram extents might be locked pending data=ordered completion. 4026 * 4027 * This also copies inline extents directly into the page. 4028 */ 4029 4030 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4031 size_t pg_offset, u64 start, u64 len, 4032 int create) 4033 { 4034 int ret; 4035 int err = 0; 4036 u64 bytenr; 4037 u64 extent_start = 0; 4038 u64 extent_end = 0; 4039 u64 objectid = inode->i_ino; 4040 u32 found_type; 4041 struct btrfs_path *path = NULL; 4042 struct btrfs_root *root = BTRFS_I(inode)->root; 4043 struct btrfs_file_extent_item *item; 4044 struct extent_buffer *leaf; 4045 struct btrfs_key found_key; 4046 struct extent_map *em = NULL; 4047 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4048 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4049 struct btrfs_trans_handle *trans = NULL; 4050 int compressed; 4051 4052 again: 4053 spin_lock(&em_tree->lock); 4054 em = lookup_extent_mapping(em_tree, start, len); 4055 if (em) 4056 em->bdev = root->fs_info->fs_devices->latest_bdev; 4057 spin_unlock(&em_tree->lock); 4058 4059 if (em) { 4060 if (em->start > start || em->start + em->len <= start) 4061 free_extent_map(em); 4062 else if (em->block_start == EXTENT_MAP_INLINE && page) 4063 free_extent_map(em); 4064 else 4065 goto out; 4066 } 4067 em = alloc_extent_map(GFP_NOFS); 4068 if (!em) { 4069 err = -ENOMEM; 4070 goto out; 4071 } 4072 em->bdev = root->fs_info->fs_devices->latest_bdev; 4073 em->start = EXTENT_MAP_HOLE; 4074 em->orig_start = EXTENT_MAP_HOLE; 4075 em->len = (u64)-1; 4076 em->block_len = (u64)-1; 4077 4078 if (!path) { 4079 path = btrfs_alloc_path(); 4080 BUG_ON(!path); 4081 } 4082 4083 ret = btrfs_lookup_file_extent(trans, root, path, 4084 objectid, start, trans != NULL); 4085 if (ret < 0) { 4086 err = ret; 4087 goto out; 4088 } 4089 4090 if (ret != 0) { 4091 if (path->slots[0] == 0) 4092 goto not_found; 4093 path->slots[0]--; 4094 } 4095 4096 leaf = path->nodes[0]; 4097 item = btrfs_item_ptr(leaf, path->slots[0], 4098 struct btrfs_file_extent_item); 4099 /* are we inside the extent that was found? */ 4100 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4101 found_type = btrfs_key_type(&found_key); 4102 if (found_key.objectid != objectid || 4103 found_type != BTRFS_EXTENT_DATA_KEY) { 4104 goto not_found; 4105 } 4106 4107 found_type = btrfs_file_extent_type(leaf, item); 4108 extent_start = found_key.offset; 4109 compressed = btrfs_file_extent_compression(leaf, item); 4110 if (found_type == BTRFS_FILE_EXTENT_REG || 4111 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4112 extent_end = extent_start + 4113 btrfs_file_extent_num_bytes(leaf, item); 4114 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4115 size_t size; 4116 size = btrfs_file_extent_inline_len(leaf, item); 4117 extent_end = (extent_start + size + root->sectorsize - 1) & 4118 ~((u64)root->sectorsize - 1); 4119 } 4120 4121 if (start >= extent_end) { 4122 path->slots[0]++; 4123 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4124 ret = btrfs_next_leaf(root, path); 4125 if (ret < 0) { 4126 err = ret; 4127 goto out; 4128 } 4129 if (ret > 0) 4130 goto not_found; 4131 leaf = path->nodes[0]; 4132 } 4133 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4134 if (found_key.objectid != objectid || 4135 found_key.type != BTRFS_EXTENT_DATA_KEY) 4136 goto not_found; 4137 if (start + len <= found_key.offset) 4138 goto not_found; 4139 em->start = start; 4140 em->len = found_key.offset - start; 4141 goto not_found_em; 4142 } 4143 4144 if (found_type == BTRFS_FILE_EXTENT_REG || 4145 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4146 em->start = extent_start; 4147 em->len = extent_end - extent_start; 4148 em->orig_start = extent_start - 4149 btrfs_file_extent_offset(leaf, item); 4150 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4151 if (bytenr == 0) { 4152 em->block_start = EXTENT_MAP_HOLE; 4153 goto insert; 4154 } 4155 if (compressed) { 4156 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4157 em->block_start = bytenr; 4158 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4159 item); 4160 } else { 4161 bytenr += btrfs_file_extent_offset(leaf, item); 4162 em->block_start = bytenr; 4163 em->block_len = em->len; 4164 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4165 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4166 } 4167 goto insert; 4168 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4169 unsigned long ptr; 4170 char *map; 4171 size_t size; 4172 size_t extent_offset; 4173 size_t copy_size; 4174 4175 em->block_start = EXTENT_MAP_INLINE; 4176 if (!page || create) { 4177 em->start = extent_start; 4178 em->len = extent_end - extent_start; 4179 goto out; 4180 } 4181 4182 size = btrfs_file_extent_inline_len(leaf, item); 4183 extent_offset = page_offset(page) + pg_offset - extent_start; 4184 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4185 size - extent_offset); 4186 em->start = extent_start + extent_offset; 4187 em->len = (copy_size + root->sectorsize - 1) & 4188 ~((u64)root->sectorsize - 1); 4189 em->orig_start = EXTENT_MAP_INLINE; 4190 if (compressed) 4191 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4192 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4193 if (create == 0 && !PageUptodate(page)) { 4194 if (btrfs_file_extent_compression(leaf, item) == 4195 BTRFS_COMPRESS_ZLIB) { 4196 ret = uncompress_inline(path, inode, page, 4197 pg_offset, 4198 extent_offset, item); 4199 BUG_ON(ret); 4200 } else { 4201 map = kmap(page); 4202 read_extent_buffer(leaf, map + pg_offset, ptr, 4203 copy_size); 4204 kunmap(page); 4205 } 4206 flush_dcache_page(page); 4207 } else if (create && PageUptodate(page)) { 4208 if (!trans) { 4209 kunmap(page); 4210 free_extent_map(em); 4211 em = NULL; 4212 btrfs_release_path(root, path); 4213 trans = btrfs_join_transaction(root, 1); 4214 goto again; 4215 } 4216 map = kmap(page); 4217 write_extent_buffer(leaf, map + pg_offset, ptr, 4218 copy_size); 4219 kunmap(page); 4220 btrfs_mark_buffer_dirty(leaf); 4221 } 4222 set_extent_uptodate(io_tree, em->start, 4223 extent_map_end(em) - 1, GFP_NOFS); 4224 goto insert; 4225 } else { 4226 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4227 WARN_ON(1); 4228 } 4229 not_found: 4230 em->start = start; 4231 em->len = len; 4232 not_found_em: 4233 em->block_start = EXTENT_MAP_HOLE; 4234 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4235 insert: 4236 btrfs_release_path(root, path); 4237 if (em->start > start || extent_map_end(em) <= start) { 4238 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4239 "[%llu %llu]\n", (unsigned long long)em->start, 4240 (unsigned long long)em->len, 4241 (unsigned long long)start, 4242 (unsigned long long)len); 4243 err = -EIO; 4244 goto out; 4245 } 4246 4247 err = 0; 4248 spin_lock(&em_tree->lock); 4249 ret = add_extent_mapping(em_tree, em); 4250 /* it is possible that someone inserted the extent into the tree 4251 * while we had the lock dropped. It is also possible that 4252 * an overlapping map exists in the tree 4253 */ 4254 if (ret == -EEXIST) { 4255 struct extent_map *existing; 4256 4257 ret = 0; 4258 4259 existing = lookup_extent_mapping(em_tree, start, len); 4260 if (existing && (existing->start > start || 4261 existing->start + existing->len <= start)) { 4262 free_extent_map(existing); 4263 existing = NULL; 4264 } 4265 if (!existing) { 4266 existing = lookup_extent_mapping(em_tree, em->start, 4267 em->len); 4268 if (existing) { 4269 err = merge_extent_mapping(em_tree, existing, 4270 em, start, 4271 root->sectorsize); 4272 free_extent_map(existing); 4273 if (err) { 4274 free_extent_map(em); 4275 em = NULL; 4276 } 4277 } else { 4278 err = -EIO; 4279 free_extent_map(em); 4280 em = NULL; 4281 } 4282 } else { 4283 free_extent_map(em); 4284 em = existing; 4285 err = 0; 4286 } 4287 } 4288 spin_unlock(&em_tree->lock); 4289 out: 4290 if (path) 4291 btrfs_free_path(path); 4292 if (trans) { 4293 ret = btrfs_end_transaction(trans, root); 4294 if (!err) 4295 err = ret; 4296 } 4297 if (err) { 4298 free_extent_map(em); 4299 return ERR_PTR(err); 4300 } 4301 return em; 4302 } 4303 4304 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4305 const struct iovec *iov, loff_t offset, 4306 unsigned long nr_segs) 4307 { 4308 return -EINVAL; 4309 } 4310 4311 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4312 __u64 start, __u64 len) 4313 { 4314 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4315 } 4316 4317 int btrfs_readpage(struct file *file, struct page *page) 4318 { 4319 struct extent_io_tree *tree; 4320 tree = &BTRFS_I(page->mapping->host)->io_tree; 4321 return extent_read_full_page(tree, page, btrfs_get_extent); 4322 } 4323 4324 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4325 { 4326 struct extent_io_tree *tree; 4327 4328 4329 if (current->flags & PF_MEMALLOC) { 4330 redirty_page_for_writepage(wbc, page); 4331 unlock_page(page); 4332 return 0; 4333 } 4334 tree = &BTRFS_I(page->mapping->host)->io_tree; 4335 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4336 } 4337 4338 int btrfs_writepages(struct address_space *mapping, 4339 struct writeback_control *wbc) 4340 { 4341 struct extent_io_tree *tree; 4342 4343 tree = &BTRFS_I(mapping->host)->io_tree; 4344 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4345 } 4346 4347 static int 4348 btrfs_readpages(struct file *file, struct address_space *mapping, 4349 struct list_head *pages, unsigned nr_pages) 4350 { 4351 struct extent_io_tree *tree; 4352 tree = &BTRFS_I(mapping->host)->io_tree; 4353 return extent_readpages(tree, mapping, pages, nr_pages, 4354 btrfs_get_extent); 4355 } 4356 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4357 { 4358 struct extent_io_tree *tree; 4359 struct extent_map_tree *map; 4360 int ret; 4361 4362 tree = &BTRFS_I(page->mapping->host)->io_tree; 4363 map = &BTRFS_I(page->mapping->host)->extent_tree; 4364 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4365 if (ret == 1) { 4366 ClearPagePrivate(page); 4367 set_page_private(page, 0); 4368 page_cache_release(page); 4369 } 4370 return ret; 4371 } 4372 4373 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4374 { 4375 if (PageWriteback(page) || PageDirty(page)) 4376 return 0; 4377 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 4378 } 4379 4380 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4381 { 4382 struct extent_io_tree *tree; 4383 struct btrfs_ordered_extent *ordered; 4384 u64 page_start = page_offset(page); 4385 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4386 4387 wait_on_page_writeback(page); 4388 tree = &BTRFS_I(page->mapping->host)->io_tree; 4389 if (offset) { 4390 btrfs_releasepage(page, GFP_NOFS); 4391 return; 4392 } 4393 4394 lock_extent(tree, page_start, page_end, GFP_NOFS); 4395 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4396 page_offset(page)); 4397 if (ordered) { 4398 /* 4399 * IO on this page will never be started, so we need 4400 * to account for any ordered extents now 4401 */ 4402 clear_extent_bit(tree, page_start, page_end, 4403 EXTENT_DIRTY | EXTENT_DELALLOC | 4404 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4405 btrfs_finish_ordered_io(page->mapping->host, 4406 page_start, page_end); 4407 btrfs_put_ordered_extent(ordered); 4408 lock_extent(tree, page_start, page_end, GFP_NOFS); 4409 } 4410 clear_extent_bit(tree, page_start, page_end, 4411 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4412 EXTENT_ORDERED, 4413 1, 1, GFP_NOFS); 4414 __btrfs_releasepage(page, GFP_NOFS); 4415 4416 ClearPageChecked(page); 4417 if (PagePrivate(page)) { 4418 ClearPagePrivate(page); 4419 set_page_private(page, 0); 4420 page_cache_release(page); 4421 } 4422 } 4423 4424 /* 4425 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4426 * called from a page fault handler when a page is first dirtied. Hence we must 4427 * be careful to check for EOF conditions here. We set the page up correctly 4428 * for a written page which means we get ENOSPC checking when writing into 4429 * holes and correct delalloc and unwritten extent mapping on filesystems that 4430 * support these features. 4431 * 4432 * We are not allowed to take the i_mutex here so we have to play games to 4433 * protect against truncate races as the page could now be beyond EOF. Because 4434 * vmtruncate() writes the inode size before removing pages, once we have the 4435 * page lock we can determine safely if the page is beyond EOF. If it is not 4436 * beyond EOF, then the page is guaranteed safe against truncation until we 4437 * unlock the page. 4438 */ 4439 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4440 { 4441 struct page *page = vmf->page; 4442 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4443 struct btrfs_root *root = BTRFS_I(inode)->root; 4444 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4445 struct btrfs_ordered_extent *ordered; 4446 char *kaddr; 4447 unsigned long zero_start; 4448 loff_t size; 4449 int ret; 4450 u64 page_start; 4451 u64 page_end; 4452 4453 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 4454 if (ret) { 4455 if (ret == -ENOMEM) 4456 ret = VM_FAULT_OOM; 4457 else /* -ENOSPC, -EIO, etc */ 4458 ret = VM_FAULT_SIGBUS; 4459 goto out; 4460 } 4461 4462 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 4463 again: 4464 lock_page(page); 4465 size = i_size_read(inode); 4466 page_start = page_offset(page); 4467 page_end = page_start + PAGE_CACHE_SIZE - 1; 4468 4469 if ((page->mapping != inode->i_mapping) || 4470 (page_start >= size)) { 4471 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 4472 /* page got truncated out from underneath us */ 4473 goto out_unlock; 4474 } 4475 wait_on_page_writeback(page); 4476 4477 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4478 set_page_extent_mapped(page); 4479 4480 /* 4481 * we can't set the delalloc bits if there are pending ordered 4482 * extents. Drop our locks and wait for them to finish 4483 */ 4484 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4485 if (ordered) { 4486 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4487 unlock_page(page); 4488 btrfs_start_ordered_extent(inode, ordered, 1); 4489 btrfs_put_ordered_extent(ordered); 4490 goto again; 4491 } 4492 4493 btrfs_set_extent_delalloc(inode, page_start, page_end); 4494 ret = 0; 4495 4496 /* page is wholly or partially inside EOF */ 4497 if (page_start + PAGE_CACHE_SIZE > size) 4498 zero_start = size & ~PAGE_CACHE_MASK; 4499 else 4500 zero_start = PAGE_CACHE_SIZE; 4501 4502 if (zero_start != PAGE_CACHE_SIZE) { 4503 kaddr = kmap(page); 4504 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4505 flush_dcache_page(page); 4506 kunmap(page); 4507 } 4508 ClearPageChecked(page); 4509 set_page_dirty(page); 4510 4511 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 4512 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4513 4514 out_unlock: 4515 unlock_page(page); 4516 out: 4517 return ret; 4518 } 4519 4520 static void btrfs_truncate(struct inode *inode) 4521 { 4522 struct btrfs_root *root = BTRFS_I(inode)->root; 4523 int ret; 4524 struct btrfs_trans_handle *trans; 4525 unsigned long nr; 4526 u64 mask = root->sectorsize - 1; 4527 4528 if (!S_ISREG(inode->i_mode)) 4529 return; 4530 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4531 return; 4532 4533 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4534 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4535 4536 trans = btrfs_start_transaction(root, 1); 4537 4538 /* 4539 * setattr is responsible for setting the ordered_data_close flag, 4540 * but that is only tested during the last file release. That 4541 * could happen well after the next commit, leaving a great big 4542 * window where new writes may get lost if someone chooses to write 4543 * to this file after truncating to zero 4544 * 4545 * The inode doesn't have any dirty data here, and so if we commit 4546 * this is a noop. If someone immediately starts writing to the inode 4547 * it is very likely we'll catch some of their writes in this 4548 * transaction, and the commit will find this file on the ordered 4549 * data list with good things to send down. 4550 * 4551 * This is a best effort solution, there is still a window where 4552 * using truncate to replace the contents of the file will 4553 * end up with a zero length file after a crash. 4554 */ 4555 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 4556 btrfs_add_ordered_operation(trans, root, inode); 4557 4558 btrfs_set_trans_block_group(trans, inode); 4559 btrfs_i_size_write(inode, inode->i_size); 4560 4561 ret = btrfs_orphan_add(trans, inode); 4562 if (ret) 4563 goto out; 4564 /* FIXME, add redo link to tree so we don't leak on crash */ 4565 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4566 BTRFS_EXTENT_DATA_KEY); 4567 btrfs_update_inode(trans, root, inode); 4568 4569 ret = btrfs_orphan_del(trans, inode); 4570 BUG_ON(ret); 4571 4572 out: 4573 nr = trans->blocks_used; 4574 ret = btrfs_end_transaction_throttle(trans, root); 4575 BUG_ON(ret); 4576 btrfs_btree_balance_dirty(root, nr); 4577 } 4578 4579 /* 4580 * create a new subvolume directory/inode (helper for the ioctl). 4581 */ 4582 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4583 struct btrfs_root *new_root, struct dentry *dentry, 4584 u64 new_dirid, u64 alloc_hint) 4585 { 4586 struct inode *inode; 4587 int error; 4588 u64 index = 0; 4589 4590 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4591 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4592 if (IS_ERR(inode)) 4593 return PTR_ERR(inode); 4594 inode->i_op = &btrfs_dir_inode_operations; 4595 inode->i_fop = &btrfs_dir_file_operations; 4596 4597 inode->i_nlink = 1; 4598 btrfs_i_size_write(inode, 0); 4599 4600 error = btrfs_update_inode(trans, new_root, inode); 4601 if (error) 4602 return error; 4603 4604 d_instantiate(dentry, inode); 4605 return 0; 4606 } 4607 4608 /* helper function for file defrag and space balancing. This 4609 * forces readahead on a given range of bytes in an inode 4610 */ 4611 unsigned long btrfs_force_ra(struct address_space *mapping, 4612 struct file_ra_state *ra, struct file *file, 4613 pgoff_t offset, pgoff_t last_index) 4614 { 4615 pgoff_t req_size = last_index - offset + 1; 4616 4617 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4618 return offset + req_size; 4619 } 4620 4621 struct inode *btrfs_alloc_inode(struct super_block *sb) 4622 { 4623 struct btrfs_inode *ei; 4624 4625 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4626 if (!ei) 4627 return NULL; 4628 ei->last_trans = 0; 4629 ei->logged_trans = 0; 4630 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4631 ei->i_acl = BTRFS_ACL_NOT_CACHED; 4632 ei->i_default_acl = BTRFS_ACL_NOT_CACHED; 4633 INIT_LIST_HEAD(&ei->i_orphan); 4634 INIT_LIST_HEAD(&ei->ordered_operations); 4635 return &ei->vfs_inode; 4636 } 4637 4638 void btrfs_destroy_inode(struct inode *inode) 4639 { 4640 struct btrfs_ordered_extent *ordered; 4641 struct btrfs_root *root = BTRFS_I(inode)->root; 4642 4643 WARN_ON(!list_empty(&inode->i_dentry)); 4644 WARN_ON(inode->i_data.nrpages); 4645 4646 if (BTRFS_I(inode)->i_acl && 4647 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) 4648 posix_acl_release(BTRFS_I(inode)->i_acl); 4649 if (BTRFS_I(inode)->i_default_acl && 4650 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) 4651 posix_acl_release(BTRFS_I(inode)->i_default_acl); 4652 4653 /* 4654 * Make sure we're properly removed from the ordered operation 4655 * lists. 4656 */ 4657 smp_mb(); 4658 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 4659 spin_lock(&root->fs_info->ordered_extent_lock); 4660 list_del_init(&BTRFS_I(inode)->ordered_operations); 4661 spin_unlock(&root->fs_info->ordered_extent_lock); 4662 } 4663 4664 spin_lock(&root->list_lock); 4665 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4666 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4667 " list\n", inode->i_ino); 4668 dump_stack(); 4669 } 4670 spin_unlock(&root->list_lock); 4671 4672 while (1) { 4673 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4674 if (!ordered) 4675 break; 4676 else { 4677 printk(KERN_ERR "btrfs found ordered " 4678 "extent %llu %llu on inode cleanup\n", 4679 (unsigned long long)ordered->file_offset, 4680 (unsigned long long)ordered->len); 4681 btrfs_remove_ordered_extent(inode, ordered); 4682 btrfs_put_ordered_extent(ordered); 4683 btrfs_put_ordered_extent(ordered); 4684 } 4685 } 4686 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4687 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4688 } 4689 4690 static void init_once(void *foo) 4691 { 4692 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4693 4694 inode_init_once(&ei->vfs_inode); 4695 } 4696 4697 void btrfs_destroy_cachep(void) 4698 { 4699 if (btrfs_inode_cachep) 4700 kmem_cache_destroy(btrfs_inode_cachep); 4701 if (btrfs_trans_handle_cachep) 4702 kmem_cache_destroy(btrfs_trans_handle_cachep); 4703 if (btrfs_transaction_cachep) 4704 kmem_cache_destroy(btrfs_transaction_cachep); 4705 if (btrfs_path_cachep) 4706 kmem_cache_destroy(btrfs_path_cachep); 4707 } 4708 4709 int btrfs_init_cachep(void) 4710 { 4711 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 4712 sizeof(struct btrfs_inode), 0, 4713 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 4714 if (!btrfs_inode_cachep) 4715 goto fail; 4716 4717 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 4718 sizeof(struct btrfs_trans_handle), 0, 4719 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4720 if (!btrfs_trans_handle_cachep) 4721 goto fail; 4722 4723 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 4724 sizeof(struct btrfs_transaction), 0, 4725 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4726 if (!btrfs_transaction_cachep) 4727 goto fail; 4728 4729 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 4730 sizeof(struct btrfs_path), 0, 4731 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4732 if (!btrfs_path_cachep) 4733 goto fail; 4734 4735 return 0; 4736 fail: 4737 btrfs_destroy_cachep(); 4738 return -ENOMEM; 4739 } 4740 4741 static int btrfs_getattr(struct vfsmount *mnt, 4742 struct dentry *dentry, struct kstat *stat) 4743 { 4744 struct inode *inode = dentry->d_inode; 4745 generic_fillattr(inode, stat); 4746 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4747 stat->blksize = PAGE_CACHE_SIZE; 4748 stat->blocks = (inode_get_bytes(inode) + 4749 BTRFS_I(inode)->delalloc_bytes) >> 9; 4750 return 0; 4751 } 4752 4753 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4754 struct inode *new_dir, struct dentry *new_dentry) 4755 { 4756 struct btrfs_trans_handle *trans; 4757 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4758 struct inode *new_inode = new_dentry->d_inode; 4759 struct inode *old_inode = old_dentry->d_inode; 4760 struct timespec ctime = CURRENT_TIME; 4761 u64 index = 0; 4762 int ret; 4763 4764 /* we're not allowed to rename between subvolumes */ 4765 if (BTRFS_I(old_inode)->root->root_key.objectid != 4766 BTRFS_I(new_dir)->root->root_key.objectid) 4767 return -EXDEV; 4768 4769 if (S_ISDIR(old_inode->i_mode) && new_inode && 4770 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4771 return -ENOTEMPTY; 4772 } 4773 4774 /* to rename a snapshot or subvolume, we need to juggle the 4775 * backrefs. This isn't coded yet 4776 */ 4777 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4778 return -EXDEV; 4779 4780 ret = btrfs_check_metadata_free_space(root); 4781 if (ret) 4782 goto out_unlock; 4783 4784 /* 4785 * we're using rename to replace one file with another. 4786 * and the replacement file is large. Start IO on it now so 4787 * we don't add too much work to the end of the transaction 4788 */ 4789 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) && 4790 new_inode->i_size && 4791 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 4792 filemap_flush(old_inode->i_mapping); 4793 4794 trans = btrfs_start_transaction(root, 1); 4795 4796 /* 4797 * make sure the inode gets flushed if it is replacing 4798 * something. 4799 */ 4800 if (new_inode && new_inode->i_size && 4801 old_inode && S_ISREG(old_inode->i_mode)) { 4802 btrfs_add_ordered_operation(trans, root, old_inode); 4803 } 4804 4805 /* 4806 * this is an ugly little race, but the rename is required to make 4807 * sure that if we crash, the inode is either at the old name 4808 * or the new one. pinning the log transaction lets us make sure 4809 * we don't allow a log commit to come in after we unlink the 4810 * name but before we add the new name back in. 4811 */ 4812 btrfs_pin_log_trans(root); 4813 4814 btrfs_set_trans_block_group(trans, new_dir); 4815 4816 btrfs_inc_nlink(old_dentry->d_inode); 4817 old_dir->i_ctime = old_dir->i_mtime = ctime; 4818 new_dir->i_ctime = new_dir->i_mtime = ctime; 4819 old_inode->i_ctime = ctime; 4820 4821 if (old_dentry->d_parent != new_dentry->d_parent) 4822 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 4823 4824 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4825 old_dentry->d_name.name, 4826 old_dentry->d_name.len); 4827 if (ret) 4828 goto out_fail; 4829 4830 if (new_inode) { 4831 new_inode->i_ctime = CURRENT_TIME; 4832 ret = btrfs_unlink_inode(trans, root, new_dir, 4833 new_dentry->d_inode, 4834 new_dentry->d_name.name, 4835 new_dentry->d_name.len); 4836 if (ret) 4837 goto out_fail; 4838 if (new_inode->i_nlink == 0) { 4839 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4840 if (ret) 4841 goto out_fail; 4842 } 4843 4844 } 4845 ret = btrfs_set_inode_index(new_dir, &index); 4846 if (ret) 4847 goto out_fail; 4848 4849 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4850 old_inode, new_dentry->d_name.name, 4851 new_dentry->d_name.len, 1, index); 4852 if (ret) 4853 goto out_fail; 4854 4855 btrfs_log_new_name(trans, old_inode, old_dir, 4856 new_dentry->d_parent); 4857 out_fail: 4858 4859 /* this btrfs_end_log_trans just allows the current 4860 * log-sub transaction to complete 4861 */ 4862 btrfs_end_log_trans(root); 4863 btrfs_end_transaction_throttle(trans, root); 4864 out_unlock: 4865 return ret; 4866 } 4867 4868 /* 4869 * some fairly slow code that needs optimization. This walks the list 4870 * of all the inodes with pending delalloc and forces them to disk. 4871 */ 4872 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4873 { 4874 struct list_head *head = &root->fs_info->delalloc_inodes; 4875 struct btrfs_inode *binode; 4876 struct inode *inode; 4877 4878 if (root->fs_info->sb->s_flags & MS_RDONLY) 4879 return -EROFS; 4880 4881 spin_lock(&root->fs_info->delalloc_lock); 4882 while (!list_empty(head)) { 4883 binode = list_entry(head->next, struct btrfs_inode, 4884 delalloc_inodes); 4885 inode = igrab(&binode->vfs_inode); 4886 if (!inode) 4887 list_del_init(&binode->delalloc_inodes); 4888 spin_unlock(&root->fs_info->delalloc_lock); 4889 if (inode) { 4890 filemap_flush(inode->i_mapping); 4891 iput(inode); 4892 } 4893 cond_resched(); 4894 spin_lock(&root->fs_info->delalloc_lock); 4895 } 4896 spin_unlock(&root->fs_info->delalloc_lock); 4897 4898 /* the filemap_flush will queue IO into the worker threads, but 4899 * we have to make sure the IO is actually started and that 4900 * ordered extents get created before we return 4901 */ 4902 atomic_inc(&root->fs_info->async_submit_draining); 4903 while (atomic_read(&root->fs_info->nr_async_submits) || 4904 atomic_read(&root->fs_info->async_delalloc_pages)) { 4905 wait_event(root->fs_info->async_submit_wait, 4906 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4907 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4908 } 4909 atomic_dec(&root->fs_info->async_submit_draining); 4910 return 0; 4911 } 4912 4913 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4914 const char *symname) 4915 { 4916 struct btrfs_trans_handle *trans; 4917 struct btrfs_root *root = BTRFS_I(dir)->root; 4918 struct btrfs_path *path; 4919 struct btrfs_key key; 4920 struct inode *inode = NULL; 4921 int err; 4922 int drop_inode = 0; 4923 u64 objectid; 4924 u64 index = 0 ; 4925 int name_len; 4926 int datasize; 4927 unsigned long ptr; 4928 struct btrfs_file_extent_item *ei; 4929 struct extent_buffer *leaf; 4930 unsigned long nr = 0; 4931 4932 name_len = strlen(symname) + 1; 4933 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4934 return -ENAMETOOLONG; 4935 4936 err = btrfs_check_metadata_free_space(root); 4937 if (err) 4938 goto out_fail; 4939 4940 trans = btrfs_start_transaction(root, 1); 4941 btrfs_set_trans_block_group(trans, dir); 4942 4943 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4944 if (err) { 4945 err = -ENOSPC; 4946 goto out_unlock; 4947 } 4948 4949 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4950 dentry->d_name.len, 4951 dentry->d_parent->d_inode->i_ino, objectid, 4952 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4953 &index); 4954 err = PTR_ERR(inode); 4955 if (IS_ERR(inode)) 4956 goto out_unlock; 4957 4958 err = btrfs_init_inode_security(inode, dir); 4959 if (err) { 4960 drop_inode = 1; 4961 goto out_unlock; 4962 } 4963 4964 btrfs_set_trans_block_group(trans, inode); 4965 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4966 if (err) 4967 drop_inode = 1; 4968 else { 4969 inode->i_mapping->a_ops = &btrfs_aops; 4970 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4971 inode->i_fop = &btrfs_file_operations; 4972 inode->i_op = &btrfs_file_inode_operations; 4973 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4974 } 4975 dir->i_sb->s_dirt = 1; 4976 btrfs_update_inode_block_group(trans, inode); 4977 btrfs_update_inode_block_group(trans, dir); 4978 if (drop_inode) 4979 goto out_unlock; 4980 4981 path = btrfs_alloc_path(); 4982 BUG_ON(!path); 4983 key.objectid = inode->i_ino; 4984 key.offset = 0; 4985 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4986 datasize = btrfs_file_extent_calc_inline_size(name_len); 4987 err = btrfs_insert_empty_item(trans, root, path, &key, 4988 datasize); 4989 if (err) { 4990 drop_inode = 1; 4991 goto out_unlock; 4992 } 4993 leaf = path->nodes[0]; 4994 ei = btrfs_item_ptr(leaf, path->slots[0], 4995 struct btrfs_file_extent_item); 4996 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 4997 btrfs_set_file_extent_type(leaf, ei, 4998 BTRFS_FILE_EXTENT_INLINE); 4999 btrfs_set_file_extent_encryption(leaf, ei, 0); 5000 btrfs_set_file_extent_compression(leaf, ei, 0); 5001 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 5002 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 5003 5004 ptr = btrfs_file_extent_inline_start(ei); 5005 write_extent_buffer(leaf, symname, ptr, name_len); 5006 btrfs_mark_buffer_dirty(leaf); 5007 btrfs_free_path(path); 5008 5009 inode->i_op = &btrfs_symlink_inode_operations; 5010 inode->i_mapping->a_ops = &btrfs_symlink_aops; 5011 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5012 inode_set_bytes(inode, name_len); 5013 btrfs_i_size_write(inode, name_len - 1); 5014 err = btrfs_update_inode(trans, root, inode); 5015 if (err) 5016 drop_inode = 1; 5017 5018 out_unlock: 5019 nr = trans->blocks_used; 5020 btrfs_end_transaction_throttle(trans, root); 5021 out_fail: 5022 if (drop_inode) { 5023 inode_dec_link_count(inode); 5024 iput(inode); 5025 } 5026 btrfs_btree_balance_dirty(root, nr); 5027 return err; 5028 } 5029 5030 static int prealloc_file_range(struct btrfs_trans_handle *trans, 5031 struct inode *inode, u64 start, u64 end, 5032 u64 locked_end, u64 alloc_hint, int mode) 5033 { 5034 struct btrfs_root *root = BTRFS_I(inode)->root; 5035 struct btrfs_key ins; 5036 u64 alloc_size; 5037 u64 cur_offset = start; 5038 u64 num_bytes = end - start; 5039 int ret = 0; 5040 5041 while (num_bytes > 0) { 5042 alloc_size = min(num_bytes, root->fs_info->max_extent); 5043 ret = btrfs_reserve_extent(trans, root, alloc_size, 5044 root->sectorsize, 0, alloc_hint, 5045 (u64)-1, &ins, 1); 5046 if (ret) { 5047 WARN_ON(1); 5048 goto out; 5049 } 5050 ret = insert_reserved_file_extent(trans, inode, 5051 cur_offset, ins.objectid, 5052 ins.offset, ins.offset, 5053 ins.offset, locked_end, 5054 0, 0, 0, 5055 BTRFS_FILE_EXTENT_PREALLOC); 5056 BUG_ON(ret); 5057 num_bytes -= ins.offset; 5058 cur_offset += ins.offset; 5059 alloc_hint = ins.objectid + ins.offset; 5060 } 5061 out: 5062 if (cur_offset > start) { 5063 inode->i_ctime = CURRENT_TIME; 5064 btrfs_set_flag(inode, PREALLOC); 5065 if (!(mode & FALLOC_FL_KEEP_SIZE) && 5066 cur_offset > i_size_read(inode)) 5067 btrfs_i_size_write(inode, cur_offset); 5068 ret = btrfs_update_inode(trans, root, inode); 5069 BUG_ON(ret); 5070 } 5071 5072 return ret; 5073 } 5074 5075 static long btrfs_fallocate(struct inode *inode, int mode, 5076 loff_t offset, loff_t len) 5077 { 5078 u64 cur_offset; 5079 u64 last_byte; 5080 u64 alloc_start; 5081 u64 alloc_end; 5082 u64 alloc_hint = 0; 5083 u64 locked_end; 5084 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 5085 struct extent_map *em; 5086 struct btrfs_trans_handle *trans; 5087 int ret; 5088 5089 alloc_start = offset & ~mask; 5090 alloc_end = (offset + len + mask) & ~mask; 5091 5092 /* 5093 * wait for ordered IO before we have any locks. We'll loop again 5094 * below with the locks held. 5095 */ 5096 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 5097 5098 mutex_lock(&inode->i_mutex); 5099 if (alloc_start > inode->i_size) { 5100 ret = btrfs_cont_expand(inode, alloc_start); 5101 if (ret) 5102 goto out; 5103 } 5104 5105 locked_end = alloc_end - 1; 5106 while (1) { 5107 struct btrfs_ordered_extent *ordered; 5108 5109 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1); 5110 if (!trans) { 5111 ret = -EIO; 5112 goto out; 5113 } 5114 5115 /* the extent lock is ordered inside the running 5116 * transaction 5117 */ 5118 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5119 GFP_NOFS); 5120 ordered = btrfs_lookup_first_ordered_extent(inode, 5121 alloc_end - 1); 5122 if (ordered && 5123 ordered->file_offset + ordered->len > alloc_start && 5124 ordered->file_offset < alloc_end) { 5125 btrfs_put_ordered_extent(ordered); 5126 unlock_extent(&BTRFS_I(inode)->io_tree, 5127 alloc_start, locked_end, GFP_NOFS); 5128 btrfs_end_transaction(trans, BTRFS_I(inode)->root); 5129 5130 /* 5131 * we can't wait on the range with the transaction 5132 * running or with the extent lock held 5133 */ 5134 btrfs_wait_ordered_range(inode, alloc_start, 5135 alloc_end - alloc_start); 5136 } else { 5137 if (ordered) 5138 btrfs_put_ordered_extent(ordered); 5139 break; 5140 } 5141 } 5142 5143 cur_offset = alloc_start; 5144 while (1) { 5145 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5146 alloc_end - cur_offset, 0); 5147 BUG_ON(IS_ERR(em) || !em); 5148 last_byte = min(extent_map_end(em), alloc_end); 5149 last_byte = (last_byte + mask) & ~mask; 5150 if (em->block_start == EXTENT_MAP_HOLE) { 5151 ret = prealloc_file_range(trans, inode, cur_offset, 5152 last_byte, locked_end + 1, 5153 alloc_hint, mode); 5154 if (ret < 0) { 5155 free_extent_map(em); 5156 break; 5157 } 5158 } 5159 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 5160 alloc_hint = em->block_start; 5161 free_extent_map(em); 5162 5163 cur_offset = last_byte; 5164 if (cur_offset >= alloc_end) { 5165 ret = 0; 5166 break; 5167 } 5168 } 5169 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5170 GFP_NOFS); 5171 5172 btrfs_end_transaction(trans, BTRFS_I(inode)->root); 5173 out: 5174 mutex_unlock(&inode->i_mutex); 5175 return ret; 5176 } 5177 5178 static int btrfs_set_page_dirty(struct page *page) 5179 { 5180 return __set_page_dirty_nobuffers(page); 5181 } 5182 5183 static int btrfs_permission(struct inode *inode, int mask) 5184 { 5185 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) 5186 return -EACCES; 5187 return generic_permission(inode, mask, btrfs_check_acl); 5188 } 5189 5190 static struct inode_operations btrfs_dir_inode_operations = { 5191 .getattr = btrfs_getattr, 5192 .lookup = btrfs_lookup, 5193 .create = btrfs_create, 5194 .unlink = btrfs_unlink, 5195 .link = btrfs_link, 5196 .mkdir = btrfs_mkdir, 5197 .rmdir = btrfs_rmdir, 5198 .rename = btrfs_rename, 5199 .symlink = btrfs_symlink, 5200 .setattr = btrfs_setattr, 5201 .mknod = btrfs_mknod, 5202 .setxattr = btrfs_setxattr, 5203 .getxattr = btrfs_getxattr, 5204 .listxattr = btrfs_listxattr, 5205 .removexattr = btrfs_removexattr, 5206 .permission = btrfs_permission, 5207 }; 5208 static struct inode_operations btrfs_dir_ro_inode_operations = { 5209 .lookup = btrfs_lookup, 5210 .permission = btrfs_permission, 5211 }; 5212 static struct file_operations btrfs_dir_file_operations = { 5213 .llseek = generic_file_llseek, 5214 .read = generic_read_dir, 5215 .readdir = btrfs_real_readdir, 5216 .unlocked_ioctl = btrfs_ioctl, 5217 #ifdef CONFIG_COMPAT 5218 .compat_ioctl = btrfs_ioctl, 5219 #endif 5220 .release = btrfs_release_file, 5221 .fsync = btrfs_sync_file, 5222 }; 5223 5224 static struct extent_io_ops btrfs_extent_io_ops = { 5225 .fill_delalloc = run_delalloc_range, 5226 .submit_bio_hook = btrfs_submit_bio_hook, 5227 .merge_bio_hook = btrfs_merge_bio_hook, 5228 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 5229 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 5230 .writepage_start_hook = btrfs_writepage_start_hook, 5231 .readpage_io_failed_hook = btrfs_io_failed_hook, 5232 .set_bit_hook = btrfs_set_bit_hook, 5233 .clear_bit_hook = btrfs_clear_bit_hook, 5234 }; 5235 5236 /* 5237 * btrfs doesn't support the bmap operation because swapfiles 5238 * use bmap to make a mapping of extents in the file. They assume 5239 * these extents won't change over the life of the file and they 5240 * use the bmap result to do IO directly to the drive. 5241 * 5242 * the btrfs bmap call would return logical addresses that aren't 5243 * suitable for IO and they also will change frequently as COW 5244 * operations happen. So, swapfile + btrfs == corruption. 5245 * 5246 * For now we're avoiding this by dropping bmap. 5247 */ 5248 static struct address_space_operations btrfs_aops = { 5249 .readpage = btrfs_readpage, 5250 .writepage = btrfs_writepage, 5251 .writepages = btrfs_writepages, 5252 .readpages = btrfs_readpages, 5253 .sync_page = block_sync_page, 5254 .direct_IO = btrfs_direct_IO, 5255 .invalidatepage = btrfs_invalidatepage, 5256 .releasepage = btrfs_releasepage, 5257 .set_page_dirty = btrfs_set_page_dirty, 5258 }; 5259 5260 static struct address_space_operations btrfs_symlink_aops = { 5261 .readpage = btrfs_readpage, 5262 .writepage = btrfs_writepage, 5263 .invalidatepage = btrfs_invalidatepage, 5264 .releasepage = btrfs_releasepage, 5265 }; 5266 5267 static struct inode_operations btrfs_file_inode_operations = { 5268 .truncate = btrfs_truncate, 5269 .getattr = btrfs_getattr, 5270 .setattr = btrfs_setattr, 5271 .setxattr = btrfs_setxattr, 5272 .getxattr = btrfs_getxattr, 5273 .listxattr = btrfs_listxattr, 5274 .removexattr = btrfs_removexattr, 5275 .permission = btrfs_permission, 5276 .fallocate = btrfs_fallocate, 5277 .fiemap = btrfs_fiemap, 5278 }; 5279 static struct inode_operations btrfs_special_inode_operations = { 5280 .getattr = btrfs_getattr, 5281 .setattr = btrfs_setattr, 5282 .permission = btrfs_permission, 5283 .setxattr = btrfs_setxattr, 5284 .getxattr = btrfs_getxattr, 5285 .listxattr = btrfs_listxattr, 5286 .removexattr = btrfs_removexattr, 5287 }; 5288 static struct inode_operations btrfs_symlink_inode_operations = { 5289 .readlink = generic_readlink, 5290 .follow_link = page_follow_link_light, 5291 .put_link = page_put_link, 5292 .permission = btrfs_permission, 5293 .setxattr = btrfs_setxattr, 5294 .getxattr = btrfs_getxattr, 5295 .listxattr = btrfs_listxattr, 5296 .removexattr = btrfs_removexattr, 5297 }; 5298